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Titre : Estimation de la diversité acoustique animale en forêt néotropicale  

Mots clés : suivi de biodiversité, écoacoustique, apprentissage automatique, écologie tropicale 

Résumé : La communication par émission 
sonore est un trait comportemental répandu 
chez les animaux terrestres. Les riches textures 
sonores de la forêt neotropicale nous suggèrent 
que la faune est non seulement abondante, mais 
aussi diverse et dynamique. Cette facette de la 
biodiversité peut révéler des informations 
précieuses sur les communautés animales qui 
habitent les milieux tropicaux, mais reste 
largement méconnue. Comment mesurer la 
diversité acoustique tropicale pour aborder des 
questions écologiques ? Dans le cadre de 
l'écoacoustique, nous avons cherché à révéler 
des structures dissimulées dans le paysage 
sonore de la forêt neotropicale, et tenter 
d’expliquer leurs présences à travers les 
processus écologiques sous-jacents. Tout 
d’abord, nous avons suivi la dynamique spatio-
temporelle d’une empreinte sonore 
amazonienne, le chant de l’oiseau tropical  
 

Lipaugus vociferans, montrant une activité liée 
à des caractéristiques spécifiques d’habitat. 
Puis, nous nous sommes intéressés aux 
communautés d’amphibiens. L’analyse de 
variables acoustiques et météorologiques nous a 
permis de mieux comprendre les causes, patrons 
et conséquences du comportement reproductif 
explosif. Enfin, nous avons adapté de nouveaux 
outils de calcul, issus des disciplines de 
l'apprentissage automatique et de la 
reconnaissance de formes, pour proposer une 
analyse efficace, objective et facilement 
reproductible de grands jeux de données 
acoustiques. L’écoacoustique, renforcée par des 
algorithmes informatiques, émerge comme une 
approche clé pour les programmes de suivis de 
biodiversité à large échelle, permettant de 
mieux comprendre et valoriser la diversité de 
formes de vies unique abritée par la forêt 
tropicale. 

 

 

Title : Estimating animal acoustic diversity in neotropical forest 

Keywords : biodiversity monitoring, ecoacoustics, machine learning, tropical ecology 

Abstract : Acoustic signalling is a common 
behavioural trait among terrestrial animals. The 
rich sound textures of neotropical forest echo 
that wildlife is not only abundant, but also 
diverse and dynamic. This facet of biodiversity 
can reveal valuable insights of animal 
communities inhabiting tropical environments, 
yet remains poorly understood. How to best 
measure tropical acoustic diversity to address 
ecological questions? Based on the ecoacoustic 
framework, we explored the soundscape of 
neotropical forest, revealing patterns and 
investigating the ecological underlying 
processes. First, we tracked the spatiotemporal 
dynamics of an amazonian soundmark, the 
song of the bird Lipaugus vociferans, showing  
 

activity patterns related to specific habitat 
features. Then, we investigated amphibian 
communities with very brief reproduction 
periods. Coupling acoustic and environmental 
variables, we shed light on the causes, patterns 
and consequences of explosive breeding events. 
Finally, we adapted novel computational tools 
from the machine learning and pattern 
recognition disciplines to provide an efficient, 
objective and replicable analysis of large 
acoustic datasets. Ecoacoustics, powered with 
computer algorithms, emerge as a suitable 
approach to scale-up biodiversity monitoring 
programs, allowing to better understand and 
cherish the unique diversity of life sustained by 
tropical forest. 
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GENERAL INTRODUCTION 

 

 
 

 

 

 

"Close your eyes, prick your ears, and from the softest sound to the wildest noise, from 

the simplest tone to the highest harmony, from the most violent, passionate scream to 

the gentlest words of sweet reason, it is by Nature who speaks, revealing her being, her 

power, her life, and her relatedness so that a blind person, to whom the infinitely word 

is denied, can grasp an infinite vitality in what can be heard" 

– Johann Wolfgang von Goethe (translated by Wulf, 2015) 
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1. Sound, a window to the animal community 

 

The sound of tropical environments has long been fascinating the human mind. Some of 

the detailed written impressions come from early European explorers who noted a rich 

and vibrant soundscape. Alexander von Humboldt, after his expedition through the 

Orinoco river with Aimé Bonpland, wrote in his Personal Narrative of a Journey to the 

Equinoctial Regions of the New Continent: "When we lend an attentive ear to the most 

feeble sounds transmitted by the air we hear a dull vibration, a continual murmur, a hum 

of insects, that fill, if we may use the expression, all the lower strata of the air. Nothing 

is better fitted to make man feel the extent and power of organic life. Myriads of insects 

creep upon the soil, and flutter round the plants parched by the ardour of the Sun. A 

confused noise issues from every bush, from the decayed trunk of trees, from the clefts 

of the rocks, and from the ground of undermined by the lizards, millipedes, and cecilias. 

There are so many voices proclaiming to us, that all nature breathes; and that under a 

thousand different forms, life is diffused throughout the cracked and dusty soil, as well 

as in the bosom of the waters, and in the air that circulates around us" (Humboldt and 

Bonpland, 1853).  

 Florence Hercule, a French illustrator embarked on the Langsdorff expedition 

into the Amazon river mouth in the early 19th century, noted that the multiplicity of 

beating patterns pouring from the forest were a fundamental part of the animal 

communities (Toledo and de Araujo, 2017). Not satisfied with fine silhouettes and 
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colourful illustrations of the natural world, he developed a method to apprehend the 

sounds of multiple birds, amphibians and insects. A method that he called Zoophonia 

(Florence, 1876). His field notes might be the most accurate sound chronicles of the 

Amazonian and Atlantic forests 200 years ago. 

 Not surprisingly, indigenous people living in tropical forests have a tacit but 

deep understanding of the soundscape, an intimate link with sound which ensures their 

survival. In an ethnobiological work, Lescure (1980) noted that the Wayapi, native 

Americans of the Guyanese region, classified amphibians according to their calls, a 

classification that closely matched the taxonomical studies. Lescure (1980) also noted 

that amphibians have not only a symbolic role, but they had also an ecological role. 

Since amphibians are sensitive to minuscule variations of humidity, they could 

announce the weather and the seasons, thereby, the call of the toad Leptodactylus 

pentadactylus would mark the proximity of the rainy season. The sounds of the forest 

were not only a reference, a soundmark, but also a highlight in their imagination, in 

their stories, in their ways to understand their environment. 

 

* 

 

The acoustic environment is a window to study the animal communities that inhabit the 

tropical environments. The numerous insect, amphibian, bird and mammal sounds are 

mixed down into a single time series. What factors have shaped the tropical acoustic 

environments and what does that tells us about the ecological communities that inhabit 

these habitats? How to decipher the tapestry of beating patterns in order to quantify and 

characterise the acoustic environment? In other words, how to link acoustic with 

ecology to get valuable indicators for science and conservation? 

 

 

2. Tropical ecology and conservation 

 

The diversity of life is distributed heterogeneously on Earth (Gaston, 2000). One of the 

most striking pattern, known as the latitudinal diversity gradient (LDG),  is the increase 

in number of species when moving from polar to equatorial regions. Between the 

Cancer and Capricorn latitudes around the globe, tropical environments teem with life. 
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To date, studies estimate that tropical rainforests may hold more than half of the Earth 

biodiversity with only 7% of its surface (Kricher, 2011; Myer, 1988). Although 

ecologists still dispute what are the main drivers of the spatial pattern of species 

richness, it is undeniable that tropical environments present complex biological 

interactions imposing great challenges and opportunities for science and conservation 

biology.  

 The unparalleled diversity of tropical environments puts forward the forces that 

shape biological diversity. Indeed, tropical environments presents unique opportunities 

to experience and understand how organisms exist, adapt and interact with their biotic 

and abiotic environment. It is therefore not surprising that tropical environments have 

lured several generations of biologists, including Alexander von Humboldt, Charles 

Darwin, Alfred Russel Wallace and Henry Walter Bates. Among others, it was here that 

Humboldt and Aimé Bonpland observed that plants and animal communities changed as 

climate, by elevation, what is now termed life zone concept (Holdridge, 1967); here that 

Bates realized that unrelated species of butterflies, palatable and unpalatable, can look 

alike to gain protection from predators, a form of mimicry now termed Batesian 

mimicry (Waldbauer, 1988). In tropical environments biotic constraints are better 

evidenced than in temperate zones. Our understanding of biological forces would not be 

the same without tropical ecosystems. As Jansen (1986) noted more than 30 years ago, 

the future of ecology depends on how we as humans manage to preserve tropical 

ecosystems. 

 From the fundamental oxygen we breath and the freshwater we drink, to the 

invaluable aesthetic pleasure of tropical landscapes, humans well-being rely on tropical 

biodiversity. To highlight the amenities that we get from nature for granted, 

conservationists have framed the term ecosystem services (Daily, 1997; Balmford et al., 

2002; Hassan et al., 2005). The list is long for tropical ecosystems, which harbour most 

of the resources that humans rely on and provide fundamental regulation of 

biogeochemical cycles. Plant and animals, including humans, depend upon the well 

functioning of ecosystems for their survival and well being, and probably nowhere else 

this is more evident than in the tropics. 

 Unfortunately, the concentrated resources that bring forth tropical ecosystems 

have become its torment. Tropical forest now suffer from human pressures, with 

destruction and degradation at exceptional and accelerating rates (Morris, 2010). 
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Alteration of land use (Sala, 2000), climate and biogeochemical cycles are only some 

examples of the major drivers of biodiversity loss. The need to understand biological 

communities and how to manage trade-offs between immediate human needs and the 

integrity of ecosystems seems more urgent than ever (Kricher, 2011). 

 To counter global biodiversity loss, there have been several international 

political commitments. The Aichi Targets for 2020 by parties of the United Nations and 

The Convention on Biological Diversity (CBD) might be the most notable examples 

(CBD, 2010). Averting biodiversity change and reducing the rate of biodiversity loss 

are the main targets envisaged. But, as mentioned by Purvis and Hector (2000) "we 

cannot even begin to look at how biodiversity is disturbed, or how fast is disappearing 

unless we can put units on it". In other words, assessing progress towards these 

commitments requires the development of effective methods to systematically and 

repeatedly measure and map changes in biodiversity. Such monitoring would allow not 

only to set protected areas based on priorities for species and ecosystems, but also to 

better understand what are the underlying causes of biodiversity loss and how to 

formulate effective mitigation actions.  

 

 

3. Biodiversity assessment 

 

It is impossible to conceive ecology or conservation biology without a systematic and 

standardized collection of data. Monitoring refers to the process of collecting periodic 

assessment of a system state at multiple points in space and time, which might lead to 

draw inferences about changes in system state over time (Yoccoz et al 2011). Related to 

biological diversity, the system of interest can be framed at multiple scales (species, 

population, communities or ecosystem), and the variable of interest might include one 

of the several measures of biological diversity (Magurran 2004; Pavoine et al., 2005; 

Gotelli and Chao, 2013). To date, many programs for biodiversity monitoring have been 

implemented to understand and manage ecosystems, integrating science and 

conservation to improve future decisions. Monitoring is a fundamental part of the 

scientific process, continuously adapting to the available technology, allowing to tackle 

new and more challenging questions (Collen et al., 2013; Chave, 2008). 
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3. 1. Human-based surveys 

 

 Traditionally, ecological data has been gathered by manual field surveys. In this 

type of monitoring, the data collected is sensed by the multisensory human perception 

integrated with our capacity for abstraction. When coupled with appropriate training and 

standardized methods, manual field survey constitute the most comprehensible way to 

monitor biodiversity. Indeed, this has been the main data collection process that led to 

the fundamental ecological hypotheses under discussion to date. Unfortunately, manual 

field surveys by experts are not scalable to large temporal and spatial dimensions. With 

the emergent electronic technology, research have focused on the use of autonomous 

sensors to capture different facets of  plant and animal diversity from both perspectives, 

ex situ and in situ. 

 

3. 2. Remote ex situ sensing 

 

 Powered by satellites or aircrafts equipped with devices to sense electromagnetic 

waves, remote sensing seems an ideal tool to gather data at global scale (Lillesand et al., 

2015). Remote sensing provides a systematic and synoptic view of the Earth at regular 

intervals, and has been widely used to estimate biotic and abiotic factors to model 

biodiversity (Turner et al., 2003; Geller et al., 2017). Satellite images can provide 

estimates on multiple habitat variables, such as topography, soil, climatic conditions and 

land cover, allowing to draw inferences about present and future distribution of species 

(Nagendra, 2001; Nagendra et al., 2013). With the increasing resolution available, it is 

even possible to directly identify plant species and communities based upon unique 

spectral signatures. Remote sensing thus plays a central role in biodiversity 

conservation applications (Pereira et al., 2013; Geller et al., 2017). Yet, it is clear that 

models derived from remote sensing need to have accurate species occurrence 

information that has to be collected in the field. Remote ex situ sensing needs to be 

networked with in situ observations. 
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3. 3. In situ biodiversity sensing 

 

 The use of automated sensors for in situ data collection is a recent area that has 

flourished with the miniaturisation of electronic devices, making embedded systems 

increasingly affordable and autonomous. Transmission tags (Rutz and Hays, 2009), 

collection on environmental DNA (Bohmann et al., 2014) and camera traps (Steenweg 

et al., 2017) can provide solutions to logistical constraints, allowing to increase the 

temporal and spatial scales of biodiversity monitoring (Le Galliard et al., 2012; Turner, 

2014). These in situ observations provide information at the level of genes, species, 

communities and landscape at the fine-scale that remains hidden to remote sensing. 

Another recent, innovative and non-invasive approach is to track animals using passive 

acoustic sensors. This is the heart of this work, and the topic of the upcoming sections.  

 

 

4. Acoustic monitoring 

 

Acoustic signalling is a common behavioural trait among terrestrial animals, such as 

insects, amphibians, birds and mammals. These signals are species specific and 

propagates through the environment, which can be employed as a direct way to retrieve 

ecological data about species presence, abundance, status and distribution of animal 

communities (Obrist et al., 2010; Browning et al., 2017). In addition, some animals use 

their calls and the resulting echoes to detect, localize, and classify objects, so that they 

can forage and navigate through their territories. The acoustic environment is full of 

information about the animal communities, yet how to best exploit this information-rich 

data in an effective way requires theoretical and practical knowledge. 

Acoustic cues have been used extensively for monitoring a broad range of vocal 

species. In terrestrial habitats, protocols to study bats, birds and amphibians have 

usually included species-specific calls as a fundamental evidence to determine presence 

or absence of taxa. The American Amphibian Monitoring Program (Weir and Mossman, 

2005), the Tropical Ecology Assessment and Monitoring network to the bird monitoring 

protocol (Lacher, 2008), the Acoustic Monitoring of Night-Migrant Birds (Farnsworth 

and Russell, 2007), and the Indicators Bats Program (iBats; Jones et al., 2013), are just 
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some examples of the established protocols and increasing interest to survey animals 

using sound.  

With the development of autonomous acoustic sensors, monitoring through 

acoustics can be applied to cover larger scales with lower human effort (Acevedo and 

Villanueva-Rivera, 2006; Obrist et al., 2010; Servick, 2014). These new digital acoustic 

sensors are weather proof and have low energy consumption, allowing to deploy them 

in the field for long periods of time. Usually, microprocessors are equipped with 

omnidirectional microphones, batteries, memory cards, and a digital clock to settle 

recording schedules. While sometimes continuous recording can be useful, the use of 

programmed recording periods allows to limit the energy and memory consumption, 

hence extending the sampling period. Coupled with solar panels and wireless 

transmission of data, such devices are increasingly autonomous. With lowering prizes of 

technology, arrays of passive acoustic sensors are now being deployed worldwide to 

capture temporal and spatial dynamics of animal communities (Browning et al., 2017). 

Such advances technology and tools also require a conceptual framework to 

move forward. Ecoacoustics has recently emerged as a new discipline which searches 

for links between ecology and acoustics at different organisation levels in terrestrial, 

freshwater and marine ecosystems (Sueur and Farina 2015). Enlarging the possibilities 

of acoustic monitoring to assess presence-absence of species, ecoacoustics offers a 

conceptual framework, such as the acoustic adaptation hypothesis (Marten et al., 1977; 

Morton, 1975) or the acoustic niche hypothesis (Krause, 1993), which take into account 

also the shifts of calling patterns and interactions between species calls within a 

community. Moreover, the analysis of the effects of anthropogenic noise pollution are 

also an important contribution of ecoacoustics for conservation biology (Pavan, 2017). 

In summary, ecoacoustics is a discipline that expands the possibilities of biodiversity 

assessments to decipher the detailed information of the acoustic environment (Farina 

and Gage, 2017). 

In tropical environments, ecoacoustic studies have revealed increasing 

possibilities for tracking multiple taxa and understanding the widespread acoustic 

signalling behaviour of animals. For example, acoustic sensors helped to assess links 

between anuran calling activity and changes in precipitation and temperature (Ospina et 

al., 2013), estimate occupancy of wild primates populations (Kalan et al., 2015), 

estimate elephant population size (Thompson et al., 2010), and detecting anthropogenic 
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noises associated with poaching (Wrege et al., 2017). In studies of multispecies acoustic 

assemblages, organisation with spectral segregation has been documented in tropical 

crickets (Schmidt et al., 2013), cicadas (Sueur, 2002) and frogs (Villanueva-Rivera, 

2014), nevertheless, clustering patterns in tropical bird songs and bird signalling 

behaviour have also been documented, probably revealing inter-species complex 

communication network in neotropical forests (Tobias et al., 2014). At a more holistic 

and global approach, tropical acoustic communities were found to be heterogeneous in 

space and subtly structured in time (Pekin et al. 2012; Rodriguez et al. 2014). In 

particular, a diel pattern was found with a pronounced difference in intensity between 

the day and the night, the night having higher levels of activity.   

Little by little the tropical acoustic environment is being unfolded, revealing new 

questions for science and new tools for conservation practices, but we are just 

decrypting the tip of the surface. With data pouring from passive acoustic sensors, the 

collection of sounds labelled as unclassified accumulates, evidencing that this facet of 

animal communities is still poorly understood. The raw data is continuously being 

collected, yet the analysis of such data remains a prominent hindrance for the wider 

application of acoustic sensors in biodiversity monitoring. 

 

 

5. Analysis of passive audio recordings 

 

Animal communities living in tropical environments produce complex sounds. The 

multiple sound sources are scattered in space and the signals show great deal of variety 

that often overlap. In addition, the intricate habitat structure modifies the signal by 

absorption, reverberation, and scattering (Marten and Marler, 1977; Richards and 

Wiley, 1980). Locating and identifying sounds of interest in outdoor recordings 

collected by acoustic sensors is a challenging task that can be done either manually or 

automatically.  

 

5. 1. Manual analysis 

 

 In manual analysis, the recordings are usually scanned aurally and visually, 

using computer software that provides ways to play back the sound and a to visualise it 
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as a spectrogram, a time x frequency x amplitude graphical projection. Manual analysis 

by a skilled biologist, with extensive field-experience, can lead to precise transcriptions 

of field recordings into formatted data that can be exploited by standard numerical 

ecology methods, for instance a community presence-absence matrix. Such approach, 

even if tedious and time-consuming, has been the primary way to decrypt audio 

recordings.  

 As in any human observational process, the observer is a central figure and the 

quality of the data depends on his or her skills and experience, generally known as inter-

observer variability. Inter-observer variability can take different forms, from mechanical 

errors during annotation to perceptual errors that can lead to spurious inferences 

(Fitzpatrick et al., 2009). While observer bias can be reduced with appropriate training, 

the number of experts seems extremely limited compared to the deluge of acoustic data 

collected. It would require large numbers of highly motivated assistants, and finding 

and training them on a regular basis seems difficult. These constrains motivated the in 

the emergence of automated alternatives. 

 

5. 2. Automated analysis 

 

 For large datasets, such as outdoor recordings coming from passive acoustic 

sensors, the analysis can be facilitated in multiple ways using automated computational 

tools. A varied set of general tools developed for speech and music analysis is readily 

available. Yet, most of these tools where particularly designed to analyse man-made 

environments and can not be translated directly to analyse  audio recordings made in 

nature environments. When analysing outdoor audio recordings, specific challenges 

arise: animal sound sources can (1) have a higher frequency range than human hearing, 

(2) show a great variation in their signal-to-noise ratio due to background noise and 

signal overlapping,  (3) be mobile and (4) be very diverse within and between species 

including differences in overall amplitude, frequency modulations, amplitude 

modulations, temporal pattern and frequency content.  

 The cross-correlation of spectrograms has been proved to be of important use in 

ecoacoustics (Brunelli, 2009). Cross-correlation is simple measure of similarity between 

a target sound and an audio recording taken at different time lags. Since a variety of 

animal sounds are stereotyped, this approach can be effective in varied situations. 
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However, when the sound sources vary, or when the ambient noise generates multiple 

false positive detections, more sophisticated techniques should be envisaged.  

 Based on artificial intelligence, machine learning deals with the development of 

statistical classifiers that can learn from and make prediction on data. Machine learning 

algorithms offer a world of possibilities that have proved to rise to another level a broad 

range of scientific areas that also have to deal with massive amounts of data, such as 

genomics (Libbrecht and Noble, 2015), astronomy (Way, 2012) and medicine (Wernick 

et al., 2010). Machine learning techniques are categorized into supervised and 

unsupervised learning (Bishop, 2006). In supervised learning the statistical model is 

build using labelled data, which is obtained by manually annotations. Unsupervised 

learning, or clustering, is more flexible since it does not require labelled data, instead 

the classification is made based only on the data attributes. 

 In the field of bio- and ecoacoustics the use of machine learning tools is a more 

recent approach that is developing fast (Stowell, 2018). Current methods to detect and 

classify animal sounds use supervised learning. First approaches focused on the 

classification of sound segments. These approaches adapted techniques coming from 

speech recognition research (Skowronski and Harris, 2006). While these algorithms 

proved to deliver high performances on signals with high signal to noise ratio, they 

performed poorly with field recordings, which have varying signal to noise ratio and a 

multitude of interferences at multiple frequencies. With the growing data coming from 

unattended recordings, the community has more recently focused on analysing such 

scenarios. 

 The combination of acoustic sensors and supervised learning classification has 

allowed to track dynamics of a wide range of taxa, including amphibians (Aide et al., 

2013), primates (Heinicke., 2015), birds (Goyette et al., 2011), elephants (Wrege et al., 

2010) and bats (Walters et al., 2012). Yet, the methods envisaged were developed 

separately and is still unclear how to design a standardized framework to adapt these 

techniques to other scenarios. Moreover, most of these approaches were developed by 

large projects that already accounted with manual labelled datasets to train the 

classifiers. While it seems to be possible to find automatically sounds of interest from 

outdoor audio recordings, the multiplicity of methods clearly indicates that the trail is 

devious. 
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5.3. Acoustic indices 

 

 The acoustic environment can be characterised and analysed at a global scale, 

without subdividing the sound scene. Researchers realized that the structure of the 

acoustic environment that emerge from mixed signals incorporates information and 

could be characterised by acoustic indices (Sueur et al., 2014; Pieretti et al., 2011). 

Acoustic indices were designed to assist ecological investigation, allowing to track 

global dynamics of the acoustic environment without identifying species-specific calls. 

Following the biodiversity indices from ecological literature, two classes of indices 

were derived: within-group diversity (alpha indices) and between group diversity (beta 

indices). These indices aim to compute objective acoustic parameters related a 

characteristic of the acoustic community, such as amplitude, evenness, richness or 

heterogeneity. 

 Acoustic indices have been applied to multiple environments, including 

terrestrial (Depraetere et al., 2012; Lellouch et al., 2014; Towsey et al., 2014) and 

underwater scenarios (Harris et al., 2016). They showed to correlate to changes in bird 

species richness in woodland habitats (Depraetere et al., 2012) and spatio-temporal 

dynamics of the soundscape in tropical forest (Rodriguez et al., 2014). The indices have 

the advantage of being easy and fast to compute, they hence provide a rapid overview of 

the data captured by acoustic sensors. However, they also showed to be sensitive to 

transitory or permanent background noise, variation of calling rate and distance of the 

signalling animals, which makes indices hard to interpret and link with ecological 

processes. Studies related to acoustic indices open new perspectives to analyse passive 

acoustic recordings and emphasizes that the acoustic environment is more than the sum 

of its individual parts. 

 

* 

 

The diversity of methods to analyse field recordings that have been proposed show the 

complexity, but also the rich amount of information that can be derived from passive 

acoustic recorders. Such diversity of methods might seem confusing, detracting a large 

number of users from using acoustic sensors. Indeed, there is still limited standard 

protocol to analyse passive acoustic recordings (Knight et al., 2017), and hence this task 
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is limited to a personnel with high skills managing massive volumes of data (Browning 

et al., 2017). In addition, sounds heard on tropical environments are still poorly 

documented, which pose particular challenges to implement automated methods to 

analyse field recordings. 

 

 

6. Working hypotheses 

 

The aim of this work is to propose new ways to assess patterns of biodiversity at 

multiple organization levels in the tropical environments using passive acoustic sensors. 

Based on standardised and systematic passive acoustic monitoring, we tackled key 

ecological questions related to animal acoustics at the population and community levels. 

Furthermore, we focused on important methodological aspects regarding the efficient, 

objective and accurate analysis of acoustic recordings. 

 Passive acoustic monitoring seems to be a valuable tool to monitor rich animal 

communities of the tropical forest at large temporal and spatial scales. Yet, multiple 

challenges remain to be addressed. How to better quantify the acoustic environment? 

How to get valuable ecological information from acoustic sensors? Facing the data 

deluge from acoustic sensors, how to adapt rapid techniques to analyse the data? 

Moreover, how to address poorly documented environments such as the tropical forest? 

We to shed light on these questions, giving possible perspectives to best monitor and 

understand biodiversity in tropical environments through ecoacoustic monitoring. This 

manuscript is based on four research studies pursued in the lowland tropical forest of 

French Guyana. 

First, we studied one of the most remarkable and distinguished animal sounds in 

the Guyanese and Amazonian rainforests, the song of the bird Lipaugus vociferans. This 

emblematic sound provides a prominent acoustic relief for the travellers of the dense 

forest. While the sound can be easily distinguished by humans, this song is mixed down 

with the tropical acoustic environment which is replete with intricate animal sounds. In 

Chapter 1, we asked if it was possible to track a population of L. vociferans coupling 

acoustic sensors and pattern recognition algorithms. The results of the acoustic 

monitoring were confronted with hydrology and vegetation maps, providing novel 

ecological information on this tropical bird. 
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Second, we examined the dynamics of the acoustic diversity at the community 

level. Neotropical rainforest are known to hold the highest diversity of amphibians and 

the calls of such communities are an essential mark of seasons in tropical acoustic 

environments. Since amphibians are the most endangered group of vertebrate, designing 

new techniques to understand and forecast impacts on this taxon is an urgent task. In 

Chapter 2 we investigated how these communities can be tracked using acoustic 

sensors. In particular we focused on the elusive explosive breeding communities and 

asked, what are the causes, patterns and consequences of such unique communities? We 

collected for the first time acoustic and environmental data to monitor simultaneously 

and regularly multiple explosive breeding events in tropical anuran communities, 

revealing coordinated changes in the anuran community at multiple spatiotemporal 

scales which was tightly linked to particular environmental patterns. The co-occurrence 

of several signalling species in such a tight spatio-temporal window further allowed us 

to reveal acoustic signatures at the community level with potential heterospecific 

signalling functions. 

