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Abstract

This dissertation focuses on voting with partial preferences in the form of top-k ballots.
We study ways to minimize the amount of communication required to approximate or
to output the correct winner from truncated ballots with respect to different voting
rules and we propose and analyze different methods allowing a compromise between
the accuracy of the result and the amount of communication required; some require
only one round of communication, while others are interactive.

First, we assume that voters give, in a single shot, their top-k alternatives (for a fixed
k); we define a version of voting rules (Borda, Harmonic, Copeland, Maximin, ranked
pairs and STV) that works for such k-truncated votes. We consider two measures of
the quality of the approximation: the probability of selecting the same winner as the
original rule, and the score ratio. We do a worst-case study (for the latter measure
only), and for both measures, an average-case study and a study from real data sets.
Among the voting rules studied, we pay a particular attention to the single transferable
vote (STV) voting rule. We start by testing empirically to which (quantitative) extent
clone-proofness, which is a key property of (STV) and ranked pairs (RP), is preserved
when replacing complete ballots by k-truncated ballots. Then, we study the closeness
of the k-truncated version of STV to plurality with runoff. Finally, we investigate the
computational complexity of the possible winner problem for top-k ballots under STV.

Second, we consider interactive communication protocols, that can ask voters for
more information in an adaptive fashion. We study possible ways to elicit voters’
preferences in an efficient manner so that the winner is determined. We consider
exact methods and heuristics to guide the choice of the next voter to query. For
the former we focus on STV voting rule; building on an existing protocol of Conitzer
and Sandholm [25], we propose a new protocol and we show how we can reduce the
amount of communication required in practice. For the latter, we explore two heuristic
methods: (1) we adapt Monte Carlo Tree Search (MCTS) approach to vote elicitation
in order to select the most prominent voter to ask in each round based on its evaluation
function Upper Confidence Bounds for Trees (UCT), and (2) we propose an alternative
search heuristic able to select the voter (under certain conditions) for whom we want
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to reveal more information.

Key words: partial preferences, top-k ballots, approximations, preference
elicitation.



Résumé

Cette thèse porte sur le vote avec des préférences partielles sous forme de top-k votes.
Nous étudions des moyens pour réduire la quantité de communication requise pour
déterminer le résultat de l’élection (de manière exacte ou approchée) à partir de bul-
letins tronqués selon différentes règles de vote et nous proposons et analysons différentes
méthodes permettant un compromis entre précision du résultat et quantité de commu-
nication requise; certaines ne requièrent qu’une seule phase de communication, alors
que d’autres sont dynamiques.

Premièrement, nous supposons que les électeurs donnent, d’un seul coup, leurs top-k
préférences (pour un k fixe); nous définissons une version des règles de vote (Borda,
Harmonique, Copeland, Maximin, ranked pairs et STV) qui fonctionne pour ces k-
votes tronqués. Nous considérons deux mesures de la qualité de l’approximation : la
probabilité de sélectionner le même gagnant que la règle originale et le ratio de score.
Nous faisons une étude du pire des cas (pour cette dernière mesure seulement), et
pour les deux mesures, une étude à partir de données synthétiques et réelles. Nous
accordons une attention particulière à la règle vote simple transférable (STV). Nous
commençons par tester empiriquement jusqu’à quel point la résistance aux clones, qui
est une propriété clé de STV, est préservée lorsque on remplace des bulletins complets
par des bulletins tronqués. Ensuite, nous étudions la proximité de la version k-tronquée
de STV à la pluralité à deux tours. Enfin, nous étudions la complexité du problème
des gagnants possibles pour les k-votes tronqués pour STV.

Deuxièmement, nous envisageons des protocoles de communication qui demandent
aux électeurs de compléter leurs votes de manière dynamique. Nous étudions des
moyens pour éliciter les préférences des électeurs de manière efficace afin de déterminer
le gagnant. Nous considérons des méthodes exactes et des heuristiques pour guider le
choix du prochain électeur à interroger. Pour le premier cas, nous nous concentrons sur
STV ; en nous appuyant sur un protocole existant [25], nous proposons un nouveau pro-
tocole et nous montrons comment nous pouvons réduire la quantité de communication
requise en pratique. Pour le deuxième cas, nous explorons deux méthodes heuristiques
: (1) nous adaptons l’approche de la recherche dans les arbres de Monte-Carlo (MCTS)
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au processus d’élicitation de vote, et (2) nous proposons une heuristique capable de
déterminer l’électeur pour qui nous voulons révéler plus d’informations.

Mots clés : préférences partielles, top-k votes, approximations, élicitation
de préférence.
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Introduction (English Version)

Social choice theory concerns the design and analysis of methods for aggregating in-
dividual preferences towards a collective decision making. Central questions are: How
can we choose a winning outcome from the often conflicting individuals’ preferences?
What are the properties of different voting systems? etc. Questions on social choice
have captivated the interest of many researchers from the 18th century with Nicolas de
Condorcet and took off in 20th century with Kenneth Arrow.

Voting theory, which is an important part of social choice theory, is one of the most
popular ways of reaching common decisions using voting methods. Voting methods
are applied to high-stakes settings such as political elections, middle-stakes including
hiring committee and elections in local organizations, and low-stake such as scheduling
a meeting date using an online survey. In this context, a set of individual opinions
(preferences) is aggregated into a collective decision according to a predefined voting
rule. Any electoral system (political or non-political) is based on a voting rule. There
are a large number of variations in electoral systems, but the most common systems
are plurality voting, the two-round (runoff) system or preferential voting such as single
transferable vote (STV).

Classical Social choice focuses on normative and game-theoretic issues that includes
an extensive study of the axiomatic method and proofs of several characterization
and impossibility theorems. The most authoritative reference on classical social choice
theory is the two-volume Handbook of Social Choice and Welfare [2, 3]. Computational
social choice, by comparison, is an interdisciplinary field of study at the interface of
social choice theory and theoretical computer science. It involves the application of
techniques developed in computer science to the study of social choice mechanisms,
such as the development of algorithms for aggregating individual preferences towards
collective decisions.

One prominent research stream within computational social choice deals with com-
munication aspects of voting. Chapter 10 of the Handbook of Computational Social



2 Introduction

Choice edited by Boutilier and Rosenschein [13] provides background on incomplete
information and communication in voting. This line of research focuses on quantify-
ing the amount of information about preferences that is needed to accurately decide
the election’s outcome. Clearly a high communication burden is a drawback that can
hinder the practical applicability of a voting rule. For example, in many legislatures,
such as for the Irish presidential elections which employ STV electoral system; voters
are allowed to only submit a partial ranking: they rank a subset of the candidates, and
leave the rest unranked. This is the main motivation to study the problem of social
choice under incomplete knowledge which comes down to partial preferences. This in
turn raises a central question: How elicit agents’ preferences in an efficient way in or-
der to minimize the amount of information required to determine a winning outcome ?
Topics covered in this area include: incomplete knowledge, preference elicitation (elicit
the partial information in one shot and output a winner using only the information at
hand), communication protocols (ask agents to expand their partial ballots in several
shots, until the outcome is determined), online voting and vote streams.

In this thesis we tackle the problem of incomplete preferences in voting where we are
interested in determining the winning outcome given partial preferences. As input we
consider top-k votes by asking voters to list their k preferred candidates (instead of
all candidates). Then the question is: Given a voting rule, how can we determine the
winner when we know only top-k votes? We consider two ways of proceeding:

• For the first context, we assume that we know nothing more than these top-k
votes. We define approximations of voting rules based on ordinal input (including
Borda, Harmonic, Copeland, Maximin, ranked pairs and STV) using top-k votes
instead of complete ones. To measure the quality of the proposed approximations,
we consider two measures: (i) an empirical one by measuring the frequency with
which the approximation outputs the true winner based on randomly generated
profiles and on real-world data, and (ii) a theoretical one which is the score ratio
between the score of the true winner and of the winner of the approximate rule.
We pay particular attention to the STV voting rule by studying theoretically and
empirically different aspects when using truncated ballots.

• For the second context, we are interested in incremental elicitation protocols by
asking some voters to complete their votes until the winner is known. We focus on
top-k queries where one voter will be asked at a time and i.e. if she is queried for
the kth time, she will be asked to provide her kth preferred candidate. First, we
propose exact methods for interactive vote elicitation where we elicit preferences
from voters in rounds until the winner is known. Second, we explore heuristic
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methods, based on evaluation functions that will guide the choice of the next
voter to query.

Manuscript organization

This thesis is organized as follows.

Chapter 1 presents basic notions and concepts in voting theory. This includes the
definition of the most important families of voting rules, such as: positional scoring
rules, pairwise comparison rules and elimination based rules. Also, we investigate the
use of several distributional preference models used to generate voters’ preferences
based on a prior distribution.

Chapter 2 focuses on determining the winner with partial preferences. We describe
the basic notations of voting with partial preferences. Then, we present existing solu-
tions to determine the winners with partial voters’ preferences. Finally, we tackle the
problem of preference elicitation where we present existing work on the two types of
vote elicitation, namely: interactive elicitation and one-shot elicitation.

In Chapter 3, given top-k ballots, we propose "top-k approximations" of rules, which
take only into account the top-k candidates of each ballot. Here, voters are assumed to
report their top-k alternatives in a single shot. We consider two measures of the quality
of the approximation: the probability of selecting the same winner as the original rule,
and the score ratio.

Chapter 4 focuses on Single Transferable Vote (STV) voting rule. First, we empir-
ically study to which (quantitative) extent the key property of STV, namely clone-
proofness, is preserved when using truncated ballots. Second, we study the closeness of
the k-truncated version of STV (namely STVk) to plurality with runoff. Also, we inves-
tigate the computational complexity of the possible winner problem for top-k ballots.
Finally, we propose ways to minimize the amount of communication required to use
single-winner STV. Building on an existing protocol, we show how we can reduce the
amount of communication required in practice. We then study empirically the average
communication complexity of these protocols.

Chapter 5 proposes an incremental vote elicitation process using heuristic methods
to guide the choice of the next voter to ask. First we adapt Monte Carlo Tree Search
(MCTS) approach to vote elicitation in order to select the most prominent voter to
ask in each round. Second, we propose an alternative search heuristic able to select
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the voter (under certain conditions) for whom we want to reveal more information.
Then, we empirically study the average number of questions asked to voters in order
to determine the winner when using the two proposed heuristics.



Introduction (Version Française)

La théorie du choix social concerne la conception et l’analyse de méthodes d’agrégation
des préférences individuelles en vue d’une prise de décision collective. Les questions
centrales sont : Comment pouvons-nous choisir un gagnant parmi les préférences sou-
vent contradictoires des individus ? Quelles sont les propriétés des différents systèmes
de vote ? etc. Les questions sur le choix social ont captivé l’intérêt de nombreux
chercheurs comme Nicolas de Condorcet, Jean-Charles de Borda and Kenneth Arrow.

La théorie du vote, qui est un élément important de la théorie du choix social, est l’une
des moyens populaires pour parvenir à une décision commune en utilisant les méthodes
de vote. Ces méthodes de vote s’appliquent dans un contexte politique (élection d’un
président, d’une assemblée) ou non (conseil de classe, d’administration etc.). Dans ce
contexte, un problème de vote consiste en un ensemble de candidats et un ensemble
de votants, chque votant a des préférences sur les candidats. Le but d’une règle de
vote est de déterminer un candidat préféré collectivement. Il existe un grand nombre
de variantes dans les systèmes électoraux, mais les systèmes les plus courants sont les
suivants : la pluralité, la pluralité à deux tours (appelée aussi « scrutin majoritaire à
deux tours ») ou le vote préférentiel tel que le vote simple transférable (STV).

Le choix social classique met l’accent sur les questions normatives qui se basent
sur une étude approfondie de la méthode axiomatique et des preuves de plusieurs
caractérisations et des théorèmes d’impossibilité. La référence la plus fiable en matière
de choix social classique est le Handbook of Social Choice and Welfare [2, 3]. Le choix
social computationnel, par comparaison, est un domaine d’études interdisciplinaire à
l’interface de la théorie du choix social et de l’informatique. Il s’agit de l’utilisation de
notions et techniques venant de l’informatique (en particulier l’intelligence artificielle,
la recherche opérationnelle, l’algorithmique) qui permet non seulement de résoudre des
problèmes classiques de choix social, mais aussi de les voir sous un angle différent, et
au-delà, de prendre conscience de nouveaux problèmes.

L’un des principaux axes de recherche dans le domaine du choix social computationnel
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porte sur les aspects communicationnels du vote. Le chapitre 10 du Handbook of Com-
putational Social Choice publié par Boutilier et Rosenschein [13] fournit l’historique et
le contexte sur l’information et la communication incomplètes dans le vote. Cet axe de
recherche vise à quantifier la quantité d’information nécessaire sur les préférences des
votants pour décider avec précision du résultat de l’élection. Il est clair qu’une charge
de communication élevée est un inconvénient qui peut entraver l’applicabilité pratique
d’une règle de vote. Par exemple, dans de nombreuses assemblées législatives, comme
lors des élections présidentielles irlandaises qui utilisent le système électoral STV, les
électeurs ne peuvent soumettre qu’un ordre partiel : ils classent un sous-ensemble
des candidats et laissent le reste sans classement. C’est la principale motivation pour
étudier le problème du choix social dans le cadre d’une connaissance incomplète qui
se résume à des préférences partielles. Cela soulève à son tour une question centrale
: Comment éliciter les préférences des agents de façon efficace afin de minimiser la
quantité d’information requise pour déterminer un résultat gagnant ? Parmi les sujets
abordés dans ce domaine, mentionnons : les connaissances incomplètes, l’élicitation
des préférences (éliciter les préférences partielles en un seul coup et désigner un gag-
nant en utilisant seulement l’information disponible), les protocoles de communication
(demander aux votants de compléter leurs bulletins de vote partiels en plusieurs coups
jusqu’à ce que le résultat soit déterminé), le vote en ligne et les flux de vote.

Dans cette thèse, nous abordons le problème des préférences incomplètes dans le vote
en suggérant de demander aux électeurs de ne classer que leurs k candidats préférés (où
k peut varier selon les électeurs et/ou au cours du processus). On dit que de tels votes
sont k-tronqués. L’avantage est que non seulement cela permet d’économiser des efforts
de communication, mais il est aussi souvent plus facile pour l’électeur de connaître la
partie supérieure de son classement (composée de ses k candidats préférés) que le reste
du classement. Ensuite, la question est la suivante : étant donné une règle de vote,
comment pouvons-nous déterminer le vainqueur alors que nous ne connaissons que les
top-k votes des votants ? Pour répondre à cette question, nous étudions la quantité
d’information nécessaire pour déterminer le résultat de l’élection (de manière exacte
ou approchée) à partir des bulletins tronqués selon différentes règles de vote et nous
proposons et analysons différentes méthodes permettant un compromis entre précision
du résultat et quantité de communication requise; certaines ne requièrent qu’une seule
phase de communication, alors que d’autres sont dynamiques.

Afin de déterminer le résultat de l’élection à partir des bulletins tronqués, nous
considérons deux façons de procéder :
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1- Des protocoles non-dynamiques

Des protocoles à une seule phase de communication où toutes les préférences des
votants doivent être recueillies en même temps. Dans ce modèle, le centre de vote
recueille immédiatement les meilleurs k bulletins, pour une valeur fixe de k, et délivre
un vainqueur à partir de cette information partielle sans exiger aux électeurs de fournir
des informations supplémentaires. Dans ce cas, si l’on veut calculer avec certitude
le vainqueur d’une règle de vote donnée, il faut demander aux électeurs de déclarer
l’ensemble de leurs préférences, c’est-à-dire de déclarer leur ordre linéaire. Relaxons
l’objectif de certitude et visons plutôt à calculer le gagnant avec une probabilité assez
élevée. En échange, nous demandons moins d’information : Les électeurs donnent leurs
top-k meilleurs candidats pour un k > 1 fixe, c’est-à-dire qu’ils rapportent une liste de
classement des k candidats qu’ils préfèrent le plus.

Nous généralisons la définition d’une règle de vote de telle sorte qu’elle utilise des
bulletins tronqués comme entrée : nous définissons des approximations des règles de
vote qui prennent comme entrée les top-k candidats de chaque bulletin. La question est
alors : Ces approximations sont-elles de bons prédicteurs de la règle originale ? Nous
répondons à cette question en considérant deux mesures :

• la probabilité que la règle approximative sélectionne le ’vrai’ gagnant. Pour ce
faire, nous générons des profils aléatoires avec des ordres de préférence complets
et tronquons ces ordres de manière à ce que les électeurs ne classent que leurs
meilleurs choix. Nous calculons ensuite la probabilité que le gagnant des top-k
bulletins de vote est le même que le gagnant des bulletins complets pour dif-
férentes règles votes.

• le ratio entre les scores (pour la règle originale) du vrai vainqueur et celui du
vainqueur de la règle approximative.

Pour cette dernière mesure, nous présentons une analyse théorique du pire des cas.
Pour les deux mesures, nous présentons une étude empirique, basée sur des profils
générés aléatoirement (en utilisant le modèle Mallows φ [56] et une mixtures de Mallows
[53]) et sur des données du monde réel.
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Nous nous concentrons sur les règles de vote avec des préférences ordinales comme en-
trée où les électeurs soumettent un ordre complet sur les candidats. 1 Nous définissons
plusieurs top-k règles qui correspondent aux règles de vote standard. Nous consid-
érons trois types de règles : (1) les règles à base de score (PSR), à savoir : Borda,
Harmonique ; (2) les règles à base de comparaison par paires, à savoir : Copeland,
Maximin et ranked pairs, et (3) une règle basée sur l’élimination à savoir le vote simple
transférable (STV).

Pour la première mesure et afin d’évaluer la capacité des approximations à prédire
le vrai gagnant, nous proposons maintenant une approche empirique. Puisque nous
voulons mesurer expérimentalement la probabilité que le gagnant de la top-k approx-
imation d’une règle coïncide avec le vrai gagnant, nous avons besoin de connaître ce
vrai gagnant, et donc d’avoir accès au profil vrai. Pour ce faire, nous considérons le
processus suivant :

1) prendre un profil complet (avec n votants et m candidats) ;

2) pour k = 1 à m− 2 : comparer le gagnant approximatif au gagnant correct

L’étape 1 varie selon que nous sommes dans le cadre de la génération aléatoire ou dans
le cadre des données du monde réel. Pour le premier, nous générons un profil en fonction
d’une distribution donnée. Pour le dernier, nous générons un profil en sélectionnant
n∗ (n∗ < n) votes de manière uniforme et aléatoire parmi les votes disponible dans
l’ensemble des données.

En appliquant cette approche, nos résultats expérimentaux sur des profils générés
aléatoirement en utilisant le modèle Mallows suggèrent qu’une très petite valeur de k
fonctionne très bien dans la pratique. Par exemple, la Figure 1 montre la probabilité
que la règle approxmative donne le même vainqueur que la règle originale lorsque nous
considèrons m = 20 et n = 200 et nous varions k et φ. Les résultats suggèrent que
dans les larges élections et même si φ est très élevé (φ = 0, 9), les règles top-k arrivent
à identifier le vrai vainqueur lorsque k = 8 (resp. k = 14) pour Harmonique (resp.
les autres règles) sur m = 20. Pour φ = 1, toutes les préférences des électeurs sont
nécessaires pour déterminer le vainqueur sauf pour Harmonique qui ne nécessite que
k = 15 préférences des électeurs sur 20 disponibles.

1Il y a d’autres règles qui ne sont pas basées sur des ordres mais sur des sous-ensembles de candidats
tels que la règle d’approbation où chaque électeur peut approuver n’importe quel nombre de candidats
et où le gagnant est le candidat le plus approuvé. Dans cette thèse, nous considérons des règles à
entrée ordinale parce que nous nous concentrons sur les bulletins tronqués et dans d’autres cas (règles
basées sur des sous-ensembles de candidats) la notion de bulletins tronqués n’a pas de sens.
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Figure 1: Taux de réussite, n = 2000, m = 20: Mallows φ lorsque φ ∈ {0.9, 1} et en
variant k.

Nous considérons maintenant les données réelles de Preflib [58] : la base de données
Dublin-Nord avec 12 candidats et 3662 électeurs. Les données de Dublin contiennent
quelques bulletins avec un ordre partiels. Comme nous avons besoin de bulletins de
vote complets pour mener nos expériences, nous avons exclu tous les bulletins partiels.
Nous sommes intéressés à prédire le résultat pour des petites et larges élections. Pour
ce faire, nous considérons des données avec des échantillons de n∗ électeurs parmi
n (n∗ < n), en commençant par n∗ = 10 et en incrémentant n∗ par pas de 10. Dans
chaque expérience, 1000 profils aléatoires sont construits avec n∗ votants ; ensuite, nous
considérons les k meilleurs bulletins obtenus à partir de ces profils, avec k ∈ {1, 2, 3}, et
nous calculons la fréquence avec laquelle nous choisissons le vrai gagnant. La Figure 2
(resp. Figure 3) présente les résultats de Dublin pour les petites (resp. larges) élections
n∗ ∈ {10, ..., 100} (resp. n∗ ∈ {100, ..., 2000}).
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Figure 2: Taux de réussite, Dublin North: variant k ∈ {1, 2, 3} et n∗ = {10, . . . , 100}.



6 Introduction

500 1000 1500 2000

voters
(a) Top-1 truncated ballots

0.6

0.7

0.8

0.9

1.0

Su
cc
es
s
pr
ob

ab
ili
ty ≈ 1240 ≈ 1330 ≈ 1440

500 1000 1500 2000

voters
(b) Top-2 truncated ballots

≈ 670 ≈ 800 ≈ 960

500 1000 1500 2000

voters
(c) Top-3 truncated ballots

≈ 570 ≈ 800

Borda0

Bordaav

Bordamax

Copeland

Maximin

RP

Harmonicav

STV

Figure 3: Taux de réussite, Dublin Nord: variant k ∈ {1, 2, 3} et n∗ = {100, . . . , 2000}.

Nos résultats suggèrent que prédire le bon vainqueur pour les petites élections (Fig-
ure 2) échoue assez souvent lorsque la valeur de k est trop petite (k 6 1

4m). Nous
constatons également que la probabilité augmente avec le nombre d’électeurs. Avec un
petit nombre d’électeurs, Harmonique donne la meilleure performance suivie par STV,
puis les autres règles, par exemple pour Harmonique (resp. STV), une précision de
92% (resp. 82%) est atteinte avec k = 3 sur 12 candidats et n∗ = 50 contre environ
75% pour les autres règles. Pour les larges élections (Figure 3), la performance aug-
mente avec n∗ et k. Nos résultats montrent que demander k = 1

4m de candidats sur 12
pour chaque électeur est suffisant pour prédire le vainqueur correct lorsque n∗ > 570
(resp. n∗ > 800) pour Borda et Harmonique (pour les autres règles). En général, les
différentes approximations nécessitent un nombre suffisant d’électeurs pour converger
vers la correcte prédiction.

Pour la deuxième mesure (calculer le ratio entre le score du vrai vainqueur et celui du
vainqueur de la règle approximative) nous avons considéré les règles dont la définition
est basée sur la maximisation de score (Borda, Harmonique, Copeland et Maximin).
Notez que comme la règle STV et ranked pairs ne sont pas basées sur la maximisation de
score (pour une discussion, voir [23]), elles ne seront pas considérées dans notre étude.
Les ratios de score dans le pire des cas sont particulièrement pertinents si le score d’un
candidat est significatif au-delà de son utilisation pour déterminer le vainqueur. C’est
certainement le cas de Borda, car la règle de Borda est souvent considéré comme une
mesure du bien-être social (voir [28]). Ce ratio de score du pire des cas est appelé le
prix de la top-k troncation.

Definition 0.1. Soit f une règle de vote définie par la maximisation d’un score S, et
fk une approximation top-k de f . Le prix de la top-k troncation pour f , fk, m et k,
est défini comme suit

R(f, fk,m, k) = max
P∈Pm

S(f(P ))
S(fk(Pk))

(1)
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Les limites obtenues dans le pire des cas sont plutôt négatives : très négatives pour
Copeland (∞) et Maximin (m−k), moins négatives pour Borda (Θ(m

k
)), et encore moins

pour Harmonique (Θ( m
k log k )). Bien que les limites théoriques sont, au mieux, modéré-

ment encourageantes, nos expériences montrent qu’en pratique le ratio d’approximation
est bien meilleur que dans le pire des cas : nos résultats sur l’évaluation du ratio sur
des profils générés en utilisant le modèle Mallows ainsi que des données réelles sug-
gèrent qu’une très petite valeur de k fonctionne très bien en pratique ce qui contraste
largement les limites théoriques.

Par example, si nous considérons les données 2002 de Dublin Nord (m = 12, n =
3662) avec des échantillons de n∗ électeurs parmi n (n∗ < n) où n∗ = {15, 100} (voir
Figure 4). Dans chaque expérience, 1000 profils aléatoires sont construits avec n∗
électeurs ; ensuite, nous considérons les k meilleurs bulletins obtenus à partir de ces
profils avec k = {1, ..., 11}. Là encore, les résultats sont très positifs, surtout avec un
grand nombre d’électeurs.
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Figure 4: Ratio approximatif avec l’ensemble de données de Dublin Nord pour dif-
férentes règles de vote tronquées.

Dans le même contexte (i.e. top-k communiqué en un seul coup), nous avons accordé
une attention particulière à la règle STV qui présente un intérêt particulier dans le vote
car elle est difficile à manipuler et possède une propriété normative très importante :
la résistance aux clones. En fait, plusieurs questions se posent : jusqu’à quel point la
résistance au clonage est préservée lors du remplacement des bulletins complets par
des bulletins k-tronqués ? Quel est le lien entre la règle STVk (la version STV avec
k bulletins tronqués) et la règle de la pluralité à deux tours ? Sachant qu’il est NP-
complet de décider si un candidat est vainqueur possible pour STV étant donnée un
profil partiel ; quelle est la complexité de ce problème lorsqu’on considère les "bulletins
tronqués uniformes" (k fixe) ? Nos conclusions sur ces questions sont les suivantes,
respectivement, comme suit :

• Pour la question de la résistance au clonage, les résultats obtenus à l’aide de
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profils générés au hasard (sur le modèle de Mallows en variant φ) montrent que
la résistance au clonage augmente rapidement avec k et diminue avec φ. De plus,
elle augmente considérablement avec le nombre d’électeurs. Avec des données
réelles, la résistance au clonage augmente rapidement avec k, voire plus rapide-
ment qu’avec des profils générés au hasard. Le même résultat s’applique à la
version k-tronquée de la règle ranked pairs (RP), à savoir RPk (voir Figure 5).
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Figure 5: Résistance de STVk et RPk au clonage en utilisant les données de Dublin (12
candidats et 3662 électeurs) avec des échantillons de n∗ électeurs parmi n (n∗ < n) où
n∗ = {30, 100, 1000} puis nous clonons : (i) un candidat au hasard (Figure 5(a) et (c))
et (ii) le gagnant de STVk et RPk (Figure 5(b) et (d)). Dans chaque expérience, 1000
profils aléatoires sont construits avec des électeurs n∗.

• Concernant le lien entre STVk et la pluralité à deux tours, nous avons étudié
empiriquement la question (sur le modèle de Mallows en variant φ) et nous con-
cluons que STVk pour k ≈ 2

5m (resp. k = 1) coïncide avec la pluralité à deux tours
lorsque φ = 0, 8 (resp. φ = 0.7). Pour φ = 1, STV est très loin de la pluralité
à deux tours. Le Tableau 1 résume les résultats de la probabilité moyenne (pour
différentes valeurs de n) pour laquelle : la pluralité à deux tours et la pluralité
(=STV1) coïncident, et la pluralité à deux tours et STV coïncident.



Introduction 9

Plu. à/ 2 tours
et Plu. coïncident

Plu. à/ 2 tours
et STV coïncident

φ = 0.7 0.97 1
φ = 0.8 0.90 0.99
φ = 0.9 0.75 0.89
φ = 1 0.61 0.65

Table 1: Probabilité moyenne pour n ∈ {100, . . . , 500} pour laquelle : pluralité à
deux tours et pluralité coïncident et pluralité à deux tours et STV coïncident lorsque
φ ∈ {0.7, 0.8, 0, 0.9, 1}.

• Les résultats sur la complexité sont très intéressants, en fait nous avons prouvé
qu’avec k = 1 déterminer le gagnant possible pour STV peut être résolu en temps
polynomial, mais le problème reste NP-complet quand k > 2 principalement en
raison du nombre de complétions possible. Bien que le problème soit difficile
dans le pire des cas, nous avons montré qu’en pratique, il existe un algorithme
simple (PWtop-k Algorithme 4.1) qui permet de classer les candidats en trois
classes : gagnants possibles, perdants nécessaires et candidats sur lesquels nous
ne pouvons pas décider.

1 2 3 4 5 6
k

(a) φ = 0.7

2

4

6

Av
er
ag
e
ca
nd

id
at
es

1 2 3 4 5 6
k

(b) φ = 0.8

2

4

6

1 2 3 4 5 6
k

(c) φ = 0.9

2

4

6

Av
er
ag
e
ca
nd

id
at
es

1 2 3 4 5 6
k

(d) φ = 1

2

4

6

MAYBE

NO

YES

Figure 6: Identifier les gagnants possibles (YES), les perdants nécessaires (NO) et les
candidats sur lesquels nous ne pouvons pas décider (MAYBE), quand m = 7, n = 100
et φ ∈ {0.7, 0.8, 0.9, 1} : modèle Mallows φ.
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Les résultats sur des profils générés aléatoirement à partir du modèle Mallows
(voir Figure 6) montrent que l’algorithme proposé réduit significativement l’ensemble
des candidats sur lesquels nous ne pouvons pas décider. Les résultats en variant
φ montrent que lorsque φ = 0.7 un seul candidat sur 7 n’est ni gagnant possi-
ble ni perdant nécessaire compte tenu des deux meilleurs votes. Pour φ = 0.8,
l’ensemble des candidats sur lesquels nous ne pouvons pas décider n’est présent
qu’avec une probabilité de 2.7% et il diminue à 1.6% (resp. 1.08%) lorsque φ = 0.9
(resp. φ = 1).

2- Des protocoles dynamiques

Maintenant, nous voulions calculer le vrai gagnant, plutôt qu’un gagnant approxi-
matif, en permettant une communication interactive (dynamique). Un protocole dy-
namique ou interactif demande aux électeurs d’élargir progressivement leurs votes par-
tiels, jusqu’à ce que le résultat du vote soit déterminé. Nous avons étudié les moyens
possibles de réduire au minimum la quantité de communication requise pour déterminer
le résultat de l’élection à partir de bulletins tronqués. Plus précisément, la question ici
est : Quel est le nombre suffisant de bits (en moyenne) qui doit être communiqué par
les électeurs au centre de vote pour que le gagnant soit déterminé ? Pour répondre à
cette question, nous avons d’abord proposé des méthodes exactes pour choisir l’électeur
à interroger à chaque tour jusqu’à ce que le gagnant soit connu. Ensuite, nous avons
exploré des heuristiques.

• Pour les méthodes exactes, nous nous sommes concentrés sur la règle STV. En
nous basant sur un protocole proposé par Conitzer et Sandholm [25] que nous
avons appelé P1, nous avons proposé un nouveau protocole (P2) capable de ré-
duire la quantité de communication requise en pratique pour STV. Ensuite, nous
avons étudié empiriquement le coût moyen de communication de P1 et P2, à par-
tir de profils générés aléatoirement et de données réelles. Notre objectif est de
déterminer la complexité de la communication, c’est-à-dire le nombre de ques-
tions aux quelles les électeurs doivent répondre en moyenne. Pour les profils
générés aléatoirement, nous présentons les résultats de simulation avec m = 7
et n = 100, et laissons φ varier. Nous calculons le nombre de questions posées
par P1 et P2 lorsque φ ∈ {0.7, 0.8, 0.9, 1}. La Figure 7 montre le coût moyen de
communication de P1, P2 en le comparant à PWorst, le coût du pire cas de P1.
Les résultats suggèrent qu’en pratique, P1 et P2 posent moins de questions que
dans le pire des cas (PWorst). P2 pose moins de questions que P1 pour toutes les
valeurs de φ, mais la différence est plus significative pour les φ inférieurs.
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Figure 7: Coût moyen de communication, Mallows.

