
HAL Id: tel-03222092
https://theses.hal.science/tel-03222092

Submitted on 10 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structurally Parameterized Tight Bounds and
Approximation for Generalizations of Independence and

Domination
Ioannis Katsikarelis

To cite this version:
Ioannis Katsikarelis. Structurally Parameterized Tight Bounds and Approximation for Generalizations
of Independence and Domination. Operations Research [math.OC]. Université Paris sciences et lettres,
2019. English. �NNT : 2019PSLED048�. �tel-03222092�

https://theses.hal.science/tel-03222092
https://hal.archives-ouvertes.fr

Préparée à l’Université Paris-Dauphine

Structurally Parameterized Tight Bounds and
Approximation for Generalizations of

Independence and Domination

Soutenue par

Ioannis KATSIKARELIS
Le 12/12/2019

École doctorale no543

ED de Dauphine

Spécialité

Informatique

Composition du jury :

Mathieu LIEDLOFF
Maître de Conférences,
Université d’Orléans Rapporteur

Ignasi SAU VALLS
Chargé de Recherche CNRS,
LIRMM Montpellier Rapporteur

Bruno ESCOFFIER
Professeur,
Sorbonne Université Examinateur

Ioan TODINCA
Professeur,
Université d’Orleans Président du jury

Michail LAMPIS
Maître de Conférences,
Université Paris-Dauphine Codirecteur de thèse

Vangelis Th. PASCHOS
Professeur,
Université Paris-Dauphine Directeur de thèse

Acknowledgements

As an expression of my sincere gratitude towards (1) my supervisors Vangelis Th. Paschos
and Michail Lampis; (2) the members of my jury Bruno Escoffier, Mathieu Liedloff, Ignasi
Sau Valls and Ioan Todinca; (3) my co-authors (and Sakura people) Rémy Belmonte,
Tesshu Hanaka, Mehdi Khosravian Ghadikolaei, Eun Jung Kim, Valia Mitsou, Hirotaka
Ono, Yota Otachi and Florian Sikora; (4) all of LAMSADE and anyone else who may
have contributed to the making of the present thesis: merci beaucoup !

2

Contents

1 Introduction 5

2 Preliminaries 11
2.1 Definitions . 11
2.2 Problems and state-of-the-art . 21

3 On the Structurally Parameterized (k, r)-Center problem 25
3.1 Clique-width . 27

3.1.1 Lower bound based on the SETH . 27
3.1.2 Dynamic Programming algorithm . 40

3.2 Vertex Cover, Feedback Vertex Set and Tree-depth . 48
3.2.1 Vertex Cover and Feedback Vertex Set: W[1]-hardness 48
3.2.2 Vertex Cover: FPT algorithm . 50
3.2.3 Tree-depth: Tight ETH-based lower bound . 51

3.3 Treewidth: FPT approximation scheme . 54
3.4 Clique-width revisited: FPT approximation scheme . 59

4 On the Structurally Parameterized d-Scattered Set Problem 69
4.1 Treewidth . 71

4.1.1 Lower bound based on the SETH . 71
4.1.2 Dynamic Programming algorithm . 76

4.2 Vertex Cover, Feedback Vertex Set and Tree-depth . 80
4.2.1 Vertex Cover, Feedback Vertex Set: W[1]-Hardness 80
4.2.2 Vertex Cover: FPT algorithm . 83
4.2.3 Tree-depth: Tight ETH-based lower bound . 85

4.3 Treewidth revisited: FPT approximation scheme . 87

5 On the (Super-)Polynomial (In-)Approximability of d-Scattered Set 93
5.1 Super-polynomial time . 95

5.1.1 Inapproximability . 95
5.1.2 Approximation . 98

5.2 Polynomial Time . 100
5.2.1 Inapproximability . 100
5.2.2 Approximation . 104
5.2.3 Bipartite graphs . 106

6 Conclusion 109

7 Résumé des chapitres en français 113

3

4

1
Introduction

The aim of computational complexity theory is the categorization of mathematical prob-
lems into classes according to the worst-case running-times of the algorithms that solve
them. In the classical setting problems are considered tractable, that is, polynomial-time
solvable, if there exists an algorithm whose running-time can be expressed as a polynomial
function on the size n of the input. On the other hand, the intractable problems (com-
monly NP-hard1) are those for which a polynomial-time algorithm is considered unlikely,
based on the (widely believed) conjecture that P6=NP: if the 3-SAT problem does not ad-
mit a deterministic polynomial-time algorithm, then a reduction from 3-SAT to another
problem, i.e. a transformation from one problem’s instances to the other’s demonstrat-
ing their equivalence in terms of computational complexity, would imply that the latter
problem does not admit a polynomial-time algorithm as well.

Taking the above considerations one step further leads to the formulation of another
(also widely believed) conjecture, the Exponential Time Hypothesis (ETH): it conjectures
there is no subexponential algorithm for 3-SAT, i.e. no algorithm of running-time 2o(n) ·
nO(1). If this hypothesis is true, then P is not equal to NP and any algorithm for 3-

SAT will require at least exponential time, in the worst case. A slightly more demanding
(and not-so-widely believed) version, the Strong Exponential Time Hypothesis (SETH)
has also been formulated and asserts that (general) SAT does not admit an algorithm of
running-time (2 − ǫ)n · nO(1) for any constant ǫ > 0.

As with the assumption that P6=NP, the main importance of the ETH and SETH,
however, lies not in whether these may actually be true or not: in a similar manner as
in the classification of problems into polynomial-time solvable or NP-hard, we can use
the ETH and SETH as starting points in showing, via hardness reductions, the non-
existence of any algorithm of some specific running-time below a certain threshold and in
this way derive results that preclude the existence of such algorithms for a given problem (a
lower bound). Combining results of this type with algorithms whose worst-case (or upper
bounded) running-times exactly match these lower bounds, we can precisely identify the
complexity of a given problem and justify the optimality of our approach. Naturally, any
such statements we make will be subject to the above assumptions, meaning our results
will imply the proposed algorithms are optimal, unless significant progress is made in our
understanding of the fundamental principles of computation.

1So as not to overload this preface with notation, all formal definitions of the technical terms we freely
discuss here are postponed until Section 2.1, along with the related bibliographical references.

5

In this way, we can further classify problems according to their exact computational
requirements, especially in the case of the SETH that offers a more precise source at the
cost of a more ambitious (and therefore more likely to be incorrect) assumption. This re-
finement importantly allows us to advance our understanding of the available options for
tackling a provably demanding computational problem and can potentially lead to practi-
cal improvements in applied settings, yet it is the possibility of precisely characterizing the
underlying complexity features of mathematical problems that will be mostly of interest to
us here. Having shown both an upper and a lower bound of matching complexity functions
for a given problem (i.e. bounds that are tight), we can usually identify a uniformity in
the mathematical structure of the two proofs that is not arbitrary, as in the optimality
of a reduction that will produce instances (almost) explicitly constructed to hinder the
efforts of the algorithm whose running-time exactly matches the reduction’s lower bound
(and vice-versa). Results such as these can be seen as implying that an aspect of the
problem’s essence has been undeniably identified, since their validity does not depend on
the particular methods employed by their designer.

Parameterization and Approximation Being able to characterize the intractability
of a problem according to a particular mode of computation does not mean we have
exhausted all possibilities for addressing it. Regarding a problem as intractable if the
required running-time of any algorithm for its exact solution is at least exponential in
the size of the input can thus lead to other directions for advancing our comprehension of
the intricate mechanisms that regulate complex combinatorial problems: parameterization
and approximation. On one hand and in search of a finer characterization of the necessary
amount of computation needed for the exact and optimal resolution of a computational
problem, we could allow the complexity functions to grow indeed exponentially, but not on
the size n of the input (that must naturally be considered too large and impractical). Via
parameterization we study the complexity of problems in terms of other parameters that
specify their properties than simply the size of the input, parameters whose (bounded) size
would not preclude practical computations of an exponential number. On the other hand,
relaxing the requirement that the solutions returned by our algorithms are necessarily
the best possible (being of measurable quality for optimization problems) and focusing
on keeping the running-times polynomial on the size of the input, we enter the realm of
approximation. Here, our solutions must be accompanied by mathematical guarantees of
remaining above certain quality thresholds (a worst-case approximation ratio).

In parameterized complexity, similarly to the classification of problems as NP-hard or
polynomial-time solvable, a mathematical problem that is solved by an algorithm whose
complexity can be expressed as a function of the form f(k) · nO(1), where k is the cho-
sen parameter and f is any computable function, belongs to the class of fixed-parameter
tractable problems (FPT). Depending on the problem, the functions f may take on many
forms, being exponential in the majority of cases. This implies that should the size of
the parameter under consideration not be too large, for a given instance of a problem
to be solved, then an FPT algorithm that solves it could be considered usable (perhaps
even practical), while also providing important refinements on the complexity landscape
in general. Common parameters include the size of an optimal solution (the standard pa-
rameterization), as well as a variety of structural measures that characterize the inherent
structure of the input instance. Here, a problem is considered intractable if it can be shown
(via parameterized reductions, also maintaining a close relationship between parameters)

6

to be as hard to solve as any problem that is complete for a level of the W-hierarchy of
complexity classes (considered an analogue of NP-hardness), i.e. if it is unlikely to be FPT.

The theory of approximation algorithms concerns itself with the complementary side of
intractability: identifying the best possible worst-case bounds on the quality of a returned
solution that can be obtained if the running-time is confined to the polynomials in n.
These bounds are commonly expressed as the ratio between the worst-case quality of a
returned solution and that of an optimal solution for the same instance. On the ‘hardness’
side, it is possible to show (via approximation-preserving reductions) that there is no
polynomial-time algorithm achieving a certain ratio for a given problem, under standard
complexity assumptions, thus establishing its inapproximability. Common ratios in results
of this type include inapproximability to specific constants, to any possible constant ratio,
as well as a ratio that is a function of n. The allowed running-time for an approximation
algorithm is commonly polynomial in n, yet it is possible to allow other functions (such
as FPT running-times) in order to propose alternatives to exact computation, should a
problem remain intractable beyond the polynomial-time boundary.

Returning once more to the ETH and SETH, we may observe that in conjunction with
the refined complexity analysis performed by the studies of parameterization it is possible
to obtain improved lower bounds of increased precision on the required running-time of
any algorithm for a given problem. Both hypotheses can be considered as assumptions
on the complexity of q-SAT parameterized by the number of variables n and a param-
eterized reduction to another problem in this case (i.e. where the size of the parameter
is bounded by an appropriate function of n) would yield results on the non-existence of
a subexponential (in the size of the parameter) algorithm for the problem in question.
Thus parameterized problems can be further categorized in terms of the exact functions
that determine their complexity with respect to the variety of possible parameters that
partake in their intractability, leading to a much-improved understanding of the field of
computational complexity.

Covering and Packing problems: In this thesis we focus on the well-known graph-
theoretical problems (k, r)-Center and d-Scattered Set that generalize the concepts
of vertex domination and independence over larger distances within the graph. In the
Dominating Set problem we are looking for the smallest subset of vertices such that
every other vertex is connected to at least one vertex in the subset. On the other hand,
in Independent Set we require the largest subset such that no pair of vertices in the
subset have an edge between them. Intuitively, a dominating set must cover the rest of the
graph based on the combined adjacency of its vertices to those of the complement, while
in an independent set we must be able to pack as many pairwise non-adjacent vertices
as possible. Both problems exhibit firm intractability: they are NP-hard, their standard
parameterizations W-hard and generally inapproximable in polynomial- as well as FPT-
time. On the positive side, both problems turn out to be FPT when parameterized by
the most widely-used structural parameters. This means that when the input graph is of
restricted structure, both problems can be efficiently, as well as exactly solved.

The generalizations of these well-studied notions that we will be examining here are
based on extending the central distance parameter in their definitions to unbounded values.
In (k, r)-Center we are asked for the smallest set that covers the graph at distance r
and in d-Scattered Set we must pack as many vertices as possible at distance d from
each other. This means our perspective here must expand to consider the influence of

7

vertices taking part in the solution over larger areas within the graph, as the significance
of adjacency lies now with paths instead of edges. As a preliminary remark, it turns out
that reachability between vertices is too responsive a property to small shifts in their exact
location, making the existence of collections of paths of non-trivial length crucially depend
on the exact shape of local structures and therefore the behaviour of both problems will
diverge (significantly) from their base cases when r, d are large. This effect is reflected
in our results, since both problems become intractable even for graphs of significantly
restricted structure, if the value of the distance parameter is not bounded in each case.
Thus the above-mentioned algorithms are efficient only for small, fixed values (e.g. r =
1, d = 2), motivating our subsequent analysis.

Our Scope: We will consider the problems (k, r)-Center and d-Scattered Set, pay-
ing particular attention to how their complexity is affected by the distance parameters and
to the available options for their exact and/or efficient computation. Since our problems
are in fact generalizations of Dominating Set and Independent Set, our results can
be seen to match (and sometimes even improve) the state-of-the-art for these problems.

In the first part of the thesis we maintain a parameterized viewpoint: we examine the
standard parameterization, as well as the most commonly used graph measures treewidth
tw, clique-width cw, tree-depth td, vertex cover vc and feedback vertex set fvs. We offer
hardness results that show there is no algorithm of running-time below certain bounds
(subject to the ETH, SETH), produce essentially optimal algorithms of complexity that
matches these lower bounds and further attempt to offer an alternative to exact compu-
tation in significantly reduced running-time by way of approximation. In particular, for
(k, r)-Center we show the following:

• A dynamic programming algorithm of running-time O∗((3r + 1)cw), assuming a
clique-width expression of width cw is provided along with the input, and a match-
ing SETH-based lower bound that closes a complexity gap for Dominating Set

parameterized by cw (for r = 1).

• W[1]-hardness and ETH-based lower bounds of no(vc+k) for edge-weighted graphs
and no(fvs+k) for unweighted graphs. This shows the importance of bounding the
value of r. Also for the unweighted case, we give an O∗(5vc)-time FPT algorithm
based on solving appropriate Set Cover sub-instances.

• A tight ETH-based lower bound of O∗(2O(td)2
) for parameterization by td.

• Algorithms computing for any ǫ > 0, a (k, (1+ǫ)r)-center in time O∗((tw/ǫ)O(tw)), or
O∗((cw/ǫ)O(cw)), if a (k, r)-center exists in the graph, assuming a tree decomposition
of width tw is provided along with the input.

Then for d-Scattered Set and applying similar methods we show:

• A dynamic programming algorithm of running-time O∗(dtw) and a matching lower
bound based on the SETH, that generalize known results for Independent Set.

• W[1]-hardness for parameterization by vc+k for edge-weighted graphs, as well as by
fvs + k for unweighted graphs, again showing the importance of bounding d. These
are complemented by FPT-time algorithms for the unweighted case that use ideas
related to Set Packing, of complexity O∗(3vc) for even d and O∗(4vc) for odd d.

8

• A tight ETH-based lower bound of O∗(2O(td)2
) for parameterization by td, as above.

• An algorithm computing, for any ǫ > 0, a d/(1+ǫ)-scattered set in time O∗((tw/ǫ)O(tw)),
if a d-scattered set exists in the graph, assuming a tree decomposition of width tw
is provided in the input.

We note these results are comparable to those for (k, r)-Center, since our work on d-
Scattered Set can be considered as a continuation of the above. As we will see, both
problems are similarly affected by distance-based generalizations and are thus responsive
to similar techniques.

In the second part of the thesis we focus on d-Scattered Set and in particular
its (super-)polynomial (in-)approximability: we are interested in the exact relationship
between an achievable approximation ratio ρ, the distance parameter d, and the running-
time of any ρ-approximation algorithm expressed as a function of the above and the size
of the input n. Following this, we consider strictly polynomial running-times and graphs
of bounded maximum degree as well as bipartite graphs. Specifically we show:

• An exact exponential-time algorithm of complexity O∗((ed)
2n
d), based on an upper

bound on the size of any solution.

• A lower bound on the complexity of any ρ-approximation algorithm of (roughly)

2
n1−ǫ

ρd for even d and 2
n1−ǫ

ρ(d+ρ) for odd d, under the randomized ETH.

• ρ-approximation algorithms of running-times O∗((eρd)
2n
ρd) for even d and O∗((eρd)

2n
ρ(d+ρ))

for odd d that (almost) match the above lower bounds.

• A lower bound of ∆⌊d/2⌋−ǫ on the approximation ratio of any polynomial-time algo-
rithm for graphs of maximum degree ∆, being the first lower bound of this type, as
well as an improved upper bound of O(∆⌊d/2⌋).

• A polynomial-time 2
√

n-approximation for bipartite graphs and even values of d,
that complements known results by considering the only remaining open case.

The rest of the thesis is organized in the following way: the theoretical background,
definitions and preliminary results we require are given in Section 2.1, while we discuss
related work in Section 2.2; Chapter 3 deals with the (k, r)-Center problem, presenting
results published in [67] (originally in [63]) that can also be found in [62]; parameterized
results on d-Scattered Set that were originally published in [68] and can also be found
in [64] are presented in Chapter 4; (in)approximability results on the same problem are
presented in Chapter 5 and can also be found in [65, 66]; a summary of our results and
some discussion on open problems may be found in Chapter 6.

9

10

2
Preliminaries

2.1 Definitions

Computational Complexity background

A decision problem is a language commonly defined on the binary alphabet, i.e. a subset
of {0, 1}∗. Given some appropriate encoding (a string of binary characters) that fully
describes an instance, that is a specific yet abstracted situation, and on which a formal
question can be asked with possible answers only of the type “yes” or “no”, the language
of a decision problem consists of all such binary strings that encode instances for which the
answer to the question is positive and no strings encoding instances for which the answer
is negative. A particular instance of a problem is a word on the same alphabet and the
word is part of the language only if the word’s answer to the problem’s question is “yes”.

A Boolean expression φ is a mathematical formula built on n binary variables xi ∈
{0, 1}, i ∈ [1, n], parentheses and logical operators: conjunction denoted by ∧ (“and”),
disjunction denoted by ∨ (“or”), and negation denoted by ¬ (“not”). A conjunction of
two variables evaluates to 1 if both variables are set to 1, a disjunction of two variables
evaluates to 1 if at least one variable is set to 1 and a negation inverts the value of the
variable it precedes. An assignment is a string of length n of values for the variables of
φ, or a member of {0, 1}n. A formula is said to be satisfiable if there is an assignment to
the variables such that the expression evaluates to 1, i.e. a satisfying assignment. A literal
is an appearance of a variable xi in the formula, along with its negation where present.
A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of (usually m)
disjunctions of literals, that we refer to as the clauses.

φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x4 ∨ x5) ∧ (x3 ∨ ¬x2 ∨ x6) (2.1)

Formula φ above is in CNF and has n = 6 variables and m = 3 clauses. A satisfying
assignment for φ is 001000, as it makes every clause evaluate to 1.

Definition 1. In the Satisfiability problem (SAT), we are given a Boolean expression
φ on n binary variables and m clauses in CNF form and are asked if φ is satisfiable.

We let q-SAT refer to the version of SAT where each clause of φ is of size at most q, i.e.
φ is a conjunction of m disjunctions, each of at most q literals and still on a total number
of n variables. Formula φ above is an instance of 3-SAT, since the maximum number of

11

literals in any clause is 3. For a given problem Π and an instance x ∈ Π, a solution (or
certificate) is a string y that encodes the part of the instance that justifies the correct
answer to the problem’s question as positive. For an instance φ of SAT, a solution y is a
string of length n that describes a satisfying assignment.

An algorithm is an unambiguous procedure for identifying a solution (its output) to any
given instance of a problem (its input). The number of operations applied or calculations
performed by an algorithm is called its running-time and is commonly indirectly expressed
as belonging to a set of functions of some appropriate measure of the input’s size, based
on the functions’ order and employing the asymptotic notation: for two positive functions
f, g, it is f(n) ∈ O(g(n)) if there exist positive constants c, n0 such that f(n) ≤ c · g(n) for
all n ≥ n0, while f(n) ∈ o(g(n)) if limn→∞

f(n)
g(n) = 0. In words, the notation f(n) ∈ O(g(n))

(we also write f(n) = O(g(n))) means that f(n) is upper-bounded by g(n) (up to constant
multiplicative factors) and the notation f(n) ∈ o(g(n)) (also f(n) = o(g(n))) means that
the rate of growth of f(n) is insignificant compared to that of g(n).

We say that an algorithm for instances of a problem of size n (for an appropriate
definition of size in each case) is a polynomial-time (resp. exponential-time) algorithm
if its running-time expressed as a function of n belongs to O(g(n)) for any polynomial
(resp. exponential) on n function g(n). We refer to the set of functions describing the
order of the running-time function of an algorithm as the algorithm’s complexity, while a
problem’s computational complexity is the best, i.e. the lowest (inclusion-wise) complexity
of an algorithm that solves the problem’s worst-case instances, i.e. those instances of the
problem that will require the maximum number of calculations/operations in order to be
decisively solved.

A reduction is an algorithm that transforms an instance x of a problem Π1 to an
“equivalent” instance y of problem Π2, with appropriate significations of equivalence giving
rise to different types of reductions, each suited to its particular purpose and the types of
problems its function is to relate. Specifically, for two languages Π1, Π2 encoding decision
problems and defined over alphabets Σ1, Σ2, a many-one reduction from Π1 to Π2 is a
total computable function f : Σ∗

1 → Σ∗
2 such that for a word x ∈ Σ∗

1, it is x ∈ Π1 if and
only if y ∈ Π2 for y = f(x) ∈ Σ∗

2. This means the reduction’s function must compute
instances y of the problem Π2 for which the answer to the question of problem Π2 is “yes”,
if and only if the answer to the question of problem Π1 for the reduction’s input instance
x is also “yes”.

The existence of such an algorithm means that to solve problem Π1, one may use an
algorithm for problem Π2 on the output of the reduction. Introducing notions of efficiency,
i.e. limits on allowed running-time functions, we can infer for a problem Π1 reducible to
a problem Π2, that Π1 is as computationally involved, or as efficiently solvable as Π2: if
there exists a polynomial-time algorithm for problem Π2 and a polynomial-time many-one
reduction from Π1 to Π2, then the algorithm for Π1 that applies the former on the output
of the latter is also a polynomial-time algorithm. Thus particular types of reductions
can be seen to form an equivalence relation (a reflexive and transitive binary relation,
a preorder) on a set of problems, whose equivalence classes (sets of equivalence based
on this relation) can be used to define complexity classes, i.e. categorizations of problems
according to their computational complexity as defined above. From this moreover emerge
the computational notions of hardness and completeness: a problem Π is called Γ-hard for
a complexity class Γ, under a specific type of reduction, if there exists a reduction of this
type from any problem in Γ to Π. If a problem is shown to be Γ-hard and also a member

12

of class Γ, then it is called Γ-complete for this type of reduction. Complete problems can
thus be naturally seen as representatives of their class.

The most common differentiation in terms of worst-case algorithmic running-time be-
tween problems is focused on their identification as polynomial or exponential. This leads
to the definitions of the corresponding complexity classes: these problems whose worst-case
instances admit an exponential-time algorithm (i.e. O(2p(n)) for any polynomial p(n)) be-
long to the class EXPTIME, while the subset of these with a worst-case complexity that
is actually O(p(n)) belongs to P. Our interest in differentiating between these types of
running-times is not arbitrary: an algorithm of exponential (in the size of the input)
complexity is allowed to perform calculations on any possible arrangement of the input’s
particular objects of interest and is thus guaranteed to solve most of the interesting com-
binatorial problems, while in strictly polynomial running-time an algorithm must be able
to find a solution after only a specific number of iterations over the set of input objects.
An exponential-time algorithm for instances φ of SAT on n variables can simply calculate
the truth value of φ for each of the 2n possible assignments to the variables and decide
whether a satisfying assignment exists if at least one of these makes φ true. Thus we know
that SAT belongs to EXPTIME, but since no polynomial-time algorithm has (yet) been
discovered for SAT, it is unknown whether SAT also belongs to P.

The class of decision problems whose certificates (of length at most polynomial on the
size of the input) can be verified in polynomial time as in fact encoding the part of the
input instance that justifies a correct answer to the problem’s question as “yes” is called
NP. All problems in P are also in NP. For SAT, an assignment to the variables is such a
certificate of length n and the truth value of φ can be verified in polynomial time, meaning
SAT is in NP. The famous Cook-Levin theorem states that SAT is also NP-hard, making it
the first NP-complete problem. It is generally conjectured that no NP-complete problem is
in P, meaning that there is no polynomial-time algorithm for any of these problems, as the
existence of a polynomial-time algorithm for one of them would also imply the existence
of such an algorithm for all other problems that are reducible to it in polynomial time.
This central complexity assumption acts as a starting point for much subsequent theory.

In a more quantitative manner, the Exponential Time Hypothesis (ETH) implies that
3-SAT cannot be solved in (subexponential) time 2o(n) on instances with n variables. The
Strong Exponential Time Hypothesis (SETH) implies that for all ǫ > 0, there exists an
integer q such that q-SAT cannot be solved in time (2 − ǫ)n on instances with n variables.
More formally, for each q ≥ 2, let sq be the infimum of the real numbers γ for which
q-SAT can be solved in time O(2γn), on instances of size n. Then it is s2 = 0 (as 2-SAT is
solvable in polynomial time) and the numbers s3 ≤ s4 ≤ . . . form a monotonic sequence
that is bounded above by 1, meaning they must converge to a limit s∞. The ETH is the
conjecture that sq > 0 for every q > 2, or, equivalently, that s3 > 0. The SETH is the
conjecture that s∞ = 1.

A randomized (or probabilistic) algorithm employs a probability distribution in its
decision-making process and is thus not deterministic. Usually this involves additional
input in the form of uniformly random bits and the probabilistic error is found in the
correctness of the answers given and the validity of produced solutions. The class of
decision problems solvable by a probabilistic algorithm in polynomial time with an error
probability bounded away from 1/3 for all instances is called BPP. This means for problems
in BPP that the algorithms solving them are guaranteed to run in polynomial time, can
make random decisions and each of their applications has a probability ≤ 1/3 of giving the

13

wrong answer, whether the answer is “yes” or “no”. Note that any number in [0, 1/2) gives
rise to the same class since probabilistic algorithms can be applied repeatedly. All problems
in P are obviously also in BPP. The relationship between BPP and NP is unknown, yet it
is also widely conjectured that NP6⊂BPP. Moreover, a similar conjecture to the ETH can
be proposed when considering randomized algorithms.

Some of the most interesting (and applicable) decision problems pose questions related
to whether the maximum or minimum attainable value of a given function for a given in-
stance is above or below a certain threshold k. Related to each such decision problem is
its corresponding optimization problem. The MaxSAT problem asks for an assignment
to the variables of instance φ that satisfies the maximum number of clauses, while the
related decision version asks if that maximum is ≥ k. Instances of such problems can
have any number of feasible solutions, each associated with a particular value of a com-
putable objective function defined on it. For MaxSAT, each assignment to the variables
of φ is associated with the number of clauses it satisfies. An optimal solution is one for
which the problem’s objective function attains its extremal value, being the minimum for
minimization and the maximum for maximization problems. An optimal assignment for
MaxSAT satisfies the maximum possible number of clauses for the given instance φ. The
decision version of MaxSAT is also called NP-hard because an algorithm that solves it
can be used to solve SAT, which is NP-complete.

A ρ-approximation algorithm for an optimization problem computes a solution whose
value is guaranteed to be at most a multiplicative factor ρ (the algorithm’s approximation
ratio) away from the value of an optimal solution for any given instance of the problem.
Here we consider ratios ρ > 1 for both minimization and maximization problems and thus
the best achievable ratios are always as close to 1 as possible. Formally, for an instance I
of an optimization problem Π, let ALG(I) be the value of the problem’s objective function
on a solution obtained by a ρ-approximation algorithm and OPT (I) be that of an optimal
solution for I. Then it is ρ ≥ OP T (I)

ALG(I) for any instance I of a maximization problem Π,

while in the case of minimization problems it is 1
ρ ≤ OP T (I)

ALG(I) .
A Polynomial-Time Approximation Scheme (PTAS) is an algorithm that produces a

solution whose value is within a factor of (1 + ǫ) from the optimal for a given ǫ > 0
and any instance of an optimization problem in polynomial time. The running-time of
a PTAS must be polynomial in the size of the input n for every fixed ǫ. This includes
algorithms of running-time O(n1/ǫ). The class PTAS contains all problems that admit a
polynomial-time approximation scheme and is a subset of APX, the class of problems that
are approximable to some constant factor. Unless P=NP, there exist problems that are
in APX but without a PTAS, so PTAS(APX. The MaxSAT problem is APX-complete
and therefore admits no PTAS under the same assumption.

An approximation-preserving reduction from an optimization problem Π1 ⊆ Σ∗
1 to

another optimization problem Π2 ⊆ Σ∗
2 is a pair of functions f : Σ∗

1 → Σ2, g : Σ∗
2 → Σ∗

1,
where f maps an instance x of Π1 to an instance y of Π2 and g maps a solution for y to
a solution for x. Such algorithms must preserve more than the validity of solutions when
reducing from one problem to another, as some guarantee on the worst-case relationship
between the value of any solution to that of an optimal solution must also be maintained.
What is of interest in this type of transformation between problem instances, especially
when considering approximation algorithms with ratios that are functions of the input
size n, is the way in which the objective value of valid/optimal solutions relates to the
changing size of the instance. The approximation-preserving reductions we present here

14

will maintain an equivalence between the objective values of solutions for the input and
produced instances, with a marked increase in the size of the latter compared to that of
the former.

For a minimization problem Π ⊆ Σ∗, a gap-introducing reduction from SAT to Π with
gap functions f, α is a polynomial-time algorithm that transforms an instance φ of SAT
to an instance x ∈ Π, such that:

• if φ is satisfiable, OPT (x) ≤ f(x), and

• if φ is not satisfiable, OPT (x) > α(|x|) · f(x).

Accordingly, for a maximization problem Π, it must be:

• if φ is satisfiable, OPT (x) ≥ f(x), and

• if φ is not satisfiable, OPT (x) < f(x)
α(|x|) .

On the hardness side, the gap α(|x|) is the dual notion of the approximation ratio for
the algorithmic side: a gap-introducing reduction from SAT shows that it is NP-hard
to approximate the problem within a hardness factor of α(|x|), or, equivalently, that
the problem admits no polynomial-time α(|x|)-approximation. Note that we maintain
α(|x|) ≥ 1 in both cases as we also consider approximation ratios ρ > 1.

A parameterized problem is a language Π ⊆ Σ∗ × N on finite alphabet Σ defined along
with a number characterizing some aspect of the instance and referred to as the parameter.
An instance (φ, k) of the decision version of MaxSAT parameterized by the maximum
number of simultaneously satisfiable clauses, i.e. the size k of an optimal solution for φ
(generally called the standard parameterization), is a word of the parameterized language
if there is an assignment that satisfies k clauses of φ.

A parameterized problem Π ⊆ Σ∗ × N is Fixed-Parameter Tractable (FPT) if there
exist a computable function f : N → N, a constant c and a parameterized algorithm that
for any instance (x, k) ∈ Σ∗ × N correctly decides whether (x, k) ∈ Π in time bounded by
f(k) · O((|x| + k)c), that is polynomial in the size of the input (|x| + k). The running-time
functions f are commonly exponential in the size of the parameter. The complexity class
FPT contains all parameterized problems admitting algorithms with running-times of this
form. When referring to FPT running-times we mostly use the O∗(·)-notation to imply
omission of factors polynomial in the size of the input n and focus on the part of the
running-time expressed by the function f .

For two parameterized problems Π1, Π2 ⊆ Σ∗ × N, a parameterized reduction from Π1

to Π2 is an algorithm that runs in time bounded by f(k)·|x1|O(1) and produces an instance
(x2, k2) ∈ Π2 from an instance (x1, k1) ∈ Π1, such that k2 ≤ g(k1), for some computable
function g. A parameterized problem reducible by such a reduction to a problem in the
class FPT is also a member of the class. Moreover, if in the above definition of FPT the
constant c is replaced by a computable function g : N → N, we arrive at the definition of
slice-wise polynomial (XP) problems and the corresponding complexity class. This means
there exists an algorithm that solves each problem in XP in time that is bounded by
f(k) · O((|x| + k)g(k)). It is (provably) FPT(XP.

In parameterized complexity, the class FPT plays a role analogous to that of the class
P in classical complexity theory, with XP considered analogous to EXPTIME. Once more,
the distinction between fixed-parameter tractable and slice-wise polynomial functions is

15

not arbitrary: consider as an example the case of standard parameterization by solution
size k, where an XP-time algorithm can compute all the nk candidate subsets and decide
if a solution of this size exists. The analogous role to that of the class NP is played here by
the W-hierarchy: each class W[t] in the hierarchy is defined as the class of parameterized
problems reducible to a version of SAT defined on boolean circuits of weft t. We omit
the definitions of notions related to circuits and provide the definitions of the following
parameterized problems instead, each one complete for a level t of the hierarchy.

For a formula φ, the weight of a particular assignment is the number of variables to
which the assignment gives a value of 1. The Weighted 2-Satisfiability problem is the
version of 2-SAT parameterized by k, where we are asked to find a satisfying assignment of
weight at most k for an input formula where each clause is of size at most 2. Weighted

2-Satisfiability is W[1]-complete. A Boolean formula φ is t-normalized if it is a conjunc-
tion of disjunctions of conjunctions and so on, alternating for t levels. Formally, letting
A0, B0 be the the set of formulas consisting of a single literal, At is defined for t ≥ 1 as
the set of formulas consisting of the disjunction of any number of Bt−1 formulas and Bt

is defined for t ≥ 1 as the set of formulas consisting of the conjunction of any number
of At−1 formulas. Bt is then exactly the set of t-normalized formulas. The Weighted

t-Normalized Satisfiability problem is the version of SAT parameterized by k, where
we are asked to find a satisfying assignment of weight exactly k, while the input formulas
are t-normalized. For each t ≥ 2, Weighted t-Normalized Satisfiability is W[t]-
complete. It is furthermore FPT=W[0], while every class W[i] is a subset of W[i + 1] and
it is conjectured that inclusions are proper. The classes in the W-hierarchy are also closed
under parameterized reductions.

For a parameterized problem with parameter k, an FPT approximation scheme (FPT-
AS) is an algorithm which, for any ǫ > 0, runs in time O∗(f(k, 1

ǫ)) (i.e. FPT time when
parameterized by k + 1

ǫ) and produces a solution at most a multiplicative factor (1 + ǫ)
from the optimal. We will present approximation schemes with running-times of the form
(log n/ǫ)O(k). These can be seen to imply an FPT running-time by the following well-
known “win-win” argument:

Lemma 2. If a parameterized problem with parameter k admits, for some ǫ > 0, an
algorithm running in time O∗((log n/ǫ)O(k)), then it also admits an algorithm running in
time O∗((k/ǫ)O(k)).

Proof. We consider two cases: if k ≤ √
log n then (log n/ǫ)O(k) = (1/ǫ)O(k)(log n)O(

√
log n) =

O∗((1/ǫ)O(k)). If on the other hand, k >
√

log n, we have log n ≤ k2, so O∗((log n/ǫ)O(k)) =
O∗((k/ǫ)O(k)).

Graphs

A graph is a pair G = (V, E), where V is a set of idealized abstract objects referred to
as the vertices, and E is a set of edges, or pairs of vertices. The edges of a graph define
a symmetric relation on the vertices, the adjacency relation. Two adjacent vertices are
also called neighbors. For a graph G = (V, E), n = |V | commonly denotes the number of
vertices, m = |E| the number of edges and we also let V (G) := V and E(G) := E. For an
edge e = (u, v) = (v, u), the vertices v, u are its endpoints and are said to be incident on e.
If the graph is directed its edges are generally called arcs and they are now ordered pairs
of endpoints (with tails before heads).1 The degree of a vertex v is the number of edges

1Excluding a brief foray in Section 3.4, we only consider undirected graphs here.

16

that v is incident on (the number of its neighbors) and is denoted by δ(v). For a subset
X ⊆ V , we denote by G[X] the graph induced by X, that is the graph whose vertex set is
X and whose edge set consists of all of the edges in E that have both endpoints in X.

A walk of length l is a non-empty sequence x0, . . . , xl of vertices, each consequent pair
xi, xi+1 of which (for i ∈ [0, l − 1]) is connected by an edge (xi, xi+1) ∈ E. A walk is
closed if x0 = xl, while a path is a walk where no two vertices appear twice. A cycle is a
closed walk where no two vertices appear twice, apart from the endpoints. A connected
component of a graph is a subgraph in which there is at least one path between any pair
of vertices, and which is connected to no additional vertices in the supergraph. The graph
is connected if it consists of only one connected component. A subset S ⊂ V is a separator
for non-adjacent vertices u, v if the removal of S from G separates u and v into distinct
connected components. A tree is a graph in which any two vertices are connected by
exactly one path, or, equivalently, a connected acyclic graph, i.e. one that contains no
cycles. A forest is a disjoint union of trees.

We denote by dG(v, u) the shortest-path distance from v to u in G, that is the minimum
length of a path in G with endpoints v, u. We may omit subscript G if it is clear from the
context. The maximum distance between vertices is the diameter of the graph, while the
minimum among all the maximum distances between a vertex to all other vertices (their
eccentricities) is considered as the radius of the graph. For a vertex v, we let Nd

G(v) denote
the (open) d-neighborhood of v in G, i.e. the set of vertices at distance ≤ d from v in G
(without v), while for a subset U ⊆ V , Nd

G(U) denotes the union of the d-neighborhoods
of vertices u ∈ U . In a graph G whose maximum degree is bounded by ∆, the size of
the d-neighborhood of any vertex v is upper bounded by the well-known Moore bound:
|Nd

G(v)| ≤ ∆
∑d

i=0(∆ − 1)i. For an integer q, the q-th power graph of G, denoted by Gq,
is defined as the graph obtained from G by adding to E(G) all edges between vertices
v, u ∈ V (G) for which dG(v, u) ≤ q.

Two vertices u, v are independent if there is no edge between them, or (u, v) /∈ E.
Similarly, a set of vertices is independent if every pair of its vertices is independent (also
called a stable set). Conversely, a set of vertices is a clique if every pair of its vertices is
connected by an edge. A bipartite graph G = (A ∪ B, E) is a graph whose vertex set is
divided into two independent sets A, B and if every vertex of A is connected to every vertex
of B the graph is called a bi-clique. We let Kn denote a clique on n vertices (otherwise
known as a complete graph) and Kn1,n2 the bi-clique where |A| = n1 and |B| = n2. It
is well-known that a graph is bipartite if and only if it contains no odd-length cycles. A
graph is r-regular if all its vertices are of degree r and specifically cubic when r = 3. In a
chordal graph all cycles on ≥ 4 vertices have a chord, i.e. an edge connecting two vertices
of the cycle, that is not part of the cycle.

A planar graph can be embedded in the (Euclidean) plane in such a way that its
edges intersect only at their endpoints. An edge-weighted graph has a weight function
w : E → N+ associated with it that defines the length of each edge. All above definitions
on distance can be extended to accommodate edge weights. The triangle inequality here
requires that d(u, v) + d(v, w) ≥ d(u, w) for any u, v, w, where the distance function d
obeys the weight function w (which is thus a metric).

For more information on these concepts the reader is referred to the standard text-
books: for classical complexity theory see [5, 49, 87, 90], for graph-theoretical notions
[16, 19, 39], for approximation algorithms [95, 96], for parameterized complexity [35, 40,
47, 79] and specifically for the ETH [60, 61].

17

Parameters

Treewidth and pathwidth are standard notions in parameterized complexity that measure
how close a graph is to being a tree or path (see [10, 11, 14, 71]). Due to their similarity, we
focus on treewidth here and only refer to pathwidth when required. A tree decomposition
of a graph G = (V, E) is a pair (X , T) with T = (I, F) a tree and X = {Xi|i ∈ I} a family
of subsets of V (called bags), one for each node of T , with the following properties:

1)
⋃

i∈I Xi = V ;

2) for all edges (v, w) ∈ E, there exists an i ∈ I with v, w ∈ Xi;

3) for all i, j, k ∈ I, if j is on the path from i to k in T , then Xi ∩ Xk ⊆ Xj .

The width of a tree decomposition ((I, F), {Xi|i ∈ I}) is maxi∈I |Xi| − 1. The treewidth
of a graph G is the minimum width over all tree decompositions of G, denoted by tw(G).

Moreover, for rooted T , let Gi = (Vi, Ei) denote the terminal subgraph defined by node
i ∈ I, i.e. the induced subgraph of G on all vertices in bag i and its descendants in T .
Also let Ni(v) denote the neighborhood of vertex v in Gi and di(u, v) denote the distance
between vertices u and v in Gi, while d(u, v) (absence of subscript) remains the distance
in G. Path decompositions and pathwidth are similarly defined, with the difference of T
being a path instead of a tree.

In addition, a tree decomposition can be converted to a nice tree decomposition of the
same width (in O(tw2 · n) time and with O(tw · n) nodes): the tree here is rooted and
binary, while nodes can be of four types:

a) Leaf nodes i are leaves of T and have |Xi| = 1;

b) Introduce nodes i have one child j with Xi = Xj ∪ {v} for some vertex v ∈ V and
are said to introduce v;

c) Forget nodes i have one child j with Xi = Xj \ {v} for some vertex v ∈ V and are
said to forget v;

d) Join nodes i have two children denoted by i − 1 and i − 2, with Xi = Xi−1 = Xi−2.

Nice tree decompositions were introduced by Kloks in [71] and using them does not in
general give any additional algorithmic possibilities, yet algorithm design becomes consid-
erably easier. See Figure 2.1 for examples of tree decompositions.

We will also make use of the notion of clique-width (see [33]): the set of graphs of
clique-width cw is the set of vertex-labelled graphs that can be inductively constructed by
using the following operations:

1) Introduce: i(l), for l ∈ [1, cw] is the graph consisting of a single vertex with label l;

2) Join: η(G, a, b), for G having cliquewidth cw and a, b ∈ [1, cw] is the graph obtained
from G by adding all possible edges between vertices of label a and vertices of label
b;

3) Rename: ρ(G, a, b), for G having cliquewidth cw and a, b ∈ [1, cw] is the graph
obtained from G by changing the label of all vertices of label a to b;

18

a b c

d e f

g

h i

g, h

f, g, i

e, f, g

d, e, g

c, e, f

a, b, d

g, hgg, if, g, if, ge, f, g

e, f, g

e, f, g

e, gd, e, gd, edb, da, b, da, ba

e, fc, e, fc, ec

Original graph Tree decomposition

Nice tree decomposition

Figure 2.1: Example tree decompositions for a small graph of tw = 2.

4) Union: G1 ∪ G2 (or G1 ⊗ G2), for G1, G2 having cliquewidth cw is the disjoint union
of graphs G1, G2.

Note we here assume the labels are integers in [1, cw], for ease of exposition.
A clique-width expression of width cw for G = (V, E) is a recipe for constructing a

cw-labelled graph isomorphic to G. More formally, a clique-width expression is a rooted
binary tree TG, such that each node t ∈ TG has one of four possible types, corresponding
to the operations given above. In addition, all leaves are introduce nodes, each introduce
node has a label associated with it and each join or rename node has two labels associated
with it. For each node t, the graph Gt is defined as the graph obtained by applying the
operation of node t to the graph (or graphs) associated with its child (or children). All
graphs Gt are subgraphs of G and for all leaves of label l, their associated graph is i(l).
See Figure 2.2 for a small example.

Additionally, we will use the parameters vertex cover number and feedback vertex set
number of a graph G, which are the sizes of the minimum vertex set whose deletion leaves
the graph edgeless, or acyclic, respectively. Finally, we will consider the related notion of
tree-depth [83], which is defined as the minimum height of a rooted forest whose completion
(the graph obtained by connecting each node to all its ancestors) contains the input graph
as a subgraph. Intuitively, where treewidth measures how far a graph is from being a tree,
tree-depth measures how far a graph is from being a star.

We will denote these parameters for a graph G as tw(G), pw(G), cw(G), vc(G), fvs(G),
and td(G), and will omit G if it is clear from the context. We also note (avoiding detailed
definitions) that, alternatively, the treewidth tw(G), pathwidth pw(G), tree-depth td(G)
and vertex cover vc(G) of a graph G can be defined as the minimum of the maximum
clique-size (-1 for tw(G), pw(G) and vc(G)) among all supergraphs of G that are of type
chordal, interval, trivially perfect and threshold, respectively. We recall the well-known
relations between these parameters, justifying the hierarchy given in Figure 2.3:

19

Notation

We use log(n), ln(n) to denote the base-2 and natural logarithms of n, respectively,
while log1+δ(n) is the logarithm base-(1 + δ), for δ > 0. Recall also that log1+δ(n) =
log(n)/ log(1 + δ). The functions ⌊x⌋ and ⌈x⌉, for x ∈ R, denote the maximum/minimum
integer that is not larger/smaller than x, respectively.

2.2 Problems and state-of-the-art

Covering problems

We begin with the definitions of the well-known Dominating Set and Set Cover prob-
lems. As here we focus on graph-theoretical formulations, we will mostly consider Domi-

nating Set.

Definition 5. In the Dominating Set problem we are given an undirected graph G =
(V, E) and an integer k and are asked to find a subset of vertices D ⊆ V , with |D| ≤ k,
such that every vertex not in D has at least one neighbor in D: ∀v /∈ D : N(v) ∩ D 6= ∅.

Definition 6. Given a universe U = {u1, . . . , un} of elements and a family S = {S1, . . . , Sm}
of subsets of U , a cover is a subfamily C ⊆ S of sets whose union is U . In Set Cover,
the input is a pair U , S and an integer k; the question is whether there is a set cover of
size k or less.

