
HAL Id: tel-03222096
https://theses.hal.science/tel-03222096

Submitted on 10 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Defense against epidemics in networks
Paul Beaujean

To cite this version:
Paul Beaujean. Defense against epidemics in networks. Cryptography and Security [cs.CR]. Université
Paris sciences et lettres, 2019. English. �NNT : 2019PSLED063�. �tel-03222096�

https://theses.hal.science/tel-03222096
https://hal.archives-ouvertes.fr

Préparée à Université Paris-Dauphine

Défense contre les épidémies dans les réseaux

Soutenue par

Paul Beaujean
Le 16 décembre 2019

École doctorale no543

École doctorale de Dauphine

Spécialité
Informatique

Composition du jury :

Cristina Bazgan
Professeur des universités
LAMSADE, Université Paris-Dauphine Directrice de thèse

Cédric Bentz
Maître de conférences HDR
CEDRIC, CNAM Rapporteur

David Coudert
Directeur de recherche INRIA
I3S, Université Nice Sophia Antipolis Président du jury

Stéphane Gaubert
Directeur de recherche INRIA
CMAP, École Polytechnique Rapporteur

Éric Gourdin
Ingénieur de recherche
Orange Labs Châtillon Co-encadrant

Frédéric Roupin
Professeur des universités
LIPN, Université Paris 13 Examinateur

To my grandparents.

Acknowledgements

In retrospect, I am not sure I remember when I started toying with the idea
of pursuing a PhD in computer science. My earliest memory related to the
discipline probably goes back to the difficult period of my classes préparatoires
years as I was about to abandon my original interest in organic chemistry.
What felt so different about this subject, I could not put it in words at the time.
Looking back, I can only imagine that my younger mind was struggling with
the concept that molecules are essentially combinatorial objects.

During a chemistry class, students were invited to experiment with model
kits which depicted atoms as colorful spheres which could be connected with
tubular links. A powerful image comes to mind of my classmates helping
me assemble a replica of a carbon fullerene molecule, the so-called C60. I had
probably learned about it in a popular science magazine and was quite taken
with the idea that the space of configurations constrained by physical laws
would allow for the existence of such a beautiful and symmetrical object. In
other words, the fullerene model looked like a football ball.

Probably disappointed to hear about the most likely career prospects in
organic chemistry and eager to learn about a new field that some of my friends
were studying at the time, I haphazardly decided to apply to an engineering
school in which computer science would be the primary subject. At the time,
my younger self had the very vague and mistaken idea that computer science
was the study of programming languages. Instead, what I discovered at ENSIIE
was an intriguing mix of two complementary topics: one focused on logic,
types, and programming languages, and the other focused on algorithms and
optimization. My lecturers at the time, Prof. Catherine Dubois, Prof. Xavier
Urbain, Prof. Sourour Elloumi, Prof. Alain Billonnet, and many others opened
the doors for me of a field that seemed to have a dizzying amount of depth.

It took me a long time to cast away my original impression of computer
science, but Prof. Liljana Trajković, who kindly allowed me to spend an intern-
ship in her Communications Networks Laboratory at Simon Fraser University,
encouraged me to read research papers and to question them, even as I had a
very limited understanding of networking at the time. Slowly, the underlying
abstraction that was growing inside my mind managed to take shape. What is
it that makes some combinatorial structures “good”? Something that lurked

3

Acknowledgements

behind as I read about the power-law of the Internet topology, as I discovered
with surprise that the fullerene graph had been studied by mathematicians, in
essence I was discovering that the mathematics of networks indeed existed.

After an awe-inspiring experience with the topology of supercomputers
during an internship with Matthieu Hautreux at CEA, I started to come to terms
with the idea that networks themselves could be the subject of optimization,
instead of the usual paths, tours, and cliques. Fortunately, the MPRO Master’s
degree program allowed me to become more familiar with the tools necessary
to achieve my goal: make networks “better”. It was via its curriculum as well
as through my cultivated, and now ingrained, habit of reading research papers
that I slowly assimilated the strictness required by the field of computational
complexity. I would like in particular to thank Prof. Xavier Urbain who
taught an introductory course at ENSIIE on the theory of computing which
had a profound impact on my mathematical inclinations. With this newfound
obsession for efficiency, two lecturers in the MPRO program Cédric Bentz and
Frédéric Roupin, who I am honored to have in my committee, showed me that
even hard computational problems could be studied under the perspective of
efficient algorithms.

I cannot thank Éric Gourdin enough for offering me an internship at Orange
Labs. A memorable part of the MPRO program consisted in regular visits from
research engineers and other professionals who used optimization, or more
generally methods from operations research, to solve real life problems. In one
way, I have a strong personal preference for abstraction and purity, but at the
same time I observe that my interest in mathematical tools and frameworks
seems to originate from a desire to have some kind of tangible impact on
the real world. It may be that computer science itself is afflicted with this
contradictory impulse. The several speakers who presented their work at the
MPRO industry sessions never failed to describe this ambivalence, even if in
hindsight I realize I might have projected it onto the stories they told.

I discovered at Orange Labs a large group of scientists doing the kind of
networking research I had read about a few years before. Above anything
else, the people I met at Orange made me feel welcome, and encouraged me
in my own research, especially on days when doubt and feelings of insecurity
were waiting next to scribbled pages of failed attempts and disappointing
leads. I would like to thank in particular Nabil and Adam who helped turn
the inexperienced intern I was into a PhD student. For their continued support
and caring advice I want to thank Alain, Philippe, Christian, Nancy, Yannick,
Raluca, Amal, and Bruno. However, the members of the Traffic and Resource
Management research group who shared the most of my struggles were my
fellow PhD students, interns, and apprentice. I am very grateful to having

4

been able to have such amazing conversations with Yassine, Thibaut L., Guan-
glei, Mathieu, Léonce, Felipe, Claudio, Nicaise, Ahlam, Wesley, Vincent, Iaad,
Paul, and Thibaut C. but also Wuyang, Thomas, Zaid, An, Yasmine, Valentin,
Abdelhakim, and last but not least Bobby.

My time at Orange was composed of a multitude of meaningful experiences.
From learning about the intricacies of a large multinational corporation from
the perspective of a research department to interacting with networking pro-
fessionals and promoting the use of optimization during a research fair, all
of this while mentoring a younger student and seeing him transform into a
full-fledged developer. I thank Éric again for this opportunity which at the
same time grounded my research into a real community, not only connected
by technical interests, but also wove it into a network of trust and friendship.

Unlike many PhD students, the first time I met my PhD advisor Cristina
Bazgan was after having decided on my research topic. The CIFRE process
started as I was an intern at Orange Labs which led to the unusual, in the French
higher education system, situation where a student with research funding is
looking for an advisor. I have always associated the origin of this PhD thesis as
a combination of research papers. My attraction to semidefinite optimization
came from the famous paper of Goemans and Williamson on the maximum
cut problem [GW95] which Frédéric Roupin presented during his lecture. I
associate the notion of trying to close the approximation gap with the clear
depiction of the multiflow-multicut gap that was the focus of Cédric Bentz’s
lecture and which I would later remember via the paper by Feige et al. on
approximating the minimum vertex separator problem [FHL08]. It is then
not surprising that my first encounter with Cristina was through a paper
she had co-authored with her PhD student Morgan Chopin on the subject of
maximizing the spread of influence in networks [Baz+14].

I cannot count the number of times Cristina has bent the rules in my favor,
nor the hours she has spent listening to my misguided ideas, incomplete
proofs, and other overly ambitious projects. She has always supported me
in my research and has been an extremely forgiving advisor in accepting the
very modest speed of my progress. She has also given me a clear window onto
the arcane world of the French higher education system and been an excellent
colleague to discuss research news with. The only regret I have in the time I
have been advised by Cristina is that I did not manage to match my initial goal
of proving a lower bound on the maximum spectral subgraph problem, which,
I believe, would have been the best way for me to repay her kindness.

As a holder of a CIFRE contract, I have spent a lot less time at my home
university than my fellow PhD students have. This relatively short period
was a way for me to discover through my peers the wider lens of computer

5

Acknowledgements

science research. The LAMSADE laboratory was for me a place to learn about
academic research as it was being done at the moment. I am glad for the
moments I have shared with many of its members, be it during the annual
laboratory conference, the weekly PhD talks I managed to attend, and the
innumerable cups of coffee that were shared on the 6th floor. I would like to
thank in particular Marie-Jo, Tristan, Denis, Laurent, Eun Jung, Michael, Rida,
Ridha, Vangelis, Florian, Sonia, Alexis, Daniel, Florian, and Olivier for having
been supportive of my research and to some of them for having introduced
me to very interesting research problems. Among my fellow PhD students,
I extend my warm thanks to Thomas, Pierre, George, Satya, Sami, Fabien,
Ioannis, Justin, Ian, Meriem, Khalil, Mehdi, Anne, and Anaëlle for all the
conversations we shared and I hope that our paths will cross again in the
future.

I would like to extend special thanks to the members of my PhD committee
for accepting to review my work. In particular, I am extremely grateful to my
examiners Cédric Bentz and Stéphane Gaubert for the impressive depth of their
reviews. I would also like to thank David Coudert for having shown interest in
my research during the AERES evaluation of the LAMSADE laboratory and for
the interesting conversation that we had in front of my poster. I thank Frédéric
Roupin for having ignited my love of spectral methods by introducing me to
semidefinite programming.

Finally, none of this would have been possible without the help of my family,
the moral support of my friends, and the extreme resilience of my girlfriend,
who never stopped being there for me while understanding how much time
I needed to spend by myself. A tragic coincidence makes me relate the PhD
degree with the death of a grandparent. As a child, my maternal grandmother
passed away which contributed to my mother giving up on finishing her
PhD thesis. Both of my paternal grandparents passed away during my PhD,
unfortunately before I was able to show them the fruits of my research. For this
reason, I would like to dedicate this manuscript to my grandparents. Thanks
to two of my high school friends who have just become or will very soon
become fathers, I will be able to associate the PhD experience with happier
circumstances as well.

6

List of symbols

Symbol Description
t time or time step

S, S(t) set or number of susceptible individuals in SIS models
I, I(t) set or number of infected individuals in SIS models
β birth rate of the SIS models
δ death rate of the SIS models
ε a small positive constant

G = (V,E) an undirected graph
H = (V,E′) a partial subgraph of G

V node set of G
E edge set of G

Γ(v) set of nodes adjacent to node v
deg(v) degree or number of nodes adjacent to node v
d̄(G) average degree of nodes in G
∆(G) maximum degree in G
ν(G) matching number of G
A adjacency matrix
D degree matrix
L Laplacian matrix

Spec(M) spectrum or set of eigenvalues of M
λi(M) the ith eigenvalue of matrix M
λmax(H) λ1, the largest eigenvalue of Hermitian matrix H
λmin(H) λn, the smallest eigenvalue of Hermitian matrix H

ei the eigenvector associated with λi
1 the all-ones vector
0 the zero vector

9

List of symbols

Symbol Description
x a scalar variable

Ber(p) a Bernoulli distribution of mean p
x ∼ D x is a random variable drawn from distribution D

x a scalar random variable
G(n, p) the Erdös-Rényi-Gilbert random graph model

G a random undirected graph
M a matrix
Mᵀ the transpose of M
M∗ the conjugate transpose of M
I the identity matrix
Eij an element of the standard basis of Mn,n

M a matrix-valued random variable
A � 0 A is positive semi-definite
A � 0 A is positive definite
A � B A−B is positive semi-definite
A�B a different multiplication operator for positive definite matrices
f some function
fσ the spectral mapping of f

trM the trace of M
E the expectation operator

Var(x) the variance of x
v(X) the matrix variance of X

10

Symbol Description
N,Z,R natural numbers, integers, real numbers

B Boolean values
Mk,l k by l matrices
Sn symmetric matrices
S+
n positive semi-definite matrices

S++
n positive definite matrices
P decision problems solvable in polynomial time
NP decision problems verifiable in polynomial time

PSPACE decision problems solvable with polynomial memory space
EXP decision problems solvable in exponential time

BPP
decision problems solvable in polynomial time with probability
at least 2/3

PCP
family of decision problems verifiable from a bounded number
of queries with some probability

PO optimization problems solvable in polynomial time

FPTAS
optimization problems solvable to any desired precision in
polynomial time

APX
optimization problems solvable with a constant factor approxi-
mation in polynomial time

11

Contents

Acknowledgements 3

List of symbols 9

Contents 13

Résumé de la thèse en français 19

Introduction 29

1 Epidemics 33
1.1 A brief history of epidemic models 34
1.2 The SIS model . 35

1.2.1 Definition . 35
1.2.2 Solving the differential equation 36
1.2.3 Fast growth . 38
1.2.4 Slow extinction . 38
1.2.5 Fast extinction . 39
1.2.6 Convergence modes of the SIS model 40

1.3 The networked SIS model . 42
1.3.1 Definition . 42
1.3.2 Eventual convergence . 43
1.3.3 Asymptotic stability . 43
1.3.4 Exponential convergence 49

2 Algorithms 55
2.1 Problems and solutions . 57

2.1.1 Decision problems . 57
2.1.2 Optimization problems 58
2.1.3 Reductions . 60
2.1.4 Verifiers and proofs . 62

2.2 Complexity and efficiency . 63
2.2.1 P: deciding correctly in polynomial time 64
2.2.2 NP: efficient verification with short proofs 66

13

Contents

2.2.3 BPP: probabilistic correctness 68
2.3 Approximation . 70

2.3.1 Worst case a priori guarantees 71
2.3.2 Probabilistic feasibility . 74
2.3.3 Relaxation and rounding 75

2.4 Critical thresholds in hardness of approximation 77
2.4.1 A varied landscape . 78
2.4.2 The unique coverage problem 79
2.4.3 A randomized O(logm)-approximation algorithm 81
2.4.4 Hardness of approximating unique coverage 84

3 Random graphs 89
3.1 The concentration of measure phenomenon 90
3.2 Concentration inequalities . 91

3.2.1 The classical Chernoff bound 91
3.2.2 The matrix Chernoff bound 94

3.3 An interlude of spectral graph theory 98
3.3.1 The adjacency matrix . 98
3.3.2 The Laplacian matrix . 99
3.3.3 Algebraic connectivity . 100

3.4 The G(n, p) random graph model 102
3.4.1 Properties of random graphs 103

3.5 The connectivity threshold . 104
3.5.1 The Laplacian matrix of a random graph 105
3.5.2 Shifting the spectrum of a Laplacian matrix 106
3.5.3 Bounds on every summand 107
3.5.4 Smallest eigenvalue of the expected matrix 108
3.5.5 Applying the matrix Chernoff bound 108

4 Intermission 113
4.1 The advent of controllable networks 113

4.1.1 Systems as abstraction . 113
4.1.2 The case of network resources 114
4.1.3 Network security . 115

4.2 Epidemic models for network security 116
4.2.1 Modeling computer viruses and propagating threats . . 116
4.2.2 Learning model parameters 117

4.3 Reactive countermeasures to threats 117
4.3.1 Deploying security appliances 118
4.3.2 Topology reconfiguration 118

14

Contents

4.4 A novel network security framework 119
4.4.1 Finding a temporary topology reconfiguration 119
4.4.2 Contributions . 120

5 Approximating the maximum spectral subgraph 123
5.1 Introduction . 123

5.1.1 Context . 123
5.1.2 Related work . 124

5.2 Preliminaries . 126
5.2.1 Computational complexity 126

5.3 Relaxation and matrix randomized rounding 127
5.3.1 The case of star graphs . 129
5.3.2 Erdös-Rényi stars . 131
5.3.3 Without the degree constraint 132

5.4 Spectral subgraphs in general graphs 133
5.4.1 Following the matrix Bernstein bound 134
5.4.2 Proof of Theorem B . 135

5.5 Maximum matching . 137
5.6 Independent rounding: an intrinsic Ω(log n) barrier 139

5.6.1 Cliques and the G(n, p) random graph model 139
5.6.2 Proof of Theorem D . 140

5.7 Conclusion and perspectives . 142

6 Experimental design for randomized approximation algorithms 147
6.1 Introduction . 147
6.2 The scientific method in experimental algorithmics 148
6.3 Algorithms as experimental subjects 149

6.3.1 Performance metrics . 150
6.3.2 Datasets . 150
6.3.3 Random samples and randomized experiments 151

6.4 Factors of influence . 152
6.4.1 Problem instances . 152
6.4.2 Implementation of algorithms 154

6.5 Towards systematic parameter setting 156
6.5.1 Gaussian process regression 157
6.5.2 Libraries . 158

6.6 Issues in experimental evaluation of algorithms 159
6.6.1 Qualitative differences . 159
6.6.2 Practical implementation details 160

15

Contents

6.7 Experiments . 162
6.7.1 Pilot experiments . 162
6.7.2 Experimental setup . 169

6.8 Pre-registration . 171

Conclusion 175

Bibliography 179

16

Résumé de la thèse en français

L’époque contemporaine est marquée par l’intensification des moyens de com-
munication, en particulier à travers l’émergence et la multiplication des réseaux
informatiques. De même que les sociétés humaines se sont transformées à
mesure que leurs réseaux de routes terrestres, de navigation, et de transport
aérien se sont développés, les informations qui transitent dans les réseaux
informatiques sont devenues de plus en plus complexe.

L’événement déterminant dans cette complexification des informations est
sans doute le transfert de programmes auto-répliquants qui se propagent à
travers l’ensemble d’un réseau informatique. Des logiciels malveillants conçus
sur ce modèle peuvent non seulement compromettre l’intégrité d’un système
informatique mais aussi se propager à d’autres systèmes qui y sont connectés,
à la manière d’une épidémie.

Cette analogie est à l’origine d’un effort de recherche dans le domaine de la
sécurité des réseaux informatiques pour se prémunir des logiciels malveillants
en appliquant des stratégies similaires à celles déjà utilisées dans l’épidémiologie
humaine, comme la mise en quarantaine ou la distribution de vaccins.

Dans le même temps, les réseaux informatiques sont devenus de plus en plus
flexibles. Si les premiers réseaux de télécommunication étaient semblables à des
routes ou des fleuves dont le tracé perdure pendant des années ou des siècles,
les réseaux actuels sont maintenant reconfigurables à la volée de manière à
satisfaire un besoin de connectivité particulier : une ligne d’urgence pour
une équipe de pompiers, une ligne de messagerie chiffrée entre journalistes
d’investigation, ou encore un réseau de capteurs météorologiques.

Le paradigme de gestion des réseaux à l’origine de cette nouvelle flexibilité
est nommé software defined networking ou réseau défini par logiciel en français.
Les réseaux sont ainsi commandés par des programmes qui peuvent réagir à
différents événements comme l’accroissement du trafic, le changement de l’état
des équipements réseaux, ou encore la connexion de nouveaux éléments au
réseau. Il est donc possible de concevoir, quasiment en temps réel, la topologie
d’un réseau pour parvenir à un but précis.

Bien que de nombreux travaux aient exploré la possibilité de "vacciner" les
éléments d’un réseau pour contrer la propagation d’une épidémie de logiciels
malveillants, la question de reconfiguration du réseau comme outil de défense

19

Résumé de la thèse en français

contre les épidémies n’a pas été explorée en profondeur.
Dans cette thèse, nous étudions la possibilité de calculer une reconfiguration

pour n’importe quel réseau et n’importe quelle épidémie donnés qui entraîn-
erait l’extinction de l’épidémie en un temps limité. En faisant appel à des
résultats en épidémiologie mathématique, en algorithmique, et en probabilités,
nous proposons un algorithme d’approximation aléatoire pour lequel nous
montrons qu’il est efficace et qu’il garantit des solutions de bonne qualité.

Pour contextualiser l’utilisation de cet algorithme, nous commençons par
rappeler des résultats connus en épidémiologie qui décrivent l’évolution d’un
processus propagatif à travers un graphe non-orienté. Ensuite nous nous
plaçons dans le cadre de la théorie de la complexité pour définir précisément le
sens d’algorithme efficace et d’approximation dans le pire des cas. Enfin, nous
adaptons des résultats récents en probabilités qui décrivent le comportement
des valeurs propres extrêmes de matrices aléatoires.

Modèles épidémiologiques

De la même manière que les physiciens ont souhaité représenter l’écoulement
d’un fluide à travers le formalisme des équations différentielles et en invoquant
l’abstraction de la particule de fluide, les épidémiologues se sont focalisés sur
une simplification des maladies en un système dans lequel les individus d’une
population peuvent basculer d’un état à un autre parmi un nombre fixe d’états.
Certains de ces états représentent la contagion où un individu malade infecte
une fraction du reste de la population.

La simplification la plus grande étant la propagation d’une maladie à deux
états : S pour "sain" et I pour "infecté". Motivés par des études similaires dans
le domaine de l’écologie et en particulier les modèles de proies et prédateurs
dont les populations sont interdépendantes, les épidémiologues développèrent
dans la première moitié du XXème siècle des modèles de plus en plus précis
capturant les différents stades d’une infection dont certaines phases peuvent
être plus contagieuses que d’autres.

Toutefois, cet effort de modélisation se heurta à la réalité d’un change-
ment profond des modes de communication. En effet, si les épidémies se
propageaient majoritairement à une échelle locale, géographique, jusqu’au
milieu du XXème siècle, l’intensification des déplacements des humains et des
marchandises avec l’avènement du tourisme de masse et du commerce mondi-
alisé a rendu caduc l’hypothèse implicite dans la majorité des modèles existants
qu’un individu peut entrer en contact avec d’autres de manière équiprobable.

En réalité, la façon dont les individus d’une population humaine sont en

20

contact les uns avec les autres se rapproche davantage de la vision topologique
de la théorie des graphes que de celle géométrique de la géographie. Le
début du XXIème siècle a ainsi vu le développement de nouveaux modèles
épidémiologiques qui ne présupposent aucun réseau social particulier entre les
individus d’une population. Ces modèles sont donc génériques et applicables
à des situations précises dans lesquels les liens de relations entre individus
sont au moins aussi cruciaux que les caractéristiques de l’agent contagieux
dans l’étude de la dynamique de l’épidémie.

Pour illustrer cette axe de recherche, nous nous arrêtons sur un résultat
de Prakash et al. [Pra+11] qui décrit les dynamiques possibles d’un modèle
épidémiologique à états qui peut se propager entre les nœuds d’un graphe s’ils
sont connectés par une arête.

Ce théorème détermine que la trajectoire de l’épidémie est décidée par la
comparaison entre deux quantités, une dépendant des caractéristiques intrin-
sèques de la maladie, l’autre dépendant des propriétés du graphe représentant
le réseau social par lequel la maladie se propage. De manière imagée, on
peut se représenter l’agent infectieux comme ayant une vitesse minimale de
survie d’un côté et le réseau comme ayant une limitation de vitesse de l’autre.
Quand la limite est plus basse que la vitesse minimale de la maladie, l’épidémie
s’arrête d’elle-même. Dans le cas contraire, elle continuera.

Le problème qui se pose donc est de savoir si l’on peut modifier le réseau de
manière à abaisser la limite juste en dessous de la vitesse minimale de survie
de l’épidémie de manière à forcer son extinction naturelle.

Modèles de calcul

Les programmes informatiques sont des artefacts complexes qui dépendent
de nombreux détails techniques tels que les langages dans lesquels ils ont été
écrits, les composants matériels des ordinateurs qui les exécutent, mais aussi
de tout un écosystème d’autres programmes dont le système d’exploitation et
les environnements d’exécution font partie.

Pour pouvoir réfléchir à un programme informatique sans s’encombrer de
ces détails, il est possible de faire appel à des modèles mathématiques qui
offrent des abstractions utiles et dont on espère qu’elles se rapprochent de la
réalité.

L’algorithmique est le domaine de l’étude des algorithmes au sein de ces
modèles de calcul. Cette discipline théorique est à l’origine de nombreuses dé-
couvertes importantes qui sont liées à des changements profonds dans l’histoire
des fondements des mathématiques, de la logique et de l’informatique.

21

Résumé de la thèse en français

Une de ces découvertes est l’étude formelle de la complexité en termes de
problèmes liés les uns aux autres ainsi qu’aux méthodes de calcul, si elles
existent, qui tentent d’en donner des solutions génériques.

Depuis le milieu du XXème siècle, des dizaines de milliers de problèmes ont
été étudiés et mis en relation les uns avec les autres. Au fur et à mesure des
avancées de la discipline, une même observation s’est peu à peu imposée à la
communauté scientifique : certains problèmes sont faciles à résoudre, c’est-à-
dire qu’il est possible de trouver un algorithme rapide (dont le nombre d’étapes
de calcul ne croît que polynomialement avec les données du problème) pour
calculer une réponse correcte. Pour un plus grand nombre de problèmes, les
études successives n’ont réussi qu’à prouver qu’il était facile de vérifier une
réponse présentée. De manière évidente, les problèmes faciles à résoudre sont
faciles à vérifier.

Toutefois il existe certains problèmes dont on sait que si on avait un algo-
rithme efficace pour les résoudre, alors on pourrait résoudre efficacement tous
les problèmes faciles à vérifier. Depuis les années 1970, aucun de ces problèmes
difficiles, dans le sens de "au moins aussi difficile que la classe des problèmes
faciles à vérifier", n’a été résolu efficacement. En effet, malgré les efforts de
la communauté scientifique en algorithmique, ces problèmes difficiles parais-
sent résister et invitent à la conjecture suivante : il existe une séparation entre
problèmes faciles à résoudre et problèmes difficiles.

Du point de vue de la conception de programmes informatiques, il s’agit
donc de comprendre à quel point il est possible de résoudre un problème
donné et ensuite de concevoir un algorithme qui s’approche le plus possible
de ces limites théoriques. Si l’on donne du poids à la conjecture de séparation
de la complexité des problèmes, on admet qu’il n’est pas possible de résoudre
efficacement certains d’entre eux.

Parmi les problèmes étudiés par les théoriciens, on trouve des problèmes
dont le but est de trouver un élément, meilleur selon un critère, parmi un
ensemble. Ce formalisme rejoint une tradition mathématique plus ancienne,
l’optimisation qui s’intéresse aux objets mathématiques extrêmes.

Ainsi, si on établit qu’un problème d’optimisation est difficile, la conjecture
nous invite à ne pas chercher d’algorithme pour le résoudre efficacement. En
effet, si la conjecture de séparation de la complexité est vraie, il n’en existe pas.
Toutefois, il est légitime d’aller explorer les limites de ce qu’il est possible de
calculer efficacement. Dans le cadre de l’optimisation, il est intéressant par
exemple de chercher à calculer efficacement une solution de bonne qualité au
lieu d’une solution qui serait la meilleure possible. Cette tâche, potentiellement
moins difficile, pourrait admettre un algorithme efficace.

Une autre manière de contourner la difficulté d’un problème peut être

22

d’élargir la définition d’un algorithme de résolution. Par exemple, au lieu
de s’intéresser à des algorithmes qui donnent à chaque exécution une réponse
correcte, on peut se contenter d’algorithmes qui donnent souvent une réponse
correcte, en imposant au moins une certaine fréquence de réussite.

Un résultat de Van Mieghem et al. [Van+11] nous donne la preuve que
le problème de reconfiguration est difficile dans le sens de la théorie de la
complexité.

Graphes aléatoires

La reconfiguration d’un réseau est un processus complexe. Dans notre contexte
de défense contre les épidémies, il s’agit d’abaisser le rayon spectral qui est
un paramètre global d’un graphe particulier. De plus, cette quantité est non-
linéaire car elle dépend de toutes les arêtes du graphe à la fois. En représentant
le fait que chaque arête du réseau peut être potentiellement désactivée par une
variable booléenne (vrai/faux), le rayon spectral se retrouve être un polynôme
en toutes les variables des arêtes du graphe.

Comment faire pour construire un sous-graphe partiel, c’est-à-dire désac-
tiver des arêtes, de manière à abaisser le rayon spectral ? Pour des raisons
géométriques, une variante de ce problème peut être résolue efficacement. En
effet si on considère des variables dont les valeurs sont comprises entre 0 et 1, la
question s’apparente à un problème d’optimisation dit convexe de type conique
dans lequel le cône en question est un ensemble de matrices symétriques, ob-
jets mathématiques qui représentent des transformations linéaires d’espaces
géométriques. Le problème devient de concevoir une matrice symétrique dont
le rayon spectral est borné.

En résolvant cette généralisation du problème combinatoire qui nous in-
téresse en problème géométrique, on obtient des arêtes partiellement désac-
tivées, c’est-à-dire un graphe pondéré par des valeurs comprises entre 0 et 1. Il
ne faut qu’un pas pour interpréter ces valeurs comme des fréquences, voire
des probabilités.

Ainsi on peut faire l’usage de tirages au sort pour déterminer si chaque arête
doit être conservée ou désactivée. En effectuant ces tirages, on espère obtenir
un sous-graphe dont le rayon spectral sera similaire à celui du graphe pondéré.

Pour cela, nous nous inspirons de résultats récents en théorie des probabilités
qui décrivent à quel point un graphe aléatoire (obtenu par tirage) est proche
du graphe moyen à partir duquel il a été généré. Ici, nous souhaitons savoir si
ces deux graphes sont proches en terme de rayon spectral.

Ces considérations multiples nous fournissent des ingrédients pour con-

23

Résumé de la thèse en français

cevoir un algorithme efficace en deux étapes : d’abord résoudre une version
généralisée du problème et ensuite tirer au sort des sous-graphes candidats à
partir de la solution précédente.

De la concentration de la mesure à l’algorithme

En théorie des probabilités, la concentration de la mesure désigne un phénomène
commun qui se présente pour des objets aléatoires constitués d’un grand nom-
bre de variables aléatoires indépendantes. Plus la dimension de l’objet aug-
mente, plus les fluctuations aléatoires semblent diminuer pour ne conserver
qu’un mince halo autour d’un objet moyen, souvent facile à caractériser. L’ajout
de variables indépendantes rend particulièrement improbable de grandes dévi-
ations par rapport à une tendance typique. C’est ce principe étudié tout au long
du XXème siècle que nous nous proposons de mettre à profit pour concevoir
un algorithme aléatoire.

La contribution théorique principale de cette thèse est la preuve de la concen-
tration de la mesure pour les sous-graphes générés à partir d’une solution au
problème généralisé. En particulier, nous prouvons que l’écart entre le graphe
moyen et ses sous-graphes du point de vue du rayon spectral est, dans le pire
des cas, un facteur logarithmique de la taille de la population. Toutefois nous
n’obtenons ce résultat que dans le cas où la limite de vitesse est au moins le
logarithme de la taille de la population.

Nous pouvons dériver de ce phénomène de concentration une méthode de
calcul simple d’un sous-graphe dans le cas où la limite est au moins logarith-
mique.

1. calculer le graphe moyen par la résolution du problème géométrique

2. diminuer d’un facteur logarithmique les probabilités de conserver chaque
arête

3. tirer au sort chaque arête selon les probabilités calculées précédemment

4. vérifier le rayon spectral du sous-graphe obtenu

La première étape de calcul peut être réalisée de manière efficace en utilisant
des résultats classiques dans le domaine de l’optimisation. La deuxième étape
ne consiste qu’en une liste de divisions à effectuer. La troisième étape peut être
réalisée efficacement par l’utilisation de résultats classiques dans le domaine
des générateurs de nombres aléatoires. Enfin la quatrième et dernière étape ne

24

nécessite que d’une primitive d’algèbre linéaire pour obtenir la plus grande
valeur propre d’une matrice associée au graphe.

Une analyse de cette algorithme nous montre que les sous-graphes obtenus
par ce calcul sont dans le pire des cas plus petit d’un facteur logarithmique
qu’une solution optimale. L’utilisation de l’aléatoire nous contraint aussi à
ne pouvoir retourner une solution correcte que dans la très grande majorité
des cas. En pratique cela correspond à recommencer les étapes 3 et 4 jusqu’à
ce qu’un sous-graphe correct soit produit, la probabilité d’échec décroissant
rapidement avec le nombre d’essais.

Le cas restant de la limite de vitesse basse (moins qu’un logarithme) peut être
résolu par un algorithme existant que nous ne détaillerons pas ici et qui produit
une solution d’une taille plus petite dans le pire des cas d’un facteur polyloga-
rithmique. En conclusion, en combinant ces deux algorithmes nous obtenons
un algorithme efficace qui garantit au pire un facteur polylogarithmique de
perte par rapport à une solution optimale.

L’algorithme que nous proposons est donc simple, utilise de méthodes de cal-
cul préexistantes, et possède des garanties théoriques valables pour n’importe
quelles données d’entrée. Qu’en est-il néanmoins de son utilité pratique ?

De l’algorithme au programme

L’algorithme tel que décrit dans la théorie de la complexité et compris à
travers les modèles de calcul est une simplification importante de la réalité de
l’exécution d’un programme.

En particulier, l’algorithme que nous avons proposé, bien que simple en
théorie, ne peut pas être directement utilisé tel quel en pratique. Par exemple,
le facteur logarithmique de correction du à un cas extrême de concentration
de la mesure n’est pas nécessaire pour tous les graphes donnés en entrée. Il
est donc raisonnable d’étudier l’impact de modifications pratiques de cette
algorithme pour l’adapter à un cas d’usage réaliste.

De la même manière, les étapes 1 et 4 font appel à des routines de calcul
préexistantes mais dont le comportement est paramétrable par de nombreuses
options comme la précision voulue des résultats ou encore le nombre maximal
d’itérations de leurs sous-routines. Des tests préliminaires montrent par exem-
ple que selon l’homogénéité du nombre de voisins par nœud dans le graphe,
la résolution de l’étape 1 peut se faire de manière plus ou moins grossière, la
perte en précision n’ayant qu’un impact minime au vu des gains de temps de
calcul conséquents obtenus.

Notre contribution n’étant qu’un exemple simple d’un algorithme aléatoire

25

Résumé de la thèse en français

d’optimisation à garantie de performance, nous proposons une méthode ex-
périmentale appropriée à l’étude d’un ensemble de paramètres et de variantes
algorithmiques comme facteurs de performances en termes de temps de calcul,
de qualité de solution, et de gestion de l’aléatoire. Cette méthode se veut
adaptée à l’étude expérimentale des algorithmes d’optimisations et des méta-
heuristiques, bien que nous la spécialisions à la prise en compte des garanties
de performance a priori.

Enfin, nous proposons des perspectives de recherche futures qui portent
sur des problèmes connexes mettant en lien les propriétés spectrales (liées à
l’algèbre linéaire) des graphes. Nous espérons ainsi que l’approche théorique
ainsi que la méthode expérimentale proposés puissent être applicables de
manière plus générale.

26

Introduction

The study of defending against epidemics is a foundational theme of math-
ematical epidemiology. In this thesis, we consider an idealized version of
this problem from the perspective of graph theory and attempt to design an
effective solution in the form of an efficient algorithm.

Our main motivation comes from the flexibility provided by software-
defined networking, a set of technological advances which allows for a fast
and centralized control of a network, to the point of being able to reconfigure
its topology dynamically.

The combinatorial optimization problem we consider is related to spectral
graph theory, the branch of mathematics which studies the relationship be-
tween graphs and their associated matrices. In particular, these matrices can
be studied from the point of view of their spectrum, that is the set of their
eigenvalues, which in turns provides new perspectives on diverse properties
of graphs.

To facilitate the exposition of our work, we provide in Chapter 1 a short
overview of classical results in mathematical epidemiology as well as a de-
tailed review of newer findings on the dynamics of epidemics on graphs. In
Chapter 2, we describe the theoretical framework commonly used in the theory
of algorithms and computational complexity which is the setting in which
we have searched for an efficient algorithm. Because the algorithm we have
proposed relies heavily on the theory of high-dimensional random variables,
we present in Chapter 3 classical results related to the concentration of mea-
sure phenomenon, which illustrates that a large number of random variables
generally remain close to their average value. It is notable that this property
remains true in the case of random matrices, which we illustrate with a detailed
presentation of the connectivity threshold in random graphs.

A reader familiar with all three domains and who would be aware of the
existence of critical phenomena that are commonly encountered in dynamical
systems, in computational complexity, and in high-dimensional probability
could assuredly focus their attention on Chapter 4 which describes the rationale
for this work. We give a short overview of modern practices in networking
and explain their relevance to network security. This allows us to introduce
the maximum spectral subgraph problem which is a core routine of a reactive

29

Introduction

network security framework we propose.
In Chapter 5, we use mathematical tools that were introduced in the first

three chapters to design an efficient randomized approximation algorithm
for the maximum spectral subgraph problem and provide guarantees on the
quality of the solutions it returns. To complete the analysis of our algorithm,
we exhibit a family of graphs for which the algorithm provides solutions that
match the guarantee, establishing the tightness of our analysis. However, we
note that this does not rule out the existence of better algorithms. Chapter 5
is based on a paper written in collaboration with Cristina Bazgan and Éric
Gourdin [BBG18] presented at the 12th Internatial Conference on Combinatorial
Optimization and Applications as well as its extended version [BBG20] which
was accepted for publication in the Journal of Combinatorial Optimization.

The framework described in Chapter 2 provides a theoretical definition of
efficiency. However, practical implementations of algorithms, even theoreti-
cally inefficient algorithms, can be fast in practice. In Chapter 6 we propose an
experimental setup in which the practical efficiency of our algorithm could be
assessed fairly. This experimental setup is a response to several issues in the
application of the scientific method in experimental algorithmics. As a whole,
this chapter is a pre-registration of experiments to come, which is a way to
combat publication bias as well as a tool to restore the balance between method-
ology and results. Chapter 6 is based on a paper written in collaboration with
Cristina Bazgan and Éric Gourdin [BBG] in preparation to be submitted to the
International Symposium on Experimental Algorithms.

30

1 Epidemics

Introduction

A whydunit, a colloquial term for “why done it?” or “why has it been done?”,
is a detective story in which the focus is on the motives for committing a crime.
In this thesis, the main motive is to leverage the effect of the contact graph on
the dynamics of an epidemic. Indeed, the theme of this work is the study of
propagating processes and how the knowledge of their dynamics can be used
to control them indirectly [NPP16]. Although the term epidemiology brings
to mind disciplines such as medicine, public health, or organizations such as
the World Health Organization, we will exclusively consider the mathematical
aspects of epidemiology whose roots can be traced back to statistical physics
and to the study of differential equations or their discrete-time counterparts,
difference equations.