Afin d’évaluer nos protocoles avec des ensembles de données réelles, la Figure
8 montre le nombre moyen de questions posées aux électeurs par les protocoles
sur les ensembles de données réelles. P2 donne de meilleurs résultats que P1 en
posant 5 à 10% moins de questions.
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Figure 8: Coût moyen de communication, données réelles

• Pour les méthodes heuristiques, premièrement, nous proposons un processus in-
crémentiel d’élicitation de vote en explorant les méthodes heuristiques pour guider
le choix du prochain électeur à intérroger. Compte tenu des préférences top-k, ces
heuristiques seront utilisées pour choisir à chaque tour l’électeur à qui il est le plus
pertinent de demander de compléter son k-vote en donnant son prochain candidat
(ainsi classé k+1). À cette fin, nous proposons d’abord d’utiliser l’approche de
recherche dans l’arbre de Monte-Carlo (MCTS) dans un contexte d’élicitation de
vote pour sélectionner l’électeur le plus en vue à demander à chaque tour de com-
pleter son vote en se basant sur la fonction d’évaluation Upper Confidence Bounds
for Trees (UCT). Nous avons appelé ce protocole PMCTS. Deuxièmement, nous
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proposons une fonction d’évaluation heuristique simple qui se déroule en deux
étapes principales : (1) nous identifions deux candidats clés pour lesquels nous
voulons recueillir plus d’information, et ensuite (2) s’il y a au moins un électeur
dont le bulletin actuel ne contient aucun de ces deux candidats, interroger cet
électeur ; sinon, interroger un électeur dont le bulletin actuel contient un de ces
deux candidats. Nous avons appelé ce protocole PSearch.
Nous avons étudié empiriquement le coût moyen de communication de PMCTS

et PSearch à partir de profils générés aléatoirement ( le modèle Mallows φ pour
différentes valeurs de φ) et des données réelles. Notre objectif est de déterminer le
nombre de questions auxquelles les électeurs doivent répondre, en moyenne, afin
de déterminer le gagnant selon les règles de vote Borda et Harmonique. Nous
présentons les résultats de simulation avec m = 7 et n = 10 en variant la valeur
φ ∈ {0.7, 0.8, 0, 0.9, 1}. Figure 9 montre les résultats obtenus pour Borda avec
PMCTS, PSearch et PRounds, et nous montrons aussi PWorst pour comparaison. Les
résultats montrent que PMCTS et PSearch sont efficaces pour réduire le nombre
de questions posées aux électeurs sous les règles Borda et Harmonic. D’après
les résultats, PMCTS a un faible coût de communication selon les règles Borda et
Harmonic.
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Figure 9: Coût moyen de communication de la règle Borda avec le modèle Mallows φ
lorsque : m = 7, n = 10 and φ ∈ {.7, .8, .9, 1}.
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Organisation du manuscrit

Cette thèse est organisée comme suit:

Le chapitre 1 présente les notions et concepts de base de la théorie du vote. Ceci inclut
la définition des familles de règles de vote les plus importantes, telles que : les règles à
base de score, les règles de comparaison par paires et les règles basées sur l’élimination.
De plus, nous examinons l’utilisation de plusieurs modèles de préférences utilisés pour
générer les préférences des électeurs en fonction d’une distribution antérieure.

Le chapitre 2 se focalise sur la détermination du gagnant avec des préférences par-
tielles. Nous décrivons les notations de base du vote avec des préférences partielles.
Ensuite, nous présentons les solutions existantes pour déterminer le gagnant lorsque
les préférences des électeurs sont incomplètes. Enfin, nous abordons le problème
d’élicitation de préférence où nous présentons les travaux existants sur les deux types
d’élicitation de vote, à savoir : l’élicitation interactive (dynamique) et l’élicitation non-
interactive (non-dynamique).

Dans le chapitre 3, nous proposons des approximations des règles qui ne prennent
en compte que les top-k meilleurs candidats (pour un k > 1 fixe) de chaque électeur.
Dans ce cas, les électeurs rapportent leurs top-k préférences en un seul coup. Nous
considérons deux mesures de la qualité de l’approximation : la probabilité de sélection-
ner le même gagnant que la règle originale et le ratio de score. Nous proposons une
analyse théorique du pire des cas (pour cette dernière mesure seulement), et pour les
deux mesures, une étude de cas moyen et une étude à partir d’ensembles de données
réelles.

Le chapitre 4 se concentre sur la règle de vote simple transférable (STV). Tout
d’abord, nous étudions empiriquement jusqu’à quel point la propriété clé de STV,
à savoir la résistance aux clones, est préservée lorsque nous considérons des bulletins
tronqués. Deuxièmement, nous étudions la proximité de la version k-tronquée de STV
(à savoir STVk) à la pluralité à deux tours. De plus, nous étudions la complexité du
problème du gagnant possible pour les top-k vote. Enfin, nous proposons des moyens
pour réduire au minimum la quantité de communication requise pour utiliser STV.
En nous basant sur un protocole existant, nous montrons comment nous pouvons ré-
duire la quantité de communication requise dans la pratique. Nous étudions ensuite
empiriquement le coût moyen de communication de ces protocoles.

Le chapitre 5 propose un processus incrémentiel d’élicitation de vote en utilisant
des méthodes heuristiques pour guider le choix du prochain électeur. Tout d’abord,
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nous adaptons l’approche de recherche dans l’arbre de Monte-Carlo (MCTS) dans un
contexte d’élicitation de vote pour sélectionner l’électeur le plus en vue à interroger dans
chaque tour. Deuxièmement, nous proposons une heuristique de recherche alternative
capable de sélectionner l’électeur (sous certaines conditions) pour lequel nous voulons
révéler plus d’information. Ensuite, nous étudions empiriquement le nombre moyen
de questions posées aux électeurs afin de déterminer le gagnant en utilisant les deux
heuristiques proposées.
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Part I presents the background of this dissertation. It provides an 

overview of social choice theory.  Chapter 1 introduces voting 

theory and the most important voting rules used to select the winner 

based on the voters’ preferences. Chapter 2 deals with partial 

preferences. It provides an overview of a number of models and 

techniques developed to make decision with incomplete information 

about voters’ preferences. 
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This chapter provides an overview of the basic notations and concepts in voting the-
ory. This includes the definition of the most important families of voting rules with
ordinal preferences as input, such as: positional scoring rules, pairwise comparison
rules and elimination based rules. Also, we investigate the use of several distributional
preference models used to generate voters’ preferences based on a prior distribution
such as Impartial Culture (IC), Impartial Anonymous Culture (IAC), Mallows model,
Mixture of Mallows and Single Peaked Impartial Culture (SP-IC).
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1.1 Introduction

Social choice is an area of research concerned with the design of methods for collective
decision making. The main question investigated in this field is: How best to aggre-
gate the agents’ preferences over a given set of alternatives so as to determine the best
alternative for the group? For instance, in political elections, voters submit their in-
dividual preferences over a set of available candidates standing for election. In this
context, given the collective preferences of the voters, various voting rules are used to
determine which candidate should win the election.

We focus on voting rules with ordinal preferences as input where voters submit a
collection of complete rankings/orders over candidates. For example, consider the
situation in which a consumer is asked to compare different products (X, Y and Z), a
natural given response is: ’I prefer product X to product Y to product Z’. There are
other rules that are not based on orders but on subsets of candidates such as approval
rule where each voter may approve any number of candidates and the winner is the
most-approved candidate. In this thesis we consider rules with ordinal input because
we focus on truncated ballots and in other cases (rules based on subsets of candidates)
the notion of truncated ballots is meaningless.

The analysis of methods for collective decision has captivated the interest of many
researchers who were mainly interested in the design and theoretical evaluation of
voting rules. Three results are most prominent and associated with the development
of social choice theory:

1) Condorcet’s paradox : presented by Marquis de Condorcet [60] who investigated
majority voting and observed that the majoritarian preference relation can be
problematic and irrational because it contains cycles. Suppose that a majority of
voters prefers a to b, an other majority prefers b to c and yet a final one prefers
c to a. Clearly, the pairwise majority relation is cyclic and violates transitivity.

2) Arrow’s impossibility theorem: stated by Kenneth Arrow [1] who dealt with a
class of possible aggregation methods which he called social welfare functions.
Arrow’s impossibility theorem states that a particular combination of axioms are
only satisfied by dictatorial rules (the election outcome depends only on the
opinion of one voter) when considering three or more alternatives.

3) Gibbard-Satterthwaite’s theorem (aka. GST): presented (independently) by Allan
Gibbard and Mark Satterthwaite [39, 64] who stated that given at least 3 candi-
dates, any resolute voting rule (outputs a unique winner) that is surjective (for
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every candidate, there is some profile for which that candidate wins) and strategy-
proof (no voter will ever have an incentive to misrepresent her preferences) is a
dictatorship.

This chapter is organized as follows. In Section 1.2, we describe basic notations and
concepts of the voting model used in preference aggregation. In Section 1.3 we give an
overview of the most important families of voting rules such as positional scoring rules
(plurality, Borda and Harmonic), pairwise comparison rules (Copeland, Maximin and
Ranked Pairs) and elimination based rules (plurality with runoff, single transferable
vote and Coombs). Finally, in Section 1.4 we describe several distributional preference
models used to generate voters’ preferences based on a prior distribution.

1.2 Voting Model

Voting consists in aggregating voters’ preferences over a set of candidates in order to
determine a consensus decision or recommendation where a winner is chosen from a
set of candidates. In the following, we start by introducing some basic notations on
voting. An election is a triple E = (N,A, P ) with:

• N = {1, ..., n} is the set of voters (or agents) with |N | = n;

• A = {a, b, ...} is the set of candidates (or alternatives), with |A| = m; and

• P = (�1, ...,�n) is the complete preference profile of voters in N , which corre-
sponds to a collection of complete rankings on A. For each voter i ∈ N , �i∈ P
denotes the preference relation of voter i which corresponds to a complete linear
order over A. We will refer to this order either as a preference order, a ballot, or,
a vote; we use these terms interchangeably.

For any a, b ∈ A, a �i b means that voter i prefers a to b. For the sake of simplicity,
we may write a � b by omitting the voter’s number.

Example 1.1. Let us consider an election with three candidates and three voters i.e.
A = {a, b, c} and n = 3. Table 1.1 presents the complete preference profile of the voters.
The number in the left column corresponds to the number of voters, while the voters’
preferences are in the right column.
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1 a � b � c

1 b � c � a

1 c � a � b

Table 1.1: Example of a complete preference profile.

Definition 1.1. Majority Graph Given a complete profile P , let NP (a, b) = # {i, a �i b}
be the number of voters who prefer a to b in P . The majority graph M(P ) is the graph
whose set of vertices is the set of the candidates A and in which for all a, b ∈ A, there
is a directed edge from a to b (denoted by a → b) in M(P ) if a beats b in a pairwise
election, that is, if a strict majority of voters prefer a to b i.e. NP (a, b) > n

2 .

Definition 1.2. The Weighted Majority Graph Given a complete profile P , the
weighted majority graph associated with P is the graph MW (P ) whose set of vertices is
the set of the candidates A and in which for all a, b ∈ A, there is a directed edge from a

to b weighted by the number of voters who prefer a to b in P . Since the votes in P are
linear orders, knowing MW (P ) is equivalent to knowing the pairwise majority matrix
defined by: for all a, b ∈ A, ScoreP (a, b) = NP (a, b) − NP (b, a) = # {i ∈ N |a �i b} −
# {i ∈ N |b �i a}.

Given an election E = (N,A, P ) as input, a voting rule is used to determine the
winner over the set of candidates where:

• An irresolute voting rule (aka. voting correspondence or social choice correspon-
dence) is a function F : E 7→ S which, for each election, outputs a non-empty
subset S of A, whose elements are called the (co-)winners of the election E under
F .

• A resolute voting rule (aka. social choice rule) is a function f : E 7→ A, which
for each election outputs a single winner. Resolute rules are typically obtained
from composing an irresolute rule with a tie-breaking mechanism either by using
a predefined priority relation on candidates or a predefined priority relation on
voters.

In the remaining, we will consider the resolute version of voting rules and break ties
using prespecified linear order B over the candidates in A, called tie-breaking priority.
The voting rule is then denoted by fB. To alleviate notation we will simply write f ,
leaving B implicit.
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1.3 Voting Rules

The use of voting rules to aggregate preferences has become a topic of intense study,
and one of great importance in ranking, recommender systems, resource allocation,
and other applications of social choice to computational systems. Voting rule is a very
common way of resolving disagreements, determining common opinions and choosing
public policies. It represents a procedure for making a choice from the set of candidates.
Various voting rules exist in the literature, we focus on three important subclasses with
ordinal preferences.

1) Positional Scoring Rules (PSR): A positional scoring rule is defined by a
vector ~s = (s1, ..., sm) such that s1 > ... > sm and s1 > 0. Each candidate
receives sj points from each voter who ranks her in the jth position, and the
score of a candidate is the total number of points she receives from all voters.
The winner is the candidate with highest total score over all the votes. Let S(x)
for x ∈ A denote the score of a candidate x. The most common positional scoring
rules are:

• Plurality: In plurality rule, each voter gives 1 point to the candidate she
ranked first, and the winner is the candidate who receives the highest to-
tal number of points. The score vector for plurality rule is ~sPlurality =
(1, 0, . . . , 0). Hence, the cumulative score of a candidate corresponds to the
number of voters by which it is ranked first.
• Borda: In Borda rule, each candidate receives m−1 points from each voter i

who ranks her in the first position, m−2 points to the candidate ranked sec-
ond, or in general m− k points to the candidate ranked in the kth position.
The score vector for Borda rule is ~sBorda = (m−1,m−2, . . . , 1, 0). The win-
ner is the candidate who obtains the highest total number of points. Borda’s
rule takes a special place within the class of scoring rules as it chooses those
candidates with the highest average rank in individual rankings.
• Harmonic: In Harmonic rule, each candidate receives 1 point from each

voter i who ranks her in the first position, 1
2 points to the candidate ranked

second, or in general 1
k
points to the candidate ranked in the kth position.

The score vector for Harmonic rule is ~sHarmonic = (1, 1/2, . . . , 1/m). The
winner is the candidate who obtains the highest total number of points.

2) Pairwise Comparison Rules: For these rules, the output is determined from
the majority graph or from the weighted majority graph. For any two alternatives
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a and b, we can simulate a pairwise comparison between them, by seeing how
many voters prefer a to b, and how many prefer b to a. The rules that we will
refer to are: Copeland (based on the majority graph); Maximin and Ranked Pairs
(based on the weighted majority graph).

• Copeland: The Copeland rule chooses the candidate who beats the highest
number of other candidates in pairwise elections. An alternative receives
one point for each win in a pairwise election, 1

2 point for each draw, and 0
point for each loss. The Copeland score of a candidate x is the number of
candidates y with an edge from x to y in M(P ), plus half the number of
candidates y 6= x with no edge between x and y in M(P ). The Copeland
winners are the candidates with highest Copeland score.
• Maximin: The Maximin rule selects candidates for which the minimum

pairwise majority margin is maximized, that is, alternatives x for which

Sm(x) = minx∈A(y 6=x) (NP (x, y))

• Ranked Pairs (RP): The ranked pairs rule proceeds by ranking all pairs of
candidates (x, y) by decreasing order according to ScoreP (x, y) (using tie-
breaking when necessary); starting from an empty graph over A, it then
considers all pairs in the described order and includes a pair in the graph
if and only if it does not create a cycle in it (if ScoreP (x, y) = 0 we ignore
the produced edge). At the end of the process, the graph is a complete
ranking, whose top element is the winner. This way of breaking ties in RP
is called immediate tie-breaking. Another alternative is to consider all the
possible ways of breaking ties whenever two pairs are tied, and then use the
tie-breaking at the very end to choose between the winners. This is called
Parallel Universe Tie breaking (PUT) [15] which will not be considered in
this thesis.

3) Elimination-Based Rules: For these rules, two or more rounds are needed in
order to determine the outcome of the election (depending on the voting rule
used). Within this family of rules, candidates having the lowest support are se-
quentially eliminated. Ballots are then transferred from the eliminated candidate
to the next/earlier preferred candidate indicated on the ballots. In the follow-
ing we present the most common elimination based rules such as, plurality with
runoff, single transferable vote and Coombs. Note that like RP, these rules are
affected by how ties are broken in each round where two possible ways exist: ei-
ther to consider the immediate tie-breaking and break ties whenever they occur,
or to use the PUT version by considering all the possible ways of breaking ties
[23]. In this work we consider immediate tie-breaking for elimination based rules.
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• Plurality with runoff : Plurality with runoff proceeds in two rounds: the two
candidates ranked first by the largest number of voters go to the second
round (runoff), and majority is used to determine the winner.
• Single Transferable Vote (STV)1: Given a prespecified linear order B over

the candidates, the STV B rule proceeds in rounds (up to m − 1). In each
round, the candidate with the smallest number of voters ranking them first
is eliminated and the votes who supported it now support their preferred
candidate among those that remain. If two or more candidates are tied for
the least number of votes, the tie is broken immediately using a prespecified
linear order B over the candidates. The last remaining alternative is the
STV winner.
• Coombs: As in STV, Coombs rule needs up to m−1 rounds. In each round,

instead of deleting the candidate with the fewest first-place votes as done
in STV, we eliminate the candidate with the most last-place votes, and the
votes who supported it now support their earlier preferred candidate among
those that remain (using the tie-breaking priority if necessary). The last
remaining alternative is the Coombs winner.

We illustrate the different voting rules seen above using the following example.

Example 1.2. Let us consider a setting with five candidates A = {a, b, c, d, e} and
n = 100 voters having the following preference profile P .

33 a � b � c � d � e

16 b � d � c � e � a

3 c � d � b � a � e

8 c � e � b � d � a

18 d � e � c � b � a

22 e � c � b � d � a

When considering positional scoring rules, the winner for different rules is computed
as follows:

• The plurality vector is ~sPlurality = (1, 0, 0, 0, 0) and the scores of candidates a, b, c, d, e
are 33, 16, 11, 18 and 22, respectively. The plurality winner is candidate a.

1For single-winner elections, STV is often called instant runoff voting (IRV). We keep however
the terminology STV, which seems to be more popular among the community, even for single-winner
elections.
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• The Borda vector is ~sBorda = (4, 3, 2, 1, 0). The score of candidate a is computed
as follows: (33× 4) + (16× 0) + (3× 1) + (8× 0) + (18× 0) + (22× 0). By the
same process, the scores of candidates a, b,c,d and e are 135, 247, 244, 192 and
182, respectively. Then, the Borda winner is candidate b.

• The Harmonic vector is ~sHarmonic = (1, 1
2 ,

1
3 ,

1
4 ,

1
5). The score of candidate a is

computed as follows: (33×1)+(16× 1
5)+(3× 1

4)+(8× 1
5)+(18× 1

5)+(22× 1
5). By

the same process, the scores of candidates a, b,c,d and e are , 46.55, 48, 44.33,
43.25 and 46.2; respectively. Then, the Harmonic winner is candidate b.

Under elimination based rules, the winners are determined as follows:

• For plurality with runoff, candidates a and e have the highest plurality score with
33 votes to a and 22 votes to e. In the second round, candidate e has the majority
by beating candidate a (64,36). Thus, e is the winner under plurality with runoff.

• For STV, Figure 1.1 presents the eliminated candidate in each round.

eliminate c eliminate b eliminate e eliminate a

Figure 1.1: Eliminated candidate in each round under STV voting rule.

In the first round, candidate c receives the fewest number of votes (11 votes) and
is eliminated. The votes for c are now transferred to d and e (3 votes to d and
8 votes to e). In the next round, candidate b is eliminated and the voters that
supported it now support d. In the third round, candidate e is eliminated and its
votes go to candidate d. Now, d has 67 votes against 33 for candidate a. Thus,
d is the STV winner.
To illustrate the PUT version of STV, we consider the following profile of 10
voters over three candidates A = {a, b, c}:

4 a � b � c

2 b � a � c

1 b � c � a

3 c � b � a
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Figure 1.2 shows how STV voting rule can lead to two different winners when
considering the parallel universe version. In the first round, candidate b and c
are tied where they both receive 3 points. If we consider a first scenario where
we eliminate b (branch 1 in Figure 1.2), then a is the winner in the second
round. However, if we consider the second scenario (branch 2 in Figure 1.2) by
eliminating c in the first round, then b is the STV winner. Thus, a and b are the
co-winners of STV following PUT version.

Figure 1.2: Example of STV voting rule when considering the parallel universe tie
breaking version.

• For Coombs voting rule candidate a receives the most last place votes (64 votes
to a against 36 votes to e) which will be eliminated in the first round. Next,
candidate e is eliminated with 52 votes against 30 to d and 18 to b. In the third
round, candidate d is eliminated with 63 votes against 21 to b and 16 to c. Finally,
candidate b is eliminated with 51 votes against 49 to c. Thus, only candidate c
remains which is elected to be the winner under Coombs.

For pairwise comparison voting rules, we consider a new example because in the
first profile, the majority graph does not contain cycles under Copeland, thus the RP
and Copeland winners are the same (i.e. candidate c). We consider the following
profile with 15 voters and 4 candidates; we break ties using the following priority order
B: a � b � c � d:

3 a � d � c � b

3 a � d � b � c

5 d � c � b � a

4 b � c � a � d
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Figure 1.3: Majority graph representation.

• For Copeland, Figure 1.3 shows the representation of the majority graph.
Candidate c beats candidates a (9,6) and b (8,7). Candidate d beats candidates b
and c (11,4). Candidate a (resp. b) beats candidate d (10,5) (resp. candidate a
(9,6)). Then, the scores of candidates a, b, c and d are 1, 1, 2, 2, respectively.
Thus, d and c are tied and c is the winner thanks to the tie breaking.

• For Maximin, Table 1.2 shows the pairwise majority matrix of P. For instance,
the value 5 corresponds to NP (a, d)−NP (d, a) = 10−5 = 5. The last column Sm
represents the minimum pairwise majority for each candidate.

NP a b c d Sm
a - -3 -3 5 -3
b 3 - -1 -7 -7
c 3 1 - -7 -7
d -5 7 7 - -5

Table 1.2: Pairwise majority matrix representation for weighted majority graph.

Under Maximin, the minimum pairwise majorities of the candidates are: Sm(a) =
−3, Sm(b) = −7, Sm(c) = −7 and Sm(d) = −5. Thus, the Maximin winner is
the candidate with the highest minimum pairwise majority, namely: candidate a.

• For ranked pairs, Figure 1.4(a) shows the weighted majority graph induced from
the majority matrix in Table 1.2, and Figure 1.4(b) presents the resulting acyclic
graph when applying RP. Under RP, we add edges in descending order of weights
and we retain an edge only if it does not create a cycle. We thus retain (d→ b),
(d → c), (a → d), omit (b → a) and (c → a) and retain (c → b). Hence, a
is the RP winner which represents the only vertex without incoming edge in the
resulting graph.
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(a) (b)

Figure 1.4: (a) Pairwise majority matrix representation, (b) the weighted majority
graph induced from it, and (c) the resulting acyclic graph.

All the voting rules seen above are computable in polynomial time when considering
the resolute version by breaking ties when necessary where:

• for positional scoring rules and plurality with runoff, the complexity is O(nm).

• for Copeland, Maximin, ranked pairs and STV, the complexity is O(nm2).

Note that when considering the Parallel Universe Tie breaking (PUT) version, which
consists in exploring all possibilities when different candidates are tied; some voting
rules become NP-complete such as RP [15] and STV [23].

1.4 Distributional Preference Models

Analyzing voting rules by assuming that voters’ preferences are drawn according to a
prior distribution has become increasingly common in voting theory. In this section,
we briefly review the most important distributional preference models used in social
choice such as Impartial Culture (IC), Impartial Anonymous Culture (IAC), Mallows
φ model, Mixture of Mallows and Single Peaked Impartial Culture (SP-IC) presented
below:

• Impartial Culture (IC) [41]: Each voter’s ranking is drawn uniformly at random
from the set of all possible total orders over A. For m candidates, there are m!
possible strict rankings. IC assumes that the probability of observing any of the
m! preference orders is equally likely for each voter. If these are chosen by n

voters, then there are m!n possible profiles.
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• Impartial Anonymous Culture (IAC) [47]: Let us define a voting situation as a
vector ñ = (n1, n2, ..., nm!), where ni denotes the number of voters endowed with
ranking number i (each of the m! rankings being referred to by a number between
1 and m!). Under IAC, two profiles are equivalent if they correspond to the same
voting situation. Then, instead of considering all profiles as equivalent as IC
does, IAC considers all voting situations as equivalent. This assumes of course
that the voting rule is anonymous, which implies that applying the rule to two
equivalent profiles gives the same output.

Example 1.3. Given two voters and two candidates a and b, IC assumes that all
profiles are equally likely where four possible profiles (presented below) are generated
with a probability of 1

4 to occur.

1 a � b 1 b � a 1 a � b 1 b � a

1 a � b 1 b � a 1 b � a 1 a � b

On the other hand, when considering IAC, we do not distinguish between profiles
(a � b, b � a) and (b � a, a � b). Indeed, only three possible voting situations are
presented: (2:a � b), (2:b � a) and (1:a � b,1:b � a) each one with a probability of 1

3 .

IC and IAC are the two most prominent distributions studied in the social choice liter-
ature and used for sampling voters’ preferences. They provide a worst case assumption
that do not generally reflect real world preferences [63]. More realistic probabilistic
models of preferences, or parametrized families of distributions over rankings, have
been proposed in statistics and econometrics. These models typically reflect some pro-
cess by which people rank, judge or compare alternatives. A commonly used model
adopted widely in voting theory is the Mallows φ-model [56].

• Mallows φ model [56]: (We will simply call the Mallows model hereafter) is
parameterized by a modal or reference ranking σ and a dispersion parameter
φ ∈ [0, 1], with P (r;σ, φ) = 1

Z
φd(r,σ), where:

– r is any ranking,
– d is the Kendall tau distance, and
– Z = ∑

r′ φ
d(r′,σ) = 1 · (1 + φ) · (1 + φ+ φ2) · ... · (1 + ...+ φm−1) is a normal-

ization constant.
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With small values of φ, the mass is concentrated around σ, while φ = 1 gives the
uniform distribution (IC), where all profiles are equiprobable and all candidates
are equally likely to be a winner.

Example 1.4. Let us consider a reference ranking σ : a � b � c over 3 candidates
A = {a, b, c}. Table 1.3 presents the Kendall tau distance (the number of pairwise
preference disagreements) of the possible rankings r with respect to σ.

a � b � c a � c � b b � a � c b � c � a c � a � b c � b � a

0 1 1 2 2 3

Table 1.3: Kendall tau distance of the possible rankings r with respect to
the reference ranking σ : a � b � c.

Assume φ = 0.97, then Z = 1 × (1 + 0.97) × (1 + 0.97 + 0.972) = 5.734. In the
following, we compute the probability of different rankings r with respect to σ:

– P (a � b � c) = 1
Z
φd(a�b�c,a�b�c) = 0.970

5.734 = 0.174
– P (a � c � b) = 1

Z
φd(a�c�b,a�b�c) = 0.971

5.734 = 0.169
– P (b � a � c) = 1

Z
φd(b�a�c,a�b�c) = 0.971

5.734 = 0.169
– P (b � c � a) = 1

Z
φd(b�c�a,a�b�c) = 0.972

5.734 = 0.164
– P (c � a � b) = 1

Z
φd(c�a�b,a�b�c) = 0.972

5.734 = 0.164
– P (c � b � a) = 1

Z
φd(c�b�a,a�b�c) = 0.973

5.734 = 0.159

Doignon et al. [32] propose a practical method of sampling from the Mallows
model using Repeated Insertion Model (RIM). Given a reference ranking σ =
σ1, σ2, . . . σm and a sequence of insertion probabilities piji

for ji 6 i, i 6 m

such that ∑i
j=1 pij = 1, ∀i 6 m; a ranking r is generated at random by first

drawing an insertion vector j = (j1, . . . , jm) satisfying ji 6 i, ∀i 6 m where each
ji is drawn independently with probability pij, and then applying a repeated
insertion function Φσ(j) that maps an insertion vector j over a raking σ into a
new ranking Φσ(j) by placing each σi, in turn into a ranking ji for all i 6 m.
Assume a reference ranking σ = a � b � c over three candidates a, b and c.
At step 1 (i = 1, j = 1), a is added to r with a probability p11. At step 2, b
is inserted above a at the first position with a probability p21 (i = 2, j = 1) or
below b at the second position with a probability p22 (i = 2, j = 2). At step
3, c is inserted at the first position with a probability p31 (i = 3, j = 1), at
the middle with a probability p32 (i = 3, j = 2) or at the last position with a
probability p33 (i = 3, j = 3). If we consider the insertion vector j = (1, 1, 2),
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then Φσ(1, 1, 2) = (b � c � a) where according to σ, a is inserted in the first
position, then we insert b in the first position by moving a down to get b � a,
finally, c is inserted in the second position giving b � c � a.
Doignon et al. [32] show that the distribution induced by RIM with insertion
function Φσ is identical to that of the Mallows φ model with reference ranking σ
and dispersion parameter φ when:

pij = φi−j

1 + φ+ · · ·+ φi−1 , j 6 i 6 m (1.1)

Example 1.5. Let us consider the same setting as in Example 1.4 where σ : a �
b � c and φ = 0.97. We start by computing the probability distributions using Eq.
1.1 as shown in the table below. For example p21 = 0.97(2−1)

1+0.97 = 0.49.

φ = 0.97
i = 1 i = 2 i = 3

j = 1 p11 = 1 p21 = 0.49 p31 = 0.325
j = 2 - p22 = 0.51 p32 = 0.333
j = 3 - - p33 = 0.342

Using the above probabilities, the model will generate different insertions vectors.
Assume we consider the insertion vector j = (1, 1, 1), then r = Φσ(1, 1, 1) = (c �
b � a) where a is inserted first, b is inserted next in the first position by moving
a down, finally, c is inserted in the first position by moving down b and a. Note
that the probability induced when considering j and σ is equal to p11.p21.p31 =
1× 0.49× 0.325 = 0.159 which corresponds to the same probability produced from
Mallows model in Example 1.4 when σ : a � b � c and r = c � b � a (i.e.
P (c � b � a) = 1

Z
φd(c�b�a,a�b�c) = 0.973

5.734 = 0.159).

• Mixture of Mallows model [53]: To overcome the unimodal nature of Mallows
model, mixtures of Mallow’s have been considered. Let p be a positive integer, a
mixture model consists of p Mallows models with a probability distribution over
them. Formally, given:

– reference rankings σ1, . . . , σp,
– dispersion parameters φ1, . . . , φp, and
– mixing coefficients (discrete probability distribution) λ1, . . . , λp where each
λi , 1 6 i 6 p is between 0 and 1, and ∑p

i=1 λp = 1.

We select rankings from the p models according to the probability distributions
induced from RIM model [56, 53]. The mixing coefficients are used to choose
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the appropriate model i ∈ [1, p] for each generated ranking. One possible way
(detailed in Algorithm 1.1) is to start with a uniform random real number in
[0, 1) and first subtract off the first probability λ1, if the result is negative then
we return the first model 1; otherwise, in a loop we select the next model and
we subtract off the next probability until we get a negative result. Finally, we
return the appropriate model.

