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INTRODUCTION

Introduction

Collective decision making appears in many real life situations, ranging from politi-
cal elections, to the assignment of positions to applicants, including among others the
partition of students into working groups. Social choice theory consists in the study of
collective decision processes. The paternity of this economic field is usually attributed to
Kenneth Arrow (1921-2017) with his well-know impossibility theorem [1951], establishing
that there is no voting system satisfying together several basic axioms. But actually the
origin of social choice can be traced back to the 18th century with the works of Nicolas
(marquis) de Condorcet (1743-1794) and Jean-Charles (chevalier) de Borda (1733-1799).
A social choice problem aims at aggregating the preferences of different members of a
society into a final decision over a set of alternatives. The final decision of a social choice
problem can take the form of the selection of one or more alternatives or the (partial)
ranking of the alternatives.

The aim of social choice is to design efficient and fair procedures for collective decision
making. However, beyond the quality of the procedures, their computation and commu-
nication costs must be taken into account for practical reasons. This line of research,
born at the end of the 20th century, initially within the computer science community,
is known as computational social choice [Brandt et al., 2016]. Computational social
choice arises as an interdisciplinary field with concrete applications, mixing Economics,
Computer science and Mathematics.

Several aspects of computational social choice problems can be investigated. First
of all, classically, one can design specific aggregation rules or protocols and establish
the properties of the outcome according to some desirable axioms. The computation
of a solution is a main issue in order to solve concrete problems. Consequently, an
important research area consists in stating the computational complexity of social choice
procedures. Moreover, some restrictions, especially about the preferences of the agents,
have a strong impact on the outcome of the aggregation rules. It appears relevant to
consider realistic preference types for the agents and analyze how the complexity and
the outcome of the procedures are affected. In that respect, eliciting the preferences of
the agents also appears as a necessary challenge, raising additionally the question of the
communication cost of the procedures. Furthermore, in some contexts, agents may lie
when they reveal their preferences, in order to strategically orient the outcome of the
procedure towards a solution more advantageous for them than the solution they could
expect by telling the truth. As the designer of a social choice procedure would generally
like to prevent such a strategic behavior, strategy-proofness is an important issue in
social choice.

When speaking about social choice, one usually think about voting and political
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INTRODUCTION

elections. However, the spectrum of social choice problems is much larger than voting.
The problems addressed in computational social choice can be classified into several
categories, according to the nature of the problems [Chevaleyre et al., 2007b]. It is
possible to cite, as main topics, voting theory, resource allocation, coalition formation or
judgment aggregation.

• Voting theory. Agents are voters who have preferences over a set of candidates.
The goal is either to select one or several candidates as the winner(s) of the election
or to aggregate the preferences of the voters into a final ranking over the candidates.

As a simple example, take a class of 15 students who want to organize an activity
together at the end of the year. The students hesitate among four activities:
bowling, climbing, ice skating and hiking. They organize a vote, on an online
voting platform, in order to decide which activity they will choose. The students
must indicate in the platform the activity that they prefer. The score that each
activity obtains after the vote is summarized in the following table.

bowling climbing ice skating hiking

3 5 5 2

Climbing and ice skating are the two activities which get the most points according
to the results of the vote. Between these two winning alternatives, the students
finally decide to choose climbing because it is a less expensive activity, compared
to ice skating.

Many different settings fall into voting theory, such as multi-winner elections [Fal-
iszewski et al., 2017] where the goal is to select a subset of candidates as a winning
committee, or voting on combinatorial domains [Lang and Xia, 2016] where the
preferences of the agents are conditioned by the selection of some other alternatives.
Classically, in a social choice perspective, voting procedures can be characterized
according to the axioms that they satisfy (see Zwicker [2016] for an overview of
the main characterization results). By focusing on the computational aspects of
voting procedures, one can investigate the complexity of computing the outcome
of a given voting rule, in the line of the seminal paper of Bartholdi et al. [1989a].
Furthermore, designing a procedure that is strategy-proof is a main issue in voting
because the nice properties of a given voting rule could fail if the voters adopt a
strategic behavior. However, no voting scheme satisfying some natural properties
is strategy-proof [Gibbard, 1973, Satterthwaite, 1975].

Many works focus on the impact of strategic voting (see Meir [2018] for a recent
overview), where agents can manipulate by casting a ballot that does not corre-
spond to their true preferences. Strategic voting can be investigated through the
computation cost of manipulation [Bartholdi et al., 1989b, Bartholdi and Orlin,
1991]. Alternatively, one can model strategic voting as a strategic game [Myerson
and Weber, 1993, Sloth, 1993, Desmedt and Elkind, 2010, Meir et al., 2010], by
considering that manipulation is unavoidable, even when computing a strategy for
manipulation is computationally hard [Faliszewski and Procaccia, 2010, Conitzer
and Walsh, 2016]. In a voting game, the outcome of the voting procedure is defined
according to the different strategies played by the voters, that are materialized into
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the ballot that they cast. Iterative voting (see Meir [2017] for a recent survey) re-
lies on a dynamic voting game where voters strategically deviate by rounds to a
new ballot. This model can have different natural interpretations. In a context of
political elections, iterative voting can represent the vote intentions of the voters
before the real election. These vote intentions can change progressively during the
period preceding the election according to different opinion poll announcements,
in a strategic perspective. One could also think about online polls like in the
previous example with the choice of activities among the students. If the votes
of the students are visible for all the others, a student who has voted first for
bowling, can decide to change her vote to ice skating that she prefers to climbing,
the current winning alternative. Afterwards, another student who has previously
voted for hiking can decide to change her vote to climbing that she prefers to ice
skating, the new current winning alternative, and so on. This process of deviations
continues until a stable state is reached, if possible, or the horizon for taking a
decision is passed.

• Resource allocation and fair division. The goal is to fairly allocate a given
set of resources to agents [Young, 1995, Brams and Taylor, 1996, Moulin, 2004].
This subject is closely related to real life applications and many challenges can
be addressed [Chevaleyre et al., 2006]. Designing procedures that satisfy some
guarantee of efficiency or fairness is a main concern in this research area. For
instance, envy-freeness [Tinbergen, 1946, Foley, 1967, Varian, 1974] is a natural
fairness criterion requiring that no agent prefers the share assigned to another agent
to her own share. Regarding efficiency, a basic requirement is Pareto-efficiency,
imposing that it is impossible to improve the satisfaction of some agents without
harming another. The procedures should also be easy to implement in terms
of computation and communication cost. In this perspective, many works have
explored the complexity of finding fair allocations according to different criteria,
by analyzing for instance the impact of the preference shape [Bouveret and Lang,
2008, de Keijzer et al., 2009]. Different frameworks exist according to the nature
of the resources, divisible or not, shareable or not, goods or chores. When the
resources are divisible, the problem is referred to as cake cutting (see Procaccia
[2016] for a recent overview of the advancements in cake-cutting). The context of
fair division with indivisible resources [Brams et al., 2003, Bouveret et al., 2016] is
conceptually different from cake-cutting, because it deals with discrete resources
instead of working within a continuous space. When each agent must be assigned
exactly one indivisible resource, the problem is known as house allocation [Hylland
and Zeckhauser, 1979, Abdulkadiroǧlu and Sönmez, 1998, 1999].

As an example, take the creation of a working schedule among the employees of
a nursery. There are four employees, Adrian, Beatrice, Catherine and Diana, and
four time slots to fill in the day, from 7am to 11am (T1), from 10am to 2pm (T2),
from 12am to 4pm (T3) and from 3pm to 7pm (T4). The director of the nursery
decides how to organize the planning according to the wishes of her employees,
represented as follows (the preferred time slot is on top and so on).

3
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Adrian Beatrice Catherine Diana

T2 T3 T2 T1
T3 T4 T1 T3
T1 T2 T4 T2
T4 T1 T3 T4

The director finally assigns to Adrian time slot T2, to Beatrice time slot T1, to
Catherine time slot T4 and to Diana time slot T3. Observe that this assignment is
not optimal in the sense that Beatrice prefers the time slot of Catherine and vice
versa. However, the director is flexible and enables her employees to make some
rearrangements. Therefore, Beatrice and Catherine finally decide to exchange their
working hours, which is more convenient for them.

A special case in house allocation occurs when, starting from an initial endowment,
local improvements can be done by trades among the agents, like in the previous
example. This setting is known as a housing market [Shapley and Scarf, 1974].

• Coalition formation. Coalition formation is a field analyzing how agents can
group together, for instance in order to jointly solve some problems. One can
investigate which coalitions can form as well as how they will share the profit
generated by their cooperation, from the perspective of cooperative game theory.

Hedonic games are especially focused on the coalitions that can form (see Aziz and
Savani [2016] for a recent overview on hedonic games). The goal of hedonic games
is to partition the agents into disjoint coalitions, in a context where the agents ex-
press preferences on which group of agents they would like to form a coalition with.
Typical examples are the problem of making working groups among colleagues or
students, and the elaboration of a seating plan in a wedding. The main require-
ment in hedonic games is the stability of the solution [Dreze and Greenberg, 1980,
Cechlárová and Romero-Medina, 2001, Bogomolnaia and Jackson, 2002]. Different
notions of stability can be established. The basic one is Nash stability where no
agent would prefer to belong to another group.

When the agents are initially partitioned into two disjoint subgroups according
to some characteristics (women/men, applicants/schools or residents/hospitals for
instance) and the goal is to pair the agents such that each pair contains an agent
coming from each subgroup, the problem is actually a specific matching under
preferences [Klaus et al., 2016], known as two-sided matching. This problem is
famous because it also refers to the seminal work of Gale and Shapley [1962] on
the stable marriage problem.

• Judgment aggregation. The specificity of judgment aggregation is based on the
point that the agents do not express preferences but beliefs or judgments about
given statements, that they estimate true or false. The goal is to aggregate the
different beliefs of the agents in order to take a judgment deciding the truth of
the statements, like in a court. The set of statements on which the agents must
rule is called the agenda. The framework of judgment aggregation has been mainly
formalized by List and Pettit [2002] and Dietrich [2007]. Several recent surveys
can be found [List and Puppe, 2009, Grossi and Pigozzi, 2014, Endriss, 2016].
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The belief of each agent is represented by a formula of propositional logic, that is
supposed to be consistent, by individual rationality assumption. The goal is then
to aggregate the beliefs of the different agents into a consistent formula.

Another very close framework that has arisen in Artificial Intelligence is belief
merging, where the goal is to aggregate the beliefs bases of different agents. The
belief base of each agent is a finite set of propositional formulas representing her
beliefs about the current state of the world. Contrary to judgment aggregation,
the belief bases are not limited to a specific agenda. The links between judgment
aggregation and belief merging have been for instance examined by Everaere et al.
[2015].

Interaction among agents in social choice procedures

The integration of the agents in collective decision making is a main question in compu-
tational social choice. In fact, the agents constitute a central and active component of
the decision process. Their role differs according to the type of procedure that is chosen
for aggregating their preferences.

In a centralized procedure, a central authority collects the preferences of the agents,
aggregates them following a given rule and outputs a final decision for the society. This
is the case in most of the voting procedures, where voters are asked to submit a ballot
to a system which then, computes and announces the outcome of the election. In such
a procedure, the role of the agents is limited to the submission of their preferences in
the format imposed by the system. However, they can still have several options because
they may adopt a strategic behavior and misreport their preferences.

Alternatively, in a decentralized or distributed procedure, the agents iteratively con-
struct the final decision, without the intervention of a central authority, by following a
certain protocol. This approach is often adopted in resource allocation. The most clas-
sical example is the cut-and-choose protocol in cake-cutting, the problem of fairly dis-
tributing divisible resources among agents, which is traditionally modeled as a problem
of cutting a cake. Designed for a context with two agents, the cut-and-choose protocol
works as follows: one agent cuts the cake and the other one chooses the allocation.

There also exist procedures mixing the centralized and the distributed approach.
Typically, the agents can construct a final decision on the basis of an initial solution
coming from a central authority (see the example of the nursery).

For every type of social choice procedure, the agents are active in the process and
interact with each other. Indeed, the agents are entirely involved in a distributed proce-
dure where they interact with other agents by definition. In a centralized procedure, the
agents are aware of the existence of other agents. Therefore, interaction can for instance
occur in the elaboration of a strategy for manipulation, when agents decide to misre-
port their preferences to the central authority. More precisely, agents can collaborate
with other agents or get some information from them in order to design efficient strate-
gies. Moreover, the evaluation and validation by the agents of the centralized procedure
can appear as necessary in order to ensure the sustainability of the process, and avoid
that the agents dispute the procedure. In this perspective, the efficiency and fairness of
the procedure, as perceived by the agents, are essential but imply communication and
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comparison among the agents and thus, more generally, some interaction among them.

The interaction among the agents in social choice problems can take different forms:
communication, collaboration, cooperation, influence, information gathering, informa-
tion diffusion, and others. Take the previous example of students wanting to organize an
activity at the end of the year. Now suppose that the online voting platform on which
the students report their preferences is closed, in the sense that nobody can observe the
votes of the others. Then, no student has incentive to cast false preferences unless she
knows that her preferred activity, for example hiking, has no chance to win. If such a
student collects information about the preferences of some other students, for example
by communicating with them or by listening their claims about what they want, she can
realize that hiking is not enough supported among the students and thus she could vote
for ice skating, her second choice, instead of hiking. Alternatively, in the example of the
nursery, Beatrice and Catherine need to collaborate in order to exchange their working
hours.

Traditionally, in social choice, it is assumed that an agent is able to have social
interactions with any other agent. However, in real life, due to communication or distance
burdens, the interaction with some agents may not be possible. An accessibility relation
can define the ability of interaction among some agents. In large scale instances, like
for example in political elections, the accessibility relation among the agents is quite
poor. On the contrary, in small scale instances, like for example in a problem of task
assignment in a department of a company, the accessibility relation is very dense but can
be limited by questions of affinities among the employees. For instance, in the example of
the nursery, the collaboration between Beatrice and Catherine, leading to the exchange
of their assigned working hours, can occur because Beatrice and Catherine are friends
and thus they can easily exchange some services. Suppose that Beatrice and Adrian
are also friends but that Diana is a new employee unknown to Beatrice. Then, even if
Beatrice and Diana would also profitably exchange their working hours regarding their
preferences, they do not do so. Following the same idea, in the example of the choice of
activities, a student can discover the preferences of some other students only if she has
some links with them, making the communication possible.

In general, the accessibility relation may be very different regarding the context,
avoiding the possibility of assuming a unique accessibility relation for every instance
of a social choice problem. This observation leads to consider the possibility of social
interaction, given by the accessibility relation, as a part of the input of the problem.
There exist many ways to represent the accessibility relation. Due to the important
role of the social networks nowadays in the social relations, it appears meaningful to
consider that the accessibility relation is modeled by a social network, where interaction
is possible between two agents if they are connected in the social network. In general,
a social network can represent affinities among people, geographical closeness, peer /
colleague relations, or even an online social network. A social network is classically
represented by a graph over the agents, more precisely a set of nodes and links which
model the connection between two agents in the social network. For instance, in the
example of the nursery, the relations between Beatrice and the other employees, making
possible some interaction, can be represented by the following graph structure.
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Beatrice

Catherine

Diana

Adrian

The friendship relation between Beatrice and Adrian, and between Beatrice and Cather-
ine are represented by links between the nodes associated with these individuals.

Social networks and social choice

Nowadays, online social networks such as Facebook, Twitter or Instagram, are every-
where and pervasive. They have an ever-growing impact on the behaviors in the society,
making relevant the study of the social mechanisms on which they lie. More generally,
the study of the structure of social relations, that can be represented by a network, is
referred to as social network analysis [Wasserman and Faust, 1994, Scott, 2017]. Such
social relations can refer to the family circle, to the friends, to the colleagues, or even
to individuals from the same geographical area, in addition to the recent online social
networks. Main questions in social network analysis are how the networks form, what
are the characteristics and properties of social networks, and how the agents are tied by
social relations.

Social network analysis is actually an active research area, and a hot topic for many
researchers [Freeman, 2004]. A typical example of the attraction of the researchers for
this line of research is the creation of the journal Social Networks [Freeman et al., 1978].
Many aspects of the social networks can be investigated, leading to a huge literature deal-
ing for instance with models of networks [Erdös and Rényi, 1959, Barabási and Albert,
1999], structural properties [Newman et al., 2011], experimental and behavioral studies
[Travers and Milgram, 1967, 1977], or the measurement of the influence of some nodes
in the network [Rusinowska et al., 2011]. Moreover, the influence of social networks on
the behavior of individuals deserves attention, especially in the study of social decisions
and interactions. In this context, their impact on economic questions like strategic in-
teractions, markets and game theory issues is central and has been notably addressed
by Jackson [2008] and Easley and Kleinberg [2010].

Assuming a social network, or more generally a graph structure, over the agents has
already been investigated in cooperative game theory by assuming a cooperation graph
over the agents [Aumann and Dreze, 1974, Myerson, 1977]. In computational social
choice, the social networks have been quite recently introduced in order to study some
social interactions among the agents. A large part of these works deals with coalition
formation problems. For instance, in hedonic games, some stability questions where the
possible coalitions of agents arise from a social network have been examined [Igarashi
and Elkind, 2016]. Following the same principle, coalitional games and problems of
coalition formation with assignment of tasks to groups, have been investigated in a
context where the coalitions are determined by a social network [Elkind, 2014, Igarashi
et al., 2017]. Moreover, many works aim at capturing, in two-sided matchings, several
types of social behavior thanks to a social network, such as altruism [Anshelevich et al.,
2013a], information gathering via social contacts [Arcaute and Vassilvitskii, 2009], peer
effects [Bodine-Baron et al., 2011], or collaboration [Hoefer, 2013].
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A few works also used social networks in judgment aggregation. For instance,
Colombo Tosatto and van Zee [2014] have translated the judgment aggregation frame-
work into a social network analysis setting, by modeling the social relations between the
agents, such as agreement, with a graph.

A recent survey [Grandi, 2017] shows many relevant lines of research integrating a
social network over the agents in social choice issues like voting or opinion diffusion. First
of all, one could ask whether the social network in which the voters are embedded has
an impact on their vote. Some works consider voting as a way to aggregate opinions in
order to recover a ground truth. Conitzer [2012], by assuming that the probability that a
voter estimates the right alternative is independent from the probability to be influenced
by her neighbors in the social network, answers that the network does not matter in the
votes of the agents. Based on a similar model, the independent conversations model
considers voters that aim at recovering a ground truth thanks to the aggregation of the
opinions of their connected agents on the social network [Conitzer, 2013, Procaccia et al.,
2015, Tsang et al., 2015]. This model is very close to the models of opinion diffusion
in social networks [DeGroot, 1974] (see Jackson [2008] for a recent survey), which is a
very wide topic in social network analysis, related to the propagation of some ideas or
opinions through the network. Opinion diffusion in networks has been recently examined
within the social choice community, in a strategic perspective [Grandi et al., 2015, Brill
et al., 2016, Grabisch et al., 2017, Grandi et al., 2017]. Concerning strategic voters, some
recent works use a social network, or a knowledge graph, for modeling the information
that the agents have when they act strategically in voting [Chopra et al., 2004, Sina
et al., 2015, Tsang and Larson, 2016, Tsang et al., 2018].

Another topic for which the social networks offer a new vision of the problems is
resource allocation. In this respect, some fairness criteria can be adapted in order to
take into account the social constraints induced by the social network. For instance, one
can define a local notion of envy-freeness according to the links of the social network,
that can be used either in cake-cutting [Abebe et al., 2017, Bei et al., 2017], or in the case
of indivisible resources [Aziz et al., 2018, Bredereck et al., 2018, Flammini et al., 2018].
Beyond the evaluation of the allocation, trades of resources that are defined according
to a social network can be examined [Chevaleyre et al., 2007c, Kleinberg and Tardos,
2008].

Contributions and organization

The goal of the thesis is to relax the classical assumption that any agent is accessible from
anyone else. More precisely, in the continuity of some recent works in computational
social choice, we model the possibility of interaction among agents by a social network,
modeled as a graph structure over the agents. We aim at understanding the impact of this
generalization on the social interactions that occur in social choice problems. We study
two types of social interactions that are particularly important in collective decision
making: collaboration among agents and information gathering about the situation of
other agents.

We focus on two classical problems of computational social choice: strategic voting
and resource allocation. In particular, strategic voting is examined through iterative
voting, whereas in resource allocation we investigate the specific house allocation prob-
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lem, which is related to the problem of matching a set of indivisible items with a set of
agents. In iterative voting and house allocation, how does the social network influence
the interaction among the agents? How does the limitation on accessible information or
possible collaborating agents impact the execution and the outcome of the procedures
for these settings?

We examine these questions according to the two types of social interactions under
study: collaboration and information gathering. The results concerning the first aspect
are presented in Part I, through coalitional manipulation in iterative voting and swaps in
house allocation, where the only possible collaborators are given by the social network.
The second aspect is explored in Part II, through local envy-freeness in house allocation
and uncertainty in iterative voting, where the most part of the information available to
the agents is given by their connections in the social network. A preliminary part in
Chapter 1 presents the two settings under study, that are strategic voting and house
allocation. Our contributions are grouped in parts I and II, whereas the related work is
concentrated in the preliminary chapter (Chapter 1), dedicated to the context.

Chapter 1 introduces the general notations that are used all along the thesis, as well
as some key notions about the context. In fact, we present the main components of a
social choice problem where the agents are embedded in a social network that is a graph
over the agents. Moreover, we introduce the specific frameworks that we study, strategic
voting and house allocation, by providing some basic notations and state-of-the-art main
concepts. We also recall some useful concepts of computational complexity theory.

Let us describe more in details the contributions of the thesis.

We first investigate the collaboration among the agents, conditioned by a social net-
work, in social choice problems. In Chapter 2, we consider an iterative voting framework
where groups of agents can manipulate. We assume that the only groups of agents that
can form, in order to establish common strategies of manipulation, are the subsets of
agents that are fully connected in the social network. Moreover, an altruistic condition,
imposing that the deviating coalitions of voters must not harm other connected agents
in the network, limits the possible deviations. The existence of equilibria in the voting
game that are immune to such coalitional manipulation is investigated, as well as the
convergence of the deviation dynamics to such equilibria. We provide guarantees of
existence for equilibria according to several voting rules and essentially negative results
regarding the convergence of the dynamics.

Chapter 3 is dedicated to a house allocation problem where, starting from an initial
endowment (each agent has one indivisible item), two connected agents can swap their
object if the trade is mutually profitable. Consequently, a dynamics of local improve-
ments defined according to the social network is examined. We study in particular the
complexity of several decision problems related to the reachability of some objects for
the agents through sequences of trades. We provide hardness results and tractable cases
for these natural questions, according to the structure of the graph.

Secondly, we study how the social network can model the information that the agents
can acquire from the other agents. In this context, Chapter 4 focuses on a house allo-
cation setting where the evaluation of an allocation of indivisible goods to the agents
is conditioned by the visibility of the agents. In particular, we examine a local envy-
freeness notion, where the agents can only envy agents who are connected to them in
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the social network. We investigate the complexity of some decision problems based on
the existence of locally envy-free allocations and optimization problems where we aim at
finding allocations that minimize local envy. We provide hardness results, approximation
algorithms and tractable cases according to the topology of the network.

In Chapter 5, we analyze an iterative voting setting under uncertainty, where the
voters only have two types of information: a global information given by a public opin-
ion poll and a local one thanks to their connections in the social network. These two
sources of information enable the voters to develop a certain belief about the current
vote intentions of the other agents. We define a dynamics of manipulation where the
voters deviate to a best possible ballot according to their belief about the current state.
The convergence properties of this dynamics as well as the quality of its outcome are
explored. Moreover, we investigate the question of manipulation by the polling institute.

Finally, we conclude in the last chapter by summarizing the key points of our con-
tributions and by giving some avenues for future works.

The contributions of the thesis are published in the proceedings of international confer-
ences of Artifical Intelligence, namely ECAI-16 [Gourvès et al., 2016], IJCAI-17 [Gourvès
et al., 2017], AAMAS-18 [Beynier et al., 2018], SAGT-18 [Saffidine and Wilczynski, 2018]
and AAAI-19 [Wilczynski, 2019].

10



CHAPTER 1. PRELIMINARIES AND NOTATION

Chapter 1

Preliminaries and notation:
Presentation of the problems

1.1 Introduction

This preliminary chapter introduces the notions that will be used all along the document.
The main components of a social choice problem, where the agents are embedded in a
social network, are presented in Section 1.2. We will also give the basic notations and
some key concepts from the state-of-the-art for the two specific settings that are inves-
tigated, namely voting and more precisely strategic voting in Section 1.3, and resource
allocation with a focus on house allocation in Section 1.4. Finally, since computational
aspects of social choice problems are studied, some notions on computational complexity
are provided in Section 1.5.

1.2 General framework

The focus of our analysis is on social choice problems. Social choice issues can gather
very different problems, from voting to judgment aggregation through resource allocation
or coalition formation, but a common denominator is collective decision making. This
section is devoted to the presentation of the common and basic notations of a social
choice problem.

Generally, we are given a finite set of n agents N = {1, . . . , n}, and a finite set
of m ≥ 2 alternatives M = {a, b, . . . }. Notation [p] stands for the set {1, . . . , p} for
any integer p, and [p..q] for the set {p, . . . , q}. Each agent has preferences over the
set of alternatives1, and the goal is to reach a collective decision defined on the set of
alternatives. In addition to these general components, we assume that the agents are
embedded in a social network, represented by a graph G = (N,E) over the agents.

1We do not consider the special case of judgment aggregation problems where the words belief and
judgment are more appropriate.
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1.2.1 Preferences

There are several competing models for expressing preferences of agents. In this subsec-
tion, the most common models are presented.

• The preferences can be cardinal and expressed via utility functions. Each agent
i ∈ N has her own utility function ui : M → R where ui(x) corresponds to the
value that agent i attributes to alternative x ∈M . This is an absolute evaluation
of the alternatives from the agents.

• Another very common model is to consider ordinal preferences, where agents rel-
atively evaluate the alternatives according to an order.

• A natural restriction of both models relies on dichotomous preferences, where
agents can only approve a chosen subset of alternatives.

Eliciting cardinal preferences may require a significant cognitive effort for the agents
but, most of all, this raises the problem of normalization for interpersonal comparisons:
the agents do not necessarily have the same scale in mind for evaluating the alternatives.
Consequently, we decide to focus on ordinal complete preferences, by not handling the
case of cardinal preferences, nor the case of partial preferences.

We assume that the preferences of agent i ∈ N are expressed via a weak order %i
over M . The preference profile of the whole society is given by %= (%1, . . . ,%n). We
mostly restrict ourselves to the case of strict ordinal preferences where the agents are
not allowed to express indifference between alternatives. In this restriction, we consider
that the preferences of agent i are represented via linear order �i and the preference
profile is denoted by �.

The set of all possible weak orders over M is denoted by W(M) and the set of
all possible linear orders by L(M). For a weak order %i ∈ W(M), associated with
the preferences of agent i, ∼i denotes the symmetric part of relation %i, and �i its
asymmetric part. In other words, a �i b if and only if agent i strictly prefers alternative
a to alternative b, i.e., a %i b holds but not b %i a, and a ∼i b if and only if agent
i is indifferent between alternative a and alternative b, i.e., both a %i b and b %i a
hold. Consequently, a %i b means that either a �i b or a ∼i b. Subrelation ∼i induces
equivalence classes of indifference. For a linear order �i, let us denote by r i : M →
[m] the mapping induced by �i that indicates the position of the alternatives in the
preference ranking, i.e., alternative x is ranked at the r i(x)th position in �i.

Observe that a unique weak order %i can be derived from cardinal utilities ui with
respect to the natural order over R, that is a �i b if and only if ui(a) > ui(b) and a ∼i b
if and only if ui(a) = ui(b). Moreover, dichotomous preferences are ordinal preferences
where there are at most two indifference classes. Usually, they are represented cardinally
by assuming that utility function ui of agent i is such that ui : M → {0, 1}.

When the entire preference profile is explicitly given, we adopt the general formalism
that is presented in the following example.

Example 1.1 Let us consider an instance with three agents and three alternatives, where
N = {1, 2, 3} and M = {a, b, c}. Take a preference profile � such that: a �1 b �1 c,
a �2 b �2 c and c �3 b �3 a. The preference profile is represented as follows.
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1 : a � b � c
2 : a � b � c
3 : c � b � a

The name of each agent is followed by the preferences of the agent where, for the sake of
simplicity, the subscripted index referring to the agent is omitted. When different agents
have the same preferences, they are sometimes grouped, i.e., in this example we could
have written 1, 2 : a � b � c, for the preferences of the first two agents.

1.2.1.a Restricted preferences

There can exist some structure on the global preferences % ∈ W(M)n for the whole
society. This structure restricts the preference domain to D ⊂ W(M). Many preference
restrictions can be considered but we focus on two types: one related to an order over
the alternatives, namely single-peakedness [Black, 1948], and one related to an order over
the agents, namely the single-crossing condition [Karlin, 1968, Mirrlees, 1971, Roberts,
1977].

Definition 1.1 (Single-peakedness) A preference profile % is single-peaked if and
only if there exists an order >M over the alternatives such that for every agent i, there
exists a unique peak alternative x∗ such that for every pair of alternatives a and b,
x∗ >M a ≥M b implies that x∗ �i a %i b and a ≥M b >M x∗ implies that x∗ �i b %i a.

The idea of single-peakedness is that every agent shares a common axis over the
alternatives, implying that all the agents prefer alternatives that are closer to their peak
alternative, i.e., their best alternative, in the axis. Classical examples are axis left-
right in politics or temperature scales. As its denomination induces, a single-peaked
preference relation with respect to a given axis produces only one peak in its graphical
representation. This notion is then graphically well-understandable, as we can observe
in Example 1.2.

Example 1.2 Consider an instance with three agents and four alternatives, where N =
{1, 2, 3} and M = {a, b, c, d}. The preference profile given by the following graphical
representation is single-peaked. The common axis over the alternatives, given by the
abscissa axis, is a >M b >M c >M d. Each curve represents the preference order of a
given agent. In the ordinate axis, the higher is a point of the curve associated with agent
i, the more preferred the associated alternative in abscissa according to the preference
order of i. Observe that, in this representation, the curve associated with the preference
order of each agent has only one peak.
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a b c d
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er 1: b � a � c � d

2: d � c � b � a

3: c � b � a � d

Definition 1.2 (Single-crossing condition) A preference profile % is single-crossing
if and only if there exists an order >N over the agents such that for every pair of
alternatives a and b, there exists a unique agent i∗ such that all the agents j with j <N i∗

(respectively, j >N i∗) all share the same preferences a %j b or b %j a.

The single-crossing condition has similarities with the idea of single-peakedness but
the axis is over the agents. In a single-crossing preference profile, there exists an order>N

over the agents such that for each ordered pair of alternatives a and b, the set of agents
preferring a to b is a unique interval of >N . As an example, one may think about agents
ranked along a left-right axis according to their political orientations. Generally, in such
a context, the preferences over two alternatives that concerns societal or economical
questions, such as different types of support for welcoming migrants or different levels of
State intervention, will be different for two consecutive agents in the axis at one point
of the axis, at most. This type of preference restriction is illustrated in Example 1.3.

Example 1.3 Consider an instance with five agents and three alternatives, where N =
{1, 2, 3, 4, 5} and M = {a, b, c}. The following preferences are single-crossing with respect
to order >N , given by the abscissa axis, that we assume to be the natural order over the
numbers {1, 2, . . . , 5}. Each curve corresponds to the positions of a given alternative in
the preference orders of the agents. Observe that the curves associated with each pair of
alternatives cross at most once.

1 2 3 4 5

a

b

c

Agents
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1 : a � c � b
2 : a � c � b
3 : c � a � b
4 : c � b � a
5 : b � c � a

Note that there exist preference profiles that are both single-peaked and single-
crossing.
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1.2.1.b Generating preference profiles

How to generate preference profiles in experiments is a typical concern in simulation of
social choice problems. First of all, note that, by simplicity, it is common to focus on
generating strict preferences. A widespread and simple procedure for generating strict
preferences for a fictitious population is to uniformly pick linear orders among all the
possible rankings. The culture associated with this protocol is called impartial culture
(IC).

However, in practice, the preferences of agents are not uniformly distributed [Re-
genwetter et al., 2006]. Therefore, it can be meaningful to introduce some correlation
within the preference profiles. A typical way to incorporate correlation is to consider
an urn with all possible rankings and every time an order is picked to represent the
preferences of an agent, then q rankings identical to this order are added to the urn,
with a predefined value q inducing a specific correlation ratio. For instance, q = m! /9
induces a 10%-correlation ratio, culture that we denote by CR-10%. This model is
inspired from Pólya-Eggenberger urn models [1923], and has for instance been used for
generating preference profiles in voting [Berg, 1985, Lepelley and Valognes, 2003, Grandi
et al., 2013].

Moreover, it is also possible to consider single-peaked preferences profiles that we
can generate according two different distributions:

- either following a uniform distribution over all possible single-peaked pro-
files [Walsh, 2015], culture that we call single-peaked uniform (SP-U),

- or by choosing, following a uniform distribution, a peak alternative for the prefer-
ence order, and then choosing the next preferred alternatives with equal probability
either on the left of the peak in the axis, or on the right [Conitzer, 2009]. We call
this culture single-peaked uniform peak (SP-UP).

Furthermore, it may be sometimes more appropriate to use real data sets. This is
now possible in social choice via the Preflib platform [Mattei and Walsh, 2013], which
currently contains 3,000 data sets of preferences coming from different experimental
studies. This online library continues to be populated thanks to the contribution of
many social choice researchers who accept to share their data with the community.

Globally, the preferences of the agents mainly impact the collective decision of a social
choice problem. Other key points are the relations among the agents and how they can
interact. These social connections can be modeled via a social network over the agents.

1.2.2 Social network

The social network in which the agents are embedded is a graph over the agents, denoted
by G = (V,E), where V = N is a finite set of vertices (or nodes) representing the agents,
and E ⊆ V × V translates an irreflexive binary relation RE on V . Graph G captures
the possibility of interaction between the agents. For an overview of basic notions about
graphs, see for instance Golumbic [1980].
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1.2.2.a Basic notions of graph theory

In general, E is a set of ordered pairs of distinct vertices such that (u, v) ∈ E if and only
if uREv. An element (u, v) in E, whose endpoints are u ∈ V and v ∈ V , is called an arc
and is graphically represented by a directed arrow from u to v. A graph G = (V,E) is
also called a directed graph (or digraph).

When binary relation RE which characterizes E is symmetric, i.e., for every pair
of vertices u and v, uREv implies that vREu, the graph is called an undirected graph.
In an undirected graph, the elements of E are called edges and are denoted by {u, v}
for u, v ∈ V . More precisely, in case of an undirected graph, for every pair of distinct
vertices u and v, {u, v} ∈ E if and only if uREv and vREu. An edge {u, v} ∈ E is
said to be incident to vertex u ∈ V and to vertex v ∈ V . An edge {u, v} is graphically
represented by a single line without arrow joining u and v.

Graph G is said to be complete if for every ordered pair of distinct vertices u and v,
it holds that uREv. Alternatively, a graph is empty if E = ∅. When the binary relation
represented by E is transitive, the graph is said to be transitive (see for instance the
third graph in Figure 1.1).

Definition 1.3 (Transitive graph) A graph G = (V,E) is transitive if and only if for
every ordered triple of distinct vertices (u, v, w), it holds that if uREv and vREw then
uREw.

The complement of graph G, denoted by G = (V,E), is such that, for every ordered

pair of vertices u and v, uREv if and only if u 6= v and ¬(uREv). A graph G′ = (V ′, E′)
is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′). A spanning subgraph
of graph G = (V,E) is a subgraph G′ = (V ′, E′) of G such that V ′ = V . An induced
subgraph of graph G = (V,E), denoted by G[V ′] for a subset of vertices V ′ ⊆ V , is the
restriction of G to the members of V ′, that is the subgraph G′ = (V ′, E′) of G such that
E′ = E ∩ (V ′ × V ′). A set of vertices V ′ ⊆ V forms a clique in G if and only if G[V ′] is
a complete graph.

Definition 1.4 (Clique) A subset of vertices V ′ ⊆ V forms a clique of graph G =
(V,E) if and only if, for every ordered pair of vertices u and v in V ′ such that u 6= v, it
holds that uREv.

A graph that is composed of a set of disjoint cliques is called a cluster graph. When
the graph is undirected, the notion that is complementary to the clique is the independent
set.

Definition 1.5 (Independent set) When G = (V,E) is an undirected graph, a set of
vertices V ′ ⊆ V forms an independent set in G if and only if for all vertices u and v in
V ′, {u, v} /∈ E.

The independent set is generally defined in the context of undirected graphs. How-
ever, to extend it to directed graphs, an independent set is simply a subset of vertices
V ′ ⊆ V such that, for every pair of vertices u and v in V ′, neither (u, v) nor (v, u) belong
to E. A graph G = (V1 ∪ V2, E) is said to be bipartite if and only if V1 and V2 are
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independent sets. In a bipartite graph, which can be either directed or undirected, if
uREv then either u ∈ V1 and v ∈ V2, or u ∈ V2 and v ∈ V1.

Another interesting subset of vertices in an undirected graph is the vertex cover,
defined as a subset of vertices covering all the edges of the graph.

Definition 1.6 (Vertex cover) A set of vertices V ′ ⊆ V forms a vertex cover in an
undirected graph G = (V,E) if and only if for every edge {u, v} ∈ E, {u, v} ∩ V ′ 6= ∅.

Observe that in undirected graph G, a subset V ′ ⊆ V is an independent set of G if
and only if V \ V ′ is a vertex cover of G.

A path in an undirected graph G is a sequence of edges of the form
({u1, u2}, {u2, u3}, . . . , {up−1, up}), where the vertices u1, . . . , up are all different. The
distance, in an undirected graph G, between two vertices u and v, denoted by distG(u, v),
refers to the number of edges in a shortest path between u and v. For the sake of sim-
plicity, we may denote a path as a sequence of distinct vertices [u1, u2, . . . , up] such that
{ui, ui+1} ∈ E for every i ∈ [p−1]. More generally, a path in a directed graph refers to a
sequence of vertices [u1, u2, . . . , up] such that uiR

Eui+1 or ui+1R
Eui for every i ∈ [p−1].

A graph is connected if it contains a path between any pair of vertices u and v. A
cycle in an undirected graph G is a closed path, that is a sequence of edges of the form
({u1, u2}, {u2, u3}, . . . , {up−1, up}, {up, u1}), where the vertices u1, . . . , up are all differ-
ent. Classes of undirected graphs can be defined according to an acyclicity property.
This is the case of the trees.

Definition 1.7 (Tree) Undirected graph G is a tree if and only if G is connected and
does not contain cycles.

Similar notions exist when only one direction matters, by using arcs in di-
rected graphs. A directed path (or dipath) is a sequence of arcs of the form
((u1, u2), (u2, u3), . . . , (up−1, up)), where the vertices u1, . . . , up are all different. Note
that, in an undirected graph G, given a path [u1, u2, . . . , up] of G, one can con-
sider a directed path from u1 to up as a subgraph G′ = (V ′, E′) of G that is di-
rected such that V ′ = {u1, . . . , up} and E′ = {(ui, ui+1) : i ∈ [p − 1]}. A di-
rected graph is strongly connected if it contains a dipath between any ordered pair
of vertices u and v. A directed cycle (or dicycle) is a sequence of arcs of the form
((u1, u2), (u2, u3), . . . , (up−1, up), (up, u1)), where the vertices u1, . . . , up are all different.
An acyclicity property based on directed cycles can be derived in order to define specific
classes of graphs, such as the directed acyclic graphs.

Definition 1.8 (Directed acyclic graph (DAG)) A directed acyclic graph (DAG)
is a directed graph with no directed cycle.

For examples of a DAG, see the two first graphs in Figure 1.1.
In directed graphs, a successor of a vertex v ∈ V is a vertex u ∈ V such that

(v, u) ∈ E. Alternatively, a predecessor of a vertex v ∈ V is a vertex u ∈ V such
that (u, v) ∈ E. The out-degree δ+

G(v) of a vertex v is the number of successors of v,
whereas the in-degree δ−G(v) of v is the number of vertices for which v is a successor (or
equivalently the number of predecessors of v). A vertex with null in-degree is called a
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Figure 1.1: Examples of a dipath (on the left), a DAG (in the middle) and a transitive
graph (on the right)

source and a vertex with null out-degree is called a sink. Observe that a dipath is a
specific DAG containing exactly one source and one sink (see Figure 1.1).

For the case of undirected graphs, vertex u is called a neighbor of v if {u, v} ∈ E.
The neighborhood of a vertex v ∈ V , that we denote by NG(v), is the set of all the
neighbors of v, i.e., NG(v) := {u ∈ V : {u, v} ∈ E}. The degree δG(v) of a vertex v ∈ V
is the number of neighbors of v, i.e., δG(v) := |NG(v)|. A vertex with degree equal to
one is called a leaf.

The out-degree (respectively, degree) of a graph G refers to the maximum out-degree
(respectively, degree) of a vertex in G and is denoted by ∆+

G (respectively, ∆G). The
diameter dG of an undirected graph is the maximum value of a shortest path between any
pair of vertices, i.e., dG = maxu,v∈V distG(u, v). Similarly, the diameter dG of a directed
graph is the maximum value of a shortest directed path between any ordered pair of
vertices. The degree and the diameter of a graph are commonly used to characterize
some classes of graphs, especially when these parameters are bounded.

For instance, the paths and stars (see Figure 1.2) are particular trees that can be
defined according to the degree of some of their vertices, as well as the spider graph
[Bahls et al., 2010], which is a generalization of both a path and a star.

Definition 1.9 (Path) A path is a tree with exactly two leaves.

Definition 1.10 (Star) A star is a tree with exactly n−1 leaves and one center vertex
of degree n− 1.

v1 v2 v3 v4 . . . vn v1

v2 v3

v4

vn

Figure 1.2: Examples of a path graph (on the left) and a star graph (on the right)

Definition 1.11 (Spider) A spider is a tree with at most one vertex, called the center,
of degree greater than 2.
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Other typical graphs defined according to the degree of the vertices are the regular
graphs, both in undirected and directed version.

Definition 1.12 (Regular graph) An undirected graph G = (V,E) is said to be reg-
ular of degree q if and only if δG(v) = q for every vertex v ∈ V .

Definition 1.13 (Regular directed graph) A directed graph G = (V,E) is said to
be regular of out-degree q if and only if δ+

G(i) = q for every vertex v ∈ V .

In an undirected graph, a matching is a subset E′ of edges such that for any edges
e and e′ in E, e ∩ e′ = ∅. Undirected graph G = (V,E) is said to be a matching if E is
a matching. In other words, a matching graph is a regular undirected graph of degree
equal to one, where the vertices are connected in pairs.

Beyond the degree and the diameter, it is also possible to measure the density of a
graph, denoted by DG, which is related to the proportion of edges/arcs that are present
in the graph G. The density of graph G is defined as follows.

DG =

{
2.|E|

|V |·|V−1| if G is undirected
|E|

|V |·|V−1| otherwise

This parameter is important for instance in the generation of random graphs.

1.2.2.b Random graphs and real networks

An interesting question for experimental studies is how to generate random graphs, and
especially graphs that are supposed to represent social networks. Various models for
generating social networks have been proposed in the literature, based on the observation
of some characteristics of real large social networks, such as the small-world phenomenon
or the scale-free property.

Small-world networks and Erdös-Rényi random graphs. The experimental
studies of Travers and Milgram [1967, 1977] have pointed out that individuals seem
to be connected within a distance of around 6 intermediates to any other person, lead-
ing to the concept of small-world phenomenon. The idea is that the distance between
any two nodes tends to be small, compared to the size of the network. In a small-world
network, any agent is connected with a high probability to any other agent via a short
path. A small-world network contains many short paths, in other words the diameter of
the graph tends to be small, typically in the order of O(log(n)).

This is the case in expectation for Erdös-Rényi random graphs [Erdös and Rényi,
1959] for which the expected diameter is O(log(n)). To generate an Erdös-Renyi graph,
given a parameter p ∈ [0, 1], each edge is added with independent probability p. This
produces a random graph of density tending to p.

Scale-free networks and Barabási-Albert random graphs. Another important
characteristic observed in real social networks is the scale-free property, formulated by
Barabási and Albert [1999] as follows. A network is scale-free if the degree of its vertices
follows a power-law distribution, that is the fraction of vertices of degree k is proportional
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to k−γ , for some constant γ. The main observable feature on a scale-free network is that
it contains many hubs, that are nodes with high degree. Consequently, a scale-free
network looks like an aggregation of stars. The idea is that there exist some points of
attraction in the network, which are highly connected nodes to which other nodes are
more likely to connect.

The Barabási-Albert random graphs are scale-free. In particular, the degree of the
nodes of a Barabási-Albert graph follows a power-law distribution with degree exponent
γ equal to three. In such random graphs, the network is iteratively constructed by
adding to a subgraph a new node which is connected with higher probability to high
degree nodes, following a preferential attachment mechanism. More precisely, given a
subgraph G′ defined on a subset of vertices V ′ ⊆ V , we construct a new graph G′′ by
adding a new node v ∈ V \ V ′ that is connected to any node u ∈ V ′ with probability

pu =
δG′ (u)∑

v′∈V ′ δG′ (v
′) . Note that, in our experiments, we will not impose any average degree

in the graph, but we will generate Barabási-Albert graphs that are undirected.

Homophily in networks. A network respects homophily if two “similar” nodes tend
to be connected in the graph. In the context where agents are embedded in a social
network, two agents can be considered similar if they have close preferences over the set
of alternatives. How to measure this closeness in preferences is nevertheless subjective
and several models can be imagined to take into account this similarity. For instance,
Tsang and Larson [2016] integrate homophily in their model for generating random
graphs by considering Erdös-Rényi graphs and Barabási-Albert graphs where they take
into account the cardinal preferences of the agents. They multiply the probability of
connection between two agents i and j by the proximity of the personal preferred values
of the agents, which are specific points in a common scale.

In an ordinal perspective, we choose, in the experiments of the thesis, another way
to generate a network that respects homophily. In our protocol, based on strict ordinal
preferences, the more the agents agree on pairwise comparisons of the alternatives, the
more likely they are connected. More precisely, two agents i and j are connected in
G with probability equal to qij = |{(a, b) ∈ M2 : a �i b and a �j b}|/(m · (m −
1)/2). It is noteworthy that the probability of connection between two agents is inversely
proportional to the Kendall-Tau distance between their respective preference rankings.
In particular, in this model, two agents with exactly the same preferences are necessarily
connected. Note that for a directed graph, we decide independently whether (i, j) and
(j, i) exist but with the same probability.

Real networks. In order to run experiments, it is always attractive to work with
real data sets. Interestingly, it is possible for networks thanks to online libraries such as
Stanford Large Network Dataset Collection (SNAP) [Leskovec and Krevl, 2014] or Social
Computing Data Repository [Zafarani and Liu, 2009] that collect anonymized data from
real networks, and notably social networks like Facebook or Twitter. However, these
data are more adapted to graph mining studies because they contain very large graphs
(which are computationally difficult to handle for the type of experiments we run in the
thesis) and they do not provide any linked preference data. Therefore, for our purpose,
since there is no data set (yet) with real preferences of agents and real connections among
them, we need to randomly generate the preferences or the network or both.
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1.2.3 Solution of a social choice problem

The goal of a social choice procedure is defined according to the set of alternatives M :
choosing an alternative or a subset of alternatives, ranking the alternatives or a subset
of alternatives. Note that the set of alternatives may have a combinatorial structure,
such as the space of possible allocations in resource allocation problems or the space
of all partitions of agents in hedonic games. In all the social choice problems that we
will consider, the goal will always be the selection of one alternative within the set of
alternatives M , implying that M is the set of possible solutions. The objective of a
social choice procedure is then to select an alternative according to the preferences of
the agents over M .

This objective can be reached through a distributed (also called decentralized) pro-
cedure or a centralized procedure, or procedures mixing both characteristics. In a cen-
tralized procedure, the agents report their preferences, according to a given protocol for
elicitation, to a central authority which collects and aggregates them into a final decision
that is finally communicated to the agents. On the contrary, in a distributed process,
the agents iteratively construct a final decision by interacting among them without the
intervention of a central authority [Sandholm, 1999].

The social choice procedures are usually evaluated according to their properties, i.e.,
the axioms that they satisfy [Plott, 1976], and according to their computational cost in
terms of communication and elicitation [Conitzer and Sandholm, 2005], and in terms of
the computation of the solution [Hemaspaandra, 2018].

A general property that is commonly desirable for a social choice procedure is
strategy-proofness. A procedure is strategy-proof if the agents never have incentive to
misreport their preferences. While no voting system, reasonable according to some basic
axioms, is strategy-proof [Gibbard, 1973, Satterthwaite, 1975], some procedures based
on the idea of serial dictators are immune to manipulation. These procedures may ap-
pear more attractive in the context of allocating goods [Svensson, 1999] since this setting
relies on private goods.

A solution is rarely unanimously recognized as the best alternative by every agent,
due to preferences that may be conflicting. Therefore, it appears necessary to design
measures for evaluating the quality of solutions, such as for instance the efficiency of
a solution. In the context of ordinal preferences, the most natural criterion is Pareto-
efficiency.

Definition 1.14 (Pareto-efficiency) A solution s ∈ M is said to be Pareto-efficient
if there is no other solution s′ ∈ M which Pareto-dominates it, that is if there is no
solution s′ ∈ M such that for every agent i ∈ N , s′ %i s and there exists at least one
agent j ∈ N such that s′ �j s.

Other well-known quality measures are based on the cardinal efficiency of the solu-
tions, like the evaluation of the social welfare, in case the preferences are expressed via
utility functions. One can notably cite the utilitarian, the egalitarian or the Nash social
welfare.

Definition 1.15 (Utilitarian social welfare) A solution s ∈M maximizes the utili-
tarian social welfare if s ∈ arg maxs′∈M

∑
i∈N ui(s

′).
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Definition 1.16 (Egalitarian social welfare) A solution s ∈M maximizes the egal-
itarian social welfare if s ∈ arg maxs′∈M mini∈N ui(s

′).

Definition 1.17 (Nash social welfare) A solution s ∈M maximizes the Nash social
welfare if s ∈ arg maxs′∈M

∏
i∈N ui(s

′).

Other quality measures can be derived for more specific settings. In particular, we
focus our study on two social choice problems, voting and resource allocation, for which
specific requirements can be imposed on the solution and the procedure.

1.3 Voting theory

Voting is present in everyday life. Besides political elections, one could cite voting for
agreeing on a date or a place for a meeting, for instance in online voting via Doodle (www.
doodle.com) or Whale platform (https://whale.imag.fr/), elections of the members
of a laboratory council, the choice of the menu in a restaurant, and others.

In an election model, agents are also called voters and the alternatives in M are
candidates. The voters have preferences over the candidates in M and the goal is to
aggregate their preferences in order to determine the winner (or the winning set in
case of multi-winner elections) of the election. Whereas social welfare functions aim at
aggregating the preferences of the voters into a collective ranking over the alternatives,
we focus on mechanisms that output the winning alternative(s) of the election through
a social choice function, also called a voting rule.

Let us denote a voting rule by F . A certain type of admissible ballot, denoted by BF ,
is required for a given voting rule F . Each voter i is asked to submit a ballot σi ∈ BF to
a central system which computes the outcome of the voting rule on this set of ballots.
The voting rule takes as input a set of ballots, one for each voter (under the assumption
that the model does not take into account abstention), which is named a voting profile,
denoted by σ ∈ BFn. Therefore, a voting rule is a mapping associating with each voting
profile a set of winners, i.e., F : BFn → 2M \{∅}. When the ballot σi of voter i coincides
with her preferences %i, this voter is said to be sincere. If all the voters are sincere in
the ballot σi they submit to the system, then the associated voting profile σ ∈ BFn is
said to be truthful.

We are concerned with single-winner elections, where the winner must be a unique
candidate. The rule is said to be resolute if it returns a unique winner, that is if the
voting rule F is a mapping F : BFn → M . A tie-breaking rule is usually used in
order to obtain a single winner, in case the initial rule is not by essence resolute. We
consider in this work a deterministic tie-breaking that relies on a linear order over the
candidates, denoted by B, and we assume that this is by default the alphabetical order
over the alternatives, i.e., a B b B c B . . .. The resolute voting rule, resulting from the
composition of a voting rule F and a tie-breaking rule based on B, is denoted by FB.
The rule FB outputs, for a given voting profile σ, the candidate in F(σ) that comes first
in order B.

22

www.doodle.com
www.doodle.com
https://whale.imag.fr/


CHAPTER 1. PRELIMINARIES AND NOTATION

1.3.1 Voting rules

Several voting rules have been designed in voting theory. Most of the voting rules that
we consider in this document assign a score to the candidates and output as winner(s)
the candidate(s) maximizing this score. More formally, for such rules, given a profile of
ballots σ ∈ BFn, the score of candidate x ∈M under rule F is given by ScσF (x) (we omit
the reference to σ and F when the context is clear), and F(σ) ⊆ arg maxx∈M ScσF (x).
We always consider the resolute version FB of the voting rule (even if the mention to B
is often omitted for the sake of simplicity), where B selects the winner in case of ties in
arg maxx∈M ScσF (x).

In general, we assume that the voters are asked to submit as a ballot the whole
ranking of their preferences with no indifference, that is BF ∈ L(M). The order over the
candidates associated with ballot σi ∈ L(M) is denoted by �σi , and r σi is the function
giving the rank of the candidates in σi, i.e., candidate x is ranked at the r σi (x)th position
in ballot σi ∈ L(M). In the case where there is indifference in the preferences of a voter
i, a sincere ballot σi refers to an order �σi∈ L(M) where x �σi y implies that x %i y.
Consequently, in presence of indifference in the preferences, several ballots can be sincere.

We focus our study on some particular voting rules, which belong to three families
of rules: Positional Scoring Rules (PSRs), run-off voting rules and pairwise comparison
voting rules.

The PSRs compute the score of the candidates according to their position in the
ranking ballot of the voters. Indeed, the score ScσF (x) of alternative x under voting
profile σ depends on the absolute position of x in each ballot. Concretely, we are given
a vector α = (α1, . . . , αm) such that α1 ≥ . . . ≥ αm and α1 > αm. If x is placed at
position k in a ballot, then x receives αk points. The score of x is defined as the sum of
these points over all ballots. Thus, for all x ∈M , ScσF (x) =

∑
i∈N αr σi (x). Each PSR is

characterized by its vector α. We can mention in particular:

• Borda : α = (m − 1,m − 2, . . . , 0). More generally, any vector which is an affine
transformation of (m − 1,m − 2, . . . , 0) is an acceptable α-vector for Borda. In
other words, Borda gives points to the candidates in each ballot inversely to their
rank in the ballot, with more points to the candidate ranked first and exactly the
same difference of points between two consecutive positions in the ranking.

• k-approval (k ∈ [m − 1]): α = (1, . . . , 1, 0, . . . , 0) with k consecutive ones. This
rule assigns one point to all the candidates ranked within the first k candidates of
the ballot.

• Plurality : α = (1, 0, . . . , 0). This rule gives one point only to the candidate at the
first position of each ballot. It corresponds to k-approval when k is equal to 1.

• Antiplurality (also known as Veto): α = (0, . . . , 0,−1). The principle of this rule is
that the voters do not approve candidates in their ballot but disapprove a candi-
date, by expressing a veto against this candidate. Up to an affine transformation
of the scores, it corresponds to the k-approval rule when k is equal to m− 1.

Note that for Plurality and Veto, it is sufficient to submit only one candidate as a
ballot: the only approved candidate for Plurality and the only disapproved candidate
for Veto. Therefore, for Plurality and Veto, we can assume that BF = M . In such
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cases, for the sake of simplicity, we may sometimes write a voting profile σ as an n-tuple
σ = (σ1, . . . , σn) where σi ∈M is the ballot of voter i.

Besides the absolute evaluation of the candidates like in PSRs, it is possible to
evaluate a candidate relatively to the other candidates, like in pairwise comparison voting
rules. In such rules, it is useful to compute the number of voters who support some
candidate against another one. Given a voting profile σ with the associated vector of
linear orders �σ∈ L(M)n and two alternatives a, b ∈M , let W σ(a, b) and ωσ(a, b) be the
set of voters who prefer a to b and the number of voters who prefer a to b, respectively.
That is, W σ(a, b) = {i ∈ N : a �σi b} and ωσ(a, b) = |W σ(a, b)|. The information
contained in ωσ : M2 → [n] enables to compute the weighted majority graph of the
voting profile σ. A weighted majority graph is a complete directed graph over M where
every arc (a, b) for candidates a and b is assigned a weight equal to the number of voters
who prefer a to b, that is ωσ(a, b). For the sake of simplicity, we directly refer to ωσ to
designate the weighted majority graph of profile σ. Observe that ωσ(a, b) +ωσ(b, a) = n
for any candidates a and b such that a 6= b. We focus on two pairwise comparison rules
where the score ScσF (x) of a candidate x in a voting profile σ is defined according to the
number of voters who prefer x to the other candidates:

• Maximin: ScσF (x) = miny∈M\{x} ω
σ(x, y). The Maximin score of each candidate is

the minimum number of voters supporting it, considering any pairwise comparison
in the voting profile with another candidate.

• Copeland : ScσF (x) = |{y ∈ M \ {x} : ωσ(x, y) > n
2 }|. The Copeland score of each

candidate is the number of alternatives that it beats with absolute majority in a
pairwise comparison in the voting profile1.

Finally, the run-off voting rules proceed by rounds. Among them, we consider Single
Transferable Vote (STV) and Plurality with run-off which are elimination-based rules.
These voting rules are well-known and are actually used for political elections in several
countries: STV is notably used in Australia and Ireland, and Plurality with run-off is
used in France.

• STV 2 is an iterated process where at each round, the loser of Plurality, i.e., the
candidate with the smallest Plurality score, gets eliminated (use B to break ties).
The input voting profile is then updated by removing every occurrence of this
candidate from the ballots of the voters. The process continues until an alternative
obtains an absolute majority of votes under Plurality and thus gets elected.

• Plurality with run-off proceeds in two rounds. Only the first two candidates ac-
cording to Plurality (use B to break ties) remain for the second round, and the
voting profile is updated by removing all the occurrences of the other candidates.
The winner of Plurality in the remaining profile is chosen as the winner of Plurality
with run-off. Note that only the first round is necessary if an alternative gets a
strict majority of the votes.

1Other versions of the Copeland score also subtract the number of defeats by pairwise comparisons.
2The name used in political elections for single-winner elections is Instant Runoff Voting, whereas

the term STV refers to multi-winner elections. However, according to the social choice literature, we use
the common terminology of STV even for single-winner elections.

24



CHAPTER 1. PRELIMINARIES AND NOTATION

1.3.2 Evaluation of a voting rule

The traditional evaluation of a voting rule is axiomatic: one tries to identify some desir-
able properties that are satisfied by the voting rule. Since there is no perfect voting rule
satisfying natural requirements [Arrow, 1951], the choice of a voting rule is determined
by the properties that one would like to satisfy in a given context, according to the fact
that some desired axioms are incompatible.

For instance, a condition that appears reasonable to satisfy is the fact that, a priori,
no alternative is favored compared to another, property called neutrality. The neutrality
axiom implies symmetric treatment of the alternatives, or in other words, impartiality
among the candidates. Suppose µ : M → M is a permutation over the candidates.
Then, for a given voting profile σ, let us denote by σ.µ the voting profile σ where any
occurrence of alternative x has been replaced by µ(x).

Definition 1.18 (Neutrality) A voting rule F is neutral if and only if for every voting
profile σ ∈ BFn and every permutation µ : M → M , F(σ) = x implies that F(σ.µ) =
µ(x).

All the voting rules cited in the previous subsection are basically neutral but we lose
this property by combining them with a deterministic tie-breaking rule based on a linear
order over the candidates.

Another natural axiom is the unanimity requirement, imposing that the voting rule
must elect an alternative that is unanimously supported by all the voters.

Definition 1.19 (Unanimity) A voting rule F is unanimous if and only if for every
voting profile σ ∈ BFn such that there exists a candidate x ranked first by every voter,
F elects x, i.e., if |{i ∈ N : x �σi y, ∀y ∈M \ {x}}|= n, then F(σ) = x.

Despite the fact that the unanimity condition appears simple to satisfy, some rea-
sonable voting rules do not satisfy this basic axiom. Among the voting rules evoked in
the previous subsection, k-approval (for k > 1) and Veto are not “strictly” unanimous,
in the sense that they do not necessarily elect, as a single-winner, an alternative ranked
first by every voter. However, such an alternative always belongs to the set of winners
ex aequo under these rules, before a tie-breaking rule applies.

The unanimity condition can be generalized by requiring that the outcome of the
voting rule must be a candidate ranked first by at least a given portion of the voters.
By considering more than half of the voters as a specific quota, this boils down to the
definition of the majority rule. The associated axiom, that also implies unanimity, is
majority consistency.

Definition 1.20 (Majority consistency) A voting rule F is majority consistent if
and only if for every voting profile σ ∈ BFn such that there exists a candidate x ranked
first by a strict majority of voters, F elects x, i.e., if |{i ∈ N : x �σi y, ∀y ∈M \{x}}|>
n/2, then F(σ) = x.

Among the voting rules cited in the previous subsection, k-approval (for k > 1), Veto
and Borda are not majority consistent.
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Note that unanimity and majority consistency can be interpreted in two different
ways, according to either a relative evaluation of the alternatives, a point of view sup-
ported by Nicolas (marquis) de Condorcet, or to an absolute evaluation of the alterna-
tives, a vision defended by Jean-Charles (chevalier) de Borda. For instance, according to
the former point of view, majority consistency forces to elect a candidate that a major-
ity prefers to any other candidate, whereas according to the latter conception, majority
consistency must elect a candidate that is ranked first by a majority of voters. In fact,
in the conception of Borda, this is the rank of the candidates in the preference profile
which matters, whereas for Condorcet this is the quality of the candidates in compar-
ison to the other candidates which must be taken into account. Following the idea of
Condorcet, the Condorcet winner is a candidate which beats any other candidate in a
pairwise comparison. By definition, there is at most one Condorcet winner.

Definition 1.21 (Condorcet winner) A candidate x is the Condorcet winner in a
voting profile σ, denoted by CW (σ), if and only if |{y ∈M \{x} | ωσ(x, y) > n

2 }|= m−1.

However, a Condorcet winner is not guaranteed to exist for any instance of an elec-
tion [de Caritat marquis de Condorcet, 1785]. This implies that a voting rule defined
only by the election of the Condorcet winner cannot output a winner for any preference
profile. Nevertheless, under some restrictions such as single-peaked preferences, there
always exists a Condorcet winner (“Median voter theorem” [Hotelling, 1929, Black, 1948,
Downs, 1957]). The restriction of possible preference profiles to those admitting a Con-
dorcet winner is referred to as the Condorcet domain. A voting rule which always elects
the Condorcet winner alone, when restricted to the Condorcet domain, is said to be
Condorcet consistent.

Definition 1.22 (Condorcet consistency) A voting rule F is Condorcet consistent
if and only if for every voting profile σ, CW (σ) 6= ∅ implies that F(σ) = CW (σ).

Among the rules we have previously presented, only Copeland and Maximin are
Condorcet consistent. Note that a Condorcet consistent rule is necessarily majority
consistent and thus unanimous.

When a voting rule is not Condorcet consistent, it is interesting to empirically observe
how often it elects the Condorcet winner, when it exists. The Condorcet efficiency of a
voting rule is the probability that the rule elects the Condorcet winner when restricted to
the Condorcet domain [Gehrlein, 1997]. Some theoretical and, especially, experimental
studies can be conducted in order to evaluate the Condorcet efficiency of a given voting
rule.

In the same idea but regarding the absolute evaluation of the candidates, one could
refer to the frequency of electing a candidate which corresponds to the winner of the
Borda rule as the Borda efficiency. However, evaluating a voting rule following the
Borda efficiency is less meaningful than Condorcet efficiency. Indeed, since the Borda
scores are an absolute evaluation of the quality of a candidate, it is more relevant to
observe how good is the Borda score of the winner of a given voting rule [Grandi et al.,
2013]. In order to normalize the Borda scores and more easily compare them, we use the
Borda closeness measure, denoted by BCF (σ) for a given voting rule F and a voting
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profile σ, where ScσB is the vector of Borda scores on voting profile σ and FB denotes
the Borda rule.

BCF (σ) =

{
ScσB(F(σ))−minx∈M ScσB(x)

ScσB(FB(σ))−minx∈M ScσB(x)
if minx∈M ScσB(x) 6= maxx∈M ScσB(x)

1 otherwise

More precisely, the Borda closeness measures how much the Borda score of the winner
of profile σ under F is close to the Borda score of the Borda winner in σ compared to
the Borda score of the Borda loser, i.e., the minimum possible Borda score in profile σ.

Finally, another important point to take into account in the evaluation of a voting
rule is computational. The thesis only focuses on voting rules for which the computation
of the output is polynomial in the number of voters and the number of candidates. All
the voting rules that are cited in the previous subsection satisfy this property.

1.3.3 Strategic voting: voting game and iterative voting

Tactical voting appears very frequently in real life elections, and in political elections
in particular. The voters adopt a strategic behavior in voting when they submit a
ballot which is not in accordance with their real preferences. By this way, they hope to
avoid some unfortunate outcomes and try to maximize their satisfaction. The strategic
behavior in voting is usually called manipulation [Taylor, 2005].

Despite the fact that manipulation can be undesirable, the Gibbard-Satterthwaite
theorem [1973, 1975] establishes that no voting rule that satisfies basic axioms is immune
to manipulation. An approach to circumvent the problem of manipulation in voting is
to design voting rules that are computationally hard to manipulate, in order to prevent
voters to efficiently design strategies for manipulation. A rich literature has developed
on this point, analyzing the computation cost of a manipulation for different voting
rules [Bartholdi et al., 1989b, Bartholdi and Orlin, 1991]. However, this approach is
not sufficient to avoid manipulation, as pointed out by more recent works [Conitzer and
Sandholm, 2006, Faliszewski and Procaccia, 2010]. The main drawback of this approach
relies on the fact that the complexity of manipulation is analyzed in the worst case.
Therefore, even if there exists some cases for which a rule is computationally hard to
manipulate, this does not prevent the manipulation of the voters in practice, because
these hard cases may never occur.

Another perspective consists in exploring the natural game-theoretical properties
of strategic voting. In this idea, manipulation is not necessarily considered as a bad
behavior, but as a behavior to be taken into account in the voting process.

1.3.3.a Voting game

Strategic voting can be seen as a strategic game. Let us recall some basic notions about
game theory (see for instance Osborne and Rubinstein [1994]).

A strategic game aims at modeling a situation where several individuals must si-
multaneously choose an action, according to the payoff (or the cost) that this action,
combined with the actions chosen by the other individuals, will generate. Strategic
games are non-cooperative games [Nash, 1951], in the sense that the individuals are self-
interested and have their own goals and beliefs, even if they may associate with others.
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Alternatively, in a cooperative game, individuals can form coalitions, in which the share,
among the members of the coalition, of the payoff (or the cost) generated by their joint
action is also an issue of the game.

In a strategic game, the individuals are referred to as players, whose set is denoted by
N . The non-empty set of possible actions, or strategies, for any player i ∈ N is denoted
by Si. The game is said to be finite if the set Si of actions of every player i ∈ N is finite,
and the game is symmetric if the set of actions is the same for every player, i.e., Si = Sj

for all players i 6= j. A state of the game is a strategy profile s ∈ S := S1 × . . .×S|N |
where all the players i ∈ N simultaneously choose an action or a strategy. Such a state
is a profile of pure strategies. The satisfaction of a player i ∈ N is defined according to
a payoff function, vi : S → R (or a cost function ci : S → R), or ordinal preferences <i
over S . By considering that the choice of the players can be non-deterministic, a mixed
strategy for player i ∈ N is a probability distribution over Si, defining in consequence
a profile of mixed strategies. In such a case, the players have preferences over the set of
lotteries on S .

A solution concept of the game defines specific formal rules in order to predict a
possible outcome of the game. An equilibrium is a stable state with respect to a set of
possible moves, also called deviations, predefined by the solution concept. A solution
concept defines which types of deviations are valid, according to the type of move and the
deviating players taken into account. For instance, a Nash equilibrium [Nash, 1951] is a
state that is immune to unilateral deviations with strict improvement from the players.

A voting game is given by an instance 〈N,M,%,F〉, where the players correspond
to the voters, i.e., N = N . The strategies of the voters are the ballots they can submit
to the voting system. A voting game is symmetric in the sense that the set of strategies
Si for each voter i ∈ N is equal to the set BF of all ballots acceptable by voting rule
F . A state of a voting game is a voting (or strategy) profile σ ∈ BFn. The states
in BFn are not directly evaluated by the voters, contrary to a general strategic game,
because the voters i ∈ N have preferences %i over the set of candidates M . Therefore,
instead of directly evaluating σ ∈ BFn, the voters evaluate the winner(s) F(σ) of the
state according to voting rule F . We focus on voting games that are non-cooperative
games with pure strategies.

Let us formulate some solution concepts of strategic games in the context of voting
games. A strategy profile σ ∈ BFn that is restricted to the agents of N \ {i} for a given
player i ∈ N is denoted by σ−i. We can then write strategy profile σ as σ = (σi, σ−i).
The Nash equilibrium is defined as follows in a voting game.

Definition 1.23 (Nash equilibrium) A strategy profile σ ∈ BFn is a Nash equi-
librium if and only if for every voter i and every ballot σ′i ∈ BF , it holds that
F(σ) %i F(σ−i, σ

′
i).

In a Nash equilibrium, no single voter has incentive to change her ballot. The
existence and identification of Nash equilibria in voting games is a main concern (see for
instance Pattanaik and Sengupta [1982], Feddersen et al. [1990], Desmedt and Elkind
[2010]). However, there are usually many Nash equilibria in voting games, and they are
not all relevant for describing plausible outcomes of the game [Farquharson, 1969].

Nevertheless, in voting, it can be unrealistic and optimistic to consider that only
single agents can deviate, drawing a weakness of the Nash equilibrium. This leads to
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consider other solution concepts, which are based on coalitional deviations. A strategy
profile σ that is restricted to a coalition C ⊆ N is denoted by σC , and the strategy
profile σ that is restricted to the agents out of C is denoted by σ−C . Thus, (σ′C , σ−C)
denotes σ in which σi is replaced by σ′i if and only if i ∈ C.

A stable state with respect to deviations, for any possible coalition of voters, with
strict improvement for each member of the coalition, refers to the strong (Nash) equilib-
rium [Aumann, 1959]. A strong equilibrium is defined as follows in a voting game.

Definition 1.24 (Strong (Nash) equilibrium) A strategy profile σ ∈ BFn is a
strong equilibrium if and only if there is no coalition C ⊆ N of voters and no strat-
egy profile σ′C ∈ BF

|C| such that F(σ−C , σ
′
C) �i F(σ) for every voter i ∈ C.

In a strong equilibrium, no coalition of voters has incentive, for all the members of the
coalition, to change her ballot. Some conditions of existence of a strong equilibrium have
been established for voting games, by determining certain types of games that always
admit a strong equilibrium [Peleg, 2002, Peleg and Peters, 2010]. Strong equilibria have
also been characterized according to the notion of Condorcet winner [Sertel and Sanver,
2004] and for specific voting rules [Messner and Polborn, 2007].

Besides classical solution concepts from game theory, some solution concepts have
been designed especially for the voting game framework. For instance, the so-called
voting equilibrium [Myerson and Weber, 1993] is a state consistent with a preliminary
poll.

1.3.3.b Iterative voting

It is possible to consider a dynamic version of a voting game, called iterative voting (see
Meir [2017] for a recent survey). Initially, all the voters simultaneously cast a ballot,
which leads to the election of a given candidate according to voting rule F . From this
initial state, voters (or coalitions of voters) can manipulate by successively changing
their strategy while the rest of the voters keeps her current ballot. Actually, the voters
deviate by rounds according to the type of moves that is allowed by a given solution
concept. These deviations as well as the initial state define a dynamics of the game.
Iterative voting can be seen as the responses to a succession of polls where the voters can
observe the previous votes and strategize consequently [Reijngoud and Endriss, 2012].
Alternatively, it can simply describe the changes in the vote intentions of the voters
during a pre-election period, where the vote intentions can potentially evolve regarding
the others’ opinions.

More formally, let us denote by σ0 ∈ BFn the initial state of the game, where by
assumption of no abstention, every voter gives a ballot to the central system. This initial
state is a voting profile which is usually supposed to be truthful in the literature1. In
general σt denotes the current voting profile at step t, and the voters deviate according
to the outcome of the state that is given by F(σt). For the sake of simplicity, when the
context is clear, we denote by Sct, instead of Scσ

t
, the score of voting profile σt under F .

A dynamics is a sequence of states (σ0, σ1, . . . , σT ) such that each pair of consecutive

1This restriction is rather natural: the voters start by giving their true opinion, especially if they do
not have any previous information about the game, and if they are not satisfied with the outcome then
they reconsider their vote.
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steps t, t+ 1 is associated with the deviation of some voter (or coalition of voters) that
turns σt into σt+1. A deviation at step t is supposed to occur between the steps t and
t + 1. The dynamics is said to converge when the associated sequence of deviations
is finite. The dynamics fails to converge when a state appears more than once in the
sequence of deviations.

It is commonly assumed that only one voter (or coalition of voters) is deviating at
each step1. Different sequences of deviations can occur, depending on who deviates at
a step if different agents can do so. It is possible to define rules to choose the voter
(or coalition of voters) who deviates at a given step, among the voters (or coalitions
of voters) having incentive to manipulate. These rules are formalized through a turn
function (or scheduler) [Apt and Simon, 2012], that we denote by τ . In general, we do
not assume a specific fixed turn function for the iterative voting game.

In the initial iterative voting formulation of Meir et al. [2010], a single voter is
deviating at each step of the game in order to strictly improve the outcome of the election
according to her preferences. Consequently, if the dynamics converges, then it reaches
a stable state corresponding to a Nash equilibrium. The convergence properties of the
iterative voting game have been widely studied [Meir et al., 2010, Lev and Rosenschein,
2012, Reyhani and Wilson, 2012, Grandi et al., 2013, Obraztsova et al., 2015]. Up to our
knowledge, only Nash equilibria have been studied in the iterative voting setting, i.e.,
only unilateral deviations with strict improvement are made at each step of the game.
In this context, it is possible to define a better response as a strict improvement for the
voter who deviates.

Definition 1.25 (Better response) A ballot σ′i ∈ BF is a better response for agent i
from strategy profile σ ∈ BFn if F(σ−i, σ

′
i) �i F(σ).

Players are said to be rational if they aim to maximize their payoff according to the
information they get about the strategies of the other players. Under such a classical
assumption in game theory, it seems natural to restrict to best response deviations.

Definition 1.26 (Best response) A ballot σ′i ∈ BF is a best response for agent i from
strategy profile σ ∈ BFn if σi is a better response for agent i and there is no other strategy
ballot σ′′i such that F(σ−i, σ

′′
i ) �i F(σ−i, σ

′
i).

Concerning convergence of the voting game to a Nash equilibrium, one of the most
important results is the guarantee of convergence of the dynamics defined by direct
best responses under Plurality and Veto [Meir et al., 2010, Lev and Rosenschein, 2012,
Reyhani and Wilson, 2012]2.

Definition 1.27 (Direct best response (Plurality)) From voting profile σ ∈ Mn,
a deviation to a ballot σ′i ∈M is a direct best response for agent i under Plurality, if σ′i
is a best response for i from σ and σ′i = F(σ−i, σ

′
i).

1Trivial cases of non convergence can occur otherwise (see for instance Proposition 2 of Meir et al.
[2010]).

2These references do not explicitly use the term of direct best responses which will be introduced
later, more precisely under the term direct best replies, by Meir et al. [2017].

30



CHAPTER 1. PRELIMINARIES AND NOTATION

Definition 1.28 (Direct best response (Veto)) From voting profile σ ∈ Mn, a de-
viation to a ballot σ′i ∈M is a direct best response for agent i under Veto, if σ′i is a best
response for i from σ and σ′i = F(σ).

A direct best response in Plurality consists in approving the candidate that will
become the new winner. Alternatively, a direct best response in Veto consists in dis-
approving the candidate that is the current winner. Clearly, if there exists a better
response for agent i from strategy profile σ, then there exists a best response for i from
σ, and then there also exists a direct best response for i from σ. Therefore, the restric-
tion to direct best responses does not weaken the Nash equilibrium that is reached by
the dynamics, but only chooses a certain type of best response.

However, the generalization of this convergence result to other voting rules does not
hold. Nevertheless, by further restricting the deviations in such a way that the associated
solution concept is not a Nash equilibrium but a weaker notion, it is possible to reach
convergence [Reijngoud and Endriss, 2012, Grandi et al., 2013, Obraztsova et al., 2015].
These restricted manipulation moves aim at modeling simple heuristic deviations that
can be cognitively manageable for the agents, especially for some rules like Borda where
the ballot is a linear order over the candidates. See Meir [2017] for an overview on the
restricted manipulation moves.

An interesting question in this framework is the quality of the equilibria that are
reached by the dynamics in case of convergence. This question has also been investi-
gated, for the case of unilateral deviations, in a theoretical point of view [Reijngoud and
Endriss, 2012, Grandi et al., 2013], via for instance Condorcet consistency, and through
an empirical analysis [Reijngoud and Endriss, 2012, Grandi et al., 2013, Koolyk et al.,
2017]. These empirical studies highlight the fact that, in practice, the dynamics cycles
very rarely. Moreover, the iterative voting process can be viewed as a new voting rule
whose outcome is the equilibrium reached by the dynamics. Therefore, the quality of
the equilibria in terms of Condorcet efficiency and Borda scores can be investigated
[Reijngoud and Endriss, 2012, Grandi et al., 2013, Koolyk et al., 2017]. It turns out
that iterative voting produces rather good outcomes according to these criteria, that are
often better than the quality of the outcome without iteration.

Note that some parameters are important for choosing a best response or a heuristic
for best response [Reijngoud and Endriss, 2012, Grandi et al., 2013]. For instance, the
voters are almost always assumed to be rational and myopic. Indeed, the lookahead
horizon of the voters should also be taken into account. The usual myopia of the voters
means that their strategic horizon is only the next step and they do not establish long-
term strategies. Some works relax this assumption. Obraztsova et al. [2016] follow
an idea close to local-dominance [Meir et al., 2014] (further explained in a subsequent
paragraph), by considering that some thresholds determine the optimism horizon of
the voters and they focus their study on Plurality and Veto. They define as an NM-
Plurality response (referring to non-myopic voters) a deviation to a ballot approving the
preferred candidate among the possible winners at a particular optimism horizon, i.e.,
among the candidates whose current score is not less than the score of the winner minus
the optimism horizon value of the voter.

Another important point to take into account within the deviations of the voters is
the information that the voters have for computing a manipulation at a given step. This
raises the question of uncertainty about the current voting profile.
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1.3.3.c Voting under uncertainty

In iterative voting, an important parameter to take into account in the dynamics of
deviations is the information available to the voters. In the classical framework that we
have depicted, the voters are assumed to know the current votes of all the other voters,
allowing them to design best response strategies. However, this assumption appears
highly unrealistic, especially in large scale instances or political elections.

Starting from this observation, an important literature begins to develop in order to
face with uncertainty in voting. Let us briefly present some of them1.

- The Bayesian approach assumes that the voters think in terms of probabilities over
the possible voting profiles [Myerson and Weber, 1993, Messner and Polborn, 2005,
Hazon et al., 2008]. Then, they try to maximize their expected utility function.

