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INFÉRENCE STATISTIQUE POUR LES MODÈLES DE CATÉGORISATION
ET ORDRE DE PRÉSENTATION

Résumé

Cette thèse se consacre à l’étude de la catégorisation, qui est la capacité cognitive de
placer des objets dans des groupes. Plus particulièrement, nous nous intéressons à l’ordre
de présentation et à la modélisation. L’objectif de cette thèse est triple : étudier l’influence
de l’ordre de présentation dans l’apprentissage des catégories ; fournir une méthode
statistique robuste pour la comparaison des modèles de catégorisation ; et déterminer si
les modèles de catégorisation sont sensibles à différents types d’ordre.

Dans un premier temps, nous décrivons les expériences effectuées dont le but est
d’explorer l’influence de deux types d’ordre sur la vitesse d’apprentissage. Dans ces
expériences, les participants devaient apprendre une règle de catégorisation concernant
des objets quadridimensionnels. Les stimuli étaient présenté en utilisant soit un ordre par
règle, qui présente les objets de la règle principale en premier, soit un ordre par similarité,
qui maximise la similarité entre objets consécutifs. Nous trouvons que l’ordre par règle
facilite l’apprentissage quand les stimuli sont présentés dans le même ordre d’un bloc à
un autre et quand les catégories sont bloquées ou présentées de façon aléatoire.

Dans un deuxième temps, nous décrivons les modèles de catégorisation utilisés dans
cette thèse et introduisons un nouveau modèle de catégorisation qui intègre l’ordre de
présentation. Parmi les modèle de transfert, qui ne sont adaptés qu’à reproduire la
phase de transfert, nous décrivons le Generalized Context Model (GCM), qui est un des
modèles de catégorisation les plus connus, le Generalized Context Model équipé avec un
mécanisme de délai (GCM-Lag), qui est une extension du GCM qui prend en compte un
mécanisme de perte de mémoire, et le nouveau Ordinal General Context Model (OGCM),
qui est une extension du GCM qui prend en compte l’ordre de présentation des stimuli.
Parmi les modèles d’apprentissage, qui reproduisent aussi bien la phase d’apprentissage
que celle de transfert, nous décrivons ALCOVE, qui intègre la logique du GCM dans un
réseau de neurones, et Component-Cue, qui intègre une stratégie par induction dans un
réseau de neurones.

Dans un troisième temps, nous développons une méthode robuste d’inférence statistique
pour comparer les modèles de catégorisation. Cette méthode est séparément appliquée
aux modèles de transfert et d’apprentissage. Nous trouvons que le modèle de transfert
qui reproduit au mieux notre jeu de données est la version d’OGCM qui prend en
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considération l’ordre de présentation le plus fréquent pendant la phase d’apprentissage.
Ce résultat montre que l’information fournie par la composante temporelle est importante
pour classifier les objets. De plus, nous trouvons que Component-Cue capture mieux les
motifs de généralisation et ALCOVE capture mieux la dynamique d’apprentissage. Enfin,
nous explorons la possibilité que les performances des modèles d’apprentissage soient
dépendantes de l’ordre de présentation. Nous montrons que ALCOVE et Component-
Cue sont sensibles à l’ordre et que les motifs de généralisation de Component-Cue sont
compatibles avec un apprentissage par règle.

Pour terminer, nous décrivons comment appliquer des modèles de transfert à des données
d’apprentissage en utilisant la segmentation et la segmentation/clustering. L’application
de ces deux techniques à notre jeu de données montre la présence de deux groupes
d’individus : les individus rapides et les individus lents. De plus, en utilisant la seg-
mentation/clustering, nous trouvons une relations entre la vitesse d’apprentissage des
individus et l’ordre de présentation. In particulier, les individus qui ont montré une vitesse
d’apprentissage élevée au début de l’expérience avait reçu pour la plupart un ordre par
règle.

Mots clés : catégorisation, ordre de présentation, ordre par règle, ordre par similari-
té, modèles de catégorisation, ALCOVE, Component-Cue, GCM, inférence statistique,
segmentation, segmentation/clustering.
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STATISTICAL INFERENCE FOR CATEGORIZATION MODELS AND PRE-
SENTATION ORDER

Abstract

This thesis is devoted to the study of categorization, which is the cognitive ability to
organize entities into groups. In particular, we focus on presentation order and modeling.
The objective is threefold: to investigate the influence of presentation order on category
learning; to provide a robust statistical method to compare categorization models; and to
explore whether categorization models are sensitive to specific types of order.

Firstly, we report several experiments exploring the effects of two types of order on
learning speed. In our experiments, participants were taught 4-feature category structures
using either a rule-based presentation order (in which exemplars are presented following
a “principal rule plus exceptions” structure) or a similarity-based presentation order
(which maximizes the similarity between contiguous exemplars). We find that the rule-
based order facilitates learning when the across-blocks manipulation was constant and
categories were either blocked or randomly alternated.

Secondly, we describe the selected categorization models and introduce a new catego-
rization model that integrates the order in which stimuli are presented. Among transfer
models (which are adapted to reproduce participants’ performance during the transfer
phase), we describe the Generalized Context Model (GCM), one of the most well-known
categorization models; the Generalized Context Model equipped with a Lag mechanism
(GCM-Lag), an extension of the GCM integrating a memory decay mechanism; and the
new Ordinal General Context Model (OGCM), an extension of the GCM incorporating
temporal information. Among learning models (which can reproduce participants’ per-
formance during both the learning and transfer phases), we describe ALCOVE, which
integrates the logic underlying the GCM in a neural network structure, and Component-
Cue, which incorporates an induction strategy in a neural network structure.

Thirdly, we develop a robust statistical method for comparing categorization models and
apply it separately to both transfer and learning models. We find that the transfer model
that best fits our dataset is the version of the OGCM that takes into account the most
frequent presentation order received during the learning phase. This result indicates that
the information provided by the ordinal dimension is relevant for the categorization task.
We also find that Component-Cue best captures the generalization patterns, while ALCOVE
best captures the learning dynamics. Finally, we investigate whether the performance of
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the selected learning models is related to the type of order in which stimuli are presented.
We find that both learning models are sensitive to presentation order, in particular the
generalization patterns of Component-Cue are consistent with a rule-based retrieval.

Finally, we describe how to apply transfer models to learning data using segmentation and
segmentation/clustering. The application of these two techniques to our dataset shows
that there are two groups of participants: high-speed and low-speed. Moreover, using the
segmentation/clustering method, we find a relation between participants’ learning speed
and type of order. In particular, participants that showed a high-speed learning in the
early stage of the categorization task mostly received a rule-based order.

Keywords: categorization, presentation order, rule-based order, similarity-based order,
categorization models, ALCOVE, Component-Cue, GCM, statistical inference, segmenta-
tion, segmentation/clustering.

iv



Acknowledgement

What a crazy roller coaster has been this thesis! The health issues, the broken bones,
the lack of a well-defined project, the willing to quit, the pandemic, but also the deep
friendships, the delightful teaching experience, the gain of a scientific autonomy, the
decision to fight, the eclectic learning, the discovery of my non-binary identity, the
personal and professional growth. If I could turn back time, I would not change a single
aspect of my thesis. I would do it over and over again, taking the bad with the good
without a grain of hesitation. Thank you all for making my PhD so special!

Mes premiers remerciements vont au triplé de directeurs de thèse le plus improbable :
Patricia la matheuse, Fabien le psychologue et Thomas le statisticien. Merci, Patricia, de
t’être lancée avec moi dans ce fou mais merveilleux projet de thèse. Même les moments
où tu as douté de moi ont été tellement précieux dans la construction de mon autonomie
scientifique et personnelle ! Tu auras toujours une place spéciale dans mon cœur. Merci,
Fabien, pour nos discussions intéressantes. Même si rares, elles m’ont aidée à affiner
ma réflection et à construire mon identité de psychologue. Merci également de m’avoir
fait comprendre l’importance de passer du temps sur la bibliographie. Merci, Thomas,
pour ton précieux travail de médiation. Les mathématiques et la psychologie sont deux
langages différents et cela amène des fois à des incompréhensions. Merci de m’avoir aidée
dans cet ingrat mais fondamental travail de traduction et de patience. Merci également
pour ton investissement scientifique et émotif.

I thank Royce and Susanne for accepting to review and evaluate my manuscript. Merci,
Royce, d’avoir pris le temps de lire attentivement mon manuscrit. Merci pour tes co-
pieuses appréciations scientifiques et tes questions intéressantes. Merci également d’avoir
remarqué le fin travail des petits détails ainsi que la passion que j’ai mis dans l’écriture.
Je me souviendrai toujours du moment où j’ai lu ton merveilleux rapport et de mon
incommensurable joie. Thank you, Susanne, for your sound and scientific feedback. I

v



will never forget your warm compliment: "Every researcher working with quantitative
evaluations of these types of experiments should read this thesis!".

Thank to Robert Goldstone, Pierre Pudlo, and Olivier Renaud for accepting to be a
member of my PhD thesis committee. A special thank to Robert for his kindness and his
scientific work. It is a true honor to have you in my commitee!

Ringrazio tutta la mia famiglia che mi ha accompagnato in questa avventura francese
piena di ostacoli e forti emozioni. Grazie Mamy, Papi, Topis e Gabri di essere il mio punto
fisso e di avermi permesso di volare per realizzare i miei sogni. Un grazie anche ai miei
nonni Graziella e Nino per la loro costante presenza.

Un ringraziamento speciale anche a Dario, Eugenia, Primo, Simona e Tommaso per essere
la mia seconda famiglia. Grazie, specialemente a te, Dario, per il tuo cuore grande e
generoso.

Je remercie ma troisième famille, Anne, Bruno, Julie, Émilie, Trixy, Willow et Elios. C’est
toujours une fête et une immense joie de venir vous voir. Merci de me faire sentir un
membre de la famille, c’est le cadeau le plus beau que vous auriez pu me faire !

Merci aux doctorant.e.s, post-doctorant.e.s et stagiaires du laboratoire Dieudonné, BCL,
I3S, INRIA et autres. Je n’ai pas eu l’occasion de lier avec tout le monde, néanmoins je tiens
à vous remercier pour avoir rendu mon expérience de thèse plus agréable. Du laboratoire
Dieudonné, je remercie Arthur, Edouard, Julie, Luis, Marcella, Reine, Pupi, Victor, Eliot,
Alexis G., Huda, Sofiane, Ludovick, Marco, Maxime, Jonathan, Yash, Mehdi, Gaetan,
Kevin, Hadrien, Léo, Billel, Nadine, Zhixin, Djaffar, Cuong, Valerio, Felice, Laurent, Giulia
et Riccardo. Un remerciement particulier va à Cécile et Wesley pour avoir toujours accepté
avec enthousiasme mes idées de sortie de la dernière minute. Je remercie également Sara
pour nos discussions dans le couloir et pour valoriser mes conseils. Du laboratoire BCL, je
remercie Sophie, Miriam, Raphaëlle, Camille, Moustapha, Samaneh, Laura, Alex, Paolo et
Francesco. Du laboratoire I3S, INRIA et autres, je remercie Eman, Yuri et Ali.

Je ne peux pas ne pas remercier mes ex co-bureaux, Victor, Pupi et Sofiane pour avoir
partagé avec moi les moments les plus difficiles de ma thèse.

Un grand merci aussi à tout le cinquième étage du bâtiment Fizeau : Cédric, François, Yves,
Gilles, Roland, Rémi, Didier, Claire, Julie, Raphaël, Olivier, André, Luc, Damien, Elisabeth,
Elena, Ivan, Marjolaine, Charles, Stella, Seb. Merci d’avoir su créer une ambiance très
agréable et joviale. En particulier, je remercie Anna et Dimitri d’avoir partagé avec moi
l’étage de Fizeau pendant de nombreuses soirées. Merci également, Anna, de proposer

vi



souvent des activités de détente à tout l’étage ! Un merci spécial également à Martine,
pour ton humour et nos nombreuses discussions autour de l’enseignement.

Je souhaite aussi remercier Indira pour avoir organisé le repas à l’occasion de la journée
“Women in maths”, Francesca pour ses invitations aux concerts, et Thierry pour sa bonne
humeur.

Merci au meilleur couple d’informaticiens, Jean-Marc et Roland. Un merci très spécial à
Jean-Marc pour nos discussions, sa disponibilité infinie et son constant soutien !

Je tiens également à remercier tout le personnel administratif pour leur travail indispen-
sable : Amandine, qui se souviendra de moi pour les obstacles rencontrés dans l’achat des
crédits PsychoPy, Narymen, les deux Isabelle, Chiara et Anita, sans oublié Julia qui m’a
accueilli avec gentillesse à mon arrivée au labo.

Un merci très spécial à Marc. Avoir collaboré avec toi pour la création de jeux et activités
pour la fête de la science a été une des expériences les plus enrichissantes et amusantes
de mon doctorat. Merci pour ton précieux travail de diffusion scientifique qui permet de
réunir les gens autour de la science. Merci également d’avoir accepté de m’aider dans la
création d’une version interactive de ma thèse. J’espère pouvoir bientôt entreprendre une
nouvelle collaboration créative avec toi !

Merci à ceux avec qui j’ai partagé l’organisation et l’animation de la fête de la science :
Marc, Jean-Louis, Robert, Cyril, Ludovic, Maxime I., Jean-Baptiste, Jonathan, Eliot.

Merci à toutes les personnes avec qui j’ai partagé le plaisir d’enseigner. Merci à Ann pour
sa patience et bienveillance. Merci à Nicole, Mohammed et Ingo pour avoir rendu ma
première expérience d’enseignement très agréable. Merci à Raphaël, Nahla et Yash, avec
lesquels j’ai passé une amusante journée et soirée à scanner des examens. Merci à tou.te.s
mes étudiant.e.s pour les gentils et encourageants retours ! Merci également à toutes les
personnes qui ont pris le temps de faire mon expérience psychologique.

Merci à toutes les personnes de l’institut NeuroMod. En particulier, merci à Alexandre et
Indrig pour la belle et surprenante collaboration, et à Chloé pour son travail d’information
et d’organisation. Je remercie également Tobias et Émilie pour les échanges lors des
rencontres C@UCA et NeuroMod.

Quand je pense aux expériences clés qui m’ont amené à terminer positivement mon
doctorat, la formation de co-orientation fait sûrement partie de cette catégorie. Un

vii



grand merci à Catherine, Emmanuelle, Laurie et Isabelle d’avoir rendu cette formation
mémorable. Grâce à vous chaque session était un pur plaisir !

A big thank to Marya for helping me gaining confidence in my speaking ability. Also,
thank you for all of our interesting conversations about teaching and learning. I cannot
wait to celebrate my PhD with you in front of a good cake!

Merci à Alice et à toute la bande pour l’organisation des pique-niques bien-être. C’était
toujours très agréable de discuter avec des personnes ayant des formations très variées
autour d’un bon vin et de la bonne nourriture.

Merci à Peggy de m’avoir offert des nombreux moments de détente. Sans toi cela aurait
été beaucoup plus difficile de gérer le stress et les imprévus de ce doctorat.

Merci à David de m’avoir permis de reprendre contact avec mon côté musical. Merci
également à Anne et Hélène d’avoir partagé avec moi l’apprentissage de la guitare.

Je souhaite remercier le centre LGBTQIA+ de Nice pour les samedis après-midi passés
ensemble. En particulier, merci à Sarah d’avoir eu un rôle important dans la découverte
de moi-même.

Merci à toute l’équipe de foot de Villeneuve-Loubet. Malgré les problèmes de santé et les
nombreux accidents (côte, cheville, côte à nouveau) cela a été un rêve de pouvoir jouer
dans une vraie équipe.

Merci à Nathalie, Stéphanie et Patricia de m’avoir initiée à la sophrologie dans un moment
particulièrement difficile de ma thèse.

Je vais également me souvenir de ce doctorat pour ses ponctuels mais marquants
voyages.

Merci à Cycy, Oussama, Anne et Yuri avec lesquels j’ai vécu la meilleure vacance de
groupe de ma vie.

Un grand merci à Ophélie et Cycy pour l’inoubliable summer school à Bornholm. Je
n’oublierai jamais nos soirées d’exploration, le séchage de quelques cours (désolée Patou ;-
P), la bouffe et les grasses rigolades. Merci pour ce beau souvenir !

Merci à Miriam d’avoir partagé avec moi les jours à Pavia à l’occasion du symposium de
psychologie. La visite de la ville ainsi que les conférences ont été beaucoup plus agréables
grâce à ta présence.

viii



Un grazie a Anna, Luna, Olaia e Francesco che hanno reso divertentissime le due vacanze
solidali che ho passato alla Lipu.

J’aimerais remercier tous les restaurants niçois qui ont nourri mon coeur autant que
mon estomac pendant ces quatre années de thèse. Merci à Koko Green de m’avoir fait
découvrir une fine gastronomie végane, merci à Au Petit Libanais d’avoir nourri mes
amitiés, merci à Pizz’Athena de m’avoir fait redécouvrir le goût de la pizza italienne en
France, merci au Fairy Sushi d’avoir été le lieu de célébration de mes victoires, merci à
l’Union d’avoir accueilli des nombreux repas entre doctorants, merci au Viking Burger qui
a représenté un des petits plaisirs du confinement, et enfin merci au King Sushi qui m’a
permis de gagner le cœur de ma princesse.

Enfin je souhaite remercier tou.te.s les ami.e.s qui ont illuminé, de prêt ou de loin, mes
journées niçoises.

Merci, Laurence, pour ton soutien dans les moments difficiles ainsi que pour nos discus-
sions stimulantes.

Merci, Célia, pour ton sourire, ta franchise et nos dîners ensemble.

Merci, Fatat, pour ta joie contagieuse et les week-ends à Paris. Merci de faire partie de
ma vie malgré la distance qui nous sépare.

Grazie, Alessandra, per mantenere viva la nostra amicizia nonostante la distanza e per
essere fedele a te stessa. Dà speranza vedere persone che creano una vita su misura senza
seguire la massa.

Grazie, Elisabetta e Arthur, per i molteplici mercoledì sera passati a giocare e a discutere
(quando Arthur ci dava un momento di tregua). Spero con tutto il cuore di poter seguire
Arthur nella crescita ed essere per lui un ulteriore punto di riferimento.

Merci à Anne pour nos midis à L’Altra Casa. Je chérie chacune des nos discussions. Merci
d’être aussi ouverte, courageuse et curieuse, c’est inspirant de te côtoyer.

Merci, Bochra, de m’avoir fait découvrir la culture tunisienne ainsi que d’avoir accueilli
avec ouverture d’esprit mes nombreuses confidences. Merci également pour l’enrichissant
échange de livres et pour nos agréables balades lors du confinement.

Merci, Oussama, pour les voyages à Pisa, à Vienne et chez les parents de Cycy, pour nos
discussions d’économie et d’écologie, pour les excellents thés à la menthe marocains,
pour les tajines et enfin pour ta joie de vivre et ton aura positive.

ix



Merci, Samira, de m’avoir accompagnée dans cette aventure. J’ai eu une chance énorme
d’avoir eu la possibilité de partager la chambre avec toi lors du colloque des doctorants
de 2017. Tu ne sais pas combien les discussions que nous avons eu à cette occasion m’ont
aidée à réaliser que je n’étais pas la seule doctorante à avoir des doutes et des problèmes
d’encadrement. Merci d’avoir été là pour moi !

Et enfin merci à ma merveilleuse princesse Cycy, sans laquelle je n’aurais jamais pu
terminer ce doctorat avec la même force, la même détermination et la même confiance.
Tu m’as donné une maison sur laquelle m’appuyer, tu m’as permis de découvrir mon
exceptionalité, tu m’as fait sentir entièrement aimée (défauts et manies comprises). Je
n’oublierai jamais le vendredi matin qui a suivi la réception du rapport de Royce. Nous
étions en train de nous préparer pour aller au labo et tu as décidé de mettre la chanson
qui a accompagné ma remonté. Envahie par les souvenirs et les émotions, j’ai fondue
en larmes. La chanson a fait remonter à la surface toute la souffrance liée à ce doctorat,
l’exténuant travail, les sacrifices, mais aussi la fierté et la profonde joie pour tout ce que
j’avais accompli. Merci pour ce moment magique. Je t’aime.

x



Cela serait un pêché capitale de ne pas partager avec vous la colonne sonore qui a
accompagnée ma thèse. Je vous conseille de lire les paroles en écoutant la musique ;-)
(Try Everything de Shakira).

Oh, oh, oh, oh, oh (×4)

I messed up tonight
I lost another fight

Lost to myself, but I’ll just start again

I keep falling down
I keep on hitting the ground

But I always get up now to see what’s next

Birds don’t just fly
They fall down and get up

Nobody learns without getting it wrong

I won’t give up
No, I won’t give in till I reach the end

And then I’ll start again
No, I won’t leave

I want to try everything
I want to try even though I could fail

I won’t give up
No, I won’t give in till I reach the end

Then I’ll start again
No, I won’t leave

I want to try everything
I want to try even though I could fail

Oh, oh, oh, oh, oh
Try everything

Oh, oh, oh, oh, oh
Try everything

Oh, oh, oh, oh, oh
Try everything

Oh, oh, oh, oh, oh
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Look how far you’ve come
You filled your heart with love

Baby, you’ve done enough
Take a deep breath

Don’t beat yourself up
No need to run so fast

Sometimes we come last, but we did our best

I won’t give up
No, I won’t give in till I reach the end

And then I’ll start again
No, I won’t leave

I want to try everything
I want to try even though I could fail

I won’t give up
No, I won’t give in till I reach the end

Then I’ll start again
No, I won’t leave

I want to try everything
I want to try even though I could fail

I’ll keep on making those new mistakes
I’ll keep on making them every day

Those new mistakes

Oh, oh, oh, oh, oh
Try everything

Oh, oh, oh, oh, oh
Try everything

Oh, oh, oh, oh, oh
Try everything

Oh, oh, oh, oh, oh
Try everything

Try Everything, Shakira
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Preface

The present thesis is highly interdisciplinary. Thus, I attempted to write a manuscript that
is accessible to the widest range of people (psychologists, mathematicians, statisticians,
pedagogists, etc.). Moreover, because of my love for pedagogy, I tried to convey ideas,
concepts, and messages in the simplest terms.

Almost every concept is explained using three complementary ways of integrating infor-
mation: words, images, and mathematical equations. The goal was to allow readers to
integrate content using their most suitable learning style.

Two types of text boxes are disseminated all along the manuscript: a “dig deeper” text
box that provides further information about the studied topics (denoted as BOX), and
a “summary” box that summarizes the content of a specific section or chapter (denoted
as TO SUM UP). The rationale was to target three different types of people: the regular
person who will read the manuscript skipping most of the text boxes, the nerd who is so
curious that won’t miss a single word (text boxes included), and the busy person who
will only read the summary boxes.

Whatever kind of person you are (regular, nerd, or busy) I hope you will enjoy the
reading.
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Categorization is the ability shared by both human and nonhuman animals to separate
objects into classes. This skill enables individuals to survive. For instance, human beings
have the ability to recognize facial expressions of anger or threat rapidly and efficiently.
This fast detection of angry faces allows quick response and thus represents a clear
evolutionary advantage [Fox+00; GW06]. In the animal kingdom, vervet monkeys have
developed different alarm calls to warn other group members about the presence of a
predator (e.g., eagles, leopards or snakes). This early multiform warning system gives
them a greater chance to escape thus reducing their mortality [CS90].
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Outline of this chapter

This chapter provides an introduction to categorization, the domain in which the present
thesis is grounded. Firstly, we offer basic definitions in this field of study and we present
the canonical categorization experiment. Secondly, we introduce different types of
presentation orders of the to-be-categorized stimuli (in the context of a categorization
experiment) and review the literature on the topic. Then, we present formal models in
psychology by providing the reader with an overview of the most famous categorization
models and explain why their use should be more widely promoted. Finally, we present
the scope, aim, and organization of the present thesis.

1.1 Categorization

Let us first give a few definitions. By categorization we refer to the process (or processes)
of organizing entities such as objects, events, ideas, etc. into groups. A set of entities
that forms a group is a category and the members of a category are called exemplars or
items. The mental representation of a category is defined as a concept [GKC12; MC98].
Take, for example, the cognitive process with which we would classify our neighbor’s dog
“Spike” as a “Dog”. This cognitive process is an example of categorization. “Spike” the
individual animal is an exemplar of the category “Dog” and the way the mind represents
the category “Dog” is a concept.

Theories: Exemplars vs. Prototypes vs. Rules

Most research on categorization revolves around the way categories are mentally repre-
sented, which traditionally has fallen under three main proposals: exemplars, prototypes,
and rules [GKC12; Kru05; MC98; PW11].

Exemplars. According to the exemplar theory, animals store objects they encounter sepa-
rately as unique memory traces so as to categorize new items by comparing them
to these previously traces called exemplars. If the new items are enough similar
to the stored exemplars of a given category, then would tend to be spontaneously
categorized in the same category with no need to be corrected by a feedback [Bro78;
Est94; MS78; Nos84; Nos87]. For example, according to this theoretical framework,
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human and nonhuman animals mentally apprehend the category of “mushrooms”
by memorizing all exemplars of porcini, chanterelle, amanita, morel, shiitake (and
so on) they come across. When they detect a new item, the more similar this item
is to the stored exemplars of mushrooms, the higher the chance to categorize it as a
“mushroom” (see Figure 1.1). Conversely, it could be mistaken as a rock or a piece
of wood, etc.

Prototypes. The prototype theory is based on the idea that animals store a summary rep-
resentation of the many exemplars that form a category, and this mental summary
is called a prototype. The prototype expresses the most common features of the
members of the category. The categorization of new items consists of comparing
them to the prototype of the category. If the new items are similar enough to
the prototype, then they are included in the category [MR81; Ros75; RM75]. For
example, according to the prototype theory, animals would average all exemplars
of porcini, chanterelle, amanita, morel, shiitake (and so on) they come across to
form the prototype of the category of “mushrooms”. When they detect a new item,
they classify it as a “mushroom” if it is similar enough to the stored prototype (see
Figure 1.1).

EXEMPLAR THEORY PROTOTYPE THEORY

RULE THEORY

fungus with cap,
stem, gills or sponge, etc.

Figure 1.1 – Example of exemplar, prototype, and rule theory. The image of the prototype “mushroom”
has been taken from https: // creazilla. com (Creazilla Open-Source License), whereas all the
other images have been taken from https: // pixabay. com/ fr/ photos (Pixabay Licence).
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Rules. According to the rule theory, animals store lists of necessary and sufficient features
for category membership, called rules. New items are categorized as members
of a category if they satisfy the rules of the category [BGA58]. For example,
a “mushroom” is anything that is an eukaryotic organism of the group fungi,
characterized by a cap, a stem, gills or sponge under the cap, etc. (see Figure 1.1).
Rules can be updated and become more refined as objects become of particular
interest for an individual, for instance when foraging for edible mushrooms.

The Role of Similarity

The intuitive idea that items are put into categories because they are perceived as similar
has been quite influential. Indeed, many theories (as saw in the previous subsection)
and categorization models (as we will see in Section 1.4) are grounded on similarity.
For example, prototype theories assume that new items are classified into a category
on the basis of their similarity to the category prototype, and exemplar theories assume
individuals compute the similarities between the new item and all existing exemplars.

However, a number of theoretical arguments and empirical evidence have questioned the
role of similarity in categorization [Bar82; Goo72; SOS92; ZH99]. Some researchers have
argued that similarity is too unconstrained to serve as an explanation for categorization
[Goo72; Rip89]. Others have argued that because similarity is largely based on perception
it is difficult to take into account forms of abstractions that are frequent in concepts.
Finally, rule-based theories assume that individuals rely on a set of abstracted features to
judge whether a new object belongs to a category, which therefore cannot be referred to
as a similarity process [Car85; Kom92; MM85]. Although it is clear that similarity is not
sufficient to account for all categorization processes, it still does play an important role in
establishing many of our categories [SSO93]. Excellent reviews on the role of similarity
in categorization have been written by Goldstone [Gol94] and Medin, Goldstone, and
Gentner [MGG93].

IN THE PRESENT THESIS

The theories described in the present section (Section 1.1) also apply for non-human
animals [AJT17; JOU11; Smi+16]. However, the present work focuses on humans,
more specifically adults.
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1.2 Canonical Categorization Experiment

This section is designed for those who are not familiar with categorization experiments.
Below, we define the main features of a categorization experiment and introduce the
proper vocabulary.

A Brief Example of Categorization Experiment

Imagine your neighbor Tom wants to learn about mushrooms. More specifically, he
wants to acquire the ability to determine whether a mushroom is edible or not, which
corresponds to the ability to categorize. One way to help him progress is to set up a
categorization experiment. We could select a sample of pictures of edible and non-edible
mushrooms (see Figure 1.2) and we would present these pictures to Tom, one at a time.
For each picture, we would ask Tom to classify the mushroom into the edible versus
non-edible category. After his response, a feedback would correct his answer. Hopefully,
Tom would eventually learn the correct classification of all the selected pictures after
viewing them multiple times. Usually, a similar process is at play with a friend in a forest,
with real mushrooms. Furthermore, if Tom wished to test his general ability, we would
select a set of new pictures and apply the same procedure, or more risky, Tom could take
his chances and go directly in a forest pick what he thinks are edible mushrooms. The
ultimate feedback would be if Tom remained alive or not.

The mushroom pictures that have been used to train Tom are called learning items, while
those that have been used to test Tom’s acquisition of knowledge are called transfer
items. A single presentation of a mushroom picture is called a trial and the consecutive
presentation of all the available learning (or transfer) items is called a block (see Figure
1.2). The mushroom picture presented at a trial is a stimulus.

Options in Categorization Experiments

The previous example gives a general idea about how a categorization experiment is
conducted. However, those conducting the experiment have a larger array of choices
than the one presented above. One example of particular interest in the present thesis is
that instead of going in the forest to encounter mushrooms in a random way, the choice
of mushrooms and the order in which they can be presented can be manipulated in a
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CATEGORY A
Edible mushrooms

(learning items)

CATEGORY B
Non-edible mushrooms

(learning items)

a trial

a block

Figure 1.2 – Example of a categorization experiment. On the top, the learning items are divided into
two categories, respectively, edible mushrooms (category A) and non-edible mushrooms (category
B). On the bottom, illustration of a trial (i.e., a single presentation of a mushroom picture) and
a block (i.e., the consecutive presentation of all the learning items). Images taken from https:
// pixabay. com/ fr/ photos (Pixabay Licence).

laboratory experiment. Let us explore some degrees of freedom that researchers face
when designing categorization experiments.

Phases

One of the first aspects that researchers have to deal with is determining the number and
nature of the phases of the experiment. For example, the experiment administered to
Tom had two phases: a learning phase in which Tom was trained, and a transfer phase in
which Tom was tested. The number and nature of the phases of an experiment depend
on the objective of the experimenter. If the experimenter aims to determine the optimum
learning condition (among a selection), then it is appropriate to design a single learning
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phase [Gag50; MF09; NP96]. In contrast, if the goal is to study how well participants
transfer their knowledge to new stimuli, then a transfer phase is necessary [CG14b; KP12;
MF16; Mea+17; Noh+16; Nos86].

The transfer phase tests the generalizability/transferability of knowledge. Without the
use of new items in this phase, it is possible for an individual to learn how to classify
items by rote, which is not the goal of a learning experience. If the individual succeeds in
classifying red mushrooms and brown mushrooms as mushrooms and black birds and
yellow birds as birds, we can only be sure that learning generalizes if the subject is tested
with a red (or brown) bird, which determines whether the subject is capable of inductive
inference.

Items

Another aspect is the choice of the items (learning items, transfer items, or both). There
are three main questions that can guide the choices of an experimenter [AM98].

Artificial or real-world items? Most of the research on categorization has been con-
ducted with artificial items, such as geometric shapes [Gag50; MF09; MF16;
Noh+16; Nos86; NP96; SHJ61], blob figures [CG14b; CG14a], or simplified draw-
ings [SCR10]. However, there has been an increasing interest in using real-world
items, such as rocks [Mea+17; Miy+18; Nos+19], birds [Bir+12; KV18], faces
[GLS01], or paintings [KP12; KB08]. Researchers that employ real-world items face
the additional choice of using pictures versus physical samples [Mea+18].

Continuous or discrete dimensions? The dimensions of an item are the main features of
the item. For example, the main features of a red square are color and shape. Ex-
perimenters can choose to use items that vary continuously along their dimensions
(for example, straight lines varying in orientation) [Gol96; Noh+16; Nos86], or
that only take a discrete number of values (for example, geometric shapes such
as square, circle and triangle) [MF16; NP96]. A widely studied case among those
belonging to the latter group is when dimensions can only take two values (i.e.,
binary-valued/Boolean dimensions) [MF09; SHJ61].

Separable or integral dimensions? A last aspect that experimenters can choose concerns
the interaction between the dimensions of the items. Separable dimensions are
easy to distinguish from one another. Conversely, integral dimensions are perceived
as not distinguishable. For example, color and shape are separable dimensions,
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while color and brightness are integral dimensions. Research on categorization has
focused on both separable [Noh+16; Nos86; SHJ61] and integral [Nos87; NP96]
dimensions, but the present study only focuses on separable dimensions, which are
more appropriate for comparing exemplar-based theories and rule-based theories.

Categories

Another set of options concerns the construction of the studied categories. Three main
category structures are largely used in the literature.

Rule-based category structure. The categories belonging to this group are created from
simple rules. An example could be the “white versus black rule”, in which the
white items are classified into one category and the black ones are classified into
the opposing category. In order to be successful, participants have to determine
the relevant dimension (in this example, the color dimension) while ignoring the
others. Examples of experiments manipulating these types of categories can be
found in [BGA58; PFM09].

Information-integration category structure. In this category structure every dimension
is partially informative. Participants are required to integrate the information
offered by all of the dimensions in order to correctly classify the items. Examples of
information-integration category structures can be found in [Car+16; Mad+10;
SA08].

Rule-plus-exceptions category structure. This category structure is similar to the rule-
based category structure with the difference that the rule contains some exceptions.
An example is the rule “all white items plus the green square versus all black items
plus the red square”. Experiments manipulating these types of categories can be
found in [Nos86; MF09; SHJ61]. The rule or structure description is most often
based on one of the two categories, such as “all white except the square, plus the
black square”, meaning that all other objects go into the opposing category.

Feedback

After the items are selected and the categories constructed, the experimenter has to decide
whether feedback should be provided to the participants or not. In a supervised task,
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participants are informed about the correctness of their responses. In an unsupervised
task, no feedback is given after each trial. An absence of feedback does not mean that the
categorization is impossible. As seen earlier, a categorization experiment is most often
composed of either one (learning phase) or two phases (learning and transfer phases).
The learning phase is generally supervised while the transfer phase is generally unsu-
pervised [CG14b; MF16; Nos86]. The rationale is that we wish to study a spontaneous
classification in the transfer phase, so this phase should not be supervised.

Stop Criteria

There are two main stop criteria that the experimenter can adopt. The first option is
to end the experiment (or a specific phase of the experiment) when the participant
completes a fixed number of trials. The second option is to set a specific criterion based
on the performance of the participant. When the participant reaches the criterion, the
experiment (or a specific phase) ends. A plausible performance criterion could be to end
the experiment once the participant gives m correct responses in a row. It is common
to come across experiments that include both stop criteria. In these experiments, the
first option is used during the transfer phase while the second option is used during the
learning phase [MF16; Nos86]. There is no perfect choice of criterion for the learning
phase. When the number of blocks is fixed, all participants receive an equal number of
stimuli. In contrast, when we request a fixed rate of success, for instance 90%, participants
are guaranteed to reach equal performance but can have different experience (e.g., some
of them receive a greater number of stimuli). The disadvantage of using a fixed number
of blocks is that some participants sometimes cannot achieve minimal performance.

Between-category presentation orders

Another important aspect that researchers have to deal with is the order in which
categories are presented (the so-called between-category presentation order). There are
three main between-category orders:

Interleaved. Interleaving means that the studied categories are presented alternately. For
example, let us consider two categories (A and B). The categories are interleaved
when each pair of adjacent stimuli belong to different categories, for instance, when
categories alternate every trial as in ABABABAB. However, a strict alternation
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would be nonsense since the participant could alternate the response keys to be
100% correct without even looking at the stimulus features. Interleaving is thus
usually obtained by randomly permuting stimuli, so as to produce orders in which
70%, 80%, or 90% of consecutive pairs of stimuli belongs to opposing categories
(AABABBAB; see Figure 1.3).

Blocked. Blocking means presenting members of the same category in successive trials.
For example, the categories A and B are blocked when all the members of category
A and B are grouped together. Similarly to interleaving, it would be nonsense to
strictly block categories (again, the participant could block the response keys to be
100% correct without looking at the stimuli). Therefore, blocks in which categories
are strictly blocked are generally alternated with random blocks. Another solution
would be randomly permuting stimuli so as to produce orders in which 70%, 80%,
or 90% of consecutive pairs of stimuli belongs to the same category (AAABBBBA;
see Figure 1.3).

These types of between-category presentation orders have been used extensively by
experimenters in the literature, and especially because there has been a long tradition
of studies of blocked practice versus interleaved practice in the domain of learning in
general [Bir+12; CG14b; CG14c; CG14a; CG15; CG17; Gag50; KP12; KB08; Kor+10;
KV18; Noh+16].

Interleaved

A
A

B
A

B
B

A
B

Blocked

A
A

A
B

B
B

B
A

Figure 1.3 – Example of interleaved and blocked study (between-category orders). The learning items
are the same as in Figure 1.2. Images taken from https: // pixabay. com/ fr/ photos (Pixabay
Licence).
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Similarity-based

A
A

A
A

B
B

B
B

Dissimilarity-based

A
A

A
A

B
B

B
B

Rule-based
(F =exception)

A
A

A
A

B
B

B
B

F F

Figure 1.4 – Example of similarity-based, dissimilarity-based, and rule-based study (within-category
orders). In the rule-based order, exceptions are indicated with a star. The learning items are the same
as in Figure 1.2. Images taken from https: // pixabay. com/ fr/ photos (Pixabay Licence).

Within-category presentation orders

After selecting the between-category order, the experimenter can decide to manipulate
the order in which members within a category are presented. There are three main
options:

Similarity-based. Members within a category are presented following a similarity-based
order if the similarity between successive stimuli is maximized (see Figure 1.4).

Dissimilarity-based. Contrary to the similarity-based order, the dissimilarity-based order
is designed to minimize the similarity between successive stimuli (see Figure 1.4).

Rule-based. According to the rule-based order, stimuli are presented following a “prin-
cipal rule plus exceptions” structure. This means that the members that most
represent the category are presented before those that are less typical. For example,
let us consider the category of mushrooms. Exemplars of Boletus edulis are more
representative of the category “mushrooms” than exemplars of Boletus erytho-
pus. Therefore, in a rule-based order, exemplars of Boletus edulis are presented
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strictly before exemplars of Boletus erythopus (see Figure 1.4). Another important
component of this type of ordering is that it was originally designed to favor an
abstraction process by randomly presenting the cluster of stimuli encompassed by a
rule [MF09].

These types of within-category presentation manipulation of orders are quite rare in
the categorization domain [EA81; EA84; MF09; MF16], but also in other context, such
as word recall [Bow+69] and old-new recognition tasks [MB94]. One specific reason
why these manipulations are rare is that researchers might have thought that specific
orders could induce specific learning processes, whereas research most often attempts to
describe general processes.

Orders across blocks

Once the between and within-category presentation orders have been chosen, the ex-
perimenter has still to decide whether presentation orders are constant across blocks.
By using a constant presentation across blocks, all blocks would be identical, meaning
that the same sequence of stimuli would be presented in the successive blocks. By using
a variable presentation order across blocks the sequence of stimuli could vary from a
block to another (see Figure 1.5), but obeying the constraints of the chosen options (for
instance, a similarity-based order could start every new block with a randomly chosen first
item and select successive items by maximizing their similarity to the previous adjacent
item). The variable presentation across blocks can be considered as the default random
presentation. The next section gives more details about how these types of orders have
been studied in the literature.

1.3 Presentation Order

If the phrase “men eat apples” delivers a feeling of everyday situation, the phrase “apples
eat men” sounds more like the next science-fiction movie or a good cartoon. Despite the
fact that these phrases share the same words (presented in different orders), the message
sent is completely different. When the syntax does not fit the right vocabulary, the correct
meaning cannot be conveyed. Some of us may have experienced as a child the powerful
effect of telling a bad grade right after a good one to our parents, rather than announcing
the two grades in the reverse order. The widely known C major scale can communicate
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Constant

first block

second block

Variable

Figure 1.5 – Example of a constant and variable presentation across blocks. The learning items
are the same as in Figure 1.2. Images taken from https: // pixabay. com/ fr/ photos (Pixabay
Licence).

to the audience a sense of joy or sadness, depending on the order in which its notes are
played (do re mi fa sol la ti versus ti la sol fa mi re do, or equivalently, C D E F G A B
versus B A G F E D C).

This intuition that the same content using different presentation orders can lead to
distinct results has been confirmed by experimental data [BS81; Bra08; Cla14; Cor+11;
EA84; HGV11; JS03; LCK12; Lip61; MP15; MFP13; QA14; Sam69; SD08; ZM09; ZJM11].
These studies have shown evidence that the order in which information is presented can
impact the way we perceive, represent and learn new information.

As seen in the previous section, there are two main (interrelated) directions that re-
searchers have taken in order to investigate presentation orders: by comparing interleaved
versus blocked between-category orders and by studying the effect of similarity-based
versus rule-based within-category orders. In addition, other studies have focused on more
local effects of presentation orders such as determining how the previous stimulus affects
the classification of the next stimulus. This section aims to review the literature on these
topics.
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Interleaved vs. Blocked Between-Category Orders

There is a considerable amount of research analyzing the differences between interleaving
exemplars of different categories versus blocking members of a same category (see
definitions for interleaving and blocking in Section 1.2) [Bir+12; CG14b; CG14c; KB08;
Kor+10; KCG15; Roh09; Roh12; SYK16; Yan+17; ZB12; Zul+12]. Most research
comparing these two conditions (interleaving versus blocking) concluded that interleaved
study is more beneficial than blocked study [KP12; KB08; WFJ12; Zul+12].

For example, Kornell and Bjork [KB08] showed that participants who learned paintings
from 12 different artists by interleaving paintings by different artists (rather than blocking
paintings by artist) performed better at categorizing new items (Experiments 1a and 1b;
see also [Kor+10]). Moreover, participants who followed the interleaved condition were
also better at determining if a new painting was painted by a previously studied artist
or a new artist (Experiment 2). Surprisingly though, the participants had the reverse
feeling that the blocked order would lead to better performance because it gave them a
sense of fluid learning (see also [Yan+17]). Interleaving therefore can appear to induce
between-category comparisons, which can be more difficult than simply searching for
similarities within a give category. Similar results have been found using different items
or procedures [Bir+12; CG14b; LCK12; TR10; WDJ11; ZB12].

However, there is also evidence showing that blocked study is more beneficial than inter-
leaved study. For example, Carpenter and Mueller [CM13] showed that non-French speak-
ers performed better in learning orthographic-to-phonological mappings in French (i.e.,
“ou” and the corresponding sound [u] in the words “mouton”, “bouton”, “genou”; and
“eux” and the corresponding sound [ø] in the words “paresseux”, “osseux”, “somptueux”)
when words with the same mapping were blocked rather than interleaved. This result
has been replicated with different stimuli and procedures [CB12; CG11; CG14b; ZM12;
Gol96; KH56; RTJ14; ZB12]. Although the amount of research supporting the benefit of
blocked study is smaller than that supporting the benefit of interleaved study, these con-
trasting findings raise the question of which cognitive mechanisms predict the differences
between interleaving versus blocking.

Temporal spacing (i.e., the temporal delay between repetitions of the same category,
the so-called “spacing effect” in memory, [Ebb13]) was one of the first proposal aiming
to account for order effects. Because of the beneficial effects of spacing [BS81; CD05;
Cep+09; DVS10; Gle76; GL80; KB11; KR10; LB08; Pas+07; RLP08], some researchers

16 Chapter 1 Introduction



proposed to explain the advantage of the interleaved over blocked study in terms of tem-
poral spacing [KB08; WDJ11]. When compared to blocked study, interleaving categories
results in a higher temporal delay between repetitions of a same category. Therefore,
interleaving might be more beneficial than blocking since it increases temporal spacing.

The study conducted by Kang and Pashler [KP12] aimed to directly test the possibility that
the benefit of interleaved study is produced by a greater temporal spacing. In their study,
they evaluated participants’ test performance on three conditions: interleaved, blocked
and temporal spaced. In the temporal spaced condition, repetitions of each category were
spaced in time but not interleaved. The temporal spaced study featured the same temporal
spacing between same artist paintings as in the interleaved condition, but blocking
paintings by artist. For instance, the blocked, interleaved and temporal spaced conditions
would be respectively AAAABBBB, ABABABAB and A−A−A−A−B−B−B−B
(where “-” represents a blank screen and filling pictures). The results showed that
participants in the interleaved condition achieved the best performance (during the
transfer phase). Moreover, participants who followed the blocked and temporal spaced
studies showed equivalent performance (again, during the transfer phase). Similar results
were confirmed using different materials and tasks [Bir+12; MNH08; Noh+16].

These findings led to the discarding of the hypothesis according to which the benefit of
interleaving is due to temporal spacing. Carvahlo and Goldstone proposed an alternative
parsimonious theory: the Sequential Attention Theory (SAT) [CG14a; CG14b; CG14c;
CG15]. The sequential attention theory hypothesizes that during category learning
participants compare the current stimulus with the previous one and attend to similarities
or differences between the two items, depending on their category assignment. This
means that, if the previous and current stimuli belong to the same category, participants’
attention will be directed toward their similarities. Inversely, if they belong to different
categories, participants’ attention will be directed toward their differences.

Recent studies have found evidence supporting the sequential attention theory. For
example, Carvalho and Goldstone [CG14b] studied blocking versus interleaving with
either low similarity or high similarity categories. They found that blocked study improved
classification performance on new items for low similarity categories, whereas interleaved
study improved classification performance on new items for high similarity categories.
Similar results have been obtained with different items and procedures [CG14c; KCG15;
RTJ14; ZB12]. It is also important to underline that the sequential attention theory is
consistent with previous studies that showed a recency bias (i.e., a cognitive bias that
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favors recent events or stimuli over historic ones) during category learning [JLM06; JS03;
SB04; SBC02; ZJM11].