Algorithm 1.1: Choose the Appropriate Model to Generate Rankings
Input : λ = {λ1, . . . , λp}, Model = {1, . . . , p}

1 i← 1
2 x← random real number ∈ [0, 1)
3 draw ← x− λi
4 while draw > 0 do
5 i← i+ 1
6 draw ← draw − λi
7 return Model [i]

Example 1.6. Let us consider two Mallows models (p = 2) with parameters:
〈σ1 = b � c � a, φ = 0.19, λ1 = 0.22〉 and 〈σ2 = b � a � c, φ = 0.34, λ2 = 0.78〉.
We start by computing the probability distributions for each value of φ using Eq.
1.1 as shown in the two tables below:

φ = 0.19
i = 1 i = 2 i = 3

j = 1 p11 = 1 p21 = 0.16 p31 = 0.03
j = 2 - p22 = 0.84 p32 = 0.16
j = 3 - - p33 = 0.81

φ = 0.34
i = 1 i = 2 i = 3

j = 1 p11 = 1 p21 = 0.26 p31 = 0.08
j = 2 - p22 = 0.74 p32 = 0.24
j = 3 - - p33 = 0.68

Now we choose a model to generate the first ranking following Algorithm 1.1 where
Model = [1, 2]. We start be considering the first model with λ1 = 0.22, assume
we take x = 0.69 then draw= 0.69−0.22 = 0.47. Since draw> 0, we take now the
second model with λ2 = 0.78 and draw = 0.47−0.78 = −0.31 < 0. Thus, the algo-
rithm terminates and the second model with 〈σ2 = b � a � c, φ = 0.34, λ2 = 0.78〉
is considered. Now, assume we take the insertion vector j = (1, 1, 3); then
r = Φσ2(1, 1, 3) = (a � b � c) where b is inserted first, a is inserted next in
the first position by moving b down, finally, c is inserted in the third position.

Among probabilistic analysis used in social choice, there is also an increasing focus
on domain restrictions [69, 33, 57]. One of the most common domain restrictions
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considered in social choice theory is that of single peaked preferences introduced by
Black [11]. Single-peakedness is the idea that all voters have a certain most-preferred
value along a shared axis, and derive less and less satisfaction from values that are
further away from their preferred one.

• Single peaked impartial culture (SP-IC): Generates singled peaked votes uni-
formly. The model draws rankings uniformly at random from the set of orders
that are consistent with a given social axis (a fixed order over candidates). In
general, given m candidates at integer points on the social axis form 1 to m,
there are 2m−1 different singled peaked votes. Walsh [72] describes how to gener-
ate singled peaked votes uniformly. He shows that half of all these single peaked
votes end in m and are made up of all the single peaked votes from 1 to m − 1
augmented with m at their end. The other half of these single peaked votes end
in 1 and are made up of all the single peaked votes from 2 to m augmented with
1 at their end.

Example 1.7. Let us consider a set of 3 candidates and 3 different social axis
a � b � c, b � a � c and c � a � b. Table 1.4 presents the probability
distributions with respect to different social axis under SP-IC where the possible
ranking are in the first row and social axis are in the first column. There are
2m−1 = 22 = 4 consistent single peaked orders with an uniform distribution of 1

4 .
For example, given the social axis a � b � c, half of the single peaked votes are
made up of candidates a and b, and augmented with c at their end, i.e. rankings
a � b � c and b � a � c. The other half of the single peaked votes end in a and
are made up of votes containing b and c, i.e. rankings b � c � a and c � b � a.

a � b � c a � c � b b � a � c b � c � a c � a � b c � b � a

a � b � c 1/4 0 1/4 1/4 0 1/4

b � a � c 1/4 1/4 1/4 0 1/4 0
c � a � b 1/4 1/4 1/4 0 1/4 0

Table 1.4: Single peaked rankings under SP-IC model with the social axis: (a � b � c),
(b � a � c) and (c � a � b).

1.5 Conclusion

In this chapter we have introduced basic notions of voting model used in preference
aggregation. We have also presented the most important families of voting rules used
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to select the winner based on the voters’ preferences. Finally, we have discussed several
distributional preference models used to generate preferences based on a prior distri-
bution. In the next chapter, we focus on determining winners or making decisions with
incomplete information about voters’ preferences.
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Voting with Partial Preferences
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In this chapter we relax the assumption that each voter provides a complete preference
order over candidates. We focus on determining the winner or making decisions with
incomplete information about voters’ preferences. We describe the basic notations of
voting with partial preferences. Then, we discuss existing solutions to determine the
winners with partial voters’ preferences. Finally, we tackle the problem of preference
elicitation where we present existing work on the two types of vote elicitation, namely:
interactive elicitation and non-interactive elicitation.
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2.1 Introduction

Classical voting rules discussed in Chapter 1 assume that voters’ ballots are complete
preference orders over candidates (except plurality and approval voting). The process
is easy when all the voters submit all their preferences to the voting center. However,
asking voters to submit a complete ranking over the whole set of candidates is not
viable for several reasons:

• when the number of candidates is large enough, requiring a complete specification
of the voter’s preference can be difficult and too costly in terms of time and/or
cognitive effort.

• voters may wish to rank only a subset of candidates as it is not always possible
for a voter to compare all available alternatives.

• voters may have privacy concerns which prevent them from revealing their full
preference rankings.

This raises the challenge of partial voting where agents are allowed to cast partial
preference orders.
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Figure 2.1: In the Glasgow election City Council, most of the voters rank only 1 to 4
candidates out of 11.

In practice, voting systems often permit voters to declare a partial order over a subset
of the candidates. For example, in the 2002 Election for Dublin West, 9 candidates ran,
but 29, 988 voters ranked only a median of 4 candidates over the set of candidates, and
only 12.7% of the voters cast a complete vote. Also, in the 2007 Glasgow City Council
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elections separated by wards, available ballot data report the results of all the ward
level elections which were originally held under STV. Figure 2.1 shows the number of
ranked candidates by (around 10, 000) voters for 5 wards when they were asked to rank
11 candidates. Most voters chose to rank between 1 and 3 of the 11 candidates.

Partial voting can have a significant effect on elections [34]. For example, in elections
for the Tasmanian Parliament, voters are allowed to submit partial ranking where they
rank a minimum number of candidates; usually this number represents the number of
members to be elected. Then, the Hare-Clark system is applied.1 This voting system
is also know as the Proportional Representation through the Single Transferable Vote
(PR-STV) which corresponds to the multi-winner version of STV.

The chapter by Boutilier and Rosenschein [13] of the Handbook of Computational
Social Choice provides background on work on incomplete information and communi-
cation in voting. In this chapter, we address the problem of partial preferences where:
In Section 2.2 we describe the basic concepts about incomplete preferences. Section 2.3
introduces solution concepts to determine the winners with partial information: possi-
ble and necessary winners, regret based winner computation and probabilistic models.
Finally, Section 2.4 describes elicitation techniques and their analysis.

2.2 Partial Votes and Profiles

In order to reduce the communication requirements of voting, a natural way consists
in obtaining partial information about voters’ preferences. Incomplete information
represents a challenging problem in preference aggregation. We begin by introducing
basic notations and defining several models of partial preferences that will be used
throughout this chapter.

Formally, an incomplete vote is defined by an election E ′ = (N,A,R) where:

• N = {1, ..., n}, the set of voters (or agents),

• A = {a, b, ...}, the set of candidates (or alternatives) such that |A| = m, and

• R = {R1, . . . , Rn}, the partial profile of voters in N over A where each Ri is a
partial order of voter i over A. We will refer to Ri either as a partial vote or an
incomplete vote; we use these terms interchangeably.

1see https://en.wikipedia.org/wiki/Hare-Clark_electoral_system

https://en.wikipedia.org/wiki/Hare-Clark_electoral_system
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A partial vote Ri can represent information about voter i’s responses to queries. The
most natural queries that can be represented as a partial preference order are2:

• Pairwise comparisons: Voter i states which of two alternatives, a or b, is preferred
to the other. For instance, given A = {a, b, c, d}, voter i prefers a to b and c to
d, i.e. a � b and c � d.

• Top-k queries: Voter i provides the top-k (ranked) alternatives from his complete
preference order �i for some 1 6 k 6 m. For instance, given A = {a, b, c, d} and
�i= a � b � c � d, the top-3 preferred candidates of i are: a � b � c.

• Next best alternative: Voter i states her next most preferred alternative: her kth
ranked candidate assuming that her k − 1 candidates have already been pro-
vided (the next best alternative of voter i and her previous votes corresponds to
answering a top-k query).

• Set choice (the same S): All voters are presented with the same subset S ⊂ A,
and asked to give complete or partial rankings over the candidates in S.

• Set choice (not the same S): Each voter i is presented with a subset S ⊂ A (not
the same for all voters), and asked to give complete or partial ranking over the
candidates in S.

A completion of Ri is any vote �i that extends Ri for each i ∈ {1, . . . , n}. Let C(Ri)
denote the set of completions of Ri, that is, the set of all complete linear order �i
that extend Ri. A partial profile is a collection of partial votes R = {R1, . . . , Rn}. Let
P = C(R) = C(R1)× ...× C(Rn) be the set of completions of R.

Example 2.1. Let us consider a partial profile R = {R1, R2, R3} of three voters who
were asked to state a pairwise comparison between three candidates A = {a, b, c}. The
partial preferences of the voters are shown in Figure 2.2. For example, voter 1 prefers
a � b and a � c, but he/she expresses no preference between candidates b and c.

Figure 2.3 presents the different possible completions of the partial profile R in Figure
2.2 to complete preferences orders where C(R) contains 12 profiles.

For example, a possible way to complete R1 (resp. R2, R3) is by adding b � c (resp.
b � a, b � a and c � a). As a result, C (R1) = {a � b, a � c, b � c}, giving the
following complete linear profile P = {a � b � c, b � a � c, b � c � a}.

2The work of Briskorn et al. [16] includes a complete classification of types of incomplete informa-
tion
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Figure 2.2: Example of a partial preference profile.
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Figure 2.3: Completions of the partial preference profile in Figure 2.2.

2.3 Solution Concepts with Partial Preferences

In voting situations where the voters’ preferences are partly known, a fundamental
question arises: Is the information at hand sufficient to determine a collective deci-
sion? Several researches have focused on determining the winner given only incomplete
voters’ preferences where different solution concepts were considered to deal with such
problem [7, 42, 46, 54]: the use of possible and necessary winners, minimax regret and
probabilistic models.

2.3.1 Possible and Necessary Winners

The partial information about the voters’ preferences may or may not be sufficient to
output the winner for a specific voting rule f . In the case where the winner cannot
be determined, the information at hand may inform us on the presence of certain
candidates to be potential winners. In this context, Konczak and Lang [46] introduced
the concept of possible and necessary winners denoted PW and NW, respectively;
where:

• a candidate c is a possible winner for a partial profile R and a voting rule f if c
wins under at least one completion of the partial votes in R, i.e. C(R), and
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• a candidate c is a necessary winner for a partial profile R and a voting rule f if
it wins for all completions of the partial votes in R.
If f is resolute, then there can be at most one necessary winner. Also, x is
necessary winner if and only if it is the only possible winner.

Note that knowing the possible winners given a partial profile allows to identify
candidates that cannot win called necessary losers. By definition, candidate x is a
necessary loser if it is not a possible winner.

Example 2.2. In Figure 2.2, the partial voter’s preference R1 (resp. R2, R3) can be
completed by adding b � c (resp. b � a, b � a and c � a), resulting in the following
linear complete profile: P = {a � b � c, b � a � c, b � c � a} (other possible
completions of R are in Figure 2.3). Under Borda rule, candidate a (resp. b, c) gets 3
(resp. 5, 1) points. Then, candidate b is a possible winner when considering the latter
completion.

Another possible extension of R1 (resp. R2, R3) is by adding b � c (resp. b � a,
a � b and a � c), resulting in the following linear profile: P = {a � b � c, b � a �
c, a � b � c}. Under Borda rule, candidate a (resp. b, c) gets 5 (resp. 4, 0) points.
Then, candidate a is a possible winner when considering the latter completion.

Note that given the partial profile R, there is no necessary winner because there are
two possible winners.

Possible and necessary winners problems have gained a significant attention [8, 26,
69, 75]. Complexity of these problems depends on the voting rule used and the setting.
Three main settings have been studied for general partial profiles:

1) the number of candidates is bounded and the votes are weighted i.e. a voter with
integer weight α can be viewed as α voters voting identically.3 The PW problem
is NP-complete for STV, plurality with runoff, Borda, Maximin and Copeland
rules. The NW problem is co-NP-complete for STV and plurality with runoff
[26, 49, 62, 69].

2) the number of candidates is bounded and the votes are unweighted i.e. each
voter’s vote counts the same. The possible and necessary winner problems can
always be solved in polynomial time, assuming the voting rule can be solved in
polynomial time [26, 69].

3Weighted voting systems occur when some voters are more important than others and have more
decision-power. These systems are used in a number of real-world settings like shareholder meetings
and elected assemblies.
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3) the number of candidates is unbounded and the votes are unweighted. Bartholdi
and Orlin [8] show that for STV, PW is NP-complete and NW is co-NP-complete.
Xia and Conitzer [75] show that: PW and NW are polynomial time solvable for
Plurality. For Copeland and Ranked Pairs, PW is NP-complete and NW is co-
NP-complete. For Maximin, PW is NP-complete but NW is polytime solvable.
For positional scoring rules (including Borda), PW is NP-complete while NW is
in P . The easiness of the necessary winner problem is due to the use of algorithms
that find a completion of the partial profile that refute the claim.

2.3.2 Minimax Regret

Another way considered to determine the winner given a partial profile R is the use
of minimax regret (MMR) concept proposed by Lu and Boutilier [54]. This measure
is used to determine the quality of a proposed winner x ∈ A given the information
at hand by computing how far from the optimal solution could be given any comple-
tion of R in the worst case called the maximum regret of a candidate x (denoted by
MR(x,R)). Then, the minimax optimal solution (denoted by x∗R) is the candidate with
the minimum MR. Formally, given a partial profile R:

MMR(R) = min
x∈A

MR(x,R) (2.1)

x∗R ∈ argmin
x∈A

MR(x,R) (2.2)

where:
MR(x,R) = max

P∈C(R)
Regret(x, P ) (2.3)

Regret(x, P ) = max
y∈A

S(y, P )− S(x, P ) (2.4)

and S(x, P ) is the score of candidate x given P .

where Regret(x, P ) represents the regret of selecting x as the winner for a specific
voting rule f rather than another candidate y ∈ A given P = C(R). Note that if
MMR(R) = 0, then the minimax winner x∗R is optimal in any completion P ∈ C(R).

Example 2.3. Let us consider a partial profile with A ∈ {a, b, c} and n = 3 illustrated
in Figure 2.4.

We compute the maximum regret for different candidates in A under Borda rule:
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Figure 2.4: Example of a partial profile where candidate a is the optimal minimax
regret following Lu and Boutilier [54].

• candidate a: we consider the worst-case completion of the partial profile R by
adding c � a and c � b (resp. b � a and c � b) to R2 (resp. R3) giving
C(R) = {a � b � c, c � a � b, c � b � a}. The scores of different candidates
are 3, 2 and 4 for a, b and c; respectively. Then, MR(a,R) = S(c, C(R)) −
S(a, C(R)) = 4− 3 = 1.

• candidate b: we consider the worst-case completion of the partial profile R by
adding c � b and a � c (resp. a � b and c � b) to R2 (resp. R3) giving
C(R) = {a � b � c, a � c � b, c � a � b}. The scores of different candidates
are 5, 1 and 3 for a, b and c; respectively. Then, MR(b, R) = S(a, C(R)) −
S(b, C(R)) = 5 − 1 = 4. Note that if we consider the completion C(R) = {a �
b � c, c � a � b, c � a � b} then MR(b, R) = 3, which do not correspond to the
maximal MR.

• candidate c: we consider the completion: C(R) = {a � b � c, a � b � c, c � a �
b}. The scores of different candidates are 5, 2 and 2 for a, b and c; respectively.
Then, MR(c, R) = S(a, C(R)) − S(c, C(R)) = 5 − 2 = 3. Also, if we consider
the completion C(R) = {a � b � c, a � b � c, b � c � a} then MR(c, R) = 3.

Hence, MMR = 1 and x∗R is candidate a.

2.3.3 Probabilistic Concepts

Bachrach et al. [7] propose a probabilistic notion for possible winner candidates. Given
a partial profile R, they compute a proportion of completions of R (i.e. C(R)) for which
a specific candidate is a possible winner. They assume that voters’ preferences are
drawn according to a uniform distribution (i.e. impartial culture, cf. Chapter 1) and
sample completions using the latter. They show the effectiveness of their algorithm
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to provide proportion of the sampled profiles with high probability for voting rules
computed in polynomial time.

A different approach was investigated by Hazon et al. [42] using probabilistic models
to deal with incomplete information. Indeed, authors study the possibility of computing
the probability of a particular candidate winning an election given partial information
in the form of probability distributions over a set of candidates. Hazon et al. propose
an algorithm that allows to compute the probability of candidate’s victory under a
variety of voting rules. For a constant bounded number of alternatives, they show
that computing the probability of a winning candidate is polytime solvable for any
voting rule solved in polynomial time. However, when the number of candidates is
not bounded, they show that the problem becomes P-hard for plurality, Borda and
Copeland rules.

Example 2.4. Let us consider the following profile over a set of 3 candidates A =
{a, b, c} and 2 voters. Each voter i’s preference is associated with a probability and the
sum of the probabilities is equal to 1.

V oter 1 V oter 2
1
2 a

1
4 a

1
3 b

3
4 b

1
6 c

Table 2.1: Example of a partial profile with probability distributions over preferences
following Hazon et al. [42].

V oting results (a, b, c) Probability

1, 1, 0 1
3 .

1
4 + 1

2 .
3
4

1, 0, 1 1
6 .

1
4

0, 1, 1 1
6 .

3
4

0, 2, 0 1
3 .

3
4

2, 0, 0 1
2 .

1
4

0, 0, 2 0

Table 2.2: Probability’s table with probabilistic preferences following Hazon et al. [42]
algorithm.4

4The first row represents a voting result which is a vector of votes of the possible voting scenarios
for candidates a, b and c, e.g. vector (2, 0, 0) means that 2 votes are given to candidate a and 0 vote to
b and c. The second column shows the probabilities for each possible voting scenario that consists in
the product of the probabilities of the voters’ preference, e.g. the probability associated to b is 1

3 ×
3
4 .
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The voters’ preferences are presented in Table 2.1. For instance, voter 2 will vote to
candidate a (resp. b) with a probability of 1

4 (resp. 3
4) and she will not vote for candidate

c. Following Hazon et al.’s approach, Table 2.2 presents the generated probabilities
where the probability that candidate a (resp. b, c) is the winner for plurality rule is:
1
2 .
(

1
3 .

1
4 + 1

2 .
3
4

)
+ 1

2 .
(

1
6 .

1
4

)
+ 1

2 .
1
4 = 0.375 (resp. 0.542 and 0.083).

2.4 Preference Elicitation

In previous section we described techniques to determine the winner given partial pref-
erences. Such solution concepts may succeed to output the winner with incomplete
ballots; however, they do not provide ways to minimize the amount of information
elicited. Effectively eliciting preferences from voters is of high importance. This prob-
lem is known as preference elicitation which was investigated in different domains such
as healthcare [74], recommender systems [51], crowdsourcing [22] and marketing [43]
where the system asks questions to different users in order to learn about group’s pref-
erences. In voting situations, preference elicitation refers to elicit a partial profile from
voters in an efficient way in order to minimize the amount of information required to
determine a winning outcome of high quality.

A voting rule does not specify how the votes are elicited from the voters (these rules
are just functions mapping the preferences of all the voters to a winner). Different
ways of determining the winner of an election by eliciting preferences from voters are
based on specific protocols. A protocol is similar to an algorithm, with instructions
replaced by communication actions; such actions specify bits that the voter should
communicate, depending on her knowledge. Formally, a protocol for a voting rule f is
a protocol that computes f(�1, ...,�n), given that �i is the private information of voter
i. The (deterministic) communication complexity of a voting rule f is the minimum
cost of a protocol for f .

A communication protocol is held between two parts: the voters and the voting center
where the former send their preferences to the latter who is responsible for collecting
the votes, computing the final result, and communicating the final outcome to the
voters. Efficient communication protocols allow to determine how the relevant parts of
the votes are elicited from the voters in the aim to minimize the communication cost
of the protocol. For instance, for plurality with runoff, one possible way of eliciting
the votes is to ask every voter to report her complete preference order. Alternatively,
a simpler protocol is held in three steps: (1) each voter sends only the name of her
most-preferred candidate to the voting center, (2) the voting center sends the name of
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the two finalists to the voters and (3) voters send the name of their preferred finalist
to the voting center.

Example 2.5. Let us consider a setting of 15 voters with the following profile P over
three candidates A = {a, b, c}:

6 votes a � b � c 3 votes c � b � a

5 votes b � a � c 1 votes c � a � b

6 x a
3 x c
5 x b
1 x c

Step 1:

Finalists
a and bStep 2:

6 x a
3 x b
5 x b
1 x a

Step 3:
Voters Voting Center

Figure 2.5: Communication protocol for plurality with runoff.

Figure 2.5 shows the communication protocol for plurality with runoff. In the first
step, voters send their most preferred candidate where candidate a (resp. b and c)
gets 6 (resp. 5 and 4) votes. In the second step, the voting center sends to the voters
the candidates who received the highest scores using plurality, i.e. candidates a and b.
Finally, in the third step, voters send their preferred candidate among the two finalists
and candidate b is declared the winner.

One line of research focuses on the computational complexity of various issues related
to elicitation. Conitzer and Sandholm [25] study the communication complexity of
various voting rules and determine upper and lower bounds for communication. They
show that an upper bound (resp. lower bound) of ‰(n log m) (resp. Ω(n log m)) bits
are needed for plurality and plurality with runoff. For Borda, Copeland and ranked
pairs an upper bound (resp. lower bound) of ‰(n m log m) (resp. Ω(n m log m))
bits are needed. For STV, an upper bound (resp. lower bound) of O(n(log m)2)
(resp. Ω(n logm)) bits of communication are needed. (The communication complexity
of STV will be discussed in Chapter 4.) Walsh [70] considers the question of how
to decide when we can terminate eliciting preferences from the voters as the winner
is determined. This problem is related to the computation of possible and necessary
winners. Walsh shows that the complexity of deciding when to stop elicitation depends
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on the elicitation strategy. Conitzer and Sandholm [24] show that determining how to
elicit effectively voters preferences is NP-complete for Borda, Copeland, Maximin and
STV while it is easy for plurality.

We now describe several techniques for the elicitation of voter preferences. Existing
work on vote elicitation using partial profiles can be classified into two classes according
to the type of interaction with the voters, namely: interactive elicitation and non-
interactive elicitation (or one-shot elicitation). Some of work on these two classes uses
the techniques described in Section 2.3 to guide the process of elicitation. These two
approaches are described in the next two subsections.

2.4.1 Interactive Elicitation Protocols

An interactive elicitation protocol asks voters to expand their partial ballots in an
incremental way, until the outcome of the vote is eventually determined. Recently,
work on interactive elicitation received a considerable attention where algorithms that
work well in practice have been proposed to elicit the relevant part of the voters’
preferences. Authors consider different forms of queries through the elicitation process
such as top-k, next best alternative, set of candidates and pairwise comparison queries.

This line of research starts with Kalech et al. [44] who consider top-k ballots in
vote elicitation. Authors propose an iterative algorithm that allows the voters to cast
their preferences incrementally starting by top-1 ballots, then top-2, etc., until there
is sufficient information for knowing the winner using possible and necessary winner
concept. Experiments on real data show that their deterministic algorithm is able to
reduce the communication cost by 35% and determine the winner correctly. To further
reduce the information elicited, Kalech et al. propose an approximation algorithm able
to save up 90% of preferences communicated. While there is no guarantee to output
the correct winner, authors show that in practice their heuristic predicts the correct
outcome with high probability.

Lu and Boutilier [54] expand their work on determining the winner given partial
preferences, using minimax regret solution, to vote elicitation. They propose a multi-
round incremental elicitation process that uses minimax regret to determine the winner
given partial profile and to guide the choice of the voter to query. They consider
two forms of queries: pairwise comparisons and next best alternative. The elicitation
scheme of Lu and Boutilier [54] asks one query of a single voter at each round while
the scheme of Kalech et al. [44] asks at each round all voters to answer a particular
query simultaneously which can effectively reduce the number of rounds.
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Naamani Dery et al. [30] present two elicitation algorithms for finding a winner
with little communication between voters. They show that their algorithms are able
to reduce the communication between voters by half. In a recent work, Naamani Dery
et al. [29] take preference elicitation a step further by making the connection between
manipulation (or strategic voting) and incremental preference elicitation. Indeed, when
eliciting preferences from voters in an incremental way and query them to cast their
preferences between two available candidates, voters may have an intention to vote
strategically and misreport their preferences in order to make a specific candidate win
or lose. Naamani Dery et al. provide a practical elicitation algorithm to avoid such
scenarios to occur when considering pairwise comparison queries.

While most previous work studied a specific type of queries to elicit from voters,
Zhao et al. propose a more general incremental elicitation framework, with more types
of elicitation questions, is cost-effective elicitation [77]. Indeed, the voting center may
ask a voter not only for her top-k preferred alternatives but also about her preference
between two alternatives or her set of preferred candidate. In each round, the question
asked depends on the missing information that will be used to reveal the most relevant
information about the voter’s preferences. In their work [77], Zhao et al. show how to
compute the cost-effective questions in a preference elicitation framework.

2.4.2 One-Shot Elicitation Protocols

In one-shot elicitation (aka. non-interactive elicitation) the voting center elicits the
partial information at once and outputs a winner from the available information with-
out requiring voters to provide extra preferences. Different forms of partial vote have
been considered including: top-k preferences, pairwise comparison between candidates
or the set of the voters’ preferred candidate. A possibility consists in computing possi-
ble winners given these partial vote: this is the path followed by Baumeister et al. [9]
who consider truncated ballots of the top-k, bottom-k and doubly truncated votes with
top and bottom segments provided. Given these specific form of partial preferences,
Baumeister et al. propose ways of extending some voting rules to deal with these par-
tial preferences. Xia and Conitzer [75] consider partial vote in the form of pairwise
comparisons between candidates. They propose polynomial-time algorithms to check
whether a given candidate is a necessary winner for positional scoring rules, Maximin
and plurality with runoff5 given partial profile.

5For plurality with runoff, the unique necessary winner is in P ; however, the necessary co-winner
is coNP-complete.
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Another possibility – which is the one we choose to follow in Chapter 3– consists in
generalizing the definition of a voting rule so that it takes partial vote as input. In this
line, Oren et al. [61] analyze top-k voting by assessing the values of k needed to ensure
the true winner is found with high probability for specific preference distributions,
both theoretically and empirically. Their theoretical results were derived in both a
worst and an average case under impartial culture. Although the latter are a little bit
discouraging, their empirical results on Mallows model show that small values of k work
well in practice. Filmus and Oren [37] follow the same path of research where they
study the performance of top-k voting under the impartial culture distribution (IC)
for Borda, Harmonic and Copeland rules. They assess the values of k needed to ensure
the true winner with high probability. More precisely, they show that for Borda and
Harmonic (resp. Copeland) voting a lower bound of k = Ω(m) (resp. k = Ω

(
m√

logm)
)
is

needed for n sufficiently large relative to m. Their theoretical analysis is completed by
numerical experiments showing that under the impartial culture, in the setting where
m = 20 and n = 2000, Harmonic rule gives the best results where k = 15 out of 20 is
sufficient to determine the winner, while for Copeland and Borda the whole profile is
needed to ensure the winner.

Narodytska and Walsh [59] consider the computational impact of partial vote on
strategic voting when voters submit top-k ballots. For Borda rule, they consider two
possible ways to deal with truncated ballots by adjusting the scoring vector, namely:
modified Borda Count [35] and average score modified Borda Count [27, 40] (these two
options will be considered in Chapter 3). For STV, they simply ignore votes once all
their candidates are eliminated (this way to deal with truncated ballots for STV will be
considered in Chapter 4). They show that under STV and average score modified Borda
Count, partial voting does not change the situations where strategic voting is possi-
ble. However, under modified Borda Count partial voting can increase the situations
where strategic voting is possible. Lu and Boutilier [55] propose a general framework
for choosing the optimal threshold k for top-k elicitation in one-round protocols using
minimax regret. Skowron et al. [67] use top-k voting as a way to approximate the
Monroe and Chamberlin–Courant multi-winner voting rules. Their experimental eval-
uation on synthetic data and real word data set show that their algorithm is able to
output the near-perfect solution. Lackner [48] studies the recognition of singled-peaked
top-k profiles by proposing an algorithm to determine whether a given partial profile
can be completed in such a way that it is single-peaked.



2.5 Conclusion 49

2.5 Conclusion

In this chapter we have relaxed the assumption that each voter provides a complete
preference ranking over all candidates by dealing with incomplete voters’ preferences.
We have described the basic notations of voting with partial preferences. Then, we have
discussed existing solution concepts for winner determination with incomplete ballots.
Finally, we have tackled the problem of preference elicitation where we have discussed
existing work on the two types of vote elicitation, namely: interactive elicitation and
non-interactive elicitation. In the next chapters we propose ways to deal with partial
preferences in the form of top-k ballots for different voting rules.
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Part II presents the contributions of this dissertation. Chapter 3 

proposes "top-k approximations" of rules, which take only into 

account the top-k candidates of each ballot. Chapter 4 focuses on 

STV voting rule and proposes ways to minimize the amount of 

communication required to use single-winner STV. Finally, 

Chapter 5 proposes an incremental vote elicitation process using 

heuristics to guide the choice of the next voter to ask. 
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In this chapter we consider top-k ballots where we suggest to fix a rank k, to ask all
voters to specify their best k candidates, and then we propose "top-k approximations"
of rules, which take only into account the top-k candidates of each ballot. We consider
two measures of the quality of the approximation: the probability of selecting the same
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winner as the original rule, and the score ratio. We make a worst-case study (for the
latter measure only), and for both measures, an average-case study and a study from
real data sets.

3.1 Introduction

The necessity of effectively aggregating voters’ preferences is of great importance es-
pecially with systems containing large collections of candidates to choose from. We
suggest to ask voters to report only their top-k candidates, for some (small) fixed value
of k (the obtained ballots are then said to be k-truncated). The advantage of doing
so is that not only it saves communication effort, but it is also often easier for voter
to find out the upper part of their ranking (consisting of their preferred k candidates)
than the rest of it. However, this raises the issue of how usual voting rules should be
adapted to k-truncated ballots.

Reporting top-k truncated ballots is a specific form of voting with incomplete prefer-
ences, and is highly related to vote elicitation. More specifically existing work on top-k
ballots can be classified into two classes according to the type of interaction with the
voters (cf. Chapter 2):

• Interactive elicitation: the voting center asks voters to expand their trun-
cated ballots in an incremental way, until the outcome of the vote is eventually
determined.

• Non-interactive elicitation: the voting center elicits the top-k ballots at once,
for a fixed value of k, and outputs a winner from this partial information without
requiring voters to provide extra information.

Our contribution in this chapter concerns non-interactive elicitation. We generalize
the definition of a voting rule such that it takes truncated ballots as input1: we define
approximations of voting rules which take as input the top-k candidates of each ballot.
The question is then: Are these approximations good predictors of the original rule?
We answer this question by considering two measures:

1Note that outputting possible winners can also be seen as a way of generalizing the definition of a
voting rule to truncated ballots, but the obtained rule then tends to be very irresolute when the size
of the partial ballots is small.
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• the probability that the approximate rule selects the ’true’ winner. To do so, we
sample random profiles of full rankings and truncate the rankings so that voters
only rank their top-k choices. We then compute the probability that the winner
of the top-k ballots is the same as the winner of the full ballots for different voting
rules.

• the ratio between the scores (for the original rule) of the true winner and the
winner of the approximate rule.