This chapter starts with a short section 1.1 on the history of the applied
mathematics used to model and understand epidemics together with some
bibliographical references which provide the background for the mathematical
tools that we employ. In section 1.2, we place ourselves at the beginning of
the history of mathematical epidemiology and discuss the so-called SIS model
which has been used to represent the evolution of a infectious disease from
which individuals can recover. However, recovered individuals in the SIS
model can contract the disease again, that is they do not acquire immunity. As
the SIS model is described by an ordinary differential equation, it suffices to
apply elementary calculus to obtain precise information on its dynamics. On
the other hand, section 1.3 is concerned with contemporary developments of
mathematical epidemiology. We keep a connection with the previous section
by considering the networked SIS model which includes specific interaction
patterns between individuals represented by a contact graph. The networked
SIS model is then described as a discrete-time Markov chain which we analyze
via an autonomous non-linear discrete dynamical system. This allows us to
utilize results from the theory of dynamical systems to characterize the dynam-
ics of this more complex epidemic model. In a last section, we summarize the
results presented in this chapter and refer the reader to recent developments in
the analysis of networked epidemic models.

33

1 Epidemics

In this chapter, we will work towards establishing the following result: in
a network, the behavior of epidemics undergoes a phase transition between
fast extinction and slow extinction. This phase transition occurs at a level
determined jointly by the network topology and by the epidemic itself. For this
purpose we will start by considering a simple epidemic model and gradually
work towards more realistic models which highlight the importance of the
underlying graph.

1.1 A brief history of epidemic models

At the beginning of 20th century, many burgeoning scientific fields embraced
the traditional approaches and methodology of physics. In particular the life
sciences strove to expand beyond qualitative theories that had been the norm
until then. The main idea was that, by allowing for simplifying assumptions,
one could model the behaviour of biological processes to the same degree of
precision achieved in physics with e.g. fluid dynamics or electromagnetism.
This can be considered as one of the first uses of applied mathematics outside
of its traditional roots in engineering. Indeed in the field of ecology, the Lotka-
Volterra equations have been used to model the evolving populations of two
species in a predator-prey relationship, see for example Goell et al. [GMM71].
As an example of this underlying movement in the history of science, Lotka
in 1910 originally published his equations [Lot10] in the context of the study
of multiple autocatalytic chemical reactions i.e. system of chemical reactions
in which some reactions produce helpers (catalysts) for other reactions. In the
early 1920s, Lotka realized that the same differential equations could model
the dynamics of natural populations of predators and preys as he focused his
interests to mathematical biology, work then expanded upon by Volterra in
[Vol28]. Mathematically speaking, the differential equations they studied were
similar to the work done by Verhulst in the middle of the 19th on the logistic
map which modeled population growth.

From the late 1920s to the 1950s, these models were extended to include
intermediate states which could represent the different steps occuring during
an infection: an individual could be healthy, incubating, contagious, immune,
dead, or any number of conditions which would match the medical knowledge
at the time. The so-called compartmental models pioneered by Kermack and
McKendrick [KM27] can then be considered one of the first epidemic models,
see for example the survey by Brauer that describes historical developments of
these models [Bra17]. In section 1.2, we study the SIS model which is one of
the most simple compartmental models and shares many similarities with the

34

1.2 The SIS model

previous Lotka-Volterra models.
So far, all models used differential equations as underlying mathematical

objects which limited their applicability to small populations or infrequent
interaction between individuals. Furthermore, while differential equations
accurately matched medical records of known epidemics, the early phases of
an epidemic were not as precisely described. Indeed, consider an epidemic
outbreak which starts with a small number of infected individuals who go
on to infect an entire population. This case was seen to be analogous to
the Galton-Watson process, a stochastic process proposed by Galton in the
late 19th century to study the extinction or persistence of family names in
England [WG75]. The proof of convergence of the Galton-Watson process
was completed in the 1930s and spurred interest in generalization of this
process called branching processes. It is much later in the 1980s that branching
processes were considered as potential epidemic models, see for example the
book by Diekmann and Heesterbeek [DH00].

Finally, in the early 2000s, concomitant with the advent of the Internet,
epidemic models were generalized to include potentially varied patterns of
interaction betweeen individuals. These developments relied on the work
done in diverse branches of probability theory, statistical physics, as well
as in random graph theory which describe critical phenomena [Sla+08] in a
probabilistic way.

1.2 The SIS model

The SIS model is a classical example of a compartmental model which is very
similar to the Lotka-Volterra model. However, despite its simplicity, this model
contains the characteristic behavior of epidemics as critical phenomena: the
outcomes of this system is entirely determined by the change of a param-
eter through a threshold. The prerequisites for this section are elementary
knowledge in differential equations and familiarity with the logistic equation.

1.2.1 Definition

We now describe a simple model for a spreading epidemic in which individuals
can be in one of two possible states: “S” for susceptible to be infected and “I”
for infected. In this model, healthy individuals can become infected and
subsequently recover to a healthy state in which they might catch the disease
again in the following way. We denote respectively by S and I the number
of individuals in each class, with S + I = N where N is the total population.

35

1 Epidemics

Because we are interested in the evolution of such a system, we consider
the aforementioned quantities as being functions of time S(t), I(t) while N is
considered to be constant. The SIS model is described by a system of differential
equations with parameters β the rate of infection, and δ the rate of recovery.
These parameters are also referred to as the birth rate β and the death rate δ,
assuming the point of view of the epidemic itself.

dS

dt
= −βSI + δI

dI

dt
= +βSI − δI

together with an initial condition I(0) = k for some 1 ≤ k ≤ N .
This system of equations can be easily interpreted: the rate of infection β

represents the fraction of sane individuals that would be contaminated by an
infected individual while the rate of recovery δ which represents the fraction
of the infected population that will recover. To obtain the number of newly
infected individuals, we rely on the full-mixing assumption i.e. every individual
is in contact with the entire population. This means that each infected indi-
vidual generates βS new infections, for a total of βSI extra infections. On the
other hand, the number of recovering individuals is simply δI . This gives us
the following pictorial representation of the SIS model.

S I

βSI

δI

Figure 1.1: SIS model with parameters β and δ

We now wish to analyze the dynamics of this model to understand the
importance of its parameters β and δ.

1.2.2 Solving the differential equation

We start by noticing that, since our system is closed i.e. the total population
does not change S + I = N , we can limit ourselves to analyzing only one of
the two compartments of the model. Replacing S with N − I in the system of
differential equations, we obtain a single differential equation describing the

36

1.2 The SIS model

dynamics of the infected population over time:

dI

dt
= β(N − I)I − δI

which we rearrange into

dI

dt
= β(N − I)I − δI

= (βN − δ)I − βI2

= I((βN − δ)− βI)

dI

dt
= (βN − δ)I

(
1− β

βN − δ
I

)
.

In this form we immediately recognize a logistic differential equation:

df(x)

dx
= af(x)

(
1− f(x)

b

)
(1.1)

with parameters a = βN−δ and b = N−δ/β. The logistic differential equation
belongs to the class of Bernoulli first-order ordinary differential equations
which admit closed-form solutions.

The closed-form solution of the logistic differential equation is a logistic
function depending on the initial value of the function f0 = f(0) and the two
logistic parameters a and b:

f(x) =
b

1 +

(
b− f0

f0

)
e−ax

. (1.2)

We now return to our application domain with some appropriate renaming:

f(x) ⇐⇒ I(t) infected population over time,
f0 ⇐⇒ I0 initial infected population,

b ⇐⇒ Î∞ final endemic infected population,
a ⇐⇒ r growth rate of the epidemic.

While the first two quantities are part of the description of the SIS model, we
interpret the parameters of the logistic differential equation a and b in light of
their role in the logistic function 1.2.

The growth rate of the epidemic r is the most important property of the SIS
model. By definition we have r = βN − δ and since all three quantities are

37

1 Epidemics

positive i.e. N ∈ N+, a, b ∈ R+ then the growth rate is a real number which
may be negative or positive i.e. r ∈ R. To understand the importance of this
quantity, let us consider the three possible cases:

r > 0 ⇐⇒ N > δ/β (1.3)

r = 0 ⇐⇒ N = δ/β (1.4)

r < 0 ⇐⇒ N < δ/β (1.5)

First, recall that r = Î∞β which means that r and Î∞ have the same sign. We
will first consider the case 1.3 where the epidemic has a positive growth rate to
discuss the limiting behavior of the infected population.

1.2.3 Fast growth

Assuming r > 0, we introduce the positive quantity c = (Î∞ − I0)/I0 which
lets us write I(t) as a function of positive quantities:

I(t) =
Î∞

1 + ce−rt
. (1.6)

As the exponential quantity goes to 0 as time goes to infinity, we have that:

lim
t→∞

I(t) = Î∞ (1.7)

which justifies our symbol for the final endemic infected population.

1.2.4 Slow extinction

A peculiar situation is the case of the epidemic having a growth rate exactly
equal to 0. One way to handle this case is to argue that this case is “unnatural”
because real-life epidemics are unlikely to have their intrinsic properties β and
δ such that N = δ/β. The more rigorous way to handle this case is by simply
returning to our initial differential equation for I(t) when r = 0 that is βN = δ.

In the case where r = 0 the dynamics of the infected population are given
by:

dI(t)

dt
= βNI − βI2 − δI (1.8)

38

1.2 The SIS model

Grouping the first and last expressions together we have:

dI(t)

dt
= (βN − δ)I − βI2 (1.9)

Which means that the infected population follows a much simpler differential
equation:

dI(t)

dt
= −βI2. (1.10)

We recognize a separable ordinary differential equation whose exact solution
is:

I(t) =
I0

1 + I0 βt
. (1.11)

In this case of zero growth rate of the epidemic, we see that the limiting
behavior of the number of infected individuals is also to decrease and converge
to 0 albeit at a much slower pace than the case r < 0 which we will cover in the
next section. Nevertheless, even with zero growth rate, the epidemic becomes
extinct:

lim
t→∞

I(t) = 0. (1.12)

1.2.5 Fast extinction

If we assume instead that r < 0 then it follows that Î∞ < 0 and c < 0. In order
to write I(t) as a function of positive quantities we introduce opposites of all
our negative quantities ρ = −r, ι = −Î∞ and γ = −c which lets us write the
following:

I(t) =
−ι

1− γeρt

which we rearrange into:
I(t) =

ι

γeρt − 1
. (1.13)

Since this exponential quantity goes to infinity, we have that:

lim
t→∞

I(t) = 0 (1.14)

and we introduce another symbol Ǐ∞ = 0.
The number of infected individuals over time 1.13 can also be read as a

formula for how much time is needed to reach a small infected population.
Indeed if we denote that small population by ε, we can compute that the
epidemic dies out in time Ω(log(ε−1)).

39

1 Epidemics

1.2.6 Convergence modes of the SIS model

The analysis above allows us to completely characterize the dynamics of the
SIS model using a simple threshold condition.

Theorem 1. (The three modes of SIS)
The dynamics of a SIS model with parameters β and δ on a total population of size

N admit three different convergence patterns. The first mode of convergence is for the
infection to grow exponentially fast towards a stable endemic population, the second
mode is a slow extinction of the epidemic, while the third mode is an exponentially fast
extinction.

lim
t→∞

I(t) =


Î∞ = N − δ/β if N > δ/β

Ǐ∞ = 0 if N = δ/β

Ǐ∞ = 0 if N < δ/β.

To illustrate this theorem we draw in Figure 1.2 some possible scenarios
of an infection represented by a SIS model. We fix N = 1000 and I0 = 200
and vary the δ and β parameters as mentioned in Table 1.1 to depict the three
possible modes of convergence identified in Theorem 1. Scenarios A, B, and
C respectively correspond to cases r > 0, r = 0, and r < 0 following the
presentation of the above theorem.

Scenario β δ N δ/β

A 0.001 0.3 1000 > 300
B 0.0001 0.1 1000 = 1000
C 0.0001 0.3 1000 < 3000

Table 1.1: Different parameters for a SIS model with N = 1000 and I0 = 200

In this section we have explored the dynamics of the SIS model, a simple
epidemic model which already offers some interesting behaviour. In this
model an epidemic either goes endemic or goes extinct. Assuming a fixed
population, the dynamics of the epidemic are entirely controlled by its growth
rate. Whenever the growth rate of the epidemic is positive, the number of
infected individuals grows exponentially fast towards some fixed fraction of
the population. Otherwise, the epidemic dies out and the number of infected
individuals goes to 0 as time goes on. However, the rate of extinction can be
either slow, when the growth rate of the epidemic is zero, or fast, when the
epidemic has a negative growth rate.

40

1.2 The SIS model

0 20 40 60 80 100
0

200

400

600

800

1,000

t

I
(t

)
scenario A
scenario B
scenario C

Figure 1.2: Evolution of the infected population in 3 scenarios

The dynamics of the SIS model can directly be interpreted as a recipe to
eradicate any epidemic. Assuming that some of the key parameters of an
epidemic: total population N , rate of infection β, or rate of recovery δ can
be altered by some policy, achieving N < δ/β can be seen as a direct way to
eradicate a given epidemic.

However, the applicability of the SIS model is limited by several shortcom-
ings. First, the differential equations that describe the evolution of an epidemic
rely heavily on the full-mixing assumption which does not hold in many systems
and particularly never holds in systems with a very large number of individu-
als. Furthermore, the epidemic is characterized in the SIS model as a purely
deterministic process evolving over time. However in many systems individu-
als interact on a discrete basis and many real-life factors which contribute to an
infected individual infecting a sane individual amount to a higher chance of
infection per interaction.

In the next section we will try to address some of these shortcomings by
considering the networked SIS model which is composed of two mathematical
objects: a graph representing the network of relationships between individuals,
and a Markov chain which describes an infection as a probabilistic process. The

41

1 Epidemics

undirected graph addresses the variability of interaction between individuals
while the Markov chain gives weight to the element of chance in the spread of
an epidemic, especially at the beginning of an outbreak.

1.3 The networked SIS model

We now describe a generalization of the SIS model in which the full-mixing
assumption is replaced by an explicit mathematical object: an undirected graph
G = (V,E) in which every node v ∈ V plays the role of a particular individual
while an edge uv ∈ E correspond to a possible interaction between individuals
u and v. The assumption in the SIS model that the total population N is
constant becomes that V is fixed, and as such we let |V | = n.

The main difference with the SIS model comes from the fact that the sane
population S was simply a non-negative number representing its headcount
while in the networked SIS model the sane population is a subset of nodes
S ⊆ V . This networked model is more fine-grained and describes the state of
every individual over time and uses a Markov chain to represent the infection.
Recall that in the SIS model the differential equations represented the fact
that an infected individual would spread the infection to a β fraction of the
healthy individuals. In this model we interpret the previous statement as
an expectation by modeling the infection as having probability β to spread
between an infected node and a healthy node. Indeed, we can represent the
full-mixing assumption by considering a complete graph i.e. every node being
connected to every other node, and counting how many new infections happen
on average.

This section summarizes the breakthrough results of Chakrabarti et al.
[Cha+08] and Ganesh et al. [GMT05] which formalized the preliminary results
given by Wang et al. [Wan+03]. To simplify exposition, we adopt the formalism
of Chakrabarti et al. which is useful to understand generalizations to other
networked compartmental models such as work by Prakash et al. [Pra+11].
The prerequisites for this section include elementary graph theory knowledge,
basic probability theory and simple properties of Markov chain, as well as
familiarity with classical results in dynamical systems.

1.3.1 Definition

The networked SIS model is a Markov chain represented by the two follow-
ing transition rules. Denoting by β the probability of infection and by δ the

42

1.3 The networked SIS model

probability of recovery we have for any given node v ∈ V :

v :

{
S → I with probability β |I ∩ Γ(v)|,
I → S with probability δ.

(1.15)

where Γ(v) = {u ∈ V |uv ∈ E} is the set of nodes adjacent to v.
The first transition rule S → I describes that the infection process happens

independently between each infected-healthy pair of nodes. We have allowed
a slight abuse of notation by writing a probability whose value is potentially
greater than one. The second transition rule I → S is identical in spirit to the
δI term found in the differential equations of the SIS model.

1.3.2 Eventual convergence

The states of this Markov chain are all possible partitions of V in S and I . There
are 2n possible partitions of the node set. As a result, the state space of the
Markov chain is also 2n. By definition of the first transition rule, the state where
all individuals are healthy S = V is an absorbing state since in that case I = ∅
and as a result |I ∩ Γ(v)| = |I| = 0. Furthermore, notice that every other state
has a non-zero probability of transitioning to the S = V state. Taken together,
this means that the Markov chain we consider has a unique absorbing state.
This means that the networked SIS model is an absorbing chain and admits the
following limiting behavior:

lim
t→∞

I(t) = ∅. (1.16)

This limiting behavior is at odds with our understanding of the classical SIS
model which had a limit where the epidemic became endemic. This shows
that parallels between the two models are not always possible. However,
we will show that the dynamics of this Markov chain obey several modes of
convergence that are similar to the SIS model but also follow convergence rates
that resemble those of the classical SIS model.

1.3.3 Asymptotic stability

Recall that in the SIS model the condition N < δ/β was equivalent to an
exponentially fast extinction. We will now see whether such a behavior is
preserved in the networked SIS model.

In order to simplify the analysis of the networked SIS model we will translate
statements about the Markov chain into properties of an equivalent discrete-
time dynamical system which describes the probabilities of nodes of being sick
at each time step.

43

1 Epidemics

We start by describing in Table 1.2 specific events which will help us under-
stand the dynamics of the networked SIS model.

Event Probability Description
Rv,t rv,t node v resists infection by its neighbors at time t
Xv,t xv,t node v is sick at time step t
Bu,v β node v is infected by sick node u (birth)
Dv δ node v recovers (death)

Table 1.2: Events and their probabilities in a networked SIS model

According to the definition of the model, event Rv,t happens when all the
neighbors of v are either healthy or infected but each fails to infect v. Formally
speaking:

Rv,t =
⋂

u∈Γ(v)

Xu,t−1 ∪ (Xu,t−1 ∩Bu,v) (1.17)

This immediately gives us an expression for the probability of such event:

rv,t =
∏

u∈Γ(v)

[(1− xu,t−1) + xu,t−1(1− β)].

As expected, the probability of resisting infection from one’s neighbors is a
function of the probabilities for neighbors to be infected:

rv,t =
∏

u∈Γ(v)

(1− β xu,t−1) (1.18)

Furthermore, event Xv,t, that is a node v being healthy at a given time step t, is
the consequence of two possible cases:

• either v was healthy at time t− 1 and resists infection from its neighbors
at time t

• or v was sick at time step t− 1 but recovered at time t

which translates into:

Xv,t = (Xv,t−1 ∩Rv,t) ∪ (Xv,t−1 ∩Dv)

or in terms of probability:

1− xv,t = (1− xv,t−1)rv,t + xv,t−1 · δ

44

1.3 The networked SIS model

giving us an expression of xv,t:

xv,t = 1− rv,t + xv,t−1rv,t − δxv,t−1. (1.19)

Substituting rv,t for its value we obtain a formula for xv,t as a function of
several xu,t−1, that is:

xv,t = 1− δxv,t−1 − (1− xv,t−1)
∏

u∈Γ(v)

(1− βxu,t−1). (1.20)

This means that the vector x for a given time step is the result of a non-linear
function of x of the previous time step. We can then remove the time index and
rewrite this relationship as a non-linear autonomous dynamical equation, i.e. a
discrete time analogue of non-linear partial differential equations.

Just like the Markov chain we started with, this representation embodies the
fact that the immediate future of a networked SIS model is only determined by
its current state, not by a longer history of the system. Thus, we represent the
dynamics of the networked SIS model as the following diffeomorphism:

f : [0, 1]n → [0, 1]n

(fv)v∈V : xv 7→ 1− δxv − (1− xv)
∏

u∈Γ(v)

(1− βxu)

where repeated applications of f correspond to time steps.
One way to study a given autonomous dynamical system is to characterize

the fixed points of its associated diffeomorphism. For this we invoke a classical
theorem which classifies fixed points that act like attractors. Similarly to the
indirect Lyapunov method, this theorem offers a way to analyze the properties
of a fixed point via the linearization of the dynamical system at this point.
More formally, we have the following:

Theorem 2. (Stability conditions [Hol12])
Let x∗ be a fixed point of a discrete autonomous dynamical system represented by a

diffeomorphism f : E → E, that is f(x∗) = x∗, and letDf denote the Jacobian matrix
of f . The eigenvalues λi of Df(x∗) determine the stability of x∗ in the following way:

x∗ is

{
asymptotically stable if maxi |λi(Df(x∗))| < 1

unstable if maxi |λi(Df(x∗))| > 1

45

1 Epidemics

We will not give the precise definitions of stability and asymptotic stability
which can be found in textbooks, e.g. the book by Hirsh and Smale [HDS74],
and instead focus on the meaning of these concepts from the theory of dynami-
cal systems. A fixed point is said to be stable if the points in a neighborhood
around it remain in that neighborhood by application of the diffeomorphism.
Furthermore, an asymptotically stable fixed point corresponds to the popular
image of an attractor point, as points in its neighborhood eventually converge
to the point after repeated applications of the diffeomorphism. On the contrary,
a fixed point that is unstable can possibly have points in its neighborhood that
quickly exit that neighborhood.

The trajectory of the networked SIS model is thus related to the fixed points
of this diffeomorphism. As mentioned above, the state where all nodes are
healthy is an absorbing state of the Markov chain and it is easy to see that
it corresponds to x = 0 i.e. every node has probability 0 of being infected.
Unsurprisingly, this zero vector is a fixed point of f :

f(0) = 0 (1.21)

First, let us compute the Jacobian matrix of f at 0 which is a square matrix
containing partial derivatives of each component function fj with respect to
each node infection probability xi, ∀i ∈ V . We distinguish three cases when
calculating a partial derivative of the following form:

∂fj
∂xi

=
∂

∂xi

1− δxj − (1− xj)
∏

ν∈Γ(j)

(1− βxν)


The first case when i = j is straightforward:

∂fi
∂xi

= 0− δ − 0 +
∏

ν∈Γ(i)

(1− βxν)

which when evaluated at 0 yields:

∂fi
∂xi

∣∣∣
x=0

= 1− δ (1.22)

The second case when i 6= j reveals the adjacency structure of the diffeo-
morphism. To study this case we return to the formula for the probability of
resisting an epidemic at a given time step rv,t.

46

1.3 The networked SIS model

Here we consider rv,t+1 as a function of xt and write rj as a function of x.
Assuming that i ∈ Γ(j) we have:

rj = (1− βxi)
∏

ν∈Γ(j)
ν 6=i

(1− βxν)

so its partial derivative is simply:

∂rj
∂xi

= −β
∏

ν∈Γ(j)
ν 6=i

(1− βxν)

which we encounter in the partial derivative of fj :

∂fj
∂xi

= 0− 0− ∂rj
∂xi

+ xj
∂rj
∂xi

.

It is easy to see that the fourth term of this expression will be cancelled when
we evaluate it at 0, leaving only:

∂fj
∂xi

∣∣∣
x=0

= β if i ∈ Γ(j). (1.23)

Finally, the third case when i 6= j and i 6∈ Γ(j) can be easily derived from the
second as the partial derivative of sj simply becomes 0. This gives us:

∂fj
∂xi

∣∣∣
x=0

= 0 if i 6∈ Γ(j). (1.24)

To summarize, the Jacobian of f at 0 is a square matrix given by the follow-
ing:

(Df(0))ij =

{
βAij if i 6= j

1− δ if i = j

where Aij is the (i, j) cell of the adjacency matrix of our graph G. In matrix
notation, this can be written as:

Df(0) = βA+ (1− δ)I. (1.25)

Since G is an undirected graph, its adjacency matrix A is a symmetric matrix
whose eigenvalues are real. We can diagonalizeAwhich gives us an expression
for the eigenvalues of Df(0) needed to apply Theorem 2 as follows:

Df(0) = βP ᵀΛP + (1− δ)I
Df(0) = P ᵀ(βΛ + (1− δ)I)P

47

1 Epidemics

which implies that:

λi(Df(0)) = βλi(A) + 1− δ. (1.26)

With this characterization of the eigenvalues of Df(0) as being directly
related to the eigenvalues of the adjacency matrix A, we can leverage the
structure of A to understand the fixed point 0. The adjacency matrix of our
input graph is, without loss of generality, an irreducible non-negative matrix
as the graph G is connected.

Theorem 3. (Perron-Frobenius for irreducible non-negative matrices) [Per07]
Let M be a non-negative irreducible matrix. The following statements hold:

• λ1(M) > 0,

• λ1(M) = maxi |λi(M)|,

• λ1(M) is simple,

• the eigenspace associated with λ1(M) has dimension one.

Applying Theorem 3 on A allows us to express the spectral radius of Df(0)
as a function of the largest eigenvalue of A, that is:

max
i
λi(Df(0)) = βλ1(A) + 1− δ.

Thus, a sufficient condition for 0 to be asymptotically stable is:

βλmax(A) + 1− δ < 1

or in a more familiar form:

λmax(A) < δ/β. (1.27)

is a sufficient condition for an epidemic, which is described by a networked
SIS model with parameters β and δ, to be guaranteed to disappear.

We leave out the case λmax = δ/β open as it is not covered by our stability
theorem. Furthermore, one could argue that this exact equality does not
correspond to the physical reality of epidemics.

48

1.3 The networked SIS model

1.3.4 Exponential convergence

Now, we work towards quantifying the speed of convergence of a networked
SIS model in the case where λmax(A) < δ/β. We start by deriving a simple
lower bound for the probability of resisting an infection. For some time step
t, we denote by Cuv the event in which a node v contracts the infection at
time step t from being exposed to a node u which was sick at time step t− 1.
Recall that Rv represents is the event where a node v has resisted an infection
from its neighbors. In other words, resisting an infection from all neighbors is
equivalent to not contracting it from any of them:

Rv =
⋂

u∈Γ(v)

Cuv

Using De Morgan’s law we can rewrite this event as:

Rv =
⋃

u∈Γ(v)

Cuv

and apply the union bound on Sv:

Pr(Rv) ≤
∑

u∈Γ(v)

Pr(Cuv)

which gives us:
1− rv ≤

∑
u∈Γ(v)

βxu

a lower bound on the probability of node v resisting infection by its sick
neighbors:

rv ≥ 1− β
∑

u∈Γ(v)

xu. (1.28)

We will now proceed to derive a lower bound for the probability of a node v
to be healthy 1− f(xv) after one time step. Reinterpreting formula 1.20 in our
diffeomorphism formalism, we have that:

1− f(xv) = δxv + (1− xv)rv

using the lower bound 1.28 obtained earlier we have:

1− f(xv) ≥ δxv + (1− xv)

1−
∑

u∈Γ(v)

βxu



49

1 Epidemics

which is trivially at least:

1− f(xv) ≥ δxv + 1− xv −
∑

u∈Γ(v)

βxu

or with some rearraging:

f(xv) ≤ β

 ∑
u∈Γ(v)

xu

+ (1− δ)xv (1.29)

which in matrix form resembles an expression we have seen earlier:

f(x) ≤ (βA+ (1− δ)I)x (1.30)

indeed βA+(1−δ)I is Df(0) the Jacobian matrix of f evaluated at 0. We write
that, given x0 the initial state of the system, and xk = fk(x0) the state of the
system after k applications of f :

xk ≤ Df(0)fk−1(x0)

≤ Df(0)2fk−2(x0)

xk ≤ Df(0)kx0

Using our knowledge of the eigendecompostion of Df(0) and denoting by
λi, ei its pairs of eigenvalues and associated eigenvectors, we have:

xk ≤
∑
i

λki (eie
ᵀ
i)x0

xk ≤ λkmax c

where λmax is the largest eigenvalue of the Jacobian matrix and c = (emaxe
ᵀ
max)x0

is a constant vector.
Because the largest eigenvalue of a networked SIS model satisfying λmax(A) <

δ/β implies that λmax(Df(0)) < 1 we know that the largest eigenvalue of our
Jacobian matrix λmax = e−α for some α > 0. Thus, we have that a vector xk or
sickness probabilities obtained after k time steps decreases exponentially:

xk ≤ e−αkc. (1.31)

which is not far from showing that the all-healthy state is an exponentially
stable fixed point of a networked SIS model whenever λmax(A) < δ/β.

Following the methodology in Chakrabarti et al. [Cha+08], we have thus
proved a topology-aware and discrete-time analogue of the convergence pat-
terns of the SIS model which describes the case when the epidemic disappears
quickly.

50

1.3 The networked SIS model

Summary

In this chapter, we have studied epidemic models through two particular
examples: the SIS model and its generalization to arbitrary interaction patterns,
the networked SIS model. The main observation is that both models display
critical behavior based on small number of parameters.

In the case of the SIS model, solving the differential equation gave us quanti-
tative trajectories for the size of the infected population I(t) which critically
depend on the total population size N and on the epidemic parameters: the
birth rate β and the death rate δ. Indeed we have:

I(t) :


O(1/(1 + e−t)) convergence to N − δ/β if N > δ/β

O(1/t) convergence to 0 if N = δ/β

O(e−t) convergence to 0 if N < δ/β.

In the case of the networked SIS model, analyzing the discrete autonomous
system gave us qualitative information on the stability of the graph analogue
to I = 0 which is the state in which all nodes are in S or equivalently if we
denote by xt a vector representing the probability for each node to be infected
at a given time step then xt = 0.

0 :

{
is unstable if λmax(A) > δ/β

is asymptotically stable if λmax(A) < δ/β

and furthermore we established a quantitative trajectory towards the extinction
of the epidemic:

xt : O(e−t) convergence to 0 if λmax(A) < δ/β.

This leads us to state that the networked SIS model critically depends on both
the largest eigenvalue of the adjacency matrix of the graph and also on the
epidemic parameters of the SIS model.

We mention that the analysis of the networked SIS model can be completed
[GMT05] to show that in the case λmax(A) > δ/β, the expected time until x
converges to 0 is exponential in the number of nodes of the graph which is an
adequate analogue to the trajectory of the original SIS model.

From the point of view of the defense against epidemics, these critical thresh-
olds should be seen as opportunities to guarantee that a given epidemic will
disappear in a very short amount of time. However, a reader might wonder if
such simple thresholds only apply to the simple SIS model. Thankfully, this
is not the case, and it is remarkable that the two kinds of analysis we have

51

1 Epidemics

detailed in this chapter generalize to a very wide family of compartmental
models. More complex compartmental models include: the SIR model where
nodes Recover completely by gaining immunity, the SIRS model where nodes
recover temporarily, the SEIR model where nodes become Exposed as they
incubate the disease, and many more. Furthermore, the networked generaliza-
tion of such models display the same critical behavior as the networked SIS
model with theorems of the form:

Theorem 4 (Critical behavior of networked epidemic models [Pra+11]). Given a
networked epidemic model on a graphG with adjacency matrixA, epidemic parameters
π = (π1, . . . , πk) ∈ Rk and assuming that at least one node is infected ∃ v ∈ V, v ∈ I ,
then there is a function ε : Rk → R such that:

λmax(A) < ε(π) =⇒ I(t) converges to 0 exponentially fast,
λmax(A) > ε(π) =⇒ I(t) converges to 0 exponentially slowly.

where in the case of the networked SIS model π = (β, δ), and ε(β, δ) = δ/β.

The question now becomes: “How do we achieve λmax(A) < ε(π)?”

52

2 Algorithms

Introduction

A howdunit, for “how has it been done?”, is a type of detective story in which
the focus is the mystery of how the crime actually took place. In this thesis,
the methodology we follow essentially corresponds to common practice in the
theory of algorithms. The analysis of algorithms is a major branch of theoretical
computer science which can be seen as a positive theory of computational
problems via the study of constructive procedures that are designed to solve
them.

In essence, the theory of algorithms is concerned with designing algorithms
and in particular obtaining theorems that establish performance guarantees for
a given algorithm with regards to various resources. For example, a common
goal would be to try to design an algorithm for which we can prove that it only
uses a bounded amount of memory and also that it completes its computation
correctly in a bounded amount of time. However, many variations can be
considered such as allowing for other types of computational resources or ob-
taining more precise guarantees. Other examples include: studying algorithms
that work with input data that is revealed over time, obtaining guarantees
for algorithms which return solutions that might not be entirely correct, or
even analyzing algorithms that use randomness to compute solutions to prob-
lems. Despite this diversity, it is often the kind of computational task which
determines the desirable criteria to look for in algorithms.

A long-lasting practice in the theory of algorithms pioneered in the 1960s
by Edmonds [Edm65] is to consider performance in a conservative manner,
the so-called worst-case analysis. This corresponds to trying to determine
the performance of an algorithm faced with the worst possible input data it
can encounter. We follow this strategy in our thesis for two main reasons:
the first reason is to simplify analysis as it is generally simplifies the use of
mathematical tools to represent a given algorithm and its possible inputs, the
second reason is that worst-case guarantees always apply even if they may not
reflect the properties of a given algorithm in more specific settings.

The theory of algorithms is intimately related to the theory of computational
complexity whose main goal is to establish impossibility theorems. An impos-

55

2 Algorithms

sibility theorem states that for a given computational problem there can be
no algorithm whose performance exceeds a certain level while consuming a
certain amount of resources.

In this sense, the existence of an algorithm to solve a given problem can be
seen as an “upper bound” while an impossibility theorem would be a corre-
sponding “lower bound”. The shared goal of the two disciplines is thus to close
the gap between the current best algorithm and the current best impossibility
theorem. A computational problem is considered to be well understood when
the best algorithm matches the lower bound. For example, the computational
task of sorting a list of integers can be done in time O(n log n) and a corre-
sponding theorem states that no algorithm can achieve a better worst-case time
complexity.

Beyond the resources they require, algorithms can be categorized in broad
classes following the mathematics they employ. In the history of science, al-
gorithms have been developed in both discrete and continuous settings but
we underline that the theoretical computer science community has focused on
combinatorial problems from its beginnings during the early 20th century. On
the other hand, the numerical analysis community has developed methods
to solve computational problems together with a greatly different analytical
methodology, often focusing on more precise issues such as speed of conver-
gence, robustness to errors, or access to specific linear algebraic operations.

In this chapter we give an overview of the methodology used in analysis
of algorithms and describe its relationship with methods originating from
the continuous optimization literature. We also detail the way randomness
is handled in the analysis of algorithms framework and what constitutes the
efficient use of random sources.

We split our review of the theory in six parts: first we give a quick introduc-
tion to basic concepts used to describe computational problems followed by
a brief tour of computational complexity with a note on the use of random-
ness. This gives us the appropriate vocabulary to introduce approximation
algorithms as well as randomized approximation. Turning to the mathematical
objects we consider in our problems, we recall elementary results of spectral
graph theory. Some spectral properties can be interpreted as optimization
problems which we describe in a section on semidefinite optimization.

In this chapter we will work towards establishing the existence of a phase
transition in complexity when solving certain optimization problems. By
assuming P6=NP we will determine that the unique coverage problem can be
approximated in polynomial time within a ratio of O(log n) and at the same
time cannot be approximated in polynomial time to any better accuracy.

56

2.1 Problems and solutions

2.1 Problems and solutions

In this section we review the basic theoretical tools used by computer scientists
to assess the difficulty of solving problems and conversely to define what
constitutes efficient computation, see also the comprehensive resources by
Garey and Johnson [GJ] and by Arora and Barak [AB09]. We start by reminding
the reader of basic concepts from the theory of computation and optimization,
mostly convex optimization [BV04], [BN01], in order to introduce notions on
randomization [MR10] and then approximation algorithms [WS11] and on
the various guarantees that can be obtained on the output of algorithms. We
conclude by showcasing the so-called relaxation and rounding framework
using the concepts that we previously described.

2.1.1 Decision problems

A major theme of theoretical computer science is the study of computational
problems. The simplest class of computational problems is the class of decision
problems, that is problems for which the solution is either yes or no. However, it
is crucial to understand that the notion of computational problem corresponds
not to a particular question but to a general question which could be asked in a
wide variety of contexts. The input data that specifies the context of a general
question is called an instance of the problem.

We give an example of a decision problem, graph connectivity, which is
concerned with detecting a simple property in undirected graphs. We say that
a graph G = (V,E) is connected when for any pair s 6= t of nodes in V , there
exists a s− t path, a sequence (su, uv, vw, . . . , xy, yz, zt) of consecutive edges
sharing a node, which starts at the source node s and ends at the target node t.

GRAPH CONNECTIVITY

Instance: An undirected graph G = (V,E).
Question: Is G connected?

Formally speaking, a computable problem P is equivalent to a language L
defined by the set of binary strings recognized by a Turing machine. All the
instances of the problem for which the answer is YES are exactly the binary
strings that result in an accepting state for the corresponding Turing machine.
However, it is more practical to work on problems by separating instances
from questions, as it leads to studying relationships between problems. Many
problems can be created by slight modifications of a given question, or by
changing the set of instances, either expanding or narrowing it. For example,

57

2 Algorithms

one could consider a variant of graph connectivity where instead of asking for
simple connectivity, one would want to know if in a graph there exists at least
two edge-disjoint paths which connect any pair of nodes, a problem called
2-edge connectivity. Another variant could be to consider the generalization to
directed graphs, a problem known as directed connectivity.

2.1.2 Optimization problems

Optimization is a category of computational problems that is concerned with
the construction of specific mathematical objects. Optimization problems are
composed of more elements than decision problems but they share in common
the notion of an instance set I which represents the different ways a general
task can be specialized to a given context.

First, an optimization problem must include a domain or feasible region. This
region is defined by a function F : I → S which specifies the set of mathemati-
cal objects which can be returned as solutions given a specific instance. Second,
an optimization problem must define an objective which consists of a goal and
a metric. The goal is simply a min or max operator while the metric, often
called the objective function, m : S → R is used to evaluate feasible solutions.
An optimal solution x∗, often denoted by a star subscript, is an element of the
feasible region which optimizes the metric, and the value of this solution is
called the optimal value m∗, or sometimes the optimal solution value.

OPTIMIZATION PROBLEM O

Instance: i ∈ I .
Goal: opt ∈ {min,max}.
Metric: m : S → R.
Domain: F : I → S.

Or in a compact format:

O : I → S × R
O : i 7→ optx∈F (i)m(x).

When reading the definition of an optimization problem it is possible to
form a full sentence by replacing each section (Instance, Goal, Metric, Domain)
by the following expression: “Given i ∈ I , we want to opt the metric m over
F (i)”.

Note that the domain F (i) of a problem for a particular instance i might be
empty and for that reason finding an optimal solution of a problem implicitly
requires to solve a decision problem called the infeasibility problem of F (i)
(often improperly referred to as the feasibility problem) before attempting to
construct a solution.

58

2.1 Problems and solutions

INFEASIBILITY

Instance: A domain F (i).
Question: Is F (i) empty?

We give an example of an optimization problem which amounts to comput-
ing the second smallest eigenvalue of a symmetric matrix for which the all-ones
vector 1 is the eigenvector associated with its smallest eigenvalue. While this
problem might come to the reader as oddly specific, it will play an important
role in later chapters. The problem comes from the variational characterization
of eigenvalues.

