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“The most exciting phrase to hear in science,
the one that heralds the most discoveries,

is not "Eureka!" (I found it!) but ’That’s funny...”
— Isaac Asimov

“Highly organized research is guaranteed to produce nothing new.”
— Frank Herbert





R É S U M É F R A N Ç A I S

La reproduction du son est devenue si courante, si connue et si bon
marché qu’un livre et quelques connaissances en électronique perme-
ttent à n’importe qui de construire un haut-parleur. Le principe de
fonctionnement d’un transducteur électroacoustique commun repose
sur une bobine et un aimant qui induisent la vibration d’une mem-
brane générant des ondes sonores. Ces systèmes mécaniques ont été
étudiés depuis plus de cent ans, sont bien compris et sont utilisés dans
de nombreux domaines différents. Les défis actuels en matière de re-
production audio pour les fabricants de hifi sont principalement liés à
la compréhension d’un comportement non linéaire spécifique ou à la
création de nouvelles formes, de nouvelles géométries pour les haut-
parleurs tout en conservant une très haute fidélité de reproduction.

Néanmoins, ces transducteurs électroacoustiques présentent toujours
des problèmes inhérents, spécifiques à la manière dont le son est pro-
duit. La génération mécanique, par exemple, est un mécanisme réso-
nant (les haut-parleurs ont besoin d’un grand baffle pour les basses
fréquences et d’un petit baffle pour les hautes fréquences). L’utilisation
de plusieurs haut-parleurs et filtres électroniques est nécessaire pour
obtenir une génération sur une large bande de fréquence. En outre,
au-dessus des fréquences audibles, les transducteurs électroacoustiques
ont des difficultés à fonctionner et sont généralement remplacés par un
autre moyen mécanique de produire le son : les dispositifs piézoélec-
triques. Les sources piézoélectriques sont généralement utilisés pour
des applications spécifiques (génération acoustique sous l’eau pour les
sonars, génération d’ultrasons... etc) mais restent cependant lourds et,
étant également basés sur un principe mécanique, sont donc résonants.
À l’heure actuelle, aucun générateur acoustique léger et non résonant
n’est disponible.

La génération du son par phénomène thermoacoustique consiste à
utiliser un matériau à faible capacité thermique et à haute conductivité
thermique pour engendrer une onde sonore. Chaque fois qu’une én-
ergie alternative est fournie au matériau, le profil de température de
l’échantillon suit la variation de l’énergie. Cette variation rapide de la
température excitera l’air à proximité de l’échantillon, créant ainsi un
état alternatif de compression et d’expansion du milieu dans lequel se
trouve le matériau (gaz ou liquide). Dans l’air par exemple, cela créera
une onde de pression et donc un son. Un matériau approprié pour créer
ce phénomène thermoacoustique est appelé un thermophone.
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La facilité d’accès croissante à des machines à forte valeur technologiques
pour la fabrication de matériaux nanostructurés a en grande partie
contribué à raviver l’intérêt pour les thermophones au XXIème siècle.
Divers thermophones ont été étudiés et des modèles théoriques ont été
développés en parallèle de ces expériences. Contrairement à leurs homo-
logues mécaniques, les thermophones génèrent un son à large bande
jusqu’au MHz. De plus, le processus de génération acoustique est in-
dépendant de leur forme et leur procédé de fabrication les rend légers
avec une géométrie très flexible. Les thermophones ont cependant mon-
tré une très faible efficacité par rapport aux haut-parleurs traditionnels.
Ils sont également très fragiles et restent un sujet de recherche très spé-
cialisé qui empêche des améliorations rapides et généralisées. Malgré
cela, les thermophones constituent une alternative prometteuse pour la
génération acoustique des années à venir.

Parmi les thermophones les plus récemment testés il y a les mousses
thermoacoustiques à base de carbone. Leur géométrie unique permet
d’augmenter la surface de contact avec l’air nécessaire pour que le pro-
cessus thermoacoustique se produise efficacement. Dans ce manuscrit
de thèse, l’accent sera mis sur la compréhension du processus ther-
moacoustique et plus spécifiquement sur la génération de matériaux
en forme de mousse. Ainsi, les thermophones peuvent-ils remplacer les
haut-parleurs traditionnels ? Auront-ils une place dans les dispositifs
sonores des prochaines années ? et enfin est ce que les structures en
mousse représentent la forme la plus adaptée à la génération thermoa-
coustique ?

Cette thèse CIFRE-Défense a été réalisée dans le cadre d’un projet de
collaboration entre l’Institut d’Electronique, de Microélectronique et de
Nanotechnologie (IEMN), Thales TUS et l’UMI CINTRA de Singapour
(CNRS, Thales, Nanyang Technological University).

Le premier chapitre de cette thèse présente une analyse approfondie
de l’état de l’art de l’histoire de la thermoacoustique et plus particulière-
ment du thermophone au cours des 200 dernières années. Le contexte
et le but de ce travail y sont détaillés en se basant sur la littérature exis-
tante présentée. Le deuxième chapitre fournit les détails mathématiques
sur la construction des modèles théoriques. Des modèles multicouches
en milieux continus appelés une température (1T) sont créés sur la base
d’hypothèses de propagation d’ondes planes, d’ondes cylindriques et
d’ondes sphériques. Un nouveau modèle basé sur une hypothèse dite
de deux températures (2T) est également créé pour les ondes planes afin
de représenter plus précisément la génération thermoacoustique dans
les thermophones en forme de mousse. Ces modèles sont comparés
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aux modèles et expériences de la littérature dans le troisième chapitre.
Ils sont analysés et une compréhension approfondie des capacités des
thermophones est fournie. Enfin, le quatrième chapitre présente des
expériences réalisées en partenariat avec CINTRA Singapour et plus
particulièrement avec la doctorante Ngoh Zhi-Lin. Des mousses 3D à
base de carbone (3D-C) créées à CINTRA sont utilisées et leurs perfor-
mances confrontées à nos modèles théoriques. De plus, d’autres expéri-
ences acoustiques mais aussi de caractérisations réalisées à l’IEMN sont
décrites et analysées. Le rayonnement acoustique est ainsi expliqué et
des conseils de manipulation sont fournis. Les pistes expérimentales et
les applications possibles sont enfin discutées pour des travaux futurs.

En ce qui concerne les modèles théoriques, le modèle multicouche 1T
pour ondes planes permet d’avoir une réelle flexibilité dans la concep-
tion des thermophones, jamais atteinte auparavant dans la littérature.
Ce faisant, il permet d’améliorer la compréhension des thermophones
et la façon de les améliorer. Les modèles multicouches cylindriques
et sphériques équivalents offrent un avantage similaire mais d’un in-
térêt moindre. Il est constaté que ces géométries se retrouvent surtout
à l’échelle micro et que le besoin d’un modèle multicouche complexe
n’est pas aussi établi que pour des ondes planes. Néanmoins, ces mod-
èles sont les premiers à prendre en compte la propagation d’ondes dans
le solide et à considérer la viscosité des milieux de propagations. Quant
au modèle 2T, il est prouvé qu’il permet une meilleure représentation
du rayonnement thermoacoustique des matériaux épais de type mousse.
Cette idée de l’existence simultanée d’un solide et d’un fluide n’avait ja-
mais été appliquée auparavant à la génération thermoacoustique.

L’étude qui en résulte concorde avec diverses analyses théoriques et
expérimentales tirées de la littérature où les thermophones sont utilisés
dans un certain nombre de configurations différentes. De plus, de nou-
velles situations sont étudiées en utilisant la flexibilité de nos modèles.
L’influence de l’épaisseur de la couche hydrophobe sur un échantillon
immergé dans de l’eau est par exemple étudiée et pourrait par la suite
être confrontée à des mesures réelles.

En utilisant diverses configurations expérimentales, des mesures prou-
vent l’efficacité de la génération acoustique des mousses de carbone
dans l’air jusqu’à 1MHz. Cependant des difficultés liées à la manipula-
tion de ces échantillons sont soulevées et peuvent servir de guide pour
les futurs utilisateurs expérimentaux. Tout bien considéré, la géométrie
de la mousse présente la propriété très intéressante d’avoir une sur-
face spécifique élevée permettant une grande surface de contact pour
éviter la surchauffe et pour permettre la génération de l’effet thermoa-
coustique à grande échelle. Malgré cela, à ce jour ses performances
n’atteignent pas l’efficacité maximale théorique atteinte uniquement par
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les forêts de nanotubes de carbone (CNT). L’amélioration apportée à
la structure ne compense pas la faible efficacité de l’échantillon. Il est
néanmoins espéré que cette thèse sensibilisera quand à l’intérêt de créer
de nouvelles structures dans un but thermoacoustique, dans l’espoir
d’améliorer la génération du son à partir des thermophones.

Dans l’ensemble, les thermophones sont une alternative prometteuse
pour la production de sons. Bien que leur faible efficacité actuelle les em-
pêche de remplacer les haut-parleurs commerciaux, leur mécanisme de
génération sonore non mécanique induit une large bande de fréquences
de fonctionnement. En outre, leur légèreté, leur géométrie flexible, leur
petite taille et leur faible coût de production en font une nouvelle alter-
native potentielle pour des applications de sonar ou de transducteurs
ultrasoniques. Le 3D-C présente notamment un avantage par rapport
aux CNT pour la fabrication à grande échelle, car les CNT nécessitent
un processus fastidieux consistant à utiliser un nanomanipulateur pour
acquérir leurs brins à partir de forêts de CNT. La capacité du 3D-C et
des thermophones en général à émettre un son de manière thermoa-
coustique mérite donc d’être étudiée en profondeur.
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“It is sometimes an appropriate response to reality to go insane.”

— Philip K. Dick
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I N T R O D U C T I O N

Sound reproduction has become so common so well known and so
cheap that anyone with a book and some electronic knowledge could
build a loudspeaker. The basic working principle of a common electroa-
coustic transducer consist of a coil/magnet core which induces vibra-
tion of a membrane system eventually generating sound waves. Those
mechanical system have been studied for more than a hundred years,
are well understood and are used in many different areas. Today’s chal-
lenges regarding audio reproduction for hifi manufacturer are mostly
about understanding peculiar non linear behavior or about trying to
create new shapes, new geometries for loudspeakers while keeping a
very high reproduction fidelity.

Nonetheless those electroacoustic transducers still have some inher-
ent issues specific to the way the sound is produced. The mechanical
generation for instance is a resonant mechanism (loudspeakers need
a large baffle for low frequencies and a small one for high frequen-
cies) and the use of multiple drivers and filters are needed to achieve
an almost wideband generation. Furthermore, above the hearing range
electroacoustic transducer have difficulties to perform and are usually
replaced with another mechanical way to produce sound: piezoelectric
devices. Piezoelectric devices are usually used for specific applications
(underwater for sonar application, ultrasound generation... etc) but are
heavy and are also mechanically based and thus resonant. As of today,
no lightweight and non-resonant alternative are currently available.

Sound generation using thermoacoustics consists of using a material
with a low thermal capacity and a high thermal conductivity to generate
sound. Whenever an alternative power is supplied to the material, the
temperature’s profile of the sample will follow the power’s variation.
This rapidly changing temperature will excite the air in the vicinity
of the sample hence creating an alternative state of compression and
expansion of the medium in which the material is (gas or liquid). In
air for instance, this will create a pressure wave and thus sound. A
suitable material to create this thermoacoustic phenomenon is called a
thermophone.

Due in part to the growing ease of access of technological machin-
ery for the fabrication of nano-structured materials, an interest toward
thermophones has been rekindle in the XXIth century. Various ther-
mophones have been studied and theoretical models have developed
alongside those experiments. Unlike their mechanical counterpart, ther-
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mophones display more wideband sound generation (up to the MHz),
are lightweight and do not use any rare earth material. Additionally,
the thermoacoustic generation process being independent of the shape
of the sample allows them to have a very flexible geometry. Thermo-
phones however have shown a very low efficiency compared to tradi-
tional speakers. They are also very fragile and are still a very niche re-
search subject, preventing fast and widespread improvements. In spite
of that, thermophones are a promising alternative for acoustic genera-
tion in the following years.

One of the most recently tested thermophones are carbon based ther-
moacoustic foams. Their unique geometry allows for an increased con-
tact surface with the air necessary for the thermoacoustic process to
occur efficiently. In this work the focus will revolve around the under-
standing of the thermoacoustic process and more specifically applied to
the generation of foam like materials. Several questions are now raised
like: can thermophone replace traditional loudspeaker? Will they have
a place in the sound generation devices in the following years? and are
foam like structures the most adapted shape?

The first chapter of this thesis presents an extensive state of the art
literature review of the history of thermoacoustics and more specifically
thermophone in the past 200 years. The context and motivation of this
work is presented based on the existing literature. The second chap-
ter provides the mathematical details of the theoretical models created.
Continuous multilayer models are created assuming plane waves, cylin-
drical waves and spherical waves propagation. A novel model based
on a two temperatures assumption is also created for plane waves in or-
der to represent more accurately the thermoacoustic generation of foam
like thermophones. Those models are compared to models and exper-
iments from the literature and the analysis is presented in the third
chapter, providing a deep understanding of thermophone capabilities.
Lastly, chapter four presents experiments realised at and in partnership
with CINTRA Singapore and the PhD student Ngoh Zhi-Lin. 3D car-
bon based foam created in CINTRA were used and confronted to our
theoretical models. Additional measurements performed at the IEMN
are also presented and insights regarding the acoustic radiation as well
as manipulation advice are given. Experimental leads and possible ap-
plications are finally discussed for future work.
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S TAT E O F T H E A RT A N D M O T I VAT I O N





1
U N D E R S TA N D I N G A T H E R M O P H O N E

Today, sound reproduction has become a part of everyday life. Whether
it is for musical purposes or speech reproductions, loudspeakers are
used everywhere for professional and personal use. They are made of
a coil/magnet core that induce vibration of a membrane system, even-
tually generating sound waves. For very specific needs (buzzer device,
underwater application...), piezoelectric devices can also be used, but
they remain a minority compared to loudspeakers. The efficiency of
those devices has largely been proven but despite huge technological
improvement of those technologies over the past century, some limita-
tions remain. Indeed, those mechanical systems are inherently resonant
and only the use of multiple drivers and filters allows to achieve an
almost wideband generation across the hearing range (20-20kHz). Fur-
thermore the use of magnet and rare earth materials make loudspeakers
and piezoelectric speakers overall heavy and expensive. As of today no
widely used alternative is currently available for cheap, lightweight and
wideband sound generation.

In this Chapter it will be shown that Thermophones are promising
candidates for sound generators displaying such properties. Those de-
vices are using a thermoacoustic effect to generate sound, meaning that
it is not mechanically based and so does not create any resonances.
To put it in a nutshell, due to the high thermal conductivity and low
thermal capacity of the material used, whenever a varying energy is
supplied to the device, its temperature profile will follow the energy
variation even at high frequencies. The air in the vicinity of the sample
will compress and dilate as a result of the varying temperature, thus
generating sound as described in Fig.1.

Figure 1: Schematic of thermoacoustic sound generation

3
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In order to figure out how and when this physical properties was
discovered, an historical review will first be presented. It will help un-
derstanding why thermophones where not as investigated as mechani-
cal loudspeakers and why thermophones were not of prime interest for
a long time. A state of the art of the current theoretical models used
in the literature is then laid out which will help in the understanding
of the main advantages of thermoacoustic generation. The necessary
properties to make an efficient thermophone are also explained. Those
information are necessary to understand fully the next section display-
ing all the different working thermophones used in the literature. Dif-
ferent types of materials and geometries are reported as working ther-
mophones but not all display similar efficiency. Different techniques to
try and improve thermophones’ efficiency in the literature are then de-
scribed. Those idea all have a specific commercial application in mind
for thermophones proving the interest in this kind of technology. Fi-
nally, now aware of thermoacoustics’ history as well as of its technolog-
ical state, this first Chapter will end by highlighting the weak points of
the literature and point out the objectives of this Thesis work.

1.1 thermophone’s history

In this section a chronological historic of thermophones is laid down.
It will be shown that thermophones as an alternative to mechanical
speakers have been known for about as long as traditional speakers,
and that even though they were neglected for a long while, they recently
gained a lot of interest.

1.1.1 Before 1920: Early Observations and Experiments

Back in the XVIth Century, a Buddhist monk reports in his diary the
use of a Kibitsunokama in historical Japanese Shrine Ritual. As seen in
Fig.2, it consists of an barrel mounted on an iron bowl. A mesh grid
inside the barrel is covered with rice grains and liquid water is heated
inside the bowl. This would produce a sound used for fortune telling
in former Japan [4].

This phenomenon of sound produced with heat using a tube was later
reproduced in 1777 by Dr.Higgins students [5]. Those "singing flames"
experiments were formalised in two different forms by Sondhauss and
Rijke in 1850 and 1859 respectively [6, 7]. The experimental setups now
bearing their names can be seen in Fig.3 as used by Herschel in 1874.

The Rijke tube is a simple vertical cylinder open on both ends with
a heat source (wire mesh or gause) inserted in one half of the tube. A
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Figure 2: Schematic of a Kibitsunomaka [4]

convective gas flow coming through the tube is heated by the mesh and
the expansion, compression of the gas as it interacts with the walls of
the tube creates a standing wave. Sound is then heard proportionally to
the length of the tube. It is understood that the Kibitsunokama was just
an early form of a Rijke tube.

The Sondhauss tube is an open/close tube with a bulbous structure at
the close end. When the closed end is heated, sound is produced from
the compression/expansion of the air as it flows gradually from the
cool region in neck to the hotter part in the bulb. The emitted frequency
is dependent on the structure of the bulb and the length of the neck.
This experiment is also informally known by glass blowers who have
been hearing sound when blown glass bulbs began to cool down. Those
experiments are the early stages of what will be called thermoacoustic
engines and refrigerators, where the relationship between an acoustical
standing wave and a heated stack inside a tube is exploited one way
or another. Sound can be created by differences in heat and, conversely,
sound can be used to create hot and cold temperatures. The theoretical
framework of thermoacoustic generators can be found in the equation
of Swift (1988) [8] but will no longer be discussed in this thesis as this
is not its subject.

It is interesting to realise that Sondhauss tube looks similar to well
known Helmholtz resonator. As a matter of fact, Helmholtz published
his book Sensation of Tone in the same period, precisely in 1863 [11].
In this book, Helmholtz worked on the production of vowel sound, a
topic which Alexandre Graham Bell was also working on. However,
due to the fact that A.G. Bell did not speak German, a mistranslation of
Helmholtz’s book lead Bell to think that the "tuning fork contraption"
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(a) (b)

Figure 3: Schematics (a) and drawings (b) of the Sondhauss and Rijke Tubes
experiments used by Herschel in 1874 [9, 10]

that Helmholtz was using were electrically driven [12]. This misunder-
standing lead Bell to work on the production of sound using electricity
and eventually invented the telephone in 1876.

The invention of the telephone increased the interest of sound produc-
tion by all means. In 1878 Rayleigh laid down the theory of the Sond-
hauss and Rijke tubes [13] and the same year the term "thermophone"
was first coined by Weisendanger [14]. In this letter Weisendanger pro-
vides an alternative to Bell’s telephone which, he described, "will soon
pass over the to the long list of scientific toys". Thin insulated wires pro-
duced sound through the passage of current which was then amplified
with a resonator. If Weisendanger failed to engage much more research
on thermophones, some very ground breaking ideas can be found. For
instance he pointed out the advantage of not needing a magnet or mem-
brane, and he foresaw the difficulty to find material that would be able
to follow the "successions of changes in temperature so infinitely rapid". Ac-
tually, he even already recommended the use of carbon as potentialy ef-
ficient thermophones. At this point however, the sound generation was
explained by the thermal expansion of the wire due to the fluctuating
heat. Those comments and assumptions will be confirmed or disproved
in the next section.

The idea that straight metal pieces could produce sound if driven by
a battery was also reported by Preece in 1880 [15] but this momentum of
research on thermophones was shifted by the publication of Bell & Tain-
ter in 1880 about a photophone (Fig.4) [16]. This lead to the invention of
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yet another side branch of thermoacoustic called photothermoacoustic,
where instead of generating the thermoacoustic process using electric-
ity, it is created using light. Some interesting early work triggered by
Bell & Tainter was done in 1881 by Preece [17] and Mercadier [18–20]. If
the focus of this thesis is on thermophone, its history is closely related
to photothermoacoustic and will be mentioned again throughout this
thesis. For the interested reader, a more thorough historical review of
photoacoustics in general and its more recent applications can be found
in Manohar & Razansky (2016) [21].

Figure 4: Schematic of a working Photophone as described in 1880 [16, 21]

In 1898 Braun also investigated thermophones[9] and, as Weisendan-
ger a few years priors, attributed the sound generation to the thermal
expansion of the sample. In 1915 De Lange rekindled an interest in ther-
mophones [22] that lead to the publication of what is considered the
first main paper about thermoacoustic theory by Arnold & Crandall in
1917 [23]. This theoretical model was improved by Wente the same year
[24].

In the XIXth century, acoustics was of primary interest and the major
fields of thermoacoustics were developed during that time. Early exper-
iments highlighted the relationship between sound and heat in a tube
with a stack that will later lead to thermoacoustic engines and refriger-
ators. The invention of the telephone was of prime importance at that
time, and while trying to improve it, thermophones were created. Pho-
tothermoacoustics was then discovered while trying to communicate
using light, opening a new scientific field of research. The improvement
of the telephone and of loudspeakers reduced the interest on thermo-
phones and we had to wait for the early XXth century for the thermoa-
coustic phenomena to be understood and put into equations, paving
the way for understanding and improvements of thermophones.
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1.1.2 1920 to 2000: Forgotten and Disinterested

One would think that with Arnorld & Crandall’s theory on thermo-
phone, an interest would surge about this field of research. On the con-
trary though, thermophone have then been left aside for a long time. In
the first half of the XXth century, thermophones were relegated as poten-
tial calibration device for microphones. The idea was first investigated
by Wente in 1921 [25] and was latter developed by Sivian and Ballantine
in the 1930’s [26, 27]. At this point the thermophone is admittedly the
equivalent of a pistonphone and no other use is seriously considered.

In 1947 Fairbank investigates the thermophone as a source of sound
in liquids. This novel idea faced similar limitations as fifty years prior
being mainly "the heater element [which] should be as thin as possible with a
low heat capacity and high thermal conductivity" [28]. Furthermore, the ex-
periment was conducted in liquid helium and liquid hydrogen to have
more convenient diffusivity and thermal expansion than in water. This
left room for improvement to use thermophones as compact precision
sound sources for underwater purposes.

In 1955 thermally induced sound fields are again investigated us-
ing conservation equations [29] and detailed theory on the gold sheet
thermophone used by Balantine in 1932 seen in Fig.5, is laid down by
Trilling [29]. Once again however, this article in French failed to rekin-
dled an interest for the thermophone and mainly the photoacoustic re-
mained of interest at that time [21]. A Generalised theory of the photoa-
coustic effect based on the conservation equation is written in 1978 by
McDonald [30] and is worth mentioning here since, for simplicity, the
article assumes that all absorbed light is converted to thermal energy
and that the light is sinusoidally chopped. In other words, this photoa-
coustic theory is also valid for regular thermophones where the thermal
energy is provided by an electrical current instead of light.

Thermophones had to wait for the end of the XXth century before
technological improvement allowed the fabrication of efficient thermo-
phones. In 1999 Shinoda et al. tested a thin aluminium film on porous
silicon and was able to measure 74dB at 3.5cm distance with a power
consumption of 1W.cm−2. This thermophone also displayed a flat fre-
quency response up to 100kHz [32]. This article won back scientific
interest toward thermophones and proved that the main obstacle of
thermoacoustics was the fabrication of suitable devices, as foreseen by
Weisendanger one hundred years too early [14].

In the XXth century, despite an early theoretical development of ther-
moacoustic theory, thermophones’ efficiency were still far from com-
peting with traditional loudspeaker. Some tried to use them for micro-
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Figure 5: Gold sheet thermophone of Ballantine 1932 [27, 31]

phone calibration but all in all the lack of adapted material prevented
any major improvement in this field. Only in 1999 new results with
thin aluminium film on porous silicon initiated a wake up call that
technological processes were mature enough for the fabrication of new
relevant thermophones.

1.1.3 2000 Onward: Regained Interest and Proliferation of Materials

Most thermophones can be regrouped by geometry. Weisendanger in
1878 used wires [14] but were then quickly replaced by thin metal strips
by Arnold & Crandall in 1917 [23]. Similarly, gold sheets were used by
Balantine in 1932 [27] as seen in Fig.5 and such metal sheets continue
to be tested as thermophones today[32]. This section aims to be as ex-
haustive as possible and to present all working thermophones used in
the literature for the past 20 years. In order to highlight their main sim-
ilarity, they are regrouped by geometry.

1.1.3.1 Sheets and Papers

One could argue that, in 1999, if Shinoda defended that thermoacoustics
was generated from a porous silicon sample, it was actually the thin alu-
minum sheet that acted as a thermophone and the porous silicon was
only an adequate substrate. This new thermophone allowed Kihara et
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Figure 6: Flexible aluminium electrode Thermophone [37]

al. in 2006 to take advantage of the ultrasonic sound generation to re-
produce mouse pups vocalizations [33]. In 2011, Tian et al. published
multiple papers about thermophones. Making use of the high electrical
conductivity, the flexibility and of the transparency of Indium Tin Oxide
(ITO), films of ITO on glass and polyethylene terephthalate (PET) were
reported as working thermophone [34]. The interest of having transpar-
ent and flexible sheets of thermophones was hindered by the low Sound
Pressure Level (SPL) reported compared to previous thermophones. An-
other one of Tian et al. article was better received as it displayed a SPL
about as high as the best thermophone at the time. This thermophone
was made of Graphene film on a paper substrate [35].

Those new sheet thermophone with improved performance started
a trend of papers that tried many kind of metal films on many dif-
ferent substrate while never quite reaching the efficiency of Tian et al.
Graphene on paper. In 2012 Suk et al. used a monolayer graphene film
on a glass, PET and polydiméthylsiloxane (PDMS) substrate and inves-
tigated the influence of the curvature of the sample on its acoustic radia-
tion [36]. In fact, if some of the presented thermophones are considered
flexible, due to their fragile state a substrate is required to avoid break-
ing them. Hence most metal films are only as flexible as their substrate.
For instance, the thermophone of aluminium electrodes on polyimide
made by Nakajima and Sugimoto in 2012 can be bent at will as seen in
Fig.6 [37].

The same year Chitnis et al. tested gold sheet on dried porous silicon
[38]. The next year Koshida et al. tested once again Aluminum sheets
on porous silicon [39] and Daschewski et al. displayed recorded SPL
in the MHz range of Titane and ITO film on quartz glass and polycar-
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bonate [40]. In 2016, Tsai et al. used ITO film on ITO glass [41] and in
2017 Zhang et al. changed the geometry of graphene and used woven
graphene on PET and on porous copper mesh substrate [42].

Some of those thermophones performed better than others but none
had a high enough SPL to match the most efficient ones. Those being,
as of now, the graphene film thermophones. It will however be seen
that most of those low SPL can be, in part, attributed to the systematic
use of a substrate in direct contact with the thermophone. Metal films
and sheets on substrate were so proven to be capable of being used as
thermophone. Nonetheless, the wire thermophone used by Weisendan-
ger can not be considered comparable to the presented thermophones
in this section and different geometries can still be thought off when
talking about thermophones.

1.1.3.2 Suspended Wires

One of today most used way to create thermophones is by using wires
like Weisendanger in 1878 [14]. However, when we are here talking
about wires, we are actually mostly talking of random or highly aligned
sheets made of nanowires. If Weisendanger did use a coil of wire at
the time, the limited acoustical level heard was directly related to the
thickness of the wires. As it will be proven later in this thesis, their
thickness raised their thermal capacity preventing good thermoacoustic
radiation. Modern thermophones are then made of nanowires in order
to reduce the losses due to stored heat.

The most investigated of the recent Thermophones are the ones made
out of free standing Carbon NanoTubes (CNT) seen in Fig.7. The inter-
est in CNT arose in 2008 when Xiao et al. [43] published an article re-
porting their various advantages as thermophones and their potential
applications. It includes experimental measurements displaying SPL of
up to 100dB at 30kHz at a recording distance of 5cm, as well as an
improved theoretical model based on Arnold & Crandall theory. This
model takes into account the heat stored by the thermophone which
was neglected in 1917’s model. The very good agreement between the-
ory and experiment as well as the compelling high SPL made CNT ther-
mophone of prime interest. It can be noted that this interest was slightly
biased by the non normalised SPL displayed (input power of 3W). As
a comparison, Shinoda’s experiments recorded a maximum of 70dB at
30kHz but the recording was done at 3.5cm and used normalised power.
This corresponds to SPL of about 40dB and 65dB once normalised with
distance and power, for Shinoda and Xiao respectively. Beside its high
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Figure 7: CNT Thermophone fabrication [43]

SPL, the rising interest in CNT can also be attributed to the cheap cost
of fabrication and the ease of access of this material.

Other metal nanowires were tested following CNT. Most of them
were freestanding but some were also tested on substrate. In 2009 free
standing aluminum wires displayed thermoacoustic capabilities [44]. In
2011 silver wires were tested on PET, glass [45] and later on Kapton,
and were compared to gold sheet on glass and Kapton as well [46].
Additionally, gold nanowires on glass were tested in 2014 [47]. In like
manners and in order to exploit the advantages of nanowire geometry,
free standing PolyAcrylonitril Nanofibers (PAN) were also employed.
Gold, ITO or simply carbon were electrospun to PAN sheets and ther-
moacousticaly tested [48, 49].

The experimental results of all those samples were, more often than
not, conclusively compared to theoretical models, but did not managed
to reach CNT’s efficiency. The lead focus regarding nanowire thermo-
phones remained on CNT and MultiWalled Carbon NanoTube (MWNT)
forest, sheet or web [48, 50–54]. In 2015 Mason et al. managed to test a
single suspended carbon nanotube [55]. This 2µm long tube is, within
the author’s knowledge, the smallest acoustic system to date.

It was seen that wires, and more specifically nanowires sheets, are
very promising thermophone candidates. CNT based sheets display the
highest sound pressure level in the literature and many different materi-
als have been tested. As of the writing of this PhD manuscrit, the most
efficient thermophone in air has been recorded by Romanov et al. in
2019 [56]. It is made of free standing Single Walled Carbon Nanotubes
(SWCNT) and reaches 95% of the theoretical maximum efficiency reach-
able by thermophones [57]. For the sake of comparison, it can be noted
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that Xiao’s CNT reached 80% of this maximal theoretical efficiency ten
years prior.

1.1.3.3 3D Structures

Even though fabrication methods have improved and materials used are
becoming more and more efficient since the discovery of thermoacous-
tics, no major novel geometry of thermophone has been talked about
yet. So far, presented thermophones, whether they are made of a bulk
film or a sheet of nanowires, are displayed in thin two dimensional ge-
ometries with or without substrates. It was seen that such shapes are
just improved ones from those used now more than 100 years ago. Re-
cently, 3D geometrical structures made of carbon are becoming more
widely available and display promising results as potential thermo-
phones.

In 2012 Pettes et al. investigated the electrical and thermal properties
of graphene based foam (GF) fabricated using Chemical Vapor Depo-
sition (CVD) [58]. This method uses a nickel (Ni) foam structure on
which a few layer of graphene and ultrathin graphite are grown be-
fore removal of the Ni structure using a chemical etchant, leaving the
freestanding GF see in Fig.8b. This method was perfected in this pa-
per and GF displayed promising electrical and thermal properties for
thermacoustic applications. CVD based samples kept being used in the
following years but not as thermophone yet. Variation on the grown
material and so on the properties of the foam and its potential applica-
tion were made, Boron-Nitrite Carbon foam were created for instance
as seen in Fig.8a [59, 60].

At the same time, graphene sponge (GS) seen in Fig.9 fabricated by
solvothermal reaction in alcohol also displayed a high surface area and
a high electrical conductivity [61], thus also making it a potential ther-
mophone. Furthermore, its high mechanical stability [62] would be of
interest compared to the presented current thermophone that are very
fragile. The use of a substrate is the most common solution to help facil-
itate the handling of the thermophone without breaking it but it comes
with thermal performances drawbacks as previously observed.

Both of those samples were tested in 2015 and displayed thermoa-
coustics capabilities [48, 63]. However this kind of thermophones were
not tested extensively as compared to nanowire or metal sheets. This
can be attributed to, both, the even more recent creation of those sam-
ples and the fact that they do not exceed the SPL reached by CNT or
graphene sheets. CVD based samples are nonetheless still investigated
with different structures as it is seen in Tu et al. in 2019 where vertical
graphene films are made using microwave plasma CVD [64].
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(a)

(b)

Figure 8: CVD growth schematic (a) and SEM picture of a graphene foam (b)
[59]

Lastly, the last kind of thermophones that was recently developed
are laser scribed graphene. Tao et al. in 2016 and 2017 scribed porous
graphene on polyimide as well as reduced graphene oxide (rGO) de-
posited on a PET substrate as seen in Fig.10 [65, 66]. They both dis-
played decent thermoacoustic properties while not quite reaching CNT
efficiency. Yeklangi et al. in 2018 build up and improved those laser
scribed graphene by adding a CNT layer on top of rGO [67]. It increased
significantly the SPL radiation while still remaining below the most ef-
ficient thermophones.

Beside the traditional metal and nanowire sheets, thermophones in
porous or spongious forms have also been tested. Laser scribed graphene
was also tested even more recently for its thermoacoustic properties but
none of them displayed comparable results as the traditional geometries.
Those investigations still deserve interest as they are a minority in the
field of thermoacoustics and very few papers actually venture in trying
new shapes for thermophones.
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Figure 9: Graphene sponge [62]

(a) (b)

Figure 10: Schematic of the laser scribing process of Porous Graphene (PG) on
polyimide (PI) (a) and the associated picture of the resulting film (b)
[65]

Metamaterials can be defined as materials that exhibit properties that
are not found in a natural state. Based on this definition every ther-
mophones is a metamaterial as it was seen that even though sound is
generated by heat is some cases, those are all byproducts of human in-
teractions (religious rituals, glass making... etc). The XIXth century has
seen the discovery of thermoacoustics and thermophones. A first the-
oretical model was formalised in the early XXth century but was no
longer investigated due to the lack of suitable, cheap and efficient de-
vices. Technological improvement in the fabrication of nanostructured
devices in the early XXIst century allowed Shinoda et al. to exhibit a
working thermophone in 1999. This article started a surge of experi-
ments of various structured devices, made of many different materials,
as potential thermophones. It was seen that metal films and nanowire
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sheets remain the most investigated kind of geometry and that carbon
based thermophones display the highest efficiency for all geometries.

However, if the first historical theoretical model was mentioned, no re-
cent theories on thermoacoustic sound generation have been presented
yet. We will now investigate the theoretical models that have been devel-
oped alongside the discoveries of the various presented thermophones.
The main parameters to create working thermophones will be high-
lighted as well as their main acoustical characteristics.

For the sake of simplicity of comparison, Table 2 regroups all the
previously cited experiments and compares the measured SPL at 1m,
for 1kHz and with 1W of input power. It has to be noted that when
reported measurements do not display SPL at 1kHz, an estimated de-
crease of 20dB/dec has been used to estimate the SPL at such frequency
[40, 68].
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Table 2: Comparison of SPL from thermophones tested in the literature normalised at 1kHz, 1m and 1W

Ref. Thermophone Substrate
Recording
Frequency

(kHz)

Recording
Distance

(mm)

Input
Power

(W)

SPL (dB)
Normalised

[57] Theoretical Maximum 3 70 1 43.36

[69] CNT film Free standing 1 150 4.5 38.46
[38] Gold Dried porous hydrogel 2 30 0.51 37.35
[56] SWCNT Free standing 1 30 1 36.54
[43] CNT film Free standing 1 50 4.5 35.92
[70] CNT film Free standing 1 115 0.85 35.63
[48] CNT sheet Free standing 1 30 1 35.54
[35] Graphene Paper 3 50 1 32.44
[48] Gold PAN sheet Free standing 1 100 1 32
[51] MWNT Web Free standing 1 500 5.26 29.55
[49] aerogel sheet PBI Free standing 1 30 1 29.54
[48] Graphene sponge Free standing 1 30 1 29.54
[48] ITO PAN sheet half coated Free standing 1 30 1 29.54
[43] CNT film Glass 1 50 4.5 28.92
[71] Graphene On polymer mesh 1 50 1 27.98
[57] Aluminum wires Silicon (5µm air gap) 3 70 1.2 25.78
[67] CNT/LSG PET 1 30 0.6 24.98
[63] Freeze dried GF Glass 2 30 1 24.52
[44] Aluminum wires Free standing 1 80 1.9 22.49
[42] Woven Graphene Porous copper mesh 10 10 1 22
[72] Aluminum wires Si 1 70 1.9 21.33
[45] Silver Nanowire Film PET 1 50 1 20.98
[48] ITO PAN sheet full coated Free standing 1 30 1 20.54
[73] Gold film Silica aerogel 1 1000 1 20
[51] MWNT Film Free standing 1 500 5.26 19.55
[74] Tungsten Free standing 1 10 9.5 19.45
[65] Porous graphene Polyimide 1 15 1 18.52
[66] Reduced Graphene Oxide PET 1 15 1 18.52
[32] Aluminum Porous Silicon 1 35 1 15.88
[39] Aluminum Porous Silicon 1 10 1 15
[49] C-PAN Free standing 1 30 1 14.54
[67] Laser scribed Graphene PET 1 30 2.2 13.69
[34] ITO Glass 1 50 0.2 12.96
[34] ITO PET 1 50 0.2 12.96
[48] MWNT sponge Free standing 1 30 1 12.54



18 understanding a thermophone

[48] MWNT Forest Free standing 1 30 1 11.54
[63] Natural drying GF Glass 2 30 1 11.52
[55] CNT single wire Suspended 16 10 0 9.9
[46] gold film/silver wires Kapton 1 1000 1 6
[36] Graphene PDMS 1 30 0.25 5.58
[40] ITO film Polycarbonate 10 60 1 4.56
[73] Gold film Kapton 1 1000 1 4
[75] Multilayer graphene film PDMS 1 10 0.6 2.44
[41] ITO film ITO glass 3 50 1 2.44
[46] gold film/silver wires Glass 1 1000 1 1
[36] Graphene PET 1 30 0.25 0.58
[42] Woven Graphene PET 10 10 1 0
[42] Single Layer Graphene PET 10 10 1 0
[75] Multilayer graphene film PET 1 10 0.6 -0.56
[76] Silver Nanowire Film Kapton 1 500 35.36 -0.99
[47] Gold wires Glass 5 30 0.6 -4
[45] Silver Nanowire Film Glass 1 50 1 -4.02
[40] ITO film Quartz glass 10 60 1.04 -5.78
[73] Gold film Glass 1 1000 1 -8
[33] Aluminum Porous Silicon 20 50 2.3 -8.28
[36] Graphene Glass 1 30 0.25 -8.42
[40] Titane film Quartz glass 10 60 4.5 -8.5
[75] Multilayer graphene film Glass 1 10 0.6 -9.56
[40] Titane film Quartz glass 10 20 2.32 -11.29
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1.2 existing theoretical models of thermoacoustics

In order to study thermoacoustic generation, many theoretical models
have been developed and improved over the years. Knowing the most
common thermophone geometries, we will now investigate the main
models that have been created to understand the advantages and disad-
vantages of thermophones.

1.2.1 Thermal Balance Models

From a theoretical point of view, most analyses of the thermophone
principle used the so-called piston based model. These approaches are
based on a heat flow balance equation taking into account the convec-
tion, the conduction, the radiation losses and the heat stored in the
material. The first attempt to use this method to model a thermophone
in free field was done by Arnold and Crandall in their pioneering in-
vestigation where, however, they neglected the heat stored within the
thermophone [23]. Boullosa et al. created their own version of the piston
model in 2006 for planar and cylindrical thermophone but failed to com-
municate the phenomena in a convincing way [77]. The heat capacity
term forgotten by Arnold & Crandall was then added in the investiga-
tion performed by Xiao et al. in 2008 [43]. Hence, unlike Boulossa et al.,
the high SPL displayed by the experiment (previously mentioned), plus
the ready to use pressure estimation equation for thermophone, made
Xiao et al. article one of the most cited in this field of research.

(a) (b)

Figure 11: Structure of thermophones: (a) free standing [78] and (b) on sub-
strate [76]
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In 2013, Daschewski et al. used the heat flow balance equation and
added the influence of a substrate (or backing) on free standing thermo-
phone response (Fig.11), and the effect of the viscous dissipation in the
propagation medium [40, 79]. Based on this equation, influence of heat
flux, heat capacity and heat convection was statistically analysed in 2015
by Bin et al. [80]. It demonstrated that heat convection is negligible in
ambient air condition. Dacheswski et al. approach was later successfully
used by Kim et al. to describe the behavior of a graphene thermophone
deposited on a polymer-mesh substrate in 2016 [71]. Successively in
2017, La Torraca et al. added conduction and convection contributions
to the model and also took the thickness of the substrate into account
[76]. They proved once again that using thick substrate in direct contactSubstrate Influ-

ence with the thermophone will result in thermal losses in the substrate thus
reducing the thermoacoustic sound generation. This explains why free
standing thermophone presented in Section 1.1.3 performed on average
better than those on substrate.

1.2.2 Conservation Equations Models

Another approach used for modeling thermoacoustic effect is based on
the classical conservation laws of continuum mechanics applied in a
propagation medium, typically without viscosity. These equations were
elaborated by MacDonald et al. for studying the photoacoustic effect
in 1978 as mentioned in Section 1.1.2 [30]. More recently, the same set
of equations has been adopted also for thermoacoustics analysis. This
coupled set of equations was firstly solved in 2010 by Hu et al. for a
thermophone placed on a substrate, generating sound in a perfect gas
[81]. This model was validated against Shinoda’s experimental data [32],
and was later adapted to evaluate the far field pressure and to consider
the influence of the so-called Heat Capacity per Unit Area (HCPUA)
[82]. HCPUA was proven to be necessary low for efficient thermoa-Heat Capacity

Per Unit Area
Influence

coustic radiation and is defined as the product of the thermophone’s
thickness, its density, and its heat capacity. A refined analysis of Hu
et al. methodology has been performed in 2012 to study the influence
of the main thermophone parameters on its wideband frequency re-
sponse [68]. This formalised that, in the far field, thermophones radiateThermophone

Frequency
Response

sound in a linearly proportional fashion with increasing frequency be-
fore reaching a plateau and decreasing at very high frequency, usually
in the MHz range.

The following years, Hu et al. modified this approach to investigate a
spherical geometry of thermophone (acoustic monopole), generalized it
to arbitrary sources, before considering a cylindrical geometry (Fig.12),
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Figure 12: Cylindrical thermophone and its acoustic wave propagation [87]

in 2012 [83], 2014 [84] and 2017 respectively [85]. Based on Hu et al.
model, in 2017 Xing et al. have done a sensitivity analysis on some in-
fluential factors for thermoacoustics efficiency [75]. Lastly in 2019, Mao
et al. added the influence of viscosity to Hu et al. equations [86].

Investigation by Lim et al. in 2013 proposed to merge the equations
of the continuum mechanics with the thermal balance of the piston
based model [78]. They properly defined the sound generation electrically
driven by Joule effect and related it to the thermal balance of the piston
model to have a more accurate description of input power supplied to
the thermophone. They applied it to a free field configuration, eventu-
ally leading to a good agreement with experimental results (obtained
from Ref. [43]). It is important to understand that since the sound gener- Joule Driven

Sound Genera-
tion

ation is based on a Joule effect, the output power is a squared function
of the input one. Meaning that if a pure sinusoidal alternative current
drives the samples, the heard acoustical frequency will be of twice the
input one. This will be more thoroughly explained in the later part of
this thesis.

Based on this work, in 2015 Tong et al. added the influence of an air
gap between the thermophone and a substrate as described in Fig.13,
which represents a promising technique to improve the thermophone
efficiency [72]. A generalized theory was then developed by Liu et al.
in 2018 to describe point source, line source and line array thin film
thermophones in free field and in half space with an air gap over the
substrate [88]. It can be noted that, similarly, Asadzadeh et al. in 2015
modeled thermacoustics projectors’ sound generation using those two
alternative forms of energy conducted to the fluid, here described as
piston and conservation equation model [89]. The lack of novel analysis
however hindered on the visibility of the paper compared to Lim and
Tong team’s papers or Hu et al. previous articles.
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Figure 13: Thermophone over a substrate [72]

Notably, the properties of nanoscale thermophones have been studied
by Vesterinen et al. in 2010, eventually obtaining generic ultimate lim-
its for the thermophone efficiency [57] as mentioned in Section 1.1.3.2
and used in Table 2. This maximum limit for thermophone has sinceMaximum

Theroretical
Limit

been widely used in later papers as it explicitly shows the linear rela-
tionship between thermoacoustic efficiency and input power. The the-
ory was confirmed against experiments and finite difference method
simulations. This model was later improved by Brown et al. [74] by con-
sidering line thermophones of finite length.

Many variations of the same set of equations have then been used to
describe thermoacoustic sound generation. The main results from those
theoretical analysis can be summed up as follows:

• The thermophone material should have a low HCPUA [43, 89].

• The substrate should have a low thermal effusivity, meaning that
it should not be able to exchange thermal heat easily with its sur-
roundings [75, 76].

• If the material is efficient enough (low HCPUA mainly), at a fixed
input power in the far field, the frequency spectra will display a
linear increase in SPL with frequency before reaching a plateau
going to ultrasonic range [40, 68].

• The acoustic generation is power driven and the efficiency is lin-
early increasing with input power [57, 74].

• Since the sound generation is created by Joule effect, an Alterna-
tive Current (AC) will generate a sound wave at twice the electri-
cal driving frequency [23, 78].
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1.3 understanding , application and improvements

Thanks to Section 1.2, we are now aware of the main thermoacoustic
properties of thermophones as well as some limits. It is then of primary
importance to understand what those thermophones can be used for
before trying to improve them. This section aims to put into light the
interest of thermophones and the research that has been made to use
them in a commercial or industrial fashion.

1.3.1 Potential Uses and Applications

First and foremost, it is important to realise that we will mention in
this section only applications directly related to thermophones and not
thermoacoustics as a whole. Engine and refrigerator which are promis-
ing thermoacoustic application are not of interest here [8, 90–92] as ex-
plained before. Similarly, photothermoacoustic or thermoacoustic’s to-
mography for health care applications are not of interest here [93–95].
Lastly, if thermophones’s samples can also be used for thermal man-
agement in electronics [60, 96–98], their thermoacoustic properties are
not used in this case and so will not be discussed. Lastly, some pecu-
liar experimental use of thermophones like using a cooling fan on the
thermophone [99], or mounting it a single plate cantilever device for
butterfly acoustic flame extinction [100] are not investigated.

The most self evident use for thermophone is as an alternative to tra-
ditional loudspeakers [96, 101–104]. It was one of the first presented use
by Xiao et al. in 2008 when they put CNT on a school flag allowing it
to do school announcements [43]. Furthermore, it is easily noticeable
that this is of prime interest as the frequency range investigated in the
literature is, more often than not, the hearing range. Overall, enclosed
thermoacoustic loudspeakers did not display outstanding results due to
the weak radiated SPL of thermophones [105]. However, taking advan-
tage of the seemingly size independent radiation of thermophones, ther-
moacoustic earphones were investigated (see Fig.14). They are made of
laser scribed thermophones [106, 107], CNT arrays [108] or even novel
MXene based thermophone [109] and display encouraging results as
compared to commercial earphones. Applications in mobile phone or
military purposes can also be considered when very small acoustical
transducers are needed [55].

It was understood from Section 1.2 that thermophones actually per-
form better in a high frequency range. Knowing this, thermophones can
be designed for ultrasonic applications [110, 111] and can be patented
as such [112]. For instance, they were used also as ultrasonic earphones
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Figure 14: Earphone made of CNT array [108]

Figure 15: Measured membrane velocity after excitation with a thermo-
acoustic airborne ultrasound transducers placed 60± 3mm from the
membrane. Transducers were excited with 1.5kV 500ns impulses.
The mass of polymer membrane was 12.641 g/m2 [40]

for dogs by Tian et al. in 2014 [113] but the most compelling case for
ultrasonic application was done by Daschewski et al. in their 2013 work
[40, 114]. Making use of the flat frequency response of thermophones,
they were used as ultrasound transducers and displayed a very sharp
impulse response as seen in Fig.15.

So far, the presented uses for thermophones rely mainly on their
acoustic capability and their peculiar acoustic spectrum. Nonetheless,
the flexibility of their design, not being bound to any shape or forms
but only to the fabrication process, allows for other applications. They
can be used for environmental acoustic purposes and more specifically
active noise control. Their design allows them to be shaped in any form
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so if placed on a noise generator and the right signal processing is ap-
plied, noise level can be actively significantly reduced [115–117]

Another current use of the flexible design of thermophones is to make
skin wearable devices and more specifically artificial throats as seen in
Fig.16. Laser scribed thermophones [118, 119] or hybrid nanomembrane
made of transparent silver nanowires [120] coupled to piezoresistive
materials or nanomembranes microphone (using a triboelectric voltage)
are used to detect vibrations of vocal cords and to reproduce them. This
technology could be used as health care sensors, voice based security
systems or help persons in situations of handicap [121].

Figure 16: Skin wearable artificial throat [118]

Finally, it is interesting to realise that in the literature, a great deal of
articles mention the use of thermophone as potential underwater sound
generator for sonar application [40, 48, 68, 122, 123] but very few actu-
ally investigate it. As a matter of fact, the light weight of thermophones
compared to piezoelectric transducers or regular loudspeakers make
thermophones of prime interest to reduce the overall weight of sonars.
Furthermore, having no moving part makes it easier to suppress back
radiation from a thermophone than from a piezoelectric transducer
which will always emit in both direction and in anti phase. This helps
to perform noiseless and more directive sonar detections. Aliev et al. are
the ones being the most advanced on this matter [124] and unmanned
undersea vehicles are already starting to use this technology [125, 126].
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Thermophones should not be simplified as less efficient loudspeak-
ers. If it was seen that work is being done to use them as replacement
for loudspeakers, and more specifically small size transducers, their
inherently unique frequency spectrum make them better candidates
for ultrasonic transducers. Their flexible geometry also allows for ac-
tive noise cancellation or skin wearable acoustical devices. Lastly their
light weight make them very attractive for underwater sound generator.
However some obstacle still remain. For instance thermophones acous-
tical radiation is not very efficient yet. Furthermore, despite the large
amount of different potential material, most efficient thermophones are
still very fragile. Lastly, due to their non linear sound generation pro-
cess, they are not adapted to work with common regular AC amplifiers.
Research trying to dismiss those concerns will now be investigated.

1.3.2 Optimising Material and Geometry

It was seen that it is of prime interest to optimise thermophone’s radi-
ation for loudspeaker applications. One direction this optimisation can
take is by using today’s flexibility of fabrication process to design an
optimal shape for thermoacoutic generation. For instance, even with
the interest for theoretical model of thermophone in cylindrical shape
[77, 85, 87], few thermophones differ from the traditional metal films
or sheets of nanotubes, despite the claimed flexibility of said thermo-
phones.

One possible solution to improve SPL delivered by thermophone is
to stack multiple layers of thermophone’s sheet as seen in Fig.17. TheStacked Thermo-

phones idea behind it being that by adding multiple layers, the radiated sound
will then be improved as those layers will act as coherent sound sources.
It was first tested by Aliev et al. in 2014 [52] in an attempt to improve
thermal management of thermophones. No theoretical model was asso-
ciated to it and five years had past before Zhou et al. created a theoretical
model for such stacked thermophones [127].

Another property of thermophones which could improve acoustical
radiation is the influence of thermophones’ size, and more specifically
their radiating area. It was seen that small thermophones can be of
interest commercially (earphones, smartphones...) but being able to fab-
ricate large size thermophone could help in creating thermoacoustic
loudspeakers. Due to fabrication limitation of the nanomaterials used,
thermophone are usually of a relatively small size. Hence only CNT
have been used so far as large thermophone. For instance by Barnard et
al. in 2014 [128], and Wang et al. in 2018 [69]. The influence of increasing
the size of thermophone was proved to be negligible on its frequency
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Figure 17: Stacked CNT layers [52]

spectra as the decreasing power density induced by the larger area is
compensated by the increased coherent radiation of the greater surface.
This will be discussed later in this thesis as well as resulting acoustic
radiations.

Despite those scarce tentative for more ambitious thermophones, it
was seen in Section 1.1.3.3 that new thermophones’ geometry are being
discovered and tested every year. A promising lead could be the use
of 3D thermophones like GF and GS [48, 63, 129]. Sbrockey et al. even
tried in 2018 to propose a way to improve electrical contact by protect-
ing metal pads from the template used for CVD grown samples [130].
However, very few experiments have been performed with those kind
of samples and since they did not display high enough SPL, they were
discarded as scientific curiosity. Focus remains since then on Graphene
film and CNT. Nonetheless, just like GF was not right away tested for
its thermoacoustics properties [58], it is highly likely that new carbon
based geometry are currently discovered due to the improvement of
technologies but are not considered as potential thermophones yet. For
instance, 3D printed GF by Sha et al. in 2017 seen in Fig.18 could be
potential thermophones but are not yet tested [131].

Today, new thermophones are mainly discovered out of scientific cu-
riosity. The thermoacoustic capabilities of a tested device are still rel-
egated as a side effect and are not the main objective of the creation
of those sample. This method was valid when thermoacoustics was
not well understood but with the current state of knowledge regard-
ing thermophones, new structures should be designed whose primary
goal is to improve thermoacoustic radiation for loudspeaker or medical
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Figure 18: 3D laser printed GF [131]

applications. Despite the many theoretical models, within the authors’
knowledge, no sample has been created for the sole purpose of ther-
moacoustic application. Some solutions for improved thermoacoustic
radiation have been presented in this section but there is still room for
improvement.

1.3.3 Gases and Encapsulation for a Resonant Device

Instead of changing thermophones to improve airborne sound genera-
tion, some have been trying to use them in different working conditions
to try and find an optimal use for those devices. More specifically, as
early as 1947, Fairbank et al. tested thermophone in liquid Helium and
liquid Hydrogen as compact precision sound source [28]. Underwater
work was mentioned but not tested due to thermophone’s limitation at
the time and the more suitable thermal expansion coefficient and com-
pressibility of liquid Helium and Hydrogen compared to water for those
experiments. Thermophone waited up until 2010 before being tested un-
derwater again when Aliev et al. investigated the response of a carbon
nanotube projector placed in water [122]. They provided evidence that
the hydrophobicity of the nanotubes in water generates an air layer
around the nanotubes that increases the pressure generation efficiency
of the thermophone. This work aimed at creating lightweight underwa-
ter sound source as, currently, heavy piezoelectric devices are the main
way of underwater sound generation (mainly used in sonar devices).
However, during immersion into water the MWNT was collapsing even
with a protective sheet attached to it.

In order to solve this problem, research has been focused on studying
encapsulated thermophone systems, developed in order to obtain a pro-
tection from the liquid medium. Fig.19 encapsulation example comes
from Tong et al. in 2013, when they laid down a theoretical model for
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Figure 19: Example of thermophone encapsulation [132]

encapsulated CNT and observed a resonance in the frequency spectrum
directly proportional to the size of the encapsulation [132]. Furthermore,
Tong et al., Barnard et al. as well as Aliev et al., the same year took advan-
tage of the encapsulation of thermophone to test its acoustic radiation
in different gases and liquids (air, Argon, Helium, Azote, Freon, Xenon,
Sulfur hexafluoride, water, Methanol) [132–134]. Similar gaseous influ-
ence investigations were reported in 2011 by Xiao et al. without encap-
sulation [70], as well as with Tong et al. in 2016 with a cylindrical model
without encapsulation in air and Nitrogen [87]. In 2017 Dzikowicz in-
vestigated enclosed cylindrical fiber array thermophone for underwater
application, and positively confronted his theoretical model with exper-
iments in Helium and Argon gases [135]. Lastly in 2018 Shin et al. made
use of resonant encapsulated CNT for practical audio purposes [136].

In order to improve the handling of thermophones and prevent me-
chanical damages due to their fragile state, thermophones have been en-
capsulated. This allowed for better handling and prevented direct dam-
age to samples when immersed in various liquids and gases. This so-
lution was aimed at using thermophones as underwater sound sources
but by doing so, resonances appeared due to the solid encapsulation.
The specific flat frequency spectrum of thermophones is then no longer
of use. Nonetheless, the light weight and the lack of moving parts of
thermophones remains of prime interest for underwater transducer ap-
plications.
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1.3.4 Input Signal and Pre-Processing

One of the most undeniable issue about thermoacoustic sound genera-
tion is the fact that the output acoustic frequency will follow the temper-
ature variation of the sample (Joule effect). Hence, for an AC signal of
frequency f driving a thermophone, the acoustical signal heard will be
at 2f as the temperature of the sample will follow the absolute variation
of current and can not take negative values, as explained in Fig.20. Elec-
trically speaking, thermophone are power driven as opposed to loud-
speaker or piezoelectric devices that are driven by electrical potential.

Figure 20: Thermoacoustic sound generated by Joule heating [37]

Once this principle known, one can either just use AC and expect an
output signal of twice the input frequency, or add a Direct Current sig-
nal (DC) to the AC one so that the temperature variation of the sample
stay in a positive range. As a result the acoustical frequency heard will
be the same as the input one. Both methods are the ones mostly used in
the literature and a qualitative quantification comparison of those input
signals can be found quite recently in Bouman et al. or Heath et al. in
2016 and 2017 respectively [137, 138].

Nonetheless, other input signal were tested like the Amplitude Mod-
ulation of Alternative Current (AMAC) in 2006 by Boullosa et al. [139].
AMAC uses the idea that thermophone are more efficient at very highAmplitude Mod-

ulation frequency. Hence if a high carrier frequency (above hearing range of
20kHz) has its amplitude modulated by a frequency in the hearing
range, the modulating frequency should be the only one heard. The
results were promising but due to the non linearity of thermophone
(power driven), harmonics appeared making it not adapted for complex
signals (conversation, music...). Another usage of the high frequency ef-
ficiency of thermophone consists of using short pulse modulation trains:
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pulse of amplitude, width or density modulation (respectively PAM,
PWN and PDM). PDM was used by Koshida et al. in 2013 as seen in
Fig.21 [39] and Tong et al. in 2017 [123] before PAM, PWM and PDM
were compared by Aliev et al. in 2018 for his enclosed CNT [140]. Less
intuitive input signal borrowed from the hearing aid industry were also
tested like spectral envelope decimation of AC signal (FCAC) and dy-
namic linear compression of AC signal (TCAC) by Bouman et al. in
a following work in 2017 [141]. Heterodyning possibilities as well as
modulated DC with fixed AC for a flatter hearing range frequency re-
sponse was also tried by Heath et al. in 2017 [138]. Nonetheless, none of
the above mentioned methods displayed impressive enough results to
replace easy AC testing.