- The knowledge-based approach uses modal logic frameworks in order to formalize
manipulation in a context of incomplete information [Chopra et al., 2004, Van Dit-
marsch et al., 2012]. Different types of manipulation defined according to the
knowledge of the agents are enumerated.

- In the local-dominance perspective, some uncertainty thresholds are added to the
classical framework of iterative voting [Meir et al., 2014, Meir, 2015]. The focus
is given on Plurality. A local-dominant strategy is a ballot that dominates all
the possible ones within the set of possible profiles considered by the voter. The
possible current profiles are all the profiles that are at most at a certain distance
from the real current profile. The distance is given by the uncertainty thresholds
and a certain metric.

- Another approach analyzes the possibility of manipulation according to an infor-
mation function, giving a specific type of information, such as the winner, the scores
or the weighted majority graph of the current voting profile, which is communi-
cated to the voters [Reijngoud and Endriss, 2012, Endriss et al., 2016]. According
to the type of information that is given to the voters, the susceptibility to ma-
nipulation of different voting rules is investigated. The voters adopt a risk-averse
behavior in the sense that the played strategy must be undominated over all the
possible voting profiles that coincide with the information they have.

- Another way to deal with uncertainty is to consider a set of possible profiles accord-
ing to partial available votes [Conitzer et al., 2011, Dey et al., 2016]. The voters
infer as possible voting profiles all those which coincide with the partial votes.
While Conitzer et al. [2011] choose to study the dominant strategy within this set
as a best response, Dey et al. [2016] focus on different types of manipulation based
on possible or necessary winners within the set of possible profiles.

Recently, some works assume a social network structure over the agents in order to
understand certain behaviors in strategic voting [Grandi, 2017]. In this line of research,
uncertainty in voting has been studied by assuming that the agents directly infer from
their links in the social network the current votes of each voter [Chopra et al., 2004, Sina

1For a more complete survey, see Meir [2017].
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et al., 2015, Tsang and Larson, 2016, Tsang et al., 2018]. This naturally leads to a bias
in the deviations and the convergence of an iterative voting process can be analyzed in
consequence.

The collective decision that is made via voting systems sets a configuration which will
be the same for every agent. Other interesting questions arise in social choice problems
where an alternative defines different situations according to the identity of the agents.
This is the case in resource allocation problems.

1.4 Resource allocation of indivisible goods

Resource allocation of indivisible goods [Chevaleyre et al., 2006, Bouveret et al., 2016]
is a main issue in Artificial Intelligence, which is at the intersection of Economics and
Computer Science, and has many real life applications. One can cite for instance divorce
settlements, allocation of articles to reviewers, assignment of courses to students, and
many others.

In a resource allocation problem, given a set O of r resources {o1, . . . , or} (also called
items or objects), and a set of agents who have preferences over the subsets of resources,
the goal is to allocate the items among the agents in an efficient and fair manner [Young,
1995, Brams and Taylor, 1996, Moulin, 2004]. We assume that the set of resources is
finite and that the resources are neither shareable nor divisible among the agents, that is
each resource must be assigned to at most one agent. The divisibility of the resources is
assumed in a particular resource allocation setting called cake cutting [Steinhaus, 1948,
Robertson and Webb, 1998, Procaccia, 2016]. In the context of indivisible goods, the set
of alternatives M is the set of all possible assignments of objects to agents. An allocation
π ∈M is a mapping π : N → 2O such that for any pair of agents i and j, π(i)∩π(j) = ∅,
where π(i) denotes the bundle assigned to agent i 1. If

⋃
i∈N π(i) = O, all the objects

have been assigned, and the allocation is said to be complete. All the allocations that
we consider are assumed to be complete, therefore the set of possible assignments M is
of size m = nr.

Remark that, contrary to the general framework of social choice presented in Sec-
tion 1.2.1, we have stated that the agents have preferences over the resources, instead
of preferences over the set of alternatives that are the possible allocations. Actually,
this simplification makes sense by making the classical assumption that the agents only
care about their own share. Under such an assumption, we can simplify the problem by
only considering preferences over all subsets of items, instead of preferences over all the
possible assignments. Moreover, in case of cardinal preferences, if one assumes that the
preferences are additive, then the value that an agent attributes to a subset of objects is
equal to the sum of the values that she assigns to the isolated objects. Therefore, in such
a case, it suffices to know the valuations of the agents over O to deduce the preferences
over the shares and then the preferences over the assignments.

In the thesis, we assume that no monetary compensation is allowed.

1In order to simplify the notations and not confuse objects with allocations, we use π to denote an
allocation instead of the general notations for alternatives in M like a, b or x.
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1.4.1 Evaluation of an allocation of goods

Two dimensions are investigated to evaluate the quality of an assignment in resource
allocation: efficiency and fairness.

Efficiency usually refers to Pareto-efficiency or to the maximization of the social
welfare. An allocation is Pareto-efficient if no other allocation is at least as good for
every agent and strictly better for at least one agent. The maximization of the social
welfare, which applies when the preferences are cardinal, can involve different notions of
welfare, such as the utilitarian, the egalitarian or the Nash social welfare.

Various notions of fairness can also be used, depending on the interpretation of
fairness, like for instance proportionality or envy-freeness. Used in a context where the
agents have utilities over the subsets of resources, ui : 2O → R, and initially proposed
for divisible resources [Steinhaus, 1948], the proportionality requirement prescribes that
every agent should value her share at least her value for the entire set of resources
divided by the number of agents. From the definition of proportionality, it appears that
this notion is of interest especially when the utilities of the agents are additive, that is
each bundle of objects is evaluated by an agent as the sum of the utilities of its different
items.

Definition 1.29 (Proportionality) An allocation π ∈ M is proportional if and only
if ui(π(i)) ≥ ui(O)/n for every agent i.

Envy-freeness [Tinbergen, 1946, Foley, 1967, Varian, 1974] requires that no agent
finds her share less valuable than the share of another agent. This notion can be de-
fined either in a context of cardinal preferences with utilities ui : 2O → R, or ordinal
preferences over all bundles of resources.

Definition 1.30 (Envy-freeness) An allocation π ∈M is envy-free if and only if for
every agent i, ui(π(i)) ≥ ui(π(j)), or more generally, π(i) %i π(j), for every agent j.

Note that, in order to make the notion of envy-freeness meaningful, the allocation
needs to be complete. Otherwise, the trivial allocation allocating no object is always
envy-free.

When the preferences are cardinal, several measures for evaluating the degree of envy
of an agent, and more generally, of the society, can be designed. A rich literature has
developed on this point [Lipton et al., 2004, Chevaleyre et al., 2007a, Nguyen and Rothe,
2014]. A general classification for measuring the degree of envy of an allocation has been
done by Chevaleyre et al. [2017], in a model where monetary compensations are allowed.
Let us present their classification by restricting to the case without payment.

Given an allocation π, the positive envy that an agent i feels towards agent j is given
by ei,j , defined as follows.

ei,j = max{0, ui(π(j))− ui(π(i))}

One can either define the degree that agent i envies j by considering how much i prefers
the bundle of j compared to hers, denoted by eraw, or only focus on the fact that she is
envious of j, i.e., a boolean degree of envy denoted by ebool.
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eraw(i, j) = ei,j ebool(i, j) =

{
1 if ei,j > 0
0 otherwise

Now, let us state the global degree of envy of a single agent i, by considering all the
possible agents j that i can envy. The sum and the maximum are two natural operators
for aggregating the individual degrees of envy, defined by eop where op ∈ {raw, bool},
into a collective one.

emax,op(i) = max
j∈N

eop(i, j) esum,op(i) =
∑
j∈N

eop(i, j)

Similarly, these operators enable to define a degree of envy for the whole society,
where the operator for the degree of envy of a single agent is op1 ∈ {sum,max} and the
envy between two agents is defined according to op2 ∈ {raw, bool}.

emax,op1,op2 = max
i∈N

eop1,op2(i) esum,op1,op2 =
∑
i∈N

eop1,op2(i)

One can then investigate the optimization of the global degree of envy of the society,
by searching for an allocation minimizing the envy of the society, such as the minimiza-
tion of the maximum pairwise envy [Lipton et al., 2004], for which the objective is to
minimize emax,max,raw.

Note that, instead of defining envy by the difference of the utilities, one can define
an envy-ratio e′i,j and then derive the previous degrees of envy for a single agent and
the whole society based on this new definition of envy [Lipton et al., 2004, Nguyen and
Rothe, 2014].

e′i,j =

{
max

{
1, ui(π(j))

ui(π(i))

}
if ui(π(i)) 6= 0

+∞ otherwise

In general, fairness and efficiency are difficult to combine. For instance, deciding
whether an allocation that is both envy-free and Pareto-efficient exists is computationally
hard [Bouveret and Lang, 2008, de Keijzer et al., 2009]. Even with a weaker notion of
efficiency, by only imposing that the allocation is complete, the probability of existence
of an envy-free allocation can be very low [Dickerson et al., 2014].

1.4.2 Specific problems: house allocation and housing market

Some restricted versions of resource allocation with indivisible goods are interesting to
investigate, for their applications or their specific properties. This is the case of the
setting where exactly one resource must be assigned to each agent.

1.4.2.a House allocation

When exactly one object has to be assigned to each agent, the problem of resource alloca-
tion of indivisible goods refers to an assignment problem [Gardenfors, 1973], called house
allocation [Hylland and Zeckhauser, 1979, Abdulkadiroǧlu and Sönmez, 1998, 1999]. In
the economic literature, this problem is also known as a one-sided matching [Zhou, 1990],
a specific type of matching under preferences [Manlove, 2013, Klaus et al., 2016], where
the agents have preferences over the resources but the resources do not have any pref-
erence over the agents. Note that another problem exists, called two-sided matching,
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where the resources also have preferences over the agents. This is the classical setting of
the stable marriage problem [Gale and Shapley, 1962] which can have some applications
in the assignment of students to universities for instance. Real life applications of house
allocation can be, for example, the allocation of tasks to employees, or the assignment
of time slots in a time schedule.

In this context, the set O of resources is of size r = n, and the set M of alternatives,
i.e., all possible assignments, is of size m = n!. A possible allocation π ∈M is therefore
a mapping π : N → O where π(i) 6= π(j) for every agents i and j. The allocations
are sometimes written as n-tuples where ith coordinate corresponds to π(i), the object
assigned to agent i in π. Moreover, we denote by π|N ′ , for N ′ ⊆ N , the partial allocation
from π restricted to the agents in N ′. Note that there is no need of defining preferences
over bundles of objects in this framework. So, we simply assume that the agents have
ordinal preferences over the set O of resources.

The questions of Pareto-efficiency and fairness have also been investigated for this
particular problem [Bogomolnaia and Moulin, 2001, Abraham et al., 2005]. The defini-
tion of envy is very simple in house allocation: an agent envies another one if she prefers
the object assigned to the other agent to her own item. However, it is a very strong
requirement because an envy-free allocation exists if and only if the agents’ top objects
(the objects ranked first in their preferences) are all different.

A classical and efficient mechanism in house allocation that is widely used for real
applications is the Serial dictatorship protocol [Satterthwaite and Sonnenschein, 1981].
Serial dictatorship specifies an order over the agents, and each agent is asked to choose
an object among the available resources at her turn. The order is either fixed or ran-
domly generated (random serial dictatorship [Abdulkadiroǧlu and Sönmez, 1998]). This
mechanism is proved to be strategy-proof [Svensson, 1999], that is no agent has incentive
to choose an object that is not her preferred one among the remaining items.

1.4.2.b Reallocation and housing market

In house allocation, a subtlety is added when the agents are initially endowed with a
resource. Concretely, there exists an initial allocation π0 : N → O such that π0(i)
denotes the initial object of agent i. The goal is then to reallocate the resources among
agents. This variant of the problem is called housing market [Shapley and Scarf, 1974].
In such a context, the agents typically trade their resources.

A trade is said to be rational if every agent involved in the exchange obtains an
object that she prefers to her previous resource. The housing market setting as well as
the notion of rationality is presented in the following example.

Example 1.4 Let us consider an instance of a housing market problem with four agents,
where N = {1, 2, 3, 4} and O = {o1, o2, o3, o4}. The preferences of the agents are the
following where the initial endowment of each agent is framed.

1 : o1 � o2 � o4 � o3

2 : o2 � o3 � o1 � o4

3 : o3 � o1 � o2 � o4

4 : o2 � o4 � o3 � o1
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An exchange between agent 1 and agent 3 would be rational: they both prefer the object
assigned to the other agent.

Two approaches can be adopted in housing market: a centralized approach where a
central authority decides how to rearrange the objects among the agents by guiding their
exchanges, or a distributed approach where the agents directly exchange their objects,
without any external intervention, in order to obtain a better assignment.

Efficient centralized algorithms have been designed for housing market, namely the
well-known Top-Trading Cycle (TTC) algorithm [Shapley and Scarf, 1974] and some
variants [Abdulkadiroǧlu and Sönmez, 1999, Aziz and De Keijzer, 2012]. Here is the
global idea of the TTC algorithm. Consider a bipartite directed graph over two sets
of nodes that respectively represent the agents and the resources. Draw an arc from
each object to its initial owner agent, and an arc from each agent to her most preferred
object. Then, by performing the exchanges corresponding to the directed cycles in this
directed graph and by repeating this process, we obtain an allocation that is, among
other properties, Pareto-efficient. This simple and efficient algorithm is presented in the
following example considering the same instance as in Example 1.4.

Example 1.5 Let us consider the same instance as in Example 1.4 and construct the
bipartite directed graph of the TTC algorithm (the dashed arcs stand for the current
allocation of object, whereas the plain arcs connect the agents to their most preferred
object).

1

2

3

4

o1

o2

o3

o4

Let us consider the directed cycle in red. By performing the exchanges along this dicycle,
we reach an allocation π′ = (o1, o4, o3, o2) which is Pareto-efficient.

The housing market framework as well as TTC-like algorithms are actually of wide
interest for a very important application in the real world, namely the kidney exchange
problem [Roth et al., 2004, Cechlárová and Lacko, 2012]. In such a context, additional
constraints like the necessity of considering small cycles of exchanges are needed.

From the TTC seminal algorithm, centralized algorithms have been largely investi-
gated, notably for the case of multiple resources per agent [Konishi et al., 2001, Todo
et al., 2014, Sonoda et al., 2014, Fujita et al., 2015, Aziz et al., 2016a]. The main draw-
back of the centralized approach is the requirement for the agents to communicate a
part of their preferences to an external authority they need to trust.

Alternatively, the agents may perform the reallocation by trading and negotiating
among them, following a distributed process of exchanges. Less demanding in terms of
communication, this approach has the benefit of the independence of the agents from
an external authority but may lead to less satisfactory final allocations because of the
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agents’ myopia. Indeed, the agents only perform local improvements without global
vision of the whole allocation, contrary to an external central authority. Some works
examine this distributed process of exchanges, in order to find conditions for realistic
trades and analyze the quality of the possible outcomes. Widely studied in a general
resource reallocation problem [Sandholm, 1998, Chevaleyre et al., 2017], this approach
has been recently investigated in housing market [Damamme et al., 2015]. This latter
work analyzes dynamics of exchanges where the agents, starting from the initial allo-
cation, perform rational trades among limited set of agents until a stable allocation is
reached. In such a stable allocation, no rational exchange is possible within a limited
set of agents. The rationality assumption in the trades is essential in order to ensure the
convergence of the dynamics. Damamme et al. [2015] notably shows that the dynamics
associated with swap deals, i.e., trades between only two agents, eventually converges
when the preferences are single-peaked.

An important dimension to study in resource allocation, as well as in other social choice
problems, is the computational cost of the procedures. Indeed, real world applications
require algorithms which solve every instance in a reasonable amount of time.

1.5 Computational complexity background

Since our goal is to analyze the problems within a computational social choice perspec-
tive, we investigate the computational cost of the procedures and protocols that we
study. This section is devoted to the presentation of some basics about classical and
parameterized complexity.

A problem P is defined according to a general description of its parameters, and
a certain set of constraints characterizing the feasible solutions of the problem. An
instance I of P is then a specification of particular values for the parameters of P. An
algorithm is a step by step method for solving a problem. An algorithm is said to be
deterministic if its output for a given instance I is fixed, and non-deterministic if its
output may be different for several runs of the algorithm on the same instance I.

Problems can be classified into two categories: the decision problems and the search
problems. They differ with respect to the type of answer that must be returned by
an algorithm solving the problem. A search problem asks for a particular solution that
satisfies the conditions of the problem, whereas a decision problem formulates a question,
requiring a binary answer, yes or no. Among the search problems, one can distinguish
optimization problems that aim to find a particular solution optimizing a given objective
function f , defined over the feasible solutions of the problem. In order to analyze the
complexity of search problems, it is more convenient to consider their decision version.
The decision version of a search problem asks for the existence of a particular solution
that satisfies the conditions stated in the search problem with, in addition, for the case
of an optimization problem, a condition on the value that must take a feasible solution
according to f . For instance, in the Minimum Vertex Cover optimization problem,
the goal is to find a vertex cover V ′ ⊆ V in an undirected graph G = (V, E) with minimum
size. The decision version of this problem is Vertex Cover, asking whether there exists
a vertex cover V ′ ⊆ V in an undirected graph G = (V, E) such that |V ′|≤ k for a given
integer k given as input. In general, we will formalize the decision problems as follows.
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Decision Problem:
Instance: Parameters that define an instance of the problem
Question: Problem to solve that must be answered by yes or no

The analysis of the complexity of an algorithm is commonly asymptotic, according
to the input size |I| (in our case the number of agents n and the number of alternatives
m), for a given instance I of a problem P. We follow a classical approach of worst-case
complexity.

1.5.1 Classical complexity

For a more complete background about computational complexity theory, see for instance
Arora and Barak [2009] and Garey and Johnson [1979].

In general, a complexity class defines a set of problems that can be solved by an
algorithm using a given resource in terms of time or space for its execution. We will
restrict ourselves to complexity classes focusing on time resources. Complexity classes
are usually linked by inclusion relations, inducing a hierarchical structure over them.
A complexity class C2 is said to be higher than class C1 in the hierarchy if it is known
that C1 ⊆ C2. Completeness of a problem for a given complexity class means that the
problem belongs to the hardest problems of this class. For two classes C1 and C2 such
that C1 ⊆ C2, the problems that are C1-complete are supposed to be easier to solve that
problems C2-complete, unless C1 = C2.

Completeness of a problem for a given complexity class is proved by showing both
hardness and membership of the problem according to this complexity class. Proving
that a problem P is C-hard, for a given complexity class C, can be done by showing
that any instance I ′ of a problem P ′, that is complete for C, can be transformed into an
instance I of P, in a way that does not consume more resources than those required in
the definition of C. This informally means that P is at least as hard as a problem that
is complete for class C, proving a lower bound for the complexity of P, which cannot
be complete for a lower class in the hierarchy, unless the classes are equal. On the
contrary, proving membership of a problem P in a given complexity class C can be done
by exhibiting an algorithm solving P with the resources defined by C. This proves an
upper bound for the complexity of P, which cannot be complete for a higher class in the
hierarchy, unless the classes are equal.

Traditionally, an algorithm is said to be computationally efficient if its running time
is polynomial in the size of the instance, even in the worst case scenario. In other words,
such an algorithm terminates within O(|I|O(1)) steps, for any instance I of the problem,
where the number of steps refers to the number of basic operations. All the problems
that are solvable in polynomial time belong to the complexity class P. A problem P is
in P if there exists a deterministic algorithm solving any instance I of P in polynomial
time.

1.5.1.a NP

For decision problems, there exists a hierarchy of complexity classes beyond P. We restrict
our attention to the first level of this hierarchy, namely the complexity class NP. Class
NP gathers all the problems that can be solved by a non-deterministic algorithm in
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polynomial time. Clearly, P ⊆ NP. Class NP is the best known and used complexity
class because it suffices to prove a lower bound, i.e., hardness, to this class to prove that
there is no efficient algorithm for the problem, unless P = NP. Knowing whether the
inclusion of P in NP is strict is a very famous and challenging open problem, even if there
is a consensus within the computer science community for conjecturing that P 6= NP.

Actually, the difference between P and NP relies on the difference between the con-
struction and the verification of a solution. Indeed, P gathers all the problems for which
the answer of the problem can be computed efficiently, whereas NP gathers all the prob-
lems for which a solution can be verified efficiently. A decision problem P is in NP if
for every instance I of P, this is possible to verify in polynomial time whether a given
solution x of I is a certificate for asserting that I is a yes-instance of P.

The first problem that has been proved to be NP-complete is the Satisfiability
problem, which became the reference problem for this class. Satisfiability is defined
as follows for formulas in conjunctive normal form (CNF-formulas) (recall that a CNF-
formula is a propositional formula that is a conjunction of clauses, and a clause is a
disjunction of literals).

Satisfiability (SAT):
Instance: A set X of variables, a CNF-propositional formula ϕ over X
Question: Does there exist a truth assignment of the variables in X such that ϕ is

satisfied?

Theorem 1.1 (Cook-Levin (1971)) SAT is NP-complete.

After the establishment of the NP-completeness of Satisfiability, Karp [1972] pro-
vided a list of 21 NP-complete problems with proofs based on polynomial reductions.
Some years later, Garey and Johnson [1979] presented an extensive list of NP-complete
problems, and now the size of this class is still growing.

The proof of NP-completeness relies on two facts: membership to NP and NP-
hardness. A problem P is said to be NP-hard if there exists a polynomial reduction
from a known NP-complete problem to P.

Definition 1.31 (Polynomial reduction) A polynomial reduction from problem P to
problem P ′ is a polynomial algorithm that transforms any instance I of P to an instance
I ′ of P ′ such that I is a yes-instance of P if and only if I ′ is a yes-instance of P ′, and
|I ′|= O(|I|O(1)).

Informally, a problem is NP-hard if it is at least as hard as an NP-complete problem.
This proves that the exact complexity class of the problem is either NP or a higher class
in the hierarchy, and thus shows a lower bound of hardness. Conversely, the membership
to NP shows an upper bound of hardness: that means that the exact complexity class
of the problem is either NP or a lower class in the hierarchy. Consequently, a problem is
NP-complete, that is the exact complexity class of the problem is NP, if it is in NP and
NP-hard.

In this document, we will use polynomial reductions from some variants of Satis-
fiability, that are known to be NP-complete. These variants are based on particular
CNF-formulas. The best known is 3-SAT, that belongs to the original list of the 21
NP-complete problems presented by Karp [1972].
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3-SAT:
Instance: A set X of variables, a CNF-formula ϕ over X where each clause contains

exactly three literals
Question: Does there exist a truth assignment of the variables in X such that ϕ is

satisfied?

Theorem 1.2 (Karp [1972]) 3-SAT is NP-complete.

Interestingly, the 3-SAT problem delimits the tractability frontier within the satis-
fiability problems conditioned by the size of the clauses. Indeed, whereas 2-SAT, the
restriction to clauses of size two, is solvable in polynomial-time [Cook, 1971b,a, Even
et al., 1976], and even in linear time [Aspvall et al., 1979], considering only three literals
per clause is sufficient to get intractability.

We will also consider more restrictive CNF-formulas where the occurrences of the
variables are limited as well.

2P1N-SAT:
Instance: A set X of variables, a CNF-formula ϕ over X where each variable in

X occurs exactly three times: twice as a positive literal and once as a
negative literal

Question: Does there exist a truth assignment of the variables in X such that ϕ is
satisfied?

Theorem 1.3 (Yoshinaka [2005]) 2P1N-SAT is NP-complete.

Note that in the reduction proving the NP-completeness of 2P1N-SAT [Yoshinaka,
2005], the clauses of the constructed formula can be reorganized such that the negative
occurrence of each variable always occurs at first, or at second or at third position
among the occurrences of the variable in the formula. Therefore, considering instances
of 2P1N-SAT with such properties also leads to an NP-complete problem.

We also consider another NP-complete variant of the Satisfiability problem, where
the occurrences of the variables are limited as well as the size of the clauses.

(3, B2)-SAT:
Instance: A set X of variables, a CNF-formula ϕ over X where each clause contains

exactly three literals and each variable in X occurs exactly four times:
twice as a positive literal and twice as a negative literal

Question: Does there exist a truth assignment of the variables in X such that ϕ is
satisfied?

Theorem 1.4 (Berman et al. [2004]) (3, B2)-SAT is NP-complete.

Besides the satisfiability problems, NP-complete problems based on graphs are also
widely used in polynomial reductions. Among them, one can cite for instance the Inde-
pendent Set problem.
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P

NP co-NP

Figure 1.3: Relation between complexity classes P, NP and co-NP

Independent Set:
Instance: Undirected graph G = (V, E), integer k
Question: Is there an independent set I ⊆ V in G such that |I|= k?

Theorem 1.5 (Garey and Johnson [1979]) Independent Set is NP-complete.

1.5.1.b co-NP

Let us define the problem P as the complement of decision problem P, i.e., for any
instance I of P, I is a yes-instance of P if and only if I is a no-instance of P . If
we define as co-C the set of decision problems whose complement is in C, then co-P

= P, because P is closed under complementation. Indeed, if it is possible to answer in
polynomial time to any instance of a problem P, then it is also possible to answer in
polynomial time to the dual question.

Let us introduce the class co-NP containing the decision problems that are com-
plementary to those belonging to NP. Observe that the classes NP and co-NP are not
complementary because they have P as a non-empty intersection (see Figure 1.3). A
problem P is in co-NP if, for any instance I of P, it is possible to verify in polynomial
time whether a given solution x of I is a certificate for asserting that I is a no-instance
of P.

Following the same principle as for NP, a problem is co-NP-complete if it is in co-NP

and co-NP-hard. The co-NP-hardness of a problem is proved via a polynomial reduc-
tion from a co-NP-complete problem. The reference problem for co-NP-completeness is
Unsatisfiability, the complementary problem of Satisfiability.

Unsatisfiability:
Instance: A set X of variables, a propositional formula ϕ over X
Question: Is ϕ unsatisfiable for any truth assignment of the variables in X?

Intuitively, problems in NP refer to a unique existential quantifier whereas problems
in co-NP refer to a unique universal quantifier. For example, in a yes-instance of Satisfi-
ability, there exists a truth assignment of the variables satisfying the formula, whereas
in a yes-instance of Unsatisfiability, for all truth assignments of the variables, the
formula is not satisfied. Note that the question whether NP = co-NP is still open.
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1.5.1.c Approximation

Let us briefly talk about approximation, which is related to optimization problems. When
the decision version of an optimization problem is proved to be computationally hard,
an alternative option is to design an efficient algorithm that finds a feasible solution that
is close to the optimum with respect to objective function f .

A ρ-approximation algorithm, for a given optimization problem P with objective
function f , outputs in polynomial time, in any instance I of P, a feasible solution whose
value with respect to f is guaranteed to be within a factor of ρ of the optimum of f in
I. Note that the approximation factor ρ, i.e., the performance guarantee, may depend
on the input size. If P is a maximization problem, then ρ < 1, otherwise ρ > 1.

1.5.2 Parameterized complexity

The aim of parameterized complexity is to refine the classical complexity analysis of NP-
hard problems by determining the parameters that make the problems computationally
hard (for some basic notions about parameterized complexity, see for instance Flum and
Grohe [2006] and Downey and Fellows [2013]). In fact, the goal is to find a parameter k
of the problem, for instance the size of the solution, which is preferably small in practice,
such that all the computational hardness of the problem is contained in k. This idea is
formalized via the complexity class FPT, analogous to P in the parameterized world, i.e.,
the problems in FPT are solvable efficiently by assuming that k remains small.

Definition 1.32 (FPT) A problem P is fixed-parameter tractable ( FPT) with respect to
parameter k if every instance I of P is solvable in time O(g(k).|I|O(1)) for a computable
function g.

Note that g must be computable, in the sense that there exists an algorithm guar-
anteed to terminate that can compute the output of g. Assuming the problem we are
trying to solve is NP-hard (if the problem is solvable in polynomial time, then there is no
need to use a parameterized complexity approach), the algorithm computing g cannot be
executed in polynomial time, unless P = NP. However, if parameter k is small compared
to the size of the instance |I|, we achieve that the blow-up is limited to the small value
k.

Another important parameterized complexity class for delimiting the tractability
frontier of the parameterized problems is XP. Indeed, if k is a constant, then a problem
in XP is solvable in polynomial time.

Definition 1.33 (XP) A problem P is in XP with respect to parameter k if every in-
stance I of P is solvable in time O(|I|g(k)) for a computable function g.

Clearly, FPT ⊆ XP. Another noticeable class that contains FPT is para-NP. Intuitively,
an NP-complete problem that remains hard whatever the value of the parameter k is in
para-NP.

Similarly as for classical complexity, there exist hierarchies of parameterized com-
plexity classes for decisions problems beyond FPT, which are linked by inclusion relations.
Actually, there are two different hierarchies of parameterized complexity classes which
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include FPT and are included in XP: the W-hierarchy and the A-hierarchy. The two hier-
archies are linked via inclusion relations, more precisely at each level t ≥ 1, W[t] ⊆ A[t],
and W[1] = A[1], as we can observe in Figure 1.4.

FPT

W[1] =A[1]

W[2] A[2]

W[t] A[t]

AW[*]

W[SAT] AW[SAT]

W[P] AW[P]

para-NP XP

Figure 1.4: Parameterized complexity classes beyond FPT: A-hierarchy and W-hierarchy.
The arrows refer to the inclusion relation (adaptation of a Flum and Grohe [2006]’s
figure)

Like in classical complexity, hardness for a given parameterized complexity class is
proved via reductions from problems known to be complete for the given class, but
this time they are FPT-reductions. An FPT-reduction from a problem P of parameter
k to a problem P ′ of parameter k′ is an FPT algorithm according to parameter k that
transforms any instance I of P to an instance I ′ of P ′ such that I is a yes-instance of
P with parameter k if and only if I ′ is a yes-instance of P ′ with parameter k′ = g(k) for
a computable function g, and |I ′|= O(|I|O(1)). Note that membership of problem P to
a given parameterized complexity class can also be proved thanks to FPT-reductions, by
using the reduction in the reverse direction, that is there exists an FPT-reduction from
P to problem P ′ known to be complete for this class.

1.5.2.a The W-hierarchy

The reference problem of the W-hierarchy is about weighted satisfiability in boolean
circuits where the level in the hierarchy refers, by simplifying, to the complexity of the
gates and paths in the circuit. Parameterized classes FPT and W[1] can be thought of
as corresponding to P and NP in the parameterized world. Therefore, proving that a
problem is W[1]-hard excludes, under classical complexity assumptions, that there exists
an FPT algorithm solving this problem.
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In this document, we will use some parameterized problems, known to be complete
within the W-hierarchy. We notably use parameterized problems defined on graphs, such
as the following Clique problem, known to be W[1]-complete, as well as a colored param-
eterized version of the independent set problem, namely Mulicolored Independent
Set.

Clique:
Instance: Undirected graph G = (V, E), parameter k
Question: Is there a clique K ⊆ V in G such that |K|= k?

Theorem 1.6 (Downey and Fellows [1995a]) Clique is W[1]-complete.

Multicolored Independent Set:
Instance: Undirected graph G = (V, E), parameter k, partition V = V1 ∪ . . . ∪ Vk
Question: Is there an independent set I ⊆ V in graph G of size |I|= k such that

|I ∩ Vi|= 1 for all i ∈ [k]?

Theorem 1.7 (Fellows et al. [2009]) Multicolored Independent Set is W[1]-
complete.

We will also use a typical problem of the W-hierarchy, which is the parameterized
version of a variant of the Satisfiability problem, known to be complete for a higher
class than W[1] in the W-hierarchy, unless the whole hierarchy collapses (see Figure 1.4).
Recall that a propositional formula is monotone if it only contains Boolean operators ∨
and ∧, but no negation (¬).

Monotone Weighted Satisfiability:
Instance: Set X of variables, monotone propositional formula ϕ over X, parameter k
Question: Does there exist a truth assignment of the variables in X of weight k, i.e.,

exactly k variables are assigned to true, such that ϕ is satisfied?

Theorem 1.8 (Abrahamson et al. [1995]) Monotone Weighted Satisfiabil-
ity is W[SAT]-complete.

1.5.2.b The A-hierarchy and model checking

The A-hierarchy is a hierarchy of parameterized complexity classes that include FPT and
are included in XP, which is also linked to the W-hierarchy by inclusion relations (see
Figure 1.4). The parameterized complexity classes of the A-hierarchy are closely related
to first-order logic since they are defined according to model checking for first-order
formulas. We will use in this document some reductions based on model checking.

Before formalizing the model checking problem, let us briefly state some first-order
logic notions. We define a vocabulary τ as a finite set of relation symbols, each relation
R ∈ τ having an associated arity ar(R). A finite structure A of vocabulary τ (or τ -
structure) consists of a finite set U of elements, called the universe, and an interpretation
RA ⊆ Uar(R) of each relation symbol R in τ over U , with corresponding arity.

45



1.6. CONCLUSION

We assume a countably infinite set of variables. Atomic formulas over vocabulary τ
are of the form x1 = x2 or R(x1, . . . , xp) where R ∈ τ , ar(R) = p, and x1, . . . , xp are
variables. The class FO of all first-order formulas over τ consists of formulas that are
constructed from atomic formulas over τ using standard Boolean connectives ¬,∧,∨, as
well as quantifiers ∃,∀ followed by a variable. Let ϕ be an FO formula. The variables of
ϕ that are not in the scope of a quantifier are called free variables. Let ϕ(A) denote the
set of all assignments of elements of U to the free variables of ϕ such that ϕ is satisfied.
We say that A is a model of ϕ, or A satisfies ϕ, if ϕ(A) is not empty.

The class Σ` contains all first-order formulas of the form
∃x11, . . . ,∃x1k1∀x21, . . . ,∀x2k2 . . .Qx`1, . . . ,Qx`k`ϕ, where ϕ is a quantifier free
FO-formula, and Q = ∃ if ` is odd and Q = ∀ otherwise. In particular, the class Σ1

contains all FO formulas of the form ∃x1, . . . ,∃xkϕ, and Σ2 contains all FO formulas of
the form ∃x1, . . . ,∃xk∀y1, . . . ,∀ykϕ, where ϕ is a quantifier free FO formula.

Let Φ be a class of formulas. The model checking problem takes as input a finite
structure A and a formula ϕ ∈ Φ, and asks whether A is a model of ϕ, i.e., ϕ(A) 6= ∅.
A natural parameterized version of this problem considers as a parameter the size of (a
reasonable encoding of) ϕ, denoted by |ϕ|.

Model Checking (MC(Φ)):
Instance: Finite structure A, formula ϕ ∈ Φ, parameter k = |ϕ|
Question: Does A satisfy ϕ, i.e., is ϕ(A) 6= ∅?

The A-hierarchy relies on parameterized model checking problems where the level
in the hierarchy refers to the number of alternations between existential and universal
quantifiers in the formula. Indeed, the reference problem which is complete for class A[t]

is MC(Σt). The next two theorems establish the completeness of the model checking
problem restricted to formulas in Σ1 and in Σ2, for classes A[1] and A[2], respectively,
the two lower parameterized complexity classes in the A-hierarchy (see Figure 1.4).

Theorem 1.9 (Flum and Grohe [2006]) The Model Checking problem for the
existential fragment of first-order logic, MC(Σ1), is A[1]-complete (= W[1]-complete).

Theorem 1.10 (Flum and Grohe [2006]) The Model Checking problem for the
second-level alternation of first-order logic, MC(Σ2), is A[2]-complete.

Note that the parameterized complexity classes W[1] and A[1] are equivalent. This is
explained by the fact that Σ1 is built on simple existential first-order formulas.

1.6 Conclusion

In this chapter, we have presented the notation that will be useful for the rest of the
document, as well as key concepts on the two problems under study, strategic voting
and house allocation. Moreover, we have provided some notions on complexity theory,
helpful for understanding the proofs of the thesis. The reader is invited to refer to this
chapter all along the document for more details about some definitions or state-of-the-art
concepts.
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The contributions of the thesis are presented in the next two parts. The first one is
dedicated to the study of social choice problems where a social network models the pos-
sibility of collaboration among the agents, whereas the second one focuses on problems
where the information possessed by the agents is conditioned by the social network.
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Part I

The Social Network as a
Collaboration Tool
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Introductory comments

Let us first investigate how the social network can model the possibility of collaboration
among the agents. Collaboration within a group of agents is an interaction where all
the members of the group, treated on an equal footing, work together by combining
their capabilities, within a free association, in order to achieve a common objective, or
compatible goals. By definition, this interaction requires a reciprocity relation among
the agents. Note that collaboration is slightly different from cooperation, because co-
operation can induce participation to a common project within a hierarchical structure
where the agents can perform complementary tasks.

Collaboration must be mutually profitable for all the involved agents, who must
actively participate to the common action. This necessarily implies a symmetry in
the accessibility relation which represents the possibility of collaboration among the
agents. Consequently, as we model the possibility of collaboration by a social network,
we assume for this part that the social network is represented by an undirected graph
over the agents.

We focus on two problems of social choice, namely strategic voting and house allo-
cation. We study the former, in Chapter 2, under the prism of coalitional manipulation,
where the possible coalitions are fully connected components of the social network. The
members of a coalition collaborate by commonly elaborating a strategy in order to
achieve a common goal: the election of a candidate that they prefer to the current win-
ner. We examine house allocation, in Chapter 3, via the specific framework of housing
market, where exchanges of items occur between connecting agents in the network. In
such a setting, two agents collaborate by participating to a trade that is profitable for
both agents.
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Chapter 2

Coalitional Manipulation in
Iterative Voting

Abstract

Strategic voting is investigated via a voting game where the strategic deviations are
performed by coalitions of voters. We examine coalitional equilibria that are immune to
manipulation performed by realistic coalitions, based on the social network. Concretely,
the coalitions of voters are given by the cliques of the network, which form groups of
agents that can collaborate and agree on common strategies. We assume that the agents
are not fully selfish as they have consideration for their relatives. The corresponding
solution concept, introduced by Hoefer et al. [2011], is called a considerate equilibrium.
We study its existence in strategic voting games, and the ability of the agents to converge
to such an equilibrium using well-known voting rules: Plurality, Veto, Plurality with run-
off, Borda, k-approval, STV, Maximin and Copeland.

Résumé

On s’intéresse dans ce chapitre au vote stratégique, que l’on étudie sous l’aspect
d’un jeu de vote dynamique, où des coalitions d’agents peuvent s’entendre pour dévier
vers de nouveaux bulletins. Notre travail repose sur l’étude d’états stables par rapport
à des déviations faites par des coalitions réalistes, basées sur le réseau social. Plus
précisément, les coalitions possibles de votants sont données par les cliques du réseau
social, représentant des groupes d’agents pouvant communiquer et établir des stratégies
communes. De plus, les agents sont supposés être altruistes et avoir de la considération
pour leurs proches dans le réseau. La notion d’équilibre correspondante est nommée
équilibre de considération [Hoefer et al., 2011]. On se propose d’étudier son existence
dans des jeux de vote, ainsi que la capacité du jeu à atteindre un tel équilibre pour
différentes règles de vote classiques : Pluralité, Véto, Pluralité à deux tours, Borda,
k-approbation, STV, Maximin et Copeland.

This chapter is an extension of [Gourvès, Lesca, and Wilczynski, 2016].
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2.1 Introduction

Manipulation occurs in voting, especially in political elections, when some electors may
behave strategically by misreporting their preferences [Blais, 2004, Alvarez et al., 2006,
Daoust, 2015]. In this perspective, considering an election as a strategic game where
voters need to identify the best ballot that they should submit to the electoral system
is meaningful.

2.1.1 Deviations, coalitions and social network

Manipulation from single agents, where stable outcomes of the voting game are Nash
equilibria, has been widely studied [Feddersen et al., 1990, Desmedt and Elkind, 2010,
Meir et al., 2010]. The main benefit of focusing on Nash equilibria is the guarantee
of its existence for numerous voting systems. Typically, voting profiles where all the
agents play the same ballot are immune to unilateral deviations for many reasonable
voting rules. As a consequence, the number of Nash equilibria in a given instance of
a voting game can be very large [Dhillon and Lockwood, 2004], raising the question
of the relevance of Nash equilibrium, as a solution concept for capturing a plausible
outcome of the game. Moreover, especially in the context of voting, the significance of
only considering unilateral manipulation can be questionable. Indeed, in real elections,
coalitions can form to agree on some voting strategies. For instance, it is very frequent
that some political parties give voting instructions to their members. A drawback of the
Nash equilibrium is its weakness against coalitional deviations, as we can observe in the
following example.

Example 2.1 Take as an example a group of nine friends who plan to go to a restau-
rant. They have four different options: an Italian restaurant (I), a Japanese restaurant
(J), a Lebanese restaurant (L) or a Portuguese restaurant (P). They have the following
preferences over the different restaurants:

Allan: L � I � J � P
Bob, Claire: J � L � P � I

Damian, Elise: P � L � J � I
Flora, Gamal, Henri, Imen: I � J � L � P

They organize a vote via the Plurality rule where they all give their preferred alternative.
Observe that the winning option is the Italian restaurant with four points while the other
alternatives do not have more than two points. This state, where everybody tells her real
preferences is a Nash equilibrium because no single individual can change the outcome or
has incentive to do it. However, if the group formed by Bob, Claire, Damian and Elise
agrees on a deviation to the vote approving the Lebanese restaurant, which is the second
best alternative of every member of the group, then this option will win. Therefore, the
state where everybody says the truth is not immune to coalitional manipulation. Since
these four individuals are friends and have close preferences, they may be able to make
contact and establish a common strategy, but the Nash equilibrium concept cannot prevent
such a deviation.

As a consequence, it appears interesting to consider coalitional manipulation in voting
games. In the context of voting, the characterization of strong equilibria – a state
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immune to strict improvement deviations performed by any possible coalition – has for
instance been investigated [Sertel and Sanver, 2004, Messner and Polborn, 2007, Peleg
and Peters, 2010]. Despite its conceptual attractiveness, the main disadvantage of the
strong equilibrium is that it rarely exists. But actually, considering that any coalition of
voters can form may be highly pessimistic, because it supposes that all the agents in any
subgroup are able to coordinate their moves in order to manipulate. Such a coordination
requires an important level of communication and trust for the manipulators. In practice,
one can reasonably exclude some coalitions from the definition of an equilibrium that
is supposed to be stable against group deviations. For example, this is the case of the
partition equilibrium introduced by Feldman and Tennenholtz [2009] where only the
coalitions belonging to a prescribed partition of the voter set have the ability to deviate.

More generally, one can determine which coalitions can form by using social networks,
graph structures representing social relations among agents, as depicted in the following
example.

Example 2.2 Take the example of a computer science laboratory that aims to recruit a
new professor. Five candidates apply for the position: Amira, Boris, Clara, Dimitri and
Elias. Three teams exist in the lab, with different interests, namely the logic team, the
complexity team, and the machine learning team. Let us focus on a particular researcher,
Robert, belonging to the recruitment committee and who works both in the logic and the
complexity teams. Note that the three teams of the lab can be represented as three cliques
in a social network where Robert both belongs to the cliques representing the logic team
and the complexity team.

Robert

logiccomplexity machine learning

The preferences of Robert are the following: Boris � Amira � Dimitri � Clara � Elias.
Robert learns that his first choice, Boris, has no chance to win because nobody supports
him. But he learns that Elias has a large support within the machine learning group. This
candidate is not appreciated by Robert as well as the whole logic team. Consequently, the
members of the logic team, which is a cohesive group, agree to vote for Dimitri because
he works on related topics. The complexity team does not succeed to find a consensus
and thus Robert decides to participate to the coalition formed by the logic team, which
decides to vote in favor of Dimitri that the whole team prefers to Elias.

Since elaboration of a common strategy within a group of agents necessitates com-
munication, agreement and coordination among all its members, cliques of the social
network, which are fully connected components of the graph, are good candidates for
representing plausible coalitions for manipulation, as underlined in Example 2.2. By
assuming that the agents are embedded in a social network and that their relations are
characterized by their links in the network, one can further suppose that a voter is tied
by social relations which force her to have consideration for other agents. Exploiting
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the social relations which bind the members of a group has received much attention
[Jackson, 2008]. In a more altruistic perspective, one can assume that a voter is not
only guided by her own preferences over the candidates but she pursues the goal of op-
timizing the welfare of the communities where she belongs. A natural solution concept
which combines notions of altruism and cohesive groups based on a social network is the
considerate equilibrium. Introduced by Hoefer et al. [2011], a considerate equilibrium is a
state robust to deviations by coalitions of agents who form a clique in the social network,
but a coalition only deviates when it is not harmful for her relatives (neighbors in the
graph). As for the partition equilibrium that it extends, the considerate equilibrium has
only been studied, as far as we know, for a special case of congestion game.

2.1.2 Related work

Coalitional manipulation in voting has been widely investigated via the complexity of
computing such a manipulation [Conitzer et al., 2007, Xia et al., 2009, Zuckerman et al.,
2009]. Nevertheless, some works has examined the game-theoretical properties of coali-
tional manipulation in strategic voting, especially through a cooperative game [Bachrach
et al., 2011]. The cooperative game model notably enables to discuss the conditions of
coalition formation for manipulating in voting. These questions have also been addressed
via another model by Slinko and White [2008]. However, to the best of our knowledge,
the social context in which the voters are embedded has not been explored so far for
coalitional manipulation in voting.

Nevertheless, the integration of a social network in voting games has been recently
proposed in iterative voting in a context of uncertainty where the links of the graph
provide some information to the agents about the current vote of their relatives [Sina
et al., 2015, Tsang and Larson, 2016, Tsang et al., 2018]. However, there is no notion of
possible collaboration given by the graph.

Moreover, so far, iterative voting has been especially analyzed via unilateral devia-
tions. Consequently, we aim to investigate coalitional manipulation in iterative voting
where the coalitions are not arbitrary but given, more realistically, by the social network.

2.1.3 Contributions and organization

The global idea is to use the solution concept of considerate equilibrium in order to
refine the game-theoretical analysis of the voting game. Concretely, we explore the
existence of a considerate equilibrium in strategic voting games and the ability of the
dynamics of the game to converge to such an equilibrium for different voting rules. Our
main contributions are existence proofs of a considerate equilibrium in a voting game
under well-established voting rules, namely Plurality, Veto, Plurality with run-off, STV
and Maximin. We also investigate the possibility for the voters to reach a considerate
equilibrium in a natural iterative process. In this respect, our results are rather negative
because convergence to a partition equilibrium, or convergence to a Nash equilibrium,
which are less demanding goals than convergence to a considerate equilibrium, fail.

We first introduce in Section 2.2 the notion of coalitional deviation and considerate
equilibrium. Then, we study the existence of a considerate equilibrium for different
voting rules in Section 2.3. Section 2.4.1 is devoted to the special case of the Veto rule,
which always admits, in addition to a considerate equilibrium, a strong equilibrium. The
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existence of a strong equilibrium under Veto enables to design a new quality measure
for evaluating voting rules. Then, we investigate the ability of the dynamics of the
voting game to converge to a considerate equilibrium in Section 2.5. We present some
experiments in Section 2.6 on the quality of the considerate equilibria that are reached
by the dynamics. Finally, we conclude in Section 2.7 with a discussion on the global
results and the impact of consideration within deviating moves.

2.2 Coalitional deviations in strategic voting games

Let us consider a voting game 〈N,M,%,FB〉 with pure strategies, as described in Sec-
tion 1.3.3, where voters can deviate following an iterative voting process. The voters
in N = {1, . . . , n} have preferences, which are not necessarily strict, over the m candi-
dates in M = {a, b, c, . . . }. The winner of the election is determined by voting rule F ,
where ties are broken thanks to linear order B over the candidates, assumed to be the
alphabetical order, i.e., a B b B . . ..

We focus on coalitional manipulation: a coalition of voters can agree to simultane-
ously deviate together to a new strategy, i.e., to a new ballot in the context of voting.
Note that the new ballot is not necessarily the same for all the members of the deviating
coalition.

2.2.1 Classical solution concepts

First of all, let us define how individual preferences can be extended to collective pref-
erences for each group C ⊆ N of voters. For any x and y ∈ M , we use the following
notations:

• x >C y ⇔ [∀i ∈ C, x �i y],

• x ≥C y ⇔ [∀i ∈ C, x %i y] and [∃j ∈ C, x �j y],

• x =C y ⇔ [∀i ∈ C, x %i y],

• x ∼C y ⇔ [∀i ∈ C, x ∼i y].

Let us provide a “local” Pareto-efficiency definition, which corresponds to the re-
striction of Pareto-efficiency (see Definition 1.14) to a coalition of voters.

Definition 2.1 An alternative x ∈ M is said to be undominated (respectively, strictly
undominated) over coalition C ⊆ N if there is no alternative y 6= x such that y ≥C x
(respectively, y =C x).

Clearly, a Pareto-efficient alternative is undominated over N . An undominated al-
ternative always exists for any non-empty coalition C ⊆ N but strictly undominated
alternatives may be absent. The two notions are illustrated in Example 2.3.

Example 2.3 Let us consider an instance with four voters and four candidates, where
N = {1, 2, 3, 4} and M = {a, b, c, d}. The preference profile is the following.
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1 : (a ∼ b) � c � d
2 : (a ∼ b) � d � c
3 : d � (a ∼ b) � c
4 : c � b � (a ∼ d)

Let us focus on the dominance properties of the candidates with respect to coalition
C = {1, 2, 3}. Candidate d is strictly undominated over C because it is the best alter-
native of agent 3. Alternatives a and b are undominated over C because there is no
candidate that is at least as preferred as them for all the members of C and strictly
preferred to them for at least one member of C. However, a and b are not strictly un-
dominated because all the members of C are indifferent between them. Finally, candidate
c is dominated over C by alternatives a and b.

However, candidate c is strictly undominated over N , and thus Pareto-efficient, be-
cause c is the best candidate of agent 4. Candidate d is trivially Pareto-efficient since
it is strictly undominated over a coalition of agents. Finally, the situation of a and
b changes according to the whole set of voters. Indeed, b is strictly undominated over
N , and thus Pareto-efficient, because agent 4 prefers b to a and b is undominated over
C with a ∼C b. For the same reasons a is dominated by b over N and thus a is not
Pareto-efficient.

Let C be a non-empty family of coalitions of N , i.e., C ⊆ 2N \{∅}. This set represents
the collection of coalitions that can possibly deviate. Different solution concepts can be
designed, based on C, but also on the type of deviation that is performed by the coalition.

Definition 2.2 (Improving move (IM)) For coalition C ∈ C, an improving move
from state σ is a joint strategy σ′C ∈ BF

|C| such that F(σ′C , σ−C) >C F(σ).

In an improving move, each member of the coalition must be better off by the devia-
tion, that is each member must strictly prefer the outcome given by voting rule F of the
new state. This type of deviation can be relaxed by considering weak improving moves.

Definition 2.3 (Weak improving move (WIM)) For coalition C ∈ C, a weak im-
proving move from state σ is a joint strategy σ′C ∈ BF

|C| such that F(σ′C , σ−C) ≥C F(σ).

Weak improving moves are appealing because they allow the participation of some
voters who do not benefit, but who are not harmed by the deviation.

Note that an ordered pair (C, µ) for µ ∈ {IM,WIM} can be used to define some
notions of equilibrium.

Definition 2.4 State σ is a (C, µ)-equilibrium if and only if no coalition C ∈ C can
deviate from σ with a move of type µ.

With this general definition, one can redefine classical well-known solution concepts.
In this idea, a Nash equilibrium (NE) (Definition 1.23) is a (C,IM)-equilibrium where
C is the set of all singletons of agents, i.e., C = {{i} : i ∈ N}. Similarly a strong
equilibrium (SE) (Definition 1.24) is a (C,IM)-equilibrium where C = 2N \ {∅}. In this
context, one can also evoke a refinement of the strong equilibrium that is called a super
strong equilibrium. A super strong equilibrium (SSE) [Voorneveld, 1999, Feldman and
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Tennenholtz, 2009] is a (C,WIM)-equilibrium where C = 2N \ {∅}. These three solutions
concepts are linked as follows for a given state σ ∈ BFn:

[σ is a SSE]⇒ [σ is a SE]⇒ [σ is a NE] (2.1)

2.2.2 Considerate equilibrium

Let us consider a special collection of coalitions C that takes into account the social
context in which the voters are embedded. Given a social network of voters, represented
by an undirected graph G = (N,E), an edge {u, v} ∈ E indicates that voters u and v
are related, e.g., they have the possibility to communicate, allowing them to collaborate
together within a deviating coalition. It makes sense to define the cliques of graph G as
the possible coalitions. In that case C = {C ∈ 2N \ {∅} : ∀i, j ∈ C, {i, j} ∈ E} and each
coalition C ∈ C has a set of neighbors N (C) = {i ∈ N \C : ∃j ∈ C such that {i, j} ∈ E}.

Therefore, we consider from now on an instance of a linked voting game as a tuple
〈N,M,%,FB, G〉, which is an instance of the classical voting game where agents are tied
by their social relations in social network G.

Interestingly, the fact that the voters are related implies that each individual is not
only guided by her own preferences, but she can also care about how deviating can
negatively impact her relatives. In order to take into account the social context and the
fact that a player can have consideration for other voters, more precisely her neighbors
in the graph, an appropriate notion of deviation, called considerate improving move, can
be introduced [Hoefer et al., 2011].

Definition 2.5 (Considerate improving move (CIM)) For coalition C ∈ C, a con-
siderate improving move σ′C from state σ is a weak improving move from σ for C where,
in addition, F(σ′C , σ−C) =N (C) F(σ).

In a considerate improving move performed by coalition C, at least one player in C is
better off and no player of C ∪N (C) can be worse off.

Consequently, the pair (C,CIM), where C contains all the cliques of the social network
G = (N,E), leads to a new type of equilibrium called considerate equilibrium [Hoefer
et al., 2011].

Definition 2.6 (Considerate equilibrium) A state σ is a considerate equilibrium if
and only if there is no coalition in C := {K ⊆ N : ∀i, j ∈ K such that i 6= j, {i, j} ∈ E}
that can perform a considerate improving move from σ.

In what follows, we will say that a linked voting game always admits a considerate
equilibrium if for any instance of the voting game, and any social network G = (N,E),
there exists at least one state σ which is a considerate equilibrium. The concept of
considerate equilibrium is illustrated in the following example.

Example 2.4 Let us consider an instance with three voters and two candidates, where
N = {1, 2, 3} and M = {a, b}. The social network and the profile of preferences are:

1 2 3

1 : b ∼ a
2 : b � a
3 : a � b
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The social network is a path, therefore the possible coalitions are C =
{{1, 2}, {2, 3}, {1}, {2}, {3}}. Consider a state σ where a is elected. Coalitions {1, 2}
and {2} are the only coalitions having incentive to move, they want to make b win since
b ≥{1,2} a and b >{2} a. Because {3} ∈ N ({1, 2}) ∩ N ({2}) and a �3 b, coalitions
{1, 2} and {2} cannot perform a CIM (without even taking into account the ability of the
coalitions to change the outcome), otherwise they would harm their neighbor 3. Thus, σ
is a considerate equilibrium.

Following the same idea, if the social network G = (N,E) is composed of a set of
disjoint cliques and only maximal cliques of G are considered in C, then an equilibrium
associated with (C,WIM) is called a partition equilibrium [Feldman and Tennenholtz,
2009]. Observe that in such a case, a CIM corresponds to a WIM.

Definition 2.7 (Partition equilibrium) Given a partition P over the agents, a state
σ is a partition equilibrium if and only if there is no coalition in C := P that can perform
a weak improving move from σ.

Therefore, if a considerate equilibrium is guaranteed to exist for any social network
G, then a partition equilibrium exists. Furthermore, if E = ∅, then a considerate
equilibrium corresponds to a Nash equilibrium. Thus, a Nash equilibrium is a special
case of a considerate equilibrium where the social network is empty. Hence, the existence
of a considerate equilibrium for any social network implies the existence of a Nash
equilibrium.

∃ considerate equilibrium1 ⇒ ∃ partition equilibrium2 ⇒ ∃ Nash equilibrium (2.2)

2.3 Existence of considerate equilibria

We investigate in this section the existence of a considerate equilibrium in the linked
voting game under different voting rules. As we will show, many rules guarantee the
existence of a considerate equilibrium. However, a considerate equilibrium fails to exist
for simple and reasonable rules such as Borda or Copeland.

2.3.1 Strict majority susceptible rules

Consider the set of coalitions that are able to change the outcome, according to F , of any
voting profile via a manipulation move. Such coalitions are called powerful coalitions.
Let us denote by CFp the set of powerful coalitions according to voting rule F .

Definition 2.8 (Powerful coalition) Coalition C ⊆ N is powerful if and only if for
any voting profile σ ∈ BFn there exists a joint strategy σ′C such that F(σ−C , σ

′
C) 6= F(σ).

The notion of powerful coalitions is similar, by forgetting the dynamic aspect, to
the idea of winning coalitions in the context of simple games [Shapley, 1962, Taylor
and Zwicker, 1999], a specific cooperative game in voting, and to the notion of decisive

1For every social network G = (N,E)
2For every partition P over N
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coalitions [Ferejohn, 1977], that are coalitions imposing their preferences to the outcome
of the voting rule.

A voting profile σ is said to be unanimous1 if σi is the same ballot for every voter
i. For instance, under Plurality, since BPlurality = M , every alternative x ∈ M induces
a unanimous profile (x, . . . , x). Clearly, for a unanimous voting rule, the winner of a
unanimous profile σ = (σ1, . . . , σ1), where σ1 ∈ L(M), is the alternative ranked on top
of ballot σ1. Let sx ∈ BFn be a unanimous voting profile favoring candidate x. More
precisely, if BF = L(M) or BF =W(M), then (sx)i = [x � rest], for every voter i, where
“rest” denotes an arbitrary ranking over M \ {x} that is the same for every voter i. If
BF = M , like in Plurality or Veto, then sx = (x, . . . , x) for Plurality and sx = (y, . . . , y)
where y 6= x for Veto. A particular unanimous voting profile that deserves attention is
sa, where a is the top candidate in tie-breaking B.

Let us denote by CFwp the set of coalitions that are able to change the outcome, accord-
ing to F , of a unanimous voting profile, that is different from sa, with a manipulation
move. Such coalitions are called weakly powerful.

Definition 2.9 (Weakly powerful coalition) A coalition C ⊆ N is weakly power-
ful if there exists a unanimous voting profile σ ∈ BFn for which there exists a joint
strategy σ′C such that F(σ−C , σ

′
C) 6= F(σ), and there is no joint strategy σ′′C such that

F((sa)−C , σ
′′
C) 6= F(sa).

Let us define strict majority susceptible rules as voting rules for which the powerful
coalitions are exactly all the coalitions with a strict majority of voters, and the weakly
powerful coalitions are exactly all the coalitions with half of the voters.

Definition 2.10 (Strict majority susceptibility) A voting rule F is strict majority
susceptible if and only if CFp = {C ⊆ N : |C|> n/2} and CFwp = {C ⊆ N : |C|= n/2}.

By definition, the voting game where F is a strict majority susceptible rule always
admits a Nash equilibrium, e.g., the unanimous profile sa. However, it is known that a
strong equilibrium is not guaranteed to exist (see e.g., Sertel and Sanver [2004]), as we
can see in the following example showing the well-known Condorcet paradox.

Example 2.5 Let us consider an instance of a voting game with three voters and three
candidates, where N = {1, 2, 3}, M = {a, b, c} and F is a strict majority susceptible
rule. The profile of preferences is:

1 : a � b � c
2 : c � a � b
3 : b � c � a

If a is elected then coalition {2, 3} has incentive to deviate in order to elect c. If c is
elected then coalition {1, 3} has incentive to deviate in order to make b elected. Finally,
if b is elected then coalition {1, 2} has incentive to deviate in order to make a elected.

1This notion must not be confused with the unanimity axiom (see Definition 1.19) that applies to
voting rules.
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Note that when a Condorcet winner exists (see Definition 1.21), such as under the
single-peakedness restriction, there always exists a strong equilibrium when F is a strict
majority susceptible rule, e.g. the unanimous profile sx where x is the Condorcet winner.
Actually, when there exists a Condorcet winner x, a strong equilibrium under a strict
majority susceptible rule necessarily elects x, otherwise a strict majority of voters has
incentive to make x the winner and by definition such a coalition can enforce the election
of x.

Note that Example 2.5 also rules out the existence of a super strong equilibrium, ob-
servation trivially implied by (2.1). However, we shall see that a considerate equilibrium
must exist.

Theorem 2.1 A considerate equilibrium is guaranteed to exist for any instance of the
linked voting game where F is a strict majority susceptible rule.

Proof: If there is no clique K ⊆ N in graph G such that |K|> n/2, then CFp = ∅ and

unanimous profile sa is a considerate equilibrium. Suppose from now on that CFp 6= ∅.
Let us denote by Q the set of all agents belonging to a coalition which can change

the outcome of a unanimous state, that is Q =
⋃
C∈CFwp∪CFp C. For any coalitions

C ∈ CFp and C ′ ∈ CFwp ∪ CFp , C and C ′ have at least one member in common, there-

fore C ⊆ (N (C ′) ∪ C ′) and Q ⊆ (C ∪N (C)), for all C ∈ CFp . Hence, C ′ cannot deviate
so that a worse candidate, from the viewpoint of at least one member of C, is elected.
Consequently, if an alternative x strictly undominated over C ∈ CFp exists, then unani-
mous profile sx is a considerate equilibrium.

Suppose from now on that for every coalition C ∈ CFp , there is no strictly undomi-
nated alternative over C. However, an undominated alternative over C must exist. For
a coalition C and an alternative x, let ICx be the indifference set of x within C, i.e.
ICx := {y ∈ M \ {x} : y ∼C x}. Let ND be the subset of alternatives which are both
undominated over at least one coalition of CFp and undominated over Q. The set ND is

never empty because CFp 6= ∅. We denote by x the best alternative of ND w.r.t B and

by C ∈ CFp a coalition for which x is undominated. We will analyze deviations from the
unanimous profile sx and every time a deviation is performed, then we will consider for
the next step the unanimous profile of the corresponding winner.

Since we start from unanimous profiles, the deviations are only performed by coali-
tions in (CFp ∪ CFwp). The winner of every deviation belongs to ICx ∪ {x} because the

deviating coalitions have consideration for C. A coalition C ′ ∈ CFp cannot deviate from
sx, because Q ⊆ (C ′ ∪N (C ′)), x is undominated over Q by definition of ND and C ′ ⊆ Q.
However, a coalition C ′ ∈ CFwp, i.e., of size |C ′|= n/2, can deviate if there exists y ∈ ICx
such that y ≥C′ x and y B x. If y ∈ ND then y B x contradicts the fact that x is the
best alternative of ND w.r.t. B, so y /∈ ND. Since y ≥C′ x and x is undominated over
Q, there exists j ∈ Q \ (C ∪ C ′) such that x �j y. If there exists C ′′ ∈ (CFp ∪ CFwp)
for which j ∈ C ′′ with C ′′ ∩ C ′ 6= ∅, then C ′ cannot deviate to y by consideration for
j because j ∈ N (C ′), therefore C ′ = N \ C ′ is a coalition of size n/2, i.e., belongs to
CFwp, and j ∈ C ′. It follows that Q = N . Obviously, C ′ ∩ C 6= ∅ and C ′ ∩ C 6= ∅. These
voters cannot be the beneficiaries of a deviation since they are indifferent among the
alternatives of ICx . Let I = C ′ \ C and J = C ′ \ C denote respectively the voters of C ′

and C ′ who do not belong to C. Then, C ′ deviates to y and we consider for the next
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step the unanimous profile sy. Observe that for a given succession of such deviations
performed by coalitions in CFwp, with size n/2, the winners are not in ND and the rank of
the winner in B strictly improves. Thus, there is only a finite number of such deviations.

Now, every time a coalition C ′′ ∈ CFp can deviate to z ∈ ICx from a unanimous profile
syt where yt is the winner at step t (one can verify that C ′′ cannot deviate to x), it
follows that z ≥N yt because Q ⊆ (C ′′ ∪N (C ′′)). There exists a voter i such that
z �i yt, thus i ∈ I ∪ J , say i ∈ J , implying that j ∈ N (C ′). So, no coalition can make
j less satisfied. Hence, the improvements within the sequence of the defined deviations
follow the preferences of every such j and, during a succession of deviations performed
by coalitions of size n/2 (i.e., in CFwp), the rank of the winner in B is improved. Since
we have a finite number of alternatives, we finally reach an alternative for which the
unanimous associated profile is a considerate equilibrium. �

Let us remark that several well-known voting rules satisfy the condition mentioned in
the previous theorem, among them Plurality, Plurality with run-off, STV and Maximin
(see Section 1.3.1 for the definitions of these rules).

Lemma 2.2 Plurality, Plurality with run-off, STV and Maximin are strict majority
susceptible rules.

Proof: Let F belong to {Plurality, Plurality with run-off, STV, Maximin}. Any strict
majority of voters can enforce the election of a candidate y 6= F(σ) from a voting profile
σ, by unanimously deviating to the same ballot with y on top. This is due to the majority
consistency of these voting rules (see Definition 1.20). Therefore, {C ⊆ N : |C|> n/2} ⊆
CFp .

We will prove that the strict majority coalitions actually characterize the set of
powerful coalitions. Let us consider the unanimous voting profile sa, with a first ranked
candidate in tie-breaking B, and a coalition C ⊆ N such that |C|≤ n/2. Whatever the
deviation of C from sa leading to a new profile σ′, a still obtains a Plurality score at least
equal to n/2 in σ′. No other candidate can have a better Plurality score, so candidate a
is still winning in σ′ under Plurality, thanks to the tie-breaking rule. For Plurality with
run-off and STV, candidate a remains until the last round of candidate eliminations.
At this point, a still has a score at least equal to n/2, so a remains the winner under
Plurality with run-off and STV thanks to B. Concerning Maximin, the minimum number
of voters preferring a to another alternative in σ′ is at least n/2 since a is still ranked
first by at least n/2 voters. Because for any candidate x, a is ranked before x in σ′ by
at least n/2 voters, no candidate different from a has a Maximin score larger than n/2.
It follows that a remains the winner under Maximin thanks to the tie-breaking rule. In
conclusion, a coalition C of size |C|≤ n/2 cannot change the outcome of the election
from any profile, since this is not the case from sa. Thus, CFp = {C ⊆ N : |C|> n/2}.

Let us now consider the weakly powerful coalitions. Take a unanimous voting profile
sx such that x 6= a, and a coalition C ⊆ N of size |C|= n/2. The four rules that we
consider are unanimous so x is the winner of sx. Coalition C is able to change the
outcome by deviating to a joint strategy where every agent in C deviates to a ballot
ranking a on top. Under Plurality, Plurality with run-off, STV and Maximin, a and x
both get a score of n/2 in the new profile (for the run-off rules, this is the score at the
last elimination round). Since a is better than x in B, a becomes the winner of the new
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profile for all these rules. However, as already mentioned, no coalition of size n/2 is able
to change the outcome of unanimous profile sa. Thus, {C ⊆ N : |C|= n/2} ⊆ CFwp.

Observe that no other coalition is weakly powerful. Indeed, for any unanimous voting
profile sx, the deviation of a coalition of size strictly less than n/2 does not change the
fact that x is ranked first by a strict majority of voters in the new profile. Therefore, by
majority consistency of Plurality, Plurality with run-off, STV and Maximin, x remains
the winner in the new profile. Hence, CFwp = {C ⊆ N : |C|= n/2} and finally these four
rules are strict majority susceptible rules. �

Combining Theorem 2.1 and Lemma 2.2 leads to the following corollary.

Corollary 2.3 Every instance of the linked voting game where F ∈ {Plurality, Plurality
with run-off, STV, Maximin} admits a considerate equilibrium.

Note that when n > 2, the considerate equilibria that we have constructed in the
proof of Theorem 2.1 are also Nash equilibria because they are unanimous profiles.
However, these two requirements may be conflicting. Indeed, there exist instances for
n = 2 where the set of considerate equilibria and the set of Nash equilibria do not
intersect, as we can see in the next example.

Example 2.6 Let us consider an instance with two voters and three candidates, where
N = {1, 2}, M = {a, b, c}, a B b B c, and F=Plurality. The social network is a complete
graph, that is agents 1 and 2 are connected. The profile of preferences is

1 : (a ∼ c) � b
2 : b � c � a

The cliques of the network are {{1, 2}, {1}, {2}}. The next table gives the winner for all
possible strategies/ballots of the voters. The considerate equilibria are marked with pink
(light) cells and the Nash equilibria with blue (dark) cells.

Voter 2
a b c

Voter 1
a a a a
b a b b
c a b c

Nevertheless, with n strictly larger than 2, unanimous considerate equilibria are also
Nash equilibria.

2.3.2 The Copeland rule

The Copeland rule (see Section 1.3.1) is a pairwise comparison voting rule that is Con-
dorcet consistent, like Maximin. However, contrary to Maximin, Copeland is not a strict
majority susceptible rule.

Lemma 2.4 Copeland is not strict majority susceptible.
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Proof: Let us consider an instance with an even number of voters. Take a coalition
C ⊆ N of size |C|= n/2 and any voting profile σ. Suppose that x is the winner of σ
under Copeland. Let qz be the best rank that a candidate z has within a ballot σj of a
voter j in N \C. Choose as a candidate y a candidate different from x that has the best
qy (there can be several such candidates). Observe that qy is either the second rank if
every agent in N \ C ranks x first in σ, or the first rank otherwise. Let us consider a
ballot σ′i ∈ L(M) where y is ranked at the first position of the ballot and x at the last,
and denote by σ′C the joint strategy where every agent i in C plays ballot σ′i. Observe
that the winner of strategy profile σ′′ = (σ−C , σ

′
C), where every agent not in C plays the

same ballot as in σ and coalition C plays the joint strategy σ′C , is y. Indeed, since y is
ranked second or first in σ′′ for some voter not in C and all the voters in C rank y first,
candidate y beats at least n− 2 candidates via pairwise comparisons in σ′′, leading to a
Copeland score of at least n − 2 for y. If qy is a first rank, then the Copeland score of
y is n− 1 and y is the Condorcet winner in σ′′, leading to the election of y in σ′′ under
Copeland. Otherwise, if qy is a second rank, then the Copeland score of y in σ′′ is n− 2,
where the only candidate not beaten by y is x, because this implies that x is ranked first
by all the voters in N \ C. Therefore, no candidate z can beat neither x nor y because
they are both ranked first by n/2 voters, leading to a Copeland score for z smaller than
the score of y. Since x is ranked last by every voter in C, x cannot beat any candidate
at the absolute majority and its Copeland score is zero. Thus, y is winning in σ′′.

To summarize, any coalition of size n/2 can change the outcome of the election from
any voting profile. Hence, by definition, any such a coalition is a powerful coalition, and
{C ⊆ N : |C|= n/2} ⊆ CFp when F=Copeland. This implies that Copeland is not a
strict majority susceptible rule. �

It follows that the proof of Theorem 2.1, for the existence of a considerate equilibrium,
does not hold when F=Copeland.

Indeed, it turns out that a considerate equilibrium is not guaranteed to exist in such
a voting game. We show by a simple counterexample that even a Nash equilibrium may
not exist in the voting game when using the Copeland rule, ruling out the existence of a
considerate equilibrium for any instance of the linked voting game by (2.2) (recall that
when E = ∅ the two solution concepts coincide).

Proposition 2.5 A Nash equilibrium is not guaranteed to exist in the voting game where
F=Copeland, even if the preferences are strict and single-peaked.

Proof: Let us consider an instance with two voters and three candidates, where N =
{1, 2}, M = {a, b, c}, a B b B c, and F=Copeland. The profile of preferences is:

1 : a � b � c
2 : c � b � a

The preferences are single-peaked with respect to the axis a >M b >M c. According
to the Copeland rule, an alternative x beats y in a pairwise election if x is ranked before
y in the two ballots. Let us consider any voting profile σ.

If alternative a wins in σ, then agent 2 deviates by placing a at the last position of
her new ballot and placing on top of her new ballot the first ranked candidate in the
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ballot of agent 1 between b and c. By this way, either b or c, that agent 2 prefers to a,
wins.

If alternative c wins in σ, then it suffices for agent 1 to place c at the last position of
her new ballot. Indeed, by this way, the Copeland score of c is zero so c can never win,
since it is ranked last in the tie-breaking. Therefore, candidate a or b necessarily wins
and agent 1 prefers both a and b to c.

Finally, consider the case where b wins in σ. If c is not ranked first in agent 2’s ballot,
then agent 1 plays a � c � b. By this way, the Copeland score of b is always zero and
the Copeland score of c cannot be more than one. Actually, the only possibility for c to
have one point is that the ballot of agent 2 is the same as agent 1’s ballot. But in this
case, a gets a Copeland score equal to two and thus wins. In all the other cases where
b and c have zero point, a necessarily wins thanks to the tie-breaking. Otherwise, i.e.,
if c is ranked first in the ballot of agent 2, then agent 1 plays a � b � c. Therefore, the
Copeland score of both b and c must be zero, implying that candidate a, that agent 1
prefers to b, necessarily wins, thanks to the tie-breaking.

In conclusion, there is no Nash equilibrium in this instance. �

Let us remark that the previous counterexample is quite specific since one voter
represents half the electorate. Indeed, for more than two voters, a Nash equilibrium is
guaranteed to exist.

Proposition 2.6 A Nash equilibrium exists for any instance of the voting game where
F=Copeland and n > 2.

Proof: Let us consider a unanimous voting profile sx. Clearly, candidate x wins the
election since Copeland respects the unanimity axiom (see Definition 1.19). Then, even
if one voter deviates to a new ballot, x is the Condorcet winner since more than half of
the voters rank it first. Because Copeland is Condorcet consistent, x remains the winner
and no single voter has the power to change the outcome of the election. �

One could think that this positive result when n > 2 could also lead to an existence
result for a considerate equilibrium. However, the counterexample provided in the proof
of Proposition 2.5 can be extended to more than two voters, in order to show that even
a partition equilibrium may not exist.

Proposition 2.7 A partition equilibrium may not exist where F=Copeland even when
n > 2, and the preferences are strict and single-peaked.

Proof: Let us consider an instance where n is even and M = {a, b, c} (recall that
a B b B c). The preferences of the voters are the following: a �i b �i c if 1 ≤ i ≤ n/2,
and c �i b �i a otherwise. They are single-peaked with respect to the axis a >M b >M c.
The partition over the voters is defined as P = {C1, C2} with C1 := {i : 1 ≤ i ≤ n/2} and
C2 := {i : n/2 < i ≤ n}, where the voters in each coalition have the same preferences.

Let us consider any voting profile σ. If candidate a wins in σ, then all the members
of coalition C2 deviate with the same new ballot where a is ranked at the last position
and the first ranked candidate is a candidate between b and c, which is ranked at least
once among the two first candidates of a ballot within C1. By this way, candidate a has
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a Copeland score equal to zero while the chosen candidate between b and c has at least
a Copeland score equal to one. Therefore, either b or c wins and all the members of C2

prefer them to a.

If alternative c wins in σ, then all the members of coalition C1 deviate with the same
new ballot where c is ranked at the last position. It is sufficient because candidate c is
ranked last in the tie-breaking.

Finally, consider the case where candidate b is winning in σ. It suffices for coalition
C1 to deviate to a new ballot where alternative a is ranked at the first position and the
relative position of b and c is reversed compared to the current ballots in C2. That is, if
b �n/2+i c, for 1 ≤ i ≤ n/2, then voter i submits the new ballot a � c � b, otherwise i
submits a � b � c. Globally, in this new voting profile, there is no absolute majority of
voters that prefers b over c or vice versa, and no absolute majority of voters that prefers
b or c over a. Therefore, candidate a has at least the same Copeland score as candidates
b and c, but in any case a wins thanks to the tie-breaking. �

Nevertheless, restricting to instances where n is odd, which is a classical assumption
in social choice, enables to ensure the existence of a considerate equilibrium.

Proposition 2.8 A considerate equilibrium is guaranteed to exist in any instance of the
linked voting game where n is odd and F=Copeland.

Proof: It suffices to observe that Copeland is a strict majority susceptible rule when
n is odd. When n is odd, one can forget the second part of the definition of a strict
majority susceptible rule (Definition 2.10), involving coalitions of size exactly n/2. Un-
der Copeland, a coalition of size strictly larger than n/2 can enforce the election of any
candidate, from any voting profile σ, by majority consistency of Copeland (see Defini-
tion 1.20). By the same property, these coalitions are the only coalitions that are able
to change the outcome of a unanimous profile. Hence, by using Theorem 2.1, we can
conclude to the existence of a considerate equilibrium. �

In a nutshell, the existence of a considerate equilibrium is ensured in a linked vot-
ing game under Copeland when the number of voters is odd. However, even a Nash
equilibrium may not exist, as soon as the number of voters is even.

2.3.3 The Borda rule and other Positional Scoring Rules (PSRs)

Each PSR is characterized by its score vector α (see Section 1.3.1). After normalization,
the score vector of every PSR can be written as α = (1, α2, . . . , αm−1, 0) where αi ∈ [0, 1]
and the αis remain non increasing, for i ∈ {2, . . . ,m− 1}. The PSR is neither Plurality
nor Veto if and only if α2 > 0 and αm−1 < 1. If αi ∈ {0, 1} for all i ∈ {2, . . . ,m − 1},
then the associated PSR is k-approval for a given k.

We know that for Borda and k-approval (k is a constant), a dynamics of the voting
game may not converge to a Nash equilibrium [Lev and Rosenschein, 2012], even if the
initial state is truthful and only best responses are used (see Definition 1.26). Therefore,
this result holds too for a considerate equilibrium because the two solution concepts
coincide when graph G is empty. Furthermore, we can prove that a Nash equilibrium
(and thus, a considerate equilibrium) is not guaranteed to exist for Borda and k-approval

68



CHAPTER 2. COALITIONAL MANIPULATION IN ITERATIVE VOTING

where k is fixed according to either the number of consecutive ones, or to the number of
consecutive zeros in score vector α.

Proposition 2.9 Let ` be an integer such that ` > 1 and consider the k-approval rule
where k = ` or k = m − `. A Nash equilibrium is not guaranteed to exist in the voting
game, even if the preferences of the voters are strict and single-peaked.

Proof: Let us consider an instance with two voters and 2` candidates, where N = {1, 2}
and M = {x1, x2, . . . , x2`}, and the tie-breaking rule is such that x1 B x2 B · · · B x2`.
Thus, m = 2`. Since k = ` or k = m− `, the voters need to approve, in their k-approval
ballot, exactly half of the candidates. The profile of preferences is:

1 : x1 � x2 � . . . � xm
2 : xm � xm−1 � . . . � x1

The preferences are single-peaked with respect to the axis x1 >
M x2 >

M · · · >M xm.
Observe that, with such a k and m, there are in total m approvals that are distributed
over the m candidates, by considering the ballots of the two voters. Trivially, a candidate
cannot have more than two approvals since there are only two voters and a voter must
approve exactly k different candidates. Therefore, in case the winner is not approved by
both voters, the winner must be x1, since x1 is ranked first in the tie-breaking.

By construction of the preferences, there is always one agent who prefers at least
k alternatives to the current winner. Let us consider any voting profile σ. Suppose
alternative xi is elected in σ.

If i ≤ k, then a better response for agent 2 is to disapprove candidates x1, . . . , xi in
her new ballot and approve her preferred candidate within the candidates that agent 1
approves in her current ballot (the rest of the approved candidates can be arbitrary).
Observe that this candidate cannot be a candidate of {x1, . . . , xi} by construction of the
preferences and the fact that k = m/2. By this way, no candidate within {x2, . . . , xi} can
win because it is only approved by one voter. Moreover, there is at least one candidate
with two approvals since agent 2 approves a candidate also approved by 1. As already
mentioned, this candidate does not belong to {x1, . . . , xi}, thus a candidate xj such that
j > i, that is preferred by agent 2 to xi, wins.