Theorem 5. Courant-Fischer-Weyl [LL01]
Let M ∈ Sn be a symmetric matrix with eigenvalues λmin = λ1 ≤ . . . ≤ λn =

λmax, and associated eigenvectors e1, . . . , en, we have:

λk(M) = min
S

dim(S)=n−(k−1)

max
x∈S
x 6=0

xᵀMx

xᵀx

and in particular:

λk(M) = max
x⊥e1

...
x⊥ek−1
x 6=0

xᵀMx

xᵀx
.

In the following problem, the feasible region does not depend on the instance
so we abuse notation by not writing it as a constant function. We call this
problem an eigenpair problem because a pair of r∗, x∗, i.e. the optimal value
and an optimal solution, corresponds to an eigenpair: the eigenvalue and an
associated eigenvector.

COURANT-FISCHER EIGENPAIR

Instance: A symmetric matrix L ∈ Sn with L1 = λmin(L)1.
Goal: min.

Metric: The Rayleigh quotient of L: r : x 7→ xᵀLx

xᵀx
.

Domain: Non-zero vectors orthogonal to the eigenspace associated with
λmin(L): X = {x ∈ Rn : x 6= 0, x · 1 = 0}.

59

2 Algorithms

In the optimization literature it is more common to write this problem in
compact form. Indeed, for a given matrix L as defined above, we can write:

min
x 6=0
x⊥1

xᵀLx

xᵀx
(2.1)

or by explicitly revealing which parameter is the input data:

Instance︷︸︸︷
L 7→

Task︷︸︸︷
min
x6=0
x⊥1︸︷︷︸

Domain

Objective︷ ︸︸ ︷
xᵀLx

xᵀx
(2.2)

We underline our choice to define optimization problems as construction
tasks, i.e. effectively finding x∗. This is in contrast with other texts where au-
thors consider the optimization problem as the task of evaluating the optimal
value, which here would be r∗. We believe that the distinction is important
even if in the literature most optimal value problems are solved by algorithms
which construct an optimal solution. Consider for example an optimization
problem which combines a constant objective function with a non-empty do-
main defined in a non-trivial way. It is clear that evaluating the optimal value
is trivial, it suffices to return the constant, while constructing a solution might
be a much harder problem. To elaborate on this difference, we turn to the study
of reductions which formalizes the possible links between problem variants,
and even between completely different problems.

2.1.3 Reductions

On top of the optimal value evaluation problem, it is always possible to define
at least one decision problem associated with a given optimization problem.
The simplest way is to add an extra parameter to the instance which represents
a test value, and to transform an optimization goal into the corresponding
upper bound or lower bound question. For example, by reusing the definitions
of r andX from the Courant-Fischer eigenpair problem we create the associated
decision problem:

COURANT-FISCHER EIGENVALUE BOUND

Instance: An integer-valued symmetric matrix L ∈ Sn with L1 =
λmin(L)1 and a tentative bound b ∈ Z.

Question: Does there exist x ∈ X such that r(x) ≤ b?

60

2.1 Problems and solutions

It is easy to see that if we have an algorithm that can solve the eigenpair
problem, then we can use it to solve the eigenvalue bound. This is a central
notion in computational complexity called a reduction. Formally speaking
if we have two problems A and B then we say that A is reducible to B if an
hypothetical algorithm that solves B could be used to design an algorithm
which solves A. We denote this relationship by A ≤T B where the T subscript
stands for Turing reduction. In our example we have the following:

COURANT-FISCHER EIGENVALUE BOUND ≤T COURANT-FISCHER EIGENPAIR.

If we denote by algCFE an hypothetical algorithm which solves the Courant-
Fischer eigenpair problem and by rM the Rayleigh quotient of a matrix M ,
then we can design the following algorithm.

Algorithm 1: BOUND CHECKER

Data: an integer-valued symmetric matrix L ∈ Sn such that L1 = λmin(L)1,
and a bound b ∈ Z

Result: True (yes) or False (no)
1 x∗ = algCFE(L)
2 return rL(x∗) ≤ b

It is clear that Algorithm 1 returns the correct answer for the Courant-Fischer
eigenvalue bound problem.

Note that this reduction holds in general for any optimization problem O
and associated decision problem DO:

DO ≤T O

where we simply replace algCFE by algO an hypothetical algorithm to solve O,
and rL by the metric function m of the optimization problem.

The optimal value problem EO is what is often used in textbooks to define
optimization problems and consists in finding the optimal value of a problem
instead of constructing an optimal solution. Outside of this fine distinction,
O and EO share the same instance, goal, metric, and domain. For this reason,
a relationship similar to that of DO and O holds between the optimal value
problem EO and the associated decision problem DO.

Indeed DO ≤T EO is obtained directly by an algorithm which returns the
Boolean value algEO ≤ b. Furthermore EO ≤T DO can be obtained by using
dichotomic search over b until the optimal value is found. Recall that for this
reduction to terminate we have to require that the codomain of the metric
function m should be countable, e.g. Z or Q. We have chosen to not impose
this restriction in our definition of optimization problems to match common

61

2 Algorithms

practice in the continuous optimization literature. Nevertheless, when the
metric function has a countable codomain the optimal value problem and the
associated decision problem are reducible to each other, which we denote by
saying that EO and DO are equivalent or EO ≡T DO.

A reader might argue that a optimization problem asks more than a simple
question and as such stating that a simple question is reducible to a complex
question could be seen as vacuous. However we will see later that some
apparently unrelated problems can be connected via a reduction.

Beyond the practical aspect of using known algorithms as primitives to
solve new problems, reductions are used to categorize problems into classes.
Before we introduce some well-known classes of problems, we are going to
describe another relationship between problems and solutions through the lens
of verification.

2.1.4 Verifiers and proofs

We have so far looked at computational tasks that are concerned with the
answer to a general question made specific by a particular instance. We call
verifier any algorithm which certifies that an affirmative answer to a decision
problem for a given instance is correct given an additional piece of data called a
proof (or witness or certificate). Trivially, an algorithm which solves the original
decision problem is a verifier that requires no proof at all. However, in some
cases there might exist ways to certify the answer to a problem without needing
to know how to solve it.

Let us consider our first example, the graph connectivity problem and define
a proof of connectivity to be a collection of s−t paths for any pair s 6= t of nodes
in the graph G. The following algorithm is a verifier of the graph connectivity
problem.

Algorithm 2: PATH CHECKER

Data: an undirected graph G = (V,E), a set of s− t paths
P = {Pu,v : u 6= v ∈ V 2}

Result: True (yes) or False (no)
/* define path reachability */

1 r : V 2 × P → B
2 r : s, t, p 7→ (tail(p1) = s) ∧

(∧n−1
i=1 head(pi) = tail(pi+1)

)
∧ (head(pn) = t)

3 return
∧
s 6=t∈V 2,ps,t∈P r(s, t, ps,t)

It is easy to see why. If Algorithm 2 returns a True value then we are sure
that for every pair of distinct nodes there is a path connecting them. The

62

2.2 Complexity and efficiency

verification here consists in checking that every pair of nodes is paired with its
own path, and that the sequence of edges is indeed a path from the source to
its destination.

Here the set of n(n− 1)/2 paths is the proof while Algorithm 2 is the verifier.
We notice that this algorithm requires a number of element comparisons and
Boolean operations that is polynomial in the size of the instance, here n. So not
only is the proof short in a quantifiable manner, but the algorithm verifying
it is also fast, those two properties staying true no matter what instance we
consider.

We are now equipped with all the prerequisites to describe complexity
classes, categories of problems which share an equivalent level of computa-
tional hardness.

2.2 Complexity and efficiency

In this section we review common complexity classes and their interpretations.
A complexity class is a set of computational problems which share a common
property, for example all decision problems which can be solved by an algo-
rithm running in time bounded by an exponential function in the instance
size belong to a class called EXP. Despite the major breakthroughs obtained
by theoretical computer scientists in the field of computational complexity,
seemingly trivial inclusions between classes remain elusive since the inception
of the field with the paper by Hartmanis and Stearns [HS65]. We illustrate this
by stating the following inclusions between four complexity classes:

P ⊆ NP ⊆ PSPACE ⊆ EXP.

where P is the class of decision problems which admit a polynomial time
algorithm, NP is the class of decision problems which admit a polynomial time
verifier operating on a polynomial-size proof, PSPACE is the class of decision
problems which admit an algorithm whose running time is not restricted but
which operate on a polynomial amount of memory, and EXP is the class we
described above.

Thanks to the hierarchy theorem of Hartmanis and Stearns which separates
P and EXP, i.e. P (EXP, we know that at least one of the three inclusions
must be proper. Despite numerous attempts, the status of each of these inclu-
sions is an outstanding open problem. All existing research in computational
complexity constitutes circumstantial evidence that would lead the research
community to conjecture that all these inclusions are proper and in particular
that P 6= NP.

63

2 Algorithms

We will look in particular at three complexity classes. First, we will describe
P, the class of decision problems which can be solved efficiently, together with
NP, the class of decision problems which can be verified efficiently. We will
also highlight some reasons to believe that P and NP are separate, and that
invite us to believe that a wide family of problems in NP are hard to solve.
Then, we will see how one can construct analogues of P when additional
resources are considered. Here we will look at the impact of randomness on
efficient computation with BPP which is the class of decision problems which
admit randomized algorithms that output the correct answer with probability
at least 2/3.

2.2.1 P: deciding correctly in polynomial time

The theory of algorithms gives a particular role to polynomials because of
their fundamental property of being a family of functions that is closed under
composition. In the context of algorithms, this means that any algorithm which
runs in polynomial time can include other polynomial time algorithms as
subroutines. On the contrary, if one uses an exponential time algorithm as
subroutine without specific care, it is almost guaranteed that the running time
of the overall algorithm will be at least exponential.

Polynomial-time reductions

This property invites us to consider reductions that are more specific than
the ones we have discussed above and which can be used to design efficient
algorithms.

Indeed, when establishing that a problem A is reducible to another problem
B, if the reduction transforms instances of problem A into an instance of
problem B that has identical answers and does so in polynomial time, then we
say that A ≤p B, i.e. A is polynomial-time reducible to B.

It is easy to see that to solve problemA, given an algorithm algB which could
solve problem B in polynomial time, it would suffice to apply such a reduction
to produce an instance of problem B, run algB on the transformed instance,
and return the answer that has been computed.

This type of reduction is called many-one reduction or Karp reduction, after
Richard Karp who made major contributions to the field of computational
complexity.

The seminal paper of Edmonds [Edm65] on the graph matching problem first
popularized the concept of polynomial time which, together with the design of

64

2.2 Complexity and efficiency

many polynomial-time reductions between problems, would quickly become
the standard in the theory of algorithms.

Polynomial time algorithms

We now give the formal definition of a polynomial time algorithm. Given a
decision problem D defined over a set of instances i ∈ I , a polynomial time
algorithm is a Turing machine which always terminates in a number of steps
that is bounded by a polynomial in the size of the instance |i|. We also require
that the algorithm is correct in the sense that the corresponding Turing Machine
accepts on yes-instances {i ∈ I : D(i) = yes} and rejects no-instances. The
class of decision problems that admit a polynomial time algorithm is called P.

The class P is often referred to as the set of problems that are easy to solve.
This analogy is driven by two separate phenomena:

• even if one may fear that a problem would require a running time that
is a very large polynomial, e.g. O(n200), it has so far been the case that
once a polynomial time algorithm has been designed and analyzed for
a given problem, several independent teams of researchers design new
algorithms whose running time is more modest, e.g. O(n7),

• almost all problems in P can be solved efficiently in practice.

However, it is still possible to argue that the cultural biases of the research
community lead to the study of problems which exhibit enough structure to
inspire efficient algorithms.

All the example problems presented in the previous sections are in P: decid-
ing whether a graph is connected, deciding whether the Rayleigh quotient of a
given matrix is upper bounded by a test value, but also the problem of 2-edge
connectivity that we briefly mentioned.

Easy optimization problems

By abuse of notation, we often say that an optimization problem O is easy or
even that O ∈ P to denote that the natural decision problem DO associated
with O admits a polynomial time algorithm DO ∈ P. This abuse of notation
is promoted by the common situation where algorithms effectively construct
optimal solutions to decide an instance. Formally speaking, PO the class of
optimization problems which admit polynomial time algorithms is related to
P but is not entirely comparable to it as we previously discussed.

65

2 Algorithms

A major achievement in the theory of optimization is the proof by [Kha80]
that the ellipsoid algorithm can be used to find solutions for linear optimization
problems in polynomial time.

2.2.2 NP: efficient verification with short proofs

We have seen an example of a problem for which there exist witnesses or
certificates that enable verification by algorithms called verifiers. To qualify
the set of problems that admit efficient verification we need to determine the
runtime of a given verifier but also the size of the certificates it can use. Just
like problems in P admit algorithms that correctly return solutions efficiently,
problems in NP admit algorithms that correctly check solutions efficiently.
More formally, the class of decision problems that admit a polynomial time
verifier using certificates of polynomial size is called NP. As we saw earlier,
algorithms that solve a problem can be used as verifiers with an empty proof,
i.e. P ⊆ NP.

Easily verifiable optimization problems

In the context of optimization, the class NP holds practical importance because
a large number of natural optimization problems have associated decision
problems which can be efficiently decided. Indeed, observe that a solution x∗

of an optimization problem is by definition of polynomial size. Furthermore,
if we consider a reasonable class of optimization problems O′ which have an
efficiently computable metric function whose codomain is countable, as well
as efficient membership testing of their feasible region, then we can see that x∗

is in fact a certificate and the verifier consists simply in testing that x∗ ∈ F (i)
and r(x∗) Q b.

Now, let us review the trivial statement that for any optimization problem O
we have DO ≤T O. The reduction we proposed simply used x∗, the output of
algO to evaluate m(x∗) Q b. If we restrict it to a “nice” optimization problem O′

with the aforementioned properties then it is easy to see that we constructed a
Karp reduction, i.e. not only DO′ ≤PT O′ but also:

DO′ ≤p O′ (2.3)

Hardness and completeness

It might occur that a problem P is expressive enough to subsume an entire
class of problems C. Conversely, this means that P has to be as hard to solve as
all of the problems it subsumes. Such problems are called C-hard which means

66

2.2 Complexity and efficiency

“at least as hard as C as a whole”. Formally, this means that every problem
of C is reducible to that particular problem. In the context of computational
complexity, we consider reductions with respect to the use of limited resources
such as time, space, or randomness, and as such we require that the reduction
should not exceed the computational power of C which we denote as ≤C

T .

P is C-hard ⇐⇒ ∀L ∈ C, L ≤C
T P.

In some cases, a complexity class C is unified by a set of reductions to one of
its members. A C-complete problem is a C-hard problem that also belongs to
C.

NP-completeness and NP-hardness

Two major results in computational complexity regarding NP are the NP-
completeness of the circuit satisfaction problem proven by Cook in [Coo71]:

∀D ∈ NP, D ≤PT CIRCUIT SATISFACTION.

and the NP-completeness of 21 problems established by Karp in [Kar72]. This
was done by establishing that the circuit satisfaction problem is reducible to
each decision problem. Some of these problems are decision problem associ-
ated with classical combinatorial optimization problems such as the maximum
clique problem in graph theory, the minimum set cover problem, or the maxi-
mum cut problem.

∀D ∈ K21,CIRCUIT SATISFACTION ≤PT D. (2.4)

where K21 is the set of the 21 problems considered by Karp.
This result combined with the standard reduction from an optimization

problem to its associated decision problem established that well-known combi-
natorial optimization problems were in fact NP-hard. Since that discovery, an
overwhelming number of optimization problems have been proven to be NP-
hard. The most direct approach to establish P = NP is to design a polynomial
time algorithm for a particular NP-hard problem. Despite numerous attempts,
there has so far been no evidence that it could be possible. Given the practical
importance of solving optimization problems, complexity theorists and practi-
tioners have attempted to find ways to bypass this obstacle by broadening the
definition of the word “solve”, either by considering algorithms with access to
additional resources, or even by allowing suboptimal solutions.

67

2 Algorithms

2.2.3 BPP: probabilistic correctness

Several generalizations of efficiency have been devised by researchers in com-
putational complexity to include access to various resources. As many algo-
rithms use randomness to construct solutions or to answer questions, some
extensions of P take into account the notion of efficiency with regard to the use
of random bits as introduced by Gill in [Gil77]. In this context, a randomized
algorithm is not assumed to always be correct, even on the same input.

Deciding in polynomial time, often correctly

Keeping in mind the idea that time is the scarce resource, we require the
Turing machine to terminate in a bounded number of steps but we allow for
non-correctness in the following sense: the Turing Machine must accept yes-
instances with probability at least 2/3 (or any constant strictly greater than 1/2).
These algorithms are usually called Monte Carlo by opposition to the Las Vegas
algorithms which are randomized algorithms with guaranteed correctness but
only polynomial running time in expectation. The class BPP, for bounded-
error probabilistic polynomial time, consists of decision problems which admit
randomized algorithms which are polynomial time and are incorrect at most
1/3 of the time.

The key property of such probabilistic algorithms is that their success rate can
be amplified by independent repetition. We will consider pralg a probabilistic
algorithm which correctly solves a decision problem D with probability at least
2/3. This means that given an instance i ∈ I , we can define a random variable
x as follows:

x =

{
1 if i is a a-instance and pralg(i) = a where a ∈ {yes,no}
0 otherwise.

By definition, x follows a Bernoulli distribution with parameter p ≥ 2/3, that is
Pr(x = 1) ≥ 2/3. We can now simply run our probabilistic algorithm k times
and return the majority answer.

In Algorithm 3 we denote by aj the answer returned by pralg(i) which
makes its analysis straightforward. We consider the xj as a collection of k
independent and identically distributed random variables with mean p. The
sum of these j random variables has mean µ = kp. The Chernoff bound, which
will be a topic in Chapter 3, states that the probability of deviation of this sum

68

2.2 Complexity and efficiency

Algorithm 3: SAMPLE MAJORITY

Data: an instance i ∈ I of a decision problem D,
and a number of repetitions k ∈ N+

Result: True (yes) or False (no)
1 Sample ∀j ∈ [k],aj ∼ pralg(i)

2 return 1
k

∑k
j=1 aj >

1
2

from its mean decreases exponentially fast:

Pr

 k∑
j=1

xj < (1− ε)µ

 < exp(−ε2µ/2).

Choosing ε = 1/4 we directly obtain that the probability that our majority
algorithm makes a mistake is at most:

Pr

 k∑
j=1

xj <
k

2

 < exp(−kp/32) ≤ exp(−k/48)

where the last step comes from p ≥ 2/3. This means that from an error probabil-
ity of 1/3 we have obtained an error probability no larger than exp(−k/48). In
other words, this means that running our probabilistic algorithm pralg O(log n)
times is enough to guarantee that the sample majority algorithm returns a cor-
rect answer with high probability, that is at least 1− 1/n. In essence, problems
in BPP admit randomized algorithms whose error rate can be quickly reduced
to a low value, which can be chosen in advance, at the cost of only moderate
repetition.

The pervasiveness of probabilistic correctness

The concept of probabilistic correctness is also used when verifying solutions
to problems. The most famous example of it is the PCP theorem by Arora
et al. [AS98]. Standing for probabilistically checkable proofs, PCPc,s[r, q] is
a family of complexity classes which correspond to decision problems that
admit a verifier using a certain number r of random bits as well as a certain
number q of queries to a certificate which is not necessarily bounded in size.
Furthermore, the verifier must accept a proof of a yes-instance with probability
at least c (completeness) and mistakenly accept an incorrect proof of a no-
instance with probability at most s (soundness). For a given pair (r, q), we

69

2 Algorithms

obtain a complexity class denoted by PCP[r, q] which is by convention a
shorthand for PCP1,1/2[r, q]. Arora’s surprising theorem states that a problem
which admits an efficient deterministic verifier working with a short proof also
admits an efficient probabilistic verifier working with a proof of potentially
exponential length, albeit queried a constant number of times:

NP = PCP[0,poly(n)] = PCP[O(log n), O(1)] (2.5)

where PCP[0,poly(n)] is the standard definition of NP that we have discussed
earlier. This alternative definition of the class NP unveils the importance of
randomness and outlines the relationship of NP with other classes. Indeed P
and BPP, among many other complexity classes, can be described via PCP.
A deterministic algorithm which solves a decision problem requires no access
to a proof, i.e. access to an empty proof, and no randomness:

P = PCP[0, 0]. (2.6)

Furthermore, a probabilistic algorithm which can use a polynomial amount of
randomness and fail at most 1/3 of the time gives the following equality:

BPP = PCPc=2/3,s=1/3[poly(n), 0]. (2.7)

Recall our earlier example of using an optimal solution x∗ as a certificate
for the decision problem associated with a NP-hard optimization problem
where the deterministic verifier corresponds to solving a membership problem
x∗ ∈ F (i) and testing the bound m(x∗) Q b. The PCP theorem tells us that
there is another certificate, much larger than x∗, and a probabilistic verifier
which correctly checks the certificate at least 2/3 of the times by querying a
constant number of bits of the proof.

2.3 Approximation

Optimization problems have a particular geometric flavor. It is easy to imagine
that an optimization problem implicitly asks for an algorithm which has to
explore a space of feasible solutions. Faced with the bad news that most
optimization problems are NP-hard, it is legitimate to believe that it might
be possible for some problems to efficiently explore some of the space of their
feasible solutions and obtain good, albeit suboptimal, solutions. Indeed, this
image is the inspiration for the design of many approximation algorithms
as can be seen for example in the book by Williamson and Shmoys [WS11];
[GM12].

70

2.3 Approximation

In this section we will explore the formal meaning of efficient approximation.
When relaxing the assumption that a solution must be optimal, it is implicitly

assumed that a suboptimal solution should be at least “good enough”. In
the context of approximation algorithms, this corresponds to the notion of
proving that a solution is not far, in the sense of the objective function, from the
optimal solution value. In line with the conservative approach of worst-case
analysis, we will discuss worst-case a priori guarantees which constitute the
most common approach used to analyze approximation algorithms.

It is also possible to relax the assumption that an algorithm must always
return a feasible solution. While there are multiple ways to generalize this
guarantee, we will focus on the feasibility analogue to probabilistic correctness.
In essence, a randomized algorithm designed to solve optimization problems
might sometimes return an infeasible solution. In an effort towards charac-
terizing efficient computation, we will require similar error rates as the ones
described for BPP.

Finally, we will see how we can combine these two approaches to obtain a
definition of efficient randomized approximation algorithms.

2.3.1 Worst case a priori guarantees

Originally motivated by the conjectured P ⊂ NP, researchers have attempted
to design algorithms for which analysis certifies that they return solutions that
are guaranteed to be good. Subsequently, this research program has evolved
towards the exploration of the possible compromises between the running time
of an algorithm and the quality of its solutions.

Approximation ratio

Using a worst-case approach similar in spirit to the classical approach for the
running time of algorithms, we give a formal definition of an approximation al-
gorithm. Given an instance i ∈ I of an optimization problemO = (I, F,m, opt),
we say that an algorithm is a f(i)-approximation algorithm when it always
returns a feasible solution whose value is within a factor f(i) of the optimal
solution value. By convention, we consider that f(i) ≥ 1 which means that if
O is a maximization problem, i.e. opt = max, any solution x returned by the al-
gorithm have value at least m(x) ≥ m(x∗)/f(i). Correspondingly, if opt = min
then we have m(x) ≤ f(i)m(x∗). In both cases, this allows us to define the
approximation ratio obtained by an algorithm alg producing a feasible solution

71

2 Algorithms

x as:

ralg = max
i∈I

max

(
m(x)

m(x∗)
,
m(x∗)

m(x)

)
. (2.8)

It is clear that this ratio generally does not have a closed-form expression, nor
can it be efficiently computed. In practice, the analysis of a given algorithm
will attempt to establish an upper bound on this approximation ratio, with the
hope that the ratio be as close to 1 as possible.

R+

•m∗

• m(x)

•m∗/c

• 0

Figure 2.1: The value of the solution returned by an approximation algorithm
for a maximization problem

Figure 2.1 is an illustration of the value of a solution x returned by a c-
approximation algorithm for an optimization for which we assume that the
codomain of the objective function is non-negative, that is m : S → R+. The
parts of the axis drawn in red describe zones where there cannot exist any
feasible solution i.e. no solution exists neither above m∗, by maximality nor
below 0, by assumption.

Approximation classes

It is possible to distinguish problems within P by their worst-case running time
complexity, e.g. all problems which admit aO(log n) algorithm, or anO(n) algo-
rithm, then a O(n2) algorithm, etc. Similarly, NP-hard optimization problems
can be classified according to the existence of a c-approximation algorithm for
some constant c > 1, or problems which admit a O(log n)-approximation, then
a O(
√
n)-approximation, and so on. This gives birth to a family of complexity

classes called approximation classes.
An approximation class that is in essence very close to efficient exact op-

timization PO is the class FPTAS which describes the set of optimization

72

2.3 Approximation

problems that admit fast algorithms whose approximation ratio can be con-
trolled by an additional input. These algorithms are approximation schemes,
i.e. for any desired precision ε > 0, they produce (1 + ε)-approximate solutions.
Furthermore, a fully polynomial time approximation scheme is an algorithm
which runs in time bounded by a polynomial in both n the instance size and
1/ε the required precision. It is known that if P 6= NP then:

PO (FPTAS (2.9)

Assuming this conjecture, it is established that the vast majority of NP-hard
optimization problems do not admit approximation schemes, even less power-
ful versions where the running time of the algorithm is only polynomial in n,
i.e. potentially with an exponential or worse dependence on 1/ε. Before we
move on to the next category of approximation classes, let us mention a few
well-known optimization problems which admit approximation schemes. The
most famous example of a problem in FPTAS is most assuredly the knapsack
problem which was one of the 21 NP-hard problem analyzed by Karp in his
seminal paper. One can also interpret the proof by Kachiyan [Kha80] that linear
optimization is in PO to mean that the ellipsoid method when used to solve
linear optimization problems is an approximation scheme which run in time
polynomial in n but also polynomial in log(1/ε). This algorithm enjoys an
even stronger guarantee than a standard fully polynomial time approximation
scheme. The higher degree of precision allows the use of a rounding algo-
rithm which transforms a (1 + ε)-approximate solution into an exact solution,
establishing that linear optimization is in PO.

The vast majority of optimization problems studied in the literature only
admit approximation ratios that are fixed, in the sense that there is no algo-
rithm with controllable precision. This is represented by APX which, like
PCP, is a family of complexity classes parameterized by a value. For example,
the class O(1)-APX, sometimes simply denoted by APX, is the class of all
optimization problems which admit a constant factor approximation algorithm.
Among Karp’s 21 problems, the maximum cut problem for example is known
to be in O(1)-APX, see for example the randomized approximation algorithm
given by Goemans and Williamson [GW95] based on a SDP relaxation or previ-
ous approaches based on a LP relaxation [VK07]. But there is also logAPX,
polyAPX, and beyond. Again, if we assume that P 6= NP then we have a
succession of proper inclusions:

PO (FPTAS (APX (log -APX (poly-APX. (2.10)

which can be interpreted as the following statement. If we can guarantee a
precise approximation for a given problem then we can “forget” this precision

73

2 Algorithms

and provide a more coarse bound on the quality of solutions which can be
efficiently constructed. In simpler words, a precise algorithm is trivially at
least as good as a less precise algorithm. Conversely, being able to provide
a coarse approximation does not help in general with constructing precise
approximations.

This invites us to consider the hardness analogue of approximation classes.
Recall that the reductions used to define a class must not be more powerful
than the resources a class has access to. In the case of NP for example, it meant
that reductions had to be polynomial time algorithms.

In the context of efficient approximation, we also consider guarantees as a
resource. This justifies the following definition: we say that an optimization
problem OA is reducible to another optimization problem OB if there exists a
pair of reductions combining:

• a polynomial time algorithm which transforms an instance of OA into an
instance of OB

• a polynomial time algorithm which transforms a feasible solution xB for
OB into a feasible solution xA for OA.

Furthermore, we qualify this pair of reductions to be approximation-preserving
in the sense that a bound on the value of a solution xB implies some other
bound on the value of a solution xA.

More precise versions of approximation-preserving reductions allow for the
definition of approximation hardness for the classes we have mentioned in
this section. This can lead to theorems such as: the maximum cut problem
is APX-hard [PY91] and furthermore it is APX-complete. In essence, the
APX-hardness of an optimization problem establishes that there exists no
algorithm which provides a variable approximation factor. If we consider
another example, the minimum set cover problem is log-APX-complete and as
such the assumption that P 6= NP denies the existence of any constant factor
approximation for this problem.

We will now consider relaxing perfect feasibility by studying randomized
algorithms for optimization problems.

2.3.2 Probabilistic feasibility

We have seen earlier that BPP is the class of problems which admit an efficient
algorithm which returns a correct answer with high probability. A simple
variation of this definition extends the concept of probabilistic correctness to the
domain of optimization. Indeed we say that a problem is in BPPO if it admits

74

2.3 Approximation

a randomized algorithm which may return infeasible solutions, albeit with
probability no larger than 1/3. Like earlier, this means that such an algorithm
can be boosted by repetition to obtain feasibility with high probability. Formally,
if we denote by x the random variable which corresponds to the output of a
randomized algorithm pralg run on instance i ∈ I with |i| = n and F (i) the
feasible region, then pralg is an efficient randomized algorithm if we have:

P(x ∈ F (i)) ≥ 1− 1

n
. (2.11)

We will now see how to these two concepts can be combined to obtain
efficient randomized approximation algorithms. Indeed, if we have an ef-
ficient randomized algorithm pralg for a given optimization problem O =
(I, F,m, opt) and whose output is a random solution x satisfying property 2.11
then we can define the expected approximation ratio of pralg. The formula
closely resembles the deterministic approximation ratio, except for the value
of the approximate solution which is replaced by the expected value of the
random solution. Like earlier, we denote by m the metric function of the
optimization problem:

rEpralg = max
i∈I

E
m(x)

m(x∗)
(2.12)

We now have all the required notions to present the relaxation and random-
ized rounding framework which is a generic strategy to design randomized
approximation algorithms for NP-hard optimization problems. This is the
design strategy that we will employ in this thesis.

2.3.3 Relaxation and rounding

We describe the relaxation and rounding framework informally because it
admits many variants. For simplicity we consider maximization problems but
it is easy to reverse the construction for minimization problems. In essence,
given a maximization problem O = (I, F,m,max), this framework invites us
to consider the following algorithm:

1. Design a polynomial time algorithm which transforms problem O into
another maximization problem O′ = (I, F ′,m,max).

2. Prove that the O′ is a relaxation of O, that is

∀i ∈ I, F (i) ⊆ F ′(i).

and that if we denote by the relaxed feasible region S′ = {F ′(i) : i ∈ I}
then the objective function is properly defined on it, i.e. m : S′ → Q+.

75

2 Algorithms

3. Prove that O′ can be efficiently solved in some manner, e.g. O′ ∈ PO,
O′ ∈ BPPO, O′ ∈ FPTAS, orO′ ∈ APX. We denote the corresponding
(randomized) algorithm by algrelax.

4. Prove an upper bound of the form:

m(x∗) ≤ m(x′)

where x∗ is an optimal solution of O and x′ of O′ is a efficiently com-
putable solution of O′.

5. Design a polynomial time (randomized) algorithm round which trans-
forms a relaxed solution x′ ∈ F ′(i) into a solution x ∈ F (i). In combinato-
rial optimization F ′(i) is often a continuous space while F (i) is a discrete
space, which is why it is called the rounding step.

6. Prove that m(x) ≥ m(x′)/f(i) for some efficiently computable function
f : I → Q+.

We summarize the bounds that must be established in Figure 2.2. For sim-
plicity we have also assumed that the objective function has a non-negative
codomain m : S′ → Q+. We adopt the following convention: values to the
left of the axis cannot be computed efficiently unless P = NP whereas values
to the right of the axis are efficiently computable. From the figure it is clear
that x is a f(i)-approximate solution which can be computed efficiently by the
following Algorithm 4:

Algorithm 4: GENERIC RELAXATION & ROUNDING

Data: an instance i ∈ I of O
Result: a f(i)-approximate feasible solution of O
/* Construct the relaxed optimization problem */

1 O′ = relax(O, i)
/* Solve it on instance i */

2 x′ = algrelax(O′(i))
/* Round the solution */

3 x = round(x′)
4 return x

This very general strategy has been used to design powerful approximation
algorithms for NP-hard optimization problems for which the approximation
ratio is either the best known or actually matches a corresponding impossibility

76

2.4 Critical thresholds in hardness of approximation

R+

• m(x′)

•m(x∗)

• m(x)

• m(x′)/f(i)

• 0

Figure 2.2: The value of the solution returned by an relaxation and rounding
algorithm for a maximization problem

theorem. In the next section, we will detail the analysis of an approximation
algorithm for a NP-hard optimization problem, the unique coverage problem.
Then, we will sketch a hardness proof which states that the approximation ratio
we have obtained is tight if we assume a plausible computational complexity
conjecture. This example is meant to illustrate the critical phenomenon of
hardness in approximation.

2.4 Critical thresholds in hardness of approximation

In the context of approximation, the goal of computational complexity is to
determine the best ratio for which there exists a polynomial time algorithm. In
essence, one can view the approximation ratio of an optimization problem as
a tipping point between two phases of matter. In physics, water is known to
abruptly switch from a liquid to a gaseous phase when the temperature exceeds
100°C under normal conditions of pressure. In hardness of approximation,
the minimum set cover problem goes from being solvable in polynomial time
to being NP-hard when the a priori guarantee we request becomes strictly
smaller than log n. To further the analogy with phase transitions, just like in
condensed-matter physics, only a handful of problems have precisely identified
threshold.

We first give a few representative examples of current results in hardness
of approximation. Then we focus on a single example which we will study
in more depth. The unique coverage problem will serve as an illustration

77

2 Algorithms

of a common phenomenon that can be observed among many optimization
problems. We will start by describing the problem statement and quickly
discuss its practical importance. Then, we will show that this optimization
problem admits a randomized O(logm)-approximation algorithm where m
denotes the number of possible subsets to choose from in the instance. Finally,
we give the sketch of a proof that this ratio is essentially the best possible
assuming plausible computational complexity conjectures.

2.4.1 A varied landscape

In the introduction of this section we have contrasted the complete knowledge
of the threshold for which the minimum set cover problem becomes hard to
approximate with the caveat that few problems are as well understood as this
one.

However, it is sometimes the case that stronger conjectures than P 6= NP
imply a more precise landscape of hardness phase transitions. Indeed, consider
the generic approximation algorithm given by the sum of squares method
of Parrilo [Par03] or its optimization dual the moment hierarchy of Lasserre
[Las01]. This abstract algorithm, which is a particular case of the relaxation and
rounding framework we have described above, applies to the maximization
variants of the large class of constraint satisfaction problems. This class of
problems includes among many others the maximum cut problem, the maxi-
mum satisfiability problem, and the maximum coverage problem. Surprisingly,
the sum of squares algorithm produces approximation ratios which match the
best known algorithms that had been designed specifically for each individual
optimization problem. Furthermore, if we assume the unique games conjec-
ture [Kho02], which is a much stronger statement than P 6= NP, then these
approximation ratios are the best possible [Rag08]. This highlights the power
of both the sum of squares algorithm and the expressiveness of the unique
games conjecture.

In contrast with the above results, some NP-hard optimization problems
like the densest k-subgraph problem are far from being understood in the sense
of approximation. The densest k-subgraph is defined as following. Since a
subgraph GS is defined over k nodes, its density |ES |/|VS | = |ES |/k is simply
proportional to its number of edges.

78

2.4 Critical thresholds in hardness of approximation

DENSEST k-SUBGRAPH [FPK01]
Instance: An undirected graph G = (V,E) and a size k ∈ Z.
Goal: max.
Metric: The size of the subgraph G[S] = (VS , ES): m : S 7→ |ES |.
Domain: Subgraphs of order k: S ⊆ V : |S| = k.

It is almost saddening to learn that the best known approximation algorithms
for the densest k-subgraph problem produce O(4

√
n)-approximate solutions

while the corresponding impossibility theorem assuming a plausible com-
plexity conjecture states that the problem does not admit a polynomial time
approximation scheme. If we review the approximation classes we presented
earlier, this means that anything from a constant-factor approximation to a
4
√
n-approximation could be the best possible. Even when considering stronger

conjectures, the gap between the current best approximation ratio and the
current best impossibility theorem remains wide open.

In a somewhat unexpected turn of events, the seemingly innocuous extension
of the problem to larger domain of subgraphs of order at least k has profound
effects on our understanding of the approximation complexity of the problem.
This variant we have just defined, the densest at-least-k-subgraph problem,
admits a 2-approximation algorithm which is the best possible, assuming a
variant of the unique games conjecture.

These observations point us towards the possibility that hardness of ap-
proximation, like many critical systems, is very sensitive to the specificity of a
given problem. Indeed, for many optimization problems, it is rarely trivial to
establish any result, be it positive or negative. To illustrate the depth of this
discipline, we have chosen to present the design and analysis of a randomized
approximation algorithm for the unique coverage problem given by Demaine
et al. [Dem+08]. Their algorithm illustrates some of the concepts that we
have discussed so far, and ideally serves as a helpful tutorial on the design of
approximation algorithms.

2.4.2 The unique coverage problem

The unique coverage problem is a variant of several optimization problems
related to set covers. The most well-known being the minimum set cover
problem, which was part of Karp’s 21 NP-hard problems, as well as the
maximum coverage problem which can be seen as the “opposite” of the set
cover problem. All set cover problems are concerned with instances defined
by a set of n elements, E = {e1, . . . , en}, sometimes referred to as the universe,

79

2 Algorithms

and a set of m subsets of E. Generally speaking the optimization task is to
obtain a large number of elements of the universe by selecting some of the m
subsets. The task essentially asks to balance subsets of potentially different
sizes which may or may not intersect each other.

All variants of these set covering problems aim at finding a good compromise
between the number of elements covered, which should be high, and the
number of subsets utilized, which should be low. Optimization problem
variants make this balance more precise by setting one particular goal as a
constraint which defines the feasible region while the other goal becomes the
objective function. For example, the minimum partial set cover is a problem
where feasible solutions must cover at least k elements and the objective is
to do so at a minimum cost, considering that each subset is equipped with a
non-negative cost. On the other hand, the maximum coverage problem asks to
maximize the number of covered elements, subject to the constraint that the
total cost of selecting subsets is no more than some budget B.

Here, we study the unique coverage problem which introduces a variant of
the objective function found in the maximum coverage problem: the elements
that are covered by a single subset are the only ones which contribute to the
total profit. The unique coverage problem is simply the task of finding how to
maximize the number of uniquely covered elements.