Figure 21: PDM signal supplied to a thermophone [39]

The interest of investigating modified electrical signal used to drive
a thermophone comes from a desire to use them as commercial loud-
speaker. Henceforth, the possibility to use currently available amplifier
to drive thermophones with complex musical signals is of prime inter-
est. This is proven by the fact that most of the above cited literature are
comparing subjectively the sound quality of recorded signal and evalu-
ate their total harmonic distortion (THD) [39, 128, 137, 141]. THD is a Total Harmonic

Distortionparameter that allows an objective evaluation of the quality of the sig-
nal by studying the ratio between the fundamental and its harmonics.
Nonetheless, if the presented techniques are working with pure tone
reproduction, due to the non linearity of the thermoacoustic process,
harmonics occur in all cases and hinders understandable reproduction
of complex signals. As a consequence, none of the above mentioned
method are commercially viable yet.

One last technique that can be considered to allow the reproduction
of complex signals is to apply a square root function to the input sig-
nal. This would avoid the non linearity of the output signal on which
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a square function is applied (as explained in Section 1.2.2). Sugimoto et
al. designed an electronic black box to do that electrically in 2016 but
the circuits’ plan are not communicated and so the results are not repro-
ducible [142]. Tong et al. did a similar experiment with simple signals
in 2017 [123] but a real easy pre processing implementation to apply a
square root function to the input signal was only presented in 2019 by
LaTorraca [143]. This method allows to use any commercial AC ampli-
fier to play any kind of complex signal with low distortion provided
that the adequate pre processing has been applied before hand to the
signal. This adaptive pre distortion method will be detailed later on in
this thesis as well as some observed downsides.

In order to facilitate the use of thermophone as a regular loudspeaker
in the market, it has to be compatible with current commercially avail-
able AC amplifier. The non linear sound generation of thermophones
prevent simple reproduction of complex signals with only those ampli-
fiers. Some solutions from the literature were provided in this section.
Complex electrical signal making sometime use of the ultrasonic effi-
ciency of thermophones have been presented (ACDC, AMAC, PWM...)
as well as electronic or signal processing solutions. Promising results
were observed but no easy universal solution has yet been found. As of
now, the desired solution has to be chosen according to the aim goal of
the thermophone (music reproduction, single frequency generation...).

1.4 current literature’s limitations

In Section 1.1 a detailed historic of thermoacoustics related to thermo-
phones has been given. It was shown that, even though thermophones
have been discovered in the XIXth century and that an incomplete but
promising model has been laid out in the early XXth century, only the
start of the XXIst century has permitted the surge of thermophones’ in-
terest. Many different thermophones have been tested in the past two
decades. The most efficient thermophones known to date are similar as
the ones 150 years ago, meaning that they are made of sheets of wires
(currently nanowires) and metal films. For both geometries the material
that display the highest SPL is carbon (CNT and graphene respectively).
Only very recently, new thermophone geometries have been tested, con-
stituted by 3D graphene foam, sponge or laser scribed structures.

Nonetheless, even though it is always of common interest to study
and try different combinations of materials and substrates in an emerg-
ing field, most of those papers were written by researchers mainly work-
ing in material science and not really active in applied acoustics. This re-
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sulted in many papers which observed and presented some basic acous-
tic results with thermophones as novel (diffraction and interference for
instance). If a presented thermophone was indeed novel, the associated
analysis of the acoustic radiation was mainly a verification of known re-
sults. It is then very important to distinguish the thermoacoustic effect
from the acoustic propagation, as standard acoustic results can be used
in the later case.

Furthermore, one of the most enduring blunder in the literature is
that, despite a clear interest in acoustic radiation in the hearing range,
most frequency spectrum presented are using a linear scale instead of
a logarithmic one. This is once again an oversight coming from the fact
that the sheer evidence of thermoacoustic capability demonstrated by
the presented sample seems to outweighs any kind of acoustical analy-
sis. Thermoacoustics might not be a worldwide hot topic but it is not a
new field by any length. Hence, the acoustic analysis of thermophones
should not be dissociated from its thermal capacities. Being able to pro-
duce a working thermophone should not be a self sufficient result, not
unless the current theoretical limits are not reached or pushed.

In Section 1.2, the main theoretical models have been presented. An
historical review on how and why those models where created or im-
proved was explained. However, each of the summarized models have
been developed to describe the behavior of a specific thermophone con-
figuration with well defined identifying characteristics. Moreover, in
each model some physical features have been neglected to simplify the
analysis, and to obtain explicit results. For instance, the viscosity of the
propagation medium is not considered in most models.

In addition, these models do not consider the acoustic wave propaga-
tion within the active solid layers. Therefore, the influence of potential
resonances within the solid layers is not investigated in the literature. If
sometimes mentioned [74], resonances are assumed to be in a frequency
range higher than the one of interest. Also, even though those models
have proved to accurately reproduce experimental results, a more uni-
fying thermoacoustic model that could be used in many different cases
and which would allow for easy comparison between geometries, is still
missing.

Furthermore, none of the current models tackle the problem of com-
plex geometries like graphene sponge or graphene foam. As most ther-
mophones can be simplified to a cylinder or a film with a thickness, no
theoretical is adapted to those 3D geometries. As a consequence it is not
possible to conceive an optimal 3D geometry for thermoacoustic sound
generation solely based on an existing theoretical model. Those models
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are only used for comparison and for understanding, not as a tool of
improvement of thermophones.

Lastly in Section 1.3, the many advantages of thermophones were
shown to be of interest in various domains of applications. The most
obvious application as audible sound generator, whether it is as loud-
speakers, earphones or small size transducers, still faces many chal-
lenges preventing thermophones from going on the market. The main
issue being their low efficiency. Using them as ultrasonic transducer,
ANC transducers or skin wearable health devices makes use of other ad-
vantages of thermophones, but the lack of interest prevents the growth
and the commercialisation of such devices.

It was seen that despite having reached high technological matura-
tion, very few novel geometries have been tested so far as thermo-
phones. Most of current thermophones are still based on nanowires
or metal sheets as 150 years ago. 3D graphene or laser scribed mate-
rials displayed interesting properties but are not investigated in depth
as their complex geometry make them more difficult to produce and
their thermoacoustics capabilities did not exceed the most efficient ones.
Thermophones are still tested for their applications instead of being de-
signed for them.

Thermophones were then used in different medium (gaseous and liq-
uid) to improve their sound radiation and investigate potential sonar
applications. By testing them underwater, researchers highlighted their
fragile condition and, in order to avoid damages, they were encapsu-
lated. This encapsulation however created a resonant device and the
unique frequency spectrum of thermophones is then no longer valid.
The main advantages of thermophones being, namely, their flexibility,
their light weight, their cheapness (they do not use any rare material),
the fact that no moving part is involved and their peculiar flat frequency
response up to MHz regions, encapsulating them prohibit the use of
this last advantage. Despite that, the need for alternative to piezoelec-
tric underwater transducers is great and light weight underwater trans-
ducers without moving parts are still of prime interest.

Ultimately, the type of input electrical signal provided to thermo-
phone was investigated. The non linear thermoacoustic sound gener-
ation by Joule effect make it challenging for thermophone to play com-
plex input signals. If it is possible to exploit the higher efficiency of ther-
mophone at high frequency to create pure tone in the hearing range, its
non linear behavior creates undesired harmonics. Hence only a very
recent adaptive pre distortion method seems currently available for
thermophone to play music using only an AC signal, deliverable by
any commercial amplifier [143]. This highlighted again the interest that
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thermophones hold toward commercial loudspeaker use. Nonetheless,
many progress still have to be made as the THD and the efficiency of
thermophones are still not comparable to traditional loudspeaker levels.

1.5 motivations and expectations of the thesis

Up to now, an extensive historical review of thermoacoustic sound gen-
eration, and more specifically, of thermophone for the last two centuries
has been given. The last two decades of discovery and tests regarding
thermoacoustic capacities of new materials has been presented along-
side the theoretical formulation of the thermoacoustic sound genera-
tion in different cases. Based on the advantages of thermophones, the
more promising applications have been presented. Followed by idea for
improvement whether it is in regards of geometry, design, or signal pro-
cessing for thermophones. Lastly the main issues and limitations that
can be commonly found in the literature have been emphasized.

Based on the statement made by 1.4, a more unifying theoretical
model has yet to be implemented. This thesis will first provide a the-
oretical model that can be applied for the vast majority of current ther-
mophone configurations for both, plane, cylindrical and spherical wave
generation. The conservation equations will be solved with the least
among of assumptions and the models will be validated by comparing
simulations with models and experiments from the literature.

Employing this theoretical model, thermoacoustic radiation will be
studied and explained in many different cases. The theoretical model
will be used as a tool of understanding most of the results in the lit-
erature without having to create a large amount of different working
samples.

A second theoretical model will also be created which aims is to ex-
plain thermoacoustic sound generation in a foam like geometry using
a so called two temperatures (2T ) model. Its purpose is to fill a gap that
has been shown currently in the literature regarding 3D thermophones.

In order to validate this 2T model, experiments will be conducted
with three dimensional Graphene foam (3D-C). Different theoretical
concerns will be proven again, and results will be confronted to other
kind of thermophones. Those experiments aim at improving the under-
standing of thermophones and the way they should handled. Thermal
and acoustical concerns will be studied hand in hand and insights about
the optimal use of thermophones will be provided.
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Many literature experiments will be reproduced. The capabilities of
sound reproduction will be tested as well as tryouts of encapsulation
for underwater applications.

This thesis goal is to provide a deep understanding of thermophones’
thermoacoustic sound generation. By reading this thesis, you should
gain insights on how thermophones should be used and for what pur-
poses based on their inherent properties and not only on the specific per-
formances of a single sample. The reader should be able to answer the
question, are thermophones groundbreaking metamaterials for sound
generation or just another toys for scientific curiosity?
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2
T H E O R E T I C A L M U LT I L AY E R S M O D E L S

This Chapter provides the mathematical and theoretical background
necessary for the analytical understanding of the thermoacoustic gener-
ation process. It also deals in the creation of several theoretical models
for thermoacoustic sound generation.

At first the conservation equations upon which the models will be
constructed are derived from the constitutive equation in both, fluid
and solid phases, with arbitrary thermal and viscous properties. For the
interested reader, Appendix A.1 constructs the constitutive equations
starting from Lagrangian and Eulerian formalisms.

The conservation equations are then used to describe thermoacoustic
plane wave generation from a thermophone and its near field propaga-
tion in both fluid and solid medium. An ideal planar thermophone is
then formalised for simulation purposes and extended to a multilayer
model to be implemented later in Matlab.

The exact same thought process is then applied for near field thermoa-
coustic generation of cylindrical and spherical waves. Ideal cylindrical
and spherical thermophones are then investigated and their models are
extended to multilayered ones as well.

Lastly what is called a two temperatures (2T) model is formulated for
foamlike geometry thermophone. The model is adapted and solved for
plane wave generation in near field similarly as the previous models.

The first time reader is invited to skip Sections 2.3 and 2.4 and to
refer to the summary written before Section 2.5.

2.1 formalism for fluid and solid phases

This section aims at writing the basic equations for fluid and solid
phases with arbitrary thermal and viscous properties. Using the gen-
eral balance equations being the conservation of mass, linear momen-
tum, angular momentum, energy as well as the local form of the balance
of entropy, the equations for the model are established.

39
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2.1.1 Summary on the Balance Equation

The balance equations set up in Appendix A.1.4 in Eqs.(474), (481), (490),
(499) and (504) are written respectively as

• Conservation of mass

ρ̇+ ρ~∇ ·~v = 0, (1)

• Conservation on linear momentum

ρ~̇v = ~∇ · T̂ + ~b, (2)

• Conservation on angular momentum

T̂ = T̂ T , (3)

• Conservation of energy

ρė = T̂ : D̂− ~∇ · ~q+Q0, (4)

• Local form of the balance of entropy

ρṡ = −~∇ · (~q
T
) +

Q0
T

+ σs, σs > 0, (5)

with ρ density [kg.m−3], ρ̇ its Lagrangian/material derivative, ~v par-
ticle velocity vector [m.s−1], T̂ Cauchy stress tensor [N.m−2], ~b body
force density [N.m−3] , e specific internal energy [J.kg−1], L̂ = ∂~v

∂~x ve-
locity gradient [s−1], D̂ = 1

2(L̂ + L̂
†) symmetric part of L̂, q heat flow

[W.m−2], Q0 heat density supplied [W.m−3] , s entropy density per
unit of mass [J.K−1.kg−1], T temperature [K] and σs entropy production
density [J.K−1.m−3.s−1].

To obtain the final Eulerian form we have to consider the relation
ẋ = ∂x

∂t +
~∇x · ~v which is discussed in Appendix A.1. While Eqs.(1),

(2) and (4) are useful to define the motion of the continuum medium,
Eqs.(3) and (5) are crucial to define the constitutive equations of the ma-
terial. Indeed the balance equations are not sufficient to solve a given
problem and they must be completed with a set of equations describing
the behavior of the material under motion or deformation. The entropy
balance is very important to give the most general form of the consti-
tutive equations. We will describe this procedure for fluids and solids
and we will show the linearised form of the final equations.
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2.1.2 Fluids with Arbitrary Thermal and Viscous Properties

The previously introduced scheme is now developed in a fluid medium.
It gives very important results under the so-called hypothesis of local
equilibrium. It means that we consider a thermodynamic equilibrium
at any point of the system. In other words, the continuum medium
is decomposed in a number of elemental cells where the thermody-
namic equilibrium is attained with good approximation, but the overall
system is out-of-equilibrium. This assumption leads to a closed form
expression for the entropy production, useful to define the transport
processes. For fluids, local equilibrium can be described by the follow-
ing law, which is true at any point of the system (Lagrangian vision)

de
dt

= T
ds
dt

− p
d

dt

(
1

ρ

)
. (6)

This equation has been written in terms of quantity for unit of mass, so
the classical term pdV is substituted by pdVM = pd( 1

M/V
) = pd( 1ρ) with

V the volume in [m3], M the mass in [kg] and p the pressure in [Pa].
The local equilibrium is imposed without considering the possible

gradients within the system. These gradients are responsible for the
overall non reversibility of the process and of the out-of-equilibrium
state of the system. The fact that we impose a local equilibrium and that
we have a global out-of-equilibrium state is not a paradox but it is rather
an approximation that must be verified by comparing the theoretical
results with experimental ones.

We study the effects of Eq.(6) on the entropy balance. Using the con-
servation of mass (Eq.(1)) we have

de
dt

= T
ds
dt

− p(−
1

ρ2
)
dρ

dt
,

= T
ds
dt

+
p

ρ2
(−ρ~∇ ·~v),

= T
ds
dt

−
p

ρ
~∇ ·~v. (7)

The energy variation is given by the heat exchanged and by the hy-
drostatic work (fluids). The idea is to inject Eq.(7) into Eq.(4) (balance of
energy) and to compare with Eq.(5) (balance of entropy). Eq.(4) becomes

ρT ṡ − p~∇ ·~v = T̂ : D̂− ~∇ · ~q+Q0, (8)

or

ρṡ =
p

T
~∇ ·~v+ 1

T
T̂ : D̂−

1

T
~∇ · ~q+ Q0

T
. (9)



42 theoretical multilayers models

Eq.(9) can be elaborated as

ρṡ =
p

T
~∇ ·~v+ 1

T
T̂ : D̂− ~∇ · (~q

T
) −

1

T2
~q · ~∇T + Q0

T
. (10)

The comparison between Eq.(5) and (10) provides the entropy produc-
tion

σs =
p

T
~∇ ·~v+ 1

T
T̂ : D̂−

1

T2
~q · ~∇T > 0. (11)

Now for viscous fluid we have to admit a stress tensor T̂ composed
of an hydrostatic term −pÎ and an arbitrary viscous term ĝ(D̂) which
depends only on the symmetric part of the velocity gradient since the
viscous effects are absent for rigid motions. T̂ is written as

T̂ = −pÎ+ ĝ(D̂). (12)

Moreover, ~q describe the heat transfer within the material and, there-
fore, depends on the temperature gradient

~q = ~f(~∇T). (13)

Eq.(11) now gives

σs =
p

T
~∇ ·~v+ 1

T
(−p)Î : D̂+

1

T
ĝ(D̂) : D̂−

1

T2
~f(~∇T) · ~∇T > 0. (14)

This leads to Î : D̂ = tr(D̂) = tr
(
∂~v
∂~x

)
= ~∇ ·~v, and finallyEntropy Produc-

tion

σs =
1

T
ĝ(D̂) : D̂−

1

T2
~f(~∇T) · ~∇T > 0. (15)

The entropy production of an irreversible process always admits a bilin-
ear structure. We observe that σs > 0 (irreversible process) only if the
gradients D̂ and ~∇T are present in the system. Additionally, it is noticed
that D̂ generates T̂ and ~∇T generates ~q. For an isotropic fluid the two
effects are independent (see the Curie law in Appendix A.2) and the
functions ĝ and ~f can be linearised separately asPhenomenological

Relations ĝ = 2µD̂+ λ tr(D̂)Î = ˆ̂VD̂,

~f = −κ~∇T ,
(16)

where ˆ̂V and κ must be positive to fulfill Eq.(15). λ and µ are the vis-
cosity coefficients in [Pa.s] and represents the isotropic form of ˆ̂V . κ is
the so-called thermal conductivity [W.K−1.m−1]. Eq.(16) represents the
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phenomenological relations and the linear coefficients are the so-called
phenomenological coefficients.

The equations governing the dynamics of a viscous fluid with ther-
mal conduction are finally the following

ρ̇+ ρ~∇ ·~v = 0, balance of mass

ρ~̇v = ~∇ · T̂ + ~b, balance of linear momentum

T̂ = −pÎ+ 2µD̂+ λ tr(D̂)Î, stress tensor

ρė = T̂ : D̂− ~∇ · ~q+Q0, balance of energy

~q = −κ~∇T , heat transfer

p = p(ρ, T),

e = e(ρ, T).

(17)

Eqs.(17f,g) represent the equilibrium behavior of the material which is
accepted locally. From the point of view of the thermodynamics, they
can be obtained through the introduction of Helmholtz free energy den-
sity fh = e − Ts in [J.kg− 1], yielding fh = fh(ρ, T) andp = − ∂fh

∂( 1ρ )
,

s = −∂fh
∂T .

(18)

In classical thermodynamics Eq.(18a) is typically found in the form P =

−∂Fh
∂V which corresponds to p = −

∂(Fh/M)
∂(V/M) = − ∂fh

∂( 1ρ )
as reported.

We now aim to simplify Eqs.(17). From now on we will use for sim- Einstein Nota-
tionplicity the Einstein notation that implies the summation over a set of

indexed terms. Using this notation, here with the sum over i, j and k,
Eq.(17c) becomes

Tij = −pδij + µ

(
∂vi
∂xj

+
∂vj

∂xi

)
+ λ

∂vk
∂xk

δij, (19)

with δ the Kronecker symbol. We then get

∂Tij

∂xj
= −

∂p

∂xj
δij + µ

(
∂2vi

∂x2j
+

∂2vj

∂xi∂xj

)
+ λ

∂2vk
∂xk∂xj

δij, (20)

or equivalently

~∇ · T̂ = −~∇p+ µ∇2~v+ (λ+ µ)~∇(~∇ ·~v), (21)
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which can be used to simplify the linear moment balance of Eq.(17b).
Similarly T̂ : D̂ can be explicitly written as

T̂ : D̂ = TijDij,

=

[
−pδij + µ

(
∂vi
∂xj

+
∂vj

∂xi

)
+ λ

∂vk
∂xk

δij

]
1

2

(
∂vi
∂xj

+
∂vj

∂xi

)
,

= −
p

2

(
∂vi
∂xi

+
∂vi
∂xi

)
+
µ

2

(
∂vi
∂xj

+
∂vj

∂xi

)2
+
λ

2

∂vk
∂xk

(
∂vi
∂xi

+
∂vi
∂xi

)
,

= −p~∇ ·~v+ µ
2

(
∂vi
∂xj

∂vi
∂xj

+ 2
∂vi
∂xj

∂vj

∂xi
+
∂vj

∂xi

∂vj

∂xi

)
+ λ(

∂vk
∂xk

)2,

= −p~∇ ·~v+ µ
(
∂vi
∂xj

∂vi
∂xj

+
∂vi
∂xj

∂vj

∂xi

)
+ λ(~∇ ·~v)2. (22)

As a result we have in Eulerian form, the continuity, the Navier-Stokes
and the heat equations in a fluid written respectively asEulerian Conti-

nuity, Navier-
Stokes and Heat
Equations in a
Fluid


∂ρ
∂t +

~∇ · (ρ~v) = 0,

ρ
[
∂~v
∂t + (~v · ~∇)~v

]
= −~∇p+ µ∇2v+ (λ+ µ)~∇(~∇ ·~v) + ~b,

ρ
[
∂e
∂t + (~v · ~∇)e

]
= −p~∇ ·~v+ µ

(
∂vi
∂xj

∂vi
∂xj

+ ∂vi
∂xj

∂vj
∂xi

)
+ λ(~∇ ·~v)2 + κ∇2T +Q0,

(23)

where, with fh the Helmholtz free energy density,
e = fh + Ts,

p = − ∂fh
∂(1/ρ) ,

s = −∂fh
∂T .

(24)

Eqs.(23) and (24) represent the complete system of equation for a vis-
cous fluid with thermal transfer.

The function fh(ρ, t) comes from the statistical mechanics and takes
into consideration the real interactions among atoms or molecules of
the fluid. It can be directly correlated to the partition function of the
system. The final system of equation has the unknowns (ρ,~v,p, T , s, e)
and, coherently, is composed of 8 equations. The problem is that this
system is strongly non linear and it can be only approached numerically
for problems involving small deviations around a given equilibrium
state, the system can be linearised by generating a simpler mathematical
problem. To do this, we suppose that the 8 quantities defined above can
be substituted as

φ→ φ0 + εφ, (25)
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where φ0 is the equilibrium value, φ is the perturbation and ε is a small
parameter. In Eq.(25) φ stands for one of the 8 variables (ρ,~v,p, T , s, e).
It is then understood that from now on, the use of those 8 variables
without the subscript 0 actually describe their variations around a given
equilibrium state. We suppose that ~v0 = 0 since the fluid is considered
at rest at equilibrium. On the other hand, ρ0, p0, T0, s0 and e0 assume
arbitrary values. The continuity equation Eq.(23a) is rewritten as

∂

∂t
(ρ0 + ερ) = −~∇ · [(ρ0 + ερ)(~v0 + ε~v)] . (26)

The identity of the terms proportional to ε0 is

∂ρ0
∂t

= −~∇ · (ρ0~v0), (27)

which is satisfied since ρ0 is constant and ~v0 = 0. The identity of the
terms proportional to ε1 is

∂ρ

∂t
= −~∇ · (ρ0~v+ ρ~v0). (28)

Since ~v0 = 0 the first order equation for ρ is

∂ρ

∂t
+ ρ0~∇ ·~v = 0. (29)

The same procedure can be applied to the Navier-Stokes equation Eq.(23b)

(ρ0+ερ)

[
∂ε~v

∂t
+ ε2(~v · ~∇)~v

]
= −~∇(p0+εp)+µε∇2v+(λ+µ)ε~∇(~∇·~v)+~b.

(30)

The terms of order zero give

~∇p0 = ~b, (31)

which is the static equilibrium. The terms of order one give

ρ0
∂~v

∂t
= −~∇p+ µ∇2v+ (λ+ µ)~∇(~∇ ·~v), (32)

which is the linearised Navier-Stokes equation. Finally, the same thought
process is applied to the energy balance. Eq.(23c) delivers

(ρ0 + ερ)

[
∂(e0 + εe)

∂t
+ (~v · ~∇)ε(e0 + εe)

]
=

− (p0 + εp)~∇ · (ε~v) + µε2
(
∂vi
∂xj

∂vi
∂xj

+
∂vi
∂xj

∂vj

∂xi

)
+

+ λε2(~∇ ·~v)2 + κ∇2(T0 + εT) +Q0. (33)
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The identity generated by the zero order terms is

ρ0
∂e0
∂t

= κ∇2T0 +Q0, (34)

which is the stationary thermal conduction. The first order identity is

ρ0
∂e
∂t

+ ρ
∂e0
∂t

+ ρ0(~v · ~∇)e0 = −p0~∇ ·~v+ κ∇2T . (35)

We suppose Q0 = 0 (no energy supplied to the system) and e0 and T0
constant. Hence, we have that Eq.(34) is always satisfied and Eq.(35)
simplifies to

ρ0
∂e
∂t

= −p0~∇ ·~v+ κ∇2T . (36)

This equation can be written in terms of entropy through the first prin-
ciple de = Tds − pd( 1ρ). If we introduce here the perturbations we get

d(e0 + εe) = (T0 + εT)d(s0 + εs) − (p0 + εp)d(
1

ρ0 + ερ
), (37)

where

1

ρ0 + ερ
=
1

ρ0

(
1

1+ ε ρρ0

)
≈ 1

ρ0
(1− ε

ρ

ρ0
). (38)

Hence

d(e0 + εe) = (T0 + εT)d(s0 + εs) − (p0 + εp)
1

ρ0
d(1− ε

ρ

ρ0
), (39)

where ρ0 is supposed constant. If also s0 is considered constant, the first
order terms in Eq.(39) yield

de = T0ds + p0
dρ

ρ20
, (40)

or equivalently

ρ0
de
dt

= ρ0T0
ds
dt

− p0

(
−
1

ρ0

dρ

dt

)
. (41)

At first order dρ
dt ≈

∂ρ
∂t and − 1

ρ0

∂ρ
∂t =

~∇ ·~v (see Eq.(29)) and thus

ρ0
de
dt

= ρ0T0
ds
dt

− p0~∇ ·~v. (42)
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Comparing with Eq.(36) we get

p0T0
∂s
∂t

= κ∇2T . (43)

Eq.(43) means that the linearised process is isoentropic or adiabatic (lo-
cally) if we can neglect the thermal conduction.

The linearised system in a fluid made of the continuity, Navier-Stokes
and heat equations is Linearised

Eulerian Consti-
tutive Equations
in a Fluid


∂ρ
∂t + ρ0

~∇ ·~v = 0,

ρ0
∂~v
∂t = −~∇p+ µ∇2~v+ (λ+ µ)~∇(~∇ ·~v),

ρ0T0
∂s
∂t = κ∇

2T .

(44)

We will now combine Eqs.(44) with p = p(ρ, T) and s = s(ρ, T) to have
the system in terms of quantifiable medium constants. For the entropy
we have

∂s
∂t

=
∂s
∂T

∣∣∣∣
p0

∂T

∂t
+
∂s
∂p

∣∣∣∣
T0

∂p

∂t
, (45)

by using the variables T and p instead of ρ and T (note that each couple
of independent variables can be used to linearise). Before elaborating
Eq.(45) we observe that if we consider two variables x ′ and y ′ perturbed
with the substitutions x ′ = x0 + εx and y ′ = y0 + εy, we have

∂y ′

∂x ′
=
∂(y0 + εy)

∂x ′
= ε

∂y

∂x ′
= ε

∂y

∂x

1
∂x ′
∂x

= ε
∂y

∂x

1

ε
=
∂y

∂x
. (46)

The identity ∂y ′

∂x ′ = ∂y
∂x means that the partial derivative between two

variables can be calculated either on the original variables or on their
perturbations without modifying the result. This leads to

Cp =
dq

dT

∣∣∣∣
p

= T
∂s
∂T

∣∣∣∣
p

, (47)

which represent the specific heat at constant pressure in [J.kg−1.K−1].
Therefore ∂s

∂T

∣∣
p0

=
Cp
T0

can be used in the first term of Eq.(45). The second
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one can be elaborated using the Maxwell equation ∂S
∂p

∣∣∣
p0

= − ∂V
∂T

∣∣
p0

, and
so

∂s
∂p

∣∣∣∣
T0

= −
∂(V/M)

∂T

∣∣∣∣
p0

,

= −
1

M

∂V

∂T

∣∣∣∣
p0

,

= −
V

M

[
1

V

∂V

∂T

∣∣∣∣
p0

]
,

= −
1

ρ0
αT , (48)

where

αT =
1

V

∂V

∂T

∣∣∣∣
p0

, (49)

is the coefficient of volumetric thermal expansion in [K−1]. Finally Eq.(45)
leads toCoefficient of

Volumetric
Expansion

∂s
∂t

=
Cp

T0

∂T

∂t
−
αT
ρ0

∂p

∂t
. (50)

Instead of considering p = p(ρ, T) we can also use ρ = ρ(p, T) as

ρ0 + ερ = ρ(p0 + εp, T0 + εT),

= ρ(p0, T0) + ε
∂ρ

∂p

∣∣∣∣
T0

p+ ε
∂p

∂T

∣∣∣∣
p0

T , (51)

then

ρ =
∂ρ

∂p

∣∣∣∣
T0

p+
∂ρ

∂T

∣∣∣∣
p0

T ,

where

∂ρ

∂p

∣∣∣∣
T0

=M
∂( 1V )

∂p

∣∣∣∣∣
T0

,

= −
M

V2
∂V

∂p

∣∣∣∣
T0

,

= −
M

V

[
1

V

∂V

∂p

∣∣∣∣
T0

]
. (52)

Here κT = − 1
V
∂V
∂p

∣∣∣
T0

is the coefficient of isothermal compressibility. In

elasticity terms 1
κT

is named bulk modulus B. So we haveBulk Modulus
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∂ρ

∂p

∣∣∣∣
T0

= ρ0κT =
ρ0
B

. (53)

The second derivative follows

∂ρ

∂T

∣∣∣∣
p0

=M
∂( 1V )

∂T

∣∣∣∣∣
p0

= −
M

V2
∂V

∂T

∣∣∣∣
p0

= −ρ0αT . (54)

Summing up Linearised Den-
sity Variations

ρ =
ρ0
B
p− ρ0αTT , (55)

which is the linearised form of the ρ = ρ(p, T). Eqs.(44), (50) and (55)
describe the linearised model for a thermo-viscous fluid.

In this section, from the balance equations of Section 2.1.1, the Eule-
rian form of the continuity, Navier-Stokes and heat equations have been
formulated. Eqs.(23) represents the complete system of equation for a
viscous fluid with thermal transfer. Assuming small deviations around
a given equilibrium state for the unknowns (ρ,~v,p, T , s, e), the system
was linearised to Eqs.(44). It was then simplified to have the linearised
system for any thermo-viscous fluid only depending only on the vari-
ables (p,~v, T). Hence, substituting Eqs.(50) and (55) in Eq.(44) we have
a simplified system [144] Linearised

Conservation
Equations in any
Thermo-Viscous
Fluid


ρ0
B
∂p
∂t − ρ0αT

∂T
∂t + ρ0

~∇ ·~v = 0,

ρ0
∂~v
∂t = −~∇p+ µ∇2~v+ (λ+ µ)~∇(~∇ ·~v),

ρ0Cp
∂T
∂t −αTT0

∂p
∂t = κ∇

2T .

(56)

Eq.(56) are respectively the conservation of mass (continuity), of mo-
mentum (Navier-Stokes) and of energy (heat). The abusive notations p,
T to represent the pressure and temperature variations around a con-
stant state symbolised by the subscript 0 will be used throughout this
thesis in fluid.

2.1.3 Solids with Arbitrary Thermal and Viscous Properties

Similarly as Section 2.1.2, we now aim at writing linearised conservation
equations for any thermo-visco elastic anisotropic solid. We consider
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a solid elastic material that may undergo arbitrary deformations. As
discussed in Section 2.1.1, the balance equations can be written as

ρ̇+ ρ~∇ ·~v = 0, (1)

ρ~̇v = ~∇ · T̂ + ~b, (2)

T̂ = T̂ T , (3)

ρė = T̂ : D̂− ~∇ · ~q+Q0, (4)

ρṡ = −~∇ · (~q
T
) +

Q0
T

+ σs. σs > 0 (5)

In order to define the constitutive behavior of a solid it is better to
consider the Helmholtz free energy density fh as function of T and F̂
(state of deformation). So we have fh = fh(T , F̂) and we can use the
relation e = fh + Ts to compare Eq.(4) and (5). To do this we calculate

ė = ḟh + Ṫ s+ T ṡ,

= ḟh −
∂fh
∂T
Ṫ + T ṡ,

where we used the relation s = −∂fh
∂T . So we have from Eq.(4)

ρḟh − ρ
∂fh
∂T
Ṫ + ρTṡ = T̂ : D̂− ~∇ · ~q+Q0, (57)

which, once divided by T is

ρ

T
ḟh − ρ

∂fh
∂T

Ṫ

T
+ ρṡ =

1

T
T̂ : D̂−

1

T
~∇ · ~q+ Q0

T
,

=
1

T
T̂ : D̂− ~∇ · (~q

T
) −

1

T2
~q · ~∇T + Q0

T
. (58)

Hence

ρṡ = ρ
∂fh
∂T

Ṫ

T
−
ρ

T
ḟh +

1

T
T̂ : D̂− ~∇ · (~q

T
) −

1

T2
~q · ~∇T + Q0

T
. (59)

The relation stating that fh = fh(T , F̂) can be simplified by means of the
principle of material objectivity (or material frame indifference) whichPrinciple of

Frame Indiffer-
ence

says that the energy (and the stress) in the body should be the same
regardless of the reference from which it is measure. If we consider an
arbitrary motion ~x = Ft(~X), we can obtain the corresponding deforma-
tion gradient F̂ = ∂~x

∂X . On the other hand, if we consider a roto-translated
motion ~x = Q̂(t)Ft(~X) + ~c(t) (where Q̂(t) is an orthogonal matrix and
~c(t) is an arbitrary vector), then the deformation gradient is Q̂F̂. In both
cases we must have the same free energy and therefore

fh(T , F̂) = fh(T , Q̂F̂), (60)
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for all arbitrary orthogonal operator Q̂, meaning they verify Q̂Q̂T = Î.
This principle allows the simplification of the theory. Indeed any non
singular tensor can be decomposed in two different ways Polar Decompo-

sition Theorem
F̂ = R̂Û = V̂R̂, (61)

where R̂ is orthogonal and Û and V̂ are symmetric and positive definite
tensors. This is the Cauchy polar decomposition theorem whose proof
of existence and uniqueness can be found in Appendix A.4. Hence, us-
ing Cauchy decomposition F̂ = R̂Û in Eq.(60)

fh(T , F̂) = fh(T , Q̂R̂Û), ∀Q̂. (62)

By imposing Q̂ = R̂T we have

fh(T , F̂) = fh(T , Û). (63)

Changing the variable from Û to Û2 we obtain

fh(T , F̂) = gh(T , Û2) = gh(T , Ĉ), (64)

where Ĉ = Û2 is the right Cauchy tensor and gh is a modified func-
tion still representing Helmholtz free energy density after the change of
variable. The material frame indifference allows us to use Ĉ instead of
F̂. The choice of Ĉ is convenient since Ĉ = F̂T F̂ is a rational function of F̂.
An alternative formulation is based on the second polar decomposition
F̂ = V̂R̂ leads to fh(T , F̂) = fh(T , V̂) or, with V̂2 = B̂, to fh(T , F̂) = gh(T , B̂).
In order to facilitate reading, the notation fh will be kept in the follow-
ing section but is now function of Ĉ. We now continue with the first
formulation by calculating ḟh in Eq.(59)

ḟh =
∂fh
∂T
Ṫ +

∂fh

∂Ĉ

˙̂C, (65)

where

˙̂C =
d

dt
(F̂T F̂) = ˙̂FT F̂+ F̂T ˙̂F. (66)

Eq.(59) becomes

ρṡ = ρ
∂fh
∂T

Ṫ

T
− ρ

∂fh
∂T

Ṫ

T
−
ρ

T

∂fh

∂Ĉ
( ˙̂FT F̂+ F̂T ˙̂F) +

1

T
T̂ : D̂+

− ~∇ · (~q
T
) +

Q0
T

−
1

T2
~q · ~∇T . (67)

We decompose the stress T̂ as the sum of the elastic stress T̂e and the
viscous stress T̂V where T̂ = T̂e + T̂V . We get

ρṡ =
1

T

[
T̂e : D̂− ρ

∂fh

∂Ĉ
( ˙̂FT F̂+ F̂T ˙̂F)

]
+
1

T
T̂V : D̂−

1

T2
~q · ~∇T − ~∇· (~q

T
)+

Q0
T

.
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(68)

The entropy production given by Eq.(5) is now written as

σs =
1

T

[
T̂e : D̂− ρ

∂fh

∂Ĉ
( ˙̂FT F̂+ F̂T ˙̂F)

]
+
1

T
T̂V : D̂−

1

T2
~q · ~∇T , (69)

whose first term can be elaborated as

T̂e : D̂− ρ
∂fh

∂Ĉ
( ˙̂FT F̂+ F̂T ˙̂F) = tr

(
T̂eD̂− ρ

∂fh

∂Ĉ

˙̂FT F̂− ρ
∂fh

∂Ĉ
F̂T ˙̂F
)

,

= tr
(
T̂eD̂− ρ

∂fh

∂Ĉ
F̂T L̂T F̂− ρ

∂fh

∂Ĉ
F̂T L̂F̂

)
,

= tr
(
T̂eD̂− ρ

∂fh

∂Ĉ
F̂T (L̂+ L̂T )F̂

)
,

= tr
(
T̂eD̂− 2ρ

∂fh

∂Ĉ
F̂T D̂F̂

)
,

= tr
(
T̂eD̂− 2ρF̂

∂fh

∂Ĉ
F̂T D̂

)
,

=

[
T̂e − 2ρF̂

∂fh

∂Ĉ
F̂T
]
: D̂, (70)

knowing ˙̂F = L̂F̂ and D̂ = 1
2(L̂+ L̂

T ) and tr(ÂB̂) = tr(B̂Â) (cyclic property
of the trace). Eq.(69) now assumes the form

σs =
1

T

[
T̂e − 2ρF̂

∂fh
∂C
F̂T
]
: D̂+

1

T
T̂V : D̂−

1

T2
~q · ~∇T . (71)

The first term is purely elastic and so it does not contribute to the en-
tropy production. Hence we haveElastic Constitu-

tive Equation
T̂e = 2ρF̂

∂fh

∂Ĉ
F̂T , (72)

which is the elastic constitutive equation. Moreover we must have

T̂V : D̂ > 0, (73)

and

~q · ~∇T 6 0. (74)

We can use the first Piola-Kirchhoff stress tensor T̂1PK = JT̂ F̂−T , withPiola-Kirchhoff
Stress Tensor J = det(F̂) scalar seen in Eq.(455) in Appendix A.1.2. In this case Eq.(72)

assumes a simpler form

T̂1PK
e = JT̂eF̂

−T ,

= 2JρF̂
∂fh

∂Ĉ
F̂T F̂−T ,

= 2ρ0F̂
∂fh

∂Ĉ
, (75)
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since ρJ = ρ0, or

T̂2PK
e = F̂−1T̂1PK

e = 2ρ0
∂fh

∂Ĉ
. (76)

The second Piola Kirchhoff stress tensor T̂2PK = F̂−1T̂1PK could also have
been used. Finally the strain is often described by the Green-Lagrange
tensor

η̂ =
1

2
(Ĉ− Î), (77)

instead of Ĉ, or by the Almansi-Euler tensor

ε̂ =
1

2
(Î− B̂−1), (78)

instead of B̂. Moreover we also introduce the Lagrangian displacement Lagrangian
and Eulerian
Displacement
Gradients

gradient ĴL = ∂~u
∂~X

and the Eulerian displacement gradient ĴE = ∂~u
∂~x where

~u is the displacement ~u = ~x− ~X. We have ĴL = F̂− Î and ĴE = Î− F̂−1.
Therefore

η̂ =
1

2

(
ĴL + Ĵ

T
L + Ĵ

T
L ĴL

)
, (79)

and

ε̂ =
1

2

(
ĴE + Ĵ

T
E − Ĵ

T
EĴE

)
. (80)

Since dĈ = 2dη̂ we have T̂e = ρF̂∂fh∂η̂ F̂
T and T̂1PK

e = ρ0F̂
∂fh
∂η̂ and T̂2PK

e =

ρ0
∂fh
∂η̂ .

The obtained equations consist of a closed system which is strongly
non linear. As a matter of fact, it is useful to obtain a linearised version
of this system. To do this, the extent of the deformation is assumed
small. This hypothesis can be explicitly written as tr(ĴLĴTL) << 1 or
tr(ĴEĴTE) << 1. We therefore assume that ĴL ≈ ĴE = Ĵ and Ĵ = ε̂ + Ω̂

with ε̂ symmetric and Ω̂ anti symmetric. So we get η̂ = ε̂ = ε̂ and
Û = V̂ = Î+ ε̂ and R̂ = Î+ Ω̂. Also T̂e ≈ T̂1PK

e ≈ T̂2PK
e = ρ∂fh∂ε̂ ≈ ρ0

∂fh
∂ε̂ ,

where fh = fh(T , ε̂) and the solid density is assumed constant. The ten-
sor ε̂ is the so called infinitesimal strain tensor and it is defined as

ε̂ =
1

2
(~∇~u+ ~∇~uT ), (81)

where ~u is the displacement vector. The Taylor expansion of fh to the
second order using M̂ as a thermal tensor and ˆ̂Ce as an elastic tensor
gives

fh(T , ε̂) = fh,0(T) + (M̂ : ε̂) (T − T0) +
1

2
ε̂ : ˆ̂Ceε̂, (82)
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with the subscript 0 being the equilibrium state as defined in Eq.(25) in
fluid. From Eq.(82) we have the entropy density

s = −
∂fh
∂T

= −f ′h0(T) − M̂ : ε̂, (83)

and the stress tensor (elastic part)

T̂e = ρ0
∂fh
∂ε̂

,

= ρ0M̂(T − T0) + ρ0
ˆ̂Ceε̂,

= ρ0
ˆ̂Ce
[
ε̂+ ˆ̂C−1

e M̂(T − T0)
]

. (84)

We get ρ0
ˆ̂Ce = ˆ̂C0 the stiffness tensor, and ˆ̂C−1

e M̂ = −α̂T the thermal
expansion tensor. We have now

T̂e =
ˆ̂C0 [ε̂− α̂T (T − T0)] , (85)

or

ε̂ = ˆ̂C−1
0 T̂e + α̂T (T − T0), (86)

with ˆ̂C−1
0 being the compliance tensor (see Appendix A.3). The energy

density is

e = fh + T s,

= fh0(T) − ( ˆ̂C0α̂T : ε̂)(T − T0)
1

ρ0
+
1

2

1

ρ0
(ε̂ : ˆ̂C0ε̂) − Tf ′h0(T) +

T

ρ0

ˆ̂C0α̂T : ε̂,

= e0(T) +
1

ρ0
( ˆ̂C0α̂T : ε)T0 +

1

2

1

ρ0
(ε̂ : ˆ̂C0ε̂), (87)

where e0(T) = fh0(T) − Tf ′h0(T) is the energy without deformations. The
time derivative is

ė =
∂e0(T)
∂T

∂T

∂t
+
1

ρ0
( ˆ̂C0α̂T :

∂ε̂

∂t
)T0 +

1

ρ0
( ˆ̂C0ε̂ :

∂ε̂

∂t
). (88)

Here ∂e0(T)
∂T = CV and T̂ : D̂ in Eq.(4) becomes

T̂ : D̂ = T̂ :
1

2
(L̂+ L̂T ) = T̂ :

∂ε̂

∂t
. (89)

Eq.(4) now assume the form

ρ0

[
CV
∂T

∂t
+
1

ρ0
( ˆ̂C0α̂T :

∂ε̂

∂t
)T0 +

1

ρ0
( ˆ̂C0ε̂ :

∂ε̂

∂t
)

]
= (T̂e+ T̂V) :

∂ε̂

∂t
− ~∇·~q+Q0,

(90)
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where T̂e is given in Eq.(85) and T̂V and ~q must satisfy Eqs.(73) and (74).
We assume the linear behavior

T̂V = ˆ̂VD̂ = ˆ̂V
∂ε̂

∂t
, (91)

~q = −K̂~∇T , (92)

with ˆ̂V being a viscous tensor and K̂ being a thermal conductivity tensor
since we don’t know if the solid has thermal isotropic properties. Eq.(90)
delivers

ρ0CV
∂T

∂t
+ ˆ̂C0α̂T :

∂ε̂

∂t
T0 +

ˆ̂C0ε̂ :
∂ε̂

∂t
=

ˆ̂C0 [ε̂− α̂T (T − T0)] :
∂ε̂

∂t
+ ˆ̂V

∂ε̂

∂t
:
∂ε̂

∂t
+ ~∇ · (K̂~∇T) +Q0,

or

ρ0CV
∂T

∂t
= −Ĉ0α̂T :

∂ε̂

∂t
T + ˆ̂V

∂ε̂

∂t
:
∂ε̂

∂t
+ ~∇ · (K̂~∇T) +Q0. (93)

Eq.(2) becomes

ρ0~̈u = ~∇ · T̂ + ~b = ~∇ · T̂e + ~∇ · T̂V + ~b, (94)

with (knowing that ˆ̂C0 is symmetric)

~∇ · T̂e = ~∇ · ˆ̂C0 [ε̂− α̂T (T − T0)] ,

= ~∇ · ( ˆ̂C0~∇~u) − ˆ̂C0α̂T ~∇T , (95)

~∇ · T̂V = ~∇ · ( ˆ̂V
∂ε̂

∂t
). (96)

The final constitutive equations for a solid being the conservation of
momentum and energy are Eulerian Consti-

tutive Equations
in a Solid

ρ0CV ∂T∂t = −Ĉ0α̂T : ∂ε̂∂tT +
ˆ̂V ∂ε̂∂t :

∂ε̂
∂t +

~∇ · (K̂~∇T) +Q0,

ρ0~̈u = ~∇ · ( ˆ̂C0~∇~u) − ˆ̂C0α̂T ~∇T + ~∇ · ˆ̂V ∂ε̂∂t + ~b.
(97)

Eqs.(97) completely describe the thermo-visco elasticity of an anisotropic
solid. They represent a closed system of equations for the unknowns
T(~x, t) and ~u(~x, t).

It has to be noted that Eq.(97a), although obtained for small defor-
mations, is non linear for the presence of the quadratic terms ∂ε̂

∂tT and
ˆ̂V ∂ε̂∂t :

∂ε̂
∂t . To completely linearise the system we have to neglect the effect

of viscosity on the heat transfer, meaning that ˆ̂V ∂ε̂∂t :
∂ε̂
∂t is no longer con-

sidered. T must also be linearised as in Eq.(25) for fluid. On the other
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hand Eq.(97b) is already linear and maintains the same form. Finally, us-
ing the same abusive notation as in fluid (T for temperature variations),
the linearised system isLinearised

Constitutive
Equations for
Anisotropic
Solid

ρ0CV ∂T∂t = ~∇ · (K̂~∇T) − Ĉ0α̂T : ∂ε̂∂tT0 +Q0

ρ0~̈u = ~∇ · ( ˆ̂C0~∇~u) + ~∇ ·
(

ˆ̂V ∂
∂t
~∇~u
)
− ˆ̂C0α̂T ~∇T + ~b

(98)

For further applications it is interesting to write Eqs.(98) for an isotropic
solid. In this case α̂T is proportional to the identity matrix Î

α̂T =
αT
3
Î, (99)

where αT is the volumetric thermal expansion coefficient of the solid.
Moreover, the tensor ˆ̂C0 and ˆ̂V are described by two parameters as(

ˆ̂C0Ŝ
)
ij
= C0ijkhSkh = 2µ0Sij + λ0Skkδij, (100)(

ˆ̂VŜ
)
ij
= VijkhSkh = 2µsSij + λsSkkδij, (101)

summed over k, where Ŝ is an arbitrary symmetric matrix on which
the operators ˆ̂C0 and ˆ̂V are applied, λ0 and µ0 are elasticity coefficient
(Lamé’s coefficients) and λs and µs are viscosity coefficients (noted λ

and µ in the fluid equations). For more details on the tensor form see
Appendix A.3. This is a general form for a fourth order tensor that
respect the isotropy. The application of ˆ̂C0 on α̂T then gives(

ˆ̂C0α̂T
)
ij
= 2µ0

αT
3
δij + λ0αTδij = αT (λ0 +

2

3
µ0)δij. (102)

Moreover

ˆ̂C0α̂T :
∂ε̂

∂t
=

∑
ij

αT (λ0 +
2

3
µ0)δij

∂εij

∂t
,

=
∑
ij

αT (λ0 +
2

3
µ0)

∂εii
∂t

,

=
∑
ij

αT (λ0 +
2

3
µ0)

∂

∂t
~∇ · ~u, (103)

where ~u is the displacement vector. Regarding the thermal conductivity
we do consider an isotropic tensor

K̂ = κÎ. (104)



2.1 formalism for fluid and solid phases 57

The term ~∇ · ( ˆ̂C0~∇~u) becomes[
~∇ · ( ˆ̂C0~∇~u)

]
ij
=

∂

∂xi
Tij,

=
∂

∂xi

[
µ0(

∂ui
∂xj

+
∂uj

∂xi
) + λ0

∂uk
∂xk

δij

]
,

= µ0
∂2uj

∂x2i
+ µ0

∂2ui
∂xi∂xj

+ λ0
∂2uk
∂xk∂xi

δij,

= (λ0 + µ0)
∂2ui
∂xi∂xj

+ µ0
∂2uj

∂x2i
, (105)

or equivalently

~∇ · ( ˆ̂C0~∇~u) = (λ0 + µ0)~∇(~∇ · ~u) + µ0~∇2~u. (106)

Similarly with the viscosity

~∇ · ( ˆ̂V
∂

∂t
~∇~u) = (λs + µs)~∇(~∇ ·~v) + µs~∇2~v, (107)

with ~v = d~u
dt the velocity. Now Eq.(98), written for an isotropic solid is

read Complete Sys-
tem for Isotropic
and Homoge-
neous Solid


ρ0CV

∂T
∂t = κ∇2T −αT (λ0 + 2

3µ0)
∂
∂t
~∇ · ~u T0 +Q0,

ρ0
∂2~u
∂t2

= (λ0 + µ0)~∇(~∇ · ~u) + µ0~∇2~u+ (µs + λs)~∇(~∇ ·~v)+

+µs~∇2~v−αT (λ0 + 2
3µ0)

~∇T + ~b,
(108)

which represent the system of equations for an isotropic and homoge-
neous solid with thermal, viscous and elastic properties.

For easier comparison with the fluid equation, the Bulk modulus for
the solid has to be constructed. Using Eq.(100), Eq.(85) representing the
constitutive equation of the solid assumes the following form of the
elastic stress T̂e for the isotropic case

Teij = 2µ0εij + λ0εkkδij −αT (λ0 +
2

3
µ0)δijT . (109)

This relation allows us to identify two important physical interpreta-
tions. Firstly, if Teij = 0, ∀i, j the solid is free of stress and we have

0 = 2µ0εij + λ0εkkδij −αT (λ0 +
2

3
µ0)δijT . (110)
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In this condition the deformation is simply induced by the temperature
and it is therefore isotropic meaning εij = εδij. Hence

0 = 2µ0εδij + λ03εδij −αT (λ0 +
2

3
µ0)δijT , (111)

and so we get 3ε = αTT or

αT =
tr(ε̂)
T

. (112)

Since tr(ε̂) = dV
V is the variation of volume per unit of volume we ob-

tained again the definition of volumetric thermal expansion of the solid
for αT . We now consider an hydrostatic load applied to the solid at con-
stant temperature T = T0 (T = 0 with the abusive notation). We define
temporarily Tij = σδij and we get from Eq.(109)

σδij = 2µ0εij + λ0εkkδij. (113)

Then ε̂ is diagonal of the form εÎ where

ε =
σ

3(λ0 +
2
3µ0)

. (114)

We define the Bulk modulus

B0 = λ0 +
2

3
µ0, (115)

such that

tr(ε̂) =
σ

B0
. (116)

Or, since tr(ε̂) = dV
V

1

B0
=
dV

Vσ
= −

dV

Vp
. (117)

It is then deduced that σ is in fact equal to −p, the pressure, as used for
Eq.(53) in a fluid. Similarly, the term 1

B0
= κT is called the coefficient of

isothermal compressibility as in the fluid case.

In this section, similarly as for a fluid medium, starting from the
balance equations of Section 2.1.1, the conservation equations of mo-
mentum and of energy are written in a solid case. Considering an
anisotropic elastic solid, a non linear system is deduced in Eq.(97). By
neglecting the effect of viscosity on the heat transfer and assuming
small deformation of temperature the linearised system is found in
Eq.(98).
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An isotropic solid is then assumed and the conservation equation
are rewritten for an isotropic, homogeneous solid with thermal, viscous
and elastic properties in Eq.(108). Particular properties of the elastic
stress tensor are then investigated in order to define the Bulk modulus
in the solid and write the system in a similar fashion as Section 2.1.2.
Eq.(108) assumes therefore the final form Final System for

Isotropic Homo-
geneous Solid

ρ0CV ∂T∂t = κ∇2T −αTB0 ∂∂t ~∇ · ~u T0 +Q0,

ρ0
∂2~u
∂t2

= (λ0 + µ0)~∇(~∇ · ~u) + µ0∇2~u+ (λs + µs)~∇(~∇ ·~v) + µs∇2~v−αTB0~∇T + ~b.
(118)

The abusive notation for T representing temperature variations around
a constant state symbolised by the subscript 0 will now be used through-
out this thesis in solid as well as fluid media.

2.2 one temperature multilayer model for plane waves

In Section 2.1, the conservation equations were laid down for a fluid
medium with thermal and viscous properties as seen in Eqs.(56). like-
wise, the conservation equations for an isotropic, homogeneous solid
with thermal, viscous and elastic properties are found in Eqs.(118).

Both of those systems of equations will now be solved in an uni di-
mensional case. This means that we assume plane wave radiation from
the thermophone, propagating along the x axis of a Cartesian coordi-
nate system. An explicit differential equations for the temperature vari-
ation T will be found and solved thus providing explicit analytical solu-
tion of pressure p, particle velocity v and heat flux q.

This system of equation for p, v,q, T will then be written in matrix
form for both fluid and solid media. This will allow for the construction
of an ideal thermophone’s model which will then be extended to a
multilayer thermophone model containing both fluid and solid layers,
for plane wave radiation.

Lastly it has to be noted that, from now on the subscripts f and s will
be used to refer to some fluid or solid parameters respectively. Those
subscripts will be used only for similarly defined parameters in Section
2.1 which could confuse the reader. If no subscript is used, the reader
can assume that the parameters is for a fluid medium.
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2.2.1 Plane Waves in a Fluid

All space variables are assumed to depend only on the x direction of a
Cartesian coordinate system using (~ex, ~ey, ~ez) as normalised base. This
means that ~v can be decomposed as (v(x, t), 0, 0) and Eqs.(56) become

ρ0,f
B
∂p
∂t − ρ0,fαT

∂T
∂t + ρ0,f

∂v
∂x = 0,

ρ0,f
∂v
∂t = −∂p

∂x + (λ+ 2µ)∂
2v
∂x2

,

ρ0,fCp
∂T
∂t −αTT0

∂p
∂t = κ

∂2T
∂x2

.

(119)

In addition, assuming an harmonic time dependence, we can use the
simplification ∂/∂t→ iω leading to

iωρ0,f
B p− iωρ0,fαTT + ρ0,f ∂v∂x = 0,

iωρ0,fv = −∂p
∂x + (λ+ 2µ)∂

2v
∂x2

,

iωρ0,fCpT − iωαTT0p = κ∂
2T
∂x2

.

(120)

From the 1D continuity equation Eq.(120a) we get the equation for p1D Pressure
Equation in
Fluid p = αTBT −

B
iω
∂v

∂x
, (121)

which can then be substituted in Eq.(120b,c) asiωρ0,fv = −αTB∂T∂x +
B
iω

∂2v
∂x2

+ (λ+ 2µ)∂
2v
∂x2

,

ρ0,fCpiωT − iωαTT0(αTBT − B
iω

∂v
∂x) = κ

∂2T
∂x2

.
(122)

Simplifyingiωρ0,fv = −αTB∂T∂x + (λ+ 2µ+ B
iω)

∂2v
∂x2

,

iω(ρ0,fCp −α
2
TT0B)T +αTBT0 ∂v∂x = κ∂

2T
∂x2

.
(123)

We can use the classical relation between Cp and CV (specific heat at
constant volume)Relation Specific

Heat
Cp −CV = T0

V

M
α2TB, (124)

ρ0(Cp −CV) = T0α
2
TB. (125)

Here ρ0 is used without subscript since Eq.(125) is valid also for solid
phase. We then obtain ρ0Cp −α2TT0B = ρ0CV and Eq.(123b) becomes

∂v

∂x
=

κ

αTBT0
∂2T

∂x2
−

iωρ0,fCV
αTBT0

T . (126)
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We substitute Eq.(126) in Eq.(123a) and we get v as a function of T 1D Velocity
Equation in
Fluidv = −

1

iωρ0,f

[
αTB +

iωρ0,fCV
αTT0B

(λ+ 2µ+
B

iω
)

]
∂T

∂x
+

+ (λ+ 2µ+
B

iω
)

κ

iωρ0,fαTT0B
∂3T

∂x3
. (127)

To obtain a pure equation for T we combine again Eq.(126) with Eq.(123a)
as  d

dx(Eq.(123a))⇒ iωρ0,fv ′ = −αTBT ′′ + (λ+ 2µ+ B
iω)v

′′′,
d2

dx2
(Eq.(126))⇒ v ′′′ = κ

αT T0BT
iv −

iωρ0,fCV
αT T0B T ′′.

(128)

So using Eq.(123b) we obtain

iωρ0,f

[
κ

αTT0B
T ′′ −

iωρ0,fCV
αTT0B

T

]
= −αTBT ′′+(λ+2µ+

B
iω

)

[
κ

αTT0B
T iv −

iωρ0,fCV
αTT0B

T ′′
]

,

(129)

or equivalently 1D Temperature
Variation Differ-
ential Equation
in a Fluid

0 = (λ+ 2µ+
B

iω
)κT iv+

−

[
(λ+ 2µ+

B
iω

)iωρ0,fCV + (iωρ0,fκ+α2TT0B
2)

]
T ′′+

−ω2ρ20,fCVT . (130)

This is a fourth-order biquadratic linear differential equation for the
temperature variations T . If the solution is searched in the form T(x) =

eθx, we have the equation for θ

(λ+2µ+
B

iω
)κθ4−

[
(λ+ 2µ+

B
iω

)iωρ0,fCV + (iωρ0,fκ+α2TT0B
2)

]
θ2−ω2ρ20,fCV = 0.

(131)

The first simple case to solve can concerns a fluid without viscosity
(λ = µ = 0) and without thermal conduction (κ = 0). In this condition
we have

−(ρ0,fCVB +α2TT0B
2)θ2 −ω2ρ20,fCV = 0, (132)

and, using Eq.(125), this leads to

θ2 = −
ω2ρ20,fCV

ρ0,fCVB +α2TT0B
2
= −

ω2ρ0,f

B
CV
Cp

. (133)
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Hence

θ2 = −
ω2

C20
,

θ = ±iω
1

C0
, (134)

with

C20 =
B
ρ0,f

Cp

CV
,

C0 =

√
B
ρ0,f

Cp

CV
=

√
B
ρ0,f

γ, (135)

and γ =
Cp
CV

. The complete solution for the temperature T is T(x, t) =

eiωteθx = eiωte±iω x
C0 = e

iω(t− x
C0

)
+ e

iω(t+ x
C0

), which represent a pro-
gressive (−) or regressive (+) wave along the x-axis with velocity C0.
It is the classical expression of the wave velocity in a fluid for an isen-
tropic process (adiabatic and reversible). It is the solution of the classical
Helmholtz equation in a fluidHelmholtz

Equation for
Isentropic Pro-
cess

d2T

dx2
+
ω2

C0
T = 0, (136)

which is just Eq.(131) without viscosity and thermal conduction as shown.
For the general case, we aim to rewrite Eq.(131) in terms of the wave

velocity C0 (in our case, the speed of sound). To this aim we divide
Eq.(131) by ρ0,fCpB[

κ(λ+ 2µ)

ρ0,fCpB
+

κ

iωρ0,fCp

]
θ4 −

[
iω(λ+ 2µ)

B
CV
Cp

+
CV
Cp

+

iω
κ

BCp
+
α2TT0B
ρ0,fCp

]
θ2 −ω2

ρ0,fCV

BCp
= 0. (137)

Using Eq.(125) CVCp +
α2T T0B
ρ0,fCp

= 1. Thus[
κ(λ+ 2µ)

ρ0,fCpB
+

κ

iωρ0,fCp

]
θ4−

[
1+ iω(

κ

BCp
+

(λ+ 2µ)

B
CV
Cp

)

]
θ2−ω2

ρ0,fCV

BCp
= 0.

