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Abstract vii

Robust finance: a model randomization approach

Abstract

This PhD dissertation presents three research topics. The first two topics are related to the domain of
robust finance and the last is related to a numerical method applied in risk management of insurance
companies.
In the first part, we focus on the problem of super-replication duality for American options in discrete
time financial models. We consider the robust framework with a family of non-dominated probability
measures and the trading strategies are dynamic on the stocks and static on the options. We use two
different ways to obtain the pricing-hedging duality. The first insight is that we can reformulate American
options as European options on an enlarged space, and this can be seen as a weak formulation of the
original problem. The second insight is that by considering a fictitious extensions of the market on which
all the assets are traded dynamically, we can also re-obtain the duality. We then show that the general
results apply in two important examples of the robust framework: the setup of [1] and the martingale
optimal transport setup.
In the second part, we consider the problem of super-replication and utility maximization with propor-
tional transaction cost in discrete time financial market with model uncertainty. Our key technique is
to convert the original problem to a frictionless problem on an enlarged space by using a randomiza-
tion technique together with the minimax theorem. For the super-replication problem, we obtain the
duality results well-known in the classical dominated context. For the utility maximization problem,
by suggesting a different dynamic programming argument than [2], we are able to prove the existence
of the optimal strategy and the convex duality theorem in our context with transaction costs. In the
frictionless framework, this alternative dynamic programming argument also allows us to generalize the
main results in [2] to a weaker market condition.
In the third part, we present a numerical method based on a sparse grid approximation to compute the
loss distribution of the balance sheet of an insurance company. The dynamic of the stock and the interest
rate follow respectively the Black-Scholes model and Hull-White model, and the risk management model
describing the evolution of the parameters is Gaussian. We compare the new numerical method with
the traditional nested simulation approach and review the convergence of both methods to estimate the
risk indicators under consideration. Finally, we provide numerical results showing that the sparse grid
approach is extremely competitive for models with moderate dimension.

Keywords: model uncertainty, super-replication, utility maximization, transaction cost, randomization,
american option.

Centre De Recherche en Mathématiques de la Décision, Université Paris-Dauphine
Place du Maréchal De Lattre De Tassigny – 75016 Paris – France



viii Abstract

Résumé

Dans cette thèse, on considère trois sujets. Les deux premiers sujets sont liées avec la domaine de
robuste finance et le dernier est une méthode numérique appliqué sur la gestion du risque des entreprises
d’assurance.
Dans la première partie, on considère le problème de la sur-réplication des options américaines au temps
discret. On considère une famille non-dominée des mesures de probabilité et les stratégies de trading sont
dynamiques pour les sous-jacents et statiques pour les options. Pour obtenir la dualité de valorisation-
couverture, on a deux méthodes. La première méthode est de reformuler les options américaines comme
options européens dans un espace élargi. Cette méthode est liée avec la formulation faible du problème
original. La deuxième méthode est de considérer un marché fictif dans lequel les stratégies pour tous
les actifs sont dynamiques. Ensuite on applique le résultat général à deux exemples importants dans le
contexte robust : le contexte de [1] et le contexte de transport optimal martingale.
Dans la deuxième partie, on considère le problème de sur-réplication and maximisation d’utilité au
temps discret avec coût de transaction sous l’incertitude du modèle. L’idée principale est de convertir
le problème original à un problème sans friction dans un espace élargi en utilisant un argument de
randomisation et le théorème de minimax. Pour le problème de sur-réplication, on obtient la dualité
comme dans le cas classique. Pour le problème de maximisation d’utilité, en utilisant un argument de la
programmation dynamique différent à [2], on peut preuver à la fois l’existence de la stratégie optimale et
le théorème de la dualité convexe. Dans le contexte sans friction, notre argument est une généralisation
du [2] avec une condition de non-arbitrage plus faible.
Dans le troisième partie, on présente une méthode numérique basé sur l’approximation du sparse grid
pour calculer la distribution de la perte du bilan d’un entreprise d’assurance. La dynamique du stock
et le taux d’intérêt suivent le modèle de Black-Scholes et le modèle de Hull-White respectivement. On
compare la nouvelle méthode numérique avec l’approche classique de la simulation et étudie la vitesse
de la convergence des deux méthodes pour estimer l’indicateur du risque. On donne alors un exemple
numérique pour montrer la bénéfice de l’approche de sparse grid.

Mots clés : incertitude du modèle, sur-réplication, maximisation d’utilité, coût de transaction, rando-
misation, option américaine.
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2 CHAPTER 1. Introduction



1.1. AN OVERVIEW ON ROBUST FINANCE 3

1.1 An Overview on robust finance

In the classical theory of financial mathematics, the financial market is modeled with a fixed
probability space (Ω,F ,P). The underlying assets is modeled by a stochastic process, denoted
by (St)t2T. We are in the discret time model if T = {0, 1, · · · , N} and in the continuous time
model if T = [0, T ].

In discrete time, the First Fundamental Theorem of Asset Pricing(FTAP) asserts that the
no-arbitrage condition is equivalent to the existence of equivalent martingale measure. Here the
equivalent martingale measure means the probability measure on (Ω,F) such that the discounted
value of the risky assets is a martingale. In continuous time, we have the similar theorem that the
no free lunch with vanishing risk(NFLVR) condition is equivalent to the existence of equivalent
local martingale measure.

In complete market, one can perfectly replicate the payoff of the contingent claims ⇠ by cash
and the underlying assets. In this case the value EQ[⇠] provides a no-arbitrage price, where Q

is an equivalent martingale measure. In incomplete market, where the perfect replication does
not exist, we can consider the so-called super-replication price, which is the minimal initial cost
such that there exists a hedging strategy to make the final value of the portfolio stay above
the contingent claim under any possible scenario. If we take the supremum over the sets of
martingale measures, we get the so-called pricing-hedging duality:

sup
Q2M

EQ[⇠] = inf{x : 9H 2 H, s.t.x+ VT (H) > ⇠,P� a.s.},

where M is the set of martingale measures, H is the set of admissible strategies, VT (H) is the
P&L at T w.r.t to trading strategy H.

In recently years, especially after the 2008 financial crisis, more and more attentions are paid
to the risk of model misspecification. The so-called Robust approach, is dedicated to address
the model risk. Instead of a fixed model, here we consider a family of models P, which is a set
of probability measures on (Ω,F). We mention here two extreme cases: first, when P contains
all Dirac measures {�!,! 2 Ω}, it leads to the so-called model free pricing approach. Secondly,
when P = {P}, it is reduced to the classical dominated case.

1.1.1 A brief litterature review of super-replication duality under model
uncertainty

In the continuous time models under volatility uncertainty, the super-replication duality was first
studied by Denis and Martini [3] using the capacity theory and Peng [4] using an approximation
of Markovian control problems. In a series of papers [5, 6, 7], Soner, Touzi and Zhang used
the super-martingale decomposition methods together with the aggregation results to prove the
duality. Their approach was further extended by Nutz and Neufeld [8] which dropped the strong
continuity condition and by Possamai et al.[9] which adapted to the context of Martingale optimal
transport.

In [10], Nutz started to consider the super-replication problem under model uncertainty in
discrete time. He established the existence of the super-replication strategy in dimension d = 1
and a rather abstract duality result by choosing some proper functional space to carry out the
separation argument. In the paper [11], general pricing-hedging duality was shown in a point-
wise setting. They gave a characterization of the subset of trajectories on which the duality gap
disappears. This result was further extended in the paper of [12], to the setting of abstract model
specification and generic finite set of dynamically traded options. In particular, they added the
so-called prediction sets which represent the convictions on the set of models.
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In their seminal paper, Bouchard and Nutz [1] proved the fundamental theorem of asset
pricing in discrete time under a rather general framework. Their approach was motivated by the
seminal work of Dalang-Morton-Willinger [13], and based crucially on the equivalence between
the local and global no-arbitrage. In a first step, they proved the one-period result with finite-
dimensional separation arguments in a local fashion. In a second step, they used the measurable
selection arguments to paste the one-period result together.

More recently, the super-replication duality under model uncertainty have also been extended
to the continuous time framework. In [14], the authors worked under a proper no-arbitrage
condition and proved a version of fundament theorem of asset pricing and gave a representation
of the superhedging price. In [15] and [16], the authors extended the framework of [12] to
continuous time model by introducing the prediction sets.

1.1.2 Super-replication with information of marginals: Martingale op-
timal transport(MOT)

In the work of Breeden and Litzenberger [17], they have observed that one can retrieve the
information of the marginal distribution of the underlyings once the option prices are available
for all strikes K. Indeed, as the price of the call can be written as c(K) =

R
R
(x � K)+µ(dx)

(where c is the price of the vanilla call and µ is the market implied distribution of stock price S,
and we assumed interest rate r = 0), we have µ = c00. Thus when modeling the dynamic of the
stock, we should put more constraints on the distribution of the stock in order to be consistent
with the market information.

In this case, to eliminate the model risk and to stay consistent with the market information, we
should consider the set of martingale measures Q on (Ω,F) satisfying the marginal distribution
constraint XT ⇠Q µ, where µ is obtained from the price of the vanilla options on the market.
We note M(µ) the set of martingale measures satisfying the distribution constraint. Thus the
upper bound of the price of the contingent claims given the market information can be written
as

P (µ) = sup
Q2M(µ)

EQ[⇠].

For a hedging point of view, in the case with vanilla options liquid on the market, we are able
to use the semi-static strategies to implement the super-replication. Here, "semi-static" means
that we have static positions on the options and dynamic positions on the underlyings. By the
Carr-Madan formula:

�(x) = �(xi) + (x� xi)�
0(xi) +

Z xi

�1

(K � x)+�00(K)dK +

Z +1

xi

(x�K)+�00(K)dK,

any European option with payoff �(XT ) could be represented as a basket of vanilla options,
whose cost is given by µ(�) :=

R
R
�(x)µ(dx). Thus the super-replication cost with semi-static

strategy can be represented as following:

D(µ) := inf{µ(�) : 9(�, H) 2 L1 ⇥H, s.t.�(XT ) + (H ·X)T > ⇠T ,P� a.s., 8P 2 P}.

As an extension of both the classical pricing-hedging duality and the classical optimal transport,
we expect to obtain the following result:

P (µ) = D(µ)

which we shall call martingale optimal transport(MOT). We are interested in the following
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questions relating the MOT:

(i) When does the duality hold?

(ii) How to characterize the optimizer of both the primal and dual problem?

(iii) How to calculate numerically the value of the primal and dual problem?

As the main subject of this thesis is on super-replication, we shall only focus on the first
question here. We should also mention that before the MOT approach, the problem of super-
replication with marginal information was initially studied by the approach of optimal Skorokhod
embedding problem(oSEP). A basic SEP is: given a centered probability measure µ with finite
first moment and a Brownian motion W , one aims to find a stopping time ⌧ such that W⌧ ⇠ µ and
(W⌧^t)t>0 is uniformly integrable. The SEP problem has many explicitly constructive solutions
and each of them optimizes a certain criterion. The optimal SEP unifies the above specific
constructions and aims at finding an optimal solution of SEP w.r.t. some reward function.
When the reward function is time invariant, the equivalence between the MOT and oSEP can
be proved by using the Dubins-Schwarz theorem.

Typically, the duality P (µ) = D(µ) can be proved in two steps, see for example [18]. Firstly,
under the condition that Φ is bounded from above and upper semicontinuous, one can prove that

µ 2 B(RM ) 7! sup
Q2M(µ)

EQ
⇥
Φ
⇤
2 R

is concave and upper semicontinuous, where we equip B(RM ) with a Wasserstein kind topology.
Secondly, using Fenchel–Moreau theorem, it follows that

sup
Q2M(µ)

EQ
⇥
Φ
⇤

= ⇡E
µ,0(Φ) := inf

�2Λ

n
µ(�) + sup

Q2M
EQ
⇥
Φ� �

⇤o
.

The above is called the intermediate duality, where the marginal constraints have been removed.
Now by applying a certain version of super-replication duality, we can finally get the desired
result.

The duality can also be proved using a different approximation arguments, without passing
by the intermediate duality. For more details, see Chapter 3.

1.1.3 Bouchard-Nutz discrete time framework

As it will be cited many times in the following, we first recall briefly the framework of Bouchard
and Nutz [1]. Let Ω0 := {!0} be a singleton and Ω1 be a Polish space. For each t = 1, · · · , T ,
denote by Ωt := Ωt

1 the t-fold Cartesian product of Ω1 and let F0
t := B(Ωt) and Ft its universal

completion. The measurable space (Ω,F) and the associated filtrations are defined by

Ω := ΩT , F := FT , F := (Ft)0tT and F0 := (F0
t )0tT .

Denoting by Pt(!) a non-empty convex set in B(Ω1), which represents the set of all possible
models for the (t+ 1)-th period, given the state ! 2 Ωt at time t = 0, 1 · · · , T � 1. The set P of
probability measures on (Ω,F) can now be introduced as

P :=
�
P := P0 ⌦ P1 ⌦ · · ·⌦ PT�1 : Pt(·) 2 Pt(·) for t  T � 1

 
.
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where Pt : Ωt 7! B(Ω1) is a probability kernel and the probability measure P is defined by
Fubini’s theorem in the sense that

P(A) :=

Z

Ω1

· · ·

Z

Ω1

1A(!1,!2 · · · ,!T )PT�1(!1, · · · ,!T�1; d!T ) · · ·P0(d!1).

To ensure that P is not empty, they gave the following measurability assumption: for each t,

graph(Pt) :=
�
(!,P) : ! 2 Ωt,P 2 Pt(!)

 
✓ Ωt ⇥ P(Ω1) is analytic.

Under this framework, they gave a quasi-sure version of no-arbitrage condition and proved a
corresponding First Fundamental Theorem of Asset Pricing(FTAM). Their proof is in the spirit
of Dalang-Morton-Willinger [13]: first they proved the local version of the result by separation
arguments of finite dimension, then used the measurable selection argument to paste the one-
period result together. One of the crucial feature used in the proof is that the local version of
no-arbitrage is indeed equivalent to the global version. They also considered the trading strategy
with finitely many static options and obtained a non-dominated version of optional decomposition
as a by-product.

In the following, we shall consider several important topics in robust finance. More precisely,
in Section 1.2 we consider the super-replication of American options in discrete time financial
models where some assets are traded dynamically and a family of European options are traded
statically. In Section 1.3, we consider a discrete time financial market with proportional trans-
action cost under model uncertainty, and study a super-replication problem. The key technique
is to convert the initial problem to a frictionless problem set on an enlarged space by using a
randomization technique together with the minimax theorem. In Section 1.4, we study the utility
maximization problem in a similar setting with the previous section.

In Section 1.5, we present a numerical method based on a sparse grid approximation to
compute the loss distribution of the balance sheet of an insurance company.

1.2 Super-replication of American option under model un-
certainty

1.2.1 Duality gap for the naive formulation

By far the most parts of litteratures worked with the European type of the contingent claims
under model uncertainty. In the first part of the thesis, we shall consider the pricing-hedging
duality for the American options in discrete time with semi-static trading strategy under model
uncertainty. In the classical dominated case, if the market is complete and denoting by (Φt)t2T

the payoff of the American option, it is well-known that the price is given by the initial value of
its Snell envelop.

In the non-dominated case, the superhedging cost of the American option Φ should be the
minimal initial cost such that there exists a hedging strategy to dominate the payoff of the
American option whatever the exercising strategy of the counterparty. In [19], we work in a
general discrete time framework: let (Ω,F) be a measurable space and F := (Fk)k=0,1,...,N be
a filtration, where F0 is trivial and N 2 N is the time horizon. We have an adapted process
S = (St)06t6N which represents the discounted stock process and a family of random variables
(g�)�2Λ which represents the static (european) options. In particular, this abstract framework
will cover the following well-studied discrete time framework:

(i) The classical dominated case where P = {P}, i.e. there is no model uncertainty.
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(ii) The Bouchard-Nutz framework with Ω = ΩN
1 . where each Ω1 is a Polish space and the

number of static options is finite.
(iii) The Martingale optimal transport(MOT) framework with infinitely many static options,

with the canonical space Ω = Rd ⇥ · · · ⇥ Rd, and P is the collection of all Borel probability
measures on Ω.

(iv) The framework of [12] with finite static options, where Ω is a Polish space, and P is
the collection of all Borel probability measures on Ω. In particular, the authors worked on some
prediction sets representing the convictions to the set of models.

In [19], we considered the second and third cases. We denote by H the set of all F-predictable
processes, and by h the set of real numbers with finitely many nonzero elements for the well-
posedness of the static strategy. For the simplicity of presentation, we assume here the number
of stocks d = 1, and the associated final payoff is given by

(H � S)N + hg =

NX

k=1

Hk∆Sk +
X

�2Λ

h�g�, (1.2.1)

where ∆Sk = Sk � Sk�1. As stated above, the natural formulation of superhedging problem
should be

⇡A
g (Φ) := inf

n
x :9(1H, ...,NH) 2 HN s.t. jHi =

kHi 81 6 i 6 j 6 k 6 N and h 2 h

satisfying x+ (kH � S)N + hg > Φk 8k = 1, ..., N P-q.s.
o

(1.2.2)

The above definition is consistent with the fact that we are allowed to adjust our strategy in
response to an early exercise.

In spirit of the classical dominated case, a natural guess for the super-replication cost would
be

⇡A
g (Φ)

?
= sup

Q2Mg

sup
⌧2T (F)

EQ[Φ⌧ ], (1.2.3)

where T (F) denotes the set of F-stopping times, and Mg represents the set of martingale measures
which are consistent with the option price. However, this duality may fail. The “numerical"
reason is that the RHS in (1.2.3) may be too small since the set Mg ⇥ T (F) is too small.
This phenomenon was also observed by some other work. In [20], the authors studied under
the framework of Bouchard-Nutz the super-replication problem ⇡A

g (Φ) with finitely many static
options, and establish the duality

⇡A
g (Φ) = inf

h2Re
sup

⌧2T (F)

sup
Q2M0

EQ[Φ⌧ � hg], (1.2.4)

under rather strong regularity conditions (see their Proposition 3.1). Due to the use of the strong
stopping time, they also observed the duality gap between ⇡A

g (Φ) and sup⌧2T (F) supQ2Mg
EQ[Φ⌧ ].

In exchange, in [20] the authors studied the following subhedging problem sup⌧2T (F) infQ2M EQ[Φ⌧ ].
In a subsequent paper [21], they extended the above superhedging duality by introducing random-
ized stopping time and using a minimax theorem. The new duality is somehow more complete,
however, it heritates the same strong regularity condition as [20] plus some strong integrability
conditions.

In [22] and [23], Hobson and Neuberger studied the same superhedging problem in a Marko-
vian setting, where the underlying process S takes value in a discrete lattice X . By considering



8

the class of weak stopping times, they then formulated both the pricing and the hedging problems
as linear programming problems under linear constraints, which can be solved numerically.

In [19], we proposed to remedy (1.2.3) in two ways: the first is to use an enlarged space
formulation to turn the American option into a European option, which is equivalent in spirit to
the weak formulation of Hobson and Neuberger [23]. The second one is to allow the dynamical
trading of the vanilla options such that the set of stopping times T corresponds to a larger
filtration bF.

1.2.2 Reformulation of American options as European options

Due to the presence of the statically traded options, the pricing-hedging duality is broken and
the correct formulation is to introduce an enlarged space which turns the American options
into European options. The enlargement of space is based on construction of random times,
previously used e.g. in [24, 25] to study the existence of random times with a given survival
probability and in [26] to study a general optimal control/stopping problem, and in [18] and [27]
to study the optimal Skorokhod embedding problem.

Let T := {1, ..., N} and introduce the space Ω := Ω ⇥ T with the canonical time T : Ω ! T

given by T (!̄) := ✓, where !̄ := (!, ✓), the filtration F := (Fk)k=0,1,...,N with Fk = Fk ⌦ #k and
#k = �(T ^(k+1)), and the �-field F = F⌦#N . Let Υ be a given class of functions defined on Ω.
In the following, it will correspond to the set of upper-semianalytic functions in the framework
of Bouchard-Nutz and the set of upper-semicontinuous functions in the framework of Martingale
optimal transport. Denote by H the class of F-predictable processes and extend S and g� to Ω

naturally as S(!̄) = S(!) and g�(!̄) = g�(!) for !̄ = (!, ✓) 2 Ω. Denote Υ the class of random
variables ⇠ : Ω ! R such that ⇠(·, k) 2 Υ for all k 2 T and let ⇡E

g (⇠̄) the superreplication cost
of ⇠. The class of American objects Υ on Ω can be identified as European objects ΥN on Ω via
⇠(!̄) = Φ✓(!). Introduce the set of models and the set of martingale measures on the enlarged
space: P = {P 2 P(Ω) : P|Ω 2 P}, M = {Q 2 P(Ω) : Q n P and EQ[∆Sk|Fk�1] = 0 8k 2 T}

and Mg = {Q 2 M : EQ[g�] = 0 8� 2 Λ}.
The proof of the european pricing-hedging duality on the enlarged space relies crucially on the

definition of concatenation on the enlarged space, which will ensure the dynamic programming
property. Then we have the following first main result of [19].

Theorem 1.2.1. For any Φ 2 ΥN = Υ we have

⇡A
g (Φ) = ⇡E

g (Φ) := inf{x : 9 (H,h) 2 H⇥ h s.t. x+ (H � S)N + hg > ⇠ P-q.s.}. (1.2.5)

In both the framework of Bouchard-Nutz and Martingale optimal transport, we have the pricing-
hedging duality

⇡A
g (Φ) = ⇡E

g (Φ) = sup
Q2Mg

EQ[Φ]. (1.2.6)

Remark 1.2.2. The above Mg in (1.2.6) is equivalent to a weak formulation of the RHS of
(1.2.3), similar to the spirit of [23]. Indeed, we define a weak stopping rule ↵ a collection

↵ =
�
Ω

↵, F↵, Q↵,F↵ = (F↵
k )0kN , (S↵

k )0kN , (g�,↵)�2Λ, (Φ↵
k )k2T, ⌧

↵
�

with
�
Ω↵, F↵, Q↵,F↵

�
a filtered probability space, ⌧↵ a T-valued F↵-stopping time, an Rd-valued

(Q↵,F↵)-martingale S↵ and a collection of random variables g�,↵,Φ↵
k , and such that there is a

measurable surjective mapping i↵ : Ω↵ ! Ω with Q = Q↵ � i�1
↵ 2 M and i�1

↵ (Fk) ⇢ F↵
k ,
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i�1
↵ (F) ⇢ F↵ and finally LQ↵(S↵, g↵,Φ↵) = LQ(S, g,Φ). Denote by Ag the collection of all weak

stopping rules ↵ such that EQ↵⇥
g�,↵

⇤
= 0 for each � 2 Λ. We have

sup
↵2Ag

EQ↵⇥
Φ⌧↵

⇤
= sup

Q2Mg

EQ[Φ
⇤
.

Remark 1.2.3. In the case without static options, the strong and weak formulations are indeed
equivalent:

sup
Q2M

EQ[Φ] = sup
Q2M

sup
⌧2T (F)

EQ[Φ⌧ ]. (1.2.7)

Remark 1.2.4. In the case with static options, we have in general

sup
Q2Mg

EQ[Φ] > sup
Q2Mg

sup
⌧2T (F)

EQ[Φ⌧ ],

where the last inequality may be strict. We can indeed identify the subset(s) of Mg which leads
to equality in place of inequality above. Introduce

Mg :=
�
Q 2 B(Ω) : Q n P, EQ[g�] = 0, � 2 Λ, S is an (F,Q)-martingale,

EQ[MT ] = EQ[M0], for all bounded (F,Q)-martingales M
 
, (1.2.8)

the set of measures which make S an F-martingale and T an F-pseudo–stopping time. Then we
have

sup
Q2Mg

EQ[Φ] = sup
Q2Mg

sup
⌧2T (F)

EQ
⇥
Φ⌧ ].

1.2.3 Transforming static options into dynamic options

The duality of (1.2.3) is violated due to the existence of statically traded options. In the previous
section we suggest the introduction of an enlarged space to remedy the duality. In this section,
we shall give another way to make the RHS of (1.2.3) large enough by introducing a fictitious
larger market where both S and all the options (g�)�2Λ are traded dynamically.

Loosely speaking, a dynamic extension (bΩ, bF, bF , bP) of the original market (Ω,F,F ,P, S, g) is
a fictitious market where we can dynamically trade both the stock and the option, and bF � F is
the filtration containing the information of both the price of the option and the stock. For more
precise definition of dynamic extension, see Chapter 3.

On a dynamic extension (bΩ, bF, bF , bP) of (Ω,F,F ,P, S, g) we can define similarly the dynamical
trading strategies bH and the superhedging costs b⇡A(Φ) of an American option bΦ = (bΦk)k6N on
bΩ. We have the following main result:

Theorem 1.2.5. In both the framework of Bouchard-Nutz and martingale optimal transport, for
all Φ 2 ΥN ,

⇡A
g (Φ) = b⇡A(Φ) = sup

bQ2 cM
sup

⌧̂2T (bF)
E

bQ [Φ⌧̂ ] = sup
bQ2 cM

E
bQ [Φ] > sup

Q2Mg

sup
⌧2T (F)

EQ [Φ⌧ ] , (1.2.9)

where Mg is the set of martingale measures on Ω consistent with the market information, cM
and cM are the set of martingale measures on bΩ and the enlarged space of bΩ.
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In the context of martingale optimal transport, the dynamic extension is closely related to the
measure-valued martingale. It has been used by Eldan in [28] to study the Skorokhod embedding
problem and Cox and Kallblad in [29] to study the martingale optimal transport problem for
Asian options. In particular, this point of view allows to obtain the dynamic programming
principle with marginal constraint since the terminal constraint is transformed into the initial
constraint. To illustrate the idea, consider the case with only the final marginal, i.e. the marginal
dates T0 = {N}. The marginal µ is a probability measure on R. Let P1(R) be the set of
probability measures with finite first moment equipped with the 1-Wasserstein distance, which
makes P1(R) a Polish space. Define the following canonical space for the measure-valued process
bΩ := {µ} ⇥ (P1(R))

N and denote bX = ( bXk)06k6N the canonical process on bΩ. Define bF =

( bFk)0kN the universal completion of the canonical filtration and denote by T (bF) the collection
of all bF-stopping times. For f 2 C1, where C1 is the set of all continuous functions on R with
linear growth, we denote the process of its integrals against bX as bXk(f) =

R
R
f(x) bXk(dx) and

bXk(id) =
R
R
x bXk(dx). Define i : bΩ ! Ω by i(b!) = ( bX0(id)(b!), ..., bXN (id)(b!)) which is surjective

and naturally extends processes on Ω to processes on bΩ. In particular the price process extends
via Sk(b!) = Sk(i(b!)) = bXk(id)(b!) and the statically traded options via g�(b!) = g�(i(b!)) =
�(i(b!))� µ(�). Finally, we define a family of random variables Y = (Y �)�2Λ:

Y �
k =

(
bXk(�)� µ(�) 0 6 k 6 N � 1

g� = �( bXN (id))� µ(�) k = N

The definition of measure-valued martingale measure is given as below:

Definition 1.2.6. A probability measure bQ on (bΩ, bF) is called a measure–valued martingale
measure (MVM measure) if the process ( bXk(f))0kN is a (bQ, bF)-martingale for all f 2 C1.

Let us denote by

cMµ = {bQ 2 B(bΩ} : bQ is MVM measure}.

For any Q 2 Mµ we define a mapping jQ : Ω ! bΩ by jQ(!) = (LQ(SN |Fk)(!))k6N . Now we

define a map J : Mµ ! cM by J(Q) = Q � j
�1
Q . It can be proved that (bΩ, bF, bF , Y, i, J) is a

dynamic extension of (Ω,F,F ,P, S, g).
More recently, measured-valued martingales are used to study other related problems in

mathematical finance. In particular, in [30], it has been used to study the martingale optimal
transport problem where the cost functionals are represented by optimal stopping problems. In
[31] and [32], it has been used to study the distribution constrained optimal stopping problem.

1.2.4 American options as hedging strategy

In the more recent papers of Bayraktar and Zhou [33], [34], they extended the study to the case
where we can use liquid American options as static hedging strategies. The crucial assumption
they introduced in their paper is the infinite divisibility of the American options, which says that
one can decompose the unit American options into small pieces and trade each piece seperately.
In their first paper [33], they assumed the prohibition of short-selling and considered only the
subhedging duality, and proved the infinite divisibility indeed gave a correct formulation of sub-
hedging price. While in a second paper [34], they employed our space enlargement technique to
reformulate the shorted American options as European option in the enlarged space, thus solved
the more complete duality allowing short-selling and super-replication. The core of analysis is
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that we should distinguish between two types of American options: the first one is the long
position in the hedging portfolio or the subhedging problem; the second one is the short position
in the hedging portfolio or the superhedging problem. For the first one, we are the holders of
the American option and can employ the optimal stopping strategy, thus our hedging strategy
only need to adapt to F; while for the second one, we should adjust our strategy in response to
the American option holder, thus the hedging strategy should adapt to a large filtration F.

1.3 Super-replication with proportional transaction cost un-
der model uncertainty

In the classical discrete time market with proportional transaction cost, the notion of equivalent
martingale measure is replaced by the consistent price system(CPS), which consists of a couple
(Q, Z) such that Q ⌧ P and Z is a Q-martingale which lies in the bid-ask spread.

The fundamental theorem of asset pricing is proved in different contexts with different notions
of no-arbitrage conditions. Firstly, the usual no-arbitrage condition can only guarantee the
existence of consistent price system when Ω is finite. In [35], the authors proposed a so-called
strict no-arbitrage condition, which is equivalent to the existence of strict consistent price system
when no couple of assets can be exchanged freely. In [36], the author proposed a robust no-
arbitrage condition, which can guarantee the existence of strict consistent price system with less
assumptions.

In the context without model uncertainty, the super-replication duality with proportional
transaction cost is also well studied, see for example [37] and [38]. More general duality arised
in the problem of utility maximization is then studied through the super-replication duality
via its relationship to the shadow price, see [39]. We should also mention that there is work
which lies beyond the scope of proportional transaction costs. In [40], the authors proved the
super-replication duality with transient price impact in a continuous time financial model and
established in particular the optimality of the buy-and-hold strategies. While in [41], the authors
considered the problem of super-replication with fixed transaction costs as a stochastic impulse
control problem with a terminal state constraint.

In the non-dominated case without transaction cost, one of the crucial features in [1] is the
equivalence between the local no-arbitrage and the global no-arbitrage. This property allows
one to apply a finite dimensional separation argument in the local fashion and then pass to the
multi-period case by the measurable selection argument. Thus, the choice of a proper version
of no-arbitrage condition is rather important. In the paper of [42], they proposed a proof using
the strict no-arbitrage condition. However, as the local strict no-arbitrage is not equivalent to
the global strict no-arbitrage in their sense, a rather intricate backward-forward procedure was
needed to obtain the multi-period result.

An extension of the Bouchard-Nutz framework is proposed in [43]. In their paper, they
used the so-called no-arbitrage of the second type(NA2(P)), proposed initially in the paper of
[44]. The main advantage is that NA2(P) enjoys the equivalence between the local and global
no-arbitrage.

The super-replication with transaction cost under model uncertainty was first studied by [45,
46] by first discretizing the space and then pass to the limit. Burzoni [47] gave a complementation
of previous work in which pointwise super-hedging is considered. He considered a multivariate
market, while all transactions should go through the cash account. By constructing a fictitious
price system in which the frictionless superhedging price is the same as in the original market, he
was able to prove the result with the presence of static options. In [48], the authors considered
the problem of super-replication with nonlinear transaction costs.
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1.3.1 The financial market with proportional transaction cost

Given (Ω,F) a measurable space, equipped with two filtrations F0 = (F0
t )t=0,1,··· ,T ⇢ F =

(Ft)t=0,1,··· ,T for some T 2 N and a d-dimensional measurable process (St)06t6T (F0 is generated
by S, while F its universal completion).

Example 1.3.1. To give an intuition of the portfolio process with transaction cost, we consider
first the case d = 2 with a cash account and a stock account. Because of the transaction cost, at
each time t, the stock is bought at a price St and sold at a price St with St < St. We define the
admissible strategy an F-predictable process H = (Ht)06t6T+1 with H0 = HT+1 ⌘ 0 and denote
∆Ht = Ht �Ht�1. Then the P&L of an admissible strategy is given by

VT (H) = �
T+1X

t=1

(St�11∆Ht>0 + St�11∆Ht<0)∆Ht

Given an exotic option ⇠ : Ω ! R and finitely many liquid options ⌘i : Ω ! R with price 0, the
super-replication cost of ⇠ using static strategy on options and dynamic strategy on stocks can be
given by

⇡e := inf{x : 9h 2 Re, H admissible, x+

eX

i=1

hi⌘i + VT (H) > ⇠,P � q.s.}

In a more general framework with d > 2, the transaction cost is modeled using the concept of
solvency cone, see for example [49]. For every t 2 {0, 1, · · · , T}, Kt : Ω ! 2R

d

is a F0
t -measurable

random set in the sense that {! 2 Ω : Kt(!) \O 6= ;} 2 F0
t for every closed (open) set O ⇢ Rd.

For each ! 2 Ω, Kt(!) is a closed convex cone containing Rd
+, and represents the collection

of positions which can be turned into non-negative ones after exchanging between assets. We
denote by K⇤

t ⇢ Rd
+ its (nonnegative) dual cone:

K⇤
t (!) :=

�
y 2 Rd : x · y � 0 for all x 2 Kt(!)

 
, (1.3.10)

Example 1.3.2. If ⇡ij
t is the price of asset j labeled in asset i, then the solvency cone can be

represented as

Kt(!) :=
�
x : 9(aij)ij 2 Rd⇥d

+ , s.t.xi +
X

j 6=i

aji � aij⇡ij
t (!) > 0, i 6 d

 
.

Remark 1.3.3. As in [43], to obtain the result, the solvency cones are supposed to satisfy
several technique conditions, such as efficient frictions and bounded frictions. For more details,
see Chapter 4.

By the concept of solvency cones, we can now give the definition of admissible strategies.

Definition 1.3.4. We say that an F-adapted process ⌘ = (⌘t)0tT is an admissible trading
strategy if

⌘t 2 �Kt P-q.s. for all t  T .

We denote by A the collection of all admissible strategies.

Now the minimal super-hedging cost of the exotic option ⇠ using vanilla options ⇣i together
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with dynamic trading strategy is given by1:

⇡e(⇠) := inf
n
y+

eX

i=1

ci|`i| : y1d +

eX

i=1

`i⇣i +

TX

t=0

⌘t � ⇠ 2 KT , P-q.s., (⌘, `) 2 A⇥Re
o
, (1.3.11)

where 1d is the vector with all components equal to 0 but the last one that is equal to 1.

1.3.2 NA2(P): Equivalence between local no-arbitrage and global no-
arbitrage

The spirit of [1] is to pass from local to global, thus it is important to ensure that the local
no-arbitrage is impossible if the global no-arbitrage holds. However, for the commonly used
weak and strict no-arbitrage, it is not easy to deduce the equivalence between local version and
global version. In the recent work of [43], they proposed to use the no-arbitrage of the second
kind(NA2(P)), which was first introduced in [44]. NA2(P) is defined in the following way:

Definition 1.3.5. We say that NA2(P) holds if for all t  T � 1 and all ⇣ 2 L0(Ft),

⇣ 2 Kt+1 P-q.s. implies ⇣ 2 Kt P-q.s.

The following robust version of the fundamental theorem was proved in [43].

Theorem 1.3.6. The condition NA2(P) is equivalent to : For all t  T � 1, P 2 P and
Y 2 L0

P(Ft, intK
⇤
t ), there exists Q 2 B(Ω) and a F0-adapted process (Zs)s=t,...,T such that

P ⌧ Q and P = Q on Ft, and
(i) Q n P
(ii) Y = Zt Q-a.s.
(iii) Zs 2 intK⇤

s Q-a.s. for s = t, . . . , T

(iv) (Zs)s=t,...,T is a Q-martingale, i.e. EQ[Zs0 |Fs] = Zs for t  s  s0.

A couple (Q, Z) satisfying the conditions (i)� (iv) above for t = 0 is called a strictly con-
sistent price system (SCPS). We denote S the collection of all SCPS, and set S0 :=

�
(Q, Z) 2

S such that Zd ⌘ 1
 
. In the presence of static option, it should be defined compatible with the

bid-ask spreads:

Se :=
�
(Q, Z) 2 S0 : EQ

⇥
⇣i · ZT

⇤
2 [�ci, ci], i = 1, · · · , e

 
.

The advantage of NA2(P) is that it has an equivalence between the absence of local and
global arbitrage, thus the global problem can be proved by first solving the one-period problem
and pasting them together.

1.3.3 Enlarged space and randomization technique

The main idea of the work is to use a randomization argument by introducing an enlarged space.
We shall construct a fictitious price process X with additional randomness, and the original
problem with proportional transaction cost can be transformed into a quasi-sure super-replication
problem without transaction cost in the fictitious market. This randomization/enlargement
technique is in fact in the same spirit of the controlled fictitious market approach of [50, 51].

1Here we use the convention
P

0

i=1
= 0
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The enlarged space Let c > 1 be a constant bounding the transaction cost, we define Λ1 :=
[c�1, c]d�1, Λt := (Λ1)

t+1, and Λ := ΛT . We then introduce the canonical process Θt(✓) := ✓t,
8✓ = (✓t)0tT 2 Λ, as well as the �-fields FΛ

t := �(Θs, s  t), t  T . The enlarged space
can be now defined as Ω := Ω ⇥ Λ, on which we introduce an enlarged �-field F := F ⌦ FΛ

T ,

together with two filtrations F
0
= (F

0

t )0tT , and F = (F t)0tT , where F
0

t := F0
t ⌦ FΛ

t , and
F t := Ft ⌦ FΛ

t for t  T .
Now the randomized fictitious market can be defined via the fictitious stock price X =

(Xt)0tT :

Xt(!̄) := ΠK⇤

t (!)[St(!)✓t], for all !̄ = (!, ✓) 2 Ω, t  T, (1.3.12)

where St(!)✓t := (S1
t (!)✓

1
t , · · · , S

d�1
t (!)✓d�1

t , Sd
t (!)), and ΠK⇤

t (!)[y] stands for the projection of
y 2 Rd on the convex closed set K⇤

t (!).

No-arbitrage condition on the enlarged space On the enlarged space, we first introduce
the set of possible models:

P :=
�
P 2 B(Ω,F) such that P|Ω 2 P

 
.

The set of trading strategies can be also defined naturally on the enlarged space:

H := {All F-predictable processes}.

We can now define the following no-arbitrage condition on the enlarged space:

Definition 1.3.7. We say that NA(P) holds if

(H �X)T � 0, P-q.s. =) (H �X)T = 0, P-q.s.,

for every H 2 H.

By omitting a slight problem at the boundary of the bid-ask spread, the conditions NA2(P)
and NA(P) are equivalent. This allows us to apply the classical results on the enlarged space.
Thus the next step is naturally to reformulate both the primal and the dual problem on the
enlarged space.

Reformulation of the primal and dual on the enlarged space Denote Q0 the collection
of measures Q 2 B(Ω) such that Q n P and X is a (F,Q)-martingale. Then we have the
following reformulation result on the enlarged space for both the primal and the dual problem.

Proposition 1.3.8. (i) For any universally measurable vector ⇠ : Ω ! Rd, one has

sup
(Q,Z)2S0

EQ
⇥
⇠ · ZT

⇤
= sup

Q2Q0

EQ
⇥
⇠ ·XT

⇤
.

(ii) One has

⇡0(⇠) = inf
n
y 2 R : y + (H �X)T � g P-q.s., for some H 2 H

o
.

1.3.4 Main result

The main result of this section is the following super-hedging duality.
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Theorem 1.3.9. Let ⇠ and (⇣i)ie be Borel measurable, and assume that NA2(P) holds true.
Assume either that e = 0, or that e � 1 and for all ` 2 Re and ⌘ 2 A,

eX

i=1

�
`i⇣i � |`i|ci1d

�
+

TX

t=0

⌘t 2 KT P-q.s. =) ` = 0. (1.3.13)

Then Se is nonempty and

⇡e(⇠) = sup
(Q,Z)2Se

EQ
⇥
⇠ · ZT

⇤
. (1.3.14)

Moreover, there exists (⌘̂, ˆ̀) 2 A⇥ Re such that

⇡e(⇠)1d +

eX

i=1

⇣
ˆ̀
i⇣i � |ˆ̀i|ci1d

⌘
+

TX

t=0

⌘̂t � ⇠ 2 KT , P-q.s.

Remark 1.3.10. (i)The proof is done by the combination of the randomisation technique together
with a minimax argument.

(ii)In the case e = 1, we can see clearly see that the condition (1.3.13) is a kind of no-arbitrage
condition. By using the randomization techniques, `1⇣1 � |`1|c11d +

PT
t=0 ⌘t 2 KT P-q.s. can be

shown as equivalent to

`1g1
�
!̄, b✓

�
+
⇣ TX

t=1

Ht∆Xt

⌘
(!̄) � 0, P-q.s. and for both b✓ = ±1,

where Ht :=
Pt�1

s=0 ⌘s and g1(!̄,±1) := ⇣1 ·XT ± c1. For more details, see Chapter 5. The robust
no-arbitrage condition on the enlarged space will lead to

`1g1
�
!̄, b✓

�
+
⇣ TX

t=1

Ht∆Xt

⌘
(!̄) = 0, P-q.s. and for both b✓ = ±1.

As g1(!̄, 1) 6= g1(!,�1) when c1 > 0, one obtains `1 = 0.

1.4 Utility maximization with proportional transaction cost
under model uncertainty

1.4.1 Basic background of utility maximization problem

The problem of utility maximization is widely studied in mathematical finance. In the classical
dominated market model without transaction cost, the problem of utility maximization with ran-
dom endowments was extensively investigated. In particular, when dealing with the incomplete
market models, the duality approach is a powerful tool which enables us to obtain the existence
of the primal optimizer by solving the corresponding dual optimization problem. Typically, the
dual problem is formulated on the set of equivalent (local) martingale measures (EMM), whose
existence is ensured by some appropriate no arbitrage assumptions. For utilities defined on the
positive real line, [52], [53] handled the random payoffs and established the bipolar relationship
by choosing the appropriate closure of the dual set of EMM. For utilities defined on the whole
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real line, [54], [55] and [56] attacked the problem by choosing a subset of EMM with finite general
entropy on the dual side and carefully defining the class of working portfolios on the primal side.

In the dominated case with porportional transaction cost, the EMM is replaced by the Con-
sistent Price Systems(CPS) and the duality of utility maximization is established using the
connection of super-replication duality with the so-called shadow price. For the case of general
càdlàg processes, [39] proved the existence of a dual optimizer as well as a shadow process while
in [57] the authors considered the case of non-semimartingales. For utility maximization prob-
lems with the presence of transaction cost and random endowment, more efforts are needed, see
for example [58].

In the non-dominated case, the problem of utility maximization in discrete time market
without transaction cost was first studied in [59]. Similar to [60] in the dominated case, he was
able to prove the existence of the optimal primal strategy by using the dynamic programming
principle. In [61], the authors considered the presence of friction and a linearity type of no-
arbitrage condition was introduced. [62, 63] worked in a similar context as [59], and it relaxed
the bounded from above condition. More recently, [64] and [65] worked under some different
contexts and directly dealt with the global problem. In [64], model uncertainty was represented
by a collection of stochastic processes instead of a family of probability measures, and the authors
use a Komlos-type argument to prove the existence of the optimal strategy. In [65] the authors
consider a framework without domination or time-consistency, and use a functional version of
Choquet’s capacitability theorem and medial limits to prove the existence results and give a dual
representation of the utility maximization problem.

In [2], Bartl considered the duality representation for the exponential utility preference with-
out transaction cost, under a rather restrictive no-arbitrage condition. The main objective of [66]
is therefore to study the existence of the optimal strategy, the convex duality theorem and the
auxiliary dynamic programming principle for a semi-static utility maximization problem with
transaction costs in a discrete time framework. In the frictionless framework, our alternative dy-
namic programming argument allows us to generalize the main results in [2] to a weaker market
condition.

1.4.2 Robust utility maximization with transaction cost

We stay in the Bouchard-Nutz framework and the notations are the same with the previous
section. To obtain a duality result, we consider the exponential preference with the utility
function U(x) := �exp(��x), with � > 0 a constant related to the risk aversion. For e 2 N[{0},
there are a finite class of F0

T -measurable random vectors ⇣i : Ω ! Rd, i = 1, · · · , e, where
each ⇣i represents the payoff of some option i labeled in units of different risky assets. Let
⇠ : Ω ! Rd represent the payoff of the random endowment, then we can consider the following
utility maximization problem with random endowments and semi-static strategies:

V (⇠, �) := sup
(`,⌘)2Ae

inf
P2P

EP

"
U
⇣⇣
⇠ +

eX

i=1

�
`i⇣i � |`i|ci1d

�
+

TX

t=0

⌘t

⌘d⌘
#
. (1.4.15)

where 1d is the vector with all components equal to 0 but the last one that is equal to 1 and Ae

denotes the collection of all (l, ⌘) 2 Re ⇥A such that ⇠ +
Pe

i=1

�
`i⇣i � |`i|ci1d

�
+
PT

t=0 ⌘t

⌘i
= 0

for i = 1, · · · , d � 1. This means that the last asset plays the role of a numeraire and all the
other assets should be liquidated at final time T . The static options ⇣i has price 0, but induces
a proportional transaction cost with rate ci > 0 in the static strategy.

In order to give the dual representation for the above problem, let us introduce a robust
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version of the relative entropy associated to a probability measure Q as

E(Q,P) := inf
P2P

E(Q,P), where E(Q,P) :=

⇢
EP
⇥
dQ
dP logdQ

dP

⇤
, if Q ⌧ P,

+1, otherwise.
(1.4.16)

Notice that S0 is a subset of the collection of SCPS (Q, Z) defined as in section 1.3, we then
define

S⇤
e :=

n
(Q, Z) 2 S0 : EQ

⇥
(⇠ · ZT )�

⇤
+E(Q,P) < +1 and EQ

⇥
(⇣i · ZT )

⇤
2 [�ci, ci], i = 1,· · ·, e

o
.

Then the main theorem can be stated as below:

Theorem 1.4.1. Let ⇠ and (⇣i)ie: Ω ! Rd be Borel measurable and assume that NA2(P) holds.
Assume either that e = 0, or that e � 1 and for all ` 2 Re and ⌘ 2 A,

eX

i=1

�
`i⇣i � |`i|ci1d

�
+

TX

t=0

⌘t 2 KT P-q.s. =) ` = 0. (1.4.17)

Then, we have

V (⇠, �) = � exp
⇣
� inf

(Q,Z)2S⇤
e

�
EQ
⇥
�⇠ · ZT

⇤
+ E(Q,P)

 ⌘
, (1.4.18)

Moreover, the infimum over (`, ⌘) 2 Ae is attained by an optimal strategy (ˆ̀, ⌘̂).

Remark 1.4.2. Notice that up to taking logarithm on both sides and replacing �⇠ by �⇠, the
equality (5.4.16) is equivalent to

inf
(`,⌘)2Ae

sup
P2P

logEP

2
4exp

0
@
 
⇠ �

eX

i=1

(`i⇣i � |`i|ci1d)�
TX

t=0

⌘t

!d
1
A
3
5

= sup
(Q,Z)2S⇤

e

�
EQ
⇥
⇠ · ZT

⇤
� E(Q,P)

 
.

(1.4.19)

1.4.3 Reformulation and the duality on the enlarged space

The technique used in this section is similarly as section 1.3. In a first step, we shall reformulate
the original problem as a new problem without transaction cost on the fictitious enlarged space.
Then, by proving the duality on the enlarged the space, the problem is solved. The new difficulty
arised here in utility maximisation is that we need to deal with some integrability issues when
doing dynamic programming.

Reformulation of the primal and dual on the enlarged space We introduce the enlarged
space Ω in the same way as the previous section, and then reformulate the utility maximization
problem on the enlarged space, with X the underlying stock and g(!̄) := ⇠(!)·XT (!̄), for all !̄ =
(!, ✓) 2 Ω the contingent claim. Firstly, for a general utility function U , we have the following
reformulation of the primal on the enlarged space.

Proposition 1.4.3. Under certain conditions, we have

V (⇠) = sup
H2H

inf
P2P

EP
h
U
⇣
g + (H �X)T

⌘i
.
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For the dual representation, we will restrict ourselves to the exponential utility function
U(x) := �exp(��x), for some constant � > 0. Moreover, for simplification, we suppose here
the number of static options is equal to zero. The case with the presence of static options can
be considered similarly by the introduction of a further enlarged space. We define

Q
⇤

:=
�
Q 2 Q0 : EQ

⇥
(⇠ ·XT )�

⇤
+ E(Q,P) < 1

 

Thus we have the following reformulation for the dual problem.

Proposition 1.4.4. For any universally measurable random vector ⇠ : Ω ! Rd, one has

sup
(Q,Z)2S⇤

0

�
EQ
⇥
⇠ · ZT

⇤
� E(Q,P)

 
= sup

Q2Q
⇤

�
EQ
⇥
⇠ ·XT ]� E(Q,P)

 
.

Duality on the enlarged space Now it is enough to prove the duality result on the enlarged
space and we have the following proposition.

Proposition 1.4.5. Let g := ⇠ ·XT and NA(P) hold true. Then one has

V := inf
H2H

sup
P2P

logEP
⇥
exp

�
g + (H �X)T

�⇤
= sup

Q2Q
⇤

�
EQ
⇥
g
⇤
� E(Q,P)

 
. (1.4.20)

Moreover, the infimum of the problem V is attained by some optimal trading strategy bH 2 H.

Example 1.4.6. To illustate the potential difficulty in our proof, let us consider the following
one-period example:

Suppose that T = 1 and the dimension of assets d = 2. In this context, we have that Ω = R

and the proportional transaction cost occurs on both dates t = 0 and t = 1. Thus the buying and
selling price at t = 0 and at t = 1 are respectively S0(1+↵), S0(1�↵), S1(1+↵) and S1(1�↵),
with ↵ > 0 a constant representing the transaction cost. Our utility maximisation problem with
transaction cost can be now written as

V0 := inf
H2R

sup
P2P

logEP[exp(g +HS1(1� ↵)1H>0

+HS1(1 + ↵)1H<0 �HS0(1� ↵)1H<0 �HS0(1 + ↵)1H>0)]

By defining the following enlarged space: Ω := R⇥ [1�↵, 1+↵]2, we can introduce the fictitious
process as: X0(✓0) = S0✓0, X1(S1, ✓1) = S1✓1. The filtration on the enlarged space is thus
F0 = �(✓0) and F1 = �(S1) ⌦ �(✓0, ✓1). By reformulating on the enlarged space, we can prove
that both the primal and the dual become utility maximization problem without transaction cost:

sup
(Q,Z)2Q?

(EQ[g]� E(Q,P)) = sup
Q2Q?

(EQ[g]� E(Q,P))

and
V0 = V̄0 := inf

H2R
sup
P2P

logEP
⇥
exp

�
g +H(X1 �X0)

�⇤
.

We can now see the problem: in the primal formulation, H is adapted to F0 instead of F0, thus
one cannot directly apply the duality on the enlarged space,
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Indeed, this problem can be overcome by a simple minimax argument:

V̄0 = inf
H2R

sup
✓02[1�↵,1+↵]

sup
P2P(✓0)

logEP
⇥
exp

�
g +H(X1 �X0)

�⇤

= sup
✓02[1�↵,1+↵]

inf
H2R

sup
P2P(✓0)

logEP
⇥
exp

�
g +H(X1 �X0)

�⇤

= sup
✓02[1�↵,1+↵]

sup
Q2Q?(✓0)

(EQ[g]� E(Q,P)) = sup
Q2Q?

(EQ[g]� E(Q,P)),

where P(✓0) is the subset of P such that Θ0 is fixed to be ✓0. The minimax argument ap-
plied on the second equality of the above equation is valid as [1 � ↵, 1 + ↵] is compact, H 7!
supP2P(✓0)

logEP
⇥
exp

�
g+H(X1�X0)

�⇤
is convex, and ✓0 7! supP2P(✓0)

logEP
⇥
exp

�
g+H(X1�

X0)
�⇤

is linear. By the arguments of dynamic programming, we can further paste the one-period
result together. For more details, see Chapter 5.

1.4.4 Related results

In [66], we considere also the properties related to the utility indifference prices as a by-product
of the utility maximization duality. In particuler, we re-obtain the convergence of the utility
indifference price to the super-replication price when the risk-aversion coefficient tends to infinite
in the non-dominated context with transaction cost.

In the dominated discrete time case, the so-called shadow price is studied by [67]. It is a
fictitious frictionless market which leads to the same optimal strategy and utility as the original
market with proportional transaction costs. It is also interesting to consider a potential extension
of the above work in out non-dominated framework.

1.5 A sparse grid approach to balance sheet risk measure-
ment

1.5.1 Introduction

In this part, we shall present a robust and efficient method to numerically assess risks on the
balance sheet distribution of an insurance company at a given horizon which is in practice chosen
to be one year.

On a filtered probability space (Ω,A,P, (Ft)t�0), the balance sheet of the company is a
stochastic process summarised, at any time t � 0, by the value of the assets of the company
(At)t�0 and the value of the liabilities (Lt)t�0. The quantity of interest is the Profit and Loss
(PnL) associated to the balance sheet, which is given by

Pt = Lt �At , t � 0 .

Our goal is then to compute various risk indicators for the loss distribution of the balance
sheet at one year namely the distribution of P1 under the real-world probability measure P, that
we denote hereafter ⌘.

More precisely, we shall measure the risk associated to ⌘ using a (law invariant) risk measure
defined over the class of square integrable measures % : P2(R) ! R. First, we consider for % the
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so called Value-at-Risk (V@R), which is defined by the left-side quantile:

V@Rp(⌘) = inf {q 2 R | ⌘ ((�1, q]) � p} . (1.5.21)

We will also work with the class of spectral risk measures: a spectral risk measure is defined as

%h(⌘) =

Z 1

0

V@Rp(⌘)h(p)dp , (1.5.22)

where h is a non-decreasing probability density on [0, 1].

1.5.2 Financial Model

Description of the sold product

Let us assume that a company sells put lookback option at time t = 0 with a payoff function G
paid at the maturity T > 0, depending upon a one-dimensional risky asset’s price S. For  � 1
and t 2 {⌧0 = 0, ⌧1, · · · , ⌧ = T}, the payoff G is given by:

G(S⌧0 , . . . , S⌧) =

✓
max
0`

S⌧`

◆
� ST . (1.5.23)

We assume that all pricing and hedging is done with market risk-neutral measure Q.

Market model under the risk-neutral measure

The short rate model Let Θ 2 R3 be a set of parameters representing some market obser-
vations. The short rate evolution is governed by the Hull & White dynamics

rt,Θs = rt,Θt +

Z s

t

a
�
µt,Θ
u � rt,Θu

�
d + b (Bs �Bt) , s 2 [t, T ], (1.5.24)

where B is a Q-Brownian motion, a and b are real constants. The parameter µt,Θ is calibrated
using the market observations Θ, so that the model reproduces the interest rate curve observed
on the market. It is given by

µt,Θ
s = fΘ(t, s) +

1

a

@fΘ(t, s)

@s
+

b2

2a2

⇣
1� e�2a(s�t)

⌘
, s 2 [t, T ]. (1.5.25)

Remark 1.5.1. In this model, let (0,Θ0) be the observation made at time 0. Consider a swap
contract issued in s = 0, with maturity M > 0, rate R > 0, with coupons versed at each time
i 2 {1, . . . ,M}. Then, the price of this contract at time t is given by:

SW t,Θ,M,R =
P t,Θ,1

P 0,Θ0,1
� P t,Θ,M �R

MX

i=1

P t,Θ,i, (1.5.26)

The stock model Given the observations Θ of the interest rate factors and the risky asset’s
price x 2 (0,1), the evolution of the price under the neutral-risk measure Q is given by

St,x,Θ
s = x+

Z s

t

rt,Θu St,x,Θ
u du+

Z s

t

�St,x,Θ
u dW̃u, s 2 [t, T ], (1.5.27)
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where � > 0, W̃ is another Q-Brownian motion, whose quadratic covariation with B is given by

hB, W̃ it := ⇢ t, t 2 [0, T ],

where ⇢ 2 [�1, 1].

Modeling the Balance Sheet

Liability side For any market observation X̄t := (S̄t, Θ̄t), the value Lt =: `(t, S̄t, Θ̄t) of the
liabilities has to be computed, especially at time t = 1 in our application. The company’s
liabilities are reduced to one derivative product sold at t = 0. In our setting, the contingent
claim’s price is simply given by:

`(t, x,Θ) = EQe�
R

T

t
rt,Θs dsG(St,x,Θ), (1.5.28)

where (rt,Θ, St,x,Θ)tsT are the risk neutral dynamics of the short rate and stock price.

Asset side The company wants to replicate the product with payoff G. The hedging portfolio’s
value A is decomposed into two parts:

At = A∆

t +A⇢
t . (1.5.29)

The process A∆ is the value of the portfolio obtained to cancel the variations of the price with
respect to S, while A⇢ is defined to deal with the variations with respect to Θ.

∆-hedging: The value of A∆ at time 1 is

A∆

1 =
n�1X

i=0

∆(ti, S̄ti , Θ̄ti)
�
S̄ti+1

� S̄ti

�
where ∆(t, x,Θ) :=

@L

@x
(t, x,Θ). (1.5.30)

⇢-hedging: The value of A⇢
1 is

A⇢
1 =

n�1X

i=0

3X

j=1

⇢j(ti, S̄ti , Θ̄ti)
⇣
SWti+1,Θ̄ti+1

,Tj ,Rj � SWti,Θ̄ti
,Tj ,Rj

⌘
. (1.5.31)

The global PnL function

From the previous two sections, we conclude that the PnL of the balance sheet at time 1 can be
expressed as,

P1 = p1
�
(t, S̄t, Θ̄t)t2Γ

�

where (S̄, Θ̄) are the market parameters (risk factors) and the PnL function p1 : R� ! R, with
� = 4⇥ (n+ 1), is given by

`(tn, xn,Θn)�
n�1X

i=0

∆(ti, xi,Θi)(xi+1 � xi)�
n�1X

i=0

3X

j=1

⇢j(ti, xi,Θi)
�
SWti+1,Θi+1,Tj ,Rj � SWti,Θi,Tj ,Rj

�
.