UNIQUE COVERAGE [DEM+08]
Instance: a set of n elements E = {e1, . . . , en}, a set S of of m subsets of E,

where S = {X1, . . . , Xm}, a profit for each element p : E → N.
Goal: max.
Metric: the total profit of uniquely covered elements:

m(C) =
∑
e∈E

|{X∈C:e∈X}|=1

p(e)

Domain: any subset C of S, i.e. C ∈ P(S).

Set cover problems can be seen as the prototypical examples of resource
allocation problems. They can be applied in practical settings where services
must be deployed to provide some commodity to a set of clients. Indeed,
the unique coverage problem originated from a practical optimization task
in wireless networks where clients who are covered by more than one radio
frequency experience a loss of quality of service. This leads to the natural
objective of wanting to favor the deployment of base stations in such a way

80

2.4 Critical thresholds in hardness of approximation

that the system serves the largest possible number of clients without radio
interference.

Aside from practical applications, set covers are also useful as tools in com-
putational complexity. Indeed, sets and subsets are very flexible mathematical
objects and can be used in reductions to play the role of more specific objects.
As a consequence, establishing positive and negative results on the hardness
of approximation of such problems produces ripple effects in the landscape of
complexity.

2.4.3 A randomized O(logm)-approximation algorithm

The unique coverage problem is a maximization variant of the minimum set
cover problem which, unlike the maximum coverage problem, does not contain
any budget constraint. The feature which makes the problem non-trivial is that
the value of a covered element depends on how many times it is covered by
the chosen subsets, i.e. only elements that are covered once contribute to the
objective to maximize.

The following randomized approximation algorithm is an example of an
algorithm which always returns a feasible solution but whose value may vary.
This is a stronger guarantee than the randomized algorithms that we had
been considering so far. In the context of approximation, we are however still
looking for a guarantee on the expected value of a solution returned by such a
randomized algorithm.

Algorithm 5: SAMPLE BEST GROUP

Data: a set of elements E = {e1, . . . , en}, a set S = {X1, . . . , Xm} of subsets
of E, and a profit p : E → N

Result: a random subset of S
/* count how many times each element is covered */

1 m : P(S)× E → N
2 m : C, e 7→ |{X ∈ C | e ∈ X}|
/* group elements by coverage on an exponential scale

*/
3 E(i) = {e ∈ E |m(S, e) ∈ [2i, 2i+1)}
/* find group with highest total profit */

4 µ = argmaxi∈N∗
∑

e∈E(i) p(e)
/* keep each subset with probability 1/2µ */

5 Sample ∀X ∈ S, sX ∼ Ber (1/2µ)
6 U = {X ∈ S | sX = 1}
7 return U

81

2 Algorithms

Theorem 6. (Randomized O(logm)-approximation for the unique coverage problem)
The expected value of a cover returned by Algorithm 5 is within c/ logm of the

optimal solution value of the unique coverage problem for some constant c > 0.

Proof. The first step in analyzing the performance of this randomized approxi-
mation algorithm is to describe how profit is split among groups.

If we represent the cover system given as initial data as a bipartite graph
G = (E,S, {eX | e ∈ E,X ∈ S, e ∈ X}) we can read the coverage of each
element as the degrees of the nodes in partition E. Notice that the maximum
degree of nodes in E is bounded: deg(e) ≤ m.

Thus, groups corresponds to nodes whose degree is in one of the intervals
[2k, 2k+1) for some k ∈ N. Since 2k is at most m, we have created at most logm
groups.

Given that the number of groups is at most logm it is easy to see that the
group µ, defined to be the group of elements with highest total profit, contains
at least a 1/ logm fraction of the total profit of all elements, that is:

∑
e∈E(µ)

p(e) ≥
∑

e∈E p(e)

logm
(2.13)

That bound can be attained in the case where all groups possess an equal share
of the total profit.

The second step of the proof is to quantify the number of uniquely covered
elements in cover U . For this we will again focus on the group µ which has
highest total profit. The sampling rule to construct cover U is a simple Bernoulli
distribution where subsets are kept with probability 1/2µ. We can now write
down the probability that an element e in group µ is covered uniquely in the
cover U obtained by the sampling procedure. The event that e is covered by
one and only one set can be described as the union of k independent events
where in each event one of the k subsets covers e and all remaining k−1 subsets
have been discarded by the sampling procedure.

Pr(m(U, e) = 1) =

ways︷︸︸︷
k · (1/2µ)1︸ ︷︷ ︸

one success

and︷︸︸︷
· (1− 1/2µ)k−1︸ ︷︷ ︸

all other failures

. (2.14)

First, we know that k ≥ 2µ which gives us a lower bound on ways to select a
single subset.

k ≥ 2µ (2.15)

82

2.4 Critical thresholds in hardness of approximation

Now we want to find a lower bound on the probability of k−1 subsets being
dropped where k appears as an exponent of a probability. In this case, we use
the upper bound k ≤ 2µ+1 − 1 or equivalently k − 1 ≤ 2µ+1 to obtain:

(1− 1/2µ)k−1 ≥ (1− 1/2µ)2µ+1
(2.16)

Combining these two inequalities we obtain a lower bound on the exact
probability depending only on µ:

Pr(m(U, e) = 1) ≥ 2µ · 1/2µ · (1− 1/2µ)2µ+1 (2.17)

Pr(m(U, e) = 1) ≥ (1− 1/2µ)2µ+1 (2.18)

Assuming that µ ≥ 2 since otherwise we would not need to remove subsets,
we have the following:

Pr(m(U, e) = 1) ≥ (1− 1/22)5 =
243

1024
≈ 0.237 (2.19)

This bound on the probability that any given element of that group is
uniquely covered can be interpreted as an expected fraction of uniquely cov-
ered elements in group µ. Let EU = {e ∈ E |m(U, e) = 1} be the elements
uniquely covered by U , we have that:

E
∑
e∈EU

p(e) ≥ 243

1024

∑
e∈E(µ)

p(e). (2.20)

We now combine the above inequality with inequality 2.13 to obtain the
desired guarantee on the performance of Algorithm 5, that is if we denote by
p∗UC the optimal solution value of the unique coverage problem, we have that:

E
∑
e∈EU

p(e) ≥ c p
∗
UC

logm
(2.21)

where we used the trivial statement that
∑

e∈E p(e) ≥ p∗UC and set c = 243/1024.

In the above proof, we have used what could be seen as very loose bounds.
First, we have only considered uniquely covered elements within the group
with highest profit. However, one might hope that U might cover uniquely
some elements in other groups. Second, we have used a very coarse upper
bound on the optimal solution value of the unique coverage problem: the case

83

2 Algorithms

where the instance data consists of mutually disjoint subsets i.e. returning the
entire set of subsets would be optimal.

However, this seemingly loose analysis results in what is essentially the best
possible guarantee under a plausible computational complexity assumption.

2.4.4 Hardness of approximating unique coverage

In this section, we give a sketch of the proof that the balanced bipartite stable
problem is reducible to the unique coverage problem.

Bipartite independent sets

Bipartite independent set problems are a family of computational problems
related to graph theory which have been used in many reductions to establish
hardness of approximation. Demaine et al. [Dem+08] in particular highlight
the fact that these problems can be modified easily to fit several computational
complexity assumptions. At its core, a bipartite independent set problem is
defined over a bipartite graph G = (A ∪ B,E) whose partitions are of equal
size, i.e. |A| = |B| = n. An independent set in this context corresponds to two
subsets of IA ⊆ A and IB ⊆ B such that the induced subgraph G[IA ∪ IB], or
G[I] for short, is an independent set, i.e. ∀u, v ∈ V (G[I]), uv 6∈ E(G[I]). We say
that G admits an (a, b)-BIS if there exists IA and IB with |IA| = a and |IB| = b.

As we briefly mentioned in the previous section, set cover problems can be
interpreted as problems on bipartite graphs where the left partition represents
the set of subsets and the right partition represents the set of elements. Fur-
thermore, we can represent membership e ∈ X by an edge eX . The proof of
Demaine et al. is indeed a randomized reduction which makes use of this repre-
sentation. As such, we continue to identify an instance of the unique coverage
problem with the bipartite graph U = (E ∪ S, {eX : e ∈ E,X ∈ S, e ∈ X}).

Promises and gaps

The idea is then to introduce a variant of the bipartite independent set problem
where it is possible to quantify very precisely the size of the bipartite indepen-
dent on each side of the partition. This kind of problem belongs to the category
of promise problems which split instances in three sets:

• yes-instances which must be accepted,

• no-instances which must be rejected,

• and irrelevant-instances are the rest.

84

2.4 Critical thresholds in hardness of approximation

Promise problems are of special importance in hardness of approximation be-
cause they can be used to establish gaps. For example, consider a promise prob-
lem which separates instances of an maximization problem into yes-instances
represented solutions with value at least g and no-instances that are at most b.
When g > b it suffices to prove that this promise problem is NP-hard to rule
out the existence of any approximation algorithm with ratio better than g/b
unless P 6= NP.

A randomized reduction

This is the strategy employed by Demaine et al. Here, they consider the
following promise problem:

PROMISE OF BIPARTITE INDEPENDENT SET

Instance: a bipartite graph G = (A∪B,E) with |A| = |B| = n, size param-
eters for yes-instances and no-instances: lyes, ryes, lno, rno ∈ (0, 1)
with lno < lyes and ryes < rno.

Accept: G admits a
(
nlyes , n/(log n)ryes

)
-BIS.

Reject: G does not admit a
(
nlno , n/(log n)rno

)
-BIS.

They then randomly construct an instance of the unique cover problem by
constructing a random graph based on the bipartite graph G = (A∪B,E). The
procedure is relatively technical but amounts to the following steps:

• Sample a random graph based on G where each edge independently
remains with probability n−lyes . This ensures that every node in the
random graph has degree n1−lyes in expectation. The remaining edges are
called good edges.

• Create O((lyes − lno) log n) copies of this graph and fuse all nodes in A.
The result is bipartite graph which has a left partition with n nodes and a
right partition of O(n log n) nodes.

• For every of the O(log n) copies, add an edge set between A and a copy
Bi which corresponds to the original edge set E, and for every succes-
sive copy the edge set of their predecessor but with every edge being
discarded with probability 1/2. The remaining edges are called bad
edges.

Figuratively speaking, the random graph thus created is an unbalanced bipar-
tite graph with n nodes on the left and O((lyes − lno) log n) on the right. The

85

2 Algorithms

size parameters however have a great influence over the size of the random
graph:

• the gap between the yes- and no-parameters of the left partition deter-
mine how many copies are created in the right partition,

• the absolute value of the yes-parameter of the left partition determines
the density of the bipartite random graph.

This construction attempts to identify the unbalanced bipartite independent
sets in G with elements that are uniquely covered by good edges.

In the case of a yes-instance, G admit a large bipartite independent set which
we denote by I∗ = I∗A, I

∗
B where I∗ is a

(
nlyes , n/(log n)ryes

)
-BIS. In this case,

it is possible to count the number of good edges coming out of I∗A: there are
nlyes nodes and each node has an expected good degree n1−lyes , this means
that in expectation n good edges exit I∗A. It is then possible to show that a
significant fraction of elements are uniquely covered by good edges, namely at
least a Ω(n/(log n)ryes) fraction of each of the O((lyes − lno) log n) copies. This
establishes the following. If we denote by u∗ the optimal solution of the unique
coverage problem and f(l) a constant term depending on the left-parameters,
then with high probability we have:

G is a yes-instance =⇒ u∗ ≥ f(l)n(log n)(1−ryes).

In the case of a no-instance, G does not admit a large bipartite independent
set. This can be used to show that in every graph copy on the right side of the
unique coverage instance, no more than a small fraction of elements can be
covered uniquely. With additional technical details, it is possible to show the
following:

G is a no-instance =⇒ u∗ ≤ f(l)n(log n)(1−rno).

These two results produce a hardness gap of value Ω(1/(log n)(ryes−rno))
To complete the hardness proof, we are left to find the adequate parameters

l and r which suffice to prove that the promise of bipartite independent set
problem is hard.

Summary

In this chapter, we have explored several fundamental concepts in the theory of
algorithms and in computational complexity with a strong focus on optimiza-
tion problems. The main observation is that approximation sometimes exhibit

86

2.4 Critical thresholds in hardness of approximation

critical behavior and that whether a problem can be solved efficiently can
depend on a small number of parameters, here for example the approximation
ratio.

The picture we have painted might ambiguous as it is not clear if knowl-
edge on efficient algorithms or hardness proofs can transfer directly to the
optimization problem we are interested in. However, while individual results
might stay confined to a particular problem, the general methodology of both
computational complexity and the analysis of algorithms are the tools that we
believe are appropriate to study a problem in its full generality.

In the context of the defense against epidemics, we offer two complementary
points of view on how to use approximation algorithms and hardness proofs in
practice. First, establishing approximation guarantee for an algorithm should
be seen as an early indicator that an approach is worth pursuing, maybe to be
combined with heuristics or human expertise. On the other hand, hardness
proofs should be welcomed as warning signs. As is well-known, the worst-case
analysis methodology does not reflect the reality of instances solved in practice,
but it can serve as a windmill which signals a coming storm.

Now that we have established the reason why we want to solve an opti-
mization problem, and presented the methodology necessary to establish an
appropriate solution, we must turn to the mathematical objects most likely to
help us design and analyze our wanted algorithm.

The question becomes “Which concept can become an efficient con-
structive algorithm for our problem?”

87

3 Random graphs

Introduction

The whodunit, which stands for “who has done it?”, is the most prominent
subgenre of detective stories. It usually describes the investigation around a
crime, and is focused on the the goal, shared between the detective and the
reader, of finding the identity of the perpetrator. In this thesis, we need to
find the most likely candidate, within the world of mathematics, of the disap-
pearance of an epidemic. Recall that to suppress the spread of an epidemics,
we are looking for an efficient algorithm which would modify the spectral
properties of the graph underlying the contact network of an epidemic model.
In this context, we focus our attention on the influence of randomness on the
spectrum of graphs.

This chapter is an introduction to random graphs as well as a tutorial on the
use of the concentration of measure to construct complex combinatorial objects
through sampling. In order to give a concrete example of the concepts and tools
underlying the results presented in this thesis, we will derive a simple proof
of a sufficient condition for the G(n, p) random graph model to be connected.
This example will serve at the same time as an illustration of the concentration
of measure phenomenon as well as a proof of the effectiveness of spectral graph
theory, that is using linear algebra to understand properties on graphs.

We start by giving a short history of the concept of concentration of measure
and how it was adopted in combinatorics and theoretical computer science.
Then, we present the most famous concentration inequality, the Chernoff
bound, and give a quick sketch of its proof. Subsequently, we detail the
proof of Tropp’s matrix Chernoff bound which is a direct generalization of the
Chernoff bound for random matrices. This serves not only as evidence of the
generality of the concentration of measure phenomenon but also provides us
with adequate tools to study random graphs via spectral graph theory. We
take a short break from probability theory to recall basic results from spectral
graph theory in order to facilitate the exposition of the next section on the
G(n, p) random graph model. Finally, we apply all the tools and techniques
that we have introduced to derive a sufficient condition for a random graph to
be connected. This is a constructive version of the well-known theorem on the

89

3 Random graphs

connectivity threshold of random graphs.
The final goal of this chapter is to establish the existence of a phase tran-

sition in connectivity for random graphs obtained from the G(n, p) model
at p = O(log n/n). Below an expected degree of O(log n), connectivity does
not concentrate whereas above this threshold almost every random graph is
connected.

3.1 The concentration of measure phenomenon

The foundations of probability theory have focused on general results regard-
ing the asymptotic convergence of empirical distributions to fixed distributions.
In the 19th century, Pierre-Simon Laplace obtained a good approximation of
the number of heads obtained after flipping a fair coin a large number of times.
This was an early application of an earlier result by Abraham de Moivre in
the late 18th century which would then receive particular attention and formal
proofs. Indeed, the central limit theorem, established in 1901 by Aleksandr
Lyapunov, describes the convergence in distribution of a sum of independent
and identically distributed (henceforth i.i.d.) random variables to a normal
distribution of the same variance. Similar theorems pertaining to different
kinds of distributions were obtained throughout the 20th century. They shone
light on so-called asymptotic distributions i.e. the limit behavior of a large
number n of random variables as n goes to infinity. No matter how informative,
such theorems cannot be directly turned into randomized algorithms as they
do not provide a precise picture of what happens for a particular value of n.

While a large part of classical probability theory has focused on establishing
similar asymptotic convergence results, a small field of research focused on
analyzing a large but finite number of random variables, often in geometrical
settings. This line of work can be traced to a theorem by Paul Lévy in 1919
which states that continuous multivariate functions on the n-dimensional unit
sphere which do not depend greatly on individual coordinates are almost
constant. Later, in 1970, Vitali Milman gave a simple proof of Dvoretsky’s
theorem on the existence of ellipsoids within any convex body of sufficiently
high dimension by applying Lévy’s result to random subspaces of the convex
body. His finding revealed that the vast majority of random subspaces were
almost ellipsoids. This was the first application of what would be called the
concentration of measure phenomenon.

Following this event of far-reaching cultural importance in the world of
mathematics, several mathematicians including Michel Ledoux [Led01] and
Michel Talagrand [Tal+96] at the turn of the 21st century worked on establish-

90

3.2 Concentration inequalities

ing concentration of measure for a wide variety of probabilistic objects. The
common structure among those objects is simply that they can be characterized
by a large number of random variables which are weakly dependent if not
independent from one another.

In practice, the theorems that have been established within the concentration
of measure framework provide powerful non-asymptotic information on the
behavior of mostly regular multivariate functions. They take the form of
general inequalities that can be tuned to fit a particular mathematical situation
and as such, they are applied in many settings. In particular, concentration
inequalities have had a deep impact in the fields of combinatorics and the
theory of algorithms. Broadly speaking, asymptotic theorems have been used
to prove the existence of certain combinatorial objects, see for example the book
by Alon and Spencer [AS04]. On the other hand, non-asymptotic theorems
have been successfully used to construct combinatorial objects via randomized
algorithms, see for example Motwani and Rhagavan’s book [MR10]. We will
now see two examples of these concentration inequalities which are of practical
importance in the design of randomized algorithms.

3.2 Concentration inequalities

In this section we will draw parallels between an elementary result in non-
asymptotic probability theory, the Chernoff bound, and a more advanced
generalization of this theorem in the context of random matrices.

The Chernoff bound had been established by Herman Rubin, then in a
weaker version by Herman Chernoff in 1952 [Che+52]. Both were inspired by
previous work by Bernstein who derived the closely related Bernstein bounds
[Ber24] in the early 1920s. However, the Chernoff bound only gained fame
after a result by Claude Shannon depending on a erroneous application of
the central limit theorem was salvaged by this new bound. In the aftermath
of this event, the bound became known as the Chernoff bound, as described
in Chernoff’s autobiographical account of the events [Lin+14]. The matrix
Chernoff bound on the other hand is a recent result obtained by Joel A. Tropp
in 2010 [Tro12] in the wake of his discovery of inequalities applying to the
matrix analogue of the Laplace transform of a sum of random variables.

3.2.1 The classical Chernoff bound

The classical Chernoff bound is a major tool in non-asymptotic analysis. It
describes how a sum of independent non-negative random variables which

91

3 Random graphs

share a common upper bound behave when they are summed together. In
other words, this bound describes that it is unlikely for a sum of random
variables to be far apart from its expected value and that the chance of this
event happening decreases exponentially relative to the distance between the
random variable and its expectation.

Theorem 7. (The scalar Chernoff bound) [Ber24]
Let x1, . . . ,xm be independent, scalar random variables that are non-negative and

bounded:
∀i ∈ [n], 0 ≤ xi ≤ u

and denote their sum by x =
∑m

i=1 xi with

µmin ≤ Ex ≤ µmax

then for any ε ∈ [0, 1], we have:

Pr[x ≤ a] ≤ min
t>0

eta
m∏
i=1

E exp(−txi)

Pr[x ≥ a] ≤ min
t>0

e−ta
m∏
i=1

E exp(txi)

from which it is possible derive the more directly applicable bounds:

Pr[x ≤ (1− ε)µmin] ≤ 1 ·
(

e−ε

(1− ε)1−ε

)µmin/u

≤ exp
(
−ε2 µmin

2u

)
,

Pr[x ≥ (1 + ε)µmax] ≤ 1 ·
(

eε

(1 + ε)1+ε

)µmax/u

≤ exp
(
−ε2 µmax

3u

)
.

This theorem can be derived simply by applying Markov’s inequality on the
Laplace transform of the sum x. While we will not prove it in this document, it
can be shown that these two bounds are tight.

Proof. We first notice that the event of a random variable being bounded by a
value a is equivalent to an inequality between the Laplace transform of both
quantities. Recall that the Laplace transform relative to a value t > 0 is a
monotonically decreasing function given by:

x 7→ exp(−tx)

92

3.2 Concentration inequalities

For any t > 0, these two probabilities are thus equal:

Pr[x ≤ a] = Pr[exp(−tx) ≥ exp(−ta)].

We can now invoke Markov’s inequality which gives an upper bound on the
probability for a random variable to be lower bounded by a positive constant,
which for a given random variable y and a constant α > 0 reads as follows:

Pr[y ≥ α] ≤ Ey

α
.

Applying Markov’s inequality on the random variable exp(−tx) and the posi-
tive constant exp(−ta) gives the following bound:

Pr[x ≤ a] ≤ E exp(−tx)

exp(−ta)
= eta E exp(−tx)

which we expand by exposing x as the sum of m independent random vari-
ables:

Pr[x ≤ a] ≤ eta
m∏
i=1

E exp(−txi).

The above bound, as we take the minimum when t > 0, gives us:

Pr[x ≤ a] ≤ min
t>0

eta
m∏
i=1

E exp(−txi) (3.1)

which is the most general formulation of the Chernoff bound.
We let the reader verify that it suffices to take specific parameters a =

(1− ε)µmin and t = log(1− ε) and apply classical inequalities of the logarithm
to obtain the easily applicable Chernoff lower bound described in Theorem 7.
Furthermore, similar reasoning can be applied to obtain the upper bound
instead.

Despite extensive effort in both the matrix analysis community and the
quantum physics community, matrix versions of this bound did not come until
the early 2010s when Joel A. Tropp in [Tro12] derived the matrix Chernoff
bound by applying a powerful result in matrix analysis called Lieb’s theorem
[Lie73]; [Eps73].

93

3 Random graphs

3.2.2 The matrix Chernoff bound

The surprising feature of Tropp’s matrix Chernoff bound is the striking similar-
ity it shares with the classical scalar bound we just described.

However, before we introduce this matrix Chernoff bound, we need to
recall a fundamental linear algebraic concept which extends the notion of non-
negativity to Hermitian matrices. Indeed, Hermitian matrices are intimately
related to non-negative vectors since the spectral theorem implies that all
their eigenvalues are real numbers. Pushing the analogy further, when one
diagonalizes a Hermitian matrix, the diagonal of eigenvalues can be seen as
a vector. The notion of non-negativity for Hermitian matrices corresponds to
this vector of eigenvalues being non-negative.

More formally, a Hermitian matrix M of size n is said to be positive semidef-
inite if all its eigenvalues are non-negative which we write as follows:

M � 0 ⇐⇒ ∀i ∈ [n], λi(M) ≥ 0. (3.2)

This concept extends the notion of inequality to Hermitian matrices in the
following sense, called Löwner’s partial order. Let two Hermitian matrices A
and B of size n, we have that:

A � B ⇐⇒ A−B � 0. (3.3)

Let us review what these matrix inequalities mean in the context of the
extreme values of the spectrum of a matrix. For example, if we say that an
Hermitian matrix M satisfies:

0 �M � t · I

it means from the first inequality that λmin(M) ≥ 0 by definition. The second
inequality implies that λmax(M) ≤ t which we can see from diagonalizing
M = P ᵀΛP , i.e. Spec(M) the set of eigenvalues of M is the same as Spec(Λ)
the spectrum of a diagonal matrix:

t · I �M ⇐⇒ t · I −M � 0

⇐⇒ t · I − P ᵀΛP � 0

t · I �M ⇐⇒ P ᵀ(t · I − Λ)P � 0

using the definition of positive semidefinite matrices we know in particular
that the smallest eigenvalue satisfies the following inequality:

t · I �M ⇐⇒ λmin(t · I − Λ) ≥ 0

⇐⇒ t− λmax(M) ≥ 0

t · I �M ⇐⇒ t ≥ λmax(M)

94

3.2 Concentration inequalities

where we have applied the standard relationship between opposite matrices
and extreme eigenvalues: λmin(−M) = −λmax(M).

Notice that there is no direct way to describe λmin(M) ≤ t or λmax(M) ≥ t
with the Löwner partial order.

Theorem 8. (The matrix Chernoff bound) [Tro12]
Let X1, . . . ,Xm be independent, square matrix random variables of size n such

that
∀i ∈ [m],0 �Xi � u · In

and denote their sum by X =
∑m

i=1 Xi with:

µmin · In � EX � µmax · In.

For any ε > 0, we have:

Pr[λmin(X) ≤ a] ≤ min
t>0

eta tr
m⊙
i=1

E expσ(−tXi),

Pr[λmax(X) ≥ a] ≤ min
t>0

e−ta tr

m⊙
i=1

E expσ(tXi)

whereA�B = expσ(logσ(A)+logσ(B)) is an operation on positive definite matrices.
Furthermore, these inequalities can be used to derive the more readily usable bounds:

Pr[λmin(X) ≤ (1− ε)µmin] ≤ n ·
(

e−ε

(1− ε)1−ε

)µmin/u

≤ n · exp
(
−ε2 µmin

2u

)
,

Pr[λmax(X) ≥ (1 + ε)µmax] ≤ n ·
(

eε

(1 + ε)1+ε

)µmax/u

≤ n · exp
(
−ε2 µmax

3u

)
.

Proof. The proof of the matrix Chernoff bound follows closely from the proof
for the classical Chernoff bound. However, we will need matrix equivalents of
the exponential and the logarithm functions.

Thankfully, we can invoke the powerful spectral mapping theorem [Rud91]
which, given a function f : R→ R, constructs a function fσ : Sn → Sn where
for any symmetric matrix M ∈ Sn,M = P ᵀ diag(λ1, . . . , λn)P , we have:

fσ(M) = P ᵀ diag(f(λ1), . . . , f(λn))P. (3.4)

In particular, we get the matrix version of the exponential function:

expσ : Sn → S++
n (3.5)

expσ : M 7→ P ᵀ diag(eλ1 , . . . , eλn)P (3.6)

95

3 Random graphs

where S++
n is the set of positive definite matrices, i.e. M � 0 ⇐⇒ λmin(M) > 0.

We also obtain the matrix logarithm:

logσ : S++
n → Sn (3.7)

logσ : M 7→ P ᵀ diag(log(λ1), . . . , log(λn))P. (3.8)

The spectral mapping theorem guarantees that properties of these functions
extend to the domain of symmetric matrices e.g. logσ expσM = M .

This lets us use Lieb’s powerful theorem on the matrix operation �which
we define as follows. Given A,B ∈ S++

n two positive definite matrices, we
have the following

A�B = expσ(logσ(A) + logσ(B)). (3.9)

This operation enjoys several properties which make it similar to scalar multi-
plication: it is associative, commutative, and compatible with matrix-valued
functions obtained from the spectral mapping theorem.

In particular, Lieb’s theorem [Lie73]; [Eps73] establishes the following. For
any fixed symmetric matrix H , the function

f : S++
n → R

f : M 7→ tr expσ(logσ(M) +H)

is concave. This means in particular that the trace of the � product of a matrix
with any given fixed matrix B ∈ S++

n , e.g.

A 7→ tr(A�B)

is concave. Applying Jensen’s inequality, i.e. E f(x) ≤ f(Ex) for a concave
function f , on the trace of the � product between a random matrix A and a
fixed matrix B ∈ S++

n we obtain that:

E tr(A�B) ≤ tr(EA�B)

and since the � product is associative and commutative we obtain:

E tr(A1 � . . .�Am) ≤ tr(EA1 � . . .� EAm). (3.10)

Armed with these tools from matrix analysis, we can replicate the proof
steps of the Chernoff bound as follows. First we form the Laplace transform of
the smallest eigenvalue of our random matrix:

Pr[λmin(X) ≤ a] = Pr[exp(−tλmin(X)) ≥ exp(−ta)].

96

3.2 Concentration inequalities

By positive homogeneity of the smallest eigenvalue we can bring the t > 0
inside and apply Markov’s inequality:

Pr[λmin(X) ≤ a] ≤ E exp(−λmin(tX))

exp(−ta)
= eta E exp(−λmin(tX)).

Using the well-known relationship between extreme eigenvalues and sign-
flipping λmin(A) = −λmax(−A) we have:

Pr[λmin(X) ≤ a] ≤ eta E exp(λmax(−tX)).

Then, by the spectral mapping theorem applied on the exponential function,
i.e. exp(λi(M)) = λi(expσ(M)), we have that:

Pr[λmin(X) ≤ a] ≤ eta Eλmax(expσ(−tX)).

To recover the � product we use a very coarse upper bound on the largest
eigenvalue of a positive definite matrix. Indeed, since a positive definite matrix
has positive eigenvalues, the largest eigenvalue must be bounded by the trace
i.e. the sum of all eigenvalues:

Pr[λmin(X) ≤ a] ≤ eta E tr expσ(−tX).

We are left with exposing our random matrix tX as a sum of m random
matrices tX1, . . . , tXm. Using the property that matrix logarithm and matrix
exponential are inverses, we express each tXi = logσ expσ tXi. This allows us
to reveal the � product in the above inequality:

Pr[λmin(X) ≤ a] ≤ eta E tr(expσ(−tX1)� . . . expσ(−tXm)).

or using
⊙

by analogy with the product symbol
∏

:

Pr[λmin(X) ≤ a] ≤ eta E
m⊙
i=1

tr expσ(−tXi).

Jensen’s inequality combined with Lieb’s theorem described above in 3.10 give
us the most general expression of the matrix Chernoff bound:

Pr[λmin(X) ≤ a] ≤ eta tr
m⊙
i=1

E expσ(−tXi)

and in particular when optimizing over t > 0:

Pr[λmin(X) ≤ a] ≤ min
t>0

eta tr
m⊙
i=1

E expσ(−tXi). (3.11)

97

3 Random graphs

Let us compare the above bound with the scalar version in 3.1:

Pr[λmin(X) ≤ a] ≤ min
t>0

eta tr
m⊙
i=1

E expσ(−tXi)

Pr[x ≤ a] ≤ min
t>0

eta
m∏
i=1

E exp(−txi)

As with the previous proof, we let the reader derive the more easily applica-
ble bound presented in Theorem 8 by using standard logarithm inequalities
(which naturally extend to the matrix logarithm!) and the following coarse up-
per bound on the trace of a symmetric matrix of size n that is trM ≤ n·λmax(M).
Like in the previous proof, the appropriate parameters to recover the bound
featured in the theorem are a = (1− ε)µmin and t = log(1− ε).

3.3 An interlude of spectral graph theory

It might have appeared to the reader that the mathematical tools we have pre-
sented are far from combinatorial objects such as graphs and discrete properties
such as connectivity. However, it is important to remember that graphs have
been studied from the point of view of their associated matrices well before
the establishment of graph theory as a mathematical discipline. Often used
to model neighborhood in the statistical physics literature, matrices have the
advantage of being amenable to the numerous techniques and tools developed
in linear algebra.

We underline a major methodological caveat with this approach: several
distinct matrices can be associated with the same graph, and it is not clear
a priori which type of matrix is appropriate to study a given property. To
simplify our exposition we limit ourselves to two commonly studied matrices:
the adjacency matrix and the Laplacian matrix.

3.3.1 The adjacency matrix

The adjacency matrix is a data structure in which edges of a graph are repre-
sented as entries of a square matrix. Given an undirected graph G = (V,E) it
is given by:

Aij =

{
1 if ij ∈ E
0 otherwise.

98

3.3 An interlude of spectral graph theory

It is easy to see that this matrix has real entries and is symmetric i.e. Aij = Aji.
The spectral theorem for real symmetric matrices tells us that A can be diago-
nalized i.e. the operator represented by A can be written as a weighted sum
of simple operators. In the case of real symmetric matrices the weights, called
eigenvalues, are real numbers. This is in contrast with arbitrary diagonalizable
real matrices which generally admit complex eigenvalues.

We note a few properties of the adjacency matrix. The first property we have
mentioned in passing in Chapter 1 is the Perron-Frobenius theorem [Per07]
which states, in the case of undirected graphs, that the largest eigenvalue of
an adjacency matrix must be strictly positive λmax(A) > 0 and that there exists
a corresponding eigenvector whose components are strictly positive as well.
Since we consider undirected graphs without loops, the diagonal of A is filled
with 0 entries. Combining this information on the trace of an adjacency matrix
with the Perron-Frobenius theorem, we also know that there must be at least
one strictly negative eigenvalue.

3.3.2 The Laplacian matrix

The Laplacian matrix of a graph is the discrete equivalent of the Laplace op-
erator used in physics to model the propagation of heat or other theories that
involve potentials such as electrical flows. In a sense, while the continuous
Laplacian gives information on the local extrema and saddle points of a contin-
uous multivariate function, the Laplacian matrix contains information on how
a certain notion of flow propagates along the underlying graph.

The Laplacian matrix L is defined as follows:

L = D −A

where D is the degree matrix of the graph and A is the adjacency matrix we
introduced above. The degree matrix is simply the diagonal matrix given by:

Dij =

{
deg(i) if i = j

0 otherwise.

It is easy to see that L is a diagonally dominant matrix i.e. the sum of the
magnitude of each non-diagonal entry in a row or column is never more than
the magnitude of the diagonal. By construction, the non-diagonal entries
originate from the subtraction of the adjacency matrix in which all magnitudes
are equal to 1 (the entries are equal to -1). In this case the Laplacian matrix can
be easily seen as having equal values of magnitude in both the diagonal value

99

3 Random graphs

and the number of non-diagonal values in a row or column, the two of them
counting up to the degree of a given node.

The Laplacian matrix is a sum of real symmetric matrices, thus it is also a
real symmetric matrix.

We can then apply the Gershgorin circle theorem [Var10] which states that
real symmetric diagonally dominant matrices are positive semidefinite i.e. all
eigenvalues of L are non-negative.

In the specific case of L we have an additional information on its spectrum.
Indeed consider how a Laplacian matrix operates on the all-ones vector 1 by
evaluating the matrix-vector product L1. Each row of this product corresponds
to the sum of the row entries of L which we know sum up to 0 by construction:

∀i ∈ V, (L1)i = deg(i)−1 . . .− 1 . . .− 1︸ ︷︷ ︸
deg(i) times

= 0

that is L1 is the all-zeroes vector 0. Using the fact that 0 = 01, i.e. the scalar
0 multiplying the all-ones vector, we have that 1 is an eigenvector of L with
associated eigenvalue 0:

L1 = 01.

With this knowledge in hand, we are going to attempt to study how com-
binatorial properties of a graph can be understood through linear algebraic
concepts.

3.3.3 Algebraic connectivity

From the above considerations, we know that the eigenvalues of the Laplacian
matrix are as follows: µn ≥ . . . µi ≥ µ2 ≥ µ1 = 0 and that at least the largest
eigenvalue µn > 0. Somewhat surprisingly, the smallest eigenvalue µ1 has
multiplicity equal to the number of connected components in the graph.

We will now look at a more specific statement on µ2, the second smallest
eigenvalue of the Laplacian matrix, which is called the algebraic connectivity
of the graph.

Theorem 9. (Algebraic Connectivity) [Fie73]
Let G = (V,E) be an undirected graph and L be its associated Laplacian matrix.

We have the following equivalence:

G is connected ⇐⇒ µ2 > 0.

100

3.3 An interlude of spectral graph theory

Recall that the the right-hand side of this equivalence amounts to saying that
the eigenvectors associated with µ1 belong to a one-dimensional space. Indeed
we know that all other eigenvalues of L are non-negative and that µ1 = 0. We
will use this property to prove Theorem 9.

Proof. To prove the direct implication (=⇒), we assume that G is a connected
graph and that x is an eigenvector of L associated with the eigenvalue 0 i.e.
Lx = 0. This means that the quadratic form of L with respect to x is equal to 0:

xᵀLx = 0.

Via direct evaluation it is easy to see that the quadratic form of L is given by:

xᵀLx =
∑
ij∈E

(xi − xj)2.

From these two considerations, we have that ∀ij ∈ E, xi = xj . Furthermore,
since G is connected, there exists a path connecting every pair of nodes u, v
in the graph. Thus, along each of these paths, we have identical values of
x for each node. This lets us conclude that ∀u, v ∈ V, xu = xv and that all
eigenvectors associated with 0 must be of the form α1 for some non-zero α, i.e.
they belong to a one-dimensional space.

We will prove the reverse implication (⇐=) by contradiction. Assume that
the eigenvectors associated with µ1 belong to a one-dimensional space and
that G is not connected i.e. there exists a connected component C ⊂ V . We can
define the indicator vector of C as 1C defined as follows:

1
(i)
C =

{
1 if i ∈ C
0 otherwise.

Computing the matrix-vector product L1C gives us the following: each row
of the product that corresponds to a node in C corresponds to the sum of the
row entries of L while each row that corresponds to a node in V \C is equal to
0.

(L1C)i =


deg(i)−1 . . .− 1 . . .− 1︸ ︷︷ ︸

deg(i) times

= 0 if i ∈ C

0 otherwise.

Again we use the fact that 0 = 01C to claim that 1C is a second eigenvector
of L associated with the eigenvalue µ1 = 0 which is not colinear to the all-
ones vector 1 which we know is already an eigenvector associated with 0.
This is in contradiction with the assumption that eigenvectors belong to a
one-dimensional space.

101

3 Random graphs

From Theorem 9 we have seen an example of a global combinatorial property
of a graph which is reflected in a numerical property of an associated matrix.
We can now translate questions regarding the connectivity of random graphs
into questions about the spectrum of random matrices. In the following sections
we will study the connectivity of random graphs generated from the G(n, p)
model through the spectrum of their associated random matrices.

3.4 The G(n, p) random graph model

In the early 1960s, Edgar Gilbert on one hand [Gil59] and Paul Erdös and
Alfréd Rényi on the other hand [ER60] introduced closely related random
graph models. The G(n, p) model introduced by Gilbert is asymptotically
equivalent to the Erdös-Rényi model for most values of p and as such, both
models have often been referred to as the Erdös-Rényi model. However, in
practice, the G(n, p) model is the one that is predominantly used because it
describes random graphs with independent random variables.

