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Introduction: Context and objectives

On clear winter nights, I have stood on mountains just to be closer to the stars. Some say that these shimmering lights are the souls of warriors who have died in battle; some say that at the beginning of time, Arwe himself cast an in nite number of diamonds into the sky to shine forever and defeat the darkness of night. But I believe the stars are other suns like our own.

The Lightstone, Part One: The Ninth Kingdom, Ea Cycle, David Zindell

On the transport of angular momentum in stellar radiative zones

Stars are some of the most opaque objects in the Universe. The only photons we can gather from them are emitted in their atmosphere. Thus we cannot obtain direct and precise information on their interior. Photons emitted from the atmosphere carry global information on the surface such as luminosity, e ective temperature, surface chemical composition or information on characteristics of the upper uid motions. Therefore, for a long time, the only way to glean knowledge on stellar interiors was through analytical and numerical modelling. The theoretical e orts to understand the stellar internal structure started during the second half of the 19 th century with the progress made in thermodynamics in the 1 st and 2 nd industrial revolutions. Simple models of stellar-structure had been established using polytropic relations1 (e.g. [START_REF] Lane | On the theoretical temperature of the Sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment[END_REF]Emden, 1902). But the origin of stellar energy remained an enigma. This question is deeper than it may seem because, asking the question of the mechanism of energy generation brings to mind that stars may not be eternal objects and are evolving. The industrial revolutions supported the development of thermodynamics and statistical physics. Classical mechanics had also been well developed before and physicists had almost all the necessary knowledge to understand the physics of stars. W. Thomson (Lord Kelvin) and H. Helmholtz suggested that the Sun got its energy from gravitational contraction and derived an age for the Sun of ∼ 20 Myr (Thomson 1862; see Stacey 2000 for a review). This was in disagreement with the oldest fossils known at the time [START_REF] Darwin | Murray)[END_REF]Lyell, 1863) and was ruled out at the dawn of the 20 th century when much older fossils and sediments were studied. At the turn of the century, Becquerel (1896) discovered natural radioactivity and soon a er Einstein (1905) understood that matter contained a formidable amount of energy. Eddington (1926) was among the rst to propose that energy was dominantly produced by thermonuclear reactions inside stars (Eddington, 1926). Since then, stellar models have experienced important developments. Henyey et al. (1955Henyey et al. ( , 1959aHenyey et al. ( ,b, 1964) ) were the rst to compute stellar models using computers and these models were extended by Iben (1965aIben ( ,b, 1966a,b),b). These works lead to the standard model of stellar physics (for general texts, see [START_REF] Chandrasekhar | An introduction to the study of stellar-structure[END_REF][START_REF] Cox | Principles of stellarstructure Czekala[END_REF][START_REF] Kippenhahn | stellar-structure and Evolution[END_REF]. Star are considered as plasma spheres in hydrostatic and local thermal equilibrium. The energy produced by nuclear fusion reactions, or lost by neutrinos inside stars can be radiated away or converted into thermal energy. All other phenomena that could complicate the physics of stars had, for a long time, been neglected. Among them, one could cite turbulence, magnetic elds, di usion processes, tidal forces, rotation, etc. With these hypotheses, a physical system as complex as a star can be simpli ed to a one dimensional system, i.e. all the quantities depend only on the radial coordinate. Despite its simplicity, this modelling is extremely powerful. One of its greatest achievements was the correct prediction of the solar neutrino ux, that forced particle physicists to revise their models. Indeed, three avours of neutrinos were known: ν, ν τ and ν µ ; but they were thought to be massless. The resolution of the neutrino problem came by understanding that neutrinos could oscillate from one avour to the other, implying that they had a mass (Haxton, 1995). However, many other models needed direct measurements to be tested which were lacking because of the impossibility to observe the stellar interiors. Fortunately, a new way of making direct observations of the stellar interior appeared more than half a century ago with the advent of asteroseismology. Asteroseismology is the study of stellar oscillations. The properties of these waves are a ected by the characteristics of the medium in which they propagate and, therefore, carry information about it. Helioseismology, the seismology of the Sun, started with the observation of the ve-minute oscillation on its surface [START_REF] Leighton | Aerodynamic Phenomena in Stellar Atmospheres[END_REF][START_REF] Leighton | [END_REF]Evans & Michard, 1962). A er these detections, theoretical works started to study their physical nature, and to relate them to physical phenomena taking place inside stars. [START_REF] Turon | The Three-Dimensional Universe with[END_REF] and Leibacher & Stein (1971) showed that the waves observed at the surface of the Sun are standing acoustic waves. The development of physical theories together with the development of mathematical methods quickly allowed direct tests of models of stellar-structure. For instance the study of long time series of the Sun's photometry or velocity made possible the measurement of the sound speed pro les which provides constraints on the pressure and on the density. Accounting for the impact of the rotation on the mode frequencies also lead to the inversion of the internal solar rotation pro le (Brown & Morrow, 1987).
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In parallel, theoretical models were being developed to include a description of the evolution of the rotation pro le in the standard model in which it was supposed to be neglected (von Zeipel, 1924;Sweet, 1950;Mestel, 1953;[START_REF] Zahn | Stellar Instability and Evolution[END_REF]Endal & So a, 1976, 1978, 1979;Busse, 1981Busse, , 1982)). modelling the rotation pro le and its evolution is needed for several reasons. Rotation is intimately linked to stellar magnetic activity through its interaction with convection. An enhanced magnetic activity induces an increased emission of UV and X-rays, which, in turn, impacts the atmosphere of planets and may hinder the development of life on them. The Sun is thought to have known such an intense-activity phase, soon a er its formation. It is one of the reasons for suggesting that on Earth, life started to develop in seas or in pools, water being opaque to UV (Miller, 1953;Rosing et al., 2006;Gallet et al., 2017). The second main reason to study rotation is related to the age estimation of stars. Stars are very o en used as proxies for estimating the age of their host and hosted structures (clusters, galaxies, exoplanets, etc.). The alteration of the estimation of the age by rotation is mainly attributable to two phenomena. First, in stars with a central convective zone, hydrogen-rich material from the radiative zone ( ) can be injected by rotation-induced turbulent di usion into the central Introduction no complete model of excitation. In addition, are known to induce on small scales very sharp gradients of angular velocity , the sign of which oscillates on very small time scales. This phenomenon, still poorly modelled, is known as a shear layer oscillation ( ) and lters out in certain ranges of frequencies. In order to allow for a proper modelling of these additional mechanisms of transport of angular momentum, some changes must be made to the standard model of stellar physics.

I choose to relax the hypothesis of spherical symmetry. Di erent arguments may be put forward to motivate this change in the modelling. First of all, we have seen that in the convective zone, the angular velocity depends on latitude. Therefore, at the transition between the convective and , the boundary condition varies in latitude, not only in radius. Another reason is that the centrifugal acceleration breaks the spherical symmetry. We have seen that the assumption of a shellular pro le, underpinned by the fact that turbulence is thought to be much stronger horizontally than radially, allows physicists to keep a 1D description. The turbulent viscosity coe cients are proportional to the gradient of rotation velocity with respect to the distance to the rotation axis. Near the poles, the rotation velocity vanishes and so does its derivative. Therefore the shear becomes negligible, turbulence disappears, and nothing can prevent latitudinal gradients from existing. In this case, the shellular rotation approximation would break down and a 2D description would be needed. Finally, a 2D description is fundamental for a proper modelling of the additional transport mechanisms. For the case of instabilities, many instability criteria depend on the latitude. As a consequence, several instabilities may occur only above or below a certain latitude. This aspect would certainly be missed by a one dimensional description. In the case of waves, and especially internal gravity waves, their properties and the amount of angular momentum that they carry depend on their region of excitation. Internal gravity waves are excited in the convective zone, the angular velocity of which depends on latitude and must be described in two dimensions.

In the early 2000s, models were developed to incorporate two-dimensional e ects in stellar modelling. Roxburgh (2004Roxburgh ( , 2006) ) developed a method that allows us to deform a 1D model, rotating with a possibly non-uniform angular velocity. This method is able to provide the uctuations of density, of gravitational potential and of e ective gravity over isobars. It also enables the computation of various quantities averaged over isobars that are needed in the modi ed stellar-structure equations. Mathis & Zahn (2004, 2005) further extended [START_REF] Zahn | [END_REF]'s formalism to go beyond the shellular approximation. I implemented those models in an originally one dimensional stellar evolution code (Morel, 1997;Morel & Lebreton, 2008;Marques et al., 2013), which is now able to study stellar evolution with a modelling of the 2D e ect of rotation on the interior structure. These developments are primarily intended for testing the transport of angular momentum by internal gravity waves (Kumar et al., 1999;Pinçon et al., 2016).

In this work I restricted ourselves to modelling the transport of angular momentum in the . I set aside the description of rotating convective zones which would require dedicated models. The convective motions have been primarily studied as a mechanism of transport of thermal energy and atomic species but they also transport angular momentum with Reynolds stresses and meridional circulation. Rotation, through the action of the Coriolis force, modi es the trajectories of the convective uid parcels. The best approach available at the moment is to impose a boundary condition between a radiative and convective zone derived from observations or from 3D simulations. This transition region requires some care because, at this location, exchanges of angular momentum and atomic species can occur. The stars I focused on are low-and intermediate-mass stars, but nothing prevents from modelling highermass stars (except the domain of validity of the equation of state and opacity tables). The only physical restriction on the stellar mass is the lower limit of ∼ 0.3M because below that mass, stars are completely convective. For stars with mass higher than 1.4M , other mechanisms should be included in the standard model of stellar physics, such as radiative acceleration and mass loss. These phenomena are studied in parallel by other teams using (e.g. Deal et al., 2020). The mass range studied in this PhD is quite representative of the majority of stars in the Kepler sample (e.g. Yu et al., 2018).

On the problem of surface e ects on adiabatic oscillations

At the beginning of my PhD, I continued the work started during my Masters thesis on the study of the signi cant disparities between observed and modelled frequencies of modes probing mainly the surface regions of stars. Such systematic discrepancies have now been observed for around three decades (Dziembowski et al., 1988). They are called the surface e ects because they are attributed to the de cient modelling of the upper layers of stars with a convective envelope and to the neglect of energy exchanges between modes and convection in this region. One dimensional stellar models oversimplify the physics of these layers, which are subject to highly turbulent ows as well as a complex transition between a convective to a radiativedominated region (e.g. Kupka & Muthsam, 2017). The e ects have been thoroughly studied in the solar case (Rosenthal et al., 1995;Christensen-Dalsgaard & Thompson, 1997;Rosenthal et al., 1999).

Individual frequencies are used to constrain models and the shi of the mode frequencies prevent a direct comparison between observations and models. To overcome this issue, frequency combinations are o en used. These combinations are less sensitive to the surface modelling (e.g. Roxburgh & Vorontsov, 2003). Yet, an accurate determination of frequencies is necessary to unlock the full potential of asteroseismology. To that end, several empirical correction laws, relying on adjustable parameters, have been proposed to correct the modelled frequencies (Kjeldsen et al., 2008;Ball & Gizon, 2014;Sonoi et al., 2015). These corrections have proven to be very e ective in reproducing the target frequencies and are now widely used in the community (e.g. Lebreton & Goupil, 2014;Silva Aguirre et al., 2017). Nonetheless, the correction laws have at least two caveats. First, the values of their adjustable parameters are not physically grounded. Therefore, di erent models could be corrected to t the same observations. It poses a problem of uniqueness of the solution. Secondly, these empirical correction laws do not teach us anything about the physical causes of the problem of surface e ect.

Consequently, the physical nature of the surface e ect has been the focus of intense work. The e ects of the poor modelling of the uppermost convective layers on oscillation frequencies are classi ed into two categories (e.g. Houdek et al., 2017). The rst category, called the structural e ects, results from neglecting the turbulent pressure in the stellar-structure. It translates into a smaller resonant cavity and increases the frequencies of its modes of oscillation. The second category, called the modal e ects, encompasses the e ects coming from oversimpli cations of oscillation equations. These simpli cations come from the adiabatic hypothesis which is not perfectly valid in the uppermost layers of stars (Balmforth, 1992;Houdek et al., 2017), and from the neglect of the perturbation of the turbulent pressure by the oscillations (Sonoi et al., 2017). Other mechanisms have been suggested to have an impact on the mode frequencies such as convective back-warming (Trampedach et al., 2017) or magnetic activity (Piau et al., 2014;Magic & Weiss, 2016). Still, the dominant source of surface e ects is due to the neglect of turbulent pressure, as shown by the pioneering work of Rosenthal et al. (1999) who used more realistic 3D simulation of the Sun's uppermost layers and estimated the elevation of the surface when turbulent pressure was added to hydrostatic equilibrium. They found a relation Introduction depending on the surface elevation that matches very well the frequency di erences.

The method of coupling 1D stellar models to 3D models of stellar atmospheres has been used to study the variations of the surface e ects across the T eff -log g plane (Kiel diagram) (Sonoi et al., 2015;Ball et al., 2016;Trampedach et al., 2017). Sonoi et al. (2015) also proposed a physically motivated scaling relation (Samadi et al., 2013) depending on e ective temperature and on surface gravity, that prescribes the value of the adjustable parameters of the correction laws. In all previously mentioned works, the chemical composition was assumed to be the same as in the Sun. However, the distribution of metallicity observed in solar-like pulsators spans quite a large range (e.g. Pinsonneault et al., 2014). Our goal in this work is then to study what in uences can the metallicity have on the surface e ects.

Structure of the manuscript

• Chapter 1: I start by deriving the stellar-structure equations without rotation and I provide a description of the main physical ingredients that must be added to the modelling in addition to the structural quantities. I then show how the structure equations are modi ed when rotation is included. I explain why these equations must now be solved on isobars and not on spheres if one wants to keep a 1D modelling.

• Chapter 2: The main aspects of the transport of angular momentum are reviewed. I start with the mechanisms that transfer angular momentum out of the system. Then I show that rotating stars cannot locally be in a radiative equilibrium. This is Von Zeipel's theorem, and it results in a misalignment of isobars and isopycnals, which in turn induces a meridional circulation advecting angular momentum. Then, prescriptions for the shearinduced turbulence that di uses angular velocity are exposed. The formalisms for the computation of the e ective gravity, the velocity of the meridional circulation and of the transport of angular momentum are derived.

• Chapter 3: The problem of the surface e ects is discussed. I start by writing the oscillation equation in the case of no rotation and by giving some general concepts used in asteroseismology. Then I detail my work on the problem of surface e ects, which led to an article Manchon et al. (2018). This Chapter also prepares the groundwork for the seismology of a rotating star, needed in the rest of this PhD thesis.

• Chapter 4: I summarize the observational constraints that we have on the rotation pro les of stars across the Hertzsprung-Russell diagram. The agreement between observed and model rotation pro les is discussed.

• Chapter 5: The additional transport mechanisms that have been proposed to the present are described. It also advocates for the inclusion of a 2D description in stellar evolution modelling.

• Chapter 6: I present all the numerical methods and the algorithm that I implemented into . It starts with a brief description of how works without the new 2D modules. Then I describe the numerical methods used to deform the models and to compute the velocity of the meridional circulation and to solve the equation of transport of angular momentum. I emphasize some points that are usually le aside in the literature but that are trickier than it seems.

• Chapter 7 I devoted this chapter to the testing and the validation of my work. Each aspect of the algorithms is thoroughly inspected. The testing is performed partly with the help of , a 2D, non-perturbative oscillation code (Ouazzani et al., 2012).

• A er the star's formation, its evolution begins with a phase of contraction. During this phase, the e ective temperature stays almost constant while the total luminosity decreases because the star is shrinking. This is the Hayashi track (Hayashi, 1961). The core temperature increases by 1 -2 order of magnitudes and the opacity decreases. A er a short time (∼ 1 Myr, depending on the stellar mass), the opacity becomes small enough so that a radiative core appears. The luminosity and the e ective temperature then start to increase slowly. From the moment where they start increasing, we enter a stage called the Henyey line (Henyey et al., 1955). In the core, temperature and density increase, resulting in the ignition of the nuclear Stellar interior modelling reactions. The Hayashi track and the Henyey line form the Pre-Main Sequence ( ) stage. stars radiate energy coming mainly from the potential gravitational energy released during the contraction. The star leaves the to enter the Main Sequence ( ) phase. This moment is called the Zero Age Main Sequence ( ) and it is usually de ned as the moment where the luminosity is dominated at least at 99% by nuclear reactions. A star spends most of its life in the where it is subject to very slow transformations. In low mass stars ( 1.25M ) the principal nuclear reactions are the fusion of hydrogen nuclei to form 4 He through the PP chains. Above 1.25M , fusion of H into 4 He proceeds dominantly through the CNO cycles. Eventually, at some point all the core hydrogen is exhausted. It marks the end of the and the star becomes a subgiant star. The core contracts with temperature increasing while the envelope slowly decouples and expands. Hydrogen continues to burn in a shell around a helium core. Then, the star enters the Red Giant Branch (

). Its radius can increase by more than two orders of magnitude. The core temperature keeps increasing until reaching ∼ 10 8 K and the degenerate 4 He core ignites. In stars with M 2.3M , this ignition produces the so-called helium ash, a phenomenon that is extremely violent. In a few hours, the region of helium fusion extends and eventually settles burning He in non-degenerate conditions, releasing an energy of order 10 41 J. A er He is exhausted in the core, it continues in a shell for around 100 Myr (depending on the mass) and the star reaches the Asymptotic Giant Branch (

). Stars with initial mass below ∼ 8M end up becoming white dwarfs, above that they become neutron stars or even black holes.

The following chapter is divided as follows. The rst section presents the standard stellarstructure equations in the case where rotation is neglected. Then I derive those equations assuming shellular rotation in a baroclinic star. Finally, I give a bit of an overview of the way I computed the equilibrium quantities on isobars. The notations de ned in these sections will be used in all the manuscript.

One dimensional stellar modelling in a nutshell

I start by deriving the structure equations and the physical ingredients used in the standard, one dimensional, model of stellar physics, so that the reader has all the necessary basics.

Derivation of the structure equations in 1D

A star is a static sphere of plasma. Its dynamics can be described by the Navier-Stokes equations. Let us write the equation of motion in which we neglected the viscous stress:

ρ dv dt = ρg -∇p, (1.1)
where ρ is the density eld, v is the velocity, g = ge r is the gravitational acceleration, p the pressure, and e r the unit vector in the radial direction. On a sphere of radius r inside the star, the gravitational acceleration is given by:

g = - Gm r 2 , (1.2)
where G is the universal gravitational constant 1 and m is the mass inside the sphere of radius r. The star being spherical, the gradient operator reduces to the radial partial derivative and 1.1. One dimensional stellar modelling in a nutshell

Eq. (1.1) becomes:

d 2 r dt 2 = - Gm r 2 - 1 ρ ∂p ∂r .
(1.3) What is the typical value of the acceleration (le hand side of Eq. (1.3))? Let us imagine that the gravitational force is much stronger than the pressure gradient. In this case, the system evolves with a characteristic time-scale called the dynamical time-scale, de ned as

τ dyn = R 3 GM . (1.4)
Using solar values (see App. A.), τ dyn 1.6 × 10 3 s 30 min. It is evident that such rapid transformations of the Sun are not observed, which means that stars are in hydrostatic equilibrium:

1 ρ ∂p ∂r = - Gm r 2 .
(1.5)

This equation provides us with a rst equation for the stellar-structure. However, we shall see that using the radius as our coordinate of reference is not the best choice we can do. The current description is called a Eulerian description. In stellar evolution modelling we actually prefer a Lagrangian description, with the mass as our reference coordinate, for several reasons. While the radius can vary by several orders of magnitude (because of contraction during the and dilation of the envelope a er ), the total mass experiences usually very small changes. These changes can either be due to the mass being converted to energy by nuclear reactions, mass lost through stellar winds or gained by accretion. However, the cumulated mass gain/loss is very small (at least during the main sequence). From its birth to the present day, the Sun's mass loss adds up to ∼ 10 -5 M 2 [START_REF] Kippenhahn | stellar-structure and Evolution[END_REF]. More importantly, even if the mass change is large, it can be computed before the calculation of the new structure. Therefore the upper mass limit is xed during the computation, while the total radius is the result of computation of the stellar-structure and cannot be known a priori. Furthermore, since Lagrangian description amounts to following a mass element, the substantial or material derivative d/dt equals the partial time derivative ∂/∂t| m . In this framework, all the conservation laws can be written much more simply than if we were using the Eulerian time derivative ∂/∂t| r .

In order to switch from the Eulerian description used in (1.5) to the Lagrangian description, one needs to express the derivative ∂r/∂m. With m(r, t) the mass contained inside a sphere of radius r, one can write its in nitesimal change as: dm(r, t) = 4πρr 2 dr -4πρr 2 vdt.

(1.6)

The rst term in the right hand side is the change of mass due to a change in radius dr and the second term is the change of mass due to the displacement of uid with velocity v during a time dt. From this equation, one obtains that the time derivative of the mass at constant radius is:

∂m ∂t r = -4πr 2 ρv.
(1.7)

2 In this PhD, we focused on stars with M 10M . In these stars accretion is negligible, even during the . However for more massive stars, accretion can be added to the modelling. Haemmerlé et al. (2019) have computed grid of stellar models up to 120M . For stars with M > 20M , the accretion phase overlaps with the and for M > 70M , hydrogen is already signi cantly depleted at the centre when accretion stops. Since we considered that the star is static, the above derivative is zero. Therefore, in the Lagrangian description mass conservation: ∂r ∂m = 1 4πρr 2 .

(1.8)

This equation is nothing more than the expression of the density or, more pompously, it is also called the continuity equation. Now that this derivative is known, we can rewrite the hydrostatic equilibrium in its Lagrangian form:

hydrostatic equilibrium: ∂p ∂m = - Gm 4πr 4 .
(1.9)

Equations (1.8) and (1.9) describe the mechanical equilibrium of the star. Eqs. (1.8) involves the density which, generally, depends on pressure and temperature (among others). We already have an equation describing pressure variations, we need one for temperature.

Energy is generated and transported inside stars and we will start with the latter. Using the chain rule, 
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The temperature gradient depends on the energy transport mechanism. There are three of them: conduction, convection and radiation. An easy way to compare the e ciency of radiation with respect to conduction is to compare their mean free path, i.e. the mean distance a photon travels before interacting with a particle (in case of radiation) and the mean distance a particle carrying thermal energy can travel before interacting with another one (in case of conduction). The mean free path of a photon is of the order of 10 -2 m on average in a main-sequence star and 10 -4 m in the core, while that of conduction is 10 -5 m on average and 10 -9 m in the core. Furthermore, the velocity of photons is much higher than the thermal velocity of particles in the plasma. Therefore, radiation is, everywhere in a star, a much more e cient transport process than conduction [START_REF] Kippenhahn | stellar-structure and Evolution[END_REF]. In Fig. 1.1 are represented the mean free paths of radiation and estimates for the one of conduction. The mean free path of radiation is computed using the relation = (κρ) -1 . The one of conduction is more di cult to estimate. The kinetic theory of gas gives the following relation for a gas of molecules: .11) where p is the pressure and T the temperature, k B is the Boltzmann constant and πd 2 is the collisional cross-section of the molecules. It is rather complicated to nd a good estimate for the cross-section because stars are composed of plasma with complex chemical compositions. I computed three estimates for the Bohr radius of Hydrogen: d H 53 pm (nucleus and electron in rst orbit); for the equivalent of the Bohr radius for Helium: d He 128 pm; and nally for the radius of alpha particles (ionized helium) estimated by scattering 5 MeV alpha particle on gold nuclei: d α 100 fm. This last radius represents an extreme value. In any case, the mean free path of radiation is much higher than the one of conduction. Stellar radiative media are optically thick because the radiative mean free path is very small compared to the characteristic scale of the radiative zone ( ). Thus, these zones are in radiative equilibrium. In such a case, the radiative ux F r = F • u r can be written as follows:

= k B T √ 2πd 2 p , ( 1 
F r = -D∇U = - c 3κρ
∇U, (1.12)

where D = c 3κρ is a di usion coe cient, c the speed of light, κ the Rosseland opacity and U the radiation energy density [START_REF] Kippenhahn | stellar-structure and Evolution[END_REF]. Because the medium is in radiative equilibrium, the radiation energy density is linked to the temperature by the Stephan's law: U = aT 4 , with a = 7.565 × 10 16 J m -3 K -4 . Furthermore, the luminosity l is the ux integrated over a sphere of radius r: l = 4πr 2 F . Putting everything together leads to

F = l 4πr 2 = - c 3κρ ∂U ∂r = - 4ac 3κρ T 3 ∂T ∂r .
(1.13)

Using the continuity equation (1.8) and then the de nition of the temperature gradient of Eq.

