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Chapter 1

Introduction

This thesis is mainly about the convergence to equilibrium for the kinetic equations.
We first introduce the kinetic theory and Boltzmann’s equation. Then we introduce a
range of equations which will be discussed through out this work. After this we will give
a review of some classical existing works on converge to equilibrium, mainly focusing
on hypocoercivity. Lastly we briefly describe the contents of each of the chapters.

1.1 Kinetic Equations

Kinetic theory was developed in the 19th century, most notably by Boltzmann and
Maxwell, in the modeling of dilute gases. Kinetic equations model the evolution of a gas
in an intermediate scale between the microscopic description which is given by Newton’s
laws and a macroscopic fluid descriptions. If we have a system of N particles performing
either deterministic or stochastic dynamics, we can write their joint distribution at time
t

FN (t, z1, z2..., zn) ≥ 0.

In this case zi is either vi, the velocity of the ith particle, or (xi; vi), the position and
velocity of the ith particle. We look at the situation where this equation models a
large number of indistinguishable agents, for example gas particles. We study particles
interacting in a gas by Newton’s laws, then they will follow the equations

ẋi = vi

v̇i =
∑
i 6=j

F (i, j) + F,

where F (j, i) is the force acting on particle i due to particle j and F is an external
force. For collisional gases the equation derived in this process, via the Boltzmann-
Grad scaling, is Boltzmann’s equation

∂tf + v · ∇xf = Q(f, f),

5
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where

Q(f, g) =
∫
Rd

∫
Sd−1

B(|v − v∗|, (v − v∗) · σ)(f(v′)g(v′∗)− f(v)g(v∗))dσdv∗

with
v′ = v + v∗

2 + |v − v∗|2 σ, v′∗ = v + v∗
2 − |v − v∗|2 σ.

B is called the collision kernel. Here f = f(t, x, v) represents the density in phase space
of a single particle in the ensemble and t ≥ 0, x ∈ Rd, v ∈ Rd. We can observe here the
general structure of a collisional kinetic equation

∂tf + v · ∇xf = L(f),

where the v · ∇xf operator comes from the transport term in Newton’s law. The L(f)
operator acts only on the velocity variable v and is the result of collisions between
particles or between particles and a background statistical medium. We can derive
macroscopic quantities from this density, by setting

ρ(x) =
∫
f(x, v)dv,

the local density,
u(x) = 1

ρ(x)

∫
vf(x, v)dv,

the local speed and
T (x) = 1

ρ(x)

∫
|u− u(x)|2f(x, v)dv,

the local temperature. The steady state solution of Boltzmann’s equation was derived
by Maxwell and it was shown to be the unique asymptotic equilibrium by Boltzmann.
It is known as the Maxwellian

M(v) = ρ(2πT )−d/2 exp(− 1
2T |v|

2)

Here ρ, T are the spatial averages of the local quantities above. Since this is a steady
state of the equation it becomes natural to ask whether the solution to Boltzmann’s
equation will eventually come close to the Maxwellian and if so how fast this will happen.

Throughout the rest of this thesis, we use the notation M(v) to refer to the normal-
ized Maxwellian with u = 0, ρ = 1 and T = 1. That is

M(v) = (2π)−d/2 exp(−|v|
2

2 ). (1.1.1)

We can also look at equations where instead of just transported, potentials are both
transported and confined. This allows us to have equilibrium states where the x variable
is in the whole of Rd. The corresponding equation write

∂tf + v · ∇xf −∇U(x) · ∇vf = Q(f, f).

where U(x) represents an external confinement force, in the following we introduce some
equations that are studied in the thesis.
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1.1.1 The kinetic Fokker-Planck equation

The kinetic Fokker-Planck equation is one of the simplest equations in kinetic theory.
It is a kinetic version of the Fokker-Planck equation which was developed by Fokker
[28], and Planck [59]. The Fokker-Planck equation is the PDE associated which is
corresponding to the Orstein-Uhlenbeck process,

∂tf = ∇v · (∇vf + vf),

The kinetic Fokker-Planck equation wirtes

∂tf + v · ∇xf −∇U(x) · ∇vf = ∇v · (∇vf + vf),

on the density f = f(t, x, v), t ≥ 0, v ∈ Rd, x ∈ Td or x ∈ Rd. The associated equilibrium
state is

e−U(x)M(v) = exp(−(U(x) + |v|
2

2 )),

We look at the kinetic Fokker-Planck equation in Chapters 3 and 4.

1.1.2 The linear relaxation Boltzmann equation

The linear relaxation Boltzmann equation is the simplest example of a scattering equa-
tion from kinetic theory. It is also known as the linear BGK equation. We write it

∂tf + v · ∇xf −∇U(x) · ∇vf = ΠMf − f,

on the density f = f(t, x, v), t ≥ 0, v ∈ Rd, x ∈ Td or x ∈ Rd, with

ΠMf = (
∫
Rd
f(x, u)du)M(v),

Here again the phase space is either Rd × Rd or Td × Rd. The equilibrium state is the
same as the kinetic Fokker-Planck equation.

e−U(x)M(v) = exp(−(U(x) + |v|
2

2 )),

There are variants of this equation that we do not study but exhibit similar behavior.
First we can generalize the collision kernel as

∂tf + v · ∇xf −∇U(x) · ∇vf =
∫
Rd
f(x, u)k(v, u)du− f,

here k(v, u) represents the rate of jumping from velocity u to velocity v.
Second we can look at the equation when the rate of collision depends on space, namely

∂tf + v · ∇xf −∇U(x) · ∇vf = σ(x)(ΠMf − f).

We look at the linear relaxation Boltzmann equation in Chapters 5.
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1.1.3 The linear Boltzmann equation

We also look at the linear Boltzmann equation. This is a scattering type equation which
can be derived from microscopic dynamics with particles interacting with a heat bath.
The equation is

∂tf + v · ∇xf −∇U(x) · ∇vf = Q(f,M),

where Q is the Boltzmann collision operator given before and M is defined in (1.1.1).
This equation is much simpler than the full Boltzmann equation. It is linear and is
the equation of the density for a Markov process provided B is sufficiently nice. The
spatially homogeneous linear Boltzmann equation

∂tf = Q(f,M),

has been well studied.
We look at the linear Boltzmann equation in Chapters 5.

1.2 Harris’s Theorem

Harris’s theorem [38, 41, 52] is a result from the theory of Markov processes. Reprov-
ing and rewriting Harris’s theorem in a PDE context is a subject of an ongoing work
from José Cañizo and Stéphane Mischler. Harris’s theorem shows quantitative rates of
convergence to equilibrium for processes satisfying two assumptions.

Now let us be more specific about Harris’s Theorem. We give the theorems and
assumption as in the setting of [41] where they make it clear how the rates depend
on those in the assumptions. Markov operators can be defined by means of transition
probability functions. We always assume that (Ω,S) is a measurable space. A function
S : Ω × S → R is a transition probability function on a finite measure space if S(x, ·)
is a probability measure for every x and x 7→ S(x,A) is a measurable function for
every A ∈ S. We can then define P, the associated stochastic operator on probability
measures, by

Pµ(·) =
∫
µ(dx)S(x, ·).

Since we are looking at a process we have Markov transition kernel St for each t > 0,
and then an associated Markov semigroup Pt where Pt is defined from St as above. In
our situation Ptµ is the weak solution to the PDE with initial data µ. If we define
M(Ω) as the space of finite measures on (Ω,S) then we have that Pt is a linear map

Pt :M(Ω)→M(Ω).

From the conditions on St we see that Pt will be linear, mass preserving and positivity
preserving. We can define the forward operator L, associated to St by

d
dtStφ

∣∣∣∣
t=0

= Lφ.
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We begin by looking at Doeblin’s Theorem. Harris’s Theorem is a natural generator
to Doeblin’s Theorem. Harris’s and Doeblin’s theorems are usually stated for a fixed
time t∗. In our theorems we work to choose an appropriate t∗.

Hypothesis 1.2.1 (Doeblin’s Condition). We assume (Pt)t≥0 is a stochastic semigroup,
coming from a Markov transition kernel, and that there exists t∗ > 0, a probability
distribution ν and α ∈ (0, 1) such that for any z in the state space, we have

Pt∗δz ≥ αν.

Using this we prove

Theorem 1.2.2 (Doeblin’s Theorem). If (Pt)t≥0 is a stochastic semigroup satisfying
Doeblin’s condition (Hypothesis 1.2.1) then for any two probability measures µ1 and µ2

and any integer n ≥ 0, we have

‖Pnt∗µ1 − Pnt∗µ2‖TV ≤ (1− α)n‖µ1 − µ2‖TV. (1.2.2)

As a consequence, the semigroup has a unique equilibrium probability measure µ∗, and
for all µ

‖Pt(µ− µ∗)‖TV ≤
1

1− αe
−λt‖µ− µ∗‖TV, t ≥ 0, (1.2.3)

where
λ := log(1− α)

t∗
> 0.

Proof. This proof is classical and can be found in various versions in [41] and many
other places. We now sketch the proof.

Firstly we show that if Ptδz ≥ αν for every z, then we also have Ptµ ≥ αν for every
µ. Here since Pt comes from a Markov transition kernel we have

Ptδz(·) =
∫
St(z′, ·)δz(dz′) = St(z, ·).

Therefore our condition says that

St(z, ·) ≥ αν(·)

for every z. Therefore,

Ptµ(·) =
∫
St(z, ·)µ(dz) ≥ α

∫
ν(·)µ(dz) = αν(·).

By the triangle inequality we have

‖Pt∗µ1 − Pt∗µ2‖TV ≤ ‖Pt∗µ1 − αν‖TV + ‖Pt∗µ2 − αν‖TV.

Now, since Pt∗µ1 ≥ αν, we can write

‖Pt∗µ1 − αν‖TV =
∫

(Pt∗µ1 − αν) =
∫
µ1 − α = 1− α,
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due to mass conservation, and similarly for the term ‖Pt∗µ2 − αν‖TV. This gives

‖Pt∗µ1 − Pt∗µ2‖TV ≤ 2(1− α) = (1− α)‖µ1 − µ2‖TV,

if µ1, µ2 have disjoint support. By homogeneity, this inequality is obviously also true
for any nonnegative µ1, µ2 having disjoint support with

∫
µ1 =

∫
µ2. We obtain the

inequality in general for any µ1, µ2 with the same integral by writing µ1 − µ2 = (µ1 −
µ2)+− (µ2−µ1)+, which is a difference of nonnegative measures with the same integral.
This proves

‖Pt∗µ1 − Pt∗µ2‖TV ≤ (1− α)‖µ1 − µ2‖TV. (1.2.4)

We then iterate this to obtain (1.2.2). The contractivity (1.2.4) shows that the operator
Pt∗ has a unique fixed point, which we call µ∗. In fact, µ∗ is a stationary state of the
whole semigroup since for all s ≥ 0 we have

Pt∗Psµ∗ = PsPt∗µ∗ = Psµ∗,

which shows that Psµ∗ (which is again a probability measure) is also a stationary state
of Pt∗ ; due to uniqueness,

Psµ∗ = µ∗.

Hence the only stationary state of Pt must be µ∗, since any stationary state of Pt is in
particular a stationary state of Pt∗ .

In order to show (1.2.3), for any probability measure µ and any t ≥ 0 we write

k := bt/t∗c,

(where b·c denotes the integer part) so that

t

t∗
− 1 < k ≤ t

t∗
.

Then,

‖Pt(µ− µ∗)‖TV = ‖Pt−kt∗Pkt∗(µ− µ∗)‖TV ≤ ‖Pkt∗(µ− µ∗)‖TV

≤ (1− α)k‖µ− µ∗‖TV ≤
1

1− α exp (t log(1− α)/t∗) ‖µ− µ∗‖TV.

Harris’s Theorem extends this to the setting where we cannot prove minorisation
uniformly on the whole of the state space. The idea is to use the argument given above
on the center of the state space then exploit the Lyapunov structure to show that any
stochastic process will return to the center infinitely often.

We make two assumptions on the behaviour of Pt∗ , for some fixed t∗:

Hypothesis 1.2.3 (Lyapunov condition). There exists some function V : Ω→ [0,∞)
and constants D ≥ 0, α ∈ (0, 1) such that

(Pt∗V )(z) ≤ αV (z) +D.



1.2. HARRIS’S THEOREM 11

Remark 1.2.4. We use the name Lyapunov condition as it is the standard name used for
this condition in probability literature. However, we should stress this condition is not
closely related to the Lyapunov method for proving convergence to equilibrium. We do
not prove monotonicity on a functional.

Remark 1.2.5. In our situation where we have an equation on the law f(t), this is
equivalent to the statement∫

S
f(t, z)V (z)dz ≤ α

∫
S
f(0, z)V (z)dz +D. (1.2.5)

We usually verify this by showing that

d
dt

∫
S
f(t, z)V (z)dz ≤ −λ

∫
S
f(t, z)V (z)dz +K,

for some positive constants K and λ, which then implies (1.2.5) for α = e−λt and
D = K

λ (1− e−λt) ≤ Kt.

The idea behind verifying the Lyapunov structure in our case comes from [50] where
they use similar Lyapunov structures for the kinetic Fokker-Planck equation. When we
work on the torus the Lyapunov structure is only needed in the v variable and the result
is purely about how moments in v are affected by the collision operator.

The next assumption is a minorisation condition as in Doeblin’s Theorem

Hypothesis 1.2.6. There exists a probability measure ν and a constant β ∈ (0, 1) such
that

inf
z∈C
Pt∗δz ≥ βν,

where
C = {z|V (z) ≤ R}

for some R > 2D/(1− α).

Remark 1.2.7. Production of quantitative lower bounds as a way to quantify the posi-
tivity of a solution has been proved and used in kinetic theory before. For example it
is an assumption required for the works of Desvillettes and Villani [22, 23]. Such lower
bounds have been proved for the non-linear Boltzmann equation in [7, 8].

This second assumption is more challenging to verify in our situations. Here we use
a strategy based on our observation about how noise is transferred from the v to the x
variable as described earlier. The actual calculations are based on the PDE governing
the evolution and iteratively using Duhamel’s formula.

We define a distance on probability measures for every a > 0:

ρa(µ1, µ2) =
∫

(1 + aV (x, v))|µ1 − µ2|(dxdv).
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Theorem 1.2.8 (Harris’s Theorem as in [50]). If Hypotheses 1.2.3 and 1.2.6 hold then
there exist ᾱ ∈ (0, 1) and a > 0 such that

ρa(Pt∗µ1,Pt∗µ2) ≤ ᾱρa(µ1, µ2). (1.2.6)

Explicitly if we choose β0 ∈ (0, β) and α0 ∈ (α + 2D/R, 1) then we can set γ = β0/K

and ᾱ = (1− (β − β0)) ∨ (2 +Rγα0)/(2 +Rγ).

Remark 1.2.9. We have

min{1, a}ρ1(µ1, µ2) ≤ ρa(µ1, µ2) ≤ max{1, a}ρ1(µ1, µ2).

The result follows if we can find an α0 < 1 such that

ρ1(Pt∗µ1,Pt∗µ2) ≤ α0ρa(µ1, µ2).

Assuming that µ1 and µ2 have disjoint support and that V (z) ≥ R. Then, by choosing
any α1 ∈ (α, 1) and by Hypotheses 1.2.3 and 1.2.6 we obtain

ρ1(Pt∗µ1,Pt∗µ2) ≤ 2 + a(PV )(z) ≤ 2 + aα(PV )(z) + 2aD

≤ 2 + aα1(PV )(z) + a(2D − (α1 − α)R).

If we ensure that R is sufficiently large so that (α1−α)R > 2D, then there exists some
β1 < 1 (depending on a) such that we have

ρ1(Pt∗µ1,Pt∗µ2) ≤ β1ρa(µ1, µ2).

Now, we determine a choice for a. We consider the case V (z) ≤ R. To treat this case,
we split the measure µ1 as

µ1 = µ
(1)
1 + µ

(2)
1 where |µ(1)

1 | ≤ 1, |µ(2)
1 | ≤ aV (z), for all z ∈ Ω.

Then we have

ρ1(Pt∗µ1,Pt∗µ2) ≤ ρ1(Pt∗µ
(1)
1 ,Pt∗µ

(2)
1 ) + ρ1(Pt∗µ2) ≤ 2(1− β) + aαV (z) + 2aD

≤ 2− 2β + a(αR+ 2D).

Hence fixing for example a = β/(αR+ 2D) we obtain

ρ1(Pt∗µ1,Pt∗µ2) ≤ 2− β ≤ (1− β/2)ρa(µ1, µ2),

since ρa(µ1, µ2) ≤ 2. Setting α0 = max{1− β/2, β1} concludes the proof.
We can also iterate Theorem 1.2.8 to get

ρa(Pnt∗µ1,Pnt∗µ2) ≤ ᾱnρa(µ1, µ2).

Therefore we have that

ρ1(Pnt∗µ1,Pnt∗µ2) ≤ ᾱnmax{1, a}
min{1, a} ρ1(µ1, µ2).
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Remark 1.2.10. In this thesis we always consider functions V where V (z) → ∞ as
|z| → ∞. In this case, we can replace C in Hypothesis 1.2.6 with some ball of radius R′

which will contain C.

There are versions of Harris’s Theorem adapted to weaker Lyapunov conditions
which give subgeometric convergence [21]. We use the following theorem which can be
found in Section 4 of [39].

Theorem 1.2.11 (Subgeometric Harris’s Theorem). Given the forwards operator, L,
of our Markov semigroup P, suppose that there exists a continuous function V valued
in [1,∞) with pre compact level sets such that

LV ≤ K − φ(V ),

for some constant K and some strictly concave function φ : R+ → R with φ(0) = 0
and increasing to infinity. Assume that for every C > 0 we have the minorisation
condition like Hypothesis 1.2.6. i.e. for some t∗ a time and ν a probability distribution
and α ∈ (0, 1), then for all z with V (z) ≤ C:

Pt∗δz ≥ αν.

With these conditions we have that

• There exists a unique invariant probability measure µ for the Markov process and
it satisfies ∫

φ(V (z))dµ ≤ K.

• Let Hφ be the function defined by

Hφ =
∫ u

1

ds
φ(s) .

Then there exists an constant C such that

‖Ptν − µ‖TV ≤
Cν(V )
H−1
φ (t)

+ C

(φ ◦H−1
φ )(t)

holds for every probability measure ν.

Remark 1.2.12. Since ‖Ptν −µ‖TV ≤ ‖ν −µ‖TV we can use the fact that the geometric
mean of two numbers is greater than the minimum to see that

‖Ptν − µ‖TV ≤
√
‖ν − µ‖TV

√√√√ Cν(V )
(φ ◦H−1

φ )(t)
.

We will apply this abstract theorem as well as Harris’s Theorem to the PDEs we
study to show convergence when they only satisfy a weaker confinement condition.
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1.3 Hypocoercivity

The name hypocoercivity was first used by Villani in his mémoire Hypocoercivity [62].
He credits the name to Thierry Gallay to emphasize the link with hypoellipticity. Let
us begin by giving a definition of hypocoercivity.

Definition 1.3.13. If L is a linear operator, and let f(t) to be the solution to the
equation

∂tf + Lf = 0, f(0) = f0,

at time t, if there exists constants C, λ, such that for all initial data f0 we have

‖f(t)‖ ≤ Ce−λt‖f0‖,

then we say the equation is hypocoercive in the norm ‖ · ‖.

Remark 1.3.14. The operator is called coercive if this inequality is true with C = 1.

This inequality on the semigroup is equivalent to the generator L having a spectral
gap in the norm ‖ · ‖.

A key aspect of hypocoercivity is to try and prove constructive theorems which give
explicitly C. In particular constructive estimates for C which are important because it
allows us to know the time after which the convergence effects shown by the inequality
will act. An inequality of the form shown in hypocoercivity does not give any conver-
gence until so if C is unknown and potentially very large the result may not hold in
the time frame for which the model is valid. This means it is not sufficient to know
the spectral gap for a non symmetric operator. However, even the spectral gap is not
computed when using many methods based on compactness.

Before hypocoercivity, there were many influential works showing convergence to
equilibrium. For example [29, 30, 31, 32, 33, 45, 61]. Another very influential paper was
[42] which studies convergence to equilibrium for the kinetic Fokker-Planck equation
with a confining potential in L2 norm. This paper shows what we would now call
hypocoercivity as well as hypoellipticity for the kinetic Fokker-Planck equation with
a confining potential. This is a first example of what we will call L2-hypocoercivity
which is theorems which show hypocoercivity directly in weighted L2 distances. This
paper was one of the influences for Villani’s seminal mémoire Hypocoercivity, [62]. In
this work Villani named and formalised the study of hypocoercivity. He proved a more
general result for hypoelliptic type operator in both H1 and entropy distance, as well as
reformulating the work in [102] and discussing this in the context of his earlier work with
Desvillettes [22, 23]. In this section we review in more detail the proofs of hypocoercivity
in H1, and in L2.
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1.3.1 H1 Hypocoercivity

First we review equations in what Villani calls Hörmander sum of squares form. That
is

∂tf +
∑
i

A∗Af +Bf = 0,

where A∗ is the conjugate of A in L2(µ) for some probability measure µ and B = −B∗.
A classical example of such an equation in this sum of squares form is the kinetic
Fokker-Planck equation.

∂tf + v · ∇xf = ∇v · (∇vf + vf),

Showing convergence to equilibrium for the kinetic Fokker-Planck equation is the main
goal of the methods based on Hörmander sum of squares form. The abstract form
introduced in [62] allows us to see the importance of the commutator brackets.

Theorem 1.3.15. Consider a linear operator L = A∗A + B (B antisymmetric), let
K = kerL and define C := [A,B]. Assume the existence of constants α, β such that

(1) A and A∗ commute with C; A commutes with A (i.e. each Ai commutes with each
Aj).

(2) [A,A∗] is α-bounded relatively to I and A, i.e

∀h ∈ H1/K, ‖[A,A∗]h‖ ≤ α(‖Ah‖2 + ‖h‖2).

(3) [B,C] is β-bounded relatively to A, A2, C and AC, i.e

∀h ∈ H1/K, ‖[B,C]h‖ ≤ β(‖Ah‖+ ‖A2h‖+ ‖Ch‖+ ‖ACh‖).

Then there is a scalar product ((·, ·)) on H1/K, defining a norm equivalent to the H1

norm, such that

∀h ∈ H1/K, ((h, Lh)) ≥ K(‖Ah‖2 + ‖Ch‖2),

for some constant K > 0, only depending on α and β. If, in addition,

∀h ∈ H1/K, (‖Ah‖2 + ‖Ch‖2) ≥ τ(h, h),

for some τ > 0, then there is a constant λ > 0, only depending on α, β and τ , such that

∀h ∈ H1/K, ((h, Lh)) ≥ λ((h, h)).

In particular, L is hypocoercive in H1/K:

‖e−tL‖H1/K→H1/K ≤ Ce−λt,

where both λ and C can be estimated explicitly in terms of upper bounds on α and β,
and a lower bound on k.
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This theorem works well for kinetic Fokker-Planck equation on the whole space.
Hypocoercivity is first shown for this equation in [55].

We recall the kinetic Fokker-Planck equation in the whole space

∂tf = −v · ∇xf +∇xU(x) · ∇vf + ∆vf + div(vf), (x, v) ∈ Rd × Rd,

with the equilibrium is given by

f∞ = 1
Z
e−(U(x)+ 1

2 |v|
2),

by a change of variable h = f/f∞, we have

∂th = −v · ∇xh+∇U(x) · ∇vh+ ∆vh− v · ∇vh,

Denote
µ(dxdv) = f∞dxdv

Here we can write the equation in the form

L = A∗A+B.

In this case A = ∇v, B = v · ∇x −∇U(x) · ∇v and define H1 = H1(µ)

‖h‖H1 =
∫
Rn×Rn

(|∇xh(x, v)|2 + |∇vh(x, v)|2)µ(dxdv),

by direct computation

[A,A∗] = I, C := [A,B] = ∇x, [A,C] = [A∗, C] = 0,

and
[B,C] = ∇2U(x) · ∇v.

We then have

Theorem 1.3.16. Let L be the operator for the kinetic Fokker-Planck equation, U be
a C2 potential in Rn, satisfying

|∇2U | ≤ c(1 + |∇U |),

for some constant c > 0 and there exist k > 0 such that∫
|∇xh(x)|2e−U(x)dx ≥ k[

∫
h2e−U − (

∫
he−U )2],

for all h good enough. Then there are constants C ≥ 0 and λ > 0, explicitly computable,
such that for all h0 ∈ H1(µ),

‖e−tLh0 −
∫
h0dµ‖H1(µ) ≤ Ce−λt‖h0‖H1(µ).
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1.3.2 L2 Hypocoercivity

L2 hypocoercivity was developed in [38] to show hypocoercivity for the linear relaxation
Boltzmann equation. It was then generalized in [19] to give a strategy for showing
hypocoercivity for a range of kinetic equations with one conservation law. We briefly
describe the results of [19]. Here we write an abstract kinetic equation

∂tf + Tf = Lf,

The idea of this theorem is that hypocoercivity can be seen as the combination of
two effects.

• Microscopic coercivity which is coercivity on the kinetic level. There exist λm > 0
such that

−〈Lf, f〉L2(µ−1) ≥ λm‖(I −Π)f‖L2(µ−1),

i.e. the equation pushes the solution toward the set of local equilibria.

• Macroscopic coercivity which is coercivity on the level of the hydrodynamic limit
equation. This is seen through coercivity of the operator T on the set of local
equilibria, there exists M > 0 such that

‖TΠf‖L2(µ−1) ≥ λM‖Πf‖L2(µ−1)

Theorem 1.3.17. (Dolbeault-Mouhot-Schmeiser ’15). Suppose that T, L satisfy the
microscopic and macroscopic coercivity assumptions. Suppose further that ΠTΠ = 0
and various auxiliary operators are bounded. Then, there exists constants C, λ > 0 such
that

‖et(L−T )f‖L2(µ−1) ≤ Ce−λt‖f‖L2(µ−1).

Like in H1 hypocoercivity the proof proceeds by showing an entropy-entropy pro-
duction inequality for a functional which is equivalent to our desired distance. In this
case the functional has a very different form. The proof of hypocoercivity in L2 then
begins by constructing the new norm to the space

H(f) = 1
2‖f‖

2
L2(µ−1) + ε〈Af, f〉L2(µ−1)

where
A = (1 + (TΠ)∗TΠ)−1(TΠ)∗.

In [38, 42] the new entropy constructed has a similar form. The main disadvantage of
this approach is that it can currently only deal with equations with one conservation law.
In general H1 hypocoercivity methods do not work for equations with a confinement
potential which are also not a diffusion. It can also be extended to work with equations
where the equilibrium measure is not explicit and so no Poincaré inequality is known
as in [4].
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1.4 List of works

In this section we list some of the works we will present in the following chapters.

1.4.1 The Kinetic Fokker-Planck equation with weak confinement

This work is accepted by Communication in Mathematical Sciences. In this work, we
consider the weak hypocoercivity issue for a solution f to the kinetic Fokker-Planck
equation

∂tf = Lf := −v · ∇xf +∇xV (x) · ∇vf + ∆vf + divv(vf), (1.4.7)

on a function f = f(t, x, v), with t ≥ 0, x ∈ Rd, v ∈ Rd. The evolution equation
(5.4.44) is complemented with an initial datum

f(0, ·) = f0 on R2d,

and we make the assumption on the confinement potential V

V (x) = 〈x〉γ , γ ∈ (0, 1),

where 〈x〉2 := 1 + |x|2. Let us make some elementary but fundamental observations.
First, the equation is mass conservative, that is

M(f(t, ·)) =M(f0), ∀t ≥ 0,

where we define the mass of f by

M(f) =
∫
Rd×Rd

fdxdv.

Next, we observe that the function

G = Z−1e−W , W = |v|
2

2 + V (x), Z ∈ R+ (1.4.8)

is a positive normalized steady state of the KFP model, precisely

LG = 0, G > 0, M(G) = 1,

by choosing the normalizing constant Z > 0 appropriately. Finally we observe that,
contrary to the case γ ≥ 1, a Poincaré inequality of the type

∃c > 0,
∫
Rd
|φ(x)|2 exp(−V (x))dx ≤ c

∫
Rd
|∇φ(x)|2 exp(−V (x))dx,

for any smooth function φ : Rd → R such that∫
Rd
φ(x) exp(−V (x))dx = 0,
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does not hold. Only a weaker version of this inequality remains true (see [43, 60]).
In particular, there is no spectral gap for the associated operator L, nor is there an
exponential trend to the equilibrium for the associated semigroup.

For a given weight function m, we will denote Lp(m) = {f |fm ∈ Lp} the associated
Lebesgue space and ‖f‖Lp(m) = ‖fm‖Lp the associated norm. The notation A . B

means A ≤ CB for some constant C > 0.

The main result is writes as follows.

Theorem 1.4.18. (1) For any initial datum f0 ∈ Lp(G−( p−1
p

+ε)), p ∈ [1,∞), ε >
0 small, the associated solution f(t, ·) to the kinetic Fokker-Planck equation (2.4.4)
satisfies

‖f(t, ·)−M(f0)G‖
Lp(G−

p−1
p )

. e−Ct
b‖f0 −M(f0)G‖

Lp(G−( p−1
p +ε))

,

for any b ∈ (0, γ
2−γ ) and some constant C > 0.

(2) For any initial datum f0 ∈ L1(m), m = Hk, H = |x|2+|v|2+1, k ≥ 1, the associated
solution f(t, ·) to the kinetic Fokker-Planck equation (2.4.4) satisfies

‖f(t, ·)−M(f0)G‖L1 . (1 + t)
− k

1− γ2 ‖f0 −M(f0)G‖L1(m).

The constants in the estimates only depend on γ, d, ε, p, k.

Remark 1.4.19. Let us emphasize the lost of tail control in both estimate in Theorem
2.4.39, which is reminiscent of decay estimates in sub-geometric contexts.

Remark 1.4.20. In the results above the constants can be explicitly estimated in terms
of the parameters appearing in the equation by following the calculations in the proofs.
We do not give them explicitly since we do not expect them to be optimal, but they are
nevertheless completely constructive.

Remark 1.4.21. Theorem 2.4.39 is also true when V (x) behaves like 〈x〉γ , that is for any
V (x) satisfying

C1〈x〉γ ≤ V (x) ≤ C2〈x〉γ , ∀x ∈ Rd,

C3|x|〈x〉γ−1 ≤ x · ∇xV (x) ≤ C4|x|〈x〉γ−1, ∀x ∈ Bc
R,

with BR is denote the ball centered at origin with radius R and Bc
R = Rd \BR, and

|D2
xV (x)| ≤ C5〈x〉γ−2, ∀x ∈ Rd,

for some constants Ci > 0, R > 0.

We carry out the proof by a combination of the L2 hypocoercivity method introduced
in Section 1.3, an interpolation between weight spaces which is common in sub-geometric
proofs and finally an hypoelliptic regularization. One advantage of the method in this
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paper is that it can yield convergence on a wider range of initial conditions and Lp space,
while previous proofs of convergence to equilibrium mainly using some strong L1 norms
(probability method) or L2 norms (PDE methods). Also the method provides a quan-
titative rate of convergence to the steady state, which is better than non-quantitative
type argument such as the consequence of Krein-Rutman theorem. While our method
also have some disadvantage, it requires the equation has an explicit steady state.

Perspectives

A natural next step would be try to extend the results to other spaces such as Wasser-
stein distance. And another next step might be to investigate weak hypocoercivity for
other commonly studied kinetic equations. The work in Chapters 4 shows some results
for some similar models with different methods. It would be interesting to see how this
method will work for other kinetic models.

1.4.2 Kinetic Fokker-Planck type equation with general confinement

In this work, we consider the kinetic Fokker-Planck (KFP for short) equation with
general force

∂tf = Lf := −v · ∇xf +∇xV (x) · ∇vf + ∆vf + divv(∇vW (v)f), (1.4.9)

for a density function f = f(t, x, v), with t ≥ 0, x ∈ Rd, v ∈ Rd, with

V (x) = 〈x〉
γ

γ
, γ ≥ 1, W (v) = 〈v〉

β

β
, β ≥ 2

where 〈x〉2 := 1 + |x|2, and the kinetic Fitzhugh-Nagumo equation

∂tf := Lf = ∂x(A(x, v)f) + ∂v(B(x, v)f) + ∂2
vvf (1.4.10)

with
A(x, v) = ax− bv, B(x, v) = v(v − 1)(v − λ) + x

for some a, b, λ > 0. The evolution equations are complemented with an initial datum

f(0, x, v) = f0(x, v) on R2d.

It’s easily seen that both equations are mass conservative, that is

M(f(t, ·)) =M(f0),

And we can introduce the main result.
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Theorem 1.4.22. (1) When 2 ≤ β, 1 ≤ γ, there exist a weight function m > 0
and a nonnegative normalized steady state G ∈ L1(m) such that for any initial da-
tum f0 ∈ L1(m), the associated solution f(t, ·) of the kinetic Fokker-Planck equation
(1.4.9) satisfies

‖f(t, ·)−M(f0)G‖L1(m) ≤ Ce−λt‖f0 −M(f0)G‖L1(m),

for some constant C, λ > 0.
(2) The same conclusion holds for the kinetic Fitzhugh-Nagumo equation (1.4.10).