The G(n, p) model can be formally defined as follows: a random graph
G ∼ G(n, p) is a graph on a node set V with |V | = n and edges ij with some
probability Pr(ij ∈ E) = p. Informally, the G(n, p) model represents graphs
with n nodes where each possible edge has equal probability of being present in
the edge set. Each random edge can be seen as an independent and identically
distributed Bernoulli random variable with parameter p.

The fact that edges are independent in the G(n, p) model might hint at the
fact that the concentration of measure phenomenon could apply to many
properties of such random graphs. Indeed, we will see that it is the case. But
first let us consider some basic properties of the random graphs generated by
the G(n, p) model.

The first observation one can make is that there are n(n−1)/2 possible edges
in a graph of n nodes and that in expectation a p fraction of them will be present
in a realization of the random model. Indeed the average degree of a random
graph G is:

E d̄(G) =
(n− 1)p

2
≈ O(np).

This property can be improved to hold with high probability by using the
Chernoff bound 7 and remains true for any value of p or n.

Before we discuss more advanced properties of random graphs, it is impor-
tant to highlight the difference between the apparently similar statements: “a
graph G satisfies property P” and “a random graph G satisfies property P”.

102

3.4 The G(n, p) random graph model

3.4.1 Properties of random graphs

In structural graph theory, graph classes are a common framework used to
explore important properties of graphs. The goal is to categorize graph them-
selves but also computational tasks that may leverage structural information.
Let us look at a few examples of graph classes. Sometimes, a class is deter-
mined having its members admit a specific subgraph, e.g. Hamiltonian graphs
contain a simple path as a partial subgraph which spans their entire node set.
In many cases [RS04], it is the absence of a subgraph that defines the class. Take
for example planar graphs which are defined as graphs with no K3,3 or K5

minor (a type of subgraph obtained by node and edge contractions). We can
also mention triangle-free graphs or even perfect graphs which admit neither
odd holes or anti-holes as induced subgraphs. Another way one can define
graph classes is by considering quantitative properties such as cubic graphs
in which all nodes have degree 3. Sometimes the quantity might not even
be known to be computable in polynomial time such as in the case of graphs
which have parameters derived from the solution of an NP-hard optimization
problem. Consider for example the treewidth problem which asks, given an
undirected graph, to compute a tree decomposition whose width is minimum
[ACP87]. This directly leads to the class of bounded treewidth graphs for which
the size of an optimal solution to the treewidth problem is bounded above by
a constant. And as we saw earlier in section 3.3 a class might be determined
in several equivalent ways: a connected graph is a graph for which any two
nodes are connected by a path or equivalently a graph with strictly positive
algebraic connectivity. In all these examples a given graph either belongs to a
class or it does not in the same way one could consider set membership. In the
case of random graphs the concept of membership to a class is less clear-cut.

To contrast graph classes with random graph models in more details, recall
that the object of study in random graph models is an infinite family of graphs
(usually with a node set of size n where n is going to infinity) that can be
grouped under a defining fixed statistic. In theG(n, p) model we are concerned
with, we study graphs with independent random edges such that nodes have
an average degree of O(np). Determining whether such random graphs belong
to a class amounts to studying properties of random graphs with varying
values of p. This is to contrast with the fact that any graph on n nodes is in the
support of the G(n, p) model and as such all classes are covered albeit with
very small probability.

Another issue arises with the question of the relevance of random graph
models to study particular realizations of a model. Indeed whether a given
graph belongs to a particular random graph model is not even clearly defined.

103

3 Random graphs

One may want to consider looking for a model with maximum likelihood that
could have generated a given graph but the fact that random graph models are
infinite families blurs the definition of maximum likelihood.

Despite these issues, Erdös and Rényi have discovered that 0-1 laws apply
to random graph models such as the G(n, p) model.

One of the major achievements of random graph theory is the determination
of threshold values of p for which a certain property holds. In a sense, one can
see such results as probabilistic versions of the graph classes from structural
graph theory. To be more precise, let us consider the so-called 0-1 properties
which were studied in the orignal paper by Erdös and Rényi [ER60]. A graph
property can be called 0-1 if in the G(n, p) model the property holds almost
surely (goes to 1 as n goes to infinity) for all p > t and almost never holds
(holds with probability that goes to 0 as n goes to infinity) otherwise. It is
easy to see that not all properties are 0-1, but in particular it is remarkable that
monotone properties, those that persist as we add more edges to a graph, all
admit a critical threshold [FK96]; [Bol01].

3.5 The connectivity threshold

In this section we discuss the first result by Erdös and Rényi on the subject
[ER60] which characterizes when a random graph from the G(n, p) model is
connected. Connectivity, that is the existence of a path between any two nodes
in a graph, is maybe one of the simplest global graph properties. Furthermore,
it is easy to see that connectivity is maintained as one adds more edges to
a given graph. This means that connectivity is a monotone property and as
such admits a critical threshold. In this section, we will illustrate the use of
concentration inequalities to derive the order of magnitude of the connectivity
threshold i.e. the value pwhich separates random graphs that are almost surely
connected from random graphs that are almost surely disconnected.

Let us give a general idea of the proof we will show in details. First, we
study a random matrix, the Laplacian matrix of a graph from theG(n, p) model.
Because we know that connectivity is related to the spectrum of the Laplacian
matrix through Theorem 9, we proceed in two steps. The first step consists in
studying a random matrix whose spectrum is related to the Laplacian matrix.
The second step is to prove necessary conditions to apply the matrix Chernoff
bound following Theorem 8 and interpret the result as a sufficient condition
for a random graph to be connected.

104

3.5 The connectivity threshold

3.5.1 The Laplacian matrix of a random graph

In this section we look at the G(n, p) model through the lens of its Laplacian
matrix. As mentioned earlier, the Laplacian matrix of a graph G = (V,E) is a
positive semidefinite matrix which can be defined as follows:

L(G)ij =


deg(i) if i = j

−1 if ij ∈ E
0 otherwise.

Such matrix can be represented as a sum of elementary matrices. If we
consider the Laplacian matrix L(ij) of a graph with a single edgeGij = (V, {ij})
we have the following Laplacian matrix:

L(ij) = Eii + Ejj − Eij − Eji.

where the Eab matrices are the standard basis of Mn,n, i.e. square matrices of
size n that have one entry equal to 1 in position (a, b) and 0 otherwise.

The Laplacian of G is thus the sum of the Laplacians of each Gij for ij ∈ E.

L =
∑
ij∈E

Eii + Ejj − Eij − Eji︸ ︷︷ ︸
L(ij)

(3.12)

A random matrix L corresponding to a G(n, p) random graph would com-
bine definition 3.12 with, for every possible edge i 6= j ∈ V ×V , an independent
random variable xij ∼ Ber(p) drawn from a Bernoulli distribution of parameter
p:

L =
∑

i 6=j∈V×V
xijL

(ij) (3.13)

We now give preliminary results on the spectrum of L(ij) which will be
useful in the next section. First, recall that the all-ones vector 1 is always
an eigenvector for any Laplacian matrix and is associated with eigenvalue 0.
Second, reusing the argument in the proof of Theorem 9, we can interpret L(ij)

as the Laplacian of an undirected graph with n−2 isolated nodes i.e. the graph
Gij has n− 1 connected components. Finally, by a trace argument, we know
that the remaining eigenvalue must be equal to the trace, that is 2. The set of
eigenvalues of the matrix Spec(L(ij)) is thus:

Spec(L(ij)) = {0n−1, 2}

which gives us exact bounds on the spectrum of each summand:

0 � L(ij) � 2I. (3.14)

105

3 Random graphs

3.5.2 Shifting the spectrum of a Laplacian matrix

Recall that the matrix Chernoff bound described in section 3.2.2 gives proba-
bilistic estimates on the extreme values of the spectrum of a sum of positive
semidefinite matrices i.e. it only gives bounds on the smallest and largest
eigenvalues. In our case however, we are looking for an estimate of the second
smallest eigenvalue.

Fortunately, we have precise information on the “bottom” part of the eigenspace
of Laplacian matrices. Indeed, the all-ones vector 1 is an eigenvector of any
Laplacian matrix and is always associated with the eigenvalue 0. This means
that the second smallest eigenvalue can be computed explicitly through the
Courant-Fischer variational characterization of eigenvalues, see for example
[Bha13]. In particular, for any Laplacian matrix L if we denote by µ2 the second
smallest eigenvalue of L then it is the optimal solution value of the following
optimization problem:

µ2(L) = min
x 6=0
x⊥1
x∈Rn

xᵀLx

xᵀx
. (3.15)

Using our knowledge of the eigenspace of Laplacian matrices, we will relate
this variational characterization to the smallest eigenvalue of a different matrix.
Intuitively speaking, the goal would be to analyze a “shifted” version of a
Laplacian matrix whose smallest eigenvalue would correspond to the second
smallest eigenvalue of our original matrix.

To construct this shifted Laplacian, we introduce a partial isometry: a matrix
which preserves norms whenever it is applied to a vector orthogonal to its null
space. Here, we choose a partial isometry whose null space is 1, the eigenvector
associated with the smallest eigenvalue of Laplacian matrices. In order to “peel”
off the space associated with eigenvector 1, we choose a rectangular matrix
which would compress a Laplacian matrix of size n into a space of dimension
n−1 i.e. our partial isometry should be a n−1 by n matrix. A simple necessary
and sufficient condition [Hea67] for a matrix A to be a partial isometry is that
the product with its conjugate transpose A∗ would be idempotent AA∗ = I .
This informs us in choosing a n− 1 by n matrix R which satisfies the following
conditions:

RR∗ = In−1 and R1 = 0. (3.16)

This partial isometry allows us to analyze the second smallest eigenvalue
of a Laplacian matrix as the smallest eigenvalue of a transformed Laplacian.
Indeed, we can rewrite the Courant-Fischer formula 3.15 for µ2 with a simple
change of variables such that any vector ∀x ∈ Rn with x 6= 0 and x ⊥ 1 is

106

3.5 The connectivity threshold

written as x = R∗y for some y ∈ Rn−1. This form makes it explicit that a vector
x ⊥ 1 is really (n − 1)-dimensional since we can assume for example that
xn = −

∑
i 6=n xi. Thus we have for any Laplacian matrix L that:

µ2(L) = min
y 6=0

y∈Rn−1

yᵀRLR∗y

yᵀRR∗y
. (3.17)

and using the fact that R is a partial isometry, i.e. RR∗ = In−1, we obtain the
following identity:

µ2(L) = min
y 6=0

y∈Rn−1

yᵀRLR∗y

yᵀy
= λmin(RLR∗). (3.18)

This property lets us interpret bounds on the smallest eigenvalue of RLR∗

as bounds on the second smallest eigenvalue of L, that is for any t ∈ R:

Pr(µ2(L) ≤ t) = Pr(λmin(RLR∗) ≤ t). (3.19)

We can now focus on obtaining the technical prerequisites for using the
matrix Chernoff bound on the shifted random Laplacian matrix RLR∗.

3.5.3 Bounds on every summand

The first step is to obtain bounds on the spectrum of the summands that add
up to our random matrix RLR∗. For this purpose, we invoke the conjugation
principle which states that for any pair of Hermitian matrices A,B of size n
and any arbitrary k by n matrix M we have the following implication:

A � B =⇒ MAM∗ �MBM∗. (3.20)

Applying this principle to matrices L(ij) we preserve the bounds on their
spectrum:

0 � L(ij) � 2In =⇒ 0 � RL(ij)R∗ � 2In−1

which gives us that:

∀i 6= j ∈ V × V, 0 � RL(ij)R∗ � 2In−1. (3.21)

107

3 Random graphs

3.5.4 Smallest eigenvalue of the expected matrix

We can now study the expectation of the shifted random Laplacian. If we
denote by Kn = (V, {ij : i 6= j, i ∈ V, j ∈ V }) the complete graph on n nodes
we have:

ERLR∗ = pRL(Kn)R∗. (3.22)

Recall that the Laplacian of a complete graph is a n by n matrix where diagonal
values are equal to n − 1 and off-diagonal values are equal to −1. By some
rearranging and recalling that a matrix of ones can be written as a tensor
product between two all-ones vectors, i.e. U = 11∗, we have:

L(Kn) = (n− 1)In︸ ︷︷ ︸
diagonal values

+ (In − 11∗)︸ ︷︷ ︸
off-diagonal values

that is
L(Kn) = nIn − 11∗

which lets us compute the expectation of RLR∗ in a straightforward manner:

ERLR∗ = pR(nIn − 11∗)R∗

= p (nR− R1︸︷︷︸
0

1∗)R∗

= npRR∗

ERLR∗ = np In−1.

Somewhat surprisingly, the expectation of the shifted random Laplacian is a
diagonal matrix. However, this does not mean that a realization of this random
matrix would resemble it in any other way than having a similar spectrum.
In expectation, all eigenvalues of RLR∗ are identical which means that in
particular:

λmin(ERLR∗) = np. (3.23)

3.5.5 Applying the matrix Chernoff bound

We now have the prerequisites to apply Theorem 8 to our sum of independent
positive semidefinite random matrices

∑
i 6=j xijRL

(ij)R∗.
First, from 3.21, we know that each summand xijRL

(ij)R∗ has its spectrum
upper bounded by 2 which means that u = 2. Also, from 3.23, we know that the
smallest eigenvalue of the expected random matrix is exactly λmin(ERLR∗) =
np, so the mean bounds are µmin = µmax = np. Finally, we replace (1− ε) by

108

3.5 The connectivity threshold

some η > 0 in the statement of the matrix Chernoff bound in Theorem 8. This
yields:

Pr(λmin(RLR∗) ≤ η np) ≤ (n− 1)

(
eη−1

ηη

)np/2
.

Using identity 3.19 this bound applies to the original random Laplacian:

Pr(µ2(L) ≤ η np) ≤ (n− 1)

(
eη−1

ηη

)np/2
.

and recalling the limit of the following function:

lim
x→0

ex−1

xx
=

1

e

we know as η → 0 that:

Pr(µ2(L) ≤ 0) ≤ (n− 1) exp
(
−np

2

)
. (3.24)

The only remaining step is to find a condition on p such that the right-hand
side of this inequality is at most 1/n which would imply that the algebraic
connectivity of G(n, p) is positive with high probability, i.e. Pr(µ2(L) > 0) ≥
1− 1/n.

Rearranging the following inequality:

(n− 1) exp
(
−np

2

)
≤ 1

n

and taking the logarithm on both sides, we obtain:

log n+ log(n− 1)− np/2 ≤ 0

which we simplify into:

p ≥ 4
log n

n
. (3.25)

This result can be seen as a randomized algorithm to construct a connected
graph with average degree np for any p ≥ 4 log n/n with high probability.

Summary

With the simple application of a generic matrix concentration inequality we
have obtained a non-asymptotic version of the connectivity threshold ofG(n, c/n)
random graphs:

109

3 Random graphs

Theorem 10. Non-asymptotic connectivity threshold [Tro+15]
A random graph G(n, c/n) is connected with high probability if c = Ω(log n), that

is:

Pr(G(n, α log n/n) is connected) ≥ 1− 1

n
if α ≥ 4.

Furthermore it is possible to prove an almost reciprocal result with scalar
concentration inequalities. For some c < 1, we have:

Pr(G(n, α log n/n) is connected) ≤ 1

n
if α < c.

Together, these constitute a non-asymptotic version of the celebrated theorem
of Erdös and Rényi:

Theorem 11. The connectivity threshold [ER60]
The threshold for a random graph G(n, c/n) to be connected is c = log n, that is:

lim
n→∞

Pr(G(n, α log n/n) is connected) =

{
1 if α > 1

0 if α < 1

In more abstract terms, the Theorem 10 we have presented is a sufficient
condition for a random Laplacian matrix to concentrate around its expected
value. We underline the fact that the Theorem 11 due to Erdös and Rényi
is more precise than the result we have presented, i.e. α > 1 while in our
case we ask for α ≥ 4. However, a non-asymptotic statement can directly
be transformed into a randomized algorithms because it holds with high
probability for any value of n.

Now that we have explored a very powerful concept which allows to con-
struct specific combinatorial objects via random sampling, it remains to see
how to apply it to the problem of finding a graph with good spectral properties
such that a given epidemic would be guaranteed to die out in a short amount
of time.

The question left for us to answer is “How to tie everything together?”

110

4 Intermission

In this thesis we explore to what extent it is possible to quickly reconfigure
networks to suppress spreading malware. We have learned from Chapter 1
that adjusting the spectral properties of a contact graph is an indirect way to
suppress a epidemic. From Chapter 2 we have made precise the notion of
algorithms that are guaranteed to be efficient, even in the case of problems that
are believed to be hard to solve. Finally, we have seen in Chapter 3 that it is
possible to construct matrices with specific spectral properties via randomized
algorithms.

However, network reconfiguration has traditionally not been a topic associ-
ated with network security. Indeed, threats can happen over short time scales
while changing the configuration of network elements or modifying a topology
have traditionally been operations undertaken over a long period of time. To
understand the relevance of this security countermeasure, we explore how the
network security landscape has evolved in the light of novel technologies that
aim to make networks more controllable.

4.1 The advent of controllable networks

In this section, we start by giving a short history of computer systems, how they
are used in computer networks, and how the use of software to abstract away
hardware elements has contributed towards more widespread automation at
every layer.

4.1.1 Systems as abstraction

The history of computer systems can be seen as a quest towards the abstraction
of all hardware resources. For example, one can interpret the invention of
the first high-level programming languages and compilers in the 1950s as the
abstraction of hardware architecture from programming. This abstraction has
proved itself to be essential to the development and modern practice of pro-
gramming which is overwhelmingly undertaken in high-level programming
languages.

113

4 Intermission

Another example of abstraction can be seen in operating systems which
provide interfaces for different peripherals such as screens, printers, input
methods, among many others. The UNIX operating system developed in
the 1970s was designed to unify all peripherals with a single multipurpose
abstraction: the file system. Interaction with peripherals would be represented
as writing to or reading from specific files. A large majority of operating
systems in use at the time of writing this thesis are derivatives of UNIX that
adhere to this abstraction.

With the exponential growth of computing power described by Moore’s law,
it was possible as early as the 1960s to abstract away physical hardware by em-
ulation. The resulting software would allow for the creation and management
of virtual machines. Contemporary practice in operations consists in isolating
different applications within virtual machines or containers and managing
them without reference to the underlying hardware.

This trend depicts a unifying theme: the introduction of a new category of
computer program abstracts away one layer of a computer system. Once this
abstraction is accepted, the vast majority of programs depend on it and opens
up opportunities for further abstraction.

4.1.2 The case of network resources

Despite the efforts of projects such as the Plan 9 operating system which at-
tempted to include network resources in the file system abstraction, network
elements have long remained detached from the increasing "softwarization"
of computer systems. It can be said that software abstractions have thrived in
areas related to personal computers and individual servers, while software ded-
icated to larger infrastructure has largely remained in the hands of hardware
vendors.

However, the rapid expansion of the Internet and the concentration of com-
puting power in the hands of resourceful multinational companies have pro-
vided incentives to bring network resources to the software layer.

Software technologies dedicated to abstract networking resources originated
from organizations seeking to simplify the management of data centers or
supercomputing facilities. In particular, network function virtualization (NFV)
and software-defined networking (SDN) have gained wider usage among a
growing number of Internet service providers as well as Internet companies.

Network function virtualization (NFV) is a set of technologies aimed at fa-
cilitating the deployment of various network equipment usually found at the
nodes of a network. NFV leverages existing virtualization techniques to deploy
software equivalents of existing pre-programmed hardware appliances includ-

114

4.1 The advent of controllable networks

ing for example load balancing equipment, firewalls, or intrusion detection
devices.

Software defined networking (SDN) on the other hand is a set of technologies
which allow network administrators to dissociate the control plane (the logic
that decides how traffic is going to be routed) from the data plane (which is
tasked to implement the routes planned by the control plane). Unlike tradi-
tional networks, a SDN control plane can also manage several disjoint data
planes.

The central benefit provided by SDN is the automated management of data
plane elements via a software platform.

In traditional networks, the data plane is composed of physical hardware
such as switches or routers. Such elements are often configured outside of the
network, to be later connected with other network elements. Finally, while
hardware elements allow some monitoring, it is usually specific to the hardware
constructor and accessible only via specialized interfaces.

With SDN, configuration, and especially re-configuration, can be done after
a data plane element has been installed. This opens the door to changing the
behavior of data plane elements in almost real time, thereby modifying the
network topology.

When combining network function virtualization and software-defined net-
working, application-specific network topologies can be spawned from utility
servers which might not even be located in the same physical location. From
the point of view of the application, the entire network is abstracted away, and
only physical properties remain, such as the latency incurred by geograph-
ical distance. Monitoring is also unified under a common interface which
informs decisions in how to modify the network to increase the overall quality
of service.

4.1.3 Network security

Unlike the software technologies deployed at the scale of personal computers or
individual servers, the infrastructure necessary to manage computer networks
remain in the hands of large organizations. For this reason, the adoption of
software technologies to increase automation in the networking world depends
on different socio-economic factors. The major argument in favor of these
technologies comes from the benefits organizations can collect from improving
their existing operations or from providing new services to their users.

Network security is a growing concern among many actors, including clients
of Internet service providers. The two network-level software technologies
we have mentioned, NFV and SDN, can improve network security in many

115

4 Intermission

ways. Here we consider two examples: centralized monitoring and automatic
deployment of countermeasures.

4.2 Epidemic models for network security

Centralized monitoring is a simple but effective improvement over current
practice in traditional networks. In software-defined networking environ-
ments, standardized monitoring information is facilitated by the virtual nature
of network elements, from virtual switches in the data plane to authentica-
tion systems in the application layer. Furthermore, centralized monitoring
opens the door to the systematic use of online statistical analysis of the overall
performance of a network and also to the use of machine learning models to
predict traffic for example. In practice, the OpenFlow protocol has been widely
adopted among SDN users to facilitate the real-time collection of metrics from
switches to their controller, see for example the sampling-based architecture
proposed by Chowdhury et al. [Cho+14].

A common way to represent threats propagating over a network is to use
variants of the epidemic models found in the mathematical epidemiology liter-
ature. Owing to the diversity of network security situations, diverse epidemic
models have been used to model, simulate, and analyze threats at varying
degrees of granularity. With the help of statistics, it is possible not only to
simulate but also to infer the most likely models that fit with observations of
the network.

We start by reporting existing applications of epidemic models in the field
of network security and then discuss the possibility of leveraging time series
information to fit these models to recorded data.

4.2.1 Modeling computer viruses and propagating threats

Standard epidemic models such as the SIS model discussed in Chapter 1 have
been used to represent the spread of computer viruses in networks systems
with homogeneous connections such as small-scale local area networks where
nodes are fully connected, i.e. the topology is a complete graph, see for ex-
ample the use of a SEIRS model to represent the spread of malicious files in
a network [MS07]. However, the applicability of these models is limited and
the community of researchers in network security has often be a proponent of
models that take into account heterogeneous connectivity such as Mickens and
Noble in their study of mobile networks [MN05].

Before the systematic study of networked epidemic models as described

116

4.3 Reactive countermeasures to threats

in Chapter 1, many attempts at taking into account the heterogeneity of real
networks were put forward, such as studies that augment standard epidemic
models with average degree information [Yan+13].

We note that networked epidemic models have rarely been used in the
network security literature so far. Instead they have been mostly featured in
papers exploring the spread of abstract processes such as rumors propagating
over a social network, ideas being shared by a network of innovators, or
products increasing in popularity in a market, see for example the references
in the survey by Nowzari et al. [NPP16].

4.2.2 Learning model parameters

The possibility of having close to real-time metrics transmitted from every node
in a network to their SDN controller invites us to consider the use of statistical
methods to determine whether traffic or the state of every node corresponds to
presupposed models. Following the common statistical practice of maximum
likelihood estimation of parameters, it is possible to fit models to observations.

In particular in the case of networked epidemic models, it is sufficient to have
access to time series of node states to find the maximum likelihood parameters
of a networked SIS model. Ruhi in a research project [Ruh17] describes two
such estimators using time series containing the last two time steps per node.
Similar methods can be generalized for various networked models beyond the
SIS model and be made more robust by considering a longer time period than
two time steps.

From a different methodological point of view, machine learning models
can also help in finding appropriate model parameters. This line of work has
especially been fruitful when combining artificial neural networks together
with differential equations solvers, such as in the case of neural ordinary
differential equations [Che+18]. These neural network models can be used
to learn parameters of a differential equations even in the absence of some
observations. Indeed, while it is ultimately desirable to have perfectly reliable
monitoring, monitoring information of particular nodes could be missing at
some time step.

4.3 Reactive countermeasures to threats

Countermeasures have always been devised to protect computer networks by
mitigating potential or existing threats. However, SDN offers the possibility to
quickly identify threats and to counter them with adequate responses.

117

4 Intermission

4.3.1 Deploying security appliances

The most common combination of SDN and NFV consists in architectures
which are tasked to deploy virtual firewalls in order to protect a network of
virtual machines, such as in the VNGuard framework of Deng et al. [Den+15].
Unlike physical firewall appliances, virtual firewalls can be reconfigured in
real-time and their rules, which specify what incoming traffic they must block,
can be updated at the same time as an attack threatening the network, e.g. a
distributed denial of service attack.

Virtual intrusion detection systems can also be deployed depending on
preliminary analysis of detected threats, primarily anomaly detection systems
that produce early warnings and recommend more advanced investigation.
However, the provisioning and management of such virtual network functions
must be done in an efficient manner, which remains an open problem [Lui+15].

4.3.2 Topology reconfiguration

A tenet of SDN is that virtual networks should be re-configurable at virtually
no cost. While zero cost is usually not possible in practice, existing SDN
architectures still promote the use of dynamic network topologies that evolve
over time to respond to client demands but also to defend against threats.

Unlike traditional networks whose design rely on over-provisioning re-
sources such as bandwidth and backup routes to improve quality of service
both in terms of rate and reliability, SDN networks can create a dedicated route
for a specific client demand, allowing for guaranteed service levels for specific
needs, e.g. emergency services.

To defend against threats, it can be useful to keep the network from becoming
predictable to an outside attacker. In a paper by Kampanakis et al. [KPB14]
the authors describe the use of automated moving target defense strategies in
SDN networks. This strategy corresponds to having network elements change
their behavior, e.g. some nodes change IP addresses, others slightly modify the
protocols they use to communicate, in the hope of making the so-called attack
surface of network elements less exploitable.

Simpler countermeasures include for example rerouting denial of service
traffic or simply re-configuring switches to drop certain packets on purpose.
Finally, isolating nodes that have been deemed suspicious can be done via
SDN, mimicking the “honey pot” strategy used by “white hat” security experts,
see for example the Honeymix framework proposed by Han et al. [Han+16a].

118

4.4 A novel network security framework

4.4 A novel network security framework

Following the design goals of software-defined networking that we have men-
tioned in the previous sections, we introduce a novel network security frame-
work based on networked epidemic models and optimization algorithms.

4.4.1 Finding a temporary topology reconfiguration

In this framework we consider a SDN architecture which contains three core
components. Before we go into the specifics of every component, we assume
that the SDN controller maintains at all times a perfectly reliable view of the
current software defined topology.

The first component of our framework is an anomaly detection system. For
each node, an anomaly detection system must detect whether the node is
behaving as expected and return time series of these predictions to the SDN
controller. Such anomaly detection systems can be chosen to have very low
CPU and memory footprint and be trained offline or using network simulators.
In particular, we consider the use of one-class support vector machines which
have been known to perform well for novelty detection in time series [MP03].

The second component is a set of maximum likelihood estimators, each
attempting to fit the time series data to a particular networked epidemic model.
Depending on the desired robustness to the spread of anomalies, this epidemic
estimation system returns the most likely epidemic model or the most alarming
one. This can be done by extending the work of Ruhi [Ruh17] to the large
family of networked epidemic models covered in the paper by Prakash et al.
[Pra+11].

Finally, the third component is a topology optimizer system which takes
as input the current topology defined by the controller and the epidemic
model returned by the epidemic estimation system. The epidemic model can
be summarized as a single number ε(π), function of the multiple epidemic
parameters πi learned by the second component.

We now use the results presented in Chapter 1 to define the task that must
be accomplished by the topology optimizer system. We interpret the statement
that a given epidemic must die out in a short amount of time (logarithmic
in the number of nodes) if the spectral radius of the graph representing the
network topology is no more than the value ε(π). In particular, this means that
modifying the topology for a short amount of time is guaranteed to remove
the epidemic from the network without further intervention.

The downside of this approach comes from the fact that some edges or nodes
must be temporarily removed from the network, no matter how short that

119

4 Intermission

time period could be. However, we argue that this is close in spirit to the
automated quarantine techniques promoted in Han et al. [Han+16a], with the
added guarantee that our strategy is guaranteed to be short, if we assume that
the parameter estimation of the epidemic model is accurate.

4.4.2 Contributions

The central aspect of this thesis is the analysis of the topology optimizer system
which forms the core of the network security system we have presented above.
Our contributions can be separated into two categories.

• From a theoretical point of view, we design a randomized approximation
algorithm for the optimization problem corresponding to our topology
optimizer system and provide evidence that the performance guarantee
we have derived is tight for this algorithm.

• From an experimental point of view, we develop a novel testing methodol-
ogy for the evaluation of randomized approximation algorithms inspired
by existing methodologies used in machine learning. In particular, this
methodology allows us to compare algorithms that may be randomized
and may return infeasible, approximate solutions.

Our theoretical contributions are gathered in Chapter 5 which is based on
work submitted to the Journal of Combinatorial Optimization [BBG20] in re-
sponse to an invitation to expand our paper presented at the 12th Annual
International Conference on Combinatorial Optimization and Applications
[BBG18]. Contributions to the experimental evaluation of algorithms are gath-
ered in Chapter 6 in preparation for a future submission to the 18th Symposium
on Experimental Algorithms [BBG].

120

5 Approximating the maximum
spectral subgraph

5.1 Introduction

Modifying the topology of a network to mitigate the spread of an epidemic
with epidemiological constant λ amounts to the NP-hard problem of finding a
partial subgraph with spectral radius bounded above by λ. A simple objective
could be to try to preserve as much as possible of the original graph and as such
to find a partial subgraph with maximum number of edges. A software-defined
network (SDN) capable of real-time topology reconfiguration can then use an
algorithm for finding such subgraph to quickly remove spreading malware
threats without deploying specific security countermeasures.

In this chapter, we propose a novel randomized approximation algorithm
based on the relaxation and rounding framework that achieves a O(log n)
approximation in the case of finding a subgraph with spectral radius bounded
by λ ∈ (log n, λmax(G)) where λmax(G) is the spectral radius of the input graph
and n its number of nodes. We combine this algorithm with a maximum
matching algorithm to obtain a O(log2 n)-approximation algorithm for all
values of λ. We also describe how the mathematical programming formulation
we give has several advantages over previous approaches which attempted
at finding a subgraph with minimum spectral radius given an edge removal
budget. Finally, we show that the analysis of our randomized rounding scheme
is essentially tight by relating it to classical results from random graph theory.

5.1.1 Context

In recent years, a sequence of results [Cha+08]; [GMT05]; [VOK09]; [Wan+03]
have established a relationship between the convergence of Markovian models
representing an epidemic spreading over a network and the spectral charac-
teristics of the underlying graph. The generalization of these theorems by
Prakash et al. [Pra+11] states that in the case of a graph G and an epidemic
model with epidemiological characteristic λ, fast convergence of the Markovian
model to its absorbing state is guaranteed if the spectral radius of the graph

123

5 Approximating the maximum spectral subgraph

λmax(G) < λ. This has led the mathematical epidemiology community to look
for algorithms that modify the topology of a network to ensure that a given
epidemic converges rapidly to extinction.

At the same time, the software-defined networking (SDN) paradigm has
transformed network administration by allowing real-time statistics [SG12] and
topology reconfiguration [WNS12]. This new paradigm has deep consequences
for the management of network security as it is now possible for a SDN con-
troller to automatically detect malware spreading over its network via machine
learning [MKK11] and react to such threat by deploying adequate security
countermeasures. In this work we are following epidemiological practice and
propose to use topology modification as a disease-agnostic countermeasure to
the spread of malware in networks.

We are looking to preserve as much as possible the existing network topology
by keeping the largest number of edges in the graph while guaranteeing that a
given epidemic of epidemiological characteristic λ would rapidly disappear.
For this purpose, we introduce the maximum spectral subgraph problem
(MSSP) defined formally as follows. Denoting by λmax(G) the spectral radius
of G, i.e. the largest eigenvalue of its adjacency matrix A, we have:

MAXIMUM SPECTRAL SUBGRAPH PROBLEM (MSSP)
Instance: an undirected graph G = (V,E) and an epidemic model with

critical threshold 1 ≤ λ < λmax(G).
Goal: max.
Metric: the size of the partial subgraph graph: |E′|.
Domain: any partial subgraph H = (V,E′) such that E′ ⊂ E with

bounded spectrum λmax(H) ≤ λ.

5.1.2 Related work

Spectral graph theory has often been a decisive tool in the design and analy-
sis of algorithms. However, to the best of our knowledge, surprisingly few
computational problems have been defined in terms of finding graphs with ap-
propriate spectrum. The mathematical epidemiology community has proposed
and analyzed several problems related to the spectrum of the adjacency matrix
[Sah+15]; [Van+11] while systems and control researchers have considered
optimization problems related to the spectrum of the Laplacian matrix [GB06].
In a separate effort, the theoretical computer science community has focused
on problems related to the design of expander graphs and graphs with high

124

5.1 Introduction

algebraic connectivity i.e. the second smallest eigenvalue of the Laplacian
matrix [Kol+10]; [Mos08]. In this line of research, all problems are NP-hard
and the algorithms proposed in the literature are often simple to state. We
contrast this with the fact that their analysis can be involved and yet, to the
best of our knowledge, only amount to conditional approximation guarantees.
Throughout this chapter we qualify approximation algorithms by their perfor-
mance guarantee r > 1 which means that they return solutions whose value
is at least a fraction 1/r of the optimal value for maximization problems or at
most a factor r of the optimal value for minimization problems.

A minimization version of MSSP has been studied by Saha et al. [Sah+15]
where the task is to remove the minimum amount of edges from a graph
G such that the resulting subgraph H satisfies λmax(H) ≤ λ. They give a
(1 + ε, ε−1 log n) bi-criteria approximation algorithm which guarantees that if
an optimal solution is to remove k edges to achieve a spectral radius less than
or equal to λ then the algorithm will remove O(ε−1 log n) times more edges
(with n = |V | the number of nodes in G) and returns a graph with spectral
radius less than or equal to (1 + ε)λ. It is important to notice that if used “as
is” the subgraph returned by the algorithm may not lead to the extinction
of the epidemic. Zhang et al. [Zha+15] study the problem of maximizing
the drop in spectral radius λmax(G) − λmax(H) where H is a subgraph of G
obtained by deleting at most k edges. Their randomized algorithm, inspired
by the relaxation and rounding framework, has the following conditional
guarantees: if the weighted graph obtained from the solution of the relaxed
semidefinite programming problem has maximum weighted degree ∆∗ =
Ω(log4 n), then the returned subgraph satisfies the constraint on the number of
edge deletions in expectation and, with high probability, the remaining graph
has a spectral radius within an additive O(

√
∆∗) factor of the optimal solution.

If the condition on the maximum weighted degree is not satisfied, they do not
obtain any performance guarantee. Here again, a drop in spectral radius is not
guaranteed to result in the rapid extinction of an epidemic.

In this chapter we introduce the maximum spectral subgraph problem
(MSSP) and our main contribution is the design of a O(log2 n)-approximation
algorithm for MSSP obtained by combining a randomized algorithm based on
the relaxation and rounding framework with a maximum matching algorithm.
We also describe some shortcomings of existing mathematical programming
formulation for variants of MSSP that attempt at minimizing the spectral radius
of a given graph within a prescribed edge deletion budget. Finally we provide
evidence that the analysis of our randomized algorithm is essentially tight by
connecting it to classical results in random graph theory.

The rest of this chapter is organized as follows. In section 5.2 we recall some

125

5 Approximating the maximum spectral subgraph

simple facts from spectral graph theory and introduce appropriate notations
and known results. In section 5.3 we describe our relaxation and rounding
algorithm and illustrate its usage on star graphs. Then, in section 5.4, we prove
its approximation ratio for the range λ ∈ (log n, λmax(G)) in general graphs.
In section 5.5 we show that a maximum matching is a O(λ2)-approximation
algorithm for MSSP. In section 5.6 we study the tightness of the analysis done
in section 5.4 by looking at the performance of our relaxation and rounding
algorithm for the range λ < log n. Finally, perspectives and concluding remarks
are provided in section 5.7.

5.2 Preliminaries

We review here useful facts about the spectrum of adjacency matrices of graphs.
Unless specified, all graphs are assumed to be undirected. Recall that the
adjacency matrix A of a graph G = (V,E) is a symmetric matrix defined as
follows:

Aij =

{
1 if ij ∈ E
0 otherwise

Theorem 12. (General bounds) [Van10]
Given a graph G = (V,E), we denote by ∆(G) its largest degree. The spectral

radius of the graph, defined as the largest eigenvalue of its adjacency matrix, lies
between the following quantities:

max

(√
∆(G),

2|E|
|V |

)
≤ λmax(G) ≤ ∆(G) (5.1)

5.2.1 Computational complexity

The problem of deciding whether there exists a subgraph with at least k edges
and spectral radius at most λ was studied by van Mieghem et al. [Van+11].
We can see that it is the decision problem associated with both MSSP and
the problem of minimum edge removal introduced by Saha et al. [Sah+15]
that was mentioned in section 5.1.1. Van Mieghem et al. proved that their
problem was NP-complete by showing that the Hamiltonian path problem is
reducible to it. It follows from this result that MSSP is NP-hard. Furthermore,
the Hamiltonian path problem remains NP-complete on specific graph classes
such as bipartite graphs, planar graphs, and even on more restricted classes

126

5.3 Relaxation and matrix randomized rounding

such as the cubic subgraphs of the square grid graph. For further details, we
direct the reader to the references in Bazgan et al. [BST99].

The reduction uses a fact from the field of extremal spectral graph theory
(see for example [TT17]): the path graph P|V | on |V | nodes is the graph with
minimum spectral radius among all connected graphs with |V | nodes and
|V | − 1 edges. Setting λ = λmax(P|V |) = 2 cos (π/(|V |+ 1)) and k = |V | − 1
completes the reduction. Recall that while the spectral radius of a graph might
be an irrational number, verifying a candidate solution amounts to checking
whether the eigenvalues of a given adjacency matrix are bounded above by a
given value which can be done in polynomial time to any precision [PC99].