If i > k, a better response for agent 1 is to disapprove in her new ballot candidates
xi, . . . , xm. By this way, no candidate within {xi, . . . , xm} is approved by both voters,
thus a candidate xj such that j < i, that agent 2 prefers to xi, must win. �

A similar negative result regarding the existence of a Nash equilibrium can be stated
for specific PSRs.

Proposition 2.10 A Nash equilibrium is not guaranteed to exist in the voting game
where F is a PSR with 0 < α2 ≤ 1

2 , even if the preferences of the voters are strict and
single-peaked.

Proof: Let us consider an instance with two voters and three candidates where N =
{1, 2}, M = {a, b, c}, a B b B c, and F is a PSR whose score vector is α = (1, α2, 0) for
0 < α2 ≤ 1

2 . The profile of preferences is:
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1 : a � b � c
2 : c � b � a

The preferences are single-peaked with respect to the axis a >M b >M c.

Let us consider any voting profile σ. If alternative a is elected in σ, then agent 2
puts a last in her new ballot and puts first the best ranked alternative within agent 1’s
ballot between alternatives b and c. This implies that a has at most one point, and the
chosen candidate between b and c has a score strictly better than one, making it the new
winner.

If alternative c is elected in σ, then agent 1 puts c last in her new ballot and puts
first the best ranked alternative within agent 2’s ballot between alternatives a and b.
Therefore, candidate c has at most one point and the score of the chosen candidate
between a and b is strictly better than one, making it the new winner.

Finally, if b is elected in σ, then agent 1 can make a the winner. If c is ranked first
by agent 2 then agent 1 plays a � b � c, implying that c obtains a score equal to one, b
has at most one point and a at least one point. So, candidate a is winning in any case
thanks to the tie-breaking. Otherwise, agent 1 plays a � c � b, inducing that candidates
b and c obtain at most one point while a gets at least one point. Thus, candidate a is
winning in any case thanks to the tie-breaking. �

Note that Borda is covered by Proposition 2.10 when there are three candidates (in
this case, the normalized vector score of Borda is α = (1, 1/2, 0)). Therefore, a Nash
equilibrium (and thus, a considerate equilibrium) is not guaranteed to exist with the
Borda rule.

Corollary 2.11 A Nash equilibrium may not exist in the voting game where F=Borda.

Observe that the counterexample provided in the proof of Proposition 2.10 is an
instance where there are only two voters. It turns out that this type of instance is very
specific because for more voters, a Nash equilibrium is guaranteed to exist.

Proposition 2.12 A Nash equilibrium exists for any instance of the voting game where
F=Borda and n > 2.

Proof: In this proof, we assume that the score vector α of Borda is not normalized,
i.e., α := (m − 1, . . . , 1, 0). Let us construct a voting profile σ where σ1 :=�1 (if
there was initially indifferences in the preferences of agent 1, then we use an arbitrary
tie-breaking in order to obtain a linear order). Say, without loss of generality, that
σ1 = x � c1 � c2 � . . . � cm−1. Now let us set σ2 := x � cm−1 � . . . � c2 � c1. For the
rest of the voting profile, we construct σi as follows for every agent i > 2.

σi :=

{
σ1 if i is odd and i 6= n
σ2 if i is even, or if i is odd and i = n

Clearly, since Borda is a unanimous voting rule, candidate x is the winner. Agent 1 has
no incentive to deviate, since her preferred candidate is elected. Observe that the sum
of the scores of any candidate ci in the ballots σ1 and σ2 is m− 2.
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Assume that there is an agent i (for i > 1) who deviates in order to make another
candidate, say ci, the new winner. The best strategy for agent i is to rank ci first and x
last in the new submitted ballot. Let us denote by σ′ the deviating voting profile. The
new score of candidate x is Scσ

′
(x) = (n − 1).(m − 1). Since ci is the new winner, it

follows that Scσ
′
(ci) ≥ Scσ

′
(x).

If n is even, then the best possibility for ci is to obtain a score of Scσ
′
(ci) = (m−1)+

n
2 .(m−2). Therefore, by simplifying the inequality Scσ

′
(ci) ≥ Scσ

′
(x), we get 4− 4

m ≥ n.
Since n > 2 and n is even, n ≥ 4 and we have 1 − 1

m ≥ 1. We reach a contradiction
because the number of candidates m is finite.

Now consider the case where n is odd. If σi = σ2, that is if i is even, or i is odd and
i = n, then the best possibility for ci is to obtain a score of Scσ

′
(ci) = (m−1)+bn2 c.(m−2).

Therefore, by simplifying the inequality Scσ
′
(ci) ≥ Scσ

′
(x), we get 2 − 1

m ≥ d
n
2 e. Since

n ≥ 3, we obtain 1− 1
2m ≥ 1, leading to a contradiction.

Otherwise, if σi = σ1, that is if i is odd and i 6= n, then the best possibility for ci
is to obtain a score of Scσ

′
(ci) = (m − 1) + dn2 e.(m − 2). Therefore, by simplifying the

inequality Scσ
′
(ci) ≥ Scσ

′
(x), we get 2− 3

m ≥ b
n
2 c. Since n is odd and there is an agent

i such that i > 1 is odd but i 6= n, then we have n ≥ 5 and thus we obtain 1− 3
2m ≥ 1,

leading to a contradiction. �

Now, the natural question is whether the case n > 2 can also ensure the existence
of a considerate equilibrium. However, this is not the case because we can show that
even a partition equilibrium may not exist when n > 2 and n is odd. Note that the
counterexample for a partition equilibrium under Copeland when n > 2 and n is even,
provided in the proof of Proposition 2.7, also works for Borda. But we can also exhibit a
particular counterexample that covers the case where n is odd, ruling out the possibility
for the game to admit a considerate equilibrium when n is odd, contrary to Copeland.

Proposition 2.13 A partition equilibrium may not exist when F=Borda, even when n
is odd, and the preferences are strict and single-peaked.

Proof: Let us consider an instance with five voters and three candidates where N =
{1, . . . , 5} and M = {a, b, c} (recall that a B b B c). The partition over the voters
is defined as P = {C1, C2}, where C1 := {1, 2} and C2 := {3, 4, 5}. The preferences,
single-peaked with respect to the axis a >M b >M c, are given as follows.

1, 2 : a � b � c
3, 4, 5 : c � b � a

Let us consider any voting profile σ. If candidate a is elected in σ, then all the members
of coalition C2 deviate to ballot c � b � a, implying that the score of a is at most 4 in
the new profile while the score of c is at least equal to 6. Therefore, either b or c wins
in the new profile and these two options are preferable for C2 than the election of a.

If candidate c is the winner of σ, then all the members of coalition C1 deviate to a
ballot where c is ranked last and the best candidate between a and b within C2 in profile
σ is ranked first. In this new profile, candidate c obtains at most 6 points while the best
candidate between a and b in σC2 obtains at least 2 points in σC2 , and thus at least 6
points in total in the new profile. Thanks to the tie-breaking rule, either a or b wins in
the new profile, situation that C1 prefers to the election of c.
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Finally, let us consider the case where b wins in σ. In such a case, the members of
coalition C2 deviate in order to make c the new winner, and thus they all give a new
ballot where c is ranked first, leading to a new profile where c gets at least 6 points.
If, (i), c is ranked first in σ by at least one agent between 1 and 2, then there is no
need to elaborate a more sophisticated strategy because c obtains at least 8 points in
the new profile, while another candidate can obtain at most 6 points. So, candidate c
becomes the new winner. If, (ii), both voters 1 and 2 rank first the same alternative,
say a, in σ, then all the members of C2 must rank a last in their new ballot. This leads
to a new profile where c gets at least 6 points, a gets 4 points and b at most 5 points,
making c elected. Otherwise, (iii), each of the candidates a and b is ranked first in σ
by an agent in C1. In this case, two agents in C2 submit the new ballot c � a � b while
the remaining agent submit ballot c � b � a. Therefore, candidate c obtains at least 6
points in the new profile while both a and b cannot obtain more than 5 points, leading
to the election of c. �

It follows that no natural restriction on the number of voters leads to the existence
of a considerate equilibrium for the Borda rule.

2.4 Special case of the Veto rule

Even though Veto is a PSR like Plurality or Borda, this voting rule has a particular
behavior regarding coalitional manipulation, since we prove stronger results than for
the other classical rules. Indeed, we show that a strong equilibrium and a considerate
equilibrium are guaranteed to exist in any instance of the linked voting game using this
rule. We deduce from the strong equilibria under Veto a quality measure for voting
rules.

2.4.1 Existence of equilibria

In order to prove the existence of equilibria in the voting game, we use feasible elimination
procedures (f.e.p.), a mechanism introduced by Peleg [1978]. The initial definition of an
f.e.p. takes into account strict preferences, however it can be directly adapted for non-
strict preferences.

Definition 2.11 (Feasible elimination procedure (f.e.p.)) For a mapping β :
M → N such that

∑
x∈M β(x) = n + 1, an f.e.p. is a sequence

(x1, C1;x2, C2; . . . ;xm−1, Cm−1;xm), where ∀i ∈ [m − 1], Ci ⊆ N , that satisfies the fol-
lowing conditions:

(i) |Ci|= β(xi) and ∀j ∈ [m− 1] \ {i}, Ci ∩ Cj = ∅

(ii) M =
⋃
k∈[m] xk

(iii) ∀` ∈ Ci and ∀k ∈ {i+ 1, . . . ,m}, xk %` xi

An f.e.p. is guaranteed to exist for any preference profile in L(M)n and for any

72



CHAPTER 2. COALITIONAL MANIPULATION IN ITERATIVE VOTING

mapping β such that
∑

x∈M β(x) = n+ 1 (Peleg [1984]’s Lemma 5.3.9)1. The induction
proof does not rely on the assumption of strict preferences, hence this existence result
holds for any preference profile in W(M)n.

Let us define more precisely mapping β for the case of the Veto rule. For a candidate
x, let the value β(x) correspond to the minimum amount of vetos required to ensure that
x cannot be chosen by Veto (whatever the other ballots). Let q and r be respectively
the quotient and the rest of the euclidean division of n by m, i.e., n = m · q + r. It is
easy to check that β must take the following values:

β(x) =

{
q + 1 if x is ranked among the r + 1 first alternatives in tie-breaking B
q otherwise

(2.3)
By the definition of q and r,

∑
x∈M β(x) = n+ 1 holds.

The following theorem is an adaptation of Peleg and Peters [2010]’s Theorem 9.2.6
to the case of the Veto rule.

Theorem 2.14 A strong equilibrium exists for any instance of the voting game where
F=Veto.

Proof: We show that it is possible to construct, from a given f.e.p., a state σ which
is a strong equilibrium for Veto. Let (x1, C1, x2, C2, . . . , Cm−1, xm) be an f.e.p. for the
mapping β described in (2.3), and let σ ∈ Mn be a state such that for every index
i ∈ [m − 1] and every voter j ∈ Ci, σj = xi (recall that BV eto = M). Since we have
chosen a mapping β corresponding to the number of vetos for each candidate that are
necessary to avoid its election, F(σ) = xm.

Let us prove that σ is a strong equilibrium. By contradiction, if σ is not a strong
equilibrium, then there exists a coalition C ⊆ N and a joint strategy σ′C such that
F(σ′C , σ−C) >C xm. Let y denote the candidate F(σ′C , σ−C). By the definition of β,
there must be an index i ∈ [m − 1] and a voter ` ∈ Ci such that y = xi and ` ∈ C,
because otherwise y is vetoed by at least β(y) voters and cannot be chosen by F . But
by condition (iii) of Definition 2.11, this implies that xm %` xi = y, a contradiction with
y >C xm. �

As stated in the previous proof, an f.e.p. associated with mapping β induces a strong
equilibrium under Veto. However, the reverse is not true: any strong equilibrium does
not induce an f.e.p., as we can observe in the following example.

Example 2.7 Let us consider an instance with three voters and three candidates, where
N = {1, 2, 3}, M = {a, b, c} and F=Veto. The preference profile is described as follows.

1 : b � a � c
2 : b � a � c
3 : b � c � a

1Note that the condition n + 1 ≥ m appears in the existence result of Peleg [1984] but it is easy
to fulfill this condition by only keeping the n+ 1 first candidates in the tie-breaking rule. Indeed, only
these alternatives can be elected.
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The voting profile σ, that is framed in the previous preference profile, where σ1 = σ2 =
a and σ3 = c, is a strong equilibrium that elects candidate b. However, there is no
associated f.e.p. (x1, C1;x2, C2;x3) where the ballot of the agents in Ci is xi and xm = b,
because condition (iii) of Definition 2.11 cannot hold. Nevertheless, there exists a strong
equilibrium electing b with an associated f.e.p., i.e., the voting profile σ′, underlined
in the preference profile, where σ′1 = c and σ′2 = σ′3 = a and the associated f.e.p. is
(c, {1}; a, {2, 3}; b).

We will show that identifying the candidates that can be elected in a strong equilib-
rium is polynomial, as stated in the following proposition.

Proposition 2.15 Verifying whether a given candidate x can be elected under F=Veto
in a strong equilibrium can be done in polynomial time.

Proof: We will reduce our verification problem to a network flow problem [Ahuja et al.,
1993]. Let us consider the directed network H = ({s} ∪N ∪ (M \ {x}) ∪ {t}, F ), where
s denotes a source node and t a sink node. We describe as follows the arcs (i, j) in F
with their associated lower bounds lij and capacities cij :

- arcs (s, i) for every i ∈ N with lsi = 0 and csi = 1

- arcs (i, y) for i ∈ N and y ∈M \ {x} if x %i y, with liy = 0 and ciy = 1

- arcs (y, t) for every y ∈M \ {x} with lyt = β(y) (as defined in (2.3)) and cyt = n

We claim that there exists a strong equilibrium under Veto electing x if and only if there
exists a feasible flow in network H.

Assume that there exists a feasible flow in H and let us consider a maximum flow
solution f : F → N. Then, consider the strategy profile σ where σi = y for y ∈M \ {x}
if f((i, y)) > 0, i.e., if flow f circulates in arc (i, y). Let us denote by L the voters that
were not assigned a strategy thanks to the network flow solution. The nodes i ∈ L have
necessarily an outdegree equal to zero in H because f is a maximum flow, therefore the
voters in L rank x last in their preferences. We arbitrarily assign them strategies within
M \ {x}. Clearly, the winner of voting profile σ under Veto is candidate x because it is
the only alternative that is not vetoed. We will prove that no improving move can be
performed from σ, and thus that σ is a strong equilibrium.

Since there is a feasible flow in network H, every candidate y ∈ M \ {x} obtains
at least β(y) vetos in σ within the voters in N \ L. Observe that |L|< β(x) because∑

y∈M β(y) = n + 1 and there is a feasible flow. It follows that there cannot be any
improving move from a subset of voters in L: they are not sufficiently numerous to veto
x with β(x) votes whereas all the other candidates y ∈ M \ {x} are vetoed at least
β(y) times by the voters in N \ L. Let us denote by Vy the voters in N \ L that are
vetoing candidate y in σ. Every voter i ∈ Vy prefers x at least as much as y, so there is no
improvement move for such a voter if candidate y becomes the new winner. Assume that
there exists a set of candidates S ⊆M \ {x} such that a subset of voters AS ⊆

⋃
y∈S Vy

agree to deviate (possibly with some voters in L) from σ. Then, β(z) vetos are still active
for each candidate z /∈ (S ∪ {x}) within the voters N \ (AS ∪L), while the voters in AS
remove some vetos against candidates in S. Therefore, this deviation will necessarily
result in the election of a candidate in S, and this is not an improving move for AS .
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Now let us suppose that there is no feasible flow in network H. It follows that there
exists a subset S ⊆M \{x} of alternatives such that |

⋃
y∈S{i : x %i y}|<

∑
y∈S β(y), and

thus |
⋂
y∈S{i : y �i x}|> n−

∑
y∈S β(y). Since

∑
z∈M β(z) = n+ 1, then |

⋂
y∈S{i : y �i

x}|≥
∑

z∈M\S β(z). Therefore, the voters in
⋂
y∈S{i : y �i x} are sufficiently numerous

to veto any alternative z in M \S (x included), with the minimum number of vetos β(z)
that is needed to avoid the election of each z ∈M \ S, whatever the rest of the strategy
profile. By performing such a deviation move from any possible strategy profile electing
x, the voters in

⋂
y∈S{i : y �i x} obtain the election of a candidate within S, that they

all prefer to x, and thus x can never be elected in a strong equilibrium under Veto. �

By the previous proposition, one can deduce that even the construction of a strong
equilibrium under Veto can be done in polynomial time.

Although Theorem 2.14 holds for non-strict preferences, it does not enable to ensure
the existence of a super strong equilibrium when the preferences are not strict. Indeed,
in the solution concept defined by the super strong equilibrium, a voter participates to a
deviating coalition if she is not worse off by this deviation so, she may participate even
if the deviation is not an improvement move for her. This behavior is illustrated in the
following counterexample.

Example 2.8 Let us consider an instance with three voters and two candidates, where
N = {1, 2, 3}, M = {a, b} and F=Veto. The profile of preferences is:

1 : a � b
2 : b � a
3 : a ∼ b

Let us consider any voting profile σ. If a is elected in σ, then coalition {2, 3} can
deviate from σ by vetoing a, in order to make b elected. If b is elected in σ, then coalition
{1, 3} can deviate from σ by vetoing b. Both cases correspond to weak improving moves
(WIM) because the situation of agent 1 or 2 is strictly improved by the deviation but
agent 3 is indifferent and agree to participate in any deviation. Therefore, there is no
super strong equilibrium in this instance.

Nevertheless, the following theorem shows that a considerate equilibrium is guaran-
teed to exist even with non-strict preferences.

Theorem 2.16 A considerate equilibrium exists in any instance of the linked voting
game where F=Veto.

Proof: The proof relies on a refinement of the f.e.p. to the concept of considerate
equilibrium. The considerate f.e.p. (c.f.e.p.) is defined in a similar fashion as f.e.p.,
except that condition (iii) is replaced by (iii′) ∀` ∈ Ci and ∀k ∈ {i+1, . . . ,m}, xk �` xi,
or [xk ∼` xi and xi 6≥NG(`) xk], where NG(`) is the set of neighbors of ` in G. First of all,
let us show that a c.f.e.p. exists for any preference profile % ∈ W(M)n. To this end, for
any voter i ∈ N , we construct a strict preference �′i which is consistent with the strict
part of %i, and where ties are broken by ≥NG(i) (or arbitrarily in case of incomparability
for ≥NG(i)). This construction leads to a profile of strict preferences �′. By Remark 9.2.1
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of Peleg and Peters [2010], we know that an f.e.p. exists for �′. We state that such an
f.e.p. is also a c.f.e.p. for %. Indeed, conditions (i) and (ii) trivially hold because they
are similar for both f.e.p. and c.f.e.p., and they do not depend on the considered profile
of preferences. Furthermore, the construction of �′ ensures that for any ` ∈ N , x �′` y
implies x �` y, or [x ∼` y and y 6≥NG(`) x]. Therefore, (iii′) holds and the f.e.p. for �′
is also a c.f.e.p. for %.

The remainder of this proof follows the same line as the proof of Theorem 2.14. Let
(x1, C1;x2, C2; . . . , Cm−1;xm) be a c.f.e.p. for the mapping β described in (2.3), and let
σ be a state such that σj = xi, for every index i ∈ [m− 1] and every voter j ∈ Ci. Let
us show that σ is a considerate equilibrium. By contradiction, if σ is not a considerate
equilibrium then there exists a coalition C ∈ C (where C refers to the set of cliques of G)
and a joint strategy σ′C such that F(σ′C , σ−C) ≥C xm and F(σ′C , σ−C) =N (C) xm. Let
y denote the candidate F(σ′C , σ−C). There must be an index i ∈ [m − 1] and a voter
` ∈ Ci such that y = xi and ` ∈ C. Furthermore, any neighbor of ` in G belongs to C or
N (C), and no other voter belongs to C. Therefore, C ∪ N (C) = NG(`) ∪ {`}. But, by
condition (iii′) of the definition of a c.f.e.p., this implies that xm �` xi = y or, xm ∼` xi
and y = xi 6≥C∪N (C) xm, a contradiction with y ≥C xm and y =N (C) xm. �

In consequence, a strong equilibrium as well as a considerate equilibrium are guar-
anteed to exist for any instance of the linked voting game where F=Veto.

2.4.2 Design of a quality measure

The main results of the previous subsection are the existence of a strong equilibrium
under the Veto rule for any instance, as well as the possibility to check in polynomial
time whether a given candidate can be elected in a strong equilibrium. Strong equilibria
are robust and stable voting profiles since no coalition of voters can agree and be able
to deviate to another ballot. Since Veto is a “reasonable” voting rule (basically Veto is
not dictatorial and every candidate can be elected a priori in the non-resolute version of
Veto1), candidates elected in a strong equilibrium under Veto can appear as consensual
alternatives, in the sense that there is no group of voters preferring another alternative
that is sufficiently large to make this alternative the new winner.

Consequently, it would be natural to consider a social choice function based on the
selection of the candidates that can be elected in a strong equilibrium under Veto. This
perspective has notably been studied for general feasible elimination procedures [Peleg,
1978, 1984, Peleg and Peters, 2010]. However, this approach is limited by the fact that
the number of such alternatives can be large. Indeed, we can observe in Figure 2.1,
where 10,000 preferences profiles are generated under different cultures of preferences
(impartial culture (IC), uniform single-peaked (SP-U) or single-peaked uniform peak
(SP-UP), see Section 1.2.1.b for more details) that, in average, half of the alternatives
are candidates elected in a strong equilibrium under Veto. The number is even much
larger when the preferences are single-peaked via uniform-peak generation.

This implies that the role of the tie-breaking rule may be too important in the
procedure. One could think about combinations of voting rules in order to face this

1See for instance Baharad and Nitzan [2005] and Kurihara [2018] for a characterization of the Veto
rule.
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Figure 2.1: Average proportion of the candidates that can be elected in a strong equi-
librium under Veto for n = 100 and 10,000 runs

problem, like for instance choosing the Borda winner among the candidates that can be
elected in a strong equilibrium under Veto.

We choose to use the possibility of being elected in a strong equilibrium under Veto as
a characteristic for a “good” candidate. Contrary to the well-known Condorcet winner,
such a candidate is guaranteed to exist (Theorem 2.14) for any preference profile. This
property is called Veto-SE.

Definition 2.12 (Veto-SE) An alternative x is a Veto-SE if and only if there exists a
voting profile σ ∈Mn such that F(σ) = x where F=Veto, and σ is a strong equilibrium
in the voting game under Veto.

Observe that the Veto-SE property is conceptually different than the concept of
Condorcet winner. Whereas in the latter the majority has an important impact, the
Veto-SE notion takes into consideration the whole electorate, in the sense that a minority
of voters can have a significant power. More precisely, if there is a sufficient number of
voters that do not like an alternative at all, then this alternative would never be elected
in a strong equilibrium under Veto. On this point, this concept may even be opposed to
the Condorcet winner idea. Actually, although the concept of Condorcet winner seems
to be a strong requirement, a Condorcet winner is not necessarily a Veto-SE alternative,
as we can notice in the following example.

Example 2.9 Let us consider an instance with three voters and four candidates, where
N = {1, 2, 3}, M = {a, b, c, d} and F=Veto. The profile of preferences is:

1 : b � a � c � d
2 : c � d � a � b
3 : b � d � c � a
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Alternative b is the Condorcet winner. However, from a state where b is elected,
voter 2 has always incentive to deviate by vetoing b, and this veto is sufficient to avoid
the election of b. Hence, there is no strong equilibrium electing b.

In order to get a clearer picture on the Veto-SE property, we run some experiments.
The output of different classical voting rules is analyzed according to the Condorcet
efficiency and the Veto-SE property. The results are presented in Figure 2.2. In the ex-
periments, we generate instances with 10 voters and 5 candidates, where the preferences
are drawn from impartial culture (IC), 10%-correlated culture (CR-10%) or uniform
single-peaked culture (SP-U) (see Section 1.2.1.b). Seven voting rules are evaluated:
Plurality, 2-approval, Borda, Maximin, Copeland, STV and Veto. Under the three dif-
ferent cultures of preferences and for each of the seven chosen voting rules, we display
the Condorcet efficiency (blue/dark bars) and the Veto-SE efficiency (red/light bars) of
the voting rules. For each voting rule, the Condorcet efficiency refers to the proportion
of instances for which the voting rule elects the Condorcet winner, when it exists. If
the current instance is not a Condorcet domain, that is there is no Condorcet winner,
then we pass to another instance until we have seen 10,000 instances where there exists
a Condorcet winner. Concerning the Veto-SE efficiency, it refers to the proportion of
instances for which the given voting rule elects a Veto-SE candidate, that is a candidate
for which there exists a strong equilibrium profile under Veto electing it. Since a Veto-
SE is guaranteed to exist in any instance (Theorem 2.14), we do not need to restrict to
specific profiles nor to Condorcet domains. Therefore, we stop to look at the veto-SE
efficiency as soon as we have seen 10,000 profiles.

Plurality 2-approval Borda Maximin Copeland STV Veto

0.4

0.6

0.8

1

Condorcet efficiency Veto-SE efficiency
IC CR-10% SP-U

Figure 2.2: Quality of different voting rules for n = 10 and m = 5

Observe that, globally, Veto-SE efficiency is always above 60%, which is not so weak.
However, Veto-SE efficiency is almost always lower than Condorcet efficiency, except for
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Veto and uniform single-peaked profiles. Therefore, despite the fact that around half of
the candidates are Veto-SE candidates (see Figure 2.1), it seems that electing a Veto-SE
candidate is a requirement rather difficult to satisfy for voting rules other than Veto.

In general the two measures may be conflicting: there are only a few configurations
where Veto-SE efficiency and Condorcet efficiency are close. The voting rule that appears
rather balanced on the two criteria is Borda.

Note that the Veto-SE efficiency is very high when the profiles are single-peaked. This
may be explained by the fact that a single-peaked profile, uniformly generated among all
single-peaked profiles (SP-U), is strongly correlated, even more than a profile generated
with 10% of correlation ratio (CR-10%). Therefore, the voting rules are more likely to
select a candidate that is sufficiently consensual to be elected in a strong equilibrium
under Veto.

2.5 Convergence of the dynamics

Let us now study, in an iterative voting process, the convergence properties of the dy-
namics of the linked voting game. Recall that, in iterative voting, a dynamics refers
to a sequence of deviations (σ0, σ1, . . . , σT ) where a deviation is performed by a voter
(or a group of voters) between each two consecutive states σt and σt+1 for t ∈ [T − 1].
Whereas the classical iterative voting setting presented in Section 1.3.3.b only deals with
unilateral deviations, we consider that coalitions of voters in C can perform deviations
in this dynamics.

Some deviations are more relevant than others for responses in iterative voting. In-
deed, by assuming that the voters are rational, it makes sense to focus on the best
possible deviations for coalitions.

A µ-response for a coalition C ∈ C, according to a type of move µ ∈ {IM,WIM,CIM}
(see Section 2.2) from a state σ, is a deviation of type µ performed by coalition C from
state σ. This corresponds to the coalitional version of a better response (see Defini-
tion 1.25) in the classical iterative voting setting where only unilateral deviations are
taken into account. Let us define in consequence a best µ-response for coalition C from
state σ as one of the best possible deviations of type µ ∈ {IM,WIM,CIM} that C can
perform from σ.

Definition 2.13 (Best µ-response) A deviation ballot σ′C ∈ BF |C| is a best µ-
response from state σ for coalition C ⊆ N if σ′C is a µ-response for C from σ and
there is no other µ-response σ′′C such that F(σ−C , σ

′′
C) ≥C F(σ−C , σ

′
C).

This definition extends the notion of best response (see Definition 1.26), which is used
for unilateral improving moves in the classical iterative setting, to coalitional deviations.
These restricted deviations are useful in the study of the convergence of the dynamics
of the voting game.

Let us study the convergence of the dynamics of the game to a considerate equilibrium
when a considerate equilibrium is guaranteed to exist. More precisely, according to the
results of Section 2.3, we investigate the convergence of the dynamics under different
voting rules such as Plurality, Veto, Maximin, STV, Maximin and Plurality with run-
off, which ensure the existence of a considerate equilibrium.
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2.5.1 Plurality and Veto

Theorem 2.1 and 2.16 give the existence of a considerate equilibrium and therefore, exis-
tence of a partition equilibrium, in any instance of the linked voting game under Plurality
and Veto. However, if we let the voters deviate, in an iterative voting perspective, do
we reach this equilibrium? By considering unilateral deviations, we know that under
the restrictions to direct best responses (see Definitions 1.27 and 1.28), the dynamics
of the voting game is guaranteed to converge to a Nash equilibrium [Meir et al., 2010,
Lev and Rosenschein, 2012, Reyhani and Wilson, 2012] for both voting rules, whereas it
does not hold for general manipulation moves. As we will show in this subsection, the
same positive result for convergence is not possible for a considerate equilibrium since
it is not the case even for the partition equilibrium and additional natural restrictions
about the deviations.

2.5.1.a Plurality

In the deviations under Plurality, only the support for a candidate matters. Indeed,
there is no possibility to block or to limit the scores of other candidates via a deviation
under Plurality and the only strategy for making elected a given candidate is to support
it as much as possible. Therefore, if there exists a joint strategy σ′C for coalition C ⊆ N
from state σ such that y is elected, then unanimous joint strategy (sy)C , where every
voter i ∈ C gives ballot y ∈ M , also make y elected from σ. This idea applies to any
type of deviation µ ∈ {IM,WIM,CIM} that has been defined in Section 2.2.

We will extend the definition of direct best response under Plurality (see Defini-
tion 1.27) to a unanimous direct µ-response, for a type of deviation µ ∈ {IM,WIM,CIM},
by considering coalitional deviations instead of simply unilateral deviations.

Definition 2.14 (Unanimous direct best µ-response) A deviation ballot σ′C is a
unanimous direct best µ-response under Plurality from state σ for coalition C ⊆ N , if
σ′C is a best µ-response for C from σ and σ′i = F(σ−C , σ

′
C) for every i ∈ C.

Remark that when the coalitions are singletons, a unanimous direct best
{IM,WIM,CIM}-response corresponds to a direct best response.

Let us now provide a counterexample for the convergence of the dynamics of the
game defined according to a partition equilibrium. Although originally, the partition
equilibrium is defined for weak improving moves, we consider an instance with strict
preferences therefore in this case WIM=IM.

Proposition 2.17 The dynamics associated with the partition equilibrium may not con-
verge in the voting game with F=Plurality, even if the initial voting profile is truthful,
each deviation is a unanimous direct best IM-response, and the preferences are strict,
single-peaked and single-crossing.

Proof: Let us consider an instance with twelve voters and four candidates, where
N = {1, 2, . . . , 12}, M = {a, b, c, d}, a B b B c B d, and F=Plurality. The profile
of preferences is:
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1, 2, 3 : d � c � b � a
4, 5, 6 : c � d � b � a
7, 8, 9 : a � b � c � d

10, 11, 12 : b � c � d � a

The preferences are single-peaked with respect to the order over the candidates a >M

b >M c >M d and single-crossing with respect to the order over the voters 1 >N 2 >N

3 >N 4 >N 5 >N 6 >N 10 >N 11 >N 12 >N 7 >N 8 >N 9. The partition over
the voters is {{1}, {2}, {3}, {4}, {5}, {6}, {7, 8, 9}, {10, 11}, {12}}. The next table gives
a sequence of states where the first and last ones coincide. The deviations are indicated
with arrows and bold letters, and step 0 is the truthful profile.

Steps σ0 σ1 σ2 σ3 σ4 σ5 σ6

1, 2, 3: d d d d d d d

4: c → d d d → c c c

5, 6: c c c c c c c

7, 8, 9: a a a → b b b → a

10, 11: b b → c c c → b b

12: b b b b b b b

F(σt) a d c b c b a

One can easily verify that each deviation is a unanimous direct best IM-response. �

The previous proposition rules out the possibility of convergence of dynamics defined
by a considerate equilibrium since the coalitions given by the members of a partition
can be transposed into the maximal cliques of a cluster graph.

Interestingly, Proposition 2.17 can be mitigated if we consider a special partition of
N where all coalitions have the same size. The result follows from a simple extension of
a proof given by Meir et al. [2010].

Proposition 2.18 If P is a partition of N such that all coalitions of P have the same
size, then the dynamics associated with a (P,WIM)-equilibrium, i.e., a partition equi-
librium, converges for any instance of the voting game and any initial profile σ0, if the
deviations are unanimous direct best WIM-responses.

Proof: We consider each group of the partition as a meta-agent. The preferences of
such a meta-agent i representing group C ∈ P are such that a �i b only if a ≥C b (we
do not express the rest of the preferences which could be partial because we only care
about the best response deviations). Then, it suffices to follow the proof of Meir et al.
[2010]’s Theorem 3. �

Plurality is not Condorcet consistent, however a unanimous voting profile sx, where
x is the Condorcet winner, is always a considerate equilibrium (as stated by Sertel and
Sanver [2004] for strong equilibria) since no absolute majority of voters prefers another
alternative and Plurality is a strict majority susceptible rule. Nevertheless, when a
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Condorcet winner exists, the game may not converge to a state electing it, because even
dynamics associated with a Nash equilibrium (corresponding to a considerate equilibrium
where the graph is empty) may not converge to a state electing it, even from a truthful
initial profile and for direct best responses.

Example 2.10 Let us consider an instance with three voters and four candidates, where
N = {1, 2, 3}, M = {a, b, c, d}, and F=Plurality. The profile of preferences is:

1 : a � b � c � d
2 : c � b � d � a
3 : d � b � a � c

By considering unilateral deviations conditioned by direct best responses, the only
possible deviation from truthful profile σ0 = (a, c, d) electing a, is the deviation of agent
2 to ballot d. We then reach state (a, d, d), electing d, which is a Nash equilibrium
whereas b is the Condorcet winner.

In a nutshell, while the dynamics associated with unilateral deviations that are direct
best responses always converges to a Nash equilibrium, the straightforward generalization
to coalitional deviations that are direct and unanimous for coalitions of voters defined
by a partition over the voters make the convergence of the dynamics fail.

2.5.1.b Veto

Contrary to Plurality, a ballot under Veto does not describe a support for a candidate
but a veto against a candidate. Consequently, the fact that all the members of a same
coalition vetoes the same alternative may not be the best strategy for the coalition.
When the coalition is a single agent, this is clear that a best response can be to directly
veto the current winner (see Definition 1.28 for the direct best response under Veto).
However, for a larger coalition, it could be more advantageous, for instance, to veto the
current winner but also other candidates, as we can see in the following example.

Example 2.11 Let us consider an instance with seven voters and four candidates, where
N = {1, . . . , 7}, M = {a, b, c, d}, a B b B c B d, and F=Veto. The preferences of the
agents are described as follows.

1 : b � d � c � a
2 : d � a � c � b
3 : a � b � d � c

4, 5 : c � b � a � d
6, 7 : a � b � c � d

Let initial state σ0 be the truthful profile. In σ0, a is elected thanks to the tie-breaking
rule. Let us focus on coalition of voters C := {4, 5}. If coalition C deviates within a
unanimous strategy, then the members of C must both veto candidate a, in order to make
the outcome of the election change. This deviation leads to the election of b (thanks to
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the tie-breaking rule). Agents 4 and 5 both prefer b to a, therefore this deviation is an
IM -response for coalition C from σ0.

However, by removing the constraint of a unanimous strategy for coalition C, this
coalition can agree on a joint strategy where agent 4 vetoes candidate a while agent 5
vetoes candidate b. Such a deviation leads to the election of c, which is the best candidate
of agents 4 and 5. Therefore, this is a best IM -response for coalition C from σ0.

Hence, restricting to unanimous strategies under Veto may not allow the voters to
design best deviations.

Nevertheless, as for Plurality, the dynamics associated with the considerate equi-
librium is not guaranteed to converge, even if we restrict ourselves to the dynamics
associated with the partition equilibrium and we consider best IM-responses.

Proposition 2.19 The dynamics associated with the partition equilibrium may not con-
verge in the voting game with F=Veto, even if the initial profile is truthful, each deviation
is a best IM-response, and the preferences are strict, single-peaked and single-crossing.

Proof: Let us consider an instance with six voters and four candidates, where N =
{1, 2, . . . , 6}, M = {a, b, c, d}, a B b B c B d, and F=Veto. The preferences are
single-peaked with respect to the order over the candidates c >M d >M a >M b and
single-crossing with respect to the order over the voters 2 >N 1 >N 6 >N 3 >N 4 >N 5.
The profile of preferences is:

1: d � c � a � b
2: c � d � a � b
3: a � d � b � c

4, 5: b � a � d � c
6: a � d � c � b

The partition over the voters is {{1}, {2}, {3}, {4, 5}, {6}}. The next table gives a
sequence of states where the steps 1 to 7 form a cycle. The ballots are written in the
form −x, for a candidate x, in order to represent the fact that this ballot is a veto against
x. The deviations are marked with arrows and bold letters. Step 0 corresponds to the
truthful profile.

Steps σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7

1: −b −b −b −b −b −b −b −b
2: −b → −a −a −a −a → −d −d → −a

3: −c −c −c −c −c −c −c −c
4, 5: −c −c −c → −a −a −a → −c −c

6: −b −b → −d −d → −b −b −b −b
F(σt) a d a b d c a d

One can easily verify that each deviation is a best IM-response. In particular, these
deviations are also unanimous and direct, in the sense that all the members of the
coalitions deviate to the same ballot vetoing the current winner. �
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While general unanimous µ-responses, where every member of a coalition deviates
to the same ballot, are not necessarily best µ-responses (Example 2.11), the counterex-
ample provided in the previous proof exhibits deviations that are unanimous and direct
(by vetoing the current winner). Therefore, the dynamics associated with a partition
equilibrium may fail to converge even for a straightforward generalization of the direct
best response under Veto (Definition 1.28), which guarantees the convergence of the
dynamics for unilateral deviations.

2.5.2 Non-convergent rules for single-agent deviations

Besides Plurality and Veto, we have the existence of a considerate equilibrium for other
voting rules, such as Maximin, STV and Plurality with run-off. However, the dynamics
of the game may not converge to a considerate equilibrium for these voting rules, since
it may not even converge to a Nash equilibrium, as we will show in this subsection.
Moreover, this is still the case for restricted best responses.

Focusing, in this subsection, on unilateral deviations, we consider dynamics based on
best responses as defined in Section 1.3.3.b (Definition 1.26). Nevertheless, we strengthen
our negative results by using specific best responses minimizing a certain distance to the
sincere ballot.

Proposition 2.20 The dynamics associated with the Nash equilibrium is not guaranteed
to converge in the voting game with F ∈ {STV, Plurality with run-off}, even if the initial
profile is truthful, the voters’ preferences are strict, single-peaked and single-crossing, and
each move is a best response minimizing the distance to the sincere ballot in terms of
number of differences in pairwise comparisons.

Proof: Let us consider an instance with four voters and four candidates, where N =
{1, 2, 3, 4}, M = {a, b, c, d}, a B b B c B d, and F ∈ {STV, Plurality with run-
off}. The preferences are single-peaked with respect to the order over the candidates
a >M c >M d >M b and single-crossing with respect to the order over the voters
2 >N 3 >N 4 >N 1. The next table gives a sequence of states where the first and last
ones coincide. Deviations are marked with bold letters. Step 0 represents the truthful
profile. Each linear order is the ballot of a voter and the last line of the table specifies
the winner at each step.

σ0 σ1 σ2 σ3 σ4

1: c � a � d � b a � c � d � b a � c � d � b c � a � d � b c � a � d � b
2: b � d � c � a b � d � c � a d � b � c � a d � b � c � a b � d � c � a

3: d � b � c � a d � b � c � a d � b � c � a d � b � c � a d � b � c � a
4: c � d � a � b c � d � a � b c � d � a � b c � d � a � b c � d � a � b
F(σt) b a d c b

This counterexample works for STV and Plurality with run-off. �

It is known that the strategic voting game under the Maximin rule is not guaranteed
to converge to a Nash equilibrium with an arbitrary deterministic tie-breaking [Lev and
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Rosenschein, 2012]. However, even with a deterministic tie-breaking that is a linear
order, the game under Maximin is not guaranteed to converge, as we can see in the next
proposition. Moreover, we do not use a general best response but a restricted one.

Proposition 2.21 The dynamics associated with the Nash equilibrium is not guaranteed
to converge in the voting game with F=Maximin, even if the initial profile is truthful, the
voters’ preferences are strict, single-peaked and single-crossing, and each move is a best
response minimizing the distance to the sincere ballot in terms of number of differences
in pairwise comparisons.

Proof: Let us consider an instance with five voters and four candidates, where N =
{1, 2, 3, 4, 5}, M = {a, b, c, d}, a B b B c B d and F=Maximin. The preferences are
single-peaked with respect to the order over the candidates d >M b >M c >M a and
single-crossing with respect to the order over the voters 1 >N 4 >N 3 >N 2 >N 5. The
next table gives a sequence of states where the steps 1 to 5 form a cycle. Deviations are
marked with bold letters. Step 0 corresponds to the truthful profile. Each linear order
is the ballot of a voter and the last line of the table specifies the winner at each step.

σ0 σ1 σ2 σ3 σ4 σ5

1: d � b � c � a d � b � c � a c � d � b � a c � d � b � a d � b � c � a d � b � c � a
2: a � c � b � d a � d � c � b a � d � c � b a � d � c � b a � d � c � b a � d � c � b
3: c � b � a � d c � b � a � d c � b � a � d c � b � a � d c � b � a � d c � b � a � d
4: b � d � c � a b � d � c � a b � d � c � a b � d � c � a b � d � c � a b � d � c � a
5: a � c � b � d a � c � b � d a � c � b � d a � b � d � c a � b � d � c a � c � b � d

F(σt) c a c a b a

�

Considering the very restrictive conditions of the previous propositions, it seems that
no convergence guarantee could be established based on best response dynamics for these
voting rules. Consequently, an option would be to restrict to specific manipulation moves
that are not necessarily best responses [Reijngoud and Endriss, 2012, Grandi et al., 2013,
Obraztsova et al., 2015].

2.6 Experiments

We run different experiments in order to evaluate the quality of considerate equilibria.
The quality of the equilibria that are reached via a dynamics in iterative voting is
analyzed as well as the number of considerate equilibria for a given instance.

Let us clarify the deviations of the voters that we have considered. Best µ-responses
(Definition 2.13) are used for both Plurality and Veto, for µ ∈ {IM,WIM,CIM} defined
according to the type of solution concept that is considered. More precisely, we have used
unanimous direct best µ-responses for Plurality in order to choose a natural move among
the possible best µ-responses. However, we do not make this restriction for Veto since
the best unanimous direct responses are not necessarily best µ-responses (Example 2.11),
and we consider any best µ-response. However, for the other voting rules, we restrict
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ourselves to unanimous µ-responses that are the best, for the sake of computational
simplicity, leading to take into account equilibria that are not necessarily immune to
any form of deviation.

2.6.1 Number of equilibria

First of all, we focus on the number of considerate equilibria according to the density
of the social network. We run a first set of experiments where, given 7 voters and
3 candidates, we generate all possible voting profiles (in total (3! )7 voting profiles).
Then, by randomly generating 100 instances with strict preference profiles drawn from
impartial culture and Erdös-Rényi graphs of density 0 (=empty), 0.25, 0.5, 0.75 and 1
(=complete), we count how many voting profiles are considerate equilibria under different
voting rules. We choose seven voting rules that are theoretically analyzed in the previous
sections, namely Plurality, Borda, Maximin, Copeland, STV, Veto and 2-approval. The
proportion of voting profiles that are in fact considerate equilibria are presented in
Figure 2.3.
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Figure 2.3: Proportion of considerate equilibria when n = 7 and m = 3 under impartial
culture

The main observation is that considerate equilibria have the same drawback as Nash
equilibria, that is the number of equilibria is terribly huge. Indeed, for all the voting
rules except Veto, more than half of the possible profiles is a considerate equilibrium.
The proportion is even higher than 0.8 as soon as the density of the graph is more than
0.25. Globally, the number of considerate equilibria increases with the density of the
graph, which makes sense since the coalitions of manipulators have more neighbors to
take care. Indeed, when the graph is complete, almost all the voting profiles are consid-
erate equilibria. Regarding the voting rules, it is interesting to remark that Maximin,
Copeland and STV seem to behave the same way: they have almost the same propor-
tion of equilibria for each density. Together with Borda, they have a large number of

86



CHAPTER 2. COALITIONAL MANIPULATION IN ITERATIVE VOTING

considerate equilibria. Nevertheless, given the theoretical results regarding existence of
equilibria, especially for Borda and Copeland, it seems that these results are strongly
biased by the fact that we only consider unanimous deviations for these voting rules.
However, note that the Nash equilibria, when the density is equal to zero, are not con-
cerned by the restriction to unanimous responses, but that the number of Nash equilibria
for STV, Copeland, Maximin and Borda are nevertheless important. Observe that there
are significantly less considerate equilibria under Veto than for the other rules whereas,
contrary to Borda, Veto always guarantees the existence of a considerate equilibrium.
By taking into account any possible deviation, we might expect a behavior for Borda
closer to the behavior of the Veto rule. In the same idea, the lower number of equilibria
for Veto can be explained by the fact that the voters can elaborate more sophisticated
strategies than in Plurality where the only option is to give points to a target candidate.
Observe also that the number of considerate equilibria in general is even higher than
the number of Nash equilibria (case where the density is equal to zero in the results),
although known to be problematically high.

These results highlight a main drawback of the considerate equilibrium, that is due
to the consideration assumption. Indeed, this assumption forces the possible deviating
coalitions to take into consideration the preferences of their neighbors by avoiding any
harmful deviation. This blocks the deviation of many coalitions and thus creates many
equilibria.

In order to understand the importance of the consideration assumption, we run the
same experiments but this time we count the proportion of “considerate equilibria”
without consideration assumption, that are coalitional equilibria where the coalitions
are given by the cliques of the network but with no other restriction. The results of this
new set of experiments are given in Figure 2.4.
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Figure 2.4: Proportion of coalitional equilibria (determined by cliques of the network)
without consideration when n = 7 and m = 3 under impartial culture

Starting from the same point, i.e., the number of Nash equilibria, when the density
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is null, the curves are totally inversed. Whereas the number of considerate equilibria
increases with the density of the graph, the number of coalitional equilibria without
consideration decreases when the density increases. This also seems natural since cliques,
and consequently coalitions, are bigger when the graph is dense. For Plurality and Veto,
when the density is higher than 0.5, the number of equilibria is extremely low. However,
for the other voting rules, the number of equilibria is around the half of the states even
when the graph is complete (note that the curves associated with Maximin, Copeland
and STV are confused). Once again, this is clearly due to the restriction to unanimous
deviations, which surely leads us to conclude that some states are equilibria whereas
they are not.

Globally, the number of equilibria seems more interesting for filtering the good states
of the games when the consideration assumption is removed. However, by removing the
consideration assumption, we lose the existence property, see for instance Example 2.8,
which is also a main disadvantage.

A good compromise could be the partition equilibrium. Indeed, every time a consid-
erate equilibrium is guaranteed to exist for any social network, a partition equilibrium
is also guaranteed to exist. Moreover, there is no overlap between the coalitions and
no consideration assumption, so one could expect a more reasonable number of equi-
libria. Therefore, we also count the number of partition equilibria for 7 voters and 3
candidates where the partitions are generated randomly. We compare these results with
the number of considerate equilibria and coalitional equilibria without consideration in
graphs with homophily (see Section 1.2.2.b), which is a graph constructed according to
the preferences of the agents. The results are presented in Figure 2.5.
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Figure 2.5: Proportion of equilibria when n = 7, m = 3 and coalitions are given by the
cliques of a graph respecting homophily or by a partition
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As expected, the number of partition equilibria is in between the number of consider-
ate equilibria and the number of coalitional equilibria without consideration. However,
although smaller than the number of considerate equilibria, this number remains too
large to discriminate the states.

Nevertheless, investigating the quality of the states that can be actually reached by
an iterative voting process enables us to focus on more plausible outcomes, despite the
huge number of equilibria.

2.6.2 Convergence to equilibria

Let us consider now best response dynamics of iterative voting and analyze their con-
vergence rate to equilibria.

We assume that the initial state is truthful and we use a random turn function
(see Section 1.3.3.b) for choosing the coalition which deviates if several coalitions have
incentive to manipulate at a given step of the game.

First of all, in order to have a better idea of the actual possibility of considerate devi-
ation, we count the instances for which a considerate deviation can occur from the initial
truthful state (“effective” considerate manipulation), i.e., the proportion of instances for
which the truthful state is not a considerate equilibrium. Concretely, for 5 candidates
and different number of voters we look at the effective considerate manipulation in an
Erdös-Rényi graph of density 0.25 (where there are less considerate equilibria than for
higher densities) for 10,000 generated preference profiles under impartial culture. We fo-
cus on the seven voting rules used in the previous subsection: Plurality, Borda, Maximin,
Copeland, STV, Veto and 2-approval. The results are presented in Figure 2.6.
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Figure 2.6: Effective considerate manipulation when m = 5 under impartial culture and
Erdös-Rényi graphs of density 0.25

We observe that the effective manipulation, i.e., the proportion of instances for which
there is actually a considerate deviation from the initial truthful state, is extremely
low and sharply decreases when the number of voters increases. Indeed, for a number
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of voters larger than 25, effective considerate manipulation is already almost null and
is inexistent for 50 voters. This brings us to consider a small number of voters for
our experiments, because if there is no manipulation then the reachable considerate
equilibrium under evaluation would be in fact the truthful state, and thus the study of
the convergence of the dynamics would be biased by this fact.

Consequently, from now on, we focus on a setting with 10 voters. According to the
large number of equilibria when the graph is dense, the question of effective manipula-
tion according to the density of the graph is also meaningful. Therefore, for 10 voters
and 5 candidates, and Erdös-Rényi graphs of different densities, we explore the effec-
tive considerate manipulation of 10,000 generated instances of a linked voting game for
preferences drawn from impartial culture. The results are presented in Figure 2.7.
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Figure 2.7: Effective considerate manipulation when n = 10 and m = 5 under impartial
culture

In accordance with the results on the number of considerate equilibria, effective
manipulation drastically decreases with the density of the graph since it is already almost
null for a graph of density 0.5. Because of that, from now on, we will focus on graphs of
density 0.25 or graphs that respect homophily. Recall that the empty graph corresponds
to unilateral deviations defining a Nash equilibrium.

Since the low level of effective manipulation seems to be due to the consideration
assumption, we also explore, like in the previous subsection, dynamics associated with
coalitional deviations without consideration assumption, where the coalitions are the
cliques of a social network, or where the coalitions are given by a partition, defining a
partition equilibrium. We thus investigate the convergence rate of the dynamics for a
Nash equilibrium (“NE”), a partition equilibrium (“PE”), and a coalitional equilibrium
with and without consideration for graphs of density 0.25 (“CE (ER 0.25)” and “CE
(ER 0.25)”, respectively) or graphs that respect homophily (“CE (homophily)” and “CE
(homophily)”, respectively). We present the results in Figure 2.8 for the rules Plurality,
Borda, Maximin, STV and Veto, where we run 10,000 instances with 10 voters and 5
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candidates, in which the preferences of the agents are drawn from impartial culture. The
partitions over the agents for the study of the partition equilibrium are generated ran-
domly, and the graphs that respect homophily are generated according to the preferences
of the agents, following the protocol described in Section 1.2.2.b.

Plurality Borda Maximin STV Veto
0

0.2

0.4

0.6

0.8

1

Voting rules

P
ro

p
or

ti
on

of
co

n
v
er

g
en

ce

NE PE

CE (ER 0.25) CE (ER 0.25) CE (homophily) CE (homophily)

Figure 2.8: Proportion of convergence to equilibria when n = 10 and m = 5 under
impartial culture

Globally, the convergence rate is very good. Indeed, almost all the dynamics con-
verges for more than 80% of the cases. Only the dynamics under Borda has a low
convergence rate. This may be due to the high susceptibility to manipulation of the
Borda rule [Durand, 2015], for which even a partition equilibrium is not guaranteed to
exist (Proposition 2.13). A good point for the consideration assumption is that the con-
vergence rate is always clearly better than without consideration. Similarly, convergence
occurs more frequently for considerate dynamics than for partition dynamics which also
occurs more frequently than for Nash dynamics.

A question that arises from the analysis of the convergence ratio is the number of
steps that is needed before reaching convergence. For the same set of experiments we
provide the average number of steps before convergence when convergence occurs. The
results are presented in Figure 2.9.

One can observe that the number of steps before reaching convergence is very low.
In fact, in average, we always need less than 5 steps to converge. Coalitional devia-
tions without consideration always take more steps to converge than deviations with
consideration. This is surely due to the fact that coalitional deviations are rarer when
the consideration assumption applies. As for convergence, the number of steps before
reaching convergence is higher for Nash deviations than for partition deviations which
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Figure 2.9: Average number of steps for convergence when n = 10 and m = 5 under
impartial culture

is also higher than for considerate deviations.

2.6.3 Quality of the equilibria

Let us now explore the quality of the reachable equilibria in itself. With the same
parameters for our experiments but with in addition the results of the truthful profile
(“No manip.”), we investigate the Condorcet efficiency (see Section 1.3.2), the Veto-SE
efficiency (see Section 2.4.2), and the Borda closeness (see Section 1.3.2) of the equilibria
that are reached by the dynamics. Concerning Condorcet efficiency, we restrict ourselves
to instances where a Condorcet winner exists. The results for the Condorcet efficiency
are presented in Figure 2.10.

In general, the Condorcet efficiency of the equilibria is good, especially for Maximin
and STV. A very good point for the considerate equilibrium is that the Condorcet effi-
ciency of its reachable equilibria is almost always better than without the consideration
assumption (except for Plurality and STV with a small gap). The gap is particularly im-
portant for the Borda rule. In particular, for Borda and Veto, the considerate equilibrium
is better than the partition equilibrium which is also better than the Nash equilibrium.
For Maximin and STV, the gap is not very significant. Moreover, surprisingly, Con-
dorcet efficiency is better without consideration for Plurality, which would imply that
the absence of altruism in local improvements leads to better outcomes for the whole
society at the end, under Plurality. However, the gap is not sufficiently large to conclude.
Furthermore, except for Borda and Maximin without consideration, the iterative voting
process enables to improve the Condorcet efficiency of the outcome, compared to the
truthful outcome, in accordance with the conclusions of Grandi et al. [2013]. This im-
provement is particularly significant for Plurality where Condorcet efficiency is increased
by around 10% in the reachable equilibria, compared to the truthful profile. This may
due to the fact that the agents give more information about their preferences during
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Figure 2.10: Condorcet efficiency of reachable equilibria when n = 10 and m = 5 under
impartial culture

their deviations than in the Plurality ballot. The same explanation holds for Veto, for
which the iterative version always does better regarding Condorcet efficiency than the
truthful profile, although with smaller gaps.

The results for Veto-SE efficiency are presented in Figure 2.11. The conclusions
are almost the same as for the Condorcet efficiency, especially concerning the fact that
reachable considerate equilibria provide better results than coalitional equilibria without
the consideration assumption (except for Plurality too). The gap is also more important
for the Borda rule. Nevertheless, except for Borda, the gaps are not significant.

Let us now talk about the Borda closeness of the reachable equilibria. The results
are presented in Figure 2.12.

In this case, the considerate equilibria provide the best results, the only exception
is naturally the truthful outcome of the Borda rule. Like for the other criteria, the gap
of improvement compared to the version without consideration is more important for
Borda. But for any voting rule, the considerate equilibria are clearly better than the
coalitional equilibria without consideration. Similarly to the other criteria, the reachable
considerate equilibrium achieves a better Borda closeness than the partition equilibrium
which is also better than the Nash equilibrium. Like for the other quality measures,
Borda closeness is improved with the iterative version compared to the truthful state for
Plurality. However, for the other voting rules, the truthful outcome is always better re-
garding Borda closeness than the reachable Nash equilibria and the reachable coalitional
equilibria without consideration.
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Figure 2.11: Veto-SE efficiency of reachable equilibria when n = 10 and m = 5 under
impartial culture

2.7 Concluding remarks

We have proposed to explore voting games from a strategic and social point of view. The
considerate equilibrium captures a stable outcome regarding every set of coalitions arising
from a social network. Indeed, connected agents in the social network can collaborate
and establish common strategies for manipulating the outcome of the election.

Table 2.1 summarizes the existence and convergence results for the different voting
rules that we have studied. They are classified by solution concepts, which allows to
spot the gap between existence/non-existence and convergence/non-convergence since
the different equilibria are related (if there exists a considerate equilibrium for any social
network, then there exists a partition equilibrium for any partition over the agents, and
then there exists a Nash equilibrium, as stated in (2.2)).

We can remark that convergence under best responses rarely occurs, even for classical
best responses defined by unilateral deviations (even if they are refined as in Proposi-
tions 2.20 and 2.21), and for best responses restricted to unanimous direct deviations
for Plurality and Veto (Propositions 2.17 and 2.19). A possible extension would be to
analyze the convergence to a considerate equilibrium for some restricted manipulation
moves, as studied for Nash equilibria [Reijngoud and Endriss, 2012, Grandi et al., 2013,
Obraztsova et al., 2015]. Another possible way to achieve convergence would be to focus
on specific classes of graphs or coalition families, provided that it matches with a realistic
social structure.

Despite these negative theoretical results regarding convergence, our experimental
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Figure 2.12: Average of Borda closeness of reachable equilibria when n = 10 and m = 5
under impartial culture

studies show that the cycles in the considerate dynamics are very rare (Figure 2.8).
Moreover, when convergence occurs, the process ends very quickly after only few steps.

Beyond convergence, we were able to prove the existence of a considerate equilibrium
for a significant number of voting rules, namely Plurality, Veto, Plurality with run-off,
STV and Maximin. These results are encouraging because the notion of considerate
equilibrium covers a large spectrum of families of coalitions. Moreover, we were able to
prove a stronger result for the Veto rule, since a strong equilibrium is always guaranteed
to exist. One can check in polynomial time whether a given candidate can be elected in
a strong equilibrium under Veto, property that we call Veto-SE. Therefore, it is possible
to derive, from the Veto-SE property, a quality measure for the outcome of a voting rule,
that can be applied for any domain of preferences, and that is complementary to the
Condorcet consistency/efficiency.

As a balance for the existence of a considerate equilibrium, the assumption of con-
sideration within this equilibrium — the fact that no coalition harms its neighbors —
is rather strong. Actually, without the consideration assumption, it is not possible to
generalize the existence of such an equilibrium to every class of graphs. As an example,
take the complete graph, for which the associated solution concept without consideration
would correspond to a super strong equilibrium (see Example 2.8). This counterexam-
ple holds for every voting rule for which we have proved the existence of a considerate
equilibrium, showing the importance of the consideration assumption.

The consideration assumption prevents many deviations to occur. This notably
induces a huge number of considerate equilibria for a given instance (Figures 2.3 and
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PSRs Run-off rules Pairwise comparisons rules

Plurality Veto k-approval Borda STV PwRO Copeland Maximin

strong
Existence 5 4 5 5 5 5 5 5

Convergence 5 5 5 5 5 5 5 5

considerate
Existence 4 4 5 5 4 4 5 4

Convergence 5 5 5 5 5 5 5 5

partition
Existence 4 4 5 5 4 4 5 4

Convergence 5 5 5 5 5 5 5 5

Nash
Existence 4 4 5 5 4 4 5 4

Convergence 41 42 52 52 5 5 5 5

1 [Meir et al., 2010]
2 [Lev and Rosenschein, 2012, Reyhani and Wilson, 2012]

Table 2.1: Global results on the existence of different solution concepts and convergence
of the associated dynamics in voting games under different voting rules

2.5). This large number of equilibria is the main drawback of the considerate equilibrium:
since for some instances almost all states are stable regarding considerate deviations,
this solution concept is not sufficient to filter good voting profiles or to predict the
plausible outcomes of the voting game. However, in the iterative voting perspective
where the voters deviate by rounds, the reachable considerate equilibria are qualitatively
good. In fact, they are clearly better regarding the Condorcet efficiency, the Veto-
SE efficiency or the Borda closeness criteria, than other coalitional equilibria, such as
equilibria without the consideration assumption. Therefore, although taking an arbitrary
considerate equilibrium is not particularly relevant, a considerate equilibrium that is
reached within an iterative voting process is really meaningful.

Moreover, the consideration assumption is relevant if we assume that the agents are
not fully selfish and that they care about their relatives. It notably allows to integrate
a social dimension into the voting game. If agents are connected in the social network,
then they can be reluctant to act in a way that harm their partners.

If one wants to escape from the consideration assumption, then an option is to re-
strict to specific classes of graphs, or to specific families of coalitions. For example, with
the partition equilibrium, our existence results hold without the consideration assump-
tion. Partition equilibria are a compromise: they are guaranteed to exist as soon as a
considerate equilibrium exists for any social network. Furthermore, they are slightly less
numerous than considerate equilibria. However, the reachable partition equilibria have
also a lower quality than considerate equilibria.

Another option is to relax the consideration assumption. For instance, a coalition
could have consideration for a given neighbor that does not belong to the coalition if
this agent has a sufficient number of neighbors within the coalition. Alternatively, a
coalition could manipulate if its deviation does not harm more than a certain quota
of its neighbors, for instance if no more than the half of the neighbors of the coalition
disapproves the deviation.

Collaboration in strategic voting is typically an interaction that can be modeled by a
social network. Some agents, driven by a common concern, collaborate in order to find a
way to improve the outcome of an election that will impact all of them. One could also
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think of other settings, such as resource allocation, in which the agents can collaborate
only for their own interest, via a transaction that is similar to a trade.
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Chapter 3

Swap Dynamics in House
Allocation

Abstract

We examine a resource allocation problem with indivisible goods where each agent is to
be assigned exactly one object. In the housing market setting, each agent has prefer-
ences over objects and, starting from an initial endowment, agents may exchange their
objects so as to improve their allocation. Assuming, like in the classical housing market
framework, that any agent is able to communicate and thus to trade with any other
agent is a strong assumption. We aim at relaxing this hypothesis by considering that
the agents are embedded in a social network, which models their ability to trade their
object with other agents.

We propose to study the possible allocations emerging from a sequence of simple
swaps of objects between pairs of neighbors in the network. This model raises natural
questions regarding (i) the reachability of a given full allocation, (ii) the ability of an
agent to obtain a given object, and her final guarantee regarding the objects that she
could obtain, and (iii) the search of Pareto-efficient allocations. Although this study is
more oriented towards the analysis of the distributed process of swaps among the agents,
a centralized perspective in the spirit of the TTC algorithm is also adopted.

We investigate the complexity of these problems by providing, according to the struc-
ture of the social network, polynomial and intractable cases. These questions are also
investigated through parameterized complexity, focusing on budget constraints such as
the number of exchanges an agent may be involved in or the total duration of the process
of swaps.

Résumé

On examine dans ce chapitre un problème d’allocation de ressources avec des biens
indivisibles dans lequel exactement un objet doit être affecté à chaque agent. A partir
d’une allocation initiale, les agents peuvent améliorer leur situation en échangeant leurs
objets. Faire l’hypothèse, comme dans le cadre classique de ce problème, que tout

This chapter is an extension of [Gourvès, Lesca, and Wilczynski, 2017] and [Saffidine and Wilczynski,
2018].
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agent est capable de communiquer et donc d’échanger avec n’importe quel autre, est une
hypothèse forte. On se propose de relâcher cette hypothèse en considérant que les liens
entre les agents, conditionnant leur capacité à échanger des objets, sont modélisés par
un réseau social.

On s’intéresse aux allocations possibles résultant d’une séquence de simple trocs entre
voisins dans le réseau social. Ce modèle soulève notamment des questions naturelles
concernant (i) l’atteignabilité d’une certaine allocation, (ii) la possibilité pour un agent
d’obtenir un certain objet, ainsi que le niveau de garantie qu’il peut obtenir au final, et
(iii) la recherche d’allocations optimales au sens de Pareto. Bien que cette étude soit
plus largement orientée vers l’analyse du processus distribué des trocs entre des voisins
dans le réseau, une approche centralisée dans l’idée de l’algorithme TTC est également
adoptée.

La complexité de ces problèmes est abordée en fournissant, en fonction de la struc-
ture du réseau social, des cas polynomiaux ou difficiles. Ces questions sont également
étudiées sous l’angle de la complexité paramétrée, en se concentrant sur des contraintes
de budget impliquant le nombre d’échanges qu’un agent peut effectuer ou la durée totale
du processus d’échanges.
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3.1 Introduction

Reallocating indivisible items when each agent is initially endowed with exactly one
resource is an important concern in Economics [Abdulkadiroǧlu and Sönmez, 1999] and
Computer science [Aziz and De Keijzer, 2012, Damamme et al., 2015]. This framework
is known as housing market [Shapley and Scarf, 1974]. Many real-life situations can be
modeled by such a setting, for example the reallocation of tasks among employees, the
reassignment of time slots in schedules, or the problem of kidney exchanges.

3.1.1 Restricting the trades to neighbors of the social network

From an initial allocation, a typical way to reassign objects among agents comes from
direct trades among the agents. In the housing market setting, it is implicitly assumed
that all the agents have the capacity to perform direct deals. In fact, in the top trading
cycle algorithm [Shapley and Scarf, 1974], any group of agents may form a trading cycle,
provided that they obtain better objects after the deals.

However, this assumption is unrealistic in large scale instances, where some agents
may be unable to communicate. Indeed, some logistics difficulties, such as communi-
cation and geographical distance, may prevent some trades to occur. Moreover, other
simple reasons due to human relationships also matter: if the agents do not know each
other or do not have affinities at all, they will not be willing to meet or make contact in
order to exchange their items, as illustrated in the following example.

Example 3.1 Let us take an example about students and dormitories that highlights the
idea of “house” allocation in the spirit of Shapley and Scarf [1974]. Five new students,
Anna, Brahim, Clara, David and Elena, arrive in a residence for students and are ran-
domly assigned a room by the authority of the residence. However, they have different
preferences over these rooms, due for instance to a specific location (street/garden side,
ground floor, etc.). Here are summarized the preferences of the five students about the
five rooms, r1, r2, r3, r4 and r5, as well as their initial endowment (framed room).

Anna: r2 � r5 � r1 � r4 � r3

Brahim: r1 � r2 � r3 � r5 � r4

Clara: r2 � r4 � r3 � r5 � r1

David: r4 � r1 � r2 � r3 � r5

Elena: r1 � r5 � r3 � r4 � r2

The residence authority informs each of them that it is possible, if they are not
satisfied, to exchange their room in the next few weeks but only with other new entrants,
because the other students of the residence are already settled into their rooms for a few
years. All the exchanges are not likely to occur among the new entrants. Indeed, Anna
and Brahim hold grudges against each other because of a love story ending badly, whereas
Clara, David and Elena do not know each other. Globally, the possibility of trades between
the agents according to their relationships can be represented by the following undirected
graph.
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Anna

Brahim

ClaraDavid

Elena

Actually, by only focusing on the preferences of the students (a student does not want
to exchange her room against a room she prefers less), there are two possible exchanges:
between Anna and Brahim and between Anna and Elena. However, as underlined by
the graph, the communication between Anna and Brahim is not possible, even if they
both prefer the room of the other one, excluding the possibility of an exchange between
them. Finally, Anna and Elena decide to exchange their rooms because they both prefer
the room of the other one and know sufficiently each other to have talked about their
preferences.

Such a situation where trades are conditioned by social relationships among agents
could appear quite marginal, but they can actually restrict the possibilities of exchange
in real scenarios. Nevertheless, one could cite more “rational” examples, related to
the idea of online platforms for exchanges, burgeoning nowadays, where geographical
distance plays an important role.

Example 3.2 Take an online forum on a website dedicated to car enthusiasts. Users
have the possibility to exchange their cars. Since cars are cumbersome resources, this
online platform only offers to the users the possibility to make contact with other pas-
sionate people. Every user is invited to enter into the data base her own car (or what
she wants to trade) and her preferences over what she is looking for. Moreover, she is
asked to input in the system her geographical constraints: her actual location as well as
her willingness to move from this location (“radius of how many kilometers?”). Con-
sequently, in order to filter the interesting proposals of trading for a given user, only
proposals coming from individuals located within the radius of kilometers that she has
entered are presented to her. Actually, in such a case, the geographical constraints define
the possible trades, and they can be naturally represented by a graph over the agents.

In a nutshell, restricting the set of direct exchanges to the ones which are actually
possible seems realistic and relevant, especially in large scale instances. Indeed, natural
obstacles may inhibit the agents in the trades. The ability of agents to exchange resources
can be easily modeled as a social network. Moreover, the assumption of rational trades,
where every agent needs to obtain a strictly better object (assumption already present
in the top trading cycle setting), makes sense as we can see in Examples 3.1 and 3.2.
Actually, lack of trust or uncertainty about the future exchanges in the process may
lead agents to adopt a greedy behavior so as to be immediately better off in their new
acquisition.

This chapter deals with a variant of housing market, where the agents are embedded
in a social network which determines their ability to exchange their objects. Each par-
ticipant is initially endowed with a single object, and she has strict ordinal preferences
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over objects. The agents may exchange their items under two conditions: they find the
trade mutually profitable, and they are neighbors in the social network. We define such
exchanges as swaps. Though sophisticated exchanges involving multiple agents have
been analyzed [Sandholm, 1998, Dunne and Chevaleyre, 2008, Damamme et al., 2015],
we focus on simple trades between pairs of neighbors. The exchanges are made without
payments or monetary compensations.

3.1.2 Related work on trades and social network

Many works have studied how to reallocate indivisible items within a set of agents (see
Section 1.4.2.b). One of the closest is the seminal work of Shapley and Scarf [1974]
adopting a centralized approach in housing market for guiding the exchanges to an
acceptable allocation for the agents which is, among other properties, Pareto-efficient
(TTC algorithm).

In a distributed perspective, many studies focus on designing realistic conditions for
trades and aim at analyzing the dynamics of exchanges, for instance with respect to its
convergence properties. Rational exchanges where agents are necessarily better off after
a trade is a common assumption. A model very close to ours is the swap deals model
[Damamme et al., 2015]. This work considers deals within groups of agents of a given
size in a housing market setting. To the best of our knowledge, this is the first work
analyzing the housing market framework within a distributed perspective. Damamme
et al. [2015] notably prove that when the deals are restricted to exchanges between two
agents and the preferences are single-peaked, the dynamics of exchanges is guaranteed to
converge to a Pareto-efficient allocation. However, in their model, there is no restriction
on the possible exchanges according to some relations over the agents. When restricted
to exchanges between two agents, the exchanges defined by Damamme et al. [2015]
correspond to our definition of swaps where the social network is a complete graph.

Combining distributed process of exchanges and graphs, the notion of negotiation
topology graph [Chevaleyre et al., 2007c], where the exchanges are restricted to agents
belonging to the same clique of the social network, is noteworthy. Although this work
does not deal with housing market but with a general resource reallocation setting where
agents can have more than one item, this study is completely connected to ours, with
a graph defining the possible trades. The main differences are that Chevaleyre et al.
[2007c] do not restrict to swaps between neighbors of the network, as in our model, and
study a model with cardinal preferences and monetary side payments. Moreover, their
goal is to improve a specific fairness notion defined according to the graph.

3.1.3 Contributions and organization

We consider a housing market framework with exchanges between neighbors in a so-
cial network. Our main question concerns the analysis of the distributed process of
exchanges: starting from the initial endowment, which allocation of the objects can
emerge? Indeed, some solutions are ruled out because of the agents’ preferences over
the objects: we assume that no one is interested in exchanging her current object with
something that she considers as worse. In addition, the network limits the access of
certain participants to each other. Consequently, it is particularly challenging to under-
stand how the combination of these two natural ingredients influence the outcome of a
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dynamics in which connected agents agree on mutually profitable swaps of objects.

One of the main issues is the Reachable Object (RO) problem: Given a target
agent A and a target object x, is there a sequence of exchanges ensuring A is allocated x?
Globally, the question of the emergence of a specific allocation is also interesting, leading
to the Reachable Assignment (RA) problem: Is there a sequence of exchanges leading
to a given allocation π? Moreover, we introduce Guaranteed Level of Satisfaction
(GLS), a problem related to RO but more realistic. GLS asks whether an agent can
be guaranteed to be eventually allocated an item at least as good as the input target
item, regardless of the exchanges other agents perform. While RO takes an optimistic
perspective by asking the existence of an appropriate sequence of exchanges, GLS adopts
a more pessimistic point of view by considering the outcome of any possible sequence of
exchanges, and not only focusing on “lucky” configurations.

Globally, these three decision problems naturally arise when we analyze the dis-
tributed process of exchanges, but they can also model concrete issues. Let us take the
context of Example 3.2 with an online exchange platform where users input in the sys-
tem which item they hold as well as their preference. A user may request a target object
to the centralized system which could then suggest a series of intermediate exchanges
to bring it to her. Even in such a context, restricted rational exchanges are relevant:
geographical constraints can still prevent two agents to trade, moreover the guarantee
of getting a better object is essential as otherwise an agent could be left worse off than
she started, should an intermediate agent exit the system during the process.

These problems are very appealing but, as we will prove, they turn out to be compu-
tationally hard, sometimes even for simple social networks. Consequently, we attempt
to mitigate these negative results by also looking at more realistic constrained settings.
We draw inspiration from the fact that an agent may not be willing to perform a large
number of swaps or to wait a long time before getting a desired object, and introduce
natural budget constraints: the number of exchanges agents may make and the total
duration of the process of exchanges. By considering such additional constraints, we
perform a refined complexity analysis.

Moreover, in another direction, it appears interesting to consider the quality of an
allocation resulting from a sequence of profitable exchanges. In the context of ordinal
preferences, Pareto-efficiency appears as the minimal requirement for an allocation to
be socially acceptable. Pareto-efficiency has been widely studied in the context of house
allocation [Abraham et al., 2005] and housing market [Aziz et al., 2016a]. As far as we
know, the computation of Pareto-efficient allocations has not been investigated when
the possible allocations are constrained by a social network. Therefore, we also consider,
within a centralized perspective similar to the idea of the top trading algorithm, whether
it is possible for a central authority to guide the exchanges of the agents in order to reach
a Pareto-efficient allocation.

We prove that all the decision problems that we consider, namely RO, RA and GLS,
are intractable when the graph describing the social network is not restricted. However,
we identify some specific classes of graphs, such as the trees for RA, that enable the
tractability of the problems. In order to refine the complexity of these problems and
obtain more positive results, we also adopt a parameterized complexity perspective.
When parameterizing the problems by the maximal number of swaps per agent, we
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show intractability even for highly structured graphs. However, when constraining the
duration of the process, we obtain more promising results: RO and RA are tractable
for a class of graph that is meaningful for representing real social networks, namely
the bounded degree graphs. Indeed, while online social networks with many hubs do
not exhibit a bounded degree, this assumption is relevant in scenarios where the social
network models possibility of collaboration or close relationship. In fact, the number of
agents with who a given agent can actually interact cannot be too important. In general,
the problems are tractable when the length of the sequence of swaps does not depend on
the input size. This is also a realistic scenario because the time that an agent is willing
to wait before getting a target object is independent from the input size (the patience
of an agent has no reason to increase with the number of agents).

Within a centralized approach, a central coordinator tries to direct the agents to
exchanges in order to reach a Pareto-efficient allocation among all possible outcomes.
We show that such a coordinating strategy is computationally hard to design for a central
authority in general, but we also provide tractable cases for simple classes of graphs.

The chapter is organized as follows. We firstly introduce formally the model of object
reallocation along a social network in Section 3.2, as well as the four problems under
consideration, and the budget parameters that we will use to refine our analysis. We
then devote one section to each of our problems, Reachable Object, Reachable
Assignment, Guaranteed Level of Satisfaction, and Pareto Reachability
(Section 3.3–3.6). In each section dealing with a decision problem, we first treat the
general case, before examining budget constraints. Finally, we conclude and highlight
some avenues for future work (Section 4.8).

3.2 Swap dynamics model

Let us consider a resource allocation problem, with a set of agents N = {1, . . . , n} and
a set of indivisible items O = {o1, . . . , or}, where the number of resources is equal to
the number of agents, i.e., r = n. Each agent is initially endowed with an object, via an
initial allocation π0 assigning exactly one object per agent, i.e., π0 : N → O. The agents
have strict ordinal preferences over the objects, represented by a linear order �i over O,
for a given agent i ∈ N . Any allocation π of objects to agents assigns exactly one item per
agent and is such that π(i) 6= π(j), for all agents i and j. We sometimes write allocations
as n-tuples where ith coordinate refers to the object assigned to i. As described in
Section 1.4.2.b, this setting corresponds to the housing market framework. The agents
are embedded in a social network, represented by an undirected graph G = (N,E),
where the edges capture the possibility of trade between two agents. An instance of the
swap dynamics model is then a tuple 〈N,O,�, G, π0〉.

3.2.1 Rational deals conditioned by a social network

Agents can trade their objects so as to obtain better objects, but not all exchanges are
plausible. The exchange possibilities depend on the social network and on the preferences
of the agents. We only admit swaps, rational trades between neighbors. Formally, a swap
in an allocation π is an exchange between two agents i and j such that {i, j} ∈ E and
the exchange is rational, i.e., π(i) �j π(j) and π(j) �i π(i).
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A sequence of swaps is a sequence of allocations (π0, . . . , πt) such that a swap is
performed between every two consecutive allocations πt

′
and πt

′+1 for any 0 ≤ t′ < t.
An allocation π is reachable if there is a sequence of swaps leading to it starting from
the initial allocation, i.e., there exists a sequence (π0, . . . , πt) such that πt = π. Let us
denote by RAll the set of all reachable allocations. An object o ∈ O is reachable for
agent i if there is a sequence of swaps (π0, . . . , πt) where πt(i) = o. An allocation π is
stable if no swap is possible from π.

Swap dynamics refers to a distributed process where agents may rationally exchange
their objects when they are neighbors in the network, until a stable allocation is reached.

Example 3.3 Consider an instance with four agents, where N = {1, 2, 3, 4} and O =
{o1, o2, o3, o4}. The social network, the preferences of the agents and the initial allocation
are given as follows, where the framed objects represent the initial object of each agent.

1

2

3

4

1 : o2 � o3 � o1 � o4

2 : o3 � o1 � o2 � o4

3 : o4 � o1 � o2 � o3

4 : o1 � o2 � o4 � o3

Initially, only the swaps between agents 1 and 2, and 2 and 3 are possible. Indeed,
the rational exchange between agents 1 and 3 is not possible because the agents are not
connected in the graph. Moreover, the exchange between connected agents 1 and 4 is not
possible because it is not rational for 1. The sequence of swaps between the following
pairs of agents, {1, 2}, {2, 3}, and {3, 4}, gives rise to a reachable allocation where every
agent gets her best object. This allocation is stable: no further swap can be performed.

Observe that, by rationality of the exchanges, the rank of the object owned by agent
i never increases within �i, during any sequence of swaps for any agent i.

Observation 3.1 For any sequence of swaps (π0, . . . , πt) and any steps t′ and t′′ such
that 0 ≤ t′ < t′′ ≤ t, it must hold that πt

′′
(i) �i πt

′
(i) or πt

′′
(i) = πt

′
(i).

This implies that, for any social network, an object cannot pass twice by the same
agent, in the sense that once an agent exchange a given object, she cannot get back it.

Observation 3.2 For any sequence of swaps (π0, . . . , πt), any agent i and any steps t0,
t1 and t2 such that 0 ≤ t0 < t1 < t2 ≤ t, if πt0(i) 6= πt1(i), then πt2(i) 6= πt0(i).

Another implication of the rationality assumption in the swaps is that every agent
can make at most n−1 swaps, leading to a trivial quadratic bound for the length of any
sequence of swaps.