(1.5.32)
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1.5.3 Estimating the risk measure

Given a risk measure % and the loss distribution ⌘ of the balance sheet at one year, we estimate
the quantity of interest %(⌘) by simulating a sample of N i.i.d random variables (Ψj)1jN with
law ⌘ and then computing simply %(⌘N ) using the formulae (1.5.21), (1.5.22) with ⌘N instead of
⌘. Here, ⌘N stands for the empirical measure associated to the Ψj i.e.

⌘N =
1

N

NX

j=1

�Ψj
.

The loss distribution ⌘ is obtained through the following expression:

⌘ = p1]⌫

p1 being described in (1.5.32) and ⌫ stands for the distribution of the market parameters. Namely,
⌫ is the law of the random variable

X̄ := (S̄t, Θ̄t)t2Γ (1.5.33)

under the real world probability measure P.
In order to estimate %(⌘) for a chosen risk measure, we need to be able to sample from ⌘

which implies two steps in our setting. First, we need to be able to sample X̄ and then we use
an approximation p�1 of p1:

• pN1 if one chooses the nested simulation approach;

• pS1 if one chooses the sparse grid approach.

Eventually, the estimator of %(µ) is given by

R� := %(p�1 ]⌫
N ) , for � 2 {N ,S} . (1.5.34)

To summarise, the two numerical methods have the following steps.

Nested simulation approach

1. Outer step: Simulate the model parameters (Xj)j=1,...,N .

2. Inner step: Simulate Ψj = pN (Xj) using MC simulations. This requires to compute the
option prices with Monte Carlo estimates, the interest rate derivative prices, and the various
sensitivities of the price.

3. Estimate the risk measure.

Sparse grid approach

1. Fix a (sparse) grid V and compute the approximation pS at each required value on the grid
by an MC simulation. This involves exactly the same computations as 2. above.

2. Simulate the N model parameter samples (Xj) and evaluate Ψj = pS(Xj).

3. Estimate the risk measure.
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2.1 Le domaine de robuste finance

Dans la théorie de mathématique financière, le marché financier est modélisé par un espace de
probabilité (Ω,F ,P). Le sous-jacent est modélisé par un processus stochastique noté par (St)t2T.
Dans le cas discret on a T = {0, 1, · · · , N} et dans le cas continu on a T = [0, T ].

Dans le marché au temps discret, le premier théorème de valorisation d’actif dit que la condi-
tion de non-arbitrage est équivalent à l’existence de mesure de martingale équivalente. Le mesure
de martingale équivalente est défini comme l’ensemble de mesure de probabilité sur (Ω,F) tel
que le valeur actualisé de l’actif risqué est une martingale. Dans le marché au temps continu, on
a la condition de "no free lunch with vanishing risk"(NFLVR) est équivalente à l’existence de
mesure martingale locale équivalente.

Dans le marché complet, on peut répliquer parfaitment le payoff des produits financiers ⇠ par
le cash et le sous-jacent. En plus, le valeur EQ[⇠] donne un prix de non-arbitrage, où Q est une
mesure de martingale équivalente. Dans le marché incomplet, où la réplication parfaite n’existe
pas, on peut considérer le prix de la sur-réplication, qui est le coût initial minimal tel que il existe
une stratégie de la couverture pour rassurer que le valeur final du portefeuille reste au-dessus de
produit financier quelque soit le scénario. Si on prend le suprémum sur l’ensemble des mesures
de martingale, on obtient la dualité de valorisation-couverture suivante :

sup
Q2M

EQ[⇠] = inf{x : 9H 2 H, s.t.x+ VT (H) > ⇠,P� a.s.},

où M est l’ensemble des mesures de martingale, H est l’ensemble des stratégies admissibles et
VT (H) est le profit et perte en T en utilisant la stratégie H.

Plus récemment, notamment après la crise de 2008, on concentre de plus en plus sur le
risque de mal spécification du modèle. L’approche robuste est utilisée pour traiter le risque du
modèle. Au lieu d’un modèle fixé, on considère une famille de modèles P, qui est un ensemble
de mesures de probabilités sur (Ω,F). En particulier, ce contexte contient deux cas spécifiques :
premièrement, si P contient toutes les mesures de Dirac {�!,! 2 Ω}, c’est le cadre de "model-
free". Deuxièmement, si P = {P}, on revient au cas classique dominé.

2.1.1 Littérature sur la sur-réplication avec l’incertitude du modèle

Dans le modèle au temps continu avec l’incertitude de la volatilité, la dualité de sur-réplication est
d’abord étudiée par Denis et Martini [3] utilisant la théorie de capacité et par Peng [4] utilisant
une approximation du problème de contrôl markovien. Dans [5, 6, 7], Soner, Touzi et Zhang ont
utilisé la décomposition de la sur-martingale avec les résultats d’agrégation. Leur approche est
ensuite généralisée par Nutz et Neufeld [8] où l’hypothèse sur la continuité est supprimée et par
Possamá’i et al.[9] dans le contexte de transport optimal martingale.

Pour la dualité de sur-réplication au temps discret avec l’incertitude du modèle, Nutz [10] a
établi l’existence de la stratégie optimale avec la dimension d = 1 et une dualité relativement
abstraite. Dans le papier de [11], la dualité de valorisation-couverture générale est preuvée dans
un contexte dit "model free". En particulier, ils ont donné une charactérisation du sous-ensemble
de trajectoires dans lequel la dualité est vraie. Le résultat est ensuite généralisé dans [12], avec
une spécification de modèle abstrait et ensemble des stratégies plus générales. En particulier,
ils ont ajouté les ensembles de prédiction, qui représentent la conviction des investisseurs sur le
modèle.

Dans leur papier séminal, Bouchard et Nutz [1] ont preuvé le théorème fondamental de valo-
risation d’actif dans un cadre relativement général au temps discret. Leur approche est motivée
par Dalang-Morton-Willinger [13] et basée sur l’équivalence entre le non-arbitrage local et global.
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Dans une première étape, ils ont preuvé le résultat localment avec les arguments de séparation
en dimensions finies. Ensuite ils ont utilisé les arguments de sélection mesurable pour coller les
résultats d’une période ensemble.

Plus récemment, la dualité de sur-réplication sous l’incertitude du modéle est aussi généralisée
au temps continu. Dans [14], sous une certaine condition de non-arbitrage, les auteurs ont preuvé
une version de théorème fondamental de valorisation d’actif et donné une représentation du prix
de la sur-réplication. Dans [15] et [16], les auteurs ont généralisé le cadre de [12] dans un contexte
continu en introduisant les ensembles de prédiction.

2.1.2 La relation avec transport optimal martingale(MOT)

Dans le papier de Breeden et Litzenberger [17], ils ont observé qu’on peut obtenir l’information
sur les marginaux de sous-jacent une fois les prix des options vanilles sont disponibles pour tous
strikes K. En effet, comme le prix de call c(K) =

R
R
(x�K)+µ(dx) (où µ est la distribution du

prix de stock S impliquée par le marché, et on suppose en plus que le taux d’intérêt r = 0), on a
µ = c00. Donc quand on modélise la dynamique du stock, on doit mettre plus de constraints sur
sa distribution pour la consistence avec l’information du marché.

Dans ce cas, pour éliminer le risque du modèle et maintenir la consistence avec l’information
du marché, on doit considérer l’ensemble des mesures martingales Q sur (Ω,F) satisfaisant la
contrainte sur la marginale XT ⇠Q µ, où µ est obtenu par le prix des options vanilles sur
le marché. On note M(µ) l’ensemble des mesures martingales satisfaisant la contrainte sur la
distribution, donc la borne supérieure du prix du produit exotique ⇠ étant donné l’information
du marché est

P (µ) = sup
Q2M(µ)

EQ[⇠].

D’un point de vue de la couverture, s’il existe des options vanilles dans le marché, on peut
utiliser la stragégie semi-statique pour implémenter la sur-réplication. Ici, on dit "semi-statique"
car les positions sont statiques sur les options et dynamiques sur les sous-jacents. Par la formule
Carr-Madan :

�(x) = �(xi) + (x� xi)�
0(xi) +

Z xi

�1

(K � x)+�00(K)dK +

Z +1

xi

(x�K)+�00(K)dK,

toute option européen avec payoff �(XT ) peut être representée comme un basket des options
vanilles, dont prix est donné par µ(�) :=

R
R
�(x)µ(dx). Donc le coût de la sur-réplication avec la

stratégie semi-statique peut être représenté comme :

D(µ) := inf{µ(�) : 9(�, H) 2 L1 ⇥H, s.t.�(XT ) + (H ·X)T > ⇠T ,P� p.s., 8P 2 P}.

Sous les conditions propres, on espère d’obtenir le résultat suivant, qui peut être vue comme
une généralisation de la dualité classique de valorisation-couverture et de la dualité de transport
optimal classique

P (µ) = D(µ)

On appele le problème ci-dessus transport optimal martingale(MOT). Nous sommes intéressés
par les questions suivantes :

(i) Sous quelles conditions les dualités sont vraies ?
(ii) Comment charactériser l’optimisateur du problème primal et dual ?
(iii) Comment calculer numériquement le valeur du problème primal et dual ?
Comme le plupart de cette thèse est sur la sur-réplication, ici on concentre seulement sur la
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première question.

Avant l’approche de MOT, le problème de la sur-réplication avec l’information de la margi-
nale est étudié initialement par l’approche de plongement de skorokhod optimal(oSEP). Le SEP
classique est : étant donné une mesure de probabilité centrée µ avec le moment d’ordre un fini
et un mouvement brownian W , on cherche un temps d’arrêt ⌧ tel que W⌧ ⇠ µ et (W⌧^t)t>0 est
uniformément intégrable. Le SEP a beaucoup de solutions construits explicitement et chacune
entre eux optimise un certain critère. Le SEP optimal unifie les constructions specifiques et vise
à trouver une solution optimale de SEP par rapport à une certaine fonction d’objective. Si la
fonction d’objective est invariante au temps, l’équivalence entre MOT et SEP peut être obtenue
à partir d’un argument classique de changement du temps et le théorème de Dubins-Schwarz.

La dualité P (µ) = D(µ) peut être preuvée dans deux étapes, voir par exemple [18]. D’abord,
sous la condition que Φ est bornée supérieurement et semi-continue supérieurement, on peut
preuver que

µ 2 B(RM ) 7! sup
Q2Mµ

EQ
⇥
Φ
⇤
2 R

est concave et semi-continu supérieurement, où on équippe B(RM ) avec une topologie de type
Wasserstein. Ensuite, en utilisant le théorème Fenchel-Moreau, on a

sup
Q2Mµ

EQ
⇥
Φ
⇤

= ⇡E
µ,0(Φ) := inf

�2Λ

n
µ(�) + sup

Q2M
EQ
⇥
Φ� �

⇤o
.

La dualité ci-dessus est une dualité intermédiaire, dans laquelle les contraintes sur les marginaux
sont déjà supprimées. Maintenant on peut appliquer une certaine version de la dualité de sur-
réplication pour obtenir la dualité complete.

Dans la section 2.2 pour l’option américaine, on va utiliser un différent argument par l’ap-
proximation pour preuver la dualité, sans passant par la dualité intermédiaire.

2.1.3 Le cadre de Bouchard-Nutz [1]

Dans le papier de Bouchard et Nutz [1], les auteurs ont preuvé des résultats importants dans le
cadre de robuste finance. On rappele ici leur contexte et les résultats principals. Soit Ω0 := {!0}
et Ω1 un espace polonais. Pour chaque t = 1, · · · , T , on note par Ωt := Ωt

1 le produit cartésien
t-fois de Ω1 et F0

t := B(Ωt) et Ft sa complété universelle. L’espace mesurable (Ω,F) et les
filtrations associées sont définis par

Ω := ΩT , F := FT , F := (Ft)0tT et F0 := (F0
t )0tT .

On note Pt(!) un ensemble convex non-vide dans B(Ω1), qui représente l’ensemble de tous les
modèles possibles pour la (t+ 1)-ième période, étant donné ! 2 Ωt au temps t = 0, 1 · · · , T � 1.
L’ensemble P des mesures de probabilité sur (Ω,F) est donné par

P :=
�
P := P0 ⌦ P1 ⌦ · · ·⌦ PT�1 : Pt(·) 2 Pt(·) for t  T � 1

 
.

où Pt : Ωt 7! B(Ω1) est un noyau de probabilité tel que la mesure de probabilité P est définie
par le théorème de Fubini dans le sens

P(A) :=

Z

Ω1

· · ·

Z

Ω1

1A(!1,!2 · · · ,!T )PT�1(!1, · · · ,!T�1; d!T ) · · ·P0(d!1).
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Pour garantir que l’ensemble P est non-vide, ils ont fait l’hypothèse de la mesurabilité suivante :
pour chaque t,

graph(Pt) :=
�
(!,P) : ! 2 Ωt,P 2 Pt(!)

 
✓ Ωt ⇥ P(Ω1) est analytique.

Dans ce contexte, ils ont donné une version quasi-sure de non-arbitrage et ont preuvé un théorème
de valorisation d’actif corréspondant. Leur preuve est dans l’esprit de Dalang-Morton-Willinger
[13] : d’abord on preuve une version locale de la dualité par les arguments de séparation en
dimensions finies, ensuite utilise l’argument de sélection mesurable pour coller les résulatats
d’une seule période ensemble. L’équivalence entre la version locale et globale de non-arbitrage
est cruciale dans la preuve. Ils ont aussi considéré des positions statiques sur nombre fini des
options et obtenu une version non-dominée de décomposition optionnelle comme un sous-produit.

Dans les chapitres suivants, on va considérer plusieurs sujets dans le domaine de robuste
finance. Plus précisément, dans la section 2.2 on considère le problème de sur-réplication des
options américaines au temps discret avec la stratégie dynamique pour les sous-jacents et la stra-
tégie statique pour les options. Dans la section 2.3, on considére un problème de sur-réplication
au temps discret avec coût de transaction proportionelle et l’incertitude du modèle. L’idée prin-
cipale est de convertir le problème original à un problème sur un espace élargi sans coût de
transaction en utilisant le technique de randonmisation. Dans la section 2.4, on va étudier le
problème de maximisation d’utilité dans un contexte similaire avec la section précédente.

Dans la section 2.5, on considère un méthode numérique basé sur l’approximation de sparse
grid pour calculer la distribution de la perte du bilan d’une entreprise d’assurance.

2.2 Sur-réplication des options américaines avec l’incerti-
tude du modèle

2.2.1 Formulation forte : une première formulation

La plupart des littératures pour la sur-réplication étudient les options de type européenne. Dans
la première part de cette thèse, on considère la dualité de valorisation-couverture pour les options
de type américaine au temps discret avec la stratégie semi-statique sous l’incertitude du modèle.
Dans le cas classique avec une probabilité dominée, si le marché est complet et on note (Φt)t2T

le payoff de l’option américaine, il est connu que le prix est donné par le valeur initial de sa
enveloppe de Snell.

Dans le cas non-dominé, le prix de sur-réplication d’une option américaine doit être le coût
minimal tel que on peut dominer le payoff pour n’importe quelle stratégie de la contrepartie. Dans
[19], on travaille dans un cadre général au temps discret. Soient (Ω,F) un espace mesurable et
F := (Fk)k=0,1,...,N une filtration où F0 est trivial et N 2 N est l’horizon du temps. Soient
S = (St)06t6N un processus adapté qui représente le prix actualisé de sous-jacent et (g�)�2Λ

une famille de variables aléatoires qui représentent les options statiques. En particulier, le cadre
abstrait ci-dessus peut incluire les cas suivants :

(i) Le cas classique dominé où P = {P}.
(ii) Le contexte de Bouchard-Nutz avec Ω = ΩN

1 , où Ω1 est un espace polonais et le nombre
des options statiques est fini. Pour les détails voir section 2.1.3.

(iii) Le contexte de transport optimal martingale avec nombre infini des options statiques, où
l’espace canonique Ω = Rd ⇥ · · ·⇥ Rd et P est l’ensemble des measures de probabilité boréliens
sur Ω.

(iv)Le contexte de [12], avec nombre fini des options statiques, où Ω est un espace polonais et P
est l’ensemble de tous les measures de probabilité boréliens sur Ω. En particulier, ils ont travaillé
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avec certains ensembles de prédiction pour ajouter leurs convictions sur l’ensemble des modèles.
Dans [19], on considère le deuxième et le troisième cas. On note H l’ensemble de processus F-
prévisible, et h l’ensemble de nombres réels avec nombre fini des éléments non nuls. On considère
ici le cas la dimension d = 1, alors le payoff final associé avec la stratégie (H,h) 2 H ⇥ h est
donée par

(H � S)N + hg =
NX

k=1

Hk∆Sk +
X

�2Λ

h�g�,

où ∆Sk = Sk � Sk�1. Donc le prix de sur-réplication peut-être écrit comme

⇡A
g (Φ) := inf

n
x :9(1H, ...,NH) 2 HN s.t. jHi =

kHi 81 6 i 6 j 6 k 6 N et h 2 h

tel que x+ (kH � S)N + hg > Φk 8k = 1, ..., N P-q.s.
o

(2.2.1)

La définition ci-dessus est consistente avec le fait que on peut adjuster notre stratégie selon la
stratégie de la contrepartie. Dans le cas non-dominé, on peut envisager que une formulation
naturelle est le suivant :

⇡A
g (Φ)

?
= sup

Q2Mg

sup
⌧2T (F)

EQ[Φ⌧ ], (2.2.2)

où T (F) est l’ensemble de F-temps d’arrêt, et Mg représente l’ensemble des mesures de martingale
qui satisfont les contraintes sur le prix des options. Par contre, en général cette dualité n’est pas
correcte. La raison "numérique" est que l’ensemble Mg ⇥ T (F) dans (2.2.2) est trop petit. Il y
a aussi des résultats similaires dans les littératures. Dans [20], ils ont étudié dans le cadre de
Bouchard-Nutz avec nombre fini des options statiques, et établi la dualité suivante

⇡A
g (Φ) = inf

h2Re
sup

⌧2T (F)

sup
Q2M0

EQ[Φ⌧ � hg]

sous les conditions relativement fortes(voir leur proposition 3.1). À cause de l’usage du temps
d’arrêt fort, ils ont aussi observé la différence entre ⇡A

g (Φ) et sup⌧2T (F) supQ2Mg
EQ[Φ⌧ ]. Dans

[20], ils ont aussi étudié le problème de sous-réplication sup⌧2T (F) infQ2M EQ[Φ⌧ ]. Dans un autre
papier [21], ils ont généralisé la dualité de sur-réplication précédente par l’introduction de temps
d’arrêt randomisé et l’usage d’un théorème de minimax. La nouvelle dualité est plus complete,
mais il hérite la même condition de régularité et intégrabilité précédente.

Dans [22] and [23], Hobson et Neuberger ont étudié le même problème de sur-réplication dans
un contexte Markovian, où le processus S prend le valeur dans un grid discret. En considérant
la classe de temps d’arrêt faible, ils ont réformulé le problème de valorisation et couverture
comme un problème de la programmation linéaire sous contraintes linéaires, qui peut être résolu
numériquement.

Dans [19], on propose deux approches différentes pour obtenir une dualité dans (2.2.2). La
première est de réformuler l’option américaine comme une option européenne, qui est équivalente
avec l’esprit de la formulation faible de Hobson et Neuberger [23]. La deuxième est de permettre
l’achat et vente dynamique des options vanilles tel que l’ensemble des temps d’arrêt correspondent
à une filtration plus large bF.

2.2.2 Réformulation des options américaines comme options européennes

À cause de la présence des options statiques, la dualité de valorisation-couverture est violée.
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La formulation correcte est d’introduire un espace élargi qui convertit options américaines aux
options européennes. La technique de l’élargissement d’espace est basée sur la construction des
temps aléatoires, utilisée dans [24, 25] pour étudier l’existence des temps aléatoires avec une
probabilité de survie, et dans [26] pour étudier le problème général de contrôle/arrêt optimal, et
dans [18] et [27] pour étudier le problème de plongement skorokhod optimal.

Soit T := {1, ..., N} et introduisons l’espace Ω := Ω⇥ T avec le temps canonique T : Ω ! T

donné par T (!̄) := ✓, où !̄ := (!, ✓). On introduit aussi la filtration F := (Fk)k=0,1,...,N avec
Fk = Fk ⌦ #k où #k = �(T ^ (k + 1)), et F = F ⌦ #N . Soit Υ une classe de fonctions définies
sur Ω. Il corréspond à l’ensemble des fonctions semi-analytiques supérieurment dans le cadre
de Bouchard-Nutz et l’ensemble des fonctions semi-continue supérieurement dans le cadre de
transport optimal martingale. On note H la classe de processus F-prévisible et étend S et g� à
Ω naturellement par S(!̄) = S(!) et g�(!̄) = g�(!) pour !̄ = (!, ✓) 2 Ω. On note Υ la classe
des variables aléatoires ⇠ : Ω ! R tel que ⇠(·, k) 2 Υ pour tous k 2 T et ⇡E

g (⇠̄) le prix de sur-
réplication de ⇠. La classe des objets américains Υ sur Ω peuvent être identifiées comme objets
européens ΥN sur Ω par ⇠(!̄) = Φ✓(!). On introduit l’ensemble des modèles et l’ensemble des
mesures de martingale sur l’espace élargi : P = {P 2 P(Ω) : P|Ω 2 P}, M = {Q 2 P(Ω) : Q n

P et EQ[∆Sk|Fk�1] = 0 8k 2 T} et Mg = {Q 2 M : EQ[g�] = 0 8� 2 Λ}.

Pour la preuve de la dualité de valorisation-couverture dans l’espace élargi, il faut bien définir
la concatenation pour rassurer la propriété de la programmation dynamique. On a alors le résultat
suivant de [19] :

Theorem 2.2.1. Pour tous Φ 2 ΥN = Υ on a

⇡A
g (Φ) = ⇡E

g (Φ) := inf{x : 9 (H,h) 2 H⇥ h s.t. x+ (H � S)N + hg > ⇠ P-q.s.}. (2.2.3)

Dans le cadre de Bouchard-Nutz et transport optimal martingale, on a la dualité de valorisation-
couverture

⇡A
g (Φ) = ⇡E

g (Φ) = sup
Q2Mg

EQ[Φ]. (2.2.4)

Remark 2.2.2. Mg dans (2.2.4) est équivalent à une formulation faible du RHS de (2.2.2),
similaire avec l’esprit du [23]. En effet, on peut définir une terme d’arrêt faible ↵ comme

↵ =
�
Ω

↵, F↵, Q↵,F↵ = (F↵
k )0kN , (S↵

k )0kN , (g�,↵)�2Λ, (Φ↵
k )k2T, ⌧

↵
�

avec
�
Ω↵, F↵, Q↵,F↵

�
un espace de probabilité filtré, ⌧↵ un F↵-temps d’arrêt à valeur dans

T, une (Q↵,F↵)-martingale S↵ à valeur dans Rd et une famille de variables aléatoires g�,↵,Φ↵
k .

En plus, il existe une application mesurable surjective i↵ : Ω↵ ! Ω avec Q = Q↵ � i�1
↵ 2 M

et i�1
↵ (Fk) ⇢ F↵

k , i�1
↵ (F) ⇢ F↵ et finalement LQ↵(S↵, g↵,Φ↵) = LQ(S, g,Φ). Si on note Ag

l’ensemble des termes d’arrêt faible ↵ tel que EQ↵⇥
g�,↵

⇤
= 0 pour chaque � 2 Λ. On a

sup
↵2Ag

EQ↵⇥
Φ⌧↵

⇤
= sup

Q2Mg

EQ[Φ
⇤
.

Remark 2.2.3. Dans le cas sans options statiques, la formulation forte et faible sont équiva-
lente :

sup
Q2M

EQ[Φ] = sup
Q2M

sup
⌧2T (F)

EQ[Φ⌧ ]. (2.2.5)



2.2. SUR-RÉPLICATION DES OPTIONS AMÉRICAINES AVEC L’INCERTITUDE DU MODÈLE31

Remark 2.2.4. Dans le cas avec options statiques, en général on a

sup
Q2Mg

EQ[Φ] > sup
Q2Mg

sup
⌧2T (F)

EQ[Φ⌧ ],

et l’inégalité ci-dessus peut être stricte. En effet, on peut identifier le sous-ensemble de Mg qui
peut convertir l’inégalité à une égalité. Introduire

Mg :=
�
Q 2 B(Ω) : Q n P, EQ[g�] = 0, � 2 Λ, S est une (F,Q)-martingale,

EQ[MT ] = EQ[M0], pour toutes (F,Q)-martingales bornée M
 
,

l’ensemble de mesures sous lesquelle S est une F-martingale et T est un F-pseudo–temps d’arrêt.
Alors on a

sup
Q2Mg

EQ[Φ] = sup
Q2Mg

sup
⌧2T (F)

EQ
⇥
Φ⌧ ].

2.2.3 Des options statiques aux options dynamiques

La dualité de (2.2.2) est violée à cause de la présence des options statiques. Dans la section
précédente on a introduit un espace élargi pour obtenir la dualité. Dans cette section on donne
une autre méthode pour rendre le RHS de (2.2.2) assez grand par l’introduction d’un espace
fictif plus grand où le sous-jacent S et les options (g�)�2Λ peuvent être échangé dynamiquement
simultanément.

Une extension dynamique (bΩ, bF, bF , bP) du marché original (Ω,F,F ,P, S, g) est un marché
fictif où on peut acheter et venter le sous-jacent et l’option dynamiquement, et bF � F est la
filtration contenant l’information du prix du sous-jacent et de l’option. Pour la définition précise
de l’extension dynamique, voir Chapitre 3.

Dans une extension dynamique (bΩ, bF, bF , bP) de (Ω,F,F ,P, S, g), on peut définir similairement
la stratégie de trading bH et le coût de sur-réplication b⇡A(Φ) d’une option américaine bΦ =

(bΦk)k6N sur bΩ. On a le résultat principal suivant :

Theorem 2.2.5. Dans le cadre de Bouchard-Nutz et transport optimal martingale, pour tous
Φ 2 ΥN ,

⇡A
g (Φ) = b⇡A(Φ) = sup

bQ2 cM
sup

⌧̂2T (bF)
E

bQ [Φ⌧̂ ] = sup
bQ2 cM

E
bQ [Φ] > sup

Q2Mg

sup
⌧2T (F)

EQ [Φ⌧ ] , (2.2.6)

où Mg est l’ensemble des mesures de martingale sur Ω consistent avec l’information du marché,
cM et cM sont l’ensemble des mesures de martingale sur bΩ et l’espace élargi de bΩ respectivement.

Dans le contexte de transport optimal martingale, l’extension dynamique est liée étroitement
avec la martingale à valeur mesure. Elle est utilisée par Eldan dans [28] pour étudier le plongement
de skorokhod et Cox et Kallblad dans [29] pour étudier le transport optimal martingale pour
les options asiatiques. En particulier, ce point de vue nous permet d’obtenir le principe de
la programmation dynamique avec contrainte sur les marginaux, car la contrainte terminale
devient la contrainte initiale. Pour donner l’idée principale, on considère le cas avec seulement
la marginale finale, i.e. la date de marginale T0 = {N}. La marginale µ est une mesure de la
probabilité sur R. Soit P1(R) l’ensemble des mesures de probabilité avec le moment d’ordre
un fini équipé avec la 1-Wasserstein distance(donc P1(R) est un espace polonais). On définit
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l’espace canonique suivant pour le processus à valeur mesure : bΩ := {µ}⇥ (P1(R))
N et on note

bX = ( bXk)06k6N le processus canonique sur bΩ. On définit bF = ( bFk)0kN la complété universelle
de la filtration canonique et on note T (bF) l’ensemble de tous bF-temps d’arrêt. Pour f 2 C1, où
C1 est l’ensemble des fonctions continues sur R à accroissance linéaire, on note les processus de
l’intégral contre bX comme bXk(f) =

R
R
f(x) bXk(dx) et bXk(id) =

R
R
x bXk(dx). Définir i : bΩ ! Ω

par i(b!) = ( bX0(id)(b!), ..., bXN (id)(b!)) qui est surjectif et étendre le processus sur Ω naturellement
à l’espace bΩ. En particulier le processus de prix est étendu par Sk(b!) = Sk(i(b!)) = bXk(id)(b!)
et l’option statique est étendue par g�(b!) = g�(i(b!)) = �(i(b!)) � µ(�). Définir une famille de
variables aléatoires Y = (Y �)�2Λ par :

Y �
k =

(
bXk(�)� µ(�) 0 6 k 6 N � 1

g� = �( bXN (id))� µ(�) k = N

On peut maintenant donner la définition de la mesure de martingale à valeur mesure.

Definition 2.2.6. Une mesure de probabilité bQ sur (bΩ, bF) est dit une mesure de martingale à
valeur mesure (MVM mesure) si le processus ( bXk(f))0kN est une (bQ, bF)-martingale pour tous
f 2 C1.

On note

cMµ := {bQ 2 B(bΩ} : bQ est une MVM mesure}.

Pour tous Q 2 Mµ on définit une application jQ : Ω ! bΩ par jQ(!) = (LQ(SN |Fk)(!))k6N .

Maintenant on peut définir l’application J : Mµ ! cM par J(Q) = Q � j�1
Q et on peut preuver

que (bΩ, bF, bF , Y, i, J) est une extension dynamique de (Ω,F,F ,P, S, g).
Plus récemment, martingales à valeur mesure sont utilisées pour étudier les autres problèmes

dans mathématique financière. En particulier, elle est utilisée dans [30] pour étudier le problème
de transport optimal martingale où le coût est représenté par un problème de temps d’arrêt.
Dans [31] et [32], elle est utilisée pour étudier le problème d’arrêt optimal avec contrainte sur la
distribution.

2.2.4 Options Américaines comme stratégie de la couverture

Dans les papiers plus récent de Bayraktar and Zhou [33], [34], ils ont généralisé l’étude au cas où
on peut utiliser les options américaines comme la stratégie de la couverture. L’hypothèse cruciale
qu’ils ont introduit dans leur papier est la divisibilité infinie des options américaines. Autrement
dit, on peut décomposer une option américaine aux petites pièces et les échange séparément.
Dans leur premier papier [33], ils font l’hypothèse de l’interdiction du vente à découvert et
considèrent seulement la dualité de sous-réplication, et preuvent que la divisibilité infinie donne
une formulation correcte du prix de sous-réplication. Dans un deuxième papier [34], ils ont
utilisé notre technique de l’élargissment d’espace pour réformuler les options américaines en
position courte comme options européennes dans l’espace élargie, et ensuite résolu la dualité plus
complete admettant le vente à découvert et sur-réplication. L’idée est de distinguer deux types
des options américaines : la position longue dans le portefeuille de la couverture ou le problème
de sous-réplication ; la position courte dans le portefeulle de la couverture ou le problème de
sur-réplication. Pour le premier, comme le propriétaire de l’option américaine on peut utiliser
une certaine stratégie d’exercice. En revanche, pour le deuxième, on doit ajuster sa stratégie en
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réponse aux contreparties, donc la stratégie de la couverture doivent adapté à une filtration plus
large F.

2.3 Sur-réplication avec coût de transaction proportionnelle
sous l’incertitude du modèle

Nous somme dans le cadre de Bouchard-Nutz dans cette section. Dans le marché classique au
temps discret avec coût de transaction proportionnelle, la notion de mesure de martingale équi-
valente est remplacée par le systm̀e de pricing consistent(CPS), qui contient une couple (Q, Z)
tel que Q ⌧ P et Z est une Q-martingale à valeur dans le spread bid-ask.

Le théorème fontamental de valorisation d’actif est preuvé dans les contextes différents avec
différentes versions des conditions de non-arbitrage. D’abord, la condition de non-arbitrage
usuelle peut seulement garantir l’existence de CPS si Ω est fini. Dans [35], ils ont preuvé l’exis-
tence de système de pricing consistent strict(SCPS) est équivalent à la condition de non-arbitrage
stricte sous condition que tous les actifs ne peuvent pas être échangés sans frictions. Dans [36],
il a proposé une condition de non-arbitrage robuste, qui peut garantir l’existence de SCPS avec
moins d’hypothèse.

Dans le contexte sans l’incertitude du modèle, la dualité de la sur-réplication avec coût de
transaction proportionnelle est déjà beaucoup étudiée, voir par exemple [37] et [38]. La dualité
de maximisation d’utilité avec coût de transaction est aussi étudiée en utilisant la dualité de sur-
réplication par sa relation avec le prix de l’ombre, voir par exemple [39]. Il y a aussi des études
au delà du coût de transaction proportionnelle. Dans [40], les auteurs ont preuvé la dualité de
sur-réplication avec l’impact temporel du prix dans un modèle continu et établi en particulier
l’optimalité de la stratégie de non exécution. Dans [41], les auteurs ont considéré le problème de
la sur-réplication avec coût de transaction fixé comme un problème de contrôl stochastique avec
des impulsions sous un contraint d’état terminal.

Dans le cas non-dominé, une propriété importante dans le papier Bouchard-Nutz est l’équiva-
lence entre la version locale et version globale de non-arbitrage. Cette propriété nous permet de
utiliser l’argument de séparation en dimensions finies localement, et ensuite passe aux plusieurs
périodes en utilisant l’argument de sélection mesurable. Donc il est important de choisir une
version propre de la condition non-arbitrage. Plus récemment, dans le papier de Bayraktar and
Zhang [42], ils ont proposé une preuve en utilisant la condition de non-arbitrage stricte. Comme
le non-arbitrage local n’est pas équivalent à non-arbitrage global dans leur contexte, ils utilisent
une procédure délicate de backward-forward pour obtenir le résultat multi-période.

Une généralisation de Bouchard-Nutz avec coût de transaction est proposé dans [43]. Dans
ce papier, ils ont utilisé le non-arbitrage de seconde type (NA2(P)) qui est proposé par [44].
L’avantage principale de NA2(P) est l’équivalence entre de non-arbitrage local et global.

La sur-réplication avec coût de transaction est d’abord étudiée par [45, 46] en discretisant l’es-
pace et ensuite passant à la limite. Dans [47], l’auteur considère aussi la sur-réplication pointwise.
En particulier, le marché est multi-varié et toutes les transactions doivent passer par le compte
cash. En construisant un systéme de valorisation fictif dans lequel le prix de sur-réplication sans
friction est le même avec le coût original, il a réussi de preuver le résultat. Dans [48], les auteurs
ont considéré le problème de sur-réplication avec coût de transaction non-linéaire.

2.3.1 Le marché avec coût de transaction proportionnelle

Soit (Ω,F) un espace mesurable, équippé avec deux filtrations F0 = (F0
t )t=0,1,··· ,T ⇢ F =

(Ft)t=0,1,··· ,T pour certain T 2 N et un processus mesurable de dimension d : (St)06t6T (F0
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est généré par S, et F sa complété universelle).

Example 2.3.1. Pour donner une intuition sur le processus du portefeuille avec coût de tran-
saction, on considère ici le cas d = 2 avec un compte de cash et un compte de stock. À cause
du coût de la transaction, le stock est acheté à prix St et venté à prix St avec St < St à chaque
date t. On définit la stratégie mesurable comme un processus F-prévisible H = (Ht)06t6T+1 avec
H0 = HT+1 ⌘ 0 et note ∆Ht = Ht �Ht�1. Alors le P&L d’une stratégie admissible est donné
par

VT (H) = �
T+1X

t=1

(St�11∆Ht>0 + St�11∆Ht<0)∆Ht

Étant donné une option exotique ⇠ : Ω ! R et nombre fini des options liquides ⌘i : Ω ! R avec
prix 0, le coût de sur-réplication minimal de ⇠ avec stratégie statique sur ⌘ et stratégie dynamique
sur S est donné par

⇡e := inf{x : 9h 2 Re, H admissble, x+
eX

i=1

hi⌘i + VT (H) > ⇠,P � q.s.}

Dans un cadre plus général avec d > 2, le coût de transaction est modélisé en utilisant le
concept de cône de la solvabilité, voir [49]. Pour t 2 {0, 1, · · · , T}, Kt : Ω ! 2R

d

est un ensemble
aléatoire F0

t -mesurable dans le sens où {! 2 Ω : Kt(!)\O 6= ;} 2 F0
t pour tous les ensembles O ⇢

Rd fermé(ouvert). Pour ! 2 Ω, Kt(!) quelconque, Kt(!) est un cône contenant Rd
+, et représente

l’ensemble des positions qui peuvent être transformées aux positions positives(component par
component) après le rebalancement entre les actifs. On note par K⇤

t ⇢ Rd
+ son cône dual (positive)

K⇤
t (!) :=

�
y 2 Rd : x · y � 0 for all x 2 Kt(!)

 
, (2.3.7)

Example 2.3.2. Si ⇡ij
t est le prix de l’actif j en unité de l’actif i, alors le cône de la solvabilité

peut-être représenté comme

Kt(!) :=
�
x : 9(aij)ij 2 Rd⇥d

+ , s.t.xi +
X

j 6=i

aji � aij⇡ij
t (!) > 0, i 6 d

 
.

Remark 2.3.3. Comme dans [43], pour obtenir le résultat, le cône de la solvabilité est supposé
de satisfaire plusieurs conditions techniques, comme la friction efficace, friction bornée. Pour
plus de détail, voir Chapitre 4.

En utilisant le cône de la solvabilité, on peut maintenant donner la définition des stratégies
admissibles.

Definition 2.3.4. On dit que un processus F-adapté ⌘ = (⌘t)0tT est une stratégie admissible
si

⌘t 2 �Kt P-q.s. pour tous t  T .

On note par A la collecte des stratégies admissibles.

Maintenant le coût minimal de la sur-réplication de l’option exotique ⇠ utilisant options
vanilles ⇣i et stratégie dynamique est donné par 1 :

⇡e(⇠) := inf
n
y +

eX

i=1

ci|`i| : y1d +
eX

i=1

`i⇣i +
TX

t=0

⌘t � ⇠ 2 KT , P-q.s., (⌘, `) 2 A⇥ Re
o
, (2.3.8)

1Here we use the convention
P

0

i=1
= 0
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où 1d est le vecteur avec tous les components égal à 0 sauf le dernier égal à 1.

2.3.2 NA2(P) : Équivalence entre local and global

L’esprit de [1] est de passer de local à globale, donc il est important de garantir le non-arbitrage
local est impossible si le non-arbitrage global est vrai. Par contre, pour le non-arbitrage faible
et stricte, ce n’est pas claire de preuver l’équivalence entre la version locale et la version globale.
Dans [43], ils ont proposé de utiliser le non-arbitrage de seconde type (NA2(P)), introduit par
[44]. NA2(P) est défini de manière suivant :

Definition 2.3.5. On dit que NA2(P) est vrai si pour tous t  T � 1 et tous ⇣ 2 L0(Ft),

⇣ 2 Kt+1 P-q.s. implique que ⇣ 2 Kt P-q.s.

La version robuste de théorème fontamentale est preuvée dans [43].

Theorem 2.3.6. La condition NA2(P) est équivalent à : Pour tous t  T � 1, P 2 P et
Y 2 L0

P(Ft, intK
⇤
t ), il existe Q 2 B(Ω) et un processus F0-adapté (Zs)s=t,...,T tel que P ⌧ Q et

P = Q sur Ft, et
(i) Q n P
(ii) Y = Zt Q-p.s.
(iii) Zs 2 intK⇤

s Q-p.s. pour s = t, . . . , T
(iv) (Zs)s=t,...,T est une Q-martingale, i.e. EQ[Zs0 |Fs] = Zs pour t  s  s0.

Une couple (Q, Z) satisfaisant les conditions (i)� (iv) ci-dessus pour t = 0 est dit un système
de pricing consistent strict(SCPS). On note S la famille des SCPS, et note S0 :=

�
(Q, Z) 2

S tel que Zd ⌘ 1
 
. Dans la présence de l’option statique , il doit être consistent avec le spread

bid-ask :
Se :=

�
(Q, Z) 2 S0 : EQ

⇥
⇣i · ZT

⇤
2 [�ci, ci], i = 1, · · · , e

 
.

L’avantage de NA2(P) est que il y a une équivalence entre le non-arbitrage local et global.
Donc pour preuver le problème global, il suffit de résoudre le problème d’une période et ensuite
leur coller ensemble.

2.3.3 Espace élargi et technique de randomisation

L’idée principale est de utiliser un argument de randomisation par l’introduction d’un espace
élargi. On va construire un processus de prix fictif X avec aléa supplémentaire, et le problème
original avec coût de transaction proportionnelle peut être réformulé comme un problème de
sur-réplication sans friction dans le marché fictif. La technique de randomisation/élargissement
est en effet dans le même esprit avec l’approche de marché fictif controlé de [50, 51].

L’espace élargi Soit c > 1 une constante donnant la borne de la friction, on définit Λ1 :=
[c�1, c]d�1, Λt := (Λ1)

t+1, et Λ := ΛT , et introduit ensuite le processus canonique Θt(✓) := ✓t,
8✓ = (✓t)0tT 2 Λ, et la tribu FΛ

t := �(Θs, s  t), t  T . On définit un espace élargi

Ω := Ω⇥Λ, et une tribu F := F ⌦FΛ
T , avec deux filtrations F

0
= (F

0

t )0tT , et F = (F t)0tT

dans lesquelles F
0

t := F0
t ⌦ FΛ

t , et F t := Ft ⌦ FΛ
t pour t  T .

Maintenant le marché randomisé fictif peut être défini par le prix de stock fictif X =
(Xt)0tT :

Xt(!̄) := ΠK⇤

t (!)[St(!)✓t], pour tous !̄ = (!, ✓) 2 Ω, t  T, (2.3.9)
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où St(!)✓t := (S1
t (!)✓

1
t , · · · , S

d�1
t (!)✓d�1

t , Sd
t (!)), et ΠK⇤

t (!)[y] représente la projection de y 2 Rd

sur l’ensemble convex fermé K⇤
t (!).

Condition non-arbitrage sur l’espace élargi Dans l’espace élargi, on introduit d’abord
l’ensemble du modèle par

P :=
�
P 2 B(Ω,F) tel que P|Ω 2 P

 
.

L’ensemble de la stratégie peut être aussi défini naturellement sur l’espace élargi :

H := {Tous processus F-prévisible}.

On peut maintenant définir la condition de non-arbitrage dans l’espace élargi comme ci-
dessous :

Definition 2.3.7. On dit que NA(P) est vrai si

(H �X)T � 0, P-q.s. =) (H �X)T = 0, P-q.s.,

pour tous H 2 H.

Si on néglige un petit problème dans la borne du spread bid-ask, les conditions NA2(P) et
NA(P) sont équivalent. Elle nous permet de travailler dans un espace élargi. Donc la prochaine
étape est de réformuler le problème primal et dual dans un espace élargi.

Réformulation de problème primal and dual sur l’espace élargi On note Q0 la famille
des mesures Q 2 B(Ω) tel que Q n P et X est une (F,Q)-martingale. Alors on a la réformulation
suivant sur l’espace élargi pour la formulation primal et dual :

Proposition 2.3.8. (i) Pour tous vecteur ⇠ : Ω ! Rduniversellement mesurable , on a

sup
(Q,Z)2S0

EQ
⇥
⇠ · ZT

⇤
= sup

Q2Q0

EQ
⇥
⇠ ·XT

⇤
.

(ii) On a

⇡0(⇠) = inf
n
y 2 R : y + (H �X)T � g P-q.s., pour certain H 2 H

o
.

2.3.4 Résultat principal

Le résultat principal de cette section est la dualité de sur-réplication suivante :.

Theorem 2.3.9. Soient ⇠ et (⇣i)ie borelien, et suppose que NA2(P) est vrai. Suppose en plus
soit e = 0, soit e � 1 et pour tous ` 2 Re et ⌘ 2 A,

eX

i=1

�
`i⇣i � |`i|ci1d

�
+

TX

t=0

⌘t 2 KT P-q.s. =) ` = 0. (2.3.10)

Alors Se est non-vide et

⇡e(⇠) = sup
(Q,Z)2Se

EQ
⇥
⇠ · ZT

⇤
. (2.3.11)
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En plus, il existe (⌘̂, ˆ̀) 2 A⇥ Re tel que

⇡e(⇠)1d +
eX

i=1

⇣
ˆ̀
i⇣i � |ˆ̀i|ci1d

⌘
+

TX

t=0

⌘̂t � ⇠ 2 KT , P-q.s.

Remark 2.3.10. (i) Dans la preuve, il faut utiliser une combinaison de la technique de rando-
misation et un argument de minimax.

(ii) Dans le cas e = 1, il est claire que la condition (1.3.13) est un type de non-arbitrage. Par
les arguments de randomisation, `1⇣1 � |`1|c11d +

PT
t=0 ⌘t 2 KT P-q.s. est équivalent à

`1g1
�
!̄, b✓

�
+
⇣ TX

t=1

Ht∆Xt

⌘
(!̄) � 0, P-q.s. pour b✓ = ±1,

où Ht :=
Pt�1

s=0 ⌘s and g1(!̄,±1) := ⇣1 ·XT ±c1. Pour plus de détail, voir Chapitre 5. La condition
de non-arbitrage dans l’espace élargi nous donne maintenant

`1g1
�
!̄, b✓

�
+
⇣ TX

t=1

Ht∆Xt

⌘
(!̄) = 0, P-q.s. pour b✓ = ±1.

Comme g1(!̄, 1) 6= g1(!,�1) quand c1 > 0, on a `1 = 0.

2.4 Maximisation d’utilité avec coût de transaction propor-
tionnelle sous l’incertitude du modéle

2.4.1 Le problème de maximisation d’utilité

Le problème de maximisation d’utilité est un sujet classique dans mathématique financière. Dans
le modèle dominé classique, maximisation d’utilité avec coût de transaction et dotation aléatoire
est déjà beaucoup étudié. En particulier, quand on considère le marché incomplet, l’approche
de la dualité est un outil puissant qui nous permet d’obtenir l’existence d’optimisateur primal
par résolvant le problème d’optimisation dual corréspondant. Typiquement, le problème dual est
formulé sur l’ensemble de measure de martingale (locale) équivalente(EMM), dont l’existence
est garantie par certaines conditions de non-arbitrage. Pour l’utilité défini sur les réels positifs,
[52], [53] ont établi le théorème de bipolaire par le choix propre de l’ensemble dual de EMM.
Pour l’utilité définie sur les réels, [54], [55] and [56] ont résolu le problème par définissant un
sous-ensemble de EMM avec l’entropie généralisé finie pour le dual et par définissant la classe
du portefeuille de travail pour le primal.

Dans le cadre dominé avec coût de transaction, le EMM est remplacé par le système de pricing
consistent(CPS) et la dualité de maximisation d’utilité est établie en utilisant la connection de
la dualité de sur-réplication avec le prix de l’ombre. Pour le cas général du processus càdlàg,
[39] ont preuvé l’existence d’un optimisateur dual et le prix de l’ombre. Dans [57], les auteurs
ont considéré le cas des processus au delà du semi-martingale. [58] a fait un peu plus d’effort
pour résoudre le problème de maximisation d’utilité avec la présence de pas seulement coût de
transaction mais aussi dotation aléatoire.

Dans le cadre non-dominé, le problème de maximisation d’utilité en temps discret sans coût
de transaction est d’abord étudié par [59]. Similaire à [60] dans le cas dominé, il est capable
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de preuver l’existence de la stratégie optimale primal en utilisant le principe de la programma-
tion dynamique. Dans [61], les auteurs ont considéré la présence de la friction et introduit une
condition de non-arbitrage de type linéarité. [62, 63] ont considéré un contexte similaire à [59],
et enlevé la contraint de la borne au dessus.

Plus récemment, [64] et [65] ont considéré un contexte de l’incertitude du modèle différent.
Dans [64], l’incertitude du modèle est représenté par un ensemble du processus stochastique au
lieu d’une famille de mesure de probabilité, et les auteurs ont preuvé l’exitence de la stratégie
optimale par un argument de type Komlos. Dans [65], les auteurs ont établi une dualité de
maximisation d’utilité en utilisant limite médiaire et une version fonctionnelle de théorème de
capacitabilité de Choquet.

Dans [2], Bartl a considéré la représentation pour l’utilité de type exponentielle sans coût de
transaction, sous une condition de non-arbitrage relativement forte. L’objectif principal de [66]
est donc d’étudier l’existence de la stratégie optimale, le théorème de la dualité convexe et le
principe de la programmation dynamique auxiliaire pour un problème de maximisation d’utilité
avec coût de transaction au temps discret. En particulier, dans le cadre sans friction, l’argument
de programmation dynamique nous permet de généraliser le résultat de [2] à une condition de
non-arbitrage plus faible.

2.4.2 Maximisation d’utilité robuste avec coût de transaction

On reste dans le cadre de Bouchard-Nutz et les notations sont les même avec la section précédente.
Pour obtenir un résultat de la dualité, on considère le fonction d’utilité de type exponentiel
U(x) := �exp(��x), où � > 0 un constant. Pour e 2 N [ {0}, il y a une classe finie de vecteurs
aléatoires F0

T -mesurable ⇣i : Ω ! Rd, i = 1, · · · , e, où chaque ⇣i représente le payoff de certaine
option i noté par unité des différentes actifs risqués. Soit ⇠ : Ω ! Rd le payoff de dotation
aléatoire, on peut considérer le problème de maximisation suivant avec dotations aléatoires et
stratégies semi-statiques :

V (⇠, �) := sup
(`,⌘)2Ae

inf
P2P

EP

"
U
⇣⇣
⇠ +

eX

i=1

�
`i⇣i � |`i|ci1d

�
+

TX

t=0

⌘t

⌘d⌘
#
. (2.4.12)

où 1d est le vecteur avec tous les components égal à 0 sauf le dernier égal à 1 et Ae l’ensemble

de tous (l, ⌘) 2 Re ⇥A tel que ⇠ +
Pe

i=1

�
`i⇣i � |`i|ci1d

�
+
PT

t=0 ⌘t

⌘i
= 0 pour i = 1, · · · , d� 1.

Autrement dit, le dernier actif joue le rôle d’un numéraire et tous les autres actifs doivent être
liquidé au temps final T . Les options statiques ⇣i ont prix 0, mais ils ont un coût de transaction
ci > 0.

Pour donner une représentation duale au problème ci-dessus, on introduit une version robuste
de l’entropie relative associé à une mesure de probabilité Q comme

E(Q,P) := inf
P2P

E(Q,P), où E(Q,P) :=

⇢
EP
⇥
dQ
dP logdQ

dP

⇤
, si Q ⌧ P,

+1, sinon.
(2.4.13)

Soit S0 un sous-ensemble de SCPS (Q, Z) défini comme dans la section 2.3, on peut alors définir

S⇤
e :=

n
(Q, Z) 2 S0 : EQ

⇥
(⇠ · ZT )�

⇤
+E(Q,P) < +1 and EQ

⇥
(⇣i · ZT )

⇤
2 [�ci, ci], i = 1,· · ·, e

o
.

Maintenant on a le résultat principal suivant :
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Theorem 2.4.1. Soit ⇠ et (⇣i)ie: Ω ! Rd borelien et suppose que NA2(P) est vrai. Suppose
en plus soit e = 0, soit e � 1 et pour tous ` 2 Re et ⌘ 2 A,

eX

i=1

�
`i⇣i � |`i|ci1d

�
+

TX

t=0

⌘t 2 KT P-q.s. =) ` = 0. (2.4.14)

Alors, on a

V (⇠, �) = � exp
⇣
� inf

(Q,Z)2S⇤
e

�
EQ
⇥
�⇠ · ZT

⇤
+ E(Q,P)

 ⌘
, (2.4.15)

En plus, l’infimum sur (`, ⌘) 2 Ae est atteint par une stratégie optimale (ˆ̀, ⌘̂).

Remark 2.4.2. En prenant logarithme sur les deux côtés et remplçant �⇠ par �⇠, l’équalité
(2.4.15) est équivalent à

inf
(`,⌘)2Ae

sup
P2P

logEP

2
4exp

0
@
 
⇠ �

eX

i=1

(`i⇣i � |`i|ci1d)�
TX

t=0

⌘t

!d
1
A
3
5

= sup
(Q,Z)2S⇤

e

�
EQ
⇥
⇠ · ZT

⇤
� E(Q,P)

 
.

(2.4.16)

2.4.3 Réformulation et la dualité dans l’espace élargi

La technique utilisée dans cette section est similaire avec la section 1.3. Dans une première
étape, on va réformuler le problème original comme un problème sans coût de transaction dans
un espace élargi. Ensuite il suffit de preuver la dualité dans l’espace élargi. La nouvelle difficulté
pour la maximisation d’utilité est le problème d’intégrabilité quand on fait la programmation
dynamique.

Réformulation du primal et dual dans l’espace élargi On introduit l’espace élargi Ω

comme la section précédente, et réformule le problème de maximisation d’utilité dans l’espace
élargi, avec X le sous-jacent fictif et g(!̄) := ⇠(!) ·XT (!̄), pour tous !̄ = (!, ✓) 2 Ω le produit
financier. D’abord, pour une fonction d’utilité générale, on a la réformulation suivante du primal
dans l’espace élargi.

Proposition 2.4.3. Sous certaines conditions, on a

V (⇠) = sup
H2H

inf
P2P

EP
h
U
⇣
g + (H �X)T

⌘i
.

Pour la représentation duale, on concentre sur la fonction d’utilité de type exponentielle
U(x) := �exp(��x), pour certain constant � > 0. En plus, pour la simplification, on suppose
que le nombre des options statiques est égal à zéro. Le cas avec la présence des options statiques
peut être considéré similairement par l’introduction d’un espace élargi plus large. On définit

Q
⇤

:=
�
Q 2 Q0 : EQ

⇥
(⇠ ·XT )�

⇤
+ E(Q,P) < 1

 
,

alors on a la réformulation suivante pour le problème dual.
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Proposition 2.4.4. Pour tous vecteur aléatoire mesurable universellement ⇠ : Ω ! Rd, on a

sup
(Q,Z)2S⇤

0

�
EQ
⇥
⇠ · ZT

⇤
� E(Q,P)

 
= sup

Q2Q
⇤

�
EQ
⇥
⇠ ·XT ]� E(Q,P)

 
.

Dualité dans l’espace élargi Maintenant il suffit de preuver la dualité dans l’espace élargi.

Proposition 2.4.5. Soit g := ⇠ ·XT et NA(P) sont vrai. Alors on a

V := inf
H2H

sup
P2P

logEP
⇥
exp

�
g + (H �X)T

�⇤
= sup

Q2Q
⇤

�
EQ
⇥
g
⇤
� E(Q,P)

 
. (2.4.17)

En plus, l’infimum du problème V est atteint par certaine stratégie de trading optimal bH 2 H.

Example 2.4.6. Pour donner une idée sur la difficulté potentielle, considère l’exemple suivant
avec le nombre de la période égal à un :

On suppose que T = 1 et la dimension des actifs d = 2. Dans ce contexte, on a Ω = R et
le coût de transaction a lieu en date t = 0 et t = 1. Alors le prix d’achat et de vente au temps
t = 0 et t = 1 sont S0(1 + ↵), S0(1 � ↵), S1(1 + ↵) et S1(1 � ↵) respectivement, avec ↵ > 0
un constant représente le coût de transaction. Notre problème de maximisation d’utilité peut-être
écrit comme

V0 := inf
H2R

sup
P2P

logEP[exp(g +HS1(1� ↵)1H>0

+HS1(1 + ↵)1H<0 �HS0(1� ↵)1H<0 �HS0(1 + ↵)1H>0)]

On peut aussi définir l’espace élargi : Ω := R⇥[1�↵, 1+↵]2 et le processus fictif comme : X0(✓0) =
S0✓0, X1(S1, ✓1) = S1✓1. Les filtrations sont alors F0 = �(✓0) et F1 = �(S1)⌦�(✓0, ✓1). On peut
maintenant réformuler le primal et le dual comme un problème de maximisation d’utilité dans un
espace élargi sans coût de transaction : sup(Q,Z)2Q?

(EQ[g]�E(Q,P)) = supQ2Q?
(EQ[g]�E(Q,P))

et
V0 = V̄0 := inf

H2R
sup
P2P

logEP
⇥
exp

�
g +H(X1 �X0)

�⇤
.

Pour appliquer la dualité dans l’espace élargi, il y a un problème : dans la formulation primale,
H est adapté à F0 au lieu de F0.

En effet, le problème peut être résolu en utilisant un argument de minimax :

V̄0 = inf
H2R

sup
✓02[1�↵,1+↵]

sup
P2P(✓0)

logEP
⇥
exp

�
g +H(X1 �X0)

�⇤

= sup
✓02[1�↵,1+↵]

inf
H2R

sup
P2P(✓0)

logEP
⇥
exp

�
g +H(X1 �X0)

�⇤

= sup
✓02[1�↵,1+↵]

sup
Q2Q?(✓0)

(EQ[g]� E(Q,P)) = sup
Q2Q?

(EQ[g]� E(Q,P)),

où P(✓0) est le sous-ensemble de P tel que Θ0 est fixé à ✓0. L’argument de minimax est vrai
pour la deuxième égalité ci-dessus car [1�↵, 1+↵] est compact, H 7! supP2P(✓0)

logEP
⇥
exp

�
g+

H(X1�X0)
�⇤

est convex, et ✓0 7! supP2P(✓0)
logEP

⇥
exp

�
g+H(X1�X0)

�⇤
est linéaire. Par les

arguments de la programmation dynamique, on peut maintenant coller les résultats d’une période
ensemble pour obtenir le résultat global. Pour plus de détails, voir Chapitre 5.
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2.4.4 Résultats associés

Dans [66], on considère aussi la propriété associé au prix d’indifférence d’utilité comme un sous-
produit de la dualité de la maximisation d’utilité. En particulier, on obtient aussi la convergence
du prix d’indifférence d’utilité vers le prix de sur-réplication quand le coefficient de l’aversion au
risque tend vers l’infini dans le contexte non-dominé avec coût de transaction.