For the latter measure we give a worst-case theoretical analysis. For both measures we
give an empirical study, based on randomly generated profiles and on real-world data.
Even for small k, we find that top-k ballots are enough to identify the correct winner
quite frequently for different voting rules, especially for data taken from real elections.

This contribution can be seen as a continuation of Filmus and Oren [37] (cf. Chap-
ter 2, Section 2.4.2). We go further on several points: we consider more voting rules:
Borda, Harmonic, Copeland, Maximin, ranked pairs and STV; beyond impartial cul-
ture, we consider a large scope of distributions; within the Mallows φ model [56] and
Mixture of Mallows [53]. We also study score distortion; and we include experiments
using real-world data sets.

Our interpretation of top-k ballots is epistemic: the central authority in charge of
collecting the votes and computing the outcome ignores the voters’ preferences below
the top-k candidates of each voter, and has to cope with it as much as possible. Voters
may very well have a complete preference order in their head (although it does not
need to be the case), but they will simply not be asked to report it. These truncated
ballots certainly do not mean that voters see the candidates below the top-k as being
indifferent or incomparable.

This chapter is organized as follows: Section 3.2, defines the top-k approximations
of different voting rules. Section 3.3 analyses empirically the probability that the
approximate rule selects the true winner. Finally, Section 3.4 analyses (theoretically
and empirically) the score distortion.

3.2 Approximating Voting Rules from Truncated
Ballots

We consider one-shot protocols where all input information needs to be gathered at the
same time. In this model, if we wish to compute the winner for a given voting rule with
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certainty, we need to ask voters to report their entire preferences, i.e. to report their
linear order. Let us relax the goal of certainty and instead aim to compute the winner
with high-enough probability. In exchange, we ask for less information: Voters report
top-k-ballots for a fixed k > 1, i.e. they report a ranked list of their k most-preferred
candidates.

We define a top-k election as follows:

Definition 3.1. Given k ∈ {1, ...,m− 1}, a top-k election is a triple E ′ = (N,A,R)
where N and A are as before, and R = (�k1, ...,�kn), where each �ki is a ranking of
k out of m candidates in A. R is called a top-k profile. If P is a complete profile,
�ki is the top-k truncation of �i (i.e. the best k candidates, ranked as in �i), and
Pk = (�k1, ...,�kn) is the top-k-profile induced from P and k.

Example 3.1. Let us consider a profile of 6 voters with the following complete pref-
erences over A = {a, b, c, d}:

2 votes b � a � c � d 1 vote a � d � b � c

2 votes c � a � b � d 1 vote d � b � c � a

The 2-truncated profile induced from the above preferences is as follows:

2 votes b � a 1 vote a � d

2 votes c � a 1 vote d � b

A top-k (resolute) voting rule is a function fk that maps each top-k election E ′ to
a candidate in A. If we apply a top-k voting rule to a complete profile P this implies
that we will use the top-k truncated ballots induced from P , i.e. fk(P ) = fk(Pk).

In this section we define several top-k rules that correspond to standard voting rules
discussed in Chapter 1. We consider positional scoring rules (PSR), namely: Borda,
Harmonic in Section 3.2.1; pairwise rules, namely: Copeland, Maximin and ranked
pairs in Section 3.2.2, and one elimination based rule namely STV in Section 3.2.3.

3.2.1 Positional Scoring Rules

An extension of positional scoring rules to top-k voting as follows:
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Definition 3.2. A top-k PSR f sk is defined by a scoring vector s = (s1, s2 . . . , sk, s
∗)

such that s1 > s2 > ... > sk > s∗ > 0 and s1 > s∗. Each candidate in a top-k vote
receives sj points from each voter i who ranks her in the jth position. A non-ranked
candidate gets s∗ points. The winner is the candidate with highest total score.

When starting from a specific PSR for complete ballots, defined by scoring vector
s = (s1, . . . , sm), three choices of s∗ particularly make sense:

• zero score: the non-ranked candidates get a zero score, i.e. s∗ = 0

• average score: the non-ranked candidates get the average score of the remaining
candidates, i.e. s∗ = 1

m−k (sk+1 + . . .+ sm)

• maximal score: the non-ranked candidates get the score of the candidate ranked
in the (k + 1)th position, i.e. s∗ = sk+1.

We denote the corresponding approximate rules as f 0
k uses the zero score, favk uses

the average score and fmaxk uses the maximal score.

For Borda, the first two choices have been considered in the literature where Bordaavk
is known under the name average score modified Borda Count [27, 40], while Borda0

k

is known under the name modified Borda Count [35]).

Example 3.2. Let us consider an election over m = {a, b, c, d, e} candidates and a
partial preference order of a voter i where a �i b.

The scoring vectors for Borda0
2, Bordaav2 and Bordamax2 are: ~sBorda0

2
= (4, 3, 0, 0, 0)

, ~sBordaav
2

= (4, 3, 1, 1, 1) and ~sBordamax
2

= (4, 3, 2, 2, 2), respectively.

The scoring vectors for Harmonic0
2, Harmonicav2 and Harmonicmax2 are: ~sHarmonic0

2
=

(1, 1
2 , 0, 0, 0), ~sHarmonicav

2
= (1, 1

2 , 0.26, 0.26, 0.26) and ~sHarmonicmax
2

= (1, 1
2 ,

1
3 ,

1
3 ,

1
3), re-

spectively.

Young [76] characterized positional scoring rules by these four properties, which we
describe informally (for resolute rules):

• Neutrality: all candidates are treated equally

• Anonymity: all voters are treated equally
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• Reinforcement: if P and Q are two profiles (on disjoint electorates) and x is the
winner for P and the winner for Q, then it is also the winner for P ∪Q.

• Continuity: if P and Q are two profiles and x is the winner for P but not for Q,
adding sufficiently many votes of P to Q leads to elect x.

These four properties still make sense for truncated ballots. It is not difficult to
generalize Young’s result to top-k PSR:

Theorem 3.1. A top-k voting rule is a top-k PSR if and only if it satisfies top-k,
neutrality, anonymity, reinforcement, and continuity.

Proof. The left-to-right direction is obvious. For the right-to-left direction, let us first
define the top-k-only property: a standard voting rule is top-k-only if for any two
complete profiles P, P ′, if Pk = P ′k, then F (P ) = F (P ′). Then (1) a positional scoring
rule F is top-k-only if and only if sk+1 = . . . = sm (if this equality is not satisfied,
then it is easy to construct two profiles P , P ′ such that Pk = P ′k and F (P ) 6= F (P ′)).
Now, assume fk is a top-k rule satisfying neutrality, anonymity, reinforcement, and
continuity. Let F be the standard voting rule defined by F (P ) = fk(Pk). Clearly, F
also satisfies neutrality, anonymity, reinforcement, and continuity, and due to Young’s
characterization result, F is a PSR, associated with some vector (s1, . . . , sm). Because
F is also top-k-only, using (1) we have sk+1 = . . . = sm, therefore, fk is a top-k-PSR.

3.2.2 Rules Based on Pairwise Comparisons

With incomplete preference orders, comparing all pairs of candidates is not possible
due to the lack of information submitted by the voters. Now, given a truncated ballot
�ki and two candidates a, b ∈ A, we say that a dominates b in �ki , denoted by a >k

i b,
if one of these two conditions holds:

1) a and b are listed in �ki , and a �ki b;

2) a is listed in �ki , and b is not.

Example 3.3. For A = {a, b, c, d}, k = 2, and �2
i= (a � b), then a dominates b

(condition 1 is satisfied), both a and b dominate c and d (condition 2 is satisfied), but
c and d remain incomparable in �2

i .



3.2 Approximating Voting Rules from Truncated Ballots 57

Now, the notions of majority graph and weighted majority graph (cf. Chapter 1)
are extended to top-k truncated profiles in a straightforward way. We define the k-
truncated majority graph and the k-truncated weighted majority graph, based on the
above description of pairwise comparison, as follows :

Definition 3.3. k-truncated majority graph Given a k-truncated profile R, NR(a, b) =
#
{
i, a �ki b

}
is the number of voters in R for whom a dominates b. The k-truncated

majority graph Mk(R) induced by R is the graph whose set of vertices is the set of
candidates A and in which there is a directed edge from a to b if the number of voters
i such that a �i b is strictly larger than the number of voters j such that b �j a i.e.
NR(a, b) > NR(b, a).

Definition 3.4. k-truncated weighted majority graph Given a k-truncated profile
R, for any tow candidates a, b, NR(a, b) = #

{
i, a >k

i b
}
is the number of voters in R

for whom a dominates b. The k-truncated pairwise majority matrix (or k-truncated
weighted majority graph) MWk(R) is the m × m matrix defined by MWk(R)(a, b) =
NR(a, b)−NR(b, a).

Then, given a k-truncated profile R = (�k1, . . . ,�kn), the truncated voting rules
Copelandk, Maximink and RPk are defined exactly as their standard counterparts
Copeland, Maximin and RP , starting from the k-truncated (weighted or unweighted)
majority graph instead of the standard one.

Example 3.4. Let us consider a profile of 62 voters where A = {a, b, c, d} with the
following complete preferences:

20 votes a � d � c � b 10 votes b � c � d � a

15 votes c � d � b � a 17 votes d � c � a � b

Figure 3.1 shows the representation of the top-k majority graph for k = {1, 2, 3}
where for each k, the Copeland winner is shaded. For Copeland3, candidate d is the
winner. For Copeland1, candidate a has the majority by beating candidates b (20 to
10), c (20 to 15) and d (20 to 17). When we consider Copeland2, candidate d wins.

Figure 3.2 shows the top-k pairwise majority matrix and the Maximink winner for
k = {1, 2, 3}. For Maximin3, the winner is also candidate d with a maximum pairwise
majority equal to 12. For Maximin1, the minimum pairwise majority of different
candidates are: Sm(a) = 3, Sm(b) = −10, Sm(c) = −5 and Sm(d) = −3. Then,
candidate a wins with a maximum pairwise comparison equal to 3.
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Copeland1 

 
Copeland2 

 
Copeland3 

Figure 3.1: k-truncated majority graph, and k-truncated approximations of Copeland
for k = {1, 2, 3}

a b c d Sm

a - 10 5 3 3

b -10 - -5 -7 -10

c -5 5 - -2 -5

d -3 7 2 - -3

a b c d Sm

a - 10 -22 -22 -22

b -10 - -22 -42 -42

c 22 22 - -12 -12

d 22 42 12 - 12

a b c d Sm

a - 12 -22 -22 -22

b -12 - -42 -42 -42

c 22 42 - -12 -12

d 22 42 12 - 12

Maximin1 Maximin3Maximin2

Figure 3.2: k-truncated pairwise majority matrix, and k-truncated approximations of
Maximin for k = {1, 2, 3}

For Maximin2, the minimum pairwise majority of different candidates are: Sm(a) =
−22, Sm(b) = −42, Sm(c) = −12 and Sm(d) = 12 and candidate d wins.

For RP, the winner under RPk for k ∈ {1, 2, 3} is the same as the winner under
Copelandk since the k-truncated majority graph does not create cycles. To illustrate
RPk we consider the following profile with 15 voters and 4 candidates where we break
ties using the priority order B: a � b � c � d:

3 a � d � c � b

3 a � d � b � c

5 d � c � b � a

4 b � c � a � d

Figure 3.3 presents the k-truncated weighted majority graph and RP winner for
k ∈ {1, 2, 3}. For RP1, all edges are retained since they do not create cycles and
candidate a is the winner. For RP2, we retain edges (d → b), (d → c), (c → a) and
(a→ b), we omit (a→ d) since it creates cycle and retain (c→ b). Then the winner is
d. For RP3, we retain edges (d → b), (d → c), (a → d), we omit (b → a) and (c → a)
and retain (c→ b). Then the winner is a which corresponds to the RP winner.
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RP1 RP2 RP3

Figure 3.3: k-truncated weighted majority graph, and k-truncated approximations of
RP for k = {1, 2, 3}. The dashed edges are omitted since they create cycles.

3.2.3 Single Transferable Vote Rule

Given top-k ballots as input, we propose a natural generalization of STV rule which is
quite popular. It is used, for example, in local elections in San Francisco (with k = 3).
The analogous rule that allows submitting partial rankings of any length (not fixed to
some k) is also widely used, for example in the Irish presidential elections, voters are
allowed to only cast a partial ranking by ranking a subset of the candidates, and leave
the rest unranked.

For each 1 6 k 6 m, we define STVk as follows: Just like STV , in each round, we
eliminate a candidate ranked first by the smallest number of voters (breaking ties using
B if necessary). If all the k candidates in some ballot have been eliminated, the vote
is ignored in later rounds (and is called exhausted). We repeat this process until one
candidate remains, who is the winner according to STVk.

Example 3.5. Let A = {a, b, c, d, e} and consider the following 21 top-2 ballots with
tie-breaking priority B: a B b B c B d B e.

6 a � e

5 d � e

4 c � e

6 b � c

Under STV 2, e is eliminated first, then c. The votes c � e are now exhausted.
Candidate d is eliminated next. Now, a and b are tied. Finally, a is the STV 2 winner
thanks to tie breaking priority.

Although the top-k rules can be seen as a voting rule on their own, we view them as
an approximation of the standard rule. In this context, we take the top-k rule to be
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a rule which takes profiles of full linear orders as input, truncates the preferences to
become top-k ballots, and then proceeds as above.

For all our rules we considered (Borda, Harmonic, Copeland, Maximin, ranked pairs
and STV) we observe that:

• for k = m − 1 (or equivalently, k = m), the k-truncated version of the rule
coincides with the standard rule, i.e. fm−1 = f (for instance, Copelandm−1

coincides with Copeland, etc.).

• for all rule f we consider, when k = 1, f1 coincides with plurality.

3.3 Probability of Selecting the True Winner

The first way of measuring the quality of the top-k approximations is to determine
the probability that they output the ’true winner’; that is, the winner of the original
voting rule, under various Mallows φ model (Subsection 3.3.1), mixture of Mallows
(Subsection 3.3.2) and real-world data (Subsection 3.3.3). We will ask: How often do
the k-truncated rule and the standard one declare the same candidate to be the winner?
Our main practical objective is to obtain, depending on the context, a value of k small
enough to allow for painless communication of preferences, but large enough so that
the probability of obtaining the true winner from the top-rules is high.

In order to assess the ability of the k-truncated approximations to predict the correct
winner, we propose now an empirical approach. Since we want to measure experimen-
tally the probability that the output of the top-k approximation of a rule coincides
with the true winner, we need to know this true winner, and therefore we need to have
access to the true profile. For doing so, we consider the following process:

1) take a complete profile P (with n voters and m candidates);

2) for k = 1 to m− 2: compare fk(P ) to f(P ).

Step 1 varies according to whether we are in the random generation setting or the real
world data setting. For the former, we draw a profile according to a given distribution
(Subsections 3.3.1 and 3.3.2). For the latter, we draw a profile by selecting n votes uni-
formly at random from the collection of votes found in the data set (Subsection 3.3.3).
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We iterate these two steps a sufficiently large number of times (over 1000 profiles) and
we obtain empirically the probability that the original rule and its approximation select
the same winner. To approximate Harmonic, we consider the average score version.

Note that we cannot simply stop the process if we reach a k such that fk(P ) = f(P ),
because there is no guarantee that fk′(P ) will still be equal to f(P ) for k′ > k. For
instance, consider the profile composed of 5 votes b � a � c � d, 4 votes a � b � c � d,
3 votes c � d � b � a and one vote d � a � b � c: under STV the winner is b. For
STV1, it is b too. However, for STV2, it is a. Iterating this process a number of times
allows us to evaluate the quality of top-k rules for different values of k.

Here we follow the research direction initiated by Filmus and Oren [37], but we con-
sider more rules, and beyond Impartial Culture we also consider correlated distributions
within the Mallows model parameterized by a reference ranking σ and a dispersion pa-
rameter φ ∈ [0, 1], Mixture of Mallows (cf. Chapter 1) and real data sets.

3.3.1 Experiments Using Mallows φ Model

For each experiment we draw 1000 random preference profiles. In the first set of
experiments, we take m = 7, we let n and φ vary, and we measure the accuracy of the
approximate rule for k = 1 and k = 2. Results are reported on Table 3.1. Note that
for k = 1, our results can be viewed as answering the question: With which probability
does the true winner with respect to the chosen rule coincide with the plurality winner?

For k = 1: when n 6 100 and φ 6 0.7, prediction reaches 90% for Borda, Copeland
Maximin and STV, 92% for RP, and 94% for Harmonic. Better results are obtained as
we increase n (n = 500): for n > 500 and φ 6 0.7, the accuracy is perfect for all rules.
For φ = 0.8, the success rate decreases but results are still good with a large number of
voters e.g. when φ = 0.8 and n = 500, it is around 0.95 for Copeland, Maximin, RP
and STV, and 0.96 for Borda and Harmonic. For φ = 0.9 and n = 500, the rate reaches
86% for Harmonic and 72% for Copeland, with intermediate (and similar) results for
Borda, Maximin, RP and STV. For larger φ (φ = 1), the accuracy is much lower.
Indeed, for the IC, the rate decreases dramatically when k becomes small, except for
Harmonic (73% when n = 500 against 46% for STV, 31% for Copeland and around
40% for the remaining rules).

For k = 2: when φ < 1, the accuracy of all truncated rules improves significantly if
the number of voters is increased. Indeed, the probability of selecting the true winner
reaches 100% (resp. 98%) when φ 6 0.7 (resp. φ = 0.8) and n > 400 (resp. n > 500).
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Table 3.1: Success rate, m = 7, varying n, k and φ.

φ n=100 n=200 n=300 n=400 n=500 n=100 n=200 n=300 n=400 n=500
Borda0

1 Borda0
2

0.7 0.902 0.958 0.986 0.992 1.0 0.952 0.984 0.997 1.0 1.0
0.8 0.77 0.855 0.9 0.94 0.963 0.859 0.92 0.944 0.965 0.988
0.9 0.588 0.694 0.685 0.718 0.771 0.722 0.788 0.815 0.854 0.859
1 0.434 0.445 0.424 0.422 0.397 0.582 0.571 0.591 0.553 0.554

Bordaav
1 Bordaav

2
0.7 0.902 0.958 0.986 0.992 1.0 0.951 0.98 0.992 1.0 1.0
0.8 0.77 0.855 0.9 0.94 0.963 0.853 0.913 0.956 0.972 0.986
0.9 0.588 0.694 0.685 0.718 0.771 0.772 0.805 0.827 0.846 0.873
1 0.434 0.445 0.424 0.422 0.397 0.576 0.56 0.586 0.598 0.584

Bordamax
1 Bordamax

2
0.7 0.902 0.958 0.986 0.992 1.0 0.947 0.987 0.992 1.0 1.0
0.8 0.77 0.855 0.9 0.94 0.963 0.861 0.938 0.945 0.962 0.971
0.9 0.588 0.694 0.685 0.718 0.771 0.704 0.794 0.802 0.814 0.845
1 0.434 0.445 0.424 0.422 0.397 0.567 0.581 0.555 0.56 0.532

Harmonic1 Harmonic2
0.7 0.941 0.986 0.996 1.0 1.0 0.98 0.992 1.0 1.0 1.0
0.8 0.895 0.916 0.958 0.959 0.968 0.958 0.974 0.987 0.988 0.996
0.9 0.805 0.808 0.83 0.866 0.863 0.895 0.921 0.934 0.939 0.952
1 0.725 0.742 0.74 0.697 0.737 0.872 0.867 0.859 0.861 0.859

Copeland1 Copeland2
0.7 0.908 0.968 0.991 0.994 1.0 0.947 0.99 1.0 1.0 1.0
0.8 0.736 0.847 0.891 0.934 0.949 0.822 0.904 0.952 0.984 0.982
0.9 0.497 0.567 0.655 0.684 0.726 0.62 0.69 0.77 0.805 0.838
1 0.325 0.332 0.323 0.343 0.319 0.458 0.432 0.45 0.442 0.425

Maximin1 Maximin2
0.7 0.908 0.969 0.986 0.99 1.0 0.968 0.991 1.0 1.0 1.0
0.8 0.787 0.856 0.915 0.939 0.955 0.872 0.934 0.961 0.976 0.977
0.9 0.57 0.633 0.691 0.717 0.748 0.735 0.76 0.794 0.838 0.869
1 0.415 0.4 0.423 0.393 0.391 0.52 0.532 0.544 0.545 0.525

RP1 RP2
0.7 0.926 0.972 0.995 0.995 1.0 0.963 0.994 1.0 1.0 1.0
0.8 0.778 0.856 0.908 0.939 0.957 0.871 0.928 0.967 0.983 0.989
0.9 0.587 0.64 0.674 0.718 0.749 0.725 0.765 0.777 0.838 0.862
1 0.426 0.405 0.416 0.375 0.385 0.558 0.524 0.557 0.498 0.519

STV1 STV2
0.7 0.907 0.981 0.985 0.998 1.0 0.959 0.993 0.997 1.0 1.0
0.8 0.808 0.865 0.917 0.918 0.943 0.882 0.933 0.962 0.966 0.974
0.9 0.603 0.64 0.721 0.729 0.763 0.742 0.776 0.792 0.855 0.846
1 0.45 0.464 0.477 0.471 0.468 0.576 0.593 0.61 0.592 0.585

With high values of φ, Harmonic still outperforms other rules followed by Bordaav and
STV then the other rules. Results for Borda rule suggest that Bordaavk has the best
results followed by Borda0

k and then Bordamaxk , especially with high values of φ. In all
cases, top-2 ballots seem to be always sufficient in practice to predict the winner with
100% accuracy with a low value of φ.

In the second set of experiments, we are interested in determining the value of k
needed to predict the correct winner with large elections and with a high value of φ.
We take k = {1, ...,m}, n = 2000, φ = {0.9, 1} and m = 20. (Here we consider the



3.3 Probability of Selecting the True Winner 63

same setting used by Filmus and Oren [37] in their experiments when φ = 1.) Note
that when φ 6 0.8, our results show that k = 1 always suffices for 100% accuracy for
all truncated rules. Figure 3.4 shows depicted results where 1000 random preference
profiles are generated for each experiment.
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Figure 3.4: Success rate, n = 2000, m = 20: Mallows φ model when φ ∈ {0.9, 1} and
varying k.

Results suggest that in large elections and unless φ is very high (φ = 0.9), top-k rules
succeed to identify the true winner when k = 8 (resp. k = 14) for Harmonic (resp.
the remaining rules) out of m = 20. For φ = 1, all voters’ preferences are needed to
determine the winner except for Harmonic that requires only k = 15 voters’ preferences
over 20 available. We can also observe the behavior of different truncated rules when
φ = 0.9: the best accuracy is obtained again by Harmonic and the accuracy of all
other rules are very close, which we found surprising. When φ = 1, the latter behavior
changes: Harmonic still has the best results, followed by Bordaav and STV, then the
remaining rules. The good performance of Harmonic in all cases can be explained by
the fact that the closer the scoring vector to plurality, the better the prediction.

In the next experiments, in the aim to determine the value of k (as a function ofm) for
which the k-truncated rules maximizes the probability of coinciding with the standard
ones, we vary the number of candidates m ∈ {7, 10, 15, 20} and φ ∈ {0.9, 1} when
n = 1000. Results are depicted in Figure 3.5 where 1000 random preference profiles
are generated for each experiment. We also comment on results when n = 2000.
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Figure 3.5: Success rate, m ∈ {7, 10, 15, 20}, n = 1000: Mallows φ model when φ ∈
{0.9, 1} and varying k.
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The results for Bordaav are:

• for φ = 0.7, k = 1 is always sufficient, whatever m.

• for φ = 0.8, k = 2 (resp. k = 1) is always sufficient for n = 1000 (resp. n = 2000),
whatever the value of m.

• for φ = 0.9, we observe that the minimal value of k such that the correct winner is
always correctly predicted is around 4

5m (for n = 1000) and 7
10m (for n = 2000).

• for φ = 1, the minimal value of k is m− 1: we always find a generated profile for
which we get an incorrect result if the profile is not complete.

The results for Copeland, Maximin, RP and STV are similar to those for Borda. For
Harmonic, we observe that k = 1 is always sufficient for φ 6 0.8 and n = 2000, and
that for φ = 0.9 (resp. φ = 1), the value of k needed is around 2

5m (resp. 3
4m).

In order to see how our approximations behave with a small number of voters and a
high dispersion parameter, we take k = {1, ...,m− 1}, n = 15, m = 7, and φ ∈ {0.9, 1}.
The results are on Figure 3.6.
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Figure 3.6: Success rate, m = 7, n = 15: Mallows φ model when φ ∈ {0.9, 1} and
k = {1, ..., 6}.

The best performance is obtained by Harmonic: even with few voters, winner predic-
tion is almost perfect when k = 4 over 7 candidates. With a small number of voters,
STV outperforms Borda and pairwise rules where the success rate reaches 98% when
k = 5. The worst performance is obtained with Copeland, while the other rules per-
form more or less equally well. These results are consistent with the results obtained
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by Skowron et al. [67] for multiwinner rules: elections with few voters and high dis-
persion appear to be the worst-case scenario for predicting the correct winner using
top-truncated ballots.

3.3.2 Experiments Using Mixture of Mallows model

Now, we consider Mixture of Mallows (cf. Section 1.4) with p Mallows models when
p = 1, p = 2 and p = 3 (Figure 3.7 (a), (b) and (c), respectively) and we measure
the accuracy of the approximate rules. For each experiment we draw 1000 random
preference profiles. We take m = 7, n = 500 and we vary p ∈ {1, 2, 3} and k ∈
{1, . . . , 7}.
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Figure 3.7: Success rate, m = 7, n = 500: Mixture of p Mallows models with p =
{1, 2, 3}.

From the results, we observe that inducing more correlation between voters decreases
the prediction of the correct winner for all rules. Indeed, increasing the number of
models tend towards the impartial culture (all orders are increasingly equally likely),
while a Mallows model with p = 1 will have a more tightly correlated set of votes,
tending towards a Mallows model with a low φ. When p = 1, Harmonic rule gives the
best performance, followed by Borda. With a mixture of two and three mallows models,
the latter behavior changes where Harmonic still has the best prediction, followed by
pairwise rules, then Borda. For p = 2 (resp. p = 3), top-3 (resp. top-4) ballots are
sufficient to output the correct winner under Harmonic. For the remaining rules, the
winner is predicted with 99% accuracy using top-5 ballots when p = {2, 3}.
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3.3.3 Experiments Using Real Data Sets

We now consider real data set from Preflib [58]: 2002 election for Dublin North con-
stituency with 12 candidates and 3662 voters. Dublin data contains some incomplete
ballots. Since we need full ballots to run our experiments, we excluded all partial bal-
lots.2 We are interested in predicting the result for small and large elections. To do so,
we consider data with samples of n∗ voters among n (n∗ < n), starting by n∗ = 10 and
increment n∗ in steps of 10. In each experiment, 1000 random profiles are constructed
with n∗ voters; then we consider the top-k ballots obtained from these profiles, with
k = {1, 2, 3}, and we compute the frequency with which we select the true winner.
Figure 3.8 shows results for Dublin data with small elections (n∗ = {10, ..., 100}).
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Figure 3.8: Success rate, Dublin North: varying k ∈ {1, 2, 3} and n∗ = {10, . . . , 100}.

Our results suggest that predicting the correct winner for small elections fails rather
often when k is too small (k 6 1

4m). We also see that performance increases with the
number of voters. Consistently with the results of Figure 3.6, with a small number of
voters, Harmonic gives the best performance followed by STV then the remaining rules
e.g. For Harmonic (resp. STV), 92% (resp. 82%) accuracy is reached with k = 3 over
12 candidates and n∗ = 50 against around 75% for the remaining rules.

The next experiments uses again Dublin data, but now we consider larger elections.
We sample n∗ voters, for n∗ ∈ {100, . . . , 2000} with samples of n∗ voters among n

(n∗ < n), starting by n∗ = 100 and increment n∗ in steps of 50. Similarly to the above
experiments, 1000 random profiles are constructed with n∗ voters; then we consider
the top-k ballots obtained from the sampled profiles, with k ∈ {1, 2, 3}. Results are
reported on Figure 3.9. Arrows indicate the number of voters from which the prediction
is perfect.

2There are 43,942 ballots; 3662 are complete.
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For large elections, performance increases with n∗ and k. For k = 1, the different ap-
proximations exhibit almost the same behavior except Harmonic that performs better
especially with few voters. Obviously, increasing the value of k leads to a decrease in
the number of voters needed for correct winner selection.
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Figure 3.9: Success rate, Dublin North: varying k ∈ {1, 2, 3} and n∗ = {100, . . . , 2000}.

Indeed, eliciting only k = 1
4m candidates over 12 for each voter is sufficient to predict

the correct winner when n∗ > 570 (resp. n∗ > 800) for Borda and Harmonic (for the
remaining rules). In general, the different approximations needs a sufficient number of
voters to converge to the correct prediction. Scoring rules tend to require less voters.

3.4 Measuring the Approximation Ratio

In the previous section, we measured empirically the quality of the approximation by
the frequency with which it outputs the true winner of the original rule. Now, we take
a different path where we propose to evaluate the quality of the approximations by
computing the score ratio between the score of the true winner and of the winner of
the approximate rule. In Section 3.4.1 we analyze theoretically the score distortion in
the worst case. We complete our study by an empirical analysis of the average-case
study and a study from real data sets in Section 3.4.2 and Section 3.4.3, respectively.

3.4.1 Worst Case Study

In order to measure the quality of approximate voting rules whose definition is based
on score maximization, a classical method consists in computing the worst-case ap-
proximation ratio between the scores (for the original rule) of the ’true’ winner and of
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the winner of the approximate rule. Using worst-case score ratios is classical: they are
defined for measuring the quality of approximate voting rules [18, 66], for defining the
price of anarchy of a voting rule [14] or for measuring the distortion of a voting rule
[12].

Worst-case score ratios particularly make sense if the score of a candidate is meaning-
ful beyond its use for determining the winner. This is definitely the case for Borda, as
the Borda count is often seen as a measure of social welfare (see [28]). This worst-case
score ratio is called the price of top-k truncation. Note that as STV and RP are not
based on score maximization (for a discussion, see [23]) they will not be considered in
our study.

Definition 3.5. Let f be a voting rule defined by the maximization of a score S, and
fk a top-k approximation of f . The price of top-k-truncation for f , fk, m, and k, is
defined as

R(f, fk,m, k) = max
P∈Pm

S(f(P ))
S(fk(Pk))

(3.1)

Example 3.6. Let P be a complete profile of 9 voters having preferences over three
candidates A = {a, b, c, d} as follows:

4 votes a � c � b � d

3 votes b � a � d � c

2 votes b � a � d � c

When considering the complete profile, the score of different candidates is: S(a)=22,
S(b)=19 and S(c)=8 and S(d)=5. The Borda winner is candidate a.

For k = 1, under Borda0
1 candidate b is the winner. Then,

R(Borda,Borda0
1, 4, 1) = 22

19 .

For k = 2, under Borda0
2 candidate a is the winner. Then,

R(Borda,Borda0
2, 4, 2) = 22

22=1.

We devote Subsection 3.4.1.1 to study the price of top-k-truncation for positional
scoring rules. Subsections 3.4.1.2 and 3.4.1.3 give the price of top-k-truncation for
Copeland and Maximin, respectively.
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3.4.1.1 Positional Scoring Rules

Let f s be a positional scoring rule defined with scoring vector s. Assume the tie-
breaking priority favors x1. Let f s̄k be a top-k approximation of f s, associated with
vector s̄ = (s1, . . . , sk, s

∗), with the same tie-breaking priority. Let s′ = (s1−s∗, . . . , sk−
s∗, 0) = (s′1, . . . , s′k, 0), i.e. s′i = si − s∗ for i = 1, . . . , k. Obviously, f s̄k = f s

′
k . For

instance, if f s̄ is the average-score approximation of the Borda rule, then s̄ = (m −
1, . . . ,m− k, m−k−1

2 ) and s′ = (m− 1− m−k−1
2 , . . . ,m− k − m−k−1

2 , 0).