(1.10), we obtain:

l = - 64π 2 r 4 ac 3κ T 3 ∂T ∂m = 16πacG 3 mT 4 κp ∇.
(1.14)

This equation allows us to de ne the radiative gradient:

∇ rad = 3 16πacG κlp mT 4 .
(1.15)

And in the radiative zone, ∇ = ∇ rad , therefore the temperature gradients reads

∂T ∂m = - Gm 4πr 4 T p ∇ rad .
(1.16)

In this expression, l/m = ε corresponds to the averaged energy generation rate in a sphere or radius r. If the actual gradient is too high, the medium becomes convectively unstable.

The medium can become convectively unstable for two reasons: κ or ε become too high. In most of the star, opacity is either dominated by free-free ( ) interactions (regions with T 104 K), or by bound-free (bf) interactions (regions with T 10 4 K). In these cases, the opacities can be approximated by the Kramers law, which have the same form for both interactions: κ ∝ ρT -3.5 . Despite having the same form, the bf interactions leads to much higher opacities that the ones. In stars with masses 1.4M , the temperature is so high that interactions dominate in almost the whole star apart from the uppermost layers. For stars with masses 1M , the temperature is su ciently low so that the opacity is dominated by bf interactions in a signi cantly large envelope. In this region, κ is high enough for convection to take place (in the Sun, the radial extent of the convection zone is around 0.3R ). This mechanism is responsible for the formation of an envelope convective zone. On the main sequence, stars with mass above ∼ 1.25M have a core temperature so high that the CNO cycle 3 dominates the nuclear production of energy. The nuclear reaction rate of the CNO cycle is proportional to T 16 , while for the PP chain 4 it is only proportional to T 4 . The consequence is that, with CNO cycles becoming dominant, the nuclear energy generation rate ε become so high that it is responsible for the formation of a core convective zone. In stars with 1.25 M 2.5M ) the extent of the core convection zone is 10% of the total radius. A special case is found for stars with M 0.5M which are fully convective because of a high opacity. In a convective medium, the temperature gradient takes a di erent form from a radiative one.

Let us consider a small parcel of uid rising to a small height. If it does not exchange heat with its surroundings, it expands and cools adiabatically because the pressure of the environment is lower. But if the temperature gradient in the surroundings is more negative than in the parcel, the parcel of gas remains hotter than the environment and buoyancy accelerates its rise. This con guration is encountered when, during the expansion of the parcel of gas, adiabatic change of temperature with respect to pressure is smaller than the change of temperature with respect to pressure in the surrounding (Schwarzschild & Härm, 1958;Ledoux, 1947). This rule can be formalized as follows. A medium is convective if: .17) or in terms of pressure derivatives (note the change of the inequality due to ∂m/∂p < 0):

∂T ∂m surrounding ≤ ∂T ∂m parcel ≤ ∂T ∂m adiabatic , ( 1 
∂ ln T ∂ ln p ad ≤ ∂ ln T ∂ ln p surrounding .
(1.18)

In a radiative medium, ∂ ln T ∂ ln p sur.

= ∇ rad and by denoting ∂ ln T ∂ ln p ad.

= ∇ ad , one can write the Schwarzschild criterion for convection instability:

∇ ad < ∇ rad .
(1.19)

Using a more rigorous formalism, the above reasoning can be written as an equation of motion for the uid parcel at radius r:

ρ p d 2 r dt 2 = -gρ p - dp dr ,
(1.20) 3 The CNO cycle can actually take the form of 4 cycles. The most probable one goes through the following steps: 
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where ρ p is the density in the parcel and g the gravity. The pressure gradient felt by the parcel is dp/dr = -ρ s g, where ρ s is the density of the surrounding. Thus, the above equation reduces to

ρ p d 2 r dt 2 + g(ρ p -ρ s ) = 0, (1.21)
Assuming that the parcel is displaced from an equilibrium location r 0 r with equilibrium density ρ 0 = ρ p (r 0 ) = ρ s (r 0 ), the above equation can be developed to rst order as

d 2 r dt 2 + g ρ dρ p dr r0
dρ s dr r0 (r -r 0 ) = 0.

(1.22)

The properties of this equation depend on the quantity

N 2 = g ρ dρ p dr r0 - dρ s dr r0 .
(1.23)

If N 2 , called the square of the Brunt-Väisälä frequency, is positive, Eq. (1.22) is the di erential equation of a harmonic oscillator. Its solutions are oscillating and we are in a radiative zone.

In this case, N corresponds to the frequency at which a small displaced parcel would oscillate.

The resulting waves are called gravity waves. If on the contrary N 2 is negative, the amplitude of the solution diverges exponentially and we are in a convectively unstable medium.

We have expressed the Brunt-Väisälä frequency with density gradients but we are looking to obtain an expression with temperature gradients. In a general way, the radial derivative d ln ρ/dr can be rewritten with µ the mean molecular weight. The parcel and the surrounding are supposed to be in pressure equilibrium therefore the term (i) is the same in the parcel and in the environment.

The second term (ii) is equal to the adiabatic gradient in the parcel and to the actual gradient in the surrounding. Finally, the composition of the parcel is unchanged during its rise, therefore, term (iii) is 0 inside it. This term is, however, not necessarily 0 in the environment. In a region with constant chemical composition, the Brunt-Väisälä frequency reads .25) where all the terms vanished, except the temperature gradients. The quantity H p is called the pressure scale height. We recognize the term between parenthesis to be the Schwarzschild criterion, and this term decides the sign of N 2 . The term (iii) of Eq. (1.24) in the surrounding can be non-zero when the composition varies with the radius. In this case, the Schwarzschild criterion can be modi ed to include it and becomes the Ledoux criterion (Ledoux, 1947): (1.26) where ∇ µ = d ln µ/d ln p is the mean molecular weight gradient. The terms N 2 T and N 2 µ are the thermal and composition parts of the Brunt-Väisälä frequency. Because nuclear reactions Stellar interior modelling increase the mass of nuclei in the core, the mean molecular weight is usually a decreasing function of the radius. Therefore, N 2 µ is in general positive and acts as a stabilizing e ect because it increases the value of N 2 . Brunt-Väisälä frequency allows us to rewrite the convective instability criterion:

N 2 = gδ H p (∇ ad -∇) with 1 H p = - d ln p dr , ( 1 
N 2 = gδ H p (∇ ad -∇) + gϕ H p ∇ µ = N 2 T + N 2 µ ,

Schwarzschild criterion:

N 2 T < 0, (1.27)

Ledoux criterion:

N 2 T + N 2 µ < 0.
(1.28)

We have drawn the main ideas allowing us to understand the physics of convection but we still do not have an expression for ∇ in the convective zones. Such an expression is established by ad hoc models, as we will see later. For the moment, we need one last equation that would express the variations of the luminosity that appeared in the formulation of the radiative gradient, in Eq. (1.15). The equations for the conservation of energy will provide this last missing piece. The ux of energy going outward a spherical shell is the energy produced within it minus the one converted into heat. The energy production encompasses the energy gained by nuclear reaction or lost by neutrinos. The energy ux simply writes energy conservation:

∂l ∂m = ε nuc + ε grav -ε ν , (1.29)
where ε nuc (resp. ε grav and ε ν ) is the energy production rates by nuclear reactions (resp. heat gained and neutrinos) per unit mass . The energy conservation can be seen other way. The energy owing outside a sphere S of radius r and mass m during a certain interval of time is the energy produced in the sphere minus the heat gained/lost by the uid:

˛S F • dσ = ˆm 0 εdm - ˆm 0 dq dt dm.
(1.30)

Here, F is the energy ux, σ the surface element, q the speci c heat gained by the uid per unit time and ε = ε nuc -ε ν the speci c energy produced in the uid per unit time. This heat gained/lost may have been converted to internal energy or into work to change the volume:

dq = du + pdv (1.31)
with u the speci c internal energy and dv the change of speci c volume. Using Ostrogradsky theorem in Eq. (1.30), the le hand side can be written as the volume integral of the divergence of the ux and therefore, by integrating over the volume of the sphere, it leads to

∇ • F = ρε -ρ dq dt .
(1.32) By de nition of l, ∇ • F = ρ∂l/∂m and we obtain

∂l ∂m -ε = - dq dt = -T ∂s ∂t , (1.33)
where s is the specif entropy. The last term correspond to the term ε grav in Eq. (1.29). Finally, equations (1.8), (1.9), (1.29), (1.10) form a set of the four standard structure equations:

                         ∂r ∂m = 1 4πρr 2 , ∂p ∂m = - Gm 4πr 4 , ∂T ∂m = ∂p ∂m T p ∇, ∂l ∂m = ε nuc + ε grav -ε ν = ε nuc -ε ν -T ∂s ∂t ,
(1.34)

with ∇ = ∇ rad in the , and prescribed by a convection model in convective zones.

1.1. One dimensional stellar modelling in a nutshell

Physical ingredients

To solve system (1.34), we need the quantities ρ = ρ(p, T, µ), κ = κ(p, T, µ), ε = ε(p, T, µ), u = u(p, T, µ), ∇ ad , etc. These quantities are speci c to the material and they can be provided by laboratory experiments, computations or prescribed by models and observations. The chemical composition needs also to be provided and is either measured in stars using spectroscopic observations or assumed. Since some of the following points are discussed in much more detail in upcoming chapters, I will only present the general picture.

Equation of state ( o ) and opacity tables

ρ(p, T, µ) and κ(p, T, µ) are provided by Equation of State o and opacity tables. An o can refer to two di erent concepts. The rst one, more limited, is called the thermal equation of state and provides ρ as a function of p, T and µ. The second, more general, provides the thermodynamic potential that allows us to recover all other thermodynamic quantities. The o could simply be derived assuming a monoatomic or a perfect gas but such an approach would neglect many complex phenomena such as radiation pressure, Coulomb interactions, etc. Modern stellar evolution codes use o provided in tables ready for interpolation. These tables have been calculated by groups specialized in atomic computations who o en also compute opacity tables providing κ. The most popular of them are the opacity table (Rogers & Iglesias, 1992;Iglesias & Rogers, 1996;Rogers & Nayfonov, 2002) and from the Opacity Project (Seaton et al., 1994;Badnell et al., 2005;Seaton, 2005Seaton, , 2007) ) which are more precise than but cover a smaller parameter space. o is also provided by or by [START_REF] Hummer | [END_REF]) associated with . These tables are supplemented at low temperatures by the Wichita opacity tables [START_REF] Ferguson | [END_REF].

Concerning the adiabatic gradient, it is usually an entry of the o . If it is not, it can be expressed through another quantity given in them: the 2 nd adiabatic index Γ 2 [START_REF] Chandrasekhar | An introduction to the study of stellar-structure[END_REF])

∇ ad = Γ 2 -1 Γ 2 with dp p + Γ 2 1 -Γ 2 dT T = 0.
(1.35)

Nuclear reaction rates

An imprecision on the nuclear reaction rates actually does not change much the longevity of a star because the energy production rate adapts to the luminosity. However, they do have an impact on the structure. Furthermore, nuclear reaction rates are a combination of experimental data and theory-based extrapolations from high to low energy regime because laboratory conditions in which those data are measured are very far from the conditions of density, pressure or temperature in the centre of stars. Finally, for national security reasons, high precision nuclear reaction data are classi ed. Popular nuclear reaction tables are [START_REF] Aerts | Frontiers in Nuclear Structure, Astrophysics, and Reactions[END_REF] and its update (Xu et al., 2013) and the collaboration (Broggini et al., 2018).

Chemical composition

Elements are separated into three categories: Hydrogen (X), Helium (Y ) and metals (Z) which includes all other elements. Quite precise abundances can be measured for the Sun and it has been the object of many publications through the years with lower and lower uncertainties a ecting abundances (Grevesse & Noels, 1993;Grevesse & Sauval, 1998;Asplund et al., 2005[START_REF] Asplund | [END_REF]. The abundances of certain non-volatile elements (Ne, Mg, Si, S, Fe) have also been re ned using meteorites (Scott et al., 2015b,a;Grevesse et al., 2015). See Serenelli (2016) for a review.

The initial chemical composition5 is a problem in stellar modelling because, apart from the Sun, we only have access to approximate chemical abundances in the stellar atmosphere of other stars. Since elements are usually not depleted by nuclear reactions in the convective envelope (stars with mass 0.5M are completely convective, therefore, nuclear reactions do occur in the ), the changes between the current and the initial chemical composition are only due to mixing processes: di usion or advection. If the modelling does not include these processes, we can assume that the abundances measured in atmosphere are unchanged since the formation of the star. This is actually not a very good approximation, rst because di usion can have a major impact (for instance, see Sect. 2.5), second because at the frontier between radiative and convective zones, mixing does occur (see Sect. 1.1.2,convection). It can have an important impact on the evolution of the star. For instance, the hydrogen rich material injected from convective to a radiative region and vice versa, can increase the lifetime of the star. Mixing is also the cause of a nagging problem in stellar physics: the well mixed convective envelope of a large fraction of stars seem to lack lithium, although, lithium burning temperature is not reached in it. This lithium depletion pleads for complex mixing processes involving convection and rotation (see 4.3.2, lithium depletion problem).

In order to nd a prescription for the initial chemical composition of other stars, it is o en assumed to scale as the one of the Sun. We usually de ne ratios of elements to hydrogen, for instance metals to hydrogen: Z/X; or Iron to hydrogen: [Fe/H]. If a star is measured to be 10% less metallic than the Sun, its initial composition of metal is taken to be 10% less than the one of the Sun and X and Y are modi ed accordingly.

Convection

Convection is a thorny issue in stellar physics. Convection is a purely 3D phenomenon. Moreover, convective motions are highly turbulent in stars (Reynolds number going up to 10 14 ), very sensitive to boundary conditions, and of primary importance in stellar evolution. For a one dimensional treatment, however, ad hoc theories of convection have been developed. The goal of such theories is to provide an expression for the actual gradient ∇ of Eq. (1.10). The Mixing Length Theory ( ;Böhm-Vitense, 1958) is the most used. assumes that all the convective ux is carried by the largest turbulent eddy. In other words, it approximates the turbulence spectrum by a Dirac distribution.

supposes that a blob of uid, hotter and less dense than its surrounding medium rises to a height of MLT , so-called mixing length, before mixing and releasing its energy. The convective ux, i.e. energy carried by convection, can be written as [START_REF] Hubeny | Theory of stellar atmospheres: An introduction to astrophysical non-equilibrium quantitative spectroscopic analysis[END_REF]:

F conv = gQH p 32 1 /2 ρc p T (∇ -∇ parcel ) 3 /2 MLT H p 2 , (1.36)
where g is the gravity, Q = 1 -∂ ln µ/∂ ln T | p with µ the mean molecular weight and c p the speci c heat at constant pressure. makes the assumption that the mixing length is proportional to the pressure scale height: MLT = α MLT H p , with α MLT called the parameter. The coe cient α MLT is a free parameter adjusted to retrieve some observables of a particular star. In case of the Sun, α MLT 1.65. In the deep interior, convection is adiabatic which means that rising gas parcel exchange very little energy with the surrounding medium and ∇ parcel ∇ ad ∇ (Böhm-Vitense, 1992). In the framework, this is con rmed by a quick 1.1. One dimensional stellar modelling in a nutshell calculation. In the Sun, the bottom boundary of the convective zone starts at r 0.70R and m 0.98M . Here, F conv 1.29 × 10 11 erg cm -2 s -1 , g 5.47 × 10 4 cm s -2 , T 2.2 × 10 6 K, ρ 1.8×10 -1 g cm -3 , c p 3.5×10 8 erg K -1 , MLT = α MLT H p with α MLT = 1.65 and H p = 0.08R , and nally Q = 1. With these values, the di erence of the thermal gradients are

-H p T (∇ -∇ parcel ) = dT dr parcel - dT dr 4.9 × 10 -11 K cm -1 , (1.37)
and average along a distance of MLT /2 it gives

dT dr parcel - dT dr MLT 2 2.2 × 10 -1 K. (1.38)
It means that only a di erence of order 10 -1 K between the convective parcels and the surrounding medium is able to carry all the necessary ux up to the surface. Near the surface, convection becomes ine cient and the convective parcels exchange large amounts of energy with the medium. Such zone is called superadiabatic because ∇ > ∇ parcel > ∇ ad and the provide an expression for ∇ and ∇ parcel . is one model among a myriad of convection models. We can cite the Full Spectrum of Turbulence ( ) models (Canuto & Mazzitelli, 1991, 1992;Canuto et al., 1996) which provide a more detailed spectrum for the turbulence, or models that propose to introduce new structure equations, some of them describing the geometry of the convection. This has been done for core convection where most of the ux is carried by plumes (Gabriel & Belkacem, 2018). All those models make use of adjustable parameters. The models introduce a quantity Λ = z where z is the distance to the nearest limit. The quantity Λ is thought of as a mixing length and models assume that Λ is the same whatever the star is, in other words, models do not introduce adjustable parameters. Ludwig et al. (1999) tried to verify this assumption by writing Λ = α CM z with α CM a parameter adjusted to match observable parameter of various stars. If models were to be right in their assumption that they do not contain any adjustable parameter, α CM would be constant from one star to the other. Ludwig et al. (1999) actually showed that α CM vary as much as α MLT (although their value is not identical). The core convection model of Gabriel & Belkacem (2018) introduce even more free parameters. The energy is carried by N ascending plumes and N D descending ones, N and N D being free parameters. Furthermore, the energy ux is divided into three parts: the radiation ux, the ux of kinetic energy dissipated by plumes (to which is a ected an equivalent of the free parameter α MLT ) and a convective ux (to which is a ected another free parameter α 2 ). Taking into account the kinetic energy ux makes the overshoot possible (which in the formalism should be added a erwards). The convective ux is the ux of energy associated with the plumes and has di erent sign for ascending and descending ones.

Atmosphere

The structure equations derived above need boundary conditions. While they are simple to derive at the centre of the star, the cases of the top boundary conditions are more complicated. To tackle this issue, an ad hoc modelling of the rst layers of the atmosphere is added and the idea is to connect the solutions of the structure equations to the solution in the atmosphere. Many atmosphere models can be found, from strati cation extracted from complex and speci c 1D, 2D or 3D models patched at the surface of the star (see Sect. 3.3) to simple analytical models. The atmosphere can be modelled as a single layer or reconstructed on a grid, if more precision is needed. The atmosphere's structure is described with a modi ed version of the structure equations and with the optical depth τ as the independent variable. The temperature is directly given as a function of the optical depth, the so-called T (τ ) relations. With dτ = -κρdr, the structure equations read

dm dτ = - 4πr 2 κ , (1.39) dp dτ = Gm κr 2 , (1.40) dT dτ = T p dp dτ ∇, (1.41) dr dτ = - 1 κρ . (1.42)
The luminosity is assumed constant in the atmosphere and taken as the one at the surface of the star. The surface, and therefore the beginning of the photosphere, is de ned as the location where the optical depth reaches a certain value τ ph . In the Eddington approximation6 , τ ph = 2/3.

The Modi ed structure equations in the case of shellular rotation

The above equations have been derived assuming no rotation. But stars do rotate. We would want to incorporate the e ects of rotation into the stellar-structure equations in a way that does not change much their shape. It would allow us to keep the same numerical scheme for the structure equations with and without rotation. If we want to properly take rotation into account, the structure equations need to be adapted to the new geometry. Fortunately, we will see that by suitably describing the geometry of the star, structure equations can still be written in one dimension provided some quantities are computed in two dimensions and then averaged over a well chosen surface.

Shellular rotation

In the following, we assume that the angular velocity is constant in spherical or spheroidal shells. The structure equations can then be written in a very convenient way. Such a rota-

µ ∂Iµ ∂τ = Iµ -S = Iµ -J,
where S is the source function and J is the mean intensity averaged over solid angles. The functions S and J are integrated over frequencies and S ≡ J because of the hypothesis of radiative equilibrium. Further assuming local thermodynamic equilibrium, J as a function of the optical depth is given by the Stephan-Boltzmann law:

J(τ ) = σ π T (τ ) 4 .
Furthermore, in the di usion limit (τ → ∞),

J(τ ) = 3 2 ˆ1 -1 Iν [τ + q(τ )] µdµ = 3H [τ + q(τ )] = 3 4π σT 4 eff [τ + q(τ )] ,
where H is called the 1 st angular moment of I, and the q(τ ) is called the Hopf function. The provision of q(τ ) allows us to de ne a T (τ ) relation. The Eddington approximation amounts to approximating the Hopf function as a constant. Its value can be found to be 2/3.

1.2. The Modi ed structure equations in the case of shellular rotation tion pro le is called a shellular rotation pro le [START_REF] Zahn | [END_REF]. This approximation is justi ed if turbulent viscosity is much higher horizontally than vertically: (1.43) where ν h (resp. ν v ) is the horizontal (resp. vertical) turbulent viscosity and l h (resp. l v ) is the horizontal (resp. vertical) distance over which the transported quantity signi cantly varies (see Sect. 2.3). This quantity can be the angular momentum but it can also be the chemical abundances. If criterion (1.43) is respected, any small horizontal gradient of Ω would be immediately attened by turbulent viscosity. A shellular rotation pro le is formalized as follow:

ν h l 2 h l 2 v ν v ,
Ω(r, θ) = Ω(r) + Ω(r, θ) with Ω(r) = ´Ω sin 3 θdθ ´sin 3 θdθ , (1.44)
and with Ω Ω, Ω is almost constant in a spherical shell. The quantity θ denotes the colatitude, i.e the angle is taken from the pole (see Fig. 1.2). The uctuation Ω can be decomposed over functions of θ. [START_REF] Zahn | [END_REF] rst proposed to decompose them into Legendre polynomials P (see de nition in App. B.), and Mathis & Zahn (2004) slightly modi ed the decomposition of the 2 nd order term, this leading to simpli cations in the equation for horizontal transport of angular momentum (see Sect. 2.7 for an explanation). This decomposition reads:

Ω(r, θ) = k=1 Ω 2k Q 2k (cos θ), (1.45)
where

Q (cos θ) = P (cos θ) -I with I = ´P (cos θ) sin 3 θdθ ´sin 3 θdθ = δ ,0 - 1 5 δ ,2 , (1.46)
with δ i,j being the Kronecker symbol. For the origin of the factor 1/5, see the de nition of the scalar product of two Legendre polynomials in Eq. (B.12). Then, Q 2 (cos θ) = P 2 (cos θ) + 1 5 and higher degrees reduce to P .

In the following, any quantity X can be decomposed as a linear combination of Legendre polynomials on spherical surfaces

X(r, θ) = k=0 X 2k (r)P 2k (cos θ) = X 0 (r) + k=1 X 2k (r)P 2k (cos θ), (1.47)
or as a linear combination of Legendre polynomials on isobars:

X(p, θ) = k=0 X 2k (p)P 2k (cos θ) = X(p) + k=1 X 2k (p)P 2k (cos θ), (1.48)
with X 2k = X2k and the 0 th order term X 0 is de ned as

X 0 (r) = X(p) = ´π 0 X(r, θ) sin θdθ ´π 0 sin θdθ .
(1.49)

If we limit the expansion to P 2 , the angle at which X(p, θ) = X(p) is a critical angle θ m = arccos(1/ √ 3). At this particular angle, only the 0 th -order (θ-independent) component plays a role (see Fig. 1.2). A spherical surface intersecting the isobar at an angle θ m is represented in red dashes. ε is the angle between the vector normal to a sphere and normal to an isobar. Of course, ε varies over isobar.