Dans le cas dominé au temps discret, le "prix de l’ombre" est étudié par [67]. Il est un marché
fictif sans friction qui mène à la même stratégie optimale et utilisé comme le marché original
avec coût de transaction proportionnelle. Il est aussi intéressant de considère sa généralisation
dans le cadre non-dominé.

2.5 Gestion du risque dans le bilan par l’approche de sparse
grid

2.5.1 Introduction

Dans cette partie, nous allons présenter une méthode robuste et efficace pour évaluer numéri-
quement la distribution du risque dans le bilan pour une société de l’assurance dans un horizon
donné qui est normalement un an et consistent avec la régulation du Solvency 2.

Dans un espace de probabilité filtré (Ω,A,P, (Ft)t�0), le bilan de la société est un processus
stochastique qui est composé à chaque date t par l’actif (At)t�0 et le passif (Lt)t�0. La quantité
intéressant est le PnL(Profit and Loss en anglais) associé avec le bilan, qui est donné par

Pt = Lt �At , t � 0 .

Le but est de calculer des différents indicateurs du risque pour la distribution de la perte du
bilan dans un an (P1) sous la mesure de probabilité dans le monde réelle P. Nous le représentons
par ⌘.

Plus précisément, nous allons mesurer le risque associé avec ⌘ en utilisant une mesure de risque
définie sur l’ensemble de mesures de carré intégrable % : P2(R) ! R. D’abord, nous considérons
pour % le Value-at-Risk (V@R), qui est défini par

V@Rp(⌘) = inf {q 2 R | ⌘ ((�1, q]) � p} . (2.5.18)

On va aussi travailler avec la classe de mesures de risque spectrales : une mesure de risque
spectrale est définie par

%h(⌘) =

Z 1

0

V@Rp(⌘)h(p)dp , (2.5.19)

où h est une densité de la probabilité non-décroissant sur [0, 1].

2.5.2 Modèle financière

Le produit que on vente

On suppose que une société vente un put lookback au temps t = 0 avec la fonction de payoff G
payé à la maturité T > 0 et écrit sur un actif risqué S. Pour  � 1 et t 2 {⌧0 = 0, ⌧1, · · · , ⌧ = T},
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le payoff G est donné par

G(S⌧0 , . . . , S⌧) =

✓
max
0`

S⌧`

◆
� ST . (2.5.20)

Le modèle du marché sous mesure risque-neutre

Le modèle du taux au court terme Soit Θ 2 R3 l’ensemble du paramètres représentant les
observations du marché. La dynamique de taux au court terme est donné par le modèle Hull &
White

rt,Θs = rt,Θt +

Z s

t

a
�
µt,Θ
u � rt,Θu

�
d + b (Bs �Bt) , s 2 [t, T ], (2.5.21)

avec B un Q-mouvement Brownien et a et b des constants réels. Le paramètre µt,Θ est calibré en
utilisant les observations du marché Θ tel que le modèle nous donne la courbe de taux d’intérêt
du marché. Il est donné par

µt,Θ
s = fΘ(t, s) +

1

a

@fΘ(t, s)

@s
+

b2

2a2

⇣
1� e�2a(s�t)

⌘
, s 2 [t, T ]. (2.5.22)

Remark 2.5.1. Dans ce modèle, soit (0,Θ0) l’observation au temps 0. Le contrat de type swap
émis au s = 0, avec la maturité M > 0, taux R > 0, et les coupons versé à chaque date
i 2 {1, . . . ,M}. Alors le prix de ce contrat au temps t est donné par :

SW t,Θ,M,R =
P t,Θ,1

P 0,Θ0,1
� P t,Θ,M �R

MX

i=1

P t,Θ,i, (2.5.23)

Le modèle du stock Étant donné les observations Θ les facteurs du taux d’intérêt et le prix
du l’actif risqué x 2 (0,1), la dynamique du prix sous mesure de probabilité risque neutre Q est
donné par

St,x,Θ
s = x+

Z s

t

rt,Θu St,x,Θ
u du+

Z s

t

�St,x,Θ
u dW̃u, s 2 [t, T ], (2.5.24)

où � > 0, W̃ est un autre Q-mouvement Brownien, dont la covariation quadratique avec B est
donné par

hB, W̃ it := ⇢ t, t 2 [0, T ],

où ⇢ 2 [�1, 1].

Le passif Pour chaque observation X̄t := (S̄t, Θ̄t), le valeur Lt =: `(t, S̄t, Θ̄t) du passif est
calculé au temps t = 1. Dans notre contexte, le passif de la société est simplement donné par

`(t, x,Θ) = EQ[e�
R

T

t
rt,Θs dsG(St,x,Θ)], (2.5.25)

où (rt,Θ, St,x,Θ)tsT sont la dynamique de taux au court terme et le prix du stock sous mesure
risque neutre.
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Modéliser le bilan

L’actif La société veut répliquer le produit G et le portefeuille de la couverture A est décomposé
en deux parties

At = A∆

t +A⇢
t . (2.5.26)

Le processus A∆ est le valeur du portefeuille qui est utilisé pour la couverture du risque associé
avec S, et A⇢ est pour la couverture du risque associé avec Θ.

∆-couverture : Le valeur de A∆ au temps 1 est

A∆

1 =

n�1X

i=0

∆(ti, S̄ti , Θ̄ti)
�
S̄ti+1 � S̄ti

�
où ∆(t, x,Θ) :=

@L

@x
(t, x,Θ). (2.5.27)

⇢-couverture : Le valeur de A⇢
1 est

A⇢
1 =

n�1X

i=0

3X

j=1

⇢j(ti, S̄ti , Θ̄ti)
⇣
SWti+1,Θ̄ti+1

,Tj ,Rj � SWti,Θ̄ti
,Tj ,Rj

⌘
. (2.5.28)

La fonction PnL globale

Finalement, le PnL du bilan au temps 1 est donné par,

P1 = p1
�
(t, S̄t, Θ̄t)t2Γ

�

où (S̄, Θ̄) sont les paramètres du marché et la fonction du PnL p1 : R� ! R, avec � = 4⇥ (n+1),
est donné par

`(tn, xn,Θn)�
n�1X

i=0

∆(ti, xi,Θi)(xi+1 � xi)�
n�1X

i=0

3X

j=1

⇢j(ti, xi,Θi)
�
SWti+1,Θi+1,Tj ,Rj � SWti,Θi,Tj ,Rj

�
.

(2.5.29)

2.5.3 L’estimation de la mesure de risque

Étant donné une mesure de risque % et la distribution de la perte ⌘ du bilan d’un an, on estime la
quantité de taux %(⌘) par la simulation d’un échantillon de N variables aléatoires i.i.d. (Ψj)1jN

avec loi ⌘ et le calcul de %(⌘N ) par (2.5.18), (2.5.19) avec ⌘N au lieu de ⌘. Ici, ⌘N est la mesure
empirique associée avec Ψj , i.e.

⌘N =
1

N

NX

j=1

�Ψj
.

La distribution de la perte ⌘ est obtenue par :

⌘ = p1]⌫,
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avec p1 donné dans (2.5.29) et ⌫ la distribution des paramètres du marché. Autrement dit, ⌫ est
la loi des variables aléatoires

X̄ := (S̄t, Θ̄t)t2Γ (2.5.30)

sous la mesure de probabilité P.
Pour l’estimation de %(⌘) pour une mesure de risque donnée, les étapes sont suivantes :

d’abord, il faut simuler X̄ et utiliser une approximation p�1 de p1 :

• pN1 si on choisit l’approche de nested simulation ;

• pS1 si on choisit l’approche de sparse grid approach.

Ensuite, l’estimateur de %(µ) est donné par

R� := %(p�1 ]⌫
N ) , pour � 2 {N ,S} . (2.5.31)

Pour conclure, les deux méthodes ont les étapes suivantes :

L’approche de nested simulation

1. Étape extérieure : Simuler les paramètres du modèle (Xj)j=1,...,N .

2. Étape int erieure : Simuler Ψj = pN (Xj) par les simulations. Il faut calculer le prix des
options par Monte Carlo, le prix des produits de taux et les greques.

3. Estimer la mesure du risque.

L’approche de Sparse grid

1. Fixer un (sparse) grid V et calculer l’approximation pS pour tous valeurs nécessaires dans
le grid par une simulation de monte carlo.

2. Simuler les N échantillons des paramètres du modèle (Xj) et evaluer Ψj = pS(Xj).

3. Estimer la mesure du risque.
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3.1 Introduction

The robust approach to pricing and hedging has been an active field of research in mathematical
finance over recent years. It aims to address one of the key shortcomings of the classical approach,
namely its inability to account for model misspecification risk. Accordingly, the capacity to
account for model uncertainty is at the core of the robust approach. In the classical approach one
postulates a fixed probability measure P to describe the future evolution of prices of risky assets.
In contrast, in the robust approach one considers the pricing and hedging problem simultaneously
under a family of probability measures, or pathwise on a set of feasible trajectories. The challenge
lies in extending the arbitrage pricing theory, which is well understood in the classical setup, to
the robust setting.

In the classical approach, when the reference measure P is fixed, the absence of arbitrage is
equivalent to the existence of a martingale measure equivalent to P, a result known as the first
fundamental theorem of asset pricing, see, e.g., [68] or [69]. When the market is complete—i.e.,
when every contingent claim can be perfectly replicated using a self-financing trading strategy—
the equivalent martingale measure Q is unique, and the fair price for a contingent claim is equal
to the replication cost of its payoff, and may be computed as the expected value of the discounted
payoff under Q. In an incomplete market, where a perfect replication strategy does not always
exist, a conservative way of pricing is to use the minimum superreplication cost of the option.
Employing duality techniques, this superreplication price can be expressed as the supremum of
expectations of the discounted payoff over all martingale measures equivalent to P.

In the robust approach, in the absence of a dominating probability measure, this elegant
story often becomes more involved and technical. In continuous time models under volatility un-
certainty, analogous pricing-hedging duality results have been obtained by, among many others,
[3], [5], [70], [9]. In discrete time, a general pricing-hedging duality was shown in, e.g., [1] and
[11]. Importantly, in a robust setting one often wants to include additional market instruments
which may be available for trading. In a setup which goes back to the seminal work of [71], one
often considers dynamic trading in the underlying asset and static trading, i.e., buy and hold
strategies at time zero, in some European options, often call or put options with a fixed maturity.
Naturally, such additional assets constrain the set of martingale measures which may be used
for pricing. General pricing-hedging duality results, in different variations of this setting, both
in continuous and in discrete time, can be found in, e.g., [72], [12], [73], [74], [75], [76], [77] and
we refer to the survey papers [78] and [79] for more details.

The main focus in the literature so far has been on the duality for (possibly exotic) Euro-
pean payoffs. However, more recently, some papers have also investigated American options.
[80] studied the necessary (and, in some cases, sufficient) conditions for absence of arbitrage
among American put option prices. [81] studied game options (including American options)
in a non-dominated discrete time market, but in the absence of any statically traded options.
[22] considered a discrete time, discrete space market in the presence of statically traded Euro-
pean vanilla options. He observed that the superhedging price for an American option may be
strictly larger than the supremum of its expected (discounted) payoff over all stopping times and
all (relevant) martingale measures. We refer to such a situation as a duality gap. In [22], the
pricing-hedging duality was then restored by using a weak dual formulation. This approach was
further exploited, with more general results, in [23]. [20] studied the same superhedging problem
as in the setup of [1], but only considered strong stopping times in their dual formulation, which
again, in general, leads to a duality gap. More recently, and in parallel to an earlier version of
this paper, imposing suitable regularity and integrability conditions on the payoff functions, [21]
were able to prove a duality result by considering randomized models.

Motivated by the above works, we endeavour here to understand the fundamental reasons
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why pricing-hedging duality for American options holds or fails, and offer a systematic approach
to mend it in the latter case. We derive two main general results which we then apply to
various specific contexts, both classical and robust. Our first insight is that by considering
an appropriate enlargement of the space, namely the time-space product structure, we can see
an American option as a European option and recover the pricing-hedging duality, which may
fail in the original formulation. This may be seen as a weak formulation of the dual (pricing)
problem and leads to considering a large family of stopping times. This formulation of the dual
problem is similar in spirit to [22], [23] and [21], but our approach leads to duality results in
more general settings, and/or under more general conditions, see Remark 3.2.7 and Subsection
3.2.8 and also [82]. Our second main insight is that the duality gap is caused by the failure of
the dynamic programming principle. To recover the duality, under the formulation with strong
stopping times, it is necessary and sufficient to consider an enlargement which restores dynamic
consistency: it is enough to consider (fictitious) extensions of the market in which all the assets
are traded dynamically. As a byproduct, we find that the strategies which trade dynamically
in options and the semi-static strategies described above lead to the same superhedging cost in
various settings.

The first part of the paper, Section 3.2, presents the above two main insights in a very general
discrete time framework which covers both classical (dominated) and robust (non-dominated)
settings. In the second part of the paper, we apply our general results in the context of two
important examples of the robust framework: the setup of [1] in Section 5.2, and the martingale
optimal transport setup of [73] in Section 3.3. We obtain suitable pricing-hedging duality for
American options in both setups. In the latter case of martingale optimal transport, there is
an infinity of assets to consider and we use measure valued martingales to elegantly describe
this setting. To allow for a suitable flow of narrative of our main results, technical proofs of the
results in Sections 3.2,5.2 and 3.3 are postponed and presented respectively in Sections 3.4,3.5
and 3.6.

Example 3.1.1. We conclude this introduction with a motivating example showing that the
pricing-hedging duality may fail in the presence of statically traded instruments and how it may
be recovered when exercise times are allowed to depend on the dynamic price processes of these
instruments. This example is summarized in Figure 3.1. We consider a two period model with
stock price process S given by S0 = S1 = 0 and S2 2 {�2,�1, 1, 2}. The American option process
Φ is defined as Φ1 ⌘ 1, Φ2({S2 2 {�2, 2}}) = 0 and Φ2({S2 2 {�1, 1}}) = 2. The (pathwise)
superhedging price of Φ, i.e., the minimal initial wealth which allows superhedging against all
possible states and times by trading in the stock, can be easily computed and equals 2 (keeping 2
in cash and not trading in stock). A probability measure Q on the space of four possible paths
is uniquely described through a choice of qi = Q(S2 = i) > 0 for i 2 {�2,�1, 1, 2} satisfying
q2+q1+q�1+q�2 = 1. The martingale condition is equivalent to 2q2+q1�q�1�2q�2 = 0. Note
that as there are only two stopping times greater than 0, namely ⌧1 = 1 and ⌧2 = 2, the market
model price given as the double supremum over all stopping times ⌧ and all martingale measures
Q of EQ[Φ⌧ ] also equals 2 (as E

eQ[Φ⌧2 ] = 2 for eQ given by eq1 = eq�1 = 1/2 and eq2 = eq�2 = 0) and
the two prices agree.

Suppose now that we add a European option g with a payoff g = 11{|S2|=1}�1/2 and an initial
price 0, which may be used as a static hedging instrument. With g and S, the superhedging
price of Φ drops to 3/2 (e.g., keep 3/2 in cash and buy one option g). The presence of g also
imposes a calibration constraint on the martingale measures: q1+q�1 = 1/2. Thus, any calibrated
martingale measure can be expressed by (q2, q1, q�1, q�2) = (q, 3/4 � 2q, 2q � 1/4, 1/2 � q) with
q 2 (1/8, 3/8), and the market model price equals 1 (as EQ[Φ⌧1 ] = EQ[Φ⌧2 ] = 1 under any
calibrated martingale measure). We therefore see that adding a statically traded option breaks the
pricing-hedging duality.
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Figure 3.1: The stock prices are written in a regular font, the payoffs of the American option
are in bold, and the prices of the European option g are in italic. The model without dynamic
trading in g is on the left. The model with dynamic trading in g, in which the duality is recovered,
is on the right.

Let us now show that the duality is recovered when we consider a fictitious market where the
option g is traded dynamically and the exercise policy can depend on its current price. We model
this through a process Y = (Yt : t = 0, 1, 2) given by Y2 = g, Y1 = 1/2 on {|S2| = 1}, Y1 = �1/2

on {|S2| = 2}, and Y0 = 0. Note that there exists a (unique) measure bQ, presented in Figure
1, such that both S and Y are martingales with respect to their joint natural filtration bF and in
particular bQ is calibrated: E

bQ[g] = 0. The filtration bF is richer than the natural filtration of S
alone and allows for an additional stopping time ⌧⇤ = 11{Y1=�1/2} + 211{Y1=1/2}, and the duality

is recovered as E
bQ[Φ⌧⇤ ] = 3/2.

3.2 Pricing-hedging duality for American options

We present in this section general results which explain when and why the pricing-hedging
duality for American options holds. We work in a general discrete time setup which we now
introduce. Let (Ω,F) be a measurable space and F := (Fk)k=0,1,...,N be a filtration, where
F0 is trivial and N 2 N is the time horizon. We denote by P(Ω) the set of all probability
measures on (Ω,F) and consider a subset P ⇢ P(Ω). We say that a given property holds P-
quasi surely (P-q.s.) if it holds P-almost surely for every P 2 P, and say that a set from F
is P-polar if it is a null set with respect to every P 2 P. We write Q n P if there exists a
P 2 P such that Q ⌧ P. Given a random variable ⇠ and a sub-�-field G ⇢ F , we define the
conditional expectation EP[⇠|G] := EP[⇠+|G] � EP[⇠�|G] with the convention 1 � 1 = �1,
where ⇠+ := ⇠ _ 0 and ⇠� := �(⇠ ^ 0). We consider a market with no transaction costs and
with financial assets, some of which are dynamically traded and some of which are only statically
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traded. The former are modelled by an adapted Rd-valued process S with d 2 N. We think of
the latter as European options which are traded at time t = 0 and not at future times. We let
g = (g�)�2Λ, where Λ is a set of arbitrary cardinality, be the vector of their payoffs which are
assumed to be R-valued and F-measurable. Up to a constant shift of the payoffs, we may assume,
without loss of generality, that all options g� have zero initial price. All prices are expressed
in units of some numeraire S0, such as a bank account, whose price is thus normalised, so that
S0
t ⌘ 1. We denote by H the set of all F-predictable Rd-valued processes, and by h = {h 2 RΛ :

9 finite subset � ⇢ Λ s.t. h� = 0 8� /2 �}. A self-financing strategy trades dynamically in S and
statically in finitely many of g�, � 2 Λ and hence corresponds to a choice of H 2 H and h 2 h.
Its associated final payoff is given by

(H � S)N + hg =

dX

j=1

NX

k=1

Hj
k∆Sj

k +
X

�2Λ

h�g�, (3.2.1)

where ∆Sj
k = Sj

k �Sj
k�1. Having defined the trading strategy, we can consider the superhedging

price of an option with payoff ⇠ at time N , given by

⇡E
g (⇠) := inf{x :9 (H,h) 2 H⇥ h s.t. x+ (H � S)N + hg > ⇠ P-q.s.}. (3.2.2)

In particular, if P = B(Ω) is the set of all probability measures on F and {!} 2 F for all ! 2 Ω,
then the superreplication in (3.2.2) is pathwise on Ω.

To formulate a duality relationship, we need the dual elements given by rational pricing rules,
or martingale measures,

M = {Q 2 B(Ω) : Q n P and EQ[∆Sk|Fk�1] = 0, 8k = 1, . . . , N},

Mg = {Q 2 M : EQ[g�] = 0, 8� 2 Λ}. (3.2.3)

Definition 3.2.1. Let Υ be a given class of real-valued functions defined on Ω. We say that the
(European) pricing-hedging duality holds for the class Υ if Mg 6= ; and

⇡E
g (⇠) = sup

Q2Mg

EQ[⇠], ⇠ 2 Υ. (3.2.4)

Remark 3.2.2. Note that the inequality “>” in (3.2.4), called weak pricing-hedging duality,
holds automatically from the definition of Mg in (3.2.3).

A number of papers, including [1] and [12], proved that the above pricing-hedging duality
(3.2.4) holds under various further specifications and restrictions on Ω, F, P and Υ, including
in particular an appropriate no-arbitrage condition. We take the above duality for granted here
and our aim is to study an analogous duality for American options. We work first in the general
setup described above without specifying F or Υ, as our results will apply to any such further
specification. Further, many abstract results in this section also extend to other setups, e.g., to
trading in continuous time.

3.2.1 Superhedging of American options

An American option may be exercised at any time k 2 T := {1, . . . , N} (without loss of generality
we exclude exercise at time 0). It is described by its payoff function Φ = (Φk)1kN , where
Φk : Ω ! R belongs to Υ and is the payoff, delivered at time N , if the option is exercised at time
k. Usually Φk is taken to be Fk-measurable, but here we only assume Φk to be F-measurable for
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greater generality which includes, e.g., the case of a portfolio containing a mixture of American
and European options. We note that when hedging our exposure to an American option, we
should be allowed to adjust our strategy in response to an early exercise. As a consequence, the
superhedging cost of the American option Φ using semi-static strategies is given by

⇡A
g (Φ) := inf

n
x :9(1H, . . . ,NH) 2 HN s.t. jHi =

kHi 81 6 i 6 j 6 k 6 N and h 2 h

satisfying x+ (kH � S)N + hg > Φk 8k = 1, . . . , N P-q.s.
o

Remark 3.2.3. We formulate the problem above with payoff delivered by the seller at maturity N
irrespectively of the actual exercise time. In full generality, this is necessary because the payoff is
not assumed to be known at the exercise time. However, given that we work in discounted units,
if the payoff is known at the exercise time, our convention is equivalent to the one in which the
payoff is delivered at its exercise time, via taking a loan, and then the seller has to be able to
continue trading in such a way that her final payoff is non-negative. For this equivalence to hold
it is important to allow the seller to adjust the strategy at the time of the exercise. Note that in
the more classical setting when Φk is Fk-measurable and there are no statically traded options,
i.e., Λ = ;, no-arbitrage ensures that to have a final non-negative payoff the seller has to have
a non-negative wealth after delivering the payoff at the exercise time. She can then just stop
trading altogether—the vector of strategies (1H, . . . ,NH) 2 HN above then reduces to a single
trading strategy which is unwound at the exercise time.

Classically, the pricing of an American option is recast as an optimal stopping problem and,
extending (3.2.4), it would be natural to ask whether

⇡A
g (Φ)

?
= sup

Q2Mg

sup
⌧2T (F)

EQ[Φ⌧ ] (3.2.5)

holds, where T (F) denotes the set of F-stopping times. However, as illustrated by the simple
example in the introduction, this duality may fail. The “numerical" reason is that the right-hand
side in (3.2.4) may be too small because the set Mg ⇥ T (F) is too small. Our aim here is to
understand the fundamental reasons why the duality fails and hence discuss how and why the
right-hand side should be modified to obtain the equality in (3.2.5).

3.2.2 An American option is a European option on an enlarged space

The first key idea of this paper offers a generic enlargement of the underlying probability space
which turns all American options into European options. Depending on the particular setup, it
may take more or less effort to establish (3.2.4) for the enlarged space, but this shifts the difficulty
back to the better understood and well studied case of European options. Our reformulation
technique—from an American to European option—can be easily extended to other contexts,
such as the continuous time case. The enlargement of space is based on construction of random
times, previously used, e.g., in [24, 25] to study the existence of random times with a given
survival probability, in [26] to study a general optimal control/stopping problem, and in [18] and
[27] to study the optimal Skorokhod embedding problem.

Recalling the notation T := {1, . . . , N}, we introduce the space Ω := Ω⇥T with the canonical
time T : Ω ! T given by T (!̄) := ✓, where !̄ := (!, ✓), the filtration F := (Fk)k=0,1,...,N with
Fk = Fk ⌦ #k and #k = �(T ^ (k + 1)), and the �-field F = F ⌦ #N . By definition, T is an
F-stopping time. We denote by H the class of F-predictable processes and extend naturally the
definitions of S and g� from Ω to Ω via S(!̄) = S(!) and g�(!̄) = g�(!) for !̄ = (!, ✓) 2 Ω.
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We let Υ be the class of random variables ⇠ : Ω ! R such that ⇠(·, k) 2 Υ for all k 2 T and
we let ⇡E

g (⇠̄) denote the superreplication cost of ⇠. We may, and will, identify Υ with ΥN via
⇠(!̄) = Φ✓(!). Finally, we introduce

P = {P 2 P(Ω) : P|Ω 2 P},

M = {Q 2 P(Ω) : Q n P and EQ[∆Sk|Fk�1] = 0 8k 2 T},

Mg = {Q 2 M : EQ[g�] = 0 8� 2 Λ}. (3.2.6)

Theorem 3.2.4. For any Φ 2 ΥN = Υ, we have

⇡A
g (Φ) = ⇡E

g (Φ) := inf{x : 9 (H,h) 2 H⇥ h s.t. x+ (H � S)N + hg > ⇠ P-q.s.}. (3.2.7)

In particular, if the European pricing-hedging duality on Ω holds for Φ, then

⇡A
g (Φ) = ⇡E

g (Φ) = sup
Q2Mg

EQ[Φ]. (3.2.8)

Proof. First note that

H = {H = (H(·, 1), . . . , H(·, N)) 2 HN : Hi(·, j) = Hi(·, k) 81 6 i 6 j 6 k 6 N},

and hence that the dynamic strategies used for superhedging in ⇡A
g and in ⇡E

g are the same.
The equality now follows by observing that a set Γ 2 FN is P-polar if and only if its k-sections
Γk = {! : (!, k) 2 Γ} are P-polar for all k 2 T. Indeed, for one implication assume that P(Γ) = 0
for each P 2 P. For arbitrary P 2 P and k 2 T we can define P = P ⌦ �k which belongs to P,
and hence P(Γk) = 0 follows.

To show the reverse implication, assume that P(Γk) = 0 for each P 2 P and k 2 T. Observe
that, for any P 2 P,

P(Γ) =
X

k2T

P(Γk ⇥ {k}) 6
X

k2T

P|Ω(Γk) = 0

as P|Ω 2 P. This completes the proof.

Remark 3.2.5. If the pricing-hedging duality holds with respect to the filtration F, then it also
holds for any filtration H ⇢ F such that H and F only differ up to Mg-polar sets. Indeed,
this follows from Remark 3.2.2, observing that such a change does not affect Mg and can only
decrease the superhedging cost as one has more trading strategies available.

Remark 3.2.6. We note that the set Mg in (3.2.8) is potentially much larger than the set of all
pushforward measures induced by ! 7! (!, ⌧(!)) and Q 2 Mg for all ⌧ 2 T (F). Indeed, instead
of stopping times relative to F, it allows us to consider any random time which can be made into
a stopping time under some calibrated martingale measure. We can rephrase this as saying that
Mg is equivalent to a weak formulation of the initial problem on the right-hand side of (3.2.5).
To make this precise, let us define a weak stopping rule ↵ as a collection

↵ =
�
Ω

↵, F↵, Q↵,F↵ = (F↵
k )0kN , (S↵

k )0kN , (g�,↵)�2Λ, (Φ↵
k )k2T, ⌧

↵
�

with
�
Ω↵, F↵, Q↵,F↵

�
a filtered probability space, ⌧↵ a T-valued F↵-stopping time, an Rd-valued

(Q↵,F↵)-martingale S↵ and a collection of random variables g�,↵,Φ↵
k , and such that there is a

measurable surjective mapping i↵ : Ω↵ ! Ω with Q = Q↵ � i�1
↵ 2 M and i�1

↵ (Fk) ⇢ F↵
k ,
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i�1
↵ (F) ⇢ F↵, and finally LQ↵(S↵, g↵,Φ↵) = LQ(S, g,Φ). Denote by Ag the collection of all

weak stopping rules ↵ such that EQ↵⇥
g�,↵

⇤
= 0 for each � 2 Λ. It follows that any ↵ 2 Ag induces

a probability measure Q 2 Mg and EQ↵

[Φ↵
⌧↵ ] = EQ[Φ]. Reciprocally, any Q 2 Mg, together with

the space (Ω,F ,F) and (S, g,Φ), provides a weak stopping rule in Ag. As a consequence,

sup
↵2Ag

EQ↵⇥
Φ⌧↵

⇤
= sup

Q2Mg

EQ[Φ
⇤
.

In summary, and similarly to a number of other contexts, see the Introduction in [83], the weak
formulation (and not the strong one) offers the right framework to compute the value of the
problem. In fact, the set Mg is large enough to make the problem static, or European, again.
However, while it offers a solution and a corrected version of (3.2.5), it does not offer a funda-
mental insight into why (3.2.5) may fail and if there is a canonical “smaller" way of enlarging
the objects on the right-hand side thereof to preserve the equality. These questions are addressed
in the subsequent section.

Remark 3.2.7. [22] and [23] studied the same superhedging problem in a Markovian setting,
where the underlying process S takes values in a discrete lattice X . By considering the weak
formulation (which is equivalent to our formulation, as shown in Remark 3.2.6 above), they
obtain similar duality results. However, they only consider Φk = �(Sk) where � : Rd ! R.
Then the authors show that in the optimization problem supQ2Mg

EQ[Φ] given in (3.2.7) one
may restrict to only Markovian martingale measures. The primal and the dual problem then turn
out to be linear programming problems under linear constraints, which can be solved numerically.
Their arguments have also been extended to a more general context, where S takes values in R+.
Comparing to [22] and [23], our weak formulation is very similar to theirs. However our setting
is much more general and, when considering the specific setups in Sections 5.2 and 3.3, we rely
on entirely different arguments to prove the duality.

3.2.3 The loss and recovery of the dynamic programming principle and
the natural duality for American options

The classical pricing of American options, on which the duality in (3.2.5) was modelled, relies
on optimal stopping techniques which subsume a certain dynamic consistency, or a dynamic
programming principle, as explained below. Our second key observation in this paper is that if
the pricing-hedging duality (3.2.5) for American options fails it is because the introduction of
static trading of European options g at time t = 0 destroys the dynamic programming principle.
Indeed, ⇡E

g (⇠) will typically be lower than the superhedging price at time t = 0 of the capital
needed at time t = 1 to superhedge from thereon. To reinstate such dynamic consistency, we
need to enlarge the model and consider dynamic trading in options in g. This will generate a
richer filtration than F and one which will carry enough stopping times to obtain the correct
natural duality in the spirit of (3.2.5). In particular, if g = 0 (or equivalently Λ = ;), then (3.2.5)
should hold. We now first prove this statement and then present the necessary extension when
g is non-trivial.

Let Υ be a class of F-measurable random variables such that �1 2 Υ, we denote E(⇠) :=
supQ2M EQ[⇠], and suppose that there is a family of operators Ek : Υ ! Υ for k 2 {0, . . . , N �1}
such that Ek(⇠) is Fk-measurable for all ⇠ 2 Υ and Ek(�1) = �1. Notice that F0 is assumed
to be trivial so that E0(⇠) is deterministic. We say that the family (Ek) provides a dynamic
programming representation of E if

E(⇠) = E0(⇠) 8⇠ 2 Υ, where Ek(⇠) := Ek � · · · � EN�1(⇠), 0 6 k 6 N � 1. (3.2.9)
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The family (Ek) naturally extends to (Ek), 0 6 k 6 N � 1, defined for any Φ 2 Υ = ΥN by

E0(Φ) := E0(Φ(·, 1)),

Ek(Φ)(!̄) :=

(
Ek(Φ(·, ✓))(!) if ✓ < k,

Ek(Φ(·, k))(!) _ Ek(Φ(·, k + 1))(!) if ✓ > k,
for 1 6 k 6 N � 1. (3.2.10)

Assume that f _ f 0 2 Υ for f, f 0 2 Υ so that (Ek) maps functionals from Υ to Υ. We
introduce the following process,

E
k
(Φ) := Ek � · · · � EN�1(Φ), 0 6 k 6 N � 1, (3.2.11)

which, under suitable assumptions (see Proposition 3.2.9 below) represents the M-Snell envelope

process of an American option Φ 2 Υ. To illustrate how the operator E
0

works, we develop it
for the case T = {1, 2, 3},

E
0
(Φ) = E0

⇣
E1 � E2(Φ(·, 1))

_
E1
�
E2(Φ(·, 2)) _ E2 (Φ(·, 3))

�⌘
.

We say that the family (Ek) provides a dynamic programming representation of E(Φ) :=
supQ2M EQ[Φ] if

E(Φ) = E
0
(Φ), 8Φ 2 Υ. (3.2.12)

Typically we will consider Ek to be a supremum over conditional expectations with respect to
Fk (see Examples 3.2.11 and 3.2.12 below), and in such setups we automatically obtain

E(Φ) = sup
Q2M

EQ[Φ] 6 E
0
(Φ), Φ 2 Υ. (3.2.13)

Theorem 3.2.8. Assume that Λ = ;, Ek satisfies (3.2.9), that (3.2.13) holds true, and that
f _ f 0 2 Υ for all f, f 0 2 Υ. Then, for all Φ 2 ΥN = Υ,

sup
Q2M

EQ[Φ] = sup
Q2M

sup
⌧2T (F)

EQ[Φ⌧ ]. (3.2.14)

If, further, the European pricing-hedging duality holds on Ω for the class Υ, then

⇡A(Φ) = sup
Q2M

sup
⌧2T (F)

EQ[Φ⌧ ].

The second assertion follows instantly from the first one and Theorem 3.2.4. The first assertion
is reformulated and proved in Proposition 3.2.9 below, which also allows us to identify the optimal
stopping time on the right-hand side of (3.2.14).

Proposition 3.2.9. Assume that Λ = ; and f _ f 0 2 Υ for all f, f 0 2 Υ. Then the dynamic
programming representation (3.2.12) holds if and only if (3.2.9) and (3.2.13) hold true. Moreover,
under condition (3.2.12), the F-stopping time

⌧⇤(!) := min
n
k > 1 : Ek (Φ(·, k)) (!) = E

k
(Φ)(!, k)

o
(3.2.15)
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provides the optimal exercise policy for Φ 2 Υ, in sense that

sup
Q2M

EQ[Φ] = sup
Q2M

sup
⌧2T (F)

EQ[Φ⌧ ] = sup
Q2M

EQ [Φ⌧⇤ ] = E
0
(Φ). (3.2.16)

Remark 3.2.10. The proof of Proposition 3.2.9 will be provided in Section 3.4. The results in
Theorem 3.2.8 and Proposition 3.2.9 are stated on (Ω,F), where there are only finitely many
dynamically traded risky assets. However, their proofs do not rely on the fact that the number of
risky assets is finite, and the same results still hold true if there are infinitely many dynamically
traded risky assets.

Next, we give two examples of operators (Ek)k6N�1 satisfying (3.2.9), (3.2.13) and therefore,
by Proposition 3.2.9, also (3.2.12).

Example 3.2.11. The model-specific setting is recovered by taking P = {P}, for a fixed proba-
bility measure P. Then, taking Υ to be the set of all F-measurable random variables and

Ek(⇠) = ess supQ2Mg
EQ[⇠|Fk], (3.2.17)

where the essential supremum is taken with respect to P, leads to a family of operators satisfying
(3.2.9), (3.2.13), and therefore also (3.2.12). See the literature on dynamic coherent risk measures
for further discussion (e.g., [84] for an overview). In particular, Theorem 3.2.8 recovers the
classical superhedging theorem for American options (see, e.g., [85]).

Example 3.2.12. Let (Ω, d) be a Polish space, F the universally completed Borel �-field, P a
given set of probability measures on (Ω,F), and M be defined by (3.2.3). We are given a filtration
G := (Gk)k6N such that G0 = {;,Ω} and each �-field Gk is countably generated. Let Fk be the
universal completion of Gk. Notice that EP[⇠|Gk] = EP[⇠|Fk], P-a.s. for all F-measurable ⇠ and
P 2 P, and the fact that Gk is countably generated ensures the existence of a regular conditional
probability of P with respect to Gk.

Assume there exists a family (Mk(!))kN�1,!2Ω of sets of measures satisfying:

• Q([!]Gk
) = 1 for all Q 2 Mk(!), where [!]Gk

is the atom of Gk containing !, i.e.,

[!]Gk
=

\

F2Gk:!2F

F. (3.2.18)

Note that [!]Gk
2 Gk because the latter is countably generated.

• For every Q 2 M and every family of regular conditional probabilities (Q!)!2Ω of Q with
respect to Gk, one has Q! 2 Mk(!), for Q-a.e. !.

Define the family (Ek)k6N�1 by

Ek(⇠)(!) = sup
Q2Mk(!)

EQ[⇠].

If we furthermore assume that Ek(⇠) 2 Υ for any ⇠ 2 Υ, then the family (Ek)k6N�1 satisfies
(3.2.13) (see Proposition 3.4.1). Moreover, under suitable assumptions on (Ω,F,P), Mk(!) and
Υ, we shall also prove that (3.2.9) holds for this family. This holds in particular in the setup of
[1] as shown therein; see (4.12) in [1].

Let us consider the case with statically traded options: Λ 6= ;. We saw in Example 3.1.1 that
this can break down dynamic consistency as the universe of traded assets differs at time t = 0
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and times t > 1. To remedy this, one has to embed the market into a fictitious larger one where
both S and all the options g�, � 2 Λ, are traded dynamically.

Definition 3.2.13. Let (bΩ, bF, bF) be a filtered space satisfying the following properties:

1. There exists a surjective mapping i : bΩ ! Ω.

2. For each k, i�1(Fk) ⇢ bFk.

3. There exists a family of bF-adapted processes Y = (Y �)�2Λ such that Y �
0 = 0 and Y �

N (b!) =
g�(i(b!)).

4. Let S(b!) := S(i(b!)), bS := (S, Y ), and define

bP := {bP 2 B(bΩ) : bP � i�1 2 P}, cM := {bQ n bP : bS is an (bQ, bF)-martingale}. (3.2.19)

There exists a mapping J : Mg ! cM such that for Q 2 Mg, J(Q) � i�1 = Q and

LJ(Q)(bS) = LQ(S, Y
Q),

where Y Q = (Y �,Q)�2Λ and Y �,Q := (EQ[g�|Fk])k6N .

The collection (bΩ, bF, bF , bP, Y, i, J) satisfying Properties 1–4 above is called a dynamic exten-
sion of (Ω,F,F ,P, S, g). In short, we shall say that bΩ is a dynamic extension of Ω.

Remark 3.2.14. A measure Q 2 Mg is an admissible pricing measure under which the time-k
prices for European options g� are given by Y �,Q

k . Property 4 in the above definition says that

any such Q 2 Mg can be lifted to a measure J(Q) 2 cM which preserves the joint distribution of
the stock and option prices. In general, we do not expect the reverse to be true and we may have
J(Mg) ( cM. More precisely, cM may offer scope for a richer description and dynamics so that
the mapping cM 3 bQ 7! bQ � i�1 2 Mg is surjective but typically not injective.

Example 3.2.15. In practice, the map J in a dynamic extension is often built from a family of
mappings from Ω to bΩ. Assume that, for each Q 2 Mg, one has a mapping jQ : Ω ! bΩ such
that i � jQ = id and L

Q�j�1
Q

(Y ) = LQ(Y
Q). Let J(Q) := Q � j�1

Q . Then J : Mg ! cM satisfies

Property 4 of Definition 3.2.13.
Let us illustrate this with an example of a dynamic extension of Ω in the case of finitely

many statically traded options, i.e., Λ = {1, . . . , e} for some e 2 N. Consider the space bΩ =

Ω⇥R(N�1)⇥e. An element b! of bΩ can be written as b! = (!, y) where y = (y1, . . . , ye) 2 R(N�1)⇥e

with yi = (yi1, . . . , y
i
N�1). Define a mapping i : bΩ ! Ω by i(b!) = ! which is clearly surjective.

We also introduce the process Y as Yk(b!) = yk = (y1k, . . . , y
e
k) for k 2 {1, . . . , N � 1}, Y0(b!) = 0

and YN (b!) = g(b!) = g(!). Let Yk := �(Yn : n 6 k) and bFk be the universal completion
of Fk ⌦ Yk, so that one obtains the filtration bF := ( bFk)k=0,1,...,N . In this context, we define
jQ(!) := (!, (yQ,i

k )i6e,k6N�1), where yQ,i
k is a version of EQ[gi|Fk](!) for each Q 2 Mg. Then

it is clear that i � jQ = id and L
Q�j�1

Q

(Y ) = LQ(Y
Q). This implies that J : Q 7! Q � j

�1
Q

satisfies Property 4 of Definition 3.2.13. In line with Remark 3.2.14, the inverse of J, given by
cM 3 bQ 7! bQ � i�1 = bQ|Ω 2 Mg is surjective.

We consider a class of functions bΥ on bΩ and assume that Υ ⇢ bΥ in the sense that for ⇠ 2 Υ,
⇠(b!) := ⇠(i(b!)) belongs to bΥ. The relationship between cM and Mg observed in Remark 3.2.14
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then yields
sup
Q2 cM

EQ [⇠] > sup
Q2Mg

EQ [⇠] for any ⇠ 2 Υ.

We can apply the enlargement construction introduced in Section 3.2.2 to the space bΩ which

leads to the set of martingale measures cM on bΩ, and the above inequality extends to

sup
Q2 cM

EQ [Φ] > sup
Q2Mg

EQ [Φ] for any Φ 2 Υ. (3.2.20)

We now consider a dynamic extension (bΩ, bF, bF , bP, Y, i, J) of (Ω,F,F ,P, S, g) as a fictitious market
in which we can trade dynamically in bS = (S, Y ) using the class of trading strategies bH, which

are the bF-predictable R
bΛ-valued processes which have only finitely many non-zero coordinates

where bΛ = {(i, s) : i 2 {1, . . . , d}} [ {(�, y) : � 2 Λ}, i.e.,

bH =
� bH =( bHb�

k : b� 2 bΛ)k6N : bF-predictable R
bΛ-valued process s.t.

9 finite subset bΛ0 ⇢ bΛ s.t. bHb�
k = 0, 8k, 8b� /2 bΛ0

 
.

A self-financing strategy corresponds to a choice of bH 2 bH and yields a final payoff of

( bH � bS)N =

dX

j=1

NX

k=1

bH(j,s)
k ∆Sj

k +
X

�2Λ

NX

k=1

bH(�,y)
k ∆Y �

k . (3.2.21)

Note that our choice of trading strategies ensures that the sums are finite. The supehedging
costs of a European option b⇠ and an American option bΦ = (bΦk)k6N on bΩ are given by

b⇡E(b⇠) = inf
�
x : 9 bH 2 bH s.t. x+ ( bH � bS)N > b⇠, bP-q.s.

 
,

b⇡A(bΦ) = inf
�
x : 9(1bH, . . . ,N bH) 2 bHN s.t. jbHi =

kbHi 8 1 6 i 6 j 6 k 6 N (3.2.22)

and s.t. x+ (kbH � bS)N > bΦk, 8k = 1, . . . , N, bP-q.s.
 
.

Remark 3.2.16. Clearly bF is much richer than F as it captures not only the evolution of prices
of S but also of all the vanilla options. The inequality b⇡A(Φ) 6 ⇡A

g (Φ) holds trivially as a

buy-and-hold strategy is a special case of a dynamic trading strategy and P = bP � i�1.

The following result shows that if the pricing-hedging duality holds then the superhedging
prices in the fictitious dynamic extension market are the same as in the original market. This
will apply to the setups we consider in Sections 5.2 and 3.3 below.

Proposition 3.2.17. Let (bΩ, bF, bF , bP, Y, i, J) be a dynamic extension of (Ω,F,F ,P, S, g) with
its superhedging prices given by (3.2.22).
(a) Assume that the European pricing-hedging duality holds for the class Υ on Ω. Then

⇡E
g (⇠) = b⇡E(⇠), ⇠ 2 Υ.

(b) Assume that the European pricing-hedging duality holds for the class ΥN on Ω. Then

⇡A
g (Φ) = b⇡A(Φ), Φ 2 Υ

N .
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Proof. Note that ⇡A
g > b⇡A holds by Remark 3.2.16. Using (3.2.7) twice we obtain

⇡E
g (Φ) = ⇡A

g (Φ) > b⇡A(Φ) = b⇡E
(Φ) > sup

bQ2 cM
E

bQ [Φ] > sup
Q2Mg

EQ[Φ], (3.2.23)

where the penultimate inequality always holds by Remark 3.2.2 and the last inequality follows by
(3.2.20). The assumed pricing-hedging duality on Ω implies that we have equalities throughout.
The proof of (a) is analogous but simpler.

Remark 3.2.18. The above result may at first seem surprising. The dynamic extension intro-
duces many new dynamically traded assets, yet the superhedging prices remain the same. The
intuition behind this is that under pricing-hedging duality, the cheapest superhedge is a perfect
hedge (or very nearly so) under some (worst case) model. Our dynamic extensions do not intro-
duce any constraints on the prices of options g and hence do not restrict the set of martingale
measures. The worst case model will remain an admissible model and for this model the addi-
tional traded assets make no difference. They could however make a difference in many other
(specific) models. If we considered a restricted version of dynamic trading in which we make fur-
ther assumptions about the price dynamics of vanilla options, then this could imply that J � i�1

is not surjective and the superhedging prices might strictly decrease. Such a setup is studied in
[86] where the authors consider restrictions on the levels of implied volatility through time.

Let (bΩ, bF, bF , bP, Y, i, J) be a dynamic extension of (Ω,F,F ,P, S, g) and bEk be a family of
operators on the space bΥ of functionals on bΩ. One can define the corresponding extended

operators bEk as well as bE
k

as in (3.2.9) and (3.2.10). We can then apply Theorem 3.2.8 and
Proposition 3.2.17 to obtain the following result,

Corollary 3.2.19. Let (bΩ, bF, bF , bP, Y, i, J) be a dynamic extension of (Ω,F,F ,P, S, g) with op-

erators bEk : bΥ ! bΥ and the corresponding extended operators bEk as well as bE
k

satisfying (3.2.9)
and (3.2.13). Assume that the European pricing-hedging duality holds for the class ΥN on Ω,
and f _ f 0 2 Υ for all f, f 0 2 Υ. Then for all Φ 2 ΥN ,

⇡A
g (Φ) = b⇡A(Φ) = sup

bQ2 cM
sup

⌧̂2T (bF)
E

bQ [Φ⌧̂ ] = sup
bQ2 cM

E
bQ [Φ] = sup

bQ2 cM
E

bQ[Φ⌧̂⇤ ], (3.2.24)

where

⌧̂⇤ := min

⇢
k > 1 : bEk (Φ(·, k)) (!) = bE

k

(Φ)(!, k)

�
.

Remark 3.2.20. In Section 5.2, in the context of [1], we will adopt the dynamic extension
introduced in Example 3.2.15, and show that it admits a family of operators bEk to which we can
apply Corollary 3.2.19.

Remark 3.2.21. We believe that Corollary 3.2.19 describes a canonical, and in some sense
minimal, solution to the pricing-hedging duality of American option, when compared to addition
of all consistent random times, as discussed in Remark 3.2.6. A dynamic extension bΩ is crucial
to establish the DPP, which in turn allows one to define the optimal stopping time ⌧̂⇤.

Remark 3.2.22. Let us consider the two period (N = 2) example of [82]; see Figure 2. For
simplicity, we introduce only one statically traded option g with payoff 11{S2=4} at time t = 2 and
price 2/5 at time t = 0. This already destroys the pricing-hedging duality for the American option
Φ. In [82], the duality is recovered by considering a (calibrated) mixture of martingale measures.
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(2, 2/5 )

(1, 1, 0 )

(0, 0, 0 )
1/2

(2, 0, 0 )
1/2

(4, 8, 1 )
0

2/5

(1, 1, 1/4 )

(0, 0, 0 )
3/4

(2, 0, 0 )
0

(4, 8, 1 )
1/4

1/10

(3, 0, 3/4 )

(0, 0, 0 )
1/4

(2, 0, 0 )
0

(4, 8, 1 )
3/4

1/
2

Figure 3.2: The model on bΩ which corresponds to the mixture model in [82] attaining the
superhedging price. Prices of the stock are written in regular font, payoffs of the American
option in bold and prices of European option in italic.

It is insightful to observe that their mixture model is nothing else but a martingale measure
for an augmented setup with dynamic trading in g which, following Corollary 3.2.19, restores
the dynamic programming principle and the pricing-hedging duality for American options. To
show this, let Y denote the price process of the option g, so that Y0 = 2/5 and Y2 = g. Figure 2
illustrates a martingale measure Q along with the intermediate prices Y1 such that the processes S
and Y are martingales. With ⌧ = 11{S1=1,Y1=0}+211{S1=1,Y1=1/4}[{S1=3} we find EQ[Φ⌧ ] = 18/5,
which is the superhedging price, and the duality is recovered.

3.2.4 Pseudo-stopping times

In this subsection we study the connection of our problem to pseudo-stopping times in the
filtration F which form a bigger class than F-stopping times. We refer the reader to [87], [88]
and [89] for an introduction to pseudo-stopping times.

It follows from Theorem 3.2.4 that in general we expect to see

⇡A
g (Φ) = sup

Q2Mg

EQ[Φ] > sup
Q2Mg

sup
⌧2T (F)

EQ[Φ⌧ ],

where the inequality may be strict. We showed above that this is linked with the necessity to
use random times beyond ⌧ 2 T (F). To conclude our general results, we explore this property
from another angle and identify the subset(s) of Mg which lead to equality in the place of the
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inequality above. We introduce

Mg :=
�
Q 2 B(Ω) : Q n P, EQ[g�] = 0, � 2 Λ, S is an (F,Q)-martingale,

EQ[MT ] = EQ[M0], for all bounded (F,Q)-martingales M
 
, (3.2.25)

as the set of measures which make S an F-martingale and T an F-pseudo-stopping time. These are
natural because the martingale part of the Snell envelope can be stopped at the pseudo-stopping
time with null expectation.

Proposition 3.2.23. Assume that Mg 6= ;. Then

sup
Q2Mg

EQ[Φ] = sup
Q2Mg

sup
⌧2T (F)

EQ
⇥
Φ⌧ ]. (3.2.26)

Proof. Let Q 2 Mg such that EQ[|g�|] < 1 and EQ[|Φk|] < 1 for all � 2 Λ and k = 1, . . . , N .

We next consider the optimal stopping problem sup⌧2T (F) E
Q
⇥
Φ⌧

⇤
. Define its Snell envelope

(Zk)0kN by

Zk := ess sup
⌧2T (F),⌧�k

EQ
⇥
Φ⌧

��Fk

⇤
,

which is an (F,Q)-supermartingale. Its Doob–Meyer decomposition is given by

Zk = Z0 +Mk �Ak, where A = (Ak)0kN is an F-predictable increasing process,

and A0 = M0 = 0. It follows that

EQ
⇥
Φ
⇤

 EQ[ZT ]  Z0 + EQ[MT ] = Z0. (3.2.27)

We deduce that supQ2Mg
EQ[Φ]  supQ2Mg

sup⌧2T (F) E
Q
⇥
Φ⌧ ]. Then (3.2.26) holds as every

stopping time ⌧ 2 T (F) is a pseudo-stopping time and hence the inverse inequality is trivial.

Remark 3.2.24. The above allows us to see that it is not enough to use randomized stopping
times to recover the equality in (3.2.5). Such a time corresponds to an F-adapted increasing
process V with V0 = 0 and VN = 1. It may be seen as a distribution over all possible stopping
times, in our setup a distribution ⌘ on T such that ⌘({k}) := ∆Vk = Vk � Vk�1 for each k 2 T.
For any pseudo-stopping time ⌧ , the dual optional projection of the process 11[[⌧,N ]] is a randomized
stopping time. Conversely, for a given V , if we take a uniformly distributed random variable Θ

independent of V , possibly enlarging the probability space, then ⌧ := inf{t : Vt > Θ} is F-pseudo-
stopping time which generates V . Let R be the set of such randomized stopping times. Then,
from Proposition 3.2.23 and the definition of the dual optional projection,

sup
Q2Mg

sup
⌧2T (F)

EQ
⇥
Φ⌧ ] = sup

Q2Mg

sup
V 2R

EQ

"X

k

Φk∆Vk

#
.

Remark 3.2.25. [88] showed that under a progressive enlargement with pseudo-stopping time ⌧ ,
all martingales from the smaller filtration stopped at ⌧ remain martingales in the larger filtration.
One can relate this to a more restrictive situation, when all martingales from the smaller filtration
remain martingales in the bigger filtration, which is called the immersion property in the context of
filtration enlargement. Clearly each random time satisfying the immersion property is a pseudo-
stopping time. Thus, keeping the equality (3.2.26) true, the pseudo-stopping time property in
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the definition of Mg above can be replaced by a stronger condition characterizing the immersion
property,

Q[T > k|Fn] = Q[T > k|Fk], for all 0  k  n  N. (3.2.28)

See Section 3.1.2 of [90] for the discrete time context of progressive enlargement of filtration and
[91] for connections between pseudo-stopping times, the immersion property and projections.

3.2.5 A detailed study of the non-dominated setup of
[1]

In this section we work in the non-dominated setup introduced in [1] which is a special case
of Example 3.2.12. We let Ω0 = {!0} be a singleton and Ω1 be a Polish space. For each
k 2 {1, . . . , N}, we define Ωk := {!0} ⇥ Ωk

1 as the k-fold Cartesian product. For each k, we
denote Gk := B(Ωk) and by Fk its universal completion. In particular, G0 and F0 are trivial,
and EP[⇠|Gk] = EP[⇠|Fk] for all ⇠ 2 FN and every probability measure P on (ΩN ,FN ). We shall
often see Gk and Fk as sub-�-fields of FN , and hence obtain two filtrations G = (Gk)0kN and
F = (Fk)0kN on Ω. Denote

Ω := ΩN , G := GN and F := FN .

Recall that a subset of a Polish space Ω is analytic if it is the image of a Borel subset of another
Polish space under a Borel measurable mapping. We take Υ to be the class of upper semianalytic
functions f : Ω ! R := [�1,1], i.e., such that {! 2 Ω : f(!) > c} is analytic for all c 2 R.

The price process S is a G-adapted Rd-valued process and the collection of options g =
(g1, . . . , ge) is a G-measurable Re-valued vector for e 2 N (thus Λ = {1, . . . , e}).

Let k 2 {0, . . . , N � 1} and ! 2 Ωk. We are given a nonempty convex set Pk(!) ✓ B(Ω1) of
probability measures, which represents the set of all possible models for the (k + 1)-th period,
given state ! at times 0, 1, . . . , k. We assume that for each k,

graph(Pk) := {(!,P) : ! 2 Ωk,P 2 Pk(!)} ✓ Ωk ⇥B(Ω1) is analytic. (3.2.29)

Given a universally measurable kernel Pk : Ωk ! B(Ω1) for each k 2 {0, 1, . . . , N � 1}, we define
a probability measure P = P0 ⌦ P1 ⌦ · · ·⌦ PN�1 on Ω by

P(A) :=

Z

Ω1

· · ·

Z

Ω1

1A(!1,!2, . . . ,!N )PN�1(!1, . . . ,!N�1; d!N ) · · ·P0(d!1).

We can then introduce the set P ✓ B(Ω) of possible models for the multi-period market up to
time N by

P :=
�
P0 ⌦ P1 ⌦ · · ·⌦ PN�1 : Pk(·) 2 Pk(·), k = 0, 1, . . . , N � 1

 
. (3.2.30)

Notice that the condition (5.2.2) ensures that Pk always has a universally measurable selector:
Pk : Ωk ! B(Ω1) such that Pk(!) 2 Pk(!) for all ! 2 Ωk. Then the set P defined in (5.2.1) is
nonempty. We also denote

Mk,k+1(!) := {Q 2 P(Ω1) : Q n Pk(!) and E�!⌦kQ[∆Sk+1] = 0}, (3.2.31)



62CHAPITRE 3. SUPER-REPLICATION OF AMERICAN OPTION UNDER MODEL UNCERTAINTY

where �! ⌦k Q := �(!1,...,!k) ⌦Q is a Borel probability measure on Ωk+1 := Ωk ⇥ Ω1, and

Mk(!) :=
�
�! ⌦k Qk ⌦ · · ·⌦QN�1 : Qi(·) 2 Mi,i+1(·), i = k, . . . , N � 1

 
. (3.2.32)

The following notion of no-arbitrage NA(P) has been introduced in [1]: NA(P) holds if for
all (H,h) 2 H⇥ Re,

(H � S)N + hg > 0 P-q.s. =) (H � S)N + hg = 0 P-q.s.

Analogously, we will say that NA(P) holds if for all (H,h) 2 H⇥ Re,

(H � S)N + hg > 0 P-q.s. =) (H � S)N + hg = 0 P-q.s. (3.2.33)

Recall also that Mg and Mg have been defined in (3.2.3) and (3.2.6). As established in [1], the
condition NA(P) is equivalent to the statement that P and Mg have the same polar sets. The
following lemma extends this result to Ω.

Lemma 3.2.26. NA(P) () NA(P) () [P and Mg have the same polar sets.]

Proof. The two conditions NA(P) and NA(P) are equivalent by the same arguments as in proving
(3.2.7). It is enough to show that P and Mg have the same polar sets if and only if P and Mg

have the same polar sets. This boils down to proving that a set Γ 2 Ω is an Mg polar set if
and only if the k-section Γk = {! : (!, k) 2 Γ} is an Mg polar set for each k 2 T, which can
be shown similarly to the analogous statement involving P and P established in the proof of
Theorem 3.2.4.

3.2.6 Duality on the enlarged space Ω

Our first main result is the following duality under the no-arbitrage condition (3.2.33).

Theorem 3.2.27. Let NA(P) hold. Then the set Mg is nonempty, and, for any upper semian-
alytic Φ : Ω ! R, one has

⇡E
g (Φ) = sup

Q2Mg

EQ[Φ
⇤
, (3.2.34)

and in particular the pricing-hedging duality (3.2.8) holds. Moreover, there exists (H,h) 2 H⇥Re

such that
⇡E
g (Φ) + (H � S)N + hg � Φ, P-q.s.