In the results above the constants C and λ can be explicitly estimated in terms of
the parameters appearing in the equation by following the calculations in the proofs.
We do not give them explicitly since we do not expect them to be optimal, but they are
nevertheless completely constructive.

Remark 1.4.23. Similarly as before, Theorem 1.4.22 is also true when V (x) behaves like
〈x〉γ and W (v) behaves like 〈v〉β, that is for any V (x) satisfying

C1〈x〉γ ≤ V (x) ≤ C2〈x〉γ , ∀x ∈ Rd,

C3|x|〈x〉γ−1 ≤ x · ∇xV (x) ≤ C4|x|〈x〉γ−1, ∀x ∈ Bc
R,

and
|Dn

xV (x)| ≤ Cn〈x〉γ−2, ∀x ∈ Rd, ∀n ≥ 2,

for some constant Ci > 0, R > 0, and similar estimates holds for W (v).

For the kinetic Fitzhugh-Nagumo equation (1.4.10), an exponential convergence with
non-quantitative rate to the convergence has already been proved in [53], our method
improves the result to a quantitative rate.

We carry out all of our proofs using variations of Harris’s Theorem for Markov
semigroup introduced in Section 1.2. One advantage of the Harris method is that it
directly yields convergence for a wide range of initial conditions, while previous proofs of
convergence to equilibrium mainly use some strongly weighted L2 orH1 norms (typically
with a weight which is the inverse of a Gaussian). The Harris method also gives existence
of stationary solutions under general conditions; in some cases these are explicit and
easy to find, but in other cases such as the two models above they can be nontrivial.
Also the Harris method provides a quantitative rate of convergence to the steady state,
which is better than non-quantitative type argument such as the consequence of Krein
Rutman theorem.

Perspective

The most natural next step from this proof would be to try to extend it to subgeometric
cases. This would be more challenging since the proof uses Nash’s inequality, which does
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not allow us to interpolate between weights, which is common in proof for subgeometric
cases.

Another direction would be to extend this method to other kernels. For example,
try to use such methods work for a fractional Laplacian operator.

Also a good direction would be to think about what would happen when at least one
of γ and β is smaller.In a weak case there maybe no exponential convergence. When all
γ and β are weak, the equation would probably behave like a heat equation.

1.4.3 Hypocoercivity via Harris’s theorem for kinetic equations with
jumps

This work is done in collaboration with José Cañizo, Josephine Evans and Havva
Yoldaş. The work is accepted by Kinetic and Related Models.

Harris’s theorem has been used to show convergence to equilibrium for kinetic equa-
tions. In [50] they show convergence for kinetic Fokker-Planck equations using Harris’s
theorem. They do not verify the minorisation condition with a quantitative method.
Therefore the end result is not quantitative. In [5] they show convergence to equilibrium
using Harris’s theorem for various scattering equations that includes equations similar
to the ones studied in these chapters. Again it gives rates which are not quantitative.
In [16] the authors use Doeblin’s theorem to prove quantitative rates of convergence for
some non-linear kinetic equations on the torus with a non equilibrium steady state.

In this work we study 4 different kinetic equations with jumps. The linear relaxation
Boltzmann equation and the linear Boltzmann equation both with a confining potential
and on the torus. We show convergence to equilibrium in a weighted total variation
distance with quantitative rates. The weighting is comparable to U(x) + |x|2 + |v|2

where U(x) is the confining potential. A similar method using Harris’s theorem to get
quantitative rates for jump equation has been used in [14, 34] to show convergence to
equilibrium for equations modelling biological processes. Now we briefly introduce the
notations and the results.

We recall the linear relaxation Boltzmann equation is given by

∂tf + v · ∇xf − (∇xΦ · ∇vf) = L+f − f, (1.4.11)

where
L+f =

(∫
f(t, x, u)du

)
M(v),

Φ is a C2 potential and M(v) := (2π)−d/2 exp(−|v|2/2) as before, similarly the linear
Boltzmann equation is given by

∂tf + v · ∇xf − (∇xΦ · ∇vf) = Q(f,M), (1.4.12)

where Q is the Boltzmann operator

Q(f, g) =
∫
Rd

∫
Sd−1

B(|v − v∗|, σ)
(
f(v′)g(v′∗)− f(v)g(v∗)

)
dσ dv∗,
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v′ = v + v∗
2 + |v − v∗|2 σ, v′∗ = v + v∗

2 − |v − v∗|2 σ,

and B is the collision kernel. We assume that B is a hard kernel and can be written as
a product

B(|v − v∗|, σ) = |v − v∗|γ b
(
σ · v − v∗
|v − v∗|

)
, (1.4.13)

for some γ ≥ 0 and b integrable and uniformly positive on [−1, 1]; that is, there exists
Cb > 0 such that

b(z) ≥ Cb for all z ∈ [−1, 1]. (1.4.14)

As before, alternatively we consider the same equation posed for x ∈ Td, v ∈ Rd, without
any potential Φ:

∂tf + v · ∇xf = Q(f,M).

The precise results are the following.

Theorem 1.4.24 (Exponential convergence results on the torus). Suppose that t 7→ ft

is the solution to (1.4.9) or (1.4.12) with initial data f0 ∈ P(Td × Rd). In the case of
equation (1.4.12) we also assume (1.4.13) with γ ≥ 0 and (1.4.14). Then there exist
constants C > 0, λ > 0 (independent of f0) such that

‖ft − µ‖∗ ≤ Ce−λt‖f0 − µ‖∗,

where µ is the only equilibrium state of the corresponding equation in P(Td ×Rd) (that
is, µ(x, v) = M(v)). The norm ‖ · ‖∗ is just the total variation norm ‖ · ‖TV for equation
(1.4.11),

‖f0 − µ‖∗ = ‖f0 − µ‖TV :=
∫
Rd

∫
Td
|f0 − µ|dx dv for equation (1.4.11),

and it is a weigthed total variation norm in the case of equation (1.4.12):

‖f0 − µ‖∗ =
∫
Rd

∫
Td

(1 + |v|2)|f0 − µ|dx dv for equation (1.4.12).

Theorem 1.4.25 (Exponential convergence results with a confining potential). Suppose
that t 7→ ft is the solution to (1.4.11) or (1.4.12) with initial data f0 ∈ P(Rd ×Rd) and
a potential Φ ∈ C2(Rd) which is bounded below, and satisfies

x · ∇xΦ(x) ≥ γ1|x|2 + γ2Φ(x)−A, x ∈ Rd,

for some positive constants γ1, γ2, A. Define 〈x〉 =
√

1 + |x|2. In the case of equation
(1.4.12) we also assume (1.4.13), (1.4.14) and

x · ∇xΦ(x) ≥ γ1〈x〉γ+2 + γ2Φ(x)−A,

for some positive constants γ1, γ2, A. Then there exist constants C > 0, λ > 0 (indepen-
dent of f0) such that

‖ft − µ‖∗ ≤ Ce−λt‖f0 − µ‖∗,
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where µ is the only equilibrium state of the corresponding equation in P(Rd × Rd),

dµ =M(v)e−Φ(x)dvdx.

The norm ‖ · ‖∗ is a weighted total variation norm defined by

‖ft − µ‖∗ :=
∫ (

1 + 1
2 |v|

2 + Φ(x) + |x|2
)
|ft − µ|dv dx.

Theorem 1.4.26 (Subgeometric convergence results with weak confining potentials).
Suppose that t 7→ ft is the solution to (1.4.11) in the whole space with a confining
potential Φ ∈ C2(Rd). Define 〈x〉 =

√
1 + |x|2. Assume that for some β in (0, 1) the

confining potential satisfies

x · ∇xΦ(x) ≥ γ1〈x〉2β + γ2Φ(x)−A,

for some positive constants γ1, γ2, A. Then we have that there exists a constant C > 0
such that

‖ft−µ‖TV ≤ min
{
‖f0 − µ‖TV, C

∫
f0(x, v)

(
1 + 1

2 |v|
2 + Φ(x) + |x|2

)
(1 + t)−β/(1−β)

}
.

Similarly if t 7→ ft is the solution to (1.4.12) in the whole space, satisfies (1.4.13),
(1.4.14) and

x · ∇xΦ(x) ≥ γ1〈x〉β+1 + γ2Φ(x)−A, Φ(x) ≤ γ3〈x〉1+β,

for some positive constants γ1, γ2, A, β, γ3. Then we have that there exists a constant
C > 0 such that

‖ft − µ‖TV ≤ min
{
‖f0 − µ‖TV, C

∫
f0(x, v)

(
1 + 1

2 |v|
2 + Φ(x) + |x|

)
(1 + t)−β

}
.

In fact, our methods works for any kinetic equation with jump as

∂tf = −v · ∇xf +∇U(x) · ∇vf =
∫
Rd
K(v, u)f(x, v)dv − f,

and true when Rd is replaced by some ball contains the origin. For example this method
works for the "run-and-tumble" equation discussed in [51].

∂tf = Lf = −v · ∇xf +
∫
V
K ′f ′ −Kfdv′,

with
K = 1 + 1

2 sign(x · v), V = B(0, R)

and K = K(x, v, v′) ≥ 0. Here we used the shorthands f ′ = f(t, x, v′) and K ′ =
K(x, v′, v).
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Perspectives

This method works very well for kinetic equations with jumps. It seems hopeful that
it could be applied to many more models. It seems likely that these ideas could be
applied to relaxation equations with spatially inhomogeneous jump rates. For example
it is an open problem to show quantitative rates of convergence to equilibrium for the
equations

∂tf = −v · ∇xf +∇U(x) · ∇vf + σ(x)(Πf − f),

where σ(x) is a function which vanishes at more than isolated points. It is known
in [2, 3] that this equation will converge exponentially fast to the equilibrium in L1

provided σ(x) satisfies the geometric control condition but there is no quantitative rate.
Another possible application would be to look at the linear Boltzmann equation

with soft potentials. In this chapter we look at the hard potential case and with cut off.
There is a version of Harris’s theorem which will give sub geometric rates of convergence
given a weaker Lyapunov condition. It seems likely that we could apply this to the linear
Boltzmann equation with cut off and soft potentials to establish rates of convergence.

Also another direction would be to discuss if the results would work for other spaces
than L1 (Harris method) or L2 (DMS methods).



26 CHAPTER 1. INTRODUCTION



Chapter 2

Introduction en Français

Cette thése concerne principalement la convergence vers l’équilibre pour les équations
cinétiques. Nous introduisons d’abord la théorie cinétique et l’équation de Boltzmann.
Ensuite, nous introduisons une gamme d’équations qui seront discutées tout au long de
ce travail. Aprés cela, nous passerons en revue quelques travaux classiques existants
sur la convergence vers l’équilibre, en mettant l’accent sur l’hypocoercivité. Enfin, nous
décrivons briévement le contenu de chacun des chapitres.

2.1 Équation Cinétique

La théorie cinétique a été développée au 19éme siécle, notamment par Boltzmann et
Maxwell, dans la modélisation des gaz dilués. Les équations cinétiques modélisent
l’évolution d’un gaz á une échelle intermédiaire entre la description microscopique don-
née par les lois de Newton et une description fluide macroscopique. Si nous avons un
systéme de N particules effectuant une dynamique déterministe ou stochastique, nous
pouvons écrire leur distribution conjointe au temps t

FN (t, z1, z2..., zn) ≥ 0.

Dans ce cas, zi est soit vi, la vitesse de la iéme particule, soit (xi; vi), la position et la
vitesse de la iéme particule. Nous observons le cas oú cette équation modélise un grand
nombre d’agents impossibles á distinguer, par exemple des particules de gaz. Nous
étudions les particules qui interagissent dans un gaz selon les lois de Newton, puis elles
suivront les équations suivantes:

ẋi = vi

v̇i =
∑
i 6=j

F (i, j) + F,

27
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oú F (j, i) est la force agissant sur la particule i due á la particule j et F est une force
externe. Pour les gaz de collision, l’équation obtenue dans ce processus, via l’échelle de
Boltzmann-Grad, est l’équation de Boltzmann

∂tf + v · ∇xf = Q(f, f),

oú

Q(f, g) =
∫
Rd

∫
Sd−1

B(|v − v∗|, (v − v∗) · σ)(f(v′)g(v′∗)− f(v)g(v∗))dσdv∗

avec

v′ = v + v∗
2 + |v − v∗|2 σ, v′∗ = v + v∗

2 − |v − v∗|2 σ.

B est appelé le noyau de collision. Ici f = f(t, x, v) représente la densité dans l’espace
de phase d’une seule particule dans l’ensemble et t ≥ 0, x ∈ Rd, v ∈ Rd. Nous pouvons
observer ici la structure générale d’un équation cinétique de collision

∂tf + v · ∇xf = L(f),

oú l’opérateur v · ∇xf provient du terme de transport défini dans la loi de Newton.
L’opérateur L(f) n’agit que sur la variable de vitesse v, en mettant

ρ(x) =
∫
f(x, v)dv,

la densité locale
u(x) = 1

ρ(x)

∫
vf(x, v)dv,

la vitesse locale et
T (x) = 1

ρ(x)

∫
|u− u(x)|2f(x, v)dv,

la température locale. La solution á l’équilibre de l’équation de Boltzmann a été dérivée
par Maxwell

M(v) = ρ(2πT )−d/2 exp(− 1
2T |v|

2)

Dans la suite de cette thése, nous utilisons la notation M(v) pour désigner la nor-
malisée Maxwellien avec u = 0, ρ = 1 et T = 1. C’est

M(v) = (2π)−d/2 exp(−|v|
2

2 ).

Nous pouvons également regarder les équations oú les potentiels sont confiné.

∂tf + v · ∇xf −∇U(x) · ∇vf = Q(f, f).

oú U(x) représente une force de confinement externe. Dans ce qui suit, nous introduisons
quelques équations qui sont étudiées dans la thése.
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2.1.1 Équation de Fokker-Planck Cinétique

L’équation de Fokker-Planck cinétique est l’une des équations les plus simples de la
théorie cinétique. C’est une version cinétique de l’équation de Fokker-Planck développée
par Fokker [28] et Planck [59]

∂tf = ∇v · (∇vf + vf),

L’équation de Fokker-Planck cinétique est

∂tf + v · ∇xf −∇U(x) · ∇vf = ∇v · (∇vf + vf),

sur la densité f = f(t, x, v), t ≥ 0, v ∈ Rd, x ∈ Td ou x ∈ Rd. L’état d’équilibre associé
est

e−U(x)M(v) = exp(−(U(x) + |v|
2

2 )),

Nous examinons l’équation de Fokker-Planck cinétique en Chapitre 3 et 4.

2.1.2 Équation de relaxation linéaire

L’équation de relaxation linéaire est l’exemple le plus simple d’équation de diffusion de
théorie cinétique. Elle est également connue sous le nom d’équation de BGK linéaire

∂tf + v · ∇xf −∇U(x) · ∇vf = ΠMf − f,

sur la densité f = f(t, x, v), t ≥ 0, v ∈ Rd, x ∈ Td ou x ∈ Rd, avec

ΠMf = (
∫
Rd
f(x, u)du)M(v),

l’espace de la phase est soit Rd × Rd ou Td × Rd. L’état d’équilibre est

e−U(x)M(v) = exp(−(U(x) + |v|
2

2 )),

Nous examinons l’équation de relaxation linéaire en Chapitre 5.
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2.1.3 Équation de Boltzmann linéaire

L’équation de Boltzmann linéaire est

∂tf + v · ∇xf −∇U(x) · ∇vf = Q(f,M),

oú Q est l’opérateur de collision de Boltzmann donné par

Q(f, g) =
∫
Rd

∫
Sd−1

B(|v − v∗|, (v − v∗) · σ)(f(v′)g(v′∗)− f(v)g(v∗))dσdv∗

et M est défini avant. Cette équation est beaucoup plus simple que l’équation de Boltz-
mann.

Nous examinons l’équation de Boltzmann linéaire en Chapitre 5.

2.2 Théoréme de Harris

Le théoréme de Harris [38, 41, 52] est un résultat de la théorie des processus de Markov.
Nous commençons par regarder le théoréme de Doeblin. Le théoréme de Harris est

un générateur naturel du théoréme de Doeblin. Les théorémes de Harris et de Doeblin
sont généralement énoncés pour un temps fixe t∗. Dans nos théorémes, nous travaillons
pour choisir un t∗ approprié.

Hypothesis 2.2.27 (Doeblin). Si (Pt)t≥0 est un semi-groupe stochastique, et il existe
t∗ > 0, une distribution de probabilité ν et α ∈ (0, 1) tel que, pour tout z dans l’espace
d’état, nous avons

Pt∗δz ≥ αν.

Theorem 2.2.28 (Doeblin). Si (Pt)t≥0 est un semi-groupe stochastique satisfaisant
l’hypothése avant, pour deux mesures de probabilité µ1 et µ2 et pour tout entier n ≥ 0

‖Pnt∗µ1 − Pnt∗µ2‖TV ≤ (1− α)n‖µ1 − µ2‖TV. (2.2.1)

En conséquence, le semigroupe a un équilibre unique µ∗, et pour tous les µ

‖Pt(µ− µ∗)‖TV ≤
1

1− αe
−λt‖µ− µ∗‖TV, t ≥ 0, (2.2.2)
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oú

λ := log(1− α)
t∗

> 0.

Le théoréme de Harris étend le théoréme de Doeblin.

Hypothesis 2.2.29 (Lyapunov). Il existe une fonction V : Ω → [0,∞) et constantes
D ≥ 0, α ∈ (0, 1) tel que

(Pt∗V )(z) ≤ αV (z) +D.

Remark 2.2.30. Dans notre situation oú nous avons une équation sur la loi f(t), cela
équivaut á la déclaration

∫
S
f(t, z)V (z)dz ≤ α

∫
S
f(0, z)V (z)dz +D.

Nous vérifions cela par

d
dt

∫
S
f(t, z)V (z)dz ≤ −λ

∫
S
f(t, z)V (z)dz +K,

pour certaines constantes K and λ, ce qui implique la condition pour α = e−λt et
D = K

λ (1− e−λt) ≤ Kt.

Hypothesis 2.2.31. (Harris) Il existe une mesure de probabilité ν et une constante
β ∈ (0, 1) tel que

inf
z∈C
Pt∗δz ≥ βν,

oú

C = {z|V (z) ≤ R}

pour une R > 2D/(1− α).

Dénoter
ρa(µ1, µ2) =

∫
(1 + aV (x, v))|µ1 − µ2|(dxdv).

Theorem 2.2.32 (Harris). Si les deux hypothéses sont vérifiées, il existe ᾱ ∈ (0, 1) et
a > 0 tels que

ρa(Pt∗µ1,Pt∗µ2) ≤ ᾱρa(µ1, µ2). (2.2.3)
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Il existe des versions du théoréme de Harris adaptées aux conditions de Lyapunov
plus faibles.

Theorem 2.2.33. Il existe une fonction V tel que

LV ≤ K − φ(V ),

pour une constantes K and une fonction strictement concave φ : R+ → R avec φ(0) = 0
and φ(∞) = ∞ et Il existe une mesure de probabilité ν et une constante β ∈ (0, 1) tel
que

inf
z∈C
Pt∗δz ≥ βν,

oú
C = {z|V (z) ≤ R}

. Nous avons

• Il existe une mesure invariante µ et∫
φ(V (z))dµ ≤ K.

• Hφ est

Hφ =
∫ u

1

ds
φ(s) .

. Ensuite, il existe une constante C telle que

‖Ptν − µ‖TV ≤
Cν(V )
H−1
φ (t)

+ C

(φ ◦H−1
φ )(t)

pour toute mesure de probabilité ν.

2.3 Hypocoercivité

Le nom hypocoercivité a été utilisé pour la premiére fois par C. Villani dans sa mémoire
em Hypocoercivity [62]. Commençons par donner un définition de l’hypocoercivité.

Definition 2.3.34. Si L est un opérateur linéaire, et que f(t) soit la solution á l’équation

∂tf + Lf = 0, f(0) = f0,

au temps t, s’il existe des constantes C, λ, telles que pour toutes les données initiales f0

nous avons
‖f(t)‖ ≤ Ce−λt‖f0‖,

on dit alors que l’équation est hypocoercive dans la norme ‖ · ‖.

Remark 2.3.35. L’opérateur est appelé coercitif si cette inégalité est vraie avec C = 1.

Cette inégalité sur le semi-groupe est équivalente au générateur L ayant un intervalle
spectral dans la norme ‖ · ‖.
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2.3.1 Hypocoercivité dans H1

On considére les équations du type

∂tf +
∑
i

A∗Af +Bf = 0,

oú A∗ est le conjugué de A dans L2(µ) pour une mesure de probabilité µ et B = −B∗.
Un exemple classique est l’équation de Fokker-Planck cinétique

∂tf + v · ∇xf = ∇v · (∇vf + vf),

Theorem 2.3.36. Considérons un opérateur linéaire L = A∗A+B (B∗ = −B), définir
K = kerL, C := [A,B]. Supposer l’existence de constantes α, β tel que

(1) Pour A et A∗

[A,C] = [A∗, C] = [A,A∗] = 0,

(2) Pour [A,A∗]

∀h ∈ H1/K, ‖[A,A∗]h‖ ≤ α(‖Ah‖2 + ‖h‖2).

(3) Pour [B,C]

∀h ∈ H1/K, ‖[B,C]h‖ ≤ β(‖Ah‖+ ‖A2h‖+ ‖Ch‖+ ‖ACh‖).

Ensuite, il existe un produit scalaire((·, ·)) sur H1/K, équivalent á H1 norm, tel que

∀h ∈ H1/K, ((h, Lh)) ≥ K(‖Ah‖2 + ‖Ch‖2),

pour une constante K > 0, seulement dépendant de α et β. Si, en plus

∀h ∈ H1/K, (‖Ah‖2 + ‖Ch‖2) ≥ τ(h, h),

pour une τ > 0, il existe une constante λ > 0, seulement dépendant de α, β et τ , tel que

∀h ∈ H1/K, ((h, Lh)) ≥ λ((h, h)).

En particulier, L est hypocoercif dans H1/K:

‖e−tL‖H1/K→H1/K ≤ Ce−λt.

Ce théoréme fonctionne bien pour l’équation de Fokker-Planck cinétique. Nous
rappelons l’équation de Fokker-Planck cinétique

∂tf = −v · ∇xf +∇xU(x) · ∇vf + ∆vf + div(vf), (x, v) ∈ Rd × Rd,

avec l’équilibre est
f∞ = 1

Z
e−(U(x)+ 1

2 |v|
2),
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dénoter h = f/f∞, nous avons

∂th = −v · ∇xh+∇U(x) · ∇vh+ ∆vh− v · ∇vh,

dénoter
µ(dxdv) = f∞dxdv

nous avons
L = A∗A+B.

avec
A = ∇v, B = v · ∇x −∇U(x) · ∇v

et H1 = H1(µ)

‖h‖H1 =
∫
Rn×Rn

(|∇xh(x, v)|2 + |∇vh(x, v)|2)µ(dxdv),

nous avons

[A,A∗] = I, C := [A,B] = ∇x, [A,C] = [A∗, C] = 0,

et
[B,C] = ∇2U(x) · ∇v.

Nous avons

Theorem 2.3.37. Soit L l’opérateur de l’équation de Fokker-Planck cinétique, U est
un potentiel C2 dans Rn, et

|∇2U | ≤ c(1 + |∇U |),

pour une constante c > 0 et il existe k > 0 tel que

∫
|∇xh(x)|2e−U(x)dx ≥ k[

∫
h2e−U − (

∫
he−U )2],

pour tout h. Ensuite, il existe des constantes C ≥ 0 et λ > 0, telles que pour tout
h0 ∈ H1(µ)

‖e−tLh0 −
∫
h0dµ‖H1(µ) ≤ Ce−λt‖h0‖H1(µ).
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2.3.2 Hypocoercivité dans L2

L’hypocoercivité en L2 a été développée dans [38] pour montrer une hypocoercivité pour
la équation de relaxation linéaire. Il a ensuite été généralisé dans [19] pour donner une
stratégie de démonstration de l’hypocoercivité pour une gamme d’équations cinétiques
avec une loi de conservation. Pour

∂tf + Tf = Lf,

Theorem 2.3.38. (Dolbeault-Mouhot-Schmeiser ’15). Si nous avons

• Il existe λm > 0 tel que

−〈Lf, f〉L2(µ−1) ≥ λm‖(I −Π)f‖L2(µ−1),

• Il existe M > 0 tel que

‖TΠf‖L2(µ−1) ≥ λM‖Πf‖L2(µ−1)

Supposons en outre que ΠTΠ = 0 et que les opérateurs sont borné. Ensuite, il existe
des constantes C, λ > 0 tel que

‖et(L−T )f‖L2(µ−1) ≤ Ce−λt‖f‖L2(µ−1).

La preuve commence par la construction d’une nouvelle norme

H(f) = 1
2‖f‖

2
L2(µ−1) + ε〈Af, f〉L2(µ−1)

avec
A = (1 + (TΠ)∗TΠ)−1(TΠ)∗.

2.4 Liste des résultats

Dans cette section, nous énumérons certains des résultats présentés dans les chapitres
suivants.

2.4.1 Équation de Fokker-Planck cinétique avec confinement faible

Ce travail est accepté par Communication in Mathematical Sciences. Dans ce travail,
nous considérons la équation de Fokker-Planck cinétique avec confinement faible

∂tf = Lf := −v · ∇xf +∇xV (x) · ∇vf + ∆vf + divv(vf), (2.4.4)
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sur une fonction f = f(t, x, v), avec t ≥ 0, x ∈ Rd, v ∈ Rd. et

f(0, ·) = f0,

le potentiel de confinement V est

V (x) = 〈x〉γ , γ ∈ (0, 1),

oú 〈x〉2 := 1 + |x|2. La masse est conservée

M(f(t, ·)) =M(f0), ∀t ≥ 0,

oú la masse de f est
M(f) =

∫
Rd×Rd

fdxdv.

Et nous avons
G = Z−1e−W , W = |v|

2

2 + V (x), Z ∈ R+ (2.4.5)

est un état stable normalisé et positif

LG = 0, G > 0, M(G) = 1,

pour une constante Z > 0.
Pour une fonction m, on note Lp(m) = {f |fm ∈ Lp} l’espace de Lebesgue associé

et ‖f‖Lp(m) = ‖f‖Lp la norme associée. La notation A . B signifie A ≤ CB pour une
constante C > 0.

Le résultat principal est

Theorem 2.4.39. (1) Pour toute f0 ∈ Lp(G−( p−1
p

+ε)), p ∈ [1,∞), ε > 0 small, la
solution f(t, ·) á l’équation de Fokker-Planck cinétique est

‖f(t, ·)−M(f0)G‖
Lp(G−

p−1
p )

. e−Ct
b‖f0 −M(f0)G‖

Lp(G−( p−1
p +ε))

,

Pour toute b ∈ (0, γ
2−γ ) pour une constante C > 0.

(2) Pour toute f0 ∈ L1(m), m = Hk, H = |x|2 + |v|2 + 1, k ≥ 1, la solution f(t, ·) á
l’équation de Fokker-Planck cinétique est

‖f(t, ·)−M(f0)G‖L1 . (1 + t)
− k

1− γ2 ‖f0 −M(f0)G‖L1(m).

Remark 2.4.40. Dans les résultats ci-dessus, les constantes peuvent être explicitement
estimées en termes de les paramétres apparaissant dans l’équation en suivant les calculs
dans les preuves. Nous ne les donnons pas explicitement car nous ne nous attendons
pas á ce qu’ils soient optimaux, mais ils sont néanmoins complétement constructifs.
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Remark 2.4.41. Le théoréme est également vrai si V (x) satisfait

C1〈x〉γ ≤ V (x) ≤ C2〈x〉γ , ∀x ∈ Rd,

C3|x|〈x〉γ−1 ≤ x · ∇xV (x) ≤ C4|x|〈x〉γ−1, ∀x ∈ Bc
R,

avec BR, la balle centrée á l’origine avec le rayon R et Bc
R = Rd \BR, et

|D2
xV (x)| ≤ C5〈x〉γ−2, ∀x ∈ Rd,

pour une constante Ci, R > 0.

2.4.2 Équation de Fokker-Planck cinétique avec force générale

Dans ce travail, nous considérons la équation de Fokker-Planck cinétique avec force
générale

∂tf = Lf := −v · ∇xf +∇xV (x) · ∇vf + ∆vf + divv(∇vW (v)f),

sur une fonction f = f(t, x, v), avec t ≥ 0, x ∈ Rd, v ∈ Rd. et

f(0, ·) = f0,

et avec
V (x) = 〈x〉

γ

γ
, γ ≥ 1, W (v) = 〈v〉

β

β
, β ≥ 2,

oú 〈x〉2 := 1 + |x|2, et l’équation de Fitzhugh-Nagumo cinétique

∂tf := Lf = ∂x(A(x, v)f) + ∂v(B(x, v)f) + ∂2
vvf

avec
A(x, v) = ax− bv, B(x, v) = v(v − 1)(v − λ) + x

pour une constante a, b, λ > 0. La masse est conservée

M(f(t, ·)) =M(f0), ∀t ≥ 0,

Le résultat principal est

Theorem 2.4.42. (1) Oú 2 ≤ β, 1 ≤ γ, il existe une fonction m > 0 et un état stable
normalisé non négatif G ∈ L1(m). Pour toute f0 ∈ L1(m), la solution f(t, ·) á l’équation
de Fokker-Planck cinétique est

‖f(t, ·)−M(f0)G‖L1(m) ≤ Ce−λt‖f0 −M(f0)G‖L1(m),
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pour une constante C, λ > 0.
(1) Il existe une fonction m > 0 et un état stable normalisé non négatif G ∈ L1(m).
Pour toute f0 ∈ L1(m), la solution f(t, ·) á l’équation de Fitzhugh-Nagumo cinétique
est

‖f(t, ·)−M(f0)G‖L1(m) ≤ Ce−λt‖f0 −M(f0)G‖L1(m).

Remark 2.4.43. Dans les résultats ci-dessus, les constantes peuvent être explicitement
estimées en termes de les paramétres apparaissant dans l’équation en suivant les calculs
dans les preuves. Nous ne les donnons pas explicitement car nous ne nous attendons
pas á ce qu’ils soient optimaux, mais ils sont néanmoins complétement constructifs.

Remark 2.4.44. Le théoréme est également vrai si V (x) satisfait

C1〈x〉γ ≤ V (x) ≤ C2〈x〉γ , ∀x ∈ Rd,

C3|x|〈x〉γ−1 ≤ x · ∇xV (x) ≤ C4|x|〈x〉γ−1, ∀x ∈ Bc
R,

avec BR, la balle centrée á l’origine avec le rayon R et Bc
R = Rd \BR, et

|D2
xV (x)| ≤ C5〈x〉γ−2, ∀x ∈ Rd,

pour une constante Ci, R > 0, et pareil pour W (v).

2.4.3 Hypocoercivité via le théoréme de Harris pour les équations
cinétiques

Ce travail est en collaboration avec José Cañizo, Josephine Evans and Havva Yoldaş.
Ce travail est accepté par Kinetic and Related Models.

L’équation de relaxation linéaire est

∂tf + v · ∇xf − (∇xΦ · ∇vf) = L+f − f,

oú

L+f =
(∫

f(t, x, u)du
)
M(v),

Φ est C2 and M(v) := (2π)−d/2 exp(−|v|2/2). L’équation de Boltzmann linéaire est

∂tf + v · ∇xf − (∇xΦ · ∇vf) = Q(f,M),
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oú Q est le opérateur Boltzmann

Q(f, g) =
∫
Rd

∫
Sd−1

B(|v − v∗|, σ)
(
f(v′)g(v′∗)− f(v)g(v∗)

)
dσ dv∗,

avec

v′ = v + v∗
2 + |v − v∗|2 σ, v′∗ = v + v∗

2 − |v − v∗|2 σ,

Nous supposons que B est

B(|v − v∗|, σ) = |v − v∗|γ b
(
σ · v − v∗
|v − v∗|

)
,

pour une γ ≥ 0 et il existe Cb > 0 tel que

b(z) ≥ Cb ∀z ∈ [−1, 1].

nous considérons aussi pour x ∈ Td, v ∈ Rd, sans potentiel Φ:

∂tf + v · ∇xf = Q(f,M).

Le résultat principal est

Theorem 2.4.45. Si t 7→ ft est la solution aux deux équations avec les données initiales
f0 ∈ P(Td × Rd) . Ensuite, il existe des constantes C > 0, λ > 0 tel que

‖ft − µ‖∗ ≤ Ce−λt‖f0 − µ‖∗,

oú µ est l’état d’équilibre dans P(Td × Rd) ( µ(x, v) = M(v)). La norme ‖ · ‖∗ est la
norme de variation totale ‖ · ‖TV pour l’équation de relaxation linéaire

‖f0 − µ‖∗ = ‖f0 − µ‖TV :=
∫
Rd

∫
Td
|f0 − µ| dx dv

et c’est une norme de variation totale pondérée pour l’équation de Boltzmann linéaire

‖f0 − µ‖∗ =
∫
Rd

∫
Td

(1 + |v|2)|f0 − µ| dx dv
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Theorem 2.4.46. Si t 7→ ft est la solution aux deux équations avec les données initiales
f0 ∈ P(Rd × Rd), Φ ∈ C2(Rd) et

x · ∇xΦ(x) ≥ γ1|x|2 + γ2Φ(x)−A, x ∈ Rd,

pour une constantes γ1, γ2, A. Et dans le cas de l’équation de Boltzmann linéaire,

x · ∇xΦ(x) ≥ γ1〈x〉γ+2 + γ2Φ(x)−A,

pour une constantes γ1, γ2, A.Ensuite, il existe des constantes C > 0, λ > 0 tel que

‖ft − µ‖∗ ≤ Ce−λt‖f0 − µ‖∗,

oú µ est l’état d’équilibre dans P(Rd × Rd)

dµ =M(v)e−Φ(x)dvdx.