 Third, we searched for computational methods to estimate automatically the 

acoustic diversity in passive acoustic recordings. Tropical acoustic environments are 

rich in sound shapes and textures, but the large majority these sounds have not being 

referenced. How to get valuable ecological information from environmental sounds that 

are unknown? In Chapter 3, we propose an new method, named Multiresolution 

Analysis of Acoustic Diversity (MAAD), to automate the detection of relevant structure 

in audio data. MAAD design adapts tools from the unsupervised learning field and aims 

to decompose the acoustic community into few elementary components (soundtypes) 

based on their time-frequency attributes. The method proved to be robust, deriving very 

similar partitions compared to human annotations in two distinct tropical environments. 

Such framework, based on unsupervised learning techniques, opens new perspectives 

for ecoacoustic monitoring in poorly documented habitats. 

 And fourth, we investigated multiple strategies to search for sounds of interest in 

audio recordings. Presence-absence data is a common format to analyse populations and 

communities in ecology. While the number of tools available for pattern recognition are 

rapidly increasing, there is still little practical guidance for the application of such 

algorithms for a broad audience. There remains the need of an end-to-end generic 

framework to classify sounds, from raw recordings to file presence-absence that 
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delivers accurate estimates of detection performance. In Chapter 4, we addressed the 

question: how to best estimate the presence or absence of target species from passive 

acoustic recordings? We raised particular attention to the sampling method to build 

datasets employed for tuning and testing statistical classifiers. In addition we compared 

manual, semi-supervised and supervised learning methods to analyse the data. We 

revealed strengths and weakness that shed light on how to combine human reasoning 

and computer algorithms in a standardized framework to deliver robust and accurate 

estimates of presence-absence. 

 The manuscript concludes with an overview of the current possibilities that 

acoustic monitoring offers to address ecological questions as well as conservation 

issues. 
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OVERVIEW 

 

 Acoustic monitoring has proved to be an efficient approach to monitor wildlife, 

notably in environments with limited visibility, such as tropical rainforests. Today, 

recording equipment allows acoustic data to be gathered in remote areas at wide spatial 

and temporal scales. The resulting datasets are large and the use of automated 

processing systems to extract relevant information can greatly facilitate their analysis. 

Here, we have developed signal processing techniques to reveal the spatio-temporal 

dynamics of an emblematic bird voice of the neotropical forest: the song of the 

Screaming Piha (Lipaugus vociferans). Using recordings made in a French Guianan 

lowland forest, with an array of 24 microphones in a three dimensional space, we 

implemented a detection system based on spectrogram cross-correlation to trace the 

vocalisations of L. vociferans. We tuned the detection system based on the percentage 

area under the receiver operating characteristic curve, finding a maximum of 95.88%. 

To strictly minimise false positives, we set the operating point to have 34.9% true 

positives and 0% false positives. We detected a total of 12,735 songs attributed to the 

study bird during 25 study days. We found that spatial patterns of lower activity 

corresponded to a zone having smaller trees and more tree gaps – a known liana forest 

patch – suggesting that Screaming Piha birds tend to avoid non-mature primary forests. 

The sampling sites near the creeks had more detections than the sites further away, 

suggesting that the lek mating arenas might be distributed strategically to be near to a 

source of water. We also found a marked temporal pattern. The lek was active during 

the whole day, from sunrise to sunset, with two peaks of activity shifted by more than 

two hours from the dawn and dusk chorus. The approach described here can be tested 

using other conspicuous and stereotyped sounds that occur within a heterogeneous and 

noisy background. To decipher the complex interacting sounds of the tropical forest, 

these focal studies on specific acoustic elements should be complemented with 

community or soundscape analysis, to demonstrate the human impact on the ecosystem 

and to provide guidelines for natural resource management. 
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"Descubrimos también el extraño silencio, lleno de todos los sonidos de la selva. 

El rumor blando del agua, los gritos de los pájaros, 

coda uno con su ritmo y su timbre,  

nos parecieron música" 

– William Ospina (2012) 

 

 

 

 

 

1. Introduction 

 

Monitoring the dynamics of biodiversity is a key challenge for ecology and biological 

conservation (Magurran, 2004) or for the new ecoacoustics discipline (Sueur and 

Farina, 2015). In particular, there is an essential need to map the distribution of species 

in space and time over local or regional scales and during circadian or longer temporal 

cycles. To date, this challenge has been mainly tackled with the help of field-based data 

collected by human observers (Hill et al., 2005). The emergence of new sampling 

methods based on remote sensors, which automatically acquire environmental 

information at a regular rate, can supplement human observations, potentially increasing 

the accuracy of biodiversity monitoring data (Le Gaillard et al., 2012). 

 One of the most recent and original automatic approaches to track biodiversity 

changes is based on the detection of sounds produced by animals during communication 

(Towsey et al., 2014). New audio technology allows to deploy robust acoustic sensors, 

which collect data over long periods of time in remote areas. Acoustic monitoring based 

on these devices has already proved to be an efficient technique that could complement 

other data acquisition methods, notably in environments with limited visibility (Aide et 

al., 2013; Farnsworth and Russell, 2007; Frommolt and Tauchert, 2014; McDonald and 

Fox, 1999; Mellinger et al., 2007; Obrist et al., 2010; Yack et al., 2013). These 
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monitoring programmes can produce large volumes of data. The analysis of such 

unsupervised datasets by human observers is tedious and time-consuming, whereas the 

implementation of automated or semi-automated signal processing systems can greatly 

facilitate data management, data visualisation, and data analyses. 

 In recent years, numerous pattern recognition methods such as Gaussian mixture 

models (Cheng et al., 2010; Skowronski and Harris, 2006), hidden Markov models 

(Kogan and Margoliash, 1998), artificial neural networks (Chesmore, 2004) and random 

forest (Armitage and Ober, 2010; Potamitis, 2014; Briggs et al. 2012), have been 

applied to acoustic databases to detect and classify animal sounds. All these approaches 

are valuable advances to improve ecoacoustic monitoring. However, reliable 

recognition in complex audio scenes remains difficult (Bardeli, 2010; Potamitis, 2014; 

Towsey et al., 2012) because unsupervised recordings can contain significant 

background noise such as wind and rain, and species may vocalise simultaneously. To 

improve recognition rates and cover larger areas, Bardeli et al. (2010) proposed the 

development of a specific algorithm for each target species. The problem of detecting a 

known signal among noise has been previously studied for radar systems (Skolnik, 

2001). One of the resulting methods is cross-correlation (Smith, 2003). This is a 

widespread approach, as it works as an optimal linear operation for detecting a 

deterministic signal corrupted by white Gaussian noise (Brunelli, 2009). Cross-

correlation gives a measure of similarity between the template and the objective signal 

at shifted positions. Cross-correlation has been adapted to audio data screening by 

searching for areas of spectrograms that match with a template. Spectrogram cross-

correlation has already been applied to identify the sound produced by a focused species 

in a multi-source audio recording as illustrated in several marine (Erbe et al., 1999; 

Mellinger and Clark, 2000) and terrestrial (Borker et al., 2014; Fitzsimmons et al., 

2008; Frommolt and Tauchert, 2013; Llusia et al., 2013; Clark and Fristrup, 2009) 

studies. Moreover, a recent computational study included this technique in a multi-label 

classification system for the recognition of bird vocalisation (Potamitis, 2015). 

 Tropical forests pose a great challenge to global biodiversity conservation, as 

they suffer from destruction and degradation by human activity at exceptional rates 

(Morris, 2010). Surprisingly, large ecoacoustic monitoring programmes that focus on 

such tropical environments are rather rare. The coexistence of many tropical species 

generates a fascinating and complex acoustic environment, described as the soundscape 
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(Pijanowski et al., 2011), which remains poorly understood in its structure and 

dynamics. Recent studies have revealed rough temporal and spectral properties of the 

soundscape (Ellinger and Hödl, 2003; Hammer and Barret, 2001; Pekin et al., 2012; 

Riede, 1993; Rodriguez et al., 2014; Slabbekoorn, 2004), but the dynamics of the 

elementary items are still unknown. In order to understand better the emergent patterns 

of tropical soundscapes, it is necessary to decipher the dynamics of specific acoustic 

elements, in particular of soundmarks. A soundmark, as defined by Shafer (1977), refers 

to a unique sound that is specifically distinguished for its qualities by the people of a 

locality. Species associated with these iconic sounds might provide a focus for rising 

awareness and action – a flagship species in terms of conservation biology. In the South 

American tropical forest, the loud and characteristic song of the tropical bird Lipaugus 

vociferans is well known by locals and visitors and is undoubtedly a soundmark. 

 In a previous study, an array of automated recording systems was established in 

the primary lowland forest in French Guiana (Rodriguez et al, 2014). A large audio 

dataset was collected, replete with intricate animal sounds that compete and overlap, 

creating an overwhelming dataset. This audio data set was initially parameterised using 

a global approach, namely, by considering the files as unit samples without trying to 

identify the species they contained. This first approach provided important insights into 

the spatio-temporal organisation of the forest soundscape. However, it quickly appeared 

that analyses at a finer scale were required, to understand better the underlying factors 

that shape the dynamics of the tropical soundscape. To decrypt the complex acoustic 

environment of a tropical forest, we reconsidered our dataset by focusing on a salient 

acoustic element, the song of the Lipaugus vociferans.  

 The objectives of this study were (1) to adapt template matching techniques to 

find the song of the L. vociferans in the tropical acoustic environment and (2) to 

generate spatio-temporal maps of the distribution of this species. Here, we present a 

methodology to implement and tune template-matching techniques on ecoacoustic 

databases. The results of the acoustic monitoring are confronted with hydrology and 

vegetation maps through LiDAR data, providing novel ecological information on L. 

vociferans. 
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2. Materials 

 

2.1. Study site 

 

The study site was located in French Guiana at the CNRS Nouragues Research Station 

(4°05'N; 54°40'W), in a primary lowland rainforest (Figure 1). The Nouragues station is 

located in an inhabited region and is only accessible by river, 60 km from the nearest 

village, or by helicopter. Close to the equator line, the mean temperature oscillates 

between 26°C and 27°C and the humidity remains high during the whole year, between 

80% and 90%. The rainfall is 2,861 mm year-1 (average amount of rainfall from 1992 to 

2012), with a 2-month dry season (<100 mm month-1) occurring from September to 

October, and a shorter dry season in March. The study was conducted over 25 days, 

from 12 November to 6 December 2010, at the beginning of the wet season. 

 

2.2. Acoustic sampling protocol 

 

Sounds were recorded with Song Meter 2 (SM2) systems from Wildlife Acoustics Inc. 

The SM2 can be programmed to record automatically on a schedule. The device 

comprised two omnidirectional microphones, an analogue-to-digital converter and a 

controller inside a waterproof enclosure. Twelve recorders were deployed in a 4 by 3 

grid 200 meters apart. The grid was formed by linear trails previously named with a 

letter and a Roman number. Each of our recording sites was named after its 

corresponding column (K, M, O) and row (XI, XIII, XV, XVII) coordinates (Figures 1b 

and 1c). Each recorder was set to sample the audio at 44.1 kHz at a 16-bit resolution. 

The left-channel microphone was placed at the canopy level (20 m above the ground) 

and the right-channel microphone was placed at the understory level 1.5 m above the 

ground. The devices were programmed to record for 1minute every 15 minutes during 

the 24 h day/night cycle. The database used here accounts for 25 days of these 

recordings and represents a total of 960 hours of audio data. 
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Figure 1. (a) Location of French Guiana and the Nouragues reserve. (b) Topographical map of 
the study area. (c) Schematic representation of the study area with the layout of the location of 
the 12 autonomous recording systems. The sensors were installed at the cross of perpendicular 
trails, in the understory (1.5 m) and at the canopy level (20 m). Letters and Roman numbers 
refer to trail names. 
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2.3. Study species 

 

Despite its cryptic plumage, the Screaming Piha (Lipaugus vociferans; hereafter, 

“Piha”) is one of the most representative species of the neotropical forest. The 

commonly heard song of this bird is a remarkable soundmark known by anyone who 

has visited this region (electronic supplementary material, Audio S1). This species is 

regarded as one of the birds that possesses the loudest song in the world, with a mean 

sound-pressure level of 111.5 dB re 2.10-5 Pa estimated at 1 m distance (Nemeth, 2004), 

and can spend 70% of the day time calling (Snow, 1961). Males gather in leks of around 

25 individuals, where they highly compete vocally to mate with selecting females 

(Tostain et al., 1992). The Piha is common in the primary forest, but is highly sensitive 

to habitat degradation (Stotz et al., 1996).  

 The Piha is a suboscine passerine, therefore, it is thought that the song is 

inherited genetically and hence, stereotyped. Recent studies have shown that small 

variations in its song can encode individual distinctiveness and bear a lek signature 

(Fitzsimmons et al., 2008).  

 Perching on horizontal branches on his territory, the Piha calls with a typical 

song composed of two parts: (1) varied and quiet introductory notes, groo groo, and (2) 

a louder and highly modulated whistled pee-haw. For our study, we focused only on the 

louder part of the song. The first syllable, pee, is a rapidly ascending frequency 

modulation from 1.3 to 5.0 kHz. The second syllable, haw, can be considered as being 

composed of a whistle with three connected parts: an upswing, a downswing and a final 

constant frequency tune at 1.5 kHz (Figure 2 and electronic supplementary material, 

Audio S1). There is also another whistling call, wee-oo, made by the birds holding 

territories, but it is a very occasional vocalisation (Snow, 1961).  

 

2.4. Canopy height detection 

 

An acquisition of small-footprint discrete-return LiDAR (Light Detection and Ranging) 

was conducted in the Nouragues research area in March 2012 and covered an area of 

2,400 hectares, including our study zone. The acquisition was based on a portable Riegl 

laser rangefinder (LMS-Q560) mounted on a Falcon aircraft at a speed of approximately 

45 m s-1 about 400 m above the ground. The system had a multiple returns registering 
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capacity and the mean laser-point density was approximately 20 impulsions per m2. We 

constructed a canopy elevation model, i.e., the maximum local canopy height, using a 

procedure implemented in FUSION (McGaughey 2012). The canopy elevation model 

was constructed at 1-m resolution using a 1-m resolution digital elevation model (DEM) 

and the “CanopyModel” procedure implemented in FUSION. A 3 × 3 neighbour 

window median filter was finally used to smooth the surface and thus avoid local 

unrealistic maxima or minima. A full description of the LiDAR dataset and of the 

construction of the DEM and of the canopy model is given in Réjou-Méchain et al. 

(2015). 

 The median canopy height (in meters) of the surrounding 1 ha was calculated for 

each microphone to avoid overlap between neighbouring sample sites (Figure 3). The 

median of the canopy height has been shown to be a good proxy for the aboveground 

tree biomass, and hence of the whole forest structure (Réjou-Méchain et al., 2015). 

 

	

Figure 2. Spectrogram and waveform of a typical Lipaugus vociferans song composed of a two-
syllable pee-haw. The high-energy regions are at the beginning and at the end of the song, at 
about 1.5 kHz. The short-time Fourier transform was calculated with a Hamming window of 
1,024 samples, no zero padding and 50% overlap between windows. A dynamic range of 40 dB 
was set to display the spectrogram.  
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Figure 3. Height of the canopy of the study site using LiDAR technology. Stars indicate the 
position of the recorders and circles delimit an area of 1 ha surrounding the recorders where the 
median tree height was estimated. Letters and Roman numbers refer to trail names. 

 

 

3. Methods 

 

3.1. Test database 

 

As a first step, we created a test database (training database) to develop a detection 

system. The acoustic environment in the tropical forest is heterogeneous in space and 

time. Previous statistical analyses on the recordings showed an acoustic pattern of four 

main sound environments during one day: (1) a morning period from 1:00 to 9:00, (2) a 
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day period from 9:00 to 18:00, (3) an evening period from 18:00 to 19:00, and (4) a 

night period from 19:00 to 1:00 (Rodriguez et al., 2014). To tune correctly the detection 

system, the test database should contain samples with soundscapes from the different 

time-periods. To account for the temporal variation, we selected one day every four 

days over the 25 days of study, and for each day, we chose one sample from each time 

period. To account for the spatial variation, we selected samples from all 12 recording 

sites. The resulting test database contained 336 files of one minute in length (4 

files/day/site × 7 days × 12 sites). Two of us (J.S and J.S.U.) listened with headphones 

and visually inspected the spectrogram of each file to annotate the occurrence of the 

Piha's songs in the test database. The open-source software Audacity 

(http://audacity.sourceforge.net/) was used for the manual analysis and annotations. 

Manually annotations contained Piha songs mixed with sounds produced by other 

species. The songs due to different Piha individuals vocalising at the same time could 

also overlap. Within the resulting test database, we found a total of 262 songs of the 

Piha. We used this material as the ground truth to tune and test the detection system (see 

Section 3.4.).  

 

3.2. Signal Processing 

 

Noise is unwanted sound that interferes with the desired signal and as stated in the 

introduction, it can be divided into background noise and interference. The recording 

equipment introduces unwanted energy and distortions; electromagnetic and thermal 

noise from the electronic circuit (-115 dBV equivalent input noise for the SM2 

recorders), and quantisation distortion by the conversion of the signal from analogue to 

digital. Outdoor recordings always contain a significant amount of background noise 

that fluctuates in intensity. Geophonic sounds, such as wind and rain, add background 

noise to the signal as well as incidental anthrophonic noise such as helicopter noise. 

Interferences are due to sounds produced by other vocalising species, but which are not 

of interest for the study. In the tropical forest, there is a large number of vocalising 

species that generate many sounds that can potentially interfere with the targeted signal. 

In signal detection, the background noise limits the detection range of the system, 

whereas the interference decreases the accuracy of the system by increasing the false-

positive detection rate (Skolnik, 2001). In our study, the target signal is the song of the 
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Piha and all other sounds are regarded as noise. For example, we present a field 

recording that includes various sources of sounds, including the target signal 

(supplementary material, Audio S2). 

 Template matching is a set of techniques used to identify a pattern in a large 

database. A particular method of implementing template matching is to compute the 

cross-correlation function. Cross-correlation is performed by sliding a template signal 

over an objective signal, and calculating a correlation value at each time offset. The 

output signal is a measure of similarity between the template and the objective signal at 

a different time-lag. This method has been used in image processing to determine the 

position of a pattern in an image (Ding et al., 2001). 

 Audio data can be represented in a matrix by applying the short-time Fourier 

transform (STFT). The signal is divided into m overlapping windows of n samples and 

then the n-point discrete Fourier transform (DFT) is calculated for each windowed 

signal. The results are organised into a 𝑚×𝑛 matrix; the frequency frames 𝑚, the time 

frames 𝑛 and the amplitude as cell values. The matrix is plotted as a colourmap, and the 

resulting image is called a spectrogram. In audio signal processing, the two-dimensional 

cross-correlation allows the search for patterns using features in the time and frequency 

domain. 

 Normalised cross-correlation (NCC) is an effective method for template 

matching. This approach is robust to differences in relative signal amplitude between 

the template and the objective signal, such as those caused by signal absorption 

(Brunelli, 2009). The two-dimensional normalised cross-correlation (NCC) is calculated 

by the following equation: 

 

𝑁𝐶𝐶 𝑢, 𝑣 =
𝑓 𝑥,𝑦 − 𝑓!,! 𝑡 𝑥 − 𝑢,𝑦 − 𝑣 − 𝑡!,!

𝑓 𝑥,𝑦 − 𝑓!,!
!

!,! 𝑡 𝑥 − 𝑢,𝑦 − 𝑣 − 𝑡!,!
!
 

 

where 𝑓is the objective matrix and the sum is over the region 𝑥,𝑦 under the template 𝑡 

shifted at position 𝑢, 𝑣. 𝑓!,! denotes the mean value of 𝑓 𝑥,𝑦 within the region under 

the template and 𝑡 is the mean value of the template matrix. 
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3.3. Template selection 

 

Firstly, we computed the signal-to-noise ratio (SNR) of the 262 Piha vocalisations that 

occurred in the test database. To calculate this ratio, we used the following equation: 

 

𝑆𝑁𝑅!" = 20𝑙𝑜𝑔!"
𝐴!"#$%&
𝐴!"#$%

 

 

where A is the root-mean-square of the sample. We selected for the background noise 

0.7 s before and 0.7 s after the target song. The duration of the background noise (1.4 s) 

is equal to the mean duration of a Piha vocalisation. The SNR values range from -22 dB 

to +22 dB. 

 Then, to ensure the detection of nearby vocalisations, we selected the ten 

samples with the highest SNR (from +14 dB to +22 dB) and we standardised them. We 

aligned the samples in the time domain, starting at 0.2 s before the beginning of the 

vocalisation and with a total length of 1.6 s, and we normalised each sample between 0 

and 1.  

 Finally, we calculated the mean over the ten standardised samples, to derive a 

single mean template. This template maintained the most salient parts of the signal and 

accounted for the small but inevitable variations in the song. 

 

3.4. Tuning the spectrogram parameters 

 

To tune the system, we compared the output of the NCC with manual annotations. The 

detection task treated showed an uneven distribution between classes, positive outcomes 

being rare compared to negative outcomes. As discussed in Provos & Fawcett (1997) 

and  Daskalaki et al. (2006), the classification accuracy is an inappropriate performance 

measure in the particular case of unbalanced outcomes. We therefore used a 

methodology from signal detection theory, the Receiver Operating Characteristic (ROC) 

curve together with the Area Under the Curve (AUC) to summarise the rate of false and 

true detections. ROC curves describe the predictive behaviour of a class independent of 

class distribution, so they decouple classification performance from these factors 

(Provost et al., 1997). The AUC has two main advantages when evaluating the 
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performance of a detector: it is threshold-independent and it is invariant to a priori class 

probabilities (Bradey, 1997). 

 The main parameters of a spectrogram are the fast Fourier transform (FFT) 

window length, the overlap between successive FFT windows, the zero padding of the 

FFT and the shape of the window used. All these parameters change the time-frequency 

resolution of the spectrogram and therefore, change the result of the detection system. 

Preliminary observations have shown that the parameters that change the detection 

performance most drastically are the window length and the overlap between windows. 

We systematically measured the AUC metric associated with different combinations of 

these two parameters to find the optimal value. We changed the value of the window 

length from 128 to 8,192 samples by 2k (where k is an integer from 7 to 13) steps, and 

the overlap from 0% to 75% by 25% steps. The performance of the system varied by 

2.61% and we attained the optimal settings with a 256 window length and 0% overlap 

(Table 1).  

 The song of the Piha had a bandwidth of 4 kHz on average, ranging from 1.3 to 

5 kHz. Thus, we narrowed our search around the frequencies of the signal of interest. 

We computed the correlation for different frequency bandwidths with bounds from 1 to 

6 kHz by steps of 1 kHz. This ensured that the most suitable frequency band was found, 

for an optimised performance of the detection system. The performance of the system 

for the different bands varied by 9.72 % and the optimal setting was found for the 

frequency band from 1 to 6 kHz (Table 2). 

 

Table 1. Variation in the system performance with the window FFT size and overlap of the 
short-time Fourier transform. The evaluation metric is the AUC (area under the curve) as a 
percentage. 

 

Overlap  FFT window size (number of samples) 

 128 256 512 1024 2048 4096 8192 

  0 % 94.68 95.88 95.58 94.67 95.03 94.15 93.48 

25 % 94.27 95.17 95.11 94.83 94.43 94.21 93.27 

50 % 94.49 95.18 94.78 94.97 94.51 94.16 93.86 

75 % 94.34 94.99 94.65 94.92 94.64 94.01 93.84 
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Table 2. Variation in the system performance with the frequency bands of the search. The 
evaluation metric is the AUC (area under the curve) expressed as a percentage. 

 

Upper frequency Lower frequency bound (kHz) 

bound (kHz) 1 2 3 4 5 6 

6 95.88 94.44 91.75 91.14 86.40  

5 92.74 91.23 89.40 89.84   

4 90.22 89.06 86.16    

3 89.39 91.43     

2 88.45      

1       

 

 

 

3.5 Threshold setting 

 

The corresponding ROC curve of the detection system selected is presented in Figure 4. 

The ROC curve displays the true positive rate (TP) of the detection system versus the 

false positive rate (FP) in relation with a variation of the discrimination threshold. A 

threshold must be defined to turn the results of cross-correlation into a series of discrete 

detection events. An event was registered when a peak of amplitude of the cross-

correlation exceeded the threshold. The choice of such a threshold depends on the 

application. Increasing the threshold increases the selectivity of the detection system 

while lowering the threshold increases the sensitivity.  

 As the piha produces a loud song, the array of sensors could capture this sound 

in more than one recording site. In our particular case, we focused on the detection of 

the nearby vocalisations to avoid any overlap between neighbouring sites, which could 

overestimate the number of local vocalisations. We therefore chose a high and selective 

threshold value of 0.3. With this setting, the metrics of the detection system for the test 

database were: 0% FP and 34.9% TP. All analyses were programmed with Matlab (The 

MathWorks, Inc., Natick, MA). 
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4. Results 

 

Prior to automated analysis, the manual detections were removed from the annotation 

table. Scanning the complete database took 17.4 h with a laptop running with a 2.8 GHz 

processor and a 8 GB memory. The detection system found a total of 12,735 Piha songs. 

From these, 62% of the vocalisations were detected in recordings made by the canopy 

sensors and the remaining 38% of the recordings were made by the understory sensors. 

Fewer detections were found in the understory in all recording sites (Figure 5). The site 

M-XI had by far the highest number of detections, followed by O-XI and K-XI. In 

contrast, almost no songs were detected in the recording sites M-XV, O-XV and O-

XVII, where the forest had the lowest canopy (Figure 3) and which corresponds to a 

zone known to be dominated by lianas (Tymen et al., in press). All the other sites had a 

relatively low and similar number of detections. 

 In the time domain, there was a mean ± SD of 509.4 ± 284.3 songs detected per 

day over the whole study area (Figure 6). The maximum activity was reached on the 

fourth day, with 1,405 songs, and the minimum activity on day 23, with 74 songs. 

Indeed, a decreasing trend was noted from the beginning to the end of the study. A 

simple linear regression model, with log-transformed response, showed that the number 

of vocalizations decreased approximately 5% by day (estimate ± SE: -0.053 ± 0.013, 

adjusted R2=0.4, F1,23=17.09, P=0.0004). Diagnostics of model validity and stability 

(Cook’s distance, DFBetas, DFFits, and leverage; distribution of residuals plotted 

against fitted values) did not indicate obvious influential cases, nor deviations from the 

assumptions of normality and homogeneity of residuals. The understory and the canopy 

showed almost the same profile of temporal activity, and as observed before, the canopy 

always had a higher number of detections for each day. 