Stellar interior modelling

Force balance

When rotation is taken into account, one cannot rigorously speak of hydrostatic equilibrium because another force enters the equation: the centrifugal force. Nonetheless, for simplicity, I will keep using the expression "hydrostatic equilibrium" instead of the more general expression "force balance". Let us write the Navier-Stokes equation for a rotating uid:

Du Dt = -∇φ - 1 ρ ∇p -Ω × (Ω × r) -2Ω × u, (1.50)
where u is the velocity eld, p the pressure, ρ the density, φ the gravitational potential, Ω(r, θ) = Ω(r, θ)e z = Ω(r, θ) cos θe r -Ω(r, θ) sin θe θ the angular velocity and r = re r is the position vector. We neglected the viscous term. In a static system, u = 0, and the Coriolis acceleration can also be neglected. The star being static, the le hand side vanishes and one can write:

1 ρ ∇p = -∇φ + Ω 2 = g eff , (1.51)
where = e ⊥ = sin θe r + cos θe θ with = r sin θ and we de ned the e ective gravity or gravito-centrifugal acceleration g eff , whose radial and colatitudinal components are:

g eff,r = - ∂φ ∂r + Ω 2 r sin 2 θ = 1 ρ ∂p ∂r ,
(1.52) 

g eff,θ = - 1 r ∂φ ∂θ + Ω 2 r sin θ cos θ = 1 ρr ∂p ∂θ . ( 1 
g eff (r, θ)/ g eff -1 θ = 0 • θ = θ m θ = 90 • 0.00 0.25 0.50 0.75 1.00 r(θ)/R -1 0 1 2 ρ(r, θ)/ρ -1 [×10 3 ] θ = 0 • θ = 90 • Figure 1.3: Model of mass 1.
5M and an age of 1000 Myr with an initial disk lifetime of τ disk = 5 Myr and period of the disk P disk = 3 Myr. The angular velocity is around 42% of Ω K,surf (∼ 44% in the core and ∼ 40% at the surface). The dashed vertical black lines represent the location of the top limit (resp. the bottom limit) of the core (resp. envelope) convective zone. Le : Relative di erences between the e ective gravity at a colatitude θ and the average e ective gravity g eff as a function of radius. The ordinate 0 is represented as a solid black line and makes it apparent that g eff (r) = g eff (r, θ m ). The quantity g eff (r, θ m ) is represented as the orange line. Right: Relative di erence between the density at θ and the density at θ m as a function of radius.

One interesting thing is that Eq. (1.52) provides a criterion to establish if the star rotates too fast and has reached the break-up velocity. This criterion is

∂φ ∂r -Ω 2 r sin 2 θ < 0, (1.54) 
and it amounts to saying that the centrifugal acceleration in the vertical direction is stronger than the gravity in the vertical direction. If this condition is met, the star starts loosing material because it is sent into orbit. By writing, near the equator ∂φ/∂r = GM/R 2 , we de ne the surface Keplerian break-up velocity Ω K :

Ω K,surf = GM R 3 . (1.55)
In the remainder of the manuscript, the rotation rate Ω will o en be expressed in units of the surface Keplerian break-up velocity, which provides a rapid estimate of the importance of the centrifugal acceleration in the star. It must be noted that Ω(r, θ) can reach values higher that Ω K,surf because, Ω K is not constant in the interior. Since the radial gradient of angular velocity remains quite unimportant and since the centrifugal force decreases as we get closer to the centre, higher rotation rates are possible in the deep interior. By taking the curl of the force balance expressed in Eq. (1.51) we obtain the equation for the baroclinic equilibrium:

∇ρ × ∇p ρ 2 = ∇ρ × g eff ρ = - 1 2 ∇ Ω 2 × ∇ r 2 sin 2 θ . (1.56)
The right hand side is actually the cylindrical derivative of Ω 2 : -r sin θ∂Ω 2 /∂ze ϕ , with z being the vertical coordinate, parallel to the rotation axis. Therefore the baroclinic equilibrium reduces to

∇ρ × ∇p ρ 2 = -r sin θ ∂Ω 2 ∂z e ϕ .
(1.57)

And this relation is of fundamental importance. The torque on the le hand side is called the baroclinic torque, created by a misalignment between isobars and isopycnals, which balances the torque of the centrifugal force on the right hand side. If isobars coincide with isopycnals, ∇ρ ∇p and therefore the baroclinic torque is null and ∂Ω/∂z must also be zero. However, any small misalignment of ∇ρ or ∇p results in the apparition of a gradient of Ω in the z-direction.

And the reverse is true. The implications of this relation will be studied in more detail in Chapter 2. Going back to Eq. (1.51), one can de ne the quantity ψ (Meynet & Maeder, 1997) such that:

gravito-centrifugal quasi-potential:

ψ = φ - 1 2 Ω 2 2 .
(1.58)

In the case where Ω is constant, ψ is indeed a true potential, constant over non-spherical surfaces and the gravity and centrifugal accelerations are derived from it:

1 ρ ∇p = -∇ψ and ∇ψ = ∇φ + Ω 2 . (1.59)
Here, equipotentials and isobars coincide (as well as isopycnals 7 ). Such stars are said to be barotropic. This is also the case of stars with Ω constant in cylinders, although the gravitocentrifugal potential is not given in general by Eq. (1.58).

In any other case, ψ cannot be considered as a potential in the sense that g eff = -∇ψ does not hold. From Eq. (1.51), we have

1 ρ ∇p = -∇ψ -2 Ω∇Ω = g eff .
(1.60)

As we will see shortly, iso-ψ are not equipotential any more but are isobars. Isobars cross isopycnals (as well as isotherms, isentropics etc.) and the star is said to be baroclinic. With any rotation pro le but a shellular, isobars cross iso-ψ. As we will see, averaging the structure equations (1.34) over isobars provide a very convenient way to keep a one dimensional description. In the following, we add a subscript p to denote quantities over an isobar. We would want to use m p , the mass inside the volume enclosed by the isobar located by p, as the independent variable. We have to nd an expression for dψ/dm p . Let dn be the distance between two in nitely close isobars, at a given latitude.

g eff = dψ dn + 2 Ω dΩ dn = dψ dn + 2 Ω dΩ dψ dψ dn , (1.61) with g eff = |g eff |.
All the terms in this equation depend on the colatitude but we did not write it for simplicity. Since we assumed shellular rotation, Ω is constant over isobars, therefore, ∇Ω ∇ψ and one can write ∇Ω = -α∇ψ, with α = |dΩ/dψ|. Thus, Eq. (1.61) reads

g eff = (1 -2 Ωα) dψ dn . (1.62)
Hence,

dp dn = -ρ(1 -2 Ωα) dψ dn , (1.63) dp dψ = -ρ(1 -2 Ωα),
(1.64) 7 If in addition there is no uctuations of mean molecular weight over isobars, isobars also coincide with isotherms We deduce that ρ(1-2 Ωα) is constant over isobars since isobars are iso-ψ. Then, by denoting ψ p the iso-ψ identi ed by the pressure coordinate, we shall write the mass enclosed between two in nitely close isobars

dm p = ˆψp ρdndσ = ˆψp ρdψ dn dψ dσ = dψ ˆψp ρ 1 -2 Ωα g eff dσ,
(1.66)

with dσ an isobar surface element de ned by

dσ = r 2 sin θdϕdθ cos ε with cos ε = - g eff • r |g eff | • |r| = 1 1 + 1 r 2 dr dθ 2 , (1.67)
where r = r(p, θ) is the radius of an isobar (for simplicity we have omitted the θ-dependence), and ε is the angle between the e ective gravity and the vector n perpendicular to an isobar. Since ρ(1 -2 Ωα) is constant over an isobar, it simply follows that

dψ dm p = 1 ρ(1 -2 Ωα) 1 S p g -1 eff , (1.68)
where S p is the surface of the isobar and we have de ne the average • of a quantity f over an isobar as

f = 1 S p ˆψp f dσ. (1.69)
Coming back to the hydrostatic equilibrium, using Eqs. (1.64) and (1.68), it now reads hydrostatic equilibrium:

∂p ∂m p = dp dψ ∂ψ ∂m p = - 1 S p g -1 eff = - Gm p 4πr 4 p f p , (1.70)
where we have introduce a two new quantities: r p and f p . The rst is de ned as the radius of a sphere such that its volume equals the volume V p enclosed in an isobar:

V p = 4π 3 r 3 p . (1.71)
The second quantity is

f p = 4πr 4 p Gm p 1 S p g -1 eff . (1.72)
The new expression of the hydrostatic equilibrium is almost identical to the non-rotating case. The gradient ∂p/∂m p and the mass m p do not depend on θ, therefore the right hand side must only depend on one coordinate: the radius. The computation of f p needs the knowledge of g eff and r p in two dimensions in order to compute the averages but f p needs to be evaluated at only one colatitude. Fig. 1.4, le panel, represents the value of f p computed in a 1.5M model rotating at around 41% of the surface Keplerian break-up velocity. The value of f p is very close to unity but reaches 0.89 at the surface, which marks an important deviation from the 1D solution. This is also coherent with the value of the relative di erence between the surface of a sphere of radius r p and the surface of the isobar S p , represented in the right panel. The closer we are to the surface, the larger the relative di erences are.

Stellar interior modelling

0.0 0.5 1.0 r(θ m )/R -15 -10 -5 log |f p -1| log |f T /f p -1| log |f T -1| log |f d -1| 0.0 0.5 1.0 r(θ m )/R -6 -5 -4 -3 log 4πr p (θ m ) 2 /S p -1 Figure 1
.4: Model of mass 1.5M and an age of 1000 Myr with an initial disk lifetime of τ disk = 5 Myr and period of the disk P disk = 3 Myr. The angular velocity is around 42% of Ω K,surf (∼ 44% in the core and ∼ 40% at the surface). The dashed vertical black lines represent the location of the top limit (resp. the bottom limit) of the core (resp. envelope) convective zone. Le :

value of f p -1, f T /f p -1, f T -1
and f d -1 as a function of the radius along θ m . The rst two almost superimpose, therefore f T /f p -1 is plotted as a dashed line in order to distinguish it from f p -1. Right: Relative di erence between the surface of a sphere of radius r(θ m ) and the surface of the isobar located by p as a function of the radius. The quantity 4πr(θ m ) 2 /S p -1 changes sign at the location indicated by the dotted vertical black line. Here, we plotted the log of its absolute value, which explains the sharp glitch at this location.

Conservation of mass

Let dV p be the element of volume comprised between two isobars (Meynet & Maeder, 1997;[START_REF] Palacios | EAS Publications Series[END_REF]:

dV p = ˆψp dndσ = dψ ˆψp dn dψ dσ = dψ ˆψp 1 -2 Ωα g eff dσ = dψS p g -1 eff -g -1 eff 2 Ωα . (1.73)
Using Eq. (1.68), we obtain mass conservation:

∂r p ∂m p = 1 4πr 2 p ρ .
(1.74) Doing so, we have de ned ρ, the mean density in the volume between two in nitely close isobars. This quantity is not equal to average quantity over an isobar ρ de ned in Eq. (1.49).

In a spherical star, the density found in the mass conservation equation, for instance in Eq.

(1.8) is also this mean density between two in nitely close spherical surfaces. However, in this particular case, it is also the average density over a spherical surface, because of the spherical symmetry. In our case, since the star is deformed by the centrifugal acceleration, two isobars are closer near the pole than near the equator. Therefore, ρ = ρ. Following Eq. (1.73), ρ is formally de ned as

ρ = ρ 1 -2 Ωα g -1 eff g -1 eff -g -1 eff 2 Ωα = ρf d with f d = 1 -2 Ωα g -1 eff g -1 eff -g -1 eff 2 Ωα . (1.75)
It shall be noted that ρ is also not equal to ρ de ned by the Legendre decomposition of Eq.

(1.48). The value of f d for a 1.5M model is represented in Fig. 1.4, le panel. Among the quantities plotted in this panel, this is the one that is the closest to one.

The Modi ed structure equations in the case of shellular rotation

In our model, we assume that the convective zones either have a uniform angular velocity (see Eq. (2.122)) or have a uniform speci c angular momentum distribution (see Sect. 2.7.3). These assumptions are not correct. As we will see in Chapter 4, the convective zone of the Sun is di erentially rotating in latitude and radius. However, we assume these pro les for the sake of simplicity because these distributions satisfy the conditions for a shellular rotation. The model used in Fig. 1.4 was computed with a uniformly rotating convection zone. Therefore, in those regions, f d = 1. Indeed, f d depends on the gradient of angular velocity through α = |dΩ/dψ|, which is zero in the convection zones. The only discrepancies between f d and unity are purely numerical.

Conservation of energy

The net energy owing from a volume comprised between two in nitely close isobars is:

dL p = ˆψp ερdndσ = dψ ˆψp ερ dn dψ dσ, (1.76)
where we introduced ε = ε nucl + ε grav -ε ν the net energy production rate in the shell de ned in Eq. (1.29). Making use of Eq. (1.65), it follows

dL p = dψ ε g eff S p ρ(1 -2 Ωα), (1.77)
and using again Eq. (1.68), energy conservation:

∂L p ∂m p = (ε nucl + ε grav -ε ν )g -1 eff g -1 eff .
(1.78)

We do not have a simple way of calculating the average of the energy generation rates over an isobar. Meynet & Maeder (1997) proposed to use the 0 th -order term in the Legendre decomposition of T and ρ and approximate ε i by ε i (ρ, T ). However, energy generation rates have been de ned by integrating over a small volume. Therefore, it would be more appropriate to use mean density ρ and temperature T in the volume between two in nitely close isobars. As we do not have a simple expression for T we will use

(ε nucl + ε grav -ε ν )g -1 eff g -1 eff ε nucl (ρ, T ) + ε grav (ρ, T ) -ε ν (ρ, T ).
(1.79)

This leads to:

simpli ed energy conservation:

∂L p ∂m p = ε nucl (ρ, T ) + ε grav (ρ, T ) -ε ν (ρ, T ).
(1.80)

Energy transport

As in Sect. 1.1.1, the temperature gradient can be written in a general way

dT dm p = ∂p ∂m p dT dp .
(1.81)

Using the ∇ notation and injecting Eq. (1.70) in Eq. (1.81) we obtain:

dT dm p = - Gm p 4πr 4 p f p T p ∇, (1.82)
where once again the only di erence with Eq. (1.10) is the factor f p . The next step is to nd an expression for ∇. The reasoning follows the same steps as for the standard energy transport equation but this time with averaging over isobars.

In a radiative medium

Eq. (1.12) expressed with Eq. (1.65) and (1.68) yields

F = - 4acT 3 3κρ dT dn = - 4acT 3 3κ dT dm p g -1 eff S p g eff . (1.83)
We may think that we implicitly supposed that ∇T g eff . However, this is not true: dT /dn depends on dT /dm p . If we had ∇T g eff , then dT /dm p would depend only on the pressure, not on latitude. But this is not true because, in general, isotherms cross isobars, thus cross isog eff . And by integrating this ux over an isobar, one retrieves an expression for the luminosity

L p = - 4ac 3 g -1 eff S 2 p T 3 g eff κ dT dm p , (1.84)
leading to a modi ed expression of the radiative gradient:

∇ rad,p = 3κ 16πacG p T 4 L p m p f T f p = ∇ rad f T f p with f T = 4πr 2 p S p 2 1 g eff g -1 eff . (1.85)
The values di erences between f T or f T /f p and unity are represented in Fig. 1.4. The quantity

f T -1 is almost 2-3 orders of magnitude below f p -1, which explains that |f T /f p -1| |f p -1|.

In a convective medium

In a convection zone, one has locally

d ln T d ln p = ∇ conv , (1.86)
where ∇ conv is obtained from a model of convection. Averaging over an isobar,

d ln T d ln p = ∇ conv .
(1.87)

In convective zones, the chemical composition is the same everywhere because of the very e cient mixing and we can write the following approximations: .91) In this equation, the min(•, •) operator plays the role of the Schwarzschild criterion. This expression states the radiative equilibrium on average over an isobar, whereas Eq. (1.83) shows that the local radiative ux depends on latitude through g eff (p, θ) and therefore its direction varies over an isobar.

T 3 g eff κ dT dm p T 3 g eff κ(ρ, T ) dT dm p , (1.88) d ln T d ln p d ln T d ln p , (1.89) ∇ conv ∇ conv (ρ, T ). (1.90) Finally, energy transport: ∂T ∂m p = - Gm p 4πr 4 p f p min ∇ conv , ∇ rad f T f p . ( 1 

The Modi ed structure equations in the case of shellular rotation

It is also interesting to go back on the equation of motion (1.21) derived for a displaced parcel of material in a stellar interior. In the case of rotating star, an additional term must be added to the equation related to the additional rotation motion experienced by the parcel. Eq. (1.21) becomes

d 2 r dt 2 + g ρ p (ρ p -ρ s ) - Ω 2 p -Ω 2 s = 0. (1.92)
Hence, the linearised equation of motion (1.22) now reads

d 2 r dt 2 + g ρ dρ p dr r0 - dρ s dr r0 + 1 3 d 4 Ω 2 d sin θ (r -r 0 ) = 0, (1.93)
where we used

( 4 Ω 2 p -4 Ω 2 s )/ 3 1 3 d 4 Ω 2 /d ( -0 ).
The term in square brackets de nes a new expression for the Brunt-Väisälä frequency that incorporates the e ect of the angular momentum distribution (Wasiutynski 1946) (1.94) and allows us to write:

N 2 = gδ H p (∇ ad -∇) + gϕ H p ∇ µ + 1 3 d 4 Ω 2 d sin θ = N 2 T + N 2 µ + N 2 Ω sin θ,
Solberg-Høiland criterion: N 2 T + N 2 µ + N 2 Ω sin θ < 0, (1.95) 
where N 2 Ω is called the Rayleigh-Taylor frequency or the epicyclic frequency. The angular momentum has a stabilizing e ect when d 4 Ω 2 /d > 0 (or, equivalently, N 2 Ω > 0), which is the case in general. When N 2 Ω < 0, the angular momentum distribution can destabilize the medium if it overcomes the e ects of N 2 T and N 2 µ . If so, it gives rise to the Rayleigh-Taylor instability, described in 5.1.1.

Eqs. (1.70), (1.74), (1.80) and (1.91) form the new structure equations system in case of shellular rotation:

                               ∂r p ∂m p = 1 4πr 2 p ρ , dp dm p = Gm p 4πr 4 p f p , ∂T ∂m p = Gm p 4πr 4 p f p min ∇ conv , ∇ rad f T f p , ∂L p ∂m p = (ε nucl + ε grav -ε ν )g -1 eff g -1 eff , (1.96)
where ∇ conv stands for the gradient in the convective zone, which should be prescribed by a convection theory. Finding a way to keep a one dimensional form for the baroclinic structure equations without the shellular approximation is a task that remains to be done, and may not even be possible.

Chapter 2

Transport of angular momentum in radiative zones

Il faut beaucoup de chaos en soi pour faire surgir une étoile qui danse. (Mathis et al., 2004) 2.3.4 E ects of rotation and strati cation (Mathis et al., 2018) A star is not strictly speaking isolated because, a er its formation, it can exchange angular momentum ( in the following) with a residual accretion disk or loose some through stellar winds. Such processes extract from the upper regions of the star and need to be taken into account into the modelling because they determine the angular velocity at the surface. In the rest of the stellar interior, can be transported by various processes. It has been said in the introduction that one of the major problems of rotation is that it induces a transport of chemicals and it perturbs our estimation of stellar ages. The issue is less important in convective zones because here, chemicals are very well mixed by convective motions. In such regions, the rotation pro le can be prescribed, either from observations or from models. In the radiative zone, one of these mechanisms is the advection of by a large scale stream, called the meridional circulation. If the transport of leads to sharp gradients of angular velocity, the shear can become su ciently strong to overcome the stabilizing e ect of the strati cation and creates instabilities. The shear-induced turbulence results in the di usion of angular velocity.

Nietzsche

Contents

The mechanisms of transport of mentioned above are going to be discussed in this Chapter. They are now implemented in a many 1D stellar evolution codes, with the simplifying assumption that the star is spherical. However, while the meridional circulation advects , it is o en modelled as a purely di usive process (e.g. Paxton et al., 2019). During this PhD, I implemented the model described in this Chapter by relaxing the hypothesis of sphericity and by e ectively modelling the action of the meridional circulation as an advection.

Losses of angular momentum

Disk magnetic braking

The path from a molecular cloud to a rotating star is not a simple process. Any molecular cloud has a non zero . If the material would collapse straight onto the protostar, by conservation of , the angular velocity would become extremely high and the centrifugal acceleration would overcome gravity by several orders of magnitude. The same can be said for the magnetic eld. The collapse would concentrate the magnetic eld and increase the magnetic pressure which would also overcome gravity. However, stars do form. There must therefore exist mechanisms that prevent and magnetic elds to concentrate into the collapsing cloud. In reality, the gas does not fall directly to the centre but forms an accretion disk. At the beginning of the accretion, the disk is optically thick and is called a Class 0, Young Accreting Protostar. 1Once the disk becomes su ciently thin, the accretion rate decreases and becomes negligible. This is the beginning of the and such a star is called a Classical T Tauri Star ( ). Despite all the angular momentum and magnetic elds extracted during the accretion process, are fast rotators with intense magnetic elds. The strong magnetic eld is sustained by a dynamo e ect caused by the interaction between rotation and convection. Bouvier et al. (1997) have proposed the model of disk locking, suggesting that due to Alfvén's frozen-in theorem, the magnetic eld lines that spread across the outer convective zone and the disk force them to co-rotate as a solid body. During this phase, the is still contracting but the disk locking

Losses of angular momentum

allows the star to transfer a large amount of angular momentum to the disk. The remaining disk dissipates itself by forming planets and the star unlocks from the disk. Typical disk lifetimes τ disk can be estimated from observational data (e.g. Czekala et al., 2019) to be between 0.1 Myr to 10 Myr, with a median of 3 Myr, and a Keplerian rotation period P disk of 1 to 10 d. It seems coherent with observations that are starting to be possible using radio interferometry. Czekala et al. (2019) studied the disks around binary systems with P disk ∈ [1; 10 3 ] d but fast rotating disks (P disk < 50 d) are less than 0.2 a.u. from their host star, while slowly rotating disks (P disk > 50 d) were above 1 a.u. and up to 100 a.u., suggesting that slow and far disks may be magnetically decoupled from the host star. Apart from a few outliers, all the systems considered in their sample were less than 10 Myr old.

Stellar winds

A er the decoupling between star and disk, a magnetic eld remains. The magnetic eld maintains a hot corona and the hotter material is blown away into the interplanetary medium to form the so-called stellar winds. Solar winds have rst been theorized by Eugene Parker in 1958(Parker, 1958) and then predicted in (Kuhi, 1964(Kuhi, , 1966)). In order to understand the behaviour of the stellar wind and the associated transport, it is interesting to introduce a quantity called the Alfvén radius r A . The Alfvén radius is de ned as the location where the magnetic pressure equals the kinetic energy density of the wind. Between the corona and r A , the dynamics are dominated by the magnetic eld and the wind follows the magnetic eld lines. Above r A , it is the magnetic eld lines that are carried by the wind. This wind also carries an amount of associated to a lever arm equal to the Alfvén radius (Weber & Davis, 1967). In order to provide a law for the amount of lost by a star as a function of relevant parameters, we shall see how magnetism and rotation are linked.