Sequential Effects

Sequential effects refer to the influence of recent information (i.e., previous stimuli)
on performance in repeated tasks. A significant amount of research has suggested that
sequential context plays an important role in influencing participants’ judgment [Bou93;
Gar53; Mur62; Mye76; TW84]. For example, in absolute identification tasks (in which
participants are asked to label stimuli in a one-to-one mapping), it has been found that
current stimuli are judged as more similar to previous stimuli than they actually are
[Gar53; HL68; Lac97; Mor89; WL70].

This phenomenon, called assimilation effect, has on opposite equivalent called contrast
effect. According to the contrast effect, current stimuli are judged as more dissimilar
to previous stimuli than they actually are. Contrast effects have also been observed in
absolute identification tasks [HL68; Lac97; WL70]. For example, Holland and Lockhead
[HL68] asked participants to label 10 loudness stimuli with numbers 1 through 10. The
results showed an assimilation effect between the stimulus of the current trial and the
immediately preceding trial. Moreover, a contrast effect has been found between the
current stimulus and the preceding two-to-five trials.

Although assimilation and contrast effects are well documented in absolute identification
tasks, they have received less attention in the categorization literature. A few studies
have shown evidence for a contrast bias in categorization tasks [JLM06; SB04; SBC02].
For example, in the study conducted by Stewart et al. [SBC02], participants were asked
to classify 10 equally spaced tones into two categories, with the five lowest tones as
members of category A and the five highest tones as members of category B. They
found that categorization of the current stimuli was more accurate when preceded by a
distant member of the opposite category than by a distant member of the same category.
Moreover, in a successive study, Stewart and Brown [SB04] observed that a contrast effect
could also be produced by stimuli presented two trials back.

If contrast effects received modest attention in categorization, assimilation effects received
an even more limited interest. Only few studies have shown evidence of assimilation
effects [HY12; ZJM11]. For example, Hsu and Yang [HY12] conducted a categorization
task involving 10 expressions from the fear-disgust continuum (the expressions ranged
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from the prototypical expression of fear to the prototypical expression of disgust in
10 steps). They found that assimilation effects occurred when the distance between
the preceding and current stimuli was small, while contrast effects occurred when the
distance between the preceding and current stimuli was high.

Some proposals have attempted to explain the contrast and assimilation effects in catego-
rization. For example, Stewart et al. [SBC02] argued that the same-category contrast
in classification is generated by an estimation process called the Memory and Contrast
(MAC) strategy. According to the MAC strategy, participants estimate the relative differ-
ence between successive stimuli. If the lapse of time between the current stimulus and the
one at the immediately preceding trial is high, then the participant tends to classify the
current stimulus into the opposing category. Although the MAC strategy provides a good
explanation for the same-category contrast, it fails to reconcile both the same-category
contrast and the different-category assimilation.

In contrast, Jones et al. [JLM06] proposed a plausible solution for explaining both
sequence effects. Their model of sequence effects in category learning (SECL) assumes
that classification decisions are guided by two distinct mechanisms: decisional recency,
which is the effect of the previous response, and perceptual recency, which is the effect of
the previous stimulus. The notion of perceptual and decisional recency as two indepen-
dent effects reconciles findings for both same-category contrast and different-category
assimilation. The same-category adjustment can be viewed as a perceptual process in
which, in the absence of the stimulus’ information in classification, subjects use the
location of the item presented on the preceding trial to fine-tune the representation of
the category. Since participants tend to generalize their responses to the category they
chose on a preceding trial, then cross-category effects could be the result of decisional
recency. However, note that although the SECL theory offers a sound explanation for both
sequence effects, it cannot be generalized to multiple category design (see [ZJM11]).

Similarity-Based vs. Rule-Based Within-Category Orders

Contrary to the between-category orders, which have been largely studied in the literature
(see paragraph entitled “Interleaved vs. Blocked Between-Category Orders”), within-
category orders have received more modest interest. Originally investigated in word
recall tasks [Bow+69], the study of within-category orders has rarely been extended to
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categorization tasks [EA81; EA84; MF09; MF16] and old-new recognition tasks [MB94]
over the last few decades.

In categorization, research has recently been focused on contrasting similarity-based
versus rule-based orders. In the similarity-based order, stimuli (of a same category) are
arranged in order to maximize the similarity between adjacent exemplars, while in the
rule-based order, the most representative exemplars of the category are displayed before
the less typical exemplars. The first results comparing these two conditions concluded
that rule-based order is more beneficial than similarity-based order (during both learning
[MF09] and transfer [EA84]).

For example, Mathy and Feldman [MF09] found that participants learned to classify
16 stimuli - of varying shape, color, size and filling pattern - the fastest when they
received a rule-based training as compared to a similarity-based training (see also [MF16]
for similar results). Additionally, they observed that participants who followed either
a similarity-based or a rule-based order performed better than those who followed a
dissimilarity-based order (in which stimuli of the same category were arranged in order to
minimize the similarity between adjacent exemplars). Note that the choice of categories
used in these studies might have favored the rule-based order (in particular because the
structures were logical by nature), but the goal of the present thesis is rather to account
for presentation orders in general, rather than searching to increase categorization
performance by finding the most optimal presentation order.

The study of similarity-based versus rule-based order is particularly relevant since the
creation of these two types of presentation orders has been inspired by two contrasting
ways of learning: a process based on associative mechanisms and an inductive process
based on abstraction [Slo96]. The similarity-based condition follows an associative
process that uses the temporal proximity of the stimuli to strengthen the memory traces
of the two stimuli and, by extension, the entire similarity structure. In contrast, the
rule-based condition aims to induce participants to form a logical rule. Grouping the
most representative exemplars should help learners abstract a simple logic describing the
stimuli.

For example, Mathy and Feldman [MF16] investigated whether the order that partici-
pants received during learning (similarity-based versus rule-based) shaped their mental
representation of the categories. Their results showed that participants who received
a rule-based training exhibited generalization patterns (i.e., the categorization of new
items) consistent with rule-based retrieval. However, although participants who received
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a similarity-based training showed distinct generalization patterns, these generalization
patterns were not altogether consistent with exemplar-based retrieval.

Moreover, research about similarity-based versus rule-based order might be crucial for
testing rule- and exemplar-based models of categorization [MS78; Nos86; RR04], as well
as incremental-learning models [GB88b; Kru92; LMG04; SJL08]. Effectively, ruled-based
models should be more sensitive to a rule-based presentation than to a similarity-based
presentation and vice-versa for similarity-based models. The idea is that a model built to
form a certain type of representation should lean toward an order that fits the shape of
the target representation.

The current research regarding the study of within-category orders in categorization has
been limited to particular contexts. For example, in [MF09] the presentation of the stimuli
of different categories was randomized (i.e., random between-category order). To the best
of our knowledge, only one study [MF16] investigated similarity-based versus rule-based
order when categories were blocked (blocked between-category order). Therefore, a
specific aim of the present thesis is to investigate whether rule-based training facilitates
learning in different contexts, such as with an interleaved between-category order (the
aim will be presented in detail in Section 1.5).

ON THE PRESENT THESIS

One of the main focuses of the present work is on investigating the effects of similarity-
based versus rule-based within-category orders. We expect these effects to be modu-
lated by between-category orders, for instance when categories are blocked instead
of being interleaved.

1.4 Principles of Cognitive Modeling

Cognitive models are powerful tools for simulating cognitive processes in human and
nonhuman animals. The approximation of cognitive processes allows researchers to
test cognitive hypotheses and predict behavior. The great benefit of cognitive models
to fit quantitative data explains their frequent use in cognitive science, for instance
in domains such as categorization, memory, but also decision making [CG19; HK01;
Hsu+19; NSM17; NSM18a; Nos+18; RH05; RR04; SN20; SM00].
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A Brief Example of Cognitive Model

An effective way to understand how a cognitive model functions is to create one from
scratch. Let us suppose that someone who loves to memorize new words wishes to
investigate why some words are memorized easier than others. A first step is to make
some plausible hypotheses about the hidden cognitive mechanisms at play.

We notice that long words are generally harder to recall than short words. Therefore,
we conclude that the hypothesis “the shorter the word, the easier the storage” might be
a good one to test. In order to create a cognitive model from this hypothesis, we need
to reformulate the verbal statement in mathematical terms. For instance: “the ease of
learning a new word is inversely proportional to its length”, which is equivalent to the
following equation:

e(x) =
k

l(x)
, (1.1)

where x denotes a new word, e the ease with which a word is stored, l the length of the
word, and k a freely estimated parameter to tune the model a bit in order to best fit the
data (which can help produce more plausible predictions).

Equation 1.1 represents the core of our new cognitive model. Once the cognitive model
is created, it has to be tested on real data. This allows one to evaluate the underlying
hypothesis. If the predictions of the model are close to the experimental data, then the
hypothesis is consistent with the real data. If not, the theoretical framework underlying
the model needs to be reformulated. Model development is a never-ending process
because virtually any model can be falsified, therefore more accurate ones are constantly
being developed [Pop59].

What Is a Cognitive Model?

Cognitive science aims to understand how the brain accomplishes complex tasks, such as
learning, remembering, predicting, and problem solving. The goal of a cognitive model
is to account for one or more of these cognitive processes and clarify their respective
interactions [BD10].

Computational cognitive models are generally described using rigorous mathematical or
computer languages [BD10]. This aspect differentiates them from ungrounded conceptual
models, or theories, which are instead based on verbal language which can often be
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imprecise and result in fallacies or misinterpretations. In contrast, cognitive models make
explicit and formal hypotheses by means of algorithms or equations. For example, Craik
and Lockhart’s “levels of processing” hypothesis [CL72] offers a theoretical framework for
memory, whereas Shriffrin and Steyvers’s model of recognition memory (REM) [SS97]
expresses in mathematical terms how information is retrieved from memory.

A hallmark of cognitive models is that they are based on cognitive principles [BD10]. This
is what makes cognitive models different from generic statistical models (or empirical
curve-fitting models). For example, regression models or time series models can be
applied to any type of data, as long as those data satisfy the statistical assumptions of the
models (such as linearity or Gaussianity), whereas a cognitive model would not work to
predict weather.

Cognitive models are also different from neural models. Neural models describe informa-
tion processing at a more fine grain level, to describe the activity of the neurons as well
as their interactions. On the contrary, cognitive models explain human behavior at a more
abstract level [BD10]. For example, the Hodgkin-Huxley model [HH52] describes how
action potentials in neurons are initiated and propagated by modeling the mechanisms
involving ion channels in the neuronal membrane. In contrast, connectionist models (see
[GB88b; Kru92]) do not aim to describe precise neural mechanisms, although they are
inspired by the neural organization.

Why Would One Use Cognitive Models?

Here we attempt to show the potential as well as the contribution of cognitive models
to psychology. There is a wide range of methods that can be used to study concepts
and categories, for instance, designing a categorization experiment, creating a cognitive
model, providing a theoretical framework, or even carrying out observational studies. All
methods seem essential in the quest to shed light on the diverse aspects linked to the
processes underlying categorization.

A first advantage of cognitive models over other approaches is that a cognitive model
is described in rigorous mathematical language (see paragraph entitled “What Is a
Cognitive Model?”). The fact that the model has to be expressed in mathematical terms
forces researchers to be explicit about their hypotheses and theories [BD10; Mur11]. For
example, if a categorization theory states that the probability of classifying two items
into the same category is directly proportional to their similarity, this statement relies
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on the reader’s intuitive sense of similarity. It is only when we decide to implement a
model based on this statement that one can realize that our computer (although it is
the best available on the market) does not have any intuition of what similarity can
be in algorithmic terms. This processing difficulty leads researchers to explicitly define
what the similarity between two items can be in computational terms. Many concepts
seem intuitive and easy on a verbal level, but expressing these concepts algorithmically is
generally challenging.

A second reason for using cognitive models is that they are capable of generating precise
quantitative predictions [Nor05; Mur11]. Predictions can be used to validate, dismiss or
modify the assumptions underlying the model.

A third benefit of adopting cognitive models is that they help ensure reproducibility in
cognitive science [FL10]. By implementing a model as a set of equations or a computer
program, any researcher can reproduce the findings of a study that uses cognitive models
to generate predictions.

Finally, cognitive models could help guide the search for effective learning strategies in
education, as proposed by Nosofsky et al. in [Nos+18]. As seen in Section 1.2, the
choice of items, categories, presentation orders and so on is almost infinite. Therefore,
cognitive models could be used as a tool for selecting the most promising teaching
methods. Empirical tests would then be focused on testing the best strategies resulting
from the model simulations.

How to Assess the Goodness of Fit of a Cognitive Model

There are various criteria that are used to assess the fit of the data provided by a model.
We review the two most commonly used criteria: the likelihood and the least-square
contrast [BD10].

Likelihood. The likelihood measures the probability that a model would have generated
the observed data as a function of the parameters of the model [GV60]. The
higher the likelihood, the higher the probability that the observed data have been
generated by the model with the chosen set of parameters.

Least-square contrast. Perhaps the most commonly used method to assess the goodness
of fit of a model is to sum the squared deviations between the observed and
predicted values [Leg05]. The smaller the sum of squared deviations, the higher
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the goodness of fit. In cognitive science, this method is most commonly called Sum
of Squared Deviations (SSD), or Sum of Squared Differences (SSD), or Sum of
Squared Errors (SSE), or the Residuals Sum of Squares (RSS). In the present work
we adopt the term Sum of Squared Deviations (SSD).

The previously reviewed criteria can also be used to estimate the parameters of a model.
For example, the set of parameter values that best fits the data can be found by maximizing
the likelihood (as a function of the parameter values) or by minimizing the sum of squared
deviations (again, as a function of the parameter values). To anticipate, in the present
work, the likelihood is used to estimate the parameters of the models, while both the
likelihood and sum of squared deviations are used to evaluate the fit of the model (details
are given in Chapter 4).

Categorization Models

In this subsection we explain the most common way categorization models are generally
grouped (for a more exhaustive description of how models can be grouped, see [Wil13]
and [Kru08]).

Input Representation

All cognitive models make a set of assumptions about the nature of the information
they receive. Regarding models of categorization, those assumptions typically take
two forms: geometric or featural. In the geometric input representation, stimuli are
represented as points in a psychological space and are expressed in terms of precise
coordinates. Two stimuli are considered as similar whenever they are close to each other
in this psychological space. In contrast, in the featural input representation, stimuli are
represented as a set of features. Two stimuli are considered as similar when they have
common features. For example, the Generalized Context Model (GCM) [Nos86] adopts
the geometric input representation, whereas the Component-Cue model [GB88b] adopts
a featural input representation (both models are studied in more depth in Chapter 3)
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Mechanisms of Attention

Some models of categorization assume that the information they receive can be modulated
by attentional mechanisms. The implementation of this cognitive function aims to improve
categorization accuracy. Depending on the nature of the input representation (geometric
or featural), attentional modulation operates either at the level of the dimensions of the
psychological space [Nos86] or at the level of features [Kru01; Mac75]. At the level of
dimensions, attentional mechanisms result in stretching and shrinking the psychological
space, for instance by mostly paying attention to the size of an object at the expense of
other features (this point is clarified in Chapter 3). At the level of features, attention to
a specific feature expresses the fact that the feature is a good predictor of the category
membership (for instance, if a given size is diagnostic of a malignant tumor).

Some Non-Exclusive Classes of Categorization Models

In this paragraph, we present a non-exhaustive list of classes of category learning mod-
els which are rooted in theories about the mental representation based on exemplars,
prototypes, and rules; see Section 1.1).

Exemplar models. Exemplar models store every distinct occurrence of an item (as well
as its category membership) and classify a new item as a function of its similarity
to all of the previously stored items. Nosofsky’s Generalized Context Model (GCM)
[Nos86], Medin and Schaffer’s context model [MS78], Estes’s array-similarity model
[Est86], Nosofsky and Palmieri’s EBRW model [NP15], and Kruschke’s ALCOVE
model [Kru92] are examples of exemplar models.

Prototype models. A prototype model operates in the same way as an exemplar model,
but instead of storing every encountered item, it only stores a summary repre-
sentation (called the prototype) of the many items representative of a category.
The category membership of a new item is determined by its similarity to those
stored prototypes. Examples of prototype models include the Reed’s comparative
distance model [Ree72] and the Massaro and Friedman’s Fuzzy Logical Model of
Perception (FLMP) [MF90]. Prototype models can appear less computationally
demanding than exemplar models, but also appear to reflect cognitive processes
found in experimental results [RM75].
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Rule models. Similar to prototype models, rule-based models specify categories by a
summary of their content (i.e., a rule). A rule is a list of necessary and sufficient fea-
tures that define category membership. Some of the best known rule-based models
are Levine’s hypothesis-testing approach [Lev75] and Nosofsky’s RULEX [NPM94;
NP98]. The latter also has the ability to memorize individual items (exceptions) in
addition to rules. Other rule-based models have focused on minimization theories
to account for the observation that the subjective difficulty of a categorization task
is proportional to the logical incompressibility of the rule [Fel00; SHJ61].

Connectionist models. Connectionist models (also called connectionist networks) are
based on Artificial Neural Network (ANN) [Dre90; Ros58; WJ74] and are inspired
by biological neural networks. They implement an error-driven mechanism (also
named back propagation or gradient descent mechanisms) allowing them to learn
through trial and error. Examples of connectionist models include Kruschke’s
ALCOVE model [Kru92], Kruschke and Johansen’s RASHNL [KJ99], Love, Medin
and Gureckis’s SUSTAIN [LMG04], Gluck and Bower’s Component-Cue [GB88b],
and the Configural-Cue model [GBH89]. Connectionist models can belong to one of
the classes previously listed (exemplar, prototype, and rule models). For example,
ALCOVE is grounded on the exemplar theory, whereas the Component-Cue model
is grounded on the rule theory.

Adapting clustering models. The three options that concern the nature of category repre-
sentations (exemplars, prototypes, and rules) are static by nature (i.e., they give an
idea of the average difficulty of a categorization task, but they cannot describe the
learning process when they are not implemented, for instance in a neural network).
Adapting clustering models represent an alternative to these fixed-representation
accounts. According to adapting clustering models, human memory is an adaptive
process which is capable of encoding both highly specific information and abstract
generalizations. This flexibility is incorporated in the models by means of clusters,
which represent particular subsets of similar items either in an abstract or a specific
way. Examples of adapting clustering models include Anderson’s rational model
[And91], Pothos and Chater’s Simplicity Model (SM) [PC02], and Love, Medin and
Gureckis’s SUSTAIN [LMG04].

Hybrid models. Hybrid models are those that use multiple representations. For example,
the COVIS model [Ash+98] and ATRIUM [EK98] integrate in one system both
rule-based and exemplar-based approaches. In contrast, Busemeyer, Dewey and
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Medin [BDM84] and Smith and Minda [SM00] combined prototype and exemplar
models.

Ability to Learn

Another way to group categorization models is to consider their ability/inability to take
into account the temporal dynamics of the learning process. There are categorization
models that are capable of reproducing a learning curve (like ALCOVE [Kru92]) and
others that are not (like the Generalized Context Model [Nos86]). These two classes of
models have highly different mathematical properties. Therefore, we believe that this
new distinction could help researchers select the categorization model that best suits
their purpose. In what follows, we first define transfer models (which do not account
for the learning dynamics) and learning models (which can reproduce learning), and
secondly, we provide a description of their way of utilization.

Definition 1.1. Let M be a model and θ its set of parameters. Let P
θ,t
M (A | ξ) denote the

probability of classifying the item ξ into category A at time t, given M and θ. Let us also
assume that the presentation order is constant across blocks (this hypothesis allows us to
include in the definition models that integrate stimuli manipulation). If we have that

P
θ,t
M (A | ξ) = P

θ,s
M (A | ξ),

for all s and t ∈ R, then we say that M is a transfer model. Otherwise, we say that M is a
learning model. �

In other words, transfer models classify items into a specific category with the same
probability at any given time of the learning process (mathematically, they are stationary
models when the presentation order is not manipulated). In view of this structural
feature, transfer models are not able to accurately reproduce learning mechanisms.
Using a metaphor, transfer models can be compared to horizontal lines approximating a
monotonic function. They could be used to reproduce learning (as horizontal lines could
be used to approximate a monotonic function), but they would not perform accurately.
Therefore, transfer models are only suitable for replicating participants’ performance
during the transfer phase exclusively, that is, after a hypothetical learning phase has taken
place. Indeed, the transfer phase in an experiment is generally short and because feedback
is not provided to participants during this phase, we can assume that learning does not
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operate anymore and that participants’ performance is (almost) invariant. Conversely,
learning models are suitable for reproducing participants’ outcomes during both the
transfer and learning phases.

ON THE PRESENT THESIS

The present work is structured on the duality transfer/learning. Since it is easier to
work with transfer models than learning models, the description and use of transfer
models always precede the description and use of learning models. Among the
previously listed categorization models, the present study will only focus on three of
them: the GCM (and variants), ALCOVE model, and Component-Cue model (their
description and the reason why they were chosen is given in Chapter 3).

1.5 Overview

The present study is based on the hypothesis that investigating the role of presentation
order on category learning is relevant to model evaluation. First, it increases our un-
derstanding of how learning occurs over time. Since information is sequential, a clear
understanding of the temporal aspects underlying category learning sheds light on how
the temporal organization of cognitive processes work in general [FTT15; MP15; PM15;
SP15; ZM09; ZSP12]. Second, investigating presentation order is important for practical
pedagogical applications because modifying the order in which the content is proposed
has potentially beneficial consequences for teaching [Dun+13]. Finally, improving our
knowledge on how learning takes place when different sequences are presented allows
us to suggest strategies for improving the model themselves.

Empirical Approach

There are at least two kinds of strategies that can be adopted in category learning: the
similarity-based strategy, by which participants classify new items on the basis of their
similarity to the stored exemplars or prototypes of the category, and the rule-based
strategy, by which participants classify new items on the basis of rules. These two
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strategies have inspired the creation of eponymous within-category similarity- and rule-
based presentation orders, with the idea that investigating the similarity- and rule-based
orders could help shed light on the nature of the mechanism(s) underlying category
learning.

However, the impact of similarity-based versus rule-based presentation order on category
learning has been under-explored (see “Similarity-Based vs. Rule-Based Within-Category
Orders” in Section 1.3). In addition, the few studies on the topic have been limited to
particular contexts. For example, in the past literature, the designs have been restricted
to either blocked or random between-category manipulations [EA84; MF09; MF16].
In these limited contexts, rule-based study has been found to be more beneficial than
similarity-based study, but it is possible that different stimuli could lead to opposite
conclusions.

Therefore, we propose to investigate whether the advantage of a rule-based presen-
tation order can be extended to other contexts. In particular, we focus our attention
on examining the impact of similarity- versus rule-based orders when categories are
interleaved. Interleaving has proved to be beneficial in a large variety of situations (see
“Interleaved vs. Blocked Between-Category Orders” in Section 1.3). However, it is unclear
how interleaving interacts with within-category orders, such as similarity- and rule-based
orders.

Additionally, following the aspiration to better understand the interaction between
different hierarchies of orders (within-category, between-category, etc.), we propose to
investigate the impact of a variable versus a constant presentation across blocks. Although
the topic of the presentation across blocks has not been addressed in the literature, it has
the potential to complement our insights about category learning. On one hand, using
constant orders can a priori appear to be the worst idea because such a manipulation
has the potential to mislead participants (for instance, focusing participants’ attention
toward patterns that are inappropriate for the classification), but on the other hand
‘presentation order’ can become the primary interest and it is possible that constant orders
can emphasize order effects.

Another secondary objective is to promote the use of some lesser known statistical tools,
such as survival analysis. The majority of the researchers remove from the analysis
the participants who did not complete the task or meet the objectives that have been
established [CG14b; CG14a; CG14c; CG17; Mea+17; MF16]. Removing unsuccessful par-
ticipants causes a loss of information which can be detrimental to the domain, especially
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if the category structure or presentation order induce difficulties that are detrimental to
learning. Therefore, it might be useful to employ more appropriate and more powerful
statistical tools to incorporate information provided by the unsuccessful participants.

To recap, we aim to i) investigate whether a rule-based study facilitates learning as
compared to the similarity-based study in a different variety of category order; ii) initiate
the investigation regarding the interaction between within-category orders (i.e., stimu-
lus order within categories), between-category orders, and variations of orders across
blocks.

Cognitive Modeling Approach

Preliminary findings have shown that similarity- versus rule-based orders (and presen-
tation order in general) can shape the way we perceive categories [MF16], as well as
influence our (learning and transfer) performance [EA84; MF09] (see Section 1.3). It
is also clear that modeling is the best approach to quantitatively describe the shapes of
these representations, as well as the learning process (see “Why Would One Use Cognitive
Models?” in Section 1.4; see also [ZH99]).

However, few models are capable of predicting differential performance as a function of
presentation order. A recent example is provided by Carvalho and Goldstone’s Sequential
Attention Theory Model (SAT-M) [CG19]. SAT-M is an exemplar model based on GCM in
which the encoding of items depends in part on their temporal proximity. We propose
to follow a similar path by providing a new model that integrates an ordinal dimension
and by analyzing the temporal dynamics of some relevant categorization models. Our
analysis is structured on the basis of the distinction mentioned above: transfer models
and learning models.

One intuitive hypothesis is that a model built to account for phenomenon X should be
more sensitive to a presentation order that is inspired by phenomenon X. For instance,
one could expect that a model implementing similarity processes should increase its
sensitivity to similarity when two similar objects are presented contiguously in time.
Proximity in time should boost the perceived similarity of the features. Similarly, a model
that is supposed to form a general rule on top of exceptions should be more sensitive to a
presentation order following that particular structure. But what if the different models
cannot fit the data for which they should be more sensitive? Our general hypothesis is
that presentation orders can offer a benchmark to evaluate categorization models.
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Transfer Models

We develop a new exemplar model based on GCM that accounts for the order in which
stimuli are presented. This new model, called Ordinal General Context Model (OGCM),
is declined into three versions. The three versions of the OGCM were conceived to
investigate whether one of the following orders impacts transfer performance: i) the
average presentation order received during learning, ii) the most frequent presentation
order received during learning, and iii) the presentation order received during transfer.

These three versions are compared with GCM and GCM-Lag, the latter allowing us to
determine whether the integration of a memory-decay mechanism increases the accuracy
of the predictions of the transfer performance (details in Chapter 3). The aim of the
analysis is twofold: to determine the model that best suits transfer performance and to
understand whether the putative differences between within-category types of orders can
be captured by the selected models.

Learning Models

The predictions of the learning models evolve over time (see “Ability to Learn” in Section
1.4). This feature should confer learning models the ability to be impacted by presentation
order. We propose to test the sensitivity of some learning models to within-category
order.

Two learning models are compared: Kruschke’s ALCOVE model [Kru92] and Gluck
and Bower’s Component-Cue model [GB88b]. The selection of these two models is
motivated by the fact that they are grounded on distinct psychological mechanisms (a
similarity-based mechanism for ALCOVE and a rule-based mechanism for Component-
Cue), even though they share a similar mathematical architecture (they both are artificial
neural networks). Our aim is to determine which model best suits learning and transfer
performance, as well as to investigate their sensitivity toward presentation order.

Chapter outline

The present work is organized on the dual empirical-modeling approach. The empir-
ical approach is developed in Chapter 2, while the modeling approach is developed
from Chapter 3 to Chapter 6. The modeling of presentation orders is investigated in
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several chapters: Chapter 4 concerns the use of transfer models to reproduce transfer
performance, 5 concerns the use of learning models to reproduce learning and trans-
fer performance, and Chapter 6 attempts to use transfer models to reproduce learning
performance.

In Chapter 2, we investigate the effect that within-category order (similarity-based versus
rule-based) exerts on learning through a series of laboratory experiments. In most
cases, learning appears faster in the rule-based order as compared to the similarity-based
order.

In Chapter 3 we propose a new exemplar model that integrates the presentation order
and present the transfer and learning models that have been compared. Transfer models
include the Generalized Context Model (GCM) [Nos86], the new OGCM declined in
three versions, and the GCM-Lag [MN95; NKM92; Nos11]. Learning models include
the Component-Cue model [GB88b] and the ALCOVE model [Kru92], both declined in
two versions (exponential and linear). We also provide the mathematical framework
underlying the models and present their likelihood.

In Chapter 4 we develop a methodology for comparing categorization models and we
apply it to transfer models. We show that the transfer model that best fits the data is the
one that integrates the most frequent presentation order (i.e., the median presentation
order that participants received during learning).

In Chapter 5 we apply the inference method developed in Chapter 4 to learning models
and we investigate whether models might be more sensitive toward certain within-
category orders in particular. We show that individual learning data are best fit by
ALCOVE, whereas participants’ transfer performance is best fit by Component-Cue (more
specifically, Component-Cue provides the best account for two thirds of the participants).
Moreover, we show that the generalization patterns of participants who received certain
types of orders are captured by different models.

In Chapter 6 we show how to use a transfer model to reproduce learning performance by
using either the segmentation or the segmentation/clustering and we apply these two
methods to the GCM. We found that there are generally two classes of participants with
different learning speeds.

Finally, in Chapter 7 we list the main contribution of the present work, we present some
ideas for future directions (in particular ideas for new experiments), and we propose
some recommendations.
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As seen in Chapter 1 Section 1.3, a variety of studies have investigated the way presen-
tation order influences category learning. While the majority have explored the effect
of interleaving versus blocking ([Gol96], [KB08], [KP12], [CG14b]), a more limited
number of studies have focused on the impact of within-category presentation order
([EA81; EA84; MF09; MF16]). The totality of the research on within-category order have
manipulated the similarity between contiguous examples (for example, maximizing or
minimizing the similarity between adjacent examples). Only rarer cases have attempted
to explore the rule-based presentation order, a type of order that depends on the logical
structure of the to-be-learned categories ([EA84; MF09; MF16]). Moreover, the few
research comparing rule-based and similarity-based orders has been limited to specific
contexts (e.g., categories were either blocked or randomly alternated).
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Goals

In view of the above, the main goal of the present chapter is to further investigate the
effects of rule- and similarity-based orders on category learning when additional presen-
tation orders are at play (i.e., between-category orders and across-blocks manipulations).
Again, the few studies on the topic showed that the rule-based order was more beneficial
than the similarity-based order (in particular contexts). Our aim is to determine whether
the advantage of the rule-based order can be extended to other contexts.

Studying the rule- and similarity-based orders serves two purposes. On one hand, it helps
better understanding the mechanisms at play during category learning. On the other
hand, it helps evaluating categorization models. Again, one plausible hypothesis is that
a model integrating a mechanism X should be more sensitive to a presentation order
inspired by the mechanism X. Therefore, the manipulation of different presentation
orders might allow us to both test the mechanisms underlying the models and determine
which model best fits the real world (clarifications will be given in Chapter 4 and 5).

An additional goal is to initiate the investigation on how different hierarchies of orders
interact. The majority of studies concerning the way presentation order affects category
learning generally focus on a single manipulation of order at a time [CG14b; KP12;
KB08; Noh+16]. For example, a study on between-category presentation order would
consider different types of between-category orders but use a random presentation order
with members within a category. Despite the effectiveness of focusing on a single factor,
studying the way different orders interact could shed light on the mechanisms underlying
category learning.

Our experimental data investigate how rule- and similarity-based orders influence cat-
egory learning while manipulating other types of presentation orders (e.g., blocking
and across-blocks manipulations), but this data can only be used to partially understand
how different (ordinal) contexts influence learning performance. This data does not
intend to allow a full factorial comparison between the three hierarchies of orders (i.e.,
within-category orders, between-category orders, across-blocks manipulations). Instead,
it aims to promote further studies investigating the way different types of orders interact
by showing attempts to model different types of orders in different contexts.
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Outline of this chapter

This chapter provides both the description of the experiments that have been conceived
to investigate the rule- and similarity-based orders (Experiment I and II) and the results
of a preliminary statistical analysis. The statistical analysis of Experiment I follows the
description of Experiment I. The same goes with Experiment II.

2.1 Experiment I

Experiment I dataset was collected by Mathy and Feldman to assess the effects of within-
category orders on category transfer (see [MF16]). This dataset has mainly been included
in the present thesis as a benchmark for comparing categorization models. Nevertheless,
a preliminary statistical analysis of this dataset is provided. Its aim is to enrich the
analysis performed by Mathy and Feldman with numerous and more robust statistical
tests (details in Subsection 2.1.2).

2.1.1 Data Collection

Participants. The participants were 44 freshman or sophomore students from the
University of Franche-Comté (France), who received course credits in exchange for their
participation.

Phases. The experiment was composed of two phases: a supervised learning phase (in
which participants were trained on the studied categories) and an unsupervised transfer
phase (in which participants’ ability to generalize their learning was tested).

Categories. Each participant received a single 5-4 category set (Figure 2.1, on the top).
The 5-4 category set was first studied by Medin and Schaffer [MS78] and reanalyzed in
many subsequent studies ([CN03], [JK05], [JP03],, [LLM07], [Lam00], [MS02], [RH05],
[SM00], [Zak+03]). The 5-4 category set is composed of 24 = 16 items placed on a
hypercube (more specifically a 4-cube). Only 9 of the 16 items belong to one of the two
categories, A and B. The name of this category set is due to the fact that 5 items belong to
category A, while 4 items belong to category B. This makes a total of 5 + 4 = 9 learning
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Figure 2.1 – Illustration of the studied categories and items of Experiment I. At the top, the structure
of the 5-4 category set. The examples of category A are indicated by black circles, those of category B
by white circles, and transfer item are represented by empty vertices. At the bottom, the illustration of
the items of Experiment I. The items varied along four Boolean dimensions (shape, color, size and
filling pattern).

items which are presented in both the learning and transfer phases. The remaining 7
items are transfer items and they are only presented during the transfer phase. In Figure
2.1 (on the top), the examples of category A are indicated by black circles, those of
category B are indicated by white circles, while the transfer items are indicated by empty
vertices.

Items. Items varied along four dimensions: shape, color, size and filling pattern. Each of
these dimensions was Boolean, meaning that they could take only two possible values.
The two options for each dimension were: square or circle for shape; blue or gray for
color; small or big for size; plain or striped for the filling pattern. The combination of
these four Boolean dimensions formed 24 = 16 items (Figure 2.1, on the bottom). Each
dimension was instantiated by the same physical feature for all participants. Therefore,
color differentiated the objects at the top of the hypercube from those at the bottom;
shape differentiated the objects at the front from those at the back; size distinguished the
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objects in the left cube from those in the right cube; and filling pattern differentiated the
right and left objects within the cubes.

Between-category presentation order. During the learning phase, categories were
strictly blocked. However, since blocking was not a guarantee for learning (the participant
could have pressed the correct keys without looking at the stimuli), blocks in which
categories were strictly blocked were alternated with random blocks. In other words,
odd blocks (the manipulated blocks) were characterized by a blocked between-category
order (i.e., the presentation of category A examples always preceded the presentation
of category B examples), while even blocks were characterized by a random between-
category order. During the transfer phase, members of category A were randomly
alternated with members of category B (random between-category order).

Within-category presentation order. During the learning phase, two within-category
presentation orders were used: the rule-based and the similarity-based. For each partici-
pant, one of these two presentation orders was randomly chosen beforehand and applied
across every odd block of the learning phase. Conversely, in both the even blocks of
the learning phase and the transfer phase, members within a category were randomly
selected. Among the 44 participants of the experiment, 22 of them were assigned to
a rule-based condition, while the remaining 22 were assigned to a similarity-based
condition.

In the rule-based order, the stimuli were ordered following a “principal rule plus excep-
tions” structure, meaning that examples obeying the principal rule were presented strictly
before the exceptions. The specific “principal rule plus exceptions” structure on which
the rule-based order was based is the following: all gray items belong to category A
except for the small hatched circle, while all blue items belong to category B except
for the big plain circle (see Figure 2.1). Therefore, the main rule was “gray items are
members of category A and blue items are members of category B”, while the exceptions
were the small gray hatched circle and the big blue plain circle. In this “principal rule
plus exceptions” structure, items A1, A2, A3, A5 represented the category A examples
obeying to the main rule, while A4 was the only category A exception. In the same way,
B1, B2, B4 were the category B examples obeying to the main rule, while B3 was the
only category B exception. In the rule-based order all the category A items obeying to
the dominant rule were presented strictly before the exceptional category A item. The
same goes for the category B items. This type of presentation order was thought to
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Figure 2.2 – Examples of blocks following a rule-based (on the top) and a similarity-based (on
the bottom) presentation order, using the stimuli and categories of Experiment I. In the rule-based
order, the stimuli are ordered following a “principal rule plus exceptions” structure. Conversely, the
similarity-based order is designed to maximize the similarity between consecutive stimuli.

encourage participants to abstract the principal rule shared by all items obeying to it.
The items belonging to the principal rule (whether belonging to categories A or B) were
randomly selected. An example of block following a rule-based order is given in Figure
2.2 (on the top). Categories are blocked coherently with the between-category order of
the experiment.

In contrast, in the similarity-based order, members within a category were presented
in a way that maximized the similarity between adjacent learning stimuli. The first
stimulus was randomly chosen while subsequent stimuli were (randomly) chosen among
those that were the most similar to the immediately previous item. Similarity between
two items was computed by counting the number of common features that they shared.
For instance, the small plain blue circle and the small striped gray square have one
single feature in common (small), thus their similarity is 1. Ties were solved randomly.
The similarity-based order was thought to have the objective of reinforcing exemplar
memorization (see [EA81; EA84]). An example of block following a similarity-based
order is given in Figure 2.2 (on the bottom). Categories are blocked coherently with the
between-category order of the experiment.

Presentation across blocks. During the learning phase, odd and even blocks were
characterized by different across-block presentation orders. In odd blocks, participants
received the same sequence of exemplars (constant presentation across blocks), while in
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even blocks the sequence of stimuli varied from a block to the next (variable presentation
across blocks). During the transfer phase, a variable presentation order across blocks
was applied. The rationale here is that testing can only be conducted with random
presentations. A summary of all the types of presentation orders manipulated during the
learning phase of Experiment I is given in Figure 2.3.

Stop criterion. Participants completed the learning phase when one of the following
conditions was satisfied:

i. One sequence of 4× (5+ 4) consecutive correct responses was given during random
blocks, i.e. 4 consecutive correct random blocks (see Figure 2.1 on the top for an
illustration of the condition using a smaller number of learning items).

ii. Two distinct sequences of respectively 2× (5 + 4) + 1 and 2× (5 + 4) consecutive
correct responses were given during random blocks (2 consecutive random blocks
plus one stimulus and 2 consecutive random blocks). This condition allows the
learning phase to end only when no more than two wrong responses in a row
were given between the two distinct sequences (see Figure 2.1 on the top for an
illustration of the condition using a smaller number of learning items).

When one of the previous conditions have been satisfied, we consider that participants
reached the learning criterion. Once participants met the learning criterion, a transfer
phase was conducted. The transfer phase was composed of 5 blocks of 16 stimuli (the
5 + 4 = 9 learning items plus the 7 transfer items).

Procedure and feedback. The categorization task was computer-driven and each par-
ticipant was individually tested. Participants sat approximately 60 cm from the computer
screen and they were briefly instructed before the task began by means of a tutorial.
Stimuli were presented one at a time for 1 s on the top half of the computer screen.
Category A was depicted as a school bag located at the top right side of the screen and
was associated to the up key (to match the visual output). Category B was depicted as a
trash can located at the bottom right side of the screen and was associated to the down
key.

When stimuli were presented during odd blocks of the learning phase, the correct category
label (i.e. “school bag” or “trash”), as long as the corresponding category picture, were
displayed for 1 s. The correct category label appeared below the presented stimulus,
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Figure 2.3 – Illustration of the presentation orders of the learning phase of Experiment I. Color
indicates the within-category presentation order: blue for rule- or similarity-based orders, and gray
for random order. Filling pattern indicates the between-category presentation order: striped for
blocking, and plain for random. Finally, symbols above each block represent the manipulation of
stimuli across blocks: a star for a constant presentation and a triangle for a variable presentation.
Bold style is used to indicate that the correct classification was given to participants not only after the
classification trial but also before it.

while the corresponding category picture appeared on the right-hand side of the screen.
In other words, the wrong category picture disappeared for 1 s, while the right one
remained displayed. This instruction was followed by a confirmation phase in which
participants had to press the response key corresponding to the right category to make
sure the participants was following the training attentively. After the key was pressed,
feedback indicating a correct or incorrect classification was displayed for 2 s at the bottom
of the screen.

When stimuli were presented during even blocks of the learning phase, participants had
to classify it in one of the two categories using the response keys. Once the key pressed,
a feedback indicating the correctness of the classification appeared for 2 s at the bottom
of the screen. Conversely, during the transfer phase no feedback was provided.

In order to encourage learning, a progress bar representing the participants’ score was
displayed at the bottom of the screen. The progress bar was composed of 4× (5 + 4)
empty boxes. One point was scored on the progress bar (one empty box was filled) every
time participants gave a correct response during the random blocks. On the other hand,
the progress bar was reset to zero every time participants gave an incorrect response
during the random blocks. An exception to the latter rule was made when participants
filled at least half plus one boxes of the progress bar (i.e. 2× (5 + 4) + 1 consecutive
correct responses). In this case, every time participants gave an incorrect response (and
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1st block 2nd block 3rd block 4th block

1st block 2nd block 3rd block 4th block
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1st block 2nd block
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Figure 2.4 – Illustration of the learning criterion and resetting of the progress bar with fake learning
sequences. On the top, illustration of the two conditions (the first on the top, the second on the
bottom; see paragraph “Stop criterion”) that could allow participants to complete the learning phase.
On the bottom, illustration of sequences implying the resetting of the progress bar to zero. The check
mark indicates a correct classification of the corresponded stimulus (or block), while the cross mark
indicates an incorrect classification of the corresponded stimulus (or block).

only one consecutive incorrect answer) the progress bar was reset to the half (i.e. the
2× (5 + 4)-th box). The rationale here was to mimic the learning criterion.

Example 2.1. Here, we aim to show the learning criterion defined above using a limited
number of stimuli. Let us consider a set of 4 learning items (a white circle, a white square,
a gray circle and a gray square) varying along two Boolean dimensions (shape and color).
In this case, a block of the learning phase is defined as a sequence of 4 stimuli. Let us
transpose the two conditions that could allow participants to complete the learning phase
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to this particular case. According to the first condition, the learning phase was completed
when participants correctly classified 4× 4 consecutive stimuli, i.e. 4 learning blocks (see
its visual representation in Figure 2.4, on the top). The second condition is a weaker
version of the first one. The learning phase was also completed by correctly classifying
two separated sequences of consecutive stimuli of size 4× 2 + 1 and 4× 2, respectively.
Between the two sequences, participants were not allowed to make two consecutive
incorrect classifications (see its visual representation in Figure 2.4, on the top).

In Figure 2.4 (on the bottom) are shown two examples of sequences of responses that
imply resetting the progress bar to zero. In the first example, we assume that a participant
gave 2× 4 consecutive correct responses and then made a mistake. Since the participant
did not correctly classify 2× 4 + 1 consecutive stimuli, the progress bar would be reset to
zero instead of 2× 4. In the second example, a participant gave 2× 4 + 1 consecutive
correct responses and then makes two mistakes in a row. The fact that the participant
incorrectly classified two stimuli in a row, causes the lost of the earned advantage (2
consecutive correct blocks). �

TO SUM UP Experiment I: Data Collection

Participants. There were 44 participants.

Phases. The experiment was composed of two phases: a supervised learning phase
and an unsupervised transfer phase.

Categories. Each participants received a single 5-4 category set. This category set
was composed of 16 items placed on a 4-cube. Nine of the 16 items were
learning items (5 belong to category A and 4 belong to category B), while the
remaining 7 items were transfer examples.

Items. Items varied along four Boolean dimensions: shape, color, size and filling
pattern. Each dimension was instantiated by the same physical feature for all
participants.

Between-category presentation order. The between-category presentation order
was only manipulated in the odd blocks of the learning phase. In these blocks
categories were blocked, meaning that the presentation of category A examples
always preceded that of category B examples.
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Within-category presentation order. The within-category presentation order was
only manipulated in the odd blocks of the learning phase. Two orders were
used: rule-based and similarity-based. In the rule-based order, the stimuli
were ordered following a “principal rule plus exceptions” structure, meaning
that examples obeying the principal rule were presented strictly before the
exceptions. Conversely, the similarity-based order was designed to maximize
the similarity between contiguous examples. The within-category order was a
between-subject manipulation.

Presentation across blocks. Stimuli across blocks were only manipulated in the odd
blocks of the learning phase. In these blocks a constant presentation across
blocks was used.

Stop criterion. The learning phase ended when participants reached the learning
criterion, meaning they had to correctly classify two consecutive blocks twice
without making two or more mistakes in a row between the two sequences.
Conversely, the transfer phase was composed of 5 blocks of 16 stimuli.

Procedure and feedback. Each participant was individually tested on a computer-
driven task. In the odd blocks of the learning phase, feedback was given before
and after the classification trial while in the even blocks feedback was only
given after the classification trial. No feedback was provided during the transfer
phase.

2.1.2 Analysis of Learning Phase

The analysis conducted by Mathy and Feldman on Experiment I [MF16] showed that
rule- and similarity-based orders led to different generalization patterns. Moreover, they
detected faster learning in the rule-based condition. Since their study was mainly focused
on the transfer phase, the analysis performed on the learning phase was limited to a single
statistical test. Therefore, we aim here to reanalyze the learning phase with numerous
and more robust statistical tests. This subsection is organized in three parts, each of them
tackling the relation between presentation order (rule-based vs. similarity-based) and
learning speed from a different angle.
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Successful Unsuccessful Total

Rule-based 22 0 22

Similarity-based 21 1 22

Total 43 1 44

Table 2.1 – Number of successful and unsuccessful participants of Experiment I, depending whether
they were assigned to the rule-based or to the similarity-based conditions.

Unsuccessful participants. Firstly, we investigate whether the number of unsuccessful
participants depends on the condition to which subjects were assigned.