 A diurnal activity pattern appeared clearly (Figure 7): the calling activity began 

at sunrise (6:15) and increased slowly, reaching a first peak at 8:30. A reduction in the 

activity, with fluctuations, was observed between 10:00 and 14:45. The peak in activity 

was observed at 15:30 and then activity decreased progressively until sunset (18:10). 

 Finally, the complete set of results was summarised in a density plot that 

combined time (24-h cycle and days), space (horizontal and vertical) and Piha vocal 

activity (Figure 8). Zones of high (K-XVII, K-XV, K-XIII, K-XI, M-XI and O-XI) and 

low (M-XV, O-XV and OXVII) activity can be observed. In addition, the temporal 
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circadian activity is clearly emerging, showing the activity constrained by the sunrise 

and sunset dashed lines. 

 

 
Figure 4. Receiver Operating Characteristic (ROC) curve of the detection system. The point on 
the curve indicates the operating point selected: false-positive rate = 0% and true-positive rate = 
34.9%. 
	

	

	

	

Figure 5. Barplot of the number of songs detected for each recording site at the understory and 
canopy levels. 
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Figure 6. Sum of the songs detected for the understory and canopy levels for the 25 days of the 
study. 

	

	

	

	
Figure 7. Circadian evolution of the Piha calling activity. The six recording sites with the 
highest activity were used to build the trend. The results of each recording site were normalised 
and then averaged. A final normalisation was performed to show the results from 0 to 1. Filled 
round marks represent the average and the bars represent the variance between the sites. 
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Figure 8.  
Representation of the spatio-
temporal calling activity in an 
intensity image for the understory 
(a) and canopy (b) sensors. Each 
box represents a recording site. 
The y-axis represents the 24-h 
cycle from 0:00 am to 23:45, with 
sunrise (18:15) and sunset (18:10) 
indicated by a dashed line. 
Sunrise and sunset were 
considered constant during the 
sampling period (Earth equatorial 
line). The x-axis follows the 
activity during each of the 25 
days of study. The grey scale of 
the pixels indicates the number of 
detections; the darker points 
represent more detections. The 
scale ranges from white (0 
detections) to black (41 
detections). 
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5. Discussion 

 

Assessing and monitoring animal diversity in tropical forests is a challenging task, due 

to the immense number of co-existing species and the structural complexity of the 

environment. Acoustic monitoring can offer new tools to remotely detect and locate 

species of interest in space and time (Blumstein et al., 2011). In addition, acoustics 

might be involved in the global assessment of communities or ecosystems through the 

development of diversity or landscape indices (Gage & Axel, 2014; Pieretti et al., 2011; 

Sueur et al., 2014, 2008; Towsey et al., 2014). The sampling protocol used here was 

designed to define the acoustic dynamics of a patch of a neotropical forest (Rodriguez et 

al., 2014). This dataset embeds a unique amount of information concerning the 

behaviour, distribution and ecology of vocalising species. This information should be 

retrieved using methods adapted to large audio datasets. We therefore took the 

opportunity of this audio sampling to track one of the most conspicuous sounds of the 

forest in space and time – the song of the bird Lipaugus vociferans – the Piha. 

 

5.1. Template matching in complex soundscapes 

 

The Piha sings in an acoustic scene with several other species that can produce sound 

concomitantly. Detecting the song of the Piha in almost 1,000 hours of audio was 

therefore a challenge for signal analysis within large audio data. To achieve this task, 

we used a relatively standard template-matching approach through spectrogram cross-

correlation. Using this technique, which has previously been used to identify vocal 

individuality in the Piha (Fitzsimmons et al., 2008), we could build an objective 

classification system with a relatively small test database. In addition, we could screen 

the complete database within an acceptable processing time (<18h) with a standard 

laptop. Therefore, we showed that the cross-correlation of spectrogram is a robust and 

rapid technique to detect soundmarks such as the Piha song. This success was primarily 

due to the loudness and stereotypy of the Piha song, therefore, we expect that our 

approach might also perform well with other conspicuous and stereotyped sounds such 

as some amphibian vocalisations and insect stridulations, thereby opening perspectives 

in multi-species monitoring approaches. 
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 The performance of spectrogram cross-correlation varies, depending on the 

focused signal, the background noise, the interferences and the input parameters 

(spectrogram specifications and the template(s) used). The parameters of spectrogram 

cross-correlation must therefore be tuned to consider all the sources of variation as we 

did, by testing the features of the Fourier window, the frequency bandwidth of interest 

and the detection threshold value. The spectrogram cross-correlation technique is now 

incorporated into different software, facilitating its handling by non-experts in signal 

analysis. However, the features that tune the detection system are rarely found in 

software documentation, which reduces the possibility of reproducibility. 

 The spectrogram cross-correlation is definitely not universal and other methods 

should be invoked for less stereotyped songs. As suggested by Towsey et al. (2012), 

each species might require a specific tool to be identified automatically, making the 

unsupervised monitoring of several species extremely difficult. The use of more generic 

features describing intrinsic call structure, such as ridge features (Dong et al. 2015), 

could provide a better performance and the flexibility to detect species with more 

variable songs. 

 

5.2. Remote-sensing, behaviour and ecology of the Piha 

 

We initially found that the number of Piha vocalisations detected in the canopy was 

higher than in the understory. The canopy microphone was placed at a height of 20 m 

and the understory microphone at 1.5 m. Two facts might explain this vertical 

difference: (1) Piha singing perches are closer to the canopy than to the ground; (2) the 

acoustic properties of the habitat favour signal transmission towards the canopy. 

Regarding the first alternative, the literature is consistent in defining the perch height of 

the Piha in about the middle understory and the lower canopy (Stotz et al., 1996; 

Thiollay, 1994; Thiollay et al., 2001) with estimates between 6 and 16 m or higher 

(Snow, 1961) or 7 and 25 m (Pearson, 1971). Lower-boundary estimates are consistent, 

but upper-boundary ones vary significantly between observations. Personal observations 

(J.S.U) indicated that the perch height of the Piha was closer to the canopy microphone 

(i.e., 20 m) in our study site. Regarding the second explanation, the few studies on 

signal transmission in tropical environments have evaluated signal degradation based on 

source height (Marten et al., 1977; Morton, 1975) or in specific layers (Ellinger and 
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Hödl, 2003; Jain and Balakrishnan, 2012, Nemeth et al., 2001) but not on receiver 

height. Therefore, it would be too speculative to draw conclusion at this point. In 

summary, given our field observations (see above), it is more likely that the Piha sings 

closer to the canopy microphone at this specific study site. Transmission experiments 

and calibration methodologies at ecoacoustic monitoring sites would be needed, 

however, to confirm this supposition. Some methodological techniques that might be 

applicable for future studies are presented in the work of Llusia et al. (2011). 

 Considering a wider spatial scale, the results showed that the recording site M-

XI produced by far the highest number of vocalisations (5,696), followed by the site O-

XI (2,476) on all days. The high activity at this site is probably due to the proximity of a 

lek, where a higher number of individuals were concentrated.  

 The horizontal spatial activity pattern corresponded to the structure of the 

canopy estimated by LiDAR techniques. In particular, the sites with the lowest activity 

had the lowest canopy height. These sites are located in a forest dominated by lianas 

where canopy openness and dynamics is much greater than in the surrounding tall forest 

(Tymen et al. in press). This reflects that the habitat of the Piha is the high mature 

primary forest and confirms observations made by Stotz et al. (1996). In addition, Piha 

songs were more frequently detected in the recording spots K-XVII, K-XV, K-XIII, K-

XI, M-XI and O-XI, which border the main creek. This suggests that the lek mating 

arenas are distributed strategically near to a source of water for the singing males. 

However, further analysis and data would be needed to confirm this habitat preference. 

 Regarding the temporal organisation of the acoustic activity of the Piha, the 

screening of the database showed a well-defined circadian rhythm over a 12-h period, 

starting at 6:00 and ending at 18:00. It appears that the Piha avoids calling at dawn and 

at dusk, at the transition between day and night, when soundscapes with more acoustic 

activity could be observed (Rodriguez et al., 2014). The morning peak of Piha singing 

activity appeared more than two hours after dawn and the afternoon peak of activity was 

reached two and a half hours before dusk. During the rest of the day, the vocal activity 

was less intense, but still present, making the Piha a relatively active bird that dominates 

the day soundscape and confirms its status as a soundmark of the forest. 

 On a larger temporal scale, the number of detections decreased from the 

beginning to the end of the study. However, the sampling period of only 25 days, even 

though important, prevents a seasonal trend from being interpreted. Only longer 
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sampling protocols, in terms of development, over months and possibly years, could 

provide the required data to establish a seasonal trend for this bird and for the other 

sounds of the forest. 

 

 

6. Conclusion 

 

This species-centred study represents a contribution towards biodiversity assessment at 

a large scale of a taxon-rich ecosystem – the lowland tropical forest. Using data 

collected in a neotropical forest with a tree-dimension array of 24 microphones and 

implementing signal processing techniques, we could describe the spatial and temporal 

distribution of the tropical bird, L. vociferans. We provide detailed, objective and 

quantitative results, which are three crucial qualities for the advancement of 

biodiversity-monitoring strategies. 

 This study reused a protocol that aimed to sense the global acoustic features of 

the forest. It is therefore possible to use the sample dataset to obtain information on 

tropical forest acoustics at different scales, from populations to communities or 

landscapes. We advocate the development and use of both bottom-up and top-down 

approaches for research that deals with individual species of interest through automatic 

identification, and for research that zooms out on a group of species through the use of 

diversity indices (Sueur et al., 2014).  

 The tropical acoustic environment is composed of numerous sounds that interact 

and remain to be analysed at narrow and wide ranges. Even when the focal point of a 

study is a particular sound, it is important to remember that this sound occurs in a 

specific acoustic context that might have shaped the focused sound. Understanding the 

diversity of sounds in the tropical forest is a more difficult task than to excise individual 

elements and examine them independently; the scene and its characters should be 

examined together. 
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Audio S1. Focused recording of the typical vocal display of a Lipaugus vociferans. 

Recorded on November 16, 2010, at 1:30 pm, in site M-XI with the canopy 

microphone. 

 

Audio S2. Soundscape of the tropical forest. Among the numerous sounds, a typical 

song of the Lipaugus vociferans can be heard between second 9 and 11. Despite the 

interferences, this song was detected by our detection system without false positives. 

Recorded on November 20, at 6:00 am in site M-XI with the ground microphone. 
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OVERVIEW 

 

Amphibian are endangered worldwide by a diversity of threats, including habitat loss, 

diseases and climate change. These threats could be pronounced for explosive breeding 

communities, which breed massively in limited-resource areas during brief periods. 

Tropical explosive breeding events generally involve highly-diverse anuran 

communities. Many aspects of these events are still largely unknown, probably because 

their study remains challenging due to their ephemeral nature. Using automated sensors, 

we collected acoustic and environmental data to monitor five ponds in French Guiana 

during a four-month period. We assessed acoustic dynamics in the anuran communities 

before and during explosive breeding events and confronted these changes with 

environmental variables. We detected in each pond two explosive breeding events, 

lasting between 24 and 70 hours. The rainfall during the previous 48 hours was the most 

important factor predicting the emergence of these events. During explosive breeding 

events, we identified a temporal factor that clearly distinguished pre- and mid-explosive 

communities. A common pool of explosive breeders co-occurred in most of the sites, 

namely Chiasmocleis shudikarensis, Trachycephalus coriaceus and Ceratophrys 

cornuta. Nevertheless, the species composition was remarkably variable between and 

within ponds. The acoustic structure of explosive breeding communities had outlying 

levels of amplitude and unexpected low acoustic diversity, significantly lower than the 

communities preceding explosive breeding events. Explosive breeding communities 

were tightly linked with specific rainfall patterns. With climate change increasing 

rainfall variability in tropical regions, such communities may experience significant 

shifts in their timing, distribution and composition. In structurally similar habitats, 

located in the same region without obvious barriers, our results highlight the diversity of 

explosive breeding communities. The characteristic acoustic structure of explosive 

breeding events stands out from the circadian acoustic environment being easily 

detected at long range, probably reflecting behavioural singularities and conveying 

heterospecific information announcing the availability of short-lived breeding sites. Our 

results shed light on the causes, patterns and consequences of anuran explosive breeding 

events. Combining the use of acoustic with environmental sensors would allow to 

establish a comprehensible and cost-effective framework to understand and manage rich 

amphibian communities of tropical forests. 
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"Ao cahir a noite, éramos incommodados pelo 

coachar dos sapos, tão forte que imitava os 

 sons de um tambor de batuque de negros." 

– Hercule Florence (1876) 

 

 

1. Introduction 

 

Amphibians are currently the most endangered group of vertebrates, with more than 

32% of its species classified as threatened (Stuart et al., 2004; Hoffman et al., 2010). 

Habitat loss, emerging infectious diseases, and climate changes are the primary 

identified sources of amphibian decline and extinction worldwide (Colin and Storfer, 

2003; Beebee and Griffith, 2005; Hof et al., 2011). Understanding and forecasting 

global change impacts on this taxon is thus an urgent task in biology, particularly in 

mega-diverse tropical regions where high rate of environmental degradation and 

biodiversity loss are concomitantly taking place (Pounds et al., 2006; Alroy, 2015).  

Amphibian anurans largely rely on acoustic communication for sexual selection 

and reproduction (Gerhardt and Huber, 2002; Narins et al., 2007). In these species, the 

temporal patterns of calling and breeding activity are influenced by multiple 

environmental factors, such as temperature, humidity or light intensity (Brooke et al., 

2000; Oseen and Wassersug, 2002; Llusia et al., 2013b). While some anurans show long 

periods of calling activity and mating, known as prolonged breeders, others concentrate 

their reproduction during short time windows, even a few hours per year, and are known 

as explosive breeders (sensu Wells, 1977). In tropical regions, massive aggregations of 

explosive breeders may involve simultaneously multiple species, leading to highly-

diverse anuran communities. Such phenomena typically occurs in ephemeral ponds, 
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which are relatively rare in tropical forests and are likely triggered under particular 

weather conditions.  

The structure and dynamics of these unique acoustic communities are still 

largely unknown probably because of their ephemeral nature, density and complexity. 

To our best knowledge, only a few studies have documented broad and generic patterns 

of calling activity of explosive neotropical anurans, linking them to weather conditions 

(Aichinger, 1987; Duellman, 1995) or habitat use (Prado et al. 2005), and a single study 

has analysed fine scale dynamics of explosive-breeding species in tropical regions 

(Gottsberger and Gruber, 2004). In this previous study, human observations through a 

four-month fieldwork in French Guiana identified two explosive breeding events with 

detailed information on the co-occurrence of multiple species. Gottsberger and Gruber 

(2004) focused on a single pond, limiting the interpretation of the results to this case 

study. However, replications at spatial and temporal dimensions are crucial to examine 

the constitution and diversity of these communities, to decipher their dynamics and to 

identify their link with environmental factors. Calling individuals gathering around 

breeding points form dense choruses characterized by a complex acoustic structure, 

broad masking interference and high sound pressure level. Choruses formed by tropical 

anurans in explosive breeding events are extreme on these features due to the 

extraordinary species diversity and density of calling males. Such assemblages 

constitute unique examples of multi-species choruses presumably eliciting complex 

inter-species interactions. 

The technical difficulty in monitoring simultaneously these ephemeral 

communities has been one of the reasons for the lack of a wider geographic coverage. 

Traditional field-based observations are unfortunately not scalable. Alternative for cost-

effective methods that measure changes in biological communities are thus needed. The 

emergence of new sampling techniques based on passive acoustic recorders provides a 

suitable approach to track such complex animal communities (Acevedo and Villanueva-

Rivera, 2006; Obrist et al., 2010; Servick, 2014). These weatherproof acoustic sensors 

can be programmed to record for days or even months in a non-invasive and cost-

efficient way, so that replication in time and space is now possible. Most anuran 

amphibians produce loud, stereotyped, and species-specific advertisement calls for mate 

attraction. These acoustic signals can be therefore remotely recorded to monitor 

populations as testified by several studies on temperate zone (e.g., Bridges and Dorcas, 
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2000; Oseen and Wassersug, 2002; Llusia et al., 2013b) and tropical species (e.g., 

Brooke et al., 2000; Hilje et al., 2012; Janzen et al., 2016; Pereyra et al., 2016).  

 Using automated sensors, we collected for the first time acoustic and 

environmental data to monitor simultaneously and regularly multiple explosive breeding 

events in tropical anuran communities, at five temporary ponds located along the Kaw 

Mountains in French Guiana. This systematic passive acoustic monitoring allowed us to 

tackle key questions related to the causes, patterns, and consequences of such a striking 

phenomenon. We specifically addressed four questions: (1) What are the main 

meteorological factors that trigger the emergence of explosive breeders? (2) Which 

species co-occur before and during explosive breeding events? (3) What is the variation 

in the acoustic community composition within and between sites? (4) What are the main 

acoustic patterns, spectral characteristics and diversity before and during the explosive 

breeding, that may shed light on the potential selective pressures shaping these complex 

acoustic communities? 

 

2. Materials and methods 

 

2.1. Study site 

 

Explosive breeding assemblages were monitored in the lowland tropical rainforest of 

French Guiana, along the Kaw mountain (4°36′N; 52°16′W). As in most regions located 

close to the equator line, seasonal climatic variations in the study site were primarily 

due to changes in rainfall and humidity. The climate regime is characterized by two 

periods of rainfall: the main rainy season takes place from mid-November to the end of 

February and a less marked rainy season occurs from April to July. For this study, 

acoustic and environmental data were collected from the end of the dry season (10 

November 2015) to the end of the main rainy season (7 March 2016). 

The sampling focused on five seasonal ponds along a 30.4 km transect 

corresponding to the departmental road D6 (Figure 1). These temporary shallow water 

bodies are flooded during the rainy seasons and then dry out during periods of low 

rainfall. The ponds were surrounded by dense tropical forest, located between 236 and 

313 meters above the sea level, and had distinct sizes, from 224.8 m2 to 2240.2 m2 

(Table 1). 
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Figure 1. Location of the study area. On the left, location of the Kaw mountain in French 
Guiana. On the right, location of the five study sites along a 30.4 km transect on the 
departmental road D6. 

 

 

 

 

 

Table 1. Altitude, location, and area of the five study ponds. Altitude is given in meters above 
sea level (m a.s.l.) and area in m2. 

Local name Code name Altitude GPS coordinates Area 

Caïman Ca 313 4°34’10”N; 52°13’11”W 1192.3 

Blanc Bl 236 4°40’14”N; 52°18’22”W 399.5 

Patawa Pa 295 4°31’41”N; 52°07’14”W 2240.2 

Arlesienne Ar 269 4°32’44”N; 52°14’11”W 672.0 

Petite Pe 289 4°35’59”N; 52°15’59”W 224.8 
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2.2. Sampling protocol 

 

We monitored anuran calling activity and weather conditions simultaneously in each 

pond using automated sensors with a regular sampling schedule. To record the calling 

activity of focal species, we placed on the edge of each pond at breast height an 

automated sound recorder equipped with an omnidirectional microphone (SM2, 

Wildlife Acoustics, Inc., Concord, MA, USA). The device was set up to record data 1 

minute every 29 minutes, at 44.1 kHz and 16 bit resolution, so that we obtained 5,616 

recordings for each pond.  

To register local abiotic environmental data, we placed next to the sound recorder 

a data logger (H21-002, Onset) equipped with sensors to measure three weather 

variables: rainfall (Onset, S-RGB-M002), temperature, and relative humidity (Onset, S-

THB-M008). In addition, we retrieved two global environmental variables, atmospheric 

pressure (PTB220, Vaisala) and solar radiation (CMP6, Kipp and Zonen), from the 

nearest weather station at the Félix Eboué airport (4°50′N; 52°22′W), 19 km from the 

study site. 

 

2.3. Time-series analysis 

 

Because of the emergence of a great number of males from multiple amphibian species, 

explosive breeding events are known to produce a tremendously loud chorus. Therefore, 

we identified the occurrence of explosive breeding events in the audio recordings by 

searching for amplitude peaks lasting more than 24 hours. The overall amplitude of 

each recording was measured by computing the root-mean-square of the signal. Then, 

we applied a median filter with a 24-hour window and we searched for outliers in the 

smoothed time series. The outliers were defined as values distributed one-and-a-half 

times the inter-quartile range (IQR) above the third quartile (Q3 + 1.5×IQR). Every 

outlier event was inspected by listening to the recordings to confirm the presence of an 

explosive breeding event.  

The explosive events detected on the time series showed a clear and steep increase 

on the calling activity from anuran assemblages. While the beginning of the explosive 

breeding events exhibited constant and exceptionally high call rate during around 24 
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hours, calling activity later presented multiple oscillations before ceasing or returning to 

common levels. In order to have homologue sections for each event and compare pre- 

and mid-explosive breeding communities, we focused our subsequent analysis on a 48 h 

window, starting 24 h before the onset and ending 24 h after the onset of explosive 

breeding events. 

 We used a machine-learning framework to test whether the occurrence of the 

explosive breeding events could be predicted by abiotic factors. Weather conditions 

were considered as predictor variables and the triggering dates of the explosive breeding 

events as a binary response variable. The abiotic variables comprised low-level and 

high-level features. Low-level features were the raw quantitative meteorological 

measurements from the on-site sensors and the weather station, namely temperature, 

temperature variation, relative humidity, rainfall, atmospheric pressure, atmospheric 

pressure variation and solar radiation. Since the emergence of the breeding events can 

also be due to previous environmental conditions, we also included high-level features 

in the statistical analyses calculated based on the raw climatic data. These high-level 

features were the lagged-variables, previous 24, 48, and 72 hours, and past-cumulative 

variables from the previous 48 and 72 hours. The final predictor matrix included 42 

variables with 466 observations. We measured prediction accuracy and variable 

importance on classification using the Random Forest statistical classifier (Breiman, 

2001). The importance of the predictor variables was assessed by comparing the 

difference in misclassification error, mean decrease accuracy, between the original data 

and a modified set of data. The modified data for each predictor variable consisted in 

randomly permuted observations that are passed down the Random Forest. The higher 

the decrease in accuracy between the original and the modified data, the higher the 

importance of the predictor variable (Cutler et al., 2007). 

 

2.4. Community diversity analysis 

 

We investigated temporal and spatial variation on the diversity and composition of the 

acoustic communities of each explosive breeding event. We defined a community as the 

set of species observed at a given time, on a given pond. For each event, we 

systematically discretized the temporal gradient of 48 hours into four temporal periods 

of 12 hours. A first period (t1) ranged from 24 to 12 hours before the explosive breeding 
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event, a second period (t2) ranged from 12 hours before to the onset of the event, a third 

period (t3) enclosed the first 12 hours of the event, and a fourth period (t4) ranged from 

12 to 24 hours after the onset of the event. 

 We then sub-sampled our database by choosing one recording every two hours, 

for a total of 240 recordings of 60 seconds. Three of us (EC, AF and PG), who are 

highly trained in aural identification of anuran species of French Guiana, scrutinized 

each recording and annotated the occurrence of calling species. A final presence-

absence vector was derived for each recording by majority voting. Thereby, potential 

observer bias was prevented while the accuracy of the annotations enhanced. This phase 

led to the identification of a total of 25 species. 

Finally, we used the crossed-DPCoA (Pavoine et al., 2013), an ordination method 

that provides an approach for analysing the effects of crossed factors on the diversity of 

communities. Here we analysed the effect on the species composition of amphibian 

communities of the time period before or after the event (t1, t2, t3, t4), and the event (an 

event is one of the two breeding explosions observed at a given pond). The time period 

and the event are two crossed factors. The aim of crossed-DPCoA is to visualize the 

pattern of diversity due to a factor A knowing the existence of a crossed factor B. It 

helps to visualize the main effect of factor A, here on species composition, and the 

effect of the interaction between A and B, removing the main effect of factor B. The 

method first defines a space where species, communities and the levels of the two 

factors are visualized as points. In our first application of the crossed-DPCoA, species 

are equidistant in this space, then, the communities are positioned at the centroid of 

their constitutive species, and the levels of the factors at the centroid of communities 

associated with them. The method then searches for principal axes of the levels of factor 

A, retaining potential effects of the interaction between A and B, but removing the main 

effect of factor B. We analyzed first the effect of the events on the species composition 

of amphibian communities given the time period and then the effect of the time periods 

given the event.  

 

2.5. Acoustic diversity analysis 

 

To compare the anuran acoustic assemblages of the pre- and mid-explosive breeding 

events, we repeated the crossed DPCoA (Pavoine et al., 2013). However, here we did 
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not consider species as equidistant in the space of the crossed DPCoA. Instead we used 

the acoustic properties of the calls of the species to define acoustic dissimilarities 

between pairs of species. 

 We estimated the acoustic dissimilarity between two species using focal 

recordings of each species-specific call available from personal field recordings (PG, 

EC, AF, JSU; n=17) and from commercial recordings (Marty and Gaucher, 2003; n=8). 

We selected recordings that met two criteria: (1) the call had to be emitted by an 

isolated individual, and (2) the signal-to-noise-ratio (SNR) of the signal had to be higher 

than 30, where SNR = 20 log10(RMSsignal/RMSnoise) and RMS is the root-mean-square 

amplitude of the signal. Then, the spectral composition of each call was quantified by 

computing a short-time Fourier transform (FFT length of 512, no overlap, Hanning 

window), averaging the columns of the subsequent matrix (the temporal dimension), 

and applying a log-transformation. The acoustic dissimilarity between the species call 

was assessed by computing the cumulative dissimilarity of the spectral distributions 

(Lellouch et al., 2014).  

We also analyzed the spectral profiles of the recordings collected in the field to 

investigate the changes in the acoustic environment before and during the explosive 

breeding events. We first calculated the mean spectrum of each file. Then, we compared 

the spectral profiles at different moments of the explosive breeding event using a 

Random Forests procedure. We quantified and evaluated the classification accuracy and 

the importance of each feature, here each spectral profile, for the classification using the 

Random Forests importance measure. 

Finally, we estimated the α diversity of each acoustic community by computing 

the species richness, the Gini-Simpson coefficient, and the quadratic entropy. The 

richness is the number of species in the community. The Gini-Simpson index takes into 

account the number of species and their proportions (Gini, 1912; Simpson, 1949). The 

quadratic entropy, or Rao’s diversity coefficient (Rao, 1982), is based on the number of 

species, their proportions and incorporates a between-species dissimilarity matrix (here 

the pair-wise acoustic dissimilarities). For each diversity index, we tested the 

differences among periods of the explosive breeding event (i.e. t1, t2, t3 and t4) and 

between events (i.e. the first and second event per site), as well as the interaction 

between both factors, with a repeated-measures ANOVA. Shapiro-Wilk and Mauchly 

tests revealed no violation of the assumptions of normality and sphericity, respectively, 
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when using ANOVA tests (in all cases: W > 0.76, df = 5, p > 0.05; X2 < 11,3, df = 5, p 

> 0.05). 