La norme ‖ · ‖∗ est la norme de variation totale pondérée

‖ft − µ‖∗ :=
∫ (

1 + 1
2 |v|

2 + Φ(x) + |x|2
)
|ft − µ|dv dx.

Theorem 2.4.47. Si t 7→ ft est la solution aux l’équation de relaxation linéaire avec
les données initiales f0 ∈ P(Rd × Rd), Φ ∈ C2(Rd) et

x · ∇xΦ(x) ≥ γ1〈x〉2β + γ2Φ(x)−A,

pour une constantes γ1, γ2, A, β ∈ (0, 1). Ensuite, il existe des constantes C > 0 tel que

‖ft−µ‖TV ≤ min
{
‖f0 − µ‖TV, C

∫
f0(x, v)

(
1 + 1

2 |v|
2 + Φ(x) + |x|2

)
(1 + t)−β/(1−β)

}
.

Si t 7→ ft est la solution aux l’équation de Boltzmann linéaire avec les données initiales
f0 ∈ P(Rd × Rd), Φ ∈ C2(Rd) et

x · ∇xΦ(x) ≥ γ1〈x〉β+1 + γ2Φ(x)−A, Φ(x) ≤ γ3〈x〉1+β,

pour une constantes γ1, γ2, A, β, γ3. Ensuite, il existe des constantes C > 0 tel que

‖ft − µ‖TV ≤ min
{
‖f0 − µ‖TV, C

∫
f0(x, v)

(
1 + 1

2 |v|
2 + Φ(x) + |x|

)
(1 + t)−β

}
.
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En fait, notre résultat est vrai pour toute équation cinétique avec

∂tf = −v · ∇xf +∇U(x) · ∇vf =
∫
Rd
K(v, u)f(x, v)dv − f,

et vrai si Rd est remplacé par une balle. Par exemple le équation de "run-and-tumble"
dans [51].

∂tf = Lf = −v · ∇xf +
∫
V
K ′f ′ −Kfdv′,

avec
K = 1 + 1

2 sign(x · v), V = B(0, R)

et K = K(x, v, v′) ≥ 0, avec f ′ = f(t, x, v′) et K ′ = K(x, v′, v).
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Chapter 3

The Kinetic Fokker-Planck
Equation with Weak Confinement
Force

3.1 Introduction

In this chapter, we consider the weak hypocoercivity issue for a solution f to the kinetic
Fokker-Planck (KFP for short) equation

∂tf = Lf := −v · ∇xf +∇xV (x) · ∇vf + ∆vf + divv(vf), (3.1.1)

on a function f = f(t, x, v), with t ≥ 0, x ∈ Rd, v ∈ Rd. The evolution equation (3.1.1)
is complemented with an initial datum

f(0, ·) = f0 on R2d.

In all the paper, we make the assumption on the confinement potential V

V (x) = 〈x〉γ , γ ∈ (0, 1),

where 〈x〉2 := 1 + |x|2. we observe that the mass is conservative

M(f(t, ·)) =M(f0), ∀t ≥ 0

where we recall the mass of f by

M(f) =
∫
Rd×Rd

fdxdv.

and that the function

G = Z−1e−W , W = |v|
2

2 + V (x), Z ∈ R+ (3.1.2)

is a positive normalized steady state of 3.1.1.
The main result of this chapter writes as follows.

43
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Theorem 3.1.1. (1) For any initial datum f0 ∈ Lp(G−( p−1
p

+ε)), p ∈ [1,∞), ε > 0 small,
the associated solution f(t, ·) to the kinetic Fokker-Planck equation (3.1.1) satisfies

‖f(t, ·)−M(f0)G‖
Lp(G−

p−1
p )

. e−Ct
b‖f0 −M(f0)G‖

Lp(G−( p−1
p +ε))

,

for any b ∈ (0, γ
2−γ ) and some constant C > 0.

(2) For any initial datum f0 ∈ L1(m), m = Hk, H = |x|2+|v|2+1, k ≥ 1, the associated
solution f(t, ·) to the kinetic Fokker-Planck equation (3.1.1) satisfies

‖f(t, ·)−M(f0)G‖L1 . (1 + t)
− k

1− γ2 ‖f0 −M(f0)G‖L1(m).

The constants in the estimates only depend on γ, d, ε, p, k.

Remark 3.1.2. Let us emphasize the lost of tail control in both estimate in Theorem
3.1.1, which is reminiscent of decay estimates in sub-geometric contexts.

Remark 3.1.3. In the results above the constants can be explicitly estimated in terms
of the parameters appearing in the equation by following the calculations in the proofs.
We do not give them explicitly since we do not expect them to be optimal, but they are
nevertheless completely constructive.

Remark 3.1.4. Theorem 3.1.1 is also true when V (x) behaves like 〈x〉γ , that is for any
V (x) satisfying

C1〈x〉γ ≤ V (x) ≤ C2〈x〉γ , ∀x ∈ Rd,

C3|x|〈x〉γ−1 ≤ x · ∇xV (x) ≤ C4|x|〈x〉γ−1, ∀x ∈ Bc
R,

with BR is denote the ball centered at origin with radius R and Bc
R = Rd \BR, and

|D2
xV (x)| ≤ C5〈x〉γ−2, ∀x ∈ Rd,

for some constants Ci > 0, R > 0.

Remark 3.1.5. There are many classical results about the strong confinement framework
corresponding to γ ≥ 1. In this case there is a spectral gap on the operator L and
exponentially decay estimates on the associated semigroup SL, we refer the interested
readers to [62, 19, 20, 42, 36, 38].

Remark 3.1.6. For the Fokker-Planck equation with weak confinement force, a sub-
geometric convergence to equilibrium is established in [43, 60]

Remark 3.1.7. There are already some convergence results for the KFP equation with
weak confinement case considered in the present paper proved by probability method. In
[21] a polynomial rate of convergence to the equilibrium is established, in total variation
distance with some weight norm, and in [9], a sub-geometric rate of convergence in total
variation distance with some weight norm. Both papers use Harris theorem introduced
in Section 1.2.
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One advantage of the method in this paper is that it can yield convergence on a
wider range of initial conditions and Lp space, while previous proofs of convergence to
equilibrium mainly use some strong L1 norms (probability method) or L2 norms (PDE
methods). Also the method provides a quantitative rate of convergence to the steady
state, which is better than non-quantitative type argument such as the consequence of
Krein-Rutman theorem. While our method also have some disadvantage, it requires the
equation has an explicit steady state.

Let us briefly explain the main ideas behind our method of proof.

We introduce four spaces E1 = L2(G−1/2), E2 = L2(G−1/2eε1V (x)), E3 = L2(G−(1+ε2)/2)
and E0 = L2(G−1/2〈x〉γ−1), with ε1 > 0 and ε2 > 0 small such that E3 ⊂ E2 ⊂ E1 ⊂
E0 ⊂ L2. Thus E1 is an "interpolation" space between E0 and E2. We first use a
hypocoercivity argument as in [19, 20] to prove that, for any f0 ∈ E3, the solution f to
the KFP equation (3.1.1) satisfies

d

dt
‖f(t)‖Ẽ1

≤ −λ‖f(t)‖E0 ,

for some constant λ > 0, where the norm of Ẽ1 is equivalent to the norm of E1. We use
this and the Duhamel formula to prove

‖f(t)‖E2 . ‖f0‖E3 .

Combining the two inequalities and using a interpolation argument as in [43], we get

‖f(t)‖E1 . e−at
b‖f0‖E3 , (3.1.3)

for some a > 0, b ∈ (0, 1).
We then generalize the decay estimate to a wider class of Banach spaces by adapting

the extension theory introduced in [56] and developed in [47, 35]. For any operator L,
denote SL(t) the associated semigroup. We introduce a splitting L = A + B, where A
is an appropriately defined bounded operator so that B becomes a dissipative operator.
Moreover we prove that SB satisfies some regularization estimate

‖SB(t)‖Lp(m1)→L2(m2) . t−α, ∀t ∈ [0, η],

for any p ∈ [1, 2), some weight function m1, m2 and some α, η > 0, and using the
iterated Duhamel’s formula

SL = SB +
n−1∑
l=1

(SB) ∗ (ASB)(∗l) + SL ∗ (ASB)(∗n), (3.1.4)

we deduce the Lp convergence on SL. Here and below U ∗ V denotes the convolution of
two operators valued function U , V defined by

(U ∗ V)(t) =
∫ t

0
U(s)V(t− s)ds,
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and we set U (∗0) = I,U (∗1) = U and for any k ≥ 2, U (∗k) = U (∗(k−1)) ∗ U .

Let us end the introduction by describing the plan of this chapter. In Section 3.2,
we will develop a hypocoercivity argument to prove a weighted L2 estimate for the KFP
model. In section 3.3, we introduce a splitting L = A + B and using the L2 estimate
deduced in Section 3.2 to prove a L2 convergence. In Section 3.4, we present the proof of
a hypoelliptic estimate on SB from Lp to L2. In Section 3.5, we prove some L1 estimate
on the semigroup SB. Finally in Section 3.6 we use the above hypoelliptic estimate to
conclude the Lp convergence for the KFP equation.

3.2 L2 framework: Dirichlet form and rate of convergence
estimate

For later discussion, we introduce some notations for the whole chapter.

We split the KFP operator as
L = T + S,

where T stands for the transport part

T f = −v · ∇xf +∇xV (x) · ∇vf,

and S stands for the collision part

Sf = ∆vf + divv(vf).

We will denote the cut-off function χ such that χ(x, v) ∈ [0, 1], χ(x, v) ∈ C∞, χ(x, v) =
1 when |x|2 + |v|2 ≤ 1 , χ(x, v) = 0 when |x|2 + |v|2 ≥ 2, and then denote χR =
χ(x/R, v/R).

We may also define another splitting of the KFP operator L by

L = A+ B, A = KχR(x, v). (3.2.1)

with K,R > 0 to be chosen later.
For f = f(x), we use

∫
f in replace

∫
Rd fdx, and for f = f(x, v), we use

∫
f in place

of
∫
Rd×Rd fdxdv for short, for f = f(x, v),

∫
fdx means

∫
Rd fdx ,

∫
fdv means

∫
Rd fdv.

B|x|≤ρ is used to denote the ball such that {x ∈ Rd||x| ≤ ρ}, similarly Bρ means the
ball such that {x, v ∈ Rd||x|2 + v2 ≤ ρ}.

For V (x) = 〈x〉γ , 0 < γ < 1, we also denote 〈∇V 〉 for 〈x〉γ−1, and 〈∇V 〉−1 for 〈x〉1−γ .

With these notations we introduce the Dirichlet form adapted to our problem. We
define the 0 order and first order moments

ρf = ρ[f ] =
∫
fdv, jf = j[f ] =

∫
vfdv,
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then we define a projection operator π by

πf = Mρf , M = Ce−|v|
2/2,

∫
Mdv = 1,

and the complement of π by

π⊥ = I − π, f⊥ = π⊥f.

We define an elliptic operator ∆V and its dual ∆∗V by

∆V u := divx(∇xu+∇xV u), ∆∗V u := ∆xu−∇xV · ∇xu,

let u = (∆∗V )−1ξ be the solution to the above elliptic equation

∆∗V u = ξ on Rd,

satisfies ∫
ue−V 〈∇V 〉−2 = 0.

We will prove the existence and uniqueness to this elliptic equation in Lemma 3.2.6
below, we then define H = L2(G−1/2), H1 = L2(G−1/2〈∇V 〉) and

H0 = {h ∈ H,
∫
hdxdv = 0}

where we recall that G has been introduced in (3.1.2). Using these notations, define a
scalar product by

((f, g)) := (f, g)H + ε(∆−1
V ∇xjf , (ρge

V 〈∇V 〉2))L2

+ε((ρfeV 〈∇V 〉2),∆−1
V ∇xjg)L2

= (f, g)H + ε(jf ,∇x(∆∗V )−1(ρgeV 〈∇V 〉2))L2

+ε((∇x(∆∗V )−1(ρfeV 〈∇V 〉2), jg)L2 ,

for some ε > 0 to be specified later.
Finally we define the Dirichlet form

D[f ] := ((−Lf, f))

= (−Lf, f)H + ε(∆−1
V ∇xj[−Lf ], (ρfeV 〈∇V 〉2))L2

+ε((ρ[−Lf ]eV 〈∇V 〉2),∆−1
V ∇xjf )L2 .

With these notations we can come to our first theorem.

Theorem 3.2.1. There exists ε > 0 small enough, such that on H0 the norm ((f, f))
1
2

defined above is equivalent to the norm of H, moreover there exist λ > 0, such that

D[f ] ≥ λ‖f‖2H1 , ∀f ∈ H0.
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As a consequence, for any f0 ∈ H0, the associated solution f(t, ·) of the kinetic Fokker-
Planck equation (3.1.1) satisfies

d
dt((f, f)) ≤ −C

∫
f2G−1〈x〉2(γ−1), (3.2.2)

for some constant C > 0. In particular for any f0 ∈ H0, we have

‖f(t, ·)‖
L2(G−

1
2 )
≤ C‖f0‖

L2(G−
1
2 )
, (3.2.3)

for some constant C > 0.

Remark 3.2.2. In H0 we have∫
ρfe

V 〈∇V 〉2e−V 〈∇V 〉−2dx =
∫
ρfdx =

∫
fdxdv = 0,

so the term (∆∗V )−1(ρgeV 〈∇V 〉2) is well defined in H0.

Remark 3.2.3. Our statement is a generalization of [19, 20].

Before proving the theorem, we need some lemmas.
We say that W satisfies a local Poincaré inequality on a bounded open set Ω if there

exists some constant κΩ > 0 such that:∫
Ω
h2W ≤ κΩ

∫
Ω
|∇h|2W + 1

W (Ω)

(∫
Ω
hW

)2
,

for any nice function h : Rd → R and where we denote W (Ω) := 〈W1Ω〉.

Lemma 3.2.4. Under the assumption W,W−1 ∈ L∞loc(Rd), the function W satisfies the
local Poincaré inequality for any ball Ω ∈ Rd.

For the proof of Lemma 3.2.4 we refer to [57] Lemma 2.3.

Lemma 3.2.5. (weak Poincaré inequality) There exists a constant λ > 0 such that

‖u‖L2(〈∇V 〉e−V/2) ≤ λ‖∇u‖L2(e−V/2)

for any u ∈ D(Rd) such that ∫
ue−V 〈∇V 〉−2 = 0

Proof. We prove for any h ∈ D(Rd) such that∫
he−V 〈∇V 〉−2 = 0, (3.2.4)

we have ∫
|∇h|2e−V ≥ 1

λ

∫
h2e−V 〈x〉2(γ−1),
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for some λ > 0. Taking g = he−
1
2V , we have ∇g = ∇he−

1
2V − 1

2∇V he
− 1

2V , so that

0 ≤
∫
|∇g|2 =

∫
|∇h|2e−V +

∫
h2 1

4 |∇V |
2e−V −

∫ 1
2∇(h2) · ∇V e−V

=
∫
|∇h|2e−V +

∫
h2
(1

2∆V − 1
4 |∇V |

2
)
e−V .

Since
1
4 |∇V |

2 −∆V ≥ 1
8〈∇V 〉

2 −K1BR0
〈∇V 〉−2

for some K,R0 > 0. We deduce for some K,R0 > 0∫
|∇h|2e−V ≥

∫ 1
8h

2〈∇V 〉2e−V −K
∫
BR0

h2e−V 〈∇V 〉−2.

Defining
εR :=

∫
BcR

e−V 〈∇V 〉−6, ZR :=
∫
BR

e−V 〈∇V 〉−2,

and using (3.2.4), we get
(∫

BR

he−V 〈∇V 〉−2
)2

=
(∫

BcR

he−V 〈∇V 〉−2
)2

≤
∫
BcR

h2e−V 〈∇V 〉2
∫
BcR

e−V 〈∇V 〉−6

≤ εR

∫
BcR

h2e−V 〈∇V 〉2.

Using the local Poincaré inequality in Lemma 3.2.4, we deduce∫
BR

h2e−V 〈∇V 〉−2 ≤ CR

∫
BR

|∇h|2e−V 〈∇V 〉−2 + 1
ZR

(∫
BR

he−V 〈∇V 〉−2
)2

≤ C
′
R

∫
BR

|∇h|2e−V + εR
ZR

∫
BcR

h2e−V 〈∇V 〉2.

Putting all the inequalities together and taking R > R0, we finally get∫
h2e−V 〈∇V 〉2 ≤ 8

∫
|∇h|2e−V + 8K

∫
BR0

h2e−V 〈∇V 〉−2

≤ 8(1 +KC
′
R)
∫
|∇h|2e−V + 8KεR

ZR

∫
BcR

h2e−V 〈∇V 〉2,

and we conclude by taking R large such that: 8KεR
ZR
≤ 1

2 .

Lemma 3.2.6. (Elliptic Estimate) For any ξ1 ∈ L2(〈∇V 〉−1e−V/2) and ξ2 ∈ L2(e−V/2),
there exists a unique solution u to the elliptic equation

−∆∗V u = ξ1 +∇ · ξ2,

∫
ue−V 〈∇V 〉−2 = 0, (3.2.5)

which satisfies

‖u‖L2(〈∇V 〉e−V/2) + ‖∇u‖L2(e−V/2) . ‖ξ1‖L2(〈∇V 〉−1e−V/2) + ‖ξ2‖L2(e−V/2). (3.2.6)
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In addition for any ξ ∈ L2(〈∇V 〉−1e−V/2), the solution u to the elliptic problem

−∆∗V u = ξ,

∫
ue−V 〈∇V 〉−2 = 0,

satisfies

‖u‖L2(〈∇V 〉2e−V/2) + ‖∇u‖L2(〈∇V 〉e−V/2) + ‖D2u‖L2(e−V/2) . ‖ξ‖L2(e−V/2〈∇V 〉−1). (3.2.7)

Proof. Multiply (3.2.5) by ue−V and observes that

eV divx[e−V∇xu] = ∆xu−∇xV · ∇xu = ∆∗V u, (3.2.8)

we have after integration

−
∫
eV divx[e−V∇xu]ue−V =

∫
(ξ1 +∇ · ξ2)ue−V .

Performing one integration by parts, we deduce∫
e−V |∇xu|2 =

∫
(ξ1u− ξ2 · ∇u+ ξ2 · ∇V u)e−V ,

using Lemma 3.2.5 and Lax-Milgram theorem we obtain (3.2.6), the existence and thus
the uniqueness follows. In inequality (3.2.7), the first two terms are easily bounded by
(3.2.6) and 〈∇V 〉 ≤ 1, we then only need to prove the bound for the third term. By
integration by parts, we have∫

|D2u|2e−V =
d∑

i,j=1

∫
(∂2
iju)2e−V

=
d∑

i,j=1

∫
∂iu(∂2

iju∂jV − ∂3
ijju)e−V

=
d∑

i,j=1

∫
∂2
jju∂i(∂iue−V )− 1

2

∫
(∂iu)2∂j(∂jV e−V )

=
∫

(∆u)(−∆∗V u)e−V + 1
2

∫
|∇u|2(|∇V |2 −∆V )e−V

. ‖D2u‖L2(e−V/2)‖ξ‖L2(e−V/2) + ‖〈∇V 〉∇u‖L2(e−V/2),

where in the third equality we have used∫
∂2
iju∂iu∂jV e

−V = −
∫
∂iu∂j(∂iu∂jV e−V )

= −
∫
∂2
iju∂iu∂jV e

−V −
∫

(∂iu)2∂j(∂jV e−V ),

which implies ∫
∂2
iju∂iu∂jV e

−V = −1
2

∫
(∂iu)2∂j(∂jV e−V ),

and in the fourth equality we have used (3.2.8). That concludes the proof.
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Now we turn to the proof of Theorem 3.2.1.

Proof. (Proof of Theorem 3.2.1.) First we prove the equivalence of the norms asso-
ciated to (( , )) and ( , )H. By Cauchy-Schwarz inequality and Lemma 3.2.6, we have

(jf ,∇x(∆∗V )−1(ρgeV 〈∇V 〉2))L2 ≤ ‖jf‖L2(eV/2)‖ρge
V 〈∇V 〉2‖L2(〈∇V 〉−1e−V/2),

and obviously

‖ρgeV 〈∇V 〉2‖L2(〈∇V 〉−1e−V/2) = ‖ρg‖L2(〈∇V 〉eV/2) ≤ ‖ρg‖L2(eV/2) . ‖g‖H.

Using the elementary observations

|jf | . ‖f‖L2
v(e|v|2/4), |ρf | . ‖f‖L2

v(e|v|2/4),

we deduce
(jf ,∇x(∆∗V )−1(ρgeV 〈∇V 〉2))L2 . ‖f‖H‖g‖H,

The third term in the definition of (( , )) can be estimated in the same way and that
ends the proof of equivalence of norms.

Now we prove the main estimate of the theorem. We split the Dirichlet term D[f ]
into 3 parts

D[f ] = T1 + εT2 + εT3,

with

T1 := (−Lf, f)H
T2 := (∆−1

V ∇xj[−Lf ], ρf )L2(eV/2〈∇V 〉)

T3 := ((∆V )−1∇xjf , ρ[−Lf ])L2(eV/2〈∇V 〉) ,

and compute them separately.
For the T1 term, using the classical Poincaré inequality, we have

T1 := (−T f − Sf, f)H = (−Sf, f)H

= −
∫

[∆vf + divv(vf)]fM−1eV =
∫
|∇v(f/M)|2MeV

≥ kp

∫
|f/M − ρf |2MeV = kp‖f − ρfM‖2H = kp‖f⊥‖2H,

for some kp > 0. We split the T2 term as

T2 := (∆−1
V ∇xj[−Lf ], ρf )L2(eV/2〈∇V 〉)

= (∆−1
V ∇xj[−T πf ], ρf )L2(eV/2〈∇V 〉)

+(∆−1
V ∇xj[−T f

⊥], ρf )L2(eV/2〈∇V 〉)

+(∆−1
V ∇xj[−Sf ], ρf )L2(eV/2〈∇V 〉)

:= T2,1 + T2,2 + T2,3.
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First observe

T πf = −v · ∇xρfM −∇xV · vρfM = −e−VMv · ∇x(ρf/e−V ),

so that we have

j[−T πf ] =
d∑

k=1
〈vvkM〉e−V ∂xk(ρf/e−V ) = e−V∇x(ρf/e−V ).

Next by (3.2.8), we have

T2,1 = (j[−T πf ],∇(∆∗V )−1(ρfeV 〈∇V 〉2))L2

= (ρf , [eV divx(e−V∇)][(∆∗V )−1(ρfeV 〈∇V 〉2)])L2

= ‖ρfeV/2〈∇V 〉‖2L2 = ‖πf‖2H1 .

Using the notation η1 = 〈v ⊗ vf⊥〉 and η2,αβ = 〈vα∂vβf⊥〉, and observing that

|η1| . ‖f⊥‖L2
v(e|v|2/4), |η2| . ‖f⊥‖L2

v(e|v|2/4),

we compute

T2,2 = (j[−T f⊥],∇(∆∗V )−1(ρfeV 〈∇V 〉2))L2

= (Dη1 + η2∇V,∇(∆∗V )−1(ρfeV 〈∇V 〉2))L2

= (η1, D
2(∆∗V )−1(ρfeV 〈∇V 〉2))L2 + (η2,∇V∇(∆∗V )−1(ρfeV 〈∇V 〉2))L2

≤ ‖η1‖L2(eV/2)‖D
2(∆∗V )−1(ρfeV 〈∇V 〉2)‖L2(e−V/2)

+‖η2‖L2(eV/2)‖∇V∇(∆∗V )−1(ρfeV 〈∇V 〉2)‖L2(e−V/2).

By Lemma 3.2.6, we estimate

T2,2 . ‖η1‖L2(eV/2)‖ρfe
V 〈∇V 〉2‖L2(e−V/2〈∇V 〉−1)

+‖η2‖L2(eV/2)‖ρfe
V 〈∇V 〉2‖L2(e−V/2〈∇V 〉−1)

. ‖f⊥‖H‖πf‖H1 .

Using

j[−Sf ] = j[−Sf⊥] = −
∫
v[∆vf

⊥ + divv(vf⊥)]dv

= d

∫
f⊥vdv . ‖f⊥‖

L2
v(e|v|2/4),

and Lemma 3.2.6, we have

T2,3 = (j[−Sf ],∇(∆∗V )−1(ρfeV 〈∇V 〉2))L2

≤ ‖j[−Sf ]‖L2(eV/2)‖∇(∆∗V )−1(ρfeV 〈∇V 〉2)‖L2(e−V/2)

. ‖f⊥‖H‖ρfeV 〈∇V 〉2‖L2(〈∇V 〉−1e−V/2)

= ‖f⊥‖H‖ρf‖L2(〈∇V 〉eV/2)

= ‖f⊥‖H‖πf‖H1 .
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Finally we come to the T3 term. Using

ρ[−Sf ] =
∫
∇v · (∇vf + vf)dv = 0,

and

ρ[−Tf ] = ρ[v · ∇xf −∇xV (x) · ∇vf ]

=
∫
v · ∇xf −∇xV (x) · ∇vfdv

= ∇xj[f ],

since ∇(〈∇V 〉2) . 〈∇V 〉2 and 〈∇V 〉2 . 〈∇V 〉, we get

T3 = ((∆V )−1∇xjf , ρ[−Lf ])L2(eV/2〈∇V 〉)

= ((∆V )−1∇xj[f⊥], ρ[−T f ])L2(eV/2〈∇V 〉)

= (j[f⊥],∇(∆∗V )−1(∇xj[f ]eV 〈∇V 〉2))L2

≤ ‖j[f⊥]‖L2(eV/2)‖∇(∆∗V )−1[∇x(jfeV 〈∇V 〉2)

−∇V jfeV 〈∇V 〉2 −∇(〈∇V 〉2)jfeV ]‖L2(e−V/2),

using again Lemma 3.2.6, we have

T3 . ‖j[f⊥]‖L2(eV/2)(‖jfe
V 〈∇V 〉2‖L2(e−V/2〈∇V 〉−1)

+‖jfeV∇(〈∇V 〉2)‖L2(〈∇V 〉−1e−V/2))

. ‖f⊥‖H‖f‖H1 .

Putting all the terms together and choosing ε > 0 small enough, we can deduce

D[f ] ≥ kp‖f⊥‖2H + ε‖πf‖2H1 − ε2K‖f
⊥‖H‖f‖H1 − ε2K‖f⊥‖H‖πf‖H1

≥ kp‖f⊥‖2H + ε‖πf‖2H1 − (2ε+ 4ε1/2)K‖f⊥‖2H − ε3/24K‖πf‖2H1

≥ kp
2 (‖f⊥‖2H + ε‖πf‖2H1) ≥ λ‖f‖H1 ,

for some λ > 0.

3.3 L2 sub-exponential decay for the kinetic Fokker-Planck
equation based on a splitting trick

In this section we establish a first decay estimate on SL which is a particular case in
the result of Theorem 3.1.1.

Theorem 3.3.1. Using the notation and results in Theorem 3.2.1, we have

‖SL(t)f0‖
L2(G−

1
2 )

. e−Ct
γ/(2−γ)‖f0‖

L2(G−( 1
2 +ε))

,

for any f0 ∈ L2(G−( 1
2 +ε)) ∩H0, ε > 0 small enough.
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Remark 3.3.2. It’s worth emphasizing that we deduce immediately part (1) of Theorem
3.1.1 in the case p = 2 by considering the initial datum f0 −M(f0)G for any f0 ∈
L2(G−

1
2 +ε).

Recall the splitting L = A + B introduced in (3.2.1), we first prove some decay
estimate on the semigroup SB.

Lemma 3.3.3. Let us fix p ∈ [1,∞).
(1) For any given smooth weight function m, we have∫

|f |p−1 sign f(Lf)G−(p−1)m ≤ 1
p

∫
|f |pG−(p−1)m̃, (3.3.1)

with
m̃ = ∆vm−∇vm · v −∇xV (x) · ∇vm+ v · ∇xm.

(2) Taking m = eεH
δ , ε > 0 if 0 < δ < γ

2 , ε small enough if δ = γ
2 , H = 3v2 + 2x ·

v + x2 + 1, we have∫
|f |p−1 sign f(Bf)G−(p−1)eεH

δ ≤ −C
∫
|f |pG−(p−1)eεH

δ
H

δ
2 +γ−1, (3.3.2)

for some K and R large.
(3) With the same notation as above, there holds

‖SB(t)‖
Lp(e2εHδG

− p−1
p )→Lp(eεHδG−

p−1
p )

. e−at
2δ

2−γ
, (3.3.3)

for some a > 0. In particular, this implies

‖SB(t)‖
Lp(G−( p−1

p +ε))→Lp(G−
p−1
p )

. e−at
γ

2−γ
.

Proof. Step 1. Recall (3.1.2), we write∫
|f |p−1 sign f(Lf)G−(p−1)m =

∫
|f |p−1 sign f(T f)G−(p−1)m

+
∫
|f |p−1 sign f(Sf)G−(p−1)m.

We first compute the contribution of the term with operator T∫
|f |p−1 sign f(T f)G−(p−1)m = 1

p

∫
T (|f |p)G−(p−1)m

= −1
p

∫
|f |pT (G−(p−1)m)

= 1
p

∫
|f |pG−(p−1)(v · ∇xm−∇V (x) · ∇vm).

For the term with operator S , we use one integration by parts, and we get∫
|f |p−1 sign f(Sf)G−(p−1)m

=
∫
|f |p−1 sign f(∆vf + divv(vf))G−(p−1)m

= −
∫
∇v(sign f(|f |G−1)p−1m) · ∇v(fG−1)G

= −
∫

(p− 1)|∇v(fG−1)|2(|f |G−1)p−2Gm− 1
p
∇v((|f |G−1)p) · (∇vm)G.
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Performing another integration by parts on the latter term, we have∫
fp−1 sign f(Sf)G−(p−1)m

=
∫
−(p− 1)|∇v(fG−1)|2(|f |G−1)p−2Gm+ 1

p
∇v · (G∇vm)(|f |G−1)p

=
∫
−(p− 1)|∇v(fG−1)|2(|f |G−1)p−2Gm+ 1

p
(∆vm− v · ∇vm)|f |pG−(p−1).

Inequality (3.3.1) follows by putting together the two identities.
Step 2. We particular use m = eεH

δ and we easily compute

∇vm
m

= δε
∇vH
H1−δ ,

∇xm
m

= δε
∇xH
H1−δ ,

and
∆vm

m
≤ δε∆vH

H1−δ + (δε)2 |∇vH|2

H2(1−δ) .

We deduce that φ = m̃
m satisfies

φH1−δ

εδ
≤ ∆vH + εδ

|∇vH|2

H1−δ − v · ∇vH + v · ∇xH −∇xV (x) · ∇vH.

From the very definition of H, we have

∇vH = 6v + 2x, ∇xH = 2v + 2x, ∆vH = 6.

Choosing ε > 0 arbitrary if 0 < 2δ < γ, ε small enough if 2δ = γ ,we deduce

∆vH + 2εδ |∇vH|
2

H1−δ + v · ∇xH − v · ∇vH −∇xV (x) · ∇vH

= 6 + εδ
|6v + 2x|2

H1−δ + 2|v|2 + 2x · v − 6|v|2 − 2x · v − 6v · ∇xV (x)− 2x · ∇xV (x)

≤ (2|v|2 + C1|v|+ C2|v|2δ − 6|v|2) + (C3εδ|x|2δ − 2x · ∇xV (x)) + C

≤ −C4|v|2 − C5x · ∇xV (x) + C6

≤ −C7H
γ
2 +KχR,

for some constants Ci,K,R > 0. As a consequence, we have proved

φ−KχR ≤
−C

H1−δ− γ2
≤ 0,

which is nothing but (3.3.2).
Step 3. In the following, we use the "interpolation" argument from [43], denote ft =
SB(t)f0 the solution to the evolution equation ∂tf = Bf, f(0) = f0. On the one hand,
by (3.3.2) we have

d

dt

∫
|ft|pG−(p−1)e2εHδ =

∫
|ft|p−1 sign ft(Bft)G−(p−1)e2εHδ ≤ 0,

which implies ∫
|ft|pG−(p−1)e2εHδ ≤

∫
|f0|pG−(p−1)e2εHδ := Y1, ∀t ≥ 0
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On the other hand, defining

Y (t) :=
∫
|ft|pG−(p−1)eεH

δ
,

using again (3.3.2), we have

d

dt
Y = p

∫
|ft|p−1 sign ft(Bft)G−(p−1)eεH

δ

≤ −a
∫
|ft|pG−(p−1)eεH

δ
Hδ+ γ

2−1

≤ −a
∫
|ft|pG−(p−1)eεH

δ〈x〉2δ+γ−2

≤ −a
∫
B|x|≤ρ

|ft|pG−(p−1)eεH
δ〈x〉2δ+γ−2,

for any ρ > 0 and for some a > 0. As 2δ + γ < 2, 0 ≤ |x| ≤ ρ implies 〈x〉2δ+γ−2 ≥
〈ρ〉2δ+γ−2, we deduce

d

dt
Y ≤ −a〈ρ〉2δ+γ−2

∫
B|x|≤ρ

|ft|pG−(p−1)eεH
δ

≤ −a〈ρ〉2δ+γ−2Y + a〈ρ〉2δ+γ−2
∫
B|x|≥ρ

|ft|pG−(p−1)eεH
δ
,

Using that eε〈x〉2δ ≥ eε〈ρ〉2δ on |x| ≥ ρ, we get

d

dt
Y ≤ −a〈ρ〉2δ+γ−2Y + a〈ρ〉2δ+γ−2e−ε〈ρ〉

2δ
∫
B|x|≥ρ

|ft|pG−(p−1)eεH
δ
eε〈x〉

2δ

≤ −a〈ρ〉2δ+γ−2Y + a〈ρ〉2δ+γ−2e−ε〈ρ〉
2δ
∫
|ft|pG−(p−1)eεH

δ
eε〈x〉

2δ

≤ −a〈ρ〉2δ+γ−2Y + a〈ρ〉2δ+γ−2e−ε〈ρ〉
2δ
CY1.