The proof is postponed to Section 3.5 and uses the following lemma. Let us work with the
operators Ek introduced in Example 3.2.12 with Mk(!) defined as in (3.2.32). Observe that

Ek � · · · � EN�1(⇠)(!) = Ek,k+1 � · · · � EN�1,N (⇠)(!), ⇠ 2 Υ,

where Ek,k+1(⇠)(!) = supMk,k+1(!) E
Q [⇠]. By Proposition 3.2.9, (4.12) in [1] and using that the

maximum of upper semianalytic functions is still upper semianalytic, we conclude the following.

Lemma 3.2.28. Consider the case e = 0, i.e., Λ = ;. Let Φ 2 Υ. Then Ek(Φ) in (3.2.10) is
also upper semianalytic and

sup
Q2M

EQ[Φ] = E
0
(Φ) := E0 � · · · � EN�1(Φ).
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3.2.7 Dynamic programming principle on bΩ
We consider a dynamic extension (bΩ, bF, bF , bP, Y, i, J) of (Ω,F,F ,P, S, g) as defined in Example
3.2.15, where bΩ = Ω ⇥ R(N�1)⇥e has the same product structure as Ω, and bP is defined by
(3.2.19). Moreover, bGk := Gk ⌦ �(Yi, i  k) is countably generated and bFk is the universal
completion of bGk. For k = 0, . . . , N � 1 and b! = (!, y) 2 bΩ, we define

bPk(!, y) :=
�bP : bP|Ω1

2 Pk(!)
 
.

By the definition of P in (5.2.1), it is clear that bP has the same product structure, i.e.,

bP =
�bP0 ⌦ · · ·⌦ bPN�1 : bPk(·) 2 bPk(·), k = 0, . . . , N � 1

 
.

Further, recalling the definitions of Mk,k+1(!) and Mk(!) in (3.2.31)-(3.2.32), we define

cMk,k+1(!, y) :=
�bQ 2 B(Ω1 ⇥ Re) : bQ|Ω1

2 Mk,k+1(!), E
bQ⇥(∆Sk+1,∆Yk+1)

⇤
= 0
 
,

and
cMk(b!) :=

�
�b! ⌦k

bQk ⌦ · · ·⌦ bQN�1 : bQi(·) 2 cMi,i+1(·), i = k, . . . , N � 1
 
,

with ∆Sk+1 := Sk+1 �Sk and ∆Yk+1 := Yk+1 �Yk. Similarly to the definition of Ek in Example
3.2.12 with Mk(!), we define a family of operators (bEk) on functionals on bΩ using cMk(b!),
and show in the following theorem that it provides a dynamic programming representation of
supbQ2 cM E

bQ[ · ], where cM is defined in Property 4 of Definition 3.2.13. The proof of Theorem
3.2.29 is left to Section 3.5.3.

Theorem 3.2.29. Let b⇠ : bΩ ! R be an upper semianalytic functional. Then bEk(b⇠) is also upper
semianalytic and

sup
bQ2 cM

E
bQ[b⇠] = sup

bQ2 cM0

E
bQ[b⇠] = bE0(b⇠) := bE0 � · · · � bEN�1(b⇠). (3.2.35)

Remark 3.2.30. (i) The above result is in fact a classical dynamic programming principle result
studied in [92] and [93]. The only crucial step is to prove that the graph set [[cMk,k+1]] :=
{(b!,Q) : Q 2 Mk,k+1(b!)} is analytic.

(ii) Assume that NA(P) holds. It then follows by Lemma 3.2.26 and Theorem 3.2.27 that the

pricing-hedging duality on Ω in (3.2.34) holds. Further, by defining bEk and bE
k

with bEk as in
(3.2.9) and (3.2.11), one has that (3.2.9) holds for bEk from Theorem 3.2.29, and moreover that

(3.2.13) holds for bE
k

as it is a special case of Example 3.2.12. It then follows by Corollary 3.2.19
that (3.2.24) holds in this framework.

3.2.8 Comparison with [20] and [21]

In [20] the authors considered the same superhedging problem ⇡A
g (Φ) with the finite set Λ =

{1, . . . , e}, and established the duality

⇡A
g (Φ) = inf

h2Re
sup

⌧2T (F)

sup
Q2M0

EQ[Φ⌧ � hg], (3.2.36)
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under some regularity conditions (see Proposition 3.1 in [20]). Our duality in Theorem 3.2.27 is
more general and more complete, and moreover, together with Lemma 3.2.28, it induces the above
duality (3.2.36). In exchange, [20] also studied another subhedging problem sup⌧2T (F) infQ2M EQ[Φ⌧ ]
which we do not consider here.

More recently, [21] consider the “randomized” stopping times, and obtain a more complete
duality for ⇡A

g (Φ). The dual formulations in [21] and in our results are more or less in the
same spirit (as in [22] and [23]). Nevertheless, the duality in [21] is established under strong
integrability conditions and an abstract condition which is checked under regularity conditions
(see their Assumption 2.1 and Remark 2.1). In particular, when P is the class of all probability
measures on Ω, the integrability condition in their Assumption 2.1 is equivalent to saying that
Φk and gi are all uniformly bounded. In our paper, we only assume that gi are Borel measurable,
Φk are upper semianalytic and all are R-valued.

Technically, [21] use the duality results in [1] together with a minimax theorem to prove their
results. Our first main result consists of introducing an enlarged canonical space (together with
an enlarged canonical filtration) to reformulate the main problem as a superhedging problem
for European options. Then by adapting the arguments in [1], we establish our duality under
general conditions as in [1]. Moreover, we do not assume that Φk is Fk-measurable, which enables
us to study the superhedging problem for a portfolio containing an American option and some
European options. Finally, our setting enables us to apply an approximation argument to study
a new class of martingale optimal transport problems and to obtain a Kantorovich duality as in
Section 3.3.

3.3 A martingale (optimal) transport setup

In this section we study the duality for American options in a martingale optimal transport setup,
with canonical space Ω := {s0}⇥Rd⇥N for some s0 2 Rd, the canonical process S on Ω and P :=
B(Ω). Then, with Ω := Ω⇥T, we have P = P(Ω). We assume that the statically traded options
on the market are all vanilla options and are arbitrage-free (see [94] and [95]), and numerous
enough such that one can recover the marginal distribution of the underlying process S at some
maturity times T0 = {t1, . . . , tM} ✓ T, where tM = N . More precisely, we are given a vector
µ = (µ1, . . . , µM ) of marginal distributions. We write µ(f) := (

R
f(x)µ1(dx), . . . ,

R
f(x)µM (dx))

and we assume that µ(| · |) < 1 and

µi(f)  µj(f) for all i  j, i, j 6 M, and any convex function f : Rd ! R. (3.3.37)

The condition (3.3.37) ensures the existence of a calibrated martingale measure, i.e., that the
following sets are nonempty

Mµ :=
�
Q 2 B(Ω) : LQ(Sti) = µi, i 6 M, and S is a (Q,F)-martingale

 
,

Mµ :=
�
Q 2 B(Ω) : LQ(Sti) = µi, i 6 M, and S is a (Q,F)-martingale

 
.

Let Λ0 be the class of all Lipschitz functions � : Rd ! R, and denote Λ := ΛM
0 . The statically

traded options g = (g�)�2Λ are given by g�(!) := �(!)� µ(�) where �(!) :=
PM

i=1 �i(!ti) and
µ(�) :=

PM
i=1 µti(�i). Recall that Mg = Mµ. As Λ is a linear space, the superhedging cost

of the American option Φ using semi-static strategies ⇡A
g (Φ) defined in Subsection 3.2.1 can be
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rewritten as

⇡A
g (Φ) = ⇡A

µ (Φ) := inf{µ(�) : 9(1H, . . . ,NH) 2 HN s.t. jHi =
kHi 81 6 i 6 j 6 k 6 N

and � 2 Λ satisfying �(!)+(kH�S)N (!) > Φk(!) for all k 2 T, ! 2 Ω}.

Similarly, we denote by ⇡E
µ (Φ) the corresponding superhedging cost for a European option with

payoff Φ defined on Ω, and one has ⇡A
µ (Φ) = ⇡E

µ (Φ) by Theorem 3.2.4.

Example 3.3.1. We shall construct an example similar to Example 3.1.1 to highlight that we
may have a strict inequality in (3.2.5). Consider the case N = 2, T0 = T = {1, 2}, µ1 = �{0} and
µ2 = 1

4

�
�{�2} + �{�1} + �{1} + �{2}

�
. Let Φ1({S1 = 0}) = 1, Φ2({|S2| = 1}) = 2 and Φ2({|S2| =

2}) = 0. Then Mµ contains only one probability measure Q, and by direct computation, one has

EQ
⇥
Φ⌧ ] = 1, for all ⌧ 2 T (F).

Let us now construct a martingale measure Q0 by

Q0(d!, d✓) :=
1

4
�{1}(d✓)⌦

�
�(0,1) + �(0,�1)

�
(d!) +

1

4
�{2}(d✓)⌦

�
�(0,2) + �(0,�2)

�
(d!).

Then one can check that Q0 2 Mµ, and it follows that

sup
Q2Mµ

EQ[Φ] � EQ0 [Φ] =
3

2
> 1 = sup

Q2Mµ

sup
⌧2T (F)

EQ
⇥
Φ⌧ ].

The superhedging price of Φ is equal to 3/2, as one can consider a superhedging strategy consisting
of holding 3/2 in cash and one option g from Example 3.1.1. In a similar way as in Example
3.1.1, the duality may be recovered by allowing dynamic trading options.

3.3.1 Duality on the enlarged space Ω

The following theorem shows the duality for Ω. Its proof is postponed to Section 3.6.

Theorem 3.3.2. Suppose that Φ : Ω ! R is bounded from above and upper semicontinuous.
Then there exists an optimal martingale measure Q

⇤ 2 Mµ and the pricing-hedging duality holds,

EQ
⇤⇥
Φ
⇤
= sup

Q2Mµ

EQ
⇥
Φ
⇤
= ⇡E

µ (Φ),

and in particular (3.2.8) holds.

Remark 3.3.3. Note that in the above formulation each µi is an element of B(Rd). Instead
one could take µi to be an element of (B(R))d, and the same statements with analogous proofs
would still hold. This alternative formulation has a more transparent financial interpretation as
it corresponds only to marginal laws of terminal values of each stock price as opposed to the full
distribution; see also [96] for a related discussion.

3.3.2 Dynamic programming principle on bΩ
[28] and [29] studied the Skorokhod embedding and martingale optimal transport problems in
continuous time using measure-valued martingales. This point of view enables one to obtain
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the dynamic programming principle with marginal constraint because the terminal constraint is
transformed into the initial constraint. We adopt this perspective which proves to be very useful.

As before we work with the set of marginal times T0 = {t1, . . . , tM} ⇢ {1, . . . , N} such that
tM = N , and a vector of marginal measures µ = (µ1, . . . , µM ) satisfying (3.3.37), where each
µi is a probability measure on Rd. We let P1(R

d) = {⌘ 2 P(Rd) : ⌘(| · |) < 1} be the set of
probability measures with finite first moment which we equip with the 1-Wasserstein distance,
i.e., ⌘n ! ⌘0 if and only if

Z

Rd

f(x)⌘n(dx) !
Z

Rd

f(x)⌘0(dx), 8f 2 C1,

where C1 denotes the set of all continuous functions on Rd with at most linear growth, which
makes P1(R

d) a Polish space. Continuing with the construction from Example 3.2.15, bΩ has to
be an infinite dimensional space, and it is convenient to parametrize it as the canonical space for
the measure-valued processes

bΩ := {µ}⇥ (P1(R
d))M⇥N

and denote by bX = ( bX1
k , . . . ,

bXM
k )06k6N the canonical process on bΩ. Let bG = (bGk)0kN be the

canonical filtration and bF = ( bFk)0kN its universal completion. Denote by T (bF) the collection
of all bF-stopping times. For f 2 C1 we denote the process of its integrals against bX as

bXk(f) = ( bX1
k(f), . . . ,

bXM
k (f)), where bXi

k(f) :=

Z

Rd

f(x) bXi
k(dx) and

bXk(id) = ( bX1
k(id), . . . , bXM

k (id)), where bXi
k(id) =

Z

Rd

x bXi
k(dx).

Define i : bΩ ! Ω by i(b!) = ( bXM
0 (id)(b!), . . . , bXM

N (id)(b!)) which is surjective and naturally
extends processes on Ω to processes on bΩ. In particular the price process extends via Sk(b!) =
Sk(i(b!)) = bXM

k (id)(b!) and the statically traded options via g�(b!) = g�(i(b!)) = �(i(b!))�µ(�).
Define a family of processes Y = (Y �)�2Λ by Y � =

PM
i=1 Y

�i , where

Y �i

k =

(
bXi
k(�i)� µi(�i) 0 6 k 6 ti � 1,

g�i = �i( bXi
ti(id))� µi(�i) ti 6 k 6 N.

Note that Y �i

0 = 0.

For any Q 2 Mµ we define a mapping jQ : Ω ! bΩ by jQ(!) = (LQ(Sti |Fk)(!))i6M,k6N .

As in Example 3.2.15, the map J : Mµ ! cM defined by J(Q) = Q � j�1
Q satisfies Property 4 of

Definition 3.2.13.

Definition 3.3.4. (i) A probability measure bQ on (bΩ, bF) is called a measure-valued martingale
measure (MVM measure) if the process ( bXk(f))0kN is a (bQ, bF)-martingale for all f 2 C1.
(ii) A MVM measure bQ is terminating if for i 2 {1, . . . ,M},

bXi
ti 2 ∆ := {⌘ 2 P(Rd) : ⌘ = �x, x 2 Rd} bQ-a.s.

(iii) A MVM measure bQ is consistent if Sk = bXi
k(id) for k 6 ti and i 2 {1, . . . ,M}, bQ-a.s.
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Let us denote by

cMµ = {bQ 2 B(bΩ) : bQ is a terminating, consistent, MVM measure}.

The following lemma shows that the marginal distribution of S at ti is equal to µi, cMµ-q.s., and
hence bQ � i�1 2 Mµ for any bQ 2 cMµ.

Lemma 3.3.5. For a measure bQ 2 cMµ the following holds:
(i) LbQ(Sti | bFk) = bXi

k
bQ-a.s. for k 6 ti, and in particular LbQ(Sti) = µi.

(ii) For k 6 tj 6 ti, bXj
k � bXi

k
bQ-a.s., i.e., for any convex function f ,

Z

Rd

f(x) bXj
k(dx) 6

Z

Rd

f(x) bXi
k(dx)

bQ-a.s.

Proof. (i) Let A ⇢ Rd and recall that Sk = bXi
k(id)

bQ-a.s. Then we have
Z

Rd

11A(x)LbQ

⇣
bXi
ti(id)

��� bFk

⌘
(dx) = E

bQ
h
11{ bXi

ti
(id)2A}

��� bFk

i
= E

bQ
h
bXi
ti(11A)

��� bFk

i
= bXi

k(11A),

where the second equality holds as bQ is terminating and the third one follows by the definition
of the MVM measure in Definition 3.3.4 as well as Remark 2.2 of [29]. Hence the first assertion
is proven.
(ii) Let j 6 i, k 6 tj and f be a convex function. Then

Z

Rd

f(x) bXi
k(dx) = E

bQ
h
f
� bXi

ti(id)
�
| bFk

i

> E
bQ
h
f
�
E

bQ[ bXi
ti(id)|

bFtj ]
�
| bFk

i

= E
bQ
h
f
� bXi

tj (id)
�
| bFk

i
= E

bQ
h
f
� bXj

tj (id)
�
| bFk

i

=

Z

Rd

f(x) bXj
k(dx),

where the first and the last equalities follow by (a), the penultimate is due to the consistency of
bQ, and the inequality follows by conditional Jensen’s inequality.

Recall the set cM of martingale measures in Definition 3.2.13. The following lemma shows
how to build the map J and that (bΩ, bF, bF , Y, i, J) is a dynamic extension of (Ω,F,F ,P, S, g).

Lemma 3.3.6. (i) Under any bQ 2 cMµ, the processes S and Y �, for � 2 Λ, are (bQ, bF)-
martingales. In particular, one has cMµ ⇢ cM.
(ii) For Q 2 Mµ, let J(Q) be the distribution of the measure-valued process ⌘ = (⌘1k, . . . , ⌘

M
k )k6N ,

where ⌘ik = LQ(Sti |Fk). Then J : Mµ ! cM and (bΩ, bF, bF , Y, i, J) is a dynamic extension of
(Ω,F,F ,P, S, g).

Proof. (i) The process S = bXM (id) is a (bQ, bF)-martingale as bQ is an MVM measure. To prove
that Y � is a (bQ, bF)-martingale for any � 2 Λ, it is enough to show that for any i 6 M and � 2 Λ0
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one has E
bQ
h
�( bXM

ti (id))|
bFk

i
= bXi

k(�) for any k < ti. The latter holds because

E
bQ
h
�( bXM

ti (id))|
bFk

i
= E

bQ
h
�( bXi

ti(id))|
bFk

i
= E

bQ
h
bXi
ti(�)|

bFk

i
= bXi

k(�),

where the first equality follows by consistency of bQ, the second holds as bQ is terminating, and
the last one holds because bQ is an MVM measure.

(ii) We have ⌘iti = LbQ(Sti |Fti) = �Sti
2 ∆, and it follows that J(Q) 2 cMµ ⇢ cM.

For b! 2 bΩ, we define the set [b!]bGk
as in (3.2.18), and denote by cMk

µ(b!) the following set of
measures

cMk
µ(b!) :=

n
bQ 2 B(bΩ) : bQ is terminating and consistent,

bQ([b!]bGk
) = 1, and ( bXl)k6l6N is a (bQ, bF)-MVM

o
.

Let us define a family of operators bEk, etc., as in Example 3.2.12,

bEk(b⇠)(b!) = sup
Q2 cMk

µ(b!)

EQ
⇥b⇠
⇤
, b⇠ 2 bΥ,

and then the extension bEk as well as bE
0

on the enlarged space as in Section 3.2.2. We then have
the following theorem.

Theorem 3.3.7. For all upper semianalytic functionals b⇠ : bΩ ! R, bEk(b⇠) is also upper semian-
alytic and

sup
Q̃2 cMµ

EQ̃[b⇠] = bE
0

(b⇠). (3.3.38)

In particular the pricing-hedging duality (3.2.24) holds in this martingale optimal transport con-
text for all functionals Φ : Ω ! RN which are upper semicontinuous and bounded from above.

Proof. Notice that the pricing-hedging duality on Ω holds by Theorem 3.3.2. Then by Corollary
3.2.19, it is enough to establish the dynamic programming principle on bΩ to prove the pricing-
hedging duality (3.2.24). Using exactly the same arguments as in (4.12) of [1], to establish the
dynamic programming principle on bΩ, it is enough to argue that cMµ is such that

{(b!, bQ) : bQ 2 cMk
µ(b!)} is analytic.

To prove the above analyticity property, we first observe that

bEk � · · · � bEN�1(b⇠)(b!) = bEk,k+1 � · · · � bEN�1,N (b⇠)(b!), b⇠ 2 bΥ,

where Ek,k+1(b⇠)(!) = supMk,k+1
µ (!) E

Q
⇥b⇠
⇤

and

cMk,k+1
µ (b!) :=

n
bQ 2 B(bΩ) : bQ is terminating and consistent,

bQ([b!]bGk
) = 1, and b!k(f) = E

bQ[ bXk+1(f)], 8f 2 C1
o
.
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Next, let C0
1 denote a countable dense subset of C1 under the uniform convergence topology. Then

it is clear that for each k 2 T,

�
(b!, bQ) 2bΩ⇥B(bΩ) : bQ 2 cMk,k+1

µ (b!)
 
=
�
(b!, bQ) 2 bΩ⇥B(bΩ) : bQ([b!]bGk

) = 1

bQ is terminating and consistent, and b!k(f) = E
bQ[ bXk+1(f)], 8f 2 C0

1

 

is a Borel set.

3.4 Proofs for Section 3.2

We recall that Section 3.2 stays in a context with an abstract space (Ω,F) equipped with an
underlying process S and a family P of probability measures. M denotes the collection of all
measures Q dominated by some P 2 P and such that S is a Q-martingale, and supQ2M EQ[ · ]
admits a dynamic programming representation by Ek (see (3.2.9)), from which one defines the
family of operators bEk in (3.2.10). A first enlarged space Ω := Ω ⇥ {1, . . . , N} is introduced in
Section 3.2.2 to reduce an American option to a European option, and a dynamic extension bΩ
of Ω is defined in Definition 3.2.13 to introduce a fictitious market allowing dynamic trading of
options.

Proof of Proposition 3.2.9. First we prove that (3.2.12) implies (3.2.9). For a given ⇠ on Ω let
us define Φ on Ω by

Φ((!, k)) = �1 if k 2 {1, . . . , N � 1},

Φ((!, N)) = ⇠(!).

The definition of Φ combined with (3.2.12) implies that

E0 � E1 � · · · � EN�1 (⇠) = E0 � E1 � · · · � EN�1(⇠).

Moreover, one has that

sup
Q2M

EQ[Φ] = sup
Q2M

EQ [ΦN ] = sup
Q2M

EQ [⇠] ,

because for a measure Q 2 M such that Q(Ω⇥ {1, . . . , N � 1}) > 0, the expected value drops to
�1.

Now let us prove that (3.2.9) and (3.2.13) imply (3.2.12). Define an F-stopping time ⌧⇤ by

⌧⇤(!) := min
n
k > 1 : Ek (Φ(·, k)) (!) = E

k
(Φ)(!, k)

o
(3.4.39)

= min
n
k > 1 : Ek

�
Ek+1 (Φ(·, k))

�
(!) > Ek

⇣
E
k+1

(Φ)(·, k + 1)
⌘
(!)
o
.

Note that on {k < ⌧⇤} one has

Ek (Φ(·, k)) (!) < E
k
(Φ)(!, k) = Ek

⇣
E
k+1

(Φ)(·, k + 1)
⌘
(!). (3.4.40)
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Then

E0 � · · · � EN�1(Φ)

= E0
⇣
11{⌧⇤=1}E1

⇣
E
2
(Φ)(·, 1)

⌘
+ 11{⌧⇤>1}E1

⇣
E
2
(Φ)(·, 2)

⌘⌘

= . . .

= E0 � E1 � · · · � EN�1(Φ⌧⇤)

= sup
Q2M

EQ[Φ⌧⇤ ],

where the last equality follows from the DPP on Ω, (3.2.9). Note as well that

E0 � · · · � EN�1(Φ) = sup
Q2M

EQ [Φ⌧⇤ ] 6 sup
Q2M

sup
⌧2T (F)

EQ[Φ⌧ ] 6 sup
Q2M

EQ[Φ]. (3.4.41)

Combining this with (3.2.13), we conclude the proof.

Proposition 3.4.1. The family (Ek) given in Example 3.2.12, with Mk(!) defined by (3.2.32),
satisfies (3.2.13).

Proof. In the context of Example 3.2.12, the family (Ek) take the following form,

E0(Φ) := sup
Q2M

EQ[Φ(·, 1)], (3.4.42)

Ek(Φ)(!̄) :=

(
supQ2Mk(!) E

Q[Φ(·, ✓)] if ✓ < k,

supQ2Mk(!) E
Q[Φ(·, k)] _ supQ2Mk(!) E

Q[Φ(·, k + 1)] if ✓ > k.

To see that (3.2.13) holds, it is insightful to rewrite E
0

in a slightly different way, as eE0 below.
Recall that Fk is the universal completion of Gk, where the latter is countably generated. Let

G
�

k := Gk ⌦ �(T ^ k) ⇢ Gk := Gk ⌦ �(T ^ (k + 1)) ⇢ Fk ⌦ �(T ^ (k + 1)) =: Fk,

M
�

k (!̄) := {Q n P : Q

h
[!̄]

G
�

k

i
= 1 and EQ[∆Sn|Fn�1] = 0 8n 2 {k + 1, . . . , N}},

where [!̄]
G

�

k

is defined as in (3.2.18). Next, for Φ 2 Υ, let us introduce the operators

eE0(Φ) := sup
Q2M

EQ[Φ(·, 1)], eEk(Φ)(!̄) := sup
Q2M

�

k (!̄)

EQ[Φ], k 6 N � 1.

Denote E
k
(·) := Ek � · · · � EN�1(·) and eEk(·) := eEk � · · · � eEN�1(·). We claim that

E
k
(Φ)(!̄) = eEk(Φ)(!̄), 0 6 k < N, Φ 2 Υ. (3.4.43)

Note that the regular conditional probabilities of any Q 2 M with respect to G
�

k , denoted

Q!̄, satisfy Q

h
{!̄ : Q!̄ 2 M

�

k (!̄)}
i
= 1 and one has EQ[Φ|F

�

k ] 6 eEk(Φ), Q-a.s., which implies

(3.2.13) by the tower property of conditional expectations and the definition of eE0.
It is then enough to prove the claim (3.4.43). Note that, for !̄ = (!, ✓) with ✓ 6 k � 1, a

measure Q 2 M
�

k (!̄) satisfies Q|Ω 2 Mk(!) and Q(Ω ⇥ {✓}) = 1; and a measure Q 2 Mk(!)
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satisfies Q⌦ �✓ 2 M
�

k (!̄). It is thus clear that, in this case, E
k
(f)(!̄) = eEk(f)(!̄).

As a second step, for !̄ = (!, ✓) with ✓ > k, we show that Ek(f)(!̄) 6 eEk(f)(!̄). Take any

Q 2 Mk(!). Then, for n 2 {k, . . . , N}, Q ⌦ �n 2 M
�

k (!̄) and Q ⌦ �n(Ω ⇥ {n}) = 1. Hence it
follows that Ek(f)(!̄) 6 eEk(f)(!̄).

In a final step, we show that, for !̄ = (!, ✓) with ✓ > k, Ek(f)(!̄) > eEk(f)(!̄) holds. Let us

start with k = N � 1. Take any Q 2 M
�

N�1(!̄) and consider its regular conditional probability
with respect to GN�1 (the atom {!} ⇥ {N � 1, N} is divided into atoms {!} ⇥ {N � 1} and
{!}⇥ {N}) denoted by QN and QN�1. Then, clearly, QN |Ω and QN�1|Ω belong to MN�1(!),

and QN ({!} ⇥ {N}) = 1 and QN�1({!} ⇥ {N � 1}) = 1. Thus, it follows that EN�1(f)(!̄) >
eEN�1(f)(!̄).

Finally, to complete the proof, we need to show that E
k+1

(f)(!̄) = eEk+1(f)(!̄) implies

E
k
(f)(!̄) > eEk(f)(!̄) for !̄ = (!, ✓) with ✓ > k. First note that E

k+1
(f)(!̄) = eEk+1(f)(!̄) is

constant on ✓ 2 {k, . . . , N}, i.e.,

E
k+1

(f)((!, ✓1)) = E
k+1

(f)((!, ✓2)) for all ! 2 Ω and ✓1, ✓2 2 {k, . . . , N}. (3.4.44)

Take any Q 2 M
�

k (!̄) and consider its regular conditional probability with respect to #N (the
atom {!} ⇥ {k, . . . , N} is divided into atoms {!} ⇥ {n} for n = k, . . . , N) denoted by Qn for
n = k, . . . , N . Then, clearly, Qn|Ω 2 Mk(!) and Qn([!]k⇥{n}) = 1 where [!]k denotes an atom

of Gk which contains !. Thus, combining with (3.4.44), it follows that Ek(f)(!̄) > eEk(f)(!̄).

3.5 Proofs for Section 3.3

We now recall the context of Section 5.2, where Ω0 := {!0} is a singleton, Ω1 is a nonempty
Polish space and Ω := Ω0 ⇥ ΩN

1 . For technical reasons, we introduce a Ω1-valued canonical
process X = (Xk)0kN on the enlarged space Ω by Xk(!̄) := !k for all !̄ := (!, ✓) 2 Ω, and an
enlarged filtration G = (Gk)0kN by

G0 := {;,Ω} and Gk := �
�
Xi, {T  i}, i = 1, . . . , k

 
,

and the universally completed filtration F = (Fk)0kN by defining Fk as the universal comple-
tion of Gk. It follows that the random time T : Ω ! T is a G-stopping time. We also define a
restricted space Ωk, for every k = 1, . . . , N ,

Ωk := Ωk ⇥ {1, . . . , k} = Ω
k
1 ⇥ {1, . . . , k}.

Lemma 3.5.1. Let P 2 P be a probability measure on (Ω,GN ), and (P!̄)!̄2Ω
be a family of regular

conditional probability distributions of P with respect to Gk. Then for every k 2 {0, 1, . . . , N�1},
one has P!̄ �X�1

k+1 2 Pk(!) for P-a.e. !̄ = (!, ✓) 2 Ω.

Let us introduce the following set of measures

M
loc

g := {Q : Q n P, EQ[gi] = 0, i 2 {1, . . . , e}

and S is an (F,Q)-local martingale}.

Lemma 3.5.2. Let Φ be upper semianalytic and Q 2 M
loc

g . Then for any x 2 R and (H,h) 2
H⇥ Re such that x+ (H � S)N (!̄) + hg(!) � Φ(!̄), Q-a.s., one has EQ

⇥
Φ
⇤
 x.
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Proof. The proof follows by exactly the same arguments as in Lemma A.2 of [1], using the discrete
time local martingale characterization in their Lemma A.1.

By Lemma 3.5.2, we easily obtain the weak duality for all upper semianalytic Φ

sup
Q2Mg

EQ[Φ]  sup
Q2M

loc

g

EQ[Φ]  ⇡E
g (Φ). (3.5.45)

The following lemma shows that, for a fixed Φ, we can restrict to martingale measures satisfying
a further integrability constraint.

Lemma 3.5.3. Let Φ be upper semianalytic, Q 2 M
loc

0 and ' : Ω ! [1,1) be such that

|Φ(!, k)|  '(!) for all !̄ = (!, k) 2 Ω. Then M
',Q 6= ; and

EQ[Φ]  sup
Q

0
2M

',Q

EQ
0

[Φ],

where

M
',Q

:= {Q
0 ⇠ Q : EQ

0

['] < 1, and S is an (F,Q
0
)-martingale}.

Proof. First, by Lemma A.3 of [1], there exists a probability measure P⇤, equivalent to Q on
(Ω,FN ), such that EP⇤ ['] < 1. On the filtered probability space (Ω,FN ,F,P⇤), one defines

M
loc

⇤ as the collection of all probability measures Q
0 ⇠ Q ⇠ P⇤ under which S is an F-local

martingale. Denote

⇡
E,Q
0 (Φ) := inf

�
x : 9H 2 H s.t. x+ (H � S)N > Φ,Q-a.s.

 
,

then by the classical arguments for the dominated discrete time market (such as [97] and [98],
see also Lemma A.3 of [1]), one can easily obtain the inequality

EQ[Φ]  sup
Q

0
2M

loc

⇤

EQ
0

[Φ]  ⇡
E,Q
0 (Φ)  sup

Q
0
2M

',Q

EQ
0

[Φ],

which concludes the proof.

Using Theorem 2.2 of [1], which is stated for a general abstract space (Ω,F), one directly
obtains a closeness result for the set of all payoffs which can be superreplicated from initial
capital x = 0, in our context. Let us denote by L

0

+ the set of all positive random variables on Ω,
and define

C :=
�
(H � S)N + hg : H 2 H, h 2 Re

 
� L

0

+.

Lemma 3.5.4 (Theorem 2.2 of [1]). Let Φ be upper semianalytic and assume that NA(P) holds.
Then the set C is closed in the following sense. Whenever (Wn)n�1 ⇢ C and W is a random
variable such that Wn ! W , P-q.s., then W 2 C.

3.5.1 Proof of Theorem 3.2.27: the case e = 0, equivalently Λ = ;
For each 1  i  j  N , we introduce a map from Ωj to Ωi (resp. Ωj to Ωi) by

[!]i :=(!1, . . . ,!i), for all ! 2 Ωj (resp.[!̄]i := ([!]i, ✓ ^ i), for all !̄ = (!, ✓) 2 Ωj).
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Note that F
�

k is the smallest �-field on Ω generated by [ · ]k : Ω ! Ωk; equivalently, an F
�

k -
measurable random variable f defined on Ω can be identified as a Borel measurable function on
Ωk. The process S is naturally defined on the restricted spaces Ωk and Ωk.

We next recall the notion of local no-arbitrage condition NA(Pk(!)) introduced at the begin-
ning of Section 4.2 in [1]. Given a fixed ! 2 Ωk, we can consider ∆Sk+1(!, ·) := Sk+1(!, ·)�Sk(!)
as a random variable on Ω1, which determines a one-period market on (Ω1,B(Ω1)) endowed with
a class Pk(!) of probability measures. Then NA(Pk(!)) denotes the corresponding no-arbitrage
condition in this one-period market, i.e., NA(Pk(!)) holds if for all H 2 Rd,

H∆Sk+1(!, ·) > 0 Pk(!)-q.s. =) H∆Sk+1(!, ·) = 0 Pk(!)-q.s.

Lemma 3.5.5. In the context of Section 5.2, let f : Ωk+1 ! R be upper semianalytic. Then
Ek(f) : Ωk ! R is still upper semianalytic. Moreover, there exist two universally measurable
functions (y1, y2) : Ωk ! Rd ⇥ Rd such that

Ek(f)(!̄) + y1(!̄)∆Sk+1(!, ·) � f(!, ·, ✓) Pk(!)-q.s.,

Ek(f)(!̄) + y2(!̄)∆Sk+1(!, ·) � f(!, ·, k + 1) Pk(!)-q.s.,

for all !̄ = (!, ✓) 2 Ωk such that NA(Pk(!)) holds and f(!, ·, ✓) > �1, Pk(!)-q.s. f(!, ·, k +
1) > �1, Pk(!)-q.s.

Proof. Notice that f1_f2 is upper semianalytic whenever f1 and f2 are both upper semianalytic.
Using the definition of Ek, the above lemma follows by applying Lemma 4.10 of [1] for every fixed
✓.

Proof of Theorem 3.2.27 (the case e = 0). First, one has the weak duality as in (3.5.45)

sup
Q2Mg

EQ[Φ
⇤

 ⇡E
g (Φ).

Next, for the inverse inequality, we can assume, without loss of generality, that Φ is bounded
from above. Indeed, by Lemma 3.5.4, one has limn!1 ⇡E

g (Φ^ n) = ⇡E
g (Φ) (see also the proof of

Theorem 3.4 of [1]). Besides, the approximation supQ2Mg
EQ[Φ] = limn!1 supQ2Mg

EQ[Φ ^ n]
is an easy consequence of the monotone convergence theorem.

When Φ is bounded from above, by Lemma 3.2.28, it is enough to prove that there is some
H 2 H such that

E
0
[Φ] + (H � S)N � Φ P-q.s. (3.5.46)

In view of Lemma 3.5.3, we know that E
k
(Φ)(!̄) > �1 for all !̄ 2 Ωk. Further, by Lemma 3.5.5,

there exist two universally measurable functions (yk1 , y
k
2 ) : Ωk ! Rd ⇥ Rd such that

yk1 (!̄)∆Sk+1(!, ·) � E
k+1

(Φ)(!, ·, ✓)� E
k
(Φ)(!̄) Pk(!)-q.s.,

yk2 (!̄)∆Sk+1(!, ·) � E
k+1

(Φ)(!, ·, k + 1)� E
k
(Φ)(!̄) Pk(!)-q.s.,

for all !̄ = (!, ✓) 2 Ωk such that NA(Pk(!)) holds.

As Nk := {!k : NA(Pk(!)) fails} is P-polar by Theorem 4.5 of [1], it follows that, with
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Hk+1(!̄) := yk1 ([!̄]k)1{✓k} + yk1 ([!̄]k)1{✓>k}, one has

N�1X

k=0

Hk+1∆Sk+1 �
N�1X

k=0

�
E
k+1

(Φ)� E
k
(Φ)
�

= Φ� E(Φ), P-q.s.

To conclude, it is enough to notice that the above H is an optimal dual strategy for the case of
Φ being bounded from above. The existence of the optimal dual strategy for general Φ is then
a consequence of Lemma 3.5.4.

3.5.2 Proof of Theorem 3.2.27: the case e � 1, equivalently Λ 6= ;

We will adapt the arguments in Section 5 of [1] to prove Theorem 3.2.27 in the context with
finitely many options e � 1.

For technical reasons, we introduce

'(!, ✓) := 1 + |g1(!)|+ · · ·+ |ge(!)|+ max
1kN

|Φk(!)|,

which depends only on !, and

M
'

g := {Q 2 M : EQ['] < 1 and EQ[gi] = 0 for i = 1, . . . , e}. (3.5.47)

Moreover, in view of Lemma 3.5.3, one has

sup
Q2Mg

EQ[Φ] = sup
Q2M

'

g

EQ[Φ].

Proof of Theorem 3.2.27 (the case e � 1). The existence of some Q 2 Mg is an easy
consequence of Theorem 5.1 of [1] under NA(P). Moreover, similarly to [1], there exists an
optimal dual strategy by Lemma 3.5.4. Let us now focus on the duality results.

First, the duality ⇡E
g (Φ) = supQ2Mg

EQ[Φ] in (3.2.34) has already been proved for the case
e = 0. We will use an inductive argument. Suppose that the duality (3.2.34) holds true for the
case with e > 0, We aim to prove the duality with e+ 1 options

⇡E
(g,f)(Φ) = sup

Q2M
'

(g,f)

EQ[Φ],

where the additional option has a Borel measurable payoff function f ⌘ ge+1 such that |f | 6 ',
and has an initial price f0 = 0. By the weak duality in (3.5.45) and Lemma 3.5.3, the “�” side
of the inequality holds true, so we will focus on the “” side of the inequality, i.e.,

⇡E
(g,f)(Φ)  sup

Q2M
'

(f,g)

EQ[Φ]. (3.5.48)

If f is replicable by some semi-static strategy with underlying S and options (g1, . . . , ge) in the
sense that 9H 2 H, h 2 Re, such that f = (H �S)N+hg,P-q.s. (or equivalently, 9H 2 H, h 2 Re,
such that f = (H � S)N + hg,P-q.s.), then the problem is reduced to the case with e options
and the result is trivial. Let us assume that f is not replicable, and we claim that there exists a
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sequence (Qn)n�1 ⇢ M
'

g such that

EQn [f ] �! f0 and EQn [Φ] �! ⇡E
(g,f)(Φ), as n �! 1. (3.5.49)

Next, denote by ⇡E
g (f) the minimum superhedging cost of the European option f using S and

(g1, . . . , ge), i.e.,

⇡E
g (f) = ⇡E

g (f) = inf {x : 9H 2 H, h 2 Re, s.t. x+ (H � S)N + hg � f, P-q.s.}.

As f is not replicable, by the second fundamental theorem in Theorem 5.1.(c) of [1], we have
that Q 7! EQ[f ] is not constant on M

'

g . Then, under the no-arbitrage condition, one has

0 = f0 < ⇡E
g (f). It follows that 0 = f0 < ⇡E

g (f) = supQ2M
'

g
EQ[f ]. Thus there exists some

Q+ 2 M
'

g , such that 0 < EQ+ [f ] < ⇡E
g (f). With the same argument on �f , we can find another

Q� 2 M
'

g such that

�⇡E
g (�f) < EQ� [f ] < f0 < EQ+ [f ] < ⇡E

g (f).

Then one can choose an appropriate sequence of weights (�n�,�
n
0 ,�

n
+) 2 R3

+, such that �n�+�n0 +
�n+ = 1, �n± ! 0,

Q
0

n := �n�Q� + �n0Qn + �n+Q+ 2 Mg, and EQ
0

n [f ] = f0 = 0,

i.e., Q
0

n 2 M
'

(g,f). Moreover, as �n± ! 0, it follows that EQ
0

n [Φ] ! ⇡E
(g,f)(Φ), and we hence have

the inequality (3.5.48).
It is enough to prove the claim (3.5.49), for which we suppose without loss of generality that

⇡E
(g,f)(Φ) = 0. Assuming that (3.5.49) fails, one then has

0 /2 {EQ[(f,Φ)] : Q 2 M
'

g } ✓ R2.

By the convexity of the above set and the separation argument, there exists (y, z) 2 R2 with
|(y, z)| = 1, such that

0 > sup
Q2M

'

g

EQ[yf + zΦ] = ⇡E
g (yf + zΦ) � ⇡E

(g,f)(zΦ). (3.5.50)

The strict inequality ⇡E
(g,f)(zΦ) < 0 implies that z 6= 0. Now, if z > 0, then we have ⇡E

(g,f)(Φ) < 0,

which contradicts ⇡E
(f,g)(Φ) = 0. If z < 0, then by (3.5.50) one has 0 > EQ

0

[yf + zΦ] = EQ
0

[zΦ]

for some Q
0 2 M(g,f) ✓ Mg, as M(f,g) is nonempty under the NA(P) assumption in the case

of e+ 1 options. Then in the case z < 0, one has EQ
0

[Φ] > 0 = ⇡E
(f,g)(Φ), which contradicts the

weak duality result (3.5.45), and we hence conclude the proof of the duality.

3.5.3 Proof of Theorem 3.2.29.

(i) For the first equality in (3.2.35), we first notice that for every bQ 2 cM and a regular condi-
tional probability measure (bQb!) of bQ knowing bGk, one has bQb! 2 cMk(b!). It then follows that

supbQ2 cM E
bQ[b⇠]  supbQ2 cM0

E
bQ[b⇠]. Next, let bQ 2 cM0. By its definition, one has bQ n bP and

(S, Y ) is a generalised martingale and hence a local martingale under bQ (see, e.g., Lemma A.1

of [1]). Using Lemma A.3 of [1], there is a bQ0 ⇠ bQ such that E
bQ[b⇠]  E

bQ0

[b⇠], and (S, Y ) is a
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bQ0-martingale. As bQ0 ⇠ bQ n cM, then bQ0 2 cM and hence E
bQ[b⇠]  supbQ2 cM E

bQ[b⇠]. Then it

follows that supbQ2 cM0
E

bQ[b⇠]  supbQ2 cM E
bQ[b⇠], and one obtains the first equality of (3.2.35).

(ii) Next, we claim that the graph set

[[cMk,k+1]] :=
�
(b!, bQ) : bQ 2 cMk,k+1(b!)

 
(3.5.51)

is analytic. Then using the (analytic) measurable projection theorem (see, e.g., Proposition
4.47 of [92]), bEk(b⇠) is upper semianalytic whenever b⇠ is upper semianalytic. Further, the second
equality in (3.2.35) is just a classical dynamic programming principle result, which follows by
the measurable selection arguments as in [93] or [92].

It is enough to prove the claim (3.5.51), for which we notice that

[[cMk,k+1]] =
�
(!, y, bQ) : (!, bQ|Ω1) 2 [[Mk,k+1]], E

bQ[(∆Sk+1,∆Yk+1)] = 0
 
,

where the graph [[Mk,k+1]] is analytic by Lemma 4.8 of [1]. As bQ 7! E
bQ[(∆Sk+1,∆Yk+1)] is

Borel measurable, (b!, bQ) 7! (!, bQ|Ω1) is continuous and hence is also Borel measurable. Then,
by Proposition 7.40 of [92], [[cMk,k+1]] is also analytic.

3.6 Proofs for Section 3.4

We finally complete here the proof of Theorem 3.3.2, which concerns the pricing-hedging du-
ality in the martingale optimal transport problem setup. Recall that, in this setup, Ω :=
Ω ⇥ {1, . . . , N}, with Ω := Rd⇥N , and P the collection of all Borel probability measures on
Ω.

A first idea of how to prove Theorem 3.3.2 could be the following two step argument as in
[18]. Firstly, under the condition that Φ is bounded from above and upper semicontinuous, one
could prove that

B((Rd)M ) 3 µ 7�! sup
Q2Mµ

EQ
⇥
Φ
⇤
2 R

is concave and upper semicontinuous, where we equip B((Rd)M ) with a Wasserstein type topol-
ogy. Secondly, using the Fenchel–Moreau theorem, it follows that

sup
Q2Mµ

EQ
⇥
Φ
⇤

= ⇡E
µ,0(Φ) := inf

�2Λ

n
µ(�) + sup

Q2M

EQ
⇥
Φ� �

⇤o
. (3.6.52)

Solving the maximization problem (3.6.52), by using Theorem 3.2.27, concludes the proof of
Theorem 3.3.2.

However, in the following we will provide another proof based on an approximation argument.
For simplicity, we suppose that T0 = {N}, where the same arguments work for more general
T0. In preparation, let us provide a technical lemma. In the context of the martingale optimal
transport problem, we introduce a sequence of payoff functions (gi)i�1 by

gi(!) := f i(!N )� ci with ci :=

Z

Rd

f i(x)µ(dx),

where f i : Rd ! R is Lipschitz and (f i)i�1 is dense in the space of all Lipschitz functions on
Rd under the uniform convergence topology, and moreover, it contains all functions of the form
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(xj � Kn)
+, (�Kn � xj)

+ for j = 1, . . . , d and n � 1, where (Kn)n�1 ⇢ R is a sequence such
that Kn ! 1. Notice that µ has finite first order and hence the ci are all finite constants.

Next, let us introduce an approximate dual problem by

⇡A
µ,m(Φ) := inf

n
x : 9(H,h) 2 H⇥ Rm s.t. for all k 2 T, ! 2 Ω,

x+

mX

i=1

higi(!N ) + (H(·, k) � S)N (!) � Φk(!)
o
.

Similarly,
Mµ,m :=

�
Q 2 M : EQ[gi] = 0 for i = 1, . . . ,m

 
,

and
Pµ,m := sup

Q2Mµ,m

EQ
⇥
Φ
⇤
.

Lemma 3.6.1. Let (Qm)m>1 ⇢ M be a sequence of martingale measures such that Qm 2 Mµ,m

for each m � 1. Then,

(i) (Qm)m>1 is relatively compact under the weak convergence topology.

(ii) The sequence (SN ,Qm)m�1 is uniformly integrable, and any accumulation point of (Qm)m>1

belongs to Mµ.

Proof. (i) Without loss of generality, we assume that f1(x) =
Pd

i=1 |xi| so that

sup
m�1

EQm

 dX

i=1

|Si
N |

�
<

Z

Rd

dX

i=1

|xi|µ(dx) < 1.

Let us first prove the relative compactness of (Qm)m>1. By the Prokhorov theorem, it is enough
to find, for every " > 0, a compact set D" ⇢ Rd such that Qm[Sk /2 D"]  " for all k = 1, . . . , N .
It is then enough to find, for every " > 0, a constant K" > 0 such that Qm

⇥
|Si

k| � K"

⇤
 " for all

i = 1, . . . , d and k = 1, . . . , N . Next, by the martingale property, one has EQm [|Si
k|]  EQm [|Si

N |].

Then for every " > 0, one can choose K" > 0 such that supm�1 E
Qm

⇥Pd
i=1 |S

i
N |
⇤
 K"". It follows

that Qm

⇥
|Si

k| � K"

⇤
 EQm [|Si

k|]
K"

 ", and hence that (Qm)m�1 is relatively compact.

(ii) To see that the sequence (SN ,Qm)m�1 is uniformly integrable, it is enough to notice that
|xi|1|xi|�2Kn

 2(|xi| � Kn)1|xi|�Kn
, where the latter is a payoff function contained in the

sequence (fk)k�1.

(iii) Let Q0 be an accumulation point of (Qm)m>1, then one has EQ0 [f i(SN )] = µ(f i) :=R
Rd f

i(x)µ(dx) for all i � 1. As (f i)i�1 is supposed to be dense in the space of all Lipschtiz
functions on Rd under the uniformly convergence topology, by dominated convergence, it follows
that EQ0 [f(SN )] = µ(f) :=

R
Rd f(x)µ(dx) for all Lipschitz functions f . Therefore, one has

Q0 � S�1
N = µ.

(iv) To conclude the proof, it is enough to show that the martingale property is preserved for
the limiting measure Q0. By extracting a subsequence, we assume that Qm ! Q0 weakly.
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First, for any k = 1, . . . , N , i = 1, . . . , d and K > 0, one has

EQ0 [|Si
k| ^K] = lim

m!1
EQm [|Si

k| ^K]  lim sup
m!1

EQm [|Si
k|]

 lim sup
m!1

EQm [|Si
N |] =

Z

Rd

|xi|µ(dx) < 1.

Let K ! 1, it follows by the monotone convergence theorem that EQ0 [|Si
k|] < 1.

Next, we prove that for all 1 6 k1 < k2 6 N , and any bounded continuous function ' :
(Rd)k1 ⇥ T ! R, one has

EQ0
⇥
'
�
S1, . . . , Sk1 , T ^ (k1 + 1)

�
(Sk2 � Sk1)

⇤
= 0. (3.6.53)

Let K > 0, and �K : Rd ! Rd a continuous function, uniformly bounded by K, satisfying
�K(x) = x when kxk  K, and �K(x) = 0 when kxk � K + 1. Then for every m = 0 or m � 1,
one has

��EQm
⇥
'(S, T )(Sk2 � Sk1)

⇤�� 
��EQm

⇥
'(S, T )

�
�K(Sk2)� �K(Sk1)

�⇤��

+|'|1EQm
⇥
|Sk2

|1|Sk2
|>K + |Sk1

|1|Sk1
|>K

⇤
, (3.6.54)

where we simplify '(S1, . . . , Sk1 , T ^ (k1 + 1)) to '(S, T ).
For every " > 0, by uniformly integrability of (SN ,Qm)m�1, there is K" > 0 such that

|'|1EQm
⇥
|Sk2

|1|Sk2
|>K"

+ |Sk1
|1|Sk1

|>K"

⇤
 ", for all m = 0, 1, . . . (3.6.55)

Moreover, for m � 1, Qm is a martingale measure, so that EQm

⇥
'(S, T )(Sk2

� Sk1
)
⇤
= 0 and

hence
��EQm

⇥
'(S, T )

�
�K(Sk2)��K(Sk1)

�⇤��  ". Then, by taking the limit as m ! 1, it follows
that

��EQ0
⇥
'(S, T )

�
�K(Sk2)� �K(Sk1)

�⇤��  ". (3.6.56)

Combining (3.6.54), (3.6.55) and (3.6.56), and by the arbitrariness of " > 0, it follows that
(3.6.53) holds true for all bounded continuous functions '.

Recall that Fk1 = �
�
S1, . . . , Sk1 , T ^ (k1 + 1)

�
, as defined at the beginning of Section 3.2.2,

and observe that Fk1
= �(K), where

K := {⇠ := '
�
S1, . . . , Sk1

, T ^ (k1 + 1)
�

: ' is bounded and continuous}.

It follows that K is included in the vector space of all bounded Fk1
-measurable random variables

⇠ for which EQ0 [⇠(Sk2
� Sk1

)] = 0. An application of the monotone class theorem (see, e.g.,
Theorem I.8 of [99]) yields

EQ0 [⇠(Sk2
� Sk1

)] = 0, for all bounded Fk1
-measurable random variables ⇠,

which is equivalent to S being a Q0-martingale, and concludes the proof.

Proof of Theorem 3.3.2. We notice that by Theorem 3.2.27,

sup
Q2Mµ,m

EQ
⇥
Φ
⇤
= ⇡A

µ,m(Φ) � ⇡A
µ (Φ).
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Let (Qm)m�1 be a sequence of probability measures such that Qm 2 Mµ,m for each m � 1 and

lim sup
m!1

EQm
⇥
ΦT (S)

⇤
= lim sup

m!1
sup

Q2Mµ,m

EQ
⇥
Φ
⇤
.

It follows by Lemma 3.6.1 that there exists some Q0 2 Mµ and a subsequence such that Qmk
!

Q0 under the weak convergence topology. Using upper semicontinuity of Φ and by Fatou’s lemma,
it follows that EQ0

⇥
ΦT (S)

⇤
� lim supm!1 EQm

⇥
ΦT (S)

⇤
. This leads to the inequality

sup
Q2Mµ

EQ
⇥
Φ
⇤

� EQ0
⇥
Φ
⇤

� lim sup
m!1

sup
Q2Mµ,m

EQ
⇥
Φ
⇤

= lim sup
m!1

⇡A
µ,m(Φ) � ⇡A

µ (Φ),

and we hence conclude the proof by the weak duality (3.5.45).
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4.1 Introduction

Discrete time financial markets have been widely studied, and are now well understood. In
the frictionless setting, the Fundamental Theorem of Asset Pricing and the traditional dual
formulation of the set of contingent claims that can be super-hedged from a zero initial endowment
are proved by first showing that this latter set is closed in probability and by then using a Hahn-
Banach separation argument in L1, as in the celebrated Kreps–Yan theorem [100], see e.g. [68, 69,
101]. In the presence of proportional transaction costs, serveral notions of no-arbitrage properties
can be considered, but they all aim at obtaining a similar closure property, so that Hahn-Banach
separation arguments can still be applied, see [35, 44, 36] and [49] for a survey monograph.

In the context of model uncertainty, the market is defined with respect to a family P of
(typically singular) probability measures. Closure properties can still be proved, in the quasi-
sure sense, but no satisfactory Lp-type duality argument can be used, because of the lack of
a reference (dominating) probability measure. In the frictionless context, [1] suggested to use
a one period argument à la Dalang–Morton–Willinger [13], and then to appeal to measurable
selection techniques to paste the periods together. This is unfortunatly not possible (in general)
when proportional transaction costs are present: local no-arbitrage is not equivalent to global no-
arbitrage. Still, a quasi-sure versions of the classical weak and strict no-arbitrage conditions could
be characterized in [42]. This requires the use of an intricate forward-backward construction. A
quite similar construction was later used in Burzoni [47] for a version of the no-model independent
arbitrage condition based on the robust no-arbitrage property of Schachermayer [36] .

Bouchard and Nutz [43] proposed to follow a simpler route and to use a quasi-sure version of
the only no-abitrage condition for which local no-arbitrage and global no-arbitrage are equivalent.
This notion was first suggested by [44] under the name of no-arbitrage of the second kind, or no-
sure gains in liquidation value. Because of the equivalence between absence of local and absence
of global arbitrage, they could use the same one period based arguments as in [1] to provide a
quasi-sure version of the Fundamental Theorem of Asset Pricing in this context.

Unfortunately, they were no able to come up with an equaly easy proof of the super-hedging
duality that seems to require a global argument. The difficulty comes from the fact that a
portfolio is described by a vector valued process. At time t, one needs to define a vector position
allowing to super-hedge the required time t+ 1-position. In frictionless markets, the time t+ 1-
position reduces to a scalar valued random variable, the time t + 1-value of the super-hedging
price. Its computation can be done backward, by iterating on the time periods. In models with
proportional transaction costs, there is an infinity of possible positions at time t+1, that are all
minimal in the sense that none of them is dominated by another one, and that are enough to
build up a super-hedging strategy. A backward induction does not tell which one is consistent
with the global super-hedging strategy.

Burzoni [47] was able to solve this issue by constructing a fictitious price system in which
the frictionless superhedging price is the same as in the original market. In his context, the
super-hedging has to hold pointwise on the so-called efficient support of the family of consistent
price systems. Also the market is multivariate, all transactions goes through the cash account
(no direct exchanges between assets). It complements the work of Dolinsky and Soner [45] in
which pointwise super-hedging is considered, and a static position on an arbitrary European
option can be initially taken.

In this paper, we suggest to use a very simple randomization argument to tackle this problem
in a general multivariate setting, under the quasi-sure no-arbitrage of second type condition of
[43]. In particular, we allow for direct exchanges between the risky assets, which is not possible in
[47, 45]. Technically, we add additional randomness to our initial probability space to construct
a fictitious price process X that is consistent with the original bid-ask bounds. This additional
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randomness controls the positions of prices within these bounds. We then consider the problem of
quasi-sure super-hedging in the fictionless market with price process X and show that it matches
with the super-hedging price in the original market with proportional transaction costs. This
essentially follows from a minimax argument in the one period setting, that can be iterated in
a backward way. Then, it suffices to apply the super-hedging duality of Bouchard and Nutz [1],
and to project back all involved quantities on the original probability space.

Note that this randomization/enlargement technique is in fact in the same spirit of the con-
trolled fictitious market approach of [50, 51], used in a dominated Markovian continuous time
setting.

The rest of the paper is organized as follows. In Section 5.2, we first describe our discrete
time market with proportional transaction costs, and introduce our randomization approach. We
then specialize to the probabilistic setting suggested by Bouchard and Nutz [43] and link their
quasi-sure no-arbitrage condition of second kind to a quasi-sure no-arbitrage condition set on our
randomized frictionless market. In Section 4.3, we consider the super-replication problem and
prove the duality, by using our randomization technique.

Notations. Given a measurable space (Ω,F), we denote by B(Ω,F) the set of all probability
measures on (Ω,F). If Ω is a topological space, B(Ω) denotes its Borel �-field and we abbreviate
the notation B(Ω) := B(Ω,B(Ω)). If Ω is a Polish space, a subset A ✓ Ω is analytic if it is the
image of a Borel subset of another Polish space under a Borel measurable mapping. A function
f : Ω ! R := [�1,1] is upper semianalytic if {! 2 Ω : f(!) > a} is analytic for all a 2 R.
Given a probability measure P 2 B(Ω) and a measurable function f : Ω ! R, we define the
expectation

EP[f ] := EP[f+]� EP[f�], with the convention 1�1 = �1.

For a family P ✓ B(Ω) of probability measures, a subset A ⇢ Ω is called P-polar if A ⇢ A0 for
some universally measurable set A0 satisfying P[A0] = 0 for all P 2 P, and a property is said
to hold P-quasi surely or P-q.s if it holds true outside a P-polar set. For Q 2 B(Ω), we write
Q n P if there exists P0 2 P such that Q ⌧ P0. Given a sigma algebra G, we denote by L0(G)
the collection of Rd-valued random variable that are G-measurable, d being given by the context.
If we are given a measurable random set A and a family of probability measures P, we denote
by L0

P(G, A) the collection of G-measurable random variables taking values in A P-q.s.