Acoustic and statistical analyses were computed using the R software (R 

Development Core Team, 2017). In particular, spectral audio features and dissimilarity 

matrices were computed using the Seewave R-package (Sueur et al., 2008), community 

and diversity ordination analyses were calculated with the adiv R-package (Pavoine, 

2017), and statistical classification was computed with the randomForest R-package 

(Liaw and Wiener, 2002).  

 

 

3. Results 

 

3.1. Time series analysis 

 

Applying an amplitude filter, we detected in each pond two major explosive events, i.e. 

10 in total, lasting between 24 and 70 hours, later confirmed by aural evaluation. Using 

the combined meteorological variables (instant, lagged and past-cumulative) and the 

Random Forest classifier, we were able to accurately predict the emergence of all 

(100%) explosive breeding events with a low false positive rate of 9.6 % (out-of-the-

bag results). Variable importance ranking showed that rainfall was the most influential 

weather determinant, in particular, the amount of rain during the previous 24 hours and 

most importantly the past-cumulative rainfall during the previous 48 to 72 hours (Fig 2). 

The rest of the variables (temperature, relative humidity, atmospheric pressure and solar 

radiation) had minor predictive power. 
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Figure 2. Variable importance measure (mean decrease accuracy) from Random Forest 
classification used for predicting the start of the explosive breeding events. Variables with 
higher values are more important for the classification. A total of 42 environmental variables 
were evaluated based on the combination of seven direct measurements and six derived 
variables. The variables directly measured were: atmospheric pressure (atm), atmospheric 
pressure variance (atm var), rainfall (rain), solar radiation (solrad), relative humidity (rh), 
temperature (temp) and temperature variance (temp var). The derived variables were based on 
their delay (Δ) and persistence (µ) along the time (0, 24, 48 and 72 hours). 
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3.2. Community diversity analysis 

 

We first analysed the species composition of explosive breeding events using crossed-

DPCoA, which allowed us to focus on the explosive breeding events removing the 

effect of the crossed factor linked to the time period before or after the event. The first 

two principal axes expressed respectively 34.8% and 30% of the main effect variability 

of the factor site (Figure 3a). Neither the first nor the second axis presented a particular 

pattern, the explosive breeding events having largely overlapping communities. 

Nevertheless, some sites (Patawa, Arlesienne and Petite) presented a high within-event 

diversity, each explosive breeding event having a particular and unique combination of 

species (Figure 3b). Inter-site and intra-site variability of the explosive breeding events 

for these sites had the same order of magnitude.  

Then, to reveal the temporal variability in the acoustic signal of the events, we 

eliminated the crossed effect of factor 'event' in the space of the DPCoA. The calling 

activity of the anuran communities was clearly structured along the temporal dimension 

(Figure 4a). The first axis of the DPCoA, with 84.3 % of variance explained, clearly 

discriminated two assemblages: the pre-explosive community (t1 and t2 on the negative 

side) and a characteristic explosive breeding community (t4 on the positive side). A 

transitional community with species from both sides appeared near the origin (t3). 

While the pre-explosive communities (t1 and t2) were partly similar in their species 

composition, t3 and t4 had clear and unique species composition. The species that 

characterized the pre-explosive community (t1 and t2) were Phyllomedusa tomopterna, 

Leptodactylus mystaceus, and Dendropsophus counani (Figure 4b). Because they had 

positive coordinates on the first axis, the species that characterized the explosive 

breeding community (t4) were Chiasmocleis shudikarensis, Trachycephalus coriaceus 

and Ceratophrys cornuta (Figure4b). The transitional community (t3) showed an 

intermediate place on the ordination; these communities had a balanced mixed of pre-

explosive and explosive breeding species. 

  



 2. EXPLOSIVE BREEDING  
 

 75  

	

	

Figure 3. Diversity of the species composition in explosive breeding events. The two principal 
axes (64.8 % of variance explained) of the crossed DPCoA analysis are plotted. (A) Diversity 
between and within communities. Each point is a community. The communities were color-
coded with the levels of the factor event. Code names for events are: Ar = Arlesienne, Bl = 
Blanc, Ca = Caïman, Pa = Patawa, Pe = Petite. The number that follow the code name 
distinguishes the explosive breeding event in each site. (B) Coordinates of the constitutive 
species in the axes. Each point is a species. Only the species that had the highest values on the 
axes were named. Code names for the species are: Adenomera andreae = Adenandr, Allobates 
femoralis = Allofemo, Ceratophrys cornuta = Ceracorn, Chiasmocleis hudsoni = Chiahuds, 
Dendropsophus counani = Dendcoun, Dendropsophus leucophyllatus = Dendleuc, 
Dendropsophus minutus = Dendminu, Leptodactylus knudseni = Leptknud, Leptodactylus 
mystaceus = Leptmyst, Leptodactylus rhodomystax = Leptrhod, Osteocephalus leprieurii = 
Ostelepr, Phyllomedusa tomopterna = Phyltomo, Scinax sp2 = Scinsp2, Trachycephalus 
coriaceus = Traccori. 
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Figure 4. Temporal effect on the species composition in explosive breeding events. The two 
principal axes (92.4 % of variance explained) of the crossed DPCoA analysis are plotted 
showing (A) Diversity between and within communities along the time. Each point is a 
community. The communities were color-coded with the levels of factor time: t1, t2 ,t3, and t4. 
(B) Coordinates of the constitutive species in the axes. Each point is a species. Only the species 
that had the highest values on the axes were named: Adenomera andreae = Adenandr, Allobates 
femoralis = Allofemo, Ceratophrys cornuta = Ceracorn, Chiasmocleis shudikarensis = 
Chiashud, Dendropsophus counani = Dendcoun, Dendropsophus leucophyllatus = Dendleuc, 
Dendropsophus minutus = Dendminu, Leptodactylus mystaceus = Leptmyst, Osteocephalus 
leprieurii = Ostelepr, Osteocephalus oophagus = Osteooph, Phyllomedusa tomopterna = 
Phyltomo, Scinax sp2 = Scinsp2, Trachycephalus coriaceus = Traccori. 
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3.3. Acoustic diversity analysis 

 

The species were organised according to the characteristics of their calls when treated 

with a crossed-DPCoA embedding the acoustic dissimilarity matrix. The first and 

second axes were strongly correlated with the peak frequency of the calls (r = 0.91 and r 

= 0.96). For both axes, low frequency calls lied on the negative and high frequency calls 

on the positive side (Figure 5a). The levels of the temporal factor were positioned at the 

centroid of the acoustic community.  

As in the previous anuran community analysis, the acoustic community was 

structured along the temporal dimension, as revealed by a crossed DPCoA (Figure 5a). 

The first axis of the ordination analysis, with 60.1 % of explained variance, showed a 

progression from t1 (negative side) to t4 (positive side). The sounds that characterized, 

by their higher proportions, the explosive breeding event acoustics were the calls of C. 

shudikarensis and T. coriaceus (Figure 5b). The calls of these anurans were in the 

middle range of the acoustic community, 3.4 kHz and 1.8 kHz for C. shudikarensis and 

T. coriaceus respectively. 

The levels t1 and t2 presented elongated ellipses, showing a dispersed range of 

frequency calls, with low and high pitched sounds (Figure 5a). This elongated shape 

was much less pronounced for levels t3 and t4, which were mainly characterized by 

calls in the mid frequency range. Indeed, the dominance of mid-frequencies showed to 

be a distinctive spectral trait of explosive breeding events (Fig 6a). 

We were able to classify the frequency spectra of explosive breeding events with a 

high accuracy (Random Forests, 89% out-of-the-bag accuracy). The feature importance 

analysis showed that mid frequencies, between 3 and 4.4 kHz, were clearly the most 

important predictor variables (Fig 6b). 
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Figure 5. Acoustic diversity of anuran communities. The two principal axes (95.7 % of variance 
explained) of the crossed DPCoA analysis were plotted. (A) Diversity between and within 
communities. Each point is a community. Communities were color-coded with levels of factor 
time: t1, t2, t3, t4. (B) Coordinates of the constitutive species-specific calls in the principal axes. 
Each point is a species. Only the calls with higher values on the axes were named: Adenomera 
andreae = Adenandr, Allophryne ruthveni = Alloruth, Chiasmocleis hudsoni = Chiahuds, 
Chiasmocleis shudikarensis = Chiashud, Dendropsophus counani = Dendcoun, Dendropsophus 
leucophyllatus = Dendleuc, Dendropsophus minutus = Dendminu, Dendropsophus sp1 = 
Dendsp1, Leptodactylus knudseni = Leptknud, Leptodactylus mystaceus = Leptmyst, 
Osteocephalus leprieurii = Ostelepr, Osteocephalus oophagus = Osteooph, Phyllomedusa 
tomopterna = Phyltomo, Trachycephalus coriaceus = Traccori, Trachycephalus hadroceps = 
Trachadr, Trachycephalus resinifictrix = Tracresi. 
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Figure 6. Illustrative comparison between pre-explosive (pre) and explosive (mid) breeding 
frequency spectra. (A) In light colours, 10 random samples of each acoustic community. In dark 
blue (pre-explosive) and black (mid-explosive), the median spectrum of the samples. (B) 
Variable importance measure (mean decrease accuracy) from Random Forest classification used 
for discriminating the acoustics of the explosive breeding events. Frequencies with higher 
values are more important for the classification. 
  

0 5 10 15 20

−2
5

−2
0

−1
5

−1
0

−5
0

Frequency (kHz)

Am
pl

itu
de

 (d
B)

 Pre−explosive

 Mid−explosive
A

0 5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Frequency (kHz)

M
ea

n 
D

ec
re

as
e 

Ac
cu

ra
cy

 (%
)

B



 2. EXPLOSIVE BREEDING  
 

 80  

 

	
Figure 7. Diversity measures within each of the temporal community (t1, t2, t3 and t4). Three 
diversity indices are compared: species richness, Gini-Simpson diversity and Rao’s diversity 
coefficient. 
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0.101), and hence the two explosive breeding events recorded per site, during each of 

the two rainy seasons, were equivalent in terms of acoustic diversity. 

 

 

4. Discussion 

 

4.1. Time series analysis 

 

We found that environmental variables could predict the emergence of explosive 

breeding events in the studied communities, with rain as the most important predictor 

variable. While rain is abundant during the whole season, it is relevant to note that 

explosive breeding species respond to two specific patterns of rain: consistency during 

the previous 48 to 72 hours and amount during previous 24 hours. Our results are in 

agreement with those of Gottsberger and Gruber (2004), who found that rainfall for the 

previous 24 hours contributed the best, among other environmental variables, to explain 

the calling activity of the explosive breeding species. As we included more derived 

variables of the rain in our analyses, we complement previous results asserting that the 

consistency of the rain is also crucial. Having replicated this observation at several sites, 

we confirm that species participating in explosive breeding events are highly tuned to 

specific rainfall patterns.  

This apparently high dependency of explosive breeders’ reproduction not only to 

the amount of precipitation but also to the timing of rain events raises the question of 

the vulnerability of explosive breeders to climate changes. Recent investigations on the 

causes of amphibian declines have studied the role of climate change as a global impact 

(Carey and Alexander, 2003; Lips et al., 2008; Bellard et al., 2012). In addition to the 

climate-linked epidemic hypothesis, research has focused on the effect of climate 

change on behaviour, reproduction and distribution of amphibians (Araujo et al., 2006; 

Llusia et al., 2013a). As ectotherms, alterations on temperature and rainfall regimes 

might strongly affect key aspects of amphibian life cycles, even jeopardizing their 

survival (Duarte et al., 2012). Both theoretical and experimental studies suggest that low 

latitude ectothermic species are more vulnerable to climate changes than their higher 

latitude counterparts (Deutsch et al., 2008). Tropical species indeed tend to have 

narrower thermal tolerance (Bonetti and Wiens, 2014) and their actual habitat 
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temperatures are closer to their upper thermal limit (Sunday et al, 2011; Duarte et al., 

2012). Even slight changes in environmental conditions might therefore have a strong 

effect on tropical species (Foden et al., 2013). 

While other factors such as programmed annual migration might be involved in 

triggering explosive breeding events, our study suggests that the two specific patterns of 

rain (i.e. consistency during the previous 48 to 72 hours and amount during previous 24 

hours) are key parameters for the initiation of reproduction. With climate change 

increasing rainfall variability in tropical regions (Feng et al., 2013), reproductive events 

might be shifted or disrupted. Moreover, these species rely on very specific habitats 

(reproductive ponds) for their reproduction, another factor that is known to increase 

vulnerability to climate changes (Foden et al., 2013). Finally, the high number of 

individuals from several species at the time of reproduction might increase probability 

of intra and inter-species infection at the breeding ponds and therefore increase the 

sensitivity of these species to emerging infectious disease. These combined factors, may 

lead to significant shifts in the timing, distribution and composition of explosive 

breeding communities, which may desynchronize phenology and other biological 

responses throughout several trophic levels in the ecosystem (Schwartz, 2013). 

 

4.2. Acoustic community diversity analyses 

 

In structurally similar habitats, located in the same region without obvious barriers, we 

expected to have homogeneous amphibian communities. Yet, our results highlight the 

variability of species composition in explosive breeding events. The ordination diagram 

showed differences in species composition both between ponds and for a given pond, 

between the two observed events. In other words, each explosive breeding event, while 

often sharing a common pool of species, had a unique combination of species. When 

controlling for the differences between explosive breeding communities, a clear 

temporal factor structured the acoustic community during explosive breeding events, 

showing pronounced differences between pre-explosive and explosive breeding 

communities. The main species characterising the explosive breeding event, C. 

shudikarensis, T. coriaceus and C. cornuta, were also found as predominant species in 

explosive breeding events in the Arataï river, more than 100 km away from our study 

site (Gottsberger and Gruber, 2004). While other species are also present during these 
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aggregations, these species seem particularly representative of the acoustic community. 

It remains to understand how to explain the species turnover between events in space 

(ponds) and time (for each pond between the first and the second event). This turnover 

could be related to multiple combined factors, such as ecological and behavioural traits. 

 

4.3. Acoustic diversity analyses 

 

Regarding the acoustic environment of explosive breeding events, we found outlying 

levels of activity with a characteristic spectral signature. This signature stand out from 

the circadian acoustic environment and can be easily detected at long range. Acoustic 

signatures convey information that could be exploited by conspecifics (or 

heterospecific) for general orientation within a landscape (Slabbekoorn and Bouton, 

2008). Fish and crustacean larvae (Montgomery et al. 2006), birds (Mönkkönen et al., 

1990), and frogs (Gerhardt and Klump 1988; Bee 2007) are known to use sounds in the 

environment for spatial orientation. Indeed, acoustic cues might gain importance for 

anuran explosive breeding species since sounds may signal availability, in space and 

time, of short-lived breeding sites (Bee 2007, Swanson et al, 2007). 

 Alpha diversity indices, measured with species richness and Gini-Simpson, 

showed temporal communities with similar values between pre-explosive (t1-t2) and the 

explosive breeding community (t4). The transitional community (t3) had higher values, 

probably because it had species from both communities, pre- and explosive breeding. 

More surprisingly, Rao’s diversity coefficient showed a significant diminution of the 

spectral diversity during the explosive breeding event (t4). Even when the number of 

singing species was similar, we observed more frequency overlap in signals for the 

explosive breeding community than for the pre-explosive community. Species 

belonging to a community may compete to access acoustic resources, that is to a free 

acoustic channel. It has been therefore hypothesized that species calling in a chorus 

should exhibit few frequency overlap. Formulated under the acoustic niche hypothesis, 

organisms would have evolved to occupy specific spectro-temporal 'niches', decreasing 

the risk of heterospecific mating and information masking (Krause 1993). Acoustic 

partitioning has been observed in multiple taxa, such as insects (Sueur et al., 2008, 

Schmidt et al., 2013), birds (Planqué and Slabbekoorn, 2008) and amphibians 

(Amézquita et al., 2011). However, recent studies also presented limitations of such 
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hypothesis, showing no significant spectral divergence in cricket assemblages (Schmidt 

et al., 2016) and more similarity in signal design that expected by chance for tropical 

forest birds (Tobias et al., 2014). Our results are in line with these last studies; contrary 

to our prediction, the species did not show frequency dispersion but frequency overlap. 

 In our study, the frequency overlap is higher for the explosive breeding 

community than for the pre-explosive community, which might be explained by 

behavioural differences between these communities. As discussed by Wells (1977), the 

social behaviour of prolonged and explosive breeding species is distinct and might 

concern the form of male-male competition. While for prolonged breeders, female 

choice might be crucial for determining male reproductive success, for explosive 

breeders, females would have few opportunities to select among potential mates. An 

extremely short breeding period places selective premium on rapid acquisition of males, 

hence the selection for males by acoustic signals would be of low intensity. Because of 

the short time for exchange of signals between individuals, males would compete 

physically and not acoustically. Similar patterns may occur in other organisms which 

engage in group displays: in all such organisms, weak sexual selection would lead to 

less structured acoustic communities. Additional data including, for instance 

phylogenetic or functional traits, could increase our knowledge of this striking 

ecological event shedding light on the selective pressure driving widespread chorusing 

behaviour. 

 Acoustic signatures could be used by humans as a suitable way to monitor 

wildlife, not only at the individual or population level, but also at the community level. 

Our findings indicate that multiple spatial and temporal scales should be considered for 

precisely monitoring these communities. Moreover, the changes in the community were 

clearly reflected on a change of the spectrum of the acoustic environment. Under the 

conceptual framework of ecoacoustics (Sueur and Farina, 2015), recent studies have 

identified important changes in communities using acoustic indices (Lellouch et al., 

2014). Most of the acoustic indices are fast and easy to compute, and hence could 

provide a straightforward method to track dynamics of explosive breeding species. In 

this study, we coupled biotic and abiotic variables, revealing changes in the anuran 

community at multiple spatiotemporal scales and their tight link with the environment. 

Such data provides a baseline against which future changes can be measured, 

contributing to a better understanding and hopefully to a better management of such 
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unique communities. A more widespread use of standardized methods combining 

passive acoustic recorders with a monitoring of key environmental parameters would 

become a comprehensible and cost-efficient framework to improve our knowledge and 

manage rich animal communities of tropical forests. 
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OVERVIEW 

 

Ecoacoustic monitoring has proved to be a viable approach to capture ecological data 

related to animal communities. While experts can manually annotate audio samples, the 

analysis of large datasets can be significantly facilitated by automatic pattern 

recognition methods. Unsupervised learning methods, which do not require labelled 

data, are particularly well suited to analyse poorly documented habitats, such as tropical 

environments. Here we propose a new method, named Multiresolution Analysis of 

Acoustic Diversity (MAAD), to automate the detection of relevant structure in audio 

data. MAAD was designed to decompose the acoustic community into few elementary 

components (soundtypes) based on their time-frequency attributes. First, we used the 

short-time Fourier transform to detect regions of interest (ROIs) in the time-frequency 

domain. Then, we characterised these ROIs by (1) estimating the median frequency and 

(2) by running a 2D wavelet analysis at multiple scales and angles. Finally, we grouped 

the ROIs using a model-based subspace clustering technique so that ROIs were 

automatically annotated and clustered into soundtypes. To test the performance of the 

automatic method, we applied MAAD to two distinct tropical environments in French 

Guiana, a lowland high rainforest and a rock savanna, and we compared manual and 

automatic annotations using the adjusted Rand index. The similarity between the 

manual and automated partitions was high and consistent, indicating that the clusters 

found are intelligible and can be used for further analysis. Moreover, the weight of the 

features estimated by the clustering process revealed important information about the 

structure of the acoustic communities. In particular, the median frequency had the 

strongest effect on modelling the clusters and on classification performance, suggesting 

a role in community organisation. The number of clusters found in MAAD can be 

regarded as an estimation of the soundtypes richness in a given environment. MAAD is 

a comprehensive and promising method to automatically analyse passive acoustic 

recordings. Combining MAAD and manual analysis would maximally exploit the 

strengths of both human reasoning and computer algorithms. Thereby, the composition 

of the acoustic community could be estimated accurately, quickly and at large scale. 
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"It was indeed a strange situation, to find no silence in the solitude of the woods. 

In the inns of Spain we dread the sharp sounds of guitars from the next apartment; 

in those of the Oroonoko, which are an open beach, or the shelter of a solitary tree, 

 we are afraid of being disturbed in our sleep by voices issuing from the forest." 

– Alexander von Humboldt	(1825) 

 

 

 

 

1. Introduction 

 

The diversity of life forms is an invaluable biological resource threatened by 

anthropogenic environmental change (Pimm et al., 1995; Thomas et al., 2004). Given 

the pace of this change, there is an imperative need to develop quantitative indicators 

that provide specific information on the state of biodiversity (Pereira et al., 2013). With 

the advent of new sensor technology it is possible to remotely collect environmental 

data, assisting to determine, and eventually buffer, the pressures on biological diversity 

and ecosystem services (Petrou et al., 2015). In particular, the use of passive acoustic 

sensors in ecological research, or ecoacoustics (Sueur and Farina, 2015), has proved to 

be a viable method for biodiversity assessment that can be scaled up at multiple spatial 

and temporal scales (Towsey et al., 2014). The environmental sounds collected by these 

automated sensors usually include a large combination of both biotic and abiotic 

sounds, which are mixed down into a single time series. Such interlaced audio data 

needs to be unravelled in order to extract and to decipher ecological meaningful 

information, which represents to date a prominent bottleneck for the application of 

acoustic sensors in biodiversity monitoring.  

 A significant proportion of animal species produce sounds for social interaction, 

navigation or predator-prey encounters (Fletcher, 2014). Most of these acoustic signals 

have a species-specific signature that can be exploited for the remote identification of 



 3. UNSUPERVISED MULTIRESOLUTION ANALYSIS  
 

 96  

species. The use of these signatures is a direct way to retrieve ecological data about 

species presence, abundance, status and distribution. Manual species identification by 

experts can be carried on audio datasets, but for large collections, the analysis can be 

facilitated by automatic pattern recognition methods such as supervised learning 

(Kershenbaum et al., 2016). Supervised learning is a method to build a statistical 

classifier based on labelled training data (Webb and Copsey, 2011). An increasing 

number of supervised learning tools have been adapted to identify automatically single 

species (Dugan et al., 2013; Ganchev et al., 2015; Ulloa et al., 2016) or several species 

(Briggs et al., 2012; Potamitis, 2014; Heinicke et al., 2015; Dong et al., 2015; Xie et al., 

2016; Ruiz-Muñoz et al., 2016). The application of supervised learning is limited by the 

large reference datasets required to ‘train’ the classifiers and the high acoustic similarity 

sometimes observed between closely related taxa. The available sound libraries, even if 

providing thousands of samples, still cover only a small fraction of the animal sound 

diversity, at both population and species scales.  

 An alternative to species identification consists in characterising the acoustic 

community or the soundscape with the use of acoustic indices (Sueur et al., 2014). 

Rather than focusing on target species, acoustic indices aim to describe the global 

structure of the soundscape. A variety of indices have been proposed and applied to 

terrestrial (Lellouch et al., 2014; Farina et al., 2015; Fuller et al., 2015) and underwater 

habitats (Parks et al., 2014; Desjonquères et al., 2015; Harris et al., 2016; Buscaino et 

al., 2016). These indices revealed, for example, changes in bird species richness among 

woodland habitats (Depraetere et al., 2012) or dynamics of the soundscape across 

different temporal scales (Rodriguez et al., 2014). However, they also showed to be 

sensitive to transitory or permanent background noise, variation in the distance of the 

animals to the sensor, and the relative sound amplitude or the calling rate of the 

signalling animal (Gasc et al., 2015; Kendrick et al., 2016). 

 More recently, methods based on unsupervised learning have been adapted to 

audio recordings achieved in natural environments. Unsupervised learning searches for 

structures or patterns in a dataset without using labels. This approach has been 

extensively used to draw inferences in areas where labelled data is inaccessible or too 

expensive, such as astronomy (Way, 2012), genetics and genomics (Libbrecht and 

Noble, 2015). In an innovative work, Eldridge et al., (2016) adapted sparse-coding and 

source separation algorithms to extract shift-invariant spectro-temporal “atoms” from 
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environmental recordings. However, the authors did not establish a clear link between 

the spectro-temporal “atoms” and ecological or biological processes. Unsupervised 

learning has also been used as a pre-processing step for the classification task, 

significantly improving the classification performance on species recognition (Stowell 

and Plumbley 2014). In their approach, Stowell and Plumbley (2014) first decomposed 

the sounds into “atoms” with spherical k-means, and then used the “atoms” as features 

for the supervised learning framework. Thus, unsupervised learning offers new means 

to characterise sounds and may provide insights on the acoustic communities of diverse 

and threatened ecosystems, such as those of tropical regions (Pekin et al., 2012; 

Rodriguez et al., 2014).  

 The present work emerges from the question: how to best measure, quantify and 

characterise environmental sounds (from biotic and abiotic sources) in passive acoustic 

recordings to get valuable ecological indicators? We propose a new data-driven method, 

named Multiresolution Analysis of Acoustic Diversity (MAAD), to automate the 

discovery of plausible and interpretable patterns in passive acoustic recordings. To build 

a generalized method for multiple conditions and environments, we adapted methods 

from the unsupervised learning field. We estimated acoustic diversity by detecting 

regions of interest in sound recordings and grouping them into soundtypes based on the 

value of their time-frequency attributes at different scales. To test the flexibility and 

robustness of the method, we applied MAAD to two distinct night tropical 

environments in French Guiana, a lowland high rainforest (HF) and a rock savanna 

(RS). The RS is inhabited by a distinct and likely less diverse animal community in 

comparison with the HF (Bongers et al., 2001) so that it was expected to find 

contrasting acoustic communities between these two tropical environments. We 

compared manual and automated annotations to (1) evaluate the model selection 

procedure; (2) assess the relevance of different features in the clustering process; and 

(3) quantify the overall similarity between manual and MAAD soundtypes. To 

conclude, we give practical advices and discuss how MAAD can potentially be 

transferred to other environments in order to track the state and dynamics of animal 

communities for biodiversity studies. 
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2. Material and methods 

 

The workflow of the proposed method (MAAD) followed four main steps: (1) passive 

acoustic recordings were transformed into the time-frequency domain using the 

windowed short-time Fourier transform and the Fourier coefficients were filtered to 

remove noise and to highlight sounds that can be delimited in time and frequency, here 

defined as regions of interest (ROIs); (2) each ROI was then characterised by features in 

the time-frequency domain using 2D wavelets; (3) the ROIs with their attributes were 

used to automatically estimate clustering hyper-parameters; and (4) the hyper-

parameters and the attributes of the ROIs were passed to a clustering algorithm that 

formed homogenous groups of ROIs, namely soundtypes (Figure 1). This led to an 

automatic partitioning and characterization of soundtypes, which can be used to 

determine their presence, relative abundance and diversity within acoustic communities. 

To validate the proposed approach, the automatic partitioning provided by MAAD was 

compared to expert manual annotations using the adjusted Rand index (ARI). 