An important stellar magnetic activity induces a higher ratio of X-ray luminosity to the bolometric (total) luminosity. Therefore the ratio R X = L X /L bol can be used as a proxy of stellar activity. On the other hand, the e ciency of the dynamo e ect can be estimated through a dimensionless number called the Rossby number Ro = P rot /τ , with P rot the surface rotation period of the star and τ the convective turnover time, i.e. the time it takes for a parcel of material to rise from the bottom of the outer convective zone to reach the surface and then go back to the bottom. This number measures the interaction between rotation and convection. A high Rossby number is associated to a slow rotator. Measurements and comparisons of R X and Ro have been performed by many authors in eld stars or open cluster2 stars (e.g. Wright et al., 2011;Núñez et al., 2015). They have shown that for Ro greater than a certain threshold Ro sat , R X ∝ Ro β , with β < 0. Below this threshold, R X remains constant equal to R X,sat . It means that, for a reason yet to be understood, above a certain angular velocity of saturation Ω sat , the dynamo e ect saturates. Many authors have proposed laws based on this saturation feature. The rst of them, and the simplest was proposed by Kawaler (1988). The dJ /dt lost by a wind that co-rotates with the star up to a radius r A is, for

Ω < Ω sat , dJ dt = -K W Ω 3 R R 1 /2 M M -1 /2 , (2.1) and for Ω > Ω sat , dJ dt = -K W ΩΩ 2 sat R R 1 /2 M M -1 /2 , (2.2)
where K W 6.5 • 10 47 g cm -2 is a free parameter, adjusted to observations, M and R the mass and radius of the star. The value of Ω sat is not precisely prescribed and is o en taken to be 8Ω

To summarize, at the beginning of its formation, the star is magnetically coupled with its disk and its outer convective zone is forced to co-rotate with the disk, with a constant angular velocity during the disk lifetime. A er a few million years, the disk becomes sparse enough so that the star decouples. Since it is still contracting, the angular velocity increases and possibly exceeds the saturation velocity. The faster the star rotates, the more e cient magnetic breaking is. With the combined action of magnetic braking and of the end of the contraction phase, the star starts to slow down. In order to see how surface rotation evolves during Main Sequence ( ), one can write Eq. (2.1) assuming that there is no contraction or dilation. In this case the moment of inertia I, the total radius R and total mass M are constant and the variation rate reads

dJ dt = dIΩ dt = I dΩ dt = -K W Ω 3 R R 1 /2 M M -1 /2 = -kΩ 3 . (2.3)
By setting Ω 0 the initial angular velocity, the solution as a function of time of this equation immediately follows:

Ω(t) = 1 2 k I t + Ω -2 0 ∝ t -1 /2 . (2.4)
The decrease of angular velocity as an inverse square root of time is called the Skumanich's law (Skumanich, 1972). It shall be noted that as t increases, Ω(t) becomes less and less impacted by the initial condition. This means that a er around 1 Gyr, all stars have their surface rotating with the same velocity, regardless of the initial angular disk period and lifetime. As the star leaves the main sequence and its upper layers start dilating, surface angular velocity drops dramatically. Indeed, Fig. 2.1 shows models with the same disk lifetime but with di erent initial disk periods. These models have extremely di erent surface angular velocity during the but quickly reach a value close to the one predicted by the Skumanich law. More complex models have been obtained by tting power law similar to Eqs. (2.1) and (2.2) on loss of computed using 3D MHD simulations which account for non-ideal (not open or dipolar eld) magnetic eld geometry (Matt et al., 2015). They lead to very similar results, except in fast rotating phase a er the disappearance of the disk. However, at the moment, observations are not precise enough to constraint the di erent models.

Coronal mass ejections

Another candidate has recently been brought up as a mechanism of loss of . While stars lose through stellar winds in a continuous way, at least some of them also experience highly energetic eruptions called coronal mass ejections (

) that expel material (and therefore ) into interplanetary space in a very short time. As for now, loss by has only been studied through order of magnitude considerations. In particular, the e ciency of -loss is studied by comparing the characteristic spin-down time of stellar wind and with the characteristic time of angular velocity evolution caused by contraction or dilation of the star. Those studies have estimated mass-loss and -loss using Kepler's measurements of ares (sudden increase of luminosity) emission frequencies and -are association distributions [START_REF] Aarnio | [END_REF](Aarnio et al., , 2013)). These authors found that in case of the Sun, -loss could represent 10% of the lost by solar wind. For , they estimate the mass-loss to be 10 1 10 2 10 3 10 4

Age (Myrs)

10 -5 10 -4 Ω surf rad • s -1 P disc = 10 d, Kawaler88
P disc = 10 d, Matt15

P disc = 3 d, Kawaler88 P disc = 3 d, Matt15 Ω 0 = 4 • 10 -5 rad • s -1 , Skumanich72
Figure 2.1: Surface angular velocity as a function of stellar age. Models are computed with a disk lifetime of 5 Myr and a period of the disk of 3 days (orange) and 10 days (blue). The loss is computed for 2 models: Kawaler (1988) (solid lines) and Matt et al. (2015) (dashed lines). The angular velocity predicted by the Skumanich law with initial angular velocity of 4 × 10 -5 rad s -1 is represented as a black dotted-dashed line.

around 4% of the wind mass-loss. However, due to their very strong magnetic eld, their Alfvén radius is much farther, so the amount of -loss could be much higher. These estimates are to be taken with caution because part of the data used are obtained from extrapolated data of the Sun. Furthermore, strong biases tarnish the measurement of the distribution of frequency as a function of their energy because low-energy s are not seen but are numerous. In stars other than the Sun, the occurrence of s is inferred by the detection of ares. But not all ares are associated with and the knowledge of the are-association probability still su ers from many uncertainties [START_REF] Odert | Stellar coronal mass ejections II. Constraints from spectroscopic observations Odert[END_REF][START_REF] Odert | Stellar coronal mass ejections II. Constraints from spectroscopic observations Odert[END_REF]. Eventually, in the case of the Sun, are much more frequent during the high activity phase of the solar cycle. However, not all stars display an activity cycle pattern [START_REF] Brandenburg | Magnetic eld evolution in solar-type stars[END_REF], therefore it would be interesting to know if -loss would have an impact on those stars.

From the Von-Zeipel theorem to the meridional circulation

Let us write again the baroclinic equilibrium equation. We take the curl of Eq. (1.50) and the new equation states the conservation of vorticity ω = ∇ × v:

∂ω ∂t + (u • ∇) ω = [(ω • ∇) u -ω • (∇ • u)] + ∇p × ∇ρ ρ 2 + 1 2 ∇Ω 2 × ∇ (r sin θ) 2 . (2.5)
We recognize, from le to right, the time variation of vorticity, the advection of vorticity, the stretching of vorticity by shear, the stretching of vorticity due to uid compressibility

Transport of angular momentum in radiative zones

and then the so-called baroclinic torque and the curl of the centrifugal acceleration [START_REF] Ouazzani | PhD: La rotation et son interaction avec les oscillations dans les étoiles Ouazzani[END_REF]. By assuming that in the radiative zone, u and ω are small, the terms (u • ∇) ω and

[(ω • ∇) ω -ω • (∇ • u)
] are 2 nd -order terms and can be neglected. Doing so, one obtains a simpli ed equation for the time variation of vorticity:

∂ω ∂t = ∇p × ∇ρ ρ 2 + 1 2 ∇Ω 2 × ∇ (r sin θ) 2 .
(2.6)

Since we consider only steady state solutions, ∂ t ω = 0. Furthermore, recalling that the last term of the right hand side is the cylindrical derivative of Ω 2 : r sin θ∂Ω 2 /∂ze ϕ , with z the coordinate along the rotation axis, we obtain the crucial baroclinic equilibrium

∇p × ∇ρ ρ 2 = r sin θ ∂Ω 2 ∂z e ϕ .
(2.7)

Any change in the density or pressure pro le automatically translates into a change of the z-gradient of Ω. Any change in the z-gradient of Ω automatically translates into a change of the pressure and density pro les.

In the radiative zone of a non-rotating star, we have seen with Eq. (1.12) that the radiative ux is proportional to dT /dr. It means that the radiative ux is constant over spherical surface and therefore is perpendicular to it. Let us now consider the radiative zone of a star in solid-body rotation (therefore barotropic). We have shown that the radiative ux has a slightly di erent form and in particular is not constant any more over a spherical surfaces or isobars. This is seen if we express ∇U in (1.12) with respect to the gravito-centrifugal quasi-potential ψ:

F r = -χ dT dψ ∇ψ with χ = 4acT 3 3κρ , (2.8)
where χ is the thermal di usivity. In this case, F r is parallel and proportional to ∇ψ since χdT /dψ is constant over an isobar. Consequently, a change in T or any other quantity enclosed in χ will only change the averaged value of F r , not its direction. The radiative ux can simply be expressed in terms of the e ective gravity g eff :

F r = χ dT dψ g eff .
(2.9)

This expression was rst derived by von Zeipel (1924) for barotropic stars. At the poles, the iso-ψ are closer to one another, in other words, the e ective gravity and the radiative ux are larger. This e ect is called the gravity darkening. To go further, let us write the divergence of the radiative ux in a layer, which expresses the local energy conservation:

∇ • F r = - d dψ 4acT 3 3κρ dT dψ (i) (∇ψ) 2 (ii) - 4acT 3 3κρ dT dψ (iii) ∇ 2 ψ (iv) = ρε(ρ, T ) (v)
.

(2.10)

The divergence of the radiative ux equals the production of energy ρε in the layer. In solidbody rotating stars, isobars coincide with isopycnals and iso-ψ. In this case, terms (i), (iii) are constant on isobars because ∇T ∇ψ. Term (iv) is constant in case of barotropicity and uniform rotation (see Eq. (1.58) and the Poisson equation). In the right hand side, ε depends on density and on the temperature, therefore is also constant on isobars. We are le with term (ii) which is not constant, even for a cylindrical rotation pro le, because the direction and the value of ∇ψ varies over an isobar. To summarize, we have a not constant le hand side equaling a constant right hand side ! This is the so-called Von Zeipel paradox.

In order to overcome this paradox, von Zeipel (1924) suggested that there should be heating and cooling at di erent regions on the same isobars. This means that equation for energy conservation is satis ed on average over an isobar (i.e. ∇ • F r = ρε , where • stands for the isobar averaging), but not locally. In the case of cylindrical rotation, it results into polar regions becoming hotter than the equatorial region3 . The gravity darkening can be used to test Von Zeipel theorem and more generally model predictions (Ohishi et al., 2004;Domiciano de Souza et al., 2005;Bouchaud et al., 2020). The original Von Zeipel theorem was derived assuming a constant angular velocity. This assumption was found to overestimate the variation of e ective temperature with latitude [START_REF] Lovekin | [END_REF]McAlister et al., 2005;Zhao et al., 2009). Von Zeipel-like laws accounting for baroclinicity lead to a much better agreement between observation and theory (Espinosa Lara & Rieutord, 2011). It shall be stressed that the previous reasoning only holds in the radiative region of a star. In a convective zone, as we have seen in Chapter 1, the thermal ux takes a di erent form and therefore, the formulation of the Von Zeipel theorem is not identical to the one in the radiative zone (Lucy, 1967).

The implications of Von Zeipel theorem are of crucial importance in stellar physics. Soon a er Von Zeipel published his paper, Eddington (1925) and independently [START_REF] Vögler | Three-dimensional simulations of magneto-convection in the solar photosphere[END_REF] proposed the following picture. Let us imagine a star in radiative equilibrium, isotherms equal isobars. Then suddenly, rotation is enforced and Von Zeipel's theorem applies. What happens? We have seen that di erent locations on the same isobar are heated or cooled di erentially. Temperature, density and pressure being linked through an equation of state, the heating and cooling modi es the direction of ∇p and ∇ρ which creates a baroclinic torque and therefore creates a gradient of Ω in the z direction, breaking barotropicity. In other words, barotropicity, even if assumed as initial state, cannot be sustained and baroclinicity settles. To easily see that, one may imagine the caricatural situation where isopycnals are not only inclined to isobars but perpendicular (see Fig. 2.2). In this case, on the same isobar, the uid goes from heavier to lighter as we move to the right in Fig. 2.2. As on a weighing scale, the uid leans to the le , creating vorticity. The later work of Sweet (1950) gave a more formal description assuming a steady circulation in an inviscid uid, with no magnetic elds, which allowed him to estimate a characteristic time-scale over which equilibrium is restored. They are called Eddington-Sweet (herea er ) circulation and time-scale. A simple expression for the velocity U of this circulation is derived by Sweet (1950) as (2.11) and the time-scale is de ned as the time needed for this circulation to cover a distance of a stellar radius:

isobar isopycnal ρ 1 ρ 2 < ρ 1
U ∝ 1 ∇ ad -∇ + φ δ ∇ µ LR 5 Ω 2 G 2 M 3 ∝ LR 5 Ω 2 G 2 M 3 ,
t ES = R U G 2 M 3 LR 4 Ω 2 t KH GM Ω 2 R 3 , (2.12)
with t KH = GM 2 RL the Kelvin-Helmholtz time-scale corresponding to the time needed for a star to radiate with a luminosity L all its gravitational energy (it is for instance the characteristic time-scale of the phase). The time-scale t ES is the time needed to reach a steady state a er a contraction or dilation of the star. For slow rotators, t ES t KH and therefore, the is too slow to adapt to a change in the structure. However, for rapid rotators, t ES t KH meaning that a steady state is reached on a Kelvin-Helmholtz time-scale. Few years a er Sweet (1950), Mestel (1953) showed the stabilizing e ect of µ-gradient to the circulation. Its e ect can be seen in Eq. (2.11) where an increase in ∇ µ decreases U and therefore increases t ES .

However, Sweet's solution of meridional circulation has some caveats that have been pointed out by Busse (1981) (and later Busse 1982) in a paper asking the question Do Eddington-Sweet circulations exist?. Eddington-Sweet circulation advects angular momentum but if t ES is larger (or comparable) to the stellar lifetime, it can be considered that the amount of angular momentum advected is so small that the circulation corresponds to a steady state. It has already been said that this is not veri ed for rapid rotators, but Busse (1981) actually showed that the solution of the circulation breaks down on a much shorter time scale, incompatible with the assumption of a steady state. Assuming an inviscid star with an circulation as initial state, he showed that, owing to the little deviation in angular velocity due to the non-local conservation of , an extra centrifugal force develops, rapidly overcoming the pressure and slowing down the circulation in a time of order the rotation period: ∼ (2Ω) -1 . To completely understand meridional circulation, Busse's idea was that the advected by the circulation should be balanced by the angular velocity di used by any force (magnetic forces or shear-induces viscous stresses).

This idea was exploited rst by [START_REF] Zahn | [END_REF] who proposed that, due to the stable strati cation of the radiative zone, horizontal di usion caused by the shear turbulence would be much stronger than the vertical one. In his formalism, quantities were decomposed in Legendre series, only up to the 2 nd order Legendre polynomial (in the same way as in Eqs. (1.47) and (1.48)), with a simpli ed equation of state and neglecting the µ-gradients. [START_REF] Zahn | [END_REF] couples the baroclinic equation to provide an expression for the uctuations of density and gravity on isobars, the equation of transport of to ensure its conservation and the equation of transport of energy. These hypotheses (except the order of the development) were relaxed by Maeder & Zahn (1998). Mathis & Zahn (2004) later developed the equations to provide solutions for the meridional circulation and the transport of angular momentum for any order in the decomposition in Legendre polynomials. Soon a er, Mathis & Zahn (2005) introduced the e ect of an axisymmetric magnetic elds balancing the advected by meridional circulation. This work is motivated by observations that tend to show that magnetic elds can be found in a large variety of main-sequence stars (see Donati & Landstreet, 2009, for a review).

does not support modelling of magnetic elds, therefore I have only implemented the formalism of Mathis & Zahn (2004) for any degree , described in Sect. 2.6. The equations for the transport of are described in Sect. 2.7. But rst, I will describe the modelling of shear-induced turbulence.

Shear-induced turbulence

Stellar radiative zones are prone to many magneto-hydrodynamic ( ) instabilities. Those instabilities do not occur on the same characteristic time-scales and will be detailed in Sect. 5.2. However, one of them acts on a shorter time-scale and is much more e cient. In radiative zones, the settlement of meridional circulation increases the shear between successive layers. If the stabilizing e ect of stable strati cation is overcome, the shear can induce the well known Kelvin-Helmholtz instability (see, for instance, [START_REF] Davidson | Turbulence in Rotating, Strati ed and Electrically Conducting Fluids[END_REF]. The criterion setting the threshold for the Kelvin-Helmholtz is known as the Richardson criterion for instability which compares buoyancy to shear. Let us imagine a small parcel of material rising from a layer of depth z and velocity U to another layer of depth z + δz and velocity U + δU . At this new location, the parcel has a di erence of density ∆ρ with its surrounding. If the di erence of velocity ∆U were to be 0, we have seen that the parcel oscillates around an equilibrium position and the the motion is stable (we are in a radiative zone). The gradient of density d∆ρ/dz can be seen as a potential barrier. However, if the the velocity di erence is su ciently high, it can overcome the potential barrier and instead of oscillating, the parcel diverges, leading to an instability. In 1920, under these conditions, Lewis Richardson proposed a criterion for instability of the form

Ri ≡ g ρ d∆ρ/dz (dU /dz) 2 < 1 4 , (2.13)
and Ri being the Richardson number. This criterion is known as the Richardson criterion.

The threshold 1 /4 was derived by Taylor (1931), although the value of the critical Richardson number Ri crit is subject to question since numerical simulations have shown that instabilities may occur with Ri 1.0 (Brüggen & Hillebrandt, 2001). Indeed, a solid estimation of Ri crit requires a theory of turbulence which is lacking (Maeder, 1995;Canuto, 2002). In any case, this criterion is almost never met because in general d∆ρ/dz dU /dz. We also recognize in the expression (2.13) the thermal component of the Brunt-Väisälä frequency N 2 T ≡ (g/ρ)d∆ρ/dz, de ned in Eq. (1.23). Furthermore, other stabilizing or destabilizing e ects such as the energy lost through radiation by the turbulent ow (Townsend, 1958) could also be taken into account in the expression of Ri. [START_REF] Zahn | [END_REF] derived a new criterion:

N 2 T (dU /dz) 2 vl K < Ri crit , (2.14)
where v and l are the velocity and the size of an eddy in the turbulent ow behaving adiabatically, and K is the thermal di usivity. Let us expand the reasoning we made above with the small displaced parcel of material, this time accounting for the thermal di usivity. The term vl could be seen as the kinetic energy per unit time and mass advected by the small parcel and K corresponds to the ability of the material of losing energy by radiation. If K vl, the small parcel loses very little energy through di usion, the sum of kinetic and potential energy is conserved along its path and the parcel is pushed back to its equilibrium position. On the contrary, K vl amounts to saying that the transformation of the small parcel is not adiabatic any more, which reduces the stabilizing e ect of the stable strati cation. The quantity

Transport of angular momentum in radiative zones

Pe ≡ vl/K de nes the Péclet number which measure the importance of the energy carried by advection compared to the energy lost by radiation. This number is related to the shear viscosity4 . [START_REF] Rieutord | Fluid Dynamics: An Introduction Rieutord[END_REF] gives ν = βv with β = O(1), v is a characteristic velocity in the direction of the shear and is the mean free path of particles in the uid. In stellar radiative interiors, taking criterion (2.14) leads to predicting much more turbulent regions than what would have been obtained with (2.13). With a little more work it is also possible to include the e ect of the µ-gradients (Maeder, 1995).

The study of shear instabilities and especially its impact through turbulent viscosities and di usion coe cients is of crucial importance. Indeed, shellular rotation is based on the assumption that the horizontal di usion coe cient ν h is large compare to the vertical one (ν v ). With this assumption, any horizontal uctuation of the angular velocity would immediately be attened up by horizontal shear and enforce shellular rotation [START_REF] Zahn | [END_REF]. This assumption is supported by the fact that, in the rotating turbulent ow, the vertical motions of the largest eddies will be attenuated by the stable strati cation. Moreover, shear instabilities also contribute to the transport of chemicals inside the star, strongly in uencing its evolution path.

A lot of prescriptions have been proposed for the di usion and viscosity coe cients. It is o en complicated to determine which one is the more physically correct. Some are based on laboratory experiments with the risk of oversimplifying the processes operating in a star. Some are supported by numerical simulations that can only reproduce turbulent ows with a Reynolds number very far from what can be reached in stars (see Kupka & Muthsam, 2017, for a review). Sorting through all the di erent prescriptions by comparing -models to observations can be very tricky as we will see in Chapter 4, because the e ects of a di erent modelling of turbulence is buried under layers of somewhat dubious modelling of rotation-related phenomenon. As a side remark, if we wanted to be particularly rigorous, we should use viscosity coe cients ν i in the angular momentum transport equation and di usion coe cients D i in the chemical transport equations and we will keep these notations in this text. However, many authors consider that ν i D i (e.g. Talon & Zahn, 1997;Mathis et al., 2004Mathis et al., , 2018)). [START_REF] Zahn | [END_REF]) [START_REF] Zahn | [END_REF] gave an estimate of ν h , neglecting the µ-gradients and for small Péclet numbers, i.e. for turbulent eddies with important radiation losses. Based on Eq. (2.14), [START_REF] Zahn | [END_REF] provides the following expression for the vertical turbulent viscosity created by the vertical shear, averaged over an isobar:

A rst approach

ν v,v = vl 3 = 8Ri crit 45 K r N T dΩ dr 2 , (2.15)
where r is the radius of an isobar and rdΩ/dr is the shear, equivalent to the term dU /dz of Eqs. (2.13) and (2.14). This shear was averaged over the colatitude θ to give expression (2.15). [START_REF] Zahn | [END_REF] also gives an expression for vertical turbulent viscosity created by the horizontal shear. To reach such an expression, he rst writes the rate of energy ε t injected locally by the 2.3. Shear-induced turbulence shear into the turbulent motions:

ε t (r, θ) = ν h sin θ ∂Ω 2 ∂θ 2 , (2.16)
where Ω 2 is the 2 nd -order term of the angular velocity in the Legendre decomposition, and ν h is the horizontal turbulent viscosity created by the horizontal shear. Assuming that turbulence follows a Kolmogorov's law (e.g. [START_REF] Davidson | Turbulence in Rotating, Strati ed and Electrically Conducting Fluids[END_REF], one can write v 3 /l ∝ ε t . Furthermore, Townsend (1958) proposed to write, in the case of a strati ed region destabilized by radiation v/l 3 N 2 T K . Therefore, the local vertical turbulent viscosity created by the horizontal shear

ν † v,h is ν † v,h vl 3 √ ε t K 3N = √ ν h K 3N sin θ ∂Ω 2 ∂θ .
(2.17)

To include this e ect in a 1D stellar evolution code, one need to average it over isobars:

ν v,h 1 10 Ω N T K ν h 1 /2 r|2V 2 -αU 2 | with α = 1 2 d ln r 2 Ω d ln r . (2.18)
To be more rigorous, we must say that this formulation hides a multiplicative term, factor of the whole expression. This constant is estimated to be of order unity by laboratory experiments and this is why we did not write it. In Eq. (2.18), U 2 (resp. V 2 ) is the radial (resp. latitudinal) component of the meridional circulation. The change from ∂Ω 2 /∂θ to a combination of U 2 and V 2 comes from the equation for the horizontal transport of angular momentum detailed in section 2.7. We now only need to nd an expression for ν h . Despite the fact that it cannot be derived from rst principles, [START_REF] Zahn | [END_REF] shows that the only way for the shellular rotation approximation to be veri ed is to consider that

ν h = 1 c h r|2V 2 -αU 2 | with c h = 5Ω 2 Ω . (2.19)
This relation follows from the equation giving the 2 nd -order term Ω 2 of the angular velocity (see Eq. (2.120)). [START_REF] Zahn | [END_REF]'s modelling relies on the assumption that all the kinetic energy of the turbulence is dissipated into heat through viscous stresses. One could argue, however, that part of the energy is injected into gravito-inertial waves, or is lost through radiation because of the small Péclet number hypothesis. But, Maeder (2003) have stressed many issues in this formulation. First, Ω 2 does not depends on ν h , which is expected to be the case. Then, the ratio Ω2 Ω is also independent of Ω, meaning that the uctuations of angular velocity are always the same, for low and fast rotators. Finally, Maeder (2003) showed that, for stars with low metallicity, ν h becomes of the same order as ν v which would break the necessary conditions for shellular rotation to exist. This last point is justi ed in Sect. 2.6.