Thanks to Grönwall’s Lemma

d
dtX(t) ≤ −αX(t) + b⇒ X(t) ≤ e−αtX(0) + b

α
(1− e−αt) ≤ e−αtX(0) + b

α
,

we obtain

Y (t) ≤ e−a〈ρ〉
2δ+γ−2tY (0) + Ce−ε〈ρ〉

2δ
Y1

. (e−a〈ρ〉2δ+γ−2t + e−ε〈ρ〉
2δ)Y1,

Choosing finally ρ such that a〈ρ〉2δ+γ−2t = ε〈ρ〉2δ , that is 〈ρ〉2−γ = Ct, we deduce

Y (t) ≤ C1e
−C2t

2δ
2−γ

Y1,

for some C1, C2 > 0, and we deduce the proof of (3.3.3).

Now we come to prove Theorem 3.3.1.
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Proof. (Proof of Theorem 3.3.1.) We recall that from (3.2.3), we have

‖SL(t)‖
L2(G−

1
2 )→L2(G−

1
2 )

. 1, ∀t ≥ 0

From the very definition of A we have

‖A‖
L2(G−

1
2 )→L2(e2εHδG−

1
2 )

. 1.

From Lemma 3.3.3 case p = 2, we have

‖SB(t)‖
L2(e2εHδG−

1
2 )→L2(eεHδG−

1
2 )

. e−at
2δ

2−γ
, ∀t ≥ 0.

Gathering the three estimates and using Duhamel’s formula

SL = SB + SBA ∗ SL,

we deduce
‖SL(t)‖

L2(e2εHδG−
1
2 )→L2(eεHδG−

1
2 )

. 1, ∀t ≥ 0.

In the following, we denote ft = SL(t)f0 the solution to the evolution equation ∂tf =
Lf, f(0, ·) = f0. Taking 2δ = γ, ε small enough, we have in particular∫

|ft|2G−1eεH
γ
2 ≤ C

∫
|f0|2G−1e2εH

γ
2 =: Y3.

We define
Y2(t) := ((f, f)),

with ((, )) is defined in Theorem 3.2.1. Thanks to the result in (3.2.2), we have

d

dt
Y2 ≤ −a

∫
|ft|2G−1〈x〉2(γ−1)

≤ −a
∫
B|x|≤ρ

|ft|2G−1〈x〉2(γ−1),

for any ρ ≥ 0, using the same argument as Lemma 3.3.3, we deduce

Y2(t) ≤ Ce−a〈ρ〉
2(γ−1)tY2(0) + Ce−ε2〈ρ〉

γ
Y3

. (e−a〈ρ〉2(γ−1)t + e−ε2〈ρ〉
γ )Y3.

Choosing ρ such that a〈ρ〉2(γ−1)t = ε2〈ρ〉γ , that is 〈ρ〉2−γ = Ct, we conclude

Y2(t) ≤ C1e
−C2tγ/(2−γ)

Y3,

for some constants Ci > 0. As H
γ
2 . C(v2

2 + V (x)), we have

eεH
γ
2 ≤ G−Cε,

Taking ε small, the proof of Theorem 3.3.1 is done.
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3.4 Regularization property of SB

In this section we will denote L∗ = L∗
G−1/2 = S − T be the dual operator of L on

L2(G−
1
2 ). In other words, L∗ is defined by the identity∫

(Lf)gG−1 =
∫

(L∗g)fG−1.

for any smooth function f, g. We also denote B∗ = L∗ −KχR. The aim of this section
is to establish the following regularization property. The proof closely follows the proof
of similar results in [38, 47, 62]

Theorem 3.4.1. For any 0 ≤ δ < 1, denote m1 = G−
1
2 (1+δ), there exist η > 0 such

that
‖SB(t)f‖L2(m1) .

1
t

3d+2
4
‖f‖L1(m1), ∀t ∈ [0, η].

Similarly, for any 0 ≤ δ < 1, there exist η > 0 such that

‖SB∗(t)f‖L2(m1) .
1

t
3d+2

4
‖f‖L1(m1), ∀t ∈ [0, η].

As a consequence, there exist η > 0 such that

‖SB(t)f‖
L∞(G−

1
2 )

.
1

t
3d+2

4
‖f‖

L2(G−
1
2 )
, ∀t ∈ [0, η].

We start with some elementary lemmas.

Lemma 3.4.2. For any 0 ≤ δ < 1, we have∫
(f(Lg) + g(Lf))G−(1+δ) = −2

∫
∇v(fG−1) · ∇v(gG−1)G1−δ

+
∫

(δd− δ(1− δ)|v|2)fgG−(1+δ) (3.4.1)

in particular, this implies∫
f(Lf)G−(1+δ) = −

∫
|∇v(fG−1)|2G1−δ + δd

2

∫
|f |2G−(1+δ)

− δ(1− δ)
2

∫
|v|2|f |2G−(1+δ), (3.4.2)

similarly, for any 0 ≤ δ < 1, we have∫
f(Lf)G−(1+δ) = −

∫
|∇vf |2G−(1+δ) + δ(1 + δ)

2

∫
|v|2|f |2G−(1+δ)

+ (2 + δ)d
2

∫
|f |2G−(1+δ). (3.4.3)

All the equalities remain true when L is replaced by L∗.
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Proof. Recall T (G−(1+δ)) = 0, we have∫
f(T g)G−(1+δ) =

∫
T (fG−(1+δ))g = −

∫
(T f)gG−(1+δ),

which implies ∫
f(T g)G−(1+δ) +

∫
(T f)gG−(1+δ) = 0.

for the term with operator S we have∫
f(Sg)G−(1+δ) = −

∫
∇v(fG−(1+δ)) · (∇vg + vg)

= −
∫

(∇vf + (1 + δ)vf) · (∇vg + vg)G−(1+δ)

= −
∫
∇v(fG−1) · ∇v(gG−1)G1−δ

−
∫

(δ|v|2fg + δfv · ∇vg)G−(1+δ),

using integration by parts∫
δfv · ∇vgG−(1+δ) = −

∫
δg∇v · (vfG−(1+δ))

= −
∫
δgv · ∇vfG−(1+δ)

−
∫

(δd+ δ(1 + δ)|v|2)fgG−(1+δ),

so we deduce∫
(f(Sg) + g(Sf))G−(1+δ)

= −2
∫
∇v(fG−1) · ∇v(gG−1)G1−δ +

∫
(δd− δ(1− δ)|v|2)fgG−(1+δ),

so (3.4.1) and (3.4.2) are thus proved by combining the two terms above. Finally, we
compute∫

fSfG−(1+δ)

= −
∫

(∇vf + (1 + δ)vf) · (∇vf + vf)G−(1+δ)

= −
∫
|∇vf |2G−(1+δ) −

∫
(1 + δ)|v|2|f |2G−(1+δ) −

∫
(2 + δ)fv · ∇vfG−(1+δ)

= −
∫
|∇vf |2G−(1+δ) −

∫
(1 + δ)|v|2|f |2G−(1+δ) + 2 + δ

2

∫
∇v · (vG−(1+δ))|f |2

= −
∫
|∇vf |2G−(1+δ) + δ(1 + δ)

2

∫
|v|2|f |2G−(1+δ) + (2 + δ)d

2

∫
|f |2G−(1+δ),

so (3.4.3) follows by putting together the above equality with∫
fT fG−(1+δ) = 0.

Since the term associated with T is 0, by L = S + T ,L∗ = S − T , we know the same
equalities will remain true when L is replaced by L∗.
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Lemma 3.4.3. When ft = SB(t)f0, denote m1 = G−
1
2 (1+δ), define an energy functional

F(t, ft) := A‖ft‖2L2(m1) + at‖∇vft‖2L2(m1)

+ 2ct2(∇vft,∇xft)L2(m1) + bt3‖∇xft‖2L2(m1), (3.4.4)

when ft = SB∗(t)f0, define another energy functional

F∗(t, ft) := A‖ft‖2L2(m1) + at‖∇vft‖2L2(m1)

− 2ct2(∇vft,∇xft)L2(m1) + bt3‖∇xft‖2L2(m1), (3.4.5)

with a, b, c > 0, c ≤
√
ab and A large enough. Then for both cases, there exists η > 0

such that
d

dt
F (t, ft) ≤ −L

(
‖∇vft‖2L2(m1) + t2‖∇xft‖2L2(m1)

)
+ ‖ft‖2L2(m1),

for all t ∈ [0, η], for some L > 0, C > 0 and F = F or F∗.

Proof. We only prove the case F = F , the proof for F = F∗ is the same. We split
the computation into several parts and then put them together. First using (3.4.2) and
(3.4.3) we have

d
dt‖ft‖

2
L2(m1)

= (ft, (L −KχR)ft)L2(m1)

= 1− δ
2 (ft,Lft)L2(m1) + 1 + δ

2 (ft,Lft)L2(m1) − (ft,KχRft)L2(m1)

≤ 1− δ
2 ‖∇vft‖2L2(m1) −

1 + δ

2 ‖ftG−1‖2L2(m1G1/2) + C‖ft‖2L2(m1)

≤ 1− δ
2 ‖∇vft‖2L2(m1) + C‖ft‖2L2(m1)

By

∂xiLf = L∂xif +
d∑
j=1

∂2
xixjV ∂vjf, (3.4.6)

and (3.4.2) we have
d
dt‖∂xift‖

2
L2(m1)

= (∂xift, ∂xi(L −KχR)ft)L2(m1)

≤ ‖∇v(∂xiftG−1)‖2L2(m1G) + δd

2 ‖∂xift‖
2
L2(m1) −

δ(1− δ)
2 ‖∂xift‖2L2(m1|v|)

+
(
∂xift,

d∑
j=1

∂2
xixjV ∂vjft

)
L2(m1)

− (∂xift,K∂xiχRft)L2(m1)

Using Cauchy-Schwarz inequality and summing up by i, we get

d
dt‖∇xft‖

2
L2(m1) ≤

d∑
i=1
‖∇v(∂xiftG−1)‖2L2(m1G) −

δ(1− δ)
2 ‖∇xft‖2L2(m1|v|)

+ C‖∇vft‖2L2(m1) + C‖∇xft‖2L2(m1) + C‖ft‖2L2(m1)
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for some C > 0. Similarly using

∂viLf = L∂vif − ∂xif + ∂vif, (3.4.7)

and (3.4.2), we have

d
dt‖∂vift‖

2
L2(m1)

= (∂vift, ∂vi(L −KχR)ft)L2(m1)

≤ ‖∇v(∂viftG−1)‖2L2(m1G) + δd

2 ‖∂vift‖
2
L2(m1) −

δ(1− δ)
2 ‖∂vift‖2L2(m1|v|)

− (∂xift, ∂vift)L2(m1) + ‖∂vift‖2L2(m1) − (∂vift,K∂viχRft)L2(m1)

Using Cauchy-Schwarz inequality and summing up by i we get

d
dt‖∇vft‖

2
L2(m1) ≤

d∑
i=1
‖∇v(∂viftG−1)‖2L2(m1G) −

δ(1− δ)
2 ‖∇vft‖2L2(m1|v|)

+ C‖∇vft‖2L2(m1) + C(|∇xft|, |∇vft|)L2(m1) + C‖ft‖2L2(m1)

For the crossing term, we split it also into two parts

d
dt2(∂xift, ∂vift)L2(m1) = (∂xift, ∂viLft)L2(m1) + (∂vift, ∂xiLft)L2(m1)

− (∂xift, ∂vi(KχRft))L2(m1) − (∂vift, ∂xi(KχRft))L2(m1)

:= W1 +W2.

Using (3.4.6) and (3.4.7) we have

W1 = (∂xift,L(∂vift))L2(m1) + (∂vift,L(∂xift))L2(m1)

+ (∂vift,
d∑
j=1

∂2
xixjV ∂vjft)L2(m1) − ‖∂xift‖2L2(m1) + (∂xift, ∂vift)L2(m1)

By (3.4.1), we deduce

W1 ≤ (∇v(∂xiftG−1),∇v(∂viftG−1))L2(m1G) + δd(∂vift, ∂xift)L2(m1)

− δ(1− δ)(∂vift, ∂xift)L2(m1|v|) + (∂vift,
d∑
j=1

∂2
xixjV ∂vjft)L2(m1)

− ‖∂xift‖2L2(m1) + (∂xift, ∂vift)L2(m1)

For the W2 term we have

W2 = −2(∂xift,KχR∂vift)L2(m1) − (∂xift,K∂viχRft)L2(m1) − (∂vift,K∂xiχRft)L2(m1)

≤ C(|∂xift|, |ft|)L2(m1) + C(|ft|, |∂vift|)L2(m1) + C(|∂xift|, |∂vift|)L2(m1)
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Combining the two parts, using Cauchy-Schwarz inequality, and summing up by i we
get

d
dt2(∇vft,∇xft)L2(m1)

≤ 2
d∑
i=1

(∇v(∂xiftG−1),∇v(∂viftG−1))L2(m1G) − δ(1− δ)(∇vft,∇xft)L2(m1|v|)

− 1
2‖∇xft‖

2
L2(m1) + C‖∇vft‖2L2(m1) + C‖ft‖2L2(m1)

For the very definition of F in (3.4.4), we easily compute

d
dtF(t, ft) = A

d
dt‖ft‖

2
L2(m1) + at

d
dt‖∇vft‖

2
L2(m1) + 2ct2 d

dt(∇vft,∇xft)L2(m1)

+bt3 d
dt‖∇xft‖

2
L2(m1) + a‖∇vft‖2L2(m1) + 4ct(∇vft,∇xft)L2(m1)

+3bt2‖∇xft‖2L2(m1).

Gathering all the inequalities above together, we have

d
dtF(t, ft)

≤ (2a− A(1− δ)
2 + Cat+ 2Ct2c+ Cbt3)‖∇vft‖2L2(m1)

+ (3bt2 − c

2 t
2 + Cbt3)‖∇xft‖2L2(m1) + (4ct+ Cat)(|∇vft|, |∇xft|)L2(m1)

−
d∑
i=1

(at‖∇v(∂viftG−1)‖2L2(m1G) + bt3‖∇v(∂xiftG−1)‖2L2(m1G)

+ 2ct2(∇v(∂xiftG−1),∇v(∂viftG−1))L2(m1G))−
δ(1− δ)

2 (at‖∇vft‖2L2(m1|v|)

+ bt3‖∇xft‖2L2(m1|v|) + 2ct2(∇vft,∇xft)L2(m1|v|)) + C‖ft‖2L2(m1),

for some C > 0. We observe that

|2ct2(∇vft,∇xft)L2(m1|v|)| ≤ at‖∇vft‖
2
L2(m1|v|) + bt3‖∇xft‖2L2(m1|v|),

and

|2ct2(∇v(∂xiftG−1),∇v(∂viftG−1))L2(m1G)|

≤ at‖∇v(∂viftG−1)‖2L2(m1G) + bt3‖∇v(∂xiftG−1)‖2L2(m1G).

by our choice on a, b, c. So by taking A large, 12b ≤ c, and 0 < η small (t ∈ [0, η]), as a
consequence

d
dtF(t, ft) ≤ −L(‖∇vft‖2L2(m1) + t2‖∇xft‖2L2(m1)) + C‖ft‖2L2(m1),

for some L,C > 0, and that ends the proof.
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Remark 3.4.4. For the case F = F∗, the only difference in the proof is to change (3.4.6)
and (3.4.7) into

∂xiL∗f = L∗∂xif −
d∑
j=1

∂2
xixjV ∂vjf,

and
∂viL∗f = L∗∂vif + ∂xif + ∂vif.

The following proof of this section is true for both cases.

Lemma 3.4.5. Denote m1 = G−
1
2 (1+δ), then for any 0 < δ < 1 we have∫

|∇x,v(fm1)|2 ≤
∫
|∇x,vf |2m2

1 + C

∫
f2m2

1,

for some constant C > 0.

Proof. We have∫
|∇(fm1)|2 =

∫
|∇fm1 +∇m1f |2

=
∫
|∇f |2m2

1 +
∫
|∇m1|2f2 +

∫
2fm1∇f · ∇m1

=
∫
|∇f |2m2

1 +
∫

(|∇m1|2 −
1
2∆(m2

1))f2,

=
∫
|∇f |2m2

1 −
∫ ∆m1

m1
f2m2

1,

since
∆m1
m1

= (1 + δ)2

4 (|v|2 + |∇xV (x)|2) + 1 + δ

2 (∆xV (x) + d) ≥ −C,

for some C > 0, we are done.

Lemma 3.4.6. Nash’s inequality: for any f ∈ L1(Rd)∩H1(Rd), there exists a constant
Cd such that:

‖f‖1+ 2
d

L2 ≤ Cd‖f‖
2
d

L1‖∇vf‖L2 ,

For the proof of Nash’s inequality, we refer to [44], Section 8.13 for instance.

Lemma 3.4.7. Denote m1 = G−
1
2 (1+δ), then for any 0 < δ < 1 we have

d

dt
‖f‖L1(m1) ≤ d‖f‖L1(m1) (3.4.8)

which implies

‖ft‖L1(m1) ≤ edt‖f0‖L1(m1)

In particular we have

‖ft‖L1(m1) ≤ C‖f0‖L1(m1), ∀t ∈ [0, η], (3.4.9)

for some constant C > 0.
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Proof. By Lemma 3.5.2 in the next section, letting p = 1, we have
d
dt

∫
|f |m1 =

∫
|f |(∆vm1 − v · ∇vm1

+v · ∇xm1 −∇xV (x) · ∇vm1 −KχRm1

≤
∫
|f |(1 + δ

2 d− (1 + δ)(1− δ)
4 v2)m1

≤ d

∫
|f |m1.

so (3.4.8) is proved. As Tm1 = 0, the result is still true when F = F∗.

Now we come to the proof of Theorem 3.4.1.

Proof. (Proof of Theorem 3.4.1.) We define

G(t, ft) = B‖ft‖2L1(m1) + tZF(t, ft),

with B,Z > 0 to be fixed and F is defined in Lemma 3.4.2. We choose t ∈ [0, η] , η
small such that

(a+ b+ c)ZηZ+1 ≤ 1
2Lη

Z ,

where a, b, c, L are also defined Lemma 3.4.2, by (3.4.8) and Lemma 3.4.2 we have
d

dt
G(t, ft) ≤ dB‖ft‖2L1(m1) + ZtZ−1F(t, ft)

−LtZ(‖∇vft‖2L2(m1) + t2‖∇xft‖2L2(m1)) + CtZ‖ft‖2L2(m1)

≤ dB‖ft‖2L1(m1) + CtZ−1‖ft‖2L2(m1)

−L2 t
Z(‖∇vft‖2L2(m1) + t2‖∇xft‖2L2(m1)).

Nash’s inequality and Lemma 3.4.5 implies

‖ftm1‖L2 ≤ C‖ftm1‖
2
d+2
L1 ‖∇x,v(ftm1)‖

d
d+2
L2

≤ C‖ftm1‖
2
d+2
L1 (‖∇x,vftm1‖L2 + C‖ftm1‖L2)

d
d+2

Using Young’s inequality, we have

‖ft‖2L2(m1) ≤ Cεt
− 3

2d‖f‖2L1(m1) + εt3(‖∇x,vft‖2L2(m1) + C‖ft‖2L2(m1)).

Taking ε small such that Cεη3 ≤ 1
2 , we deduce

‖ft‖2L2(m1) ≤ 2Cεt−
3
2d‖f‖2L1(m1) + 2εt3‖∇x,vft‖2L2(m1).

Taking ε small we have
d
dtG(t, ft) ≤ dB‖ft‖2L1(m1) + C1t

Z−1− 3
2d‖ft‖2L1(m1),

for some C1 > 0. Choosing Z = 1 + 3
2d, and using (3.4.9), we deduce

∀t ∈ [0, η], G(t, ft) ≤ G(0, f0) + C2‖f0‖2L1(m1) ≤ C3‖f0‖2L1(m1),

which ends the proof.
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3.5 SB decay in larger spaces

The aim of this section is to prove the following decay estimate for the semigroup
SB which will be useful in the last section where we will prove Theorem 3.1.1 in full
generally.

Theorem 3.5.1. Let H = 1 + x2 + 2v · x + 3v2, for any θ ∈ (0, 1) and for any l > 0,
we have

‖SB(t)‖L1(Hl)→L1(Hlθ) . (1 + t)−a,

where
a = l(1− θ)

1− γ
2
.

We start with an elementary identity.

Lemma 3.5.2. For the kinetic Fokker Planck operator L , let m be a weight function,
for any p ∈ [1,∞] we have∫

|f |p−1 sign f(Lf)mp = −(p− 1)
∫
|∇v(mf)|2(m|f |)p−2 +

∫
|f |pmpφ,

with
φ = 2

p′
|∇vm|2

m2 +
(2
p
− 1

) ∆vm

m
+ d

p′
− v · ∇vm

m
− Tm

m
.

In particular when p = 1, we have

φ = ∆vm

m
− v · ∇vm

m
− Tm

m
.

Proof. We split the integral as∫
sign f(Lf)|f |p−1mp =

∫
sign f |f |p−1(Sf)mp +

∫
sign f |f |p−1(T f)mp.

First compute the contribution of the term with operator T∫
sign f |f |p−1(T f)mp = 1

p

∫
T (|f |p)mp = −

∫
|f |pmpTm

m
.

Concerning the term with operator S, we split it also into two parts∫
(Sf) sign f |f |p−1mp =

∫
sign f |f |p−1mp(∆vf + divv(vf)) := C1 + C2.

We first compute the C2 term, we have

C2 =
∫

sign f |f |p−1mp(df + v · ∇vf)

=
∫
d|f |pmp − 1

p

∫
|f |pdivv(vmp)

=
∫
|f |p

[
(1− 1

p
)d− v · ∇vm

m

]
mp.
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Then we turn to the C1 term, we have

C1 =
∫

sign f |f |p−1mp∆vf = −
∫
∇v(sign f |f |p−1mp) · ∇vf

=
∫
−(p− 1)|∇vf |2|f |p−2mp − 1

p

∫
∇v|f |p · ∇v(mp).

Using ∇v(mf) = m∇vf + f∇vm, we deduce

C1 = −(p− 1)
∫
|∇v(mf)|2|f |p−2mp−2 + (p− 1)

∫
|∇vm|2|f |pmp−2

+2(p− 1)
p2

∫
∇v(|f |p) · ∇v(mp)− 1

p

∫
∇v(|f |p) · ∇v(mp)

= −(p− 1)
∫
|∇v(mf)|2|f |p−2mp + (p− 1)

∫
|∇vm|2|f |pmp−2

−p− 2
p2

∫
|f |p∆vm

p.

Using that ∆vm
p = p∆vm mp−1 + p(p− 1)|∇vm|2mp−2, we obtain

C1 = −(p− 1)
∫
|∇v(mf)|2|f |p−2mp−2

+
∫
|f |pmp

[
(2
p
− 1)∆vm

m
+ 2(1− 1

p
) |∇vm|

2

m2

]
.

We conclude by combining the above equalities.

Proof. (Proof of Theorem 3.5.1.) From Lemma 3.5.2, we have∫
sign f(Bf)|f |p−1mp (3.5.1)

=
∫

sign f((L −KχR)f)|f |p−1mp

= −(p− 1)
∫
|∇v(mf)|2(m|f |)p−2 +

∫
|f |pmpφ,

with
φ =

[
2
p′
|∇vm|2

m2 +
(2
p
− 1

) ∆vm

m
+ d

p′
− v · ∇vm

m
− Tm

m
−KχR

]
.

When p = 1, we have

φ = ∆vm

m
− v · ∇vm

m
− Tm

m
−KχR.

Let m = Hk. We have

∇vm
m

= k
∇vH
H

,
∇xm
m

= k
∇xH
H

,

and

∆vm

m
= k∆vH

H
+ k(k − 1)|∇vH|2

H2 .
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Summing up, we have for φ

φH

k
= ∆vH + (k − 1) |∇vH|

2

H
− v · ∇vH + v · ∇xH −∇xV (x) · ∇vH −KχR,

From the very definition of H, we have

∇vH = 6v + 2x, ∇xH = 2v + 2x, ∆vH = 6.

We then compute

∆vH + (k − 1) |∇vH|
2

H
+ v · ∇xH − v · ∇vH −∇xV (x) · ∇vH

= 6 + (k − 1) |6v + 2x|2

H
+ 2|v|2 + 2x · v − 6|v|2

−2x · v − 6v · ∇xV (x)− 2x · ∇xV (x)

≤ (2|v|2 + Cv − 6|v|2)− 2x · ∇xV (x) + C

≤ −C1|v|2 − C2x · ∇xV (x) + C3

≤ −C4H
γ
2 +K1χR1 ,

for some Ci > 0. Taking K and R large enough, we have φ ≤ −CH
γ
2−1, using this

inequality in equation (3.5.1), we deduce

d
dtY4(t) := d

dt

∫
|fB(t)|Hk =

∫
sign(fB(t))(BfB(t))Hk (3.5.2)

≤ −C
∫
|fB(t)|Hk−1+ γ

2 ,

for any k > 1. In particular for any l ≥ 1, we can find K and R large enough such that

d
dt

∫
|fB(t)|H l ≤ 0,

which readily implies ∫
|fB(t)|H l ≤

∫
|f0|H l := Y5.

Take k ≤ l, denoting
α = l − k

l − k + 1− γ
2
∈ (0, 1),

the Hölder’s inequality∫
|fB(t)|Hk ≤

(∫
|fB(t)|Hk−1+ γ

2

)α (∫
|fB(t)|H l

)1−α
,

implies (∫
|fB(t)|Hk

) 1
α
(∫
|fB(t)|H l

)α−1
α

≤
∫
|fB(t)|Hk−1+ γ

2 ,

From this inequality and (3.5.2), we get

d
dtY4(t) ≤ −C(Y4(t))

1
αY

α−1
α

5 .



68 CHAPTER 3. KFP EQUATION WITH WEAK CONFINEMENT FORCE

Using Y4(0) ≤ Y5, after an integration, we deduce

Y4(t) ≤ Cα
1

(1 + t)
α

1−α
Y5,

which is nothing but the polynomial decay on SB

‖SB(t)‖Lp(Hl)→Lp(Hk) . (1 + t)−a,

with
a = l − k

1− γ
2
, ∀0 < k < l, 1 ≤ l.

We conclude Theorem 3.5.1 by writing k = lθ, 0 < θ < 1.

3.6 Lp convergence for the KFP model

Before going to the proof of our main theorem, we need two last deduced results.

Lemma 3.6.1. For any ε > 0 small enough, we have

‖ASB(t)‖
L2(G−( 1

2 +ε))→L2(G−( 1
2 +ε))

. e−at
γ

2−γ
, ∀t ≥ 0,

and
‖ASB(t)‖

L1(G−( 1
2 +ε))→L1(G−( 1

2 +ε))
. e−at

γ
2−γ

, ∀t ≥ 0,

for some a > 0. Similarly for any 0 < b < γ
2−γ and for any ε > 0 small enough, we

have
‖ASB(t)‖

L1(G−( 1
2 +ε))→L2(G−( 1

2 +ε))
. t−αe−at

b
, ∀t ≥ 0,

for α = 3d+2
4 and some a > 0.

Proof. The first two inequalities are obtained obviously by Lemma 3.3.3 and the prop-
erty of A = KχR. For the third inequality we split it into two parts, t ∈ [0, η] and t > η,
where η is defined in Theorem 3.4.1. When t ∈ [0, η] , we have e−at

γ
2−γ ≥ e−aη

γ
2−γ , by

Theorem 3.4.1, we have

‖ASB(t)‖
L1(G−( 1

2 +ε))→L2(G−( 1
2 +ε))

. t−α . t−αe−at
γ

2−γ
, ∀t ∈ [0, η],

for some a > 0. When t ≥ η, by Theorem 3.4.1, we have

‖SB(η)‖
L1(G−( 1

2 +ε))→L2(G−( 1
2 +ε))

. ηα . 1,

and by Lemma 3.3.3

‖SB(t− η)‖
L2(G−( 1

2 +ε))→L2(G−
1
2 )

. e−a(t−η)
γ

2−γ
. e−at

γ
2−γ

,

gathering the two inequalities, we have

‖ASB(t)‖
L1(G−( 1

2 +ε))→L2(G−( 1
2 +ε))

. e−at
γ

2−γ
. t−αe−at

b
, ∀t > η,

for any 0 < b < γ
2−γ , the proof is ended by combining the two cases above.
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Lemma 3.6.2. Similarly as Lemma 3.6.1. For any p ∈ (2,∞), we have

‖SB(t)A‖
L2(G−

1
2 )→L2(G−

1
2 )

. e−at
γ

2−γ
, ∀t ≥ 0.

and
‖SB(t)A‖

Lp(G−
1
2 )→Lp(G−

1
2 )

. e−at
γ

2−γ
, ∀t ≥ 0.

for some a > 0. And for any 0 < b < γ
2−γ we have

‖SB(t)A‖
L2(G−

1
2 )→Lp(G−

1
2 )

. t−βe−at
b
, ∀t ≥ 0.

for some β > 0 and some a > 0.

The proof of Lemma 3.6.2 is similar to the proof of Lemma 3.6.1 and thus skipped.

Lemma 3.6.3. let X,Y be two Banach spaces, S(t) a semigroup such that for all t ≥ 0
and some 0 < a, 0 < b < 1 we have

‖S(t)‖X→X ≤ CXe−at
b
, ‖S(t)‖Y→Y ≤ CY e−at

b
,

and for some 0 < α, we have

‖S(t)‖X→Y ≤ CX,Y t−αe−at
b
.

Then we can have that for all integer n > 0

‖S(∗n)(t)‖X→X ≤ CX,ntn−1e−at
b
,

similarly
‖S(∗n)(t)‖Y→Y ≤ CY,ntn−1e−at

b
,

and
‖S(∗n)(t)‖X→Y ≤ CX,Y,ntn−α−1e−at

b
.

In particular for α+ 1 < n, and for any b∗ < b

‖S(∗n)(t)‖X→Y ≤ CX,Y,ne−at
b∗
.

The proof of Lemma 3.6.3 is the same as Lemma 2.5 in [53], plus the fact tb ≤ sb+(t−s)b

for any 0 ≤ s ≤ t, 0 < b < 1.
Then we come to the final proof.

Proof. (Proof of Theorem 3.1.1.) We only prove the case whenm = G
p−1
p

(1+ε)
, p ∈

[1, 2], for the proof of the other cases, one need only replace the use of Lemma 3.6.1 in
the following proof by Lemma 3.6.2 and Theorem 3.4.1. We will prove p = 1 first, this
time we need to prove

‖SL(I −Π)(t)‖L1(G−ε)→L1 . e−at
b
,
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for any 0 < b < γ
2−γ , where I is the identity operator and Π is a projection operator

defined by
Π(f) =M(f)G.

First, Iterating the Duhamel’s formula we split it into 3 terms

SL(I −Π) = (I −Π){SB +
n−1∑
l=1

(SBA)(∗l) ∗ (SB)}

+{(I −Π)SL} ∗ (ASB(t))(∗n),

and we will estimate them separately. By Lemma 3.3.3, we have

‖SB(t)‖L1(G−ε)→L1 . e−at
γ

2−γ
, (3.6.1)

the first term is thus estimated. For the second term, still using Lemma 3.3.3, we get

‖SB(t)A‖L1→L1 . e−at
γ

2−γ
,

by Lemma 3.6.3, we have

‖(SB(t)A)(∗l)‖L1→L1 . tl−1e−at
γ

2−γ
,

together with Lemma 3.6.1 the second term is estimated. For the last term by Lemma
3.3.3

‖ASB(t)‖
L1(G−ε)→L1(G−( 1

2 +ε))
. e−at

γ
2−γ

.

By Lemma 3.6.1 and 3.6.3, for any 0 < b < γ
2−γ , we have

‖(ASB)(∗(n−1))(t)‖
L1(G−( 1

2 +ε))→L2(G−( 1
2 +ε))

. tn−α−2e−at
b
,

finally by Theorem 3.3.1, we have

‖SL(t)(I −Π)‖
L2(G−( 1

2 +ε))→L2(G−
1
2 )

. e−at
γ

2−γ
.