Let S(x, P ) be the score of x for P under f s and S ′k(x, Pk) be the score of x for Pk
under f s′k . From now on when we write scores we omit P and Pk, i.e. we write S(x)
instead of S(x, P ), S ′k(x) instead of S ′k(x, Pk) etc. In the rest of Subsection 3.4.1 we
assume k > 2.

Let x1 = f s
′
k (Pk) and x2 = f s(P ).

Upper bound: We start by computing an upper bound of the worst-case score ratio.

Lemma 3.1.

R(f s, f s′k ,m, k) 6 1− sk+1

s′1
+
(

1 + s∗

s′1

)
msk+1

s′1 + . . .+ s′k

Proof. The total number of points given to candidates under f s′k is n(s′1 + . . . + s′k),
therefore S ′k(x1) > n

m
(s′1 + . . .+ s′k).

Let us write S(x2) = S1→k(x2) + Sk+1→m(x2), where S1→k(x2) (resp. Sk+1→m(x2)) is
the number of points that x2 gets from the top-k (resp. bottom m−k) positions of the
ballots in P . Let γ be the number of ballots in which x2 is not in the top-k positions.
Then Sk+1→m(x2) 6 γsk+1.

As x2 appears in at least S′k(x2)
s′1

top-k ballots, we have γ 6 n − S′k(x2)
s′1

. Moreover we
have S(x1) > S1→k(x1) = S ′k(x1) + ns∗ > S ′k(x2) + ns∗ = S1→k(x2). Now,

S(x2) 6 S1→k(x2) +
(
n− S′k(x2)

s′1

)
sk+1

6 S1→k(x2) +
(
n− Sk(x2)−ns∗

s′1

)
sk+1

6 (1− sk+1
s′1

)S1→k(x2) + nsk+1 + ns∗sk+1
s′1

6 (1− sk+1
s′1

)S(x1) + nsk+1 + ns∗sk+1
s′1

S(x2)
S(x1) 6 1− sk+1

s′1
+ nsk+1(1 + s∗

s′1
) m
n(s′1+...+s′

k
)

6 1− sk+1
s′1

+ sk+1(1 + s∗

s′1
) m
s′1+...+s′

k
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Lower bound: We now focus on the lower bound. We build the following pathological
complete profile P such that:

• the winner for Pk (resp. P ) is x1 (resp. x2).

• in Pk, all candidates get the same number of points (x1 wins thanks to tie-
breaking), and x1 and x2 get all their points from top-1 positions.

• in P , the score of x1 is minimized by ranking it last everywhere where it was not
in the top-k positions, and the score of x2 is maximized by ranking it in position
k + 1 everywhere where it was not in the top-k positions.

• Pk is symmetric in {x3, . . . , xm}.

Formally, Pk is defined as follows:

1) for each ranked list L (resp. L′) of k − 1 (resp. k) candidates in {x3, . . . , xm}: α
votes x1L and α votes x2L (resp. β votes L′). α and β will be fixed later.

2) α and β are chosen in such a way that all candidates get the same score S ′k(.).

3) the tie-breaking priority relation favors x1.

Now, P is obtained by completing Pk as follows:

1) each top-k vote x1L is completed into x1Lx2−. “−” means the remaining candi-
dates are in an arbitrary order.

2) each top-k vote x2L is completed into x2L− x1.

3) each top-k vote L′ is completed into L′x2 − x1.

Example 3.7. For m = 5 and k = 3, we obtain the profile presented in Table 3.2.

Lemma 3.2.
S ′k(x1) = S ′k(x2) = α(m− 2)s′1M

and for i > 3, S ′k(xi) = 2α(s′2 + . . .+ s′k)M + β(m− k − 1)(s′1 + . . .+ s′k)M

where M = (m−3)!
(m−k−1)!
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Table 3.2: Profile P when m = 5 and k = 3

P3 P

α votes: x1x3x4

α votes: x1x3x5

α votes: x1x4x3

α votes: x1x4x5

α votes: x1x5x3

α votes: x1x5x4

α votes: x2x3x4

α votes: x2x3x5

α votes: x2x4x3

α votes: x2x4x5

α votes: x2x5x3

α votes: x2x5x4

β votes: x3x4x5

β votes: x3x5x4

β votes: x4x3x5

β votes: x4x5x3

β votes: x5x3x4

β votes: x5x4x3

α votes: x1x3x4x2x5

α votes: x1x3x5x2x4

α votes: x1x4x3x2x5

α votes: x1x4x5x2x3

α votes: x1x5x3x2x4

α votes: x1x5x4x2x3

α votes: x2x3x4x5x1

α votes: x2x3x5x4x1

α votes: x2x4x3x5x1

α votes: x2x4x5x3x1

α votes: x2x5x3x4x1

α votes: x2x5x4x3x1

β votes: x3x4x5x2x1

β votes: x3x5x4x2x1

β votes: x4x3x5x2x1

β votes: x4x5x3x2x1

β votes: x5x3x4x2x1

β votes: x5x4x3x2x1

Proof. In Pk, x1 and x2 appear in top position in a number of votes equal to α times
the number of different permutations (ordered lists) of (k−1) candidates out of (m−2),
i.e. α (m−2)!

(m−k−1)! times. Thus S ′k(x1) = S ′k(x2) = α (m−2)!
(m−k−1)!s

′
1.

To compute S ′(xi); for each i > 3, xi appears in (2, . . . , k) position in a number of
votes equal to 2α times the number of different permutations (ordered lists) of (k− 2)
candidates out of (m− 3) i.e. 2α (m−3)!

(m−k−1)! .

Also, xi appears in (1, . . . , k) position in a number of votes equal to β times the
number of different permutations (ordered lists) of (k − 1) candidates out of (m − 3)
i.e. β (m−3)!

(m−k−2)! .

Thus,
S ′k(xi) = 2α (m−3)!

(m−k−1)!s
′
2 + · · ·+ 2α (m−3)!

(m−k−1)!s
′
k

+ β (m−3)!
(m−k−2)!s

′
1 + · · ·+ β (m−3)!

(m−k−2)!s
′
k.
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Then,

S ′k(xi) = 2α (m−3)!
(m−k−1)!(s

′
2 + · · ·+ s′k) + β (m−3)!

(m−k−2)!(s
′
1 + · · ·+ s′k).

Lemma 3.3. All candidates have the same score in Pk if and only if

β

α
= (m− 2)s′1 − 2(s′2 + . . .+ s′k)

(m− k − 1)(s′1 + . . .+ s′k)

Proof. Using Lemma 3.2 and in order to ensure that all candidates have the same score
in Pk, we must have:

S ′k(x1) = S ′k(xi)
⇒ α(m− 2)s′1M = 2α(s′2 + . . .+ s′k)M + β(m− k − 1)(s′1 + . . .+ s′k)M
⇒ α((m− 2)s′1 − 2(s′2 + . . .+ s′k)) = β(m− k − 1)(s′1 + . . .+ s′k)

Then we get: α = (m− k − 1)(s′1 + . . .+ s′k) and β = (m− 2)s′1 − 2(s′2 + . . .+ s′k)

This holds if and only if

β

α
= (m− 2)s′1 − 2(s′2 + . . .+ s′k)

(m− k − 1)(s′1 + . . .+ s′k)

Thus, in Pk, thanks to the tie-breaking priority, the winner is x1. Thanks to the
tie-breaking priority, the winner in Pk is x1. Now, in P , the winner is x2 and the scores
of x1 and x2 are given by the following Lemma:

Lemma 3.4.

S(x1) = Qαs1

S(x2) = Qαs1 +Qαsk+1 +Q(m− k − 1)βsk+1

where Q = (m−2)!
(m−k−1)!

Proof. x1 appears at the top of (m−2)!
(m−k−1)!α votes and at the bottom of all others, hence

S(x1) = Qαs1.

x2 appears α (m−2)!
(m−k−1)! times top position, and in position (k + 1) in the remaining

votes, i.e., α (m−2)!
(m−k−1)! + β (m−2)!

(m−k−2)! where:
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• x2 appears in top position in a number of votes equal to α times the number of
different permutations of (k − 1) candidates out of (m− 2) i.e. α (m−2)!

(m−k−1)! with a
score of s1

• x2 appears in position (k + 1) in a number of votes equal to α times the number
of different permutations of (k− 1) candidates out of (m− 2) i.e. α (m−2)!

(m−k−1)! with
a score of sk+1

• x2 appears in position (k + 1) in a number of votes equal to β times the number
of different permutations of k candidates out of (m − 2) i.e. β (m−2)!

(m−k−2)! with a
score of sk+1

Thus
S(x2) = α (m−2)!

(m−k−1)!s1 + (m−2)!
(m−k−1)!sk+1 + β (m−2)!

(m−k−2)!sk+1

S(x2) = α (m−2)!
(m−k−1)!(s1 + sk+1) + β (m−2)!

(m−k−2)!sk+1

Lemma 3.5.
R(f s, f s′k ,m, k) > 1− sk+1

s1
+ sk+1

s1

ms′1
s′1 + . . .+ s′k

Proof. From Lemma 3.4 we get S(x2)
S(x1) > 1 + sk+1

s1
+ (m− k − 1) sk+1

s1

β
α
.

Finally, using the expression of β
α
in Lemma 3.3 we get

S(x2)
S(x1) > 1 + sk+1

s1
+ (m− k − 1) sk+1

s1

(m−2)s′1−2(s′2+...+s′k)
(m−k−1)(s′1+...+s′

k
)

From this we conclude:

R(f s, f s′k ,m, k) > 1 + sk+1
s1

+ sk+1
s1

(m−2)s′1−2(s′2+...+s′k)
s′1+...+s′

k

> 1 + sk+1
s1

+ sk+1
s1

(m−2)s′1+2s′1−2(s′1+...+s′k)
s′1+...+s′

k

> 1 + sk+1
s1

+ sk+1
s1

(
ms′1

s′1+...+s′
k
− 2

)
> 1− sk+1

s1
+ sk+1

s1

ms′1
s′1+...+s′

k

Proposition 3.1.

1− sk+1
s1

+ sk+1
s1

ms′1
s′1+...+s′

k
6 R(f s, f s′k ,m, k) 6 1− sk+1

s′1
+
(
1 + s∗

s′1

)
msk+1

s′1+...+s′
k

Proof. Putting Lemmas 3.1 and 3.5 together.



3.4 Measuring the Approximation Ratio 75

As a corollary, when s∗ = 0 the lower and upper bounds coincide giving a tight
worst-case approximation ratio for this class of approximations.

Corollary 3.1.

When s∗ = 0, R(f s, f s′k ,m, k) = 1− sk+1
s′1

+
(
1 + s∗

s′1

)
msk+1

s′1+...+s′
k

Proof. When s∗ = 0, we have s′1 = s1 then the lower bound is equal to:

1− sk+1

s1
+ msk+1

s′1 + . . .+ s′k

The upper bound is equal to:

1− sk+1
s′1

+
(
1 + s∗

s′1

)
msk+1

s′1+...+s′
k

= 1− sk+1
s′1

+ msk+1
s′1+...+s′

k
where , s∗ = 0

= 1− sk+1
s1

+ msk+1
s′1+...+s′

k
where , s′1 = s1

This is however not guaranteed when s∗ > 0 (the reason being that the pathological
profile used in the proof of Lemma 3.1 may not be the worst). In particular, for different
approximate scoring rules, the lower and lower bounds are as follows:

1) Case of Borda0
k:

• si = m− i, s∗ = 0, s′i = m− i

• (s′1, . . . , s′k) = (m− 1, . . . ,m− k) = km− k(k+1)
2

• sk+1 = m− k − 1

R(Borda,Borda0
k,m, k) = k

m−1 + 2m(m−k−1)
k(2m−k−1)

2) Case of Bordaavk :

• si = m− i, s∗ = m−k−1
2 , s′i = m− i− m−k−1

2

• (s′1, . . . , s′k) = (m+k−1
2 , . . . , m−k+1

2 ) = mk
2

• sk+1 = m− k − 1

1−m−k−1
m−1 + (m−k−1)(m+k−1)

k(m−1) 6 R(Borda,Bordaavk ,m, k) 6 k(3k−m+1)+4(m−k−1)(m−1)
k(m+k−1)

3) Case of Bordamaxk :
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• si = m− i, s∗ = m− k − 1, s′i = m− i− (m− k − 1) = k − i+ 1
• (s′1, . . . , s′k) = (k, . . . , 1) = k(k+1)

2

• sk+1 = m− k − 1

1−m−k−1
m−1 −

2mk(m−k−1)
k(m−1)(k+1) 6 R(Borda,Bordamaxk ,m, k) 6 1−m−k−1

k
+(1+m−k−1

k
)2m(m−k−1)

k(k+1)

4) Case of Hamonic0
k:

• si = 1
i
, s∗ = 0, s′i = 1

i

• (s′1, . . . , s′k) = (1, . . . , 1
k
) = 1 + k−1

2k2

• sk+1 = 1
k+1

R(Harmonic,Harmonic0
k,m, k) = k

k+1 + m
(k+1)(1+ 1

2 ···+
1
k

)

Table 3.3 summarizes the obtained upper and lower bounds for different approximate
voting rules:

fk lower bound upper bound
Borda0

k
k

m−1 + 2m(m−k−1)
k(2m−k−1)

k
m−1 + 2m(m−k−1)

k(2m−k−1)
Bordaavk 1− m−k−1

m−1 + (m−k−1)(m+k−1)
k(m−1)

k(3k−m+1)+4(m−k−1)(m−1)
k(m+k−1)

Bordamaxk 1− m−k−1
m−1 −

2mk(m−k−1)
k(m−1)(k+1) 1− m−k−1

k
+ (1 + m−k−1

k
)2m(m−k−1)

k(k+1)
Harmonic0

k
k
k+1 + m

(k+1)((1+ 1
2 ...+

1
k )

k
k+1 + m

(k+1)((1+ 1
2 ...+

1
k )

Table 3.3: Summary of upper and lower bounds of the price of top-k truncation for
Borda0

k, Bordaavk , Bordamaxk and Harmonic0
k.

Note that for k′-approval with k′ > k and s∗ = 0, the (exact) worst-case ratio m
k
does

not depend on k′.

As a corollary, we get the following order of magnitudes when m grows:

Corollary 3.2.

R(Borda,Borda0
k,m, k) = Θ

(
m
k

)
, R(Borda,Bordaavk ,m, k) = Θ

(
m
k

)
R(Borda,Bordamaxk ,m, k) = Θ

(
m
k

)
, R(Harmonic,Harmonic0

k,m, k) = Θ
(

m
k log k

)
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3.4.1.2 Copeland

For the Copeland rule, the ratio makes less sense, because the Copeland score is less
meaningful as a measure of social welfare. Moreover, there are several ways of defining
the Copeland score (assign 0 point for every lost contest, 1 point for every won contest
and α points (with possibly α 6= 1

2) for every draw), all leading to the same rule.
However, this has no impact on the negative result below, as long as a Condorcet
loser3 has score 0. Still, for the sake of completeness we give the following result:

Proposition 3.2. R(Copeland, Copelandk,m, k) =∞.

Proof. Let P be the following profile:

• Pk contains two votes x1x2 . . . xk, and one vote L for each ordered list of k can-
didates among m.

• P is obtained by completing Pk by adding x1 (resp. x2) in last position (resp. in
position k + 1) when it is not in the top-k positions.

In Pk, the winner for Copelandk is x1. In P , the Copeland winner is x2. Now,
with respect to P , the Copeland score of x1 (resp. x2) is 0 (resp. m − 1), hence the
result.

3.4.1.3 Maximin

Let Maximin be the Maximin rule with tie-breaking priority order x1 B . . . B m, and
Maximink be the k-truncated version of the Maximin rule with the same tie-breaking
priority order. Let SMm(x2, P ) and SMm(x1, Pk) be the Maximin scores of x2 and x1

for P and Pk, respectively, with SMm(x2, P ) = min y 6= x2NP (x2, y) and similarly for
Pk. Let P be a profile, and let x1 = Maximink(Pk) and x2 = Maximin(P ). All
candidates have the same Maximin score in Pk, therefore, by tie-breaking priority,
Maximink(Pk) = x1.

Upper bound

Lemma 3.6. R(Maximin,Maximink,m, k) 6 m− k + 1.
3A Condorcet loser is a candidate defeated by a majority in pairwise contests against any other

alternatives.
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Proof. Because x1 = Maximink(Pk), we must have SMm(x1, Pk) > 1 (otherwise we
would have SMm(x1, Pk) > 0, meaning that x1 does not belong to any top-k ballot, and
in this case we cannot have x1 = Maximink(Pk)). Now, SMm(x2, P ) 6 SMm(x2, Pk) +
(m− k) 6 SMm(x1, Pk) + (m− k), therefore,

SMm(x2,P )
SMm(x1,P ) 6 SMm(x1,Pk)+(m−k)

SMm(x1,Pk)
6 m− k + 1

Lower bound: Now, for the lower bound, we consider the following cyclic profile Cyc:

Cyc

x1 x2 . . . m− 1 m

x2 x3 . . . m x1

x3 x4 . . . x1 x2

. . . . . . . . . . . .
m x1 . . . m− 2 m− 1

Now, let P be obtained from Cyc by the following operations for every vote in Cyc:

• if x1 is not in the top-k positions in the vote, we move it to the last position (and
move all candidates who were below x1 one position upward)

• if x2 is not in the top-k positions in the vote, we move it to the (k+ 1)th position
(and move all candidates who were between position k + 1 and 2’s position one
position downward).

Example 3.8. For m = 5, k = 2, we get the profile P in Table 3.4.

Table 3.4: Cyclic profile when m = 5 and k = 2

P2 P

x1 x2

x2 x3

x3 x4

x4 x5

x5 x1

x1 x2 x3 x4 x5

x2 x3 x4 x5 x1

x3 x4 x2 x5 x1

x4 x5 x2 x3 x1

x5 x1 x2 x3 x4

Lemma 3.7. R(Maximin,Maximink,m, k) > m− k.
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Proof. Maximin(P ) = x2, and the Maximin scores of x1 and x2 in P are:

SMm(x1, P ) = 1 and SMm(x2, P ) = m− k.

Hence SMm(x2,P )
SMm(x1,P ) = m− k.

Proposition 3.3. m− k 6 R(Maximin,Maximink,m, k) 6 m− k + 1.

Proof. Putting Lemmas 3.6 and 3.7 together.

This worst-case ratio is quite bad, except if k is close to m. However, arguably, the
Maximin score makes less sense per se (i.e. as a measure of social welfare) than a
positional score such as the Borda count.

3.4.1.4 Discussion

The obtained worst-case bounds are rather negative: very negative for Copeland and
Maximin, less so for Borda, and even less so for Harmonic. However, the Maximin and
Copeland scores make less sense as a measure of social welfare than positional scores.

For different approximations, the score ratio is very diverse. For positional scoring
rules, the approximation ratio is reasonable, especially if k is not too small; for Maximin
and Copeland, this is much less good, but scores for these two rules are also arguably
less meaningful per se. For instance, if k = m

4 (which means that voters have to report
one fourth of their rankings), the approximation ratios for Harmonic, Borda, Maximin
and Copeland are respectively 4

log( m
4 ) , 4, 3m

4 and∞. Now, we may wonder whether these
worst cases do occur frequently in practice or if they correspond to rare pathological
profiles. The next two subsections show that the latter is the case.

We devote the next two sections to an experimental study, first considering randomly
generated profiles and then real data from the Preflib library. We show that average-
case results are much more positive than in the worst case.

3.4.2 Average Case Evaluation

This section presents the evaluation of the approximation ratio for different truncated
voting rules using data generated from the Mallows model and Mixture of Mallows.
For each experiment, we draw 10000 random profiles.
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Figure 3.10: Approximation ratio when n = 15, m = 7 and φ ∈ {.7, .8, .9, 1}: Mallows
model.
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Figure 3.11: Approximation ratio when n = 15, m = 7 and p = {1, 2, 3}: Mixture of p
Mallows models.

We present simulation results with m = 7 and n = 15. We simulate the elicitation of
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top-k (k ∈ {1 . . . 6}) preferences with different values of φ = {.7, .8, .9, 1} and mixture
of p Mallows models p = {1, 2, 3}. We present results of the approximation ratio
for different truncated voting rules. Figure 3.10 shows obtained results with different
values of φ. Figure 3.11 reports on results with mixture of pMallows when p = {1, 2, 3}.

Results suggest that the value of the approximation ratio decreases when k increases.
In practice, results are much better than in the worst case: best results are obtained
by Harmonic, followed by Borda and finally Maximin.

3.4.3 Real Data Sets

Again we consider 2002 Dublin North data (m = 12, n = 3662) with samples of n∗
voters among n (n∗ < n) where n∗ = {15, 100}. In each experiment 1000 random
profiles are constructed with n∗ voters; then we consider the top-k ballots obtained
from these profiles with k = {1, . . . , 11}. Again, the results are very positive especially
with a large number of voters.
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Figure 3.12: Approximation ratio with Dublin North data set for different truncated
voting rules.

3.5 Conclusion

In this chapter we have considered "k-truncated approximations" of rules (Borda, Har-
monic, Copeland, Maximin, ranked pairs and STV) which take only the top-k can-
didates of each ballot. Then, we have proposed two measures of the quality of the
approximation: the probability of selecting the same winner as the original rule, and
the score ratio.
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For the first measure, we have measured empirically the quality of the k-truncated
rules by the frequency with which they output the true winner. Empirical results
demonstrate the practical viability and advantages of our approximations. Our results
suggest that small values of k work very well in practice: (1) with real data, top-3
ballots over 12 candidates are good predictors of the correct winner with a sufficient
number of voters, (2) with data generated from Mallows φ model and when φ 6 0.8
(resp. φ = 0.9, φ = 1), eliciting k = 1 (k = 7

10 , k = m − 1) is sufficient to output
the true winner when n = 2000 voters. (These results are valid for all rules except
Harmonic which needs only k = 1 (resp. k = 2

5 , k = 3
4) when φ 6 0.8 (resp. φ = 0.9,

φ = 1).) (3) with data generated from Mixture of Mallows, best prediction is obtained
with Harmonic where top-3 (resp. top-4) out of 7 are sufficient to output the correct
winner under Harmonic when p = 2 (resp. p = 3).

For the second measure, we have studied the theoretical bounds of these approxi-
mations, for rules whose definition is based on score maximization (Borda, Harmonic,
Copeland and Max imin), by identifying the order of the worst-case ratio. Also, we have
tested the ability of these truncated rules to predict the standard voting rules based
on both randomly generated profiles and real data. While the theoretical bounds are,
at best, moderately encouraging, our experiments show that in practice the approxi-
mation ratio is much better than in the worst case: our results on the evaluation of
the accuracy on random Mallows model as well as real data suggest that a very small
value of k work very well in practice which largely contrast the theoretical bounds.
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In this chapter, we focus on Single Transferable Vote (STV) (cf. Chapter 1). We start
by studying empirically to which (quantitative) extent clone-proofness, which is a key
property of STV, is preserved when replacing complete ballots by truncated ballots. Also,
we test the resistance of RPk to cloning since, among the ordinal voting rules, apart
from STV; RP also satisfies clone-proofness. Then, we study empirically the proximity
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to plurality with runoff of the rules STVk for varying k. In the second part, we study the
computational complexity of the possible winner (PW) problem for top-k ballots under
STV where we show that for k = 1, it can be solved in polynomial time, but is NP-
complete when k > 2. While the problem in difficult in the worst case, we show that in
practice there is a simple algorithm that is able to label almost all candidates as possible
winners or necessary losers. In the third part, we study a possible way to minimize the
amount of communication required to use single-winner STV. We consider interactive
communication protocols for STV. Building on a protocol proposed by Conitzer and
Sandholm (2005), we show how we can reduce the amount of communication required
in practice. We then study empirically the average communication complexity of these
protocols, based on randomly generated profiles, and on real-world election data.

4.1 Introduction

We focus on a specific, but particularly important, single-winner voting rule: single
transferable vote (STV) which is of particular interest for voting. There are good
reasons for that:

• First, STV is appealing, because of its (apparent) technical simplicity which
makes it easy to understand, especially because its several-round definition is
reminiscent of that of plurality with runoff (note that the two rules coincide for
three alternatives).

• Second, STV is NP-hard to manipulate, even for one voter [8], although this
worst-case difficulty does not really carry on to the average case [71, 50].

• Third, STV enjoys a very important normative property: clone-proofness intro-
duced by Tideman [68] which requires a voting rule to be robust to the introduc-
tion of similar candidates.1 Freeman et al. [38] gave an axiomatic characterization
of STV as a social welfare function. They show that STV is the only rule in a
family of iterative elimination rules that satisfies clone-proofness. On the other
hand, STV fails to satisfy a number of other important properties, such as mono-
tonicity, participation, or Condorcet-consistency2, but in many contexts, being

1Most voting rules with ordinal input fail to be clone-proof. Apart from STV, other noticeable
exceptions are ranked pairs and Schulze. Among rules where the input does not consist of rankings
over candidates, we find other clone-proof rules, especially approval voting and range voting.

2Marquis de Condorcet introduced the Condorcet winner as a candidate who beats any other can-
didate by a majority of votes. Then, a voting rule is Condorcet-consistent if it outputs the Condorcet
winner whenever there is one.
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sensitive to cloning balances the failure of these other properties. To give a sim-
ple example: at the 2002 French presidential, it has been argued that sensitivity
to cloning was the cause of the socialist candidate Lionel Jospin not to go to
the second round (which he would probably have won). Sensitivity to cloning
is of primary importance not only for political elections, but also for low-stake
collective decision making [65, 38].

Also, out of all the common voting rules of the zoo, STV is among the few ones that
is used in political elections, both for single-winner voting and multi-winner voting.
Indeed, the world’s largest elections that allow voters to rank candidates (and not just
select the top choice) are probably the elections for the Australian House of Representa-
tives. Each of 150 districts sends a representative, who is chosen by single transferable
vote. Voters are asked to rank/order the candidates in their district. (Partial rankings
are not allowed.) While it would be easy to compute the winner from electronic ballots,
counting the paper ballots is a major undertaking; in the 2016 elections, it took more
than a week. Since this makes for bad TV, the "two-party-preferred" heuristic is used
to quickly estimate the winner: officials guess which two candidates are most likely to
win, and the majority margin between these is counted and reported.

STVk (cf. Chapter 3) presents a better way to handle STV elections, that can find
the election winner quickly enough for TV, and that do not require voters to give full
rankings. In many legislatures, such as for the Irish presidential elections, voters are
allowed to only submit a partial order by ranking a subset of the candidates, and leave
the rest unranked; If all ranked candidates are eliminated by STV, the vote is then
’exhausted’ and ignored during further counting. This variant of STV with partial
rankings corresponds to STVk with a fixed k. The freedom to give partial rankings
is popular with voters. In the 2002 elections in Dublin, for which full ballot data is
available, most voters chose to rank between 3 and 5 of the 12 candidates, with only
8% of voters submitting a full ranking (see Figure 4.1).

Although STV is clone proof, unfortunately this does not carry on to STVk for
k 6 m−2: For k = 1, STV1 coincides with plurality which is highly sensitive to cloning
while STVm−1 (=STV) is clone proof. What happens in between? The goal here is to
check to which (quantitative) extent clone-proofness, which is a key property of STV ,
is preserved when replacing complete ballots by truncated ballots. Where there are few
other known clone-proof rules; a noticeable exception is ranked pairs since among the
ordinal rules seen in Chapter 1, ranked pairs also satisfies clone-proofness. Therefore,
it is an interesting question for which one of STV and RP clone-proofness resists more
to truncation. We answer this question empirically and we show that RPk and STVk
resist to cloning almost similarly.
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Figure 4.1: In the Dublin election, most of the 43,942 voters rank only 3 to 5 candidates
out of 12.

Also, we study empirically the connection of STVk to the plurality with runoff rule.
Indeed, plurality and STV are at the two extremities of the families of rules STVk.
An intriguing question is the proximity of plurality with runoff to rules of this family.
Plurality with runoff is intuitively related to plurality (since its selection of finalists is
based on plurality scores) and to STV (since it proceeds by elimination of candidates
based on plurality scores, and both rules coincide for m = 3). It is thus natural to
wonder to study the proximity to plurality with runoff of the rules STVk for varying k.
We answer this question empirically and we show that STV is closer to plurality with
runoff than plurality.

As specified, STVk ignores exhausted votes, which implicitly assumes that we act as
if the voters are indifferent between all unranked candidates. Given these top-k ballots,
we would want to compute all possible winners (cf. Chapter 2) of STV. A problem
with this proposal is that it is not clear how to efficiently decide which candidates are
possible winners. It is known that determining PW for STV with truncated votes is
NP-complete in the general case; however, with "uniform truncated ballots" (fixed k)
the complexity of the PW problem has not been studied, except of course for k = m−1
(since STVm−1 = STV ). In this chapter we study the computational complexity of
the possible winner problem for top-k ballots. Indeed, we show that the problem is
NP-complete, even for top-2 ballots. When given top-1 ballots (that is, we only know
the plurality scores of the candidates), we give a simple characterization of the set of
possible winners, which also yields a polynomial-time algorithm. While the problem
is difficult for k > 2, we show that there is a simple algorithm that is able to label
almost all candidates as possible winners or necessary losers. Indeed, we propose an
approximation of the problem: given k-truncated ballots and a candidate c, we propose
an algorithm, namely PWtop-k, that returns three possible results: (1) YES for which
case c is a PW, (2) NO for which case c is not a PW and (3) MAYBE for which case
we don’t know if c is a PW or not. Results show that PWtop-k allows to label almost
all candidates as YES or NO and to reduce the set of candidates that we cannot decide
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on (MAYBE).

Suppose we are not satisfied to merely approximate the true STV winner. Another
way to lower the workload for voters by allowing interactive communication protocols
(cf. Chapter 2), that can ask voters for more information in an adaptive fashion. In
2005, Conitzer and Sandholm [25] studied such protocols for several common voting
rules that take rankings as input. They found that, asymptotically and in the worst
case, for many popular rules (such as Borda, Copeland, and ranked pairs) we cannot
do better than to ask for the entire ranking outright. This can be annoying to voters
(as it is to many Australians), and costly. In contrast, Conitzer and Sandholm [25]
found a natural communication protocol for STV where the average voter only needs
to name a logarithmic number of candidates. The Conitzer–Sandholm (CS) protocol
begins by asking each voter for their top candidate. Based on this information, the
candidate with the lowest plurality score is eliminated. The protocol then asks the
supporters of this candidate for their next-most-preferred choice. The key insight is
that only a small minority of voters can be supporters of the eliminated candidate (by
choice of that candidate); indeed at most n/m supporters are possible, where n and
m are the total number of voters and of remaining candidates, respectively. Repeating
the elimination process, we see that in total we ask at most n

m
+ n

m−1 +· · ·+ n
2 ≈ n·logm

many questions during the elimination phase.3

Can this protocol be improved? We do not offer an alternative with a better worst-
case guarantee, but we propose a protocol that needs less communication in practice,
and that never requires more communication than the CS protocol. Our protocol first
asks voters for their initial top choices. Then, we identify a set of candidates that can
safely be eliminated simultaneously. This avoids querying the same voter many times
in a row, if that voter likes many niche candidates. This basic idea (slightly adapted
to handle tie-breaking issues) allows for lower communication cost, on both random
profiles and on real election data. On data from Australian elections, we find that
many candidates are necessary losers, and can therefore immediately be eliminated,
giving a more rigorous alternative to the current two-party-preferred heuristic.

The remainder of this chapter is structured as follows: Section 4.2 addresses the
empirical evaluation of the resistance of STVk and RPk to cloning. Section 4.3 studies
empirically the connection of STVk to plurality-with-runoff rule. Section 4.4 inves-

3The existence of this protocol explains why counting STV elections on paper is feasible in the first
place. We can view a paper ballot as an agent who is costly to ’communicate’ with. First sort the
papers into m physcial stacks according to top-ranked candidate. The Conitzer–Sandholm analysis
shows that, to find the election winner, we only need to touch each ballot O(logm) times on average
while redistributing.
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tigates the possible winner problem for STV given k-truncated ballots. Section 4.5
focuses on communication protocols.