The Dominating Set problem is NP-complete [49] and cannot be approximated by
a factor better than ln n [82]. It is also W[2]-complete parameterized by the size of an
optimal solution k and cannot be solved in time f(k) · no(k) for any computable f under
the ETH [35]. Concerning approximability of k in FPT-time, it is shown in [29] that any
constant-approximation of the parameterized by k Dominating Set problem is W[1]-
hard. Furthermore, the existence of a f(γ(G)) · |G|(log γ(G))ε/12

-time algorithm is also ruled
out, where γ(G) denotes the size of the minimum and assuming the ETH, which on every
input graph G outputs a dominating set of size at most 3+ε

√

log (γ(G)) · γ(G) for every
0 < ε < 1. Subsequently, it was shown in [25] that under the Gap-ETH,2 no F (k)-
approximation FPT-time algorithm for Dominating Set parameterized by k exists for
any computable function F . Finally, providing an improvement in terms of complexity
assumptions, [89] shows there is no F (k)-approximation algorithm for the problem: (a) in
FPT-time under FPT6=W[1], (b) in T (k)no(k)-time under the ETH, (c) in T (k)nk−ǫ-time
for every integer k ≥ 2, under the SETH.

Concerning structural parameters, the problem is solvable in time O∗(4cw) [15] and
thus FPT when parameterized by any of the structural parameters we consider here.
Specifically for treewidth, a series of papers had culminated into an O∗(3tw) algorithm
[93, 2, 94], while on the other hand, [76] showed that an O∗((3 − ǫ)pw) algorithm would
violate the SETH, where pw denotes the input graph’s pathwidth. Further, [84] notes
that the lower bound for pathwidth/treewidth would also imply no (3 − ǫ)cw · nO(1)-time
algorithm exists for clique-width under the SETH as well, since clique-width is at most 1
larger than pathwidth.

The (k, r)-Center problem is a generalization of Dominating Set (for r = 1):

2A stronger assumption than the ETH, stating that no subexponential-time algorithm can distinguish
between satisfiable 3-SAT instances and those that are not even (1 − ǫ)-satisfiable for some ǫ > 0.

21

Definition 7. In (k, r)-Center we are given a graph G = (V, E) and a weight function
w : E 7→ N+ which satisfies the triangle inequality and defines the length of each edge
and are asked if there exists a set K (the center-set) of at most k vertices of V , so that
∀u ∈ V \ K we have minv∈K d(v, u) ≤ r, where d(v, u) denotes the shortest-path distance
from v to u under weight function w.

If w assigns weight 1 to all edges we say that we have an instance of unweighted (k, r)-
Center. Dealing with (k, r)-Center we allow, in general, the weight function w to be
non-symmetric. We also require edge weights to be strictly positive integers but, as we will
see (Lemma 43), this is not a significant restriction. We will say that a vertex is covered
(resp. dominated for r = 1) by a center-set K if it is at distance ≤ r from a vertex u ∈ K.

Hardness of (k, r)-Center is inherited from Dominating Set. Moreover, the optimal
r cannot be approximated in polynomial time by a factor better than 2, even on planar
graphs [45]. In [22], generalizing the previously mentioned results for Dominating Set,
it is shown that (k, r)-Center can be solved in O∗((2r + 1)tw) (already implied by the
results of [50]), but not faster assuming the SETH, while its connected variant (i.e. where
solutions must consist of connected subgraphs) can be solved in O∗((2r + 2)tw), but not
faster.

For the edge-weighted variant and (unrelated) parameters, [46] shows that a (2 − ǫ)-
approximation is W[2]-hard for parameter k and NP-hard for graphs of highway di-
mension h = O(log2 n), while also offering a 3/2-approximation algorithm of running-
time 2O(kh log(h)) · nO(1), exploiting the similarity of this problem with that of solving
Dominating Set on graphs of bounded vc. For unweighted graphs, [75] provides effi-
cient (linear/polynomial) algorithms computing (r + O(µ))-dominating sets and +O(µ)-
approximations for (k, r)-Center, where µ is the tree-breadth or cluster diameter in a
layering partition of the input graph, while [41] gives a polynomial-time bicriteria approx-
imation scheme for graphs of bounded genus.

Packing problems

We next give the definitions of the well-known Independent Set (IS) and Set Pack-

ing problems. Due to our interest in graph-theoretical formulations we mostly consider
Independent Set.

Definition 8. In the Independent Set problem we are given a graph G = (V, E) and an
integer k and are asked to find a subset of vertices I ⊆ V , with |I| ≥ k, such that every pair
of vertices in I is independent, i.e. there is no edge between them: ∀u, v ∈ I : (u, v) /∈ E.

Definition 9. In the Set Packing problem we are given an integer k, a universe U =
{u1, . . . , un} of elements and a family S = {S1, . . . , Sm} of subsets of U , and are asked
to determine if there is a subfamily S ⊆ S of subsets (a packing), such that all sets in S
are pairwise disjoint, while the size of the packing is |S| ≥ k.

The Independent Set problem is NP-complete [49] and inapproximable in polyno-
mial time within n1−ǫ for any ǫ > 0 [58, 97], but admits a PTAS for planar graphs [6]. For
graphs of degree bounded by ∆ ≥ 3, Independent Set is APX-complete [86] and not
approximable in polynomial time to ∆ǫ for some ǫ > 0 [3], but there are greedy (∆+2)/3-
approximations [57]. For super-polynomial running-times, any ρ-approximation for the
Independent Set problem must require time at least 2n1−ǫ/ρ1+ǫ

, almost matching the
upper bound of 2n/r [26, 36].

22

For a graph G, we let α(G) denote its independence number, i.e. the size of its largest
independent set. We also recall here the following result by [26] that some of our later
reductions will be relying on (slightly paraphrased, see also [21]), that can be seen as
implying the (randomized) ∆1−ǫ-inapproximability of Independent Set in polynomial
time:

Theorem 10 ([26], Theorem 5.2). For any sufficiently small ǫ > 0 and any ∆ ≤ N5+O(ǫ),
there is a randomized polynomial-time reduction that builds from a formula φ of SAT on
N variables a graph G of size n = N1+ǫ∆1+ǫ and maximum degree ∆, such that with high
probability:

• If φ is satisfiable, then α(G) ≥ N1+ǫ∆;

• If φ is not satisfiable, then α(G) ≤ N1+ǫ∆2ǫ.

The standard parameterization of the problem by solution size k is W[1]-complete
and cannot be solved in time f(k) · no(k) for any computable f under the ETH [35].
Furthermore, [25] shows there is no FPT-time o(k)-approximation, again under the Gap-
ETH, improving upon the constant-inapproximability of the problem in FPT-time given
in [20, 55]. For all structural parameters considered here the problem is FPT, as there is
an O∗(2cw)-time algorithm [53]. Specifically for treewidth, the O∗(2tw)-time algorithm is
complemented by a matching SETH-based lower bound of (2 − ǫ)tw · nO(1) [35, 76, 94].

As before, the d-Scattered Set problem is a generalization of Independent Set.

Definition 11. In the d-Scattered Set problem, we are given graph G = (V, E) and
a metric weight function w : E 7→ N+ that gives the length of each edge and are asked if
there exists a set K of at least k selections from V , such that the distance between any
pair v, u ∈ K is at least d(v, u) ≥ d, where d(v, u) denotes the shortest-path distance from
v to u under weight function w.

If w assigns weight 1 to all edges, the variant is also called unweighted. We will also
denote by OPTd(G) the maximum size of a d-scattered set in G, thus α(G) = OPT2(G).

The problem is APX-hard for r, d ≥ 3 on r-regular graphs, while there are polynomial-
time O(rd−1)-approximations [43]. The same paper also shows a polynomial-time 2-
approximation on cubic graphs and a PTAS for planar graphs and every fixed constant
d ≥ 3, extending the algorithm of [6] for Independent Set. For a class of graphs with
at most a polynomial (in n) number of minimal separators (containing chordal graphs),
d-Scattered Set can be solved in polynomial time for even d, while it remains NP-hard
on chordal graphs and any odd d ≥ 3 [81] (see also [42]).

For the odd values of d, a polynomial
√

n-approximation is given in [56]. This algorithm
is in fact a corollary of a

√
n-approximation for Set Packing, since there is a correspon-

dence between the d-Scattered Set problem for odd values of d and the formulation of
independence based on sets [56]: a strong stable set corresponds to a 3-scattered set and
is also known as a 2-packing. Given a graph G = (V, E) we can construct a set system
(U = V, S = {N(v)∪{v} : v ∈ V }), where the universe consists of the vertices and the sets
are defined based on the closed neighborhood of each vertex v, i.e. that also includes v. In
this way a strong stable set corresponds to a set of vertices whose closed neighborhoods
have no overlap (being thus at distance d ≥ 3), i.e. a set packing of (U , S). Note that
this is also equivalent to an independent set in the square graph G2, while in general, the
(2q + 1)-Scattered Set problem is equivalent to Independent Set in (Gq)2.

23

For bipartite graphs, d-Scattered Set is NP-hard to approximate within a factor of
n1/2−ǫ and W[1]-hard for any fixed d ≥ 3 [42]. The problem is moreover shown to be NP-
hard even for planar bipartite graphs of maximum degree 3, while a 1.875-approximation
is available on cubic graphs [44]. Furthermore, [48] gives an EPTAS on (apex)-minor-free
graphs, based on the theory of bidimensionality, while on a related result an nO(

√
n)-time

algorithm exists for planar graphs, making use of Voronoi diagrams and based on ideas
previously used to obtain geometric QPTASs (i.e. quasi-polynomial-time approximation
schemes, being exponential in poly-logarithmic functions) [80]. Finally, [88] shows that it
admits an almost linear kernel (intuitively, the difficult part of a parameterized problem)
on every nowhere dense graph class, being a common generalization of several classes
including graphs of bounded degree.

In our parameterized reductions we will also make use of k-Multicolored Indepen-

dent Set, a well-known W[1]-complete variant that is also unsolvable in time f(k) · no(k)

under the ETH [35].

Definition 12. In k-Multicolored Independent Set, we are given a graph G =
(V, E), with V partitioned into k cliques V = V1⊎· · ·⊎Vk, |Vi| = n, ∀i ∈ [1, k], and are asked
to find an S ⊆ V , such that G[S] forms an independent set and |S ∩ Vi| = 1, ∀i ∈ [1, k].

24

3
On the Structurally Parameterized (k, r)-Center problem

In this chapter we study the (k, r)-Center problem. It is an extremely well-investigated
optimization problem with numerous applications. It has a long history, especially from
the point of view of approximation algorithms, where the objective is typically to minimize
r for a given k [1, 41, 45, 59, 69, 70, 72, 85, 95]. The converse objective (minimizing k for a
given r) has also been well-studied, with the problem being typically called r-Dominating

Set in this case [24, 30, 50, 77, 91].
Because (k, r)-Center generalizes Dominating Set (which corresponds to the case

r = 1), the problem can already be seen to be hard, even to approximate (under stan-
dard complexity assumptions). Since this hardness persists when considering the standard
parameterization of the problem with non-trivial parameterized approximations also pre-
cluded, we are strongly motivated to investigate the problem’s complexity when the input
graph has some restricted structure.

Our results: Our goal is to perform a complete analysis of the complexity of (k, r)-
Center that takes into account this input structure by using the framework of parame-
terized complexity. In particular, we provide fine-grained upper and lower bound results
on the complexity of (k, r)-Center with respect to the most widely studied parameters
that measure a graph’s structure: treewidth tw, clique-width cw, tree-depth td, vertex
cover vc, and feedback vertex set fvs. In addition to the intrinsic value of determining
the precise complexity of (k, r)-Center, this approach is further motivated by the fact
that FPT algorithms for this problem have often been used as building blocks for more
elaborate approximation algorithms [37, 41]. Indeed, (some of) these questions have al-
ready been considered, but we provide a number of new results that build on and improve
the current state-of-the-art. Along the way, we also close a gap on the complexity of the
flagship Dominating Set problem parameterized by clique-width. Specifically, we prove
the following:

• (k, r)-Center can be solved (on unweighted graphs) in time O∗((3r + 1)cw) (if a
clique-width expression is supplied with the input), but it cannot be solved in time
O∗((3r + 1 − ǫ)cw) for any fixed r ≥ 1, unless the SETH fails.

The algorithmic result relies on standard techniques (dynamic programming on
clique-width expressions, fast subset convolution), as well as several problem-specific
observations which are required to obtain the desired table size. The SETH lower

25

bound follows from a direct reduction from SAT. A noteworthy consequence of our
lower bound result is that, for the case of Dominating Set, it closes the gap between
the complexity of the best known algorithm (O∗(4cw) [15]) and the best previously
known lower bound (O∗((3 − ǫ)cw) [76]).

• (k, r)-Center cannot be solved in time no(vc+k) on edge-weighted graphs, or time
no(fvs+k) on unweighted graphs, unless the ETH is false.

It was already known that an FPT algorithm parameterized just by tw (for un-
bounded r) is unlikely to be possible [22]. These results show that the same holds
for the two more restrictive parameters fvs and vc, even if k is also added as a param-
eter. They are (asymptotically) tight, since it is easy to obtain O∗(nfvs), O∗(nvc),
and O∗(nk) algorithms. We remark that (k, r)-Center is a rare example of a prob-
lem that turns out to be hard parameterized by vc. We complement these lower
bounds by an FPT algorithm for the unweighted case, running in time O∗(5vc).

• (k, r)-Center can be solved in time O∗(2O(td2)) for unweighted graphs, but if it can
be solved in time O∗(2o(td2)), then the ETH is false.

Here the upper bound follows from known connections between a graph’s tree-depth
and its diameter, while the lower bound follows from a reduction from 3-SAT. We re-
mark that this is a somewhat uncommon example of a parameterized problem whose
parameter dependence turns out to be exponential in the square of the parameter.

The results above, together with the recent work of [22] which showed tight bounds of
O∗((2r + 1)tw) regarding the problem’s complexity parameterized by tw (see also [50]),
give a complete, and often fine-grained, picture on (k, r)-Center for the most important
graph parameters. One of the conclusions that can be drawn is that, as a consequence of
the problem’s hardness for vc (in the weighted case) and fvs, there are few cases where we
can hope to obtain an FPT algorithm without bounding the value of r. In other words, as
r increases the complexity of exactly solving the problem quickly degenerates away from
the case of Dominating Set, which is FPT for all considered parameters.

A further contribution of this chapter is to complement this negative view by pointing
out that it only applies if one insists on solving the problem exactly. If we allow algorithms
that return a (1 + ǫ)-approximation to the optimal r, for arbitrarily small ǫ > 0 and while
respecting the given value of k, we obtain the following:

• There exist algorithms which, for any ǫ > 0, when given a graph that admits a (k, r)-
center, return a (k, (1 + ǫ)r)-center in time O∗((tw/ǫ)O(tw)), or O∗((cw/ǫ)O(cw)),
assuming a tree decomposition or clique-width expression is given in the input.

The tw approximation algorithm is based on a technique introduced in [73], while the cw
algorithm relies on a new extension of an idea from [54], which may be of independent
interest. Thanks to these approximation algorithms, we arrive at an improved understand-
ing of the complexity of (k, r)-Center by including the question of approximation, and
obtain algorithms which continue to work efficiently even for large values of r. Figure 3.1
illustrates the relationships between parameters and Table 3.1 summarizes our results.

26

cw, Clique-width

tw, Treewidth

fvs, Feedback Vertex Set

pw, Pathwidth

td, Tree-depth

vc, Vertex Cover

Figure 3.1: Relationships
of parameters. Algorith-
mic results are inherited
downwards, hardness re-
sults upwards.

cw tw fvs td vc
FPT exact 24 (w/u) 46 (w/u) 57 (u) 29 (u)
FPT-AS 45 (w/u) 42 (w/u)

SETH LB 21 (u)
ETH LB 28 (w/u) 35 (u) 27 (w)

W[1]-hard 28 (w/u) 27 (w)

Table 3.1: A summary of our results (theorem numbers)
for all considered parameters. Initials u/w denote the un-
weighted/weighted variants of the problem.

3.1 Clique-width

3.1.1 Lower bound based on the SETH

In this subsection we prove that for any fixed constant r ≥ 1, the existence of any algorithm
for (k, r)-Center of running-time O∗((3r + 1 − ǫ)cw), for some ǫ > 0, would imply the
existence of some algorithm for SAT of running-time O∗((2 − δ)n), for some δ > 0.

Before we proceed, let us recall the high-level idea behind the SETH lower bound
for Dominating Set given in [76], as well its generalization to (k, r)-Center given in
[22]. In both cases the key to the reduction is the construction of long paths, which
are conceptually divided into blocks of 2r + 1 vertices. The intended solution consists of
selecting, say, the i-th vertex of a block of a path, and repeating this selection in all blocks
of this path. This allows us to encode (2r + 1)t choices, where t is the number of paths we
make, which ends up being roughly equal to the treewidth of the construction.

The reason this construction works in the converse direction is that, even though the
optimal (k, r)-Center solution may “cheat” by selecting the i-th vertex of a block, and
then the j-th vertex of the next, one can see that we must have j ≤ i. Hence, by making
the paths that carry the solution’s encoding long enough we can ensure that the solution
eventually settles into a pattern that encodes an assignment to the original formula (which
can be “read” with appropriate gadgets).

In our lower bound construction for clique-width we need to be able to “pack” more in-
formation per unit of width: instead of encoding (2r+1) choices for each unit of treewidth,
we need to encode (3r + 1) choices for each label. Our high-level plan to achieve this is
to use a pair of long paths for each label. Because we only want to invest one label for
each pair of paths we are forced to periodically (every 2r + 1 vertices) add cross-edges
between them, so that the connection between blocks can be performed with a single join
operation. See the paths A1, B1 in Figure 3.7 for an illustration.

Our plan now is to encode a solution by selecting a pair of vertices that will be repeated
in each block, for example every i-th vertex of A1 and every j-th vertex of B1. One may
naively expect that this would allow us to encode (2r + 1)2 choices for each label (which
would lead to a SETH lower bound that would contradict the algorithm of Subsection
3.1.2). However, because of the cross-edges, the optimal (k, r)-Center solution is not as
well-behaved on a pair of cross-connected paths as it was on a path, and this makes it much
harder to execute the converse direction of the reduction. Our strategy will therefore be

27

Proof. Assume the selection of any single vertex from X̂N in any minimum-sized center-
set: if the selected vertex is on one of the original paths, then vertex x is not covered, as
its distance is at least r + 1 from any such vertex (via the closest vi), while if the selected
vertex, say w, is on one of the new paths between some vi and x, there will be at least one
vertex ul

j,k on a path between two input vertices vj , vk for l ∈ [1, 2] that is not covered, as
the distances from w to vj , vk are at least 1 + ⌊ r

2⌋ and the distances from there to the ul
j,k

are also 1 + ⌊ r
2⌋. On the other hand, if the selected vertex is one of the inputs vi, then

all other vertices are covered: the distance from vi to any other input vj or x is exactly
r, thus all vertices on these paths are covered (including vertices of the type ul

i,j), while
for vertices on paths not originating at vi, the distance from vi to some middle vertex on
a path adjacent to it is ⌊ r

2⌋ and the distance from there to any vertex on some other path
(or even adjacent to a middle vertex) is ≤ ⌊ r

2⌋, giving an overall distance of ≤ r.

Assignment gadget ÛN : Once more, there are N input vertices v1, . . . , vN for this
gadget, while the purpose here is to ensure that, assuming all input vertices have already
been covered, any minimum-sized center-set will select exactly N − 1 of them to cover all
other vertices in the gadget.

Construction and size/cw bound for ÛN : We first connect all input vertices to each
other by two distinct paths each containing r new vertices, so that all distances between
any pair of input vertices are exactly r + 1. Let the vertices on these paths between vi, vj

be ul
i,j and ûl

i,j for l ∈ [1, r]. Then, for odd r, we also attach a path of ⌊ r
2⌋ vertices to the

middle vertex of each path, that is, the vertices u
⌊ r

2
⌋+1

i,j and û
⌊ r

2
⌋+1

i,j that are at distance
⌊ r

2⌋ + 1 from both endpoints vi, vj of their paths. We call the vertices on these new paths

wm
i,j and ŵm

i,j for m ∈ [1, ⌊ r
2⌋]. For even r, we make a vertex w

r/2
i,j (resp. ŵ

r/2
i,j) for each path

and attach two paths of r/2 − 1 vertices to it, naming the vertices on these paths wo,m
i,j

(resp. ŵo,m
i,j) for o ∈ [1, 2] and m ∈ [1, r/2 − 1], finally attaching the other endpoint vertex

w1,1
i,j (resp. ŵ1,1

i,j) to u
r/2
i,j (resp. û

r/2
i,j) and also w2,1

i,j (resp. ŵ2,1
i,j) to u

r/2+1
i,j (resp. û

r/2+1
i,j),

being the vertices at distance r/2 from one of the two endpoints vi (and r/2 + 1 from

the other vj). Thus between any two inputs vi, vj , there are two vertices w
⌊ r

2
⌋

i,j , ŵ
⌊ r

2
⌋

i,j at
distance exactly r from both. See Figure 3.4 for an illustration. The size of the gadget is
|ÛN | = N + 2

(N
2

) · (r + ⌊ r
2⌋) for odd r and |ÛN | = N + 2

(N
2

) · (2r − 1) for even r, while the
gadget can also be constructed by a clique-width expression using at most this number of
labels, by handling each vertex as an individual label.

Lemma 15. Assuming all input vertices v1, . . . , vN need not be covered by this selection,
any minimum-sized center-set restricted to the vertices of ÛN will select exactly N − 1 of
the input vertices to cover all other vertices in ÛN .

Proof. The claim on the gadget’s function is shown by induction on N : for all N ≥ 2 any
minimum-sized center-set will select exactly N − 1 input vertices, while if any non-input
vertex is selected there will be at least N vertices required. The base case is N = 2 and
we have two input vertices v1, v2 and two paths between them, with selection of either
v1 or v2 indeed covering all vertices on these paths. On the other hand, as on each path

between v1, v2 there is a vertex w
⌊ r

2
⌋

1,2 or ŵ
⌊ r

2
⌋

1,2 at distance exactly r from both v1, v2 (and
the distance between them is 2r), selection of any single vertex on these paths will cover all
vertices on its path but not all vertices on the other path and thus at least two selections

30

canonical representative, yet βy can now range from the same value ⌊y
2⌋ up to 2r−⌈y

2⌉. To
see why any selections within the class are interchangeable, consider the two extreme cases:

let a
⌊ y

2
⌋

j ∈ Aj
i , b

⌊ y
2

⌋
j ∈ Bj

i be a selection followed by a
⌊ y

2
⌋

j+1 ∈ Aj+1
i , b

2r−⌈ y
2

⌉
j+1 in the subsequent

pair of paths. Both selections a
⌊ y

2
⌋

j , b
⌊ y

2
⌋

j will be at distance 0 < d = r − ⌊y
2⌋ ≤ r from the

middle vertices ar
j , br

j on their paths Aj
i , Bj

i and all vertices a
⌊ y

2
⌋+1

j , b
⌊ y

2
⌋+1

j , . . . , a2r−d
j , b2r−d

j

from the same paths will be covered by these selections. As the selection from Aj
i always

matches the one from Aj+1
i , the remaining vertices on these paths will be covered by the

subsequent selection a
⌊ y

2
⌋

j+1 ∈ Aj+1
i , as well as all vertices on path Bj+1

i up to position
r − ⌊y

2⌋ − 2, meaning the selection from this path can be up to distance r + 1 from
this “last” covered vertex, giving the index of the furthest possible choice from Bj+1

i as
2r − ⌊y

2⌋ − 1 = 2r − ⌈y
2⌉, being exactly the extremal case for this class. Observe also that

this selection will not cover more vertices of the subsequent paths Aj+2
i , Bj+2

i as it can
reach up to vertices at position r − ⌊y

2⌋ − 2 in both these paths, which are exactly already

covered by the selection of a
⌊ y

2
⌋

j+2 ∈ Aj+2
i , meaning any other intermediate selections would

indeed produce the same result as well.
Next, consider the canonical pairs for y ∈ [2r + 2, 3r + 1]: the pair is given by (αy =

y − r − 1, βy = y − r − 1) and we define the corresponding class of non-canonical pairs
to include all pairs where (3r + 2 − y ≤ αy ≤ y − r − 1, βy = y − r − 1), i.e. any pair
where βy is the same as the canonical representative, yet now αy can range from the
same value y − r − 1 down to 3r + 2 − y. To see why any selections within the class are
interchangeable, consider the two extreme cases, as before: let ay−r−1

j ∈ Aj
i , by−r−1

j ∈ Bj
i

be a selection followed by a3r+2−y
j+1 ∈ Aj+1

i , by−r−1
j+1 ∈ Bj+1

i in the subsequent pair of paths.

Both selections ay−r−1
j , by−r−1

j will be at distance 0 ≤ d = 3r + 1 − y ≤ r from the final

vertices a2r
j , b2r

j on their paths Aj
i , Bj

i and all vertices a0
j+1, b0

j+1, . . . , ar−d−1
j+1 , br−d−1

j+1 from

the following paths Aj+1
i , Bj+1

i will be covered by these selections. As the selection from
Bj

i always matches the one from Bj+1
i , all the remaining vertices of Bj+1

i are covered, as
well as vertices ad′

j+1, . . . , a2r
j+1 from Aj+1

i , where d′ = (y − r − 1) − r + 2d + 2 = 4r + 3 − y

is the maximum distance in Aj+1
i that selection by−r−1

j+1 can reach, meaning the selection

from this path Aj+1
i can be up to distance r + 1 from this “first” covered vertex (a4r+3−y

j+1),

giving the index of the nearest possible choice from Aj+1
i as 4r+3−y−(r+1) = 3r+2−y,

being exactly the extremal case for this class.
The final observation required for the claim to be shown is that indeed all possible pairs

(l, o) ∈ [0, 2r]2, where l ≤ o, either exactly match some canonical pair, or are contained
in one of the classes given above. As any opposite selections are symmetrical and within
each class the actual selections are interchangeable, any arbitrary center-set K can be
substituted by a center-set K ′ of the same size, where all indices of each pair of selections
is canonical.

Lemma 17. In a series of M pairs of paths Aj
i , Bj

i , j ∈ [1, M], where the last vertices of

Aj
i , Bj

i are joined with the first vertices of Aj+1
i , Bj+1

i for j ∈ [1, M − 1], in any center-set
K that only selects vertices whose indices correspond to canonical pairs, the index y of any
canonical pair selected in some pair of paths Aj

i , Bj
i must be larger than, or equal to the

index y′ of any canonical pair selected in its following pair of paths Aj+1
i , Bj+1

i .

33

Proof. Consider two consecutive pairs of paths Aj
i , Bj

i and Aj+1
i , Bj+1

i and let a
αy

j , b
βy

j and

a
αy′
j+1, b

βy′
j+1 be the selections from Aj

i , Bj
i and Aj+1

i , Bj+1
i , respectively, with y, y′ ∈ [1, 3r+1].

First, for any pair (αy = y − r − 1, βy = y − r − 1), where y ∈ [2r + 1, 3r + 1], both
selections a

αy

j , b
βy

j will be at distance 0 ≤ d = 3r + 1 − y ≤ r from the final vertices a2r
j , b2r

j

on their paths Aj
i , Bj

i and all vertices a0
j+1, b0

j+1, . . . , ar−d−1
j+1 , br−d−1

j+1 from the following

paths Aj+1
i , Bj+1

i will be covered by these selections. Thus for both paths Aj+1
i , Bj+1

i , the

corresponding distance d′ of the selections a
αy′
j+1, b

βy′
j+1 from the final vertices a2r

j+1, b2r
j+1 will

be the same for both and at least equal to d, which in turn implies both αy′ ≤ αy and
βy′ ≤ βy, that gives y′ ≤ y (note that y′ can be within [1, 2r] as long as both inequalities
hold).

Next, for any pair (αy = ⌊y
2⌋, βy = ⌊y

2⌋), with y ∈ [1, 2r] and odd, both selections

a
αy

j , b
βy

j will be at distance 0 < d = r − ⌊y
2⌋ ≤ r from the middle vertices ar

j , br
j on their

paths Aj
i , Bj

i and all vertices a
αy+1
j , b

βy+1
j , . . . , a2r−d

j , b2r−d
j from the same paths will be

covered by these selections. Thus in at least one of the following paths Aj+1
i , Bj+1

i there

must be some selection a
αy′
j+1 or b

βy′
j+1 at distance d′, that is at least equal to d, from either

ar
j+1 or br

j+1. As for all pairs (αy, βy) it is always βy ≥ αy, if this selection is from Bj+1
i ,

then it is βy′ ≤ βy and αy′ ≤ αy which gives y′ ≤ y, while if this selection is from Aj+1
i , we

have αy′ ≤ αy, which means either also βy′ ≤ βy and thus y′ ≤ y, or βy′ = 2r − y′/2 + 1

and y′ = y + 1. In this case, observe that b
βy′
j+1 covers all vertices b

r−y′/2+1
j+1 , . . . , b

2r−y′/2
j+1 ,

while a
αy′
j+1 can cover all vertices from b0

j+1 (for d′ > 1) up to b
r−y′/2−1
j+1 from Bj+1

i , thus

leaving vertex b
r−y′/2
j+1 at distance > r from any selected vertex.

Finally, for even y ∈ [1, 2r] and any pair (αy = y/2 − 1, βy = 2r − y/2 + 1), selected
vertex a

αy

j covers all vertices a
αy+1
j , . . . , a

αy+r
j , while selected vertex b

βy

j can only cover all

vertices from a
αy+r+2
j to a2r

j (for y < 2r), thus requiring at least one selection from the

following pair of paths Aj+1
i , Bj+1

i , at distance at most y/2 − 1 from the first vertex on its
path a0

j+1 or b0
j+1. In either case, we have αy′ ≤ αy and thus also y′ ≤ y.

Now we can continue the description of the block gadget Ĝ. For each pair of paths
Ai, Bi with i ∈ [1, p] we make 3r + 1 vertices uy

i , for y ∈ [1, 3r + 1], that we connect to
vertices a

αy

i and b
βy

i by paths of length r+1, i.e. each vertex uy
i is at distance r+1 from the

vertices in Ai, Bi, whose indices match the numbers in the pair corresponding to its own
index y (via one path for one such vertex in Ai or Bi). Let the r intermediate vertices on
the path from each uy

i to some vertex in Ai be called vy,1
i . . . , vy,r

i and the r intermediate
vertices on the other path to some vertex in Bi be called vy,r+1

i . . . , vy,2r
i .

Next, we add another vertex qi that we attach to all vertices uy
i by paths of length r−1

(making the distances between them and qi equal to r) and then we also attach 3r+1 paths
of length r to qi, naming the (2r − 1)(3r + 1) vertices on these paths q1

i , . . . , q
(2r−1)(3r+1)
i .

Let Ui be the set of all uy
i vertices for all y ∈ [1, 3r + 1] and U be the union of all Ui for

i ∈ [1, p]. We then make use of the assignment gadget ÛN described above by making a
copy of ÛN for each Ui, where the N = 3r + 1 inputs are identified with the vertices uy

i .
Then, for every set S ⊂ U that contains exactly one vertex from each Ui (the number of

such sets being (3r +1)p) we make a vertex xS . Here we make use of the clique gadget X̂N

described above, where these xS vertices act as inputs and N = (3r+1)p. Let X be the set

34

q1
i , . . . , q

(2r−1)(3r+1)
i and uj

i vertices within distance r from K. Further, our selection of
a

αy

i , b
βy

i covers vertices vy,1
i . . . , vy,2r

i on the two paths from a
αy

i , b
βy

i to uy
i ∈ S, while all

other vz,w
i vertices are covered by our selection of each uz

i ∈ Ui \ S. This selection of all
uz

i ∈ Ui \ S also covers all vertices in the assignment gadgets as well as the guard gadgets
T̂p between the uz

i and xS′ for all S′ 6= S, while selection of xS covers all vertices in X and
all vertices in the guard gadget where xS is an input.

Finally, concerning the clause vertices ĉo
π for π ∈ [1, m] and o ∈ [0, 3rpt], observe that

if the given assignment for φ satisfies the clause Cπ, there will be some literal contained
therein that is set to true, that corresponds to a variable in a group Fτ for some τ ∈ [1, t]
and a matching partial assignment for the variables in Fτ associated with some set S∗.
Our set K contains vertex xS∗ in Ĝmo+π

τ for every o ∈ [0, 3rpt] and vertices ĉo
π are within

distance r from xS∗ , through a path whose vertices are also covered by xS∗ .

Lemma 19. If G has a (k, r)-center of size k = ((3r + 3)p + 1)m(3rpt + 1)t + 1, then φ
has a satisfying assignment.

Proof. Given a (k, r)-center K of G of size |K| = k = ((3r + 3)p + 1)m(3rpt + 1)t + 1, we
show the existence of a satisfying assignment for φ. First, observe that K must contain
vertex h, as all vertices on the path attached to it and h′ must be within distance r from
K. Next we require an averaging argument: as the remaining number of vertices in K
is ((3r + 3)p + 1)m(3rpt + 1)t and there are m(3rpt + 1)t gadgets Ĝµ

τ , if there are more
than (3r + 3)p + 1 vertices selected from some block gadget, then there will be less than
these selected from some other block gadget. We will show that not all vertices within a
block gadget can be covered by less than (3r +3)p+1 selected vertices, which implies that
exactly this number is selected from each block gadget in any center-set of size k.

Consider a gadget Ĝµ
τ . First, observe that at least one of the xS vertices must be

selected to cover all vertices in X and that any such selection indeed covers all vertices in
X, as well as all vertices in the guard gadget of which it is an input. This leaves (3r + 3)p
vertices to cover all other p groups of vertices in the gadget. Observe also that for every
i ∈ [1, p], any minimum-sized center-set must contain one vertex from each path Ai, Bi to
cover all the guards, as well as qi to cover q1

i , . . . , q
(2r−1)(3r+1)
i , as any single selection of

some guard vertex will not be sufficient to cover all other guard vertices attached to the
same path. This leaves 3rp vertices to cover the vy,w

i vertices on the paths between the
aj

i , bl
i that have not been selected from each pair Ai, Bi, as well as all vertices in the guard

gadgets in which each xS∗ that was not selected is an input. Due to the structure of the
assignment gadgets Û , there must be 3r vertices selected from each Ui, thus completing
the set K (and the averaging argument). We then claim that the selections from the paths
Ai, Bi must match (complement) these selections from Ui, that in turn must match (also
complement) the selection of xS from X.

First, suppose that for some i ∈ [1, p] the selections aj
i , bl

i with j, l ∈ [0, 2r] from Ai, Bi

do not correspond to some canonical pair for some y ∈ [1, 3r + 1] with (αy = j, βy = l).2

Vertex aj
i will cover at most 2r vertices vz,1

i , . . . , vz,r
i and vz′,1

i , . . . , vz′,r
i , for z 6= z′ (if index

j happens to be included in two pairs and only the first r for inclusion in a single pair),
but not vertices vz,r+1

i or vz′,r+1
i . Similarly, vertex bl

i will also cover at most 2r vertices

2In fact, Lemma 16 already shows that any (k, r)-center that does not make selections based only on
canonical pairs can always be substituted for a (k, r)-center that does. Nevertheless, we show here that
this requirement is also enforced by the structure of the graph, mostly for completeness.

37

vw,r+1
i , . . . , vw,2r

i and vw′,r+1
i , . . . , vw′,2r

i , again for w 6= w′, but not vertices vw,1
i or vw′,1

i .
Note that since the two choices do not correspond to some canonical pair all these indices
will be different: z 6= z′ 6= w 6= w′. Now, as there are no more selections from Ai, Bi, all
vertices vy′,1

i and vy′,r+1
i are definitely not covered for y′ 6= z, z′, w, w′ (due to any adjacent

selections being at distance at least r + 1). In short, there is at least one vertex vy,1
i or

vy,r+1
i (or both) that is not covered for each y ∈ [1, 3r + 1]. Since the number of selections

from Ui is 3r and no other selection would reach these vertices (e.g. from some other Ui′ ,
due to the guard gadgets employed anywhere in between sets U and X), there will be
at least one such vertex that is not covered, implying the selections from every Ai, Bi

must match some canonical pair y and the 3r selections from Ui must complement this y.
Further, suppose the selection xS from X, for S = {uy1

1 , . . . , u
yp
p }, does not match the 3r

selections from each Ui, i.e. that for some i ∈ [1, p], it is uyi
i ∈ K ∩ Ui and uz

i /∈ K ∩ Ui for
all z 6= yi. Then for set S∗ = S \ {uyi

i } ∪ {uz
i } we have that xS∗ /∈ K and also S∗ 6⊂ K.

This means all vertices in the guard gadget attached to xS∗ are not covered.
Next, we require that there exists at least one o ∈ [0, 3rpt] for every τ ∈ [1, t] for which

K ∩{⋃i∈[1,p] Ai ∪Bi} is the same in all gadgets Ĝmo+π
τ with π ∈ [1, m], i.e. that there exists

a number of successive copies of the gadget for which the pattern of selection of vertices
from the paths Ai, Bi does not change. As noted above, set K must contain two vertices
a

αy

i , b
βy

i from each Ai and Bi, such that the indices αy, βy of these two selections match
the pair corresponding to the index y of some uy

i . Consider the “long paths” consisting
of paths Ai, Bi sequentially joined with their followers in the next gadget on the same
row. Depending on the starting selection, observe that the pattern can “shift towards the
left” a number of times in each pair of paths Ai, Bi, as the first and last r − 1 vertices
will be covered by h. That is, a pattern can be selected on some pair Ai, Bi within some
gadget Ĝµ

τ and a different pattern can be selected on the pair Ai, Bi following it in gadget
Ĝµ+1

τ , without affecting whether all vertices on the long paths are covered. As shown by
Lemma 17, this can only happen if the index y′ that gives the pair of indices (αy′ , βy′) of
the second pattern is smaller than or equal to the index y that gives the pair of indices
(αy, βy) of the first pattern, or y′ ≤ y.

As there are 3r + 1 different indices y and pairs (αy, βy), the “shift to the left” can
happen at most 3r times for each i ∈ [1, p], thus at most 3rp times for each τ ∈ [1, t], or
3rpt times over all τ . By the pigeonhole principle, there must thus exist an o ∈ [0, 3rpt]
such that no such shift happens among the gadgets Ĝmo+π

τ , for all τ ∈ [1, t] and π ∈ [1, m].
Our assignment for φ is then given by the selections for K in each gadget Ĝmo+1

τ for
this o: for every group Fτ we consider the selection of xS ∈ X that corresponds to a set
S ⊂ U , that in turn is associated with a partial assignment for the variables in Fτ . In this
way we get an assignment to all the variables of φ. To see why this also satisfies every
clause Cπ with π ∈ [1, m], consider clause vertex ĉo

π: this vertex is at distance r from some
selected vertex xS in some gadget Ĝmo+π

τ . Since the pattern for selection from paths Ai, Bi

remains the same in all gadgets Ĝmo+1
τ , . . . , Ĝmo+π

τ , so does the set U and also selection
of vertices xS , giving the same assignment for the variables of Fτ associated with S.

Lemma 20. Graph G has clique-width cw(G) ≤ tp + f(r, ǫ), for f(r, ǫ) = O(rp).

Proof. We show how to construct graph G using the clique-width operations introduce,
join, relabel and at most f(r, ǫ) labels. We first introduce vertex h and all vertices on
the path of length r from it to h′, using one label for each vertex, then consecutively join
labels/vertices to form the path. The construction will then proceed in a vertical manner,

38

successively constructing the gadgets Ĝµ
τ for each τ ∈ [1, t], before proceeding to repeat

the process for each of the m(3rpt + 1) columns.

To construct gadget Ĝµ
τ we do the following: we first introduce all guard vertices using

one label for each vertex, subsequently applying the appropriate join operations. We do
the same for all vertices qi, q1

i , . . . , q
(2r−1)(3r+1)
i , as well as vertices uy

i in Ui and all vertices
in gadgets Û3r+1 and vy,1

i . . . , vy,2r
i , along with all vertices in X and the guard gadgets T̂

attached to each xS . We have also introduced the clause vertex ĉo
π that corresponds to

this column and all vertices on the path attached to it, the endpoint of which we now join
with matching vertices xS (if any, for this Fτ). We have thus created all vertices (and
appropriate edges) in gadget Ĝµ

τ , apart from the paths Ai, Bi for i ∈ [1, p], using one label
per vertex. This accounts for the f(r, ǫ) labels, where function f is O(rp).

Now, for i = 1, we introduce vertices aj
1, bj

1 in turn for each j ∈ [0, 2r], using one label
for each vertex and appropriately join each with its previous in the path (for j ≥ 2), the
endpoints of the guard gadgets, as well as the corresponding vertices vy,w

1 , completing
the construction of paths A1, B1. We then relabel the vertex b2r

1 with the same label as
a2r

1 (the last vertices of A1, B1) and repeat the process for i = 2, . . . , p. When the above
has been carried out for all i, the construction of gadget Ĝµ

τ has been completed and we
can relabel all vertices to some “junk” label, apart from the two final vertices a2r

i , b2r
i for

each i ∈ [1, p] (that have the same label) and the endpoint of the path of length r − 1
attached to clause vertex ĉo

π. This relabelling with some junk label will enable us to reuse
the same labels when constructing the same parts of other gadgets. We then repeat the
above for the following gadget in the column, until the column is fully constructed. When
the column has thus been constructed, we can also relabel the endpoint of the path from
clause vertex ĉo

π to the junk label, thus reusing its former label for the endpoint of the
path attached to the clause vertex of the subsequent column.

During construction of the following column, the first vertices a0
i , b0

i on each path Ai, Bi

will both be joined with the label that includes the last vertices a2r
i , b2r

i of the previous
column’s corresponding path A′

i, B′
i and after each such join, we again relabel these two

vertices with the junk label. The construction proceeds in this way until graph G has
been fully constructed. Note that during construction of the first and last columns, the
first/last vertices of each path have also been joined with vertex h.

In total, the number of labels used simultaneously by the above procedure are the f(r, ǫ)
labels used each time for repeating constructions (also counting the constant number of
“outside” labels for h, the clause vertices and the junk label), plus one label for each pair
of paths Ai, Bi (containing the last vertices of these paths) in each of the t rows of the
construction. The number of these being tp, the claimed bound follows.

Theorem 21. For any fixed r ≥ 1, if (k, r)-Center can be solved in O∗((3r+1−ǫ)cw(G))
time for some ǫ > 0, then SAT can be solved in O∗((2 − δ)n) time for some δ > 0.

Proof. Assuming the existence of some algorithm of running-time O∗((3r + 1 − ǫ)cw(G)) =
O∗((3r + 1)λcw(G)) for (k, r)-Center, where λ = log3r+1(3r + 1 − ǫ), we construct an
instance of (k, r)-Center, given a formula φ of SAT, using the above construction and
then solve the problem using the O∗((3r+1−ǫ)cw(G))-time algorithm. Correctness is given

39

by Lemma 18 and Lemma 19, while Lemma 20 gives the upper bound on the running-time:

O∗((3r + 1)λcw(G)) ≤ O∗
(

(3r + 1)λ(tp+f(r,ǫ))
)

(3.1)

≤ O∗






(3r + 1)

λp

⌈

n

⌊log2(3r + 1)p⌋
⌉






(3.2)

≤ O∗






(3r + 1)

λp
n

⌊log2(3r + 1)p⌋+λp






(3.3)

≤ O∗






(3r + 1)

λ
np

⌊p log2(3r + 1)⌋





(3.4)

≤ O∗






(3r + 1)

δ′
n

log2(3r + 1)






(3.5)

≤ O∗(2δ′′n) = O((2 − δ)n) (3.6)

for some δ, δ′, δ′′ < 1. Observe that in line (3.2) the function f(r, ǫ) is considered constant,
as is λp in line (3.4), while in line (3.5) we used the fact that there always exists a δ′ < 1

such that λ
p

⌊p log2(3r + 1)⌋ =
δ′

log2(3r + 1)
, as we have:

p log2(3r + 1) − 1 < ⌊p log2(3r + 1)⌋

⇔ λp log2(3r + 1)
p log2(3r + 1) − 1

>
λp log2(3r + 1)
⌊p log2(3r + 1)⌋ ,

from which, by substitution, we get:
λp log2(3r + 1)

p log2(3r + 1) − 1
> δ′,

now requiring:
λp log2(3r + 1)

p log2(3r + 1) − 1
≤ 1,

or: p ≥ 1
(1 − λ) log2(3r + 1)

,

that is precisely our definition of p. This concludes the proof.

From the above, we directly get the following corollary (for r = 1):

Corollary 22. If Dominating Set can be solved in O∗((4−ǫ)cw(G)) time for some ǫ > 0,
then SAT can be solved in O∗((2 − δ)n) time for some δ > 0.

3.1.2 Dynamic Programming algorithm

We now present an O∗((3r + 1)cw)-time dynamic programming algorithm (DP) for un-
weighted (k, r)-Center, using a given clique-width expression TG for G with at most cw
labels. Even though the algorithm relies on standard techniques, there are several non-
trivial, problem-specific observations that we need to make to reach a DP table size of
(3r + 1)cw.

40

Our first step is to re-cast the problem as a distance-labeling problem, that is, to
formulate the problem as that of deciding for each vertex what is its precise distance to
the optimal solution K. This is helpful because it allows us to make the constraints of
the problem local, and hence easier to verify: roughly speaking, we say that a vertex is
satisfied if it has a neighbor with a smaller distance to K (we give a precise definition
below). It is now not hard to design a clique-width based DP algorithm for this version
of the problem: for each label l we need to remember two numbers, namely the smallest
distance value given to some vertex with label l, and the smallest distance value given to
a currently unsatisfied vertex with label l, if such a vertex exists.

The above scheme directly leads to an algorithm running in time (roughly) ((r+1)2)cw.
In order to decrease the size of this table, we now make the following observation: if a
label-set contains a vertex at distance i from K, performing a join operation will satisfy
all vertices that expect to be at distance ≥ i + 2 from K, since all vertices of the label-set
will now be at distance at most 2. This implies that, in a label-set where the minimum
assigned value is i, states where the minimum unsatisfied value is between i + 2 and r
are effectively equivalent. With this observation we can bring down the size of the table
to (4r)cw, because (intuitively) there are four cases for the smallest unsatisfied value:
i, i + 1, ≥ i + 2, and the case where all values are satisfied.