Taking n > α+ 2 the third term is estimated, thus the proof of case p = 1 is concluded
by gathering the inequalities above. As the case p = 2 is already proved in Theorem
3.3.1, the case p ∈ (1, 2) follows by interpolation.



Chapter 4

The Kinetic Fokker-Planck
Equation with General Force

4.1 Introduction

In this paper, we consider the kinetic Fokker-Planck (KFP for short) equation with
general force

∂tf = Lf := −v · ∇xf +∇xV (x) · ∇vf + ∆vf + divv(∇vW (v)f), (4.1.1)

for a density function f = f(t, x, v), with t ≥ 0, x ∈ Rd, v ∈ Rd, with

V (x) = 〈x〉
γ

γ
, γ ≥ 1, W (v) = 〈v〉

β

β
, β ≥ 2

where 〈x〉2 := 1 + |x|2, and the kinetic Fitzhugh-Nagumo equation

∂tf := Lf = ∂x(A(x, v)f) + ∂v(B(x, v)f) + ∂2
vvf (4.1.2)

with
A(x, v) = ax− bv, B(x, v) = v(v − 1)(v − λ) + x

for some a, b, λ > 0. The evolution equations are complemented with an initial datum

f(0, x, v) = f0(x, v) on R2d.

It’s easily seen that both equations are mass conservative, that is

M(f(t, ·)) =M(f0),

With these notations, we can introduce the main result of this paper.

71
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Theorem 4.1.1. (1) When 2 ≤ β, 1 ≤ γ, there exist a weight functionm > 0 and a non-
negative normalized steady state G ∈ L1(m) such that for any initial datum f0 ∈ L1(m),
the associated solution f(t, ·) of the kinetic Fokker-Planck equation (4.1.1) satisfies

‖f(t, ·)−M(f0)G‖L1(m) ≤ Ce−λt‖f0 −M(f0)G‖L1(m),

for some constant C, λ > 0.
(2) The same conclusion holds for the kinetic Fitzhugh-Nagumo equation (4.1.2).

In the results above the constants C and λ can be explicitly estimated in terms of
the parameters appearing in the equation by following the calculations in the proofs.
We do not give them explicitly since we do not expect them to be optimal, but they are
nevertheless completely constructive.

Remark 4.1.2. Theorem 4.1.1 is also true when V (x) behaves like 〈x〉γ andW (v) behaves
like 〈v〉β, that is for any V (x) satisfying

C1〈x〉γ ≤ V (x) ≤ C2〈x〉γ , ∀x ∈ Rd,

C3|x|〈x〉γ−1 ≤ x · ∇xV (x) ≤ C4|x|〈x〉γ−1, ∀x ∈ Bc
R,

and
|Dn

xV (x)| ≤ Cn〈x〉γ−2, ∀x ∈ Rd, ∀n ≥ 2,

for some constant Ci > 0, R > 0, and similar estimates holds for W (v).

In fact, Theorem 4.1.1 is a special case of the following theorem.

Theorem 4.1.3. Consider the following equation

∂tf := Lf = ∂x(A(x, v)f) + ∂v(B(x, v)f) + ∆vf (4.1.3)

with
A(x, v) = −v + Φ(x)

where Φ(x) is Lipschitz
|Φ(x)− Φ(y)| ≤M |x− y|,

for some M > 0, define

φ2(m) = v · ∇xm
m
− Φ(x) · ∇xm

m
+ 1

2divxΦ(x) + |∇vm|
2

m2

+ ∆vm

m
−B(x, v) · ∇vm

m
+ 1

2divvB(x, v)

then if we can find a weight function m and a function H ≥ 1 such that

L∗m ≤ −αm+ b,
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for some α, b > 0
−C1Hm ≤ φ2(m) ≤ −C2Hm+ C3,

for some C1, C2, C3 > 0, and for any integer n ≥ 2 fixed, for any ε > 0 small, we can
find a constant Cε,n such that

n∑
k=2
|Dk

xΦ(x)|+
n∑
k=2
|Dk

x,vB(x, v)| ≤ Cn,ε + εH

and
∆x,vm

m
≥ −C4

for some C4 > 0, then we have there exist a steady state G such that

‖f(t, ·)−M(f0)G‖L1(m) ≤ Ce−λt‖f0 −M(f0)G‖L1(m).

for some C, λ > 0.

Remark 4.1.4. In fact φ2(m) satisfies∫
(f(Lg) + g(Lf))m2 = −2

∫
∇vf · ∇vgm2 + 2

∫
fgφ2(m)m2.

the computation can be found in Section 4.8.

Remark 4.1.5. For the kinetic Fokker-Planck equation with general force 4.1.1, we can
take

m = eH1 , H1 = |v|2 + V (x) + εv · ∇x〈x〉, H = 〈v〉β + 〈x〉γ−1,

for some ε > 0 small, the computation can be found in Section 4.7 below. For the kinetic
Fitzhugh-Nagumo equation (4.1.2), we can take

m = eλ(x2+v2), H = |v|4 + |x|2,

for some constant λ > 0, the computation can be found in Section 4.6

For the kinetic Fitzhugh-Nagumo equation (4.1.2), an exponential convergence with
non-quantitative rate to the convergence has already been proved in [53], our method
improves the result to a quantitative rate.

If β = 2, the equation (4.1.1) will turn to the classical KFP equation

∂tf = Lf := −v · ∇xf +∇xV (x) · ∇vf + ∆vf + divv(vf),

This time we observe that

G = Z−1e−W , W = v2

2 + V (x), Z ∈ R+,

is an explicit steady state. There are many classical results on the case γ ≥ 1, where
there is an exponentially decay. We refer the interested readers to [62, 19, 20, 42, 36,
38, 9, 47], and for the weak confinement case γ ∈ (0, 1), there are also some polynomial
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or sub-geometric convergence results proved in [9, 10, 21]. We also emphasize that our
results for kinetic Fokker-Planck equation with general potentials are to our knowledge
new.

We carry out all of our proofs using variations of Harris’s Theorem for Markov
semigroup. One advantage of the Harris method is that it directly yields convergence
for a wide range of initial conditions, while previous proofs of convergence to equilibrium
mainly use some strongly weighted L2 or H1 norms (typically with a weight which is the
inverse of a Gaussian). The Harris method also gives existence of stationary solutions
under quite general conditions; in some cases these are explicit and easy to find, but
in other cases such as the two models in our paper they can be nontrivial. Also the
Harris method provides a quantitative rate of convergence to the steady state, which is
better than non-quantitative type argument such as the consequence of Krein Rutman
theorem.

Let us end the introduction by describing the plan of the chapter. In Section 4.2, we
introduce a PDE translate of the Harris Theorem which is a little stronger than 1.2. In
Section 4.3 we present the proof of a regularization estimate on SL. In Section 4.4 we
prove the Harris-Doeblin condition for the general kinetic Fokker- Planck equation. In
Section 4.5, we prove a lemma for the spreading of positivity. In Section 4.6 , 4.7 and
4.8 we make the computation for the kinetic Fokker Planck equation and the Fitzhugh-
Nagumo equation.

4.2 Harris Theorem and existence of steady state

In this section we introduce a PDE translation version of the Harris-Doeblin theorem
by José Cañizo and S. Mischler, then give a proof of the existence of steady state under
Lyapunov condition.

Theorem 4.2.1. (Harris- Doeblin Theorem) We consider a semigroup St in a Banach
space X with generator L and we assume that
(H1)(Lyapunov condition) There exists some weight function m : Rd → [1,∞) satisfying
m(x)→∞ as x→∞ and there exist some constants α > 0, b > 0 such that

L∗m ≤ −αm+ b,

(H2)(Harris condition) For any R > 0 there exist a constant T = T (R) > 0 and a
positive, nonzero measure µ = µ(R) such that

ST f ≥ µ
∫
BR

f, ∀f ∈ X, f ≥ 0.

where BR denotes the ball centered at origin with radius R. There exist some constants
C ≥ 1 and a < 0 such that

‖Stf‖L1(m) ≤ Ceat‖f‖L1(m), ∀t ≥ 0, ∀f ∈ X, M(f) = 0.
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Remark 4.2.2. In fact this version of Harris-Doeblin Theorem is a little stronger than
Theorem 1.2.8 because this version do not require a minimum of T for all R, in this
version it may happen that

T (R)→ 0, as R→∞,

while in Theorem 1.2.8 they require a minimum t∗.

Before proving the theorem, we first prove a useful lemma.

Lemma 4.2.3. (Doeblin’s variant). Under assumption (H2), if f ∈ L1(m), with
m(x)→∞ as |x| → ∞, satisfies

‖f‖L1 ≥
4

m(R)‖f‖L1(m), and 〈f〉 = 0, (4.2.1)

we then have
‖ST f‖L1 ≤ (1− 〈µ〉2 )‖f‖L1

Proof. From the hypothesis (4.2.1), we have∫
BR

f± =
∫
f± −

∫
BcR

f±

≥ 1
2

∫
|f | − 1

m(R)

∫
|f |m ≥ 1

4

∫
|f |

Together with (H2), we get
ST f± ≥

µ

4

∫
|f | := η

We deduce

|ST f | ≤ |ST f+ − η|+ |ST f− − η| = ST f+ − η + ST f− − η = ST |f | − 2η,

and next ∫
|ST f | ≤

∫
ST |f | − 2η =

∫
|f | − µ

2

∫
|f |

which is nothing but the announced estimate.

Then we come to the proof of Theorem 4.2.1

Proof. Proof of Theorem 4.2.1. We split the proof in several steps.
Step 1. We fix f0 ∈ L1(m), 〈f〉 = 0, and we denote ft := Stf0. From (H1), we have

d

dt
‖f‖L1(m) ≤ −α‖ft‖L1(m) + b‖ft‖L1 , ∀t ≥ 0,

from what we deduce

‖ST f‖L1(m) ≤ e−αt‖f0‖L1(m) + (1− e−αt) b
α
‖f0‖L1 , ∀t ≥ 0,
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In other words, we have proved

‖ST f‖L1(m) ≤ γ‖f0‖L1(m) +K‖f0‖L1 , ∀t ≥ 0, (4.2.2)

with γ ∈ (0, 1) and K > 0. We fix R > 0 large enough such that 8b
α ≤ m(R), then take

T = T (R) and µ = µ(R), define

γ := e−αT , K := (1− e−αT ) b
α

Then we have K/A ≤ (1− γ)/2 with A := m(R)/4. We also recall that

‖ST f‖L1 ≤ ‖f0‖L1 , ∀t ≥ 0, (4.2.3)

We define
‖f‖β = ‖f0‖L1 + β‖f0‖L1(m)

and we observe that the following altenative holds

‖f0‖L1(m) ≤ A‖f0‖L1 (4.2.4)

or
‖f0‖L1(m) > A‖f0‖L1 (4.2.5)

Step 2. We observe that under condition (4.2.4), there holds

‖ST f0‖L1 ≤ γ1‖f0‖L1 , γ1 ∈ (0, 1) (4.2.6)

and more precisely γ1 := 1− 〈µ〉/2, which is nothing but the conclusion of Lemma 2.3.
Step 3. We claim that under condition (4.2.4), there holds

‖ST f0‖β ≤ γ2‖f0‖β, γ2 := max(γ1 + 1
2 , γ) (4.2.7)

for β > 0 small enough. Indeed, using (4.2.2) and (4.2.7), we compute

‖ST f0‖β = ‖ST f0‖L1 + β‖ST f0‖L1(m)

≤ (γ1 +Kβ)‖f0‖L1 + γβ‖f0‖L1(m)

and we take β > 0 such that γ1 +Kβ ≤ γ2.
Step 4. We claim that under condition (4.2.5), there holds

‖ST f0‖L1(m) ≤ γ3‖f0‖L1(m), γ3 := γ + 1
2 . (4.2.8)

Indeed we compute

‖ST f0‖L1(m) ≤ γ‖f0‖L1(m) + K

A
‖f0‖L1(m) = γ3‖f0‖L1(m).

Step 5. We claim that under condition (4.2.5), there holds

‖ST f0‖β ≤ γ4‖f0‖β, γ4 := γ3 + 1/β
1 + 1/β . (4.2.9)
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Indeed, using (4.2.3) and (4.2.8), we compute

‖ST f0‖β = ‖ST f0‖L1 + β‖ST f0‖L1(m)

≤ ‖f0‖L1 + γ3β‖f0‖L1(m)

≤ (1− ε)‖f0‖L1 + (ε+ γ3β)‖f0‖L1(m)

and we choose ε ∈ (0, 1) such that 1− ε = ε/β + γ3.
Step 6. By gathering (4.2.7) and (4.2.9), we see that we have

‖ST f0‖β ≤ γ5‖f0‖β, γ5 := max(γ2, γ4) ∈ (0, 1),

for some well chosen β > 0. By iteration, we get

‖SnT f0‖β ≤ γn5 ‖f0‖β,

and we then conclude in a standard way.

The Lyapunov condition also provides a sufficient condition for the existence of an
invariant measure (for the dual semigroup).

Theorem 4.2.4. Any mass conserving positive Markov semigroup (St) which fulfills
the above Lyapunov condition has at least one invariant borelian measure G ∈M1(m),
where M1 is the space of measures.

Proof. Step 1. We prove that (St) is a bounded semigroup. For f0 ∈M1(m), we define
ft := SL(t)f0, and we easily compute

d
dt

∫
|ft|m ≤

∫
|ft|L∗m ≤

∫
|ft|(−am+ b).

Using the mass conservation and positivity, integrating the above differential inequality,
we get ∫

|ft|m ≤ e−at
∫
|f0|m+ b

a
(1− e−at)

∫
|f0|

≤ max(1, b
a

)
∫
|f0|m, ∀t ≥ 0,

so that (St) is bounded in M1(m).
Step 2. We prove the existence of a steady state, more precisely, we start proving that
there exists a positive and normalized steady state G ∈ M1(m). For the equivalent
norm ||| · ||| defined on M1(m) by

|||f ||| := sup
t>0
‖SL(t)f‖M1(m),

and since we have
|||SL(t)f ||| ≤ |||f |||, ∀t ≥ 0,
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t hat is the semigroup SL is a contraction semigroup on (M1(m), ||| · |||). There exists
R > 0 large enough such that the intersection of the closed hyperplane

{f ∈M1(m); 〈f〉 = 1}

and the closed ball of radius R in (M1(m), ||| · |||) is a convex, non-empty subset. Then
consider the closed, weakly * compact convex set

K := {f ∈M1(m); |||f ||| ≤ R, f ≥ 0, 〈f〉 = 1},

Since SL(t) is a linear, weakly * continuous, contraction in (M1(m), ||| · |||) and

〈SL(t)f〉 = 〈f〉, ∀t ≥ 0,

we see that K is stable under the action of the semigroup. Therefore we apply the
Markov-Kakutani fixed point theorem and we conclude that there exists G ∈ K such
that SL(t)G = G. Therefore we have in particular G ∈ D(L) and LG = 0.

4.3 Regularization property of SL

The aim of this section is to establish the following regularization property, which is
similar to Section 3.4. The proof closely follows the proof of similar results in [38, 47, 62]

Theorem 4.3.1. Consider the weight function m as defined in Theorem 4.1.3, there
exist η, C > 0 such that

‖SL(t)f‖L2(m) ≤
C

t
5d+1

2
‖f‖L1(m), ∀t ∈ [0, η].

for some weight function m. In addition, for any integer k > 0 there exist we some
α(k), C(k) > 0 such that

‖SL(t)f‖Hk(m) ≤
C

tα
‖f‖L1(m), ∀t ∈ [0, η].

as a consequence we have

‖SL(t)f‖C2,δ(m) ≤
C

tζ
‖f‖L1(m), ∀t ∈ [0, η],

for some δ ∈ (0, 1), ζ > 0

We start with some elementary lemmas.
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Lemma 4.3.2. For ft = SL(t)f0, define an energy functional

F(t, ft) := A‖ft‖2L2(m) + at2‖∇vft‖2L2(m) (4.3.1)

+ 2ct4(∇vft,∇xft)2
L2(m) + bt6‖∇xft‖2L2(m),

with a, b, c > 0, c ≤
√
ab and A large enough. Then there exist η > 0 such that

d

dt
F(t, ft) ≤ −L(‖∇vft‖2L2(m) + t4‖∇xft‖2L2(m)) + C‖ft‖2L2(m),

for all t ∈ [0, η], for some L > 0, C > 0, as a consequence, we have

‖SLf0‖H1(m) ≤ Ct−6‖f0‖L2(m),

for all t ∈ [0, η], iterating k times we get

‖SLf0‖Hk(m) ≤ Ct−6k‖f0‖L2(m).

Proof. We only prove the case k = 1, for k = 2, one need only replace f by ∂xif and
∂vif , similarly for k > 2. First by Theorem 4.1.3 and Remark 4.1.4 we have

(f,Lg)L2(m) + (g,Lf)L2(m) = −2(∇vf,∇vg)L2(m) + (f, gφ2(m))L2(m),

for any f, g ∈ L2(m). As a consequence, we have

d
dt‖f‖

2
L2(m) = (f,Lf)L2(m) ≤ −‖∇vf‖2L2(m) − C1‖f‖2L2(mH1/2) + C2‖f‖2L2(m).

By

∂xiLf = L∂xif +
d∑
j=1

∂2
xixjV ∂vjf, (4.3.2)

and since
|∇2

xV (x)| ≤ CH1,

for some C > 0, we have

d
dt‖∂xif‖L2(m)

= (∂xif,L∂xif)L2(m) + (∂xif,
d∑
j=1

∂2
xixjV ∂vjf)L2(m)

≤ −‖∇v(∂xif)‖2L2(m) − C1‖∂xif‖2L2(mH1/2) + C2‖∂xif‖2L2(m) + C(|∇xf |, |∇vf |)L2(mH1/2).

Using Cauchy-Schwarz inequality and summing over i = 1, 2, 3, ..., n , we get

d
dt‖∇xf‖

2
L2(m)

≤ −
n∑
i=1
‖∇v(∂xif)‖2L2(m) −

C1
2 ‖∇xf‖

2
L2(mH1/2) + C2‖∇xf‖2L2(m) + C‖∇vf‖2L2(mH1/2).
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for some C > 0. Similarly using

∂viLf = L∂vif − ∂xif +
d∑
j=1

∂2
vivjW∂vjf, (4.3.3)

and since
|∇2

vW (v)| ≤ C1
2dH + C,

we have
d
dt‖∂vif‖

2
L2(m)

= (∂vif,L∂vif)L2(m) − (∂xif, ∂vif)L2(m) + (∂vif,
d∑
j=1

∂2
vivjW∂vjf)L2(m)

≤ −‖∇v(∂vif)‖2L2(m) − C1‖∂vif‖2L2(mH1/2) + C2‖∂vif‖2L2(m) + C1
2d ‖|∇vf‖

2
L2(mH1/2)

+C‖∇vf‖2L2(m) − (∂xif, ∂vif)L2(m).

Using Cauchy-Schwarz inequality and summing over i = 1, 2, ..., n we get
d
dt‖∇vf‖

2
L2(m)

≤ −
n∑
i=1
‖∇v(∂vif)‖2L2(m) −

C1
2 ‖∇vf‖

2
L2(mH1/2)

+C‖|∇vf‖2L2(m) − (∇vf,∇xf)L2(m).

For the crossing term, we split it also into two parts. Using (4.3.2) and (4.3.3), we have
d
dt2(∂vif, ∂xif)L2(m)

= (∂xif,L∂vif)L2(m) − (∂xif, ∂xif)L2(m) + (∂xif,
d∑
j=1

∂2
vivjW∂vjf)L2(m)

+(∂vif,L∂xif)L2(m) + (∂vif,
d∑
j=1

∂2
xixjV ∂vjf)L2(m)

≤ −2(∇v(∂xif),∇(∂vif))L2(m) − ‖∂xif‖2L2(m) + C‖∇vf‖2L2(mH1/2)

+ C(|∇vf |, |∇xf |)L2(mH1/2),

Combining the two parts, using Cauchy-Schwarz inequality, and summing over i we get
d
dt2(∇vf,∇xf)L2(m)

≤ −2
n∑
i=1

(∇v(∂xif),∇(∂vif))L2(m) − ‖∇xf‖2L2(m) + C‖∇vf‖2L2(mH1/2)

+ C(|∇vf |, |∇xf |)L2(mH1/2),

For the very definition of F in (4.3.1), we easily compute
d
dtF(t, ft) = A

d
dt‖ft‖

2
L2(m) + at2

d
dt‖∇vft‖

2
L2(m) + 2ct4 d

dt(∇vft,∇xft)
2
L2(m)

+bt6 d
dt‖∇xft‖

2
L2(m) + 2at‖∇vft‖2L2(m) + 8ct3(∇vft,∇xft)2

L2(m)

+6bt5‖∇xft‖2L2(m).
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Gathering all the inequalities above together, we have

d
dtF(t, ft) ≤ (2at−A+ Cat2)‖∇vft‖2L2(m) + (6bt5 − c

2 t
4 + Cbt6)‖∇xft‖2L2(m)

+ (8ct3 − Cat2)(∇vft,∇xft)L2(m2) + CA‖ft‖2L2(m),

−
d∑
i=1

(at2‖∇v(∂vift)‖2L2(m) + bt6‖∇v(∂xift)‖2L2(m)

+ 2ct4(∇v(∂xift),∇v(∂vift))L2(m))−
C1
2 ct6‖∇xf‖2L2(mH1/2)

+ (−C1
2 at2 + 2Cbt6 + Cct4)‖∇vf‖2L2(mH1/2) + 2bt4C(|∇vf |, |∇xf |)L2(mH1/2),

for some C > 0. We observe that

|2ct4(∇v(∂xift),∇v(∂vift))L2(m))|

≤ at2‖∇v(∂vift)‖2L2(m) + bt6‖∇v(∂vift)‖2L2(m),

by our choice on a, b, c. So by taking A large and 0 < η small (t ∈ [0, η]), we conclude
to

d
dtF(t, ft) ≤ −L(‖∇vft‖2L2(m) + t4‖∇xft‖2L2(m)) + C‖ft‖2L2(m),

for some L,C > 0, and that ends the proof.

Lemma 4.3.3. We have∫
|∇x,v(fm)|2 ≤

∫
|∇x,vf |2m2 + C

∫
f2m2,

Proof. We have∫
|∇(fm)|2 =

∫
|∇fm+∇mf |2

=
∫
|∇f |2m2 +

∫
|∇m|2f2 +

∫
2f∇fm∇xm

=
∫
|∇f |2m2 +

∫
(|∇m|2 − 1

2∆(m2))f2,

=
∫
|∇f |2m2 −

∫ ∆m
m

f2m2,

since
∆m
m
≥ −C,

for some C > 0, we are done.

Lemma 4.3.4. Nash’s inequality: for any f ∈ L1(Rd) ∩H1(Rd),there exist a constant
Cd such that:

‖f‖1+ 2
d

L2 ≤ Cd‖f‖
2
d

L1‖∇vf‖L2 ,

For the proof of Nash’s inequality, we refer to [44], Section 8.13 for instance.
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Lemma 4.3.5. There exist λ > 0 such that

d

dt
‖f‖L1(m) ≤ λ‖f‖L1(m) (4.3.4)

which implies

‖ft‖L1(m) ≤ Ceλt‖f0‖L1(m)

In particular we have

‖ft‖L1(m) ≤ C‖f0‖L1(m), ∀t ∈ [0, η], (4.3.5)

for some constant C > 0.

Proof. It’ s an immediate consequence of the Lyapunov condition (H1).

Now we come to the proof of Theorem 4.3.1.

Proof. (Proof of Theorem 4.3.1.) We define

G(t, ft) = B‖ft‖2L1(m) + tZF(t, ft),

with B,Z > 0 to be fixed and F defined in Lemma 4.3.2. We choose t ∈ [0, η], η small
enough such that (a + b + c)ZηZ+1 ≤ 1

2Lη
Z (a, b, c, L are also defined Lemma 4.3.2).

By (4.3.4) and Lemma 4.3.2, we have

d

dt
G(t, ft) ≤ λB‖ft‖2L1(m) + ZtZ−1F(t, ft)

−LtZ(‖∇vft‖2L2(m) + t4‖∇xft‖2L2(m)) + CtZ‖ft‖2L2(m)

≤ λB‖ft‖2L1(m) + CtZ−1‖ft‖2L2(m)

−L2 t
Z(‖∇vft‖2L2(m) + t4‖∇xft‖2L2(m)),

where λ is defined in Lemma 4.3.5. Nash’s inequality and Lemma 4.3.2 imply

‖fm‖L2 ≤ C‖fm‖
2
d+2
L1 ‖∇x,v(fm)‖

d
d+2
L2 ≤ C‖fm‖

2
d+2
L1 (‖∇x,vfm‖L2 + C‖fm‖L2)

d
d+2 .

Using Young’s inequality, we have

‖ft‖2L2(m) ≤ Cεt
−5d‖f‖2L1(m) + εt5(‖∇x,vft‖2L2(m) + C‖ft‖2L2(m)).

Taking ε small such that Cεη5 ≤ 1
2 , we deduce

‖ft‖2L2(m) ≤ 2Cεt−5d‖f‖2L1(m) + 2εt5‖∇x,vft‖2L2(m).

Taking ε small we have

d
dtG(t, ft) ≤ dB‖ft‖2L1(m) + C1t

Z−1−5d‖ft‖2L1(m),
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for some C1 > 0. Choosing Z = 1 + 5d, and using (4.3.5), we deduce

∀t ∈ [0, η], G(t, ft) ≤ G(0, f0) + C2‖f0‖2L1(m) ≤ C3‖f0‖2L1(m),

which proves
‖SL(t)f‖L2(m) ≤

C

t
5d+1

2
‖f‖L1(m), ∀t ∈ [0, η].

together with Lemma 4.3.2 ends the proof.

4.4 Proof of Harris condition

In this section we prove the Harris condition (H2) for equation (4.1.3). Before the proof
of the theorem, we first prove a useful lemma.

Lemma 4.4.1. For any R > 0, there exist a λ, ρ such that for any t > 0, there exists
(x0, v0) ∈ Bρ such that

f(t, x0, v0) ≥ λ
∫
BR

f0.

Proof. From conservation of mass, we classically show that

d

dt

∫
Rd
f(t, x, v)dxdv = 0,

so we have
‖SL(t)‖L1→L1 ≤ 1, ∀t ≥ 0, (4.4.1)

Define the splitting of the KFP operator L by

B = L −A, A = MχR(x, v).

with M,R > 0 large, where χ is the cut-off function such that χ(x, v) ∈ [0, 1], χ(x, v) ∈
C∞, χ(x, v) = 1 when x2+v2 ≤ 1 , χ(x, v) = 0 when x2+v2 ≥ 2, and χR = χ(x/R, v/R).
From the Lyapunov function condition (H1) and taking M,R large, we have

‖SB(t)‖L1(m)→L1(m) ≤ Ce−λt, ∀t ≥ 0. (4.4.2)

By Duhamel’s formula
SL = SB + SB ∗ ASL,

we directly deduce from (4.4.1) and 4.4.2 that

‖SL(t)‖L1(m)→L1(m) ≤ A, ∀t ≥ 0,

for some A > 0. We fix R > 0 and take g0 = f01BR ∈ L1(Rd) with that supp g0 ⊂ BR,
,denote gt = SLg0, ft = SLf0, then we have∫

Rd
gt =

∫
Rd
g0 =

∫
BR

g0 =
∫
BR

f0.
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Moreover, since there exists A > 0 such that∫
Rd
gtm ≤ A

∫
Rd
g0m ≤ Am(R)

∫
BR

g0.

For any ρ > 0, we write∫
Bρ
gt =

∫
Rd
gt −

∫
Bcρ

gt

≥
∫
Rd
g0 −

1
ρ

∫
Rd
gtm

≥
∫
Rd
g0 −

Am(R)
ρ

∫
BR

g0 ≥
1
2

∫
BR

g0,

by taking ρ = 2Am(R). As a consequence, for any t > 0, there exist a (x0, v0) ∈ Bρ
which may depend on g0 such that

g(t, x0, v0) ≥ 1
|Bρ|

∫
Bρ
gt ≥

1
2|B2Am(R)|

∫
BR

g0 := λ

∫
BR

g0.

By the maximum principle we have

f(t, x0, v0) ≥ g(t, x0, v0) ≥ λ
∫
BR

g0 = λ

∫
BR

f0.

Theorem 4.4.2. The equation (4.1.3) satisfies the Harris condition.

Proof. By Theorem 4.3.1 we now take for t > η
2 , we have

∆vf,∇xf,∇vf ∈ C0,α,

and by equation

∂tf := Lf = ∂x(A(x, v)f) + ∂v(B(x, v)f) + ∆vf,

we deduce that for any R1 > 0 we have,

|∂tf |+ |∂xf |+ |∂vf | ≤ C , on [η2 , η]×BR1 ,

for some constant C > 0. By continuity for every R > 0, there exist t1, t2, r0, ρ, λ > 0
which do not depend on f and (x0, v0) ∈ Bρ which may depend on f , such that for all
t ∈ (t1, t2), we have

f(t, x, v) ≥ λ

2 1Br0 (x0,v0)

∫
BR

f0,

where Br0(x0, v0) denotes the ball centered at (x0, v0) with radius r0, to make x0, v0 f

independent we use
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Theorem 4.4.3. Let f(t, x, v) be a classical nonnegative solution of

∂tf −∆vf = −(v + Φ(x)) · ∇xf +A(t, x, v) · ∇vf +B(t, x, v)f,

in [0, T )× Ω, where Φ(x) is Lipschitz

|Φ(x)− Φ(y)| ≤M |x− y|, ∀x, y ∈ Ω,

Ω is an open subset of R2 , and A,B : [0, T ) × Rd and bounded continuous functions.
Let (x0, v0) ∈ Ω, let

V = max{v0 + Φ(x0)|(v0, x0) ∈ Ω}, Ā = ‖A‖L∞(Ω), B̄ = ‖B‖L∞(Ω),

then for any r, τ > 0 there are constants λ,K > 0, only depending on Ā, V, B̄and r2/τ ,
, such that the following holds: If

Bλr(x0, v0) ∈ Ω, τ < min(1/2, r3/4V, 1/M)

and
f ≥ δ > 0, in [0, τ)×Br(x0, v0),

then
f ≥ Kδ, in [τ/2, τ)×B2r(x0, v0).

in fact it is possible to take λ such that

2068× 16× 8 max(r
2

τ
,
r6

τ3 ) = λmin(r
2

τ
,
r6

τ3 ).

Proof. See Section 4.5.

Coming back to the proof of Theorem 4.4.2. Define

T = min(t2 − t1, 1/2, r3
0/4R, 1/M),

iterate n times we have for any t ∈ (t2 − T
2n , t2)

f(t, x, v) ≥ λ

2

n∏
i=1

Ki1B2nr0 (x0,v0)

∫
BR

f0,

take n large such that 2nr0 > 2ρ, since (x0, v0) ∈ Bρ implies that Bρ ⊂ B2ρ(x0, v0), we
have

f(t, x, v) ≥ λ

2

n∏
i=1

Ki1Bρ
∫
BR

f0,

for any t ∈ (t2 − T
2n , t2), which is just Harris condition.
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4.5 Proof of spreading of positivity

In this chapter we prove the spreading of positivity

Theorem 4.5.1. Let f(t, x, v) be a classical nonnegative solution of

∂tf −∆vf = −(v + Φ(x)) · ∇xf +A(t, x, v) · ∇vf +B(t, x, v)f,

in [0, T )× Ω, where Φ(x) is Lipschitz

|Φ(x)− Φ(y)| ≤M |x− y|, ∀x, y ∈ Ω,

Ω is an open subset of R2 , and A,B : [0, T ) × Rd and bounded continuous functions.
Let (x0, v0) ∈ Ω, let

V = max{v0 + Φ(x0)|(v0, x0) ∈ Ω}, Ā = ‖A‖L∞(Ω), B̄ = ‖B‖L∞(Ω),

then for any r, τ > 0 there are constants λ,K > 0, only depending on Ā, V, B̄and r2/τ ,
, such that the following holds: If

Bλr(x0, v0) ∈ Ω, τ < min(1/2, r3/4V, 1/M)

and
f ≥ δ > 0, in [0, τ)×Br(x0, v0),

then
f ≥ Kδ, in [τ/2, τ)×B2r(x0, v0).

in fact it is possible to take λ such that

2068× 16× 8 max(r
2

τ
,
r6

τ3 ) = λmin(r
2

τ
,
r6

τ3 ).

Proof. This proof is similar to the proof in [62] Appendix A. 22. Let g(t, x, v) =
eB̄tf(t, x, v), then g ≥ f and Lg ≥ 0 in (0, T )× Ω, where

L = ∂

∂t
+ (v + Φ(x)) · ∇x −∆v −A(t, x, v) · ∇v,

Let us construct a particular subsolution for L. In the sequel, Br will stand for
Br(x0, v0). For t ∈ (0, τ ] and (x, v) ∈ Ω \Br let

Q(t, x, v) = a
|v − v0|2

2t − b〈v − v0, x−Xt(x0, v0)〉
t2

+ c
|x−Xt(x0, v0)|2

2t3 ,

where Xt(x0, v0) = x0 + t(v0 + Φ(x0)) (abbreviated Xt in the sequel) is the position at
time t of the geodesic flow starting from (x0, v0), and a, b, c > 0 will be chosen later on.
Let further

φ(t, x, v) = δe−µQ(t,x,v) − ε,
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where µ, ε > 0 will be chosen later on. Let us assume b2 < ac, so that Q is a positive
definite quadratic form in the two variables v − v0 and x−Xt. Then

Lφ = µδe−µQA(Q),

where

A(Q) = ∂tQ+ (v + Φ(x)) · ∇xQ−∆vQ+ µ|∇vQ|2 −A(t, x, v) · ∇vQ.