We mention that part of this chapter includes results from our papers:

• "Manel Ayadi, Nahla Ben Amor, Jérôme Lang and Dominik Peters, title: Single
Transferable Vote: Incomplete Knowledge and Communication Issues. In Pro-
ceedings of AAMAS 2019 " [6].

• "Manel Ayadi, Nahla Ben Amor and Jérôme Lang, title: The Communication
Burden of Single Transferable Vote, in Practice. In Proceedings of SAGT 2018,
short paper" [4].

• "Manel Ayadi, Nahla Ben Amor and Jérôme Lang, title: The Communication
Burden of Single Transferable Vote, in Practice. In Proceedings of COMSOC
2018, long paper" [5].

4.2 Resistance to Cloning of STVk and RPk

Tideman [68] introduced the notion of independence of clones, which requires a voting
rule to be robust to the introduction of similar candidates. Notably, while most voting
rules fail Tideman’s condition, the parallel-universe version of STV and RP satisfy it,
and the resolute version essentially satisfies it as well (see below). In this section, we
study empirically to what extent STVk and RPk stay clone-proof.

Let us make the notion of clone-proofness formal. Given a candidate x, introduce
a new set of candidates X ′ called clones of x. Let A′ = (A \ {x}) ∪ X ′. A ranking
�′ over A′ is compatible with a ranking � over A if all elements of X ′ are ranked
contiguously in �′. A profile P ′ = (�′1, . . . ,�′n) over A′ is compatible with a profile
P = (�1, . . . ,�n) over A if for every i, �′i is compatible with �i. A (possibly irresolute)
voting rule is clone-proof if, given a profile P and a profile P ′ compatible with P , x is
a winner in P if and only if one of the clones of x is a winner in P , and for any y 6= x,
y is a winner in P if and only if it is a winner in P ′.

Let f be either STV or RP . Then the resolute version of f with immediate tie-
breaking is clone-proof, provided that tie-breaking is consistent with cloning: Let P =
(�1, . . . ,�n) be a profile over A, and P ′ = (�′1, . . . ,�′n) a profile over A′ = A\{x}∪X ′
compatible with P . Take a tie-breaking relation B over A, and suppose B′ over A′ is
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compatible with B. In this case, if fB(P ) = x then fB′(P ′) ∈ X ′, and if fB(P ) = y 6= x

then fB′(P ′) = y.

In order to evaluate the resistance of fk to cloning, we propose an empirical approach
by cloning a candidate and measuring experimentally the probability that cloning sig-
nificantly changes the outcome. We clone the winner and a candidate chosen at random
from A. For doing so we repeatedly do the following:

1) generate a complete profile P (with n voters and m candidates), and then

2) for each k ∈ {1, . . .m}:

• we construct a profile P ′ obtained from P by cloning the winner (note that
there are m+ 1 candidates in P ′), and
• we compare fk(P ) to fk(P ′).

These steps are iterated a sufficient number of times to obtain meaningful results.

Example 4.1. Let P be a profile with n = 3 and A = {a, b, c}:

4 a � c � b

3 b � a � c

2 c � b � a

Let B: a � b � c. The STV2 (= STV ) winner is b and the RP2 winner is a. Let us
clone b to {b, b′}. A compatible profile P ′ is {4 : a � c � b′ � b, 3 : b � b′ � a � c, 2 :
c � b′ � b � a}. For k = 2, the k-truncated profile is {4 : a � c, 3 : b � b′, 2 : c � b′}
B′: a � b � b′ � c. Then, candidate a is the winner for both STV2 and RP2.

4.2.1 Experiments Using Mallows φ Model

For each experiment we draw 1000 profiles. We present simulation results for small
and large elections when m = 5 as we vary φ and n. We simulate the elicitation of
top-k preferences where k ∈ {1, . . . , 5} for n ∈ {30, 500} with φ ∈ {0.7, 0.8, 0.9, 1}.
We say that cloning sensitivity does not occur if the winner after cloning is the same
as before, or a clone of the winner before cloning. We give the probability that clone
sensitivity does not occur under STVk and RPk, when we clone: (i) one candidate
chosen randomly (Figure 4.2) and (ii) the winner under STVk or RPk (Figure 4.3).
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Resistance to cloning increases rapidly with k and decreases with φ. Also, it signifi-
cantly increases with the number of voters. When we clone one candidate at random
(Figure 4.2), experiments suggest that with small and large elections, the frequency of
clone resistance is about 84% when k = 1. As we increase k, performance increases.
Best results are obtained with a large number of voters and a small φ (φ 6 0.8). With
a large φ (φ > 0.8), STVk and RPk fail clone-proofness even when k = 4. From the re-
sults, STVk and RPk resist to cloning almost similarly. Indeed RPk barely outperforms
STVk when φ 6 0.8 with an average performance rate of 0.03%.
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Figure 4.2: Resistance to cloning of STVk and RPk, a candidate at random cloned:
Mallows φ model, m = 5, n ∈ {30, 500} and φ ∈ {0.7, 0.8, 0.9, 1}.

When φ = 1, the latter behavior changes: STVk barely outperforms RPk with an
average performance rate of 0.04%. For φ = 0.7 (resp. φ = 0.8), k = 2 (resp. k = 4)
and n = 500, RP2 (resp. RP4) is clone-proof while STV2 (resp. STV4) resists to cloning
with a probability of 97.5% (resp. 98%). For φ = 1, STV4 resists to cloning with a
probability of 90% against 85% for RP4.

Unsurprisingly, cloning the STVk or RPk winners (Figure 4.3) lead to a decrease in
the probability of selecting the correct result especially when k = 1 and with a large
number of voters since it is plurality. For instance, for STV1 the accuracy is around
30% (resp. 0.35%) when n = 30 (resp. n = 500) and φ = 0.8. As we increase k,
cloning sensitivity decreases. Consistently with the above experiments, as we clone the
winner, RPk barely outperforms STVk when φ 6 0.9 with a negligible performance rate
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Figure 4.3: Resistance to cloning of STVk and RPk, winner cloned: Mallows φ model,
m = 5, n ∈ {30, 500} and φ ∈ {0.7, 0.8, 0.9, 1}.

of 0.02%. The latter behavior changes when φ = 1, e.g. For φ = 0.7, RP2 (resp. STV3)
is clone proof. For φ = 1 and n = 500, STV3 resists to cloning with a probability of
50% against 44% to RP3.

4.2.2 Experiments Using Real Data Sets

We test the resistance of STVk andRPk to cloning using Dublin data (12 candidates and
3662 voters) with samples of n∗ voters among n (n∗ < n) where n∗ = {30, 100, 1000}
then we clone: (i) one candidate at random (Figure 4.4(a) and (c)) and the STVk
and RPk winner (Figure 4.4(b) and (d)). In each experiment 1000 random profiles are
constructed with n∗ voters.

With real data sets, STVk and RPk behave similarly. Consistently with the above
experiments, the two truncated rules are clone-proof for small values of k (k > 3) and
a large number of voters (n = 1000) as we clone a candidate at random. When we
clone the winner, STVk and RPk often fail clone-proofness for small k. As we (barely)
increase k, (k > 4); they converge to the correct selection with a large number of
voters, e.g. STV4 and RP4 are clone-proof when cloning the winner with 1000 voters.

To conclude, resistance to cloning increases rapidly with k and decreases with φ. Also,
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Figure 4.4: Resistance to cloning of STVk and RPk: Dublin data.

it significantly increases with the number of voters. With data from Mallows model,
results show that RPk and STVk resist to cloning almost similarly with a performance
rate of 0.03% for RPk. Best results are obtained with a small φ and a large number
of voters. For real data, the two truncated rules behave similarly where resistance
to cloning increases rapidly with k, even more rapidly than with randomly generated
profiles.

4.3 STVk and Plurality with Runoff

In this section we study the probability that STVk outputs the same winner as plurality
with runoff, depending on k. STV and plurality with runoff belong to the same family
of elimination-based rules. Also, when m = 3, STV coincides with plurality with
runoff. On the other hand, plurality with runoff has much in common with plurality.
Now, our family of STVk-rules has plurality at one end and STV at the other. It is
therefore an interesting question to know where in this spectrum we have an output
that is likely to coincide with the output of plurality with runoff.

We answer this question empirically. For each experiment, we generate 1000 ran-
dom preference profiles according to a Mallows distribution, for m = 7 candidates
as we vary the number of voters n ∈ {100, ..., 500} and the dispersion parameter
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φ ∈ {0.7, 0.8, 0.9, 1}. We simulate the elicitation of top-k (k ∈ {1 . . . 6}) preferences
where for each value of k, we compare the winner of STVk with the winner of plurality
with runoff.

Figure 4.5 shows the probability that the STVk-winner coincides with the winner of
plurality with runoff. In particular, results in Figure 4.5 give the probability that STV
and plurality with runoff give the same winner (for k = m − 1) and the probability
that plurality (=STV1) and plurality with runoff give the same winner (for k = 1).
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Figure 4.5: Probability that STVk coincides with plurality with runoff: m = 7, n =
{100, . . . , 500}, k and φ ∈ {0.9, 0.8}.

For φ = 0.7 (resp. φ = 0.8), we find that STV1 (resp. STV3) and plurality with
runoff always coincide with a large number of voters (i.e. n = 500). Unsurprisingly,
with greater values of dispersion parameter φ > 0.9, the probability decreases, and
good results are obtained only for a large number of voters. Perhaps more surprisingly,
for impartial culture, the closeness between STVk and plurality with runoff initially
decreases from k = 1 to k = 2 or k = 3 (depending on n), but beyond that it increases
with k. We do not observe this phenomenon with smaller values of φ.

Table 4.1 summarizes results of the average probability (for different values of n)
for which: plurality with runoff and plurality (=STV1) coincide, and plurality with
runoff and STV coincide. From the results, STV is closer to plurality with runoff than
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plurality when φ 6 0.8. Indeed, when φ = 0.7 (resp. φ = 0.8) plurality with runoff and
STV coincide with 100% (resp. 99%) accuracy while plurality with runoff and plurality
coincide only in 97% (resp. 90%) of cases when φ = 0.7 (resp. φ = 0.8). As we increase
φ, plurality and plurality with runoff are significantly different: they coincide only in
75% (resp. 61%) of cases when φ = 0.9 (resp. φ = 1). Also, when φ = 1, STV is very
different from plurality with runoff where we obtain the same winner in only 65% of
cases.

Plu. w/ runoff
and Plu. coincide

Plu. w/ runoff
and STV coincide

φ = 0.7 0.97 1
φ = 0.8 0.90 0.99
φ = 0.9 0.75 0.89
φ = 1 0.61 0.65

Table 4.1: Average probability for n ∈ {100, . . . , 500} for which: plurality with
runoff and plurality coincide and plurality with runoff and STV coincide when φ ∈
{0.7, 0.8, 0.9, 1}.

In the following, in the aim to determine the value of k (as a function of m) from
which STVk maximizes the probability of coinciding with plurality with runoff, we vary
the number of candidates m ∈ {8, 10, 15, 20} and φ ∈ {0.7, 0.8, 0.9, 1} when n = 500.
Results are depicted in Figure 4.6 where 1000 random preference profiles are generated
for each experiment.

Experiments suggest that with all values ofm and when φ = 0.7, STVk for 1 6 k 6 m

coincides with plurality with runoff. Thus, the winner under plurality, plurality with
runoff and STV is the same. As we increase φ to 0.8, we find that STVk for k ≈ 2

5m

coincides with plurality with runoff, e.g. For m = 15 (resp. m = 20), the two rules
converge from k = 6 (resp. k = 8). Consistently with the above experiments, when
φ = 0.9 plurality with runoff and STV coincide only in 90% on average for different
values of m. Finally, for φ = 1, the same behavior as in Figure 4.5(d) still occurs.

To conclude, STV is closer to plurality with runoff than plurality especially with a
low value of φ and a large number of voters. Indeed, STVk for k ≈ 2

5m (resp. k = 1)
coincides with plurality with runoff when φ = 0.8 (resp. φ = 0.7). When φ = 0.9, the
two rules coincide in only 90% of cases. For φ = 1, STV is very far from plurality with
runoff, even further from it with STV2 which is somewhat surprising.
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Figure 4.6: Probability that STVk coincides with plurality with runoff when n = 500:
vary m ∈ {8, 10, 15, 20}, k ∈ {1, . . . ,m} and φ ∈ {0.7, 0.8, 0.9}.

4.4 Possible Winners with top-k ballots

In this section, we study the possible winner problem for STV with top-k ballots. It is
known that it is NP-complete to decide whether a given candidate is a possible winner
for STV in a given partial profile. This follows immediately from the NP-completeness
of constructive manipulation for STV [8] which is equivalent to the possible winner
problem with a profile where n − 1 votes are fully specified, but we do not have any
information about the last vote. While this case is known to be hard, the complexity of
the possible winner problem for STV has not been studied for other ‘shapes’ of partial
profiles.

We consider truncated ballots where a top-k profile is a collection of n top-k ballots
given k 6 m. We show that the problem is polynomial-time computable if k = 1, but
that it is NP-complete for each fixed k > 2. While the problem is difficult in the worst
case, we show that in practice there is a simple algorithm that is able to label almost
all candidates as possible winners or necessary losers.
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4.4.1 Possible Winners with top-1 Ballots

The next result gives a closed-form characterization of possible winners for STV. This
condition (without tie-breaking) was also considered (without proof) in [73] as a reduc-
tion technique for computing parallel universe STV co-winners using search algorithms.

Proposition 4.1. Let P be a top-1 profile over A. Let S(xi) be the plurality score of
xi in P , that is, the number of votes in P ranking xi on top. Relabel candidates so
that S(x1) 6 S(x2) 6 · · · 6 S(xm), and such that if S(xi) = S(xi+1) then xi+1 B xi.
Then xi is a possible winner for STV B if there is no j > i such that either S(xj) >∑j−1
s=1 S(xs), or S(xj) = ∑j−1

s=1 S(xs) and j B i.

Proof. Assume there is a j > i such that S(xj) >
∑j−1
s=1 S(xs), or S(xj) = ∑j−1

s=1 S(xs)
and j B i. Then, there is no way for xi to avoid eliminating before xj, because it can
only benefit from the transfers from the votes that initially support xs for s < j.

For the converse, consider any completion Q of P where xi is ranked second in every
vote whose top is not xi. Assume there is a step where xi is eliminated, and let j be
the smallest index such that j 6= i and such that xj has not been eliminated yet at
that stage. The votes supporting xj are only those S(xj) that supported it initially.
Since all candidates xs with s < j and s 6= i have been eliminated, their votes have all
been transferred to xi, and thus xi has exactly

∑j−1
s=1 S(xs) supporting votes. Since xi is

eliminated before xj, either
∑j−1
s=1 S(xs) < S(xj), or

∑j−1
s=1 S(xs) = S(xj) and j B i.

Example 4.2. Let P be such that S(x1) = 1, S(x2) = 2, S(x3) = 4, S(x4) = 6 and
S(x5) = 12. Let us give a few comments: in the best case for x2, the unique vote for
x1 is transferred to it; at the second round, it has 3 votes, but is eliminated right after
that because S(x3) = 4 > 3. In the best case for x3, at the end of the second round, all
votes for x1 and x2 have been transferred to it and it gets 7 votes. Since 7 > S(x4) = 6,
in this case x4 is eliminated next and if all its votes are transferred to x3, then x3 gets
13 votes and wins against x5. In conclusion: x1 and x2 are necessary losers and The
possible winners are x3, x4, x5.

We recall that candidate x is a necessary loser if it is not a possible winner. It
turns out that in real STV elections, we can identify many necessary losers, even if
we only know the plurality scores. Figure 4.7 shows the number of possible winners
in elections for the Australian House of Representatives, for which plurality scores are
publicly available for each of the 150 districts (’divisions’) in each election year. We
can see that in most divisions, there is only 1 possible winner (because they received
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Figure 4.7: In most divisions in recent elections for the Australian House of Represen-
tatives, there were only one or two possible winners, given plurality scores.

a majority of first-place votes), or there are 2 possible winners (usually from the two
major parties). It is very uncommon for there to be 3 or more possible winners.

Using Proposition 4.1, one can find the possible winners for STV given top-1 ballots
in polynomial time. The complementary notion of necessary winner (i.e. a candidate
who wins for all completions of the partial profile), is easily characterized: candidate x
is the necessary winner iff it is top-ranked by a majority of voters (assuming n is odd;
the characterization for even n depends on tie-breaking).

4.4.2 Algorithm for Possible Winners with top-k Ballots

The positive result for top-1 ballots does not extend to larger values of k: the possible
STV-winner problem for top-k ballots is NP-complete, even for k = 2. This result is
due to Dominik Peters and the proof is available in our accepted paper at AAMAS-2019
[6].

Proposition 4.2. The possible STV -winner problem is NP-complete given top-2 trun-
cated ballots.

In the worst case, the problem is difficult but we show that in practice there is a
simple algorithm that is able to label almost all candidates as possible winners or
necessary losers. Given top-k ballots and a candidate c, we propose an algorithm that
returns three possible results: YES (in which case we know that c is a PW), NO (in
which case we know that c is not a PW) and MAYBE (in which case we do not know
if c is a possible winner or not).

Given top-k ballots, we start by removing necessary losers in the top-1 profile following
Proposition 4.1. Then, we apply STVk until all k candidates in some ballot have
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been eliminated. We refer to the obtained partial profile by an incomplete plurality
profile which corresponds to a partial profile where the top candidate of some voters
is unknown. For an incomplete plurality profile, we associate (s∅, S(x1), . . . , S(xm)),
where s∅ is the number of voters for whom we do not know what their top candidate
is, and S(xi) are the number of voters for whom we know that xi is their top candidate
(i.e. the plurality score of xi).

Example 4.3. Let P be a profile with n = 14 and A = {a, b, c, d, e, f} where B: a B
b B c B d B e:

1 a � e 1 �a � �e

2 b � f 2 b � ��f

4 c � e 4 c � �e

7 d � e 7 d � �e

When applying STV2 (on the left profile), candidates e and f are eliminated first,
then candidate a having the fewest number of votes is eliminated next. The obtained
partial profile corresponds to the incomplete plurality profile (the profile on the right)
issued from P such that: s∅ = 1, S(b) = 2, S(c) = 4 and S(d) = 7.

Proposition 4.3 gives an approximation of possible winner for STV given top-k ballots.

Proposition 4.3. Let R be a top-k profile and V the incomplete plurality profile
obtained by applying STVk to R until all k candidates in some ballots have been
eliminated. Given (s∅, S(x1), . . . , S(xm)) associated to V , relabel candidates so that
S(x1) 6 S(x2) 6 · · · 6 S(xm), and such that if S(xi) = S(xi+1) then xi+1 B xi.
We propose two sufficient but not necessary conditions to label the available candidates
where, we say that xi ∈ A is a:

1) necessary loser for STV B if there is j > i such that either S(xj) > s∅ +∑j−1
s=1 S(xs), or S(xj) = s∅ +∑j−1

s=1 S(xs) and j B i.

2) possible winner for STV B if xi is the STV winner when we repeatedly do the
following:

• place xi on top of the empty votes,
• recompute the plurality scores and remove the candidate with the fewest
votes.

if neither (1) nor (2), then we do not know if xi is a possible winner or not.
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Proof.

1) Assume there is a j > i such that S(xj) > s∅ + ∑j−1
s=1 S(xs), or S(xj) = s∅ +∑j−1

s=1 S(xs) and j B i. Then, there is no way for xi to avoid eliminating before
xj, because it can only benefit from the transfers from the votes that initially
support xs for s < j.

2) Placing xi on top of the empty votes corresponds to a possible extension of the
incomplete plurality profile. If xi wins when applying STV on the obtained profile
then, by definition, xi is a possible winner.

3) Since conditions (1) and (2) are sufficient but not necessary, some candidates will
not be labeled as possible winners or necessary losers.

Given top-k ballots, Algorithm PWtop-k outlines the whole process. It allows to answer
the question: Is candidate x ∈ A a possible winner? by returning three possible results:
(1) YES: in which case x is a possible winner, (2) NO: in which case x is a necessary
loser and, (3) MAYBE: in which case we don’t know if x is a possible winner or not.

Algorithm 4.1: PWtop-k

1 Input: R = {�ki , . . . ,�kn}, A
2 Initialize: Y ES ← ∅ , MAY BE ← ∅, L← ∅
3 NL1 ← necessary losers given top-1 ballots using Proposition 4.1
4 repeat
5 d ← candidate ranked first by the fewest voters (breaking ties)
6 Remove d from the set of available candidates
7 L← L ∪ {d}
8 until there is an empty vote
9 NL2, PW,A \ (NL2 ∪ PW )← label candidates in A \ L using Proposition 4.3

10 Y ES ← PW

11 NO ← L ∪NL1 ∪NL2
12 MAY BE ← A \ (Y ES ∪NO)
13 return Y ES,NO,MAY BE

Example 4.4. Let us consider the following top-2 ballots of 6 voters over A ∈ {a, b, c, d, e, f}
where B: a � b � c � d � e � f :

Following Algorithm PWtop-k, given top-1 ballot of each voter the scores of different
candidates are: S(c) = 0, S(b) = 0, S(f) = 1, S(d) = 1, S(a) = 1 and S(e) = 3.
Candidates b, c and f are necessary losers, giving: NL1 = {b, c, f}. Then we apply
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1 vote : e � b 1 vote : d � f

1 vote : a � e 1 vote : f � c

1 vote : e � a 1 vote : e � f

STV2: candidates b and c are removed first then f with the lowest number of votes,
giving: L = {b, c, f}. Now, the vote f � c is empty, the resulting incomplete plurality
profile is: s∅ = 1, S(d) = 1, S(a) = 1 and S(e) = 3.

Following the conditions in Proposition 4.3, there is no more necessary losers to
remove, giving: NL2 = ∅. Now we test whether candidates a, d and e are possible
winners or not by ranking them on top of the empty vote as follows:

• Rank a on top of the empty vote

Round 1: eliminate d Round 2: eliminate e ⇒ a wins
1 vote : e � ��b 1 vote : d � ��f 1 vote : e � ��b 1 vote : ��d � ��f � a

1 vote : a � e 1 vote : ��f � �c � a 1 vote : a � e 1 vote : ��f � �c � a

1 vote : e � a 1 vote : e � ��f 1 vote : e � a 1 vote : e � ��f

• Rank d on top of the empty vote

Round 1: eliminate a Round 2: eliminate d ⇒ e wins
1 vote : e � ��b 1 vote : d � ��f 1 vote : e � ��b 1 vote : d � ��f

1 vote : a � e 1 vote : ��f � �c � d 1 vote : �a � e 1 vote : ��f � �c � d

1 vote : e � a 1 vote : e � ��f 1 vote : e ��a 1 vote : e � ��f

• Rank e on top of the empty vote

Round 1: eliminate d Round 2: eliminate a ⇒ e wins
1 vote : e � ��b 1 vote : d � ��f 1 vote : e � ��b 1 vote : ��d � ��f � e

1 vote : a � e 1 vote : ��f � �c � e 1 vote : a � e 1 vote : ��f � �e � e

1 vote : e � a 1 vote : e � ��f 1 vote : e � a 1 vote : e � ��f

Giving the above completions, we have: Y ES = {a, e} and MAY BE = {d}. To
conclude, given the top-2 ballots and A = {a, b, c, d, e, f} we can say that: (1) b, c and
f are necessary losers, (2) a and e are possible winners, and (3) we don’t know if d is
a PW or not.
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In the following, we present simulation results when m = 7, n = 100 and varying φ.
For each k ∈ {1, . . . , 6} we measure the average number of possible winners (denoted
by YES), necessary losers (denoted by NO) and candidates that we cannot decide on
(denoted by MAYBE). For each experiment, we draw 1000 random profiles. Results
are reported on Figure 4.8. Depicted results suggest that with top-1 ballots, it is always
possible to classify the available candidates to possibles winners and necessary losers.
As we increase k (k > 2), removing necessary losers leads to reduce the set of candidates
that we cannot decide on, thus improve the identification of possible winners in a top-k
profile. Also, from Figure 4.8 we notice that the candidates that we cannot decide on
(MAYBE) are more present in profiles with low value of φ = 0.7 and when k = 2. As
we increase φ, the set of candidates that we cannot decide on decreases. For example,
when φ = 0.7 only one candidate out of 7 is neither possible winner nor necessary loser
given top-2 ballots. For φ = 0.8, MAYBE’s set is present only with a probability of
2.7% and it decreases to 1.6% (resp. 1.08%) when φ = 0.9 (resp. φ = 1).
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Figure 4.8: Identifying possible winners (YES), necessary losers (NO) and candidates
that we cannot decide on (MAYBE), when m = 7, n = 100 and φ ∈ {0.7, 0.8, 0.9, 1}:
Mallows φ model.
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4.5 Communication Protocols for STV

We now take a different path: we consider the determination of the STV winner for
the complete profile, and consider interactive protocols (cf. Chapter 2) where voters
may report their preferences incrementally, when the central authority asks them to do
so. Indeed, we are no longer interested in computing an approximation of STV, but in
computing the real STV winner.

In Section 4.5.1 we start from Conitzer and Sandholm’s protocol [25] and we give
a practical amelioration of it. In Section 4.5.2 we propose an improvement of the
latter protocol by identifying in each step strong necessary losers (necessary losers
whose removal does not change the winner) and removing them. Then, the question
we are interested in is :What is the sufficient number of bits (in average) that must be
communicated by the voters to the voting center so that the winner is determined? We
answer the latter question in Section 4.5.3 where we study the average communication
complexity of these protocols and their practical communication complexity, based on
randomly generated profiles and on real data sets from PrefLib.

4.5.1 Conitzer and Sandholm’s Protocol

Conitzer and Sandholm [25] studied the communication complexity of several voting
rules, by giving specific protocols and by proving lower bounds obtained via fooling
sets. For the case of STV, they showed that a lower bound on the communication
complexity of Ω(n logm), which is the cost of communicating every voter’s top choice.
They were able to match this lower bound up to a log factor using the following protocol
for STV, which we call P1.

Protocol 4.2: P1

1 for each voter i ∈ N do
2 ask i to send the name of her top candidate

3 repeat
4 d ← candidate ranked first by the fewest voters (breaking ties)
5 Remove d from the set of available candidates
6 for each voter i ∈ N do
7 if the top candidate of i was d then ask i to send the name of her next

preferred candidate

8 until there exists a candidate c ranked first by a majority of voters
9 return c
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Example 4.5. Let A = {a, b, c, d} and P = {3 : a � c � d � b, 3 : c � a � b � d, 1 :
d � b � a � c, 1 : b � d � c � a} with tie-breaking priority a B b B c B d. We run P1.
In the first round, d is eliminated. We ask the voter who supports d to name her next
preferred candidate. We get P = {3 : a, 3 : c, 2 : b}. Next, b is eliminated. We ask the
two voters supporting b for their next preferred candidate. We get P = {4 : a, 4 : c}.
By tie-breaking, a wins.

Conitzer and Sandholm [25] show that P1 requires communication of at mostO(n(logm)2)
bits. To see this, note that at a step where k candidates remain, at most n

k
voters rank

the eliminated candidate first. Thus, the number of times we need to ask voters for
their new favorite is at most n

m
+ n

m−1 + . . . + n, which is bounded by n logm. We
can actually say something more precise: the worst case occurs when, in each step, all
candidates are tied for elimination; in this case, when k candidates remain, exactly m

k

voters will send log k bits, and this goes on until k = 1. This gives an exact worst case
cost of n

(
logm+∑m−1

k=1
log k
k+1

)
bits. In the subsequent discussion, we will not focus on

the number of bits transmitted, and instead will count how often voters have to report
their favorite remaining candidate. We refer to this as the number of questions asked.
It is easy to see that, in the worst-case, for fixed n and m, the number of questions
asked by protocol P1 is PWorst = n ·

(
1 +∑m−1

k=1
1

(k+1)

)
.

4.5.2 An Improved Protocol

At each step in the execution of the protocol, the central authority has partial knowl-
edge of the votes. Therefore, it makes sense to identify those candidates that can still
win (the possible winners) and those that cannot (the necessary losers). This is espe-
cially useful when interaction with the voters takes time: assume that the vote is about
a meeting date; the execution of the protocol can take several days (due to some voters
reacting slowly to their emails). If at some point in the execution of the protocol, we
know that for sure the meeting will not be on November 22 nor November 24, this is
useful information for voters, who can plan something else on these two days, and for
the central authority, which does not have to pre-book a room for these days.

We start by noticing that at each step of the protocol P1, the information known
by the protocol is essentially a top-1 profile. Therefore, Proposition 4.1 is applicable
and we can calculate, at each step of the protocol, the remaining possible winners and
necessary losers. Knowing the possible winners (and the necessary losers) at each step
of the protocol is useful information, but it turns out that eliminating a candidate as
soon as it becomes a necessary loser can change the final outcome:
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Example 4.6. Let us consider P = {5 : c � a � d � e � b, 1 : a � e � b � d �
c, 2 : e � b � d � a � c, 2 : b � a � e � c � d}, and let the tie-breaking priority be
a B b B c B d B e. The winner for P is c. The necessary losers given top-1 ballots are
a, d and e. If we eliminate those three candidates, the winner is b.

The source of the paradox lies in the tie between the initial score of c and the cumulative
score of a, b, d, and e. However, we now identify a subset of necessary losers that can
always be eliminated without changing the winner.

Let us rename the candidates so that they are ranked by increasing order of plurality
score, then by tie-breaking priority: for each i, either S(xi) < S(xi+1), or S(xi) =
S(xi+1) and xi+1 has priority over xi. We say that xi is dominant if either S(xi) >∑i−1
j=1 S(xj), or S(xi) = ∑i−1

j=1 S(xj) and xi has priority over xj, where j is the largest
index smaller than i such that xj is a dominant candidate. Note that to check whether
xi is dominant, we need to iterate over all candidates xj, j < i. We say that xj
is a strong necessary loser if there is an index i > j such that xi is dominant. By
Proposition 4.1, a strong necessary loser is a necessary loser, but the converse is not
always true: in Example 4.6, only d and a are strong necessary losers.

Proposition 4.4. The removal of strong necessary losers does not change the winner.

Proof. Assume xi is the largest dominant candidate in the sequence (x1, . . . , xi−1

are thus the strong necessary losers). Then no matter in which order the candi-
dates x1, . . . , xi−1 are eliminated, they will all be eliminated before all candidates in
{xi, ..., xm}. Therefore, after i − 1 elimination steps, the currently eliminated candi-
dates are exactly x1, . . . , xi−1. Eliminating them directly allows to “jump” over i− 1
elimination steps, and the rest of the process continues exactly as if this jump had not
been performed.

Protocol P1 can be improved by checking at each step if there are strong necessary
losers, and if so, eliminate them in addition to the current loser, and then send a
query to all voters whose current top candidate has just been eliminated. A further
improvement is possible by querying one voter at a time: it might be possible to rule out
further candidates without knowing every voters’ current top choice. To do this we need
to generalize the notion of dominant candidate and strong necessary loser to incomplete
plurality profiles. Assume again that candidates are renamed so that they are ranked
by increasing order of plurality score, then by tie-breaking priority. A candidate xi is a
safe necessary loser (SNL) if there is j > i such that S(xj) > s∅+S(x1)+ · · ·+S(xj−1).
Clearly, if xi is a safe necessary loser for an incomplete plurality profile then it is a
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strong necessary loser for every of its completions into a plurality profile, which implies
that eliminating an SNL candidate cannot change the winner. This leads us to define
the following protocol:

Protocol 4.3: P2

1 Query every voters’ top candidate
2 Let (s∅, S(x1), . . . , S(xm)) be the resulting plurality profile, with s∅ = 0
3 repeat
4 for each safe necessary loser xi do
5 Remove xi
6 s∅ ← s∅ + S(xi)

7 Select an empty voter and query their new top alternative
8 Let xj be this new top alternative
9 S(xj)← S(xj) + 1; s∅ ← s∅ − 1

10 until the set of possible winners is a singleton

The protocol terminates because at each step, either a candidate is removed, or s∅
is decreased by 1. If s∅ queries are made successively without any candidate being
removed, then s∅ reaches 0 and then there is at least one SNL (the current plurality
loser with lowest priority). The winner returned at the end of the protocol is the STV
winner because removing SNLs does not influence the winner. It can be proven that
P2 is as least as cheap as P1, in the sense that no voter is queried more often with P2

than with P1.