It is worth noting that Zahn (1992) adopts a local point of view on vertical di usion in the sense that the vertical coe cients depend on local gradient or local Richardson number. It means that the vertical shear in Zahn (1992)'s theory does not depend on properties of the turbulence far from the region studied. This is only true if the shear-induced turbulence acts on a small enough scale. If the characteristic scale of turbulent eddies becomes too important, the di usion properties in one point do not depend on the local properties of the medium only, but mixes e ects from a broader region.

Inclusion of Coriolis e ects (Maeder, 2003)

The next decade has seen many re nements of the Richardson criterion, with the attempt of many authors to include the e ects of µ-gradients (Maeder, 1995), to better estimate Ri c (Brüggen & Hillebrandt, 2001;Canuto, 2002) and with the implementation of Zahn (1992)'s theory of transport of angular momentum in stellar evolution codes (Meynet & Maeder, 1997;Maeder & Zahn, 1998). In order to palliate the above shortcomings of Zahn's theory, Maeder (2003) proposed to focus on the characteristic time-scale τ on which a little excess of kinetic energy is attened by turbulence. Turbulence can be impacted by di erential rotation, by the radial or the latitudinal component of the meridional circulation, or by the Coriolis force. If the last three are dominant, then τ r Ω2V2 and

ν h = A r 3 Ω 2 V 2 = Ar rΩV 2 (2V 2 -αU 2 ) 1 /3 , (2.20)
where A is a constant estimated to be less than 0.1. To obtain the last side of this equation, Ω 2 was replaced by the simpli ed expression (2.121).

The vertical di usion coe cient incorporates the e ects of µ-gradients (Meynet & Maeder, 1997) and of horizontal shear (Talon & Zahn, 1997): 

ν v = 2Ri c N 2 T K+ν h + N 2 µ ν h r dΩ

Prescription derived from laboratory experiments (Mathis et al., 2004)

The kind of ow encountered in rotating radiative zones can be approached in a laboratory with a Taylor-Couette ow (Taylor, 1923). A Taylor-Couette apparatus is composed of two coaxial cylinders separated by a gap with a viscous uid lling it. The two cylinders have a radius r 1 and r 2 and can rotate at di erent rotation rates Ω 1 and Ω 2 (for instance, see [START_REF] Davidson | Turbulence in Rotating, Strati ed and Electrically Conducting Fluids[END_REF][START_REF] Regev | Modern Fluid Dynamics for Physics and Astrophysics[END_REF]. Let us imagine that we start to rotate the inner cylinder with a small angular velocity. Angular momentum is transferred to the uid and rapidly, all the uid simply rotates di erentially between the two cylinders. The angular momentum is r 2 1 Ω 1 at the inner cylinder and 0 at the other. Such a ow where angular momentum is decreasing with increasing radius (contrary to what is expected in stars) is subject to instabilities. Indeed, Rayleigh criterion states that an axisymmetric rotating inviscid uid is stable to turbulence if

1 r 3 dr 2 Ω dr ≥ 0. (2.22)
This criterion amounts to saying that the epicyclic frequency de ned in Eq. (1.95) is positive. It emerges from the linearised equation of motion written in Eq. (1.93), in the case of a unstrati ed uid. In our case, since the uid is not inviscid, for slow enough rotation, the ow is stable. However, above a certain threshold in Ω, turbulence starts to develop. The turbulent ow takes the form of axisymmetric steady poloidal vortices called Taylor's vortices or Taylor cells (see Fig. 2.3, picture a.). The total motion is a composition of the primary rotational motion and of the poloidal vortices. Therefore, particles follow helicoidal trajectories. If Ω 1 keeps increasing, a new regime is reached where the Taylor vortices are composed to a wavy motion. These are called wavy Taylor vortices (pictures b. and c.). Finally, a er a third threshold, the ow becomes unsteady and turbulent but still resembles Taylor vortices when time-averaged (pictures d. and e.). [START_REF] Richard | [END_REF] made the assumption that in radiative zones, shear-induced turbulence follow the same turbulent regime as in the Taylor-Couette ow. In this case where the turbulence is purely dominated by di erential rotation, they measured that the turbulent viscosity ν t follows from:

ν t = β 3 dΩ d , (2.23)
with β = 1.5 ± 0.5 • 10 -5 and = r sin θ is the distance to rotation axis de ned in Eq. (1.51). Using the Legendre decomposition, Mathis et al. (2004) proposed to write this viscosity

ν t = βr 3 |Ω 2 | sin 3 θ dP 2 dθ horiz. av. -----→ ν h = 1 2 βr 2 |Ω 2 | = β 10 r 2 Ωr|2V 2 -αU 2 |.
(2.24)

As for the vertical shear coe cient, Mathis et al. (2004) use Eq. (2.21) with a factor 1 instead of 2 and Ri c = 1 6 . Maeder (2003) and Mathis et al. (2004) reach rather similar results, although the rst one gives a little more weight to the e ect of meridional circulation velocity in the di usion by shear.

E ects of rotation and strati cation (Mathis et al., 2018)

The most recent prescription of di usion coe cients was proposed by Mathis et al. (2018) who tried to relate ν h and ν v to the characteristic dynamical time-scale of turbulence τ , i.e the time needed for turbulence to be damped. This approach somewhat resembles Maeder (2003)'s who also tried to estimate the characteristic turbulent time-scale. In a general way, ν v (and the same for ν h ) can be written

ν v ∝ u v v = u 2 v τ = 2 v τ , (2.25)
where u v and v are the characteristic velocity and distance in the vertical direction. Mathis et al. (2018) follow a spectral method developed by [START_REF] Kitchatinov | [END_REF] in order to express the ratio ν v /ν h . Their method allows us to express the velocity eld u = [u r , u θ , u ϕ ] of turbulence generated in a rotating stably strati ed medium by assuming that the velocity eld u 0 of turbulence in a non rotating strati ed uid is known. Skipping the details, they derived an expression for the statistically average squared component of the velocity eld:

u 2 θ u 2 ϕ (u 0 ) 2 2 and u 2 r (u 0 ) 2 2Ω 2 τ 2 N 4 T , with u 2 ⊥ = u 2 θ + u 2 ϕ and u 2 = u 2 r .
(2.26)

Using these expression yields

ν v ν h = u 2 u 2 ⊥ = 2 2Ω N 2 T τ 2 .
(2.27)

Contrary to previous prescriptions, this result is deduced from rst principles, and does not incorporate results of laboratory experiments. Moreover, these expressions treat simultaneously the e ect of stable strati cation and Coriolis force. There only remains to nd an expression for either ν v or ν h and τ . The studies of turbulence in radiative zones using 3D numerical simulations (Prat & Lignières, 2013;Prat et al., 2016;Garaud & Kulenthirarajah, 2016) have corroborated the prescription for the vertical shear di usion coe cients suggested by [START_REF] Zahn | [END_REF] (Eq. (2.15)). The approach synthesized in Maeder (2003) is not found to appropriately reproduce ν v , Prat & Lignières (2014) found. However, more recent papers (Garaud et al., 2017;Gagnier & Garaud, 2018;Kulenthirarajah & Garaud, 2018) have shown that Zahn (1992)'s model only works when the hypothesis of locality is valid. Indeed, they showed that as Ri Pe Re (Re ≡ vl/ν is the Reynolds number which characterize the susceptibility of the uid to be turbulent5 ) decreases, the vertical size of turbulent eddies increases until reaching a size that is comparable to the size of the radiative region, which breaks locality.

Nonetheless, we will assume with Mathis et al. (2018) that

ν v = ν v,v is given by ν v = Ri c 3 K r sin θ∂ r Ω N T 2 , (2.28)
which is the un-horizontally-averaged version of Eq. (2.15). We nally need an expression for τ . Mathis et al. (2018) identi es three possible expressions for τ .

• If the turbulence is dominated by radial shears S = r sin θ∂ r Ω, then τ = 1/S. With this expression of τ together with expression (2.28) for ν v in the equation (2.27) relating ν h and ν v , we obtain:

ν h = 2Ri c 3 K N T 2Ω 2 .
(2.29)

• When the rotation become non-negligible, the Coriolis acceleration starts to act in addition to the shear and τ = 1/(2Ω + S). We notice that for Ω → 0, we recover the above time-scale. Injected in Eq. (2.27) yields ν h average over θ:

ν h = 2Ri c 3 K N T 2Ω 2 sin 2 θ r 2Ω ∂ r Ω -1 + sin 2 θ θ with f θ = ´π 0 f sin θdθ ´π 0 sin θdθ .
(2.30)

• One nal characteristic time-scale proposed by Mathis et al. (2018) is to use the epicyclic frequency de ned in Eq. (1.95) which characterizes the stability of rotating di erentially rotating ows. With this choice, τ = 1 N Ω = (2Ω(2Ω + S sin θ)) -1 /2 . If this alternative were to be chosen, caution should be used to ensure that N 2 Ω does not become negative because the ow would become prone to Rayleigh-Taylor instability, needing its own modelling of turbulence (see Chapter 5). In addition, it should be noted that this de nition of τ is not compatible with the two previous choices because in the case where S 2Ω, τ √ 2ΩS sin θ = 1 S . Yet, with this value of τ , ν h reads

ν h = 2Ri c 3 K N T 2Ω 2 r 2Ω ∂ r Ω sin 2 θ r 2Ω ∂ r Ω -1 + sin 2 θ θ .
(2.31) Mathis et al. (2018) argue that it will be possible to test those choices when 3D numerical simulations of radiative zones will be able to reach stellar turbulent regimes. Moreover, the dependence on the N T /(2Ω) ratio is the same for any choice of characteristic time-scale which can be seen as a sign of consistency in this model of shear-induced turbulence.

Fluctuations over isobars

We have seen the main mechanism involved in the loss and in the transport of angular momentum. The goal of the upcoming sections is to built the mathematical formalism necessary to include those physical processes into the modelling. As we said in Chapter 1, structure equations will be expressed on isobars instead of spheres. Therefore, the rst thing we need to do is provide a way to compute the locations of these isobars, and then to express the uctuations of density, gravitational potential and e ective gravity over isobars. To my knowledge, there exists two methods that have been developed to compute these uctuations in baroclinic stars. Both of them decompose any eld X in the same way as the one written in Eqs. (1.47) and (1.48). Describing the angular variations of X with Legendre polynomials is particularly suitable for the resolution of the Poisson equation, as we will see shortly. The rst method has been developed by Mathis & Zahn (2004) and relies on the hydrostatic equilibrium equation (1.51) and on the baroclinic equilibrium equation (1.56) to express the terms ρ , φ and g of the Legendre decomposition of density, gravitational potential and e ective gravity respectively, for any degree . They are expressed as functions of the di erent terms Ω of the angular velocity. The expressions of these functions quickly become cumbersome as the degree increases. Thus, we turned to the second method, developed by Roxburgh (2004Roxburgh ( , 2006)). While the rst paper treats the case of uniformly rotating (therefore barotropic) stars, the second applies to baroclinic stars, with any rotation pro le. The idea of Roxburgh is to start from the structure of a 1D model and deform it. In particular, for any quantity X decomposed in Legendre polynomials on a given isobar located by p, there always exists at least one characteristic latitude θ c such that =0 X (p)P (cos θ c ) = X 1D (p).

(2.32) I will only derive the equations and the way I solve them is described in Sect. 6.2. It seemed important to me that the reader have some idea on how uctuations can be computed, since they will be extensively used in the mathematics developed in the current Chapter.

With Roxburgh (2006), we consider an axisymmetric rotating star. The equations to be solved are the hydrostatic equilibrium equation in its complete form of Eq. (1.51) and the Poisson equation (Roxburgh, 2004(Roxburgh, , 2006)):

1 ρ ∇p = -∇φ + Ω 2 = g eff ,
(2.33)

∇ 2 φ = 4πGρ.
(2.34)

Roxburgh ( 2006)'s method works by determining iteratively the solution of the uctuations of the gravitational potential and of the density over isobars. In other words, the computation of these uctuations needs to repeated until convergence. We compute φ knowing ρ and then ρ knowing φ.

Computation of φ knowing ρ

We decompose φ and ρ on a Legendre polynomial6 basis on the spherical mesh: where the last line was obtained by projecting on P (cos θ). Eq. (2.37) obeys the boundary condition φ (0) = 0, = 0 and outside the star, ρ = 0 and therefore admits an analytical solution of the form φ = Ar a , where A and a are constants. Plugging this solution into Eq.

φ(r, θ) = N =0 φ (r)P (cos θ) = φ(r) + N =1 φ (r)P (cos θ), (2.35) ρ(r, θ) = N =0 ρ (r)P (cos θ) = ρ(r) + N =1 ρ (
(2.37), leads to a = or a = -( + 1). The rst solution is unphysical because ρ would diverge with increasing r. Therefore, keeping the second solution allows us to provide a limit condition, outside the star:

( + 1) φ + r d φ dr = 0. (2.38)
With ρ being provided, φ are found computing an integral form of the solution of Eq. (2.37) together with (2.38) (Roxburgh, 2006): (2.39) where

φ (r) = r ˆr Rmax 4πG r 2 +2 ˆr 0 ρ (r)r +2 dr dr -λ r ,
λ = 4πG (2 + 1)R 2 +1 max ˆRmax 0 ρ (r)r +2 dr, (2.40)
and R max is a distance outside the star.

Computation of ρ knowing φ

Following Roxburgh (2006), we take the curl of Eq. (1.51) which leads to a new di erential equation:

∇ × ρ ∇φ -Ω 2 = 0.
(2.41)

We de ne (2.42) and we shall compute ∇ × (ρF)

F = ∇φ -Ω 2 = F r e r + F θ e θ ,
1 r ∂rρF θ ∂r - ∂ρF r ∂θ = 0, F θ ∂ρ ∂r - 1 r F r ∂ρ ∂θ e ϕ = 1 r ρ ∂F r ∂θ -F θ -r ∂F θ ∂r e ϕ = ρ∇ × F = ρ∇ × (Ω 2 ), ∂ρ ∂θ -r F θ F r ∂ρ ∂r = - r F r ρ∇ × (Ω 2 ) • e ϕ .
(2.43)

The last line is a partial di erential equation ( ). In order to reduce it to a system of ordinary di erential equations ( s), we shall use the method of characteristics. We de ne a surface S ≡ [r; θ; ρ(r, θ)].

The vector [∂ρ/∂r; ∂ρ/∂θ; -1] is normal to the surface while a tangent vector could be de ned by [a(r, θ); b(r, θ); c(r, θ)] = rF θ /F r ; -1; (r/F r )ρ∇ × (Ω 2 ) • e ϕ . We look for a curve C parametrized by s lying in S such that [a(r(s), θ(s)); b(r(s), θ(s)); c(r(s), θ(s))] is tangent to C. Therefore, C should satisfy the three following ODEs:

dr ds = a(r(s), θ(s)) = -r F θ F r , (2.44) dθ ds = b(r(s), θ(s)) = 1, (2.45) dρ ds = c(r(s), θ(s)) = - r F r ρ∇ × (Ω 2 ) • e ϕ .
(2.46)

Eq. (2.45) implies dθ = ds and we can choose s = θ. The characteristic curves r(θ) actually de ne the radius of an isobars p and ρ(θ) is the density over such an isobar. The function r(θ) satis es (2.44):

dr dθ = - ∂φ ∂θ -Ω 2 r 2 sin θ cos θ ∂φ ∂r -Ω 2 r sin 2 θ , (2.47)
and density over isobars satis es

dρ dθ = -rρ ∇ × (Ω 2 ) • e ϕ ∂φ ∂r -Ω 2 r sin 2 θ = -ρ ∂ ∂r Ω 2 r 2 sin θ cos θ -∂ ∂θ Ω 2 r sin 2 θ ∂φ ∂r -Ω 2 r sin 2 θ . (2.48)
Once the radius of the characteristics, the gravitational potential and the density over isobars are known, it is easy to compute the e ective gravity using Eqs. (1.52) and (1.53).

One could think that with Roxburgh's method, local radiative equilibrium is not ensured because the equation for energy transport is not solved together with hydrostatic equilibrium and Poisson equations. However, this is not a problem because rotating stars cannot be in local radiative equilibrium as shown in Sect. 2.2 together with von Zeipel (1924).

Transport of chemical elements

Before exposing the modern formalism used to model the meridional circulation and the associated transport of angular momentum, I make a little detour via the transport of chemical elements as it will facilitate the understanding of the e ect of µ-gradients on the meridional circulation.

Fluctuations of chemical abundances over isobars

Shear-induced turbulence has a direct e ect on latitudinal µ-gradients because if chemical inhomogeneities starts building-up, turbulence immediately erases them and strongly attenuates abundance uctuations over isobars. For a chemical abundance per unit mass c i of a chemical species i, the equation of transport of chemicals reads (Mathis & Zahn, 2004):

ρ ∂c i ∂t + ρ U • ∇c i = 1 r 2 ∂ ∂r r 2 ρD v ∂c i ∂r + 1 r sin θ ∂ ∂θ sin θρD h ∂c i ∂θ , ( 2.49) 
where the velocity eld U is a combination of contraction/dilation of the star, meridional circulation velocities and microscopic di usion velocity U diff i of elements:

U = ṙe r + U M + U diff i e r = ṙe r + >0 U P (cos θ)e r + V dP (cos θ) dθ e θ + U diff i e r .
(2.50) By combining the terms ρ∂c i /∂t and ρ ( ṙe r ) • ∇c i , we obtain the material derivative (time derivative at constant mass) dc i /dt. Microscopic di usion, or atomic di usion, directly stems from the di erent response of chemical species (for instance due to their di erent masses or di erent cross-section) to the forces at stake in stars (gravity, radiative acceleration, etc.). U diff i gathers the di usion velocities due to the various microscopic di usion processes such as the di usion due to a gradient of concentration, the gravitational settling, the radiative accelerations, the thermal di usion, etc. The question of their importance in the transport of chemicals is discussed at the end of this section. Macroscopic di usion is induced by large scale ows such as meridional circulation and instabilities. The abundance c i can be decomposed according to Eq. (1.48):

c i = c i + >0 c i, P (cos θ) = c i + c i .
(2.51)

We inject this expression in Eq. (2.49) and average the result in latitude (with the same averaging as de ned in Eq. (2.30)) and with the usual approximation that

D h D v , ρ dc i dt + 1 r 2 ∂ ∂r r 2 ρ c i >0 U P (cos θ) + 1 r 2 ∂ ∂r r 2 ρc i U diff i = 1 r 2 ∂ ∂r r 2 ρD v ∂c i ∂r , (2.52)
where the anelastic approximation ∇ • (ρ U M ) = 0 was used. We shall also write the equation for the transport of uctuations

ρ dc i dt + ρ >0 U P (cos θ) ∂c i ∂r + ρ U M • ∇c i - 1 r 2 ∂ ∂r r 2 ρ c i >0 U P (cos θ) = 1 r 2 ∂ ∂r r 2 ρD v ∂c i ∂r + 1 r sin θ ∂ ∂θ sin θρD h ∂c i ∂θ .
(2.53) Finally, by assuming |∇c i | ∂ r c i , one obtains

d c i dt + U ∂c i ∂r = - ( + 1) r 2 D h c i .
(2.54)

Further assuming that the time of evolution dt is much longer than the characteristic time of horizontal di usion r 2 /D h (which is valid on the main sequence), the above equation reduces to

c i = - r 2 U ( + 1)D h ∂c i ∂r (2.55)
and

ρ dc i dt + 1 r 2 ∂ ∂r r 2 ρc i U diff i = 1 r 2 ∂ ∂r r 2 ρ(D v + D eff ) ∂c i ∂r ,
(2.56)

where

D eff = >0 r 2 U 2 ( + 1)(2 + 1))D h , (2.57)
The development in Legendre polynomials is o en stopped at = 2 and we usually nd D eff = (rU 2 ) 2 / (30D h ) [START_REF] Zahn | [END_REF]Maeder & Zahn, 1998;Mathis & Zahn, 2004).

Microscopic di usion

For a long time, the study of microscopic di usion has been considered beyond the scope of standard stellar modelling, which lead to neglecting the term of advection by U diff i . Nonetheless, the inclusion of its e ect is now quite common. Taking it into account has revealed that microscopic di usion can have an important impact on the interior structure of stars. Microscopic di usion can have many origins. Let us take the equation of motion veri ed by an element i of mass m i , with a small abundance such that it does not modify the total density (test element approximation 7 ). Each particle of element i has a velocity U i = U + V i where U is the mean ow velocity (for instance, the meridional circulation) and V i is the peculiar velocity of this particle, in other word, a discrepancy with respect to the mean ow velocity. One can also de ne the average velocity of all particle of the same element i. It is de ned as the average in the phase space P [START_REF] Maeder | Physics, Formation and Evolution of Rotating Stars Maeder[END_REF]:

U i = 1 n i ˆP f i U i dτ P with ˆP f i dτ P = n i , (2.58)
where we used f i (x, v, t) the probability distribution to nd particle of an element i at position x, velocity U i and time t in the phase space. Therefore, the mean ow velocity is the average of the velocities U i for all elements:

U = i m i n i U i i m i n i , (2.59)
where n i is chemical abundance per mole (contrary to c i which is the chemical abundance per unit mass). The mean peculiar velocity, or di usion velocity, of element i is written as:

U diff i = V i = 1 n i ˆP f i V i dτ P .
(2.60)

From (2.59), we see that the di usion velocity must satisfy the condition

i m i n i U diff i = 0, (2.61)
ensuring that on average, a di usive process does not have momentum (it is actually a necessary condition for a process to be considered di usive).

Let us start with a simple case. We suppose that pressure, density and temperature are constant and the abundance of element i varies along r only. We de ne the mass ux of the element i (projected along direction e r ) J = ρc i U diff i . This ux a little above or below can be written

J(r ± δr) = 1 6 ρ c i (r) ± ∂c i ∂r δr U diff i .
(2.62)

The origin of factor 1/6 is two fold. First a factor 1/3 comes from the fact that we projected the ux along one of the three degree of freedom. Second, a factor 1/2 comes from the fact that we look only along e r or -e r . The net ux is

J = J(r + δr) -J(r -δr) = ρc i U diff i = 1 3 ρU diff i ∂c i ∂r δr.
(2.63)

As we have seen in Sect. 2.3, for instance in Eq. (2.15), di usion coe cients are de ned as D = vl/3. Identifying vl with U diff i δr, we obtain for the di usion velocity caused by an abundance gradient the following expression:

U diff i = -D ∂ ln c i ∂r .
(2.64)

An element i can be further subjected to a net force F i = m i a i , with a i the acceleration. The equilibrium is reached when:

∂p i ∂r -ρc i a i = 0, (2.65)
with p i the partial pressure associated with element i and ρc i the fraction per unit volume of element i. Assuming that it is a perfect gas, p i = ρc i k B T /m i , and Eq. (2.65) reads

∂ ln c i ∂r - F i k B T = 0.
(2.66)

Using this expression, one can de ne the expression for the di usion velocity when other forces are accounted for:

U diff i = -D i ∂ ln c i ∂r - F i k B T .
(2.67)

Transport of chemical elements

We see that when U diff i = 0, the equilibrium state is reached. One could account for gravity e ects with F i = -m i g and for the screening e ect due to the separation of ions an electron in the form:

U diff i = -D i ∂ ln c i ∂r -k p ∂ ln p ∂r ,
(2.68)

where k p is a coe cient that we do not reproduce here but that gather the e ects of the gravitational and electric eld [START_REF] Chapman | The mathematical theory of non-uniform gases[END_REF]. This e ect is called the gravitational settling. Despite acting on long time-scales, it leads to the concentration of massive elements in the inner region of stars if no other transport processes come against it.