The last trick that we need to achieve the promised running-time departs slightly from
the standard DP approach. We will say that a label-set is live in a node of the clique-
width expression if there are still edges to be added to the graph that will be incident to
its vertices. During the execution of the dynamic program, we perform a “fore-tracking”
step, by checking the part of the graph that comes higher in the expression to determine
if a label-set is live. If it is, we merge the case where the smallest unsatisfied value is
i + 2, with the case where all values are satisfied (since a join operation will eventually be
performed). Otherwise, a partial solution that contains unsatisfied vertices in a non-live
label-set can safely be discarded. This brings down the size of the DP table to (3r + 1)cw,
and then we need to use some further techniques to make the total running-time quasi-
linear in the size of the table. This involves counting the number of solutions instead of
directly computing a solution of minimum size, as well as a non-trivial extension of fast
subset convolution from [9] for a 3× (r +1)-sized table (or state-changes). See also [94, 15]
and Chapter 11 of [35].

Distance labeling: We first require an alternative formulation of the problem, based
on the existence of a function dl that assigns numbers dl(v) ∈ [0, r] to all vertices v ∈ V .

Let dl : V 7→ [0, r] and dl−1(i) be the set of all vertices with assigned number i ∈ [0, r]
by dl. A function dl is then called valid, if for all labels dl ∈ [1, cw] and nodes t of
the clique-width expression, at least one of the following conditions holds for all vertices
u ∈ Vl ∩ Gt \ dl−1(0):

1) There is a neighbor v of u in Gt with a strictly smaller number: ∃v ∈ Gt : (u, v) ∈
Et ∧ dl(v) < dl(u);

2) There is a vertex v in the same label l as u and at distance 2 from it in Gt, while
their difference in numbers is at least 2: ∃v ∈ Gt ∩Vl ∧dl(v) ≤ dl(u)−2∧dt(u, v) = 2;

41

3) There is a vertex v in the same label l as u in Gt with their difference in numbers at
least 2 and some vertex w adjacent to it in the final graph G: ∃v ∈ Gt ∩ Vl ∧ dl(v) ≤
dl(u) − 2 ∧ ∃w ∈ G : (u, w) /∈ Gt ∧ (u, w) ∈ G.

Note that in condition 3) above, vertex w will also be adjacent to u in G (and thus
d(u, v) = 2), as both u and v belong to the same label. A vertex u ∈ Vl ∩ Gt with label
l ∈ [1, cw] is satisfied by dl for node t, if dl(u) = 0, or either of the first two conditions
1)2) above holds for u. Let U t

l (dl) be the set of vertices of label l that are not satisfied by
dl for node t and DLr(t) be the set of all possible valid functions dl for given r, restricted
to the vertices of Gt for node t of clique-width expression TG, with disjoint sets dl−1(0).
The following lemma shows the equivalence between the two formulations.

Lemma 23. A graph G = (V, E) admits a (k, r)-center if and only if it admits a valid
distance-labeling function dl : V → {0, . . . , r} with |dl−1(0)| = k.

Proof. To see why a valid function dl with |dl−1(0)| = k represents a solution to the
(k, r)-Center problem consider the following: first, given a (k, r)-center of G, let dl be
the function that assigns to each vertex v ∈ V a number equal to its distance from the
closest center, i.e. number 0 to the centers, 1 to their immediate neighbors and so on.
This function is valid as for every vertex u there always exists some neighbor v with
dl(v) < dl(u), being the neighbor that lies on the path between u and its closest center,
while also |dl−1(0)| = k. On the other hand, given such a valid function dl, the set dl−1(0)
is indeed a (k, r)-center: we have |dl−1(0)| = k and first, vertices in dl−1(1) must have a
neighbor in the center-set, while vertices in dl−1(2) are at distance at most 2 from some
center. Then, for i ∈ [3, r], vertices u in dl−1(i) either have a neighbor in dl−1(j) with
j < i, or are at distance at most 2 from some vertex in dl−1(j) with j ≤ i − 2, that
by induction must in both cases be at distance at most j from some center, making the
distance between u and some vertex in dl−1(0) at most i ≤ r.

Table description: There is a table Dt associated with every node t of the clique-width
expression, while each table entry Dt[κ, s1, . . . , sw], with w ≤ cw, is indexed by a number
κ ∈ [0, k] and a w-sized tuple (s1, . . . , sw) of label-states, assigning a state sl = (vl, ul) to
each label l ∈ [1, w], where vl = minx∈Vl

dl(x) ∈ [0, r] is the minimum number assigned to
any vertex x in label l, while ul ∈ {0, 1, 2} is the difference between vl and the minimum
number assigned by dl to any vertex y ∈ U t

l (dl) that is not satisfied by dl for this node:
ul = 0 when miny∈Ut

l
(dl)(dl(y) − vl) = 0, ul = 1 when miny∈Ut

l
(dl)(dl(y) − vl) = 1 and

ul = 2 when miny∈Ut
l
(dl)(dl(y) − vl) ≥ 2, or when U t

l (dl) = ∅. Note that states (0, 0) and
(r, 1) do not signify any valid situation and are therefore not used.

There are thus 3r + 1 possible states for each label, each being a pair signifying the
minimum number assigned to any vertex in the label and whether the difference between
this and the minimum number of any vertex in the label that is not yet satisfied by dl is
either exactly 0,1, or greater than 1, with absence of unsatisfied vertices also considered
in the latter case. For a node t with w involved labels, each table entry Dt[κ, s1, . . . , sw]
contains the number |DLr(t)| of valid functions dl restricted to the vertices of Gt with
disjoint sets dl−1(0) and |dl−1(0)| = κ, such that for each label l ∈ [1, w], its state in the
tuple gives the conditions that must be satisfied for this label by any such function dl that
is to be counted in the entry’s value. In particular, we have ∀t ∈ T, Dt[κ, s1, . . . , sw] : {κ ∈
[0, k]} × {(1, 0), . . . , (r, 0), (0, 1), . . . , (r − 1, 1), (0, 2), . . . , (r, 2)}w 7→ N0, where w ∈ [1, cw].

The inductive computations of table entries for each type of node follows.

42

Introduce node: For node t with operation i(l) and l ∈ [1, cw], we have:

Dt[κ, sl] :=















1, if vl = 0, ul = 2, κ = 1;

1, if vl 6= 0, ul = 0, κ = 0;

0, otherwise.

Join node: For node t with operation η(a, b), child node t − 1 and a, b ∈ [1, w], let
Q(s′

a = (v′
a, u′

a), s′
b = (v′

b, u′
b)) := {(sa = (va, ua), sb = (vb, ub))|[va = v′

a ∧ vb = v′
b] ∧ [((u′

a =
2 ∧ va + ua > vb) ∨ (ua = u′

a < 2 ∧ va + ua ≤ vb)) ∧ ((u′
b = 2 ∧ vb + ub > va) ∨ (ub =

u′
b < 2 ∧ vb + ub ≤ va))]}. In words, Q(s′

a, s′
b) is the set of all pairs of label states (sa, sb),

such that if label a is joined with label b, their new states could be s′
a, s′

b, i.e. all pairs of
states where the v values remain the same for both a, b, as no new numbers are introduced
within any label by a join operation, yet some vertices may become satisfied through the
addition of new edges and thus the u values of their label might change to 2. We then
have:

Dt[κ, s1, . . . , s′
a, s′

b, . . . , sw] :=
∑

(sa,sb)∈Q(s′
a,s′

b
)

Dt−1[κ, s1, . . . , sa, sb, . . . , sw].

Rename node: For node t with operation ρ(w + 1, w) and child node t − 1 (we assume
without loss of generality that the last label is renamed into the one preceding it), let
M(s = (v, u)) := {(sa = (va, ua), sb = (vb, ub))|[v = min{va, vb}] ∧ [[(u = 0) ∧ ((va =
v∧ua = 0∧vb ≥ v∧ub ≥ 0)∨(vb = v∧ub = 0∧va ≥ v∧ua ≥ 0))]∨[(u = 1)∧((va = v∧ua =
1 ∧ vb = v ∧ ub ≥ 1) ∨ (va = v ∧ ua ≥ 1 ∧ vb = v ∧ ub = 1) ∨ (va = v ∧ ua = 1 ∧ vb > v ∧ ub ≥
0)∨(vb = v∧ub = 1∧va > v∧ua ≥ 0)∨(va = v∧ua = 2∧vb = v+1∧ub = 0)∨(vb = v∧ub =
2∧va = v +1∧ua ≥ 0))]∨ [((u = 2)∧ (ua = ub = 2)∨ (v < va ∧ub = 2∧ ((va −v ≥ 2∧ua =
0)∨(va−v ≥ 1∧ua = 1)))∨(v < vb∧ua = 2∧((vb−v ≥ 2∧ub = 0)∨(vb−v ≥ 1∧ub = 1)))]]}.
In words, M(s) is the set of all pairs of labels (sa, sb) for two labels a, b, such that renaming
one into the other could produce state s for the resulting label, i.e. the pairs of states where
the resulting v value is the minimum of va, vb, while u comes from any of the appropriate
combinations of ua, ub for each case. We then have:

Dt[κ, s1, . . . , s′
w] :=

∑

(sw,sw+1)∈M(s′
w)

Dt−1[κ, s1, . . . , sw, sw+1].

Union node: For node t with operation Gt−1 ∪ Gt−2 and children nodes t − 1, t − 2,
we assume (again, without loss of generality) that all labels in [1, y ≤ w] are involved in
t − 1 and all labels in [1, z ≤ w] are involved in t − 2, such that for some i ∈ [1, w], all
labels 1 ≤ j ≤ i are involved in both nodes t − 1, t − 2, i.e. labels 1, . . . , i ≤ y, z ≤ w are
common to both preceding nodes. Also observe that for any resulting state s′

j of label j,
following application of the union operation on two partial solutions where its states are
sj and s̄j , the pair (sj , s̄j) would be included in M(s′

j), similarly to renaming j from one
partial solution with state sj to the same label from the other partial solution with state
s̄j . We then have:

Dt[κ, s′
1, . . . , s′

i, . . . , sw] :=
∑

(sj ,s̄j)∈M(s′
j),j∈[1,i]

κ1∈[0,κ]

(Dt−1[κ1, s1, . . . , si, . . . , sy]·

·Dt−2[κ − κ1, s̄1, . . . , s̄i, . . . , sz]).

43

Note that the above procedure is fully reversible,3 as for each label l, entries where
sl = (r, 2) are the same in all tables Dt, D′

t, D∗
t and thus, to obtain D′

t from D∗
t we again

work label-wise, fixing all other label-states and κ: at step l, we first compute the entry of
D′

t where sl = (r, 0), by subtracting from its value the value of the entry where sl = (r, 2)
and we then do the same for the entry where sl = (r − 1, 2), moving to sl = (r − 1, 1)
by subtracting the ones where sl = (r − 1, 2) and sl = (r, 0), then to sl = (r − 1, 0) by
subtracting the ones where sl = (r−1, 1) and sl = (r−1, 2) and so on, for each vl from r−1
to 0, in turn. After all w steps we have obtained table D′

t and from this we can similarly
obtain table Dt, as again, for each label l the entries where sl = (r, 0), (r − 1, 1), (r, 2) are
the same: at step l, we compute the entries where sl = (vl, i) by subtracting from the
corresponding entries of D′

t all entries where sl = (vl + 1, i), for vl from r − 1 to 0 and
i ∈ {0, 1, 2} in turn. For both transformations and directions, we perform at most two
additions/subtractions per entry for κ · (3r + 1)cw entries, for each step l ∈ [1, w ≤ cw].

Thus we can compute table D∗
t by simply multiplying the values of the two corre-

sponding entries from D∗
t−1, D∗

t−2, as they now contain all required information for this
state representation, with the inverse transformation of the result giving table Dt:

D∗
t [κ, s1, . . . , sw] :=

κ1=κ
∑

κ1=0

D∗
t−1[κ1, s1, . . . , sw] · D∗

t−2[κ − κ1, s1, . . . , sw].

Fore-tracking: As is already apparent, our algorithm actually solves the counting ver-
sion of (k, r)-Center, by reading the values of entries from table Dz of the final node
z, where all labels l are of state sl = (vl, ul = 2). Now, as already noted, these states
actually correspond to both situations where either all unsatisfied vertices in the label are
of number ≥ 2 than the label’s v value, or where there are no unsatisfied vertices in the
label for this dl. To ensure our algorithm only counts valid functions dl, we employ a
“fore-tracking” policy: whenever some entry is being computed for the table of some re-
name or union node t, where some label l has state sl = (vl, ul = 2), we establish whether
condition 3) given in the definition of a valid function dl is also satisfied by all counted
functions dl for all vertices in l, by verifying that some join operation η(l, m) is applied
between l and another label m in some subsequent node t′ of the clique-width expression
(even after l is potentially renamed to some other label). If such a join operation is indeed
to be applied (and the label-set is live), there will be a vertex w ∈ Vm that is adjacent to
all vertices u, v ∈ Vl in the final graph G and as ul = 2, there must also be some vertex
v ∈ Vl with dl(v) ≤ dl(u) − 2, for any unsatisfied vertex u. Since it will be d(u, v) = 2, all
such vertices u will be satisfied in G for all such dl, that will in fact be valid.

On the other hand, in the absence of such a join operation and the case where t
is a rename node, we consider the definition of set M(s) above, where there are three
options for a resulting state sl = (vl, ul) with ul = 2 from two preceding states sa =
(va, ua), sb = (vb, ub) (corresponding to the last bracket of clauses in the set’s definition):
we must have either ua = ub = 2, i.e. that both states have a difference of at least 2
between the minimum number of any vertex and the minimum of any unsatisfied vertex,
or vl < va and ub = 2, while either va − vl ≥ 2 and ua = 0, or va − vl ≥ 1 and ua = 1 (or
vice-versa), i.e. that one label must have state (> vl, 0) and the other can have any state

3This is the reason for counting the number of solutions for each κ, instead of finding the minimum κ
for which at least one solution exists: there is no additive inverse operation for the min-sum semiring, yet
the sum-product ring is indeed equipped with subtraction.

45

from (≥ vl + 2, 0) or (≥ vl + 1, 1), their combined numbers giving (vl, 2). Now, if no join
operation follows the rename node t for this label, we simply disregard any options in the
above computation (from the last two) that consider states where one of the preceding
labels a, b had ua, ub < 2.

Similarly, for a union node t we consider the state changes given above: if no join
node follows t for this label, we simply disregard the additions (and subsequently their
corresponding subtractions) for this label in the table’s transformation from D′

t to D∗
t

in step l, where entries with sl = (vl + 1, 1) and sl = (vl + 2, 0) from D′
t are added to

entries with sl = (vl, 2) from D∗
t and keep all such entries as they are (direct copies from

D′
t). In this way, as any state where u = 2 for some label must be “the direct result”

of some join operation (validating condition 1), or there will be some subsequent join
operation satisfying all vertices of number ≥ 2 than the minimum (condition 2), no non-
valid functions dl for which unsatisfied vertices are infused in the label producing some
“false” state where u = 2 can be counted, as these vertices are not to be satisfied by some
following join node (3).

Correctness: To show correctness of our algorithm we need to establish that for every
node t ∈ TG, each table entry Dt[κ, s1, . . . , sw] contains the number of partial solutions to
the sub-problem restricted to the graph Gt, i.e. the number of valid functions dl ∈ DLr(t)
with |dl−1(0)| = κ (and disjoint sets dl−1(0)), such that for each label l ∈ [1, w] (being
the labels involved in t) the conditions imposed by its state sl = (vl, ul) are satisfied by
all such dl, i.e. minx∈Vl

dl(x) = vl and miny∈Ut
l
(dl)(dl(y) − vl) = 0, 1 when ul = 0, 1, while

miny∈Ut
l
(dl)(dl(y) − vl) ≥ 2, or U t

l (dl) = ∅ when ul = 2. That is:

∀t ∈ TG, w ∈ [1, cw], ∀(κ, s1, . . . , sw) ∈ (3.7)

∈ {κ ∈ [0, k]} × {(1, 0), . . . , (r, 0), (0, 1), . . . , (r − 1, 1), (0, 2), . . . , (r, 2)}w : (3.8)
{

Dt[κ, s1, . . . , sw] = |DLr(t)| : ∀dl ∈ DLr(t), ∀l ∈ [1, w] : (3.9)
{

(min
x∈Vl

dl(x) = vl)∧ (3.10)

∧[(ul = 0 ∧ min
y∈Ut

l
(dl)

(dl(y) − vl) = 0)∨ (3.11)

∨(ul = 1 ∧ min
y∈Ut

l
(dl)

(dl(y) − vl) = 1)∨ (3.12)

∨(ul = 2 ∧ (min
y∈Ut

l
(dl)

(dl(y) − vl) ≥ 2 ∨ U t
l (dl) = ∅)]}∧ (3.13)

∧{|dl−1(0)| = κ}
}

. (3.14)

This is shown by induction on the nodes t ∈ TG:

• Introduce nodes: This is the base case of our induction. For node t with operation
i(l) and l ∈ [1, cw], all entries are properly initialized as there is one function dl
that includes the introduced vertex in the center-set and one that does not, thus
|DLr(t)| = 1 for sl = (0, 2), κ = 1 and sl = (> 0, 0), κ = 0, while for any other
configuration DLr(t) = ∅. In the following cases, we assume (our induction hypoth-
esis) that all entries of Dt−1 (and Dt−2 for union nodes) satisfy the above statement
(3.7-3.14).

46

• Join nodes: For node t with operation η(a, b) and a, b ∈ [1, w], all edges are added
between vertices of labels a and b. Thus for each entry Dt[κ, s1, . . . , s′

a, s′
b, . . . , sw], all

valid functions dl counted in the entries of the previous table Dt−1[κ, s1, . . . , sa, sb, . . . , sw]
remain valid if v′

a = va, v′
b = vb (3.10) and u′

a = ua, u′
b = ub (3.11-3.13), while for all

entries in Dt where v′
a = va, v′

b = vb and u′
a = 2 (resp. u′

b = 2), all functions counted
for entries of Dt−1 where va + ua > vb (resp. vb + ub > va), are valid as well (3.13),
since in the resulting graph Gt of node t, vertices in a (resp. b) can become satisfied
by the addition of such edges (and validation of condition 1). This is precisely the
definition of set Q(s′

a, s′
b).

• Rename nodes: For node t with operation ρ(w + 1, w), all vertices of label w + 1 will
now be included in label w. Thus for each entry Dt[κ, s1, . . . , s′

w], we require all valid
functions dl counted in the entries of the previous table Dt−1[κ, s1, . . . , sw, sw+1],
where states sw, sw+1 describe the possible situations for labels w, w + 1 that could
combine to give the new state s′

w for label w: first, value v′
w denotes the minimum

allowed number in any vertex that was previously in w or w + 1, yet at least one
of these labels must have had some vertex with exactly this number and thus v′

w =
min{vw, vw+1} (3.10). Next, value u′

w denotes whether the difference between this
number and the minimum number of any unsatisfied vertex is 0,1, or greater (if
any) and the possible combinations of states sw, sw+1 are fully described in the
definition of set M(s′

w): for u′
w to be 0 we must have vw = v′

w and uw = 0, while
vw+1 ≥ vw and uw+1 ≥ 0 (or vice-versa), i.e. at least one of uw, uw+1 must be 0 with
its corresponding value vw, vw+1 being the minimum, while the state of the other can
have any at least equal values, as only the minimum is retained (3.11). For u′

w to
be 1 we must have either vw = v′

w and uw = 1, while also vw+1 = v′
w and uw+1 ≥ 1,

or vw = v′
w and uw = 1, while vw+1 > v′

w and uw+1 ≥ 0 (or vice-versa), i.e. one
label must have the same target state, while the other must also have the same v
with a u greater than 1, or a greater v and any u so as not to make u′

w smaller than
the target 1 (3.12). Finally, for u′

w to be 2 we must have either uw = uw+1 = 2,
i.e. that both states have a difference of at least 2 between the minimum number of
any vertex and the minimum of any unsatisfied vertex, or v′

w < vw and uw+1 = 2,
while either vw − v′

w ≥ 2 and uw = 0, or vw − v′
w ≥ 1 and uw = 1 (or vice-versa),

i.e. that one label must have state (> v′
w, 0) and the other can have any state from

(≥ v′
w + 2, 0) or (≥ v′

w + 1, 1), their combined numbers inducing (v′
w, 2) (3.13).

• Union nodes: For node t with operation Gt−1 ∪ Gt−2 and children nodes t − 1, t − 2,
the resulting graph Gt is the disjoint union of graphs Gt−1, Gt−2, where all common
labels j ∈ [1, i] involved in both t − 1, t − 2 will now include all vertices that were
included in label j in one of the previous graphs, while nothing changes for all other
labels. This can be seen to be similar to the result of a rename operation between
the label j from graph Gt−1 and the same label from Gt−2. Thus for each entry
Dt[κ, s′

1, . . . , s′
i, . . . , sw], we require the product of the numbers of all valid functions

dl counted in entries Dt−1[κ1, s1, . . . , si, . . . , sy] for t−1 and those counted in entries
Dt−2[κ − κ1, s̄1, . . . , s̄i, . . . , sz] for t − 2, summed over all possible combinations of
states sj , s̄j that belong to some pair in M(s′

j) for every j ∈ [1, i], as well as over
all values of κ1 from 0 to κ, since the number of valid functions in Gt respecting
the conditions of the target entry is equal to a number of valid functions in Gt−1

(counted in entries of the first type) for each valid function that complements each

47

of them in Gt−2 (counted in entries of the second type): the sizes of dl−1(0) always
add up to κ (3.14), while the states sj , s̄j of all common labels j in any pair of entries
from Dt−1, Dt−2 would result in the desired target state sj for the same label in the
entry from Dt in question, as they belong in the set M(s′

j) (3.10-3.13).

Theorem 24. Given graph G, along with k, r ∈ N+ and clique-width expression TG of
clique-width cw for G, there exists an algorithm to solve the counting version of the (k, r)-
Center problem in O∗((3r + 1)cw) time.

Proof. Correctness of the dynamic programming algorithm is given above, while for the
final computation at the root z of TG, all entries Dz[k, s1, . . . , sw] with ul = 2, ∀l ∈ [1, w]
and w ∈ [1, cw] can be considered for identification of the number of valid functions dl,
or (k, r)-centers of graph Gz = G. For the decision version of the problem, the algorithm
can output “yes” if any of these entries’ value is > 0 and “no” otherwise.

For the algorithm’s complexity, there are at most k(3r + 1)cw entries in each table Dt

of any node t and any entry of the O(n · cw2) join/rename nodes can be computed in O(r)
time, while for the O(n) union nodes, table transformations require O∗(k · cw · (3r + 1)cw)
time and any entry of the transformed tables can be computed in O(k) time.

3.2 Vertex Cover, Feedback Vertex Set and Tree-depth

3.2.1 Vertex Cover and Feedback Vertex Set: W[1]-hardness

In this subsection we first show that the edge-weighted variant of the (k, r)-Center prob-
lem parameterized by vc + k is W[1]-hard, and more precisely, that the problem does not
admit a no(vc+k) algorithm under the ETH (Theorem 27). We give a reduction from k-

Multicolored Independent Set. This is a well-known W[1]-hard problem that cannot
be solved in no(k) under the ETH [35].

Construction: Given an instance [G = (V, E), k] of k-Multicolored Independent

Set, we will construct an instance [G′ = (V ′, E′), k] of edge-weighted (k, r)-Center,
where r = 3n. First, for every set Vi ⊆ V , we create a set Pi ⊆ V ′ of n vertices pi

l, ∀l ∈
[1, n], ∀i ∈ [1, k] (that directly correspond to the vertices of Vi) and two guard vertices
g1

i , g2
i , attaching them to all vertices in Pi by edges of weight r = 3n. Next, for each

i ∈ [1, k], we create another pair of vertices ai, bi and connect ai to each vertex pi
l by an

edge of weight n+ l, while bi is connected to each vertex pi
l by an edge of weight 2n− l +1.

Now each Pi contains all vertices ai, bi, g1
i , g2

i and each pi
l, ∀l ∈ [1, n].

Finally, for each edge e ∈ E with endpoints in Vi1 , Vi2 and i1 6= i2 (not part of a clique),
we create a vertex ue that we connect to vertices ai1 , bi1 and ai2 , bi2 . We set the weights of
these edges as follows: suppose that e connects the j1-th vertex of Vi1 to the j2-th vertex
of Vi2 . Then we set w(ue, ai1) = 2n − j1 + 1, w(ue, bi1) = n + j1, w(ue, ai2) = 2n − j2 + 1,
w(ue, bi2) = n + j2.

Lemma 25. If G has a k-multicolored independent set, then G′ has a (k, 3n)-center.

Proof. Let I ⊆ V be a multicolored independent set in G of size k and vi
li

denote the vertex
selected from each Vi, or I := {v1

l1
, . . . , vi

li
, . . . , vk

lk
}. Let S ⊆ V ′ be the set of vertices pi

li

in G′ that correspond to each vi
li

. We claim S is a (k, r)-center of G′: since one vertex
is selected from each Pi in G′, all the guards g1

i , g2
i and vertices ai, bi are within distance

48

P1 Pi Pk
g1i g2i

ai bi

pin

pi1

ue

3n 3n

n+ 1

2n

n+ l

n+ 1

2n

2n− l + 1

n+ l2n− l + 1

Figure 3.9: A general picture of graph G′. The circled vertex is pi
l, while dotted lines

match edges to weights.

r = 3n from selected vertex pi
li

for some li ∈ [1, n] and every i ∈ [1, k]. For vertices ue,
observe that selected vertex pi

li
is at distance n + li + 2n − li + 1 = 3n + 1 from ue, through

either ai or bi, if its corresponding vertex in G is an endpoint of e, or e = (vi
li

, w) for some
w ∈ V \Vi. As I is an independent set of G, however, there can be no edge between any two
selected vertices vi

li
, vj

lj
∈ I with i 6= j and thus, we know that for every ue at least one of

the vertices pi
li

, pj
lj

selected for S from the two components Pi, Pj to which ue is connected

will not be one of the vertices corresponding to the endpoints of edge e, or e 6= (vi
li

, vj
lj

).

Let e := (vi
x, vj

y), with x 6= li and/or y 6= lj . Assuming without loss of generality that
x 6= li is the case, we have that the distances from ue to pi

li
are n + li + 2n − x + 1 via ai

and 2n − li + n + x via bi. If x > li then distance via ai is 3n + 1 + li − x ≤ 3n, while if
x < li the distance via bi is 3n + x − li < 3n.

Lemma 26. If G′ has a (k, 3n)-center, then G has a k-multicolored independent set.

Proof. Let S ⊆ V ′ be the (k, 3n)-center in G′. As |S| = k and all guard vertices g1
i , g2

i , ∀i ∈
[1, k] must be within distance 3n from some selected vertex, set S must contain exactly
one vertex from each Pi, or S = {p1

l1
, . . . , pk

lk
} for some li ∈ [1, n] for each i ∈ [1, k]. We

let I ⊆ V be the set of vertices vi
li

∈ Vi, i ∈ [1, k] that correspond to each pi
li

and claim

that I is an independent set in G: suppose there is an edge e = (vi
li

, vj
lj

) ∈ E, i 6= j and

vi
li

, vj
lj

∈ I. Then there must be a vertex ue ∈ G′ with edges to ai, bi ∈ Pi and aj , bj ∈ Pj ,

where we have pi
li

, pj
lj

∈ S. The distance from ue to pi
li

is 2n − li + 1 + n + li > 3n, via

either ai or bi, while the distance from ue to pj
lj

is also 2n − lj + 1 + n + lj > 3n, via either
aj , bj , meaning ue is not covered by S, giving a contradiction.

Theorem 27. The weighted (k, r)-Center problem is W[1]-hard parameterized by vc+k.
Furthermore, if there is an algorithm for weighted (k, r)-Center running in time no(vc+k)

then the ETH is false.

Proof. Observe that the set Q ⊂ V ′ that includes all guard vertices g1
i , g2

i and ai, bi,
∀i ∈ [1, k], is a vertex cover of G′, as all edges have exactly one endpoint in Q. This

49

means vc(G′) ≤ 4k. In addition, parameter k remains the same in both the instances of
k-Multicolored Independent Set and (k, r)-Center. Thus, the construction along
with Lemmas 25 and 26, indeed imply the statement.

Using essentially the same reduction we also obtain a similar hardness result for un-
weighted (k, r)-Center parameterized by fvs.

Corollary 28. The (k, r)-Center problem is W[1]-hard when parameterized by fvs + k.
Furthermore, if there is an algorithm for weighted (k, r)-Center running in time no(vc+k),
then the ETH is false.

Proof. We use the same reduction as in Theorem 27, except that we replace all weighted
edges by unweighted paths through new vertices in such a way that distances between
original vertices are preserved. It is not hard to see that any set that was a vertex cover of
the previous graph is a feedback vertex set of the new graph, hence fvs = O(k). Lemma
25 goes through unchanged, while for Lemma 26 it suffices to observe that, because of the
guard vertices, no valid solution can be using one of the new vertices as a center.

3.2.2 Vertex Cover: FPT algorithm

We now show that unweighted (k, r)-Center admits an algorithm running in time O∗(5vc),
in contrast to its weighted version (Theorem 27). We devise an algorithm that operates
in two stages: first, it guesses the intersection of the optimal solution with the optimal
vertex cover, and then it uses a reduction to Set Cover to complete the solution.

Theorem 29. Given graph G, along with k, r ∈ N+ and a vertex cover of size vc of G,
there exists an algorithm solving unweighted (k, r)-Center in O∗(5vc) time.

Proof. Let C be the given vertex cover of G and I = V \ C be the remaining independent
set. We assume without loss of generality that the graph is connected (otherwise each
component can be handled separately). We also assume that r ≥ 2, otherwise the problem
reduces to Dominating Set which is already known to be solvable faster than O∗(5vc).

Let K be some (unknown) optimal solution. Our algorithm first guesses a partition
of C into three sets C = S ∪ R ∪ Q such that S = K ∩ C, Q contains the vertices of C
which are at distance exactly r from K, and R the rest (which are at distance < r from
K). Our algorithm first guesses this partition by trying out all 3vc possibilities.

Suppose we are given a partition C = S ∪ R ∪ Q as above. We would like to check
if this is the correct partition and then find a set Z ⊆ I such that S ∪ I is an optimal
solution. First, we verify that all vertices of Q are at distance ≥ r from S (otherwise we
already know this is not a correct partition). Second, we check if there exists v ∈ I such
that N(v) ⊆ Q. In such a case, we again know that this is not a correct partition, since
such a v would need to be included in K, which would imply that its neighbors in Q are at
distance < r from K. We can therefore assume that all vertices in I have some neighbor
in S ∪ R.

We now formulate an instance of Set Cover as follows: the universe contains all
vertices of R ∪ Q which are not already covered, that is, all vertices of R which are at
distance ≥ r from S and all vertices of Q which are at distance > r from S. We construct
a set for each vertex of v ∈ I and we place in it all vertices u ∈ R such that d(v, u) < r
and all vertices u ∈ Q such that d(v, u) ≤ r. We solve this Set Cover instance in time
O∗(2|R∪Q|) using dynamic programming, and this gives us a set Z ⊆ I. We output S ∪ Z

50

as a solution to (k, r)-Center. We observe that this is always a valid solution because
by construction all vertices of R are at distance < r from S ∪ Z, and all vertices of I
have a neighbor in S ∪ R. If we started with the correct partition of C into S, R, Q then
this solution is optimal because K ∩ I must give a feasible set cover of the instance we
constructed.

To analyze the running-time, observe that if |S| = i, then the algorithm goes through
2vc−i possible partitions of C\S into R, Q, and then for each partition spends 2vc−inO(1) to
solve Set Cover. Hence, the algorithm runs in time

∑vc
i=0

(vc
i

)

4vc−inO(1) =
∑vc

i=0

(vc
i

)

4inO(1) =
5vcnO(1).

3.2.3 Tree-depth: Tight ETH-based lower bound

We now consider the unweighted version of (k, r)-Center parameterized by td. Theo-
rem 27 has established that weighted (k, r)-Center is W[1]-hard parameterized by vc (and
hence also by td by Lemma 3), but the complexity of unweighted (k, r)-Center parame-
terized by td does not follow from this theorem, since td is incomparable to fvs. Indeed,
we will show that (k, r)-Center is FPT parameterized by td and precisely determine its
parameter dependence based on the ETH.

We begin with a simple upper bound argument. We will make use of the following
known fact on tree-depth, while the algorithm then follows from the dynamic programming
procedure of [22] and the relationship between r, td and tw:

Lemma 30. For any graph G = (V, E) we have diam(G) ≤ 2td+1 − 2, where diam(G)
denotes the graph’s diameter.

Proof. We use the following equivalent inductive definition of tree-depth: td(K1) = 0 while
for any other graph G = (V, E) we set td(G) = 1 + minu∈V td(G \ u) if G is connected,
and td(G) = maxC td(G[C]) if G is disconnected, where the maximum ranges over all
connected components of G.

We prove the claim by induction. The inequality is true for K1, whose diameter is 0.
For the inductive step, the interesting case is when G = (V, E) is connected, since otherwise
we can assume that the claim has been shown for each connected component and we are
done. Let u ∈ V be such that td(G) = 1+td(G\u). Consider two vertices v1, v2 ∈ V \{u}
which are at maximum distance in G. If v1, v2 are in the same connected component of
G′ := G \ u, then dG(v1, v2) ≤ dG′(v1, v2) ≤ diam(G′) ≤ 2td(G′)+1 − 2 ≤ 2td(G)+1 − 2,
where we have used the inductive hypothesis on G′. So, suppose that v1, v2 are in different
connected components of G′. It must be the case that u has a neighbor in the component
of v1 (call it v′

1) and in the component of v2 (call it v′
2), because G is connected. We have

dG(v1, v2) ≤ dG(v1, v′
1) + 2 + dG(v2, v′

2) ≤ dG′(v1, v′
1) + 2 + dG′(v2, v′

2) ≤ 2diam(G′) + 2 ≤
2 · 2td(G′)+1 − 2 = 2td(G)+1 − 2.

Theorem 31. Unweighted (k, r)-Center can be solved in time O∗(2O(td2)).

Proof. The main observation is that we can assume that r ≤ diam(G), because otherwise
the problem is trivial. Hence, by Lemma 30 we have r ≤ 2td+1. We can now rely on
Lemma 3 to get tw ≤ td, and the algorithm of [22] which runs in time O∗((2r +1)tw) gives
the desired running-time.

The main contribution concerning the tree-depth parameter is to establish a tight
ETH-based lower bound, matching Theorem 31.

51

Construction: Given an instance φ of 3-SAT on n variables and m clauses, where we
can assume that m = O(n) (by the Sparsification Lemma, see [61]), we will create an
instance [G = (V, E), k] of the unweighted (k, r)-Center problem, where k =

√
n and

r = 3 · c
√

n for an appropriate constant c. To simplify notation, we assume without loss of
generality that

√
n is an integer.

We first group the clauses of φ into
√

n equal-sized groups F1, . . . , F√
n. As a result,

each group involves O(
√

n) variables, so there are 2O(
√

n) possible assignments to the
variables of each group. Select c appropriately so that each group Fi has at most c

√
n

possible partial assignments φi
j for the variables of clauses in Fi.

We then create for each i ∈ {1, . . . , n}, a set Pi of at most c
√

n vertices pi
1, . . . , pi

c
√

n ,
such that each vertex of Pi represents a partial assignment to the variables of Fi that
satisfies all clauses of Fi. We add two guard vertices g1

i , g2
i , attaching them to all vertices

of Pi by paths of length r = 3 · c
√

n. Next, for each i ∈ {1, . . . ,
√

n}, we create another
pair of vertices ai, bi, connecting ai to each vertex pi

l by a path of length c
√

n + l, while bi

is connected to each vertex pi
l by a path of length 2 · c

√
n − l + 1. Now each Pi contains all

vertices ai, bi, g1
i , g2

i and each pi
l, ∀l ∈ {1, . . . , c

√
n}.

Finally, for any two conflicting partial assignments φi
l, φj

o, with l, o ∈ {1, c
√

n} and
i, j ∈ {1,

√
n}, i.e. two partial assignments that assign conflicting values to at least one

variable, we create a vertex ui,j
l,o that we connect to vertices ai, bi and aj , bj : if pi

l ∈ Pi is
the vertex corresponding to φi

l and pj
o ∈ Pj is the vertex corresponding to φj

o, then vertex
ui,j

l,o is connected to ai by a path of length 2 · c
√

n − l + 1 and to bi by a path of length

c
√

n + l, as well as to aj by a path of length 2 · c
√

n − o + 1 and bj by a path of length
c

√
n + o. See Figure 3.10 for an illustration.

P1 Pi P√
n

g1i g2i

ai bi

pi
c
√

n

pi1

u
i,1

l,o

3 · c
√
n

3 · c
√
n

c
√
n + 1

2 · c
√
n

c
√
n + l

c
√
n + 1

2 · c
√
n

2 · c
√
n
− l + 1

c
√
n + l2 · c

√
n
− l + 1

Figure 3.10: A general picture of graph G. Note all straight lines denote paths of length
equal to the number shown by dotted lines, while the circled vertex is pi

l.

Lemma 32. If φ has a satisfying assignment, then there exists a (k, r)-center in G of size
k =

√
n and r = 3 · c

√
n.

Proof. Consider the satisfying assignment for φ and let φi
li

, with li ∈ {1, . . . , c
√

n} and
i ∈ {1, . . . ,

√
n}, be the restriction of that assignment for all variables appearing in clauses

of group Fi. We claim the set K, consisting of all vertices pi
li

corresponding to φi
li

,

52

is a (k, r)-center for G with k =
√

n and r = 3 · c
√

n. Since one vertex is selected
from each Pi in G, all the guards g1

i , g2
i and vertices ai, bi are within distance 3 · c

√
n

from selected vertex pi
li

. For vertices ui,j
li,lj

, observe that selected vertex pi
li

is at distance

c
√

n + li + 2 · c
√

n − li + 1 = 3 · c
√

n + 1 from ui,j
li,lj

, through either ai or bi, while vertex pj
lj

is at distance c
√

n + lj + 2 · c
√

n − lj + 1 = 3 · c
√

n + 1 from ui,j
li,lj

, through either aj or bj ,

only if the corresponding partial assignments φi
li

and φj
lj

are conflicting. As φi
li

, φj
lj

are
parts of a satisfying assignment for φ, however, this will not be the case and at least one
path from ui,j

li,lj
to either pi

li
, or pj

lj
, will be of length ≤ 3 · c

√
n.

Lemma 33. If there exists a (k, r)-center in G of size k =
√

n and r = 3 · c
√

n, then φ
has a satisfying assignment.

Proof. Let K ⊂ V be the (k, r)-center in G, with r = 3·c
√

n and k =
√

n. As |K| = k =
√

n
and all guard vertices g1

i , g2
i , ∀i ∈ {1, . . . ,

√
n}, must be within distance at most 3 · c

√
n

from some vertex selected in K, the set K must contain exactly one vertex from each
Pi, or K = {p1

l1
, . . . , p

√
n

l√n
}, for some li ∈ {1, . . . , c

√
n} and for each i ∈ {1, . . . ,

√
n}. We

set the assignment for φ to consist of all partial assignments φi
li

, with i ∈ {1, . . . ,
√

n},
corresponding to vertices pi

li
∈ K and claim that this is a valid assignment that satisfies

φ. It is not hard to see that, if the assignment is valid, then it satisfies the clause, as we
have only listed partial assignments that satisfy all clauses of each group. To see that the
assignment does not assign conflicting values to any variable, suppose for contradiction
that there are two conflicting partial assignments φi

li
, φj

lj
and a vertex ui,j

li,lj
∈ G with paths

to ai, bi ∈ Pi and aj , bj ∈ Pj , where we have pi
li

, pj
lj

∈ K. The distance from ui,j
li,lj

to pi
li

is 2 · c
√

n − li + 1 + c
√

n + li > 3 · c
√

n, via either ai or bi, while its distance to pj
lj

is also

2 · c
√

n − lj + 1 + c
√

n + lj > 3 · c
√

n, via either aj , bj , meaning ui,j
li,lj

is not covered by K,
giving a contradiction.

Lemma 34. The tree-depth of G is 4
√

n + ⌈log(3 · c
√

n)⌉ + 1 = O(
√

n).

Proof. Again we use the definition of tree-depth used in Lemma 30. Consider the graph G
after removal of all guard vertices g1

i , g2
i and all ai, bi, ∀i ∈ [1,

√
n]. The graph now consists

of a number of sub-divided stars, centered either on some vertex ui,j
l,o, or some pi

l, while the

maximum distance from each such center to a leaf vertex in the star is 3·c
√

n −1, for a path
connecting pi

l to a guard g1
i , g2

i , omitting the final edge due to removal of g1
i , g2

i . The claim
follows since paths of length n have tree-depth exactly ⌈log(n + 1)⌉ (this can be shown by
repeatedly removing the middle vertex of a path). By the definition of tree-depth, after
removal of 4

√
n vertices from G, the maximum tree-depth of each resulting disconnected

component is ⌈log(3 · c
√

n)⌉ = ⌈√
n · log(c) + log(3)⌉.

Theorem 35. If (k, r)-Center can be solved in 2o(td2) · nO(1) time, then 3-SAT can be
solved in 2o(n) time.

Proof. Suppose there is an algorithm for the (k, r)-Center problem with running-time
2o(td2). Given an instance φ of 3-SAT, we use the above construction to create an instance
[G, k, r] of (k, r)-Center, with k =

√
n and r = 3 · c

√
n, in time O(

√
n · c

√
n + c2

√
n). As,

by Lemma 34, we have td(G) = O(
√

n), using the supposed algorithm for (k, r)-Center,
we can decide whether φ has a satisfying assignment in time 2o(td2) · nO(1) = 2o(n).

53

3.3 Treewidth: FPT approximation scheme

In this section we present an FPT approximation scheme (FPT-AS) for (k, r)-Center

parameterized by tw. Given as input a weighted graph G = (V, E), k, r ∈ N+ and an
arbitrarily small error parameter ǫ > 0, our algorithm is able to return a solution that
uses a set of k centers K, such that all other vertices are at distance at most (1+ǫ)r from K,
or to correctly conclude that no (k, r)-center exists. The running-time of the algorithm is
O∗((tw/ǫ)O(tw)), which (for large r) significantly out-performs any exact algorithm for the
problem (even for the unweighted case and more restricted parameters, as in Theorems 27
and 28), while only sacrificing a small ǫ error in the quality of the solution.

Our algorithm is a modification of the dynamic programming for (k, r)-Center param-
eterized by tw, that we provide for completeness at the end of this chapter (Theorem 46,
see also [22]). Our approach will rely heavily on a technique introduced in [73] (see also
[4]) to approximate problems which are W-hard by treewidth. The idea is that, if the
hardness of the problem is due to the fact that the DP table needs to store tw large num-
bers (in our case, the distances of the vertices in the bag from the closest center), we can
significantly speed up the algorithm if we replace all entries by the closest integer power
of (1 + δ), for some appropriately chosen δ. This will reduce the table size from (roughly)
rtw to (log(1+δ) r)tw.

In this way, if we can guarantee that these rounded values are always close to their
exact counterparts that the original dynamic programming algorithm would use instead,
we can obtain approximate solutions considerably faster. To that end, an abstract model
of computation called the Approximate Addition Tree is introduced in [73] that captures
these rounding ideas, while an analysis of their approximation performance guarantees
that the rounding errors do not accumulate to an excessive extent.

Intuitively, an addition tree simulates the computations over a tree decomposition
and the approximate version refers to the corresponding computations performed by the
same tree, but on approximate values instead. The dynamic programming procedure for
(k, r)-Center in fact computes the size k of the solution that we still want to exactly
calculate, with approximate values used here for the distances of the vertices from the
center-set. These values will be used as state-representations in the calculations of the
algorithm, while the value of each entry of the DP table will contain the exact size of the
corresponding (partial) solution. We will use these notions of Approximate Addition Trees
to refer to the computations of distance/state-representation over the tree decomposition.4

Definition 36. An Addition Tree is a full rooted binary tree T , where a non-negative
integer input xl is associated with each leaf l (provided with T) and a non-negative integer
value yv is associated with each node v. The value of each node is calculated as follows:

1. For each leaf l, we set yl := xl;

2. For each internal node v with two children u1, u2, whose values have already been
calculated, we set yv := yu1 + yu2.

An (exact) Addition Tree receives its inputs at the leaves, while the value of each
node is calculated by simple addition of previously calculated values for its children. An
Approximate Addition Tree operates in a similar way, with simple addition substituted

4The exposition of this section in the standalone version of [67] avoids making use of these definitions,
but we give here a generic description as a similar approach is used in Section 4.3 for d-Scattered Set.

54

for a randomized variant, that in fact can only produce results rounded to a specific set
of values.

Definition 37. An Approximate Addition Tree with parameter δ is a full rooted binary
tree T , where a non-negative integer input xl is associated with each leaf l and a non-
negative integer approximate value zv is associated with each node v. The approximate
value of each node is calculated as follows:

1. For each leaf l, we set zl := xl;

2. For each internal node v with two children u1, u2, we set zv := zu1 ⊕ zu2, where the
⊕ operation is defined below.

Let av := zu1 +zu2. We call av the initial approximate value of v. We use ⊕ to denote
the following operation: for two non-negative numbers x1, x2 we define x1 ⊕ x2 := 0
if x1 = x2 = 0. Otherwise, we select a real number ρ ∈ (0, 1) uniformly at random
and set x1 ⊕ x2 := (1 + δ)⌊log(1+δ)(x1+x2)+ρ⌋.

Observe that whenever an approximate value zv is non-zero, it must be an integer
power of (1 + δ) and if the maximum value calculated by an exact tree would be at most
polynomial in n, with δ = Ω(1/ logc n), there would be at most poly(log n) many different
values that could appear in the approximate tree. This will allow for significantly smaller
dynamic programming table sizes and a much faster algorithm.

Concerning the rounding error for each non-zero value for a node v of an Addition
Tree (as for any node v with yv = 0, we also have zv = 0), with yv its (positive) value and
zv its approximate value calculated if we view the tree as an Approximate Addition Tree,
the error λv is defined as λv := log(1+δ)

zv
yv

. Note that λv and zv are random variables
(based on the random rounding choices), while yv is fully specified once the inputs of the
tree are fixed. We note that the randomized component of the technique is in fact not
necessary here, as we could simply set ρ = 0 in the above definition and still get the same
results5. The main theorem of [73] that we require to bound the maximum error in any
appropriately constructed Approximate Addition Tree is given next.