Example 4.7. Let the candidates be a, b, c, d, e. After the first step, the plurality scores
are (S(a) : 1, S(b) : 1, S(c) : 3, S(d) : 4, S(e) : 8). a and b are SNL and are removed.
The resulting incomplete plurality profile is (s∅ : 2, c : 3, d : 4, e : 8). We query a voter
who votes for d, giving (s∅ : 1, S(c) : 3, S(d) : 5, S(e) : 8). c is now a SNL and is
removed, giving (s∅ : 4, S(d) : 5, S(e) : 8). We query a voter who votes for e, resulting
in (s∅ : 3, S(d) : 5, S(e) : 9). d is now an SNL, and the winner is e.

Finally, in the aim to further improve P2, we propose an adjustment on line 7 in P2.
Indeed, several ways exist to select the empty voter among the available ones to query
her next preferred candidate. In the following we propose three possible options to
make the selection:

1) select a voter randomly among the available voters with empty votes. We refer
to this method as PRand

2 .
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2) select the voters with the minimal number of questions asked during the execution
of P2 among the voters with empty votes and choose one voter at random. We
refer to this method as PRand−Min

2 .

3) select the voters with the maximal number of questions asked during the execu-
tion of P2 among the voters with empty votes and choose one voter at random.
We refer to this method as PRand−Max

2 .

Example 4.8. Let A = {a, b, c, d, e, f}. At some step of the execution of P2, some
voters were asked to submit their next preferred, resulting in the profile P = {4 : c, 2 :
b, 1 : e � c, 1 : e � b, 2 : a, 1 : d � a, 2 : f � b}. Giving P , candidate d is removed first,
then f , e and a. The resulting incomplete plurality profile is (s∅ : 3, sc : 5, sb : 5).

Now, we choose a voter to query her next preferred candidate among the voters who
voted for candidate a. Three possible voters are available, namely: (2 : a, 1 : d �
a). Under PRand

2 , we choose one voter at random among the available ones. Under
PRand−Min

2 , we choose one voter among the two whose most preferred candidate was
a, namely: 2 : a. Finally, under PRand−Max

2 , the voter who voted for d then a (i.e.
1 : d � a) will be the next voter to query.

4.5.3 Evaluation of the Protocols

This section evaluates the average communication complexity of P1 and P2 with the
different randomized methods to select the voter with the empty vote. We discuss
experiments using Mallows model and real data. Our objective is to determine the
communication complexity, in terms of the number of questions voters need to answer
on average. Note that, for plurality elections, this number is 1, while for (say) Borda
elections, this number is m in the worst-case. We find that STV only asks 2 or 3
questions for each voter when m = 7, or in the Dublin election data. Note that in the
experiments where we measure the average communication cost, we will report only
on P2 since the average number of questions voters need to answer is almost the same
with different randomized methods.

4.5.3.1 Experiments using Mallows φ model

For each experiment, we draw 1000 random profiles. In the first set of experiments,
we present simulation results with m = 7 and n = 100, and let φ vary. We count the
number of questions asked by P1 and P2 with φ ∈ {0.7, 0.8, 0.9, 1}. Figure 4.9 shows
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the average communication cost of P1, P2 and compares it to PWorst, the worst-case
cost of P1.
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Figure 4.9: Average communication cost, Mallows.

Results suggest that in practice, both P1 and P2 ask fewer questions than in the
worst case (PWorst). P2 asks fewer questions than P1 for all parameter values, but the
difference is more significant for lower φ. When φ = 1, more information is needed
from voters under both P1 and P2, and the savings of P2 are smaller.
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Figure 4.10: Average number of voters who were asked k questions when m = 7,
n = 100 and φ ∈ {0.7, 0.8, 0.9, 1} under: P1, PRand

2 , PRand−Max
2 and PRand−Min

2 ; Mallows
φ model.

To better understand the difference in the behavior of P1 and P2 and the advantage
of using the different randomized methods, we now plot, for each k, how many voters
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are needed to answer k questions using P1, PRand
2 , PRand−Max

2 and PRand−Min
2 when

n = 100, m = 7 and φ ∈ {0.7, 0.8, 0.9, 1}. Results are reported on Figure 4.10 taken
over 1000 random samples. For instance, the first bar means that under P1 and when
φ = 0.7, 58 (resp. 34, 7,1) voters out of 100 were asked one (resp. 2, 3, 4) question(s).

Results show that all randomized methods of P2 outperform P1 where P2 often only
needs to ask a voter for her top alternative, and then never asks another question.
Indeed, asking voters for their most preferred candidate decreases as we increase φ
with all protocols, e.g. Under P1 and when φ = 0.7 (resp. φ = 0.8, φ = 0.9, φ = 1), 58
(resp. 46, 38, 35) voters were asked one query. Now, when comparing PRand−Min

2 and
PRand−Max

2 , we find that:

• under PRand−Min
2 all voters were asked no more than three questions with all

values of φ (except when φ = 1 only one voter was asked four questions). With
small values of φ, PRand−Min

2 tends to ask one question to more than the half of
the voters. As we increase φ, PRand−Min

2 often asks 2 questions to almost half of
the voters.

– for φ = 0.7, 63.5% of voters were asked one query, 35.5% were asked two
questions and 1 voter was asked three questions.

– for φ = 1, 35% of voters were asked one query, 47% were asked two questions,
17% voters were asked three questions and 1 voter was asked four questions.

• under PRand−Max
2 some voters were asked four questions especially when φ > 0.8.

Compared to the other protocols, PRand−Max
2 asks the highest number of voters

for their top alternative and then never asks another question.

– for φ = 0.7, 68.6% of voters were asked one question, 26% were asked two
questions, 5 voters were asked three questions.

– for φ = 1, 39% of voters were asked one question, 41% were asked two
questions, 17% voters were asked three questions and 3 voters were asked
four questions.

Table 4.2 summarizes results of the average number of voters (for different φ) asked
to submit their top-k for k ∈ {1, . . . , 4} with PRand−Max

2 and PRand−Min
2 .

From the results, PRand−Max
2 tends to promote some voters to others by: maximizing

the number of voters asked for their top-1 candidate and minimizing those asked for
their second preferred by allowing voters to submit their top-3 and top-4 candidates.
Unlike PRand−Max

2 , PRand−Min
2 tends to be egalitarian by minimizing the number of
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PRand−Max
2 PRand−Min

2
top-1 51,67% 46.39%
top-2 34.90% 44.11%
top-3 11.73% 9.4%
top-4 1.7% 0.1%

Table 4.2: Average number of voters asked to submit their top-k for k ∈ {1, 2, 3, 4}
when φ ∈ {.7, .8, .9, 1} with PRand−Max

2 and PRand−Min
2 .

questions asked to all voters: first ask voters who have not said much for their most
preferred candidate and then ask the maximum number of voters for their top-2 ballots
in order to minimize the number of voters to query for their top-3.

4.5.3.2 Experiments using Real Data sets

We consider data sets from Preflib [58] to run our experiments. Most of the available
data contain some incomplete ballots. Table 4.3 shows the number of alternatives,
complete and partial ballots in each data sets. For example, Dublin North data contains
43942 votes: 3662 are complete ballots and the remaining votes are partial ones.

Data Set m All Ballots Complete Ballots Partial Ballots
Dublin North 12 43942 3662 40280
Dublin West 9 29988 3800 26188
Debian 7 504 327 177
Meath 14 64081 2490 61591
ERS 10 380 43 337
Glasgow 9 6900 548 6352
Sushi 10 5000 5000 5000

Table 4.3: Data sets from Preflib.

In order to evaluate our protocols with real data sets, we consider only votes with
complete preferences. Figure 4.11 shows the average number of questions voters are
asked by the protocols on real data sets. P2 performs better than P1 by asking 5–10%
fewer questions. Both protocols are much better than the worst-case analysis suggests,
by about 40%.

Figure 4.12 shows how many voters for different data sets were asked k questions
under P1, PRand

2 , PRand−Max
2 and PRand−Min

2 . From the results, the different randomized
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methods of P2 ask more voters to submit their top preferred candidate compared to P1.
This behavior is more noticeable with Sushi, Dublin North and Debian than the other
data sets. Consistently with the experiments in Figure 4.10, PRand−Min

2 asks fewer
questions to all voters compared to PRand−Max

2 . For instance, with Dublin North data
having 3662 voters, PRand−Min

2 asks 1322 voters one question, 1614 voters two questions
and 726 three questions while PRand−Max

2 asks 1619 voters one question, 1201 voters
two questions, 634 three questions, 184 four questions and 23 voters six questions.

4.6 Conclusion

In this chapter, we have focused on Single Transferable Vote (STV) voting rule. In
the first part, given top-k ballots, we have tested the resistance of STVk and RPk to
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cloning where we have showed that the two truncated rules behave almost similarly to
the introduction of similar candidates. Results on randomly generated profiles show
that resistance to cloning increases rapidly with k and decreases with φ. Also, it
significantly increases with the number of voters. With real data, resistance to cloning
increases rapidly with k, even more rapidly than with randomly generated profiles.
Then, we have studied empirically the probability that STVk and plurality with runoff
coincide. Our findings are that STV is closer to plurality with runoff than plurality
especially with low values of φ and a large number of voters. Indeed, STVk for k ≈ 2

5m

(resp. k = 1) coincides with plurality with runoff when φ = 0.8 (resp. φ = 0.7). For
φ = 1, STV is very far from plurality with runoff.

In the second part, we have investigated the computational complexity of the possible
winner problem for top-k ballots under STV where we have showed that for k = 1,
it can be solved in polynomial time, but is NP-complete when k > 2. While the
problem is difficult in the worst case, we have showed that in practice there is a simple
algorithm that is able to label almost all candidates as possible winners, necessary
losers and candidates that we don’t know if they are possible winners or not. Results
show that the proposed algorithm succeeds to identify possible winners and necessary
losers and to reduce the set of candidates that we cannot decide on.

In the third part, we have considered interactive communication protocols for STV.
Building on a protocol proposed by Conitzer and Sandholm (2005), we have showed
how we can reduce the amount of communication required in practice. We have then
studied empirically the average communication complexity of these protocols, based
on randomly generated profiles, and on real-world election data. Our results show that
STV has low communication cost in practice when using the proposed protocol P2.
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Search Methods for Vote Elicitation
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In this chapter, we propose an incremental vote elicitation process using heuristic
methods to guide the choice of the next voter to ask. Given top-k preferences, these
heuristics will be used to choose at each round the voter to whom it is most relevant
to ask to complete his k-vote by giving his next candidate (thus ranked k+1). For this
purpose, first we propose to use the Monte Carlo Tree Search (MCTS) approach in a
vote elicitation context to select the most prominent voter to ask in each round based
on the Upper Confidence Bounds for Trees (UCT) evaluation function. Second, we
propose a search heuristic able to select the voter (under certain conditions) for whom
we want to reveal more information. Results on the evaluation of the average number
of questions asked show the practical advantage of reducing the communication cost
when using the proposed heuristics in an incremental elicitation process under Borda
and Harmonic rules.
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5.1 Introduction

In the previous sections we have considered exact methods for interactive vote elici-
tation to choose the voter to query in each round until the winner is known. In this
chapter, we explore heuristic methods, based on evaluation functions that will guide
the choice of the next voter to query. We still focus on top-k queries where one voter
will be asked at a time and, if she is queried for the kth time, she will be asked to
provide her kth preferred candidate (as in Section 4.5.2).

We are, in particular, interested by the use of Monte Carlo Tree Search (MCTS)
which is a probabilistic and heuristic driven search algorithm that combines the clas-
sic tree search implementations alongside machine learning principles of reinforcement
learning. The principle of MCTS is to analyze the most promising moves by incremen-
tally expanding the search tree based on random sampling of the search space [20, 45]
MCTS is essentially used in AI games, namely all the top AI solutions for Go (game).

In this chapter, our goal is to built an interactive vote elicitation process, based on
evaluation functions, that will guide the choice of the next voter to query in each round.
Given top-k ballots, these evaluation functions are able to predict the most prominent
voter to ask to submit her next preferred (ranked k+1) candidate in order to determine
the winner with the minimum number of questions asked. For this purpose, first we
propose to use the MCTS’s technique based on the Upper Confidence Bounds for Trees
(UCT) [45] evaluation function in a vote elicitation context. Second, we propose a
simple heuristic evaluation function which proceeds in two main steps: (1) we identify
two key candidates for whom we want to gather more information, and then (2) if there
is at least a voter whose current ballot contains neither of these two candidates, query
such a voter; otherwise, query a voter whose current ballot contains one of these two
candidates.

The use of these evaluation functions in a vote elicitation process will allow us to
reveal the most relevant information about the voters thus; reduce the information
communicated between them. Finally, we use the necessary winner (cf. Chapter 2)
to check whether the information elicited is sufficient to output the winner or not. In
this context, Xia and Conitzer [75] show that for any positional scoring rule and given
a partial profile, it can be checked in polynomial time whether a given candidate is a
necessary winner. We adapt their algorithm to the case of top-k ballots by considering
two positional scoring rules, namely: Borda and Harmonic.

This chapter is organized as follows: In Section 5.2 we describe the basic steps of
MCTS algorithm and the UCT evaluation function used to select the best move in a



5.2 Monte Carlo Tree Search (MCTS) 115

game. In Section 5.3 we describe how to use the MCTS algorithm in a vote elicitation
context where we consider the elicitation problem as a game between the voting center
and the voters. Then we present the proposed vote elicitation process using MCTS
with truncated ballots. In Section 5.4 we propose the search heuristic. Finally, Section
5.5 evaluates the proposed heuristics by measuring the number of questions asked to
voters on average in order to determine the winner under Borda and Harmonic rules.

5.2 Monte Carlo Tree Search (MCTS)

The effectiveness of MCTS relies on selecting the most promising move to perform in
a tree according to an evaluation function. Each node v in the tree represents a given
position called a state of the game, denoted by S(v), with the root node representing
the current state. Each parent node is directly linked to child nodes representing legal
move leading to subsequent states, i.e. it represents the move from one state (the
parent) to another (the child). Note that any parent node may have as many children
as there are legal moves from the state for which it represents.

Example 5.1. Figure 5.1 shows the start game of TicTacToe. Assume that the com-
puter will make the first move, then the root node (the parent) represents an empty
3× 3 Tic-Tac-Toe board that can have nine children representing the possible moves (9
legal moves).

x
x

x x

x
x x

x

x

x

Parent Node

Child Nodes

Figure 5.1: Example of a tree representing the start game of TicTacToa.

The MCTS is an iterative process based on four steps. An outline of these steps is
depicted in Figure 5.2 for one iteration:

1) Selection: In the selection step, the tree is traversed starting at the root node
where an evaluation function is applied recursively until the most promising ex-
pandable node is reached. A node is expandable if it represents (i) a non-terminal
state (a specific condition has not been reached yet), and (ii) is not fully expanded
(it is a leaf node i.e. no known children so far).
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Figure 5.2: One iteration of the general MCTS approach.

2) Expansion: In the expansion step, for a given node from the selection step; we
create one or more child nodes according to available actions at the current state.

3) Simulation: In this step, a simulation (aka. a playout) is run from the new
node until a terminal state is reached. The simulation makes random moves and
returns some value representing the result of the simulation on the new added
node denoted by ∆.

4) Backpropagation: In the Backpropagation step, the simulation result is back-
propagated through the previously traversed nodes to update their statistics,
starting from the node on which we ran the simulation and ending at the root
node. Finally, the move played by the program is the child of the root with
the highest number of visits. This step ensures that each node’s value reflect
simulations performed in the subtrees that they are part of.

In the selection step, picking which node to visit is performed using a selection
strategy. The most popular one is the Upper Confidence Bounds for Trees (UCT)
introduced by Kocsis and Szepesvari [45] and expressed for each state S(v) by:

UCT (S(v)) = Q(v)
N(v) + C ×

√√√√ ln N(p)
N(v) (5.1)

where N(v) corresponds to the number of times v has been visited. Q(v) is the total
reward (score) of all payouts that was performed on v. p is the parent of v and C is
the exploration constant parameter, generally; can be tuned experimentally.

UCT is based on the balancing of exploitation and exploration in games. Indeed, the
first part of the UCT’s equation tends to promote moves with the highest win value
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which corresponds to the exploitation phase. While the second part corresponds to
the exploration phase that tends to explore unexplored parts of the tree that currently
may seem less than optimal but may be more effective in the long term. Note that
when different nodes have the same UCT value, we choose one of them randomly.

Algorithm 5.1 outlines the MCTS steps (adapted from Browne et al. [17]).

Algorithm 5.1: Pseudocode for Monte-Carlo tree search.
1 create root node v0 with state S0
2 if v0 is terminal then
3 return game over
4 else
5 while within computational budget do

/* Selection and Expansion */
6 Test← True

7 while v0 is non-terminal and Test do
8 if v0 is not fully expanded then
9 choose a ∈ untried actions from A(S(v0))

10 add a new child vl to v0 with S(vl) = f(S(v0), a) and a(vl) = a

11 Test← False

12 else

13 v0 ← argmax
v′∈ children of v0

Q(v′)
N(v′) + C

√
ln N(v0)
N(v′)

/* Simulation */
14 s← S(vl)
15 while s is non-terminal do
16 choose a ∈ A(s) uniformly at random
17 s← f(s, a)

18 ∆← reward of s
/* Backpropagation */

19 while vl is not null do do
20 N(vl)← N(vl) + 1
21 Q(vl)← Q(vl) + ∆
22 vl ← parent of vl

23 BestChild← argmax
v′∈ children of v0

Q(v′)
N(v′)

24 return a(BestChild)

Each node v in the tree is associated with four pieces of information: S(v) corresponds
to the associate state, N(v) is the number of visits, Q(v) is the total reward and a(v)
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is the incoming action to v. A(state) corresponds to the set of actions available on
a specific state. The term state′ = f(state, action) corresponds to the next state
state′ decided based on the current state and the chosen action. The MCTS’s steps
are repeated for a fixed number of iterations. After the process is finished, the final
move is performed: one of the children of the root node is selected as best move (line
23). Different final move strategies exist to determine the best child [21] including:
Max Child (select the child that maximizes Q(v′)), Robust Child (select the child that
maximizes N(v′)) etc.

Note that the complexity of MCTS is O(`PI) where ` is the branching factor, P is
the number of simulations of each child and I is the number of iterations.

The following example illustrates the MCTS algorithm. Each node v is labeled by
Q(v)/N(v). To alleviate notation, instead of S(vi) we will simply write Si.

Example 5.2. Figure 5.3 presents three iterations of the MCTS algorithm when C =
1√
2 starting by an initial state S0 with values 0/0 (a state with 0 reward and 0 simulation

performed).

• In the first iteration, we start by an initial state S0; a decision must be taken
between two possible moves S1 and S2. Under the selection step, we compute the
UCT value for S1 and S2 following Eq. 5.1: UCT (S1) = UCT (S2) = ∞. Since
the two states have the same value, we select a state randomly. Assume we take
S1 which is not fully expanded. In the expansion step, a child node S3 is added to
S1 and a playout is run from it. Suppose that the simulation step ends in ∆ = 20,
thus; the value of the new node S3 is 20/1. Finally, we backpropagate the result
and update the statistics of S1 and S0.

• In the second iteration, we start by an initial state S0 with the updated states’
values from the first iteration. A decision must be taken between two possible
moves S1 and S2 where UCT (S1) = 20

1 + 1√
2

√
ln(1)

1 = 20 and UCT (S2) =∞. We
select the child node with the highest UCT value which corresponds to state S2.
Now, S2 is not fully expanded. In the expansion step, a child node S3 is added
to S2 and a playout is run from it. Suppose that the simulation step ends in 10,
thus; the value of the new node is 10/1. The ascendents of S2 are updated. Now
the reward of S0 is 30 with 2 visits.

• In the third iteration, we again have to choose between S1 and S2 so we recompute
the UCT value of these nodes: UCT (S1) = 20

1 + 1√
2

√
ln(2)

1 = 20.58 and UCT (S2) =
10
1 + 1√

2

√
ln(2)

1 = 10.58, then S1 is the selected node. A child node is added to S1
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𝑈𝐶𝑇(𝑆2): ∞

Backpropagation

S3

?

Iteration 3

S0

30/2

S1

20/1
S2

10/1

Selection

S0

30/2

S1

20/1
S2

10/1

Expansion/Simulation

S0

30/3

S1

20/2
S2

10/1

Backpropagation

0

S3

0/1

S0

30/3

S1

20/2
S2

10/1

𝑈𝐶𝑇(𝑆1): 20.58
𝑈𝐶𝑇(𝑆2): 10.58

Final move

S3

?

Figure 5.3: Example of 3 iterations using MCTS algorithm.

and a simulation is run that ends in 0 (i.e. the simulation results is a loss) and
results in S3 with value 0/1. We backpropagate the result and update the nodes’
values.

Finally, given the generated (partial) tree from the third iteration, using either the Max
Child or Robust Child strategies; the algorithm will return S1 as final move.

5.3 Vote Elicitation Protocol Using MCTS

In this section we propose to use Monte Carlo Tree Search’s technique in vote elicitation
when considering top-k truncated ballots. Indeed, aggregating voters preferences can
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be seen as a particular game with two players: the voting center and the set of voters,
where ’the set of voters’ is considered as a single player:

• the voting center : asks a specific voter to complete her top-k vote, and;

• the set of voters: the selected voter by the voting center submits her next pre-
ferred candidate to the voting center whenever he was asked to do so.

In this game, players do not play against each other; however, the goal is to make
moves by selecting the relevant voter and ask him to complete his partial vote in the
aim to determine the correct winner. To communicate information between the voting
center and the voters, we consider queries in the form of next-best-alternative by asking
the voter: Who is your next preferred candidate ? Note that the next best alternative
of voter i and her previous votes correspond to answering a top-k query.

Each node v corresponds to a voter i that holds the top-k candidates of i represented
by L– where L corresponds to the top-k vote and "–" means that the voting center has
no information about how the remaining candidates are ranked. At the start of the
game, the root node corresponds to the initial available knowledge held by the voting
center where each voter gives her top-1 ballot. The voting center may ask any voter
i to expand her vote by submitting her second preferred candidate. More generally,
after different iterations, the voting center may ask any voter i to expand her k vote
by submitting her (k + 1)th preferred candidate. Thus, the root node will be linked
to n children that correspond to possible legal moves (i.e. the different voters to ask)
and the voting center will choose only one voter to query. Moving from one node
to another corresponds to an elicitation process where a specific voter is selected and
asked to complete her top-k ballot. The game ends when, given the voters’ preferences,
a necessary winner (cf. Chapter 2) is reached.

Our goal is to build an incremental vote elicitation protocol using the MCTS tech-
nique by minimizing the number of questions asked to voters in each round for a specific
voting rule. To this end, the MCTS Algorithm 5.1 is used to guide the choice of the
voter to be asked in each round by adapting its evaluation function, final move and
terminal state as follows:

Evaluation function: In Eq. 5.1, the total reward Q(v) corresponds to the total
number of questions asked to voters in all playouts performed on v. In a vote elicitation
context, the constant C used to adjust the degree of exploration of the algorithm is
strongly related to the number of voters (n) and the number of candidates (m). Since
n and m can be high; the higher the constant C, the more the algorithm will tend to
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explore the less well rated moves. That is why we will assume that C = α(n × m)
where α ∈ [0, 1].

Final move: Since our aim is to ask the minimum number of questions to voters, in
Algorithm 5.1 we select the best child (line 23) using argmin Q(v′) which corresponds
to the child node with the minimal number of questions of all playouts that have been
performed.

Terminal state: When using MCTS in a vote elicitation context, given the partial
voters’ preferences, the terminal state corresponds to reaching a necessary winner for
a specific voting rule.

Fortunately, given a partial profile, for any positional scoring rule it can be checked
in polynomial time whether a given candidate is a necessary winner (Xia and Conitzer
[75]). In the following, we adapt their algorithm to the case of top-k ballots when
considering a tie breaking over candidates for PSR. Let R be a partial profile containing
the top-k votes of n voters. Each voter i reports a ranking list �ki of k out of m
candidates. For each candidate a ∈ A, we compute a minimal score and a maximal
score (these two scores have already been considered by Konczak and Lang [46]):

• The minimal score of a candidate x is the lowest possible score x could obtain
when considering all complete extensions of R. An unranked candidate x in �ki
will be ranked in the lowest position in the extension of �ki denoted by Cmin(�ki ).
Let Cmin(x,R) = {Cmin(�ki ), . . . , Cmin(�kn)} denote the completion of the partial
profile R given x. Then, Smin(x,R) corresponds to the minimal score of candidate
x when considering the completions Cmin(x,R) with respect to a given PSR.

• The maximal score of a candidate x is the highest possible score x could obtain
when considering all complete extensions of R. An unranked candidate x in
�ki will be ranked in the highest position in the extension of �ki denoted by
Cmax(�ki ) i.e. x is ranked in position k + 1 in Cmax(�ki ). Let Cmax(x,R) =
{Cmax(�ki ), . . . , Cmax(�kn)} denote the complete completion of the partial profile
R given x. Then, Smax(x,R) corresponds to the maximal score of candidate x
when considering the completions Cmax(x,R) with respect to a given PSR.

Example 5.3. We consider a partial profile R of 4 voters having partial preference
orders over 4 candidates A = {a, b, c, d} with tie breaking B: a B b B c B d, where
R = {a, c � d, a, b � a}. We consider Borda rule defined by a scoring vector ~sBorda =
(3, 2, 1, 0). The minimal and maximal scores of candidate c are:

• Smin(c, R) = 3 when considering a possible completion Cmin(c, R) = {a � b �
d � c, c � d � b � a, a � d � b � c, b � a � d � c}
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• Smax(c, R) = 8 when considering a possible completion Cmax(c, R) = {a � c �
b � d, c � d � b � a, a � c � b � d, b � a � c � d}.

We consider the resolute version of positional scoring rules where whenever candidates
are tied, we break ties using a predefined priority ordering over candidates B. Then,
given top-k ballots and B, x ∈ A is a necessary winner with respect to a given positional
scoring rule, if and only if for each y ∈ A, y 6= x either: (1) Smin(x,R) > Smax(y,R),
or (2) Smin(x,R) = Smax(y,R) and x B y.

To test whether a is a necessary winner for positional scoring rules, given A =
{a, b, c, d}, Xia and Conitzer [75] test each of the alternatives y ∈ {b, c, d} in turn,
attempting to find a completion of the partial profile that maximizes the score difference
S(y)−S(a) by raising y as high as possible and lowering a as low as possible. Then, a
is a necessary winner if S(a) > S(y) for all y ∈ {b, c, d}. The characterization used by
Xia and Conitzer corresponds exactly to the above result when considering truncated
ballots with a one small detail is that we also consider ties between candidates.

Corollary 5.1. Given top-k ballots and B, x ∈ A is a necessary winner with respect
to a given positional scoring rule, if and only if for each y ∈ A, y 6= x we have :

1) Smin(x,R) > Smax(y,R), or

2) Smin(x,R) = Smax(y,R) and x B y.

Proof.
(1 ⇒ x is a necessary winner) proved by Xia and Conitzer [75]

(2 ⇒ x is a necessary winner) Assume (2) holds then Smin(x,R) = Smax(y,R).
If Smax(y,R) never reaches Smin(x,R), then y will always have a score lower than x.
If Smax(y,R) reaches Smin(x,R), then x will be always be the winner because x B y.
Therefore, x is a necessary winner.

If neither (1) nor (2) holds, then according to Xia and Conitzer x is not a necessary co-
winner. Thus, regardless of the tie breaking used, x cannot be a necessary winner.

Example 5.4. Let us consider the same partial profile R in Example 5.3. Given R,
the minimal and maximal scores of candidates under Borda rule are:

• Smin(a,R) = 8, Smin(b, R) = 3, Smin(c, R) = 3 and Smin(d,R) = 2,

• Smax(a,R) = 9, Smax(b, R) = 8, Smax(c, R) = 8 and Smax(d,R) = 7,
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Since Smin(a,R) > Smax(d,R) = 7 and Smin(a,R) = Smax(b, R) = Smax(c, R) and
a B b B c, then a is a necessary winner.

Now, we are ready to present the proposed elicitation protocol using MCTS which
we call PMCTS and proceeds as follows: Given each voter’s top candidate in R, the
MCTS Algorithm 5.1 is applied to determine the best voter to ask to complete her
top-k vote. Let i be the selected voter. Then, we ask voter i to submit her next
preferred candidate and we update the partial profile R by adding i’s next preference.
We repeat this process until we reach a necessary winner given R, for a specific voting
rule. Note that the complexity of MCTS in a vote elicitation process turns out to be
O(Imn2) for each move performed because: in the worst case we will have n children
and the number of simulations performed on each child to find a necessary winner is
n(m− 1) (since we already have the top preferred candidate of each voter).

Protocol 5.2: PMCTS

1 for each voter i ∈ N do
2 R←Ask i to submit the name of her top candidate

3 repeat
4 i← the selected voter returned using MCTS in Algorithm 5.1
5 ask i to send the name of her next preferred candidate
6 update R by adding the new vote of the selected voter i
7 until there exists a necessary winner c given R;
8 return c

Example 5.5. Let us consider the setting of 4 voters with the following complete
preferences over 5 candidates m = {a, b, c, d, e} with B: a B b B c B d B e:

V1 e � d � a � b � c

V2 b � d � a � c � e

V3 c � e � d � b � a

V4 d � a � c � b � e

We consider Borda rule. Following Protocol 5.2, the voting center has the most
preferred candidate of each voter, i.e. R = {e, b, c, d}. We apply MCTS given the
partial votes to determine the choice of the voter to query. Figures below describe the
MCTS’s four steps performed on four iterations in order to select the first best move
given R when C = 0.3× n×m = 6.
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In the first iteration, the program starts at state S0 containing R with value 0/0.
Possible moves consist in asking the 4 voters to cast their second preferred choice with
a winning possibilities of 0/0. We compute the UCT value for different moves which
is equal to ∞ for all states. In this case, we choose a random move among the four
available. Assume we select S2. We are now at an unexpanded node (S2). We expand
S2 by adding a node and a playout is run from the latter by asking voters randomly
to report their next preferred candidate until a necessary winner is reached. A possible
simulation consists in asking V1 for her top-2 preferred candidate then V3 for her second
and third preferred, resulting in R = {e � d, b � d, c � e � d, d} and d is a necessary
winner. The simulation step ends in 3 (corresponds to the number of questions asked
to voters). Finally, we backpropagate the result and update the nodes.