Observation 3.3 The length of any sequence of swaps is bounded by n2.

Let us consider that time is discretized according to the moments where swaps are
made. The makespan of a sequence of swaps is the minimum time that elapses from the
beginning of the sequence to the end, when we allow parallel swaps which simultaneously
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occur. This notion can be formalized as follows. Let s = (π0, . . . , πt) be a sequence of
swaps. A parallel decomposition of s is a tuple of integers ` = (`0, `1, . . . , `p) of length
|`|= p, such that 0 = `0 < `1 < · · · < `p = t, and for all 0 ≤ i < p, all the swaps occurring
between allocation π`i and allocation π`i+1 do not involve the same agents. In other
words, all the swaps occurring between π`i and π`i+1 can be performed simultaneously.
The makespan is the length p of the minimal parallel decomposition. In Example 3.3,
the makespan of the sequence of swaps is equal to three, which is also the total number
of exchanges, because no swap can be performed in parallel.

3.2.2 Decision problems and parameters

In order to analyze the distributed process of swap dynamics, we are interested in the
allocations obtained from π0 by sequences of swaps. Natural questions in this context
are: what are the objects that a given agent can obtain? more globally, what are the
assignments that we can reach? or more pessimistically, what are the level of satisfaction
that each agent is ensured to obtain? These questions are transcribed into the following
decision problems.

Reachable Object (RO):

Instance: Swap dynamics instance 〈N,O,�, G, π0〉, target agent A ∈ N , target
object x ∈ O.

Question: Is there a sequence of swaps (π0,. . . , πt) such that πt(A) = x?

Reachable Assignment (RA):

Instance: Swap dynamics instance 〈N,O,�, G, π0〉, target allocation π.

Question: Is there a sequence of swaps (π0,. . . , πt) such that πt = π?

Guaranteed Level of Satisfaction (GLS):

Instance: Swap dynamics instance 〈N,O,�, G, π0〉, target agent A ∈ N , target
object x ∈ O.

Question: Is it the case that for all sequences of swaps (π0, . . . , πt) where πt is stable,
either πt(A) = x or πt(A) �A x?

While Reachable Object asks whether a given object can be reached by a sequence
of swaps, Guaranteed Level of Satisfaction adopts a more pessimistic perspective
by considering a quasi “dual” problem: beyond the possible advantageous configurations,
it asks the level of satisfaction that a given agent is guaranteed to obtain, whatever the
sequence of swaps that is chosen. This is illustrated in the following example.

Example 3.4 Let us consider an instance with four agents, where N = {1, 2, 3, 4} and
O = {o1, o2, o3, o4}. The social network, the preferences of the agents and the initial
allocation (framed objects) are defined as follows.
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1 2 3 4

1 : o4 � o2 � o1 � o3

2 : o1 � o3 � o4 � o2

3 : o2 � o4 � o3 � o1

4 : o2 � o3 � o4 � o1

Observe that object o4 is reachable for agent 1, with the sequence of swaps involving
the following pairs of agents: {3, 4}, {2, 3} and {1, 2}. Therefore, optimistically, agent 1
could hope to obtain object o4. However, there is no guarantee that she will obtain it in
any case. Indeed, if agents 2 and 3 firstly swap their objects, allocation (o1, o3, o2, o4) is
reached where no further swap can occur: the exchange between 1 and 2 is not rational
as well as the exchange between 3 and 4. Therefore, in this case, we reach an allocation
that is stable but where agent 1 does not obtain an object preferred or equal to o4. Hence,
this instance is a yes-instance of Reachable Object with target agent 1 and target
object o4, whereas this is a no-instance of Guaranteed Level of Satisfaction with
target agent 1 and target object o4.

When asking whether an agent can obtain a given object, a large number of swaps
may not be realistic. Indeed, the agents may not be willing to perform many swaps
or wait for a long time before getting their target objects. Consequently, we study
three variants of our decision problems, namely RO, RA and GLS, referred to as
{RO/RA/GLS }-{max/sum/makespan}, where the number of swaps in a solution se-
quence is limited. In each variant, this quantity is measured differently, leading to
different complexity-theoretic characterizations of the problem.

• max : Every agent is involved in no more than k swaps.

• sum: The total length of the sequence is no more than k.

• makespan: The makespan of the sequence is no more than k.

Observe that the sum parameter provides an upper bound for the makespan by giving
the duration of the process in case no parallel swaps take place.

The three parameters under consideration restrict the sequence of swaps. They are
illustrated in the following example.

Example 3.5 Let us consider an instance with four agents where N = {1, 2, 3, 4} and
O = {o1, o2, o3, o4}. The preferences, the social network and the initial allocation (framed
objects) are defined as follows.

1 2

34

1 : o4 � o2 � o1 � o3

2 : o4 � o1 � o3 � o2

3 : o1 � o4 � o3 � o2

4 : o2 � o3 � o4 � o1

From the initial allocation, take the sequence of swaps between the following pairs
of agents: {1, 2}, {3, 4}, {2, 3}. This sequence has a parameter max equal to 2 because
agents 2 and 3 perform the maximal number of swaps per agent in the sequence, which
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is equal to two. Concerning the length of the sequence, the parameter sum is equal to 3
because there are 3 swaps in total in the sequence. However, the parameter makespan
is equal to 2 because the two first swaps between the agents {1, 2} and {3, 4} can be
performed in parallel since they do not involve the same agents.

Motivated by practical considerations on real-life networks, we also examine the
impact of some restrictions on the graph underlying the social network. For instance,
in a scenario with physical item exchanges, geographical as well as social aspects will
impact the maximum number of neighbors an agent may have. In other words, the social
network in such scenarios has a small degree.

3.2.3 Pareto optimization problem

The swaps dynamics always converges to a stable allocation. However, the following
example shows that we can reach a rather bad assignment if the agents exchange their
objects in an uncoordinated way.

Example 3.6 Consider an instance with n agents, where N = {1, . . . , n} and O =
{o1, . . . , on}. The social network, the preferences and the initial allocation are described
below ([. . . ] stands for an arbitrary ranking over the remaining objects).

n

1
2

3

n-1

1 : on � [. . . ] � o1

2 : o1 � [. . . ] � o2

...
...

n− 2 : on−3 � [. . . ] � on−2

n− 1 : on−2 � [. . . ] � on � on−1

n: on−1 � on−2 � [. . . ] � o1 � on

Consider allocation π1 resulting from the swap between agents n − 1 and n. The
center agent n obtains her most preferred object, thus no further swap is possible and π1

is stable. However, if we consider the sequence of swaps performed by the pairs of agents
{n, 1}, {n, 2}, . . . , {n, n− 2}, {n, n− 1}, then we reach an allocation where every agent
obtains her most preferred object.

Recall that an allocation π is Pareto-efficient if there is no allocation π′ such that for
all i ∈ N , π′(i) �i π(i) or π′(i) = π(i), and there exists j ∈ N such that π′(j) �j π(j).
By focusing on allocations emerging from swap dynamics, there is no need to consider
allocations that are not reachable. In consequence, we restrict the definition of Pareto-
efficiency within the set RAll of reachable allocations, with a notion of efficiency that
we call RAll-efficiency.

Definition 3.1 (RAll-efficiency) An allocation π is RAll-efficient if π ∈ RAll and
there is no reachable allocation π′ ∈ RAll such that for all i ∈ N , π′(i) �i π(i) or
π′(i) = π(i), and for at least one agent j ∈ N , π′(j) �j π(j).
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Clearly, a RAll-efficient allocation is stable. Otherwise, at least two agents can be
better off by swapping their objects, leading to a new reachable allocation dominating the
previous one. Note that a Pareto-efficient allocation that is reachable is RAll-efficient,
but a RAll-efficient allocation may not be Pareto-efficient.

As informally noticed in Example 3.6, swap dynamics can reach an allocation that
is not RAll-efficient. This observation leads us to also consider the swap dynamics
via a centralized approach, in addition of a distributed analysis through the decision
problems presented in the previous subsection. The swaps, though constrained by the
social network and the mutual benefit for the two involved agents, are guided by a
coordinator, in order to reach a RAll-efficient allocation. This goal is transcribed into
the following optimization problem.

Pareto Reachability:

Instance: Swap dynamics instance 〈N,O,�, G, π0〉
Problem: Find a RAll-efficient allocation

Note that Pareto Reachability is not a decision problem because a RAll-efficient
allocation is always guaranteed to exist. Actually, in the Pareto Reachability prob-
lem, we seek a sequence of swaps that leads to one of the best possible outcomes, in the
Pareto meaning. The goal of the Pareto Reachability problem is described in the
following example.

Example 3.7 Let us consider an instance with four agents where N = {1, 2, 3, 4} and
O = {o1, o2, o3, o4}. The social network, the preferences of the agents and the initial
allocation are defined as follows.

1 2 3 4

1 : o4 � o3 � o2 � o1

2 : o3 � o1 � o4 � o2

3 : o1 � o2 � o4 � o3

4 : o2 � o1 � o3 � o4

In this instance, there are only three maximal sequences of swaps, that is to say
sequences which lead to stable allocations. We denote the three maximal sequences of
swaps by s1, s2 and s3. The sequences of neighbors involved in the swaps of s1, s2

and s3 are ({3, 4}, {2, 3}, {1, 2}), ({2, 3}), and ({1, 2}, {2, 3}), respectively. Sequence s1

leads to allocation π1 := (o4, o1, o2, o3), sequence s2 to allocation π2 := (o1, o3, o2, o4)
and sequence s3 to allocation π3 := (o2, o3, o1, o4). By definition, they are all reachable
allocations. Among the reachable allocations, only allocations π1 and π3 are Pareto-
efficient. Indeed, allocation π2 is Pareto-dominated by π3: agent 1 prefers object o2 to
object o1 and agent 3 prefers object o1 to object o2. Moreover, all the other reachable
allocations are not stable. Consequently, π1 and π3 are RAll-efficient, whereas π2 is
not. Therefore, the reachable allocations π1 and π3 are possible solutions to the Pareto
Reachability problem. Observe that these two solutions are Pareto-dominated by al-
location (o4, o3, o1, o2). However, since this allocation is not reachable by a sequence of
swaps, this is not a plausible outcome and we do not take it into account in our definition
of the Pareto Reachability problem.
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3.3 Reachable Object

In this section we focus on Reachable Object, the decision problem asking whether
a given target agent A can obtain a given target object x via a sequence of swaps.

3.3.1 Reachable Object with no budget consideration

In this subsection, Reachable Object is analyzed in a context where no restriction
is imposed on the sequence of swaps. We prove that the problem is NP-complete even
when the network is a tree. However, for some further restrictions on the graph, the
problem becomes polynomial.

Theorem 3.1 Reachable Object is NP-complete even when the network is a tree.

Proof: Given a sequence of swaps (π0, . . . , πt), it is easy to determine whether the
swaps are rational and lead to give object x to agent A, for some step t′ such that
0 ≤ t′ ≤ t. Combined with the fact that any sequence of swaps has a length bounded by
n2 (Observation 3.3), this implies the membership to NP.

We use a reduction from the 2P1N-SAT problem, known to be NP-complete (Theo-
rem 1.3). In 2P1N-SAT, we are given a set X = {x1, . . . , xv} of variables, and a collection
C = {C1, . . . , Cs} of clauses over X such that each positive (respectively, negative) literal
occurs exactly twice (respectively, once) in C. The question is whether C is satisfiable
by a truth assignment of the variables in X.

Let xi` (respectively, xi`) denote the positive (respectively, negative) literal x` if
present in clause Ci. Index p`j (respectively, n`) refers to the clause containing the

jth occurrence (with j ∈ {1, 2}) of x` (respectively, the occurrence of x`).
From an instance I = 〈C, X〉 of 2P1N-SAT, we construct a swap dynamics instance

〈N,O,�, G, π0〉 for Reachable Object as follows. Each literal xi` (respectively, xi`) is

associated with an agent Y i
` (respectively, Y

i
`) who is initially endowed with object yi`

(respectively, yi`). Every clause Ci is associated with an agent Ki initially endowed with
object ki. We add an agent Z initially endowed with object z, leading to |N |= |O|=
s+ 3v + 1. The graph G = (N,E) is constructed as described in Figure 3.1.

ZK1K2. . .Ks

Y
p1

1
1Y

p1
2

1Y
n1

1

Y
p2

1
2Y

p2
2

2Y
n2
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pn1
vY

pn2
vY

nn

v

Figure 3.1: Construction of social network G

The preference profile � is defined below. Notation {`i} stands for the set of the
objects associated with the literals of clause Ci, and [. . . ] for all the remaining objects,
that are not presented in the preference order; they are both ranked in arbitrary order.
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Z : {`1} � z � [. . . ]

Ki : {`i+1} � z � {`i} � k1 � {`i−1} � . . . � ki−1 � {`1} � ki � [. . . ]

Ks : z � {`s} � k1 � {`m−1} � . . . � ks−1 � {`1} � ks

Y
p`1
` : ks−n`+1 � ks−p`2+1 � y

p`2
` � ks−p`1+1 � yn

`

` �y
p`1
` � [. . . ]

Y
p`2
` : ks−p`1+1 � y

p`1
` � y

n`

` �y
p`2
` � [. . . ]

Y
n`

` : y
p`2
` �y

n`

` � [. . . ]

We claim that C is satisfiable in I if and only if object z is reachable for agent Ks in
the constructed instance of Reachable Object.

Observe, on one hand, that in the dipath τ from Z to Ks, every agent prefers z
to her initial object, and only accepts exchanging z with her successor in τ for an
object corresponding to a literal that satisfies the clause associated with the successor.
Therefore, the only way to move z from Z to Ks is to give to each agent Ki an object
associated with a literal that satisfies clause Ci, by increasing order of the clause indices.
Thus, from i = 1 to s, an object of {`i} moves to Ki.

On the other hand, we ensure, in each branch of the graph corresponding to a variable

x`, i.e., in each path [Y
p`1
` , Y

p`2
` , Y

n`

` ], that if an object y
p`j
` for j ∈ {1, 2} (respectively, yn

`

` )

moves out of the branch to be exchanged with agent Ks, then object yn
`

` (respectively,

an object y
p`j
` for j ∈ {1, 2}) cannot move out thereafter. Indeed, to move out of the

branch, object y
p`j
` for j ∈ {1, 2} (respectively, yn

`

` ) must pass by agent Y
p`1
` and then be

exchanged with Ks against object ks−p`j+1 (respectively, object ks−n`+1). This is due to

the fact that, by construction of the preferences, the only objects coming from outside

the branch that agent Y
p`1
` accepts are clause-objects, and to the remark of the previous

paragraph implying that, each time an object from {`i} comes to the clause branch,

a clause-object ks−i+1 must move to a variable branch. Therefore, if yn
`

` is the first

object to move out of the branch, then agent Y
p`1
` must obtain her most preferred object

ks−n`+1, after having swapped yn
`

` with agent Ks. So, no other object in this branch can

move out afterwards. Otherwise, if y
p`1
` or y

p`2
` moves first, then agent Y

p`1
` has received

from Ks an object that she prefers to yn
`

` , so object yn
`

` is blocked and must stay within
the branch.

Suppose that there exists a truth assignment φ of the variables which satisfies all the
clauses of C. Then, it suffices to choose, for each clause Ci, one literal `i that makes Ci
true with assignment φ, and move the corresponding object to agent Ki, by increasing
order of the clause indices. This sequence of swaps is possible. Remark that for each
Kj on the path between Ks and Ki, i.e., such that j > i, Kj must receive object `i
and, later, object ki and later again, object z. This passage order is guaranteed by
construction of the preferences: z �Kj ki �Kj {`i} �Kj kj . In the branch of the graph
corresponding to the variable associated with `i, if some other objects have previously
moved out of the branch, then their corresponding literal has necessarily the same truth
value as `i, since the chosen variable-objects are associated with true literals in φ, and
belongs to a clause Cj where j < i. Thus, by construction, we can perform the swaps
within the branch to move the object associated with `i to agent Ks.
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Now, suppose that z is reachable for Ks and denote by π a reachable allocation
where π(Ks) = z. Consider an assignment φ of the variables where we set to true
every variable corresponding to an object possessed by the agents Z, . . . ,Ks−1 in π. As
previously observed, in order to move object z from agent Z to agent Ks, each Ki has
to obtain an object o ∈ {`i} corresponding to one of the literals of Ci. Thus, once Ks

obtains z, object o is owned by agent Ki−1 (or Z if i = 1). By construction, agents
Z, . . . ,Ks−1 cannot obtain a better object thereafter. It suffices to prove now that there
are no two literals `1 and `2 in φ such that `1 = `2. It is guaranteed by construction of
each branch associated with a variable. �

The network in the previous proof is a particular tree, with at most one vertex of
degree greater than 2, which corresponds to a spider (Definition 1.11). A spider gener-
alizes a star, but while Reachable Object is NP-complete when the social network is
a spider, the problem becomes polynomial in a star.

Proposition 3.2 When G = (N,E) is a star, there exists a polynomial algorithm for
Reachable Object.

Proof: The problem asks whether agent A can get object x. The network consists,
without loss of generality, of a center denoted by n, and n−1 leaves denoted by 1, . . . , n−
1, as depicted in Example 3.6. A swap always involves the center and a leaf. Once a leaf
i has exchanged her initial object oi, she is not involved in a subsequent swap because
otherwise the center-agent would get back an object that she has previously owned
(Observation 3.2). Thus, any sequence of swaps reduces to an ordered list (without
repetition) of leaves, indicating with which agents the center exchanges her object.

Let us first focus on the case where agent A is the center. The problem reduces to
the search of a dipath in a directed graph GD = (N,E′) where (i, j) ∈ E′ with i ∈ N
and j ∈ N \ {n} if and only if center-agent n and leaf-agent j can rationally trade when
center-agent n owns object oi, the initial object of i, and j still owns her initial object
oj . There is a dipath from n to j in the directed graph GD if and only if the center can
get oj , the initial object of agent j. A linear algorithm solves this path problem and the
construction of GD can be done in polynomial time.

In case A is a leaf, the problem reduces to the previous one: the center gets object
x and then, A and the center swap their objects. Return “yes” if these two steps are
feasible. �

Now we suppose that the network is a path. Without loss of generality, we may
assume that N = {1, . . . , n}, E = {{i, i + 1} : 1 ≤ i < n} and that the initial object of
each agent i is denoted by oi. Observation 3.2 implies that when the network is a path,
once an object “moves” in a given direction in the path, then it cannot “move” in the
opposite direction.

Let us define as canonical sequence of exchanges κ(j, i) the sequence of exchanges
which assigns object oj to agent i by directly moving oj from j to i along the path.
This is the sequence of exchanges between the following pairs of agents if j < i: {j, j +
1}, {j+ 1, j+ 2}, . . . , {i− 1, i}. This sequence transforms π0 into an assignment π where
π(`) = o` if ` < j or ` > i, π(`) = o`+1 if j ≤ ` < i, and π(i) = oj . This sequence is said
to be a sequence of swaps if all its exchanges are rational.
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Proposition 3.3 When G = (N,E) is a path, if object oj is reachable for agent n, then
κ(j, n) is the minimal sequence of swaps leading to give oj to agent n.

Proof: Assume for a contradiction that there exists i ∈ {j + 1, . . . , n} such that the
exchange between i − 1 and i is not rational, i.e., oi �i oj or oj �i−1 oi, whereas oj is
actually reachable for agent n.

Assume first that oi �i oj holds. Note that if there exists a sequence of swaps leading
to assign oj to n, then oj must be assigned once to agent i since there is a unique path
between j and n. Because oi �i oj , agent i will never accept oj , contradiction.

Assume now that oj �i−1 oi holds. If there exists a sequence of swaps leading to
assign oj to n, then oj must be exchanged once with oi, because oj must reach n and there
is no agent after n to receive oi. This swap cannot be performed between i−1 and i since
oj �i−1 oi, and thus occurs between some agents with indices lower than i (otherwise
object oi would pass twice by agent i, contradicting Observation 3.2). Consequently,
agents i− 1 and i must have performed an earlier swap in order to make oi move to the
agents with lower indices than i. After this swap, the object currently owned by i − 1
must move to the direction of n before oj , but there is no agent after n to receive this
object and oj cannot overtake it, contradiction. �

By Proposition 3.3, for testing that an object is reachable for a leaf of the path, it
suffices to verify that the associated canonical sequence of exchanges is a sequence of
swaps.

Corollary 3.4 When G = (N,E) is a path and agent A a leaf, Reachable Object
is solvable in polynomial time.

Other solvable cases of Reachable Object in a path can be listed. The main one
is when the distance in the path between the agent and the owner of the target object is
a constant, as formulated in the next proposition (this corresponds to the parameterized
complexity class XP, see Definition 1.33).

Proposition 3.5 Reachable Object, parameterized by the distance between the target
agent A and the owner of the target object x in path G, is in XP.

Proof: Let k be the distance in G = (N,E) between the target agent A, say i, and the
owner of target object x, say j such that i < j. We assume, without loss of generality,
that j is a leaf of the path, i.e., j = n. Indeed, by Observation 3.2, the sequence of swaps
leading to give oj to i cannot involve objects o` such that ` > j.

Let (π0, . . . , πt) be the minimal sequence of swaps leading to give object oj to agent i,
i.e., πt(i) = oj . The principle of our algorithm is to guess the k objects {oi1 , . . . , oik} that
are assigned to the agents {i+ 1, . . . , j} in πt. There are O(nk) such partial allocations.
For each guess with the objects of {oi1 , . . . , oik}, a complete allocation π′ over N is
constructed such that π′(i) = oj and π′(i + `) = oi` for each ` ∈ {1, . . . , k}. We aim
at reproducing in π′ the final allocation of a minimal sequence of swaps leading to give
oj to i. Therefore, provided there is no unnecessary swap, there is no agent i′ < i that
receives in π′ an object oj′ such that j′ < i′. We complete the rest of the allocation π′

according to the following rule, consequence of Observation 3.2 in a path and the fact
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that we do not add unnecessary swaps: for two agents i′ and j′ such that i′ < j′ < i,
the object received by agent i′ must have a smaller index than the object received by
agent j′. This rationality rule implies that the completion of π′ is unique. Thus, by
minimality of the sequence of swaps leading to πt, π′ must correspond to allocation πt if
the guess about the objects of {oi1 , . . . , oik} is correct. Then, it suffices to test whether
allocation π′ is reachable by a rational sequence of swaps, a problem that is solved in
polynomial time in the next section (Proposition 3.16). Clearly, if there exists a minimal
sequence of swaps (π0, . . . , πt) such that πt(i) = oj then, by construction of π′, for a
certain guess we build π′ := πt and thus when we test the reachability of π′, we get a
positive answer. �

Despite its apparent simplicity, Reachable Object in a path is a challenging open
problem when no restriction on the agent’s location is made.

3.3.2 Maximum number of swaps per agent

Let us now impose some restrictions on the sequence of swaps. We first consider that
the agents are not willing to perform an important number of swaps in the whole swap
process. Consequently, we study the problem RO-max, asking whether there exists
a sequence of swaps leading to give target object x to target agent A, where every
agent cannot make more than k swaps in the sequence. Surprisingly, in this context,
Reachable Object remains computationally hard even for a very small maximum
number of swaps.

Theorem 3.6 For fixed k ≥ 2, RO-max is NP-complete, even when the degree ∆G of
the graph is equal to 4.

Proof: Membership in NP is straightforward, as it is a special case of the unconstrained
RO problem, known to be in NP (Theorem 3.1).

For hardness, we fix k = 2 and reduce from (3, B2)-SAT, a variant of the Satisfi-
ability problem known to be NP-complete (Theorem 1.4). The (3,B2)-SAT problem
is the restriction of sat to instances where each clause contains three literals and each
variable occurs exactly twice as a positive literal and twice as a negative literal.

From an instance of (3, B2)-SAT with a set X = {x1, . . . , xv} of v variables and a
set C = {C1, . . . , Cs} of s clauses, we construct an instance of Reachable Object as

follows. We create a literal-agent Y `
j (respectively, Y `

j ) for each `th (with ` ∈ {1, 2})
occurrence of literal xj (respectively, xj), and a variable-agent Yj for each variable xj .
Two clause-agents Ki and K ′i are created for each i ∈ [s − 1]. Three other agents Y0,
K ′0 and Ks are added. Each agent initially owns an object denoted by the lower-case
version of her name, e.g., agent Ki gets object ki.

In the network, we have the paths [Yj−1, Y
1
j , Y

2
j , Yj ] and [Yj−1, Y 1

j , Y
2
j , Yj ] for each

j ∈ [v], and the edge {Ki,K
′
i} for each i ∈ [s − 1]. If the `th occurrence of literal xj

(respectively, xj) appears in clause Ci, then we have the path [K ′i−1, Y
`
j ,Ki] (respectively,

[K ′i−1, Y
`
j ,Ki]). We connect Ks and Yv. See Figure 3.2 for an example of the graph

construction.
The preferences of the agents are given below. Notation {`i} stands for the literal-

objects of clause Ci ranked in arbitrary order and, like in the proof of Theorem 3.1, index
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Figure 3.2: Graph construction for an instance of (3, B2)-SAT with four clauses where
C1 = (x1 ∨ x2 ∨ x3), C2 = (x1 ∨ x2 ∨ x3), C3 = (x1 ∨ x2 ∨ x3), and C4 = (x1 ∨ x2 ∨ x3).

pj` (respectively, nj`) refers to the clause containing the `th occurrence (with ` ∈ {1, 2}) of
xj (respectively, xj). The objects that are not mentioned in the preferences are ranked
in arbitrary order after the initial endowment (notation [. . . ]).

K ′0 : {`1} � k′0 � [. . . ]

Ki : k′i � k′0 � ki � [. . . ] Y 1
j : k

pj1
� k′0 � y2

j � y0 � y1
j � [. . . ]

K ′i : {`i+1} � k′0 � k′i � [. . . ] Y 2
j : k

pj2
� k′0 � yj � y0 � y2

j � [. . . ]

Ks : y0 � k′0 � ks � [. . . ] Y
1
j : k

nj1
� k′0 � y2

j � y0 � y1
j � [. . . ]

Y0 : y1
1 � y1

1 � y0 � [. . . ] Y
2
j : k

nj2
� k′0 � yj � y0 � y2

j � [. . . ]

Yv : k′0 � y0 � yv � [. . . ] Yj : y1
j+1 � y1

j+1 � y0 � yj � [. . . ]

We claim that all the clauses in C are satisfiable if and only if object k′0 reaches agent
Yv in the constructed instance of RO-max where k is fixed to 2.

Note that the only way for Yv to get hold of k′0 is by swapping y0 with Ks. Indeed,
by construction of the preferences, Yv can only obtain object k′0 via a swap with agent
Ks, and Ks accepts to exchange k′0 only against object y0. Therefore, object k′0 must
reach agent Ks while object y0 must reach agent Yv. Object k′0 can only reach Ks

via clause-agents and literal-agents, while y0 can only reach Yv via variable-agents and
literal-agents. Agents perform at most two swaps, so no literal-agent can be involved in
the move of both y0 and k′0.

Suppose that truth assignment φ satisfies all the clauses of C. Let Ti be a literal-
agent of clause Ci related to a true literal in φ. Since all the clauses are satisfiable, there
exists such an agent Ti for each clause Ci and thus, object k′0 can reach Ks via the path
[K ′0, T1,K1,K

′
1, T2, . . . , Ts−1,Ks−1,K

′
s−1, Ts,Ks]. For variable xj , let Z1

j and Z2
j be the

literal-agents associated with the literals of xj that are false in φ. By definition, these
agents do not belong to

⋃
i∈[s] Ti. Therefore, it suffices for y0 to reach Yv via the path

[Y0, Z
1
1 , Z

2
1 , Y1, . . . , Yv−1, Z

1
v , Z

2
v , Yv].

Suppose now that object k′0 is reachable for agent Yv. By construction, the path of
k′0 to Ks goes through exactly one literal-agent per clause, while the path of y0 to Yv
goes through exactly two literal-agents associated with the same literal for each variable.
Thus, the truth assignment of variables that sets to true the literals related to literal-
agents in the path of object k′0, satisfies all the clauses.
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If k > 2, we adapt the reduction via a delay gadget added to each agent. �

One could think that the problem is much easier when the structure of the network
is restricted to trees. Yet, it is possible to prove that RO-max on trees is W[SAT]-hard
(where W[SAT] is a “high” parameterized complexity class in the W-hierarchy, as we can
see in Figure 1.4), which notably rules out, under standard complexity assumptions, the
existence of an FPT algorithm.

Theorem 3.7 RO-max is W[SAT]-hard in a tree.

Sketch of proof: We reduce from the Monotone Weighted Satisfiability prob-
lem, known to be W[SAT]-complete (Theorem 1.8). Monotone Weighted Satisfia-
bility asks whether a given monotone propositional formula ϕ over a set of variables
X = {x1, . . . , xv} is satisfiable with a truth assignment over X where at most k variables
are set to true. A formula ϕ is said to be monotone if all the variables in X only occur
through positive literals in ϕ. Recall that the syntax tree of a propositional formula ϕ
is a tree whose internal nodes, i.e., nodes of degree greater than one, are labeled by con-
junctives of the formula and whose leaves represent propositional variables. Each node
in the syntax tree corresponds to a subformula whose syntax tree is the subtree rooted
at that node. Indeed, the children of a node corresponding to a connective of ϕ are the
immediate subformulas on which the connective applies in ϕ. We suppose, without loss
of generality, that all the relations in ϕ are binary (because operators ∧ and ∨ satisfy
ϕ1 ∧ ϕ2 ∧ ϕ3 ≡ (ϕ1 ∧ ϕ2) ∧ ϕ3 and ϕ1 ∨ ϕ2 ∨ ϕ3 ≡ (ϕ1 ∨ ϕ2) ∨ ϕ3), and that the root of
the syntax tree of ϕ is a conjunction. The number of occurrences of variable xi in ϕ is
denoted by ni.

An instance of RO-max in a tree is constructed by building a graph based on the
syntax tree Tϕ of formula ϕ. The goal is to make objects associated with variables
in X reach agents symbolizing their occurrences in the formula. We construct a swap
dynamics instance 〈N,O,�, G, π0〉 for RO-max where by convention we denote all the
agents with upper-case letters and all the objects with lower-case letters. The initial
allocation π0 assigns to each agent the object denoted by the lower-case version of its
name, i.e., an agent T ∈ N initially owns object t ∈ M . For understanding the details
of the construction, referring to the example provided in Figure 3.3 can be useful.

For each binary relation of formula ϕ, we create an agent R0
i and an object r0

i , which
refer to the ith binary relation of the formula when considering a fixed order induced by
the syntax tree of ϕ. The set of all these relation-agents is denoted by R.

For every variable xj and every ` ∈ {1, . . . , nj}, we create an agent Y 0
j,` and an object

y0
j,`, which represent the `th occurrence of variable xj in formula ϕ. The set of all these

literal-agents is denoted by Y . A variable-agent Zϕj and her initial object zϕj are created
for every variable xj ; they refer to the global variable xj in the formula.

Let us denote by Ψi,1 and Ψi,2 (respectively, ψi,1 and ψi,2) the two agents (respec-
tively, the two objects) related to the two members of the binary relation represented
by agent R0

i ∈ R. The agents Ψi,1 and Ψi,2 can be either members of R, or members of
Y . Each agent R0

i is connected in the social network G to the agents Ψi,1 and Ψi,2, like
in the associated syntax tree Tϕ.

For each relation-agent R0
i ∈ R, v + 1 copies are created: the agents Rti and the

associated objects rti , for every t ∈ {1, . . . , v+1}. For each literal-agent Y 0
j,`, v copies are
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created: the agents Y t
j,` and the associated objects ytj,` for every t ∈ {1, . . . , v}. Copies

Y t
j,` and ytj,` are associated with variable xt for t ∈ [v]. All the copies Rti of agent R0

i are

connected to R0
i in the social network, and all the copies Y t

j,` of agent Y 0
j,` are connected

to Y 0
j,`. Here is a part of the preferences of R0

i and Y 0
j,` which will be further detailed in

the description of the next gadgets as well as the preferences of their copies:

R0
i : . . . � rv+1

i � . . . � rvi � . . . � r1
i � . . . � r0

i

Y 0
j,` : . . . � yvj,` � . . . � y1

j,` � . . . � y0
j,`

We add three agents C, C ′ and D with their associated initial object c, c′ and d.
In the social network, agent C ′ is connected to agent C who is herself connected to
agent D. Moreover, agent C is connected to all agents Zϕj for j ∈ {1, . . . , v}, and

to agent R0
1, corresponding to the connective at the root of the syntax tree (which is a

conjunction by assumption). These agents have the following preferences, where notation
[. . . ] represents the rest of the objects ranked in arbitrary order, and t1 will be explained
later:

Zϕ1 : c � zϕ1 � [. . . ]

Zϕj : rj−1
1 � zϕj � [. . . ]

C : d � t1 � c′ � rn−1
1 � zϕv � . . . � r1

1 � z
ϕ
2 � r0

1 � z
ϕ
1 � c � [. . . ]

C ′ : rv−1
1 � c′ � [. . . ]

D : t1 � d � [. . . ]

The occurrence of variable xj in the global formula ϕ is represented by agent Zϕj and
object zϕj . We present here a gadget allowing to “duplicate” this object each time it (or

a previous duplicated object) passes by a relation-agent R0
i : this object is duplicated

into two objects associated with the two members of the relation in ϕ represented by
R0
i , then each copy associated with each subformula can move to the part of the network

representing this subformula. For each agent R0
i and each variable xj , two agents Z

ψi,1
j

and Z
ψi,2
j and two objects z

ψi,1
j and z

ψi,2
j are created. Agent R0

i is connected in the social

network G to agent Z
ψi,1
j who is herself connected to agent Z

ψi,2
j . The agents involved

in this gadget have the following preferences (for t ∈ [v]):
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R0
1 : . . . � rj1 � ψ

j−1
1,2 � z

ψ1,2

j � ψj−1
1,1 � z

ψ1,1

j � zϕj � r
j−1
1 � . . .

R0
i : . . . � rji � ψ

j−1
i,2 � z

ψi,2
j � ψj−1

i,1 � z
ψi,1
j � zr

0
i
j � r

j−1
i � . . .

Rti : ψt−1
i,2 � . . . � ψ1

i,2 � r
t−1
i � . . . � r1

i � rti � [. . . ]

Y 0
j,` : . . . � ynj,` � . . . � y

j
j,` � . . . � z

y0
j,`

j � yj−1
j,` � . . . � y

1
j,` � z

y0
j,`

1 � y0
j,` � [. . . ]

Y t
j,` : z

y0
j,`

t−1 � . . . � z
y0
j,`

1 � yt−1
j,` � . . . � y

1
j,` � ytj,` � [. . . ]

Z
ψ1,1

j : ψj−1
1,1 � z

ψ1,2

j � zϕj � z
ψ1,1

j

Z
ψ1,2

j : zϕj � z
ψ1,2

j � [. . . ]

Z
ψi,1
j : ψj−1

i,1 � z
ψi,2
j � zr

0
i
j � z

ψi,1
j � [. . . ]

Z
ψi,2
j : z

r0
i
j � z

ψi,2
j � [. . . ]

We are now able to design a gadget to check the validation, i.e., the satisfaction,
of a given subformula rooted at a node U of the syntax tree. This node U can either
corresponds in G to a literal-agent in Y or to a relation-agent in R; this corresponding
agent is denoted by N(U) and her associated object M(U). Conversely, for an agent
B ∈ R ∪ Y , the associated node in the syntax tree of ϕ is given by Tϕ(B). The parent
of a node U in Tϕ is denoted by Pre(U). For the sake of simplicity, for any agent
B ∈ (R ∪ Y ) \ {R0

1}, we denote M(Pre(Tϕ(B))) (respectively, N(Pre(Tϕ(B)))) by p(b)
(respectively, P (b)), which represents the object (respectively, the agent) associated with
the predecessor of the node corresponding to B in Tϕ (which is necessarily a relation-
agent). If node U corresponds to an agent in Y and more precisely to an agent Y 0

j,`,

then two agents Tj,` and T 1
j,` are created, with their associated initial object tj,` and t1j,`.

In the social network G, agent Y 0
j,` is connected to agent T 1

j,`, who is herself connected

to agent Tj,`. Literal-agent Y 0
j,` is validated when she receives the variable-object z

y0
j,`

t

corresponding to her variable, i.e., z
y0
j,`

j . In such a case, the exchange with agent T 1
j,` is

allowed, in order to keep in memory that Y 0
j,` is validated. The preferences of the agents

involved in this gadget are the following for every j ∈ [v] and every ` ∈ [nj ]:

Y 0
j,` : p(yj,t)

v+1 � p(yj,t)v � tj,` � yvj,` � . . . � y
j
j,` � t

1
j,` � z

y0
j,`

j � yj−1
j,` � . . . � y0

j,` � [. . . ]

Y j
j,` : t1j,` � . . . � yjj,` � [. . . ]

T 1
j,` : yvj,` � tj,` � z

y0
j,`

j � t1j,` � [. . . ]

Tj,` : z
y0
j,`

j � tj,` � [. . . ]

Now consider the case where node U corresponds to an agent in R, i.e., to an agent R0
i .

From the set R of agents related to the binary relations of formula ϕ, we distinguish
the agents associated with conjunctions, whose set is denoted by A , and the agents
associated with disjunctions, whose set is denoted by O. If agent R0

i ∈ O, one agent
Ti and her associated object ti are created. Agents R0

i and Ti are connected in the
social network G. By simplicity, we denote by Tψi,j and tψi,j the validation-agent and
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the validation-object associated with Ψi,j . Relation-agent R0
i is validated if at least one

of the agents associated with the subformulas, i.e., agents Ψi,1 and Ψi,2, is validated,
i.e., R0

i receives from them object tψi,1 or tψi,2 , respectively. The agents involved in this
gadget have the following preferences:

R0
i : p(ri)

v+1 � p(ri)v � ti � tψi,1 � tψi,2 � r
v+1
i � rvi � . . .

Rv+1
i : rvi � rv+1

i

Ti : tψi,1 � tψi,2 � ti � [. . . ]

Note that object rv+1
i is not necessary for the gadget when R0

i ∈ O but since it is needed
when R0

i ∈ A , we also introduce it for disjunctions in order to be more general and
avoid to check whether the predecessor relation is a conjunction.

Otherwise, that is if R0
i ∈ A , two agents T 1

i and Ti are created with their associated
objects t1i and ti. Agent R0

i is connected to agent T 1
i who is herself connected to Ti in

the social network G. Relation-agent R0
i is validated if both of the agents associated

with the subformulas, i.e., agents Ψi,1 and Ψi,2, are validated, i.e., R0
i receives from them

objects tψi,1 and tψi,2 , respectively. The preferences of the agents involved in this gadget
are the following:

R0
1 : c′ � t1 � tψ1,2 � r

v+1
1 � t11 � tψ1,1 � rv1 � . . .

R0
i : p(ri)

v+1 � p(ri)v � ti � tψi,2 � r
v+1
i � t1i � tψi,1 � rvi � . . .

Rv+1
i : t1i � rv+1

i � [. . . ]

Ti : tψi,1 � ti � [. . . ]

T 1
i : tψi,2 � ti � tψi,1 � t1i � [. . . ]

We claim that formula ϕ is satisfiable with weight k if and only if object d is reach-
able by agent C in instance 〈N,O,�, G, π0〉 of RO-max where the maximum number of
exchanges per agent is 6k + 7. The global idea is, given a truth assignment φ of weight
k which satisfies ϕ, for each variable xj assigned to true in φ (by increasing order of the
variable index), the associated object zϕj must move from agent Zϕj . This object is dupli-

cated at each binary relation-agent R0
i into literal-objects z

ψi,1
j and z

ψi,2
j corresponding

to the subformulas of R0
i , until the duplicated literal-objects reach literal-agents. A

literal-agent Y 0
j,` is then validated when she receives a literal-object corresponding to

her variable, namely object z
y0
j,`

j . By induction, a relation-agent R0
i corresponding to a

conjunction is validated when both agents Ψi,1 and Ψi,2 associated with its subformulas
are validated, and a relation-agent R0

i corresponding to a disjunction is validated when
at least one of the agents Ψi,1 and Ψi,2 is validated. Since truth assignment φ satisfies
formula ϕ, it follows that binary-agent R0

1, corresponding to the binary relation at the
root of the syntax tree of ϕ, is eventually validated. This enables the exchanges among
the agents C, C ′ and D in order to give object d to agent C. Refer to Section A of the
appendix to see the complete proof of the equivalence. �

The previous hardness result highlights the computational challenge of RO-max on
trees, and enables to stress the relevance of the next positive results when both the graph
structure and the parameter are constrained.

121



3.3. REACHABLE OBJECT

Zϕ1

Zϕ2

Zϕ3

Zϕ4

C

D

C ′

R0
1

Z
ψ1,1

1

Z
ψ1,2

1

. . .
Z
ψ1,1

4

Z
ψ1,2

4

R1
1 R5

1

T 1
1

T1

R0
2

Z
ψ2,1

1

Z
ψ2,2

1

. . .
Z
ψ2,1

4

Z
ψ2,2

4

R1
2 R5

2

T 1
2

R0
3

Z
ψ3,1

1

Z
ψ3,2

1

. . .
Z
ψ3,1

4

Z
ψ3,2

4

R1
3 R5

3

T 1
3

Y 0
1,1

T 1
1,1

T1,1

Y 1
1,1

Y 4
1,1

Y 0
2,1

T 1
2,1

T2,1

Y 1
2,1

Y 4
2,1

Y 0
1,2

T 1
1,2

T1,2

Y 1
1,2

Y 4
1,2

R0
4

Z
ψ4,1

1

Z
ψ4,2

1

. . .
Z
ψ4,1

4

Z
ψ4,2

4

R1
4 R5

4

T 1
4

T4

Y 0
3,1

T 1
3,1

T3,1

Y 1
3,1

Y 4
3,1

Y 0
4,1

T 1
4,1

T4,1

Y 1
4,1

Y 4
4,1

Figure 3.3: Example of the construction of the social network for a monotone proposi-
tional formula ϕ such that ϕ ≡ (x1 ∨ x2) ∧ (x1 ∨ (x3 ∧ x4)).

Proposition 3.8 RO-max is solvable in polynomial time in a tree if k = 2.

Proof: There exists a unique path τx in G between the owner of object x, say X, and
agent A. All the agents in τx, except X and A, perform their two swaps to move x
towards A. However, in order to get x, A can perform another swap so as to obtain an
object y preferred to x by her neighbor in τx. It suffices to check the reachability to A
of any such y, when agent A is only allowed to make the swap to get y, provided τx and
τy do not cross. �

By restricting even more the structure of the graph, we can derive a tractability result
when parameter k is a constant, which corresponds to class XP (see Definition 1.33).
This assumption is relevant since the maximum number of swaps that an agent is able
to perform has no reason to increase with the number of agents involved in the process.

Proposition 3.9 RO-max is in XP if the network is a path.
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Proof: Like in Section 3.3.1 for the case of the path, we may assume, without loss of
generality, that E = {{j, j + 1} : 1 ≤ j < n}. Like in the proof of Proposition 3.5,
we consider, without loss of generality, that we aim at determining the reachability of
object on, initially owned by n, for agent i. Note that each agent j such that i < j < n
necessarily performs two swaps to transfer on towards agent i. Since G = (N,E) is
a path, only two directions are allowed for the objects: to the “left” (decreasing agent
indices) or to the “right” (increasing indices). By rationality of the swaps, once an object
moves in some direction, it cannot come back the other direction (Observation 3.2).
Thus, two objects oj and o` respectively possessed by agents j and ` for j < `, which
both move in the same direction, must be finally possessed by some agents j′ and `′

such that j′ < `′. Therefore, it suffices to know which objects move to the left or to the
right to know the objects which are finally assigned to the agents i+ 1, . . . , n, and so to
deduce the associated sequence of swaps and determine whether it satisfies the rationality
condition. Since at most k swaps are allowed per agent, then only bk/2c objects can
pass by each agent. This implies that at most bk/2c − 1 objects can pass by agent i,
including objects in Or, defined as the set of objects possessed by agents in {1, . . . , i−1}
which move to her right, and objects in O`, defined as the set of objects possessed by
agents in {i+ 1, . . . , n− 1} which move to her left. Thus, knowing the objects in Or and
O` which pass by i boils down to know the final allocation for which we must test the
reachability, and this test can be done in polynomial time (Proposition 3.16). There are
O(nk) different such allocations, hence the problem is solvable in O(nk). �

In a nutshell, the tractable cases of RO-max that we have identified are limited to
very specific configurations. It would be interesting to determine an upper bound for
the complexity of RO-max in trees. Although the W[SAT]-hardness of RO-max in trees
(Theorem 3.7) does not prevent the membership of the problem to XP, we conjecture
that it is not the case.

3.3.3 Length of the sequence of swaps

Two parameters are used to bound the length of the sequence of swaps: the total number
of exchanges and the makespan. These two parameters enable to define two parameter-
ized versions for Reachable Object: RO-sum and RO-makespan. Contrary to the
previous parameter max, these parameters on the length of the sequence lead to circum-
scribe the problems into parameterized complexity classes that are not so high in the
hierarchy. For instance, they allow to obtain tractability results when the parameters
are bounded by a constant for any social network. Moreover, for bounded degree graphs,
relevant in the context of a social network modeling the possibility of collaboration, we
obtain fixed-parameter tractability.

Nevertheless, in general, the problems are still computationally hard, even when the
social network is a tree.

Theorem 3.10 RO-sum and RO-makespan are W[1]-hard even for trees.

Sketch of proof: We perform a reduction from Clique, problem known to be W[1]-
complete (Theorem 1.6). Clique is the problem of deciding whether there exists a clique
of size k in an undirected graph G = (V, E) such that V = {1, ..., s} and |E|= p. Assume
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Figure 3.4: Graph construction for an instance of Clique with vertices V = {1, 2, 3, 4}
and k = 3. The edges are: {1, 2}, {1, 3}, {2, 3} and {3, 4}.

that each edge in E is written (v, w) such that v < w, and consider the lexicographical
order over E . Let us denote by e1

i and e2
i the first and second vertex of the ith edge.

Recall that the degree of a vertex v in G is denoted by δG(v). For the sake of simplicity,
we omit the reference to G and simply write δ(v) for the degree of v in G and denote by
δd(v) the dth edge incident to v, for 1 ≤ d ≤ δ(v). We construct an instance I ′ of RO
(see Figure 3.4 for an example) by creating:

• two connected agents X and Y , and two vertex-agents Uvwv and Uvww for each edge
(v, w) ∈ E , connected via a path [Y, Uvwv , Uvww ].

• agents T and T `, for 1 ≤ ` ≤ k, representing the k vertices of the clique that we
must choose. They are connected via a path to Y : [Y, T 1, . . . , T k, T ].

• agents Av and A`v, for v ∈ V and 1 ≤ ` < k, representing the choice of the k − 1
edges of the clique that are incident to v if v belongs to the clique. They are
connected via a path to Y for each v: [Y,A1

v, . . . , A
k−1
v , Av].

• agent T `∗ connected to T `, for 1 ≤ ` ≤ k, and agent A`∗v connected to A`v, for
1 ≤ ` < k and v ∈ V. They are used to “validate” their associated agent by giving
to her their initial object once they own an expected object.

• auxiliary agents used to facilitate the passage of some objects: if an agent B has
a connected auxiliary agent B[z], then the swap with B[z] must precede a swap for
getting an object associated with z. The auxiliary agents we use are agents Y [vw]

corresponding to edge (v, w) and connected to Y , agents Y [v] corresponding to
vertex v and connected to Y , agent Y [t] corresponding to object t and connected

to Y , agents A
`[δd(v)]
v corresponding to edge δd(v), for 1 ≤ d ≤ δ(v), and connected

to agent A`v, for v ∈ V and 1 ≤ ` < k, and agents T `[v] corresponding to vertex v
and connected to agent T ` for 1 ≤ ` ≤ k.
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The initial object of an agent is denoted by the lower-case version of her name,
e.g., agent Y [v] gets object y[v]. The preferences of the agents are as follows (objects in
brackets may not exist for all indices).

T : tk∗ � t � [. . . ]

Av : ak−1∗
v � av � [. . . ]

X : t � x � [. . . ]

Uvww : y[vw] � uvww � [. . . ]

Uvwv : a
1[vw]
v � uvww � y[vw] � uvwv � [. . . ]

A`∗v : u
δδ(v)(v)
v � . . . � uδ

1(v)
v � a`∗v � [. . . ]

A
`[δd(v)]
v : (a

`+1[δδ(v)(v)]
v ) � . . . � (a

`+1[δ1(v)]
v ) � a`v � a

`[δd(v)]
v � [. . . ]

T `∗ : a1 � a2 � . . . � as � t`∗ � [. . . ]

T `[v] : (t`+1[v−1]) � . . . � (t`+1[1]) � t` � t`[v] � [. . . ]

Y [v] : (t1[v−1]) � . . . � t1[1] � a1[ep]

e2p
� . . . � a1[e1]

e21
� y[v] � [. . . ]

Y [vw] : a
1[ep]

e2p
� . . . � a1[e1]

e21
� y � y[vw] � [. . . ]

A`v : y[v] � (a`−1∗
v ) � av � a`∗v � u

δδ(v)(v)
v � a`[δ

δ(v)(v)]
v � . . . � (a

`+1[δ2(v)]
v ) �

u
δ2(v)
v � a`[δ

2(v)]
v � (a

`+1[δ1(v)]
v ) � uδ

1(v)
v � a`[δ

1(v)]
v � a`v � [. . . ]

T ` : y[t] � (t`−1∗) � t � t`∗ � as � t`[s] � . . . � (t`+1[2]) � a2 � t`[2] �
(t`+1[1]) � a1 � t`[1] � t` � [. . . ]

Y : x � t � y[t] � t1[s] � as � y[s] � . . . � t1[1] � a1 � y[1] � a1[ep]

e2p
� uep

e2p
�

a
1[ep]

e1p
� uep

e1p
� y[ep] � . . . � a1[e1]

e21
� ue1

e21
� a1[e1]

e11
� ue1

e11
� y[e1] � y � [. . . ]

We claim that there exists a clique of size k in graph G if and only if object x can
reach agent Y within a total of k3+4k2+k+2 swaps or a makespan of 5k(k−1)/2+3k+4
in instance I ′ of Reachable Object. An agent A`v (or T `) is said to be “validated” if
she obtains at a moment object a`∗v (or t`∗). In order to make object x reach agent Y , all
the k agents T ` and all the k− 1 agents A`v of k branches Av need to be validated. The
associated clique in graph G is given by the vertices v for which all the k − 1 agents A`v
have been validated. All the agents A`v, for 1 ≤ ` < k, are validated if we can bring in
the branch k− 1 objects uvwv (or uwvv , following the order) representing an edge incident
to v. Observe that the given budget allows bringing in the branches only k(k−1) objects
uvwv and the construction forces to choose uvww if uvwv has been chosen. Refer to Section B
of the appendix to see the complete proof of the equivalence. �

This W[1]-hardness for RO parameterized by the length of the sequence rules out
the existence of FPT algorithms, even in trees, under standard complexity assumptions.
However, the following W[1] membership result, based on a reduction to a model checking
problem of existential first-order formulas (see Section 1.5.2.b), shows that the problem
is not so hard. It is notably in XP for any graph, thus tractable when the parameter is
a constant.

Theorem 3.11 RO-sum is in W[1].

125



3.3. REACHABLE OBJECT

Proof: An instance I of RO with a swap dynamics instance 〈N,O,�, G, π0〉, agent
A and object x, and k as a total number of swaps, is transformed into an instance
I ′ = 〈A, ϕ〉 of MC(Σ1), known to be W[1]-complete (Theorem 1.9). Let us consider the
following vocabulary τRO := {E,SUCC,ALLOC, TARGA, TARGx}. Structure A is a
τRO-structure over the universe N ∪O where:

• EA is the edge relation over N2 in graph G, i.e., EA(i, j)⇔ {i, j} ∈ E, ∀i, j ∈ N

• SUCCA is a ternary relation over N ×O2 representing the preference relation �,
i.e., SUCCA(i, a, b)⇔ a �i b, ∀i ∈ N, ∀a, b ∈ O

• ALLOCA is a binary relation over N × O representing the initial allocation π0,
i.e., ALLOCA(i, o)⇔ π0(i) = o, ∀i ∈ N, ∀o ∈ O

• TARGAA is an unary relation over N representing agent A, i.e., TARGAA(i)⇔ i =
A, ∀i ∈ N

• TARGAx is an unary relation over O representing object x, i.e., TARGAx (o)⇔ o =
x, ∀o ∈ O

The Σ1-formula ϕ is defined as ϕ = ∃x0∃b0∃x1∃y1∃a1∃b1 . . . ∃xk∃yk∃ak∃bk(
ALLOC(x0, b0) ∧

∨
0≤k′≤k ψ

k′
)

with

ψk
′ ≡ TARGA(xk′) ∧ TARGx(bk′) ∧

k′∧
i=1

(
E (xi, yi) ∧ SUCC(xi, bi, ai) ∧ SUCC(yi, ai, bi)

∧obji(xi, ai) ∧ obji(yi, bi)
)

where for all i, obji(q, s) stands for
(
ALLOC(q, s) ∧

∧i−1
j=1 xj 6= q ∧ yj 6= q

)
∨∨i−1

j=1

[(∧i−1
p=j+1 xp 6= q ∧ yp 6= q

)
∧
((

xj = q ∧ objj(yj , s)
)
∨
(
yj = q ∧ objj(xj , s)

))]
.

We claim that object x is reachable for agent A by a sequence of swaps of at most k
swaps in instance I if and only if A is a model of formula ϕ in instance I ′. The global
idea of ϕ is the following: there exists a sequence of at most k swaps involving, at each
step i ≤ k′ (for k′ ≤ k), a pair of connected agents {xi, yi} owning objects ai and bi,
respectively, who rationally exchange their objects, such that agent A finally owns object
x at step k′.

Let us first prove by induction over i that formula obji(q, s) is true if and only if
object s is owned by agent q before the ith swap. The base case is trivial: formula
obj1(q, s) is true if and only if ALLOC(q, s) is true, i.e., agent q initially owns object s
in π0. Consider step i, agent q and object s, and suppose that objj(., .) is correct for all
steps j = 1, . . . , i−1. If agent q has not performed a swap before step i, then the second
member of the disjunction in the formula is false, but the first one is true if and only if
s is the object initially owned by q. Otherwise, if agent q has made at least one swap
before step i, then the object actually owned by q is the object that was possessed by the
agent with who she made her last swap, just before this swap. This is expressed by the
second member of the disjunction stating that there exists a step j < i such that agent
q was involved in the swap at step j but not in the subsequent swaps until step i, and
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the agent with who q has exchanged at step j was possessing object s, fact translated by
objj(., s). Therefore, obji(q, s) is true if and only if objj(q

′, s) is true where q′ denotes
the agent with who q has made her last swap before step i. This is true by induction
assumption. Hence, formula obji(q, s) is true if and only if agent q currently owns object
s before the swap at step i.

Now, observe that formula ψk
′
is true if and only if the sequence of exchanges between

the agents (xi, yi) exchanging the objects (ai, bi), for i ∈ {1, . . . , k′}, is a sequence of
swaps leading to give object x to agent A. Indeed, ψk

′
repertories the two conditions

for a swap. The two agents xi and yi involved in the ith swap must be connected in the
social network and the exchange must be rational: xi must prefer object bi, which must
be the object of agent yi just before swap i, to object ai, and vice versa. Moreover, ψk

′

imposes that one of the agent involved in the last swap must be agent A and obtain
in this last swap object x. Thus, ψk

′
expresses the reachability of object x for agent A

after exactly k′ swaps.

Hence, ϕ is true if and only if object x is reachable for agent A after k′ swaps, for
k′ ≤ k, or x is initially owned by A. �

The same idea and a slightly different first-order formula for model checking work
for RO-makespan.

Proposition 3.12 RO-makespan is in W[1].

Proof: We reduce to MC(Σ1) but face a new difficulty. We cannot quantify over all
potential exchanges within makespan k as it would lead to a formula of size Ω(n). The
crux of this proof is to observe that not all exchanges are relevant to decide the problem.
Assume we process independent swaps in parallel for up to k time steps. Looking at
it from the end, the only relevant swap in the last step k involves agent A, so we
quantify over a single swap and ignore all concurrent ones. In the one-before-last, only
swaps involving A or A’s partner at step k may be relevant. So considering two swaps
happening at step k − 1 and ignoring all other concurrent ones suffices. All in all, we
need to quantify over no more than 2k+1 exchanges. The rest of the proof is similar to
that of Theorem 3.11.

An instance I of RO with a swap dynamics instance 〈N,O,�, G, π0〉, agent A and
object x, and k as the makespan of the sequence of swaps, is transformed into an instance
I ′ = 〈A, ϕ〉 of MC(Σ1). Structure A is a τRO-structure over the universe N ∪O, which
is defined as in the proof of Theorem 3.11.

The Σ1-formula ϕ is defined as ϕ = ∃x1
0∃b10∃x1

1∃y1
1∃a1

1∃b11 . . .
∃xL1

1 ∃y
L1
1 ∃a

L1
1 ∃b

L1
1 . . . ∃x1

k∃y1
k∃a1

k∃b1k . . . ∃x
Lk
k ∃y

Lk
k ∃a

Lk
k ∃b

Lk
k

(
ALLOC(x1

0, b
1
0) ∧∨

0≤k′≤k
∨
`0≤L0

∨
`1≤L1

. . .
∨
`k′≤Lk′

(ψk
′
`0,...,`k′

∧ χk
′
`0,...,`k′

)
)

with Li = 2k−i for all

i ∈ [k], L0 = 1, and

ψk
′
`0,...,`k′

≡
`k′∨
j=0

(
TARGA(xjk′) ∧ TARGx(bjk′)

)
∧

k′∧
i=1

`i∧
j=1

(
E (xji , y

j
i ) ∧ SUCC(xji , b

j
i , a

j
i )∧

SUCC(yji , a
j
i , b

j
i ) ∧ objij(x

j
i , a

j
i ) ∧ objij(y

j
i , b

j
i )
)
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χk
′
`0,...,`k′

≡
k′∧
i=1

`i∧
j=1

`i∧
p=j+1

(
(xji 6= xpi ) ∧ (yji 6= ypi ) ∧ (xji 6= ypi ) ∧ (yji 6= xpi ) ∧ (aji 6= api )∧

(bji 6= bpi ) ∧ (aji 6= bpi ) ∧ (bji 6= api )
)

where, for all i, j, objij(q, s) stands for
(
ALLOC(q, s)∧

∧i−1
p=1

∧`p
r=1

(
xrp 6= q ∧ yrp 6= q

) )
∨∨i−1

p=1

[(∧i−1
h=p+1

∧`h
t=1(xth 6= q ∧ yth 6= q)

)
∧
∨`p
r=1

((
xrp = q ∧ objpr(y

r
p, s)

)
∨
(
yrp =

q ∧ objpr(x
r
p, s)

))]
.

We claim that object x is reachable for agent A by a sequence of swaps of makespan
at most k in instance I if and only if A is a model of formula ϕ in instance I ′. The
global idea of ϕ is the following: there exists a sequence of swaps with makespan at
most k involving, at each step i ≤ k′ (for k′ ≤ k), a group of parallel swaps between the
pairs of connected agents {xji , y

j
i } owning objects aji and bji , respectively, who rationally

exchange their objects, such that agent A finally owns object x within the group of
parallel swaps at step k′.

Formula ψk
′
`0,...,`k′

says, similarly as its definition in the proof of Theorem 3.11, that
any exchange must be a swap and that the last swap must give object x to agent A.

Formula objij(q, s), like in the previous proposition, is true if and only if agent q gets

object s just before the jth swap of the ith group of parallel swaps in the sequence. We
omit the proof because it is similar to the proof in Theorem 3.11.

Formula χk
′
`0,...,`k′

says that any group of parallel swaps must involve different pairs of
agents and different pairs of objects. Consequently, ϕ is true if and only if x is reachable
for A by a sequence of swaps which can be decomposable into a sequence of at most
k sets of parallel swaps. We now verify that the size of the formula is in function of k
only, by proving that the ith set of parallel swaps has at most Li = 2k−i parallel swaps.
Observe first that at the kth set, the last one, at most one swap is required: the swap
between an agent Y and A, that makes A getting object x. All the other parallel swaps
are useless for the reachability of x for A. Therefore, there is at most 2k−k = 1 useful
swaps at the kth set. Consider the ith set and assume that at the (i + 1)th set at most
2k−i−1 parallel swaps are useful. All the useful parallel swaps at ith set can only involve
agents that are involved in all the jth sets for j ∈ {i + 1, . . . , k}. There is at most 2×
{the maximum number of useful parallel swaps at the (i + 1)th set} such agents, and
thus at most 2k−i parallel swaps at the ith set. �

Combining Theorem 3.10 with Theorem 3.11 and Proposition 3.12 leads to the fol-
lowing corollary.

Corollary 3.13 RO-sum and RO-makespan are W[1]-complete.

The previous result shows that RO is not “so hard” considering the length of the
sequence as a parameter, because it is circumscribed to the first level of the W-hierarchy
(see Figure 1.4). For instance, with such parameters, Reachable Object is in XP and
thus is solvable in polynomial time when the length of the sequence is a constant.

Furthermore, for some natural classes of graphs, the problem is even fixed-parameter
tractable with respect to these parameters.
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Proposition 3.14 RO-sum/makespan is FPT on bounded degree graphs.

Proof: The proof follows the idea developed for Proposition 3.12, by considering the
sequence of exchanges from the end. We enumerate all the possible sequences of swaps
by only taking into account relevant swaps.

At the last step of a sequence of swaps leading to give x to A, the only relevant
exchange involves agent A and a neighbor Y of A, otherwise the swap is not useful for
the reachability of x to A. So the number of relevant possible swaps at the last step is
equal to the degree of A. Therefore, there are at most ∆G, i.e., the degree of the graph,
relevant possible swaps at the last step for both RO-sum and RO-makespan. Following
the same idea, the one-before-last step must involve one of the agents making the swap
at the last step, otherwise the exchange is not useful. Therefore, there are less than
2∆G possible swaps for RO-sum, by counting as a possible swap an exchange between
A and a neighbor of A, or between Y and a neighbor of Y . However, for RO-makespan,
either one or two parallel swaps can be performed at this step. In the latter case, the
two swaps must be within different pairs of agents with A belonging to one, and Y
to the other one, and obviously the other neighbor with A and with Y cannot be the
same agent. Therefore, with a rough upper bound, we have at most 2∆G + ∆2

G possible
swaps for RO-makespan at the one-before-last step. Globally, one can draw a tree for
enumerating all the possible sequences of swaps following the same principle at each
step of the sequence. The same argument applies at any of the (last−t)th step, where we

need to test at most (t + 1).∆G swaps for RO-sum and at most
∑2t

j=1

(
2t∆G
j

)
different

groups of parallel swaps for RO-makespan. Since the global number of steps is bounded
by k, we have to test in total at most ∆k

G.k! sequences of swaps for RO-sum and at most∏k
t=1

∑2t

j=1

(
2t∆G
j

)
sequences of swaps for RO-makespan, of maximal authorized length.

Then, it suffices to verify after each step if one sequence leads to an allocation assigning
object x to agent A. �

In a nutshell, Reachable Object parameterized by some budget constraints on the
sequence of swaps remains computationally hard in general. However, the parameters
sum and makespan restricting the length of the sequence enable to determine some
interesting tractable cases with respect to these parameters.

3.4 Reachable Assignment

In this section, we address the decision problem Reachable Assignment: given a
swap dynamics instance, is a target allocation π reachable?

Like for Reachable Object, we analyze the complexity of Reachable Assign-
ment with respect to classical and parameterized complexity, that is where no budget
constraint is imposed on the solution, i.e., on the sequence of swaps, or when the se-
quence of swaps is limited regarding the number of swaps that can be performed by the
agents.

3.4.1 Reachable Assignment with no budget consideration

First of all, let us investigate the unconstrained version of Reachable Assignment
where no budget consideration is imposed on the solution size. We prove that Reach-
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able Assignment is computationally hard in general but polynomial when the network
is a tree.

Theorem 3.15 Reachable Assignment is NP-complete.

Proof: One can easily verify that the problem is in NP: given a sequence of swaps
(π0, . . . , πt), whose length is bounded by n2 (Observation 3.3), it is easy to verify whether
the sequence is rational and there exists a step t′ ≤ t such that πt

′
= π.

For hardness, we propose a reduction from Reachable Object, that we have proved
to be NP-complete in Theorem 3.1. Take an instance I = 〈N,O,�, G, π0, A, x〉 of RO.
The problem asks whether target agent A ∈ N can reach target object x ∈ O. We
construct an instance of Reachable Assignment I ′ = (N ∪N ′∪{Y }, O∪O′∪{y},�′
, π′0, E′) where each element of N (respectively, O) has a copy in N ′ (respectively, O′),
and one more agent Y with her associated initial object y is added. The copies of agent
i ∈ N and o ∈ O are denoted by i′ and o′, respectively. The edge set E′ is a superset
of E where each agent i ∈ N is connected to her copy i′ ∈ N ′ and G′ mimics graph G
on N by replacing agent A by agent Y , i.e., {{i′, j′} : {i, j} ∈ E and i, j 6= A} ⊆ E′ and
{{Y, i} : i ∈ NG(A)} ⊆ E′. See Figure 3.5 for an example of the construction.

1 2

34

1 2

34

1 Y2 2′

3 3′4 4′

1′

Figure 3.5: Construction of G′ from initial graph G = (N,E) where N = {1, 2, 3, 4} and
E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}, with a target agent A = 1.

Let us denote by oi the initial endowment of each agent i ∈ N \ {A} in I, and by
o′i its copy in O′. Similarly, let us denote by a the initial endowment of agent A in I
and by a′ its copy. The initial assignment π′0 in I ′ is such that π′0(i) = π0(i) when
i ∈ N , π′0(i′) = o′i when i′ ∈ N ′ \ {A′}, π′0(A′) = a′, and π′0(Y ) = y. For every i ∈ N ,
�′i consists of o′i on top, followed by �i, and the remaining objects are put on the last
positions. Agent A′ only prefers target object x to her initial endowment a′ and all the
other remaining objects are ranked in the last positions of �′A′ . For any other agent
i′ ∈ N ′, the only objects that are preferred to the initial endowment o′i are objects of
(O\{x})∪{y} that are preferred or equal to oi in the preferences �i of her related agent
i in N . All the remaining objects are ranked in the last positions of �′i. More precisely,
the objects preferred by agent i′ to o′i are ranked according to the reversed preferences
of agent i from her top object to her initial object oi where object x (which is one of the
{oj}j∈N ) is replaced by object y. For instance, if the preferences of any agent i 6= A are
the following: o1 �i o2 �i . . . �i oq �i x �i oq+1 �i . . . �i oq+` �i oi �i [. . . ], then
the preferences of i′ are: oi �′i′ oq+` �′i′ . . . �′i′ oq+1 �′i′ y �′i′ oq �′i′ . . . �′i′ o2 �′i′ o1 �′i′
o′i �′i′ [. . . ]. The construction of the preferences of agent Y follows the same principle
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but based on the preferences �A of agent A from target object x to the initial object
a. For instance, if the preferences of agent A are the following: o1 �A o2 �A . . . �A
oq �A x �A oq+1 �A . . . �A oq+` �A a �A [. . . ], then the preferences of agent Y are:
a �′Y oq+` �′Y . . . �′Y oq+1 �′Y y �′Y [. . . ].

We claim that x is reachable for agent A in I if and only if every agent gets her most
preferred object in I ′.

Suppose that x is reachable for agent A in I. By construction, it is also the case
in I ′. Once x has reached agent A in I ′, every agent i ∈ N exchanges her object with
her copy i′ ∈ N ′. Thus, each i ∈ N possesses her most preferred object o′i, as well as
agents A′ who gets her top object x, and any agent i′ who is the copy of an agent i not
involved in the first sequence of swaps. Then, is performed the reverse sequence of swaps
s′ within N ′ of the first sequence s leading to give x to A within N , where each agent
i ∈ N involved in s is replaced by her copy i′ ∈ N ′ in s′, except for A who is replaced
by Y . By construction of the preferences, we reach an allocation where every agent in
N ′ obtains the initial object of the agent for who she is the copy and Y obtains object
the initial object a of agent A. Therefore, this final allocation gives to every agent her
most preferred object.

Suppose that every agent can get her most preferred object in I ′. The only possibility
for agent A′ to obtain her most preferred object x is via agent A. Observe that x cannot
reach agent A through agents in N ′ because no agent among them prefers x to her
initial object. Moreover, if an agent i ∈ N makes a swap with her copy i′ ∈ N ′, then i
necessarily obtains her best object o′i because this is the only object from O′ that she
prefers to her initial object. Therefore, she cannot be involved in a subsequent swap
and cannot play a role for making object x reaching agent A. Therefore, object x must
reach agent A via a sequence of swaps that only involves agents in N . Since G′[N ] = G
and the restriction of �′i to objects in O is equal to �i for every agent i ∈ N , object x
is also reachable for agent A in I. �

In the previous reduction, we have constructed a graph that contains cycles. However,
when G = (N,E) is a tree, a polynomial algorithm (Algorithm 3.1) solves Reachable
Assignment.

The global idea of the algorithm is that every object must move along a unique
dipath in order to reach its owner in π from its owner in π0. Therefore, it suffices to
verify that every dipath intersects another one of the opposite direction within a swap
for the involved agents. In the pseudocode, list L stores the first arc of each dipath and
pop(P ) outputs the first arc of dipath P and deletes this arc from P .

Let us illustrate Algorithm 3.1 with an example.

Example 3.8 Consider an instance with five agents, where N = {1, 2, 3, 4, 5} and O =
{o1, o2, o3, o4, o5}. The social network, the preferences and the initial allocation are as
follows.

1

2

3

4

5 1 : o4 � o1 � o2 � o5 � o3

2 : o5 � o3 � o1 � o4 � o2

3 : o1 � o3 � o5 � o2 � o4

4 : o3 � o5 � o2 � o4 � o1

5 : o2 � o5 � o1 � o4 � o3
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Algorithm 3.1:

Input: Swap dynamics model 〈N,O,�, G, π0〉, assignment π
Output: Whether π is reachable from π0

1 L← ∅; π′ ← π0;
2 foreach x ∈ O do
3 Px ← unique dipath in G from the owner of x in π0 to the owner of x in π;
4 L← L ∪ {pop(Px)};
5 while L 6= ∅ do
6 if ∃i, j ∈ N, i 6= j such that (i, j) ∈ L and (j, i) ∈ L then
7 if π′(i) �i π′(j) or π′(j) �j π′(i) then
8 return false;

9 Update π′ with exchange between i and j;
10 L← L \ {(i, j), (j, i)};
11 L← L ∪ {pop(Pπ′(i))} ∪ {pop(Pπ′(j))};
12 else return false;

13 return true;

The question is whether the agents can reach, by a sequence of swaps, allocation
π = (o4, o5, o1, o3, o2), where every agent obtains her best object.

The dipaths Px computed at line 3 of Algorithm 3.1 are:

Po1 = ((1, 2), (2, 3)) Po3 = ((3, 2), (2, 4)) Po5 = ((5, 4), (4, 2))

Po2 = ((2, 4), (4, 5)) Po4 = ((4, 2), (2, 1))

The following table illustrates the differents steps of the while loop (lines 5–12):

L Swap π′

{(1, 2), (2, 4), (3, 2), (4, 2), (5, 4)} 2↔ 4 (o1, o4, o3, o2, o5)

{(1, 2), (4, 5), (3, 2), (2, 1), (5, 4)} 1↔ 2 (o4, o1, o3, o2, o5)

{(2, 3), (4, 5), (3, 2), ∅, (5, 4)} 2↔ 3 (o4, o3, o1, o2, o5)

{∅, (4, 5), (2, 4), ∅, (5, 4)} 4↔ 5 (o4, o3, o1, o5, o2)

{∅, ∅, (2, 4), ∅, (4, 2)} 2↔ 4 (o4, o5, o1, o3, o2)

∅ - -

At each step, list L stores the first arc of each Poi. At step 1, only one exchange is pos-
sible: between agents 2 and 4. This exchange being rational, π′ is updated by performing
the swap. Arcs (2, 4) and (4, 2) are then removed from L. Arcs (4, 5) and (2, 1), which
are respectively the new first arcs of Po2 and Po4, are inserted in L. The algorithm stops
when L is empty, implying that π is reached.

Proposition 3.16 Algorithm 3.1 solves Reachable Assignment in polynomial time
when G = (N,E) is a tree.
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Proof: The principle of Algorithm 3.1 is that each object x must follow a unique directed
path Px in graph G from its current owner in initial allocation π0 to its target owner
in allocation π. Actually, this is the case for any sequence of swaps leading to π from
π0 because there is a unique path between two nodes in a tree and the objects cannot
pass twice by the same agent (Observation 3.2). Algorithm 3.1 performs a swap between
two connected agents i and j whose respective objects must follow edge {i, j} in the two
opposite directions, as soon as the exchange is rational. In Algorithm 3.1, these swaps
are made in any arbitrary order. Let us check whether this matters.

Assume that Algorithm 3.1 returns false whereas π is actually reachable. Denote by
s1 the sequence of swaps leading to reach π from π0 and by s2 the sequence of swaps
that has been performed so far from π0 in Algorithm 3.1 when it returns false. This
sequence of swaps is rational by construction of the algorithm. Sequences s1 and s2 are
necessarily different. Let us consider the first agent i that makes a different swap in s1

and in s2, and denote by π1 and π2 the allocation reached by s1 and s2, respectively,
just before this different swap involving i. Note that globally π1 and π2 may not be the
same because some agents can have made a swap in s1 but not yet in s2, and vice versa.
However, this is clear that π1(i) = π2(i), otherwise it would not be the first different
swap of i. Let us denote by oi the object owned by i at this moment in both allocations,
i.e., oi := π1(i) = π2(i).

Suppose that this swap involving i which is different between s1 and s2 is made with
different agents, say j1 and j2, respectively. It follows that object oi follows arc (i, j1) in
s1 whereas it follows arc (i, j2) in s2 with j1 6= j2. This is impossible because it would
imply two different paths between i and the target owner of object oi in π, and G is a
tree.

Suppose now that the swap involving i which is different between s1 and s2 is made
with the same agent j but against another object, say o1 and o2, respectively, with
o1 6= o2. This implies that agent j has made a previous swap in one of the sequence
that was not made in the other (she cannot have performed a different swap in the two
sequences, otherwise j would be the first agent for which s1 and s2 differ, instead of i).
Say, without loss of generality, that this previous swap of j has been made in s1 but not
in s2. Agent j has made this swap in s1 with an agent i′ different from i otherwise, by
rationality of the swaps, j could not exchange directly after with i again. The object
possessed by j before her swap with i′ was necessarily object o2, by assumption that i
is the first agent for which s1 and s2 differ. Therefore, in s1, object o2 follows arc (j, i′)
whereas in s2 it follows arc (j, i) with i 6= i′. Like in the previous case, this implies two
different paths for o2 reaching her target agent in π, contradicting the fact that G is a
tree. �

Contrasting with Reachable Object which is hard even for trees (Theorem 3.1),
Reachable Assignment is tractable for such a class of graphs.

3.4.2 Reachable Assignment under budget constraints

While Theorem 3.15 has shown that Reachable Assignment is NP-complete in gen-
eral, Proposition 3.16 has established tractability on trees. We now focus on whether
introducing budget constraints can let us derive efficient algorithms on networks more
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general than trees. We first show that Reachable Assignment parameterized by the
number of swaps per agent, called RA-max, remains hard on general graphs.

Proposition 3.17 RA-max is NP-complete even for fixed k ≥ 3 and graphs of degree
∆G equal to 5.

Proof: We consider the reduction given in the proof of Theorem 3.15, based on an
instance of Reachable Object constructed in the proof of Theorem 3.6, where the
swaps per agent are limited to two.

Observe that the construction of the instance of Reachable Assignment only
requires an additional swap with a copy-agent for the agents of the original instance of
Reachable Object. Moreover, the copy-agents introduced in the reduction make the
reverse swaps of the agents of the original instance, in addition to make one swap with
them. Therefore, the proof holds for a maximum number of swaps per agent limited to
three.

Moreover, the graph constructed in the proof of Theorem 3.6 for RO has a degree
equal to four and, in the reduction from RO to RA, we only add one more edge to the
agents of the original instance while the copy agents form a copy of the graph of the
original instance. Therefore, the proof holds for a graph of degree 5. �

Similarly as Reachable Object, let us denote by RA-sum and RA-makespan the
parameterized versions of Reachable Assignment with respect to the parameters sum
and max.

So far, our results regarding the complexity of RO-sum and RO-makespan are the
same. However this remark does not hold for Reachable Assignment: we prove
that RA-sum is fixed-parameter tractable whereas RA-makespan is W[1]-hard. Let us
observe the reduction from Reachable Object given in the proof of Theorem 3.15.
An instance of RA is constructed where two copies of the graph of the RO instance are
connected via edges connecting each agent to her copy. During the reduction, at one
point, each agent must exchange with her copy agent. This is done in n total swaps
where n is the number of agents in the RO instance, therefore the total number of swaps
cannot be expressed in function of k. However, all these swaps can be performed in
parallel since they do not involve the same agents, leading to a makespan equal to 1 for
this subsequence of swaps. Therefore, by using an instance of RO for which the length
of the sequence is bounded (like in Theorem 3.10), we get that RA-makespan is hard
since the makespan of the sequence can be expressed only according to the parameter
k. But this is not the case of RA-sum for which this reduction does not hold.

Proposition 3.18 RA-makespan is W[1]-hard.

Proof: The reduction is the same as given in the proof of Theorem 3.15 but based on
an instance of RO-makespan, like the one constructed in the proof of Theorem 3.10. �

Contrasting with the hardness of RA-makespan, RA-sum is fixed-parameter
tractable.

Proposition 3.19 RA-sum is FPT.
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Proof: We can assume, without loss of generality, that the target object of each agent
is different from her initial object, i.e., π(i) 6= π0(i) for every agent i. Otherwise, we can
remove from the instance all the agents i such that π(i) = π0(i), without affecting the
reachability of the other objects to other agents. It follows that each agent must perform
at least one swap to obtain her target object, and thus it must hold that k ≥ dn/2e,
otherwise we have a trivial no-instance. Therefore, n = O(k) and an exponential function
depending on n can be expressed only depending on k. �

An interesting open question would be to analyze the complexity of RA-makespan
when the network is a bounded degree graph: is the problem easy to solve like RA-sum
and RO-makespan on this type of graphs, or computationally hard like RA-makespan
in a general graph?

3.5 Guaranteed Level of Satisfaction

We dedicate this section to the Guaranteed Level of Satisfaction problem, very
close to the dual problem of Reachable Object, which enables to provide minimal
guarantees for the agents concerning their situation at the end of the swap dynamics.

3.5.1 Relation between Reachable Object and Guaranteed Level of
Satisfaction

Reachable Object (RO) asks whether an agent A can obtain an object x by a se-
quence of swaps. We have proved that RO is NP-complete even for trees (Theorem 3.1).
Guaranteed Level of Satisfaction (GLS) asks whether agent A is guaranteed to
obtain object x or an object preferred to x in any stable reachable allocation. GLS
appears even more natural than RO since it offers guarantees for the agent and does not
only focus on lucky configurations. It is close to the complement of RO, because co-GLS
is formulated as follows: is an object y reachable for agent A in a stable allocation, such
that x �A y? Thus, the study of RO also contributes to the understanding of GLS.

Proposition 3.20 Any instance 〈N,O,�, G = (N,E), A, x〉 of co-Reachable Ob-
ject is linearly reducible to an equivalent instance 〈N ∪ {Y }, O ∪ {y},�′, π′0, G′ =
(N ∪ {Y }, E ∪ {{Y,A}}), A, y〉 of GLS.