Likewise, atoms can be di used by thermal gradients. At a microscopic level, a higher temperature translates into a thermal agitation with higher velocities. Imagine that at a location r, atoms are agitated with a mean velocity v T (r). On average, some of them move to a hotter region r + dr, where particles are agitated with a mean velocity v T +dT (r + dr). By successive shocks, the original mean velocity v T will increase. This process further depends on the crosssection of the considered element which is related to the probability that two particles interact. The cross-section of neutral elements do not vary with temperature while the one of ionized ones are proportional to T -2 . Obviously, neutral elements are found in the coolest region of the stars and di erential e ects of thermal di usion on neutral and ionized elements usually have no impact in most of the radiative zone. In addition, at a given temperature T , particles with di erent masses do not move with same velocity. Indeed, the average kinetic energy of element i is given by 3n i k B T /2, independently of the mass. We see immediately that heavier particles will move slower than lighter one. Hence, light element will di use faster. It must be noted that this e ect exists also when no temperature gradient is present. Using a thermal di usivity k T , [START_REF] Chapman | The mathematical theory of non-uniform gases[END_REF] propose to include the e ect of thermal di usion in (2.68) as

U diff i = -D i ∂ ln c i ∂r -k p ∂ ln p ∂r -k T ∂ ln T ∂r .
(2.69)

Finally, a very interesting mechanism of di usion is the radiative acceleration induced by the interaction between photon and ions. Radiative acceleration pushes high opacity particles towards the surface. Its e ect is added through the force F i , in Eq. (2.66), that is replaced by -m i g rad,i :

U diff i = -D i ∂ ln c i ∂r -k p ∂ ln p ∂r -k T ∂ ln T ∂r + m i g rad,i k B T , (2.70)
where g rad,i is the acceleration resulting from the interaction between photons and ions. It is proportional to the frequency integral of the product of the energy ux and the crosssection of a given absorption (this integral is slightly modi ed in case the absorption leads to another ionization). Radiative acceleration is important in massive stars where the energy ux is high. With increasing mass, this process can rapidly compete with gravitational settling. This competition can produce an accumulation of certain elements in small regions of the star. In some cases, it can create the so-called thermohaline or double-di usive convection (Théado et al., 2009). Indeed, if locally ∇ µ > 0 (µ increases upward), ∇ µ can overcome the stabilizing e ect of the density strati cation and the medium becomes unstable (if the Ledoux criterion (1.28) is satis ed). If this accumulation occurs in a region where this element contributes to increase opacity, the convective zone deepens and the star is able to maintain a stronger dynamo e ect. As shown in Sect. 2.1, it increases the amount of blown in the interplanetary medium. In turn, rotational mixing is increased and the importance of microscopic di usion is lowered (Deal et al., 2020). We have seen in Sect. 2.2, that the advected by meridional circulation may rapidly yield a region with strong di usion of angular velocity by shear-induced turbulence. Therefore, meridional circulation, shear-induced turbulence and stellar wind form a highly coupled system. The shear-induced di usion coe cients depend not only on the circulation velocities but indirectly on the lost by winds. Deal et al. (2020) have studied the interaction between rotation, atomic di usion with/without radiative acceleration, and loss by winds. They have shown that, for stars with mass around and below 1.3M , there is no accumulation of chemical species anywhere in the star, which suggests that rotational mixing annihilates microscopic di usion. Above 1.44M , stars show large accumulation of iron at their surface when they are modelled accounting for radiative acceleration, suggesting that in this case, microscopic di usion overcome rotational mixing. However, Deal et al. (2020) stress that this accumulation is not observed in Kepler data, suggesting that a mechanism(s) of transport of chemicals remains to be found.

Modern formalism of meridional circulation

The modern formalism for computing the velocity of meridional circulation has been developed by Mathis & Zahn (2004). In this section we will make pro table use of the Legendre polynomial decomposition, then it shall be recalled that we assume that any quantity can be written following Eq. (1.48). We start our derivation from the time dependent equation for the conservation of thermal energy:

ρT ∂s ∂t + U • ∇s = ∇ • (χ∇T ) + ρε -∇ • F h , (2.71)
where s is the speci c entropy, U is the combination of the contraction/dilation term and of the meridional ow, χ is the thermal conductivity, ε is the nuclear energy generation rate per unit mass and F h if the energy ux carried by horizontal turbulence. The ux carried by vertical turbulence has been neglected because of the hypothesis of shellular rotation relying on the assumption that the horizontal turbulence di usion coe cient D h is much higher than its vertical counterpart. We will tackle the terms one by one.

Entropy's material derivative

We project the le hand side term on the Legendre polynomial basis and it reads:

ρT ∂s ∂t + U • ∇s = ρT ds dt + >0 d s dt + U ∂s ∂r P (cos θ) , (2.72)
where ρT ds/dt = -ρε g . The velocity eld U is expressed by

U = ṙe r + >0 U (r)P (cos θ)e r + V (r) dP (cos θ) dθ e θ = ṙe r + U M . (2.73)
The term ṙe r is the contraction/dilation term. The next ones are the vertical component U and the horizontal component V of the meridional circulation. The 0 th -order terms U 0 and V 0 are zeros because otherwise, a ow would constantly ascend or descend in the star. It would not be possible to consider it as a perturbation. In this section and the following we make the anelastic approximation: ∇ • (ρ U M ) = 0. The anelastic approximation amounts to saying that 2.6. Modern formalism of meridional circulation any acoustic wave is ltered out. In this case, using relation (B.7), a simple relation between U and V can be obtained:

V (r) = 1 ( + 1)ρr d dr ρr 2 U .
(2.74)

For a variable chemical composition, the change of entropy can be expressed as (Maeder & Zahn, 1998): In order to give an expression for the terms s , one needs rst to de ne several quantities. Instead of using ρ , T and µ we will o en use their ratio to the 0 th order term:

ds = c p dT T -∇ ad dp p + Φ(p, T, µ) dµ µ , ( 2 
Θ = ρ ρ Ψ = T T Λ = µ µ .
(2.77)

A relation between the three is found from a general equation of state [START_REF] Kippenhahn | stellar-structure and Evolution[END_REF]: 

dρ ρ = ∂

Time variation of mean molecular weight uctuations

Eq. (2.81) includes two time derivatives, coupled by Eq. (2.79). We need another expression for one of them. Eq. (2.54) gave an expression for the transport of the uctuations of chemicals.

The mean molecular weight is de ned as

1 µ = i 1 + Z i A i c i , (2.82)
where Z i is the number of electrons and A i the number of nucleons. Then from Eq. (2.54) we write the equation for time variation of mean molecular weight uctuations:

dΛ dt = U H p ∇ µ + d ln µ dt Λ - ( + 1) r 2 D h Λ .
(2.83)

Finally we go back to Eq. (2.81) and by injecting Eq. (2.83) in it we obtain

ρT d s dt + U ∂s ∂r = c p ρT dΨ dt + Φ U H p ∇ µ + d ln µ dt Λ - ( + 1) r 2 D h Λ + U H p (∇ ad -∇ -Φ∇ µ ) = c p ρT dΨ dt + Φ d ln µ dt Λ - ( + 1) r 2 ΦD h Λ + U H p (∇ ad -∇) .
(2.84)

We have the le hand side of (2.71).

Horizontal turbulent energy ux

Let us turn to the last term of Eq. (2.71). Only the horizontal part of the turbulent energy ux has been retained because turbulent di usion is much stronger horizontally. Maeder & Zahn (1998) approximate the horizontal turbulent energy F h by -D h ρT ∇S and

∇ • F h = - 1 r 2 sin θ ∂ ∂θ sin θD h ρT ∂s(r, θ) ∂θ = >0 ( + 1) r 2 ρT D h s(r, θ)P (cos θ) = >0
( + 1) r 2 ρT D h c p (Ψ + ΦΛ ) P (cos θ).

(2.85)

Radiative transport

The temperature, as any other variable, is decomposed on the Legendre basis on an isobar:

T (p, θ) = T (p) + ∞ >0
T (p)P (cos θ).

(2.86)

Its gradient is ∇T = dT dp dp dr e r + ∞ >0 ∂ T ∂p ∂p ∂r P (cos θ)e r + 1 r ∞ >0 ∂ T ∂p ∂p ∂θ P (cos θ)e θ + 1 r ∞ >0 T ∂P ∂θ (cos θ)e θ = ρ dT dp + ∞ >0 ∂ T ∂p P (cos θ) ∇p ρ + ∞ >0
T ∇P (cos θ).

(2.87)

Latitudinal derivatives of pressure disappeared because we are on an isobar. The term for thermal di usion reads

∇ (χ∇T ) = ρχ dT dp + ∞ >0 ∂ T ∂p P (cos θ) ∇ • ∇p ρ + ∇ ρχ dT dp + ∞ >0 ∂ T ∂p P (cos θ) • ∇p ρ + ∞ >0 ∇(χ T ) • ∇P (cos θ) + ∞ >0 χ T ∇ 2 P (cos θ).
(2.88)

We need to nd an expression for each of these terms. First, the equation for hydrostatic equilibrium is easily recognized:

∇p ρ = g = -∇ϕ + F C , with    |g| = g(p) + >0 g (p)P (cos θ) F C = 1 2 Ω 2 ∇(r sin 2 θ) .
(2.89)

Here, g denotes the e ective gravity and F C is the centrifugal force. This decomposition will be useful for the expression of the divergence of the hydrostatic equation. Indeed,

∇ • ∇p ρ = -∇ 2 ϕ + ∇ • F C . (2.90)
First term is obviously given by the Poisson equation:

∇ 2 ϕ = 4πGρ + 4πG >0 ρ P (cos θ), (2.91)
and the divergence of F C is expanded on Legendre polynomials:

∇ • F C = f C + >0 f C, P (cos θ).
(2.92) Mathis & Zahn (2004) provide an analytical expression for the components of this divergence, at any degree . However, we will see in Chapter 6 that we can obtain it numerically in a way that is more consistent with the rest of our approach. Finally, the product ρχ is also decomposed on Legendre polynomials:

ρχ = ρχ + >0 ρχ P (cos θ).
(2.93)

Right hand side

It is now time to put everything back together. We recall that from Eq. (2.71), the right hand side reads (2.94) where ρε g comes from the other side. The details of the following calculation are described in App. C.2. The right hand side can be written in the form:

∇ • (χ∇T ) + ρε + ρε g -∇ • F h = RHS,
RHS = ρχ dT dp f C -4πGρ + ρ d dp ρχ dT dp g 2 + ρ(ε + ε g ) + ∞ >0 ρχ d T dp + ρχ dT dp f C -4πGρ + ρχ dT dp f C, -4πG ρ +2ρ d dp ρχ dT dp g g + ρ d dp ρχ dT dp g 2 + ρ d dp ρχ d T dp g 2 + ρ d dp ρχ dT dp g 2 - ( + 1) r 2 χ T + ρT D h c p (Ψ + ΦΛ ) + ρε P (cos θ).
(2.95)

The term between angular brackets is zero because it states the global radiative equilibrium (equilibrium over an isobar, not locally). This term vanishes but it shall be kept in mind because it will provide a useful relation to simplify the right hand side.

Remember that this large expression is equal to the le hand side stated in Eq. (2.84). All the quantities with a tilde are uctuations over isobars. Let us imagine that the star is barotropic, steady and that there are no latitudinal gradients of mean-molecular weight. Then, isobars and isopycnals coincide, hence, Θ = 0. In addition, with Λ = 0, Ψ is also 0. With the steadiness hypothesis, dΨ /dt = 0. Then on the le hand side (Eq. (2.84)), only the term in factor of U remains. On the right hand side (Eq. (2.95)), all terms are 0. If the star is barotropic, if Λ = 0 and if the star is steady, then U is necessarily 0. However, is this situation even possible ? We have seen with the Von Zeipel theorem that rotating stars (even barotropic) experience di erential heating and cooling over a given isobar. Therefore, even if we assume an initial state with no uctuation of temperature over an isobar (Ψ = 0), such uctuations will necessarily appear and dΨ /dt = 0. The hypothesis of a steady description of meridional circulation is unphysical. The only way to satisfy above equation with Θ = 0, Λ = 0, Ψ = 0 and dΨ /dt = 0 is to have U = 0. The non-vanishing meridional circulation will advect angular momentum (see next section), and the initially assumed barotropicity will break.

A er some manipulations described in App. C.3, the right hand side simpli es to:

RHS = -ρ d T dT + ρχ ρχ (ε + ε g ) + L 4πGM f C, -4πG ρ + Lρ M 1 - f C 4πGρ - M L (ε + ε g ) 2 g g + Θ - g 4πGρ d dr d T dT + ρχ ρχ - ( + 1) r 2 χ T + ρT D h c p (Ψ + ΦΛ ) + ρε .
(2.96)

We can now bring back the le (Eq. (2.84)) and right (Eq. (2.96)) hand sides together:

c p ρT dΨ dt + Φ d ln µ dt Λ - ( + 1) r 2 ΦD h Λ + U H p (∇ ad -∇) = -ρ d T dT + ρχ ρχ (ε + ε g ) + L 4πGM f C, -4πG ρ + Lρ M 1 - f C 4πGρ - M L (ε + ε g ) 2 g g + Θ - g 4πGρ d dr d T dT + ρχ ρχ - ( + 1) r 2 χ T + ρT D h c p (Ψ + ΦΛ ) + ρε .
(2.97)

The terms of di usion of uctuations of mean molecular weight cancel from both sides. Moreover, we divide everything by ρ:

c p T dΨ dt + Φ d ln µ dt Λ + U H p (∇ ad -∇) = L M 2 1 - f C 4πGρ - M L (ε + ε g ) g g + f C, 4πGρ - f C 4πGρ + M L (ε + ε g ) Θ - d T dT + ρχ ρχ M L (ε + ε g ) + M ε L ρε ρε - g 4πGρ d dr d T dT + ρχ ρχ - ( + 1) r 2 c p T M L χ c p ρ + D h Ψ . (2.98)
We shall introduce several quantities in order to simplify above equation. First, one can write

d T dT = Ψ -H T ∂Ψ ∂r with H T = -T dr dT , (2.99)
where H T is called the temperature scale height. Furthermore, a simplifying expression for χ /χ and ε /ε can be provided.

χ χ = ∂ ln χ ∂ ln T p,µ Ψ + ∂ ln χ ∂ ln µ p,T Λ = χ T Ψ + χ µ Λ , (2.100)
and

ε ε = ∂ ln ε ∂ ln T p,µ Ψ + ∂ ln ε ∂ ln µ p,T Λ = ε T Ψ + ε µ Λ . (2.101)
From these, one can express ρε/ρε and ρχ/ρχ:

ρχ ρχ = ∂ ln ρχ ∂ ln T Ψ + ∂ ln ρχ ∂ ln µ Λ = (χ T -δ) Ψ + (ϕ + χ µ ) Λ , (2.102)
and

ρε ρε = ∂ ln ρε ∂ ln T Ψ + ∂ ln ρε ∂ ln µ Λ = (ε T -δ) Ψ + (ϕ + ε µ ) Λ , (2.103)
Then, we can de ne some shorthand notations proposed by Mathis & Zahn (2004) as

ε m = L(r) M (r) K = χ ρc p f ε = ε ε + ε g ρ m = m(r) 4 3 πr 3 .
(2.104) Eventually, a er some steps described in App. C.4 and using the above new notations, Eq. (2.98) simpli es and the term of degree of the meridional circulation is

T c p dΨ dt + Φ d ln µ dt Λ + U H p (∇ ad -∇) = L p M p T , (2.105)
where we de ned T in the same way as Mathis & Zahn (2004):

T = 2 1 - f C 4πGρ - ε + ε g ε m g g + f C, 4πGρ - f C 4πGρ Θ + ρ m ρ r 3 d dr H T ∂Ψ ∂r -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ - ( + 1)H T 3r 1 + D h K Ψ + ε + ε g ε m H T ∂Ψ ∂r -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ + (f ε ε T -f ε δ + δ) Ψ + (f ε ε µ + f ε ϕ -ϕ) Λ .
(2.106) Because it will simplify its resolution we stress that by de ning a new quantity Υ :

Υ = H T ∂Ψ ∂r -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ .
(2.107)

The term T becomes a rst order partial di erential equation. The resolution of this equation requires the provision of a boundary condition. Since the meridional circulation depends on Ω, boundary conditions for both the meridional circulation and the angular velocity will be provided a er the derivation of the equation for the transport of angular momentum, at the end of this Chapter (Sect. 2.7.3) In Sect. 2.3, we said that the prescription for the horizontal turbulent viscosity ν h proposed by [START_REF] Zahn | [END_REF] su ered from some problem, in particular that in low metallic stars, ν h ∼ ν v at the surface. [START_REF] Zahn | [END_REF] gives

ν h = 1 c h r|2V 2 -αU 2 | r|U 2 |.
If we are close to the surface, the energy generation rates ε + ε g are small. In addition, if the mean molecular weight gradients are negligible, T is dominated by the rst term:

T 2 1 - f C 4πGρ g g .
(2.108)

The term f C /4πGρ Ω 2 /4πGρ is called the Gratton-Öpik term [START_REF] Gratton | [END_REF]Öpik, 1951). Near the surface, the density becomes very small, so that T changes sign and the meridional velocity changes direction in the uppermost layers. The surface-meridional-circulation cell, rotating in the opposite direction of the inner cell, is called the Gratton-Öpik cell. In this cell, due to the very low density, U 2 can become very large so that ν h ν v and the shellular rotation approximation stays valid. However, in very sub-metallic stars (Z = 10 -5 in Meynet & Maeder 2002, while Z 0.02) the velocity of the meridional circulation near the surface stays small. Near the surface, the opacity is mainly due to negative hydrogen and is given by [START_REF] Hansen | Stellar Interiors. Physical Principles, Structure, and Evolution[END_REF]:

κ H -∝ ρ 1 /2 T 9 Z.
(2.109)

In our case, the metallicity is small, and so is the opacity. Therefore, the luminosity is higher, the stellar radius smaller and the density is higher (the star is more compact than a highly metallic star with the same mass). The density being important, T is signi cantly reduced, and the velocity in the Gratton-Öpik cell especially so. In this special case, one can have ν h ν v .

Equations for the transport of angular momentum

The in nitesimal amount of contained in a small element of volume at a distance r of the centre and colatitude θ, with density ρ and angular velocity Ω is dJ = ρr 4 sin 3 θΩdrdθdϕ, (2.110) where the mass of this small element is ρr 2 sin θdrdθdϕ and the angular momentum is r 2 sin 2 θΩ. Following [START_REF] Maeder | Physics, Formation and Evolution of Rotating Stars Maeder[END_REF], the time derivative of at a constant mass coordinate m is

ρ d dt r 2 sin 2 θΩ m = ∂ ∂t ρr 2 sin 2 θΩ r + U • ∇ ρr 2 sin 2 θΩ -r 2 sin 2 θΩ dρ dt m , (2.111)
where U is the velocity of the ow, in this case, the meridional circulation and the contraction/dilation. The di erentials drdθdϕ have been simpli ed on both sides. Again, we express the time derivative of ρ as

dρ dt m = ∂ρ ∂t r + U • ∇ρ = -ρ∇ • U , (2.112)
where the continuity equation has been used. Injecting this expression into Eq. (2.111) leads to

ρ d dt r 2 sin 2 θΩ m = ∂ ∂t ρr 2 sin 2 θΩ r + ∇ • U ρr 2 sin 2 θΩ . (2.113)
Furthermore, the time variation of is of course equal to the torque of the (viscous) forces applied to the element of volume. Those forces are produced by the shear and follow 2.7. Equations for the transport of angular momentum the direction of the velocity gradient. We separate them in a vertical force f v per unit surface and a horizontal force f h per unit surface:

f v = ρν v r sin θ ∂Ω ∂r and f h = ρν h sin θ ∂rΩ ∂θ , (2.114)
f v applies on a small horizontal surface element r 2 sin θdθdϕ and f h applies on a small vertical surface element r sin θdrdϕ. These forces apply with a lever arm of r sin θ, therefore the associated torque M v (resp. M h ) gained by a small element of volume submitted to f v (resp. f h ) are

M v = ∂ ∂r ρν v r 4 sin 3 θdθdϕ ∂Ω ∂r dr and M h = 1 r ∂ ∂θ ρν h r 2 sin 3 θdrdϕ ∂Ω ∂θ rdθ. (2.115)
Then, the time variation of angular momentum at xed mass coordinate reads (we simpli ed the di erentials drdθdϕ):

ρr 2 sin θ ∂ ∂t ρr 2 sin 2 θΩ m = ∂ ∂r ρν v r 4 sin 3 θ ∂Ω ∂r + ∂ ∂θ ρν h r 2 sin 3 θ ∂Ω ∂θ .
(2.116)

And nally one can use it to express the le hand side of Eq. (2.113) and reorganize it to obtain the general equation for the transport of angular momentum:

∂ ∂t ρr 2 sin 2 θΩ +∇• ρr 2 sin 2 θΩU = sin 2 θ r 2 ∂ ∂r ρν v r 4 ∂Ω ∂r + 1 sin θ ∂ ∂θ ρν h sin 3 θ ∂Ω ∂θ . (2.117)

Vertical transport of angular momentum

The details necessary to go from Eq. (2.117) to the equation for the vertical transport of angular momentum are exposed in App. D.1. This equation can be written in the form

ρ dr 2 Ω dt = 1 5r 2 ∂ ∂r ρr 4 ΩU 2 + 1 r 2 ∂ ∂r ρν v r 4 ∂Ω ∂r ,
(2.118)

where Ω is de ned as

Ω(r) = ´π 0 Ω(r, θ) sin 3 θdθ ´π 0 sin 3 θdθ . (2.119)

Horizontal transport of angular momentum

In the following we limit ourself to the 2 nd -order term in the Legendre decomposition, but adding higher orders would follow quite simply (but painfully). Again, the details are gathered in App. D.2. The nal form of the equation for the horizontal transport of angular momentum is:

ρ d dt r 2 Ω 2 + 1 r 2 ∂ ∂r ρr 4 ΩU 2 - 10 6 dρr 2 U 2 dr Ω = 1 r 2 ∂ ∂r ρν v r 4 ∂Ω 2 ∂r -10ρν h Ω 2 .
(2.120)

During the main sequence, d dt r 2 Ω 2 0 and assuming ν v ν h one can neglect the rst term of right hand side. In this case, Eq. (2.120) reads

ν h Ω 2 = 1 5 r [2V 2 -αU 2 ] Ω, (2.121)
where α as de ned in Eq. (2.18).

Boundary conditions

Equation (2.105) needs to be supplemented by boundary conditions ( ) that link the radiative zone to an eventual convective zone. The expression of the depends on the way angular momentum ( ) conservation is treated in the convection zone: either solid body rotation (uniform Ω) or local conservation of (uniform speci c angular momentum). It must be noted that neither of these models reproduce well the rotation pro le observed in stars, especially the latitudinal variations (see Chapter 4).

Properly de ned should obviously conserve in the stars. The amount of in the convective zone can vary in two ways: either is lost through stellar wind or is extracted/injected from/in by meridional circulation or any other process connecting the radiative and convective zone such as mixed modes, internal gravity waves, etc (see Chapter 5).

• Uniform angular velocity: The convective zones are assumed to be in uniform rotation.

Denoting m b and m t the bottom and top mass limits of the radiative zone, one can write the rst on Ω. The radial gradient of angular velocity at each boundary of the radiative zone is supposed to vanish:

∂Ω ∂r m b,t = 0. (2.122)
Then, the conservation of can be written:

d dt ˆM 0 r 2 Ωdm = d dt ˆmb 0 r 2 Ωdm + d dt ˆmt m b r 2 Ωdm + d dt ˆM mt r 2 Ωdm = 0.
(2.123)

The 2 nd term of the right hand side is given by Eq. (2.118).