Note that if the bound on the spectral radius λ = 1, then MSSP becomes
the maximum matching problem which can be solved in polynomial time.
Indeed, from Theorem 12, it is easy to see that the problem consists in finding
a subgraph of degree at most 1 with maximum number of edges. Furthermore,
note that all undirected graphs that are not matchings have a spectral radius
larger than or equal to

√
2 which is the spectral radius of the path graph on 3

nodes. From this consideration, we will study the range where the bound on
the spectral radius is meaningful, that is

√
2 ≤ λ < λmax(G).

We now present our algorithm based on the relaxation and randomized
rounding framework.

5.3 Relaxation and matrix randomized rounding

The relaxation and randomized rounding framework [RT87] is a general al-
gorithmic technique composed of two steps. The first step corresponds to
solving a continuous relaxation of the original combinatorial problem, often
represented by some mathematical programming formulation. The second
step is then to sample a discrete solution based on an optimal solution of the
relaxed problem. This technique has resulted in the design of a large number
of approximation algorithms for a broad range of combinatorial problems and
has been the cornerstone of the application of the sum of squares hierarchy
developed by Lasserre [Las01] and Parrilo [Par03] in combinatorial optimiza-
tion. There are often two steps in the analysis of a relaxation and randomized
rounding algorithm: finding a tight relaxation of the original problem that is
solvable in polynomial time and proving that the random discrete solution is
feasible with high probability.

Here we propose a mathematical programming formulation of MSSP that
uses semidefinite programming (SDP) to model the constraint on the spectral
radius. While linear programming allows to define optimization problems

127

5 Approximating the maximum spectral subgraph

with non-negative vector variables written x ≥ 0, SDP extends to the larger
class of problems with positive semidefinite matrix variables written X � 0 i.e.
all eigenvalues of X are non-negative: ∀ i ∈ [1, n], λi(X) ≥ 0. In the literature,
SDP is often use to strengthen a linear programming relaxation, such as in the
celebrated result of Goemans and Williamson for the maximum cut problem
[GW95]. However, this is not the case in our work as the semidefinite constraint
is a natural consequence of the problem statement being concerned with the
largest eigenvalue of a matrix.

Given an input graph G = (V,E) and a bound on the spectral radius λ, we
write the following semidefinite programming problem with binary variables:

max
∑
ij∈E

yij

s.t.
∑
ij∈E

yijAij � λI∑
j∈Γ(i)

yij ≤ λ2, ∀i ∈ V

yij ∈ {0, 1}, ∀ ij ∈ E

(SDP0,1)

where Aij is the adjacency matrix of the graph Gij = (V, {ij}) with a single
edge ij and I is the identity matrix of size |V |. The decision variables yij
represent whether an edge ij belongs to the subgraph when yij = 1 or not
when yij = 0. Recall that for a n by n square matrix, M � tI ⇐⇒ ∀ i ∈
[1, n], λi(M) ≤ t. The semidefinite constraint ensures that the adjacency matrix
of the subgraph, defined by the yij variables equal to 1, has its spectral radius
bounded above by λ. The linear constraint ensures that the degree of each
node i ∈ V in the subgraph is bounded above by λ2. Note that this constraint is
redundant given that the general bounds of Theorem 12 state that the maximum
degree of a graph is bounded above by the square of its spectral radius i.e.
∆ ≤ λ2

max. However this is in general not the case with weighted graphs, which
will be discussed in section 5.3.3.

The continuous relaxation of Problem (SDP0,1) is obtained by relaxing integer
constraints into box constraints. We underline that the semidefinite constraint
does not originate from the relaxation as is the case for some problems which
relax vector variables with quadratic constraints into a SDP problem e.g. the
one used in the algorithm given by Goemans and Williamson for the maximum

128

5.3 Relaxation and matrix randomized rounding

cut problem [GW95]. Our relaxation is limited to the binary variables.

max
∑
ij∈E

yij

s.t.
∑
ij∈E

yijAij � λI∑
j∈Γ(i)

yij ≤ λ2, ∀i ∈ V

yij ∈ [0, 1], ∀ ij ∈ E

(SDPλ∆)

Since we are using Problem SDPλ∆ as the basis of a sampling procedure
which will presumably incur some approximation factor, it is not necessary to
obtain an optimal solution. Instead, we can use polynomial-time algorithms
which return a feasible solution whose value is within an arbitrary small ad-
ditive factor ε > 0 of the optimal value, see for example Vanderberghe and
Boyd [VB96]. In this sense, solving Problem SDPλ∆ can be done in polynomial
time. We note that the computational complexity of semidefinite programming,
that is solving SDP problems exactly, is not fully understood yet, see for ex-
ample the article of de Klerk and Vallentin [KV16] or the survey of Laurent
and Rendl [LR05]. For some small ε > 0, this allows us to state our relaxation
and randomized rounding algorithm which is then guaranteed to terminate in
polynomial time. Denoting by x ∼ Ber(µ) the fact that x is a random variable
following a Bernoulli distribution of mean µ, we have:

Algorithm 6: RELAXATION & RANDOMIZED ROUNDING

Data: G = (V,E),
√

2 ≤ λ < λmax(G), and r > 1.
Result: H = (V,E′) such that λmax(H) ≤ λ with some probability p.

1 y∗ ← arg Problem (SDPλ∆)
2 Sample ∀ ij ∈ E, xij ∼ Ber(y∗ij/r)
3 return H = (V, { ij ∈ E : xij = 1 })

We will now turn to a simple application of Algorithm 6 to the case of star
graphs and determine the adequate sampling factor r that results in a feasible
solution with high probability i.e. p = 1− 1/n where n = |V |.

5.3.1 The case of star graphs

Before giving the complete analysis of our relaxation and randomized round-
ing algorithm we focus on a specific class of input graphs to illustrate the
methodology of relaxation and randomized rounding but also to highlight the

129

5 Approximating the maximum spectral subgraph

importance of the degree constraint in our proposed mathematical program-
ming formulation.

Recall that a star graph Sn = K1,n is a graph with V = {0, . . . , n} and E =
{(0, 1), . . . , (0, n)}. It is a well-known fact from spectral graph theory, see for
example the textbook by Chung [Chu97], that the spectral radius of a star equals
the square root of its number of edges i.e. λmax(Sn) =

√
n. More generally, it

is easy to see that a weighted star graph Sw, where each edge ij is associated

with weight wij , has spectral radius λmax(Sw) = ||w||2 =
√∑

ij∈E w
2
ij . Notice

that we recover the non-weighted case by setting every weight to be 1. Using
this property, we determine that the number of edges in an optimal solution of
Problem (SDP0,1) is exactly bλ2c edges. We denote the optimal value of MSSP
on a star graph Sn and parameter λ by opt(Sn, λ) = bλ2c.

To analyze the gap between the combinatorial problem and our relaxation,
we now compute the value of an optimal solution of Problem (SDPλ∆). First,
we can use the above definition of the spectral radius of a star graph to replace
the semidefinite constraint by ||y||2 ≤ λ. Second, we interpret the degree
constraint as a constraint on the `1-norm of y. This means that we can compute
an optimal solution of Problem (SDPλ∆) by solving the following second-order
cone programming problem:

max
y∈[0,1]|E|

||y||1

s.t. ||y||2 ≤ λ
||y||1 ≤ λ2

(SOCPλ∆)

By a geometrical argument, an optimal solution of this problem has value at
most λ2 and that can be achieved by any y such that ||y||2 ≤ λ, e.g. the uniform
solution where ∀ij ∈ E, y∗ij = λ2/n has `2-norm ||y∗||2 = λ2/

√
n. This solution

is feasible since we assume that λ < λmax(Sn) =
√
n which is easily seen to

imply that λ2/
√
n ≤ λ. We denote by optrel(Sn, λ) = λ2 the optimal value of

the relaxation.
We now have a complete description of the integrality gap gSn of our re-

laxation for star graphs. The integrality gap is the largest ratio between the
optimal value of the continuous relaxation and the optimal value of the original,
combinatorial, problem:

gSn
def
= max

Sn,λ

optrel(Sn, λ)

opt(Sn, λ)
=

λ2

bλ2c
≤ 3

2
(5.2)

where the last inequality comes from the fact that λ ≥
√

2.

130

5.3 Relaxation and matrix randomized rounding

5.3.2 Erdös-Rényi stars

Now that we have solved a continuous relaxation of MSSP, we will use the
computed optimal solution y∗ to sample a discrete solution, here a random sub-
graph Sx of the original star graph Sn. For this purpose we introduce for each
edge ij an independent random variable xij ∼ Ber(y∗ij/r). By definition the
random number of edges x of the random subgraph Sx is a sum of independent
Bernoulli random variables with mean Ex =

∑
ij y
∗
ij/r = λ2/r.

If for some r > 1 the random subgraph Sx satisfies the spectral radius
constraint with high probability, i.e. p = 1 − O(1/n), then we would have
a polynomial time randomized r-approximation algorithm. We obtain the
following approximation algorithm in the case of star graphs:

Theorem A. (Randomized O(1)-approximation for star graphs)
Given a star graph Sn, a bound on the spectral radius λ ≥

√
2, and an optimal

solution y∗ of Problem (SOCPλ∆), the random partial subgraph Sx obtained by
keeping edges according to independent random variables xij ∼ Ber(y∗ij/r) is a
feasible solution of MSSP with probability p ≥ 2/3 whose expected value is within a
factor r = 4 of the optimal value.

Proof. As is common practice in the analysis of randomized algorithms [MR10],
we use the Chernoff bound to get an estimate of the probability that our
sampled solution is feasible. Recall that the Chernoff bound, Theorem 7 in
Chapter 3, gives an upper bound on the probability that a sum of independent
random variables exceeds a certain value.

Using the general formulation of the bound, we write the following. Let
x =

∑n
i=1 xi where each xi is an independent random variable. Then, for a

given value a > 0, the following estimate holds:

Pr (x ≥ a) ≤ min
t>0

e−ta
n∏
i=1

E exp(txi).

We directly apply the Chernoff bound on the random number of edges
x =

∑
ij∈E xij for the value a = λ2.

First we start with a simple bound on the moment generating function of
each summand. Denoting the parameter of each Bernoulli random variable by
pij = y∗ij/r, we have:

E exp(txij) = pije
t + (1− pij)

E exp(txij) = 1 + pij(e
t − 1)

131

5 Approximating the maximum spectral subgraph

using the simple inequality 1+x ≤ exp(x) when x > 0 we obtain the following:

E exp(txij) ≤ exp

(
y∗ij
r

(et − 1)

)
This allows us to write the following inequality:

Pr(x ≥ λ2) ≤ min
t>0

e−tλ
2

exp

∑
ij∈E

y∗ij
r

(et − 1)


Pr(x ≥ λ2) ≤ min

t>0
exp

(
λ2

r
(et − 1)− tλ2

)
.

The minimum of the r.h.s. is attained at t = log r under the condition that
t > 0 from which we deduce that r = 1 + h for some h > 0. The bound then
simplifies into:

Pr(x ≥ λ2) ≤ exp

(
λ2

(
h

1 + h
− log(1 + h)

))
.

While there is a tighter bound, we choose r = 1 + h = 4 to produce the
following simple expression which remains valid for any λ ≥

√
2:

Pr(x ≥ λ2) ≤ exp(−0.64λ2) ≤ 1

3

which concludes the proof of Theorem A. Recall indeed that the event λmax(Sx) ≥
λ is equivalent to the event x ≥ λ2.

Since our success probability for a single sample p ≥ 2/3 we can amplify it
by repetition in polynomial time to obtain a solution of expected value λ2/4
and such that the solution is feasible with high probability p = 1−O(1/n).

To summarize the case of star graphs, our relaxation and randomized round-
ing algorithm is a polynomial time algorithm which returns with high proba-
bility a feasible star graph of expected size λ2/4.

5.3.3 Without the degree constraint

It is important to notice that the degree constraint played a significant role in
obtaining a constant factor approximation in the case of star graphs. Reusing
the same analysis as in section 5.3.1 we can see that Problem (SDPλ∆) without
the degree constrained is equivalent to the following problem:

max
y∈[0,1]|E|

||y||1

s.t. ||y||2 ≤ λ
(SOCPλ)

132

5.4 Spectral subgraphs in general graphs

By a geometrical argument, we notice that the uniform solution ∀ij ∈
E, yij = λ/

√
n is the unique optimal solution of Problem (SOCPλ). It follows

that the associated optimal value optrel′(Sn, λ) = λ
√
n.

In that case, the integrality gap of the relaxation given by Problem (SOCPλ)
is

g′Sn
def
= max

Sn,λ

optrel′(Sn, λ)

opt(Sn, λ)
=
λ
√
n

bλ2c
= O

(√
n

λ

)
(5.3)

which translates into a much higher r = O(g′Sn) than the constant obtained in
section 5.3.1. Indeed, the integrality gap for general graphs cannot be lower
than the one derived for a specific class of graphs. Problem formulations
focusing on minimizing the spectral radius given an edge deletion budget
cannot a priori bound the maximum degree of the resulting weighted graph.
This additional information is a key advantage over problems that optimize
the spectral parameter.

We are now ready to describe our matrix randomized rounding whose
analysis follows a similar structure to the one for star graphs. However we
need to use more powerful concentration inequalities than the Chernoff bound
to obtain bounds on the spectral radius of the random matrix we sample. This
sampling can be seen as a special case of inhomogeneous G(n, p) random
graphs.

5.4 Spectral subgraphs in general graphs

In order to extend the analysis of Algorithm 6 to arbitrary graphs we turn
to more advanced concentration inequalities that describe the behavior of
random matrices and in particular their spectrum. Fortunately, recent results
in the analysis of random matrices (cf. the survey by Tropp [Tro+15]) provide
tail bounds for the largest eigenvalue of random matrices. These results are
directly applicable to the analysis of Algorithm 6 for finding the sampling factor
r that guarantees that the returned solution is feasible with high probability
p = 1− 1/n.

We start by presenting the generic matrix Bernstein bound and its appli-
cation to adjacency matrices following the work of Radcliffe and Chung
[CR11]. Finally we give the proof that Algorithm 6 is a randomized O(log n)-
approximation algorithm with the following property:

Theorem B. (Randomized O(log n)-approximation when λ ≥ log n)
Given a graph G = (V,E) with |V | = n, a bound on the spectral radius λ ≥ log n,

and an optimal solution y∗ of Problem (SDPλ∆), the random subgraph H obtained by

133

5 Approximating the maximum spectral subgraph

keeping edges ij ∈ E according to independent random variables xij ∼ Ber(y∗ij/r) is
a feasible solution of MSSP with probability p ≥ 2/3 whose expected value is within a
factor r = O(log n) of the optimal value.

5.4.1 Following the matrix Bernstein bound

The matrix Bernstein bound is a generalization of the classical Bernstein bound
to the setting of independent random matrices. The theorem states the follow-
ing:

Theorem 13. (Matrix Bernstein) [CR11]
Let X =

∑
iXi where each summand Xi is an independent symmetric ran-

dom matrix of size n which is centered, EXi = 0, and bounded in spectral norm,
λmax(Xi) ≤ L. We define the matrix variance of X by v(X) = λmax(

∑
i EX2

i).
The following tail inequality holds:

Pr(λmax(X) ≥ a) ≤ n exp

(
− a2

2v(X) + 2La/3

)
. (5.4)

The output of Algorithm 6 corresponds to a random adjacency matrix A
which is the sum of independent random adjacency matrices each correspond-
ing to an edge in the random graph. Let Aij = (Eij + Eji) where the Eij form
the canonical basis for Mn,n and denote by xij a Bernoulli random variable of
mean y∗ij/r. We have the following:

A =
∑
ij∈E

xijAij (5.5)

Note that our random adjacency edges have non-zero mean ExijAij =
(y∗ij/r)Aij . Fortunately, applying Weyl’s inequalities on A and EA will give us
control over the spectral radius of A by proxy.

Theorem 14. [Bha13] (Weyl’s inequalities)
Let X and Y be two symmetric matrices, for all ε > 0:

λmax(X − Y) ≤ ε =⇒ |λmax(X)− λmax(Y)| ≤ ε (5.6)

134

5.4 Spectral subgraphs in general graphs

We will use Theorem 14 with the specific value ε = (1−1/r)λ on our centered
random adjacency matrix to obtain the adequate bound on the spectral radius
of A. The centered random adjacency matrix is:

A− EA =
∑
ij∈E

(
xij −

y∗ij
r

)
Aij

For this, we consider the event where A has greater spectral radius than EA
and drop the absolute value:

λmax(A− EA) <

(
1− 1

r

)
λ =⇒ λmax(A)− λmax(EA) <

(
1− 1

r

)
λ

and by feasibility of an optimal solution of the relaxed SDP, i.e. Problem
(SDPλ∆), we have λmax(EA) ≤ λ/r which gives:

λmax(A− EA) <

(
1− 1

r

)
λ =⇒ λmax(A) < λ.

From the general bounds of Theorem 12 we know that the spectral radius of
the centered adjacency matrix of a random edge ij is either y∗ij/r (no edge) or
1− y∗ij/r (one edge) which lets us bound the spectrum of each summand. In
the worst case we have, for each edge ij:

λmax

((
xij −

y∗ij
r

)
Aij

)
≤ max

(
y∗ij
r
, 1−

y∗ij
r

)
≤ 1 (5.7)

5.4.2 Proof of Theorem B

We start by computing v(A − EA) the matrix variance, see for example the
monograph by Tropp [Tro+15], of our centered random adjacency matrix :

v(A− EA) = λmax

∑
ij∈E

Var(xijAij)

 .

With the basic properties of the scalar variance Var(xijAij) = Var(xij)A
2
ij and a

simple property of the square of the adjacency matrix of an edge A2
ij = Di+Dj

where Dv = Evv is a diagonal matrix, we obtain a clean expression for the
variance of the centered adjacency matrix as the spectral radius of the matrix

135

5 Approximating the maximum spectral subgraph

of degree variances. In essence, each edge in the graph contributes its variance
to its two incident nodes.

v(A− EA) = λmax

∑
ij∈E

Var(xij)(Di +Dj)


= max

i∈V

∑
j∈Γ(i)

y∗ij
r

(
1−

y∗ij
r

)

v(A− EA) ≤ max
i∈V

∑
j∈Γ(i)

y∗ij
r

where we have used classical formulas for the variance of a Bernoulli random
variable, see for example the textbook by Bertsekas and Tsitsiklis [BT02]. By
feasibility of an optimal solution of the relaxation, the degree constraint holds
which means that maxi∈V

∑
j∈Γ(i) y

∗
ij ≤ λ2 and gives:

v(A− EA) ≤ λ2

r
.

We now fulfill all the prerequisites to apply Theorem 13, the matrix Bern-
stein bound, on A − EA and L = 1. To explicitly describe the fact that the
approximation ratio r > 1 we introduce as earlier h > 0 such that r = 1 + h.
We apply the Bernstein bound for the value a = (h/(1 + h))λ:

Pr

(
λmax(A− EA) ≥ h

1 + h
λ

)
≤ n exp

(
−1

2

a2

v(A− EA) + a
3

)
= n exp

(
−1

2

a2

λ2

1+h + 1
3

h
1+hλ

)

≤ n exp

(
−1

2

h2

(1 + h)2

λ2

λ2

1+h + 1
3

h
1+hλ

)
.

We simplify the above expression to obtain:

Pr

(
λmax(A− EA) ≥ h

1 + h
λ

)
≤ n exp

(
−1

2

h2

(1 + h)2

λ2

λ
1+h (λ+ h/3)

)

= n exp

(
−1

2

h2

1 + h

λ

λ+ h/3

)
.

136

5.5 Maximum matching

As in the case of star graphs, we will derive possible values for r (resp. for
h) such that the probability of our subgraph H being infeasible is less than
1/3. For this, we attempt to derive an upper bound for the argument of the
exponential as n exp(−x) ≤ 1

3 implies that x ≥ log 3n.
We are looking for values of h and λ such that the following inequality holds:

1

2

h2

1 + h

λ

λ+ h/3
≥ log 3n

We start by deriving a lower bound on λ function of h. In the above inequality,
λ/(λ + h/3) can be arbitrarily small if h is unbounded. To prevent this, we
impose that, for a certain constant c > 0:

1

2

λ

λ+ h/3
≥ c

which implies that

λ ≥ 2c

3− 6c
h.

Choosing c = 1/4 gives us the condition that λ ≥ h/3.
Now we are left with finding the value of h such that:

1

4

h2

1 + h
≥ log 3n.

For all values of n, it is sufficient to take h = 10 log n which completes the
proof.

Algorithm 6 is a randomized algorithm which returns a feasible solution with
probability greater than 2/3 and of expected value within a (1 + 10 log n) factor
of the optimal value whenever λ ≥ log n. Recall that the success probability of
such an algorithm can be amplified to high probability in polynomial time. We
now turn to a different algorithm to handle the range λ ∈ [

√
2, log n].

5.5 Maximum matching

After designing an approximation algorithm for MSSP for the range of the
spectral bound λ ∈ [log n, λmax(G)), we turn to the well-studied maximum
matching problem: finding a subgraph M consisting of the maximum number
of non-adjacent edges in a given graph G. The number of edges in M is often
called the matching number ν(G) of the graph. We use a spectral generalization
of a classical lower bound on the matching number due to Stevanović [Ste10]
which states the following:

137

5 Approximating the maximum spectral subgraph

Theorem 15. [Ste10] (Spectral lower bound on the matching number)
Given a graph G = (V,E) we have the following lower bound:

ν(G) ≥ |E|
λ2

max(G)− 1
.

This static lower bound can be immediately turned into an approximation
algorithm since computing a maximum matching can be done in polynomial
time.
Algorithm 7: MAXIMUM MATCHING

Data: G = (V,E),
√

2 ≤ λ ≤ λmax(G)
Result: H = (V,E′) such that λmax(H) ≤ λ

1 return H = arg ν(G)

Theorem C. (Approximation by maximum matching)
Given G = (V,E) and a spectral bound λ > 0, a maximum matching of G is a

(λ2 − 1)-approximation for MSSP.

Proof. Denoting by H∗ an optimal solution of MSSP for a graph G and spectral
bound λ, we know that H∗ is a partial subgraph of G which implies ν(G) ≥
ν(H∗). We also know that H∗ is feasible i.e. λmax(H∗) ≤ λ. Combining these
two statements together with the lower bound of Stevanović, we obtain the
following inequality:

ν(G) ≥ ν(H∗) ≥ opt(G,λ)

λ2 − 1

which shows that the size of a maximum matching is within a factor of λ2 − 1
of an optimal solution of MSSP. Furthermore any matching has spectral radius
equal to 1 i.e. is trivially feasible.

Used in the range λ ∈ [
√

2, log n] a maximum matching is a O(log2 n)-
approximation algorithm in the worst-case. We then combine Algorithm 6 with
Algorithm 7 to obtain a O(log2 n)-approximation algorithm for all values of λ.

It is not entirely satisfactory to need a different algorithm for the range λ ∈
[
√

2, log n] and one might hope that stronger concentration inequalities would
extend the performance guarantee of Algorithm 6 to such values of λ. However,
we will see now that even if that were the case, the relaxation and randomized
rounding algorithm cannot achieve an essentially better approximation ratio.

138

5.6 Independent rounding: an intrinsic Ω(log n) barrier

5.6 Independent rounding: an intrinsic Ω(log n) barrier

In this section we describe an inherent limitation of our approach based on the
relaxation and randomized rounding framework for small values of λ. While
we are not able to show that Algorithm 6 is an approximation algorithm for
λ < log n, we show that assuming it were an r-approximation algorithm, its
approximation ratio would necessarily be at least Ω(log n) for constant λ > 0:

Theorem D. (No better than Ω(log n/λ3))
Given a complete graph Kn, a bound on the spectral radius λ ≥

√
2, we can

construct an optimal solution ∀ij ∈ E, y∗ij = λ/(n − 1) of Problem (SDPλ∆) such
that the random graphG(n, λ/(n−1)r) is a feasible solution of MSSP with probability
p ≥ 2/3 for r = Ω(log n/λ3).

Since we are attempting at finding an algorithm-specific lower bound, we
exhibit a family of instances for which there is no integrality gap but instead
what we call a rounding gap: a random graph sampled from a fractional
solution does not concentrate around its expected graph i.e. its spectral radius
is O(

√
log n) instead of O(λ).

5.6.1 Cliques and the G(n, p) random graph model

For this purpose, let us consider an instance composed of G = Kn a complete
graph on n nodes and λ > 0 a constant. We can easily obtain an optimal
solution of SDPλ∆ for this case. We start by showing that the uniform solution
where ∀ij ∈ E, y∗ij = λ/(n− 1) is feasible. Since the spectral radius is positive
homogeneous, we have:

λmax

∑
ij∈E

λ

n− 1
Aij

 =
λ

n− 1
λmax(A)

and we know that λmax(A) = n − 1 since the complete graph is (n − 1)-
regular. This tells us that the above uniform solution is compatible with the
semidefinite constraint as its spectral radius is exactly λ. It is also easy to see
that the solution is a weighted regular graph of degree λ, trivially respecting
the degree constraint: every node in the graph must have weighted degree at
most λ2.

To evaluate this solution, we start by noticing that the upper bound on
the number of edges of an graph with known spectral radius, which can
be deduced from the inequality of Theorem 12 relating average degree and

139

5 Approximating the maximum spectral subgraph

spectral radius, can be extended to weighted graphs. Using the Courant-Fischer
definition of eigenvalues, it suffices to compute the Rayleigh quotient of an
adjacency matrix A with the all-ones vector 1 to obtain a lower bound on the
largest eigenvalue of the matrix:

1ᵀA1

1ᵀ1
≤ max

x 6=0

xᵀAx

xᵀx
.

Evaluating the left-hand side of this inequality and using the hand-shaking
lemma yields the desired relationship. We apply this result on the weighted
adjacency matrix

∑
ij y
∗
ijAij to obtain:

2

n

∑
ij∈E

y∗ij ≤ λ that is
∑
ij∈E

y∗ij ≤
λ

2
n.

On the other hand we simply compute the value of the uniform solution which
attains the above upper bound:

∑
ij∈E

y∗ij =
n(n− 1)

2

λ

n− 1
=
λ

2
n.

The fact that the uniform solution is optimal for complete graphs has deep
consequences on the applicability of our algorithm. Indeed in this case the
independent rounding scheme with sampling factor r can be seen as the
classical random graph model G(n, p) [Gil59] with parameters n = |V | and
p = O(λ/nr).

5.6.2 Proof of Theorem D

To prove Theorem D we leverage known probabilistic results on G(n, p) ran-
dom graphs. A broad family of results have been obtained for this random
graph model and in particular Krivelevich and Sudakov [KS03] give a sharp
estimate of their spectral radius.

Theorem 16. [KS03] (Spectral radius of a sparse G(n, p) random graph)
For any λ > 0, let p = λ/n, we have that asymptotically almost surely:

λmax(G(n, p)) = (1 + o(1)) max
(
np,
√

∆n,p

)
where ∆n,p is a random variable representing the maximum degree of the random
graph.

140

5.6 Independent rounding: an intrinsic Ω(log n) barrier

This theorem can be interpreted as saying that in this regime of p the spectral
radius of a random graph matches the simple lower bound on the spectral
radius of Theorem refgeneral-bounds. Indeed, the expected average degree
np = λ is the random analogue of the average degree while the square root of
the random maximum degree

√
∆n,p corresponds to its static counterpart.

Furthermore, the random maximum degree is well understood for p = λ/n.
Indeed a corollary of the above theorem states that for constant λ > 0, the
average degree np = O(1) and as such the spectral radius of G(n, p) is entirely
determined by its maximum degree. Indeed in this regime, see for example the
textbook by Bollobás [Bol01], the maximum degree of G(n, p) is:

∆(G(n, p)) =
log n

log logn

which implies that the spectral radius is almost surely the square root of the
maximum degree:

λmax(G(n, p)) = (1 + o(1))

√
log n

log logn
.

In order to understand how the maximum degree of G(n, p) is affected by
the edge probability p, we use a special case of a result from Bollobás [Bol80] to
obtain an upper bound on the maximum degree that holds asymptotically as
n→∞:

Pr

(
∆n,p < np+

√
2np(1− p) log n

(
1− log logn

4 log n
− log 2

√
π log(3/2)

2 log n

))
=

2

3
.

Using the simple upper bound p(1− p) ≤ p we can simplify it to obtain:

Pr

(
∆n,p < np+

√
2np log n

(
1− log log n

4 log n
− log 2

√
π log(3/2)

2 log n

))
=

2

3
.

Recall that in an independent randomized rounding procedure we sample
each edge with probability p/r = λ/nr for a certain sampling factor r > 1.
Replacing p by p/r in the above expression, it is easy to see that in order to
make the

√
2np log n term small compared to the np term in the asymptotic

expression of the maximum degree, the sampling factor must be at least:

r = Ω

(
log n

λ3

)
.

141

5 Approximating the maximum spectral subgraph

Indeed, for such r, the bound on the maximum degree becomes asymptoti-
cally:

Pr

(
∆n,λ/nr <

λ4

log n
+ (1− o(1))

√(
1− λ4

n log n

)
λ4 log n

log n

)
=

2

3

which simplifies into:

Pr

(
∆n,λ/nr <

λ4

log n
+ (1− o(1))λ2

)
=

2

3
.

Following Theorem 16 by Krivelevich and Sudakov, we have that if r =
Ω(log n/λ3) then asymptotically with probability 2/3:

λmax(G(n, λ/nr)) = (1− o(1))λ

in which case the random graph G(n, λ/nr) is a feasible solution of MSSP
whose value is within a factor r of the optimal value. With positive probabil-
ity, there exists one graph such that Algorithm 6 can be a valid randomized
approximation algorithm only if r = Ω(log n/λ3).

We know that Algorithm 6 is a O(log n)-approximation algorithm for λ ≥
log n and one can hope that this extends to λ < log n. Theorem D shows
us that we cannot hope to obtain a better ratio than Ω(log n) in general for
this algorithm which indicates that our analysis, while incomplete, essentially
matches the guarantee provided by our algorithm. Somewhat surprisingly, the
performance guarantee of Algorithm 6 seems to be directly related to statistical
properties of random graphs and not to the existence of an integrality gap as
is commonly the case in the analysis of relaxation and rounding algorithms
[WS11]. To the best of our knowledge, very few randomized approximation
algorithms have been shown to exhibit bounded performance as a consequence
of what we have called a rounding gap, see for example the paper by Bandeira
[Ban18]. Based on these results, we posit that this phenomenon arises in the
case of properties related to matrix norms. Indeed the maximum degree of
an undirected graph is at the same time the `1-norm and the `∞-norm of its
adjacency matrix whereas the spectral radius is its `2-norm.

5.7 Conclusion and perspectives

We have introduced the maximum spectral subgraph problem and designed a
randomized O(log2 n)-approximation algorithm based on the relaxation and

142

5.7 Conclusion and perspectives

rounding framework to solve it. Although we do not know of a matching lower
bound, we have shown that the analysis of the relaxation and randomized
rounding portion of our algorithm is essentially tight.

In terms of lower bounds, we currently do not have any result regarding
hardness of approximation, but we are actively exploring this direction. To
the best of our knowledge, no inapproximability results have been established
for problems related to the spectrum of a graph. Indeed, NP-hardness results
found in the literature [Mos08]; [Van+11] are based on reductions which relate
extremal values in spectral graph theory to classical computational problems.
These reductions cannot be directly extended to obtain an approximation gap.

Without a better lower bound than NP-hardness, we are compelled to find
new techniques to improve our current upper bound. First, the continuous re-
laxation used in Algorithm 6 is rather natural aside from the redundant degree
constraints. It would be interesting to see if stronger relaxations could be used
to obtain more information about the random graph e.g. strong bounds on the
variance of the random degrees. For this purpose we would like to consider a
sum-of-squares relaxation for the binary semidefinite programming problem.
Indeed, Nie [Nie11] has given an extension of the classical sum-of-squares
hierarchy to include positivity certificates for matrix variables. This relates to
the question of generalizing the results of Raghavendra [Rag08] on maximum
constraint satisfaction problems where constraints apply to at most k variables
to maximum constraint satisfaction problems with spectral constraints which,
by definition, involve all variables at once. Aside from strengthening the relax-
ation, there is opportunity for improvement in developing more precise tail
bounds on the spectrum of random adjacency matrices following recent results
by van Handel [Han17] as well as by Le, Levina, and Vershynin [LLV17]. On a
separate note, we are currently working on applying the method of conditional
probabilities to derandomize Algorithm 6 in order to obtain a deterministic
approximation algorithm. The analysis of section 5.5 focuses on the maxi-
mum matching problem as a way of computing a feasible solution for the
range λ ∈ [

√
2, log n). It is natural to wonder whether the degree constrained

subgraph problem which is a polynomial-time solvable generalization of the
maximum matching problem [Sch03] with a constraint of the form ∆ ≤ λ could
be proven to return a better solution, and possibly match the O(log n) ratio
obtained by Algorithm 6.

Finally, we are also interested in applying a similar strategy to the problem
of adding the smallest number of edges to reach a given algebraic connectivity
i.e. a lower bound on the second smallest eigenvalue of the Laplacian matrix
of the graph. This problem, proven NP-hard by Mosk-Aoyama [Mos08], is a
variant of the problem of finding the maximum algebraic connectivity given

143

5 Approximating the maximum spectral subgraph

an edge addition budget proposed by Ghosh and Boyd [GB06]. While Kolla
et al. have designed an approximation algorithm with conditional guarantees
[Kol+10] for the original problem, we hope that our methodology could apply
to the variant and lead to an unconditional approximation ratio.

144

6 Experimental design for
randomized approximation
algorithms

6.1 Introduction

Epidemics are a growing threat in telecommunication networks as well as in
social networks. However, the recent discovery of the central role of network
topology in the survival of epidemics together with the development of new
technology like software-defined networking (SDN) which enable real-time
network topology modification provide opportunities to defend against this
new threat. Indeed, several algorithms have been proposed to compute, given
an epidemic, an appropriate network topology modification which guarantees
a short time to extinction for the epidemic. In this study we focus on the maxi-
mum spectral subgraph problem which consists in finding a partial subgraph
with maximum number of edges such that its spectral radius is bounded above
by an input parameter representing the intrinsic speed of the epidemic.

The primary objective of this chapter is to establish adequate tools to em-
pirically determine the performance of a recently proposed randomized ap-
proximation algorithm for the maximum spectral subgraph problem based
on semidefinite programming and matrix randomized rounding. For this
purpose, we describe an experimental methodology using sequential opti-
mization techniques to analyze the impact of a variety of practical algorithmic
improvements to a direct implementation of the algorithm. We also provide
preliminary empirical evidence of the competitiveness of the approximation
algorithm compared to heuristics derived from algorithms proposed in the
literature.

We start by reviewing the literature in the experimental study of algorithms
which warns the research community in regarding the standards employed to
establish scientific truth. Then, we survey existing statistical techniques that
can enhance the reliability, validity, and reproducibility of experiments and
discuss their applicability to computer experiments. Finally we propose an
experimental setup to assess the performance of randomized approximation

147

6 Experimental design for randomized approximation algorithms

algorithms based on sequential optimization techniques for the design of
experiments.

6.2 The scientific method in experimental algorithmics

Computer science is a young scientific discipline whose practices have been
inherited from the domains that led to the theory and practical implementation
of computers such as mathematics and logic on one hand, physics and electrical
engineering on the other hand. It has also received influence from fields where
computers have been used to facilitate science such as applied mathematics,
physics, chemistry, biology, and more recently the social sciences. Most of
these scientific disciplines attempt to follow the scientific method which is
characterized by the elaboration of hypotheses, often originating from a theory,
followed by the design and conduct of experiments which have the goal of
adding weight to a given hypothesis or refuting it instead.

However, according to Johnson [Joh02], the current practice of experimental
research in algorithms for combinatorial optimization is far from meeting mod-
ern standards of reliability, statistical significance, and reproducibility. This
state of affairs is at odds with the extreme degree of control available to re-
searchers when conducting computer experiments, which is beyond any of the
natural sciences. While strict methodology exists and is promoted by notable
researchers in the community [BP14]; [BHL17]; [McG01] such techniques are
rarely used in practice.

Instead each field of computing seems to develop their own methodology,
such as the metaheuristics community which places a premium over solving
difficult problem instances. In this context, tuning parameters to match spe-
cific instances and hiding implementation details to maintain a competitive
advantage over other teams of researchers is valued more than reliability of
results, and goes against the concept of scientific results being reproducible by
the community.

In other communities such as numerical optimization, there is a long stand-
ing tradition of experimental studies for specific parameters such as the condi-
tion number, sparsity patterns or more complex structural information. The
comparison of available methods can be done in a rigorous manner, see for
example COCO platform which provides a common ground to compare con-
tinuous optimization solvers [Han+16b]. In communities focusing on discrete
problems, it is common to see experimental studies that attempt to study a
given implementation of an algorithm with ad-hoc methodological tools. For
example, consider the famous study of an efficient implementation of the Lin–

148

6.3 Algorithms as experimental subjects

Kernighan heuristic for the traveling salesman problem by Helsgaun [Hel00].
In this paper, the author considers a fully public fixed benchmark, the TSPlib
[Rei91], and performs independent runs of his implementation on every in-
stance. The author has split the dataset based on the number of nodes present
in each instance and considers 100 independent runs for small instances and
10 independent runs for large instances according to the arbitrary threshold of
1000 nodes. While similarly straightforward experimental choices can some-
times be made for implementations of algorithms meant to solve well-studied
problems, we will see that this is not the case in general.

6.3 Algorithms as experimental subjects

In experimental sciences, a simple goal is often to gather evidence supporting
that two phenomenons are associated with each other. This is in particular
true when studying fixed systems that have controllable inputs and observable
outputs. Consider for example experiments in physical sciences where initial
conditions and the duration of the experiment are the inputs, nature plays the
role of the system often modeled by a differential equation, and measurements
are the outputs. In essence, such experiments in physical attempt to identify
the correct parameters of dynamical processes that fit with observations.

Algorithms on the other hand are not fixed systems with standard inputs and
outputs. Given different inputs, the number and types of operations executed
by an algorithm can be vastly different. To understand why, it is important
to recall the definitions used in the theory of algorithms. Analogous to the
definition of algorithms, a computational problem is defined over a set of
instances which is generally infinite. Indeed, what draws the line between
a single computation, which could be arbitrarily long and complex, and an
algorithm is that an algorithm is defined over an unspecified input, the instance.
Instances are often infinite families of common mathematical objects such as
functions, sets, combinatorial structures, or even mathematical expressions.