Theorem 38 ([73], Theorem 3). If an Approximate Addition Tree has maximum height
h, then for all nodes v we always have |λv| ≤ h + 1. Therefore, if δ < ǫ

2h , then for all v
we have max{ zv

yv
, yv

zv
} < 1 + ǫ.

This is shown by induction on the maximum height h, the crucial observation being
that the maximum absolute relative error never increases by more than a factor of 1 + δ.

For our purposes, the integers we would like to approximately store are the state-values
|sj | ∈ [1, r], representing the maximum distance of vertex vj in some bag Xi of the tree
decomposition to some vertex selected in the center-set K, during the computation of
the dynamic programming algorithm for the (k, r)-Center problem (see the end of this
chapter for details). Instead of allowing use of all r exact values to signify the states, we will
instead adopt probabilistically rounded approximations, that are inductively computed
and propagated, while keeping accumulation of error bounded as well.

Let Σδ := {0} ∪ {(1 + δ)l|l ∈ N}. Intuitively, Σδ is the set of rounded values that our
modified algorithm may use to designate state-values. Of course, Σδ as defined is infinite,
but we will only consider the set of values that are at most (1 + ǫ) · r, denoted by Σr

δ. In

5Thus always rounding our values down, as in the application of the following chapter for Theorem 63.

55

this way, the size of Σr
δ is reduced to log1+δ((1 + ǫ) · r), for an appropriate choice of δ, to

be specified later. For all nodes i of the tree decomposition, we now have for a table entry

Di[σ0, . . . , σt] :
{

(∅, 0) ∪ {↑ ×Σr−1
δ } ∪ {↓ ×Σr

δ \ {0}}
}t+1

7→ N0 ∪ {∞}, with 0 ≤ t < tw.
We next explain the inductive computation of the rounded states σ with π ∈ {↑, ↓},

since for π = ∅ (zero state), it will be |s| = |σ| = 0. First, for a vertex vj with πj =↓
(negative state), consider a bag Xi introducing it and in particular the first computational
case, where there must be a vt′ ∈ Xi with πt′ ∈ {↓, ∅}, such that |st′ | + di(vt′ , vj) ≤ |sj |.
The rounded state-value for vj is then inductively given by |σj | := |σt′ |⊕d(vt′ , vt+1), where
⊕ is the operator referred to in Definition 37. The base case of the inductive computation
is vertex vt′ being considered for inclusion in the center-set, that is st′ = (∅, 0).

On the other hand, for a vertex vj with πj =↑ (positive state), we have |σj | := 0 as a
base case for the inductive computation of rounded state-values, while πj =↑, i.e. the “first”
positive state that signifies this vertex will be at distance at most r to some vertex not yet
introduced in the current stage of the algorithm. For the inductive step, we consider bag
Xi forgetting vertex vt+1 and in particular the condition for inclusion of entries in modified
table D∗, where there must be a vt′ ∈ Xi with πt′ =↑ and |st+1| + d(vt′ , vt+1) ≤ |st′ |. Now,
to appropriately define the inductive computation in a bottom-up manner, we identify
vertex vj with this vt′ that appears in the bag forgetting vertex vt+1, whose state-value
we will increment to obtain the rounded state-value for vj , i.e. the inductive computation
is given by |σj | := |σt+1| ⊕ d(vj , vt+1). Note that this is the reason for the “inverted”
scheme used for representation of positive state-values, as we would like the relative error
to decrease with increasing values and propagation occurring alongside the progression of
the algorithm over the tree decomposition and through the input graph.

Since our modified algorithm will make use of the rounded values |σj |, these being
inductively computed for each vertex vj by adding a previously calculated value |σt′ | for
some neighbor vt′ to their distance d(vj , vt′), a bound on the propagation of error would
be required so we can be sure that any values we may use will not be too far from their
exact counterparts. This is where Approximate Addition Trees become useful.

Before we go on, we require that the tree decompositions on which our algorithm is to
be applied are rooted and of maximum height O(log n), for reasons that become apparent
in the proof of Lemma 40. We use a result of [13] and Theorem 38 to bound the error of
any value calculated in this way, based on an appropriate choice of δ and therefore set Σr

δ

of available values.

Theorem 39. [13] There is an algorithm which, given a tree decomposition of width tw
of a graph on n nodes, produces a decomposition of the same graph with width at most
3tw + 2 and height O(log n) in polynomial time.

Lemma 40. Given ǫ and a tree decomposition (X , T) with T = (I, F), X = {Xi|i ∈ I},
where T is rooted, binary and of height O(log n), there exists a constant C, such that all
rounded state-values |σj | ∈ Σr

δ will be within a (1 + ǫ) range of their exact counterparts

|sj |, i.e.
|sj |

(1+ǫ) < |σj | < (1 + ǫ)|sj |, ∀vj ∈ Xi, ∀j ∈ [0, |Xi| − 1], ∀i ∈ I, where δ = ǫ
C log n .

Proof. Directly from its definition |σj | := |σt′ |⊕d(vt′ , vj), it is apparent that any calculated
state-value for some vertex vj is the same (or rather, follows the same distribution) as
the value at the root of an Approximate Addition Tree Tj , whose children would be an
Approximate Addition Tree Tt′ computing the value for vertex vt′ appearing in the same
bag and a leaf with value equal to the distance d(vj , vt′). This is true for all state-values

56

we will require, the base cases being states σj = (∅, 0) (negative) and simply σj = (↑, 0)
(positive).

Next, observe that during the computations of the algorithm, the maximum height
h of any such Approximate Addition Tree Tj can only increase by one if some vertex is
introduced in the tree decomposition, as paths to and from it become available. This
means no such Approximate Addition Tree Tj can be of height larger than the height
of the tree decomposition T and thus we have h = c log n for some constant c. By
Theorem 38, there exists some constant C > 2c, such that if δ = ǫ

C log n , we always have
for all nodes v of any such Approximate Addition Tree that max{ zv

yv
, yv

zv
} < 1 + ǫ. Now,

zv = |σj | is the rounded state-value calculated for some vertex vj by this node v of the
Approximate Addition Tree Tj and yv = |sj | is the exact value calculated by the same
node for the same vertex if Tj was seen as an exact Addition Tree. This indeed gives

|sj |
(1+ǫ) < |σj | < (1 + ǫ)|sj |, ∀vj ∈ Xi, ∀j ∈ [0, |Xi| − 1].

Correctness: Naturally, our modified algorithm making use of these rounded values
to represent states will not perform the same computations as the exact version. The new
statement of correctness, taking into account the approximate values now computed, is
the following (comparison with the simpler statement of the basic dynamic programming
given at the end of the chapter may be of interest):

∀i ∈ I, ∀(σ0, . . . , σt) ∈
{

(∅, 0) ∪ {↑ ×Σr−1
δ } ∪ {↓ ×Σr

δ \ {0}}
}t+1

, 0 ≤ t < tw : (3.15)
{

{

Di[σ0, . . . , σt] = min
K⊆Vi\Xi

|K| : (3.16)

{∀u ∈ Vi \ Xi :
{

∃v ∈ K ∧ ∃T : zroot(T) ∼ |σ| ∧ yroot(T) ≤ r ∧ di(u, v) ≤ |σ|
}

∨ (3.17)

∨
{

∃vj ∈ Xi : σj = (∅, 0) ∧ ∃T : zroot(T) ∼ |σ| ∧ yroot(T) ≤ r ∧ di(u, vj) ≤ |σ|
}

∨ (3.18)

∨
{

∃vj ∈ Xi : πj =↑ ∧∃T : zroot(T) ∼ |σj | ∧ di(u, vj) ≤ yroot(T)

}

}

∧

(3.19)
∧

{∀j ∈ [0, t] : πj =↓⇒
{

∃u ∈ K, ∃T ′ : zroot(T ′) ∼ |σj | ∧ di(u, vj) ≤ yroot(T ′)

}

∨ (3.20)

∨
{

∃vt′ ∈ Xi, ∃T ′′ : πt′ = ∅ ∧ zroot(T ′) ∼ |σj | ∧ (di(vj , vt′) ≤ yroot(T ′))}
}

}

(3.21)

∨Di[σ0, . . . , σt] = ∞
}

. (3.22)

In words, the above states that for every node i and all possible rounded-state-
configurations (σ0, . . . , σt) (3.15), table entry Di[σ0, . . . , σt] contains the minimum size
of a subset K of Vi \ Xi (3.16), such that for every vertex u in the subgraph Gi but not in
Xi, there is a vertex v included in K and an Approximate Addition Tree T , such that the
root of T computes the same value zroot(T) as some6 state-value |σ| (following the same
distribution, denoted by ∼) and if T was seen as an exact Addition tree, the distance from
u to v is at most |σ| (3.17), or there is a vertex vj in the current bag with σj = (∅, 0)
(zero state) and an Approximate Addition Tree T , such that the root of T computes the
same value zroot(T) as some state-value |σ| and if T was seen as an exact Addition tree,
the distance from u to vj is at most |σ| (3.18), or there is a vertex vj in the current bag
with πj =↑ (positive state) and an Approximate Addition Tree T , such that the root of

6This is the state-value for some vertex already forgotten in the current stage of the algorithm.

57

T computes the same value zroot(T) as |σj | and if T was seen as an exact Addition Tree,
the distance from u to vj is at most the value yroot(T) computed at the root of T (3.19),
and for every vertex vj in Xi, negative state with πj =↓ implies there is a vertex u in K
and an Approximate Addition Tree T ′, such that the root of T ′ computes the same value
zroot(T ′) as |σj | and if T ′ was seen as an exact Addition Tree, the distance from u to vj is
at most the value yroot(T ′) computed at the root of T ′ (3.20), or πj =↓ implies that there
is a vertex vt′ in Xi with |πt′ | = 0 and an Approximate Addition Tree T ′, such that the
root of T ′ computes the same value zroot(T ′) as |σj | and if T ′ was seen as an exact Addition
Tree, the distance from vj to vt′ is at most the value yroot(T ′) computed at the root of
T ′ (3.21), or if there is no such K ⊆ Vi, we have Di[σ0, . . . , σt] = ∞ for this table entry
(3.22), representing invalidity of the corresponding partial solution.

The main difference between the above and the exact statement of correctness is the
requirement for the existence of (Approximate) Addition Trees, whose values at the root
follow the same distribution as the inductively computed state-values, while if these were
seen as exact Addition Trees, their values at the root would need to satisfy the distance
requirements, as in the exact computation. All arguments for correctness of the algorithm
pertaining to its inner mechanism directly transfer here for the modified statement given
above, keeping in mind that now state-value computation for some vertex vj is given by
|σj | := |σt′ | ⊕ d(vt′ , vj), where |σt′ | is a previously calculated value for some vertex vt′

appearing in the same bag.

Lemma 41. All vertices are at distance at most (1+ǫ)·r from some vertex in the center-set
K output by the algorithm, if the above statement of correctness (3.15-3.22) holds.

Proof. For a given node i, if the statement of correctness (3.15-3.22) holds, then (3.17)
states that for all vertices u strictly before the current bag, there must be some vertex v
already included in K and some Approximate Addition Tree T computing a value zroot(T)

that follows the same distribution as some state-value |σ| the algorithm had earlier com-
puted for this vertex v, while also letting |s| denote the state-value the exact dynamic
program would have assigned to vertex v instead. Now, if T was an exact Addition Tree,
the value yroot(T) it computes would be required to be ≤ r. As the distance between u
and v is required to be di(u, v) ≤ |σ| and by Lemma 40 we have |σ| < (1 + ǫ) · |s|, we
also get di(u, v) < (1 + ǫ) · |s| ≤ (1 + ǫ) · r, which is precisely the approximate version
(i.e. with a multiplicative 1 + ǫ error factor) of the corresponding line in the statement of
correctness of the exact dynamic program. Similar arguments can be made for all lines
of the statement of correctness (3.17-3.21), showing that all distances are indeed within a
(1 + ǫ) factor of their exact counterparts.

Theorem 42. There is an algorithm which, given a weighted instance of (k, r)-Center

[G, k, r], a tree decomposition of G of width tw and a parameter ǫ > 0, runs in time
O∗((tw/ǫ)O(tw)) and either returns a (k, (1 + ǫ)r)-center of G, or correctly concludes that
G has no (k, r)-center.

Proof. First, according to the statement of Lemma 40, we select δ = ǫ
C log n , that we use

to define the set Σr
δ. Then, based on the modified state representations σj , with their

inductive computation as described above, we use the dynamic programming algorithm
of running-time (2r + 1)tw · nO(1) for the (k, r)-Center problem on the bounded-height
transformation of the given nice tree decomposition of width tw.

58

Correctness of the algorithm and justification of the approximation bound are given
above (Lemma 41), while the running-time crucially depends on the size of the set of

rounded values |Σr
δ| = log1+δ((1 + ǫ) · r) =

log((1 + ǫ) · r)
log(1 + ǫ

C log n)
=

log((1 + ǫ) · r)
ǫ

C log n

≤ O(log n)
ǫ ,

where we used the approximation log(1 + x) ≈ x for x ≈ 0, as well as Lemma 2.

3.4 Clique-width revisited: FPT approximation scheme

We give here an FPT-AS for (k, r)-Center parameterized by cw, both for unweighted
and for weighted instances (for a weighted definition of cw which we explain below). Our
algorithm builds on the algorithm of Subsection 3.3, and despite the added generality of the
parameterization by cw, we are able to obtain an algorithm with similar performance: for
any ǫ > 0, our algorithm runs in time O∗((cw/ǫ)O(cw)) and produces a (k, (1 + ǫ)r)-center
if the input instance admits a (k, r)-center.

Our main strategy, which may be of independent interest, is to pre-process the input
graph G = (V, E) in such a way that the answer does not change, yet producing a graph
whose tw is bounded by O(cw(G)). The main insight that we rely on, which was first
observed by [54], is that a graph of low cw can be transformed into a graph of low tw if
one removes all large bi-cliques. Unlike previous applications of this idea (e.g. [74]), we do
not use the main theorem of [54] as a “black box”, but rather give an explicit construction
of a tree decomposition, exploiting the fact that (k, r)-Center allows us to relatively
easily eliminate complete bi-cliques. As a result, we obtain a tree decomposition of width
not just bounded by some function of cw(G), but actually O(cw(G)).

In the remainder we deal with the weighted version of (k, r)-Center. To allow clique-
width expressions to handle weighted edges, we interpret the clique-width join operation η
as taking three arguments. The interpretation is that η(a, b, w) is an operation that adds
(directed) edges from all vertices with label a to all vertices with label b and gives weight
w to all these edges. It is not hard to see that if a graph has a (standard) clique-width
expression with cw labels, it can also be constructed with cw labels in our context, if we
replace every standard join operation η(a, b) with η(a, b, 1) followed by η(b, a, 1). Hence,
the algorithm we give also applies to unweighted instances parameterized by (standard)
clique-width.

We will also deal with a generalization of (k, r)-Center, where we are also supplied,
along with the input graph G = (V, E), a subset I ⊆ V of irrelevant vertices. In this
version, a (k, r)-center is a set K ⊆ V \ I, with |K| = k, such that all vertices of V \ I are
at distance at most r from K. Clearly, the standard version of (k, r)-Center corresponds
to I = ∅. As we explain in the proof of Theorem 45, this generalization does not make
the problem significantly harder.

In addition to the above, in this subsection we will allow edge weights to be equal to 0.
This does not significantly alter the problem, however, if we are interested in approximation
and allow r to be unbounded, as the following lemma shows:

Lemma 43. There exists a polynomial algorithm which, for any ǫ > 0, given an instance
I = [G, w, k, r] of (k, r)-Center, with weight function w : V → N, produces an instance
I ′ = [G, w′, k, r′] on the same graph with weight function w′ : V → N+, such that we
have the following: for any ρ ≥ 1, any (k, ρr′)-center of I ′ is a (k, ρr)-center of I; any
(k, ρr)-center of I is a (k, (1 + ǫ)ρr′)-center of I ′.

59

Proof. We define a scaling factor B := n
ǫ . We set w′((u, v)) = B · w((u, v)) + 1, for all

(u, v) ∈ E. We set r′ = B · r. Suppose that we have a (k, ρr)-center K for w. We use
the same solution for w′ and the maximum distance from K to any vertex is at most
Bρr + n = ρr′ + n. However, n ≤ ǫr′, hence this solution has maximum distance at most
(1 + ǫ)ρr′. For the converse direction, suppose that we have a solution for the function
w′ with maximum distance ρr′. We use the same solution and now the cost is at most
ρr′/B ≤ ρr, since w((u, v)) ≤ w′((u, v))/B.

Our main tool is the following lemma, whose strategy is to replace every large label-
set by two “representative” vertices, in a way that retains the same distances among all
vertices of the graph. Applying this transformation repeatedly results in a graph with
small treewidth. The main theorem of this subsection then follows from the above.

Lemma 44. Given a (k, r)-Center instance G = (V, E) along with a clique-width ex-
pression T for G on cw labels, we can in polynomial time obtain a (k, r)-Center instance
G′ = (V ′, E′) with V ⊆ V ′, and a tree decomposition of G′ of width tw = O(cw), with the
following property: for all k, r, G has a (k, r)-center if and only if G′ has a (k, r)-center.

Proof. Suppose we are given a clique-width expression of G, represented as a binary tree
T , using cw labels. We will first construct a new clique-width expression T ′, using cw + 3
labels in a way that preserves all (k, r)-centers. The end result will be that T ′ does
not contain any join operations involving large label-sets. We will use this property to
construct a tree decomposition of the resulting graph.

Let c be an appropriate small constant (for concreteness, let c = 10). We will say that
a label l ∈ {1, . . . , cw} is big in a node x ∈ T , if the graph described by the sub-expression
rooted at x has at least c vertices with label l. We say that l is newly big in x ∈ T , if l is
big in x but it is not big in any of the children of x in T . Finally, we say that l is active
inside (respectively active outside) in x ∈ T if l is newly big in x and, furthermore, there
exists an arc e ∈ E that is not yet present in x, whose head (respectively tail) is incident
on a vertex with label l in x. In other words, a label is active (inside or outside) in a
sub-expression, if it contains many vertices and there is a join operation (of the respective
direction) that is applied to its vertices somewhere higher in T .

Suppose that the nodes of T are ordered in some arbitrary way, so that a child is
ordered before its parent. Our transformation is the following: as long as there exists l ∈
{1, . . . , cw} and x ∈ T such that l is active (inside or outside) in x, we select the first such x
in the ordering and let l be an active label in x. We insert directly above x in T the following
operations: if l is active inside we introduce a vertex s with label cw + 1, and if l is active
outside we introduce a vertex t with label cw+2; we then add the operations η(cw+1, l, 0),
η(l, cw + 2, 0), followed by the rename operations ρ(l, cw + 3), ρ(cw + 1, l), ρ(cw + 2, l). In
words, this transformation (potentially) adds a “source” s, or a “sink” t to the graph (or
both), gives a junk label cw+3 to all vertices that previously had label l in x, and uses s, t
as the new representatives of this class of vertices. See also Figure 3.11 for an illustration.
We repeat this process until no x ∈ T contains an active label; this finishes in polynomial
time because once we eliminate all active labels from a node x, we do not re-visit it. If
the original instance had a set of irrelevant vertices I ⊆ V , we construct a set of irrelevant
vertices I ′ for G′ by adding to I all the s, t vertices created in the above procedure.

Let us first argue that any (k, r)-center of the original instance can be transformed
into a (k, r)-center of the new instance. Consider one step of the above procedure applied
on a node x ∈ T . The main observation is that such a step does not change the distance

60

and its tree decomposition of width O(cw). We then invoke Lemma 43 to make all edge
weights strictly positive, and then use the algorithm of Subsection 3.3. We remark that
this algorithm can be easily adjusted to handle the more general case of the problem
where some vertices are irrelevant: we simply need to modify the computation on Forget
nodes to allow the algorithm to retain a solution that has not satisfied a vertex u if u is
irrelevant and the computation on Introduce nodes to disregard a solution that considers
u for inclusion in the center-set.

Basic DP algorithm for Treewidth

We describe the basic dynamic programming algorithm for the decision version of the
(k, r)-Center problem (weighted/unweighted) on a given tree decomposition. This re-
sult is not novel and is given here only for completeness. The algorithm’s complexity is
O∗(2tw(2r + 1)tw) and the multiplicative factor of 2tw has not been avoided (as in [22]),
since an application of the subset convolution technique is not necessary for the exposition
of the approximation algorithm given in Section 3.3.

Recall that the input is a graph G = (V, E), along with two numbers k, r ∈ N+,
denoting the size of the requested center-set K ⊆ V , and the maximum distance from any
vertex to some vertex included in K, respectively. A nice tree decomposition (X , T) of
minimum width tw for G is also assumed to be given as input, where T = (I, F) is a tree
and X = {Xi|i ∈ I} is the set of bags, while maxi∈I |Xi| − 1 = tw.

Table description: There is a table Di associated with every node i ∈ I of the tree
decomposition with Xi = {v0, . . . , vt}, 0 ≤ t ≤ tw, while each table entry Di[s0, . . . , st]
is indexed by a t + 1-sized tuple (s0, . . . , st) of state-configurations, assigning a state sj ∈
{(∅, 0), (↓, 1), . . . , (↓, r), (↑, 0), . . . , (↑, r − 1)} to each vertex vj , ∀j ∈ [0, t]. Note that these
are couples of a direction (denoted πj ∈ {∅, ↑, ↓}) and a value |sj | from 0 to r (or r − 1).
There are 2r + 1 possible states for each vertex, designating its distance to a center-set K
at each stage of the algorithm:

• Negative state sj ∈ {(↓, 1), . . . , (↓, r)} signifies vertex vj is at distance at most |sj |
from a selected vertex u ∈ K within the terminal subgraph Gi defined by node i,
i.e. ∃u ∈ K ∩ Vi : di(u, vj) ≤ |sj |.

• Zero state sj = (∅, 0) signifies vertex vj is considered for selection in the center-set,
i.e. vj ∈ K.

• Positive state sj ∈ {(↑, 0), (↑, 1), . . . , (↑, r − 1)} signifies vertex vj is at distance at
most r − |sj | from a vertex u that has not yet been introduced and will be selected
in K at a later stage of the algorithm (being “expected”), i.e. ∃u ∈ K ∩ {V \ Vi} :
d(u, vj) + |sj | ≤ r.

Note that for positive states sj , the interpretation of their values |sj | is, after a fashion,
the “inverse” of what negative values signify (i.e. maximum distance from a center-vertex):
the informal meaning here is that there have already been |sj | “steps taken” for connection
of vertex vj to a vertex in the center-set K. The reasons for this inversion of significance
of positive state-values become apparent in Section 3.3, where approximate values are
inductively computed and relative error should decrease with increasing values.

62

For a node i ∈ I, each table entry Di[s0, . . . , st] contains the minimum number of
vertices a center-set K ⊆ Vi \ Xi will require to cover all vertices in the terminal subgraph
Gi, excluding those in the current bag Xi, their own situation being described by the
particular state configuration (s0, . . . , st) indexing this entry. The computation of each
entry is based on the type of node the table is associated with (leaf, introduce, forget, or
join), previously computed entries of the table associated with the preceding node(s) and
the structure of the node’s terminal subgraph. In particular, we have ∀i ∈ I, Di[s0, . . . , st] :
{(∅, 0), (↓, 1), . . . , (↓, r), (↑, 0), . . . , (↑, r − 1)}t+1 7→ N0∪{∞}, where 0 ≤ t < tw and ∞ is an
arbitrarily large integer, signifying that state-configuration (s0, . . . , st) does not correspond
to a valid partial solution (in conjunction with other relevant information). The inductive
computation of all table entries for each type of node is given next.

Leaf node i with Xi = {v0}: We have:

Di[s0] :=

{

∞, if π0 =↓;

0, otherwise.

Leaf nodes contain only one vertex and all entries for negative states are assigned an ∞
value, as the partial solutions defined are invalid in the absence of potential connections,
while zero and positive states are initialized to 0.

Introduce node i with Xi = Xi−1 ∪ {vt+1}: Given state-configuration (s0, . . . , st),
assume (without loss of generality) that for some t′ ∈ [0, t] (if any) we have πj =↑, ∀j ∈
[0, t′], while πt′+1, . . . , πt ∈ {∅, ↓}. Let S+

t′ denote the set of all possible tuples S =
(s+

0 , . . . , s+
t′), where each state s+

j is either the same state sj , or its opposite (in terms of
↑, ↓ direction):

S+
t′ := {(s+

0 , . . . , s+
t′)|∀j ∈ [0, t′] : {(s+

j = sj) ∨ (π+
j =↓ ∧|s+

j | = r − |sj |)}}.

Then we have:

Di[s0, . . . , st, st+1] :=



























































































Di−1[s0, . . . , st], if πt+1 =↓ and

∃vt′ ∈ Xi with πt′ ∈ {↓, ∅},

such that |st′ | + di(vt′ , vt+1) ≤ |st+1|;
∞, if πt+1 =↓ and

∀vt′ ∈ Xi with πt′ ∈ {↓, ∅},

it is |st′ | + di(vt′ , vt+1) > |st+1|;
minS∈S+

t′
{Di−1[S, st′+1, . . . , st]}, if πt+1 = ∅ and

∀j ∈ [0, t′] with πj =↑,

it is r − |sj | ≤ di(vj , vt+1);

Di−1[s0, . . . , st], if πt+1 =↑ .

When a vertex vt+1 is introduced, all entries of the previous table need to be updated
in accordance with every possible state st+1, while respecting state concurrences imposed
by (potential) connectivity between vt+1 and other vertices present in Xi. For state-
configurations of the new table where πt+1 =↓, there must be some vertex vt′ in Xi with

63

πt′ =↓, such that their states “fit” their distance, or |st′ | + d(vt′ , vt+1) ≤ |st+1|. For
state-configurations with πt+1 = ∅, entries of the previous table where vertices vj with
r − |sj | ≤ di(vj , vt+1) had a positive state might now correspond to partial solutions, in
the entries for which, these vertices’ states are “flipped”, since vt+1 is now included in the
bag (and not just “expected”), thus the minimum value of all suitable entries is selected.
Note that S+

t′ includes only these vertices vj with πj =↑, such that r − |sj | ≤ di(vj , vt+1),
while other vertices vl with πl =↑ and non-fitting values might be included in vt′+1, . . . , vt.
For entries with πt+1 =↑, all partial solutions naturally extend those computed for the
previous node and their values can be directly transferred.

Forget node i with Xi = Xi−1 \{vt+1}: Let D∗
i−1[s0, . . . , st, {st+1|πt+1 =↑}] denote

entries for which ∃vt′ ∈ Xi with πt′ =↑ and |st+1| + di(vt′ , vt+1) ≤ |st′ |. Then we have:

Di[s0, . . . , st] := min
{

Di−1[s0, . . . , st, {st+1|πt+1 =↓}],

Di−1[s0, . . . , st, {st+1|πt+1 = ∅}] + 1, D∗
i−1[s0, . . . , st, {st+1|πt+1 =↑]}}.

Our algorithm is designed so as not to count the number of vertices considered for
selection within each bag (vertices with zero states) in the computed value for each entry
and the crucial increase of +1 for appropriate entries is not performed during computation
of introduce nodes’ tables. Instead, our algorithm increases the count of selected vertices
only when a vertex vt+1 is forgotten and only in case a partial solution with a corresponding
state-configuration that assigns st+1 = (∅, 0) is selected as the most preferable choice for
extracting a table for the new bag, that is one dimension lower than the previous bag’s
table, due to removal of the forgotten vertex from consideration.

One may note this makes our algorithm seemingly prefer partial solutions where selec-
tion of vertices happens at the latest possible stage, since out of two partial solutions of
otherwise equal cost, our algorithm will choose the one where the selected vertex remains
in the bag, owing to the +1 within the operation of comparison for identifying the mini-
mum, yet this approach can be justified as a more conservative way of administering the
(limited) number of possible selections for inclusion in the center-set.

Join node i with Xi = Xi−1 = Xi−2: In contrast to the computation of introduce
nodes, given state-tuple (s0, . . . , st), we assume (without loss of generality) that for some
t′ ∈ [0, t] (if any) it is πj =↓, ∀j ∈ [0, t′], while πt′+1, . . . , πt ∈ {∅, ↑}. Now, let S−

t′ denote
the set of all possible tuples S = (s−

0 , . . . , s−
t′), where each state s−

j is either the same state
sj , or its opposite (in terms of ↑, ↓ direction):

S−
t′ := {(s−

0 , . . . , s−
t′)|∀j ∈ [0, t′] : {(s−

j = sj) ∨ (π−
j =↑ ∧|s−

j | = r − |sj |)}}.

and for some tuple S ∈ S−
t′ let S̄ denote the complementary tuple (where the state of each

vertex is likewise reversed). Then we have:

Di[s0, . . . , st] := min
S∈S−

t′

{Di−1[S, st′+1, . . . , st] + Di−2[S̄, st′+1, . . . , st]}.

For join nodes the bags of both children contain the same set of vertices, yet the partial
solutions characterized by the entries of each table concern distinct terminal subgraphs
Gi−1 and Gi−2. For state-configurations in which no vertex is assigned a negative state, a
simple addition of the two entries from each table for this state-configuration is sufficient, as

64

the entries’ values refer to partial solutions for disjoint parts of the graph and the number
of selected vertices currently in the bag is not counted. For state-configurations with
strictly negative states for some vertices there are two options for connection per negative
state sj , each signifying connection through one of the two subgraphs, with directions ↑, ↓
denoting inclusion-in/exclusion-from each of the two terminal subgraphs. The addition
of complementary entries from the two tables (for all compatible pairs) is thus needed to
assemble a comprehensive account for both subgraphs, with subsequent selection of the
overall minimum value. It is precisely this aspect of the considerations usually involved in
the computation of join nodes’ tables that creates an additional factor in the complexity of
dynamic programming procedures of this type. Optimally performing these computations
(with running-time matching space requirements) is not too hard to accomplish via an
extension of the fast subset convolution technique for appropriately partitioned subsets.

Correctness: To show correctness of the algorithm we need to establish that for
every node i ∈ I, each table entry Di[s0, . . . , st] contains a partial solution for the sub-
problem as restricted to Gi, i.e. the minimum number of vertices to select in K from
Vi \ Xi, such that every vertex in Vi \ Xi is at distance at most r from a vertex in K or a
vertex vj ∈ Xi with zero state sj = (∅, 0), or at distance at most |sj | from a vertex vj ∈ Xi

with πj =↑, while for all vertices in Xi, their state for this entry describes their situation
in this partial solution. In particular, we need to show the following:

∀i ∈ I, ∀(s0, . . . , st) ∈ {(∅, 0), (↓, 1), . . . , (↓, r), (↑, 0), . . . , (↑, r − 1)}}t+1 , 0 ≤ t < tw :
(3.23)

{

{

Di[s0, . . . , st] = min
K⊆Vi\Xi

|K| : (3.24)
{∀u ∈ Vi \ Xi : {∃v ∈ K : di(u, v) ≤ r} ∨ (3.25)

∨ {∃vj ∈ Xi : πj = ∅ ∧ di(u, vj) ≤ r} ∨ (3.26)

∨ {∃vj ∈ Xi : πj =↑ ∧di(u, vj) ≤ |sj |} }
∧

(3.27)
∧

{∀j ∈ [0, t] : πj =↓⇒ {∃u ∈ K : di(u, vj) ≤ |sj |} ∨ (3.28)

∨ {∃vt′ ∈ Xi : (πt′ = ∅) ∧ (di(vj , vt′) ≤ |sj |)}} } (3.29)

∨Di[s0, . . . , st] = ∞
}

. (3.30)

In words, the above states that for every node i and all possible state-configurations
(s0, . . . , st) (3.23), table entry Di[s0, . . . , st] contains the minimum size of a subset K of
Vi \ Xi (3.24), such that for every vertex u in the subgraph Gi but not in Xi, there is a
vertex v included in K whose distance is at most r from u (3.25), or there is a vertex vj

in the current bag with πj = ∅ (zero state) whose distance from u is at most r (3.26), or
there is a vertex vj in the current bag with πj =↑ (positive state) whose distance from u is
at most |sj | (3.27), and for every vertex vj in Xi, negative state with πj =↓ implies there
is a vertex u in K whose distance from vj is at most |sj | (3.28), or πj =↓ implies that
there is a vertex vt′ in Xi with state |st′ | = 0 whose distance from vj is at most |sj | (3.29),
or if there is no such K ⊆ Vi, we have Di[s0, . . . , st] = ∞ for this table entry (3.30). This
is shown by induction on the nodes i ∈ I:

• Leaf node i with Xi = {v0}: This is the base case of our induction. Observe that for
π0 =↓, since Vi \ Xi = ∅, there is no K ⊆ Vi \ Xi for which (3.25-3.29) is true and

65

Di[s0] = ∞ (3.30), while for π0 ∈ {∅, ↑}, value 0 is the correct minimum size for any
such K (3.24). In the following cases, we assume (our induction hypothesis) that all
entries of Di−1 (and Di−2 for join nodes) either contain the correct minimum value
for some K ⊆ Vi−1 \ Xi−1 (3.24), or have an ∞ value (3.30).

• Introduce node i with Xi = Xi−1 ∪{vt+1}: For entries Di[s0, . . . , st, {st+1|πt+1 =↓}],
since introducing a vertex with a negative state requires only inspection of partial
solutions for potential integration of this vertex, the correct minimum sizes of K ⊆
Vi \ Xi to cover all u ∈ Vi \ Xi (or ∞) are computed in Di−1[s0, . . . , st] (3.25-3.27),
while for vertices vj , with j ∈ [0, t] (already in Xi) and πj =↓ we know there is either
a u ∈ K with di(u, vj) ≤ |sj | (3.28), or a vt′ ∈ Xi−1 (and also Xi) with st′ = {0, ∅}
and di(vj , vt′) ≤ |sj | (3.29).

To show the same for vt+1, observe that for entries where there exists a vertex vt′ in
Xi with πt′ ∈ {↓, ∅} and |st′ | + di(vt′ , vt+1) ≤ |st+1|, the correct value is computed
in Di−1[s0, . . . , st′ , . . . , st], while for entries Di[s0, . . . , st′ , . . . , {st+1|πt+1 =↓}], where
for all vertices vt′ in Xi with πt′ ∈ {↓, ∅} we have |st′ | + di(vt′ , vt+1) > |st+1|, it
is Di[s0, . . . , st′ , . . . , {st+1|πt+1 =↓}] = ∞ (3.30). Note also that by the second
property of a tree decomposition, for every edge (u, v) ∈ E there must be a node
i with u, v ∈ Xi (introducing either u or v, for a nice tree decomposition) and an
entry in the node’s table where such a partial solution will be valid, if one exists.

For entries Di[s0, . . . , st, {st+1|πt+1 = ∅}], properties (3.25-3.27) and (4.12) hold as
they did for the corresponding partial solutions of the previous table. For (3.29),
there may be some partial solutions corresponding to entries of the previous table
Di−1, in which vertices vj (∀j ∈ [0, t′], for some t′ ∈ [0, t]) had a positive state with
πj =↑ and r − |sj | ≤ di(vj , vt+1), implying that all entries Di[S, . . . , st, {st+1|πt+1 =
∅}], ∀S ∈ S+

t′ can refer to extensions of the same partial solutions, since the “ex-
pected” connection vt+1 for these vj has been introduced (and negative states are
inclusive for each bag), meaning the overall minimum of these values is sufficient.

For all entries Di[s0, . . . , st, {st+1|πt+1 =↑}], all partial solutions for the correspond-
ing entries Di−1[s0, . . . , st] extend naturally with the same values, as validity of
(3.23,3.30) is not affected upon introduction of a vertex with a positive state (note
the reference in (3.27) to vertices vj with πj =↑ as applying to forgotten vertices
u ∈ Vi \ Xi and appropriately treated next).

• Forget node i with Xi = Xi−1 \{vt+1}: For all partial solutions corresponding to en-
tries Di[s0, . . . , st], the correct values are already computed in Di−1[s0, . . . , st, st+1],
with the exception of those partial solutions that consider vt+1 for inclusion in
K, where |st+1| = 0. Thus, for (3.25) or (3.28), the value of these partial solu-
tions should be increased by +1, since vt+1 ∈ Vi \ Xi. Accordingly, for partial
solutions where πt+1 =↑, there must be a vertex vj (still) in Xi, with πj =↑ and
|st+1| + di(vj , vt+1) ≤ |sj | (3.27), which is exactly the reason the algorithm makes
use of the restricted table D∗

i−1 in the computation of forget nodes’ tables. Overall,
taking the minimum of previously computed values (over all choices of state st+1)
with adjustments and restrictions as described above, indeed gives the correct value
Di[s0, . . . , st] for all state-configurations (s0, . . . , st).

• Join node i with Xi = Xi−1 = Xi−2: In all partial solutions corresponding to en-
tries Di[s0, . . . , st] with negative states πj =↓, ∀j ∈ [0, t′] and zero/positive states

66

πt′+1, . . . , πt ∈ {∅, ↑} for some t′ ∈ [0, t], vertices v0, . . . , vt′ will be connected to K
through either of the two children’s terminal subgraphs Vi−1 \ Xi−1, or Vi−2 \ Xi−2.
These partial solutions are “mixtures” of the partial solutions computed for both
child nodes, in the corresponding entries of which, vertices are assigned a negative
state on one side and a positive state on the other, involving, however, the same un-
derlying connections in both cases. Thus considering all possible state configurations
(in terms of ↑, ↓ directions), adding the values of complementary partial solutions
from both sides and retaining the overall minimum guarantees that for every vj with
πj =↓, there will either be a vertex u in K ⊆ (Vi−1 \ Xi−1) ∪ (Vi−2 \ Xi−2) such that
di(u, vj) ≤ |sj | (3.28), or some vt′ in Xi with st′ = (∅, 0) and di(vj , vt′) ≤ |sj | (3.29),
if that was the case for some appropriate combination of partial solutions for i − 1
and i − 2. For (3.25-3.27), observe that simply taking the minimum of additions
for previous partial solutions keeps vertices in Vi \ Xi covered, i.e. ∀u ∈ Vi \ Xi,
either ∃v ∈ K ⊆ (Vi−1 \ Xi−1) ∪ (Vi−2 \ Xi−2) with di(u, v) ≤ r, or ∃vj ∈ Xi with
πj = ∅ and di(u, vj) ≤ r, or ∃vj ∈ Xi with πj =↑ and di(u, vj) ≤ |sj |, since for each
entry Di[s0, . . . , st] with positive states st′+1, . . . , st for some t′ ∈ [0, t], all vertices
vt′+1, . . . , vt are assigned the same state in all entries considered.

Theorem 46. Given graph G, along with k, r ∈ N+ and nice tree decomposition (X , T) of
width tw for G, there exists an algorithm to solve the decision version of the (k, r)-Center

problem in O(2tw(2r + 1)tw · n) time.

Proof. Correctness of the dynamic programming algorithm is given above, while for the
final computation at the root z of T , all entries Dz[s0, . . . , st] with πj ∈ {↓, ∅} (∀j ∈ [0, t])
are considered after addition to their value of the number of vertices assigned a zero state
in their state-configuration. In particular, let S≤

t := {(s0, . . . , sj , . . . , st)|πj ∈ {↓, ∅}, ∀j ∈
[0, t]} be the set of state-configurations where no vertex is assigned a positive state and
for some state-configuration S, let RS := {sj ∈ S|πj = ∅, ∀j ∈ [0, t]} be the set of zero
states. The algorithm outputs “yes”, if min

S∈S≤
t

{Dr[S] + |RS |} ≤ k and “no” otherwise.

For the algorithm’s complexity, there are (2r + 1)tw entries for each table Di of any
node i ∈ I, with |I| = O(tw · |V |) for nice tree decomposition (X , T = (I, F)), while any
entry can be computed in time O(1) for leaf nodes, O(r) for forget nodes and O(2tw) for
join nodes (on account of |S−

t′ | = O(2tw)). For introduce nodes, all (2r)tw entries for which
introduced vertex vt+1 is assigned a non-zero state st+1 6= (∅, 0) require O(1) time, while
entries where st+1 = (∅, 0) require at most O(2tw) (on account of |S+

t′ | = O(2tw)), giving
an overall running-time of O(2tw(2r + 1)tw · n), as claimed.

67

68

4
On the Structurally Parameterized d-Scattered Set Problem

In this chapter we study the d-Scattered Set problem. The problem can already be
seen to be hard, as it generalizes Independent Set (for d = 2), while an alternative
name is Distance-d Independent Set [43, 81, 42]. This hardness prompts the analysis
of the problem when the input graph is of restricted structure, our aim being to provide
a comprehensive account of the complexity of d-Scattered Set through various upper
and lower bound results. Our viewpoint is parameterized: we consider the well-known
structural parameters treewidth tw, tree-depth td, vertex cover number vc and feedback
vertex set number fvs, that principally express the intended restrictions on the input
graph’s structure, while we examine both the edge-weighted and unweighted variants.

Before we describe our results in detail, we note that they proceed along similar lines as
those of the previous chapter. Indeed, our analysis of the structurally parameterized prop-
erties of the d-Scattered Set problem is analogous to that performed for (k, r)-Center

and our results in fact comparable. This is partly due to the proximity of techniques used
to obtain them, but can also be seen as a consequence of the similarity of the influence of
distance-based generalizations on the functions of independence and domination.

Perhaps the main observation we can make on this similarity is that, apart from its
converse signification for each problem (i.e. requiring distances to be either ≥ d or ≤ r),
the distance parameters in each case measure the extent of the influence a vertex can
exert across its region in the graph and thus imply a division of the landscape into ‘areas
of influence’, that must be efficiently arranged (i.e. packed or covered) for optimality.
As an example, this is reflected in our dynamic programming algorithms (Theorem 24
and Theorem 51, see also Theorem 46 and [22, 50]) and the state-representations they
employ, with an apparent correspondence between the significance of distances d/2 and
r (i.e. multiples of an edge in both cases).1 Justification for the necessity of such state-
representations is given by the matching lower bounds (Theorem 21 and Theorem 50),
meaning that our approach is not unreasonably applicable in each case, therefore also
unifying the classification of both problems’ structurally parameterized complexity.

Our results: First, in Subsection 4.1.1 we present a lower bound of (d−ǫ)tw ·nO(1) on the
complexity of any algorithm solving d-Scattered Set parameterized by treewidth tw,
based on the SETH. This result can be seen as an extension of the bound of (2−ǫ)tw ·nO(1)

1This duality between problems and distances r and d/2 is also discussed in [88].

69

for Independent Set ([76]) for larger values of d, for which the construction is required
to be much more compact in terms of encoded information per unit of treewidth. In
Subsection 4.1.2 we provide a dynamic programming algorithm of running-time O∗(dtw),
matching this lower bound, over a given tree decomposition of width tw. The algorithm
actually solves the counting version of d-Scattered Set, making use of standard tech-
niques (dynamic programming on tree decompositions), with an application of the fast
subset convolution technique of [9] (or state changes [15, 94]) to bring the running-time
down to match the size of the dynamic programming tables.

Having thus identified the complexity of the problem with respect to tw, we next focus
on the more general parameters vc and fvs and we show in Subsection 4.2.1 that the edge-
weighted d-Scattered Set problem parameterized by vc + k is W[1]-hard. If, on the
other hand, all edge-weights are set to 1, then d-Scattered Set (the unweighted variant)
parameterized by fvs+k is W[1]-hard. Our reductions also imply exponential lower bounds
based on the ETH on the square root of the parameters, yet we do not believe these to be
tight (as opposed to a single exponential lower bound), due our construction’s quadratic
increase of parameter size (as our focus lies on the edges).

We complement these results with a single-exponential algorithm for the unweighted
variant, of running-time O∗(3vc) for the case of even d, while for odd d the running-time
is O∗(4vc). The algorithm relies on defining a variant of Set Packing as a sub-problem
that we solve via dynamic programming, with the difference in running-times, depending
on the parity of d, being due to the number of possible situations for a vertex with respect
to potential candidates for selection.

Next, for the unweighted variant we also show in Subsection 4.2.3 the existence of
an algorithm parameterized by td of running-time O∗(2O(td2)), as well as a matching
ETH-based lower bound. The upper bound follows from known connections between the
tree-depth of a graph and its diameter, while the lower bound comes from a reduction
from 3-SAT.

Finally, we turn again to tw in Section 4.3 and we present a FPT-AS of running-
time O∗((tw/ǫ)O(tw)) that finds a d/(1 + ǫ)-scattered set of size k, if a d-scattered set of
the same size exists. The algorithm is based on a rounding technique introduced in [73]
and it can be seen to outperform any exact algorithm for the problem (for large d, i.e.
d ≥ O(log n)), even for the unweighted case and more restricted parameters (similarly
to Section 3.3). Figure 4.1 shows the hierarchical relationships between parameters and
Table 4.1 summarizes our results.

tw, Treewidth

fvs, Feedback Vertex Set

pw, Pathwidth

td, Tree-depth

vc, Vertex Cover

Figure 4.1: Relationships
of considered parameters.
Algorithmic results are in-
herited downwards (from
cw to vc), hardness results
upwards.

tw fvs td vc
FPT exact 51 (w/u) 57 (u) 56 (u)
FPT-AS 63 (w/u)

SETH LB 50 (w/u)
ETH LB 55 (w/u) 61 (u) 54 (w)

W[1]-hard 55 (w/u) 54 (w)

Table 4.1: A summary of our results for all considered
parameters. Initials u/w denote the unweighted/weighted
variants.

70

4.1 Treewidth

4.1.1 Lower bound based on the SETH

In this subsection we show that for any fixed d > 2, the existence of any algorithm for the
d-Scattered Set problem of running-time O∗((d − ǫ)tw), for some ǫ > 0, would imply
the existence of an algorithm for q-SAT, of running-time O∗((2−δ)n), for some δ > 0 and
any q ≥ 3.

First, let us briefly summarize the reduction for the SETH lower bound of (2− ǫ)tw for
Independent Set from [76]. The reduction is based on the construction of n paths (one
for each variable) on 2m vertices each, conceptually divided into m pairs of vertices (one
for each clause), with each vertex signifying assignment of value 0 or 1 to the corresponding
variable. A gadget is introduced for each clause, connected to the vertex of some path
that signifies the assignment to the corresponding variable that would satisfy the clause.
The pathwidth of the constructed graph (and thus also its treewidth) is (roughly) equal
to the number of paths and thus a direct correspondence between a satisfying assignment
and an independent set can be established, meaning an O∗((2 − ǫ)tw)-time algorithm for
Independent Set would imply an O∗((2 − ǫ)n)-time algorithm for SAT, for any ǫ > 0.