By computation,

A(Q) = −a |v − v0|2

2t2 + 2b〈v − v0, x−Xt〉
t3

− 3c |x−Xt(x0, v0)|2

2t4

+ b
〈v − v0, v0 + Φ(x0)〉

t2
− c〈x−Xt, v0 + Φ(x0)〉

t3

− b
〈v − v0, v + Φ(x)〉

t2
+ c
〈x−Xt, v + Φ(x)〉

t3
− an

t

+ µ|av − v0
t
− bx−Xt

t2
|2 − a〈A, v − v0〉

t
+ b
〈A, x−Xt〉

t2

= B
(
v − v0
t

,
x−Xt

t2

)
− a〈A, v − v0〉

t
+ b
〈A, x−Xt〉

t2
− ad

t

− b
〈v − v0,Φ(x)− Φ(x0)〉

t2
+ c
〈x−Xt,Φ(x)− Φ(x0)〉

2t3 ,

where B is a quadratic form on Rn × Rn with matrix p⊗ In,

P =
(
µa2 − a

2 + b −µab+ b+ c
2

−µab+ b+ c
2 µb2 − 3c

2

)
If a, b, c are given, then as µ→∞

trp = µ(a2 + b2) +O(1),

detP = µ(3ab2

2 + abc− b3 − 3a2c

2 ) +O(1).

Both quantities are positive if b ≥ a and ac ≥ b2, for example we can take b = 2a, c = 8a,
then as µ→∞ the eigenvalues of P are of order µb2 and ac/b > b. So for any fixed C
we may choose a, b, c and µ so that

B(v − v0
t

,
x−Xt

t2
) ≥ Cb( |v − v0|2

t2
+ |x−Xt|2

t4
).

where C is arbitrarily large. If t ∈ (0,min{ 1
M , 1}), we have

ε(Q) ≥ −8b |x−Xt|2

t4
− 3b |v − v0|2

t2
− 3bĀ2 − 3bV 2 − βd

2t ,

gathering the two terms, we have

A(Q) ≥ const.b
t
[C( |v − v0|2

t
+ |x−Xt|2

t3
)− 1].
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with C arbitrarily large. Recall that (x, v) /∈ Br, so
- either |v − v0| ≥ r, and then A(Q) ≥ const.(b/t)[Cr2/τ − 1], which is positive if
C > τ/r2;
- or |x− x0| ≥ r3, and then, for any τ ≤ r3/(4V ), then we have

|x−Xt|2

t2
≥ |x− x0|2

2t2 − 2|v0 + Φ(x0)|2 ≥ r6

2τ2 − 2V 2 ≥ r6

4τ2 ,

so A(Q) ≥ const.(b/t)[Cr6/4τ3 − 1], which is positive as soon as C > 4(τ/r2)3.
To summarize: under our assumptions there is a way to choose the constants a, b, c, µ,

depending only on d, Ā, r2/τ , satisfying c > b > a > 1 and ac > b2, so that

Lφ ≤ 0, in [0, τ)× (Bλr \Br),

as soon as τ ≤ min(1, r3/(4V ), 1
M ). We now wish to enforce φ ≤ g for t = 0 and for

(x, v) ∈ ∂(Bλr \Br); then the classical maximum principle will imply g ≥ φ, in [0, τ)×
(Bλr \Br).

The boundary condition at t = 0 is obvious since φ vanishes identically there (more
rigorously, φ can be extended by continuity by 0 at t = 0). The condition is also true
on ∂Br since φ ≤ δ and g ≥ δ. It remains to impose it on ∂Bλr . For that we estimate
Q from below: as soon as ac/b2 is large enough, it’s easily easy to seen that for any
(x, v) ∈ ∂Bλr

Q(t, x, v) ≥ a

4( |v − v0|2

t
+ |x−Xt|2

t3
) ≥ a

4 min(λ
2r2

τ
,
λ6r6

4τ3 ) ≥ αλ2

16 min(r
2

τ
,
r6

τ3 ),

Thus if we choose
ε = δ exp(−µαλ

2

16 min(r
2

τ
,
r6

τ3 )),

we make sure that φ = δe−µQ − ε ≤ 0 on ∂Bλr, a fortiori φ ≤ g on this set, and then
we can apply the maximum principle.

So now we have φ ≤ g, and this will yield a lower bound for g in [τ/2, τ)×(B2r \Br):
indeed, if t ≥ τ/2 and (x, v) ∈ B2r \Br then

Q(t, x, v) ≤ 2c( |v − v0|2

t
+ |x−Xt|2

t3
) ≤ 2c(8r

2

τ
+ 1026r6

τ3 ) ≤ 2068cmax(r
2

τ
,
r6

τ3 )

For λ large enough we find K0 > 0 such that

φ(t, x, v) ≥ δ[exp(−2068µcmax(r
2

τ
,
r6

τ3 ))− exp(−−µaλ
2

16 min(r
2

τ
,
r6

τ3 ))] ≥ K0δ,

because c = 8a, to find such λ it suffices that

2068× 16× 8 max(r
2

τ
,
r6

τ3 ) ≤ λmin(r
2

τ
,
r6

τ3 ),

by consequence λ depends only on r2/τ .
Finally we find K,λ > 0 depending on Ā, C̄ and r2/τ such that

f ≥ K0δe
−τC̄ on [τ/2, τ)× (B2r \Br),

which conclude the proof.
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4.6 Lyapunov function for the kinetic Fitzhugh-Nagumo
equation

Theorem 4.6.1. Denote L the operator of the kinetic Fitzhugh-Nagumo equation (4.1.3),
then there exist a weight function m and a function H satisfies Theorem 4.1.3.

Proof. We recall that the kinetic Fitzhugh-Nagumo equation

∂tf := Lf = ∂x(A(x, v)f) + ∂v(B(x, v)f) + ∂2
vvf,

with
A(x, v) = ax− bv, B(x, v) = v(v − 1)(v − c) + x,

for some a, b, c > 0. This time we have

φ2(m) = v · ∇xm
m
− x · ∇xm

m
+ d

2 + |∇vm|
2

m2

+∆vm

m
− (v(v − 1)(v − c) + x) · ∇vm

m
+ 1

2(3v2 + 2(1 + c)v + c),

We can take m = e
r
2 (|x|2+|v|2), with r > 0 to be fixed later, then we have

∇xm
m

= rx,
∇vm
m

= rv,
∆vm

m
= r + r2|v|2,

and this time we have

φ2(m) = rx · v − r|x|2 + 2
d

+ r2|x|2 + r + r2|v|2

−r|v|2(v − 1)(v − c)− rx · v + 1
2(3v2 + 2(1 + c)v + c),

if we take r < 1 and
H = |v|4 + |x|2

then we have
−C1Hm ≤ φ2(m) ≤ −C2Hm+ C3,

for some C1, C2, C3 > 0, and it’s easily seen that for any integer n ≥ 2 fixed, for any
ε > 0 small, we can find a constant Cε,n such that

n∑
k=2
|Dk

x(x)|+
n∑
k=2
|Dk

x,v(v(v − 1)(v − c) + x))| ≤ Cn,ε + εH,

since
∆x,vm

m
= r + r2|v|2 ≥ 0,

all the conditions of Theorem 4.1.3 is satisfied, the proof is finished.
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4.7 Lyapunov function for the KFP equation

In this section we will give Lyapunov condition for the kinetic Fokker-Planck equation.

Theorem 4.7.1. Denote L the operator of the kinetic Fokker-Planck equation (4.1.1),
then there exist a weight function m satisfies Theorem 4.1.1.

Proof. First we recall the kinetic Fokker-Planck equation with general force

∂tf = Lf := −v · ∇xf +∇xV (x) · ∇vf + ∆vf + divv(∇vW (v)f), (4.7.1)

with
V (x) = 〈x〉

γ

γ
, γ ≥ 1, W (v) = 〈v〉

β

β
, β ≥ 2

where 〈x〉2 := 1 + |x|2, and

L∗f = v · ∇vf −∇xV (x) · ∇vf + ∆vf −∇vW (v) · ∇vf,

we compute
L∗(v2 + V (x)) = d− v · ∇vW (v),

and

L∗(v · ∇x〈x〉) = v∇2
x〈x〉v −∇xV (x) · ∇x〈x〉+∇vW (v) · ∇x〈x〉,

since
∇2
x〈x〉 ≤ CI,

where I is the d× d identity matrix, combine the two terms together we have

L∗(|v|2 + V (x) + εv · ∇x〈x〉) ≤ C − C(〈v〉β + 〈x〉γ−1),

with ε > 0 small, denote

H = |v|2 + V (x) + εv · ∇x〈x〉,

and since

L∗eλH

eλH
= λ(v · ∇xH −∇xV (x) · ∇vH + ∆vH + λ|∇vH|2 −∇vW (v) · ∇vH),

take λ > 0 small, we have

L∗(eλH) ≤ −C1H1e
λH + C2,

for some constant C1, C2 > 0, with H1 = 〈v〉β + 〈x〉γ−1, then the Lyapunov condition
follows. For the second inequality, by Lemma 4.8.1 we have

φ2(eλH) = λ(v · ∇xH +∇xV (x) · ∇vH + 1
2∆vW (v)

+ ∆vH + (λ2 + λ)|∇vH|2 −∇vW (v) · ∇vH),
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and we still have
−C3H1e

λHφ2(eλH) ≤ −C1H1e
λH + C2,

for some constant C1, C2, C3 > 0, thus the theorem is proved.

4.8 Computation for φ2(m)

In this section we only make the computation for Remark 4.1.4.

Lemma 4.8.1. Define

∂tf := Lf = ∂x(A(x, v)f) + ∂v(B(x, v)f) + ∆vf, (4.8.1)

with
A(x, v) = −v + Φ(x),

Then for any weight function m we have∫
(f(Lg) + g(Lf))m2 = −2

∫
∇vf · ∇vgm2 + 2

∫
fgφ2(m)m2, (4.8.2)

with

φ2(m) = v · ∇xm
m
− Φ(x) · ∇xm

m
+ 1

2div Φ(x) + |∇vm|
2

m2

+ ∆vm

m
−B(x, v) · ∇vm

m
+ 1

2divvB(x, v),

where we use
∫
f in place of

∫
Rd×Rd fdxdv for short.

Proof. Define

T f = −v · ∇xf,

we have∫
f(T g)m2 +

∫
(T f)gm2 =

∫
T (fg)m2 = −

∫
fgT (m2) = −2

∫
fgm2Tm

m
,

for the term with operator ∆ we have∫
(f∆vg + g∆vf)m2 = −

∫
∇v(fm2) · ∇vg +∇v(gm2) · ∇vf

= −2
∫
∇vf · ∇vgm2 +

∫
fg∆v(m2)

= −2
∫
∇vf · ∇vgm2 + 2

∫
fg|∇vm|2 + ∆vmm,
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using integration by parts∫
fdivv(B(x, v)g)m2 + gdivv(B(x, v)f)m2

=
∫
fB(x, v) · ∇vgm2 + gB(x, v) · ∇vfm2 + 2divvB(x, v)fgm2

=
∫
−fg∇v · (B(x, v)m2) + 2divvB(x, v)fgm2

=
∫
−2fgB(x, v) · ∇vm

m
m2 + divvB(x, v)fgm2,

similarly ∫
fdivx(Φ(x)g)m2 + gdivx(Φ(x)f)m2

=
∫
−2fgΦ(x) · ∇vm

m
m2 + divxΦ(x)fgm2,

so (4.8.2) are proved by combining the terms above.



Chapter 5

Harris for jump process

5.1 Introduction

The goal of this chapter is to give quantitative rates of convergence to equilibrium
for some linear kinetic equations, using a method based on Harris’s Theorem from
the theory of Markov processes [39, 52, 41] that we believe is very well adapted to
hypocoercive, nonlocal equations. We consider equations of the type

∂tf + v · ∇xf = Lf,

where f = f(t, x, v), with time t ≥ 0, space x ∈ Td (the d-dimensional unit torus), and
velocity v ∈ Rd. The operator L acts only on the v variable, and it must typically be the
generator of a stochastic semigroup for our method to work. We give explicit results
for L equal to the linear relaxation Boltzmann operator (sometimes known as linear
BGK operator), and for L equal to the linear Boltzmann operator (see below for a full
description). We also consider the equations posed on the whole space (x, v) ∈ Rd×Rd

with a confining potential Φ:

∂tf + v · ∇xf − (∇xΦ · ∇vf) = Lf.

We are able to give exponential convergence results on the d-dimensional torus, or
with confining potentials growing at least quadratically at ∞, always in total varia-
tion or weighted total variation norms (alternatively, L1 or weighted L1 norms). For
subquadratic potentials we give algebraic convergence rates, again in the same kind of
weighted L1 norms. Some results were already available for these equations [15, 55, 19,
38]. We will give a more detailed account of them after we describe them more pre-
cisely. Previous proofs of convergence to equilibrium used strongly weighted L2 norms
(typically with a weight which is the inverse of a Gaussian), so one advantage of our
method is that it directly yields convergence for a much wider range of initial condi-
tions. The result works, in particular, for initial conditions with slow decaying tails,
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and for measure initial conditions with very bad local regularity. The method gives also
existence of stationary solutions under quite general conditions; in some cases these are
explicit and easy to find, but in other cases they can be nontrivial. We also note that
our results for subquadratic potentials are to our knowledge new. Apart from these new
results, our aim is to present a new application of a probabilistic method, using mostly
PDE arguments, and which is probably useful for a wide range of models.

The study of the speed of relaxation to equilibrium for kinetic equations is a well
known problem, both for linear and nonlinear models. The central obstacle is that
dissipation happens only on the v variable via the effect of the operator L, while only
transport takes place in x. The transport then “mixes” the dissipation into the x
variable, and one has to find a way to estimate this effect. The theory of hypocoercivity
was developed in [62, 38, 42] precisely to overcome these problems for linear operators.
In a landmark result, [23] proved that the full nonlinear Boltzmann equation converges to
equilibrium at least at an algebraic rate. Exponential convergence results for the (linear)
Fokker-Planck equation were given in [22], and a theory for a range of linear kinetic
equations has been given in [19]. All of these results give convergence in exponentially
weighted L2 norms or H1 norms; convergence to equilibrium in weighted L1 norms can
then be proved for several kinetic models by using the techniques in [35].

Let us describe our equations more precisely. The linear relaxation Boltzmann equa-
tion is given by

∂tf + v · ∇xf − (∇xΦ · ∇vf) = L+f − f, (5.1.1)

where
L+f =

(∫
f(t, x, u)du

)
M(v),

and M(v) := (2π)−d/2 exp(−|v|2/2). The function f = f(t, x, v) depends on time t ≥ 0,
space x ∈ Rd, and velocity v ∈ Rd, and the potential Φ Rd → R is a C2 function of
x. Alternatively, we consider this equation on the torus; that is, for x ∈ Td, v ∈ Rd,
assuming periodic boundary conditions. In that case we omit Φ (which corresponds to
Φ = 0 in the above equation):

∂tf + v · ∇xf = L+f − f. (5.1.2)

This simple equation is well studied in kinetic theory and can be thought of as a toy
model with similar properties to either the non-linear BGK equation or linear Boltz-
mann equation. It is also one of the simplest examples of a hypocoercive equation.
Convergence to equilibrium in H1 for this equation has been shown in [15], at a rate
faster than any function of t. It was then shown to converge exponentially fast in both
H1 and L2 using hypocoercivity techniques in [38, 55, 19].

The linear Boltzmann equation is of a similar type:

∂tf + v · ∇xf − (∇xΦ · ∇vf) = Q(f,M), (5.1.3)
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where Φ is a C2 potential and M(v) := (2π)−d/2 exp(−|v|2/2) as before, and Q is the
Boltzmann operator

Q(f, g) =
∫
Rd

∫
Sd−1

B(|v − v∗|, σ)
(
f(v′)g(v′∗)− f(v)g(v∗)

)
dσ dv∗,

v′ = v + v∗
2 + |v − v∗|2 σ, v′∗ = v + v∗

2 − |v − v∗|2 σ,

and B is the collision kernel. We always assume that B is a hard kernel and can be
written as a product

B(|v − v∗|, σ) = |v − v∗|γ b
(
σ · v − v∗
|v − v∗|

)
, (5.1.4)

for some γ ≥ 0 and b integrable and uniformly positive on [−1, 1]; that is, there exists
Cb > 0 such that

b(z) ≥ Cb for all z ∈ [−1, 1]. (5.1.5)

As before, alternatively we consider the same equation posed for x ∈ Td, v ∈ Rd, without
any potential Φ:

∂tf + v · ∇xf = Q(f,M). (5.1.6)

This equation models gas particles interacting with a background medium which is
already in equilibrium. Moreover, it has been used in describing many other systems
like radiative transfer, neutron transportation, cometary flow and dust particles. The
spatially homogeneous case has been studied in [46, 1, 11]. The kinetic equations (5.1.3)
or (5.1.6) fit into the general framework in [55, 19], so convergence to equilibrium in
weighted L2 norms may be proved by using the techniques described there.

We denote by P(Ω) the set of probability measures on a set Ω ⊆ Rk (that is, the
probability measures defined on the Borel σ-algebra of Ω). We state our main results
on the torus, and then on Rd with a confining potential:

Theorem 5.1.2 (Exponential convergence results on the torus). Suppose that t 7→ ft

is the solution to (5.1.2) or (5.1.6) with initial data f0 ∈ P(Td × Rd). In the case
of equation (5.1.6) we also assume (5.1.4) with γ ≥ 0 and (5.1.5). Then there exist
constants C > 0, λ > 0 (independent of f0) such that

‖ft − µ‖∗ ≤ Ce−λt‖f0 − µ‖∗,

where µ is the only equilibrium state of the corresponding equation in P(Td ×Rd) (that
is, µ(x, v) = M(v)). The norm ‖ ·‖∗ is just the total variation norm ‖ ·‖TV for equation
(5.1.2),

‖f0 − µ‖∗ = ‖f0 − µ‖TV :=
∫
Rd

∫
Td
|f0 − µ| dx dv for equation (5.1.2),

and it is a weighted total variation norm in the case of equation (5.1.6):

‖f0 − µ‖∗ =
∫
Rd

∫
Td

(1 + |v|2)|f0 − µ| dx dv for equation (5.1.6).



96 CHAPTER 5. HARRIS FOR JUMP PROCESS

Theorem 5.1.3 (Exponential convergence results with a confining potential on the
whole space). Suppose that t 7→ ft is the solution to (5.1.1) or (5.1.3) with initial data
f0 ∈ P(Rd × Rd) and a potential Φ ∈ C2(Rd) which is bounded below, and satisfies

x · ∇xΦ(x) ≥ γ1|x|2 + γ2Φ(x)−A, x ∈ Rd,

for some positive constants γ1, γ2, A. Define 〈x〉 =
√

1 + |x|2. In the case of equation
(5.1.6) we also assume (5.1.4), (5.1.5) and

x · ∇xΦ(x) ≥ γ1〈x〉γ+2 + γ2Φ(x)−A,

for some positive constants γ1, γ2, A. Then there exist constants C > 0, λ > 0 (indepen-
dent of f0) such that

‖ft − µ‖∗ ≤ Ce−λt‖f0 − µ‖∗,

where µ is the only equilibrium state of the corresponding equation in P(Rd × Rd),

dµ =M(v)e−Φ(x)dvdx.

The norm ‖ · ‖∗ is a weighted total variation norm defined by

‖ft − µ‖∗ :=
∫ (

1 + 1
2 |v|

2 + Φ(x) + |x|2
)
|ft − µ|dv dx.

In all results above the constants C and λ can be explicitly estimated in terms of
the parameters appearing in the equation by following the calculations in the proofs.
We do not give them explicitly since we do not expect them to be optimal, but they are
nevertheless completely constructive.

We also look at Harris type theorems with weaker controls on moments to give
analogues of all our theorems when the confining potential is weaker and give algebraic
rates of convergence with rates depending on the assumption we make on the confining
potential. Subgeometric convergence for kinetic Fokker-Planck equations with weak
confinement has been shown in [21, 9, 10].

Theorem 5.1.4 (Subgeometric convergence results with weak confining potentials).
Suppose that t 7→ ft is the solution to (5.1.1) in the whole space with a confining potential
Φ ∈ C2(Rd). Define 〈x〉 =

√
1 + |x|2. Assume that for some β in (0, 1) the confining

potential satisfies
x · ∇xΦ(x) ≥ γ1〈x〉2β + γ2Φ(x)−A,

for some positive constants γ1, γ2, A. Then we have that there exists a constant C > 0
such that

‖ft−µ‖TV ≤ min
{
‖f0 − µ‖TV, C

∫
f0(x, v)

(
1 + 1

2 |v|
2 + Φ(x) + |x|2

)
(1 + t)−β/(1−β)

}
.

Similarly if t 7→ ft is the solution to (5.1.3) in the whole space, satisfies (5.1.4), (5.1.5)
and

x · ∇xΦ(x) ≥ γ1〈x〉β+1 + γ2Φ(x)−A, Φ(x) ≤ γ3〈x〉1+β,
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for some positive constants γ1, γ2, A, β, γ3. Then we have that there exists a constant
C > 0 such that

‖ft − µ‖TV ≤ min
{
‖f0 − µ‖TV, C

∫
f0(x, v)

(
1 + 1

2 |v|
2 + Φ(x) + |x|

)
(1 + t)−β

}
.

This method is also applicable to some integro-PDEs describing several biological
and physical phenomena. In [29], Doeblin’s argument is used to show exponential relax-
ation to equilibrium for the conservative renewal equation which is a common model in
population dynamics, often referred as the McKendrick-von Foerster equation. In [14],
the authors show existence of a spectral gap property in the linear (no-connectivity)
setting for elapsed-time structured neuron networks by using Doeblin’s Theorem. Re-
laxation to the stationary state for the original nonlinear equation is then proved by a
perturbation argument where the non-linearity is weak. Moreover, in [24] the authors
consider a nonlinear model which is derived from mean-field description of an excitatory
network made up of leaky integrate-and-fire neurons. In the case of weak connectivity,
the authors demonstrate the uniqueness of a stationary state and its global exponential
stability by using Doeblin’s type of contraction argument for the linear case. Also in
[9], the authors extend similar ideas to obtain quantitative estimates in total variation
distance for positive semigroups, that can be non-conservative and non-homogeneous.
They provide a speed of convergence for periodic semigroups and new bounds in the
homogeneous setting.

Using Harris’s Theorem gives an alternative and very different strategy for proving
quantitative exponential decay to equilibrium. It allows us to look at hypocoercive
effects on the level of stochastic processes and to look at specific trajectories which
might allow one to produce quantitative theorems based on more trajectorial intuition.
Another difference is that the confining behaviour is shown here by exploiting good
behaviour of moments rather than a Poincaré inequality, this means looking at point
wise bounds rather than integral controls on the operator. These are often equivalent
for time reversible processes [9, 17] and have advantages and disadvantages. However,
the condition on the moments used here might be much easier to verify in the case where
the equilibrium state cannot be made explicit. This is the motivation behind [5, 16].
These works also allow us to look at a large class of initial data. We only need f0 to
be a probability measure where ‖f0 − µ‖ is finite. Harris’s Theorem has a restriction
which is that we can only consider Markov processes. Many kinetic equations are linear
Markov processes but this excludes the study of linearized non-linear equations which
are not necessarily mass preserving.

The plan of the chapter is as follows. We deal the convergence of linear relaxation
Boltzmann equation in Section 5.2, and we deal the convergence of linear Boltzmann
equation in Section 5.3, finally in Section 5.4, we introduce an abstract theorem which
could cover more jump process cases.
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5.2 The linear relaxation Boltzmann equation

This is the simplest operator on the torus, so we do not in fact need to use Harris’s
Theorem. We can instead use Doeblin’s Theorem where we have a uniform minorisation
condition.

5.2.1 On the flat torus

We consider
∂tf + v · ∇xf = Lf, (5.2.7)

posed for (x, v) ∈ Td × Rd, where Td is the d-dimensional torus of side 1 and

Lf(x, v) := L+f(x, v)− f(x, v) :=
(∫

Rd
f(x, u) du

)
M(v)− f(x, v), (5.2.8)

which is a well defined operator from L1(Td × Rd) to L1(Td × Rd), and can also be
defined as an operator from M(Td × Rd) to M(Td × Rd) with the same expression
(where

∫
Rd f(x, u) du now denotes the marginal of the measure f with respect to u).

We define (Tt)t≥0 as the transport semigroup associated to the operator −v · ∇xf in
the space of measures with the bounded Lipschitz topology; that is, t 7→ Ttf0 solves
the equation ∂tf + v · ∇xf = 0 with initial condition f0. In this case one can write Tt
explicitly as

Ttf0(x, v) = f0(x− tv, v). (5.2.9)

Using Duhamel’s formula repeatedly one can obtain that, if f is a solution of (5.2.7)
with initial data f0, then

etft ≥
∫ t

0

∫ s

0
Tt−sL+Ts−rL+Trf0 dr ds. (5.2.10)

We will now check two properties, which we list as lemmas. The first one says that
the operator L always allows jumps to any small velocity. We always use the notation
1A to denote the characteristic function of a set A (if A is a set), or the function which
is 1 where the condition A is met, and 0 otherwise (if A is a condition).

Lemma 5.2.5. For all δL > 0 there exists αL > 0 such that for all nonnegative functions
g ∈ L1(Td × Rd) we have

L+g(x, v) ≥ αL
(∫

Rd
g(x, u) du

)
1{|v|≤δL} (5.2.11)

for almost all (x, v) ∈ Td × Rd.

Proof. Given any δL it is enough to choose αL := M(v) for any v with |v| = δL.

The second one is regarding to the behaviour of the transport part alone. It says
that if we start at any point inside a ball of radius R, and we are allowed to start
with any small velocity, then we can reach any point in the ball of radius R with a
predetermined bound on the final velocity:
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Lemma 5.2.6. Given any time t0 > 0 and radius R > 0 there exist δL, R′ > 0 such
that for all t ≥ t0 it holds that∫

B(R′)
Tt
(
δx0(x)1{|v|≤δL}

)
dv ≥ 1

td
1{|x|≤R} for all x0 with |x0| < R. (5.2.12)

In particular, if we take R >
√
d, there exist δL, R′ > 0 such that∫

B(R′)
Tt
(
δx0(x)1{|v|≤δL}

)
dv ≥ 1

td
for all x0 ∈ Td. (5.2.13)

Proof. Take t, R > 0. We have

Tt
(
δx0(x)1B(δL)(v)

)
= δx0(x− vt)1B(δL)(v),

where B(δ) denotes the open ball {x ∈ Rd | |x| < δ}, and in general we will use the
notation B(z, δ) to denote the open ball of radius δ centered at z ∈ Rd. Integrating this
and changing variables gives that∫

B(R′)
Tt
(
δx0(x)1B(δL)(v)

)
dv = 1

td

∫
B(x,tR′)

δx0(y)1B(δL)

(
x− y
t

)
dy.

Since |x− y| ≤ |x|+ |y| we have that

1B(δL)

(
x− y
t

)
≥ 1B(δL/2)

(
x

t

)
1B(δL/2)

(
y

t

)
.

Therefore if we take δL > 2R/t we have

1B(δL)

(
x− y
t

)
≥ 1B(R)(x)1B(R)(y).

On the other hand, if we take |x| < R and R′ > 2R/t then

B(x, tR′) ⊇ B(x, 2R) ⊇ B(R).

Hence if δL > 2R/t and R′ > 2R/t,∫
B(R′)

Tt
(
δx0(x)1B(δL)(v)

)
dv ≥ 1

td
1B(R)(x),

which proves the result.

Lemma 5.2.7 (Doeblin condition for the linear relaxation Boltzmann equation on the
torus). For any t∗ > 0 there exist constants α, δL > 0 (depending on t∗) such that any
solution f to equation (5.2.7) with initial condition f0 ∈ P(Td × Rd) satisfies

f(t∗, x, v) ≥ α1{|v|≤δL}, (5.2.14)

where the inequality is understood in the sense of measures.
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Proof. It is enough to prove it for f0 := δ(x0,v0), where (x0, v0) ∈ Td×Rd is an arbitrary
point. From Lemma 5.2.6 (with R >

√
d and t0 := t∗/3) we will use that there exists

δL > 0 such that∫
Rd
Tt
(
δx0(x)1{|v|≤δL}

)
dv ≥ 1

td
for all x0 ∈ Td, t > t0.

Also, Lemma 5.2.5 gives an αL > 0 such that

L+g ≥ αL
(∫

Rd
g(x, u) du

)
1{|v|≤δL}.

Take any r > 0. Since Trf0 = δ(x0−v0r,v0), using this shows

L+Trf0 ≥ αL δx0−v0r(x)1{|v|≤δL}.

Hence, whenever s− r > t0 we have

L+Ts−rL+Trf0 ≥ αL
(∫

Rd
Ts−rL+Trf0 du

)
1{|v|≤δL}

≥ α2
L

(∫
Rd
Ts−r

(
δx0−v0r(x)1{|u|≤δL}

)
du
)
1{|v|≤δL}

≥ 1
(s− r)dα

2
L 1{|v|≤δL}.

Finally, for the movement along the flow Tt−s, notice that

Tt
(
1Td(x)1|v|<δL(v)

)
= 1Td(x)1{|v|<δL}(v) for all t ≥ 0.

This means that for all t > s > r > 0 such that s− r > t0 we have

Tt−sL+Ts−rL+Trf0 ≥
1

(s− r)dα
2
L 1{|v|≤δL}.

For any t∗ we have then, recalling that t0 = t∗/3,∫ t∗

0

∫ s

0
Tt∗−sL+Ts−rL+Trf0 dr ds ≥ α2

L 1{|v|≤δL}

∫ t∗

2t0

∫ t0

0

1
(s− r)d dr ds

≥ t20
td∗
α2
L1{|v|≤δL} = 1

9 t
2−d
∗ α2

L1{|v|≤δL}.

Finally, from Duhamel’s formula (5.2.10) we obtain

f(t∗, x, v) ≥ 1
9e
−t∗t2−d∗ α2

L1{|v|≤δL},

which gives the result.

Proof of Theorem 5.1.2 in the case of the linear relaxation Boltzmann equation. Lemma
5.2.7 allows us to apply directly Doeblin’s Theorem 1.2.2 to obtain fast exponential
convergence to equilibrium in the total variation distance. This rate is also explicitly
calculable. Therefore, the proof follows.
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5.2.2 On the whole space with a confining potential

Now we consider the equation

∂tf + v · ∇xf −∇xΦ(x) · ∇vf = Lf, (5.2.15)

where L is defined as in the previous section and x, v ∈ Rd. We want to use a slightly
different strategy to show the minorisation condition based on the fact that we instan-
taneously produce large velocities. We first need a result on the trajectories of particles
under the action of the potential Φ. Always assuming that Φ is a C2 function, we con-
sider the characteristic ordinary differential equations associated to the transport part
of (5.4.42):

ẋ = v

v̇ = −∇Φ(x),
(5.2.16)

and we denote by (Xt(x0, v0), Vt(x0, v0)) the solution at time t to (5.4.43) with initial
data x(0) = x0, v(0) = v0. Performing time integration twice, it clearly satisfies

Xt(x0, v0) = x0 + v0t+
∫ t

0

∫ s

0
∇Φ(Xu(x0, v0)) du ds (5.2.17)

for any x0, v0 ∈ Rd and any t for which it is defined. Intuitively the idea is that for small
times we can approximate (Xt, Vt) by (X(0)

t , V
(0)
t ) which is a solution to the ordinary

differential equation
ẋ = v

v̇ = 0,
(5.2.18)

whose explicit solution is (X(0)
t , V

(0)
t ) = (x0 + v0t, v0). If we want to hit a point x1 in

time t then if we travel with the trajectory X(0) we just need to choose v0 = (x1−x0)/t.
Now we choose an interpolation between (X(0), V (0)) and (X,V ). We denote it by
(X(ε), V (ε)) which is a solution to the ordinary differential equation

ẋ = v

v̇ = −ε2∇Φ(x),
(5.2.19)

still with initial data (x0, v0). We calculate that

X
(ε)
t (x0, v0) = Xεt

(
x0,

v0
ε

)
, V

(ε)
t (x0, v0) = εVεt

(
x0,

v0
ε

)
.

Now we can see from the ODE representation (and we will make this more precise later)
that (X,V ) is a C1 map of (t, ε, x, v). Therefore if we fix t and x0 we can define a C1

map
F [0, 1]× Rd → Rd,

by
F (ε, v) = X

(ε)
t (x0, v).
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Then for ε = 0 we can find v∗ such that F (0, v∗) = x1 as given above. Furthermore
∇F (0, v∗) 6= 0 so by the implicit function theorem for all ε less than some ε∗ we have a
C1 function v(ε) such that F (ε, v(ε)) = x1. This means that

Xεt

(
x0,

v(ε)
ε

)
= x1.