 

 

 

	

Figure 1: Block diagram of MAAD. Each step of the workflow is depicted as a grey box. Input 
and output after each step are indicated in black. Model selection is an optional step. Model 
hyper-parameters can also be set based on prior information about the acoustic community. 
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2.1. Audio dataset 

 

Audio data were collected in French Guiana at the CNRS Nouragues Research Station 

(4°05'N; 54°40'W). The station is mainly occupied by a lowland high rainforest (HF) 

and a rock savanna (RS), among other ecosystems. The HF dominates on lower parts of 

the station (40-100 metres above sea level), has a fairly open understory and is closed 

on top by a dense canopy elevating at 25-35 m. The tree density in HF is high, with a 

total basal area ranging from 30 to 45 m2/ha, and the floristic composition is 

heterogeneous, since no species dominates the site. The RS is found on a granite hill 

about 400 m above sea level that rises abruptly and overtops the forest. Due to high 

microclimatic fluctuations and poorly developed soils, the RS is only partially colonised 

by vegetation, being its floristic composition drastically different from the surrounding 

forest. Small trees, xerophytic herbs and shrubs in scattered patches separated by rock 

areas covers nearly half of the area of the granite hill (Sarthou, 2001).  

 Environmental sounds were gathered using automated acoustic sensors 

(Songmeter SM2, Wildlife Acoustics Inc., Concord, MA, USA) equipped with 

omnidirectional microphones (PUI Audio POM-3535L-3-R, frequency response 50 Hz 

– 20 kHz ± 4 dB). A single acoustic sensor was placed at each environment, HF 

(04°05’15”N; 52°40'42”W) and RS (04°05'33”N; 52°40'40”W), and recorded one 

minute every 30 minutes from sunset to sunrise for 10 consecutive nights (5-15 

December 2014). Each sensor was set to sample the audio at 44.1 kHz with a 16-bit 

resolution (mono, WAV format). This audio database was subsampled by selecting two 

one-minute samples per night, one four hours after sunset (22 h 17 min UTC/GMT -3 

hours) and one four hours before sunrise (02 h 24 min UTC/GMT -3 hours). These 

environmental audio recordings were deposited at the sound library of the Muséum 

national d’Histoire naturelle (www.sonotheque.mnhn.fr, Table S2). At both sites, two 

files recorded during heavy rain were removed. The final audio database included 36 

one-minute files in which 9403 ROIs were detected.  

 

2.2. Detection of regions of interest (ROIs) 

 

A region of interest is an isolated region in the time-frequency domain with a high 

density of energy. The automated detection of ROIs followed a four-step process 
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computed with MATLAB (The MathWorks, Inc., Natick, MA) using the signal 

processing toolbox. First, we computed a spectrogram of the audio signal using the 

windowed short-time Fourier transform, (1024 FFT length, 50% overlap, Hamming 

window). Second, we applied a denoising method, namely spectral subtraction (Boll, 

1979; Yu et al., 2008), which allows to highlight transitory sounds by removing 

stationary noise found in the background. Third, we used a 2D rotationally symmetric 

Gaussian filter to remove small impulsive noise and to join close-by regions of high-

density energy (5 by 5 element size, 0.5 standard deviation). As a final step, we applied 

a linear amplitude threshold to select the regions that were in the foreground. Since the 

spectrogram gives a sparse representation of the acoustic environment, regions of high 

density of energy can be identified as observations distant from the low-density 

background. Hence, the linear threshold (lth) was set for each recording by evaluating 

the dispersion of the spectrogram values and selecting values of the spectrogram 

distributed one-and-a-half times the inter-quartile range (IQR) above the third quartile 

(lth = Q3 + 1.5×IQR). The use of quartiles gives a robust measure of central tendency 

and spread effective to non-normal data (Tukey, 1977).  

 Thereby, each detected ROI was a frame of variable size in the time-frequency 

domain, delimited by a start and end time, and a minimum and maximum frequency. 

The number of ROIs found in the RS and the HF audio files were respectively 4028 and 

5375, for a total of 9403. 

 

2.3. Characterization of ROIs 

 

Automated measurements on the frequency and the time-frequency shape of each ROI 

were performed. To measure the frequency, a single feature was calculated: the median 

frequency, which is the value that divides the ROI into two frequency intervals of equal 

energy. This is a robust measurement that does not vary much based on the exact time-

frequency bounds. 

 To measure the shape of the ROI in the time-frequency domain a wavelet 

analysis was used. The purpose of this procedure was to decompose the signal into 

coefficients that can be saved and manipulated to better represent the information in the 

signal. The wavelet transform is the result of filtering the signal with a bank of specific 

filters (or ‘wavelets’). Each analysing wavelet can be visualised as a kernel of fixed 
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scale that moves along the data. When the wavelet encounters a feature in the data with 

similar shape and scale, the analysis returns a high value for the wavelet coefficient. 

Then, the operation is repeated at a different scale with a new dilated or contracted 

wavelet. In this way the wavelet transform allows a multiresolution analysis and can 

represent hierarchical structures of the data. This scale-by-scale analysis is particularly 

suited for the detection of local features in aperiodic data. Wavelets can be extended to 

the two dimensional case (2D), in particular to process images (Mallat, 2009). In 2D, 

wavelets are dilated as in the one-dimensional analysis, and in addition rotated. A 2D 

wavelet transform of a spectrogram allows finding co-occurrence of time-frequency 

elements at different scales.  

 First, the high frequencies were recovered by convolution with the wavelet 

filters. By rotating and dilating the wavelet, we obtained rotation and scale covariant 

coefficients, which allowed discriminating the differences in shape of the different 

ROIs. Then, each filtered signal was averaged with a rotation-invariant low-pass filter. 

The rotation-invariant low-pass filter removed small differences between similar ROIs, 

forming homogeneous groups. The operation on a 2D signal 𝑥 is formalised as: 

 

𝑆𝑥 = (|𝑥 ∗ 𝜓!,!| ∗ 𝜙)  

 

where the symbol ∗ denotes spatial convolution, 𝜙 is a gaussian low-pass filter and 𝜓!,! 

is a wavelet dilated by 2! and rotated by an angle 𝜃. The filter bank used consisted of 

wavelets of the Morlet family, at 16 scales and 8 angles: horizontal (0º), vertical (90º) 

and diagonals (22.5º, 45º, 67.5º, 112.5º, 135º, 157.5º). In this way, a total of 128 shape 

features were calculated. An illustrative subset of the 2D filters is presented in Figure 2. 

The filter bank and the coefficients were computed with MATLAB (The MathWorks, 

Inc., Natick, MA) using the ScatNet toolbox (Sifre and Mallat, 2013). 
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Figure 2. Subset of the 2D wavelet filter bank used to capture spectro-temporal features of the 
signal. On the left, Morlet wavelets 𝜓 at four scales (along rows) and eight angles (along 
columns) are illustrated. On the right, the gaussian low-pass filter 𝜙 is represented. 

 

 

2.4. High dimensional clustering 

 

Clustering is an unsupervised learning analysis that aims at grouping objects into 

homogenous groups or clusters. As opposed to supervised learning, clustering is more 

flexible since no groups need to be defined a priori, i.e. the groups are formed based on 

the value of the attributes of the data. If available, labelled data can be used to estimate 

whether the groups found are suitable classes. To group the ROIs in homogeneous 

groups, a method suited to the multidimensional attributes of the ROIs was used. This 

method, named High Dimensional Data Clustering (HDDC), is a clustering technique 

based on a family of twelve parsimonious Gaussian mixture models adapted to 

multivariate high-dimensional data (Bouveyron et al., 2007). The mixture model-based 

clustering (on which HDDC is based) is defined in a probabilistic framework and has 

two particular advantages: (1) it is known to be a robust approach to deal with 

unbalanced datasets and (2) it is interpretable from a statistical point of view (Fraley 

and Raftery, 2002). The mixture model is naturally robust to unbalanced data sets 

because of the parameter πk, which correspond to the weight of the group component in 

the mixture (see Equation 1, Text S6). The additional advantage of the mixture model is 

that it is a comprehensible statistical model and therefore allows to use model selection 

techniques, such as the Slope heuristics which we use later in the proposed framework. 

 The models proposed in HDDC have different regularizations that control the 

complexity of the clustering. The most complex model is akjbkQkdk, all the parameters 
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are class-specific and the dimension is specific to each cluster. The simplest model is 

abQkd, all the parameters are common between classes and the dimension of the class 

subspace is common. The properties of the parsimonious models in HDDC are detailed 

in Text S6. 

 A model selection procedure was implemented to estimate the hyper-parameters 

that control the complexity of the model. These hyper-parameters are the model M, the 

number of groups K, and the threshold value th to find the intrinsic dimensionality 

of each class. Classical model selection methods, namely AIC (Akaike, 1974) and BIC 

(Schwarz, 1978) criteria,	 are asymptotic (they assume that n tends to infinity) and 

therefore might not be appropriate. More recently, Birgé and Massart (2006) proposed a 

data-driven technique	that alleviates this assumption and was used in different situations 

(Baudry et al., 2011), including model-based clustering (Bouveyron et al., 2015). The 

method, called slope heuristics (SHC), of the model M is defined as follows: 

 

𝑆𝐻𝐶(𝑀) = 𝑙(𝜃)− 2𝑠𝜉(𝑀) 

 

where 𝜃 is the set of parameter values that maximize the log-likelihood function 𝑙(𝜃), 

𝜉(𝑀) is the number of free parameters of the model, and 𝑠 is the slope of the linear part 

of 𝑙(𝜃) with regard to the number of parameters. SHC follows the same rationale than 

other model selection criteria such as BIC and AIC, the likelihood of the fitted model is 

penalised by a function. Yet, SHC criterion has been found to be more consistent than 

BIC for model selection in HDDC (Bouveyron et al., 2015). A detailed overview and 

practical implementation advice of the SHC can be found in Baudry et al., (2011).  

 Slope heuristics were calculated for the twelve models implemented in HDDC 

(see Text S6), at ten different thresholds (0.0001, 0.0005, 0.001, 0.01, 0.03, 0.05, 0.07, 

0.1, 0.15, 0.2), for 39 values of K (from 2 to 40, by steps of one). Since HDDC has a 

random initialization, the returned log-likelihood can vary between executions. Hence, 

the slope heuristics value was calculated ten times for each combination of hyper-

parameters. The mean value was stored and the maximum was selected to find the 

hyper-parameters of the HDDC models.  

 With the hyper-parameters fixed, the model was fitted ten times with random 

initialisation. Random initialisation is a standard method to initiate the Expectation-

maximization algorithm. This method correctly explores the parameter space to reach 
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the global maximum of the likelihood (Biernacki et al., 2003). Among the ten trials, 

only the model with the highest likelihood was selected for feature importance analysis 

and validation. Feature importance was calculated by multiplying the vector of 

estimated variances by the corresponding orthogonal matrix of orientations Qk on each 

cluster. The total weight of the features is the average of the feature importance on all 

clusters. HDDC and slope heuristics were both computed using the R package 

HDclassif (Bergé et al., 2012).  

 

2.5. Validation of system performance 

 

To evaluate and determine the performance of MAAD, proper ground truth was 

established and a quantitative method to compare ground truth and the system output 

was used. ROIs (n = 9403) of sound recordings, which were automatically detected, 

were examined manually using the software Raven (Bioacoustic Research Program 

2014). Aural and visual inspection of spectrograms, plus manual measurements on the 

temporal (duration and pulse rate) and spectral (median frequency and bandwidth) 

domain were made. Based on this combined examination, ROIs were categorised into 

distinct homogeneous groups, here referred as soundtypes. If the amplitude of the sound 

was too low and the features could not be inspected correctly, the ROI was marked as 

undetermined.  

 The automatic annotations output by MAAD were compared with the manual 

annotations using the adjusted Rand index (ARI). The ARI is a similarity measure 

between two partitions (Hubert and Arabie, 1985). Given two partitions, U and V, 

derived from a set of n objects, the ARI is computed according to: 

 

𝐴𝑅𝐼 =  
𝑛
2 (𝑎 + 𝑑)−  𝑎 + 𝑏 𝑎 + 𝑐 + (𝑐 + 𝑑)(𝑏 + 𝑑)

𝑛
2

!
−  [(𝑎 + 𝑏)(𝑎 + 𝑐)+ (𝑐 + 𝑑)(𝑏 + 𝑑)]

	

	

where a denotes objects in a pair placed in the same group in U and in the same group 

in V; b denotes objects in a pair placed in the same group in U and in different groups in 

V; c denotes objects in a pair placed in the same group in V and in different groups in U 

and; and d denotes objects in a pair placed in different groups in U and in different 
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groups in V. This index, bounded between ±1, was derived from the popular Rand index 

but has the advantage of being adjusted for chance with respect to the null hypothesis 

and can be interpreted as the difference between probabilities of concordance and 

discordance. Independently of the number of clusters and samples, the ARI has a value 

of -1 when the partitions are opposed, close to 0 for random labelling, and exactly 1 

when the two partitions are identical. 

 Clustering analyses, cluster validation and graphs were achieved with R version 

3.2.0 (R Core Team, 2015). 

 

 

3. Results 

 

We manually identified 35 soundtypes in the HF and 18 in the RS dataset. The relative 

soundtype abundance was unbalanced in both datasets (Figure S1). On average manual 

annotation required 25 to 35 minutes per file. Manual annotations were used only for 

performance validation purposes, that is, to interpret the return of MAAD at different 

settings. Two main tests were performed. The first one consisted in changing the hyper-

parameter K of the model, from 2 to 40 by unitary steps. The second one consisted in 

using different subsets of features: diagonal wavelets (16 scales × 6 = 96 features), 

horizontal and vertical wavelets (16 scales ×  2 = 32 features), shape (32 + 96 = 128 

features), median frequency (1 feature), and the full set (128 + 1 = 129 features). 

 

3.1. Model selection 

 

To begin with the cluster analysis, the most adequate model hyper-parameters were 

identified by observing the trend of the slope heuristics criterion. On both datasets, RS 

and HF, slope heuristics attained a maximum value with the model akjbkQkdk, the most 

complex one (a full covariance matrix for each group), and a threshold value of 0.0005. 

As expected, the suitable number of clusters K was different for each habitat. The curve 

showing the evolution of the slope heuristics value for different K peaked between 10 

and 15 with a maximum at 11 on the RS dataset and peaked between 15 and 20 with a 

maximum at 17 on the HF dataset (Figure 3). 
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 Using the manual annotations, different settings of the hyper-parameter K (i.e. 

the number of clusters) were tested to analyse the response of MAAD. The response at 

different values of K was similar in both datasets (Figure 4), the performance of the 

clustering increments at the beginning and after reaching a peak, the performance 

begins to drop progressively. The peak value differs for the two habitats, 9 for the RS 

and 15 for the HF.  

 

 

	
 
Figure 3. Model selection using slope heuristics. Variation of the slope heuristics criterion with 
respect to the number of clusters (K) for the RS and HF datasets. Slope heuristics find its 
maximum for RS at 11 clusters, and for HF at 17 clusters. This maximum is found for RS and 
HF with the same mixture model (akjbkQkdk) and threshold value (0.0005). 
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Figure 4. Variation of the performance of MAAD with respect to different values of the hyper-
parameter K, number of clusters. The performance of MAAD is measured with the adjusted 
Rand index (ARI). The returned ARI value was calculated for 10 random initialisations of the 
clustering. The solid line represents the mean value and the dashed lines indicate the standard 
deviation of the results. 
 
 
3.2. Feature relevance 

 

Using the hyper-parameters found with the slope heuristics, the ROIs were 

automatically clustered based on their computed time-frequency attributes (129 

features). Before evaluating the clustering results, the weight of the features estimated 

by the clustering process were analysed. Interestingly, a single feature, the median 

frequency, accounted for most of the variation in the data, 39.4 % and 51.0 % for the RS 

and HF respectively (Figure 5). The rest of the variation was associated to the combined 

wavelet features (n = 128) related to the time-frequency shape of the sound. The relative 

importance of each of the 128 wavelet features was plotted on an intensity map, a 

graphical representation of a matrix where each cell is highlighted according to its 

value. The intensity map showed that in both habitats the same two orientations 

explained best the data variance, the vertical (90º) and horizontal (0º) orientations 

(Figure 5). However, different scales are emphasized in each habitat, medium and large 

scales in the RS, and small scales in the HF. Wavelet features at diagonal angles (22.5º, 
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45º, 67.5º, 112.5º, 135º and 157.5º), which are related in the time-frequency domain to 

upsweeps and downsweeps, explained the residual data variance. 

 In light of the weights of the features estimated during the clustering process, 

different subsets of features were tested (diagonal wavelet orientations, perpendicular 

wavelet orientations, all wavelets, median frequency and the full set) and contrasted 

with the manual annotations to further examine the response of MAAD. The global 

return on both datasets, RS and HF, was the same (Figure 6). The model including only 

the diagonal wavelets (22.5º, 45º, 67.5º, 112.5º, 135º and 157.5º) gave the lowest ARI 

value. A higher ARI was obtained when using the horizontal and vertical wavelets (0º 

and 90º). By including all the wavelet features the result was improved again. By using 

only the median frequency of the ROIs, the results were even better than using all the 

128 wavelet features. Finally, the best result (ARI value of 0.77 for RS and 0.85 for HF) 

was obtained by combining all the features, shape and median frequency. 
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Figure 5. Representation of the amount of variance accounted for each of the 129 features used 
on the clustering process. The bar diagram (left) compares the median frequency (freq) and the 
sum of the 128 wavelets features (wlts). The intensity map (right) compares the relative 
importance of wavelets features at different angles and sizes, with dark blue indicating lowest 
value, and bright yellow the highest value. 
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Figure 6. Response of MAAD using different feature sets: time frequency shape described by 
diagonal wavelets (96 non-perpendicular features), perpendicular wavelets (32 features), all 
wavelets (96 + 32 = 128 features), the median frequency (1 feature), and the full set of features 
(129 features). The performance was measured with the ARI metric computed over 10 trials. All 
but one feature set, the median frequency, had random initialisation. There is no box for the 
median frequency because univariate clustering had deterministic initialisation. 
 

 

3.3. Clustering results 

 

ROIs were grouped into soundtypes through an unsupervised framework using the 

hyper-parameters returned by the slope heuristics criterion and providing the full set of 

spectro-temporal features. Comparative analysis showed a high concordance between 

manual and automatic partitions with an ARI of 0.77 and 0.85 for the RS and the HF 

environments respectively (Figure 7). In general, the random initialisation of the 

clustering algorithm induced a relatively small variation on the result (s.d. < 0.13), 

compared to the possible variation of the ARI index (from -1 to +1). Detailed analysis 

by soundtype showed that most of the errors were due to clusters splitting (Table S4). A 

visual example of the final output is depicted on Figure S3. 

 The average computing time to process a one-minute file through the complete 

pipeline was 45.67 seconds on a desktop computer (3.4 GHz Intel Core i5 processor, 8 

GB memory). Automatic annotation was on average forty times faster than human 

annotation. 
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Figure 7. Global classification 
performance of MAAD for RS 
and HF datasets measured with 
the ARI metric computed over 
10 trials with random 
initialisation. The ARI is 
bounded between ±1, has a 
value close to 0 for random 
labelling and exactly 1 when the 
two partitions are identical. 

 

 

 

4. Discussion 

 

The animal acoustic diversity is known to potentially carry relevant ecological 

information related to the species diversity (Riede, 1993; Krause and Farina, 2016). 

However, it is still challenging to use automated statistical tools to analyse and extract 

ecological meaningful information from passive acoustic recordings. MAAD was 

designed to overcome this barrier enabling to analyse environmental audio recordings 

by automatically decomposing the acoustic community into few elementary components 

based on their time-frequency attributes. Our experiments showed that the partitions 

derived by MAAD in distinct tropical acoustic communities were highly similar to the 

ones obtained by meticulous manual (aural and visual) inspection. In addition, MAAD 

showed that some specific features were more informative for the clustering model, 

revealing potential structures that partition the acoustic community. 
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4.1. Model selection 

 

The number of soundtypes in an assemblage (i.e. the acoustic richness) is a common 

measure of the acoustic diversity.	Slope heuristics indicated that the most appropriate 

model for decomposing the HF dataset had to include more clusters (K = 17) than the 

RS dataset (K = 11). A higher hyper-parameter K represents higher acoustic diversity in 

the HF, which is a result that matches our expectations and manual annotations. 

However, more soundtypes were found manually than automatically. In a closer look, 

we observed that common soundtypes were clustered correctly (e.g. A1, A5 on the RS, 

and A3, A5 on the HF), while rare soundtypes with less than 20 samples were not 

identified (e.g. A14, A16 on the RS, and A24, A33 on the HF). Slope heuristics makes a 

balance between the likelihood and the complexity of the model. As rare soundtypes are 

represented by a small number of samples (less than 20 samples), they do not increment 

the likelihood considerably to represent new clusters; instead, they are absorbed by 

larger clusters. Therefore, the number of clusters found in MAAD has to be regarded as 

the richness of common soundtypes in a given environment. In other words, soundtypes 

with infrequent presence in the recorded time series are expected to have low likelihood 

to be detected. As in many other sampling techniques in ecology, rare and elusive 

species are difficult to detect. 

 It is also important to note the resemblance between the slope heuristics trend 

and the response of the system with respect to increment of the hyper-parameter K, the 

number of clusters. In particular, the value of K selected by slope heuristics (11 and 17 

for RS and HF respectively) is close to the value of K with the highest ARI value (9 and 

15 for RS and HF respectively). Slope heuristics allows finding automatically a 

plausible number of clusters in relation to clustering performance, meaning that this 

criterion seems to be a suitable alternative to the human supervision. 

 

4.2. Feature relevance 

 

Generative modelling, such as HDDC, builds a full model of the distribution of features 

in each group. These models can be analysed to understand what group properties are 

the most important for clustering the objects. In our framework, the weight of the 

features estimated by the clustering process revealed important information about the 
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structure of the acoustic community. The median frequency had the strongest effect on 

modelling the clusters. In other words, frequency predicted soundtype identity better 

than all the shape features. Partitioning the transmission channel in different frequency 

bands appears to be a common strategy to avoid masking, although other mechanisms 

may also generate the same pattern. Our results are congruent with frequency 

partitioning, which has been previously observed on assemblages of crickets (Schmidt 

et al., 2013), cicadas (Sueur, 2002) and amphibians (Villanueva-Rivera, 2014). 

Frequency over dispersion allows a great number of co-occurring signals to be 

accommodated in a limited acoustic space. Formulated under the acoustic niche 

hypothesis, organisms would have evolved to occupy specific spectro-temporal 'niches', 

decreasing the risk of heterospecific mating and information masking (Krause, 1993). 

Alternatively, many other selective pressures might be responsible for signal divergence 

and acoustic partitioning, such as those related to body size or female preferences 

(Gerhardt, 1994).   

 The acoustic space has multiple dimensions and the frequency is just one of 

them. Other dimensions, such as the shape features, had a lower but significant impact. 

The shape features derived with the 2D wavelets were also important features to derive 

the clusters. In particular, vertical and horizontal wavelets (0º and 90º) had a significant 

effect on the clustering process. These features are based on the spectrogram 

representation of the signal; therefore, most of the sounds were clustered based on 

variations in the duration of the sound and variations in the frequency bandwidth. 

Diagonal wavelets had less importance in the model learned. This outcome was 

expected since insects and amphibians, which dominated the studied acoustic 

communities, are known to produce sounds with few frequency modulations (Gerhardt 

and Huber, 2002). 

 

4.3. Clustering results 

 

Signalling animals produce redundant and species-specific sounds, which result in 

intuitive clusters. Based on this observation, MAAD was designed to give a 

representation based on a combination of elementary components (soundtypes) to form 

a whole (the acoustic community). To our knowledge, only Eldridge et al., (2016) 

attempted a similar approach to characterise the acoustic communities or soundscape. 
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Both approaches, Eldridge et al (2016) and ours, are based on unsupervised learning 

techniques, however, the aim and the evaluation of the result differ significantly. 

Eldridge et al (2016) measured the ability to reconstruct a soundscape based on few 

spectro-temporal 'atoms' as a way to measure the 'decomposability' of a scene, and the 

evaluation was completely visual. In contrast, we aimed at finding ecologically 

plausible and interpretable 'atoms' or soundtypes. We evaluated our approach by 

comparing manual versus automated partitioning by using an objective measure of 

similarity, the ARI. Unfortunately, the differences in the objectives and on the 

evaluation procedure make our work hard to be confronted to this previous work. 

 MAAD was tested under two contrasting scenarios and gave robust clustering 

results, with high and consistent similarity between manual and automated partitions. 

This suggests that the elementary time-frequency components found by MAAD are 

interpretable and that the output can be used in further analysis for studies in ecology 

and evolution. For instance, the number of items in each cluster corresponds to the 

relative abundance of each soundtype. This information can be used to compute 

diversity indices such as Shannon, Simpson or Whittaker indices (Magurran, 2004), 

returning an estimation of local acoustic diversity. Alternatively, after processing with 

MAAD, a manual inspection of detected soundtypes may enable to establish a direct 

link between MAAD clusters and species. For example, HF cluster number B5 could be 

identified as stridulations of the cricket Lernecella minuta, and RS cluster number B6 

could be identified as vocalisations of the amphibian Hypsiboas boans (Figure S5). This 

semi-supervised framework would allow to annotate efficiently large sound databases 

for deeper analyses.  

 The clustering errors were mainly due to the division of major ground-truth 

clusters into homogeneous subgroups. The marked unbalanced nature of the dataset 

played an important role on this clustering subdivision. Clusters with many observations 

have a stronger weight maximising the overall likelihood of the model than clusters 

with rare observations. Since the parameters of the model were estimated so as to 

maximise the global likelihood of the model, the likelihood was incremented by 

splitting large clusters instead of creating new small clusters. Cluster splitting was also 

observed in the study of the response of the model to the variation of K. After reaching 

a peak, at a lower K than the true number of groups, the performance measured by the 

ARI dropped in both datasets. The ARI measures the number of ROIs correctly 
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partitioned and hence the performance measure was mainly impacted by the splitting of 

large clusters and less by the wrong clustering of small ones. This also explains why the 

clustering results were highly accurate even if the soundtype richness found by the 

unsupervised procedure was lower than that by the manual one. Interestingly, the 

division of clusters with large observations still resulted in homogeneous groups, which 

could be assessed and combined by manual inspection. Further research is necessary to 

evaluate the performance on other scenarios in order to validate this method across the 

diverse acoustic communities found in practice. These tests would also be valuable to 

assess the error propagation of the system, identifying the potential sources of error and 

exploring how they influence the results. 

 MAAD is an adaptable framework that can be coupled with expert knowledge. 

An advantage of model-based clustering, which is used by MAAD, is that the 

uncertainty for an observation to belong to a cluster is measured by a posterior 

probability. Observations with probabilities drifting from 1 could be subsequently 

flagged and assessed by an expert. Combining MAAD and manual analysis would 

maximally exploit the strengths of both human reasoning and computer algorithms. 