Relevant times to estimate learning. Secondly, we focused on a choice of times (that
we called relevant times) at which the learning progress can be quantified as a
function of within-category order.

Proportion of correct responses. Finally, we investigated whether presentation order
influences the evolution of the proportion of correct responses over time.

Unsuccessful Participants

The learning criterion allows us to classify participants into two groups: those who met
it and those who did not. The individuals that met the learning criterion are called
successful participants, while those who did not are called unsuccessful participants. The
unsuccessful participants usually dropped out the experiment when its duration was close
to between 30 minutes and one hour, and when they were not required to stay that long
to achieve course credits. With the aim to establish whether the number of unsuccessful
participants was related to the within-category presentation order, we ran a Fisher’s exact
test of independence (see Box 2.1 for a description of the test). In view of the limited
number of participants, the Fisher’s exact test was preferred to the chi-square test.

Fisher’s exact test of independence. Table 2.1 shows the number of successful and un-
successful participants for both rule-based and similarity-based conditions. We observed
that only one participant (following a similarity-based order) did not meet the learning
criterion. Although there was only one unsuccessful participant, we decided to run a
Fisher’s exact test of independence to maintain a coherent structure with Experiment II
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(the test was performed using the R function chisq.test). As expected, the test was not
significant.

Conclusion: The number of unsuccessful participants was not related to the within-
category presentation order.

BOX 2.1 Fisher’s Exact Test of Independence

The Fisher’s exact test of independence is a statistical significance test used to
determine whether two nominal variables are related. It is usually used instead of
the chi-squared test of independence when sample sizes are small. The reason for
this is because the significance value of the Fisher’s test can be exactly calculated as
opposed to that of the chi-squared test that can only be approximated. Therefore,
on small samples, the Fisher’s test performs better than the chi-squared test.

Let us briefly explain how the test works. Let us suppose that there exist two nominal
variables with, respectively, r and s states. The test is based on the contingency table
of the two variables, where Oi,j (i ≤ r and j ≤ s) are the observed frequencies,
Ri =

∑
j Oi,j and Cj =

∑
iOi,j are, respectively, the row and column sums, and

N =
∑
iRi =

∑
j Cj are the total sum of the matrix.

The first step consists in declaring the hypothesis. The null hypothesis states that
the relative proportions of one variable are independent of the second one, while
the alternative hypothesis states the opposite.

The second step is represented by the computation of the conditional probability of
getting the actual matrix, given the particular row and column sums, by using the
formula:

p =
(R1!R2! · · ·Rr!)(C1!C2! · · ·Rs!)

N !
∏
i,j Oi,j !

. (2.1)

Equation 2.1 is a multivariate generalization of the hypergeometric probability
function.

The third step consists in finding all possible matrices of non-negative integers with
the row and column sums Ri and Cj , and calculating the associated conditional
probability by means of Equation 2.1. The sum of these probabilities must be equal
to 1.
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Finally, the last step consists in summing all the probabilities that are equal to or
smaller than that of the observed table (which is p). This sum represents the final
p-value of the test.

Relevant Times to Estimate Learning

An effective way to compare different speed of learning is to identify a series of relevant
times. By relevant times we mean times that vouch for an increase of performance. For
instance, the first time (expressed in blocks or trials) at which participants correctly
classify two blocks in a row is a relevant time. Each relevant time is associated with the
achievement of a particular stage of the learning dynamic. Thus, by comparing specific
relevant times of the two conditions (rule-based and similarity-based), we aimed to
establish which condition lead to the fastest learning. For each of the selected relevant
times (that will be described later), we compared the two following sequences:

T rule
1 , . . . ,T rule

nrule
and T sim

1 , . . . ,T sim
nsim

, (2.2)

where T rule
i and T sim

i are, respectively, the selected relevant time for the i-th rule-based
and the i-th similarity-based participants, while nrule and nsim are, respectively, the
number of rule-based and similarity-based participants for whom the selected relevant
time is defined. Three analyses were performed to determine whether the two sequences
in Equation 2.2 were statistically different: the Wilcoxon-Mann-Whitney test, the Kaplan-
Meier estimator, and the Cox model. For each analysis, a set of relevant times was
selected and analyzed. These analyses were preferred to more commonly used methods
(for instance, the mixed model) because they do not lie on a Gaussian assumption.
Indeed, the rate of correct responses in Experiment I ranged from 0 to 1 in 9 steps, which
could scarcely be approximated by a normal distribution. Although some versions of
mixed models do not assume the distributions to be Gaussian, they generally take long to
compute.

Wilcoxon-Mann-Whitney test. The one-sided Wilcoxon-Mann-Whitney test (see Box
2.2 for a description of the test) was run to compare the observed sequences of relevant
times. The null hypothesis was the following: the distribution of the relevant times of
the rule-based participants is greater than that of the similarity-based participants. The
Wilcoxon-Mann-Whitney test was preferred to the Z- and Student’s T-tests because i)
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the number of participants per condition was small (22 participants) and ii) no prior
knowledge about the underlying distribution was required. The one-sided Wilcoxon-
Mann-Whitney test was applied to the following relevant times (the test was performed
using the R function wilcox.test):

ENDING TIME. The ending time refers to the time at which participants ended the learning
phase. For successful participants, it corresponds to the time at which the learning
criterion was met, while for unsuccessful participants, it corresponds to the time
at which the experiment was dropped. No participants were removed from the
study. The p-value of the test was 0.01, showing that the ending time of rule-based
participants were significantly smaller than that of similarity-based participants.

LEARNING TIME. The learning time refers to the time at which successful participants
met the learning criterion. The only unsuccessful participant was removed from
the analysis. The p-value of the test (0.02) indicates a faster learning time for
rule-based participants.

FIRST TIME 100%. The first time at which participants correctly classified a block (of
9 stimuli) is another meaningful indicator of participants’ learning. Since all
participants correctly classified at least one block, nobody was removed from the
study. The test was significant with a p-value of 0.01.

FIRST TIME 75%. In the same vein of the previous relevant time, “First time 75%” refers
to the time at which participants correctly classify 75% of the stimuli of a block
(meaning 6 stimuli over 9). Again, no participants were removed, but this time the
test was not significant (the p-value was 0.15).

NEVER UNDER 60% TIME. Finally, we considered the time starting from which participants
correctly classify at least 60% of the stimuli of each block (meaning 5 stimuli over 9).
No participants were removed and the p-value of the test (0.17) was not significant.

All relevant times were computed in terms of number of trials for best accuracy. Figure
2.5 shows the average of the selected relevant times as a function of the within-category
order. To facilitate the comprehension, the average relevant times were here expressed in
terms of blocks.

Conclusion: the one-sided Wilcoxon-Mann-Whitney test was significant for Ending time,
Learning time and First time 100%, showing faster learning for rule-based participants.
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Figure 2.5 – Average relevant times as a function of the within-category order (similarity-based
vs. rule-based). Stars and “ns” symbols indicate the significance of the one-sided Wilcoxon-Mann-
Whitney test (see Table 2.2 to map symbols with p-value ranges).

P-value 0.1 - 1.0 0.05 - 0.1 0.01 - 0.05 0.001 - 0.01 0 - 0.001

Symbol NS ns ∗ ∗∗ ∗ ∗ ∗

Table 2.2 – Mapping from p-value ranges to symbols.

BOX 2.2 Wilcoxon-Mann-Whitney Test

The Wilcoxon-Mann-Whitney test (also called Mann-Whitney U test or Wilcoxon
rank-sum test) is a non-parametric test that is used to investigate whether two inde-
pendent samples are likely to derive from populations having the same distribution.
The two-sided test is used to determine whether two populations are the same, while
the one-sided test is used to detect either a positive or a negative shift (not both at
the same time) in one population as compared to the other. The hypothesis of the
two-sided test are the following:

H0 : the distributions of the two populations are equal,

H1 : the distributions of the two populations are not equal.
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In contrast, the null hypothesis of the one-sided test states that there is either a
positive or a negative shift (it depends on the direction of the test) in one population
as compared to the other. The intuitive idea on which the test is based is the
following: if we group the two samples and the elements are uniformly mixed
when we reorder them, then the two populations can be considered equal. More
specifically, the statistical test is based on the following steps:

i. Merge the two samples into one set and order its elements in ascending order.
Assign to each element a rank beginning with 1 for the smallest value. If two
or more elements have the same value, assign to them a rank equal to the
midpoint of unadjusted rankings. For example the ranks of (4, 7, 7, 7, 8) are
(1, 3, 3, 3, 5), while the unadjusted rankings would be (1, 2, 3, 4, 5).

ii. Add up the ranks of the observations coming from the first sample (that we
denote by R1) and those coming from the second sample (that we denote by
R2). Compute the following quantities:

U1 = R1 −
n1(n1 − 1)

2 and U2 = R2 −
n2(n2 − 1)

2 ,

where n1 and n2 are, respectively, the number of observations of the first and
second samples.

iii. The statistical test U is the smaller value of U1 and U2:

U = min{U1, U2}.

The critical value depends on the size of the samples (n1 and n2) and on the
level of significance (generally α = 0.05). If the observed statistic U is smaller
than the critical value, then the null hypothesis is rejected.

Kaplan–Meier survival curves and Log-Rank test. There is a less common branch of
statistics, called survival analysis, that we thought could best serve our purpose. Survival
analysis is a set of statistical techniques used to investigate the expected duration of time
until an event of interest occurs (see Box 2.3 for further details). In our case, the event of
interest is the attainment of the learning criterion, which marks the successful completion
of the learning phase. However, for some individuals, the event may not be observed
within the time period of the study (i.e., when participants are unsuccessful). Survival
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Figure 2.6 – Illustration of the Kaplan-Meier survival curves of Experiment I as a function of the
within-category order. Survival curves represent the probability that participants have not yet reached
the learning criterion at a certain time. The transparent areas around the survival curves represent
the 95% confidence intervals. The log-rank test showed a significant difference between the two
survival curves (p-value=0.02).

analysis is able to take into account individuals for which the event did not occur, also
called the censored observations.

Although the use of survival analysis was not required in Experiment I (a single participant
was unsuccessful), we performed it anyway to maintain a common outline between
Experiment I and II. However, we anticipate that the use of survival techniques will add a
considerable value to the analysis of Experiment II (in which the number of unsuccessful
participants was high).

A quantity of interest in survival analysis is the survival probability, also called survival
function or survival curve. The survival probability indicates, at a certain time t, the
probability that a subject survives longer than time t. In our case, it represents the
probability that a participant has not yet reached the learning criterion at time t. One of
the most common method to estimate the survival function is the Kaplan-Meier estimator
[KM58] (see Box 2.4 for further details).
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Figure 2.6 shows the Kaplan-Meier survival curves as a function of the within-category
order (survival curves were computed using the R function survfit). The distance
between the survival curves of the two conditions (similarity-based vs. rule-based) can
be quantified using a log-rank test (see Box 2.5 for further details). The log-rank test
performed on the similarity- and rule-based survival curves was significant (p-value=0.02;
the test was performed using the R function survdiff).

Conclusion: the analysis of the Kaplan-Meier survival curves showed a relation between
learning speed and within-category presentation order, with rule-based participants
having the highest probability to reach the learning criterion.

BOX 2.3 Survival Analysis

Survival analysis is a branch of statistic which is used to investigate the time that
it takes for an event of interest to occur, such as failure in machines or death in
biological organisms. However, in some cases the event may not be observed,
producing the so-called censored observations. Survival analysis can account for
these censored observations.

Let us suppose that the event of interest involves individuals (n individuals to be
more specific). The times that we observe are the result of the interaction of two
samples which we do not have access to. These samples represent, respectively, the
time at which the event of interest occurs, and the time at which the censor occurs.
We denote these samples by

Ys is the time at which the event of interest occurs for the s-th individual,

Cs is the time at which the censor occurs for the s-th individual,

where s = 1, . . . ,n. The samples to which we have access are the sample of the
observed times (denoted by Ts) and the sample of the individuals that are censored
(denoted by δs). We define these two observable samples as follows (s = 1, . . . ,n):

Ts = min{Ys, Cs} and δs =

1 if Ys ≤ Cs
0 otherwise
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The survival analysis uses these two observable samples to estimate two related prob-
abilities: the survival function (also called survival curves), which is the probability
that an individual survives longer than a certain time; and the hazard probability
(also called hazard curves), which is the probability that the event occurs at a certain
time. The widespread methods used in survival analysis are:

i. The Kaplan-Meier plots to visualize survival curves.

ii. The log-rank test to compare the survival curves of two groups.

iii. The Cox proportional-hazards model regression to asses the influence of one
or multiple variables on hazard probability.

BOX 2.4 Kaplan-Meier Estimator

The Kaplan-Meier method [KM58] is a non-parametric method used to estimate
the survival probability from observed survival times. The estimator of the survival
probability at time ti is computed as follows:

S(ti) = S(tt−1)

(
1− di

ni

)
,

where S(ti−1) is the probability of being alive at time ti−1, ni is the number of
individuals that are alive just before ti, and di is the number of events at time ti.
The time is initialized at 0 (t0 = 0) and the survival probability at 1 (S(0) = 1). The
estimated survival probability S(t) is a step function that changes value only at the
time of each event. The plot of the Kaplan-Meier survival curves as a function of
time provides a summary of the data that can be used to estimate measures such
as median survival time. It can also be useful to compare in a qualitative way the
survival probability of two or more groups.

BOX 2.5 Log-Rank Test

The log-rank test is the most widely used method of comparing survival curves.
It is a non-parametric test, which means that it makes no assumptions about the
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survival distributions. The null hypothesis is that there is no difference in survival
between the two groups, while the alternative hypothesis claims that survival curves
are not identical. The log rank test compares the observed number of events in
each group to what would be expected if the null hypothesis were true (i.e., if the
survival curves were identical). The log rank statistic is approximately distributed as
a chi-square statistical test.

Cox proportional-hazards model. The Cox model [Cox72] is another survival analysis
technique (see Box 2.6 for further details). Again, although Experiment I does not require
the use of survival techniques, we performed it for purposes of coherency. A key concept
in the Cox model is the hazard probability, also called hazard function. The hazard
function indicates the risk that the event of interest occurs at a certain time. In our case,
it represents the probability that participants meet the learning criterion at a specific time.

Figure 2.7 shows the result of the application of the Cox proportional-hazards model on
Experiment I (Cox anlysis was performed using the R functions coxph). The rule-based
condition was the reference condition and, consequently, had a hazard ratio of 1. The

Order

Sim

Rule

(N=22)

(N=22)

0.48

reference

(0.25 − 0.9) 0.021 *

# Events: 43; Global p−value (Log−Rank): 0.021083 
AIC: 247.31; Concordance Index: 0.61 0.3 0.4 0.5 0.6 0.7 0.8

Figure 2.7 – Results of the Cox proportional-hazards model on Experiment I. The rule-based condition
is the reference condition and, consequently, its hazard ratio is equal to 1. Conversely, the similarity-
based condition is the opposite condition and its hazard ratio is equal to 0.48 (it is displayed below
the word "reference"). The numbers within the brackets just below the hazard ratio represent the
95% confidence interval. The number on the right side of the graph is the p-values of the Wald test
assessing the significance of the model.
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similarity-based was the alternative condition and had a hazard ratio of 0.48, meaning
that similarity-based participants had lower chances to reach the learning criterion as
compared to rule-based participants. More precisely, the similarity-based condition
reduces the hazard by a factor of .48 (or 52%).

Another meaningful indicator was the statistical significance of the model, given by three
tests (the likelihood-ratio test, the Wald test and the log-rank test). All three tests were
significant (p-value=0.02), meaning that the probability to reach the learning criterion
was strongly related with the within-category order.

Conclusion: the Cox analysis showed that rule-based participants had higher probability
to meet the learning criterion as compared to similarity-based participants.

BOX 2.6 Cox Proportional-Hazards Model

The Cox model [Cox72] is a survival analysis technique used to examine the effect
of several factors on survival probability. In other words, this method allows us to
examine how some specified factors influence the rate at which the event of interest
happens at a certain time. In the Cox model the hazard function h(t) (which is
the probability that the event of interest occurs at a certain time) is expressed as a
function of one or more variables x1, . . . ,xn called covariates or factors:

h(t) = h0(t)e
β1x1+...+βnxn ,

where n ∈N is the number of factors, β1, . . . ,βn are the coefficients of the variables
(they measure the impact of covariates on hazard), and h0 is the baseline hazard.
The Cox model can also be written as a multiple linear regression of the logarithm
of the hazard function on the variables xi.

The quantities eβi are called hazard ratios. A hazard ratio greater than 1 (or,
equivalently, a value of βi greater than 0) indicates that as the value of the i-th
covariate increases, the event hazard increases and thus the length of survival
decreases. On the contrary, a hazard ratio smaller than 1 (or, equivalently, a value
of βi smaller than 0) indicates that as the value of the i-th covariate increases, the
event hazard decreases and thus the length of survival increases.
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The Cox model is based on the assumption according to which the hazard curves of
groups of individuals should be proportional and cannot cross. In other words, if an
individual has a risk of death at some initial time that is twice as high as compared
to another individual, then at later times the risk of death remains twice as high.
This assumption should be tested before the application of the model.

Proportion of Correct Responses

The aim here is to compare (at each block) the proportion of correct responses scored
by rule- and similarity-based participants during the learning phase. An issue we had to
confront was the different duration of the learning phase among participants (see Box
2.7 to understand the issue of dealing with learning phases of different lengths). A first
solution could have been to complete the data with 100% of correct responses. However,
the unsuccessful participants would have made this solution inadequate. A second
solution could have been to remove the unsuccessful participants and complete the data
of the remaining subjects with 100% of correct responses. However, the implementation
of this solution would have introduced a considerable bias (especially in Experiment II,
where the number of unsuccessful participants is higher than Experiment I).

Therefore, we adopted the following alternative solution: we considered the earliest time
at which unsuccessful participants dropped the experiment and complete the data until

Successful Unsuccessful All together

Fastest 5 55 5

Average 15 55 15

Median 13 55 13

Slowest 51 55 55

Table 2.3 – Number of blocks that the fastest, the average, the median and the slowest participants
of Experiment I took to end the learning phase, depending on the class of individuals they belong to
(successful, unsuccessful, or all together). By ending the learning phase we mean reach the learning
criterion, in the case of successful individuals, or drop out the experiment, in the case of unsuccessful
participants. Bold letters are used to indicate the limit time. The numbers were rounded to their
nearest smallest integer.
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this time with 100% of correct responses. The time at which the fastest unsuccessful
participant dropped the experiment is called limit time and denoted by L.

Avoiding the removal of unsuccessful participants represents a first advantage of this solu-
tion. A second advantage is represented by the fact that the completion of data concerns
only successful participants (and it is reasonable to think that successful participants will
continue to correctly classify stimuli even after reaching the learning criterion). However,
a limitation of this method is that only the data preceding the limit time are analyzed.

Table 2.3 shows the number of blocks that the faster, the slowest, the median and the
average participant took to end the learning phase. The fastest unsuccessful participant
ended the learning phase after the slowest successful participant (55 vs. 51 blocks),
allowing us to consider the entire learning dynamics. After addressing the issue of the
variable length of the participants’ learning phase, the Wilcoxon-Mann-Whitney test was
run to asses the influence of the order conditions on the proportion of correct responses.

BOX 2.7 Variable Length Issue

Let us suppose that we want to compare the performance of two groups of people
under two conditions, I and II, on a particular task. Let us assume that the task ends
when a participant correctly responses all the questions. To compare the two groups,
at time t1 and t2 (with t1 < t2), we evaluate the participants’ outcome by giving:

0 if the participant correctly responses less than 50% of the questions.

1 if his percentage of correct responses is between 50% and 99%.

2 if the participant correctly responses 100% of the questions.

Let us assume that, at time t1, all participants under condition I scored 2, except
for one individual who scored 0, while all participants under condition II scored 1.
Therefore, only one single participant under condition I was evaluated at time t2
(the other participants ended the task before the time t2). Let us suppose that, at
time t2, the only participant under condition I scored 0, while all participants under
condition II scored 1. Thus, if we do not take into consideration the participants
who ended the task, we could conclude that, at time t2, the participants under
condition I performed better than those under condition II (which is not the case).
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This argument shows that analyzing data in which participants take different times
to end the task could lead to the wrong conclusion.

Wilcoxon-Mann-Whitney tests with Benjamini-Hochberg correction. Again, the use
of the Wilcoxon-Mann-Whitney test is motivated by the absence of prior knowledge about
the distribution of the correct responses. The application of the Wilcoxon-Mann-Whitney
test aimed to compare the following two sequences:

Rrule,j
1 , . . . ,Rrule,j

nrule
and Rsim,j

1 , . . . ,Rsim,j
nsim

,

where Rrule,j
i and Rsim,j

i are, respectively, the proportion of correct responses given by the
i-th rule-based and similarity-based participants at the j-th block (1 ≤ j ≤ L), and nrule

and nsim are, respectively, the number of rule-based and similarity-based participants.
The null hypothesis assumed that similarity-based participants had a higher proportion of
correct responses as compared to rule-based ones.

The one-sided Wilcoxon-Mann-Whitney test was applied exclusively to the even blocks of
the experiment. This choice is motivated by the fact that in odd blocks feedback were
provided before the classification trials.

Since multiple comparisons were at play, a correction procedure was mandatory. There-
fore, the Benjamini-Hochberg procedure [BH95] was applied to the results of the
Wilcoxon-Mann-Whitney tests (see Box 2.8 for the description of the Benjamini-Hochberg
procedure).

Figure 2.8 (on the top) shows the p-values of the Wilcoxon-Mann-Whitney test performed
on the even blocks of Experiment I until the limit time. The p-values are ordered from the
smallest to the largest. Figure 2.8 (on the top) also shows the straight lines associated
with the Benjamini-Hochberg procedure at a significance level of 0.05 and 0.11. If a
significance level of 0.05 is considered, all tests are accepted (there are no points under
the black line). Conversely, if a significance level of 0.11 is considered, 20 tests over 27
are rejected (the 20-th point appears below the gray line). However, 0.11 is a too high
significance level, which led us to the conclusion that no difference between similarity-
and rule-based learning curves was found. Figure 2.8 (on the bottom) shows the average
proportion of correct responses as a function of the within-category order. Asterisk
symbols represent the rejected blocks with a significance level of 0.11.
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Figure 2.8 – Result of Wilcoxon-Mann-Whitney tests with Benjamini-Hochberg correction. On the top:
p-values of the Wilcoxon-Mann-Whitney test performed to compare the proportion of correct responses
between rule-based and similarity-based participants of Experiment I. The test was performed on each
block until the limit time (which is the block at which the fastest unsuccessful participant dropped
out the experiment). The p-values are ordered from the smallest to the largest. The straight lines
are associated to the Benjamini-Hochberg procedure with a significance level of, respectively, 0.05
and 0.11. On the bottom: average proportion of correctly classified items for both rule-based and
similarity-based participants of Experiment I. The asterisk symbol denotes the blocks that have been
rejected by the test with a significance level of 0.11.
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Conclusion: Although the average learning curve of rule-based participants is always
above the average learning curve of similarity-based participants, the Wilcoxon-Mann-
Whitney tests with a Benjamini-Hochberg correction found no significant difference
between the curves.

BOX 2.8 Benjamini-Hochberg

The Benjamini-Hochberg procedure [BH95] is a statistical tool for controlling the
false discovery rate (the chances to incorrectly reject the test) in multiple testing
experiments. Before tackling the description of this technique, it comes natural to
ask ourselves: why do we need to control the false discovery rate when we run a
test multiple times? The answer is that the chance of erroneous rejections increases
when we perform multiple comparisons. Let us take an example to illustrate this
phenomenon. When a single test is performed at the 5% level, there are 5% chance
of incorrectly rejecting the null hypothesis. However, if 20 independent tests are
conducted, the probability to not have erroneous rejections is 0.9520 = 0.36. This
means that there are 64% chance to incorrectly reject the null hypothesis at least one
time! This shows that it is of vital importance to control the false discovery rate. Let
us say that we performed n tests and that we want to apply the Benjamini-Hochberg
procedure in order to limit the false discovery rate at α = 5%. This procedure is
based on the following steps:

i. Order the p-values of the tests in ascending order: p(1) ≤ . . . ≤ p(n).

ii. Assign a rank to each p-value, beginning from 1 for the smallest value until n
for the largest one.

iii. Find the p-values p(i) that satisfy the following condition: p(i) ≤ αi
n . In a plot

with the rank on the x-axis and the p-value on the y-axis, this step corresponds
to detect the points which are below the straight line of equation y = α

nx.

iv. Set k the largest p-value satisfying the previous condition:

k = max
1≤i≤n

{
p(i) ≤

αi

n

}
.

v. Reject the tests whose rank is smaller than or equal to k, p(1) ≤ . . . ≤ p(k).

2.1 Experiment I 61



TO SUM UP Experiment I: Analysis of Learning Phase

Experiment I dataset was already used by Mathy and Feldman [MF16] to investigate
the influence of within-category order (rule-based vs. similarity-based) on general-
ization patterns. The aim was to reanalyze the learning phase of Experiment I to
investigate the effects of rule- and similarity-based orders on category learning using
numerous and more robust statistical tests. The analysis was organized in three parts:
i) determining whether the number of unsuccessful participants was related to the
within-category order, ii) analyzing a set of relevant times to compare the learning
speed of rule- and similarity-based participants, and iii) comparing the evolution of
correct responses of rule- and similarity-based participants.

Unsuccessful Participants

Fisher’s exact test of independence (not significant). A Fisher’s exact test of inde-
pendence was performed to determine whether within-category order and
number of unsuccessful participants were related. The test was not significant.

Relevant Times to Estimate Learning

Both classic methods and survival analysis techniques were used to analyze a set of
relevant times.

Wilcoxon-Mann-Whitney test (significant overall). Five relevant times were con-
sidered: the Ending time (i.e., the time at which participants ended the learn-
ing phase), the Learning time (i.e., the time at which successful participants
met the learning criterion), the First time 100% (i.e., the first time at which
participants correctly classify a block), the First time 75% (i.e., the first time
at which participants correctly classify 75% of the items within a block), and
the Never time 60% (i.e., the time from which participants correctly classify
at least 60% of the items within each block). A Wilcoxon-Mann-Whitney test
was performed to compare the relevant times of rule- and similarity-based
participants. The test was overall significant, showing faster learning in the
rule-based order.
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Kaplan-Meier survival curves and Log-Rank test (significant). We estimated the
survival curves of both rule-based and similarity-based participants using the
Kaplan-Meier estimator. The distance between the two survival curves was
then assessed using a log-rank test. The test showed that participants in
the similarity-based order were less likely to reach the learning criterion as
compared to participants in the rule-based order.

Cox proportional-hazards model (significant). The Cox model was used to express
the hazard probability as a function of the within-category order. The model was
significant and confirmed the result of the previous survival analysis, meaning
that participants in the rule-based order had higher probability to reach the
learning criterion as compared to participants in the similarity-based order.

Proportion of Correct Responses

The dataset was analyzed until the limit time (the block at which the fastest unsuc-
cessful participant dropped the experiment) and completed with 100% of correct
responses. This allowed a re-normalization of the duration of participants’ learning
phase.

Wilcoxon-Mann-Whitney tests with Benjamini-Hochberg correction (not signif-
icant). A Wilcoxon-Mann-Whitney test was performed to compare the pro-
portion of correct responses of rule- and similarity-based participants at each
block. The result of the test was then corrected using the Benjamini-Hochberg
procedure. The smallest significance level that allowed the rejection of at least
one test was equal to 0.11 (20 rejected tests over 27, 74% of the tests), which
was too high to be significant.

2.1.3 Analysis of Transfer Phase

A large panel of tests has already been performed by Mathy and Feldman on the transfer
phase of Experiment I (see [MF16]). They provided evidence supporting the influence of
within-category presentation order on generalization patterns. Our aim is to enrich their
panel of tests with an additional analysis.
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Principal component analysis with Wilcoxon-Mann-Whitney test. Since generaliza-
tion patterns were investigated, the analysis was focused on transfer items exclusively.
The first step of the analysis consisted in computing the proportion of time that each
participant classified each transfer item into category A. This operation leaded to the
creation of a table in which each row corresponded to a participant and each column
corresponded to a transfer item. The entry (i, j) of the table contained the proportion of
times that participant i classified the transfer item j into category A during the transfer
phase.

Because of the high number of columns (there were 7 transfer items and thus 7 columns),
detecting some patterns that distinguished the rule- from the similarity-based participants
would have been inaccessible. A viable solution was to reduce the dimension of the space
(the number of columns) in order to visualize the data.

The principal component analysis provided a solution for reducing the dimension of
the space while preserving the highest quantity of information (see Box 2.9 for an
introduction to the principal component analysis). This technique allowed us to determine
the directions that account for the highest variability of the data and project the data
along them.

Figure 2.9 shows the result of the principal component analysis on the first and second
components as a function of the within-category order. On the first component, the
majority of the similarity-based participants are located on the left side of the plot, while
the majority of the rule-based participants are located on the right side of the plot. The
one-sided Wilcoxon-Mann-Whitney test was performed to establish whether the difference
in location was statistically significant. The test was significant (p-value=0.02), showing
that the generalization patterns of rule-based participants were different from those of
similarity-based participants.

Moreover, by looking at how the first component was expressed as a function of the
transfer items, we were able to further interpret the test. The first component was
expressed as follows:

Comp.1 = 0.3 · pA(T1) + 0.2 · pA(T2)− 0.3 · pA(T3)

− 0.5 · pA(T4)− 0.5 · pA(T5)− 0.5 · pA(T6)− 0.02 · pA(T7), (2.3)

where pA(Ti) represents the proportion of times that participants classified transfer item
Ti into category A.
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Figure 2.9 – Projection on the first and second components of the proportion of times that participants
classified each one of the transfer item in category A, depending on the condition to which participants
were assigned. On the top side and on the right side of the graph, we plot the density of the points on,
respectively, the first and the second components.

The observation that the term involving pA(T7) was negligible (its impact was 10 times
smaller than the other terms) led us to remove it. The fact that the location of rule-based
participants was shifted to the right as compared to the location of similarity-based
participants meant that either the positive terms of Equation 2.3 were higher for rule-
based participants, or the negative terms of Equation 2.3 were smaller for rule-based
participants (or both).

The interpretation in terms of classification probability was the following: either rule-
based participants classified items T1 and T2 into category A more frequently than
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similarity-based participants, or rule-based participants classified items T3, T4, T5 and T6

into category A less frequently than similarity-based participants (or both).

This configuration is consistent with a rule-based retrieval in which items T1 and T2 are
classified into category A and items T3, T4, T5 and T6 are classified into category B. This
result showed that the generalization patterns of rule-based participants was closer to
rule-based retrieval than the generalization patterns of similarity-based participants.

Conclusion: the location of rule-based participants on the first and second components of
the PCA (that was applied to the proportion of times that participants classified each one
of the transfer items into category A) was significantly shifted to the right as compared
to the location of similarity-based participants. Moreover, the generalization patterns of
rule-based participants was closer to rule-based retrieval than the generalization patterns
of similarity-based participants.

BOX 2.9 Principal Component Analysis

Principal component analysis (PCA) is a statistical technique used to highlight strong
patterns in a dataset. If a dataset is composed of more than three variables, then
it could be very difficult to visualize the multi-dimensional space in which the
observations are embedded. Yet, the visualization of the data could be an useful tool
for patterns finding.

The principal component analysis allows us to determine the directions that account
for the highest variability of the data and to project the observations along them.
In other words, this technique expresses the data in terms of new variables (called
principal components) on which the observations are the most spread out. These
new variables correspond to a linear combination of the originals. The number
of principal components is less than or equal to the number of original variables.
In most cases, the first three principal components are able to explain a very high
percentage of the data. This allows us to easily visualize the observations with
minimal loss of information.

Mathematically speaking, the PCA is an orthogonal linear transformation that trans-
forms the data to a new coordinate system such that the first coordinate accounts
for the greatest variance of the data, the second coordinate for the second greatest
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variance of the data, and so on. If we denote by X the data matrix (of dimension
n×m) in which each row xi represents an observation, then the transformation is
defined by a m× p matrix W that maps each row vector xi into a new vector zi:

Z = X ·W ,

where Z is the n × p matrix with the new coordinates and the columns of the
matrix W (the principal components) are eigenvectors of the matrix XT ·X. The
eigenvalues of the matrix XT ·X measure the amount of variation retained by each
principal component. It is also important to point out that the dataset is generally
scaled before the application of the technique (variables are scaled to have mean
zero and standard deviation one).

2.2 Experiment II

Experiment II was designed to investigate the effects of rule- and similarity-based orders in
three different contexts: when categories are randomly alternated and a variable across-
blocks presentation is considered (Random-Variable); when categories are randomly
alternated and a constant across-blocks presentation is considered (Random-Constant);
and when categories are blocked and a constant across-blocks presentation is considered
(Blocked-Constant).

Although these three different contexts (i.e., Random-Variable, Random-Constant, and
Blocked-Constant) were thought to be three independent experiments, we considered
them as (ordinal) contexts of a same experiment (Experiment II). This choice was
motivated by practical reasons (a unique statistical analysis was more convenient) as well
as the wish to (partially) explore how different contexts influenced the learning speed.

Again, our goal here is to compare rule-based vs. similarity-based within-category orders
when other types of orders (across-blocks manipulations and between-category orders)
are at play. Additionally, a limited exploration of the effects of multiple types of orders
(within-category orders, between-category orders, and manipulations across blocks) on
category learning is initiated. To recap, Experiment II was characterized by the three
following conditions:

2.2 Experiment II 67



RANDOM-VARIABLE. This condition investigated the effect of within-category orders (rule-
based vs. similarity-based) when categories were randomly alternated and a variable
across-blocks presentation was considered. We often refer to this condition as R-V.

RANDOM-CONSTANT. This condition investigated the effect of within-category orders (rule-
based vs. similarity-based) when categories were randomly alternated and a con-
stant across-blocks presentation was considered. We often refer to this condition as
R-C.

BLOCKED-CONSTANT. This condition investigated the effect of within-category orders (rule-
based vs. similarity-based) when categories were blocked and a constant across-
blocks presentation was considered. We often refer to this condition as B-C.

2.2.1 Data Collection

Participants. The participants were 68, 22, and 46 freshmen or sophomores of the
University of Franche-Comté (France) for respectively the R-V, the R-C, and the B-C
contexts. All students received course credits in exchange for their participation. The
data was collected by F. Mathy.

Phases. The experiment was composed of a single supervised learning phase.

Categories. According to Feldman’s classification [Fel03], participants were tested on a
single 124[8] concept. This concept is composed of 24 = 16 items placed on an hypercube
(more specifically a 4-cube). According to the concept, 8 of the 16 items belong to
category A and the remaining 8 items belong to category B. All 16 items are learning
items. The concept 124[8] is illustrated in Figure 2.10 (on the top), where the category A
examples are indicated by black circles, while the category B examples are indicated by
white circles. In the 124[8] notation, the [8] stands for the number of items belonging to
category A (8 category A items), the 4 stands for the dimension of the concept (a 4-cube),
and the 12 is an arbitrary label identifying this concept among all the 4[8] concepts
(4-dimensional concepts with 8 items belonging to category A).
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Figure 2.10 – Illustration of the categories and items of Experiment II. On the top, the illustration of
the 124[8] concept (according to Feldman’s classification [Fel03]). Category A items are indicated
with black circles, while category B items are indicated with white circles. The notation 124[8] refers
to the fact that this concept is the 12th in the Feldman’s list of 4-dimensional concepts consisting of 8
items belonging to category A. On the bottom, an example of 16 items presented to participants in
Experiment II. The items varied along four Boolean dimensions (shape, color, size and filling pattern).

Items. Items varied along four dimensions: shape, color, size and filling pattern. Each
of these dimensions was Boolean, meaning that only two values were available. The
choice of the two values for each dimension was chosen at random among these options:
triangle, square or circle for shape; blue, pink, red or green for color; small or big for size;
plain and striped for the filling pattern. The combination of these four dimensions formed
24 = 16 items (Figure 2.10, on the bottom). Each dimension was not instantiated by the
same physical feature. For instance, color could differentiate the items at the top of the
hypercube from those at the bottom for a specific participant, while it could differentiate
the objects at the front of the hypercube from those at the back for another participant.

Between-category presentation order. In both the Random-Variable and Random-
Constant contexts, categories were randomly alternated. Conversely, in the Blocked-
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Constant context categories were strictly blocked, meaning that that the presentation of
category A items always preceded the presentation of category B items. Moreover, since
blocking categories did not guarantee learning, blocks where categories where strictly
blocked were alternated with random blocks.

Within-category presentation order. As in Experiment I, a rule-based and a similarity-
based orders were used. The within-category order was a between-subject manipulation.
In both the Random-Variable and Random-Constant contexts, one of the two within-
category orders was randomly selected and applied across every block. Conversely, in the
Blocked-Constant context, one of the two within-category orders was randomly selected
and applied across every odd block. In each context, half of the participants were assigned
to the rule-based order and half of the participants to the similarity-based order.

Again, in the rule-based order, stimuli were presented following a “principal rule plus
exceptions” structure, meaning that examples obeying the principal rule were presented
strictly before the exceptions. The “principal rule plus exceptions” structure of Experiment
II was the following: all striped items belong to category A except for the blue circles,
while all plain items belong to category B except for the small blue square and the small
gray circle (see Figure 2.10, on the bottom). Therefore, the principal rule is “the striped
items are members of category A and the plain items are members of category B”, while
the exceptions are the small striped blue circle, the big striped blue circle, the small plain
blue square and the small plain gray circle.

In this “principal rule plus exceptions” structure, items A1, A3, A4, A6, A7, A8 are the
category A examples obeying to the principal rule, while A2 and A4 are the category
A exceptions. In the same way, B1, B3, B4, B5, B7, B8 are the category B examples
obeying to the principal rule, while B2 and B6 are the category B exceptions. Both the
members obeying the principal rule and the category B exceptions were presented in
random order. Conversely, the category A exceptions followed the following constraint:
item A2 was presented strictly before item A5. Figure 2.11 (on the top) shows an example
of block following a rule-based order (categories were blocked).

Again, the similarity-based order is designed to maximize the similarity between con-
tiguous examples. The first item was randomly selected while subsequent objects were
randomly selected among those maximizing the similarity with immediately presented
stimuli. Similarly as in Experiment I, similarity between items was computed by counting
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Category A common examples

Category A exceptions

Category B common examples

Category B exceptions

Category A examples Category B examples

Figure 2.11 – Examples of blocks following rule-based (on the top) and similarity-based (on the
bottom) within-category presentation order by using stimuli from Experiment II. In the rule-based
order, the stimuli were ordered following a «principal rule plus exceptions» structure. Conversely, the
similarity-based order is designed to maximize the similarity between consecutive stimuli.

the number of common features between stimuli. Figure 2.11 (on the bottom) shows an
example of a block following a similarity-based order (categories were blocked).

Presentation across blocks. In both the Random-Constant and Blocked-Constant con-
texts a constant across-blocks presentation was considered. However, in the Blocked-
Constant context, across-blocks order was manipulated only in odd blocks (even blocks
were random blocks).

Conversely, in the Random-Variable context a variable across-blocks presentation was
considered. A summary of the different types of orders manipulated in Experiment II as a
function of the contexts is given in Figure 2.12.

Stop criterion. The unique learning phase was completed when one of the two following
conditions was satisfied (these conditions are equivalent to those described in Experiment
I):

i. A sequence of 4× 16 consecutive correct responses was given, i.e. 4 consecutive
correct blocks of 16 stimuli (in the Blocked-Constant context only odd blocks were
considered).
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ii. Two sequences of respectively 2× 16 + 1 and 2× 16 consecutive correct responses
were given, i.e. 2 consecutive correct blocks plus one correct stimulus and 2
consecutive correct blocks. However, between the two sequences, no more than
two incorrect responses in a row were approved. Again in the Blocked-Constant
context only odd blocks were considered.

Procedure and feedback. There were no warmup session. However, participants were
briefly instructed before the task began. Participants were individually tested on a single
124[8] concept. The categorization task was computer-driven and consisted of a single
one-hour session (including briefing and debriefing). Participants sat approximately 60
cm from the computer screen on which stimuli were presented.

Stimuli were presented one at a time in the upper part of the screen. Participants sorted
the stimuli in one of the two categories by means of two keys. Category A was associated
to the up key and was depicted as a school bag located at the top right side of the screen
(to match the up key). Category B was associated to the down key and was depicted as a
trash located at the bottom right side of the screen (to match the down key).

When the stimulus was presented on the screen, participants were given maximum 8
s to sort it in one of the two categories by means of the response keys. Each time a
response key was pressed, the corresponding picture was displayed for 2 s, while the
opposite picture disappeared for 2 s. Simultaneously, feedback indicating a correct or
incorrect classification of the stimulus was shown at the bottom of the screen for 2 s. If
the response was given too late, a “too late” message was displayed on the screen for 2 s.
The two category pictures reappeared when a new stimulus was presented.

However, in odd block of the Blocked-Constant context, a slightly different procedure
was adopted. When a stimulus was presented, the correct category label (i.e. “school
bag” or “trash”), as long as the corresponding category picture, were displayed for 1 s.
Simultaneously, the opposite category picture disappeared from the screen for 1 s. This
procedure was followed by a confirmation phase in which participants had to press the
correct response key. After the key was pressed, feedback indicating a correct or incorrect
classification was given at the bottom of the screen for 2 s.

In order to encourage learning, a progress bar representing the score of the participants
was displayed at the bottom of the screen. The progress bar was composed of 4× 16
empty boxes, which were filled as participants collected points. The participants scored
one points each time a correct response was given (for the third context only correct
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responses given in odd blocks were taken into account). The progress bar was reset to
zero every time an incorrect response was given. An exception to the latter rule was
made when participants filled at least half plus one boxes of the progress bar. In this case,
every time participants gave an incorrect response (and only one consecutive incorrect
answer) the progress bar was reset to the half (i.e. the 2× 16-th box). If the response
was given too late, participants lost three points on the progress bar.

Within-category
order

Between-category
order

Order across
blocks

Rule or Sim Random Blocked Random

∗ N

Constant Variable

RANDOM-VARIABLE · · ·
N N N N

1st block 2nd block 3rd block 4th block

RANDOM-CONSTANT · · ·
∗ ∗ ∗ ∗

1st block 2nd block 3rd block 4th block

BLOCKED-CONSTANT · · ·
∗ N ∗ N

1st block 2nd block 3rd block 4th block

Figure 2.12 – Summary of the order manipulation in Experiment II as a function of the contexts
(Random-Variable, Random-Constant, and Blocked-Constant). Color indicates the within-category
presentation order: blue for rule-based or similarity based orders, and gray for random order. Filling
pattern indicates the between-category presentation order: striped for blocking, and plain for random.
Finally, symbols represent the presentation across blocks: a star for a constant presentation and a
triangle for a variable presentation. Bold style is used to indicate that feedback was given both before
and after the classification trial.
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TO SUM UP Experiment II: Data Collection

Experiment II was designed to investigate the similarity- and rule-based orders in
three different contexts: when categories are randomly alternated and a variable
across-blocks presentation is considered (Random-Variable context); when categories
are randomly alternated and a constant across-blocks presentation is considered
(Random-Constant context); and when categories are blocked and a constant across-
blocks presentation is considered (Blocked-Constant context).

Participants. There were 68, 22, and 46 participants in respectively the R-V, the R-C,
and the B-C contexts.

Phases. The experiment was composed of a unique supervised learning phase.

Categories. Participants were tested on a single 124 [8 ] concept [Fel03]. This concept
is composed of 16 items placed on a 4-cube, 8 items belonging to category A
and 8 items belonging to category B.

Items. Items varied along four Boolean dimensions: shape, color, size and filling
pattern. Each dimension was not instantiated by the same physical feature.

Between-category presentation order. In the Random-Variable and Random-Con-
stant contexts, categories were randomly alternated. In the Blocked-Constant
context, blocks where categories were strictly blocked were alternated with
random blocks.

Within-category presentation order. In all contexts, both the rule- and similarity-
based orders were used. In the rule-based order, stimuli obeying the principal
rule were presented strictly before the exceptions. Conversely, the similarity-
based order was designed to maximize the similarity between successive stimuli.

Presentation across blocks. In the Random-Constant and Blocked-Constant con-
texts, a constant across-blocks presentation was considered. Conversely, in the
Random-Variable context, a variable across-blocks presentation was considered.

Stop criterion. The learning phase ended when participants reached the learning
criterion, meaning they had to correctly classify two consecutive blocks twice
without making two or more mistakes in a row between the two sequences.

74 Chapter 2 Experimental Data and Preliminary Statistical Analyses



Procedure. Each participant was individually tested on a computer-driven task. In
all the contexts feedback was given after the classification trial. Only in the
odd blocks of the Blocked-Constant context, feedback was additionally given
before the classification trial.

2.2.2 Within-Category Order: Rule-based vs. Similarity-based

This subsection is focused on investigating how within-category order (rule-based vs. simi-
larity-based) influences category learning in three contexts (Random-Variable, Random-
Constant, and Blocked-Constant). The analysis follows the same path used in Experiment
I. We firstly consider unsuccessful participants, then we analyze a set of relevant times,
and finally we focus on the proportion of correct responses.

Unsuccessful Participants

As in Experiment I, the aim is to determine whether the number of unsuccessful partici-
pants is related with the within-category order.

Fisher’s exact test of independence. Table 2.4 shows the number of successful and
unsuccessful participants as a function of both the within-category order and the context
(Random-Variable, Random-Constant, and Blocked-Constant). A visual representation
of Table 2.4 is provided in Figure 2.13. In all contexts, the number of unsuccessful
participants was higher in the rule-based order as compared to the similarity-based
order. A Fisher’s exact test of independence was performed to determine whether this
dependency was statistically significant. The test was not significant, with a p-value
of 0.46, 0.48, and 0.28 for, respectively, the Random-Variable, Random-Constant, and
Blocked-Constant contexts.