So if we take s < ε∗t then we can choose v such that Xs(x0, v) = x1. We now need to
get quantitative estimates on ε∗, and we do this by tracking the constants in the proof
of the contraction mapping theorem.

In order to make these ideas quantitative and to check that the solution is in fact
C1 we need to get bounds on (Xt, Vt) and ∇Φ(Xt) for t is some fixed intervals. For the
potentials of interest we will have that the solutions to these ODEs will exist for infinite
time. We prove bounds on the solutions and ∇Φ(Xt) for any potential:

Lemma 5.2.8. Assume that the potential Φ is C2 in Rd. Take λ > 1, R > 0 and
x0, v0 ∈ Rd with |x0| ≤ R. The solution t 7→ Xt(x0, v0) to (5.4.43) is defined (at least)
for |t| ≤ T , with

T := min
{

(λ− 1)R
2|v0|

,

√
(λ− 1)R√

2CλR

}
, CλR := max

|x|≤λR
|∇φ(x)|.

(It is understood that any term in the above minimum is +∞ if the denominator is 0.)
Also, it holds that

|Xt(x0, v0)| ≤ λR for |t| ≤ T .

Proof. By standard ODE theory, the solution is defined in some maximal (open) time
interval I containing 0; if this maximal interval has any finite endpoint t∗, thenXt(x0, v0)
has to blow up as t approaches t∗. Hence if the statement is not satisfied, there must
exist t ∈ I with |t| ≤ T such that |Xt(x0, v0)| ≥ λR. By continuity, one may take t0 ∈ I
to be the “smallest” time when this happens: that is, |t0| ≤ T and

Xt0(x0, v0) = λR,

|Xt0(x0, v0)| ≤ λR for |t| ≤ |t0|.

By (5.4.44) and using that |t0| ≤ T we have

λR = |Xt0(x0, v0)| ≤ |x0|+ |v0t0|+
t20
2 max{|∇φ(Xt(x0, v0))| : t ≤ t0}

≤ R+ (λ− 1)R
2 + CλR

2 t20 = (λ+ 1)R
2 + CλR

2 t20,

which implies that
(λ− 1)R ≤ CλRt20.

If CλR = 0 this is false; if CλR > 0, then this contradicts with that |t0| ≤ T .



5.2. THE LINEAR RELAXATION BOLTZMANN EQUATION 103

We now follow the intuition given at the beginning of this section. However we
collapse the variables ε and t together and consequently look at Xt

(
x, vt

)
which is

intuitively less clear but algebraically simpler.

Lemma 5.2.9. Assume that Φ ∈ C2(Rd), and take x0, x1 ∈ Rd. Let R := max{|x0|, |x1|}.
There exists 0 < T1 = T1(R) such that for any t ≤ T1 we can find a |v0| ≤ 4R such that

Xt

(
x0,

v0
t

)
= x1.

In fact, it is enough to take T1 > 0 such that

CT 2
1 e

CT 2
1 ≤ 1

4 , T1 ≤
√
R√

2C2R
, T1 ≤

2
√
R√

C9R
, where C := sup

|x|≤9R
|D2Φ(x)|,

where CλR is defined in Lemma 5.4.28 and D2Φ denotes the Hessian matrix of Φ.

Proof. We define

f(t, v) = Xt

(
x0,

v

t

)
− x1, t 6= 0, v ∈ Rd,

f(0, v) := x0 + v − x1, v ∈ Rd.

Notice that due to Lemma 5.4.28 with λ = 9, this is well-defined whenever

|t| ≤ 2
√
R√

C9R
=: T2, |v| ≤ 4R.

Our goal is to find a neighbourhood of t = 0 on which there exists v = v(t) with
f(t, v(t)) = 0, for which we will use the implicit function theorem.

Now, notice that we have
f(0, x1 − x0) = 0

and
∂f

∂vi
(0, x1 − x0) = 1, i = 1, . . . , d.

We can apply the implicit function theorem to find a neighbourhood I of t = 0 and a
function v = v(t) such that f(t, v(t)) = 0 for t ∈ I. However, since we need to estimate
the size of I and of v(t), we carry out a constructive proof.

Take v0, v1 ∈ Rd with |v0|, |v1| ≤ 4R, and denote ṽ0 := v0/t, ṽ1 := v1/t. By (5.4.44),
for all 0 < t ≤ T2 we have

Xt(x0, ṽ1)−Xt(x0, ṽ0) = (ṽ1 − ṽ0)t+
∫ t

0

∫ s

0
∇φ(Xu(x0, ṽ1))−∇φ(Xu(x0, ṽ0)) duds.

(5.2.20)
Take any T1 ≤ T2, to be fixed later. Then Lemma 5.4.28 implies, for all 0 ≤ t ≤ T1,

|Xt(x0, ṽ1)−Xt(x0, ṽ0)| ≤ |ṽ1 − ṽ0|t+ CT1

∫ t

0
|Xu(x0, ṽ1)−Xu(x0, ṽ0)|du.
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by Gronwall’s Lemma we have

|Xt(x0, ṽ1)−Xt(x0, ṽ0)| ≤ |ṽ1 − ṽ0|teCT1t for 0 < t ≤ T1.

Using this again in (5.4.49) we have

|Xt(x0, ṽ1)−Xt(x0, ṽ0)− (ṽ1 − ṽ0)t| ≤ |ṽ1 − ṽ0|CT1

∫ t

0
ueCT1u du

≤ |ṽ1 − ṽ0|t CT 2
1 e

CT 2
1 .

Taking T1 such that
CT 2

1 e
CT 2

1 ≤ 1
4 (5.2.21)

we have
|Xt(x0, ṽ1)−Xt(x0, ṽ0)− (ṽ1 − ṽ0)t| ≤ 1

4 |ṽ1 − ṽ0|t

which is the same as∣∣∣∣Xt

(
x0,

v1
t

)
−Xt

(
x0,

v0
t

)
− (v1 − v0)

∣∣∣∣ ≤ 1
4 |v1 − v0|, (5.2.22)

for any 0 < t ≤ T1 and any v0, v1 with |v0|, |v1| ≤ 4R. Now, for any 0 ≤ t ≤ T1 and
|v| ≤ 4R we define

At(v) = v − f(t, v).

A fixed point of At(v) satisfies f(t, v) = 0, and by (5.4.51) At(v) is contractive:

|At(v1)−At(v0)| ≤ 1
4 |v1 − v0| for 0 ≤ t ≤ T1, |v| ≤ 4R.

(Equation (5.4.51) proves this for 0 < t ≤ T1, and for t = 0 it is obvious.) In order to
use the Banach fixed-point theorem we still need to show that the image of At is inside
the set with |v| ≤ 4R. Using (5.4.51) for v1 = 0, v0 = v we also see that∣∣∣∣Xt(x0, 0)−Xt

(
x0,

v

t

)
+ v

∣∣∣∣ ≤ 1
4 |v|,

which gives
|At(v) + x1 −Xt(x0, 0)| ≤ 1

4 |v|,

so
|At(v)| ≤ 1

4 |v|+ |x1|+ |Xt(x0, 0)| ≤ 2R+ |Xt(x0, 0)|. (5.2.23)

If we take
T1 ≤

√
R√

2C2R
(5.2.24)

then Lemma 5.4.28 (used for λ = 2) shows that

|Xt(x0, 0)| ≤ 2R for 0 ≤ t ≤ T1,

and from (5.4.52) we have

|At(v)| ≤ 4R for 0 < t ≤ T1.

Hence, as long as T1 satisfies (5.4.50) and (5.4.53), At has a fixed point |v| for any
0 < t ≤ T1, and this fixed point satisfies |v| ≤ 4R.
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Lemma 5.2.10. Assume the potential Φ ∈ C2(Rd) is bounded below, and let Ts denote
the transport semigroup associated to the operator f 7→ −v ·∇xf +∇xΦ(x) ·∇vf . Given
any R > 0 there exists a time T1 > 0 such that for any 0 < s < T1 one can find constants
α,R′, R2 > 0 (depending on s and R) such that∫

B(R′)
Ts(δx01{|v|≤R2}) dv ≥ α1{|x|≤R}, (5.2.25)

for any x0 with |x0| ≤ R. The constants α,R′, R2 are uniformly bounded in bounded
intervals of time; that is, for any closed interval J ⊆ (0, T1) one can find α,R′, R2 for
which the inequality holds for all s ∈ J .

Proof. Since the statement is invariant if Φ changes by an additive constant, we may
assume that Φ ≥ 0 for simplicity. Using Lemma 5.4.30 we find T1 such that for any
s < T1 and every x1 ∈ B(R) there exists v ∈ B(4R) (depending on x0, x1 and s) such
that

Xs

(
x0,

v

s

)
= x1.

Since v/s ∈ B(4R/s), call R2 := 4R/s. We see that for every x1 ∈ B(0, R) there is at
least one u ∈ Rd such that

(x1, u) ∈ Ts ({x0} × {|v| ≤ R2}) .

In other words,
Xs(x0, {|v| ≤ R2}) ⊇ B(0, R). (5.2.26)

This essentially contains our result, and we just need to carry out a technical argument
to complete it and estimate the constants α and R′. For any compactly supported,
continuous and positive ϕ Rd → R we have∫

Rd
ϕ(x)

∫
B(R′)

Ts(δx01{|v|≤R2}) dv dx

=
∫
Rd

∫
Rd
1{|Vs(x,v)|<R′} ϕ(Xs(x, v))δx0(x)1{|v|≤R2}) dv dx

=
∫
|v|≤R2

1{|Vs(x0,v)|<R′} ϕ(Xs(x0, v) dv, (5.2.27)

since the characteristics map (x, v) 7→ (Xs(x, v), Vs(x, v)) is measure-preserving. If we
write the energy as H(x, v) = |v|2/2 + Φ(x) and call

E0 := sup{H(x, v) : |x| < R, |v| < R2}.

Then for all s ≥ 0
E(Xs(x0, v), Vs(x0, v)) ≤ E0,

and in particular
|Vs(x0, v)| ≤

√
2E0.
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If we take R′ >
√

2E0 then the term 1{|Vs(x0,v)|<R′} is always 1 in (5.2.27) and we get∫
Rd
ϕ(x)

∫
B(R′)

Ts(δx01{|v|≤R2}) dv dx =
∫
|v|≤R2

ϕ(Xs(x0, v)) dv.

Now, take an M > 0 such that | JacvXs(x, v)| ≤ M for all (x, v) with |x| ≤ R and
|v| ≤ R2. (Notice this M depends only on Φ, R and R2.) Then∫

|v|≤R2
ϕ(Xs(x0, v)) dv ≥ 1

M

∫
|v|≤R2

ϕ(Xs(x0, v))| JacvXs(x0, v)|dv

= 1
M

∫
Xs(x0,{|v|≤R2})

ϕ(x) dx ≥ 1
M

∫
B(0,4R)

ϕ(x) dx,

where we have used (5.2.26) in the last step. In sum we find that∫
Rd
ϕ(x)

∫
Rd
Ts(δx01{|v|≤R2}) dv dx ≥ 1

M

∫
B(0,R)

ϕ(x) dx

for all compactly supported, continuous and positive functions ϕ. This directly implies
the result.

Lemma 5.2.11 (Doeblin condition for linear relaxation Boltzmann equation with a
confining potential). Let the potential Φ : Rd → R be a C2 function with compact level
sets. Given t > 0 and K > 0 there exist constants α, δX , δV > 0 such that any solution
f to equation (5.4.42) with initial condition f0 ∈ L1(Rd × Rd) ∩ P(Rd × Rd) supported
on B(0,K)×B(0,K) satisfies

f(t, x, v) ≥ α1{|x|<δX} 1{|v|<δV }

for almost all x, v ∈ Rd.

Proof. Fix any t,K > 0. Set Hmax(K) = max{H(x, v) = |v|2/2 + Φ(x) : x ∈
B(0,K), v ∈ B(0,K)} and then define R := max{|x| : Φ(x) ≤ Hmax(K)}. Since
our conditions on Φ imply that its level sets are compact we know that R is finite. We
use Lemma 5.4.31 to find constants α,R2 > 0 and an interval [a, b] ⊆ (0, t) such that∫

Rd
Ts(δx01{|v|≤R2}) dv ≥ α1{|x|≤R},

for any x0 with |x0| ≤ R and any s ∈ [a, b]. From Lemma 5.2.5 we will use that there
exists a constant αL > 0 such that

L+g(x, v) ≥ αL
(∫

Rd
g(x, u) du

)
1{|v|≤R2} (5.2.28)

for all nonnegative measures g. We first notice that we can do the same estimate as in
formula (5.2.10), where now (Tt)t≥0 represents the semigroup generated by the operator
−v · ∇xf +∇xΦ(x) · ∇vf :

etft ≥
∫ t

0

∫ s

0
Tt−sL+Ts−rL+Trf0 dr ds. (5.2.29)
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Take x0, v0 ∈ B(0,K), and call f0 := δ(x0,v0). For all r we have by the definition of R
that

|Xr(x0, v0)| ≤ R for all 0 ≤ r. (5.2.30)

For any r > 0, since Trf0 = δ(Xr(x0,v0),Vr(x0,v0)), using (5.4.37) gives

L+Trf0 ≥ αLδXr(x0,v0)(x)1{|v|≤R2}.

Then, using (5.2.30) and our two lemmas, whenever s− r ∈ [a, b] we have

L+Ts−rL+Trf0 ≥ αL
(∫

Rd
Ts−rL+Trf0 du

)
1{|v|≤R2}

≥ α2
L

(∫
Rd
Ts−r

(
δXr(x0,v0)(x)1{|u|≤R2}

)
du
)
1{|v|≤R2}

≥ α2
Lα1{|x|≤R}1{|v|≤R2}.

We now need to allow for a final bit of movement along the flow Tt−s. By the continuity
of the flow, there exist ε > 0 sufficiently small so that for all 0 ≤ τ ≤ ε we have

Tτ
(
1B(R)(x)1B(R2)(v)

)
≥ 1B(R/2)(x)1B(R2/2)(v).

Then for all t, s, r such that t− s ≤ ε and s− r ∈ (a, b) we have

Tt−sL+Ts−rL+Trf0 ≥ α2
Lα1{|x|≤R/2} 1{|v|≤R2/2}.

We have then∫ t

0

∫ s

0
Tt−sL+Ts−rL+Trf0 dr ds ≥ α2

Lα

∫ t

t−ε

∫ s−a

s−b
1{|x|≤R/2}1{|v|≤R2/2} dr ds

= α2
Lαε(b− a)1{|x|≤R/2}1{|v|≤R2/2}.

Finally, from Duhamel’s formula (5.2.29) we obtain

f(t, x, v) ≥ e−tα2
Lαε(b− a)1{|x|≤R/2}1{|v|≤R2/2},

which gives the result.

Lemma 5.2.12 (Lyapunov condition). Suppose that Φ(x) is a C2 function satisfying

x · ∇Φ(x) ≥ γ1|x|2 + γ2Φ(x)−A

for positive constants A, γ1 γ2. Then we have that

V (x, v) = 1 + Φ(x) + 1
2 |v|

2 + 1
4x · v + 1

8 |x|
2

is a function for which the semigroup satisfies Hypothesis 1.2.3.

Remark 5.2.13. Φ is superquadratic at infinity (which is implied by earlier assumptions)
then V is equivalent to 1+H(x, v) where the energy is defined asH(x, v) = |v|2/2+Φ(x).
So the total variation distance weighted by V is equivalent to the total variation distance
weighted by 1 +H(x, v).
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Proof. We look at the forwards operator

Sf = v · ∇xf −∇xΦ(x) · ∇vf + L+f − f.

We want a function V (x, v) s.t

SV ≤ −λV +K

for some constants λ > 0,K ≥ 0. We need to make the assumption that

x · ∇xΦ(x) ≥ γ1|x|2 + γ2Φ(x)−A.

for some positive constant A, γ1, γ2. We then try the function

V (x, v) = Φ(x) + 1
2 |v|

2 + ax · v + b|x|2.

We want this to be positive so we impose a2 < 2b. We calculate that

SV =1
2 −

1
2 |v|

2 − ax · v + a|v|2 − ax · ∇xΦ(x) + 2bx · v

≤C ′ −
(1

2 − a
)
|v|2 + (2b− a)x · v − aγ1|x|2 − aγ2Φ(x)

(a = 1/4, b = 1/8) =C ′ − 1
4 |v|

2 − γ1
4 |x|

2 − γ2
4 Φ(x) ≤ C ′ − γ1

4 (|x|2 + |v|2)− γ2
4 Φ(x)

≤C ′ − min(γ1, 1)
4

(1
2 |v|

2 + 1
4x · v + 1

8 |x|
2
)
− γ2

4 Φ(x)

So V (x, v) works with

λ = min(γ1, γ2, 1)
4 .

Proof of Theorem 5.1.3 in the case of the linear relaxation Boltzmann equation. The proof
follows by applying Harris’s Theorem since Lemmas 5.2.11 and 5.2.12 show that the
equation satisfies the hypotheses of the theorem.

5.2.3 Subgeometric convergence

When we do not have the superquadratic behaviour of the confining potential at infinity
we can still use a Harris type theorem to show convergence to equilibrium. This time
we must pay the price of having subgeometric rates of convergence. We use the subgeo-
metric Harris’s Theorem given in Section 1.2. Now instead of our earlier assumption on
the confining potential Φ, we instead make a weaker assumption that Φ is a C2 function
satisfying

x · ∇xΦ(x) ≥ γ1〈x〉2β + γ2Φ(x)−A,

for some positive constant A, γ1, γ2, where

〈x〉 =
√

1 + |x|2,

and β ∈ (0, 1).
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Proof of Theorem 5.1.4 in the case of the linear relaxation Boltzmann equation. We have
already proved the minorisation condition. We can also replicate the calculations for
the Lyapunov function to get that in this new situation, take the V in Lemma 5.2.12,
we have for a = 1/4, b = 1/8 that

SV ≤ C ′ − 1
4 |v|

2 − γ1
4 〈x〉

2β − γ2
4 Φ(x).

For x, y ≥ 1
(x+ y)β ≤ xβ + yβ.

So we have

SV ≤C ′ − min(γ1, 1)
4

(
〈v〉2 + 〈x〉2β

)
− γ2

4 Φ(x)

≤C ′′ − min(γ1, 1)
4

(
1 + |x|2 + |v|2

)β
− γ2

4 Φ(x)β

≤C ′′ − λ
(

1 + 1
2 |v|

2 + 1
4x · v + 1

8 |x|
2
)β
− λΦ(x)β

≤C ′′ − λ
(

Φ(x) + 1
2 |v|

2 + 1
4x · v + 1

8 |x|
2
)β

,

for some constant λ,C ′′ > 0 that can be explicitly computed, so we have that

SV ≤ −λV β + C ′′.

This means we can take φ(s) = 1 + sβ. Therefore, for u large

Hφ(u) =
∫ u

1

1
1 + tβ

dt ∼ 1 + u1−β,

and for t large
H−1
φ (t) ∼ 1 + t1/(1−β)

and
φ ◦H−1

φ (t) ∼ (1 + t)β/(1−β).

5.3 The linear Boltzmann Equation

We now look at the linear Boltzmann equation. This has been studied in the spatially
homogeneous case in [1, 11]. Here the interest is partly that this is a more complex
and physically relevant operator. Also, it presents less globally uniform behaviour in v
which means that we have to use a Lyapunov function even on the torus. Apart from
this, the strategy is very similar to that from the linear relaxation Boltzmann equation.
The full Boltzmann equation has been studied as a Markov process in [27], the linear
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case is similar and more simple. It is well known that this equation preserves positivity
and mass, which follows from standard techniques both in the spatially homogeneous
case and the case with transport. The Lyapunov condition on the torus and the bound
below on the jump operator have to be verified in this situation.

We consider for x ∈ Td

∂tf + v · ∇xf =
∫
Rd

∫
Sd−1

B

(
v − v∗
|v − v∗|

· σ, |v − v∗|
) (
f(v′)M(v′∗)− f(v)M(v∗)

)
dσdv∗.

(5.3.31)
We assume that B splits as

B

(
v − v∗
|v − v∗|

· σ, |v − v∗|
)

= b

(
v − v∗
|v − v∗|

· σ
)
|v − v∗|γ .

We make a cutoff assumption that b is integrable in σ. In fact, we make a much
stronger assumption that b is bounded below by a constant. We also work in the hard
spheres/Maxwell molecules regime that is to suppose γ ≥ 0. We have

∂tf + v · ∇xf = L+f − σ(v)f,

where σ(v) ≥ 0 and σ(v) behaves like |v|γ for large v; that is,

0 ≤ σ(v) ≤ (1 + |v|2)γ/2, v ∈ Rd. (5.3.32)

See [11] Lemma 2.1 for example.
We also look at the situation where the spatial variable is in Rd and we have a

confining potential. With hard sphere, the operator L+ acting on x · v produces error
terms which are difficult to deal with. We show that when we have hard spheres with
γ > 0 we can still show exponential convergence when Φ(x) is growing at least as fast as
|x|γ+2. In the subgeometric case we suppose Φ(x) grows at least as fast as |x|ε+1, ε > 0.
The equation is

∂tf + v · ∇xf − (∇xΦ(x) · ∇vf) = Q(f,M). (5.3.33)

We begin by proving lemmas which are useful for proving the Doeblin condition
in both situations. We want to reduce to a similar situation to the linear relaxation
Boltzmann equation.

Lemma 5.3.14. Let f be a solution to (5.3.31) or (5.3.33), and define H(x, v) := |v|2/2
on the torus for (5.3.31) or H(x, v) := Φ(x) + |v|2/2 in the whole space for (5.3.33),
where Φ is a C2 potential bounded below. Take E0 > 0 and assume that f has initial
condition f0 = δ(x0,v0) with

H(x, v) ≤ E0.

Then there exists a constant C1 > 0 such that

f(t, x, v) ≥ e−tC1

∫ t

0

∫ s

0
Tt−sL̃+Ts−rL̃+Tr(1Ef0(x, v)) dr ds,

where
L̃+g := 1EL+g, E := {(x, v) ∈ Rd × Rd : H(x, v) ≤ E0}.
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Proof. Call (Xt(x, v), Vt(x, v)) the solution to the backward characteristic equations
obtained from the transport part of either (5.3.31) or (5.3.33). Let us call

Σ(s, t, x, v) = e
∫ t
s
σ(Vr(x,v))dr.

Looking at Duhamel’s formula again we get

f(t, x, v) = Σ(0, t, x, v)Ttf0 +
∫ t

0
Σ(0, t− s, x, v)(Tt−sL+fs)(x, v) ds

If a function g = g(x, v) has support on the set

E := {(x, v) : H(x, v) ≤ E0},

then the same is true of Ttg (since the transport part preserves energy). On the set E
we have, using (5.3.32),∫ t

s
σ(Vr(x, v))dr ≤ (t− s)C (1 + 2E0)γ/2 =: (t− s)C1, (x, v) ∈ E.

Hence

f(t, x, v) ≥ Σ(0, t, x, v)Tt(1Ef0) +
∫ t

0
Σ(0, t− s, x, v)(Tt−s(1EL+fs))(x, v) ds

≥ e−tC1Tt(1Ef0) +
∫ t

0
e−(t−s)C1(Tt−s(1EL+fs))(x, v) ds

= e−tC1Ttf0 +
∫ t

0
e−(t−s)C1(Tt−s(L̃+fs))(x, v) ds,

where we define
L̃+g := 1EL+g.

Iterating this formula we obtain the result.

We have that

L+f =
∫
Rd

∫
Sd−1

b

(
v − v∗
|v − v∗|

· σ
)
|v − v ∗ |γf(v′)M(v′∗)dσdv∗.

Using the Carleman representation we rewrite this as

L+f =
∫
Rd

f(v′)
|v − v′|d−1

∫
Ev,v′

B(|u|, ξ)M(v′∗)dv′∗.

We want to bound this in the manner of Lemma 5.2.5 from the first part. We look at
hard spheres and no angular dependence, which means

B(|u|, ξ) = C|u|γξd−2

with γ ≥ 0. We also have that

ξ = |v − v′|
|2v − v′ − v′∗|

, |u| = |2v − v′ − v′∗|.

So we have that

L+f =
∫
Rd

f(v′)
|v − v′|

∫
Ev,v′

|2v − v′ − v′∗|γ−d−2M(v′∗)dv′∗.

We want to prove a local version of Lemma 5.2.5: look at this localised so we want
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Lemma 5.3.15. Consider the positive part L+ of the linear Boltzmann operator for
hard spheres, assuming (5.1.4) with γ ≥ 0, and (5.1.5). For all RL, rL > 0, there exists
α > 0 such that

L+g(v) ≥ α
∫
B(RL)

g(u) du for all v ∈ Rd with |v| ≤ rL.

Proof. First we note that on E(v,v′) we have

|2v − v′ − v′∗|−d−2 ≥ Cd exp
(
−1

2 |v − v
′
∗|2 −

1
2 |v − v

′|2
)
.

Then since γ ≥ 0 we have

|2v − v′ − v′∗|γ =
(
|v − v′|2 + |v − v′∗|2

)γ/2
≥ |v − v′∗|γ .

So this means that∫
E(v,v′)

|2v − v′−v′∗|γ−d−2M(v′∗)dv′∗

≥ Ce−|v−v′|2/2
∫
E(v,v′)

|v − v′∗|γ exp
(
−1

2 |v − v
′
∗|2 −

1
2 |v
′
∗|2
)

dv′∗

≥ Ce−|v−v′|2/2−|v|2/2
∫
E(v,v′)

|v − v′∗|γe−|v−v
′
∗|2dv′∗

= C ′e−|v−v
′|2/2−|v|2/2.

So we have that

L+f(v) ≥ C
∫
Rd
f(v′)|v − v′|−1e−|v−v

′|2/2−|v|2/2dv′

≥ C
∫
Rd
f(v′)e−2|v′|2−3|v|2

≥ Ce−2R2
Le−3|v|2

∫
B(0,RL)

f(v′)dv′,

which is a similar bound to the one we found in Lemma 5.2.5. This gives the result by
choosing α := C exp(−2R2

L − 3|rL|2).

5.3.1 On the torus

Now we work specifically on the torus. For the minorisation we can argue almost exactly
as for the linear relaxation Boltzmann equation.

Lemma 5.3.16 (Doeblin condition). Assume (5.1.4) with γ ≥ 0, and (5.1.5). Given
t∗ > 0 and R > 0 there exist constants 0 < α < 1, δL > 0 such that any solution
f = f(t, x, v) to the linear Boltzmann equation (5.3.31) on the torus with initial condi-
tion f0 = δ(x0,v0) with |v0| ≤ R satisfies

f(t∗, x, v) ≥ α1|v|≤δL ,

for almost all (x, v) ∈ Td × Rd.
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Proof. Take f0 := δ(x0,v0), where (x0, v0) ∈ Td ×Rd is an arbitrary point with |v0| ≤ R.
From Lemma 5.2.6 (with R >

√
d and t0 := t∗/3) we will use that there exist δL, R′ > 0

such that∫
B(R′)

Tt
(
δx0(x)1{|v|≤δL}

)
dv ≥ 1

td
for all x0 ∈ Td, t > t0. (5.3.34)

Also, Lemma 5.3.15 gives an α > 0 such that

L+g ≥ α
(∫

B(RL)
g(x, u) du

)
1{|v|≤δL}, (5.3.35)

where RL := max{R′, R}. Finally, from Lemma 5.3.14 we can find C1 > 0 (depending
on R) such that

f(t, x, v) ≥ e−tC1

∫ t

0

∫ s

0
Tt−sL̃+Ts−rL̃+Tr(1Eδ(x0,v0)) dr ds,

where E is the set of points with energy less than E0, with

E0 := max{R2/2, δ2
L/2},

and we recall that L̃+f := 1EL+f . Due to our choice of E0, we see that equation
(5.3.34) also holds with L̃+ in the place of L+. One can then carry out the same proof
as in Lemma 5.2.7, using estimates (5.3.34) and (5.3.35) instead of the corresponding
ones there.

Since our Doeblin condition holds only on sets which are bounded in |v|, we do
need a Lyapunov functional in this case (as opposed to the linear relaxation Boltzmann
equation, where Lemma 5.2.7 gives a lower bound for all starting conditions (x, v)).
Testing with V = v2 involves proving a result similar to the moment control result from
[?]. Instead of the σ representation we use the n-representation for the collisions:

v′ = v − n(u · n), v′∗ = v∗ + n(u · n).

By our earlier assumption, the collision kernel can be written as

B̃(|v − v∗|, |ξ|) = |v − v∗|γ b̃(|ξ|),

where
ξ := u · n

|u|
, u := v − v∗.

Here the B̃, b̃ are different from those in the σ representation because of the change of
variables. We also have by assumption that b̃ is normalised, that is,∫

Sd
b̃(|w · n|) dn = 1

for all unit vectors w ∈ §d−1.
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Lemma 5.3.17. Let L be the linear Boltzmann operator. There are constants C,K > 0
such that ∫

Rd
L(f)|v|2 dv ≤ −C

∫
Rd
|v|2f dv +K

∫
Rd
f

for all non-negative measures f .

Proof. Using the weak formulation of the operator,∫
Rd
L(f)|v|2 dv =

∫
Rd

∫
Rd

∫
Sd−1

f(v)M(v∗)|v − v∗|γ b̃(|ξ|)(|v′|2 − |v|2) dn dv dv∗.

Now we notice that

|v′|2 − |v|2 = |v∗|2 − |v′∗|2 = −(u · n)2 − 2(v∗ · n)(u · n)

= −|u|2ξ2 − 2(v∗ · n)(v · n) + 2(v∗ · n)2

= −|v|2ξ2 − |v∗|2ξ2 + 2v · v∗ξ2 − 2(v∗ · n)(v · n) + 2(v∗ · n)2.

Note that the first term is negative and quadratic in v, and the rest of the terms are of
lower order in v. Hence, calling

γb :=
∫
Sd−1

ξ2b(|ξ|)dξ

we have∫
Rd
L(f)|v|2 dv =− γb

∫
Rd
|v|2f(v)

∫
Rd

M(v∗)|v − v∗|γ dv∗ dv

− γb
∫
Rd
f(v)

∫
Rd
|v∗|2M(v∗)|v − v∗|γ dv∗ dv

+ 2γb
∫
Rd
vf(v)

∫
Rd
v∗M(v∗)|v − v∗|γ dv∗ dv

− 2
∫
§d−1

∫
Rd

(v · n)f(v)
∫
Rd

(v∗ · n)M(v∗)|v − v∗|γ dv∗ dv dn

+
∫
§d−1

∫
Rd
f(v)

∫
Rd

(v∗ · n)2M(v∗)|v − v∗|γ dv∗ dv dn

≤− γb
∫
Rd
|v|2f(v)

∫
Rd

M(v∗)|v − v∗|γ dv∗ dv

+ (2 + γb)
∫
Rd
|v|f(v)

∫
Rd
|v∗|M(v∗)|v − v∗|γ dv∗ dv

+
∫
Rd
f(v)

∫
Rd
|v∗|2M(v∗)|v − v∗|γ dv∗ dv.

We can now use the following bound, which holds for all k ≥ 0 and some constants
0 < Ak ≤ Ck depending on k:

Ak(1 + |v|γ) ≤
∫
Rd
|v∗|kM(v∗)|v − v∗|γ dv∗ ≤ Ck(1 + |v|γ), v ∈ Rd.
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We get∫
Rd
L(f)|v|2 dv ≤−A0γb

∫
Rd
|v|2(1 + |v|γ)f(v) dv + C1(2 + γb)

∫
Rd
|v|(1 + |v|γ)f(v) dv

+ C2

∫
Rd
f(v)(1 + |v|γ) dv

≤
∫
Rd
f(v)(C2 + C1(1 + γb/2)/ε) (1 + |v|γ) dv

− (A0γb − εC1(1 + γb/2))
∫
Rd
|v|2(1 + |v|γ)f(v)dv

≤
∫
Rd
f(v)

(
C2 + C1(1 + γb/2)/ε+ (εC1(1 + γb/2)−A0γb)|v|2

)
(1 + |v|γ)f(v)dv

− (A0γb − εC1(1 + γb/2))
∫
Rd
|v|2f(v)dv

≤α1

∫
Rd
f(v)dv − α2

∫
Rd
|v|2f(v)dv.

Here we choose ε sufficiently small to make the constant in front of the second moment
negative. This also means that

(C2 + C1(1 + γb/2)/ε+ (εC1(1 + γb/2)−A0γb)|v|2(1 + |v|γ)

is bounded above. These things together give the final line.

Proof of Theorem 5.1.2 in the case of the linear Boltzmann equation. We have the Doe-
blin condition from Lemma 5.3.16 and the Lyapunov structure from Lemma 5.3.17.
Harris’s Theorem gives the result.

5.3.2 On the whole space with a confining potential

We now work on the whole space with a confining potential. As we stated earlier, we
cannot verify the Lyapunov condition in the hard spheres case. However, the proof for
the Doeblin’s condition is the same in the hard sphere or Maxwell molecule case. We
need to combine the Lemmas 5.4.31, 5.3.14 and 5.3.15.