Proof: We reduce from the co-Reachable Object problem, asking whether object x
is unreachable for agent A, which is co-NP-complete by NP-completeness of RO (Theo-
rem 3.1).

Let I = 〈N,O,�, G = (N,E), A, x〉 be an instance of co-RO. An instance I ′ =
〈N ∪{Y }, O∪{y},�′, π′0, G′ = (N ∪{Y }, E ∪{{Y,A}}), A, y〉 of GLS is constructed by
adding an agent Y and an object y. The initial allocation π′0 is the same as π0 for all
agents in N and assigns y to Y . The output social network has the same structure as
the input one, with one more edge {Y,A}. Denote by a the object of agent A in π0. If A
prefers x to a, then denote by Pa the set containing a and the objects that are preferred
to a and less preferred than x in �A. Otherwise, Pa contains a and the objects that A
prefers to a. Denote by Px the set of objects that A prefers to x. The ranking �′A is
constructed from �A, by moving the objects in Px to the end of �′A, and by putting y
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at the top of �′A. The agents in N \ {A} keep the same preferences as in � but rank y
last, and Y only prefers the objects of Pa to object y.

We claim that x is not reachable for A in I if and only if A obtains y or an object
preferred to y in any reachable stable allocation in I ′, i.e., if and only if there is no stable
reachable allocation where A gets z such that y �A z.

Suppose that x is not reachable for A in I. At a stable allocation in I, either (i)
agent A gets an object from Px without having owned x during the sequence, but it is
not possible in I ′ because a �′A Px, and then agent A can only get objects from Pa in
I ′, or (ii) agent A gets an object from Pa, and it will be also the case in I ′. In both
cases, agent A gets an object in Pa and thus can exchange with Y in order to obtain y.
Hence, agent A eventually gets an object preferred or equal to y.

Suppose now that x is reachable for A in I. It follows that x is also reachable for A
in I ′ since G′[N ] and G are the same and A does not use the objects of Px to obtain x
in I. However, by obtaining x, agent A cannot exchange any more with Y because of
the construction of the preferences �′ and the output social network (agent Y is only
connected to A). Thus, agent A cannot obtain an object preferred or equal to y in this
sequence of swaps.

Observe that in this reduction, GLS asks whether agent A is guaranteed to obtain
her best object. The generalization to an object ranked at kth position is straightforward
by inserting k + 1 dummy agents and objects, not accessible for A. �

Since RO is NP-complete even on trees (Theorem 3.1) and the previous reduction
adds only one agent and possibly one swap to an instance of RO, GLS is co-NP-hard on
trees. Observe that GLS is in co-NP: after guessing a sequence of swaps, whose length is
polynomial (Observation 3.3), which leads to a stable allocation, one can directly check
whether this allocation is a certificate for a no-instance of GLS, by observing whether
the object obtained by A is less preferred than object x.

Corollary 3.21 GLS is co-NP-complete even for trees.

We refine the complexity of GLS using natural parameters: the number of swaps
per agent and the length of the sequence. Although RO and GLS are close to be dual
problems, they are indeed not complementary because GLS focuses on stable allocations.
This is even more visible when GLS is parameterized by the length of the sequence of
swaps. A k-bound on the sequence of swaps introduces a dependency on k on the notion
of stability: we focus on allocations reachable after exactly k swaps or stable allocations
reachable after less than k swaps. Stability is not necessary in RO because for an
assignment solution π where agent A gets object x, all the stable allocations reachable
from π assign to A an object preferred to x or x itself.

3.5.2 Guaranteed Level of Satisfaction under budget constraints

Let us define by GLS-max, GLS-sum and GLS-makespan the parameterized versions of
the Guaranteed Level of Satisfaction problem with respect to the parameters on
the maximum number of swaps per agent, on the total number of swaps in the sequence,
and on the makespan of the sequence of swaps, respectively.
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From Proposition 3.20 and its proof, if RO-max is computationally hard then GLS-
max too, in an instance of GLS where the target agent A has one more neighbor and
performs one more swap comparing to the instance of RO. Consequently, Theorem 3.6
implies the hardness of GLS-max for k ≥ 3 on graphs of degree 5. Moreover, since the
structure of tree is kept by the linear reduction from RO to GLS (Proposition 3.20),
Theorem 3.7 implies the hardness of GLS-max in trees.

Corollary 3.22 For k ≥ 3, GLS-max is co-NP-complete, even on graphs of degree ∆G

equal to 5.

Corollary 3.23 GLS-max is co-W[SAT]-hard on trees.

Globally, GLS, like RO, remains difficult in very simple graphs even when the num-
ber of swaps per agent is limited. Alternatively, the parameters on the length of the
sequence enable to determine upper bounds for the complexity of GLS, even if the
problem in general remains hard.

Combining the proofs of Theorem 3.10 and Proposition 3.20 leads to hardness for
GLS parameterized by the length of the sequence of swaps.

Corollary 3.24 GLS-sum and GLS-makespan are co-W[1] hard even for trees.

In terms of complexity upper bounds, a reasoning similar to that of Theorem 3.11
and Proposition 3.12 can be applied to GLS. While we could show W[1] membership
for RO-sum and RO-makespan, leading to a tight characterization, here we are only
able to obtain co-A[2] membership (see Figure 1.4 for an idea of the location of class A[2]

in the A-hierarchy). Actually, we reduce GLS to the model-checking problem on more
sophisticated first-order formulas by using Σ2 formulas (see Section 1.5.2.b). Still, the
results confirm that GLS is tractable when the parameter is a constant.

Proposition 3.25 GLS-sum and GLS-makespan are in co-A[2].

Proof: We reduce co-GLS to MC(Σ2), known to be A[2]-complete (Theorem 1.10), by
following an approach similar to that of Theorem 3.11 and Proposition 3.12.

An instance I of co-GLS-sum with a swap dynamics model 〈N,O,�, G, π0〉, agent
A, object x, and at most k swaps in total, is transformed into an instance I ′ = 〈A, ϕ〉
of MC(Σ2). The co-GLS problem asks whether there exists a reachable allocation,
stable under the condition of at most k exchanges, where agent A obtains an object
less preferred than x. Structure A is a τRO-structure over the universe N ∪O, which is
defined as in the proof of Theorem 3.11.

The Σ2-formula ϕ is defined as ϕ = ∃c∃z∃x0∃x1∃y1∃a1∃b1 . . . ∃xk∃yk∃ak∃bk
∀x∀y∀a∀b

(
ψk ∨

∨
0≤k′<k ψ

k′ ∧ χk′
)

with

ψk
′ ≡

k′∧
i=1

(
E (xi, yi) ∧ SUCC(xi, bi, ai) ∧ SUCC(yi, ai, bi) ∧ obji(xi, ai) ∧ obji(yi, bi)

)
∧TARGA(xk′) ∧ objk′+1(xk′ , c) ∧ TARGx(z) ∧ SUCC(xk′ , z, c)
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χk
′ ≡

(
E (x, y) ∧ objk′+1(x, a) ∧ objk′+1(y, b)

)
→
(
SUCC(x, a, b) ∨ SUCC(y, b, a)

)
where for all i, obji(., .) is defined as in Theorem 3.11.

We claim that there exists a reachable allocation, stable under the condition of at
most k swaps where agent A obtains an object less preferred than x in I if and only if A
is a model of formula ϕ in I ′. We omit the details of this proof because they are similar
to those of Theorem 3.11.

Formula ϕ expresses the reachability of an object c for agent A, either in a stable
allocation or within at most k swaps, such that A prefers x to c. More precisely, formula
ψk
′

says that, after a sequence of k′ swaps, agent A obtains an object c that she prefers
less than object x. Formula χk

′
is related to the variables with universal quantifiers and

says that any two connected agents must not mutually prefer the object of the other
one, after the k′ th swap. This formula forces the allocation reached after k′ swaps to be
stable. It is defined in ϕ only for k′ < k because since the problem is parameterized by
k, an allocation reached after k swaps does not need to be stable. Hence, co-GLS-sum
is correctly translated.

The reasoning for co-GLS-makespan is the same, based on the formula of the proof
in Proposition 3.12. �

Note that the previous result does not enable us to provide a completeness result
for GLS. However, by referring to the parameterized hierarchies (see Figure 1.4), we
know that the exact parameterized complexity class for GLS-sum and GLS-makespan
is somewhere between co-W[1], co-W[2] and co-A[2].

3.6 Reachable Pareto-efficient allocations

The question of this section is how to coordinate the swaps in order to reach a Pareto-
efficient allocation within RAll, i.e., a RAll-efficient allocation. Note that a RAll-efficient
allocation is stable, otherwise at least two agents will benefit from a possible swap.
However, the reverse does not hold, as we can see in Example 3.6 with allocation π1 that
is stable but Pareto dominated by another reachable allocation.

First of all, we show that it is computationally hard to find a sequence of swaps
leading to a RAll-efficient allocation.

Proposition 3.26 Pareto Reachability is not solvable in polynomial time unless P

=NP1.

Proof: We base ourselves on the reduction provided in the proof of Theorem 3.15,
which constructs an instance I ′ of Reachable Assignment from an instance I of
Reachable Object. Instance I is a yes-instance if and only if every agent gets her most
preferred object in I ′. This allocation must be the unique RAll-efficient allocation in case
it is reachable. Therefore, if an algorithm computing a RAll-efficient assignment could
exist, then it would be used to recognize a yes-instance of Reachable Object. �

1We do not state that Pareto Reachability is NP-hard since this is not a decision problem.
Actually, we do not know for which precise complexity class Pareto Reachability is hard, but some
complexity classes like PPAD could be adapted since a solution for Pareto Reachability always exists.
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This negative result does not prevent the existence of a polynomial algorithm for
constructing a RAll-efficient allocation in a specific class of instances. The remainder of
this section is devoted to the resolution of Pareto Reachability in a path and in a
star.

A classical algorithm for achieving Pareto-efficiency is the Serial Dictatorship mech-
anism [Abdulkadiroǧlu and Sönmez, 1998]. It ranks the agents in an arbitrary manner,
and assigns them in turns their most favorite object within the set of unassigned objects,
until each object is assigned. When the social network is a path, one can use this idea
to compute a RAll-efficient allocation.

Algorithm 3.2: Serial dictatorship in a path

Input: Swap dynamics instance 〈N,O,�, G, π0〉, agent i
Output: a RAll-efficient allocation π

1 if i = 1 then
2 return π0;

3 oj ← best reachable object for i;
4 j ← owner of oj in π0;
5 π ← apply κ(j, i) on π0;
6 return Algorithm 3.2 (〈N,O,�, G, π〉, i− 1);

The parameter i of Algorithm 3.2 designates the dictator who chooses her best reach-
able object, and κ(j, i) is the canonical sequence (see Proposition 3.3).

Proposition 3.27 When G = (N,E) is a path, Algorithm 3.2 with i = n solves
Pareto Reachability in polynomial time.

Proof: The algorithm starts with a leaf i of the path, modifies the current allocation
in such a way that the leaf-agent obtains her best object (Corollary 3.4 is used), and
continues on the subpath from i − 1 to 1. Let us denote by π the allocation given by
Algorithm 3.2. The proof is by induction on i: when the decision for agent i is made, the
allocation π restricted to the agents {i+ 1, . . . , n} is RAll-efficient. The base case where
i = n follows from the definition of the algorithm: no previous swap has been done and
we choose the sequence of swaps that gives to n her best possible object. Assume that the
partial allocation of π over the agents {i+ 1, . . . , n} is RAll-efficient, and let us consider
the step of the algorithm where the serial dictator is i. At step i, object oj := π(i) cannot
be currently owned by an agent ` such that ` > i, otherwise agent ` is still able to perform
rational swaps where she obtains an object that she prefers to oj , contradicting the fact
that π restricted to the agents {i + 1, . . . , n} is RAll-efficient. Therefore, oj is actually
owned by an agent j such that j ≤ i. Suppose that there exists a reachable allocation
π′ where π′(`) = π(`) for any agent ` such that ` > i, but π′(i) �i π(i). This implies
that we have previously performed in the algorithm swaps that prevent us to make
π′(i) reachable for agent i at step i. However, the only swaps that we have performed
are swaps of canonical sequences. And the canonical sequence is the minimal and only
possible way to move each object o` to agent ` for ` > i in a path (Proposition 3.3).
So, this contradicts the assumption that π′(`) = π(`) for any agent ` such that ` > i.
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Therefore, by induction assumption, the allocation π restricted to the agents {i, . . . , n}
is RAll-efficient, i.e., Pareto-efficient among all reachable allocations. �

Now we study the case of a star. Assume that the network consists of a center denoted
by n, and n− 1 leaves denoted by 1, . . . , n− 1 (see Example 3.6 for an illustration), and
that each agent i ∈ N is initially endowed with object oi. We can suppose, without loss
of generality, that for any i ∈ [n − 1], oi �n oi+1. For instance, if on �n oj for some
j then the center will never exchange her object with j, so j keeps her object in any
sequence of swaps.

Proposition 3.28 When G = (N,E) is a star, there exists a linear time algorithm for
Pareto Reachability.

Proof: Let us consider the following algorithm: for i = n− 1 down to 1, exchange the
objects of n and i if it is rational. As already mentioned, a leaf who has exchanged her
initial object is not involved in a subsequent swap. The algorithm considers the objects
by increasing order of preference of the center agent.

Suppose by contradiction that the allocation π returned by the algorithm is Pareto
dominated by another reachable allocation π′. Let us denote by s and s′ the sequences
of exchanges leading respectively to π and π′. The key observation is that the pairs of
agents involved in any feasible sequence of swaps are composed of the center agent n
and a leaf-agent i where the index of the leaves progressively decreases. In the first step
for which s and s′ differ, the center agent n swaps her object with ` in s and `′ in s′,
with ` 6= `′. By construction of our algorithm, in which we perform the swaps with each
leaf-agent by decreasing order of the indices if this is rational, it must hold that `′ < `.
But this implies, by rationality of the swaps, that agents ` and n cannot later swap
their objects in s′ since, by exchanging with agent `′, agent n has obtained an object
that she prefers to object o`. Therefore π(`) �` π′(`), contradicting the fact that π is
Pareto-dominated by π′. �

As an open problem, it appears interesting to see if Pareto Reachability is
polynomial time solvable in a spider graph, class of graphs for which RO is hard (The-
orem 3.1), by a combination of the techniques used to solve the cases of paths and
stars.

3.7 Concluding remarks

We have investigated some natural problems arising when a group of agents exchange
their object along a social network. Our results show that, beyond the agents’ prefer-
ences, the social network as a collaboration tool can widely influence and constrain the
possible allocations. In particular, we have proved that deciding whether an agent can
obtain a given object (Reachable Object) or be guaranteed to obtain a given level
of satisfaction (Guaranteed Level of Satisfaction) is computationally difficult,
even if the social network is a tree. Nevertheless, an efficient algorithm can determine
if a complete allocation (Reachable Assignment) is reachable in a tree. Concerning
simple graph structures like paths, we were able to decide if a leaf-agent can acquire
a given object. This result can be extended to the case where the distance between a
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No constraint
Budget constraints

max sum makespan

RO

General graph NP-c (Thm. 3.1) NP-c for k ≥ 2 (Thm. 3.6) W[1]-c (Cor. 3.13) W[1]-c (Cor. 3.13)

Tree NP-c (Thm. 3.1) W[SAT]-hard (Thm. 3.7) W[1]-c (Cor. 3.13) W[1]-c (Cor. 3.13)

Bounded degree NP-c (Thm. 3.6) NP-c for k ≥ 2 FPT FPT

RA

General graph NP-c (Thm. 3.15) NP-c for k ≥ 3 (Prop. 3.17) FPT (Prop. 3.19) W[1]-hard (Prop. 3.18)

Tree P (Prop. 3.16) P P P

Bounded degree NP-c (Prop. 3.17) NP-c for k ≥ 3 (Prop. 3.17) FPT (Prop. 3.19) ?

GLS

General graph co-NP-c (Cor. 3.21) co-NP-c for k ≥ 3 (Cor. 3.22)
co-W[1]-hard (Cor. 3.24) co-W[1]-hard (Cor. 3.24)

/ co-A[2] (Prop. 3.25) / co-A[2] (Prop. 3.25)

Tree co-NP-c (Cor. 3.21) co-W[SAT]-hard (Cor. 3.23) co-W[1]-hard / co-A[2] co-W[1]-hard / co-A[2]

Bounded degree co-NP-c (Cor. 3.22) co-NP-c for k ≥ 3 co-A[2] (Prop. 3.25) co-A[2] (Prop. 3.25)

Table 3.1: Complexity results of RO, RA and GLS under classical and parameterized
complexity

non-leaf-agent and the original location of the object is bounded by a constant. We
left open the question whether Reachable Object can be efficiently solved in a path,
without restriction on the agent’s location.

Despite the fact that in general all these decision problems are computationally hard,
the parameterized approach allows us to escape this difficulty under realistic assump-
tions. We consider natural parameters constraining the number of swaps per agent or the
duration of the sequence. Assuming that they remain small is reasonable in practice as
the patience of the agents, i.e., their willingness to wait before obtaining a target object,
typically does not increase with the instance size. In the case of few swaps per agent,
RO, GLS and RA remain hard even on bounded degree graphs. So, this parameteri-
zation, although natural, does not help us to grasp the problems. However, considering
the length of the sequence, although the problems are intractable (even for trees for the
case of RO and GLS), this hardness is circumscribed to not “so hard” parameterized
complexity classes, with for example a complexity upper bound to the first level of the
W-hierarchy for RO. This leads for instance to the possibility of handling the problems
when the parameters do not depend on the instance size, a very natural assumption.
Furthermore, unlike the first parameter, the length of the sequence enables to obtain
fixed-parameter tractability for some problems, such as RA with respect to the total
number of swaps in the sequence, and RO on bounded degree graphs, graphs which
typically model social networks representing a possibility of collaboration among agents.
See Table 3.1 for an overview of the complexity results.

Note that the case of RA parameterized by the makespan of the sequence of swaps is
particular. In general this problem is computationally hard whereas RA parameterized
by the total number of swaps in the sequence is fixed-parameter tractable. The difference
of complexity between these two parameterizations contrasts with the cases of RO and
GLS for which the parameters on the length of the sequence lead to the same complexity
classes. This suggests that the possibility of making parallel swaps makes the problem
harder, when all the agents need to reach a particular object together. Moreover, we
left open the question of an upper bound for the complexity of RA with respect to the
makespan, as well as the restricted case where the network is a bounded degree graph.
We suspect that this could be computationally hard since the tricks used for solving RO
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parameterized by the makespan in bounded degree graphs and RA parameterized by
the total number of swaps cannot apply in such a case.

The social quality of reachable allocations has also been studied through the search of
Pareto-efficient allocations. This problem is shown difficult in general networks. On the
positive side, polynomial algorithms have been presented for paths and stars. It seems
challenging to settle the complexity of computing a Pareto-efficient allocation when the
network is a tree.

As future works, many additional aspects of the model deserve attention. For ex-
ample, we have not investigated the impact of a strategic behavior of the agents on
the process of swaps. Reasoning strategically can drive an agent to refuse an immedi-
ate profitable deal, for instance in a look-ahead search. Studying the social welfare of
the possible outcomes would also be interesting, even if classical measures such as the
egalitarian or the utilitarian social welfare are undefined in our model without utilities.
Like in the price of anarchy/stability, how bad a stable outcome can be, compared to an
allocation that is reached after swaps guided by a central authority?

Another future direction is to allow more than two agents to exchange their objects
along the network and see which allocations emerge. This extension would be very
interesting because it could enable to generalize the conditions of the top trading cycle
algorithm where any cycle of exchanges is allowed provided they are rational: in such
a context the top trading cycle can be applied when the social network is a complete
graph. In such a perspective, one could think that the groups of agents that are enable
to exchange their object could be modeled for instance as cliques of the network such as
in the work of Chevaleyre et al. [2007c], in an idea similar to Chapter 2.

The parameterized approach allows progress in the understanding of the problems
and leads to significant and realistic positive results. So far, we have considered restric-
tions on the network as well as on the solution size. A natural extension is to investigate
the influence of a third dimension: constraints on the preference profile, e.g., single-
peaked or single-crossing domains. Furthermore, assuming the full knowledge of the
preferences and the network is not relevant in all the contexts. Relaxing this assumption
could be a challenging future work.

We have seen in this chapter that, when the social network models the ability of
agents to collaborate in a “win-win” perspective, the structure of the graph can deeply
affect the complexity of the problems under study, as well as their outcome. Beyond
collaboration, the social network can model what the agents are able to observe about
the situation of other agents. Typically, in a context of resource allocation, the links of
the network could tell the partial allocation that the agents are able to observe. The
model of swap dynamics can also be viewed under this point of view: the swap is possible
between two agents if they both know the object assigned to the other and they prefer
it to their current endowment (note that it is impossible to trade an object for another
whose owner is not known). In resource allocation, by considering that the network
models a partial vision of the agents, one could think that the graph topology would
significantly impact the perceived fairness of the allocation.
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Part II

The Social Network as an
Informative Tool
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Introductory comments

So far, we have examined two problems of social choice where the possibility of collabo-
ration among agents is modeled by a social network, represented by an undirected graph
over the agents. In this part, we focus on another type of interaction, more related to
the communication and the visibility of the agents with one another. We assume that
the agents only have information about a limited part of the agents, even if they know
that other agents exist. This visibility relation among the agents can also be modeled by
a social network. However, this time, there is no reason to assume by default that the
visibility relation is symmetric. Indeed, one agent can communicate some information
about her situation to another agent but this agent is not obliged to disclose her own
situation.

Consequently, we represent in this part the social network G = (N,E) as a directed
graph, where the binary relation over N that is induced by E does not need to be
symmetric. Nevertheless, for some specific results, it makes sense to impose some re-
strictions on the graph, for instance that G is undirected to express the fact that the
binary relation represented by E is symmetric.

We investigate the two problems that were already studied in the first part, namely
house allocation and strategic voting. However, since the social network has a different
interpretation, we study these problems under different views: house allocation is ex-
amined through perceived fairness whereas we deal with uncertainty in strategic voting.
More precisely, in Chapter 4, given an allocation of items to agents, agents can only be
envious of their successors in the graph. The vision of the agents is then partial and
given by the social network, allowing to define a local notion of the envy-freeness crite-
rion. In Chapter 5, voters devise strategies for manipulation in iterative voting, based
on a partial information given by the social network: they can only observe the votes of
their successors in the graph.
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Chapter 4

Envy-Freeness in House
Allocation

Abstract

We study the fair division problem consisting in allocating exactly one item per agent,
which is called house allocation, so as to avoid, or minimize, envy. We focus on a
particular setting where the agents can only be envious of their direct successors in the
social network, modeled as a directed graph over the agents. The agents only perceive
from the allocation the objects assigned to their successors in the graph, or more generally
their successors are the only agents they can envy because of some specific relationships.
This defines a notion of local envy according to the social network. The existence of
a locally envy-free allocation is investigated, as well as the minimization of local envy
in case a locally envy-free allocation does not exist. We also examine a variant of the
problem where the agents can be located on the network by a central authority, in such
a way to avoid local envy. These problems turn out to be computationally hard even on
very simple graph structures, but we identify several tractable cases. We further provide
efficient algorithms and experimental insights.

Résumé

Ce chapitre est dédié à un problème de partage équitable consistant à affecter ex-
actement une ressource par agent, de manière à éliminer ou minimiser l’envie entre les
agents. On s’intéresse à un cadre particulier où les agents ne peuvent envier que leurs suc-
cesseurs directs dans le réseau social, modélisé par un graphe orienté. En effet, les agents
ne perçoivent de l’allocation que les objects affectés à leurs successeurs dans le graphe,
ou plus généralement leurs sucesseurs sont les seuls qu’ils peuvent envier en raison de re-
lations sociales particulières. Ceci permet de définir une notion d’envie locale dépendant
du réseau social. On se propose d’étudier les conditions d’existence d’une allocation
localement sans envie, ainsi que la minimisation de l’envie locale, dans une perspective
d’optimisation, lorsqu’il n’existe pas d’allocation localement sans envie. Dans une vari-
ante du problème, les agents eux-mêmes peuvent être affectés à des noeuds du graphe

This chapter is an extension of [Beynier, Chevaleyre, Gourvès, Lesca, Maudet, and Wilczynski,
2018].
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par l’autorité centrale, de manière à éviter l’envie locale. Tous ces problèmes s’avèrent
être difficiles d’un point de vue calculatoire, même avec des structures de graphes très
simples, mais on relève néanmoins certains cas pouvant être résolus efficacement. Des
algorithmes efficaces et des résultats expérimentaux sont également fournis.
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4.1. INTRODUCTION

4.1 Introduction

Fairly allocating resources to agents is a fundamental problem in Economics and Com-
puter science, and has been the subject of intense investigations [Young, 1995, Brams
and Taylor, 1996, Moulin, 2004, Bouveret et al., 2016, Chevaleyre et al., 2017]. Recently,
several papers have explored the consequences of assuming in such settings an underlying
network connecting agents [Chevaleyre et al., 2007c, Abebe et al., 2017, Bei et al., 2017].
The most intuitive interpretation is that agents have limited information regarding the
overall allocation. Two agents can perceive each other if they are directly connected in
the graph.

4.1.1 Envy-freeness and social network

A fairness measure, very sensitive to the information available to agents, is the notion of
envy [Tinbergen, 1946, Foley, 1967, Varian, 1974]. Envy occurs when an agent prefers
the share of some other agents over her own. Accounting for a network topology boils
down to replace “other agents” by “neighbors”. The notion of envy can thus naturally
be extended to account for the limited visibility of the agents. Intuitively, an allocation
is locally envy-free if none of the agents envies her neighbors in the social network. This
notion has been referred as graph, social, or local envy-freeness, and has been introduced
for cake-cutting problems [Cato, 2010, Abebe et al., 2017, Bei et al., 2017], as well as for
allocation problems with indivisible resources [Chevaleyre et al., 2017, Aziz et al., 2018,
Bredereck et al., 2018, Flammini et al., 2018].

We are concerned with the allocation of indivisible goods within a group of agents.
Our study is focused on house allocation, the specific setting where each agent should
receive exactly one object. The agents are embedded in a social network, which captures
the possibility of envy among them. Since the relation of envy may not be symmetric,
the social network is represented by a directed graph over the agents. Nevertheless, we
sometimes restrict ourselves to the symmetric case of undirected graphs. The classical
notion of envy-freeness, which corresponds to the case where the network is complete, is
not a very exciting notion in house allocation. Indeed, for an allocation to be envy-free,
each agent must get her top object, implying that the only positive instances are trivial
and very rare. However, when an agent can only be envious of a subset of the other
agents, given by the links of the social network, she may not need to get her top-resource
to be envy-free. The connections between the agents are then crucial issues in order to
compute a locally envy-free allocation, as we can observe in the following scenario.

Example 4.1 Suppose there is a team of workers taking their shifts in sequence, to
which their employer must assign different jobs. The workers have preferences regarding
the jobs. Concretely, there are three jobs, “chop the tree”, “mow the lawn”, and “trim
the hedge”, and three gardeners, Alice, Bruno and Carlos, with the following preferences.

Alice: chop � mow � trim
Bruno: mow � chop � trim
Carlos: chop � trim � mow

Clearly, there is no envy-free allocation in such a context because Alice and Carlos both
prefer the job “chop the tree”. However, the shifts are contiguous and the employees
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work at the same place. Therefore, they only have the opportunity to see the job allo-
cated to some other workers, as one ends and the other one begins her shift, inducing a
symmetric visibility relation among the workers. Actually the three workers take shifts
in the following order: Alice, then Bruno and finally Carlos. This can be modeled as a
path topology, as depicted on the graph below, because of the symmetry of the visibility
relation and the chronological order of the shifts.

Alice Bruno Carlos

Since Alice and Carlos never meet during the shifts, they may not know each other
or at least may not feel envy towards the other, because they are not able to observe
the object of envy. This implies that this may not be useful to look for an allocation
that is envy-free according to these two agents. By allocating the job “chop the tree” to
Alice, “mow the lawn” to Bruno, and “trim the hedge” to Carlos, we get an envy-free
allocation if we disregard the fact that agent Alice and Carlos may be envious of each
other. Therefore, restricting to locally envy-free allocations, where the possibility of envy
is given by a graph, appears as a relevant and realistic way to allocate resources in a
fairly manner.

One could object that, in Example 4.1, Carlos may still be envious of Alice, because
he knows that she must have received the task that Bruno did not get, i.e., “chop the
tree”. This is a valid point, to which we provide two counter-arguments. First, as a
technical response, note that in general, agents would not know exactly who gets the
items they do not see. Thus, although agents may know that they must be envious
of some agents, they cannot identify which one, which makes a significant difference
in the case of envy. In a similar idea, the links of the network can be interpreted as
membership in the same social class, and thus agents may only envy someone who is
similar to themselves. For instance, one may want to have a better car than the people
she went to school with but be indifferent if a random person has a nicer car. Our second
point is more fundamental and concerns the model and the motivation of this work.
Clearly, the existence of a network may be due to an underlying notion of proximity
(either geographical, or temporal as in our example) in the problem. However, another
interpretation of the meaning of links must be emphasized: links may represent envy the
central authority is concerned with. In other words, although there may theoretically be
envy among all agents, the central authority may have reasons to only focus on some of
these envy links. For instance, one may wish to avoid envy among members of the same
team in an organization, because they actually work together on a daily basis (in that
case links may capture team relationships). Under this interpretation, an undirected
network of degree n − 2 could for instance model a situation where agents team-up
in pairs and conduct a task together, sharing their resources. In a similar vein, one
may focus on avoiding envy among “similar” agents, because they may be legitimate to
complain if they are not treated equally despite similar competences.

Our previous example shows how modeling the possibility of envy by a network can
be meaningful. By describing a situation where tasks should be assigned to workers
with the same grade, envy is defined as symmetric. However, this is not a general rule
and many natural real-life examples highlight the fact that envy may not be symmetric.
Contexts where a hierarchical relation exists among the agents, like in Example 4.2, are
typical examples.
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Example 4.2 Let us consider a scenario where the director general of a company aims
at rewarding her employees at the end of the year. The company is composed of 7
employees, including one deputy director, one project manager, one marketing manager,
and four other employees either in the marketing branch or in the project branch. They
are all tied by the following hierarchy.

deputy director

project manager marketing manager

e1 e2 e3 e4

This hierarchy among the employees of the company can tell us the possible relations of
envy. If an agent estimates that the reward obtained by one of the employees she manages
is better than hers, then she can be envious. However an employee has less reasons to
be envious of the reward of her manager. In this example, envy is not symmetric and
the network can be represented by the directed graph describing the hierarchy among the
employees. Observe that the two managers are not envious of each other because they
belong to different branches and do not consider that their two fields can be compared.
The typical networks of such hierarchical examples are directed acyclic graphs like in this
example, or can be for instance transitive graphs (the binary relation represented by the
graph is transitive, see Definition 1.3) if employees may be envious of all the employees
that are lower than them in the hierarchy.

Generally, there is no reason to assume that envy has to be symmetric and thus we
model the possibility of envy via a directed graph. We nevertheless sometimes assume
a symmetric context for envy and then use an undirected graph as a special case.

4.1.2 Related work

Our work is connected to a number of other recent contributions. Among the works deal-
ing with local envy-freeness that we have already cited, one could mention in particular
the work of Bredereck et al. [2018], where the authors also investigate the existence of a
locally envy-free allocation. The main differences are about the model of fair allocation
in itself: they consider cardinal preferences whereas we deal with ordinal ones, and they
study general resource allocation problems whereas we focus on the house allocation
setting.

Other works combine fair allocation and graphs although they do not assume that the
agents are embedded in the graph. For instance, the allocation of a graph has recently
been studied [Bouveret et al., 2017]. In this context, the nodes of the graph represent
indivisible resources to allocate and edges formalize connectivity constraints between
the resources. Some computational aspects of allocating agents on a line (or undirected
path) are also discussed by Aziz et al. [2017]: in that case the line concerns the items
(e.g., slots) to be allocated, and induces a domain restriction (stronger than single-
peakedness). In these cases the model is really different, since the graph is capturing
dependencies between the resources (like spatial dependencies for pieces of land).
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Several ways for a central authority to control fair division have been discussed by
Aziz et al. [2016b]: the structure of the allocation problem can be changed by adding or
removing items to improve fairness. Interestingly, our model introduces a new type of
control action: locating agents on a graph. Finally, because envy-freeness is difficult to
achieve in general (with indivisible items) [de Keijzer et al., 2009], different notions of
degree of envy have been studied (see e.g., Nguyen and Rothe [2014], Caragiannis et al.
[2009], Lipton et al. [2004], and a recap of these degrees in Section 1.4.1).

4.1.3 Contributions and organization

In this chapter, we study a local notion of envy-freeness for the specific problem of house
allocation. The relaxation of the envy-freeness criterion is particularly relevant in house
allocation because the standard requirement of envy-freeness is too restrictive in such a
context. Moreover, whereas the literature on envy-freeness conditioned by graphs deals
with cardinal preferences, we focus on the specific case of ordinal preferences, which
implies for instance particular measures for optimizing the non-envy of the society.

A formal definition of the model, together with the definition of the main problems
that we address, are provided in Section 4.2. Section 4.3 is dedicated to the problem
of deciding whether a central planner can allocate the objects, such that no agent will
envy a successor in the network. In this problem, called Dec-LEF, the central planner
has a complete knowledge of the social network and the agents’ rankings of the objects.
We identify intractable and polynomial cases of this decision problem, with respect
to the number of successors of each agent, that is the out-degree of the nodes in the
graph representing the social network. The problem is also investigated through another
relevant parameter that is the size of a (minimal) vertex cover in the graph.

Section 4.4 is dedicated to optimization problems with two different perspectives:
maximizing the number of locally envy-free agents, and maximizing the degree of non-
envy of the society. We provide approximation algorithms for both approaches.

A variant of Dec-LEF called Dec-Location-LEF is studied in Section 4.5. This
problem asks if one can decide both the placement of the agents and the object allocation
so as to satisfy local envy-freeness. A natural interpretation for this problem relies on a
network which models connections related to working hours of employees in a team, like
in Example 4.1. In this idea, the manager of the team could decide to organize the time
schedule of her employees in the same time she assigns to them tasks. The problem is
shown to be NP-complete, and a special case is resolved in polynomial time. Another
variant of the problem is examined in Section 4.6, where the reachability of a locally
envy-free allocation, by means of swap dynamics as defined in Chapter 3, is investigated.
Before concluding, we report some experimental results in Section 4.7.

4.2 Problems related to local envy-freeness

The model of resource allocation that we study is a house allocation problem, as de-
scribed in Section 1.4.2.a. House allocation refers to a resource allocation problem where,
given a set of agents N = {1, . . . , n} and a set of indivisible resources O = {o1, . . . , or},
the number of resources is equal to the number of agents, i.e., r = n, and each agent
i ∈ N should receive exactly one resource o ∈ O. An allocation of objects to agents
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is then an allocation π : N → O where π(i) 6= π(j). The links of the social network,
represented by a directed graph G = (N,E) over the agents, provide for each agent
i ∈ N the set of agents that she may envy. More precisely, agent i can envy agent j only
if there exists an arc from i to j in E. An instance of a house allocation problem is thus
described by a tuple I = 〈N,O,�, G = (N,E)〉, where we assume that the agents have
strict preferences over the items. When the social network G is dense, it may be easier
to describe it through its complementary graph G which is the unique graph defined on
the same vertex set and such that there is an arc between two vertices if and only if this
arc does not exist in G.

We are now able to define the notion of local envy-freeness.

Definition 4.1 (Local envy-freeness (LEF)) An allocation π is locally envy-free
(LEF) if no ordered pair of agents (i, j) ∈ E satisfies π(j) �i π(i).

Classical envy-freeness (Definition 1.30) refers to the case where the social network
G is a complete graph. For a given allocation, an agent is said to be locally envy-free
(LEF) if she prefers her object to the object(s) of her successor(s) in the social network.

Several notions of degrees of envy have been studied [Chevaleyre et al., 2017, Nguyen
and Rothe, 2014, Caragiannis et al., 2009, Lipton et al., 2004]. In our context, we shall
study the number of envious agents, and a measure capturing some simple notion of
intensity of envy, in terms of the difference of ranks between items. These two no-
tions would correspond to esum,max,bool and esum,sum,raw, up to normalization, under the
classification of Chevaleyre et al. [2017] (see Section 1.4.1).

Definition 4.2 (Degrees of (non)-envy) Given an allocation π, the degree of envy
of agent i towards an agent j such that (i, j) ∈ E is

e(π, i, j) =
1

n− 1
max{0, r i(π(i))− r i(π(j))}

where r i(o) is the rank of object o in i′s preferences. The average degree of envy (respec-
tively of non-envy) is E (π) = 1

|E|
∑

(i,j)∈E e(π, i, j) (respectively is NE (π) = 1− E (π)).

Note that for a given allocation π, an agent i envies a successor j if and only if
e(π, i, j) > 0.

We mainly address four problems: Dec-LEF, Max-LEF, Max-NE and Dec-
Location-LEF. The first one is a decision problem regarding the existence of an LEF
allocation over a given social network.

Dec-LEF:

Instance: Instance 〈N,O,�, G〉
Question: Is there an LEF allocation π?

The second and the third ones are optimization problems in which an allocation that
is as close as possible to local envy-freeness is sought, using the aforementioned criteria.

Max-LEF:

Instance: Instance 〈N,O,�, G〉
Problem: Find an allocation that maximizes the number of LEF agents
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Max-NE:

Instance: Instance 〈N,O,�, G〉
Problem: Find an allocation that maximizes the average degree of non-envy NE (π)

In Dec-Location-LEF, one has to place the agents on the network in addition to
the allocation. This placement makes sense if we consider Example 4.1 where the agents
take shifts.

Dec-Location-LEF:

Instance: Instance 〈N,O,�〉, graph G = (V,E)

Question: Are there two bijections π : N → O and L : N → V (π and L determine
the allocation of the objects and the location of the agents on the network,
respectively) such that π(i) �i π(j) for every arc (L(i),L(j)) ∈ E?

Example 4.3 As a warm-up, let us consider an instance with five agents, where N =
{1, 2, 3, 4, 5} and O = {o1, o2, o3, o4, o5}. The visibility relation among the agents is
supposed to be symmetric and to be based on a chronological order, like in Example 4.1.
More precisely, the agents are connected to each other via a path. The network and the
preferences are given as follows.

1 2 3 4 5

1 : o1 � o2 � o3 � o4 � o5

2 : o3 � o1 � o2 � o4 � o5

3 : o1 � o2 � o4 � o3 � o5

4 : o2 � o1 � o4 � o3 � o5

5 : o3 � o5 � o2 � o1 � o4

Is there an LEF allocation of goods to agents? If not, what is the minimum number
of envious agents? Finally, is it possible to find an LEF allocation by relocating agents
on this path?

Let us try to construct an allocation π that is LEF. Observe that the agents 3 and
4, who are neighbors, both rank objects o1 and o2 as their first two preferred objects and
rank the remaining objects in the last positions of their preference ranking following the
same order. This implies that they cannot obtain one of the remaining objects in an LEF
allocation, i.e., an object within {o3, o4, o5}. Indeed, if only one agent between 3 and 4
obtains an object in this subset, then she will be envious of the other agent. Otherwise,
if they both get an object from this subset, since their preferences over these objects are
the same, one of them will necessarily envy the other. Therefore, we have to assign
object o1 to agent 3 in π, as well as o2 to agent 4, because they both prefer this item to
the other one, respectively. Consequently, agent 2, neighbor of agent 3, must obtain an
object preferred to o1, which is assigned to agent 3. She only prefers object o3 to o1, so
we have to assign o3 to agent 2 in π. Agent 5, neighbor of agent 4, must get an object
preferred to o2, which is assigned to agent 4. The only possible objects are o3 and o5,
but o3 is already assigned to agent 2, thus we assign object o5 to agent 5 in π. Finally,
there only remains object o4 and agent 1. Agent 1 prefers o3, the object assigned to her
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neighbor (agent 2), to o4. Therefore, by assigning o4 to agent 1 in π, we get that agent
1 is envious of agent 2. Thus, there is no LEF allocation in this instance, implying that
this is a no-instance of Dec-LEF.

Observe that allocation π is almost LEF since only agent 1 is envious. Therefore,
there exists an allocation with only one envious agent. Because there is no LEF alloca-
tion, this is the minimum number of envious agents that we can obtain in any allocation.

Finally, remark that, in allocation π, the only envious agent 1 gets object o4, and
the only object that agent 1 likes less than o4 is object o5. Object o5 is owned by agent 5
who is located at a leaf of the path and who on the opposite prefers o5 to o4. Therefore,
by considering a new location of the agents which is the same as the current graph but
with agent 1 as a leaf of the path who is only connected to agent 5 (i.e., the new path
[2, 3, 4, 5, 1]), allocation π = (o4, o3, o1, o2, o5) is LEF. Hence, this is a yes-instance of
Dec-Location-LEF.

4.3 Existence of a locally envy-free allocation

This section is devoted to Dec-LEF. Our main findings settle the computational status
of Dec-LEF with respect to the degree of the nodes in the social network, as well as
the size of a vertex cover.

Trivially, every allocation is LEF if the social network is empty. In a complete graph,
the only configuration that enables the existence of an LEF allocation is when the most
preferred object of each agent is different. Under such a condition, there is a unique
LEF that assigns to each agent her best object.

Our first result shows that Dec-LEF is computationally difficult, even if the social
network is very sparse and undirected. This is somewhat surprising as such a network
offers very little possibility for an agent to be envious.

Theorem 4.1 Dec-LEF is NP-complete, even if G is a matching, i.e., an undirected
regular graph of degree 1.

Proof: The reduction is from 3-SAT, known to be NP-complete (Theorem 1.2). In
3-SAT, we are given a set of clauses C = {C1, · · · , Cs} defined over a set of variables
X = {x1, · · · , xv}, where each clause contains exactly three literals. The question is
whether there exists a truth assignment which satisfies all the clauses.

Take an instance I = 〈C, X〉 of 3-SAT and create an instance J of Dec-LEF as
follows.

The set of objects is O = {uji : i ∈ [v], j ∈ [s]} ∪ {uji : i ∈ [v], j ∈ [s]} ∪ {qj : j ∈
[s]} ∪ {tij : i ∈ [v], j ∈ [s]} ∪ {h` : ` ∈ [s.(v − 1)]}. Here, uji and uji correspond to the
unnegated and negated literals of xi in clause Cj , respectively, qj corresponds to clause
Cj , and objects tij and h` are gadgets. Thus, |O|= 4sv.

The set of agents N is built as follows. For each (i, j) ∈ [v] × [s], create a pair of
variable-agents Xij and X ′ij which are linked in the social network. For each j ∈ [s],
create a pair of clause-agents Kj and K ′j which are linked in the network. For each
` ∈ [s.(v−1)], create a pair of garbage-agents L` and L′` which are linked in the network.
Thus, the network consists of a perfect matching with 4sv agents.
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Each clause Cj is associated with the pair of clause-agents (Kj ,K
′
j), qj and three

objects corresponding to its literals. For example, C2 = x1 ∨ x4 ∨ x5 is associated with
objects q2, u2

1, u2
4, and u2

5. The preferences of the clause-agents are:

Kj : qj � (the 3 objects related to the literals of Cj) � restj

K ′j : (the 3 objects related to the literals of Cj) � qj � restj

where “restj” means the remaining objects. Both “restj” and the three objects corre-
sponding to the literals of cj are arbitrarily ordered, but in the same way for Kj and K ′j .
Each variable xi is associated with the s pairs of variable-agents (Xij , X

′
ij), for j ∈ [s].

The preferences of these variable-agents are defined as follows (note that j+ 1 = 1 when
j = s):

Xij : uji � tij � u
j
i � tij+1 � restji

X ′ij : tij � uji � tij+1 � uji � restji

where “restji” means the remaining objects arbitrarily ordered, but in the same way for
Xij and X ′ij . The preferences of the garbage-agents (L`, L

′
`), for ` ∈ [s.(v − 1)], are:

L` : h` � U � rest`

L′` : U � h` � rest`

where U = {uji , u
j
i : i ∈ [v], j ∈ [s]}, “rest`” is the set of remaining objects, and both U

and “rest`” are arbitrarily ordered in the same way for L` and L′`.
We claim that there is an LEF allocation in instance J if and only if there is a truth

assignment of the variables in X satisfying all the clauses in instance I.
Take a truth assignment φ of the variables in X which satisfies all the clauses in C.

One can allocate objects to each pair of variable-agent (Xij , X
′
ij) in such a way that it

is LEF. More precisely, if xi is set to true in φ, then agent Xij gets object uji and agent
X ′ij gets object ti j+1 (where tim+1 := ti1). Otherwise, i.e., if xi is set to false in φ, Xij

gets uji and X ′ij gets tij . One can allocate objects to each clause-agent pair (Kj ,K
′
j)

in such a way that it is LEF. Indeed, clause Cj is satisfied thanks to one of its literals.
Therefore, it suffices to give to agent Kj object qj and to agent K ′j an unallocated object
corresponding to a literal that makes clause Cj true in φ. Finally, allocate objects to
each garbage-agent pair (L`, L

′
`) in such a way that it is LEF by assigning object h` to

agent L` and any unallocated object of U to agent L′`.
Suppose an LEF allocation exists for J . Consider a variable xi. By construction of

the preferences of the variable-agent pair (Xi1, X
′
i1), we observe that there is absence of

envy in only two cases: Xi1 gets u1
i and X ′i1 gets ti1, otherwise Xi1 gets u1

i and X ′i1 gets
ti2. If we are in the first case, then there is absence of envy between Xis and X ′is only
if Xis gets usi and X ′is gets tis because ti1 is already allocated, and so on; the Xij ’s get

all the uji ’s (i is fixed but 1 ≤ j ≤ s). If we are in the second case, then there is absence
of envy between Xi2 and X ′i2 only if Xi2 gets u2

i and X ′i2 gets ti3 because ti2 is already

allocated, and so on; the Xij ’s get all the uji ’s (i is fixed but 1 ≤ j ≤ s). Thus, set xi to

false (respectively, xi to true) if every Xij gets uji (respectively, Xij gets uji ).
Consider any clause Cj . By construction of the preferences of the clause-agent pair

(Kj ,K
′
j), we observe that there is absence of envy in only three cases: Kj gets qj and
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K ′j gets one of the three objects associated with the literals of Cj . Since the allocation is

LEF, there is some i∗ such that K ′j gets either uji∗ or uji∗ , and this object is not allocated
to a variable-agent. Thus, Cj is satisfied by the above truth assignment. To conclude,
all the clauses are satisfied. �

The strength of this result lies on the fact that the network structure is extremely
simple. As a consequence, it can easily be used as a building block to show hardness of
a large variety of graphs. Despite this negative result, we can establish that the problem
is solvable in polynomial time when the social network is a directed graph G which does
not contain directed cycles.

Proposition 4.2 An LEF allocation is guaranteed to exist if G is a directed acyclic
graph (DAG) and finding one can be done in polynomial time.

Proof: A DAG has at least one source, i.e., a vertex with in-degree 0. If a source of
a DAG is deleted, then we still get a (possibly empty) DAG. The algorithm computing
an LEF allocation works as follows: while the social network is non-empty, find a source
agent i, allocate i her most preferred object oi ∈ O, remove oi from O, and delete i.
This algorithm guarantees by construction to find a locally envy-free allocation. Indeed,
any agent can only envy her successors in the graph but she always chooses an object
before them. �

Observe that the previous algorithm also returns a Pareto-efficient allocation and
mimics a well known procedure for allocating goods called serial dictatorship [Satterth-
waite and Sonnenschein, 1981] (see Section 1.4.2.a).

Note that DAGs actually characterize exactly those digraphs which guarantee the
existence of an LEF allocation for any preference profile. Indeed, if a directed cycle
(dicycle) exists, then it suffices to set the preferences of all the agents within the dicycle
to be exactly the same to get a no-instance of Dec-LEF.

One could think that if the dicycles of the graph are actually cliques, like in a
transitive graph (see Definition 1.3), recognizing a yes-instance of Dec-LEF could be
easy like in a complete graph. However, even when the graph is transitive, the problem
is hard, by Theorem 4.1, because the matching is a transitive graph.

We will now investigate more in details the impact of the degree of the network on
the existence of an LEF allocation.

4.3.1 Local envy-freeness and degree of nodes

First of all, note that some objects cannot be assigned to certain agents for the allocation
to be LEF. For example, the best object of an agent cannot be assigned to one of her
successors. More generally, for a given agent, all her successors in the network must
obtain an object that she likes less than the object assigned to her, leading to the
following observations.

Observation 4.1 In any LEF allocation, an agent with k successors must get an object
ranked among her n− k top objects.
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Observation 4.2 In any LEF allocation, the best object for an agent is either assigned
to herself or to one of her successors in G.

These observations imply that an agent having n− 1 successors in the network must
receive her best object in any LEF allocation.

Surprisingly, Dec-LEF is computationally hard even when the graph is undirected
and the degree of each agent in the graph is equal to 1, as stated by Theorem 4.1, with
the case of the matching. This hardness result can be extended to any undirected graph
of constant degree greater or equal to 1.

Proposition 4.3 Dec-LEF is NP-complete on a path, on a cycle, and generally on
undirected regular graphs of degree k for k ≥ 1 constant.

Proof: The idea is to introduce additional dummy agents connected to agents from
the original matching instance in the proof of Theorem 4.1, and to make sure that each
dummy agent Di will obtain her associated dummy resource di. For this purpose, each
dummy agent ranks first “her” dummy resource di, followed by a copy of the ranking
(minus di) of an (arbitrary) neighbor, while all her neighbors rank di after the initial
objects of the instance in their ranking. Consequently, in any LEF allocation, each
dummy agent must receive her associated dummy resource, and the rest of the allocation
must satisfy the conditions of the existence of an LEF allocation on a matching.

More precisely, for obtaining a path from a matching with n agents, we introduce
dn2 e − 1 dummy agents in order to connect each edge of the matching along a path, and
for a cycle we introduce one more dummy agent in order to close the path by connecting
its two leaves. For obtaining a general undirected regular graph of degree k (k constant),
we add k − 1 dummy agents connected within a clique to the two vertices of each edge
of the matching in the original instance. �

Given this result, one may suspect Dec-LEF to be hard on any graph structure that
is denser than the matching. However, our next result shows that if the social network
is dense enough, then Dec-LEF is polynomial.

Theorem 4.4 Dec-LEF in graphs of minimum out-degree n− 2 is solvable in polyno-
mial time.

Proof: Note that G is a graph where every node has at most one successor. Let us
define as φ : N → N , the mapping such that φ(i) is the only successor of agent i in G,
if the out-degree of i in G is equal to n − 2, and φ(i) = i if the out-degree of i in G is
equal to n− 1, i.e., i has no successor in G.

We reduce the problem to 2-SAT which is solvable in linear time [Aspvall et al.,
1979]. Let us consider boolean variables xij for 1 ≤ i, j ≤ n, such that xij is true if and
only if object oj is assigned to i. Denote by o`i the index j of object oj at position ` in
the preference order of agent i. Consider the following formula ϕ:∧

i∈[n]

(xio1
i
∨ xio2

i
) ∧

∧
1≤i<`≤n
1≤j≤n

(¬xij ∨ ¬x`j) ∧
∧
i∈[n]

(xio1
i
∨ xφ(i)o1

i
)
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The first part of formula ϕ expresses that each agent must obtain an object within
her top 2, as noted in Observation 4.1. By combination with the second part of ϕ, we
get that the solution must be an assignment: each agent must obtain her first or second
choice but not both since every object is owned by at most one agent and |N |= |O|.
Observation 4.2 implies that the best object for agent i must be assigned either to agent
i or φ(i). This condition is given by the last part of the formula. Hence, formula ϕ
exactly translates the constraints of an LEF allocation. �

Interestingly, the status of Dec-LEF changes between social networks of out-degree
at least n − 2 and those of out-degree n − 3. Actually, the problem is hard even for
undirected graphs of degree n− 3.

Theorem 4.5 Dec-LEF is NP-complete even if G is a regular undirected graph of
degree n− 3.

Proof: The reduction is from (3,B2)-SAT, known to be NP-complete (Theorem 1.4).
This problem is a restriction of 3-SAT where each literal appears exactly twice in the
clauses, and therefore, each variable appears four times in total. From an instance I =
〈C, X〉 of (3,B2)-SAT, where C = {C1, . . . , Cs} is a set of s clauses and X = {x1, . . . , xv}
is a set of v variables, we create an instance J = 〈N,O,�, G〉 of Dec-LEF where G is
an undirected graph of degree |N |−3.

Instead of describing G, we describe its complement G. Note that G is a regular
graph of degree 2. Hence, G is a collection of cycles. For each variable xi, we introduce
dummy variable-objects q1

i and q2
i and literal-objects u1

i , u
2
i , u

1
i and u2

i corresponding to
its first and second occurrence as an unnegated and negated literal, respectively, as well

as a cycle in G containing literal-agents X1
i , X

1
i , X

2
i and X

2
i , connected in this order. The

preferences of the literal-agents are as follows, for i ∈ [v] ([. . . ] stands for an arbitrary
order over the remaining objects):

X1
i : q1

i � q2
i � u1

i � [. . .]

X
2
i : q2

i � q1
i � u2

i � [. . .]

X
1
i : q1

i � q2
i � u1

i � [. . .]

X2
i : q2

i � q1
i � u2

i � [. . .]

Note that only the three top objects are represented since no object ranked below can
lead to an LEF allocation (see Observation 4.1). Note also that in any LEF allocation,
either q1

i and q2
i are allocated to agents X1

i and X2
i , or q1

i and q2
i are allocated to

agents X
1
i and X

2
i . Indeed, if q1

i (respectively, q2
i ) is allocated to an agent Y not in

Xi := {X1
i , X

2
i , X

1
i , X

2
i }, then since Y is the neighbor in G of each of the agents in Xi,

the agents X1
i and X

1
i (respectively, X2

i and X
2
i ) will envy Y . Moreover, if q1

i is owned

by X1
i and q2

i by X
2
i (respectively, by X

1
i and X2

i ), then agent X
1
i (respectively, X1

i )

will be envious of X
2
i (respectively, X2

i ), her only neighbor in G within Xi, because she
cannot have q1

i and this is the only object that she prefers to q2
i . The case where q1

i and
q2
i are allocated to agents X1

i and X2
i can be interpreted in I as setting xi to true, and

the case where q1
i and q2

i are allocated to agents X
1
i and X

2
i as setting xi to false.

For each clause Cj we introduce dummy clause-objects d1
j and d2

j , as well as a cycle in

G containing clause-agents K1
j ,K

2
j ,K

3
j . The preferences of clause-agent Kh

j , for j ∈ [s]
and h ∈ [3], are:

160



CHAPTER 4. ENVY-FREENESS IN HOUSE ALLOCATION

Kh
j : d1

j � d2
j � `(j, h) � [. . .]

where `(j, h) is the literal-object corresponding to the hth literal of Cj . Note that an
allocation is LEF if d1

j , d
2
j and one literal-object corresponding to a literal of Cj are

assigned to K1
j ,K

2
j ,K

3
j . This can be interpreted in I as the requirement for at least one

literal of Cj to be true.
The reduction is almost complete but it remains to describe gadgets collecting all

unassigned objects. Indeed, so far we have introduced 4v+3s agents and 6v+2s objects.
It remains to construct garbage collectors for the 2v − s remaining objects. Note that
no dummy object (neither variable nor clause) may be part of the remaining objects
since they must be assigned to literal-agents or clause-agents in any LEF allocation. Let
L = {uji , u

j
i : i ∈ [v], j ∈ [2]} denote the set of literal-objects, where literal-objects are

ordered arbitrarily, and let L(`) denote the `th element of L.
Let us now describe a gadget collecting a single object of L. For each ` ∈ [4v], we

introduce dummy-objects t1` and t2` and a cycle in G containing gadget-agents L1
` , L

2
`

and L3
` . Furthermore, for each ` ∈ [4v − 1], we introduce gadget-object g`. Globally,

in this gadget, we introduce 12v new agents and 12v − 1 new objects. Preferences are
as follows (we assume that the notations g0 and g4v actually refer to the objects g1 and
g4v−1, respectively).

L1
` : t1` � t2` � g`−1 � [. . .]

L2
` : t1` � t2` � L(`) � [. . .]

L3
` : t1` � t2` � g` � [. . .]

Note that in any LEF allocation, objects t1` and t2` are allocated to agents belonging to
{L1

` , L
2
` , L

3
`}, and the remaining unassigned agent receives either g`−1, g` or L(`). Since

no more than 4v − 1 agents can receive a gadget-object, at least one literal-object is
assigned to agent L2

` for some ` ∈ [4v]. Moreover, all gadget-objects must be assigned
to gadget-agents since no other agent has a gadget-object in her top three objects.
Therefore, in every LEF allocation, exactly one literal-object is allocated to an agent
belonging to the gadget.

We use exactly 2v − s copies of this gadget in order to collect all the remaining
literal-objects of the first part of the construction, and thus obtaining as many agents
as objects in the whole reduction.

Now let us show that one can allocate objects without envy in the gadget. Let L(`)
be the literal-object assigned in the gadget. This object must be assigned to L2

` . Assign
t1` and t2` to agents L1

` and L3
` , respectively. For any `′ 6= `, assign t1`′ to agent L2

`′ . For
any `′ > ` , object g`′−1 is assigned to L1

`′ and object t2`′ is assigned to L3
`′ . Finally, for

any `′ < `, object g`′ is assigned to L3
`′ and object t2`′ is assigned to L1

`′ .

We claim that C is satisfiable in instance I if and only if J has an LEF allocation.
Suppose first that there exists a truth assignment φ of the variables in X such that all

the clauses in C are satisfiable. For each variable xi, if xi is true (respectively, false) in φ

then we assign the objects q1
i and q2

i to the agents X1
i and X2

i (respectively, X
1
i and X

2
i ),

and the literal-objects associated with the negative (respectively, positive) occurrence,

namely u1
i and u2

i (respectively, u1
i and u2

i ), to the agents X
1
i and X

2
i (respectively, X1

i

and X2
i ). This set of agents envies nobody because for each agent in the cycle, she either
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obtains her most preferred object or all the objects preferred to her assigned object are
owned by neighbors in the non-envy graph. Now, only literal-objects associated with
literals true in φ are available. Since all the clauses are satisfiable by φ, there exists
at least one available literal-object per clause and we assign it to one of the clause-
agents Kh

j for each clause Cj . The other clause-agents receive the dummy-objects d1
j

and d2
j . By construction of the preferences, no clause-agent can be envious. Finally, it

suffices to assign the remaining literal-objects to garbage-agents, as previously described
in the construction of the gadgets, in such a way that no garbage-agent can be envious.
Therefore, we finally obtain an LEF allocation.

Suppose now that there exists an LEF allocation. As previously remarked, in any
LEF allocation, the objects q1

i and q2
i must be assigned either to agents X1

i and X2
i ,

or to X
1
i and X

2
i . In the first case, the negative literal-objects associated with xi must

be assigned to agents X
1
i and X

2
i , and thus only the positive literal-objects associated

with xi will be available for other agents. Otherwise, in the second case, the situation is
reversed, and thus only the negative literal-objects associated with xi will be available
for other agents. Moreover, we know that in any LEF allocation, exactly one literal-
object associated with clause Cj must be assigned to an agent Kh

j . Consequently, to
be LEF, the allocation must have one available literal-object per clause and all these
objects cannot correspond to opposite literals. Hence, if we set to true every variable
xi such that q1

i and q2
i are possessed by X1

i and X2
i in the allocation, and to false every

variable xi such that q1
i and q2

i are possessed by X
1
i and X

2
i , then we obtain a truth

assignment of the variables such that all the clauses are satisfiable. �

As for the generalization of Theorem 4.1 to Proposition 4.3, we can extend Theo-
rem 4.5 to more general classes of graphs. It suffices to add, in the graph of the previous
proof, dummy agents who are connected to three other agents. They have a dummy
resource on top of their ranking, followed by the whole ranking of one of her neighbors.
Each agent of the original instance ranks last the dummy resources.

Corollary 4.6 Dec-LEF is NP-complete on undirected graphs of minimum degree n−k
for k ≥ 3 constant.

Related to the question of the degree of the nodes, it appears interesting to deter-
mine how the computational hardness of Dec-LEF evolves on cluster graphs (see Sec-
tion 1.2.2.a). The cluster graphs are relevant in the context of a social network, because
they may represent several groups of agents that do not have interconnections. One can
think for instance to group of families or different sport teams. In fact, the problem is
computationally hard when the cluster graph is composed of n/2 cliques because this is
the case of the matching (Theorem 4.1). This hardness is extended to any cluster graph
composed of n/k cliques (for k ≥ 2 constant) according to the construction in the proof
of Proposition 4.3. Note that the case of n clusters is trivial since it is the empty graph.
Moreover, the problem is solvable in polynomial time when there is only one clique in
the cluster graph (the easy case of the complete graph). A natural question is then the
complexity of Dec-LEF when the cluster graph is only composed of two cliques. The
next theorem shows that even in this case, the problem is NP-complete.
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Theorem 4.7 Dec-LEF is NP-complete even when the social network is restricted to
two cliques of equal size.

Proof: The reduction is from (3,B2)-SAT, known to be NP-complete (Theorem 1.4),
which is the restriction of 3-SAT to instances where each literal appears exactly twice in
the clauses. We consider an instance I = 〈C, X〉 of (3,B2)-SAT where the set of clauses
is C = {C1, . . . , Cs} and the set of variables is X = {x1, . . . , xv}. Let us denote by sj
and sj the number of positive and negative literals of clause Cj , respectively.

We construct an instance J of Dec-LEF with the following objects in O:

- variable-objects y`i and y`i , for i ∈ [v] and ` ∈ {1, 2}, respectively associated with
the `th occurrence of xi and xi,

- literal-objects ujh and ujh′ , for j ∈ [s], h ∈ [sj ] and h′ ∈ [sj ], respectively associated

with the hth positive and the h′th negative literal of clause Cj ,
- clause-object qj for j ∈ [s],
- object zj for every clause Cj containing at least one negated and one unnegated

literal.

The social network G contains two cliques of equal size that we denote by K and K. The
set of agents is composed of the following ordered pairs of agents where the first agent

belongs to K and the second to K: variable-agents (Y `
i , Y

`
i), for i ∈ [v] and ` ∈ {1, 2},

clause-agents (Qj , Qj) for j ∈ [s]. The preferences of the agents are given as follows
(“restA” refers to an arbitrary order over the remaining objects that is the same for all
the agents associated with a given A, and u(x`i), (respectively, u(x`i)), stands for the
literal-object corresponding to the `th occurrence of xi, (respectively, xi)):

K

Y 1
i : y1

i � y2
i � u(x1

i ) � u(x2
i ) � y1

i � y2
i � restYi

Y 2
i : y2

i � y1
i � u(x1

i ) � u(x2
i ) � y2

i � y1
i � restYi

Qj : uj1 � . . . � ujsj � qj � uj+1 1 � . . . � uj+1 sj+1 � qj+1 � uj+2 1 � . . . � uj+2 sj+2 �
qj+2 � . . . � uj−1 1 � . . . � uj−1 sj−1 � qj−1 � restQ

K

Y
1
i : y1

i � y2
i � u(x1

i ) � u(x2
i ) � y1

i � y2
i � restY i

Y
2
i : y2

i � y1
i � u(x1

i ) � u(x2
i ) � y2

i � y1
i � restY i

Qj : uj1 � . . . � ujsj � qj � uj+1 1 � . . . � uj+1 sj+1 � qj+1 � uj+2 1 � . . . � uj+2 sj+2 �
qj+2 � . . . � uj−1 1 � . . . � uj−1 sj−1 � qj−1 � restQ

Garbage-agents are added for each clause Cj according to the number of positive and
negative literals in Cj (“�A \O′” in the preferences stands for the preference ranking of
agent A without considering the objects in O′):

1. if sj = 0, agents Z1
j and Z2

j belonging to K, with the preferences:

K

Z1
j : uj1 � uj2 � uj3 � restj

Z2
j : uj3 � uj2 � uj1 � restj

2. if sj = 1, agents Z1
j and Z2

j belonging to K and agent Zj belonging to K, with
the preferences:
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K K

Z1
j : uj1 � zj � uj2 � restj Zj : uj1 � zj � [�Qj \{uj1, zj}

Z2
j : uj2 � zj � uj1 � restj

3. if sj = 2, agent Zj belonging to K and agents Z
1
j and Z

2
j belonging to K, with

the preferences:

K K

Zj : uj1 � zj � [�Qj \{uj1, zj} Z
1
j : uj1 � zj � uj2 � restj

Z
2
j : uj2 � zj � uj1 � restj

4. if sj = 3, agents Z
1
j and Z

2
j belonging to K, with the preferences:

K

Z
1
j : uj1 � uj2 � uj3 � restj

Z
2
j : uj3 � uj2 � uj1 � restj

If at this point, K and K have not the same size, then we add to the clique with
the minimum size as many dummy agents and dummy objects as the difference between
the two sizes. The dummy agents all share the same preferences as an arbitrary agent
in the clique, except that her associated dummy object is her most preferred object,
and all the agents of the clique rank the dummy objects in the last positions of their
preference ranking. By construction, in an LEF allocation, each dummy agent should
get her associated dummy resource and no other agent of the clique envies her.

We claim that there exists an LEF allocation in J if and only if C is satisfiable in I.

Suppose that there exists a truth assignment φ of the variables in X such that C is
satisfiable. For each variable xi, if xi is true in φ, then assign object y`i to agent Y `

i and

object y`i to agent Y
`
i for each ` ∈ {1, 2}. Otherwise, assign object y`i to agent Y `

i and

object y`i to agent Y
`
i for each ` ∈ {1, 2}. Observe that there is no envy within this set of

agents because agents Y 1
i and Y 2

i are not connected to the agents Y
1
i and Y

2
i in G. Now,

let us choose exactly one literal that is true for each clause Cj . If this literal is positive,
then assign the associated positive literal-object, say ujh, to agent Qj and object qj to
agent Qj . Otherwise, assign the associated negative literal-object, say ujh′ , to agent Qj
and object qj to agent Qj . Clearly, there is no envy between Qj and Qj . Moreover, there
is no envy between the variable-agents and the clause-agents of the same clique. More
precisely, the only possible case of envy would be when a literal-object associated with
literal xi is chosen to be allocated to an agent Qj . But, this means that xi is present
in clause Cj and set to true in φ, and thus by construction we have assigned to Y 1

i and
Y 2
i their best object, so they cannot envy Qj (the same reasoning applies in clique K).

At this point, it remains to assign two literal-objects associated with each clause Cj .
If these two objects both correspond to positive (respectively, negative) literals, then

assign them to the agents Z
1
j and Z

2
j (respectively, Z1

j and Z2
j ) in such a way that they

do not envy each other (this is always possible by construction of the preferences), and if
sj ≥ 1 and sj ≥ 1, also assign zj to agent Zj (respectively, Zj). Otherwise, if it remains
one positive and one negative literal-objects, and sj < sj (respectively, sj > sj), then

assign the positive one to agent Zj (or to Z
`
j if this literal is the `th positive literal of

the clause) and assign the negative one to agent Zj (or to Z`j if this literal is the `th
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negative literal of the clause). By construction, there is no envy among the garbage-
agents. Moreover, there is no envy between the garbage-agents and the clause-agents
because if they are in the same clique, then they own literal-objects associated with
opposite literals. Therefore, to summarize, the constructed allocation is LEF.

Suppose now that there exists an LEF allocation π. Then, this allocation must assign
literal-objects or garbage-objects zj to the garbage-agents. Moreover, by construction of
the preferences, π must assign to each clause-agent Qj (respectively, Qj) either a literal-
object associated with a positive (respectively, negative) literal of clause Cj , or qj . They
are the only agents to accept objects qj in an LEF allocation. Therefore, each qj must
be assigned either to agent Qj or to agent Qj . Consequently, the agent Qj or Qj who
does not obtain qj must get a literal-object associated with respectively a positive or a
negative literal of clause Cj . This simulates the fact that each clause must be satisfied.

Concerning the variable-agents Y `
j and Y `

j , they must own in any LEF allocation either

variable-object y`j or variable-object y`j . Moreover, by construction, there will be envy

if Y 1
i gets y1

i and Y 2
i gets y2

i , or vice-versa, and the same holds for agents Y
1
i and Y

2
i .

Therefore, the only possibility is that the agents Y 1
i and Y 2

i get the objects y1
i and y2

i

together or the objects y1
i and y2

i together. Therefore, this simulates a truth assignment

of the variables. Finally, there is envy between a variable-agent Y `
i (respectively, Y

`
i)

and a clause-agent Qj (respectively, Qi) only if Qj (respectively, Qj) owns a literal-
object associated with a positive (respectively, negative) literal xi (respectively, xi) and

Y `
i (respectively, Y

`
i) owns the variable-object y`i . Thus, to be LEF, an allocation must

assign object y`i to agent Y `
i (respectively, Y

`
i) if a positive literal associated with xi

(respectively, xi) is owned by an agent Qj . Hence, globally, if we consider a truth
assignment of the variables in X that sets to true every variable xi such that Y `

i gets y`i
in π and sets to false every variable xi such that Y `

i gets y`i in π, then all the clauses in
C are satisfiable. �

By adding clusters of dummy agents having their associated dummy resource on top
of their preference ranking, we can generalize the previous negative result to any cluster
graph with k ≥ 2 (k constant) clusters.

Corollary 4.8 Dec-LEF is NP-complete in any cluster graph with k ≥ 2 clusters or
n/k (k ≥ 2) clusters for k constant.

It follows that the easy case of the complete graph for deciding whether there exists a
locally envy-free allocation cannot be generalized to a graph composed of disjoint cliques.

4.3.2 Local envy-freeness and vertex cover

So far the complexity of Dec-LEF has been investigated through the degree of its
nodes, but other parameters can be taken into account. Let us show how the size of a
(smallest) vertex cover can help. For the convenience of the definition of a vertex cover,
more adapted to an undirected context, we restrict in this subsection to the case where
social network G is an undirected graph.

Let us first state that Dec-LEF is solvable in polynomial time if G admits a vertex
cover of constant size.
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Theorem 4.9 If the social network G admits a vertex cover of size k, then Dec-LEF
can be answered in O(n2k+3). In other words, Dec-LEF is in XP with respect to the
parameter k equal to the size of the smallest vertex cover of G.

Proof: Let us find a vertex cover C of the social network. See Kleinberg and Tardos
[2006] for a O(2kn) algorithm which decides and builds a vertex cover of size k in a graph
with n vertices. Then, use brute force to assign k objects of O to C (the time complexity
is O(n2k)). For each partial allocation π without envy within C, let O−π be the set of
unassigned objects (if no such partial allocation exists, then we can immediately conclude
that no LEF allocation exists).

Now, let us consider the rest of the agents, that is the set I := N \C. By definition, I
is an independent set of graph G. Build a bipartite undirected graph G′ := (I∪O−π, E′)
with an edge connecting agent i ∈ I to object o ∈ O−π if assigning o to i does not create
envy. Actually, since I is an independent set, there is no envy among the agents of I.
Therefore, an edge connecting i ∈ I to o ∈ O simply means that agent i prefers o to the
objects currently assigned to her neighbors in C. Hence, there is an LEF allocation for
the entire network if and only if bipartite graph G′ admits a perfect matching (which
can be verified in O(n3)). �

Consequently, the method described in the previous proof is efficient when k is small.
For instance, Dec-LEF is polynomial if the social network is a star because the central
node of a star is a vertex cover.

One could expect that Dec-LEF also belongs to FPT for the same parameter since
the problem of finding a vertex cover of size k is FPT [Downey and Fellows, 1995b].
However, the following theorem shows that there is no hope that Dec-LEF can be
fixed-parameter tractable, with respect to the size of a vertex cover, under standard
complexity assumptions.

Theorem 4.10 Dec-LEF parameterized by the size of a vertex cover is W[1]-hard.

Proof: We present a parameterized reduction from Multicolored Independent
Set, known to be W[1]-complete (Theorem 1.7). An instance I of Multicolored
Independent Set consists of an undirected graph G = (V, E), an integer k, and a
partition (V1, . . . ,Vk) of V. The task is to decide whether there is an independent set of
size k in G containing exactly one vertex from each set Vi.

We construct an instance J of Dec-LEF as follows. For each vertex v in V, we
introduce object ov. Let Oi denote the set of objects {ov : v ∈ Vi}, and let O↑i denote
an arbitrary order over the objects of Oi. For each edge e = {v, v′} in E , we introduce
two agents Xv

e and Xv′
e , and two edge-objects oe and o′e. Let OE denote the set of edge-

objects, and let O↑E denote an arbitrary ranking over the objects of OE . For each integer
1 ≤ i ≤ k, we introduce agent Ki. The agents of {Ki}1≤i≤k form a clique in the social
network G. Furthermore, for each vertex v ∈ Vi and for each edge e = {v, v′} in E , agent
Xv
e is connected to agent Ki in G. Finally, for each integer 1 ≤ j ≤ |V|−k, we introduce

agent Dj . The preferences are the following:

Ki : O↑i � O
↑
1 � . . . � O

↑
i−1 � O

↑
i−1 � . . . O

↑
k � O

↑
E

Xv
e : oe � ov � o′e � [. . .]
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Since agent Dj is isolated in G, her preferences may be arbitrary. It is easy to check
that {Ki}1≤i≤k forms a vertex cover in network G.

We show that G has an independent set of size k containing one vertex in each set
Vi in I if and only if an LEF allocation exists in J .

Assume first that {v1, . . . , vk} is an independent set in G, where vi ∈ Vi for each
i ∈ [k]. We construct an LEF allocation as follows. For each i ≤ k, assign ovi to Ki, and
for each edge e = (vi, v

′) in E , assign oe to Xvi
e . For each agent Xv

e such that v is not
selected in the independent set, assign oe to Xv

e if it is still available, and otherwise assign
o′e to Xv

e . Finally, assign the remaining objects arbitrarily. We claim that this allocation
is locally envy-free. Indeed, each agent Ki receives an object of Oi. Furthermore, for
each vertex v in Vi and for each edge e in E , agent Xv

e has a single neighbor who is Ki.
If Ki receives ovi and v = vi then Xvi

e receives oe, and otherwise Xv
e receives o′e.

Assume now that an LEF allocation exists. We claim that each agent Ki should
receive an object of Oi. By contradiction, assume that agent Ki receives object o 6∈ Oi.
Note that for any j 6= i, Ki and Kj are neighbors. Hence, for any object o′, if o 6∈ Oj
and o′ 6∈ Oi ∪ Oj then o �Vi o′ if and only if o′ �Vj o holds. This implies that if
o 6∈ Oj then an object of Oj must be assigned to Kj to avoid envy between agents Ki

and Kj . Therefore, if o ∈ OE then agent Ki envies agent Kj , a contradiction. On the
other hand, if o ∈ Oj for some j 6= i then either Ki envies Kj or Kj envies Ki, since
o �Vi o′ if and only if o �Vj o′ holds because o′ ∈ Oj , a contradiction. Let ovi denote the
object assigned to Ki. We claim that {v1, . . . , vk} forms an independent set in G. By
contradiction assume that edge e connects vi and vj in G. This implies by construction
that Xvi

e and X
vj
e are neighbors of Ki and Kj in G, respectively. On one hand, if Xvi

e

does not receive oe then she envies Ki. On the other hand, if X
vj
e does not receive oe

then she envies Kj . Therefore, oe must be assigned to both Xvi
e and X

vj
e , leading to a

contradiction since oe cannot be assigned twice. �

Let us conclude the section dedicated to Dec-LEF with a table summarizing our
results. Our findings for Dec-LEF with respect to the out-degree of the nodes and
the size of the vertex cover (for the case where the network is an undirected graph) are
summarized in Table 4.1.

out-degree δ+
G

δ+
G ≤ k (k ≥ 1 fixed) NP-c Th. 4.1

δ+
G ≥ n− k (k ≥ 3 fixed) NP-c Th. 4.5

δ+
G ≥ n− 2 P Th. 4.4

number of clusters c in a cluster graph

c = n/k (k ≥ 2 fixed) NP-c Th. 4.1

c = k (k ≥ 2 fixed) NP-c Th. 4.7

c = 1 or c = n P

parameter k on the vertex cover size in G undirected
XP Th. 4.9

W[1]-hard Th. 4.10

Table 4.1: Complexity results of Dec-LEF
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4.4 Maximization of the local non-envy

In light of Section 4.3, we know that both Max-LEF and Max-NE, the two optimization
problems that we consider for minimizing local envy, are computationally hard even on
very simple graph structures. We present in this section approximation algorithms for
Max-LEF and Max-NE.

4.4.1 Maximizing the number of non-envious agents

This subsection is dedicated to Max-LEF, whose goal is to find an allocation maxi-
mizing the number of LEF agents (see Section 4.2). A general method is proposed in
Algorithm 4.1 for the case of undirected graphs. For a maximization problem, an algo-
rithm is ρ-approximate, with ρ ∈ [0, 1], if it outputs a solution whose value is at least
ρ-times the optimal value, for any instance (see Section 1.5.1.c).

Algorithm 4.1: Maximization of the number of LEF agents when G is undi-
rected

Input: Instance 〈N,O,�, G〉
Output: Allocation π

1 I ← independent set of the network; # found in any opportune way

2 foreach i ∈ I do
3 π(i)← i’s most preferred object within O;
4 O ← O \ {π(i)};
5 Complete π for agents in N \ I ; # in any opportune way

6 return π

The strategy used in Algorithm 4.1 is to find an independent set I ⊆ V in the
network, and then to assign by turns to each agent in I her best object in O among the
remaining items. This algorithm simulates a serial dictatorship mechanism on I (see
Section 1.4.2.a). Then, the allocation is completed arbitrarily.

By construction, every member of I is LEF, and a direct upper bound on the optimal
number of LEF agents is |N |= n, leading to the following observation.

Observation 4.3 Algorithm 4.1 is |I|n -approximate for Max-LEF.

Let us specify a way to construct independent set I (Step 1 of Algorithm 4.1) in
order to get an explicit approximation ratio.

Set I is initially empty. While the set of agents N is non-empty, an agent i is selected
from N and added to I. In the same time, agent i and her neighbors are deleted from
N .

Since a node has at most ∆G neighbors (for ∆G being the degree of G, see Sec-
tion 1.2.2.a), I is an independent set of size at least n/(∆G + 1). Using Observation 4.3,
we get a ratio of (∆G + 1)−1 for Algorithm 4.1.

Observation 4.4 The construction of I in Algorithm 4.1 (Step 1) can be done so that
a polynomial time (∆G + 1)−1-approximation is produced.
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The (∆G+1)−1-approximation algorithm is long known for the maximum indepen-
dent set problem (that is, find an independent set of maximum cardinality), see for
example Paschos [1992]. The following lemma shows that Max-LEF shares exactly the
same inapproximability results as Maximum Independent Set.

Lemma 4.11 Any ρ-approximate algorithm for Max-LEF is also a ρ-approximate al-
gorithm for Maximum Independent Set.

Proof: Suppose we have a ρ-approximation algorithm for Max-LEF. Let us consider
an instance of Max-LEF where all the agents have identical preferences, i.e., �1=�2=
. . . �n. Our ρ-approximation algorithm computes for this instance an allocation π and a
set J of non-envious agents. Because preferences are identical, a pair of connected agents
cannot be locally envy-free, whatever the allocation is. In this setting, the set J is thus
necessarily an independent set of G. Hence, our algorithm is also a ρ-approximation
algorithm for Maximum Independent Set. �

Maximum independent set in general is Poly-APX-complete [Bazgan et al., 2004],
meaning that it belongs to the hardest problems that can be approximated within a
polynomial factor. Lemma 4.11 implies that Max-LEF is Poly-APX-hard. Thus, Algo-
rithm 4.1 is asymptotically optimal.