4.2 A randomization approach for market with proportional
transaction cost

We first introduce an abstract discrete-time market with proportional transaction cost, and show
how to reduce to a fictitious market without transaction cost by using a randomization technique.
Then, we specialize to the setting of Bouchard and Nutz [43] and discuss in particular how their
quasi-sure version of the second kind no-arbitrage condition can be related to a no-arbitrage
condition set on our enlarged fictitious market.

4.2.1 The financial market with proportional transaction cost

Let (Ω,F) be a measurable space, equipped with two filtrations F0 = (F0
t )t=0,1,··· ,T ⇢ F =

(Ft)t=0,1,··· ,T for some T 2 N (later on the first one will be the raw filtration, while the second
one will be its universal completion). We fix a family of probability measures P on (Ω,F), which
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represents the model uncertainty. In particular, when P is a singleton, it reduces to the classical
dominated market model framework.

Following [43], we specify our financial market with proportional transaction cost in terms of
random cones. Let d � 2, for every t 2 {0, 1, · · · , T}, Kt : Ω ! 2R

d

is a F0
t -measurable random

set in the sense that {! 2 Ω : Kt(!)\O 6= ;} 2 F0
t for every closed (open) set O ⇢ Rd. Here, for

each ! 2 Ω, Kt(!) is a closed convex cone containing Rd
+, called the solvency cone at time t. It

represents the collection of positions, labelled in units of different d financial assets, that can be
turned into non-negative ones (component by component) by performing immediately exchanges
between the assets. We denote by K⇤

t ⇢ Rd
+ its (nonnegative) dual cone:

K⇤
t (!) :=

�
y 2 Rd : x · y � 0 for all x 2 Kt(!)

 
, (4.2.1)

where x · y :=
Pd

i=1 x
iyi is the inner product on Rd. For later use, let us also introduce

K⇤,0
t (!) :=

�
y = (y1, · · · , yd) 2 K⇤

t (!), yd = 1
 
.

As in [43], we assume the following conditions throughout the paper:

Assumption 4.2.1. K⇤
t \ @Rd

+ = {0} and intK⇤
t (!) 6= ; for every ! 2 Ω and t  T .

It follows from the above assumption and [43, Lemma A.1] that K⇤
t , K⇤,0

t and intK⇤
t are all

F0
t -measurable. Moreover, there is a F0-adapted process S satisfying

St(!) 2 K⇤,0
t (!) \ intK⇤

t (!) for every ! 2 Ω, t  T . (4.2.2)

We also assume that transaction costs are bounded and uniformly strictly positive. This is
formulated in terms of S above.

Assumption 4.2.2. There is some constant c > 1 such that

c�1Si
t(!)  yi  cSi

t(!), for every i  d� 1 and y 2 K⇤,0
t (!).

Example 4.2.3. Let us consider a market with one risky asset with mid price S1
t > 0 and one

risk-free asset S2
t ⌘ 1. Here d = 2. Because of a proportional transaction cost parametrized by

c � 1, the bid price of the risky asset is given by c�1S1
t and the ask price is cS1

t . Then

Kt(!) := {x 2 R2 : x1c�1S1
t (!)1{x1�0} + x1cS1

t (!)1{x1<0} + x2 � 0},

K⇤
t (!)=

�
(y1, y2) 2 R2

+ : y12
⇥
y2c�1S1

t (!), y
2cS1

t (!)
⇤ 
,

and
K⇤,0

t (!)=
�
(y1, 1) 2 R2

+ : y12
⇥
c�1S1

t (!), cS
1
t (!)

⇤ 
.

Although there is, in the above example, a risk-free asset S2
t ⌘ 1 which serves as a numéraire,

this is not required in general. We refer to [43] for an example with d risky assets. See also the
monograph [49].

Let us now turn to the definition of admissible trading strategies.

Definition 4.2.4. We say that an F-adapted process ⌘ = (⌘t)0tT is an admissible trading
strategy if

⌘t 2 �Kt P-q.s. for all t  T .

We denote by A the collection of all admissible strategies.
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The constraint ⌘t 2 �Kt means that 0� ⌘t 2 Kt, i.e., starting at t with 0, one can perform
immediate transfers to reach the position ⌘t. Then, given ⌘ 2 A, the corresponding wealth
process associated to a zero initial endowment at time 0 is

�Pt
s=0 ⌘s

�
tT

.

Example 4.2.5. In the context of Example 4.2.3, ⌘ 2 A if and only if

⌘1t c
�1S1

t 1{⌘1
t0} + ⌘1t cS

1
t 1{⌘1

t>0} + ⌘2t  0 P-q.s. for all t  T .

4.2.2 The randomization approach

As explained in the introduction, we aim at considering a frictionless market set on an enlarged
probability space, that is equivalent (in a certain sense) to our original market. This will be used
later on to apply results that are already known in the frictionless setting.

Let us therefore first introduce an enlarged space. Let c > 1 be the constant in Assumption
4.2.2, we define Λ1 := [c�1, c]d�1, Λt := (Λ1)

t+1, and Λ := ΛT , and then introduce the canonical
process Θt(✓) := ✓t, 8✓ = (✓t)0tT 2 Λ, as well as the �-fields FΛ

t := �(Θs, s  t), t  T . We
next introduce an enlarged space Ω := Ω⇥ Λ, an enlarged �-field F := F ⌦ FΛ

T , together with

three filtrations F
0
= (F

0

t )0tT , F̃ = (F̃t)0tT and F = (F t)0tT in which F
0

t := F0
t ⌦ FΛ

t ,
F̃t := Ft ⌦ {;,Λ} and F t := Ft ⌦ FΛ

t for t  T .
Then, we define our randomized fictitious market by letting the fictitious stock price X =

(Xt)0tT be defined by

Xt(!̄) := ΠK⇤,0
t (!)[St(!)✓t], for all !̄ = (!, ✓) 2 Ω, t  T, (4.2.3)

where St(!)✓t := (S1
t (!)✓

1
t , · · · , S

d�1
t (!)✓d�1

t , Sd
t (!)), and ΠK⇤,0

t (!)[y] stands for the projection

of y 2 Rd on the convex closed set K⇤,0
t (!). Recall that St 2 K⇤,0

t for t  T . Finally, we
introduce

P :=
�
P 2 B(Ω,F) such that P|Ω 2 P

 
.

Lemma 4.2.6. The process X is F
0
-adapted.

Proof. Notice that K⇤,0
t is F0

t -measurable. By the Castaing representation of K⇤,0
t (see e.g. [43,

Lemma A.1]), there exists a sequence of F0
t -measurable functions ( n)n�1 such that K⇤,0

t (!) =

{ n(!), n � 1} for all ! 2 Ω.
Next, let us define a sequence of random variables (Xn

t (!̄))n�1 by X1
t (!̄) :=  1(!) and

Xn+1
t (!̄) := Xn

t (!̄)1An
+  n+1(!)1Ac

n
, where An := {kXn

t � St(!)✓tk < k n+1 � St(!)✓tk}. It

is clear that Xn
t are all F

0

t -measurable. Then, it is enough to notice that Xt = limn!1 Xn
t to

conclude that Xt is F
0

t -measurable.

Remark 4.2.7. We shall use several times the following important property related to the struc-
ture of P. Let Y : (!, ✓) 2 Ω 7! Y (!, ✓) 2 R be a random variable. Then, the following are
equivalent:

(i) Y � 0 P-q.s

(ii) Y (·, ✓) � 0 for all ✓ 2 Λ P-q.s.

The fact that (ii) implies (i) is clear. As for the reverse implication, we observe that if P 2 P is
such that P[inf✓2Λ Y (·, ✓) < �c] > 0 for some c > 0, then one can find a Borel map ! 2 Ω 7!
✓(!) 2 Λ such that P[Y (·, ✓(·)) < �c/2] > 0, see [92, Lemma 7.27 and Proposition 7.49]. Since
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P⌦ �✓(·) 2 P, this contradicts (i).
Moreover, if ✓ 7! Y (·, ✓) is upper semicontinuous, then (i), (ii) are equivalent to

(iii) Y (·, ✓) � 0 P-q.s. for all ✓ 2 Λ.

If one keeps the filtration F (or equivalently F̃) to define admissible (or self-financing) trading
strategies on this fictitious financial market, then they coincide with the admissible strategies in
the sense of Definition 5.2.3 above. More precisely, we have the following.

Theorem 4.2.8. (i) Fix t  T and ⇣t 2 L0(Ft). Then

⇣t 2 �Kt P-q.s. if and only if ⇣t ·Xt  0 P-q.s.

(ii) Consequently, an F-adapted process ⌘ is an admissible strategy in the sense of Definition
5.2.3 if and only if ⌘t ·Xt  0 P-q.s. for all t  T .

Proof. The assertion (ii) is an immediate consequence of (i). To show that (i) holds, let us first
note that, by definition,

x 2 �Kt(!) () x · y  0 8y 2 K⇤,0
t (!). (4.2.4)

(a) First assume that ⇣t 2 �Kt,P-q.s. and fix P 2 P together with P := P|Ω. Then, ⇣t(!) 2
�Kt(!) for P-a.e. ! 2 Ω. Recalling (4.2.4), this implies that ⇣t(!) ·Xt(!, ✓)  0, for every ✓ 2 Λ

and P-a.e. ! 2 Ω. Hence, ⇣t · Xt  0 P-a.s. by Remark 4.2.7. By arbitrariness of P, the later
holds P-q.s.

(b) We now assume that ⇣t · Xt  0 P-q.s. Let P 2 P, then for every ✓ 2 Λ, one has P ⌦
�✓ 2 P. Let Λ� ⇢ Λ be a countable dense subset, it follows that, for P-a.e. ! and every
y 2

�Q
K⇤,0

t (!)[St(!)✓t] : ✓ 2 Λ�

 
, one has ⇣t(!) · y  0. By continuity of the inner product

and Assumption 4.2.2, we then have ⇣t · y  0 for all y 2 K⇤,0
t P-a.s. The measure P 2 P being

arbitrary chosen, we then deduce from (4.2.4) that ⇣t 2 �Kt,P-q.s.

4.2.3 Equivalence of the no-arbitrage conditions under the framework
of Bouchard & Nutz [43]

For the newly introduced fictitious market under model uncertainty, a first issue is to formulate
a no-arbitrage condition. Let us now specialize to the framework of Bouchard & Nutz [43]. In
this probabilistic framework, we show that the quasi-sure no-arbitrage condition of second kind
used in [43] is equivalent to the quasi-sure no-arbitrage condition of [1] on the frictionless market
defined on Ω with stock price process X and F-predictable strategies.

No-arbitrage condition under Bouchard & Nutz’s [43] framework We first recall the
framework of Bouchard & Nutz [43]. Let Ω0 = {!0} be a singleton and Ω1 be a Polish space. For
each t 2 {1, · · · , T}, we denote by Ωt := Ω0⇥Ωt

1, where Ωt
1 denotes the t-fold Cartesian product

of Ω1, we set F0
t := B(Ωt) and let Ft be its universal completion. In particular, the �-field F0

0

and F0 are trivial. From now on,

Ω := ΩT , F := FT , F0 := (F0
t )0tT , F := (Ft)0tT .

Given t 2 {0, · · · , T � 1} and ! 2 Ωt, we are given a non-empty convex set Pt(!) ✓ B(Ω1),
which represents the set of possible models for the (t+1)-th period, given state ! at time t. We
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assume that for each t

graph(Pt) := {(!,P) : ! 2 Ωt,P 2 Pt(!)} ✓ Ωt ⇥ P(Ω1) is analytic. (4.2.5)

Given probability kernels Pt : Ωt 7! B(Ω1), for each t  T � 1, we define a probability measure
P on Ω by Fubini’s theorem:

P(A) :=

Z

Ω1

· · ·

Z

Ω1

1A(!1,!2 · · · ,!T )PT�1(!1, · · · ,!T�1; d!T ) · · ·P0(d!1)

We can then introduce the set P ✓ B(Ω) of possible models for the multi-period market up to
time T :

P :=
�
P0 ⌦ P1 ⌦ · · ·⌦ PT�1 : Pt(·) 2 Pt(·) for t  T � 1

 
. (4.2.6)

Notice that the condition (5.2.2) ensures that Pt admits a universally measurable selector: Pt :
Ωt ! P(Ω1) such that Pt(!) 2 Pt(!) for all ! 2 Ωt. Then the set P defined in (5.2.1) is
nonempty.

Let us now recall the no-arbitrage condition used in [43].

Definition 4.2.9. We say that NA2(P) holds if for all t  T � 1 and all ⇣ 2 L0(Ft),

⇣ 2 Kt+1 P-q.s. implies ⇣ 2 Kt P-q.s.

The following robust version of the fundamental theorem has been proved in [43].

Theorem 4.2.10. The condition NA2(P) is equivalent to : For all t  T � 1, P 2 P and
Y 2 L0

P(Ft, intK
⇤
t ), there exists Q 2 B(Ω) and a F0-adapted process (Zs)s=t,...,T such that

P ⌧ Q and P = Q on Ft, and
(i) Q n P
(ii) Y = Zt Q-a.s.
(iii) Zs 2 intK⇤

s Q-a.s. for s = t, . . . , T

(iv) (Zs)s=t,...,T is a Q-martingale, i.e. EQ[Zs0 |Fs] = Zs for t  s  s0.

A couple (Q, Z) satisfying the conditions (i)� (iv) above for t = 0 is called a strictly consistent
price system (SCPS). For later use, let S denote the collection of all SCPS, and set

S0 :=
�
(Q, Z) 2 S such that Zd ⌘ 1

 
. (4.2.7)

For later use, we also recall the notion of NA2(t,!) for each t  T and ! 2 Ωt: we say
NA2(t,!) holds true if

⇣ 2 Kt+1(!, ·) Pt(!)-q.s. implies ⇣ 2 Kt(!), for all ⇣ 2 Rd. (4.2.8)

The following result is proved in [43, Lemma 3.6].

Lemma 4.2.11. The set Nt := {! : NA2(t,!) fails} is universally measurable. Moreover, Nt is
a P-polar set if NA2(P) holds.

No-arbitrage condition on the enlarged space We next consider the enlarged space (Ω,F)
and define a subset of probability measures P int ⇢ P, in order to introduce the quasi-sure no-
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arbitrage condition of [1] w.r.t. the price process X and the set of strategies

H := {All F-predictable processes}.

Given t  T , we denote Ω0 := Ω0⇥Λ1 and Ωt := Ω0⇥(Ω1⇥Λ1)
t, so that one has Ω := Ω⇥Λ = ΩT .

We write (!, ✓) 2 Ω in the form ! = (!0, . . . ,!T ) and ✓ = (✓0, . . . , ✓T ). For t  T , we use the
notations !t := (!0, . . . ,!t), ✓t = (✓0, . . . , ✓

t) and !̄t = (!t, ✓t). We now introduce the subset
P int ⇢ P := {P 2 B(Ω) : P|Ω 2 P} defined as follows:

• For t = 0, 1, · · · , T � 1 and !̄ = (!, ✓) 2 Ωt, define Pt(!̄) :=
�
P 2 B(Ω1 ⇥ Λ1) : P|Ω1

2
Pt(!)

 
, and

P
int

t (!̄) :=
�
P 2 Pt(!̄) : (�!̄t ⌦ P)[Xt+1 2 intK⇤

t+1] = 1
 
, (4.2.9)

where �!̄t ⌦ P is a probability measure on Ωt+1 = Ωt ⇥ (Ω1 ⇥ Λ1) and Xt+1 (defined in
(5.2.6)) is considered as a random variable defined on Ωt+1.

• Let P
int

; be the collection of all probability measures P on Ω0 such that P[X0 2 intK⇤
0 ] = 1,

and define

P int :=
�
P; ⌦ P0 ⌦ · · ·⌦ PT�1 : P; 2 P

int

; and Pt(·) 2 P
int

t (·) for t  T � 1
 
,

where Pt(·) is a universally measurable selector of P
int

t (·), whose existence is ensured by
Lemma 4.2.13 below.

By a slight abuse of notations, we shall later write Pt(!̄) for Pt(!̄
t) when !̄ 2 Ω. The same

convention will be used for P
int

t (!̄), etc.

Remark 4.2.12. s Note that the equivalence observed in Remark 4.2.7 still holds for the above
construction. In particular, let Y : (!, ✓) 2 Ω 7! Y (!, ✓) be a random variable. Then, the
following are equivalent:

(i) Y � 0 P int-q.s

(ii) Y (!, ✓) � 0 for all ✓ 2 Λint(!) := {✓0 : St(!)✓
0
t 2 intK⇤

t (!), 8t  T}, for all ! outside a
P-polar set.

Lemma 4.2.13. For every 0  t  T � 1, the set

graph
�
P

int

t

�
:=
�
(!̄,P) : !̄ 2 Ωt,P 2 P

int

t (!̄)
 

is analytic.

Proof. We only consider the case t � 1, the proof for the case t = 0 is an obvious modification.
(i) Since graph(Pt) is an analytic set, there is some Polish space E and a Borel set A ⇢

Ωt ⇥B(Ω1)⇥E such that graph(Pt) is the projection set of A on Ωt ⇥B(Ω1), i.e. graph
�
Pt

�
=

ΠΩt⇥B(Ω1)

⇥
A
⇤
. Let us define

A :=
��
!̄,P, e

�
2 Ωt ⇥B(Ω1 ⇥ Λ1)⇥ E :

�
!,P|Ω1 , e

�
2 A

 
,

which is a Borel set in Ωt⇥B(Ω1⇥Λ1)⇥E since !̄ = (!, ✓) 7! ! and P 7! P|Ω1
are Borel. Then

graph(Pt) = Π
Ωt⇥B(Ω1⇥Λ1)

⇥
A
⇤

is an analytic set.
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(ii) Let t � 0 and � : Ωt+1 ! R be a bounded measurable function, then (!t, ✓t,P) 7!
EP[�(!t, ✓t, ·)] is a Borel measurable map from Ωt⇥B(Ω1⇥Λ1) to R, see e.g. [NutzVanHandel.12].
Next, by [43, Lemma A.1], we know that

B :=
�
(!t+1, ✓t+1, x) 2 Ωt+1 ⇥ Rd : x 2 intK⇤

t+1(!
t+1)

 

is Borel measurable. Then

(!t, ✓t,P) 7!
�
�(!t,✓t) ⌦ P

�⇥
Xt+1 2 intK⇤

t+1

⇤

=

Z

Ω1⇥Λ1

1{(!t,!t+1,✓t,✓t+1,Xt+1(!t,·))2B}dP((!t+1, ✓t+1))

is also Borel measurable. It follows that

C :=
n�
!̄t,P

�
2 Ωt ⇥B(Ω1 ⇥ Λ1) :

�
�!̄t ⌦ P

�⇥
Xt+1 2 intK⇤

t+1

⇤
= 1
o

is a Borel set, and hence graph
�
P

int

t

�
= C \ graph(Pt) is an analytic set.

Definition 4.2.14. We say that NA(P int) holds if

(H �X)T � 0, P int-q.s. =) (H �X)T = 0, P int-q.s.,

for every H 2 H.

Using [1] and Lemma 4.2.13 above, it follows that the following fundamental theorem of asset
pricing holds.

Theorem 4.2.15. The condition NA(P int) is equivalent to : For all P 2 P int, there exists
Q 2 B(Ω) such that P ⌧ Q n P int and X is a (Q,F)-martingale.

Hereafter, we denote by Q0 the collection of measures Q 2 B(Ω) such that Q n P int and X
is a (F,Q)-martingale.

The main result of this section says that the two no-arbitrage conditions defined above are
equivalent.

Proposition 4.2.16. The conditions NA2(P) and NA(P int) are equivalent.

Proof. (i) Let us first suppose that NA(P int) holds. Assume that NA2(P) does not hold. Then,
for some t  T � 1, there is ⇣ 2 L0(Ft) such that ⇣ 2 Kt+1 P-q.s. and P[A] > 0 for some P 2 P
and

A :=
�
! : ⇣(!) /2 Kt(!)

 
=
�
! : 9y 2 K⇤,0

t (!) \ intK⇤
t (!) s.t. y · ⇣(!) < 0

 
.

Notice that graph(K⇤,0
t \ intK⇤

t ) is Borel measurable. Hence,

B :=
�
(!, �) 2 Ωt ⇥ Λ1 : St(!)� 2 K⇤,0

t (!) \ intK⇤
t (!) and (St(!)�) · ⇣(!) < 0

 

is also Borel measurable. Then A = ΠΩt
[B] is analytic. Using Jankov-von Neumann’s measurable

selection theorem (see e.g. [43, Lemma A.2]), there is a universally measurable ⇢t : A ! Λ1 such
that (!, ⇢t(!)) 2 B and hence St(!)⇢t(!) 2 K⇤,0

t (!) \ intK⇤
t (!) and (St(!)⇢t(!)) · ⇣(!) < 0,

for all ! 2 A. We then extend ⇢t on Ωt by setting ⇢t = 1 on Ac. Then, Yt(!) := St(!)⇢t(!) 2
K⇤,0

t (!) \ intK⇤
t (!) for all ! 2 Ωt, and A ⇢ {Yt · ⇣ < 0}. Set ⇣̄ := ⇣1{⇣·Xt0}, so that
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⇣̄ ·
�
Xt+1 � Xt

�
� 0 P int-q.s. However, using Assumption 4.2.2, (5.2.4) and the fact that S

does not depend on ✓ 2 Λ, and A 2 F , it follows that there is some P 2 P int such that
P[(Xt, Xt+1) = (Yt, St+1)] = 1 and P[⇣̄ · (Xt+1 � Xt) > 0] � P[A] > 0. This contradicts
NA(P int).

(ii) Conversely, assume that NA2(P) holds, we aim at proving that NA(P int) holds. In view of
Theorem 4.2.15, it is enough to prove that, for every P 2 P int, there is a Q n P int such that
P ⌧ Q and X is a (F,Q)-martingale.

Fix P 2 P int, then, by the definition of P int, one has the representation:

P := P; ⌦ (P0 ⌦ q0)⌦ · · ·⌦ (PT�1 ⌦ qT�1),

where Pt : Ωt ! P(Ω1) and qt
�
d✓t+1|!̄

t,!t+1

�
: Ωt ⇥Ω1 ! P(Λ1) are all Borel kernels such that

Pt = (Pt(·|!̄
t))!̄t2Ωt

satisfies Pt(·|!̄
t) 2 P(t,!t) and the support of qt(·|!̄t,!t+1) is contained in

Λint
t+1(!

t+1) := {✓t+1 2 Λ1 : St+1(!
t+1)✓t+1 2 intK⇤

t+1(!
t+1)}.

We next construct another kernel q0t in order to define a martingale measure Q dominating
P. For every t  T � 1, we consider a Borel kernel (Pt(·|!̄

t))!̄t2Ωt
. First, we observe that

{! : NA2(t,!) fails} ⇥ Λ is P-polar by Lemma 4.2.11. Then given !̄t = (!t, ✓t) such that !t is
outside this polar set, we can consider a 1 period market on {t, t+1}, with measure uncertainty
Pt(!

t) on Ω1. It follows from [43, Proposition 3.1] that given !̄t, and therefore Xt(!̄
t) and

Pt(·|!̄
t), there exists (Zt+1(!̄

t, ·),Qt(·|!̄
t),P0

t(·|!̄
t)) such that P0

t(·|!̄
t) 2 Pt(!

t), Zt+1(!̄
t,!t+1) 2

(intK⇤
t+1 \K⇤,0

t+1)(!
t,!t+1) for all !t+1 2 Ω1, and

Pt(·|!̄
t) ⌧ Qt(·|!̄

t) ⌧ P0
t(·|!̄

t), and EQt(·|!̄
t)[Zt+1] = St(!

t)✓t = Xt(!̄
t). (4.2.10)

Moreover, by [43, Lemma 3.8] together with a measurable selection argument (see e.g. [43, Lemma
A.2]), we can ensure that

(!̄t,!t+1) 2 Ωt ⇥ Ω1 7!
�
Zt+1(!̄

t,!t+1),Qt(·|!̄
t),P0

t(·|!̄
t)
�

is measurable w.r.t. the universally completed Borel �-field on Ωt ⇥ Ω1.

We next consider the family
�
qt(·|!̄

t,!t+1)
�
!̄t2Ωt,!t+12Ω1

. By [1, Lemma 4.7], the set of all

(!̄t,!t+1,↵, q
0(d✓t+1)) satisfying

q0[Λint
t+1(!

t+1)] = 1, q0 � qt(·|!̄
t,!t+1) and Eq0

⇥
Xt+1(!

t+1, ·)
⇤
= ↵,

is a Borel set. It is not difficult to see that this set is non-empty. Then, by a standard measur-
able selection argument, there is a universally measurable family q0t(·|!̄

t,!t+1) with support in
Λint
t+1(!

t+1) such that

qt(·|!̄
t,!t+1) ⌧ q0t(·|!̄

t,!t+1) and Eq0t(·|!̄
t,!t+1)[Xt+1(!

t+1, ·)] = Zt+1(!̄
t,!t+1).

Let us finally define

Q := P; ⌦
�
Q0 ⌦ q00

�
⌦ · · ·⌦

�
QT�1 ⌦ q0T�1

�

and
P
0
:= P; ⌦

�
P0
0 ⌦ q00

�
⌦ · · ·⌦

�
P0
T�1 ⌦ q0T�1

�
.
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Then it is easy to check that

P ⌧ Q ⌧ P
0
, P

0 2 P, Q 2 Q0,

and we hence conclude the proof.

Remark 4.2.17. Let us define Λint
0 (!0) := {✓0 2 Λ1 : S0(!0)✓0 2 intK⇤

0}, and for each ✓0 2
Λint
0 (!0),

P
int,�

0 (✓0) :=
�
P 2 P int : P[Θ0 = ✓0] = 1

 
, Q

�

0(✓0) :=
�
Q 2 Q0 : Q[Θ0 = ✓0] = 1

 
.

Define NA(P
int,�

0 (✓0)) as NA(P int) with P
int,�

0 (✓0) in place of P int. Then, NA(P int) implies

that NA(P
int,�

0 (✓0)) holds for every ✓0 2 Λint
0 (!0). Indeed, assume that NA(P int) holds. Then,

Theorem 4.2.15 applied to P int implies that, for any P 2 P int such that P[Θ0 = ✓0] = 1, one can
find P ⌧ Q(✓0) such that X is a Q(✓0)-martingale.

4.3 A robust pricing-hedging duality result

We now concentrate on the super-replication problem under the framework of [43]. Given e 2
N [ {0}, we are given a random vector ⇠ : Ω ! Rd as well as ⇣i : Ω ! Rd for i = 1, · · · , e such
that ⇣i 6⌘ 0. The random vectors ⇠ and ⇣i represents the final payoffs, in number of units of
each risky assets, of respectively an exotic option and vanilla options. We assume that the bid
and ask prices of each vanilla option ⇣i are respectively �ci and ci for some constant ci � 0,
this symmetry is without loss of generality. Then, the minimal super-hedging cost of the exotic
option ⇠ using vanilla options ⇣i together with dynamic trading strategy is given by1:

⇡e(⇠) := inf
n
y+

eX

i=1

ci|`i| : y1d +

eX

i=1

`i⇣i +

TX

t=0

⌘t � ⇠ 2 KT , P-q.s., (⌘, `) 2 A⇥Re
o
, (4.3.11)

where 1d is the vector will all components equal to 0 but the last one that is equal to 1. Let us
introduce the subset of the set of SCPS (recall (5.2.12)) that are compatible with the bid-ask
speads of the vanilla options used for static hedging:

Se :=
�
(Q, Z) 2 S0 : EQ

⇥
⇣i · ZT

⇤
2 [�ci, ci], i = 1, · · · , e

 
.

Then, we have the following super-hedging duality.

Theorem 4.3.1. Let ⇠ and (⇣i)ie be Borel measurable, and assume that NA2(P) holds true.
Assume either that e = 0, or that e � 1 and for all ` 2 Re and ⌘ 2 A,

eX

i=1

�
`i⇣i � |`i|ci1d

�
+

TX

t=0

⌘t 2 KT P-q.s. =) ` = 0. (4.3.12)

Then Se is nonempty and

⇡e(⇠) = sup
(Q,Z)2Se

EQ
⇥
⇠ · ZT

⇤
. (4.3.13)

1Here we use the convention
P

0

i=1
= 0
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Moreover, there exists (⌘̂, ˆ̀) 2 A⇥ Re such that

⇡e(⇠)1d +
eX

i=1

⇣
ˆ̀
i⇣i � |ˆ̀i|ci1d

⌘
+

TX

t=0

⌘̂t � ⇠ 2 KT , P-q.s.

The proof is provided in the subsequent sections. We start with the case e = 0.

4.3.1 Proof of Theorem 4.3.1: case e = 0

4.3.2 Reformulation of the super-hedging problem

Before providing the proof of Theorem 4.3.1, we first reformulate the optimization problem
(4.3.13) and the super-hedging problem (4.3.11), under proportional transaction cost, in terms
of the fictitious market defined on our enlarged space.

We start with the pricing problem. Let us define

Q0 :=
�
Q n P int : X is a (F,Q)-martingale s.t. Xt 2 intK⇤

t 8t  T Q-a.s.
 

and

Q
loc

0 :=
�
Q n P int : X is a (F,Q)-local martingale s.t. Xt 2 intK⇤

t 8t  T Q-a.s.
 
.

Proposition 4.3.2. For any universally measurable vector ⇠ : Ω ! Rd, one has

sup
(Q,Z)2S0

EQ
⇥
⇠ · ZT

⇤
= sup

Q2Q0

EQ
⇥
⇠ ·XT

⇤
.

Proof. (i) First, let (Q, Z) 2 S0 be a consistent price system, where Q ⌧ P for some P 2 P
and Z is a Q-martingale s.t. Zt 2 intK⇤

t , Q-a.s. for t  T . Then, for every t  T , there is a
F0

t -measurable map ⇢t : Ωt ! Λ1 such that Xt(!, ⇢t(!)) = St(!)⇢t(!) = Zt(!) for Q-a.e. ! 2 Ω.
Let us define P and Q by

EP[f(!, ✓)] := EP
⇥
f
�
(!t, ⇢t(!))tT

�⇤
and EQ[f(!, ✓)] := EQ

⇥
f
�
(!t, ⇢t(!))tT

�⇤
,

for all (bounded) FT -measurable f : Ω ! R. Then, it is clear that Q ⌧ P 2 P int. Further, given
a bounded F t-measurable r.v. Yt, it follows from the definition of Q that

EQ[(Xt+1 �Xt)Yt] = EQ
⇥�
Xt+1(!, ⇢t+1(!))�Xt(!, ⇢t(!))

�
Yt(!, ⇢t(!))

⇤

= EQ[(Zt+1(!)� Zt(!))Yt(!, ⇢t(!))
⇤

= 0,

since Z is a Q-martingale. It follows that X is a (F,Q)-martingale and hence Q 2 Q0. Moreover,
one has EQ

⇥
⇠ ·XT

⇤
= EQ

⇥
⇠ · ZT

⇤
.

Conversely, given Q 2 Q0, let us define Q := Q|Ω and Zt := EQ[Xt|Ft] for t  T . Since Q ⌧ P

for some P 2 P, then Q ⌧ P := P|Ω 2 P. Moreover, the fact that X is a (F,Q)-martingale
implies that Z is (F,Q)-martingale. Then, (Q, Z) is a strictly consistent price system, and
EQ
⇥
⇠ · ZT

⇤
= EQ

⇥
⇠ ·XT

⇤
.

We next reformulate the super-hedging problem (4.3.11) on the enlarged space. Let us define

g(!̄) := ⇠(!) ·XT (!̄), for all !̄ = (!, ✓) 2 Ω,
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as the contingent claim. Denote by H the collection of all F̃-predictable processes and let (H �
X)t :=

Pt
s=1 Hs · (Xs �Xs�1), t  T , be the wealth process associated to H 2 H.

Proposition 4.3.3. One has

⇡0(⇠) = inf
n
y 2 R : y + (H �X)T � g P-q.s., for some H 2 H

o

= inf
n
y 2 R : y + (H �X)T � g P int-q.s., for some H 2 H

o
.

Proof. For ease of notations, we write ∆Xt := Xt �Xt�1.

(i) Let (y, ⌘) 2 R⇥A be such that and y1d +
PT

t=0 ⌘t � ⇠ 2 KT P-q.s. Define the F̃-predictable
process H by Ht :=

Pt
s=1 ∆Hs with ∆Ht := ⌘t�1, for t = 1, · · · , T . By exactly the same

arguments as in part (i) of the proof of Theorem 4.2.8, this is equivalent to

0 
⇣
y1d +

TX

t=0

⌘t � ⇠
⌘
·XT

= y +

TX

t=0

⌘t · (XT �Xt) +

TX

t=0

⌘t ·Xt � g

= y +

TX

t=1

Ht ·∆Xt +

TX

t=0

⌘t ·Xt � g P-q.s., (4.3.14)

where the last equivalence follows by direct computation using that Xd
t ⌘ 1. Since ⌘t ·Xt  0

P-q.s., by Theorem 4.2.8, we deduce that y + (H �X)T � g P-q.s. This shows that

⇡0(⇠) � inf
�
y 2 R : y + (H �X)T � g P-q.s. for some H 2 H

 
.

(ii)We next prove the converse inequality. Let (y,H) 2 R⇥H be such that y+(H�X)T � g P-q.s.
We use the convention H0 = 0. Set ⌘it := ∆Hi

t+1 for all i = 1, · · · , d � 1 and t  T � 1, and
⌘T := 0. We next define ⌘dt for t = 0, · · · , T � 1 by

⌘dt (!) := min
✓2Λ

md
t (!, ✓) with md

t (!̄) := �
d�1X

i=1

⌘it(!)X
i
t(!̄), (4.3.15)

for all !̄ = (!, ✓) 2 Ω. Notice that md
t (!, ✓) is bounded continuous in ✓, then, ⌘dt is Ft-

measurable, by the Measurable Maximum Theorem (see e.g. Theorem 18.19 of [102]). Using its
construction, one has ⌘ 2 A. Moreover, it follows from the choice of (y,H) and the fact that
P⇥ �✓ 2 P for all P 2 P that

0  inf
✓2Λ

�
y + (H �X)T � g

�
(·, ✓) (4.3.16)

= inf
✓2Λ

⇣
y +

TX

t=0

⌘t · (XT �Xt)� ⇠ ·XT

⌘
(·, ✓)

= inf
✓2Λ

⇣�
y1d +

TX

t=0

⌘t � ⇠
�
·XT �

T�1X

t=0

⌘t ·Xt

⌘
(·, ✓) P-q.s.,

recall that ⌘T = 0 by its construction above (4.3.15). We now use the fact that each Xt depends
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on ✓ only through ✓t to obtain

0  inf
✓2Λ

�
(y1d +

TX

t=0

⌘t � ⇠) ·XT

 
(·, ✓)�

T�1X

t=0

sup
✓2Λ

�
⌘t ·Xt

 
(·, ✓).

Further, by the definition of ⌘d in (4.3.15), it follows that

sup
✓2Λ

{⌘t ·Xt}(!, ✓) = ⌘dt (!) + sup
✓2Λ

d�1X

i=1

⌘it(!)X
i
t(!, ✓) = 0.

Therefore,

0  inf
✓2Λ

�
(y1d +

TX

t=0

⌘t � ⇠) ·XT

 
(·, ✓) P-q.s.

The latter is equivalent to y1d +
PT

t=0 ⌘t � ⇠ 2 KT , P-q.s. This shows that

⇡0(⇠)  inf
�
y 2 R : y + (H �X)T � g P-q.s., for some H 2 H

 
.

(iii) Let us now prove that

⇡0(⇠) = inf
�
y 2 R : y + (H �X)T � g P int-q.s., for some H 2 H

 
.

Since P int ⇢ P, one inequality follows from (i)� (ii) above. As for the converse one, let
(y,H) 2 R ⇥ H be such that y + (H � X)T � g P int-q.s. and define ⌘ as in (4.3.15). Observe
that the right-hand side term of (4.3.16) is equal to

inf
✓2Λint(·)

�
y + (H �X)T � g

�
(·, ✓)

P-q.s., in which, for ! 2 Ω, Λint(!) is defined as the collection of ✓ 2 Λ such that St(!)✓t 2
intK⇤

t (!) for all t  T .
Next, to each ✓ 2 Λ, we associate the probability kernels

q✓s : ! 2 Ω 7! q✓s(·|!) := �✓s1A✓
s(!) + �11(A✓

s(!))c 2 B(Λ1), s  T, (4.3.17)

where 1 is the vector of Rd with all entries equal to 1, A✓
s(!) := ; for s 6= t and A✓

t (!) :=
{St(!)✓t 2 intK⇤

t (!)}. It follows that P ⌦ (q✓0 ⌦ q✓1 ⌦ · · · ⌦ q✓T ) 2 P int for every P 2 P. Then it
suffices to argue as in (ii) above to obtain that

0  inf
✓2Λint(·)

�
y + (H �X)T � g

�
(·, ✓) = inf

✓2Λ

�
y + (H �X)T � g

�
(·, ✓) P-q.s.

which implies that

0  inf
✓2Λ

�
(y1d +

TX

t=0

⌘t � ⇠) ·XT

 
(·, ✓) P-q.s.,

and we hence conclude as in step (ii).

Remark 4.3.4. Notice that the proof of the first equality in Proposition 5.2.6 does not depend
on any special structure conditions on Ω as in the framework of [43]. In other words, it holds
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still true for an abstract space (Ω,F) with an arbitrary family of probability measures P.

Remark 4.3.5. Let us observe that the reformulations in Proposition 5.2.6 on the enlarged space
do not exactly correspond to standard quasi-sure super-hedging problem. Indeed, we still restrict
the class of strategies to F̃-predictable processes, as opposed to F-predictable processes. The fact
that the formulation with these two different filtrations are equivalent will be proved by using a
minimax argument in the next section.

4.3.3 Proof of Theorem 4.3.1, case e = 0

In view of Propositions 4.3.2 and 5.2.6, Theorem 4.3.1 will be proved if one can show that, with
g := ⇠ ·XT :

inf
n
y 2 R : y + (H �X)T � g P int-q.s., for some H 2 H

o
= sup

Q2Q0

EQ
⇥
g
⇤
.

Let us start with a weak duality result, which is an immediate consequence of [1, Lemmas A.2
and A.3].

Lemma 4.3.6. For any universally measurable variables g : Ω ! R, one has

sup
Q2Q0

EQ
⇥
g
⇤

= sup
Q2Q

loc
0

EQ
⇥
g
⇤

 inf
n
y 2 R : y + (H �X)T � g P int-q.s., for some H 2 H

o
.

We prove the converse inequality in the rest of this section. Let us proceed by induction,

by first considering the one period case T = 1. Recall that Λint
0 (!0), P

int,�

0 (✓0) and Q
�

0(✓0) are
defined in Remark 4.2.17.

Lemma 4.3.7. Let e = 0, T = 1 and g1 : Ω ! R [ {1} be upper semi-analytic and such that
(!, ✓0, ✓1) 2 Ω ⇥ Λ1 ⇥ Λ1 ! g1(!, ✓0, ✓1) depends only on (!, ✓1). Assume that NA(P int) holds
true. Then,

sup
✓02Λint

0 (!0)

sup
Q2Q

�

0(✓0)

EQ
⇥
g1
⇤
= sup

Q2Q0

EQ
⇥
g1
⇤

(4.3.18)

= inf
�
y 2 R : y + (H �X)T � g1, P int-q.s., H 2 H

 

> �1.

Proof. First, notice that H = Rd when T = 1, and that (g1, X1)(!, ✓0, ✓1) are independent of
✓0. Then, for all ✓0 2 Λint

0 (!0),

�
P � (g1, X1)

�1 : P 2 P
int,�

0 (✓0)
 

=
�
P � (g1, X1)

�1 : P 2 P
int,�

0 (1)
 
,
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where 1 represents the vector of Rd with all entries equal to 1. Then

inf
�
y : y + (H �X)1 � g1, P int-q.s., H 2 H

 

= inf
h12Rd

sup
✓02Λint

0 (!0)

sup
PnP

int,�
0 (✓0)

EP[g1 � h1 · (X1 � S0✓0)]

= sup
✓02Λint

0 (!0)

inf
h12Rd

sup
PnP

int,�
0 (✓0)

EP[g1 � h1 · (X1 � S0✓0)]

= sup
✓02Λint

0 (!0)

inf
�
y : y +H1 · (X1 �X0) � g1, P

int,�

0 (✓0)-q.s., H 2 H
 
. (4.3.19)

In the above, the second equality follows by the minimax theorem since

(✓0, h1) 7! sup
PnP

int,�
0 (✓0)

EP[g1 � h1 · (X1 � S0✓0)] = sup
PnP

int,�
0 (1)

EP[g1 � h1 · (X1 � S0✓0)]

is convex in h1 and linear in ✓0, as (g1, X1)(!, ✓0, ✓1) is independent of ✓0. Moreover, the infimum
over h1 is concave and therefore lower semicontinuous (in particular, one can replace Λint

0 (!0) by

its closure, that is a compact set, in all the above terms). Observe that Q
�

0(✓0) is nonempty for
every ✓0 2 Λint

0 (!0), recall Remark 4.2.17 and Theorem 4.2.15. Then, by the duality result in [1,
Theorem 3.4], the right-hand side of (4.3.19) has a finite negative part and is equal to

sup
✓02Λint

0 (!0)

sup
Q2Q

�

0(✓0)

EQ
⇥
g1
⇤

= sup
Q2Q0

EQ
⇥
g1
⇤
,

where the last equality follows from the fact that Q�
0(✓0) ⇢ Q0 and that every probability measure

Q in Q0 can be disintegrated into a combinaison of elements in (Q�
0(✓0))✓02Λint

0 (!0).

We now prepare for the general case T � 1, which is based on a dynamic programming

argument. We extend the definitions of Λint
0 (!0), P

int,�

0 (✓0) and Q
�

0(✓0), see Remark 4.2.17, to
an arbitrary initial time t and initial path !̄t. For t � 1 and !̄ = !̄t = (!t, ✓t) 2 Ωt, we firt recall
the definition of Λint

t (!t) that was already used in the proof of Proposition 5.2.11:

Λ
int
t (!t) := {✓t 2 Λ1 : St(!

t)✓t 2 intK⇤
t (!

t)} ⇢ Λ1.

Next, recall that P
int

t (!̄) ⇢ B(Ω1 ⇥ Λ1) is defined in (5.2.7). We define

P
int,�

t (!̄) :=
�
�!̄t ⌦ Pt+1 : Pt+1 2 P

int

t (!̄)
 

and
Q

�

t (!̄) :=
�
Qt+1 n P

int,�

t (!̄) : EQt+1 [Xt+1 �Xt] = 0
 
.

as well as

eP int,�
t (!) :=

�
(�!t ⇥ µ(d✓t))⌦ Pt+1 : Pt+1 2 P

int

t (!̄), µ 2 B
�
Λ
int
0 (!0)⇥ · · ·⇥ Λ

int
t (!t)

� 
,

a version of P
int,�

t in which ✓t is not fixed anymore. Let gt+1 : Ωt+1 ! R [ {1} be an upper
semi-analytic functional and be such that gt+1(!

t+1, ✓0, · · · , ✓t+1) depends only on (!t+1, ✓t+1).
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We define

gt(!̄
t) := sup

Q2Q
�

t (!̄)

EQ[gt+1]. (4.3.20)

Remark 4.3.8. Let !̄ = (!, ✓) and !̄0 = (!0, ✓0) be such that !t = (!0)t and ✓t = ✓
0

t. Then, it

follows from the definition of P
int,�

t (!̄) and Q
�

t (!̄) that

{Q � (gt+1, Xt, Xt+1)
�1 : Q 2 Q

�

t (!̄)} = {Q � (gt+1, Xt, Xt+1)
�1 : Q 2 Q

�

t (!̄
0)}.

Hence, gt(!̄t) depends only on (!t, ✓t) for !̄t = (!t, ✓0, · · · , ✓t).

We then define

g0t(!
t, ht) := sup

✓t2Λint
t (!t)

�
gt(!

t, ✓t)� ht · St(!)✓t
 
, ht 2 Rd.

Remark 4.3.9. (i) For a fixed !̄ 2 Ωt, we define NA(P
int,�

t (!̄)) by

h · (Xt+1 �Xt) � 0 P
int,�

t (!̄)-q.s. =) h · (Xt+1 �Xt) = 0 P
int,�

t (!̄)-q.s.,

for every h 2 Rd. Then, it follows from [1, Theorem 4.5] and Lemma 4.2.13 that NA(P int)

implies that NA(P
int,�

t (!̄)) holds for all !̄ 2 Ω outside a P int-polar set.

(ii) Now, for a fixed ! 2 Ωt, let us define NA( eP int,�
t (!)) by

h(Xt) · (Xt+1 �Xt) � 0 eP int,�
t (!̄)-q.s. =) h(Xt) · (Xt+1 �Xt) = 0 eP int,�

t (!̄)-q.s.,

for every universally measurable functions h : Rd ! Rd. Then by applying Proposition 5.2.11 with
P(t,!) in place of P, one obtains that NA2(t,!) defined in (5.5.29) is equivalent to NA( eP int,�

t (!)).

(iii) It follows from (ii) and Lemma 4.2.11 that NA2(t,!) or equivalently NA( eP int,�
t (!)) holds

for all ! outside a P-polar set N , whenever NA2(P) holds. The later is equivalent to NA(P int)
by Proposition 5.2.11. Therefore, when NA(P int) holds, there exists a P int-polar N := N ⇥ Λ,
such that for all !̄ = (!, ✓) /2 N , NA( eP int,�

t (!)) holds. Moreover, by similar arguments as in

Remark 4.2.17, NA( eP int,�
t (!)) implies NA(P

int,�

t (!, ✓)) for all ✓ 2 Λ.

Lemma 4.3.10. Assume that NA(P int) holds. Then, both g0t and gt are upper semi-analytic.
Moreover, there is a universally measurable map ht+1 : Ωt ⇥Rd ! Rd and a P-polar set N such
that, for every (!, ht) 2 N c ⇥ Rd, one has g0t(!

t, ht) > �1 and

g0t(!
t, ht) + ht ·Xt + ht+1(!

t, ht) · (Xt+1 �Xt) � gt+1
eP int,�
t (!)-q.s.

Proof. The proof follows from the same measurable selection arguments as in [1, Lemma 4.10].
We provide a sketch of proof for completeness. Let us define

⇡0
t(!

t, ht) := inf
�
y 2 R : y + ht ·Xt + ht+1 · (Xt+1 �Xt) � gt+1

eP int,�
t (!)-q.s., ht+1 2 Rd

 
.

Notice that (Xt+1, gt+1)(!
t+1, ✓0, · · · , ✓t, ✓t+1) are independent of (✓0, · · · , ✓t). Using the same

minimax theorem argument as in the proof of Lemma 4.3.7, one obtains that

⇡0
t(!

t, ht) = g0t(!
t, ht) > �1 if NA( eP int,�

t (!)) holds true.
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In view of (iii) in Remark 5.5.6, this is true outside a P-polar set N .

Further, gt+1 is assumed to be upper semi-analytic, Xt is Borel measurable, the graph of

Q
�

t is analytic by [1, Lemma 4.8], and the graph of intK⇤
t is Borel. It thus follows from a

measurable selection argument (see e.g. [92, Propositions 7.26, 7.48]) that the maps !̄t 7! gt(!̄
t)

and (!t, ht) 7! g0t(!
t, ht) are both upper semi-analytic.

We now define ĝt := g0t1R(g
0
t), which is universally measurable, i.e. in U(Ωt⇥Rd), and consider

the random set:
Ψ(!t, ht) :=

�
y 2 Rd : �y(·, ht)  0 eP int,�

t (!)-q.s.
 

where

�y(·, ht) :=gt+1 � ĝt(·, ht)� y ·
�
Xt+1 �Xt

�
� htXt.

It is enough to show that {Ψ 6= ;} is universally measurable and that Ψ admits a universally
measurable selector ht+1(·) on {Ψ 6= ;}. It is not hard to see that2 �y 2 USA[U(Ωt ⇥ Rd) ⌦
B(Rd ⇥ Ω1)]. Note that, given a probability measure P̂, �y(·, ht) 6 0 P̂-a.s. iff EP̃[�y(·, ht)] 6

0 for all P̃ ⌧ P̂. By an application of [1, Lemma 3.2], it is further equivalent to have the above
for all P̃ ⌧ P̂ satisfying EP̃[|Xt+1 � Xt|] < 1 and EP̃[|Xt|] < 1. Therefore, we introduce the
random set

eP int,�0

t (!) := {P̃ n eP int,�
t (!) : EP̃[|Xt+1 �Xt|] + EP̃[|Xt|] < 1}.

By the same arguments in the proof of [1, Lemma 4.8], one can prove that eP int,�0

t has an analytic
graph. Define now

Γy(!
t, ht) := sup

P̃2 ePint,�0

t (!t)

EP̃[�y(·, ht)],

so that �y(·, ht) 6 0 eP int,�
t (!)-q.s. iff Γy(!

t, ht) 6 0. We now show that (!t, ht) 7! Γy(!
t, ht) is

universally measurable. Indeed, the first term in the difference

EP̃[gt+1(!
t, ·)]� ĝt(!

t, ht)� y · EP̃[Xt+1(!
t, ·)�Xt(!

t, ·)]� ht · E
P̃[Xt(!

t, ·)]

is a upper semianalytic function of (!t, P̃). The second term is universally measurable. The
third and the fourth terms are Borel. As a result, (!t, ht, P̃) 7! EP̃[�y(!

t, ·, ht)] is in USA[U(Ωt⇥
Rd)⌦ B(B(Rd ⇥ Ω1))]. Thus, by the Projection Theorem in the form of [1, Lemma 4.11],

{Γy > c} = projΩt⇥Rd{(!t, ht, P̃) : (!
t, P̃) 2 graph( eP int,�0

t ), EP̃[�y(!
t, ·, ht)] > c}

2 U(Ωt ⇥ Rd)

for all c 2 R. This means that (!t, ht) 7! Γy(!
t, ht) is universally measurable for any fixed y.

On the other hand, given (!t, ht) 2 Ωt ⇥ Rd and m > 1, the function y 7! Γy(!
t, ht) ^m is

lower semicontinuous as the supremum over eP int,�0

t of a family of continuous functions. By [1,
Lemma 4.12], (!t, ht, y) 7! Γy(!

t, ht)^m is U(Ωt⇥Rd)⌦B(Rd)-measurable as well. As a result,

graph(Ψ) = {(!t, ht, y) : Γy(!
t, ht) 6 0} 2 U(Ωt ⇥ Rd)⌦ B(Rd)

⇢ A[U(Ωt ⇥ Rd)⌦ B(Rd)],

2USA[U(Ωt × Rd)⊗ B(Rd ×Ω1)] denotes the convex cone generated by both the upper semianalytic maps on

(Ωt × Rd)× (Rd × Ω1) and the U(Ωt × Rd)⊗ B(Rd × Ω1)-measurable functions.
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where A[U(Ωt⇥Rd)⌦B(Rd)] stands for the collection analytic sets of U(Ωt⇥Rd)⌦B(Rd). Finally,
[1, Lemma 4.11] yields that {Ψ 6= ;} 2 U(Ωt ⇥Rd) and that Ψ admits a U(Ωt ⇥Rd)-measurable
selector on {Ψ 6= ;}.

Proof of Theorem 4.3.1 (case e = 0). The existence of the optimal super-hedging strategy
will be proved in Lemma 4.3.11 below for the general case e � 1. By Propositions 4.3.2 and 5.2.6
and Lemma 4.3.6, it is enough to prove

sup
Q2Q

loc
0

EQ
⇥
g
⇤
� inf

n
y 2 R : y + (H �X)T � g P int-q.s., for some H 2 H

o
, (4.3.21)

for g := ⇠ · XT . We use an induction argument. Recall that (4.3.21) is already proved for the
case T = 1, this is the content of Lemma 4.3.7. Assume that (4.3.21) holds true for T = t and
let us prove that it also holds true for the case T = t+ 1.

Given an upper semianalytic random variable gt+1 := Ωt+1 ! R[{1} such that gt+1(!
t+1, ✓0, · · · , ✓t+1)

depends only on (!t+1, ✓t+1). we define gt by (5.5.30), and denote

⇡t
0(gt) := inf

�
y : y + (H �X)t � gt P int-q.s., H 2 H

 
.

Fix (y,H) 2 R⇥H such that y + (H �X)t � gt, P int-q.s.. Then, y + (H �X)t�1 �Ht ·Xt�1 �
gt �Ht ·Xt P int-q.s. and therefore

y + (H �X)t�1 �Ht ·Xt�1 � g0t(·, Ht) P int-q.s.

Hence, if we define H 0 by H 0
s := Hs for s  t and H 0

t+1(!
t) := ht+1(!

t, Ht(!
t�1)), with ht+1 as

in Lemma 4.3.10, we obtain

y + (H 0 �X)t+1 � gt+1 P int-q.s.

Hence,
⇡t+1
0 (gt+1)  ⇡t

0(gt) = sup
Q2Q

loc
0

EQ
⇥
gt
⇤

 sup
Q2Q

loc
0

EQ
⇥
gt+1

⇤
,

where the last inequality follows from a classical concatenation argument. This is in fact (4.3.21)
for the case T = t+ 1, and we hence conclude the proof.

4.3.4 Proof of Theorem 4.3.1: case e � 1

To take into account the transaction costs generated by the trading of the static options (⇣i, i =
1, · · · , e), we introduce a further enlarged space:

bΛ :=

eY

i=1

[�ci, ci], bΩ := Ω⇥ bΛ, bFt := F t ⌦ B
�bΛ
�
, bPint :=

�bP 2 B(bΩ) : bP|
Ω
2 P int

 
,

and define

f̂i : bΩ �! R, f̂i(b!) = ⇣i(!) ·XT (!̄)� ✓̂i for all b! = (!̄, ✓̂) = (!, ✓, ✓̂) 2 bΩ.
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The process (Xt)0tT and the random variable g := ⇠ · XT defined on Ω can be naturally
extended on bΩ. We can then consider the super-hedging problem on bΩ:

⇡̂e(g) := inf
n
y : y +

eX

i=1

`if̂i + (H �X)T � g, bPint-q.s., ` 2 Re, H 2 H
o
.

Let us also introduce

bQe :=
�bQ 2 B(bΩ) : bQ n bPint, X is (bF, bQ)-martingale, E

bQ[f̂i] = 0, i = 1, · · · , e
 
,

and

bQ'
e :=

�bQ 2 bQe : E
bQ['] < 1

 
, for ' := 1 + |g|+

eX

i=1

|f̂i|.

Lemma 4.3.11. Let NA2(P) hold. Assume further that and (5.4.15) holds true for all ` 2 Re

and ⌘ 2 A. Then:
(a) There exist ˆ̀2 Re and a F-predictable process bH such that

⇡̂e(g) +

eX

i=1

ˆ̀
if̂i + ( bH �X)T � g, bPint-q.s. (4.3.22)

(b) Consequently, there exists (⌘̂, ˆ̀) 2 A⇥ Re such that

⇡e(⇠)1d +

eX

i=1

⇣
ˆ̀
i⇣i � |ˆ̀i|ci1d

⌘
+

TX

t=0

⌘̂t � ⇠ 2 KT , P-q.s. (4.3.23)

Proof. (a) It suffices to show that the collection of claims that can be super-hedged from 0 is
closed for the bPint-q.s. convergence. Note the results in [1, Section 2] are given in a general
abstract context, where the underlying asset is not assumed to be adapted to the filtration of the
strategy. Then, [1, Theorem 2.3] implies our claim in the case e = 0 (recall that NA2(P) implies
NA(P int)). Assume now that it holds for e� 1 � 0 and let us deduce that it holds for e as well.

Let (gn)n�1 ⇢ L0 be such that gn ! g bPint-q.s., and ⇡e(g
n)  0 for n � 1. Let (ˆ̀n)n ⇢ Re

and let ( bHn)n�1 be a sequence of F-predictable processes such that
Pe

i=1
ˆ̀n
i f̂i+( bHn �X)T � gn

bPint-q.s. If (ˆ̀ne )n�1 is bounded, then one can assume that it converges to some ˆ̀
e 2 R. Hence,

[1, Theorem 2.3] implies that one can find ˆ̀ 2 Re�1 and a F-predictable process bH such thatPe�1
i=1

ˆ̀
if̂i + ( bH �X)T � g � ˆ̀

ef̂e bPint-q.s.

If (ˆ̀ne )n�1 is not bounded, then one can assume that |ˆ̀ne | ! 1, so that (gn� ˆ̀n
e f̂e)/(1+|ˆ̀ne |)!

��f̂e bPint-q.s. for some � 2 {�1, 1} and [1, Theorem 2.3] implies that one can find ˆ̀2 Re�1 and a
F-predictable process bH such that

Pe�1
i=1

ˆ̀
if̂i+( bH�X)T � ��f̂e bPint-q.s. By similar arguments as

in the proof of Proposition 5.2.6, this implies that �f̂e�|�|ce1d+
Pe�1

i=1 (
ˆ̀
i⇣i�|ˆ̀i|ci1d)+

PT
t=0 ⌘t 2

KT P-q.s. for some ⌘ 2 A. Then, � = 0 by (5.4.15), a contradiction.

(b) Finally, by the same arguments as in the proof of Proposition 5.2.6, one can show ⇡e(⇠) =

⇡̂e(g) for g := ⇠ ·XT . Moreover, using the construction (4.3.15), one can obtain explicitly (⌘̂, ˆ̀)

satisfying (4.3.23) from ( bH, ˆ̀) satisfying (4.3.22).

Proof of Theorem 4.3.1 (case e � 1). The existence of a super-hedging strategy has been
proved in Lemma 4.3.11 above. Moreover, it is easy to adapt the arguments of Propositions 4.3.2
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and 5.2.6 to obtain

⇡e(⇠) = ⇡̂e(g) and sup
(Q,Z)2Se

EQ
⇥
⇠ · ZT

⇤
= sup

bQ2 bQe

E
bQ⇥g
⇤
, for g := ⇠ ·XT .