(138)

The coefficients for θ4 can be elaborated as

κ(λ+ 2µ)

ρ0,fCpB
+

κ

iωρ0,fCp
=
C0κ

BCp
(λ+ 2µ)

ρ0,fC0
+
C0κ

BCp
B

C0iωρ0,f
,

= lκ lV + lκ
C0

iωγ
,
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where

B
C0ωρ0,f

=
1

ω

B√
B
ρ0,f

Cp
CV
ρ0,f

,

=
1

ω

√
B
ρ0,f

CV
Cp

,

=
1

ω

CV
Cp

√
B
ρ0,f

Cp

CV
,

=
C0
ωγ

,

using still γ =
Cp
CV

. Moreover, the coefficients for θ2, give

iω
(
κ

BCp
+

(λ+ 2µ)

B
CV
Cp

)
=

iω
C0

(
κC0
BCp

+C0
(λ+ 2µ)

ρ0,f

1

C20

)
,

=
iω
C0

(
κC0
BCp

+
(λ+ 2µ)

ρ0,fC0

)
,

=
iω
C0

(lκ + lV).

In conclusion Eq.(138) becomes

lκ(lV +
C0

iωγ
)θ4 − [1+

iω
C0

(lκ + lV)]θ
2 −

ω2

C20
= 0, (139)

using the notations New Simplifica-
tion Parameters

γ =
Cp
CV

,

C0 =
√

B
ρ0,f
γ, [m/s]

lκ =
C0κ
BCp , [m]

lV = λ+2µ
ρ0,fC0

, [m]

(140)

where lκ and lV are characteristic lengths representing the conduction
and the viscous processes, respectively. It is interesting to note that
lκ = (αγ)/C0 with α = κ/(ρCp) the so-called thermal diffusivity of
the medium.

We will now try to obtain explicit solutions of Eq.(139) to the first
order in lκ and lV (weak conduction and viscosity). To do this we find
the asymptotic solutions of ax4 + bx2 + c = 0 for small values of a. If
a = 0, the first couple of solution is given by x2 = − c

b , which means
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x = ±
√

− c
b . So we search ε such that x = ±

√
− c
b + εa in order to obtain

the solutions to the first order in the parameter a. This case is called
regular perturbations. The second couple of solutions called singular
perturbations diverges to infinity when a → 0. So we define y =

√
ax

and ax4 + bx2 + c = 0 is transformed to y4 + by2 + ac = 0. If a = 0 we
get y = ±

√
−b and the perturbed solution are y = ±

√
−b + εa. We

analyze the two cases:

• Case 1Regular Pertur-
bation

We substitute x1 = ±
√
− c
b + εa into ax41 + bx

2
1 + c = 0. We have

x21 ≈ −
c

b
± 2
√
−
c

b
εa,

x41 ≈ (−
c

b
)2 ± 4(− c

b
)

√
−
c

b
εa.

Hence

a(−
c

b
)2 ± 4a(− c

b
)

√
−
c

b
εa− c± 2b

√
−
c

b
εa+ c = 0,

a
c2

b2
± 2εa

√
−
c

b
(b− 2

ac

b
) = 0,

and

ε =± 1
2

√
−
b

c

c2

b3(1− 2ac
b2

)
,

≈± 1
2

√
−
b

c

c2

b3
(1+

2ac

b2
).

So we approximate

ε = ±1
2

√
−
b

c

c2

b3
, (141)

and we get for x1

x1 = ±

[√
−
c

b
−
1

2

√
−
b

c

c2

b3
a

]
. (142)

• Case 2Singular Pertur-
bation
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We substitute y = ±
√
−b+ εa into y4 + by2 + ac = 0. We have

y2 ≈ −b± 2
√
−b εa,

y4 ≈ (−b)2 ± 4(−b)
√
−b εa.

Thus

(−b)2 ± 4(−b)
√
−b εa− b2 ± 2b

√
−b εa+ ac = 0,

ac± 2
√
−b εa(b− 2b) = 0,

ac = ±2
√
−b εab,

and

ε = ± c

2b
√
−b

.

For y we get

y = ±
√
−b± c

2b
√
−b
a, (143)

and for x2 = 1√
a
y we have

x2 = ±

[√
−
b

a
+
1

2

c

b

√
−
a

b

]
. (144)

Finally, using both cases, all solutions of ax4 + bx2 + c = 0 for small
values of a are given by

x1 = ±
[√

− c
b − 1

2
ac2

b3

√
−b
c

]
,

x2 = ±
[√

−b
a +

1
2
c
b

√
−a
b

]
,

(145)

which can be simplified asx1 = ±
√

− c
b

[
1+ 1

2
ac
b2

]
,

x2 = ±
√

−b
a

[
1− 1

2
ac
b2

]
.

(146)

For our system
a = C0

iωγlκ(1+
iωγ
C0
lV),

b = −[1+ iω
C0

(lκ + lV)],

c = −ω2

C20
,

(147)
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with Re(a) > 0, Re(b) < 0 and c < 0. Application of Eq.(146a) using
first order Taylors’s series approximation (1+ ε)α ≈ (1+αε) leads to

θ1 ≈±

√
−
ω2

C20

(
1−

iω
C0

(lκ + lV)

)[
1+

1

2
(
C0

iωγ
lκ)(1+

iωγ
C0

lV)

(
−
ω2

C20

)
(
1− 2

iω
C0

(lκ + lV)

)]
,

≈±

[
iω
C0

(
1−

1

2

iω
C0

(lκ + lV)

)(
1−

1

2
(
C0

iωγ
lκ)
ω2

C20

)]
,

=± iω
C0

[
1−

1

2

iω
C0

(lκ + lV) +
1

2
lκ

iω
C0γ

]
,

=± iω
C0

[
1−

1

2

iω
C0
lV −

1

2
lκ

iω
C0

(1−
1

γ
)

]
. (148)

The wave solution is of the form eiωteθx = eRe(θ)xei(ωt+Im(θ)x). So, for a
progressive wave we haveL = − 1

Reθ ,

V = − ω
Imθ ,

(149)

in order to get the wave in the classical form e−
x
Leiω(t− xV ) where V rep-

resent the phase velocity of the wave and L its attenuation penetration
length. The progressive wave corresponds therefore to the sign "-" in
Eq.(148) and we have

Re θ1 = −
ω2

C20

1

2
lV −

ω2

C20

1

2
(1−

1

γ
)lκ

Im θ1 = −
ω

C0
,

Leading toL1 =
2C20
ω2

1
lV+(1− 1γ )lκ

,

V1 = C0,
(150)

where 1− 1
γ = 1− CV

Cp
=

Cp−CV
Cp

. It is to be noted that 1− 1
γ > 0 since

Cp > CV .
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Using now Eq.(146b)

θ2 ≈ ±

√√√√√ 1+ iω
C0

(lκ + lV)

C0
iωγlκ(1+

iωγ
C0
lV)

[
1−

1

2

C0
iωγ

lκ(1+
iωγ
C0

lV)(−
ω2

C20
)(1− 2

iω
C0

(lκ + lV))

]
,

≈ ±

√
iωγ
C0lκ

(
1+

1

2

iω
C0

(lκ + lV)

)(
1−

1

2

iωγ
C0

lV

)[
1+

1

2

C0
iωγ

lκ
ω2

C20

]
,

= ±

√
iωγ
C0lκ

(
1+

1

2

iω
C0

(lκ + lV) −
1

2

iωγ
C0

lV −
1

2

iω
C0γ

lκ

)
,

= ±

√
iωγ
C0lκ

[
1+

1

2

iω
C0

[
lκ(1−

1

γ
) + lV(1− γ)

]]
. (151)

For a progressive wave we have

θ2 = −(

√
2

2
+ i

√
2

2
)

√
ωγ

C0lκ

[
1+

1

2

iω
C0

[
lκ(1−

1

γ
) + lV(1− γ)

]]
, (152)

since
√
i = ±(

√
2
2 + i

√
2
2 ). Then

θ2 =−

√
2

2

√
ωγ

C0lκ

[
1+

1

2

iω
C0

[
lκ(1−

1

γ
) + lV(1− γ)

]]
,

−

√
2

2

√
ωγ

C0lκ

[
i−

1

2

ω

C0

[
lκ(1−

1

γ
) + lV(1− γ)

]]
,

Re θ2 =−

√
2

2

√
ωγ

C0lκ

[
1−

1

2

ω

C0

[
lκ(1−

1

γ
) + lV(1− γ)

]]
,

Im θ2 =−

√
2

2

√
ωγ

C0lκ

[
1+

1

2

ω

C0

[
lκ(1−

1

γ
) + lV(1− γ)

]]
,

and L2 =
2√
2

√
C0lκ
ωγ

[
1+ 1

2
ω
C0

[
lκ(1−

1
γ) + lV(1− γ)

]]
,

V2 =
2ω√
2

√
C0lκ
ωγ

[
1− 1

2
ω
C0

[
lκ(1−

1
γ) + lV(1− γ)

]]
,

(153)

where 1− 1
γ = 1− CV

Cp
=

Cp−CV
Cp

and γ− 1 = Cp
CV

− 1 =
Cp−CV
CV

.

V is associated with the phase velocity of the wave in the medium
and its was proven that V1 = C0 in Eq.(150b). C0 being, per definition,
the speed of sound in the fluid (≈ 343m/s in air at 20°C), θ1 is associ-
ated to an acoustical wave generated by thermoacoustic. The associated
acoustic wavenumber is then written as k = iθ1. This interpretation is Acoustic

Wavenumber
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corroborated by the definition of L being the penetration length. L1 be-
comes infinity for isentropic process (lκ = lv = 0) and the wave velocity,
independent of dissipative phenomena, assumes the value C0 in any
case. The acoustic wavenumber becomes k = ω/C0 which is associated
to Eq.(136), the isentropic Helmholtz equation.

Regarding θ2, it was proven that V2 = ωL2. The associated wave so-Thermal Attenu-
ation lution is then written eiωte±(1+i)x/L2 . This exponentially fast decaying

wave is attributed to a thermal wave generated by the thermoacoustic
process. The thermal attenuation σ is defined as −θ2. For weak dissipa-Thermal Penetra-

tion Length tive process, the thermal penetration length Lth is approximated as

Lth =2

√
C0lκ

2ωγ
,

=

√
2α

ω
, (154)

with α the thermal diffusivity.

In this section, the conservation equations were solved for an unidi-
mensional case, assuming plane wave radiation and an harmonic time
dependence. Equations for the pressure p (Eq.(121)) and the particle ve-
locity v (Eq.(127)) were written depending on the temperature variation
T of the fluid. Consequently, a biquadratic fourth order linear differen-
tial equation for T was found in Eq.(130). Notably, this equation is equal
to Helmholtz equation in the specific case of a reversible adiabatic pro-
cess. New parameters defined in Eq.(140) were introduced to simplify
Eq.(130). This allowed us to determined explicit solutions to the first
order of the associated differential equation assuming weak conduction
and viscosity. Those solutions are written askf = −iθac,f = ω

C0

[
1− 1

2
iω
C0
lV − 1

2lκ
iω
C0

(1− 1
γ)
]

,

σf = θth,f =
√

iωγ
C0lκ

[
1+ 1

2
iω
C0

[
lκ(1−

1
γ) + lV(1− γ)

]]
,

(155)

with θac,f and θth,f the "plus" sign solutions of Eq.(148) and (151), asso-
ciated to acoustical and thermal waves generated by the thermoacoustic
effect. The temperature variation in the fluid is then written as

Tf =
(
Ae−θac,fx +Beθac,fx +Ce−θth,fx +Deθth,fx

)
eiωt, (156)

Tf =
(
Ae−ikfx +Beikfx +Ce−σfx +Deσfx

)
eiωt, (157)

with ABCD constants. The pressure and the particle velocity can then
be deduced using Eq.(121) and Eq.(127).
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2.2.2 Plane Waves in a Solid

Similarly as in Section 2.2.1, we now investigate the one dimensional
case where a longitudinal propagating wave is considered in a solid
medium. Therefore in a Cartesian coordinate system T = T(x, t), ~u =

(u(x, t), 0, 0) and ~v = (v(x, t), 0, 0) where v = ∂u
∂t . Eq.(118) becomesρ0,sCV ,s

∂T
∂t = κs

∂2T
∂x2

−αT ,sB0T0 ∂
2u
∂x∂t +Q0,

ρ0,s
∂v
∂t = (λ0 + 2µ0)

∂2u
∂x2

+ (λs + 2µs)
∂2v
∂x2

−αT ,sB0 ∂T∂x ,
(158)

where we chose ~b = 0.Unlike in a fluid, in a solidQ0 is kept since energy
might be supplied to the system, in our case the thermophone. The aim
is to rewrite this system of equation in the same form obtained for the
fluid in Eq.(119). To this aim, using Eq.(109), the pressure is defined as 1D Pressure

Equation in
Solidp = −

(
T̂e
)
11

= −(2µ0 + λ0)
∂u

∂x
+αT ,sB0(T − T0). (159)

It is important to remark that this definition takes into consideration
only the thermoelastic part of the total stress. Hence, in order to impose
the continuity of the normal stress in a given interface, we have to add
the viscous term to Eq.(159). This definition has been introduced only
to draw a full comparison with the fluid equations. The system can be
rewritten as

ρ0,sCV ,s
∂T
∂t = κs

∂2T
∂x2

−αT ,sB0T0 ∂v∂x +Q0,

ρ0,s
∂v
∂t = −∂p

∂x + (λs + 2µs)
∂2v
∂x2

,
∂p
∂t = −(2µ0 + λ0)

∂v
∂x +αT ,sB0 ∂T∂t ,

(160)

where Eq.(160c) is obtained by differentiating Eq.(159) with respect to
time.

Comparing the balance of linear momentum for a solid in Eq.(160b)
and for a fluid in Eq.(119b), it is seen that they exhibit similar forms
in both cases. Eqs.(160a) and (119c) representing the heat equation,
have a different term describing the thermo-mechanical coupling. Lastly
Eqs.(160c) and (119a), representing the conservation of mass, have the
same structure but different coefficients. This situation must be clarified
by obtaining the same form for all three equations and by explaining
the differences among the involved parameters. In order to get the same
structure for the heat equation, we calculate ∂v

∂x from Eq.(160c)

∂v

∂x
=

1

2µ0 + λ0
(αT ,sB0

∂T

∂t
−
∂p

∂t
). (161)
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For an isotropic solid we can expect two type of wave: longitudinal and
transverse waves. It is well known that they are characterised by the
velocities [144]Longitudinal

and Transverse
Wave Velocity


vL =

√
λ0+2µ0
ρ0,s

,

vT =
√

µ0
ρ0,s

,
(162)

Eq.(161) can be rewritten

∂v

∂x
=

1

v2Lρ0,s
(αT ,sB0

∂T

∂t
−
∂p

∂t
). (163)

Eq.(160a) now becomes

ρ0,sCV ,s
∂T

∂t
= κs

∂2T

∂x2
−αT ,sB0T0

1

v2Lρ0,s
(αT ,sB0

∂T

∂t
−
∂p

∂t
) +Q0,

ρ0,sCV ,s
∂T

∂t
= κs

∂T2

∂x2
−
α2T ,sB

2
0T0

v2Lρ0,s

∂T

∂t
+
αT ,sB0T0
v2Lρ0,s

∂p

∂t
+Q0,

(ρ0,sCV ,s +
α2T ,sB

2
0T0

v2Lρ0,s
)
∂T

∂t
= κs

∂T2

∂x2
+
αT ,sB0T0
v2Lρ0,s

∂p

∂t
+Q0. (164)

The first coefficient can be elaborated using the relation between the
specific heats defined in Eq.(125), which holds true for solids as well.
Therefore

ρ0,sCV ,s +
α2T ,sB

2
0T0

v2Lρ0,s
= ρ0,sCp,s −α

2
T ,sT0B0 +α

2
T ,sT0B0

B0
v2Lρ0,s

,

= ρ0,sCp,s + ρ0,s(Cp,s −CV ,s)(
B0
v2Lρ0,s

− 1), (165)

where

B0
v2Lρ0,s

=
2µ0 + 3λ0
6µ0 + 3λ0

= 1−
4µ0

3(2µ0 + λ0)
= 1−

4

3

v2T
v2L

, (166)

hence

ρ0,sCV ,s +
α2T ,sB

2
0T0

v2Lρ0,s
=ρ0,sCp,s + ρ0,s(Cp,s −CV ,s)(−

4

3

v2T
v2L

),

=ρ0,sCp,s

[
1−

Cp,s −CV ,s

Cp,s

4

3

v2T
v2L

]
. (167)

The heat equation Eq.(160a) becomes

ρ0,sCp,s

[
1−

Cp,s −CV ,s

Cp,s

4

3

v2T
v2L

]
∂T

∂t
= κs

∂2T

∂x2
+ 2αT ,sT0(1−

4

3

v2T
v2L

)
∂p

∂t
+Q0.
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(168)

Eq.(160c) can also be rewritten

1

B0
∂p

∂t
+
2µ0 + λ0

B0
∂v

∂x
−αT ,s

∂T

∂t
= 0, (169)

however B0
2µ0+λ0

= B0
v2Lρ0,s

= 1− 4
3

v2T
v2L

and we get

1

B0
∂p

∂t
+

(
1−

4

3

v2T
v2L

)−1
∂v

∂x
−αT ,s

∂T

∂t
= 0. (170)

The final, complete system for the solid is now 1D Equation
System in Solid
using Transverse
and Longitudi-
nal Waves
Speed



1−43
v2
T
v2
L

B0
∂p
∂t −αT ,s(1−

4
3

v2T
v2L
)∂T∂t +

∂v
∂x = 0,

ρ0,s
∂v
∂t = −∂p

∂x + (λs + 2µs)
∂2v
∂x2

,

ρ0,sCp,s

[
1−

Cp,s−CV ,s
Cp,s

4
3

v2T
v2L

]
∂T
∂t −αT ,sT0(1−

4
3

v2T
v2L
)∂p∂t = κs

∂2T
∂x2

+Q0.

(171)

Comparing with the same system for the fluid in Eq.(119) being
1
B
∂p
∂t −αT

∂T
∂t +

∂v
∂x = 0,

ρ0,f
∂v
∂t = −∂p

∂x + (λ+ 2µ)∂
2v
∂x2

,

ρ0,fCp,f
∂T
∂t −αTT0

∂p
∂t = κ

∂2T
∂x2

,

we have obtained the same system of equation providing the change in
parameters between fluid and solid as

B = B0

1−43
v2
T
v2
L

,

αT = αT ,s(1−
4
3

v2T
v2L
),

Cp,f = Cp,s(1−
Cp,s−CV ,s
Cp,s

, 43
v2T
v2L
),

(172)

and CV ,f = CV ,s, λ = λs, µ = µs, κ = κs. It is interesting to observe
that all the parameters are unchanged if vT = 0, a property effectively
characterising a fluid where only longitudinal waves can propagate and
no transverse waves. It can also be noted that the ratio vL

vT
can be written

in terms of the Poisson ratio ν as

vL
vT

=
√
2

√
1− ν

1− 2ν
, (173)
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with −1 < ν < 1
2 . Another interesting property can be observed if we

define Z = 1− 4
3

v2T
v2L

. The parameters changes in Eq.(172) become
B = B0

Z ,

αT = ZαT ,s,

Cp,f = Cp,s(Z+
CV ,s
Cp,s

(1−Z)).

(174)

Using this notation it can be easily proven that the thermodynamic rela-
tion between Cp and CV of Eq.(125) is conserved in both solid and fluid
phases, meaning that if ρ0,f(Cp,f−CV ,f) = α

2
TBT0 then ρ0,s(Cp,s−CV ,s) =

α2T ,sB0T0 and reciprocally.
Regarding the heat density supplied Q0 supposed uniform, an ap-

proximation can be found if it is assumed that the solid can not be
deformed. This leads to Cp,s = CV ,s,

∂p
∂t = 0 and ∂2T

∂x2
= 0. Eq.(171c) now

becomes

ρ0,sCp,s
∂T

∂t
= Q0,

and soParticular Solu-
tion of Tempera-
ture Variations T =

Q0
ρ0,sCp,siω

. (175)

Eq.(175) represent the particular solution of the associated differential
equation of the temperature variations in the solid.

In this section, we first defined the pressure as well as the longitudi-
nal and transverse wave speed in the solid in Eq.(159) and Eqs.(162) re-
spectively. This allowed us to write the system of equation composed of
the conservation of mass, linear momentum and energy, with the newly
defined parameters in Eq.(171). This system was compared to the one
found for fluid medium in Eq.(119) and it was seen that, provided a
specific change in parameters in Eq.(172) which adds the influence of
transverse waves (not present in a fluid), both systems were identical
with the added heat density supplied in the solid. This means that all
the thought process used in Section 2.2.1 is also valid for a solid. The
temperature variation in the solid can then be written

Ts =
(
Ae−θac,sx +Beθac,sx +Ce−θth,sx +Deθthx

)
eiωt + TQ0 , (176)

Ts =
(
Ae−iksx +Beiksx +Ce−σsx +Deσsx

)
eiωt + TQ0 , (177)

with ABCD constants,

TQ0 =
Q0

ρ0,sCp,siω
(178)
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a constant term to take into account the supplied energy as seen in
Eq.(175), and

ks = −iθac,s = ω
C0,s

[
1− 1

2
iω
C0,s

lV ,s −
1
2lκ,s

iω
C0,s

(1− 1
γs
)
]

,

σs = θth,s =

√
iωγs
C0,slκ,s

[
1+ 1

2
iω
C0,s

[
lκ,s(1−

1
γs
) + lV ,s(1− γs)

]]
,

(179)

the associated acoustical and thermal wavenumbers generated by the
thermoacoustic effect in the solid. The pressure and the particle veloc-
ity can be deduced using Eq.(159) and Eq.(127) respectively (provided
adequate parameters change).

2.2.3 Ideal Plane Thermophone

We will here investigate what we define as an ideal thermophone. In this
specific case, the solid part of the thermophone is not considered and
is represented as an ideal boundary condition creating a temperature
gradient with the propagating medium. By solving this case, it will
provide knowledge on how a thermophone sound radiation spectrum
should ideally be. This easily implementable model will also be used as
a stepping stone before creating our multilayer model.

Figure 22: Schematic of the perfect thermophone model 1D

In a simple one dimensional model as seen on Fig.22, considering
only progressive waves in the x direction and using Eq.(155) the tem-
perature variation T in the medium can be written in the form

T(x) =
(
Ae−θacx +Be−θthx

)
eiωt, (180)

with A and B constants. No subscripts are used here since, even though
the propagating medium is most likely a fluid (air for instance), those
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equations are still valid for solid propagation. The first order approx-
imation solutions for θac and θth were calculated in Eqs.(155). Using
Eq.(180), the particle velocity and the pressure can then be inferred with
Eqs.(127) and (121) respectively. Assuming that the gradient of temper-
ature between the medium and the thermophone is ∆T and that the
thermophone is rigid we have the two boundary conditionsT(x = 0) = ∆T ,

v(x = 0) = 0,
(181)

at x = 0 being the limit between the thermophone and the propagating
medium. Using those boundary conditions and Eq.(127) with Eq.(180)
we found thatA =

−θth∆T(L1+L2θ
2
th)

L1(θac−θth)+L2(θ3ac−θ
3
th)

,

B = ∆T −A,
(182)

with L1 and L2 being the coefficients of Eq.(127)

L1 =−
1

iωρ

[
αTB +

iωρCV
αTT0B

(λ+ 2µ+
B

iω
)

]
, (183)

L2 =(λ+ 2µ+
B

iω
)

κ

iωραTT0B
, (184)

so that v = L1 ∂T∂x + L2
∂3T
∂x3

.

The constants A and B being determined, the pressure, particle veloc-
ity and temperature variations can be estimated for any position x and
at any frequency f. The results of this model and of the following one
will be analysed in Section 3.

2.2.4 Transfer Matrix with N Layers

In Section 1.5, the need for a flexible theoretical model which should
be able to simulate a number of different geometries was highlighted.
The evaluated parameters in Sections 2.2.1 and 2.2.2 are here rewritten
in a matrix form in order to create a uni dimensional multilayer model
whose variable geometry is shown in Fig.23. The numberN of layers can
be changed and each layer can be made of a different material, either
solid or liquid (air, water, silicon, carbon...) with an volumetric input
energy coefficient. The size lj− lj−1 (∀j ∈ [2,N− 1]) of the layers can also
be changed except for the first and the last ones which are supposed to
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be semi-infinite and without any input volumetric source. This scheme
will be adopted to describe the behavior of different configurations of
thermophone devices in the following sections.

Figure 23: Schematic of a generalized version of the thermophone model with
N layers in 1D

3 Layers Model

To facilitate the understanding of the model’s construction, a 3 layers
model will first be investigated before being extended to N number
of layers. It is composed of a thermophone of thickness ls on a semi
infinite substrate and radiating in a semi infinite propagating medium
as seen in Fig.24. They will be referred to by the subscripts s, b and
g respectively in this section. The substrate and the thermophone are
solid layers and the propagating medium is a fluid layer. As such, they
will be described by the equations in Section 2.2.2 and 2.2.1 respectively.

Figure 24: Schematic of the thermophone model with common 3 layers being
the substrate b the thermophone s and the propagating fluid g

It has to be noted that it was proven that by using the parameters
change of Eq.(172), the variable T , v,p have similar defining equations
in both fluid and solid. Hence, if the following results are here based
on Section 2.2.1 for fluids, they are also valid for solids. We here use
the notation k and σ to relate more closely to the standard definition of
the acoustic wavenumber but for easy comparison with the following
models it is important to remember that k = −iθac and σ = θth as
defined in Eq.(155).
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Based on Eq.(157) the temperature variations T can be expressed as

T(x) = Ae−ikx +Beikx +Ce−σx +Deσx + TQ0 , (185)

with TQ0 being as defined in Eq.(178) if energy is supplied to the medium,
or equal to 0 if not. Using Eq.(127), the particle velocity v can be rewrit-
ten as a function of A, B, C, D, k and σ as

v =A(L1(−ik) + L2(−ik)3)e−ikx +B(L1(ik) + L2(ik)3)eikx+

C(L1(−σ) + L2(−σ)
3)e−σx +D(L1(σ) + L2(σ)

3)eσx, (186)

with L1, L2 as Eqs.(183) and (184). The same can be done with p using
Eq.(121)

p =A(αTB −
B

iω
(L1(−ik)2 + L2(−ik)4))e−ikx+

B(αTB −
B

iω
(L1(ik)2 + L2(ik)4))eikx+

C(αTB −
B

iω
(L1(−σ)

2 + L2(−σ)
4))e−σx+

D(αTB −
B

iω
(L1(σ)

2 + L2(σ)
4))eσx. (187)

It is to be noted however that the continuity of pressure between two
media is true only without any viscosity (only the elastic stress tensor is
taken into account). The normal stress tensor p̃ = −T̂11 is then defined.Normal Stress

Tensor It holds the stress continuity between layers as the first component of
the stress tensor matrix (as seen for a solid in Eq.(159)) for all cases. It
is explicitly written as

p̃ = −(T̂e)11 − (T̂V)11 = p− (λ+ 2µ)
∂v

∂x
, (188)

leading to

p̃ =A(αTB − (
B

iω
+ λ+ 2µ)(L1(−ik)2 + L2(−ik)4))e−ikx+

B(αTB − (
B

iω
+ λ+ 2µ)(L1(ik)2 + L2(ik)4))eikx+

C(αTB − (
B

iω
+ λ+ 2µ)(L1(−σ)

2 + L2(−σ)
4))e−σx+

D(αTB − (
B

iω
+ λ+ 2µ)(L1(σ)

2 + L2(σ)
4))eσx. (189)

Finally the general equation for the heat flux q in a medium can be
written as

q = −κ
∂T

∂x
, (190)



2.2 one temperature multilayer model for plane waves 77

which give the equation for q in one dimension as

q = Aκikxe−ikx −Bκikeikx +Cκσe−σx −Dκσeσx. (191)

Eqs.(185), (186), (187) and (191) can be rewritten in Matrix form as
p̃

v

q

T

 = H(x)


A

B

C

D

 (192)

where H(x) being a 4× 4 matrix. Alternatively we can decompose H as
H(x) = H(a)H(b)(x) with

H(a) =


F(−ik) F(ik) F(−σ) F(σ)

−ikG(−ik) ikG(ik) −σG(−σ) σG(σ)

κik −κik κσ −κσ

1 1 1 1

 , (193)

and

H(b)(x) =


e−ikx 0 0 0

0 eikx 0 0

0 0 e−σx 0

0 0 0 eσx

 . (194)

The functions F and G being pair functions defined as

F(η) = αTB −

(
B

iω
+ λ+ 2µ

)
(L1η

2 + L2η
4), (195)

G(η) = L1 + L2η
2. (196)

Eqs.(189) and (192) are also valid in a solid, provided that the changes
of Eq.(172) are respected. For instance, the normal stress tensor is writ-
ten

p̃ =A(αT ,sB0 − (
B0
iω

1

1− 4
3

v2T
v2L

+ λs + 2µs)(L1,s(−iks)2 + L2,s(−iks)4))e−iksx+

B(αT ,sB0 − (
B0
iω

1

1− 4
3

v2T
v2L

+ λs + 2µs)(L1,s(iks)2 + L2,s(iks)4))eiksx+

C(αT ,sB0 − (
B0
iω

1

1− 4
3

v2T
v2L

+ λs + 2µs)(L1,s(−σs)
2 + L2,s(−σs)

4))e−σsx+

D(αT ,sB0 − (
B0
iω

1

1− 4
3

v2T
v2L

+ λs + 2µs)(L1,s(σs)
2 + L2,s(σs)

4))eσsx,

(197)
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with

L1,s =−
1

iωρs

αT ,sB0 +
iωρsCV ,s

αT ,sT0B0
(λs + 2µs +

B0
iω

1

1− 4
3

v2T
v2L

)

 , (198)

L2,s =(λs + 2µs +
B0
iω

1

1− 4
3

v2T
v2L

)
κs

iωρsαT ,sT0B0
, (199)

Hence, from now on, for any layer j the constants of the medium will
have the subscript j and the matrices will be as H(a)

j = H
(a)
j (f, ρj,αTj,Bj,

CVj,Cpj, T0, λj,µj, κj, λ0j,µ0j) and H(b)
j = H

(b)
j (kj,σj, x). In the case of in-

terest shown in Fig.24, there are three layers: the substrate b, the thermo-
phone s, and the propagating medium g. The equations can be written
as 

p̃

v

q

T


b

= Hb


Ab

Bb

Cb

Db

 , (200)


p̃

v

q

T


s

= Hs


As

Bs

Cs

Ds

+


αT ,sBsTQ0,s

0

0

TQ0,s

 , (201)


p̃

v

q

T


g

= Hg


Ag

Bg

Cg

Dg

 , (202)

(203)

with Q0,s being the volumetric source of the thermophone in [W/m3]
and TQ0,s as in Eq.(178). In order to fully determine the system the
coefficients Aj, Bj, Cj, Dj have to be found. The only assumption made
is that the substrate and the medium are semi infinite. This means that
there are no waves propagating in the direction +x in the substrate
and −x in the medium. This boundary conditions can be written as
Ab = Cb = 0 and Bg = Dg = 0. Another boundary condition is the
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continuity of p̃, v, q and T at the boundaries of the layers. This leads at
x = 0

Hb(x = 0)


0

Bb

0

Db

 = Hs(x = 0)


As

Bs

Cs

Ds

+


αT ,sBsTQ0,s

0

0

TQ0,s

 , (204)

with H(b)
b (x = 0) = H

(b)
s (x = 0) = I the identity matrix. At x = ls

Hs(x = ls)


As

Bs

Cs

Ds

+


αT ,sBsTQ0,s

0

0

TQ0,s

 = Hg(x = ls)


Ag

0

Cg

0

 . (205)

Eq.(204) and (205) leads to
0

Bb

0

Db

 = H−1
b (0) Hs(0) Hs(ls)

−1 Hg(ls)


Ag

0

Cg

0



+H−1
b (0)(1−Hs(0) Hs(ls)

−1)


αT ,sBsTQ0,s

0

0

TQ0,s

 , (206)

simplified as
0

Bb

0

Db

 =M


Ag

0

Cg

0

+ M̂


αT ,sBsTQ0,s

0

0

TQ0,s

 . (207)

Ag, Cg, Bb and Db can then be found using both

0 =

[
M11 M13

M31 M33

][
Ag

Cg

]
+

[
M̂11 M̂14

M̂31 M̂34

] [
αT ,sBsTQ0,s

TQ0,s

]
,

(208)[
Bb

Db

]
=

[
M21 M23

M41 M43

][
Ag

Cg

]
+

[
M̂21 M̂24

M̂41 M̂44

] [
αT ,sBsTQ0,s

TQ0,s

]
.

(209)

Eq.(204) or Eq.(205) can then be used to found As, Bs, Cs andDs. Finally
p̃, v, q and T can be evaluated at any x using Eqs.(200), (201) and (202).
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Global N layers model

In order to have a more flexible one dimensional model that is able to
study multiple thermophone layers, the transfer matrix method is used
on a N layers model as shown in Fig.23. The assumptions used for this
model are: the layers at the extremities (1 and N) are semi infinite, each
layer is potentially a source (has a volumetric source coefficient Q0,j)
except at the extremities (Q0,1 = Q0,N = 0), and the length of each layer
j is lj − lj−1. The type of material of each layer (fluid or solid) is not
specified since the material differences are taken into account in their
transfer matrices Hj. Eqs.(200), (201) and (202) can be written in the
general form for a layer j

p̃

v

q

T


j

= Hj


Aj

Bj

Cj

Dj

+


αT ,jBjTQ0,j

0

0

TQ0,j

 , (210)

with TQ0,j =
Q0,j

iωρjCVj
as in Eq.(178). The continuity at lj, ∀j ∈ [1,N− 1]

now becomes

Hj(lj)


Aj

Bj

Cj

Dj

+

αT ,jBjTQ0,j

0

0

TQ0,j

 = Hj+1(lj)


Aj+1

Bj+1

Cj+1

Dj+1

+

αT ,j+1Bj+1TQ0,j+1

0

0

TQ0,j+1

 .

(211)

Knowing that A1 = C1 = 0 and BN = DN = 0 due to the semi infinite
size of the layers at the edge, and following the same thought process
as with three layers we obtain

0

B1

0

D1

 =M0


AN

0

CN

0

+
∑

n∈[2,N−1]

MQ0,n


αT ,nBnTQ0,n

0

0

TQ0,n

 , (212)

with n being the layers with a volumetric source and

M0 = H
−1
1 (l1)

N−1∏
j=2

Hj(lj−1) H
−1
j (lj)

HN(lN−1), (213)

MQ0,n = H−1
1 (l1)

n−1∏
j=2

Hj(lj−1) H
−1
j (lj)

[1−Hn(ln−1) H−1
n (ln)

]
.

(214)
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Eq.(212) gives AN, CN, B1, and D1. This allows the calculation of any
coefficient ABCDj using either equations
Aj

Bj

Cj

Dj

 = H−1
j (lj)

Hj+1(lj)

Aj+1

Bj+1

Cj+1

Dj+1

+


αT ,j+1Bj+1TQ0,j+1

0

0

TQ0,j+1

−


αT ,jBjTQ0,j

0

0

TQ0,j


 ,

(215)


Aj

Bj

Cj

Dj

 = H−1
j (lj−1)

Hj−1(lj−1)

Aj−1

Bj−1

Cj−1

Dj−1

+


αT ,j−1Bj−1TQ0,j−1

0

0

TQ0,j−1

−


αT ,jBjTQ0,j

0

0

TQ0,j


 ,

(216)

∀j ∈ [1,N− 1] and ∀j ∈ [2,N] for Eqs.(215) and (216) respectively. Finally
p̃, v, q, T can be found for any x with Eq.(210).

In this section we introduced the normal stress tensor and the heat
flux in Eqs.(189) and (190) respectively. This allowed to write the system
of equations in a matrix form as seen in Eq.(192) with the variables
p̃, v,q, T . As an introduction, a 3 layers model was solved allowing the
determination of all the variable at any position in space and time, and
at any frequency. This method was then extended to a more general
N layers model. Its only assumptions are semi infinite layers at both
ends as well as continuity for the variables p̃, v,q, T at the boundary of
each layers. Unknown constants ABCDj in each layers are found and
the main fields p̃, v,q, T are estimated for any position within each layer
and for any frequency through Eq.(192). This is what we call the 1T, 1D
multilayer model.

2.3 one temperature multilayer model for cylindrical
waves

Section 2.2 solved the conservation equation of Section 2.1 for a uni di-
mensional model assuming plane wave generation. In a similar fashion,
starting back to the conservation equations for a fluid with thermal and
viscous properties in Eqs.(56), as well as for an isotropic homogeneous
solid with thermal, viscous and elastic properties in Eqs.(118), we will
now solve those equations assuming a cylindrical geometry.
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Using a cylindrical coordinate system, the aim is similar to the one in
Section 2.2. Explicit analytical solutions of the parameters T , p, v and q
are investigated before being rewritten in a matrix form for both fluid
and solid media. An ideal cylindrical thermophone will then be inves-
tigated before extending the model to a multilayer one, as previously
explained.

The cylinder shaped thermophone is for now supposed to be in-
finitely thin in the r direction, infinitely long in the z direction and
all physical properties are independent of the angle θ. This leads to
parameters being solely dependent on the distance with the cylinder r.

2.3.1 Cylindrical Waves in a Fluid

Figure 25: Schematic of the thermophone model in 2D, here with N layers

Using the general equations in a fluid in Eq.(56), a cylindrical geome-
try is now investigated as seen in Fig.25. The pressure, particle velocity
and temperature variation can be written as

p = p(r),

T = T(r),

~v = ~r
rv(r),

(217)

with ~r = x~ex + y ~ey and ||~r|| = r =
√
x2 + y2. In order to write Eqs.(56)

in cylindrical coordinates, each component of those equations has to be
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rewritten using the parameters of Eq.(217). This leads to (details can be
found in Appendix A.5)

~∇p = ~r
r
∂p
∂r ,

~∇.~v = 1
rv+

∂v
∂r ,

~∇(~∇.~v) = ~r
r

(
− 1
r2
v+ 1

r
∂v
∂r +

∂2v
∂r2

)
,

∇2~v = ~r
r

(
− 1
r2
v+ 1

r
∂v
∂r +

∂2v
∂r2

)
,

∇2T = 1
r
∂T
∂r +

∂2T
∂r2

.

(218)

Using Eqs.(218), Eqs.(56) now become
iω 1

Bp− iωαTT + 1
r
∂
∂r(rv) = 0,

iωρ0,fv = −∂p
∂r + (λ+ 2µ)(− 1

r2
v+ 1

r
∂v
∂r +

∂2v
∂r2

),

iωρ0,fCpT − iωαTT0p = κ(1r
∂T
∂r +

∂2T
∂r2

),

(219)

with 1
r
∂
∂r(rv) = 1

r (v+ r
∂v
∂r ). The aim is to write the pressure p and the

particle velocity v as a function of the temperature T and find the dif-
ferential equation that T solves similarly as in Section 2.2. To this aim
Eq.(219a) can be rewritten in the same form as Eq.(121) 2D Pressure

Equation in
Fluidp = αTBT −

B
iω

(
1

r
v+

∂v

∂r
). (220)

Here the pressure p does not take the viscosity into account and so in or-
der to have a continuity between different media (solid, fluid) we need
to define p̃ the normal stress tensor in cylindrical coordinates. Using
Eqs.(91) and (101) we have 2D Normal

Stress Tensor in
Fluidp̃ = −T̂11,

= −(T̂e)11 − (T̂V)11,

= p− 2µ
∂v

∂r
− λ

1

r

∂

∂r
(rv),

= αTBT −
(

B
iω

+ λ

)
1

r

∂

∂r
(rv) − 2µ

∂v

∂r
. (221)

By deriving Eq.(220)

∂p

∂r
= αTB

∂T

∂r
−

B
iω

∂

∂r
(
1

r
v+

∂v

∂r
),

= αTB
∂T

∂r
−

B
iω

(−
1

r2
v+

1

r

∂v

∂r
+
∂2v

∂r2
), (222)
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and injecting it in Eq.(219b) we now have

iωρ0,fv = −αTB
∂T

∂r
+ (λ+ 2µ+

B
iω

)
∂

∂r
(
1

r

∂

∂r
(rv)). (223)

The same way by injecting Eq.(220) in Eq.(219c) and using Eq.(125) we
have

iωρ0,fCpT − iωαTT0(αTBT −
B

iω
(
1

r
v+

∂v

∂r
)) = κ(

1

r

∂T

∂r
+
∂2T

∂r2
),

iω(ρ0,fCp −α
2
TT0B)T +αTT0B(

1

r
v+

∂v

∂r
) = κ(

1

r

∂T

∂r
+
∂2T

∂r2
),

1

r

∂

∂r
(rv) =

κ

αTT0B
(
1

r

∂T

∂r
+
∂2T

∂r2
) −

iωρ0,fCV
αTBT0

T . (224)

By injecting Eq.(224) into Eq.(223) it allows us to write v as a function
of T only2D Particle Ve-

locity Equation
in Fluid iωρ0,fv =−αTB

∂T

∂r
+ (λ+ 2µ+

B
iω

)
∂

∂r

[
κ

αTT0B
(
1

r

∂T

∂r
+
∂2T

∂r2
) −

iωρ0,fCV
αTBT0

T

]
,

v =−
1

iωρ0,f

[
αTB + (λ+ 2µ+

B
iω

)
iωρ0,fCV
αTBT0

]
∂T

∂r
+

+ (λ+ 2µ+
B

iω
)

κ

iωρ0,fαTT0B
∂

∂r
(
1

r

∂T

∂r
+
∂2T

∂r2
). (225)

To obtain a pure equation for T we apply 1
r
∂
∂r(r∗) to Eq.(223)

iωρ0,f
1

r

∂

∂r
(rv) = −αTB

1

r

∂

∂r
(r
∂T

∂r
) + (λ+ 2µ+

B
iω

)
1

r

∂

∂r

[
r
∂

∂r
[
1

r

∂

∂r
(rv)]

]
,

iωρ0,f

[
κ

αTT0B

1

r

∂

∂r
(r
∂T

∂r
) −

iωρ0,fCV
αTBT0

T

]
= −αTB

1

r

∂

∂r
(r
∂T

∂r
) +

+ (λ+ 2µ+
B

iω
)
1

r

∂

∂r

[
r
∂

∂r

[
κ

αTT0B

1

r

∂

∂r
(r
∂T

∂r
) −

iωρ0,fCV
αTBT0

T

]]
,

using Eq.(224) and knowing that 1r
∂
∂r(r

∂T
∂r ) =

1
r
∂T
∂r +

∂2T
∂r2

. Using the nota-
tions T ii = DT = 1

r
∂
∂r(r

∂T
∂r ),

T iv = (T ii)ii = DDT = 1
r
∂
∂r

[
r ∂∂r [

1
r
∂
∂r(r

∂T
∂r )]
]

,
(226)

the fourth order differential equation of T can be written

(λ+2µ+
B

iω
)κT iv−

[
(λ+ 2µ+

B
iω

)iωρ0,fCV +α2TB
2T0 + iωρκ

]
T ii−ω2ρ2CVT = 0,

(227)
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which is similar to Eq.(130) with a different derivatives for T . Following
the same though process and notations as for plane waves defined in
Eq.(140), Eq.(227) can be written as 2D Temperature

Variation Differ-
ential Equation
in a Fluid

lκ(lV − i
C0
ωγ

)T iv − [1+
iω
C0

(lκ + lV)]T
ii −

ω2

C20
T = 0. (228)

The four solutions of the associated equation of Eq.(228) aθ4 − bθ2 −
c = 0 are written of the form ±θ1 and ±θ2. The fourth order differential
equation of Eq.(228) can so be written as

a(D + (iθ1)2)(D + (iθ2)2)T = 0, (229)

with D defined as in Eq.(226), b = a(θ21+θ
2
2) and c = −aθ21θ

2
2. We define

Ψ as

Ψ = [D + (iθ2)2]T . (230)

Leaving aside the factor a for readability, Eq.(229) becomes

[D + (iθ1)2]Ψ = 0,

1

r

∂Ψ

∂r
+
∂2Ψ

∂r2
+ (iθ1)2Ψ = 0, (231)

whose solution is

Ψ = AH
(1)
0 (iθ1r) +BH

(2)
0 (iθ1r), (232)

with A, B constants and H(1/2)
i being the cylindrical Hankel function of

order i and first or second kind. The equation for T becomes

[D + (iθ2)2]T = AH
(1)
0 (iθ1r) +BH

(2)
0 (iθ1r),

1

r

∂

∂r
(r
∂T

∂r
) + (iθ2)2T = AH

(1)
0 (iθ1r) +BH

(2)
0 (iθ1r). (233)

This non homogeneous differential equation gives the general solution
of the temperature variation as

T(r) = CH
(1)
0 (iθ2r) +DH

(2)
0 (iθ2r) + ps, (234)

with ps being a particular solution of Eq.(233) and C, D constants. In
order to find the final solution of T , the particular solution of Eq.(233) is
gonna be determined by finding separate solution for AH(1)

0 (iθ1r) and
BH

(2)
0 (iθ1r) which then are going to be added to form the final particular

solution.

• Case 1: 1r
∂
∂r(r

∂T1
∂r ) + (iθ2)2T1 = AH

(1)
0 (iθ1r).
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We are looking for a particular solution of the form

T1(r) = a(r)H
(1)
0 (iθ2r) + b(r)H

(2)
0 (iθ2r). (235)

The system of equation for a second order inhomogeneous equation of
this kind leads to a system of equation of the form (see Appendix A.6
for more details)da

drH
(1)
0 (iθ2r) + db

drH
(2)
0 (iθ2r) = 0,

da
dr

d
drH

(1)
0 (iθ2r) + db

dr
d
drH

(2)
0 (iθ2r) = AH

(1)
0 (iθ1r).

(236)

Based on equation 10.6.3 of NIST Handbook of Mathematical Functions
[145]

d

dr
H

(1,2)
0 (iθ2r) = −iθ2H

(1,2)
1 (iθ2r). (237)

Eq.(236) can be rewritten in matrix form as[
H

(1)
0 (iθ2r) H

(2)
0 (iθ2r)

H
(1)
1 (iθ2r) H

(2)
1 (iθ2r)

][
da
dr
db
dr

]
=

[
0

− A
iθ2
H

(1)
0 (iθ1r)

]
. (238)

Knowing that the inverse of a Matrix can be written as A−1 =
com(A)†

det(A)
and using the recurrence relation 10.5.5 in NIST [145]

H
(1)
ν+1(z)H

(2)
ν (z) −H

(1)
ν (z)H

(2)
ν+1(z) = −

4i

πz
, (239)

we found the solution[
da
dr
db
dr

]
= −

πr

4i

[
H

(2)
1 (iθ2r) −H

(2)
0 (iθ2r)

−H
(1)
1 (iθ2r) H

(1)
0 (iθ2r)

][
0

− A
iθ2
H

(1)
0 (iθ1r)

]
. (240)

Lastly equation 10.22.4 in NIST [145] states that∫
Cν(gz)Dν(hz)dz =

z[gCν+1(gz)Dν(hz) − hCν(gz)Dν+1(hz)]

g2 − h2
, (241)

with Cν and Dν being any cylinder function of order ν not necessarily
distinct, and g,h being constants. This leads to
a = Aπ

4i
r

(iθ1)2−(iθ2)2
[
iθ1H

(1)
1 (iθ1r)H

(2)
0 (iθ2r) − iθ2H

(1)
0 (iθ1r)H

(2)
1 (iθ2r)

]
,

b = Aπ
4i

r
(iθ1)2−(iθ2)2

[
iθ2H

(1)
1 (iθ2r)H

(1)
0 (iθ1r) − iθ1H

(1)
0 (iθ2r)H

(1)
1 (iθ1r)

]
.

(242)
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Using Eq.(235) and the Wronskian relation of Eq.(239) we have the first
particular solution T1

T1 =
A

θ21 − θ
2
2

H
(1)
0 (iθ1r) = ÃH

(1)
0 (iθ1r). (243)

We now investigate the second part of the particular solution.

• Case 2: 1r
∂
∂r(r

∂T2
∂r ) + (iθ2)2T2 = BH

(2)
0 (iθ1r).

We are looking for a particular solution of the form

T2(r) = a(r)H
(1)
0 (iθ2r) + b(r)H

(2)
0 (iθ2r). (244)

Beside the change of the constant A to B and the fact that we are now
looking for a second kind Hankel function, since the integration of
Eq.(241) works for any cylindrical function, the same though process
as above can be use. We then have

T2 =
B

θ21 − θ
2
2

H
(2)
0 (iθ1r) = B̃H

(2)
0 (iθ1r). (245)

In this section the system of conservation equation was rewritten in
cylindrical coordinates in Eqs.(219). The pressure and the normal stress
tensor were written in Eqs.(220) and (221) respectively. The particle ve-
locity equation was deduced in Eq.(225) and the 4th order differential
equation for T was written in Eqs.(227) and (228) using the notation of
Eq.(140). The associated solutions of the differential equation are the
same as in Section 2.2.1 Eq.(155). A final solution of Eq.(227) for T are
eventually found as 2D Temperature

Variation
T(r) = ÃH

(1)
0 (iθac,fr)+ B̃H

(2)
0 (iθac,fr)+CH

(1)
0 (iθth,fr)+DH

(2)
0 (iθth,fr),

(246)

with

Ã =
A

θ2ac,f − θ
2
th,f

, (247)

B̃ =
B

θ2ac,f − θ
2
th,f

. (248)
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2.3.2 Cylindrical Waves in a Solid

The cylindrical geometry will now be investigated for a solid medium.
Based on Eqs.118 and using Appendix A.5, the constitutive equations
in a solid becomeρ0,sCV ,siωT = κs

1
r
∂
∂r(r

∂T
∂r ) −αT ,sB0T0 1r

∂
∂r(rv) +Q0,

ρ0,siωv =
(
λ0+2µ0

iω + λs + 2µs

)
∂
∂r

(
1
r
∂
∂r(rv)

)
−αT ,sB0 ∂T∂r ,

(249)

with ∂
∂t = iω, Q0 (the heat density energy supplied) uniform, ~b = 0 and

knowing that ∂u∂t = v. When injecting 1
r
∂
∂r(rv) of Eq.(249a) into Eq.(249b),

v can be written as a function of T alone as2D Particle Ve-
locity Equation
in Solid v =

1

iωρ0,s

[
1

αT ,sB0T0

(
λ0 + 2µ0

iω
+ λs + 2µs

)(
−ρ0,sCV ,siω

∂T

∂r
+

+ κs
∂

∂r
(
1

r

∂

∂r
(r
∂T

∂r
))

)
−αT ,sB0

∂T

∂r

]
, (250)

=
−1

iωρ0,s

[
CV ,siωρ0,s
αT ,sB0T0

(
λ0 + 2µ0

iω
+ λs + 2µs

)
+αT ,sB0

]
∂T

∂r
+

+
κs

iωρ0,sαT ,sB0T0

(
λ0 + 2µ0

iω
+ λs + 2µs

)
∂

∂r
(
1

r

∂

∂r
(r
∂T

∂r
)). (251)

By multiplying Eq.(251) by 1
r
∂
∂r(r∗) and using again Eq.(249a)

ρ0,siω
1

r

∂

∂r
(rv) =

[
1

αT ,sB0T0

(
λ0 + 2µ0

iω
+ λs + 2µs

)
(
−ρCV ,siω

1

r

∂

∂r

(
r
∂T

∂r

)
+ κs

1

r

∂

∂r

(
r
∂

∂r
(
1

r

∂

∂r
(r
∂T

∂r
))

))]
−αT ,sB0

1

r

∂

∂r

(
r
∂T

∂r

)
, (252)

=
ρ0,siω
αT ,sB0T0

[
−ρ0,sCV ,siωT + κs

1

r

∂

∂r
(r
∂T

∂r
) +Q0

]
,

(253)

a differential equation for T is found2D Temperature
Variation Differ-
ential Equation
in a Solid

(λs + 2µs +
λ0 + 2µ0

iω
)κsT

iv+

−

[
(λs + 2µs +

λ0 + 2µ0
iω

)iωρ0,sCV ,s +α
2
T ,sB

2
0T0 + iωρ0,sκs

]
T ii+

−ω2ρ20,sCV ,sT = ρ0,siωQ0, (254)

using the notation introduced in Eq.(226). Beside the supplied input
power Q0, Eq.(254) is similar to Eq.(227) for fluid with only B changed
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to λ0 + 2µ0 for the solid. Henceforth, even if the solutions θ of the asso-
ciated differential equation will be different between fluid and solid, all
the thought process associated to finding T in Eq.(246) is still valid for
a solid. Finally, in order to add the supplied energy to the final equa-
tion of T , using the hypothesis that the solid can not be deformed and
Eq.(178), T is written 2D Temperature

Variations
T(r) = ÃH

(1)
0 (iθac,sr)+ B̃H

(2)
0 (iθac,sr)+CH

(1)
0 (iθth,sr)+DH

(2)
0 (iθth,sr)+TQ0 .

(255)

We are now investigating the pressure in the solid case. By definition
a force d~f applied on a surface dS, the pressure can be written using the
stress tensor T̂ as d~f = T̂~ndS. By definition, the pressure p is dF = −pdS.
This leads to

p = −T̂e~n.~n = −Teij
XiXj

r2
, (256)

with ~n =
~X
r and Xi the coordinates of ~r in cartesian coordinates. It

is important to note that a plane strain hypothesis has been used in
Eq.(256). This means that the stress is acting perpendicularly to the
length of the cylinder leading to X3 = 0 and ∂

∂X3
= 0. Using Eq.(109), ε̂

the infinitesimal stress tensor as defined in Eq.(81) and, as defined for ~v
in Eq.(217), ~u = ~r

ru(r), the elastic tensor can be written

T̂e =


2µ0

∂u1
∂X1

+ λ0εkk −αT ,sB0T µ0

(
∂u1
∂X2

+ ∂u2
∂X1

)
0

µ0

(
∂u1
∂X2

+ ∂u2
∂X1

)
2µ0

∂u2
∂X2

+ λ0εkk −αT ,sB0T 0

0 0 −αT ,sB0T

 .

(257)

The partial derivative of u are

∂ui
∂Xj

=
XiXj

r2
∂u

∂r
+
r2δij −XiXj

r3
u, (258)

and so

T̂eij
XiXj

r2
=
2µ0
r2

(
(XiXj)

2

r2
∂u

∂r
−

(r2δij −XiXj)XiXj
r3

u

)
+

+ (λ0εkk −αT ,sB0T)
XiXjδij

r2
, (259)

with εkk = tr(ε̂) = 1
ru+ ∂u

∂r . This leads to 2D Pressure
Equation in
Solidp = αT ,sB0T −

2µ0
iω

∂v

∂r
−
λ0
iω
1

r

∂

∂r
(rv). (260)
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Here the pressure p is only defined with the elastic stress tensor and
so in order to have a stress continuity between different media (solid,
fluid) we need to define p̃ as (using Eqs.(91) and (101))2D Normal

Stress Tensor
Equation in
Solid

p̃ = −T̂~n.~n,

= −(T̂e)~n.~n− (T̂V)~n.~n,

= p− 2µs
∂v

∂r
− λs

1

r

∂

∂r
(rv),

= αT ,sB0T −
[
2(
µ0
iω

+ µs)
∂v

∂r
+ (

λ0
iω

+ λs)
1

r

∂

∂r
(rv)

]
. (261)

In order to explicit the differences in wavenumbers between solid
and liquid media, a first order approximation solution of Eq.(254) will
be determined for the associated homogeneous fourth order differential
equation of T . This was not done in Section 2.2.2 since it was decided to
rewrite the system in term of transverse and longitudinal wave speed
in order to draw an easier comparison. Eq.(254) becomes

0 =(λs + 2µs +
λ0 + 2µ0

iω
)κsθ

4+

−

[
(λs + 2µs +

λ0 + 2µ0
iω

)iωρ0,sCV ,s +α
2
T ,sB

2
0T0 + iωρ0,sκs

]
θ2+

−ω2ρ20,sCV ,s. (262)

It will be seen that this equation is also the one associated to spherical
wave radiation following Eq.(314) in the following Section 2.4.2. Using
similar notations as in Eq.(140) we define

γs =
Cp,s
CV ,s

,

C0,s =
√

B0
ρ0,s
γs, [m/s]

CL =
λ0+2µ0
ρ0,sC0,s

, [m/s]

lκ,s =
C0,sκ

B0Cp,s
, [m]

lV ,s =
λs+2µs
ρC0,s

, [m].

(263)

Following the same thought process as for Eq.(139), Eq.(262) can be
written(

lκ,slV ,s + lκ,s
CL
iω

)
θ4−

[
iω
C0,s

(lV ,s + lκ,s +
CL
iω

) + 1−
1

γs

]
θ2−

ω2

C20,s
= 0.

(264)
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The general form of the asymptotic solutions for the equations of the
form aθ4 + bθ2 + c = 0 has been proven to beθac,s = ±

√
− c
b

(
1+ 1

2
ac
b2

)
,

θth,s = ±
√

−b
a

(
1− 1

2
ac
b2

)
,

(265)

as in Eq.(146) with now
a = lκ,s

CL
iω (1+ lV ,s

iω
CL

),

b = −(1− 1
γs

+ CL
C0,s

)
(
1+ iω

C0,s
(lκ,s + lV ,s)(1−

1
γs

+ CL
C0,s

)−1
)

,

c = − ω2

C20,s
.

(266)

Using Eq.(266), Eq.(265), the first order Taylor’s series approximation
and a first order approximation on lκ,s and lV ,s (weak conduction and
weak viscosity)

1± ac
b2

= 1± 1
2lκ,s

CL
iω

−ω2

C20,s
(1− 1

γs
+ CL
C0,s

)−2,√
−c
b = iω

C0,s
(1− 1

γs
+ CL
C0,s

)−1/2
(
1+ iω

C0,s
(lκ,s + lV ,s)(1−

1
γs

+ CL
C0,s

)−1/2
)

,√
−b
a = ( iω

lκ,sCL
)1/2(1− 1

2
iω
CL
lV ,s)

(1− 1
γs

+ CL
C0,s

)1/2(1+ 1
2

iω
C0,s

(lκ,s + lV ,s)(1−
1
γs

+ CL
C0,s

)−1).