Interestingly, there are graph classes where the size of an independent set can be
expressed as a fraction of n. Therefore, this fraction corresponds to the approximation
ratio of Algorithm 4.1.

Proposition 4.12 A polynomial time 0.5-approximate algorithm for Max-LEF exists
if social network G is an undirected bipartite graph.

Proof: Suppose the social network is a bipartite graph G = (N1∪N2, E). By definition
of a bipartite graph, both N1 and N2 are independent sets. If |N1|≥ |N2|, then run
Algorithm 4.1 with I := N1, otherwise run Algorithm 4.1 with I := N2. Since 2|I|≥
|N1|+|N2|= |N |= n, a polynomial time 0.5-approximation is reached. �

Proposition 4.12 can be easily extended to undirected k-partite graphs (whose vertex
set can be partitioned into k different independent sets), leading to a polynomial time
k−1-approximation algorithm.

Note that if the social network admits a vertex cover V ′ of size k, then Algorithm 4.1
with I := N \ V ′ provides a (1− k/n)-approximate solution to Max-LEF.

4.4.2 Optimizing the degree of (non)-envy

Instead of simply counting the number of non-envious agents, we will now focus on a
more subtle criterion, measuring the degree of envy among agents. This leads to the
Max-NE optimization problem (defined in Section 4.2) which consists in minimizing
the average degree of envy E (π) (or equivalently maximizing the average degree of non-
envy NE (π) = 1 − E (π)). In this subsection, there is no need to restrict anymore to
undirected graphs and thus we consider G as a directed graph.

Before describing our approximation algorithm for Max-NE, we first state the fol-
lowing lemma.
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Lemma 4.13 Let Un be the uniform distribution over all allocations of n objects to n
agents (with exactly one object per agent). Then we have Eπ∼Un [NE (π)] = 5

6 − o(1).

Proof: In the following, the notations x, x′ ∼ O means x and x′ are two random objects
drawn uniformly and independently from O. Also, v ∼ [n] means v is a random integer
drawn uniformly from [n]. By linearity of expectation, we get:

Eπ∼Un [E (π)] =
1

|E|
∑

(i,j)∈E

Eπ∼Un [e(π, i, j)]

=
1

|E| (n− 1)

∑
(i,j)∈E

Ex,x′∼O
[
max

{
0, r i (x)− r i

(
x′
)}

: x 6= x′
]

=
1

|E| (n− 1)

∑
(i,j)∈E

Ev,v′∼[n]

[
max

{
0, v − v′

}
: v 6= v′

]
By the law of total expectation, we have:

Ev,v′∼[n]

[
max

{
0, v − v′

}
: v 6= v′

]
= Ev,v′∼[n]

[
v − v′ : v > v′

]
.P
[
v > v′ : v 6= v′

]
+0.P

[
v < v′ : v 6= v′

]
=

1

2
Ev,v′∼[n]

[
v − v′ : v > v′

]
=

1

n(n− 1)

∑
k∈[n−1]

k(n− k)

=
n+ 1

6

So Eπ∼Un [E (π)] = n+1
6(n−1) and Eπ∼Un [NE (π)] = 5n−7

6(n−1) = 5
6 −

2
6(n−1) = 5

6 − o(1). �

This tells us that with high probability, random allocations of objects yield high
degrees of non-envy. To get a deterministic algorithm based on this idea, we apply a
standard derandomization technique. In Algorithm 4.2, at each step i, agent i receives
one of the remaining unallocated objects. This object is chosen so as to minimize the
conditional expectation of E (line 7): given the partial current allocation π, we choose
among all possible remaining objects in O′, the object x∗ which, once assigned to i, min-
imizes the expected average degree of envy E . We will show below that this conditional
expectation can be computed efficiently.

Proposition 4.14 Algorithm 4.2 is a polynomial-time
(

5
6 − o(1)

)
-approximation algo-

rithm for Max-NE.

Proof: First, by standard arguments of the derandomization method (similar to e.g.,
page 132 of Vazirani [2001]) together with Lemma 4.13, this algorithm outputs an al-
location π such that NE (π) ≥ 5

6 − o(1). By design we have NE (π) ≤ 1, so the
approximation ratio holds. To show that the algorithm runs in polynomial time, we
need to bound the computation time of vx (line 7) for a given agent i, a given object
x ∈ O′, and the current allocation πx within the two nested loops of the algorithm where
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Algorithm 4.2: Minimization of the average degree of envy

1 π ← {}; # empty allocation

2 O′ ← O; # set of available objects

3 S ← ∅; # set of agents already assigned in π
4 foreach agent i ∈ [n] do
5 foreach object x ∈ O′ do
6 πx ← π; πx(i)← x;

7 vx ← Eπ′∼Un
[
E (π′) : π′|S∪{i} = πx|S∪{i}

]
;

8 x∗ ← arg minx∈O′ vx;
9 π(i)← x∗;

10 O′ ← O′ \ {x∗};
11 S ← S ∪ {i};
12 return π

πx(i) = x. If π is a partial allocation, define P (π, `) as the set of goods that agent `
can own without violating π. For example, if π is a complete allocation, P (π, `) = π(`)
and if π = {}, then P (π, `) = O. First note that vx can be expressed as the follow-

ing sum of conditional expectations: 1
|E|
∑

(`,h)∈E Eπ′∼Un
[
e(π′, `, h) : π′|S∪{i} = πx|S∪{i}

]
.

Next, note that for any `, h ∈ N the expectation Eπ′∼Un [e(π′, `, h) : π′|S∪{i} =

πx|S∪{i}] is equal to 1

|Z`,h|.(n−1)

∑
(a,b)∈Z`,h max{0, r `(a) − r `(b)} where Z`,h =

{(a, b) ∈ P (πx, `)× P (πx, h) : a 6= b}. The computation of vx can thus be done in
O(n4). �

It follows that, despite the computational hardness of Dec-LEF, it is possible to
construct efficiently an allocation whose average degree of envy is guaranteed to be close
to the minimum.

4.5 Location and allocation

This section is dedicated to Dec-Location-LEF, the decision problem asking whether
there exists a way of assigning both the agents on the directed graph and the resources
to the agents such that we obtain an LEF allocation (see Section 4.2).

In this problem, the central authority has more freedom than in the simple allocation
problem Dec-LEF since she can also choose the location of the agents on the graph.
Consequently, there should be more positive instances for this problem than for Dec-
LEF. The following example illustrates this intuition.

Example 4.4 Let us consider an instance with three agents, where N = {1, 2, 3} and
O = {o1, o2, o3}. The social network and the preferences are as follows.
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1

23

1 : o1 � o2 � o3

2 : o1 � o2 � o3

3 : o3 � o2 � o1

Clearly, there is no locally envy-free allocation in this instance because agent 1 and 2
can both be envious of the other and there have exactly the same preferences. So, this is
a no-instance of Dec-LEF. However, if we only have the structure of the network, we
can locate the agents as follows.

−→

1

32

Then, it suffices to assign object o2 to agent 1, o1 to agent 2 and o3 to agent 3 to obtain
a locally envy-free allocation, leading to a yes-instance of Dec-Location-LEF.

However, since the central authority has to make more choices in this decision prob-
lem, it is difficult to imagine that Dec-Location-LEF could be easier than Dec-LEF.
Indeed, the following theorem shows that this problem is computationally challenging,
even for the restriction to undirected graphs.

Theorem 4.15 Dec-Location-LEF is NP-complete even when the network is undi-
rected.

Proof: The reduction is from Independent Set, known to be NP-complete (Theo-
rem 1.5). Given an undirected graph G = (V, E) where V = {v1, · · · , vs} and a positive
integer k ≤ |V|, the problems asks whether there is an independent set I ⊆ V of size k.

From an instance I of Independent Set, let us construct an instance J of Dec-
Location-LEF as follows. The set of objects is O = Q ∪ T , where Q = {q1, · · · , qs−k}
and T = {t1, · · · , tk}. The set of agents is N = {X1, . . . , Xs−k} ∪ {L1, . . . , Lk}. Let Q−i
denote the set Q \ {qi}, and let Q↑−i, Q

↑ and T ↑ denote partial orders over Q−i, Q and
T , respectively, where objects are ranked by increasing order of indices. Preferences are
as follows for i ∈ [s− k] and j ∈ [k].

Xi : qi � Q↑−i � T ↑

Lj : T ↑ � Q↑

Finally, the social network is G = G = (V, E).

We claim that J is a yes-instance of Dec-Location-LEF if and only if G contains
an independent set of size k in I.

Assume that I is an independent set of size k in G. We can assume without loss
of generality that I = {v1, . . . , vk}. We construct an allocation π of the objects to the
agents and an allocation L of the agents to the vertices of G as follows. If vi ∈ I then
L(Li) = vi and π(Li) = ti. Otherwise, agents are placed arbitrarily on G and receive
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their best item, i.e, π(Xi) = qi. It is easy to check that π is LEF with respect to L since
no two vertices L(Li) and L(Lj) are neighbors in G.

Assume now that there exists an allocation L of the agents to the vertices of G and
an allocation π of the objects to the agents such that π is LEF with respect to L. If
L(Li) and L(Lj) are neighbors in G then either π(Li) �Lj π(Lj) or π(Lj) �Li π(Li)
holds since Li and Lj have the same preferences, leading to a contradiction with π LEF.
Hence, {L(L1), . . . ,L(Lk)} forms an independent set of size k in G = G. �

Interestingly, the above reduction also holds when π is fixed, i.e., the allocation of
objects to agents is imposed by the problem.

Nevertheless, as for Dec-LEF, we provide a polynomial result for Dec-Location-
LEF in very dense graphs. However, unlike Dec-LEF, we restrict ourselves to the case
of undirected graphs.

Theorem 4.16 Dec-Location-LEF is solvable in polynomial time in undirected
graphs of minimum degree n− 2.

Proof: Observation 4.2 implies that two agents having the same top object must be
neighbors in G, otherwise one of them will be envious. Therefore, one can focus on L�,
defined as the set of location functions such that each pair of agents having the same
top object are neighbors in G (or equivalently, not neighbors in G).

If an instance contains three (or more) agents with the same top object then it must
be a no-instance since each vertex in G has degree at most 1. The following lemma shows
that the location functions of L� are all equivalent for the search of an LEF allocation.

Lemma 4.17 If π is an LEF allocation for some location function L, and π cannot be
improved by a swap between two agents without violating the LEF condition, then π is
also LEF for any location function of L�.

Proof: First of all, L must belong to L� for π to be LEF. Let L′ be a function of L�.
It is easy to check that any pair of agents having the same top object have the same set
of neighbors in G for both L and L′. Therefore, if π is LEF for these agents under L,
then π is also LEF for these agents under L′.

Let i be an agent who solely ranks some object o at the first position in her pref-
erences. On one hand, if L(i) is a vertex of degree n − 1 then Observation 4.2 implies
that she must receive o. On the other hand, if L(i) is a vertex of degree n− 2 and j is
the unique neighbor of i in G then Observation 4.2 implies that o is assigned either to
i or to j. But j must also be the unique agent to have some object o′ ranked first in
her preferences, where o 6= o′. Therefore, either agent i or j must receive o′. Since, by
assumption, π cannot be improved by swapping objects o and o′, o must be assigned to i
and o′ must be assigned to j. In all, agent i must receive her top object in π. Therefore,
π is also LEF for agent i. �

In order to solve Dec-Location-LEF, one can compute a function L of L� by
assigning the agents having the same top object to vertices connected in G, and by
assigning the other agents arbitrarily. Once L is fixed, one can use the algorithm pre-
sented in Theorem 4.4 to compute an LEF allocation if such an allocation exists. If an
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LEF allocation is returned then the algorithm returns L and π. Otherwise, we know by
Lemma 4.17 that no function in L� can lead to an LEF allocation, and the algorithm
returns false. This algorithm clearly runs in polynomial time. �

Intuitively, Dec-Location-LEF seems harder than Dec-LEF. Actually, our results
show that, in general, Dec-Location-LEF is NP-complete as well as Dec-LEF. But
the tractable case that we have identified for Dec-Location-LEF is slightly weaker
for than for Dec-LEF. An interesting question would be to further investigate the links
between the two problems.

4.6 Reaching a locally envy-free allocation

So far, we have studied the problem related to local envy-freeness within a centralized
perspective where the goal is to allocate the objects to the agents in such a way that
the resulting allocation is locally envy-free. Another possibility is to decide whether the
agents are able to coordinate themselves in order to reach an LEF allocation. Indeed, the
intuition is that if two agents are connected in the social network and are both envious
of the object owned by the other, then a win-win strategy for them is to exchange their
objects.

In this section, we consider a housing market setting where the agents are embedded
in a social network represented as an undirected graph, exactly as in Chapter 3 (the
interaction relation must be symmetric for the cooperation of the agents via a trade).
In this context, the agents are initially endowed with an object – π0 denotes this initial
allocation – and they can perform rational swaps with a neighbor. Recall that a swap
between two connected agents in the social network is rational if both agents prefer the
object owned by the other. An allocation is then reachable if there exists a sequence
of swaps leading to this allocation. In addition to the housing market framework of
Chapter 3, we assume that the social network also defines the possibility of envy.

This leads to consider a new decision problem, called Reachable LEF, relying on
both swap dynamics as defined in Chapter 3 and local envy-freeness.

Reachable LEF:

Instance: Instance 〈N,O,�, G, π0〉
Question: Does there exist a reachable allocation that is LEF?

Note that a reachable LEF allocation π must be stable, in the sense that no swap
can be performed from π. Otherwise, if two neighbors can make a swap, by definition
they both prefer the object assigned to the other agent and π is not LEF.

Under the condition that the allocation must be reachable, the problem of the LEF
existence (Reachable LEF) becomes easier in some classes of graphs than the existence
question in general (Dec-LEF). This is for instance the case of the matchings, for which
Dec-LEF is NP-complete (Theorem 4.1) but Reachable LEF is solvable in polynomial
time: we only need to check a unique reachable allocation that is stable, which is the
allocation obtained where all the agents linked by an edge in the matching make a swap
if possible. Nevertheless, we prove that in general Reachable LEF is intractable.
Actually, for a given instance, if the problem of deciding the reachability of an object
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(Reachable Object in Chapter 3) is hard, then there is no hope that Reachable
LEF is easy to solve.

Theorem 4.18 Reachable LEF is NP-complete even when the social network is a
tree.

Proof: If a sequence of swaps until a given allocation π is given, then it is easy to check
whether the sequence of swaps is valid and π is LEF, proving the membership to NP.

Let us perform a reduction from the Reachable Object problem, defined in Sec-
tion 3.2.2, and proved to be NP-complete in Theorem 3.1 even when the social network is
a tree. Reachable Object asks whether there exists a reachable allocation assigning
a specific target object x to a specific target agent A.

We consider an instance I = 〈N,O,�, G, π0〉 of Reachable Object where the
target agent is A and the target object is x. Let us construct an instance J = 〈N∪N ′, O∪
O′,�′, G′ = (N ∪ N ′, E ∪ E′), π′0〉 of Reachable LEF where each agent i ∈ N \ {A}
is connected to a new agent i′ ∈ N ′ with initial endowment oi′ ∈ O′, and agent A is
connected to a new agent A′ with initial endowment a′ ∈ O′. The preferences �′i of agent
i ∈ N \ {A} are exactly the same as in �i, except that object oi′ is the top object of �′i
and all the other objects in O′ are ranked at the end of �′i. Concerning agent A, ranking
�′A is exactly the same as in �, except that all the objects of O′, including object a′,
are ranked at the end of �′A. The preferences of every agent i′ ∈ N ′ \ {A′}, initially
endowed with oi′ , are such that all the objects in O are arbitrarily ranked before oi′ in
�′i′ and all the objects in O′ \ {oi′} are arbitrarily ranked after oi′ in �′i′ . Concerning
agent A′, initially endowed with object a′, the construction of �′A′ is the same as for the
other agents in N ′, except that only the objects in O \ {x} are ranked before a′ in �′A′ .

We claim that there exists a reachable LEF allocation in J if and only if object x is
reachable for agent A in I. Observe that if G is a tree, then G′ is still a tree.

Suppose first that there exists a reachable allocation where target agent A gets target
object x in instance I. Then, this is also the case in instance J by the same sequence of
swaps that involves only agents in N . Observe that in this allocation, there is no envy
between agent A and agent A′ because A′ prefers her initial object a′ to x and A prefers
x to a′. Let all the agents i in N \ {A} swap with their copy agent i′ ∈ N ′ \ {A′}. By
construction of the preferences, these swaps are rational. At this point, all the agents
in N \ {A} obtain their most preferred object so they do not envy anyone. The agents
in N ′ \ {A′} do not envy their only neighbor who actually gets their previous object by
rationality of the swaps. Finally, agent A does not envy any agent in N because she
prefers x to any object in O′. Hence, the resulting allocation is LEF.

Suppose now that there exists a reachable allocation in J that is LEF. First observe
that no rational swap will occur between agent A and her neighbor A′ because A prefers
her initial object to the initial object a′ of A′ and agent A′ cannot obtain another object
since A is her only neighbor. Therefore, all along the sequence of swaps A′ will stay with
her initial object a′. Consequently, the only possibility for agent A′ to not be envious of
her neighbor A is that A gets an object in O′ ∪ {x} which gathers the objects that A′

prefers less than her initial object a′. However, agent A cannot obtain an object in O′

via rational swaps because she prefers her initial object to any object in O′, so the only
solution is that agent A obtains object x. Once an agent i ∈ N \ {A} has exchanged
with her copy agent i′ ∈ N ′, she cannot perform further swaps because object oi′ is her
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most preferred object. It follows that no agent in N ′ is involved in the sequence leading
to get object x to agent A. Hence, in order to reach an LEF allocation in J , a sequence
of swaps within agents in N leading to give object x to agent A is needed, implying that
x is reachable for agent A in I. �

This result rules out the possibility that Reachable LEF would be solvable in poly-
nomial time for many graphs, since it is already hard for trees. However, Reachable
LEF is tractable for certain simple classes of graphs, such as the stars (see Defini-
tion 1.10), which are a special case of trees, for which Reachable Object is also
easy.

Proposition 4.19 Reachable LEF is solvable in polynomial time when the social
network is a star.

Proof: We present an algorithm that is very close to the algorithm used to solve Reach-
able Object in a star, in the proof of Proposition 3.2. Observe that the center agent
of a star must be assigned her best object, say oc, since she has n− 1 neighbors. There-
fore, we need to find a sequence of swaps such that the center-agent eventually gets
oc. However, to be LEF, any leaf-agent must be assigned an object that she prefers
to oc, and by rationality of the swaps such a leaf-agent can deviate at most once with
the center-agent. Therefore, during her only swap with the center-agent, a leaf-agent
must obtain an object that she prefers to oc. Consequently, we construct a directed
graph GD = (N,E′) where there is an arc (i, j) ∈ E′ if and only if the center-agent can
exchange with leaf agent j, when she owns the initial object of agent i, within a rational
swap that gives to j an object that she prefers to oc. In other words, there is an arc
(i, j) ∈ E′ if and only if agent j prefers the initial object of i to her own object and the
center-agent prefers the initial object of j to the initial object of i. We then search for a
directed path in this directed graph from the center-agent to the initial owner of oc. �

It seems that Reachable LEF is easier than Dec-LEF. At least, we have not
identified classes of graphs for which Reachable LEF is harder than Dec-LEF but
the reverse holds (take the example of a graph which is a matching). However, in
general, the tractability of Reachable LEF is limited by the Reachable Object
problem (Theorem 4.18) which is hard for many classes of graphs (see Chapter 3).

4.7 Experiments

In order to better understand the impact of the structure of the graph on local envy-
freeness, we run some experiments where we investigate the influence of different charac-
teristics of the network. In particular, we observe the impact of the degree of the nodes
in regular undirected graphs, the density in random graphs, and some specific classes of
graphs.

4.7.1 Impact of the degree of the nodes

In this subsection, we generate random instances of our decision and optimization prob-
lems, and we solve these instances exactly using mixed integer linear program formula-
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tions. We build on the ones proposed by Dickerson et al. [2014], which address envy-
freeness and the minimization of maximum pairwise envy among any two agents [Lipton
et al., 2004] (see Section 1.4.1), in a context of additive utilities with several goods per
agent. To fit our setting, we adapt it so as to account for graph constraints and allo-
cations of exactly one item per agent. We further design three variants, two where the
objective functions correspond to Max-LEF and Max-NE, and another one where the
locations of agents on the graph are treated as decision variables, to address the more
challenging problem Dec-Location-LEF.

For these experiments, we generate random undirected graphs that are regular with
degree k, with 8 vertices, for k ranging from 1 to 7. The preferences of the agents
are randomly drawn from impartial culture. The results, averaged over 1000 runs, are
presented in Table 4.2 for the likelihood of finding an LEF allocation (“LEF”), the mini-
mum number of envious agents (“max-LEF”), the maximum average degree of non-envy
(“max-NE”), the minimum of maximum pairwise envy (“MMPE”), and the likelihood
of finding both an allocation of the agents to the nodes of the graph and an allocation
of objects to the agents in such a way that it is LEF (“Loc-LEF”).

Degree 1 2 3 4 5 6 7

LEF 1 0.72 0.22 0.05 0.02 <0.01 <0.01

max-LEF 0 0.28 0.93 1.52 1.95 2.44 2.78

max-NE 1 0.99 0.99 0.99 0.98 0.98 0.98

MMPE 0 0.28 0.83 1.19 1.42 1.69 1.91

Loc-LEF 1 1 1 0.92 0.49 0.07 <0.01

Table 4.2: Likelihood of LEF, number of LEF agents, NE , minmax pairwise envy and
likelihood of LEF with location, in regular undirected graphs of different degrees with 8
agents and impartial culture

A natural question is how the likelihood to find an LEF allocation evolves as the
degree of the graph augments. It must clearly decrease (in the extreme case of a complete
graph, recall that all agents must have a different preferred item, which occurs with a
probability as low as n! /nn). The question is how this drop will occur. Our experiments
show that this decrease is sharp, and from a degree equal to half of the agents, it actually
becomes highly unlikely to find an LEF allocation. On the other hand, for graphs of small
degrees, it is often the case that an LEF allocation can be found, and, as expected, it
becomes even more so as the number of agents and items augments. Further experiments
on a higher number of agents confirm this. As a rule of thumb, this means for instance
that from 20 agents, it is almost always possible to find an LEF allocation on a grid-like
network.

The ability to allocate agents on the network gives the central authority some extra-
power when it comes to find an LEF. However, note that this power heavily depends on
the structure of the graph (for instance, it is useless when the graph is complete, as all
the different ways to label the graph with agents are isomorphic). Table 4.2 shows that
this power can be significant: the likelihood to find an LEF remains above 90% until
degree 4, while it was as low as 5.5% in the basic problem.
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We also report in Table 4.2 results regarding the measures we optimize (as well as
the “classical” minimization of maximum pairwise envy (MMPE) of Lipton et al. [2004],
which in our context can be interpreted as minimizing the maximum number of agents
envied by any agent). Note in particular that even with a complete graph, it is on
average possible to allocate items so as to make envious only about a third of the agents,
and that no agent envies more than two other agents in our instance with 8 agents.

4.7.2 Influence of the density in random networks

We do not restrict anymore to undirected graphs and consider Erdös-Rényi random
directed graphs, with different densities (see Section 1.2.2.b). This type of graphs is
notably known for reproducing in expectation the small-world phenomenon, property
that usually appears in real social networks.

In this subsection, we are only concerned with the frequency of positive instances of
Dec-LEF, that is how often a locally envy-free allocation exists, and how many when
they exist. We also look at the number of such allocations that are Pareto-efficient. The
preferences are generated either from impartial culture (IC), or are single-peaked uniform
(SP-U), i.e., uniformly drawn from the urn containing all single-peaked profiles, or single-
peaked uniform peak (SP-UP), i.e., single-peaked generated uniformly according to the
top object of each agent (see Section 1.2.1.b). As in the first subsection, we run 1000
instances with 8 agents. The results about frequency of existence of LEF allocations are
given in Figure 4.1 for different densities of the graphs.

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8
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Density

IC SP-U SP-UP
LEF existence Pareto-LEF existence

Figure 4.1: Proportion of instances for which there exists an LEF allocation in Erdös-
Rényi graphs of different densities with 8 agents

The experiments confirm the intuition that the likelihood of finding an LEF allocation
decreases when the density increases. However, we did not expect that the decrease
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would be as fast. Indeed, when the density is equal to 0 (empty graph), the case is
trivial since an LEF is always guaranteed to exist, leading to a likelihood equal to 1 for
the existence of an LEF allocation. But when the density increases to 0.25 (which still
corresponds to a sparse graph), the frequency of finding an LEF allocation decreases
by more than the half for SP-U profiles, by 25% for SP-UP profiles and by 10% for
uniformly generated profiles. Moreover, the gap between a density of 0.25 and a density
of 0.5 is very important as well, since the likelihood of finding an LEF allocation does
not exceed 20% for any type of preferences, and is almost null for SP-U profiles.

In general, the likelihood of finding a locally envy-free allocation is significantly
higher in profiles generated uniformly (IC). This can be explained by the fact that the
preferences of the agents are less correlated and thus globally the agents do not desire the
same objects. In the same idea, the likelihood of finding an LEF allocation is higher in
SP-UP profiles than in SP-U profiles because the preferences of the agents are also more
diverse. Indeed, by considering for instance the two extreme points of the single-peaked
axis, say o1 and on, the probability of drawing the unique single-peaked preference order
with o1 or on as a peak (i.e., as the top object) is equal to 1

2n−1 in the SP-U distribution
whereas it is equal to 1

n in the SP-UP distribution.

It is noteworthy that the frequency of existence of an LEF allocation that is also
Pareto-optimal is very close to the frequency of existence of a simple LEF allocation.
This means that there are only a few instances where the existence of an LEF allocation
does not guarantee the existence of an allocation that is both LEF and Pareto-efficient.

Let us now examine the number of LEF allocations when they exist. Figure 4.3
displays the number of LEF allocations in instances where there exists at least one
such allocation, as well as the number of LEF allocations that are Pareto-optimal when
such allocations exist. The numbers are given in average without counting the negative
instances for existence in order to have a clearer idea and not being noised by the
numerous instances with no such allocations. The instances are the same as those
considered for testing the likelihood of existence. Recall that the total number of possible
house allocations for instances with 8 agents is equal to 40320.

IC SP-U SP-UP

Density Nb LEF Nb Pareto-LEF Nb LEF Nb Pareto-LEF Nb LEF Nb Pareto-LEF

0 40320 163.74 40320 2001.31 40320 395.38

0.25 66.82 8.92 80.45 16.20 90.54 10.15

0.5 3.16 1.88 2.11 1.625 3.86 1.92

0.75 1.08 1.07 0 0 1.25 1.17

1 1 1 0 0 0 0

Table 4.3: Number of LEF allocations and Pareto-LEF allocations in positive instances
of Dec-LEF for Erdös-Rényi graphs of different densities with 8 agents

The same observations as for the likelihood of existence hold: the gap is terribly
high between empty graphs and density 0.25, and between density 0.25 and density 0.5
(recall that in an empty graph all the allocations are LEF). However, although there
are more instances with LEF allocations under impartial culture, the number of LEF
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allocations in average is not the largest. Indeed, the largest number of LEF allocations
in average is found for SP-UP profiles and then (at least for density 0.25) for SP profiles.
This may be explained by the fact that there are less instances with existence of LEF
allocations in single-peaked profiles and thus when they exist in a given instance, they
may exhibit an opportune configuration where the LEF allocations are very numerous.
On the contrary, under impartial culture there can be many configurations where only
a few LEF allocations can be found. We finally observe that in general the number of
LEF allocations that are also Pareto-optimal is very small.

4.7.3 Specific classes of graphs

We conduct the same type of experiments as in the previous subsection, but this time
on specific classes of graphs, namely the directed acyclic graphs (DAGs), the Barabási-
Albert random graphs, and graphs with homophily. The Barabási-Albert graphs are typ-
ical scale-free graphs, property that is usually found in real networks (see Section 1.2.2.b).
Note that they are not generated for a given density. The graphs with homophily are
generated according to the preferences of the agents, as described in Section 1.2.2.b.
We also consider graphs complementary to graphs with homophily (we denote them as
homophily).

The results are presented in Figure 4.2 and Table 4.4.

DAG Homophily Homophily Barabási-Albert
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Figure 4.2: Proportion of instances for which there exists an LEF allocation for different
classes of graphs with 8 agents

As expected by Proposition 4.2, there always exists an LEF allocation in directed
acyclic graphs. However, the likelihood of finding an LEF allocation in a graph with
homophily is extremely low. Indeed, closer the preferences of two agents, more likely
they are to be connected in the network with homophily. Therefore, it appears natural
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IC SP-U SP-UP

Graph Nb LEF Nb Pareto-LEF Nb LEF Nb Pareto-LEF Nb LEF Nb Pareto-LEF

DAG 4837.45 40.845 5144.162 311.209 5804.745 102.371

Homophily 2.27 1.375 0 0 1 1

Homophily 208.23 16.97 6396.40 663.15 1037.72 123.07

Barabasi-Albert 7131.24 47.91 18006.51 963.60 11744.64 236.52

Table 4.4: Number of LEF allocations and Pareto-LEF allocations in positive instances
of Dec-LEF for different classes of graphs with 8 agents

that this is difficult to find an LEF allocation in such instances. On the contrary, when
this is the complementary graph, i.e., the non-envy graph G, that respects homophily,
the likelihood of finding an LEF allocation is very high, due to the same reasons. Fol-
lowing the same idea, the likelihood of existence of an LEF allocation in such graphs
is even higher for single-peaked profiles. Concerning the Barabási-Albert graphs, the
results are more intermediate and illustrate the general behavior of local envy-freeness
regarding preferences: the likelihood of finding an LEF allocation is important under
impartial culture (around 80%), low for SP-U profiles (around 25%) and medium for
SP-UP profiles (around 50%). As for Erdös-Rényi graphs, the frequency of existence of
an LEF allocation that is also Pareto-efficient is not far from the frequency for a simple
LEF allocation.

Regarding the number of LEF allocations, in accordance with the likelihood of exis-
tence which is very weak for networks with homophily, the number of locally envy-free
allocations is also extremely low. For the other types of graphs, the number of LEF
allocations is rather high, especially for Barabási-Albert graphs. As for Erdös-Rényi
graphs, the number of LEF allocations is less important under impartial culture. How-
ever, except for the graph with homophily, the number of LEF allocations that are also
Pareto-efficient is largely higher than in Erdös-Rényi graphs.

4.8 Concluding remarks

We have studied different aspects of local envy-freeness in house allocation settings.
First of all, deciding whether a locally envy-free allocation exists in a given instance is
computationally hard even for very simple and sparse graphs. Nevertheless, we were
able to provide some tractable cases according to the network topology. See Table 4.1
for the details of the complexity results and polynomial cases, with respect to some
parameters of the graph. Interestingly, this problem is solvable in polynomial-time in
directed acyclic graphs and graphs of out-degree at least n − 2. These cases are very
interesting because they rely on meaningful envy-graphs. Indeed, the DAGs can model
some hierarchical situations (see Example 4.2). Moreover, the graphs with out-degree
at least n− 2 refer to the case where the non-envy graph is of out-degree at most 2, and
thus includes the case where the non-envy graph is composed of couples of agents within
which there is no reason for envy to exist.

We have also investigated an optimization perspective, and have tried to minimize
the number of envious agents or the average envy with respect to specific degrees of
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envy. We have provided for both cases approximation algorithms with rather good
approximation ratios.

In a third direction, we have studied the power of the central authority by assuming
that, given the structure of the social network, she can assign in addition to the items to
the agents, the agents to the locations on the graph. This problem can be understood
as assigning tasks to workers as well as time slots (see Example 4.1). Although hard in
general, this problem is solvable in polynomial time for the interesting case of graphs of
degree at least n− 2.

Furthermore, in relation with a process of swap dynamics in house allocation (see
Chapter 3), we have asked the question of the reachability of an LEF allocation by a
sequence of swaps. It turns out that the problem is computationally difficult even for
simple graphs, and tractable cases can be found only for basic graphs.

Finally, the experiments confirm the intuition that the likelihood of finding a locally
envy-free allocations is higher in sparse graphs. But they also highlight the fact that
for some graphs close to real social networks, such as non-envy graphs with neighbors
having similar preferences or scale-free networks, the probability of existence of an LEF
allocation is rather high as well as the number of such allocations.

There are several interesting future directions to explore. First of all, one could exam-
ine further natural constraints on Dec-LEF. For instance, given a partial allocation of
the objects, can a full LEF allocation be found? Or, given some forbidden object-agent
pairs, can an LEF allocation be found?

Another relevant direction is to assume domain restrictions for preferences. There
is a long tradition in social choice to consider domain restrictions on the preferences
of the agents to obtain positive results. This would be natural to study our setting
under such assumptions. For example, we can fix the number of different rankings. To
take a concrete question, how difficult Dec-LEF and Dec-Location-LEF are when
there are only two categories of agents: those with ranking �1 on the objects and those
with ranking �2? More generally, can well-known domain restrictions, such as single-
peakedness, be useful? Since the relevance of this domain restriction in the context of
house allocation has recently been emphasized [Bade, 2017, Damamme et al., 2015], this
might be an interesting road to pursue.

In this chapter, we have investigated a model where the fairness of a social choice
solution is evaluated locally according to the perception of the agents, that is conditioned
by the social network. The information provided by the social network enables the
agents to be able to compare their own situation with the situation of other agents.
This information can also be useful for other settings, such as voting, in a strategic
perspective where agents could design strategies for manipulation whose accuracy would
depend on the social network.
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Chapter 5

Uncertainty in Iterative Voting

Abstract

This chapter deals with strategic voting under incomplete information. We propose a
descriptive model, inspired by political elections, where the information about the vote
intentions of the electorate comes from public opinion polls and a social network, modeled
as a directed graph over the voters. The social network represents a visibility relation,
in the sense that the voters can only observe the votes of their successors in the graph.
The voters are assumed to be confident in the poll and they update the communicated
results given by the poll with the information they get from their relatives in the social
network. We consider an iterative voting model based on this behavior and study the
associated “poll-confident” dynamics. Two configurations are investigated: an election
with a single initial poll and one where several polls are performed and communicated
all along the period. We analyze the convergence of the poll-confident dynamics for
both configurations and the quality of the outcomes, with respect to the structure of the
social network. In this context, we also ask the question of manipulation by the polling
institute.

Résumé

On s’intéresse dans ce chapitre à un problème de vote stratégique avec information
incomplète. Un modèle descriptif, inspiré des élections politiques, est proposé, dans
lequel l’information portant sur les intentions de vote de l’électorat provient des sondages
d’opinion et d’un réseau social, modélisé par un graphe orienté sur les agents. Le réseau
social représente une relation de visibilité, dans le sens où les agents peuvent observer
l’intention de vote de leurs successeurs dans le graphe. Les votants sont supposés avoir
confiance dans le sondage et se basent sur les résultats communiqués, qu’ils mettent
à jour avec ce qu’ils peuvent observer des intentions de vote de leurs proches dans le
réseau social. On considère un modèle de vote itératif basé sur ce comportement et on se
propose d’étudier la dynamique de déviations associée. Pour cela, deux configurations

This chapter is an extension of [Wilczynski, 2019].
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sont analysées : une élection avec un unique sondage initial, et une élection avec plusieurs
sondages ponctuant la période électorale. Les conditions de convergence de la dynamique
étudiée, ainsi que la qualité de son issue, sont examinées pour les deux configurations, en
fonction de la structure du réseau social. Dans un tel contexte, on se propose également
d’évaluer la possibilité de manipulation de la part de l’institut de sondage.

184



CHAPTER 5. UNCERTAINTY IN ITERATIVE VOTING

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.1.1 Uncertainty in voting, social network and public opinion polls . 186

5.1.2 Poll-confident model and related work . . . . . . . . . . . . . . 187

5.1.3 Contributions and organization . . . . . . . . . . . . . . . . . . 188

5.2 Poll-confident dynamics . . . . . . . . . . . . . . . . . . . . . . . 189

5.2.1 Strategic voters in a social and informative context . . . . . . . 189

5.2.2 Information aggregation and belief update . . . . . . . . . . . . 189

5.2.3 Manipulation moves . . . . . . . . . . . . . . . . . . . . . . . . 190

5.2.4 Local and global dynamics . . . . . . . . . . . . . . . . . . . . 193

5.3 Convergence to Poll Equilibria . . . . . . . . . . . . . . . . . . 194

5.3.1 Local poll-confident dynamics . . . . . . . . . . . . . . . . . . . 194

5.3.2 Global poll-confident dynamics . . . . . . . . . . . . . . . . . . 202

5.4 Experimental analysis of the quality of the game . . . . . . . 206

5.4.1 Convergence in practice . . . . . . . . . . . . . . . . . . . . . . 207

5.4.2 Quality of equilibria . . . . . . . . . . . . . . . . . . . . . . . . 210

5.5 Manipulation of the public opinion poll . . . . . . . . . . . . . 215

5.5.1 Enforcing the election of a candidate . . . . . . . . . . . . . . . 215

5.5.2 “Best response” dynamics of the polling institute . . . . . . . . 221

5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 224

185



5.1. INTRODUCTION

5.1 Introduction

Strategic voting occurs in many scenarios. Modeling manipulation in voting via a strate-
gic game makes sense in order to capture the plausible outcomes of an election where
voters may vote tactically. In voting games, the players are traditionally assumed to
know all the others’ votes. However, this assumption appears highly unrealistic, espe-
cially for political elections where the set of voters is actually very large. Therefore,
it appears particularly relevant to relax this important assumption in order to design
models closer to real life situations.

5.1.1 Uncertainty in voting, social network and public opinion polls

The most part of the literature dealing with uncertainty in voting (see Section 1.3.3.c)
assumes that agents adopt a risk-averse behavior, in the sense that voters manipulate
only under the guarantee that their deviation does not produce a worse outcome. Even if
it appears as a rational behavior, it does not really capture the behavior of real voters who
might actually manipulate even if they are not guaranteed to obtain a better outcome
in any case. Indeed, if real electors were risk-averse, then they would never manipulate
because uncertainty is too important in political elections, implying the possibility of a
configuration where they would be worse off if they had manipulated. But, manipulation
actually occurs in political elections [Blais, 2004, Alvarez et al., 2006, Daoust, 2015].

We argue that voters adopt an elementary, but not necessarily myopic, behavior
regarding the information they have. Moreover, we reject the idea that real voters could
think in terms of probabilities. Dealing with expected utility functions is cognitively
hard for the agents [Tversky and Kahneman, 1974] and implies cardinal preferences that
are difficult to elicit. Intuitively, we aim at modeling the following common strategic
behavior in political elections.

Example 5.1 Let us consider a context of a presidential election where the winner
is determined via the Plurality rule. A preliminary opinion poll over the population
announces the following results concerning the vote intentions of the electorate.

Extreme-left (EL) Green (G) Left (L) Conservative (C) Extreme-right (ER) Other parties

15% 7% 20% 25% 18% 15%

A certain voter, Alice, prefers the green candidate G. By observing the poll, Alice realizes
that G will not win because his score is too far from the score of the candidate announced
winner in the poll, namely the conservative candidate C. Consequently, Alice decides to
change her vote intention and intends to vote for the left-wing candidate L, who is her
second choice and whose score in the poll is not so far from the score of the conservative
candidate. After several weeks, Alice notices that the most part of her relatives, who were
initially supporters of the left-wing candidate, have changed their vote intention to the
extreme-left candidate EL, who is also Alice’s third preferred candidate. Finally, Alice
decides to switch her vote intention from L to EL since she considers now that EL is
more susceptible to win than L.

Inspired by political elections, we assume that voters have two sources of information:
the public opinion polls and the social networks. The public opinion polls punctuate the
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election campaign in many countries, and represent an important part of the election pro-
cess. Many studies aim at understanding how they affect voting [Brams, 1982, Forsythe
et al., 1993, Fredén, 2017]. Concerning social networks, they occupy an increasingly
important place in our lives. For a particular citizen, they constitute a tool to have an
idea of the population opinions, even if this vision is biased. The social networks are
a natural channel for acquiring information in context of uncertainty in voting [Chopra
et al., 2004, Sina et al., 2015, Tsang and Larson, 2016].

In a context where the polls offer a large part of the information available to the
voters, a natural question is: what happens if the polling institute does not say the
truth about the scores of the candidates? In fact, can the polling institute manipulate
the election? This question is related to the problem of election control [Faliszewski
and Rothe, 2016], i.e., how an external agent can influence and manipulate the election.
While usually the external agent manipulates by adding / deleting candidates or votes,
or even links of a social network [Sina et al., 2015], we suppose that the polling institute
may lie during the communication of the results of the poll.

5.1.2 Poll-confident model and related work

We study an iterative voting model where voters trust the results of an opinion poll and
have all the same prior assumption about the vote distribution, which is given by the
poll. The voters update this belief about the vote intentions of the society by observing
the deviations of their relatives in the social network. The strategic behavior of voters
is then conditioned by personal pivotal thresholds modeling their willingness to deviate
and how strong is their belief, in a similar way as in the local-dominance approach [Meir
et al., 2014, Meir, 2015] (see Section 1.3.3.c) or as in the non-myopic model [Obraztsova
et al., 2016] (see Section 1.3.3.b). These parameters define a new best response dynamics,
that we call poll-confident.

More precisely, our study generalizes the local-dominance or the non-myopic model,
by assuming that the initial prior information possessed by the voters comes from the
results of a public opinion poll, and that the current knowledge of some votes during
the voting game is given by the connections of the social network. In consequence,
these models correspond to ours when the social network is supposed to be complete.
Nevertheless, the interpretation is quite different. On one hand, Meir et al. [2014] and
Meir [2015] suppose in the local-dominance model that the voters consider the exis-
tence of some noise in the communicated scores. An uncertainty threshold associated
with each voter delimits in consequence all the profiles that are estimated possible by a
voter, according to a given distance from the actual voting profile. On the other hand,
Obraztsova et al. [2016] do not take into account uncertainty in their model. Indeed, the
voters are assumed to know all the current profile. The personal thresholds of the voters
are not related to the information they have but to their strategic behavior, in a simple
look-ahead perspective: they support the candidate that they consider the best among
those whose score is reasonably close to the score of the winner. Our model combines
the two different interpretations. In fact, the voters only know the current ballots of
their relatives in the social network. For the rest of the electorate, for who they are not
able to observe the vote intentions, they base their estimation on the scores provided
by the poll institute. They believe in the poll results but up to a certain level, level ab-
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stractly represented by the personal pivotal thresholds, which also model the willingness
to deviate in a non-myopic way. Actually, the voters consider as potential winners all
the candidates that are close to win in the scores of the poll, with respect to their own
pivotal threshold, by believing that the real scores can be slightly modified or that these
candidates can win if a reasonable number of new voters decide to support them. When
the social network is complete, the pivotal thresholds only model a personal strategic
behavior, that is a willingness to deviate, in the spirit of Obraztsova et al. [2016].

Within the important literature dealing with uncertainty in voting, other works as-
sume that the partial information possessed by the voters comes from a graph, which
is a social network [Sina et al., 2015, Tsang and Larson, 2016, Tsang et al., 2018], or
simply a knowledge graph [Chopra et al., 2004]. However, our work differs from these
previous studies with respect to various parameters. First of all, Tsang and Larson
[2016] and Tsang et al. [2018] consider that the voters have cardinal preferences and in-
fer some probability distribution over the global repartition of the votes in the electorate
from what they can observe in the network. Even though this approach highlights an
existing bias of the voters according to their environment, it ignores the possibility of
external information. However, external information is actually present in political elec-
tions, where voters can have some information about a prior distribution of the votes,
via opinion polls for instance. We consequently assume the presence of an initial public
opinion poll that is common knowledge for the voters. Our model is closer to Sina et al.
[2015]’s, since they also consider ordinal preferences and an initial opinion poll, even
if they suppose that the network is an undirected graph. Nevertheless, the voters are
assumed to aggregate these two types of information very differently: they compute the
new scores by adding the score of a candidate, that is observable in the network, with
the score of this candidate in the poll. The voters deviate when they believe that they
are exactly pivotal, with no notion of pivotal threshold. Our study is also similar on
the election control question: whereas Sina et al. [2015] investigate the manipulation
by an external agent controlling the network, we suppose that the polling institute can
provide corrupted results. Without focusing on a specific voting rule or manipulation
move, Chopra et al. [2004] shows a convergence property, when the knowledge graph
is a directed acyclic graph, that is close to our Proposition 5.1, even if the model of
deviations and the information aggregation are different. Globally, most of these works
only focus on the Plurality rule.

5.1.3 Contributions and organization

We especially investigate two configurations for the poll-confident dynamics: a local
dynamics with one initial poll, and a global dynamics where the results of several polls
are announced along the election. We especially focus on the Plurality rule, where
the interpretation of the ballot is simple, i.e., approving one candidate, and where the
voters can easily deduce some potential winners from the results of the poll (see Endriss
et al. [2016] for a study of manipulation regarding the information communicated to the
voters).

Convergence results are provided, stating that the local dynamics is guaranteed to
converge for some classes of graphs. However, in general, it is difficult to recognize
convergent instances for both local and global poll-confident dynamics. Experiments
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are given for testing the practical convergence of the dynamics and the quality of their
outcomes. Then, we study the computational complexity of manipulation by the polling
institute, proving that it is hard even for simple graphs. Beyond the general hardness
of the problem, we provide some simple heuristics which are efficient in practice.

We present in Section 5.2 our model and the poll-confident dynamics in their local and
global version. Then we analyze their convergence in Section 5.3, and the experimental
quality of their outcome in Section 5.4, before finally investigating the manipulation by
the polling institute in Section 5.5.

5.2 Poll-confident dynamics

5.2.1 Strategic voters in a social and informative context

Let us consider a voting game 〈N,M,�,FB〉 with pure strategies, as described in Sec-
tion 1.3.3, where the agents are given by the set N = {1, . . . , n} and the candidates
are given by M = {a, b, c, . . . }. In particular, the preferences of the voters over the
candidates are strict and modeled by linear orders. Voting rule F will mostly refer to
the Plurality rule, even if some definitions and results hold for any voting rule based on
scores over the candidates. Moreover, FB is the resolute voting rule where F is combined
with the tie-breaking rule associated with B, which is assumed to be the alphabetical or-
der, i.e., a B b B c B . . .. We study an iterative voting framework where the dynamics is
associated with unilateral deviations and the manipulation moves are defined according
to the information possessed by the voters.

Initially, an opinion poll is undertaken from the initial voting profile σ0, where the
voters are assumed to give their real preferences (the agents do not have enough in-
formation to manipulate yet), i.e., σ0 is truthful. The result ∆0 of this initial poll is
communicated to the agents, via a vector of scores describing the Plurality score of each
candidate, i.e., ∆0 : M → N. At this moment, the voters know the scores obtained by
each candidate, but may not have the information on which voter has voted for which
candidate. Let (sj)j∈M be a vector of scores associated with voting rule F . For the sake
of simplicity, we sometimes write F(s) to designate the winner of a voting profile whose
score vector is s.

Though the agents are aware of the initial poll, they do not know all the subsequent
deviations of the agents. We suppose that the agents are embedded in a social network
G = (N,E), represented by a directed graph whose nodes are the agents. An arc
(i, j) ∈ E means that agent i can observe the ballot of agent j at any time. We denote
by Γ(i) the set of agents for which agent i can observe the current ballot, i.e., Γ(i) =
{j ∈ N : (i, j) ∈ E} ∪ {i}. For a voting profile σ, the score of candidate x that agent
i is able to observe is denoted by Scσi (x), which corresponds to the score of x under
voting rule F in the subprofile of σ restricted to i and the successors of i in G, i.e.,
Scσi (x) := ScσΓ(i)(x). An instance of a linked voting game, where the informative context
of agents is given by a graph, is then a tuple I = 〈N,M,�,FB, G〉.

5.2.2 Information aggregation and belief update

The voters have two sources of information about the current scores: the results of the
initial poll and the current votes of their relatives, i.e., their successors in the network.
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The question is how they aggregate these informations. We assume that the voters base
their belief on the results of the poll, updated with the votes of their relatives.

In fact, each voter has her own belief about the score of each candidate. Let us
denote by BSti : M → N the believed score function of agent i at the tth step of the game.
Initially, BS0

i = ∆0 for every voter i since the voters trust the poll. We may see BSti
and ∆0 as m-tuples where jth coordinate corresponds to the believed and the announced
score of jth candidate (using the alphabetical order), respectively. At step t of the game,
the believed score function of agent i is updated only if a relative of i deviates.

Definition 5.1 (Score Belief Update) The update of the believed score function of
agent i at step t+ 1, after the deviation of an agent j from strategy σj to σ′j at step t, is

given by BS t+1
i := BS ti ⊗G (j, σj , σ

′
j). Operator ⊗G updates believed score function BS t

i

according to the differences between old ballot σj and new ballot σ′j only if j ∈ Γ(i).

In particular, for Plurality, ⊗G computes the new score of each candidate z as follows,
after the deviation of an agent j from candidate x to candidate y:

[BS ti ⊗G (j, x, y)](z) =


BS ti (z)− 1 if z = x and j ∈ Γ(i)

BS ti (z) + 1 if z = y and j ∈ Γ(i)

BS ti (z) otherwise

Note that for any voter i such that Γ(i) = {i} and i never deviates, BSti = ∆0 for
any step t of the game. Similarly, for any voter i such that Γ(i) = N , BSti = Sct for any
step t. If Γ(i) = N for every voter i, then we get the classical iterative voting framework
[Meir et al., 2010] (as depicted in Section 1.3.3.b), where the voters know the current
vote of any other voter. This situation occurs when social network G is a complete
graph.

At any step of the linked voting game, the voters have a belief on the scores of the cur-
rent profile under voting rule F . The voters then elaborate strategies for manipulation,
based on this belief.

5.2.3 Manipulation moves

We are now able to define specific manipulation moves under Plurality for agent i at
step t, regarding her belief and her strategic behavior. A pivotal threshold, represented
by a fixed integer pi, is associated with each voter i, and describes the strategic type of
voter i under Plurality. We denote by p = (p1, . . . , pn) the vector of pivotal thresholds
where pi refers to the pivotal threshold of agent i ∈ N . When pi is the same for all the
voters, the pivotal thresholds are said to be homogeneous. The pivotal threshold of a
voter represents her willingness to deviate to a new strategy on the basis of her belief
about the scores. This can measure how much the voters are uncertain about their
belief or represent the threshold from which they think that their vote can be pivotal
and matter in the election, notably by influencing the other votes. This threshold defines
for each voter i a set of potential winners at step t, denoted by PW t

i , representing the
candidates that are still able to win the election, according to voter i. The intuition
is that a candidate is a potential winner if the number of additional votes which are
necessary to make it the winner is lower than the pivotal threshold. At step t, agent i
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believes that the winner ωti is the candidate that maximizes the believed scores BSti. If

we do not consider the current vote of agent i, then let us denote by BS
t,\i
i the believed

score function of voter i at step t, and its associated winner ω
t,\i
i .

Definition 5.2 (Potential winner) Candidate x is a potential winner for agent i at
step t if and only if i believes that x has currently less than pi points of difference with the

winner, i.e., x belongs to PW t
i if and only if BS

t,\i
i (ω

t,\i
i )− BS

t,\i
i (x) + 1{ωt,\ii Bx} ≤ pi.

Observe that the tie-breaking rule matters in the definition of a potential winner

because, if x obtains the same score as the believed winner (in BS
t,\i
i ) but x has a lower

rank than ω
t,\i
i in B, then it is not sufficient to make it win. In such a case, one more

point should be added to the score of x in order to make it the new believed winner.
This is expressed by the last part of the left-hand side of the inequality, in the previous
definition, where 1{ϕ} is equal to one if ϕ is true, and to zero otherwise.

The notion of potential winners is illustrated in the following example.

Example 5.2 Consider an instance with 100 voters and six candidates, where M =
{a, b, c, d, e, f} and F=Plurality. Take a voter i who, at a given step t of the iterative
voting process, believes that the scores are: BS ti = (20, 25, 19, 6, 12, 18). Agent i believes
that the current winner at step t is candidate b with a score equal to 25. Assume that
voter i currently votes for candidate e whose believed score is 12. Let us suppose that the
pivotal threshold of i is equal to pi = 10, that is she considers that any candidate with
a gap of at most 10 points with the winner is a potential winner. The believed scores of
the candidates according to voter i (minus her own vote) are graphically represented as
follows.

a b c d e f
0

5

10

15

20

25

pi

From the point of view of agent i, the potential winners are thus the candidates a, b, c
and f . They are the candidates with a current believed score between the score of the
believed winner and the score of the believed winner minus pi.

Observe that, by definition, the believed winner when the current ballot of agent i

is not taken into account, i.e., ω
t,\i
i , always belongs to the set of potential winners for
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agent i, as well as the current believed winner at step t for agent i, i.e., ωti , if pi ≥ 1
(this may not be the same candidate if σti = ωti).

We are now able to define best response deviations for Plurality according to the set
of potential winners.

A better response deviation according to the belief of agent i at step t must approve
a candidate within PW t

i . However, by assuming that the voters are rational, it makes
sense to suppose that agent i directly changes for her preferred candidate within PW t

i ,
leading to a concept of believed best response. We suppose that if there is a deviation for
agent i, this is not to approve candidate ωti , because agent i already believes that ωti is
winning, so there is no need to further support it.

Definition 5.3 (Believed best response (BBRp)) A deviation to a ballot y ∈ M \
{σti} from ballot σti is a believed best response for agent i at step t if y ∈ PW t

i \{ωti} and
for all x ∈ PW t

i \ {y}, it holds that y �i x.

Observe that the BBRp manipulation move is defined according to the strategic types
of the voters, which are given by the vector p of pivotal thresholds, because the set of
potential winners is defined with respect to pivotal threshold pi. This manipulation move
clearly generalizes the direct best response [Meir et al., 2010] (see Definition 1.27), which
corresponds to the case where p = (1, . . . , 1) and the social network is complete. For
arbitrary pivotal thresholds and a complete graph as a social network, a believed best
response under Plurality corresponds to a local-dominant strategy [Meir et al., 2014] (if
the initial voting profile σ0 is truthful) (concept recalled in Section 1.3.3.c), where the
distance metric between voting profiles is an `1-norm, and to an NM-Plurality response
[Obraztsova et al., 2016] (recalled in Section 1.3.3.b).

Let us remark that the pivotal thresholds allow to model different strategic behaviors
of voters. For instance, for a given voter i, if pi = 0 then voter i never manipulates
whatever her current ballot and the current winner. If pi = n, then any candidate is a
potential winner. In this case, by considering believed best response deviations, voter i
is sincere and always gives her sincere ballot. If pi = 1, then voter i deviates only when
she is exactly pivotal, that is, according to her belief, she can make the outcome change.

In general, we define stable states with respect to the information given by the poll
and a specific manipulation move µ.

Definition 5.4 A strategy profile σt is a (∆0, µ)-equilibrium if and only if no agent
i ∈ N can perform a deviation of type µ from σt, according to her belief about σt, given
by BS t

i .

Observe that the classical iterative voting, where the current votes are common
knowledge for all the voters corresponds in our model to an instance where the social
network is a complete graph. In such a context, a (∆0, BBR(1,...,1))-equilibrium un-
der Plurality is a Nash equilibrium (see Definition 1.23), as the essential condition for
a Nash equilibrium is the complete knowledge about the current state [Aumann and
Brandenburger, 2014].
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5.2.4 Local and global dynamics

The information contained in the poll, updated by the observations given by the net-
work, as well as a manipulation move µ and initial state σ0, allow to define a new
dynamics of the strategic game, that we call poll-confident µ-dynamics. We say that the
poll-confident µ-dynamics converges if any sequence of deviations eventually leads to a
(∆0, µ)-equilibrium, and we say that the dynamics can cycle if there exists a sequence of
deviations where a strategy profile appears more than once. Note that in general, we do
not consider a specific turn function τ for determining who deviates at a given step (see
Section 1.3.3.b), unless we specify it as a part of instance I of the linked voting game,
by mentioning Iτ .

A sequence of believed best responses deviations under Plurality is illustrated in the
following example.

Example 5.3 Let us consider an instance of the linked voting game with four voters
and four candidates, where N = {1, 2, 3, 4}, M = {a, b, c, d}, and a B b B c B d. The
social network G and the preferences � are as follows.

1 2 3 4

1 : a � c � b � d
2 : b � d � c � a
3 : c � d � a � b
4 : d � b � c � a

The pivotal thresholds of the agents are such that p1 = 2 and p2 = p3 = p4 = 1.
Consider the following sequence of believed best responses. At each step t, an arrow
designates the deviation performed by voter i mentioned below the arrow, believing the

score function BS
t,\i
i mentioned above the arrow. The real scores and winner are given

in the brackets. The deviations are written in bold.

{(1, 1, 1, 1) : a} (1,0,1,1)−−−−−→
2

{(1, 0, 1,2) : d} (1,1,0,1)−−−−−→
3

{(1, 0, 0,3) : d} (1,1,1,0)−−−−−→
4

{(1,1, 0, 2) : d} (1,2,0,0)−−−−−→
3

{(2, 1, 0, 1) : a}

From σ0, agent 2 changes her vote to candidate d because she prefers d to the winner
a. Agent 1 observes this move but has a pivotal threshold of 2: she still believes that her
preferred candidate a can win so she does not deviate from a. Agent 3 did not observe
any move, and thus believes in the initial scores, leading to her deviation to d. This belief
also holds for agent 4 who deviates to b. Agent 3 observes this move while believing that
agent 2 has not deviated and thus she moves to a. At this point, no agent can deviate
given the information she gets, so profile (a, d, a, b) is a (∆0, BBRp)-equilibrium.

5.2.4.a Global poll-confident dynamics

We define, analogously to the local poll-confident dynamics, a global poll-confident dy-
namics where several polls are communicated to the voters. More precisely, each time
the local poll-confident dynamics converges, the scores of the candidates at the equilib-
rium are communicated via a poll. A sequence of deviations within global dynamics is a
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sequence of states (σ0, σ0,1, . . . , σ0,t0 , σ1,1, . . . , σ1,t1 , . . . , σt,1, . . . , σt,tt), where σi,j is the
strategy profile at ith global step and jth local step. For each 0 ≤ k ≤ t − 1, there is
a poll ∆k+1 between state σk,tk and state σk+1,1 which announces the scores of profile
σk,tk under F . Initial poll ∆0 is given between initial state σ0 and state σ0,1. For all
0 ≤ k ≤ t, sequence (σk,1, . . . , σk,tk) represents the deviations of the local dynamics with
initial poll ∆k, which leads to the (∆k, µ)-equilibrium σk,tk , for a given manipulation
move µ. We assume that the voters do not keep in memory the history of the previous
global steps. At each global step, the voters behave in the same way as in the initial
one.

The global poll-confident dynamics can cycle if there exists a sequence of deviations
(σ0, σ0,1, . . . , σ0,t0 , . . . , σt,1, . . . , σt,tt) such that there are k < k′ where σk

′,tk′ = σk,tk or
σk
′,tk′ = σ0, or if the associated local poll-confident dynamics cycles. A stable state

regarding the global dynamics is called a global equilibrium.

Observation 5.1 For a homogeneous pivotal threshold p = (1, . . . , 1), a state σ is a
global equilibrium, according to believed best response deviations, if and only if σ is a
Nash equilibrium.

A global equilibrium σ is either σ0 or a (∆t, BBRp)-equilibrium for some step t. In
any case, the scores at σ are announced either by ∆0 or by ∆t+1, leading to complete
information about σ.

5.3 Convergence to Poll Equilibria

In this section, we study the theoretical convergence properties of the poll-confident
dynamics. Despite some positive results, in the general case, it is difficult to recognize
instances for which the dynamics converges.

5.3.1 Local poll-confident dynamics

We investigate the convergence properties of the local poll-confident dynamics according
to the topology of the social network.

5.3.1.a General convergence results

Let us first investigate the general convergence properties of the local poll-confident µ-
dynamics for an arbitrary (deterministic) manipulation move µ and an arbitrary voting
rule F based on scores.

The deviation of each agent depends on the information she has about the deviations
of the other agents, which is given by social network G. If a voter does not see anybody
deviating after her own deviation, then she has no reason to deviate again.

Observation 5.2 Any agent i such that Γ(i) = {i} deviates at most once for any voting
rule F , any manipulation move µ, and any initial profile σ0.

Observation 5.2 implies that the local poll-confident µ-dynamics converges for any
voting rule F , any manipulation move µ ad any initial profile σ0 when E is empty. A
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condition on the graph can be further derived in order to ensure the convergence of the
dynamics for a larger class of graphs.

Proposition 5.1 If G is a directed acyclic graph (DAG), then the local poll-confident
µ-dynamics converges within O(n2) steps for any voting rule F , any manipulation move
µ, and any initial profile σ0.

Proof: Suppose that the local poll-confident dynamics cycles within the subset of agents
N ′ ⊆ N . Observation 5.2 implies that the out-degree inG of each agent i ∈ N ′ is different
from zero. However, a DAG contains at least one sink, i.e., a vertex of null out-degree,
and G[N ′] is a DAG since it is a subgraph of a DAG. Contradiction.

Now let us count the deviations. A deviation of a sink-agent can push at most n− 1
other agents to deviate. By iteratively removing a sink of G and counting the deviations
caused by a sink-agent in the new graph, we get that the sequence of deviations is of
size O(n2). �

The previous convergence property holds for any voting rule and any type of manip-
ulation move. Let us now focus on specific dynamics that are guaranteed to converge
from any initial state when the network is complete. We can actually generalize the con-
vergence result on a complete graph to any transitive graph (see Definition 1.3). Indeed,
if a µ-dynamics is proved to converge in presence of complete information about the
current state, then this dynamics also converges when the social network is a transitive
graph, as stated in the following proposition.

Proposition 5.2 Let µ be a manipulation move such that the local poll-confident µ-
dynamics on a complete graph is guaranteed to converge from any initial profile within
O(fµ(n,m)) steps. If G is transitive, then the local poll-confident µ-dynamics converges
within O(n · fµ(n,m)) steps to a (∆0, µ)-equilibrium from any initial profile.

Proof: Let N ′ be a minimal subset of agents for which the local poll-confident µ-
dynamics cycles in a given instance where G is a transitive graph. Remark that all the
agents i in a cliqueK ofG have the same believed scores BSti at any step t: by transitivity,
Γ(i) = Γ(j) for all i, j ∈ K. So, by the convergence guarantee of the µ-dynamics when all
the current votes are known from any initial profile, N ′ does not form a clique in G. By
Proposition 5.1, there must be a directed cycle (dicycle) in G[N ′]. But a dicycle along
agents N ′′ ⊆ N in a transitive graph implies that N ′′ actually forms a clique in G. So,
G[N ′] includes a set of cliques. Since there is no visibility of the deviations between two
disjoint connected components and N ′ is minimal, G[N ′] is connected. The agents in N ′

can be partitioned into the groups N ′1, . . . , N
′
k following their level of knowledge: each

G[N ′i ] for i ∈ [k] is a set of disjoint cliques and any agent in N ′i can only observe some
agents in N ′j for j ≤ i. Each agent in a group N ′i deviates according to the deviations
of agents in

⋃
j≤iN

′
j , because she cannot observe other deviations. So, a cycle in the

dynamics within N ′ implies a cycle in the dynamics within
⋃
j≤iNj . By minimality of

N ′, N ′ is a single clique, contradiction. �

Observe that if all the agents are linked according to their preferences in such a
way that two agents who agree on their most preferred candidate are connected via two
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opposite arcs in G, then this graph with homophily (see Section 1.2.2.b) is transitive.
Thus the local poll-confident µ-dynamics converges in such a graph, for any µ-dynamics
guaranteed to converge in presence of complete information about the current profile.

5.3.1.b Believed best responses under Plurality

Let us now study, more specifically, the believed best responses under Plurality. Note
that, by Proposition 5.1, the local poll-confident BBRp-dynamics is guaranteed to con-
verge if G is a directed acyclic graph, for any vector of pivotal thresholds even when the
pivotal thresholds are heterogeneous.

Recall that, when the network is complete and p = (1, . . . , 1), the local poll-confident
BBRp-dynamics corresponds to a direct best response (Definition 1.27). By Theorem 3
of Meir et al. [2010], we get that the local poll-confident BBRp-dynamics converges from
any initial state within O(n ·m) steps, when the network is complete and p = (1, . . . , 1).
Therefore, by Proposition 5.2, the following corollary holds.

Corollary 5.3 The local poll-confident BBRp-dynamics converges from any initial state
within O(n2 ·m) steps when the social network is a transitive graph and p = (1, . . . , 1).

Let us now analyze the case of more general pivotal thresholds. Recall that the local
poll-confident BBRp-dynamics under Plurality, when G is a complete graph, corresponds
to a local-dominant strategy [Meir et al., 2014] (see Section 1.3.3.c) if σ0 is truthful, and
to an NM-Plurality response [Obraztsova et al., 2016] (see Section 1.3.3.b). We deduce
from the proofs of Theorem 5.3 of Meir et al. [2014] and Theorem 2 of Obraztsova et al.
[2016] that the local poll-confident BBRp-dynamics converges within at most n · (m− 1)
steps from the truthful voting profile, when the pivotal thresholds are homogeneous and
the network is complete. However, these two proofs do not hold for an arbitrary initial
profile, ruling out the possibility to use Proposition 5.2.

Nevertheless, a further restriction on turn function τ , in the spirit of Proposition 6
of Meir et al. [2014], enables us to derive a convergence property from any initial profile
when the network is complete and the pivotal thresholds are homogeneous. We can
consequently generalize this result to transitive graphs, thanks to Proposition 5.2.

For a BBRp deviation a
i−→ b occurring at step t, where voter i deviates from a to

b, if b �i a, then the associated deviation is called an opportunity move otherwise, if
a �i b, then it is called a compromise move.

Proposition 5.4 The local poll-confident BBRp-dynamics converges from any initial
profile within O(n.m) steps, when the pivotal thresholds are homogeneous and the net-
work is complete, in any instance Iτ of the linked voting game where τ always chooses
opportunity moves before compromise moves.

Proof: Let us consider a sequence of BBRp deviations starting from any initial profile.
Since the pivotal thresholds are homogeneous, let us denote by pu the common pivotal
threshold. Observe that there are at most n(m− 1) consecutive opportunity moves be-
cause each such a deviation implies that the rank, in the preferences of the manipulator,
of the candidate approved in the new ballot is strictly better than in the previous ballot.
Therefore, by definition of the turn function, there exists a state t0 where no agent has

196



CHAPTER 5. UNCERTAINTY IN ITERATIVE VOTING

incentive to perform an opportunity move. If no agent can deviate from σt0 , then we

are done. Otherwise, there is some agent i that performs a compromise move a
i−→ b at

step t0. We will prove by a complete induction, for any step t ≥ t0 where an agent i

performs a deviation a
i−→ b, that:

(I) the score of the winner does not decrease,
(II)

⋃
j∈N PW

t′
j ⊆

⋃
j∈N PW

t
j for any step t′ > t,

(III) a �i b, i.e., this is a compromise move,
(IV) after this move no agent can vote for a.

First consider the state where t = t0, with the BBRp deviation a
i−→ b. This is

necessarily a compromise move by definition of t0, thus a �i b and (III) holds. Since,
by definition of a BBRp, b ∈ PW t

i , this is not possible that a ∈ PW t
i otherwise it

must hold that b �i a, which contradicts the assumption that there is no opportunity
move at t0. Consequently, a /∈ PW t

i , and in particular a 6= F(σt0), so the winner score
cannot decrease, proving the base case of (I). Since the winner score has not decreased
and agent i has only given one point to b ∈ PW t

i , then
⋃
j∈N PW

t+1
j ⊆

⋃
j∈N PW

t
j ,

proving the base case of (II). Observe that PW t0
i = PW t0+1

i since agent i does not
take into account her own ballot in the computation of the potential winners. Let us
consider an agent j 6= i. If a /∈ PW t0

j then, since a loses one point after this deviation

and the winner score does not decrease, it holds that a /∈ PW t0+1
j . However, even

if the thresholds are homogeneous, it is possible that a ∈ PW t
j whereas a /∈ PW t

i .
Indeed, (1) i may not see a as a potential winner because she is currently voting for it,
and/or (2) j can see more candidates as potential winners because her current ballot is
the winner. Suppose first that the second case does not hold. Then, by definition of

the potential winners, it holds that BS
t,\j
j (a) ≥ BS

t,\j
j (ω

t,\j
j ) − pu + 1{ωt,\jj Ba}, whereas

BS
t,\i
i (a) < BS

t,\i
i (ω

t,\i
i ) − pu + 1{ωt,\ii Ba}. However, the current ballot of i, as well as

the current ballot of j at step t, are both different from the real winner F(σt), therefore

ω
t,\j
j = ω

t,\i
i = F(σt). It follows that BS

t,\i
i (a) = BS

t,\j
j (a) − 1 = BS

t+1,\j
j (a). Because

the score of ω
t,\j
j has not decreased by the deviation of i, this implies that a /∈ PW t+1

j .

Now suppose that (2) holds, that is σtj = F(σt). Then, it is possible that, even after the
deviation of i, a still belongs to the potential winners of j. However, it must hold that
σtj �j a, otherwise agent j would have incentive to deviate within a compromise move
at step t0. Therefore, even if a still belongs to the potential winners of j, she has no
incentive to deviate to it, at least while σti remains a potential winner.

Assume now that (I)-(IV) hold for any step from t0 to some step t > t0. We will

prove that (I)-(IV) still hold for t + 1. Suppose that there is a deviation a′
i′−→ b′ at

step t. Suppose that b′ = a, that is some agent can vote for a that i has left at step t0.
From the proof of the base case, the only possibility is that the current ballot of i′ is the
winner of step t0, which is not a potential winner anymore. But, if σti′ is not a potential
winner, then this means that the score of the new winner has increased too much for
σti remaining a potential winner. This is due to the fact that no agent currently voting
for σti′ had incentive to move while it was winner, and to the assumption that the steps
occur after t0. However, if this is impossible for σtj to belong to the potential winners,
then it will be completely impossible for a who had no new support since the deviation
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of i at step t0, which proves (IV). Suppose that i′ performs an opportunity move. By
induction assumption on (III) and the nature of the turn function, i′ had no incentive
to do it from t0 to t. This means that a new candidate b′, which has just entered into
the potential winners of i′, is preferred to her current ballot. But, no new candidate
can enter into the potential winners of i′ unless the winner score has decreased, which
is impossible by induction assumption on (I). Therefore, (III) holds and the move of i′

is a compromise move. This implies that a′ /∈ PW t
i′ , and thus the score of the winner

cannot decrease after the move of i′, proving (I). Agent i′ cannot make the score of the
winner decrease and b′ must belong to PW t

i′ . This implies that (II) still holds. Hence,
to summarize, the BBRp-dynamics must converge.

Observe that there are at most n · (m − 1) moves until t0 is reached since only
opportunity moves occur before t0, and at most n · (m − 1) moves after t0, since only
compromise moves can occur. Therefore, the whole process converges within O(n ·m)
steps. �

Corollary 5.5 The local poll-confident BBRp-dynamics converges from any initial pro-
file within O(n2 ·m) steps, when the pivotal thresholds are homogeneous and the network
is a transitive graph, in any instance Iτ of the voting game where τ always chooses
opportunity moves before compromise moves.

The previous convergence result holds for a specific condition on the turn function.
However, we conjecture that convergence is guaranteed even without this condition.

Despite the BBRp-dynamics converges for specific graphs when the pivotal thresholds
are homogeneous, the convergence is not guaranteed for any social network, even when
p = (1, . . . , 1), as we can observe in the following example.

Example 5.4 Let us consider an instance with four voters and four candidates where
N = {1, 2, 3, 4}, M = {a, b, c, d} and a B b B c B d. The social network and the
preference profile are as follows.

1 2

34

1 : c � d � b � a
2 : b � c � d � a
3 : a � c � b � d
4 : d � b � c � a

All the agents i ∈ N have the same pivotal threshold pi = 1. The following sequence
of BBRp-deviations, starting from the truthful profile, creates a cycle in the dynamics.
Indeed, the states σ1 to σ7 form a cycle. Deviations are marked with arrows and bold

letters. The believed scores BS
t,\i
i of each deviating agent i at step t are indicated above

the arrow representing the manipulation move.

198



CHAPTER 5. UNCERTAINTY IN ITERATIVE VOTING

Steps σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7

1 : c
(1,1,0,1)−−−−−→ d d

(1,0,1,1)−−−−−→ c c c
(1,1,0,1)−−−−−→ d d

2 : b b
(1,0,1,1)−−−−−→ c c c

(1,1,1,0)−−−−−→ b b b

3 : a a a a a a a a

4 : d d d d
(1,1,1,0)−−−−−→ b b b

(1,1,0,1)−−−−−→ d

F(σt) a d d c c b b d

It is easy to see that each manipulation move is a BBRp deviation.

Moreover, note that when the pivotal thresholds are heterogeneous, there is no guar-
antee of convergence even for a complete graph as a social network. We can observe this
phenomenon, for instance, in Theorem 3 of Obraztsova et al. [2016].

5.3.1.c Recognizing convergent instances

Globally, as Proposition 5.1 shows and Example 5.4 illustrates, the existence of a dicycle
in the network is a necessary condition for the local dynamics to cycle. However, if
all the subsets of agents that are connected by a dicycle in the graph actually form a
clique in G, then the convergence is ensured under certain conditions, as Proposition 5.2
establishes.

These remarks are not sufficient for predicting the possibility of a cycle in the dy-
namics because the preferences of the agents also matter. For a general graph, we can
even state that it is computationally hard to recognize instances for which the local
poll-confident dynamics can cycle. This result holds even when all the agents have the
same pivotal threshold equal to p = (1, . . . , 1) and the voting rule is Plurality.

Theorem 5.6 Deciding whether the local poll-confident BBRp-dynamics can cycle is
NP-hard, even for a homogeneous pivotal threshold p = (1, . . . , 1).

Proof: We perform a reduction from 2P1N-SAT, known to be NP-complete (Theo-
rem 1.3). The 2P1N-SAT problem is a satisfiability problem defined on a set C =
{C1, . . . , Cs} of s clauses over a set X = {x1, . . . , xv} of v variables. Recall that in
2P1N-SAT, each variable occurs twice as a positive literal and once as a negative literal.
We assume that the clauses are indexed such that each first occurrence of a variable is
a positive literal (see Section 1.5.1.a). Each clause Ci ∈ C contains si literals.

From an instance 〈C, X〉 of 2P1N-SAT, we construct an instance I = 〈N,M,�
,FB, G〉 of the linked voting game, where F=Plurality. The set M of candidates includes
candidates a, b, y, z and clause-candidates ci for each i ∈ [s]. The tie-breaking B is
defined according to the following linear order: b B y B z B cs B cs−1 B · · · B c1 B a.
The set N of agents includes agents A, B, Y and Z, and literal-agents Lij for each jth

literal of clause Ci. We will usually refer to the literal-agents Lij , for j ∈ [si], associated
with clause Ci, as the agents of clause Ci. The preferences are as follows (all candidates
not listed are ranked in arbitrary order within [. . . ], and the candidates in brackets may
not exist for all the indices):
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x1 x2

x3

C1

x1 x2

x4

C2

x2 x3

x4

C3

x1 x3

x4

C4

B A Z Y

Figure 5.1: Construction of G for a 2P1N-SAT instance where C1 = (x1 ∨ x2 ∨ x3),
C2 = (x1 ∨ x2 ∨ x4), C3 = (x2 ∨ x3 ∨ x4) and C4 = (x1 ∨ x3 ∨ x4). The literals (we keep
for the figure the literal name) in a same circle are in a same clause; the arcs from or to
the circles concern every agent inside.

Lij : y � ci � cs � (ci−1) � [. . . ]

A : a � y � b � [. . . ] Y : y � z � b � [. . . ]

B : a � b � y � [. . . ] Z : z � y � cs � [. . . ]

We add 3v(s + 2) + s dummy voters, where 3v + 1 among them rank ci first for each
candidate ci, 3v rank b first and 3v rank z first. Every candidate, except a and b, obtains
3v+ 1 votes, and b has 3v votes. The initial winner is y, thanks to B. In the network G,
all the agents of a same clause form a clique. There is an arc from each agent of clause
Ci to each agent of clause Ci−1. There is an arc from each agent of clause C1 to agents
B and Z, and from agents Z and Y to the agents of clause Cs. Agent Z points to A
and Y , and A points to agent B. There is an arc from agent Lij to agent L`k if i < `
and the agents correspond to opposite literals. See Figure 5.1 for an illustration of the
graph construction.

We claim that C is satisfiable if and only if the local poll-confident BBRp-dynamics
starting from the truthful profile where p = (1, . . . , 1) can cycle in instance I. Indeed, we
can prove that the only possible cycle within the dynamics involves the agents Y , Z and
exactly one agent related to each clause. Moreover, if there are two agents corresponding
to opposite literals among the deviating agents related to the clauses, then the cycle does
not occur.

Suppose that C is satisfiable and consider a truth assignment φ of the variables. In
instance I, let agent B deviate to candidate b. Only agents A and the agents of clause
C1 can observe this deviation. Let A deviate now to candidate t and denote by σ′ the
resulting voting profile. The agents of clause C1 do not see this deviation, they still
believe they have incentive to deviate to ballot c1. We choose a voter associated with
a literal of clause C1 that is true in φ and let her deviate to c1, creating an incentive
to manipulate for the agents of C2. Following the same principle, we choose a deviating
voter associated with a true literal in φ for each clause Ci, from C1 until Cs. Afterwards,
agent Z deviates to y because she still believes that y can win since she has observed A’s
deviation to y. Then, agent Y who can only observe the agents of Cs, deviates to z. By
observing that Z gives one more point to y, the agent in C1 who has previously deviated
comes back to ballot y, leading progressively all the previous deviating agents within
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the clauses to come back to y. These new deviations are possible because a deviating
agent in clause Cj+1 can only observe the deviations of clause Cj , since there is no two
opposite literals both true in φ. Now, agent Z who has observed the deviation of agent
Y to ballot z, believes that z can win and thus deviates to it. Agent Y , who has only
observed the deviation to y of an agent of clause Cs, deviates to candidate y, her first
choice. We reach voting profile σ′, leading to a cycle within the dynamics.

Now suppose that there is a cycle within the local poll-confident BBRp-dynamics
in instance I. We claim that the only possible cycle within the dynamics involves the
agents Y , Z and exactly one literal-agent per clause. Let us denote by Σ the agents
involved in a cycle of the dynamics. The agents A, B and all the dummy voters do
not belong to Σ because they have a null out-degree (and A only points to B). All the
dummy voters are isolated, nobody can see their deviations, so we assume w.l.o.g. that
they do not deviate. At the first step, only agent B has incentive to deviate. After this
deviation to b, agent A and the agents of clause C1 want to deviate. Only agent Z can
see a deviation of A, but Z does not move because A deviates to y, which is the second
best candidate of Z. She has incentive to deviate only if she observes another deviation,
and the only possible one is from literal-agents of clause Cs. However, to make an agent
of Cs deviate, there must have been a previous deviator within Cs−1, and so on along
the clauses, leading to the previous deviation of at least one literal-agent in C1. The
agents of the clauses can progressively deviate from an initial deviation performed in C1,
because by observing the deviation of an agent in clause Ci to candidate ci, an agent of
clause Ci+1 believes that voting ci+1 is a best response (ci+1 B ci).

We claim that no cycle can occur during this stage where only the agents of the
clauses deviate. Indeed, as stated in Lemma 5.7, the literal-agents in clause Ci can only
deviate to ci or cs. Moreover, once they deviate to cs there is no possibility to deviate to
candidate ci since only the other literal-agents of Ci, where there is complete visibility,
can deviate to ci, and cs B ci.