Intuitively, the reduction for Independent Set needs to “embed” the 2n possible
variable assignments into the 2tw states of some optimal dynamic program for the problem,
while in our lower bound construction for d-Scattered Set we need to be able to encode
these 2n assignments by dtw states and thus there can be no one-to-one correspondence
between a variable and only one vertex in some bag of the tree decomposition (that the
optimal dynamic program might assign states to); instead, every vertex included in some
bag must carry information about the assignment for a group of variables. Furthermore,
as now d > 2, in order to make the converse direction of our reduction to work, we
need to make our paths sufficiently long to ensure that any solution will eventually settle
into a pattern that encodes a consistent assignment, as the optimal d-scattered set may
“cheat” by not selecting the same vertex from each part of some long path (periodically), a
situation that would imply a different assignment for the appearances of the same variable
for two different clauses (see also [22] and [76]).

Clause gadget Ĉ: We first describe the construction of our clause gadget Ĉ: this gadget
has N input vertices and its purpose is to only allow for selection of one of these in any
d-scattered set, along with another, standard selection. Given vertices v1, . . . , vN , we first
make N paths Ai = (a1

i , . . . , a
⌊d/2⌋−1
i), ∀i ∈ [1, N] on ⌊d/2⌋ − 1 vertices. We connect

vertices a1
i to inputs vi, while only for even d, we also make all vertices a

⌊d/2⌋−1
i into a

clique (all other endpoints of each path). We then make a path B = (b1, . . . , b⌈d/2⌉+1) and
we connect its endpoint b⌈d/2⌉+1 to all a

⌊d/2⌋−1
i . This concludes the construction of clause

gadget Ĉ, while Figure 4.2 provides an illustration. Observe that any d-scattered set can
only include one of the input vertices (as the distance between them is d − 1) and the
vertex b1, being the only option at distance d from all inputs.

Construction: We will describe the construction of a graph G, given some ǫ < 1 and an
instance φ of q-SAT with n variables, m clauses and at most q variables per clause. We
first choose an integer p ≥ 1

(1−λ) log2(d) , for λ = logd(d − ǫ) < 1, for reasons that become
apparent in the proof of Theorem 50. Note that for the results of this subsection, d, q

71

on different paths P l
τ (and thus possible selections) via the paths attached to some input

vertex is always ≥ 2d − 2.

Lemma 48. If G has a d-scattered set of size (tp + 2)m(tp(d − 1) + 1), then φ has a
satisfying assignment.

Proof. Given a d-scattered set K of G of size |K| = (tp + 2)m(tp(d − 1) + 1), we will show
the existence of a satisfying assignment for φ. First, observe that from each gadget Ĝj

τ , for
τ ∈ [1, t], j ∈ [1, m(tp(d − 1) + 1)], at most p vertices can be selected, one from each path
P l

τ , l ∈ [1, p] within each gadget. This leaves 2 vertices to be selected from each column
j ∈ [1, m(tp(d−1)+1)] of gadgets. As the distances between some input vertex v and some
path vertex pl

i is equal to d only if the path vertex belongs to the set Sτ associated with
the partial assignment to the variables of Fτ that would satisfy the literal (whose variable
belongs to Fτ) corresponding to the input vertex v and d−1 otherwise, while the distances
between any pair of input vertices are d − 1 via the gadget with only vertex b1 at distance
exactly d from each input vertex, it is not hard to see that the only option is to select each
vertex b1 and one input vertex from each gadget Ĉj , for j ∈ [1, m(tp(d − 1) + 1)]: no path
vertex pl

i could be selected with any vertex on the paths attached to some input vertex
v, while no other vertex but b1 could be selected with some input vertex of each clause
gadget. Furthermore, the selection of an input vertex v must also be in agreement with
each selection from the p paths to which v is connected to (via the paths of length d − 1),
i.e. the selected vertices from each path must be exactly the set Sτ that is associated with
the partial assignment that satisfies the literal corresponding with v.

Next, we require that there exists at least one o ∈ [0, tp(d − 1)] for every τ ∈ [1, t] for
which K ∩ {⋃l∈[1,p] P l

τ } is the same in all gadgets Ĝmo+π
τ with π ∈ [1, m], i.e. that there

exist m successive copies of the gadget for which the pattern of selection of vertices from
paths P l

τ does not change. As noted above, set K must contain one vertex from each such
path in each gadget, while the distance between any two successive selections (on the same
“long path”) must be at least d. Now, depending on the starting selection, observe that
the pattern can “shift towards the right” at most d − 1 times, without affecting whether
the total number of selections is exactly m(tp(d − 1) + 1) from each “long path”: the first
vertex of a path can be selected within a gadget, the second vertex can be selected from
its follower, the third from the one following it and so on. For each l ∈ [1, p], this can
happen at most d − 1 times, thus at most p(d − 1) for each τ ∈ [1, t] and tp(d − 1) over
all τ . By the pigeonhole principle, there must thus exist an o ∈ [0, tp(d − 1)] such that no
such shift happens among the gadgets Ĝmo+π

τ , for all τ ∈ [1, t] and π ∈ [1, m].
Our assignment for φ is then given by the selections for K in each gadget Ĝmo+1

τ for this
o: for every group Fτ we consider the selection of vertices from P l

τ for l ∈ [1, p], forming
subset Sτ and its associated partial assignment to the variables of Fτ . In this way we get
an assignment to all the variables of φ. To see why this also satisfies every clause Cπ with
π ∈ [1, m], consider clause gadget Ĉmo+π: there must be an input vertex v selected from
this gadget, corresponding to a satisfying partial assignment for some literal of Cπ, that
must be at distance exactly d from each path selection that together give subset Sτ , the
subset associated with this satisfying partial assignment.

Lemma 49. Graph G has treewidth tw(G) ≤ tp + qdp/2 + d.

Proof. We will in fact show a pathwidth bound of pw(G) ≤ tp + qdp/2 + d by providing
a mixed strategy to clean G using tp + qdp/2 + d searchers. The claimed bound on the

74

treewidth then follows from lemmas 3 and 4.
We initially place one searcher on every first vertex pl

1 of every path P l
τ in each gadget

Ĝ1
τ for all l ∈ [1, p] and τ ∈ [1, t]. We also place a searcher on vertex b1 of clause gadget

Ĉ1, also one on each of its qµdp/2 vertices a
⌊d/2⌋−1
i (between the inputs and b1) and finally

one searcher on each of the d − 1 vertices yd/2−1 (or y⌊d/2⌋ for odd d) that are connected
through a w1, . . . , wd/2−1 path to each input vertex (or w1, . . . , w⌊d/2⌋).

We then slide the searcher on b1 over the path b1, . . . , b⌈d/2⌉ until all the path’s edges as
well as the edges between b⌈d/2⌉ and every a

⌊d/2⌋−1
i are cleaned (the clique edges between

the a
⌊d/2⌋−1
i for even d are also clean). We then slide the searchers from the a

⌊d/2⌋−1
i along

each path to each input vertex and from there on along the paths w1, . . . , wd/2−1 (or w⌊d/2⌋
for odd d). In this way all these paths and the edges between the wd/2−1 and yd/2−1 (or
w⌊d/2⌋ and y⌊d/2⌋ for odd d) are cleaned and we can slide the searchers from each yd/2−1

down to each y1 (being adjacent to one path vertex each). We then slide all tp searchers
from the first vertices pl

1 along their paths P l
τ for l ∈ [1, p] in each gadget Ĝ1

τ . After
all edges of the first column have been cleaned in this way, we slide the tp searchers on
the first vertices of each path of the following column, we remove the searchers from the
vertices of the clause gadget (and adjacent paths) and place them on their corresponding
starting positions on the following column. We then repeat the above process until all
columns have been cleaned. We thus use at most tp + qdp/2 + d searchers simultaneously,
where qdp/2 + d = O(1).

Theorem 50. For any fixed d > 2, if d-Scattered Set can be solved in O∗((d− ǫ)tw(G))
time for some ǫ > 0, then there exists some δ > 0, such that q-SAT can be solved in
O∗((2 − δ)n) time, for any q ≥ 3.

Proof. Assuming the existence of some algorithm of running-time O∗((d − ǫ)tw(G)) =
O∗(dλtw(G)) for d-Scattered Set, where λ = logd(d − ǫ), we construct an instance
of d-Scattered Set given a formula φ of q-SAT, using the above construction and
then solve the problem using the O∗((d − ǫ)tw(G))-time algorithm. Correctness is given by
Lemma 47 and Lemma 48, while Lemma 49 gives the upper bound on the running-time:

O∗(dλtw(G)) ≤ O∗
(

dλ(tp+f(d,ǫ,q))
)

(4.1)

≤ O∗






d

λp

⌈

n

⌊log2(d)p⌋
⌉






(4.2)

≤ O∗






d

λp
n

⌊log2(d)p⌋+λp






(4.3)

≤ O∗






d

λ
np

⌊p log2(d)⌋





(4.4)

≤ O∗






d

δ′
n

log2(d)






(4.5)

≤ O∗(2δ′′n) = O((2 − δ)n) (4.6)

75

for some δ, δ′, δ′′ < 1. Observe that in line (4.2) the function f(d, ǫ, q) = qdp/2 + d is
considered constant, as is λp in line (4.4), while in line (4.5) we used the fact that there

always exists a δ′ < 1 such that λ
p

⌊p log2(d)⌋ =
δ′

log2(d)
, as we have:

p log2(d) − 1 < ⌊p log2(d)⌋

⇔ λp log2(d)
p log2(d) − 1

>
λp log2(d)
⌊p log2(d)⌋ ,

from which, by substitution, we get
λp log2(d)

p log2(d) − 1
> δ′,

now requiring
λp log2(d)

p log2(d) − 1
≤ 1,

or p ≥ 1
(1 − λ) log2(d)

,

that is precisely our definition of p. This concludes the proof.

4.1.2 Dynamic Programming algorithm

In this subsection we present an O∗(dtw)-time dynamic programming algorithm for the
counting version of the d-Scattered Set problem. The input is a graph G = (V, E), a
nice tree decomposition (X , T) for G, where T = (I, F) is a tree and X = {Xi|i ∈ I} is
the set of bags, while maxi∈i |Xi| − 1 = tw, along with two numbers k ∈ N+, d ≥ 2, while
the output is the number of d-scattered sets of size k in G.

Table description: There is a table Di associated with every node i ∈ I of the tree
decomposition with Xi = {v0, . . . , vt}, 0 ≤ t ≤ tw, while each table entry Di[κ, s0, . . . , st]
contains the number of (disjoint) d-scattered sets K ⊆ Vi of size |K| = κ (its partial
solution) and is indexed by a number κ ∈ [1, k] and a t + 1-sized tuple (s0, . . . , st) of
state-configurations, assigning a state sj ∈ [0, d − 1] to each vertex vj , ∀j ∈ [0, t]. There
are d possible states for each vertex, designating its distance to the closest selection at the
“current” stage of the algorithm:

• Zero state sj = 0 signifies vertex vj is considered for selection in the d-scattered set
and is at distance at least d from any other such selection: ∀u ∈ K : d(u, vj) ≥ d.

• Low states sj ∈ [1, ⌊d/2⌋] signify vertex vj is at distance at least sj from its closest
selection and at least d − sj from the second closest: ∀u, w ∈ K|d(u, vj) ≤ d(w, vj) :
d(u, vj) ≥ sj ∧ d(w, vj) ≥ d − sj .

• High states sj ∈ [⌊d/2⌋ + 1, d − 1] signify vertex vj is at distance at least sj from its
closest selection: ∀u ∈ K : d(u, vj) ≥ sj .

For a node i ∈ I, each table entry Di[κ, s0, . . . , st] contains the number of d-scattered
sets K ⊆ Vi of the terminal subgraph Gi, such that the situation of each vertex in the
corresponding bag is being described by the particular state configuration (s0, . . . , st)
indexing this entry. The computation of each entry is based on the type of node the
table is associated with (leaf, introduce, forget, or join), previously computed entries of
the table associated with the preceding node(s) and the structure of the node’s terminal
subgraph. In particular, we have ∀i ∈ I, Di[κ, s0, . . . , st] : [1, k] × [0, d − 1]t+1 7→ N0, where
0 ≤ t ≤ tw. The inductive computation of all table entries for each type of node follows.

76

Leaf node i with Xi = {v0}:

Di[κ, s0] :=















1 , if s0 = 0, κ = 1;

1 , if s0 > 0, κ = 0;

0 , otherwise.

Leaf nodes contain only one vertex and there is one d-scattered set that includes this
vertex for (s0 = 0, κ = 1) and one d-scattered set that does not (for s0 > 0, κ = 0).

Introduce node i with Xi = Xi−1 ∪ {vt+1}:

Di[κ, s0, . . . , st, st+1] :=



































































Di−1[κ, s0, . . . , st], if st+1 ∈ [1, d − 1] and

st+1 ≤ minvj∈Xi−1(d(vt+1, vj) + sj);

Di−1[κ′, s′
0, . . . , s′

t], if st+1 = 0, κ′ = κ − 1 and ∀vj ∈ Xi−1 with sj = 0,

it is d(vt+1, vj) ≥ d, and

∀vj ∈ Xi−1 with d(vt+1, vj) ≤ ⌊d/2⌋,

it is sj ≤ d(vt+1, vj) and s′
j = d − sj ,

with s′
j = sj , if d(vt+1, vj) > ⌊d/2⌋;

0, otherwise.

When a vertex is introduced, for previously computed partial solutions to be correctly
extended, we require that its given state matches the distance/state conditions of the
other vertices in the bag, while if the introduced vertex is considered for selection, then
the previous entries we examine must ensure this selection is possible.

Forget node i with Xi = Xi−1 \ {vt+1}:

Di[κ, s0, . . . , st] :=
∑

st+1∈[0,d−1]

{Di−1[κ, s0, . . . , st, st+1]}.

The correct value for each entry is the sum over all states of the forgotten vertex vj , where
the size of the d-scattered sets is κ.

Join node i with Xi = Xi−1 = Xi−2: Given state-tuple (s0, . . . , st), we assume (without
loss of generality) that for some t′ ∈ [0, t] (if any) it is sj ∈ [1, ⌊d/2⌋], ∀j ∈ [0, t′] and also
min∀vl∈Xi|sl=0 d(vj , vl) > ⌊d/2⌋, while all other vertices are vt′+1, . . . , vt. Now, let S≤

t′

denote the set of all possible tuples S = (s≤
0 , . . . , s≤

t′), where each state s≤
j is either the

same state sj , or its symmetrical (around d/2):

S≤
t′ := {(s≤

0 , . . . , s≤
t′)|∀j ∈ [0, t′] : {(s≤

j = sj) ∨ (s≤
j = d − sj)}},

while for some tuple S ∈ S≤
t′ , let S̄ denote the complementary tuple (where the state

of each vertex is likewise reversed) and also let κ′′ denote the number of zero states in
(st′+1, . . . , st). Then we have:

Di[κ, s0, . . . , st] :=
∑

S∈S≤
t′

{Di−1[κ′, S, st′+1, . . . , st] · Di−2[κ − κ′ + κ′′, S̄, st′+1, . . . , st]}.

77

For join nodes, the bags of both children contain the same set of vertices, yet the partial
solutions characterized by the entries of each table concern distinct terminal subgraphs
Gi−1 and Gi−2. For state-configurations where some vertices are of low state (that is not
justified by the presence of some vertex of zero state within the bag), the closest selection
to these vertices (that gives the state) might be in any of the two terminal subgraphs, but
not both: if the “target” state is sj ∈ [1, ⌊d/2⌋], then there might be a selection in Gi−1

at distance sj but there must not be another selection in Gi−2 at distance ≤ d − sj (and
vice-versa).

State changes: The computations at a join node as described above would add an
additional factor in the complexity of our algorithm if implemented directly, yet this can
be avoided by an application of the state changing technique (or fast subset convolution,
see [9, 15, 94] and Chapter 11 from [35]): since the number of entries involved can be
exponential in tw (due to the size of S≤

t′), in order to efficiently compute the table for
a join node i, we will first transform the tables Di−1, Di−2 of its children into tables
D∗

i−1, D∗
i−2 of a new type that employs a different state representation, for which the join

operation can be efficiently performed to produce table D∗
i , that we will finally transform

back to table Di, thus progressing with our dynamic programming algorithm.
In particular, each entry D∗

i [κ, s1, . . . , st] of the new table will be an aggregate of entries
Di[κ, s0, . . . , st] of the original table, with its value equal to the sum of the appropriate
values of the corresponding entries. For vertex vj , each low state sj ∈ [1, ⌊d/2⌋] in the
new state signification for table D∗

i that is not justified by the presence of an appropriate
selection within the bag (i.e. its minimum distance to any zero-state vertex is at least
⌊d/2⌋ + 1) will correspond to both the same low state sj and its symmetrical high state
d − sj from the original signification. Observe that these correspondences exactly parallel
the definition of set S≤

t′ used in the original computations.
First, let D∗

i be a copy of table Di. The transformation then works in t steps,
vertex-wise: we require that all entries D∗

i [κ, s∗
0, . . . , s∗

t] contain the sum of all entries
of Di where for low states s∗

j (that are also not justified by some present selection),
it is s∗

j = sj or s∗
j = d − sj , and all other vertex-states and κ are fixed: at step j,

we add D∗
i [κ, s0, . . . , sj , . . . , st] = Di[κ, s0, . . . , sj , . . . , st] + Di[κ, s0, . . . , d − sj , . . . , st] if

sj ∈ [1, ⌊d/2⌋] and min∀vl∈Xi|si=0 d(vj , vl) > ⌊d/2⌋. We then proceed to the next step for
vj+1 until table D∗

i is computed. Observe that the above procedure is fully reversible:2

to invert table D∗
i back to table Di, we again work in t steps, vertex-wise: we first

let Di be a copy of D∗
i and then at step j for all other vertex-states and κ fixed, we

subtract Di[κ, s0, . . . , sj , . . . , st] = D∗
i [κ, s0, . . . , sj , . . . , st] − D∗

i [κ, s0, . . . , d − sj , . . . , st] if
sj ∈ [1, ⌊d/2⌋] and min∀vl∈Xi|si=0 d(vj , vl) > ⌊d/2⌋. For both transformations, we perform
at most one addition per k · dt+1/2 entries for each step j ∈ [0, t].

Thus we can compute table D∗
i by simply multiplying the values of the two corre-

sponding entries from D∗
i−1, D∗

i−2, as they now contain all required information for this
state representation, with the inverse transformation of the result giving table Di:

D∗
i [κ, s0, . . . , st] :=

κ′=κ
∑

κ′=0

D∗
i−1[κ′, s0, . . . , st] · D∗

i−2[κ − κ′ + κ′′, s0, . . . , st].

2This is the reason for counting the number of solutions for each κ: there is no additive inverse operation
for the max-sum semiring, yet the sum-product ring is indeed equipped with subtraction.

78

Theorem 51. Given a graph G, along with d ∈ N+ and nice tree decomposition (X , T) of
width tw for G, there exists an algorithm to solve the counting version of the d-Scattered

Set problem in O∗(dtw) time.

Proof. Let Ui(κ, s0, . . . , st) = {K ⊆ Vi|K ∩ Xi = {vj ∈ Xi|sj = 0}, |K| = κ, ∀u, v ∈ K :
d(u, v) ≥ d} be the set of all d-scattered sets in Gi of size κ. To show correctness of our
algorithm we need to establish that for every node i ∈ I, each table entry Di[κ, s0, . . . , st]
contains the size of a partial solution to the problem as restricted to Gi, i.e. the size of
this set |Ui(κ, s0, . . . , st)|, such that the distance between every pair of vertices in K is at
least d, while for every vertex vj ∈ Xi, its state for this entry describes its situation within
this partial solution. In particular, we need to show the following:

∀i ∈ I, ∀κ ∈ [1, k], ∀(s0, . . . , st) ∈ [0, d − 1]t+1, 0 ≤ t < tw : (4.7)

Di[κ, s0, . . . , st] = |Ui(κ, s0, . . . , st)| : (4.8)

{∀u, w ∈ K : d(u, w) ≥ d} ∧ (4.9)

∧{∀vj ∈ Xi|sj ∈ [1, ⌊d/2⌋], ∀u, w ∈ K|d(u, vj) ≤ d(w, vj) : (4.10)

d(u, vj) ≥ sj ∧ d(w, vj) ≥ d − sj}∧ (4.11)

∧{∀vj ∈ Xi|sj ∈ [⌊d/2⌋ + 1, d − 1], ∀u ∈ K : d(u, vj) ≥ sj}. (4.12)

In words, the above states that for every node i, κ ∈ [1, k] and all possible state-
configurations (s0, . . . , st) (4.7), table entry Di[κ, s0, . . . , st] contains the size of set Ui(κ, s0, . . . , st)
containing all subsets K of Vi (that include all vertices vj ∈ Xi of state sj = 0) of size
|K| = κ (4.8), such that the distance between every pair of vertices u, w ∈ K is at least
d (4.9), for every vertex vj ∈ Xi with low state sj ∈ [1, ⌊d/2⌋] and a pair of vertices u, w
from K with u closer to vj than w (4.10), its distance to u is at least equal to its state sj ,
while its distance to w is at least d − sj (4.11), while for every vertex vj ∈ Xi with high
state sj ∈ [⌊d/2⌋ + 1, d − 1] and a vertex u from K, its state sj is at most its distance to
u (4.12). This is shown by induction on the nodes i ∈ I:

• Leaf node i with Xi = {v0}: This is the base case of our induction. There is only
one d-scattered set K in Vi of size κ = 1, for which (4.9-4.12) is true, that includes
v0 and only one for κ = 0 that does not. In the following cases, we assume (our
inductive hypothesis) that all entries of Di−1 (and Di−2 for join nodes) contain the
correct number of sets K.

• Introduce node i with Xi = Xi−1 ∪ {vt+1}: For entries with sj ∈ [1, ⌊d/2⌋], validity
of (4.9,4.12) is not affected, while for (4.10-4.11): it is st+1 ≤ d(vt+1, vj)+sj for some
vertex vj ∈ Xi−1, for which, by the induction hypothesis we have that sj ≤ d(u, vj)
and d − sj ≤ d(w, vj), where u is the closest selection to vj and w the second closest.
To see the same holds for vt+1, observe that st+1 ≤ d(vt+1, vj)+d(u, vj) ≤ d(vt+1, u)
(by substitution) and d − sj ≤ d(w, vj) ⇒ d − d(w, vj) ≤ sj ⇒ d − d(w, vj) +
d(vj , vt+1) ≤ d(vt+1, vj) + sj ⇒ d − d(w, vt+1) ≤ st+1 ⇒ d − st+1 ≤ d(w, vt+1).

For entries with st+1 ∈ [⌊d/2⌋ + 1, d − 1], validity of (4.9-4.11) is not affected, while
for (4.12): it is st+1 ≤ d(vt+1, vj) + sj for some vertex vj ∈ Xi−1, for which, by
the induction hypothesis we have that sj ≤ d(u, vj) and thus st+1 ≤ d(vt+1, vj) +
d(u, vj) ≤ d(vt+1, u).

79

For entries with st+1 = 0, observe that the low states sj of vertices vj ∈ Xi−1

in the new entry with d(vt+1, vj) ≤ ⌊d/2⌋ (for otherwise their situation has not
changed by addition of vt+1 with st+1 = 0) would correspond to a high original state
s′

j = d−sj in the previously computed entry, for which partial solution we know that
d(vj , u) ≥ s′

j , ∀u ∈ K, or that the previously closest selection was at distance at least
s′

j (4.10-4.11). For high states sj of vertices vj ∈ Xi−1, the requirement is exactly
d(vt+1, vj) ≥ sj (4.12) and finally, for (4.9), if there was some u ∈ K such that u /∈
Xi−1 and d(u, vt+1) < d, then there must be some vj ∈ Xi−1 (on the path between
u and vt+1), for which if d(vt+1, vj) ≤ ⌊d/2⌋ and sj is low then (4.12) was false (as
s′

j must have been high and matching d(u, vj)), while if d(vt+1, vj) > ⌊d/2⌋ and sj

is high, then (4.10-4.11) was false (in all other cases it would not be d(u, vt+1) < d).

• Forget node i with Xi = Xi−1 \ {vt+1}: In a forget node, the only difference for
the partial solutions in which the forgotten vertex was of state st+1 = 0 is that now
vertex vt+1 is included in set K only and not Xi. Thus, due to (4.9), the correct
number is indeed the sum over all states for vt+1.

• Join node i with Xi = Xi−1 = Xi−2: Observe that for (4.9), if there was a pair
u, w ∈ K ∩ Xi or u ∈ K ∩ Xi, w ∈ K \ Xi at d(u, w) < d, then (4.9) was not true for
either i−1 or i−2, while if there was a pair u ∈ K ∩Vi−1 \Xi−1, w ∈ K ∩Vi−2 \Xi−2

with d(u, w) < d, then there must be some vertex vj ∈ Xi (on the path between the
two) for which (4.11) was not true. For (4.10-4.12), observe that for vertices vj of
low state sj , (4.10-4.11) must have been true for either i − 1 or i − 2 and (4.12) for
the other, while for vertices vj of high state sj it suffices that (4.12) must have been
true for both.

For the algorithm’s complexity, there are k · dtw entries for each table Di of any node
i ∈ I, with |I| = O(tw · |V |) for nice tree decomposition (X , T = (I, F)), while any entry
can be computed in time O(1) for leaf and introduce nodes, O(d) for forget nodes, while the
state changes can be computed in O(k · tw · dtw) time, with each entry of the transformed
table D∗

i computed in O(k) time.

4.2 Vertex Cover, Feedback Vertex Set and Tree-depth

4.2.1 Vertex Cover, Feedback Vertex Set: W[1]-Hardness

In this subsection we show that the edge-weighted variant of the d-Scattered Set prob-
lem parameterized by vc + k is W[1]-hard via a reduction from k-Multicolored inde-

pendent Set. Given an instance [G = (V, E), k] of the latter, we construct an instance
[G′ = (V ′, E′), k′] of edge-weighted d-Scattered Set where d = 6n.

Construction: First, for every set Vi ⊆ V we create a set Pi ⊆ V ′ of n vertices pi
l, ∀l ∈

[1, n], ∀i ∈ [1, k] (that directly correspond to the vertices of Vi). Next, for each i ∈ [1, k]
we make a pair of vertices ai, bi, connecting ai to each vertex pi

l by an edge of weight
n + l, while bi is connected to each vertex pi

l by an edge of weight 2n − l. Next, for every
non-edge e ∈ Ē (i.e. Ē contains all pairs of vertices from V that are not connected by an
edge from E) between two vertices from different Vi1 , Vi2 (with i1 6= i2), we make a vertex
ue that we connect to vertices ai1 , bi1 and ai2 , bi2 . We set the weights of these edges as

80

follows: suppose that e is a non-edge between the j1-th vertex of Vi1 and the j2-th vertex
of Vi2 . We then set w(ue, ai1) = 5n − j1, w(ue, bi1) = 4n + j1 and w(ue, ai2) = 5n − j2,
w(ue, bi2) = 4n + j2. Next, for every pair of i1, i2 we make two vertices gi1,i2 , g′

i1,i2
. We

connect gi1,i2 to all vertices ue that correspond to non-edges e between vertices of the
same pair Vi1 , Vi2 by edges of weight (6n − 1)/2 and also gi1,i2 to g′

i1,i2
by an edge of

weight (6n + 1)/2. This concludes the construction of G′, with Figure 4.4 providing an
illustration.

P1 Pi Pk

ai bi

pin

pi1
n+ 1

2n

n+ l

n

2n− 1

2n− l

4n+ l5n− l
6n−1

2

g1,i

g′1,i

ue

6n+1

2

Figure 4.4: A general picture of graph G′, where the circled vertex is pi
l and dotted lines

match weights to edges.

Lemma 52. If G has a k-multicolored independent set, then G′ has a 6n-scattered set of
size k + 2

(k
2

)

= k + k(k − 1) = k2.

Proof. Let I ⊆ V be a multicolored independent set in G of size k and vi
li

denote the
vertex selected from each Vi, or I := {v1

l1
, . . . , vk

lk
}. Let S ⊆ V ′ include the set of vertices

pi
li

in G′ that correspond to each vi
li

. For any pair i, j ∈ [1, k] of indices with i 6= j, let

ue be the vertex corresponding to the non-edge between vertices vi
li

, vj
lj

∈ I. All these ue

vertices exist, as I is a k-multicolored independent set. We include all these ue vertices
in S and also every g′

i,j that is connected to gi,j that each such ue is connected to. Now

S is of size k + 2
(k

2

)

and we claim it is a 6n-scattered set: all selected vertices pi
li

are at
distance n + li + 5n − li = 6n via ai and distance 2n − li + 4n + li = 6n via bi from any
selected vertex ue that corresponds to a non-edge “adjacent” to their corresponding vi

li
,

while every selected vertex ue corresponding to a non-edge between two vertices of groups
Vi1 , Vi2 is at distance (6n − 1)/2 + (6n + 1)/2 = 6n from every selected vertex g′

i1,i2
that

is connected to gi1,i2 that connects all such ue vertices between these groups.

Lemma 53. If G′ has a 6n-scattered set of size k + 2
(k

2

)

= k + k(k − 1) = k2, then G has
a k-multicolored independent set.

Proof. Let S ⊆ V ′ be the 6n-scattered set, with |S| = k + 2
(k

2

)

. As the distance via
gi,j between any two vertices ue, uh corresponding to non-edges between vertices of the
same groups Vi, Vj is 6n − 1, set S can contain at most one such vertex for every such

81

pair of groups, their number being
(k

2

)

. Since the size of S is k + 2
(k

2

)

, the set must
also contain one other vertex per group, the only choices available being vertices g′

i,j at
distance (6n − 1)/2 + (6n + 1)/2 = 6n from any such ue, leaving the k choices for at most
one vertex from each Pi, as the distance between any pair pi

l1
, pi

l2
is 2n + l1 + l2 < 6n

via ai and 4n − l1 − l2 < 6n via bi. Now, let ue ∈ S be a selected vertex corresponding
to a non-edge between vertices vi

li
, vj

lj
from groups Vi, Vj and pi

oi
, pj

oj
∈ S be the vertices

selected from Pi, Pj . Vertex ue is at distance 5n − li + n + oi = 6n + oi − li via ai and
4n+li+2n−oi = 6n+li−oi via bi from pi

oi
∈ Pi, while at distance 5n−lj+n+oj = 6n+oj−lj

via aj and 4n + lj + 2n − oj = 6n + lj − oj via bj from pj
oj

∈ Pj . It is not hard to see that if

oi 6= li then ue and pi
li

cannot be together in S, while also if oj 6= lj then ue and pj
lj

cannot

be together in S. Thus, there must be no edge between every pair of vertices vi
li

, vj
lj

that

correspond to pi
li

, pj
lj

∈ S, meaning the set I that includes all such vi
li

is a k-multicolored
independent set.

Theorem 54. The edge-weighted d-Scattered Set problem is W[1]-hard parameterized
by vc + k. Furthermore, if there is an algorithm for edge-weighted d-Scattered Set

running in time no(
√

vc+
√

k) then the ETH is false.

Proof. Observe that the set Q ⊂ V ′ that includes all vertices ai, bi, ∀i ∈ [1, k] and all
vertices gi,j , ∀i 6= j ∈ [1, k] is a minimum vertex cover of G′, as all edges have exactly
one endpoint in Q. This means vc(G′) ≤ 2k +

(k
2

)

= O(k2). In addition, the relationship
between the sizes of the solutions of d-Scattered Set and k-Multicolored Indepen-

dent Set is k′ = |S| = k + 2
(k

2

)

= O(k2). Thus, the construction along with lemmas 52
and 53, indeed imply the statement.

Using essentially the same reduction (with minor modifications) we also obtain similar
hardness results for unweighted d-Scattered Set parameterized by fvs:

Corollary 55. The unweighted d-Scattered Set problem is W[1]-hard parameterized by
fvs + k. Furthermore, if there is an algorithm for unweighted d-Scattered Set running

in time no(fvs+
√

k) then the ETH is false.

Proof. The modifications to the above construction that we require are the following: each
edge e of weight w(e) is substituted by a path of length w(e), apart from the edge between
every gi1,i2 to every g′

i1,i2
that is now a path of length d−1 = 6n−1 and all edges between

every gi1,i2 to all adjacent ue that correspond to non-edges between vertices of pair Vi1 , Vi2

that are now only a single edge. In this way, Lemma 52 goes through unchanged, while for
Lemma 53, it suffices to observe that no two vertices anywhere on the paths between some
gi1,i2 and some ai, bi could be selected instead of the intended selection of g′

i1,i2
and some ue

that matches the selections from Vi1 , Vi2 , as the distance between any two vertices between
gi1,i2 and some ai, bi is always < 2d = 12n, while if the selected vertices are not exactly
some g′

i1,i2
and (the correct) ue, then the minimum distance between these selections and

the closest selection from Vi1 , Vi2 will be less than d.
It is not hard to see that the set Q containing all ai, bi, ∀i ∈ [1, k] is a feedback vertex set

of G′, as removal of all these vertices results in an acyclic graph, hence fvs(G′) = O(k).

82

4.2.2 Vertex Cover: FPT algorithm

We next show that unweighted d-Scattered Set admits an FPT algorithm, in contrast
to its weighted version (Theorem 54). Given graph G and d ≥ 3, our algorithm will first
define an instance of a Set Packing variant, where elements may be partially included in
some sets and then solve the problem by dynamic programming. In particular, we define
Partial Set Packing, in which any element has a coefficient of inclusion in each subset,
while a collection of subsets will be a solution if there is no pair of subsets for which the
sum of some element’s coefficients is > 1.

Our instance will then be the following: the universe will consist of the vertices of the
given vertex cover and there will be a set for each vertex (roughly), with set inclusion
based on whether the distance of each of the vertices belonging to the vertex cover is
smaller (complete inclusion), equal (partial inclusion), or greater than d/2 (no inclusion).
A collection of subsets will thus be a solution if no two vertices are selected for which there
exists some third vertex, for which the sum of its distances to the selected pair of vertices
is < d. Depending on the parity of d, there may be 3 or 4 options for inclusion of each
vertex in some subset and thus the running-time of our algorithm is O∗(3vc) for the case
of even d and O∗(4vc) for odd d.

Theorem 56. Given graph G, along with d > 2 and a vertex cover of size vc of G, there
exists an algorithm solving the unweighted d-Scattered Set problem in O∗(3vc) time for
even d and O∗(4vc) time for odd d.

Proof. Let C be the given vertex cover of G and I = V \ C be the remaining independent
set. Let also Y ⊆ I be the subset of vertices from I with a unique neighborhood in C,
i.e. for two vertices u, v ∈ I with N(u) = N(v), set Y only contains one of them. Observe
that the size of Y is thus exponentially bounded by the size of C: |Y | ≤ 2|C|.

For an instance of our Partial Set Packing variant, let U = {u1, . . . , un} be the
universe of elements and S = {S1, . . . , Sm} be the set family. Further, for even d, we
introduce a weight function w(ui, Sj) : U × S 7→ {0, 1/2, 1}, giving the “coefficient” of
element ui for inclusion in set Sj , where 0 implies the element is not included in the set,
1/2 implies partial and 1 complete inclusion. For odd d, the weight function w(ui, Sj) :
U × S 7→ {0, 1/3, 2/3, 1} allows more values for partial inclusion. In our solutions to this
variant we will allow any number of sets to partially include any element, yet if any set
in the solution completely includes some element, then no other set that includes the
same element either partially, or completely, can also be part of the same solution, i.e. a
collection of subsets S ⊆ S will be a solution, if for every element ui ∈ U , the sum for any
two pairs is at most 1: maxSa,Sb∈S{w(ui, Sa) + w(ui, Sb)} ≤ 1.

We then define our Partial Set Packing instance as follows: we make an element
ui ∈ U for every vertex of C and a set Sj ∈ S for every vertex of C ∪ Y . We thus have |C|
elements and |C| + |Y | ≤ |C| + 2|C| sets. For even d, an element ui with corresponding
vertex v ∈ C is included in some set Sj with corresponding vertex z completely (or
w(ui, Sj) = 1) if d(v, z) < d/2, while an element ui with corresponding vertex v ∈ C
is included in some set Sj with corresponding vertex z partially (or w(ui, Sj) = 1/2), if
d(v, z) = d/2. For odd d, an element ui with corresponding vertex v ∈ C is included in
some set Sj with corresponding vertex z completely (or w(ui, Sj) = 1) if d(v, z) < ⌊d/2⌋,
2/3-partially (w(ui, Sj) = 2/3) if d(v, z) = ⌊d/2⌋ and 1/3-partially (w(ui, Sj) = 1/3) if
d(v, z) = ⌈d/2⌉.

83

In the classic dynamic programming procedure for Set Packing we store a table
OPT [U, j] that contains, for every subset of elements U ⊆ U and j ∈ [1, m] the maximum
number of subsets that can be selected from {S1, . . . , Sj}, such that no element of U
is included in any of them. The dynamic programming procedure then first computes
for j = 1: OPT [U, 1] := 1, if U ∩ Sj = ∅ and 0 otherwise, while for j = 2, . . . , m it
is: OPT [U, j + 1] := max{OPT [U, j], OPT [U ∪ Sj+1, j] + 1} if Sj+1 ∩ U = ∅ and only
OPT [U, j + 1] := OPT [U, j] otherwise.

We will create a similar table OPT [U, j] for every j ∈ [1, m] and every U = {(ui ∈
U , w(ui, U))} (of the possible 3|U| or 4|U|), storing the maximum number of sets that can
be selected from {S1, . . . , Sj} to form a partial solution S′ ⊆ {S1, . . . , Sj}, so that for any
element ui it is maxSl∈S′{w(ui, Sl) + w(ui, U)} ≤ 1. Letting the union operator A ∪ B
transfer maximum inclusion, i.e. w(ui, A∪B) = max{w(ui, A), w(ui, B)}, and substituting
the check for U ∩Sj = ∅ by ∀ui ∈ U ∪Sj : w(ui, U)+w(ui, Sj) ≤ 1 in the above procedure,
we can solve the Partial Set Packing instance in O(mn4n) time (and only O(mn3n)
for even d).

Given a solution S ⊆ S to our Partial Set Packing instance, we will show that it
corresponds to a solution for the original instance of d-Scattered Set. First observe
that on any shortest path v0, . . . , vd between vertices v0, vd, we know that any vertex vi

will either be included in C, or both its neighbors vi−1, vi+1 on the path will be included
instead, as otherwise both edges adjacent to vi are not covered by C.

Consider first the case where d is even. On the shortest path between two vertices v0, vd

that are at distance d from each other there will be one (middle) vertex vd/2 at distance
d/2 from both and if vd/2 ∈ C then the corresponding element will be partially included
in both sets corresponding to v0, vd, while if vd/2 /∈ C, each of the elements corresponding
to its neighbors vd/2−1, vd/2+1 on the path will be completely included in one set each and
thus both sets can be used in solution S. For two vertices v0, vd−1 at distance d − 1 from
each other, there will be one vertex vd/2 at distance d/2 from v0 and d/2−1 from vd−1 and
also one vertex vd/2−1 at distance d/2 − 1 from v0 and d/2 from vd−1. If vd/2 ∈ C, then
its corresponding element is included partially by 1/2 in the set corresponding to vertex
v0 and completely by 1 in the set corresponding to vertex vd−1. Otherwise, if vd/2−1 ∈ C,
then its corresponding element is included completely by 1 in the set corresponding to
vertex v0 and partially by 1/2 in the set corresponding to vertex vd−1. Thus in both cases
these two sets cannot be included together in S. The argument also holds if the distance
between the two vertices is smaller than d − 1.

Next, if d is odd, on the shortest path between two vertices v0, vd that are at distance
d from each other there will be two middle vertices v⌊d/2⌋, v⌈d/2⌉ at distances ⌊d/2⌋ and
⌈d/2⌉ from each. Now, vertex v⌊d/2⌋ will be at distance ⌊d/2⌋ from v0 and distance ⌈d/2⌉
from vd and if v⌊d/2⌋ ∈ C its element will be included by 2/3 in the set corresponding to
v0 and by 1/3 in the set corresponding to vd. Similarly, if v⌈d/2⌉ ∈ C, its element will
be included by 1/3 in the set corresponding to v0 and by 2/3 in the set corresponding
to vd. Thus in both cases the two sets can be included together in S. For two vertices
v0, vd−1 at distance d − 1 from each other, if vertex v⌊d/2⌋ ∈ C, then its element will be
included by 2/3 in both sets corresponding to v0, vd−1, while if v⌊d/2⌋ /∈ C, then we have
that both its neighbors v⌊d/2⌋−1, v⌊d/2⌋+1 ∈ C. Now, the element corresponding to v⌊d/2⌋−1

will be completely included by 1 in the set corresponding to v0 and partially by 1/3 in
the set corresponding to vd−1, while the element corresponding to v⌊d/2⌋+1 will likewise
be included partially by 1/3 in the set corresponding to v0 and completely by 1 in the set

84

corresponding to vd−1. Thus in both cases, these two sets cannot be included together in
S, while the argument also holds if the distance between the vertices is smaller than d−1.

As the number of sets in our Partial Set Packing instance is m = |C| + |Y | ≤ |V |
and the number of elements is n = |C| = vc, the total running-time of our algorithm is
bounded by O∗(4vc) for odd d and O∗(3vc) for even d.

4.2.3 Tree-depth: Tight ETH-based lower bound

In this subsection we consider the unweighted version of the d-Scattered Set problem
parameterized by td. We will first show the existence of an FPT algorithm of running-time
O∗(2O(td2)) and then a tight ETH-based lower bound. Similarly to Subsection 3.2.3, we
begin with a simple upper bound argument and the algorithm then follows from Theorem
51 and the relationship between d, td and tw:

Theorem 57. Unweighted d-Scattered Set can be solved in time O∗(2O(td2)).

Proof. As in the proof of Theorem 31, we can assume that d ≤ diam(G), where diam(G)
denotes the graph’s diameter, because otherwise the problem is trivial. Hence, by Lemma
30 we have d ≤ 2td+1 and using Lemma 3 we can get tw ≤ td. Then the algorithm of
Theorem 51 which runs in time O∗(dtw) gives the desired running-time.

Next we show a lower bound matching Theorem 57, based on the ETH, using a reduc-
tion from 3-SAT and a construction similar to the one used in Subsection 4.2.1.

Construction: Given an instance φ of 3-SAT on n variables and m clauses, where we
can assume that m = O(n) (by the Sparsification Lemma, see [61]), we will create an
instance [G = (V, E)] of the unweighted d-Scattered Set problem where d = 6 · c

√
n for

an appropriate constant c (to simplify notation, we assume without loss of generality that√
n is an integer). We first group the clauses of φ into

√
n equal-sized groups F1, . . . , F√

n

and as a result, each group involves O(
√

n) variables, with 2O(
√

n) possible assignments to
the variables of each group. We select c appropriately so that each group Fi has at most
c

√
n possible partial assignments φi

j for the variables of clauses in Fi.

We then create for each i ∈ {1, . . . ,
√

n}, a set Pi of at most c
√

n vertices pi
1, . . . , pc

√
n ,

such that each vertex of Pi represents a partial assignment to the variables of Fi that
satisfies all clauses of Fi. We then create for each i ∈ {1, . . . ,

√
n} a pair of vertices ai, bi

and we connect ai to each vertex pi
l by a path of length c

√
n + l, while bi is connected

to each vertex pi
l by a path of length 2 · c

√
n − l. Now each Pi contains all ai, bi and

pi
l, i ∈ {1, . . . , c

√
n}.

Finally, for every two non-conflicting partial assignments φi
l, φj

o, with l, o ∈ [1, c
√

n]
and i, j ∈ [1,

√
n], i.e. two partial assignments that do not assign conflicting values to any

variable, we create a vertex ui,j
l,o that we connect to vertices ai, bi and aj , bj : if pi

l ∈ Pi is
the vertex corresponding to φi

l and pj
o ∈ Pj is the vertex corresponding to φj

o, then vertex
ui,j

l,o is connected to ai by a path of length 5 ·c
√

n − l and to bi by a path of length 4 ·c
√

n + l,

as well as to aj by a path of length 5 · c
√

n − o and to bj by a path of length 4 · c
√

n + o.
Next, for every pair i, j we make two vertices gi,j , g′

i,j . We connect gi,j to all vertices ui,j
l,o

(for any l, o) by a single edge and also gi,j to g′
i,j by a path of length 6 · c

√
n − 1. This

concludes our construction and Figure 4.5 provides an illustration.

85

P1 Pi Pk

ai bi

pi
c
√

n

pi1

u
1,i

o,l

c
√
n + 1

2 · c
√
n

c
√
n + l

c
√
n

2 · c
√
n
− 1

2 · c
√
n
− l

4 · c
√
n + l5 · c

√
n
− l

6 · c
√
n
− 1

g1,i

g′1,i

Figure 4.5: A general picture of graph G, where straight lines imply paths of length equal
to the number indicated by dotted lines, while the circled vertex is pi

l.

Lemma 58. If φ has a satisfying assignment, then there exists a 6 · c
√

n-scattered set in
G of size

√
n + 2

(

√
n

2

)

= n.

Proof. Consider the satisfying assignment for φ and let φi
li

, with li ∈ [1, c
√

n] and i ∈
[1,

√
n], be the restriction of that assignment for all variables appearing in clauses of group

Fi. We claim the set K, consisting of all vertices pi
li

corresponding to φi
li

, all vertices g′
i,j

and all ui,j
l,o vertices for which we have selected pi

l and pj
o (all these vertices exist, as the

corresponding partial assignments are non-conflicting), is a d-scattered set for G of size
|K| =

√
n+2

(

√
n

2

)

= n: all selected vertices pi
li

are at distance c
√

n + li +5 ·c
√

n − li = 6 ·c
√

n

via ai and distance 2 · c
√

n − li + 4 · c
√

n + li = 6 · c
√

n via bi from any selected vertex ui,j
li,lj

,

while every selected ui,j
li,lj

is at distance 6 ·c
√

n −1+1 = 6 ·c
√

n from every selected g′
i,j .