Thereby, the composition of the acoustic community could be estimated accurately, 

quickly and at large scale. 
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OVERVIEW 

 

Presence-absence data is a common format to analyse populations and communities in 

ecology. Currently, the translation from audio recordings to species presence-absence is 

largely done manually, but can be assisted by automated classification. The number of 

available tools for pattern recognition are rapidly increasing, yet there is still little 

practical guidance for the application of such algorithms for a broad audience. 

Moreover, most statistical classifiers require representative datasets that are not readily 

available in poorly documented habitats. We addressed the question: how to best 

estimate the presence-absence of target species from passive acoustic recordings? We 

designed experiments to (1) test two sampling strategies to effectively build a 

representative dataset to train and test automated classifiers, namely random and 

stratified sampling; and (2) compare three approaches to estimate presence-absence of 

target sound of interest, manual expert annotation, a semi-supervised and a supervised 

learning approach. The experiments were based on a dataset that included 528 one-

minute files with heterogeneous sounds, collected in French Guiana. Our target sound 

of interest was the call of the tropical frog Leptodactylus knudseni. We demonstrate that 

stratified sampling, compared to naive random sampling, can be more effective to 

assemble a representative dataset in heterogeneous environments with unbalanced 

classes. Regarding presence-absence labelling, expert identifications were fairly similar, 

but presented non-negligible variation between observers. Semi-supervised learning 

required few manual effort but was the less accurate method. Supervised learning, while 

needing more manual annotations to estimate model parameters, showed results with a 

good consensus between the expert labelling. To conclude, we underline that solutions 

aimed at combining manual and automated analysis in a well framed annotation 

protocol should be envisaged to deliver robust and accurate estimates of presence-

absence. Such framework is fundamental to assess poorly documented habitats, where 

calls are yet to be described, annotated and saved in sound libraries. 
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“Far better an approximate answer to the right question,  

which is often vague, 

 than an exact answer to the wrong question,  

which can always be made precise” 

– John Wilder Tukey (1962) 

 

 

1. Introduction 

 

Passive acoustic monitoring is an emergent technique in ecology, evolution and 

behaviour research (Blumstein et al., 2011; Fristrup and Mennitt, 2012; Aide et al., 

2013; Browning et al., 2017). Based on automated recording of animal sounds, passive 

acoustic monitoring is growingly being applied in both terrestrial and marine 

environments, providing cost-efficient methods for surveying biodiversity and opening 

new scientific pathways (Towsey et al., 2014; Sueur and Farina, 2015). Yet, scaling up 

acoustic sampling to big data, analysis of automated recording has proved challenging, 

and it represents nowadays the primary bottleneck that constraints the expansion of this 

technique and slow down its application (Eldridge et al., 2016; Stowell, 2018). 

Facing the data flood coming from passive acoustic sensors, numerous tools for 

automated pattern recognition have been developed with applications in the ecoacoustic 

and bioacoustics fields. The combination of signal processing techniques and machine 

learning algorithms has opened the possibility to screen large audio datasets to detect 

and classify sounds as already illustrated for insects (Brandes et al., 2006), amphibians 

(Aide et al., 2013; Xie et al., 2017), birds (Briggs et al., 2009; Ulloa et al., 2016; Knight 

et al., 2017) or mammals (Heinicke et al., 2015; Keen et al., 2017). Hence, the 

ecoacoustic analysis toolbox now includes several options to deal with the monitoring 

and analysis of marine, freshwater and terrestrial environments (Stowell, 2018; Towsey 
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et al., 2012). Despite of these recent advances, there is still little practical guidance for 

the end-users, including researchers and practitioners, limiting significantly the use of 

these innovative methods in and out the academic system (Browning et al., 2017).  

While a single software with a standard and universal classifier for all sounds 

might be desirable, the development of such computer facility have proved to be much 

more challenging than expected (Goëau et al., 2014; Stowell, 2018), and probably no 

single machine learning method can perform with a satisfactory efficiency on all 

possible problems (Wolpert and Macready, 1997). A more realistic scenario, achievable 

in the short term, would be to derive a generic and well-framed workflow that combines 

strengths of both human and computer algorithms. Supervised learning has a well-

established framework with best practices and straightforward implementation offering 

a multiplicity of statistical classifiers (Theodoridis and Koutroumbas, 2006; Bishop, 

2006; Webb and Copsey, 2011; Zaki and Meira, 2014). Many supervised learning 

algorithms are available in freeware software, such as R (Lantz, 2013) or Python 

(Pedregosa et al., 2011), already in the hands of ecologists.  

The first step of supervised classification consists in selecting a reference dataset 

to train, tune and validate the subsequent automated classifier. The reference dataset 

plays a key role in the signal classification since it strongly influences the learning 

curve of the classifier, its performance and, ultimately its universality and degree of 

applicability. For the performance estimation phase, the classification estimates are 

computed in relation to the validation dataset and future prediction interpretation will 

likely be biased if the validation dataset is biased. Thereby, the extent and strength of 

the inferences drawn will vary depending on the sampling used for the training phase. 

Without methodical procedures to select the reference dataset, it would be unlikely to 

attain a robust and generic framework to analyse passive acoustic recordings that yields 

repeatable results. 

The importance of having a rich reference dataset that incorporates the 

variations of the signal of interest in frequency, duration and strength, has been 

highlighted in several studies (Knight et al, 2017; Ranjard et al 2016; Priyadarshani et 

al., 2018). Unfortunately, only large scale monitoring programs dispose of important 

corpus of annotated datasets ready to be used (Dugan et al., 2013; Keen et al., 2017). In 

most studies, training and testing of automated classifiers is made on a selection among 

recordings freshly collected. To our knowledge, there is no clear procedure to select the 
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samples for the reference dataset. This selection should be achieved through a 

controlled sampling process aimed at reducing bias or error due to the under-

representation or over-representation of observations, or sounds (Thompson, 1992). 

Sampling theory suggests that error can be reduced by (1) designing an appropriate 

sampling protocol, and (2) increasing the number of samples (Rubin and Babbie, 2008). 

The diverse sampling strategies developed to efficiently collect data avoiding biased 

estimates might provide methodological insights to frame an end-to-end generic and 

efficient framework for the analysis of ecoacoustic recordings. 

 Annotating field recordings is a demanding task and might require the 

involvement of an expert, as a result a very small proportion of data is labelled. On the 

other hand, passive acoustic recorders can easily collect large amounts of unlabelled 

data. To deal with these kind of situations, semi-supervised and unsupervised statistical 

classifiers have been developed in the machine learning field (Bishop., 2006; 

Theodoridis and Koutroumbas, 2006). Such set of tools were designed to exploit the 

information that resides in the unlabelled data and might circumvent the issue of having 

small manual annotations datasets (Chapelle et al., 2006, Ulloa et al., 2018).  

 Here, we propose a set of strategies combining human analysis and machine 

automation to estimate species presence-absence data from passive acoustic recordings. 

Such strategies were specially conceived to enhance acoustic analysis from biologically 

diverse and poorly documented habitats (e.g. tropical forests). We addressed on two 

main challenges: (1) how to build a dataset with representative samples to train and test 

automated classifiers? (2) How to use manual annotation, semi-supervised and 

supervised learning to succeed in the classification task? And, (3) how to combine them 

to derive efficient and robust estimates of the presence and absence of sounds of 

interest? To answer these questions, we performed experimental tests using field audio 

recordings collected by autonomous recorders during the rainy season in French 

Guiana. We focused on the challenge of detecting the presence-absence of the calling 

males of Amazonian toad-frog, Leptodactylus knudseni, in a heterogeneous acoustic 

environment composed by more than 30 other anuran species. To conclude, we propose 

best practices for sampling and discuss on the strengths and challenges of the different 

options, shedding light on how to best combine human reasoning and computer 

algorithms on analysing passive acoustic recordings. 
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2. Methods 

 

A series of tests were designed to study the effect of two methodological procedures in 

the performance of signal classifiers: (1) sampling strategy for selecting training and 

validating datasets and (2) presence-absence labelling of field recordings. For the 

sampling strategy, we tested two widely used sampling methods, random sampling and 

stratified sampling, and examined the learning curves of the statistical classifiers 

(Figure 1). The classification on this first experiment was evaluated at the level of 

acoustic signals delimited in time-frequency, or regions of interest (ROIs). Next, we 

compared three approaches to estimate the presence-absence of the advertisement calls 

of a tropical frog (Leptodactylus knudseni): manual expert annotation, a semi-

supervised approach and a supervised learning approach (Figure 2). For this second 

experiment, the computational analysis was done at the level of ROIs, but the 

classification (presence-absence) was evaluated at the level of a one-minute audio 

recording. For both set of tests, the raw field recordings were processed on a generic 

framework to find, characterise, and cluster ROIs. 

 

 

	
Figure 1. Flow diagram of sampling test. From the same audio recordings, two distinct datasets 
are derived: random and stratified sampling. Both datasets consist of regions of interest (ROIs) 
on the time-frequency domain, but the selection of observations follow different stages. Simple 
random sampling is composed by ROIs selected randomly from the full set of ROIs. Stratified 
sampling first structures the data into homogeneous groups and then samples the observations 
according to each stratum. Both collections of ROIs are manually annotated with presence-
absence of the sound of interest. The ROIs, associated features and labels are used to train and 
test a statistical classifier. 
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Figure 2. Flow diagram of presence-absence test. Field recordings are annotated based on the 
presence or absence of the call of Leptodactylus knudseni. Three different strategies are 
compared: manual labelling by three experts, semi-supervised learning and supervised learning. 
For expert presence-absence, the field recording is annotated with binary presence-absence. The 
computational analysis was done at the level of regions of interest (ROIs) delimited in the time-
frequency, but the classification (presence-absence) was evaluated at the level of a one-minute 
audio recording. The semi-supervised flow follows a two stage process, first the ROIs are 
clustered into homogeneous groups and then, a sample of 32 ROIs is selected from every cluster 
(n=192) to assign a class to each cluster. Supervised learning probability is derived using a more 
extensive dataset of ROIs than semi-supervised learning (n=384) and has an additional step; the 
training and tuning of the classifier. The output of each process was compared using standard 
detection metrics, namely the area under the receiver operating curve. 
 

 

 

2.1. Acoustic environment and signal of interest 

 

A key element of the tropical acoustic environment arises from the vocalisations of 

amphibians. In particular, several frog and toad species exhibit a striking acoustic 

collective behaviour by emerging and calling in massive number in a limited area and 

during a few hours per year (Wells, 2007, 1977), a phenomenon called explosive 

breeding. During explosive breeding events it is possible to find hundreds of individuals 

of diverse species signalling acoustically, which results in signals with variable 

overlapping levels, from clear isolated calls to intense multi-specific choruses (Figure 

3). A common species that aggregates around water bodies and vocalizes before and 

during these events is the tropical anuran Leptodactylus knudseni. The advertisement 

call of L. knudseni consists of a low frequency upswing, from 0.2 to 0.6 kHz that lasts 

approximately 0.4 s. At a finer temporal scale, the call present multiple frequency and 

amplitude modulations that give a particular vibrato timbre to the call (Figure 3, top 
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left). Such fine texture disappears when multiple signalling individuals aggregate 

forming choruses with overlapping signals (Figure 3, top right). Due to the background 

with multiple species and the presence of this focal signal at various chorusing levels, 

automated detection result in a complex problem. 

Our experimental protocol and data analysis is based on passive acoustic 

recordings collected at five temporary ponds located along a 35 km transect in the Kaw 

mountains of French Guiana (4°57′N; 52°22′W). In each temporary pond, automated 

acoustic sensors (Song Meter 2, Wildlife Acoustics Inc.) were set to record one minute 

every 29 minutes from 10 November 2015 to 07 March 2016, with a digitization depth 

of 16 bits and a 44.1 kHz sampling rate. A subset of recordings from eleven days was 

selected during anuran pre-explosive and explosive breeding periods. The complete 

audio dataset included 528 one-minute files. This dataset was divided in two equal 

parts, training and validation, using random sampling of recordings. The training dataset 

was used for the experiments related to the sampling strategy of selecting the reference 

dataset. The validation dataset was subsequently used to compare different methods to 

estimate the presence-absence of sounds of interest.  

Spectrograms and characteristics of the call of L. knudseni were computed using 

R version 3.4.3 (R Core Team, 2017) and the package seewave version 2.0.4 (Sueur et 

al., 2008). 

 

2.2. Analysis of acoustic diversity 

 

To find, characterise and cluster sounds, Multiresolution Analysis of Acoustic Diversity 

(MAAD, Ulloa et al., 2018) was computed throughout the recordings. The analysis 

operates by first segmenting the audio recordings into time-frequency regions of interest 

(ROIs) that are later clustered into homogeneous sections. MAAD workflow follows 

four main steps: detection of ROIs, characterisation of ROIs, model selection and 

clustering of ROIs. Here, we adopted the exact same process for the last three steps 

(characterisation, model selection and clustering), yet we modified the first part 

(detection of ROIs). Instead of analysing the full range of signals of the acoustic 

environment, we focused the analysis on sound candidates that approximate the time-

frequency parameters of our sound of interest, the call of L. knudseni. In particular we 

searched for sound candidates by (1) applying a kaiser-windowed frequency band-pass 
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filter between 0.2 and 0.7 kHz with a stop-band attenuation of 120 dB, and (2) detecting 

temporal patterns with pronounced energy lasting 0.4 s using a Mexican Hat wavelet 

with a size of 0.4 s.  

The process detected a total of 11 954 ROIs in the training dataset and 12 789 in 

the validation dataset, that is a mean of 47 ROIs per recording. Acoustic diversity 

analyses were computed in Python 3.6.3 (Python Software Foundation, 2017). To 

illustrate the acoustic diversity, the ROIs were visualized with a non-metric 

dimensionality reduction technique called t-distributed Stochastic Neighbour 

Embedding (t-SNE; Maaten and Hinton, 2008). This dimensionality reduction method 

was designed to capture local structures and global structures of high dimensional data, 

thus revealing clusters at several scales. 
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Figure 3. Spectrogram of illustrative ROIs detected automatically. Individual calls of 
Leptodactylus knudseni, calls of Leptodactylus knudseni with high overlap, calls of 
Trachicephalus hadroceps, sounds of branch cracking, calls of Trachicephalus coriaceus, and 
explosive breeding chorus. 

  

0.5 1 1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L. knudseni

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

0.5 1 1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L. knudseni  overlapping

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

0.5 1 1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T. hadroceps

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

0.5 1 1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Branch cracking

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

0.5 1 1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T. coriaceus

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

0.5 1 1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Explosive breeding chorus

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)



 4. TOWARDS AN END-TO-END FRAMEWORK  

 133  

2.3. Sampling strategies 

 

The first test consisted in comparing different sampling strategies to select the ROIs that 

would compose the training dataset and be annotated by experts. Two sampling 

strategies were implemented: simple random sampling and stratified sampling. Simple 

random sampling consists in selecting observations with equal probability from the 

population without replacement. This random sampling is expected to provide unbiased 

estimates of the complete dataset. Inherent sampling error can be reduced by 

incrementing the sample size, or by implementing an alternative sampling design. 

 In scenarios with previously known and heterogeneous data, a widely used 

sampling strategy is stratified sampling (Thompson, 2012). Stratified sampling consists 

first in partitioning the data into homogeneous strata, including observations as similar 

as possible, and then performing a random sampling within each stratum. Here stratified 

sampling was applied on sound segments by considering the clusters returned by 

MAAD as strata. MAAD identified six clusters. We selected from each cluster a 

random sample of 64 ROIs (3.21 % of the total number of ROIs).  

We selected a overall sample of 384 ROIs with each method. Once we build the 

reference dataset, we tested how a statistical classifier performed, by computing the 

scores from training and cross validation, when increasing from 5% to 100% the size of 

the training dataset. Training score refers to how well the model fits the observed data 

and cross-validation score specifies how well the model predicts the class of a new 

observation. A convergence between these two scores indicates that the classifier has 

the capacity to generalize to new data. The F-score metric was used to quantify the 

classification performance, which combines precision and recall into a single value 

(Van Rijsbergen, 1979; Hripcsak, 2005). We used a Gaussian naïve Bayes classifier to 

compare the sampling strategies. Naïve Bayes is a simple statistical classifier based on 

Bayesian networks (Frank et al., 2000). Simple naive Bayes under Gaussian distribution 

requires no hyper-parameter tuning, which makes it an ideal candidate for such a test. 

Naïve Bayes statistical classifiers and learning curves were computed in Python 

3.6.3 using the toolbox scikit-learn version 0.19.1 (Pedregosa et al., 2011). 
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2.4. Presence-absence labelling 

 

Three different classification methods (manual classification, semi-supervised, 

supervised learning classification) were tested to detect the presence-absence of the 

calls of L. knudseni in each recording of the validation dataset (n=264; Figure. 2). 

Manual annotation consisted in aural identification of the species by three experts who 

identified yet in a previous study (Chapter 2) every species heard in the present 

recordings. Semi-supervised learning consisted in a two-stage process that combined 

automated and manual processes. The automated process first detected regions of 

interest and arrange them into homogeneous regions (see previous subsection). Then, a 

random sample of 32 ROIs from each cluster was manually inspected to assign a '1' if 

the sound corresponded to the call of L. knudseni and a '0' if the sound could not be 

attributed to L. knudseni. Supervised learning approach consisted in sampling twice the 

number of ROIs and in the training and tuning of a supervised learning algorithm. The 

Random Forest statistical classifier was selected, as it slightly outperformed the basic 

Naive Bayes classifier in the preliminary tests. Models for both learning algorithms, 

semi-supervised learning and supervised learning, were built using a separate training 

dataset. 

Performance metrics related to classification score were compared with the aim 

of identifying the strengths and limits of classification methods. To estimate the 

classification accuracy we computed the receiver operating characteristic curve (ROC) 

and the associated summary statistics area under the curve (AUC). ROC and AUC 

allow a classifier performance comparison independent of the threshold probability and 

have been acknowledge as suitable performance metrics for binary classification, even 

when the classes are unbalanced (Bradley, 1997). The ground truth is usually provided 

by human manual annotations when comparing automated classifiers. Since we had 

annotations from multiple experts, we calculated performance metrics against each of 

the expert annotations. A paired comparison was performed between manual 

annotations.  

Random forest statistical classifier was computed with the RandomForest 

version 4.6 (Liaw and Wiener, 2002) package for R. All computational analyses were 

performed with a desktop computer (3.4 GHz Intel Core i5 processor, 8GB memory). 
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3. Results 

 

3.1. Sampling strategies 

 

MAAD partitioned the 11 954 ROIs into six different clusters. The size of the clusters 

varied from 72 ROIs (0.6 %) for the smallest cluster to 7 005 ROIs (58.6 %) for the 

biggest one. The 2D t-SNE projection of the ROIs showed heterogeneous regions, with 

one large homogeneous region and multiple small regions patchily distributed appearing 

as islands (Figure 4). This heterogeneity was clearly reflected by the two sampling 

strategies tested. Random sampling showed selected observations regularly distributed 

and equally covering the whole dataset (Figure 4, top). In contrast, stratified sampling 

showed that regions with more heterogeneity were sampled more intensely than the 

large uniform sector (Figure 4, bottom). 

After manual inspection of the ROIs for both random and stratified sampling, we 

observed that the advertisement calls of L. knudseni were less numerous for the random 

sampling than for the stratified sampling, with proportions of respectively 14% and 

39.1%. In particular, most of the samples on the random sampling dataset came from 

short and intense sounds produced by branch cracking and raindrops (40.6 %). These 

types of sounds were present in the stratified sample at lower proportions (18.52 %), 

similar to the proportions of clear L. knudseni vocalizations. 

Statistical classifiers responded differently to the datasets collected with random 

and stratified sampling (Figure 5). The learning curves for the random sampling showed 

a wide gap between training and validation score. Once the size of the training dataset 

increases this gap narrowed slowly and only with more than 250 examples the classifier 

appears to converge between training and cross validation performance at a score of 

0.68. The learning curves for the stratified sampling showed a smaller gap between 

training and cross-validation curves. The two curves remained stable with only 150 

samples, converging at a score of 0.91. 
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Figure 4. Non-metric multidimensional scaling (t-SNE) of the regions of interest showing 
random versus stratified sampling. Top, random sampling assumes homogeneity on all 
observations and hence the sampling is uniformly distributed. Bottom, stratified sampling first 
divide the observation into homogeneous groups and then samples randomly each subgroup; the 
sampling is less intense in homogeneous sectors than in heterogeneous sectors. 
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Figure 5. Learning curves of a naïve Bayes classifier. The graph compares the performance of a 
model on training and cross-validation data over an increasing number of samples. Random 
sampling dataset is contrasted with the stratified sampling dataset. The F-score metric was used 
to quantify the classification performance. 

 

3.2. Determining presence-absence data 

 

The identification done by the experts showed a characteristic triangular shape due to 

the binary nature of the data. The three experts gave fairly similar classifications, but 

presented non-negligible variation between observers as shown by different ROC 

curves (Figure 6A). The AUC for the experts had a median value of 0.916 (Q1-

Q3=0.062). 

The semi-supervised approach showed no false positives at true positive rate of 

0.4 (Figure 6B). While lowering the threshold to detect the rest of the occurrences, the 

false positive rate increased rapidly; at a true positive rate of 0.9, the false positive rate 

was higher than 0.4. Compared with the other approaches, semi-supervised learning 

showed the lowest AUC with a value of 0.85 (Q1-Q3=0.039). 

Supervised learning showed a good consensus between the three expert 

annotations. This approach returned a true positive rate of 0.6 with a negligible false 

positive rate (Figure 4C). By lowering the threshold to capture more occurrences, we 

observed an increase on false positives that was much lower than for the supervised 



 4. TOWARDS AN END-TO-END FRAMEWORK  

 138  

approach. At a true positive rate of 0.9, the false positive rate was lower than 0.2. The 

median AUC summary statistics for the supervised learning was 0.94 (Q1 – Q3 = 

0.017). 

 

 

	
Figure 6. Receiver operating characteristic curve (ROC) on the detection of Leptodactylus 
pentadactylus. Three methods are contrasted: (A) expert manual annotation, (B) HDDC semi 
supervised learning, and (C) Random Forest supervised learning. A boxplot of the area under 
the ROC curve is presented as a univariate performance metric (D). 
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4. Discussion 

 

Acoustic heterogeneity of tropical environments, coupled with a prominent lack of 

annotation datasets, calls for the development of innovative analytical frameworks. 

Manual analysis seems to be unscalable to large datasets and a generic classifier for 

every animal sound appears to be infeasible, in particular in highly diverse tropical 

acoustic environments. Therefore, it seems to be more suitable to frame a standard end-

to-end protocol that incorporates both human expertise and computer algorithms. 

Heading for this purpose, we examined two key aspects of this analytical procedure: (1) 

the sampling methodology to select observations for tuning and training statistical 

classifiers, and (2) the protocol to annotate presence-absence of target signals in passive 

audio recordings. 

 

4.1. Sampling strategies 

 

Getting reliable statistical classifiers for automated detection can require large amounts 

of manual annotations, so an improvement in the classifier performance with a 

reduction in manual effort is desirable. The two strategies tested, random and stratified 

sampling, showed different responses in the implementation of a statistical classifier. 

Compared to random sampling, a statistical classifier trained with stratified sampling 

data showed learning curves converging earlier in their training and cross validation 

scores. Thereby, the statistical classifier based on stratified sampling was able to 

generalize to new observations with less than half of the samples.  

A primary goal of predictive models is to train models that are able to forecast to 

unseen data (Bishop, 2006). For this purpose, the training data should be representative 

of the whole dataset, and particularly the sounds collected and annotated for training 

should have the similar characteristics than the rest of the unlabelled data. An 

homogeneous population produces samples with smaller sampling error than an 

heterogeneous one (Rubin and Babbie, 2008). Increasing the sampling is costly hence 

undesired, but it seems plausible to structure the data in order to have homogeneous 

subpopulation from which to sample later. Rather than selecting a sample from the total 

population at large, we ensure that appropriate number of elements is drawn from 

homogeneous subsets of that population. Stratified sampling guarantee the proper 
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representation of the stratification variables and this, in turn, enhances the 

representation of other variables related to them. Taken as a whole, a stratified sample 

will be more representative than a simple random sample in heterogeneous data. 

Stratified sampling is actually one of the most commonly used methods in social 

sciences (Rubin and Babbie, 2008) and ecology (Thompson, 2012). By clustering the 

sounds into homogeneous regions, unsupervised learning allowed to adopt a stratified 

sampling, which was more efficient than random sampling to train a statistical 

classifier. 

As a simple and unbiased method, random sampling is well suited to validate 

classifier’s performance. This type of selection has the advantage of removing human 

sources of bias, such as intentional or unintentional tendencies to select signals with 

particular spectro-temporal characteristics, for instance clear calls or ear-catching 

sounds. Moreover, the proportions of positive and negative observations of the whole 

dataset will be reflected in the random sample, giving performance estimates related to 

the natural distribution where the classifier will operate upon. 

When screening for a target sound in long time-series of acoustic recordings, the 

problem can be illustrated by the popular saying “looking for a needle in a haystack”. 

Positive observations are far less abundant than the negative observations, hence the 

task of obtaining representative samples for the call of interest require increasing 

proportionally the negative observations. Yet, with a structured dataset, a multiplicity of 

sampling techniques can be applied to obtain representative samples. In our case, 

unsupervised learning assisted in the constitution of a representative training dataset for 

supervised learning by forming homogeneous groups. An appropriate combination of 

unsupervised learning and sampling theory might lead to efficient, precise and robust 

statistical classifiers. Alternatively, the arrangement of sounds delivered by 

unsupervised learning combined with more complex sampling strategies, such as 

sequential or adaptive sampling, could be used to find and compose datasets of sounds 

of rare and elusive species (Thompson, 2004). 

 

4.2. Determining presence-absence data 

 

Determining the presence-absence of signals of interest is one of the most common aims 

in passive acoustic monitoring. Investigating multiple solutions to this challenge, we 
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tested three different strategies: expert manual analysis, semi-supervised learning and 

supervised learning. We used a set of 264 recordings to search for the presence of 

Leptodactylus knudseni in a heterogeneous acoustic environment. 

 Expert identifications were fairly similar, but presented non-negligible variation 

between observers. Observer bias is inevitable when collecting data manually 

(Fitzpatrick et al., 2009). By using multiple observers this bias can be prevented and/or 

estimated to some extent, but at the expense of increasing effort in manual annotation. 

By checking the annotations, we noted that the differences between observers were due 

to missed detections instead of false positives cases. Since the most common case is to 

have an absence of the species, it seems reasonable to assume that it is more likely that 

an expert incurs more on false negative cases (mark absence when there is a presence) 

than on false positive ones (interpret a sound from another species as the target signal, 

in this case, L. knudseni). Nevertheless it should be noticed that explosive breeding 

events in tropical anuran communities is particularly challenging in terms of signal 

identification due to the extremely high abundance and diversity of calling individuals 

simultaneously signalling.  