(267)

This leads to

θac,s =
iω
C0,s

(1− 1
γs

+ CL
C0,s

)−1/2
[
1− lV ,s

iω
2C0,s

(1− 1
γs

+ CL
C0,s

)−1 +

− lκ,s
iω
2C0,s

(
(1− 1

γs
+ CL
C0,s

)−1 − CL
C0,s

(1− 1
γs

+ CL
C0,s

)−2
)]

,

θth,s = ( iω
lκ,sCL

)1/2(1− 1
γs

+ CL
C0,s

)1/2
[
1+ iω

2C0,s

[
lκ,s

[
(1− 1

γs
+ CL
C0,s

)−1 +

− (1− 1
γs

+ CL
C0,s

)−2 CLC0,s

]
+ lV ,s

[
(1− 1

γs
+ CL
C0,s

)−1 −
C0,s
CL

]]]
.

(268)

Eqs.(268) are consistent with Eq.(148) and Eq.(151) if CL is replaced by
C0,s
γs

. This similitude is coming from the calculation of the coefficient of
θ2 in both cases. Furthermore, since the associated homogeneous fourth
order differential equation for T is the same in a fluid (Eq.(227)) and a
solid (Eq.(254), by changing B to λ0 + 2µ0, Eqs.(268) are also valid in a
fluid with the appropriate parameters changes.

In this section, the system of equations of Eq.(249) for a solid in a
cylindrical coordinate system is solved. The velocity equation is found
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in Eq.(251) and the differential equation associated to T is found in
Eq.(254). The pressure and the normal stress tensor are then defined in
Eqs.(260) and (261) respectively.

Due to the similarity of the differential equation for T in a fluid and in
a solid, the temperature variation is written similarly as in the fluid in
Eq.(255). The differences are found in the wavenumbers θac and θth in
the two kind of media. Using the parameters defined in Eq.(263), a first
order approximation for weak thermal conduction and weak viscosity
in a solid is found in Eqs.(268). From this form, by changing λ0 + 2µ0
to the Bulk modulus in a fluid, Eqs.(155) for plane wave in a fluid are
found again which gives coherence between the models having similar
associated differential equations.

2.3.3 Ideal Cylindrical Thermophone

Having solved the equations for cylindrical radiations in both fluid and
solid we will now try to investigate what we call an ideal cylindrical
thermophone. In this case the solid part of the thermophone is not con-
sidered yet and is represented as an ideal boundary with the propa-
gating medium at which there is a gradient of temperature. This easily
implementable model will used as a reference and first step for the un-
derstanding of the multilayer model.

Figure 26: Schematic of the perfect thermophone model 2D

A simple cylindrical model is seen in Fig.26. Only progressive waves
in the r direction of the xy plane is considered. Using Eq.(246), the
temperature variation T in the medium can be written in the form

T(r) = AH
(2)
0 (iθacr) +BH

(2)
0 (iθthr), (269)

with A and B constants. No subscripts are used here since, even though
the propagating medium is most likely a fluid (air for instance), those
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equations are still valid for solid propagation. The first order approxi-
mation solutions for θac and θth were calculated in Eqs.(268) in a solid
and in were proven to be the same as Eqs.(155) in a fluid. From the
temperature variations, the particle velocity and the pressure can be in-
ferred using Eqs.(225) and (220) respectively. We write L1 and L2 the co-
efficients of Eq.(225) so that v = L1 ∂T∂r +L2

∂
∂r(

1
r
∂T
∂r +

∂2T
∂r2

) (like in Eqs.(183)
and (184)). In order to rewrite v and p as function of Hankel function
we use equations 10.6.2 and 10.6.1 of NIST [145] being respectively

C ′ν(z) = z
′(−Cν+1(z) +

ν

z
Cν(z)), (270)

C ′ν(z) = z
′(Cν−1(z) −

ν

z
Cν(z)), (271)

Cν−1(z) + Cν+1(z) =
2ν

z
Cν(z), (272)

with Cν any cylindrical function of order ν. This leads to

T ′ =− iAθacH
(2)
1 (iθacr) − iBθthH

(2)
1 (iθthr), (273)

T ′′ =−Aθ2acH
(2)
2 (iθacr) −Bθ2thH

(2)
2 (iθthr)+

− iAθac
1

r
H

(2)
1 (iθacr) − iBθth

1

r
H

(2)
1 (iθthr). (274)

Using Eqs.(273) and (274) along with Eq.(272) we found that

1

r
T ′ + T ′′ = Aθ2acH

(2)
0 (iθacr) +Bθ2thH

(2)
0 (iθthr), (275)

and so with Eq.(270)

∂

∂r
(
1

r
T ′ + T ′′) = −Aiθ3acH

(2)
1 (iθacr) −Biθ3thH

(2)
1 (iθthr). (276)

We now inject Eq.(276) in Eq.(225) to have the final system Analytical
Cylindrical
Equation for T

and v
T(r) =AH

(2)
0 (iθacr) +BH

(2)
0 (iθthr), (277)

v(r) =− iAθac

[
L1 + L2θ

2
ac

]
H

(2)
1 (iθacr) − iBθth

[
L1 + L2θ

2
th

]
H

(2)
1 (iθthr).

(278)

Assuming that the gradient of temperature between the medium and
the thermophone is ∆T and that the thermophone is rigid we have two
boundary conditionsT(r = r0) = ∆T ,

v(r = r0) = 0,
(279)
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with r = r0 being the radius of the cylindrical thermophone (the limit
with the propagating medium). Using the boundary conditions along
with the system of Eq.(277) and (278) we found the constants
A = −∆T

[
θth(L1+L2θ

2
th)H

(2)
1 (iθthr0)

θac(L1+L2θ2ac)H
(2)
1 (iθacr0)H(2)

0 (iθthr0)−θth(L1+L2θ2th)H
(2)
1 (iθthr0)H(2)

0 (iθacr0)

]
,

B = ∆T

[
θac(L1+L2θ

2
ac)H

(2)
1 (iθacr0)

θac(L1+L2θ2ac)H
(2)
1 (iθacr0)H(2)

0 (iθthr0)−θth(L1+L2θ2th)H
(2)
1 (iθthr0)H(2)

0 (iθacr0)

]
.

(280)

Following Eq.(220), the pressure p is the last parameter to be deter-
mined explicitly in this ideal case. First v needs to be derived using
Eq.(278) and Eq.(271)

v ′ =− iAθac(L1 + L2θ
2
ac)

[
iθacH

(2)
0 (iθacr) −

iθac
iθacr

H
(2)
1 (iθacr)

]
+

− iBθth(L1 + L2θ
2
th)

[
iθthH

(2)
0 (iθthr) −

iθth
iθthr

H
(2)
1 (iθthr)

]
,

(281)

leading to

1

r
v+ v ′ = Aθ2ac(L1+ L2θ

2
ac)H

(2)
0 (iθacr) +Bθ2th(L1+ L2θ

2
th)H

(2)
0 (iθthr).

(282)

Finally going back to Eq.(220), the final explicit form of p in this ideal
cylindrical case isAnalytical

Cylindrical
Equation for p

and p̃
p = A

[
αTB − θ2ac

B
iω

(L1 + L2θ
2
ac)

]
H

(2)
0 (iθacr)+

+B

[
αTB − θ2th

B
iω

(L1 + L2θ
2
th)

]
H

(2)
0 (iθthr). (283)

If p̃, the normal stress tensor, is investigated, following Eq.(221) it can
be written

p̃ = A

[[
αTB − θ2ac(

B
iω

+ λ+ 2µ)(L1 + L2θ
2
ac)

]
H

(2)
0 (iθacr)+

−2µ
iθac
r

(L1 + L2θ
2
ac)H

(2)
1 (iθacr)

]
+

+B

[[
αTB − θ2th(

B
iω

+ λ+ 2µ)(L1 + L2θ
2
th)

]
H

(2)
0 (iθthr)+

−2µ
iθth
r

(L1 + L2θ
2
th)H

(2)
1 (iθthr)

]
. (284)
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We have here investigated the radiation of an ideal cylindrical ther-
mophone. We first derived Eq.(246) in order to find explicit analytical
equations for the particle velocity (Eq.(278)) and eventually the pressure
(Eq.(283)) and the normal stress tensor as well (Eq.(284)). Assuming that
that the propagating medium is semi infinite, only progressive waves
are considered. Using the boundary conditions in Eq.(279), the two con-
stant parameters associated to the progressive waves are determined in
Eqs.(280). Variables T , v, p and p̃ are then fully determined.

2.3.4 Transfer Matrix with N Layers

The thought process associated to the explicit resolution of a perfect
cylindrical thermophone with a single propagating layer is now ex-
tended to a multilayer model for cylindrical thermophones. As seen
in Fig.27, N layers of concentric cylinders are investigated. The layer at
the extremity (layer N) is supposed to be semi infinite, and each layer
j ∈ [1,N− 1] potentially has a volumetric input source Q0,j (Q0,N = 0).
The thickness of each "tube" layer j is rj − rj−1 with rj the external ra-
dius of the jth concentric layer. The type of material of each layer (fluid
or solid) is not specified since the material differences are taken into
account in the inherent parameters of their defining matrix.

Figure 27: Schematic of a generalized version of the thermophone model with
N layers in 2D

Similarly as in Section 2.2.4, first we define heat flux as

~q = −κ~∇T = −κ
~r

r

∂T

∂r
. (285)
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We also define TQ0 as Eq.(178) and F and G pair as

F(η) = αTB −

(
B

iω
+ λ+ 2µ

)
(L1η

2 + L2η
4), (195)

G(η) = L1 + L2η
2. (196)

Considering that all derivative and recurrence properties used in Sec-
tion 2.3.3 are valid for all cylindrical Bessel and Hankel functions, the
general form of the parameters p̃, v,q, T in a fluid can be found to be

p̃(r) = A
[
F(θac)H

(1)
0 (iθacr) − 2µiθacr G(θac)H

(1)
1 (iθacr)

]
+

B
[
F(θac)H

(2)
0 (iθacr) − 2µiθacr G(θac)H

(2)
1 (iθacr)

]
+

C
[
F(θth)H

(1)
0 (iθthr) − 2µi

θth
r G(θth)H

(1)
1 (iθthr)

]
+

D
[
F(θth)H

(2)
0 (iθthr) − 2µi

θth
r G(θth)H

(2)
1 (iθthr)

]
+αTBTQ0 ,

v(r) = −AiθacG(θac)H
(1)
1 (iθacr) −BiθacG(θac)H

(2)
1 (iθacr)+

−CiθthG(θth)H
(1)
1 (iθthr) −DiθthG(θth)H

(2)
1 (iθth,fr),

q(r) = AiθacκH
(1)
1 (iθacr) +BiθacκH

(2)
1 (iθacr)+

CiθthκH
(1)
1 (iθthr) +DiθthκH

(2)
1 (iθthr),

T(r) = AH
(1)
0 (iθacr) +BH

(2)
0 (iθacr)+

CH
(1)
0 (iθthr) +DH

(2)
0 (iθthr) + TQ0 .

(286)

Those equations also apply for a solid with Eqs.(261), (251) and (255)
respectively for p̃, v and T provided the appropriate change in param-
eters. Equations’ outline do not change beside replacing B

iω by λ0+2µ0
iω

in F and G, as seen when comparing Eqs.(225) with (251), and p̃ being
written as

p̃(r) = A

[
F(θac)H

(1)
0 (iθacr) − 2(µ+

µ0
iω

)i
θac

r
G(θac)H

(1)
1 (iθacr)

]
+ ... etc

(287)

We are able to rewrite Eqs.(286) as function of matrices in a layer j as
p̃

v

q

T


j

=Wj


Aj

Bj

Cj

Dj

+


αT ,jBjTQ0,j

0

0

TQ0,j

 , (288)
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with W being similar to matrice H in Section 2.2.4 and TQ0,s =
Q0,j

ρ0,jCV ,jiω
.

W is then written as

W =



F(θac)H
(1)
0 (iθacr)+ F(θac)H

(2)
0 (iθacr)+

−2iµθacr G(θac)H
(1)
1 (iθacr) −2iµθacr G(θac)H

(2)
1 (iθacr)

−iθacG(θac)H
(1)
1 (iθacr) −iθacG(θac)H

(2)
1 (iθacr)

iθacκH
(1)
1 (iθacr) iθacκH

(2)
1 (iθacr)

H
(1)
0 (iθacr) H

(2)
0 (iθacr)

...

...

F(θth)H
(1)
0 (iθthr)+ F(θth)H

(2)
0 (iθthr)+

−2iµθthr G(θth)H
(1)
1 (iθthr) −2iµθthr G(θth)H

(2)
1 (iθthr)

−iθthG(θth)H
(1)
1 (iθthr) −iθthG(θth)H

(2)
1 (iθthr)

iθthκH
(1)
1 (iθthr) iθthκH

(2)
1 (iθthr)

H
(1)
0 (iθthr) H

(2)
0 (iθthr)


.

(289)

As of now and as described in Fig.27, r = 0 is the center of the cylin-
der and due to the angular symmetry only r > 0 is considered. In order
to avoid any discontinuity at r = 0 we define in the first layer that
A1 = B1 and C1 = D1 knowing that H(1)

1 (z) ∼ −H
(2)
1 (z) when z → 0

(Eq.(10.7.7) in NIST [145]). The last layer N is consider to be semi infi-
nite so only propagating waves are assumed and AN = CN = 0. In ad-
dition to those boundary conditions, the continuity of the parameters p̃,
v, q and T is assumed between two layers. Following the same thought
process as in Section 2.2.4 and using the continuity of the parameters
between layers we found

A1

A1

C1

C1

 =M0


0

BN

0

DN

+
∑

n∈[1,N−1]

MQ0,n


αT ,nBnTQ0,n

0

0

TQ0,n

 , (290)

with n being the layers with a volumetric source and

M0 =W
−1
1 (r1)

N−1∏
j=2

Wj(rj−1)W
−1
j (rj)

 WN(rN−1), (291)
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with

MQ0,1 = −W−1
1 (r1),

MQ0,n = W−1
1 (r1)

[∏n−1
j=2 Wj(rj−1)W

−1
j (rj)

] [
1−Wn(rn−1)W

−1
n (rn)

]
,

∀n ∈ [2,N− 1],

MQ0,N = W−1
1 (r1)

[∏N−1
j=2 Wj(rj−1)W

−1
j (rj)

]
.

(292)

Eq.(290) can be re written as


1 0 −M0(1, 2) −M0(1, 4)
1 0 −M0(2, 2) −M0(2, 4)
0 1 −M0(3, 2) −M0(3, 4)
0 1 −M0(4, 2) −M0(4, 4)



A1

C1

BN

DN

 =



∑
nMQ0,n(1, 1)αT ,nBnTQ0,n+∑

nMQ0,n(1, 4)TQ0,n∑
nMQ0,n(2, 1)αT ,nBnTQ0,n+∑

nMQ0,n(2, 4)TQ0,n∑
nMQ0,n(3, 1)αT ,nBnTQ0,n+∑

nMQ0,n(3, 4)TQ0,n∑
nMQ0,n(4, 1)αT ,nBnTQ0,n+∑

nMQ0,n(4, 4)TQ0,n



.

(293)

Eq.(290) or Eq.(293) gives A1, C1, BN, and DN. This allows the calcu-
lation of any coefficient ABCDj using either

Aj

Bj

Cj

Dj

 =W−1
j (rj)

Wj+1(rj)


Aj+1

Bj+1

Cj+1

Dj+1

+


αT ,j+1Bj+1TQ0,j+1

0

0

TQ0,j+1



−


αT ,jBjTQ0,j

0

0

TQ0,j


 , (294)
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Aj

Bj

Cj

Dj

 =W−1
j (rj−1)

Wj−1(rj−1)


Aj−1

Bj−1

Cj−1

Dj−1

+


αT ,j−1Bj−1TQ0,j−1

0

0

TQ0,j−1



−


αT ,jBjTQ0,j

0

0

TQ0,j


 , (295)

∀j ∈ [1,N− 1] and ∀j ∈ [2,N] respectively. Finally p̃, v, q, T can be found
for any r with Eq.(288).

In this section, a model for a cylindrical thermophones made of N
concentric layers was solved. First the normal stress tensor, particle ve-
locity, heat flux and temperature variation in a medium were written
in a matrix form in Eq.(288) for both fluid and solid medium (provided
that the specified parameter changes are made). The continuity of p̃, v,
q, T between layers added to the hypotheses of non discontinuity at
the center of the cylinder as well as a semi infinite layer N allowed for
the system of equation to be explicitly solved for all parameters, at any
position r in any layers and for any frequency f.

2.4 one temperature multilayer model for spherical waves

Through Section 2.2 and 2.3 the conservation equations of Section 2.1.1
were solved for plane wave and cylindrical wave radiations respectively.
Using the same though process and conservation equations, the system
will be solved one last time for spherical wave radiations.

The system of equations will be solved first in a fluid and then a
solid medium using a spherical coordinate system. Using the explicit
analytical solutions of the parameters T , p, v and q, the system will be
written in a matrix form. It will allows to solve the system in a much
easier fashion. First it will be done in the case of an ideal spherical
thermophone before being extended to a multilayer model.

The radiating sphere has a radius r and the spherical symmetry makes
all physical properties independent of azimuth and elevation angle.
This leads to the parameters being solely dependent on the distance
with the center of the sphere r.
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2.4.1 Spherical Waves in a Fluid

Figure 28: Schematic of the thermophone model in 3D with 3 layers

Using the general equations in a fluid of Eqs.(56), spherical wave
radiation is now investigated as seen in Fig.28. They now can be written


p = p(r),

T = T(r),

~v = ~r
rv(r),

(296)

with ~r = x~ex + y ~ey + z~ez, ||~r|| = r =
√
x2 + y2 + z2 and x,y, z the carte-

sian coordinates. In order to write Eqs.(56) in spherical coordinate each
component of those equations has to be rewritten using the parameters
of Eq.(296). This leads to (details can be found in Appendix A.5.2)

~∇p = ~r
r
∂p
∂r ,

~∇.~v = 1
r2
∂
∂r(r

2v),

~∇(~∇.~v) = ~r
r

(
∂
∂r

(
1
r2
∂
∂r(r

2v)
))

,

∇2~v = ~r
r

(
∂
∂r

(
1
r2
∂
∂r(r

2v)
))

,

∇2T = 1
r2
∂
∂r(r

2 ∂T
∂r ).

(297)

Using Eqs.(297), Eqs.(56) now becomesConservation
Equations in
Fluid with
Spherical coordi-
nates


iω 1

Bp− iωαTT + 1
r
∂
∂r(rv) = 0,

iωρv = −∂p
∂r + (λ+ 2µ) ∂∂r

(
1
r2
∂
∂r(r

2v)
)

,

iωρCpT − iωαTT0p = κ 1
r2
∂
∂r(r

2 ∂T
∂r ),

(298)
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with 1
r2
∂
∂r(r

2v) = 2
rv +

∂v
∂r . The aim is to write the pressure p and the

particle velocity v as a function of the temperature variation T and find
the differential equation that T solves similarly as before. To this aim
Eq.(298a) can be rewritten in the same form as Eq.(121) 3D Pressure

Equation in
Fluidp = αTBT −

B
iω

1

r2
∂

∂r
(r2v). (299)

Here the pressure p does not take the viscosity into account and so
in order to have a continuity between different media (solid, fluid) we
need to define the normal stress tensor p̃ in spherical coordinates. Using
the stress tensor just as in Eq.(256), p̃ is defined as 3D Normal

Stress Tensor in
Fluid

p̃ = −T̂~n.~n,

= −(T̂e)~n.~n− (T̂V)~n.~n,

= p− 2µ
∂v

∂r
− λ

1

r2
∂

∂r
(r2v),

= αTBT −
(

B
iω

+ λ

)
1

r2
∂

∂r
(r2v) − 2µ

∂v

∂r
. (300)

By deriving Eq.(299)

∂p

∂r
= αTB

∂T

∂r
−

B
iω

∂

∂r

(
1

r2
∂

∂r
(r2v)

)
,

= αTB
∂T

∂r
−

B
iω

(−
2

r2
v+

2

r

∂v

∂r
+
∂2v

∂r2
), (301)

and injecting it in Eq.(298b) we now have

iωρv = −αTB
∂T

∂r
+ (λ+ 2µ+

B
iω

)
∂

∂r

(
1

r2
∂

∂r
(r2v)

)
. (302)

The same way by injecting Eq.(299) in Eq.(298c) we have

iωρCpT − iωαTT0(αTBT −
B

iω
1

r2
∂

∂r
(r2v)) = κ

1

r2
∂

∂r
(r2
∂T

∂r
),

iω(ρCp −α
2
TT0B)T +αTT0B

1

r2
∂

∂r
(r2v) = κ

1

r2
∂

∂r
(r2
∂T

∂r
),

1

r

∂

∂r
(rv) =

κ

αTT0B

1

r2
∂

∂r
(r2
∂T

∂r
) −

iωρCV
αTBT0

T , (303)

knowing the specific heat relation of Eq.(125). By injecting Eq.(303) into
Eq.(302) it allows us to write v as a function of T only 3D Particle Ve-

locity Equation
in Fluidiωρv =−αTB

∂T

∂r
+ (λ+ 2µ+

B
iω

)
∂

∂r

[
κ

αTT0B

1

r2
∂

∂r
(r2
∂T

∂r
) −

iωρCV
αTBT0

T

]
,

v =−
1

iωρ

[
αTB + (λ+ 2µ+

B
iω

)
iωρCV
αTBT0

]
∂T

∂r
+

+ (λ+ 2µ+
B

iω
)

κ

iωραTT0B
∂

∂r

(
1

r2
∂

∂r
(r2
∂T

∂r
)

)
. (304)
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To obtain a pure equation for T we apply 1
r2
∂
∂r(r

2∗) to Eq.(302)

iωρ
1

r2
∂

∂r
(r2v) = −αTB

1

r2
∂

∂r
(r2
∂T

∂r
) + (λ+ 2µ+

B
iω

)
1

r2
∂

∂r

[
r2
∂

∂r
[
1

r2
∂

∂r
(r2v)]

]
,

iωρ
[

κ

αTT0B

1

r2
∂

∂r
(r2
∂T

∂r
) −

iωρCV
αTBT0

T

]
= −αTB

1

r2
∂

∂r
(r2
∂T

∂r
) +

+ (λ+ 2µ+
B

iω
)
1

r2
∂

∂r

[
r2
∂

∂r

[
κ

αTT0B

1

r2
∂

∂r
(r2
∂T

∂r
) −

iωρCV
αTBT0

T

]]
,

using Eq.(303) and knowing that 1
r2
∂
∂r(r

2 ∂T
∂r ) = 2

r
∂T
∂r +

∂2T
∂r2

. Re defining
the notationsT ii = DT = 1

r2
∂
∂r(r

2 ∂T
∂r ),

T iv = (T ii)ii = DDT = 1
r2
∂
∂r

[
r2 ∂∂r [

1
r2
∂
∂r(r

2 ∂T
∂r )]
]

,
(305)

the fourth order differential equation of T can be written3D Temperature
Variation Differ-
ential Equation
in a Fluid

0 =(λ+ 2µ+
B

iω
)κT iv+

−

[
(λ+ 2µ+

B
iω

)iωρCV +α2TB
2T0 + iωρκ

]
T ii+

−ω2ρ2CVT , (306)

which is similar to Eq.(227) with a different definition of D. Follow-
ing the same though process and notation as for cartesian coordinates,
Eq.(306) can be written as

lκ(lV +
C0

iωγ
)T iv − [1+

iω
C0

(lκ + lV)]T
ii −

ω2

C20
T = 0, (307)

with the parameters defined in Eqs.(140). The four solutions of the as-
sociated differential equation aθ4 − bθ2 − c = 0 are written of the form
±θ1 and ±θ2. Eq.(307) assumes a similar form as Eq.(139) in Section
2.2.1. θi are then defined as in Eq.(155).

It can be shown that if T is written of the form T(r) = e±θir

r thenDT = θ2iT ,

DDT = θ4iT .
(308)

θi being a solution to the associated fourth order differential equation,
then T(r) = e±θir

r is the form of the solution for Eq.(307).

In this section, the conservation equations were written in spherical
coordinates in Eqs.(298). The pressure, normal surface tension and parti-
cle velocity were then written as functions of the temperature variation
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in Eqs.(299), (300) and (304) respectively. The differential equation for
T was found in Eq.(306) and rewritten in Eq.(307) with the parameters
defined in Eqs.(140). The associated homogeneous 4th order differential
equation being the same in fluid regardless of the coordinate system
(Cartesian, cylindrical or spherical), the associated wavenumber solu-
tions are found in Eq.(155). The final solution of Eq.(306) is then 3D Temperature

Variation
T(r) = A

−eθacr

r
+B

eθacr

r
+C

−eθthr

r
+D

eθthr

r
, (309)

with ABCD constants.

2.4.2 Spherical Waves in a Solid

The spherical geometry will now be investigated in a solid. Based on
Eqs.(118) and using Appendix A.5.2 the constitutive equations in a solid
becomesρ0,sCV ,siωT = κs

1
r2
∂
∂r(r

2 ∂T
∂r ) −αT ,sB0T0 1r2

∂
∂r(r

2v) +Q0,

ρ0,siωv =
(
λ0+2µ0

iω + λs + 2µs

)
∂
∂r

(
1
r2
∂
∂r(r

2v)
)
−αT ,sB0 ∂T∂r ,

(310)

with ∂
∂t = iω, Q0 (the heat density energy supplied) uniform, ~b = 0

and knowing that ∂u
∂t = v. When injecting 1

r2
∂
∂r(r

2v) of Eq.(310a) into
Eq.(310b), v can be written as a function of T alone as 3D Particle Ve-

locity Equation
in Solidv =

1

iωρ0,s

[
1

αT ,sB0T0

(
λ0 + 2µ0

iω
+ λs + 2µs

)(
−ρ0,sCV ,siω

∂T

∂r
+

+ κs
∂

∂r
(
1

r2
∂

∂r
(r2
∂T

∂r
))

)
−αT ,sB0

∂T

∂r

]
, (311)

=
−1

iωρ0,s

[
CV ,siωρ0,s
αT ,sB0T0

(
λ0 + 2µ0

iω
+ λs + 2µs

)
+αT ,sB0

]
∂T

∂r
+

+
κs

iωρ0,sαT ,sB0T0

(
λ0 + 2µ0

iω
+ λs + 2µs

)
∂

∂r
(
1

r2
∂

∂r
(r2
∂T

∂r
)).

(312)

By multiplying Eq.(312) by 1
r2
∂
∂r(r

2∗) and using Eq.(310a)

ρ0,siω
1

r2
∂

∂r
(r2v) =

[
1

αT ,sB0T0

(
λ0 + 2µ0

iω
+ λs + 2µs

)
(
−ρ0,sCV ,siω

1

r2
∂

∂r

(
r2
∂T

∂r

)
+ κs

1

r2
∂

∂r

(
r2
∂

∂r
(
1

r2
∂

∂r
(r2
∂T

∂r
))

))]
+

−αT ,sB0
1

r2
∂

∂r

(
r2
∂T

∂r

)
,

=
ρ0,siω
αT ,sB0T0

[
−ρ0,sCV ,siωT + κs

1

r2
∂

∂r
(r2
∂T

∂r
) +Q0

]
. (313)
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Using the notation introduced in Eq.(305), a differential equation for T
is found3D Tempera-

ture variation
Differential
Equation in a
Solid

(λs + 2µs +
λ0 + 2µ0

iω
)κsT

iv+

−

[
(λs + 2µs +

λ0 + 2µ0
iω

)iωρ0,sCV ,s +α
2
T ,sB

2
0T0 + iωρ0,sκs

]
T ii+

−ω2ρ20,sCV ,sT = ρ0,siωQ0. (314)

Beside the supplied input power Q0, Eq.(314) is similar to Eq.(306) for
fluid with only B changed to λ0 + 2µ0 for the solid. Henceforth, the
solutions θ1,2 of the associated differential equation will are found in
Eq.(268) this time. All the thought process associated to finding T as
in Eq.(309) is still valid for a solid though. Finally, in order to add the
supplied energy to the final equation of T , using the hypothesis that the
solid can not be deformed T is written and using Eq.(178)3D Tempera-

ture Variations

T(r) = A
e−θac,sr

r
+B

eθac,sr

r
+C

e−θth,sr

r
+D

eθth,sr

r
+ TQ0 , (315)

with ABCD constants.
We are now investigating the pressure in the solid case. By definition

a force d~f applied on a surface dS can be written using the stress tensor
T̂ as d~f = T̂~ndS. By definition, the pressure p is dF = −pdS. This leads
to

p = −T̂e~n.~n = −Teij
XiXj

r2
, (316)

with ~n =
~X
r and Xi the coordinates of ~r in cartesian coordinates. Using

Eq.(109), ε̂ the infinitesimal stress tensor as defined in Eq.(81) and, as
defined for ~v in Eq.(296), ~u = ~r

ru(r), the elastic tensor can be written

T̂e =



2µ0
∂u1
∂X1

+ λ0εkk

−αT ,sB0T
µ0

(
∂u1
∂X2

+ ∂u2
∂X1

)
µ0

(
∂u1
∂X3

+ ∂u3
∂X1

)
µ0

(
∂u1
∂X2

+ ∂u2
∂X1

) 2µ0
∂u2
∂X2

+ λ0εkk

−αT ,sB0T
µ0

(
∂u2
∂X3

+ ∂u3
∂X2

)
µ0

(
∂u1
∂X3

+ ∂u3
∂X1

)
µ0

(
∂u2
∂X3

+ ∂u3
∂X2

) 2µ0
∂u3
∂X3

+ λ0εkk

−αT ,sBT


. (317)

The partial derivative of u are

∂ui
∂Xj

=
XiXj

r2
∂u

∂r
+
r2δij −XiXj

r3
u, (318)
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and so

T̂eij
XiXj

r2
=
2µ0
r2

(
(XiXj)

2

r2
∂u

∂r
−

(r2δij −XiXj)XiXj
r3

u

)
+(λ0εkk−αT ,sB0T)

XiXjδij

r2
,

(319)

with εkk = tr(ε̂) = 2
ru+ ∂u

∂r . This leads to 3D Pressure
Equation in
Solidp = αT ,sB0T −

2µ0
iω

∂v

∂r
−
λ0
iω

1

r2
∂

∂r
(r2v). (320)

Here the pressure p is only defined with the elastic stress tensor and so
in order to have a stress continuity between different media (solid, fluid)
we need to define p̃ with the viscous stress tensor as (using Eq.(91) and
(101)) 3D Normal

Stress Tensor in
Solidp̃ = −T̂~n.~n,

= −(T̂e)~n.~n− (T̂V)~n.~n,

= p− 2µs
∂v

∂r
− λs

1

r2
∂

∂r
(r2v),

= αT ,sB0T −
[
2(
µ0
iω

+ µs)
∂v

∂r
+ (

λ0
iω

+ λs)
1

r2
∂

∂r
(r2v)

]
. (321)

In this Section, the system of equations Eqs.(310) in a solid, was used
to find the particle velocity as function of the temperature variation in
Eq.(312). The 4th order differential equation of T was found in Eq.(314).
Its similar form as in cylindrical coordinates allowed to define the as-
sociated solutions as in Eq.(268), leading to the explicit form of T in
Eq.(315). Lastly, by definition of the elastic stress tensor the pressure
was written in a solid in Eq.(320). The viscous stress tensor was then
added to define the normal stress tensor in Eq.(321) for continuity pur-
poses.

2.4.3 Ideal Spherical Thermophone

The conservation equations have been solved in a spherical geometry
for both fluid and solid media. We shall now investigate the thermoa-
coustic generation of an ideal spherical thermophone. In this case the
solid part is of the thermophone is not considered and is represented
as an ideal rigid boundary in which there is an ideal temperature gra-
dient boundary condition. This easily implementable model will used
as a reference and a first step for the understanding of the multilayer
model.
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Figure 29: Schematic of the perfect thermophone model 3D

Assuming azimuth and elevation angle symmetry a simple uni di-
mensional model considering only progressive waves in the r direction
can be used, as seen in Fig.29. The medium is semi infinite so only prop-
agating waves are considered. No subscripts are used here since, even
though the propagating medium is most likely a fluid (air for instance),
the presented equations are still valid for solid propagation with the
appropriate changes in parameters. With Eq.(309), the temperature vari-
ation T in the propagating medium can be written in the form

T(r) = A
e−θacr

r
+B

e−θthr

r
, (322)

with A and B constants and the first order approximation solutions for
θac and θth calculated in for cylindrical waves in Eq.(268) for solid and
Eq.(155) for fluid. From the temperature, the particle velocity and the
pressure can be inferred using Eqs.(304) and (299) respectively. We write
L1 and L2 the coefficients of Eq.(304) so that v = L1 ∂T∂r + L2

∂
∂r(

2
r
∂T
∂r +

∂2T
∂r2

)

(Eqs.(183) and (184)). This leads to

T ′ =−A

(
θac +

1

r

)
e−θacr

r
−B

(
θth +

1

r

)
e−θthr

r
, (323)

T ′′ = A

(
θ2ac +

2θac

r
+
2

r2

)
e−θacr

r
+B

(
θ2th +

2θth
r

+
2

r2

)
e−θthr

r
,

(324)

T ′′′ =−A

(
θ3ac +

3θ2ac
r

+
6θac

r2
+
6

r3

)
e−θacr

r
+

−B

(
θ3th +

3θ2th
r

+
6θth
r2

+
6

r3

)
e−θthr

r
. (325)

Using Eq.(323) and (324) we have the systemAnalytical
Spherical Equa-
tions for T and
v
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T(r) =A
e−θacr

r
+B

e−θthr

r
, (326)

v(r) =−A(θac +
1

r
)(L1 + L2θ

2
ac)
e−θacr

r
−B(θth +

1

r
)(L1 + L2θ

2
th)
e−θthr

r
.

(327)

Assuming that the gradient of temperature between the medium and
the thermophone is ∆T and that the thermophone is rigid we have the
two boundary conditionsT(r = r0) = ∆T ,

v(r = r0) = 0,
(328)

with r = r0 being the radius of the spherical thermophone (the limit
with the propagating medium). Using Eqs.(328) boundary conditions
along with the system of Eq.(326) and (327) we found the constants

A = ∆Tr0e
θacr0

[
−(θth+

1
r )(L1+L2θ

2
th)

L1(θac−θth)+L2(
θ2ac−θ

2
th

r +θ3ac−θ
3
th)

]
,

B = ∆Tr0e
θthr0

[
−(θac+

1
r )(L1+L2θ

2
ac)

L1(θth−θac)+L2(
θ2
th

−θ2ac
r +θ3th−θ

3
ac)

]
.

(329)

We now aim to write p explicitly following Eq.(299). First v of Eq.(327)
needs to be derived as

v ′ =A(θ2ac +
2θac

r
+
2

r2
)(L1 + L2θ

2
ac)
e−θacr

r
+

B(θ2th +
2θth
r

+
2

r2
)(L1 + L2θ

2
th)
e−θthr

r
, (330)

leading to

2

r
v+ v ′ = Aθ2ac(L1 + L2θ

2
ac)
e−θacr

r
+Bθ2th(L1 + L2θ

2
th)
e−θthr

r
. (331)

Finally coming back to Eq.(299), the final explicit form of p in this ideal
spherical case is Analytical

Spherical Equa-
tions for p and
p̃

p = A

[
αTB −

B
iω
θ2ac(L1 + L2θ

2
ac)

]
e−θacr

r
+

+B

[
αTB −

B
iω
θ2th(L1 + L2θ

2
th)

]
e−θthr

r
. (332)

If p̃ is investigated, following Eq.(300) it can be written

p̃ = A
[
αTB − ( B

iω + λ+ 2µ)θ2ac(L1 + L2θ
2
ac) − 2µ(

2θac
r + 2

r2
)(L1 + L2θ

2
ac)
]
e−θacr

r

+ B
[
αTB − ( B

iω + λ+ 2µ)θ2th(L1 + L2θ
2
th) − 2µ(

2θth
r + 2

r2
)(L1 + L2θ

2
th)
]
e−θthr

r .

(333)
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Considering an ideal spherical thermophone radiating in free field,
the analytical explicit equations for the temperature variations and the
particle velocity are deduced in Eqs.(326) and (327). The constant factors
associated to the two propagating waves are found in Eq.(329) using the
boundary conditions of Eq.(328). The pressure and normal stress tensor
are then also explicitely written in Eq.(332) and (333) respectvely. All
variable p, p̃, v and T are then explicitly determined for all position r
and for any frequency f.

2.4.4 Transfer Matrix with N Layers

The thought process associated to the resolution of an ideal spherical
thermophone will now be used to create a more flexible model with
multiple concentric spherical layers as seen in Fig.30. N concentric lay-
ers are assumed and the extreme layer (Nth one) is supposed to be semi
infinite and each layer j ∈ [1,N− 1] potentially has a volumetric source
Q0,j (Q0,N = 0). The thickness of each "shell" layer j is rj − rj−1 with rj
the external radius of the jth concentric layer. The type of material of
each layer (fluid or solid) is not specified since medium differences are
taken into account in the inherent parameters of their defining matrix.

Figure 30: Schematic of a generalized version of the thermophone model with
N layers in 3D

Equations found in 2.4.3 are extended with regressive waves. Thermal
flux ~q is defined as

~q = −κ~∇T = −κ
~r

r

∂T

∂r
, (334)
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TQ0 as in Eq.(178) and F and G again as

F(η) = αTB −

(
B

iω
+ λ+ 2µ

)
(L1η

2 + L2η
4), (195)

G(η) = L1 + L2η
2. (196)

the general form of the parameters p̃, v,q, T in a fluid in 3D can be
found to be

p̃(r) = A
[
F(θac) − 2µ

2
r (
1
r + θac)G(θac)

]
e−θacr

r +

B
[
F(θac) − 2µ

2
r (
1
r − θac)G(θac)

]
eθacr

r +

C
[
F(θth) − 2µ

2
r (
1
r + θth)G(θth)

]
e−θthr

r +

D
[
F(θth) − 2µ

2
r (
1
r − θth)G(θth)

]
eθthr

r ,

v(r) = −A(1r + θac)G(θac)
e−θacr

r −B(1r − θac)G(θac)
eθacr

r +

−C(1r + θth)G(θac)
e−θthr

r −D(1r − θth)G(θth)
eθthr

r ,

q(r) = A(1r + θac)κ
e−θacr

r +B(1r − θac)κ
eθacr

r +

C(1r + θth)κ
e−θthr

r +D(1r − θth)κ
eθthr

r ,

T(r) = Ae
−θacr

r +Be
θacr

r +Ce
−θthr

r +Deθthr

r .

(335)

Those equations also apply for a solid with Eqs.(261), (251) and (255)
respectively for p̃, v and T provided the appropriate change in param-
eters. Equations’ outline do not change beside replacing B

iω by λ0+2µ0
iω

in F and G, as seen when comparing Eqs.(304) with (312), and p̃ being
written as

p̃(r) = A

[
F(θac) − 2(µ+

µ0
iω

)
2

r
(
1

r
+ θac)G(θac)

]
e−θacr

r
+ ... etc (336)

We are able to rewrite Eqs.(335) as a function of matrices in a layer j
as 

p̃

v

q

T


j

=Wj


Aj

Bj

Cj

Dj

+


αT ,jBjTQ0,j

0

0

TQ0,j

 , (337)
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with TQ0,j =
Q0,j

ρ0,jCV ,jiω
, and W(r) = W(a)(r)W(b)(r) as in Section 2.2.4.

W(a) and W(b) can be written as

W(a) =



F(θac)+ F(θac)+

−2µ2r (
1
r + θac)G(θac) −2µ2r (

1
r − θac)G(θac)

−(1r + θac)G(θac) −(1r − θac)G(θac)

(1r + θac)κ (1r − θac)κ

1 1

...

...

F(θth)+ F(θth)+

−2µ2r (
1
r + θth)G(θth) −2µ2r (

1
r − θth)G(θth)

−(1r + θth)G(θth) −(1r − θth)G(θth)

(1r + θth)κ (1r − θth)κ

1 1


,

and

W(b) =


e−θacr

r 0 0 0

0 eθacr

r 0 0

0 0 e−θthr

r 0

0 0 0 eθthr

r

 . (338)

Here W(a) is written with the equations in a fluid but with the appro-
priate changes the equivalent matrix for a solid can be found. W(b) is
written in its global form and the differences between solid and fluid
lie in the values of θac and θth.

We consider r = 0 at the center of the sphere and due to the angular
symmetry only r > 0 is considered. In order to avoid any discontinuity
at r = 0 we define in the first layer that A1 = −B1 and C1 = −D1
knowing that ez ∼ 1+ z when z → 0. The last layer N is consider to be
semi infinite so only propagating waves are assumed and BN = DN = 0.
Following the same thought process as in 2.2.4 and using the continuity
of the parameters between layers we found

A1

−A1

C1

−C1

 =M0


AN

0

CN

0

+
∑

n∈[1,N−1]

MQ0,n


αT ,nBnTQ0,n

0

0

TQ0,n

 , (339)
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with n being the layers with a volumetric source and

M0 =W
−1
1 (r1)

N−1∏
j=2

Wj(rj−1)W
−1
j (rj)

 WN(rN−1), (340)



MQ0,1 = −W−1
1 (r1),

MQ0,n = W−1
1 (r1)

[∏n−1
j=2 Wj(rj−1)W

−1
j (rj)

] [
1−Wn(rn−1)W

−1
n (rn)

]
,

∀n ∈ [2,N− 1],

MQ0,N = W−1
1 (r1)

[∏N−1
j=2 Wj(rj−1)W

−1
j (rj)

]
.

(341)

Eq.(339) can be re written as


1 0 −M0(1, 1) −M0(1, 3)
−1 0 −M0(2, 1) −M0(2, 3)
0 1 −M0(3, 1) −M0(3, 3)
0 −1 −M0(4, 1) −M0(4, 3)



A1

C1

AN

CN

 =



∑
nMQ0,n(1, 1)αT ,nBnTQ0,n+∑

nMQ0,n(1, 4)TQ0,n∑
nMQ0,n(2, 1)αT ,nBnTQ0,n+∑

nMQ0,n(2, 4)TQ0,n∑
nMQ0,n(3, 1)αT ,nBnTQ0,n+∑

nMQ0,n(3, 4)TQ0,n∑
nMQ0,n(4, 1)αT ,nBnTQ0,n+∑

nMQ0,n(4, 4)TQ0,n



.

(342)
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Eq.(339) or Eq.(342) gives A1, C1, AN, and CN. This allows the calcula-
tion of any coefficient ABCDj using either

Aj

Bj

Cj

Dj

 =W−1
j (rj)

Wj+1(rj)


Aj+1

Bj+1

Cj+1

Dj+1

+


αT ,j+1Bj+1TQ0,j+1

0

0

TQ0,j+1



−


αT ,jBjTQ0,j

0

0

TQ0,j


 , (343)


Aj

Bj

Cj

Dj

 =W−1
j (rj−1)

Wj−1(rj−1)


Aj−1

Bj−1

Cj−1

Dj−1

+


αT ,j−1Bj−1TQ0,j−1

0

0

TQ0,j−1



−


αT ,jBjTQ0,j

0

0

TQ0,j


 , (344)

∀j ∈ [1,N− 1] and ∀j ∈ [2,N] respectively. Finally p̃, v, q, T can be found
for any r with Eq.(337).

In this section, a model for a spherical thermophones made of N con-
centric layers was solved. First the normal stress tensor, particle velocity,
heat flux and temperature variation in a medium were written in a ma-
trix form in Eq.(335) for both fluid and solid medium (provided that the
specified parameter changes are made). The continuity of p̃, v, q, T be-
tween layers added to the hypotheses of non discontinuity at the center
of the sphere as well as a semi infinite layer N allowed for the system
of equation to be explicitly solved for all parameters, at any position r
in any layers and for any frequency f.
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summing up plane , cylindrical and spherical waves main
equations

To facilitate the understanding of the past sections, the main equations
for plane, cylindrical and spherical waves are here rewritten for easy
comparison.

In fluid

In fluid, the main differential equation for the temperature is written as

0 = (λ+ 2µ+
B

iω
)κT iv+

−

[
(λ+ 2µ+

B
iω

)iωρ0,fCV + (iωρ0,fκ+α2TT0B
2)

]
T ′′+

−ω2ρ20,fCVT , (345)

and is valid for plane, cylindrical and spherical waves. The difference be-
ing in the differentials of T which will induce different solutions based
on the coordinate system. The temperature is then written

Tf =
(
Ae−θacx +Beθacx +Ce−θthx +Deθthx

)
eiωt + TQ0 , (346)

T(r) = AH
(1)
0 (iθacr)+BH

(2)
0 (iθacr)+CH

(1)
0 (iθthr)+DH

(2)
0 (iθthr)+ TQ0 ,

(347)

and

T(r) = A
e−θacr

r
+B

eθacr

r
+C

e−θthr

r
+D

eθthr

r
+ TQ0 , (348)

for plane, cylindrical and spherical wave respectively. The constant term
TQ0 = 0 in fluid medium and the wavenumbers are the same in all three
cases since they are found from the same differential equation, Eq.(345),
as θac,f = iω

C0

[
1− 1

2
iω
C0
lV − 1

2lκ
iω
C0

(1− 1
γ)
]

,

θth,f =
√

iωγ
C0lκ

[
1+ 1

2
iω
C0

[
lκ(1−

1
γ) + lV(1− γ)

]]
.

(349)

Pressure and velocity, are then deduced using the conservation equa-
tions.
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In solid

Plane wave generation in solid medium has been investigated in terms
of longitudinal and transversal waves. We were then able to found ex-
actly the same conservation equations in solid as in fluid provided that
the following changes are applied

B = B0

1−43
v2
T
v2
L

,

αT = αT ,s(1−
4
3

v2T
v2L
),

Cp,f = Cp,s(1−
Cp,s−CV ,s
Cp,s

, 43
v2T
v2L
).

(350)

This kind of analogy was not possible for cylindrical and spherical
waves but a similar thought process as for plane wave in fluids is ap-
plied. As such, a similar differential equation for T is found as

(λs + 2µs +
λ0 + 2µ0

iω
)κsT

iv+

−

[
(λs + 2µs +

λ0 + 2µ0
iω

)iωρ0,sCV ,s +α
2
T ,sB

2
0T0 + iωρ0,sκs

]
T ii+

−ω2ρ20,sCV ,sT = ρ0,siωQ0. (351)

This equation is similar to Eq.(345) with the added constant term of
supplied energy and with the change B to λ0 + 2µ0. The derivative of
T are similar to the ones in fluid though and so the temperature in
solid is written as in Eqs.(347), and (348). However TQ0 6= 0 and the
wavenumbers are different and are found as

θac,s =
iω
C0,s

(1− 1
γs

+ CL
C0,s

)−1/2
[
1− lV ,s

iω
2C0,s

(1− 1
γs

+ CL
C0,s

)−1 +

− lκ,s
iω
2C0,s

(
(1− 1

γs
+ CL
C0,s

)−1 − CL
C0,s

(1− 1
γs

+ CL
C0,s

)−2
)]

,

θth,s = ( iω
lκ,sCL

)1/2(1− 1
γs

+ CL
C0,s

)1/2
[
1+ iω

2C0,s

[
lκ,s

[
(1− 1

γs
+ CL
C0,s

)−1 +

− (1− 1
γs

+ CL
C0,s

)−2 CLC0,s

]
+ lV ,s

[
(1− 1

γs
+ CL
C0,s

)−1 −
C0,s
CL

]]]
.

(352)

Eqs.(352) are consistent with Eqs.(349) if CL is replaced by C0,s
γs

. The
other variables, pressure and velocity, are then found using the con-
servation equations and the subsequent multilayer matricial model is
created in a similar fashion in all three cases.



2.5 two temperatures model for plane waves 115

2.5 two temperatures model for plane waves

With Sections 2.2, 2.3 and 2.4, the goal was to use the general constitu-
tive equations defined for fluid and solid media in Section 2.1 to create
flexible analytical models in matricial form. However, despite the mul-
tiple geometries investigated and the flexibility of each models, none of
them are targeted for the thermoacoustic generation of thick foamlike
materials. A two-temperature model is presented here in order to gain a
deeper insight into the thermoacoustic behavior of thermophones based
on highly porous foamlike materials.

This model introduces local non equilibrium between the tempera-
tures of the solid foam and the fluid embedded inside it [146–150]. It
means that two different temperatures are considered for each phase
of the generating layer. The balance equations for the fluid are cou-
pled with the heat equation for the foam through a set of boundary
conditions describing the exchange of energy at each contact surface
between fluid and foam. This is the most important difference between
this model and previous ones: while in previous models, the heat ex-
change between generating layer and fluid occurs only at the two ex-
ternal surfaces due to assumption of a bulk continuous solid, in the
present case, the actual distribution of fluid within the pores and the
heat exchanges at any foam-fluid contact are considered. This process
is able to explain the high efficiency observed in real thermophones
based on foam or spongelike materials.

Therefore, a model is elaborated to take into account the effect of the
fluid (typically air) embedded within the pores of the active solid phase,
i.e. the coupling between the fluid and the micro- or nano-structured
porous solid in the active region. It is solved for plane wave generation
before being written in a matrix form. A multilayer model is then cre-
ated which allows for an easy design of the multiple foam-fluid contacts
in the thermophone. It can be noted that the development of equations
in the following section are not as explicitly written as before since the
same though process as in Section 2.2.1 is used and similar equations
are deduced.

2.5.1 Simplified Conservation Equation

A thermophone radiating in free field is considered as shown in Fig.31.
The central active layer of the thermophone is assumed to be made
of a porous material with a very high porosity (e.g., larger than 90%),
with an undeformable solid microstructure. The fluid motion within
the pores of the thermophone region can be described by the conserva-
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Figure 31: Schematic of a porous thermophone radiating in free field (symmet-
rically in back and front media). The thermophone layer has a width
ll and foam branches of average diameter ls. The volumetric source
Q0 is supplied to the foam structure by Joule effect.

tion equations in Eqs.(56). However, due to the possible high frequency
of the energy supplied to the thermophone to induce thermoacoustic
effect, the local thermal equilibrium is not attained between fluid and
solid phases. Therefore, the conservation equations in the fluid can be
coupled with the energy conservation for the solid phase, where an in-
put power density Q0 is introduced (Joule effect), and a temperature
Ts 6= Tf is considered. The combination of such equations represents the
non thermal equilibrium between fluid and solid. In other terms, since
the temperatures of fluid and solid are sensibly different on the two
sides of a real contact interface, a phenomenological two-temperature
model has to be considered to effectively take account of this non ther-
mal equilibrium. Each layer is therefore described by the following set
of equations2T System of

Equations
1

B
∂p

∂t
−αT

∂Tf
∂t

+ ~∇ ·~v = 0, (353)

ρ0
∂~v

∂t
= −~∇p+ µ∇2~v+ (λ+ µ)~∇(~∇ ·~v), (354)

ρ0Cp
∂Tf
∂t

−αTT0
∂p

∂t
= κ∇2Tf, (355)

ρ0,sCv,s
∂Ts

∂t
= κs∇2Ts +Q0, (356)

where the last equation represent the added energy conservation in the
solid foam instead of using the system described by Eqs.(118). This sys-
tem is investigated in a one-dimensional case (plane wave propagation
along the x axis) with an harmonic time dependence as in Section 2.2.
Then, one gets2T System of

Equations for
Plane waves
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iω
B
p− iωαTTf +

dv
dx

= 0, (357)

iωρ0v = −
dp
dx

+ (λ+ 2µ)
d2v
dx2

, (358)

iωρ0CpTf = κ
d2Tf
dx2

+ iωαTT0p, (359)

iωρ0,sCv,sTs = κs
d2Ts
dx2

+Q0. (360)

Importantly in these equations, the terms ρ0,s, Cv,s and κs must be con-
sidered as the homogenized values over the whole volume of the gener-
ation layer. Indeed, the two temperature model implicitly considers two Thermophone

Homogenized
Parameters

effective phases (fluid and foam, in our case), both occupying the whole
region of the thermophone layer. Therefore, for each phase the homoge-
nized values for all physical properties have to be considered[146–150].
However, since the materials display a very high porosity, the homoge-
nized parameters are adopted only for the foam phase.

Figure 32: Two-temperature representation of the porous thermophone. In
each layer, a temperature Tf is associated to the fluid within the
pores, and a temperature Ts 6= Tf is associated to the solid foam
branches. The interfaces control the energy exchange between foam
and fluid.

To better take into consideration the morphology of the porous struc-
ture within the generation layer, an exchange of energy at the contact
surfaces between pores and foam branches is introduced. This scheme
can be mimicked by a series of interfaces, which are represented in
Fig.32 in our uni dimensional case. The energy exchange between fluid
in the pores and solid branches is written in the boundary conditions
that are summarized below. To write these conditions, the definition of
the heat flux is introduced in the fluid phase as q = −κdT/dx and in
the solid foam phase as qs = −κsdTs/dx (Eq.(190)). Moreover, instead
of considering the pressure p, the normal surface tension p̃ is adopted
as p̃ = p− (λ+ 2µ)dv/dx, which takes into account the viscous stress
(Eq.(188)). Now, in each layer of the thermophone (layers from 1 to N,
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see Fig.32), there are four variables p̃, v, Tf and q for the fluid and two
variables Ts and qs for the branches. On the other hand, in the back
and front media (layers 0 and N+ 1), there are only the variables for
the fluid, namely p̃, v, T and q. An index i ∈ [0,N+ 1] is associated to
these variables to identify the layer where they are defined. For the in-
terfaces within the thermophone (from x2 to xN), boundary conditions
are found as2T Boundary

Conditions
p̃i−1(xi) =p̃i(xi), (361)
vi−1(xi) =vi(xi), (362)
Tf,i−1(xi) =Tf,i(xi), (363)
Ts,i−1(xi) =Ts,i(xi), (364)
qi(xi) =qi−1(xi) + g(Ts,i(xi) − Tf,i(xi)), (365)
qs,i(xi) =qs,i−1(xi) − g(Ts,i(xi) − Tf,i(xi)), (366)

for all i ∈ [2,N]. While the first four relations represent the classical
continuity of normal stress, velocity and temperatures, the last two rela-
tions represent the energy exchanged between solid branches and fluid.
Indeed, if Ts,i(xi) > Tf,i(xi) a positive quantity of energy leaves the foam
and moves to the surrounding fluid. This process is controlled by a new
parameter g [W/(m2K)], describing the fluid/solid coupling at the inter-
faces. Concerning the first interface at x1 (back medium/thermophone),
the boundary conditions are

p̃0(x1) =p̃1(x1), (367)
v0(x1) =v1(x1), (368)
Tf,0(x1) =Tf,1(x1), (369)
q1(x1) =q0(x1) + g(Ts,1(x1) − Tf,1(x1)), (370)
qs,1(x1) =− g(Ts,1(x1) − Tf,1(x1)). (371)

Finally at the last interface xN+1 (thermophone/front medium) bound-
ary conditions are written as

p̃N(xN+1) =p̃N+1(xN+1), (372)
vN(xN+1) =vN+1(xN+1), (373)
Tf,N(xN+1) =Tf,N+1(xN+1), (374)
qN+1(xN+1) =qN(xN+1) + g(Ts,N(xN+1) − Tf,N(xN+1)), (375)

0 =qs,N(xN+1) − g(Ts,N(xN+1) − Tf,N(xN+1)). (376)

It is interesting to observe that this proposed two-temperature model
differs form the classical two-temperature model described in the liter-
ature [146–150]. Indeed, in our case the exchange of energy is confined
at all interfaces representing the contacts between fluid and foam. This
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process is not continuous and therefore it is not implemented within
the balance equations defined in each layer (see Eqs.(357) to (360)). On
the other hand, it is important to also note that in this thermophone
model the heating of the fluid is a process distributed (although not
continuously) within the whole region of the generation layer (at all
the fluid/foam contacts) and not only at the external interfaces (at x1
and xN+1) as in the classical thermophone models developed in the first
part of this Section 2 For this reason, it is better suited to represent the
behavior of thick and porous thermophone devices. Definition of

Coupling Coeffi-
cient g

A specific discussion concerns the parameter g, which is the only new
parameter introduced in this model. The real total contact area between
the solid foam and air is given by aρsV , where a is the specific area of
the foam in [m2/kg], ρs is the foam density [kg/m3], and V is the total
foam volume [m3], with aρs is the interfacial area per unit volume. On
the other hand, the effective contact area introduced in our model is
given by NS, where N is the number of layers in Fig.32 and S is their
area [m2]. On the basis of these premises, g can be defined as

NSg = aρsVh, (377)

where h is the real heat film transfer coefficient [W/(m2K)] (convective
and radiative). One simply obtains

g =
aρsVh

NS
=
aρshll
N

, (378)

where ll = V/S. With the reasonable values a = 1000–2000 m2/g[151,
152], h = 200 W/(m2K)[153], ρs = 30 kg/m3, ll = 0.1–1mm, andN = 10,
one obtains g ≈ 105 W/(m2K), which is used throughout all the thesis.