Lemma 59. If there exists a 6 · c
√

n-scattered set in G of size
√

n + 2
(

√
n

2

)

= n, then φ
has a satisfying assignment.

Proof. Let S ⊆ V be the 6 · c
√

n-scattered set in G, with |S| = n. For every pair i, j ∈
[1,

√
n], set S cannot contain more than one vertex from the paths between gi,j and

ai, bi, aj , bj , as the distance between any pair of such vertices is always < 2 · 6 · c
√

n (due to
the single edges between gi,j and any ui,j

li,lj
). Likewise, set S cannot contain more than two

vertices from the paths between g′
i,j and ai, bi, aj , bj , as the maximum sum of distances

between any three such vertices is < 3 · 6 · c
√

n. Since |S| =
√

n + 2
(

√
n

2

)

, set S must
also contain

√
n other vertices and due to the distance between any pair of vertices pi

l, pi
o

from the same group Pi being < 4 · √
n, there must be one selection from each group Pi.

Furthermore, for two such selections pi
li

, pj
lj

, the only option for the other two selections

(for this pair of groups i, j) is to select vertices g′
i,j and ui,j

li,lj
, since the distances from

pi
li

, pj
lj

to ui,j
li,lj

(through ai, bi, aj , bj) will only be equal to 6 · c
√

n if these selections (and

indices) match, with the only remaining option at distance 6 · c
√

n (for any choice of ui,j
li,lj

)
being vertex g′

i,j .

86

Lemma 60. The tree-depth of G is 2
√

n + ⌈log(6 · c
√

n)⌉ + 1 = O(
√

n).

Proof. We again employ the alternative definition of tree-depth used in Lemma 30. Con-
sider graph G after removal of all vertices ai, bi, ∀i ∈ [1,

√
n]. The graph now consists

of
√

n · c
√

n paths of length < 3 · c
√

n through each vertex in Pi and
(

√
n

2

)

trees, con-
sidered rooted at each vertex gi,j . The maximum distance in each such tree between a
leaf and its root is 6 · c

√
n − 1 (for vertex g′

i,j) and the claim then follows, as paths of
length n have tree-depth exactly ⌈log(n + 1)⌉ (this can be shown by repeatedly removing
the middle vertex of each path). By the definition of tree-depth, after removal of 2

√
n

vertices from G, the maximum tree-depth of each resulting disconnected component is
⌈log(6 · c

√
n)⌉ = ⌈√

n · log(c) + log(6)⌉.

Theorem 61. If unweighted d-Scattered Set can be solved in 2o(td2) · nO(1) time, then
3-SAT can be solved in 2o(n) time.

Proof. Suppose there is an algorithm for d-Scattered Set with running-time 2o(td2).
Given an instance φ of 3-SAT, we use the above construction to create an instance [G =
(V, E)] of d-Scattered Setwith d = 6 · c

√
n, in time O(

√
n · c

√
n + c2

√
n). As, by Lemma

60, we have td(G) ≤ O(
√

n), using the supposed algorithm for d-Scattered Set we can
decide whether φ has a satisfying assignment in time 2o(td2) · nO(1) = 2o(n).

4.3 Treewidth revisited: FPT approximation scheme

In this section we present an FPT-AS for d-Scattered Set parameterized by tw. Given
as input an edge-weighted graph G = (V, E), k ∈ N+, d ≥ 2 and an arbitrarily small error
parameter ǫ > 0, our algorithm is able to return a set K, such that any pair v, u ∈ K
are at distance d(v, u) ≥ d

1+ǫ , in time O∗((tw/ǫ)O(tw)), if a d-scattered set of size |K| = k
exists in G. As was the case in Section 3.3, our algorithm makes use of the technique of
[73] for approximating problems that are W-hard by treewidth.

The rounding technique as applied in [73] employs randomization and an extensive
analysis to procure the bounds on the propagation of error, while we only require a de-
terministic adaptation of the rounding process without making use of the advanced ma-
chinery there introduced, as for our particular case, the bound on the rounding error can
be straightforwardly obtained. The main tool we require is the following definition of
an addition-rounding operation, denoted by ⊕:3 for two non-negative numbers x1, x2, we
define x1 ⊕ x2 := 0, if x1 = x2 = 0. Otherwise, we set x1 ⊕ x2 := (1 + δ)⌊log(1+δ)(x1+x2)⌋.

For our purposes, the integers we would like to approximately store are the states sj ∈
[1, d−1], representing the distance of a vertex vj in some bag Xi of the tree decomposition
to the closest selection in the d-scattered set K, during computation of the dynamic
programming algorithm. Instead of allowing use of all d − 1 exact values to signify the
states, we will instead adopt rounded approximations, that are inductively computed and
propagated, while keeping accumulation of error bounded as well. Let Σδ := {0} ∪ {(1 +
δ)l|l ∈ N}. Intuitively, Σδ is the set of rounded states that our modified algorithm may
use. Of course, Σδ as defined is infinite, but we will only consider the set of values that
are at most d, denoted by Σd

δ . In this way, the size of Σd
δ is reduced to log(1+δ)(d), for an

3The [73] version uses a randomly selected real number < 1 in the sum within the logarithm, while
our application can be seen as setting this value to 0, avoiding randomization altogether, as mentioned in
Section 3.3. We also omit references to Addition Trees in this section and only make use of the ⊕ operator.

87

appropriate choice of δ, to be specified later. For all nodes i of the tree decomposition, we
now have Di[σ0, . . . , σt] : (Σd

δ)t+1 7→ N0, with 0 ≤ t < tw.

Modifications: Our approximation algorithm will be a modification of the exact dy-
namic programming for d-Scattered Set, given in Subsection 4.1.2. For the approxima-
tion algorithm, we will make use of an adaptation of this algorithm of Theorem 51, that
works for the maximization version of the problem instead of the counting version (albeit
not optimally). We first describe the necessary modifications to the counting version and
then the subsequent changes for use of our rounded values. In fact, any “simple” version
of the exact algorithm that does not involve counting the number of solutions could be
used as the basis for our modified approximation algorithm.

The algorithm for the maximization version needs the following changes: for a leaf
node i we set Di[s0] := 1, if s0 = 0, and 0 otherwise. For an introduce node i, we also
add a +1 to the values of previously computed entries if st+1 = 0 and the same conditions
hold as in the counting version, while a value of 0 for invalid state-representations is
substituted by an arbitrarily large negative value −∞. For forget nodes i we now compare
all previous partial solutions to retain the maximum over all states of the forgotten vertex,
instead of computing their sum, while for join nodes, we also substitute taking the sum by
taking the maximum, with multiplication also substituted by addition of entries from the
previous tables (i.e. we move our computations from the sum-product ring to the max-sum
semiring), as well as subtracting from each such computation the number of vertices of
zero state for the given entry (that would be counted twice).

We next explain the necessary modifications to the exact algorithm for use of the
rounded states σ ∈ Σd

δ . Consider a node i introducing vertex vt+1: for a new entry to
describe a proper extension to some previously computed partial solution, if the new vertex
is of state st+1 ∈ [1, d − 1] in the new entry, then there must be some vertex vj ∈ Xi, such
that st+1 ≤ d(vt+1, vj) + sj (the one for which this sum is minimized), i.e. we require that
the new state of the introduced vertex matches its distance to some other vertex in the bag
plus the state of that vertex (being the one responsible for connecting vt+1 to the partial
solution). The rounded state σt+1 for vt+1 must now satisfy: σt+1 ≤ d(vt+1, vj)⊕σj , where
⊕ is the operator defined above.

Further, states are now considered low if 0 < σ ≤ ⌊d/2⌋
(1+ǫ) , while, from a set of already

computed states σ′, the symmetrical (around d/2) state σ̄ for a given low state σ is defined
as the minimum state σ′ for which σ+σ′ ≥ d

(1+ǫ) . Thus, for a node introducing vertex vt+1

with state σt+1 = 0, we require that ∀vj ∈ Xi−1 with σj = 0, it is d(vt+1, vj) ≥ d
(1+ǫ) , and

∀vj ∈ Xi−1 with d(vt+1, vj) ≤ ⌊d/2⌋
(1+ǫ) , it is σj ≤ d(vt+1, vj) and σ′ = σ̄ for Di[σ0, . . . , σt+1] :=

Di−1[σ′
0, . . . , σ′

t] + 1. Finally, for join nodes, we arbitrarily choose the computed states for
the table of one of the children nodes to represent the new entries and again use σ̄ to
identify the symmetrical of each low state (from the other node’s table).

Moreover, we require that the tree decompositions on which our algorithm is to be
applied are rooted and of maximum height O(log n) and for this we again use Theorem 39.
The following lemma employs the transformation of [13] to bound the error of any value
calculated in this way, based on an appropriate choice of δ and therefore set Σd

δ of available
values, by relating the rounded states σ computed at any node to the states s that the
exact algorithm would use at the same node instead.

88

Lemma 62. Given ǫ and a tree decomposition (X , T) with T = (I, F), X = {Xi|i ∈ I},
where T is rooted, binary and of height O(log n), there exists a constant C, such that for
all rounded states σj ∈ Σd

δ it is σj ≥ sj

(1+ǫ) , ∀vj ∈ Xi, ∀i ∈ I, where δ = ǫ
C log n .

Proof. First, observe that for any rounded state σ calculated using the ⊕ operator we
have σ ≤ s, where s is the state the exact algorithm would use instead. Let h be the
maximum depth of the recursive computations of any state σ we may require. We now
want to show by induction on h that it is always log1+δ(s

σ) ≤ h. For h = 1 and only one
addition σ = 0 ⊕ d1, for some distance d1 with s = 0 + d1, we want log(1+δ)(

s
σ) ≤ 1. It is

indeed log(1+δ)(
s
σ) = log(1+δ)(d1) − ⌊log(1+δ)(d1)⌋ ≤ 1.

For the inductive step, let σ3 = σ2 ⊕ d2 and s3 = s2 + d2 be the final rounded
and exact values (at height h), for some distance d2 and previous values σ2, s2 (for h −
1). It is log(1+δ)(

s3
σ3

) = log(1+δ)(
s2+d2

(1+δ)
⌊log(1+δ)(σ2+d2)⌋) = log(1+δ)(s2) + log(1+δ)(1 + d2

s2
) −

⌊log(1+δ)(σ2)+log(1+δ)(1+ d2
σ2

)⌋. This, after removal of the floor function, is ≤ log(1+δ)(s2)+

log(1+δ)(1 + d2
s2

) − (log(1+δ)(σ2) + log(1+δ)(1 + d2
σ2

)) + 1 = log(1+δ)(s2) − log(1+δ)(σ2) +

log(1+δ)(1 + d2
s2

) − log(1+δ)(1 + d2
σ2

) + 1. The claim then follows, because log(1+δ)(s2) −
log(1+δ)(σ2) = log(1+δ)(

s2
σ2

) ≤ h − 1 by the inductive hypothesis, while also log(1+δ)(1 +
d2
s2

) − log(1+δ)(1 + d2
σ2

) ≤ 0, as σ2 ≤ s2.

Thus we have log(1+δ)(
s
σ) ≤ h, from which we get s

σ ≤ (1 + δ)h. For σ ≥ s
(1+ǫ) , we

require that (1 + δ)h ≤ (1 + ǫ), or h ≤ log(1+δ)(1 + ǫ) = log2(1+ǫ)
log2(1+δ) , that gives h ≤ ǫ

δ ,
for ǫ, δ ≈ 0, or δ ≤ ǫ

h . Next, observe that during the computations of the algorithm,
the maximum depth h of any computation can only increase by one if some vertex is
introduced in the tree decomposition, as paths to and from it become available. This
means no inductive computation we require can be of depth larger than the height of the
tree decomposition T , giving h = C log n for some constant C.

Theorem 63. There is an algorithm which, given an edge-weighted instance of d-Scattered

Set [G, k, d], a tree decomposition of G of width tw and a parameter ǫ > 0, runs in time
O∗((tw/ǫ)O(tw)) and finds a d/(1+ǫ)-scattered set of size k, if a d-scattered set of the same
size exists in G.

Proof. Naturally, our modified algorithm making use of these rounded values to represent
the states will not perform the same computations as the exact version given in Subsection
4.1.2. The new statement of correctness, taking into account the approximate values now
computed (and the switch to the maximization version), is the following:

89

∀i ∈ I, ∀(σ0, . . . , σt) ∈ (Σd
δ)t+1, 0 ≤ t < tw : (4.13)

{

Di[σ0, . . . , σt] = |K| : K ⊆ Vi \ Xi ∪ {vl ∈ Xi|σl = 0} : (4.14)

{∀u, w ∈ K : d(u, w) ≥ d

(1 + ǫ)
}∧ (4.15)

∧{∀vj ∈ Xi|0 < σj ≤ ⌊d/2⌋
(1 + ǫ)

, ∀u, w ∈ K|d(u, vj) ≤ d(w, vj) : (4.16)

d(u, vj) ≥ σj ∧ d(w, vj) ≥ d

(1 + ǫ)
− σj}∧ (4.17)

∧{∀vj ∈ Xi|σj >
⌊d/2⌋
(1 + ǫ)

, ∀u ∈ K : d(u, vj) ≥ σj}∨ (4.18)

∨Di[σ0, . . . , σt] = −∞}

. (4.19)

In words, the above states that for every node i and all possible state-configurations
(σ0, . . . , σt) ∈ (Σd

δ)t+1 (4.13), table entry Di[σ0, . . . , σt] contains the size of a subset K of
Vi (that includes vertices vl ∈ Xi of state sl = 0) (4.14), such that the distance between
every pair of vertices u, w in K is at least d/(1 + ǫ) (4.15), for every vertex vj ∈ Xi of
low state σj ≤ ⌊d/2⌋/(1 + ǫ) and a pair of vertices u, w from K with u closer to vj than
w (4.16), its distance to u is at least equal to its state σj and its distance to w is at least
d/(1 + ǫ) − σj (4.17), while for every vertex vj ∈ Xi of high state σj > ⌊d/2⌋/(1 + ǫ) and a
vertex u from K, its state σj is at most its distance from any vertex u (4.18), or if there is
no such K, we have Di[σ0, . . . , σt] = −∞ for this entry (4.19). This is shown by induction
on the nodes i ∈ I:

• Leaf node i with Xi = {v0}: This is the base case of our induction and the initializing
values of 1 for σ0 = 0 and 0 for σ0 > 0 are indeed the correct sizes for K.

• Introduce node i with Xi = Xi−1 ∪ {vt+1}: For entries with 0 < σj ≤ ⌊d/2⌋/(1 + ǫ),
validity of (4.15,4.18) is not affected, while for (4.16-4.17): it is σt+1 = σj ⊕d(vt+1, vj)
for some vertex vj ∈ Xi−1, for which, by the induction hypothesis we have that
σj ≤ d(u, vj) and d(w, vj) ≥ d/(1 + ǫ) − σj , where u is the closest selection to vj

and w the second closest. To see the same holds for vt+1, observe that σt+1 ≤
d(vt+1, vj) + d(u, vj) = d(u, vt+1) and d(w, vj) ≥ d/(1 + ǫ) − σj ⇒ σj + d(vt+1, vj) ≥
d/(1+ ǫ)−d(w, vj)+d(vt+1, vj) ⇒ σj +d(vt+1, vj) ≥ d/(1+ ǫ)−d(w, vt+1) ⇒ σt+1 ≥
d/(1 + ǫ) − d(w, vt+1).

For entries with σt+1 > ⌊d/2⌋/(1 + ǫ), validity of (4.15-4.17) is not affected, while
for (4.18): it is σt+1 ≤ d(vt+1, vj) + σj for some vj ∈ Xi−1, for which we have
σj ≤ d(u, vj) and thus also σt+1 ≤ d(vt+1, vj) + d(vj , u) = d(vt+1, u).

For entries with σt+1 = 0, observe that the low states σj of vertices vj ∈ Xi−1 in the
new entry with d(vt+1, vj) ≤ ⌊d/2⌋/(1+ǫ) would need to be σj ≤ d(vt+1, vj) and also
correspond to the minimum high original state σ′

j such that σj + σ′
j ≥ d/(1 + ǫ), for

which partial solution it is d(vj , u) ≥ σ′
j , ∀u ∈ K and thus d(vj , u) ≥ d/(1 + ǫ) − σj

(4.16-4.17). For high states σj of vertices vj ∈ Xi−1, it is d(vt+1, vj) ≥ σj (4.18)
and finally, for (4.15), if there was some u ∈ K such that u /∈ Xi− and d(u, vt+1 <
d/(1 + ǫ), then there must be some vj ∈ Xi−1 of new state σj and previous state σ′

j

(on the path between u and vt+1) for which σj + σ′
j < d/(1 + ǫ), contradicting the

90

requirement for introduction of vt+1 with σt+1 = 0: it is d(u, vt+1) < d/(1 + ǫ) ⇒
d(u, vj) + d(vt+1, vj) < d/(1 + ǫ) ⇒ σj + σ′

j < d/(1 + ǫ), as it must be σ′
j ≤ d(u, vj)

and also σj ≤ d(vt+1, vj).

• Forget node i with Xi = Xi−1 \ {vt+1}: No modification to the exact dynamic
programming affects the correctness of (4.13-4.18), as, the right number is indeed
the maximum over all states for vt+1.

• Join node i with Xi = Xi−1 = Xi−2: For (4.15), if there was a pair u ∈ K ∩ Vi−1 \
Xi−1, w ∈ K ∩ Vi−2 \ Xi−2 with d(u, w) < d/(1 + ǫ), then there must be some vertex
vj ∈ Xi (on the path between the two) for which σj + σ̄j < d/(1 + ǫ) (as above).
For (4.16-4.18), observe that for vertices of low state σj , lines (4.16-4.17) must have
been true for either i − 1 or i − 2 and (4.18) for the other, while for vertices vj of
high state σj , it again suffices that (4.18) must have been true for both.

For a node i ∈ I, let Ui(k, s0, . . . , st) = {K ⊆ Vi|K ∩ Xi = {vj ∈ Xi|sj = 0}} be
the set of all d-scattered sets in Gi of size k for this state-configuration (s0, . . . , st) (as
in the proof of Theorem 51), Ui(k, σ0, . . . , σt) = {K ⊆ Vi|K ∩ Xi = {vj ∈ Xi|σj = 0}
be the set of all subsets K of Vi of size k for the rounded state-configuration (σ0, . . . , σt)
(computed by our approximation algorithm) and Ui(k, s

1+ǫ) be the set of all d/(1 + ǫ)-
scattered sets of size k in Gi. Consider a set K ∈ Ui(k, s0, . . . , st) and let (σ0, . . . , σt)
be the state-configuration resulting from rounding each sj down to its closest integer
power of (1 + δ), or σj = (1 + δ)⌊log(1+δ)(sj)⌋, ∀j ∈ [0, t]. As |K| = k and for any pair
u, w ∈ K, we have d(u, w) ≥ d > d

(1+ǫ) , we want to show that the requirements of

(σ0, . . . , σt) also hold for K. By Lemma 62, we know that sj ≥ σj ≥ sj

(1+ǫ) for all j ∈ [0, t].
Now, for each σj ∈ (σ0, . . . , σt), σj ≤ sj gives σj ≤ d(u, vj) for the closest u ∈ K to
vj , while if also σj ≤ ⌊d/2⌋

(1+ǫ) , then sj

(1+ǫ) ≤ ⌊d/2⌋
(1+ǫ) and sj ≤ ⌊d/2⌋ (i.e. sj is also low) and

we have that d − sj ≤ d(w, vj) for w ∈ K being the second closest to vj , from which

we get d
(1+ǫ) − sj

(1+ǫ) ≤ d(w,vj)
(1+ǫ) ⇒ d

(1+ǫ) − σj ≤ d(w,vj)
(1+ǫ) ≤ d(w, vj), i.e. state-configuration

(σ0, . . . , σt) also holds for set K. This means K ∈ Ui(k, σ0, . . . , σt) and thus we have
Ui(k, s0, . . . , st) ⊆ Ui(k, σ0, . . . , σt). Further, since for any K our approximation algorithm
will compute, it is d(u, w) ≥ d/(1+ǫ), ∀u, w ∈ K, we also have Ui(σ0, . . . , σt) ⊆ Ui(k, s

(1+ǫ)).
Due to these considerations, if a d-scattered set of size k exists in G, our algorithm will
be able to return a set K with |K| = k, that will be a d/(1 + ǫ)-scattered set of G.

The algorithm is then the following: first, according to the statement of Lemma 62,
we select δ = ǫ

C log n , that we use to define set Σd
δ and then we use the algorithm of The-

orem 51, modified as described above, on the bounded-height transformation of nice tree
decomposition (X , T). Correctness of the algorithm and justification of the approxima-
tion bound are given above, while the running-time crucially depends on the size of Σd

δ

being |Σd
δ | = O(log(1+δ) d) = O(log d

log(1+δ)) = O(log d
δ), where we used the approximation

log(1 + δ) ≈ δ for sufficiently small δ (i.e. sufficiently large n). This gives O(log n/ǫ)O(tw)

and the statement is then implied by Lemma 2.
As a final note, observe that due to the use of the ⌊·⌋ function in the definition of

our ⊕ operator, all our values will be rounded down, in contrast to the original version of
the technique (from [73]), where depending on a randomly chosen number ρ, the values
could be rounded either down or up. This means there will be some value x, such that
x⊕1 = x, or (1+δ)x = (1+δ)⌊log(1+δ)(x+1)⌋ (we would have x ≈ 1/δ). One may be tempted

91

to conceive of a pathological instance consisting of a long path on n vertices and d >> x,
along with a simple path decomposition for it (that is essentially of the same structure),
where the computations for each rounded state σ would “get stuck” at this value x. In
fact, the transformation of [13] would give a tree decomposition of height O(log n) for
this instance, whose structure would be the following: the leaf nodes would correspond
to one vertex of the path each, while at (roughly) each height level i, sub-paths of length
2i would be joined together. Thus each join node t that corresponds to some sub-path
of length 2i (let Xt = {a, b, c, d}) would have two child branches, consisting of two forget
nodes, two introduce nodes and a previous join node on each side (let these be t−1, t−2),
computing sub-paths of length 2i−1 (with Xt−1 = {a, a′, b′, b} and Xt−2 = {c, c′, d′, d}).
The vertices forgotten at each branch would be the middle vertices of the sub-path of
length 2i−1 already computed at the previous join node of this branch (i.e. a′, b′ for the
t − 1 side and c′, d′ for the other), while the introduced vertices would be the endpoints
of the sub-path of length 2i−1 computed at the other branch attached to this join node
(i.e. c, d for the t − 1 side and a, b for the other). In this way, in each branch (and partial
solution) there will be one vertex (c or b) for which the rounded state would need to be
≤ 1⊕ the rounded state σ of some neighbor (b or c) and one vertex (d or a) for which the
⊕ operator would be applied between the state σ of some non-adjacent vertex (a, b or c
for the t − 1 side and c, d or b for the other) and their distance (e.g. d(b, d) and d(c, a)),
these being at least 2i−1. In this way, the algorithm will not have to compute any series
of rounded states sequentially by ⊕1 and as, by Lemma 62, we have that for all nodes
i ∈ I and vertices vj ∈ Xi, it is σj ≥ sj

(1+ǫ) , for all σj ∈ Σd
δ , the rounded states used by the

algorithm for these introduce/join nodes will never be more than a factor of (1 + ǫ) from
the ones used by the exact algorithm on the same tree decomposition.

92

5
On the (Super-)Polynomial (In-)Approximability of

d-Scattered Set

In this chapter we revisit the d-Scattered Set problem, yet our focus here lies on the
aspects of the problem that relate more to its approximability than the sensitivity of
its complexity to restrictions on the structure of the input. We consider running-times
expressed as functions of n, the size of the instance, along with other relevant parameters,
while we are interested in both polynomial, as well as super-polynomial (i.e. exponential)
running-times. Furthermore, we concentrate on the unweighted variant of the problem,
where the distance is measured only by the number of edges.

Following inspection of the problem’s complexity with respect to the most commonly
studied structural parameters, we are now interested in identifying the optimal relationship
between the running-time of approximation algorithms, expressed as a function of the size
of the instance n, the distance parameter d, and the best achievable approximation ratio
ρ for the problem, in order to involve the size of the input and the quality of the solutions
into play as parameters in our investigations.

Subsequent to this our perspective shifts in terms of the types of results we explore:
in the previous chapters where our viewpoint was parameterized, our aim was to identify
the correct values of running-times for each parameter under consideration, showing that
these are in a certain sense optimal by providing matching upper and lower bounds, or
concurring algorithmic and hardness results. Dealing with approximation our aim remains
with securing tight bounds that stem from algorithmic and hardness results that concur,
yet it is now the functions describing the approximation ratios that we are interested in
precisely characterizing, through identification of upper/lower bounds on ratios achievable
in strictly polynomial running-times. These are still influenced by restrictions to the
structure of the input, as for our results we consider graphs of bounded degree and bipartite
graphs, that are of special interest in terms of independence.

Before moving on to describe our results, we note that these may be dependent on
the parity of our distance parameter d as being even or odd. Both our running-times and
ratios can be affected by this peculiarity of the problem that, intuitively, arises due to the
(non)existence of a middle vertex on a path of length d between two endpoints. If d is
even then such a vertex can exist at equal distance d/2 from any number of vertices in the
solution, while if d is odd there can be no vertex at equal distance from any pair of vertices
in the solution. This idiosyncrasy can change the way in which both our algorithms and

93

hardness constructions work (already seen in the algorithm of Theorem 56) and in some
cases even entirely alters the complexity of the problem (e.g. in the results of [42]).

Our results: Section 5.1 concerns super-polynomial running-times, presenting first an
exact exponential-time algorithm for d-Scattered Set of complexity O∗((ed)

2n
d) and

then considering the inapproximability of the problem within the same range. We show

that no ρ-approximation algorithm can take time (roughly) 2
n1−ǫ

ρd for even d and 2
n1−ǫ

ρ(d+ρ)

for odd d, under the (randomized) ETH. This is complemented by (almost) matching ρ-

approximation algorithms of running-times O∗((eρd)
2n
ρd) for even d and O∗((eρd)

2n
ρ(d+ρ)) for

odd d. We note that the current state-of-the-art PCPs1 are unable to distinguish between
optimal running-times of the form 2n/ρ and ρn/ρ for ρ-approximation algorithms, due to
the poly-logarithmic factor added by even the most efficient constructions and we thus
do not focus on the poly-logarithmic factors differentiating our upper and lower bounds.
These results provide a complete characterization of the optimal relationship between the
worst-case approximation ratio ρ achievable for d-Scattered Set by any algorithm, its
running-time and the distance parameter d, for any point in the trade-off curve, in a
similar manner as was done for Independent Set in [26, 36] (see also [21, 23]), by also
considering the range of possible values for d. We observe that the distance parameter d
acts as a scaling factor for the size of the instance, whereby the problem becomes easier
when vertices are required to be much further apart, a feature counterbalanced by the
chosen approximation ratio ρ, with small values guaranteeing the quality of the produced
solutions, yet also negatively impacting on the exponent of the running-time.

Section 5.2 follows this up by considering strictly polynomial running-times. We first
show that there is no polynomial-time approximation algorithm for d-Scattered Set

with ratio ∆⌊d/2⌋−ǫ in graphs of maximum degree ∆. This is the first lower bound that
considers ∆ and generalizes the known ∆1−ǫ-inapproximability of Independent Set

(see Theorem 5.2 of [26], restated here as Theorem 10, as well as [3]). Maximum vertex
degree ∆ plays an important role in the context of independence (e.g. [8, 38, 57]) and
was specifically studied for d-Scattered Set in [43], where polynomial-time O(∆d−1)-
and O(∆d−2/d)-approximations are given. We improve upon this by showing that any
greedy approximation algorithm in fact achieves a ratio of O(∆⌊d/2⌋), also matching our
lower bound. Finally, we turn to bipartite graphs and show that d-Scattered Set can
be approximated within a factor of 2

√
n in polynomial time also for even values of d,

matching its known n1/2−ǫ-inapproximability from [42] and complementing the known√
n-approximation for odd values of d from [56]. We close the chapter with a supplemen-

tary note on the treewidth of power graphs obtained through observations related to our
previous results. These are also summarized in Table 5.1 below.

Inapproximability Approximation

Super-polynomial 2
n1−ǫ

ρd (66)/ 2
n1−ǫ

ρ(d+ρ) (67) O∗((eρd)
2n
ρd) (68)/ O∗((eρd)

2n
ρ(d+ρ)) (69)

Polynomial ∆⌊d/2⌋−ǫ (70) O(∆⌊d/2⌋) (83)
Bipartite graphs n1/2−ǫ [42] 2

√
n (86)

Table 5.1: A summary of our results (theorem numbers), for even/odd values of d.

1Versions of the celebrated PCP theorem: intuitively, this refers to the (rather complex) machinery
behind the most efficient gap-introducing reductions. See [95] for more information.

94

5.1 Super-polynomial time

This section concerns itself with running-times that are not restricted to being functions
polynomial in the size of the input. We begin with an upper bound on the size of the solu-
tion in any connected graph that is then employed in obtaining a simple exact exponential-
time algorithm.

Lemma 64. The maximum size of any d-Scattered Set in a connected graph is
⌊

n
⌊d/2⌋

⌋

.

Proof. Given connected graph G = (V, E), let S ⊆ V be a d-scattered set in G. To each
u ∈ S, we will assign all vertices at distance < ⌊d/2⌋: let M(u) := {u} ∪ {v ∈ V |d(u, v) <
⌊d/2⌋}. Our aim is to show that for any u ∈ S, it must be |M(u)| ≥ ⌊d/2⌋. In other words,
for any vertex u in the solution there must be at least ⌊d/2⌋ − 1 distinct vertices that are
at distance < ⌊d/2⌋ from u and at distance ≥ ⌊d/2⌋ from any vertex w ∈ S. Observe that
if for some pair u, w ∈ S, we have M(u) ∩ M(w) 6= ∅, then d(u, w) < d, as there exists a
vertex at distance < ⌊d/2⌋ from both u, w.

Consider some u ∈ S and let k be the number of vertex-disjoint paths of length
< ⌊d/2⌋ starting from u, i.e. such that no vertices are shared between them. Then it must
be |M(u) \ {u}| ≥ k(⌊d/2⌋ − 1). If V ⊆ M(u), then OPTd(G) = |S| = 1 and the claim
trivially holds, so we may assume that there is at least one vertex z /∈ M(u). This means
k ≥ 1, since G is connected and there must be (at least) one path from z to u of length
≥ ⌊d/2⌋. It is then |M(u) \ {u}| + 1 ≥ ⌊d/2⌋ − 1 + 1 giving |M(u)| ≥ ⌊d/2⌋.

This means that for each vertex u taken in any solution S there must be at least ⌊d/2⌋
distinct vertices in the graph, i.e. G must contain |S| disjoint subsets of size at least ⌊d/2⌋
and the claim follows.

Theorem 65. The d-Scattered Set problem can be solved in O∗((ed)
2n
d) time.

Proof. We simply try all sets of vertices of size at most
⌊

n
⌊d/2⌋

⌋

for feasibility and retain
the best one found. By Lemma 64, the optimal solution must be contained therein. The
number of sets we examine is ≤ 2n

d

(n
2n
d

)

= O∗((ed)
2n
d), that gives the running-time.

5.1.1 Inapproximability

We now turn our attention to the problem’s hardness of approximation in super-polynomial
time. We use Theorem 10 in conjunction with straightforward reductions from Indepen-

dent Set to d-Scattered Set for the two cases depending on the parity of d.

Theorem 66. Under the randomized ETH, for any even d ≥ 4, ǫ > 0 and ρ ≤ (2n/d)5/6,

no ρ-approximation for d-Scattered Set can take time 2

(

n1−ǫ

ρ1+ǫd1−ǫ

)

· nO(1).

Proof. We suppose the existence of a ρ-approximation algorithm for d-Scattered Set

of running-time 2

(

n1−ǫ

d1−ǫρ1+ǫ

)

· nO(1) for some ǫ > 0 and aim to show this would violate the
(randomized) ETH. First let ǫ1 > 0 be such that ǫ > ǫ1 and ǫ > 2ǫ1

1−3ǫ1
. We next define

ǫ2 = 1
1−ǫ1

− 1 and r = ρ
1−ǫ1

1−3ǫ1 . Then, given a formula φ of 3SAT on N variables, we
use the reduction of Theorem 10 with parameters r and ǫ2 to build a graph G from φ,
with |V (G)| = N1+ǫ2r1+ǫ2 and maximum degree r, such that with high probability: if φ

95

is satisfiable then α(G) ≥ N1+ǫ2r; if φ is not satisfiable then α(G) ≤ N1+ǫ2r2ǫ2 . Thus an
approximation algorithm with ratio r1−2ǫ2 would permit us to decide if φ is satisfiable.

We have that r1−2ǫ2 = (ρ
1−ǫ1

1−3ǫ1)1−2ǫ2 = (ρ
1−ǫ1

1−3ǫ1)3− 2
1−ǫ1 = ρ

3+
2ǫ1−2
1−ǫ1

−3ǫ1

1−3ǫ1 = ρ.
We will construct graph H from G as follows (similarly to Theorem 3.10 in [56], see also

Figure 5.1): graph H contains a copy of G and a distinct path of d/2−1 edges attached to
each vertex of G. Without loss of generality, we may assume that any d-scattered set will
prefer selecting an endpoint of these attached paths than some vertex from G, as these
selections would exclude strictly fewer vertices from the solution, i.e. any solution can only
be improved by exchanging any vertex of G with selecting the (other) endpoint of the path
attached to it. A pair of vertices that are endpoints of such paths (and not originally in G)
will be at distance ≥ 2(d/2−1)+2 = d, only if the vertices of G to which they are attached
are non-adjacent, i.e. if the shortest path between them is of length at least 2. Thus, d-
scattered sets in H are in one-to-one correspondence with independent sets in G and
α(G) = OPTd(H). The size of H is n = |V (H)| = |V (G)|(d/2−1+1) = N1+ǫ2r1+ǫ2(d/2).
Note also that ρ ≤ N5 and thus ρ ≤ (2n/d)5/6.

If φ is satisfiable then OPTd(H) = α(G) ≥ N1+ǫ2r, while if φ is not satisfiable then
OPTd(H) = α(G) ≤ N1+ǫ2r2ǫ2 . Therefore, applying the supposed ρ-approximation for d-

Scattered Set on H would permit us to solve 3SAT in time 2

(

n1−ǫ

d1−ǫρ1+ǫ

)

·nO(1), with high

probability. We next show that this would violate the ETH, i.e. 2

(

n1−ǫ

d1−ǫρ1+ǫ

)

·nO(1) = 2o(N).
We have:

n = N1+ǫ2r1+ǫ2(d/2) ⇒ N =
(

2n

d

)1−ǫ1

· 1

ρ

(

1−ǫ1
1−3ǫ1

) (5.1)

And we then need to show:

2

(

n1−ǫ

d1−ǫρ1+ǫ

)

· nO(1) = 2o(N) = 2
o

(

(2n
d)1−ǫ1 · 1

ρ

(

1−ǫ1
1−3ǫ1

)

)

(5.2)

Observe that, since ǫ > ǫ1 and ǫ > 2ǫ1
1−3ǫ1

, it is:

(n/d)1−ǫ < (2n/d)1−ǫ1 (5.3)

(1/ρ1+ǫ) <

(

1/ρ
(

1−ǫ1
1−3ǫ1

)
)

(5.4)

Which then gives:

lim
(n,ρ)→∞

2

(

(n
d

)1−ǫ· 1
ρ1+ǫ

)

2

(

(2n
d

)1−ǫ1 · 1

ρ

(

1−ǫ1
1−3ǫ1

)

) = 0 (5.5)

The following reduction from Independent Set to d-Scattered Set for odd values
of d uses a construction that includes a copy of every edge of the original graph (an edge
gadget, see Figure 5.1). This necessity is responsible for the difference in running-times
and is due to the parity idiosyncrasies of the problem as discussed above.

96

probability. We next show that this would violate the ETH, i.e. 2

(

n1−ǫ

ρ1+ǫ(d + ρ)1+ǫ

)

·
nO(1) = 2o(N). It is:

n ≤ N1+ǫ1r1+ǫ1

(

d + r − 1
2

)

⇒ (5.6)

⇒ 2N ≥ 2

(

(2n
d+r−1)

1
1+ǫ1 · 1

r

)

= 2





(

2n

d+ρ

(

1
1−2ǫ1

)

−1

) 1
1+ǫ1

· 1

ρ

(

1
1−2ǫ1

)





(5.7)

Observe it is (d + ρ)
1

1−2ǫ1 > (d + ρ
1

1−2ǫ1 − 1) and so 2N > 2





(

2n

(d+ρ)

1
1−2ǫ1

) 1
1+ǫ1

· 1

ρ

(

1
1−2ǫ1

)





.
We thus then require:

lim
(n,ρ)→∞

2

(

n1−ǫ

ρ1+ǫ(d + ρ)1+ǫ

)

2





(

2n

(d+ρ)

1
1−2ǫ1

) 1
1+ǫ1

· 1

ρ

(

1
1−2ǫ1

)





= 0 (5.8)

This is shown by the following inequalities:

ǫ >
ǫ1

1 + ǫ1
⇒ n1−ǫ < 2n

1
1+ǫ1 (5.9)

ǫ >
2ǫ2

1 + ǫ1

1 − 2ǫ2
1 − ǫ1

⇒ 1
(d + ρ)1+ǫ

<
1

(d + ρ)
1

(1+ǫ1)(1−2ǫ1)

(5.10)

ǫ >
2ǫ1

1 − 2ǫ1
⇒ 1

ρ1+ǫ
<

1

ρ
(1

1−2ǫ1
)

(5.11)

5.1.2 Approximation

We complement the above hardness results with approximation algorithms of almost
matching super-polynomial running-times. Similarly to the exact algorithm of Theo-
rem 65, the upper bound from the beginning of this section is used for even values of
d, while for the odd values this idea is combined with a greedy scheme based on minimum
vertex degree.

Theorem 68. For any even d ≥ 2 and any ρ ≤ n
⌊d/2⌋ , there is a ρ-approximation algorithm

for d-Scattered Set of running-time O∗((eρd)
2n
ρd).

Proof. From Lemma 64 we know that the maximum size of a d-scattered set is ⌊ n
⌊d/2⌋⌋.

We thus simply try all sets of vertices of size at most n
ρ⌊d/2⌋ for feasibility and retain the

best one: these are ≤ n
ρ⌊d/2⌋

(n
n

ρ⌊d/2⌋

)

= O∗((eρd)
2n
ρd), that gives the running-time. If the

graph is not connected, we can apply Lemma 64 to each connected component C of size
nC and then consider all subsets of size at most nC

ρ⌊d/2⌋ in each C.

98

Theorem 69. For any odd d ≥ 3 and any ρ ≤ n
⌊d/2⌋ , there is a ρ-approximation algorithm

for d-Scattered Set of running-time O∗((eρd)
2n

ρ(d+ρ)).

Proof. Let q = (d − 1)/2 and G′ be the q-th power of graph G. We then claim that any
d-scattered set S in G is a 3-scattered set in G′ and vice-versa: if S is a d-scattered set
in G, then for any pair u, v ∈ S, it is dG(u, v) ≥ d. For some pair of distinct vertices
w, z on a shortest path between u, v in G, it must be dG(u, w) = dG(z, v) = q, while also
dG(u, z) = dG(w, v) > q, i.e. w and z are two vertices on a shortest path from u to v, each
at equal distance q from their closest endpoint (v or u). Then dG′(u, w) = dG′(z, v) = 1.
Since w, z are distinct, it must be dG′(w, z) ≥ 1 which gives also dG′(u, v) ≥ 3, since
dG′(u, z) = dG′(w, v) > 1.

If S is a 3-scattered set in G′, then for any pair u, v ∈ S it is dG′(u, v) ≥ 3. Now,
any shortest path in G between u, v must contain two distinct vertices w, z for which
dG(u, w) = q and dG(z, v) = q, while dG(u, z) = dG(w, v) > q. If no such pair of vertices
exists in G, then dG′(u, v) < 3: any pair of vertices at distance ≤ q in G are adjacent in
G′ and so for the distance between u, v in G′ to be at least 3, there must be two vertices
each at distance ≥ q from u, v in G. From this we get that dG(u, v) ≥ 2q + 1 = d, since
dG(w, z) ≥ 1, as w 6= z.

The algorithm then proceeds in two phases. For the first phase, so long as there
exists an unmarked vertex vi in G′ of minimum degree < ρ, we mark vi as ‘selected’
and add it to S1 ⊆ V , marking all vertices at distance ≤ 2 from vi in G′ as ‘excluded’
and adding them to Xi ⊆ V . That is, Xi = N2

G′(vi) and we let X = N2
G′(S1), i.e.

X = X1 ∪ · · · ∪ X|S1|. We also let the remaining (unmarked) vertices belong to H ⊆ V .
Thus when this procedure terminates we have V partitioned into three sets S1, X, H,
while the degree of any vertex in H is ≥ ρ. For the second phase, we try all subsets of
vertices of H of size at most 2n

ρ(ρ+⌊d/2⌋) for feasibility and retain the best one. These are

≤ 2n
ρ(ρ+⌊d/2⌋)

(n
2n

ρ(ρ+⌊d/2⌋)

)

= O∗((eρd)2n/ρ(d+ρ)), giving the upper bound on the running-time.

Now let S∗
1 be a 3-scattered set of maximum size in the subgraph of G′ induced by

S1 ∪ X, i.e. |S∗
1 | = OPT3(G′[S1 ∪ X]) and S∗

2 be a 3-scattered set of maximum size in the
subgraph of G′ induced by H, i.e. |S∗

2 | = OPT3(G′[H]). As the degree of any vertex vi ∈ S1

is < ρ, we have (1): |S∗
1 | < ρ|S1|, since for every vertex u in N1

G′(vi), for vi ∈ S1, 3-scattered
set S∗

1 can contain at most one vertex w from N1
G′(u), as the distance between w and

another neighbor of u is ≤ 2. For the second phase, it must be |S∗
2 | ≤ n/ρ ⇒ 1/|S∗

2 | ≥ ρ/n,
since all vertices of H are of degree ≥ ρ and these neighborhoods are disjoint: if two
vertices of S∗

2 share a common neighbor then they cannot belong in a 3-scattered set.
From Lemma 64, we also know that |S∗

2 | ≤ n/⌊d/2⌋ ⇒ 1/|S∗
2 | ≥ ⌊d/2⌋/n. Adding the two

inequalities gives 2/|S∗
2 | ≥ ρ+⌊d/2⌋

n ⇒ |S∗
2 | ≤ 2n

ρ+⌊d/2⌋ . Furthermore, it is |S2| ≤ 2n
ρ(ρ+⌊d/2⌋) ,

by construction. Dividing the two inequalities gives (2): |S∗
2 |

|S2| ≤ ρ ⇒ |S∗
2 | ≤ ρ|S2|. From (1)

and (2) we get that |S∗
1 | + |S∗

2 | ≤ ρ(|S1| + |S2|). It is OPTd(G) = OPT3(G′) ≤ |S∗
1 | + |S∗

2 |
since S1 ∪ X and H form a partition of G′. Our algorithm returns a solution of size
|S1| + |S2| and thus our approximation ratio is OP Td(G)

|S1|+|S2| ≤ |S∗
1 |+|S∗

2 |
|S1|+|S2| ≤ ρ. If the graph is

not connected, we can apply Lemma 64 to each connected component C of size nC and
then try all subsets of size at most nC

ρ⌊d/2⌋ in each C and obtain an additive version of (2)
for each component.

99

5.2 Polynomial Time

We now focus on the behaviour of the problem in terms of strictly polynomial-time ap-
proximation. We first examine graphs of bounded degree and provide a tight bound on
the achievable approximation ratio, before turning to bipartite graphs in order to finalize
the classification in terms of approximability by considering the only open remaining case
(when d is even).

5.2.1 Inapproximability

Here we show that for sufficiently large ∆ and any ǫ1 > 0, d ≥ 4, the d-Scattered Set

problem is inapproximable to ∆d/2−ǫ1 on graphs of degree bounded by ∆, unless NP⊆BPP.
Let us first summarize our reduction. Starting from an instance of Independent Set of
bounded degree, we create an instance of d-Scattered Set where the degree is (roughly)
the d/2-th square root of that of the original instance. As we are able to maintain a direct
correspondence of solutions in both instances, the ∆1−ǫ′

-inapproximability of IS implies
the ∆d/2−ǫ1-inapproximability of d-Scattered Set.

The technical part of our reduction involves preserving the adjacency between vertices
of the original graph without increasing the maximum degree (too far) beyond ∆2/d. We
are able to construct a regular tree as a gadget for each vertex and let the edges of the leaves
(their total number being equal to ∆) represent the edges of the original graph. To ensure
that our gadget has some useful properties (i.e. small diameter), we overlay a number of
extra edges over each level of the tree (i.e. between vertices at equal distance from the
root), only sacrificing a small increase in maximum degree. Our complexity assumption
is NP6⊆BPP, since for the ∆1−ǫ′

-inapproximability of IS we use the randomized reduction
from SAT of [26] (Theorem 10 above). In particular, we will prove the following theorem:

Theorem 70. For sufficiently large ∆ and any d ≥ 4, ǫ ∈ (0, ⌊d/2⌋), there is no polynomial-
time approximation algorithm for d-Scattered Set with ratio ∆⌊d/2⌋−ǫ for graphs of
maximum degree ∆, unless NP⊆BPP.

Construction: Let δ =
⌈

⌊d/2⌋√∆
⌉

. Given ǫ1 ∈ (0, ⌊d/2⌋) and an instance of Inde-

pendent Set G = (V, E), where the degree of any vertex is bounded by ∆, we will
construct an instance G′ = (V ′, E′) of d-Scattered Set, where the degree is bounded2

by δ1+ǫ2 = 6δ1+2ǫ1/d, for ǫ2 = 2ǫ1/d + logδ 3 > 2ǫ1/d, while OPT2(G) = OPTd(G′). We
assume ∆ is sufficiently large for ǫ1 ≥ d(log(log(∆))+c)

4 log(∆)/d , where c ≤ 10 is a small constant, for
reasons that become apparent in the following.