𝑉2 = 𝑏 −

𝑉3 = 𝑐 −

𝑉1 = 𝑒 −

𝑉4 = 𝑑 −

𝑉2 = 𝑏𝑑 − 𝑉3 = 𝑐𝑒 −𝑉1 = 𝑒𝑑 − 𝑉4 = 𝑑𝑎 −
𝑆1: 0/0 𝑆2 : 0/0 𝑆3 : 0/0 𝑆4 :  0/0

𝑆0: 0/0

𝑈𝐶𝑇(𝑆1): ∞
𝑈𝐶𝑇(𝑆2): ∞
𝑈𝐶𝑇(𝑆3): ∞
𝑈𝐶𝑇(𝑆4): ∞

𝑉1 = 𝑒𝑑 −
𝑉3 = 𝑐𝑒 −

𝑉3 = 𝑐𝑒𝑑 −

3

𝑉2 = 𝑏 −

𝑉3 = 𝑐 −

𝑉1 = 𝑒 −

𝑉4 = 𝑑 −

𝑉2 = 𝑏𝑑 − 𝑉3 = 𝑐𝑒 −𝑉1 = 𝑒𝑑 − 𝑉4 = 𝑑𝑎 −
𝑆1: 0/0 𝑆2 : 3/1 𝑆3 : 0/0 𝑆4 :  0/0

𝑆0: 3/1
𝑉2 = 𝑏 −

𝑉3 = 𝑐 −

𝑉1 = 𝑒 −

𝑉4 = 𝑑 −

𝑉2 = 𝑏𝑑 − 𝑉3 = 𝑐𝑒 −𝑉1 = 𝑒𝑑 − 𝑉4 = 𝑑𝑎 −
𝑆1: 0/0 𝑆2 : 0/0 𝑆3 : 0/0 𝑆4 :  0/0

𝑆0: 0/0

Iteration 1

Selection Expansion/Simulation Backpropagation

? 𝑆5 : 3/1

In the second iteration, we go back to the initial state with the updated values gen-
erated from the first iteration. Again we compute the UCT value for different states:
UCT (S3) = 3

1 + 6
√

ln(1)
1 = 3 and ∞ for the other states; a node is chosen randomly

from the latter. Assume we select S4 and we run a simulation from it which results in
4 questions asked to voters (ask V2 then V3 for their second preferred candidate, V4 for
her third preferred and V1 for her second preferred). This gives R = {e � d, b � d, c �
e, d � a � c}. Then, we backpropagate the result to the root node. Now S0 has a value
of 7/2.
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𝑈𝐶𝑇(𝑆1): ∞
𝑈𝐶𝑇(𝑆2): 3
𝑈𝐶𝑇(𝑆3): ∞
𝑈𝐶𝑇(𝑆4): ∞

𝑉2 = 𝑏 −

𝑉3 = 𝑐 −

𝑉1 = 𝑒 −

𝑉4 = 𝑑 −

𝑉2 = 𝑏𝑑 − 𝑉3 = 𝑐𝑒 −𝑉1 = 𝑒𝑑 − 𝑉4 = 𝑑𝑎 −
𝑆1: 0/0 𝑆2 : 3/1 𝑆3 : 0/0 𝑆4 :  0/0

𝑆0: 3/1

Iteration 2
Selection

𝑉2 = 𝑏 −

𝑉3 = 𝑐 −

𝑉1 = 𝑒 −

𝑉4 = 𝑑 −

𝑉2 = 𝑏𝑑 − 𝑉3 = 𝑐𝑒 −𝑉1 = 𝑒𝑑 − 𝑉4 = 𝑑𝑎 −
𝑆1: 0/0 𝑆2 : 3/1 𝑆3 : 0/0 𝑆4 :  0/0

𝑆0: 3/1

𝑉4 = 𝑑𝑎𝑐 −

4

𝑉2 = 𝑏 −

𝑉3 = 𝑐 −

𝑉1 = 𝑒 −

𝑉4 = 𝑑 −

𝑉2 = 𝑏𝑑 − 𝑉3 = 𝑐𝑒 −𝑉1 = 𝑒𝑑 − 𝑉4 = 𝑑𝑎 −
𝑆1: 0/0 𝑆2 : 3/1 𝑆3 : 0/0 𝑆4 :  4/1

𝑆0: 7/2

Expansion/Simulation Backpropagation

𝑉3 = 𝑐𝑒 −
𝑉2 = 𝑏𝑑 −

𝑉1 = 𝑒𝑑 −

? 𝑆5 : 4/1

In the third iteration, giving the initial state, we recompute the UCT value which is
equal to 7.99 and 8.99 for S2 and S4, respectively; and ∞ for S1 and S3. Let S1 be the
next move to perform, we ran a simulation on it that results in 6 questions asked that
will be backpropagated to the root node to update its value.

𝑉2 = 𝑏 −

𝑉3 = 𝑐 −

𝑉1 = 𝑒 −

𝑉4 = 𝑑 −

𝑉2 = 𝑏𝑑 − 𝑉3 = 𝑐𝑒 −𝑉1 = 𝑒𝑑 − 𝑉4 = 𝑑𝑎 −
𝑆1: 0/0 𝑆2 : 3/1 𝑆3 : 0/0 𝑆4 :  4/1

𝑆0: 7/2

Iteration 3

𝑉2 = 𝑏 −

𝑉3 = 𝑐 −

𝑉1 = 𝑒 −

𝑉4 = 𝑑 −

𝑉2 = 𝑏𝑑 − 𝑉3 = 𝑐𝑒 −𝑉1 = 𝑒𝑑 − 𝑉4 = 𝑑𝑎 −
𝑆1: 0/0 𝑆2 : 3/1 𝑆3 : 0/0 𝑆4 :  4/1

𝑆0: 7/2

𝑉2 = 𝑏𝑑 −

6

𝑉2 = 𝑏 −

𝑉3 = 𝑐 −

𝑉1 = 𝑒 −

𝑉4 = 𝑑 −

𝑉2 = 𝑏𝑑 − 𝑉3 = 𝑐𝑒 −𝑉1 = 𝑒𝑑 − 𝑉4 = 𝑑𝑎 −
𝑆1: 6/1 𝑆2 : 3/1 𝑆3 : 0/0 𝑆4 :  4/1

𝑆0: 13/3

Expansion/Simulation Backpropagation

𝑉1 = 𝑒𝑑𝑎 −

Selection

𝑈𝐶𝑇(𝑆1): ∞
𝑈𝐶𝑇(𝑆2): 7.99
𝑈𝐶𝑇(𝑆3): ∞
𝑈𝐶𝑇(𝑆4): 8.99

𝑉1 = 𝑒𝑑𝑎𝑏

𝑉2 = 𝑏𝑑𝑎 −

𝑉2 = 𝑏𝑑𝑎𝑐 −

𝑉3 = 𝑐𝑒 −

?
𝑆5 : 6/1

In the fourth iteration, we select state S3 with the highest UCT value and we run a
playout on it that ends in 6 and we backpropagate the result. Now, S0 has a value of
19/4.
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𝑉2 = 𝑏 −

𝑉3 = 𝑐 −

𝑉1 = 𝑒 −

𝑉4 = 𝑑 −

𝑉2 = 𝑏𝑑 − 𝑉3 = 𝑐𝑒 −𝑉1 = 𝑒𝑑 − 𝑉4 = 𝑑𝑎 −
𝑆1: 6/1 𝑆2 : 3/1 𝑆3 : 0/0 𝑆4 :  4/1

𝑆0: 13/3

Iteration 4

𝑉2 = 𝑏 −

𝑉3 = 𝑐 −

𝑉1 = 𝑒 −

𝑉4 = 𝑑 −

𝑉2 = 𝑏𝑑 − 𝑉3 = 𝑐𝑒 −𝑉1 = 𝑒𝑑 − 𝑉4 = 𝑑𝑎 −
𝑆1: 6/1 𝑆2 3/1 𝑆3 : 0/0 𝑆4 :  4/1

𝑆0: 13/3

𝑉2 = 𝑏 −

𝑉3 = 𝑐 −

𝑉1 = 𝑒 −

𝑉4 = 𝑑 −

𝑉2 = 𝑏𝑑 − 𝑉3 = 𝑐𝑒 −𝑉1 = 𝑒𝑑 − 𝑉4 = 𝑑𝑎 −
𝑆1: 6/1 𝑆2 : 3/1 𝑆3 : 6/1 𝑆4 :  4/1

𝑆0: 19/4

Expansion/Simulation BackpropagationSelection

𝑈𝐶𝑇(𝑆1): 12.28
𝑈𝐶𝑇(𝑆2):   9.28
𝑈𝐶𝑇(𝑆3): ∞
𝑈𝐶𝑇(𝑆4): 10.28

𝑉2 = 𝑏𝑑 −

𝑆5 : 6/1
𝑉3 = 𝑐𝑒𝑑𝑏

𝑉3 = 𝑐𝑒𝑑 −

𝑉1 = 𝑒𝑑 −

𝑉1 = 𝑒𝑑𝑎 −

𝑉1 = 𝑒𝑑𝑎𝑏

6

?

Based on the result of the four iterations we select the final move with the minimal
value which corresponds to S2.

𝑉2 = 𝑏 −

𝑉3 = 𝑐 −

𝑉1 = 𝑒 −

𝑉4 = 𝑑 −

𝑉2 = 𝑏𝑑 − 𝑉3 = 𝑐𝑒 −𝑉1 = 𝑒𝑑 − 𝑉4 = 𝑑𝑎 −
𝑆1: 6/1 𝑆2 : 3/1 𝑆3 : 6/1 𝑆4 :  4/1

𝑆0: 19/4

Final move

The described steps allow us to determine the first move to perform given the most
preferred candidate of each voter. Following Protocol 5.2, we ask voter 2 to submit her
next preferred candidate resulting in R = {e, b � d, c, d}. Since there is no necessary
winner given R, in the next step S2 will be the root node and, similarly we perform
different iterations to select the next voter to ask. This process is repeated until a
necessary winner is reached given the different moves performed. Now, assume that in
the next moves we ask: V1 for her second preferred candidate and V3 for her second
and third preferred, resulting in R = {e � d, b � d, c � e � d, d} and d is a necessary
winner. Thus, we stop eliciting preferences from voters and d is the winner.
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5.4 Vote Elicitation Protocol Using a Heuristic Func-
tion

In this section, we propose another possible way to select the best voter during elic-
itation process. Now, we are no longer interested to select the voter using MCTS;
however, we propose a simpler heuristic to choose at each round the voter to whom it
is most relevant to ask to complete his k-vote. In the following, first we describe the
proposed heuristic then we present the elicitation process using this latter.

The main idea of the search heuristic is to identify two key candidates for whom we
want to gather more information. Then, if there is at least a voter whose current ballot
contains neither of these two candidates, query such a voter; otherwise, query a voter
whose current ballot contains one of these two candidates. Algorithm 5.3 presents the
proposed search method where given an incomplete profile R, the algorithm proceeds
as follows:

1) Compute the minimal score of each candidate Smin(x,R) for all x ∈ A.

2) Let d be one of the candidates with the highest minimal score, i.e. d ∈ argmaxSmin(x,R)
for x ∈ A.

3) Compute the maximal score of each candidate Smax(x,R) for all x ∈ A, x 6= d.

4) Let y be one of the candidates with the highest maximal score, i.e. y ∈ argmaxSmax(x,R)
for x ∈ A, x 6= d.

5) Let Voters denote the set of selected voters who meet certain criteria (detailed
below) by checking whether or not candidates d and y are present in their vote.
These voters are chosen if one of these conditions is met (in the following order):

Condition 1: voters who did not rank neither candidate d nor candidate y.
Select voters with the minimal number of questions asked.

Condition 2: voters who did not rank candidate d and the number of questions
previously asked is less or equal than m

2 . Select voters with the minimal
number of questions asked.

Condition 3: voters who did not rank candidate y and the number of questions
previously asked is less or equal than m

2 . Select voters with the minimal
number of questions asked.

Condition 4: if none of conditions 1-3 has been satisfied, we select voters with
the minimal number of questions previously asked.
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6) Finally, among all the voters available in Voters, we select one voter at random.

Algorithm 5.3: Search Algorithm
1 compute Smin(x,R) for all x ∈ A
2 d← candidate with the highest minimal score
3 compute Smax(x,R) for all x ∈ A
4 y ← candidate with the highest maximal score such that y 6= d

5 V oters← select voters according to Condition 1.
6 if Voters is empty then
7 Voters ← select voters according to Condition 2.
8 else if Voters is empty then
9 Voters ← select voters according to Condition 3.

10 else
11 Voters ← select voters according to Condition 4.

12 i← select a voter randomly among voters in Voters
13 return i

In the following, we use the proposed search method in an incremental elicitation
protocol which we call PSearch. Indeed, PSearch proceeds just like PMCTS by replacing
(in line 4) the selection of the next voter using Algorithm 5.1 by the search Algorithm
5.3.

Protocol 5.4: PSearch
1 for each voter i ∈ N do
2 R←Ask i to submit the name of her top candidate

3 repeat
4 i← the selected voter returned by the Search Algorithm 5.3
5 ask i to send the name of her next preferred candidate
6 update R by adding the new vote of the selected voter i
7 until there exists a necessary winner c given R;
8 return c

Example 5.6. Let us consider the complete profile of four voters having preferences
over five candidates A = {a, b, c, d, e}:

V1 e � d � b � c � a

V2 d � b � c � a � e

V3 c � a � e � d � b

V4 d � b � e � c � a
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In the following, in each round, we determine the voter to ask to complete his vote
using Algorithm 5.3. Tables below present the minimal and maximal scores of candi-
dates in each round. (To alleviate notation we will simply write Smin(x) and Smax(x)
for different completions of R.) Values in bold correspond to the highest minimal and
maximal scores.

In the first round, given the most preferred candidate of each voter, there is no nec-
essary winner. After computing the different scores, we choose a voter who did not
rank candidates d and c: namely, voter 1. Given the new voter’s preference and since
no necessary winner exists, in the second round, we ask the voter who did not rank
candidates d and e which corresponds to voter 3.

Round 1
R = {e, d, c, d}
x a b c d e

Smin(x) 0 0 4 8 4
Smax(x) 12 12 13 - 13
Condition 1: Ask voter 1

Round 2
R = {e � d, d, c, d}
x a b c d e

Smin(x) 0 0 4 11 4
Smax(x) 11 11 12 - 13
Condition 1: Ask voter 3

Since there is no necessary winner, we continue with a third round: we choose voters
according to condition 2: we select the voter who did not rank candidate d: namely,
voter 3. In the fourth round, we select voters who did not rank candidate c and with
the minimal number of questions previously asked. Thus, we choose between voters 2
and 4. Assume we select voter 2. Note that we cannot consider condition 2 (voters who
did not rank candidate d) because voter 3 was already asked to submit 3 candidates.

Round 3
R = {e � d, d, c � a, d}
x a b c d e

Smin(x) 3 0 4 11 4
Smax(x) 11 10 12 - 12
Condition 2: Ask voter 3

Round 4
R = {e � d, d, c � a � e, d}
x a b c d e

Smin(x) 3 0 4 11 6
Smax(x) 11 9 12 - 12
Condition 3: Ask voter 2 or 4

In the fifth round, we select the voter who did not rank candidate c and with the
minimal number of questions previously asked: namely, voter 4. Given the new voter’s
preference, candidate d is a necessary winner.
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Round 5
R = {e � d, d � b, c � a � e, d}
x a b c d e

Smin(x) 3 3 4 11 6
Smax(x) 10 9 11 - 11
Condition 3: Ask voter 4

R = {e � d, d � b, c � a � e, d � b}
x a b c d e

Smin(x) 3 6 4 11 6
Smax(x) 9 9 10 12 10
d is a necessary winner

5.5 Empirical Results

In this section we evaluate the average communication cost of PMCTS and PSearch. We
discuss experiments using the Mallows φ model for different values of φ. Our objective
is to determine the number of questions voters need to answer, on average, in order
to determine the winner under Borda and Harmonic rules. Note that for Borda and
Harmonic elections, in the worst case this number is m − 1, while for (say) plurality
elections, this worst case number is 1. We refer to this worst case number as PWorst.

We compare our results to the most common way of eliciting preferences iteratively
using top-k ballots, where voters are allowed to cast their preferences incrementally
starting by top-1 ballots, then top-2, etc., until there is sufficient information for know-
ing the winner. More precisely, in each round, given top-k ballots, we check whether
or not a necessary winner exists. If no necessary winner has been found, all voters are
asked to submit their next top-k preferred candidate. This elicitation process was used
by Kalech et al. [44] which we refer to as PRounds. For instance, in Example 5.6, in
order to determine the necessary winner, 2 rounds are needed, i.e. each voter submits
her top-2 preferred candidate.

For MCTS’s experiments, we fix the constant C to 0.3× (n×m) (0.3 was obtained
experimentally), 10.000 playouts were conducted for each move. All experiments were
performed on a 2.6GHz Intel dual Core i5 processor with 4GB of RAM memory.

For each experiment, we draw 1000 random profiles. We present simulation results
with m = 7 and n = 10 as we vary the value φ ∈ {0.7, 0.8, 0.9, 1}. Figure 5.4 (resp.
Figure 5.5) shows obtained results for Borda (resp. Harmonic) with PMCTS, PSearch
and PRounds, and we also show PWorst for comparison. Results show that in practice,
PMCTS, PSearch and PRounds ask much fewer questions than the worst case (PWorst).
For Borda rule, best results are depicted with PMCTS which is able to save up to
48% of communication cost followed by PSearch that reduces communication by 46%,
finally, PRounds where the savings present only 31%, when φ = 0.7. When φ = 1,
more information is needed from voters under PMCTS, PSearch and PRounds; however,



5.5 Empirical Results 131

the savings of PMCTS and PSearch are still notable compared to PRounds: PMCTS saves
up to 33% of voters preferences against 29% for PSearch and 17% for PRounds.
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Figure 5.4: Average communication cost of Borda rule with Mallows φ model when:
m = 7, n = 10 and φ ∈ {.7, .8, .9, 1}.
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Figure 5.5: Average communication cost of Harmonic rule with Mallows φ model when:
m = 7, n = 10 and φ ∈ {.7, .8, .9, 1}.

A similar behavior occurs when considering Harmonic rule: PMCTS outperforms
PSearch and PRounds. From the results in Figure 5.5, we can notice that Harmonic
requires less communication cost compared to Borda where the savings of Harmonic
with different values of φ are very important. Indeed, under Harmonic rule when
φ = 0.7, PMCTS saves up to 64% of voters’ preferences against 61% for PSearch and
55% for PRounds. As we increase φ (φ ∈ {0.8, 0.9}), the savings decrease by 5% (resp.
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7%) when φ = 0.8 and 10% (resp. 14%) when φ = 0.9 under PMCTS (resp. PSearch)
compared to the results when φ = 0.7. When φ = 1, PMCTS still outperforms the other
protocols, i.e. PMCTS needs only 48% of voters’ preferences against 54% under PSearch
and 58% under PRounds.

Figures 5.4 and 5.5 show that PMCTS has lower communication cost under both
Borda and Harmonic rules compared to the other protocols. For PMCTS, we limit
our experiments on small elections since evaluating the efficiency of MCTS with large
elections is challenging: it is computationally expensive especially when the number of
voters is high since it impacts the branching factor which prevents a deep look-ahead
and hinders the construction of an effective evaluation function. Even though our
conclusions are driven from experiments on small elections, we guess that the same
behavior will be seen with large (real) elections.

In the next experiments, dedicated to PSearch and PRounds, we consider real data sets
from Preflib presented in Table 4.3 (cf. Section 4.5.3.2) by excluding all partial ballots
from the data and use only complete ones. Figure 5.6 (resp. Figure 5.7) shows the
average number of questions voters asked by PSearch, PRounds and PWorst on real data
sets under Borda (resp. Harmonic) rule.
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Figure 5.6: Average communication cost of Borda rule with real data sets under PSearch,
PRounds and PWorst.

Consistently with the above experiments, results show that PSearch and PRounds sig-
nificantly perform better than PWorst especially under Harmonic rule. For instance,
for Dublin North data only 47% (resp. 35%) of the voters’ preferences are needed for
PSearch against 63% (resp. 45%) for PRounds under Borda (resp. Harmonic). Also,
results suggest that under Borda rule, PSearch outperforms PRounds by asking 7–16%
fewer questions; however, under Harmonic, the savings of PSearch are smaller compared
to PRounds, i.e. PSearch asks 1–10% fewer questions than PRounds.
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Figure 5.7: Average communication cost of Harmonic rule with real data sets under
PSearch, PRounds and PWorst.

Both protocols are much better than the worst-case analysis except for Meath and
Dublin West with Borda: all voters preferences are needed to determine the winner
when using PRounds (13 with Meath and 8 with Dublin West). This can be explained
by the vote’s distribution in these two data sets where the real winner does not appear
in the first places (top-1, top 2, top 3) in a massive way unlike other candidates (for
example in Dublin West the winner (b) appears 14% (resp. 17%, 16%) times in top-1
(resp. top-2, top-3) while the candidates (d) and (e) appear 22% and 25% in top-1,
respectively. Indeed, this prevents the necessary winner to be determined in early
rounds since his score will be very low compared to other candidates.

Results in Figure 5.7 show that the savings of Harmonic rule using PSearch are smaller
compared to PRounds. We may wonder whether the communication cost of Harmonic
could be improved if in PSearch instead of starting with the top-1 preferred candidate
of each voter, we ask the voters for their top-2 preferred candidate at the first round.
We denote such protocol by P 2

Search. Figure 5.8 reports on results of the average
number of questions asked under PSearch, P 2

Search, PRounds and PWorst with different
real data sets. Depicted results show that P 2

Search asks 2–5% fewer questions than
PSearch. Consequently, the savings of P 2

Search increase compared to PRounds by asking 3–
12% fewer questions. Since Harmonic rule has a significantly lower communication cost
compared to Borda, starting with top-2 ballots of each voter will allow the voting center
to choose the "right" voter to query among the available ones which will accelerate the
process of determining the necessary winner.
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Search, PRounds and PWorst.

5.6 Conclusion

In this chapter we have proposed an interactive elicitation process using two heuristic
methods to choose the voter to query in each round. The first heuristic uses the UCT
selection function of MCTS technique while the second one considers a simple search
heuristic able to select the voter (under certain conditions) for whom we want to reveal
more information. Our empirical study shows that these two heuristics are efficient
to reduce the number of questions asked to voters under Borda and Harmonic rules.
From the results, both rules have low communication cost, either with PMCTS (Section
5.3) or PSearch (Section 5.4). Although PMCTS outperforms PSearch; however, under
PMCTS the computation and communication costs are not comparable. Indeed, with
large elections the computation cost will be too heavy a burden to be supported by
the voters, unless they may have to wait longer before being asked the next question.

The proposed elicitation protocols can be generalized to other voting rules. More
precisely,

• PMCTS can be adapted to any voting rule; however, it will nevertheless be neces-
sary to have an algorithm to determine whether x is a necessary winner, which
can sometimes be NP-complete (For instance the problem is coNP-complete for
Copeland and ranked pairs, while it is polynomial for Maximin and Bucklin [75].)

• PSearch only works for rules based on score maximization, such as: positional
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scoring rules (beyond Borda and Harmonic), Copeland and Maximin. Using this
class of rules allows us to determine the minimum and maximum scores and
identify the two key candidates for whom we want to gather more information.





Conclusion and perspectives

In this dissertation we have taken a comprehensive look at the amount of information
needed to accurately decide the election’s outcome given truncated ballots under dif-
ferent voting rules. We have considered successively two contexts and their associated
questions:

First, we have assumed that the information from the voters is communicated in a
single shot where each voter submits her k preferred candidates (for a fixed k). So using
the top-k ballot, we were interested to approximate the true winner for different voting
rules (Borda, Harmonic, Copeland, Maximin, ranked pairs and STV) by proposing "k-
truncated approximations". The key question that we were interested in is: How often
will these approximations lead a mistake and output a different winner than we would
have obtained with complete ballots? To answer this question we have measured theo-
retically, for rules whose definition is based on score maximization (Borda, Harmonic,
Copeland and Maximin), the score ratio between the true winner and the winner of the
k-truncated rule. The obtained worst-case bounds are rather negative: very negative
for Copeland (∞) and Maximin (m − k), less so for Borda (Θ(m

k
)), and even less so

for Harmonic (Θ( m
k log k )). Experimental results on random Mallows model as well as

real data suggest that a very small value of k work very well in practice which largely
contrasts the obtained theoretical bounds. Best prediction is always obtained when
considering Harmonic rule. We have also measured empirically the probability that
the approximate rule selects the same winner as the original rule. Results confirm the
conclusion obtained with the score ratio and suggest that small values of k work very
well in practice. For instance with real data, eliciting k = 1

4m is a good predictor of
the correct winner.

In the same context (i.e. top-k communicated in a single shot), we have paid a
specific attention to STV rule which is of particular interest in voting since it is hard
to manipulate and it enjoys a very important normative property: clone-proofness.
In fact, several questions arise: To which (quantitative) extent clone-proofness is pre-
served when replacing complete ballots by k-truncated ones ? What is the connection
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between STVk (the STV version with k-truncated ballots) and the plurality with runoff
rule? Knowing that deciding whether a candidate is possible winner for STV given
partial profile is NP-complete; what is the complexity of this problem when consider-
ing "uniform truncated ballots" (fixed k)? Our conclusions about these questions are,
respectively, as follows:

• For the question of clone-proofness, results using randomly generated profiles (on
Mallows model by varying φ) show that resistance to cloning increases rapidly
with k and decreases with φ. Also, it significantly increases with the number of
voters. With real data, resistance to cloning increases rapidly with k, even more
rapidly than with randomly generated profiles. The same result holds with the
k-truncated version of the ranked pairs (RP) rule, namely RPk.

• About the connection between STVk and the plurality with runoff, we have stud-
ied the question empirically (on Mallows model by varying φ) and we conclude
that STVk for k ≈ 2

5m (resp. k = 1) coincides with plurality with runoff when
φ = 0.8 (resp. φ = 0.7). For φ = 1, STV is very far from plurality with runoff.

• Results about complexity are very interesting, in fact we have proved that with
k = 1 determining the possible winner for STV can be solved in polynomial time,
but the problem remains NP-complete when k > 2 mainly due to the number of
completions. While the problem is difficult in the worst case, we have showed
that, in practice, there is a simple algorithm (PWtop-k Algorithm 4.1) that is able
to classify candidates into three classes: possible winners, necessary losers and
candidates that we cannot decide on. Results on randomly generated profiles
show that the proposed algorithm significantly reduces the set of candidates that
we cannot decide on, thus, the number of completions. Results on Mallows model
by varying φ show that when φ = 0.7 only one candidate out of 7 is neither
possible winner nor necessary loser given top-2 ballots. For φ = 0.8, the set of
candidates that we cannot decide on is present only with a probability of 2.7%
and it decreases to 1.6% (resp. 1.08%) when φ = 0.9 (resp. φ = 1).

Second, we were interested in computing the real winner, rather than an approximate
one, by allowing interactive communication. We have studied possible ways to minimize
the required amount of communication. More precisely, the question here is: What is
the sufficient number of bits (on average) that must be communicated by the voters to
the voting center so that the winner is determined ? To answer this question, we first
proposed exact methods for interactive vote elicitation to choose the voter to query
in each round until the winner is known. Then we have explored innovative heuristic
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methods, based on evaluation functions that will guide the choice of the next voter to
query. We still focus on top-k queries where one voter will be asked at a time and, if
she is queried for the kth time, she will be asked to provide her kth preferred candidate

• For exact methods, we have focused on STV rule. Building on a protocol proposed
by Conitzer and Sandholm [25] which we called P1, we have proposed a new
protocol (P2) able to reduce the amount of communication required in practice for
STV. Then we have empirically studied the average communication complexity
of P1 and P2, based on randomly generated profiles and on real-world election
data. Our results show that STV has low communication cost in practice when
using the proposed protocol P2 by asking 5–10% fewer questions compared to P1.
When using P2, most of the voters are asked to submit only their top preferred
candidate. In P1, it is more common to be asked to submit two preferences.
Thus, the low communication cost of STV might be a reason to prefer it to other
traditional voting rules, such as Borda.

• For heuristic methods, first we have adapted the Monte Carlo Tree Search (MCTS)
approach to vote elicitation in order to select the most prominent voter to ask in
each round based on its evaluation function Upper Confidence Bounds for Trees
(UCT). We called such protocol PMCTS. Second, we have proposed a simpler
interactive protocol so called PSearch that uses an alternative heuristic method
able to select the voter (under certain conditions) for whom we want to reveal
more information. Results on randomly generated profiles and real data show
that PMCTS and PSearch are efficient to reduce the number of questions asked
to voters under Borda and Harmonic rules. From the results, PMCTS has low
communication cost under both Borda and Harmonic rules.

Though we present a significant body of research in this dissertation, there are a
number of interesting directions for future research:

• For the k-truncated approximations detailed in Chapter 3, we would like to con-
sider approximations of a voting rule (here, top-k approximations) as a genuine
rule, and to study their normative properties as doing by Caragiannis et al. [18].

• Complete our study on STV detailed in Chapter 4, by considering STV in another
incomplete information context, namely vote streams, where voters arrive one at
a time [10, 31]. The key practical question is to decide when we have enough
information to eliminate one more candidate, so that the next voters will have
less information to communicate.
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• Complete our results on the use of heuristics on vote elicitation (in Chapter 5)
by testing the performance of PMCTS and PSearch with other voting rules (beyond
Borda and Harmonic).

• Many interesting extensions can be considered when using MCTS (Chapter 5) in
vote elicitation:

– In the simulation step, instead of playing random moves from all possible
legal moves, it would be interesting to use a predefined simulation strategy
to choose moves from a subset of available moves. This subset may help
to reach an end game faster and increase the chance to win. For instance,
using the output of the search heuristic (of Section 5.4) to select the next
voter when running the simulation, would be a very good starting point for
testing the MCTS’s performance with a predefined simulation strategy.

– To reduce the computational cost of the simulation step, instead of simulat-
ing the game until the end, an evaluation cutoff strategy could be used to
assess the game prematurely. An alternative is the fixed-length cutoff strat-
egy [52] where the simulation stops after a fixed number of d moves have
been executed in the playout.

– To reduce the computational cost of MCTS in a vote elicitation context,
MCTS has to be parallelized. Three possible ways exist to accomplish this
task: (1) leaf parallelization [19] where independent simulated games are
played in parallel for each leaf node, (2) root parallelization [19] where sep-
arate MCTS trees are created and when some number of iterations are fin-
ished, trees are combined to give a better statistic, and (3) tree parallelization
[36] where one shared tree is created from which several simultaneous games
are played.
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RÉSUMÉ

Les règles de vote classiques supposent que les bulletins de vote des électeurs sont des ordres de préférence complets
sur les candidats. Cependant, lorsque le nombre de candidats est suffisamment élevé, il est trop coûteux de demander
aux électeurs de classer tous les candidats. Il y a donc un compromis à faire entre l’efficacité d’une méthode d’agrégation
des préférences et la charge de communication qu’elle fait peser sur les électeurs.

Dans cette thèse, nous abordons ce problème en suggérant de demander aux électeurs de ne classer que leurs k

candidats préférés (où k peut varier selon les électeurs et/ou au cours du processus). On dit que de tels votes sont k-
tronqués. Nous étudions la quantité d’information nécessaire pour déterminer le résultat de l’élection (de manière exacte
ou approchée) à partir de bulletins tronqués selon différentes règles de vote et nous proposons et analysons différentes
méthodes permettant un compromis entre précision du résultat et quantité de communication requise; certaines ne
requièrent qu’une seule phase de communication, alors que d’autres sont dynamiques.

MOTS CLÉS

Choix social computationnel, Approximation, Bulletins tronqués, Protocole de communication

ABSTRACT

Classical voting rules assume that voters’ ballots are complete preference orders over candidates. However, when the
number of candidates is large enough, it is too costly to ask the voters to rank all candidates. There is therefore a trade-off
between the efficiency of an aggregation method and the communication burden it places on voters.

In this thesis, we address this problem by suggesting to ask voters to report only their k preferred candidates (where k may

vary depending on the voters and/or during the process). The obtained ballots are then said to be k-truncated. We study

the amount of information needed to determine the outcome of the election (exact or approximate) from truncated ballots

with respect to different voting rules and we propose and analyze different methods allowing a compromise between the

accuracy of the result and the amount of communication required; some require only one round of communication, while

others are interactive.

KEYWORDS

Computational social choice, Approximation, Truncated ballots, Communication protocol
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