We additionally ran a Fisher’s exact test of independence in which all three contexts were
grouped together. Again, the test was not significant (p-value=0.09). Since the power of
a test is influenced by the number of individuals and since the p-value of 0.09 showed
an effect, it could be appropriate to assess the relation between number of successful
participants and within-category order on a larger sample.
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Successful Unsuccessful Total

RANDOM-VARIABLE

Rule-based 21 13 34

Similarity-based 17 17 34

Total 38 30 68

RANDOM-CONSTANT

Rule-based 11 0 11

Similarity-based 9 2 11

Total 20 2 22

BLOCKED-CONSTANT

Rule-based 20 3 23

Similarity-based 16 7 23

Total 36 10 46

Table 2.4 – Number of successful and unsuccessful participants as a function of both the within-
category order (rule-based vs. similarity-based) and the contexts (Random-Variable, Random-Constant,
and Blocked-Constant).

Conclusion: The Fisher’s exact test of independence showed the number of unsuccessful
participants was not related to the within-category order.
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Figure 2.13 – Percentage of successful and unsuccessful participants as a function of both the within-
category order (rule-based vs. similarity-based) and the contexts (Random-Variable, Random-Constant,
and Blocked-Constant).
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Relevant Times to Estimate Learning

The analysis on relevant times aims to determine whether learning was faster in the
rule-based order as compared to the similarity-based order. As in Experiment I, both
classic methods and survival analysis techniques were employed. In view of the high
number of unsuccessful participants, the survival techniques provided added value.

Wilcoxon-Mann-Whitney test. The relevant times on which the Wilcoxon-Mann-Whit-
ney test was performed were the same as in Experiment I (i.e., the Ending time, the
Learning time, the First time 100%, the First time 75%, and the Never under 60%; see
Subsection 2.1.2 for a description). As in Experiment I, the relevant times were computed
in terms of stimuli for best accuracy and the one-sided Wilcoxon-Mann-Whitney test was
performed (the null hypothesis assumed that rule-based participants had greater relevant
times than similarity-based participants). Figure 2.14 shows the average relevant times as
a function of both the within-category order and the context. The relevant times of rule-
based participants are (on average) smaller than those of similarity-based participants,
except for the Learning time and First time 100% of the Random-Variable context. The
significance of the one-sided Wilcoxon-Mann-Whitney test are equally showed in Figure
2.14 (see Table 2.2 to map symbols with p-value ranges).

In the Random-Variable context, the test found no difference between the relevant times
of the two orders. In the Random-Constant context, all tests were significant, showing
that learning was faster in the rule-based order. Finally, in the Blocked-Constant context,
the test was significant only in the Ending time and First times 75%. The number of
participants that was removed from the tests as well as the specific p-values of the tests
are showed in Table 2.5.

Although the test was overall significant, a large number of participants was removed
beforehand (i.e., all the participants who did not reach the selected relevant times),
producing a loss of information. A further investigation by means of survival techniques
is thus valuable for exploring the effects of within-category order without removing
participants.

Conclusion: the test was overall significant for both the Random-Constant and Blocked-
Constant contexts. However, the removing of a large number of participants represented
a considerable downside of the method.

2.2 Experiment II 77



ns

**

*

NS

*

NS

NS

**

ns

NS

*

**

NS

*

NS

Ending time Learning time First time 100% First time 75% Never < 60% time

R
andom

−
V

ariable
R

andom
−

C
onstant

B
locked−

C
onstant

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

A
ve

ra
ge

 n
um

be
r 

of
 b

lo
ck

s
Order Rule Sim

Figure 2.14 – Average relevant times as a function of both the within-category order (rule-based
vs. similarity-based) and the contexts (Random-Variable, Random-Constant, and Blocked-Constant).
Both star and “ns” symbols represent the significance of the Wilcoxon-Mann-Whitney test (see Table
2.2 to map symbols with p-value ranges).

Kaplan–Meier survival curves and Log-Rank test. As we previously saw, the main
advantage provided by survival techniques consists in avoiding to remove unsuccessful
participants. Since a large number of participants did not reach the learning criterion,
this advantage suits our case particularly well.

Figure 2.15 shows the survival curves estimated with the Kaplan-Meier estimator as a
function of both the within-category order and the context. We recall that survival curves
represents the probability that an individual has not yet met the learning criterion at a
certain time. In the Random-Variable context, the rule-based and similarity-based survival
curves were close. Conversely, in both the Random-Constant and Blocked-Constant
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# Removed
subjects

Ending time
Learning

time
First Time

100%
First Time

75%
Never

<60% time

R-V - 30 15 6 4

R-C - 2 - - -

B-C - 10 6 3 2

P-value Ending time
Learning

time
First Time

100%
First Time

75%
Never

<60% time

R-V 0.08 0.58 0.72 0.45 0.33

R-C 0.006 ∗∗ 0.02 ∗ 0.005 ∗∗ 0.02 ∗ 0.02 ∗

B-C 0.01 ∗ 0.1 0.06 0.002 ∗∗ 0.46

Table 2.5 – Number of removed participants and p-values of the one-sided Wilcoxon-Mann-Whitney
test as a function of both the relevant time and the contexts (Random-Variable, Random-Constant
and Blocked-Constant).

contexts, the rule-based survival curve remained under the similarity-based survival
curve. A log-rank test was performed to assess the difference between the rule- and
similarity-based survival curves. The p-values of the long-rank test were 0.1, 0.005,
and 0.04 for, respectively, the Random-Variable, the Random-Constant and the Blocked-
Constant contexts. Therefore, in the Random-Constant and Blocked-Constant contexts,
rule-based participants had smaller probability to not reach the learning criterion as
compared to similarity-based participants.

Conclusion: the log-rank test performed on the Kaplan-Meier survival curves was signifi-
cant in the Random-Constant and Blocked-Constant contexts, meaning that the rule-based
order facilitated the reaching of the learning criterion.

Cox proportional-hazards model. As in Experiment I, an alternative survival analysis
technique is represented by the Cox model, whose main advantage is to express the
hazard probability (i.e., the probability that a participant reaches the learning criterion at
a certain time) as a function of several variable (i.e., the within-category order).

The results of the Cox model are shown in Figure 2.16. The rule-based condition is
the reference condition and, consequently, its hazard ratio was 1. The similarity-based
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Figure 2.15 – Illustration of the Kaplan-Meier survival curves of Experiment II as a function of both
the within-category order and the context. Survival curves represent the probability that a participant
has not yet reached the learning criterion at a certain time. The transparent areas around the survival
curves represent the 95% confidence intervals.

condition is the opposite condition and its hazard ratio varied across the contexts: 0.59
for the Random-Variable context, 0.25 for the Random-Constant context, and 0.5 for the
Blocked-Constant context.

However, these results are meaningless if not associated with the test assessing the
relevance of the model. The three tests (likelihood-ratio test, Wald test, and log-rank
test) assessing the relevance of the model were only significant for the Random-Constant
and Blocked-Constant contexts (p-values of 0.007, 0.009, and 0.005 for, respectively,
the likelihood-ratio test, the Wald test, and the log-rank test in the Random-Constant
context; p-values of 0.04 for all three tests in the Blocked-Constant context). Therefore,
in the Random-Constant and Blocked-Constant contexts, similarity-based participants
had smaller probability to reach the learning criterion as compared to rule-based partici-
pants.

Conclusion: the analysis on the Cox model was significant only in the Random-Constant
and Blocked-Constant contexts, meaning that (in these contexts) rule-based order facili-
tated the reaching of the learning criterion.
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Figure 2.16 – Results of the Cox proportional-hazards model of Experiment II as a function of both
the within-category order and the contexts. The rule-based condition is the reference condition and,
consequently, its hazard ratio is always equal to 1. The similarity-based condition is the opposite
condition and its hazard ratio is displayed below the word "reference". The numbers within the
brackets below the hazard ratios represent the 95% confidence interval. The numbers on the right
side of the graph represent the p-values of the Wald test assessing the significance of the model.

Proportion of Correct Responses

A last analysis investigated the effects of the within-category order on the evolution of
the proportion of correct responses. As in Experiment I, we firstly had to ensure that
the duration of the learning phase was the same for every participant. Thus, we only
considered the data preceding the limit time (the block at which the fastest unsuccessful
participant dropped the experiment) and completed the data until this specific time with
100% correct responses.

Table 2.6 shows the number of blocks that the fastest, the average, the median, and the
slowest participant took to end the experiment, as a function of the group of individuals
they belong to (successful, unsuccessful, or all together) and the context. By ending the
experiment we mean reaching the learning criterion, in the case of successful individuals,
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Successful Unsuccessful All together

RANDOM-VARIABLE

Fastest 18 25 18

Average 32 39 35

Median 32 39 35

Slowest 49 50 50

RANDOM-CONSTANT

Fastest 16 49 16

Average 27 54 30

Median 23 54 24

Slowest 46 58 58

BLOCKED-CONSTANT

Fastest 11 26 11

Average 23 43 27

Median 23 39 25

Slowest 41 70 70

Table 2.6 – Number of blocks that the fastest, the average, the median, and the slowest participants
took to end the experiment, depending on the class of individuals they belong to (successful, unsuccess-
ful, or all together) and on the context (Random-Variable, Random-Constant, or Blocked-Constant).
By ending the experiment we mean reaching the learning criterion, in the case of successful individuals,
or dropping the experiment, in the case of unsuccessful participants. In bold letters we indicate the
limit time. The numbers were rounded to their nearest smallest integer.

or dropping the experiment, in the case of unsuccessful participants. The limit time (i.e.,
the time until which the data were analyzed) is indicated in bold letters.

In the Random-Variable and Blocked-Constant contexts, the number of blocks of the
fastest unsuccessful participant (respectively, 25 and 26) was smaller than the number of
blocks of the slowest successful participant (respectively, 49 and 41). Thus, analyzing
only the data preceding the limit time, led us to ignore a part of the learning process of
both successful and unsuccessful participants.

82 Chapter 2 Experimental Data and Preliminary Statistical Analyses



Percentage of successful participants that: R-V R-C B-C

Met the learning criterion before L 18% 100% 69%

Correctly classified 2 blocks in a row before L 34% 100% 86%

Correctly classified 1 block before L 58% 100% 100%

Table 2.7 – Percentage of successful individuals that satisfied, before the limit time L (the block at
which the fastest unsuccessful participant quit the experiment), one of the three listed condition (meet
the learning criterion, correctly classify 2 blocks in a row, and correctly classify 1 block), depending
on the sub-experiment.

Conversely, in the Random-Constant context, the number of blocks of the fastest un-
successful individual (which is 49) is greater than the number of blocks of the slowest
successful individual (which is 46), meaning that only a part of the learning process of
the unsuccessful participants is ignored.

Table 2.7 shows the percentage of successful participants that reached one of the three
following condition before the limit time L: meet the learning criterion, correctly classify
2 blocks in a row, and correctly classify 1 block. This table warns us about the quantity
of information (related with successful participants) that was not considered in the
analysis.

For instance, in the Random-Variable context, only 18% of the successful participants
reached the learning criterion before the limit time. This means that the last chunk of the
learning process of 82% of successful participants is ignored.

Wilcoxon-Mann-Whitney tests with Benjamini-Hochberg correction. Once the data
was completed, the one-sided Wilcoxon-Mann-Whitney test was applied to the proportion
of correct responses or rule- and similarity-based participants at each block until the
limit time (the null hypothesis assumed that the similarity-based participants had an
higher proportion of correct responses as compared to the rule-based participants). In
the Blocked-Constant context, the tests were only applied to even blocks (in odd blocks
feedback were also provided before the classification trial). Since multiple tests were
performed, they were corrected by means of the Benjamini-Hochberg procedure.

The p-values of the Wilcoxon-Mann-Whitney test (ordered from the smallest to the largest)
are shown in Figure 2.17, as a function of the context. The straight line associated with
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Figure 2.17 – P-values of the Wilcoxon-Mann-Whitney test performed to compare the proportion of
correct responses between rule-based and similarity-based participants of each context of Experiment
II. In the Blocked-Constant context, the test was performed only in even blocks. The p-values are
ordered from the smallest to the largest. The straight lines are associated with the Benjamini-Hochberg
procedure at a significance level of 0.05.

the Benjamini-Hochberg procedure at a significance level of 0.05 is also plotted. With a
significance level of 0.05, all tests of all contexts were accepted.

However, in the Random-Constant context the p-values were close to the straight line.
Indeed, by considering a significance level of 0.054, 17 tests over 49 were rejected
(35%). The smallest significance level with which at least one test is rejected was 0.95,
0.053, and 0.087 for respectively the Random-Variable, the Random-Constant, and the
Blocked-Constant contexts.

The fact that i) the power of a test is influenced by the number of individuals, ii) the
multiple tests correction tends to penalize the rejection, and iii) the p-value of the Blocked-
Constant context was small, made us think that it could be appropriate to performe the
test on a larger sample.

Finally, Figure 2.18 shows the average proportion of correct responses, as a function of
both the within-category order and the contexts. The asterisk symbols denote the blocks
in which the test was rejected by the Benjamini-Hochberg procedure with a significance
level of 0.054.

Conclusion: the Wilcoxon-Mann-Whitney tests with the Benjamini-Hochberg correction
were significant only in the Random-Constant context (17 tests over 49 were rejected).
Therefore, in this context, the evolution of the proportion of correct responses was higher
in the rule-based order as compared to the similarity-based order.
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Figure 2.18 – Average proportion of correct responses in Experiment II, as a function of the within-
category order and the contexts. In the Blocked-Constant context, the proportion of correct responses
was computed only for even blocks. The asterisk symbol denotes the blocks that have been rejected by
the Benjamini-Hochberg procedure with a significance level of 0.054.

TO SUM UP Experiment II: Rule-based vs. Similarity-based

The aim was to investigate the effects of within-category order (rule-based vs. simi-
larity-based) on category learning. The analysis was organized in three parts: i)
determining whether the number of unsuccessful participants was related to the
within-category order, ii) analyzing a set of relevant times to compare the learning
speed of rule- and similarity-based participants, and iii) comparing the evolution of
correct responses of rule- and similarity-based participants.

Unsuccessful Participants

Fisher’s exact test of independence (not significant). A Fisher’s exact test of inde-
pendence was performed on the number of successful and unsuccessful partic-
ipants of each context (and of the overall dataset). Although the number of
unsuccessful participants was always higher in the similarity-based order as
compared to the rule-based order, the tests were not significant.
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Relevant Times to Estimate Learning

Wilcoxon-Mann-Whitney test (significant in Random-Constant and Blocked-Con-
stant). Five relevant times were analyzed: the Ending time (the time at which
participants ended the learning phase), the Learning time (the time at which
successful participants met the learning criterion), the First time 100% (the first
time at which participants correctly classify a block), the First time 75% (the
first time at which participants correctly classify 75% of items in a block), and
the Never time 60% (the time starting from which participants correctly classify
at least 60% of items in each block). A one-sided Wilcoxon-Mann-Whitney
test was performed to compare the previous relevant times of rule-based and
similarity-based participants. The test was overall significant only for the
Random-Constant and Blocked-Constant contexts, showing faster learning in
the rule-based order.

Kaplan-Meier survival curves and Log-Rank test (significant in Random-Constant
and Blocked-Constant). The survival probability of rule- and similarity-based
participants was estimated by means of the Kaplan-Meier estimator. The
two survival curves were then compared using the log-rank test. The test
was significant only in the Random-Constant and Blocked-Constant contexts,
showing that the rule-based order facilitated the reaching of the learning
criterion.

Cox proportional-hazards model (significant in Random-Constant and Blocked-Con-
stant). The Cox model was used to express the hazard probability as a function
of the within-category order. The relevance of the model was then evaluated
by means of three tests (likelihood-ratio test, Wald test, and log-rank test).
The model was relevant only in the Random-Constant and Blocked-Constant
contexts, showing that the similarity-based order reduced the probability to
reach the learning criterion.
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Proportion of Correct Responses

The dataset was analyzed until the limit time (the block at which the fastest unsuc-
cessful participant dropped the experiment) and completed with 100% of correct
responses, allowing a normalization of the length of the learning phase.

Wilcoxon-Mann-Whitney tests with Benjamini-Hochberg correction (significant
in Random-Constant). A Wilcoxon-Mann-Whitney test was performed to com-
pare the proportion of correct responses of rule- and similarity-based partic-
ipants at each block. The result of the tests was then corrected using the
Benjamini-Hochberg procedure. The Benjamini-Hochberg procedure at a signif-
icance level of 0.054 rejected 17 tests over 49 (35%) in the Random-Constant
context, showing that the rule-based order facilitated learning during the entire
process. In the other contexts, no effect of the within-category order was
detected.

2.2.3 Contexts Comparison: Random-Variable vs. Random-Constant
vs. Blocked-Constant

The aim here is to investigate whether different contexts (Random-Variable, Random-
Constant, and Blocked-Constant) influenced the learning speed. However, our dataset
does not allow us to determine in a conclusive manner why specific types of order fa-
cilitated learning. For instance, if participants learned faster in the Random-Constant
context rather than the Random-Variable context, we cannot conclude that a constant
across-blocks presentation facilitated learning. Indeed, participants could have memo-
rized (consciously or not) the sequences of responses of the constant block. They thus
would have scored 100% of correct responses ignoring the stimuli, or at least, relying on
fewer information regarding stimulus features.

The argument is similar for attempting to compare Random-Constant and Blocked-
Constant, not mentioning that the insertion of random blocks in Blocked-Constant makes
this comparison even more unfavorable. A transfer phase would have been ideal to
determine the source of the advantage, however a different set of categories should have
been selected. Future experiments will be conducted to further explore the effects of
different types of order on learning and transfer performance. The analysis follows a
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R-V R-C B-C

Successful participants 56% 91% 78%

Unsuccessful participants 44% 9% 22%

Table 2.8 – Percentage of successful and unsuccessful participants for each one of the sub-experiments.
We refer the reader to Table 2.4 for the effective number of successful and unsuccessful participants.

similar path to that previously used. We firstly consider unsuccessful participants and then
analyze a set of relevant times. The comparison of the proportion of correct responses
was avoided because of the large disparities in the length of the learning phase.

Unsuccessful Participants

Again, the aim is to determine whether the number of the unsuccessful participants is
related to the context (Random-Variable, Random-Constant, and Blocked-Constant).

Fisher’s exact test of independence. Table 2.8 shows the percentage of successful and
unsuccessful participants for each context. The choice to show the percentage rather than
the number of participants is motivated by the disparities regarding the total number of
participants (see Table 2.4 to look at the number of participants). A Fisher’s exact test of
independence was performed to determine whether the participants’ outcome (successful
or unsuccessful) was influenced by the context. The test showed a strong association
between the two variables (p-value=0.002).

Conclusion: the Fisher’s exact test of independence showed that the number of unsuc-
cessful participants is strongly dependent from the context of the experiment (Random-
Variable, Random-Constant, and Blocked-Constant).

Ending Time

Analyzing the time at which participants ended the experiment aims to compare the
learning speed among different context. Again, both classic methods and survival analysis
techniques were employed.
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Pairs of contexts R-V vs. R-C R-C vs. B-C R-V vs. B-C

P-value 0.03 ∗ 0.1 < 0.001 ∗ ∗ ∗

Table 2.9 – P-values of the Wilcoxon-Mann-Whitney test for each pair of contexts (Random-
Variable vs. Random-Constant, Random-Constant vs. Blocked-Constant, Random-Variable vs. Blocked-
Constant). The null hypothesis for the pairs Random-Variable vs. Random-Constant, Random-Constant
vs. Blocked-Constant and Random-Variable vs. Blocked-Constant assumed that learning was faster in,
respectively, the Random-Variable, the Random-Constant, and the Random-Variable contexts.

Wilcoxon-Mann-Whitney test. Unsuccessful participants were removed from the anal-
ysis. This ensured that the ending time corresponded to the time at which participants
met the learning criterion. A Wilcoxon-Mann-Whitney test was run to compare the partic-
ipants’ ending times of each pair of contexts (i.e., Random-Variable vs. Random-Constant,
Random-Constant vs. Blocked-Constant, Random-Variable vs. Blocked-Constant). Each
pair of contexts was characterized by a specific null hypothesis. For the pair Random-
Variable vs. Random-Constant, the null hypothesis assumed that learning was slower in
the Random-Constant context as compared to the Random-Variable context. For the pair
Random-Constant vs. Blocked-Constant, the null hypothesis assumed that learning was
faster in the Random-Constant as compared to the Blocked-Constant context. Finally,
for the pair Random-Variable vs. Blocked-Constant, the null hypothesis assumed that
learning was faster in the Random-Variable as compared to the Blocked-Constant context.
Again, the ending time was expressed in terms of stimuli for best accuracy.

The p-values of the Wilcoxon-Mann-Whitney test for each pair of contexts (Random-
Variable vs. Random-Constant, Random-Constant vs. Blocked, and Random-Variable
vs. Blocked-Constant) are showed in Table 2.9. The test was only significant for the
pairs Random-Variable vs. Random-Constant and Random-Variable vs. Blocked-Constant,
showing that learning was faster in the Random-Constant and Blocked-Constant contexts
as compared to the Random-Variable context.

Conclusion: Participants in the Random-Constant and Blocked-Constant contexts learned
faster as compared to the Random-Variable context.

Kaplan–Meier survival curves and Log-Rank test. Again, survival techniques allowed
us to avoid the removing of unsuccessful participants and improved the previous analysis.
Figure 2.19 (on the top) shows the survival curves of each of the contexts (Random-
Variable, Random-Constant, and Blocked-Constant). We recall that a survival curve
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Pairs of contexts R-V vs. R-C R-C vs. B-C R-V vs. B-C

P-value 0.005 ∗∗ 0.9 < 0.001 ∗ ∗ ∗

Figure 2.19 – Survival curves and p-values of the log-rank test. On the top, Kaplan-Meier survival
curves of each context (Random-Variable, Random-Constant, and Blocked-Constant) of Experiment II.
On the bottom, the p-values of the log-rank test for each pair of contexts.

expresses the probability that a participant has not yet reached the learning criterion
at a certain time. A log-rank test was performed to assess the distance between each
pair of survival curves (the null hypothesis assumed no difference in survival). The
results of the log-rank test are shown in Figure 2.19 (on the bottom). Only the difference
between the Random-Variable and Random-Constant survival curves, and that between
the Random-Variable and Blocked-Constant survival curves were significant, confirming
the previous analysis.

Conclusion: the log-rank test performed on the Kaplan-Meier survival curves showed that
both the Random-Constant and Blocked-Constant contexts facilitated the reaching of the
learning criterion as compared to the Random-Variable context.
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Figure 2.20 – Results of the Cox model when the hazard probability is expressed as a function of
the context (Random-Variable, Random-Constant, and Blocked-Constant) and the within-category
presentation order (rule-based and similarity-based). The hazard ratios of the opposite conditions are
located below the word "reference". The numbers within the brackets represent the 95% confidence
interval. The numbers on the right side of the graph represent the p-values of the Wald test assessing
the significance of the model.

Cox proportional-hazards model. One of the advantage of the Cox model is that it
allows us to express the hazard probability as a function of multiple variables. Therefore,
we used the Cox model to assess the effects of both the context (Random-Variable,
Random-Constant, and Blocked-Constant) and the within-category order (rule-based
vs. similarity-based) on learning speed.

The results are shown in Figure 2.20. Regarding the Random-Constant (R-C) context,
the combination of a significant p-value (< 0.001) with a hazard ratio equal to 2.62 (>
1) indicates that the Random-Constant context facilitated the reaching of the learning
criterion as compared to the Random-Variable context. Similar conclusions are valid for
the Blocked-Constant context (p-value < 0.001 and hazard ratio > 1).
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Regarding the within-category order, the results showed that the similarity-based order
reduced the probability to reach the learning criterion as compared to the rule-based order
(p-value < 0.001 and hazard ratio < 1). Moreover, the learning advantage generated
by the Random-Constant or Blocked-Constant contexts is almost compensated by the
learning disadvantage generated by the similarity-based order. Finally, the tests assessing
the overall significance of the model were all significant (p-value < 0.001).

A caveat to this analysis is that the Cox model assumes that the censoring is independent
from the studied variables. Yet, the analysis on unsuccessful participants showed that
the context influenced the censoring (i.e., the probability to not reach the learning
criterion).

Conclusion: the Random-Constant and Blocked-Constant contexts were associated with
an increase of probability to reach the learning criterion. Conversely, the similarity-based
order was associated with a decrease of probability to reach the learning criterion.

TO SUM UP Experiment II: Contexts Comparison

The aim was to investigate the effects of different contexts (i.e., Random-Variable,
Random-Constant, and Blocked-Constant) on learning speed. The analysis was
organized in two parts: i) to determine whether context and number of unsuccessful
participants were related, and ii) to analyze the duration of the classification task as
a function of the context.

Unsuccessful Participants

Fisher’s exact test of independence (significant). A Fisher’s exact test of indepen-
dence was performed on the number of successful and unsuccessful partici-
pants of each context (i.e., Random-Variable, Random-Constant, and Blocked-
Constant). The test showed a strong relation between context and number of
unsuccessful participants.
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Ending time

Wilcoxon-Mann-Whitney test (significant for Random-Variable vs. Random-Con-
stant and Random-Variable vs. Blocked-Constant). For each pair of contexts, a
Wilcoxon-Mann-Whitney test was run to compare the times at which successful
participants completed the classification task (the unsuccessful participants
were removed from the analysis). The test was significant for the pairs Random-
Variable vs. Random-Constant and Random-Variable vs. Blocked-Constant,
showing that learning was faster in the Random-Constant and Blocked-Constant
contexts as compared to the Random-Variable context.

Kaplan-Meier survival curves and Log-Rank test (significant for Random-Variable
vs. Random-Constant and Random-Variable vs. Blocked-Constant). The dis-
tance between the Kaplan-Meier survival curves of each pair of contexts was
assessed using a log-rank test. The test was significant for the pairs Random-
Variable vs. Random-Constant and Random-Variable vs. Blocked, showing that
both the Random-Constant and Blocked-Constant contexts facilitated the reach-
ing of the learning criterion as compared to the Random-Variable context.

Cox proportional-hazards model (significant). The Cox model was used to simul-
taneously assess the effects of both the context and the within-category order.
The analysis was significant, showing that i) participants in both the Random-
Constant and Blocked-Constant contexts had higher probability to successfully
complete the task as compared to participants in the Random-Variable context,
and ii) participants in the similarity-based order had lower probability to meet
the learning criterion as compared to participants in the similarity-based order.

2.3 Discussion

The main aim of the present chapter was to investigate the effects of within-category
order on learning speed. The statistical analyses that were performed on both Experiment
I and II showed three phenomena. Firstly, the rule-based order was not equally beneficial
in every studied context. Indeed, in both the Random-Constant and Blocked-Constant
contexts, learning was faster in the rule-based order as compared to the similarity-
based order. Conversely, in the Random-Variable context, no significant difference was
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found between the learning speed of rule- and similarity-based participants. Secondly,
the analysis on unsuccessful participants showed that the number of participants who
dropped the experiment was not related to the within-category order. Therefore, the
disadvantage generated by the similarity-based order did not influence participants’
ability to complete the task. Finally, rule-based participants provided better proportion
of correct responses across the entire learning phase (as compared to similarity-based
participants) in the Random-Constant context exclusively.

In view of these results, the rule-based order has benefited from the Random-Constant and
Blocked-Constant contexts. On one hand, the constant blocks in the Random-Constant
context might have helped participants to focus their attention toward a limited set of
information, or might have induced participants to abstract erroneous rules. In both
cases, a rule-based strategy was reinforced, benefiting a rule-based order. On the other
hand, the blocked categories in the Blocked-Constant context might have facilitated the
detection of a “principal rule plus exceptions” structure, encouraging participants to adopt
a rule-based strategy. Indeed, both blocking and rule-based order direct participants’
attention toward the similarities within a category, enhancing the probability to abstract
the simplest rule.

An additional aim was to investigate whether the learning speed was influenced by
different contexts (Random-Variable, Random-Constant, and Blocked-Constant). We
found that participants in both the Random-Constant and Blocked-Constant contexts
completed the classification task faster than participants in the Random-Variable context.
However, our dataset did not allow us to conclusively compare different factors (e.g.,
constant across-blocks manipulation, blocking, etc.). For instance, faster learning in the
Random-Constant context as compared to the Random-Variable context might have been
produced by the constant across-blocks manipulation, or by the fact that participants
took profit of the repetition of the constant block to memorize the sequence of responses.
Future perspectives include a full factorial experiment involving the eight following
experimental conditions: rule-based vs. similarity-based types × interleaved vs. blocked
categories × variable vs. constant across-blocks manipulations. This future experiment
will aim to compare the effects of different types of order (blocking, interleaving, across-
blocks manipulation, etc.) on learning and transfer performance.
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3
Categorization Models
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The aim of the present chapter is to present the categorization models that were used
to investigate the cognitive process underlying category learning. This chapter also
includes the development of a new exemplar model that extends a reference model
in categorization (the GCM) accounting for the order in which stimuli are presented.
The structure of this chapter is based on the distinction between transfer and learning
models. As we described in the introduction (see “Ability to Learn” in Section 1.4),
categorization models can be divided into models that are only suitable for reproducing
transfer performance (transfer models) and models that can account for both the learning
dynamics and transfer performance (learning models).
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Outline of this chapter

Firstly, we describe the mathematical framework shared by the two types of categorization
models. Then, we describe the selected transfer models: the Generalized Context Model
(GCM), the new Ordinal General Context Model (OGCM), and the Generalized Context
Model equipped with a lag mechanism (GCM-Lag). Finally, we present the selected
learning models: the Component-Cue model and the Attention Learning COVEring map
model (ALCOVE).

3.1 Mathematical Formalization

The mathematical framework shared by transfer and learning models is preceded by
the formalization of the canonical categorization experiment. For purposes of clarity, a
single participant and a single phase (learning or transfer) are considered. The set of
items that are presented to the participant is denoted by E and we assume that there are
two categories (A and B) in which stimuli are classified. A categorization task can be
described using three layers:

Sequence of stimuli. This is the sequence of stimuli that has been presented to the
participant. The sequence of stimuli is denoted by:

x(1), . . . ,x(n),

where x(t) represents the t-th stimulus presented to the participant and x(t) ∈ E for
all t ∈ {1, . . . ,n}. The sequence of stimuli can be composed of learning items, if
the learning phase is considered, or both learning and transfer items, if the transfer
phase is considered.

Sequence of responses. This is the sequence of responses given by the participant. Each
response corresponds to the category (A or B) in which participant classified the
presented stimulus. The sequence of responses is denoted by:

y(1), . . . , y(n),

where y(t) represents the t-th response given by the participant and y(t) ∈ {A,B}
for all t ∈ {1, . . . ,n}.
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Sequence of feedback. This is the sequence of feedback given to the participant after
the classification trial. Each feedback corresponds to the category (A or B) of the
presented stimulus. The sequence of feedback is denoted by:

v(1), . . . , v(n),

where v(t) represents the t-th feedback given to the participant and v(t) ∈ {A,B}
for all t ∈ {1, . . . ,n}. If a transfer phase is considered, there is no sequence of
feedback (no feedback is provided during the transfer phase).

For practical reasons, a numeric equivalent of the sequence of responses is considered.
More precisely, a new sequence is created by replacing the responses A and B in the
sequence of responses with, respectively, 1 and 0. The new sequence is denoted by:

z(1), . . . , z(n), such that z(t) =

 1 if y(t) = A

0 if y(t) = B
,

for all t ∈ {2, . . . ,n}. The history of the process at time t ∈ {1, . . . ,n} is represented by
the sequences of stimuli and feedback until time t and is denoted by:

Ht =
(
x(j), v(j)

)t
j=1

.

By convention, we set H0 = ∅. Before describing the mathematical background, a few
more notations are needed. Let M be a model, θ its parameters, and Pθ

M

(
A |x(t),Ht−1

)
the probability of classifying x(t) into category A, knowing Ht−1 and given M and θ.

Assumption 3.1. We assume that there is a sequence of random variables Z(1), . . . ,Z(n)

such that z(t) is a realization of Z(t) and

Z(t) ∼ B
(

Pθ
M

(
A |x(t),Ht−1

))
,

where B is the Bernoulli distribution and t ∈ {1, . . . ,n}.

Recall 3.1. If a random variable X follows a Bernoulli distribution of parameter p (X ∼
B (p)), then X takes the value 1 with probability p and the value 0 with probability
1− p. �

Assumption 3.1 represents our mathematical framework. Regarding transfer models, we
additionally assume that the random variables Z(1), . . . ,Z(n) are independent.
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Assumption 3.2. If M is a transfer model, we additionally assume that:

Pθ
M

(
A |x(t),Ht−1

)
= Pθ

M

(
A |x(t)

)
.

In the following sections, the explicit form of the probability of classifying an item into
category A (i.e., Pθ

M

(
A |x(t),Ht−1

)
) will be given for each selected models.

3.1.1 Likelihood

In this subsection we present the likelihood of both transfer and learning models. As
seen in the introduction, the likelihood measures the goodness-of-fit of the predictions
of a model to a dataset, as a function of the parameters of the model. Mathematically
speaking, the likelihood is given by the following expression:

LM
(
z(1), . . . , z(n) ; θ

)
= Pθ

M

(
Z(1) = z(1), . . . ,Z(n) = z(n)

∣∣∣Hn−1
)

, (3.1)

where M is a model, θ its set of parameters, z(1), . . . , z(n) are the participant’s responses
(the observed values), and Hn−1 is the history of the process. Since the likelihood will be
extensively used in Chapter 4 and 5, here we show its explicit form.

Transfer Models

If a transfer model is considered, then the independence assumption (Assumption 3.2)
can be used to develop Equation 3.1 as follows:

LM
(
z(1), . . . , z(n) ; θ

)
= Pθ

M

(
Z(1) = z(1), . . . ,Z(n) = z(n)

∣∣∣Hn−1
)

=
n∏
i=1

Pθ
M

(
Z(i) = z(i)

∣∣∣x(i))
=

n∏
i=1

(
Pθ
M

(
A
∣∣∣x(i)))z(i) · (1−Pθ

M

(
A
∣∣∣x(i)))1−z(i)

. (3.2)
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Remark 3.1. The previous equation can be further simplified when the predictions of
transfer models only depend on the physical features of the items. The simplification is
the following:

LM
(
z(1), . . . , z(n) ; θ

)
=
∏
ξ∈E

(
Pθ
M (A | ξ)

)Nξ · (1−PM (A | ξ))L−Nξ ,

where E is the set of items, Nξ is the number of times the participant classified item ξ

into category A, and L is the number of blocks. �

Learning Models

Conversely, if a learning model is considered, the Bayes’ formula can be used to develop
Equation 3.1 as follows:

LM
(
z(1), . . . , z(n) ; θ

)
= Pθ

M

(
Z(1) = z(1), . . . ,Z(n) = z(n)

∣∣∣Hn−1
)

= Pθ
M

(
Z(2) = z(2), . . . ,Z(n) = z(n)

∣∣∣Z(1) = z(1),Hn−1
)
·Pθ

M

(
Z(1) = z(1)

∣∣∣H0
)

= Pθ
M

(
Z(3) = z(3), . . . ,Z(n) = z(n)

∣∣∣Z(1) = z(1),Z(2) = z(2),Hn−1
)

·Pθ
M

(
Z(2) = z(2)

∣∣∣Z(1) = z(1),H1
)
·Pθ

M

(
Z(1) = z(1)

∣∣∣H0
)

=
n∏
i=1

Pθ
M

Z(i) = z(i)
∣∣∣ ⋂

1≤j<i
Z(j) = z(j),Hi−1

 . (3.3)

3.2 Transfer Models

The aim of this section is twofold: i) to develop a new extension of the famous Generalized
Context Model (GCM), that we called Ordinal General Context Model (OGCM), and ii) to
describe the transfer models that were used to investigate category transfer.

The selected transfer models are the following: the Generalized Context Model (GCM)
[Nos86], which is one of the most popular categorization models; the new Ordinal General
Context Model (OGCM), a modification of the GCM that integrates the presentation order;
and the Generalized Context Model equipped with a lag mechanism (GCM-Lag), which
accounts for sequential effects. Exemplar models were preferred to prototype models
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because they generally provide a better account of the data than prototype models [AM93;
DG97; NSM17; NS05; NZ02; SM98; SDR00].

The rationale here is the following: although the GCM has extensively proved to provide
accurate predictions [NKM92; NSM17; NSM18b; NSM18a; Nos+18; RH05; SN20], it is
not sensitive to different presentation orders. Therefore, we developed a modification
of the GCM that accounts for the order in which stimuli are presented. This new model,
called Ordinal General Context Model (OGCM), was declined in three versions aiming
at investigating whether transfer performance was influenced by either i) the average
order received during learning, or ii) the most frequent order received during learning, or
iii) the order received during transfer. To complete the picture, the Generalized Context
Model equipped with a lag mechanism was also considered. The GCM-Lag allowed us to
determine whether sequential effects affected participants’ performance.

Common Assumptions

All selected transfer models are exemplar models, meaning that they store every distinct
occurrences of an item and classify new items as a function of their similarity to the
previously stored items. Exemplar models are based on the following assumptions: i)
items are considered as points of a multidimensional psychological space, ii) the previous
multidimensional psychological space is equipped with a distance (in this way the distance
between two items can be quantified), and iii) the similarity between items is defined as a
decreasing function of their distance. The first assumption raises the question of how the
multidimensional psychological space is estimated. There are three main approaches:

Similarity-scaling plus MultiDimensional Scaling (MDS). The first approach relies on
similarity-scaling methods. In this approach, participants are asked to provide
similarity judgments among pairs of items. This collection of similarity judgments is
then used to generate the psychological space in which items lie through a method
called MultiDimensional-Scaling (MDS) [Tor52]. Examples of this approach can
be found in [KW78; Nos86; NSM17; Nos+17; Nos+18; SN20; She80] (see also
Example 3.1). More recently, MDS representations have been also used to train
deep Convolutional Neural Networks (CNNs) to automatically derive psychological
representations of new items [SN20].

Considering major features. The second approach consists in using the major features
of the items to generate the psychological space. Each major feature corresponds
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to a dimension of the space and the different options of each feature are coded
by different values. This approach can be applied only with separable-dimension
stimuli (see [SHJ61; NP96]; see also Example 3.2).

Dimension ratings. A similar approach consists in collecting direct dimension ratings for
the stimuli. The psychological space is then obtained averaging ratings along each
of the rated dimensions (see [NSM18a; Swe+91]).

Example 3.1. This example aims to illustrate the MultiDimensional Scaling (MDS) method.
Let us consider some of the most famous Italian cities: Florence, Genoa, Milan, Naples,
Palermo, Rome, Turin and Venice. We asked members of our laboratory to rate the
distance between each pairs of cities. After averaging the ratings, the MDS approach was
applied to recover (up to a linear transformation and a re-scaling) the longitude and the
latitude of the cities (see Figure 3.2). For sake of simplicity, we fixed the dimension of the
space in which points are embedded. However, the multidimensional scaling technique
is capable of recovering both the dimension of the space and the coordinates of the
points. �

Example 3.2. This example aims to illustrate the second approach to derive the psycho-
logical space. Let us consider four objects: a black square, a gray square, a black circle
and a gray circle. Since these items are defined by two features (shape and color), they
can be embedded in a two-dimensional space where the first dimension corresponds to
the shape of the items and the second dimension corresponds to their color. Moreover,
specific values can be attributed to the two options of shape (for instance, 0 to the square
and 1 to the circle) and to the two options of color (for instance, 0 to black and 1 to
gray). Each item has then been associated with a point of a two-dimensional space (see
Figure 3.1). �

 

0 1

1

shape

color

Figure 3.1 – Illustration of the second approach in which items are associated to a psychological
space through their features.

3.2 Transfer Models 101



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Florence

Genoa

Milan

Naples

Palermo

Rome

Turin
Venice

35.0

37.5

40.0

42.5

45.0

47.5

10 15
Longitude

La
tit

ud
e

Position ●● ●●Real MDS

Figure 3.2 – Application of the MultiDimensional Scaling (MDS) technique to perceived distances of
some famous Italian cities. In turquoise blue we can see the real locations of the cities and in gray
those recovered with the MDS algorithm. Perceived distances are averaged among 10 individuals.
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3.2.1 Generalized Context Model (GCM)

The Generalized Context Model (GCM) [Nos84; Nos86] was introduced by Nosofsky as
a generalization of the context theory of classification developed by Medin and Shaffer
[MS78] (see Box 3.1 for further details). The GCM represents a reference point in
categorization and has proved to accurately account for transfer performance in a large
variety of studies [Nos86; NKM92; NSM17; NSM18b; NSM18a; Nos+18; RH05; RR04;
SN20; SM00].

BOX 3.1 Context Theory

The context theory (also called context model) was developed by Medin and Schaffer
in 1978 to account for participants’ transfer performance in classification tasks. In
what follows, we give a mathematical description of the context model. Let us
assume that the psychological space in which stimuli are embedded has dimension
N and let ξ = (ξi)

N
i=1 be an item. Moreover, let EL be the set of learning items,

which are classified into two categories (A and B). According to the context theory,
the probability of classifying stimulus x as a member of category A (during the
transfer phase) is given by:

P(A |x) =
∑
ξ∈A∩EL S(ξ,x)∑

ξ∈A∩EL S(ξ,x) +
∑
ξ∈B∩EL S(ξ,x)

, (3.4)

where S(ξ,x) represents the similarity between the items ξ and x. The similarity
between two items is computed as follows:

S(ξ,x) =
N∏
i=1

s
δi(ξ,x)
i , (3.5)

where si (for i = 1, . . . ,N) are free estimated parameters between 0 and 1, and

δi(ξ,x) =

 1 if ξi 6= xi

0 if ξi = xi.

The context model can only be applied to stimuli varying along separable and
binary-valued dimensions (see Equation 3.5). Conversely, the GCM generalizes
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its application to integral-dimension stimuli as well as non-binary-valued stimuli.
The context model has provided good results in numerous classification paradigms
[MS78; Med+82; MDM83].

Mathematical Description

In this section, a mathematical description of the GCM is provided. For purposes of
clarity, the simplest version is given (its most general version is given in Remark 3.5).
The mathematical description is structured in three steps to ensure grater clarity.

Step 1. In this step, the multidimensional psychological space is equipped with a distance
(see Section 3.2 to recall how the psychological space is generated).

Step 2. In this step, the distance introduced in Step 1 is used to define the similarity
between two items.

Step 3. Finally, the probability of classifying stimuli into category A is defined as a
function of their similarity to the stored stimuli.

Step 1. As seen in Section 3.2, the GCM is built on the assumption that items are
represented as points in a multidimensional psychological space. Let us assume that this
space is of dimension N and let ξ = (ξi)

N
i=1 be an item. The N-dimensional psychological

space is equipped with the following distance:

d(ξ,x) =
[

N∑
i=1

ωi · |ξi − xi|r
] 1
r

, (3.6)

where ξ and x are two items, r is a positive constant, and ωi (for all i = 1, . . . ,N)
are freely estimated attention-weight parameters satisfying the following conditions:∑N
i=1 ωi = 1 and ωi ≥ 0. The present distance is called the weighted Minkowski distance.

The set of attention-weight parameters is denoted by ω = (ωi)Ni=1.

The value r determines the form of the distant metric and is chosen depending on the
nature of the items. In experiments involving highly separable-dimension stimuli [Gar74;
She64], the value r is usually set equal to 1. Conversely, in situations involving integral-
dimension stimuli, the value r is typically set equal to 2. Figure 3.3 (on the top) shows
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unit circles with various values of r. Since both Experiment I and II involved highly
separable-dimension stimuli, the value of r is set equal to 1.

Remark 3.2. When r is equal to 1, the distance between two points is computed consider-
ing the shortest path between the two points generated with vertical and horizontal lines
(see Figure 3.3, on the bottom). This distance is called city-block or Manhattan distance.
When r is equal to 2, the distance between two points is computed measuring the straight
line connecting the two points (see Figure 3.3, on the bottom). This distance is called
Euclidean distance. �

The attention-weight parameter ωi (i ∈ {1, . . . ,N}) in Equation 3.6 represents the
degree of attention that participants gave to dimension i during the classification trials.
In other words, the closer the parameter ωi to 1, the higher the degree of attention
given to dimension i. The attention-weight parameters allow the model to stretch the
psychological space along the more relevant dimensions and to shrink it along the more
irrelevant ones. Let us give an example to better understand the role of the attention-
weight parameters.

Example 3.3. Let us take four items placed on R2 (Figure 3.4, on the left) and let us
set the value r equal to 1. Since the psychological space has dimension two, the first
attention-weight parameter regulates the attention on the first dimension, while the
second attention-weight parameter regulates the attention on the second dimension. The
distance between items can be modified selecting different values for the attention-weight
parameters (see Figure 3.4, on the right). �

r = 1 r = 2

r = 1 r = 2

Figure 3.3 – Variation of the distance, depending on the value of r. On the top, unit circles (i.e. the
set of all points that are at the unit distance from the center) with different values of r. The value
r = 1 yields the city-block distance, while the value r = 2 yields the Euclidean distance. On the
bottom, the way in which the distance between points is visualized, depending on the value of r.
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Figure 3.4 – Effect of the attention-weight parameters on the multidimensional psychological space.
On the left, the position of four items on a two-dimension psychological space. On the right, the
distance variations due to different attention-weight parameters.

Step 2. The second step consists in describing the similarity between two items as a
function of their distance. According to the GCM, the similarity between items ξ and x is
defined as follows:

S(ξ,x) = e−cd(ξ,x)
p

, (3.7)

where p is a positive constant and c is a freely estimated sensitive parameter.

The value c reflects the speed at which similarity decreases with distance (see Figure 3.5,
on the top). The greater the value c, the smaller the similarity between close items. In
other words, when c is small, close items are perceived as very similar. Conversely, when
c is high, close items are perceived as remarkably dissimilar. The extreme cases are when
c is equal to 0 or∞. When c is equal to 0, the similarity between two arbitrary items is
equal to 1 (i.e., they are perceived as the same item). On the other hand, when c is equal
to∞, the similarity between two distinct objects is equal to 0 (i.e., all items are perceived
as highly dissimilar except for itself). This implies that items are considered to have no
similarity between each other, except for themselves.

The value p in Equation 3.7 regulates the shape of the function that relates distance to
similarity (see Figure 3.5, on the bottom). When stimuli are highly distinguishable, p is
usually set equal to 1 [She87] (exponential relation between distance and similarity).
Conversely, when stimuli are not easily distinguishable, p is usually set equal to 2 [Nos85]
(Gaussian relation between distance and similarity). Since both Experiment I and II
involved distinguishable stimuli, the value of p is set equal to 1.