Our construction for G′ builds a gadget T (v) for each vertex v ∈ V . For even d,
each gadget T (v) is composed of a (δ + 1)-regular tree of height d/2 − 1 and we refer to
vertices of T (v) at distance exactly i from the root tv as being in the i-th height-level of
T (v), letting each such subset be denoted by Ti(v). That is, every vertex of Ti(v) has one
neighbor in Ti−1(v) (its parent) and δ neighbors in Ti+1(v) (its children). For odd values
of d, the difference is in the height of each tree being ⌊d/2⌋ instead of d/2 − 1.

Since for even d the number of leaves of T (v) is δd/2−1 = (∆2/d)d/2−1 = ∆1−2/d and
each such leaf also has δ = ∆2/d edges, the number of edges leading outside each gadget is

2We note that this value of ǫ2 is for odd values of d. For d even, the correct value is such that we have
the (slightly lower) bound δ1+ǫ2 = δ + 3δ1+2ǫ1/d, but we write ǫ2 for both cases to simplify notation.

100

Proof. Consider a path P of (maximum) length ≤ a between two vertices v, u in G. Taking
the b-power of G adds all edges between vertices of P at distance ≤ b. This means vertex
v will be adjacent in Gb to a vertex x1 on P that was at distance b from u in G. This
vertex x1 will be in turn adjacent to another vertex x2 on P that was at distance 2b from
v in G. Carrying on like this we can find a sequence x1, . . . , xi of vertices of P , each at
distance b in G from its predecessor and follower in the sequence, that form a path P ′ in
Gb. Since the length of P is at most a, the maximum number i of vertices in the sequence
until we reach u is ⌈a/b⌉, giving the length of P ′ in Gb.

We are now ready to argue about the maximum degree of any vertex in our construc-
tion.

Lemma 73. The maximum degree of any vertex in G′ is ≤ δ + 3δ1+2ǫ1/d for even d and
≤ 6δ1+2ǫ1/d for odd d.

Proof. Observe that for d even, the degree of any vertex is bounded by the sum of the δ+1
edges of the tree plus the number of edges added by the power graph (including the three
edges of the cycle and matching):

∑⌈(1+2ǫ1/d) log2(δ)⌉
k=0 (3 · 2k) = 3 · 2⌈(1+2ǫ1/d) log2(δ)−1⌉ − 1 ≤

3 · 2(1+2ǫ1/d) log2(δ) − 1 = 3 · δ1+2ǫ1/d − 1, for a total of δ + 3δ1+2ǫ1/d.
For d odd, we note that the degree of all other vertices is strictly lower than that

of the “shared” leaves between gadgets, since each leaf between two gadgets T (v), T (u)
(representing the edge (v, u) of G) will belong to two subgraphs H⌊d/2⌋(v) and H⌊d/2⌋(u).
Thus their degree will be 2 + 2(3 · δ1+2ǫ1/d − 1) = 6δ1+2ǫ1/d.

We then bound the diameter of our gadgets in order to guarantee that the solutions in
our reduction will be well-formed. Our statement is probabilistic and conditional on our
assumption on the size of ∆ as being sufficiently large.

Lemma 74. With high probability, the diameter of each gadget T (v) is d/2 − 1 for even
d and ⌊d/2⌋ for odd d, for sufficiently large ∆.

Proof. First, observe that for sufficiently large n, c ≤ 10 and ǫ1 ∈ (0, ⌊d/2⌋), it is
log2(log(n)) + c < (2ǫ1/d) log2(n). For even d, our construction uses n-cycles of length
n = δi for each i ∈ [1 + ǫ2, d/2 − 1], meaning that ∆ must be sufficiently large for
ǫ1 ≥ d(log(2i log(∆)/d)+c)

4i log(∆)/d , while for odd d it is i ∈ [1 + ǫ2, ⌊d/2⌋]. As noted above, our

assumption for ∆ requires that it is sufficiently large for ǫ1 ≥ d(log(log(∆))+c)
4 log(∆)/d , which is

> d(log(2i log(∆)/d)+c)
4i log(∆)/d for the required range of i in both cases.

By Theorem 71, the distance between any pair of vertices at height-level i after adding
the edges of Pi(v) is at most log2(δi) + log2(log(δi)) + c (with high probability). This is <
(1+2ǫ1/d) log2(δi) for sufficiently large ∆. By Lemma 72, taking the ⌈((1+2ǫ1/d) log2(δ))⌉-

power of Hi(v) shortens the distance to at most (1+2ǫ1/d) log2(δi)
⌈(1+2ǫ1/d) log2(δ)⌉ ≤ i, for each height-level

i ∈ [1 + ǫ2, d/2 − 1]. For smaller values of i, the vertices of each height-level form a clique
and the distance between any pair of them is thus at most 1.

For odd values of d, the size n of the cycles we use is again δi, with i ∈ [1 + ǫ2, ⌊d/2⌋]
and we thus have once more that for sufficiently large ∆ the distance between any pair
of vertices after adding the edges of Pi(v) to each height-level i of each gadget T (v)
is at most (1 + 2ǫ1/d) log2(δi) (with high probability) and at most i after taking the
⌈((1 + 2ǫ1/d) log2(δ))⌉-power of Hi(v). Again, for smaller i < 1 + ǫ2, Ti(v) is a clique.

102

Since at each height-level i, no pair of vertices is at distance > i with i ≤ d/2 − 1 for
even d and i ≤ ⌊d/2⌋ for odd d, the distance between any vertex x at some height-level
ix to another vertex y at height-level iy > ix will be at most ix from x to the root of the
subtree of T (v) (at level ix) that contains y. From there to y it will be at most d/2−1− ix

for even d and at most ⌊d/2⌋ − ix for odd d. Furthermore, the distance from the root of
T (v) to a leaf is exactly d/2 − 1 for even d and exactly ⌊d/2⌋ for odd d.

We finalize our argument with a series of lemmas leading to the proof of Theorem 70,
that detail the behaviour of solutions that can form in our construction, relative to the
independence of vertices in the original graph.

Lemma 75. No d-Scattered Set in G′ can contain a vertex from gadget T (v) and a
vertex from gadget T (u), if (u, v) ∈ E.

Proof. Since (u, v) ∈ E, there is an edge (xv, yu) ∈ E′ between a leaf xv ∈ T (v) and
yu ∈ T (u) for even d, while for for odd d the leaf x belongs to both T (v), T (u) and is at
distance ⌊d/2⌋ from each of their roots. Thus for even d the maximum distance from any
vertex of T (v) to yu ∈ T (u) is d/2 − 1 + 1 = d/2, by Lemma 74, and for odd d this is
⌊d/2⌋. Since, by the same lemma, the diameter of T (u) is d/2 − 1 for even d and ⌊d/2⌋
for odd d, there is no vertex of T (u) that can be in any d-Scattered Set along with
any vertex of T (v), as the maximum distance is ≤ d/2 + d/2 − 1 = d − 1 for even d and
≤ ⌊d/2⌋ + ⌊d/2⌋ = d − 1 for odd d.

Lemma 76. If (u, v) /∈ E, then the distance between the root tv of T (v) and the root tu

of T (u) is at least d.

Proof. Since (u, v) /∈ E, then there is no edge between any pair of leaves xu of T (u) and
yv of T (v) for even d. Thus the shortest possible distance between any such pair of leaves
is 2 for even d, through a third leaf zw of another gadget T (w) corresponding to a vertex
w adjacent to both u and v in G. The distance from tv to any leaf of T (v) is d/2 − 1 and
the distance from tu to any leaf of T (u) is also d/2 − 1. Thus the distance from tu to tv

must be at least d/2 − 1 + d/2 − 1 + 2 = d.
For odd d, there is no shared leaf x between the two gadgets, i.e. at distance ⌊d/2⌋

from both roots. Thus the distance between two leaves xu ∈ T (u) and yv ∈ T (v) is at
least 1, if each of these is shared with a third gadget T (w) corresponding to a vertex w
that is adjacent to both u and v in G. The distance from tv to any leaf of T (v) is ⌊d/2⌋
and the distance from tu to any leaf of T (u) is also ⌊d/2⌋. Thus the distance from tu to
tv is at least 2⌊d/2⌋ + 1 = d.

Lemma 77. For any independent set S in G, there is a d-Scattered Set K in G′, with
|S| = |K|.

Proof. Given an independent set S in G, we let K include the root vertex tv ∈ T (v) for
each v ∈ S. Clearly, |S| = |K|. Since S is independent, there is no edge (u, v) between
any pair u, v ∈ S and thus, by Lemma 76, vertices tv and tu are at distance at least d.

Lemma 78. For any d-Scattered Set K in G′, there is an independent set S in G,
with |K| = |S|.

103

Proof. Given a d-Scattered Set K in G, we know there is at most one vertex from each
gadget T (v) in K, since its diameter is d/2−1 for even d and ⌊d/2⌋ for odd d, by Lemma 74.
Furthermore, for any two vertices x, y ∈ K, we know by Lemma 75 that if x ∈ T (u) and
y ∈ T (v) for gadgets corresponding to vertices u, v ∈ V , then (u, v) /∈ E and thus u, v are
independent in G. We let set S contain each vertex v ∈ V whose corresponding gadget
T (v) contains a vertex of K. These vertices are all independent and also |K| = |S|.

Proof of Theorem 70. We suppose the existence of a polynomial-time approximation al-
gorithm for d-Scattered Set with ratio ∆⌊d/2⌋−ǫ1 for graphs of maximum degree ∆ and
some 0 < ǫ1 < d/2. We assume ∆ is sufficiently large for ǫ1 ≥ d(log(log(∆))+10)

4 log(∆)/d .
Starting from a formula φ of SAT on N variables, where N is also sufficiently large, i.e

N > ∆1/(5+O(ǫ′)) (where ǫ′ is defined below), we use Theorem 10 to produce an instance
G = (V, E) of Independent Set on |V | = N1+ǫ′

∆1+ǫ′
vertices and of maximum degree

∆, such that with high probability: if φ is satisfiable, then α(G) ≥ N1+ǫ′
∆; if φ is not

satisfiable, then α(G) ≤ N1+ǫ′
∆2ǫ′

. Thus approximating Independent Set in polyno-
mial time on G within a factor of ∆1−2ǫ′

, for ǫ′ > 0, would permit us to decide if φ is
satisfiable, with high probability.

We next use the above construction to create an instance G′ of d-Scattered Set

where the degree is bounded by 6δ1+2ǫ1/d = δ1+ǫ2 , for ǫ2 > 2ǫ1/d, by Lemma 73. Slightly

overloading notation, we let ǫ3 ≥ ǫ2 be such that δ1+ǫ2 = (⌈∆
1

⌊d/2⌋ ⌉)1+ǫ2 = (∆
1

⌊d/2⌋)1+ǫ3 .
We now let ǫ′ = ǫ1(1+ǫ3)−ǫ3⌊d/2⌋

2⌊d/2⌋ . Note that ǫ′ > 0, since ǫ3 ≥ ǫ2 > 2ǫ1/d.
We then apply the supposed approximation for d-Scattered Set on G′. This returns

a solution at most (δ1+ǫ2)⌊d/2⌋−ǫ1 = ∆(1− ǫ1
⌊d/2⌋)(1+ǫ3) = ∆1− ǫ1(1+ǫ3)−ǫ3⌊d/2⌋

⌊d/2⌋ = ∆1−2ǫ′
from

the optimum. By Lemma 78 we can find a solution for Independent Set in G of the same
size, i.e. we can approximate α(G) within a factor of ∆1−2ǫ′

, again, with high probability
(as Lemma 74 is also randomized). This would allow us to decide if φ is satisfiable and
thus solve SAT in polynomial time with two-sided bounded errors, implying NP⊆BPP.

5.2.2 Approximation

We next show that any (degree-based) greedy polynomial-time approximation algorithm
for d-Scattered Set achieves a ratio of O(∆⌊d/2⌋), thus improving upon the analysis of
[43] and the O(∆d−1)- and O(∆d−2/d)-approximations given therein.

Our strategy is to bound the size of the largest d-scattered set in any graph of maximum
degree at most ∆ and radius at most d − 1, centered on some vertex v. The idea is that in
one of its iterations our greedy algorithm would select v and thus exclude all other vertices
within distance d − 1 from v, yet an upper bound on the size of the largest possible d-
scattered set can guarantee that the ratio of our algorithm will not be too large.

The following definition of our “merge” operation (see also Figure 5.3) will allow us to
consider all possible graphs of a given radius and degree and provide upper bounds on the
size of the optimal solution in such graphs. These bounds on the size of the optimal are
then used to compare it to those solutions produced by our greedy scheme.

Definition 79 (Merge operation). For two connected graphs G1 = (V1, E1), G2 = (V2, E2),
the merged graph MG2

G1
(v1, v2, U, W), where U = [u1, . . . , uk1], W = [w1, . . . , wk2] are

ordered (possibly empty and with repetitions allowed) sequences of vertices from V1 and
V2, respectively, is defined as the graph G′ = (V ′, E′) obtained by:

104

If u is the merged vertex v′ then there must be at least two other vertices added from
V1, V2 for |S| > |K1| + |K2|, since S can only contain v′ in the place of v1 ∈ K1 and
v2 ∈ K2. In this case the same argument as above gives the contradiction.

Lemma 82. For any graph G = (V, E) of maximum degree at most ∆ and radius at most
d − 1 centered on some vertex v, it is OPTd(G) ≤ O(∆⌊d/2⌋).

Proof. Any graph G of maximum degree at most ∆ and radius at most d − 1 centered on
a vertex v can be obtained by the following process: we begin with a graph H of radius
at most ⌊d/2⌋ − 1 and maximum degree ∆. Let {v1, . . . , vk} ∈ H be the set of vertices at
maximum distance from v, i.e. dH(v, vi) = ⌊d/2⌋ − 1. Since the degree of H is bounded
by ∆, it must be k ≤ ∆⌊d/2⌋−1. We now let Hi, for each i ≤ k, denote a series of at most
k graphs of radius at most ⌈d/2⌉ centered on a vertex vi and maximum degree ∆.

Repeatedly applying the merge operation MHi
H (v1, vi, U, W) between graph H (or the

result of the previous operation) and such a graph Hi we can obtain any graph G of radius
at most d − 1: identifying a vertex vj ∈ H (for j ∈ [1, k]) at maximum distance from v
with the central vertex vi of Hi and then adding any number of edges between the vertices
of H and Hi (while respecting the maximum degree of ∆), we can produce any graph of
radius ≤ d − 1, since the distance from v to each vj is at most ⌊d/2⌋ − 1 and from there
to any vertex of Hi it is at most ⌈d/2⌉. The remaining structure of G can be constructed
by the chosen structures of the graphs H, Hi and the added edges between them, i.e. the
sequences U, W.

By Lemma 80 it is OPTd(Hi) ≤ ∆ and by Lemma 81, it must be OPTd(G) ≤
OPTd(H) +

∑k
i=1 OPTd(Hi) ≤ 1 + ∆ · ∆⌊d/2⌋−1 ≤ 1 + ∆⌊d/2⌋.

Theorem 83. Any degree-based greedy approximation algorithm for d-Scattered Set

achieves a ratio of O(∆⌊d/2⌋) on graphs of degree bounded by ∆.

Proof. Let G = (V, E) be the input graph and consider the process of our supposed
greedy algorithm: it picks a vertex vi, removes it from consideration along with the set
Vi ⊆ V of vertices at distance at most d − 1 from vi and continues the process until there
are no vertices left to consider. The sets V1, . . . , VALG thus form a partition of G. By
Lemma 82, the optimum size of a d-scattered set in any such Vi is at most O(∆⌊d/2⌋) and
thus OPTd(G) ≤ ALG ·O(∆⌊d/2⌋), by Lemma 81, since G can be seen as the merged graph
of G[V1], . . . , G[VALG].

5.2.3 Bipartite graphs

Finally, we consider bipartite graphs and show that d-Scattered Set is approximable
to 2

√
n in polynomial time also for even values of d. Our algorithm will be applied on

both sides of the bipartition and each time will only consider vertices from one side as
candidates for inclusion in the solution. Appropriate sub-instances of Set Packing are
then defined and solved using the known

√
n-approximation for that problem.

Definition 84. For a bipartite graph G = (A ∪ B, E), let 1OPTd(G) denote the size of
the largest one-sided d-scattered set of G, i.e. a set that only includes vertices from the
same side of the bipartition A or B, but not both.

Lemma 85. For a bipartite graph G = (A ∪ B, E), it is 1OPTd(G) ≥ OPTd(G)/2.

106

Proof. Consider an optimal solution S ⊆ A∪B with |S| = OPTd(G). Then at least half of
the vertices of S are contained in one side of G, i.e. it is either |S ∩A| ≥ |S|/2 or |S ∩B| ≥
|S|/2 (or both if |S ∩ A| = |S ∩ B| = |S|/2). By definition, it is also 1OPTd(G) ≥ |S ∩ A|
and 1OPTd(G) ≥ |S ∩ B|. Thus in both cases it must be 1OPTd(G) ≥ OPTd(G)/2.

Theorem 86. For any bipartite graph G = (A ∪ B, E) of size n and d even, the d-
Scattered Set problem can be approximated within a factor of 2

√
n in polynomial time.

Proof. We will consider two cases based on the parity of d/2 and define appropriate Set

Packing instances whose solutions are in a one-to-one correspondence with one-sided d-
scattered sets in G. We will then be able to apply the

√
n-approximation for Set Packing

of [56]. We will repeat this process for both sides A, B of the bipartition and retain the
best solution found. Thus we will be able to approximate 1OPTd(G) within a factor of√

n and then rely on Lemma 85 to obtain the claimed bound.
Our Set Packing instances are defined as follows: for d/2 even, we make a set ci for

every vertex ai of A (i.e. from one side) and an element ej for every vertex bj of B (i.e. from
the other side). For d/2 odd, we make a set ci for every vertex ai of A (again from one side)
and an element ej for every vertex bj of B and an element ri for every vertex ai ∈ A (i.e.
from both sides). Note that i, j ≤ n. In both cases we include an element corresponding
to vertex x ∈ G in a set corresponding to a vertex y ∈ G, if dG(x, y) ≤ d/2 − 1. We then
claim that for any given collection C of compatible (i.e. non-overlapping) sets in the above
definitions, we can always find a one-sided d-scattered set S ⊆ A in G with |C| = |S| and
vice-versa.

First consider the case where d/2 is even. Given a one-sided d-scattered set S ⊆ A,
we let C include all the sets that correspond to some vertex in S and suppose for a
contradiction that there exists a pair of sets c1, c2 ∈ C that are incompatible, i.e. that
there exists some element e with e ∈ c1 and e ∈ c2. Let a1, a2 ∈ A be the vertices
corresponding to sets c1, c2 and b ∈ B be the vertex corresponding to element e. Then it
must be dG(a1, b) ≤ d/2 − 1 since e ∈ c1 and dG(b, a2) ≤ d/2 − 1 since e ∈ c2, that gives
dG(v1, v2) ≤ d − 2, which contradicts S being a d-scattered set. On the other hand, given
collection C of compatible sets we let S ⊆ A include all the vertices corresponding to some
set in C and suppose there exists a pair of vertices a1, a2 ∈ S for which it is dG(a1, a2) < d.
Since d is even and a1, a2 ∈ A, if dG(a1, a2) < d it must be dG(a1, a2) ≤ d − 2, as any
shortest path between two vertices on the same side of a bipartite graph must be of even
length. Thus there must exist at least one vertex b ∈ B on a shortest path between a1, a2

in G for which it is dG(a1, b) ≤ d/2 − 1 and dG(b, a2) ≤ d/2 − 1. This means that the
element e corresponding to vertex b ∈ B must be included in both sets c1, c2 corresponding
to vertices a1, a2 ∈ A, which contradicts the compatibility of sets in C.

We next consider the case where d/2 is odd. Given a one-sided d-scattered set S ⊆ A,
we again let C include all sets that correspond to some vertex in S. If there exists a pair of
sets c1, cs ∈ C that contain the same element e corresponding to some vertex b ∈ B or some
element r that corresponds to a vertex a ∈ A, then by the same argument as in the even
case we know that there must exist paths of length ≤ d/2−1 from both vertices a1, a2 ∈ A
(corresponding to c1, c2 ∈ C) to vertex b ∈ B or a ∈ A and thus it must be dG(a1, a2) < d.
On the other hand, given a collection C of compatible sets we again let S ⊆ A include all
the vertices corresponding to sets in C. Supposing there exists a pair a1, a2 ∈ S for which
it is dG(a1, a2) < d, then again as d is even it must be dG(a1, a2) ≤ d−2. This means there
must be a vertex a ∈ A on a shortest path between a1 and a2 for which dG(a1, a) ≤ d/2−1

107

and dG(a, a2) ≤ d/2−1, which means the corresponding sets c1, c2 ∈ C must both contain
element r that corresponds to this vertex a ∈ A, giving a contradiction.

Our algorithm then is as follows. For a given bipartite graph G = (A ∪ B, E), we
define an instance of Set Packing as described above (depending on the parity of d/2)
and apply the

√
n-approximation of [56]. Observe that |A|, |B| ≤ n. We then exchange

the sets A, B in the definitions of our instances and repeat the same process. This will
return a solution S of size |S| ≥ 1OP Td(G)√

n
, which by Lemma 85 is ≥ OP Td(G)

2
√

n
.

Treewidth of power graphs

We close this chapter with a note on the treewidth of power graphs. Similar ideas as
those used in the above results also point to the following upper bound on the increase in
treewidth taking place when computing the power of a graph of bounded degree:

Theorem 87. For any graph G of treewidth tw and maximum degree bounded by ∆, the

treewidth tw′ of the d-th power Gd is at most tw′ ≤ tw · ∆
∑d/2−1

i=0 (∆ − 1)i = O(tw · ∆d/2).

Proof. Given a tree decomposition T of G = (V, E) of width tw, we make a tree decom-
position T ′ of Gd = (V, Ed) by replacing the appearance of each vertex v in each bag of T

with v and the set of vertices at distance at most d/2 from v in G, i.e. with N
d/2
G (v) ∪ {v}.

It is |Nd/2
G (v)| ≤ ∑d/2−1

i=0 (∆(∆ − 1)i), from which we get the upper bound. This is a valid
tree decomposition for Gd as: (a) all vertices appear in some bag of T ′ as they appeared
in T , (b) for every edge (u, v) in Gd, either (u, v) ∈ E and there is a bag in T containing
both u, v and thus there is one also in T ′, or (u, v) was added to Ed due to the distance
between u, v being ≤ d in G. In this case there must be at least one vertex w at distance
≤ d/2 from both u and v in G, meaning there will be a bag in T ′ containing all three
vertices u, v, w that was constructed from a bag of T that contains w.

Finally, (c) for every vertex v appearing in two bags X ′, Y ′ of T ′, vertex v also appears
on every bag on the path from X ′ to Y ′ in T ′: consider (for a contradiction) the existence
of a bag Z ′ on the path from X ′ to Y ′ in T ′ that does not contain v, and let X, Y, Z be
the corresponding bags in T . Since X ′, Y ′ contain v, then both X and Y contain some
vertex u at distance at most d/2 from v in G, or v itself, i.e. u ∈ N

d/2
G (v) ∪ {v}. If both X

and Y contain v, then as T is a valid tree decomposition, so does Z and therefore also Z ′.
Thus we may assume that at least one of X, Y do not contain v, as well as v /∈ Z. As Z is
a separator, then v must appear only on one side of Z in T . We assume (without loss of
generality) that v only appears on the X-side of T (from Z) and v is not contained in Y .
Thus Y must contain some vertex u at distance ≤ d/2 from v in G. As Z is a separator,
the path from v to u must contain at least one vertex w ∈ Z, at distance < d/2 from v.
Thus Z ′ must also contain v, as it includes all vertices at distance ≤ d/2 from w.

As for graphs of maximum degree bounded by ∆, we have cw ≤ O(∆ · tw) (see [32])
and tw ≤ O(∆ · cw) (directly derived from the well-known result of Gurski and Wanke
[54]), we also obtain the following corollary.

Corollary 88. For any graph G of clique-width cw and maximum degree bounded by ∆,
the clique-width cw′ of the d-th power Gd is at most cw′ ≤ O(cw · ∆d/2+2).

108

6
Conclusion

Summary

In this thesis we have considered generalizations of the well-known graph-theoretical con-
cepts of independence and domination as they apply to larger distances than simply direct
adjacency via edges, by augmenting their definitions with inclusion of a distance parame-
ter. This leads to the computational problems (k, r)-Center and d-Scattered Set that
generalize Dominating Set and Independent Set, all of which have been extensively
studied before.

We first examined the problems from a parameterized point of view, focusing on struc-
tural parameterizations by the most commonly used graph measures treewidth tw, clique-
width cw, tree-depth td, vertex cover vc and feedback vertex set fvs, as well as the standard
parameterization by the size of the optimal solution. In particular, for (k, r)-Center we
showed the following (in Chapter 3):

• A dynamic programming algorithm of running-time O∗((3r + 1)cw) and a match-
ing lower bound based on the SETH, that for r = 1 closed a complexity gap for
Dominating Set parameterized by cw.

• W[1]-hardness and ETH-based lower bounds of no(vc+k) and no(fvs+k) for edge-
weighted and unweighted graphs, respectively, while these are complemented by
an O∗(5vc)-time FPT algorithm for the unweighted case.

• An algorithm solving the problem in time O∗(2O(td)2
), that assuming the ETH would

be optimal as well.

• Algorithms computing for any ǫ > 0 a (k, (1+ǫ)r)-center in time O∗((tw/ǫ)O(tw)), or
O∗((cw/ǫ)O(cw)), if a (k, r)-center exists in the graph, assuming a tree decomposition
of width tw is provided along with the input.

We then turned our attention to d-Scattered Set and applying similar methods
showed the following (in Chapter 4):

• A dynamic programming algorithm of running-time O∗(dtw) and a matching lower
bound based on the SETH, that generalize known results for Independent Set.

109

• W[1]-hardness for parameterization by vc + k for edge-weighted graphs, as well as
by fvs + k for unweighted graphs, while these are complemented by an FPT-time
algorithm for vc and the unweighted case.

• An algorithm solving the problem for unweighted graphs in time O∗(2O(td)2
) and a

matching ETH-based lower bound.

• An algorithm computing for any ǫ > 0 a d/(1+ǫ)-scattered set in time O∗((tw/ǫ)O(tw)),
if a d-scattered set exists in the graph, assuming a tree decomposition of width tw
is provided along with the input.

We again note the similarity of our approach here with that of the preceding analysis of
the structurally parameterized landscape for (k, r)-Center, as our work on this problem
is a continuation of the above. As already discussed, this is partly due to the inherent
similarities of both problems when considering distance-based generalizations, as well as
the lack of any previous work from this standpoint on either problem. An intuitive obser-
vation that can be made, however, is that the distance parameters for our two problems
affect our solutions in a complementary manner, in much the same way as vertex adjacency
antithetically affects the concepts of domination and independence, yet the apparent ‘du-
ality’ between them makes handling their generalizations over larger distances susceptible
to comparable techniques.

Finally, we advanced our investigation of the d-Scattered Set problem by answering
some remaining questions on its (super-)polynomial (in-)approximability. In particular,
we showed the following (in Chapter 5):

• An exact exponential-time algorithm of complexity O∗((ed)
2n
d).

• A lower bound on the complexity of any ρ-approximation algorithm of (roughly)

2
n1−ǫ

ρd for even d and 2
n1−ǫ

ρ(d+ρ) for odd d, under the randomized ETH.

• ρ-approximation algorithms of running-times O∗((eρd)
2n
ρd) for even d and O∗((eρd)

2n
ρ(d+ρ))

for odd d that (almost) match the above lower bounds, thus giving a clear picture
of the trade-off curve between approximation and running-time.

• A lower bound of ∆⌊d/2⌋−ǫ on the approximation ratio of any polynomial-time algo-
rithm for graphs of maximum degree ∆ and an improved upper bound of O(∆⌊d/2⌋)
on the approximation ratio of any greedy scheme for this problem, that matches our
lower bound.

• A polynomial-time approximation algorithm of ratio 2
√

n for bipartite graphs and
even values of d, that complements known results by considering the only remaining
open case.

We have already observed in both cases that the distance parameter’s influence on the
complexity of the problem is not negligible, as both (k, r)-Center and d-Scattered Set

become harder than Dominating Set and Independent Set when r or d is unbounded:
our W-hardness results for parameterization by k and vc (weighted), fvs (unweighted)
dictate that if the distance parameter takes large values, even the graph’s (considerably)
restricted structure will not be of much help in significantly improving upon the already
attainable XP running-tmes.

110

Considering both these problems have already been proven intractable by almost all
other computational alternatives to exact computation (see Section 2.2), while also taking
into account specifically for d-Scattered Set, its ∆d/2-inapproximability in polynomial
time where d appears on the exponent of the ratio, as well as the fact that for large enough
d even the PTAS for planar graphs from [43] is not applicable (see below), it seems that
in both cases a good way to approach these problems when the distance parameters are
large is to apply either our FPT algorithms for the unweighted case parameterized by
vc/td, or our tw/cw-based FPT approximation schemes whose running-times only depend
on the structure of the input graph. Note that both require significant restrictions on the
input, while the former is incompatible with the important weighted case and the latter
can indeed correctly identify the size of the optimal solution, albeit with admissible loss
of precision in terms of satisfaction of distance requirements.

Open problems

Given the intractability and inapproximability of the standard parameterizations of both
problems, as well as our SETH-based lower bounds on their structurally parameterized
complexity, we are subsequently interested in the best achievable ratios by structurally
parameterized approximation algorithms of running-times that clearly improve upon the
lower bounds of the exact cases given here. As a concrete example, what would be the
best achievable ratio ρ by a 2tw-time ρ-approximation algorithm for either problem where
the value of r/d is unbounded?

Apart from this direction and considering also previous related work (notably [22]), the
above results can be seen to complete the picture on the (k, r)-Center problem’s struc-
turally parameterized complexity. Nevertheless, some remaining open questions concern
the sharpening of our ETH-based lower bounds using as a starting point the more precise
SETH, as well as the complexity status of the problem with respect to other structural
parameters, such as rankwidth, modular-width or neighborhood diversity.

Remaining open questions on the structurally parameterized complexity of the d-
Scattered Set problem may concern the identification of similarly tight upper and
lower (SETH-based) bounds for clique-width (that is FPT for d = 2), as well as the sharp-
ening of our ETH-based lower bounds for vc and fvs, that are not believed to be tight due
to the quadratic blow-up in parameter size in our reductions.

On our (super-)polynomial work on d-Scattered Set, apart from the possibility of
“de-randomization” of the results above that use the randomized construction of [26] as a
starting point, some unanswered questions involve:

• the sharpening of our super-polynomial upper bounds to exactly match the lower

bounds, i.e. ρ-approximations in time O∗(2
2n
ρd) for even d and O∗(2

2n
ρ(d+ρ)) for odd d,

noting that even algorithms of running-times keeping the same exponent but where
the base does not depend on d would hint at the problem in fact becoming easier to
approximate for large enough values of d;

• the complexity of the problem on chordal bipartite graphs, also mentioned as an
open problem by [42];

• the functionality of the PTAS for planar graphs by the same authors, that only works
for fixed values of d, as it extends the well-known approach of [6] for obtaining such
algorithms for several problems, including Independent Set.

111

Because the technique of [6] involves breaking down the graph into (roughly) d-
outerplanar subgraphs and then exactly solving the problem in each of these using dynamic
programming over their tree decompositions, for values of d that are not constant (say
d ≥ √

n)) this is not achievable in polynomial-time due to the exponent of the treewidth
algorithms depending on d. It would be interesting to see an extension of this (or some
other) approach for the case of unbounded d, or, conversely, a hardness reduction proving
it is unlikely. The difficult part here would have to involve a construction that is very
efficient in terms of crossing gadgets in order to maintain planarity, or, from the other
side, a way to optimally solve the problem in carefully constructed subgraphs without
the exponential requirement on d. Note this is intuitively related to whether the problem
becomes easier to approximate with large d, a question also raised by our first point above.

112

7
Résumé des chapitres en français

Introduction

Traçabilité et Hypothèses de complexité: L’objectif de la théorie de la complexité
computationnelle est la catégorisation des problèmes mathématiques en classes selon les
temps d’exécution les plus défavorables des algorithmes qui les résolvent. Dans le cadre
classique, les problèmes sont considérés tractables, c’est-à-dire résolvables en temps poly-
nomial, s’il existe un algorithme dont le temps d’exécution peut être exprimé sous la forme
d’une fonction polynomiale sur la taille n de l’entrée.

D’autre part, les problèmes insolubles (généralement NP-difficile) sont ceux pour lesquels
un algorithme en temps polynomial est considéré comme peu probable, sur la base de la
conjecture (largement répandue) de P6=NP: si le problème 3-SAT n’admet pas un al-
gorithme de temps polynomial déterministe, alors une réduction de 3-SAT à un autre
problème,c’est-à-dire une transformation des instances d’un problème en celles de l’autre
démontrant leur équivalence en termes de complexité de calcul, impliquerait que ce dernier
problème n’admet pas également un algorithme en temps polynomial.

L’approfondissement des considérations ci-dessus conduit à la formulation d’une autre
conjecture (également largement répandue), l’hypothèse de temps exponentiel (ETH): l’hypothèse
conjectures il n’y a pas d’algorithme subexponentiel pour 3-SAT, c’est à dire pas d’algorithme
de temps de fonctionnement 2o(n) · nO(1). Si cette hypothèse est vraie, alors P n’est pas
égal à NP et tout algorithme pour 3-SAT nécessitera au moins un temps exponentiel,
dans le pire des cas.

Une version un peu plus exigeante (et pas si répandue), la robuste hypothèse de temps
exponentiel (SETH) a également été formulée et affirme que (général) SAT n’admet pas
un algorithme de temps de fonctionnement (2 − ǫ)n · nO(1) pour toute constante ǫ > 0.

Limites supérieures/inférieures: Comme pour l’hypothèse que P6=NP, l’importance
principale de l’ETH et de la SETH ne réside cependant pas dans le fait que ceux-ci puissent
être réellement vrais ou non : de la même manière que pour la classification des problèmes
en temps polynomial résoluble ou NP-difficile, nous pouvons utiliser l’ETH et la SETH
comme points de départ pour montrer, par des réductions de difficulté, l’inexistence de
tout algorithme d’un certain temps de fonctionnement spécifique en dessous d’un certain
seuil et ainsi obtenir des résultats qui excluent l’existence de tels algorithmes pour un
problème donné (une limite inférieure).

113

En combinant des résultats de ce type avec des algorithmes dont les temps de fonction-
nement les plus défavorables (limite supérieure) correspondent exactement à ces limites
inférieures, nous pouvons identifier précisément la complexité d’un problème donné et jus-
tifier la optimalité de notre approche. Naturellement, toute déclaration de ce type que
nous ferons sera soumise aux hypothèses ci-dessus, ce qui signifie que nos résultats impli-
queront que les algorithmes proposés sont optimaux, à moins que des progrès significatifs
ne soient réalisés dans notre compréhension des principes fondamentaux du calcul.

De cette façon, nous pouvons classer davantage les problèmes en fonction de leurs
exigences de calcul, en particulier dans le cas du SETH qui offre une source plus précise
au prix d’une hypothèse plus ambitieuse (et donc plus susceptible d’être fausse). Ce
raffinement nous permet de mieux comprendre les options disponibles pour résoudre un
problème de calcul dont la complexité est prouvée et peut potentiellement conduire à des
améliorations pratiques des paramètres appliqués, mais c’est la possibilité de caractériser
précisément les caractéristiques de complexité sous-jacentes des problèmes mathématiques
qui nous intéressera le plus ici.

Ayant montré à la fois une limite supérieure et une limite inférieure de fonctions de
complexité correspondantes pour un problème donné (c’est-à-dire des limites qui sont
"strictes"), nous pouvons généralement identifier une uniformité dans la structure mathé-
matique des deux preuves qui n’est pas arbitraire, comme dans l’optimalité d’une réduction
qui produira des instances (presque) explicitement construites pour entraver les efforts de
l’algorithme dont le temps de fonctionnement correspond exactement à la limite inférieure
de la réduction (et vice-versa). De tels résultats peuvent être considérés comme impliquant
qu’un aspect de l’essence du problème a été indéniablement identifié, puisque leur validité
ne dépend pas des méthodes particulières employées par leur concepteur.

Paramétrage et approximation Le fait de pouvoir caractériser l’intractibilité d’un
problème selon un mode de calcul particulier ne signifie pas que nous avons épuisé toutes
les possibilités pour le résoudre. Le fait de considérer un problème comme insoluble
si le temps d’exécution requis de tout algorithme pour sa solution exacte est au moins
exponentiel dans la taille de l’entrée peut donc conduire à d’autres directions pour faire
progresser notre compréhension des mécanismes compliqués qui régissent les problèmes
combinatoires complexes : paramétrage et approximation.

D’une part, et à la recherche d’une caractérisation plus fine de la quantité de calcul
nécessaire pour la résolution exacte et optimale d’un problème de calcul, nous pourrions
permettre aux fonctions de complexité de croître effectivement de manière exponentielle,
mais pas sur la taille n de l’entrée (qui doit naturellement être considérée comme trop
importante et peu pratique). Par le biais du paramétrage, nous étudions la complexité
des problèmes en fonction d’autres paramètres qui spécifient leurs propriétés que la simple
taille de l’entrée, paramètres dont la taille (limitée) n’empêcherait pas le calcul pratique
d’un nombre exponentiel.

D’autre part, en assouplissant l’exigence selon laquelle les solutions renvoyées par nos
algorithmes sont nécessairement les meilleures possibles (étant d’une qualité mesurable
pour les problèmes d’"optimisation") et en se concentrant sur le maintien du polynôme
des temps de fonctionnement sur la taille de l’entrée, nous entrons dans le domaine de
l’approximation. Ici, nos solutions doivent être accompagnées de garanties mathématiques
de rester au-dessus de certains seuils de qualité (un ratio d’approximation pire).

Dans la complexité paramétrée, de manière similaire à la classification des problèmes

114

comme NP-difficile ou polynomial-temps résoluble, un problème mathématique qui est
résolu par un algorithme dont la complexité peut être exprimée en fonction de la forme
f(k) · nO(1), où k est le paramètre choisi et f est une fonction calculable quelconque, ap-
partient à la classe des problèmes tractables à paramètre fixe (FPT). Selon le problème, les
fonctions f peuvent prendre de nombreuses formes, étant exponentielles dans la majorité
des cas.

Cela implique que si la taille du paramètre considéré n’est pas trop importante, pour
un cas donné de problème à résoudre, alors un algorithme FPT qui le résout pourrait être
considéré comme utilisable (peut-être même pratique), tout en apportant des améliorations
importantes au paysage de la complexité en général.

Les paramètres communs comprennent la taille d’une solution optimale (la paramétri-
sation standard), ainsi qu’une variété de mesures structurales qui caractérisent la structure
inhérente de l’instance d’entrée. Ici, un problème est considéré comme insoluble s’il peut
être démontré (via les réductions paramétrées, en maintenant également une relation étroite
entre les paramètres) qu’il est aussi difficile à résoudre que tout problème complet pour
un niveau de la hiérarchie W des classes de complexité (considéré comme un analogue de
la difficulté du NP), c’est-à-dire s’il est peu probable qu’il soit FPT.

La théorie des algorithmes d’approximation s’intéresse à l’aspect complémentaire de
l’intractibilité : l’identification des meilleures limites possibles du pire cas sur la qualité
d’une solution retournée qui peut être obtenue si le temps de fonctionnement est limité
aux polynômes en n. Ces limites sont généralement exprimées comme le ratio entre la
qualité la plus mauvaise d’une solution retournée et celle d’une solution optimale pour le
même cas. Du côté de la "difficulté", il est possible de montrer (via réductions préservant
l’approximation) qu’il n’existe pas d’algorithme de temps polynomial atteignant un certain
ratio pour un problème donné, sous des hypothèses de complexité standard, établissant
ainsi sa inapproximabilité.

Les ratios courants dans les résultats de ce type comprennent l’inaptitude à se rap-
procher de constantes spécifiques, de tout ratio constant possible, ainsi que d’un ratio qui
est une fonction de n. Le temps d’exécution autorisé pour un algorithme d’approximation
est généralement polynomial en n, mais il est possible d’autoriser d’autres fonctions (telles
que les temps d’exécution FPT) afin de proposer des alternatives au calcul exact, si un
problème reste insoluble au-delà de la limite du temps polynomial.

Pour en revenir à l’ETH et la SETH, on peut observer qu’en conjonction avec l’analyse
de complexité affinée effectuée par les études de paramétrage, il est possible d’obtenir
des limites inférieures améliorées de précision accrue sur le temps d’exécution requis de
tout algorithme pour un problème donné. Les deux hypothèses peuvent être considérées
comme des hypothèses sur la complexité de q-SAT paramétrée par le nombre de vari-
ables n et une réduction paramétrée à un autre problème dans ce cas (c’est-à-dire où la
taille du paramètre est limitée par une fonction appropriée de n) donnerait des résultats
sur l’inexistence d’un algorithme sous-exponentiel (dans la taille du paramètre) pour le
problème en question.

Ainsi, les problèmes paramétrés peuvent être davantage catégorisés en termes de fonc-
tions exactes qui déterminent leur complexité par rapport à la variété de paramètres
possibles qui participent à leur intractibilité, ce qui conduit à une compréhension bien
plus grande du domaine de la complexité computationnelle.

115

Problèmes de couverture et d’emballage: Dans cette thèse, nous nous concentrons
sur les problèmes bien connus de la théorie des graphes (k, r)-Center et d-Scattered

Set qui généralisent les concepts de dominance et indépendance sur de plus grandes
distances à l’intérieur du graphe. Dans le problème Dominating Set, nous recherchons
le sous-ensemble le plus petit de sommets, de sorte que chaque sommet autre soit relié à
au moins un sommet du sous-ensemble. En revanche, dans les IND, nous avons besoin du
sous-ensemble plus grand de telle sorte qu’aucune paire de sommets dans le sous-ensemble
ne soit reliée par un bord.

Intuitivement, un ensemble dominant doit couvrir le reste du graphe sur la base de la
contiguïté combinée de ses sommets à ceux du complément, tandis que dans un ensem-
ble indépendant, nous devons pouvoir emballer autant de sommets non reliés par paires
que possible. Les deux problèmes sont fermement insolubles : ils sont NP-difficile, leurs
paramétrages standard W-difficile et généralement inapprochables en temps polynomial-
ainsi qu’en temps FPT. D’un point de vue positif, les deux problèmes se révèlent être
FPT lorsqu’ils sont paramétrés par les paramètres structurels les plus couramment util-
isés. Cela signifie que lorsque le graphe d’entrée est de structure restreinte, les deux
problèmes peuvent être efficacement, ainsi que avec précision résolus.

Les généralisations de ces notions bien étudiées que nous examinons ici sont basées
sur l’extension du paramètre de distance central dans leurs définitions à des valeurs non
limitées. Dans (k, r)-Center nous devons indiquer le plus petit ensemble qui couvre le
graphe à distance r et dans d-Scattered Set nous devons regrouper autant de sommets
que possible à distance d les uns des autres.

Cela signifie que notre perspective ici doit s’élargir pour considérer l’influence des som-
mets participant à la solution sur de plus grandes zones dans le graphe, car l’importance de
la contiguïté réside maintenant dans les chemins au lieu des arêtes. En guise de remarque
préliminaire, il s’avère que l’accessibilité entre les sommets est une propriété trop sensible
aux petites variations de leur emplacement exact, ce qui fait que l’existence de collections
de chemins de longueur non négligeable dépend de manière cruciale de la forme exacte des
structures locales et que, par conséquent, le comportement des deux problèmes diverge
(de manière significative) de leur cas de base lorsque les r, d sont importants. Cet effet se
reflète dans nos résultats, puisque les deux problèmes deviennent insolubles même pour
des graphes de structure significativement restreinte, si la valeur du paramètre de distance
n’est pas limitée dans chaque cas. Ainsi, les algorithmes susmentionnés ne sont efficaces
que pour les petites valeurs fixes (par exemple, r = 1, d = 2), ce qui motive notre analyse.

Notre champ d’action: Nous examinons les problèmes (k, r)-Center et d-Scattered

Set, en accordant une attention particulière à la manière dont leur complexité est affectée
par les paramètres de distance et aux options disponibles pour leur calcul exact et/ou
efficace. Comme nos problèmes sont en fait des généralisations de Dominating Set et
Independent Set, on peut considérer que nos résultats correspondent (et parfois même
améliorent) l’état de l’art pour ces problèmes.

Dans la première partie de la thèse, nous maintenons un point de vue paramétré
: nous examinons le paramétrage standard, ainsi que les mesures de graphes les plus
couramment utilisées : treewidth tw, clique-width cw, tree-depth td, vertex cover vc et
feedback vertex set fvs. Nous proposons des résultats de difficulté qui montrent qu’il n’y
a pas d’algorithme de temps d’exécution en dessous de certaines limites (sous réserve de
l’ETH, SETH), produisons des algorithmes essentiellement optimaux de complexité qui

116

correspondent à ces limites inférieures et tentons en outre d’offrir une alternative au calcul
exact dans un temps d’exécution considérablement réduit par approximation.

En particulier, pour (k, r)-Center nous montrons ce qui suit :

• Un algorithme de programmation dynamique du temps d’exécution O∗((3r + 1)cw),
en supposant qu’une expression clique-width de largeur cw est fournie avec l’entrée,
et une borne inférieure correspondante basée sur SETH qui comble un écart de
complexité pour Dominating Set paramétré par cw (pour r = 1).

• W[1]-difficulté et limites inférieures basées sur l’ETH de no(vc+k) pour les graphes à
bords pondérés et no(fvs+k) pour les graphes non pondérés. Cela montre l’importance
de délimiter la valeur de r. Toujours pour le cas non pondéré, nous donnons un
algorithme FPT O∗(5vc)-temps basé sur la résolution des sous-instances Set Cover

appropriées.

• Une limite inférieure stricte basée sur l’ETH de O∗(2O(td)2
) pour le paramétrage par

td.