The solution for the physical variables defined in each layer of the
model can be found as follows. From Eq.(357) the pressure can be ob-
tained as 2T Pressure

Equation
p = αTBTf −

B

iω
dv
dx

. (379)

Then, the normal surface tension p̃ becomes 2T Normal Sur-
face Tension

p̃ = αTBTf − (λ+ 2µ+
B

iω
)

dv
dx

. (380)

Using Eq.(380) along with Eqs.(357) to (360), the velocity is eventually
found as 2T Particle Ve-

locity Equation
v = −

1

iωρ

[
αTB +

iωρCv
αTT0B

(λ+ 2µ+
B

iω
)

]
dTf
dx

+

+ (λ+ 2µ+
B

iω
)

κ

iωραTT0B
d3Tf
dx3

, (381)
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where the thermodynamic relationship between the specific heats ρ(Cp−
Cv) = T0α

2
TB of Eq.(125) has been used. The fourth order differential

equation for Tf can be then found in the form2T Differential
Equation for Tf

0 =(λ+ 2µ+
B

iω
)κ

d4Tf
dx4

+

−

[
(λ+ 2µ+

B

iω
)iωρCv + (iωρκ+α2TT0B

2)

]
d2Tf
dx2

+

−ω2ρ2CvTf, (382)

coherently with Eq.(130). The solutions of Eq.(382) represent thermal
and acoustical modes that will be described by σth and kac, respec-
tively. The temperature in the fluid can be therefore written with two
progressive and two regressive waves as2T Temperature

in Fluid
Tf = Ae

−ikacx +Be+ikacx +Ce−σthx +De+σthx. (383)

On the other hand, from the energy conservation in the solid, Eq.(360),
the temperature Ts can be easily written with only thermal waves as2T Temperature

in Solid
Ts = Ee

−σsolidx + Fe+σsolidx + Ts,Q0 , (384)

with Ts,Q0 being the particular solution of Eq.(360) given by

Ts,0 =
Q0

ρ0,sCv,siω
, (178)

and A,B,C,D,E and F are constants to be determined. kac and σth are
the solutions of the algebraic fourth-order (biquadratic) characteristic
equation associated to Eq.(382). Since the exact solutions are rather cum-
bersome, it is useful to assume a weak thermal conduction and a weak
viscosity of the adopted medium. Under these hypotheses and using
the notations in Eq.(140), the asymptotic solutions of Eq.(382) can be
obtained in the form

kac =
ω

C0

[
1−

1

2

iω
C0
lv −

1

2

iω
C0
lk(1−

1

γ
)

]
, (385)

σth =

√
iωγ
C0lk

[
1+

1

2

iω
C0
lk(1−

1

γ
) +

1

2

iω
C0
lv(1− γ)

]
. (386)

The detailed proof of Eqs.(385) and (386) is given in the Section 2.2.1 to
determine Eq.(155). These results represent the first order expansions
(with small κ, λ and µ) of the solutions of the algebraic equation asso-
ciated with Eq.(382). For the fluid this is a good approximation in the
frequency range of interest for the thermophone applications. If nec-
essary, the values of σth and kac can be obtained numerically, without
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any assumption on the material parameters. On the other hand, through
Eq.(360), the propagation constant in the solid can also be found as 2T Thermal

Mode in Solid

σsolid =

√
iωρ0,sCv,s

κs
. (387)

The set of solutions in a layer, concerning the fluid variables, is obtained
as

p̃ = AF(ikac)e−ikacx +BF(ikac)eikacx+
+CF(σth)e−σthx +DF(σth)eσthx, (388)

v =−AikacG(ikac)e−ikacx +BikacG(ikac)eikacx+
−CσthG(σth)e−σthx +DσthG(σth)eσthx, (389)

q = Aκikace−ikacx −Bκikaceikacx+
+Cκσthe−σthx −Dκσtheσthx, (390)

T = Ae−ikacx +Beikacx +Ce−σthx +Deσthx, (391)

with the functions

F(η) = αTB −

(
B

iω
+ λ+ 2µ

)
(L1η

2 + L2η
4), (195)

G(η) = L1 + L2η
2, (196)

and L1 and L2 being the coefficients (see Eq.(381))

L1 =−
1

iωρ

[
αTB +

iωρCv
αTT0B

(λ+ 2µ+
B

iω
)

]
, (183)

L2 =(λ+ 2µ+
B

iω
)

κ

iωραTT0B
. (184)

In this section the defining characteristics of the two temperatures
model is explained. Due to the thickness and the high porosity of foam-
like thermophones (more than 90%), regular continuous thermoacoustic
models cannot be used. The 2T model assumes that, for a thermophone
radiating in free field, the solid and the fluid coexists in the sample as
seen in Fig.31. Due to the high frequency of the energy supplied to the
thermophone, the local thermal equilibrium is not attained between the
two phases and different temperatures have to be considered for the
fluid (Tf) and the solid (Ts).

An uni dimensional model in Cartesian coordinates is considered and
conservation equations are written for a fluid in Eq.(357) to (359). A
simplified energy conservation equation for the solid’s temperature is
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written in Eq.(360) to take the simultaneous existence of Tf and Ts into
account. It is seen that conservation equations for the fluid are the same
as in Section 2.2. Hence, parameters in the fluids are found in Eqs.(388)
to (391) similarly as in Section 2.2.1. Ts is solved in Eq.(384) with thermal
mode defined in Eq.(387).

Finally, the main novelty of this model lies in the introduction of
a coupling coefficient g defined in Eq.(378). Since the energy is sup-
plied to the solid phase, in order for the energy to be provided to the
fluid phase, virtual interfaces are defined in places where the fluid and
the solid coexists. At those interfaces a flux of energy is provided pro-
portionally to the gradient of temperature Ts − Tf, enabling the ther-
moacoustic generation. All boundary conditions are found in Eqs.(361)
to (376). The explicitly defined parameters plus the well constructed
boundary conditions will now allow us to write the system in matrix
form and solve it for any point in space.

2.5.2 Transfer Matrix with N Discretised Layers

Eqs.(388) to (391) can be rewritten in a matrix form as the previous
sections. This form will help us to solve the model since a lot of in-
termediate layers have to be defined in order to take into account the
numerous branches inside the foamlike thermophone. Those numerous
boundaries make the model difficult to solve without the use of matri-
ces. By defining the matrix

H(a) =


F(ikac) F(ikac) F(θth) F(θth)

−ikacG(ikac) ikacG(ikac) −θthG(θth) θthG(θth)

κikac −κikac κθth −κθth

1 1 1 1

 ,

(392)

and

H(b)(x) =


e−ikacx 0 0 0

0 eikacx 0 0

0 0 e−θthx 0

0 0 0 eθthx

 , (393)

the general solution in a given fluid layer is given by2T Matrix Sys-
tem in Fluid
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p̃i(x)

vi(x)

qi(x)

Ti(x)

 = H(x)


Ai

Bi

Ci

Di

 , (394)

with H(x) = H(a)H(b)(x) for i ∈ [0,N+ 1]. It is important to observe that
the relations A0 = C0 = BN+1 = DN+1 = 0 must be imposed since the
media at edges are supposed semi infinite (free field radiation). In other
words, no progressive wave in the back medium (identified by i = 0)
and no regressive wave in the front medium (identified by i = N+1) are
considered. Similarly, the general solution for the solid/foam variables
in a given layer is given by 2T Matrix Sys-

tem in Solid[
qs,i(x)

Ts,i(x)

]
= G(x)

[
Ei

Fi

]
+

[
0

Ts,0

]
, (395)

for i ∈ [1,N]. Here, the matrix

G(x) =

[
κsσsolide

−σsolidx −κsσsolide
σsolidx

e−σsolidx eσsolidx

]
, (396)

is introduced.

The knowledge of the complete solution of the problem for all the
physical variables in all layers (see Eqs.(394) and (395)) allows to imple-
ment the boundary conditions given in Eqs.(361) to (376). Indeed, it is
not difficult to prove that these conditions are represented by 6N + 4

linear equations, with exactly 6N+ 4 unknown coefficients. The system
is well posed and can therefore always be solved by standard numer-
ical methods as seen in previous sections. p̃, v, q, Tf, qs, Tf are then
identified for all position x and at all frequency f.

Those boundary conditions are then now explicitly written in matrix
form. The continuity of p, v, T in the fluid are written

pi(xi) = pi+1(xi)⇔ Hi,xi(1, :)ABCDi = Hi+1,xi(1, :)ABCDi+1, (397)
vi(xi) = vi+1(xi)⇔ Hi,xi(2, :)ABCDi = Hi+1,xi(2, :)ABCDi+1, (398)
Ti(xi) = Ti+1(xi)⇔ Hi,xi(4, :)ABCDi = Hi+1,xi(4, :)ABCDi+1, (399)

and knowing that there is no reflections from the boundary layers A1 =
C1 = BN = DN = 0. Continuity of T in the solid is written

Ts,j(xj) = Ts,j+1(xj)⇔ Gj,xj(2, :)EFj = Gj+1,xj(1, :)EFj+1, (400)
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and since the solid does not exist in the boundary layers we have E1 =
F1 = EN = FN = 0. Lastly, heat flux interaction in the fluid and solid
medium is

qi+1(xi) = qi(xi) + g(Ts,i(xi) − Ti(xi))

⇔ Hi+1,xi(3, :)ABCDi+1 = Hi,xi(3, :)ABCDi
+ g(Gi,xi(2, :)EFi −Hi,xi(4, :)ABCDi) + gTs,0,

(401)

qs,j+1(xj) =qs,j(xj) − g(Ts,j(xj) − Tj(xj))

⇔ Gj+1,xj(1, :)EFj+1 =Gj,xj(1, :)EFj
− g(Gj,xj(2, :)EFj −Hj,xj(4, :)ABCDj) − gTs,0,

(402)

or equivalently, since the temperature are continuous in the solid and
the fluids

qi+1(xi) =qi(xi) + g(Ts,i+1(xi) − Ti+1(xi))

⇔ Hi+1,xi(3, :)ABCDi+1 =Hi,xi(3, :)ABCDi + g(Gi+1,xi(2, :)EFi+1
−Hi+1,xi(4, :)ABCDi+1) + gTs,0, (403)

qs,j+1(xj) =qs,j(xj) − g(Ts,j+1(xj) − Tj+1(xj))

⇔ Gj+1,xj(1, :)EFj+1 =Gj,xj(1, :)EFj − g(Gj+1,xj(2, :)EFj+1
−Hj+1,xj(4, :)ABCDj+1) − gTs,0. (404)

2.6 added heat loss at the interfaces

It is important to notice that the models created in Sections 2.2 through
2.5 do not take into account heat losses at solid interfaces. Hence, in
order for heat loss to be implemented rigorously in our models, we
need to suitably modify the continuity equation for the heat flux at each
interface of the system both for 1T and 2T models. Those modification
will here be explicitly written.

2.6.1 1T models modifications

We consider for now the continuity of heat flux in any geometry of
a 1T model. In particular, considering a layer i, the heat flux balance
boundary condition at the interfaces of the system can be written

−~βs,iT(li−1) − κi−1~∇T(li−1) = −κi~∇T(li−1), (405)
−κi~∇T(li) = −κi+1~∇T(li) + ~βs,iT(li). (406)
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More specificaly in the case of plane wave radiations it can be written
as

−βs,iT(li−1) − κi−1
dT
dx

(li−1) = −κi
dT
dx

(li−1), (407)

−κi
dT
dx

(li) = −κi+1
dT
dx

(li) +βs,iT(li), (408)

where the coefficient βs,i is associated to a solid phase and models the
influence of heat conduction, convection, and radiation losses. The total
loss is considered proportional to the temperature.

2.6.2 2T model modifications

To introduce the heat loss effect in the 2T model similarly as for 1T,
Eqs.(365),(370) and (375) must be substituted with

qi(xi) =qi−1(xi) + g(Ts,i(xi) − Ti(xi)) −βs,iTi(xi), (409)
q1(x1) =q0(x1) + g(Ts,1(x1) − T1(x1)) −βs,iT1(x1), (410)

qN+1(xN+1) =qN(xN+1) + g(Ts,N(xN+1) − TN(xN+1))

−βs,iTN(xN+1), (411)

where the coefficient βs,i is associated to a solid phase and models the
influence of heat conduction, convection, and radiation losses. The total
loss is considered proportional to the temperature.

In this section a new coefficient βs is introduced, which quantifies
the rate of heat loss per unit area in [W.K−1.m−2] at the interface of
solid/fluid media. It is shown that it can be added to the heat flux con-
tinuity boundary condition in all 1T and 2T models. It is considered
proportional to the temperature and while this is a good approxima-
tion for losses due to conduction and convection, it is however a poor
representation of the radiated heat which is typically proportional to
the fourth power of the temperature. Nevertheless, this approximation
is valid since thermal losses by radiation in a thermophone were proven
to be negligible in most of cases [55]. Papers which take βs into account
usually determined its value through experimental results [43, 76, 78]
and more general approaches for considering imperfect interfaces can
be found in the literature [154, 155].

2.7 far field radiation from plane source

The models created in Sections 2.2 and 2.5 assume infinitely large plane
surfaces. This allows us to have near field (NF) estimation of the sound
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pressure and while this helps for the understanding of thermoacoustic
sound generation, it fails to represent real measurement made in the
far field (FF) of finite size thermophones. In order to be able to compare
those NF estimation with real life measurement, Rayleigh’s integral was
implement.

For a plane surface of finite size at z = 0 vibrating with the velocity
v, each point of the plane can be considered as a point source. As such
each point will generate sound pressure and the total sound field is
found by superposition using Rayleigh’s second integral. The sound
field for a finite vibrating panel in free field mounted on a infinite rigid
baffle is then obtained by integrating over the finite panel asRayleigh’s Inte-

gral

pFF(x,y, z) =
iωρg

4π

∫ ∫
[−Lx,Lx],[−Ly,Ly]

v(x ′,y ′)
e−ik
√

(x−x ′)2+(y−y ′)2+z2√
(x− x ′)2 + (y− y ′)2 + z2

dx ′dy ′.

(412)

with x, y, z being the coordinate of the observation point and x ′, y ′

those of the generation point. The subscript FF stands for far field. Here
we divided by 4π since we considered the point source to radiate in
free field and not mounted on a backplate which would double the
pressure [156–158]. In order to compare to on axis experimental results
we define x = y = 0 and z as the distance between the microphone
and the thermophone. The thermophone equivalent vibrating surface is

assumed to be at the thermal layer length Lth = vth
ω = 2

√
C0lk
2ωγ =

√
2α
ω

as defined in Eq.(154).
By estimating the pressure at the thermal layer still in the near field

and applying Eq.(412) it is then possible to compare our model to real
measurement of plane, finite size thermophones. This was here applied
for plane surfaces but the theory is also valid for cylinder or sphere ther-
mophone in the far field. Due to the standard shapes of thermophone,
only the plane case is explicitly written.
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conclusion

In this Chapter, different theoretical models have been created based
on the conservation equations. The goal was to create flexible models
which could be adapted to many different geometries and which could
replace many various models found in the literature that are not eas-
ily comparable. Another model was also constructed whose objective
was to simulate thermoacoustic sound generation from thick, foamlike
thermophone geometries.

In Section 2.1 the conservation of mass, momentum and energy have
been written in linear form assuming small deformations of (ρ,~v,p, T , s, e).
This was first done for a viscous fluid with thermal transfer in Eq.(56)
Section 2.1.2 before considering an isotropic, homogeneous solid with
thermal, viscous and elastic properties in Eq.(118) Section 2.1.3.

Sections 2.2, 2.3 and 2.4 solved those systems of equations for plane
wave, cylindrical wave and spherical wave radiation respectively. Us-
ing the conservation equations, pressure p, particle velocity v and heat
flux q were written as function of the temperature variations T . Beside
having differences in the derivative of the variables due to the differ-
ences in the coordinate system used in each case (Cartesian, cylindrical
and spherical respectively), the associated 4th order biquadratic linear
differential equation associated to the temperature variation are similar
in all geometries whether in fluid (Eqs.(130), (227) and (306)) or solid
(Eqs.(171), (254) and (314)) media. The modes solutions of the associ-
ated differential equation are then similar in all cases. Assuming weak
thermal conduction and viscosity, a first order approximations of those
modes are found in Eqs.(155) and (268) for fluid and solid respectively.
They represent the wavenumbers of two progressives and regressive
waves associated to thermal and acoustic waves generated by the ther-
moacoustic process.

The temperature variations are then written explicitly in each cases.
For instance, T in solid is found in Eqs.(176), (255) and (315). p, v and
q are then explicitly deduced. At the same time the normal stress ten-
sor p̃ was defined to replace the pressure which is not continuous be-
tween media. Those systems of equations were solved in all three ge-
ometries in an "ideal thermophone" case in which the thermophone is
represented as an ideal gradient of temperature and the wave propa-
gates in a single, semi infinite medium. Building on this ideal case, the
equations were then written in a matrix form allowing the extension of
the model to a multilayer one in which the layers at the extremities are
supposed semi infinite and the continuity of p̃, v, q, T is preserved at
each layer interface. 3 flexible models were then created for 3 different
types of geometry and for any kind of medium (solid or fluid).
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Afterward, a two temperature model for thick foamlike thermophones
was created in Section 2.5. Due to the high porosity of those materi-
als and the potentially high input power supplied to the thermophone,
non thermal equilibrium is assumed between the two phases. Hence,
a model in which the pores of the thermophone (solid) and the fluid
inside of it coexist with different temperatures is assumed. This case is
analysed for plane wave generation and so most equations are similar
as in Section 2.2. The novelty resides in the addition of a coupling coef-
ficient g allowing the transfer of energy at the interface solid/fluid. The
model is then written in a matrix form for multilayer resolution. How-
ever, unlike the previous models, this multilayer model is only meant
for a single thermophone radiating in free field. The layers here repre-
senting the branches of the foam, the 2T model is meant to be a better
representation of foamlike materials which should not be simulated as
continuous medium as in any 1T models. This will be proven in the
next chapter.

In Section 2.6 it was shown that both 1T and 2T models lack to take
into account the heat losses by conduction, convection and radiation
at solid/fluid interfaces. A coefficient βs proportional to temperature
variations was then introduced in the heat flux conservation equation
in order to quantify those losses if needed.

Lastly Section 2.7 extended the near field estimation of the pressure
from the model to the far field for finite size thermophones. Using
Rayleigh’s integral, the sound radiation in the far field of a finite size
thermophone was deduced from the velocity in the near field calculated
by our models.

Models created in this chapter will now be confronted to models from
the literature. They will then be used for analysis of the thermoacoustic
radiation process and compared to experimental results.
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3
M O D E L S VA L I D AT I O N A N D A N A LY S I S

This chapter aims at providing a thorough understanding of thermo-
phone’s radiation in different geometries. The models created in Chap-
ter 2 will be confronted to theoretical models and experiments from the
literature in order to validate them.

At first the multilayer model for plane waves will be investigated.
Due to the variety of literature model regarding plane wave generation,
validating the model also permits a detailed analysis of thermoacoustic
sound generation behavior. Various standard thermophone configura-
tions will be investigated before the flexibility of the presented model
is used to study novel configurations. This analysis along with the the-
oretical description of the corresponding model are the contents of the
first published article of this PhD [1].

The multilayer model for cylindrical and spherical waves are then
considered. Similarly, those models are compared to models from the
literature. However, due to the lack of interest in those geometries, fewer
comparisons are available. Nonetheless, the interest in those geometries
is legitimate as they can describe the thermoacoustic effect of thermo-
phones at a different scale. For instance it can represent the microscopic
tubular shape of foams or CNT, whereas they are often approximated as
plane surfaces at a macroscopic scale. Specific geometries are explored
and this analysis along with the associated theoretical model are in con-
sideration for publication as a fourth paper.

Lastly the novel 2T theoretical model is analysed and compared with
the results provided by the literature and the 1T model. The relevance of
using a 2T model is explained and an exhaustive comparison between
1T and 2T models is made to understand in which case each model is
more appropriate. This analysis along with the associated theoretical
model is published in the second article of this work [2].

3.1 plane wave , one temperature model

The multilayer model created in Section 2.2 is here compared to models
from the literature as well as experiments. Once the model is validated
and the thermophone sound generation process understood, novel ther-
mophones configurations are investigated.

131
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3.1.1 Comparison and Analysis with Literature’s models

In this Section, we take into consideration different configurations of
thermophone devices and we analyze their frequency response by means
of the previously introduced procedure. In addition, we compare our
results with those of several models discussed in recent literature. The
values of the physical parameters defining the materials (air, water, ther-
mophone, solid substrate) used in this analysis are listed in Tables 3 and
4. The other parameters depend on the system investigated and can be
found in Table 5. The most important quantity considered is the sound
pressure level, which is defined by the following expressionSound Pres-

sure Level

SPL = 20 log10

(
prms

pref

)
, (413)

where prms is the root mean square pressure (i.e. |p|/
√
2, where p is

the complex pressure introduced in previous sections) and pref is the
reference sound pressure being, by definition, 20µPa in air and 1µPa in
water.

It should also be noted that all plots in this section display sound
pressure level in the near field (NF) only. If some models from the lit-
erature have their equation in the far field (FF), they can be converted
back in near field by using Rayleigh distanceRayleigh’s Dis-

tance
R0 =

Af

C0
, (414)

where A is the thermophone surface, f = ω
2π is the frequency and C0 the

wave velocity. The approximation used is then

pFF = pNF
R0
d

, (415)

where d is the distance between the position of observation and the
active surface of the thermophone. This simplified version of far field
estimation is the one employed in the literature hence why the more
precise Rayleigh’s integral described in Section 2.7 for far field estima-
tion is not yet used.
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ρ

[kg· m−3]

Cp

[J·kg−1· K−1]

Cv

[J·kg−1· K−1]

B

[Pa]
αT

[K−1]

Gas, air (g) 1.20 9.96× 102 7.17× 102 1.01× 105 3.33× 10−3

Thermophone (s) 0.03× 103 2.38× 102 2.38× 102 2.78× 105 0.6× 10−6

Substrate (b) 4.5× 103 5.23× 102 5.23× 102 1.14× 107 9.00× 10−6

Fluid, water (w) 9.99× 102 4.43× 103 4.17× 103 2.15× 109 3.03× 10−4

Table 3: Parameters describing the physical behavior of the materials constituting the thermophone systems
investigated.

λ

[Pa·s]
µ

[Pa·s]
λ0

[Pa]
µ0

[Pa]
κ

[W·K−1·m−1]

Gas, air (g) 5.61× 10−6 1.68× 10−5 0 0 2.62× 10−2

Thermophone (s) 0 0 1.39× 105 2.08× 105 1.25
Substrate (b) 0 0 8.46× 106 4.36× 106 21.9
Fluid, water (w) 2.62× 10−3 1.14× 10−3 0 0 6.07× 10−1

Table 4: Other parameters describing the physical behavior of the materials constituting the thermophone sys-
tems investigated.

x

[m]

lb

[m]

lg

[m]

ls

[m]

Fig.34 [5, 10]× 10−2 0 0 1× 10−6

Fig.35 5× 10−2 0 0 1× 10−6

Fig.36 5× 10−2 0 0 1× 10−6

Fig.38 5× 10−2 ∞ 0 1× 10−6

Fig.40 5× 10−2 1× 10−5 0 1× 10−6

Fig.41 5× 10−2 ∞ 0 1× 10−4

Fig.42 5× 10−2 ∞ 0 [1, 9, 81]× 10−6

Fig.44 5× 10−2 (1/27)× 10−4 (1/3)× 10−4 1× 10−6

Fig.45 5× 10−2 ∞ 8× 10−4 1× 10−7

Fig.49 5× 10−2 0 [0, 1/36, 1/12, 1/4, ∞]× 10−4 1× 10−6

Fig.51 5× 10−2 0 [0, 1/10]× 10−4 1× 10−6

Fig.52 5× 10−2 0 [1/16, 1/12, 1]× 10−4 1× 10−6

Table 5: Specific geometrical parameters adopted in the analysis of different structures investigated. For each
figure with SPL results, we clearly indicated the details defining the corresponding configuration. In
all plots we assumed a thermophone surface A = 4× 10−4m2 and an input power Pin = 1W. The rate
of heat loss per unit area of thermophone βs is considered only in Fig.35 with the value βs = 28.9
W/(m2K). The viscosities λ and µ have been considered only in the results of Figs.36 and 51.
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Thermophone in free field

Figure 33: Schematic of a thermophone radiating in free field. The plane waves
are symmetrically generated within the back and the front media.

One of the most widely used model is the so-called piston based model
introduced by Arnold and Crandall [23] and successively improved by
Daschewski et al. [40] and Xiao et al. [43] by introducing effect of a sub-
strate, the heat stored in the thermophone and the rate of heat loss per
unit area of the device (due to conduction, convection, and radiation).
This model considers the thermophone radiating in free field from both
sides, as shown in Fig.33. The sound generation is assumed to occur at
the surfaces of the thermophone, in the so-called thermal layer, which
is usually quite thin as specified in Eq.(154). In these models, the influ-
ence of the thermophone thickness ls is considered through the HCPUA
given by Cs,s = ρsCp,sls. Lim et al. [78] also developed an improved
model based on the previous assumptions but they described the ther-
moacoustic propagation with a real coupling between mechanical and
thermal waves. In any case, since the order of magnitude of the acoustic
wavenumber is much lower than the one of the thermal wavenumber,
the results of Refs.[43] and [78] show good consistency. For comparison,
the result of Lim et al. [78] is rewritten here as

prms,NF =
Pin

2
√
2A

γg − 1∣∣∣βs + κg√ iω
αg

+ 1
2 iωCs,s

∣∣∣
√
ω

αg

κg

C0
, (416)

where βs is the rate of heat loss per unit area of thermophone (W/(m2K)),
which includes the influence of conduction, convection, and radiation.
Moreover, Cs,s is the thermophone HCPUA, κg is the thermal conduc-
tivity, αg is the thermal diffusivity κ

ρCp
and γg is the ratio Cp/Cv of the

propagation region (gas). In addition, A is the thermophone area, Pin is
the input power and, finally, C0 is the isentropic sound velocity.

In Fig.34 the result from Eq.(416) is compared to our model. Here, we
adopted βs = 0 and it can be seen that both models are consistent with
each other from 1Hz to about 100kHz. The difference observed in high
frequencies is explained by the fact that Eq.(416) (and most literature
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Figure 34: Frequency response of the thermophone in free field determined by
means of the Lim et al. model [78] and our multilayer model. We
plotted here the results for βs = 0 and for two different observation
distances.

models) uses a 0-th order approximation for the acoustic and thermal
wavenumber, as explained in Section 2.2.1. If this approximation holds
for a standard hearing frequency range (20 to 20kHz), when considered
at very high frequencies it gives inaccurate results since the first order
(and higher) terms become not negligible and should be taken into con-
sideration (see Eqs.(155) for details).

In our model, where we consider the exact thermal and acoustic
wavenumbers, it is interesting to remark that the high frequency drop
depends on the distance between thermophone and observation point.
As a matter of fact, the drop will occur at lower frequencies as this
distance is increasing, limiting the high frequency efficiency of the ther-
mophone for large distances. This behavior can be only observed with
an accurate determination of the wavenumbers, as observed in Fig.34,
where we plotted the frequency response at two different observation
positions.

We further discuss the origin of the drop at high frequency, inde-
pendently of the approximations adopted. As it is known, the sound
generated by a thermophone occurs due to the fluctuation of heat in
the air layer near the thermophone. The thickness of this active layer is
related to the thermal wavenumber and is given by Eq.(154). It is then



136 models validation and analysis

Figure 35: Frequency response of the thermophone in free field determined
by means of the Lim et al. model [78] and our multilayer model.
We plotted here the results for βs = 28.9 and we also shown the
response obtained through the multilayer model with βs = 0 for
comparison.

proportional to 1/
√
ω whereas the acoustic wavelength is proportional

to 1/ω. Since for low frequencies the thermal layer is much smaller
than the acoustic wavelength, in this condition the sound is generated
first in the thermal layer (a small fraction of the acoustic wavelength)
and then propagated in the adjacent medium. This however stops to be
true for high frequencies due to the different decreasing rate of each
wavelength. We explain the behavior when the thermal layer is larger
than the acoustic wavelength as follows. In this case, many acoustic
wavelengths compose the thermal layer. Since the thermal wavelength
is of the same order of the thermal layer, the spatial temperature varia-
tions (slower) are not able to follow the spatial pressure variation (faster)
and the sound generation becomes less efficient, thus generating the ob-
served drop in Fig.34 (both models).

Figure 35 shows the results for the same configuration of Fig.34 but
now with a non zero coefficient βs, taking into account the rate of heat
loss per unit area of thermophone. It is seen that the mid and high
frequency range doesn’t change but at low frequencies there is a drop
in the SPL. The heat loss has been implemented rigorously also in our
model, by suitably modifying the continuity equation for the heat flux
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Figure 36: Frequency response of the thermophone in free field determined by
means of the Lim et al. model [78] and our multilayer model. We
plotted here the results for βs = 0 at a distance of 5 cm, and we
introduced the air viscosity in our model to show its effect at high
frequency.

in Section 2.6.1. Papers which take βs into account determined its value
through experimental results [43, 76, 78]. The good agreement between
our modified model and results from Lim et al. [78] is clearly shown in
Fig.35.

Lastly, Fig.36 displays the results of our model with and without the
air viscosity. It is seen that adding viscosity increases the high frequency
drop rate. Since its influence is negligible for frequencies lower than
100kHz, the literature models often neglect it (except for Refs.[40, 79]).

Thermophone on substrate

Another important structure investigated in the literature consists in a
thermophone layer directly placed on a substrate (without gap) and ra-
diating in air, as shown in Fig.37. One model describing this system has
been developed by Hu et al. [81]. This model is based on the balance
equations earlier developed for describing the photoacoustic effect [30],
and aims at reproducing the experimental results presented by Shinoda
et al. [32]. This model takes the thickness of the thermophone into ac-
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Figure 37: Schematic of a thermophone placed on a solid substrate on the left
and radiating in free field on the right. The plane waves are non-
symmetrically generated within the back and the front media.

count and consider the conservation of energy in the solids but neglect
the propagation of the acoustic wave inside it. By using a surface input
power Pin/A, the obtained pressure is [81]

prms,NF =

∣∣∣∣ idtdakg
idakg(Mκsσs + κgσg) − dtσg(Mκsσs + iκgkg)

×
(

e−σgx −
σg

ikg
e−ikgx

)
Pin

A
√
2

∣∣∣∣ . (417)

The use of a surface density power (instead of a volume density power
as in other theories and in our model) is justified by the fact that this
model is dedicated to the Shinoda et al. experiment, in which there
is a 30nm aluminum film acting as the heat source. Most models are
however considering that the whole thermophone is heating and so it
is interesting to see how Hu’s model holds with a volumetric source.
By replacing the surface input power Pin/A with a volumetric source
Pin
Als

1
iωρgCp,g

and using the same assumptions of Hu’s model, we ob-
tained the volumetric counterpart of Eq.(417), as follows

prms,NF =

∣∣∣∣ 1

iωlsρgCp,g

κsσs

κsσs − κbσb

×
(
eσslsκbσb(M− 1) +M(κsσs − κbσb)

)
×

idtdakg

idakg(Mκsσs + κgσg) − dtσg(Mκsσs + iκgkg)

×
(
e−σgx −

σg

ikg
e−ikgx

)
Pin

A
√
2

∣∣∣∣ . (418)
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Figure 38: Frequency response of a thermophone in contact with a semi-
infinite substrate on the left and propagating in air on the right
(see the scheme in Fig.37). We compare the result of our multilayer
model with Eq.(417) [81] and Eq.(418).

In Eqs.(417) and (418) the following definitions have been introduced
following Ref.[81]

M =
(κbσb + κsσs)eσsls + (κbσb − κsσs)e−σsls

(κbσb + κsσs)eσsls − (κbσb − κsσs)e−σsls
, (419)

dt =
iωκg − σ2gαgκg

iωαg
, (420)

da =
iωκg + k2gαgκg

iωαg
. (421)

Here, the coefficients k and σ are the acoustic wavenumber and the
thermal attenuation of each layer. The full derivation of this equation
can be found in Appendix B.1.1.

The comparison of Eqs.(417) and (418) with our model, where we
used a semi-infinite substrate as shown in Fig.37, can be found in Fig.38.
It can be seen that there is a perfect match between Eq.(418) and our
model for low and mid frequencies. For frequencies above 200kHz there
is a discrepancy between the volumetric source version of Hu’s model
and our model. This is due to a difference in the acoustic wavenumber
first order approximation. As a matter of fact, Eqs.(155) differ slightly
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with Hu’s solutions and this is only significant at very high frequencies.
Indeed, if the wavenumbers used by Hu et al. are introduced in our
model, there is a perfect agreement also at high frequencies. On the
other hand, the case with a surface input power, described by Eq.(417),
shows a higher SPL in the whole frequency range, as expected since
there is no heat stored in the thermophone.

Figure 39: Schematic of a thermophone placed on a solid substrate of finite
thickness on the left, and radiating in free field on the right. The
plane waves are non-symmetrically generated within the back and
the front media.

We consider now the case with a finite thickness of the substrate, as
shown in Fig.39. This more elaborated structure can be studied through
our multilayer model, and in Fig.40 a rise of SPL in the low frequency
domain can be seen. In general, the presence of the substrate is useful
for technological reasons, but it absorbs a large amount of heat and
reduces therefore the thermophone output SPL, as seen in Fig.38. How-
ever, a small thickness of the substrate may help to ameliorate the per-
formance. The observed SPL rise is due to the fact that since for lower
frequencies the thermal penetration depth is larger, when the substrate
is of a comparable order of magnitude, it will absorb less heat and so
the thermophone is more efficient. The lower the frequency, the less im-
pact the substrate has on the radiation and so the sound pressure may
attain a free field radiation level. A more detailed analysis of the heat
flux lost in the substrate can be found in Ref.[46].

To further investigate this configuration, we come back to the struc-
ture with infinite substrate shown in Fig.37, and we investigate the in-
fluence of the size of the thermophone. In Fig.41, we plotted our results
with Eq.(416) (free field model), and with Eqs.(417) and (418). In this
analysis, the thermophone is a hundred time thicker than before. First, it
can be seen that the Hu et al. [81] model with a surface input power dis-
plays a significant rise in SPL. This rise is proportional to the thickness
of the thermophone and is explained by the parameter M in Eq.(417).
It approaches the value 1 for a surface input power, generating a flat
frequency response in a given interval, as discussed in Ref.[81]. Indeed,
concentrating the input power at the thermophone surface is more ef-
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Figure 40: Frequency response of a thermophone placed on a substrate with
finite thickness and radiating in air (see scheme in Fig.39). We
compare the result of our multilayer model with Eq.(417) [81] and
Eq.(418).

ficient than distributing the same power over the whole thermophone
body, as already seen in Figs.38 and 40.

We consider now the case with a volumetric input power. Figure 41
displays that the model with a substrate is consistent with the decreas-
ing response of the free field model for frequencies higher than 10kHz.
This decreasing behavior is due to the rise of HCPUA and, therefore, to
the heat stored in the sample. The fit between free field and substrate
model is due to the size of the thermophone that is larger than the
thermal penetration depth, thus leading to negligible influence of the
substrate. It is interesting to show how the SPL of the system with in-
creasing thermophone thickness changes moving from the case of Fig.38
to the one of Fig.41. This response evolution can be found in Fig.42,
where three increasing values of ls are considered and the results of
our model are compared with Eq.(416), holding for the free field model.
It is interesting to note that for increasing ls the response of the mul-
tilayer model approaches asymptotically the response of the free field
model, confirming the above discussion.

Lastly, anti-resonances around 1MHz can be seen in our model (Figs.41
and 42). These are mechanical anti-resonances occurring in the ther-
mophone structure that can be analyzed through our model since we
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Figure 41: Frequency response of a thermophone in contact with a semi-
infinite substrate on the left and propagating in air on the right
(see the scheme in Fig.37). The thermophone is here a hundred time
thicker than in previous plots. We compare the result of our mul-
tilayer model with Eq.(416) by Lim et al. [78], Eq.(417) by Hu et al.
[81] and Eq.(418) (modification with volumetric source).

solve the complete set of wave equations in the solid layer. If these
resonances/anti-resonance were mentioned in Brown et al. [74], they
were never estimated before since they were supposed to occur at a
frequency higher than the range of interest. These resonances can be
attenuated by increasing the viscosity of the solid, and are influenced
by the Young modulus of the thermophone as well.

Thermophone over a substrate with air gap

The most complicated structure investigated in the literature is obtained
by adding a small air gap between the thermophone and the substrate,
as shown in Fig.43. This kind of design was investigated by Vesterinen
et al. [57] and by Tong et al. [72], in continuity with the free field mod-
eling by Lim et al. [78]. Both articles consider the classical balance equa-
tions and the Tong’s model also takes the heat loss into account. These
models however do not consider explicitly the thermophone solid layer,
which is implicitly described by the HCPUA factor. As a result of their
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Figure 42: Frequency response of a thermophone with increasing thickness ls
in contact with a semi-infinite substrate on the left and propagating
in air on the right (see the scheme in Fig.37). We compare the re-
sults of our multilayer model with Eq.(416), describing the free field
thermophone [78].

calculations, assuming that there is a perfect sound reflection from the
backing, Vesterinen et al. [57] determined an absolute maximum value
for the sound pressure level of a thermophone as

prms,NF,max =
PinC0√
2ACp,gT0

. (422)

Eq.(422) shows that the maximum sound pressure achievable for a given
thermophone will only depend on the properties of the propagating
medium. The input power or the ambient temperature can also be in-
dependently optimized. In order to see if this maximum pressure is
achievable, an air gap between the thermophone and the substrate is
added to our model and the results are compared with Tong’s equation
[72]

prms,NF =

∣∣∣∣ C0
T0Cp,g

Pin

2
√
2A

[
(R − 1)e−σglg + e−ikglg + 1

]
e−ikgx

∣∣∣∣ , (423)

where

Pin =
−σgκgPin

(2βs + iωCs,s)(1+ Re−2σglg) + 2σgκg
, (424)



144 models validation and analysis

Figure 43: Schematic of a thermophone placed on a solid substrate of finite
thickness on the left, and radiating in free field on the right. The
plane waves are non-symmetrically generated within the back and
the front media.

and

R =

√
αg −

√
αb

√
αg +

√
αb

, (425)

is the reflection coefficient of the thermal wave.
Figure 44 displays the comparison among our model, the Tong model,

the Lim free field model and the Vesterinen maximal value. Here, the
substrate is of finite size and the air gap is 0.033 mm wide. It is seen that
at low frequencies there is a large difference between Tong’s model and
ours. In the mid range frequency there is good consistency between the
models, and these results are close to the Vesterinen upper bound. Then,
at high frequency, we observe a drop, which starts sooner in our model
for the same reasons already explained in Section 3.1.1 in free field. The
low frequency differences are due to the fact that the substrate has a fi-
nite size in our model and therefore is not as reflective as it is in Tong’s
model. It is important to remark that in the frequency range between
10kHz and 1MHz, the thermophone response is much larger than the
free field level represented by the Lim et al. [78] result and exhibits a
peak which is close to the Vesterinen upper bound. This behavior is
due to the size of the air gap between thermophone and substrate. In-
deed, we know that the thermal layer (in which the sound is generated)
is larger for low frequencies than for high frequencies. Hence, if the air
gap is not large enough, there will be heat loss in the substrate even-
tually leading to poorer SPL than in free field, as seen for frequencies
below 1.5kHz. On the other hand, for frequencies generating a thermal
layer similar to or smaller than the air gap, we have no heat loss in the
substrate and it simply acts as a reflector, doubling the sound pressure,
or equivalently, adding 20 log10(2) = 6dB to the SPL. This intensifica-
tion can be seen above 10kHz. Furthermore, above 1MHz our model
and the Tong’s model display air gap anti-resonances leading to poorer
SPL around these frequencies. These resonances occur before any me-
chanical resonance or anti-resonance within the thermophone layer and
therefore they are more critical for the thermophone system design.
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Figure 44: Frequency response of a thermophone placed over a substrate with
an air gap, as shown in Fig.43. The result of the multilayer model
can be compared with Eq.(423) (Tong et al. [72]). Moreover, we re-
ported the result of the free field model given in Eq.(416) (Lim et al.
[78]) and the Vesterinen et al. [57] upper bound reported in Eq.(422).

In Fig.45 the substrate is now infinitely large in our model and the
air gap size is more than ten times larger (lg = 0.8 mm). It is seen that
from 200Hz to 10kHz there is less than 1dB difference between Vesteri-
nen maximum SPL and Tong’s model or ours. In this region, compared
to the free field model, there is a 6dB improvement, which is consis-
tent with a regular sound source with double sound pressure due to
the backing reflection. Indeed, in this configuration the air gap is much
larger than the thermal layer in the whole range from 200Hz to 10KHz
and we have no heat loss in the substrate. It can be noticed that around
50Hz the results are above Vesterinen upper limit. This can be explained
by the specific parameters acting as a second order filter with a typical
underdamped response. The low frequency differences between Tong
result and ours in Fig.45 are still due to a non perfect reflection from
the substrate even though the infinite size improved it. To conclude, de-
pending on the frequency range in which the thermophone is supposed
to work, it is important to determine whether the air gap is useful to
improve the sound pressure level compared to free field emission.
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Figure 45: The same plots of Fig.44 for a structure shown in Fig.43, where the
substrate is now infinitely large and the air gap size is more than
ten times larger. In this case, our result and the Tong’s model [72]
achieve the SPL upper bound predicted by Vesterinen [57], corre-
sponding to a 6dB improvement with respect to the Lim’s free field
model [78].

3.1.2 Comparison with Literature’s Experiments

In this Section, in order to validate the model against real measure-
ments, we compare the results of our approach with some recent exper-
imental investigations [48, 63].

The first measurements concern the comparison between carbon multi-
walled nanotubes (MWNT), providing the most attractive performance
as thermoacoustic generator, and an alternative solution given by poly-
acrylonitrile nanofibers (PAN) coated by indium-tin oxide (ITO) [48].
Indeed, the limited accessibility to large-size carbon MWNT sheets has
promoted the research for alternative materials with interesting perfor-
mances. In Fig.46 one can find the experimental results and the theo-
retical ones. The curves for the single-layer MWNT sheet correspond
to a sample with surface 1.5×1.5 cm2 and with an applied power of
Pin = 0.24 W. On the other hand, the curves for the both-sides ITO-
coated PAN sheet correspond to a sample with surface 1.2×1.5 cm2 and
with an applied power of Pin = 0.29 W. Both experimental results have
been obtained at a distance of 3 cm from the thermophone surface [48].
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We remark that the frequency responses shown in Fig.46 have been nor-
malized for an input power of 1 W, in order to facilitate the comparison
between the material performances.

(a) (b)

Figure 46: Comparison between the thermoacoustic performances of carbon
MWNT sheets and ITO-PAN sheets (experimental and theoretical
results). Panel (a): frequency response of the two materials showing
the behaviors SPL∼ f1.0 for MWNT and SPL∼ f0.53 for ITO-PAN
(the plots correspond to a normalized power of 1W). Panel (b): SPL
versus input power for the two materials.

The theoretical results shown in Fig.46 have been obtained with the
free field model described in Section 3.1.1 in free field, where we in-
troduced all the physical parameters given in Ref.[48]. For both the fre-
quency response and the behavior of the SPL versus the input power, we
observe a very good agreement between theory and experiments. Con-
cerning the frequency response, the capacity of the model to represent
the two different slopes SPL∼ f1.0 for MWNT and SPL∼ f0.53 for ITO-
PAN proves that our approach is able to work with a HCPUA varying
over several order of magnitude. Indeed, we have that HCPUA=13×10−3
Jm−2K for single-layer MWNT sheets and HCPUA=0.67 Jm−2K for ITO-
coated PAN sheets. These values can be determined by observing that
ρs =1 Kg/m3, Cp,s=716 JKg−1K−1, ls=18×10−6 m for the MWNT sheet
and ρs =220 Kg/m3, Cp,s=606 JKg−1K−1, ls=5×10−6 m for the ITO-PAN
sheets [48]. In addition, the linearity of the SPL-versus-power curves
shows the linear behavior of the acoustic response in terms of the ap-
plied electric power, as implemented in the model.

We remark that the measurements presented in Fig.46 concern the
acoustic far field response of the thermophone (distance of 3 cm from
a thermophone with area 1.5×1.5 cm2 or 1.2×1.5 cm2). Therefore, in
order to compare these far field measurements with our near field theo-
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Figure 47: Experimental and theoretical frequency responses of FDGF thermo-
phones. Both the free field case and the geometry with substrate
have been considered. The free field case is well described by the
relation SPL∼ f0.75, which can be compared with MWNT and ITO-
PAN thermophones shown in Fig.46.

retical results, we have numerically implemented an acoustic diffraction
calculation.

Hence, the theoretical curves in Fig.46 represents the results of the
Rayleigh’s second integral applied to the velocity field of our near field
model as described in Section 2.7. In other words, our multilayer model
is used to describe the thermoacoustic generation of waves (which is
mostly wideband, as discussed in Section 3.1.1 in free field), whereas
the diffraction theory is used to properly take into account the resulting
acoustic propagation.

A second comparison with experimental measurements can be found
in Fig.47. In this case we considered the results for the freeze dried
graphene foam (FDGF) thermophone discussed in Ref.[63]. The FDGFs
are particular graphene foams obtained with a specific procedure im-
plemented to get uncollapsed structures, which are more efficient from
the thermoacoustic point of view [63]. This material has been used as
thermophone in free field and as thermophone located on a glass sub-
strate (with a small gap). The acoustic measurements have been per-
formed at a distance of 3cm for an applied power of 0.1W. In Fig.47,
one can find the experimental and theoretical results for both the free
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field thermophone and the system with a glass substrate which has
been obtained by combining the Rayleigh diffraction calculation with
our near field model, as previously discussed. Again, we can observe a
quite good agreement between theory and experiments. For the case of
the thermophone located on the substrate we supposed a gap of 1 µm
between FDGF and glass. For the implementation of the model we used
the parameters declared in Ref.[63]. It is interesting to observe that the
slope of the frequency response is accurately described by the expres-
sion SPL∼ f0.75, representing an acoustic performance in-between single-
layer MWNT sheets and ITO-coated PAN sheets, previously introduced.
As a matter of fact, this slope corresponds to a HCPUA of 0.2Jm−2K,
which is a value between 0.013Jm−2K and 0.67Jm−2K, corresponding to
MWNT and ITO-PAN, respectively. To conclude, the Rayleigh’s second
integral combined with the calculated velocity of our multilayer model
proved to accurately reproduced real life measurements.

3.1.3 Analysis of novel thermophone systems

Two new configurations will now be studied using the multilayer model.
The first case consists in a thermophone with (two or more) parallels
generating layers, separated with air gaps. A simple case with only two
generating layers, as seen in Fig.48, will be investigated by considering
a fixed input power densities and the same thickness of both layers.
The influence of the width of the air gap between the layers will then
be examined, discussed and compared to the results of Aliev et al. [52]
and those of Barnard et al. [128].

The second case will concern the sound generation in an underwater
environment. The response of a one layer thermophone in an under-
water free field geometry will be compared to the free field response
in air. Afterward, based on an interpretation made by Aliev et al. [122],
an hydrophobic behavior of the thermophone layer will be considered,
where an air gap is assumed between the thermophone and the water,
as shown in Fig.50. The results will be compared also with the Tong et
al. theoretical model for encapsulated thermophones [132].

Multi generating layer thermophone

We analyze here the behavior of the system with two generating layers
radiating symmetrically in air, as shown in Fig.48. Figure 49 displays
the sound pressure level for two generating layers (each with thickness
ls and input power Pin), separated by an air gap of length lg. For the
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Figure 48: Schematic of a sound generation system composed of two thermo-
phone layers placed in air, separated by an air gap, and radiating
symmetrically in both directions.

sake of comparison, the free field response for a single generating layer
is also plotted (with ls and Pin). It is seen that for low frequencies there
is a 6dB rise in sound pressure level regardless of the distance between
the thermophone layers. This rise is justified by the fact that the pres-
sure generated by two similar layers leads to double the pressure if
the signals are in phase and if they can propagate without obstacles. It
means that the samples are still close enough to prevent any effect of
the phase difference between the sound generated by each layer and
that they are acoustically transparent to one another. Furthermore, it
could have been expected to see a drop in the low frequency region
when the air gap is of the same order of magnitude as the thermal
layer. Since the gap length does not influence this low frequency region,
we deduce that there is no heat interference due to the thermal layers
between each generator.

In the mid to high frequency region it is seen that the sound pressure
region drops faster with a smaller gap length. The small and large gap
curves are limiting cases which can be reproduced by adapting the free
field model. For instance, if lg → 0, then the double layer system gets
similar to a single layer with 2ls and 2Pin. This does not change the in-
put power density S0 but, since the thermophone is larger, the HCPUA
gets larger and the high frequency drop is more significant. On the
other hand, if the gap is large enough to cancel the thermal capacity
interaction between the layers but still small enough to not create any
significant phase difference, then the acoustic response is similar to that
of a single layer thermophone with twice the input power (i.e., with ls
and 2Pin).

The observed rise in the SPL with a multi layer thermophone concurs
with the findings of Barnard et al. [128] and Aliev et al. [52]; however,
to complete this picture, we added here the analysis of the influence
of the air gap size. Although the same SPL level of this structure can
be easily reproduced with a single layer thermophone by changing the
input power, there is an important reason to adopt this double config-
uration. As explained by Aliev et al. [52], the maximum power density
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Figure 49: Frequency response of a thermophone system composed of two gen-
erating layers separated by a given air gap (see Fig.48 for details).
We considered the case without gap lg = 0, the case with medium
gaps lg = 1/36, 1/12, 1/4× 10−4 m, and the case with a large gap
lg = 1× 10−4 m (independent non-interacting layers). We can ob-
serve the effect of the air gap width and compare the result with the
single layer thermophone system.

supplied to the thermophone must be limited to avoid the material fail-
ure. Of course, the simplest solution to improve the SPL without low-
ering the HCPUA is to increase the input power. However, the increase
of the power density may generate material failure. Furthermore, the
improvement of HCPUA is typically limited by the technological proce-
dures adopted. Then, for a fixed thermophone geometry with a limited
power density before failure, an interesting solution to improve the SPL
is to use a multilayer geometry.

Underwater thermophone systems

The first investigations concerning underwater thermophone systems
considered the encapsulation of the thermophone in a gas cavity [122,
132, 133]. This solution is useful to preserve the integrity of the thermo-
phone material. However, the encapsulation can create resonances and
therefore can limit the wide band frequency response. Consequently,
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Figure 50: Schematic of a thermophone placed in water by means of two sym-
metric air gaps, and radiating symmetrically in both directions.

this configuration will not be investigated here since we prefer to ana-
lyze systems with a possibly wide band frequency response. Firstly, we
study the emission of a simple thermophone in a free field underwa-
ter configuration. Then, we examine the underwater thermophone with
two air layers generated by the hydrophobic behavior of the thermo-
phone material.

(a) (b)

Figure 51: Frequency response of a thermophone working underwater. Panel
(a): we can compare the response of the underwater thermophone
in free field without viscosity, the underwater thermophone with air
gap (e.g. due to hydrophobicity as observed for carbon nanotubes),
and finally, the thermophone working in air and in free field. Panel
(b): response of the free field thermophone with the normal viscosity
of water and two larger values of viscosity.

Figure 51 displays the free field response of the thermophone with
and without viscosity in water, with viscosity in air, and the results of
an hydrophobic model. We remember that in water the SPL is calculated
with a pressure reference of 1µPa.

The low frequency behavior corresponds to a flat response for both
air and water. On the other hand, the high frequency decrease starts
at a lower frequency in the water and has a different slope rate (20



3.1 plane wave , one temperature model 153

Figure 52: Frequency response for the underwater thermophone with symmet-
ric air gaps. We can find the responses for three different air gap
widths and we compare our results with those of Eq.(426), proposed
by Tong et al. [132]. We underline the good agreement for the high-
frequency behavior.

dB/dec, see Fig.51a). Those differences are mainly due to the change
of parameters and reference pressure of the propagation medium. The
individual parameters influence has not been further investigated here
since other works have already done it considering various gases as
propagation medium [70, 132]. The free field response in air is reported
here mostly for reference. We now look at the differences in free field
in water with different viscosity in Fig.51b. As expected, the frequency
response shows a drop at a lower frequency if the viscosity is increased.
The same behavior has been observed in air and shown in Fig.36. Impor-
tantly, we underline that in the numerical implementation of the model
for the underwater case we cannot calculate the acoustic wavenumber
k and the thermal attenuation σ through the approximated expressions
in Eqs.(155), which are valid only for weak viscosity and weak ther-
mal conductivity. Instead, we have to directly solve the fourth degree
characteristic equation by numerical methods.

Aliev et al. [122], explained the high underwater efficiency of the car-
bon nanotubes thermophone through the hydrophobic behavior of the
nanotubes. Therefore, we consider here a thin air layer between the ther-
mophone and the water, as seen in Fig.50. The first result is shown in
Fig.51, where an increase of 55dB can been observed with respect to the
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free field response in water. Moreover, a resonance around 15MHz is
also observed and is due to the air gap width between thermophone
and water. Now, to better understand the band pass response for mid
to low frequency, we can consider Fig.52, where the response of the sys-
tem is shown as function of the air gap lg (three different values of lg
have been adopted). Here, the equation elaborated by Tong et al. [132]
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where T is the transmission coefficient

T =
2ρwC0,w

ρgC0,g + ρwC0,w
, (427)

is also plotted for comparison. This equation was elaborated to describe
an encapsulated thermophone with a perfectly rigid backing and with
transmission through a window. Then, it has been adapted here to our
hydrophobic behavior. Equation (426) assumes that the air gap is large
enough so that there is no influence at the air/water interface due
to the thermal layer. Figure 52 shows that, with different gaps, for a
high enough frequency the multilayer model agrees with the Tong et al.
model. The transition frequency, at which the two models start to con-
cur, is the frequency for which the thermal layer becomes small enough
to confine the entire sound generation in the air gap. The slope observed
in the high frequency regime is then due to the transmission coefficient
between two regions with a high impedance contrast. Below this high
frequency regime there is a flat frequency response until a drop for
low frequencies. This drop is due to the water on the other side of the
thermophone, which acts as an imperfect reflecting substrate. To eas-
ily improve the sound generation in a direction, one can use a rigid
backing on the other side, which creates a flatter frequency response
at low frequencies. The SPL plateau observed for different values of lg
in Fig.52 is coming from a similar sound generation as the free field
plateau response (see Fig.51). In this case, the air thermal layer over-
steps the air-water interface, thus generating a sort of second active
layer in the water region. Clearly, this couple of thermal layers is more
efficient than the single thermal layer observed in the case without air
gap. Lastly, it is seen that the overall SPL is increased at low frequency
for smaller gap size, while diminishing the high frequency response.
It means that the increasing of the gap induces a larger SPL in a fre-
quency range which becomes narrower and more shifted towards the
low frequencies. This leads us to believe that in order to improve the un-
derwater sound generation we need either to generate the whole sound
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in the air gap (and so have a large air gap) for low frequencies, or, to
have a small air gap so that the thermal layer generates sound also at
the air/water interface for higher frequencies. Since the width of the air
gap strongly modifies the band pass frequency response of this system,
a compromise between frequency range and produced SPL must be ac-
cepted, and lg can be selected depending on the applications of interest.
Finally, it has to be kept in mind that a low pass filter response could be
achieved for a solid/air/thermophone/air/water design (rigid backing
on one hand of the system).

Conclusions

In this Section, three classical thermophone configurations were ana-
lyzed and compared with other theoretical models from the literature.
In particular, we studied a thermophone in free field, a thermophone de-
posited on a substrate and a thermophone over a substrate with an air
gap in-between. The analysis has displayed good agreement between
the presented model and other ones. It has been shown that in order
to obtain the highest SPL in air, the thermophone over a substrate with
an air gap design should be used. However, due to the size of the ther-
mal length (in which sound is generated), it is important to leave a
large enough air gap between thermophone and substrate to avoid any
heat loss to the substrate specially at low frequencies (the lower the
frequency, the longer the thermal length).

In order to validate the present approach, we also compared our re-
sults with experiments discussed in the recent literature. We compared
the theory with the measurements carried out on three different thermo-
phone materials, namely single-layer MWNT sheets, ITO-coated PAN
sheets and FDGF sheets. The good agreement showed that the model
is able to represent the behavior of systems with values of the heat ca-
pacity per unit area varying over several order of magnitude. Moreover,
these materials have been used in different configurations, showing the
capability of the model to represent the behavior of an arbitrary config-
uration.

In addition, we also discussed the behavior of two novel thermo-
phone configurations, which can be adopted in air and underwater,
respectively. In the first case, we investigated the possibility to create
a generation device through two thermophone layers separated by a
given air gap. This technique can be profitably used to reduce the den-
sity power, thus limiting possible thermophone damages, while increas-
ing at the same time the sound pressure level due to coherent radia-
tion. In the second case, we discussed the possible underwater use of
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the thermophone. We analyzed the response of the underwater thermo-
phone in free field and the response of the underwater thermophone
with air gaps between generating layer and water. We showed that this
last configuration, easily created thanks to the hydrophobicity of some
nanomaterials, exhibits a very good efficiency and a pass band response
which can be controlled by the air gap width.

The analysis will now be performed for cylindrical and spherical
waves.

3.2 cylindrical and spherical waves , one temperature model

In this section the multilayer cylindrical and spherical models created
in Sections 2.3 and 2.4 are used and analysed. Those models are stud-
ied here together as it will be seen that they display similar results.
The cylindrical or spherical geometry are non conventional shapes for
thermophones at the macroscopique scale. Nonetheless, those geome-
tries are worth being investigated as cylindrical shape analysis could
be applied to the microstructure of porous thermophones for instance.
Additionally, the spherical geometry is of interest since, if the radius
of the sphere tends to zero it would correspond to a thermoacoustic
monopole. As such, acoustical theory relative to monopoles could be
applied assuming only a different input pressure generated from the
monopole. This would allow for easy comparison with regular sound
generator and facilitate thermoacoustic design.

Hence, despite having a very flexible multilayer model as for plane
waves, this section will focus on three different cases which can be ex-
plained using Fig.53:

• a full cylinder or sphere (Rb = 0)

• a hollow cylinder or sphere (air at the core)

• a cylinder or sphere with substrate at the core

The full thermophone case will allow to estimate the radiation of an
infinitely thin and long cylindrical thermophone as well as a monopole.
The two other cases are motivated by the CVD method of fabrication of
porous graphene. In graphene foams, the graphene is grown on a Nickel
template which is then removed leaving the foam with hollow branches.
See Section 4.1.1 for more details. The case with substrate at the core
then represents a branch of foam before removal of the template while
the hollow case represents branches after removal. Table 6 allows for an
overview of the presented figures and their varying parameters. In all
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Figure 53: Schematic of the investigated models for cylindrical and spherical
wave generation. The core of the thermophone (air or substrate) in
light yellow has a radius Rb and the external radius of the thermo-
phone layer (light green) is Rs

plots, the recording distance was fixed at r0 = 50× 10−6m, the input
power is normalised at Pin = 1W, and the thermophone surface A was
proportional to R2s. A was assumed to be the same for both cylindrical
and spherical model in order to have a similar input power density and
thus ease the comparison. The adequate modifications to the power
density have been made whenever Rs was modified in both cylindrical
and spherical models. The parameters used for the thermophone, air
and substrate are similar to those seen in Table 3 and 4.

3.2.1 Comparison with literature’s models

In order to exploit our multilayer model it must first be confronted to
models from the literature. It was seen in Section 1.2 that very few mod-
els actually investigated cylindrical or spherical thermoacoustic sound
generation. Furthermore, as previously said, no widely used thermo-
phone have a cylindrical or a spherical macroscopic geometry. It is then
not possible to compare experimental data from the literature to our
model. The main investigation toward those geometries have been made
by Hu et al. where they extended their plane wave geometry model [81]
to spherical [83, 84] and then cylindrical waves [85]. Those models are
based on the conservation equations and a piston based model for cylin-
drical shapes is also found in Tong et al. work in 2016 [87] which was
then reused in his future work for thinline arrays [88]. Those models
have been implemented and will be compared to the presented models
of this work.
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Core Rb [m] Rs [m]

Fig.54a no losses 0 50× 10−6

Fig.54b with losses 0 50× 10−6

Fig.55a 0 50× 10−6

Fig.55b Substrate Rs/3 50× 10−6

Fig.56 0 [100, 50, 5, 0.5]× 10−6

Fig.57 0 50× 10−6

Fig.58 Air [9, 7, 5, 1, 0.1]× Rs/10 50× 10−6

Fig.59 Air Rs/3 50× 10−6

Fig.60 Substrate [9, 7, 5, 3, 1]× Rs/10 50× 10−6

Fig.61 Substrate Rs/2 [100, 50, 25, 10]× 10−6

Fig.62 Substrate Rs/3 50× 10−6

Table 6: Specific geometrical parameters adopted in the analysis of different
structures investigated. For each figure with SPL results we clearly
indicated the details defining the corresponding configuration. In all
plots we assumed a thermophone volume of 4/3π(Rs − Rb)3 m2, an
input power Pin = 1W and a recording distance r0 = 50 × 10−6m
from the generating surface.