Remember that, by [1, Lemma A.3], one has supbQ2 bQ'
e
E

bQ[g] = supbQ2 bQe
E

bQ[g]. Hence, it is enough
to prove that

⇡̂e(g) = sup
bQ2 bQ'

e

E
bQ[g]. (4.3.24)

Note that we have already proved (5.5.36) for the case e = 0 in Section 5.5.2, although the
formulations are slightly different (the additional randomness induced by bΛ obviously does not
play any role when e = 0). We argue by induction as in the proof of [1, Theorem 5.1]. Let us
assume that (5.5.36) holds for e� 1 � 0 and then prove it for e.

First, it follows from (5.4.15) that we can not find ⌘ 2 A and (`i)1ie 6= 0 such thatPe
i=1(`i⇣i�|`i|ci1d)+

PT
t=0 ⌘t 2 KT P-q.s. By the same arguments as in the proof of Proposition

5.2.6, there is no H 2 H, `1, · · · , `e�1 and `e 2 {�1, 1} such that
Pe�1

i=1 `if̂i+(H �X)T � �`ef̂e,
bPint-q.s. It follows that ⇡̂e�1(f̂e), ⇡̂e�1(�f̂e) > 0, which, by Lemma 4.3.11 and our induction
hypothesis, implies that there is bQ�, bQ+ 2 bQ'

e�1 such that

�⇡̂e�1(�f̂e) < E
bQ� [f̂e] < 0 < E

bQ+ [f̂e] < ⇡̂e�1(f̂e). (4.3.25)

We now claim that

there exists a sequence
�bQn

�
n�1

⇢ bQ'
e�1 s.t. E

bQn [f̂e] ! 0, E
bQn [g] ! ⇡̂e(g). (4.3.26)

Indeed, if the above fails, then

(0, ⇡̂e(g)) /2
�
E

bQ[(f̂e, g)] : bQ 2 bQ'
e�1

 
⇢ R2,

and one obtains a contradiction by following line by line the same arguments in the end of the
proof of [1, Theorem 5.1]. In view of (5.5.40) and (4.3.26), we can find (��n ,�n,�

+
n ) 2 [0, 1] such

that ��n + �n + �+n = 1, (��n ,�
+
n ) ! 0, and

bQ0
n := ��n

bQ� + �nbQn + �+n
bQ+ 2 bQ'

e�1 satisfies E
bQ0

n [fe] = 0.

In particular, one has bQ0
n 2 bQ'

e and hence bQ'
e is nonempty, which implies that Se is nonempty

by the projection argument in Proposition 4.3.2.
Moreover, since E

bQ0

n [g] ! ⇡̂e(g), this shows that

sup
bQ2 bQ'

e

E
bQ[g] � ⇡̂e(g).

To conclude, it is enough to notice that the reverse inequality is the classical weak duality which
can be easily obtained from [1, Lemmas A.1 and A.2].
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5.1 Introduction

The optimal investment via utility maximization has always been one of the fundamental prob-
lems in quantitative finance. In particular, the optimal semi-static portfolio among risky assets
and liquid options and the associated utility indifference pricing of unhedgeable illiquid contin-
gent claims have attracted a lot of research interests recently. In the classical dominated market
model, the so-called utility maximization with random endowments was extensively investigated,
see among [60], [52], [53], [54], [55] and [56]. In particular, the duality approach has been pro-
posed and developed as a powerful tool to deal with general incomplete market models. Without
knowing the specific underlying model structures, the convex duality relationship enables one
to obtain the existence of the primal optimizer by solving the corresponding dual optimization
problem first. Typically, the dual problem is formulated on the set of equivalent (local) martin-
gale measures (EMM), whose existence is ensured by some appropriate no arbitrage assumptions.
Depending on the domain of the utility function, different techniques are involved in order to
obtain some convex duality results, see for example [104], [103], [106]. For utilities defined on
the positive real line, to handle the random payoffs and to establish the bipolar relationship, the
appropriate closure of the dual set of EMM plays the key role, see [52] and [53] for instance. On
the other hand, for utilities defined on the whole real line, a subset of EMM with finite general
entropy is usually chosen to define the dual problem while the appropriate definition of working
portfolios turns out to be critical to guarantee and relate the primal and dual optimizers, see
[54], [55], [56], [105], [107] and the references therein.

Because of the growing complexity of real financial markets, the aforementioned optimization
problems have been actively extended mainly in two directions. The first fruitful extension
incorporates the practical trading frictions, namely transaction costs, into decision making and
the resulting wealth process. As transaction costs will generically break the (local) martingale
property of the self-financing wealth process under EMM, the dual pricing kernel is not expected
to be the same as in the frictionless counterpart. Instead, the no-arbitrage condition is closely
related to the existence of a pair of dual elements named the consistent price system (CPS),
see [108]. Briefly speaking, the first component of CPS is a process evolving inside the bid-ask
spread, while the second component is an equivalent probability measure under which the first
component becomes a martingale. However, similar to the case in the frictionless model, for
utility maximization with random endowments, the set of CPS can only serve as the first step to
formulate the naive dual problem. More efforts are demanded to deal with the random payoffs
from options, see some related work in [109], [58], [110] and [111].

The second compelling extension in the literature is to take into account the model uncer-
tainty, for instance the volatility uncertainty, by starting with a set of possibly mutually singular
probability measures. Namely, different probability measures describe the believes of different
investors on the market. In the discrete time framework, the no-arbitrage condition and the
fundamental theorem in robust finance have been essentially studied in [72, 1, 11, 12], etc. for
frictionless markets, and in [45, 42, 43, 47, 112] for market with transaction costs. Analogous to
the dominated case, the pricing-hedging duality can usually be obtained by studying the super-
hedging problem under some appropriate no-arbitrage conditions. The non-dominated robust
utility maximization in the discrete time frictionless market was first examined by [59], where
the dynamic programming principle plays the major role to derive the existence of the optimal
primal strategy without passing to the dual problem, see some further extensions in [61, 62, 63].
In a context where the model uncertainty is represented by a collection of stochastic processes,
[64] proved the existence of the optimal strategy for the utility function defined either over the
positive or over the whole real line. However, whether the convex duality holds remained open
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in these pioneer work of utility maximization. Recently, [2] established the duality represen-
tation for the exponential utility preference in the frictionless model under some restrictive no
arbitrage conditions, which motivates us to reconsider the validity of duality theorem in this
paper with proportional transaction costs under weaker market conditions using some distinc-
tive arguments. We also note a recent paper [65], in which the authors proved a robust utility
maximization duality using medial limits and a functional version of Choquet’s capacitability
theorem.

The main objective of this paper is therefore to study the existence of the optimal strategy,
the convex duality theorem and the auxiliary dynamic programming principle for a semi-static
utility maximization problem with transaction costs in a discrete time framework. To be precise,
we envision an investor who chooses the optimal semi-static portfolio in stocks and liquid options
with an extra random endowment for the case of exponential utility preference and meanwhile
each trading incurs proportional transaction fees. The core idea of our analysis is to reduce
the complexity of transaction costs significantly by employing the randomization method as
in [113]. Consequently, the unpleasant mathematical obstacles caused by trading fees can be
hidden in an enlarged space with additional randomness and some techniques in the literature
of robust hedging and utility maximization in frictionless models can be modified and adopted.
It is worth noting that by applying the randomization approach in [113] but with a different
and more involved definition of family of probability measures on the enlarged space, [114]
recently established a super-replication duality with transaction cost under a weaker no-arbitrage
condition.

Our main contributions are the following. First, we develop a distinctive dynamic pro-
gramming argument comparing to [2] in a frictionless market. This allows us to overcome a
measurability difficulty in [2] and hence generalize their main results (duality and existence)
under a weaker market condition. This generalization is presented in Appendix. Secondly, we
generalize the randomization technique in [113] in this utility maximization problem, which relies
essentially on a minimax argument to resolve a filtration enlargement problem. While the cor-
responding convex/concave property is quite natural for the super-replication problem in [113],
it is much less obvious for the utility maximization problem and we use a log transformation
technique in this exponential utility maximization problem. Finally, to manifest the value of the
duality representation, we also investigate an application to utility indifference pricing. Several
fundamental properties of indifference prices including the asymptotic convergence of indifference
prices to the superhedging price and some continuity results with respect to random endowments
are confirmed in the robust setting with transaction costs.

The rest of the paper is organized as follows. In Section 5.2, we introduce the market model
with transaction costs, and show how to reformulate the robust utility maximization problem
on a frictionless market on an enlarged space using the randomization method. In Section 5.3,
we restrict to the case of the exponential utility preference. A convex duality theorem and
the existence of the optimal trading strategy are first obtained in the presence of both model
uncertainty and transaction costs. As an application, several properties of the utility indifference
prices are concluded. Section 5.5 mainly provides the proof of the duality result using a dynamic
programming argument.

Notation. Given a measurable space (Ω,F), we denote by B(Ω,F) the set of all probability
measures on (Ω,F). For a topological space Ω, B(Ω) denotes its Borel �-field with the abbreviate
notation B(Ω) := B(Ω,B(Ω)). For a Polish space Ω, a subset A ✓ Ω is called analytic if it is the
image of a Borel subset of another Polish space under a Borel measurable mapping. A function
f : Ω ! R := [�1,1] is upper semianalytic if {! 2 Ω : f(!) > a} is analytic for all a 2 R.
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Given a probability measure P 2 B(Ω) and a measurable function f : Ω ! R, we define the
expectation

EP[f ] := EP[f+]� EP[f�], with the convention 1�1 = �1.

For a family P ✓ B(Ω) of probability measures, a subset A ⇢ Ω is called P-polar if A ⇢ A0 for
some universally measurable set A0 satisfying P[A0] = 0 for all P 2 P, and a property is said
to hold P-quasi surely or P-q.s if it holds true outside a P-polar set. For Q 2 B(Ω), we write
Q n P if there exists P0 2 P such that Q ⌧ P0. Given a sigma algebra G, we denote by L0(G)
the collection of Rd-valued random variable that are G-measurable, d being given by the context.

5.2 Market model and Problem Formulation

We first introduce a financial market with proportional transaction costs in a multivariate setting
under model uncertainty. A utility maximization problem is formulated afterwards and we then
reformulate the problem further in a frictionless market setting on an enlarged space. Although
the reformulation technique can be used for a more general framework, we will stay essentially
in the context of Bouchard and Nutz [1, 43].

5.2.1 Market model and preliminaries

A product space with a set of probability measures Let Ω0 := {!0} be a singleton and
Ω1 be a Polish space. For each t = 1, · · · , T , we denote by Ωt := Ωt

1 the t-fold Cartesian product
of Ω1 and let F0

t := B(Ωt) and Ft its universal completion. In particular, F0 is trivial. We define
the filtered measurable space (Ω,F) by

Ω := ΩT , F := FT , F := (Ft)0tT and F0 := (F0
t )0tT .

Let us then introduce a set P of probability measures on (Ω,F) by

P :=
�
P := P0 ⌦ P1 ⌦ · · ·⌦ PT�1 : Pt(·) 2 Pt(·) for t  T � 1

 
. (5.2.1)

In the definition above, Pt : Ωt 7! B(Ω1) are probability kernels such that the probability
measure P is defined by Fubini’s theorem in the sense that

P(A) :=

Z

Ω1

· · ·

Z

Ω1

1A(!1,!2 · · · ,!T )PT�1(!1, · · · ,!T�1; d!T ) · · ·P0(d!1),

and Pt(!) is a non-empty convex set in B(Ω1), which represents the set of all possible models
for the (t+ 1)-th period, given the state ! 2 Ωt at time t = 0, 1 · · · , T � 1. As in the literature,
we assume that, for each t,

[[Pt]] :=
�
(!,P) : ! 2 Ωt,P 2 Pt(!)

 
✓ Ωt ⇥ P(Ω1) is analytic. (5.2.2)

This ensures in particular that P in (5.2.1) is nonempty.

A financial market with proportional transaction cost The financial market with pro-
portional transaction cost is formulated in terms of random cones. Let d � 2, for every
t 2 {0, 1, · · · , T}, Kt : Ω ! 2R

d

is a F0
t -measurable random set in the sense that {! 2 Ω :

Kt(!) \ O 6= ;} 2 F0
t for every closed (open) set O ⇢ Rd. Here, for each ! 2 Ω, Kt(!) is a
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closed convex cone containing Rd
+, called the solvency cone at time t. It represents the collection

of positions, labelled in units of different d financial assets, that can be turned into non-negative
ones (component by component) by performing immediately exchanges between the assets. We
denote by K⇤

t ⇢ Rd
+ its (nonnegative) dual cone:

K⇤
t (!) :=

�
y 2 Rd : x · y � 0 for all x 2 Kt(!)

 
, (5.2.3)

where x · y :=
Pd

i=1 x
iyi is the inner product on Rd. For later use, let us also introduce

K⇤,0
t (!) :=

�
y = (y1, · · · , yd) 2 K⇤

t (!), yd = 1
 
.

As in [43], we assume the following conditions throughout the paper:

Assumption 5.2.1. K⇤
t \ @Rd

+ = {0} and intK⇤
t (!) 6= ; for every ! 2 Ω and t  T .

It follows from the above assumption and [43, Lemma A.1] that K⇤
t , K⇤,0

t and intK⇤
t are all

F0
t -measurable. Moreover, there is a F0-adapted process S satisfying

St(!) 2 K⇤,0
t (!) \ intK⇤

t (!) for every ! 2 Ω, t  T . (5.2.4)

We also assume that transaction costs are bounded and uniformly strictly positive. This is
formulated in terms of S above.

Assumption 5.2.2. There is some constant c > 1 such that

c�1Si
t(!)  yi  cSi

t(!), for every i  d� 1 and y 2 K⇤,0
t (!).

Finally, we define the collection of admissible strategies as follows.

Definition 5.2.3. We say that an F-adapted process ⌘ = (⌘t)0tT is an admissible trading
strategy if

⌘t 2 �Kt P-q.s. for all t  T .

We denote by A the collection of all admissible strategies.

The constraint ⌘t 2 �Kt means that 0� ⌘t 2 Kt, i.e., starting at t with 0, one can perform
immediate transfers to reach the position ⌘t. Then, given ⌘ 2 A, the corresponding wealth
process associated to a zero initial endowment at time 0 is

�Pt
s=0 ⌘s

�
tT

. We can refer to [113,
43] for concrete examples. See also the monograph [49].

5.2.2 A utility maximization problem and its reformulation

Let U : R ! R [ {�1} be a non-decreasing concave utility function. We are interested in the
following robust utility maximization problem with random endowments:

V (⇠) := sup
⌘2A0

inf
P2P

EP
h
U
⇣⇣
⇠ +

TX

t=0

⌘t

⌘d⌘i
, (5.2.5)

where A0 denotes the collection of all ⌘ 2 A such that (⇠ +
PT

t=0 ⌘t)
i = 0 for i = 1, · · · , d� 1.

Remark 5.2.4. Note that (5.2.5) is a numéraire based utility maximization problem, and the
d-th asset plays the role of the numéraire. For an admissible strategy in A0, it is required to
liquidate the position of all other assets for i = 1, · · · , d� 1 at the terminal time T .
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The mixture of model uncertainty, transaction costs and random endowments can bring a
lot of new mathematical challenges. Our paramount remedy to reduce the complexity is to
reformulate it on a fictitious market without transaction cost. In particular, this allows us to use
some well known results and techniques in the existing literature.

A frictionless market on the enlarged space Given the constant c > 1 in Assumption
5.2.2, we define Λ1 := [c�1, c]d�1 and Λ := (Λ1)

T+1, and then introduce the canonical process
Θt(✓) := ✓t, 8✓ = (✓t)tT 2 Λ, as well as the �-fields FΛ

t := �(Θs, s  t), t  T . We next
introduce an enlarged space Ω := Ω⇥ Λ, an enlarged �-field F := F ⌦ FΛ

T , together with three

filtrations F
0
= (F

0

t )0tT , F̃ = (F̃t)0tT and F = (F t)0tT in which F
0

t := F0
t ⌦ FΛ

t ,
F̃t := Ft ⌦ {;,Λ} and F t := Ft ⌦ FΛ

t for t  T .

Next, let us introduce our randomized market model with the fictitious underlying stock
X = (Xt)0tT defined by

Xt(!̄) := ΠK⇤,0
t (!)[St(!)✓t], for all !̄ = (!, ✓) 2 Ω, t  T, (5.2.6)

where St(!)✓t := (S1
t (!)✓

1
t , · · · , S

d�1
t (!)✓d�1

t , Sd
t (!)), and ΠK⇤,0

t (!)[y] stands for the projection

of y 2 Rd on the convex closed set K⇤,0
t (!). It is worth noting that St 2 K⇤,0

t for t  T and that

X is F
0
-adapted by Lemma 2.6 of [113].

We then define two sets of strategy processes by

H := {All F̃-predictable processes} and H := {All F-predictable processes}.

Notice that F̃t := Ft ⌦ {;,Λ}, and hence a F̃-predictable process can be identified to be a F-
predictable process. Given a strategy H 2 H, the resulting wealth process is given by (H �X)t :=Pt

s=1 Hs · (Xs �Xs�1), t  T .

Finally, let us introduce some sets of probability measures on the enlarged space (Ω,F). Let

P :=
�
P 2 B(Ω,F) such that P|Ω 2 P

 
.

We next introduce a subset P int ⇢ P as follows. Recall that Ω has a product structure as Ω.
More precisely, for a fixed t 6 T , let Ω0 := Ω0⇥Λ1, Ωt := Ω0⇥ (Ω1⇥Λ1)

t and Ω := Ω⇥Λ = ΩT .
For (! = (!0, · · · ,!T ), ✓ = (✓0, · · · , ✓T )) 2 Ω and t 6 T , we denote !t := (!0, · · · ,!t), ✓t :=
(✓0, · · · , ✓t) and !̄t := (!t, ✓t).

• For t = 0, 1, · · · , T �1 and !̄ = (!, ✓) 2 Ωt, we define P(t, !̄) :=
�
P 2 B(Ω1⇥Λ1) : P|Ω1

2
Pt(!)

 
, and

P int(t, !̄) :=
�
P 2 P(t, !̄) : �!̄ ⌦ P[Xt+1 2 intK⇤

t+1] = 1
 
, (5.2.7)

where �!̄ ⌦ P is a probability measure on Ωt+1 = Ωt ⇥ (Ω1 ⇥ Λ1) and Xt+1 (defined in
(5.2.6)) is considered as a random variable defined on Ωt+1.

• Let P int,; be the collection of all probability measures P on Ω0 such that P[X0 2 intK⇤
0 ] = 1.

We define

P int :=
�
P; ⌦ P0 ⌦ · · ·⌦ PT�1 : P; 2 P int,; and Pt(·) 2 P int(t, ·) for t  T � 1

 
,

where Pt(·) is a universally measurable selector of P int(t, ·).
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Remark 5.2.5. Assume that the analyticity condition (5.2.2) for [[Pt]] holds, Lemma 2.13 of
[113] asserts that

⇥⇥
P int(t)

⇤⇤
:=
�
(!̄,P) : !̄ 2 Ωt,P 2 P int(t, !̄)

 
is also analytic,

which in particular ensures that P int is nonempty.

Reformulation on the enlarged space We now reformulate the utility maximization (5.2.5)
on the enlarged space Ω using the underlying stock X. Let us set

g(!̄) := ⇠(!) ·XT (!̄), for all !̄ = (!, ✓) 2 Ω,

as the contingent claim.

Proposition 5.2.6. Suppose that Assumptions 5.2.1 and 5.2.2 hold, then

V (⇠) = sup
H2H

inf
P2P

EP
h
U
⇣
g + (H �X)T

⌘i
= sup

H2H
inf

P2Pint

EP
h
U
⇣
g + (H �X)T

⌘i
.

Proof. To simplify the notation, let us write ∆Xt := Xt � Xt�1. We shall follow closely the
arguments in Proposition 3.3 of [113].

Step 1 : Fix ⌘ 2 A0 and define the F̃-predictable process H by Ht :=
Pt

s=1 ∆Hs with ∆Ht := ⌘t�1

for t = 1, · · · , T . By rearranging all terms, we have

 
⇠ +

TX

t=0

⌘t

!d

=

 
⇠ +

TX

t=0

⌘t

!
·XT =

TX

t=1

Ht ·∆Xt +

TX

t=0

⌘t ·Xt + g 
TX

t=1

Ht ·∆Xt + g,

where the last inequality follows by the fact that ⌘t 2 �Kt and hence ⌘t · Xt  0. As U is
non-decreasing, it follows that

inf
P2P

EP
h
U
⇣⇣
⇠ +

TX

t=0

⌘t

⌘d⌘i
 inf

P2P
EP
h
U
⇣
g + (H �X)T

⌘i
,

which yields that

V (⇠)  sup
H2H

inf
P2P

EP
h
U
⇣
g + (H �X)T

⌘i
.

By the same argument using P int to replace P, we can similarly obtain the inequality

V (⇠)  sup
H2H

inf
P2Pint

EP
h
U
⇣
g + (H �X)T

⌘i
.

Step 2 : To prove the reverse inequality, we fix H 2 H. Define ⌘ = (⌘t)0tT by ⌘it := ∆Hi
t+1,

t  T � 1 and ⌘iT := �⇠i �PT�1
s=0 ⌘

i
s for i  d� 1, and

⌘dt (!) := inf
✓2Λ

md
t (!, ✓) with md

t (!̄) := �
d�1X

i=1

⌘it(!)X
i
t(!̄), t  T. (5.2.8)

for all !̄ = (!, ✓) 2 Ω. As md
t (!, ✓) is bounded and continuous in ✓, ⌘dt is Ft-measurable by the
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Measurable Maximum Theorem (see e.g. Theorem 18.19 of [102]). From the construction, we
know ⌘ 2 A0. Thus we have

inf
✓2Λ

�
(H �X)T + g

�
(·, ✓) = inf

✓2Λ

n⇣ TX

t=0

⌘t + ⇠
⌘
·XT �

T�1X

t=0

⌘t ·Xt

o
(·, ✓)

= inf
✓2Λ

n⇣ TX

t=0

⌘t + ⇠
⌘
·XT

o
(·, ✓)�

T�1X

t=0

sup
✓2Λ

n
⌘t ·Xt

o
(·, ✓).

= inf
✓2Λ

n⇣ TX

t=0

⌘t + ⇠
⌘
·XT

o
(·, ✓) =

⇣
⇠ +

TX

t=0

⌘t

⌘d
, (5.2.9)

where in the second equality we exchange the the infimum and the summation, because each Xt

depends on ✓ only through ✓t for t = 0, · · · , T . Let " > 0, we can use a measurable selection
argument (see e.g. Proposition 7.50 of [92]) to choose a universally measurable map ! 2 Ω 7!
✓"(!) 2 Λ such that, for all ! 2 Ω, one has

U
⇣�

H �X
�
T

�
!, ✓"(!)

�
+ g(!, ✓"(!))

⌘
 inf

✓2Λ

U
⇣�

H �X
�
T
(!, ✓) + g(!, ✓)

⌘
+ ",

where the r.h.s. term is a universally measurable random variable defined on Ω. Then given
P 2 P, one defines P" := P � (!, ✓"(!))�1 2 P and obtains

EP"

h
U
�
(H �X)T + g

�i
 EP

h
inf
✓2Λ

U
⇣�

H �X
�
T
(·, ✓) + g(·, ✓)

⌘i
+ ".

By arbitrariness of " > 0 and the fact that P" 2 P, it follows that

inf
P2P

EP
h
U
�
(H �X)T + g

�i
 inf

P2P
EP
h
inf
✓2Λ

U
⇣
(H �X)T (·, ✓) + g(·, ✓)

⌘i
(5.2.10)

= inf
P2P

EP
h
U
⇣
inf
✓2Λ

⇥
(H �X)T (·, ✓) + g(·, ✓)

⇤⌘i

= inf
P2P

EP
h
U
⇣⇣
⇠ +

TX

t=0

⌘t

⌘d⌘i
.

This leads to
sup
H2H

inf
P2P

EP
h
U
⇣
g + (H �X)T

⌘i
 V (⇠),

and hence we have the desired equality.

Step 3 : For the case with P int in place of P, it is enough to notice as in Step 2 that

inf
✓2Λint(·)

⇥
(H �X)T (·, ✓) + g(·, ✓)

⇤
=
⇣
⇠ +

TX

t=0

⌘t

⌘d
,

where Λint(!) is defined as the collection of ✓ 2 Λ such that St(!)✓t 2 intK⇤
t (!).

Next, for each ✓ 2 Λ, we define A✓
t (!) := ; for s 6= t and A✓

t (!) := {St(!)✓t 2 intK⇤
t (!)}.

Note that ! 7! intK⇤
t (!) is F0

t -measurable. Then
�
(!, y) 2 Ωt ⇥ R : St(!)✓t = y and y 2

intK⇤
t (!)

 
is a Borel set and hence ! 7! 1A✓

t (!) is a universally measurable map. We then define
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the universally measurable probability kernels by

q✓t : ! 2 Ω 7! q✓t (·|!) := �✓t1A✓
t (!) + �11(A✓

t (!))c 2 B(Λ1), t  T, (5.2.11)

where 1 is the vector of Rd with all entries equal to 1, and B(Λ1) denotes the collection of all
Borel probability measures on Λ1.

It follows that P⌦ (q✓0 ⌦ q✓1 ⌦ · · ·⌦ q✓T ) 2 P int for every P 2 P. Then it suffices to argue as in
Step 2 above to obtain that

inf
P2Pint

EP
h
U
⇣
g + (H �X)T

⌘i
 inf

P2P
EP


U
⇣

inf
✓2Λint(·)

⇣
(H �X)T (·, ✓) + g(·, ✓)

⌘⌘�

= inf
P2P

EP
h
U
⇣⇣
⇠ +

TX

t=0

⌘t

⌘d⌘i
,

and we hence conclude as in Step 2.

5.2.3 The robust no-arbitrage condition of Bouchard and Nutz

To conclude, we will discuss the no-arbitrage condition on Ω and its link to that on the enlarged
space Ω.

Definition 5.2.7. (i) We say the robust no-arbitrage condition of second kind NA2(P) on Ω

holds true if for all t  T � 1 and all ⇠ 2 L0(Ft),

⇠ 2 Kt+1 P-q.s. implies ⇠ 2 Kt P-q.s.

(ii) Let (Q, Z) be a couple where Q 2 B(Ω) and Z = (Zt)t=0,··· ,T an adapted process, (Q, Z) is
called a strict consistent price system (SCPS) if Q n P, Zt 2 intK⇤

t Q-a.s. for all t = 0, · · · , T
and Z is a Q-martingale.

We denote by S the collection of all SCPS, and also denote the subset

S0 :=
�
(Q, Z) 2 S such that Zd ⌘ 1

 
. (5.2.12)

Remark 5.2.8. As stated in the fundamental theorem of asset pricing proved in [43] (see also
[42, 115]), the no-arbitrage condition NA2(P) is equivalent to: for all t  T � 1, P 2 P and
Ft-random variable Y taking value in intK⇤

t , there exists a SCPS (Q, Z) such that P ⌧ Q, P = Q

on Ft and Y = Zt P-a.s..

On the enlarged space Ω, we also follow [1] to introduce a notion of the robust no-arbitrage
condition.

Definition 5.2.9. We say that the robust no-arbitrage condition NA(P int) on Ω holds true if,
for every H 2 H,

(H �X)T � 0, P int-q.s. =) (H �X)T = 0, P int-q.s.

Remark 5.2.10. The fundamental theorem of asset pricing in [1] proves that the condition
NA(P int) (resp. NA(P) ) is equivalent to : for all P 2 P int (resp. P ), there exists Q 2 B(Ω)
such that P ⌧ Q n P int (resp. P ) and X is an (F,Q)-martingale.
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Hereafter, we denote by Q0 the collection of measures Q 2 B(Ω) such that Q n P int and
X is an (F,Q)-martingale. The above two no-arbitrage conditions on Ω and on Ω are related by
Proposition 2.16 of [113], that we recall as below.

Proposition 5.2.11. The condition NA2(P) on Ω is equivalent to the condition NA(P int) on
Ω.

5.3 Exponential utility maximization

Starting from this section, we will restrict ourselves to the case of the exponential utility function,
i.e.,

U(x) := �exp(��x), for some constant � > 0,

and provide a detailed study on the corresponding utility maximization problem.

We will consider a general context, where one is allowed to trade some liquid options statically
at the initial time whose payoffs would also contribute to the terminal wealth. Namely, for
e 2 N [ {0}, there are a finite class of F0

T -measurable random vectors ⇣i : Ω ! Rd, i = 1, · · · , e,
where each ⇣i represents the payoff of some option i labeled in units of d risky assets. Let
⇠ : Ω ! Rd represent the payoff of the random endowment, then our maximization problem is
given by.

V (⇠, �) := sup
(`,⌘)2Ae

inf
P2P

EP

"
U
⇣⇣
⇠ +

eX

i=1

�
`i⇣i � |`i|ci1d

�
+

TX

t=0

⌘t

⌘d⌘
#
. (5.3.13)

where 1d is the vector with all components equal to 0 but the last one that is equal to 1 and Ae

denotes the collection of all (l, ⌘) 2 Re ⇥A such that ⇠ +
Pe

i=1

�
`i⇣i � |`i|ci1d

�
+
PT

t=0 ⌘t

⌘i
= 0

for i = 1, · · · , d � 1. In above, we write � in V (⇠, �) to emphasize the dependence of value in
parameter � in the utility function U . Also, each static option ⇣i has price 0, but the static
trading induces the proportional transaction cost with rate ci > 0.

5.4 The convex duality result

In the robust frictionless setting, the same exponential utility maximization problem has been
studied by Bartl [2], in which a convex duality theorem has been established. Here, we apply and
generalize their results in our context with transaction costs under weaker market conditions.

Let us introduce a robust version of the relative entropy associated to a probability measure
Q as

E(Q,P) := inf
P2P

E(Q,P), where E(Q,P) :=

⇢
EP
⇥
dQ
dP logdQ

dP

⇤
, if Q ⌧ P,

+1, otherwise.
(5.4.14)

Note that S0 is a subset of the collection of SCPS (Q, Z) defined in (5.2.12), we then define

S⇤
e :=

n
(Q, Z) 2 S0 : EQ

⇥
(⇠ · ZT )�

⇤
+E(Q,P) < +1 and EQ

⇥
⇣i · ZT

⇤
2 [�ci, ci], i = 1,· · ·, e

o
.



114CHAPTER 5. UTILITY MAXIMIZATION WITH PROPORTIONAL TRANSACTION COST UNDER MOD

Theorem 5.4.1. Let ⇠ and (⇣i)ie: Ω ! Rd be Borel measurable and assume that NA2(P) holds.
Assume either that e = 0, or that e � 1 and for all ` 2 Re and ⌘ 2 A,

eX

i=1

�
`i⇣i � |`i|ci1d

�
+

TX

t=0

⌘t 2 KT P-q.s. =) ` = 0. (5.4.15)

Then, we have

V (⇠, �) = � exp
⇣
� inf

(Q,Z)2S⇤
e

�
EQ
⇥
�⇠ · ZT

⇤
+ E(Q,P)

 ⌘
, (5.4.16)

Moreover, the infimum over (`, ⌘) 2 Ae is attained by an optimal strategy (ˆ̀, ⌘̂).

Remark 5.4.2. Note that up to taking logarithm on both sides and replacing �⇠ by �⇠, the
equality (5.4.16) is equivalent to

inf
(`,⌘)2Ae

sup
P2P

logEP

2
4exp

0
@
 
⇠ �

eX

i=1

(`i⇣i � |`i|ci1d)�
TX

t=0

⌘t

!d
1
A
3
5

= sup
(Q,Z)2S⇤

e

�
EQ
⇥
⇠ · ZT

⇤
� E(Q,P)

 
.

(5.4.17)

Remark 5.4.3. When e � 1, ⇣i is considered as statically traded options and ci > 0 is the
corresponding proportional transaction cost, then the condition (5.4.15) should be understood as
a kind of robust no-arbitrage condition as defined in [1]. For simplicity, let us consider the case
e = 1. By following arguments in Proposition 3.3 of [113], `1⇣1� |`1|c11d+

PT
t=0 ⌘t 2 KT P-q.s.

can be shown as equivalent to

`1g1
�
!̄, b✓

�
+
⇣ TX

t=1

Ht∆Xt

⌘
(!̄) � 0, P-q.s. and for both b✓ = ±1,

where Ht :=
Pt�1

s=0 ⌘s and g1(!̄,±1) := ⇣1 · XT ± c1. The robust no-arbitrage condition in
Definition 5.2.9 will lead to

`1g1
�
!̄, b✓

�
+
⇣ TX

t=1

Ht∆Xt

⌘
(!̄) = 0, P-q.s. and for both b✓ = ±1.

As g1(!̄, 1) 6= g1(!,�1) when c1 > 0, one obtains `1 = 0.

Remark 5.4.4. (i) The existence of optimal trading strategy (ˆ̀, ⌘̂) in Theorem 5.4.1 is an
auxiliary result in the proof of duality (5.4.16) in our context with exponential utility function
U(x) := � exp(��x). Both duality and the existence of optimal strategy rely crucially on the
minimax argument (Lemma 5.5.10) which uses the affine feature of the exponential utility.

(ii) In the robust context and for general utility functions (with or without transaction cost),
different results on the existence of the optimal strategy have been obtained in the literature.
Nutz [59] seems to be the first to introduce this discrete time robust utility maximization problem
and obtains the existence result for general utility functions bounded from above and defined on
the positive real line. Blanchard and Carassus [62] were able to relax the boundedness condition to
some integrability condition. Neufeld and Sikic [61] study the robust utility maximization problem
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with friction and obtain some existence result under a linear type of no-arbitrage condition.
Rasonyi and Meireles-Rodrigues [64] use a Komlós-type argument to prove the existence of the
optimal strategy. Bartl et al. [65] study similar problem by the medial limit argument.

(iii) After the completion of our paper, Bayraktar and Burzoni [114] provided a generalization
of the randomization approach in [113] and proved a pricing-hedging duality under a weaker
no-arbitrage condition than the NA2(P) condition. Their generalized randomization approach
should also allow to study the above utility maximization problem under the weak no-arbitrage
condition.

5.4.1 Properties of utility indifference prices

It is well known that the superhedging price is too high in practice. As an alternative way, the
utility-based indifference price has been actively studied, in which the investor’s risk aversion is
inherently incorporated. This section presents an application of the convex duality relationship
(5.4.17) for the exponential utility maximization and provides some interesting features of in-
difference prices in the presence of both proportional transaction costs and model uncertainty.
Generally speaking, the indifference pricing in our setting can be generated by semi-static trading
strategies on risky assets and liquid options.

In the robust framework, similar to Theorem 2.4 of [2] in the frictionless model, the duality
representation (5.4.17) can help us to derive that the asymptotic indifference prices converge to
the superhedging price as the risk aversion � ! 1 regardless of the transaction costs. To see
this, let us first recall the superhedging price defined by

⇡(⇠) := inf

(
y +

eX

i=1

ci|`i| : y1d +
eX

i=1

`i⇣i +
TX

t=0

⌘t � ⇠ 2 KT ,P � q.s., (`, ⌘) 2 Ae

)

= sup
(Q,Z)2Se

EQ[⇠ · ZT ],

where the equality follows from Theorem 3.1 of [113] with

Se :=
n
(Q, Z) 2 S0 : EQ

⇥
(⇣i · ZT )

⇤
2 [�ci, ci], i = 1, · · · , e

o
.

The indifference price ⇡�(⇠) 2 R of derivative option ⇠ is, one the other hand, defined by
equation

V (01d, �) = V
�
⇡�(⇠)1d � ⇠, �

�
, (5.4.18)

where V (·) is defined by (5.3.13). Plugging the expression of V (·) into (5.4.18), and recall that
U(x) = �e��x, we obtain

exp(��⇡�(⇠)) ⇥ sup
(`,⌘)2Ae

inf
P2P

EP
h
� exp

⇣
� �
⇣
� ⇠ +

eX

i=1

(`i⇣i � |`i|ci1d) +

TX

t=0

⌘t

⌘d⌘i

= sup
(`,⌘)2Ae

inf
P2P

EP
h
� exp

⇣
� �
⇣ eX

i=1

(`i⇣i � |`i|ci1d) +

TX

t=0

⌘t

⌘d⌘i
. (5.4.19)
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By the duality representation (5.4.16), we finally have that

⇡�(⇠) = sup
(Q,Z)2S⇤

e

⇢
EQ
⇥
⇠ · ZT

⇤
� 1

�
E(Q,P)

�
� sup

(Q,Z)2S⇤
e

⇢
� 1

�
E(Q,P)

�
. (5.4.20)

The formula (5.4.20) yields directly the next few properties of the utility indifference price.

Lemma 5.4.5. The following basic properties hold:

(i) ⇡�(⇠) does not depend on the initial wealth x0.

(ii) ⇡�(⇠) is increasing in � (monotonicity in �).

(iii) ⇡�(�⇠) = �⇡��(⇠) for any � 2 (0, 1] (volume scaling).

(iv) ⇡�(⇠ + c) = c+ ⇡�(⇠) for c 2 R (translation invariance).

(v) ⇡�(↵⇠1 + (1� ↵)⇠2) 6 ↵⇡�(⇠1) + (1� ↵)⇡�(⇠2) (convexity).

(vi) ⇡�(⇠1) 6 ⇡�(⇠2) if ⇠1 6 ⇠2 (monotonicity).

The next result shows the risk-averse asymptotics on the utility indifference prices. Similar
results can also be found in [116, 63, 2].

Proposition 5.4.6. In the robust setting of Theorem 5.4.1 with proportional transaction costs,
we have

⇡(⇠) = lim
�!1

⇡�(⇠). (5.4.21)

We postpone the proof of the above result to Section 5.5.4, as it demands some notations and
results given afterwards.

Remark 5.4.7. Observing the scaling property in item (iii) of Lemma 5.4.5, the limit (5.4.21)
can be rewritten as lim�!1

1
�
⇡�(�⇠) = ⇡(⇠), in which the term 1

�
⇡�(�⇠) can be understood as

the price per unit for a given amount volume � of the contingent claim ⇠.

Furthermore, with increasing risk aversion, the convex duality result (5.4.17) also yields
that the optimal hedging strategies under the exponential utility preference converge to the
superhedging counterpart in the following sense.

Proposition 5.4.8. We have that

lim
�!1

sup
P2P

EP

2
4
 
⇡(⇠)1d +

eX

i=1

�
`
?,�
i ⇣i � |`?,�i |ci1d

�
+

TX

t=0

⌘
?,�
t � ⇠

!�
3
5 = 0,

where (`?,� , ⌘?,�) is an optimal semi-static strategy to the problem (5.4.17) under the risk aversion
level �.

Proof. Let us set Γ� := ⇡(⇠)1d +
Pe

i=1

�
`
?,�
i ⇣i � |`?,�i |ci1d

�
+
PT

t=0 ⌘
?,�
t � ⇠ and it follows by

(5.4.17) that

sup
P2P

logEP[e��Γ� ] = sup
(Q,Z)2S⇤

e

�
�EQ

⇥
⇠ · ZT

⇤
� �⇡(⇠)� E(Q,P)

 
. (5.4.22)
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If ⇡(⇠) = +1, it is clear that supP2P logEP[e��Γ� ] = �1. Otherwise, if ⇡(⇠) < +1, it follows
by item (ii) of Lemma 5.4.5 that ⇡�(⇠) is increasing in � and moreover ⇡�(⇠) 6 ⇡(⇠). Therefore,
it yields that supP2P logEP[e��Γ� ] 6 0 and hence EP[e��Γ� ] 6 1 uniformly for all P 2 P. By
Jensen’s inequality, we have

sup
P2P

EP[Γ�
� ] 6

1

�
sup
P2P

logEP[e�Γ
�

� ] 6
1

�
sup
P2P

log(1 + EP[e��Γ� ]),

which completes the proof.

Remark 5.4.9. Similar results have been obtained in Corollary 5.1 and Theorem 5.2 of [54] in
the classical dominated frictionless market model. Thanks to the convex duality (5.4.17), this
paper makes nontrivial extension of the asymptotic convergence on risk aversion level to the
setting with both proportional transaction costs and model uncertainty.

Again, based on the convex duality representation obtained in the enlarged space, the con-
tinuity property and Fatou property of the indifference prices can be shown in the following
sense.

Proposition 5.4.10. (i) If (⇠n)n2N is a sequence of option payoffs such that

sup
(Q,Z)2S⇤

e

EQ[(⇠n � ⇠) · ZT ] ! 0 and inf
(Q,Z)2S⇤

e

EQ[(⇠n � ⇠) · ZT ] ! 0. (5.4.23)

then ⇡�(⇠n) ! ⇡�(⇠) for any � > 0.

(ii) For ⇠n > 0, we have

⇡�(lim inf
n
⇠n) 6 lim inf

n
⇡�(⇠n). (5.4.24)

(iii) If (⇠n)n2N is a sequence of option payoffs such that ⇠n%⇠, P-a.s., then ⇡�(⇠n)%⇡�(⇠).

Proof. (i) Recall that ⇡�(⇠) = sup(Q,Z)2S⇤
e

n
EQ
⇥
⇠ · ZT

⇤
� 1

�
E(Q,P)

o
�sup(Q,Z)2S⇤

e

n
� 1

�
E(Q,P)

o

in (5.4.20), we can obtain that

|⇡�(⇠n)� ⇡�(⇠)| =
��� sup
(Q,Z)2S⇤

e

⇢
EQ
⇥
⇠n · ZT

⇤
� 1

�
E(Q,P)

�
� sup

(Q,Z)2S⇤
e

⇢
EQ
⇥
⇠ · ZT

⇤
� 1

�
E(Q,P)

� ���

6 sup
(Q,Z)2S⇤

e

|EQ[(⇠n � ⇠) · ZT ]|.

The continuity ⇡�(⇠n) ! ⇡�(⇠) follows directly by (5.4.23).
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(ii) The Fatou property can be derived by observing that

⇡�(lim inf
n
⇠n) = sup

(Q,Z)2S⇤
e

⇢
EQ
⇥
lim inf

n
⇠n · ZT

⇤
� 1

�
E(Q,P)

�
� sup

(Q,Z)2S⇤
e

⇢
� 1

�
E(Q,P)

�

6 sup
(Q,Z)2S⇤

e

⇢
lim inf

n
EQ
⇥
⇠n · ZT

⇤
� 1

�
E(Q,P)

�
� sup

(Q,Z)2S⇤
e

⇢
� 1

�
E(Q,P)

�

6 lim inf
n

 
sup

(Q,Z)2S⇤
e

⇢
EQ
⇥
⇠n · ZT

⇤
� 1

�
E(Q,P)

�
� sup

(Q,Z)2S⇤
e

⇢
� 1

�
E(Q,P)

�!

= lim inf
n
⇡�(⇠n).

(iii) By the Fatou property from part (ii) and item (vi) of Lemma 5.4.5, we have

⇡�(⇠) > lim inf
n
⇡�(⇠n) > ⇡�(⇠),

which completes the proof.

5.5 Proof of main results

This section provides the technical arguments to establish the convex duality (5.4.17) and we
shall first work in the fictitious frictionless market on the enlarged space. All three results,
namely the convex duality theorem, the dynamic programming principle and the existence of the
optimal portfolio will be confirmed. Translating the transaction costs into additional randomness
on the enlarged space in both primal and dual problems plays a crucial role to develop some key
equivalences.

5.5.1 Reformulation of the dual problem

As a first step to reduce the complexity of the proof, the standard dual problem based on CPS
in the model with transaction costs will be reformulated on the enlarged dual space. Define

Q
⇤

:=
�
Q 2 Q0 : EQ

⇥
(⇠ ·XT )�

⇤
+ E(Q,P int) < 1

 
,

where E(Q,P int) is defined exactly as E(Q,P) in (5.4.14). For any universally measurable random
variable ' : Ω ! R+, we further define

Q
⇤

' :=
�
Q 2 Q

⇤
: EQ

⇥
'
⇤
< 1

 
and Q

⇤

'(0, ✓0) :=
�
Q 2 Q

⇤

' : Q[Θ0 = ✓0] = 1
 
.

The function ' will be chosen depending on the context, it allows to control the integrability of
some extra random variables when one considers the subsets of Q

⇤
and also in some iteration

arguments.

Lemma 5.5.1. For any universally measurable random vector ⇠ : Ω ! Rd, one has

sup
(Q,Z)2S⇤

0

�
EQ
⇥
⇠ · ZT

⇤
� E(Q,P)

 
= sup

Q2Q
⇤

�
EQ
⇥
⇠ ·XT ]� E(Q,P int)

 
.
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Proof. First, for a given (Q, Z) 2 S⇤
0 , we associate the probability kernel:

qZ : ! 2 Ω 7! qZ(·|!) := �(Z/S)(!) 2 B(Λ),

and define Q := Q⌦qZ . The construction implies that EQ
⇥
⇠ ·ZT

⇤
= EQ

⇥
⇠ ·XT ] and that Q 2 Q

⇤
.

Moreover, for every P 2 P, one can similarly define P := P ⌦ qZ 2 P int. If Q ⌧ P, one has
Q ⌧ P and dQ/dP = dQ/dP, P-a.s. If Q ⌧ P is not true, then E(Q,P) = 1 by definition. This
implies that E(Q,P) � E(Q,P int). Therefore,

sup
(Q,Z)2S⇤

0

�
EQ
⇥
⇠ · ZT

⇤
� E(Q,P)

 
 sup

Q2Q
⇤

�
EQ
⇥
⇠ ·XT ]� E(Q,P int)

 
.

Conversely, let us fix Q 2 Q
⇤
, and define Q := Q|Ω and Zt := EQ

⇥
Xt

��Ft

⇤
for t 6 T . As Q ⌧ P

for some P 2 P int, then Q ⌧ P := P|Ω 2 P. Moreover, the fact that X is an (F,Q)-martingale
implies that Z is an (F,Q)-martingale. Then, (Q, Z) 2 S⇤

0 and EQ
⇥
⇠ · ZT

⇤
= EQ

⇥
⇠ · XT ]. Now

as dQ/dP = EP[dQ/dP|FT ] and x 7! x log(x) is convex on R+, we have E(Q,P)  E(Q,P) by
Jensen’s inequality. It follows that

sup
(Q,Z)2S⇤

0

�
EQ
⇥
⇠ · ZT

⇤
� E(Q,P)

 
� sup

Q2Q
⇤

�
EQ
⇥
⇠ ·XT ]� E(Q,P int)

 
,

and we hence conclude the proof.

5.5.2 Proof of Theorem 5.4.1(Case e = 0)

In view of Lemma 5.5.1 and Proposition 5.2.6, one can first establish the duality result of the
utility maximization problem on the enlarged space Ω, in order to prove Theorem 5.4.1.

Proposition 5.5.2. Let g := ⇠·XT and NA(P int) hold true. Then for any universally measurable
random variable ' : Ω ! R+, one has

V := inf
H2H

sup
P2Pint

logEP
⇥
exp

�
g + (H �X)T

�⇤
= sup

Q2Q
⇤

�
EQ
⇥
g
⇤
� E(Q,P int)

 
(5.5.25)

= sup
Q2Q

⇤

'

�
EQ
⇥
g
⇤
� E(Q,P int)

 
.

Moreover, the infimum of the problem V is attained by some optimal trading strategy bH 2 H.

Remark 5.5.3. The above duality result is similar to that in [2], but differs substantially with
theirs in the following two points:

(i) In our current work, we have relaxed the strong one-period no-arbitrage condition for all
!t 2 Ωt assumed in [2]. Indeed, the strong no-arbitrage condition is needed in [2] because their
duality and dynamic programming are mixed with each other. More precisely, with the notations
in [2, Section 4], they need the relation “Et(!, x) = Dt(!) + x” to hold for all t and ! 2 Ωt

to guarantee the measurability of Et through Dt (see in particular their equation (21) and their
Proof of Lemma 4.6). In Appendix 5.6.3, we shall give more details on this point.

(ii) It is worth noting that the reformulations in Proposition 5.2.6 on the enlarged space do not
exactly correspond to standard quasi-sure utility maximization problem. Indeed, we still restrict
the class of strategies to F̃-predictable processes, as opposed to F-predictable processes. The fact
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that the formulation with these two different filtrations are equivalent will be proved by using a
minimax argument.

Proof of Theorem 5.4.1 (case e = 0) First, using Lemma 5.5.1 and Proposition 5.2.6, the
duality (5.4.17) can be deduced immediately from (5.5.25) in Proposition 5.5.2. Moreover, given
the optimal trading strategy bH 2 H in Proposition 5.5.2, we can construct ⌘̂ by (5.2.8) and show
its optimality by almost the same arguments as in Step 2 of Proposition 5.2.6 (ii).

In the rest of Section 5.5.2, we will provide the proof of Proposition 5.5.2 in several steps.

The weak duality As in the classical results, one can easily obtain a weak duality result.

Lemma 5.5.4. For any universally measurable function g : Ω ! R [ {1}, one has

inf
H2H

sup
P2Pint

logEP
⇥
exp

�
g + (H �X)T

�⇤
� sup

Q2Q
⇤

�
EQ[g]� E(Q,P int)

 
.

Proof. Using the result in the [2, Proof of Theorem 4.1 - dynamic programming principle], one
knows that for any H 2 H, P 2 P int and Q 2 Q

⇤
, one has

logEP
⇥
exp

�
g + (H �X)T

�⇤
� EQ[g]� E(Q,P).

(Note that E(Q,P) = 1 if Q is not dominated by P.) Therefore it is enough to take supremum
over Q (and P) and then take infimum over H 2 H to obtain the two weak duality results in the
claim.

We can next turn to (and for the duality, it suffices to) prove that

inf
H2H

sup
P2Pint

logEP
⇥
exp

�
g + (H �X)T

�⇤
 sup

Q2Q
⇤

'

�
EQ
⇥
g]� E(Q,P int)

 
, (5.5.26)

for any universally measurable random variable ' : Ω ! [0,1).

The one-period case T = 1 Let us first consider the one-period case T = 1. Define

Λint(0,!0) := {✓0 2 Λ1 : S0(!0)✓0 2 intK⇤
0},

and for each ✓0 2 Λint(0,!0),

P
�

int(0, ✓0) :=
�
P 2 P int : P[Θ0 = ✓0] = 1

 
.

Define NA(P
�

int(0, ✓0)) as NA(P int) in Definition 5.2.9 with P
�

int(0, ✓0) in place of P int. Then,

NA(P int) implies that NA(P
�

int(0, ✓0)) holds for every ✓0 2 Λint(0,!0).

Lemma 5.5.5. Let T = 1, and g1 : Ω ! R [ {1} be upper semi-analytic and also (!, ✓0, ✓1) 2
Ω⇥Λ1 ⇥Λ1 ! g1(!, ✓0, ✓1) depend only on (!, ✓1). Assume that NA(P int) holds. Then, for g =
g1, the inequality (5.5.26) holds for any universally measurable random variable ' : Ω ! [0,1)

and both terms are not equal to �1. Moreover, there exists an optimal solution bH 2 H for the
infimum problem at the left hand side. In consequence, Proposition 5.5.2 holds true for the case
T = 1.
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Proof. Step 1 : Although the context is slightly different, we can still follow the same arguments
line by line in step (b) of the proof of Theorem 3.1 and Lemma 3.2 of [2] to obtain the existence
of the optimal strategy bH (see also the proof of Theorem 2.2 of [59]), where the key argument is
to show that h 7! supP2Pint

logEP
⇥
exp(g + h(X1 �X0))

⇤
is lower-semicontinuous.

Step 2 : We then turn to prove the duality. First, notice that H = Rd when T = 1, and that
(g1, X1)(!, ✓0, ✓1) is independent of ✓0. Then, for all ✓0 2 Λint(0,!0),

�
P � (g1, X1)

�1 : P 2 P int(0, ✓0)
 

=
�
P � (g1, X1)

�1 : P 2 P int(0,1)
 
,

where 1 represents the vector of Rd with all entries equal to 1. Thanks to the standard concate-
nation argument, it is clear that

V = inf
h12Rd

sup
✓02Λint(0,!0)

sup
PnP

�

int(0,✓0)

logEP
⇥
exp(g1 + h1 ·X1 � h1 · S0✓0)

⇤
.

Define the function

↵(h1, ✓0) := sup
PnP

�

int(0,✓0)

logEP
⇥
exp(g1 + h1 ·X1 � h1 · S0✓0)

⇤
.

We first observe that

✓0 7! ↵(h1, ✓0) = sup
PnP

�

int(0,1)

logEP[exp(g1 + h1 ·X1 � h1 · S0✓0)] is affine.

We claim further that h1 7! ↵(h1, ✓0) is convex. Indeed, for any (universally measurable) random
variables Y1 and Y2, it follows by Cauchy-Schwarz inequality that

EP
⇥
exp

�
(Y1 + Y2)/2

�⇤
6

⇣
EP
⇥
exp(Y1)

⇤⌘ 1
2
⇣
EP
⇥
exp(Y2)

⇤⌘ 1
2

.

By taking logarithm on both sides, one has

logEP
⇥
exp

�
(Y1 + Y2)/2

�⇤
6

1

2

⇣
logEP

⇥
exp(Y1)

⇤
+ logEP

⇥
exp(Y2)

⇤⌘
,

from which one observes that

h1 7! logEP
⇥
exp(g1 + h1 ·X1 � h1 · S0✓0)

⇤
is convex.

As the pointwise supremum of an arbitrary family of convex functions is still convex, it follows
that h1 7! ↵(h1, ✓0) is convex.

This allows us to use minimax theorem to deduce that

V = inf
h12Rd

sup
✓02Λint(0,!0)

↵(h1, ✓0) = inf
h12Rd

sup
✓02Λ(0,!0)

↵(h1, ✓0) = sup
✓02Λ(0,!0)

inf
h12Rd

↵(h1, ✓0)

= sup
✓02Λint(0,!0)

inf
h12Rd

sup
PnP

�

int(0,✓0)

logEP
⇥
exp(g1 + h1 ·X1 � h1 · S0✓0)

⇤
.

In the above argument, Λ(0,!0) denotes the closure of Λint(0,!0), and we can replace Λint(0,!0)
by Λ(0,!0) since ✓0 7! ↵(h1, ✓0) is affine, and ✓0 7! infh12Rd ↵(h1, ✓0) is concave and hence lower
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semicontinuous. Using the one period duality result in [2, Theorem 3.1], we obtain

V = sup
✓02Λint(0,!0)

sup
Q2Q

⇤

'(0,✓0)

n
EQ[g1]� E

�
Q,P

�

int(0, ✓0)
�o

.

Step 3 : To conclude the proof, it is enough to prove that

sup
✓02Λint(0,!0)

sup
Q2Q

⇤

'(0,✓0)

n
EQ[g1]� E

�
Q,P

�

int(0, ✓0)
�o

� sup
Q2Q

⇤

'

�
EQ
⇥
g1]� E(Q,P int)

 
, (5.5.27)

as the reverse inequality is trivial by the fact that Q
⇤

'(0, ✓0) ⇢ Q
⇤

' and that E
�
Q,P

�

int(0, ✓0)
�
=

E(Q,P int) for all Q 2 Q
⇤

'(0, ✓0). Let Q 2 Q
⇤

' and denote by (Q✓0)✓02Λint(0,!0) a family of r.c.p.d.
of Q knowing ✓0, then by [2, Lemma 4.4], we have

EQ
⇥
g1]� E(Q,P int) = EQ

h
EQ✓0

⇥
g1
⇤
� E

�
Q✓0 ,P

�

int(0, ✓0)
�i

� E
�
Q � ✓�1

0 ,P int|Ω0

�

 sup
✓02Λint(0,!0)

sup
Q2Q

⇤

'(0,✓0)

n
EQ[g1]� E

�
Q,P

�

int(0, ✓0)
�o

.

Taking the supremum over Q in Q
⇤

', we verify (5.5.27).

The multi-period case: measurable selection of the dynamic strategy Let us extend

the above definitions of Λint(0,!0), P
�

int(0, ✓0) and Q
⇤

'(0, ✓0) to an arbitrary initial time t and
initial path !̄t. For t � 1 and !̄ = !̄t = (!t, ✓t) 2 Ωt, let us first recall the definition of Λint(t,!

t)
:

Λint(t,!
t) := {✓t 2 Λ1 : St(!

t)✓t 2 intK⇤
t (!

t)} ⇢ Λ1.

Note that P int(t, !̄) ⇢ B(Ω1 ⇥ Λ1) is defined in (5.2.7). We introduce

P
�

int(t, !̄) :=
�
�!̄t ⌦ Pt+1 : Pt+1 2 P int(t, !̄)

 
, (5.5.28)

and

eP�
int(t,!) :=

�
(�!t ⇥ µ(d✓t))⌦ Pt+1 : Pt+1 2 P int(t, !̄), µ 2 B

�
Λint(0,!0)⇥ · · ·⇥ Λint(t,!

t)
� 

,

where the latter consists in a version of P
�

int(t, !̄) in which ✓t is not fixed anymore.

Remark 5.5.6. (i) For a fixed ! 2 Ωt, let us define NA( eP�
int(t,!)) by

h(Xt) · (Xt+1 �Xt) � 0, eP�
int(t,!)-q.s. =) h(Xt) · (Xt+1 �Xt) = 0, eP�

int(t,!)-q.s.,

for every universally measurable function h : Rd ! Rd. By applying Proposition 5.2.11 with
P(t,!) in place of P, one obtains that NA2(t,!) defined in (5.5.29) is equivalent to NA( eP�

int(t,!)).

(ii) We recall that for each t  T and ! 2 Ωt, the condition NA2(t,!) is satisfied if

⇣ 2 Kt+1(!, ·), Pt(!)-q.s. implies ⇣ 2 Kt(!), for all ⇣ 2 Rd. (5.5.29)

Then by [43, Lemma 3.6], the set Nt := {! : NA2(t,!) fails} is universally measurable. More-
over, Nt is a P-polar set if NA2(P) holds.
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(iii) It follows from (i) and (ii) that NA2(t,!) or equivalently eP�
int(t,!) holds for all ! outside

a P-polar set N , whenever NA2(P) holds. The latter is equivalent to NA(P int) by Proposition
5.2.11. Therefore, if NA(P int) holds, there exists a P int-polar N := N ⇥ Λ, such that for all
!̄ = (!, ✓) /2 N , NA( eP�

int(t,!)) holds.