• Algorithmes calculant pour tout ǫ > 0, un (k, (1+ǫ)r)-centre dans le temps O∗((tw/ǫ)O(tw)),
ou O∗((cw/ǫ)O(cw)), si un (k, r)-centre existe dans le graphe, en supposant qu’une
décomposition en arbre de largeur tw est fournie avec l’entrée.

Puis pour d-Scattered Set et en appliquant des méthodes similaires nous montrons
:

• Un algorithme de programmation dynamique du temps d’exécution O∗(dtw) et une
limite inférieure correspondante basée sur la SETH, qui généralisent les résultats
connus pour Independent Set.

• W[1]-difficulté pour le paramétrage par vc+k pour les graphes à bords pondérés, ainsi
que par fvs+k pour les graphes non pondérés, ce qui montre à nouveau l’importance
de délimiter d. Ils sont complétés par des algorithmes FPT-temps pour le cas non
pondéré qui utilisent des idées liées à Set Packing, de complexité O∗(3vc) pour les
d pairs et O∗(4vc) pour les d impairs.

• Une limite inférieure stricte basée sur l’ETH de O∗(2O(td)2
) pour le paramétrage par

td, comme ci-dessus.

• Un algorithme calculant, pour tout ǫ > 0, un ensemble d/(1 + ǫ)-diffusé dans le
temps O∗((tw/ǫ)O(tw)), si un ensemble d-diffusé existe dans le graphe, en supposant
qu’une décomposition en arbre de largeur tw est fournie dans l’entrée.

Nous notons que ces résultats sont comparables à ceux de (k, r)-Center, puisque
notre travail sur d-Scattered Set peut être considéré comme une continuation de ce qui
précède. Comme nous le voyons, les deux problèmes sont affectés de manière similaire par
des généralisations basées sur la distance et sont donc sensibles à des techniques similaires.

Dans la deuxième partie de la thèse, nous nous concentrons sur d-Scattered Set et
en particulier sur son (in)approximabilité (super-)polynomiale : nous nous intéressons à la
relation exacte entre un ratio d’approximation réalisable ρ, le paramètre de distance d, et
le temps de fonctionnement de tout algorithme d’approximation ρ exprimé en fonction

117

de ce qui précède et la taille de l’entrée n. Ensuite, nous considérons des temps de
fonctionnement strictement polynomiaux et des graphes de degré maximal borné ainsi
que des graphes bipartites. Plus précisément, nous montrons :

• Un algorithme exact en temps exponentiel de complexité O∗((ed)
2n
d), basé sur une

limite supérieure de la taille de toute solution.

• Une limite inférieure à la complexité de tout algorithme de ρ-approximation de (en-

viron) 2
n1−ǫ

ρd pour les d pairs et de 2
n1−ǫ

ρ(d+ρ) pour les d impairs, sous l’ETH randomisé.

• Les algorithmes de ρ-approximation des temps de fonctionnement ρ O∗((eρd)
2n
ρd)

pour les d pairs et O∗((eρd)
2n

ρ(d+ρ)) pour les d impairs qui correspondent (presque)
aux limites inférieures ci-dessus.

• Une limite inférieure de ∆⌊d/2⌋−ǫ sur le ratio d’approximation de tout algorithme de
temps polynomial pour les graphes de degré maximal ∆, étant la première limite
inférieure de ce type, ainsi qu’une limite supérieure améliorée de O(∆⌊d/2⌋).

• Une approximation polynomiale en temps de 2
√

n pour les graphes bipartites et pour
les valeurs paires de d, qui complète les résultats connus en considérant le seul cas
ouvert restant.

Le problème (k, r)-Center

Au chapitre 3, nous étudions le problème (k, r)-Center. Il s’agit d’un problème d’optimisation
extrêmement bien étudié, avec de nombreuses applications. Il a une longue histoire, surtout
du point de vue de l’approximation des algorithmes, dont l’objectif est généralement de
minimiser les r pour un k donné [1, 41, 45, 59, 69, 70, 72, 85, 95]. L’objectif inverse (min-
imiser les k pour un r donné) a également été bien étudié, le problème étant généralement
appelé r-Dominating Set dans le cas présent [24, 30, 50, 77, 91].

Parce que (k, r)-Center généralise Dominating Set (ce qui correspond au cas r =
1), le problème peut déjà être considéré comme difficile, voire approximatif (sous hy-
pothèses de complexité standard). Comme cette difficulté persiste lorsque l’on considère la
paramétrisation standard du problème avec des approximations paramétrées non triviales
également exclues, nous sommes fortement motivés à étudier la complexité du problème
lorsque le graphe d’entrée a une structure restreinte.

Nos résultats: Notre objectif est d’effectuer une analyse complète de la complexité de
(k, r)-Center qui prend en compte la structure de cette entrée en utilisant le cadre de
complexité paramétrée. En particulier, nous fournissons les résultats des limites supérieure
et inférieure à grain fin de la complexité de (k, r)-Center par rapport aux des paramètres
largement étudiés qui mesurent la structure d’un graphe : treewidth tw, clique-width cw,
tree-depth td, vertex cover vc, et feedback vertex set fvs.

En plus de la valeur intrinsèque de la détermination de la complexité précise du (k, r)-
Center, cette approche est en outre motivée par le fait que les algorithmes FPT pour
ce problème ont souvent ont été utilisés comme éléments de base pour des algorithmes
d’approximation plus élaborés [37, 41]. En effet, (certaines de) ces questions ont déjà

118

été pris en compte, mais nous fournissons un certain nombre de nouveaux résultats qui
s’appuient sur et améliorer l’état actuel des connaissances.

En cours de route, nous comblons également un vide sur la complexité du problème
emblématique Dominating Set paramétré par clique-width. Plus précisément, nous
prouvons ce qui suit :

• (k, r)-Center peut être résolu (sur des graphes non pondérés) dans le temps O∗((3r+
1)cw) (si une expression de clique-width est fournie avec l’entrée), mais il ne peut
pas être résolu dans le temps O∗((3r +1−ǫ)cw) pour tout r ≥ 1 fixe, sauf si la SETH
échoue.

Le résultat algorithmique s’appuie sur des techniques standard (programmation dy-
namique sur des expressions de clique-width, convolution rapide de sous-ensembles),
ainsi que sur plusieurs observations spécifiques au problème qui sont nécessaires
pour obtenir la taille de table souhaitée. La limite inférieure de SETH résulte d’une
réduction directe de SAT.

Une conséquence notable de notre résultat à la limite inférieure est que, dans le cas
de Dominating Set, il comble l’écart entre la complexité des meilleurs algorithmes
connus (O∗(4cw) [15]) et le meilleur précédemment limite inférieure connue (O∗((3−
ǫ)cw) [76]).

• (k, r)-Center ne peut être résolu à temps no(vc+k) sur les graphes pondérés par les
bords, ou temps no(fvs+k) sur des graphes non pondérés, sauf si l’ETH est fausse.

On savait déjà qu’un algorithme FPT paramétré juste par tw (pour les r non limités)
est peu probable [22].

Ces résultats montrent qu’il en va de même pour les deux autres paramètres restric-
tifs fvs et vc, même si k est également ajouté comme paramètre. Ils sont (asymp-
totiquement) stricts, car il est facile d’obtenir algorithmes O∗(nfvs), O∗(nvc), et
O∗(nk).

Nous remarquons que (k, r)-Center est un exemple rare de problème qui s’avère
être difficilement paramétrable par vc. Nous complétons ces limites inférieures par
un algorithme FPT pour le cas non pondéré, en cours d’exécution dans le temps
O∗(5vc).

• (k, r)-Center peut être résolu dans le temps O∗(2O(td2)) pour les graphes non
pondérés, mais s’il peut être résolu dans le temps O∗(2o(td2)), alors l’ETH est faux.

Ici, la limite supérieure découle des connexions connues entre la tree-depth d’un
graphe et son diamètre, tandis que la limite inférieure découle d’une réduction de 3-
SAT. Nous remarquons qu’il s’agit d’un exemple quelque peu inhabituel de problème
paramétré dont la dépendance aux paramètres s’avère être exponentielle dans le carré
du paramètre.

Les résultats ci-dessus, ainsi que les travaux récents de la [22] qui ont montré des lim-
ites étroites de O∗((2r + 1)tw) concernant la complexité du problème paramétrée par tw,
donnent une image complète, et souvent à grain fin, image sur (k, r)-Center pour les
paramètres les plus importants du graphe. L’un des les conclusions que l’on peut tirer
sont que, en raison de la difficulté pour vc (dans le cas pondéré) et fvs, il y a peu les
cas où l’on peut espérer obtenir un algorithme FPT sans en limiter la valeur de r. En

119

d’autres termes, à mesure que r augmente la complexité de la résolution exacte du prob-
lème dégénère rapidement et s’éloigne de la cas de Dominating Set, qui est FPT pour
tous les paramètres considérés.

Une autre contribution de ce chapitre est de compléter cette opinion négative en soulig-
nant qu’elle ne s’applique que si l’on insiste pour résoudre le problème exactement.

Si nous autorisons les algorithmes qui renvoient un (1+ǫ)-approximation du r optimal,
pour un ǫ > 0 arbitrairement petit et tout en respectant la valeur donnée de k, on obtient
le suivant :

• Il existe des algorithmes qui, pour tout ǫ > 0, lorsque l’on donne un graphe qui admet
un (k, r)-centre, renvoient un (k, 1 + ǫ)r)-centre dans le temps O∗((tw/ǫ)O(tw)), ou
O∗((cw/ǫ)O(cw)), en supposant qu’une décomposition en arbre ou une expression de
clique-width est donnée dans l’entrée.

L’algorithme d’approximation tw est basé sur une technique introduite dans [73], tandis
que l’algorithme cw repose sur une nouvelle extension d’une idée de [54], qui peut présenter
un intérêt indépendant.

Grâce à ces algorithmes d’approximation, nous arrivons à une meilleure compréhension
de la complexité de (k, r)-Center en incluant la question de l’approximation, et obtenons
des algorithmes qui continuent à fonctionner efficacement même pour des valeurs impor-
tantes de r. La figure 7.1 illustre les relations entre les paramètres et le tableau 7.1 résume
nos résultats.

cw, Clique-width

tw, Treewidth

fvs, Feedback Vertex Set

pw, Pathwidth

td, Tree-depth

vc, Vertex Cover

Figure 7.1: Relations des
paramètres. Les résultats
algorithmiques sont hérités
à la baisse, de la difficulté
à la hausse.

cw tw fvs td vc
FPT exact 24 (w/u) 46 (w/u) 57 (u) 29 (u)
FPT-AS 45 (w/u) 42 (w/u)

SETH LB 21 (u)
ETH LB 28 (w/u) 35 (u) 27 (w)

W[1]-hard 28 (w/u) 27 (w)

Table 7.1: Un résumé de nos résultats (nombres de
théorème) pour tous les paramètres considérés. Les ini-
tiales u/w désignent les variantes non pondérées/pondérées
du problème.

Le problème d-Scattered Set

Au chapitre 4, nous étudions le problème d-Scattered Set. Le problème peut déjà
être considéré comme difficile, car il généralise Independent Set (pour d = 2), alors
qu’un autre nom est Distance-d Independent Set [43, 81, 42]. Cette difficulté incite à
l’analyse du problème lorsque le graphe d’entrée est de structure restreinte, notre objectif
étant de fournir un compte rendu complet de la complexité de d-Scattered Set par le
biais de divers résultats de limites supérieure et inférieure.

Notre point de vue est paramétré : nous considérons que le fameux paramètres struc-
turels treewidth tw, tree-depth td, vertex cover vc et feedback vertex set fvs, qui expri-
ment principalement les restrictions prévues sur la structure du graphe d’entrée, tandis
que nous examinons à la fois les variantes pondérées et non pondérées.

120

Avant de décrire nos résultats en détail, nous notons qu’ils suivent une démarche simi-
laire à celle du chapitre précédent. En effet, notre analyse des propriétés structurellement
paramétrées du problème d-Scattered Set est analogue à celle effectuée pour (k, r)-
Center et nos résultats sont en fait comparables. Cela est dû en partie à la proximité
des techniques utilisées pour les obtenir, mais peut également être considéré comme une
conséquence de la similitude de l’influence des généralisations basées sur la distance sur
les fonctions d’indépendance et de domination.

La principale observation que l’on peut faire sur cette similitude est peut-être que,
outre sa signification inverse pour chaque problème (c’est-à-dire que les distances doivent
être soit ≥ d soit ≤ r), les paramètres de distance mesurent dans chaque cas l’étendue
de l’influence qu’un sommet peut exercer sur sa région dans le graphe et impliquent donc
une division du paysage en "zones d’influence", qui doivent être efficacement agencées
(c’est-à-dire emballées ou couvertes) pour être optimales.

À titre d’exemple, cela se reflète dans nos algorithmes de programmation dynamique
(Théorème 24 et Théorème 51, voir également Théorème 46 et [22, 50]) et les représen-
tations d’état qu’ils emploient, avec une correspondance apparente entre l’importance des
distances d/2 et r 1. La justification de la nécessité de ces représentations d’état est donnée
par les limites inférieures correspondantes (Théorème 21 et Théorème 50), ce qui signi-
fie que notre approche n’est pas déraisonnablement applicable dans chaque cas, unifiant
ainsi également la classification de la complexité structurellement paramétrée des deux
problèmes.

Nos résultats: Premièrement, dans la sous-section 4.1.1 nous présentons une limite
inférieure de (d − ǫ)tw · nO(1) sur la complexité de tout algorithme résolvant le problème
d-Scattered Set paramétré par treewidth tw, sur la base du SETH. Ce résultat peut
être considéré comme un extension de la borne de (2 − ǫ)tw · nO(1) pour Independent

Set ([76]) pour des valeurs plus importantes de d, pour lesquelles la construction doit être
beaucoup plus compacte en termes d’informations codées par unité de treewidth.

Dans la sous-section 4.1.2, nous fournissons une algorithme de programmation du
temps d’exécution O∗(dtw), correspondant à cette limite inférieure, sur une décomposition
d’arbre donné de largeur tw. L’algorithme résout en fait la version de comptage de d-
Scattered Set, en utilisant des techniques standard (programmation dynamique sur les
décompositions d’arbres), avec une application de la technique de convolution rapide de
sous-ensembles de [9] (ou changements d’état [15, 94]) pour faire correspondre le temps de
fonctionnement à la taille des tables de programmation dynamique.

Ayant ainsi identifié la complexité du problème par rapport à tw, nous nous concentrons
ensuite sur les paramètres plus généraux vc et fvs et nous montrons dans la sous-section
4.2.1 que le problème d-Scattered Set pondéré par les bords et paramétré par vc+k est
W[1]-difficile. Si, en revanche, tous les poids de bord sont réglés sur 1, alors d-Scattered

Set (la variante non pondérée) paramétrée par fvs + k est W[1]-difficile. Nos réductions
impliquent également des limites inférieures exponentielles basées sur l’ETH sur la racine
carrée des paramètres, mais nous ne pensons pas que celles-ci soient strictes (par opposition
à une limite inférieure simplement exponentielle), en raison de l’augmentation quadratique
de la taille des paramètres de notre construction (puisque notre attention se porte sur les
bords).

1Cette "dualité" entre les problèmes et les distances r et d/2 est également abordée dans [88].

121

Nous complétons ces résultats par un algorithme exponentiel unique pour la variante
non pondérée, du temps de fonctionnement O∗(3vc) pour le cas de d pairs, tandis que
pour les d impairs, le temps de fonctionnement est de O∗(4vc). L’algorithme repose sur
définir une variante de Set Packing comme un sous-problème que nous résolvons via la
programmation dynamique, avec des durées de fonctionnement différentes selon les parité
de d, étant donné le nombre de situations possibles pour un sommet avec en ce qui concerne
les candidats potentiels à la sélection.

Ensuite, pour la variante non pondérée, nous indiquons également Sous-section 4.2.3
l’existence d’un algorithme paramétré par td de temps de fonctionnement O∗(2O(td2)), ainsi
qu’une limite inférieure correspondante basée sur l’ETH. La limite supérieure découle des
connexions connues entre la tree-depth d’un graphe et de son diamètre, tandis que la limite
inférieure provient d’une réduction de 3-SAT.

Enfin, nous revenons à tw dans la section 4.3 et nous présentons un FPT-AS du temps
de fonctionnement O∗((tw/ǫ)O(tw)) qui trouve un ensemble d/(1 + ǫ)-dispersé de taille k,
si un ensemble d-dispersé de même taille existe.

L’algorithme est basé sur un technique d’arrondissement introduite dans [73] et on peut
voir surpasse tout algorithme exact pour le problème (pour les gros d, c’est-à-dire O(log n)),
même pour le cas non pondéré et les paramètres plus restreints (de manière similaire à
la section 3.3). La figure 7.2 montre les relations hiérarchiques entre les paramètres et le
tableau 7.2 résume nos résultats.

tw, Treewidth

fvs, Feedback Vertex Set

pw, Pathwidth

td, Tree-depth

vc, Vertex Cover

Figure 7.2: Relations en-
tre les paramètres consid-
érés. Les résultats algo-
rithmiques sont hérités à la
baisse (de cw à vc), de la
difficulté à la hausse.

tw fvs td vc
FPT exact 51 (w/u) 57 (u) 56 (u)
FPT-AS 63 (w/u)

SETH LB 50 (w/u)
ETH LB 55 (w/u) 61 (u) 54 (w)

W[1]-difficile 55 (w/u) 54 (w)

Table 7.2: Un résumé de nos résultats pour tous les
paramètres considérés. Les initiales u/w désignent les vari-
antes non pondérées/pondérées.

Approximation du problème d-Scattered Set

Dans le chapitre 4, nous réexaminons le problème d-Scattered Set, mais nous nous
concentrons ici sur les aspects du problème qui concernent davantage son approximation
que la sensibilité de sa complexité aux restrictions de la structure de l’entrée. Nous
considérons les temps d’exécution exprimés sous forme de fonctions de n, la taille de
l’instance, ainsi que d’autres paramètres pertinents, tandis que nous nous intéressons aux
temps d’exécution polynomiaux, ainsi que super-polynomiaux (c’est-à-dire exponentiels).
En outre, nous nous concentrons sur la variante non pondérée du problème, où la distance
est mesurée uniquement par le nombre d’arêtes.

Après avoir examiné la complexité du problème par rapport aux paramètres structurels
les plus couramment étudiés, nous cherchons maintenant à identifier la relation optimale
entre le temps de fonctionnement des algorithmes d’approximation, exprimé en fonction

122

de la taille de l’instance n, le paramètre de distance d et le meilleur ratio d’approximation
réalisable ρ pour le problème, afin d’impliquer la taille de l’entrée et la qualité des solutions
en jeu comme paramètres dans nos investigations.

Par la suite, notre perspective change en termes de types de résultats que nous ex-
plorons : dans les chapitres précédents où notre point de vue a été paramétré, notre objectif
était d’identifier les valeurs correctes des temps de fonctionnement pour chaque paramètre
considéré, en montrant que ceux-ci sont dans un certain sens optimaux en fournissant des
limites supérieures et inférieures correspondantes, ou des résultats algorithmiques et de
difficulté concurrents.

En ce qui concerne l’approximation, notre objectif reste d’assurer des limites étroites
qui découlent de résultats algorithmiques et de difficulté concordants, mais ce sont main-
tenant les fonctions décrivant les ratios d’approximation que nous souhaitons caractériser
précisément, par l’identification de limites supérieures/inférieures sur les ratios réalisables
dans des temps de fonctionnement strictement polynomiaux. Celles-ci sont encore influ-
encées par des restrictions à la structure de l’entrée, car pour nos résultats nous considérons
des graphes de degrés bornés et des graphes bipartites, qui présentent un intérêt particulier
en termes d’indépendance.

Avant de passer à la description de nos résultats, nous notons que ceux-ci peuvent
dépendre de la parité de notre paramètre de distance d comme étant pair ou impair.
Tant nos temps de parcours que nos ratios peuvent être affectés par cette particularité du
problème qui, intuitivement, se pose en raison de la existence d’un sommet moyen sur un
chemin de longueur d entre deux points terminaux.

Si d est pair, alors un tel sommet peut exister à une distance égale d/2 de n’importe
quel nombre de sommets dans la solution, tandis que si d est impair, il ne peut y avoir de
sommet à une distance égale de n’importe quelle paire de sommets dans la solution. Cette
idiosyncrasie peut changer la façon dont nos algorithmes et nos constructions de difficulté
fonctionnent (déjà vu dans l’algorithme du Théorème 56) et dans certains cas, elle modifie
même entièrement la complexité du problème (par exemple dans les résultats de [42]).

Nos résultats: La section 5.1 concerne les temps de fonctionnement super-polynomiaux,
en présentant d’abord un algorithme exponentiel exact pour d-Scattered Set de com-
plexité O∗((ed)

2n
d) et en considérant ensuite l’inapproximabilité du problème dans la même

plage. Nous montrons qu’aucun algorithme de ρ-approximation ne peut prendre du temps

(approximativement) 2
n1−ǫ

ρd pour les d pairs et 2
n1−ǫ

ρ(d+ρ) pour les d impairs, sous l’ETH
(randomisé). Il est complété par des algorithmes de ρ-approximation (presque) identiques

des temps de fonctionnement O∗((eρd)
2n
ρd) pour les d pairs et O∗((eρd)

2n
ρ(d+ρ)) pour les d

impairs.
Nous constatons que les PCP actuels2 sont incapables de distinguer entre les temps de

fonctionnement optimaux de la forme 2n/ρ et ρn/ρ pour les algorithmes d’approximation
ρ, en raison du facteur poly-logarithmique ajouté par les constructions les plus efficaces et
nous ne nous concentrons donc pas sur les facteurs poly-logarithmiques différenciant nos
limites supérieure et inférieure.

Ces résultats fournissent une caractérisation complète de la relation optimale entre
le ratio d’approximation le plus défavorable ρ réalisable pour d-Scattered Set par

2Versions du célèbre théorème PCP : intuitivement, cela se réfère à la machinerie (plutôt complexe)
derrière les réductions introduisant les écarts les plus efficaces [95].

123

n’importe quel algorithme, son temps de fonctionnement et le paramètre de distance d,
pour n’importe quel point de la courbe d’arbitrage, de la même manière que cela a été fait
pour Independent Set dans [26, 36] (aussi [21, 23]), en considérant également la gamme
des valeurs possibles pour d.

Nous observons que le paramètre de distance d agit comme un facteur d’échelle pour
la taille de l’instance, le problème devenant plus facile lorsque les sommets doivent être
beaucoup plus éloignés, une caractéristique contrebalancée par le ratio d’approximation
choisi ρ, de petites valeurs garantissant la qualité des solutions produites, mais ayant
également un impact négatif sur l’exposant du temps de fonctionnement.

La section 5.2 poursuit en considérant des temps de fonctionnement strictement poly-
nomiaux. Nous montrons tout d’abord qu’il n’existe pas d’algorithme d’approximation
polynomiale du temps pour d-Scattered Set avec le ratio ∆⌊d/2⌋−ǫ dans les graphes de
degré maximum ∆. C’est la première borne inférieure qui considère ∆ et qui généralise
l’inapproximabilité connue ∆1−ǫ de Independent Set (Théorème 5.2 de la [26], reformulé
ici sous le nom de Théorème 10, ainsi que [3]).

Le degré maximal du sommet ∆ a un rôle important dans le contexte de l’indépendance
(par exemple, [8, 38, 57]) et a été spécifiquement étudié pour d-Scattered Set dans [43],
où les approximations O(∆d−1)- et O(∆d−2/d) en temps polynomial sont données. Nous
améliorons cette méthode en montrant que tout algorithme d’approximation gourmand
atteint en fait un ratio de O(∆⌊d/2⌋), correspondant également à notre limite inférieure.

Enfin, nous nous tournons vers les graphes bipartites et montrons que d-Scattered

Set peut être approché avec un facteur de 2
√

n en temps polynomial également pour
les valeurs paires de d, correspondant à l’inapproximabilité connue de n1/2−ǫ de [42] et
complétant l’approximation connue de

√
n pour les valeurs impaires de d de [56].

Nous clôturons le chapitre par une note supplémentaire sur le treewidth des graphes
de puissance obtenus par des observations liées à nos résultats précédents. Ceux-ci sont
également résumés dans le tableau 7.3 ci-dessous.

Inapproximabilité Approximation

Super-polynomial 2
n1−ǫ

ρd (66)/ 2
n1−ǫ

ρ(d+ρ) (67) O∗((eρd)
2n
ρd) (68)/ O∗((eρd)

2n
ρ(d+ρ)) (69)

Polynomial ∆⌊d/2⌋−ǫ (70) O(∆⌊d/2⌋) (83)
Graphes bipartites n1/2−ǫ [42] 2

√
n (86)

Table 7.3: Un résumé de nos résultats (nombres de théorème), pour des valeurs
paires/impaires de d.

Conclusion

Nous avons déjà observé dans les deux cas que l’influence du paramètre de distance sur
la complexité du problème n’est pas négligeable, car tant (k, r)-Center et d-Scattered

Set deviennent plus difficiles que Dominating Set et Independent Set lorsque r ou d
est illimité : nos résultats de W-difficulté pour la paramétrisation par k et vc (pondéré), fvs
(non pondéré) nous dictent que si le paramètre de distance prend des valeurs importantes,
même la structure (considérablement) restreinte du graphe ne sera pas d’un grand secours
pour améliorer de manière significative les temps en cours d’exécution sous XP.

124

Considérant que ces deux problèmes ont déjà été prouvés insolubles par presque toutes
les autres alternatives de calcul à un calcul exact (voir Section 2.2), tout en prenant
également en compte spécifiquement pour d-Scattered Set, son ∆d/2-inapproximabilité
en temps polynomial où d apparaît sur l’exposant du ratio, ainsi que le fait que pour des
d assez importants, même le PTAS pour les graphes planaires de [43] n’est pas applicable
(voir ci-dessous), il semble que dans les deux cas, une bonne façon d’aborder ces problèmes
lorsque les paramètres de distance sont importants est d’appliquer soit nos algorithmes
FPT pour le cas non pondéré paramétré par vc/td, soit nos schémas d’approximation FPT
basés sur tw/cw dont les durées de fonctionnement dépendent uniquement de la structure
du graphe d’entrée.

Il convient de noter que les deux requièrent d’importantes restrictions sur l’entrée,
tandis que le premier est incompatible avec le cas pondéré important et que le second
peut effectivement identifier correctement la taille de la solution optimale, bien qu’avec
une perte de précision admissible en termes de satisfaction des exigences de distance.

Problèmes en suspens: Étant donné l’intraçabilité et l’inapproximabilité des paramé-
trages standard des deux problèmes, ainsi que les limites inférieures de leur complex-
ité structurellement paramétrée basées sur la SETH, nous nous intéressons ensuite aux
meilleurs ratios réalisables par des algorithmes d’approximation structurellement paramétrés
ou des temps d’exécution qui améliorent clairement les limites inférieures des cas exacts
donnés ici. À titre d’exemple concret, quel serait le meilleur ratio réalisable ρ par un
algorithme d’approximation à 2tw-temps pour l’un ou l’autre problème où la valeur de r/d
est illimitée ?

En dehors de cette direction et compte tenu également des travaux antérieurs con-
nexes (notamment [22]), les résultats ci-dessus peuvent être considérés comme complétant
le tableau sur la complexité structurellement paramétrée du problème (k, r)-Center.
Néanmoins, certaines questions restent en suspens concernant l’affinement de nos limites
inférieures basées sur l’ETH en utilisant comme point de départ la plus précise SETH,
ainsi que le statut de complexité du problème par rapport à d’autres paramètres struc-
turels, tels que rankwidth, ou neighborhood diversityla largeur modulaire ou la diversité
des quartiers.

Les questions qui restent ouvertes sur la complexité du problème d-Scattered Set en
termes de paramètres structurels peuvent concerner l’identification de limites supérieures
et inférieures (basées sur la SETH) similaires pour clique-width (FPT pour d = 2), ainsi
que l’affinement de nos limites inférieures basées sur l’ETH pour vc et fvs, qui ne sont
pas considérées comme strictes en raison de l’augmentation quadratique de la taille des
paramètres dans nos réductions.

Sur notre travail (super-)polynomial sur d-Scattered Set, à part de la possibilité de
"dé-randomisation" des résultats ci-dessus qui utilisent la construction randomisée de [26]
comme point de départ, certaines questions sans réponse impliquent :

• l’affinement de nos limites supérieures super-polynomiales pour qu’elles correspon-
dent exactement aux limites inférieures, c’est-à-dire ρ-approximations dans le temps

O∗(2
2n
ρd) pour les d pairs et O∗(2

2n
ρ(d+ρ)) pour les d impairs, notant que même les

algorithmes de temps de fonctionnement conservant le même exposant mais dont la
base ne dépend pas de d laisseraient entrevoir que le problème devient en fait plus
facile à approximer pour des valeurs assez importantes de d;

125

• la complexité du problème sur les graphes bipartites chordales, également mentionné
comme un problème ouvert par [42];

• la fonctionnalité du PTAS pour les graphes planaires des mêmes auteurs, qui ne
fonctionne que pour des valeurs fixes de d, car elle étend l’approche bien connue de
[6] pour obtenir de tels algorithmes pour plusieurs problèmes, notamment Indepen-

dent Set.

Comme la technique de [6] consiste à décomposer le graphe en sous-graphes d-outerplanaires
(approximativement) puis à résoudre exactement le problème dans chacun d’eux en util-
isant une programmation dynamique sur leurs décompositions d’arbre, pour des valeurs
de d qui ne sont pas constantes (disons d ≥ √

n)), cela n’est pas réalisable en temps
polynomial en raison de l’exposant des algorithmes de treewidth dépendant de d.

Il serait intéressant de voir une extension de cette approche (ou d’une autre) pour le
cas des d non limités, ou, à l’inverse, une réduction de difficulté prouvant qu’elle est peu
probable. La partie difficile ici devrait impliquer une construction très efficace en termes de
gadgets crossing afin de maintenir la planéité, ou, de l’autre côté, un moyen de résoudre
le problème de manière optimale dans des sous-graphes soigneusement construits sans
l’exigence exponentielle de d. Notez que cela est intuitivement lié à la question de savoir
si le problème devient plus facile à approximer avec de gros d, une question également
soulevée par notre premier point ci-dessus.

126

Bibliography

[1] P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms for clus-
tering. Algorithmica, 33(2):201–226, 2002.

[2] J. Alber and R. Niedermeier. Improved Tree Decomposition Based Algorithms for
Domination-like Problems. In LATIN, volume 2286 of LNCS, pages 613–628, 2002.

[3] N. Alon, U. Feige, A. Wigderson, and D. Zuckerman. Derandomized graph products.
Computational Complexity, 5(1):60–75, 1995.

[4] E. Angel, E. Bampis, B. Escoffier, and M. Lampis. Parameterized Power Vertex
Cover. In WG, volume 9941 of LNCS, pages 97–108, 2016.

[5] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 1st edition, 2009.

[6] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
Journal of the ACM, 41(1):153–180, 1994.

[7] J. Bar-Ilan, G. Kortsarz, and D. Peleg. How to Allocate Network Centers. Journal
of Algorithms, 15(3):385–415, 1993.

[8] P. Berman and M. Karpinski. On some tighter inapproximability results. In ICALP,
volume 1644 of LNCS, pages 200–209, 1999.

[9] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets möbius: fast
subset convolution. In STOC 2007, pages 67–74. ACM.

[10] H. L. Bodlaender. The algorithmic theory of treewidth. Electronic Notes in Discrete
Mathematics, 5:27–30, 2000.

[11] H. L. Bodlaender. Treewidth: Characterizations, Applications, and Computations.
In WG, volume 4271 of LNCS, pages 1–14, 2006.

[12] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating
Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree. Journal of Algo-
rithms, 18(2):238–255, 1995.

127

[13] H. L. Bodlaender and T. Hagerup. Parallel Algorithms with Optimal Speedup for
Bounded Treewidth. SIAM Journal on Computing, 27(6):1725–1746, 1998.

[14] H. L. Bodlaender and A. M. C. A. Koster. Combinatorial Optimization on Graphs
of Bounded Treewidth. Computer Journal, 51(3):255–269, 2008.

[15] H. L. Bodlaender, E. J. van Leeuwen, J. M. M. van Rooij, and M. Vatshelle. Faster
Algorithms on Branch and Clique Decompositions. In MFCS, volume 6281 of LNCS,
pages 174–185, 2010.

[16] B. Bollobás. Modern Graph Theory. Graduate texts in mathematics. Springer, 1998.

[17] B. Bollobás and F. R. K. Chung. The diameter of a cycle plus a random matching.
SIAM Journal on Discrete Mathematics, 1(3):328–333, 1988.

[18] B. Bollobás and W. F. de la Vega. The diameter of random regular graphs. Combi-
natorica, 2(2):125–134, 1982.

[19] J. A. Bondy. Graph Theory With Applications. Elsevier Science Ltd., 1976.

[20] E. Bonnet, B. Escoffier, E. J. Kim, and V. T. Paschos. On subexponential and
FPT-time inapproximability. Algorithmica, 71(3):541–565, Mar. 2015.

[21] E. Bonnet, M. Lampis, and V. Paschos. Time-Approximation Trade-offs for Inap-
proximable Problems. In STACS, volume 47 of LIPIcs, page 22:1–22:14, 2016.

[22] G. Borradaile and H. Le. Optimal Dynamic Program for r-Domination Problems over
Tree Decompositions. In IPEC, volume 63 of LIPIcs, pages 8:1–8:23, 2016.

[23] N. Bourgeois, B. Escoffier, and V. T. Paschos. Approximation of max independent
set, min vertex cover and related problems by moderately exponential algorithms.
Discrete Applied Mathematics, 159(17):1954–1970, 2011.

[24] A. Brandstädt and F. F. Dragan. A linear-time algorithm for connected r-domination
and Steiner tree on distance-hereditary graphs. Networks, 31(3):177–182, 1998.

[25] P. Chalermsook, M. Cygan, G. Kortsarz, B. Laekhanukit, P. Manurangsi,
D. Nanongkai, and L. Trevisan. From gap-ETH to FPT-inapproximability: Clique,
dominating set, and more. In FOCS 2017, pages 743–754. IEEE.

[26] P. Chalermsook, B. Laekhanukit, and D. Nanongkai. Independent Set, Induced
Matching, and Pricing: Connections and Tight (Subexponential Time) Approxima-
tion Hardnesses. In FOCS 2013, pages 370–379. IEEE.

[27] P. Chalermsook, B. Laekhanukit, and D. Nanongkai. Coloring Graph Powers: Graph
Product Bounds and Hardness of Approximation. In LATIN, volume 8392 of LNCS,
page 409–420, 2014.

[28] S. Chechik and D. Peleg. The fault-tolerant capacitated K-center problem. Theoretical
Computer Science, 566:12–25, 2015.

[29] Y. Chen and B. Lin. The constant inapproximability of the parameterized dominating
set problem. SIAM Journal on Computing, 48(2):513–533, 2019.

128

[30] R. S. Coelho, P. F. S. Moura, and Y. Wakabayashi. The k-hop connected dominating
set problem: hardness and polyhedra. Electronic Notes in Discrete Mathematics,
50:59–64, 2015.

[31] M. B. Cohen. Ramanujan graphs in polynomial time. In FOCS 2016, pages 276–281.
IEEE.

[32] B. Courcelle. On the model-checking of monadic second-order formulas with edge set
quantifications. Discrete Applied Mathematics, 160(6):866 – 887, 2012.

[33] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear Time Solvable Optimization
Problems on Graphs of Bounded Clique-Width. Theory of Computing Systems,
33(2):125–150, 2000.

[34] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1-3):77–114, 2000.

[35] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[36] M. Cygan, L. Kowalik, M. Pilipczuk, and M. Wykurz. Exponential-time approxima-
tion of hard problems. CoRR, abs/0810.4934, 2008.

[37] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Fixed-parameter
algorithms for (k, r)-center in planar graphs and map graphs. ACM Transactions on
Algorithms, 1(1):33–47, 2005.

[38] M. Demange and V. T. Paschos. Improved approximations for maximum independent
set via approximation chains. Applied Mathematics Letters, 10(3):105 – 110, 1997.

[39] R. Diestel. Graph Theory (Graduate Texts in Mathematics). Springer, August 2005.

[40] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013.

[41] D. Eisenstat, P. N. Klein, and C. Mathieu. Approximating k-center in planar graphs.
In SODA 2014, pages 617–627. SIAM.

[42] H. Eto, F. Guo, and E. Miyano. Distance-d independent set problems for bipartite
and chordal graphs. Journal of Combinatorial Optimization, 27(1):88–99, 2014.

[43] H. Eto, T. Ito, Z. Liu, and E. Miyano. Approximability of the Distance Independent
Set Problem on Regular Graphs and Planar Graphs. In COCOA, volume 10043 of
LNCS, pages 270–284, 2016.

[44] H. Eto, T. Ito, Z. Liu, and E. Miyano. Approximation Algorithm for the Distance-3
Independent Set Problem on Cubic Graphs. In WALCOM, volume 10167 of LNCS,
pages 228–240, 2017.

[45] T. Feder and D. H. Greene. Optimal Algorithms for Approximate Clustering. In
STOC 1988, pages 434–444. ACM.

[46] A. Feldmann. Fixed Parameter Approximations for k-Center Problems in Low High-
way Dimension Graphs. In ICALP, volume 9135 of LNCS, 2015.

129

[47] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. 2006.

[48] F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Bidimensionality and
EPTAS. In SODA 2011, pages 748–759. SIAM.

[49] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., 1979.

[50] V. Garnero, C. Paul, I. Sau, and D. M. Thilikos. Explicit linear kernels via dynamic
programming. SIAM Journal on Discrete Mathematics, 29:1864–1894, 2015.

[51] P. Golovach and Y. Villanger. Parameterized Complexity for Domination Problems
on Degenerate Graphs. In WG, volume 5344 of LNCS, pages 195–205, 2008.

[52] T. F. Gonzalez. Clustering to Minimize the Maximum Intercluster Distance. Theo-
retical Computer Science, 38:293–306, 1985.

[53] F. Gurski. A comparison of two approaches for polynomial time algorithms computing
basic graph parameters. CoRR, abs/0806.4073, 2008.

[54] F. Gurski and E. Wanke. The Tree-Width of Clique-Width Bounded Graphs Without
Kn,n. In WG, volume 1928 of LNCS, pages 196–205, 2000.

[55] M. T. Hajiaghayi, R. Khandekar, and G. Kortsarz. The foundations of fixed parameter
inapproximability. CoRR, abs/1310.2711, 2013.

[56] M. M. Halldorsson, J. Kratochvil, and J. A. Telle. Independent Sets with Domination
Constraints. Discrete Applied Mathematics, 99(1-3):39–54, 2000.

[57] M. M. Halldórsson and J. Radhakrishnan. Greed is good: Approximating independent
sets in sparse and bounded-degree graphs. Algorithmica, 18(1):145–163, May 1997.

[58] J. Håstad. Clique is hard to approximate within n1−ǫ. Electronic Colloquium on
Computational Complexity (ECCC), 4(38), 1997.

[59] D. S. Hochbaum and D. B. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. Journal of the ACM, 33(3):533–550, 1986.

[60] R. Impagliazzo and R. Paturi. On the Complexity of k-SAT. Journal of Computer
and System Sciences, 62(2):367–375, 2001.

[61] R. Impagliazzo, R. Paturi, and F. Zane. Which Problems Have Strongly Exponential
Complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

[62] I. Katsikarelis, M. Lampis, and V. T. Paschos. Structural Parameters, Tight Bounds,
and Approximation for (k, r)-Center. CoRR, abs/1704.08868, 2017.

[63] I. Katsikarelis, M. Lampis, and V. T. Paschos. Structural Parameters, Tight Bounds,
and Approximation for (k, r)-Center. In ISAAC, volume 92 of LIPIcs, pages 50:1–
50:13, 2017.

[64] I. Katsikarelis, M. Lampis, and V. T. Paschos. Structurally parameterized d-scattered
set. CoRR, abs/1709.02180, 2017.

130

[65] I. Katsikarelis, M. Lampis, and V. T. Paschos. Improved (in-)approximability bounds
for d-scattered set. In WAOA, volume 11926 of LNCS, pages 202–216, 2019.

[66] I. Katsikarelis, M. Lampis, and V. T. Paschos. Improved (in-)approximability bounds
for d-scattered set. CoRR, abs/1910.05589, 2019.

[67] I. Katsikarelis, M. Lampis, and V. T. Paschos. Structural parameters, tight bounds,
and approximation for (k, r)-center. Discrete Applied Mathematics, 264:90 – 117,
2019. Combinatorial Optimization: between Practice and Theory.

[68] I. Katsikarelis, M. Lampis, and V. Th. Paschos. Structurally parameterized d-
scattered set. In WG, volume 11159 of LNCS, pages 292–305, 2018.

[69] S. Khuller, R. Pless, and Y. J. Sussmann. Fault tolerant K-center problems. Theo-
retical Computer Science, 242(1-2):237–245, 2000.

[70] S. Khuller and Y. Sussmann. The Capacitated K-Center Problem. SIAM Journal on
Discrete Mathematics, 13(3):403–418, 2000.

[71] T. Kloks. Treewidth, Computations and Approximations. Springer, 1994.

[72] S. O. Krumke. On a Generalization of the p-Center Problem. Information Processing
Letters, 56(2):67–71, 1995.

[73] M. Lampis. Parameterized Approximation Schemes Using Graph Widths. In ICALP,
volume 8572 of LNCS, pages 775–786, 2014.

[74] M. Lampis, K. Makino, V. Mitsou, and Y. Uno. Parameterized Edge Hamiltonicity.
In WG, volume 8747 of LNCS, pages 348–359, 2014.

[75] A. Leitert and F. Dragan. Parameterized Approximation Algorithms for some Loca-
tion Problems in Graphs. CoRR, abs/1706.07475v1, 2017.

[76] D. Lokshtanov, D. Marx, and S. Saurabh. Known Algorithms on Graphs on Bounded
Treewidth are Probably Optimal. In SODA 2011, pages 777–789. SIAM.

[77] D. Lokshtanov, N. Misra, G. Philip, M. S. Ramanujan, and S. Saurabh. Hardness of
r-dominating set on Graphs of Diameter (r + 1). In IPEC, volume 8246 of LNCS,
pages 255–267, 2013.

[78] D. Marx. Efficient Approximation Schemes for Geometric Problems? In ESA, volume
3669 of LNCS, pages 448–459, 2005.

[79] D. Marx. Parameterized Complexity and Approximation Algorithms. Computer
Journal, 51(1):60–78, 2008.

[80] D. Marx and M. Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using voronoi diagrams. In ESA, volume 9294 of LNCS, 2015.

[81] P. Montealegre and I. Todinca. On Distance-d Independent Set and other problems
in graphs with few minimal separators. In WG, volume 9941 of LNCS, page 183–194,
2016.

131

[82] D. Moshkovitz. The Projection Games Conjecture and the NP-Hardness of ln n-
Approximating Set-Cover. Theory of Computing, 11:221–235, 2015.

[83] J. Nesetril and P. O. de Mendez. Tree-depth, subgraph coloring and homomorphism
bounds. European Journal of Combinatorics, 27(6):1022–1041, 2006.

[84] S. Oum, S. H. Sæther, and M. Vatshelle. Faster algorithms for vertex partitioning
problems parameterized by clique-width. Theoretical Computer Science, 535:16–24,
2014.

[85] R. Panigrahy and S. Vishwanathan. An O(log ∗ n)-Approximation Algorithm for the
Asymmetric p-Center Problem. Journal of Algorithms, 27(2):259–268, 1998.

[86] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences, 43(3):425 – 440, 1991.

[87] C. M. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[88] M. Pilipczuk and S. Siebertz. Kernelization and approximation of distance-r inde-
pendent sets on nowhere dense graphs. CoRR, abs/1809.05675, 2018.

[89] K. C. S., B. Laekhanukit, and P. Manurangsi. On the parameterized complexity of
approximating dominating set. STOC 2018. ACM.

[90] M. Sipser. Introduction to the Theory of Computation. International Thomson Pub-
lishing, 1st edition, 1996.

[91] P. J. Slater. R-Domination in Graphs. Journal of the ACM, 23(3):446–450, 1976.

[92] A. Takahashi, S. Ueno, and Y. Kajitani. Mixed searching and proper-path-width.
Theoretical Computer Science, 137(2):253–268, 1995.

[93] J. A. Telle and A. Proskurowski. Practical Algorithms on Partial k-Trees with an
Application to Domination-like Problems. In WADS, volume 709 of LNCS, pages
610–621, 1993.

[94] J. M. M. van Rooij, H. L. Bodlaender, and P. Rossmanith. Dynamic Programming
on Tree Decompositions Using Generalised Fast Subset Convolution. In ESA, volume
5757 of LNCS, pages 566–577, 2009.

[95] V. V. Vazirani. Approximation algorithms. Springer, 2001.

[96] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 1st edition, 2011.

[97] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Electronic Colloquium on Computational Complexity (ECCC),
2005.

132

	Introduction
	Preliminaries
	Definitions
	Problems and state-of-the-art

	On the Structurally Parameterized (k,r)-Center problem
	Clique-width
	Lower bound based on the SETH
	Dynamic Programming algorithm

	Vertex Cover, Feedback Vertex Set and Tree-depth
	Vertex Cover and Feedback Vertex Set: W[1]-hardness
	Vertex Cover: FPT algorithm
	Tree-depth: Tight ETH-based lower bound

	Treewidth: FPT approximation scheme
	Clique-width revisited: FPT approximation scheme

	On the Structurally Parameterized d-Scattered Set Problem
	Treewidth
	Lower bound based on the SETH
	Dynamic Programming algorithm

	Vertex Cover, Feedback Vertex Set and Tree-depth
	Vertex Cover, Feedback Vertex Set: W[1]-Hardness
	Vertex Cover: FPT algorithm
	Tree-depth: Tight ETH-based lower bound

	Treewidth revisited: FPT approximation scheme

	On the (Super-)Polynomial (In-)Approximability of d-Scattered Set
	Super-polynomial time
	Inapproximability
	Approximation

	Polynomial Time
	Inapproximability
	Approximation
	Bipartite graphs

	Conclusion
	Résumé des chapitres en français