Cylindrical model

In Fig.54 a full cylinder radiating in free field is compared to the models
of Tong et al. [87] and Yin et Hu [85]. In his model, Tong et al. consider
a uniformly heated cylindrical conductor and by doing so neglect the
influence of the heat capacity of the thermophone. This is justified by
the fact that in their future work Tong et al. investigate thinline arrays
whose length are greatly larger than the radius of their cylinder. They
only defined its radius to take into account determine the input power
density in Eq.(5) [87]. In our model we also assumed a long cylinder
compared to its radius to simplify the equations. Nonetheless, this di-
mension is of critical importance, not only for the input power density
but also to the HCPUA and mechanical resonance determination. The
final pressure equation of Tong et al. model is written in Eq.(10) as

pg = DH
(1)
0 (kgr) + p

∗
g, (428)

with D a constant determined in Eq.(12) and p∗g a particular solution
found in Eq.(11) [87].

Regarding Yin et Hu model, it takes into account the thermal wave
inside the solid but assumes that the input power is only distributed
at the surface of the thermophone. This assumption was also observed
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in Section 3.1.1 for plane waves and was justified when comparing the
results with Shinoda et al. experiments [32]. However it does not holds
for thick thermophones and a modified version of Hu et al. pressure
equation with a volume density input power has to be derived similarly
as in Eq.(418) for plane waves. It is finally found as

pg =

Q0
iωρsCp,s

κsM0σsdadt (kgK1(kgRs)K0(σgr) − σgK1(σgRs)K0(kgr))

(dakgK1(kgRs) (κsM0σsK0(σgRs) − κgσgK1(σgRs))+

−dtσgK1(σgRs) (κsM0σsK0(kgRs) − κgkgK1(kgRs))) ,

=pg,surface
Q0

iωρsCp,s
κsσsM0, (429)

for volume density power. For simplicity this equation does not take
into account a substrate. The full derivation of this equation and the
definition of its parameters can be found in Appendix B.1.4.

(a) (b)

Figure 54: Frequency spectrum of a full cylinder radiating in free field. The
presented multilayer model is compared to the models of Tong et al.
[87] and Yin et Hu [85]. The wavenumbers are estimated as in the
literature at the order 0 in (a) and with a first order estimation in
(b).

Figure 54a compares the frequency spectrum from the presented mul-
tilayer model for cylindrical wave with the literature. It is seen that there
is a good agreement between the original Yin et Hu model with the pre-
sented model up to 20kHz. There is then an increase of SPL that reaches
a plateau between 1 and 8Mhz before decreasing in the very high fre-
quency range. This overestimation is due to the neglect of the thermal
capacity of the thermophone in high frequency range. The power being
supplied only on its surface, the energy stored by its heat capacity is
then underestimated.
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On the other hand, the modified Yin et Hu model with volume den-
sity power stay coherent with our model up to a a few mega hertz. After
3MHz both model observe a decreasing in SPL but at a higher rate in
our case. This is due to the way the wavenumbers are calculated in Yin
et Hu’s model. Similarly as for plane wave, Yin et Hu used a 0th or-
der approximation for the thermal and acoustical wavenumbers. If the
first order approximation defined in Eqs.(155) are used in Yin et Hu’s
model, the consistancy between both models reaches a few hundreds
mega hertz as seen in Fig.54b. In the high frequency range it then neces-
sary to take losses into account in the wavenumbers. More specifically
thermal conduction losses.

Lastly it is seen that a small shift is seen between our model and the
modified one around 1kHz. This is due to the chosen functions solutions
of the temperature differential equations. In Eq.(269) the progressive
and regressive waves function are defined with Hankel function of the
first and second kind H(1,2) where Yin et Hu actually used modified
Bessel function K. A better agreement between the simulated curves
can be found in this frequency range if the modified Bessel functions
are replaced by Hankel functions.

Regarding Tong et al. model in Fig.54a, the 20dB/dec increase in the
low frequency ranges fits with our model but then due to the lack of
consideration of the wave propagation in the thermophone as well as
an assumed uniform heat distribution, there is an overestimation of
SPL above 1kHz. In a similar fashion as for the surface density model
of Yin et Hu, the thermal capacity of the thermophone is ignored in
Tong et al making this model only valid for very thin thermophones
or at very low frequency. Notably, a 0th order approximation is used
for the wavenumbers however, since the model is oversimplified, when
a first order is used, the losses are then also overestimated as seen in
Fig.54a.

It is worth discerning that there are no acoustic resonances due to
size and shape of the thermophone in neither literature models. Only
our multilayer model takes into account the acoustic propagation inside
the solid, allowing us to determine antiresonances. Models in the liter-
ature neglected this influence as it was assumed to be in a frequency
higher than the range of interest. The first antiresonance observed in
our model is seen around 1MHz which is much higher than the human
hearing range, making this assumption valid for most of the literature.
Higher harmonics of the antiresonances are also observed and display
variable intensities which are due to the chosen discretisation step of
the simulation. All anti resonances should be of similar amplitude but
the exact frequency might not fit with the chosen frequency step of the
simulation.
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Spherical model

In Fig.55a a full sphere radiating in free field is compared to the model
of Hu et al. 2014 [84] and in Fig.55b a sphere with substrate as its core
is considered and compared with Hu et al. model of 2012 [83]. As ex-
plained for plane and cylindrical waves, Hu et al. models assume a sur-
face density energy input and so have to be modified in order to be
comparable with our own. Assuming a volume density power input,
the modified pressure equation for a full sphere becomes

pg =
Rs

r

dadtk
+
g

Z
(e−σg∆r −

σ+g

k+g
e−kg∆r)

Q0
iωρsCp,s

κsσ
−
s∗,

= pg,surface
Q0

iωρsCp,s
κsσ

−
s∗, (430)

and the one for a sphere with substrate at its core is

pg =
dadtk

+
g

Z
(e−σg∆r −

σ+g

k+g
e−σg∆r)

×
κs

Q0
iωρsCp,s

r

(
Rsσ
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Rbκbσ
−
b∗

κbσ
−
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−
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)
,
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κs
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iωρsCp,s

(
Rsσ

−
s∗ +

Rbκbσ
−
b∗

κbσ
−
b∗ − κsσ

−
s
σs(1−M)eσs∆R

)
.

(431)

It is seen that Eq.(430) is equal to Eq.(431) withM = 1 and is of a similar
form as Eq.(418). The detailed calculation of Eq.(430) and (431) as well
as the definition of all parameters can be found in Appendix B.1.3 and
B.1.2 respectively.

Similarly as for Fig.54a, Fig.55a displays a change of behavior be-
tween the original Hu et al. model with surface density power and the
modified one with volume density power. The original version keeps
increasing after 20kHz before reaching a plateau between 1 to 80MHz
and then decreases. This is once again due to the neglect of the heat
capacity of the thermophone by assuming a surface density power.

From 10kHz to 10MHz there is a good agreement between the modi-
fied model and our multilayer one. Above 10MHz the same issue as for
plane and cylindrical waves is observed, where the 0th order approxima-
tion of the wavenumbers in Hu et al. models prevent us from observing
the same decrease. A perfect match is found if the wavenumbers are
changed accordingly.

Below 10kHz, the observed slopes in both Hu et al. models and ours
are different. This is explained by the chosen distance of recording. In
Fig.55, the pressure is measured at r0 = 50µm distance. However, based
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(a) (b)

Figure 55: Frequency spectrum of a full sphere (a) and a sphere with substrate
at the core (b) radiating in free field. The presented multilayer model
is compared to the model of Hu et al. of 2012 and 2014 for sphere
with and without substrate respectively [83, 84].

on Eq.(154) the thermal layer Lth at 3kHz is about 50µm in air. It is
known that Lth will be longer for lower frequency and so our recording
distance is not far away enough of the "piston layer" to be accurate. In
this low frequency range we are still inside the thermal layer in which
the thermoacoustic process occurs leading to different result. This is
made possible to observe only in our model as it is the most complex
one, making little to no assumptions. In this particular case, Hu et al.
model does not observe the thermal layer and assumes that the acous-
tic wave is already fully generated. This assumption is valid since most
recording are made orders of magnitude away from the thermal layer.
This theoretical recording distance r0 was chosen to limit the numerical
errors generated by our model for large distances. If r0 is chosen fur-
ther away, there is agreement between the models at low frequency but
numerical errors can be seen in our model at high frequencies.

Now regarding Fig.55b, similar observations are made between the
original and modified Hu et al. model at high frequencies. In fact, above
20kHz little to no differences can be made between the spectrums of
the full sphere and the sphere with substrate. Below 20kHz, due to the
small size of the substrate (Rb = Rs/3) thermal losses will occur where
the thermal layer is longer than the thickness of the thermophone. As
observed for plane waves, energy is lost in the substrate and results in
this decrease in SPL. It is also seen that numerical errors appear at low
frequency in our model, making Hu et al. model more robust and more
adapted in this specific case.
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Finally, like for plane and cylindrical wave, in both Fig.55 only our
model display high frequency anti resonances. Thus making it the only
adapted high frequency model for thick thermophones prone to reso-
nances.

3.2.2 Analysis of Novel Microscopic Geometries

The validity of our multilayer model for cylindrical and spherical shapes
has now been proven by being compared to other models from the lit-
erature. As previously explained, those geometries have been of little
interest as most thermophones are assimilated to a plane surface in a
macroscopic scale. In spite of that, it is of importance to investigate
those geometries as thermophones are in a cylindrical shape at a micro-
scopic scale. Additionally, acoustic theory based on monopole is very
thorough and could be easily applied for thermophones if a monopole
response is estimated. In the following section the three geometries of
interest previously defined will be investigated and their defining pa-
rameters will be modified to assess their influence.

Filled Thermophone

(a) (b)

Figure 56: Frequency spectrum of a full cylinder (a) and a full sphere (b) with
various radius Rs.

Figs.56 show the frequency response of a full cylinder (a) and a full
sphere (b) with various radius Rs. In Fig.56a reducing the radius of the
cylinder increase the high frequency SPL. In fact, a 20dB/dec profile
is observed from 10Hz to almost 1MHz for the smaller radius. This
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(a) (b)

(c)

Figure 57: Temperature (a), particle velocity (b) and heat flux variations (c) in
the near field for full cylindrical (continuous blue) and spherical
(dashed red) thermophones. All curves show the absolute value of
the corresponding complex quantities. Due to the symmetry of the
geometries the center r = 0 of the thermophone (green region) is
on the left. The yellow region correspond to the propagating air
medium. Here at f = 10kHz.

increase could once again be attributed to the smaller HCPUA of the
reduced radius. On the other hand, having a large radius seem to create
flat frequency response in this frequency range which reminds us of the
profile observed for plane wave. This is understood as if the cylinder
becomes infinitely thick, it will be approximated as an infinitely flat
surface at such distance r0. Hence a similar frequency spectrum will be
observed. It is also seen that the first observable antiresonance is at a
lower frequency for thicker thermophone. For the smaller radius Rs =
0.5µm the antiresonance is even higher than 100MHz. This behavior
was expected as those mechanical resonances are directly proportional
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to the size of the thermophone. This was also observed for plane waves
in Section 3.1.1. Lastly it is important to remember that those plots are
normalised with power but not power density. In other words, 1W was
applied to all simulated cylinder but for smaller cylinder the actual
power density was higher due to the reduced volume.

Fig.56b shares the same analysis as Fig.56a as it display very similar
behavior. In order to facilitate comparison, a similar power density has
been applied to both figures. In reality the power density of the cylinder
should be lower due to its length. Nonetheless, having this in mind, it
is observed that similar SPL levels are observed above 1MHz for both
geometry. Below 1MHz, the frequency spectrum profile of the sphere
display lower SPL than the cylinder. This could be explained by the fact
that the surface of the cylinder in the z direction is closer to the ob-
servation point than for a sphere. Even though diffraction is not taken
into account in those plots, the inherent shape (and thus mathematical
solutions) of the thermophone could induce better low frequency ra-
diations. Finally Fig.56 show that computational limitations are more
easily reached for spherical geometry and for thin thermophones.

Figs.57 display the spatial behavior of the temperature, particle ve-
locity and heat flux of a full cylinder and sphere at 10kHz from the
center of the thermophone to twice the recording distance of the fre-
quency spectrum plots. It is seen that both cylinder and sphere display
very similar profiles. Notably, it is seen that at the center of the thermo-
phone the temperature is the highest, the heat flux is canceled as it is
directional and the velocity is null. At this frequency the thermal layer
length is 26µm and can be seen in all figures but mostly in the velocity
plot Fig.57b.

Hollow Thermophone

Figures 58 show the frequency response of hollowed cylinder and sphere
with a fixed external radius and various internal radius. Air is assumed
at the core of those thermophones. Fig.58a show that for a small internal
radius relatively to the external one, the frequency spectrum is similar
to the one of a full sphere. With increasing Rb, the heat capacity of the
thermophone is reduced due to its thinner thickness. This leads to an
increase in high frequency SPL while the low frequency range is not
modified. Another observable change is the slight modification of the
antiresonance frequency for large internal radius. New resonances due
to the new geometry are also observed above 1MHz. However those
changes are not as significant as the modification of the external ra-
dius previously observed for a full thermophone. Those changes in res-
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(a) (b)

Figure 58: Frequency spectrum of a hollow cylinder (a) and a hollow sphere
(b) with a fixed external radius Rs and various internal radius Rb.

onances would not have been observable without the created multilayer
model.

Identically as for a full thermophone, Fig.58b display similar behavior
as Fig.58a. The same analysis can then be applied.

Figs.59 display the spatial behavior of the parameters at 10kHz in this
new geometry for Rb = Rs/3. Similar behavior are observed for both
cylinder and sphere. The temperature is maximum in the thermophone
at Rb and the thermal layer is observed on the outer boundaries of Rs.
The heat flux and the velocity are also canceled at r = 0. It is then not
possible to observe the thermal layer from the inner radius as waves
cancel one another.

Thermophone with substrate at core

Fig.60 display a similar geometry as before but instead of having air
at the center of the thermophone, a substrate core is assumed. The fre-
quency spectrum of a cylinder and spherical shape are found in Fig.60a
and 60b respectively with varying inner diameter of substrate. Two
main phenomenons are observable in Fig.60a. Firstly below 10kHz, it is
seen that the thicker the core substrate is, the more losses are observed.
Heat is dissipated in the substrate and this is even more pronounced at
low frequency with large thermal layers. The cylinder with the thinner
core has the highest SPL as it it closest to a full cylinder.

Secondly above 10kHz, since the thickness of the thermophone is re-
duced, its HCPUA is reduced as well and this increases its SPL at high
frequencies (as seen for a hollow thermophone). Furthermore, when the
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(a) (b)

(c)

Figure 59: Temperature (a), particle velocity (b) and heat flux variations (c) in
the near field for hollowed cylindrical (continuous blue) and spheri-
cal (dashed red) thermophones. All curves show the absolute value
of the corresponding complex quantities. Due to the symmetry of
the geometries the center r = 0 of the geometry (air, yellow region)
is on the left. The green region correspond to the thermophone.
Here at f = 10kHz.

thickness of the thermophone Rs − Rb starts being in the same magni-
tude range as its thermal layer length, the influence of the substrate
diminishes as observed for plane waves. This leads to the cylinder with
the thicker substrate to radiate the most above 1MHz.

Additionally, the antiresonance of the thermophone is directly pro-
portional on its size but also on its stiffness. Having a substrate at the
core change the overall stiffness of the thermophone shifting the first
antiresonance to a higher range.
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(a) (b)

Figure 60: Frequency spectrum of a cylinder (a) and a sphere (b) with a sub-
strate core. The external radius Rs is fixed and the internal radius
Rb changes.

Similar observation are made from Fig.60b but with greater difficul-
ties as the numerical model is unstable at low frequencies, especially
for thin core substrate.

(a) (b)

Figure 61: Frequency spectrum of a cylinder (a) and a sphere (b) with a sub-
strate core. The external radius Rs changes and the internal radius
Rb is always half of the external one.

Figures 61 are complementary to Fig.60 as they show the same geom-
etry but with a fixed ratio between inner and outer radius (Rs = 2Rb)
and fluctuating outer radius. Across the whole frequency range the thin-
ner thermophone has overall the best performance. Its low HCPUA due
to its small size improve high frequency radiation. Its thin core of sub-
strate also limit the losses at low frequencies. At last, the shift toward
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(a) (b)

(c)

Figure 62: Temperature (a), particle velocity (b) and heat flux variations (c)
in the near field for cylindrical (continuous blue) and spherical
(dashed red) thermophones with a substrate core. All curves show
the absolute value of the corresponding complex quantities. Due to
the symmetry of the geometries the center r = 0 of the geometry
(substrate, red region) is on the left. The green region correspond
to the thermophone and the yellow region to the propagating air
medium. Here at f = 10kHz.

high frequency of the first anti resonance of the solid for thicker radius
is also clearly distinguishable.

The spatial behavior of the temperature, particle velocity and heat
flux in this configuration is found in Fig.62. From Fig.62a it is seen that
the temperature drops inside the substrate. The heat flux in Fig.62c is
drawn to the substrate (stronger at Rb), as opposed to Fig.59 where the
heat flux was at its maximum at the outer layer for the thermoacoustic
generation. This leads to a smaller particle velocity and thus SPL in
Fig.62b.
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Conclusions

In Section 3.2.1 our multilayer cylindrical and spherical model were con-
fronted to models from the literature. Very few models currently exist
for cylindrical or spherical geometry of thermophone but our model
proved to be coherent with those currently available. It has been proven
once again to be able to fit different configurations (full thermophone or
with core substrate), while still being the only one considering high or-
der estimation of the wavenumber as well as mechanical resonances cre-
ated by the bulk thermophones. It was seen in Section 3.1.1 that the mul-
tilayer models sometimes reached numerical limitations for plane waves
due to the computational inverse of large singular matrices. Those limi-
tations have been observed to be even more easily reached in the case of
cylindrical and spherical geometries. The Bessel functions and complex
exponential, solutions of the differential equation in those respective
shapes, make the inverse matrix problem even more singular. Hence
other models can be preferred in specific cases at distinct frequencies,
where the assumptions made allow for a more robust system.

In Section 3.2.2 the influence on the shape of the cylindrical or spher-
ical thermophone was analysed. Firstly, it was seen that across all ge-
ometries, cylindrical and spherical waves models have displayed similar
results and the analysis are valid in both cases. Nonetheless, the cylin-
drical wave multilayer model proved to be more stable and less prone
to numerical errors than its spherical counterpart. In a similar fashion
as for plane waves, the thickness of the thermophone directly influence
the thermophone HCPUA. Thinner thermophone are then privileged
for high frequency radiation, although high power density has to be
expected and could damage real samples. The use of a substrate at the
core was proven to lead to thermal losses as expected.

All in all, a spherical monopole spectrum can be found using our
model but might not be the most appropriate one as its multilayer flex-
ibility prevents its easy implementation in those investigated simple
cases (full, hollow or with a core substrate). Hu et al. simplified model
might be more easily manipulated for monopole theoretical investiga-
tion [84]. Regarding microscopically shaped thermophone, the thick-
ness has once again proven to be a decisive factor for HCPUA tuning. If
the fabrication techniques of CNT might not allow easy changes in the
thickness of the tube, CVD grown tubes could adapt the thickness of
the branches with the growth time. At last, CVD based samples have to
choose if they would rather keep the substrate for mechanical stability
at the expense of thermoacoustic efficiency, or removing it at the risk of
having hollow tubes with very high power density.
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3.3 plane wave , two temperatures model

In Section 2.5, a two temperature model for the thermo-acoustic sound
generation has been elaborated. This model was motivated by the fact
that most of the currently used thermophones are composed of non con-
tinuous materials. For instance, widely adopted structures are based on
multi walled nanotubes (MWNT), arranged as sheets, forests, foams or
sponges [48]. Those thermophones devices are therefore made of both
air and nanotubes. Thus, the models based on a continuous homoge-
neous medium do not represent the real microstructure of these systems
and neglect the interaction fluid/solid in the active region. As a matter
of fact, in foam like thermophones a porosity of the active layer as large
as 99% can be achieved, making the air component not negligible.

In the following, the thermo-acoustically generated temperatures, par-
ticle velocity and heat fluxes are analyzed as a function of the position
x (one-dimensional modeling) at a frequency of 3kHz. This allows for
a deeper understanding of the model and a better interpretation of the
thermoacoustic generation phenomena in porous devices.

Additionally, measurements published in the literature will be com-
pared to the theoretical response of our two temperature model (re-
ferred to as 2T model) and of the classical model based on a homoge-
neous and solid active layer (multilayer model for plane waves referred
to as 1T model) [1]. The comparison will be discussed in two distinct
sections, dealing with different thickness of the thermophone. Section
3.3.1 will investigate thin film thermophones with thickness of a few
microns, and Section 3.3.1 foam like thermophones with thickness of
hundreds of microns. The experimental data are taken from a recent
investigation [48]. This Section provides frequency and power spectra
of a wide variety of samples with a full description of the experimen-
tal setup. Thermal parameters of the samples were also measured and
discussed. These data have been used in the theoretical models, making
the comparison theory/experiment legitimate.

All of the presented theoretical results have been obtained using the
parameters in Table 7 and Table 8. A specific discussion concerning the
parameter g, which is the only new parameter introduced in this model,
was made in Section 2.5.1. The 2T model and the classical 1T model [1],
based on a single homogeneous active layer, have been implemented
(see Fig.31). Both models have been adapted for acoustic diffraction
as discussed in Section 2.7, by considering the size and the shape of
the samples used in the experimental activity [48]. All results show
the sound pressure level (SPL) in decibels (dB), as defined in Eq.(413).
The results are shown at a distance of 3cm from the thermophone. The
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frequency spectrum results are normalized with power and the power
spectrum results are shown at 3kHz.

3.3.1 Analysis

Figure 63: Schematic of a porous thermophone radiating in free field (symmet-
rically in back and front media). The thermophone layer has a width
ll and foam branches of average diameter ls. The volumetric source
Q0 is supplied to the foam structure by Joule effect.

Here, the behavior of the main physical variables is shown by com-
paring a thick and a thin thermophone radiating in free field as seen
in Fig.63. For the thick thermophone the parameters of the graphene
sponge (ll = 800× 10−6m) are adopted, while for the thin one the pa-
rameters of the CNT sheet (ll = 18× 10−6m) are used. In Fig.64, one
can find the temperatures, the particle velocity and heat fluxes as func-
tion of position x, calculated with the 1T and the 2T models for both
the thick and thin thermophones at f = 3kHz. In this figure, the curves
corresponding to the absolute value of the different complex quantities
have been plotted. To better explain the behavior of the heat flux within
the system, the real and imaginary parts of the heat fluxes in air and
foam are shown as well in Fig.65. The input power is the same for all
curves (1W) in Figs.64 and 65. The geometry considered is shown in
Fig.32, where N = 5 is imposed to easily identify the pores/branches
structure in the plots. Moreover, the diffraction procedure is not imple-
mented to obtain the results of this spatial investigation since only the
near field generation is of interest. Please note that the 1T model has
been chosen to display results only outside the thermophone layer. If a
behavioral response of the physical quantities can be calculated inside
the solid layer in 1T, it would not reflect accurately the reality and be an
overestimation of a bulk material. On the contrary, the 2T model allows
for a more authentic analysis, also in the generating porous structure.
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(a) (b)

(c) (d)

(e) (f)

Figure 64: Near field temperature variations (a,b), heat flux (c,d) and particle velocity (e,f) for a thin (a,c,e) and
thick (b,d,f) thermophone. All parameters are plotted only in air with the 1T model and in both
air and solid with the 2T model. All curves show the absolute value of the corresponding complex
quantities. The central region (green) represents the thermophone layer with both air and solid foam
and the regions on the left and on the right (yellow) represent the air layers. The insets in (a) and (c)
show a zoom within the generating layer.
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(a) (b)

(c) (d)

Figure 65: Real part (a,b) and imaginary part (c,d) of the heat flux for a thin (a,c) and a thick (b,d) thermophone.
The quantities are plotted only in air with the 1T model and in both air and solid with the 2T model.
The central region (green) represents the thermophone layer with both air and solid foam and the
regions on the left and on the right (yellow) represent the air layers. The insets in (a) and (c) show a
zoom within the generating layer.
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Fig.64 (panels a and b) shows that despite a slightly higher value of
the temperature on the edges of the thermophone for the 1T model,
both thick and thin systems display the same behavior in air. The ther-
mal active layer Lth can be seen in the vicinity of the thermophone and
has the same length in all cases since it only depends on the frequency
and the propagating medium (the higher the frequency the smaller the
size of the generating layer). In the inset of Fig.64a, one can see that the
temperatures inside the thin thermophone are almost constant and the
branches providing the energy from the solid to the air in the 2T model
are not distinguishable. On the other hand, for a thick thermophone
one can find in Fig.64b the energy transmission near the branches, rep-
resented by the interfaces. Finally it is seen that, in the thick thermo-
phone, the temperature of the solid is higher at the center of the ther-
mophone and local maxima also exist in between two branches. Impor-
tantly, these evaluations of the temperatures within the thermophone
layer (pores and branches) can be performed only with the proposed
2T model. These results are relevant for both analyzing the system and
designing porous thermophones with specific features.

Fig.64 (panels c and d) show the heat fluxes in the considered struc-
tures. As before, the 1T model presents higher values of q at the edge
of the thermophone than the 2T model, but the same order of magni-
tude and behavior are observed in both models. The thin thermophone
displays an almost continuous increase of q inside the thermophone,
from the centre to the external edges (2T model). However, for the thick
thermophone, the heat flux transmission is seen in the air/foam struc-
ture and is characterised by a series of peaks. The sawtooth shape of
the curves in Fig.64d is due to the fact that the absolute value of com-
plex quantities is shown. To better understand the behavior of the heat
fluxes in the structure, the real and imaginary parts of these quantities
are represented in Fig.65, for both thin and thick thermophones. In the
generating layer of the thin thermophone (panels a and c of Fig.65), the
exchange of energy at the contact zones between air and foam can be
only slightly appreciated. However, concerning the thick thermophone
(panels b and d of Fig.65), one can clearly observe the jumps of the heat
fluxes within the generating layer in both air and foam. These jumps
represent the exchange of energy between air and foam and are de-
scribed by Eqs.(365) and (366). It can be remarked that T in the air is
not very different from Ts in the foam in the contact zones (see Fig.64b).
Nevertheless, since the parameter g assume a quite large value, the
product g(Ts − T), characteristic of the two temperature model, is al-
ways finite and positive and it can be seen (in panels b and d of Fig.65)
as the measure of the jumps in both q and qs curves. Moreover, it is
interesting to note that the jumps in q and qs (both real and imaginary
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parts) are always of the same extent but in opposite directions. It is
perfectly coherent with the idea of energy exchanges, as introduced in
Eqs.(365) and (366).

Fig.64 (panel e) shows that, for a thin thermophone, the particle veloc-
ity within the 1T and the 2T models is of the same magnitude leading
to a similar radiated SPL of about 110dB in the vicinity of the thermo-
phone. This is attributed to the fact that the density of branches is high
enough for the temperature and the flux to be continuous in the thermo-
phone leading the 2T model to perform similarly to the 1T one. On the
other hand, in Fig.64 (panel f) it is seen that the particle velocity assumes
different values for the 1T and the 2T models, leading to different radi-
ated SPL of about 83 and 97dB, respectively. This difference is attributed
to the non continuity of the thermophone layer in the 2T model, in op-
position to the bulk solid layer in the 1T model. The improvement of the
performances is clearly proportional to N. From the physical point of
view, it means that the crucial factor to improve the performances is the
total surface contact between air and foam branches within the porous
generating layer. Clearly, this total surface increases with porosity but
also depends on the real geometry of the microstructure (shape and con-
nectivity of pores). The thick porous structure allows indeed to reduce
the influence of the heat stored in the generating layer, thus improv-
ing the conversion of thermal energy in acoustic energy, e.g. the overall
efficiency. This mechanism, properly implemented in the 2T model, cor-
responds to the actual behavior of real porous thermophones, as proved
by the following comparisons with recent experiments.

In this section it was seen that for thin thermophones the 2T model
performs similarly to the 1T model, but this is not the case with thicker
and porous thermophones, where a sound generation difference of more
than 10dB is observed. This proves that the modeling of the generating
layer is of primary importance and that the thermoacoustic generation
is intricately linked to its geometry (size, microstructure and so on).
The theoretical model has therefore to be tuned to each thermophone
geometry.

Thin film thermophones

Fig.66 (panels a and b) shows the frequency and the power response of
a Carbon Nanotube Sheet (CNT sheet) and an Indium-Tin Oxyde coated
Poly(acrylonitrile) Nanofibers sheet (ITO PAN). In both cases the diffrac-
tion procedure of Section 2.7 has been applied to the theoretical models.
CNT sheets are considered as the most efficient thermophones currently
available because of the very low heat capacity per unit area (HCPUA)
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(a) (b)

Figure 66: Comparison of experimental [48] and theoretical responses of a
CNT sheet and an ITO PAN thermophone working in free field at
3cm distance emission/reception. (a) Power normalized frequency
response of the thinfilm thermophones. (b) SPL response of the thin-
film thermophones at 3kHz as a function of the input power. For the
2T model N = 10 has been adopted.

induced by their low density and low specific heat [48]. For this reason,
CNT sheets are considered as the reference nanostructures for thermoa-
coustic heaters [48]. On the contrary, ITO PAN devices have a much
higher density and therefore a higher HCPUA leading to a lower effi-
ciency. This explains the different slopes seen in Fig.66a, where the CNT
sheet response has a slope proportional to f1 (20dB/dec), whereas the
ITO PAN sheet has a slope closer to f0.5 (10dB/dec) due to its higher
HCPUA [1, 48]. This poorer efficiency is also seen in Fig.66b, where
for a similar input power the ouput SPL is about 20dB higher for the
CNT sheet. It is also seen that the power response slope is in both cases
20dB/dec, meaning that the SPL output is directly proportional to the
input Pin as previously recorded in theoretical and experimental litera-
ture [57]. In spite of the lower thermoacoustic performances, ITO PAN
sheets are interesting materials for technological reasons. In fact, PAN
polymers can be easily electrospun and coated with metals [48]. The
ITO coating, in particular, is deposited by radio frequency sputtering
and the final film is resistant to relatively high temperatures and quite
transparent [48].

A good agreement of both 1T and 2T models is observed with the
experimental data, for frequency and power spectra. This is attributed
to the fact that the thickness of the thermophone is small enough so
that the 2T approach does not add any significant value to the model.
The thickness of the sample is still sufficiently small for the HCPUA to
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be accurately evaluated by a continuous sheet through a 1T model. This
however would stop to be true for thicker thermophones.

Finally, it can be noted that the output acoustic power for a spherical
radiation on the CNT sheet can be estimated as 4πr2p2rms/ρC0 = 42×
10−9W. Here, the pressure at 1kHz is prms = 1065/20× 20× 10−6Pa and
r = 0.03m as the measurement was done at 3cm and not at the standard
1m distance. The pressure being normalized at 1W input power, this
leads to an efficiency of about 4.2× 10−6%, which is in the same range
as reported in the literature [48].

Thick foam thermophones

(a) (b)

Figure 67: Comparison of experimental [48] and theoretical responses of a
MWNT sponge and a graphene sponge thermophones working in
free field at 3cm distance emission/reception. (a) Power normal-
ized frequency response of the foam thermophones. (b) SPL re-
sponse of the foam thermophones at 3kHz as a function of the input
power. For the graphene sponge, the theoretical curve is the same
for N = 10 and N = 20. For the MWNT sponge N = 5 is adopted.

Fig.67 shows the measured responses of a MWNT sponge (0.1mm
thick) and of a graphene sponge (0.8mm thick), together with the corre-
sponding theoretical results. In both cases the diffraction procedure of
Section 2.7 has been applied. These samples have a thickness one/two
orders of magnitude larger than the previous ones and have a poros-
ity within the range 95% − 99%. The experimental frequency spectrum
of the graphene sponge displays a slope proportional to f1 (20dB/dec),
meaning that the efficiency is preserved with respect to the thin film
case. Indeed, even if the sample is rather thick, the HCPUA did not in-
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crease significantly to reduce the thermophone performances. The high
frequency decrease observed is simply due to the diffraction caused by
the geometry of the sample. Now, concerning the MWNT sponge ex-
perimental frequency response, one observes that for low frequencies
(below 1kHz) the slope is proportional to f1 (20dB/dec), and for higher
frequencies (between 1kHz and 100 kHz) the slope becomes propor-
tional to about f0.75 (15dB/dec). Indeed, at high frequency the effect of
the HCPUA increases and, therefore, the thermoacoustic generation is
coherently reduced [1]. Interestingly, the same effect exists also in the
graphene sponge, but it is not observed here since it appears at higher
frequencies because of the different physical parameters.

The important reason for introducing MWNT sponges is that MNWT
networks generate an elastically compressible and flexible device [48].
Moreover, the MWNT sponges fabrication is simple and low-cost. On
the other hand, the use of graphene sponges allows exploiting the ex-
ceptional properties of graphene, with a very large exchange surface
due to the peculiar sponge geometry. The result is a three-dimensional
cross-linked sponge with isotropic physical properties [48].

In Fig.67a, using the homogenized parameters of the thermophone
shown in Table 8 [48], good agreement is found between the experi-
ments and the 2T theoretical model for the MWNT sponge. A good
agreement is also found for low frequencies between the graphene sponge
and the 2T model. However, it is seen that for higher frequencies a larger
number of interfaces has to be used to reproduce more accurately the
experimental behavior. This is explained by the high surface density
of the foam within the thermophone layer. Many interfaces need to be
used to better represent the large amount of energy provided to the
air for high frequencies. On the other hand, the 1T model displays a
strongly different spectrum slope with respect to the experiments. This
is due to the thickness of the sample. Indeed, the thermal interactions
between the air and the thermophone microstructure are not integrated
in the 1T model, since it assumes a thick continuous medium, thus ar-
tificially increasing the HCPUA. The sound generation inside the pores
of the foam is not taken into account since the model is continuous
and, therefore, more heat is assumed to be stored while it is actually
dissipated in the pores air.

The power spectra of the thick samples are shown in Fig.67b, and
display a different behavior with respect to the thin samples. At low
input power, the SPL of the samples is proportional to Pin (20dB/dec)
but for higher input power the spectrum is approximately proportional
to P0.75in (15dB/dec). This non linear behavior can be interpreted with
an increase of the average static temperature inside the pores of the
foam, and with a consequent efficiency reduction [48]. It is seen that
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our model is not able to reproduce this behavior since the average tem-
perature within the pores is fixed a priori.

Conclusions

A two temperature model for describing the thermo-acoustic generation
of sound by thick foam thermophones has been elaborated in Section
2.5 and is here exploited.

The spatial distribution of the main physical variables were studied
for both thick and thin thermophones. The results obtained through our
two temperature model were compared with the classical model com-
posed of a solid bulk generating layer. It was proven that the output SPL
may be different between these models, depending on the thickness of
the thermophone. For thin thermophone, 1T and 2T model give similar
results but thicker thermophones lead to significant differences in the
output SPL. These differences have been explained in terms of the spe-
cific features implemented in the two models and can be summarised
by the over estimation of HCPUA of thick thermophone when using
a 1T model. Afterward, the frequency and power spectra were com-
pared with experimental results published in the recent literature [48].
The similar behaviors of the 1T and 2T models for thin thermophones
were confirmed and both models were in quite good agreement with
the experimental results. Thick thermophones were then investigated.
While the 1T model was unable to accurately reproduce the experimen-
tal results, the 2T model displayed good agreement from the point of
view of both frequency and power spectra. However, it could be further
improved since it is unable to represent the losses due to the static tem-
perature raise within the porous structure. It was pointed out that for
complex foam like structures it is important to consider the so called
homogenized parameters of the whole sample (solid plus air), which
are different from the local parameters of a single foam branch.

In conclusion, the two temperatures model presented here appears
to be a first step in modeling thick and nano- or micro-structured ther-
mophone systems. The most important point introduced concerns the
exchange of energy at any contact surface between air and solid foam.
This feature better represents the reality of such systems and is able
to reproduce experimental results, which were not understood on the
basis of previous models.
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ρ

[kg· m−3]

Cp

[J ·kg−1·K−1]

CV

[J ·kg−1·K−1]

B

[Pa]
αT

[K−1]

κ

[W·K−1·m−1]

Gas, air 1.20 9.96× 102 7.17× 102 1.01× 105 3.33× 10−3 26.2× 10−3

λ

[N·s·m−2]

µ

[N·s·m−2]

Gas, air 16.82× 10−6 5.61× 10−6

Table 7: Parameters of the propagating medium (air).

ρs

[kg·m−3]

CV ,s

[J ·kg−1·K−1]

Bs

[Pa]
κs

[W·K−1·m−1]

ll

[m]

ls

[m]

A

[cm×cm]

CNT
sheet

1 716 1.11× 1011 50 18× 10−6 10× 10−9 Square
1.5× 1.5

ITO
PAN

220 606 1.65× 1011 310 5× 10−6 450× 10−9 Square
1.2× 1.5

MWNT
sponge

30 716 1.11× 1011 100 100× 10−6 10× 10−9 Square
1× 1

Graphene
sponge

2.75 660 1.44× 108 6.3 800× 10−6 5× 10−9 Circle
d = 1.8

Table 8: Parameters of the thermophone materials used in the experiments and theoretical models [48].
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4
E X P E R I M E N T S

This chapter presents the most prominent results obtained experimen-
tally over the past three years. The samples used in the presented results
will be described but a more thorough list of all the samples used dur-
ing this work is found in Appendix C.1. The focus of this section is
on the acoustical radiation of thermophones. Additional characterisa-
tion results regarding the samples are found in Appendix C.2. It has to
be noted that all presented figures display results that are normalised
with distance (1m) and input power (1W) unless specified otherwise.
Additionally, all samples used had their complex impedance measured
with a spectrum analyser and which were observed to be constant up
to 1MHz.

In first instance, the experiments performed in January and February
2020 in CINTRA Singapore with the PhD student Ngoh Zhi Lin are pre-
sented. The graphene foam sample referred as 3D-C is described from
its fabrication process to its resulting microstructure. Its thermoacoustic
properties are then investigated in regards of its density, geometry, sup-
port, pore density... and compared with our presented 2T model. This
analysis is found in a recently published article [3].

Additional airborne acoustic analysis made at the IEMN in Lille with
different samples are presented. Those complementary airborne exper-
iments have been performed to try and push the limits of the stan-
dard acoustic setup used in the previous sections. The maximum air-
borne recording range was increased using a designed electronic sys-
tem (reaching 200kHz) and was further increased using high frequency
laser interferometry (measurements to the MHz range). Then a high
frequency thermal camera recording which was able to show the rapid
temperature variation of the foam are presented. Some preprocessing
regarding the input signal has been performed to allow us to play
complex musical signals using only audio AC amplifiers. Lastly some
thoughts and experiments regarding underwater thermoacoustic mea-
surements are discussed.

185



186 experiments

4.1 aiborne acoustic experiments performed in cintra sin-
gapore

In this section, 3D-C is synthesized via thermal chemical vapor depo-
sition and its microstructure and quality tested using Scanning Elec-
tron Microscopy and Raman spectroscopy respectively. Then, a two tem-
perature model is used to predict the effects of numerous parameters:
frequency, input power, sample size, connection area, connection path,
pores per inch, thickness, compression as well as the addition of a back-
ing on the acoustic performance and temperature of the sample. The
experimental results presented in this section validate the predictions
of the adopted two temperature model. The efficiency of 3D-C is then
compared with results presented in other studies to understand how
the presented 3D-C fared against ones from the literature as well as
other carbon nanostructured materials.

4.1.1 3D-C Fabrication, Characterisation and Experimental Setup

Fabrication by CVD

Figure 68: Chemical Vapor Deposition method for Boron-Nitrite and Carbon
growth on a Nickel foam structure used by Loeblein et al. [59].

3D-C was synthesized following Ngoh et al.’s thermal chemical vapor
deposition (TCVD) method [159]. A nickel foam template (Latech Scien-
tific Supply Pte Ltd) was inserted into the middle of a split tube furnace
before the system is ramped up to 1000°C under argon and hydrogen
gas flow. After achieving the required temperature, the graphene pre-
cursor, methane gas, is flown into the system. After graphene growth
is achieved, methane gas is switched off and the lid of the furnace is
lifted for rapid air cooling. The graphene coated nickel template is then
soaked in hydrochloric acid (HCl) at 85°C to chemically remove the sac-
rificial nickel template and obtain the final free-standing 3D-C. Figure
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68 schematically explains the growth of Boron-Nitrite and Carbon on a
Nickel foam structure used by Loeblein et al. [59].

Raman Spectroscopy

Figure 69: Chemical characterisation of 3D-C. (a) Visual image of 3D-C; (b)
SEM micrograph of 3D-C; (c) Raman spectrum of 3D-C [3].

The microstructures of 3D-C were captured with the use of SEM
(JEOL JSM-IT100). The crystallinity of 3D-C was determined using a
Raman spectroscope (WITec CRM200 Raman, utilizing Nd:YAG 532
nm laser as excitation source). The SEM micrograph of the obtained
free-standing 3D-C indicates that the microstructure of the synthesized
3D-C did not collapse and instead has similar microstructures as that
of freeze-dried 3D-C synthesized by Fei et al. and Lee et al. [63, 129]. Ra-
man spectroscopy was conducted on 3D-C to determine its crystallinity
and the obtained spectrum can be seen in Fig.69c. Only 2 peaks ap-
pear at 1580cm−1 and 2705cm−1, which represent the G and 2D peaks
respectively, indicating the presence of graphene. The absence of the de-
fect peak at 1350cm−1 indicates that the graphene present in 3D-C were
of pristine quality [59, 63, 159–162].

Configuration of 3D-C samples

The synthesized 3D-C samples were adhered to the middle of the mi-
croscope glass slides (76.2× 25.4× 1.1mm, Sail brand) and customised
acrylic holders with a 25× 25× 4mm hole in the middle (60× 35× 4mm,
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Figure 70: Schematics of how the various configurations of 3D-C are mounted
on their respective backings.

Dama Trading Pte Ltd, Singapore) using conductive silver paint (Leit-
silber 200 Silver Paint, Ted Pella, USA) as depicted in Fig.70.

Experimental setup

The acoustic performances of the mounted 3D-C samples were mea-
sured using the set-up in a non-anechoic room as seen in Fig.71. The
lap-top used for data logging and parameter entry 1 is connected to the
output generator module (Type 3160-A-022, Brüel & Kjær) 2. The AC
signal generated by the output generator is amplified by a power am-
plifier (Type 2735, Brüel & Kjær) 3, and applied to the mounted 3D-C
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Figure 71: Set-up for measurement of 3D-C’s acoustic performance. (a)
Schematic diagram of set-up. Lap-top (1), output generator mod-
ule (2), power amplifier (3), mounted 3D-C (4), microphone (5), mi-
crophone preamplifier (6), conditioning amplifier (7), power meter
(8) and infrared thermal camera (9); (b) Visual images of circuitry
set-up and; (c) Visual image of 3D-C mounted in set-up.

sample 4 via crocodile clips. The microphone (Type 4138, Brüel & Kjær)
5, which is 3cm from the mounted 3D-C sample, receives the signal.
This signal is amplified by the pre-amplifier (Type 2670, Brüel & Kjær)
6 and the conditioning amplifier (Type 2690, Brüel & Kjær) 7. The am-
plified signal is feedbacked into the output generator to be relayed to
the lap-top for data logging. The real-time power and temperature mea-
surements when the system is in operation are captured by a power
meter (PW335, Hioki) 8 and an infrared thermal camera (Ti480, Fluke)
9.

The background noise of the room was captured to be ∼ 25dB, ex-
cept two broad peaks at 28kHz and 32kHz with sound pressure lev-
els between 27 and 32dB (Fig.72a). All acoustic measurements made
were significantly above background noise, indicating sufficient signal-
to-noise ratio for it to be considered acoustic signals from the samples
instead of background noise. The raw SPL of the 50× 20× 2mm 3D-C
mounted on a microscope glass slide with acoustic frequency of 10kHz
and input power of 3W is as seen in Fig.72b.
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(a) (b)

Figure 72: (a) Captured background noise of non-anechoic chamber across the
whole frequency range of interest. (b) Background noise and raw
SPL of 50× 20× 2mm 3D-C mounted on a microscope glass slide
with acoustic frequency of 10kHz and input power of 3W in black
and yellow respectively.

ρ

[kg· m−3]

Cp

[J ·kg−1·K−1]

CV

[J ·kg−1·K−1]

B

[Pa]

Gas, air 1.20 9.96× 102 7.17× 102 1.01× 105

Solid, 3D-C 3.0 660 660 1.44× 108

αT

[K−1]

κ

[W·K−1·m−1]

λ

[N·s·m−2]

µ

[N·s·m−2]

Gas, air 3.33× 10−3 26.2× 10−3 16.82× 10−6 5.61× 10−6

Solid, 3D-C 2.6× 106 160 0 0

Table 9: Parameters of the propagating medium (air) and the solid (3D-C) used
in the simulations.

Sample parameters

The geometries of the samples used and the physical parameters of the
medium (air and 3D-C) are found in Tables 9, 10 and 11. The number
N of discretized, regularly-spaced layers used in simulations is found
in Tables 10 and 11. The number of layers used in simulations is ap-
proximately three times larger than the estimated one simply obtained
by multiplying the thickness of the samples with the ppi data. As our
model is one-dimensional and since the synthesized 3D-C has a very
complex geometry with hollow branches, it is assumed that more en-
ergy is provided from 3D-C to the surrounding medium than that gen-
erated by the branches simply aligned in the propagation axis. This is
indicated in our model by the additions of effective layers.
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Figures 74, 75, 76, 84, 87 74, 80, 81 74 75, 76 75, 76 78

Lx (mm) 20 30 50 20 20 20
Ly (mm) 20 20 20 20 20 20
Lz (mm) 2 2 2 2 2 2
N (simulations) 28 28 28 x x x
Ppi 110 110 110 110 110 110
Connection
(see Fig.70)

Point Point Point Line Volume Across

DC Resistance
(Ohm)

2.9 3.7 5.1 2.1 1.7 2.2

Table 10: Parameters of the samples used in the experiment with their equiva-
lent number of layers N used in the simulations.

Figures 78 78 78 80 81 83 84

Lx (mm) 20 20 20 30 30 30 20
Ly (mm) 20 20 20 20 20 20 20
Lz (mm) 2 2 2 5 2 2 1
N (simulations) x x x 70 28 x 28
Ppi 110 110 110 130 110 110 110
Connection
(see Fig.70)

Diagonal
Same
Side

All
through

Point Point Point Point

DC Resistance
(Ohm)

2.5 2 1.7 1.8 1.1 3.8 3.7

Table 11: Parameters of the samples used in the experiment with their equiva-
lent number of layers N used in the simulations.
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4.1.2 Analysis of Experiments done in CINTRA

(a) (b)

Figure 73: Pictures from the exchange in CINTRA Singapore in January 2020.
From left to Right on panel (a), Ms.Tan Dunlin, Ms.Ngoh Zhi Lin,
Mr.Guiraud Pierre and Mr.Coquet Philippe. On panel (b) Zhi Lin
and myself are performing experiments over the water tank.

The geometries of the samples used and the physical parameters of
the medium (air and 3D-C) can be found in Tables 9, 10 and 11. All mea-
surements were done with recording distances of 3cm to improve the
signal to noise ratio but the reported SPL are normalized to a record-
ing distance of 1m. All reported frequency spectrum measurements are
also normalized with an input power of 1W. As indicated in the acous-
tic measurement set-up in Section 4.1.1, all measurements were made
using only an alternating current (AC) signal generator. Without a DC
supply, a thermophone will radiate at twice the generating its generat-
ing frequency. It is physically understood as, when an AC signal runs
through the sample, the temperature is unable to have negative values,
resulting in its variation being proportional to twice the frequency of
the AC signal. Mathematically speaking, the sound pressure is propor-
tional to the input power given by [142]

Pinput =
V2input

R
=

(VAC cosωt)2

R
=
V2AC
2R

(1+ cos 2ωt). (432)

Hence, the presented acoustic spectra correspond to the acoustical fre-
quency, the first harmonics of the AC input. Power measurements and
the associated recorded temperatures were obtained at an AC input fre-
quency of 5kHz, which induces an acoustical wave at 10kHz.
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Effect of Sample Size

Fig.74 shows the frequency and power spectrum of three of the samples
with the same intrinsic parameters but of different sizes (see details in
legend of Fig.74).

(a) (b)

Figure 74: (a) Acoustical frequency and, (b) power spectrum of 3D-C of differ-
ent sizes in millimeter.

From Fig.74b, we deduce that the SPL and the input power exhibit a
linear relationship, both experimentally and theoretically. Similarly, in
Fig.74a there is a linear relationship (20dB/decade) between SPL and
frequency from 1kHz to ∼ 10kHz. This linear behaviour agrees with the
thermoacoustic theory and the recent literature [43, 57, 71, 81]. In the
higher frequency range, from ∼ 10kHz to 50kHz, acoustic diffraction is
observed. The longest sample has a lower anti resonance frequency, re-
sulting in a decrease in SPL before the other samples. Since this classical
acoustical result fits our theoretical curve, the assumption made in sub-
Section 2.7 of considering a planar diffraction with the velocity taken
at the limit of the thermal layer is then validated. Sample length affects
the electrical DC resistance of the sample (Table 10, 11). Indeed, due to
the longer path which the electrical current has to go through (Lx in Ta-
bles 10, 11), longer samples display higher DC resistance. This however
does not influence the overall SPL of the sample as both frequency and
power spectra are in the same range for the three sample with different
size. Since thermophones are driven by thermal power and not electri-
cal potential, different DC resistances can create impedance matching
issues with the interfacing hardware but will not change the acoustic
radiation once normalized. However, it was also observed that for the
same input power, the temperature was the lowest for the longest sam-
ple. This is due to the increased surface area which the sample has,
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allowing thermal energy to dissipate into the surrounding medium at a
faster rate. With increased heat dissipation, the observed temperatures
are lower.

Effect of Connections

Connection Area

Figures 75 and 76 show the results for samples of similar parame-
ters and dimensions but with a difference in the way the connection
was made. As seen in Fig.70, the point connection consists of just a dot
of silver on the centre of the edges of 3D-C, the line connection has
conductive silver paint following the edges of the 3D-C, and the vol-
ume connection has conductive silver paint dripped directly on 3D-C
to completely coat the thickness of 3D-C.

(a) (b)

Figure 75: (a) Acoustical frequency and, (b) power spectrum of samples of the
same size but with different silver paste connections, see Fig.70.

In the frequency spectrum of Fig.75a, the point and line connection
display similar results unlike the volume connection, which performs
on average 5dB lower across the whole frequency range. The thermal
camera image in Fig.77 shows that the silver paste is not heated, thus
preventing the thermoacoustic process from happening on the edges of
3D-C. This resulted in a thermal energy loss, consequently decreasing
its acoustical performance. The differences are not as pronounced in
Fig.75b but it is seen that for a fixed input power the volume connec-
tion displays the lowest SPL. Unlike in Fig.75a, it is seen that the line
connection performs 2dB higher than the point connection in Fig.75b.
This could be attributed to measurements errors in either Fig.75a or 75b
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(a) (b)

Figure 76: Temperature dependence of the samples with different silver paste
connections. (a) Relationship between temperature and input power
and, (b) relationship between SPL and temperature.

but would lead to think that the line connection is more efficient than
the point one.

In Fig.76a, the thermal behaviour of 3D-C with increasing power is
shown. Above 1W of input power, the temperature increases linearly
with input power, as also observed in the literature [48]. At low input
power below 2W, the temperatures of the samples are similar to the
temperature of the surrounding air medium, and no conclusion can
be drawn on the linear relationship between the input power and tem-
perature. More low power measurements have to be performed with
different experimental conditions to be sure of the linearity between
temperature and input power at all power levels. Fig.76a shows that at
the same input power, the point connection has a higher temperature
than the line connection, which also has a higher temperature than the
volume connection. Increased electrical contact surface with the sam-
ple decreases the power density in these regions, diminishing the hot
point temperature. In Fig.76b, the SPL is plotted against temperature.
Although the normalized SPL of the point connection is 5dB higher than
the volume connection in Fig.75a, the volume connection performed bet-
ter in absolute SPL values relative to temperature in Fig.76b.

In other words, Fig.75a indicates that the line or point connection are
equally as efficient, and both perform better than the volume connec-
tion, as indicated in Fig.75b as well. However, Fig.76a and 76b show
that the point connection is performing worse in terms of temperature
than the others and is hence more likely to decompose prior to the other
samples when a high input power is channelled into the sample. Hence,
the better power repartition of the sample connected via line connection
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Figure 77: Thermal image of 3D-C with volume connection with 3.3W power
input at an acoustical frequency of 10kHz.

inflicts less heat damages when a high input power is injected into the
sample, indicating its better resilience to high input power.

Connection Path

In Fig.78, a single sample with four different connection points is
investigated. The electrical path used changed for each measurement.
Following the schematic of the sample seen in Fig.70, the paths inves-
tigated are 1-3 (across), 1-4 (diagonal), 1-2 (same side) and 12-34 (all
through).

(a) (b)

Figure 78: (a) Acoustical frequency spectrum and (b) temperature variations of
one sample with different electrical connection paths.
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As expected, changes in the path also lead to changes in the DC re-
sistance as seen in Tables 10, 11. The DC resistance of the path taken
is directly proportional to the travel distance in 3D-C between the elec-
trical contacts and their surface areas. Shorter paths have lower DC
resistance, and increased contact surface results in lower DC resistance
as well (Table 10, 11). Thermal images in Fig.79 show that the temper-
ature hot spots follow the least resistive path and that the temperature
is most uniform only when the current is more uniformly distributed
throughout the sample (“all through” connection).

(a) (b)

(c) (d)

Figure 79: Thermal images of the sample with multiple connections (a) across
(b) diagonal (c) same side (d) all through.

Fig.78a shows that at frequencies below 20kHz, the samples’ SPL have
a linear relationship with the frequency. Despite the hot spots being lo-
cated at the electrical connections, it is expected that high thermal con-
ductivity of the samples would cause the entire 3D-C material to radiate.
A single sample would then display similar normalized SPL regardless
of the electrical path chosen, which is confirmed by the consistent spec-
tra of Fig.78a up to 20kHz. At frequencies above 20kHz, acoustic diffrac-
tion phenomena appear for all connection paths. If the entirety of 3D-C
was radiating equally, the frequency spectra would be similar across
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the whole frequency range. However, these acoustic diffractions indi-
cate that the acoustic radiation of the thermophone is dependent on the
least resistive path. Due to the non-uniform distribution of energy, the
entirety of 3D-C was not used to its maximum potential. Paradoxically,
using the 3D-C in its “most efficient” configuration (uniform energy
distribution) will create acoustic diffraction at lower frequencies due to
the use of a longer radiating surface. This is seen in Fig.79d with the
“all through” path.

Comparing the results in Fig.78b, the sample with the least resistive
path (shortest travel distance, across connection) has a higher power
density concentration. Hence, for a fixed input power, the temperature
of the sample’s hot spot will be higher than in a more distributed con-
figuration (all through connection). The connection utilizing the most of
the sample’s surface and having a high connecting surface would hence
have the highest power resilience. Connection “all through” is then rec-
ommended and concurs with the line connection analysis from the pre-
vious sub-section for samples with varying connection types (Fig.75a).

Effect of physical parameters variation of 3D-C

Various physical parameters, namely the pore per inch (ppi), thickness
and density of 3D-C, were varied and their influence on the acoustics
performance investigated.

Figure 80: Acoustical frequency spectrum of samples with different thickness
and ppi.
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Figure 80 compares a regular sample 2mm thick with 110 ppi and a
thicker 5mm sample with 130 ppi. In their associated theoretical mod-
els, despite the difference in ppi, the change of thickness lead to the
use of a similar number of layers per millimeter in both cases (Table
10, 11). Across the whole frequency range, there is a difference of ∼ 3

dB between the samples. This difference attributed to the slightly dif-
fering microstructures of each piece of 3D-C, resulting in differences in
efficiency. The specific surface area has been changed in the theoretical
model to tune the power density to the results (1.4 times higher than
with 110 ppi). Above 20kHz, the diffraction differs slightly in the ex-
perimental results but a strong anti-resonance is observed in the model.
This is explained by the higher thickness of the 130 ppi sample and the
regularly spaced layers in the foam considered in the model. When each
layer radiates acoustically coherent sound waves, each layer would add
up coherently with a slight delay
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Anti-resonances then occur at every frequency with k as an integer
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Lz
N+1
N

k =
343

5× 10−3 7170
= 6.76× 104 Hz, (434)

as observed in Fig.80 with k = 1. Other than high frequency diffractions
caused by the difference in thicknesses and hence number of radiating
layers, both samples perform similarly acoustically. However, the 130
ppi sample cools approximately twice as fast as the 110 ppi sample.
Videos found in Supporting Information (Videos S1 and S2 in supple-
mentary information of the third article [3]) show that the cooling pro-
cess of the sample was improved with higher ppi. The increase in ppi
resulted in an additional increase in the number of pores in the 3D-C,
allowing air to circulate more freely in the material, increasing the rate
of cooling by thermal conduction towards the surrounding air.

Figures 81 compares two samples with different densities. Unlike the
previous samples, the 3ρ sample had a longer growth time of graphene,
leading to thicker branches and a material with three times the density.
HCPUA is considered the most important parameter in the global ef-
ficiency of thermophones [35, 78], which can be written as ρCpl with
l the thickness of the radiating surface. To achieve optimum thermoa-
coustic radiation, HCPUA has to be as low as possible. Increasing the
density of the thermophone would then diminish its acoustical perfor-
mance. Fig.81a shows both experimental frequency spectra, and a drop
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(a) (b)

Figure 81: (a) Acoustical frequency and, (b) power spectrum of 3D-C with dif-
ferent densities

Figure 82: SEM micrographs of 3D-C taken up close. (a) SEM micrograph of a
sample with density ρ; (b) SEM micrograph of a sample with den-
sity 3ρ [3].

of 25dB is observed across the whole frequency range for the 3ρ sam-
ple. The trends of both curves are similar and the theoretical model fits
both curves. This fit was obtained by increasing the theoretical HCPUA
value by a factor of ∼ 27. This is justified by the higher measured den-
sity, increased thickness of the branches (Fig.82) and the proportional
increase of the specific heat. The power spectrum as seen in Fig.81b dis-
plays the same behaviour as Fig.81a. The SPL is reduced by 25 to 30dB
in the 3ρ sample and the increase of HCPUA allows a good fit between
theoretical predictions and experimental results. The few dB differences
between theory and experiments of Fig.81b can be explained by the lo-
cal experimental reduction of the SPL at 10kHz seen in Fig.81b.
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Improvement of sound pressure level

Next, we investigate a method to improve sound generation in 3D-C
based on well-known acoustical results and new experiments on the
3D-C structure.

Addition of backing

In a general acoustic context, when a monopole is placed on a re-
flecting surface, a coherent reflection from the backing will double the
emitted sound pressure, thus causing a 6dB increase in the SPL. In theo-
retical thermoacoustic models, it has been shown that if a thermophone
is directly in contact with its backing, some thermal losses will occur.
Part of the thermal energy used for the acoustic generation will be lost
by thermal conduction in the backing [1, 40, 76, 81]. To prevent this, it
is crucial to leave a large enough air gap between the sample and the
backing. This air gap should be longer than the thermal layer in which
the thermoacoustic generation occurs. It is also important to remember
that the thermal layer is inversely proportional to the square root of the
frequency, see Eq.(154). For instance, in air, the thermal layer length is
about ∼ 260µm at 100Hz and so ∼ 26µm at 10kHz. It is then interesting
to note that the size of the pores in 3D-C is a few hundred microns,
which means that the pore is large enough for the acoustic generation
to occur inside of it.