Remark 3.3. Similarity is a highly context-dependent relation (see [MS78]). For instance,
cats and jaguars may be judged as similar in the context of species, but they would
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Figure 3.5 – Similarity as a function of the distance with different values of both the sensitive
parameter c and the constant p. On the top, the value p is fixed equal to 1. On the bottom, both c
and p vary.
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Figure 3.6 – Impact of the value of the sensitive parameter c on similarity. The colored dots represent
the learning items (assigned to one of the two categories A and B), while the black spots represent
the transfer items. The size of dots reflects the similarity between the items and the reference item in
the middle. The parameters were set as follows: r = 2 and p = 1.

be judged as dissimilar in a context that emphasizes danger. In the GCM, this context-
dependent nature is shaped by the presence of the attention-weight parameters. �

Example 3.4. This example aims to help visualize the similarity between items. Let us
take a set of transfer and learning items placed on R2 (see Figure 3.6). The learning
items are depicted as colored dots and are assigned to a specific category (A or B). The
transfer items are depicted as black dots and are not members of a specific category (the
location of the items is given by the center of the dots). To facilitate the comprehension,
R2 is equipped with the Euclidean distance rather than the city-block distance. Let us
take as reference point the transfer item in the middle (i.e., the black spot in the middle).
The size of the spots in Figure 3.6 helps visualize the intensity of the similarity: the
bigger the spots, the higher their similarity to the reference item (i.e., the item in the
middle). By changing the value of the sensitive parameter c, the similarities between the
reference point and the items of the space are altered. Thus, when c = 0, all exemplars
are perceived as identical to the reference item. Conversely, when c = 1, only highly
close items are perceived as similar to the reference item. �

Step 3. We now have all the necessary elements to define the probability according to
which the GCM classify items into a specific category. Let EL be the set of learning items
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and let K1, . . . ,KN be the categories in which items are classified. According to the GCM,
the probability of classifying item x into category K ∈ {K1, . . . ,KN} (during the transfer
phase) is given by:

P(K |x) =
∑
ξ∈K∩EL S(ξ,x)∑N

j=1
∑
ξ∈Kj∩EL S(ξ,x)

. (3.8)

We refer the reader to Box 3.2 for further information about the origin of Equation 3.8.
In order to emphasize the parameter dependence of the probability, the probability of
classifying a stimulus x into categoryK is denoted by Pθ(K |x), where θ = (c,ω1, . . . ,ωN)

is the set of parameters of the model (i.e., the sensitive parameter c and the attention-
weight parameters ωi, for i = 1, . . . ,N). We underline that item x can be a learning or a
transfer item.

Remark 3.4. Equation 3.8 allows us to understand why the GCM is classified as a transfer
model. Indeed, the probability of classifying an item into a specific category is only
determined by the set of learning items and does not evolve during time. Therefore, the
GCM is only suitable for reproducing transfer performance. Moreover, the hypothesis
according to which transfer performance does not evolve during the transfer phase seems
appropriate since i) no feedback is provided during this phase, and ii) the transfer phase
is usually short. �

The intuitive idea behind the GCM is the following: if a new item is similar to the stored
members of category K and less similar to the stored members of the other categories,
then a learner would tend to classify it into category K. Thus, the higher the sum
of similarities between the new item and the (learning) exemplars of category K (as
compared to the contrasting categories), the higher the probability of classifying it into
category K. The mechanism underlying the GCM is not based on abstraction processes
and is highly costly.

Example 3.5. This example aims to extend Example 3.4 and showing how the probabilities
of the GCM are influenced by different values of c. Our to-be-classified item is the point
located in the middle (see Figure 3.6). The evidence in favor of category A and B are
compared to determine the classification of the to-be-classified item. The evidence in
favor of category A is given by the sum of similarities between the to-be-classified item
and the exemplars of category A. The evidence in favor of category A can be visualized
overlaying the turquoise blue points (the height of the obtained column reflects the
category A evidence). Once the category A evidence found, it has to be normalized
with respect to the sum of all evidences. Figure 3.7 shows the normalized evidence in
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Figure 3.7 – Normalized evidence, respect to the to-be-classified item of Figure 3.6 (i.e., the item in
the middle), in favor of categories A and B as a function of the sensitive parameter c

favor of categories A and B, depending on the value of c. When c = 0, the probability
of classifying the to-be-classified item into one of the two categories are identical (i.e.,
1
2). Conversely, when c = 1, the probability of classifying the to-be-classified item into
category A is higher as compared to category B. �

Remark 3.5. Equation 3.8 is the version of the GCM that we considered. However, a
more general version is available. In the most general version of the GCM Equation 3.8 is
replaced with the following expression:

Pθ(K |x) =
bA
[∑

ξ∈K∩EL VξK S(ξ,x)
]γ

∑N
j=1 bKj

[∑
ξ∈Kj∩EL VξKj S(ξ,x)

]γ , (3.9)

where bKj ≥ 0 denotes the response-bias parameter of category Kj; VξKj denotes
the memory strength of item ξ with respect to category Kj; γ is a freely estimated
response-scaling parameter; and θ = (c,ω1, . . . ,ωN, γ, bK1 , . . . , bKN ) represents the set of
parameters of the model.

The memory-strength values VξKj are generally not free parameters. The value VξKj is
typically set equal to the relative frequency with which item ξ is provided with category
Kj feedback during the learning phase. Since exemplars are generally presented with
equal frequency and assigned to only one category, this means that VξKj is usually set
equal to 1 when ξ belongs to category Kj and 0 otherwise. The parameter γ regulates
the strength the model gives to the evidence in favor of the categories. �
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Computational Aspects

The aim of this paragraph is to describe the way the GCM was coded. As previously
seen, the parameters of the GCM are the sensitive parameter c and the attention-weight
parameters ω1, . . . ,ωN (i = 1, . . . ,N) with the following conditions:

c ≥ 0, ωi ≥ 0,
N∑
i=1

ωi = 1.

However, we preferred to consider the equivalent following parameters:

αi = c · ωi,

with αi ≥ 0 (for all i = 1, . . . ,N) to avoid to deal with the last listed constraint. The
sensitive and attention-weight parameters can be easily recovered using the following
formulas:

c =
N∑
i=1

αi, ωi =
αi∑N
i=1 αi

,

where i = 1, . . . ,N.

BOX 3.2 Relation between Identification and Classification

The context model and the GCM share the same formula for computing the probabil-
ity of classifying stimuli into a specific category (see Equation 3.4 and 3.8). The aim
of this box is to shed light on the origin of this equation. In [Nos84], Nosofsky has
noticed a strong similarity between the formula mentioned above (Equation 3.4)
and the Similarity-Choice Model (SCM) [Luc63; She57].

The similarity-choice model was introduced by Luce in 1963 to predict participant’s
performance in identification tasks. In an identification task, the participant is
requested to assign a unique response to each of the stimuli (it can be considered as
a classification task in which there are as many categories as the number of stimuli).

Nosofsky has found that the combination of the Luce’s similarity-choice model with
the mapping hypothesis led to Equation 3.4 (at least from a theoretical point of
view). Let us explain this affirmation.
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Let us consider an identification task where there are n stimuli to identify. According
to the similarity-choice model, the probability to identify stimulus i with stimulus j
is given by:

P(j | i) = bjsij∑n
k=1 bksik

, (3.10)

where bj is the bias for response j and sij is the similarity between stimuli i and j.
Even at this stage, the bias-free version of Equation 3.10 has a strike resemblance
to Equation 3.4. The element that enables to connect the choice model with the
context model is the mapping hypothesis. This hypothesis states that the probability
of classifying stimulus i as a member of category K can be obtain by summing, over
the category K stimuli, the probabilities to identify stimulus i with a stimulus of
category K. The mathematical formalization of the mapping hypothesis is given by:

P(K | i) =
∑
j∈K

P(j | i), (3.11)

where P(K | i) is the probability of classifying stimulus i into category K and
P(j | i) is the probability to identify stimulus i as stimulus j. According to the
mapping hypothesis, classification performance can be predicted from identification
performance.

Combining the Luce’s similarity-choice model with the mapping hypothesis, the
context model can be recovered. Indeed, by applying the mapping hypothesis to the
bias-free version of Luce’s similarity-choice model, we obtain that:

P(K | i) =
∑
j∈K

P(j | i) =
∑
j∈K sij∑n
k=1 sik

. (3.12)

Equation 3.12 is identical to Equation 3.4, if we denote by EL the set of n stimuli
of the identification task and we assume that K ⊆ EL. Although from a theoret-
ical framework classification performance could be predicted from identification
performance, this argument has been rejected on empirical grounds. Shepard et
al. [SHJ61; She64] has observed systematic failure in predicting classification
performance from identification performance. However, Nosofsky [Nos84] has
proposed to keep this hypothesis, arguing that the key idea to preserve the mapping
hypothesis is to assume that the similarity in identification and classification tasks
are not equivalent.
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TO SUM UP Generalized Context Model (GCM)

The Generalized Context Model (GCM) [MS78; Nos84; Nos86] is one of the most
famous exemplar models in categorization. According to the GCM, the probability of
classifying item x into category K ∈ {K1, . . . ,KN} during the transfer phase is given
by:

Pθ(K |x) =
∑
ξ∈K∩EL S(ξ,x)∑N

j=1
∑
ξ∈Kj∩EL S(ξ,x)

, (3.13)

where

S(ξ,x) = e−cd(ξ,x)
p

, d(ξ,x) =
[

N∑
i=1

ωi · |ξi − xi|r
] 1
r

,

N is the number of categories, EL is the set of learning items, N is the dimension of
the psychological space in which exemplars are embedded, c is a sensitive parameter,
ω1, . . . ,ωN are attention-weight parameters, and p and r are positive constants. The
parameters of the GCM are:

c ≥ 0 and ω1, . . . ,ωN ≥ 0,

with the condition
∑N
i=1 ωi = 1.

3.2.2 Ordinal General Context Model (OGCM)

The Generalized Context Model is not sensitive to different presentation orders. Indeed,
according to the GCM, the probability of classifying new items into a specific category
is only related to physical features of the set of learning items. However, different
presentation orders can shape the way we perceive, represent and learn information (see
Chapter 1 Section 1.3). Here, we propose a modification of the GCM that accounts for
the order in which stimuli are presented.

This new exemplar model is called Ordinal General Context Model (OGCM) and integrates
in the GCM’s structure a component aiming at capturing ordinal effects. We declined
the OGCM into three versions, each of them integrating a different ordinal aspect: i) the
OGCM-L incorporates the average presentation order received during the learning phase,
ii) the OGCM-M incorporates the most frequent (i.e., the median) presentation order
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received during the learning phase, and iii) the OGCM-T incorporates the presentation
order received during the transfer phase.

Mathematical Description

As for the GCM, the stimuli are represented as points in a multidimensional psychological
space. However, instead of considering a distance that is exclusively related to physical
features, the OGCM adopts a distance that integrates ordinal aspects. More specifically,
the distance considered by the OGCM is defined as follows:

D(ξ,x) =
[

N∑
i=1

ωi · |ξi − xi|r + ωO · dO(ξ,x)r
] 1
r

, (3.14)

where the first term is the feature-distance defined in the GCM (see Equation 3.6), dO(ξ,x)
is the ordinal distance between items ξ and x, and ωO is the attention-weight related to the
ordinal dimension. Since both Experiment I and II involved highly separable-dimension
stimuli, the value of r is set equal to 1.

Equation 3.14 is the only equation differentiating the OGCM from the GCM. Both the
similarity between two items and the probability of classifying an item into a specific
category are the same as in the GCM (Equation 3.7 and 3.8). Before defining the ordinal
distance dO(ξ,x) for each of the versions of the OGCM, let us consider an example to
understand the concept of ordinal distance within a block.

Example 3.6. Let us consider four items (a, b, c, and d) placed in a two-dimensional
psychological space (see Figure 3.8, on the left). Let us assume that these four items are
presented to a participant in a specific order. The order manipulation is shown in Figure
3.8 (in the middle) by means of numbers: item a was presented first, item d second, and
so on. The order manipulation can be visualize adding a dimension in which item a takes
value 1, item d takes value 2, and so on (see Figure 3.8, on the right).

The ordinal distance between two items is defined as the difference of their ordinal
position in the order manipulation (the difference of values in the additional dimension).
For instance, the ordinal distance between items a and d is 1, the one between items d
and b is two, and so on. �
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Figure 3.8 – Visualization of the ordinal distance within a block. On the left, the spacial position of
the items (a, b, c, and d). On the middle, the presentation order in which stimuli were presented. On
the right, the addition of a dimension accounting for the order manipulation.

Each version of the OGCM defines the ordinal distance dO(ξ,x) in different ways.

OGCM-L. In the OGCM-L, the ordinal distance dO between two items averages across
the learning phase the ordinal distances within a block between the two considered
items (if they are both learning items). Conversely, their ordinal distance is set
equal to the maximal distance among the ordinal distances plus 1.

OGCM-M. The OGCM-M is similar to the OGCM-L. However, instead of averaging the
ordinal distances, the OGCM-M considers the median of the ordinal distances.
Therefore, the ordinal distance dO between two learning items is set equal to
the median across the learning phase of their ordinal distances within a block.
Conversely, their ordinal distance is set equal to the maximal distance among the
ordinal distances plus 1.

OGCM-T. In the OGCM-T, the ordinal distance dO between two items is defined as the
ordinal distance between the two items within the transfer block.

Remark 3.6. The ordinal distance dO between a transfer item and a learning item do
not have to be set at the maximal distance among the ordinal distances plus 1. The
rational was to set a value greater than the maximal ordinal distance between two
learning items. Indeed, one intuitive hypothesis is that, in the ordinal dimension, the
psychological distance between a new item and a stored item is perceived as higher than
the psychological distance between two stored items. Moreover, the ordinal distance can
be re-scaled to ensure that both feature and ordinal dimensions share the same order of
magnitude. �

Example 3.7. Let us give an example about how the three versions of the OGCM define
the ordinal distance dO between two items. Let us consider three learning items (a gray
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Figure 3.9 – Visualization of Example 3.7. The learning items are a gray circle, a black circle, and a
gray square. The transfer item is a black square.

circle, a black circle and a gray square) and one transfer item (a black square). The three
learning items are presented during the learning phase, while the full set of learning and
transfer items is presented during the transfer phase. Let us assume that the learning
phase is composed of three blocks, while the transfer phase is composed of one block
(see Figure 3.9).

According to the OGCM-L, the distance between the gray and black circles is obtained
averaging their ordinal position across the learning phase (i.e., 1+2+1

3 ). Conversely, the
distance between the gray circle and black square is set equal to a constant (in this case
we set it equal to 3, i.e. the maximal ordinal distance in the learning phase plus 1).

According to the OGCM-M, the distance between the gray and black circles is obtained
taking the median of their ordinal position across the learning phase (i.e., 1). Conversely,
the distance between the gray circle and black square is set equal to a constant (in this
case we set it equal to 3, i.e. the maximal ordinal distance in the learning phase plus 1).

According to the OGCM-T, the distance between the gray and black circles is obtained
taking their ordinal position within the transfer block (i.e., 1). The same goes for the
distance between the gray circle and black square which is 2. �

Computational Aspects

Similarly to the GCM, instead of considering the parameters c and ωi (i = 1, . . . ,N) with
the constraints c ≥ 0, ωi ≥ 0, and

∑N
i=1 ωi = 1, the following equivalent parameters

αi = c · ωi (with the constrains αi > 0) were preferred.
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TO SUM UP Ordinal General Context Model (OGCM)

The Ordinal General Context Model (OGCM) is a modification of the GCM that
accounts for the order in which stimuli are presented. The OGCM was declined in
three versions:

OGCM-L. This version integrates the average presentation order that participants
received during the learning phase.

OGCM-M. This version integrates the most frequent presentation order that partici-
pants received during the learning phase.

OGCM-T. This version integrates the average presentation order that participants
received during the transfer phase.

According to the versions of the OGCM, the probability of classifying item x into
category K ∈ {K1, . . . ,KN} (during the transfer phase) is given by:

Pθ(K |x) =
∑
ξ∈K∩EL S(ξ,x)∑N

j=1
∑
ξ∈Kj∩EL S(ξ,x)

, (3.15)

where

S(ξ,x) = e−cD(ξ,x)
p

, D(ξ,x) =
[

N∑
i=1

ωi · |ξi − xi|r + ωO · dO(ξ,x)r
] 1
r

,

N is the number of categories in which stimuli can be classified, EL denotes the set
of learning items, c is a sensitive parameter, p and r are positive constants, ω1, . . . ,ωN

are attention-weight parameters, ωO is the attention-weight parameter related to the
ordinal dimension, and dO(ξ,x) is the ordinal distance between items ξ and x. The
parameters of the model are:

c ≥ 0 and ω1, . . . ,ωN,ωO ≥ 0,

with the condition
∑N
i=1 ωi + ωO = 1.
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3.2.3 Generalized Context Model equipped with the Lag Mechanism
(GCM-Lag)

Again, the Generalized Context Model is not sensitive to different presentation orders.
However, a sequence-sensitive version of the GCM has been developed to palliate this
disadvantage [NKM92]. This sequence-sensitive version of the GCM is based on the
following principle: rather that giving equal weight to all items in the computation of
the classification probability, greater weight is given to more recently presented items. In
other words, a lag mechanism that accounts for sequential effects has been integrated
to the GCM. Our aim was to complete the picture by including this sequence-sensitive
version of the GCM.

Mathematical Description

Similarly to the GCM, the stimuli are represented as points in a multidimensional psycho-
logical space and the distance between two items is computed as in Equation 3.6. The
similarity between two items is also computed as in the GCM (Equation 3.7). However,
the classification probability is defined differently. According to the GCM-Lag, the proba-
bility of classifying item x into category K ∈ {K1, . . . ,KN} (during the transfer phase) is
given by:

P(K |x) =
∑
ξ∈K∩EL Rξ,x · S(ξ,x)∑N

j=1
∑
ξ∈Kj∩EL Rξ,x · S(ξ,x)

, (3.16)

where Rξ,x is the memory strength associated with exemplar ξ. The memory strength is
defined as an exponential decay function of the lag presentation as follows:

Rξ,x = e−δ·lag(ξ,x).

The quantity lag(ξ,x) represents the number of intervening trials between the presenta-
tions of stimuli ξ and x, while δ is a time-rate decay parameter.

Computational Aspects

Similarly to the GCM, instead of considering the parameters c and ωi (i = 1, . . . ,N) with
the constraints c ≥ 0, ωi ≥ 0, and

∑N
i=1 ωi = 1, the following equivalent parameters

αi = c · ωi (with the constrains αi > 0) were preferred.
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TO SUM UP GCM Equipped with the Lag Mechanism (GCM-Lag)

The GCM-Lag is a sequence-sensitive version of the GCM [NKM92]. According to
the GCM-Lag, the probability of classifying item x into category K ∈ {K1, . . . ,KN}
during the transfer phase is given by:

Pθ(K |x) =
∑
ξ∈K∩EL Rξ,x · S(ξ,x)∑N

j=1
∑
ξ∈Kj∩EL Rξ,x · S(ξ,x)

, (3.17)

where

S(ξ,x) = e−cd(ξ,x)
p

, Rξ,x = e−δ·lag(ξ,x), d(ξ,x) =
[

N∑
i=1

ωi · |ξi − xi|r
] 1
r

,

N is the number of categories, EL is the set of learning items, N is the dimension of
the psychological space in which exemplars are embedded, c is a sensitive parameter,
ω1, . . . ,ωN are attention-weight parameters, δ is a time-rate decay parameter, lag(ξ,x)
is the number of intervening trials between the presentations of stimuli ξ and x, and
p and r are positive constants. The parameters of the GCM-Lag are:

c ≥ 0, δ ≥ 0 and ω1, . . . ,ωN ≥ 0,

with the condition
∑N
i=1 ωi = 1.

3.2.4 Relations Between Transfer Models

This subsection aims to show the relations and inclusions between the selected transfer
models.

Proposition 3.1. The Generalized Context Model (GCM) is included in both the three
versions of the Ordinal General Context Model (OGCM) and the GCM equipped with the lag
mechanism (GCM-Lag).

Proof. The GCM can be obtained from the three versions of the OGCM by setting the
parameter related to the ordinal dimension (i.e., ωO) equal to 0. It can also be obtained
from the GCM-Lag by setting the time-rate decay parameter (i.e., δ) equal to 0.
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Since the context model was described in Box 3.1 and it is strictly related to the GCM, a
mathematical comparison between the GCM and the context model is also given (see Box
3.3).

BOX 3.3 Comparison Between the GCM and the Context Model

Proposition 3.2. The Generalized Context Model (GCM) is included in the context
model when the dimensions of the stimuli are binary-valued/Boolean and p = r.

Proof. If p = r, we have that:

S(ξ,x) = e−c·
∑N

i=1 ωi·|ξi−xi|
r

=
N∏
i=1

e−c·ωi·|ξi−xi|
r

.

If there are only two options for each dimension (let us say 0 and 1), we have that:

|ξi − xi| =
{

1 if ξi 6= xi

0 if ξi = xi

Therefore |ξi − xi|r is equal to the δi(ξ,x) defined in the context model:

|ξi − xi|r =
{

1 if ξi 6= xi

0 if ξi = xi
= δi(ξ,x)

The similarity between two items can thus be written as:

S(ξ,x) =
N∏
i=1

e−c·ωi·|ξi−xi|
r

=
N∏
i=1

e−c·ωi·δi(ξ,x) =
N∏
i=1

[
e−c·ωi

]δi(ξ,x) .

If we define si = e−c·ωi , then we have that S(ξ,x) =
∏N
i=1 s

δi(ξ,x)
i
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3.3 Learning Models

The aim of this section is to describe the learning models that were used to investigate
both category learning and transfer. Indeed, learning models are capable to reproduce
both the learning dynamics and transfer performance. The selected learning models are
the following: the Component-Cue model and ALCOVE.

The rationale was to compare two models with a similar mathematical structure but
implementing two different strategies. Indeed, although both models are based on
artificial neural networks (see Box 3.4), they actualize either a rule-based (the Component-
Cue model) or a similarity-based strategy (ALCOVE). A limited number of studies have
investigated the performance of both models or the one of their extensions [GB88a;
GB88b; GBH89; Kru92; NKM92; Nos+94; Pal99]. Our aim is to further investigate these
models to determine the one that best fits our data as well as to search for a relation
between presentation order and learning strategies.

BOX 3.4 Artificial Neural Network

Artificial Neural Network (ANN) [Dre90; Ros58; WJ74] (also called connectionist
systems) are systems that are able to learn how to perform supervised tasks through
trial and error. For example, an artificial neural network can be trained to identify
dogs by providing images that have been manually labeled “dog” or “no dog”.

The basic unit of an ANN is a node, also called a neuron (see Figure 3.10). Artificial
neural networks are composed of three main layers: a layer of input nodes that
receive the information; one or several layers of intermediate nodes (called hidden
nodes) that elaborate the information; and a layer of output nodes that represent
the outputs of the network.

The nodes of a layer (except the output nodes) are connected to the nodes of the
following layer by means of weights. All weights are initiated at a specific value
and evolve every time a new input is received. Signals travel from the input layer
to the output layer, passing through the hidden layer (or layers). When the signal
reaches the output layer, the difference between the response of the network and the
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feedback is computed. The process consisting in the reception of new information,
its elaboration, and the computation of the error is called forward propagation.

The forward propagation is followed by a backward propagation. During the
backward propagation, the weights on the connections (between nodes) are updated
to minimize the error of the network. The updating of the weights is generally
implemented via gradient descent.

· · ·

· · ·

· · ·

· · ·

input nodes

hidden
nodes

output nodes

w
(1)
ij

w
(2)
ij

w
(3)
ij

Figure 3.10 – Structure of a general artificial neural network.

3.3.1 Component-Cue Model

The Component-Cue model was introduced by Gluck and Bower in 1988 [GB88b; GBH89].
Originally labeled as adaptive model, nowadays it is labeled as artificial neural network.

Mathematical Description

The Component-Cue model is based on an artificial neural network. Such a structure
(see Figure 3.11) is composed of of three layers: a node receiving the stimuli (input
node), a layer of intermediate nodes that elaborate the new information (feature nodes),
and a layer of output nodes that generate an output for each category (category nodes).
Feature nodes are linked to category nodes by means of weights. The evolution of these
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Figure 3.11 – Artificial neural network structure of Component-Cue.

weights allows the model to learn. After this brief presentation, let us describe the
Component-Cue model in detail.

When a stimulus of the learning phase is presented to a participant, it is received by
the input node. The signal is then sent to the feature nodes. Each feature node codes
a particular feature that exemplars have. For instance, if the stimuli are a gray circle
and a black circle, then the features discriminating the two items are “gray” and “black”.
Therefore, the network has two feature nodes, one coding the feature “gray” and the
other coding the feature “black”. Feature nodes are activated depending whether the
input stimulus is characterized by the feature coded by the node. For instance, in the
previous example, when a gray stimulus is presented, the feature node “gray” is activated
with a value of 1 and the feature node “black” is turned off (or, equivalently, it is activated
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with a value of 0). Conversely, when a black stimulus is presented, the feature node “gray”
is turned off and the feature node “black” is activated with a value of 1.

More precisely, let us assume that the items presented during the classification task (the
learning phase specifically) have N features F1, . . . ,FN . Let x(t) be the t-th stimulus
presented to the participant. Each feature node is activated by the quantity:

a
(t)
j =

 1 if x(t) has Fj
0 otherwise

where a(t)j (j = 1, . . . ,N ) represents the activation of the j-th feature node due to the
presentation of the t-th stimulus.

Remark 3.7. The dimensions (i.e., the features) of the stimuli of Experiment I and II are
binary-valued. Therefore, the number of feature nodes of the Component-Cue model
is N = 2×N, where N represents the dimension of the psychological space in which
stimuli are embedded. �

Once the feature nodes are activated, the signal is sent to the output nodes. Each output
node codes a category in which items are classified. The activation of the feature node is
multiplied by a weight (the weight that links feature nodes and categories) and these
weighted activations are then summed to form outputs. More precisely, let us suppose
that there are N categories K1, . . . ,KN . The output node K ∈ {K1, . . . ,KN} is activated
by the quantity:

O
(t)
K =

N∑
j=1

a
(t)
j ·w

(t)
j,K ,

as a result of the reception of the t-th stimulus, where w(t)
j,K is the weight linking feature

node Fj to category node K. The weight w(t)
j,K (j = 1, . . . ,N ) are called the association

weights.

Once the outputs of the categories are computed, the model computes the probability
of classifying an item into a specific category. This probability is a function of the
category outputs. If the model is asked, it classifies stimuli on the basis of the computed
probabilities. Two different formulas to compute the classification probability has been
used in the literature: an exponential formula and a linear formula.
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Exponential version. According to the exponential version, the probability of classifying
the t-th stimulus x(t) into category K ∈ {K1, . . . ,KN} (knowing the history of the
process Ht−1) is given by:

P(K |x(t),Ht−1) =
eφO

(t)
K

N∑
j=1

e
φO

(t)
Kj

, (3.18)

where φ is a freely estimated positive parameter. This version appeared in the Gluck
and Bower’s paper [GB88b]. The exponential version is denoted by an E (i.e.,
Component-CueE).

Linear version. According to the linear version, the probability of classifying the t-th
stimulus x(t) into category K ∈ {K1, . . . ,KN} (knowing the history of the process
Ht−1) is given by:

P(K |x(t),Ht−1) =
O

(t)
K + b

N∑
j=1

(
O

(t)
Kj

+ b
) (3.19)

where b is a category bias parameter. To our knowledge, this version has not been
applied to the Component-Cue model. However, it is often used for ALCOVE. There-
fore, both versions were considered to provide a complete comparison between the
two models. The linear version is denoted by an L (i.e., Component-CueL).

Remark 3.8. The exponential and linear versions are two different ways to constraint
the outputs to be positive and smaller then 1. However, the parameters of the versions
have two distinct psychological interpretations. In the exponential version, the higher the
parameter (i.e., φ), the greater the influence of the higher output. For instance, if φ is
higher than 1 and OK is the higher output as a result of the presentation of a stimulus,
the perception that the stimulus is closer to category K than other categories is amplified.
Conversely, in the linear version, the higher the parameter, the smaller the influence of
the higher output. For instance, if b is higher than 1 and OK is the higher output as
a result of the presentation of a stimulus, the perception that the stimulus is closer to
category K than other categories is weakened. �
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Figure 3.12 – Exponential classification probability of the Component-Cue model as a function of
the parameter φ when only two categories (A and B) are considered. On the x-axis, the difference
between the two outputs. On the y-axis, the probability of classifying a stimulus as a member of
category A.

Remark 3.9. When there are only two categories (A and B), Equation 3.18 can be
expressed as a function of a single variable. Let us set O(t)

A−B = O
(t)
A −O

(t)
B and let us

replace O(t)
B with O(t)

A −O
(t)
A−B in Equation 3.18, then we have that:

P(A |x(t),Ht−1) =
eφO

(t)
A

eφO
(t)
A + eφO

(t)
B

=
eφO

(t)
A

eφO
(t)
A + eφO

(t)
A · e−φO

(t)
A−B

=
1

1 + e−φO
(t)
A−B

. (3.20)

Figure 3.12 shows the exponential classification probability as a function of the parameter
φ when only two categories are considered. �

Once the classification probability of the input stimulus is computed, the association
weights w(t)

j,K are updated. The evolution of the weights allows the model to learn. The
updating of the association weights is based on the gradient descent algorithm, whose
aim is to minimize (trial to trial) the error between the output of the model and the
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provided feedback. More precisely, the error generated by the model after the reception
of the t-th stimulus is computed as follows:

E(t) =
N∑
j=1

(
T (t)
Kj
−O(t)

Kj

)2
, (3.21)

where

T (t)
Kj

=

 1 if x(t) ∈ Kj

−1 otherwise
(3.22)

Equation 3.22 represents the feedback given to the model (which is a numerical equivalent
of the feedback given to the participant). For instance, if the t-th stimulus belongs to
category K ∈ {K1, . . . ,KN}, the feedback given to the model is that the category K
output should have been activated by the quantity 1, while the other outputs should have
been activated by the quantity −1.

The association weights are updated as follows to decrease the error of the model:

w
(t+1)
j,K = w

(t)
j,K − λw ·

∂E(t)

∂w
(t)
j,K

= w
(t)
j,K + λw · a

(t)
j ·

(
T (t)
K −O(t)

K

)
, (3.23)

where λw is a freely learning rate parameter, j ∈ {1, . . . ,N} and K ∈ {K1, . . . ,KN}. The
association weights are initiated at 0:

w
(0)
j,K = 0,

for all j ∈ {1, . . . ,N} and K ∈ {K1, . . . ,KN}.

To recap, the parameters of the exponential version of the Component-Cue model are φ
and λw, while those of the linear version are b and λw. The probability in Equation 3.18
and 3.19 is denoted by Pθ(K |x(t),Ht−1) (where θ is the set of parameters of the model)
to emphasize its dependency from the parameters.

The Component-Cue model (and learning model in general) can also be applied to
reproduce transfer performance. Since feedback are not provided during the transfer
phase, the updating of the weights of the network stops and a static variant of the model
is considered. The “dinamic” version is applied to the learning phase, while the static
version is applied to the transfer phase. In the static version, the association weights are
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considered as parameters of the model, even though in a practical context the association
weights are determined through the application of the “dinamic” version to the learning
phase. The static variant of the model is denoted by Component-Cue-SE (when the
exponential version is considered) and Component-Cue-SL (when the linear version is
considered).

Remark 3.10. A more general version of the Component-Cue model is less often con-
sidered in the literature (see [NKM92]). In this more general version (that we do not
implement), the activation of the output nodes is also expressed as a function of category-
bias weights, connecting feature nodes to category nodes. More precisely, the activation
of the output node K ∈ {K1, . . . ,KN} as a result of the reception of the t-th stimulus is
defined as follows:

O
(t)
K =

N∑
j=1

a
(t)
j ·w

(t)
j,K + b

(t)
K ,

where b
(t)
K is the category-bias weight linking feature node Fj to category node K.

Similarly to the association weights, the category-bias weights are updated. The updating
of these weights is given by the following rule:

b
(t+1)
K = b

(t)
K − λb ·

∂E(t)

∂b
(t)
K

= b
(t)
K + λb ·

(
T (t)
K −O(t)

K

)
, (3.24)

where λb is a freely learning rate parameter and K ∈ {K1, . . . ,KN}. �

Remark 3.11. Gluck and Bower also developed a Configural-Cue model [GBH89] in
which the input nodes code not only the individual feature of the stimuli but also the
pairs of features, the triples of features, and so forth. �

Example 3.8. Let us consider four exemplars (a black square, a gray square, a black circle
and a gray circle) belonging to either category A or category B. The Component-Cue
model applied to this case is illustrated in Figure 3.13. The intermediate nodes code
the features of the items (square, circle, black, gray), while the output nodes code the
categories in which the items are classified (A and B). �
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Figure 3.13 – The Component-Cue model when four items (a black square, a gray square, a black
circle and a gray circle) and two categories (A and B) are considered.

Computational Aspects

The aim of this paragraph is to describe the way the Component-Cue model was coded.
The following constraints were used:

i. The learning rate parameter of the association weights λw was constrained to be
greater than 0.

ii. The outputs was constrained to be between 1 and -1. Therefore, when the outputs
were either greater than 1 or smaller than -1, the association weights w(t)

j,K (j ∈
{1, . . . ,N} and K ∈ {K1, . . . ,KN}) were re-scaled as follows:

w
(t)
j,K ←

w
(t)
j,K

|O(t)
K |

.

This condition ensure that the classification probability of the linear version was
positive (Equation 3.19). However, to maintain coherence between the two versions,
the same constraint was also used in the exponential version.

iii. The parameter b of the linear version was constrained to be grater than 1 to ensure
that the classification probability in Equation 3.19 was positive.
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TO SUM UP Component-Cue Model

The Component-Cue model is a learning model developed by Gluck and Bower
[GB88a; GB88b], based on an artificial neural network structure. Its structure is
composed of a single input node receiving the stimuli, a layer of feature nodes coding
the features of the stimuli, and a layer of category nodes representing the categories
in which stimuli are classified. When a stimulus x(t) reaches the input node, the
feature nodes Fj (j = 1, . . . ,N ) are activated according to the quantity:

a
(t)
j =

 1 if x(t) has Fj
0 otherwise

where a(t)j (j = 1, . . . ,N ) represents the activation of the j-th feature node due to
the presentation of the t-th stimulus. The activations of the feature nodes are then
multiplied by association weights, which are summed to form outputs. The K output
node is activated by the quantity:

O
(t)
K =

N∑
j=1

a
(t)
j ·w

(t)
j,K ,

where w(t)
j,K is the weight linking feature node Fj to category node K (K = K1, . . . ,

KN).

Finally, the probability of classifying stimulus x(t) into category K ∈ {K1, . . . ,KN} is
given by:

P
(
K |x(t),Ht−1

)
=

eφO
(t)
K

N∑
j=1

e
φO

(t)
Kj

or
O

(t)
K + b

N∑
j=1

(
O

(t)
Kj

+ b
) ,

depending whether the exponential or linear version is considered. The quantities φ
and b are two positive freely estimated parameters.

The association weights are updated using a gradient descent algorithm to minimize
the error between the outputs of the model and the feedback. The updating of
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the association weights is given by the following rule (j ∈ {1, . . . ,N} and K ∈
{K1, . . . ,KN}):

w
(t+1)
j,K = w

(t)
j,K + λw · a

(t)
j ·

(
T (t)
K −O(t)

K

)
,

where λw is a freely learning rate parameter and

T (t)
K =

 1 if x(t) ∈ K

−1 otherwise.

The association weights are initialized at 0. To recap, the parameters of the model
are:

λw, φ or λw, b

depending whether the exponential or linear version is considered. The Compo-
nent-Cue model can also be applied to reproduce transfer performance stopping the
updating of the association weights. We refer to this variant of the model as the static
variant.

3.3.2 Attention Learning COVEring Map Model (ALCOVE)

The Kruschke’s Attention Learning COVEring map model (ALCOVE) appeared for the
first time in 1992 [Kru92]. It is a connectionist model (i.e. it is based on artificial
neural network) and combines aspects of two models previously described, the GCM and
Component-Cue.

On one hand, ALCOVE shares with the GCM an exemplar-based representation of the
stimuli. Indeed, ALCOVE assumes that people store all exemplars they encounter and
classify new stimuli on the basis of their similarity to these stored exemplars. Moreover,
ALCOVE integrates an attention mechanism as the GCM.

On the other hand, ALCOVE shares with the Component-Cue model a trial and error
dynamics. To recap, ALCOVE can be considered as the version of the GCM integrating
an error-driven mechanism. According to Kruschke [Kru92], ALCOVE extends both the
GCM, by including a learning mechanism, and Component-Cue, “by allowing continuous
dimensions and including explicit dimensional attention learning”.
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Figure 3.14 – Artificial neural network structure of ALCOVE.

Mathematical Description

The artificial neural network structure of ALCOVE is illustrated in Figure 3.14. Similarly
to Component-Cue, ALCOVE is composed of three layers: a node receiving the stimuli
(input node), a layer of intermediate nodes that elaborate the information (exemplar
nodes), and a layer of output nodes that generate an output for the categories in which
stimuli are classified (category nodes). Exemplar nodes are linked to category nodes by
means of weights. Again, the evolution of these weights allows the model to learn. After
this brief presentation, let us describe ALCOVE in detail.
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When a stimulus is presented, it is received by the input node. The reception of the
stimulus produces the activation of the exemplar nodes. The exemplar nodes code
the learning items of the classification task and they are activated according to their
similarity to the input stimulus. The similarity between two items is defined as in the
GCM. Therefore, as a result of the reception of stimulus x(t), the exemplar node ξj (in
ξ1, . . . , ξNL) is activated by the following quantity:

a
(t)
j = S(x(t), ξj) = e−c·d(x

(t),ξj)p , (3.25)

where S(x(t), ξj) denotes the similarity between exemplars x(t) and ξj; c is a freely
estimated sensitive parameter; p is a positive constant determined on the basis of the
nature of the stimuli (see Subsection 3.2.1 for further information about the choice of
p); and d(x(t), ξj) represents the distance between exemplars x(t) and ξj . Since both
Experiment I and II involved distinguishable stimuli, the value of p is set equal to 1.

The distance between two items is also computed as in the GCM. Items are considered as
points in a N-dimensional psychological space and the distance between items x(t) and
ξj is defined as follows:

d(x(t), ξj) =
[

N∑
i=1

ω
(t)
i · |x

(t)
i − ξ

j
i |
r
] 1
r

,

where ω(t)
i is the attention weight associated to dimension i after the presentation of the

t-th stimulus and r is a positive constant determined on the basis of the nature of the
items (see Subsection 3.2.1 for further information about the choice of the constant r).
Since both Experiment I and II involved highly separable-dimension stimuli, the value of
r is set equal to 1.

Once the exemplar nodes are activated, these activations are multiplied by connection
weights and summed to form the category outputs. More precisely, as a result of the
reception of the t-th stimulus, the K category node (K ∈ {K1, . . . ,KN}) is activated by
the following quantity:

O
(t)
K =

NL∑
j=1

a
(t)
j ·w

(t)
j,K , (3.26)

where w(t)
j,K is the weight of the connection that links exemplar node ξj to category node

K at the t-th iteration (i.e., when the network receives the t-th stimulus).
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Once the outputs for the categories are computed, the model computes the probability of
classifying an item into a specif category as a function of the category outputs. Again,
if the model is asked, it classifies stimuli on the basis of the computed probability.
Similarly to Component-Cue, we considered both the exponential (Equation 3.18) and
linear (Equation 3.19) versions of the classification probability. In the original paper
[Kru92], the exponential version is described, while in subsequent studies both versions
are employed [NKM92; Nos+94; Pal99]. Similarly to Component-Cue, the exponential
version is denoted by an E (i.e., ALCOVEE), while the linear version by an L (i.e.,
ALCOVEL).

Once the classification probability of the input stimulus is computed, both the association
and attention weights are updated. Similarly to Component-Cue, the updating of the
weights is based on a gradient descent algorithm, whose aim is to minimize the difference
between the outputs of the network and the feedback. The error of the network is defined
as in Equation 3.21. Therefore, the updating of the association weights is the same as
in Equation 3.23, while the updating of the attention weights is given by the following
rule:

ω
(t+1)
i = ω

(t)
i − λω ·

∂E(t)

∂ω
(t)
i

= ω
(t)
i − λω ·

N∑
l=1

NL∑
j=1

a
(t)
j ·w

(t)
j,Kl · c · |x

(t)
i − ξ

j
i | ·
(
T (t)
Kl
−O(t)

Kl

)
, (3.27)

where λω is a positive freely estimated parameter representing the learning rate parameter
for the attention weights. All weights (association and attention) are initiated at 0.

To recap, the parameters of the exponential version of ALCOVE are c, φ, λω, λw, while
those of the linear version are c, b, λω, λw. Similarly to Component-Cue, ALCOVE can
also be applied to reproduce transfer performance. To this purpose, the updating of both
the association and attention weights is stopped and the static variant of ALCOVE is con-
sidered. The static variant of the model is denoted by ALCOVE-SE (when the exponential
version is considered) and ALCOVE-SL (when the linear version is considered).

Example 3.9. Let us consider four learning exemplars (a black square, a gray square, a
black circle and a gray circle) belonging to either category A or B. Figure 3.15 illustrates
the structure of ALCOVE in this particular case. The intermediate nodes code the learning
items (the black square, the gray square, the black circle and the gray circle), while the
output nodes code the categories in with items are classified (A and B). �
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Figure 3.15 – ALCOVE’s neural network if the consider four exemplars: a black square, a gray square,
a black circle and a gray circle.

Remark 3.12. The Generalized Context Model (GCM) is included in the static variant of
the linear version of ALCOVE (i.e., ALCOVEL-S). Indeed, the GCM can be obtained from
ALCOVEL-S by setting:

wj,K =

 1 if ξj ∈ K

0 otherwise

for all j ∈ {1, . . . ,NL} and K ∈ {K1, . . . ,KN}. �

Computational Aspects

The aim of this paragraph is to describe the way ALCOVE was coded. The following
constraints were used:

i. The sensitive parameter c, the learning rate parameters of the association weights
λw, and the learning rate parameters of the attention weights λω were constrained
to be greater than 0.

ii. The outputs was constrained to be between 1 and -1. Therefore, when the outputs
were either greater than 1 or smaller than -1, the association weights w(t)

j,K (j ∈
{1, . . . ,N} and K ∈ {K1, . . . ,KN}) were re-scaled as follows:

w
(t)
j,K ←

w
(t)
j,K

|O(t)
K |

.
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This condition ensure that the classification probability of the linear version was
positive (Equation 3.19). However, to maintain coherence between the two versions,
the same constraint was also used in the exponential version.

iii. The attention weights were constrained to be positive and their sum was constrained
to be equal to 1 (as in the GCM). Therefore, when the sum of the attention weights
was not equal to 0, the attention weights ω(t)

i (i = 1, . . . ,N) were re-scaled as
follows:

ω
(t)
i ← max

0, ω
(t)
i∑N

k=1 ω
(t)
k

 .

iv. The parameter b of the linear version was constrained to be grater than 1 to ensure
that the classification probability in Equation 3.19 was positive.

TO SUM UP Attention Learning COVEring Map Model (ALCOVE)

ALCOVE is a learning model that integrates the exemplar-based representation of the
GCM in a neural network structure. The structure of ALCOVE is composed of three
layers: a single input node receiving the stimuli, a layer of exemplar nodes coding
the learning items of the classification task, and a layer of category nodes coding the
categories in which exemplars are classified. When a stimulus x(t) reaches the input
node, the exemplar nodes ξj (j = 1, . . . ,NL) are activated according to the quantity:

a
(t)
j = S(x(t), ξj) = e

−c·
[∑N

i=1 ω
(t)
i ·|x

(t)
i −ξ

j
i |
r
] p
r

,

where S(x(t), ξj) denotes the similarity between exemplars x(t) and ξj , c is a sensitive
parameter, p and r are positive constants, and ω(t)

i is the attention weight relating
to dimension i at the t-th iteration. The activations of the exemplar nodes are
multiplied by association weights and summed to form outputs. The K category
node is activated by the quantity:

O
(t)
K =

NL∑
j=1

a
(t)
j ·w

(t)
j,K ,

where w(t)
j,K is the weight of the connection that links exemplar node ξj to category

node K at the t-th iteration (K ∈ {K1, . . . ,KN}).
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Finally, the probability of classifying stimulus x(t) into category K ∈ {K1, . . . ,KN} is
given by:

P
(
K |x(t),Ht−1

)
=

eφO
(t)
K

N∑
j=1

e
φO

(t)
Kj

or
O

(t)
K + b

N∑
j=1

(
O

(t)
Kj

+ b
)

depending whether the exponential or linear version is considered. The quantities φ
and b are two positive freely estimated parameters.

Both the association and attention weights are updated using a gradient descent algo-
rithm to minimize the difference between the outputs of the model and the feedback.
The weights are updated using the following learning rules (j ∈ {1, . . . ,NL} and
K ∈ {K1, . . . ,KN}):

w
(t+1)
j,K = w

(t)
j,K + λw · a

(t)
j ·

(
T (t)
K −O(t)

K

)
,

ω
(t+1)
i = ω

(t)
i − λω ·

N∑
l=1

NL∑
j=1

a
(t)
j ·w

(t)
j,Kl · c · |x

(t)
i − ξ

j
i | ·
(
T (t)
Kl
−O(t)

Kl

)
,

where λw and λω are positive freely estimated parameters and

T (t)
K =

 1 if x(t) ∈ K

−1 otherwise.