The semi-supervised framework allowed to combine computer algorithms with a 

minor manual effort. At the initial step, unsupervised learning does not need any 

predefined label to structure the data. The manual effort only comes into play to assign 

labels for the cluster. Here, we selected randomly only 32 samples to identify the cluster 

as calls of L. knudseni, and hence, the manual effort was targeted. In general, the 

classification performance is expected to strongly depend on the correct definition of 

the boundaries of each cluster. In our example, two clusters were identified as calls of L. 

knudseni. While a first cluster (C1) had almost exclusively clear calls of L. knudseni, the 

other cluster (C3) had calls of dense multi-specific choruses, including calls of L. 

knudseni, but also of other species, such as T. coriaceus. As a result, the unsupervised 

boundary derived from an acoustic perspective differed slightly from the objective 

boundary: presence of L. knudseni.  

While the cluster and the objective boundaries might differ, the results show that 

is possible to obtain high similarity between species and acoustic clusters. This is 

expected since each species has a species-specific call. Yet, the background and 

interferences (calls from the same species or from other sound biotic or abiotic sound 

sources) introduces noise and hence the cluster boundaries based on field recordings 
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might fluctuate and diverge from the desired output. More sophisticated semi-

supervised learning techniques should be investigated, such as transductive support 

vector machines and label propagation (Chapelle et al., 2006). Such algorithms allow to 

draw decision boundaries that take into account both, the unsupervised arrangement and 

the few available labels. 

The supervised learning approach requires, as the name implies, a higher degree 

of manual control and effort. This in turn helps to define boundaries that match the 

objectives pursued. To correctly train and tune a supervised learning algorithm, a 

considerable dataset that includes manual labelling is usually required. For the present 

study we used a dataset of 384 ROIs. Compared to the semi-supervised approach, the 

manual and computational effort are increased. However, this increased effort is 

reflected on the match between expert annotation and automated methods. Indeed, the 

supervised learning framework allowed to have expert level classification on the 

presence-absence of L. knudseni. 

In order to train, tune and test a classifier, the selected observations that 

compose the annotated dataset have an essential role. While it is clear that a biased 

validation dataset can lead to biased detection estimates, we further showed that an 

adequate sampling strategy can lead to statistical classifiers able to generalize with less 

samples. Considering the possibilities to arrange the data with unsupervised learning 

and the multiple sampling strategies, the scope and potential to build statistical 

classifiers efficiently widens considerably. This in turn might lead to a definition of a 

simple and standardized protocol to find sounds of interest in large audio datasets. More 

standardized methods based on best practices from machine learning and sampling will 

ensure to have repeatable procedures with scientifically defendable results. 

The present work sheds light into how to best combine methods to obtain 

accurate and efficient ecological data from passive acoustic recorders. We suggest to 

apply together human reasoning and computer algorithms to establish an end-to end 

framework that is generic, standardized and robust. We used an unsupervised learning 

approach to partition the data into homogeneous groups and apply a stratified sampling, 

thereby collecting a representative dataset of the acoustic diversity. This sample 

included not only the diversity of the sound of interest, but also the multiple 

interferences that are present in the recordings. Manual expert annotation can be 

included into the analytical procedure to train a semi-supervised or a supervised 
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classifier in order to carefully delineate a decision boundary. This dataset is expected to 

train a statistical classifier cost-effectively. Finally, a held-out dataset collected with 

random sampling should be used to validate the classification performance and give 

useful estimates of detection accuracy. 

The above framework should be seen as a workflow with a feedback loop 

according to a conditional step: does the performance comply with the requirements 

imposed by the intended use of the system? To improve the performance, three basic 

not-exclusive alternatives can be envisaged: (1) collect more data, (2) add new features, 

or/and (3) try a different statistical classifier. In order to collect data efficiently, or to 

take advantage of structuring the data, unsupervised and semi-supervised learning 

methods are the ideal candidates. Yet, they are still an unexplored area on ecoacoustics. 

Novel methods to combine strengths of human reasoning and computational algorithms 

will likely become increasingly important to advancing passive acoustic monitoring. 
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"Yo digo que no hay más canto 

que el que sale de la selva 

y que será el que lo entienda 

fruto del árbol más alto" 

– Silvio Rodríguez (1994) 
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By sensing the acoustic environment we have access to a unique facet of biodiversity. 

The rich information found in every single second of audio echoes that wildlife at 

tropical latitudes is not only abundant, but also diverse and dynamic. Arrays of passive 

acoustic recorders are now deployed worldwide to monitor animal communities, but 

will this quantitative increase in data lead to a qualitative change in the way we do 

ecological research? Can acoustic monitoring become an effective tool for exploring 

patterns of biodiversity? The data collection problem has been leverage by passive 

acoustic sensors, but a new challenge have emerged: the examination and interpretation 

of data through quantitative methods. The standardized and efficient analysis of such 

data might be the first step to derive valuable ecological information for science and 

conservation. 

 

 

1. Analysis of field audio recordings 

 

Mixed methods have been envisaged and implemented to numerically analyse and 

derive valuable ecological information collected by passive acoustic sensors. Probably 

the most straightforward analysis consists in identifying species-specific calls in the 

recordings, by manual and/or automated annotations. Alternatively, the acoustic 

community can be analysed by examining its global structure. All these are fruitful 
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methodologies and should help to exploit the deluge of data being recorded in the 

natural environments. 

 

 

1.1. Manual annotations 

 

Since humans have a long experience interpreting environmental sounds it is relatively 

simple to gain the skills to scan and recognise few target sounds in audio recordings. 

When dealing with multiple target sounds in heterogeneous acoustic environments the 

problem gets more complex, training might require much more investment and 

variability between observers will likely increase (Chapter 4). When possible, the 

classification of complex soundscapes can be further refined by having multiple 

observers. Automated methods can greatly reduce the time required to scan through 

audio files, but their correct design, implementation, tuning and testing, might require 

significant amounts of time and probably give less reliable results than manual methods. 

Hence suitability of using automated versus manual scanning should be considered 

carefully according to the study (Swiston & Mennill, 2009). For example, Knight et al. 

(2017) compared implementation time to build and run automated acoustic classifiers 

against human listening and found that for datasets smaller than 36 hours, human 

listening was faster. Despite being more costly, traditional manual analysis might be the 

best option if dealing with small and manageable datasets. 

 Targeted at precise locations of interest and combined with sampling strategies, 

manual work can be optimized. As shown in our explosive breeding study (Chapter 2), 

manual annotation can be combined with acoustic indices (Sueur et al., 2014). The 

indices allow to detect strong changes in the acoustic community (Lellouch et al., 

2014), and then a targeted subsample of the total recordings can be selected. In this way 

it is possible to obtain a manually workable dataset for expert annotations. Expert 

annotations allow to extract diverse and accurate information related to the species 

occurrences, getting all the benefits of human knowledge into the analysis. A clear 

objective in the analysis of the data is key to optimize expensive resources, such as 

expert manual annotation. 

 Manual annotations are valuable but time-consuming, and hence should be 

considered for re-use. We manually annotated a total of 902 recordings, equivalent to 
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more than 15 hours of continuous audio for different purposes (Chapters 1, 2 and 3). 

Nowadays, many researchers are being confronted to manually annotate their field 

audio recordings. Such information can be used, for example, to train, test and assess 

the performance of automated classifiers. For instance, the expert annotations of 

presence-absence of anuran species in Chapter 2 was reused to test and assess multiple 

automated methods in Chapter 4. Unfortunately, most of this data stays in laboratory 

shelves being neither shared nor accompanied with metadata. Currently, personal 

datasets are available from recordings which are saved in curated sound libraries, such 

as The Macaulay Library of Natural Sounds (https://www.macaulaylibrary.org/, Cornell 

University), La Sonothèque (https://sonotheque.mnhn.fr/, Muséum national d’Histoire 

naturelle) or the Colección de Sonidos Ambientales (http://humboldt.org.co, Instituto 

Humboldt Colombia), or are part of crowdsourcing projects, such as the Xeno-canto 

foundation (http://www.xeno-canto.org). However, manually annotated recordings from 

passive acoustic sensors are still rarely found in such libraries. Ecologists are 

collectively producing increasing amounts of audio classification data that can turn to 

be the building blocks of training libraries for automated methods. Indeed, a culture of 

transparent data exchange would favour the development of new pattern recognition 

tools particularly suited to ecoacoustic monitoring, and in turn, it will be possible to 

address questions at larger scales.  

 For large scale ecoacoustic monitoring projects innovative ideas should be 

envisaged to get manually labelled dataset, for example by distributing the task through 

crowdsourcing initiatives. In the closely related task of classifying images from 

hundreds of camera traps, researchers have build a citizen-science website 

(http://www.snapshotserengeti.org) where more than 28,000 registered users 

contributed to classify as much as 10.8 million images (Swanson et al., 2015). The data 

is currently used to address large-scale questions in community ecology and community 

dynamics. Collaborative annotations on some of the many charismatic sounds collected 

by acoustic sensors seem a sensible alternative to be considered to scale-up manual 

classification. 
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1.2. Computer assisted classification 

 

Since passive acoustic recorders are recent devices in ecology, well-defined tools and 

protocols to implement automated analysis of data is still scarce – and urgently needed. 

The acoustic environment of the tropical environment presents two major challenges for 

automated analysis: (1) highly diverse types of sounds co-occur unceasingly, and (2) a 

large proportion of sounds are not identified at the species level. These particular 

constraints led us to develop innovative methods for the analysis of field audio 

recordings. We adapted, designed and tested methodologies to overcome these 

challenges: the cross-correlation of spectrogram (Chapter 1), the Multiresolution 

Analysis of Acoustic Diversity (Chapter 3) and a protocol to combine manual and 

automatic approaches within the machine learning framework (Chapter 4).  

 Simple, robust and straightforward techniques are especially interesting to test 

and adapt to tropical environments. They are simpler to explain and understand and 

reduce the chance of computational mistakes. We showed that the spectrogram cross-

correlation could screen more than fifty thousand recordings and detect vocalizations of 

a target sound in the lowland rainforest, an intricate acoustic environment. The 

detections were then used to describe the spatial and temporal dynamics of the vocal 

activity of a population of Lipaugus vociferans. The cross-correlation was robust to the 

multiple interferences from other animal sounds and needed few manually annotated 

templates to run. This effective technique was found while searching for a fast, 

relatively simple and robust approach. The spectrogram cross-correlation is now 

incorporated into different software, facilitating its handling by non-experts. Yet, to 

derive meaningful results, it is fundamental to tune and test the system following best 

practices (Knight et al., 2017). This is why we comprehensively described our 

methodology, guiding others to follow a mapped road and hence contributing to 

building a body of literature of automated signal recognition for wildlife assessment in 

tropical environments. A significant proportion of birds (e.g. suboscines), anuran 

amphibians and insects have the stereotyped vocalizations and the procedure detailed in 

Chapter 1 is a guide to test thoroughly the spectrogram cross-correlation. 

 To date, one of the strongest constraints to analyse acoustic communities, is the 

lack of comprehensive datasets able to relate sounds with species. When labels are 

costly or simply not available, the parameters of supervised learning cannot be 
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estimated. Alternatives to overcome manual labelling include unsupervised learning, 

which can exploit information from unlabelled data by searching for structures on the 

data attributes (Bishop, 2006; Theodoridis and Koutroumbas, 2006; Hastie et al., 2009). 

Using unsupervised learning, we designed a method to decompose the acoustic 

community into few elementary spectro-temporal components, namely the 

Multiresolution Analysis of Acoustic Diversity (MAAD, Chapter 3). When confronted 

to manual annotation, MAAD gave strikingly similar partitioning. Tested to be robust 

under two contrasting scenarios, our method seems to be flexible and generalizable to 

other datasets. Indeed, MAAD was designed to be data-driven, which gives the 

possibility to adapt to different situations, offering new possibilities to analyse other 

poorly documented environments, such as freshwater, corral reefs and deep seas.  

 Previous studies involving automated analysis have mainly focused on acoustic 

indices or supervised learning. MAAD uses statistical classification in a new direction, 

opening further possibilities to ecoacoustics. For instance, MAAD can be used to give a 

global characterisation of the soundscape using common ecological measures of 

diversity. The number of clusters can be used as an estimate of soundtype richness, and 

since the groups have associated abundances and distances between groups, other 

diversity indices can be calculated, such as Shannon, Gini-Simpson or Rao's quadratic 

entropy (Magurran, 2004; Pavoine et al., 2005; Gotelli and Chao, 2013). Alternatively, 

MAAD can be seen as a general method to organize the constellation of environmental 

sounds, optimizing the search through large collections. Suppose you are searching for a 

specific set of books. Now, where would prefer to go, to a library where the books are 

randomly distributed, or where books are organized by subject and author name? 

MAAD opens new perspectives to analyse passive acoustic recordings, facilitating 

posterior analyses that combine machine speed and human reasoning. 

 To date, most of the techniques to analyse passive acoustic sensors are either 

manual or fully automated. Much effort has been placed at building an all-purpose 

classifier. Multiple competitions have been organised to solve the problem of automated 

classification of field audio recordings, MLSP 2013 Bird Classification Challenge 

(https://www.kaggle.com/c/mlsp- 2013-birds/data), ICML 2013 Bird Challenge 

(https://www.kaggle.com/c/the-icml-2013-bird-challenge), LifeCLEF Bird 

Identification Task 2014 (Goëau et al., 2014), to name a few. These competitions have 

certainly contributed to highlight the most robust and feasible machine learning 
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approaches, yet it is unlikely that a single algorithm will classify all the sounds in real 

field situations. Machine learning studies agree that an increase in sample size will very 

likely incur in better classifiers, yet with the current available annotated datasets it 

seems to be unlikely to derive a classifier for all species on all scenarios. 

Instead of looking for fully automated methods, we underline that solutions 

aimed at combining manual and automated analysis should be envisaged. Such 

procedure seems even more important for poorly documented habitats, where calls are 

yet to be described, annotated and saved in sound libraries. We framed a protocol based 

on machine learning that sheds light on how to best integrate the strengths form both 

sides. By screening the audio dataset and arrange it with unsupervised learning, we 

manage to select a representative sample of heterogeneous sounds efficiently (Chapter 

4). We showed that an alternative at hand to most practitioners could be to frame a well-

defined protocol that includes building and testing classifiers. While most ecologists are 

not well trained to manage the datasets from passive acoustic recorders, the task is little 

by little facilitated by open-source packages and documentation. For now, the tools are 

in the hands of computer scientists, but the questions are posed by ecologists. A better 

integration between researchers will likely benefit both sides and in general, the field of 

ecoacoustics. 

 

1.3. Global characterisation of the soundscape  

 

With the aim at analysing acoustic patterns at a larger scale, multiple acoustic indices 

have been designed (e.g. Sueur et al., 2008; Pieretti et al., 2011; Villanueva-Rivera et 

al., 2011; Kasten et al., 2012; for a review see Sueur et al., 2014). For populations or 

communities of organisms that signal acoustically in large aggregations, the use of 

acoustic indices seems particularly suitable. In dense choruses, such as the ones 

investigated in Chapter 2, the signals end-up intermingled with each other, losing the 

temporal envelope. However, the spectral characteristics are summed between 

individual sounds, which results in a clear spectral mark in the frequency domain of the 

acoustic environment, perceived as a hum or a hiss by our auditory system. During our 

studies, we inspected the overall amplitude of audio recordings by computing the root-

mean-square of the signal (Chapter 2). Such quantification of the signal, which can be 

viewed as an acoustic index, was effective to strong changes in the anuran community 
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related to explosive breeding events. Moreover, using a statistical classifier to 

discriminate between global spectrums, we highlighted a characteristic spectral 

signature of these peculiar breeding events, rising multiple questions related to the 

community acoustic structures found in tropical forests (see next subsection). 

 While acoustic indices were not explicitly mentioned in our final methods or 

results, a global analysis of the acoustic environment was a fundamental exploratory 

step in our data. Some studies have searched for the link between acoustic indices and 

ecological processes (Gasc et al., 2012; Towsey et al., 2014; Harris et al., 2016), and 

others have sought to highlight their value for exploratory analyses (Phillips et al., 

2018). Either way, the use of acoustic indices has opened new possibilities for 

ecoacoustics numerical analyses. Indeed, all of the aforementioned machine learning 

possibilities can be envisaged at a global scale, focusing the analysis at the soundscape 

level. After all, it is fundamental to examine the differences and similarities of the 

diversity of sounds, without ever losing the sight of the whole.  

 

* 

 

We developed techniques that could be flexible and easily adapted beyond our 

own datasets, contributing to the efforts on systematic, repeatable, objective and 

scalable ecoacoustic studies. We opened paths for the analysis of field audio recordings 

towards multiple directions, including supervised and unsupervised learning, combined 

with manual analysis and acoustic indices. The possibilities are large and the methods 

are clearly in their infancy. The full potential of ecoacoustic monitoring lies on the 

advances of methodological procedures to accurately and efficiently scrutinize the 

information condensed in digital format. Better integration of the multiple tools from 

machine learning must continue to develop and enable us to understand the 

complexities of tropical acoustic environments. Computational tools not only have the 

potential in assisting to the automated classification, but also might help us gain insights 

from the available data through data-mining (Stowell, 2018). These algorithms 

represent a major set of computational tools for knowledge discovery in large databases, 

which will be increasingly essential in the era of data-intensive ecoacoustics. Better 

integration and collaboration might be the answer to the growing need for classification 
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tools and sound libraries that facilitate robust ecological research (Browning et al., 

2017).  

 A major endeavour of biodiversity monitoring resides in the standardization of 

methods that allow scaling up to large scales. Clearly, the use of passive acoustic 

sensors coupled with algorithmic analyses provide an objective, repeatable and cost-

efficient alternative. Generalized methods for ecologists in a set of standard packages 

should become increasingly available to everyone, everywhere (Borcard et al., 2011). 

New hardware and software are currently being designed, this work is part of this 

movement that poses new foundations for biodiversity monitoring through ecoacoustics. 

 

 

2. Patterns and dynamics of the tropical acoustic environment 

 

The acoustic environment is more than the sum of its elementary sounds. Structural 

patterns have been documented in acoustic communities of birds, amphibians and 

insects, probably reflecting complex heterospecific interactions. Our studies revealed 

temporal patterns of the Lipaugus vociferans with peaks of activity shifted from times 

where the soundscape had higher levels of acoustic activity (Chapter 1), and a strong 

effect of the median call frequency explaining clusters found in the nocturnal acoustic 

community (Chapter 3). Such observations might be explained in the light of 

ecoacoustic models. The acoustic niche hypothesis (ANH), based on the ecological 

niche concept (Hutchinson, 1957), is linked to inter-specific acoustic competition 

(Krause, 1993). As the acoustic environment is a shared resource, organisms would 

have evolved to occupy specific spectro-temporal niches, decreasing the risk of 

heterospecific mating and information masking. 

 When assessing the ephemeral communities of explosive breeding amphibians, 

we expected to find similar frequency partitioning patterns. Amphibians strongly rely 

on acoustic communication for sexual selection, and during explosive breeding events 

multiple species are calling intensively at the same time (Gerhardt & Huber, 2002; 

Gottsberger & Gruber, 2004). Since the temporal window was the same for the co-

occurring species, we expected to find a spectral structure in the acoustic community 

that would allow each species to exchange signals, and thus support the ANH. Yet, our 

results showed the opposite pattern: comparing pre-explosive and explosive breeding 
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acoustic communities, we found significant diminution in the acoustic diversity. The 

diminution was not evident when comparing species richness, but only when integrating 

a spectral distance between species. This unexpected result could be explained by 

sexual selection pressures and behavioural differences. While for prolonged breeders 

female choice is crucial in determining male reproductive success, during explosive 

breeding there would be no time to exchange acoustic signals, leaving females from 

explosive breeding species few opportunities to choose (Wells, 1977). Such weak 

female sexual selection would lead to acoustic communities with more overlapping 

signals. Clustering in acoustic signalling has been observed in tropical birds, suggesting 

that this signalling behaviour may facilitate the exchange of signals between species 

(Tobias et al., 2014). Regarding explosive breeding amphibians, such potential 

convergence might be used as a heterospecific cue that signals the availability of short-

lived breeding sites (Bee, 2007; Swanson et al., 2007). 

 The contrasted results in acoustic community structures found in our studies 

highlight the importance of behavioural and experimental studies to better understand 

the underlying causes of the patterns observed in the soundscape. In addition, history 

might be an important predictor factor and hence phylogenetic data should be taken into 

account. In turn, the documented patterns in the soundscape can raise new behavioural 

and ecological questions. At the species level, studies have revealed that acoustic 

signatures incorporates cues to individuality, sex, age, body size and even physiological 

state (Aubin et al., 2007; Catchpole and Slater, 2008). At the community level, acoustic 

structures may encode information related to ecological processes. For example, 

disruption on the acoustic signature produced by cricket communities in New Caledonia 

showed to be indicative of the presence of Wasmania auropunctata, an invasive and 

devastating ant (Gasc et al., 2017). With a better comprehension of the underlying 

processes of community acoustic signatures, effective and non-invasive procedures will 

be emerging to improve biodiversity monitor. The better we link the soundscape with 

ecological processes, the better we will be able to monitor biodiversity and infer sound 

decision policies. 
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3. Acoustic surveys to monitor biodiversity at large scales 

 

 A fundamental part of conservation biology is focused in assessing the state and 

trends of biodiversity. To this end, monitoring studies are necessary to accumulate 

baseline data, which are still lacking for many tropical environments. Integration of 

research, management and monitoring is key to gain reliable knowledge about 

ecological systems. Tropical environments, which are highly diverse, complex, poorly 

understood and showing increasing human pressures, clearly pose challenges for 

conservation (Groom et al., 2012). Monitoring frameworks with efficient sampling 

designs are needed to address the multiple questions posed by local, regional and 

international commitments, such as the Convention on Biological Diversity (Collen et 

al., 2013; Turner, 2014; Steenweg et al., 2017).  

 Using acoustic sensors we succeeded to follow animal dynamics at multiple 

points simultaneously, in a standardized and at cost-efficient way. We tracked a 

population of the tropical bird Lipaugus vociferans at 24 plots during 25 days, and 

assemblages of anurans at five sites during four months. Over the last decade passive 

acoustic monitoring has emerged as an influential tool for studying wildlife, proving to 

be effective at sampling terrestrial (Aide et al., 2013; Blumstein et al., 2011; Fristrup 

and Mennitt, 2012; Kalan et al., 2015; Thompson et al., 2010; Wrege Peter H. et al., 

2017) and underwater environments (Miksis-Olds et al., 2010; Sousa-Lima et al., 2013; 

Tregenza et al., 2016; Caruso et al., 2017). Our study adds up to this increasing list, 

demonstrating the feasibility and suitability of using acoustic sensor arrays to monitor 

key organisms of tropical forests, and evidencing that the full potential of acoustic 

monitoring is yet to be harnessed. 

 By coupling acoustic with environmental sensors and information related to 

habitat structure, we managed to tackle key ecological questions related to the studied 

species. The recent emergence of acoustic sensors may mirror a wider trend, the 

extensive use of electronic sensors in ecology. Remote triggered traps, environmental 

DNA, satellite and airborne imaging provide complementary information about 

biodiversity (Collen et al., 2013; Turner, 2014). Integration of such data would allow 

building up a harmonised observation system.  

 Quantitative sampling and monitoring of multiple groups is essential to best 

determine management programs for the conservation of biodiversity (Collen et al., 
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2013). To cover a larger range of animals, probably the most evident integration for in 

situ automated data collection consists in coupling camera traps and acoustic 

monitoring. Such technology seems complementary, while camera traps is sensitive to 

the large, and often silent, ground dwelling animals, acoustic sensors are able to detect 

loud animals, which have often cryptic coloration or are small. Finally, data collected in 

situ should be used in concert with ex situ satellite or aircraft imaging to reach global 

scales. The digital era for ecology present great possibilities, but also needs innovation 

in the analysis of data to standardize and combine the procedures, a great challenge on 

its own (Turner, 2014). 

 Passive acoustic sensing is clearly scaling-up and going global. Emergent 

alternatives on recording equipment, software analysis, and the growing ecoacoustic 

monitoring literature highlight how popular this technique has become. A great amount 

of data is being collectively being produced, but is still fragmented and little 

standardization procedures currently exist. While monitoring design should be followed 

in order to answer research objectives, reporting metadata allows transparent exchange 

of information allowing larger-scale analyses (Hampton et al., 2013). As for other data 

collection protocols in ecology, a better coordination and collaboration between 

research groups would allow to combine efforts for broader biodiversity assessment and 

novel scientific insights (Reichman et al., 2011). 

 

 

4. Rainforest soundscapes to promote biodiversity conservation 

 

Cost-effective monitoring and a better understanding of animal ecology would 

hopefully lead to conservation action and policies, but public engagement is also crucial 

(Novacek, 2008). Lengthy audio field recordings collected during ecoacoustic 

monitoring, appropriately curated, may also be used in alternative ways to convey 

importance, wonder and relevance of biodiversity to the general public. As an 

experimental work, the artist Bérénice Sevestre and myself edited a short film based on 

videos and audio recordings collected during the fieldwork in French Guiana (Figure S1 

on Appendix). The five-minute documentary participated in the film festivals: Les 

Chercheurs Font Leur Cinéma, where it was prized with the public and jury awards. It 

was further presented in the international film festival Parisciences and was part of the 
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exposition la Nature Monte Le Son. The film is now freely available on the Internet, 

were it reached more than 2,000 visualizations in a few weeks. Although this is clearly 

an amateur audio-visual work, it is an example that evidences how people are 

particularly lured to hearing the natural world. 

 Sonic experiences have a unique surrounding character, which envelopes us, 

providing our sense of place. Information-rich soundscapes, composed of multiple 

textures, insistent rhythms and repetitions and unbreakable sequences, seem to lure, not 

only tropical travellers of the last two hundred years, but also the general public. Sonic 

experiences of the natural world are demanded and valued, the evidence is clear from 

the multiple expositions, e.g. Le Grand Orchestre des Animaux (Fondation Cartier pour 

l’art contemporain, 2016) and La Nature Monte le Son (Muséum Vauban, 2018), and 

audio albums, e.g. Voices of the Rainforest (Feld, 2011) and Why do whales and 

children sing (Dunn, 1999), to give but a few examples. 

Public engagement is key to the future of conservation science and to face the 

biodiversity crisis in general (Novacek, 2008; Kudavidanage et al., 2012). Besides 

logical explanations on the importance of preserving proper ecosystem functioning, 

there is also the need to touch people sensibility. Emotions play a central role in the 

decisions we make, it is therefore not a surprise that the scientific community has 

increased its interest into artistic projects to question and reach a wider public (Jacobson 

et al., 2007). Indeed, artists have the sensibility to talk in a universal language. 