Lemma 5.3.18. Let the potential Φ Rd → R be a C2 function with compact level sets.
Given t > 0 and K > 0 there exist constants α, δX , δV > 0 such that for any (x0, v0)
with |x0|, |v0| < K the solution f to (5.3.33) with initial data δ(x0,v0) satisfies

ft ≥ α1{|x|≤δX}1{|v|≤δV }.

Proof. We fix R > 0 as in Lemma 5.2.11. We use Lemma 5.4.31 to find constants
α,R2, R

′ > 0 and an interval [a, b] ⊆ (0, t) such that∫
B(R′)

Ts(δx01{|v|≤R2}) dv ≥ α1{|x|≤R},

for any x0 with |x0| ≤ R and any s ∈ [a, b]. From Lemma 5.3.15 we will use that there
exists a constant αL > 0 such that

L+g(x, v) ≥ αL
(∫

RL

g(x, u) du
)
1{|v|≤R2} (5.3.36)
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for all nonnegative measures g, where RL := max{R,R′}. From Lemma 5.3.14 we can
find C1 > 0 (depending on R) such that

f(t, x, v) ≥ e−tC1

∫ t

0

∫ s

0
Tt−sL̃+Ts−rL̃+Tr(1Eδ(x0,v0)) dr ds,

where E is the set of points with energy less than E0, with

E0 := max{H(x, v) : |x| ≤ R, |v| ≤ max{RL, R2}},

and we recall that L̃+f := 1EL+f . These three estimates allow us to carry out a proof
which is completely analogous to that of Lemma 5.2.11; notice that the only difference
is the appearance of R′ here, and the need to use L̃+ (which still satisfies a bound of
the same type).

Now we need to find a Lyapunov functional. As before we will look at V of the form

V (x, v) = Φ(x) + 1
2 |v|

2 + αx · v + β|x|2.

We need Φ(x) to be stronger if we have hard spheres we want

x · ∇xΦ(x) ≥ γ1〈x〉γ+2 + γ2Φ(x)−A.

Lemma 5.3.19. The function

V (x, v) = Φ(x) + 1
2 |v|

2 + αx · v + β|x|2

satisfies

d
dt

∫
f(t, x, v)V (x, v)dxdv ≤ −λ

∫
f(t, x, v)V (x, v)dxdv +K

∫
f(t, x, v)dxdv.

Proof. Lets look at how the collision operator acts on the different terms∫
Rd
L(f)|v|2dv =

∫
Rd

∫
Rd

∫
Sd−1

f(v)M(v∗)b̃(|ξ|)|v − v∗|γ
(
|v′|2 − |v|2

)
dndvdv∗.

Repeating the calculation for the hard sphere case we notice that we in fact have that∫
Rd
L(f)|v|2dv ≤ −α1

∫
Rd
〈v〉γ+2f(v)dv + α2

∫
Rd
f(v)dv.

Similarly we have∫
Rd
L(f)x · vdv =

∫
Rd

∫
Rd

∫
Sd−1

f(v)M(v∗)b̃(|ξ|)|v − v∗|γ
(
v′ · x− v · x

)
dndvdv∗.

We can see that
v′ · x− v · x = (v · n)(x · n)− (v∗ · n)(x · n).

Integrating this gives that∫
Rd
L(f)x · vdv =

∫
Rd

∫
Rd

∫
Sd−1

f(v)M(v∗)b̃(|ξ|)|v − v∗|γ(v · n)(x · n)dv∗dvdn

≤
∫
Rd
f(v)〈v〉γ+1|x|dv.
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Therefore if we set
V (x, v) = H(x, v) + αx · v + β|x|2,

where H(x, v) = Φ(x) + |v|2/2 is the energy, as above then using this we have that∫
Rd

(L − T )(f)V (x, v)dxdv ≤
∫
Rd×Rd

f(x, v)
(
−α1〈v〉γ+2 + α2 + α〈v〉γ+1|x|+ α|v|2

)
dxdv∫

Rd×Rd
f(x, v) (−αx · ∇xΦ(x) + 2βx · v) dvdx

≤
∫
Rd×Rd

f(x, v)
(
(α− α1)〈v〉γ+2 + (α+ 2β)|x|〈v〉γ+1

)
dvdx

+
∫
Rd×Rd

f(x, v)
(
−αγ1〈x〉γ+2 − αγ2Φ(x) + α2 + αA

)
dvdx

(setting β = α, α ≤ α1/2) ≤
∫
Rd×Rd

f(x, v)
((
−α1

2 + (3αε)
γ+2
γ+1

γ + 1
γ + 2

)
〈v〉γ+2

)
dvdx

+
∫
Rd×Rd

f(x, v)
((

(α/ε)γ+2

γ + 2 − αγ2

)
〈x〉γ+2

)
dxdv

+
∫
Rd×Rd

f(x, v)
(
−αγ2Φ(x) + 1− γ1

2 + αA

)
dxdv.

Now we can set ε small enough so that the 〈v〉γ+2 term is negative and then for this ε
choose α small enough (since γ+ 2 ≥ 1 so that the 〈x〉γ+2 term is negative. Then, since
〈z〉γ+2 grows faster than |z|2 at infinity this gives∫

Rd
(L − T )(f)V (x, v)dxdv ≤

∫
Rd×Rd

f(x, v)
(
−λ1(|x|2 + |v|2)− λ2Φ(x) +K

)
dx dv.

Then using equivalence between the quadratic forms

|x|2 + |v|2 and 1
2 |v|

2 + αx · v + α|x|2,

when α < 1/2 we have the result in the Lemma.

Proof of Theorem 5.1.3 in the case of the linear Boltzmann equation. We have the mi-
norisation condition in Lemma 5.3.18 and the Lyapunov condition from Lemma 5.3.19.
Therefore we can apply Harris’s Theorem.

5.3.3 Subgeometric convergence

As with the linear relaxation Boltzmann equation, the minorisation results in Lemma
5.3.18 holds for Φ which are not sufficiently confining to prove the Lyapunov structure.
However in this situation we can still prove subgeometric rates of convergence. Here in
order to find a Lyapunov functional we need to be more precise about how L acts on
the x · v moment.

We need Φ(x) to be stronger if we have hard spheres we want

x · ∇xΦ(x) ≥ γ1〈x〉β+1 + γ2Φ(x)−A, Φ(x) ≤ γ3〈x〉1+β

for some β > 0, then we have
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Lemma 5.3.20. The function

V (x, v) = Φ(x) + 1
2 |v|

2 + αx · v
〈x〉

+ β〈x〉

satisfies

d
dt

∫
f(t, x, v)V (x, v)dxdv ≤ −λ

∫
f(t, x, v)V (x, v)

β
1+β dxdv +K

∫
f(t, x, v)dxdv.

Proof. Using the results in Lemma 5.3.19, we have∫
Rd

(L − T )(f)V (x, v)dxdv ≤
∫
Rd×Rd

f(x, v)
(
−α1〈v〉γ+2 + α2 + α〈v〉γ+1 + α|v|2

)
dxdv∫

Rd×Rd
f(x, v)

(
−αx · ∇xΦ(x)

〈x〉
+ 2βx · v
〈x〉

)
dvdx

≤
∫
Rd×Rd

f(x, v)
(
(α− α1 − 2β)〈v〉γ+2

)
dvdx

+
∫
Rd×Rd

f(x, v)
(
−αγ1〈x〉β − αγ2

Φ(x)
〈x〉

+ α2 + αA

)
dvdx

≤
∫
Rd×Rd

λ1f(x, v)
(
−|v|2 − 〈x〉β − Φ(x)β/1+β + C

)
dxdv

≤λ
∫
f(t, x, v)V (x, v)

β
1+β dxdv +K

∫
f(t, x, v)dx dv.

Proof of Theorem 5.1.4 in the linear Boltzmann case. We have the minorisation condi-
tion in Lemma 5.3.18 and the Lyapunov condition from Lemma 5.3.20. Therefore we
can apply Harris’s Theorem.

5.4 Abstract Theorem

In this section we introduce a abstract theorem on the Harris condition, which covers
the proofs above and may apply to more general models.

Theorem 5.4.21. Suppose f = f(t, x, v), with t ∈ R, x, v ∈ Rd, satisfies the following
equation

∂tf + v · ∇xf − V (x) · ∇vf = L+f + c(t, x, v)f, f(0, x, v) = f0(x, v),

with V (x) is C1, L+ is a linear positive operator, c(t, x, v) is a function that is uniformly
locally bounded, which means that, for any R1, R2 > 0, there exist a constant CR1,R2

such that for all |x| ≤ R1, |v| ≤ R2, t ∈ R we have

|c(t, x, v)| ≤ CR1,R2 .

Then we have, if L+ satisfies Hypothesis 5.4.23 below, the solution to the original equa-
tion satisfies Harris-Doeblin condition, precisely for any f0 smooth, for any R > 0, there
exist R1, R2, αR, t which do not depend on f0, such that
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f(t, x, v) ≥ αR1[|x| ≤ R1]1[|v| ≤ R2]
∫
B(0,R)×B(0,R)

f0(x, v)dxdv

and the constants R1, R2, αR, t can be explicit computed.

Remark 5.4.22. V (x) don’t need to be a confinement potential.
We will now check several properties (which we list as hypotheses). The first one

says that the operator L always allows jumps to any small velocity:

Hypothesis 5.4.23. For all nonnegative functions g and for all δ, β > 0, there exist
αβ,δ > 0 such that

L+g ≥ αβ,δ

(∫
|u|≤β

g(x, u) du
)
1[|v| ≤ δ]. (5.4.37)

In the following, we will denote the solution of the full transport part

∂tf + a(t, x, v) · ∇f = c(t, x, v)f, f(0, x, v) = f0(x, v),

by Tt(f0), and we denote the solution to

∂tf + a(t, x, v) · ∇f = 0, f(0, x, v) = f0(x, v),

by St(f0), we also denote (Stf0)(x, v) = (Xt(x, v), Vt(x, v)),it’s easily seen that we have

Ttf0(x, v) = St(x, v)e−
∫ t

0 c(r,Xr(x,v),Vr(x,v))dr

The second one says that the transport part can move a particle to a neighborhood
of 0, given that one starts out with the correct velocity:

Hypothesis 5.4.24. For all R > 0 there exist βR, γR, δR, TR, bR > 0, εR > 0 (possibly
depending on R, independent of t) such that for all nonnegative functions h = h(x) we
have∫
|v|≤bR

Tt
(
h(x)1[|v| ≤ βR]

)
dv ≥ γR

(∫
|y|≤R

h(y) dy
)
1[|x| ≤ δR] ,∀t ∈ (TR − εR, TR)

(5.4.38)

We still need some continuity for the transport part.

Hypothesis 5.4.25. (Continuity in short time) For all R1, R2 > 0 fixed, there exist
s,M > 0 (possibly depending on R1, R2) such that for all |x0| ≤ R1

2 , |v0| ≤ R2
2 , 0 < t < s

we have
|Xt(x0, v0)| ≤ R1, |Vt(x0, v0)| ≤ R2, (5.4.39)

In particular we have

M1[|x| ≤ R1]1[|v| ≤ R2] ≥ Tt1[|x| ≤ R1
2 ]1[|v| ≤ R2

2 ] (5.4.40)

Hypothesis 5.4.26. (Inverse Continuity in short time) For all R1, R2 > 0 there exist
s,M > 0 (possibly depending on R1, R2) such that for all 0 < t < s we have

Tt1[|x| ≤ R1]1[|v| ≤ R2] ≥M1[|x| ≤ R1
2 ]1[|v| ≤ R2

2 ] (5.4.41)
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5.4.1 Properties of the transport part

Theorem 5.4.27. We denote the solution to the transport equation

∂tf + v · ∇xf −W (x) · ∇vf = 0, f(0, x, v) = f0(x, v),

by f0(Xt, Vt) = Tt(f0), if W (x) is C1, then the transport equation satisfies Hypothesis
5.4.24, 5.4.25, 5.4.26.

Now we have the equation

∂tf + v · ∇xf −W (x) · ∇vf = Lf, (5.4.42)

here L is defined as before and x, v ∈ Rd. We want to use a slightly different strategy to
show the minorisation condition based on the fact that we instantaneously produce large
velocities. We first need a result on the trajectories of particles under the action of the
potential W . Always assuming that W is a C1 function, we consider the characteristic
ordinary differential equations associated to the transport part of (5.4.42):

ẋ = v

v̇ = −W (x),
(5.4.43)

and we denote by (Xt(x0, v0), Vt(x0, v0)) the solution at time t to (5.4.43) with initial
data x(0) = x0, v(0) = v0. Performing time integration twice, it clearly satisfies

Vt(x0, v0) = v0 −
∫ t

0
W (Xs(x0, v0)) ds (5.4.44)

and
Xt(x0, v0) = x0 + v0t−

∫ t

0

∫ s

0
W (Xu(x0, v0)) duds (5.4.45)

for any x0, v0 ∈ Rd and any t for which it is defined. Intuitively the idea is that for small
times we can approximate (Xt, Vt) by (X(0)

t , V
(0)
t ) which is a solution to the ordinary

differential equation

ẋ = v

v̇ = −0.
(5.4.46)

We can solve this explicitly X(0)
t = x0 + v0t. If we want to hit a point x1 in time t

then if we travel with the trajectory X(0) we just need to choose v0 = (x1− x0)/t. Now
we choose an interpolation between (X(0), V (0)) and (X,V ). This is (X(ε), V (ε)) which
is a solution to the ordinary differential equation

ẋ = v

v̇ = −ε2W (x),
(5.4.47)
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still with initial data (x0, v0). We calculate that

X
(ε)
t (x0, v0) = Xεt

(
x0,

v0
ε

)
, V

(ε)
t (x0, v0) = εVεt

(
x0,

v0
ε

)
.

Now we can see from the ODE representation (and we will make this more precise later)
that (X,V ) is a C1 map of (t, ε, x, v). Therefore if we fix t and x0 we can define a C1

map
F : [0, 1]× Rd → Rd,

by
F (ε, v) = X

(ε)
t (x0, v).

Then for ε = 0 we can find v∗ such that F (0, v∗) = x1 as given above. Furthermore
∇F (0, v∗) 6= 0 so by the implicit function theorem for all ε less than some ε∗ we have a
C1 function v(ε) such that F (ε, v(ε)) = x1. This means that

Xεt

(
x0,

v(ε)
ε

)
= x1

. So if we take s < ε∗t then we can choose v such that Xs(x0, v) = x1. We now need to
get quantitative estimates on ε∗ we do this by traking the constants in the proof of the
contraction mapping theorem.

In order to make these ideas quantitative and to check that the solution is in fact
C1 we need to get bounds on (Xt, Vt) and W (Xt) for t is some fixed intervals. For the
potentials of interest we will have that the solutions to these ODEs will exist for infinite
time. We prove bounds on the solutions and W (Xt) for any potential.

Lemma 5.4.28. Assume that the potential W is C1 on Rd. Take λ > 1, R > 0 and
x0, v0 ∈ Rd with |x0| ≤ R. The solution t 7→ Xt(x0, v0) to (5.4.43) is defined (at least)
for |t| ≤ T , with

T := min
{

(λ− 1)R
2|v0|

,

√
(λ− 1)R√

2CλR

}
, CλR := max

|x|≤λR
|W (x)|.

(It is understood that any term in the above minimum is +∞ if the denominator is 0.)
Also, it holds that

|Xt(x0, v0)| ≤ λR for |t| ≤ T .

from this we can deduce

|Vt(x0, v0)| ≤ |v0|+ CλRt for |t| ≤ T .

As a consequence, we have proved that Tt satisfies Hypothesis 5.4.25.

Proof. By standard ODE theory, the solution is defined in some maximal (open) time
interval I containing 0; if this maximal interval has any finite endpoint t∗, thenXt(x0, v0)
has to blow up as t approaches t∗. Hence if the statement is not satisfied, there must
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exist t ∈ I with |t| ≤ T such that |Xt(x0, v0)| ≥ λR. By continuity, one may take t0 ∈ I
to be the “smallest” time when this happens: that is, |t0| ≤ T and

Xt0(x0, v0) = λR,

|Xt0(x0, v0)| ≤ λR for |t| ≤ |t0|.

By (5.4.44) and using that |t0| ≤ T we have

λR = |Xt0(x0, v0)| ≤ |x0|+ |v0t0|+
t20
2 max{|W (Xt(x0, v0))| : t ≤ t0}

≤ R+ (λ− 1)R
2 + CλR

2 t20 = (λ+ 1)R
2 + CλR

2 t20,

which implies that
(λ− 1)R ≤ CλRt20.

If CλR = 0 this is false; if CλR > 0, then this contradicts that |t0| ≤ T .

Theorem 5.4.29. Tt has an inverse transform, precisely that there exist a transform
Gt such that

(GtTt)(x0, v0) = (x0, v0), ∀t ≥ 0,

moreover, if we denote Gt(x0, v0) = (Yt(x0, v0), Zt(x0, v0)), then Yt, Zt satisfies

ẏ = −z

ż = W (y),

with initial condition {x0, y0}, as a consequence, Tt satisfies Hypothesis 5.4.26.

Proof. The first statement is obvious by taking w = −t, apply Gt on both side of
equation (5.4.41), we turned Hypothesis 5.4.26 to, for all R1, R2 > 0 there exist s > 0
(possibly depending on R1, R2) such that for all 0 < t < s we have

1[|x| ≤ R1]1[|v| ≤ R2] ≥ Gt1[|x| ≤ R1
2 ]1[|v| ≤ R2

2 ] (5.4.48)

which is the continuity in short time (Hypothesis 5.4.25) for Gt, since Gt satisfies

ẏ = −z

ż = W (y),

we know that Gt is only a change of sign of Tt, so Lemma 5.4.28 still holds for Gt.

We now follow the intuition given at the beginning of this section. However we
collapse the variables ε and t together and consequently look at Xt(x, v/t) which is
intuitively less clear but algebraically simpler.
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Lemma 5.4.30. Assume thatW ∈ C1(Rd), and take x0, x1 ∈ Rd. Let R := max{|x0|, |x1|}.
There exists 0 < T1 = T1(R) such that for any 0 < t ≤ T1 we can find a |v0| ≤ 4R such
that

Xt(x0,
v0
t

) = x1.

In fact, it is enough to take T1 > 0 such that

CT 2
1 e

CT 2
1 ≤ 1

4 , T1 ≤
√
R√

2C2R
, where C := sup

|x|≤9R
|DW (x)|.

In addition we have for any |x0| ≤ R, |v0| ≤ 4R, |v1| ≤ 4R, 0 < t < T , denote ṽ0 =
v0/t, ṽ1 = v1/t, we have

|Xt(x0, ṽ1)−Xt(x0, ṽ0)− (ṽ1 − ṽ0)t| ≤ 1
4 |ṽ1 − ṽ0|t,

which means that
3
4 t ≤ |

dXt(x0, v0)
dv0

| ≤ 5
4 t, 0 < t < T,

Proof. Due to Lemma 5.4.28 with λ = 9, we have

Xs
(
x0,

v

t

)
, |v| ≤ 4R, |x0| ≤ R,

is well-defined whenever

s ≤ 2
√
R√

C9R
=: T2, 0 < s ≤ t.

We define

f(t, v) = Xt
(
x0,

v

t

)
− x1, t 6= 0, v ∈ Rd,

f(0, v) := x0 + v − x1, v ∈ Rd.

This is well-defined whenever

|t| ≤ T2, |x0| ≤ R, |v| ≤ 4R.

Our goal is to find a neighbourhood of t = 0 on which there exists v = v(t) with
f(t, v(t)) = 0, for which we will use the implicit function theorem.

Now, notice that we have
f(0, x1 − x0) = 0

and
∂f

∂vi
(0, x1 − x0) = 1, i = 1, . . . , d.

We can apply the implicit function theorem to find a neighbourhood I of t = 0 and a
function v = v(t) such that f(t, v(t)) = 0 for t ∈ I. However, since we need to estimate
the size of I and of v(t), we carry out a constructive proof.
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Take v0, v1 ∈ Rd with |v0|, |v1| ≤ 4R, and denote ṽ0 := v0/t, ṽ1 := v1/t. By (5.4.51),
for any 0 < t ≤ T2 fixed, for all 0 < τ ≤ t, we have

Xτ (x0, ṽ1)−Xτ (x0, ṽ0) = (ṽ1 − ṽ0)τ +
∫ τ

0

∫ s

0
W (Xu(x0, ṽ1))−W (Xu(x0, ṽ0)) duds.

(5.4.49)
Take any T1 ≤ T2, to be fixed later. Then Lemma 5.4.28 implies, for all 0 < τ ≤ t ≤ T1,

|Xτ (x0, ṽ1)−Xτ (x0, ṽ0)| ≤ |ṽ1 − ṽ0|τ + CT1

∫ τ

0
|Xu(x0, ṽ1)−Xu(x0, ṽ0)|du.

by Gronwall’s Lemma we have

|Xτ (x0, ṽ1)−Xτ (x0, ṽ0)| ≤ |ṽ1 − ṽ0|τeCT1τ for 0 < τ ≤ t ≤ T1.

Using this again in (5.4.49) we have

|Xτ (x0, ṽ1)−Xτ (x0, ṽ0)− (ṽ1 − ṽ0)τ | ≤ |ṽ1 − ṽ0|CT1

∫ τ

0
ueCT1u du

≤ |ṽ1 − ṽ0|τCT 2
1 e

CT 2
1 .

Taking T1 such that
CT 2

1 e
CT 2

1 ≤ 1
4 (5.4.50)

we have

|Xτ (x0, ṽ1)−Xτ (x0, ṽ0)− (ṽ1 − ṽ0)τ | ≤ 1
4 |ṽ1 − ṽ0|τ for 0 < τ ≤ t ≤ T1.

taking τ = t we have for all 0 ≤ t ≤ T1

|Xt(x0,
v1
t

)−Xt(x0,
v0
t

)− (v1 − v0)| ≤ 1
4 |v1 − v0|, (5.4.51)

for any 0 < t ≤ T1 and any v0, v1 with |v0|, |v1| ≤ 4R. Now, for any 0 ≤ t ≤ T1 and
|v| ≤ 4R we define

At(v) = v − f(t, v).

A fixed point of At(v) satisfies f(t, v) = 0, and by (5.4.51) At(v) is contractive:

|At(v1)−At(v0)| ≤ 1
4 |v1 − v0| for 0 ≤ t ≤ T1, |v| ≤ 4R.

(Equation (5.4.51) proves this for 0 < t ≤ T1, and for t = 0 it is obvious.) In order to
use the Banach fixed-point theorem we still need to show that the image of At is inside
the set with |v| ≤ 4R. Using (5.4.51) for v1 = 0, v0 = v we also see that

|Xt(x0, 0)−Xt(x0,
v

t
) + v| ≤ 1

4 |v|,

which gives
|At(v) + x1 −Xt(x0, 0)| ≤ 1

4 |v|,
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so
|At(v)| ≤ 1

4 |v|+ |x1|+ |Xt(x0, 0)| ≤ 2R+ |Xt(x0, 0)|. (5.4.52)

If we take

T1 ≤
√
R√

2C2R
(5.4.53)

then Lemma 5.4.28 (used for λ = 2) shows that

|Xt(x0, 0)| ≤ 2R for 0 ≤ t ≤ T1,

and from (5.4.52) we have

|At(v)| ≤ 4R for 0 < t ≤ T1.

Hence, as long as T1 satisfies (5.4.50) and (5.4.53), At has a fixed point |v| for any
0 < t ≤ T1, and this fixed point satisfies |v| ≤ 4R.

Lemma 5.4.31. Tt satisfies Hypothesis 5.4.24: For all R > 0 there exist βR, γR, δR, TR, bR >
0, εR > 0 (possibly depending on R, independent of t) such that for all nonnegative func-
tions h = h(x) we have

∫
|v|≤bR

Tt
(
h(x)1[|v| ≤ βR]

)
dv ≥ γR

(∫
|y|≤R

h(y) dy
)
1[|x| ≤ δR] ,∀t ∈ (TR − εR, TR),

Proof. Take T1(R) form Lemma 5.4.30, take

TR = T1, εR = TR
2 , bR = 8R

TR
, γR = 4

5TR
, βR = bR + TRC9R, δR = R,

first we have∫
|v|≤bR

Tt
(
h(x)1[|v| ≤ βR]

)
dv =

∫
|v|≤bR

h(Xt(x, v))1[|Vt(x, v)| ≤ βR] dv,

By Lemma 5.4.28 and the definition of T1 in Lemma 5.4.30, for all |x| ≤ R, |v| ≤ bR, |t| ≤
TR we have

|Xt(x, v)| ≤ 9R, |Vt(x, v)| ≤ βR,

so by
Ttf0(x, v) = St(x, v)e−

∫ t
0 c(r,Xr(x,v),Vr(x,v))dr,

we have

Tt
(
h(x)1[|v| ≤ βR]

)
≥ e−C9R,βRTRh(Xt(x, v))1[|Vt(x, v)| ≤ βR],

which is∫
|v|≤bR

Tt
(
h(x)1[|v| ≤ βR]

)
dv ≥ e−C9R,βRTR

∫
|v|≤bR

h(Xt(x, v))1[|Vt(x, v)| ≤ βR] dv,
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and since |x| ≤ R, |v| ≤ bR, |t| ≤ TR implies |Vt(x, v)| ≤ βR, which means for any
0 ≤ t ≤ TR we have

1[|x| ≤ R]1[|v| ≤ bR] ≤ 1[|Vt(x, v)| ≤ βR], (5.4.54)

so ∫
|v|≤bR

h(Xt(x, v))1[|Vt(x, v)| ≤ βR] dv ≥
∫
|v|≤bR

h(Xt(x, v)) dv1[|x| ≤ R],

Finally we make the change of variable w = Xt(x, v), then using Lemma 5.4.30 we
have, for every x1 ∈ B(0, R) there exists v(x0, x1, s) ∈ B(0, 4R) such that

Xs

(
x0,

v

s

)
= x1.

Then since s ≥ TR/2 we have v/s ∈ B(0, bR), the range of Xt will be larger than
B(0, R), also by Lemma 5.4.30, we have

3
8TR ≤

3
4 t ≤ |

dXt(x0, v0)
dv0

| ≤ 5
4 t ≤

5
4TR,

which means
| dv0
dXt(x0, v0) | ≥

4
5TR

,

so ∫
|v|≤bR

h(Xt(x, v)) dv1[|x| ≤ R] ≥ 4
5TR

∫
B(0,R)

h(x)dx1[|x| ≤ R],

which ends the proof of our theorem.

Remark 5.4.32. When Xt, Vt satisfies

ẋ = v

v̇ = −W (x) +Mv,

for some constant M , then the integral form will turns to

Vt(x0, v0) = eMtv0 −
∫ t

0
eM(t−s)W (Xs(x0, v0)) ds,

and
Xt(x0, v0) = x0 + eMt − 1

M
v0 −

∫ t

0

∫ s

0
eM(s−u)W (Xu(x0, v0)) duds,

The above proofs in the section will still be hold for this, as a conclusion, Theorem
5.4.21 will sitll holds for

∂tf − v · ∇xf + Φ(x) · ∇vf = L+f + c(t, x, v)f +Mv · f, f(0, x, v) = f0(x, v),

for some constant M , where the other notations are defined in 5.4.21. Similarly the
result will holds for

∂tf − v · ∇xf + Φ(x, v) · ∇vf = L+f + c(t, x, v)f, f(0, x, v) = f0(x, v),

where the term Φ(x, v) is uniformly Lipschitz in v.
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5.4.2 Proof of Theorem 5.4.21

By the linearity of the operators, we only need to prove the theorem for all f0(x0, v0) =
δx0,v0 , precisely for any R > 0, for any |x0|, |v0| ≤ R, there exist R1, R2, αR, t which do
not depend on f0, such that

f(t, x, v) ≥ αR1[|x| ≤ R1]1[|v| ≤ R2]

First by Hypothesis 5.4.25 we have that there exist T1 such that for any 0 < r < T1 we
have

|Xr(x0, v0)| ≤ 2R, |Vr(x0, v0)| ≤ 2R

since
Srf0 = δ(Xr,Vr).

we have
Trf0 ≥ e−C2R,2RT1δ(Xr,Vr).

Using Hypothesis 5.4.23,

L+Srf0 ≥ α2R,β2R e
−C2R,2RT1δXr(x0,v0)(x)1[|v| ≤ β2R] =: e−C2R,2RT1α2R,β2R h(x)1[|v| ≤ β2R],

where β2R is defined in Hypothesis 5.4.24, using Hypotheses 5.4.23 and 5.4.24, whenever
s− r ∈ (T2R − ε2R, T2R) we have

L+Ts−rL
+Trf0 ≥ e−C2R,2RT1αb2R,2R

(∫
|u|≤b2R

Ts−rL
+Trf0 du

)
1[|v| ≤ 2R]

≥ e−C2R,2RT1α2R,β2Rαb2R,2R

(∫
|u|≤b2R

Ts−r
(
h(x)1[|u| ≤ β2R]

)
du
)
1[|v| ≤ 2R]

≥ e−C2R,2RT1α2R,β2Rαb2R,2Rγ2R 1[|x| ≤ δ2R]1[|v| ≤ 2R].

Then by Hypothesis 5.4.26 we have there exist T2 > 0 such that for any 0 < t− s ≤ T2

we have

Tt−sL
+Ts−rL

+Trf0 ≥ e−C2R,2RT1Mα2R,β2Rαb2R,Rγ2R 1[|x| ≤ δ2R
2 ]1[|v| ≤ R].

Then we only need to using the Duhamel’s formula. By the Duhamel’s formula we have

f(t, x, v) ≥
∫ t

0

∫ s

0
Tt−sL

+Ts−rL
+Trf0(x, v)drds.

fix first T = T1 +T2 +T2R, we have for any fixed R > 0, for any t < T, |x0| < R, |v0| < R,
let f0(x0, v0) = δx0,v0 , we have

f(t, x, v) ≥e−C2R,2RT1Mα2R,β2Rαb2R,Rγ2R1[|x| ≤ δ2R
2 ]1[|v| ≤ R]∫ t

0

∫ s

0
1[t− s ∈ [0, T2]]1[s− r ∈ [T2R − ε2R, T2R]]1[r ∈ [0, T1]]drds
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the only thing left is to find a t < T1 + T2 + T2R such that

c ≤
∫ t

0

∫ s

0
1[t− s ∈ [0, T2]]1[s− r ∈ [T2R − ε2R, T2R]]1[r ∈ [0, T1]]drds

for some c > 0, let ε = min{T1, T2, ε2R}, t = T2R, we have

∫ t

0

∫ s

0
1[t− s ∈ [0, T2]]1[s− r ∈ [T2R − ε2R, T2R]]1[r ∈ [0, T1]]drds

≥
∫ t

0

∫ s

0
1[t− s ∈ [0, ε]1[r ∈ [T2R − ε, T2R]]1[s− r ∈ [0, ε]]drds

≥
∫ T2R

T2R−ε

∫ s

T2R−ε
1[T2R − s ∈ [0, ε]1[r ∈ [T2R − ε, T2R]]1[s− r ∈ [0, ε]]drds

=
∫ T2R

T2R−ε

∫ s

T2R−ε
drds = ε2

2 .

Then the proof for the whole theorem is ended.
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RÉSUMÉ

Cette thèse porte principalement sur l’hypocoercivité et le comportement á long terme d’équations cinétiques. Nous

considérons d’abord l’équation cinétique de Fokker-Planck avec la force de confinement faible et une classe de force

générale. Nous prouvons l’existence et l’unicité d’un équilibre normalisé positif (dans le cas d’une force générale) et étab-

lissons un certain taux exponentiel ou sous-géométrique de convergence vers l’équilibre (et le taux peut être explicitement

calculé). Ensuite, nous étudions la convergence vers l’équilibre de la relaxation Boltzmann linéaire (également appelé

BGK linéaire) et le équations de Boltzmann linéaire soit sur le tore ou sur tout l’espace avec un confinement potentiel.

Nous présentons des résultats de convergence explicites au normes de variation total ou de variation totale pondérée.

Les taux de convergence sont exponentiels lorsque les équations sont posées sur le tore ou avec un potentiel de con-

finement grandir au moins quadratiquement à l’infini. De plus, nous donnons taux de convergence algébrique lorsque les

potentiels sousquadratiqué pris en considération. Nous utilisons le théoréme de Harris.

MOTS CLÉS

Hypoellipticité, Hypocoercivité, Fokker-Planck cinétique, Boltzmann linéaire, Convergence vers l’équilibre

ABSTRACT

This thesis mainly study the hypocoercivity and long time behaviour of kinetic equations. We first consider the kinetic

Fokker-Planck equation with weak confinement force and a class of general force. We prove the existence and uniqueness

of a positive normalized equilibrium (in the case of a general force) and establish some exponential rate or sub-geometric

rate of convergence to the equilibrium (and the rate can be explicitly computed). Then we study convergence to equilibrium

of the linear relaxation Boltzmann (also known as linear BGK) and the linear Boltzmann equations either on the torus or

on the whole space with a confining potential. We present explicit convergence results in total variation or weighted total

variation norms. The convergence rates are exponential when the equations are posed on the torus, or with a confining

potential growing at least quadratically at infinity. Moreover, we give algebraic convergence rates when subquadratic

potentials considered. We use a method known as Harris’s Theorem.

KEYWORDS

Hypoellipticity, Hypocoercivity, Kinetic Fokker-Planck, linear Boltzmann, Convergence to the equilibrium
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