Both the association and attention weights are initiated at 0. To recap, the parameters
of the model are

c, φ, λω, λw or c, b, λω, λw

depending whether the exponential or linear version is considered. ALCOVE can
also be applied to reproduce transfer performance stopping the updating of both the
association and attention weights. We refer to this variant of the model as the static
variant.
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3.3.3 Relations Between Learning Models

Although Component-Cue and ALCOVE share a similar structure based on neural net-
works, they integrate two distinct strategies: a rule-based strategy for Component-Cue
and a similarity-based strategy for ALCOVE. Component-Cue aims to determine the set
of features that are a good predictor of the category membership of the items. In other
words, it induces the simplest rule on the basis of the features of the stimuli. For example,
if the classification task consists in classifying a series of pictures (a tuna, a catfish, an
eagle, a pigeon, a penguin etc.) into either the category of fishes or the category of
birds, Component-Cue would predict that the ovoid shape is a good predictor of the
category of fishes while the ovoid shape with wigs is a good predictor of the category of
birds. However, using this strategy it would probably fail when pictures of penguins are
considered.

Conversely, ALCOVE uses a similarity strategy to determine the category membership of
the items. When a stimulus is presented, ALCOVE classifies it on the basis of its similarity
to the learning items. Moreover, it is also able to memorize individual examples by tuning
the sensitive parameter. Therefore, in the previous example, ALCOVE would classify the
pictures of tuna and catfish into the category fishes, and the pictures of eagle and pigeon
into the category birds because of their similarities. However, by increasing the sensitive
parameter, ALCOVE would learn to classify items by rote (even close items would be
perceived as dissimilar). Thus, when pictures of penguins are presented, ALCOVE would
have learned by heart that penguins are members of the category birds.

One of the main advantage of Component-Cue is its ability to induce the simplest rule.
However, the binary-valued activation of its nodes (a node is activated with a value
of either 0 or 1) and its inability to learn some category membership by rote limit its
application to a small number of categories (e.g. categories based on a “principal rule”
structure). Conversely, ALCOVE is adapted to a larger variety of categories because of
the continuous-valued activation of its nodes (a node is activated as a function of its
similarity to the input stimulus) as well as the integration of an attention mechanism.
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There is a variety of practices that has been used in the literature to fit categorization
models to experimental data. A number of studies have relied on the use of computer
simulations [CG19; NSM17]. The overall predictions of the model were obtained by
averaging the classification predictions generated through simulations. Other studies
have used the same set of observations to both estimate the parameters of the model and
compute the predictions [NSM17; Nos+18; SN20]. Finally, different research have used
different techniques to estimate the parameters of the model (e.g., SSD, likelihood trial-
by-trial, likelihood block-by-block, likelihood epoch-by-epoch, etc.) [NKM92; Nos+94;
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Nos+18]. We believe that the field of categorization would benefit from the use of a
single and robust inference method.

Goals

The first goal of this chapter is to provide a general and robust inference method to both
fit categorization models to experimental data and compare them. Although this method
is not specific to cognitive models and uses generic statistical tools, the reasons that
brought us to adopt it have been dictated by the characteristics of the studied models.

The second goal of this chapter is to use the previous inference method to compare the
selected transfer models and determine the model that best fits the data. The transfer
models were compared on the transfer phase of Experiment I.

Outline of this chapter

Firstly, we describe some fundamental statistical concepts such us underfitting, overfitting,
and bias-variance trade-off. Secondly, we provide a visual representation of the predictions
of the transfer models. Thirdly, we describe how the parameters of the models were
estimated and evaluate the consistency of the estimates as a function of the size of the
dataset. Then, we detail the cross-validation techniques that were used to fit models to
data (one adapted to transfer models, the other to learning models). Finally, we apply
one of the cross-validation technique (the one adapted to transfer models) to determine
the transfer model that best describes the transfer phase of Experiment I.

4.1 Preliminaries

This section represents an introduction to some fundamental statistical concepts such as
underfitting, overfitting, and bias-variance trade-off. It has been specifically conceived for
readers that are not familiar with these concepts. Let us start with an example. Let us
suppose that one measured the weight and height of a group of elephants (see Figure

140 Chapter 4 General Methodology and Application to Transfer Analysis



●

●
●

● ●
●

●

●
●

●
●

●

Weight

H
ei

gh
t

Set Training Test

Figure 4.1 – Plot of the weight and height of a group of elephants. The line represents the function
that describes (with the addition of a noise) the relation between weight and height. The blue dots
represent the training set on which the models are trained, while the gray dots represent the testing
set on which the models are evaluated.

4.1). Ideally, there is a function f that describes the relation between weight and height
(the line in the graph), with the addition of a noise:

height = f(weight) + noise.

However, the function f is unknown. A common way to approximate this relation is to
use a model. Here, three models are considered: three polynomials with, respectively,
one, three, and six free parameters.

A statistical technique that allows one to fit models to data as well as evaluate their
performance consists in splitting the data into two sets, one for training the models
and the other for testing them (i.e., cross-validation). In Figure 4.1, the blue and
gray dots represent the training and testing sets, respectively. For each model, the
training set is used to find the parameters that best fit the training points. For instance,
training the polynomial with one free parameter consists in identifying the horizontal
line that minimizes a specific criterion (in our case, the sum of squared deviations) on
the training points. For each model, the best fit on the training points represents the best
approximation of the true relation achieved by the model.
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Figure 4.2 – Training and testing of three polynomial models having one, three and six free parameters,
respectively (in the graph the free parameters are referred as degrees of freedom). The blue dots are
used to train the models while the gray dots are used to evaluate them. Testing errors on the training
and testing sets are shown in Table 4.1.

Once the approximation of the true function is found, one needs to evaluate the perfor-
mance of the model on the testing set using a specific criterion (in our case, the sum of
squared deviations). The evaluation of the models performed using the sum of squared
deviations is usually called testing error. For instance, in the case of the polynomial with
one free parameter, its testing error is equal to the sum of the squared distances between
the test points and the trained horizontal line.

Naively, we could expect that the model with the highest number of parameters performs
better on both the training and testing sets. Let us verify this expectation. The results
of the training and testing of the three polynomial models are illustrated in Figure 4.2,
while their training and testing errors are provided in Table 4.1. As we expected, the
higher the complexity of the model (the number of free parameters), the smaller the
training error. Intuitively, the higher the number of free parameters, the better a model
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1 degree 3 degrees 6 degrees

Training error 0.9 0.1 0

Testing error 0.4 0.3 2

Table 4.1 – Training and testing errors that the three polynomials with one, three and six free
parameters made on the training and testing sets, respectively.

can adapt itself to fit a set of points. For example, in the case of the polynomial with six
free parameters, it is always possible to find a curve passing through six training points,
therefore its training error is equal to zero.

Let us now look at the testing error. Is it what we expected? Partially yes. In fact the
polynomial with three parameters did better than the one with one parameter. Since
the data follow a curvy line, the horizontal line is not complex enough to replicate the
curvy behavior that underlies the true relation. This phenomenon is called underfitting.
However, if we look at the performance of the polynomial with six parameters, the result
does not meet our expectation. Indeed, the complex model performed worse than the
model with one parameter. This raises the questions: why did the complex model perform
so badly on the testing set? Why did it perform even worse than the simplest model?
The answer lies in the noise. Since the data are characterized by a certain amount of
noise, the complex model detected in the noise patterns that do not exist, which caused
its failure on the testing set. This phenomenon is called overfitting. Let us properly
summarize the phenomena of underfitting and overfitting.

Underfitting. This phenomenon occurs when the complexity of the model is too low as
compared to the complexity of the to-be-estimated function. This discrepancy in
complexity produces the inability for the model to entirely capture the underlying
pattern of the data. Models with fewer parameters tend to underfit the data.

Overfitting. This phenomenon occurs when a model captures the noise of the data along
with their underlying structure. Models with higher parameters tend to overfit the
data.

The testing errors in Table 4.1 can be decomposed into two separate sources of error.
Indeed, the expected squared error between the true relation and the approximated one
can be decomposed into bias and variance [GBD92], [KW97], [LS08], [Mun+10] (we
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refer the readers to Box 4.1 for a mathematical description of the bias-variance error
decomposition).

Bias. The bias represents the difference between the average prediction of the model
and the value determined by the true relation. This type of error is caused by too
simplistic model assumptions as compared to the complexity of the true function.
Simple models that are unable to capture the underlying patterns of the data
entirely (underfitting) tend to have a high bias. Thus, on one hand, models with a
high bias do not produce great predictions but only good ones. However, on the
other hand, their predictions are consistently good. In other words, the quality
of their predictions is moderately affected when a new set of training points is
considered.

Variance. The variance indicates the variability of the predictions of the model. This
type of error is due to either the large amount of noise in the data, or to the limited
size of the training set. The higher the amount of noise in the data, the higher the
variance of the model. Inversely, the smaller the size of the training data, the higher
the variance of the model. Models with a higher complexity as compared to that
of the true function tend to have a high variance. Models with high variance are
more likely to capture the noise in the training data (overfitting), which leads to
great performance on training data but highly variable performance on test data
(predictions could be good sometimes and bad other times).

Ideally, a good model would have low bias, capturing all the relevant information in the
data, and low variance, avoiding to detect patterns in the noise. However in general,
models with low bias have high variance whereas models with low variance have high
bias. This impossibility to minimize both errors simultaneously is called the bias-variance
trade-off. Therefore, a good model is characterized by balanced bias-variance errors. The
polynomial with three parameters presented in the example above represents a balanced
model.

There are two main approaches to select the model that both provides a good account
of the data and is characterized by balanced bias-variance errors. The first approach
consists in estimating the parameters of the model and testing them on different sets of
observations. Examples include the hold-out, the k-fold, and the leave-p-out methods
(i.e., cross-validation methods). An alternative approach to model selection involves
using probabilistic statistical measures that attempt to quantify both the complexity of
the model and its performance on the training dataset. Examples include the Akaike
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and Bayesian Information Criterion (AIC and BIC), and the Minimum Description Length
(MDL). To conclude, a commonly accepted principle is the Occam’s Razor (also called
principle of parsimony) which states that “one should not increase, beyond what is
necessary, the number of entities required to explain anything” (see also [PM02]).

Considerations about the studied categorization models

Let us clarify two important points that could increase the risk that the selected catego-
rization models overfit the data. The first point is that categorization models (learning
models in particular) have such a complex structure that their number of parameters does
not necessarily correspond to the dimension of the space of their attainable predictions.
The second point is that model predictions are expressed in terms of probability (the
probability of classifying stimuli into category A or B), whereas the data are expressed
in terms of binary responses (1 when participants classified stimuli into category A, 0
otherwise). Therefore, the inherent noise in the data can be very high, especially when
the model predicts the classification probability to be in the surroundings of 0.5. To recap,
the selected categorization models are at risk of overfitting the data. In the next section,
we describe the approach we adopted to limit the risk of overfitting the data.

BOX 4.1 Bias-Variance Error Decomposition

Let us assume that an independent variable X affects the value of a dependent one
Y via the following formula:

Y = f(X) + ε,

where f is an unknown function and ε is a random variable. Let us suppose that
we have a training set Dn consisting of a set of points x1, . . . ,xn as well as their
associated values y1, . . . , yn:

Dn = {(x1, y1), . . . , (xn, yn)} .

By means of the training set Dn and some learning algorithm, we find a function
f̂Dn(x) that approximates as well as possible the function f(x) in the training
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points Dn. The expected squared difference between the real function and the
approximated one on an unseen sample x can be decomposed as follows:

EDn

[(
f(x)− f̂Dn(x)

)2
]

=
(

EDn

[
f̂Dn(x)

]
− f(x)

)2
+ EDn

[
f̂Dn(x)

2
]
−EDn

[
f̂Dn(x)

]2
= Bias(f̂)2 + Var(f̂).

Let us detail the proof of the above identity. For convenience, we abbreviate f(x)
with f , f̂Dn(x) with f̂ and we drop the Dn subscript on our expectation operators.
We have that:

E

[(
f − f̂

)2
]
= E

[(
f − f̂ + E[f̂ ]−E[f̂ ]

)2
]

= E

[(
f −E[f̂ ]

)2
]
+ E

[(
E[f̂ ]− f̂

)2
]

+ 2 E
[(

E[f̂ ]− f̂
) (
f −E[f̂ ]

)]
=
(
f −E[f̂ ]

)2
+ E

[(
E[f̂ ]− f̂

)2
]

+ 2 E
[
E[f̂ ]− f̂

] (
f −E[f̂ ]

)
=
(
f −E[f̂ ]

)2
+ E

[(
E[f̂ ]− f̂

)2
]

= Bias(f̂)2 + Var(f̂).

In the previous proof we used the following two facts:

i. Since f −E[f̂ ] is deterministic, then E

[(
f −E[f̂ ]

)2
]
=
(
f −E[f̂ ]

)2
.

ii. E
[
E[f̂ ]− f̂

]
= E[f̂ ]−E[f̂ ] = 0.

4.2 Visual Representation of Models

The selected models are very complex, either because of their intricate structure, or
because of their high number of parameters, or even both. These characteristics lead to
two main issues.
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On one hand, the intricate structure makes unclear whether or not the number of
parameters reflects the dimension of the space of their attainable predictions. For
instance, in the OGCM, the integration of the ordinal dimension might allow distinct
parameters to generate identical predictions. Without this information it is an issue to
determine whether the spaces of their predictions overlap or not. Incidentally, this issue
represents the reason why it is not advisable to use criteria as the Akaike Information
Criterion (AIC), the Bayesian Information Criterion (BIC), or equivalent criteria to select
the model that best describes the data. Since these criteria penalize models on the basis
of their number of parameters, there is a high risk to unfairly penalize some models (this
concept will be better described in Section 4.4).

On the other hand, the large number of parameters can result in identifiability issues. An
example is represented by both the linear and exponential versions of ALCOVE-S. The
fact that the number of parameters of these models exceeds the dimension of the search
space (i.e. the number of learning and transfer items) makes the function associating
the parameters with the probabilities non-injective. Identifiability issues can have a great
impact on the estimation of the parameters of the models (as we will see in Section 4.3).
In view of the above, we considered that a preliminary visualization of the models was
warranted.

Models generate different classification probabilities, depending on the values of their free
parameters. Yet, there could be probability patterns that are attainable for some models
but not for others. For instance, patterns in which the category A items are classified into
category A with a low probability can only be reached by the Generalized Context Model
in highly limited border cases. Indeed, the probability of classifying a category A item
into category A takes the form 1+εA

1+εA+εB , where εA represents the summed similarities
between the considered stimuli and the other category A stimuli and εB represents the
summed similarities between the considered stimuli and the other category B stimuli.
The two quantities εA and εB have usually the same magnitude, leading the classification
probability to be greater than 0.5.

The aim of this section is to investigate the way the spaces of the predictions of the
models are interconnected. Although the static variants of the learning models were not
used to analyze the transfer phase of Experiment I, they have been nonetheless included
in this analysis.
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4.2.1 Principal Component Analysis (PCA)

The description of the procedure is given for transfer models (learning models will
be studied in Chapter 5). Let M ∈ M be a transfer model and θM ∈ ΘM its set of
parameters. The items of the classification task (training and transfer) are denoted by
ξ1, . . . , ξN . Given a set of parameters, the probability that the model classifies stimuli
ξ1, . . . , ξN into category A can be computed. Thus, each set of parameters θM can
be associated with a vector including the probability that the model classifies stimuli
ξ1, . . . , ξN into category A as follows:

gM : ΘM −→ [0, 1]N (4.1)

θM 7−→ P θMM =
(

P
θM
M (A | ξ1) , . . . , P

θM
M (A | ξN )

)
.

The vector P θMM is called the probability pattern associated with the model M and the
value θM (we underline that the probability patterns also depend on the categories of
the classification tasks). The spaces of the predictions of the models can be studied by
analyzing the image gM (ΘM ) of each model M ∈ M. Let us describe the steps of this
analysis.

Step #1

The first step consists in randomly choosing l sets of parameters for each model M ∈M.
The selected sets of parameters are denoted by θ1

M , . . . θlM (for each M ∈M).

Step #2

The second step consists in computing (for each model M) the probability patterns
P
θiM
M = gM (θiM ) associated to the selected set of parameters θiM (i = 1, . . . , l).

Step #3

The third and last step consists in applying the Principal Component Analysis technique
(see Box 2.9) to the table composed of the l× |M| probability patterns. Each probability
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pattern P
θiM
M (for i = 1, . . . , l and M ∈M) represents a row of the table. This step allows

the visualization of the predictions of the models on a 2D-plan.

PROCEDURE SUMMARY 4.1 Principal Component Analysis (PCA)

Objective: To investigate the probability patterns (i.e., the probability of classifying
stimuli into category A) that are attainable for the categorization models.

#1. Randomly select a choice of sets of parameters for each of the considered
models.

#2. For each considered model and for each set of parameters, compute the prob-
ability pattern associated to the model and the set of parameters (i.e. the
probability of classifying the items into category A, given the model and the
specific set of parameters).

#3. Apply the Principal Component Analysis (PCA) to the table composed of all the
probability patterns.

4.2.2 Simulated Transfer Data Analysis

In this subsection, the procedure previously described (Procedure Summary 4.1) is
applied to both the transfer models and the static versions of the learning models.

Technical Aspects

i. The analysis included the following models: the GCM, the GCM-Lag, the three
versions of the OGCM (OGCM-T, OGCM-L, and OGCM-M), both the linear and
exponential versions of the static variant of the Component-Cue model (Component-
CueL-S and Component-CueE-S), and both the linear and exponential versions of
the static variant of ALCOVE (ALCOVEL-S and ALCOVEE-S).

ii. The studied categories were the 5-4 category set of Experiment I (see Figure
2.1). Moreover, the probability pattern included the classification probability of all
training and transfer items of Experiment I (N = 16).
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iii. A total of 20 000 sets of parameters per model was considered (i.e., l = 20 000).
Each set was randomly chosen among those respecting the constraints of the models.

Results

Figure 4.3a and 4.3b show three different planes of the PCA resulting from the appli-
cation of Procedure Summary 4.1 to the considered models. The linear versions of the
learning models produced similar results to those obtained considering the exponential
versions. Therefore, the linear versions were not included in the graphs to avoid their
overburdening. The position of a set of relevant probability patterns is highlighted in
both figures to facilitate the interpretation of the graphs. The highlighted probability
patterns are the following (a visual description of the patterns is equally given in Figure
4.3a, on the bottom; the word “pattern” is omitted to avoid cluttering):

Pattern A. Both learning and transfer items are classified into category A, regardless of
their effective category.

Pattern B. Both learning and transfer items are classified into category B.

Pattern C. Learning items are classified into their effective category (i.e., category A
items into category A and category B items into category B), while transfer items
are associated with a probability of 0.5 (i.e., random classification).

Pattern D. Learning items are classified into their opposite category (i.e., category A
items into category B and category B items into category A), while transfer items
are associated with a probability of 0.5 (i.e., random classification).

Pattern E. Both learning and transfer items are randomly classified. They are both
associated with a probability of 0.5.

Pattern F. Learning items are classified into their effective category (i.e., category A
items into category A and category B items into category B), while transfer items
are classified into category A.

Pattern G. Learning items are classified into their effective category (i.e., category A
items into category A and category B items into category B), while transfer items
are classified into category B.
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Pattern H. Learning items are classified into their effective category (i.e., category A
items into category A and category B items into category B), while transfer items
are classified according to the rule-based classification (i.e., all gray items into
category A, while all blue items into category B).

Pattern I. Learning items are classified into their effective category (i.e., category A
items into category A and category B items into category B), while transfer items
are classified according to the similarity-based classification (i.e., the classification
is established on the basis of the category membership of the closest items).

The analysis of the planes of the PCA showed four groups of models manifesting a similar
behavior.

First group. The first group of models included the static variants of the learning models
(i.e., the Component-CueE-S, the Component-CueL-S, the ALCOVEE-S, and the
ALCOVEL-S). These models seemed to be capable to attain every probability pattern.
Indeed, they generated a variety of patterns ranging from patterns in which all
items are classified into a single category (i.e., patterns A and B) to patterns in
which learning items are either classified into their effective category (i.e., patterns
C, F , G and H), or into their opposite category (i.e., pattern D). The large number
of parameters of these models produced highly variable probability patterns.

Second group. The second group only included the GCM-Lag. This model occupied a
smaller area as compared to the previous models. The attainable patterns of the
model seemed to be those in which learning items are correctly classified (i.e., the
correct probability is greater than 0.5). Indeed, the GCM-Lag is unable to reach
patterns in which learning items are incorrectly classified (i.e., the triangle between
patterns A, B and D). Additionally, the patterns generated by the GCM-Lag always
included those generated by the GCM (which is plausible since the GCM-Lag is an
extension of the GCM).

Third group. The third group included both the GCM and the OGCM-T. These models
were capable to attain a smaller variety of patterns as compared to the GCM-Lag.
The spreading of their patterns was restrained to patterns in which learning items
are correctly classified (i.e., the correct probability is greater than 0.5) and transfer
items are randomly classified. The GCM and the OGCM-T were unable to reach
either patterns in which learning items are incorrectly classified (i.e., pattern D),
or patterns in which learning items are correctly classified and transfer items are
classified in one single category (i.e., patterns F and G). Additionally, the patterns
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generated by the OGCM-T always included those generated by the GCM (which is
plausible since the OGCM-T is an extension of the GCM).

Forth group. The forth group included both the OGCM-L and the OGCM-M. Their pat-
terns were similar to those of the previous group (see Figure 4.3a and 4.3b, on the
top). However, in some planes of the PCA these models reached a larger variety
of patterns (see Figure 4.3b, on the bottom). Additionally, the patterns generated
by both the OGCM-L and OGCM-M always included those generated by the GCM
(which is plausible since they are both an extension of the GCM).

The PCA analysis led us to the conclusion that the connection between the number of
parameters of the studied models and the dimension of the space of their predictions is
not straightforward. For instance, the GCM-Lag and the OGCM-T have the same number
of parameters but the spreading of their patterns is different.
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Figure 4.3a – Result of the Principal Component Analysis (PCA) applied to probability patterns of the
studied transfer models. The patterns refer to the 5-4 category set of Experiment I (transfer items
included). On the top, the projection of the probability patterns on the first and second components
(there is a total of 20 000 patterns per model). On the bottom, some relevant probability patterns.
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Figure 4.3b – Result of the Principal Component Analysis (PCA) applied to probability patterns of the
studied transfer models. The patterns refer to the 5-4 category set of Experiment I (transfer items
included). On the top, the projection of the probability patterns on the second and third components.
On the bottom, the projection on the fourteenth and fifteenth components. There is a total of 20 000
patterns per model.
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4.3 Parameter Estimation

The Maximum Likelihood Estimation (MLE) is the method we adopted to estimate the
parameters of the models. Under certain conditions (including the identifiability) the
maximum likelihood estimator is consistent. However, not all the studied models are
identifiable (as seen in the introduction to the previous section). For instance, the OGCM
could generate the same probability patterns for two distinct sets of parameters because
of the interference of the presentation order. This issue requires us to evaluate the
consistency of the estimates using computer simulations. Firstly, we briefly describe the
MLE procedure, and secondly, we examine how to validate the consistency of the MLE on
simulated data.

4.3.1 Maximum Likelihood Estimation (MLE) by Gradient Descent

The method that was used to estimate the parameters of the models is the Maximum Like-
lihood Estimation (MLE) [Ald97]. This technique consists in estimating the parameters
of the models by maximizing its likelihood, evaluated on some observed data. Again, the
likelihood measures the goodness-of-fit of a model to the observed data as a function of its
parameters. Therefore, the parameters that maximize the likelihood are the parameters
with which the model is more likely to generate the observed data.

Remark 4.1. To find the parameters that maximize the likelihood is equivalent to find the
parameters that minimize the opposite of the logarithm of the likelihood (the logarithm
is a monotonically increasing function).

θ̂ ∈ arg max
θ∈Θ

LM (D ; θ) ⇐⇒ θ̂ ∈ arg min
θ∈Θ

{− logLM (D ; θ)}

However, from a computational point of view, minimizing the opposite of the logarithm of
the likelihood is easier than maximizing the likelihood. Indeed, i) there are a larger num-
ber of algorithms implementing function minimization rather than function maximization,
and ii) the application of the logarithm transforms the products in the likelihood (see
Subsection 3.1.1) into sums, which are more convenient. Therefore, the minimizing the
opposite of the logarithm of the likelihood was preferred to the maximization of the
likelihood. �

4.3 Parameter Estimation 155



To find the parameters that maximize the likelihood of the models we used the procedure
described below.

PROCEDURE SUMMARY 4.2 MLE by means of the Gradient Descent Algorithm

Objective: To find the set (or sets) of parameters θ̂ ∈ Θ that minimizes the opposite of
the logarithm of the likelihood of a model M , evaluated on some observed data D:

θ̂ ∈ arg min
θ∈Θ

{− logLM (D ; θ)} .

#1 Minimize the opposite of the logarithm of the likelihood (evaluated on some
observed data) using the gradient descent algorithm (see Box 4.2). The gradient
descent algorithm is initialized at a random initial condition.

#2 Recover the parameters associated to the minimum.

#3 Iterate Step #1 and #2 several times considering different initial conditions for
the gradient descent algorithm to avoid local minima. Let us denote by θ̂1, . . . , θ̂l
the parameters associated with the maxima resulting from the application of
the gradient descent algorithm l times.

#4 Select the smallest minimum and determine the set of parameters θ̂ associated
with the latter:

θ̂ ∈ arg min
i=1,...,l

{
− logLM (D ; θ̂i)

}
.

BOX 4.2 Gradient Descent Algorithm

Gradient descent is a first-order iterative optimization algorithm for finding the
local minimum of a differentiable function. The way this algorithm approaches a
local minimum is by taking steps proportional to the negative of the gradient of the
function at the current point. Since the gradient gives the direction of the highest
increase of the function, following the negative of the gradient allows approaching
a local minimum. Gradient descent was originally proposed by Cauchy in 1847.
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Let us briefly illustrate how the gradient descent algorithm works. Let us consider
a differentiable function f(x). The algorithm starts with a guess x0 for the local
minimum of f and builds up the sequence x0,x1,x2, . . . such that

xi+1 = xi − λi∇f(xi),

for all i ≥ 0. The convergence of the sequence to a local minimum is strictly
dependent on the value of the constants λi ∈ R+. With certain assumptions on
the function f (for example convex or Lipschitz) and particular choices of λi, the
convergence is guaranteed.

4.3.2 Validation of the Maximum Likelihood Estimation

As seen in the introduction to this section, the consistency of the MLE is not guaranteed
when models are not identifiable. In this subsection, we describe the procedure used to
express the accuracy of the parameter estimation as a function of the size of the dataset
(the description is given for transfer models). The procedure is composed of the following
steps.

Step #1

Let M ∈ M be a transfer model. The first step consists in randomly choosing a value
θ ∈ Θ for the parameters of the model M (this value will be used to generate the
observations on which the estimation will be performed).

Step #2

The second step consists in generating the observations used for the estimation, given
the model and the choice of parameters. Let us assume that the simulated dataset is of
size n. Thus, a sequence of n stimuli x(i) ∈ {ξ1, . . . , ξN} is considered. Each stimulus is
selected from a set of learning and transfer items denoted by E = {ξ1, . . . , ξN}. Using
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the sequence of stimuli, n observations z(1), . . . , z(n) are generated, given the model M
and the value θ. Each observation z(i) is a realization of Z(i) such that

Z(i) ∼ B
(

Pθ
M

(
A |x(i)

))
.

The observations z(1), . . . , z(n) represent the simulated sequence of responses.

Step #3

The third step consists in performing the maximum likelihood estimation (Procedure
Summary 4.2) on the previously generated observations to find the parameters θ̂ that
satisfy the following condition:

θ̂ ∈ arg min
θ∈Θ

{
− logLM (z(1), . . . , z(n) ; θ)

}
.

Step #4

The last step consists in computing the relative error between the generator parameter
and the estimated parameter,

θ− θ̂
|θ|

,

as well as the error between the probability pattern computed with the generator param-
eter and the one computed with the estimated parameter,

Pθ
M (A | ξi)−Pθ̂

M (A | ξi) ,

for i = 1; . . . ,N . This procedure is iterated with different values of n and θ.

PROCEDURE SUMMARY 4.3 Validation of the MLE

Objective: To evaluate the accuracy of the MLE as a function of the size of the dataset.

#1. Randomly select a value for the parameters of the considered model.
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#2. Select the size of the dataset on which the estimation is performed and generate
a corresponding number of observations, given the model and the choice of
parameters.

#3. Perform the maximum likelihood estimation (Procedure Summary 4.2) on the
previously generated dataset to estimate the parameters of the model.

#4. Evaluate the difference between the generator parameter and the estimated
one as well as the difference between the probability pattern obtained with the
generator parameter and the estimated one.

4.3.3 Simulated Transfer Data Analysis

In this subsection, Procedure Summary 4.3 is applied to transfer models in order to
evaluate the accuracy of the MLE as a function of the size of the dataset.

Technical Aspects

i. The analysis included the following models: the GCM, the GCM-Lag and the three
versions of the OGCM (OGCM-T, OGCM-L, OGCM-M).

ii. The studied categories were the 5-4 category set of Experiment I. All 16 learning
and transfer items were considered.

iii. The accuracy of the estimation was tested on datasets characterized by the following
lengths: 10, 40, 80, 120 and 160 blocks of 16 items. For each length, the procedure
was iterated 100 times (the generator parameter was randomly selected each time).

iv. The gradient descent algorithm in the MLE was performed 10 times, each time
starting from a random starting point.

Results

Figure 4.4 shows the relative error between the generator parameter and the estimated
one, as a function of the size of the dataset, the model, and its parameters. The different
transfer models are displayed on the columns, while their parameters are displayed on
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Figure 4.4 – Box-plots representing the relative error of the maximum likelihood estimation on
simulated transfer data, as a function of the size of the data, the studied transfer model, and its
parameters. The relative error is defined as the difference between the generator parameter and the
estimated one divided by the absolute value of the generator parameter. The box-plots were computed
across 100 iterations and the generator parameter was randomly chosen at each iteration. The same
items and categories of Experiment I were considered. The gradient descent algorithm in the MLE was
performed 10 times.
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Figure 4.5 – Box-plots representing the error between the probability pattern computed with the
generator parameter and the one computed with the estimated parameter (on simulated transfer
data), as a function of the size of the data, the transfer model, and the items. The box-plots were
computed across 100 iterations and the generator parameter was randomly chosen at each iteration.
The same items and categories of Experiment I were considered. The plot involves the first 8 items of
Experiment I (the last 8 are shown in Figure 4.6). Items are denoted using the same notation as in
Figure 2.1. The gradient descent algorithm in the MLE was performed 10 times.
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Figure 4.6 – Box-plots representing the error between the probability pattern computed with the
generator parameter and the one computed with the estimated parameter (on simulated transfer
data), as a function of the size of the data, the transfer model, and the items. The box-plots were
computed across 100 iterations and the generator parameter was randomly chosen at each iteration.
The same items and categories of Experiment I were considered. The plot involves the last 8 items of
Experiment I (the first 8 are shown in Figure 4.5). Items are denoted using the same notation as in
Figure 2.1. The gradient descent algorithm in the MLE was performed 10 times.
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the rows. All relative errors (with some exceptions from the 10-blocks estimation) were
centered around zero. Moreover, the variability of the relative error decreased as the
number of blocks increased. There was no significant difference between the models.
The parameter estimation seemed to be accurate when the size of the dataset is equal to
or greater than 40 blocks.

Figure 4.5 and 4.6 show the error between the probability pattern computed with the
generator parameter and the one computed with the estimated one, as a function of
the size of the data, the model, and the item. The transfer models are displayed on the
columns, while the items are displayed on the rows. The items are denoted using the
same notation as in Figure 2.1. Again, the errors were overall centered around zero and
their variability decreased as the number of blocks increased. Moreover, different items
were not affected in the same way. For instance, the error on item B1 was small, while
the one on item T4 was high. The error on learning items was generally smaller than the
error on transfer items. There was no significant difference between the models. The
estimation of the probability patterns seemed to be accurate when the size of the dataset
was equal to or greater than 10-40 blocks.

4.4 Model Selection

A main approach to select the model that provides the best account of the data without
overfitting them consists in using probabilistic statistical criteria such as the Akaike
Information Criterion (AIC) or the Bayesian Information Criterion (BIC). These criteria
prevent the risk of overfitting the data by penalizing the models on the basis of their
number of parameters. The higher the number of parameters of a model, the higher
its penalization. This penalization is fair when the number of parameters of a model
corresponds to the dimension of its space of predictions. However, it is not clear whether
the selected models meet this condition (see the analysis in Section 4.2). Therefore,
cross-validation methods were preferred to probabilistic statistical criteria since their
penalization does not involve the number of parameters of a models.

Two different cross-validation methods were used, depending on the nature of the models
(i.e., learning or transfer). The k-fold cross-validation was used to compare transfer
models, while the hold-out method (the simplest kind of cross-validation technique) was
used to compare learning models. Since learning models are characterized by dependent
observations (i.e., dependent random variables), no other cross-validation method was
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adapted to this condition (further explanation will be given in Chapter 5). Conversely,
the independence of the observations of transfer models enabled the use of more stable
cross-validation methods. To recap, the choice to adopt two different cross-validation
methods was motivated by the wish to use a more robust technique when it was licit.
Since the k-fold cross-validation rely on the hold-out method, both methods are described
in this chapter.

4.4.1 Hold-Out Method

The hold-out method is the simplest kind of cross-validation. It consists in separating the
data in two sets: one that is used to estimate the parameters of the models and the other
that is used to evaluate its predictions. Let us describe the hold-out method in detail. For
the sake of simplicity, the description is given for transfer models.

Step #1

Let M be a transfer model and D a data-set. The first step consists in splitting the data-set
into two sets: a training set DL that is used to estimate the parameters of the model, and
a testing set DT that is used to quantify the difference between the predictions of the
model and the real values. The use of two distinct sets prevents the risk that the model
overfits the data.

Step #2

The second step consists in estimating the parameters of the model M by maximizing
the likelihood LM evaluated on the training set DL (i.e., MLE). The maximum likelihood
estimate θ̂ is found by means of Procedure Summary 4.2.

Step #3

Once the set of parameters have been estimated, they are used to determine the predic-
tions of the model on the testing set. More precisely, for each stimulus of the testing set
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x(t) ∈ DT the probability of classifying the stimulus into category A (given M and θ̂) is
computed:

Pθ̂
M

(
A |x(t)

)
.

Step #4

The last step consists in computing the goodness-of-fit of the model on the testing set.
We quantify the accuracy of the predictions in two ways: by considering either the Sum
of Squared Deviations (SSD) or the likelihood. Let us detail both criteria.

Sum of Squared Deviations (SSD). The first criterion consists in summing across the
testing set the squared difference between the prediction of the model and the real
value (i.e., the participants’ responses). Mathematically speaking, the sum of the
squared deviations is given by:

ESSD =
∑

x(t)∈DT

(
Pθ̂
M

(
A |x(t)

)
− z(t)

)2
, (4.2)

where z(t) is the response given by the participant for the classification of the
stimulus z(t). In mathematics, the SSD is usually called least-squares contrast.

Likelihood. The second criterion consists in using the likelihood of the model to deter-
mine how much the model is likely to generate the testing set when the parameter
is fixed at θ̂. The higher the likelihood, the higher the probability that the testing
set was produced by the model. The use of the opposite of the logarithm of the
likelihood was preferred to the likelihood (see Remark 4.1). Thus, the evaluation
of the model using the likelihood is given by:

EL = − logLM (DT ; θ̂). (4.3)

The two criteria are largely used both in mathematics and psychology. In mathematics,
the use of the likelihood is generally preferred, especially when the parameter estimation
is performed using the MLE. Conversely, in psychology, the use of the sum squared
deviations is more popular than the likelihood. Here a selection of studies using the SSD:
[CG19; NKM92; Nos+94; Nos+18; Pal99]. Both criteria were adopted to simultaneously
provide a more robust evaluation and allow a continuity with previous studies.
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PROCEDURE SUMMARY 4.4 Hold-Out Method

Objective: To quantify how accurately a model reproduced a data sample.

#1. Split the data sample into training and testing sets.

#2. Perform the maximum likelihood estimation (MLE) on the training set to
estimate the parameters of the model (Procedure Summary 4.2).

#3. Use the previously estimated parameters to compute the model predictions on
the testing set.

#4. Evaluate the predictions of the model on the testing set using both the sum
squared deviations (SSD) and the likelihood.

4.4.2 k-Fold Cross-Validation

The k-fold cross-validation represents one way to improve over the hold-out method. It
consists in splitting the data in k sets and applying the hold-out method k times. Each
time, a different set is used as the testing set and the remaining k− 1 sets are used as
the training set. Since the k-fold cross-validation is reasonably straightforward once the
hold-out method is understood, it is only described by means of the framework below
(the description is given for transfer models).

PROCEDURE SUMMARY 4.5 k-Fold Cross-Validation

Objective: To quantify how accurately a model reproduces a data sample. This
cross-validation method is generally more stable than the hold-out method.

Let M be a transfer model and D a data-set, the k-fold cross-validation is composed
of the following steps:

#1. Split the data-set D in k sets. Consider one of them as the testing set and the
k− 1 remaining sets as the training set.
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#2. Apply the hold-out method (Procedure Summary 4.4) to the considered training
and testing sets. Store the evaluation of the goodness-of-fit of the model
expressed in terms of SSD or likelihood.

#3. Repeat the process until all k sets serve as the testing set. Since the data-set
has been separated into k sets, the hold-out method is repeated k times (each
time using a different set as the testing test).

#4. Average the k recorded evaluations resulting from the repetitions of the hold-out
method. The averaged result represents the final evaluation of the goodness-of-
fit of the model.

4.4.3 Validation of the k-Fold Cross-Validation

Since the description of the k-fold cross-validation is completed, we could be tempted
to apply the technique to experimental data directly. Let us imagine this situation for a
moment. Let us say that the result of the application of the k-fold cross-validation to a
data sample shows that the best fit is provided by a certain model. Does this mean that
the experimental data have been generated by the model that best fits them? Or, at least,
does this mean that (among the considered models) the model with the best evaluation
is the one having the highest probability to be the generator model? At this stage, we are
not able to answer these questions.

The aim of this subsection is to investigate whether the transfer models are identifiable via
the k-fold cross-validation. If models are not identifiable, even the more robust method
would fail at identifying them. In what follows, we describe the procedure we used to
determine whether the transfer models were identifiable via the k-fold cross-validation.
Let M ∈M be a transfer model and θM its parameter.

Step #1

The first step consists in generating a set of data, according to the model M and the value
of its parameters θM . In more detail, given the sequence of items x(1), . . . ,x(n) and its
corresponding sequence of feedback v(1), . . . , v(n), a sequence of responses z(1), . . . , z(n) is
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generated. This sequence of responses satisfy the following condition: z(i) is a realization
of

Z(i) ∼ B
(

P
θM
M

(
A |x(i)

))
.

The sequence of responses generated with the model M is denoted by DM .

Step #2

Once the set of observations DM have been generated, the second step consists in
determining the model (among the models of M) that best fits the data sample DM using
the k-fold cross-validation. In detail, Procedure Summary 4.5 is applied to data sample
DM for each m ∈M. By applying this procedure, the evaluations of the models on DM

using both the SSD and the likelihood are computed for each m ∈M. The evaluations
are denoted by Em,M

SSD and Em,M
L .

Step #3

The last step consists in comparing the evaluations obtained in the previous step. Our
hope is that the k-fold cross-validation detected the model with which the data sample
have been generated. In other words, we hope that the model that generated the
observations is the model with the smallest evaluation:

arg min
m∈M

Em,M
SSD

?
∈M or arg min

m∈M
Em,M
L

?
∈M

These three steps are iterated multiple times to give a statistical significance to the study.

PROCEDURE SUMMARY 4.6 Validation of the k-Fold Cross-Validation

Objective: To verify whether the k-fold cross-validation (Procedure Summary 4.5) is
able to detect the model (among a set of models) that generated the simulated data.

#1. Select a model from a set of models and chose a value for its parameters.
Generate a data sample according to the selected model and value of parameter.
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#2. Apply the k-fold cross-validation (Procedure Summary 4.5) to the previously
generated data sample for each model of the set of models.

#3. Compare the evaluations of the models. Determine whether the k-fold cross-
validation detected the generative model.

4.4.4 Simulated Transfer Data Analysis

In this subsection, Procedure Summary 4.6 is applied to transfer models to determine
whether the k-fold cross validation is able to detect the model underlying the simulated
observations.

Technical Aspects

i. The set of models M included the following models: the GCM, the GCM-Lag, and
the three versions of the OGCM (OGCM-T, OGCM-L, and OGCM-M).

ii. Since the aim was to validate the results of the k-fold cross-validation applied to
the transfer phase of Experiment I, the same sequence of stimuli as in the transfer
phase of Experiment I was considered. The number of blocks of the simulated
dataset was equal to 5 blocks × 43 participants.

iii. A 5-fold cross-validation was used. We anticipate that the 5-fold is the type of k-fold
that will be applied to Experiment I.

iv. The parameters used to simulate the responses are the average parameters resulting
from the MLE during the application of the 5-fold to the transfer phase of Experiment
I.

v. The procedure was iterated 100 times. Thus, for each model, 100 sequences of re-
sponses associated with the sequence of stimuli of the transfer phase of Experiment
I were generated. A 5-fold was applied to each sequence of responses.

vi. At each MLE, the gradient descent algorithm was performed 10 times, each time
starting from a random starting point.
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Figure 4.7 – Validation of the k-fold cross-validation (Procedure Summary 4.6) on simulated data
having the same features as Experiment I. The graph shows the number (and percentage) of times
that the considered models obtained the lowest evaluation (by using the SSD or the likelihood),
giving a specific simulated data sample. The procedure was iterated 100 times. We adopted a 5-fold
cross-validation. Models are evaluated with both the SSD and the likelihood.

170 Chapter 4 General Methodology and Application to Transfer Analysis



36%

19%

45%

33%

16%

51%

46%

10%

44%

37%

20%

43%

9%

7%

63%

12%

10%

10%

7%

67%

7%

8%

9%

5%

12%

65%

9%

15%

2%

7%

68%

8%

22%

65%

13%

21%

64%

14%

GCM winner GCM−LAG winner OGCM−L winner OGCM−M winner OGCM−T winner
S

S
D

 criterion
Likelihood criterion

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

P
er

ce
nt

ag
e

Type of Data GCM Data OGCM−M Data OGCM−L Data OGCM−T Data GCM−LAG Data

Figure 4.8 – Validation of the k-fold cross-validation (Procedure Summary 4.6) on simulated data
having the same features as Experiment I. The graph shows the percentage of times that the simulated
data were actually generated by the model that has the lowest evaluation (by means of the SSD or
the likelihood). The procedure was iterated 100 times. We adopted a 5-fold cross-validation. Models
are evaluated with both the SSD and the likelihood.
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Results

The results of the application of Procedure Summary 4.6 to transfer models on simulated
data having the same features as Experiment I are shown in Figure 4.7 and 4.8. The first
graph shows the number (and percentage) of times that the considered models obtained
the lowest evaluation (by using the SSD or the likelihood), giving a specific simulated
data sample. The second graph adopts a different prospective and shows the percentage
of times that the simulated data were actually generated by the model that has the lowest
evaluation (by means of the SSD or the likelihood). Although the two graphs give a
complementary insight on the identifiability of the models via the 5-fold method, the
second graph is more useful to interpret the results on experimental data.

The criterion with which the models were evaluated did not remarkably affect the results.
The most identifiable models were the OGCM-L and the OGCM-M (their data were
correctly identified 84-91% of time), followed by the OGCM-T (their data were correctly
identified 61-64% of time), the GCM (their data were correctly identified 42-49% of
time), and the GCM-Lag (their data were correctly identified 13-22% of time). Moreover,
the OGCM-L data were misidentified as OGCM-M data 9-15% of time (and conversely).
The OGCM-T data was most often misidentified as GCM data, the GCM data was most
often misidentified as GCM-Lag data, and the GCM-Lag data was most often misidentified
as GCM data.

Let us now analyze Figure 4.8. When the model with the lowest evaluation was either
the OGCM-L, or the OGCM-M, or the OGCM-T, then it was the generative model with
a probability of 63-68%. Conversely, when the model with the lowest evaluation was
either the GCM or the GCM-Lag, then it was the generative model with a probability of
37-51%.

Moreover, when the model with the lowest evaluation was either OGCM-L or OGCM-M,
then the generative model was a model that accounts for the order during the learning
phase 75-77% of the time. When the model with the lowest evaluation was the OGCM-T,
then the generative model was a model that accounts for the order during the transfer
phase 85-87% of the time. Finally, when the model with the lowest evaluation was the
GCM-Lag, then the generative model was a model that accounts for the order during the
transfer phase with a probability of 45-50%.
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SSD -logL c ω1 ω2 ω3 ω4 ωO

GCM 93.1 293.8 7.6 0.22 0.2 0.37 0.21 -

GCM-Lag 93.1 293.8 7.6 0.21 0.19 0.37 0.2 0.03

OGCM-L 92 290.7 7.4 0.17 0.14 0.36 0.15 0.17

OGCM-M 91.4 288.9 7.3 0.16 0.13 0.36 0.14 0.21

OGCM-T 92.9 293.5 7.7 0.2 0.19 0.37 0.19 0.06

Table 4.2 – Goodness-of-fit of the transfer models and average estimated parameters resulting from
the application of a 5-fold (Procedure Summary 4.5) to the transfer phase of Experiment I. Model
were evaluated by means of both the SSD the likelihood.

4.5 Experimental Transfer Data Analysis

The aim of this chapter is to apply the k-fold (more specifically, the 5-fold) to the transfer
models on the transfer phase of Experiment I. The 5-fold was applied three times: the
first time to all participants, the second time only to participants in the rule-based order,
and the third time only to participants in the similarity-based order.

Technical Aspects

i. The analysis included the following models: the GCM, the GCM-Lag, and the three
versions of the OGCM (OGCM-T, OGCM-L, and OGCM-M).

ii. A 5-fold cross-validation was used.

iii. At each MLE, the gradient descent algorithm was performed 10 times, each time
starting from a random starting point.