As such, the experimental study of efficiency in algorithms as a domain must
follow practices to prevent it from degenerating into the study of efficiently
carrying out a single, potentially long and complex, computation. Indeed,
since it is possible to consider endless variations and types of algorithms, such
study would eventually establish the superiority, in terms of running time, of a
“computation” which simply reads out the answer.

The practical efficiency of an algorithm implementation must be character-
ized by its observed performance over a wide variety of instances. However
two major difficulties arise from this requirement.

149

6 Experimental design for randomized approximation algorithms

6.3.1 Performance metrics

The first complication is related to the ambiguity of summarizing performance
over a set of runs, i.e. the definition and use of appropriate performance
metrics. When several alternatives are compared, it is possible to rely on
relative metrics such as the performance profiles proposed by Dolan and Moré
[DM02]. In their paper, the authors propose to rate an optimization algorithm
implementation s, for solver, by the ratio of the time tp,s it used to solve a
given problem instance p with the time spent by the best solver among the
alternatives S. The performance ratio denoted by rs,p is then given by

rs,p =
tp,s

mins′∈S tp,s′

and the performance profile ρs of an implementation s for a given set of
instances P is the empirical estimate of the probability that a solver s is within
a factor τ of the best possible performance ratio.

ρs(τ) =
|{p ∈ P : rs,p ≤ τ}|

|P |
.

This allows the comparison of different solvers by plotting out their perfor-
mance profile for all values τ ∈ R as a cumulative distribution function
ρs : R → [0, 1] and reading out which algorithm implementation has the
highest probability of being the best out of the alternatives.

Because performance profiles handle running time as relative to the best
solver, they cannot provide experimental evidence of the asymptotic behavior
of algorithm implementations. Even then, performance profiles are statistics
that focus primarily on the running time of exact optimization algorithms and
relegates failure to produce a solution or approximate solutions as second
concerns by modeling either as arbitrarily high performance ratios. It is also
clear that this type of metrics is entirely dependent on the available alternatives
and on the dataset of instances that was studied and provides limited venues
for generalization.

6.3.2 Datasets

The second issue is concerned with instances and can be illustrated with the
same example of Dolan and Moré’s performance profiles. As algorithm im-
plementations are man-made designs, it is at the same time legitimate and
misguided for algorithm designers to select a particular algorithm given com-
puted metrics, or to modify an implementation to achieve a better score. A

150

6.3 Algorithms as experimental subjects

simple way to counter this tendency is to follow the classical approach in
machine learning of splitting the data in three sets: the training set, used to fit
the parameters of a given model, the validation set, which includes assessing
the performance of hyper-parameters, and finally the testing set, which allows
for an unbiased estimation of the performance of the model, see for example
introductory texts in machine learning such as the book by Bishop [Bis06].

Most competitions organized by the research community such as the PACE
challenge [Del+17] follow this practice by sharing a public dataset with com-
petitors for them to tune their implementations and withholding a private
dataset on which evaluation will be conducted. In this sense, researchers must
find algorithm parameters that generalize to the unseen data, provided that
both public and private datasets are sampled from the same distribution.

However, as we will see in more details, the task of constructing datasets
and of choosing specific distributions comes with many pitfalls.

6.3.3 Random samples and randomized experiments

Thus, the concept of efficiency intrinsically relies on the property of algorithms
to generalize to unseen instances, to borrow terms from the machine learning
literature. This forces us to rethink the statistical concept of random sampling,
that is producing a finite number of samples on which the experiment will
be conducted such that the sample is representative of the overall population
(or more generally distribution). Unfortunately, it is not clear a priori what
distributions underlie undirected graphs or Boolean formulas, if any. For this
reason, it is unlikely that sample bias correction methods [CM14] could be
applied as-is.

In the statistical literature, most often when experiments are costly to con-
duct, it is difficult to obtain truly random samples and researchers are often
bound to work with a subset of a given population they have access to. To
assess the validity of a phenomenon researchers then conduct randomized
experiments and apply statistical methods to determine whether the observed
effect was real or probably due to chance, see for example the Rubin frame-
work of potential outcomes [Rub74]. However, it is important to highlight that
randomized experiments do not fix the discrepancy between the sample and
the overall population, they instead remove bias in the effect observed for the
sample. In particular, randomized experiments can minimize the impact of
external factors on the outcome of an experiment.

151

6 Experimental design for randomized approximation algorithms

6.4 Factors of influence

Before attempting to propose a concrete methodology to conduct experiments
in approximate optimization, we need to identify key factors that may influence
the preparation, cost, and outcome of experiments.

In natural sciences researchers are often looking for causal relationships that
support or invalidate an hypothesized mechanism for a given phenomenon.
For this they study the influence of a factor on a particular outcome. A common
example would be the study of a group of patients, each choosing between
different drugs and recovering, or not, from a disease. However, possible
factors may influence both their choice and their recovery, for example gender
or age. The goal of analysis is to unveil a causal relationship that is exempt from
the influence of such confounding factors. For an introduction to statistical
analysis with a focus on confounding factors see for example the handbook by
Dallal [Dal+12] which portrays the way statistics are used by epidemiologists
to establish causal relationships.

In computational experiments, the environment is almost entirely controlled
by researchers, and as such the methodology used in natural sciences cannot
be easily reused. However, there are many factors that can contribute to
the outcome of the experiment. In the experimental study of algorithms in
particular, experiment designers must find the proper balance between the
exploration of alternatives scenarios that might shed more light on a given
hypothesis and the cost incurred by multiplying experiments. Indeed not all
factors involve

No matter the chosen experimental design, it is necessary to explicitly list
out the multiple factors that can alter the running time of programs designed
to produce approximate solutions to optimization problems. We summarize
prominent factors and some of their properties in Table 6.1.

6.4.1 Problem instances

The first category of factors is related to instances and is the area where experi-
ments in optimization differ the most from experiments in machine learning.
Indeed, while practical machine learning tasks are generally evaluated on real
life data [Den+09]; [Wan+18], many optimization problems are relevant on a
very wide variety of instances. In this sense, experiments in optimization have
a much heavier reliance on instance generation than in the context of machine
learning.

In well-studied domains of optimization, datasets have been consolidated
to gather relevant examples of instances. For example the SNDlib dataset

152

6.4 Factors of influence

Category Factor Cost Notes

Instance

Benchmarks High Often inherited from competitions for
specific problems.

Parameters Low Especially amenable to experimental
design.

Size Med Impacted by time constraints.

Invariants Med Often necessitates custom instance gen-
erators.

Hardware
Architecture High Via on-demand computing platforms.

Parallelism Low Toggling GPU, restricting number of
threads/cores.

Software
Runtime High Via containers and virtualization.
Implementation High Often inherited from existing libraries.

Parameters Low Especially amenable to experimental
design.

Table 6.1: Factors influencing experiments on approximate optimization

[Orl+10] contains several real-life networks meant to serve as instances of
the survivable network design problem. Similarly the TSPlib [Rei91] collects
instances of the traveling salesman problem. Even when assuming that these
benchmarks provide a reliable way to compare algorithms in practice, most
optimization problems, and especially newly defined problems such as the
maximum spectral subgraph problem, do not come with existing benchmarks.
The construction and maintenance of datasets are very demanding tasks which
explains that most benchmarks are associated with community efforts such as
competitions [Del+17] or industry sponsorship [B+07].

The large majority of combinatorial optimization problems studied in the
literature are defined over instances which contain a combinatorial structure
such as a set, a graph, a lattice, or a logical expression. However, they also
often contain numerical parameters such as a number of paths to be found in a
graph, weights that represent the profit gained from covering given elements,
a total budget, and many more. Furthermore, the definition of combinatorial
optimization problems often imposes very little restriction on what value these
parameters could be. On the other hand, hardness results are often obtained
when considering very specific choices of parameters.

A powerful notion in both the theory of algorithms and computational

153

6 Experimental design for randomized approximation algorithms

complexity is the notion of instance invariants, more commonly known as
parameters. The field of parameterized complexity is dedicated to studying
the contribution of instance structure to solving problems and to design al-
gorithms that can take advantage of that additional information [Cyg+15].
This approach can be successfully combined with approximation algorithms
to obtain practical and efficient algorithms for NP-hard problems [Mar08];
[Baz+14]. However, measuring the impact of invariants requires the generation
(or collection) of specific instances, which can become a large part of the total
effort to conduct experiments. Sometimes, relevant parameters are NP-hard
to compute exactly, e.g. treewidth or cliquewidth, and associated generation
problems NP-hard as well.

6.4.2 Implementation of algorithms

The second category of factors that can greatly influence the progress of a set
of experiments is the implementation of algorithms.

The hardware resources used to run an experiment can crucially alter the
performance of specific experiments. We describe two representative examples.
As long as the main memory is large enough to contain a given problem
instance, memory access is rarely a limiting factor in the running time of
a program implementing a candidate algorithm. However, as soon as the
instance size necessitates disk access, it is common for the same program to
incur running time penalties of at least one order of magnitude. Another
example is the degree of parallelism that a given architecture can provide to a
program. While it is generally preferable to make use of most available threads
for embarrassingly parallel tasks, e.g. a parallel map operation, parallelism
can be counterproductive in tasks where the amount of work expanded for
memory transfers compensates the running time savings.

It is still possible to systematically explore the impact of hardware archi-
tecture by using on-demand computing platforms such as Amazon AWS,
Microsoft Azure, DigitalOcean, and many others. These services provide a
large selection of architectures, albeit at the price of having no control over the
virtualization infrastructure used by such platforms.

The availability of specific hardware is another major factor in the perfor-
mance of a given algorithm. Many efficient algorithms make use of linear
algebra primitives which have been extensively optimized both in numerical
libraries and hardware architectures. Such algorithms can experience dramatic
speedups with compatible accelerators such as graphics processing units (GPU)
[NBG08] or even more specialized components such as tensor processing units
(TPU) [Jou+17]. The success of modern neural networks models is attributed

154

6.4 Factors of influence

in a large part to efficient implementations of the back-propagation algorithm
on GPU [RMN09] which enable several orders of magnitude improvements
over standard implementations on CPU.

Intimately connected to specific hardware, a key factor in the performance of
algorithm implementations is the reliance on software libraries offering high-
performance implementations of common subroutines such as combinatorial
algorithms like sorting, or numerical algorithms like eigenvalue computation
[Vir+19]. However, such subroutines almost always come with optional pa-
rameters that alter the behavior of the program. For example, consider the
eigsh function provided by the SciPy Python library which returns approxi-
mate eigenpairs of an Hermitian matrix. This Python function is essentially an
interface to the ARPACK [LSY98] collection of Fortran77 subroutines to solve
large scale eigenvalue problems. While it is possible to use the default settings
provided by the SciPy library, the following optional parameters are available:

1 scipy.sparse.linalg.eigsh(A,
2 k=6,
3 M=None,
4 sigma=None,
5 which=’LM’,
6 v0=None,
7 ncv=None,
8 maxiter=None,
9 tol=0,

10 return_eigenvectors=True,
11 Minv=None,
12 OPinv=None,
13 mode=’normal’)

While not all parameters are critical to the running time of each call of this func-
tion in practice, the maxiter and tol parameters which default respectively
to 10n, where n is the size of the matrix A, and to machine precision, which is
architecture dependent, provide qualitatively different trade-offs between the
desired precision of eigenvalues and running time.

These apparently small differences in implementations can lead to consider-
able effective speedups, especially when the loss of precision (approximately
sorted over sorted, approximate eigenvalue over machine precision eigenvalue
computations) does not drastically modify the returned solution.

Unlike the study by Helsgaun [Hel00] we have mentioned above which con-
sidered a black-box implementation of a famous heuristic, we can expose these
algorithmic variants and subroutine parameters to the toolbox of experimental
design in order to produce fair and accurate assessments of the performance of
an implementation.

155

6 Experimental design for randomized approximation algorithms

6.5 Towards systematic parameter setting

The previous section highlighted the key factors which can influence the ob-
served efficiency of an algorithm implementation run on a particular instance.
In particular, many numerical factors and categorical factors can be seen as
inputs of an experimental setup. In this section, we survey the possible tech-
niques to select adequate parameters and comment on the popularity of these
techniques in different research communities.

In recent years, the machine learning community has seen increased activity
in the domain of parameter selection which corresponds in this context to
finding appropriate hyper-parameters for given machine learning models
whose parameters have been fit to a fixed set of instances, the training set. See
for example the algorithms proposed by Bergstra et al. [Ber+11].

However, methodological practices widely differ based on the research com-
munity and on the sociological adherence to values associated with statistical
evidence.

Hand-picked values: this corresponds to the usage of particular numerical
values or combinatorial objects without justification. It can be seen for
example in the operations research literature where the size of generated
instance is often a multiple of 10.

“Grad student descent”: this portmanteau between graduate student and
gradient descent is the practice of exploiting human resources commonly
found in research laboratories to guide the search for better parameters.
It is often used in the metaheuristics community or the machine learning
community in the context of competitions. It is commonly accompanied
with other types of anti-replication behavior [Hut18] such as closed
source software or partial publication of experimental runs.

Racing: this entirely empirical methodology proposes to exploit parallelism
and early stopping to select adequate parameters [Lóp+16]. This prac-
tice has shown some success in fields with standardized benchmarks
such as mathematical programming solvers but a posteriori theoretical
explanations of its relevance have been rare so far.

Random search: the most common and most widely trusted technique for
setting parameters is the use of randomness [BB12]. It is often combined
with massive parallelism and racing techniques [Li+17]. This technique
has been shown to thrive in high dimensional settings but it requires the
experimenter to specify particular bounds and distributions which are not

156

6.5 Towards systematic parameter setting

necessarily part of the problem description. Like most techniques which
require parameters, random search can suffer from a case of higher-order
“hand-picked values”.

Bayesian optimization and bandit algorithms: two well-understood math-
ematical frameworks for sequential optimization which enjoy theoretical
performance guarantees [Mar14]; [Sha+16]. Both can be seen as instances
of derivative-free optimization, that is algorithms that try to optimize
a function with access to a function evaluation oracle. Because of its
sequential nature, Bayesian optimization is not directly amenable to par-
allelism. Despite their mathematical qualities, there is an ongoing debate
regarding their practical effectiveness in comparison with pure random
search. Furthermore, both frameworks require experimenters to model
their a priori knowledge of the experimental setups in terms of objec-
tive functions to guide the exploration of parameters. While this may
seem to be a net loss compared to manually selecting parameters, the
number of parameters is at the same time much lower than the original
experimental setup and semantically richer since it encodes the goals
of the experimenter. These two frameworks are especially effective in
terms of obtaining statistically significant results from a small number
of experiments which is not necessarily the case with random search.
In terms of applicability, Bayesian optimization in the form of Gaussian
process regression [Ras04] is the most flexible method and can be adapted
to continuous, discrete, and even hierarchical data and can handle noisy
experiments, constraints on exploration, and more. Bandit algorithms on
the other hand can be seen as a very specific finite-dimensional analogue
which enjoy much stronger theoretical guarantees [B+12].

Optimal design of experiments: a class of techniques which attempt to find
estimators of maximum information [Sac+89]; [JKB06]. While Bayesian
optimization under the name of kriging [Kle09]; [R+12]; [Che+14] is often
considered part of optimal design, other techniques are centered around
finding optimal parameters assuming strong prior information on the
behavior of the model, which is often the case in statistics but not in
machine learning or algorithmics.

6.5.1 Gaussian process regression

Gaussian process regression [Ras04] is the core of the modern applications
of Bayesian optimization in the machine learning community to tune model
hyper-parameters. However, several issues are included with the technique.

157

6 Experimental design for randomized approximation algorithms

First, it is often difficult to select the parameters of the method itself called
kernels which sometimes come with their own parameters. Kernels are used
in Gaussian process regression to encode prior information on the experiment
and there is ongoing effort to find simple rules to select them [Duv14].

Acquisition functions are another category of parameters of the method
which describe the goal of the experimenter in finding the next experiment to
conduct [Rus+18]. They represent the trade-off between exploration, learning
about the unknown probability distribution, and exploitation, finding points
where the distribution has high value. For example, an experimenter might
want to select the experiment setup that is most likely going to minimize the
uncertainty over the effect of a parameter. Such acquisition functions include
variants of the upper confidence bound. Alternatively, it is possible to aim
for an experimental setup which will find the expected best possible value
according to the objective function. In practice, this is the most commonly used
acquisition function, named the expected improvement function.

While Gaussian process regression is the most common choice for Bayesian
optimization, alternatives such as t-Student processes [SWG14] and random
forest processes have been shown to exhibit similar practical performance.

6.5.2 Libraries

A large number of open source software and libraries offer solutions to per-
form Bayesian optimisation with Gaussian process regression, Tree-structured
Parzen Estimators (TPE), or in other cases model-free methods. A quick survey
of the literature has shown that simple practitioners, i.e. researchers who do
not develop alternative solutions, seem to use Hyperopt and Scikit-Optimize
most frequently.

• Hyperopt [BYC13a]; [BYC13b] is an easy to use library providing tree-
structure Parzen estimators optimization methods which allow for the
exploration of different types of parameters (continuous, discrete, hierar-
chical).

• Hyperband [Li+17] is a random search library enhanced with racing
techniques which can take advantage of parallel computing resources.

• Scikit-Optimize [Hea+18] is similar to Hyperopt but provides a large
selection of competing methods including a simple implementation of
random search.

158

6.6 Issues in experimental evaluation of algorithms

• SMAC [HHL11] is a sequential optimization software suite created by a
team focusing on using statistical methods for combinatorial optimiza-
tion.

• PyMC3 [SWF16] is a general purpose library designed for probabilistic
programming which includes a Gaussian process regression module.

6.6 Issues in experimental evaluation of algorithms

6.6.1 Qualitative differences

In the context of optimization, algorithms are expected to provide a solution,
i.e. a mathematical object which satisfies a set of constraints and provides
the best possible score in terms of the objective function. In that setting, it
is relatively straightforward to compare different algorithms by measuring
the time they take to reach an optimal solution. For NP-hard optimization
problems, it is often more practical to set a fixed time limit and compare
how many instances have been solved optimally as is commonly done for
challenges [Del+17]; [BS18]. However, no clear standards have been established
to compare optimization algorithms that are not necessarily correct, exact, or
deterministic.

Correctness can be relaxed in at least two ways: the WALK algorithm pro-
posed by Saha et al. [Sah+15] for example may return an unfeasible solution
as the output graph satisfies λmax(H) ≤ (1 + ε)λ instead of the required
λmax(H) ≤ λ. The λ∆-RR algorithm proposed by the present authors [BBG18]
is analyzed as a Monte Carlo algorithm i.e. it has a positive probability of
returning an unfeasible solution even if this probability can be controlled by
the user. Furthermore, the algorithms we consider in this study are heuristics or
approximation algorithms: none of them are guaranteed to return an optimal
solution.

Additionally, algorithms can differ in the way they construct candidate
solutions: while some algorithms start with a candidate solution and improve
on it step by step, other methods must finish all their steps before returning
anything. While this is not necessarily a problem in classical algorithm racing
challenges, the fact that some iterative algorithms can be stopped at every step
is a desired property in the context of approximation algorithms.

To complicate things even more, some algorithms can be naturally converted
into distributed or parallel algorithms, whereas some others are inherently
sequential.

159

6 Experimental design for randomized approximation algorithms

In this complex setting, it is difficult to design fair and unbiased benchmarks
to compare qualitatively different algorithms. However, we have so far only
mentioned theoretical differences in algorithms and have not considered the
context of modern software practice when implementing these algorithms.

6.6.2 Practical implementation details

Practical implementations of optimization algorithms are not direct equivalent
of the algorithms that are analyzed in theory. Clever preprocessing techniques,
tuning of hyperparameters, parallel implementations, and access to existing
software are essential building blocks when implementing state-of-the-art
optimization algorithms. We illustrate this fact by describing the details of
an implementation of the λ∆-RR algorithm, that is Algorithm 8 presented in
[BBG18].
Algorithm 8: λ∆ RELAXATION & RANDOMIZED ROUNDING

Data: G = (V,E),
√

2 ≤ λ < λmax(G).
Result: H = (V,E′) such that λmax(H) ≤ λ with probability p = 1− 1/|V |.

1 if λ ≥ log |V | then

2 y∗ ← arg



max
∑
ij∈E

yij

s.t.
∑
ij∈E

yijAij � λI∑
j∈Γ(i)

yij ≤ λ2, ∀i ∈ V

yij ∈ [0, 1], ∀ ij ∈ E
3 Set r = 1 + 10 log |V |
4 Sample ∀ ij ∈ E, xij ∼ Ber(y∗ij/r)
5 return H = (V, { ij ∈ E : xij = 1 })
6 else
7 return H = arg ν(G)
8 end

We will now describe how this simple relaxation and rounding algorithm
can be implemented in practice. We focus on the if branch of the algorithm.

The first step of the implementation is related to constructing and solving a
semidefinite program (line 2). This is heavily dependent on the semidefinite
solver employed. In order to consider our algorithm as a case study in relax-
ation and rounding implementations, we have focused on general-purpose
semidefinite solvers and left for further work the investigation of more specific

160

6.6 Issues in experimental evaluation of algorithms

solvers such as those based on the spectral bundle method [HR00], which can
be used to solve SDP problems in dual form, i.e. maximizing a linear functional
under a semidefinite constraint like in our problem. Instead, we have focused
our attention on the SuperSCS first-order solver [SMP17]; [TP16]; [ODo+16]
which has been shown to outperform a large panel of general-purpose approx-
imate SDP solvers. SuperSCS accepts constraint matrices as input which we
construct using the Numpy library and take care to not generate redundant
degree constraints which would be trivially true for the given adjacency matrix.
The SuperSCS solver comes with several parameters including: the desired
precision eps, an optional warm-start solution x, the amount of memory used
by the LBFGS subroutine memory, as well as a toggle to use the GPU to com-
pute solutions of linear systems gpu. This solver makes use of the BLAS and
LAPACK linear algebra subroutine packages. As we do not require an exactly
optimal solution we can tune these parameters to minimize the time spent
solving the SDP problem.

The second step of the implementation involves finding the smallest possible
r ∈ (1, 1 + 10 log |V |) (line 3) which outputs feasible random graphs with rela-
tively high probability. For this purpose we implement a dichotomy procedure
which aims at minimizing r under the constraint of an empirical sample of
dichotomy-sample-size graphs being at least dichotomy-sample-tol
percent feasible with a stopping condition based on a threshold dichotomy-improve
of relative improvement in r.

After this setting of r, we can sample subgraphs (line 4) and test their feasi-
bility in a massively parallel fashion. We then select the best feasible subgraph
that has been produced so far and return it (line 5. Testing the feasibility of a
subgraph amounts to computing the largest eigenvalue of its adjacency matrix
and comparing it to the bound λ. This can be done using third-party linear
algebra software like ARPACK [LSY98], a high-performance implementation
of the Implicitly Restarted Lanczos Method in Fortran77. This program which
computes approximate solutions to the eigenvalue problem Ax = λx has many
hyperparameters including tol a floating point number which represents the
relative accuracy required when computing eigenvalues and acts as a stop-
ping criterion. According to the ARPACK manual, if tol is set to 0.0 then the
program uses machine precision for the accuracy.

Algorithm 8 is presented as a Monte Carlo algorithm but since feasibility
can be checked in polynomial time, it can be converted in a Las Vegas algo-
rithm. This flexibility allows us to adapt it to settings where time is not a hard
constraint to benefit from its expected polynomial running time.

It is thus clear that algorithm implementations cannot be evaluated without
taking into account: third-party software dependencies, tuning of hyperparam-

161

6 Experimental design for randomized approximation algorithms

Step Line Software Parameters Parallel
construct SDP 2 Numpy – –
solve SDP 2 SuperSCS eps, x, memory, gpu GPU
select r 3 ARPACK ratio-feasibility-tol Joblib
sample subgraphs 4 ARPACK – Joblib
return best subgraph 5 – – reduce

Table 6.2: Details of the λ∆ algorithm

eters, or simple tricks developed to accelerate computation.
We note that experimental evaluation of algorithms should also be consid-

ered through the lens of recent theoretical developments. For example, the
new result by Ahmadinejad et al. [Ahm+19] which provides nearly linear time
algorithms for computing the largest eigenvalue of a non-negative matrix as
well as its associated eigenvector.

6.7 Experiments

We start by describing our experimental setup and detail how we selected
real-life network topologies together with random graph generators to provide
accurate points of comparison between the different methods. In a second part
we discuss the experimental results and summarize the evidence collected in
relation to the questions we have asked.

6.7.1 Pilot experiments

In this section we describe several pilot experiments that highlight the difficulty
of summarizing the performance of the implementation of our algorithm.

1. influence of solver precision

2. influence of the sampling parameters

3. approximation ratios obtained by different algorithms

4. effect of the degree constraint

162

6.7 Experiments

The influence of solver precision

The first pilot experiment is conducted on synthetic graphs of moderate size
(|V | ranges from 150 to 2500, while |E| ranges from 1470 to 39195) that represent
two extreme behaviors in terms of degree distributions. The threshold λ was
set to a logarithmic factor of the node size of each graph. The first group
consists of 4 G(n, p) random graphs, which are mostly homogeneous, while
the second group is composed of 4 random graphs obtained via the Barabasí-
Albert preferential attachment model [AB02], which are highly heterogeneous
as their degree distribution follow a power law.

The influence of the SDP solver precision parameter eps on running time,
cf. Figure 6.1, and solution quality, cf. Figure 6.2, seems to be puzzling at
first glance. It is clear that the overall running time increases with the size
of the instance, for example the number of edges |E(G)| in the input graph.
However, while this growth is modest in the case of homogeneous graphs, the
Barabasí-Albert graphs show a striking increase in running time, which we
suppose to be related to the size of the SDP program which necessitates several
GBs of memory to be processed by the solver. We observe that by requesting
a very coarse approximate solution, i.e. eps = 0.5, we abruptly lower the
computational burden incurred by the SDP solving step. Other experiments
not depicted here show on the contrary that high precision, i.e. eps = 0.01, is
qualitatively comparable to medium precision: the cases where eps = 0.1 or
0.2 shown in Figure 6.1.

One could imagine that the benefits brought by the coarser SDP approximate
solution in terms of running time would have to be compensated with discrete
solutions of lower quality. This belief is partially contradicted by the fact that
while the upper bound computed by the coarse SDP solution is not informative
in the case of homogeneous graphs, the graphs sampled from that distribution
turn out to share the same solution quality. Heterogeneous graphs display a
more straightforward behavior. First, the a posteriori approximation factor is
almost 1 as the graphs sampled from the SDP solutions are close to the upper
bound, hence close to optimal. Furthermore, it is possible to notice a visible
but moderate loss in solution quality as the solver precision goes down.

The effects of random sampling

In this second pilot experiment, we have reused the same groups of instances
to provide a point of reference. This time, we have fixed the solver precision to
moderate accuracy (eps = 0.2) and focused our attention on the randomized
rounding procedure.

163

6 Experimental design for randomized approximation algorithms

Figure 6.1: Overall running time is highly dependent on eps

Figure 6.2: Solution quality is moderately affected by eps

164

6.7 Experiments

Figure 6.3: Overall running time is weakly affected by the sampling step

While randomized rounding is described in Algorithm 8 as simply drawing
each edge ij from a Bernoulli random variable whose parameter is the ratio
of the relaxed optimal solution y∗ij and the sampling factor r, in practice the
solution obtained from the SDP solver might not be optimal and the sampling
factor is almost never equal to O(log n).

Instead, the implementation uses a variant of dichotomic search to select
the appropriate sampling factor. This sub-routine depends on three parame-
ters, sample_count, which determines how many graphs should be sampled
at every attempt, bisect_min_improvement which is the termination con-
dition for the dichotomy, and bisect_error which represents the highest
proportion of infeasible subgraphs acceptable in an interval. Furthermore,
since the interval in which to select the sampling factor starts at [1, O(log n)],
we know that this algorithm can default to the sampling factor value from the
proof which guarantees us a feasible solution with high probability.

In Figure 6.3, the variation in running time seems to stem from factors that
are not related to sampling and appears to be mostly due to non-deterministic
running time in the SDP solving phase. If we focus our attention to the third
set of rounding parameters, which features a termination condition that is
noticeably harder to reach than in the first two cases, we can observe that the
more demanding termination condition translates into slightly longer running
times and visibly longer sampling phases.

When looking at solution quality, we return to our previous observation in

165

6 Experimental design for randomized approximation algorithms

Figure 6.4: Solution quality can be improved by longer sampling phases

the first pilot experiment that the upper bounds obtained for homogeneous
graphs are loose. It is interesting to notice that the longer sampling phase in
the third set of sampling parameters has a noticeable effect on the quality of
both groups of instances. On the contrary, while the second set of sampling
parameters contains a higher number of samples per step, the termination
condition is not restrictive enough to match the first and third sets. We also
notice that the influence of the sampling phase seems to be more important on
heterogeneous graphs than homogeneous graphs.

Approximation across algorithms

In this third pilot experiment, we consider a larger set of instances including
synthetic instances, as well as some hand-picked instances from the SNAP
dataset [LK14] for which the SDP program could fit in memory.

We have implemented a simple variant of Algorithm 8 that uses a feasible
uniform solution to the SDP as base distribution for the sampling phase to-
gether with direct implementations of algorithms from van Mieghem et al.
[Van+11] and Saha et al. [Sah+15].

The top five scatter plots in Figure 6.5 present the running time spent by the
five algorithms we have studied to produce solutions. The leftmost plot shows
that the running time of the uniform rounding algorithm we have described
above is the most competitive. However, this is not surprising because the
algorithm simply involves sampling many random graphs and checking if their

166

6.7 Experiments

Figure 6.5: Randomized algorithms produce better and faster approximations

spectral radius exceeds or not the threshold. The second plot shows the limits
of Algorithm 8 in terms of scalability as the SDP program can become too large
to fit in memory. The running time of the relaxation and randomized rounding
algorithm seems to follow the same slope as the next plot which depicts the
running time of the Perron-Frobenius vector-based algorithm proposed by van
Mieghem et al. Unfortunately, this greedy algorithm quickly returns infeasible
solutions due to a large number of iterations which becomes prohibitive in
cases where too many edges need to be removed from the original graph.
The two remaining plots show that both the closed walks-based algorithm
proposed by Saha et al. and the naive greedy algorithm which picks the edge
that maximizes the decrease in spectral radius are not competitive in terms of
running time and almost never manage to produce feasible solutions.

The bottom five scatter plots represent the a posteriori approximation ratio
and seem to follow relatively similar slopes as the top ones. These ratios
are computed on the basis of available information which includes the best
feasible solution known across all algorithms and/or the best upper bound
when it is available. The best upper bound defaults to the trivial upper bound
which states that a graph on n nodes with spectral radius λ cannot have more
than λ/2n. To represent both feasible and infeasible solutions on the same
graphs, we have used the inverse of the approximation ratio which is less than
1 when the solution is feasible and more than 1 when the solution is infeasible.
In this experiment, the quality of the solutions produced by Algorithm 8 is
indistinguishable from those obtained by the simpler variant that does not

167

6 Experimental design for randomized approximation algorithms

Figure 6.6: Solution quality benefits from a more optimal distribution

solve the SDP. This is due in part to the scale of these plots in the presence of
coarsely approximate solutions and infeasible solutions.

We illustrate the difference of solution quality with Figure 6.6 which zooms in
onto a single small problem instance where the red line represents the spectral
radius threshold and the ovoid shapes are the random graphs sampled from the
distributions obtained from the nearly-optimal SDP solution, cf. SDP relaxation
& rounding, and the uniform solution, cf. Bernoulli sampling, respectively.

Importance of the degree constraint

The fourth pilot experiment is of smaller scale and illustrates the effect of the
degree constraint on random graphs sampled from a near-optimal SDP solution.
To see its effect, we design a small problem instance in which the graph is
highly heterogeneous and necessitates the maximum degree constraint, i.e. the
constraint is not trivial as in the large majority of graphs we have considered.

In Figure 6.7, the histogram on the left represents the distribution of the
spectral radius of random graphs sampled without sampling factor, i.e. r = 1,
from an optimal solution of Problem SDPλ∆. We can see that a large number
of random graphs are feasible since they stand on the left of the red line which
stands for the threshold. The right histogram on the other hand shows that

168

6.7 Experiments

Figure 6.7: High degrees strongly impact feasibility

the spectral radius of the random graphs follows a similar almost-Gaussian
distribution but none of which are feasible.

These pilot experiments illustrate that while some high-level characteristics
of Algorithm 8 seem to appear from a few initial experiments, the large vari-
ations in terms of running time, upper bound quality, solution quality, and
scalability show that the behavior of the implementation we have proposed is
not straightforward and requires much more care. Indeed, being able to divide
by a factor of three the running time of a difficult instance without losing a
significant approximation factor is puzzling at best. It also remains to be seen
what properties of graphs and degree distributions have the most impact on
the SDP phase.

6.7.2 Experimental setup

We have implemented the above algorithms using the Python 3 programming
language with extensive use of linear algebra packages like ARPACK and LA-
PACK exposed via the Scipy and the Numpy libraries. Semidefinite programs
are written using the cvxpy library which also provides interfaces to a variety
of third-party optimization solvers. We mainly use the open-source SuperSCS
solver to find solutions to our semidefinite programs and in some cases employ
the closed-source MOSEK solver as well as the open-source solver CVXOPT.

Experiments are managed via the Sacred Python library which provides
facilities for defining, running, and monitoring arbitrary computational exper-
iments. We have run the experiments on a MacBook Pro equipped with an
Intel Core i5-6360U CPU with 2 hyper-threaded cores clocked at 2GHz and
8GB of main memory. Each algorithm is provided with a bounded time budget
defined on an instance basis which aims at modeling the need for a quick de-

169

6 Experimental design for randomized approximation algorithms

cision when calculating a counter-measure for an ongoing network epidemic.
This follows existing practice when evaluating previously proposed algorithms
in different settings such as disease control in Zhang et al. [Zha+15] but we
underline that applications in disease control may benefit from computational
time budgets counted in days whereas automated network security policies
can be expected to react within a few minutes.

We start by exploring generic questions which hold for all algorithms:

A posteriori approximation: given an input graph and a target threshold,
which algorithm produces a feasible subgraph with the maximum num-
ber of edges?

Parameter sensitivity: how does algorithm performance evolve as λ goes
from being close to the original spectral radius to 1, its lowest possible
value?

Instance sensitivity: do algorithms perform as well at varying levels of input
graph sparsity? Since the spectral radius is bounded below by the average
degree of the graph and bounded above by the maximum degree, does
input graph regularity have an effect on algorithm performance?

Time/performance profile: how do algorithms benefit from running for a
larger amount of time?

Algorithms based on the relaxation and rounding framework have only
been briefly studied in the context of optimization problems related to spectral
graph theory. One experiment in Zhang et al. [Zha+15] compares the runtime
of a semidefinite programming formulation compared to other algorithms.
However, we are interested in the practical usage of solutions obtained via
randomized rounding methods which involves the consideration of several
issues such as the fast computation of a feasible solution to the semidefinite
program, a possible lack of feasible samples, as well as the question of setting
appropriate scaling parameters. To this end we discuss the following questions:

Approximation tolerance: what is the behavior of random subgraph genera-
tors obtained from suboptimal solutions to the semidefinite program?

Feasibility: what is the proportion of feasible subgraphs returned by random-
ized algorithms? Does this proportion have a link with performance?

Anti-concentration: do random subgraph generators sometimes fail to pro-
duce feasible solutions with overwhelming probability? Do the predic-
tions of Le et al. [LLV15] regarding sparse inhomogeneous Erdös-Renyí

170

6.8 Pre-registration

graphs apply to the random subgraph generators relevant to the MAX

λ-SPECTRAL SUBGRAPH problem?

Instances

Random graph generators are a useful tool when investigating questions rela-
tive to graph parameters. For example, Erdös-Renyí graphs can be used as a
proxy for graph density by changing the probability for each edge to appear.
It is also useful to combine different generators which provide radically dif-
ferent properties e.g. a comparison between random regular graphs and a
combination of random power-law tree graphs can give an idea of the effect
of regularity when running algorithms on graphs with a constant number of
nodes and edges.

On the other hand, raw algorithm performance appears to be assessed
in a practical manner when algorithms are confronted to real-life networks
exhibiting features that can elude mathematical characterizations. For this
reason we consider the Stanford Large Network Dataset Collection [LK14]
which comprise not only social network topologies but also communication
networks such as snapshots of the global network of Autonomous Systems.
While networks of that scale might not be currently managed via software-
defined networking, ongoing efforts by major technology companies as well
as by Internet providers point at a near future where this setting would be
realistic scenario.

Evaluating infeasible solutions

Our setting puts a high penalty on infeasible solutions since their deployment to
a software-defined network would not change the propagation of the epidemic.
Contrarily to previous works which mainly studied greedy algorithms and
considered the spectral radius of the resulting subgraph to be a best effort
objective, we want to qualify which algorithms are adequate i.e. algorithms
which output actually secure network topologies. In the case of randomized
algorithms, we will consider as adequate an algorithm which outputs at least
one feasible solution in strictly more than 2/3 of its runs.

6.8 Pre-registration

We have explored methodological frameworks and practical tools to design
adequate experiments to assess the performance of randomized approximation
algorithms.

171

6 Experimental design for randomized approximation algorithms

First, we have highlighted the specificity of algorithms as experimental
subjects and addressed the shortcomings associated with directly applying
methodology related to natural processes. Then, we have discussed the key
factors which contribute to the observed performance of algorithm implemen-
tations in practice.

Then we have presented several methods that help with selecting parame-
ters as parts of an experimental setup. In particular, we have found that the
family of Bayesian optimization methods and in particular Gaussian process
regression is a good fit to study randomized approximation algorithms. Indeed
by nature of the optimization task and the type of algorithm employed, each
run can be noisy from the randomization, might fail if the algorithm does
not return a feasible solution, and might take a significant amount of time to
complete.

Finally we have provided extensive details of the direct implementation of
our proposed algorithm and of the surprisingly many parameters that arise
from a straightforward effort. We have detailed available computing resources
as well as instance datasets and generators that can be used in the Bayesian
optimization process.

This work serves as a pre-registration of experiments to come, which is
another way to remove bias from real life applications the scientific method.

172

Conclusion

The growing threats to network security are being met with countermeasures
allowed by an increasing degree of monitoring and control over the network.
In this thesis, we have proposed a new countermeasure based on the reconfig-
uration of the network topology. In particular, we have designed an algorithm
which, given the topology as an undirected graph and an information on the
characteristic speed of a propagating malware, can select an adequate topology
which is guaranteed to remove the epidemic in a short amount of time. This
topology modification necessitates to remove existing links in the network
but since the extinction of the epidemic is known to be fast, the links can be
disabled temporarily.