1 4π d dt ˆmt m b r 2 Ωdm = ˆrt r b r 2 ρ dr 2 Ω dt dr = 1 5 ρr 4 ΩU 2 mt m b , (2.124)
where we used Eq. (2.122). Then, a can be derived for U 2 at bottom and at the top. At the bottom ˆmb • Uniform speci c angular momentum: In this case, the angular velocity pro les in the convective zones are assumed to follow Ω(r) = Ω(r b,t )r 2 b,t /r 2 , where r b,t is either the radius of the bottom limit or of the top limit of the radiative zone. The factor Ω(r b,t ) is the angular velocity at these limits. Then, the reasoning is the same as above but with this particular pro le.

0 dr 2 Ω dt dm = 1 5 ρr 4 ΩU 2 m b . ( 2 

Chapter 3

The problem of the surface e ects Au bord du lac il y a un écho. On s'y tient avec un livre ouvert dont les passages préférés sont redits de l'autre côté par la voix qui s'éloigne et répète. Au double écho, Lucie Maure crie la phrase de Phénarète, je dis que ce qui est, est. Je dis que ce qui n'est pas, est également. Quand elle reprend plusieurs fois la phrase, la voix dédoublée, puis triple, superpose sans cesse ce qui est et ce qui n'est pas. Les ombres couchées sur le lac bougent et se mettent à trembler à cause des vibrations de la voix. Asteroseismology is the study of the propagation of waves and resulting modes inside stars. The wave frequencies depend on the physical characteristics of the medium in which the waves propagate, and therefore carry information on the stellar interior. To fully exploit the potential of asteroseismology, we need to know by which mechanisms waves are excited and damped in a star, and what are their resulting characteristics (frequency, amplitude, ..

Monique Wittig, Les guérillères

.). This chapter is

The problem of the surface e ects organized as follows. In the rst section I derive the system of equations that describe stellar oscillations. In this section we make no particular assumption on the rotation pro le of the star. The next section is devoted to solving the oscillation equations when the star is not rotating. The last section presents the work I performed on the surface e ects on the frequencies of stellar oscillations.

Non-radial oscillations equation

The equations we will use to describe oscillations are the time dependent versions of Eqs.

(1.50), (1.6) and (2.71) and for a general ow u (Unno et al., 1989). Those equations read:

∂ρ ∂t + ∇ • (ρu) = 0, (3.1) ρ ∂ ∂t + u • ∇ u = ρf -∇p -ρ∇φ + ∇ • τ , (3.2) ρT ∂ ∂t + u • ∇ s = ρ (ε nuc + ε visc ) -∇ • F, (3.3) ∇ 2 φ = 4πGρ, (3.4)
where ρ is the density, t the time, p the pressure, φ the gravitational potential, T the temperature, s the entropy, ε nuc the nuclear energy production rate, f the external forces (electromagnetic or others) felt by the ow, τ the viscous stress tensor, ε visc the viscous heat generation rate and F the radiative ux. The convective ux is already included in the le hand side because the convection velocity is part of the velocity u. The external forces are usually neglected, as well as the viscous heat generation. In stellar convective zones, convection ows certainly have an impact on wave propagation and conversely. However, treating both phenomena at the same time is a di cult problem in stellar physics (see e.g. Gough, 1977;Grigahcène et al., 2005;Xiong et al., 2015). The dynamics of convection and oscillations are usually modelled independently. Because the dynamical time-scale of evolution of the waves is much shorter than the thermal time-scale, oscillations are o en assumed to be adiabatic. In the remaining of this Chapter, I will make this assumption, unless mentioned otherwise.

The equilibrium solutions to these equations are given in Chapter 1. In the following, the equilibrium quantities will be denoted with a 0. For the sake of clarity, I recall the di erential equations satis ed by equilibrium quantities:

∇ • (ρ 0 u 0 ) = 0, (3.5) (u 0 • ∇) u 0 = - 1 ρ 0 ∇p 0 -∇φ 0 , (3.6) ρ 0 T 0 (u 0 • ∇) s 0 = ρ 0 (ε nuc,0 + ε visc,0 ) , (3.7) ∇ 2 φ 0 = 4πGρ 0 . (3.8)
The equilibrium state is supposed steady (∂/∂t = 0). Since convection is treated separately, the equilibrium ow is supposed to be solely composed of the axisymmetrical rotation: u 0 = Ω×r.

Using these notations, one can de ne the linear Eulerian perturbation X of a quantity X around the equilibrium value X 0 :

X(r, t) = X 0 (r, t) + X (r, t),
(3.9)

Non-radial oscillations equation

with X X 0 . From the Lagrangian point of view, the small displacement from an equilibrium point r 0 to a location r = r 0 + δr results, for the quantity X, in a small change: δX = X(r, t) -X 0 (r 0 , t).

(3.10)

The small displacement is o en noted with a ξ = (ξ r , ξ θ , ξ ϕ ) [START_REF] Aerts | Frontiers in Nuclear Structure, Astrophysics, and Reactions[END_REF], which allows us to express the Lagrangian perturbation as a function of the Eulerian one:

δX = X + ξ • ∇X 0 , (3.11)
where, ξ is also linked to the Eulerian perturbation of the velocity of the ow:

u = ∂ξ ∂t + (u 0 • ∇)ξ -(ξ • ∇)u 0 .
(3.12)

linearised equations with rotation

The perturbed equations in the adiabatic approximation are (e.g. [START_REF] Ouazzani | PhD: La rotation et son interaction avec les oscillations dans les étoiles Ouazzani[END_REF])

∂ ∂t + u 0 • ∇ ρ + ∇ • (ρ 0 u ) = 0, (3.13) ∂ ∂t + u 0 • ∇ u + 2Ω × u + [u • ∇Ω] r sin θe ϕ = ρ ρ 2 0 ∇p 0 - 1 ρ 0 ∇p -∇φ , (3.14) ∂ ∂t + u 0 • ∇ ρ ρ 0 - 1 Γ 1 p p 0 + u ∇ρ 0 ρ 0 - 1 Γ 1 ∇p 0 p 0 = [ρ (ε nuc + ε visc )] -∇ • F , = 0 (3.15) ∇ 2 φ = 4πGρ , (3.16)
where Γ 1 is the 1 st adiabatic index de ned by Γ 1 = ∂ ln p/∂ ln ρ| ad or by the relation dp/p + Γ 1 dV /V = 0 [START_REF] Chandrasekhar | An introduction to the study of stellar-structure[END_REF]. The right hand side of Eq. (3.15) vanishes because of the hypothesis of adiabaticity. Eqs. (3.13)-(3.16) form a set of equations for four variables u (in the literature, one also nd those equations written with ξ as independent variable), p , ρ and φ . We will further simplify this system. Eq. (3.15), reduces to the adiabatic relation

δρ ρ 0 = 1 Γ 1 δp p 0 , (3.17)
thanks to the adiabatic approximation: δs = 0. Replacing the Lagrangian perturbations by the Eulerian ones, leads to:

ρ ρ 0 - 1 Γ 1 p p 0 + ξ • A = 0 with A = ∇ ln ρ - 1 Γ 1 ∇ ln p, (3.18)
where, A is the Schwarzschild discriminant. With g eff = -∇p/ρ, the square of the Brunt-Väisälä frequency can be rewritten in term of the Schwarzschild discriminant:

N 2 = g eff • A (3.19)
We recall that the Brunt-Väisälä frequency is the frequency at which a small displaced parcel oscillates in a stably strati ed zone. By using Eq. (3.12) in Eq. (3.13) the linearised continuity equation can be written:

ρ + ∇ (ρ 0 ξ) = 0.
(3.20)

Equations in system (3.13) to (3.15) are linear 1 st order di erential equations in time t and azimuth ϕ. Furthermore, the coe cients of these di erential equations are independent of time and azimuth because they are only combinations of equilibrium quantities. Therefore, the temporal and azimuthal dependencies in the perturbed quantities, are of the form exp(i(ωt + mϕ)). The term ω is the temporal angular frequency and the integer m is the so called azimuthal number and it enforces the 2π periodicity in ϕ. Therefore, the advection of any scalar X or vector V by u 0 simpli es to

u 0 • ∇X = Ω ∂X ∂ϕ = imΩX, (3.21)
and 

u 0 • ∇V = imΩV + Ω × V. ( 3 
∂ ∂t + (u 0 • ∇) = iω + imΩ = iω, (3.23)
where ω is the oscillation intrinsic angular frequency1 of the wave in the co-rotating (with the star or with a given layer) frame of reference. Using this relation, the perturbed part of the velocity, Eq. (3.12) becomes:

u = iωξ -(ξ • ∇Ω)r sin θe ϕ . (3.24)
Hence, the momentum conservation equation (3.14) reads:

-ω 2 ξ + 2iωΩ × ξ -(ξ • ∇Ω 2 )r sin θe ⊥ = ρ ρ 2 0 ∇p 0 - 1 ρ 0 ∇p -∇φ , (3.25)
where e ⊥ = sin θe r + cos θe θ , already de ned in (1.51), corresponds to the vector in the direction perpendicular to the rotation axis. Eqs. (3.20), (3.25), (3.18) and (3.16) form a system equivalent to the system (3.13)-(3.16) but expressed with the displacement instead of velocity uctuations. We will be looking for particular solutions of the perturbed quantities, developed on spherical harmonics. Because of the non-spherical symmetry, the solutions are non-separable into a radial part and angular part, as is the case when rotation is neglected. However, one can express any vector V or scalar X, solution of system (3.13)-(3.16), in the following general form (Rieutord, 1987):

V(r, θ, ϕ, t) = e iωt ,m u m (r p )Y m (θ, ϕ)e r + v m (r p )∇Y m (θ, ϕ) + w m (r p )∇ × (Y m (θ, ϕ)e r ) = e iωt ,m u m (r p )R m (θ, ϕ) + v m (r p )S m (θ, ϕ) + w m (r p )T m (θ, ϕ), (3.26)
and

X(r, θ, ϕ, t) = e iωt ,m
x m (r p )Y m (θ, ϕ), (3.27) where u m , v m and w m are the projections of V on R m , S m and T m . The radius r p is the radius of an isobar as de ned in Eq. (2.47). It can be any other suitable parametrization, the important point being that this coordinate must depends on the radius and on the latitude. Finally, Y m (θ, ϕ) are the spherical harmonics (see Fig. 3.1) de ned by

Y m (θ, ϕ) = (-1) m c ,m P m (cos θ)e imϕ with c ,m = 2 + 1 4π ( -m)! ( + m)! , (3.28)
where c ,m is a normalization constant allowing the integral of |Y m | 2 over a unit sphere to equal unity, and P m is the associated Legendre polynomial (see Eq. (B.9)).

• n ∈ Z is called the radial order. It is the number of radial nodes of an eigenfunction along the stellar radius (although this is not true for mixed modes which have two more nodes; Scu aire 1974);

• ∈ 0; n is called the degree of the mode. It corresponds to the total number of nodal lines on the sphere, parallel to the latitudes or to the longitudes (see Fig. 3.1). The surfaces formed by the "latitudinal" nodal lines are conical surfaces, while the one formed by "longitudinal" nodal lines are planes;

• m ∈ ; is the azimuthal order. It is the number of the nodal planes parallel to the longitudes. Consequently, the integer -m is the number of plane parallel to the latitudes.

As said in the introduction, my goal in this Chapter is not to provide a full resolution of the system (3.13)-(3.16), especially since this system is not completely solved yet. Oscillation codes such as (two-dimensional Oscillation Program; Reese et al. 2006) or (Adiabatic Code of Oscillation including Rotation; Ouazzani et al. 2012) can however provide 2D non-perturbative solutions to oscillation equations (including rotation). They also provide a framework to test various methods developed to approximate oscillation spectra of rotating stars. I will quickly describe some of these approximations, starting from no rotation at all, then slow and nally fast rotation.

Non-rotating asteroseismology

Oscillation equations

A large fraction of stars are slow rotators. A very good description of their frequency spectrum can be reached by assuming no rotation in the system (3.13)-(3.16). We decompose the displacement vector δr = ξ into a radial component ξ r and horizontal component ξ h = (0, ξ θ , ξ ϕ ) and δr = ξ r e r + ξ h . With Ω = 0, Eq. (3.25) projected on the radial and horizontal direction becomes [START_REF] Aerts | Frontiers in Nuclear Structure, Astrophysics, and Reactions[END_REF]: (3.30) where

∂ 2 ξ r ∂t 2 = -ω 2 ξ r = - 1 ρ 0 ∂p ∂r - ρ ρ 0 g 0 - ∂φ ∂r , (3.29) and ∂ 2 ξ h ∂t 2 = -ω 2 ξ h = -∇ h p ρ 0 + φ ,
∇ h = (0, 1 r ∂ ∂θ , 1 r sin θ ∂ ∂ϕ )
is the horizontal spherical gradient. We need three more equations for p ρ and φ . We inject Eqs. (3.29) and (3.30) into Eq. (3.20) and we further develop the Poisson equation to separate the radial and horizontal part:

ρ + ξ r ∂ρ 0 ∂r + ρ 0 r 2 ∂r 2 ξ r ∂r + ρ 0 ω 2 ∇ 2 h p ρ 0 + φ = 0 (3.31) 1 r 2 ∂ ∂r r 2 ∂φ ∂r + ∇ 2 h φ = 4πGρ . (3.32)
Finally, in the case of no rotation, Eq. (3.18) only depends on ξ r because of the spherical symmetry:

ρ ρ 0 - 1 Γ 1 p p 0 + ξ r A r = 0 with A r = ∂ ln ρ ∂r - 1 Γ 1 ∂ ln p ∂r .
(3.33) Therefore, Eqs. (3.29), (3.31), (3.32) and (3.33) form a system with ξ r , p , ρ and φ as unknowns.

Because of the spherical symmetry, the solution for the components of the displacement are, this time, separable into a radial and an angular part. The displacement (eigenfunctions) of an eigenmode is identi ed by the quantum numbers (n, , m) in the (r, θ, ϕ) directions:

ξ r (r, θ, ϕ, t) = ξ r,n (r)Y m (θ, ϕ) exp(-2iπν n m t), (3.34) ξ θ (r, θ, ϕ, t) = ξ h,n (r) ∂Y m ∂θ (θ, ϕ) exp(-2iπν n m t), (3.35) ξ ϕ (r, θ, ϕ, t) = ξ h,n (r) sin θ ∂Y m ∂ϕ (θ, ϕ) exp(-2iπν n m t), (3.36)
where ν n m = ω n m /2π is the cyclic frequency. Moreover, any scalar can be written in the same way as in Eq. (3.27) with the amplitudes depending on r p = r. We note that the horizontal Laplacian of a spherical harmonics is:

∇ 2 h Y m (θ, ϕ) = - ( + 1) r 2 Y m (θ, ϕ). (3.37)
We also introduce the so-called Lamb frequency (Lamb, 1881):

S 2 = ( + 1) r 2 c 2 s with c 2 s = Γ 1 p 0 ρ 0 , (3.38)
where c 2 s is the sound speed. The quantity k 2 h ≡ ( + 1)/r 2 is the horizontal wave number. The Lamb frequency is thus the inverse of the time needed for a wave to cross a distance 2π/k h at speed c s . Now, from Eq. (3.18) we derive:

ρ = p c 2 s + ξ r ρ 0 N 2 g 0 and ∂ρ 0 ∂r = -ρ 0 g 0 c 2 s + N 2 g 0 . (3.39)
Then using relations (3.39) successively into Eq (3.29), (3.31) and (3.32), gives for Eq (3.29)

-ω 2 ξ r = - 1 ρ 0 ∂p ∂r - p ρ 0 c 2 s + ξ r N 2 g 0 g 0 - ∂φ ∂r ∂p ∂r + g 0 c 2 s p = ρ 0 ω 2 -N 2 ξ r -ρ 0 ∂φ ∂r ,
(3.40)

for Eq. (3.31):

p c 2 s + ξ r ρ 0 N 2 g 0 + ρ 0 2 r ξ r + ∂ξ r ∂r = ρ 0 ξ r g 0 c 2 s + N 2 g 0 + ( + 1) r 2 ω 2 (p + ρ 0 φ ) , ∂ξ r ∂r + ξ r 2 r - g 0 c 2 s = ( + 1) r 2 ω 2 φ + p ρ 0 c 2 s S 2 ω 2 -1 , (3.41)
and for Eq. (3.32):

1 r 2 ∂ ∂r r 2 ∂φ ∂r - ( + 1) r 2 φ = 4πG p c 2 s + ξ r ρ 0 N 2 g 0 . (3.42)
The solution of the radial parts of the perturbed gravitational potential φ can be expressed as [START_REF] Aerts | Frontiers in Nuclear Structure, Astrophysics, and Reactions[END_REF] 

φ (r) = - 4πG 2 + 1 1 r +1 ˆr 0 ρ (r 2 )r +2 2 dr 2 + r ˆR r ρ (r 2 ) r -1 2 dr 2 . (3.43)
When is large, the ratios r +2 2 /r +1 and r /r -1 2 in both integral are small because in the rst one r 2 /r 1 < 1 and in the second one, r 1 /r 2 < 1. There is also the factor 1/(2 + 1) that reduces further the value of φ . When n is large, the perturbation of the density is fast-varying and the integrals are small. Therefore, for large n and large , φ goes to 0. It justi es the so-called Cowling approximation (Cowling, 1941) which amounts to assuming that the uctuations of the gravitational potential vanish. This approximation is justi ed for waves propagating in regions of low density, i.e. the envelope of the star. With this approximation, our system simpli es to only two equations:

∂p ∂r + g 0 c 2 s p = ρ 0 ω 2 -N 2 ξ r , (3.44) ∂ξ r ∂r + ξ r 2 r - g 0 c 2 s = p ρ 0 c 2 s S 2 ω 2 -1 . (3.45)
The term g 0 /c 2 s is of the order of the inverse of the pressure scale height 2 . Eigenfunctions of oscillations with large n vary on spatial scales much shorter than the equilibrium structure of the star (which vary on characteristic scales of order H p ). Therefore, one can make the hypothesis that g 0 /c 2 s is small compared to ∂ξ r /∂r. Moreover, the term 2/r, near the surface goes to 0 and is also small compared to ∂ξ r /∂r. The second term of the le hand side of Eq. (3.45) can then be neglected3 . Hence, the above system becomes (3.46) 2 I recall that the pressure scale height is de ned as 

∂p ∂r = ρ 0 ω 2 -N 2 ξ r ,
1 Hp = - d ln p dr . 0.0 0.2 0.4 0.6 0.8 r/R 10 -1 10 0 ν/ν max N S , = 1 S , = 2 S , = 3 0 1 2 3 4 r/R 10 -1 10 0 ν/ν max N S , = 1 S , = 2 S , = 3
∂ξ r ∂r = p ρ 0 c 2 s S 2 ω 2 -1 .
(3.47)

And nally we obtain a wave equation for ξ r (or p ): 

∂ 2 ξ r ∂r 2 = ω 2 c 2 s 1 - N 2 ω 2 S 2 ω 2 -1 ξ r = -ω 2 k 2 (r)ξ r , (3.48) ∂ 2 ξ r ∂r 2 -k 2 (r) ∂ 2 ξ r ∂t 2 = 0 (3.49)
(r) = 1 c 2 1 -N 2 ω 2 1 - S 2
ω 2 , the local wave number.

• If k 2 (r) > 0: the solution is a propagating wave. This happens when

-(i): ω 2 > N 2 and ω 2 > S 2 ; -(ii): ω 2 < N 2 and ω 2 < S 2 ;
• If k 2 (r) < 0: the solution is an exponentially increasing or decreasing wave. This happens when

-(iii): S 2 < ω 2 < N 2 ; -(iv): N 2 < ω 2 < S 2 .
The regions where conditions (iii) or (iv) are satis ed are represented as grey shaded areas in gure 3.2. Waves existing in such regions are called evanescent waves. In propagating regions, in case some conditions on the excitation and damping rates are met (see Sect 3.2.4), the wave re ections form standing waves. Those regions are o en called trapping regions and are separated from each other by evanescent regions. Therefore, standing waves are con ned in the trapping region. One can identify two types of modes:

• modes satisfying condition (i) (high-frequency): they are called p-modes because their restoring force is the pressure gradient and they are con ned to the surface layers;

• modes satisfying condition (ii) (low-frequency): they are called g-modes because their restoring force is the gravity and they are con ned to the radiative zones.

Consequently, a single mode displays di erent behaviours according to the region we are looking at. It is oscillating everywhere, however its amplitude exponentially decreases while propagating in evanescent regions. Let us imagine that a star has two distinct regions, and that a mode can propagate in the central regions and is evanescent in the outer one. If the exponentially decreasing amplitude has not vanished at the surface, this mode could be observable. This is for instance not the case in the Sun in which g -modes are not measurable at the surface because they are con ned in the deep interior of the star, and their residual amplitude at the surface is almost 0. Modes in a particular range of frequencies, can display both g -mode and p-mode behaviour because the corresponding cavities are so close to one another and a mode can propagate into both cavities and be measured at the surface. Those modes are called mixed-modes and they provide a powerful opportunity to collect data from the stellar core structure (e.g. Mosser et al., 2014).

Asymptotic relations

The study of the oscillation equations and of seismic observations have revealed the presence of regular patterns in the frequency spectra. Indeed, it can be shown that the frequencies of modes with large n (asymptotic modes) follow very simple relations, called asymptotic relations (Shibahashi, 1979;Tassoul, 1980Tassoul, , 1990;;Vorontsov, 1991). These relations are powerful tools because they allow astronomers to easily identify the di erent modes (i.e. identify the quantum numbers associated with a particular mode), which enables them to use them as constraints for the modelling of a speci c star. For p-modes, the frequency ν n of a mode for n large can be approximated by a 2 nd order asymptotic approximation (even a 4 th -order approximation has been proposed; Roxburgh & Vorontsov 1994):

ν n n + 2 + 1 4 + α(ν n ) ∆ν - 1 ν n (A ( + 1) -2Φ) ∆ν 2 . (3.50)
Here, α contains the residual of the neglected higher orders and the so-called surface e ect, that will be discussed in more detail in Sect 3.3. The term α depends on the stellar-structure and on the frequency. The term α∆ν and the 2 nd -order term (factor of ∆ν 2 ) are very small compared with the remaining 1 st -order one. Therefore, one sees that, if α was not here, the mode ν n+1, would have the same frequency as ν n, +2 . This degeneracy is li ed by α. The factor ∆ν is called the large separation. In a 1 st -order approximation, one can consider that ∆ν is constant over the whole spectrum:

∀n ∈ N, ∈ 0; n , ∆ν ∆ν n, = ν n+1, -ν n, .
(3.51)

The p-modes are therefore said to be evenly spaced in frequency. Asymptotically, the large separation is proportional to the inverse of the stellar acoustic diameter, i.e. the time a sound wave takes to travel across a stellar diameter:

∆ν = 2 ˆR 0 dr c -1 . (3.52)
The problem of the surface e ects 10 -6 10 -4 10 -2 10 0 m/M This particular frequency is of extreme importance in asteroseismology because it is very easy to measure (with only a few measured frequencies) and it is linked to the mean density of the star (Ulrich, 1986):

∆ν ∝ M R 3 ∝ ρ . (3.53)
The term in factor of ∆ν 2 includes a quantity A:

A = 1 4π 2 ∆ν c s (R ) R - ˆR 0 dc s dr dr r . (3.54)
This quantity is linked to another regularity in the frequency pattern called the small separation:

δν n = ν n -ν n-1, +2 -(4 + 6) ∆ν 4π 2 ν n ˆR 0 dc s dr dr r . (3.55)
This expression neglects the in uence of the gravitational potential perturbation. A more detailed discussion can be found in Gabriel (1989). The small separation δν depends on the sound-speed gradient which is much higher in the stellar core. As shown in Fig. 3.3, the sound speed is a marker of the composition at the centre and it decreases during the evolution due to the increasing of the mean molecular weight in the core. Therefore δν provides a proxy for stellar evolution.