Results

Application of the 5-fold to all participants. The goodness-of-fit of the transfer models
to the transfer phase of Experiment I are shown in Table 4.2. The OGCM-M is the
model with the lowest evaluation with both criteria (SSD and likelihood). The analysis
performed in the previous section ensures that the OGCM-M is the generative model with
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a probability of 65-68%. Moreover, it ensures that the generative model is a model that
accounts for the order received during the learning phase (i.e., OGCM-L or OGCM-M)
with a probability of 75-77%. Table 4.2 also shows the estimated parameters of the
models averaged on the 5 hold-outs that compose the 5-fold. The attention-weight that
regulates the ordinal dimension was not negligible in both the OGCM-L and OGCM-M
(ωO = 0.17 for the OGCM-L and ωO = 0.21 for the OGCM-M). This shows that the
integration of the stimuli order received during the learning phase allowed both models
to better reproduce performance. Conversely, in both the GCM-Lag and the OGCM-T, the
attention-weight that regulates the ordinal dimension was negligible (ωO = 0.03 for the
GCM-Lag and ωO = 0.06 for the OGCM-T), showing that the integration of the stimuli
order received during the transfer phase did not allow both models to better describe the
data.

Figure 4.9 (on the top) shows the variation across the 5 hold-outs of both the evaluation
criteria and the estimated parameters, as a function of the model. The values of both
the SSD and likelihood evaluations are similar across models. Similarly, the values of
the estimated parameters are similar across models, except for the attention-weight
parameter that regulates the ordinal dimension. Again, its value was negligible for the
GCM-Lag and the OGCM-T. Finally, ω3 was the attention-weight parameter with the
highest value. This is not surprising since the third dimension (which is associated to
the color, see Figure 2.1) is the feature dimension that allows participants to reach the
highest proportion of correct responses.

Finally, Figure 4.10a and 4.10b (first column on both graphs) shows the predictions
of the models as a function of the items. The learning items are displayed in Figure
4.10a (as rows), while transfer items are displayed in Figure 4.10b (as rows). The
participants’ transfer performance are indicated with an x-mark (they were averaged
across participants and blocks). The graph shows that all models achieved very good
quantitative predictions on both learning and transfer items. The fact that the goodness-
of-fit of the models was similar overall and that all models provided good predictions
suggests that the benefit to integrate the order received during learning is modest. Further
investigation are needed to shed light on the role of integrating stimuli manipulation on
models.

Application of the 5-fold to participants in the rule-based and similarity-based or-
ders. Figure 4.9 (in the middle and on the bottom) shows the variation across the 5
hold-outs of both the evaluation criteria and the estimated parameters, when the 5-fold
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was only applied to either participants in the rule-based order (in the middle) or par-
ticipants in the similarity-based order (on the bottom). The estimated attention-weight
parameter of the third dimension was higher for participants in the rule-based order than
for participants in the similarity-based order (especially in the OGCM-L). This means
that the models (in particular the OGCM-L and OGCM-M) detected that participants
in the rule-based order relied more on the third dimension than participants in the
similarity-based order to classify stimuli. In other words, they identified that participants
in the rule-based order adopted a rule-based strategy more often than participants in
the similarity-based order. Moreover, they detected that the performance of participants
in the rule-based order was slightly higher than the performance of participants in the
similarity-based order (the values of the estimated sensitive parameter were higher in the
graph in the middle than the graph on the bottom).

Figure 4.10a and 4.10b (second and third column) shows the predictions of the models
as a function of the items, when the 5-fold was only applied to either participants in
the rule-based order (second column) or participants in the similarity-based order (third
column). Again, the learning items are displayed in Figure 4.10a (as rows), while transfer
items are displayed in Figure 4.10b (as rows). The participants’ transfer performance
are indicated with an x-mark (they were averaged across participants and blocks). The
OGCM-L and OGCM-M seems to be the models that best adapted their predictions to the
stimuli manipulation received by participants. However, all models achieved very good
quantitative predictions on both learning and transfer items.
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(b) Participants following a rule-based study.
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(c) Participants following a similarity-based study.

Figure 4.9 – Box-plots representing the values of the SSD evaluation, the likelihood evaluation, and
the estimated parameters during the application of the 5-fold cross-validation on the transfer phase
of Experiment I. The 5-fold was applied three times: to all participants (on the top), to participants
in the rule-based order (in the middle), and to participants in the similarity-based order (on the
bottom).
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Figure 4.10a – Predictions of the transfer models on the transfer phase of Experiment I, as a function
of the items. The 5-fold was applied three times: to all participants, to participants in the rule-based
order, and to participants in the similarity-based order. Only learning items are displayed. The
participants’ transfer performance are indicated with an x-mark. Both the predictions of the models
and the participants’ performance were averaged (the first across the 5 hold-outs and the second
across participants).
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Figure 4.10b – Predictions of the transfer models on the transfer phase of Experiment I, as a function
of the items. The 5-fold was applied three times: to all participants, to participants in the rule-based
order, and to participants in the similarity-based order. Only transfer items are displayed. The
participants’ transfer performance are indicated with an x-mark. Both the predictions of the models
and the participants’ performance were averaged (the first across the 5 hold-outs and the second
across participants)
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TO SUM UP Advanced Inference Method and Application to Transfer Models

The aim of this chapter is twofold. On one hand, to develop a general and robust
inference method to compare models. On the other hand, to apply this inference
method to transfer models to determine the model that best describes the transfer
phase of Experiment I.

Visual Representation of Models

Because of the complexity of the models, we estimated that a preliminary visualiza-
tion of the models was warranted. This analysis investigated the spreading of the
predictions of the transfer models using the Principal Component Analysis (PCA).
The static variant of the learning models were also included. The results showed that
the transfer models occupied a limited region of the prediction space, while the static
variant of the learning models covers the prediction space entirely. The GCM-Lag
was the transfer model with the greatest spreading, while the other transfer models
had predictions with a similar variability.

Parameter Estimation

The parameters of the models were estimated by means of the Maximum Likelihood
Estimation (MLE) and the MLE was implemented using the gradient descent algo-
rithm. Since the unclear identifiability of the transfer models did not guarantee the
consistency of the MLE, the accuracy of the estimation was evaluated on simulated
data. The analysis showed that the parameter estimation seemed to be accurate from
40 blocks, while the estimation of the classification probability seemed to be accurate
from 10-40 blocks.

Model Selection

Because of the unclear correspondence between number of parameters and dimension
of the prediction space, cross-validation methods were preferred to probabilistic
statistical criteria such as BIC or AIC. The k- fold was used to compare transfer
models, while the hold-out was used to compare learning models. The evaluation
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of the model was performed using both the Sum Squared Deviations (SSD) and the
likelihood. A preliminary validation of the identifiability of the transfer models via
the k-fold was necessary to allow us to evaluate the results on experimental data.
The results showed that when the model with the lowest evaluation was either the
OGCM-L, or the OGCM-M, or the OGCM-T, then it was the generative model with a
probability of 63-68%. Conversely, when the model with the lowest evaluation was
either the GCM or the GCM-Lag, then it was the generative model with a probability
of 37-51%.

Experimental Transfer Data Analysis

The 5-fold cross validation was applied to transfer models to determine the model
that best describes the transfer phase of Experiment I. The transfer model that best
fits the transfer phase of Experiment I was the OGCM-M, while the second model was
the OGCM-L. The estimated attention-weight parameter that regulates the ordinal
dimension was not negligible in both the OGCM-M and OGCM-L, showing that the
information provided by the ordinal dimension was relevant for the classification.
Conversely, the estimated ordinal attention-weight parameter was negligible in both
the OGCM-T and GCM-Lag. However, the goodness-of-fit of the models was similar
overall and all models provided good predictions. Finally, the separate application of
the 5-fold to participants in the rule-based and similarity-based orders showed that
i) the models (in particular the OGCM-L and OGCM-M) detected that the majority
of the participants in the rule-based order adopted a rule-based strategy, and ii) the
OGCM-L and OGCM-M seemed to be the models that best adapted their predictions
to the stimuli manipulation.
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Transfer or learning performance of ALCOVE and Component-Cue have been evaluated
in the literature [CMB93; GB88a; GB88b; GBH89; Kru92; LN02; Nos+94; Pal99; RR04;
SE15]. However, only a limited number of studies have compared the performance
of ALCOVE and Component-Cue on a same classification task [NKM92]. For example,
Nosofsky [NKM92] evaluated the context model, ALCOVE, and Component-Cue on two
experiments: the first that partially replicated and extended the probabilistic classification
learning paradigm of Gluck and Bower [GB88a], and the second that extended the
classification learning paradigm of Medin and Schaffer [MS78]. Nosofsky found that only
the exemplar-based network (i.e., ALCOVE) achieved good quantitative predictions of
the learning and transfer data in both experiments.
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Goals

In view of the above, the first goal of the present chapter is to further investigate the
comparison between ALCOVE and Component-Cue. The inference method developed in
the previous chapter (see Chapter 4) is here applied to learning models to determine the
one that best describes both Experiment I and Experiment II data-sets.

The second goal is to investigate whether the distinct network architecture of ALCOVE
and Component-Cue (indeed, the nodes of the networks code items in the case of ALCOVE
and features in the case of Component-Cue) is related to the within-category presentation
order (i.e., rule-based and similarity-based). Again, although ALCOVE and Component-
Cue integrate the same error-driven mechanism, they express two different learning
strategies: a similarity-based strategy for ALCOVE and an induction strategy (i.e., a rule-
based strategy) for Component-Cue. Therefore, one plausible hypothesis is that ALCOVE
would better reproduce the performance of participants adopting a similarity-based
strategy (as compared to those adopting a rule-based strategy), while Component-Cue
would better reproduce the performance of participants adopting a rule-based strategy
(as compared to those adopting a similarity-based strategy). Moreover, since it has been
shown that participants in the rule-based order usually exhibit generalization patterns
consistent with rule-based retrieval (i.e., they adopted a rule-based strategy) [MF16], our
intuition is that Component-Cue would be more adapted to participants in the rule-based
order. Conversely, ALCOVE would be more adapted to participants in the similarity-based
order.

Outline of this chapter

Firstly, we provide a visual representation of both the predictions and learning curves of
the learning models. Secondly, we evaluate the consistency of the Maximum Likelihood
Estimation (MLE) as a function of the size of the dataset when learning models are
considered. Then, we recall the cross-validation technique that was adopted to compare
learning models. Finally, we apply this cross-validation technique to determine the
learning model that best describes the data in Experiment I and II, and we investigate the
relation between the studied models and the within-category order.

Note: The mathematical difference between learning and transfer models implied small
modifications in both the inference method and its formalization. Firstly, since learning
models can also account for the learning dynamics, the predictions of the model during the
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learning phase were also analyzed. Secondly, since the description of the inference method
was given for transfer models (see Chapter 4), few modifications were implemented.

5.1 Visual Representation of Models

The non-independence of the predictions of the learning models (due to the error-driven
mechanism) adds complexity to the already intricate context (unclear correspondence
between the number of parameters and the dimension of the prediction space, large
number of parameters, etc.). Therefore, we considered that a preliminary visualization of
the learning models would have helped to better understand their behavior.

The analysis is organized in two parts. The first part aims to analyze the predictions of the
models after a period of training (i.e., the predictions during the transfer phase), while
the second part aims to analyze the learning curves of the models (i.e., the predictions
during the learning phase).

5.1.1 Simulated Transfer Data Analysis

In this subsection, Procedure Summary 4.1 is adapted to learning models and applied to
them. Since the predictions of the learning models depend on the stimuli and feedback
used to train them, this dependency has to appear in the computation of the probability
patterns. Let us say that the model has been trained on n stimuli. Therefore, the function
gM in Equation 4.1 is modified as follows:

gM : ΘM −→ [0, 1]N

θM 7−→ P θMM =
(

P
θM
M (A | ξ1,Hn) , . . . , P

θM
M (A | ξN ,Hn)

)
,

where Hn represents the n stimuli and feedback on which the model has been trained
(i.e., the history of the process as defined in Section 3.1). In other words, the predictions
of the models during the transfer phase depend on the n stimuli and feedback that the
model received during the training.
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Technical Aspects

i. The analysis included the following models: Component-CueL, Component-CueE,
ALCOVEL and ALCOVEE.

ii. The studied categories were the 5-4 category set of Experiment I (see Figure
2.1). Moreover, the probability pattern included the classification probability of all
training and transfer items of Experiment I (N = 16).

iii. The models were previously trained on 10 random blocks of 9 (learning) items, i.e.
n = 9 stimuli ×10 blocks = 90 stimuli.

iv. A total of 20 000 sets of parameters per model was considered (l = 20 000). Each
set was randomly chosen among those respecting the constraints of the models.

Results

Figure 5.1a and 5.1b shows three different planes of the PCA resulting from the application
of the modified Procedure Summary 4.1 to learning models. The position of a set of
relevant probability patterns is highlighted in both figures to facilitate the interpretation
of the graphs. Since the studied categories were the same as those considered in the
visual representation of the transfer models (see Section 4.2), the same set of relevant
patterns was used. A visual description of the relevant patterns is given in Figure 5.1a
(on the bottom), while a verbal description can be found in Subsection 4.2.2.

The analysis of the PCA planes showed that the learning models are nested. The following
hierarchy is observed (starting from the model with the smallest spreading): Component-
CueL, Component-CueE, ALCOVEL and ALCOVEE. The ALCOVE models (i.e., exponential
and linear versions) attained a larger range of probability patterns as compared to
the Component-Cue models (i.e., exponential and linear versions). This is probably
due to the fact that ALCOVE has a greater number of parameters as compared to the
Component-Cue.

Moreover, the linear versions attained a more limited range of probability patterns as
compared to the exponential versions. Although the linear and exponential versions
have the same number of parameters, the exponential version is richer in variability
as compared to the linear version. This is due to the distinct role of the parameters
associated to each version (see Remark 3.8). This argument goes in the direction of the
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Figure 5.1a – Principal Component Analysis (PCA) planes resulting from the application of the
modified Procedure Summary 4.1 to learning models. The patterns refer to the 5-4 category set of
Experiment I (transfer items included). On the top, the projection of the probability patterns on the
first and second components. The models were trained on 10 blocks of 9 stimuli. A total of 20 000
patterns per model were considered. On the bottom, some relevant probability patterns.
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Figure 5.1b – Principal Component Analysis (PCA) planes resulting from the application of the
modified Procedure Summary 4.1 to learning models. The patterns refer to the 5-4 category set of
Experiment I (transfer items included). On the top, the projection of the probability patterns on the
second and third components. On the bottom, the projection on the third and forth components. The
models were trained on 10 blocks of 9 stimuli. A total of 20 000 patterns per model were considered.
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non-correspondence between number of parameters and dimension of the prediction
space (Section 4.2).

Learning models were unable to reach patterns in which learning items are classified
into their opposite category (i.e., pattern D). This in probably due to the error-driven
mechanism. Indeed, the updating mechanism is tailored to increase the probability to
correctly classify the current item (see Subsection 3.3.1 and 3.3.2). Therefore, although
the updating could decrease the probability to correctly classify other items, it necessarily
benefits the current item. This prevents the model to reach totally incorrect patterns. The
same analysis conducted on the categories of Experiment II found similar results.

5.1.2 Simulated Learning Data Analysis

In this subsection, we analyze the predictions of the learning models during the learning
phase, which are called learning curves. More specifically, the aim is to determine how
the parameters of the models influence the learning curves. For this purpose, both a high
and a low values of each parameter are considered to detect changes in the learning
curves.

Technical Aspects

i. The analysis included the following models: Component-CueL, Component-CueE,
ALCOVEL and ALCOVEE.

ii. The studied categories were the 5-4 category set of Experiment I (see Figure 2.1).
Since the investigation involved the learning phase, only the 9 learning items were
considered.

iii. The models were trained on 50 random blocks of 9 learning items, i.e. n = 50
blocks × 9 learning items = 450 stimuli.

iv. The values of the parameters used to compute the learning curves of Figure 5.2a
and 5.2b are shown in Table 5.1. We recall that the parameters of ALCOVEE are
c, φ, λω and λw; those of ALCOVEL are c, b, λω and λw; those of Component-CueE

are λw and φ; and those of Component-CueL are λw and b.
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HIGH LOW

c λω λw b φ c λω λw b φ

PARAMETERS λω, λw

ALCOVEE 5 .5 1 - 5 5 .005 .01 - 5

ALCOVEL 5 .5 1 1 - 5 .005 .01 1 -

Component-CueE - - .5 - 5 - - .005 - 5

Component-CueL - - .5 1 - - - .005 1 -

PARAMETER c

ALCOVEE 10 .005 .01 - 1 .5 .005 .01 - 1

ALCOVEL 10 .005 .01 1 - .5 .005 .01 1 -

PARAMETER φ

ALCOVEE 5 .005 .01 - 10 5 .005 .01 - 1

Component-CueE - - .005 - 10 - - .005 - 1

PARAMETER b

ALCOVEL 5 .005 .01 3 - 5 .005 .01 1 -

Component-CueL - - .005 3 - - - .005 1 -

Table 5.1 – List of parameters used to produce Figure 5.2a and 5.2b. Both a high and a low values of
each parameter were selected. The changing parameters are highlighted in bold letters.

Results

Figure 5.2a and 5.2b show how a high or low parameter influence the learning curves.
The magnitude of the parameter (i.e., high or low) is displayed on the columns, while
the models including the parameter are displayed on the rows. The graphs highlight the
category membership of the stimuli: in dark blue stimuli belonging to category A and in
light blue stimuli belonging to category B. The x-axis represents the number of learning
blocks, while the y-axis represents the probability of classifying the current stimulus into
category A. Therefore, learning occurs when the category A probability of dark blue
stimuli approaches 1 and the one of light blue stimuli approaches 0. Let us analyze the
way each parameter affects the shape of the learning curves.
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Figure 5.2a – Variations of learning curves depending on the value of the parameters. A high and low
values of each parameter is selected for the models including the parameter (the other parameters
were fixed). The list of parameters used are shown in Table 5.1.
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Figure 5.2b – Variations of learning curves depending on the value of the parameters. A high and low
values of each parameter is selected for the models including the parameter (the other parameters
were fixed). The list of parameters used are shown in Table 5.1.

190 Chapter 5 Application of the Advanced Inference Method to Learning Models



Parameters λω and λw. The value of the parameters λω and λw influenced the variability
of the learning curves (we recall that these parameters correspond to the magnitude
of the steps during the gradient descent algorithm). High values produced highly
variable learning curves, while low values produced well-defined learning curves.

Parameter c. The value of the parameter c seemed to alter both the variability of the
learning curves and the value of the classification probability. More specifically, high
values of c produced learning curves with small variability and high probability to
correctly classify the stimuli. Conversely, low values of c produced learning curves
with high variability and smaller probability to correctly classify the stimuli (as
compared to the high values). This is plausible since the parameter c regulates the
perception of the stimuli similarity.

Parameter φ. The value of the parameter φ affected the values of the classification
probability. High values amplified the value of the classification probability. There-
fore, increasing the value of φ increased or reduced the classification probability,
depending whether the classification probability was greater or smaller than 0.5.

Parameter b. The value of the parameter b allowed the model to shrink the classification
probability to a limited area centered around 0.5. The higher the value of b, the
higher the compression of the learning curves to a limited area.

5.2 Parameter Estimation

As seen in the previous chapter (see Section 4.3), the consistency of the maximum
likelihood estimation is not guaranteed when models are not identifiable. Because of the
complex architecture of learning models, it is unclear whether it is possible to recover
the values of their parameters from an infinite number of observations (i.e., whether
the models are identifiable). Moreover, the fact that the predictions of learning models
depend on the stimuli and feedback received before the current time warrants even more
the need to evaluate the consistency of the MLE.
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5.2.1 Simulated Learning Data Analysis

In this subsection, the accuracy of the maximum likelihood estimator as a function of
the size of the dataset is evaluated. The procedure used on transfer models (Procedure
Summary 4.3) is adapted to learning models and applied to them. Let us describe the
variations in the procedure. In Step #2, the probability of classifying a stimulus into
category A is also dependent on the past. Therefore, instead of Pθ

M

(
A |x(i)

)
, we have:

Pθ
M

(
A |x(i),Hi−1

)
,

where Hi−1 denotes the sequences of stimuli and feedback until time i− 1. Similarly, in
Step #4 instead of Pθ

M (A | ξi), we have

Pθ
M (A | ξi,Hn) ,

with Hn denoting the sequences of stimuli and feedback received during the whole
learning phase (n represents the number of stimuli of the learning phase).

Technical Aspects

i. The analysis included the following models: Component-CueL, Component-CueE,
ALCOVEL and ALCOVEE.

ii. The studied categories were the 5-4 category set of Experiment I (see Figure 2.1).
Since the investigation involved the learning phase, only the 9 learning items were
considered.

iii. The accuracy of the estimation was tested on datasets characterized by the following
lengths: 10, 40, 80, 120 and 160 (random) blocks of 9 items. For each length,
the procedure was iterated 100 times (the generator parameter was different each
time). The generator parameter was randomly selected among those generating
well-defined learning curves.

iv. The gradient descent algorithm in the MLE was performed 10 times, each time
starting from a random starting point.
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Figure 5.3 – Box-plots representing the relative error of the maximum likelihood estimation on
simulated learning data, as a function of the size of the data-set, the studied learning model, and its
parameters. The relative error is defined as the difference between the generator parameter and the
estimated one divided by the absolute value of the generator parameter. The box-plots were computed
across 100 iterations and the generator parameter was randomly chosen at each iteration among
those generating well-defined learning curves. The same items and categories of Experiment I were
considered. The gradient descent algorithm in the MLE was performed 10 times.
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Figure 5.4a – Box-plots representing the error between the final probability pattern computed with
the generator parameter and the one computed with the estimated one (on simulated learning data),
as a function of the size of the data-set, the learning model, and the items. The box-plots were
computed across 100 iterations and the generator parameter was randomly chosen at each iteration
among those generating well-defined learning curves. The same items and categories of Experiment I
were considered. The plot involves the first 8 items of Experiment I (the last 8 are shown in Figure
5.4b). Items are denoted using the same notation as in Figure 2.1. The gradient descent algorithm in
the MLE was performed 10 times.
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Figure 5.4b – Box-plots representing the error between the final probability pattern computed with
the generator parameter and the one computed with the estimated one (on simulated learning data),
as a function of the size of the data-set, the learning model, and the items. The box-plots were
computed across 100 iterations and the generator parameter was randomly chosen at each iteration
among those generating well-defined learning curves. The same items and categories of Experiment I
were considered. The plot involves the last 8 items of Experiment I (the first 8 are shown in Figure
5.4a). Items are denoted using the same notation as in Figure 2.1. The gradient descent algorithm in
the MLE was performed 10 times.
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Results

Figure 5.3 shows the relative error between he generator parameter and the estimated
one, as a function of the size of the learning data-set, the learning model, and its
parameters. The learning models are displayed on the columns, while their parameters
are displayed on the rows. As the number of blocks increased, the variability of the
relative error decreased and the average relative error was closer to 0. The accuracy
of the estimation seemed to be highly dependent on whether the exponential or linear
version was considered.

Exponential versions. With the exception of the parameter λω, the parameter estimation
seemed to be accurate when the size of the dataset was equal to or greater than 80
blocks.

Linear versions. The accuracy of the estimation on the linear versions was not as good
as the one on the exponential versions. The estimation of the parameter b seemed
to be accurate when the size of the dataset was equal to or greater than 40 blocks,
while the estimation of the other parameters (with the exception of λω) needed
160 blocks to be accurate.

Figure 5.4a and 5.4b show the error between the ending probability pattern computed
with the generator parameter and the one computed with the estimated parameter, as
a function of the size of the learning data-set, the learning model, and the item. The
learning models are displayed on the columns, while the items are displayed on the rows.
Items are denoted using the same notation as in Figure 2.1. Again, as the number of
blocks increased, the variability of the error decreased and the average error was closer to
0. Moreover, the probabilities at the end of the learning phase were accurately estimated,
although some inaccuracies in the parameter estimation. The probability estimation
seemed to be accurate when the size of the dataset was equal to or greater than 40
blocks.

5.3 Model Selection

In the previous chapter, we mentioned in multiple occasions (see Section 4.2 and 4.4)
why cross-validation methods were preferred to probabilistic statistical criteria such as
AIC or BIC. Indeed, cross-validation methods prevent the risk of overfitting the data
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without penalizing the models on the basis of their number of parameters. The hold-out
method is the cross-validation method that was selected to compare learning models.
Since the predictions of the learning models are dependent on the entire learning process,
the hold-out method is the only cross-validation method adapted to this condition. Let us
describe why more robust and sophisticated cross-validation methods are inaccessible.

The learning models predict the category membership of stimuli on the basis of previous
feedback. The fact that the predictions are not independent makes it difficult to apply the
MLE to non-contiguous observations. Let us give an example to describe the obstacles that
emerge from the application of the MLE on non-contiguous (and dependent) observations.
Let us suppose that only one every two observations is accessible. With a transfer model,
the MLE is easily computed because of the independence of the predictions. However, with
a learning model, the computation of the MLE requires to take into account all possible
values of all unseen observations. Given n unseen observations and p possible values for
each observation, pn values have to be computed. Therefore, the computational cost is
the main obstacle to the implementation of the MLE on learning models. Although there
are multiple techniques that allow the reduction of the computational cost, the hold-out
method offered the best compromise in terms of computational cost and robustness.

5.3.1 Hold-Out Method

The hold-out method was described in Subsection 4.4.1. However, the method is adapted
here to learning models. In Step #3, the probability of classifying a stimulus into category
A is dependent on the past. Therefore, instead of P

θM
M

(
A |x(i)

)
, we have:

P
θM
M

(
A |x(i),Hi−1

)
,

where Hi−1 denotes the sequences of stimuli and feedback until time i− 1. Similarly, the
probability is dependent on the past also in Step #4 (Equation 4.2).

5.3.2 Validation of the Hold-Out Method

In the previous chapter, we emphasized on the importance of establishing whether the
models are identifiable via the selected cross-validation method. The procedure that was
applied to learning models to evaluate whether models are identifiable via the hold-out

5.3 Model Selection 197



method is similar to the procedure applied to transfer models (Subsection 4.4.3). Let
us describe the few differences between the two procedures. Firstly, in Step #1, the
probability of classifying a stimulus into category A is dependent on the past. Secondly, in
Step #2, the hold-out method is applied instead of the k-fold cross-validation technique.

5.3.3 Simulated Data Analysis

The aim of this subsection is to determine whether learning models are identifiable via the
hold-out method using the previously described procedure. The procedure was applied to
two simulated datasets: one with the same features as Experiment I and the other with
the same features as Experiment II. To clarify our technical choices, we need to anticipate
how the hold-out method is applied to Experiment I and II. In both experiments, the
hold-out method is applied to each participant. In Experiment I, the learning phase is
used as the training set, while the transfer phase is used as the testing set. In Experiment
II, the early 80% of the learning phase is used as the training set and the remaining 20%
as the testing set.

Experiment I

Technical Aspects

i. The set of models M included the following models: Component-CueL, Component-
CueE, ALCOVEL and ALCOVEE.

ii. The same sequence of stimuli as in Experiment I was used.

iii. The hold-out method was separately applied to each participant. The learning
phase (of each participant) was used to estimate the parameters of the models,
while the transfer phase (of each participant) was used to evaluate the models.

iv. The parameters used to simulate the responses are the parameters resulting from
the application of the MLE to the learning phase of Experiment I.

v. The procedure was only iterated 20 times (to limit the computational cost). Thus,
for each model, 20 sequences of responses associated to the sequence of stimuli of
Experiment I were generated. Since Experiment I counts 43 participants, a total of
20 iterations × 43 participants = 860 hold-out methods were run.
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vi. At each MLE, the gradient descent algorithm was performed 10 times, each time
starting from a random starting point.

Results

The result of the application of the procedure to learning models on simulated data
having the same features as Experiment I is shown in Figure 5.5 and 5.6. The first graph
shows the number (and percentage) of times that the considered models obtained the
lowest evaluation (by using the SSD or the likelihood), giving a specific simulated data
sample. The second graph adopts a different prospective and shows the percentage of
times that the simulated data were actually generated by the model that has the lowest
evaluation (by means of the SSD or the likelihood). Although the two graphs give a
complementary insight on the identifiability of the models via the hold-out method, the
second graph is more useful to interpret the results on experimental data.

Let us analyze Figure 5.5. For the ALCOVE models and the exponential version of
the Component-Cue model, the choice of the criterion (i.e., SSD or likelihood) did not
remarkably affect the result. Conversely, for the linear version of the Component-Cue
model, the choice of the likelihood criterion increased the identifiability of the model.
The graph showed some important information. Firstly, Component-Cue data (i.e., both
Component-CueE and Component-CueL) were more likely to be correctly identified as
compared to ALCOVE data (i.e., both ALCOVEE and ALCOVEL). Secondly, ALCOVE data
were more often misidentified as coming from the other ALCOVE version (exponential
or linear) than as coming from the Component-Cue models. Moreover, when ALCOVE
data were misidentified as Component-Cue data, it was more likely that the version
(exponential or linear) of the generative model was the same as the selected model.
The same was true for data generated with the linear version of the Component-Cue
model. Conversely, the exponential Component-Cue data were more often misidentified
as coming from the exponential ALCOVE than as coming from the linear Component-Cue
(the linear Component-Cue is highly different from the other models).

Figure 5.6 confirmed that the Component-CueL was the most recognizable model with
almost 90% of chance to be correctly identified. The ALCOVE models had more than 80%
of chance to be recognized as such, but they were identified with the incorrect version
25% of time approximately. Conversely, the Component-CueE had higher probability to
be correctly recognized as compared to the ALCOVE models (approximately 64%-65%
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Figure 5.5 – Validation of the hold-out method on simulated data. The graph shows the number of
times the samples generated by specific models are actually recognized as such. The same sequence of
stimuli of Experiment I was used. The procedure was iterated 20 times for a total of 20 iterations
× 43 participants = 860 hold-out methods. The hold-out method was applied to each participant,
separately. The parameter estimation was performed on the learning phase, while the evaluation of
the model was performed on the transfer phase. Models are evaluated with both the SSD and the
likelihood. The gradient descent algorithm in the MLE was performed 10 times.
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Figure 5.6 – Validation of the hold-out method on simulated data. The graph shows the percentage
of times that the model with the lowest evaluation is actually the generative model of the data. The
same sequence of stimuli of Experiment I was used. The procedure was iterated 20 times for a total
of 20 iterations × 43 participants = 860 hold-out methods. The hold-out method was applied to
each participant, separately. The parameter estimation was performed on the learning phase, while
the evaluation of the model on the transfer phase. Models are evaluated with both the SSD and the
likelihood. The gradient descent algorithm in the MLE was performed 10 times.
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instead of 56%-60%), but smaller probability to be recognized as a Component-Cue,
regardless of the version (75%-78% instead of 82%-86%).

To recap, if the model that has the lowest evaluation is Component-CueL, then it is
the generative model with a probability of 87-88%. If the model that has the lowest
evaluation is Component-CueE , then it is the generative model with a probability of 64-
65%. Finally, if the model that has the lowest evaluation is either ALCOVEL or ALCOVEE ,
then it is the generative model with a probability of 57-58%.

Experiment II

Technical Aspects

i. The set of models M included the following models: Component-CueL, Component-
CueE, ALCOVEL and ALCOVEE.

ii. The same sequence of stimuli as in Experiment II was used.

iii. The hold-out method was separately applied to each participant. For each partici-
pant, the early 80% of the learning phase was used to estimate the parameters of
the models, while the remaining 20% was used to evaluate the models.

iv. The parameters used to simulate the responses are the parameters resulting from
the application of the MLE to the learning phase of Experiment II.

v. The procedure was only iterated 20 times (to limit the computational cost). Thus,
for each model, 20 sequences of responses associated to the sequence of stimuli of
Experiment II were generated. Since Experiment I counts 22 participants, a total of
20 iterations × 22 participants = 440 hold-out methods were run.

vi. At each MLE, the gradient descent algorithm was performed 10 times, each time
starting from a random starting point.
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Figure 5.7 – Validation of the hold-out method on simulated data. The graph shows the number of
times the samples generated by specific models are actually recognized as such. The same sequence of
stimuli of Experiment II was used. The procedure was iterated 20 times for a total of 20 iterations
× 22 participants = 440 hold-out methods. The hold-out method was applied to each participant,
separately. The parameter estimation was performed on the early 80% of the learning phase, while
the evaluation of the model was performed on the remaining 20%. Models are evaluated with both
the SSD and the likelihood. The gradient descent algorithm in the MLE was performed 10 times.
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Figure 5.8 – Validation of the hold-out method on simulated data. The graph shows the percentage
of times that the model with the lowest evaluation is actually the generative model of the data. The
same sequence of stimuli of Experiment II was used. The procedure was iterated 20 times for a total
of 20 iterations × 22 participants = 440 hold-out methods. The hold-out method was applied to each
participant, separately. The parameter estimation was performed on the early 80% of the learning
phase, while the evaluation of the model on the remaining 20%. Models are evaluated with both the
SSD and the likelihood. The gradient descent algorithm in the MLE was performed 10 times.
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Results

The result of the application of the procedure to the learning models on simulated data
having the same features as Experiment II are shown in Figure 5.7 and 5.8. Again, the
first graph illustrates the number (and percentage) of times that samples generated with a
specific model were actually recognized as such. The second graph shows the percentage
of times that the model with the lowest evaluation (by means of the SSD or the likelihood)
was actually the generative model of the simulated data.

Let us analyze Figure 5.7. ALCOVE data have smaller probability to be misidentified as
Component-Cue data with respect to Figure 5.5, while Component-Cue data have greater
probability to be misidentified as generated from ALCOVE models with respect to Figure
5.5.

Figure 5.8 shows that, when either the exponential or linear version of Component-Cue
has the lowest evaluation, then the probability that Component-Cue was the generative
model is 93-96%. However, the incorrect version is identified as the generative model
15-23% of the time. Conversely, when either the exponential or linear version of ALCOVE
has the lowest evaluation, then the probability that ALCOVE was the generative model
is 77-78% (with 22-26% of chances the incorrect version is chosen). To conclude, the
model that has the lowest evaluation is the generative model with an average probability
of 79% (for the Component-Cue models) and 53% (for the ALCOVE modes).

To recap, if the model that has the lowest evaluation is either Component-CueL or
Component-CueE , then it is the generative model with a probability of 77-78%. If the
model that has the lowest evaluation is either ALCOVEL or ALCOVEE , then it is the
generative model with a probability of 52-53%.

5.4 Experimental Data Analysis

The aim of this section is to apply the hold-out method (Procedure Summary 4.4) to both
Experiment I and II to determine the learning models that best fits the experimental data.
If the limited size of the transfer data was an obstacle during the comparative analysis of
transfer models, this issue is no longer relevant. The size of the learning phase allowed us
to apply the hold-out method to each participant. Thus, the data-set of each participant
was divided into training and testing sets. In Experiment I, the learning phase was used
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as the training set, while the transfer phase was used as the testing set. In Experiment II,
the early 80% of the learning phase was used as the training set and the remaining 20%
as the testing set. The choice 80-20 reflects the proportion of training-testing observations
used in the 5-fold (which is one of the most commonly used k-fold).

The section is organized in four subsections. The first two subsections are devoted
to the application of the hold-out method to both Experiment I and II. The last two
subsections are devoted to the investigation of the relation between the within-category
presentation order (rule-based vs. similarity-based) and the type of model that best fits
the experimental data (ALCOVE vs. Component-Cue).

5.4.1 Analysis of Experiment I

Technical Aspects

i. The comparison of the learning models was performed on both the learning and
transfer phases of Experiment I and involved the following models: Component-
CueL, Component-CueE, ALCOVEL and ALCOVEE.

ii. The hold-out method was applied to each participant. The learning phase was used
to estimate the parameters of the models, while the transfer phase was used to test
them.

iii. At each MLE, the gradient descent algorithm was performed 10 times, each time
starting from a different starting point. The starting points were randomly selected
from the collection of parameters satisfying the following constraints: c and φ were
between 0 and 10; b between 1 and 2; λω between 0 and 0.1; λw between 0 and 0.1
for the ALCOVE models and between 0 and 0.01 for the Component-Cue models.
These constrains ensured that the learning curves were well-defined.

Results

The result of the application of the hold-out method to Experiment I is shown in Figure 5.9
(on the top). The graph shows the number and percentage of participants that were best
fit by the learning models, depending on the selected criterion. The performance of the
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majority of the participants (66% approximately) was better reproduced by Component-
Cue rather than ALCOVE (with a dominance of the linear version when the SSD criterion
is used and a dominance of the exponential one when the likelihood criterion is used).

In Figure 5.9 (on the bottom) the result of the application of the hold-out method to
Experiment I is shown as a function of the within-category order (rule-based vs. similarity-
based). The number of participants in the similarity-based order whose performance
were best reproduced by ALCOVE was higher than the number of participants in the rule-
based order. Conversely, the number of participants in the similarity-based order whose
performance were best reproduced by Component-Cue was smaller than the number of
participants in the rule-based order (statistical analyses will be performed in Subsection
5.4.3).

Figure 5.10a and 5.10b shows the (transfer) predictions of the models as a function of
both the items and the within-category order. On the columns, the predictions of the
models of all participants, of participants in the rule-based order, and of participants in
the similarity-based order are displayed. On the rows, the items are displayed (learning
items in Figure 5.10a and transfer items in Figure 5.10b). The participants’ transfer
performance are indicated with an x-mark. Both the predictions of the models and
the participants’ performance were averaged. All models achieved good quantitative
predictions on the learning items (the Component-CueL had the worse and less extreme
predictions). On the transfer items, the accuracy of the predictions were variable. All
models were unable to account for the participants’ performance on items T1 and T6 (the
Component-CueL had the best predictions). However, they achieved good predictions
on the remaining transfer items. Component-CueL was the model that best reproduce
participants’ performance on the transfer items. Finally, the predictions of the models
were not influenced by the presentation order (all models provided similar predictions
for participants in the rule- and similarity-based order).
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Figure 5.9 – Result of the hold-out method applied to Experiment I. The graph shows the number
and percentage of participants that were best fit by the learning models, as a function of the models
(shades of blue) and the evaluation criterion (i.e., SSD and likelihood; as columns). The parameter
estimation was performed on the learning phase, while the evaluation of the model on the transfer
phase. The gradient descent algorithm in the MLE was performed 10 times. On the bottom, the result
of the hold-out method as a function of the within-category order.
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Figure 5.10a – Predictions of the learning models on the transfer phase of Experiment I, as a function
of both the items and the within-category order. Only learning items are considered. The participants’
transfer performance are indicated with an x-mark. Both the predictions of the models and the
participants’ performance were averaged.
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Figure 5.10b – Predictions of the learning models on the transfer phase of Experiment I, as a function
of both the items and the within-category order. Only transfer items are considered. The participants’
transfer performance are indicated with an x-mark. Both the predictions of the models and the
participants’ performance were averaged.
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5.4.2 Analysis of Experiment II

Technical Aspects

i. The comparison of the learning models was performed on Experiment II and
involved the following models: Component-CueL, Component-CueE, ALCOVEL and
ALCOVEE.

ii. The hold-out method was applied to each participant. The early 80% of the learning
phase was used to estimate the parameters of the models, while the remaining 20%
was used to test them.

iii. At each MLE, the gradient descent algorithm was performed 10 times, each time
starting from a different starting point. The starting points were randomly selected
from the collection of parameters satisfying the following constraints: c and φ were
between 0 and 10; b between 1 and 2; λω between 0 and 0.1; λw between 0 and 0.1
for the ALCOVE models and between 0 and 0.01 for the Component-Cue models.
These constrains ensured that the learning curves were well-defined.

Results

The result of the application of the hold-out method to Experiment II is shown in Figure
5.11. The graph shows the number and percentage of participants that were best fit
by the learning models, as a function of the models (shades of blue), the evaluation
criterion (i.e., SSD and likelihood; as columns), and the context (i.e., Random-Variable,
Random-Constant and Blocked-Constant; as rows). Almost all participants’ performance
was better reproduced by ALCOVE rather than Component-Cue (with a dominance of the
linear version when the SSD is used and a dominance of the exponential version when
the likelihood is used).

In Figure 5.12 the result of the application of the hold-out method to the Random-Variable
context is shown as a function of the within-category order (rule-based vs. similarity-
based). The other contexts are not shown since almost the totality of the participants was
best fit by ALCOVE. No relation between the type of model and the within-category order
was visible (further investigation are conducted in Subsection 5.4.4).

5.4 Experimental Data Analysis 211



7%
7%

40%

46%

32%

64%

35%

65%

6%
9%

47%

38%

50%

45%

43%

52%

SSD criterion Likelihood criterion

R
andom

−
V

ariable
R

andom
−

C
onstant

B
locked−

C
onstant

0

20

40

60

0

20

40

60

0

20

40

60

C
ou

nt
Model ALCOVEL ALCOVEE Component − CueL Component − CueE

Figure 5.11 – Result of the hold-out method applied to Experiment II. The graph shows the number
and percentage of participants that were best fit by the learning models, as a function of the models
(shades of blue), the evaluation criterion (i.e., SSD and likelihood; as columns), and the context (i.e.,
Random-Variable, Random-Constant and Blocked-Constant; as rows). The parameter estimation
was performed on the early 80% of the learning phase, while the evaluation of the model on the
remaining 20%. The gradient descent algorithm in the MLE was performed 10 times.
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Figure 5.12 – Result of the hold-out method applied to the Random-Variable context. The graph shows
the number and percentage of participants that were best fit by the learning models, as a function
of the models (shades of blue), the evaluation criterion (i.e., SSD and likelihood; as columns), and
the within-category order (i.e., rule-based vs. similarity-based; as rows). The parameter estimation
was performed on the early 80% of the learning phase, while the evaluation of the model on the
remaining 20%. The gradient descent algorithm in the MLE was performed 10 times.

5.4 Experimental Data Analysis 213



5.4.3 Rule-Based vs. Similarity-Based from a Model Perspective in
Experiment I

In Subsection 3.3.3, we mentioned that ALCOVE and Component-Cue integrate two
different strategies: a similarity-based strategy for ALCOVE and a rule-based strategy
for Component-Cue. Moreover, Mathy and Feldman [MF16] showed that participants
in the rule-based order exhibit generalization patterns that are consistent with a rule-
based strategy. In other words, the rule-based order promotes the use of a rule-based
strategy. Therefore, one plausible hypothesis is that the Component-Cue model would
better perform on participants in the rule-based order rather than on participants in
the similarity-based order, while ALCOVE would better perform on participants in the
similarity-based order rather than on participants in the rule-based order. The aim of the
present subsection is to investigate this hypothesis and determine whether the within-
category order (rule-based vs. similarity-based) is related to the type of model (ALCOVE
vs. Component-Cue). The following aspects were investigated:

Number of participants. Firstly, we analyzed whether the within-category order (rule-
based vs. similarity-based) was related to the number of participants whose re-
sponses were better predicted by a specific type of model (ALCOVE vs. Component-
Cue).

Learning times. Secondly, we examined whether the time at which participants reached
the learning criterion was related to the type of model that better predicted their
responses.

Generalization patterns. Thirdly, we explored whether the within-category order was
related to the generalization patterns of the model that better predicted the partici-
pants’ responses (and its type).

Within-category order sensitivity. Finally, we investigated whether both the learning
curves and the generalization patterns of the models were sensitive to the within-
category order.
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SSD WINNER LIKELIHOOD WINNER

ALCOVE Component-Cue ALCOVE Component-Cue

Rule-based 6 16 7 15

Similarity-based 9 12 9 12

Table 5.2 – Number of participants of Experiment I whose responses were best predicted by either
the Component-Cue models or the ALCOVE models, as a function of both the within-category order
(rule-based vs. similarity-based) and the evaluation criterion (SSD vs. Likelihood).

Number of Participants

The aim is to determine whether participants in the rule-based order were best fit by
Component-Cue and participants in the similarity-based order were best fit by ALCOVE.

Fisher’s exact test of independence. Table 5.2 shows the number of participants whose
responses were best predicted by either the Component-Cue models or the ALCOVE
models, as a function of the within-category order (rule-based vs. similarity-based) and
the evaluation criterion (SSD vs. Likelihood). Component-Cue best fits a higher number
of participants in the rule-based order as compared to participants in the similarity-based
order. Conversely, ALCOVE best fits a higher number of participants in the similarity-
based order as compared to participants in the rule-based order. A Fisher’s exact test of
independence was performed on the SSD and likelihood tables, separately (see Table
5.2). The tests were not significant (p-value=0.35 for the SSD and p-value=0.54 for the
likelihood).

Conclusion: No significant relation was found between the within-category order and the
type of models.

Learning Times

In Subsection 2.1.2, we found that participants in the rule-based order had higher
probability to meet the learning criterion as compared to participants in the similarity-
based order. Here, we search for an (indirect) relation between within-category order
and types of models by analyzing the time at which participants reached the learning

5.4 Experimental Data Analysis 215



Winner

Component−Cue

ALCOVE

(N=28)

(N=15)

1

reference

(0.55 − 1.9) 0.927 

# Events: 43; Global p−value (Log−Rank): 0.92678 
AIC: 245.06; Concordance Index: 0.51

0.6 0.8 1 1.2 1.4 1.6 1.8 2

SSD

Winner

Component−Cue

ALCOVE

(N=27)

(N=16)

1.2

reference

(0.63 − 2.2) 0.596 

# Events: 43; Global p−value (Log−Rank): 0.59409 
AIC: 244.78; Concordance Index: 0.55

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.22.4

Likelihood

Figure 5.13 – Result of the Cox model examining the influence of the type of winning model on the
rate at which participants reached the learning criterion, for both evaluation criteria (SSD on the top
and likelihood on the bottom). The technique was applied to the winning models resulting from the
application of the hold-out method to Experiment I. ALCOVE is the reference condition with a hazard
ratio of 1, while Component-Cue is the opposite condition. The numbers within the brackets represent
the 95% confidence interval. The number on the right side of the graph is the p-value of the Wald test
assessing the significance of the model.

criterion. The aim is to determine whether participants whose responses were best
predicted by Component-Cue have high probability to reach the learning criterion as
compared to participants whose responses were best predicted by ALCOVE. The analysis
was conducted by means of the Cox proportional-hazards model.