Interdisciplinary work between artists, conservationists and ecologists seem most 

pressing in the context of anthropogenic climate change (Moser & Dilling, 2011), and 

biodiversity issues (Novacek, 2008). The sound-art project Fragments of extinction, 

which explores the acoustic environment of the remaining primary tropical forests, is an 

example of such interdisciplinary possibilities in the general framework of ecoacoustics 

(Monacchi, 2013). The experience of listening is often one of perceiving the 

inseparability of phenomena. Our sensibility to sonic experiences, combined with field 

recordings might have the ability to promote personal ways of thinking about the 

natural world, building new relationships between humans, the natural environment and 

the rest of species that inhabit it. After all, it was probably a poet, Wolfgang von 

Goethe, that moved and inspired Humboldt to explore and study equinoctial regions 

(Wulf, 2015). 
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* 

 

Two hundreds years ago, Humboldt talked about hums and buzzes filling up the air of 

Neotropical forests. Some of these sounds have been documented, and many 

behavioural studies have revealed the underlying mechanisms for the diversity of these 

sounds. Yet, most of the constellations of sounds we now hear are yet to be 

meticulously searched and identified. When turning to calls that are nocturnal or far 

from our reach, such as the canopy of tropical forests, we can realize how little we 

know about tropical soundscapes. Sometimes, event prevalent sounds remain enigmatic, 

hard to even classify in broad categories. Regarding a sound that remained mysterious 

for 10 years of field work, (Dias et al., 2017) asked: "is it a bird, is it a frog, or a bush 

cricket?". It turned out to be the stridulations of the katydid Paracycloptera grandifolia. 

As more sounds are identified and structural patterns of the acoustic environment are 

linked with ecological processes, the horizons for ecoacoustics are expanded. Nature 

has abundant secrets to whisper; thus, our understanding of life and how to best 

preserve it will thrive if we lend an attentive ear. 
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Supplementary information to Chapter 1 
 

Supplementary audio data can be found online at: 

https://doi.org/10.1016/j.ecoinf.2015.11.012 

 

 

Audio S1. Focused recording of the typical vocal display of a Lipaugus vociferans. Recorded 

on November 16, 2010, at 1:30 pm, in site M-XI with the canopy microphone. 

 

Audio S2. Soundscape of the tropical forest. Among the numerous sounds, a typical song of 

the Lipaugus vociferans can be heard between second 9 and 11. Despite the interferences, this 

song was detected by our detection system without false positives. Recorded on November 

20, at 6:00 am in site M-XI with the ground microphone. 
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Supplementary information to Chapter 2 

 
Figure S1. Acoustic features of calls from the 25 species of anuran found during explosive breeding 
events. The code names for the species are: Adenomera andreae = Adenandr, Allobates femoralis = 
Allofemo, Allophryne ruthveni = Alloruth, Ceratophrys cornuta = Ceracorn, Chiasmocleis hudsoni = 
Chiahuds, Chiasmocleis shudikarensis = Chiashud, Dendropsophus counani = Dendcoun, 
Dendropsophus leucophyllatus = Dendleuc, Dendropsophus melanargyreus = Dendmela, 
Dendropsophus minutus = Dendminu, Dendropsophus sp1 = Dendsp1, Leptodactylus knudseni = 
Leptknud, Leptodactylus mystaceus = Leptmyst, Leptodactylus rhodomystax = Leptrhod, 
Osteocephalus leprieurii = Ostelepr, Osteocephalus oophagus = Osteooph, Phyllomedusa tomopterna 
= Phyltomo, Pristimantis chiastonotus = Prischia, Pristimantis inguinalis = Prisingu, Pristimantis sp1 
= Prissp1, Scinax proboscideus = Scinprob, Scinax sp2 = Scinsp2, Trachycephalus coriaceus = 
Traccori, Trachycephalus hadroceps = Trachadr, Trachycephalus resinifictrix = Tracresi 
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Figure S2. Spectrum of the calls of the of calls from the 25 species of anuran found during explosive 
breeding events. The code names for the species are given in Figure S1. 
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Supplementary information to Chapter 3 

 

 
Figure. S1 Rank/abundance plot illustrating the relative abundance of soundtypes for the rock savanna 
(RS) and the high forest (HF). The y axis indicates the abundance using a logarithmic scale while the x 
axis ranks each soundtype in order from most to least abundant. 
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Table S2 List of environmental audio recordings deposited at the sound library of the Muséum 
national d’Histoire naturelle (www.	sonotheque.mnhn.fr). 
 
 

Collection number Site Day Time 
MNHN-SO-2016-14366 HF 05-Dec-2014 22:17 
MNHN-SO-2016-14367 HF 06-Dec-2014 02:17 
MNHN-SO-2016-14368 HF 06-Dec-2014 22:18 
MNHN-SO-2016-14369 HF 07-Dec-2014 02:18 
MNHN-SO-2016-14370 HF 07-Dec-2014 22:18 
MNHN-SO-2016-14371 HF 08-Dec-2014 02:18 
MNHN-SO-2016-14372 HF 08-Dec-2014 22:18 
MNHN-SO-2016-14373 HF 09-Dec-2014 02:18 
MNHN-SO-2016-14374 HF 09-Dec-2014 22:19 
MNHN-SO-2016-14375 HF 10-Dec-2014 02:19 
MNHN-SO-2016-14376 HF 10-Dec-2014 22:19 
MNHN-SO-2016-14377 HF 11-Dec-2014 02:19 
MNHN-SO-2016-14378 HF 11-Dec-2014 22:20 
MNHN-SO-2016-14379 HF 12-Dec-2014 02:20 
MNHN-SO-2016-14380 HF 12-Dec-2014 22:20 
MNHN-SO-2016-14381 HF 13-Dec-2014 02:20 
MNHN-SO-2016-14382 HF 13-Dec-2014 22:21 
MNHN-SO-2016-14383 HF 14-Dec-2014 02:21 
MNHN-SO-2016-14384 HF 14-Dec-2014 22:21 
MNHN-SO-2016-14385 HF 15-Dec-2014 02:21 
MNHN-SO-2016-14386 RS 05-Dec-2014 22:17 
MNHN-SO-2016-14387 RS 06-Dec-2014 02:17 
MNHN-SO-2016-14388 RS 06-Dec-2014 22:18 
MNHN-SO-2016-14389 RS 07-Dec-2014 02:18 
MNHN-SO-2016-14390 RS 07-Dec-2014 22:18 
MNHN-SO-2016-14391 RS 08-Dec-2014 02:18 
MNHN-SO-2016-14392 RS 08-Dec-2014 22:18 
MNHN-SO-2016-14393 RS 09-Dec-2014 02:18 
MNHN-SO-2016-14394 RS 09-Dec-2014 22:19 
MNHN-SO-2016-14395 RS 10-Dec-2014 02:19 
MNHN-SO-2016-14396 RS 10-Dec-2014 22:19 
MNHN-SO-2016-14397 RS 11-Dec-2014 02:19 
MNHN-SO-2016-14398 RS 11-Dec-2014 22:20 
MNHN-SO-2016-14399 RS 12-Dec-2014 02:20 
MNHN-SO-2016-14400 RS 12-Dec-2014 22:20 
MNHN-SO-2016-14401 RS 13-Dec-2014 02:20 
MNHN-SO-2016-14402 RS 13-Dec-2014 22:21 
MNHN-SO-2016-14403 RS 14-Dec-2014 02:21 
MNHN-SO-2016-14404 RS 14-Dec-2014 22:21 
MNHN-SO-2016-14405 RS 15-Dec-2014 02:21 
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Figure. S3 Visual example of ROIs partitioned by manual analysis and by MAAD. ROIs are 
represented as boxes on the spectrogram and the ROIs belonging to the same group have the same 
colour. The asterisk symbol in the bottom spectrogram indicate a dissimilarity between manual and 
MAAD partitions. 
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Table S4a Comparison between partitions derived by manual and automated analysis for the rock 
savanna environment (RS).  
	

 
Manual partition 

MAAD 
partition A1 A2 A3 A7 A8 A4 A10 A5 A6 A9 A13 A12 A11 A14 A15 A16 A17 A18 

B6 610 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 

B10 0 776 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 

B8 0 0 323 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 

B1 0 0 329 0 0 1 0 0 0 0 0 0 0 10 0 0 87 0 

B5 0 0 32 0 0 0 2 0 0 0 0 0 0 0 0 3 0 0 

B7 0 0 0 0 0 461 0 0 0 2 0 0 0 0 0 0 12 0 

B2 0 0 1 0 0 132 0 0 0 0 0 0 0 0 0 0 0 0 

B4 0 0 0 0 0 0 0 773 0 1 0 0 0 0 0 3 0 0 

B3 0 0 20 0 0 29 0 2 23 0 0 1 0 0 0 0 0 0 

B9 0 0 0 0 0 0 0 29 0 46 0 0 0 0 0 0 15 0 

B11 8 0 0 31 1 0 0 0 0 0 97 0 0 0 7 0 0 0 
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Fig. S5 
Illustrative example of automatically annotated spectrograms. Some of the clusters could be 
linked to species sounds. On the rock savanna, cluster B6 (pink boxes) could be identified as 
vocalisations of the amphibian Hypsiboas boans. On the high forest, cluster B5 (cyan boxes) 
could be identified as stridulations of the cricket Lernecella minuta. 
	



Text S6. Statistical model properties of HDDC

The mixture model-based clustering (on which HDDC is based) is defined in a probabilis-
tic framework (Fraley & Raftery 2002): it is assumed that each group is modeled by a specific
distribution fk(x), k = 1, ...,K, which is often supposed to be Gaussian fk(x) = �(x;µk,⌃k)
where � is the Gaussian probability distribution function, µk its mean and ⌃k its covariance
matrix. Assuming that the prior probability of the groups is such that P (Gk) = ⇡k, the
marginal distribution of the random variable X is a Gaussian mixture model (GMM):

p(x) =
KX

k=1

⇡k�(x;µk,⌃k). (1)

This modeling has two particular advantages: (1) it is known to be a robust approach
to deal with unbalanced datasets, due to the presence of the parameters ⇡k, and (2) it is
interpretable from a statistical point of view. Bouveyron et al (2007) proposed to constraint
the GMM model through the eigen-decomposition of the covariance matrix ⌃k of the kth
group:

⌃k = Qk⇤kQ
t
k, (2)

where Qk is a p⇥ p orthogonal matrix which contains the eigenvectors of ⌃k and ⇤k is
a p ⇥ p diagonal matrix containing the associated eigenvalues (sorted in decreasing order).
The key idea of the work of Bouveyron et al. is to reparametrize the matrix ⇤k, such as ⌃k

has only dk + 1 different eigenvalues:

�k =

0

BBBBBBBBBBB@

ak1 0
. . .

0 akdk

0

0

bk 0
. . .

. . .
0 bk

1

CCCCCCCCCCCA

9
=

; dk

9
>>=

>>;
(p� dk)

where the dk first values ak1, . . . , akdk parametrize the variance in the group-specific subspace
and the p � dk last terms, the bk’s model the variance of the noise and dk < p. With this
parametrization, these parsimonious models assume that, conditionally to the groups, the
noise variance of each cluster k is isotropic and is contained in a subspace which is orthogonal
to the subspace of the kth group. Following the classical parsimony strategy, the authors
proposed a family of parsimonious models from a very general model, the model [akjbkQkdk],
to very simple models (Table 1).

Model inference is performed using the Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977) which maximizes the likelihood by iteratively computing the conditional
expectation of the complete-data likelihood and then optimizing it over the model param-
eters. The estimation of the intrinsic dimensions dk, k = 1, ...,K, relies on the scree test
of Cattell (1966) which looks for a break in the eigenvalue scree of the empirical covariance
matrix of each group. The break in the eigenvalue scree is detected as the dimension for
which all differences between consecutive eigenvalues are smaller than a threshold th after
this dimension. This strategy allows to find K intrinsic dimensions which can be different

1



Table 1: Properties of the parsimonious Gaussian mixture models implemented in HDDC

Free dimensions Common dimensions

Variances Class specific noise Common noise Class specific noise Common noise

Free akjbkQkdk akjbQkdk akjbkQkd akjbQkd

Isotropic akbkQkdk akbQkdk akbkQkd akbQkd

Homosced. abkQkdk abQkdk abkQkd abQkd

using a common threshold value. A model selection procedure was finally implemented
to estimate the hyper-parameters that control the complexity of the model. These hyper-
parameters are the model M , the number of groups K, and the threshold value th to find
the intrinsic dimensionality of each class.
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Multiresolution Analysis of Acoustic Diversity ∗

Juan Sebastian Ulloa
Museum national d’Histoire naturelle

Université Paris-Saclay

February 13, 2018

The present document reports a set of basic instructions to run the Multiresolution Analysis of
Acoustic Diversity (MAAD) on audio recordings. This program is free software: you can redistribute
it and/or modify it under the terms of the GNU General Public License http://www.gnu.org/licenses/.
While due care has been taken and it is believed accurate, its use is solely the responsibilities of the user.

1 System requirements

The basic system requirements are:

• Matlab R2014b or later with ScatNet (v 0.2) toolbox. Scatnet toolbox can be downloaded from
http://www.di.ens.fr/data/software/scatnet/download/

• R version 3.3.2 (2016-10-31) or later with package HDclassif (v 2.0.2)

2 Code description

To run the analysis you need to switch between two software environments. For preprocessing, detection
and characterization of ROIs, and visualization you need to use a Matlab console. For the clustering
step, you need to use the R console. The software is also indicated at each step by a commented line.

Open a Matlab console, load audio and default options for the analysis:

% MATLAB %

run ./default_options.m

s=audioread('demo.wav');

Transform passive acoustic recordings into the time-frequency domain using the windowed short-time
Fourier transform. The Fourier coefficients are filtered to remove noise and to highlight sounds that can
be delimited in time and frequency, here defined as regions of interest (ROIs):

% MATLAB %

[s_filt,im,im2]=preprocess_audio(s,fs,preproc_opt,spectro_opt,ss_opt);

[~,rois_ij]=find_rois(im2,imfilt_opt);

Visualize results:

% MATLAB %

imshow_rois(im,rois_ij,[]);

Characterize ROIs with features in the time-frequency domain using 2D wavelets and the median
frequency.

∗Text S7. Manual for Matlab and R scripts. Supporting information for article Ulloa et al. Estimating animal acoustic
diversity in tropical environments using unsupervised multiresolution analysis. Ecological Indicators, under review.
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Figure 1: Example of the ROIs found in the audio recording. Spectrogram of the audio signal in gray
scale colormap averlayed with ROIs. ROIs are represented as green rectangles

% MATLAB %

shape_features=calc_features('scatnet_op2',s,im,rois_ij,fs,filt_opt,[]);

frequency_feature=calc_features('spectral_centroid',s,im,rois_ij,fs,[], ...

spectro_opt);

Organize the features in a table and save the output to a csv file. The csv file is used to transfer the
data to the R software environment.

% MATLAB %

rois_features=table(shape_features,frequency_feature);

writetable(rois_features,'rois_features.csv','Delimiter',',');

Cluster the ROIs into homogeneous groups based on their attributes. This step requires to open a R
console and run the following commands.

# R #

library(HDclassif)

rois_features=read.table('rois_features.csv',sep=',',header=T)

set.seed(1234) # for repeatable example

data_hddc = hddc(rois_features,K=6,threshold=0.2,nb.rep = 10)

write.table(data_hddc\$class,

file = 'rois_group.csv',

row.names = F,

col.names = T)

Load and plot results

% MATLAB %

rois_group=readtable('rois_group.csv');

imshow_rois(im,rois_ij,table2array(rois_group));

2



Figure 2: Example of the grouped ROIs found in the audio recording. Spectrogram of the audio signal
in gray scale colormap overlayed with the ROIs. ROIs are represented as rectangles coloured according
to the MAAD partitioning.
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Supplementary information to Chapter 4 

	
Figure S1. Comparison between manual and automatic annotation for presence absence of 
Leptodactylus knudseni in each recording of the test dataset . Presence-absence manual 
annotations were obtained from three different experts (green solid lines) and automatic 
annotations were derived from a probability response of a Random Forest (RF) statistical 
classifier (violet dashed lines). Since multiple regions of interest can be found in a recording, 
multiple RF probabilities are computed for each recording. Note that some recordings with high 
probabilities were not identified by all the experts, for example recording number 104, 125 and 
150. 
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Supplementary information to General discussion 
 

	

 
 

Figure S1. Right, poster of the short documentary Paysage Sonore de la Forêt Tropicale, a film 
by Juan Sebastian Ulloa and Bérénice Sevestre. The five-minute documentary participated in 
the film festivals: Les Chercheurs Font Leur Cinéma, where it was prized with the public and 
jury awards. It was further presented in the international film festival Parisciences and was part 
of the exposition la Nature Monte Le Son. The film is now freely available on the Internet. Left, 
poster of the 10th edition of the film festival Les Chercheurs Font Leur Cinéma. 
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Synthèse 
 

 

La communication par émission sonore est un trait comportemental répandu chez les 

animaux terrestres, tels que les insectes, amphibiens, oiseaux et mammifères. Les riches 

textures sonores de la forêt néotropicale suggèrent que la faune est non seulement 

abondante, mais aussi diverse et dynamique. Cette facette de la biodiversité, qui peut 

révéler des informations précieuses sur les communautés animales habitant les milieux 

tropicaux, reste largement méconnue. Comment mesurer la diversité acoustique 

tropicale pour aborder des questions écologiques ? Dans le cadre de l'écoacoustique, 

nous avons cherché à révéler des structures dissimulées dans le paysage sonore de la 

forêt néotropicale, et tenter d’expliquer leurs présences à travers les processus 

écologiques sous-jacents. Cette recherche est basée sur quatre études menées dans la 

forêt ombrophile sempervirente de la Guyane Française. 

Tout d’abord, à l'échelle de la population, nous avons suivi la dynamique spatio-

temporelle d’une marque sonore amazonienne, le chant de l’oiseau tropical Lipaugus 

vociferans. À l’aide d’un réseau préalablement mis en place de 24 microphones 

distribués dans un espace tridimensionnel, nous avons détecté automatiquement avec 

des outils de traitement du signal le chant de cette espèce. Durant les 25 jours d’étude, 

nous avons identifé 12 735 vocalisations. Dans le domaine spatial, nous avons trouvé 

que l’activité vocale était moins importante dans les zones de forêt de lianes, ce qui 

semble indiquer que le L. vociferans à tendance à préférer la forêt à haute canopée. Les 

sites d'échantillonnage près des criques ont également présenté plus d’activité que les 

sites plus éloignés, ce qui suggère que les arènes de reproduction, ou leks, pourraient 

être distribués près d’une source d’eau. Dans le domaine temporel, nous avons identifié 

un cycle circadien très marqué, présentant une activité tout au long de la journée, entre 

le lever et le coucher du soleil, et deux pics d’activité décalés de deux heures 

correspondant à des chœurs matinaux et crépusculaires. Nous avons ainsi fourni des 

résultats détaillés, objectifs et quantitatifs sur la dynamique de cette population, trois 

qualités essentielles pour l'avancement des stratégies de suivi de la biodiversité. 

Afin de déchiffrer le paysage sonore de la forêt tropicale, il est essentiel de 

considérer plusieurs échelles écologiques. Dans un deuxième temps, nous nous sommes 

donc intéressés aux dynamiques acoustiques au niveau de la communauté.  La forêt 
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néotropicale est connue pour contenir la plus haute diversité d’amphibiens, dont les 

vocalisations constituent une marque essentielle du paysage sonore, notamment pendant 

la saison des pluies. En particulier, nous nous sommes intéressés aux communautés qui 

concentrent leur reproduction durant des périodes très brèves, c'est-à-dire les 

communautés composées d'espèces dites à reproduction explosive. Nous avons collecté 

des données acoustiques et environnementales pour suivre simultanément et 

régulièrement cinq mares temporaires de la montagne de Kaw pendant quatre mois. Les 

données acoustiques nous ont permis d’identifier dix événements à reproduction 

explosive, deux par site, principalement caractérisés par la cooccurrence des espèces 

Chiasmocleis shudikarensis, Trachycephalus coriaceus et Ceratophrys cornuta. Les 

précipitations au cours des 48 heures précédentes ont été le facteur le plus important 

pour prédire l'émergence de ces événements. Par ailleurs, les communautés acoustiques 

d'amphibiens à reproduction explosive ont montré une structure avec un fort 

chevauchement fréquentiel des vocalisations allant à l'encontre de l'hypothèse de 

partitionnement de l'espace sonore ou de niches sonores. Le chœur dense qui résulte des 

événements à reproduction explosive a une forte amplitude et une signature acoustique 

caractéristique qui pourrait annoncer la disponibilité de sites de reproduction éphémères 

clairsemés dans la forêt. Notre suivi acoustique a permis ainsi de mieux comprendre les 

causes, structures et conséquences de ce comportement collectif particulier. Puisque les 

amphibiens constituent le groupe de vertébrés le plus menacé, les nouvelles techniques 

de suivis basées sur des capteurs acoustiques semblent pertinentes, permettant de mieux 

les comprendre et de prévoir leur réponse aux changements globaux. 

Les capteurs acoustiques automatiques permettent de suivre les dynamiques des 

communautés animales et leur utilisation peut être envisagée à de grandes échelles 

spatiales et temporelles. À ce jour, des réseaux d'enregistreurs acoustiques sont en effet 

déployés dans le monde entier. Cependant pour pouvoir gérer les grandes quantités de 

donnés collectés, l'analyse standardisée et efficace des enregistrements devient une 

nécessité. Dans un troisième temps, nous avons adapté des outils de calcul puissants, 

issus des disciplines de l'apprentissage automatique et de la reconnaissance de formes, 

pour proposer des nouvelles façons de quantifier et estimer la diversité acoustique qui 

émerge de la forêt tropicale. Nous avons développé une nouvelle méthode pour 

caractériser et automatiser la détection de structures dans le paysage sonore, nommée 

Multiresolution Analysis of Acoustic Diversity (MAAD). Cette analyse a été conçue 
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pour décomposer la communauté acoustique en plusieurs constituants élémentaires. 

MAAD repose sur des techniques d’apprentissage non supervisé qui permettent de 

classifier les sons en groupes homogènes sans phase préalable d’annotation manuelle et 

fastidieuse, ouvrant ainsi de nouvelles perspectives d’analyse pour l’écoacoustique. 

Enfin, dans un quatrième temps, nous avons évalué plusieurs techniques pour 

annoter la présence ou absence de sons d’intérêt dans des enregistrements sonores. Nous 

avons comparé l’annotation manuelle, l’apprentissage semi-supervisé et l’apprentissage 

supervisé pour révéler les forces et les faiblesses de chaque approche, et ainsi mieux 

saisir comment combiner à la fois le raisonnement humain et les algorithmes 

informatiques. Nous avons utilisé 528 enregistrements qui contiennent un 

environnement acoustique tropical hétérogène et nous avons cherché à identifier la 

présence d’une espèce d'amphibien Leptodactylus pentadactylus. Nous montrons que 

les annotations manuelles faites par des experts sont convergentes, mais présentent 

néanmoins des variations individuelles non-négligeables. L’approche semi-supervisée 

nécessite très peu d’effort manuel, mais produit des résultats moins précis. 

L'apprentissage supervisé, tout en nécessitant plus d'annotations manuelles pour estimer 

les paramètres du modèle, a montré des résultats ayant un bon consensus avec 

l'étiquetage des experts. Nous soulignons que des solutions visant à combiner l'analyse 

manuelle et automatisée dans un protocole d'annotation bien encadré devraient être 

envisagées pour fournir des estimations robustes et précises de présence-absence de 

sons d’intérêt. Un tel cadre est fondamental pour évaluer les habitats mal documentés, 

où les sons animaux doivent encore être décrits, annotés et enregistrés dans des 

sonothèques. 

Les environnements tropicaux, très diversifiés dans leur structure et complexes 

dans leur fonctionnement, subissent de plus en plus la pression humaine. Ces 

environnements uniques imposent des défis majeurs en écologie et biologie de la 

conservation. L’écoacoustique, associée à l'informatique, émerge comme une nouvelle 

approche clé permettant de renforcer les programmes de suivis de biodiversité à large 

échelle et ainsi de mieux comprendre et valoriser la diversité de formes de vies unique 

abritée par la forêt tropicale. 
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Résumé : La communication par émission 
sonore est un trait comportemental répandu 
chez les animaux terrestres. Les riches textures 
sonores de la forêt neotropicale nous suggèrent 
que la faune est non seulement abondante, mais 
aussi diverse et dynamique. Cette facette de la 
biodiversité peut révéler des informations 
précieuses sur les communautés animales qui 
habitent les milieux tropicaux, mais reste 
largement méconnue. Comment mesurer la 
diversité acoustique tropicale pour aborder des 
questions écologiques ? Dans le cadre de 
l'écoacoustique, nous avons cherché à révéler 
des structures dissimulées dans le paysage 
sonore de la forêt neotropicale, et tenter 
d’expliquer leurs présences à travers les 
processus écologiques sous-jacents. Tout 
d’abord, nous avons suivi la dynamique spatio-
temporelle d’une empreinte sonore 
amazonienne, le chant de l’oiseau tropical  
 

Lipaugus vociferans, montrant une activité liée 
à des caractéristiques spécifiques d’habitat. 
Puis, nous nous sommes intéressés aux 
communautés d’amphibiens. L’analyse de 
variables acoustiques et météorologiques nous a 
permis de mieux comprendre les causes, patrons 
et conséquences du comportement reproductif 
explosif. Enfin, nous avons adapté de nouveaux 
outils de calcul, issus des disciplines de 
l'apprentissage automatique et de la 
reconnaissance de formes, pour proposer une 
analyse efficace, objective et facilement 
reproductible de grands jeux de données 
acoustiques. L’écoacoustique, renforcée par des 
algorithmes informatiques, émerge comme une 
approche clé pour les programmes de suivis de 
biodiversité à large échelle, permettant de 
mieux comprendre et valoriser la diversité de 
formes de vies unique abritée par la forêt 
tropicale. 

 

 

Title : Estimating animal acoustic diversity in neotropical forest 
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Abstract : Acoustic signalling is a common 
behavioural trait among terrestrial animals. The 
rich sound textures of neotropical forest echo 
that wildlife is not only abundant, but also 
diverse and dynamic. This facet of biodiversity 
can reveal valuable insights of animal 
communities inhabiting tropical environments, 
yet remains poorly understood. How to best 
measure tropical acoustic diversity to address 
ecological questions? Based on the ecoacoustic 
framework, we explored the soundscape of 
neotropical forest, revealing patterns and 
investigating the ecological underlying 
processes. First, we tracked the spatiotemporal 
dynamics of an amazonian soundmark, the 
song of the bird Lipaugus vociferans, showing  
 

activity patterns related to specific habitat 
features. Then, we investigated amphibian 
communities with very brief reproduction 
periods. Coupling acoustic and environmental 
variables, we shed light on the causes, patterns 
and consequences of explosive breeding events. 
Finally, we adapted novel computational tools 
from the machine learning and pattern 
recognition disciplines to provide an efficient, 
objective and replicable analysis of large 
acoustic datasets. Ecoacoustics, powered with 
computer algorithms, emerge as a suitable 
approach to scale-up biodiversity monitoring 
programs, allowing to better understand and 
cherish the unique diversity of life sustained by 
tropical forest. 

 

 
 