Figure 83: Acoustical frequency spectra of 3D-C radiating in free field and with
an acoustical backing.

In Fig.83, a sample radiating in free field was recorded, and then
an acrylic backing was added 4mm behind one side of 3D-C for com-
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parison. As predicted by acoustical theory, the SPL increased by 6dB
below 5kHz. Above 5kHz (not shown here), acoustic diffraction caused
by the size and thickness of the backing can be observed but is not
discussed here as it is a standard acoustic result not related to thermoa-
coustics. The thermophone performance can hence be improved by 6dB
by the simple addition of a backing. Nevertheless, this backing has to
be placed at a controlled distance: close enough for coherent reflections
but at least several hundred microns away from the sample in order to
avoid undesired losses by thermal conduction.

Compression of 3D-C Material

The two temperature model proposed in Guiraud et al. 2019 [2] in-
dicated that one method to improve the high frequency radiation of
a foam thermophone with a fixed thickness was to increase the num-
ber of discretized layers. This would increase the contact surface area
between 3D-C and the surrounding air, improving the energy transfer
between the two media. One way to investigate this property experi-
mentally would be to compare samples with the same thickness and
porosity but with a different layer density, a lower ppi.

(a) (b)

Figure 84: (a) Acoustic frequency spectra and (b) temperature dependence of
3D-C before and after mechanical compression, the thickness being
2mm and 1mm respectively as seen in Tables 10, 11

In Fig.80, the increased thickness compensated the increase in ppi,
the number of layers per millimetres did not change (Tables 10, 11).
Another way would be to mechanically compress a sample in order to
reduce its thickness while preserving its structure, thus artificially in-
creasing the layer density more significantly. This would also allow for
better comparison if the internal structure of 3D-C is fully preserved af-
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ter compression. The experimental results of this method are presented
in Fig.84 and are compared with theoretical results in which the num-
ber of layers N is the same in both cases but the thickness reduced, as
seen in Tables 10, 11. Figure 84a shows that at frequencies below 10kHz,
the sample acoustically performs similarly before and after compres-
sion, indicating that the internal structure of the sample was preserved
during the compression. This is also proven by the SEM micrograph of
the compressed 3D-C in Fig.85.

Figure 85: SEM micrograph of compressed 3D-C.

Figure 86: Transitional frequency depending on the theoretical number of lay-
ers in a 2mm sample.
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Above 10kHz, the maximum SPL of the compressed sample is 6dB
higher than the maximum SPL of the uncompressed one. The good
agreement with the experimental curves confirms that all branches in
3D-C were radiating and that the ppi had been artificially increased by a
factor of 2. Considering the theoretical data but ignoring high frequency
acoustic diffraction, it is observed that by increasing the number of dis-
cretized layers, the SPL is linearly proportional to the acoustic frequency
up to a higher frequency (slope of 20dB/decade up to 40kHz). On the
other hand, when there is insufficient energy transferred to the air (not
enough layers), the SPL would be proportional to the square root of the
frequency (10dB/decade increase for the uncompressed sample from
10k to 40kHz). For practical design of a thermophone device at a desig-
nated frequency, it would be interesting to know the minimum number
of layers required for maximum efficiency. Due to the complex matrix
form of the two temperature model, it is challenging to analytically de-
termine the frequency in which this change of behavior will occur (from
20 to 10dB/dec) based on the number of layers. A numerical trend can
however be observed in Fig.86.

Lastly, Fig.84b shows that the temperature will be higher in the com-
pressed sample for the same input power. This is easily explained as the
compression scales down the pore size and thus reduces the cooling ef-
fect of the air. The heat dissipates less easily and the temperature rises.

Comparison with literature results

Table 12: Comparison of different 3D-C synthesized via TCVD in the literature.
The normalized SPL at 1m and 1W is measured at 1kHz

Thermophone Substrate SPL (dB) at 1kHz Reference

36
Maximum from
Vesterinen [57],

See Eq.(435)
Freeze Dried 3D-C Glass 25 Fei 2015 [63]
Freeze Dried 3D-C Free-standing 25 Lee 2018 [129]

Natural Dried 3D-C Glass 15 This work
Natural Dried 3D-C Glass 12 Fei 2015 [63]

Table 12 compares the thermoacoustic response of 3D-C synthesized
from literature methods [63, 129]. Firstly, minimal research has been
conducted on 3D-C due to it being discovered in 2011 [160], which
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is more than 5 years later than CNTs [163]and graphene [164]. Thus,
this leaves room for more thorough understanding of 3D-C geometry.
Assuming that the heat capacity of the thermophone is negligible, a
maximum value for the pressure generated by thermoacoustics was es-
timated in the literature as found in Eq.(422) and is here rewritten [48,
57]

prms =
f

2
√
2CpT0

1

r
Pin. (435)

Eq.(435) depends only on parameters of the propagating medium and
was added in Table 12 as a comparison, assuming sound propagation
in air. Table 12 shows that 3D-C presented in this paper performed
10dB lower than its freeze-dried counterpart from literature, which had
been observed in Fei et al. work [63]. However, the naturally dried 3D-C
used by Fei et al. performs 3dB lower than the presented foam. This
is attributed to the improvement made to the TCVD technique, which
is reflected in the pristine quality of the 3D-C as seen in the Raman
spectroscopy with the absence of the defect peak at 1350cm−1 (Fig. 3c).
Overall 3D-C does not reach the maximum theoretical performance for
thermophones and different structures like CNTs have been shown to
display higher SPL compared to 3D-C. For instance, at 5kHz, 3D-C
is a thousand times less efficient than the theoretical maximum from
Eq.(435), which is also a thousand times less efficient than a traditional
loudspeaker. Additionally, while 3D-C is not as efficient as CNTs, its in-
ternal structure allows for a better cooling during operation, rendering
it less vulnerable to damage caused by overheating.

Eq.(435) is a maximum that was determined based on the assumption
of ideal physical properties of a thermophone and not on its geometry.
It would be interesting to utilize 3D-C with such flexible synthesis meth-
ods to investigate more complex and potentially more efficient thermo-
phones. Unlike CNTs which require the tedious extraction of its strands
from its synthesized forest webs [165], 3D-C’s simple synthesis method
make it a thermophone worth investigating and improving due to its
mass manufacturing capabilities [166].

In Fig.87, the uncompressed 3D-C used in Fig.84 is compared with
thermophones tested by Aliev et al. 2015 [48]. In Fig.87a, 3D-C performs
similarly as Indium Tin Oxide coated PolyAcrylonitrile Nanofibers (ITO
PAN), Multi Walled Carbon Nanotube (MWNT) forest and MWNT sponge,
but is 10 to 20dB below the performances of gold coated PAN, Graphene
sponge (GS) and Carbon Nanotube (CNT) Sheet, commonly agreed to
be one of the most efficient thermophones currently available. This is
confirmed by the proximity of the CNT sheet curve with the theoretical
optimal pressure of Eq.(435).
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(a) (b)

(c)

Figure 87: (a) Acoustic frequency, (b) power input and (c) temperature spectra
comparison of uncompressed 3D-C in Fig.84 with reported litera-
ture values.

Similar observations are drawn from Fig.87b, where the power spec-
trum are plotted, with the information provided by Aliev et al. 2015
[48] adapted to be compared with our measurements based on our
frequency spectra results. It is interesting to realize that the two tem-
perature model also has been positively confronted to Aliev’s data in
Guiraud et al. 2019 [2]. The data used in the model for 3D-C and GS are
very similar, with the main difference being that the theoretical specific
surface area of 3D-C is 10 times higher than GS, resulting in a propor-
tionally higher power density in GS. This is corroborated by Fig.87c in
which the temperatures of the samples are investigated. The tempera-
ture of Aliev’s sample are 10◦ to 40◦C hotter than the 3D-C. The very
high porosity of 3D-C improves the cooling properties of the sample
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making it less likely to break down due to high temperature induced
by high input power.

Comparing 3D-C with GS at the same temperature, there is a ratio of
two between the input powers. This difference would only explain a dif-
ference of 6dB between the frequency spectra curves and is not equal to
the ratio of 10 in the simulation. This difference could be attributed to
thermal losses in the 3D-C packaging, inherent sample properties’ dif-
ferences wrongly defined in the model, or the different 3D geometries.
A more thorough analysis should be conducted to define an optimal
geometry for a thermophone to further improve the efficiency of such
devices.

For instance, the acoustical efficiency for a spherical radiation can be
written as

ν =
4πr2p2rms
ρC0

. (436)

The presented frequency spectrum plots being normalized at 1m and
1W, a 10dB difference is equivalent to a loss in efficiency by a factor of
10. At 5kHz our 3D-C efficiency is 5.6× 10−7%, while a regular loud-
speaker has an efficiency ranging from 0.5% to 4%. Even CNT sheets
which are among the most efficient thermophones have efficiency of
only 1× 10−4% [48]. Thermophones still must be improved before be-
ing able to compete in the market with commercial loudspeakers for
audio purposes.

Conclusion

3D-C with varying parameters were synthesized and the acoustic per-
formances studied and compared to theoretical models and experiments
from the literature [2, 48, 63, 129]. Results show that there is good fit-
ting between the theoretical models and the experimental data. Namely
the effect of electrical input frequency, input power, material size, area
of electrical connection, path of electrical connections, material density,
material ppi and the presence of a backing on the acoustical perfor-
mance of the samples were investigated. This study provides insights
on how 3D-C should be used for efficient thermoacoustic effect, from
the synthesis, to the packaging, depending on the frequency range of
interest. Furthermore, it was shown that the real time hot point temper-
atures were good indicators of when the sample would decompose.

Despite its small size, the high porosity and pristine graphene qual-
ity of 3D-C allowed it to exhibit excellent acoustical performance. Its
unique geometry also allowed for more rapid cooling as compared to
other carbon nanostructured materials in literature. With a sufficiently
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large air gap between 3D-C and its backing, the addition of an acousti-
cal backing improved the sample’s acoustical performance. The electri-
cal contact surface should be as large as possible with electrical paths
which allow electrical current to pass through the entire sample for ef-
ficient use of the entire material and optimum heat resilience. In this
study, a line connection showed to have the best acoustical and thermal
performance.

It is within the author’s knowledge that measurements of very low
power input (below a few hundred milli-Watts) has not been investi-
gated in depth, as most power spectra in the literature are displayed in
a linear fashion [35, 48, 127]. More "low power" measurements have to
be performed with different experimental conditions to confirm the lin-
earity between temperature and input power at all power levels. While
3D-C is able to produce complex sound (music) with only AC signals
using a pre-processing method [143] (see Section 4.3.2 and Video S3 in
supplementary information of the third article [3]), more studies have
to be done to improve its efficiency before it can compete with regular
loudspeakers in the market of audible acoustic generation. Utilization
of 3D-C’s flexible synthesis could be a way to improve the efficiency
by geometrical means. Another idea to further exploit would be to use
thermophones mainly for high frequency applications (3D-C was tested
up to 150kHz and other thermophones up to a few MHz [40]) in order
to utilize the linearly increasing efficiency of thermophones with fre-
quency [57, 140].

4.2 airborne acoustic experiments performed at the iemn

We shall now present additional airborne measurements done in the
course of this work at the IEMN. Different samples than just 3D-C
are used and airborne experiments’ limitations are pushed. 3D-C will
be compared with other samples that are found from online suppliers
across the hearing range. An electronic board will then be designed to
allow recordings up to 200kHz in air before a laser interferometry ex-
periment is put into place to permit measurements up to a few MHz in
air.
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(a)

(b)

Figure 88: Airborne acoustical setup for hearing range measurement (20Hz to
20kHz). The schematic of the setup is found in (a) and the corre-
sponding real devices used are found in (b)

4.2.1 Experimental Setup and Measurements up to 20kHz

Experimental Setup

The experimental setup most wildly used throughout this thesis is de-
scribed in Fig.88a. The input signal fed to the thermophone is driven
by a waveform generator and an amplifier. The signal received by the
microphone is then recorded with a picoscope which also controls the
input voltage and tension delivered to the thermophone, allowing us to
easily regulate the input power. The impedance of the samples is not
mentioned as all presented plots are normalised with the simultane-
ously recorded input power. The details of the hardware used is found
in Fig.88b. Notably, if the B&K Microphone can record up to 140kHz,
the amplifier is an audio one and so is not reliable above 20kHz. Hence
the presented results in this section are only up to 20kHz.

Samples and Supports

A full list of the samples that have been used throughout the thesis is
found in Appendix C.1. This contains pictures and details about the
type of material, the type of supports, their size and their resistance
measured using different methods. This section will only mention the
samples used in the following analysis and noted with Roman numbers.
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(a) (b)

Figure 89: Pictures of the samples used in the following analysis displayed in
the same order as Fig.90a from top to bottom. Respectively: 110 ppi
carbon foam (XX), 100ppi graphene foam (XXVII), 100ppi carbon
(XI), graphite tube, graphene film super paper (XXIII) in (a) and
Flexible graphite film (XX), rigid graphite film (XIV), self supporting
multiwalled CNT (XXVI), vitreous carbon foam (XVIII) in (b).

Figures 89 show pictures of the supports and thermophones used in
the following analysis. They are arranged following the display order
of Fig.90 from most to least efficient. Our goal here to provide some
insight of the thermoacoustic capacities of some carbon based materials
available in the market but not designed for thermoacoustics. All sam-
ples are glued with silver paste on a copper board which is mounted
on a 3D printed plastic support designed using Onshape and printed
inhouse.

In order of efficiency, samples XX, XXVII and XI are all foam samples
made of carbon provided by our partners or bought to ACS Materials.
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There is then a carbon tube, a graphene sheet super paper (XXIII), a flex-
ible graphene film (XXI), a rigid graphene film (XIV), a self supporting
multiwall CNT (XXVI) and lastly a vitreous carbon foam (XVIII). All
those samples have been bought to the supplier Goodfellow.

Results and analysis

Comparison of multiple samples from various suppliers

We here compare samples found from technological suppliers, namely
ACS materials and Goodfellow. The frequency spectrum are seen in Fig.90a
and the power spectrum in Fig.90b. The acoustic antiresonance at 15kHz
is caused by the supports and will not be discussed as it is not relevant
for this work. Firstly it can be noticed that all samples do not perform
as well as samples made and used in CINTRA which displayed 15dB
at 1kHz for instance which is 30dB higher than a vitreous carbon foam
seen in Fig.90a (XVIII). However, due to the similar structure of vitreous
carbon foam compared with 3D-C and despite their low efficiency, it
can be noted that all of the experiments done in Section 4.1.2 have also
been performed with them. The associated analysis is then also valid
for those sample as all behaviors concurred even with with a lower effi-
ciency (higher HCPUA).

It is important to recall that all those sample were chosen because of
their carbon based structure but were not created with a thermoacoustic
purpose in mind. Nonetheless it is seen that the carbon foam from ACS
Material do perform better. Their thin microstructure and their quality
graphene make them the most similar to CINTRA’s 3D-C. Most other
samples, either had a poor thermal conductivity or a too high thermal
capacity thus affecting the HCPUA. It can be observed by looking at
the different slope in the frequency spectrum. For instance in Fig.90a
the vitreous carbon display an almost flat frequency response.

In Fig.90b all samples display a linear increase with frequency as
expected. A slight decrease at high input power of the sample XI could
be attributed to the static thermal raise inside the pores of the foam as
explained in Section 3.3.1.

Lastly it is seen in Fig.91 that some samples like the multi wall CNT
store way more energy that the other samples. This might indicate again
a higher heat capacity than needed. Its frequency slope in Fig.90a being
in between the carbon foam and the vitreous carbon, this would cor-
roborate this explanation. It is also seen that the 110ppi sample has the
highest SPL per temperature in Fig.91b. As explained with CINTRA’s
samples, its high ppi increases its cooling ability and thus is less prone
to overheating.
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(a) (b)

Figure 90: Temperature dependence of different carbon based samples from online suppliers. (a) Relationship
between temperature and input power and, (b) relationship between SPL and temperature.

(a) (b)

Figure 91: Frequency (a) and power spectrum (b) of different carbon based samples from online suppliers.
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Experimentally it can be noted that the graphite tube, though display-
ing relatively weak temperature in the thermal camera in Fig.91a, had a
high heat capacity due to its thickness and was very hot after a record-
ing thus preventing manipulation with it for some time in between mea-
surements. A very sharp increase in SPL starting at 2kHz is also seen
in Fig.90a. It is attributed to its cylindrical shape. Below 2kHz mostly
noise is recorded and the cylindrical shape creates a different acoustic
radiation no longer proportional to f as for an ideal plane wave but an
higher order. This would explains this sharp increase as seen in Section
3.2.1. Its weak radiation prevented further investigations.

Some other samples not shown here had a very high resistance and
restricted us from supplying a high enough power to record a ther-
moacoustic effect. The sample XXV for instance is made of graphene
aerogel was expected to present high thermoacoustic capabilities [48,
49, 73]. Some difference in the structure or the experimental setup po-
tentially raised the impedance and must have prevented us to observe
the desired phenomenon.

Comparison of same type samples

An emphasis is now be made regarding the discrepancies of efficiency
across similar samples. Figure 92 display the frequency and power spec-
trum of measurements done with ACS materials graphene foam samples.
They are similar material mounted on similar supports, thus explaining
the antiresonance at 4kHz and the similar spectrum. Nonetheless, de-
spite those similarities, a range of up to 10dB differences can be seen
between samples. The complex process of fabrication and the non regu-
lar microstructure between foams will create such discrepancies. Addi-
tionally, their brittleness makes them hard to manipulate and makes the
electrical connection process also difficult to perfectly reproduce thus
adding to creating those differences. This should be kept in mind while
doing any experiments with similarly prepared samples and expecting
similar results.

4.2.2 Experimental Setup and Measurements up to 200kHz

It was seen that measurements up to 20kHz can easily be done using an
audio amplifier. This was made possible as the average resistance of all
samples is very low (less than 5Ω, see table 15) and audio amplifier are
meant to work with low impedance drivers. This section aims to make
use of the high frequency range of the microphone (−1dB at 140kHz and
−3dB at 200kHz). The challenges, solutions and results of this endeavor
are here presented.
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(a) (b)

Figure 92: Frequency (a) and power spectrum at 5kHz (b) of similar carbon
based foams from ACS Materials on similar supports.

Experimental Setup

In order to make use of the high recording range of the microphone, a
high voltage amplifier (3MHz) with a high slew rate (2000V/µs) Falco
WMA-300 [167] was considered to replace the B&K amplifier. However,
the Falco amplifier was meant to work with a standard input impedance
of 50Ω. The thermophone low impedance created an impedance mis-
match that had to be corrected. Furthermore, due to the low efficiency
of the samples available at the time and of thermophones in general,
it is needed to be able to supply a high input power. The impedance
mismatch added to the high output current needed compelled us to
investigate a different method.

Figure 93: Electrical schematic of the summing amplifier with impedance
matching network. The summing amplifier AOP is a LF356N. An
OPA549 is used for impedance matching.
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(a) (b)

Figure 94: Pictures of the amplifier network board

(a)

(b)

Figure 95: Airborne acoustical setup for extended hearing range measurement
(20Hz to 200kHz). The schematic of the setup is found in (a) and the
corresponding real devices used are found in (b)

A handmade summing amplifier was designed in order to be able to
supply an AC/DC signal to the thermophone. The LF356N AOP was
chosen because of its convenient gain-bandwith product (5MHz) and
slew rate (9V/µs). A higher gain-bandwith product would have allowed
us to have more amplification but at the cost of lower slew rate or lower
maximum output current. The ideal AOP would have needed a high
gain-bandwidth product, a high slew rate and a high maximum output
current. As it does not exist the LF356N was chosen. This summing
amplifier network was coupled to an impedance matching network. The
AOP needed in this case had to be able to deliver high output power, to
have a slew rate high enough to follow the high frequencies, as well as a
high enough gain-bandwith product to not deteriorate the signal at high
frequencies. The AOP OPA549 was chosen and mounted on a radiator
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to prevent overheating. Its characteristic are 0.9MHz of gain-bandwith,
9V/µs of slew rate and 10/8 A maximum current output AC/DC. The
electrical schematic of the whole network is seen in Fig.93 and picture
are seen in Fig.94

The resulting acoustical setup used for measurements up to 200kHz
in air with the microphone is found in Fig.95. It has to be noted that
the new thermophone amplifier does not allow a control of the cur-
rent simultaneously as the voltage. It was experimentally observed that
when damaged (overheating, mechanical manipulation errors...) the re-
sistance of the samples could variate. Furthermore, depending on the
electrical connections used, variation could also been observed from
one measurement to another. Those changes are only of a few Ohms
but since thermophones natural impedance are very low and that they
are power driven, the choice of resistance can highly influence the nor-
malised results. In the following graphs the legend indicates the resis-
tance which was used to normalise the figures based on Table 15.

Results and Analysis

Figure 96 display frequency spectrum results made with the regular
20kHz experimental setup and the new one going to 200kHz. Good
agreement is seen between the measurement with both experimental
setups and a maximum of 5dB difference is observed with the sample
XXXII.

(a) (b)

Figure 96: Comparison of acoustic recording of same samples with different
experimental setup, one up to 20kHz and the other up to 200kHz.
Samples XXVIII, XXXII, XXXIV in (a) and XXIX and XX in (b).
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As explained while describing the experimental setup, the main record-
ing difference between the measurements up to 200kHz and the pre-
vious one up to 20kHz is that we are not able to record the current
supplied to the thermophone. The resistance is estimated from mea-
surements (multimeter, spectrum analyser and previous measurements,
see Table 15) and then used to deduce the input power for normalisa-
tion purposes. As a consequence, some over or under estimation can
occur and lead to those differences. This highlights the importance of
accurate impedance measurements as thermophones are power driven.
The resistance used in each case is seen in the legend of Fig.96. Oth-
erwise, acoustical resonances are observed but overall thermoacoustic
radiation is proven up to 200kHz. By rigorously designing the support,
thermophones could be used for accurate high frequency transducers.

4.2.3 Interferometry: Measurements up to 1MHz

Proof of effective radiation up to 200kHz has been made. We will now
try to prove the effective radiation of thermophones up to 1MHz in air.
This has been done before mainly by Daschewski and al.[40, 167] and
displayed a frequency spectrum up to 1MHz and a sharp associated
impulse response. This ultrasound radiation will now be proven for
graphene foam thermophones.

Experimental Setup

In order to measure up to 1MHz acoustic measurements in air, a vi-
brometer laser is focused on a light membrane. The sound will induce
vibration in the light membrane which will be measured by the vibrom-
eter. This displacement is then used to deduce the pressure and the SPL
[168, 169]. The experimental setup is seen in Fig.97a and the hardware
used in Fig.97b. At this stage the limiting parameter is the amplifier net-
work as the impedance matching network AOP gain-bandwith ratio is
0.9MHz. Otherwise nothing theoreticaly prevent measurements up to a
higher frequency.

Results

In Fig.98a the recorded signal is compared to the background noise
recorded by the frequency analyser. It is seen that the SPL level reaches
the background noise around 1MHz. Hence, in addition to improving
the amplifier network, the sample should also be more efficient for
higher frequency measurements.
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(a)

(b)

Figure 97: Airborne acoustical setup for ultrasonic measurement (up to a few
MHz). The schematic of the setup is found in (a) and the corre-
sponding real devices used are found in (b)

(a) (b)

Figure 98: (a) Recorded SPL of sample XXIX by laser interferometry and its
associated background noise. The measurements were performed
with various frequency range to allow a better resolution and to
lower the noise. (b) Comparison of frequency spectrum of sample
XXIX with all three acoustical setup.

The SPL is then normalised and compared to the previous measure-
ments methods. Despite the very different recording methods and hav-
ing once again estimated the resistance for normalisation purposes there
is a good consistency between measurements. This proves the effective
sound generation of carbon foam up to 1MHz. It can be noted that
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this method could be used for ultrasonic recordings underwater with a
similar setup [170].

Conclusion

In this section different samples from various suppliers and have been
tested in IEMN. Despite having no predestined used in thermoacoustic
use they all displayed some thermoacoustics capabilities. However, their
higher resistance, higher thermal capacities and lower thermal conduc-
tivity than graphene foam made by CINTRA made them less efficient
and of a lower interest.

High frequency airborne acoustic measurements issues have been
raised and solved with different experimental setup presented. In a
nutshell, measurements in the hearing range were done with an audio
amplifier but a summing amplifier setup coupled with an impedance
matching electrical system had to be used for measurements up to
200kHz. Lastly an interferometry laser experimental setup was put into
place and proved the effective radiation of carbon foam up to 1MHz.

4.3 additional airborne measurements from the iemn

This section presents additional experiments performed at the IEMN.
As previously mentioned, other experiments can also be found in Ap-
pendix C.2. For instance, DSC or AFM measurements [171] were per-
formed but are not mentioned here as they do not provide any relevant
insight. The interested reader is encouraged to read it if a more thor-
ough understanding of what could be done with a foam thermophone
is desired. Nevertheless, the experiments presented in this sections are
diverse and are a first step toward future different use and investiga-
tion regarding thermophones. A high frequency thermal camera is here
used to observe the temperature variations inside a branch of 3D-C. The
influence of the supplied input power on the spectral sound quality is
then investigated, and music is played on the samples using only an
audio amplifier. Lastly, a discussion is engaged regarding the use of
thermophones for underwater generation.
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4.3.1 High Frequency Thermal Camera

In this section, a high frequency thermal camera was used to quali-
tatively observe the high frequency temperature variation of a thermo-
phone. The goal of this experiment was to observe the temperature vari-
ation of a single branch of a foam. Figure 99 show pictures of the high
frequency thermal camera in the IEMN.

(a)

(b)

Figure 99: (a) Picture of the high frequency thermal camera at the IEMN. (b)
Zoomed imaged of the thermal camera under operation with 3D-C.

(a) (b)

Figure 100: (a) 3× 3mm thermal image of 3D-C under operation. (b) 1× 1mm
image on which a circle of diameter 40µm on the branch represent
the point in which the temperature is recorded at high rate.
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(a) (b)

(c) (d)

Figure 101: Spectral ((a) and (c)) and temporal ((b) and (d)) recording of the
temperature in the centered pixel of Fig.100b in different mode of
operation of 3D-C. A 4kHz AC electrical signal is supplied in (a),
(b) and a DC signal is added in (c), (d)

In order to have accurate measurements the camera needs to heat the
observed samples up to a certain temperature using the platform on
which the sample is place. However due to the support necessary for
the foam to work and the fact that it is a complex porous system this
calibration could not be made. Hence the presented results are only
qualitative ones.

The observed macroscopic thermal 3 × 3mm image of the thermal
camera is seen in Fig.100a. A zoom is then made to observe a 1× 1mm
window and the focus of a pixel of a 40µm pixel is made on one of the
branches, as observed at the center of Fig.100b.

The results are seen in Fig.101. Two different input signal are used, a
single AC signal at 4kHz and an ACDC signal at 4kHz as well. When
only AC signal is feed to the sample, the variation of temperature are
strongest at 2f as theoretically expected in Fig.101a. However the fun-
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damental and uneven harmonics appear as well. Those might be due
to some non linear behavior of the experimental setup as it was not
observed as sharply during acoustic measurements. Now feeding an
ACDC signal to the sample, the variation of temperature are strongest
at the fundamental but uneven harmonic are still observed in Fig.101c
and at a different intensity than before. Due to the limited amount of
time this experiment was performed, it is hard to conclude whether it
is due to a non linear behavior of the electrical supply or a non lin-
ear behavior of the thermoacoustic process that is not yet understood.
Nonetheless, it was proven that it is possible to observe the variation of
temperature in a single branch of thermophone.

4.3.2 Various Input Signals

In order to try and improve the acoustic sound generation, some varia-
tions on the electrical signal delivered to the thermophones have been
performed. Briefly we can mention that high frequency modulation
tests have been performed and proved to be effective despite a higher
input power strain on the sample. Additionally, a novel spectral analysis
with AC input signal has been implemented. The parameters, spectral
flatness measures (SFM), total harmonic distortion (THD) spectral cen-
troid (SC) and spectral spread (SS) were calculated as

SFM =

∑
n a

1
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n∑

n
an
n
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THD =
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2
n
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∑
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an
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∑
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2∑
n an

, (440)

with an the amplitude of the n harmonic fn. SFM and THD of ther-
mophones proved to be high (from 30 to 90%) and to increase with
frequency. The results presented in Appendix C.2.5, Fig.117 and 118
are quite disparate depending on the support used and so make it
hard to draw a meaningful conclusion. On the contrary, SC and SS
display more consistent results. For instance, the SC was found at the
second harmonic (three times the desired acoustic fundamental) across
the whole frequency range regardless of samples. Similarly, SS is consis-
tently found at 3f2 with f the fundamental. Still, caution is advised in
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the interpretation as strong harmonics are needed for the calculation of
those spectral parameters and due to the low performance of most sam-
ple the results should be repeated and improved before being definitive.
As mentioned in Section 1.3.4, an extensive literature review has already
been performed regarding various input signals and THD analysis [137,
138, 140], hence why those experiments have not been deepened.

Figure 102: Block diagram of the pre processing used to be able to playback
complex signals with only the use of a AC amplifier [143].

(a)

(b)

Figure 103: Airborne acoustical setup for musical measurement. The schematic
of the setup is found in (a) and the corresponding real devices used
are found in (b)
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An experiment based on a recently published paper by La Torraca
2019 [143] describes a pre processing implementation that allows ther-
mophone to play complex signals using only an AC generator. In fact,
as previously explained in order to play complex signals a DC compo-
nent was necessary in order for acoustic thermophone output to be co-
herent with the input electrical frequency. This implementation would
allow thermophone to be easily used with commonly available AC au-
dio amplifier. The block diagram describing this predistortion is found
in Fig.102 and was implemented in Matlab. The experimental setup
is found in Fig.103 and different .wav signals of various genre have
been played. Qualitatively speaking, human speech was accurately re-
produced and was understandable despite the supposedly high THD.
For music, one the main issue is that the signals loudness are meant to
be tension driven for traditional loudspeakers. Hence, when the music
went from a quiet part to a louder one it increased the input power
and put the sample at risk of overheating. All in all a punk rock song
was privileged during testing as the heavily compressed signal allowed
for an overall more stable input power throughout the song. Since mu-
sic reproduction was not a main goal of the thesis, pre processing ex-
periments were not continued. The idea of using a compressed signal
to keep the input power constant during the whole listening session
should nonetheless be remembered for future investigation.

Figure 104: Comparison of SPL of the same sample with different method of
input power.

A normalised frequency spectrum of a single thermophone driven
with different input power is found in Fig.104. Only AC, ACDC and the√

AC signal defined by Fig.102 are used. As expected from the literature,
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it is seen that the ACDC signal is more efficient than a single AC signal.
The

√
AC input signal is less efficient than traditional AC or ACDC

input but can be more easily used with audio amplifier.

4.3.3 Underwater Measurements

One of the goal of this work was to evaluate the technical capabilities of
thermophone for acoustic radiation underwater. Section 1.3.1 detailed
the state of the art of underwater thermophone. In a nutshell, thermo-
phone are encapsulated and while the flexible design and lightweight
is still used, the hard casing of the samples create a resonance prevent-
ing the use of the wide band and high frequency radiation process. The
goal is then to make 3D-C able to radiate underwater without obtaining
those resonances and while keeping the frequency spectrum specific to
thermophones

(a) (b)

Figure 105: 3D CAO model from Onshape of a one (a) or two sides (b) under-
water support. Shapes in dark blue represent the sample, in orange
the copper board, in red the rubber joint and in light blue and in
grey the 3D printed support.

It can be seen in Fig.109b in Annexe C.2.1 that 3D-C does not re-
sist underwater, hence the encapsulation is also necessary in our case
even considering the potential hydrophobicity of carbon. Nonetheless
the encapsulation is desired to be as soft as possible to avoid hard res-
onances. Another condition would be for the encapsulation to be able
to protect the sample in air and under pressure. Lastly, it was desired
to be able to easily use the encapsulation support for recording in air
and underwater to ease the comparison. A 3D design was created in or-
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der to solve those specific concerns as seen in Fig.105. More specifically
Fig.105a use a backing to improve the radiation in one direction and
Fig.105b is symmetrical without backing to radiate in both directions.
A thin lid (PET membrane 12µm thick for instance) would be place be-
tween the support (in light blue) and the top (light grey). A rubber joint
laser cutted (red) would be placed in between to assure the sealing. The
sample (dark blue) would be connected on copper boards which would
be connected to wired coming from the holes on the side of the support.
Those holes would be sealed with a glue gun.

Those supports were 3D printed and tested for water proofing with-
out success. In fact, even a high density of 3D printing would not allow
the support to be entirely water proof for a long period of time. A coat-
ing could be used on the support to help in this regards as well as
the use of specialised 3D printers. The design of those support were
stopped as it was agreed that our partner CINTRA would handle this
part of the experimental investigation.

Experiments were planned in a large water tank in Sofia Antipolis
at Thales Underwater System in March 2020 with the partner CINTRA.
They were canceled due to the COVID-19 outbreak. The only tests per-
formed were done in CINTRA in January 2020 in a small water tank
seen in Fig.73b. The SPL was about 26dB higher than in air which corre-
sponds to the difference in the reference pressure used (20µPa in air and
1µPa underwater). However, the hard casing of 3D-C used by CINTRA
and the small sized tank created many resonances making the results
hard to exploit. Nonetheless, sound was recorded underwater proving
the concept with 3D-C.

Conclusions

Throughout this chapter, the thermoacoustic capabilities of thermophones
and more specifically 3D-C have been extensively investigated. Section
4.1 presented various experiments made with 3D-C, in partnership with
CINTRA Singapore and the PhD student Ngoh Zhi Lin. Notably, aside
from some specific experiments related to the foam like structure of 3D-
C (compression, 2T model comparison...), the resulting analysis can in
fact be used to understand any thermophones. This analysis provides
insight on how to manipulate and use thermophones in an optimal way.
For instance, it is advised to have a large electrical connection to avoid
overheating or to use a backing at a distance to increase SPL.

Section 4.2 then presented complementary comparison made in IEMN
with thermophone found from online suppliers. Their lower efficiency
prevented groundbreaking results but showed a coherent analysis with
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3D-C samples. Using those samples, airborne measurements challenges
have been raised (microphone limitations, impedance matching issues...)
and were solved, thus allowing recording up to 200kHz using electron-
ics and up to 1MHz using laser interferometry.

Lastly some novel experiments performed in IEMN have been pre-
sented in Section 4.3. The high frequency temperature variations of a
single branch of a foam have been recorded, music have been played us-
ing only an audio amplifier and underwater sound radiation concerns
have been raised along with proposed solutions (mainly a new encap-
sulation design, presented with a soft sealing).

Additional characterisation experiments also performed in IEMN are
found in Appendix C.2 such as density measurements which prove the
instability of 3D-C underwater without protection. DSC measurements
have been tried without success due to the lightweight of 3D-C. Finally,
a 3D microtomography of the foam structure is also presented and AFM
experiments to try and observe the thermal layer in which the sound is
generated are described.





C O N C L U S I O N

In this work a thorough historical review of the literature of thermoa-
coustics and more specifically thermophones is found in Chapter 1. The
theoretical models for multilayer continuous medium for plane waves,
cylindrical waves and spherical waves generation as well as an innova-
tive 2T model are found in Chapter 2. Validation and analysis of those
theoretical models is found in Chapter 3 which provides a deep under-
standing of the thermoacoustic radiation phenomenon. Lastly, experi-
ments with various thermophones but mostly carbon based foam made
by CINTRA Singapore are described and analysed in Chapter 4.

Regarding the theoretical models, the 1T multilayer model for plane
waves permits to have a real flexibility in the design of thermophones
never reached before in the literature. This single model being able to
reproduced most configurations used in various published models. Its
cylindrical and spherical multilayers models counterpart provide a sim-
ilar advantage but of a lower interest. It was seen that those geometries
are mostly found at the microscale and the need for a complex mul-
tilayer model is not as clearly established. Nonetheless, those models
are the first to take the propagation in the solid into account and to
consider the viscosity of the media. Thus providing insights on internal
resonances never seen before. As for the 2T model, it was proven to
provide a better representation of the thermoacoustic radiation of thick
foam like materials as it does not overestimate HCPUA with the added
thickness. This idea of simultaneous existence of both solid an fluid was
never before applied to thermoacoustic generation.

The resulting study concurs with various theoretical and experimen-
tal analysis from the literature, where thermophones are used in a num-
ber of different configurations. By doing so, it helped increase the un-
derstanding of thermophones and how to improve them (analysis of ge-
ometry, design, parameters...). Novel situations were also investigated
using the flexibility of our models. The influence of the thickness of the
hydrophobic layer on a sample underwater was studied for instance,
which could be later confronted with real life measurements.

Furthermore, airborne measurements have proven the effective sound
generation of carbon foams up to 1MHz using various experimental se-
tups. Difficulties in the handling of such samples have been raised (sup-
port, connection, experimental setup...) and could be used as a guide-
line for future experimental users. All things considered, foam like ge-
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ometry present the very interesting property of having a high specific
surface area, allowing a large contact surface to avoid overheating and
to permit the generation of the thermoacoustic effect on a large scale. In
spite of that, as of today its performances does not reach the theoretical
maximum efficiency attained only by CNT forests. The improvement
made on the structure does not compensate for the low efficiency of
the sample. However, it is hoped that this thesis could raise awareness
regarding the interest of creating novel structures with a thermoacous-
tic purpose in mind, in the hope to improve sound generation from
thermophones.

As for the perspectives, it would be relevant in the near future to fur-
ther reflect on how to improve thermoacoustic underwater generation
and to investigate a soft encapsulation design that best preserves their
wideband properties. Additionally the use of an AFM seems the most
promising way to record what is thermally happening at a microscale of
the thermophone and to measure what is theoretically expected. It has
already been briefly tested with CNT [171] but it should be improved
and tested with 3D-C and other samples as well. From an application
point of view, other potential research leads could be to integrate ther-
mophones within a loudspeaker to help high frequency radiations. Oth-
erwise, the flexible geometry could help in the design of new patterns
for sound transducers (to create an acoustic vortex for acoustical tweez-
ers for instance). Reconfigurable arrays of arbitrary distributed sound
sources could also be easily designed and tested to be locally excited,
with or without delay, using photothermoacoustics.

All in all, thermophones are promising alternative for sound gener-
ation. While their current low efficiencies prevent them from replac-
ing commercial loudspeakers, their non-mechanical sound generation
mechanism induces a wide frequency band of operating range. In addi-
tion, their lightweight, flexible design, small size and low cost of produc-
tion make them a novel alternative for sonar applications or ultrasonic
transducers. Particularly, 3D-C has an advantage over CNTs for large
scale manufacturing as CNTs require a tedious process of using a nano-
manipulator to acquire its strands from CNT forests [165]. The ability
of 3D-C and thermophone at large to emit sound thermoacoustically is
hence worth investigating.
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A
T H E O R E T I C A L A P P E N D I X

a.1 continuum medium mechanics and balance equations

The balance equations used to describe the thermoacoustic process will
be here build from scratch. This whole section constructs the basis on
which the theoretical model are based on. The interested reader should
read this appendix before Section 2.

a.1.1 Lagrangian and Eulerian Formalisms

The motion of a region of a material is described with respect to a refer-
ence configuration Ω0 ⊂ R3. During the motion, the region is deformed
toΩt ⊂ R3, when t is time. The current coordinates ~x are therefore writ-
ten in terms of the reference coordinate ~X as

~X ∈ Ω0 → ~x = Ft(~X) ∈ Ωt, (441)

where Ft is a map (function) for anytime t. The couple (~X, t) is named
Lagrangian coordinates, while the couple (~x, t) is named Eulerian coor-
dinates. The inverse of Eq.(441) can be written as

~x ∈ Ωt → ~X = F−1
t (~x) ∈ Ω0. (442)

The deformation between current and reference configurations is de-
scribed through the deformation gradient

F̂t(~X, t) = ~∇~X
~Ft(~X, t), (443)

or Fi,k =
∂xi
∂Xk

∀i,k.

We can also define the deformation gradient of the inverse function

Ĝt(~x, t) = ~∇~x
~Ft

−1
(~x, t), (444)

or Gk,i =
∂Xk
∂xi

∀i,k.

We assume that the determinants of Ĝ and F̂ exist at each point and are
positive. The physical significance of these assumption is that the ma-
terial of the body cannot penetrate itself, and that material occupying
a finite non-zero volume in the reference configuration cannot be com-
pressed to a point or expanded to infinite volume during the motion.
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Of course, Ĝ and F̂ are related by the relations Ĝ(Ft(~X), t) = F̂
−1
(~X, t)

and F̂(F−1
t (~x), t) = Ĝ

−1
(~x, t).

The velocity and acceleration fields, ~v and ~a respectively, describing
the particle starting at ~X, are given by (Lagrangian description):

~v(~X, t) =
∂~x

∂t
(~X, t), (445)

~a(~X, t) =
∂2~x

∂t2
(~X, t). (446)

When we consider the Eulerian variables we get

~v(~x, t) =
∂~x

∂t
(F−1
t (~x), t), (447)

~a(~x, t) =
∂2~x

∂t2
(F−1
t (~x), t). (448)

Any scalar, vector or tensor field can be regarded as a function of
(~X, t) or (~x, t) when the motion ~x = Ft(~X, t) is given. If we have φ(~x, t)
a random field, we can also write

Φ(~X, t) = φ(Ft(~X), t), (449)

where φ is the Eulerian field and Φ is the Lagrangian one. The deriva-
tive leads to

∂Φ

∂t
=
∂φ

∂t
+
∂φ

∂~x
· ∂~x
∂t

=
∂φ

∂t
+
∂φ

∂~x
·~v. (450)

Often, we use the same symbol for Φ and φ and we assume two dif-
ferent symbols for the derivatives. In particular we define φ̇ = ∂Φ

∂t , also
written φ̇ = dφ

dt , for the Lagrangian or material derivative and ∂φ
∂t for

the Eulerian or Spatial derivative. Eq.(450) can then be rewritten

φ̇ =
∂φ

∂t
+
∂φ

∂~x
·~v. (451)

It is also useful to define the velocity gradient

L̂ =
∂~v

∂~x
, (452)

with components Li,j =
∂vi
∂xj

.
It satisfies the relation

˙̂F = L̂F̂, (453)
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which can be proved as follows

˙̂F =
∂

∂t

∂

∂~X
Ft(~X),

=
∂

∂~X

∂

∂t
Ft(~X),

=
∂~v

∂~X
,

=
∂~v

∂~x

∂~x

∂~X
,

= L̂F̂.

Eq.(453) can be inverted like

dF̂
−1

dt
= −ĜL̂, (454)

This holds true since, with F̂
−1

F̂ = Î, we have d
dt(F̂

−1
F̂) = 0 or dF̂−1

dt F̂ +

F̂
−1 dF̂

dt = 0, from which (dF̂−1

dt ) = −F̂
−1 dF̂

dt F̂
−1

and so we can write

dF̂
dt

−1

= −F̂
−1dF̂
dt

F̂
−1

,

= −F̂
−1

L̂F̂F̂
−1

,

= −F̂
−1

L̂,

= −ĜL̂.

Here we clearly written the differential operator d/dt in order to avoid
the possible unclear interpretation originated by the combination with
the inverse matrix operation.

a.1.2 Reynolds Theorem

We consider a subset Pt ⊂ Ωt, which is the time deformed version of
P0 ⊂ Ω0. We describe a property useful to calculate the time derivative
of an arbitrary volume integral. We consider a scalar field φ and we
obtain

d

dt

∫
Pt

φd~x =
d

dt

∫
P0

φJd~X, (455)

where J = det( ∂~x
∂~X

) = det(F̂).
We elaborate Eq.(455) as

d

dt

∫
Pt

φd~x =

∫
P0

d

dt
(φJ)d~X =

∫
P0

(φ̇J+φJ̇)d~X, (456)
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where φ̇ and J̇ are material derivatives. J̇ can be calculated as

d

dt
det F = det F̂ tr( ˙̂FF̂

−1
). (457)

From Eq.(453) we get ˙̂FF̂
−1

= L̂ so

J̇ = J tr(L̂) = J~∇~x ·~v. (458)

Therefore

d

dt

∫
Pt

φd~x =

∫
P0

(φ̇+φ~∇~x ·~v)Jd~X,

=

∫
Pt

(φ̇+φ~∇~x ·~v)d~x. (459)

Since φ̇ = ∂φ
∂t +

∂φ
∂~x ·~v we have

d

dt

∫
Pt

φd~x =

∫
Pt

(
∂φ

∂t
+
∂φ

∂~x
·~v+φ~∇~x ·~v

)
d~x. (460)

Finally

d

dt

∫
Pt

φd~x =

∫
Pt

[
∂φ

∂t
+ ~∇~x · (φ~v)

]
d~x. (461)

This property is the so called Reynolds theorem or transport theorem.
If φ = 1 we obtainReynolds Theo-

rem, Transport
Theorem

d

dt

∫
Pt

φd~x =

∫
Pt

~∇~x ·~v d~x. (462)

a.1.3 Stress

In continuum mechanics two systems of force acting on a given region
must be considered:

• The body forces: They depend on the external fields acting on Pt
and are defined as d~Fv = ~b(~x)d~x being d~Fv the force on the volume
d~x centered at ~x. The quantity ~b(~x) is a body force density.

• The surface forces: They describe the interaction between neigh-
boring portion of deformable bodies. they are the subject of the
present section.
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Figure 106: Cauchy tetrahedron on a generic point P

Surface forces are defined as d~Fs = ~f(~x, ~n, t)dS where:

• d~Fs is the force applied by the region where the unit vector ~n is
directed toward the other region

• ~x is the point where the surface dS with normal unit vector ~n is
located

• ~f is a density of force for unit of area

• t is the time

The Cauchy theorem (1827) states that

~f(~x, ~n, t) = T̂(~x, t)~n, (463)

where T̂ is the so called Cauchy stress tensor. Eq.(463) is proven by
considering a tetrahedron ABCP as seen in Fig.106 with P ≡ ~x, ~n⊥ABC,
||~n|| = 1, ~ei ‖ ~xi and ||~ei|| = 1.

The Newton equation for the motion of the material within ABCP is
given by ~bdV + ~fndAn + ~f1dA1 + ~f2dA2 + ~f3dA3 = ρ~adV where ~f1, ~f2,
~f3 and ~fn are the forces acting on dA1, dA2, dA3, and dAn respectively,
~a is the acceleration and dV is the volume. We have that~fn = ~f(~n,~x, t)

~fk = ~f(−~ek,~x, t) ∀k = 1, 2, 3
(464)

and that dAi = nidAn. Also dV = 1
3dAndh where dh = dist(P,dAn).

From now on we will use for simplicity the Einstein notation that
implies the summation over a set of indexed terms. Using this notation Einstein nota-

tion
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here with the sum over j, we obtain

~f(~n,~x, t) + ~f(−~ej,~x, t)nj +
1

3
~bdh =

1

3
ρ~adh. (465)

If dh→ 0 we get

~f(~n,~x, t) = −~f(−~ej,~x, t)nj. (466)

If ~n = ~ei we simply obtain an equivalent to the third law for the surface
force

~f(~ei,~x, t) = −~f(−~ei,~x, t). (467)

Eq.(467) can then be substituted to Eq.(466) giving

~f(~n,~x, t) = ~f(~ej,~x, t)nj. (468)

This shows that the surface force ~f on a given plane is determined by the
three surface forces on the three coordinate plane. This can be expressed
in components as

fi(~n,~x, t) = ~f(~ej,~x, t) ·~einj = Tijnj, (469)

where

Tij = ~f(~ej,~x, t) · ~ei, (470)

is the stress tensor. It represents the pressure applied on the j-th surfaceStress Tensor
along the i-th direction.

a.1.4 Continuity Equation

The continuity equation is the first balance equation of continuum me-
chanics. It concerns the conservation of mass. With ρ the density of the
material, the total mass within Pt is

n(Pt) =

∫
Pt

ρ(~x, t)d~x. (471)

The mass conservation implies

d

dt

∫
Pt

ρ(~x, t)d~x = 0. (472)

By using the transport theorem we get∫
Pt

(ρ̇+ ρ~∇~x ·~v)d~x =
∫
Pt

(
∂ρ

∂t
+ ~∇~x · (ρ~v))d~x = 0. (473)
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We have therefore two forms of the continuity equations Continuity
Equation

ρ̇+ ρ~∇~x ·~v = 0, (474)
∂ρ

∂t
+ ~∇~x · (ρ~v) = 0. (475)

Eq.(474) being in the Lagrangian description of the continuity equation
and Eq.(475) being the Eulerian one.

It is important to observe the validity of the property

d

dt

∫
Pt

ρψd~x =

∫
Pt

(ρ̇ψ+ ρψ̇+ ρψ~∇~x ·~v)d~x,

=

∫
Pt

(−ρψ~∇~x ·~v+ ρψ̇+ ρψ~∇~x ·~v)d~x,

=

∫
Pt

ρψ̇d~x, (476)

for any field ψ thanks to Eq.(474). It means that in d
dt

∫
Pt
ρψd~x the time

derivatives can be applied directly to the function ψ (as a Lagrangian
derivative).

a.1.5 Linear Momentum Balance

We know that the resultant of the external forces is equal to the rate of
change of the total linear momentum of the system

d~P

dt
= ~F. (477)

For the region Pt we have

d

dt

∫
Pt

ρ~vd~x =

∫
∂Pt

T̂~ndS+

∫
Pt

~bd~x, (478)

when we decomposed the external forces in surfaces forces and body
forces. The property shown in Eq.(476) and the divergence theorem Divergence Theo-

rem∫
∂Pt

T̂~ndS =

∫
Pt

~∇~x · T̂d~x, (479)

deliver∫
Pt

ρ~̇vd~x =

∫
Pt

~∇~x · T̂d~x+
∫
Pt

~bd~x. (480)
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Since Pt is arbitrary we must have

~∇~x · T̂ + ~b = ρ~̇v. (481)

In component we get

∂Tji

∂xi
+ bj = ρv̇j. (482)

Since ~̇v = ∂~v
∂t +

∂~v
∂~x ·~v we can write Eq.(481) in the explicit Eulerian form

ρ
∂~v

∂t
+ ρ

∂~v

∂~x
·~v = ~∇~x · T̂ + ~b, (483)

being the linear momentum balance.Linear Momen-
tum Balance

a.1.6 Angular Momentum Balance

By taking moments about a fixed point, we can show that the resultant
moment of the external forces ~M is equal to the rate of change of the
total angular momentum ~L

d~L

dt
= ~M, (484)

or when applied to the region Pt

d

dt

∫
Pt

~x∧ ρ~v d~x =

∫
∂Pt

~x∧ (T̂~n) dS+

∫
Pt

~x∧ ~b d~x, (485)

or

d

dt

∫
Pt

xhρvkηhkj~ej d~x =

∫
∂Pt

xhTkpnpηhkj~ej dS+

∫
Pt

xhbkηhkj~ej d~x, (486)

with ηhkj being the Levi-Civita symbol. By applying the divergence the-
orem,∫
Pt

xhρv̇kηhkj~ej d~x =

∫
Pt

∂

∂xp
(xhTkp)ηhkj~ej d~x+

∫
Pt

xhbkηhkj~ej d~x. (487)

We now simplify knowing ∂xh
∂xp

= δhp (δ being the Kronecker symbol)

∫
Pt

xhρv̇kηhkj~ej d~x =

∫
Pt

[
Tkh + xh

∂Tkp

∂xp

]
ηhkj~ej d~x+

∫
Pt

xhbkηhkj~ej d~x.

(488)
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Finally∫
Pt

[
xh

(
ρv̇k −

∂Tkp

∂xp
− bk

)
− Tkh

]
ηhkj~ej d~x = 0. (489)

By using the balance of linear momentum we obtain
∫
Pt
Tkhηhkj~ej d~x =

0 or equivalently Tkhηhkj = 0 ∀j. This finally leads to

Tij = Tji. (490)

The symmetry of the Cauchy Stress Tensor T̂ represents the balance of Angular Mo-
mentum Balanceangular momentum.

a.1.7 Energy Balance

From the linear momentum balance in the form of Eq.(482) multiplied
by vj we get

ρvjv̇j = vj
∂Tji

∂xi
+ bjvj, (491)

and

ρvjv̇j =
∂

∂xi
(vjTji) −

∂vj

∂xi
Tji + bjvj. (492)

Let us decomposed Lji =
∂vj
∂xi

in symmetric and antisymmetric part Lji =
Dji +Wji with Dji = 1

2(Lji + Lij) and Wji =
1
2(Lji − Lij).

We have that LjiTji = DjiTj +WjiTj where WjiTji = 0 since Ŵ is anti-
symmetric. Indeed, WjiTji =WjiTij due to Cauchy symmetry of Tij, and
= −WijTij due to the antisymmetry of Wij, then = −WjiTji by chang-
ing the order of the indexes. This leads to WjiTji = −WjiTji = 0. By
integrating Eq.(492) over Pt and using the decomposition of the velocity
gradient stated above, we get∫

Pt

∂

∂xi
(vjTji)d~x+

∫
Pt

bjvjd~x =

∫
Pt

TjiDjid~x+

∫
Pt

ρvjv̇jd~x, (493)

and by using the transport and divergence theorems we finally obtain

d

dt

∫
Pt

1

2
ρv2dV +

∫
Pt

TjiDjidV =

∫
∂Pt

vjTjinidS+

∫
Pt

bjvjdV . (494)

Global Balance
of Mechanical
Energies

Eq.(494) represents the global balance of purely mechanical energies.
The left hand side can be viewed as the rate of change of the total me-
chanical energy dκ

dt +
dυ
dt with κ being the kinetic energy and υ the po-

tential energy. The right hand side can be considered as the total power
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entering the region Pt (velocity time force over surface and volume).
This conceptual scheme is correct from a purely mechanical point of
view however the more general energy balance must consider the ther-
mal processes occurring in the real materials.

In this more general context, the potential mechanical energy should
be substituted with the interned energy (considering all energy stored
in the region Pt but for the macroscopic kinetic energy κ) and the power
entering the system should also consider the heat supplied to Pt. The
new balance can be written as follows

d

dt

∫
Pt

ρ(e+
1

2
v2)dV =

∫
∂Pt

vjTjini dS+

∫
Pt

bjvj dV−

∫
∂Pt

qjnj dS+

∫
Pt

Q0 dV ,

(495)

the first two terms on the right hand side being associated to the me-
chanical power. Here e is the internal energy density or specific internal
energy [J.kg−1], ~q · ~n is the heat flowing out of the surface ∂Pt [W.m−2]
and Q0 is the heat density supplied to Pt [W.m−3].

This equation can be elaborated to obtain a local form∫
Pt

ρ(ė + vjv̇j)dV =

∫
Pt

[
∂

∂xi
(vjTji) + bjvj −

∂qj

∂xj
+Q0

]
dV ,

=

∫
Pt

[
DjiTji + vj

∂Tji

∂xi
−
∂qj

∂xj
+ bjvj +Q0

]
dV .

(496)

Or equivalently∫
Pt

ρėdV =

∫
Pt

[
DjiTji + vj(

∂Tji

∂xi
+ bj − ρv̇j) −

∂qj

∂xj
+Q0

]
dV . (497)

By using the balance of the linear momentum, with : being the Frobe-
nius inner product (here used for only real components), we get

ρė = TjiDji −
∂qj

∂xj
+Q0, (498)

or ρė = T̂ : D̂− ~∇ · ~q+Q0. (499)

Energy Balance
Equation This is the most general energy balance for a continuum medium,

when e is the internal energy density as defined in classical thermody-
namics.
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a.1.8 Entropy Balance

From classical thermodynamics, we know that for quasi-static or re-
versible transformation we have dQ = TdS ⇔ dS = dQ

T , where dQ
represents the heat quantity exchanged, T the temperature and S the
entropy. In this case the first principle can be written as

dE = dQ+ dL = TdS+ dL, (500)

where E is the total internal energy and L is the macroscopic work done
on the system. For arbitrarily evolving or irreversible transformation we
have dS > dS

T , which represents the second principle. It can be alterna-
tively stated by writing

dS =
dQ

T
+ Σs (501)

where Σs represent the entropy production with Σs > 0. For the con-
tinuum medium we introduce the entropy density s for unit of mass
[J/(K.kg)] and the entropy production density σs for unit of volume
and time [J/(K.m3.s)]. We can then write

d

dt

∫
Pt

ρs dV =

∫
∂Pt

−
~q · ~n
T

dS+

∫
Pt

Q0
T
dV +

∫
Pt

σs dV . (502)

While the first term in the right hand side represents the heat entering
the region Pt due to the heat flux ~q, the second term represent the heat
entering Pt because of the heat density Q0 locally supplied. The sum of
these two terms corresponds to the first term in the right hand side of
Eq.(501). Eq.(502) is then completely equivalent to Eq.(501). Transport
and divergence theorems then lead to∫

Pt

ρṡ dV =

∫
Pt

−~∇ · (~q
T
) dV +

∫
Pt

Q0
T
dV +

∫
Pt

σs dV . (503)

In local form we get

ρṡ = −~∇ · (~q
T
) +

Q0
T

+ σs, σs > 0. (504)

Entropy Bal-
ance Equation

The balance equations needed for the description of the thermoacous-
tic principle have been laid down. The reader who wanted to under-
stand the creation of those equation can now go back to Section 2. The
following sections A.2 and A.3 bring insights on some general proper-
ties of the entropy production terms.
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a.2 entropy production

In general the entropy production can be written in the bilinear form

σs =
∑
i

JiXi > 0, (505)

where Ji and Wi can be scalars, vectors or tensors. The quantities Xi are
the gradients within the systems and the Ji are their effects. The linear
response is described by

Ji =
∑
j

LijXj, (506)

and the entropy production becomes

σs =
∑
i

∑
j

LijXiXj > 0, (507)

where Lij must be positive definite.

There are two main properties of coefficients Lij: the Curie principle
and the Onsager reciprocity relation.

a.2.1 Curie Principle (1894)

The fluxes Ji and the fixed Xj of different tensor order can not be cou-
pled in an isotropic medium. If we consider for example vectors and
tensor of order two (matrices), their coupling can be realized only by
tensor of order three, which are zero for isotropic symmetry. In general
all tensors Lij must have the symmetry properties of the specific crystal
symmetry of the anisotropic medium considered. For this reason, an
isotropic fluid heat transfer cannot be coupled to viscosity.

a.2.2 Onsager Reciprocity Relations (1931)

We always have

Lij = Lji. (508)

It means that the couplings between different dissipative processes are
always reciprocal. The proof of this statement can be done within statis-
tical mechanics.
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a.3 tensors

a.3.1 Constitutive Equation

Because of the symmetry of T̂ , the elastic stress-strain relation is defined
by six relations of the form Tij = f({εij}) which are uniquely solvable
for each different component of the strain. A thermo-elastic material
is one whose state of stress depends on the present strain and on the
temperature (or entropy). In what follows we shall always assume that
the temperature (or entropy) is constant so that, effectively, we have a
pure stress-strain relationship.