Lemma 5.7 In the first stage where the literal-agents Lij in the clauses perform devia-

tions and agents Y and Z have not deviated yet, each literal-agent Lij can only deviate
to candidate ci or candidate cs.

Proof: Initially, each literal-agent votes for y. So, once at least one literal-agent has
deviated, no other literal-agent can deviate to y, because either she believes that y is
not potential winner anymore, by having observed a deviation of another literal-agent,
or she is currently voting for y. Suppose that at some step t and for some ` ∈ [s], at

least one literal-agent of clause Ci has deviated, for each i ∈ [`]. Let us denote by Lij the
literal-agent corresponding to the unique literal that is opposite to the literal associated
with literal-agent Lij and that belongs to a clause i′ such that i′ > i. Moreover, c(Lij)
denotes the clause-candidate associated with this opposite literal-agent. A literal-agent
L1
j of clause C1 believes one of the following cases:

(1) Candidate b is winning with 3v+ 1 points. Consequently, L1
j deviates to c1, which

already has 3v + 1 points.
(2) Candidate c1 is winning. Then, L1

j has no incentive to move.

(3) Candidate cs is winning. Therefore, L1
j deviates to c1 if she can make it win or

does not move otherwise.
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(4) Candidate c(L1
j ) is winning. This implies that agent L1

j has voted for it. Since Lj1

could only observe this vote in favor of c(L1
j ), it suffices to give one more vote to

cs to make it winner (cs B c(L1
j ) if cs 6= c(L1

j )).

Therefore, agent L1
j can only deviate to candidate c1 or cs. Suppose now that the

induction assumption holds for all the agents of Ci−1 for some i ∈ [`− 1] and let Lij be a
literal-agent of Ci. By induction assumption, all the agents of Ci−1 have not deviated,
or have voted for ci−1, or for cs. Thus, agent Lij believes that the winner is within

{ci−1, ci, c(Lij), cs}. We can detail each case:

(1) Candidate ci−1 is winning. Then, agent Lij can deviate to ci or cs if she is able to
make win one of them. Otherwise she does not have incentive to move.

(2) Candidate cs is winning. Then agent Lij can only try to deviate to ci.

(3) Candidates ci is winning. Consequently, agent Lij does not have incentive to move.

(4) Candidate cij is winning. Then, agent Lij has only observed the vote of the opposite

agent Lij who voted for c(Lij). Thus, Lij can either vote for ci, if another agent of

clause Ci has already deviated to ci, or to cs because cs B c(Lij) if cs 6= c(Lij).

This completes the proof. �

In order to summarize, for a deviation of Z to occur, it needs that exactly one agent
in Cs deviates. The same holds for the deviator in Cs: she must have seen exactly
one deviation from Cs−1, and so on. Consequently, at least one agent has deviated per
clause. When Z finally deviates to candidate y, only the agents in C1 can deviate in
consequence, beginning a new phase of deviations within the clauses. The agents Lij
who can come back to candidate y are those who have deviated alone in their clause
Ci and for who the opposite agent Lij has not deviated, otherwise they do not believe
that candidate y has enough points to win. These deviations still progress by increasing
order of the clause indices. In order to get a cycle, since some agents of the clauses
have come back to a strategy performed before the deviation of agent Z, Z must deviate
again. Thus, these coming backs to old strategy y for agents of the clauses must affect
each clause until Cs. Finally, if agent Y has not previously deviated, then we necessarily
obtain convergence. Therefore, agent Y has previously deviated to candidate z as a
believed best response. Consequently, agent Z comes back to candidate z and then Y to
candidate y after having observed it, creating a cycle. Hence, by setting true the literals
associated with the agents of the clauses who belong to the cycle, we obtain a truth
assignment satisfying all the clauses of C. �

Consequently, characterizing the instances for which the local dynamics can cycle,
according to both the social network and the preferences of the agents, is a challenging
issue.

5.3.2 Global poll-confident dynamics

The global poll-confident dynamics is not guaranteed to converge, even when the asso-
ciated local poll-confident dynamics always converges. Actually, there exist examples
where the dynamics can cycle even if the social network is empty. For a general graph,
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it is difficult to know whether the global poll-confident dynamics can cycle, even for
BBRp-dynamics and convergent local dynamics.

Let us first state the possibility of a cycle in the global poll-confident BBRp-dynamics,
even when the network is empty and p = (1, . . . , 1).

Proposition 5.8 The global poll-confident BBRp-dynamics may cycle even when G is
empty and for a homogeneous pivotal threshold p = (1, . . . , 1).

Proof: Let us consider an instance with four voters and four candidates, where N =
{1, 2, 3, 4}, M = {a, b, c, d} and a B b B c B d. The social network is empty and the
preferences of the agents are as follows.

1 : c � a � d � b
2 : d � a � b � c
3 : a � c � d � b
4 : d � b � c � a

The pivotal thresholds are homogeneous and all equal to one, i.e., p = (1, . . . , 1).
Here is a cycle of global poll-confident BBRp-dynamics, occurring within two global
steps (the polls are given in bold at the beginning of the lines, the deviations are in bold

and BS
t,\i
i is mentioned above the arrow of a deviation made by agent i):

[1,0,1,2] {(1, 0, 1, 2) : d} (1,0,0,2)−−−−−→
1

{(2, 0, 0, 2) : a} (0,0,1,2)−−−−−→
3

{(1, 0,1, 2 : d)}

[1,0,1,2] {(1, 0, 1, 2) : d} (0,0,1,2)−−−−−→
1

{(0, 0,2, 2) : c} (1,0,0,2)−−−−−→
3

{(1, 0, 1, 2 : d)}

�

Interestingly, from the previous example, it appears that the most common cases of
cyclicity in global poll-confident dynamics seem to reproduce the basic occurrences of
cycles when voters deviate simultaneously.

However, by definition of the dynamics, the global poll-confident dynamics is equiv-
alent to the local poll-confident dynamics when the graph is complete. In fact, in both
cases, the voters have complete information about the vote of the other agents, thus the
addition of new polls does not bring more information. Therefore, when the network is
complete, the convergence results established for local dynamics still apply (consequence
of Theorem 3 of Meir et al. [2010], and Proposition 5.4).

Corollary 5.9 The global poll-confident BBRp-dynamics converges from any initial pro-
file within O(n ·m) steps when the network is complete and p = (1, . . . , 1).

Corollary 5.10 The global poll-confident BBRp-dynamics converges from any initial
profile within O(n ·m) steps, when the pivotal thresholds are homogeneous and the net-
work is complete, for any instance Iτ of the linked voting game where τ always chooses
opportunity moves before compromise moves,

For a general graph, we can prove that it is NP-hard to know whether the global
dynamics can cycle, even for homogeneous pivotal thresholds p = (1, . . . , 1) and Plurality.
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Theorem 5.11 Deciding whether the global poll-confident BBRp-dynamics can cycle is
NP-hard even for homogeneous pivotal threshold p = (1, . . . , 1).

Proof: We perform a reduction from 2P1N-SAT, known to be NP-complete (Theo-
rem 1.3). The 2P1N-SAT problem is a satisfiability problem defined on a set C =
{C1, . . . , Cs} of s clauses over a set X = {x1, . . . , xv} of v variables. Recall that in
2P1N-SAT, each variable occurs twice as a positive literal and once as a negative literal.
Each clause Ci ∈ C contains si literals. We assume that the clauses are indexed in such
a way that each first occurrence of a variable is negative (see Section 1.5.1.a).

From an instance 〈C, X〉 of 2P1N-SAT, let us construct an instance
I = 〈N,M,�,FB, G〉 of the linked voting game, where F=Plurality, as follows.
The set M of candidates is {a1, . . . , as, c1, . . . , cs, y, c} where each ci corresponds to
a clause Ci for i ∈ [s], and the tie-breaking is: y B as B · · · B a1 B cs B · · · B c1.
The set N of agents is {A ∪ Y ∪ {Lij : i ∈ [s], j ∈ [si]}} where A = {A1, . . . , As} and

Y = {Y2, . . . , Ys} refer to the clauses, and Lij represents the jth literal of clause Ci. The
preferences are the following (the dots mean that the rest of the candidates are ranked
arbitrarily):

A1 : a1 � c1 � y � c � [. . . ] Lij : ci � y � ai � c � [. . . ]

Ai : ai � y � c � [. . . ] Yi : y � ci � c � [. . . ]

Denote by q the maximum number of times a candidate is ranked first at this point, i.e.,
q = max{maxi∈[s]{si}, s}. Dummy voters are added in order to rank every candidate first
exactly q times, leading to the election of candidate y under Plurality, thanks to B. In
the social network G = (N,E), all the dummy voters are isolated. All the literal-agents
Lij associated with a same clause Ci are connected. If an agent Lij (i > 1) corresponds
to a negative literal, then she points to all the agents of Ci−1, otherwise she points to
all the agents of the clause containing its associated opposite literal except its opposite
literal itself. The agents of clause C1 are all linked to agent Ys, and all the agents Cij are
linked to Yi if i > 1. Each agent Yi points to Yi−1 for i > 2, and agent Y2 to A1. Agent
Ai points to all Li−1

j , and Yi points to Ai for all i > 1. See Figure 5.2 for an illustration
of the graph construction.

We claim that C is satisfiable if and only if the global poll-confident BBRp-dynamics,
starting from the truthful profile where p = (1, . . . , 1), can cycle in instance I.

Observe that initially only agent A1 has incentive to deviate, since y is winner, and
she deviates to c1. Only Y2 is able to observe this deviation and deviates herself to c2.
All agents Yi deviate thereafter in the increasing order of their indices because agent
Yi+1 can observe the deviation of Yi (i ∈ {2, . . . , s}) and ci+1 B ci. No other agent has
incentive to deviate because only agents Lij (j ∈ [si]) can also observe the deviation of Yi,
and the deviation to candidate ci suits to them. Once agent Ys has deviated, the agents
of clause C1 have incentive to deviate. By construction, an agent Lij has incentive to
deviate if one of these two conditions holds: (1) she is associated with a negative literal
and one agent in the previous clause has deviated, which is initially the case thanks to
the deviation of someone in C1 after the deviation of Ys, or (2) she is associated with
a positive literal and one agent in the clause of her opposite agent has deviated, and
this deviation is not performed by the opposite agent herself: the agent observes all
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A1 Y2 Y3 Y4
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x1

x2 x4

C3

x2

x3 x4

C4

Figure 5.2: Construction of G for a 2P1N-SAT instance where C1 = (x1 ∨ x3), C2 =
(x1 ∨ x2 ∨ x3 ∨ x4), C3 = (x1 ∨ x2 ∨ x4) and C4 = (x2 ∨ x3 ∨ x4). The literals (we keep
for the figure the literal name) in a same circle are in a same clause; the arcs from or to
the circles concern every agent inside.

the agents of this clause except her opposite agent. If an agent of clause Ci deviates,
her best-response is not y but ai, despite of her ranking of preferences, because she has
previously observed the deviation of Yi and thus does not believe that y could win. Once
a voter deviates within clause Ci, the other agents of the clause do not incentive to do
it because they are all connected and share the same preferences, but agent Ai+1 has
incentive to deviate to y because she still believes that it can win. This last deviation
suits to agent Yi+1 who observes that. Remark that no dummy voter deviates because
they all still believe that y is winner and y is in their two preferred candidates.

Suppose that C is satisfiable and let ϕ be a truth assignment of the variables satisfying
C. After the deviation of A1 and all agents Yi, we choose to make deviate for each clause,
by increasing order of indices, an agent associated with a literal true in ϕ. Since there
is no two opposite true literals in ϕ, every chosen agent at her turn has incentive to
deviate since she is aware of the previous deviation, or the deviation of some agent in
the clause of her opposite agent. Each chosen agent Lij deviates to ai and then agent
Ai+1 deviates to y for all i ∈ [s − 1]. There is a deviating agent in each clause because
all the clauses are satisfied by ϕ. After all these deviations, we obtain a stable state
(regarding the local dynamics) where every candidate has x points and thus y still wins.
For the next global step, every agent who previously deviated, except the agents of Y ,
have incentive to deviate to their preferred candidate. If the agents Lij first deviate and
then the agents of A, then the agents of Y have incentive to deviate, and by deviating
in decreasing order of their indices, we obtain voting profile σ0. Hence, we get a cycle.
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Suppose now there is no truth assignment of the variables that satisfies C. Consider
a local dynamics from σ0. As already mentioned, A1 and then all the agents of Y must
deviate. Thereafter, some agents of the clauses Ci deviate. Since C is unsatisfiable, all
the clauses cannot be satisfied without setting true two opposite literals. It follows that
there exists a clause Ci in instance I for which there is no deviating agent Lij because

Lij cannot observe the deviation of another agent Li
′
j′ . For the clauses for which there is

a deviating agent Lij , the associated agent in A deviates. To summarize, the dynamics
converges after the deviation of all agents of Y , of only some agents of A, and of one
literal-agent for only some clauses. Therefore, the new winner is not y because in the
best case, where only Cs is not satisfied, it obtains x points whereas there exists at least
one candidate with x + 1 points, for instance a candidate associated with a clause for
which there is no deviating agent. Consequently, at the next global step, all the dummy
voters, except those who rank first the new winner, deviate to candidate c as a direct
best response if y has less than x points or to candidate y if y has x points. It creates a
too big gap within the scores to permit a further deviation in the global poll-confident
dynamics, and thus the global poll-confident dynamics converges. �

The previous result implies that we cannot characterize efficiently the instances for
which the global dynamics can cycle, when both the preferences of the agents and the
social network are taken into account. In general, global dynamics appear less predictable
than the local ones since the only case of convergence that we have identified is on
complete graphs when the associated local dynamics is guaranteed to converge for such
graphs.

5.4 Experimental analysis of the quality of the game

We present some experiments over 10,000 generated instances with 100 voters and 10
candidates, where the preferences are drawn from impartial culture. The social network
is either a random directed Erdös and Rényi [1959]’s graph (see Section 1.2.2.b), or a
random Barabási and Albert [1999]’s graph (see Section 1.2.2.b), or a graph generated
following the protocol described in Section 1.2.2.b in order to incorporate homophily.
The Erdös-Rényi graphs are generated with different densities, and enable to observe
the impact of the number of links in the network. The Barabási-Albert graphs are
realistic for representing real networks because for instance they are scale-free. The
graphs with homophily seem to be realistic too because they model the fact that agents
are more likely to be connected to agents with similar preferences.

We observe the frequency of convergence of the poll-confident BBRp-dynamics for
Plurality, as well as the quality of the equilibria that are reached by the dynamics,
according to different measures, such as the Condorcet efficiency, the Borda closeness
(see Section 1.3.2) or the Veto-SE efficiency (see Section 2.4.2). The results are given
according to the density of the graphs (for Erdös-Rényi graphs) or the type of graph,
and the pivotal thresholds. We examine homogeneous pivotal thresholds of value 1, 5
and 10 and heterogeneous ones uniformly distributed over the voters with values in [1..5]
or [1..10].
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5.4.1 Convergence in practice

Let us first analyze the experimental convergence of the poll-confident dynamics. During
the experiments, we stop the iterative process only when an equilibrium is reached or
a cycle is hit. We provide experimental results on the frequency of convergence of the
poll-confident BBRp-dynamics and the number of steps that are needed in average in
order to reach convergence (for global dynamics we only mention the number of global
steps).

5.4.1.a Impact of the density of the network

We present the experimental results of the frequency of convergence for the poll-confident
BBRp-dynamics with Erdös-Rényi graphs in Figure 5.3 and the number of steps before
convergence in Table 5.1.
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Figure 5.3: Frequency of convergence of the local and global BBRp-dynamics for different
pivotal thresholds and densities of network

The dynamics, both in their local and global versions, mostly converges, especially
for sparse or dense graphs. When p = (1, . . . , 1) (marked as pi = 1 in the figure)
or p = (10, . . . , 10) (marked as pi = 10 in the figure), they almost always converge,
as opposed to the other thresholds for which we observe less convergent profiles, in
particular when the density is around 0.25. This can be explained by the fact that when
p = (10, . . . , 10), most voters stay with their sincere ballot, and when p = 1, only a few
candidates are potential winners. So, in both cases, the deviations are rather limited.
This is not the case for heterogeneous thresholds and p = (5, . . . , 5) (marked as pi = 5
in the figure), because the agents can have very different best strategies. Moreover, the
peak of non convergence for a density equal to 0.25 can be explained by the fact that
the voters have enough information to deviate several times but this information is too
partial to have a clear idea of the votes of the other agents, inducing an important bias
in the deviations. Observe that in general the local and the global dynamics behave in
the same way.
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Our experimental results confirm the theoretical convergence results: when the graph
is empty, the local dynamics always converges whatever the pivotal thresholds, and
when p = (1, . . . , 1), convergence is guaranteed for a complete graph. Moreover, the
experimental results conform with our conjecture (sentences after Corollary 5.5) on the
convergence of the local dynamics when the threshold is homogeneous and the graph is
complete.

Density pi = 1 pi = 5 pi = 10 pi ∈ [1..5] pi ∈ [1..10]

0
local 16.267 33.4263 8.5 29.1516 23.5802

global 1.3987 2.9296 2.1460 2.3058 3.8208

0.25
local 15.6490 60.3313 9.2158 53.8849 66.6598

global 1.4631 3.0609 2.0045 3.1577 4.5012

0.5
local 14.6245 61.1990 10.3078 49.2208 68.7952

global 1.4729 3.5665 1.8741 3.7713 4.0875

0.75
local 14.5280 60.3270 10.6567 49.4782 64.8349

global 1.4658 3.3960 1.7759 3.6381 3.6997

1
local 25.614 65.226 9.9492 64.4258 74.4068

global 1.3662 1.9309 1.5823 1.9381 1.9990

Table 5.1: Number of steps before convergence in average for poll-confident BBRp-
dynamics for different pivotal thresholds and densities of network

Regarding the number of steps before convergence, globally no more than 75 local
steps or 5 global steps are needed. This is not a huge number for an instance of 100 voters.
The most important number of local steps is for p = (5, . . . , 5) and pi ∈ [1..10], while
the lowest number of local steps is for p = (10, . . . , 10). Moreover, there are more local
steps for pi ∈ [1..5] than for p = (1, . . . , 1). These observations confirm our explanations
for convergence. Indeed, very few steps for p = (10, . . . , 10) show that only a small
part of the agents has incentive to deviate. According to the definition of a believed
best response deviation under Plurality, this means that for a large part of the voters,
their preferred candidate is a potential winner. The number of local steps is slightly
more important when p = (1, . . . , 1) because the sincere ballot of the voters is much less
likely to be a potential winner, so some voters must deviate to their preferred candidate
within the set of potential winners. But this set is small, restricting the number of
deviations. The set of potential winners should be larger for p = (5, . . . , 5), pi ∈ [1..5]
and pi ∈ [1..10], explaining that the number of local steps is larger.

In accordance with Observation 5.2, stating that the voters deviate at most once
when the network is empty, the number of local steps is very limited (and clearly smaller
than the number of agents) for such a network. Globally, the number of local steps
is more important when the graph is complete. This appears natural because, in the
poll-confident dynamics, the voters can deviate again, after a previous deviation, only
if they have observed other deviations in the meantime. The voters can observe all
the deviations when the network is complete, which is not the case for sparser graphs.
However, for a density between 0.25 and 0.75, there is no configuration where the voters
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perform significantly more or less deviations.

5.4.1.b Realistic networks

So far, we have investigated the impact of the density of the network on the convergence
of the dynamics. Let us now focus on other types of graphs, namely Barabási-Albert
graphs and graphs with homophily, which are graphs with characteristics of real social
networks.

The results are presented in Figure 5.4 (bars are displayed instead of curves because
the results involve different types of graphs), and Table 5.2.
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Figure 5.4: Frequency of convergence of the local and global BBRp-dynamics for different
pivotal thresholds and specific graphs

As for Erdös-Rényi graphs, the frequency of convergence with local and global dy-
namics is almost the same. The convergence rate is extremely high in Barabási-Albert
graphs, where convergence is almost always ensured. In graphs with homophily, this
is more conditioned by the pivotal thresholds. The behavior is the same as for Erdös-
Rényi graphs. The lowest convergence rate is found for heterogeneous pivotal thresholds
pi ∈ [1..10] which is around 60%. Then, the frequency of convergence is higher for ho-
mogeneous pivotal thresholds p = (5, . . . , 5), with a significant improvement since the
convergence rate is above 80%, and even better are the heterogeneous pivotal thresholds
pi ∈ [1..5] since the convergence rate is above 90%. Finally, for homogeneous thresholds
p = (1, . . . , 1) or p = (10, . . . , 10), convergence is almost always ensured. The different
behaviors of the dynamics with respect to the pivotal thresholds can be explained with
the same arguments as in Erdös-Rényi graphs, related to the size of the set of potential
winners.
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One could think that the behavior of the dynamics in these graphs can be explained
by their density. Indeed, Barabási-Albert graphs have a very low density (less than
0.1 in average), and by referring to Figure 5.3, the random graphs with such a density
have a very good convergence rate. However, this explanation is not sufficient because
the graphs with homophily that we have generated have a density around 0.5 but have
a clear better convergence rate than the random graphs with density equal to 0.5 (see
Figure 5.3). Actually, the behaviors of the dynamics in such graphs are closer to those of
random graphs with density 0.75. This can be explained by the fact that the possibility
of observing agents with similar preferences prevents basic cycles in the dynamics, such
as the cycle in the example of the proof of Proposition 5.8, where two agents both
deviate to the initial ballot of the other. In such a way, the connection to agents with
similar preferences enables more coordination in the deviations, and thus improves the
convergence rate of the dynamics.

Graph pi = 1 pi = 5 pi = 10 pi ∈ [1..5] pi ∈ [1..10]

Homophily
local 14.4745 57.0317 9.5113 46.2714 66.2875

global 1.5554 4.0458 1.8949 4.1642 4.5737

Barabási-Albert
local 15.8440 33.7376 8.4743 31.9387 25.2765

global 1.3811 2.9536 2.1344 2.2792 4.0007

Table 5.2: Number of steps before convergence in average of poll-confident BBRp-
dynamics for different pivotal thresholds and specific graphs

Let us now analyze the number of steps before convergence. As for Erdös-Rényi
graphs, generally, the number of steps does not exceed 70 local steps and 5 global steps.
We do not detail the behavior with respect to the pivotal thresholds which is the same as
for random graphs with different densities. As for convergence, Barabási-Albert graphs
behave like very sparse graphs, which can be explained by their density which is very low.
Following the same idea, the numbers of steps needed to reach convergence in graphs
with homophily are close to those of random graphs with density in between density
0.25 and density 0.75 which are all more or less the same (see Table 5.1). However,
it is noteworthy that the number of local steps in graphs with homophily is slightly
smaller than in random graphs with these densities. This can be explained by the same
argument as for convergence, by avoiding unnecessary deviations from agents who have
already observed deviations that are convenient for them, performed by agents with
similar preferences.

5.4.2 Quality of equilibria

We investigate the quality of the equilibria reached by the poll-confident BBRp-dynamics
under Plurality. The equilibria are evaluated through three criteria: the Condorcet
efficiency, the Borda closeness and the Veto-SE efficiency.
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5.4.2.a Impact of the density of the network

The results according to the Condorcet efficiency in Erdös-Rényi graphs are presented
in Figure 5.5, where the frequency of electing the Condorcet winner (see Definition 1.21)
is given with respect to different network densities and different pivotal thresholds for
the agents. The preferences are drawn from impartial culture but with the restriction to
the Condorcet domain (see Section 1.3.2), to be ensured that a Condorcet winner exists.
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Figure 5.5: Condorcet efficiency of local and global BBRp-dynamics for different pivotal
thresholds and densities of network

Let us first recall that when the density is equal to 1, the local and global poll-
confident dynamics corresponds to the case where the agents have complete information
about the vote of the other agents.

The main observation is that the global dynamics always leads to better outcomes
regarding the Condorcet efficiency. This appears natural since the voters regularly obtain
more information about the current profile. Moreover, the frequency of election of the
Condorcet winner seems to increase with the density of the network. This is clearly the
case when p = (1, . . . , 1), and for local dynamics for any threshold. The explanation is
clear: the voters have more information and they can consequently perform more precise
deviations. The positive point is that this precision does not only enable them to design
better strategies for the next step, in a myopic way, but also strategies that benefit the
whole electorate, since they lead to the election of the Condorcet winner more often.

However, for global dynamics and heterogeneous thresholds, it seems that the Con-
dorcet efficiency of the equilibria is better when the density is around 0.25 and 0.5. This
appears surprising but can be explained by the fact that this corresponds to the cases
where the convergence of the dynamics is the lowest (see Figure 5.3). Yet, we analyze
the quality of the equilibria only, by definition, when we reach an equilibrium. So, the
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results do not take into account the instances for which a cycle is reached. Therefore, it
may be possible that we escape some critical instances for which it is difficult to reach
a Condorcet winner.

The results when p = (10, . . . , 10) are relatively the same for the different network
densities. This corroborates our previous explanation about the fact that when p =
(10, . . . , 10), only a few voters deviate, starting from the truthful profile, because their
preferred candidate is likely to be a potential winner.

Let us now analyze the Borda closeness of the equilibria. The results according to
this criterion are presented in Figure 5.6.
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Figure 5.6: Average of Borda closeness for local and global BBRp-dynamics for different
pivotal thresholds and densities of network

The observations are similar to those provided for the analysis of the Condorcet effi-
ciency. However, the differences regarding the quality of the outcomes on this criterion
are less important. The main remark is that the global equilibria are better than the
(∆0, BBRp)-equilibria. The agents, thanks to the social network, have a local informa-
tion all along the iterative process. Giving them a global information occasionally, via
a public opinion poll, seems to improve the quality of the equilibria. This highlights the
role of the information that the agents get in the quality of the equilibria. Following the
same idea, the quality of the equilibria according to the Borda closeness increases with
the density of the network. For instance, the Borda closeness is clearly poorer when the
graph is empty.

The results concerning the Veto-SE efficiency are given in Figure 5.7.

The results on the Veto-SE criterion conform with the previous remarks for Condorcet
efficiency and Borda closeness. In fact, global equilibria elect Veto-SE candidates more
often and the frequency of electing a Veto-SE candidate increases with the density of
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Figure 5.7: Veto-SE efficiency of local and global BBRp-dynamics for different pivotal
thresholds and densities of network

the network. This shows that, despite the fact that the three criteria we examine are
conceptually different, the amount of information that the voters have always matters.
Therefore, when the voters only have little information about the current profile, the
bias in their deviations is important.

5.4.2.b Realistic networks

We now focus on more realistic networks by observing the quality of the reachable
equilibria in Barabási-Albert graphs and in graphs with homophily. The results are
presented in Figure 5.8 for the tree criteria used in the previous subsection, namely
Condorcet efficiency, Borda closeness and Veto-SE efficiency.

Let us first observe the Condorcet efficiency of the dynamics. Generally, the fre-
quency of electing a Condorcet winner is very low. Indeed, for Barabási-Albert graphs,
this frequency does not exceed 40% and for graphs with homophily, the frequency is
around 40% but with significantly better results for global dynamics, especially for ho-
mogeneous thresholds p = (5, . . . , 5), and heterogeneous thresholds in [1..5] or in [1..10].
Like for convergence, the very low Condorcet efficiency in Barabási graphs can be ex-
plained by the low density of the graph. However, for graphs with homophily, the
Condorcet efficiency for local dynamics is lower than in random graphs of density 0.5,
which appears surprising. It seems that when agents are connected to agents with sim-
ilar preferences, they fail to converge to an outcome acceptable for the whole society.
It may be due to the fact that agents have a biased vision of the vote distribution and
believe that the whole society have the same preferences as theirs. Nevertheless, the
global dynamics in graphs with homophily perform clearly better than local dynamics
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Figure 5.8: Quality of equilibria for local and global BBRp-dynamics for different pivotal
thresholds for graphs with homophily and Barabási-Albert graphs

and than global dynamics in random graphs of density 0.5. Therefore, if in addition of
a local information from their connections in the graph, the agents regularly obtain a
global information about agents with dissimilar preferences, then they are often able to
reach an outcome acceptable for a large part of the society.

Regarding Borda closeness, Barabási-Albert graphs clearly behave like very sparse
graphs and graphs with homophily like random graphs of density in between 0.25 and
0.75 (see Figure 5.6). The main observation for both graphs is the clear improvement in
global dynamics compared to local dynamics.

Finally, the behavior of the dynamics for Veto-SE efficiency seems to be similar to the
behavior of random graphs with corresponding density. Like the other criteria, global
dynamics do better than local dynamics.

To summarize, graphs that are close to real social networks seem finally to mostly
behave like random graphs of corresponding density, except graphs with homophily
for some criteria. This highlights the bias in the deviations induced by the amount of
information that agents have. Following the same idea, the quality of equilibria is clearly
improved in global dynamics where agents regularly obtain a global information about
the current state of the game. In order to eventually reach an acceptable outcome for
the society, more than the identity or the preferences of the agents with who agents are
connected, this is the number of connections which matters.

Actually, the quantity of information that the voters have from their successors in
the social network, provided that these relatives are trusted agents, is essential in order
to prevent election control from external agents, such as the polling institute.
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5.5 Manipulation of the public opinion poll

In our model, the voters base their belief on the results of the poll. If we consider the
polling institute as an agent who has her own preferences over the candidates, then the
question of manipulation by the polling institute naturally arises. The polling institute
as an agent is denoted by Π and her preferences are expressed via a linear order �Π over
the candidates.

We focus on Plurality and assume in this section that all the voters have the same
pivotal threshold pu, i.e., p = (pu, . . . , pu), since the convergence results of the poll-
confident BBRp-dynamics under Plurality hold only under this condition. Furthermore,
we make the assumption that the only possible manipulation moves for the agents are
believed best responses.

Concretely, the manipulations of polling institute Π must be restricted in order to
satisfy some likelihood conditions. For instance, Π could not announce that a candidate
has no point if at least one voter has voted for it, otherwise this voter would know that
the polling institute is lying. This credibility requirement is described more generally in
the following definition.

Definition 5.5 (Likelihood condition) The vector of scores ∆ is a plausible com-
municated result for the poll on voting profile σ if ∆(x) ≥ maxi∈N Scσi (x), for every
candidate x ∈M .

We assume that any manipulation performed by Π satisfies the likelihood condition.
Let the manipulation margin be the number of points which are available, i.e., that
polling institute Π is free to assign, after having fulfilled the likelihood condition.

We consider two different goals for manipulation from the polling institute. The
first one is to make a precise candidate elected, whereas the latter is to obtain the best
possible outcome at the next local equilibrium.

5.5.1 Enforcing the election of a candidate

We first ask whether it is possible for polling institute Π to enforce the election of a
given candidate x.

Election Enforcing:

Instance: Linked voting game instance 〈N,M,�,FB, G〉 with F=Plurality, state
σt ∈ BFn, homogeneous pivotal thresholds p = (pu, . . . , pu), and candi-
date x ∈M

Question: Is there a poll score vector ∆ such that the local poll-confident BBRp-
dynamics starting from state σt converges to a (∆, BBRp)-equilibrium
electing x?

We will prove that Election Enforcing is computationally hard even when the
social network is a DAG. We denote by PW (∆) the set of potential winners announced
by ∆, according to homogeneous pivotal threshold pu. The set PW (∆) includes all the
candidates for which the addition of at most pu votes is sufficient to win the election,
according to ∆.
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Although the poll-confident believed best response dynamics under Plurality appears
very simple, it actually turns out that manipulating the opinion poll in order to enforce
the election of a given candidate is computationally hard, even when the network is very
simple and the voters deviate only if they are strictly pivotal, i.e., pu = 1.

Theorem 5.12 Election Enforcing is NP-hard even when the social network is a
DAG and p = (1, . . . , 1).

Proof: The reduction is from 3-SAT, a restriction of the satisfiability problem known
to be NP-complete (Theorem 1.2). We consider an instance 〈C, X〉 of 3-SAT composed
of a set C = {C1, . . . , Cs} of s clauses over a set X = {x1, . . . , xv} of v variables, where
each clause contains exactly three literals.

Let us construct a linked voting game instance Iτ = 〈N,M,�,FB, G, τ〉, where
F=Plurality, as follows.

We construct a set of agents N including: a set Y of s clause-agents Yi for i ∈ [s],
sets Y ′ and L of 3s literal-agents Yij and Lij for i ∈ [s] and j ∈ [3], a set L′ of agents L′ijk
for i ∈ [s], j ∈ [3] and k ∈ [3] referring to 3 copies of the literals, sets Z1 and Z2 (whose
union is denoted by Z) of respective agents Z1

i and Z2
j for i ∈ [4s − 1] and j ∈ [11], a

set X of agents Xi for i ∈ [10], and agents X ′1 and X ′2.
The set of candidates M contains the candidates z, x′ and x, the set C` of clause-

candidates ci for i ∈ [s], and the set Lit of literal-candidates `ij for i ∈ [s] and j ∈ [3].
In the network G, there is an arc from Yi to Lij and from Y ′ij to L′ijk, for all i ∈ [s],

j, k ∈ [3]. There is an arc from Lij to Li′j′ if i > i′ and the jth literal of ith clause

is the opposite of the j′th literal of i′th. In the sets Z2 and X, there is one agent, say
respectively Z2

1 and X1, who is connected to all the agents in the set.
Let ρ be a linear order over C` ∪ Lit and ρ−1 its reverse order. The preferences �

are as follows (i+ 1 = 1 if i = s):

Yi : z � ci � x � ρ Zji : z � ρ−1 � x
Y ′ij : z � `ij � x � ρ−1 Xi : x � z � ρ
Lij : ci � `ij � z � ρ−1 � x X ′1 : x′ � z � ρ
L′ijk : `ij � `i+1 k � z � ρ � x X ′2 : x′ � z � ρ−1

where ρ and ρ−1 are assumed to be defined, in the preferences, without the candidates
already mentioned in the order.

The turn function τ is such that {L,L′} �τ {Y, Y ′}, and Lij �τ Li′j′ for i′ > i. The
tie-breaking rule B is such that x B z B `11 B · · · B `13 B · · · B `s1 B · · · B `s3.

We claim that all the clauses in C are satisfiable if and only if polling institute Π can
enforce the election of candidate x in the local poll-confident BBRp-dynamics starting
from the truthful profile σ0 and where p = (1, . . . , 1).

At σ0, each Lij and L′ijk vote respectively for ci and `ij , and agents Yi and Y ′ij
respectively observe it. So, by the likelihood condition, each candidate y ∈ C` ∪ Lit
must have at least 3 points in the poll, i.e., ∆(y) ≥ 3. Each agent in X votes for x and it
is visible for X1, thus ∆(x) ≥ 10. All the sets Y , Y ′ and Z vote for candidate z, but only
agent Z2

1 has a non-null out-degree for observing that, and thus ∆(z) ≥ 11, whereas the
real score of z is 8s+10. X ′1 and X ′2 vote for x′ so ∆(x′) ≥ 1. To summarize, the margin
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of manipulation for institute Π is 8s. We can prove that the only strategy for Π to make
x win is to assign 8 more points to one literal-candidate associated with each clause, and
the new points cannot be given to literal-candidates corresponding to opposite literals.
In this poll, z is announced winner.

Suppose there exists a truth assignment φ of the variables such that all the clauses
are satisfiable. Let polling institute Π give in ∆, 8 more points to one candidate `ij
associated to a literal true in φ chosen for each i ∈ [s]. Let us denote by Φ this set of
chosen literal-candidates. Candidate z is done winner by ∆0, thanks to the tie-breaking.
The agents Lij and L′i−1 k j (i − 1 = s if i = 1), for k ∈ [3], have incentive to change
their vote to candidate `ij , that they prefer to t, if `ij is able to win. This is the case
if `ij ∈ Φ. Such deviations bring their predecessor agents Yi and Yi−1 k, for k ∈ [3], to
deviate in consequence to candidate x because x has one point less than `ij but it is
better in the tie-breaking. Since φ satisfies all the clauses, all the agents in Y ∪ Y ′ see
one agent in L∪L′ deviating and then they all deviate to x. Thus, candidate x obtains
4s+ 10 points, like candidate z, but x wins by the tie-breaking.

Suppose now that Π is able to enforce the election of x. Denote by ω the winner
given by ∆. Observe first that every agent necessarily deviates to a candidate in PW (∆).
This is trivially the case for the first deviation by definition of a believed best response
under Plurality. Moreover, since we start from σ0 that is truthful, the voters actually
supporting ω do not deviate, therefore the winner score does not decrease. Let us suppose
that this property holds until the kth step. If at the (k+ 1)th step, an agent deviates to
y /∈ PW (∆), then the score of the winner has previously decreased since by induction
assumption the score of y did not increase. But it is impossible since all the voters
deviated to candidates in PW (∆) by assumption and p = (1, . . . , 1), contradiction.

The previous observation implies that x should belong to PW (∆), and that PW (∆)\
{ω} 6= ∅ , otherwise nobody deviates. Let us first suppose that ω ∈ C` ∪ Lit and
|PW (∆)\{ω}|= 1. Then, the only possibility is to give points to x (or ω if at a moment
x wins over ω and an agent can observe it). Therefore, no agent from L ∪ L′ ∪ Z ∪ X
deviates because they prefer ω to x, or they already voted for x in the case of agents in
X. All the agents of Y ∪Y ′ deviate to x, except one, the agent Yi or Y ′ij associated with
ω = ci or ω = `ij . Therefore, x can obtain only 4m+ 9 points while z still has 4m+ 11
points, and thus x cannot win. Suppose now that ω ∈ C` ∪ Lit and |PW (∆)|> 1, or
that ω = x. The agents in Aρ or Aρ−1 (except potentially Y ∪Y ′) agree on the candidate
y ∈ PW (∆) to which they deviate. They are too numerous to enable the agents Y ∪Y ′ to
elect x, therefore x cannot win. Hence, ω must be candidate z. No agent in Z deviates,
thus all the agents in Y ∪Y ′ must deviate to x in order to make x obtain the same number
of votes as z and so win. This implies that at least one agent among {Lij : j ∈ [3]} for
all i must deviate to candidate `ij , and at least one agent among {L′ijk : j ∈ [3]} for all
i ∈ [s], j ∈ [3], must deviate to candidate `i+1 k (or `1k if i = s). Thus, one candidate
related to a literal of a clause must belong to PW (∆) for each clause. They need to
obtain 8 points in order to belong to PW (∆) (because ∆(z) = 11) and thus all the
8s available points are used. There cannot be two candidates `ij and `i′j′ in PW (∆)
with i < i′ corresponding to two opposite literals because otherwise Li′j′ would have
observed the deviation of Lij to `ij since Lij >τ Li′j′ , and thus Li′j′ could not deviate
then to `i′j′ since `ij B `i′j′ . Hence, by setting to true all the literals associated to the
candidates `ij favored by ∆, we obtain a truth assignment of the variables satisfying all
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the clauses. �

Beyond the computational difficulty of manipulating the opinion poll in the worst-
case, we explore a heuristic perspective. We design a very simple heuristic and test
its efficiency by simulations. For all the experiments of this section, we run 10,000
instances of 100 voters and 10 candidates, where the preferences are generated from
impartial culture, and the graphs are randomly generated via Erdös and Rényi [1959]’s
model for different densities. We have also tested our heuristics on graphs supposed to be
closer to real social networks, such as Barabási-Albert graphs or graphs with homophily.
However, we do not present results on these types of graphs because the results are
similar to those for random graphs with corresponding density.

Our heuristic approach for Election Enforcing is based on the combination of
two algorithms, namely Algorithms 5.1 and 5.2. Algorithm 5.1 constructs a poll score
vector where, as much as possible, there are only two best candidates in the poll. The
intuition is that, if Π wants to make a target candidate x elected then, as much as the
manipulation margin allows, she predicts as the winner a “specter” candidate y, that Π
wants to show as a threat to the voters, and x as a potential winner. More precisely, after
having fulfilled the likelihood condition (l. 2-4), points are added to x until it becomes
a potential winner (l. 5-7). Then, we rise the score of y until one more point to y would
remove x from the set of potential winners (l. 8-10), in order to quickly increase the gap
with other candidates while keeping x in PW (∆). At this point, y is the winner in ∆
and x is “at the limit” of PW (∆). Now we simultaneously increase the scores of x and
y (l. 11-14) in order to further eliminate other candidates from PW (∆). If one point
remains in the end, we assign it to x if that does not make it the winner, or otherwise
to the last ranked candidate in ∆ by safety (l. 15-20). The process stops if at some step
the margin is not sufficient.

Algorithm 5.2 is a heuristic based on Algorithm 5.1 where we choose, as a specter
candidate y, the most disliked candidate in the preferences of the agents compared to
the target candidate x. By this way, we aim at creating a situation where only two
candidates, x and y, are favorites in the election. One of them, the “specter” y, is
mostly disliked by the population but is announced the winner with a slight lead over
x. One could think that, in reaction, a large part of the electorate will report her ballot
to the other candidate x.

We present some experiments in Figures 5.9 and 5.10, where the target candidate is
either the Condorcet winner (restriction to the Condorcet domain), the Borda winner,
the truthful winner (the winner of the truthful profile) or the best candidate in B. The
frequency of election of the target candidate is given in a context of poll manipulation
via Algorithm 5.2 or no manipulation, both with global and local poll-confident BBRp-
dynamics. For global dynamics, the polling institute manipulates at each global step
in order to make target candidate x elected at the equilibrium of the next local poll-
confident BBRp-dynamics. The voters are assumed to all have a pivotal threshold equal
to p = (1, . . . , 1) (Figure 5.9) or to p = (5, . . . , 5) (Figure 5.10).

We can observe that this heuristic is very efficient, especially on sparse graphs. In
fact, from a density equal to 0 to a density equal to 0.5, the frequency of the election of
the target candidate is at least twice the frequency with no manipulation by the polling
institute. The gap is even larger when p = (5, . . . , 5). This can be explained by the
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Algorithm 5.1: Margin rebalance between two candidates

Input: Instance I = 〈N,M,�,FB, G〉 with F=Plurality, state σt, pivotal
threshold pu, target x ∈M , specter y ∈M \ {x}

Output: ∆: communicated score results of the poll from σ
1 margin← n;
2 foreach z ∈M do
3 ∆(z)← maxi∈N Scti(z); # likelihood condition

4 margin← margin−∆(z);

5 while margin > 0 and x /∈ PW (∆) do
6 ∆(x)← ∆(x) + 1; # make x a potential winner

7 margin← margin− 1

8 while margin > 0 and x remains in PW (∆) if ∆(y) is increased by 1 do
9 ∆(y)← ∆(y) + 1; # make y the winner while

10 margin← margin− 1; x remains a potential winner

11 while margin > 1 do
12 ∆(x)← ∆(x) + 1; # widen the gap between x, y
13 ∆(y)← ∆(y) + 1; and the other candidates

14 margin← margin− 2;

15 if margin = 1 then
16 if pu > 1 then
17 ∆(x)← ∆(x) + 1; # last point to x if it does not make x win

18 else
19 last← arg minz∈M ∆(z);
20 ∆(last)← ∆(last) + 1; # otherwise to the last candidate in ∆

21 return ∆;

Algorithm 5.2: Heuristic for Election Enforcing

Input: Instance I = 〈N,M,�,FB, G〉 with F=Plurality, state σt, pivotal
threshold pu, target x ∈M

Output: ∆: communicated score results of the poll from σ
1 Sort the candidates of M \ {x} in increasing order of the number of voters who

prefer x to the candidate ;
2 foreach specter y ∈M \ {x} do
3 ∆←Algorithm 5.1(I, σt, pu, x, y);
4 if F(∆) = y and x ∈ PW (∆) then return ∆;

5 return Algorithm 5.1(I, σt, pu, x, arg maxz∈M\{x}maxi∈N Scσi (z))

fact that, when p = (1, . . . , 1), the manipulation margin must be large enough to give
to x and y, scores with a difference of one point, which can be difficult to achieve in
Algorithm 5.1. However, for p = (5, . . . , 5), a gap of 5 points is allowed between the
scores of the candidates x and y for x being a potential winner. So, this condition can
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Figure 5.9: Algorithm 5.2 in local and global poll-confident BBRp-dynamics where p =
(1, . . . , 1) for different densities of network
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Figure 5.10: Algorithm 5.2 in local and global poll-confident BBRp-dynamics where
p = (5, . . . , 5) for different densities of network

be easier to fulfill in Algorithm 5.1, leading to better final results for electing the target
candidate when p = (5, . . . , 5).

The gap between manipulation from the polling institute and no manipulation is
particularly important when the target candidate is the top candidate in the tie-breaking
rule, i.e., candidate a. This candidate is favored in case of ties in the outcome of the
election but a priori, contrary to the Condorcet winner or the Borda winner or even the
truthful candidate, a is not advantaged in the preferences of the voters. In fact, with no
manipulation, the probability for a to be elected is around 0.12. Therefore, the profit
of manipulation for this candidate is more visible than for the other target candidates
since, in addition, the manipulation of the polling institute is very efficient in this case
(here the advantage of a in B matters).

220



CHAPTER 5. UNCERTAINTY IN ITERATIVE VOTING

However, in general, when the density of the network increases, the benefit of manip-
ulation for the polling institute is less significant. Indeed, the gap between the frequency
of electing the target candidate, with manipulation from Π, compared to this frequency
without manipulation, decreases in the same time as the density of the network in-
creases. This is due to the decrease of the manipulation margin when the density of the
network increases, because of the likelihood condition. Actually, when the network is a
complete graph, the manipulation margin is equal to zero and thus there is no possible
manipulation for the polling institute.

5.5.2 “Best response” dynamics of the polling institute

From a different perspective, instead of enforcing the election of a specific candidate,
the polling institute Π could try to perform better responses at each global step, with
immediate benefits in the associated local dynamics, in the same myopic spirit as a
voter in iterative voting. In other words, Π manipulates at each global step in order to
make elected her best possible candidate at the end of the next local dynamics. The
optimization problem associated with the computation of such a myopic strategy for the
polling institute is called Poll Best Response Computation.

Poll Best Response Computation:

Instance: Linked voting game instance 〈N,M,�,FB, G〉 with F=Plurality, state σt,
homogeneous pivotal threshold p = (pu, . . . , pu), preference ranking �Π

over M

Problem: Find a poll score vector ∆ such that the local poll-confident BBRp-
dynamics starting from σt converges to a (∆, BBRp)-equilibrium electing
the best possible candidate with respect to �Π

As stated in Theorem 5.12, Poll Best Response Computation is computation-
ally hard for the polling institute, even when the network is a directed acyclic graph,
otherwise one could recognize positive instances of Election Enforcing.

Consequently, like for Election Enforcing, we adopt a heuristic approach by
restricting the manipulation of Π to a simple move exposed in Algorithm 5.1: trying
to favor only two candidates. We derive Algorithm 5.3 where a manipulated poll score
vector ∆ is built by Algorithm 5.1 for every ordered pair of candidates (x, y), and the
associated sequence of local deviations is tested. We choose the poll score that leads to
an equilibrium, in the tested local dynamics, electing the best candidate for Π.

However, in order to efficiently test the sequence of local deviations, we restrict the
network to the cases where the dynamics is guaranteed to converge after a polynomial
number of steps, namely the DAGs and the transitive graphs (Proposition 5.1 and cases
of Corollaries 5.3 and 5.5). We thus consider a spanning subgraph G′ of the network
that is either empty, acyclic or transitive. Obviously, we would like to have an acyclic
or transitive spanning subgraph that is as close as possible to the real network G. Un-
fortunately, the decision version of Maximum Acyclic Subgraph (i.e., the problem
Feedback Arc Set of deciding whether there exists a subset of arcs of size k contain-
ing at least one arc from each dicycle in the graph) is an NP-complete problem [Karp,
1972], as well as the decision version of Maximum Transitive Subgraph [Yannakakis,
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Algorithm 5.3: Heuristic for Poll Best Response Computation

Input: Instance Iτ = 〈N,M,�,FB, G, τ〉 with F=Plurality, state σt, pivotal
threshold p = (pu, . . . , pu), �Π, acyclic or transitive spanning subgraph
G′ of G

Output: ∆: communicated score results of the poll from σ
1 foreach target x ∈M do
2 foreach specter y ∈M \ {x} do
3 ∆y ←Algorithm 5.1(I, σt, pu, x, y);
4 R(y)← F((∆y, BBRp)-equilibrium) in instance IG′ ;

5 return ∆y for which R(y) is the best in �Π ;

1978]. We consequently use simple classical approximate algorithms for computing these
subgraphs. More precisely, for computing a spanning acyclic subgraph, we use a simple
1
2 -approximate algorithm [Korte, 1979] that works as follows: let A< be the set of arcs
(i, j) ∈ E such that i < j and A> be the set of arcs (i, j) ∈ E such that i > j, we return
G′ := (N, arg max{|A<|, |A>|}). For computing a spanning transitive subgraph, we actu-
ally use an algorithm computing a maximal transitive subgraph in O(n3) [Chakraborty
et al., 2015]: for every agent i and every agent j successor of i, if there exists some agent
` 6= j such that (i, `) /∈ E, then remove arc (j, `) if present in E, in addition if there
exists some agent ` 6= i such that (`, j) /∈ E, then remove arc (`, i) if present in E.

Note that the local poll-confident BBRp-dynamics that we test in the algorithm
always converges, even in global dynamics where the initial state of the associated local
dynamics may not be truthful and may be conditioned by the false informations of
the poll. This is due to the fact that Proposition 5.1 as well as Corollaries 5.3 and
5.5 establish the convergence of the local dynamics from any initial state (for pivotal
thresholds greater than one, we use a turn function satisfying the condition given in
Corollary 5.5). Moreover, every agent believes in the same initial state coming from the
manipulation of the polling institute, since the polling institute Π fulfills the likelihood
condition in her manipulation.

We apply Algorithm 5.3 on local dynamics where Π can only manipulate the initial
poll, as well as on global dynamics, where Π can manipulate the results of the poll at
each global step. Observe that in this context, Observation 5.1 does not hold anymore,
that is a global equilibrium may not be a Nash equilibrium even when p = (1, . . . , 1).
Indeed, the information given by the poll may not correspond to the current state.
However, there is no reason to have less convergent profiles than in the case where the
polling institute is sincere because the manipulation of Π is driven by her preferences,
represented as a linear order over the candidates.

The results given by Algorithm 5.3 are presented in Figure 5.11 when p = (1, . . . , 1)
and in Figure 5.12 when p = (5, . . . , 5). The figures show the average of the rank in
�Π of the final winner when the dynamics converges (lower is better). Note that the
experimental convergence of the dynamics is not affected by the manipulation from the
polling institute. Indeed, the frequency of convergence that we obtain is similar to the
results given in Figure 5.3.

The results are good for polling institute Π. For both types of dynamics, the rank
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Figure 5.11: Algorithm 5.3 in local and global poll-confident BBRp-dynamics where
p = (1, . . . , 1) for different densities of network
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Figure 5.12: Algorithm 5.3 in local and global poll-confident BBRp-dynamics where
p = (5, . . . , 5) for different densities of network

with manipulation is clearly better than without manipulation, with a large gap for
sparse graphs. The gap decreases with the increase of the density. The rank of the
winner in the preferences of Π is clearly lower for global equilibria than for local equilibria,
especially for sparse graphs until density 0.4. This implies that this is profitable for the
polling institute to manipulate and communicate the results of several polls because
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Figure 5.13: Algorithm 5.3 with an acyclic spanning subgraph G′ and homogeneous
thresholds p = (5, . . . , 5) on an instance where pi ∈ [1..10]

she has more opportunities to manipulate, and this enables her to further influence the
voters towards a specific direction.

The gap between the rank of the local equilibria and the global equilibria is less
important when p = (5, . . . , 5) because, in this case, the quality of the local equilibria
according to the preferences of Π is better. This is due to the fact, like in Algorithm 5.2,
that the polling institute needs less manipulation margin to make the target candidate
a potential winner when p = (5, . . . , 5).

Like Algorithm 5.2, the results deteriorate with the increase of the density. This
is related to the likelihood condition, making the manipulation margin decreasing with
the increase of the density, since the agents have more information about the current
profile. Indeed, because the agents are more informed in denser graphs, it becomes more
difficult to mislead them. In fact, when the network is a complete graph, no manipulation
is possible for Π since every agent has complete information about the current profile.

5.6 Concluding remarks

We have studied a best response dynamics in iterative voting where the voters aggregate
the informations from opinion polls and social networks, and adopt a strategic behavior
conditioned by pivotal thresholds. We have shown the convergence of the dynamics for
some classes of graphs, notably the directed acyclic graphs and the transitive graphs,
but in general it is difficult to recognize instances with cycles. Nevertheless, it turns out
that the dynamics mostly converges in practice. The quality of the equilibria depends
on the density of the network: better outcomes are found in dense graphs (there is
more information). The equilibrium analysis allows to underline the bias produced by
partial information and the dependency on the information sources, raising the question
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of election control.
Actually, a manipulation of the opinion poll can be hard to compute, even for simple

sparse graphs. However, simple heuristics, based on the idea of announcing a “specter”
candidate (which is particularly disliked) as the winner, are very efficient. Nevertheless,
it is more difficult to manipulate for the polling institute in dense graphs, where the
knowledge of the voters is close to be complete. These heuristics are not too demanding
regarding the knowledge of the network structure (we use subgraphs of the network), but
they need to know the preferences and the pivotal thresholds of the agents. Nevertheless,
assuming that the poll institute knows the preferences of the voters is not extravagant
since the original task of the polling institute is to collect them. Moreover, we have
conducted some experiments (see Figure 5.13) where the polling institute computes her
strategy with thresholds that do not correspond to the real ones. Indeed, we suppose
that the pivotal thresholds are uniformly distributed over the electorate with values in
[1..10], but that the polling institute does not know these values. The polling institute
then computes her strategy using Algorithm 5.3 by assuming that the pivotal thresholds
are homogeneous and all equal to 5. Concretely, one could base on psychological studies
in order to determine realistic pivotal thresholds to use in the algorithm. Even with
a false assumption about the thresholds of the population, the results displayed by
Figure 5.13 are very good for the polling institute and are similar to those obtained when
the thresholds used in the algorithm coincide with the real thresholds of the agents.

Classical extensions for the model of poll-confident dynamics are the study of other
voting rules, coalitional manipulation or more sophisticated heuristics. Actually, con-
cerning the extension to other voting rules, we investigated the adaptation to the Veto
rule, which is natural since the ballots are composed of only one candidate (the only dis-
approved candidate), like Plurality. A best response deviation based on vetoing the be-
lieved winner can be defined, which generalizes the direct best response (Definition 1.27)
for Veto when the pivotal thresholds are all equal to 1 and the network is a complete
graph. Based on this specific manipulation move, it is possible to adapt most of the
proofs given in this chapter. More precisely, it is possible to prove the convergence of
this dynamics under Veto from any initial profile, and for any pivotal thresholds even
not homogeneous, when the network is a transitive graph, in the spirit of Obraztsova
et al. [2016]’s Theorem 4. Furthermore, the Election Enforcing problem is also
NP-hard for this dynamics, even when the social network is a DAG, in the same idea
as Theorem 5.12. However, for the sake of clarity, we decided not to include the Veto
rule in this chapter, because the interpretation of the deviations is less natural than for
Plurality and the results are similar, except that the practical convergence rate of the
dynamics is very low, especially for global dynamics.

Considering less classical extensions, one could think about voters who keep in mem-
ory the previous steps in the global dynamics, or relaxing the assumption of a poll on
the entire electorate. The links with opinion diffusion in networks can also be examined.
Indeed, in our model, the voters only get some information from their successors in the
graph, but it can be natural to think that some voters try to influence their relatives to
vote in a certain way.
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Conclusion

We have presented several works dealing with classical social choice problems, in which
interaction among agents is constrained by an accessibility relation, represented by a
social network, which is a graph structure over the agents. We have especially studied
how the possibility of collaboration or getting some information from the other agents
can be limited according to the links of the social network. Our study is focused on two
major problems in computational social choice: strategic voting and house allocation.

Summary of the contributions

Let us present in more detail the scope of our contributions.

In Chapter 2, we have explored coalitional manipulation in iterative voting by groups
of voters that form fully connected components of the social network. Our main results
show the existence of a considerate equilibrium for several well-known voting rules. A
considerate equilibrium is a state immune to deviations from coalitions given by cliques
of the social network, where in addition an altruistic condition is added regarding the
neighbors of the clique in the network (consideration assumption). The goal of our us-
age of this solution concept was to find a trade-off between Nash equilibria and strong
equilibria, based on the definition of realistic coalitions. Indeed, in a voting game, Nash
equilibria always exist but can be numerous and thus irrelevant for capturing a plausible
outcome of the game, whereas strong equilibria rarely exist (note that the Veto rule is
an interesting special case where the existence of a strong equilibrium is guaranteed).
However, the existence of a considerate equilibrium can be proved thanks to the consid-
eration assumption or the fact that there is no coalition of size at least half of the voters,
which implies that in fact many states are considerate equilibria, obtaining the same
drawback as Nash equilibria. Nevertheless, the considerate equilibria that are reached
by best response dynamics of the voting game are experimentally better, according to the
quality of the outcome, than other weaker solution concepts like for instance the Nash
equilibrium. Therefore, despite the large number of considerate equilibria, dynamics of
the game can naturally filter acceptable outcomes for the whole society, by considering
cliques of the network as possible coalitions and altruism among agents. Consequently,
exploiting the social relations among the agents in coalitional manipulation enables to
refine the game-theoretical analysis of a voting game. In fact, by defining realistic coali-
tions that are altruistic, the social network allows the iterative voting process to converge
towards better plausible stable states.

We have continued to investigate some collaborative aspects modeled by a social
network in Chapter 3 where, in a housing market, the only possible trades that can be
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performed from an initial allocation involve two connected agents in the graph. Surpris-
ingly, this simple model of resource reallocation leads to computational hardness results,
for predicting the allocations that can emerge from a dynamics of swaps between con-
nected agents, even for social networks whose shape is relatively simple. The problems
that we study are natural questions related to the reachability of certain objects for the
agents and thus they should be useful both in the design of fair protocols and in the anal-
ysis of the dynamics of swaps. Nevertheless, for very simple structures of graphs, or some
realistic social networks for modeling a possibility of collaboration, such as bounded de-
gree graphs, and realistic bounds on the number of exchanges, we can provide tractable
cases for these reachability questions. Hence, the social network, as a representation for
the possibility of collaboration, has a strong impact on the computational properties of
housing market, while it enables to model more realistic configurations.

In another perspective, we have investigated the impact of the social network on
strategic voting and house allocation problems, where the network captures the infor-
mation that is available to the agents. In Chapter 4, the social network represents the
possibility of envy between two connected agents in a resource allocation problem where
exactly one item must be assigned to each agent. We have proved that deciding the
existence of an allocation that is envy-free with respect to this local notion of envy is
computationally hard. However, we were able to provide tractable cases for very dense
graphs or acyclic graphs, as well as approximation algorithms computing good alloca-
tions regarding the minimization of local envy. Moreover, the likelihood of existence of
a locally envy-free allocation is high when the agents can only envy agents with pref-
erences that are very different from theirs. This is a natural assumption in the sense
that agents with similar preferences are more likely to have a close relationship that
prevents envy between them. In contrast, the existence of an envy-free allocation in the
standard meaning, without graph, is very rare in house allocation. Therefore, the social
network enables to expand the possibility to design fair allocations regarding a realistic
fairness criterion, while it strongly impacts the computational ability of constructing
such allocations.

Finally, in Chapter 5, the social network is used as a local informative tool for
strategic agents in iterative voting. In such a context, the voters manipulate according
to a local information they have about the vote of their connections in the network
and a global, but possibly out of date, information given by a public opinion poll. We
have defined a specific dynamics of deviations, based on this strategic behavior, which
is conditioned by the social network and the opinion polls. The dynamics of deviations
is guaranteed to converge to a stable state for some restricted classes of graphs that
can make sense in practice, and experiments even stress a large convergence rate of the
dynamics for more general graphs. Furthermore, we have experimentally shown a basic
intuition that the more the network is dense and the voters have information about
the current state, the higher the quality of the outcome and the lower the possibility
of manipulation for the polling institute. In such a context, the social network has a
strong impact on the outcome of the procedure since the information that it provides
influences the strategic behavior of the agents. Nevertheless, the social network enables
to highlight the bias induced by partial information in strategic voting, which is actually
present in real elections, because this is a configuration where voters, clearly, do not
have complete information.
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In a nutshell, the integration of a social network in social choice problems enables to
consider more realistic scenarios. The outcome of the social choice procedures is deeply
influenced by the structure of the social network and the computational properties of the
models are also affected by the network topology. In fact, by assuming an accessibility
relation over the agents that is not necessarily complete, many social choice procedures
become intractable, as well as the satisfaction of desirable properties. However, this
representation allows to focus on plausible interactions among the agents and thus to
be more precise in the evaluation or the prediction of the outcomes of social choice
processes.

Future work

All the questions we have explored have their own extensions. When talking about
strategic voting, one could classically examine other voting rules, but the most interesting
extension that we identify would be to combine our two approaches. Indeed, we have
considered iterative voting by generalizing best response dynamics in two ways: by
extending it to coalitions of voters given by the graph, or by relaxing the assumption of
complete information to an information given by the network. Consequently, one could
naturally consider a best response dynamics where connected agents in the social network
could exchange information and join to collaborate in the elaboration of a strategy
for manipulation. Regarding house allocation, it is possible to consider for instance
initial partial allocations, or exchanges among more than two agents. Generalizing house
allocation to a resource allocation problem with several resources per agent is also a direct
extension, as well as other types of matching problems. Globally, for both settings, more
attention should be paid on restricted domains for preferences such as single-peaked or
single-crossing preferences. It is a natural extension for almost all the problems we have
studied, and may lead to more positive results.

We do not claim that our work draws an exhaustive picture of the behavior of agents,
in collective decision making procedures, whose interaction with other agents is condi-
tioned by a social network. However, our goal was to point out some social choice
problems for which modeling the possibility of interaction among agents by a social
network makes sense. We especially focused on strategic voting and resource allocation
but many other settings can be explored. By considering the swap dynamics model in
house allocation where two connected agents can trade objects, one can think about
models where the items to exchange are immaterial like information. In this case, the
agents do not lose their previous “item” but progressively increase their knowledge along
the exchanges. This is related to a famous problem in Artificial Intelligence, especially
within the dynamic epistemic logic community, that is the gossip problem restricted to
a communication network [Harary and Schwenk, 1974, Hedetniemi et al., 1988]. In such
a problem, every agent has a piece of information, e.g., a secret, and can share this
information with other agents by making phone calls. The goal is to find the minimum
number of phone calls that are necessary to reach a state where every agent knows all
the secrets of the other agents. Many variants of this problem exist. In the restriction
involving a communication network, the phone calls are limited to connected agents in
the graph. Concerning strategic voting, a natural model to study is opinion diffusion
in networks. Indeed, while we explore strategic voting via coalitional manipulation and
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possibility of information that are given by a social network, a relevant extension would
be to study strategic voters who try to convince their relatives in the network to vote in
a certain way.

Other research directions regarding the representation of the possibility of interaction
can be investigated. So far, we have only considered a social network as a graph over
the agents for modeling an accessibility relation among agents. One can think about
other ways to model this possibility of interaction among the agents, like for instance
a hypergraph, where the edges are actually subsets of agents, allowing to directly take
coalitions of agents into account. A computational difficulty arises from such a repre-
sentation because it cannot be encoded in a compact way. A compromise should be
found between the relevance and the compactness of the representation in order to get
an appropriate representation. Furthermore, we have often examined dynamic processes
in which the agents collaborate or collect information within several steps. It is pertinent
to consider that the social network itself is dynamic according to these different steps.
For instance, new links can be added among the relatives of two connected agents after
their interaction.
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Appendix

A Proof of equivalence in the reduction of Theorem 3.7

Theorem 3.7 RO-max is W[SAT]-hard in a tree.

Proof: Suppose first that there exists an assignment φ of weight k which satisfies formula
ϕ. For each variable xj in X set to true in φ, we decide to move the associated object
zϕj by increasing order of the indices. Each such object needs to be “duplicated” at each

agent R0
i , representing a binary relation, into two objects z

ψi,1
j and z

ψi,1
j representing a

copy of object zj associated with the specific subformula.
The gadget of object duplication works as follows for agent R0

i . Initially in the
passage of zϕj , when object zϕj arrives to agent R0

1, it first needs that agent R0
1 gets

object rj−1
1 . This is initially the case if j = 1. In that case, the swap can be performed.

Otherwise, i.e., if j > 1, this can be done by exchanging with agent Rj−1
1 who only

accepts objects from {ψj
′

i,2 ∪ r
j′

i : j′ < j − 1}. As further explained in the following,

agent R0
1 owns such an object if she has completely duplicated each previous object zϕj′

which passes by it where j′ < j. Once agent R0
1 gets object zϕj , object zϕj cannot go

down in any member of the binary relation associated with R0
1 because each of these

agents does not prefer zϕj to their initial object. However, it can be exchanged with

agent Z
ψ1,1

j against object z
ψ1,1

j allowing then the swap of agent R0
1 with agent Ψ1,1 in

order to give to her, her own version of object zj . It is possible then that agents Z
ψ1,1

j

and Z
ψ1,2

j swap their objects and then agents Z
ψ1,1

j with agent R0
1, and then agent R0

1

with agent Ψ1,2, in order to pass object z
ψ1,2

j to the corresponding target agent Ψ1,2.
Observe that if this second part is not accomplished, then no further swap can involve

agent R0
1 because no other agent than Z

ψ1,1

j accepts object ψj−1
1,1 . By assuming that all

the duplications of object zϕj have been made until an agent R0
i , allowing the passage

of object zrij until agent R0
i , the duplication of object zrij at agent R0

i works following

the same principle as for agent R0
1, by replacing in the swaps and the preferences object

zϕj by the specific object zrij . The whole duplication is necessary if agent R0
i needs to

perform further swaps, i.e., if binary relation associated with R0
i is satisfied in formula

ϕ when considering assignment φ.
At a moment, a version of object zj cannot be duplicated any more because the

neighbor Ψi,1 (or Ψi,2) of agent R0
i is a variable-agent Y 0

j′,`. In this case, once agent

Y 0
j′,` gets object z

yj′,`
j , either j′ 6= j and she will simply exchange it with an agent Y t

j′,`

for allowing the passage of the next object z
yj′,`
t for t > j, or j′ = j and the passage of
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object z
yj,`
j enables to activate / validate this agent, like the truth assignment φ assigning

true to variable xj satisfies the corresponding occurrence of xj . The validation is kept
in memory with the swap of agents Y t

j,` and T 1
j,`, and the swap of agents T 1

j,` and Tj,`
leading to the acquisition of validation-object tj,` by agent T 1

j,`.

In summary, until now, we have moved k objects within {zϕj : 1 ≤ j ≤ v}, by
increasing order of indices, and duplicated them at each agent corresponding to a binary
relation (at least for those which are satisfied by assignment φ), allowing to keep in
memory the validation of all the variable-agents for which the corresponding occurrence
of the variable is true in φ. Since the acquisition and the duplication of an object for
an agent corresponding to a binary relation costs 6 swaps (or 5 for zϕ1 ), the maximum
number of swaps per agent until now is 6k (or 6k − 1) swaps.

After the move of these k objects, it suffices to activate the validation gadget for
each variable-agent or relation-agent satisfied by truth assignment φ. This validation
process leads for an agent B to the acquisition of object tb. Every such agent performs
now a swap with her vth copy. This swap is possible for every agent R0

i who completely
accomplished the duplication of each object zrij . Concerning the variable-agents, this
swap is directly possible. Thereafter, all these satisfied variable-agents Yj,` can swap
with agent T 1

j,` for getting object tj,`. By going up progressively along the syntax tree

Tϕ from the leaves and considering the associated relation-agent R0
i , then at least one

(respectively, both) of the agents Ψi,1 and Ψi,2 get respectively the objects vψi,1 and vψi,2
if R0

i ∈ O (respectively, R0
i ∈ A ), i.e., the associated binary relation is a disjunction

(respectively, a conjunction). Therefore, if R0
i ∈ O, then R0

i can swap with one of the
agents Ψi,1 and Ψi,2 to obtain tψi,1 or tψi,2 , which can be exchanged with agent Ti to
obtain object ti. Otherwise, that is if R0

i ∈ A , then agent R0
i can swap with agent Ψi,1

to get object tψi,1 which then can be exchanged against t1i with agent T 1
i . This object is

the only one accepted by agent Rv+1
i to give object rv+1

i to agent R0
i , who needs it for

agent Ψi,2 who can only accepts to give tψi,2 against rvi (already given to agent Ψi,1) or

rv+1
i . Thus, by performing the swaps between the agents T 1

i and Ti, and then between
T 1
i and R0

i , agent R0
i finally obtains object ti. Observe that this validation process takes

at most 6 swaps per agent (in case of a conjunction). One swap is added for the exchange
with the predecessor agent.

Since truth assignment φ satisfies formula ϕ, after the validation phase, agent R0
i

gets object t1. After having previously exchanged her object with agent C ′, agent C can
obtain object v1 which is the only one that agent D accepts against object d. Finally,
agent C obtains object d with at most 6k + 7 swaps per agent.

Suppose now that object d is reachable for agent C with at most 6k + 7 swaps per
agent. Observe that agent D accepts to give object d only against object t1. For that,
it previously needs that agent R0

1 herself obtains object t1 (validation process). More
generally, let us observe the conditions under which an agent R0

i , modeling the ith binary
relation of formula ϕ, can obtain object ti.

Firstly, let us consider the case where R0
i ∈ O, i.e., the associated binary relation is

a disjunction. Agent Ti accepts to give object ti to R0
i only against object tψi,1 or object

tψi,2 , which are the validation-objects of the two agents Ψi,1 and Ψi,2 representing the
two members of the disjunction. Hence, the only condition is that at least one of the
agents Ψi,1 and Ψi,2 obtain respectively the objects tψi,1 and tψi,2 , interpreting the fact
that a disjunction is satisfied if at least one of its member is.
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Now, suppose that R0
i ∈ A , i.e., the associated binary relation is a conjunction.

Object ti must pass by agent T 1
i to reach agent R0

i from its initial owner Ti. Agent Ti
accepts to swap object ti only against object tψi,1 . Therefore, object tψi,1 must have
previously passed by agent T 1

i and by agent R0
i who must have obtained it via agent

Ψi,1. Moreover, once Ti has accepted to swap object ti with agent T 1
i , agent T 1

i accepts
to give object ti only against object tψi,2 . Therefore, object tψi,2 must have previously
passed by agent R0

i who must have obtained it via agent Ψi,2. Hence, it is necessary
that the agents Ψi,1 and Ψi,2 had previously obtained respectively the objects tψi,1 and
tψi,2 to permit that agent R0

i obtains object ti, reflecting the fact that a conjunction is
satisfied if both of its members are satisfied.

Concerning a variable-agent Y 0
j,`, for obtaining object tj,`, it needs that agent Tj,`

swap it with agent T 1
j,`, and then agent T 1

j,` with agent Y 0
j,`. Agent Tj,` accepts to swap

object tj,` only against object z
yj,`
j . Therefore, it firstly needs that object z

yj,`
j pass by

agents Y 0
j,` and T 1

j,`. This object corresponds to an occurrence of variable xj . Hence, in

summary, agent R0
1 is validated, i.e., obtains object t1, if there exist validated variable-

agents such that the truth assignment of the variables setting to true the variables
associated with the occurrences of the variables represented by these agents satisfies
formula ϕ.

Now, the question is how each object z
yj,`
j is arrived until each validated variable-

agent Y 0
j,`. Observe that initially object z

yj,`
j is owned by Z

yj,`
j who is only connected

to agent P (Y 0
j,`), the agent corresponding to the predecessor of this variable-agent in

the syntax tree Tϕ. Actually, object z
yj,`
j can go down to agent Y 0

j,` only if P (Y 0
j,`)

has herself previously received object z
p(Y 0

j,`)

j from agent P (P (Y 0
j,`)) who has herself

previously received object z
p(p(Y 0

j,`))

j , and so on. By this way, it follows that the agent

associated with the root of Tϕ, R0
1, must have received object zϕj , in order to permit a

variable-agent Y 0
j,` to receive object z

yj,`
j . Agent R0

1 can obtain object zϕj via agents C

and Zϕj . Once she gets it, she is obliged to “duplicate” it in order to pass a version of
zϕj to each of her neighbors Ψ1,1 and Ψ1,2 associated with the members of her related

binary relation. If the complete duplication is not done by agent R0
1 for every object zϕj

which passes by her, then she cannot perform further swaps as explained more in details
in the first part of the proof, and thus cannot be validated later by obtaining object t1.
Therefore, as detailed in the first part of the proof, for duplication of each object zϕj ,

agent R0
1 uses 6 swaps (except for zϕ1 which costs 5 swaps). However, the maximum cost

of a validation process is 7 swaps (as also mentioned in the first part of the proof) and
occurs when the binary relation is a conjunction, as for agent R0

1. Thus, since agent C
obtains object d with at most 6k+ 7 swaps, agent R0

1 can let pass only k objects within
{zϕj : 1 ≤ j ≤ v} (the gap of 1 swap given if zϕ1 is chosen is not sufficient to permit the
passage of another object). By considering a truth assignment where we set to true only
the variables associated with the k objects within {zϕj : 1 ≤ j ≤ v} which pass by agent

R0
1, we get a truth assignment of weight k which satisfies formula ϕ. �
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B Proof of equivalence in the reduction of Theorem 3.10

Theorem 3.10 RO-sum and RO-makespan are W[1]-hard even for trees.

Proof: Let us prove that there exists a clique of size k in graph G if and only if object
x is reachable for agent Y within at most k3 + 4k2 + k + 2 swaps in total.

Suppose there exists a clique of size k in graph G. Let VC , with |VC |= k, be the
set of all vertices belonging to the clique, and C be the set of all edges of the clique.
We consider the edges (v, w) in C with respect to the order over the edges previously
assumed in the construction of the instance. Let us perform the rational swaps between
the following pairs of agents for (v, w) ∈ C: {Y, Y [vw]}, {Y,Uvwv }, and {Uvww , Uvwv }, that
lead to give object uvwv to agent Y . Then, we decide to let object uvwv pass to branch Av.
At this moment, a further swap can be performed in the branch Uvw between Y and
Uvwv . Within the Uvw’s branches, we perform in total 2k(k− 1) swaps, considering all
the k(k − 1)/2 edges of the clique in C. Now let us focus on the passage of an object
uvwv (respectively, uvww ) to branch Av (respectively, Aw). To make the swaps rational
within branch Av, we need some auxiliary agents. We previously perform the swaps

between agent A`v and agent A
`[vw]
v , for each 1 ≤ ` ≤ k − j, if object uvwv in question

is the jth object to come into this branch. Then we perform the swaps along the path
[Y,A1

v, . . . , A
k−j
v ] (k2(k− 1) swaps in total by considering all the objects uvwv and uvww

associated with an edge of the clique. After having performed all these swaps, all the
agents A`v, for 1 ≤ ` < k and v ∈ VC , possess an object uvwv (or uwvv ) associated with
an edge (v, w) of the clique, and then can exchange with agent A`∗v in order to obtain
object a`∗v and be “validated” (in total k(k− 1) swaps). By rationality of the swaps,
object av can now go to agent A1

v via path [Av, A
k−1
v , . . . , A1

v], for each v ∈ VC (k(k− 1)
swaps in total). Then, by increasing order of vertices v over VC , let Y swap with Y [v],
and then with A1

v, in order to obtain object av (2k swaps in total by considering each
v ∈ VC). Let us focus now on the passage of object av to the branch of T `. Like in the
Av’s branch, if av is the jth object to come into this branch, then all the agents T ` for
1 ≤ ` ≤ k + 1 − j previously perform a swap with agent T `[v] in order to let object av
pass to reach agent T k+1−j (k(k + 1) swaps in total). Then, agent T k+1−j can exchange
with agent T k+1−j∗ to obtain object tk+1−j∗, and thus T k+1−j is “validated” (k swaps).
Since there are k validated Av’s branches, all the agents T ` can be validated and thus,
object t can go to agent Y via path [T, T k, . . . , T 1, Y ], for which the swaps are now
rational (k + 1 swaps). Finally, agent Y can swap with agent X since object t is the
only object that X prefers to object x (one swap), leading to the reachability of x by
Y . Observe that we have exactly performed k3 + 4k2 + k + 2 swaps.

Suppose now that object x is reachable for agent Y within at most k3 + 4k2 + k + 2
swaps. The only way for agent X to give x in a rational swap is to obtain object t in
return. Therefore, agent Y must previously get object t, initially owned by agent T ,
who only accept to give t against tk∗. Moreover, t must pass by all the agents T ` and
each of them accepts to give t to their neighbor only against object t`−1∗ or y[t]. Since
for agent T1, this object is necessarily y[t], it must be t`−1∗ for all the others. Therefore,
all the agents T ` for 1 ≤ ` ≤ k must obtain object t`∗ from their neighbor T `∗, who only
accepts objects in P := {av : v ∈ V }. Thus, there must be k objects in total within P
that move from their branch to the T branch in order to reach an agent T `. So far, the
necessary swaps are those between X and Y (one swap), the swaps between each T ` and
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T `∗ (k swaps), and the swaps along the path [T, T k, . . . , T1, Y ] (k+ 1 swaps), so in total
2k + 2 swaps.

Consider an object av ∈ P which must move to an agent T `. This object must follow
the path [Av, A

k−1
v , . . . , A1

v, Y, T
1, . . . , T `]. Consider first the subpath [A1

v, Y, T
1, . . . , T `],

from the moment where object av reaches agent A1
v. This agent only accepts to swap

it against object y[v], therefore agent Y must previously perform a swap with agent
Y [v] (k swaps in total by considering the k chosen objects in P ). Observe that the jth

object in P entering in the T `’s branch must reach agent Tk+1−j , otherwise an object
should pass twice by the same agent, which contradicts the rationality assumption of
the swaps. Therefore, by construction of the preferences, the objects in P must go into
the T `’s branch by increasing order of indices. By rationality of the swaps, agent Y
accepts in exchange of object av in the swap with agent T 1 only objects coming from
the T `’s branch, and thus only objects in {t1[w] : w ≥ v} that do not block the future
swaps (typically t1[v] is appropriate). Therefore, T 1 must perform an exchange with one
of the T 1[w] before av. Observe that this also holds for the other agents in this branch
and thus concerns all the agents T ` for 1 ≤ ` ≤ k + 1 − j if av is the jth object of P
to come into the branch. By counting the swaps between each such T ` and one agent
T `[w], and the swaps along the path [Y, T1, . . . , Tk+1−j ] for each object in P , we obtain
k(k + 1) swaps.

Now consider the first part where object av moves to agent Y from Av along the
path [Av, A

k−1
v , . . . , A1

v]. The conditions are similar to those on the T `’s branch. Each
agent A`v on the path only accepts object y[v] or a`−1∗ in return of giving object ai, and
agent Av only prefers ak∗ to av. Since for A1

v the preferred object is necessarily y[v],
the other agents must obtain a`−1∗

v . However, all the agents A`∗v , need an object within

Dv := {uδ
d(v)
v : 1 ≤ d ≤ δ(v)} to give object A`∗v in a rational swap. It follows that

each agent A`v on the path must get object a`−1∗
v and previously an object within Dv for

letting pass object av to agent A1
v. Thus, k−1 objects within Dv must be chosen to come

into the Av’s branch. Once it is done, the remaining swaps are all the swaps between
A`v and A`∗v which lead to k(k− 1) swaps in total, and the swaps for making object av
reach agent A1

v along the path [Av, A
k−1
v , . . . , A1

v, Y ], leading to k2 more swaps.