(iv) Finally, for a fixed !̄ 2 Ωt, we define NA(P
�

int(t, !̄)) by

h · (Xt+1 �Xt) � 0, P
�

int(t, !̄)-q.s. =) h · (Xt+1 �Xt) = 0, P
�

int(t, !̄)-q.s.,

for every h 2 Rd. Then, NA( eP�
int(t,!)) implies NA(P

�

int(t,!, ✓)) for all ✓ 2 Λ (see also Remark
3.9 of [113]).

Let us fix a functional gt+1 : Ωt+1 ! R [ {1} which is upper semi-analytic and such
that gt+1(!

t+1, ✓0, · · · , ✓t+1) depends only on (!t+1, ✓t+1). Then for any universally measurable
random variable Yt+1 : Ωt+1 ! R+, we introduce

Q
⇤

Yt+1
(t, !̄) :=

8
<
:Q 2 B(Ωt+1) :

Q n P
�

int(t, !̄), EQ[Xt+1 �Xt] = 0, EQ[Yt+1] < 1,

EQ
⇥
g�t+1 + |Xt+1 �Xt|

⇤
+ E

�
Q,P

�

int(t, !̄)
�
< 1

9
=
; ,

and by setting Yt+1 ⌘ 0, we define

gt(!̄
t) := sup

Q2Q
⇤

0(t,!̄
t)

n
EQ[gt+1]� E

�
Q,P

�

int(t, !̄
t)
�o

, for all !̄t 2 Ωt. (5.5.30)

Remark 5.5.7. Let !̄ = (!, ✓) and !̄0 = (!0, ✓0) be such that !t = (!0)t and ✓t = ✓
0

t. Then, it

follows from the definition of P
�

int(t, !̄) and Q
⇤

Yt+1
(t, !̄) that

n
Q � (gt+1, Xt, Xt+1)

�1 : Q 2 Q
⇤

Yt+1
(t, !̄)

o
=
n
Q � (gt+1, Xt, Xt+1)

�1 : Q 2 Q
⇤

Yt+1
(t, !̄0)

o
.

Since gt+1(!
t+1, ✓0, · · · , ✓t+1) is assumed to be independent of (✓0, · · · , ✓t), then it is clear that

gt(!̄
t) depends only on (!t, ✓t) for !̄t = (!t, ✓0, · · · , ✓t).

The above remark allows us to define

g0t(!
t, h) := sup

✓t2Λint(t,!t)

�
gt(!

t, ✓t) + h · St(!)✓t
 
, 8 (!t, h) 2 Ωt ⇥ Rd. (5.5.31)

Remark 5.5.8. From Remark 5.5.6, NA(P int) implies that NA(P
�

int(t, !̄)) holds for P-a.e. !̄ 2
Ω under any P 2 P int. We can in fact apply Theorem 3.1 of [2] to obtain that

gt(!̄) = sup
Q2Q

⇤

Yt+1
(t,!̄)

n
EQ[gt+1]� E

�
Q,P

�

int(t, !̄)
�o

, P int-q.s.,

for all universally measurable random variables Yt+1 : Ωt+1 ! R+.

Lemma 5.5.9. For every t, the graph set
hh
Q

⇤

0(t)
ii

:=
n
(!̄,Q) : !̄ 2 Ωt,Q 2 Q

⇤

0(t, !̄)
o

is analytic.
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Proof. We follow the arguments in Lemma 4.5 of [2] and Lemma 4.8 of [1]. First, as gt+1 ^
0 + |Xt+1 � Xt| is upper semi-analytic, an application of Proposition 7.48 of [92] shows that
(!̄,Q) 7! EQ

⇥
gt+1 ^ 0� |Xt+1 �Xt|

⇤
is upper semi-analytic.

Furthermore, from the definition of P
�

int(t) in (5.5.28), one observes that the graph set⇥⇥
P

�

int(t)
⇤⇤

is analytic, as
⇥⇥
P int(t)

⇤⇤
is analytic (see Remark 5.2.5). Then using the Borel

measurability of the relative entropy (Lemma 4.2 of [2]), one obtains from a measurable se-

lection argument (see e.g. Proposition 7.47 of [92]) that (!̄,Q) 7! �E
�
Q,P

�

int(t, !̄)
�

is upper
semi-analytic.

It follows that

A :=
n
(!̄,Q) : EQ [gt+1 ^ 0� |Xt+1 �Xt|]� E

⇣
Q,P

�

int(t, !̄)
⌘
> �1

o

is an analytic set. By Lemma 4.8 of [1], we know

B(!̄) := {(Q,P) 2 B(Ωt+1)⇥B(Ωt+1) : P 2 P
�

int(t, !̄), EQ[Xt+1 �Xt] = 0, Q ⌧ P}

has an analytic graph. Notice that the set

C :=
��
!̄,Q

�
: Q n P

�

int(t, !̄), EQ[Xt+1 �Xt] = 0
 

is the image of the graph set
⇥⇥
B
⇤⇤

under canonical projection Ωt ⇥ B(Ωt+1) ⇥ B(Ωt+1) 7!
Ωt ⇥B(Ωt+1) and thus analytic. Finally, it is shown that

hh
Q

⇤

0(t)
ii

= A \ C

is analytic.

Lemma 5.5.10. Assume that NA(P int) holds true. Then both gt and g0t are upper semi-analytic,
and there is a universally measurable map ht+1 : Ωt ⇥ Rd ! Rd together with a P-polar set N
such that, for every (!, ht) 2 N c ⇥ Rd, one has

g0t(!
t, ht) = sup

✓t2Λint(t,!t)

sup
P2P

�

int(t,!̄)

logEP
h
exp

�
gt+1 + ht+1(!

t, ht)(Xt+1 �Xt) + htXt

�i
> �1.

Proof. The proof follows the track of measurable selection arguments as in Lemma 3.7 of [59]
with some modifications for our setting. Let us denote, for all !t 2 Ωt and ht 2 Rd,

V 0
t (!

t, ht) := inf
h2Rd

sup
✓t2Λint(t,!t)

sup
P2P

�

int(t,!̄)

logEP
h
exp

�
gt+1 + h(Xt+1 �Xt) + htXt

�i
.

By Remark 5.5.7, we can employ the same minimax theorem argument as in Lemma 5.5.5 above
and obtain that

V 0
t (!

t, ht) = g0t(!
t, ht) > �1, if NA( eP�

int(t,!)) holds true.

In view of (iii) in Remark 5.5.6, this holds true outside a P-polar set N .
Further, let us denote by U(Ωt ⇥ Rd) the universal �-field on Ωt ⇥ Rd. Notice that gt+1

is assumed to be upper semi-analytic, the graph set
⇥⇥
Q

⇤

0(t)
⇤⇤

is analytic by Lemma 5.5.9,

(!̄t,Q) 2 Ωt ⇥ B(Ωt+1) 7! E
�
Q,P

�

int(t, !̄
t)
�

is lower semi-analytic by [2, Lemma 4.2] and [92,
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Proposition 7.47]. It follows from the measurable selection argument (see e.g. [92, Propositions
7.26, 7.47, 7.48]) that the maps !̄t 7! gt(!̄

t) is upper semi-analytic. As
⇥⇥
intK⇤

t

⇤⇤
is Borel and

hence
⇥⇥
Λint(t, ·)

⇤⇤
is also Borel, it follows from [92, Proposition 7.47] that (!t, ht) 7! g0t(!

t, ht)
is upper semi-analytic, hence belongs to U(Ωt ⇥ Rd).

Next, we claim that the function

�(!t, ht, h) : = sup
✓t2Λint(t,!t)

sup
P2P

�

int(t,!̄)

logEP
h
exp

�
gt+1 + h(Xt+1 �Xt) + htXt

�i
.

is U(Ωt ⇥ Rd) ⌦ B(Rd)-measurable. To see this, we first fix h and ht. Then from the same

argument as above, as
hh
P

�

int(t)
ii

is analytic and by [92, Propositions 7.26, 7.47, 7.48], we have

that
(!t, ✓t) 7! sup

P2P
�

int(t,!̄)

logEP[exp
�
gt+1 + h(Xt+1 �Xt) + htXt)]

is upper semi-analytic. Again,
⇥⇥
intK⇤

t

⇤⇤
is Borel implies that

⇥⇥
Λint(t, ·)

⇤⇤
is also Borel, by

[92, Proposition 7.47], we have that !t 7! �(!t, ht, h) is upper semi-analytic. On the other
hand, for fixed !t, it follows by an application of Fatou’s lemma (as [2, Lemma 4.6]) that
(h, ht) 7! �(!t, ht, h) is lower semi-continuous. Moreover, as (h, ht) 7! �(!t, ht, h) is convex, by
[62, Lemma 4.5], we have that � is indeed Ft ⌦ B(Rd)⌦ B(Rd)-measurable, and thus belongs to
U(Ωt ⇥ Rd)⌦ B(Rd).

Let us consider the random set

Φ(!t, ht) :=
�
h 2 Rd : �(!t, ht, h) = g0t(!

t, ht)
 
.

By the previous arguments, we have that [[Φ]] is in U(Ωt ⇥ Rd) ⌦ B(Rd). Thus Φ admits an
U(Ωt ⇥ Rd)-measurable selector ht+1 on the universally measurable set Φ(!t, ht) 6= ;; cf. the
corollary and scholium of [117, Theorem 5.5]. Moreover, Lemma 5.5.5 and Remark 5.5.6 imply
that Φ(!t, ht) 6= ; holds true outside a P-polar set N , it yields that ht+1 solves the infimum
P-q.s.

The multi-period case: the final proof We provide a last technical lemma and then finish
the proof of Proposition 5.5.2. Recall that gt+1 := Ωt+1 ! R[{1} is a given upper semi-analytic
functional, such that gt+1(!

t+1, ✓0, · · · , ✓t+1) depends only on (!t+1, ✓t+1), and gt is defined in
(5.5.30). Given a universally measurable random variable Yt : Ωt ! R+, we define

Q
⇤

Yt,t := {Q 2 Q0|Ωt
: EQ

⇥
g�t
⇤
+ E

�
Q,P int|Ωt

�
< +1, EQ[Yt] < +1}.

Lemma 5.5.11. Let t + 1  T , then for any universally measurable random variable Yt+1 :
Ωt+1 ! R+ and " > 0, there is a universally measurable random variable Y "

t : Ωt ! R+ such
that

sup
Q2Q

⇤

Y "
t

,t

n
EQ[gt]� E

�
Q,P int|Ωt

�o
 sup

Q2Q
⇤

Yt+1,t+1

n
EQ[gt+1]� E

�
Q,P int|Ωt+1

�o
+ ". (5.5.32)

Proof. (i) In view of Corollary 5.6.7, we can assume w.l.o.g. that Yt+1 ⌘ 0. Then Lemma 5.5.9
and a measurable selection argument (see e.g. Proposition 7.50 of [92]) guarantees that there
exists a universally measurable kernel Q

"

t (·) : Ωt ! B(Ω1) such that �!̄ ⌦ Q
"

t (!̄) 2 Q
⇤

0(t, !̄) for
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all !̄ 2 Ωt, and
gt(!̄)  E�!̄⌦Q

"

t (!̄)[gt+1]� E
�
Q

"

t (!̄),P int(t, !̄)
�
+ ".

(ii) Let us define Y "
t by

Y "
t (·) := E�

·
⌦Q

"

t (·)
⇥
g�t+1 + |Xt+1 �Xt|

⇤
+ E

�
Q

"

t (·),P int(t, ·)
�
.

By the definition of Q
⇤

0(t, ·) and [2, Lemma 4.2], Y "
t is R+-valued and universally measurable.

Then for any Q 2 Q
⇤

Y "
t ,t, one has

EQ⌦Q
"

t (·)
⇥
g�t+1 + |Xt+1 �Xt|

⇤
+ E(Q⌦Q

"

t (·),P int|Ωt+1
)

= EQ
h
EQ

"

t (·)[g�t+1 + |Xt+1 �Xt|]
i
+ E(Q,P int|Ωt

) + EQ
h
E(Q

"

t (·),P int(t, ·))
i

 E(Q,P int|Ωt
) + EQ[Y "

t ] < +1,

where the first equality follows from Lemma 4.4 of [2]. Further, Q ⌦ Q
"

t (·) is a martingale
measure on Ωt+1 by the martingale property of Q and Q

"

t (·). Finally, because Q n P int|Ωt
and

Q
"

t (·) n P int(t, ·), it follows that Q⌦Q
"

t (·) n P int|Ωt+1
. This implies that Q⌦Q

"

t (·) 2 Q
⇤

0,t+1.

Thus for any Q 2 Q
⇤

Y "
t ,t, one has

EQ[gt]� E(Q,P int|Ωt
) 6 EQ

h
EQ

"

t (·)[gt+1]� E
�
Q

"

t (·),P int(t, ·)
�
+ "
i
� E(Q,P int|Ωt

)

= EQ⌦Q
"

t (·)[gt+1]� E(Q⌦Q
"

t (·),P int|Ωt+1
) + "

6 sup
Q2Q

⇤

0,t+1

n
EQ[gt+1]� E(Q,P int|Ωt+1

)
o
+ ".

We hence conclude the proof as Q 2 Q
⇤

Y "
t ,t is arbitrary.

Proof of Proposition 5.5.2. We will use an induction argument. First, Proposition 5.5.2 in
case T = 1 is already proved in Lemma 5.5.5. Next, assume that Proposition 5.5.2 holds true
for the case T = t, we then consider the case T = t+ 1.

In the case T = t + 1, let us denote gt+1 := g := ⇠ · Xt+1. It is clear that gt+1 is a Borel
random variable and gt+1(!

t+1, ✓0, · · · , ✓t+1) depends only on (!t+1, ✓t+1). Let gt be defined by
(5.5.30). Since Proposition 5.5.2 is assumed to hold true for the case T = t, it follows that there is
Ĥ = (Ĥ1, · · · , Ĥt) 2 Ht such that, for any universally measurable random variable Yt : Ωt ! R+,
one has

sup
P2Pint

logEP
⇥
exp(gt + (Ĥ �X)t

�⇤
= sup

Q2Q
⇤

Yt,t

n
EQ[gt]� E

�
Q,P int|Ωt

�o
. (5.5.33)

Then with the function ht+1 defined in Lemma 5.5.10, we define

Ĥt+1(!
t) := ht+1(!

t, Ĥt(!
t�1)). (5.5.34)

Further, for any P 2 P int, one has the representation P = P0 ⌦ · · · ⌦ Pt, where Ps(·) is
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measurable kernel in P
�

int(s, ·). It follows by direct computation that

EP
h
exp

⇣
gt+1 + (Ĥ �X)t+1

⌘i
= EP0⌦···⌦Pt�1

h
exp

⇣
logEPt

h
exp

�
gt+1 + (Ĥ �X)t+1

�i⌘i

 EP
h
exp

⇣
sup

P
0
2P

�

int(t,·)

logEP
0
h
exp

�
gt+1 + (Ĥ �X)t+1

�i⌘i

 sup
P2Pint

EP
⇥
exp

�
g0t(·, Ĥt) + (Ĥ �X)t�1 � ĤtXt�1

�⇤
,

where the last inequality follows by the definition of Ĥt+1 in (5.5.34) and Lemma 5.5.10. Taking
the supremum over P 2 P int, it follows from the definition of g0t in (5.5.31) together with a
dynamic programming argument that

sup
P2Pint

EP
h
exp

⇣
gt+1 + (Ĥ �X)t+1

⌘i
 sup

P2Pint

EP
⇥
exp

�
gt + ĤtXt + (Ĥ �X)t�1 � ĤtXt�1

�⇤

= sup
P2Pint

EP
⇥
exp

�
gt + (Ĥ �X)t

�⇤
. (5.5.35)

Then for any universally measurable random variable ' : Ω ! R+, we set Yt+1 := ' and use
sequentially Lemma 5.5.11, (5.5.33), (5.5.35), to obtain

sup
Q2Q

⇤

'

n
EQ[gt+1]� E(Q,P int|Ωt+1

)
o

� sup
Q2Q

⇤

Yt,t

n
EQ[gt]� E

�
Q,P int|Ωt

�o

= sup
P2Pint

logEP
⇥
exp(gt + (Ĥ �X)t

�⇤

� sup
P2Pint

logEP
h
exp

⇣
gt+1 + (Ĥ �X)t+1

⌘i

� inf
H2H

sup
P2Pint

logEP [exp (gt+1 + (H �X)t+1)] .

Because the reverse inequality is the weak duality in Lemma 5.5.4, we obtain the equality ev-
erywhere in the above formula, which is the duality result (5.5.25) for the case T = t + 1. In
particular, (Ĥ1, · · · , Ĥt, Ĥt+1) is the optimal trading strategy for the case T = t+ 1.

5.5.3 Proof of Theorem 5.4.1(Case e > 1)

In this section, we are interested in the utility maximization problem with semi-static strategy. To
take into account of the transaction costs caused by trading the static options (⇣i, i = 1, · · · , e),
we work in the framework of [113] and introduce a further enlarged space by

bΛ :=

eY

i=1

[�ci, ci], bΩ := Ω⇥ bΛ, bFt := F t ⌦ B
�bΛ
�
, bPint :=

n
bP 2 B(bΩ) : bP|

Ω
2 P int

o
,

and define

f̂i : bΩ �! R, f̂i(b!) = ⇣i(!) ·XT (!̄)� ✓̂i for all b! = (!̄, ✓̂) = (!, ✓, ✓̂) 2 bΩ.

The process (Xt)0tT and the random variable g := ⇠ · XT defined on Ω can be naturally
extended on bΩ.
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We can then consider the exponential utility maximization problem on bΩ:

inf
(H,`)2H⇥Re

sup
bP2 bPint

logE
bP

"
exp

 
g +

eX

i=1

`if̂i + (H �X)T

!#
.

Let us also introduce

bQ⇤
e :=

(
bQ 2 B(bΩ) :

bQ n bPint, X is (bF, bQ)-martingale, E
bQ[f̂i] = 0, i = 1, · · · , e,

E
bQ⇥(⇠ ·XT )�

⇤
+ E(bQ, bPint) < +1

)
,

and
bQ⇤
e,' := {bQ 2 bQ⇤

e : E
bQ['] < +1}, for all ' : bΩ ! R+.

It is easy to employ similar arguments for Lemma 5.5.1 and Proposition 5.2.6 to obtain

inf
(`,⌘)2Ae

sup
P2P

logEP

2
4exp

0
@
 
⇠ �

eX

i=1

(`i⇣i � |`i|ci1d)�
TX

t=0

⌘t

!d
1
A
3
5

= inf
(H,`)2H⇥Re

sup
bP2 bPint

logE
bP

"
exp

�
g +

eX

i=1

`if̂i + (H �X)T
�
#
,

and
sup

(Q,Z)2S⇤
e

�
EQ
⇥
⇠ · ZT

⇤
� E(Q,P)

 
= sup

bQ2 bQ⇤
e

�
E

bQ⇥g
⇤
� E(bQ, bPint)

 
,

with g := ⇠ ·XT . Hence, to conclude the proof of Theorem 5.4.1(case e > 1), it is sufficient to
prove that, for any universally measurable ' : bΩ ! R+, one has

inf
(H,`)2H⇥Re

sup
bP2 bPint

logE
bP

"
exp

 
g +

eX

i=1

`if̂i + (H �X)T

!#
= sup

bQ2 bQ⇤
e,'

n
E

bQ⇥g
⇤
� E(bQ, bPint)

o
.(5.5.36)

Let us first provide a useful lemma.

Lemma 5.5.12. Let g : Ω ! R be upper semi-analytic, and assume that NA2(P) holds. Assume
either that e = 0, or that e � 1 and for all ` 2 Re and ⌘ 2 A, (5.4.15) holds. Then, for all
' : bΩ ! R+, one has

inf
n
y 2 R : y +

eX

i=1

`if̂i + (H �X)T � g, bPint-q.s., l 2 Re, H 2 H
o

= sup
Q2 bQ⇤

e,'

EQ
⇥
g
⇤
.(5.5.37)

Proof. By Proposition 5.2.11, NA2(P) implies NA(P int). For the case e = 0, as observed by [2,
Lemma 3.5], Lemma 3.3 of [1] has indeed proved the following stronger version of fundamental
lemma with T = 1:

0 2 ri{ EQ[∆X], Q 2 Q
⇤

'}. (5.5.38)

Using (5.5.38), we can proceed as [1, Lemma 3.5, 3.6, Theorem 4.1] to prove (5.5.37) in the case
without options(e = 0).

For the case e > 1, we can argue by induction. Suppose the super-replication theorem with
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e� 1 options holds with g = f̂e:

⇡̂e�1(g) := inf
n
y : y +

e�1X

i=1

`if̂i + (H �X)T � g, bPint-q.s., ` 2 Re�1, H 2 H
o

= sup
bQ2 bQ⇤

e�1,'

E
bQ[g], (5.5.39)

and we shall pass to e. By the no arbitrage condition (5.4.15), there is no H 2 H, `1, · · · , `e�1 and
`e 2 {�1, 1} such that

Pe�1
i=1 `if̂i+(H�X)T � �`ef̂e, bPint-q.s. It follows that ⇡̂e�1(f̂e), ⇡̂e�1(�f̂e) >

0, which, by [1, Lemma 3.12] and (5.5.39), implies that there is bQ�, bQ+ 2 bQ⇤
e�1,' such that

�⇡̂e�1(�f̂e) < E
bQ� [f̂e] < 0 < E

bQ+ [f̂e] < ⇡̂e�1(f̂e). (5.5.40)

In particular, we have

0 2 ri{ E
bQ[f̂e], bQ 2 bQ⇤

e�1,'}. (5.5.41)

Then we can argue line by line as [113, Proof of Theorem 3.1(case e > 1)] to prove that

there exists a sequence
�bQn

�
n�1

⇢ bQ⇤
e,' s.t. E

bQn [g] ! ⇡̂e(g),

which shows that
sup

bQ2 bQ⇤
e,'

E
bQ[g] � ⇡̂e(g).

To conclude, it is enough to notice that the reverse inequality is the classical weak duality which
can be easily obtained from [1, Lemmas A.1 and A.2].

Proof of Theorem 5.4.1 (case e > 1). Notice that (5.5.36) has been proved for the case e = 0
in Section 5.5.2, although the formulations are slightly different. The proof is still based on the
induction as in the proof of [2, Theorem 2.2]. Let us assume that (5.5.36) holds for e � 1 � 0
and then prove it for the case of e. Define

J : bQ⇤
e�1,' ⇥ R ! R, (bQ,�) 7! E

bQ[g] + �E
bQ[f̂e]�H(bQ, bPint).

Clearly, J is concave in the first argument and convex in the second argument. By (5.5.41),
J satisfies the compactness-type condition (14) in [2], thus we can apply the minimax theorem.
Using the induction hypothesis and the same arguments as in [2], we have

inf
(H,`)2H⇥Re

sup
bP2 bPint

logE
bP

"
exp

 
g +

eX

i=1

`if̂i + (H �X)T

!#

= inf
�2R

min
(H,`)2H⇥Re�1

sup
bP2 bPint

E
bP

"
exp

 
g +

e�1X

i=1

`if̂i + �f̂e + (H �X)T

!#

= inf
�2R

sup
bQ2 bQ⇤

e�1,'

J(bQ,�) (5.5.42)

= sup
bQ2 bQ⇤

e�1,'

inf
�2R

J(bQ,�) = sup
bQ2 bQ⇤

e,'

�
E

bQ[g]�H(bQ, bPint)
�
.
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The duality holds as a consequence. Moreover, from (15) of [2], 8c < inf�2R supbQ2 bQ⇤

e�1,'
J(bQ,�),

9n, s.t. for all � satisfying |�| > n, supbQ2 bQ⇤

e�1,'
J(bQ,�) > c. Thus (5.5.42) can be rewritten as

inf
|�|n

sup
bQ2 bQ⇤

e�1,'

J(bQ,�).

Now the lower-continuity of � 7! supbQ2 bQ⇤
e,'

J(bQ,�) implies the existence of some �̂ such that

sup
bQ2 bQ⇤

e,'

J(bQ, �̂) = inf
�2R

sup
bQ2 bQ⇤

e,'

J(bQ,�).

Combining �̂ with the optimal strategy with e � 1 options (Ĥ, ˆ̀?), we deduce the existence of
an optimal strategy for e options, namely (Ĥ, ˆ̀) := (Ĥ, (ˆ̀?, �̂)). Using the construction (5.2.8),
one can obtain (⌘̂, ˆ̀) explicitly attaining the infimum in (5.4.17) from (Ĥ, ˆ̀) which is constructed
already in previous steps.

5.5.4 Proof of Proposition 5.4.6

Using the expression in (5.4.20), one has

lim
�!1

⇡�(⇠) = lim
�!1

sup
(Q,Z)2S⇤

e

⇢
EQ
⇥
⇠ · ZT

⇤
� 1

�
E(Q,P)

�
,

where the r.h.s. is increasing in �. Replacing the limit by supremum, and then interchanging
the order of two supremums, we have

lim
�!1

⇡�(⇠) = sup
(Q,Z)2S⇤

e

sup
�

⇢
EQ
⇥
⇠ · ZT

⇤
� 1

�
E(Q,P)

�
= sup

(Q,Z)2S⇤
e

EQ
⇥
⇠ · ZT

⇤
.

By similar arguments as in Section 3.2 of [113], we can reformulate the problem at the r.h.s. on
the enlarged space bΩ and then use Lemma 5.5.12 to obtain that

sup
(Q,Z)2S⇤

e

EQ
⇥
⇠ · ZT

⇤
= sup

bQ2 bQ⇤
e

E
bQ⇥⇠ ·XT

⇤
= ⇡(⇠).

This concludes the proof.

5.6 Appendix : Exponential utility maximization duality
without transaction cost

In this appendix, we shall present an auxiliary result on the exponential utility maximization
problem without transaction cost by applying the same procedure as in the proof of Theorem
5.4.1. This allows to extend the main results in Bartl [2] without a restrictive !-wise no-arbitrage
condition. Moreover, an auxiliary result in the dominated case consists a key ingredient in the
proof of our main result in Theorem 5.4.1 with transaction cost (in particular in Lemma 5.5.11).

Throughout this appendix, we stay in the context of Section 5.2.1, where Ω := ΩT
1 is a

(product) Polish space with the raw canonical filtration F0 = (F0
t )0tT and the universally



5.6. APPENDIX : EXPONENTIAL UTILITY MAXIMIZATION DUALITY WITHOUT TRANSACTION COST131

completed filtration F = (Ft)0tT and F := FT . The space (Ω,F) is equipped with a family
of (possibly) non-dominated probability measures P defined by (5.2.1) with a given family of
classes of probability measures Pt(!) on Ω1, that is,

P :=
�
P := P0 ⌦ P1 ⌦ · · ·⌦ PT�1 : Pt(·) 2 Pt(·) for t  T � 1

 
,

which satisfies the measurability condition (5.2.2). We take the F0-adapted process (St)0tT

in (5.2.4) and let it represent the discounted stock price, which can be traded without any
transaction cost. Finally, by a slight abuse of language, we denote g : Ω ! R an upper semi-
analytic random variable representing the payoff of a derivative option, and let

H := {All F-predictable processes}

represent the set of all admissible trading strategies, and denote (H�S)T :=
PT

t=1 Ht ·(St+1�St).
Following Bouchard and Nutz [1], we define the quasi-sure no-arbitrage condition NA(P) by

(H � S)T � 0, P-q.s. =) (H � S)T = 0, P-q.s. for all H 2 H. (5.6.43)

Further, for each t = 0, · · · , T � 1 and !t 2 Ωt, we define the no-arbitrage condition NA(Pt(!
t))

by

h ·∆St+1(!
t, ·) � 0, Pt(!

t)-q.s. =) h ·∆St+1(!
t, ·) = 0, Pt(!

t)-q.s. for all h 2 Rd.(5.6.44)

Recall also that (by Lemma 4.6 of [1]) the set Nt = {!t 2 Ωt : NA(Pt(!
t)) fails} is P-polar if

NA(P) holds.

Let us denote by Q0 the collection of measures Q 2 B(Ω) such that Q n P and S is an
(F,Q)-martingale. Then given a universally measurable random variable ' : Ω ! R+, we define

Q⇤
0 :=

�
Q 2 Q0 : EQ

⇥
g�
⇤
+ E(Q,P) < 1

 
and Q⇤

' := {Q 2 Q⇤
0 : EQ['] < +1}.

Theorem 5.6.1. Let g : Ω ! (�1,+1] be upper semi-analytic and suppose that NA(P) holds.
Then for any universally measurable ' : Ω ! R+, one has

V := inf
H2H

sup
P2P

logEP
⇥
exp

�
g + (H � S)T

�⇤
= sup

Q2Q⇤
'

�
EQ[g]� E(Q,P)

 
.

Moreover, the infimum over H 2 H is attained by some optimal trading strategy Ĥ.

Remark 5.6.2. In Bartl [2], the above result is proved under the condition that NA(Pt(!
t))

holds for all t = 0, · · · , T � 1 and all !t 2 Ωt. As explained in Remark 2.5 of [2], the main
reason to use this !-wise no-arbitrage condition (rather than the quasi-sure no-arbitrage condition
NA(P)) is the measurability issue due to their dynamic programming procedure. Our alternative
procedure allows to overcome this measurability difficulty.

5.6.1 Some technical lemmas

In this section, we shall give some technical lemmas which will be used in both Section 5.6.2 and
Section 5.6.3. Firstly, by using the same arguments as in Lemma 5.5.4, one obtains the next
weak duality.
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Lemma 5.6.3. Under the same conditions as Theorem 5.6.1, one has

inf
H2H

sup
P2P

logEP
⇥
exp

�
g + (H � S)T

�⇤
> sup

Q2Q⇤

0

�
EQ[g]� E(Q,P)

 
.

Next, for all t 2 {0, · · · , T � 1}, we consider an upper semi-analytic function gt+1 : Ωt+1 !
R [ {1}, and define

gt(!
t) := sup

Q2Q⇤

0(t,!
t)

n
EQ[gt+1]� E

�
Q,Pt(!

t)
�o

, for all !t 2 Ωt,

where

Q⇤
0(t,!

t) :=
n
�!t ⌦Q 2 B(Ωt+1) : Q n Pt(!

t), EQ
⇥
St+1(!

t, ·)� St(!
t)
⇤
= 0,

EQ
⇥
g�t+1(!

t, ·) + |St+1(!
t, ·)� St(!

t)|
⇤
+ E

�
Q,Pt(!

t)
�
< 1

o
.

Further, given a universally measurable random variable Yt+1 : Ωt+1 ! R+, we introduce

Q⇤
Yt+1

(t,!t) :=
�
Q 2 Q⇤

0(t,!
t) : EQ[Yt+1(!

t, ·)] < 1
 
.

Moreover, for any universally measurable random variable Yt : Ωt ! R+, we denote

Q⇤
Yt,t := {Q 2 Q0|Ωt

: EQ[g�t ] + E(Q,P) < +1, EQ[Yt] < +1}.

Lemma 5.6.4. For any universally measurable random variable Yt+1 : Ωt+1 ! R+, one has

gt(!
t) = sup

Q2Q⇤

Yt+1
(t,!t)

n
EQ[gt+1]� E

�
Q,Pt(!

t)
�o

, P-q.s.

In addition, if Yt+1 is assumed to be Borel measurable, the graph set
⇥⇥
Q⇤

Yt+1
(t)
⇤⇤

:=
�
(!,Q) : ! 2 Ωt,Q 2 Q⇤

Yt+1
(t,!)

 
is analytic.

Proof. The first result is consequent on the one-period duality result in Theorem 3.1 of Bartl
[2] (see also our Remark 5.5.8), and the second result follows essentially the same arguments as
in the proof of Lemma 5.5.9.

Lemma 5.6.5. Assume that NA(P) holds true. Then gt is upper semi-analytic, and there exists
a universally measurable map ht+1 : Ωt ! Rd, together with a P-polar set N ⇢ Ωt such that, for
all ! 2 N c, one has

gt(!
t) = sup

P2Pt(!t)

logEP
h
exp

�
gt+1(!

t, ·) + ht+1(!
t)(St+1(!

t, ·)� St(!
t))
�i

> �1.

Proof. The argument is similar to Lemma 5.5.10, so we shall provide here a sketch of the proof. As
gt+1 is upper semi-analytic,

⇥⇥
Q⇤

0(t)
⇤⇤

is analytic from Lemma 5.6.4 and (!t,Q) 2 Ωt⇥B(Ω1) 7!
�E(Q,Pt(!

t)) is upper semi-analytic by [2, Lemma 4.2] and [92, Proposition 7.47], it follows
from Lemma 5.6.4 and a measurable selection argument(see e.g. [92, Proposition 7.26, 7.47,
7.48]) that !t 7! gt is upper semi-analytic. By defining

V ⇤
t (!

t) := inf
ht+12Rd

sup
P2Pt(!t)

logEP
h
exp

�
gt+1(!

t, ·) + ht+1(St+1(!
t, ·)� St(!

t))
�i
,
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and applying Theorem 3.1 of [2], we obtain that

gt(!
t) = V ⇤

t (!
t) > �1, if NA(Pt(!

t)) holds true.

As NA(P) holds, this is valid outside a P-polar set N .

By defining �t(!t, ht+1) := supP2Pt(!t) logE
P
h
exp

�
gt+1(!

t, ·) + ht+1(St+1(!
t, ·)� St(!

t))
�i

,

we can argue similarly as Lemma 5.5.10 to see that (!t, ht+1) 7! �t is in Ft⌦B(Rd). Let us now
consider the random set

Φ(!t) := {h 2 Rd : �(!t, h) = gt(!
t)}.

The previous arguments yield that [[Φ]] is in Ft⌦B(Rd). Thus by Lemma 4.11 of [1], Φ admits an
Ft-measurable selector ht+1 on the universally measurable set Φ(!t) 6= ;. Moreover, Theorem
3.1 of [2] implies that Φ(!t) 6= ; holds true outside a P-polar set N , thus ht+1 solves the infimum
P-q.s.

5.6.2 Proof of Theorem 5.6.1 in a dominated case

We first provide the proof of Theorem 5.6.1 in a dominated case, where P is a singleton, i.e.
P = {P}, for P = P0 ⌦ P1 ⌦ · · ·⌦ PT�1, where Pt(!

t) 2 Pt(!
t) for all !t 2 Ωt and all t  T � 1.

In particular, Pt : Ωt ! B(Ωt+1) is a regular conditional probability distribution(r.c.p.d.) of P
knowing F0

t . We can assume without loss of generality that Pt(!
t) = {Pt(!

t)}. Moreover, let
FP

t denote the P-completion of the �-field Ft, then any FP
t -measurable random variable can be

modified to a Borel measurable random variable in sense of P-a.s.

The following lemma is an analogue of Lemma 5.5.11, and in this dominated context, the
measurability issue is much easier to treat.

Lemma 5.6.6. Assume the same conditions in Theorem 5.6.1 and that P = {P}. Then for all
t  T � 1 and all FP

t+1-measurable random variable Yt+1 : Ωt+1 ! R+, there is a Borel random
variable Yt : Ωt ! R+ such that

sup
Q2Q⇤

Yt,t

n
EQ[gt]� E(Q,P|Ωt

)
o

 sup
Q2Q⇤

Yt+1,t+1

n
EQ[gt+1]� E(Q,P|Ωt+1

)
o
. (5.6.45)

Proof. Under the reference probability P, for any FP
t+1-measurable random variable Yt+1,

there exists a Borel measurable random variable Y ⇤
t+1, such that Yt+1 = Y ⇤

t+1,P-a.s. and thus
EQ[Yt+1] = EQ[Y ⇤

t+1], for all Q 2 Q⇤
Yt+1,t+1. So we can assume w.l.o.g. that Yt+1 is Borel mea-

surable. By Lemma 5.6.4 together with a measurable selection argument (see e.g. Proposition
7.50 of [92]), for any " > 0, there exists a universally measurable kernel Q"

t (·) : Ωt ! B(Ω1) such
that �! ⌦Q"

t (!) 2 Q⇤
Yt+1

(t,!) for all ! 2 Ωt, and

gt(!)  E�!⌦Q"
t (!)[gt+1]� E

�
Q"

t (!),Pt(!)
�
+ ".

The rest arguments are almost the same as in Step (ii) of the proof of Lemma 5.5.11 and we
shall omit the details.

Proof of Theorem 5.6.1 when P = {P}. We can argue by induction as in the proof of
Proposition 5.5.2. Noticing NA({P}) holds, the case T = 1 is proved by Theorem 3.1 of [2].
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Suppose the case T = t is verified with optimal strategy Ĥ := (Ĥ1, · · · , Ĥt):

logEP
⇥
exp(gt + (Ĥ � S)t

�⇤
= sup

Q2Q⇤

Yt,t

n
EQ[gt]� E

�
Q,P|Ωt

�o
, (5.6.46)

and we shall pass to the T = t + 1 case. Denoting gt+1 := g, defining Ĥt+1(!
t) := ht+1 as in

Lemma 5.6.5, setting Yt+1 := ' for any universally measurable random variable ' : Ω ! R+,
and letting Yt be given as in Lemma 5.6.6, it follows that

sup
Q2Q⇤

'

n
EQ[gt+1]� E(Q,P|Ωt+1

)
o

� sup
Q2Q⇤

Yt,t

n
EQ[gt]� E

�
Q,P|Ωt

�o

= logEP
⇥
exp(gt + (Ĥ � S)t

�⇤

= logEP0⌦···⌦Pt�1

h
exp

⇣
logEPt

h
exp

�
gt+1 + (Ĥ � S)t+1

�i⌘i

= logEP
h
exp

⇣
gt+1 + (Ĥ � S)t+1

⌘i

� inf
H2H

logEP [exp (gt+1 + (H � S)t+1)] ,

where the first inequality follows by Lemma 5.6.6 and the third line follows by Lemma 5.6.5. As
the reverse inequality is the weak duality by Lemma 5.6.3, we have proved the case T = t + 1.
In particular, (Ĥ1, · · · , Ĥt, Ĥt+1) is the optimal trading strategy for the case T = t+ 1.

The following corollary serves as an important technical step in the proof of Lemma 5.5.11.

Corollary 5.6.7. Assume the same conditions in Theorem 5.6.1 and let P 2 P be fixed. Then
for any universally measurable random variables g : Ω ! R and ' : Ω ! R+, and any Q⇤ 2 Q⇤

0,
one has

EQ⇤

[g]� E
�
Q⇤,P

�
6 sup

Q2Q⇤
'

n
EQ[g]� E

�
Q,P

�o
. (5.6.47)

Proof. Without loss of generality, we can assume that E(Q⇤,P) < 1. In this case, one has
Q⇤ ⌧ P and the classical no-arbitrage condition NA({Q⇤}) holds. Let us denote

Q⇤⇤
' := {Q 2 Q⇤

' : E(Q,Q⇤) < +1},

Using the weak duality of Lemma 5.6.3 and applying Theorem 5.6.1 ( in the context of the fixed
probability space (Ω,F ,Q⇤)), we have

EQ⇤

[g]� E
�
Q⇤,P

�
= EQ⇤


g � log

dQ⇤

dP

�
� E(Q⇤,Q⇤)

 inf
H2H

logEQ⇤


exp

✓
g � log

dQ⇤

dP
+ (H �X)T

◆�

= sup
Q2Q⇤⇤

'

✓
EQ


g � log

dQ⇤

dP

�
� E (Q,Q⇤)

◆

6 sup
Q2Q⇤

'

✓
EQ


g � log

dQ⇤

dP

�
� E (Q,Q⇤)

◆
= sup

Q2Q⇤
'

�
EQ[g]� E (Q,P)

�
.
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5.6.3 Proof of Theorem 5.6.1

We now provide the proof of Theorem 5.6.1 in the general (possibly) non-dominated case.

Lemma 5.6.8. Let t + 1  T , then for any universally measurable random variable Yt+1 :
Ωt+1 ! R+ and " > 0, there is a universally measurable random variable Y "

t : Ωt ! R+ such
that

sup
Q2Q⇤

Y "
t

,t

n
EQ[gt]� E

�
Q,P|Ωt

�o
 sup

Q2Q⇤

Yt+1,t+1

n
EQ[gt+1]� E

�
Q,P|Ωt+1

�o
+ ". (5.6.48)

Proof. In view of Corollary 5.6.7, we can assume w.l.o.g. that Yt+1 ⌘ 0. By Lemma 5.6.4 and
a measurable selection argument (see e.g. Proposition 7.50 of [92]), for any " > 0, there exists
a universally measurable kernel Q"

t (·) : Ωt ! B(Ω1) such that �! ⌦ Q"
t (!) 2 Q⇤

Yt+1
(t,!) for all

! 2 Ωt, and
gt(!)  E�!⌦Q"

t (!)[gt+1]� E
�
Q"

t (!),Pt(!)
�
+ ".

The rest argument is similar to Step (ii) of the proof of Lemma 5.5.11, and we omit it here.

Proof of Theorem 5.6.1. Notice that under NA(P), the results in case T = 1 follows from The-
orem 3.1 of [2]. Suppose that when T = t the duality holds with optimal strategy (Ĥ1, · · · , Ĥt).
Denoting gt+1 := g, defining Ĥt+1(!

t) := ht+1 as in Lemma 5.6.5, setting Yt+1 := ' and letting
Yt be given in Lemma 5.6.8, we apply similar argument as in the dominated context in Section
5.6.2 to obtain

sup
Q2Q⇤

'

n
EQ[gt+1]� E(Q,P|Ωt+1

)
o

� sup
Q2Q⇤

Yt,t

n
EQ[gt]� E

�
Q,P|Ωt

�o

= sup
P2P

logEP
⇥
exp(gt + (Ĥ � S)t

�⇤

� sup
P2P

logEP
h
exp

⇣
gt+1 + (Ĥ � S)t+1

⌘i

� inf
H2H

sup
P2P

logEP [exp (gt+1 + (H � S)t+1)] .

This together with Lemma 5.6.3 implies the duality result. Moreover, (Ĥ1, · · · , Ĥt+1) is the
optimal trading strategy for the case T = t+ 1.
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6.1 Introduction

The main goal of this note is to present a robust and efficient method to numerically assess risks
on the balance sheet distribution of, say, an insurance company, at a given horizon which is in
practice chosen to be one year, consistently with the Solvency 2 regulation (prudential framework
for assessing the required solvency capital for an European insurance company).

On a filtered probability space (Ω,A,P, (Ft)t�0), the balance sheet of the company is a
random process summarised, at any time t � 0, by the value of the assets of the company
(At)t�0 and the value of the liabilities (Lt)t�0. The quantity of interest is the Profit and Loss
(PnL in the sequel) associated to the balance sheet, which is given by

Pt = Lt �At , t � 0 .

By convention, and adopting the point of view of risk management, we measure the loss as a
positive quantity.

On the Liability side, the insurance company has sold a structured financial product which
depends on the evolution of a one-dimensional stock price (St) and the risk-free interest rate (rt).
Several insurance products could be of this type, in particular Unit-Linked (with or without
financial guarantees) and Variable Annuity contracts. For those contracts, client’s money is
invested in equity and bond markets while the insurance company might also provide with
financial guarantees similar to long-term put options. The long maturity of those contracts
requires the introduction of a model for interest rate as they are very sensitive to Interest Rate
curve movements. The value L1 is just the price of this product taking into account the value
of some risk factors X1 (stock price, interest rate curve etc.) at time t = 1 used to calibrate the
pricing model.

On the Asset side, the insurance company manages some assets to hedge the risk associated
to the product sale (the pricing actually includes a margin which is secured through hedging).
The hedging assets are the stock and swaps of several maturities, in practice mostly concentrated
on the long term (bond futures are also included sometimes). The hedging portfolio is typically
rebalanced on a weekly basis and the hedging quantities are determined by a financial model,
taken to be the same as the liability pricing model, whose inputs are the risk factors Xt at the
time t when the hedge is computed.

We describe precisely in Section 6.2, the pricing and hedging model, the dynamics of the risk
factor X and the value of the asset and liability side of the balance sheet. Let us stress that the
risk factor model is given under the so-called real-world probability measure P, which might be
objectively calibrated using time series of financial markets or represents the management view.
This real-world model may be (and most of the time is) completely different from the pricing
and hedging model which might be simplified for runtime/trackability purposes, prudent (pricing
and hedging include a margin) or being constrained by regulation.

Our goal is then to compute various risk indicator for the loss distribution of the balance
sheet at one year namely the distribution of P1 under the real-world probability measure P, that
we denote hereafter ⌘.

Precisely, we measure the risk associated to ⌘ using a (law invariant) risk measure defined
over the class of square integrable measures % : P2(R) ! R. First, we consider for % the so called
Value-at-Risk (V@R), which is defined by the left-side quantile:

V@Rp(⌘) = inf {q 2 R | ⌘ ((�1, q]) � p} . (6.1.1)
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We will also work with the class of spectral risk measures: a spectral risk measure is defined as

%h(⌘) =

Z 1

0

V@Rp(⌘)h(p)dp , (6.1.2)

where h is a non-decreasing probability density on [0, 1]. In the numerics, we will focus on the
Average Value-at-Risk (AV@R) which is given by

AV@R↵(⌘) =
1

1� ↵

Z 1

↵

V@Rp(⌘)dp , (6.1.3)

and is a special case of a spectral risk measure.
For a law invariant risk measure %, we denote by < its “lift” on L2(Ω,A,P;R) =: L2, namely

<[X] = %([X]) for any X 2 L2, where [X] denotes the law of X. The lift <h from a spectral risk
measure %h satisfies the following properties:

1. Monotonicity : <h[X]  <h[Y ], for X  Y 2 L2;

2. Cash invariance: <h[X + c] = <h[X] + c for X 2 L2 and c 2 R;

3. Positive homogeneity : <[tX] = t<[X], t � 0 and X 2 L2.

4. Convexity : <[tX + (1� t)Y ]  t<[X] + (1� t)<[Y ], whenever 0  t  1, for X,Y 2 L2;

Let us stress the fact that V@R only satisfies 1-3. We refer to [118] and the references therein
for more insights on risk measures and spectral risk measures.

In our setting, the loss distribution ⌘ of the balance sheet PnL is obtained through the
following expression:

⌘ = p1]⌫ ,

where ] denotes the push-forward operator, p1 : R✓ ! R is the function describing the PnL in
terms of the risk factors, and ⌫ stands for the distribution of the risk factors X . In practice the
estimation of %(⌘) requires to sample from ⌘. In turn, this demands for a sample of the model
parameter distribution ⌫ and for a numerical approximation of p1. In this note, we compare two
main approaches to form the sample of ⌘ given one of ⌫.

The first one is known as the nested simulation approach: It is a two-step method. First, a
set of “outer simulation”, describing the random values of the risk factors, is drawn. Then, for
each value of the risk factors, a sample of “inner simulation” is drawn to compute the various
hedge and prices. In this approach, all computations are realised “online”. The main advantage
of this approach is its simplicity to implement in practice, described in the first paragraph of
Subsection 6.3.1. However, it is well known that this approach is quite greedy, even if optimised
as in [119]. We also want to stress the fact that when computing the ⌘-sample, no information
about p1 is stored for future work: for example if ⌫ is modified, due to time or a model change,
a full recalculation would be required.

The other approach we chose to adopt and would like to promote is a grid approach where
the approximation of p1 is made “offline”, by a Monte Carlo approach, and then stored. The
numerical computation is then done through a (multi-linear) interpolation on a grid. The main
drawback of this approach is that the size of the grid, in high dimension, can become untractable,
especially if one uses regular grid. To partially circumconvent this difficulty, we introduce a sparse
grid [120] which reduces drastically the number of point to be used (equivalently, values to be
stored) with only small reduction of the accuracy of the method.
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We prove that, for a spectral risk measure, the two approaches give an estimation of %(⌘)
which converges to the true value, see Theorem 6.3.8.

Furthermore, we show in the numerical Section 6.4 that using the grid approach together
with a sparse grid of low level allows to get a good approximation of the loss distributions ⌘, and
of some related risk measures, while reducing drastically the computational time and allowing to
keep information about the balance sheet function p1. Last, this permits to numerically quantify
uncertainty. Indeed, since the computations on the grid are stored, the computation of the
distribution of the PnL under other distributions for the parameters is almost instantaneous and
can be compared with the results obtained with the initial one. An application to uncertainty
estimation is given in the last numerical application.

The rest of the paper is organised as follows. In the second section, we first describe the
mathematical models that are used to describe the evolution of the prices under the risk-neutral
measure Q. We then describe precisely how A and L are specified. In the third section, we
describe the two numerical methods used to compute Lt and At at any given time t � 0. In
particular, we show how to efficiently compute, at time t, the quantities to hold in the hedging
portfolio, which are expressed in term of the derivatives of the claim’s price. We also explain
how to compute the price of the product and of the assets used to construct the hedging porfolio,
leading to the computation of Lt and At. We show how to obtain an approximation of the
distribution of P1 under the physical measure P, and we prove an upper bound for the mean
square error of the overall procedure. Finally, in Section 4, we present our numerical results.

6.2 Financial Model

In this section, we give the precise specification of the asset and liability sides of the balance
sheet. We also present the risk-neutral model and the real-world model that are used.

6.2.1 Description of the sold product

Let us assume that a company sells a contingent claim at time t = 0 which is a (discretely)
path-dependent option with a payoff function G paid at the maturity T > 0, depending upon
the evolution of a one-dimensional risky asset’s price S. We focus here on:
A put lookback option, that is a discretely path-dependent option whose strike at maturity T is
given by the maximum of the asset’s price S over the times t 2 {⌧0 = 0, ⌧1, · · · , ⌧ = T} where
 � 1:

G(S⌧0 , . . . , S⌧) =

✓
max
0`

S⌧`

◆
� ST . (6.2.4)

Remark 6.2.1. The proxy provided above is close to financial guarantees offered in Variable
Annuity contracts. Those contracts are structured insurance products composed of a fund invest-
ment on top of which both insurance and financial protection are added. In our case, the contract
is a Guaranteed Minimum Accumulation Benefit including a ratchet mechanism. At time t = 0,
the customer invests his/her money in the underlying fund and will receive at a given maturity
the maximum between the terminal fund value and its terminal benefit base in case she is still
alive. The terminal benefit base is equal to the maximum of the underlying fund values observed
at each anniversary date of the contract (ratchet mechanism). We do not consider the modeling
of death/survival in this proceedings, neither the possibility that client can surrender at any time
during the life of the contract.
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6.2.2 Market model under the risk-neutral measure

We assume that all pricing and hedging is done with market risk-neutral measure Q.
The derivative with a payoff function G as above is depending upon a one-dimensional stock’s

price S = (St)t2[0,T ]. We assume here that the dynamics of the asset under Q are of the Black
& Scholes type as described in Section 6.2.2 with a stochastic interest rate r = (rt)t2[0,T ] which
follows a Hull & White model.

As the payoff G is a proxy of Variable Annuity guarantee which is a long term Savings product
(in practice maturity ranges from 10 to 30 years depending on product type), the modeling (and
hedging) of interest rate is essential as the product and therefore the overall balance sheet of the
company is very sensitive to this risk.

The short rate model

Let Θ 2 Rd (d := 3 in the sequel) be a set of parameters representing some market observations.
The short rate evolution is governed by the Hull & White dynamics

rt,Θs = rt,Θt +

Z s

t

a
�
µt,Θ
u � rt,Θu

�
du+ b (Bs �Bt) , s 2 [t, T ], (6.2.5)

where B is a Q-Brownian motion, a and b are real constants and µt,Θ : [t, T ] ! R is a function.
We refer to [121] for a more complete analysis of the Hull & White short rate model.

The parameter µt,Θ is calibrated using the market observations Θ, so that the model repro-
duces the interest rate curve observed on the market. It is given by

µt,Θ
s = fΘ(t, s) +

1

a

@fΘ(t, s)

@s
+

b2

2a2

⇣
1� e�2a(s�t)

⌘
, s 2 [t, T ]. (6.2.6)

We refer to the Appendix for a derivation of (6.2.6).
As a consequence, the Θ parameter must be chosen in order to represent adequately the

forward rate curve observed on the market.
We suppose here that the forward rate curve fΘ(t, ·) is directly observed and is a linear

combination of three elementary functions ht,1, ht,2, ht,3 from [t, T ] to R, given by

ht,1(s) := h1(s� t), ht,2(s) := h2(s� t), and ht,3(s) := h3(s� t), s 2 [t, T ],

where, for u 2 [0, T ]:

h1(u) =

8
><
>:

1 if u  t1+t2
2 ,

2
t2+t3

2 �u

t3�t1
if u 2 [ t1+t2

2 , t2+t3
2 ],

0 otherwise,

h3(u) =

8
><
>:

0 if u  t2+t3
2

2
u�

t2+t3
2

t4�t2
if u 2 [ t2+t3

2 , t3+t4
2 ],

1 otherwise,

and h2(u) = 1� h1(u)� h3(u).

where 0  t1 < t2 < t3 < t4  T are four fixed real numbers.
The function ht,1 (resp. ht,2, ht,3) model the short (resp. middle, long) term structure of the

interest rates curve.
In a nutshell, the short rate model is determined by:
(i) the time of observation t 2 [0, T ],
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Figure 6.1: Building blocks for the forward interest rate curve.

(ii) the three-dimensional parameter Θ := {✓1, ✓2, ✓3} 2 R3, where ✓1, ✓2, ✓3 are such that

fΘ(t, ·) = ✓1h
t,1 + ✓2h

t,2 + ✓3h
t,3, (6.2.7)

fΘ(t, ·) being the observed forward rates curve.
As a result, given an observation (t,Θ) as above, the short rate process rt,Θ has the dynamics

(6.2.5), where µt,Θ is computed using (6.2.6).

Remark 6.2.2. In practice, the parameters a, b appearing in (6.2.5) can be calibrated so that
the model reproduces the prices (observed on the market) of some contracts such as swaps or
swaptions. We could more generally allow the parameters a, b of the Hull & White model to
depend upon the market observations Θ. The parameter Θ should live in a higher-dimensional
space to take into account the observed swap(tion)s prices. In practice, regular recalibration
of parameters is largely performed by practitioners, in particular when they performed dynamic
hedging.

There are several reasons explaining the choice of this model. First of all, it is quite simple
to calibrate using the data. In fact, the function µ is directly given as a function of the forward
rate curve. We should note again that the choice of keeping a, b fixed through time simplifies the
calibration. Secondly, we will see later in Proposition 6.3.2 that this short rate model, associated
to the stock model described below, leads to an exact simulation under the risk-neutral measure.
Lastly, closed and easily tractable formulas can be obtained for the prices of the zero-coupon
bonds and swaps which are the products used to construct the hedging portfolio and then to
compute the value of the company’s assets A.

These prices are as follows.
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Proposition 6.2.3. Let (t,Θ) 2 [0, 1] ⇥ R3 be a market observation, and consider the process�
rt,Θs

�
s2[t,T ]

given by (6.2.5), where the parameter µt,Θ is defined with (6.2.6) and (6.2.7).

1. The price at time t of a zero-coupon maturing at time u 2 [t, T ] is given by:

P t,Θ,u = exp

✓
�
Z u

t

fΘ(t, s)ds

◆
, (6.2.8)

and its derivatives with respect to Θ := (✓1, ✓2, ✓3) are given by:

@P

@✓i

t,Θ,u

= �P t,Θ,u

Z u

t

ht,i(s)ds. (6.2.9)

2. Let (0,Θ0) be the observation made at time 0. Consider a swap contract issued in s = 0,
with maturity M > 0, rate R > 0, with coupons versed at every time i 2 {1, . . . ,M}. Then,
the price of this contract at time t is given by:

SW t,Θ,M,R =
P t,Θ,1

P 0,Θ0,1
� P t,Θ,M �R

MX

i=1

P t,Θ,i, (6.2.10)

and its derivatives with respect to Θ are given by:

@SW

@✓j

t,Θ,M,R

= � P t,Θ,1

P 0,Θ0,1

Z 1

t

ht,j(s)ds+ P t,Θ,M

Z M

t

ht,j(r)dr +R

MX

i=1

✓
P t,Θ,i

Z t+i

t

ht,j(s)ds

◆
.

(6.2.11)

The stock model

Given the observations Θ of the interest rate factors and the risky asset’s price x 2 (0,1), the
evolution of the price under the neutral-risk measure Q is given by

St,x,Θ
s = x+

Z s

t

rt,Θu St,x,Θ
u du+

Z s

t

�St,x,Θ
u dW̃u, s 2 [t, T ], (6.2.12)

where � > 0, W̃ is another Q-Brownian motion, whose quadratic covariation with B is given by

hB, W̃ it := ⇢ t, t 2 [0, T ],

where ⇢ 2 [�1, 1]. Equivalently, St,x,Θ can be written as:

St,x,Θ
s = x+

Z s

t

rt,Θu St,x,Θ
u du+

Z s

t

⇢�St,x,Θ
u dBu +

Z s

t

p
1� ⇢2�St,x,Θ

u dWu, s 2 [t, T ] (6.2.13)

where W is a Q-Brownian motion, independent of B.

Remark 6.2.4. In practice, the parameter � appearing in (6.2.13) can be calibrated so that the
model reproduces the prices of some derivatives over the risky asset. This can be taken into
account by increasing the dimension of the space where Θ lives, and by adding this calibration
procedure.

Remark 6.2.5. Naturally, the general sparse grid approach can be applied to different models and
functional representations. We made the choice of using a Black & Scholes model for the stock
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value and a Hull & White model with the given functional representation in terms of h1, h2, h3

for the short rate, since they are convenient to obtain explicit pricing and sensitivities formulae
as we show in the following.

6.2.3 Modeling the Balance Sheet

The key point for us is to approximate the distribution of the balance sheet of an insurance
company at time t = 1 (here a year) given the market observations at t = 0. As mentionned in
the introduction, the PnL is a process P which can be decomposed as

Pt = Lt �At, t 2 [0, 1], (6.2.14)

where L is the value of the liabilities of the company and A is the value of the assets.
We assume that at time t = 0, the balance sheet is clear, meaning that the company has no asset
nor liability, that is L0 = A0 = 0.