Cox proportional-hazards model. The results of the application of the Cox model to
the SSD and likelihood criteria (separately) are displayed in Figure 5.13 (SSD on the top
and likelihood on the bottom). ALCOVE is the reference condition with a hazard ratio
of 1. Component-Cue has an identical hazard ratio when the SSD is considered, and a
slightly higher hazard ratio when the likelihood is considered. However, in both cases
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the Cox model was not significant (p-value=0.927 for the SSD and p-value=0.596 for
the likelihood), showing no relation between the type of winning models and the hazard
rate.

Conclusion: No relation was found between the type of winning model and the hazard
rate. Therefore, no indirect relation was detected between the type of winning model
and the within-category order.

Generalization Patterns

In Subsection 2.1.3, we performed a test investigating the influence of within-category
order on generalization patterns (i.e., the predictions of the models after a period of
training). The test showed that generalization patterns were influenced by the within-
category order and that participants in the rule-based order exhibited patterns consistent
with a rule-based retrieval. Here, we conduct a similar analysis examining the transfer
predictions of the models that best fit participants’ performance.

Principal component analysis with Wilcoxon-Mann-Whitney test. Firstly, we com-
puted the generalization patterns of the models that best reproduced participants’ perfor-
mance (only transfer items are considered). Secondly, we projected these generalization
patterns on the same plan as in Figure 2.9 (the patterns were also scaled in the same way
before the projection).

The result of these two steps are shown in Figure 5.14, where the projection of the
generalization patterns are displayed as a function of the winning model and the within-
category order. On the first component, participants in the rule-based order are mostly
located in the right side of the graph, while participants in the similarity-based order are
mostly located in the left side of the graph (as in Figure 2.9). The one-sided Wilcoxon-
Mann-Whitney performed on rule- and similarity-based participants detected a significant
difference in location (p-value=0.04), showing that the winning models were able to
capture the difference in generalization patterns between rule-based and similarity-based
participants.

Moreover, almost all Component-Cue winners were located on the right side of the graph,
while almost all ALCOVE winners were located on the left side of the graph. Again, the
one-sided Wilcoxon-Mann-Whitney test confirmed that the difference in location was
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Figure 5.14 – Result of the investigation of the influence of within-category order on generalization
patterns. The graph shows the probability patterns of the winning models projected on the same
components of Figure 2.9, as a function of both the winning model (on Experiment I) and the
within-category order. In the probability patterns only transfer items were considered. The density
functions of the points as a function of the within-category order are also displayed.
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significant (p-value < 0.001). This shows that the generalization patterns of Component-
Cue (when Component-Cue is the model that best reproduced participants’ responses)
were consistent with a rule-based retrieval, confirming that Component-Cue performed
better on participants adopting a rule-based strategy.

Conclusion: Firstly, the winning models captured the difference in generalization patterns
between rule-based and similarity-based participants that was shown in the analysis of
Subsection 2.1.3. Secondly, the analysis confirmed that Component-Cue performed better
on participants adopting a rule-based strategy.

Within-Category Order Sensitivity

The aim of this subsection is to determine whether both the learning curves and the
generalization patterns of the learning models are sensitive to the within-category order.
To this purpose, we averaged across participants the estimated parameters of the models
and (using these parameters) we trained the models on three different sequences of
stimuli: a random sequence, a rule-based sequence, and a similarity-based sequence.

Figure 5.15a shows the learning curves of the learning models as a function of the stimuli
manipulation (Random vs. Rule-Based vs. Similarity-based) and the category membership
of the stimuli (A and B). The learning curves of Component-Cue were more sensitive to
the within-category order than the learning curves of ALCOVE.

Figure 5.15b shows the projection of the learning curves on the same plan as in Figure
5.1a, as a function of the stimuli manipulation (Random vs. Rule-Based vs. Similarity-
based) and the model. Moreover, the projection of the generalization patterns at the end
of the training are represented with triangles. Again, the learning curves of Component-
Cue were more sensitive to the stimuli manipulation than the learning curves of ALCOVE.
Both versions of Component-Cue showed distinct learning curves for different stimuli
manipulation. Conversely, both versions of ALCOVE showed distinct learning curves for
different stimuli manipulation only in the early stage of learning. Moreover, the analysis of
the generalization patterns at the end of the training shows that ALCOVE exhibited similar
generalization patterns regardless of the stimuli manipulation. Conversely, Component-
Cue exhibited distinct generalization patterns for different stimuli manipulation.

Conclusion: Component-Cue was more sensitive to stimuli manipulation than ALCOVE,
showing distinct learning curves and distinct generalization patterns at the end of the
training for different stimuli manipulation.
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Figure 5.15a – Learning curves of the learning models as a function of the stimuli manipulation
(Random vs. Rule-Based vs. Similarity-based) and the category membership of the stimuli (A and B).
The parameters used to train the models are the average (across participants) estimated parameters
obtained from the application of the hold-out to Experiment I.
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Figure 5.15b – Projection of the learning curves on the same plan as in Figure 5.1a, as a function
of the stimuli manipulation (Random vs. Rule-Based vs. Similarity-based) and the model. The
parameters used to train the models are the average (across participants) estimated parameters
obtained from the application of the hold-out to Experiment I.
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5.4.4 Rule-Based vs. Similarity-Based from a Model Perspective in
Experiment II

The subsection aims to determine whether the within-category order is related to the
type of model that best fits Experiment II. Conversely to the previous subsection, only the
successful participants were investigated. Indeed, the analysis on generalization patterns
was not possible since Experiment II has no transfer phase, the one on learning times was
not possible since all observations were censored, and the analysis on the sensibility of
the models was less relevant because of the absence of a transfer phase. Additionally, the
relation between the number of unsuccessful participants and the type of winning model
was investigated.

Number of participants

A Fisher’s exact test of independence was performed to determine whether participants in
the rule-based order were best fit by Component-Cue, while participants in the similarity-
based order were best fit by ALCOVE.

Fisher’s exact test of independence. Table 5.3 shows the number of participants whose
responses were best predicted by either the Component-Cue models or the ALCOVE mod-
els, as a function of both the within-category order (rule-based vs. similarity-based), the
evaluation criterion (SSD vs. Likelihood), and the context (Random-Variable vs. Random-
Constant vs. Blocked-Constant). No relation between the within-category order and the
type of models was visible. The Fisher’s exact test of independence confirmed the lack of
relation.

Conclusion: No relation was found between the within-category order and the type of
winning model.

Number of unsuccessful participants

Here, the possibility that participants’ outcome is related to the type of winning model is
explored.
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SSD WINNER LIKELIHOOD WINNER

ALCOVE Component-Cue ALCOVE Component-Cue

RANDOM-VARIABLE

Rule-based 29 5 29 5

Similarity-based 29 5 29 5

RANDOM-CONSTANT

Rule-based 11 0 11 0

Similarity-based 10 1 10 1

BLOCKED-CONSTANT

Rule-based 23 0 22 1

Similarity-based 23 0 22 1

Table 5.3 – Number of participants on Experiment II whose responses were best predicted by either
the Component-Cue models or the ALCOVE models, as a function of both the within-category order
(rule-based vs. similarity-based), the evaluation criterion (SSD vs. Likelihood), and the context
(Random-Variable vs. Random-Constant vs. Blocked-Constant).

Fisher’s exact test of independence. Table 5.4 shows the number of participants whose
responses were best predicted by either the Component-Cue models or the ALCOVE
models, as a function of participants’ outcome (successful vs. unsuccessful), the evaluation
criterion (SSD vs. Likelihood), and the context (Random-Variable vs. Random-Constant
vs. Blocked-Constant). The Fisher’s exact test of independence was only significant for
the Random-Variable context (p-value < 0.001 for the SSD criterion and a p-value=0.004
for the likelihood criterion), showing that in this context the type of winning model was
related to the participants’ outcome.

Conclusion: A significant relation between the type of winning model and the participants’
outcome was found in the Random-Variable context. No relation was found in the
Random-Constant and Blocked-Constant contexts.

5.4 Experimental Data Analysis 223



SSD WINNER LIKELIHOOD WINNER

ALCOVE Component-Cue ALCOVE Component-Cue

RANDOM-VARIABLE

Successful 38 0 37 1

Unsuccessful 20 10 21 9

RANDOM-CONSTANT

Successful 20 0 20 0

Unsuccessful 1 1 1 1

BLOCKED-CONSTANT

Successful 36 0 36 0

Unsuccessful 10 0 8 2

Table 5.4 – Number of participants on Experiment II whose responses were best predicted by either
the Component-Cue models or the ALCOVE models, as a function of participants’ outcome (successful
vs. unsuccessful), the evaluation criterion (SSD vs. Likelihood), and the context (Random-Variable
vs. Random-Constant vs. Blocked-Constant).
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TO SUM UP Application of the Advanced Inference Method to Learning Models

The aim of the chapter is twofold. On one hand to apply the inference method
developed in the previous chapter to learning models and determine the model that
best describes both Experiment I and II. On the other hand, to investigate whether
the distinct network architecture of ALCOVE and Component-Cue is related to the
within-category order (rule-based vs. similarity-based).

Visual Representation of Models

The analysis is organized in two parts. The first part aims to analyze the predictions
of the models after a period of training, while the second part aims to analyze
the learning curves of the models. The first analysis on the predictions of the
models showed that the learning models are nested, with the Component-Cue models
included in the ALCOVE models and the linear versions included in the exponential
versions. The second analysis on the learning curves showed that high values of
λω and λw produce learning curves with a high variability; high values of c lead
to learning curves with a lower variability and a higher probability of correctly
classifying the stimuli (as compared to low values of c); high values of φ amplify the
value of the classification probability; and high value of b shrink the space of the
classification probability to a limited area centered around 0.5.

Parameter Estimation

A study aiming to validate the consistency of the MLE on simulated data was con-
ducted. The result of the analysis showed that the classification probability was
accurately estimated when the size of the dataset was equal to or greater than 40
blocks. Conversely, to accurately estimate the parameters of the models a higher
number of observations is needed (80-160 blocks depending on the parameter).

Model Selection

Learning models were compared using the hold-out method, the simplest kind
of cross-validation method. A preliminary validation of the identifiability of the
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learning models via the hold-out method was necessary. The result varied among
experiments and models. In Experiment I, the model that has the lowest evaluation
is the generative model with a probability of 88% when it is Component-CueL, with
a probability of 65% when it is Component-CueE , and with a probability of 58%
when it is either ALCOVEL or ALCOVEE . However, when only the type of the model
is considered regardless of the version, the probability that the model with the lowest
evaluation is the generative model raised to 85% (on average). In Experiment II,
the model that has the lowest evaluation is the generative model with a probability
of 76% (on average) when it is either Component-CueL or Component-CueE , and
with a probability of 52% (on average) when it is either ALCOVEL or ALCOVEE .
Again, when only the type of the model is considered regardless of the version, the
probability that the model with the lowest evaluation is the generative model raised
to 95% for the Component-Cue models and to 76% for the ALCOVE models.

Experimental Data Analysis

The section is organized in four parts. The first two are devoted to the application
of the hold-out method to both Experiment I and II. The last two are devoted to the
investigation of the relation between the within-category presentation order (rule-
based vs. similarity-based) and the type of model that best describes the experimental
data (ALCOVE vs. Component-Cue). In both experiments, the hold-out method was
applied to each participant, separately. In Experiment I, the learning phase was used
as the training set and the transfer phase as the testing set. In Experiment II, the
early 80% of the learning phase was used as the training set and the last 20% as the
testing set. The results showed that the majority of the participants in Experiment I
were best fit by Component-Cue (one of the two versions). Conversely, almost all
participants in Experiment II were best fit by ALCOVE (one of the two versions).
The relation between the within-category presentation order and the type of model
that best describes the experimental data was investigated through the following
analyses:

Number of participants with the Fisher’s exact test of independence (not signifi-
cant). This analysis aimed to determine whether the number of participants
whose responses were best predicted by a specific type of model (ALCOVE
vs. Component-Cue) was related to the within-category order. The Fisher’s

226 Chapter 5 Application of the Advanced Inference Method to Learning Models



exact test of independence was not significant in both Experiment I and Experi-
ment II.

Learning times with the Cox proportional-hazards model (not significant). This
analysis was only performed on Experiment I and investigated whether par-
ticipants whose responses were best predicted by Component-Cue had better
chances to reach the learning criterion as compared to participants whose
responses were best predicted by ALCOVE. The Cox model was not significant.

Generalization patterns with PCA and Wilcoxon-Mann-Whitney test (significant).
In the same vain as in Subsection 2.1.3, the generalization patterns of the
winning models were examined as a function of the within-category order. The
results showed a significant difference in location between the predictions of
the winning models of rule-based participants and the predictions of the win-
ning models of similarity-based participants. Moreover, a significant difference
in location between the predictions of the Component-Cue winners and the pre-
dictions of the ALCOVE winners was found. Therefore, i) the models that best
fit participants’ performance captured the difference in generalization patterns
between rule-based and similarity-based participants, and ii) Component-Cue
better reproduces participants adopting a rule-based strategy.

Within-category order sensitivity. This analysis was only performed on Experiment
I and aimed to determine whether both the learning curves and the general-
ization patterns of the learning models are sensitive to the within-category
order. The results showed that Component-Cue was more sensitive to stimuli
manipulation than ALCOVE. Indeed, it exhibited distinct learning curves and
distinct generalization patterns at the end of the training for different stim-
uli manipulations. Conversely ALCOVE showed distinct learning curves for
different stimuli manipulations only in the early stage of learning.

Number of unsuccessful participants with the Fisher’s exact test of independence
(significant in the Random-Variable context of Experiment II). This analysis
was only performed on Experiment II and explored whether the type of winning
model (ALCOVE vs. Component-Cue) was related to the participants’ outcome
(successful vs. unsuccessful). The Fisher’s exact test of independence showed
a significant relation between type of winning model and participants’ outcome
only in the Random-Variable context.
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6
Alternative Inference Method for Learning

Data

Contents
6.1 Segmentation Method with Transfer Models . . . . . . . . . . . . . . . 230

6.2 Segmentation/Clustering Method with Transfer Models . . . . . . . . 237

We mentioned in several occasions that transfer models are not able to evolve over time
(see “Ability to Learn” in Chapter 1 and Section 3.2). The lack of temporal dynamic pre-
vents transfer models to achieve good quantitative predictions during learning. However,
the following question raises: Are there statistical methods that would allow transfer
models to accurately reproduce learning? The aim of the present chapter is to investigate
two of them: the segmentation and the segmentation/clustering.

Outline of this chapter

Firstly, we describe the segmentation technique and apply it to the GCM. Secondly, we
describe the segmentation/clustering technique and, again, apply it to the GCM.
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Figure 6.1 – Example of segmentation method. The x marks represents the time series and the dotted
line represents the change-point of the series. The points belonging to the two segments in which the
data were split can be summarized with two horizontal lines (the intercept of the line is equal to the
average y value). The segmentation aims to find the number and the positions of the change-points.

6.1 Segmentation Method with Transfer Models

Among the methods that would allow transfer models to reproduce learning, one of
the firsts that comes to mind is to partition the learning process into multiple segments
and estimate the parameters of the model on these segments, separately. In a figurative
way, this would correspond to consider a step function instead of a constant function to
reproduce a (strictly) increasing or decreasing function. There are multiple techniques
that allow the effective partition of the learning process into segments. One of them is
the (off-line) segmentation method. The aim of this method is to detect abrupt changes
(also called change-points) affecting the parameters of the model. Before describing the
mathematical framework, let us give a basic example.

Example 6.1. Let us consider the time series illustrated in Figure 6.1 (the x marks).
This series is characterized by a change-point (the dotted line). More specifically, there
is an abrupt change in the statistical behavior of the points. Thus, the change-point
partitions the points into two segments, each of them grouping points with similar
statistical properties. Since the points that belong to these two segments have similar
characteristics, they can be summarized with two horizontal lines (the intercept of the
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line is equal to the average y value). The aim of the segmentation method is to detect
the number (1 in this case) and the positions of the change-points (i.e., the dotted line)
that occur in the time series. Moreover, the segmentation allows the reduction of the
information included in the time series to the position of the change-point(s) and to the
“summary” of the segments (i.e., the horizontal lines). �

6.1.1 Mathematical Framework

The description of the segmentation is given when the number of change-points is fixed.
Considerations about the selection of the number of change-points are given at the end
of the subsection.

Model. Let y1, . . . , yn be n observations and let Y1, . . . ,Yn be n random variables such
that yi is a realization of Yi (for i = 1, . . . ,n). Let us assume that the process Y1, . . . ,Yn
is affected by K abrupt changes at unknown coordinates τ = {τ1, . . . , τK} (with the
convention τ0 = 1 and τK+1 = n+ 1). The K change-points define a partition of the
observations into K + 1 segments S1, . . . ,SK+1 such that:

Sk = {yt, t ∈ [τk−1, τk)} .

According to the segmentation model, the random variables have the following distribu-
tion:

Yt ∼ f(θk) ∀t ∈ Sk,

where the parameter θk can assume an infinite number of values. In our case, the function
f assumes the following form:

f(θk) = B
(

P
θk
M

(
A |x(t)

))
,

whereM is a transfer model and x(t) is the t-th stimulus (it is associated to the observation
yt).

Goal. The goal of the segmentation method is to infer from the observed data the
positions of the change-points. More specifically, given the observed data y1, . . . , yn, the
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aim is to find τ = {τ1, . . . , τK} such that the cost of splitting the observed data into K + 1
segments is minimal:

min
τ1,...,τK

K+1∑
k=1
Cτk−1:τk .

The quantity Cτk−1 :τk represents the cost of the k-th segment and (in our case) is given by
the likelihood of the model evaluated on the segment. In more detail, the cost of the k-th
segment is defined as follows:

Cτk−1 :τk = min
θ

 ∑
j∈[τk−1,τk)

− log Pθ
M

(
A |x(j)

) . (6.1)

Algorithm. To recover the segmentation of minimal cost with K change-points, the
standard dynamic programming algorithm [AL89] is used (it is also called the segment
neighborhood algorithm). This algorithm is based on the Bellman’s principle of optimality
[BD62] according to which, if a segmentation is optimal, then any sub-segmentation of
this segmentation is also optimal. Mathematically, this principle can be expressed by the
following update rule:

Ck1:t = min
τ<t

{
Ck−1

1:τ + Cτ :t

}
, (6.2)

where Ck1:t is the cost to partition the segment {ys, s ∈ [1, t)} into k+ 1 segments and k
is a constant. The iteration of the previous update rule allows us to recover the position
of the change-points τ1, . . . , τK as well as the values θ1, . . . , θK+1. The overall time
complexity of this algorithm is O(Kn2). Indeed, the time complexity of the update rule
(Equation 6.2) is O(t) and, in order to recover CK1:n+1, the update rule has to be applied
for every t smaller than n+ 1 and every k smaller than K, which makes O(Kn2).

Choice of the number of change-points. To estimate the number of change-points
the method proposed by Lavielle in [Lav05] was implemented. The technique can be
summarized as follows: i) to examine the way the segmentation cost decreases as the
number of change-points increases, and ii) to determine the number of change-points
with which the segmentation cost ceases to decrease significantly. In other words, the
number of optimal change-points is found by looking for a break in the slope of the cost
function (an example of its application is given in the next subsection).
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6.1.2 Application to the Generalized Context Model (GCM)

The application of the segmentation method was limited to the simplest model among
the selected transfer models: the GCM. Moreover, the segmentation was only performed
on the learning phase of the Random-Constant context of Experiment II because of
time constraints. The Random-Constant context was preferred to the other experiments
because of its limited number of participants (22), which would facilitate the visualization
of the segmentation.

Technical Aspects

i. The observations consisted in the learning phase of the Random-Constant context
of Experiment II. The segmentation method was only applied to the GCM.

ii. The likelihood was only expressed as a function of the sensitive parameter c.
The attention-weight parameters were fixed and the attention was equally shared
between the dimensions.

iii. The number of change-points was fixed at 1 for every participant. The choice K = 1
was the result of the implementation of the method proposed by Lavielle. Figure
6.2 (on the top) shows its application on the observations of the Random-Constant
context of Experiment II. The graph shows the evolution of the segmentation cost
for each participant, as a function of the number of change-points. A break in the
slope of the segmentation cost is detected when the number of change-points is
equal to 1.

Results

Figure 6.2 (on the bottom) shows the application of the segmentation with exactly 1
change-point to the learning phase of the Random-Constant context of Experiment II.
All participants improved their performance over time and almost every participant
began the classification task with a low value of the sensitive parameter c (i.e., low
performance/almost random classification) and finished the classification task with a high
value of the sensitive parameter c (i.e., high/perfect performance). The two participants
with a final sensitive parameter that was smaller than 10 are the two unsuccessful
participants.
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Figure 6.2 – Application of the segmentation method to the Random-Constant context of Experiment
II. The method was separately applied on the learning phase of each participant. On the top, the
segmentation cost of each participant as a function of the number of change-points. A break in
the slope of the segmentation cost is found with 1 change-point. On the bottom, the result of the
segmentation with exactly 1 change-point.
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Figure 6.3 – Analysis of the results obtained from the application of the segmentation with exactly
1 change-point to the Random-Constant context of Experiment II. On the top, the variability of the
estimated sensitive parameter, as a function of the segment (i.e., first or second). On the middle, the
variability of the time period spent by participants on each segment (i.e., first or second). On the
bottom, the dendrogram applied to the time period spent by participants on the first segment (two
clusters are identified).
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In Figure 6.3, the results of the segmentation are analyzed. The graph on the top shows
the variability of the estimated sensitive parameter, as a function of the segments (i.e.,
first or second). The average sensitive parameter on the first segment was lower than
the average sensitive parameter on the second segment (4.4 vs. 14). This confirms the
previous affirmations regarding Figure 6.2 (on the bottom).

Figure 6.3 (on the middle) shows the time period spent by participants on each segment.
On the first segment, two clusters of participants are detected using a dendrogram (see
Figure 6.3 on the bottom): those who spent on average 10 blocks on the first segment
and those who spent on average 22 blocks on the first segment. Since the first segment
is associated with a low sensitive parameter (i.e., a low performance) and since all
participants improved their performance over time (i.e., their performance on the second
segment was better), the two clusters correspond to two groups of participants with
different learning speed (i.e., high and low learning speed). The participants who spent
less than 15 blocks on the first segment are called high-speed participants, while those
who spent at least 15 blocks on the first segment are called low-speed participants.

A Fisher’s exact test of independence was performed to determine whether the two
clusters (high-speed participants vs. low-speed participants) were related to the within-
category order (rule-based vs. similarity-based). The test was applied to Table 6.1, in
which the number of high-speed and low-speed participants is shown as a function of the
within-category order. The test was not significant (p-value=0.67), showing no relation
between participants’ speed and within-category order.

High-speed Low-speed

Rule-based 6 5

Similarity-based 4 7

Table 6.1 – Number of high-speed and low-speed participants in the first segment, as a function of the
within-category order (rule-based vs. similarity-based).
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Figure 6.4 – Illustration of the segmentation/clustering method as compared to the segmentation one.
On the left, the segmentation technique detects the optimal change-points to partition the data into
segments. On the right, the segmentation/clustering technique organizes the segments into a finite
number of clusters. For instance, the second and the third segments as well as the first and the fourth
are grouped into the same cluster because of their similar values.

6.2 Segmentation/Clustering Method with Transfer
Models

The segmentation allowed us to partition the participants’ observations into a finite
number of segments, each of them grouping observations with similar characteristics
(see Figure 6.4, on the left). Although it represents an effective solution to apply
transfer models to learning data, its application raises some issues. Firstly, the number
of observations per segment could be too small to accurate estimate the parameters.
Secondly, the segmentation method does not allow one to easily compare the participants’
learning dynamic.

The aim of the segmentation/clustering method is to address these issues. The segmen-
tation/clustering method assumes that i) the level of each segment (in our case the
value of the sensitive parameter) can only take a limited number of values, and ii) each
level is associated with a cluster. The principle of the segmentation/clustering method is
illustrated in Figure 6.4, on the right. In this example, the second and third segments as
well as the first and the fourth segments are grouped into the same cluster because of
their similar values.
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6.2.1 Mathematical Framework

The description of the segmentation/clustering model is given when the number of
change-points and the number of clusters is fixed. The selection of the number of
change-points and clusters is addressed in the last paragraph.

Model. Let s ∈ S be a participant and let ys1, . . . , ysns be his ns observations. Let
Y s

1 , . . . ,Y s
ns be ns random variables such that ysi is a realization of Y s

i (i = 1, . . . ,ns).
Let us assume that the process Y s

1 , . . . ,Y s
n is affected by K abrupt changes at unknown

coordinates τ s = {τ s1 , . . . , τ sK} (with the convention τ s0 = 1 and τ sK+1 = n+ 1). The K
change-points define a partition of the observations into K + 1 segments Ss1, . . . ,SsK+1
such that:

Ssk =
{
yst , t ∈ [τ sk−1, τ sk )

}
.

According to the segmentation/clustering model (applied to our case), the random
variables have the following distribution:

Y s
t ∼ B

(
P
θk
M

(
A |x(t),s

))
∀t ∈ Ssk,

where the parameter θk can only take P values (i.e., θk ∈ {ϑ1, . . . ,ϑP }), M is a transfer
model, and x(t),s is the t-th stimulus presented to participant s (it is associated to the
observation yst ). The quantity P denotes the number of clusters, while ϑ1, . . . ,ϑP are the
values associated to each cluster. This means that, in addition to the spatial organization
of the data in segments, a secondary organization of the segments in clusters is considered
(the clusters are the same for all participants). In our case, the clusters code different
learning performance (e.g., random classification, perfect classification, etc.) For a deeper
mathematical description of this model, we refer to [Pic+07].

Goal. The goal of the segmentation/clustering method is to infer from the observed
data the positions of the change-points and the values associated to the clusters. More
specifically, given the observed data ys1, . . . , ysns (for every s ∈ S), the aim is to find
τ s = {τ s1 , . . . , τ sK} and ϑ = {ϑ1, . . . ,ϑP } such that the cost of the segmentation is
minimal: ∑

s∈S
min

τs1 ,...,τsK

K+1∑
k=1
Cτs
k−1:τs

k
.
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The quantity Cτs
k−1:τs

k
represents the cost of the k-th segment of participant s and (in our

case) is given by the likelihood of the model evaluated on the segment. In more detail,
the cost of the k-th segment of participant s is defined as follows:

∑
s∈S

min
τs1 ,...,τsK

K+1∑
k=1

min
θ∈{ϑ1,...,ϑP }


∑

j∈[τs
k−1,τs

k
)

− log Pθ
M

(
A |x(j)

) . (6.3)

The parameter θ in Equation 6.3 can only take a limited number of values (i.e., ϑ1, . . . ,ϑP ).
Conversely, in Equation 6.1 the parameter θ could take an infinite number of values.

Algorithm. To apply the segmentation/clustering model we used a hybrid algorithm
called dynamic programming-expectation maximization (DP-EM) [Pic+07]. Since the
segmentation/clustering model combines segmentation and mixture models, the hybrid
algorithm combines dynamic programming (DP) algorithm, used with segmentation
models, and expectation maximization (EM) algorithm, used with mixture models. The
principle of the DP-EM is the following: when the values ϑ = {ϑ1, . . . ,ϑP } are known, the
position of the change-points τ s = {τ s1 , . . . , τ sK} is computed using the DP algorithm (for
each s ∈ S), and once the change-point coordinates τ s = {τ s1 , . . . , τ sK} are estimated (for
each s ∈ S), the EM algorithm is used to estimate (again) the values ϑ = {ϑ1, . . . ,ϑP }.
The DP-EM algorithm is composed of the following steps (we recall that the algorithm is
performed for a fixed number of segments K and a fixed number of clusters P ):

Step 0. Let P denote the set of P clusters. The step zero consists in associating a value
ϑp to each cluster p ∈ P.

Step 1. Given the values ϑ = {ϑ1, . . . ,ϑP }, the first step consists in finding the change-
point coordinates τ s = {τ s1 , . . . , τ sK} for each participant s ∈ S such that the cost of
the segmentation of each participant is minimal (Equation 6.3 without the external
sum across the participants). This step is performed by means of the DP algorithm.

Step 2. The second step consists in considering all of the segments associated to a specific
cluster p (among all participants) and recomputing the value ϑp such that the new
value minimizes the cost of the group of segments associated to cluster p:

ϑp ∈ arg min
θ

∑
j:pys

j
=p

− log Pθ
M

(
A |x(j)

)
∀p ∈ P.

The term pysj represents the cluster to which point ysj is associated.
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Step 3. The third step consists in iterating the algorithm, returning to Step 1. The reader
is referred to [Pic+07] for the proof of the convergence properties of the hybrid
algorithm.

Choice of the number of change-points and clusters. In the current study, we decided
to fix the number of change-points and clusters in order to simplify the implementation of
the algorithm and the interpretability. However, we plan to use the same model selection
technique found in [Pic+07] in future work.

6.2.2 Application to the Generalized Context Model (GCM)

Again, the application of the segmentation/clustering method was limited to the simplest
model among the selected transfer models: the GCM. Moreover, the segmentation was
only performed on the learning phase of the Random-Constant context of Experiment II
because of time constraints. The segmentation/clustering method was performed two
times: the first time with 1 change-point and 3 clusters, and the second time with 2 change-
points and 3 clusters. The choice of 3 clusters was motivated by the wish to consider
3 learning regimes: a low/random classification performance, a middle classification
performance, and a high/perfect classification performance. The aim of the application of
the segmentation/clustering method with 1 change-point and 3 clusters was to analyze
the evolution of the participants’ learning regimes (e.g., evolution from a low/random
classification performance to a high/perfect classification performance). Conversely, the
aim of the application of the segmentation/clustering method with 2 change-point and 3
clusters was to detect clusters of high-speed and low-speed participants, assuming that
all participants moved through the same learning regimes.

Technical Aspects

i. The observations consisted in the learning phase of the Random-Constant context
of Experiment II. The segmentation method was only applied to the GCM.

ii. The likelihood was only expressed as a function of the sensitive parameter c.
The attention-weight parameters were fixed and the attention was equally shared
between the dimensions.
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iii. The segmentation/clustering method was performed two times: the first time with
K = 1 and P = 3, and the second time with K = 2 and P = 3.

iv. The algorithm was iterated 5 times.

Results

Case with 1 change-point and 3 clusters. The final values of the sensitive parameter c
for the three clusters were 2.8, 6, and 12.8. Therefore, the clusters were associated with
the following learning regimes: a low/random classification performance (when c = 2.8),
a middle classification performance (when c = 6), and a high/perfect classification
performance (when c = 12.8). The participants moved only through the following
regimes: from middle to high classification performance, from low to high classification
performance, and from low to middle classification performance.

Figure 6.5 (on the top) shows the number and percentage of participants, as a function of
the evolution of their performance (i.e., from middle to high vs from low to high vs. from
low to middle) and the within-category order (i.e., rule-based vs. similarity-based). Most
of the participants moved from a middle to a high classification performance. Moreover,
the majority of participants in the rule-based order moved from a middle to a high
classification performance, while the evolution of the participants’ performance in the
similarity-based order was varied. A Fisher’s exact test of independence was performed
to determine whether the evolution of participants’ performance was related to the
within-category order. The test applied to Table 6.2 (on the top) fell short of significance
(p-value=0.1), showing no relation between the two variables.

Figure 6.5 (on the middle) shows the time period spent by participants on each segment.
On the first segment, three clusters of participants are detected using a dendrogram (see
Figure 6.5 on the bottom): those who spent on average 10 blocks on the first segment,
those who spent on average 23 blocks on the first segment, and those who spent on
average 35 blocks on the first segment. Since the first segment is associated with a
low/middle sensitive parameter and since all participants improved their performance
over time, the three clusters correspond to three groups of participants with different
learning speed (i.e., high, middle, and low learning speed).

A Fisher’s exact test of independence was performed to determine whether the three
clusters (high-speed participants vs. middle-speed participants vs. low-speed participants)
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Middle-High Low-High Low-Middle

Rule-based 9 2 0

Similarity-based 4 5 2

High-speed Middle-speed Low-speed

Rule-based 6 4 1

Similarity-based 4 5 2

Table 6.2 – Analysis of the application of the segmentation/clustering to the Random-Constant context
of Experiment I with 1 change-point and 3 clusters. On the top, the number of participants, as a
function of both the evolution of their performance (i.e., from middle to high vs from low to high
vs. from low to middle) and the within-category order (i.e., rule-based vs. similarity-based). On the
bottom, the number of high-speed, middle-speed, and low-speed participants in the first segment, as a
function of the within-category order.

were related to the within-category order (rule-based vs. similarity-based). The test was
applied to Table 6.2 (on the bottom) and was not significant (p-value=0.7).

Case with 2 change-points and 3 clusters. The final values of the sensitive parameter
c for the three clusters were 2.1, 7.1, and 15.5. Thus, again, the clusters were associated
with the following learning regimes: a low/random classification performance (when
c = 2.1), a middle classification performance (when c = 7.1), and a high/perfect
classification performance (when c = 15.5). Almost all participants moved through the
following regimes (19 over 22 participants): from low to middle to high classification
performance. In what follows, we only analyze the data of the participants that moved
through the three learning regimes (in an ascending order).

Figure 6.6 (on the top) shows the time period spent by participants on each segment.
On both the first and second segments, two clusters of participants are detected using a
dendrogram (see Figure 6.5 on the middle for the first segment and on the bottom for
the second segment). On the first segment, the high-speed participants spent less than
10 blocks on the segment, while low-speed participants spent at least 10 blocks on the
segment. On the second segment, the high-speed participants spent less than 20 blocks
on the segment, while low-speed participants spent at least 20 blocks on the segment.

242 Chapter 6 Alternative Inference Method for Learning Data



High-speed Low-speed

Rule-based 11 0

Similarity-based 6 5

High-speed Low-speed

Rule-based 9 2

Similarity-based 7 4

Table 6.3 – Analysis of the application of the segmentation/clustering to the Random-Constant context
of Experiment I with 2 change-point and 3 clusters. The number of high- and low-speed participants
in the first (on the top) and second (on the bottom) segment, as a function of the within-category
order (rule-based vs. similarity-based).

A Fisher’s exact test of independence was performed to both segments determine whether
the two clusters (high-speed participants vs. low-speed participants) were related to the
within-category order (rule-based vs. similarity-based). The test was applied to both of
the tables in Table 6.3 and was only significant on the first segment (p-value=0.035 on
the first segment and p-value=0.63 on the second segment).
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Figure 6.5 – Analysis of the application of the segmentation/clustering to the Random-Constant
context of Experiment I with 1 change-point and 3 clusters. On the top, the number and percentage of
participants, as a function of the evolution of their performance (i.e., from middle to high vs from low
to high vs. from low to middle) and the within-category order (i.e., rule-based vs. similarity-based).
On the middle, the time period spent by participants on each segment. On the bottom, the dendrogram
of the time period spent by participants on the first segment.
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Figure 6.6 – Analysis of the application of the segmentation/clustering to the Random-Constant
context of Experiment I with 2 change-point and 3 clusters. On the top, the time period spent by
participants on each segment. On the middle, the dendrogram of the time period spent by participants
on the first segment. On the bottom, the dendrogram of the time period spent by participants on the
second segment. The data only included participants that moved through the three learning regimes
in an ascending order (19 over 22 participants).
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TO SUM UP Alternative Inference Method for Learning Data

This chapter aims to investigate two methods that allow transfer models to accu-
rate reproduce learning: the segmentation and the segmentation/clustering. Both
techniques artificially provide a dynamic to transfer models by partitioning the obser-
vations during the learning phase into segments and by estimating the parameters
on these segments.

Segmentation Method with Transfer Models

The aim of the segmentation technique is to identify abrupt changes (called change-
points) that affect the parameters of the models. The segmentation method was
only applied to the GCM on the learning phase of a single experiment (the Random-
Constant context of Experiment II). The results showed that all participants improved
their performance over time. Moreover, the analysis of the time period spent by
participants on the first segment detected two groups of participants with different
learning speed (high and low). Finally, the Fisher’s exact test of independence
performed to determine whether the number of high- and low-speed participants
was related to the within-category order was not significant.

Segmentation/Clustering Method with Transfer Models

The segmentation/clustering technique can be considered as a segmentation tech-
nique in which the parameters can only take a limited number of values and each
segment is associated with a cluster. The segmentation/clustering technique allowed
us to i) group segments with similar characteristics into a same cluster (facilitating
the comparison between participants); and ii) increase the number of observations
per cluster to better estimate the parameters. The segmentation/clustering method
was only applied to the GCM on the learning phase of a single experiment (the
Random-Constant context of Experiment II). The segmentation/clustering was ap-
plied two times: the first time with 1 change-point and 3 clusters and the second
time with 2 change-point and 3 clusters.

Case with 1 change-point and 3 clusters. Three learning regimes were detected: a
low/random classification performance, a middle classification performance,
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and a high/perfect classification performance. Most of the participants moved
from a middle to a high classification performance. Moreover, the majority of
participants in the rule-based order moved from a middle to a high classifica-
tion performance, while the evolution of the participants’ performance in the
similarity-based order was varied. However, no relation was found between
within-category order and evolution of participants’ performance. Finally, the
analysis of the time period spent by participants on the first segment detected
three groups of participants with different learning speed (high, middle, and
low).

Case with 2 change-point and 3 clusters. Again, three learning regimes were de-
tected: a low/random classification performance, a middle classification perfor-
mance, and a high/perfect classification performance. Almost all participants
(19 over 22 participants) moved from a low to a middle to a high learning
regime. The analysis of the time period spent by participants on the first and
second segments detected two groups of participants with different learning
speed (high and low). The data of this last analysis only included participants
that moved through the three learning regimes in an ascending order.
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7
Conclusion and Perspective

Two approaches were developed in the present thesis: an empirical approach and a
cognitive modeling approach. The aim of the empirical approach was to investigate the
effects that the within-category order (rule-based vs. similarity-based) exerts on learning
through a series of laboratory experiments. The cognitive modeling approach aimed
at using categorization models to both better understand the mechanism underlying
learning and investigate the presentation order.

Empirical Approach (Chapter 2)

The analysis of a series of laboratory experiments investigating the within-category
order in different contexts showed that i) the rule-based order facilitates learning as
compared to the similarity-based order when the across-blocks manipulation was constant
and categories were either blocked or randomly alternated. ii) Participants in the rule-
based order showed similar learning performance to participants in the similarity-based
order when the across-blocks manipulation was variable and categories were randomly
alternated. iii) Learning was faster when the across-blocks manipulation was constant
and categories were either blocked or randomly alternated (Random-Constant and
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Blocked-Constant contexts) as compared to the Random-Variable context, in which the
across-blocks manipulation was variable and categories were randomly alternated.

The rule-based order benefited from contexts that encouraged participants to adopt a rule-
based strategy. In the Random-Constant context, the constant blocks might have helped
participants to focus their attention toward a limited set of information, or might have
induced participants to abstract erroneous rules. In both cases, the Random-Constant
context promoted the use of a rule-based strategy that enhanced the impact of the rule-
based order. In the Blocked-Constant context, the blocked categories amplified the effect
of the rule-based order, facilitating the detection of a “principal rule plus exceptions”
structure.

Since our dataset did not allow us to conclusively compare different factors (e.g., constant
across-blocks manipulation, blocking, etc.), we plan to conduct a full factorial experiment
involving the eight following experimental conditions: rule-based vs. similarity-based
types × interleaved vs. blocked categories × variable vs. constant across-blocks manipu-
lations.

Cognitive Modeling Approach

This part was structured on the duality transfer/learning models. Transfer models
are not able to evolve over time and, therefore, they are only adapted to reproduce
participants’ transfer performance. Conversely, learning models integrate an error-driven
mechanism allowing them to reproduce both participants’ learning dynamic and transfer
performance.

A New Transfer Model (Chapter 3)

We developed a new exemplar model based on the Generalized Context Model (GCM)
that accounts for the order in which stimuli are presented. This new model, called
Ordinal General Context Model(OGCM), was declined into three versions: i) the OGCM-L
that integrates the average presentation order received during the learning phase, ii)
the OGCM-M that integrates the most frequent presentation order received during the
learning phase, and iii) the OGCM-T that integrates the presentation order received
during the transfer phase.
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Transfer Models Comparison (Chapter 4)

The transfer model that best fits the transfer phase of Experiment I was the OGCM-M, an
extension of the GCM that accounts for the most frequent stimuli manipulation received
during the learning phase. The second model that best fits the experiment data was the
OGCM-L, which integrates the average stimuli manipulation received during the learning
phase.

The fact that the estimated attention-weight parameter that regulates the ordinal dimen-
sion was not negligible in both the OGCM-M and OGCM-L showed that the information
provided by the ordinal dimension was relevant for the classification (i.e., the integration
of the order received during learning allows models to perform better). Conversely, the
estimated ordinal attention-weight parameter was negligible in both the OGCM-T and
GCM-Lag, showing that the order received during transfer did not influenced classifica-
tion. Moreover, the application of the 5-fold cross-validation technique to participants
in the rule-based and similarity-based orders (separately) showed that i) the models (in
particular the OGCM-L and OGCM-M) detected that the majority of the participants in
the rule-based order adopted a rule-based strategy, and ii) the OGCM-L and OGCM-M
were the models that best adapted their predictions to the stimuli manipulation.

However, the goodness-of-fit of the models was similar overall and all models provided
good predictions, suggesting that the benefit to integrate the order received during
learning is modest (in the studied conditions). We plan to further investigate the role of
integrating stimuli manipulation on models by applying an hold-out method in which the
parameters are estimated on the learning stimuli and the evaluation is performed on the
transfer stimuli.

Learning Models Comparison (Chapter 5)

The large size of the dataset of the learning phase allowed us to fit learning models to
individual participants’ observations. When models are trained on the learning phase and
tested on the transfer phase, the Component-Cue model (regardless of its version) best
fits the majority of the participants (63-66% Component-Cue vs. 37-34% ALCOVE). All
models provided good predictions on most of the items, with the Component-CueL that
provided the best predictions on transfer items and the worse predictions on learning
items. When models are trained on the early 80% of the learning phase and tested on
the last 20% of the learning phase, ALCOVE (regardless of its version) best fits almost
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all participants. Therefore, Component-Cue better captured the generalization patterns
(compared to ALCOVE), while ALCOVE better captured the last portion of the learning
dynamic (compared to Component-Cue).

Moreover, when models are trained on the learning phase and tested on the transfer
phase, Component-Cue best fits a higher number of participants in the rule-based order
as compared to participants in the similarity-based order. Conversely, ALCOVE best fits a
higher number of participants in the similarity-based order as compared to participants
in the rule-based order. However, the difference was not significant. Nonetheless, we
found a relation between the type of the model (i.e., Component-Cue vs. ALCOVE) and
the within-category order on the generalization patterns. In more detail, we found that
i) the learning models that best fit participants’ performance captured the difference in
generalization patterns between participants in the rule-based order and participants in
the similarity-based order, and ii) the generalization patterns of Component-Cue (when it
was the model with the lowest evaluation) were consistent with a rule-based retrieval
(confirming that Component-Cue performs better on participants adopting a rule-based
strategy).

Finally, we showed that Component-Cue was more sensitive to the stimuli manipulation
than ALCOVE. In particular, both versions of Component-Cue showed both distinct
learning curves and distinct generalization patterns (at the end of the learning phase) for
different stimuli manipulations. Conversely, both versions of ALCOVE showed distinct
learning curves for different stimuli manipulations only in the early stage of learning.
To further investigate learning models and order manipulation, we plan to conduct
classification tasks in which supervised blocks in which order is manipulated are alternated
with random unsupervised blocks.

Applying Transfer Models to Learning Data (Chapter 6)

Transfer models are only adapted to reproduce transfer performance. Nevertheless, there
are a few statistical methods that could allow transfer models to reproduce the learning
dynamic. We investigated two of them: the segmentation and the segmentation/clus-
tering. The application of the segmentation method to a single experiment showed that
there were two groups of participants: high-speed and low-speed participants. This fact
was also confirmed by the application of the segmentation/clustering method to the same
experiment.
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Moreover, the segmentation/clustering method allowed us to detect a relation between
participants’ speed and within-category order at the beginning of the classification task.
In more detail, participants that showed a high-speed learning in the early stage of the
classification task were mostly in the rule-based order. Conversely, participants that
showed a low-speed learning in the early stage of the classification task were mostly in
the similarity-based order. This shows that the rule-based order is particularly beneficial
in the early stage of the classification task. Since time constraints allowed us to apply both
techniques to only one experiment, we plan to apply them to all available datasets.

Further Contributions

The use of less known statistical tools as well as the development of a robust inference
method represent additional contributions provided by the present thesis.

Statistical Tools

It is common practice to remove from the analysis participants who did not meet the
objective of the task. However, the information provided by participants who did not
successfully complete the task is relevant. In the present thesis, we promoted the use of
two survival analysis techniques that allow researchers to take into account unsuccessful
participants: the Kaplan-Meier survival curves and the Cox model. Moreover, all of the
statistical tools that we employed are not based on a Gaussian assumption.

Inference Method

A first contribution is represented by the visualization of the set of predictions of the
categorization models using the PCA. This practice allows researchers to gain insight
into the relations between models. A second contribution is represented by the analysis
on the estimation of both the parameters and the classification probability. Having
an understanding of the accuracy of the estimation (either parameter estimation or
classification probability estimation) allows researchers to better evaluate their results.
Finally, the way we applied the hold-out method to participants’ learning performance
represents the last contribution of the present thesis. Indeed, in machine learning, the
hold-out method is applied as follows: after a period of training, models are evaluated by
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quantifying the difference between their predictions and feedback. Conversely, in our
case, models were evaluated by quantifying the difference between their predictions and
participants’ responses. In other words, in machine learning feedback serve as training
and testing tool, while in our case, feedback (i.e., the effective category) serve as training
tool and participants’ responses serve as testing tool. The last practice seems to give
good results on experimental basis, nevertheless a more rigorous investigation of this
new inference method is needed. Additionally, the proposed inference method is being
applied to data measuring the brain activity in mice.

We provide the following recommendations to those who wish to fit categorization models
to data: i) to conduct a preliminary visualization of the selected models using the PCA,
ii) to study the accuracy of the estimation of either the parameters, or the classification
probability, or both, iii) to prefer cross-validation method to probabilistic statistical criteria
such as BIC or AIC, and iv) to ensure through computer simulations that the models are
identifiable via the selected cross-validation method.
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