Now, consider an object uvwv (or uwvv depending on the order) which is chosen to
come into the Av’s branch. Similarly as in the T `’s branch, by construction of the
preferences, the objects in Dv must arrive by increasing lexicographical order, and if uvwv
is the jth object in Dv which enters in the Av’s branch, then it must come to agent Ak−jv .
Moreover, each agent A`v on the path [A1

v, . . . , A
k−j
v ] must previously make a swap with an

auxiliary agent A
`[δd(v)]
v for 1 ≤ d ≤ δ(v) that does not block the future swaps, typically

with A
`[vw]
v (or A

`[wv]
v depending on the order). Therefore, by combining the swaps along

[Y,A1
v, . . . , A

k−j
v ] and the swaps between each A`v and one agent in A

`[δd(v)]
v , we obtain

in total k2(k− 1) swaps. To sum up, so far, we can count k3 + 2k2 + 3k + 2 necessary
swaps. Therefore, it remains in the budget exactly 2k(k − 1) swaps. By construction of
the preferences, a previous swap between Y and the auxiliary agent Y [vw] is necessary
to make a first swap between Y and Uvwv occur. Observe that once an object uvwv is left
from the Uvw branch, no other agent Uv

′w′
v′ can swap with Y because the swap with the

auxiliary agent is not possible. The only possibility is the swap between Uvwv and Uvww ,
and then between Uvwv and Y . This leads to the obligation of choosing both objects
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uvwv and uvww to make them pass to the branch of Av, and we need four swaps to do it.
Hence, with our remaining budget, we can only select k(k − 1)/2 branches Uvw which
correspond to an edge. Since the chosen objects allow validating k− 1 incident edges of
k vertices, the associated edges in G form a clique of size k.

The same reasoning holds for the makespan. Concerning the length of the sequence,
it suffices to observe that the minimal sequence, by performing parallel swaps, is almost
totally conditioned by the exchanges of agent Y . Obviously the number of swaps involv-
ing Y , precisely 5k(k − 1)/2 + 3k + 3 swaps, is a lower bound for the makespan. But
actually one can verify that all the other swaps can be performed in parallel of a swap
involving Y . The only exception concerns the last swap between agent T 2 and agent
T 1 for exchanging object t. Indeed, once Y gives to agent T 1 object av corresponding
to the last vertex v of the clique (with respect to the order on vertices), agent T 1 can
swap with agent T 1∗ to obtain object t1∗, while agent Y prepares in parallel the swap
to obtain object t by swapping with agent Y [t]. But agent T 1 still needs to swap with
agent T 2 to obtain object t and Y has no swap to perform in parallel. Therefore, the
makespan is 5k(k − 1)/2 + 3k + 4.

The only possibility to answer true to a no-instance would be to choose more than
k(k − 1)/2 branches associated with an edge among the Uvw’s branches in order to
validate more agents in the Av’s branches. However, it would imply at least three more
swaps for agent Y and thus would increase the makespan, contradiction. �
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Kataŕına Cechlárová and Vladimir Lacko. The kidney exchange problem: How hard is
it to find a donor? Annals of Operations Research, 193(1):255–271, 2012.
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candidates hard to manipulate? Journal of the ACM (JACM), 54(3):14, 2007.

Vincent Conitzer, Toby Walsh, and Lirong Xia. Dominating manipulations in voting
with partial information. In Proceedings of the Twenty-Fifth Conference on Artificial
Intelligence (AAAI-2011), pages 638–643, San Francisco, California, USA, August
2011. AAAI Press.

Stephen A. Cook. Characterizations of pushdown machines in terms of time-bounded
computers. Journal of the ACM (JACM), 18(1):4–18, 1971a.

Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing (STOC-71), pages 151–158,
Shaker Heights, Ohio, USA, May 1971b. ACM.
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Introduction

La théorie du choix social repose sur l’étude de la prise de décision collective. Il existe
de nombreuses situations dans la vie quotidienne où un groupe d’individus doit prendre
une décision ensemble. On peut citer par exemple l’élection de représentants politiques,
le choix d’une date pour un rendez-vous, le choix d’un menu commun dans un restau-
rant, la répartition de biens lors d’un héritage, ou encore la constitution de groupes
de travail. La théorie du choix social a connu un véritable essor à partir de la moitié
du XXème siècle, notamment à partir des travaux de Kenneth Arrow avec son célèbre
théorème d’impossibilité [1951]. Cependant, des travaux fondateurs ont été réalisés dans
le domaine dès le XVIIIème siècle avec en particulier les écrits de Nicolas (marquis) de
Condorcet (1743-1794) et Jean-Charles (chevalier) de Borda (1733-1799).

Dans un problème de choix social, le but est d’agréger les préférences de différents
agents portant sur un ensemble d’alternatives donné afin de sélectionner, comme décision
finale, une ou plusieurs alternatives ou d’établir un ordre (pouvant être partiel ou un
même un préordre) sur ces alternatives. Le but du choix social consiste alors à élaborer
des procédures, les plus équitables et efficaces possibles, pour la prise de décision col-
lective. Cependant, au-delà de la qualité des procédures, il est important de prendre en
compte leur coût en terme de calcul et de communication. Cet axe de recherche, né à
la fin du XXème siècle, initialement au sein de la communauté informatique, a émergé
sous le nom de choix social computationnel [Brandt et al., 2016]. Ce domaine apparâıt
comme un champ de recherche avec des possibilités d’application concrètes, se trouvant
à l’intersection entre l’économie, les mathématiques et l’informatique.

Plusieurs aspects peuvent être étudiés dans le cadre de problèmes de choix social.
Premièrement, une étude axiomatique peut être faite en caractérisant les procédures
d’agrégation de préférences en fonction des propriétés intéressantes qu’elles satis-
font. L’aspect computationnel est également important, donnant lieu à une littérature
vaste établissant la complexité algorithmique de mécanismes donnés. Par ailleurs, les
préférences des agents, de par leur structure, peuvent influer de manière conséquente sur
les procédures de choix social, que ce soit au niveau de leur calculabilité ou de la qualité
de leur résultat. Il convient alors de déterminer des modèles de préférences réalistes.
L’élicitation des préférences des agents peut ainsi devenir une question essentielle, no-
tamment en ce qui concerne les coûts de communication des protocoles d’élicitation.
D’un autre côté, il est possible que les agents ne soient pas sincères lorsqu’ils dévoilent
leurs préférences, car ils peuvent avoir intérêt d’un point de vue stratégique à mentir,
phénomène connu sous le nom de manipulation. Puisque la manipulation de la part
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des agents est en général un comportement que l’on cherche à prévenir, les questions
relatives aux comportements stratégiques des agents constituent un enjeu fondamental
en choix social.

Lorsque l’on parle de choix social, on pense souvent aux processus de vote.
Néanmoins, le spectre des problèmes de choix social est bien plus large que ce seul do-
maine d’application. Il regroupe notamment la théorie du vote, l’allocation de ressources
et la partage équitable, la formation de coalitions et l’agrégation de jugements.

Dans un problème de choix social, les agents sont conscients de l’existence et de
l’implication d’autres agents. Généralement, dans la plupart des problèmes de décision
collective, les agents peuvent interagir. Cette interaction peut prendre différentes
formes : communication, collaboration, coopération, influence, collecte d’information,
diffusion d’information et autres. Traditionnellement en choix social, les agents sont
supposés pouvoir interagir avec tout autre agent. Cependant, dans la vie réelle, pour
des raisons liées à des questions de communication, d’affinités entre agents ou à des
problèmes liés à la distance, l’interaction avec certains agents peut ne pas être pos-
sible. La possibilité d’interaction entre agents peut être modélisée par une relation
d’accessibilité qui n’est alors pas forcément complète par défaut. Dans cette perspective,
la relation d’accessibilité reliant les agents pourrait également faire partie des données
d’entrée d’un problème de choix social.

Il existe plusieurs manières de représenter la relation d’accessibilité entre agents.
En raison de l’importance et de l’influence croissante des réseaux sociaux de nos jours,
modéliser la relation d’accessibilité entre agents à l’aide d’un réseau social apparâıt
pertinent. Dans ce cadre, la relation d’accessibilité consiste en une relation binaire
telle que deux agents peuvent interagir seulement s’ils sont connectés dans le réseau.
Classiquement, on représente le réseau social à l’aide d’un graphe, c’est-à-dire par un
ensemble de nœuds représentant les différents agents, et par des liens entre les nœuds
symbolisant les connexions entre les agents dans le réseau. Le réseau social en lui-même
peut modéliser une proximité géographique entre les agents, une relation entre pairs ou
collègues, des relations amicales ou même un réseau social en ligne comme il en existe
plusieurs de nos jours.

Les réseaux sociaux sont un domaine de recherche florissant et très en vogue ces
derniers temps. Ils sont de plus en plus utilisés, notamment en économie, afin de com-
prendre les relations sociales qui contraignent ou guident les agents dans leurs choix et
décisions [Jackson, 2008, Easley and Kleinberg, 2010]. L’introduction d’une structure
de graphe afin de modéliser les relations entre agents a notamment été considérée en
théorie des jeux coopératifs, avec l’utilisation d’un graphe de coopération [Aumann and
Dreze, 1974, Myerson, 1977]. En choix social, l’utilisation d’un réseau social modélisant
les interactions entre agents est plus récente et plus partielle. Cette approche a été
principalement adoptée dans le contexte de problèmes de formation de coalitions, même
si l’on peut aussi noter certains travaux analysant l’mpact des réseaux sociaux dans
des problématiques de vote ou d’allocation de ressources. Un état de l’art récent
[Grandi, 2017] met en lumière certains travaux intégrant des réseaux sociaux dans des
problématiques de choix social, et souligne des questions ou axes de recherche pertinents
dans ce cadre.

Le but de cette thèse est de relâcher l’hypothèse classique, en choix social compu-
tationnel, qui consiste à supposer que tout agent peut interagir avec n’importe quel
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autre. Pour cela, on modélise grâce à un réseau social la possibilité d’interaction entre
les agents. On se propose d’étudier l’impact de cette généralisation sur les interactions
sociales qui peuvent avoir lieu dans des problèmes de choix social. On concentre notre
étude sur deux types d’interaction particulièrement décisifs dans des processus de prise
de décision collective : la collaboration entre agents et la prise d’information. De plus,
notre travail concerne en particulier deux problèmes de choix social : le vote stratégique,
modélisé sous la forme d’un jeu stratégique itératif appelé vote itératif, et l’allocation
de ressources, avec l’étude d’un problème particulier reposant sur des biens indivisibles
dans lequel chaque agent doit obtenir exactement une ressource (“house allocation”).
Dans de tels problèmes de choix social, comment le réseau social influence-t-il les inter-
actions entre les agents ? Plus précisément, comment la limitation sur l’information qui
est accessible pour les agents ou sur les possibles agents collaborant entre eux affecte
le déroulement et le résultat des procédures de décision collective dans ces problèmes
particuliers ?

Ces questions sont examinées selon deux axes : le type de problème étudié (vote
stratégique ou allocation de ressources) et le type d’interaction sociale prise en con-
sidération (collaboration ou prise d’information). Le second axe détermine la structure
de la thèse. Ainsi, après un chapitre préliminaire (Chapitre 1) introduisant les notations
et concepts utilisés tout au long de la thèse, on étudie dans une première partie (Partie I),
comment le réseau social peut modéliser la possible collaboration entre agents. Au sein
de cette première partie, un premier chapitre (Chapitre 2) porte sur la manipulation par
coalitions d’agents en vote itératif et un second chapitre (Chapitre 3) sur des échanges
de biens indivisibles entre agents. Pour le chapitre 2, les possibles coalitions d’agents
pouvant manipuler sont déterminées en fonction du réseau social et dans le chapitre 3, les
seuls échanges possibles sont ceux impliquant des agents connectés dans le réseau social.
Dans la seconde partie de la thèse (Partie II), on analyse comment le réseau social peut
modéliser l’information qui est disponible pour les agents. En particulier, on étudie dans
un premier chapitre (Chapitre 4) un problème d’allocation de ressources où la relation
d’envie entre les agents est déterminée par un réseau social, puis dans un second chapitre
(Chapitre 5) on se penche sur un problème de vote itératif sous incertitude dans lequel
la connaissance des agents dépend du réseau social.

Nos contributions sont regroupées dans les parties I et II de la thèse, elles ont fait
l’objet de publications dans des conférences internationales d’intelligence artificielle :
ECAI-16 [Gourvès et al., 2016], IJCAI-17 [Gourvès et al., 2017], AAMAS-18 [Beynier
et al., 2018], SAGT-18 [Saffidine and Wilczynski, 2018] et AAAI-19 [Wilczynski, 2019].

Chapitre 1 : Préliminaires et notations

Ce chapitre préliminaire présente les notions et notations qui sont utilisées tout au long
de la thèse. Le cadre général des problèmes de choix social étudiés dans la thèse est
introduit ainsi que deux problèmes particuliers sur lesquels on se concentre dans la
thèse : le vote, plus précisément le vote stratégique, et l’allocation de ressources avec
des biens indivisibles. Les concepts principaux sont rappelés ainsi que quelques éléments
d’état de l’art.
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Cadre général

Un problème de choix social est caractérisé par un ensemble d’agents et un ensemble
d’alternatives pour lesquels les agents expriment des préférences. Les préférences des
agents sur l’ensemble des alternatives peuvent prendre différentes formes.

Tout d’abord, les préférences des agents peuvent être cardinales. Dans ce contexte,
les préférences d’un agent sont modélisées par l’intermédiaire d’une fonction d’utilité
définie sur l’ensemble des alternatives, où chaque agent associe à chaque alternative une
valeur numérique. De manière plus générale, les agents ne peuvent exprimer qu’une
relation ordinale sur les alternatives, dont l’élicitation peut s’avérer plus aisée pour les
agents. On suppose tout au long de la thèse que les agents expriment un ordre complet
sur les alternatives où, pour certains modèles, l’indifférence entre deux alternatives peut
être permise.

Afin de modéliser une possibilité d’interaction entre les agents, on introduit dans
ce cadre classique de choix social un réseau social sur les agents. Ce réseau social est
modélisé par une structure de graphe dont les nœuds symbolisent les agents et dont les
liens entre les nœuds représentent une possibilité d’interaction entre les agents associés.
L’accent est mis sur la relation binaire représentée par le graphe. Ainsi, un graphe non-
orienté est vu comme un cas particulier de graphe orienté où la relation binaire associée
est symétrique. Toutes les définitions que l’on utilise au long de la thèse suivent ce
principe. Par exemple, une clique dans un graphe orienté est un sous-ensemble de som-
mets du graphe tel qu’il existe un arc entre chaque paire de sommets de ce sous-ensemble,
c’est-à-dire la relation binaire associée est complète sur ce sous-ensemble d’éléments.

On s’attarde également sur la manière de générer des réseaux sociaux réalistes.
Pour cela, certaines propriétés observables dans des réseaux réels et théorisées dans
la littérature sont utiles. Dans ce cadre, les notions de “petit monde” [Travers and
Milgram, 1967, 1977] et d’“invariant d’échelle” [Barabási and Albert, 1999] sont notam-
ment rappelées, ainsi que la manière de générer ce type de réseaux. Par exemple, les
graphes aléatoires de type Erdös-Rényi [1959] satisfont la propriété de “petit monde” en
espérance, c’est-à-dire que la distance entre deux nœuds du réseau tend à être petite,
tandis que les graphes aléatoires de type Barabási-Albert [1999] sont connus pour être
invariants d’échelle, c’est-à-dire que les nœuds du réseau suivent une loi de puissance
avec un mécanisme d’attachement préférentiel où les nœuds ont plus de chance d’être
reliés dans le réseau à des nœuds possédant déjà de nombreuses connexions. Une autre
notion importante dans un réseau social est l’homophilie : deux nœuds “similaires” ont
tendance à être reliés dans le réseau. Dans un contexte où le réseau social concerne
des agents tentant de prendre une décision collectivement, il apparâıt pertinent de con-
sidérer que deux agents sont similaires s’ils ont des préférences proches. On établit donc
un protocole de génération de graphe aléatoire avec homophilie où les agents sont reliés
entre eux en fonction de la proximité de leurs préférences, sur la base d’une distance de
Kendall-Tau entre les ordres de préférence des agents.

Enfin, on se concentre dans la thèse sur des problèmes de choix social où le but pour
les agents est de sélectionner exactement une alternative parmi l’ensemble d’alternatives
initial. La procédure pour y parvenir peut être centralisée, si une autorité externe
détermine à partir de certaines règles quelle sera l’alternative choisie en fonction de
préférences soumises par les agents ou, au contraire, elle peut être distribuée, si les
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agents construisent la décision finale par eux-mêmes en suivant un certain protocole.
Certaines procédures peuvent également combiner ces deux aspects. Les procédures de
choix social sont traditionnellement évaluées en fonction des axiomes qu’elles satisfont.
Ces propriétés peuvent concerner le déroulement de la procédure en elle-même, comme
par exemple le fait d’être non-manipulables, c’est-à-dire le fait qu’aucun agent n’ait
intérêt à reporter des préférences qui ne sont pas les siennes. Mais également, elles
peuvent s’appuyer sur la qualité de la solution obtenue. On peut s’intéresser par exemple
à la sélection d’une solution qui soit Pareto-efficace, c’est-à-dire qu’il n’est pas possible
à partir de cette solution d’améliorer la satisfaction d’un agent sans détériorer celle d’un
autre.

D’autres critères sont propres au problème de choix social étudié. Dans la thèse, on
se concentre sur le vote stratégique et l’allocation de biens indivisibles.

Théorie du vote

Le vote est incontournable dans la vie quotidienne. Outre les élections politiques, on
peut citer des processus de vote afin de choisir une date ou un lieu pour une réunion, le
choix d’un menu commun pour une sortie dans un restaurant, l’élection de représentants
en entreprise ou dans des associations, et d’autres encore. Dans un modèle de vote, des
agents, également appelés électeurs ou votants, ont des préférences par rapport à un
ensemble d’alternatives, également appelées candidats. Le résultat de l’élection, c’est-
à-dire le gagnant, est déterminé par une règle de vote. Chaque électeur est invité à
soumettre son bulletin de vote à un système central qui calcule puis communique le
gagnant de l’élection. La règle de vote prend en entrée un ensemble de bulletins de
vote, un pour chaque électeur (en supposant que le modèle ne prenne pas en compte
l’abstention), qui est appelé profil de vote. On se concentre dans la thèse sur des élections
à vainqueur unique, impliquant l’utilisation d’une règle de départage des ex aequo. On
choisit une règle de départage déterministe basée sur un ordre sur les candidats.

Plusieurs règles de vote ont été conçues dans la théorie du vote. Quasiment toutes
les règles de vote que l’on étudie dans la thèse attribuent un score à chaque candidat
et donnent comme gagnant le candidat qui maximise ce score. Toutes les règles de vote
analysées requièrent la soumission d’un bulletin sous forme d’ordre sur les candidats
(même si parfois moins d’information suffit). Plus précisément, on considère trois familles
de règles de vote. La première, les règles de notation positionnelles, rassemble des
règles pour lesquelles il existe un vecteur de points qui détermine le nombre de points
remportés par chaque candidat en fonction de sa position dans l’ordre soumis dans chaque
bulletin. Parmi ces règles, on compte notamment la règle de vote Pluralité où un candidat
remporte un point pour chaque bulletin dans lequel il est placé en première position. Le
profil de vote peut alors être simplifié en supposant que chaque bulletin porte la mention
d’un seul candidat, celui qui est approuvé. La règle de vote Véto appartient également
à cette famille mais cette fois-ci tous les candidats du bulletin remportent un point, sauf
le candidat placé en dernière position du bulletin qui n’en remporte aucun. Ceci peut
également se simplifier par un bulletin ne comportant que la mention du candidat contre
lequel on veut exprimer un véto. La règle de vote k-approbation permet quand à elle
d’attribuer, pour chaque bulletin, un point à exactement k candidats, qui sont censés
être les k candidats préférés du votant. Cette règle généralise à la fois Pluralité et Véto,
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en choisissant des valeurs de k particulières. Enfin, la dernière règle sur laquelle on va
se pencher au sein des règles de notation positionnelles est la règle de Borda, qui associe
à chaque position de l’ordre soumis dans le bulletin un nombre de points différent, avec
le même écart de points entre deux positions consécutives et le plus grand nombre de
points pour la première position dans le bulletin.

La deuxième famille de règles de vote que l’on étudie consiste en des règles sur
plusieurs tours ou dites par éliminations successives. Parmi elles, la règle de Pluralité à
deux tours, qui est notamment utilisée en France, ne garde au deuxième tour que les deux
candidats ayant le plus fort score de Pluralité dans le profil de vote. Puis, le candidat qui
est préféré, à la majorité, parmi ces deux finalistes remporte l’élection. Suivant le même
principe, la règle de Vote simple transférable (STV), utilisée notamment en Australie et
en Irlande, élimine à chaque tour le candidat qui a le plus faible score sous la règle de
Pluralité. Le vainqueur est le candidat restant à la fin de ce processus d’éliminations
successives ou, de manière équivalente, le candidat qui gagne à la majorité absolue à
partir d’un certain tour.

Enfin, la dernière famille de règles de vote abordées repose sur la comparaison par
paires. Parmi ces règles, on se concentre sur les règles de Maximin et de Copeland
qui consistent à élire un candidat maximisant un certain score dont le calcul se base
sur des comparaisons par paires avec les autres candidats. Le score de Maximin d’un
candidat est le nombre minimum d’électeurs qui le soutiennent dans tout duel avec un
autre candidat. Le score de Copeland d’un candidat est le nombre de candidats qu’il bat
à la majorité absolue en comptabilisant tous les duels avec un autre candidat (il existe
d’autres versions du score de Copeland).

Les règles de vote sont en général évaluées en fonction des axiomes qu’elles satisfont,
reflétant des propriétés désirables pour le processus de choix en soi ou le candidat élu.
On peut notamment citer le critère de Condorcet qui consiste à savoir si une règle permet
d’élire le vainqueur de Condorcet lorsqu’il existe, le vainqueur de Condorcet étant un
candidat battant tous les autres à la majorité absolue. Une règle élisant toujours le
vainqueur de Condorcet est dite Condorcet consistante. Une manière empirique de se
ramener au critère de Condorcet est d’observer l’efficacité de Condorcet d’un processus
de vote, c’est-à-dire la fréquence d’élection du vainqueur de Condorcet lorsque celui-ci
existe. De manière analogue, on peut étudier les scores de Borda du vainqueur d’un
certain processus de vote pour voir à quel point ceux-ci se rapprochent du score de
Borda du vainqueur sous la règle de vote Borda.

Le vote stratégique apparâıt fréquemment lors d’élections réelles, et en particulier
lors d’élections politiques. On dit que les votants manipulent lorsqu’ils soumettent un
bulletin qui ne correspond pas à leurs préférences véritables. Les électeurs souhait-
ent en général, par ce biais, éviter l’élection d’un candidat qu’ils ne veulent pas voir élu.
Malgré le fait que la manipulation puisse apparâıtre comme un comportement à prévenir,
il n’existe pas de processus de vote où la manipulation serait impossible [Gibbard, 1973,
Satterthwaite, 1975]. Une approche pour contourner le problème de la manipulation en
vote consiste à élaborer des règles de vote difficiles à manipuler en termes de calcul. Une
littérature riche a développé ce point, en analysant le coût de calcul d’une manipula-
tion pour différentes règles de vote [Bartholdi et al., 1989b, Bartholdi and Orlin, 1991].
Cependant, cette approche n’est pas suffisante pour éviter les manipulations, comme
le soulignent certains travaux récents [Conitzer and Sandholm, 2006, Faliszewski and
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Procaccia, 2010]. Le principal inconvénient de cette approche repose sur l’analyse de la
complexité dans le pire cas : même s’il est compliqué d’un point de vue computationnel
de calculer une manipulation pour une règle de vote donnée dans le pire des cas, cela
n’empêche pas la manipulation des électeurs dans la pratique. Une autre perspective
consiste à explorer les aspects relevant de la théorie des jeux dans le comportement
stratégique des votants en laissant les votants manipuler. La manipulation n’est alors
pas nécessairement considérée comme un comportement à prévenir, mais plutôt comme
un comportement à prendre en compte dans le processus de vote. Dans ce cadre, on
peut alors étudier l’existence d’équilibres dans le jeu de vote. Différents concepts de
solution peuvent être pris en compte en fonction des déviations stratégiques qui sont
considérées. Par exemple, l’équilibre de Nash [Nash, 1951] est un état stable par rap-
port aux déviations unilatérales. Il a notamment été bien étudié dans le cadre de jeux
de vote. De manière alternative, l’équilibre fort [Aumann, 1959] est un état stable par
rapport aux déviations coalitionnelles où tout le monde doit gagner strictement dans la
déviation. Les équilibres forts ont également été bien examinés dans des jeux de vote, par
le biais de jeux admettant toujours un tel équilibre [Peleg, 2002, Peleg and Peters, 2010],
ou de caractérisations faisant intervenir la notion de vainqueur de Condorcet [Sertel and
Sanver, 2004].

Il est possible d’envisager une version dynamique d’un jeu de vote, ce que l’on ap-
pelle le vote itératif, où les électeurs peuvent changer de bulletin dans une perspective
stratégique de façon itérative [Meir et al., 2010]. Il est communément supposé qu’un
seul électeur peut dévier à chaque étape. Un votant dévie de son bulletin actuel vers
un nouveau s’il estime que cette nouvelle stratégie lui permet de faire élire un candi-
dat qu’il préfère. Le vote itératif peut être vu comme les réponses à une succession de
sondages d’opinion où les électeurs peuvent observer les votes précédents et élaborer des
stratégies en conséquence, ou il peut simplement décrire les changements stratégiques
dans les intentions de vote des votants, qui peuvent évoluer au gré de ce qu’ils perçoivent
des bulletins des autres votants. Les propriétés de convergence des dynamiques de jeu
dans des processus de vote itératif ont été largement étudiées dans des travaux récents.
Les résultats principaux dans le cadre classique du vote itératif sont la garantie de con-
vergence vers un équilibre de Nash pour des déviations unilatérales implémentant des
meilleures réponses directes sous les règles de vote Pluralité et Véto [Meir et al., 2010,
Reyhani and Wilson, 2012]. Une meilleure réponse directe sous Pluralité consiste pour
un votant à dévier vers un nouveau bulletin approuvant un candidat devenant le nou-
veau vainqueur et qui est le meilleur possible selon les préférences du votant en question.
Pour Véto, la meilleure réponse directe possible consiste à faire élire un nouveau vain-
queur que l’on préfère au précédent en déviant vers un bulletin contenant un véto contre
l’ancien vainqueur. Il semble en particulier que seules les déviations unilatérales aient
été étudiées jusqu’à présent en vote itératif.

Dans ce cadre classique du vote itératif, il est fait l’hypothèse que tous les agents
connaissent le bulletin de tous les autres. Ceci apparâıt comme une hypothèse assez
irréaliste, en particulier pour des instances de grande taille. Par conséquent, de nom-
breux travaux élaborent des modèles intégrant de l’incertitude dans des jeux de vote.
Certains modèles considèrent que les votants pensent en termes de probabilités afin
de déterminer les profils de vote les plus vraisemblables [Myerson and Weber, 1993,
Messner and Polborn, 2005, Hazon et al., 2008]. D’autres se servent des outils de la
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logique modale afin de formaliser le concept de manipulation en présence d’information
incomplète [Chopra et al., 2004, Van Ditmarsch et al., 2012]. Dans l’approche de domi-
nance locale [Meir et al., 2014, Meir, 2015], des seuils d’incertitude sont introduits afin de
déterminer les profils de vote possibles, qui seraient tous ceux se trouvant à une distance
au plus ce seuil du profil de vote réel en considérant une certaine métrique. Une autre
approche consiste à prendre en compte une certaine fonction d’information représentant
le type d’information communiquée aux votants, qui peut être le vainqueur, les scores des
candidats ou autre [Reijngoud and Endriss, 2012, Endriss et al., 2016]. La susceptibilité
de différentes règles de vote à être manipulables considérant un certain type de fonction
d’information est étudiée en faisant l’hypothèse que les votants adoptent un comporte-
ment averse au risque sur l’ensemble des profils qui sont cohérents avec l’information qui
leur est donnée. Une autre manière de gérer l’incertitude est de supposer que les votants
considèrent tous les profils de vote cohérents avec des informations partielles sur le vote
des autres agents [Conitzer et al., 2011, Dey et al., 2016].

Enfin, le vote stratégique combiné avec des réseaux sociaux commence à être étudié
[Grandi et al., 2017]. Il est notamment fait l’hypothèse que les votants infèrent de leurs
liens dans le réseau les bulletins courants de certains votants [Chopra et al., 2004, Sina
et al., 2015, Tsang and Larson, 2016].

Allocation de ressources avec des biens indivisibles

L’allocation de ressources avec des biens indivisibles [Chevaleyre et al., 2006, Bou-
veret et al., 2016] est un champ de recherche primordial de l’intelligence artificielle,
à l’intersection entre l’économie et l’informatique, avec de nombreuses applications dans
la vie réelle. Dans un problème d’allocation de ressources, on dispose d’un ensemble
d’agents et d’un ensemble d’objets (aussi appelés ressources ou biens) et les agents ont
des préférences sur les objets. Le but est de répartir les objets entre les agents de la
manière la plus efficace et la plus équitable possible. On suppose que les ressources ne
sont ni partageables ni divisibles entre les agents, et que les agents ont des préférences
ordinales sur les objets. Le cas de ressources divisibles, souvent connu sous le nom
de problème de partage de gâteau (“cake cutting”) a également fait l’objet d’intenses
investigations [Steinhaus, 1948, Robertson and Webb, 1998, Procaccia, 2016].

Des mesures d’équité et d’efficacité peuvent être élaborées dans des problèmes
d’allocation de ressources afin d’identifier les allocations souhaitables pour la société.
Dans le cadre de préférences ordinales, une notion d’efficacité classique et pertinente
est l’efficacité de Pareto. Une allocation est dite Pareto-efficace s’il n’est pas possible
d’améliorer la satisfaction d’un agent sans détériorer celle d’un autre, c’est-à-dire s’il
n’existe pas d’autre allocation telle que chaque agent est au moins autant satisfait que
dans l’allocation de départ et au moins un d’entre eux est strictement plus satisfait. En
ce qui concerne l’équité, plusieurs mesures ont été élaborées dans la littérature. On peut
notamment citer la proportionnalité et l’absence d’envie. La proportionnalité [Stein-
haus, 1948] est utilisée spécifiquement dans un contexte où les agents ont des préférences
cardinales et requiert que chaque agent obtienne une part qu’il évalue comme au moins
son utilité pour l’ensemble des objets divisée par le nombre d’agents. L’absence d’envie
[Tinbergen, 1946, Foley, 1967, Varian, 1974] impose quant à elle qu’aucun agent n’envie
ce qui est attribué à quelqu’un d’autre, c’est-à-dire que chaque agent préfère au moins
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sa part à celle des autres. Il est à noter que pour que la notion d’absence d’envie ait
un sens, elle doit être combinée avec un critère minimal d’efficacité, comme par exemple
la complétude de l’allocation considérée, qui implique que tous les objets soient dis-
tribués. Autrement, même l’allocation n’affectant aucun objet est sans envie. On se
restreint d’ailleurs dans les problèmes d’allocation de ressources considérés à des alloca-
tions complètes.

On se penche dans la thèse sur un problème particulier d’allocation de biens indivis-
ibles, appelé allocation de maisons (“house allocation”) [Hylland and Zeckhauser, 1979,
Abdulkadiroǧlu and Sönmez, 1998, 1999], où chaque agent doit recevoir exactement un
bien. On peut par exemple penser à des problèmes d’affectation d’étudiants à des ap-
partements, ou l’allocation de créneaux horaires à des employés ou de rendez-vous dans
un service administratif. Dans la littérature économique, ce problème est également
connu sous le nom de couplage unilatéral (“one-sided matching”) [Zhou, 1990], un type
spécifique de couplage avec préférences [Manlove, 2013, Klaus et al., 2016] où seulement
une des deux parties a des préférences sur l’autre, ici les agents sur les ressources. Les
questions de Pareto-efficacité et d’équité ont notamment été examinées pour ce problème
particulier [Bogomolnaia and Moulin, 2001, Abraham et al., 2005]. Le protocole simple
de dictature en série est particulièrement pertinent dans ce contexte et est notamment
utilisé dans des applications réelles. Étant donné un ordre sur les agents, chacun d’eux
est appelé à son tour à choisir un objet parmi les objets disponibles restants. Si l’ordre
est généré de manière aléatoire, on parle de dictature en série aléatoire (“random se-
rial dictatorship”) [Abdulkadiroǧlu and Sönmez, 1998]. Ce protocole a le mérite d’être
non-manipulable.

La définition de l’envie est très simple dans le cadre du problème d’allocation de
maisons : un agent en envie un autre s’il préfère l’objet affecté à l’autre agent à son propre
objet. Cependant, dans ce cadre, l’absence d’envie est une condition très exigeante et
rare car il faudrait considérer une allocation où tous les agents obtiennent leur meilleur
objet et donc les instances positives sont restreintes à celles pour lesquelles les préférences
des agents sont telles que leur meilleur objet est différent.

Il existe un autre sous-problème spécifique dans le cadre de l’allocation de maisons,
qui consiste à supposer que les agents ont initialement un objet, c’est-à-dire qu’il existe
une allocation initiale. Le but est alors de réallouer les objets de la manière la plus
efficace et la plus équitable possible au sein des agents. Ce problème est connu sous le
nom de marché du logement (“housing market”) [Shapley and Scarf, 1974]. Dans un tel
contexte, la manière la plus naturelle pour réallouer les ressources repose sur des échanges
entre les agents. Deux perspectives peuvent être adoptées pour l’échange d’objets. La
première, distribuée, consiste à laisser les agents échanger par eux-mêmes et analyser
quelles peuvent être les conditions d’échanges réalistes et prévoir vers quelle allocation la
séquence d’échanges va converger. Dans la seconde, centralisée, un coordinateur externe
peut guider les agents dans leurs échanges afin de les orienter vers une solution acceptable
pour la communauté.

Des algorithmes centralisés très efficaces ont été conçus pour le problème de marché
du logement, à savoir le célèbre algorithme “top trading cycle” (TTC) [Shapley and
Scarf, 1974] et certaines de ses variantes [Abdulkadiroǧlu and Sönmez, 1999, Aziz and
De Keijzer, 2012]. L’algorithme TTC garantit l’obtention d’une allocation qui est, entre
autres propriétés, Pareto-efficace. Le principal inconvénient de l’approche centralisée
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est l’obligation pour les agents de communiquer une partie de leurs préférences à une
autorité externe à laquelle ils doivent faire confiance.

Alternativement, les agents peuvent effectuer la réallocation de manière distribuée
en échangeant et négociant directement ensemble. Moins exigeante en termes de coûts
de communication, cette approche présente l’avantage de l’indépendance des agents vis-
à-vis d’une quelconque entité extérieure. Néanmoins, elle peut aboutir à des allocations
moins intéressantes pour les agents à cause de leur myopie dans les échanges qui ne
leur permet pas d’avoir une vision globale comme pourrait l’avoir une autorité externe.
Certains travaux examinent ce processus d’échanges décentralisé, en déterminant des
conditions réalistes pour les échanges et analysant la qualité des allocations qui peuvent
être atteintes. Très étudié dans le cadre de plusieurs ressources par agent [Sandholm,
1998, Chevaleyre et al., 2017], cette approche n’a été que récemment introduite pour le
problème plus précis de marché du logement [Damamme et al., 2015].

Théorie de la complexité

On étudie dans la thèse des problèmes de choix social sous plusieurs angles et principale-
ment celui de la complexité computationnelle. Des concepts fondamentaux de la théorie
de la complexité sont donc rappelés. On utilise des notions de complexité classiques,
avec principalement des preuves de NP-difficulté, mais aussi des notions de complexité
paramétrée. En ce qui concerne la complexité paramétrée, on se ramène notamment à
des preuves d’appartenance à FPT, avec la présentation d’algorithmes où la difficulté est
circonscrite à une fonction dépendant du paramètre, rendant alors l’algorithme efficace
lorsque le paramètre en question est petit, des preuves d’appartenance à XP, avec des
algorithmes dont la complexité devient polynomiale si le paramètre est une constante,
et des preuves de difficulté dans les hiérarchies W et A, qui se situent entre les classes
FPT et XP dans la hiérarchie des classes de complexité paramétrée.

Partie I : Le réseau social comme outil collaboratif

Tout d’abord, on se propose d’étudier comment le réseau social peut modéliser la possi-
bilité de collaboration entre agents. La collaboration renvoie à l’idée d’agents œuvrant
ensemble, sur un même pied d’égalité, en combinant leurs ressources, afin d’accomplir
un même but ou des buts compatibles. Il s’ensuit que pour qu’il y ait collaboration
entre deux agents, la relation de possibilité d’interaction entre ces deux agents doit
nécessairement être symétrique. On fait donc l’hypothèse pour cette partie que le réseau
social est représenté par un graphe non-orienté sur les agents.

Chapitre 2 : Manipulation par coalitions en vote itératif

Tout d’abord, on se concentre sur un problème de vote stratégique où la collaboration
entre agents est matérialisée par des agents pouvant manipuler ensemble au sein de
coalitions déterminées par le réseau social. Ce chapitre se réfère à notre article publié
dans la conférence ECAI-16 [Gourvès et al., 2016].

Dans le contexte du vote stratégique modélisé en tant que jeu de vote, ne considérer
que des déviations unilatérales dans les bulletins soumis, renvoyant ainsi au concept
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d’équilibre de Nash, comme il est communément admis dans le cadre classique du vote
itératif, apparâıt comme une hypothèse trop faible. Premièrement, le nombre d’états
du jeu étant équilibres de Nash est trop important pour prédire convenablement l’issue
possible du jeu. Dans un second temps, la restriction à des déviations unilatérales en
elle-même ne permet pas de couvrir tous les cas possibles de manipulation. En effet,
dans la vraie vie, il peut arriver que plusieurs électeurs s’entendent sur une stratégie
commune à adopter. Les instructions de vote au sein de partis politiques en sont un
exemple typique.

D’un autre côté, si l’on considère la manipulation par coalitions d’agents, sup-
poser que tout sous-ensemble d’agents est une possible coalition en vue de voter
stratégiquement, renvoyant ainsi au concept d’équilibre fort, semble une hypothèse trop
forte. Premièrement, un tel équilibre existe rarement dans des jeux de vote. De plus,
pour des raisons diverses, allant de la distance à des problèmes possibles de commu-
nication, en passant par la question des affinités entre individus, il n’est pas toujours
possible qu’un groupe d’agents puisse collaborer. Par conséquent, en pratique, on peut
raisonnablement exclure certaines coalitions, lors de la définition d’un état stable, dans
l’ensemble des groupes d’agents pouvant dévier à prendre en compte. Par exemple, il
est possible de ne considérer que des coalitions d’électeurs qui sont membres d’une parti-
tion donnée, comme dans le concept d’équilibre de partition [Feldman and Tennenholtz,
2009].

Une façon de prendre en compte des coalitions réalistes d’électeurs consiste à exploiter
les réseaux sociaux. En effet, si les liens dans le réseau social caractérisent pleinement
les relations sociales entre les agents, cela fait sens de considérer comme des coalitions
possibles, des groupes d’agents déterminés à partir du graphe représentant le réseau
social. En particulier, puisque l’établissement d’une stratégie commune implique la par-
ticipation active de tous les membres de la coalition, supposer qu’une coalition possible
est donnée par une clique du graphe apparâıt pertinent. Pour aller plus loin, on peut
également supposer qu’un agent est lié par des relations sociales qui le forcent à prendre
en considération les autres participants. Par conséquent, on fait l’hypothèse qu’un agent
est non seulement guidé par ses propres préférences sur l’ensemble des candidats, mais
poursuit également l’objectif d’optimisation du bien-être des communautés auxquelles il
appartient. Un concept de solution qui découle naturellement de cette configuration est
l’équilibre de considération [Hoefer et al., 2011].

Un équilibre de considération est défini comme un état où aucune coalition d’agents
correspondant à une clique du réseau social n’a intérêt à dévier au sein d’une stratégie
commune qui ne nuit pas au bien-être de ses voisins dans le réseau social. Il est à noter
qu’un équilibre de partition est un sous-cas de l’équilibre de considération pour lequel
le graphe associé est un ensemble de cliques disjointes (graphe constitué de “clusters”).
C’est également le cas pour l’équilibre de Nash, qui correspond à un équilibre de con-
sidération pour lequel le graphe associé est vide (pas d’arêtes dans le graphe). Il s’ensuit
que si un équilibre de considération existe dans un certain jeu de vote quel que soit la
structure du réseau social, alors un équilibre de partition ainsi qu’un équilibre de Nash
sont garantis d’exister.

L’équilibre de considération, tout comme l’équilibre de partition, n’ayant été étudié
que pour un cas particulier de jeu de congestion [Anshelevich et al., 2013b, Hoefer et al.,
2011], on se propose d’étudier, pour différentes règles de vote classiques, l’existence d’un
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Règles de notation positionnelles Eliminations successives Comparaison par paires

Pluralité Véto k-approbation Borda STV Pluralité à 2 tours Copeland Maximin

Eq. fort
Existence 5 4 5 5 5 5 5 5

Convergence 5 5 5 5 5 5 5 5

Eq. de considération
Existence 4 4 5 5 4 4 5 4

Convergence 5 5 5 5 5 5 5 5

Eq. de partition
Existence 4 4 5 5 4 4 5 4

Convergence 5 5 5 5 5 5 5 5

Eq. de Nash
Existence 4 4 5 5 4 4 5 4

Convergence 41 42 52 52 5 5 5 5

1 [Meir et al., 2010]
2 [Lev and Rosenschein, 2012, Reyhani and Wilson, 2012]

Tableau 3: Tableau récapitulatif des résultats d’existence d’équilibres (pour différents
concepts de solution) et de convergence des dynamiques de jeu associées selon différentes
règles de vote

équilibre de considération dans un jeu de vote stratégique et la capacité des dynamiques
de jeu à converger vers un tel équilibre.

Différentes règles de vote classiques sont examinées : des règles de notation posi-
tionnelles telles que Pluralité, Véto, Borda et k-approbation, des règles à éliminations
successives comme la Pluralité à deux tours et le Vote simple transférable (STV), et
enfin des règles par comparaison de paires avec Maximin et Copeland. Bien que l’on
prouve l’existence d’un équilibre de considération pour de nombreuses règles de vote,
on montre que la dynamique de déviations n’est presque jamais garantie de converger
vers un tel état stable. Ce résultat négatif de convergence est valable même lorsque l’on
se restreint aux cas plus simples de déviations par des coalitions d’agents venant d’une
partition ou de déviations unilatérales. Un récapitulatif des résultats d’existence et de
convergence est présenté dans le Tableau 3.

Plus précisément, on prouve que dans les jeux de vote sous Pluralité, STV, Maximin
ou Pluralité à deux tours, un équilibre de considération existe quelle que soit la structure
du réseau social. Plus généralement, on prouve ce résultat d’existence pour des règles de
vote dites “sensibles à la stricte majorité”, qui englobent notamment les règles de votes
spécifiques précédemment citées. Les règles sensibles à la stricte majorité sont telles que
seules des coalitions de plus de la majorité des votants peuvent changer le résultat de
tout état et seules des coalitions composées d’exactement la moitié des votants peuvent
changer le résultat d’un profil unanime, où tous les votants donnent le même bulletin,
sans pour autant pouvoir changer le résultat du profil unanime favorisant le candidat
privilégié par la règle de départage des ex aequo. En revanche, on exhibe des contre-
exemples pour les autres règles de vote étudiées, montrant que même un équilibre de
Nash n’est pas garanti d’exister sous les règles de vote de Borda, de Copeland et k-
approbation. Néanmoins, lorsque le nombre de votants est strictement supérieur à deux,
un équilibre de Nash est garanti d’exister sous Borda et Copeland, ce qui n’est pas le
cas pour un équilibre de partition. Mais, pour le cas d’un nombre impair de votants, un
équilibre de considération existe toujours sous Copeland, résultat qui ne tient pas sous
Borda.

Le cas de la règle de vote Véto est particulier. Bien que n’étant pas une règle
sensible à la stricte majorité, un équilibre de considération est garanti d’exister pour
toute structure de réseau social. Mais, on prouve également un résultat particulièrement
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intéressant : un équilibre fort existe toujours dans un jeu de vote sous Véto. La preuve
est basée sur l’utilisation du mécanisme “feasible elimination procedure” introduit par
Peleg [1978]. De plus, on montre que savoir si un candidat particulier peut être élu dans
un état qui est un équilibre fort dans le jeu de vote sous Véto peut être déterminé en
temps polynomial. On en déduit une mesure de qualité pour évaluer une règle de vote,
qui est valable pour tout profil de préférence (contrairement au critère de Condorcet). Il
s’avère empiriquement que cette mesure de qualité semble assez conflictuelle par rapport
à l’efficacité de Condorcet.

Concernant la convergence des dynamiques de déviations, les résultats sont plutôt
négatifs puisque l’on montre que la dynamique associée à un équilibre de partition peut
comporter des cycles sous Pluralité et Véto. Ce résultat est valable même pour des
déviations restreintes aux meilleures réponses directes, alors que sous cette restriction
la dynamique des déviations unilatérales est connue pour converger [Meir et al., 2010,
Reyhani and Wilson, 2012] sous ces règles de vote. Pour toutes les autres règles de vote
étudiées, la convergence n’est pas garantie même pour des dynamiques associées à des
déviations unilatérales.

Des résultats expérimentaux sont également présentés dans ce chapitre, évaluant la
fréquence d’existence des différents concepts de solution analysés ainsi que la fréquence
de convergence des dynamiques associées. Des simulations sont faites sur la base
de préférences générées aléatoirement de manière uniforme ou aléatoirement “single-
peaked”, et de réseaux sociaux qui sont soit des graphes de type Erdös-Rényi générés
pour des densités particulières, soit des graphes avec homophilie. La qualité des
équilibres est évaluée en fonction de différents critères, dont l’efficacité de Condorcet, la
proximité des scores de Borda et la possibilité pour le gagnant d’être élu dans un état
étant équilibre fort sous Véto. Il s’avère que l’équilibre de considération a le même défaut
que l’équilibre de Nash concernant le trop grand nombre d’états qui sont des équilibres
de considération. En revanche, la qualité des équilibres atteints par la dynamique de
déviations est clairement meilleure que celle des équilibres de partition ou des équilibres
de Nash, et même clairement meilleure que ceux d’équilibres coalitionnels où les coali-
tions sont des cliques, comme dans l’équilibre de considération, mais où les agents n’ont
pas de considération pour leurs voisins dans le réseau lorsqu’ils effectuent des déviations.

L’hypothèse de considération, qui rend les agents altruistes dans leurs déviations,
est importante car c’est par elle que tiennent nos résultats d’existence des équilibres de
considération, mais aussi par elle que les équilibres de considération sont si nombreux
pour une instance donnée. L’équilibre de partition semble être un bon compromis au
niveau du nombre d’états stables et vis-à-vis de la qualité des équilibres atteints, sans
qu’une hypothèse de considération soit nécessaire.

Chapitre 3 : Dynamique d’échanges dans des problèmes d’allocation de
maisons

Dans ce chapitre, on s’intéresse à une collaboration entre agents reliés dans le réseau
social, au sein d’un processus d’allocation de ressources où les agents peuvent s’échanger
des biens. Ce chapitre se réfère à nos articles publiés dans la conférence IJCAI-17
[Gourvès et al., 2017] et dans la conférence SAGT-18 [Saffidine and Wilczynski, 2018].

Ce chapitre étudie un problème spécifique d’allocation de ressources dans lequel
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chaque agent doit recevoir exactement un bien, problème connu sous le nom d’allocation
de maisons (“house allocation”). Plus précisément, chaque agent est initialement doté
d’un objet et donc le but est de réallouer les biens aux agents de manière efficace et
équitable, en fonction de leurs préférences exprimées sous forme d’ordre sur les objets,
ce qui renvoie plus particulièrement à un problème de marché du logement (“housing
market”). Une manière naturelle de réallouer les objets dans ce cadre consiste à laisser
les agents effectuer des échanges entre eux, de façon distribuée. Néanmoins, ce processus
peut également être guidé de manière centralisé par un coordinateur externe. C’est le
cas de l’algorithme “top trading cycle” qui permet d’obtenir, par le biais d’échanges
successifs choisis entre agents, une allocation qui est entre autres Pareto-efficace. Dans
ce processus, il est implicitement supposé que tout agent est à même d’échanger avec
n’importe quel autre. Or, pour des raisons variées allant de problèmes de communication
à des problèmes d’affinités en passant par des contraintes géographiques, tout échange
n’est pas susceptible de survenir.

On se propose dans ce chapitre de représenter par un réseau social les échanges
possibles entre agents. Ainsi, on considère qu’un échange n’est possible que s’il intervient
entre deux voisins dans le réseau social, modélisé par un graphe non-orienté. On suppose
également que tout échange est rationnel, dans le sens où les deux agents impliqués dans
l’échange préfèrent l’objet actuellement détenu par l’autre agent par rapport à l’objet
qu’ils possèdent. Dans cette perspective, les agents sont vus comme “myopes” car ils
souhaitent obtenir directement un objet intéressant sans accepter de passer par un objet
moins apprécié afin d’obtenir un meilleur objet dans une stratégie à long terme.

Afin d’illustrer un tel problème d’échanges, on peut penser à des plateformes
d’échanges en ligne où chaque participant renseignerait l’objet qu’il possède actuelle-
ment et souhaiterait échanger, et exprimerait des préférences sur les objets qu’il désirerait
obtenir. Dans ce cadre, le réseau social pourrait naturellement modéliser des contraintes
géographiques car on peut raisonnablement croire que les agents ne seraient pas enclins
à parcourir une distance importante pour l’échange. De plus, la rationalité des échanges
fait également sens dans ce contexte puisque les agents ne sont pas garantis que d’autres
ne quittent la plateforme entre-temps, pouvant ainsi mettre à mal certaines stratégies à
long terme, et donc il peut sembler moins risqué de ne faire que des échanges directement
améliorants.

Ce chapitre est dédié à l’étude de la dynamique d’échanges, dans une perspective dis-
tribuée, dans laquelle les agents, partant d’une allocation initiale, effectuent des échanges
rationnels entre voisins dans le réseau social, jusqu’à l’obtention d’une allocation sta-
ble où aucun échange de ce type n’est plus possible. Dans ce cadre, les allocations
atteignables par une séquence d’échanges sont particulièrement intéressantes puisque ce
sont les seules allocations susceptibles de se produire.

Trois problèmes sont étudiés afin d’analyser la dynamique d’échanges : Reachable
Object (RO), sur la possibilité pour un certain agent d’obtenir un objet particulier par
le biais d’une séquence d’échanges, Reachable Assignment (RA), posant la question
de l’atteignabilité d’une allocation donnée, et enfin Guaranteed Level of Satisfac-
tion (GLS), posant la question de la garantie pour un certain agent d’obtenir toujours
un objet parmi ses k premiers préférés dans toute allocation atteignable stable. La com-
plexité des ces trois problèmes est examinée, soit en complexité classique avec des preuves
de difficulté ou des algorithmes efficaces pour des cas particuliers des problèmes, soit en
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Pas de contraintes
Contraintes de budget (paramètre k)

max sum makespan

RO

Graphe général NP-c NP-c pour k ≥ 2 W[1]-c W[1]-c

Arbre NP-c W[SAT]-difficile W[1]-c W[1]-c

Degré borné NP-c NP-c pour k ≥ 2 FPT FPT

RA

Graphe général NP-c NP-c pour k ≥ 3 FPT W[1]-difficile

Arbre P P P P

Degré borné NP-c NP-c pour k ≥ 3 FPT ?

GLS

Graphe général co-NP-c co-NP-c pour k ≥ 3
co-W[1]-difficile co-W[1]-difficile

/ co-A[2] / co-A[2]

Arbre co-NP-c co-W[SAT]-difficile co-W[1]-difficile / co-A[2] co-W[1]-difficile / co-A[2]

Degré borné co-NP-c co-NP-c pour k ≥ 3 co-A[2] co-A[2]

Tableau 4: Résultats globaux de complexité classique et paramétrée des problèmes RO,
RA and GLS

complexité paramétrée en considérant des paramètres naturels vis-à-vis de la séquence
d’échanges choisie. L’idée est qu’il parâıt raisonnable de supposer que les agents ne sont
pas prêts à effectuer un grand nombre d’échanges avant d’obtenir l’objet qu’ils désirent.
Plus précisément, trois paramètres sont pris en compte : le paramètre max renvoyant
au nombre d’échanges maximum fait par un agent dans la séquence, le paramètre sum
concernant le nombre d’échanges total dans la séquence d’échanges, et enfin le paramètre
makespan qui est la longueur de la séquence en considérant que tous les échanges qui
peuvent être effectués en parallèle, car n’impliquant pas les mêmes agents, le sont effec-
tivement.

On prouve que les problèmes RO, RA et GLS sont difficiles d’un point de vue compu-
tationnel dans le cas général et ce pour RO et GLS, même lorsque le réseau social est un
arbre assez simple. En revanche, RA s’avère être résoluble en temps polynomial lorsque
le réseau social est un arbre. Pour ce qui est de l’approche paramétrée, le paramètre max
ne permet pas de contourner la difficulté computationnelle intrinsèque des problèmes RO
et GLS puisqu’ils demeurent difficiles en fonction de ce paramètre, même dans un ar-
bre. Néanmoins, les paramètres s’appuyant sur la taille de la séquence d’échanges, en
l’occurrence sum et makespan, permettent de limiter cette difficulté computationnelle.
Bien qu’ils ne permettent pas de rendre plus facile la résolution des problèmes dans
le cas général, ils permettent de circonscrire leur difficulté à des classes de complexité
paramétrée qui ne sont pas si élevées dans la hiérarchie. Ceci implique notamment la
possibilité de résoudre ces problèmes efficacement lorsque le paramètre est une constante,
hypothèse qui parâıt assez naturelle si les agents ne sont pas prêts à attendre un long
laps de temps avant d’obtenir l’objet qu’ils désirent. De plus, ces paramètres permettent
de rendre RO résoluble efficacement du point de vue de la complexité paramétrée (FPT)
quand le graphe est de degré borné, ce qui peut sembler une hypothèse naturelle si le
réseau est supposé représenter les relations proches de chaque agent. En ce qui concerne
GLS, ce problème s’avère être très proche du problème complémentaire de RO et donc
les résultats de complexité de RO s’appliquent pour GLS vis-à-vis des classes de com-
plexité complémentaires. Pour une vue globale des résultats de complexité sur RO, RA
et GLS, se référer au Tableau 4.
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Enfin, un dernier problème est étudié, évoquant un processus centralisé dans l’idée de
l’algorithme TTC. Le but est de guider les échanges entre les agents afin d’atteindre une
allocation Pareto-efficace au sein des allocations atteignables. Il s’agit d’un problème
d’optimisation et non de décision car, autant une allocation Pareto-efficace n’est pas
garantie d’exister, autant une allocation atteignable qui est Pareto-efficace au sein de
l’ensemble des allocations atteignables existe forcément. Il est clair qu’une telle allocation
est forcément stable puisque l’on se restreint à des échanges rationnels. On prouve que le
problème consistant à trouver une telle allocation atteignable est computationnellement
difficile mais notamment, le cas où le graphe est un chemin ou une étoile sont résolubles
en temps polynomial. Le cas un peu plus général de l’arbre reste ouvert.

En règle générale, les problèmes abordés s’avèrent difficiles à résoudre, même pour
des structures de graphe assez simples. Des cas polynomiaux peuvent néanmoins être
identifiés dans des réseaux exhibant des structures très particulières comme des chemins,
des étoiles, des graphes à degré borné ou encore, pour certains problèmes (RA), des ar-
bres. De plus, du point de vue de la complexité paramétrée, certains paramètres portant
sur la taille de la séquence d’échanges permettent de limiter la difficulté computationnelle
des problèmes.

Partie II : Le réseau social comme outil d’information

On étudie dans cette partie comment le réseau social peut déterminer l’information qui
est disponible pour les agents. Ainsi, le réseau social traduit plutôt une relation de
visibilité entre les agents. Cette relation n’a pas de raison d’être symétrique par défaut
et donc, le graphe est supposé être simplement un graphe orienté.

Chapitre 4 : Absence d’envie locale en allocation de maisons

Ce chapitre s’intéresse à une mesure d’envie locale déterminée par un graphe, dans des
problèmes d’allocation de ressources avec biens indivisibles où chaque agent doit recevoir
exactement un objet. Une certaine relation de visibilité entre les agents donnée par le
réseau social restreint les possibilités d’envie à prendre en compte entre les agents. Ce
chapitre étend notre article publié dans la conférence AAMAS-18 [Beynier et al., 2018].

Dans le cadre d’un problème d’allocation de maisons sur lequel on se concentre,
la notion d’envie qui consiste à imposer qu’aucun agent ne préfère l’objet affecté à
un autre agent par rapport au sien, est très exigeante puisqu’elle consiste à donner à
chaque agent son objet préféré. On se propose dans ce chapitre de relâcher cette mesure
d’envie en considérant qu’un agent ne peut envier que ses successeurs dans le réseau
social, représenté par un graphe orienté, et modélisant une relation de visibilité entre les
agents. En effet, pour de nombreuses raisons, tous les agents ne sont pas nécessairement
visibles pour tout agent. Mais la visibilité est cependant importante dans la définition de
l’envie : peut-on vraiment dire que l’on envie le détenteur d’un objet donné, bien que l’on
ne sache pas de qui il s’agit ? D’un autre côté, d’un point de vue centralisé, le graphe
peut également modéliser les seuls liens dont le coordinateur extérieur se soucie, par
exemple le fait de ne pas créer d’envie entre membres d’une même équipe ou d’employés
aux compétences équivalentes.

Ainsi, on s’intéresse en particulier dans ce chapitre aux allocations localement sans
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RÉSUMÉ LONG EN FRANÇAIS

envie, qui sont telles qu’aucun agent ne préfère l’objet qui est affecté à l’un de ses
successeurs dans le graphe à l’objet qui lui est affecté. Plusieurs problèmes sont alors
analysés.

Premièrement, la question de l’existence d’une allocation localement sans envie est
traitée, par le biais du problème de décision Dec-LEF. La complexité de ce problème
est examinée, au travers d’une étude de complexité classique et une approche paramétrée
en fonction de paramètres du graphe, comme sa couverture de sommets minimale ou son
degré. Les résultats de complexité pour ce problème sont présentés dans le Tableau 5
où n renvoie au nombre d’agents et k au paramètre considéré, dans une perspective de
complexité paramétrée. Le problème est prouvé difficile même pour un graphe partic-
ulièrement simple reposant sur un couplage. De plus, le problème reste difficile même
lorsque le graphe est seulement composé de deux cliques disjointes, ou dans des graphes
relativement denses où chaque agent est relié à tous les autres agents sauf deux. En
revanche, dans des graphes très denses où chaque agent est relié à tout autre ou à tout
autre sauf un, le problème de l’existence d’une allocation localement sans envie peut
être résolu en temps polynomial. Par ailleurs, il existe un protocole simple basé sur un
processus de dictature en série (“serial dictatorship”) qui permet de garantir l’existence
et de construire une allocation localement sans envie dans des graphes orientés sans
circuit. En ce qui concerne la taille de la couverture de sommets minimale du graphe,
considérer ce paramètre permet d’obtenir un algorithme polynomial pour Dec-LEF si
ce paramètre est une constante, c’est-à-dire que le problème est dans XP. Seulement,
sous les hypothèses de complexité usuelles, il n’y a pas d’algorithme permettant de cir-
conscrire la difficulté algorithmique du problème à une fonction dépendant uniquement
de ce paramètre puisque l’on prouve que Dec-LEF est W[1]-difficile avec ce paramètre.

degré extérieur δ+ du graphe

δ+ ≤ k (k ≥ 1 fixé) NP-c

δ+ ≥ n− k (k ≥ 3 fixé) NP-c

δ+ ≥ n− 2 P

nombres de clusters c formant le graphe

c = n/k (k ≥ 2 fixé) NP-c

c = k (k ≥ 2 fixé) NP-c

c = 1 ou c = n P

paramètre k sur la taille de la couverture de sommets dans un graphe supposé non-orienté
XP

W[1]-difficile

Tableau 5: Résultats de complexité de Dec-LEF

Dans le cas où une allocation parfaitement sans envie n’existe pas, on peut vouloir
trouver une allocation qui s’en approche le plus possible. La question de l’optimisation
de l’absence d’envie locale est alors abordée, à travers deux mesures différentes pour
l’envie locale : le nombre d’agents localement sans envie et une certaine moyenne d’envie
locale de la société. On prouve que dans le sous-cas du graphe non-orienté, il existe
des algorithmes d’approximation efficaces pour l’optimisation du nombre d’agents non-
envieux, utilisant la notion d’ensemble stable dans un graphe, qui est un sous-ensemble
de sommets n’ayant aucune arête reliant deux de leurs éléments. Pour l’optimisation
d’un certain degré d’envie locale, on exhibe un algorithme d’approximation reposant sur
la dérandomisation.
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Puis, on s’intéresse à un problème où l’autorité extérieure a encore plus de pouvoir,
dans le sens où elle n’affecte pas seulement les objets aux agents, mais affecte également
les agents à des positions dans le graphe, de manière à trouver une allocation localement
sans envie. L’idée est que la structure du graphe est donnée, mais sans affectation des
agents à des places précises. Une interprétation directe pour ce problème serait que le
graphe représenterait les plages horaires d’un emploi du temps conditionnant la visibilité
des agents et sur laquelle un coordinateur externe pourrait avoir une certaine emprise.
Ce problème s’avère difficile d’un point de vue computationnel, mais dans le cas d’un
graphe non-orienté très dense, où tous les agents sont reliés à tous les autres ou tous les
autres sauf un, le problème peut être résolu efficacement.

Enfin, la question de l’atteignabilité d’une allocation localement sans envie est
également étudiée, où le graphe modélise à la fois une possibilité d’échange entre agents
dans le sens du Chapitre 3 et une possibilité d’envie. On se demande alors si les agents,
par le biais d’échanges rationnels successifs entre voisins du graphe, peuvent atteindre
une allocation localement sans envie. Pour ce cas, on suppose également que le graphe
est non-orienté car les échanges ne peuvent se produire que si la relation d’interaction
entre agents est symétrique. Sur la base des preuves de difficulté pour l’atteignabilité du
Chapitre 3, on prouve que ce problème est difficile à résoudre même lorsque le réseau est
un arbre. En revanche, certains cas polynomiaux peuvent être exhibés si l’on restreint
encore plus la structure du graphe. C’est le cas notamment de l’étoile.

Pour finir, des simulations sont effectuées afin d’avoir une idée plus claire du com-
portement de l’envie locale. En se basant sur des graphes générés aléatoirement,
de type Erdös-Rényi avec différentes densités, réguliers avec différents degrés, ou de
type Bárabasi-Albert, on confirme l’intuition selon laquelle la fréquence d’existence
d’allocations localement sans envie est plus importante lorsque le graphe est peu dense.
De plus, on remarque que lorsque le graphe est généré avec homophilie, il y a très peu et
très peu souvent d’allocation localement sans envie car des voisins dans le réseau ont ten-
dance à préférer les mêmes objets. En revanche, lorsque c’est le graphe complémentaire
qui est généré avec homophilie, on trouve de nombreuses et fréquentes allocations lo-
calement sans envie.

Ainsi, même si les problèmes étudiés s’avèrent difficiles d’un point de vue computa-
tionnel, certains cas naturels peuvent être résolus efficacement comme par exemple le
cas où le graphe complémentaire, que l’on peut qualifier de graphe de non-envie, est un
couplage, qui peut représenter une situation où la seule personne qu’un agent ne peut pas
envier est son partenaire. De plus, dans des configurations où les agents n’envient pas les
personnes qui leur sont proches bien que celles-ci aient des préférences similaires (suiv-
ant la tendance à s’affilier à ses semblables), de nombreuses allocations sont localement
sans-envie, confirmant alors une intuition assez naturelle.

Chapitre 5 : L’incertitude dans des problèmes de vote itératif

Ce chapitre se penche sur un problème de vote itératif dans lequel la visibilité des
bulletins des autres agents est conditionné par un réseau social, représenté par un graphe
orienté dont les nœuds sont les agents. Ce chapitre est une extension de notre article
publié dans la conférence AAAI-19 [Wilczynski, 2019].

On s’intéresse dans ce chapitre à un moyen simple d’agréger les différentes infor-
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mations disponibles pour un votant dans un processus de vote itératif, afin de gérer
l’incertitude. En s’inspirant des élections politiques, on se concentre sur le vote itératif
comme un moyen de représenter les changements de stratégie dans les intentions de vote
opérés par les votants, de manière parfois successives, dans une période pré-électorale.
Dans ce cadre, pour faire face à l’incertitude concernant l’intention de vote des autres
votants, les agents disposent notamment d’une information globale, donnée par des
sondages d’opinion et diffusés à tout l’électorat, et d’une information locale, constituée
des intentions de vote des membres de leur entourage. Pour représenter cette dernière
information, on suppose que les agents connaissent l’intention de vote courante de leurs
successeurs dans le réseau social, modélisé par un graphe orienté. Cette modélisation
nous permet de généraliser le cadre classique du vote itératif [Meir et al., 2010] où l’on
relâche la forte hypothèse d’information complète vis-à-vis de l’état courant. Intégrer
l’incertitude au sein d’un processus de vote itératif apparâıt pertinent afin de rendre le
modèle plus réaliste, mais contrairement à la plupart des travaux dans cette ligne de
recherche, on se concentre sur des sources d’information réalistes, à savoir les sondages
d’opinion et les réseaux sociaux, et l’on suppose que les agents adoptent une manière
simple pour agréger ces sources d’information. En effet, on suppose que les agents ne
suivent pas forcément un comportement averse au risque car, étant donné la grande
quantité d’incertitude en raison du nombre important de votants, si c’était le cas, il n’y
aurait pas de manipulation dans les élections politiques, alors qu’il y a effectivement de
la manipulation de la part des électeurs. De plus, il apparâıt que les électeurs ne pensent
pas en matière de probabilités, ce qui constituerait un effort cognitif trop important.

Dans ce modèle, on se concentre par souci de simplicité sur des déviations unilatérales
et bien que certains résultats soient généralisés à plusieurs règles de vote, l’accent est
mis sur l’étude de la règle de vote Pluralité.

Plus précisément, on considère un modèle où les votants possèdent des croyances
vis-à-vis de l’intention de vote courante des autres votants. Initialement, un sondage
d’opinion, qui est de notoriété publique, leur donne un aperçu de la distribution des votes,
en donnant le score des candidats du profil de vote initial, qui est supposé véridique, c’est-
à-dire reflétant les véritables préférences des électeurs. Les votants basent leur croyance
initiale sur ce sondage car ils ont confiance dans les résultats donnés par le sondage. De
plus, ils sont capables d’observer les changements stratégiques dans l’intention de vote de
leurs successeurs dans le réseau social, c’est-à-dire que s’il existe un arc entre deux agents
dans le graphe modélisant le réseau social, le premier agent (origine de l’arc) connâıt
l’intention de vote courante du second agent (destination de l’arc). Ainsi, les votants
peuvent mettre à jour leur croyance de l’état actuel en supposant, de manière simple et
myope, que pour tous les électeurs qui n’appartiennent pas à leurs connexions dans le
réseau social, l’intention de vote n’a pas changé depuis le premier sondage d’opinion.

Dans ce cadre, on suppose que les agents effectuent des déviations suivant un
principe de meilleure réponse assez simple : ils choisissent de voter, sous Pluralité,
pour le candidat qu’ils préfèrent parmi ceux qu’ils considèrent susceptibles de gagner.
La détermination des candidats susceptibles de gagner à un moment donné est modélisée
grâce à des seuils de pivot propres à chaque votant, c’est-à-dire que si la différence en-
tre le score d’un candidat et le score de l’actuel gagnant dans les croyances de l’agent
est inférieure à ce seuil, alors ce candidat est considéré comme un gagnant potentiel et
l’agent pourrait envisager de voter pour lui. On peut noter que ce modèle se ramène au
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cadre classique du vote itératif dans le cas où les réseau social est un graphe complet et
tous les agents ont un seuil égal à un.

A partir de ce comportement stratégique de meilleure réponse de la part des votants
et de leurs croyances par rapport à l’état actuel, déterminées par le réseau social et
le sondage d’opinion, on se concentre sur deux types de dynamiques de déviations :
une dynamique locale dans laquelle un seul sondage d’opinion initial donne lieu à des
déviations stratégiques de la part des votants jusqu’à atteindre un état d’équilibre ou
un cycle, et une dynamique globale caractérisée par plusieurs sondages d’opinion dans
laquelle on considère plusieurs dynamiques locales dans le sens où si le processus de vote
itératif atteint un équilibre local, les résultats de cet équilibre sont communiqués à travers
un nouveau sondage public à l’ensemble des votants et une nouvelle dynamique locale
recommence jusqu’à atteindre un cycle ou un équilibre dit global. On peut remarquer
qu’un équilibre global est alors un équilibre de Nash puisqu’il y a information complète
des scores des candidats à cet état.

Dans ce chapitre, ces deux dynamiques sont étudiées, vis-à-vis de leurs propriétés
de convergence et de la qualité de leurs équilibres. On montre que si le réseau social
est un graphe sans circuit, alors la dynamique locale est garantie de converger vers
un équilibre, quels que soient la règle de vote choisie et les seuils de pivot considérés.
D’un autre côté, si le réseau social est un graphe dont la relation binaire représentée
est transitive, alors la dynamique locale converge lorsque les seuils de pivot sont ho-
mogènes au sein de l’électorat et si la stratégie de réponse considérée est garantie de
converger lorsque le graphe est complet, c’est-à-dire si la convergence est assurée en cas
d’information complète des scores des candidats. Pour un graphe général, on prouve que
déterminer si une instance peut comporter un cycle dans sa dynamique locale est diffi-
cile computationnellement parlant. En ce qui concerne la convergence de la dynamique
globale, on montre que même pour des graphes très simples, comme le graphe vide ne
comportant aucun arc, la dynamique peut cycler. De plus, tout comme la dynamique
locale, reconnâıtre les instances où la dynamique globale peut cycler dans un cas de
graphe général est difficile.

Des simulations sont également effectuées afin d’avoir une idée de la convergence
en pratique des dynamiques et de la qualité de leurs équilibres respectifs. On génère
en particulier des graphes aléatoires de type Erdös-Rényi avec différentes densités, des
graphes de type Bárabasi-Albert et des graphes avec homophilie. On remarque que
malgré la possibilité d’obtenir des cycles pour des graphes généraux, la fréquence de
convergence en pratique s’avère assez élevée, en particulier pour des graphes très denses
ou très épars. Concernant la qualité des équilibres, plusieurs mesures de qualité ont
été examinées, et notamment l’efficacité de Condorcet, les scores de Borda et la mesure
de qualité élaborée au Chapitre 2 concernant la fréquence d’élection d’un candidat élu
dans un équilibre fort sous la règle Véto. Pour toutes ces mesures de qualité, les deux
observations principales sont que les équilibres globaux ont une nette tendance à être
meilleurs que les équilibres locaux, et que les équilibres pour les deux dynamiques tendent
à être légèrement meilleurs lorsque le graphe se densifie. Ces constats confirment donc
l’intuition que la quantité d’information possédée par les votants joue un rôle important
dans le processus de vote itératif, permettant ainsi d’aboutir à des équilibres satisfaisant
mieux le bien-être social lorsque les votants sont mieux informés.

La question d’être bien informé et le fait que les votants ont confiance dans les
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résultats des sondages, puisqu’ils se basent dans notre modèle sur les résultats commu-
niqués, amènent à la question de la manipulation par l’institut de sondage. En effet, que
se passerait-il si l’institut de sondage avait lui-même des préférences sur les candidats
et souhaiterait voir certains candidats élus plutôt que d’autres ? L’institut de sondage
a-t-il intérêt à mentir en communiquant de faux résultats de sondage ?

On se penche donc sur l’étude de deux problèmes concernant la possibilité de contrôle
de l’élection par l’institut de sondage. Le premier est un problème de décision consis-
tant à déterminer s’il est possible de communiquer des scores de candidats de la part de
l’institut de sondage de manière à faire élire un candidat donné. Bien entendu, afin de
satisfaire des conditions minimales de vraisemblance, les résultats communiqués doivent
être cohérents avec l’information détenue par les votants. On prouve que ce problème
est difficile d’un point de vue computationnel même pour un graphe sans circuit et des
seuils de pivot homogènes égaux à un. Cependant, au-delà de la difficulté computa-
tionnelle au pire cas, qui n’empêche pas forcément la manipulation de se produire, on
adopte également une approche heuristique pour la résolution de ce problème. Pour
cela, on établit une heuristique relativement simple basée sur l’idée d’annoncer, autant
que possible, seulement deux candidats comme gagnants potentiels : l’un est le candidat
cible que l’on souhaite voir élu et l’autre, annoncé vainqueur, est un candidat largement
détesté au sein de l’électorat. On espère ainsi qu’une large part de l’électorat va voter
en faveur du candidat cible car il est présenté comme la seule alternative pour éviter
l’élection du candidat largement détesté. Cette heuristique, bien que très simple, s’avère
efficace en pratique d’après nos simulations, en particulier sur des graphes qui ne sont
pas très denses.

Au lieu de vouloir l’élection d’un candidat précis, un autre problème est regardé,
dans une perspective d’optimisation. Celui-ci consiste à faire l’hypothèse que l’institut
de sondage a, tout comme les votants, des préférences ordinales strictes sur les candidats
et qu’il souhaite manipuler les résultats du sondage afin de faire élire dans l’équilibre
correspondant le meilleur candidat possible en fonction de ses préférences. Il s’ensuit
que ce problème est difficile, autrement le premier problème serait facile à résoudre.
On propose également une heuristique reposant sur une idée proche de la première
heuristique et on analyse ses performances. Tout comme la première heuristique, cette
dernière est très efficace en pratique, en particulier sur les graphes épars. L’avantage de
cette heuristique est qu’elle ne demande pas nécessairement de connâıtre l’intégralité du
réseau social.

Ainsi, bien qu’il existe des cas où la manipulation par l’institut de sondage semble
être difficile d’un point de vue computationnel, il apparâıt que de simples heuristiques
peuvent s’avérer efficaces pour calculer une telle manipulation. Néanmoins, lorsque les
agents sont très bien informés, ces heuristiques deviennent incapables de guider les agents
vers une issue désirée par l’institut de sondage.

Conclusion

Dans la thèse, on a considéré deux problèmes de choix social particuliers, le vote
stratégique et l’allocation de biens indivisibles, et on a tenté par le biais d’un réseau
social de relâcher l’hypothèse classique d’interaction possible au sein de tout groupe
d’agents. On s’est penché spécifiquement sur deux types d’interaction : la collabora-
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tion et la prise d’information. Dans le premier cas, le réseau social est modélisé par un
graphe non-orienté car la relation d’accessibilité entre agents n’a de sens que si elle est
symétrique, alors que dans le second cas le réseau social est un graphe orienté traduisant
une relation de visibilité entre agents. On montre à travers nos différents travaux que la
structure du réseau social a un impact important sur les issues des procédures de choix
social considérées mais également sur la complexité des problèmes abordés. De manière
générale, l’introduction d’un réseau social permet une analyse plus fine des problèmes
de choix social en ajoutant du réalisme à leur modélisation, tout en rendant parfois plus
difficile la résolution de ces problèmes, en fonction de la structure du graphe.

De nombreuses extensions sont possibles pour ce travail. Premièrement, l’analyse
de chaque problématique de choix social abordée peut être en elle-même étendue. Par
exemple, concernant le vote itératif, on a généralisé la notion de déviation stratégique soit
en considérant des déviations coalitionnelles plutôt que des déviations unilatérales ou des
déviations avec incertitude plutôt qu’avec information complète. Une extension directe
serait donc de combiner les deux généralisations. En ce qui concerne les problèmes
d’allocation de ressources, on pourrait considérer des allocations non restreintes à un
seul bien par agent mais aussi, par exemple, se pencher sur des biens qui soient plutôt
du domaine de l’information ou de la connaissance. Le but serait alors d’enrichir sa
connaissance au fur et à mesure des interactions, comme dans le problème de “gossip”
bien connu en intelligence artificielle.

En prenant en compte le cadre général des problèmes de choix social abordés, on pour-
rait également penser à d’autres structures que le graphe afin de penser la représentation
de la possibilité d’interaction. On pourrait notamment vouloir modéliser les groupes pou-
vant interagir ensemble de manière plus directe que via des cliques dans un graphe. La
difficulté serait de trouver un compromis entre interprétabilité et compacité de la struc-
ture. Une autre voie serait de considérer que le réseau social puisse être dynamique. En
effet, on a fait l’hypothèse tout le long de la thèse que la structure de réseau social était
fixe mais il pourrait être pertinent de supposer que celle-ci évolue au gré des interactions
entre les agents, surtout que la plupart des processus étudiés sont dynamiques. Par
exemple, deux agents pourraient échanger leurs contacts lors de leur interaction et donc
de nouveaux liens pourraient être créés.
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Résumé

Le choix social repose sur l’étude
de la prise de décision collective, où
un ensemble d’individus doit convenir
d’une solution commune en fonction
des préférences de ses membres.
Le problème revient à déterminer
comment agréger les préférences de
différents agents en une décision ac-
ceptable pour le groupe. Typique-
ment, les agents interagissent dans
des processus de décision collec-
tive, notamment en collaborant ou
en échangeant des informations. Il
est communément supposé que tout
agent est capable d’interagir avec
n’importe quel autre. Or, cette
hypothèse paraı̂t irréaliste pour de
nombreuses situations. On pro-
pose de relâcher cette hypothèse
en considérant que la possibilité
d’interaction est déterminée par un
réseau social, représenté par un
graphe sur les agents.
Dans un tel contexte, on étudie
deux problèmes de choix social :
le vote stratégique et l’allocation de
ressources. L’analyse se concentre
sur deux types d’interaction : la col-
laboration entre les agents, et la col-
lecte d’information. On s’intéresse à
l’impact du réseau social, modélisant
une possibilité de collaboration en-
tre les agents ou une relation de
visibilité, sur la résolution et les
solutions de problèmes de vote et
d’allocation de ressources. Nos
travaux s’inscrivent dans le cadre du
choix social computationnel, en util-
isant pour ces questions des outils
provenant de la théorie des jeux al-
gorithmique et de la théorie de la
complexité.

Mots Clés

Choix social computationnel, réseau
social, vote stratégique, allocation de
ressources, théorie des jeux algorith-
mique, complexité

Abstract

Social choice is the study of collec-
tive decision making, where a set of
agents must make a decision over a
set of alternatives, according to their
preferences. The question relies on
how aggregating the preferences
of the agents in order to end up
with a decision that is commonly
acceptable for the group. Typically,
agents can interact by collaborating,
or exchanging some information. It
is usually assumed in computational
social choice that every agent is
able to interact with any other agent.
However, this assumption looks un-
realistic in many concrete situations.
We propose to relax this assumption
by considering that the possibility
of interaction is given by a social
network, represented by a graph
over the agents.

In this context, we study two particu-
lar problems of computational social
choice: strategic voting and resource
allocation of indivisible goods. The
focus is on two types of interaction:
collaboration and information gather-
ing. We explore how the social net-
work, modeling a possibility of collab-
oration or a visibility relation among
the agents, can impact the resolu-
tion and the solution of voting and
resource allocation problems. These
questions are addressed via compu-
tational social choice by using tools
from algorithmic game theory and
computational complexity.

Keywords

Computational social choice, social
network, strategic voting, resource
allocation, algorithmic game theory,
computational complexity
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