We describe precisely in the two subsequent sections how these quantities are defined. Impor-
tantly, we denote by X̄t := (S̄t, Θ̄t), 0  t  1, the stochastic process representing the random
evolution of the market parameter under the real-world measure P. Namely, S̄ is the stock price
and Θ̄ the interest rate curve parameters as described above in Section 6.2.2. It is important
to have in mind that the model chosen for the stock price S (under Q) and S̄ (under P) will
be completely different as they do not serve the same purpose (pricing-hedging on one hand,
risk management of the Balance Sheet or regulatory assessment of required capital on the other
hand).

Liability side

For any market observation X̄t := (S̄t, Θ̄t), the value Lt =: `(t, S̄t, Θ̄t) of the liabilities has to be
computed, especially at time t = 1 in our application. The company’s liabilities are reduced to
one derivative product sold at t = 0. In our setting, the contingent claim’s price is simply given
by:

`(t, x,Θ) = EQe�
R

T

t
rt,Θs dsG(St,x,Θ), (6.2.15)

where (rt,Θ, St,x,Θ)tsT are the risk neutral dynamics of the short rate and stock price, see
Section 6.2.2 and Section 6.2.2, calibrated from the observed market parameter (x,Θ) at time t.

We recall that the payoff G depends on St,x,Θ only through the values St,x,Θ
⌧ , ⌧ 2 ΓG :=

{⌧0, . . . , ⌧} ( � 0), see (6.2.4).
As explained in more detail below, the computation of P1 first requires to approximate

`(t, x,Θ) for (t, x,Θ) on a (possibly stochastic) discrete grid of [0, 1]⇥ (0,1)⇥R3. This approx-
imation L at any point (t, x,Θ) 2 [0, 1]⇥ (0,1)⇥R3 basically follows from the simulation of the
processes rt,Θ and St,x,Θ under the risk-neutral measure Q and a Monte Carlo procedure. We
will see in Section 6.3 that the simulation can be done in an exact manner in our model.

Remark 6.2.6. A classical approach to compute ` would be to use a dynamic programming
principle. Step by step, it requires

1. To numerically obtain `(1, x,Θ) for all (x,Θ) on the grid with (6.2.15),

2. Then to iteratively compute `(tk+1, x,Θ) for all x,Θ on the grid using

`(tk, x,Θ) = EQe�
R tk+1
tk

r
tk,Θ
s ds

EQe
�

R
T

tk+1
r
tk,Θ
s ds

G(Stk,x,Θ)|Ftk+1
. (6.2.16)
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However, the inner conditional expectation is not of the form `(tk+1, x,Θ) for x > 0 and
Θ 2 R3. In fact, the time of the market observation Θ is still tk, while the discount factor
goes only from tk+1 to T , in contrast with (6.2.15). Therefore, using the dynamic programming
equation (6.2.16) would require to introduce some additional and artificial parameters, namely
the time of calibration and the value of rtk,Θ at time tk+1. This would made the overall procedure
heavier that is why we compute ` using simply (6.2.15).

Asset side

The company wants to replicate the product with payoff G. (in practice, the pricing embeds
a margin and the objective of replicating the payoff G is to secure it). The classical theory
of mathematical finance ensures that it is equivalent, in theory, to possess a portfolio which
negates the variations of the price of the product with respect to the evolution of the underlying
parameters.
In our context, the insurer wants to be protected against the variations with respect to the stock
price St and the interest rate curve, which is modeled through the parameter Θ.
The dynamic hedging portfolio is constructed and rebalanced in discrete time, on the time grid
Γ := {t0 = 0 < t1 < · · · < tn = 1} (in practice, the porfolio will be rebalanced up to the maturity
of the product, but in our setting, we are only interested in the portfolio’s value up to t = 1). At
each time t 2 Γ, the insurer computes the derivatives of the price with respect to St and Θt, and
then buys some financial assets (the stock and swaps) in order to construct a portfolio whose
derivatives match those computed.
To model this framework, we decompose the hedging portfolio’s value A in two parts:

At = A∆

t +A⇢
t . (6.2.17)

The process A∆ is the value of the portfolio obtained to cancel the variations of the price with
respect to S, while A⇢ is defined to deal with the variations with respect to Θ.

Remark 6.2.7. Obviously, since in practice the hedging is done in discrete time and some un-
derlying parameter are not considered, the payoff G is not exactly replicated, nor super-replicated.
Therefore the PnL of the company is not null, nor always positive, and the goal of this proceedings
is precisely to propose a new numerical method to estimate the distribution of this quantity at
time t = 1.

To construct the hedging portfolio, the insurer can buy the underlying stock, together with
three swap contracts, defined by some rates R1, R2, R3 > 0 and maturity dates T1, T2, T3 2 [1, T ].
In practice, interest rate hedging is performed so that the portfolio is insensitive to the variations
of the main maturities of the interest rate curve. For long-term products, this means building
an hedging portfolio containing several different maturities from 1 year to 30 year. Here, only
3 maturities representing short, medium and long-term part of the curve are considered for
simplicity. The formula for their price SWt,Θ,Ti,Ri , i = 1, 2, 3 is given in Proposition 6.2.3 above.
We now describe how to compute the quantities of assets and swaps to buy at a time t 2 Γ,
to rebalance the hedging portfolio. Denote by ∆ (resp. ⇢i, i = 1, 2, 3) the quantities of stock
(resp. swap with rate Ri and maturity date Ti, i = 1, 2, 3). Then the value of the portfolio of
the company is given by:

Πt = ∆St +

3X

i=1

⇢idSW
t,Θt,Ti,Ri � `(t, St,Θt). (6.2.18)
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By Ito’s formula, assuming a semimartingale decomposition for the process Θ under P, we get:

dΠt = (∆�∆(t, St,Θt)) dSt

+

 
⇢1
@SW

@✓1

t,Θ,T1,R1

+ ⇢2
@SW

@✓1

t,Θ,T2,R2

+ ⇢3
@SW

@✓1

t,Θ,T3,R3

� @`

@✓1
(t, x,Θ)

!
d✓1

+

 
⇢1
@SW

@✓2

t,Θ,T1,R1

+ ⇢2
@SW

@✓2

t,Θ,T2,R2

+ ⇢3
@SW

@✓2

t,Θ,T3,R3

� @`

@✓2
(t, x,Θ)

!
d✓2

+

 
⇢1
@SW

@✓3

t,Θ,T1,R1

+ ⇢2
@SW

@✓3

t,Θ,T2,R2

+ ⇢3
@SW

@✓3

t,Θ,T3,R3

� @`

@✓3
(t, x,Θ)

!
d✓3

+ dt terms.

To cancel the risks induced by the variations of the stock price and the interest rate curve, it is
needed that the four first terms in the previous equation cancel.
Those considerations lead to the following construction for the hedging portfolio A = A∆ +A⇢:

∆-hedging: The value of A∆ at time 1 is

A∆

1 =

n�1X

i=0

∆(ti, S̄ti , Θ̄ti)
�
S̄ti+1

� S̄ti

�
where ∆(t, x,Θ) :=

@L

@x
(t, x,Θ). (6.2.19)

Note that the function ∆ has to be computed, at each time ti, i = 0, . . . , n, and for any market
situation (x,Θ) at this time. A method leading to a numerical estimation of ∆ is proposed in
Section 6.3.

⇢-hedging: The value of A⇢
1 is

A⇢
1 =

n�1X

i=0

3X

j=1

⇢j(ti, S̄ti , Θ̄ti)
⇣
SWti+1,Θ̄ti+1

,Tj ,Rj � SWti,Θ̄ti
,Tj ,Rj

⌘
. (6.2.20)

At time t 2 [0, T ], for a market at (x,Θ), the quantities ⇢i(t, x,Θ), i = 1, 2, 3 of each swap
contract required for the hedging are given by the solution of the linear system

8
>><
>>:

⇢1
@SW
@✓1

t,Θ,T1,R1
+ ⇢2

@SW
@✓1

t,Θ,T2,R2
+ ⇢3

@SW
@✓1

t,Θ,T3,R3
= @`

@✓1
(t, x,Θ)

⇢1
@SW
@✓2

t,Θ,T1,R1
+ ⇢2

@SW
@✓2

t,Θ,T2,R2
+ ⇢3

@SW
@✓2

t,Θ,T3,R3
= @`

@✓2
(t, x,Θ)

⇢1
@SW
@✓3

t,Θ,T1,R1
+ ⇢2

@SW
@✓3

t,Θ,T2,R2
+ ⇢3

@SW
@✓3

t,Θ,T3,R3
= @`

@✓3
(t, x,Θ)

(6.2.21)

One key quantity to compute for us in this setting is thus the vector of sensitivities ( @`
@✓i

(t, x,Θ)),
i = 1, 2, 3.

Remark 6.2.8. (i) We choose to always use the same swap contracts issued at t = 0 as hedging
instruments. We could have decided to enter for free in swaps (at the swap rate) at each rebal-
ancing time. However, this strategy requires to keep the memory of the swap rate in order to
compute the swap price at the next rebalancing date.
(ii) The Ti, Ri should be chosen so that they represent some liquid contracts.
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The global PnL function

From the previous two sections, we conclude that the PnL of the balance sheet at time 1 can be
expressed as,

P1 = p1
�
(t, S̄t, Θ̄t)t2Γ

�

where (S̄, Θ̄) are the market parameters (risk factors) and the PnL function p1 : R� ! R, with
� = 4⇥ (n+ 1), is given by

`(tn, xn,Θn)�
n�1X

i=0

∆(ti, xi,Θi)(xi+1 � xi)�
n�1X

i=0

3X

j=1

⇢j(ti, xi,Θi)
�
SWti+1,Θi+1,Tj ,Rj � SWti,Θi,Tj ,Rj

�
.

(6.2.22)

In the next section, we describe what model we will consider for the market parameter (S̄, Θ̄).

6.2.4 Market parameters under the real-world measure

We describe here the model that will be used for the simulation of the market parameters in
the numerical part. Let us insist that this real-world measure P might represent the view of
the management (possibly risk management) on the evolution of the market parameter on the
period [0, 1]. As already mentioned, it can be completely different from the model used for the
risk-neutral pricing.

We assume that we know, or at least are able to estimate, the first two moments of the
distribution of (X1 := log(S1),Θ1) = (X1, (✓1)1, (✓2)1, (✓3)1) under P. More precisely, we assume
that under P, this random vector has mean and covariance matrix given by

µ = (µX , µ1, µ2, µ3) , (6.2.23)

V = (Vij)i,j=0,1,2,3. (6.2.24)

To model the random process (Xt, (✓1)t, (✓2)t, (✓3)t)t2[0,1] under P, we assume that its dy-
namics are given by

Xt = X0 + b0t+ c00W
0
t + c01W

1
t + c02W

2
t + c03W

3
t , (6.2.25)

(✓1)t = (✓1)0 + b1t+ c11W
1
t + c12W

2
t + c13W

3
t (6.2.26)

(✓2)t = (✓2)0 + b2t+ c22W
2
t + c23W

3
t (6.2.27)

(✓3)t = (✓3)0 + b3t+ c33W
3
t , (6.2.28)

where W i, i = 0, 1, 2, 3 are independent P-Brownian motions.

Proposition 6.2.9. There exists at most one set of coefficients bi, cij , i, j = 0, 1, 2, 3, such that
the random vector (X1, (✓1)1, (✓2)2, (✓3)2) has mean µ and covariance matrix V .

Proof. We refer to the appendix for a proof, cf. Proposition 6.5.1.

Remark 6.2.10. It is well-known that it is difficult to estimate accurately the drift parameter
in a Black-Scholes model. This makes our computation subject to model risk. We leave it to a
future research work to find a robust way to approximate the law of P1 under P. Nevertheless,
let us point out that the grid approach allows us to compute with minimal re-computation risk
measures for different approximations of the law of P1. This is one of the advantages of this
method with respect to using “nested simulations”, as illustrated in Section 6.4.
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6.3 Numerical methods

In this section, we describe the two numerical methods that we use to compute the risk indicator
on the balance sheet PnL. The first one is known as nested simulation approach and is already
used in the industry, see the seminal paper [119]. The second one is a sparse grid approach
and is designed to be more efficient that the nested simulation approach in the case of moderate
dimensions. In the next section, we present numerical simulations that confirms this fact for the
model with moderate dimension that we consider here.

6.3.1 Estimating the risk measure

Given a risk measure % and the loss distribution ⌘ of the balance sheet at one year, we estimate
the quantity of interest %(⌘) by simulating a sample of N i.i.d random variables (Ψj)1jN with
law ⌘ and then computing simply %(⌘N ) using the formulae (6.1.1), (6.1.2) and (6.1.3) with ⌘N

instead of ⌘. Here, ⌘N stands for the empirical measure associated to the Ψj i.e.

⌘N =
1

N

NX

j=1

�Ψj
,

where �x is the Dirac mass at the point x.

Recall, that in our work, the loss distribution ⌘ is obtained through the following expression:

⌘ = p1]⌫

p1 being described in (6.2.22) and ⌫ stands for the distribution of the market parameters. Namely,
⌫ is the law of the random variable

X̄ := (S̄t, Θ̄t)t2Γ (6.3.29)

under the real world probability measure P.
In order to estimate %(⌘) for a chosen risk measure, we need to be able to sample from ⌘

which implies two steps in our setting. First, we need to be able to sample X̄ and then we use
an approximation p�1 of p1:

• pN1 if one chooses the nested simulation approach;

• pS1 if one chooses the sparse grid approach.

Eventually, the estimator of %(µ) is given by

R� := %(p�1 ]⌫
N ) , for � 2 {N ,S} . (6.3.30)

To summarise, the two numerical methods have the following steps.

Nested simulation approach

1. Outer step: Simulate the model parameters (Xj)j=1,...,N .

2. Inner step: Simulate Ψj = pN (Xj) using MC simulations. This requires to compute the
option prices with Monte Carlo estimates, the interest rate derivative prices, and the various
sensitivities of the price, see subsection 6.3.2. All these computations are done using closed-
form formulae that are derived below.
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3. Estimate the risk measure.

All computations are made “online”.

Sparse grid approach

1. Fix a (sparse) grid V and compute the approximation pS at each required value on the grid
by an MC simulation. This involves exactly the same computations as 2. above.

2. Simulate the N model parameter samples (Xj) and evaluate Ψj = pS(Xj).

3. Estimate the risk measure.

Computations at step 1. are done “offline”. The next two steps are done “online”.
We now describe precisely how to compute pN and pS .

6.3.2 Nested Simulation approach

In the nested simulation approach, once the market parameters X̄ have been simulated, the
function pN1 has itself to be computed. Recalling (6.2.22), this requires to evaluate the function
`N ,∆N , ⇢N (approximations of `,∆, ⇢) at the value of the market parameters. This computation
is made using again a Monte Carlo approach.

In order to compute the risk-neutral expectations in the above formulae, one has to sample
the short rate process and compute its integral over [t, T ], and also to simulate the stock price S
at least at the times ⌧` 2 ΓG \ [t, T ]. Under the model described in section 6.2.2, the simulation
is exact and is described in the two following statements whose proofs are postponed to the
appendix.

Let (t, x,Θ) 2 [0, T ] ⇥ (0,1) ⇥ R3 be a market observation, and consider the processes�
rt,Θs

�
s2[t,T ]

and
�
St,x,Θ
s

�
s2[t,T ]

defined by (6.2.5), (6.2.13). We first start with an easy and well
known observation.

Lemma 6.3.1. We have the following decomposition for the short rate process:

rt,Θ = ⇠t + ↵t,Θ, (6.3.31)

where (↵t,Θ
s )s2[t,T ] is the deterministic function of time

↵t,Θ
s =

1

a
fΘ(t, s) +

b2

2a3

h
1� e�a(s�t)

i2
, s 2 [t, T ], (6.3.32)

and (⇠ts)s2[t,T ] is the solution of the SDE

d⇠ts = �a⇠tsds+ bdBs, s 2 [t, T ] (6.3.33)

⇠tt = 0. (6.3.34)

The following proposition provides a recursive way to produce sample paths of the triplet
(⇠t, At, Xt,x,Θ) on the discrete grid {t} [ (ΓG \ [t, 1]). We are thus in a position to simulate
the evolution of (rt,Θ, St,x,Θ) and the discount factor �t,✓

T := e�
R

T

t
rt,Θs ds under the risk-neutral

measure Q.
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Proposition 6.3.2. Fix t  s  u  T . Conditionally upon Fs, the triplet
✓
⇠tu, A

t,s
u :=

Z u

s

⇠trdr,X
t,x,Θ
u := log

�
St,x,Θ
u

�◆

is a Gaussian vector of dimension 3, with mean vector and covariance matrix respectively given
by

Es⇠
t
u = ⇠tse

�a(u�s),

EsA
t,s
u =

⇠ts
a
(1� e�a(u�s)),

EsX
t,x,Θ
u = Xt,x,Θ

s +

Z u

s

↵rdr �
�2

2
(u� s) +

⇠ts
a
(1� e�a(u�s)),

(6.3.35)

and

Vars(⇠
t
u) =

b2

2a
(1� e�2a(u�s)),

Covs(⇠
t
u, A

t,s
u ) =

b2

a2
(1� e�a(u�s))� b2

2a2
(1� e�2a(u�s)),

Vars(A
t,s
u ) =

b2

a2
(u� s)� 2b2

a3
(1� e�a(u�s)) +

b2

2a3
(1� e�2a(u�s)),

Covs(⇠
t
u, X

t,x,Θ
u ) =

b

a
(
b

a
+ ⇢�)(1� e�a(u�s))� b2

2a2
(1� e�2a(u�s)),

Covs(A
t,s
u , Xt,x,Θ

u ) = �1

a
Cov(⇠tu, X

t,x,Θ
u ) +

b

a
(
b

a
+ ⇢�)(u� s)� b2

a3
(1� e�a(u�s)),

Vars(X
t,x,Θ) = (⇢� +

b

a
)2(u� s) + (1� ⇢2)�2(u� s)� 2

b

a2
(⇢� +

b

a
)(1� e�a(u�s)) +

b2

2a3
(1� e�2a(u�s)).

(6.3.36)

Approximation of the Liability side

With the above results, the approximation at any time t of the liability function `, denoted `N ,
is straightforward. It is given by

`N (t, x,Θ) =
1

M

MX

k=1

�
t,Θ,k
T G(St,x,Θ,k), (6.3.37)

with ((�t,Θ,k
⌧ , St,x,Θ,k

⌧ )⌧2ΓG
)1kM are i.i.d realisations of (�t,Θ

⌧ , St,x,Θ
⌧ )⌧2ΓG

, recall (6.2.4).

Approximation of the Asset side

The approximation of the asset side is slightly more involveld as it requires the computation of
sensitivities with respect to the model parameters: @`

@x and @`
@✓i

, i = 1, 2, 3, see (6.2.19), (6.2.20)
and (6.2.21). We choose to compute the sensitivities using a “weight” approach namely we
express them as expectation of the discounted payoff times a well chosen random weight. Note
that other techniques are available to compute these sensitivities e.g. Automatic differentiation.
In our context, we have compared the two methods and observed that the weight approach is
more efficient, see Section 6.5.4 in the Appendix.
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We now describe how to obtain the sensitivities in a convenient form for Monte Carlo simu-
lation. Recall that we consider a liability function ` of the form:

`(t, x,Θ) = EQe�
R

T

t
rt,Θs dsG(St,x,Θ), (6.3.38)

where G depends upon St,x,Θ through its values on a finite set ΓG = {⌧0 = 0, . . . , ⌧ = T} ⇢
[0, T ]. In the following, we assume for simplicity that ⌧1 > t. Otherwise, there are deterministic
terms that are to be added, but the method remains the same.

The Delta: We want to compute:

@`

@x
(t, x,Θ) =

@

@x
EQe�

R
T

t
rt,Θs dsG(St,x,Θ) (6.3.39)

and we have the following result.

Proposition 6.3.3. For all (t, x,Θ) 2 [0, 1]⇥ R⇥ R3, the following holds:

@`

@x
(t, x,Θ) = EQe�

R
T

t
rt,Θs dsG(St,x,Θ)Hx,Θ

⇣
e�

R ⌧1
t ⇠tsds, St,x,Θ

⌧1

⌘
, (6.3.40)

with

Hx,Θ(a, y) =
Σ

�1
1,2a+ Σ

�1
2,2 ⇥

⇣
log(y/x)�

R ⌧1

t
↵t,Θ
r dr + �2

2 (⌧1 � t)
⌘

x
, (6.3.41)

where Σ is the covariance matrix of (At
⌧1
, Xt,x,Θ

⌧1
), see (6.3.46).

Proof. We write the expectation as an integral, remembering that we know the law of the couple
(⇠tu, A

t
u, X

t,x,Θ
u ) conditionally upon Fs:

EQe�
R

T

t
rt,Θs dsG(St,x,Θ) (6.3.42)

= e�
R

T

t
↵t,Θ

s dsEQe�
R ⌧1
t ⇠tsds

�1Y

`=1

e�
R ⌧`+1
⌧`

⇠tsdsG(St,x,Θ)

= e�
R

T

t
↵t,Θ

s ds

Z

R2

e�a1

�1Y

`=1

e�a`+1G(ex1 , . . . , ex)dQ(At
u,X

t,x,Θ
u )u2ΓG

(a1, · · · , a, x1, · · · , x)

= e�
R

T

t
↵t,Θ

s ds

Z

R2

e�a1

�1Y

`=1

e�a`+1G(ex1 , . . . , ex)pΘ(t, 0, log(x), 1, a1, x1)⇥ . . .

⇥ pΘ(t�1, 0, x�1, t, a, x)da1 · · · dadx1 · · · dx,

where pΘ(s, a, x, u, ., .) is the density of the couple (At,a
u , Xt,x,Θ

u ), conditionally upon Fs. We
have previously seen that it is a Gaussian vector with explicit mean vector and covariance matrix.
Thus, using Fubini’s theorem, we get, since there is no dependence on x except in the first density:
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@`(t, x,Θ)

@x
= e�

R
T

t
↵t,Θ

s ds

Z

R2

e�a1

�1Y

`=1

e�a`+1G(ex1 , . . . , ex)
@pΘ(t, 0, log(x), 1, a1, x1)

@x
⇥ . . .

⇥ pΘ(t�1, 0, x�1, t, a, x)da1 · · · dadx1 · · · dx.
(6.3.43)

Consequently, the sensibility of the discounted price with respect to the initial stock price is
computed only by calculating the derivative of the density with respect to x.

We have

pΘ(t, 0, log(x), s, a, y) =
1

det(2⇡Σ)
1
2

exp

✓
�1

2

⇣
((a, y)� µ)Σ�1 ((a, y)� µ)

>
⌘◆

, (6.3.44)

where, thanks to (6.3.35)-(6.3.36),

µ =
�
EtA

t
⌧1
,EtX

t,x,Θ
⌧1

�
(6.3.45)

Σ =

✓
Var(At

⌧1
)t Cov(At

⌧1
, Xt,x,Θ

⌧1
)t

Cov(At
⌧1
, Xt,x,Θ

⌧1
)t Var(Xt,x,Θ

⌧1
)t

◆
. (6.3.46)

Still by (6.3.35)-(6.3.36), we see that only EtX
t,x,Θ
⌧1

depends upon x. Thus we get:

@f(t, 0, log(x), s, a, y)

@x
=

Σ
�1
1,2a+ Σ

�1
2,2 ⇥

⇣
log(y/x)�

R ⌧1

t
↵t,Θ
r dr + �2

2 (⌧1 � t)
⌘

x
f(t, 0, log(x), s, a, y).

(6.3.47)

Reinjecting this equality into (6.3.43) and rewriting the result in term of expectations, we
finally get the result.

The function ∆(ti, ·) is computed using the Monte Carlo estimator given in (6.3.40) as in
(6.3.37) where we simulate in addition the weight H.

Sensitivities with respect to the interest rates curve. We consider now the derivatives
with respect to the interest rates curve. For i = 1, 2, 3, we want to compute:

@`

@✓i
(t, x,Θ) =

@

@✓i
EQe�

R
T

t
rt,Θs dsG(St,x,Θ), i = 1, 2, 3.

Proposition 6.3.4. For all (t, x,Θ) 2 [0, 1]⇥(0,1)⇥R3 and all i = 1, 2, 3, we have the following
identity (where we have set ⌧0 = t):

@`

@✓i
(t, x,Θ) = EQe�

R
T

t
rt,Θs dsG(St,x,Θ)Hx,Θ

i

⇣
(⇠t⌧l , e

�
R

⌧l
⌧l�1

⇠tudu, St,x,Θ
⌧l

)l=1,...,

⌘
, (6.3.48)
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with

Ht,x,Θ
i ((r`, a`, s`)`=1,...,) = �

Z ⌧

t

ht,i
s ds+

X

`=1

 Z ⌧`

⌧`�1

ht,i
s ds

!⇣
(Σ⌧`�1,⌧`)�1

1,3(r` � µ
⌧`�1,⌧`
1 )

+ (Σ⌧`�1,⌧`)�1
2,3(a` � µ

⌧`�1,⌧`
2 )

+ (Σ⌧`�1,⌧`)�1
3,3(log(s`)� µ

⌧`�1,⌧`
3 )

⌘
,

(6.3.49)

where µs,u and Σs,u are the mean and the covariance matrix of the Gaussian vector (⇠tu, A
t
u, X

t,x,Θ)
conditionally upon Fs.

Proof. Performing a similar analysis as the one above,

@`

@✓i
(t, x,Θ) =

@e�
R

T

t
↵t,Θ

s ds

@✓i
EQe�

R
T

t
⇠tsdsG(St,x,Θ)+e�

R
T

t
↵t,Θ

s ds

Z

R2

e�a1

�1Y

`=1

e�a`+1G(ex1 , . . . , ex)

@
�
pΘ(t, 0, log(x), 1, a1, x1) . . . p

Θ(t�1, a�1, x�1, t, a, x)
�

@✓i
da1 · · · dadx1 · · · dx. (6.3.50)

Here, the computations are more involved since every density depends upon the ai, i = 1, 2, 3,
but the idea is the same as before.

The only difference is that, when we use (6.3.35)-(6.3.36) to differentiate, we see that the
short term itself appears in the formulae. This is not a problem as we can rewrite the previous
integral as an integral over R3, with the short rate process taken at times ⌧l, l = 1, . . . ,, as
new variables to integrate against.

The quantity @`
@✓i

(i = 1, 2, 3) is computed using the Monte Carlo estimator of the formula
(6.3.48). Then solving the system (6.2.21) allows to obtain the coefficients ⇢1, ⇢2, ⇢3 .

This method to calculate derivatives allows us to compute the function `(t, x,Θ) and its four
derivatives with only one Monte Carlo simulation. Furthermore, given a risk-neutral scenario,
each quantity involved in formulae (6.3.41) and (6.3.49) can be exactly computed by integrating
the elementary functions ht,i and by inverting real symmetric matrices of size 3 ⇥ 3. Thus, the
weight functions Ht,x,Θ, Ht,x,Θ

i are easily and accurately computed.

6.3.3 Sparse Grid Approach

The nested simulation approach requires the approximation of the function ` and its derivative
@`
@x , @`

@✓i
, i = 1, 2, 3 for each path (S̄j

t , Θ̄
j
t )t2Γ of the market parameters. These values are computed

on the fly which is quite time consuming.

We suggest here an alternative method which will pre-compute the quantities of interest (`
and its derivatives) and store them. The requested value for a given market parameter will then
be obtained by an interpolation procedure.

A first simple approach is to consider an equidistant grid of the domain A :=
Qd

l=1[mp,Mp]
which is a truncation of the support of X (Rd, d = 4 in our setting). Then one can use a
multi-linear interpolation to reconstruct the function in the whole space. If one sets 2p points
in one dimension, the total number of points will be 2dp for one function at one given time
and overall (4n + 1)2dp to store. This will become rapidly too big, especially if one allows the
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number of market parameters to grow. This is a typical example of the “curse of dimensionality”
encountered in numerical analysis when dealing with problem of high dimension.

Instead of considering a regular grid, we shall rely on the use of sparse grid, which allows
to lower the number of points required to store the numerical approximation of the function.
We now present rapidly the main concepts linked to sparse grids, see [120] for a comprehensive
survey. In our numerical examples, see Section 6.4, the sparse grid will be computed using the
StOpt C++ library [122].

For each multi-index k  l, we define a grid mesh hk = 2�k and grid points

y̌k,i = (m1 + i1(M1 �m1)hk1
, . . . ,md + id(Md �md)hkd

), 0 6 i 6 2k.

Using the hat function,

y 2 R 7! �(y) :=

(
1� |y| if y 2 [�1, 1]

0 otherwise
(6.3.51)

and we can associate to the previous grid a set of nodal basis function:

y 2 Rd 7! �k,i(y;A) =

dY

l=1

�(
yl � y̌lk,i
2�il

) .

We consider the sparse grid nodal space of order p defined by

V := span{�l,j; (l, j) 2 Ip(A)},

where

I :=
�
(l, j) : 0 6

dX

i=1

li 6 p; 0 6 j 6 2l;

(li > 0 and ji is odd) or (li = 0), for i = 1, . . . , d
 
. (6.3.52)

For a function  : A ! R with support in A, we define its associated V-interpolator by

⇡A
V

[ ](y) :=
X

(l,j)2I(A)

✓l,j( ;A)�l,j(y;A) (6.3.53)

where the operator ✓l,j can be defined recursively in terms of r, the dimension of l, by:

✓l,j( ;A) =

8
>>><
>>>:

 (y̌l,j); r = 0

✓l�,j�( (·, y̌
r
lr,jr

);A�); lr = 0

✓l�,j�( (·, y̌
r
lr,jr

);A�)� 1
2✓l�,j�( (·, y̌

r
lr,jr�1);A�)

� 1
2✓l�,j�( (·, y̌

r
lr,jr+1);A�); lr > 0

(6.3.54)

where, for a hypercube A =
Qd

l=1[ml,Ml], A� :=
Qd�1

l=1 [ml,Ml] and for a multi-index k with
dimension r � 1, k� = (k1, . . . , kr�1).
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Let us now introduce the approximation that we use to compute the loss distribution, namely

`S(·) := ⇡V
[`N ](·),

✓
@`

@x
(t, ·)

◆S

:= ⇡V
[

✓
@`

@x
(t, ·)

◆N

](·) (6.3.55)

and

✓
@`

@✓i
(t, ·)

◆S

:= ⇡V
[

✓
@`

@✓i
(t, ·)

◆N

](·) i 2 {1, 2, 3} , t 2 Γ .

These functions are built by computing the coefficients appearing in (6.3.53), which are then
stored in memory. For `S say, this amounts to compute the function `N on the sparse grid Vp

and this is done by Monte Carlo simulation as in the previous approach, recall the definition of
`N in (6.3.37).

Complexity The main limitation of this method is the memory usage and the time to pre-
compute the functions. This is proportional to the number of point in the grid. This number

can be estimated to be of O(2�d+1 (�d+1)d�1

(d�1)! ), see Proposition 4.1 in [120]. Let us insist on
the fact that this is done “offline” compared to the nested simulation approach. For the “online”
computations, the main effort is put in the evaluation of the function which is slightly more
evolved than a linear interpolation and is of O() where  is the maximum level that is chosen.

Remark 6.3.5. The computations at each point being independant, this Sparse Grid approach
can be easily parallelised, hence improving further the gain of time observed in Subsection 6.4.1.

6.3.4 Convergence study

The goal is to obtain a reasonable approximation of the risk associated to the loss distribution
of the balance sheet in an efficient way. In this section, we explain why the methods introduced
above are indeed good approximations of the risk indicators. We also study theoretically the
numerical complexity of both methods in terms of memory and time consumption.

Error analysis

For the risk estimation, we will investigate a root Mean Square Error (rMSE) of the following
form

✏� := E|%(p1]⌘)� %(p�1 ]⌘
N )|2

1
2 , for � 2 {N ,S}.

The expectation operator E· acts under P⌦N ⌦Q⌦M , namely it averages both on the simulation
of the market parameters under the real-world measure used for calibration and the risk neutral
evolution of the market model under the pricing measure.

The first observation is that under reasonable assumptions on the risk measure used in the
risk indicator, the error performed in the numerical simulation can be separated in two main
contribution: the error due to the sampling of the loss distribution coming from the sampling of
the market parameters and the error made when approximating the different pricing and hedging
functions.

Lemma 6.3.6. Assume that % has a Monotonic and Cash Invariant lift <, then

✏�  E|%(p1]⌘)� %(p1]⌘
N )|2

1
2 + E sup

1jN
|p1(X

j)� p�1 (X
j)|2

1
2 .
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Proof. We denote by bXN (!) the random variable with distribution ⌘N (!). Note that

p1( bXN (!))  p�1 ( bXN (!)) + sup
1jN

|p1(X
j(!))� p�1 (X

j(!))| (6.3.56)

which leads to

<(p1( bXN (!)))  <(p�1 ( bXN (!))) + sup
1jN

|p1(X
j(!))� p�1 (X

j(!))| .

By symmetry, we easily get

|%(p1]⌘)� %(p�1 ]⌘
N (!))|  |%(p1]⌘)� %(p1]⌘

N (!))|+ sup
1jN

|p1(X
j(!))� p�1 (X

j(!))| (6.3.57)

and then the proof is concluded using Minkowski inequality.

The error due to the approximation of the function p1 is well understood when the function
is smooth enough. Note that the asset side of the function is quite involved and we will not
attempt to obtain the condition for smoothness of the overall function p1. We will now simply
review the error done on the liability part `(1, ·) assuming that the mapping G is bounded and

(x,Θ) ! �
1,Θ
T G(S1,x,Θ) 2 C2

b . (6.3.58)

Even though, this cannot be almost surely true in the model presented above, we will assume
that �1,Θ

T is bounded in the discussion below. A more precise analysis should take care of these
extreme events arising with small probability. Another possibility would be to force the interest
rate to be non-negative, by truncation or by considering a CIR type of model for (6.2.5).

Lemma 6.3.7. Assume that (6.3.58) holds true. Recall the definition of `N in (6.3.37), then

E max
1jN

|`1(X
j)� `N1 (X j)|2

1
2  C

r
log(N)

M
. (6.3.59)

Proof. We denote by c the bound on the mapping (x,Θ) ! �
1,Θ
T G(S1,x,Θ) (recall the discussion

after equation (6.3.58)) and thus the bound on `1. For the reader’s convenience, we introduce

Σ
j
M :=

MX

k=1

`1(X
j)� �

t,X j ,k
T G(St,X j ,k

T ),

and observe that EΣj
M = 0 and recall that the (Σj

M ) are i.i.d. We have, using Hoeffding Inequal-
ity,

E1{|Σj
M

|2>z}  2 exp
⇣
� z

cM

⌘
.

Using the independence property, we obtain

E1{maxj |Σj
M

|2z} �
⇣
1� 2 exp

⇣
� z

cM

⌘⌘N
. (6.3.60)
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Now set ⇠ := cM log(N) and compute

E max
1jN

|Σj
M |2 =

Z 1

0

E1{maxj |Σj
M

|2>z}dz

 ⇠ +

Z 1

⇠

E1{maxj |Σj
M

|2>z}dz

 ⇠ +

Z 1

⇠

⇢
1�

⇣
1� 2 exp

⇣
� z

cM

⌘⌘N�
dz.

Now, we observe that for N � 2, 2 exp
�
� z

cM

�
 1 for z � ⇠. Using the fact that 1� (1� u)N 

Nu, for u 2 [0, 1], we get

E max
1jN

|Σj
M |2  ⇠ + 2N

Z 1

⇠

exp
⇣
� z

cM

⌘
dz

which leads to

E max
1jN

|Σj
M |2  ⇠ + 2cM,

and concludes the proof.

We conclude this section by giving the overall estimation error induced by the numerical
procedure above. We will admit that the upper bound for the error given for `(1, ·) in Lemma
6.3.7 holds true for the PnL function p(1, ·) with a scaling by n coming from the number of
rebalancing date.

Theorem 6.3.8. Assume that %h is a spectral risk measure. Then, the following holds, for some
↵ > 0,

1. for the Nested Simulation approach

✏N  C

 
1

N↵
+ n

r
log(N)

M

!
; (6.3.61)

2. for the Sparse Grid approach with maximum level 

✏S  C

 
1

N↵
+ n

(r
log(N)

M
+ 2�2(� d+ 1)(d�1)

)!
. (6.3.62)

Proof. 1. We first show that

E max
1jN

|`1(X
j)� `S1 (X

j)|2
1
2  C

 r
log(N)

M
+ 2�2(d�1)

!
. (6.3.63)

Indeed, we have that

`S1 = ⇡V
[`N1 ]

= `N1 + ⇡V
[`N1 ]� `N1 .
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And we observe that

⇡V
[`N1 ]� `N1 =

1

M

MX

j=1

⇡V
[e�

R
T

1
r1,·,ks dsG(S1,·,k)]� e�

R
T

1
r1,·,ks dsG(S1,·,k)

Let us denote by (x,Θ) 7! �k(x,Θ) = e�
R

T

1
r1,Θ,k
s dsG(S1,x,Θ,k) which is a random function as it

depends on the random realisation of the (r, S) process. Under (6.3.58), �k is smooth enough to
apply the results in Proposition 4.1 in [120] and we obtain

|⇡V
[`N1 ]� `N1 |1  1

M

MX

j=1

|⇡V
[�k]� �k|1  C2�2d�1 . (6.3.64)

We then observe that

E max
1jN

|`1(X
j)� `S1 (X

j)|2
1
2  C

✓
E max
1jN

|`1(X
j)� `N1 (X j)|2

1
2 + |⇡V

[`N1 ]� `N1 |1

◆
.

The proof of (6.3.63) is concluded by combining the above inequality with (6.3.64) and Lemma
6.3.7.
2. We now prove (6.3.61). Applying Lemma 6.3.6, we obtain

✏N  E|%(p1]⌘)� %(p1]⌘
N )|2

1
2 + E max

1jN
|`1(X

j)� `N1 (X j)|2
1
2 . (6.3.65)

The second term in the right-hand side of the above inequality is controlled by using Lemma
6.3.7. We now study the first term in the right-hand side, which is the error introduced by the
sampling of the loss distribution. Applying Corollary 11 in [118] to the spectral risk measure,
we first get

E|%(p1]⌘)� %(p1]⌘
N )|2

1
2  CEW2(⌘, ⌘

N )2
1
2 .

We then use Theorem 1 in [123] to bound the Wasserstein distance, which concludes the proof
for this step.
3. To prove (6.3.62), we follow similar arguments as in step 2. but using (6.3.63) instead of
invoking Lemma 6.3.7.

Remark 6.3.9. We can compare the bound obtained for the nested simulation with the ones in
[119]. Using a different approach, the authors prove a very nice bound on the overall error given
by

C

✓
1p
N

+
1

M

◆
,

for the V@R (which is not a spectral risk measure) and AV@R. Note that the term 1
M is obtained

by cancellation of the first order term through an error expansion. It would be interesting to
understand under which assumptions their bound can be retrieved in our setting of general spectral
risk measure. This topic is left for further research.

We conclude this Section by a short account on the numerical complexity of the two methods.

The Nested Simulation approach is a pure “online” method which is very simple to implement



160CHAPTER 6. A SPARSE GRID APPROACH TO BALANCE SHEET RISK MEASUREMENT

but has a huge drawback in term of running time. Each time an estimation is requested the
numerical complexity is overall of nNM , where recall n is the number of rebalancing date,
M the number of sample for the risk neutral simulation and N the number of sample for the
real-world simulation. The memory requirements comes only from the estimation of the loss
distribution and are of order N .

As already mentioned, the Sparse Grid approach is both an “online” and “offline” method. In
terms of memory requirement, it is thus greedier than the nested simulation approach. On top
of the memory needed to store the sample distribution (of order N), memory is also needed to

store the sparse grid approximation pS , the requirement are of order O(n2�d+1 (�d+1)d�1

(d�1)! ). In

term of running time, the gain is important as the complexity of evaluating pS is of O() only,
where  is the maximum level used.

6.4 Numerics

In the numerical applications below, we will compare the loss distribution obtained via our
two numerical procedures by computing the Wasserstein distance between the two empirical
distributions. Since the loss distribution is one-dimensional, we use the following formula [124]:
for two probability distribution on R, ⌘ and ⌘̃,

W2(⌘, ⌘̃) = (

Z 1

0

|F�1
⌘ (u)� F�1

⌘̃ (u)|2du)
1
2 . (6.4.66)

In the setting of empirical distributions, the above distance is easily computed. Suppose ⌘ =
1
N

PN
i=1 �xi

and ⌘̃ = 1
N

PN
i=1 �yi

.
We straightforwardly compute

W2(⌘, ⌘̃)
2 =

NX

i=1

Z i
N

i�1
N

|F�1
⌘ (u)� F�1

⌘̃ (u)|2du =
1

N

NX

i=1

|x(i) � y(i)|
2, (6.4.67)

where the subscript (i) refers to the i-th order statistic of the distribution, since x(i) (resp. y(i))
is simply the i

N -th quantile of ⌘ (resp. ⌘̃).
Besides the Wasserstein distance between the two empirical distributions, we will also compare

the estimated V@R and AV@R, which are computed in a similar way. Indeed, for ↵ 2 (0, 1], we
have:

V@R↵(⌘) = F�1
⌘ (↵) = x(i↵), (6.4.68)

where i↵�1
N < ↵  i↵

N , i↵ 2 {1, . . . , N}.
For a given ↵ 2 (0, 1], we observe that

AV@R↵(⌘) =
1

1� ↵

Z 1

↵

V@Rp(⌘)dp =
1

1� ↵

 Z i↵
N

↵

V@Rp(⌘)dp+

N�1X

i=i↵

Z i+1
N

i
N

V@Rp(⌘)dp

!

which leads to

AV@R↵̄(⌘) =
1

1� ↵

 
{
i↵
N

� ↵}x(i↵) +
1

N

N�1X

i=i↵

x(i+1)

!
. (6.4.69)
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Using the formulae (6.4.67), (6.4.68) and (6.4.69), we will now present numerical results
showing the efficiency and usefulness of the sparse grid approach. We first start with a comparison
with the classically used nested simulation approach.

6.4.1 Sparse grid approach versus nested simulations approach

We computed the empirical distribution of the PnL at horizon 1 year using the nested simulations
approach, recall Section 6.3.2, and the sparse grid approach, recall Section 6.3.3.

For both methods, we used a sample of size N = 11000 describing the real-world evolution
of S and Θ, recall Section 6.2.4, and a sample of size M = 10000 for the risk-neutral Monte
Carlo simulations. Following Proposition 6.2.9, we calibrated a Gaussian model such that
(X1, (✓1)1, (✓2)1, (✓3)1) has mean and covariance matrix given by:

µ = (4.1⇥ 10�5, 0.01, 0.03, 0.01), (6.4.70)

V =

0
BB@

0.004 3.2⇥ 10�5 6.76⇥ 10�6 0.000008
3.2⇥ 10�5 3.1⇥ 10�5 1.82⇥ 10�5 1.5⇥ 10�5

6.76⇥ 10�6 1.82⇥ 10�5 7.5⇥ 10�5 8.1⇥ 10�6

0.000008 1.5⇥ 10�5 8.1⇥ 10�6 2.7⇥ 10�5

1
CCA (6.4.71)

The risk-neutral simulations were computed by a Monte Carlo procedure, using each time a
sample of size M = 10000, computed with the exact formulae in the Hull & White and Black &
Scholes setting we used, recall Proposition 6.3.2. The volatility parameter used in the Black &
Scholes model is set to � = 0.3 while the parameters defining the Hull & White model are set
to a = 0.05 and b = 0.01. Last, the covariation parameter between the two Brownian motions is
set to ⇢ = 0.
In this setting, the nested simulations method was tested with the Put Lookback option described
in 6.2.1, with maturity T = 30 years. Figure 6.2 shows the outcome PnL’s distribution.

We next looked at the grid method. Figure 6.3 shows the outcome PnL’s distributions for
sparse grids of level 1, 2, 3, which respectively have cardinal 81, 297, 945. Figure 6.4 compares
the distribution obtained with nested simulations with the distribution obtained with the sparse
grid of level 3. Table 6.1 shows computational times comparison, and Table 6.2 shows V@R and
AV@R comparison for the empirical distributions obtained in each case.

We observe a significant gain in time obtained by the use of the sparse grid method instead
of the nested simulations one. As already observed in Remark 6.3.5, this gain in time can be
further improved by parallelisation of the computations on the Sparse Grid. In addition, we
observe that, once the computations on the grid are done, then the PnL distribution is almost
straightforwardly obtained. This is a key feature of the method since the computations on the
grid are to be kept. Indeed, if one needs to change the distribution of (S,Θ) under P, say because
the view of the risk management on the evolution of the market parameters has changed, then
they can be re-used easily. In the next section, we give an application in this direction.

Level of the sparse grid l = 1 l = 2 l = 3 Nested simulations
Computations on the grid 7 min 30 sec 26 min 30 sec 1h 08 min
Computation of the PnL distribution 2 sec 4 sec 8 sec 9h 50min

Table 6.1: Computational times
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We observe that with these small change the distribution are quite close to each other. The main
discrepancy are obtained for the diminished moments.

Model Initial model Diminished moments Augmented moments
Wasserstein distance 0 0.030 0.0070
V@R/AV@R ↵ = 0.005 3.37 / 3.63 3.43 / 3.81 3.33 / 3.67
V@R/AV@R ↵ = 0.01 3.18 / 3.45 3.17 / 3.54 3.16 / 3.45
V@R/AV@R ↵ = 0.05 2.61 / 2.95 2.63 / 2.97 2.60 / 2.93
V@R/AV@R ↵ = 0.1 2.34 / 2.71 2.37 / 2.73 2.32 / 2.69

Table 6.3: Comparison of the empirical distributions

6.5 Appendix

6.5.1 Proof of (6.2.6)

In this subsection, we shall give the proof of Proposition 2.1 for completeness. We remind that
in the Hull-White model, the dynamics of the short rate is given by the following:

drt,Θs = a(µt,Θ
s � rt,Θs )ds+ bdBs (6.5.72)

with a, b 2 R. We will prove that the mean-reverting ✓s can be calibrated by forward interest
rate curve fΘ(t, s) by:

µt,Θ
s = fΘ(t, s) +

1

a

@fΘ(t, s)

@s
+

b2

2a2
(1� e�2a(s�t)) (6.5.73)

The method is to express the price of the zero-coupon bond P (t, s) in the following way:

E[exp(�
Z s

t

rt,Θu du)] = P (t, s) = exp(�
Z s

t

fΘ(t, u)du) (6.5.74)

Then by comparing both sides, we can determine fΘ(t, s). First, it is easy to find out that the
solution to (6.5.72) is

rt,Θs = rt,Θt e�a(s�t) + a

Z s

t

µt,Θ
u e�a(s�u)du+ b

Z s

t

e�a(s�u)dBu

Then by straightforward calculation we have that

Z s

t

rt,Θu du =
rt,Θt

a
(1� e�a(s�t)) +

Z s

t

µt,Θ
u (1� e�a(s�u))du+

b

a

Z s

t

(1� e�a(s�u))dBu

So
R s

t
rt,Θu du follows a normal distribution with mean

E[

Z s

t

rt,Θu du] =
rt,Θt

a
(1� e�a(s�t)) +

Z s

t

µt,Θ
u (1� e�a(s�u))du
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and variance

V[

Z s

t

rt,Θu du] =
b2

a2

Z s

t

(1� e�a(s�u))2du

Now comparing the both sides of (6.5.74), we have that

Z s

t

fΘ(t, u)du = E[

Z s

t

rt,Θu du]� 1

2
V[

Z s

t

rt,Θu du]

Thus

fΘ(t, s) =
@

@s
E[

Z s

t

rt,Θu du]� 1

2

@

@s
V[

Z s

t

rt,Θu du]

= rt,Θt e�a(s�t) + a

Z s

t

µt,Θ
u e�a(s�u)du� b2

2a2
2a

Z s

t

(e�a(s�u) � e�2a(s�u))du

= rt,Θt e�a(s�t) + a

Z s

t

µt,Θ
u e�a(s�u)du� b2

2a2
(1� e�a(s�t))2 (6.5.75)

By straightforward differentiation, we have

@

@s
fΘ(t, s) = �art,Θt e�a(s�t)�a2

Z s

t

µt,Θ
u e�a(s�u)du+aµt,Θ

s � b2

a
(e�a(s�t)�e�2a(s�t)) (6.5.76)

Now by (6.5.75) and (6.5.76), we can easily verify that (6.5.73) is valid.

6.5.2 Proof of Proposition 6.2.9

We provide a recursive proof of Proposition 6.2.9, which allows to compute effectively the coef-
ficients defining the processes.

Suppose more generally that a vector µ 2 Rn and a covariance matrix V 2 Rn⇥n is given.
We look for n processes Xi(i = 0, . . . , n) defined by:

Xi
t = Xi

0 + bit+

nX

j=1

cijW
j
t , (6.5.77)

where W j
t (j = 1, . . . , n) are n independant Brownian motions, and b 2 Rn, C = (cij) 2 Rn⇥n.

Proposition 6.5.1. There is at most one (b, C) 2 Rn ⇥ Rn⇥n such that:

• cij = 0 whenever i > j,

• EXi
1 = µi(i = 1, . . . , n),

• Cov(Xi
1, X

j
1) = Vij(i, j = 1, . . . , n).

Proof. We have EXi
1 = Xi

0 + bi, so bi := µi �Xi
0 ensures EXi

1 = µi for all i.
We next determine the matrix C thanks to a recursive algorithm:

Ascending step: Let i, l 2 {1, . . . , n}, and assume cik, k > l and clk, k � l are determined.
Then we can determine cil.
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Indeed, if i > l, we set cil = 0. If i < l, we have:

Vil = Cov(Xi
1, X

l
1) (6.5.78)

=
nX

j=1

cijclj (6.5.79)

=

nX

j=l

cijclj (6.5.80)

= cilcll +
X

j>l

cijclj . (6.5.81)

Thus we set:

cil =
1

cll

0
@Vil �

X

j>l

cijclj

1
A . (6.5.82)

Back step: Let l 2 {1, . . . , n} and assume clj is determined, for k > l. Then we can determine
cll.

Indeed:

Vll = V(X l
1) =

nX

j=1

c2lj =

nX

j=l

c2lj = c2ll +
X

j>l

c2lj . (6.5.83)

Thus we set:

cll =

s
Vll �

X

j>l

c2lj . (6.5.84)

6.5.3 Proofs of Lemma 6.3.1 and Proposition 6.3.2

We prove here the Lemma 6.3.1 and the Proposition 6.3.2, which give a recursive procedure to
simulate exactly under Q.

Proof of Lemma 6.3.1. Let (t,Θ) 2 [0, T ] ⇥ R3 and consider the process rt,Θ = (rt,Θs )s2[t,T ]

defined by (6.2.5)-(6.2.6).
Let s 2 [t, T ]. An application of Itô’s formula gives:

easrt,Θs = eatrt,Θt + a

Z s

t

eauµt,Θ
u du+ b

Z s

t

eaudBu, (6.5.85)

and an easy computation using equality (6.2.6) shows that:

a

Z s

t

e�a(s�u)µt,Θ
u du = ↵t,Θ

s � ↵
t,Θ
t e�a(s�t), (6.5.86)

where ↵t,Θ is the defined by (6.3.32).
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In addition, if ⇠t is defined by (6.3.33), applying Itô’s formula again gives:

⇠ts = b

Z s

t

e�a(s�u)dBu. (6.5.87)

Thus:

rt,Θs = e�a(s�t)rt,Θt + ↵t,Θ
s � e�a(s�t)↵

t,Θ
t + ⇠ts, (6.5.88)

which ends the proof as rt,Θt = ↵
t,Θ
t , by (6.5.75).

We now turn to the proof of Proposition 6.3.2.

Proof of Proposition 6.3.2. Let t  s  u  T . Itô’s formula implies that the triplet (⇠tr, A
t,s
r , Xt,x,Θ

r )r2[s,u]

is the solution of the following linear stochastic differential equation:

d

0
@
⇠r
Ar

Xr

1
A =

2
4
0
@
�a 0 0
1 0 0
1 0 0

1
A
0
@
⇠r
Ar

Xr

1
A+

0
@

0
0

↵t,Θ
r � �2

2

1
A
3
5 dt+

0
@

b 0
0 0

�⇢ �
p
1� ⇢2

1
A
✓
dBr

dWr

◆
, r 2 [s, u],

(6.5.89)

with the initial conditions ⇠s = ⇠ts, As = 0, Xs = Xt,x,Θ
s . This linear equation has a closed form

solution, and we find:

⇠tu = e�a(u�s)⇠ts + b

Z u

s

e�a(u�r)dBr, (6.5.90)

At,s
u =

⇠ts
a
(1� e�a(u�s)) +

b

a

Z u

s

(1� e�a(u�r))dBr, (6.5.91)

Xt,x,Θ
u = Xt,x,Θ

s +

Z u

s

↵t,Θ
r dr � �2

2
(u� s) +

⇠ts
a
(1� e�a(u�s)) +

Z u

s

p
1� ⇢2�dWr (6.5.92)

+
b

a

Z u

s

(1� e�a(u�r))dBr +

Z u

s

⇢�dBr. (6.5.93)

Conditionaly upon Fs, the vector (⇠tu, A
t,s
u , Xt,x,Θ

u ) is Gaussian and the expectations and covari-
ations given in the Proposition are easily computed thanks to the above formulae.

6.5.4 Comparison with Automatic Differentiation.

We use the stan math C++ library [125] which allows to easily implement a (Reverse Mode)
Automatic Differentiation procedure in order to deduce the derivatives directly from the Monte-
Carlo computation of the function L. We compare the results obtained with the weights method
developed here with the results obtained by Automatic Differentiation. We also provide a com-
parison about the computational times.

Precisely, we computed the derivatives of ` with respect to the 4 variables (x, ✓1, ✓2, ✓3) at
256 points (xi, ✓i1, ✓

i
2, ✓

i
3)i=1,...,256. In the case of the automatic differentiation, we only take

1000 risk-neutral simulations to compute `, while for the approach involving the computation of
weights, we took 10000 simulations to compute ` and its four derivatives.

Table 6.4 sums up the time taken for the computations. Clearly, the gain in time resulting by
using the weights algorithm is really significant. Additionally, Figure 6.5 shows the accuracy in
the computation using the weights derivatives in comparison with the Automatic Differentiation.
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Algorithm - Option Put Lookback
Automatic Differentiation 179 sec
Weights 97 sec

Table 6.4: Computational times

Figure 6.5: Results from the grid method versus results from Automatic Differentiation
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Résumé

Dans cette thèse, on considère trois sujets.

Les deux premiers sujets sont liées avec la

domaine de robuste finance et le dernier est

une méthode numérique appliqué sur la ges-

tion du risque des entreprises d’assurance.

Dans la première partie, on considère le

problème de la sur-réplication des options

américaines au temps discret. On considère

une famille non-dominée des mesures de

probabilité et les stratégies de trading sont

dynamiques pour les sous-jacents et sta-

tiques pour les options. Pour obtenir la du-

alité de valorisation-couverture, on a deux

méthodes. La première méthode est de

réformuler les options américaines comme

options européens dans un espace élargi.

La deuxième méthode est de considérer un

marché fictif dans lequel les stratégies pour

tous les actifs sont dynamiques. Ensuite on

applique le résultat général à deux exemples

importants dans le context robust.

Dans la deuxième partie, on considère le

problème de sur-réplication and maximisation

d’utilité au temps discret avec coût de trans-

action sous l’incertitude du modèle. L’idée

principale est de convertir le problème origi-

nal à un problème sans friction dans un es-

pace élargi en utilisant un argument de ran-

domisation et le théorème de minimax. Pour

le problème de sur-réplication, on obtient la

dualité comme dans le cas classique. Pour

le problème de maximisation d’utilité, en util-

isant un argument de la programmation dy-

namique, on peut preuver à la fois l’existence

de la stratégie optimale et le théorème de la

dualité convexe.

Dans le troisième partie, on présente une

méthode numérique basésur l’approximation

du sparse grid pour calculer la distribution de

la perte du bilan d’un entreprise d’assurance.

On compare la nouvelle méthode numérique

avec l’approche classique de la simulation et

étudie la vitesse de la convergence des deux

méthodes pour estimer l’indicateur du risque.

Mots Clés

incertitude du modèle, sur-réplication,

maximisation d’utilité, coût de transac-

tion, randomisation, option américaine

Abstract

This PhD dissertation presents three re-

search topics. The first two topics are related

to the domain of robust finance and the last is

related to a numerical method applied in risk

management of insurance companies.

In the first part, we focus on the problem of

super-replication duality for American options

in discrete time financial models. We con-

sider the robust framework with a family of

non-dominated probability measures and the

trading strategies are dynamic on the stocks

and static on the options. We use two differ-

ent ways to obtain the pricing-hedging dual-

ity. The first insight is that we can reformulate

American options as European options on an

enlarged space. The second insight is that by

considering a fictitious extensions of the mar-

ket on which all the assets are traded dynam-

ically. We then show that the general results

apply in two important examples of the robust

framework.

In the second part, we consider the prob-

lem of super-replication and utility maximiza-

tion with proportional transaction cost in dis-

crete time financial market with model uncer-

tainty. Our key technique is to convert the

original problem to a frictionless problem on

an enlarged space by using a randomization

technique together with the minimax theorem.

For the super-replication problem, we obtain

the duality results well-known in the classical

dominated context. For the utility maximiza-

tion problem, we are able to prove the exis-

tence of the optimal strategy and the convex

duality theorem in our context with transaction

costs.

In the third part, we present a numerical

method based on a sparse grid approxima-

tion to compute the loss distribution of the

balance sheet of an insurance company. We

compare the new numerical method with the

traditional nested simulation approach and

review the convergence of both methods to

estimate the risk indicators under considera-

tion.

Keywords

model uncertainty, super-replication, util-

ity maximization, transaction cost, ran-

domization, american option