The advantages of the algorithm we have proposed are numerous, first it can
be easily implemented by reusing existing semidefinite programming solvers
as well as more specific optimization methods, and readily adapted to make
use of parallelism both in the optimization step and in the sampling step by
leveraging the capabilities of graphical processing units. Also, our algorithm is
flexible and can be easily modified to provide coarse-grained solutions very
fast or higher quality solutions if time and computational resources permit.
Furthermore, its analysis can be specialized to specific classes of graphs and
random graphs which may yield better approximation ratios or additional
algorithmic insights.

Theoretically, the maximum spectral subgraph is interesting in itself as a
canonical example of optimization in spectral graph theory. Many variants
of this problem could be considered, ranging from different objectives such
as taking into account the variability of importance among edges, or other
spectral properties such as the algebraic connectivity. Additional constraints
such as required edges or entire subgraphs could be considered in contexts
where critical subnetworks need to be maintained at all times during an epi-
demic. More generally, other optimization problems based on spectral graph
theory might also admit good approximate algorithms using the relaxation
and randomized rounding framework.

On the topic of lower bounds, it would be insightful to investigate the
computational power of the sum of squares algorithm on the maximum spectral
subgraph problem of which our algorithm is the simplest example, i.e. the first

175

Conclusion

level of the hierarchy of relaxations. A more ambitious goal would be to prove
some hardness result assuming some reasonable computational complexity
conjecture. Alternatively, one could study the parameterized complexity of the
maximum spectral subgraph problem, although it is not entirely clear how to
handle potentially irrational eigenvalues as parameters.

Finally, the implementation of a SDN module, which would combine sta-
tistical methods to infer the most likely epidemic parameters together with
an algorithm which designs an epidemic-repelling topology, could be studied
experimentally either in simulators or in toy networks to assess the practicality
and impact of this type of countermeasure.

176

Bibliography

[AB02] Réka Albert and Albert-László Barabási. “Statistical mechanics
of complex networks”. In: Reviews of modern physics 74.1 (2002),
p. 47.

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern
approach. Cambridge University Press, 2009.

[ACP87] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski.
“Complexity of finding embeddings in ak-tree”. In: SIAM Journal
on Algebraic Discrete Methods 8.2 (1987), pp. 277–284.

[Ahm+19] AmirMahdi Ahmadinejad, Arun Jambulapati, Amin Saberi, and
Aaron Sidford. “Perron-Frobenius Theory in Nearly Linear Time:
Positive Eigenvectors, M-matrices, Graph Kernels, and Other
Applications”. In: Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM. 2019, pp. 1387–1404.

[AS04] Noga Alon and Joel H Spencer. The probabilistic method. John Wiley
& Sons, 2004.

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic checking of proofs:
A new characterization of NP”. In: Journal of the ACM (JACM) 45.1
(1998), pp. 70–122.

[B+07] James Bennett, Stan Lanning, et al. “The netflix prize”. In: Pro-
ceedings of KDD cup and workshop. Vol. 2007. New York, NY, USA.
2007, p. 35.

[B+12] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. “Regret analysis of
stochastic and nonstochastic multi-armed bandit problems”. In:
Foundations and Trends® in Machine Learning 5.1 (2012), pp. 1–122.

[Ban18] Afonso S Bandeira. “Random Laplacian matrices and convex
relaxations”. In: Foundations of Computational Mathematics 18.2
(2018), pp. 345–379.

[Baz+14] Cristina Bazgan, Morgan Chopin, André Nichterlein, and Florian
Sikora. “Parameterized approximability of maximizing the spread
of influence in networks”. In: Journal of Discrete Algorithms 27
(2014), pp. 54–65.

179

Bibliography

[BB12] James Bergstra and Yoshua Bengio. “Random search for hyper-
parameter optimization”. In: Journal of Machine Learning Research
13.Feb (2012), pp. 281–305.

[BBG] Cristina Bazgan, Paul Beaujean, and Éric Gourdin. “Experimen-
tal evaluation of an approximation algorithm for the maximum
spectral subgraph problem”. In preparation.

[BBG18] Cristina Bazgan, Paul Beaujean, and Éric Gourdin. “Relaxation
and matrix randomized rounding for the maximum spectral sub-
graph problem”. In: Proceedings of the 12th International Conference
on Combinatorial Optimization and Applications. Best Student Paper.
2018, pp. 108–122.

[BBG20] Cristina Bazgan, Paul Beaujean, and Éric Gourdin. “An approxi-
mation algorithm for the maximum spectral subgraph problem”.
In: Journal of Combinatorial Optimization (2020), pp. 1–20.

[Ber+11] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
“Algorithms for hyper-parameter optimization”. In: Advances in
neural information processing systems. 2011, pp. 2546–2554.

[Ber24] Sergei Bernstein. “On a modification of Chebyshev’s inequality
and of the error formula of Laplace”. In: Ann. Sci. Inst. Sav. Ukraine,
Sect. Math 1.4 (1924), pp. 38–49.

[Bha13] Rajendra Bhatia. Matrix analysis. Vol. 169. Springer Science & Busi-
ness Media, 2013.

[BHL17] Vahid Beiranvand, Warren Hare, and Yves Lucet. “Best practices
for comparing optimization algorithms”. In: Optimization and En-
gineering 18.4 (2017), pp. 815–848.

[Bis06] Christopher M Bishop. Pattern recognition and machine learning.
Springer, 2006.

[BN01] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex
optimization: analysis, algorithms, and engineering applications. SIAM,
2001.

[Bol01] Béla Bollobás. Random graphs. 73. Cambridge University Press,
2001.

[Bol80] Béla Bollobás. “The distribution of the maximum degree of a
random graph”. In: Discrete Mathematics 32.2 (1980), pp. 201–203.

180

Bibliography

[BP14] Thomas Bartz-Beielstein and Mike Preuß. “Experimental analysis
of optimization algorithms: Tuning and beyond”. In: Theory and
Principled Methods for the Design of Metaheuristics. Springer, 2014,
pp. 205–245.

[Bra17] Fred Brauer. “Mathematical epidemiology: Past, present, and
future”. In: Infectious Disease Modelling 2.2 (2017), pp. 113–127.

[BS18] Edouard Bonnet and Florian Sikora. “The PACE 2018 Parameter-
ized Algorithms and Computational Experiments Challenge: The
Third Iteration”. In: 13th International Symposium on Parameterized
and Exact Computation (IPEC 2018). 2018.

[BST99] Cristina Bazgan, Miklos Santha, and Zsolt Tuza. “On the approxi-
mation of finding a(nother) Hamiltonian cycle in cubic Hamilto-
nian graphs”. In: Journal of Algorithms 31.1 (1999), pp. 249–268.

[BT02] Dimitri P Bertsekas and John N Tsitsiklis. Introduction to probability.
Vol. 1. 2002.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[BYC13a] James Bergstra, Dan Yamins, and David D Cox. “Hyperopt: A
python library for optimizing the hyperparameters of machine
learning algorithms”. In: Proceedings of the 12th Python in Science
Conference. Citeseer. 2013.

[BYC13b] James Bergstra, Daniel Yamins, and David Daniel Cox. “Mak-
ing a science of model search: Hyperparameter optimization in
hundreds of dimensions for vision architectures”. In: (2013).

[Cha+08] Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jurij Leskovec,
and Christos Faloutsos. “Epidemic thresholds in real networks”.
In: ACM Transactions on Information and System Security (TISSEC)
10.4 (2008), p. 1.

[Che+14] Clément Chevalier, Julien Bect, David Ginsbourger, Emmanuel
Vazquez, Victor Picheny, and Yann Richet. “Fast parallel kriging-
based stepwise uncertainty reduction with application to the
identification of an excursion set”. In: Technometrics 56.4 (2014),
pp. 455–465.

[Che+18] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K
Duvenaud. “Neural ordinary differential equations”. In: Advances
in neural information processing systems. 2018, pp. 6571–6583.

181

Bibliography

[Che+52] Herman Chernoff et al. “A measure of asymptotic efficiency for
tests of a hypothesis based on the sum of observations”. In: The
Annals of Mathematical Statistics 23.4 (1952), pp. 493–507.

[Cho+14] Shihabur Rahman Chowdhury, Md Faizul Bari, Reaz Ahmed,
and Raouf Boutaba. “Payless: A low cost network monitoring
framework for software defined networks”. In: 2014 IEEE Network
Operations and Management Symposium (NOMS). IEEE. 2014, pp. 1–
9.

[Chu97] Fan RK Chung. Spectral graph theory. 92. American Mathematical
Soc., 1997.

[CM14] Corinna Cortes and Mehryar Mohri. “Domain adaptation and
sample bias correction theory and algorithm for regression”. In:
Theoretical Computer Science 519 (2014), pp. 103–126.

[Coo71] Stephen A Cook. “The complexity of theorem-proving proce-
dures”. In: Proceedings of the third annual ACM symposium on Theory
of computing. ACM. 1971, pp. 151–158.

[CR11] Fan Chung and Mary Radcliffe. “On the spectra of general ran-
dom graphs”. In: The Electronic Journal of Combinatorics 18.1 (2011),
p. 215.

[Cyg+15] Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Loksh-
tanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket
Saurabh. Parameterized algorithms. Vol. 4. 8. Springer, 2015.

[Dal+12] Gerard V Dallal et al. The little handbook of statistical practice. 2012.
URL: http://www.jerrydallal.com/LHSP/LHSP.htm
(visited on 09/30/2019).

[Del+17] Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Math-
ias Weller. “The PACE 2017 Parameterized Algorithms and Com-
putational Experiments Challenge: The Second Iteration”. In: 12th
International Symposium on Parameterized and Exact Computation
(IPEC 2017). 2017.

[Dem+08] Erik D Demaine, Uriel Feige, MohammadTaghi Hajiaghayi, and
Mohammad R Salavatipour. “Combination can be hard: Approx-
imability of the unique coverage problem”. In: SIAM Journal on
Computing 38.4 (2008), pp. 1464–1483.

182

http://www.jerrydallal.com/LHSP/LHSP.htm

Bibliography

[Den+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. “Imagenet: A large-scale hierarchical image database”. In:
2009 IEEE conference on computer vision and pattern recognition. Ieee.
2009, pp. 248–255.

[Den+15] Juan Deng, Hongxin Hu, Hongda Li, Zhizhong Pan, Kuang-Ching
Wang, Gail-Joon Ahn, Jun Bi, and Younghee Park. “VNGuard: An
NFV/SDN combination framework for provisioning and manag-
ing virtual firewalls”. In: 2015 IEEE Conference on Network Function
Virtualization and Software Defined Network (NFV-SDN). IEEE. 2015,
pp. 107–114.

[DH00] Odo Diekmann and Johan Andre Peter Heesterbeek. Mathemat-
ical epidemiology of infectious diseases: model building, analysis and
interpretation. Vol. 5. John Wiley & Sons, 2000.

[DM02] Elizabeth D Dolan and Jorge J Moré. “Benchmarking optimization
software with performance profiles”. In: Mathematical program-
ming 91.2 (2002), pp. 201–213.

[Duv14] David Duvenaud. “Automatic model construction with Gaussian
processes”. PhD thesis. University of Cambridge, 2014.

[Edm65] Jack Edmonds. “Paths, trees, and flowers”. In: Canadian Journal of
mathematics 17.3 (1965), pp. 449–467.

[Eps73] H Epstein. “Remarks on two theorems of E. Lieb”. In: Communica-
tions in Mathematical Physics 31.4 (1973), pp. 317–325.

[ER60] Paul Erdos and Alfréd Rényi. “On the evolution of random graphs”.
In: Publ. Math. Inst. Hung. Acad. Sci 5.1 (1960), pp. 17–60.

[FHL08] Uriel Feige, MohammadTaghi Hajiaghayi, and James R Lee. “Im-
proved approximation algorithms for minimum weight vertex
separators”. In: SIAM Journal on Computing 38.2 (2008), pp. 629–
657.

[Fie73] Miroslav Fiedler. “Algebraic connectivity of graphs”. In: Czechoslo-
vak mathematical journal 23.2 (1973), pp. 298–305.

[FK96] Ehud Friedgut and Gil Kalai. “Every monotone graph property
has a sharp threshold”. In: Proceedings of the American mathematical
Society 124.10 (1996), pp. 2993–3002.

[FPK01] Uriel Feige, David Peleg, and Guy Kortsarz. “The dense k-subgraph
problem”. In: Algorithmica 29.3 (2001), pp. 410–421.

183

Bibliography

[GB06] Arpita Ghosh and Stephen Boyd. “Growing well-connected graphs”.
In: Proceedings of the 45th IEEE Conference on Decision and Control.
IEEE. 2006, pp. 6605–6611.

[Gil59] Edgar N Gilbert. “Random graphs”. In: The Annals of Mathematical
Statistics 30.4 (1959), pp. 1141–1144.

[Gil77] John Gill. “Computational complexity of probabilistic Turing ma-
chines”. In: SIAM Journal on Computing 6.4 (1977), pp. 675–695.

[GJ] Michael R Garey and David S Johnson. Computers and intractability.
Vol. 29.

[GM12] Bernd Gärtner and Jiri Matousek. Approximation algorithms and
semidefinite programming. Springer Science & Business Media,
2012.

[GMM71] Narendra S Goel, Samaresh C Maitra, and Elliott W Montroll. “On
the Volterra and other nonlinear models of interacting popula-
tions”. In: Reviews of modern physics 43.2 (1971), p. 231.

[GMT05] Ayalvadi Ganesh, Laurent Massoulié, and Don Towsley. “The
effect of network topology on the spread of epidemics”. In: IN-
FOCOM 2005. 24th Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings IEEE. Vol. 2. IEEE. 2005,
pp. 1455–1466.

[GW95] Michel X Goemans and David P Williamson. “Improved approxi-
mation algorithms for maximum cut and satisfiability problems
using semidefinite programming”. In: Journal of the ACM (JACM)
42.6 (1995), pp. 1115–1145.

[Han+16a] Wonkyu Han, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn.
“Honeymix: Toward sdn-based intelligent honeynet”. In: Proceed-
ings of the 2016 ACM International Workshop on Security in Software
Defined Networks & Network Function Virtualization. ACM. 2016,
pp. 1–6.

[Han+16b] Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tusar, and
Dimo Brockhoff. “COCO: A platform for comparing continuous
optimizers in a black-box setting”. In: arXiv preprint arXiv:1603.08785
(2016).

[Han17] Ramon van Handel. “Structured random matrices”. In: Convexity
and Concentration. Springer, 2017, pp. 107–156.

184

Bibliography

[HDS74] Morris W Hirsch, Robert L Devaney, and Stephen Smale. Dif-
ferential equations, dynamical systems, and linear algebra. Vol. 60.
Academic press, 1974.

[Hea+18] Tim Head et al. scikit-optimize/scikit-optimize: v0.5.2. Mar. 2018. DOI:
10.5281/zenodo.1207017. URL: https://doi.org/10.
5281/zenodo.1207017.

[Hea67] John Z Hearon. “Partially Isometric Matrices”. In: Journal of Re-
search of the National Bureau of Standards -B. Mathematics and Mathe-
matical Physics 71B.4 (1967), pp. 225–228.

[Hel00] Keld Helsgaun. “An effective implementation of the Lin–Kernighan
traveling salesman heuristic”. In: European Journal of Operational
Research 126.1 (2000), pp. 106–130.

[HHL11] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. “Se-
quential model-based optimization for general algorithm config-
uration”. In: International Conference on Learning and Intelligent
Optimization. Springer. 2011, pp. 507–523.

[Hol12] Richard A Holmgren. A first course in discrete dynamical systems.
Springer Science & Business Media, 2012.

[HR00] Christoph Helmberg and Franz Rendl. “A spectral bundle method
for semidefinite programming”. In: SIAM Journal on Optimization
10.3 (2000), pp. 673–696.

[HS65] Juris Hartmanis and Richard E Stearns. “On the computational
complexity of algorithms”. In: Transactions of the American Mathe-
matical Society 117 (1965), pp. 285–306.

[Hut18] M Hutson. “Artificial intelligence faces reproducibility crisis.” In:
Science (New York, NY) 359.6377 (2018), p. 725.

[JKB06] Alexander I J. Forrester, Andy J Keane, and Neil W Bressloff.
“Design and analysis of" Noisy" computer experiments”. In: AIAA
journal 44.10 (2006), pp. 2331–2339.

[Joh02] David S Johnson. “A theoretician’s guide to the experimental
analysis of algorithms”. In: (2002).

[Jou+17] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson,
Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia,
Nan Boden, Al Borchers, et al. “In-datacenter performance analy-
sis of a tensor processing unit”. In: 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA). IEEE.
2017, pp. 1–12.

185

https://doi.org/10.5281/zenodo.1207017
https://doi.org/10.5281/zenodo.1207017
https://doi.org/10.5281/zenodo.1207017

Bibliography

[Kar72] Richard M Karp. “Reducibility among combinatorial problems”.
In: Complexity of computer computations. Springer, 1972, pp. 85–103.

[Kha80] Leonid G Khachiyan. “Polynomial algorithms in linear program-
ming”. In: USSR Computational Mathematics and Mathematical Physics
20.1 (1980), pp. 53–72.

[Kho02] Subhash Khot. “On the power of unique 2-prover 1-round games”.
In: Proceedings of the thiry-fourth annual ACM symposium on Theory
of computing. ACM. 2002, pp. 767–775.

[Kle09] Jack PC Kleijnen. “Kriging metamodeling in simulation: A re-
view”. In: European journal of operational research 192.3 (2009),
pp. 707–716.

[KM27] William Ogilvy Kermack and Anderson G McKendrick. “A contri-
bution to the mathematical theory of epidemics”. In: Proceedings
of the royal society of london. Series A, Containing papers of a mathe-
matical and physical character 115.772 (1927), pp. 700–721.

[Kol+10] Alexandra Kolla, Yury Makarychev, Amin Saberi, and Shang-Hua
Teng. “Subgraph sparsification and nearly optimal ultrasparsi-
fiers”. In: Proceedings of the forty-second ACM symposium on Theory
of computing. ACM. 2010, pp. 57–66.

[KPB14] Panos Kampanakis, Harry Perros, and Tsegereda Beyene. “SDN-
based solutions for moving target defense network protection”.
In: Proceeding of IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks 2014. IEEE. 2014, pp. 1–6.

[KS03] Michael Krivelevich and Benny Sudakov. “The largest eigenvalue
of sparse random graphs”. In: Combinatorics, Probability and Com-
puting 12.01 (2003), pp. 61–72.

[KV16] E. de Klerk and F. Vallentin. “On the Turing model complexity of
interior point methods for semidefinite programming”. In: SIAM J.
Optim. 26.3 (2016), pp. 1944–1961. DOI: 10.1137/15M103114X.

[Las01] Jean B Lasserre. “Global optimization with polynomials and the
problem of moments”. In: SIAM Journal on optimization 11.3 (2001),
pp. 796–817.

[Led01] Michel Ledoux. The concentration of measure phenomenon. 89. Amer-
ican Mathematical Soc., 2001.

186

https://doi.org/10.1137/15M103114X

Bibliography

[Li+17] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh,
and Ameet Talwalkar. “Hyperband: A novel bandit-based ap-
proach to hyperparameter optimization”. In: The Journal of Ma-
chine Learning Research 18.1 (2017), pp. 6765–6816.

[Lie73] Elliott H Lieb. “Convex trace functions and the Wigner-Yanase-
Dyson conjecture”. In: Les rencontres physiciens-mathématiciens de
Strasbourg-RCP25 19 (1973), pp. 0–35.

[Lin+14] Xihong Lin, Christian Genest, David L Banks, Geert Molenberghs,
David W Scott, and Jane-Ling Wang. Past, present, and future of
statistical science. CRC Press, 2014.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/
data. June 2014.

[LL01] Elliott H Lieb and Michael Loss. Analysis. Vol. 14. 2001.

[LLV15] Can M Le, Elizaveta Levina, and Roman Vershynin. “Sparse ran-
dom graphs: regularization and concentration of the Laplacian”.
In: arXiv preprint arXiv:1502.03049 (2015).

[LLV17] Can M Le, Elizaveta Levina, and Roman Vershynin. “Concentra-
tion and regularization of random graphs”. In: Random Structures
& Algorithms 51.3 (2017), pp. 538–561.

[Lóp+16] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres,
Mauro Birattari, and Thomas Stützle. “The irace package: Iterated
racing for automatic algorithm configuration”. In: Operations Re-
search Perspectives 3 (2016), pp. 43–58.

[Lot10] Alfred J Lotka. “Contribution to the theory of periodic reactions”.
In: The Journal of Physical Chemistry 14.3 (1910), pp. 271–274.

[LR05] Monique Laurent and Franz Rendl. “Semidefinite programming
and integer programming”. In: Handbooks in Operations Research
and Management Science 12 (2005), pp. 393–514.

[LSY98] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK
users’ guide: solution of large-scale eigenvalue problems with implicitly
restarted Arnoldi methods. Vol. 6. Siam, 1998.

187

http://snap.stanford.edu/data
http://snap.stanford.edu/data

Bibliography

[Lui+15] Marcelo Caggiani Luizelli, Leonardo Richter Bays, Luciana Salete
Buriol, Marinho Pilla Barcellos, and Luciano Paschoal Gaspary.
“Piecing together the NFV provisioning puzzle: Efficient place-
ment and chaining of virtual network functions”. In: 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM).
IEEE. 2015, pp. 98–106.

[Mar08] Dániel Marx. “Parameterized complexity and approximation al-
gorithms”. In: The Computer Journal 51.1 (2008), pp. 60–78.

[Mar14] Ruben Martinez-Cantin. “BayesOpt: A Bayesian Optimization Li-
brary for Nonlinear Optimization, Experimental Design and Ban-
dits”. In: Journal of Machine Learning Research 15 (2014), pp. 3915–
3919.

[McG01] Catherine C McGeoch. “Experimental analysis of algorithms”. In:
Notices of the AMS 48.3 (2001), pp. 304–311.

[MKK11] Syed Akbar Mehdi, Junaid Khalid, and Syed Ali Khayam. “Revis-
iting traffic anomaly detection using software defined network-
ing”. In: Proceedings of the International Workshop on Recent Advances
in Intrusion Detection (RAID 2011). Springer. 2011, pp. 161–180.

[MN05] James W Mickens and Brian D Noble. “Modeling epidemic spread-
ing in mobile environments”. In: Proceedings of the 4th ACM work-
shop on Wireless security. ACM. 2005, pp. 77–86.

[Mos08] Damon Mosk-Aoyama. “Maximum algebraic connectivity aug-
mentation is NP-hard”. In: Operations Research Letters 36.6 (2008),
pp. 677–679.

[MP03] Junshui Ma and Simon Perkins. “Time-series novelty detection
using one-class support vector machines”. In: Proceedings of the
International Joint Conference on Neural Networks, 2003. Vol. 3. IEEE.
2003, pp. 1741–1745.

[MR10] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms.
Chapman & Hall/CRC, 2010.

[MS07] Bimal Kumar Mishra and Dinesh Kumar Saini. “SEIRS epidemic
model with delay for transmission of malicious objects in com-
puter network”. In: Applied Mathematics and Computation 188.2
(2007), pp. 1476–1482.

[NBG08] John Nickolls, Ian Buck, and Michael Garland. “Scalable parallel
programming”. In: 2008 IEEE Hot Chips 20 Symposium (HCS). IEEE.
2008, pp. 40–53.

188

Bibliography

[Nie11] Jiawang Nie. “Polynomial matrix inequality and semidefinite
representation”. In: Mathematics of Operations Research 36.3 (2011),
pp. 398–415.

[NPP16] Cameron Nowzari, Victor M Preciado, and George J Pappas.
“Analysis and control of epidemics: A survey of spreading pro-
cesses on complex networks”. In: IEEE Control Systems 36.1 (2016),
pp. 26–46.

[ODo+16] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd.
“Conic optimization via operator splitting and homogeneous self-
dual embedding”. In: Journal of Optimization Theory and Applica-
tions 169.3 (2016), pp. 1042–1068.

[Orl+10] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur
Tomaszewski. “SNDlib 1.0—Survivable network design library”.
In: Networks 55.3 (2010), pp. 276–286.

[Par03] Pablo A Parrilo. “Semidefinite programming relaxations for semi-
algebraic problems”. In: Mathematical programming 96.2 (2003),
pp. 293–320.

[PC99] Victor Y. Pan and Zhao Q. Chen. “The complexity of the matrix
eigenproblem”. In: Proceedings of the ACM Symposium on Theory of
Computing (STOC 1999). 1999, pp. 507–516.

[Per07] Oskar Perron. “Zur theorie der matrices”. In: Mathematische An-
nalen 64.2 (1907), pp. 248–263.

[Pra+11] B Aditya Prakash, Deepayan Chakrabarti, Michalis Faloutsos,
Nicholas Valler, and Christos Faloutsos. “Threshold conditions
for arbitrary cascade models on arbitrary networks”. In: Data
Mining (ICDM), 2011 IEEE 11th International Conference on. IEEE.
2011, pp. 537–546.

[PY91] Christos H Papadimitriou and Mihalis Yannakakis. “Optimiza-
tion, approximation, and complexity classes”. In: Journal of com-
puter and system sciences 43.3 (1991), pp. 425–440.

[R+12] Olivier Roustant, David Ginsbourger, Yves Deville, et al. “DiceK-
riging, DiceOptim: Two R Packages for the Analysis of Computer
Experiments by Kriging-Based Metamodeling and Optimization”.
In: Journal of Statistical Software 51.i01 (2012).

[Rag08] Prasad Raghavendra. “Optimal algorithms and inapproximability
results for every CSP?” In: Proceedings of the fortieth annual ACM
symposium on Theory of computing. ACM. 2008, pp. 245–254.

189

Bibliography

[Ras04] Carl Edward Rasmussen. “Gaussian processes in machine learn-
ing”. In: Advanced lectures on machine learning. Springer, 2004,
pp. 63–71.

[Rei91] Gerhard Reinelt. “TSPLIB—A traveling salesman problem library”.
In: ORSA journal on computing 3.4 (1991), pp. 376–384.

[RMN09] Rajat Raina, Anand Madhavan, and Andrew Y Ng. “Large-scale
deep unsupervised learning using graphics processors”. In: Pro-
ceedings of the 26th annual international conference on machine learn-
ing. ACM. 2009, pp. 873–880.

[RS04] Neil Robertson and Paul D Seymour. “Graph minors. XX. Wag-
ner’s conjecture”. In: Journal of Combinatorial Theory, Series B 92.2
(2004), pp. 325–357.

[RT87] Prabhakar Raghavan and Clark D Tompson. “Randomized round-
ing: a technique for provably good algorithms and algorithmic
proofs”. In: Combinatorica 7.4 (1987), pp. 365–374.

[Rub74] Donald B Rubin. “Estimating causal effects of treatments in ran-
domized and nonrandomized studies.” In: Journal of educational
Psychology 66.5 (1974), p. 688.

[Rud91] Walter Rudin. Functional Analysis. McGrawHill, 1991.

[Ruh17] Navid Azizan Ruhi. “Inferring Epidemic Parameters in Networked
SIS Epidemics”. California Institute of Technology ACM 158
Project. 2017.

[Rus+18] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Os-
band, Zheng Wen, et al. “A tutorial on Thompson sampling”. In:
Foundations and Trends® in Machine Learning 11.1 (2018), pp. 1–96.

[Sac+89] Jerome Sacks, William J Welch, Toby J Mitchell, and Henry P
Wynn. “Design and analysis of computer experiments”. In: Statis-
tical science (1989), pp. 409–423.

[Sah+15] Sudip Saha, Abhijin Adiga, B Aditya Prakash, and Anil Kumar S
Vullikanti. “Approximation algorithms for reducing the spectral
radius to control epidemic spread”. In: Proceedings of the 2015
SIAM International Conference on Data Mining. SIAM. 2015, pp. 568–
576.

[Sch03] Alexander Schrijver. Combinatorial optimization: polyhedra and effi-
ciency. Vol. 24. Springer Science & Business Media, 2003.

190

Bibliography

[SG12] Seungwon Shin and Guofei Gu. “CloudWatcher: Network secu-
rity monitoring using OpenFlow in dynamic cloud networks (or:
How to provide security monitoring as a service in clouds?)” In:
Proceedings of the IEEE International Conference on Network Protocols
(ICNP 2012). IEEE. 2012, pp. 1–6.

[Sha+16] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and
Nando De Freitas. “Taking the human out of the loop: A review
of bayesian optimization”. In: Proceedings of the IEEE 104.1 (2016),
pp. 148–175.

[Sla+08] Gordon Slade et al. “Probabilistic models of critical phenomena”.
In: The Princeton companion to mathematics. 2008, pp. 343–346.

[SMP17] P. Sopasakis, K. Menounou, and P. Patrinos. SuperSCS: A fast
and accurate conic optimization solver. https://kul-forbes.
github.io/scs/. Apr. 2017.

[Ste10] Dragan Stevanović. “Resolution of AutoGraphiX conjectures relat-
ing the index and matching number of graphs”. In: Linear Algebra
and Its Applications 8.433 (2010), pp. 1674–1677.

[SWF16] John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck.
“Probabilistic programming in Python using PyMC3”. In: PeerJ
Computer Science 2 (2016), e55.

[SWG14] Amar Shah, Andrew Wilson, and Zoubin Ghahramani. “Student-
t processes as alternatives to Gaussian processes”. In: Artificial
Intelligence and Statistics. 2014, pp. 877–885.

[Tal+96] Michel Talagrand et al. “A new look at independence”. In: The
Annals of probability 24.1 (1996), pp. 1–34.

[TP16] Andreas Themelis and Panagiotis Patrinos. “SuperMann: a super-
linearly convergent algorithm for finding fixed points of nonex-
pansive operators”. In: arXiv preprint arXiv:1609.06955 (2016).

[Tro+15] Joel A Tropp et al. “An introduction to matrix concentration in-
equalities”. In: Foundations and Trends® in Machine Learning 8.1-2
(2015), pp. 1–230.

[Tro12] Joel A Tropp. “User-friendly tail bounds for sums of random
matrices”. In: Foundations of computational mathematics 12.4 (2012),
pp. 389–434.

[TT17] Michael Tait and Josh Tobin. “Three conjectures in extremal spec-
tral graph theory”. In: Journal of Combinatorial Theory, Series B 126
(2017), pp. 137–161.

191

https://kul-forbes.github.io/scs/
https://kul-forbes.github.io/scs/

Bibliography

[Van+11] Piet Van Mieghem, Dragan Stevanović, Fernando Kuipers, Cong
Li, Ruud Van De Bovenkamp, Daijie Liu, and Huijuan Wang.
“Decreasing the spectral radius of a graph by link removals”. In:
Physical Review E 84.1 (2011), p. 016101.

[Van10] Piet Van Mieghem. Graph spectra for complex networks. Cambridge
University Press, 2010.

[Var10] Richard S Varga. Geršgorin and his circles. Vol. 36. Springer Science
& Business Media, 2010.

[VB96] Lieven Vandenberghe and Stephen Boyd. “Semidefinite program-
ming”. In: SIAM review 38.1 (1996), pp. 49–95.

[Vir+19] Pauli Virtanen et al. “SciPy 1.0–Fundamental Algorithms for Sci-
entific Computing in Python”. In: arXiv e-prints, arXiv:1907.10121
(July 2019), arXiv:1907.10121. arXiv: 1907.10121 [cs.MS].

[VK07] Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu.
“Linear programming relaxations of maxcut”. In: Proceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics. 2007, pp. 53–61.

[VOK09] Piet Van Mieghem, Jasmina Omic, and Robert Kooij. “Virus spread
in networks”. In: IEEE/ACM Transactions on Networking (TON) 17.1
(2009), pp. 1–14.

[Vol28] Vito Volterra. “Variations and fluctuations of the number of in-
dividuals in animal species living together”. In: ICES Journal of
Marine Science 3.1 (1928), pp. 3–51.

[Wan+03] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos
Faloutsos. “Epidemic spreading in real networks: An eigenvalue
viewpoint”. In: Reliable Distributed Systems, 2003. Proceedings. 22nd
International Symposium on. IEEE. 2003, pp. 25–34.

[Wan+18] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. “GLUE: A Multi-Task Benchmark
and Analysis Platform for Natural Language Understanding”. In:
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP. 2018, pp. 353–355.

[WG75] Henry William Watson and Francis Galton. “On the probability
of the extinction of families”. In: The Journal of the Anthropological
Institute of Great Britain and Ireland 4 (1875), pp. 138–144.

192

http://arxiv.org/abs/1907.10121

Bibliography

[WNS12] Guohui Wang, TS Ng, and Anees Shaikh. “Programming your
Network at Run-Time for Big Data Applications”. In: Proceedings
of the Workshop on Hot Topics in Software Defined Networks (HotSDN
2012). ACM. 2012, pp. 103–108.

[WS11] David P Williamson and David B Shmoys. The design of approxima-
tion algorithms. Cambridge university press, 2011.

[Yan+13] Lu-Xing Yang, Xiaofan Yang, Jiming Liu, Qingyi Zhu, and Chen-
quan Gan. “Epidemics of computer viruses: A complex-network
approach”. In: Applied Mathematics and Computation 219.16 (2013),
pp. 8705–8717.

[Zha+15] Yao Zhang, Abhijin Adiga, Anil Vullikanti, and B Aditya Prakash.
“Controlling Propagation at Group Scale on Networks”. In: Data
Mining (ICDM), 2015 IEEE International Conference on. IEEE. 2015,
pp. 619–628.

193

MOTS CLÉS

Optimisation combinatoire · Sécurité des réseaux · Matrices aléatoires · Algorithmes d’approximation · Théorie
spectrale des graphes

RÉSUMÉ

Les théories mathématiques en épidémiologie ont adopté l’usage de réseaux d’interaction pour modéliser la propagation
d’une épidémie au sein d’une population de nœuds qui sont en contact s’ils sont reliés par une arête. Bien que des
avancées majeures aient été réalisées pour concevoir des contre-mesures efficaces qui agissent directement sur les
maladies, peu d’études en comparaison ont été effectuées pour tenter de modifier le réseau d’interaction lui-même.
Cette thèse étudie la possibilité de trouver une modification optimale d’un réseau de manière à stopper une épidémie qui
s’y propagerait. Ce problème d’optimisation étant difficile du point de vue de la théorie de la complexité, nous proposons
un algorithme probabiliste d’approximation qui est garanti de produire une modification stoppant l’épidémie en un temps
limité. De plus, nous montrons que l’analyse du ratio d’approximation de cet algorithme est la meilleure possible pour un
large ensemble d’instances.
Pour mesurer l’utilité pratique d’un tel algorithme, nous procédons à une analyse critique des méthodologies actuelles
en évaluation expérimentale des algorithmes. En réponse, nous proposons une nouvelle méthodologie pour étudier des
implantations d’algorithmes produisant des solutions potentiellement inexactes, sous-optimales et dont le comportement
dépend de paramètres.

ABSTRACT

The modern mathematical study of epidemics has adopted the concept of contact networks to model a disease spreading
among nodes who may interact with each other along edges. While much progress has been made in designing effective
countermeasures against epidemics by acting upon the disease, fewer studies have explored the use of modifying the
contact network itself.
This thesis explores the possibility of finding an optimal modification of a network to stop an epidemic spreading over it.
Because this optimization problem is computationally hard to solve, we design a randomized approximation algorithm
by combining semidefinite programming together with matrix concentration inequalities which is guaranteed to return a
network modification that stops the epidemic in a short amount of time. Furthermore, we give evidence that the analysis of
this algorithm is tight in a large regime.
To understand the practical applicability of this algorithm, we analyze current practices in the experimental evaluation of
algorithms and propose a new methodology to assess algorithms that may fail, may return approximate solutions, and may
change behavior based on hyperparameters.

KEYWORDS

Combinatorial optimization · Network security · Random matrices · Approximation algorithms ·
Spectral graph theory

	Acknowledgements
	List of symbols
	Contents
	Résumé de la thèse en français
	Introduction
	Epidemics
	A brief history of epidemic models
	The SIS model
	Definition
	Solving the differential equation
	Fast growth
	Slow extinction
	Fast extinction
	Convergence modes of the SIS model

	The networked SIS model
	Definition
	Eventual convergence
	Asymptotic stability
	Exponential convergence

	Algorithms
	Problems and solutions
	Decision problems
	Optimization problems
	Reductions
	Verifiers and proofs

	Complexity and efficiency
	P: deciding correctly in polynomial time
	NP: efficient verification with short proofs
	BPP: probabilistic correctness

	Approximation
	Worst case a priori guarantees
	Probabilistic feasibility
	Relaxation and rounding

	Critical thresholds in hardness of approximation
	A varied landscape
	The unique coverage problem
	A randomized O(logm)-approximation algorithm
	Hardness of approximating unique coverage

	Random graphs
	The concentration of measure phenomenon
	Concentration inequalities
	The classical Chernoff bound
	The matrix Chernoff bound

	An interlude of spectral graph theory
	The adjacency matrix
	The Laplacian matrix
	Algebraic connectivity

	The G(n,p) random graph model
	Properties of random graphs

	The connectivity threshold
	The Laplacian matrix of a random graph
	Shifting the spectrum of a Laplacian matrix
	Bounds on every summand
	Smallest eigenvalue of the expected matrix
	Applying the matrix Chernoff bound

	Intermission
	The advent of controllable networks
	Systems as abstraction
	The case of network resources
	Network security

	Epidemic models for network security
	Modeling computer viruses and propagating threats
	Learning model parameters

	Reactive countermeasures to threats
	Deploying security appliances
	Topology reconfiguration

	A novel network security framework
	Finding a temporary topology reconfiguration
	Contributions

	Approximating the maximum spectral subgraph
	Introduction
	Context
	Related work

	Preliminaries
	Computational complexity

	Relaxation and matrix randomized rounding
	The case of star graphs
	Erdös-Rényi stars
	Without the degree constraint

	Spectral subgraphs in general graphs
	Following the matrix Bernstein bound
	Proof of Theorem B

	Maximum matching
	Independent rounding: an intrinsic (logn) barrier
	Cliques and the G(n,p) random graph model
	Proof of Theorem D

	Conclusion and perspectives

	Experimental design for randomized approximation algorithms
	Introduction
	The scientific method in experimental algorithmics
	Algorithms as experimental subjects
	Performance metrics
	Datasets
	Random samples and randomized experiments

	Factors of influence
	Problem instances
	Implementation of algorithms

	Towards systematic parameter setting
	Gaussian process regression
	Libraries

	Issues in experimental evaluation of algorithms
	Qualitative differences
	Practical implementation details

	Experiments
	Pilot experiments
	Experimental setup

	Pre-registration

	Conclusion
	Bibliography