For most materials the response is linear if the strain is small. This
corresponds to the generalized Hooke’s law which has the following
general form

Tij = Cijkhεkh, (509)

where Cijkh are constants (for homogeneous materials). Eq.(509) is of
general validity, including all possible crystalline symmetries or, in other
words, any kind of anisotropy. The fourth-rank tensor (with 81 compo-
nents) of the elastic constants satisfies the following symmetry rules:

• Symmetry in the first pair of indices: since Tij = Tji we have

Cijkh = Cjikh. (510)

• Symmetry in the last pair of indices: since εkh = εhk we have

Cijkh = Cijhk. (511)

• Symmetry between the first pair and the last pair of indices:

Cijkh = Ckhij. (512)

This last result is easily proved if we suppose that an elastic energy den-
sity U = U(ε̂) exists, being dependent only on the state of strain. From
the energy density we derive the constitutive relation Tij =

∂U(ε̂)
∂εij

(just
think about the case of the one-dimensional harmonic spring, where
U = 1

2kx
2 and F = kx). Drawing a comparison between the energy

based constitutive relation Tij =
∂U(ε̂)
∂εij

and Eq.(509) we simply obtain

Cijkh =
∂Tij

∂εkh
=
∂2U(ε̂)

∂εkh∂εij
. (513)

The symmetry of the second order derivative directly leads to Eq.(512).



246 theoretical appendix

According to the above universal symmetry properties, Cijkh has at
most 21 independent components. Further reductions of the number
of independent elastic constants depend upon the possible crystalline
symmetry of the material body.

The linear relation can be written in tensor compact form T̂ = Ĉε̂,
where the elastic tensor Ĉ is called stiffness tensor. We also introduce the
inverse relation ε̂ = D̂ T̂ with D̂ = Ĉ−1. The new tensor D̂ is called
compliance tensor.

a.3.2 The Isotropic and Homogeneous Elastic Body

The paradigmatic system investigated by elasticity theory is the linear,
isotropic and homogeneous medium. The homogeneity property im-
plies that the elastic behavior of the medium is the same in all its points:
the stiffness and the compliance tensors are constant everywhere in the
medium. The isotropy property implies that the mechanical response
does not depend on the direction considered: stiffness or compliance
tensors are invariant under arbitrary rotations. For a linear, isotropic
and homogeneous body we will prove that only two elastic moduli are
independent. They are typically called Lamé coefficients and they are
referred to as µ (shear modulus) and λ, respectively. Alternatively, we
may use the Young modulus E and the Poisson ratio ν. A bulk modulus
B can be used as well.

Let us now derive the constitutive equation for a linear, isotropic and
homogeneous elastic body. Because the stress tensor T̂ is symmetric,
we can select a suitable reference frame where T̂ is diagonal. In this
reference frame we refer to T̂∗ as the diagonal representation of T̂ , where
the only components different from zero are T∗11, T

∗
22 and T∗33. To begin

we consider the case of a uniaxial traction, i.e., an elongation, along the
x1 axis, which means T∗11 6= 0, T∗22 = 0 and T∗33 = 0. For most materials the
experimental observation shows that the body will be elongated along
the direction x1, while it shrinks in the plane (x2, x3). We can formalize
this response by writing the linear relations

ε∗11 = +
1

E
T∗11,

ε∗22 = −
ν

E
T∗11,

ε∗33 = −
ν

E
T∗11,

ε∗12 = ε
∗
23 = ε

∗
31 = 0. (514)

The Young modulus E describes the length variation along the direction
x1 while the Poisson ratio ν describes the contractions in the two per-
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pendicular directions. Of course, in these conditions we can not observe
shear deformations.

When the diagonal stress T̂∗ assumes triaxial character Eq.(514) can
be easily generalized as

ε∗11 =
1

E
[T∗11 − ν (T

∗
22 + T

∗
33)] ,

ε∗22 =
1

E
[T∗22 − ν (T

∗
11 + T

∗
33)] ,

ε∗33 =
1

E
[T∗33 − ν (T

∗
22 + T

∗
11)] ,

ε∗12 = ε
∗
23 = ε

∗
31 = 0. (515)

The constitutive relations given in Eq.(515) are valid only in the refer-
ence frame where the stress tensor is diagonal. We remark that Eq.(515)
can be written in the following more compact form

ε̂∗ =
1

E

[
(1+ ν)T̂∗ − νÎ tr

(
T̂∗
)]

. (516)

If we make an arbitrary change of reference frame by means of a rota-
tion matrix R̂, the stress tensor T̂∗ is transformed into T̂ and the strain
tensor ε̂∗ is transformed into ε̂ (ε̂ = R̂T ε̂∗R̂ and T̂ = R̂T T̂∗R̂). By means
of such transformations, we obtain the isotropic constitutive equation
in an arbitrary reference frame in the form

ε̂ =
1

E

[
(1+ ν)T̂ − νÎ tr

(
T̂
)]

. (517)

This is in fact the constitutive equation of a linear, isotropic and homo-
geneous elastic material. Eq.(517) can be inverted, thus obtaining the
stress tensor in terms of the strain tensor

T̂ =
E

1+ ν
ε̂+

νE

(1+ ν)(1− 2ν)
Î tr (ε̂) . (518)

We now introduce the Lamé coefficients µ0 and λ0 defined by the
following relations

µ0 =
E

2(1+ ν)
, λ0 =

νE

(1+ ν)(1− 2ν)
, (519)

which, inserted into Eq.(518), provide the constitutive equation in its
most popular form

T̂ = 2µ0ε̂+ λ0Î tr(ε̂). (520)

Similarly, Eq.(517) can be also written in terms of the Lamé coefficients

ε̂ =
1

2µ0
T̂ −

λ

2µ0(2µ0 + 3λ0)
Î tr(T̂). (521)
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In order to introduce the bulk modulus B, we consider an hydrostatic
stress described by the tensor

T̂ =

 σ 0 0

0 σ 0

0 0 σ

 . (522)

By means of Eq.(521) we easily obtain the corresponding state of strain

ε̂ =
1

3

1

λ0 +
2
3µ0

σÎ. (523)

This simple result allows us to define the bulk modulus B as

B = λ0 +
2

3
µ0. (524)

Therefore, the stress-strain relation in hydrostatic condition can be sum-
marized as ε̂ = 1

3BσÎ where σ represents the (scalar) pressure applied
to the system. The further relation tr(ε̂) = σ

B has an important physi-
cal interpretation: it describes the local volumetric variation under the
assumption of hydrostatic stress.

Table 13: Relations among the different elastic moduli.

(λ0,µ0) (B,µ0) (µ0,ν) (E,ν) (E,µ0)

λ0 B− 2
3µ0

2µ0ν
1−2ν

νE
(1+ν)(1−2ν)

µ0(E−2µ0)
3µ0−E

µ0
E

2(1+ν)

B 3λ0+2µ0
3

2µ0(1+ν)
3(1−2ν)

E
3(1−2ν)

Eµ0
3(3µ0−E)

E
µ0(3λ0+2µ0)
λ0+µ0

9Bµ0
3B+µ0

2(1+ ν)µ0

ν λ0
2(λ0+µ0)

3B−2µ0
2(3B+µ0)

E−2µ0
2µ0
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To conclude, we observe that the stress-strain relation (Hooke’s law)
for an isotropic elastic medium can be written in terms of any two inde-
pendent material constants, chosen in the set λ0,µ0,B,E,ν. In Table 13
one can find all the possible conversions among the above defined elas-
tic moduli. The elastic moduli E, λ0, µ0 and B are measured in Pa while
the Poisson ratio ν is dimensionless being defined as a ratio between
deformations.

a.4 polar decomposition theory proof

We prove the Cauchy polar decomposition theorem by introducing the
right Cauchy tensor Ĉ = F̂T F̂, for which Ĉ−1 = ĜĜT and d~x · d~y =

d~X · Ĉd~Y. Ĉ is symmetric since

(F̂T F̂)T = F̂T [F̂T ]T = F̂T F̂, (525)

and it is also positive definite as proved by

~wT F̂T F̂~w = (F̂~w)T (F̂~w) = ||F̂~w|| > 0, ∀~w (526)

Ĉ can be then diagonalized with real eigenvalues F̂T F̂ = Ô−1∆̂Ô with ∆̂
diagonal and Ô orthogonal. We define

Û =
√
Ĉ =

√
F̂T F̂ =

√
Ô−1∆̂Ô = Ô−1

√
∆̂Ô, (527)

which is justified by the fact

(Ô−1
√
∆̂Ô)2 = Ô−1

√
∆̂ÔÔ−1

√
∆̂Ô = Ô−1∆̂Ô. (528)

Here
√
∆̂ = diag (

√
∆i) if ∆̂ = diag (∆i). This prove that Û is also definite

positive. Now we define R̂ = F̂Û−1 and we prove its orthogonality

R̂T R̂ = (Û−1)T F̂T F̂Û−1 = (Û−1)T Û2Û−1 = Î. (529)

This conclude the proof of the first polar decomposition.

We also prove its uniqueness. We suppose that two decompositions
F̂ = R̂Û = R̂∗Û∗ exists. It follows that F̂T F̂ = Û2 = Û∗2 from which
Û = Û∗ and then R̂ = R̂∗. The second decomposition can be obtained
with V̂ =

√
F̂F̂T =

√
B̂, where B̂ = F̂F̂T is the so-called left Cauchy tensor

satisfying B̂−1 = ĜTG and d~Xd~Y = dx̂ · B̂−1d~y, with R̂ ′ = V̂−1F̂. To
conclude we verify that R̂ ′ = R̂. Since R̂ ′R̂ ′T = Î we have that F̂ = V̂R̂ ′ =
R̂ ′R̂ ′T V̂R̂ ′. The unicity of the decomposition F̂ = R̂Û allows us to affirm
that R̂ ′ = R̂ and Û = R̂T V̂R̂. This complete the proof of the Cauchy
theorem.
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a.5 change of coordinates

In this section the different mathematical operators will be explicitly
written in different coordinates systems, namely the cylindrical (~er, ~eθ, ~ez),
and spherical (~er, ~eθ, ~eφ) ones.

a.5.1 Cylindrical Coordinates

• ~∇p

Knowing that

~r = x~ex + y ~ey, (530)

and r =
√
x2 + y2, (531)

then
∂r

∂x
=
x

r
. (532)

This leads to

∂p

∂x
=
∂p

∂r

∂r

∂x
=
∂p

∂r

x

r
, (533)

and then

~∇p =
~r

r

∂p

∂r
. (534)

• ~∇.~v

In a straightforward manner

~∇.~v = ~∇.(
~r

r
v(r)),

=
∂

∂x
(
x

r
v) +

∂

∂y
(
y

r
v),

=
r− xxr
r2

v+ (
x

r
)2
∂v

∂r
+
r− yyr
r2

v+ (
y

r
)2
∂v

∂r
,

=
r2 − x2 + r2 − y2

r3
v+

x2 + y2

r2
∂v

∂r
,

(535)

hence

~∇.~v =
1

r
v+

∂v

∂r
. (536)
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• ~∇(~∇.~v)

The equation is investigated along the x axis before generalizing with
∇. Hence

∂

∂x
(~∇.~v) =

∂

∂x
(
1

r
)v+

1

r

∂v

∂x
+
∂2v

∂r2
x

r
,

=
∂

∂r
(
1

r
)
x

r
v+

1

r

∂v

∂r

x

r
+
∂2v

∂r2
x

r
,

=
−x

r3
v+

x

r2
∂v

∂r
+
x

r

∂2v

∂r2
,

leads to

~∇(~∇.~v) =
~r

r

(
−
1

r2
v+

1

r

∂v

∂r
+
∂2v

∂r2

)
=

~r

r

∂

∂r

(
1

r

∂

∂r
(rv)

)
. (537)

• ∇2~v

∇2~v can be decomposed along the Cartesian coordinates as

∇2~v = ∇2vx ~ex +∇2vy ~ey +∇2vz ~ez, (538)

with vz = 0, vx = x
rv(r) and vy = y

r v(r). The equation is investigated
along the x axis before generalizing with ∇. Using Eq.(532) we have∂vx

∂x = r2−x2

r3
v+ x2

r2
∂v
∂r ,

∂vx
∂y = x ∂∂r(

1
r )
∂r
∂yv+ x

1
r
∂v
∂r
∂r
∂y = −xy

r3
v+ xy

r2
∂v
∂r .

(539)

Using Eq.(539) we can now deduce the second derivatives

∂2vx

∂x2
=
∂

∂x
(
r2 − x2

r3
)v+

r2 − x2

r3
∂v

∂r

x

r
+
∂

∂x
(
x2

r2
)
∂v

∂r
+
x2

r2
∂2v

∂r2
x

r
,

=
(2r ∂r∂x − 2x)r

3 − (r2 − x2)3r2 ∂r∂x
r6

v+
r2 − x2

r3
x

r

∂v

∂r
+

+
2x2 − x22r ∂r∂x

r4
∂v

∂r
+
x3

r3
∂2v

∂r2
,

=−
3(r2 − x2)rx

r6
v+

(r2 − x2)x+ 2x(r3 − x2)

r4
∂v

∂r
+
x3

r3
∂2v

∂r2
,

=−
3(r2 − x2)x

r5
v+

3(r2 − x2)x

r4
∂v

∂r
+
x3

r3
∂2v

∂r2
, (540)
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and
∂2vx

∂y2
= x

∂

∂y
(
y

r3
v+

y

r2
∂v

∂r
),

= x

[
−
r3 − y3y2 yr

r6
v−

y

r3
∂v

∂r

y

r
+
r2 − y2ryr

r4
∂v

∂r
+
y

r2
∂2v

∂r2

]
,

= x

[
−
r2 − 3y2

r5
+
r2 − 3y2

r4
∂v

∂r
+
y2

r3
∂2v

∂r2

]
. (541)

This leads to

∇2vx =
∂2vx

∂x2
+
∂2vx

∂y2
,

= −
x

r5
(3r2 − 3x2 + r2 − 3y2)v+

x

r4
(3r2 − 3x2 + r2 − 3y2)

∂v

∂r
+ x

x2 + y2

r3
∂2v

∂r2
,

=
x

r

(
−
1

r2
v+

1

r

∂v

∂r
+
∂2v

∂r2

)
. (542)

Similarly it can be proven that

∇2vy =
y

r

(
−
1

r2
v+

1

r

∂v

∂r
+
∂2v

∂r2

)
, (543)

leading to

∇2~v = ~r

r

(
−
1

r2
v+

1

r

∂v

∂r
+
∂2v

∂r2

)
=

~r

r

∂

∂r

(
1

r

∂

∂r
(rv)

)
. (544)

• ∇2T

The equation is investigated along the x axis before generalizing with
∇. Hence

∂T

∂x
=
∂T

∂r

x

r
,

∂2T

∂x2
=
∂

∂r
(
x

r
)
∂T

∂r
+
x

r

∂2T

∂r2
x

r
,

=
r2 − x2

r3
∂T

∂r
+
x2

r2
∂2T

∂r2
,

leads to

∇2T =
r2 − x2 + r2 − y2

r3
∂T

∂r
+
x2 + y2

r2
∂2T

∂r2
,

=
1

r

∂T

∂r
+
∂2T

∂r2
,

=
1

r

∂

∂r
(r
∂T

∂r
). (545)
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a.5.2 Spherical Coordinates

• ~∇p

Knowing that

~r = x~ex + y ~ey + z~ez, (546)

and r =
√
x2 + y2 + z2, (547)

then
∂r

∂x
=
x

r
. (548)

This leads to
∂p

∂x
=
∂p

∂r

∂r

∂x
=
∂p

∂r

x

r
, (549)

and then

~∇p =
~r

r

∂p

∂r
. (550)

• ~∇.~v

In a straightforward manner

~∇.~v = ~∇.(
~r

r
v(r)),

=
∂

∂x
(
x

r
v) +

∂

∂y
(
y

r
v) +

∂

∂z
(
z

r
v),

=
r− xxr
r2

v+ (
x

r
)2
∂v

∂r
+
r− yyr
r2

v+ (
y

r
)2
∂v

∂r
+
r− zzr
r2

v+ (
z

r
)2
∂v

∂r
,

=
r2 − x2 + r2 − y2 + r2 − z2

r3
v+

x2 + y2 + z2

r2
∂v

∂r
,

hence

~∇.~v =
2

r
v+

∂v

∂r
. (551)

• ~∇(~∇.~v)

The equation is investigated along the x axis before generalizing with
∇. Hence

∂

∂x
(~∇.~v) =

∂

∂x
(
2

r
)v+

2

r

∂v

∂x
+
∂2v

∂r2
x

r
,

=
∂

∂r
(
2

r
)
x

r
v+

2

r

∂v

∂r

x

r
+
∂2v

∂r2
x

r
,

=
−2x

r3
v+

2x

r2
∂v

∂r
+
x

r

∂2v

∂r2
,
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leads to

~∇(~∇.~v) =
~r

r

(
−
2

r2
v+

2

r

∂v

∂r
+
∂2v

∂r2

)
=

~r

r

∂

∂r

(
1

r2
∂

∂r
(r2v)

)
. (552)

• ∇2~v

∇2~v can be decomposed along the Cartesian coordinates as

∇2~v = ∇2vx ~ex +∇2vy ~ey +∇2vz ~ez, (553)

with vx = x
rv(r), vy =

y
r v(r) and vz = z

rv(r). The equation is investigated
along the x axis before generalizing with ∇. Using Eq.(532) we have for
k, l ∈ {x,y, z}∂vk

∂k = r2−k2

r3
v+ k2

r2
∂v
∂r ,

∂vk
∂l = k ∂∂r(

1
r )
∂r
∂lv+ k

1
r
∂v
∂r
∂r
∂l = −kl

r3
v+ kl

r2
∂v
∂r .

(554)

Using Eq.(554) we can now have the second derivatives
∂2vk
∂k2

= −
3(r2−k2)k

r5
v+

3(r2−k2)k
r4

∂v
∂r +

k3

r3
∂2v
∂r2

,
∂2vk
∂l2

= k
[
− r2−3l2

r5
+ r2−3l2

r4
∂v
∂r +

l2

r3
∂2v
∂r2

]
.

(555)

This leads to

∇2vx =
∂2vx

∂x2
+
∂2vx

∂y2
+
∂2vx

∂z2
,

=−
x

r5
(3r2 − 3x2 + r2 − 3y2 + r2 − z2)v+

x

r4
(3r2 − 3x2 + r2 − 3y2 + r2 − 3z2)

∂v

∂r
+

x
x2 + y2 + z2

r3
∂2v

∂r2
,

=
x

r

(
−
2

r2
v+

2

r

∂v

∂r
+
∂2v

∂r2

)
. (556)

Similarly it can be proven that

∇2vk =
k

r

(
−
2

r2
v+

2

r

∂v

∂r
+
∂2v

∂r2

)
, (557)

leading to

∇2~v = ~r

r

(
−
2

r2
v+

2

r

∂v

∂r
+
∂2v

∂r2

)
=

~r

r

∂

∂r

(
1

r2
∂

∂r
(r2v)

)
. (558)
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• ∇2T

The equation is investigated along the x axis before generalizing with
∇. Hence

∂T

∂x
=
∂T

∂r

x

r
,

∂2T

∂x2
=
∂

∂r
(
x

r
)
∂T

∂r
+
x

r

∂2T

∂r2
x

r
,

=
r2 − x2

r3
∂T

∂r
+
x2

r2
∂2T

∂r2
,

leads to

∇2T =
r2 − x2 + r2 − y2 + r2 − z2

r3
∂T

∂r
+
x2 + y2 + z2

r2
∂2T

∂r2
,

=
2

r

∂T

∂r
+
∂2T

∂r2
,

=
1

r2
∂

∂r
(r2
∂T

∂r
). (559)

a.6 non homogeneous second order differential equation

Considering a non homogeneous second order differential equation

af ′′(x) + bf ′(x) + cf(x) = g(x), (560)

with a,b, c constants and f,g functions. Assuming that the solution to
the homogeneous equation associated to Eq.(560) can be written

f(x) = C1f1(x) +C2f2(x), (561)

with Ci constants and fi known functions.
The particular solution of equation Eq.(560) is looked for of the form

f(x) = C1(x)f1(x) +C2(x)f2(x), (562)

with Ci now unknown functions. By differentiating Eq.(562) we have

af ′′ + bf ′ + cf =a(C ′′1 f1 + 2C
′
1f
′
1 +C1f

′′
1 +C

′′
2 f2 + 2C

′
2f
′
2 +C2f

′′
2 )+

b(C ′1f1 +C1f
′
1 +C

′
2f2 +C2f

′
2)+

c(C1f1+C2f2),

and using Eq.(561)

a

(
d

dx
(C ′1f1 +C

′
2f2) + (C ′1f

′
1 +C

′
2f
′
2)

)
+ b(C ′1f1 +C

′
2f2) = g. (563)
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Since we are looking for only one solution to this equation with two
unknown we can choose to add a reasonable condition on the functions
Ci. Choosing that the first derivative of Ci are also a solution to the
homogeneous equation, the final system of equation now becomesC ′1f1 +C ′2f2 = 0C ′1f

′
1 +C

′
2f
′
2 =

g
a .

(564)

Knowing that fi form a base for all the solutions of the homogeneous
equation associated to Eq.(560), the Wronskian∣∣∣∣∣ f1 f2

f ′1 f ′2

∣∣∣∣∣ 6= 0, (565)

and so the system of equations Eq.(564) only admits one solution for
C1 and C2 which, with Eq.(562), are a particular solution of equation
Eq.(560).



B
M O D I F I E D L I T E R AT U R E M O D E L S

b.1 hu and yin modified models

In this section, the modified pressure equations of the models of Hu et
al. of 2010 [81], 2012 [83], 2014 [84] and Yin et al. 2017 [85] are derived.
In those models the energy input is provided only on the surface of the
thermophone. This was justified for the comparison with Shinoda et al
[32] for plane waves but does not hold in most geometry. In the models
created in this thesis the input source is distributed through the whole
volume and not only on its surface. Hence for comparison the models
cited above are then modified to reflect those changes. This means that
there is no added term in the continuity of heat flux at the surface of the
thermophone and that a term Ss is added in the temperature equation
in the solid. More specifically

Ss = S
αs

iω
=
Q0
κs

αs

iω
=

Q0
iωρsCp,s

. (566)

b.1.1 Hu et al. 2010

We here modified Hu et al. model from 2010 for planar waves [81]. The
investigated parameters in Eqs.(3a) to (3c) are rewritten

pg =dt(Age
σgx +Bge

−σsx) + da(Cge
ikgx +Dge−ikgx), (567)

Tg =Age
σgx +Bge

−σsx +Cge
ikgx +Dge−ikgx, (568)

Ts =Ase
σsx +Bse

−σsx + Ss, (569)
Tb =Abe

σbx +Bbe
−σbx. (570)

The boundary condition in Eq.(5a) to (5e) (continuity of parameters and
solid surface) are also re written as

Tb =Ts, x = −Ls (571)

κb
∂Tb
∂x

=κs
∂Ts

∂x
, x = −Ls (572)

Ts =Tg, x = 0 (573)

κs
∂Ts

∂x
=κg

∂Tg

∂x
, x = 0 (574)

∂pg

∂x
=0. x = 0 (575)
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Additionally, the non reflection conditions lead to Ag = Cg = Bb = 0.
Equation (571) becomes

Abe
σbLs = Ase

σsx +Bse
−σsx + Ss. (576)

Injected in Eq.(572) we have

κbσbAbe
σbLs = κsσsAse

−σsLs − κsσsBse
σsLs ,

κbσb(Ase
σsLs +Bse

σsLs + Ss) = κsσsAse
−σsLs − κsσsBse

σsLs ,

Ase
−σsLs(κbσb − κsσs) = Bse

σsLs(−κsσs − κbσb) − Ssκbσb,

As = Bse
2σsLs

κsσs + κbσb
κsσs − κbσb

+ eσsLsSs
κbσb

κsσs − κbσb
. (577)

Similarly Eq.(575) gives

− dtσgBg − daikgDg = 0,

Bg = −
da

dt

ikg
σg
Dg. (578)

Equations (573) and (574) are written

As +Bs + Ss = Bg +Dg, (579)

and

κsσsAs − κsσsBs = −κgσgBg − ikgκgDg. (580)

We can then rewrite Eqs.(580) and (579) respectively as(
e2σsLs

κsσs + κbσb
κsσs − κbσb

+ 1

)
Bs+Ss

(
eσsLs

κbσb
κsσs − κbσb

+ 1

)
=
dtσg − idakg

dtσg
Dg,

(581)

and

κsσs

(
e2σsLs

κsσs + κbσb
κsσs − κbσb

− 1

)
Bs+e

σsLsSs
κsσsκbσb
κsσs − κbσb

= ikgκg
da − dt
dt

Dg.

(582)

This leads to

Bs =
dtσg − idakg

dtσg

κsσs − κbσb
e2σsLs(κsσs + κbσb) + κsσs − κbσb

Dg

−

(
1+

eσsLsκbσb
κsσs − κbσb

)
κsσs − κbσb

e2σsLs(κsσs + κbσb) + κsσs − κbσb
Ss,

Bs =
dtσg − idakg

dtσg

κsσs − κbσb
e2σsLs(κsσs + κbσb) + κsσs − κbσb

Dg

−
κsσs − κbσb + e

σsLsκbσb
e2σsLs(κsσs + κbσb) + κsσs − κbσb

Ss. (583)
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Finally

κsσs
e2σsLs(κsσs + κbσb) − κsσs + κbσb

κsσs − κbσb

×
(
dtσg − ikgda

dtσg

κsσs − κbσb
e2σsLs(κsσs + κbσb) + κsσs − κbσs

Dg

−
κsσs − κbσb + e

σsLsκbσb
e2σsLs(κsσs + κbσb) + κsσs − κbσb

Ss

)
+
eσsLsκsσsκbσb
κsσs − κbσb

Ss = ikgκg
da − dt
dt

Dg, (584)(
κsσs

e2σsLs(κsσs + κbσb) − κsσs + κbσb
e2σsLs(κsσs + κbσb) + κsσs − κbσb

dtσg − ikgda
dtσg

− ikgκgσg
da − dt
dtσg

)
Dg

= Ss

(
−
eσsLsκsσsκbσb
κsσs − κbσb

+κsσs
e2σsLs(κsσs + κbσb) − κsσs + κbσb
e2σsLs(κsσs + κbσb) + κsσs − κbσb

κsσs − κbσb + e
σsLsκbσb

κsσs − κbσb

)
,

(585)(
κsσsM

dtσg
(dtσg − ikgda) −

ikgκgσg(da − dt)
dtσg

)
Dg

= Ss

(
−
eσsLsκsσsκbσb
κsσs − κbσb

+
κsσsM

κsσs − κbσb
(κsσs − κbσb + e

σsLsκbσb)

)
,

(586)

and

Dg =Ss
dtσg(−e

σsLsκbσb +M(κsσs − κbσb + e
σsLsκbσb))

Mκsσs(dtσg − ikgda) − ikgκgσg(da − dt)
κsσs

κsσs − κbσb
,

Dg =Ss
dtσg(e

σsLsκbσb(M− 1) +M(κsσs − κbσb))

Mκsσs(dtσg − ikgda) − ikgκgσg(da − dt)
κsσs

κsσs − κbσb
,

Dg =Ss
−dtσg(e

σsLsκbσb(M− 1) +M(κsσs − κbσb))

ikgda(Mκsσs + κgσg) − dtσg(Mκsσs + ikgκg)
κsσs

κsσs − κbσb
.

(587)

We are now able to rewrite the pressure for plane waves radiation, in a
similar fashion as Eq.(6a)

pg =Ss
κsσs

κsσs − κbσb
(eσsLsκbσb(M− 1) +M(κsσs − κbσb))

×
dadtikg

ikgda(Mκsσs + κgσg) − dtσg(Mκsσs + ikgκg)
(e−σgx −

σg

ikg
e−ikgx),

=pg,surfaceSs
κsσs

κsσs − κbσb
(eσsLsκbσb(M− 1) +M(κsσs − κbσb)).

(588)
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b.1.2 Hu 2012

We here modified Hu et al. model from 2012 for spherical waves [83]. Us-
ing the notation p∗i = rpi and T∗i = rTi as in the article, the investigated
parameters Eq.(8a) to (8d) are rewritten as

p∗g =dt(Age
σgr +Bge

−σsr) + da(Cge
kgr +Dge

−kgr), (589)

T∗g =Age
σgr +Bge

−σsr +Cge
kgr +Dge

−kgr, (590)

T∗s =Ase
σsr +Bse

−σsr + rSs, (591)
T∗b =Abe

σbr +Bbe
−σbr. (592)

The boundary condition in Eqs.(6a) to (6h) are now written as

dp∗g
dr

−
p∗g
r

=0, r = Rs (593)

κs(
dT∗s
dr

−
T∗s
r
) =κg(

dT∗g
dr

−
T∗g
r
), r = Rs (594)

T∗s =T∗g , r = Rs (595)

κs(
dT∗s
dr

−
T∗s
r
) =κb(

dT∗b
dr

−
T∗b
r
), r = Rb (596)

T∗s =T∗b , r = Rb (597)
dT∗b
dr

−
T∗b
r

=0, r = 0 (598)

T∗g →0, r→∞ (599)

p∗g →0. r→∞ (600)

The non reflection condition in Eqs.(599) and (600) gives Ag = Cg =

0 and the to avoid discontinuity at r = 0, Eq.(598) gives Ab = −Bb.
Equation (593) is written

dtBge
−σgRs(−

1

Rs
− σg) + daDge

−kgRs(−
1

Rs
− kg) = 0,

Bg = −
da

dt
eRs(σs−kg)

1
Rs

+ kg
1
Rs

+ σg
Dg,

Bg = −
da

dt
eRs(σg−kg)

k+g

σ+g
Dg. (601)

It is then used in Eq.(597) as

Ase
σsRb +Bse

−σsRb + SsRb = Ab(e
σbRb − e−σbRb),

Ab =
1

eσbRb − e−σbRb
(Ase

σsRb +Bse
−σsRb + SsRb). (602)
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Equation (596), the right hand side term (RHS) is

RHS =κb(e
σbRb(σb −

1

Rb
) + e−σbRb(σb +

1

Rb
))Ab,

=κb(e
σbRb(σb −

1

Rb
) + e−σbRb(σb +

1

Rb
))
Ase

σsRb +Bse
−σsRb + SsRb

eσsRb − e−σbRb
,

=κb(σb
eσbRb + e−σbRb

eσbRb − e−σbRb
−
1

Rb
)(Ase

σsRb +Bse
−σsRb + SsRb),

=κbσ
−
b∗(Ase

σsRb +Bse
−σsRb + SsRb),

and so

κs(Ase
σsRb(σs −

1

Rb
) +Bse

−σsRb(−σs −
1

Rb
)) = κbσ

−
b∗(Ase

σsRb +Bse
−σsRb + SsRb),

κs(Ase
σsRbσ−s −Bse

−σsRbσ+s ) = κbσ
−
b∗(Ase

σsRb +Bse
−σsRb + SsRb),

Ase
σsRb(κsσ

−
s − κbσ

−
b∗) = Bse

−σsRb(κsσ
+
s + κbσ

−
b∗) + SsRbκbσ

−
b∗,

As = Bse
−2σsRb

κsσ
+
s + κbσ

−
b∗

κsσ
+
s − κbσ

−
b∗

+ Ss
Rbκbσ

−
b∗

κsσ
+
s − κbσ

−
b∗
e−σsRb . (603)

This leads in Eq.(595) to

Dg(e
−kgRs − e−kgRs

da

dt

k+g

σ+g
) = Ase

σsRs +Bse
−σsRs + RsSs,

Dge
−kgRs(1−

da

dt

k+g

σ+g
) = Bs(e

−σsRs + eσs(Rs−2Rb)
κsσ

+
s + κbσ

−
b∗

κsσ
−
s − κbσ

−
b∗
)

+ Ss(Rs +
Rbκbσ

−
s∗

κsσ
−
s − κbσ

−
b∗
eσs(Rs−Rb)).

(604)

Lastly the terms of Eq.(594) are now

LHS =κg(Bg(−σg −
1

Rs
)e−σgRs +Dg(−kg −

1

Rs
)e−kgRs),

=Dge
−kgRs(σ+g

da

dt

k+g

σ+g
− k+g )κg, (605)

and

RHS =κs(As(σs −
1

Rs
)eσsRs +Bs(−σs −

1

Rs
)e−σsRs),

=Bs(κsσ
−
sse

σs(Rs−2Rb)
X

−Y
− κsσ

+
sse

−σsRs)

+ Ss

(
Rbκbσ

−
b∗

κbσ
−
s − κbσ

−
b∗
κsσ

−
sse

σs(Rs−Rb)

)
,

=Dge
−kgRs(1−

da

dt

k+g

σ+g
)κsσ

−
s∗ − S

∗, (606)
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with X = κsσ
+
s + κbσ

−
b∗ and −Y = κsσ

−
s − κbσ

−
b∗ as well as

e−σsRs(κsσ
−
sse

2σs∆R X
−Y − κsσ

+
ss)

e−σsRs(1+ e2σs∆R X
−Y )

,

=
eσs∆R(κs(σs −

1
Rs
)eσs∆RX+ κs(σs +

1
Rs
)e−σs∆RY)

eσs∆R(Xeσs∆R − Ye−σs∆R)
,

=κs

(
σs(Xe

σs∆R + Ye−σs∆R)

Xeσs∆R − Ye−σs∆R
−
1

Rs

)
,

=κs(σsM−
1

Rs
),

=κsσ
−
s∗, (607)

and

−S∗ =Ss

(
−

Rbκbσ
−
b∗

κbσ
−
b∗ − κsσ

−
s
eσs∆Rκsσ

−
ss − κsσ

−
s∗

(
Rs −

Rbκbσ
−
b∗

κbσ
−
b∗ − κsσ

−
s
eσs∆R

))
,

=Ss

(
−Rsκsσ

−
s∗ − κse

σs∆R
Rbκbσ

−
b∗

κbσ
−
b∗ − κsσ

−
s
(σ−ss − σ

−
s∗)

)
,

=κsSs

(
−Rsσ

−
s∗ −

Rbκbσ
−
b∗

κbσ
−
b∗ − κsσ

−
s
σs(1−M)eσs∆R

)
. (608)

We then have

−S∗

Dg
=κge

−kgRs(
da

dt

k+g

σ+g
σ+g − k+g ) − κsσ

−
s∗e

−kgRs(1−
da

dt

k+g

σ+g
),

=e−kgRs
(
κgdaσ

+
g k

+
g − κgk

+
g dtσ

+
g − κsσ

−
s∗dtσ

+
g + κsσ

−
s∗dak

+
g

dtσ
+
g

)
,

=e−kgRs
(
dak

+
g (κsσ

−
s∗ + κgσ

+
g ) − dtσ

+
g (κsσ

−
s∗ + κgk

+
g )

dtσ
+
g

)
,

=e−kgRs
(

Z

dtσ
+
g

)
. (609)
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We are now able to rewrite the pressure for spherical waves radiation,
in a similar fashion as Eq.(10a)

pg =
p∗g
r

=Bg
dt

r
e−σgr +Dg

da

r
e−kgr,

=
Dg

r

(
−da

k+g

σ+g
eRs(σg−kg)e−σgr + dae

−kgr

)
,

=
−S∗

r

dadtσ
+
g

Z
(−
k+g

σ+g
e−σg∆r + e−kg∆r),

=
dadtk

+
g

Z
(e−σg∆r −

σ+g

k+g
e−σg∆r)

× κsSs
r

(
Rsσ

−
s∗ +

Rbκbσ
−
b∗

κbσ
−
b∗ − κsσ

−
s
σs(1−M)eσs∆R

)
,

=p∗g,surface
κsSs

r

(
Rsσ

−
s∗ +

Rbκbσ
−
b∗

κbσ
−
b∗ − κsσ

−
s
σs(1−M)eσs∆R

)
.

(610)

b.1.3 Hu 2014

Hu et al. in 2014 simplified their 2012 spherical model by removing the
substrate in the center of the sphere [84]. The resulting pressure equa-
tion could then be induced from the previous section but is here proven
again to help the understanding. As in the article, the investigated pa-
rameters Eq.(4a) to (4c) are rewritten as

pg =
dt

r
(Age

σgr +Bge
−σsr) +

da

r
(Cge

kgr +Dge
−kgr), (611)

Tg =
Ag

r
eσgr +

Bg

r
e−σsr +

Cg

r
ekgr +

Dg

r
e−kgr, (612)

Ts =
As

r
eσsr +

Bs

r
e−σsr + Ss. (613)

The boundary conditions of Eq.(6a) to (6f) are now written as

dpg

dr
=0, r = Rs (614)

κs
dTs

dr
=κg

dTg

dr
, r = Rs (615)

Ts =Tg, r = Rs (616)
dTs

dr
=0, r = 0 (617)

Tg →0, r→∞ (618)
pg →0. r→∞ (619)
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The non reflection condition in Eqs.(618) and (619) gives Ag = Cg = 0

and to avoid discontinuity at r = 0, Eq.(617) gives As = −Bs. Equation
(614) is written

Bg
dt

Rs
e−σgRs(−σg −

1

Rs
) +Dg

da

Rs
e−kgRs(−kg −

1

Rs
) = 0,

Bg = −
da

dt

k+g

σ+g
e−(kg−σg)RsDg. (620)

Hence Eq.(616) gives

Dg

Rs
e−kgRs(1−

da

dt

k+g

σ+g
) =

As

Rs
(eσsRs − e−σsRs) + Ss,

As = Dge
−kgRs

1− da
dt

k+g
σ+g

eσsRs − e−σsRs
− Ss

Rs

eσsRs − e−σsRs
. (621)

The terms of Eq.(615) are now

LHS =κs
As

Rs
((σs −

1

Rs
)eσsRs + e−σsRs(σs +

1

Rs
)),

=κs
As

Rs
(σs(e

σsRs + e−σsRs) −
1

Rs
(eσsRs − e−σsRs)),

=κs
Dg

Rs
e−kgRs(1−

da

dt

k+g

σ+g
)

(
σs
eσsRs + e−σsRs

eσsRs − e−σsRs
−
1

Rs

)
− Ssκs

(
σs
eσsRs + e−σsRs

eσsRs − e−σsRs
−
1

Rs

)
,

=κs
Dg

Rs
e−kgRs(1−

da

dt

k+g

σ+g
)σ−s∗ − Ssκsσ

−
s∗, (622)

and

RHS =κg
Dg

Rs
e−kgRs((−kg −

1

Rs
) + (σg +

1

Rs
)
da

dt

k+g

σ+g
), (623)

which leads to

κs
Dg

Rs
e−kgRs(1−

da

dt

k+g

σ+g
)σ−s∗ − Ssκsσ

−
s∗ = κg

Dg

Rs
e−kgRs(σ+g

da

dt

k+g

σ+g
− k+g ),

Dg =
Ssκsσ

−
s∗dtσ

+
gRse

kgRs

σ−s∗(κsdtσ
+
g − κsdak

+
g ) − σ

+
g dak

+
g κg + dtσ

+
g κgk

+
g

,

Dg =
Ssκsσ

−
s∗dtσ

+
gRse

kgRs

−dak
+
g (κgσ

+
g + κsσ

−
s∗) + dtσ

+
g (κgk

+
g + κsσ

−
s∗)

,

Dg =
Ssκsσ

−
s∗dtσ

+
g

−Z
Rse

kgRs . (624)
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We are now able to rewrite the pressure for spherical waves radiation,
in a similar fashion as Eq.(7) as

pg =

(
da

r
e−kgr −

da

r
e−(kg−σs)Rs

k+g

σ+g
e−σgr

)
Ssκsσ

−
s∗dtσ

+
g

−Z
Rse

kgRs ,

=
Rs

r

dadtσ
+
g

−Z
(e−kg∆r −

k+g

σ+g
e−σg∆r)Ssκsσ

−
s∗,

=
Rs

r

dadtk
+
g

Z
(e−σg∆r −

σ+g

k+g
e−kg∆r)Ssκsσ

−
s∗,

=pg,surfaceSsκsσ
−
s∗. (625)

Notably, this is a similar equation as Eq.(610) with M = 1.

b.1.4 Yin 2017

Yin et Hu in 2017 have again modified their model for cylindrical waves.
Here we once more adapt it for volumic input power and we consider
for simplicity no substrate but just a thermophone in a cylindrical shape.
The investigated parameters in Eqs.(5a,b,c) [85] are rewritten as

pg =dtBgK0(σgr) + daDgK0(kgr), (626)
Tg =BgK0(σgr) +DgK0(kgr), (627)
Ts =AsJ0(σsr) +BsY0(σsr) + Ss. (628)

Here the non reflection conditions leading to Ag = Cg = 0 have already
been used. The other boundary conditions of Eq.(4a,b,c) and (4f) [85]
are then

dpg

dr
=0, r = Rs (629)

κs
dTs

dr
=κg

dTg

dr
, r = Rs (630)

Ts =Tg, r = Rs (631)
dTs

dr
=0, r = 0 (632)

with Eq.(632) leading to Bs = 0. Equation (629) is written as

− dtBgσgK1(σgRs) − daDgkgK1(kgRs) = 0,

Bg = −
da

dt

kg

σg

K1(kgRs)

K1(σsRs)
Dg, (633)
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leading in Eq.(631) to

AsJ0(σsRs) + Ss = Dg

(
K0(kgRs) −

da

dt

kg

σg

K1(kgRs)

K1(σgRs)
K0(σgRs)

)
,

As =
Dg

J0(σsRs)

(
K0(kgRs) −

da

dt

kg

σg

K1(kgRs)

K1(σgRs)
K0(σgRs)

)
−

Ss

J0(σsRs)
.

(634)

The terms of Eq.(630) become

LHS =− κsAsσsJ1(σsRs),

=−DgκsσsM0

(
K0(kgRs) −

da

dt

kg

σg

K1(kgRs)

K1(σgRs)
K0(σgRs)

)
+ κsσsSsM0,

(635)

with M0 =
J1(σsRs)
J0(σsRs)

, and

RHS =− κgBgσgK1(σgRs) − κgDgK1(kgRs),

=κgDg

(
−kgK1(kgRs) + σgK1(σgRs)

da

dt

kg

σg

K1(kgRs)

K1(σgRs)

)
,

=− κgkgDgK1(kgRs)(1−
da

dt
). (636)

Hence

Dg

Ss
=

M0κsσs

κsσsM0

(
K0(kgRs) −

da
dt

kg
σg

K1(kgRs)
K1(σgRs)

K0(σgRs)
)
− κgkgDgK1(kgRs)(1−

da
dt
)
.

(637)

We are now able to rewrite the pressure for cylindrical waves radiation
without sustrate, in a similar fashion as Eq.(7b) as

pg =Dg

(
daK0(kgr) − dt

da

dt

kg

σg

K1(kgRs)

K1(σgRs)
K0(σgr)

)
,

=
SsκsM0σs

(
daK0(kgr) − da

kg
σg

K1(kgRs)
K1(σgRs)

K0(σgr)
)

κsσsM0

(
K0(kgRs) −

da
dt

kg
σg

K1(kgRs)
K1(σgRs)

K0(σgRs)
)
− κgkgDgK1(kgRs)(1−

da
dt
)
,

=
SsκsM0σsdadt (σgK1(σgRs)K0(kgr) − kgK1(kgRs)K0(σgr))

(κsM0σs (dtσgK1(σgRs)K0(kgRs) − dakgK1(kgRs)K0(σgRs))+

+κgkgσgK1(kgRs)K1(σgRs)(da − dt)) ,

=
SsκsM0σsdadt (kgK1(kgRs)K0(σgr) − σgK1(σgRs)K0(kgr))

(dakgK1(kgRs) (κsM0σsK0(σgRs) − κgσgK1(σgRs))+

−dtσgK1(σgRs) (κsM0σsK0(kgRs) − κgkgK1(kgRs))) ,
=pg,surfaceSsκsσsM0. (638)
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c.1 samples’ list

(a) Old 1 to 4 (b) Old 5 and Old Zhi Lin 1 to 3

(c) Old Zhi Lin 4 (d) Old test 1 to 4

(e) Old Djamila 1 et 2

Figure 107: Old samples used during the first 6 months of the thesis
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(a) I to III (b) IV to XIII

(c) XIV to XIX (d) XX to XXII

(e) XXIII to XXVII (f) XXVIII to XXIX

(g) XXX to XXXII (h) XXXIII to XXXIV

Figure 108: All samples available at the IEMN
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Sample Number Sample type Support type Sample size (mm)

Old 1 Graphene foam CINTRA Copper 30x20
Old 2 Graphene foam CINTRA Copper 40x15
Old 3 Graphene foam CINTRA Copper 25x15
Old 4 Graphene foam CINTRA Copper 20x20
Old 5 25BN75C foam CINTRA Copper 35x20
Zhi Lin 1 100C Rod on glass 25x20
Zhi Lin 2 100C Rod on glass 30x20
Zhi Lin 3 50BN50C Rod on glass 25x20
Zhi Lin 4 Graphene foam CINTRA Rod in plastic filling 25x20
Old Test 1 Vitreous carbon Copper 35x25
Old Test 2 Vitreous carbon Copper on plastic 25x25
Old Test 3 Vitreous carbon Copper on plastic 30x25
Old Test 4 Vitreous carbon Scotch Copper on plastic 25x25
Djamila 1 3D carbon structure Copper 13x13
Djamila 2 Carbon sheet structure Copper d = 20

I Vitreous carbon Copper 25x25
II Vitreous carbon Copper 30x25
III Vitreous carbon Copper 40x25
IV Vitreous carbon Copper 25x50
V Vitreous carbon Copper 25x65
VI Vitreous carbon Copper 30x25
VII Vitreous carbon Copper 25x30
VIII Vitreous carbon Plastic: square 35x30
IX Vitreous carbon Plastic: circle 35x15
X Vitreous carbon Plastic: square 40x40
XI Carbone foam 100ppi Plastic: circle 40x20
XII Flexible Graphite Sheet Copper 50x50
XIII Rigid Graphite Sheet Plastic: square 25x25

tube (bonus) Hollow Graphite tube Crocodile clips
din = 1.6,
dout = 3.2, h = 50

XIV Rigid Graphite Sheet Plastic: circle 25x25
XV Vitreous carbon Plastic: circle 23x23
XVI Vitreous carbon Plastic: circle 35x25
XVII Vitreous carbon Plastic: circle 45x25
XVIII Vitreous carbon Plastic: circle 55x25
XIX Vitreous carbon Plastic: circle, double 35x25
XX Carbon foam 110ppi Plastic: square 30x30
XXI Flexible Graphite Sheet Plastic: square 35x35
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XXII Flexible Graphite Sheet Plastic: circle 35x15
XXIII Graphene sheet super paper Plastic: circle d = 40

XXIV Graphene oxide sheet super paper Plastic: circle d = 40

XXV Graphene aerogel Copper h = 30, d = 30

XXVI Self Supporting Multiwalled CNT Plastic: circle 15x5x12
XXVII Graphene foam ACS Plastic: circle 25x25

XXVIII Graphene foam ACS
Simple Underwater
design (backing)

25x25

XXIX Graphene foam ACS
Simple Underwater
design

25x25

XXX Vitrous carbon
Simple Underwater
design

25x25

XXXI Graphene foam ACS
Simple Underwater
design (backing)

30x30

XXXII Graphene foam ACS
Simple Underwater
(closer backing)

30x30

XXXIII Graphene foam ACS
Simple Underwater,
double wiring

30x30

XXXIV Vitrous Carbon
Simple Underwater,
double wiring

30x30
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Sample Number R (multimetre) Ohm R (analyser) Ohm R (recorded) Ohm

I 9.2 10
II 11 11
III 9.2 9.6
IV 3.4 3.4 2.8
V 2.5 2.6 2.2
VI 6.5 6.3
VII 3.6 3.6 3
VIII 6.3 6.9 4.3
IX 12,1 copper 14,5 wires 21 7.4
X 4.1 4(?)
XI 2.3
XII 2 0.18 0.53
XIII 0.5 0.15 0.44
tube unstable, from 20 to 1 0.5
XIV 0.2 0.16 0.45
XV 3.5 2.8
XVI 4.9 9.7 4.6 then 7.8
XVII 6.5 10.4 5.5
XVIII 8.7 12.4 7.3
XIX 6,8a 6b 3,4ab 10a 11b 5,2ab 3
XX 0.6 0.65 0.85
XXI 0.2 0.2 0.48
XXII 0.2 0.25 0.48
XXIII 28.4 60 5.7
XXIV 6,3M
XXV 3,5k
XXVI 0.8 0.77 1
XXVII 1.3 1050 1.5
XXVIII 5.2 5.3 3.5
XXIX 2.1 2.7 1.6
XXX 7,9a 8,3b 4ab 6a 7,3b 3,3,ab
XXXI 2.5 2.1
XXXII 1.6 1.1 0.9
XXXIII 1,6 average (cf CR) 1,8 average (cf plot) 1.3
XXXIV 6 average (cf CR) 6 average (cf plot) 4.2
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c.2 iemn characterisation

In this section experimental characterisation done at the IEMN of 3D-C
samples provided by CINTRA during the first year of the PhD are pre-
sented. Those experiments are not displayed in the core of this thesis
as the results did not provide satisfactory results. Furthermore, issues
in the shipment of new samples did not allow us to repeat those exper-
iments in a suitable way. Nonetheless, those characterisations are still
presented here as they reflect some points of concerns regarding ma-
nipulation of 3D-C. They also contain insight on what could be done to
improve those measurements.

c.2.1 Density Measurements

(a) (b)

Figure 109: Densimeter experimental setup: (a) 3D-C sample immersed for
Archimede’s force measurement; (b) shape of 3D-C after immer-
sion in a liquid.
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One of the main parameter of interest in all theoretical model is the
density of the thermophone. As explained in Section 3.3 it is important
to distinguish the global and specific density. The specific density is at-
tributed to the material in which the branches of the foam are made,
whereas the global density is attributed to the averaged density of the
whole foam. If the density of the carbon and graphite is known from
the literature and the global density could be easily deduced by aver-
aging the volume of the foam as a parallelepiped, a densimeter seen in
Fig.109a has been used in order to try and obtain a more accurate value.

The working principle is that a scale weight the sample in air and then
immersed in a uniform liquid of known density. Using Archimede’s
law it is then possible to deduce the exact volume of the sample and
then infer its density. The experiment has been performed in distilled
water and in ethanol (lower density than water). In both cases the 3D-
C sample started floating before slowly sinking. In Fig.109a 3D-C is
actually seen to be in a vertical position as it is slowly going down.
The hydrophobic behavior of 3D-C [122] is assumed to gradually give
way to water that fills up the pores and eventually the hollow branches
of the foam as well. This causes the sample to sink and prevents an
accurate measure of weight. The global density measured by assuming
parallelepiped shape was then used in future endeavours.

Additionally it is seen in Fig.109b that after a prolonged immersion
3D-C became twisted and more brittle. This is a similar behavior as
observed by Aliev et al. in 2010 with CNT [122]. It lead him to consider
enclosing the CNT for underwater radiation which is also the favored
solution of this work.

c.2.2 DSC Measurements

In the course of this work a differential scanning calorimetry (DSC)
instrument from the IEMN seen in Fig.110 was repaired and used to
try and determine the specific heat of the carbon composing 3D-C foam
samples. Samples had to be powdered and fed to the crucible seen in
Fig.110b. A few grams were needed to have reliable results and the
lightweight of 3D-C proved to be challenging. A fair number of samples
were crushed to reach a decent load and even then the minimum weight
was not reach. Nonetheless, after calibration of the DSC measurement
were tried without success. After multiple attempts it was decided to
use values from the literature. A guide regarding the use of the DSC
was written is now used by new PhD students.
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(a) (b)

Figure 110: Pictures of the DSC device in IEMN (a) with a zoom on the crucible
insert section (b)

c.2.3 Microtomography

In order to have a precise model of 3D-C internal structure, experiments
with a microtomographe seen in Fig.111 were performed. An X ray to-
mography is done at 360◦ and a 3D reconstruction of the sample is
made in every point of space based on the absorption coefficient of the
material. The results from a 3D-C sample mounted on glass are seen
in Fig.112. The glass support and the silver paste used for the electrical
connection are seen in the image but the graphene foam part is invis-
ible. Its very low thickness, density and atomic number makes it very
difficult to see with X rays.

Figure 111: Picture of the Microtomographe on the Univ. Lille Campus

The idea to use microtomography was latter tried again to map the
nickel structure on which the graphene is grown. The results provided
by the PhD student Hubert Romain are seen in Fig.113 and are currently
used in M.Hubert COMSOL simulations.
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Figure 112: Microtomographie of 3D-C. The silver paste is visible on the top
and the glass backing as well in the background but the Carbon
foam is invisible.

(a) (b)

Figure 113: Microtomographie reconstruction of the Nickel structure used for
carbon growth. Complete reconstruction (a) and zoomed view (b).
Courtesy of Romain Hubert with N. Limodin, T. Rougelot and J.
Hosdez, ISIS4D – In Situ Innovative Set-Ups under X-ray microto-
mography.

c.2.4 AFM Measurements

IEMN possess multiple atomic force microscopy (AFM) instruments
and some early analysis on 3D-C have been performed with it. An AFM
seen in Fig.114 uses a cantilever for a point by point analysis of a sur-
face. The most common use is a topographical analysis of a surface as
well as measurement of different mechanical parameters (viscoelastic-
ity, stiffness... etc). Local electrical conductivity measurements can also
be performed as well as some thermal analysis where the cantilever is
used as a thermometer. The latest mode being of greater interest for
thermophones. Using a foam geometry is challenging for an AFM as
flat surfaces are privileged for AFM measurements. Additionally the
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Figure 114: Picture of the AFM device available at the IEMN

(a) (b)

Figure 115: Picture of the positioning of the AFM cantilever (a) and the result-
ing picture of adherence measurement on the surface of a branch
(b)

cantilever can not reach branches at the center of the foam at the risk
of damaging the ones at the tops. It can be noted that AFM measure-
ments with thermophone have only been made with CNT samples [171]
leaving room for improvement and further analysis.

An image of the positioning of the cantilever on a branch of the foam
is seen in Fig.115a and the resulting topographical image is in Fig.115b.
The small dots are assimilated to the center of growth of carbon. This
was confirmed by a tomography image of 100× 100nm where the over-
lapping graphene between two growth center created rifts that would
disassociate the cantilever with the surface. This problem was also en-
countered when trying to measure local electrical conductivity of 3D-C.
Eventually results were obtained and displayed a behavior close to a
metal. Those measurements are not presented here as they are only
qualitative and are limited by the tunnel effect.

Lastly the cantilever was used as a thermometer to try and measure
the thermal layer in which the sound is generated. Sound was gener-
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Figure 116: Experimental thermal measurement of the AFM cantilever as it
approches the surface of the foam under operation

ated by the 3D-C and the cantilever was slowly approaching the surface.
The lightweight of the cantilever added to the close space of the mea-
surements made the cantilever oscillate with the generated sound. This
prevented accurate temperature measurements but allowed for the de-
termination of the acoustic frequency based on the oscillating frequency
of the cantilever as seen in Fig.116. Due to the COVID-19 as well as a
lack of adequate samples, this experiment was not reproduced despite
improvement in the thermal stability of the IEMN AFM. Nonetheless,
we strongly recommend the reader to further improve this experiment
as it could provide good insights and experimental validation of the
thermal layer never before measured.
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c.2.5 Spectral Analysis Plots

(a) (b)

Figure 117: Spectral Centroid (a) and Spectral Spread (b) of all the measured
samples. The curves in shades of pink and green use AC and
ACDC input power respectively.

(a) (b)

Figure 118: Spectral Flatness Measure (a) and Total Harmonic Distortion (b) of
all the measured samples. The curves in shades of pink and green
use AC and ACDC input power respectively.
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Modelling and Evaluation of Carbon Based Foam Thermoacoustic Effect for Effective Sound Generation
in Liquids

Electroacoustic transducers along with piezoelectric devices are the most widely used methods for acous-
tic sound generation in gas and liquids. A mechanical movement of a membrane induces fluid vibration
thus creating an acoustic wave. The thermoacoustic process on the other hand uses fast paces temperature
variations in a sample to excite the fluid (generally air). The rapidly changing temperature generate a com-
pression expansion of the air and thus creates an acoustical wave. Such materials are called thermophones.
They were discovered in the same time period as traditional electroacoustic transducers but their limited
efficiency coupled with the technological limits of fabrication prevented scientific craze at the time. In 1999
a new thermophone was presented with a significant improvement compared to the samples used a century
prior. This article coupled with the newly found ease of access to complex fabrication process of nanomate-
rials rekindle the interest in thermoacoustic for audio purposes. In this thesis a thorough literature review
is presented and a novel multilayer model for thermoacoustic sound generation is derived. This model was
solved for plane wave, cylindrical wave and spherical wave generation. Another model based on a two tem-
peratures hypothesis for plane wave generation is also solved to represent more accurately the generation
of thick porous thermophones. An extensive analysis of those models allowed for a detailed understanding
of the thermoacoustic sound generation: its strengths, weaknesses and differences with traditional speak-
ers. Lastly, experimental investigations of porous carbon foams in partnership with CINTRA Singapore are
presented. Validation of the models and insights about the handling of such flexible and lightweighted but
fragile samples are presented as well at their potential applications for scientific or commercial purposes.

Keyword Thermoacoustic, Thermophone, Sound Generation, Nanomaterials, Carbon, Porous Media,
Theoretical Modelling

Analyse Théorique et Expérimentale de l’Efficacité de Mousse de Carbone pour Génération Acoustique
dans des Milieux Visqueux

Les transducteurs électroacoustiques ainsi que les dispositifs piézoélectriques font partie des principales
méthodes de génération acoustique dans un gaz ou un liquide. Un mouvement mécanique d’une membrane
crée une vibration du fluide générant une onde acoustique. La thermoacoustique en revanche utilise des
variations rapides de température d’un matériel pour exciter le fluide (généralement de l’air). Ces change-
ments thermiques rapides créent une compression dilatation de l’air qui va générer une onde acoustique.
De tels matériaux sont appelés thermophones. Ces derniers ont été découverts à la même période que les
transducteurs électroacoustiques mais leur faible efficacité ainsi que les limitations scientifiques de l’époque
ont empêché le domaine de se développer. En 1999 un nouveau thermophone avec des capacités acoustiques
bien supérieures à ses prédécesseurs a été présenté. La publication de cet article associé à une plus grande
facilité d’accès à des machines permettant la fabrication de matériaux nanostructurés a permis un nouvel
engouement pour la thermoacoustique audio. Dans cette thèse une vaste revue de littérature est présentée et
un modèle innovant multicouche de génération thermoacoustique en est déduit. Ce modèle est résolu pour
la génération d’ondes planes, cylindriques et sphériques. Un second modèle basé sur une hypothèse dite
de deux températures est aussi créé pour représenter de façon plus fidèle la génération thermoacoustique
dans un milieu poreux épais. Une analyse étendue des résultats découlant de ces modèles est ensuite faite
permettant la compréhension des forces, faiblesses et particularités des thermophones par rapport aux trans-
ducteurs traditionnels. Enfin une analyse expérimentale de mousses carbonées en partenariat avec CINTRA
Singapour est présentée. Cela permet la validation des modèles théoriques et procure une compréhension
expérimentale sur la manipulation de ce type de matériaux flexibles et légers mais fragiles, ainsi que leurs
potentielles applications scientifiques et commerciales.

Mots-clés Thermoacoustique, Thermophone, Génération Sonore, Nanomateriaux, Carbone, Matériaux
Poreux, Modèle Théorique
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