The nal term needing a de nition is the quantity Φ in Eq. (3.50). A very complex expression for Φ is given in Vorontsov (1991), I do not reproduce it here but it depends mostly on quantities such as the gravity, the gravitational potential, the sound speed, the Brunt-Väisälä frequency and the radius.

In the case of g -modes, the asymptotic relation is di erent. Indeed, g -modes are not evenly spaced in frequency but in period. Therefore we will not talk about the large frequency separation but about the period spacing. This asymptotic relation is given as an integral 3.2. Non-rotating asteroseismology relation:

ˆr2 r1 N 2 ν 2 n -1 1 /2 dr r = π(n + /2 + α g ) ( + 1) . (3.56)
First of all, the radii r 1 and r 2 are the limit (called turning points) of the trapping cavity in which the considered g -mode propagates. The term α g 1 plays a similar role as α in Eq. (3.50) but its value depends on the nature of the interface on which the g -mode is re ected. By assuming, ν n N , one can write for the period P n :

P n ∆Π (n + /2 + α g ) with ∆Π = 2π 2 ( + 1) ˆr2 r1 N dr r , (3.57)
with ∆Π being the period spacing.

An asymptotic relation for mixed-modes, that behave as g -modes in the g cavity and as p-modes in the p cavity, can also be de ned. It has been the subject of many works since the advent of CoRoT and Kepler because mixed modes carry a wealth of information on stellar cores. This asymptotic relation depends on the coupling between the two cavities (Shibahashi, 1979;Unno et al., 1989;Mosser et al., 2012Mosser et al., , 2014Mosser et al., , 2015;;Vrard et al., 2016;Mosser et al., 2017Mosser et al., , 2018;;Pinçon et al., 2020).

Ensemble asteroseismology

As shown with Eq. (3.53), characteristic oscillation frequencies can provide important information on stellar global parameters. Since, for instance, ∆ν is proportional to the mean stellar density, dividing Eq. (3.53) by solar values gives access to a very precise measurement of the mean density of any star for which ∆ν is measured:

∆ν ∆ν M R 3 R 3 M ρ ρ
with ∆ν = 134.9 µHz and ρ = 1408 kg m -3 .

(3.58)

This method is called ensemble asteroseismology. Since the resolution on the measurement of the frequency spectrum is much better than the determination of mass and radius for isolated stars by other means, the parameters estimated through asteroseismology are of much higher quality. Nonetheless, this relation is not quite exact, as it should account for e ects from a varying e ective temperature or metallicity (White et al., 2011).

Other interesting frequencies are the acoustic cut-o frequency ν ac and frequency of the maximum power ν max (see Fig. (3.4)) which share a close link. Stellar oscillation spectra have a Gaussian-shaped envelop. This Gaussian peaks at the frequency ν max . This frequency is directly linked to the acoustic cut-o frequency:

ν ac = c s 4πH p and ν max ∝ ν ac , (3.59)
where c s is the sound speed. Above this frequency there is no total re ection at the stellar surface any more. Furthermore,

1 H p = - 1 p ∂p ∂r = 1 p ρg ∝ g T ∝ surface g T eff . (3.60)
Then, since c 2 s ∝ p/ρ, we nally have

ν max ∝ ν ac ∝ g √ T eff ∝ M R 2 √ T eff . (3.61)
The problem of the surface e ects This scaling relation is remarkably well veri ed by observation and Belkacem et al. (2011) provided a theoretical explanation for it. Finally, one can use ν max and ∆ν jointly by writing:

∆ν ∆ν ∝ M M -1 /4 T eff T eff, 3 /8 ν max ν max, 3 /4 , (3.62)
which provides a link between ∆ν and the e ective temperature. We will see in Sect. 3.3 that it is possible to derive many more scaling relations.

Mode excitation and damping

As we will see shortly, the adiabatic approximation is valid in a large portion of the star. However, it is the energy exchanges between the wave and the medium that excite and damp the waves and control their amplitudes. Therefore, the adiabatic approximation has ruled out the possibility of predicting oscillation amplitudes, which would be especially helpful for identifying modes and for searching and de ning new classes of pulsators.

When variations of entropy are not neglected, i.e. the non-adiabatic case, the thermodynamic identity de ned in Eq. (3.17) reads

δρ ρ 0 = 1 Γ 1 δp p 0 - ρ 0 p 0 (Γ 3 -1) Γ 1 T δs with Γ 3 -1 = ∂ ln T ∂ ln ρ ad . (3.63)
If one takes the time derivative of this equation (bearing in mind that the time derivative of equilibrium quantities is zero), one obtains

1 ρ 0 ∂δρ ∂t = 1 Γ 1 p 0 ∂δp ∂t - ρ 0 p 0 (Γ 3 -1) Γ 1 T ∂δs ∂t .
(3.64)

Non-rotating asteroseismology

From Eq. (1.33), we shall also derive

T ∂δs ∂t = δ ε - ∂l ∂m , (3.65)
with l(m) the luminosity. For simplicity, we assume oscillating solutions for δρ, δp and δs. We see that, if these quantities do not reach their maximums at the same time, one can have for instance when ∂δp/∂t = 0,

∂δρ ∂t = ρ 2 0 p 0 (Γ 3 -1) Γ 1 T ∂δs ∂t = 0. (3.66)
The phase-lag between δp and δρ translates into the wave gaining or losing energy. With Eq.

(3.63) taken into account and with appropriate boundary conditions, the eigenmode solution of the system look like (Samadi et al., 2015)

ξ(r, t) = ξ(r)e -iωt e γt = ξ(r)e -iω † t with ω † = ω -iγ, (3.67)
where γ is called the growth/damping rate. In order to decide whether a mode is stable or not, one should study the cumulated gain/loss of energy over a wave cycle. To do so, we have to study γ de ned as

γ = dW dt cycle E osc cycle . (3.68)
The quantity dW /dt is the positive or negative work received by the mode from the medium per unit time and E osc is the total energy of the mode. The operator • cycle denotes the average over a pulsation cycle.

• If γ > 0, the mode is growing and unstable. The eigenmode will obey the linear system of equations we derived above until the linear approximation breaks down. At that point, other mechanisms come into play. For instance it is the case of modes observed in δ Scuti stars (see Sect. 4.3.2, γ Dor and δ Sct), excited by the κ mechanism in H and He ionization regions. Where H or He become ionized, the opacity suddenly increases due to the increased concentration of electrons (Thomson 4 and Compton5 scattering; e.g. [START_REF] Kippenhahn | stellar-structure and Evolution[END_REF]. The enhanced opacity acts as a pot lid and blocks radiation. Temperature increases and the star expands. This is the beginning of an unstable growing -mode. Nonlinear e ects appear when due to dilation, density and opacity decrease which leads to the star contraction.

• If γ < 0, the mode is stable and its amplitude will progressively decrease. This is the case of solar-like pulsators where pressure modes are mainly excited by stochastic convective turbulence (Samadi & Goupil, 2001) and by convective plumes (Belkacem et al., 2006a,b).

In order to nd the region where the adiabatic relation is a good approximation or not, one introduces two characteristic time-scales. First, the dynamical time-scale τ dyn is of the same order as the modal period Π. If one takes as an example the oscillation at maximum power of the Sun, its frequency is ν max = 3090 µHz and its period is Π max = 324 s = 5 min 24 s. The second characteristic time-scale is the thermal time-scale τ th which gives the approximate
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c v = c p -δ 2 p ρT α (solid lines) or c v = cp Γ1
(dashed lines). The solid black line corresponds to a modal period Π of 5.39 min, i.e. the period of ν max, = 3090 µHz. amount of time needed for a small parcel of warm (cold) material to lose (gain) energy. In a region where nuclear reactions do not occur, τ th at radius r is the ratio of the thermal energy contained into the material divided by the energy loss rate, i.e. the luminosity:

τ th c v T ∆m L with c v T = ´R r c v T dm ´R r dm , (3.69)
where ∆m is the mass enclosed between the surface and the sphere of radius r, i.e. the mass above r, c v is the speci c heat capacity at constant volume. The Fig. 3.5 represents the thermal time-scale pro le for three models of mass 1M , 2M , 2.5M . We see that a thermal time-scale of the same order of the modal period Π max is reached very close to the surface (m/M 1). In regions where τ th Π holds, the time-scale on which a wave exchanges energy with the propagative medium is much longer than the oscillation period. Therefore, energy exchanges can be neglected and adiabatic approximation holds. However, this is not the case in non-adiabatic regions where τ th Π. In this region, waves can be excited if the medium gives energy to the wave and conversely, the wave is damped if it gives energy to the medium. For a given mode, one can nd damping dominated regions and excitation dominated regions. In the model with 2M , the region where τ th < Π has a signi cantly larger extent than for the other two models.

The problem of near-surface e ects on oscillation frequencies

This section presents and provides further information on an article (Manchon et al. 2018; also attached to the present manuscript at page 886 ).

Context

Turbulent convection has an in uence on p-modes eigenfrequencies. Indeed, an inhomogeneous velocity, temperature and density eld a ects the phase of the oscillation and its propagation, (Tomczyk et al., 1995;Bachmann et al., 1995) and modelled (Christensen-Dalsgaard et al., 1996) frequencies. Credits: Rosenthal et al. (1999).

in general slowing it down and decreasing the frequency (Brown, 1984). However, 1D stellar models implement simpli ed models of convection (such as the mixing-length theory;

) that completely remove turbulence from the problem. Dziembowski et al. (1988) was the rst to observe the e ect of the neglecting of the turbulent convection on eigenfrequencies, pointing out systematic discrepancies at high frequency between observed and calculated p-modes and called theoreticians for an in-depth study of what causes those dissonances. Those have been studied in more detail by Rosenthal et al. (1995);Christensen-Dalsgaard & Thompson (1997); Rosenthal et al. (1999). Figure 3.6 shows scaled frequency di erences between observed and computed solar frequencies:

δν n ≡ ν obs n -ν mod n .
The observations gather data from the instrument deployed at 's observing station on Mauna Loa, Hawaii (Tomczyk et al., 1995) for low-degree oscillations and from High-L Helioseismometer ( ) installed on Kitt Peak telescope (Bachmann et al., 1995), for high-degree oscillations. Modelled frequencies are computed using the Model S of the Sun (Christensen-Dalsgaard et al., 1996) that was the stateof-the-art solar model at that time. In Fig. 3.6, we distinguish several groups of frequencies that follows similar trends. Each of those groups correspond to modes with the same degree . Because the high-degree modes propagate less deeply, in a less dense medium than low-degree modes, their mode inertia is smaller and therefore they are more a ected by perturbations in the shallowest layers of the star (Christensen-Dalsgaard & Thompson, 1997). In order to suppress this e ect, Rosenthal et al. (1999) use a scale factor Q n de ned as being the ratio at frequency ω n of the mode inertia I n of modes of degrees n and n0:

Q n = I n I n0 (ω n ) . (3.70)
This is those scaled frequency di erences that are represented in gure 3.6. Although the scaling factor Q n does not mask completely the degree dependency to surface e ects.

From the theoretical analysis of the causes of surface e ects, it emerged that two main consequences of the convection on the propagation of oscillations can be found (Houdek et al., 2017).

• The rst e ects are due to modi cation of the mean stellar-structure due to the neglect of the turbulent pressure term, therefore, they are called structural e ects. The turbulent pressure term adds support against the gravity in the hydrostatic equilibrium equilibrium. It extends the cavity and increases the frequency of its modes of oscillation.

• The second source of surface e ects comes from simpli cations of the oscillation equations. First of all, these equations are derived within the adiabatic approximation. In reality, non-adiabatic e ects become less negligible near the limit of the propagation cavity (especially at the surface). Non-adiabatic terms appear in the perturbed energy conservation equation (3.63) and modify the wave propagation. Secondly, as we will see shortly, it is quite uncertain how the turbulent pressure should be included in the oscillation equation. More precisely, the e ect of a mode on the Lagrangian perturbation of the turbulent pressure is still undecided (Sonoi et al., 2017). They are called modal e ects (Balmforth, 1992).

The caveats of mixing-length theory ( )

Figure 3.7 shows the values for the actual gradient ∇, the adiabatic gradient ∇ ad and the radiative gradient ∇ rad inside a 1 M star. The convective envelope starts where ∇ ad becomes smaller than ∇ rad . In the deep convective zone, we see that, as we said in Sect.
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1.1.2, ∇ ∇ ad . In this region, the entropy is constant and a convection theory is actually not needed because the value of the actual gradient is given by the adiabatic one. Near the surface, for log p ∈ [12 -17], ∇ > ∇ ad , and even ∇ ∇ ad very close to the surface. In this region, convection becomes ine cient, due to the sudden decrease in mass density. Becoming ine cient means that the velocity of the convective ow has to increase dramatically in order to maintain the required energy ux. This zone is called the superadiabatic zone because ∇ > ∇ ad . This di erence between ∇ and ∇ ad means that there is an entropy jump between the beginning of the superadiabatic zone and the surface. The is actually designed to reproduce, through the adjustment of α MLT , the desired entropy jump.

The may seem too simple, even simplistic, but works surprisingly very well. However, it has some de ciencies that hinder the modelling of stellar upper layers (see Trampedach, 2010, for a review):

• The is based on the Boussinesq approximation that justi es neglecting the compressibility of the convective ow if MLT H p , i.e. α MLT 1. In practice, this condition is never met and is actually very far from being met. In the solar model used to produce Fig. 3.7, α MLT 1.65;

• There exists no theoretical formulation that gives the mixing length MLT , therefore it must be calibrated7 (Trampedach & Stein, 2011;Serenelli, 2016). Very o en, the data and/or the time is lacking for a proper calibration of the α MLT and the solar α MLT is assumed, whatever the characteristics of the star. This is obviously not satisfying from a physical point of view;

• Furthermore, α MLT is assumed to be constant inside the star and for all its convection zones and does not change along stellar evolution, despite the dimension of the surface convective zone varying over several orders of magnitude [START_REF] Kippenhahn | stellar-structure and Evolution[END_REF];

• In the framework, the kinetic energy spectrum E(k) is treated as if there were only one large eddy, and one forgets about all other turbulent motions (Canuto & Mazzitelli, 1991). In , E(k) is approximated by a Dirac distribution;

• cannot describe overshooting. Overshoot is the uid motion outside the convective zone due to the velocity gained during convective motion. Overshoot of the core convective zone8 is a very important process in stellar evolution because it connects the hydrogen-rich radiative zone to core convective zone where nuclear reactions take place. Overshoot thus injects a hydrogen-rich material into this zone, which extends the lifetime of the star and perturbs our estimation of the age. Some other models have been introduced in order to overcome those limitations, including the Full Spectrum Turbulent ( ) convective model which proposes to replace the Dirac distribution approximation of the turbulence spectrum by a Kolmogorov one (Canuto & Mazzitelli, 1991, 1992;Canuto et al., 1996). Whilst the turbulent velocity spectrum is much better described than with , this theory still has a free parameter: a mixing length that also corresponds to the size of the largest eddy, which is found smaller than with , because of the energy distributed within a larger spectrum. However, model assumes a homogeneous turbulence for up and down ows, which is not con rmed by realistic 3D simulations of surface convection that predicts a laminar up-ow and a turbulent down-ow.

A method to study theoretically surface e ects

Surface e ects appear when comparing observed frequencies with frequencies computed in a 1D model. In order to study theoretically surface e ects, we need a way to arti cially replace observed frequencies. For a proper computation of the uid motions at the surface of the star, we can make use of 3D stellar convection codes. Those numerical codes compute convective motions directly from rst principles, i.e. directly from magnetohydrodynamics ( ) equations: no assumption is made about the turbulence spectrum. They are called Direct Numerical Simulation ( ) codes. They are three-dimensional, time-dependent and the radiative transfer is also treated in three dimensions. Last but not least, they make no use of tunable parameters. 3D codes produces more physically realistic simulations than 1D stellar codes.

Ideal relies on the following assumptions (Spruit, 2013):

• The uid approximation: the plasma is a uid where the thermodynamic quantities are meaningful and the variations of these quantities are slow compare to the characteristic time scales of the microscopic processes taking place in the plasma;

• The relation between the electric eld and the current density (The Ohm's law) is assumed instantaneous;

• The plasma is globally neutral.

The equations combine the Navier-Stokes equations for a plasma (i.e. taking into account the extra electromagnetic terms), the Maxwell-Ampère equation and the Ohm's law.

Codes solving these equations are o en coupled to a radiative transfer solver, especially for spectroscopic usages. They are called -codes. Notable -codes used to perform surface convection simulations are the -code (Nordlund & Galsgaard, 1995), the a code [START_REF] Vögler | Three-dimensional simulations of magneto-convection in the solar photosphere[END_REF] and the one used in this work: 5 (Freytag et al., 2002(Freytag et al., , 2012)).codes can be considered as solvers of -equations. One just has to specify some boundary conditions in order to model the physical phenomenon needed. The same code can, therefore, simulate radiative transfer in the interstellar medium, dynamics of plasma jets, sunspots, or convection. No extra ad hoc theory is needed.

But using a -code to compute the complete stellar-structure is completely out of reach (Kupka & Muthsam, 2017). And actually, we do not really need that to obtain a more realistic model, we just need a 3D model of the superadiabatic region and a 1D model for the rest of the star. This is the idea behind patched models ( ). A is build by connecting a 1D stellar model to a horizontally-averaged 3D model. The matching point is the location where the pressure and the temperature of both models are equal (see Fig. 3.8). A er this operation, we obtain two models. The (more realistic) is the combination of the 1D model and the 1D strati cation obtained from a 3D model. The unpatched model ( ) is the original 1D model with no amendment. In order to perform our theoretical work, we will compare two sets of frequencies. The one obtained from the which are the closest to the observations, and the one issued from the that are surface-a ected. This method gives

ν PM n -ν UPM n ν obs n -ν mod n ≡ δν n .

Adiabatic oscillation including turbulent pressure

We have seen that the two main causes of the surface e ects are the adiabatic approximation, which acts through the modal e ects, and the turbulent pressure which acts through the structural and modal ones. The impacts of the turbulent pressure and of the adiabatic approximation are hard to disentangle, therefore, we must nd a way to focus on the rst one, while keeping an adiabatic treatment. To that end, we follow the reasoning established by Rosenthal et al. (1999).

First of all, we place ourselves in a plane-parallel description of the stellar atmosphere. This approximation is justi ed because the atmosphere is thin, therefore the curvature is negligible. In this case, the coordinates are (x, y, z; t), the usual Cartesian coordinates. Let f be any eld. We introduce a rst decomposition of f of the form:

f = f + f , (3.71)
where • denotes the horizontal average operator. The quantity f contains both the mean value9 of f and the p-mode oscillation part. Here it is important to stress that • does not average over time, therefore saying that f contains the oscillation part is meaningful: at a given altitude, f oscillates in time but not horizontally. This is no problem for a radial mode ( = 0) because p-mode amplitudes are constant over a sphere (at least in non-rotating stars). This is not true if we are considering a non-radial mode. In this case, the horizontal average operator removes part or all the information on the mode. The primed quantity f is the convective uctuation and we have, by de nition, f = 0. In addition, the Eulerian perturbation of the average quantity f (z, t) can be written as (Rosenthal et al., 1999) 

f (z, t) = f 0 (z) + εf 1 (z, t), (3.72)
where f 0 (z) is the time averaged value of f (z, t), ε is a very small non-dimensional number and f 1 (z, t) is a time-dependent perturbation. The only special case is for the velocity eld.

For instance, the z-component is de ned by: ûz = ρu z /ρ. This expression has two advantages: (i): it will simplify the future calculation and (ii): ρu z corresponds to the mean mass ux, which vanishes when averaged over time because of the conservation of mass in the star, therefore this expression makes the oscillations more visible. The perturbed form of u z slightly changes because, due to the density weighted average, its average is not zero:

u z = ûz + u z ⇒ ρu z = ρ ρu z ρ + ρu z ⇒ ρu z = ρu z + ρu z ⇒ ρu z = 0 . (3.73)
As for the Eulerian perturbation of u z , we assume that u z,0 = 0, which amounts to saying that u z is at rest except for the perturbation due to the p-mode ûz and for the vertical velocity of the convective ow u z . The total pressure will be separated into its two sources: the gas pressure p g and the turbulent pressure p t due to the uctuations of the velocity eld. Its expression will be given later.

With those notations, the continuity equation (3.1) reads

∂ ∂t (ρ + ρ ) + ∇ • [(ρ + ρ )(û + u )] = 0. (3.74)
By keeping only 1 st -order term and averaging horizontally, it becomes

∂ρ ∂t + ∂ ∂z (ρu z ) = 0. (3.75)
The momentum conservation equation (3.2) needs a little more work. This equation can be written in a slightly more suitable way for us:

∂ρu ∂t + ∇ • (ρuu) = -∇p g + ρg.
(3.76)

A er injecting perturbed quantities, developing, projecting on z and averaging horizontally we obtain the following equation:

∂ ∂t ρ(û z + u z ) + ∇ • ρ( ûz 2 + 2 ûz u z + u 2 z ) = -∇(p g + p t ) + ρ(g + g ). (3.77)
Let us tackle the terms one by one

• 1 st term:

ρ(û z + u z ) = ρû z = ρû z (3.78)
• 2 nd term:

ρ (û 2 z + 2u z ûz + u 2 z ) = ρû 2 z + 2 ρu z =0 ûz + ρu 2 z = ρu 2 z + ρu 2 z .
(3.79)

• 3 rd term:

∂ ∂z p g + p g = ∂p g ∂z .
(3.80)

• 4 th term: the plane-parallel approximation amounts to making the Cowling approximation, i.e. the perturbation g of the gravitational eld can be neglected. This approximation is also applied in 3D simulations. Therefore, g + g = g and thus,

(ρ + ρ )g = ρg.

(3.81)

Finally, Eq. (3.76) reads:

∂ρû z ∂t = - ∂ ∂z ρu 2 z + ρu 2 z - ∂p g ∂z + ρg.
(3.82)
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With p = p g + p t , p t the turbulent pressure, an expression for the turbulent pressure can be extracted from the above equation:

∂ρû z ∂t = - ∂ρû 2 z ∂z - ∂p ∂z + ρg with p t ≡ ρu 2 z . (3.83)
Contrarily to ρu z , p t does not vanish. Eventually, we apply the same recipe on Eq. (3.63):

∂p g ∂t + u z ∂p g ∂z + p g Γ 1 ρ ρ ∂u z ∂z = -(Γ 3 -1)∇ • F rad ∂p g ∂t + ûz ∂p g ∂z + u z ∂p g ∂z + p g Γ 1 ∂ ûz ∂z + ∂u z ∂z = -(Γ 3 -1)∇ • F rad ∂p g ∂t + ûz ∂p g ∂z + ∂p g u z ∂z -p g ∂u z ∂z + p g Γ 1 ∂ ûz ∂z + ∂u z ∂z = -(Γ 3 -1)∇ • F rad .
horizontal average

(3.84)

A er tidying up, we obtain

∂p g ∂t + ûz ∂p g ∂z + p g Γ 1 ∂ ûz ∂z = -p g (Γ 1 -1) ∂u z ∂z - ∂p g u z ∂z -(Γ 3 -1)∇ • F rad . (3.85)
On the right hand side, the rst term is the compressible work and the second and third terms are respectively the divergence of the convective ux and of the radiative ux, both multiplied by Γ 3 -1.

We now introduce the Eulerian perturbation de ned in Eq. (3.72). The linearised Eqs. (3.75) and (3.83) now read:

∂ρ ∂t + ∂ρ 0 u z,1 ∂z = 0 and ρ 0 ∂u z,1 ∂t = ∂p 1 ∂z + ρ 1 g. (3.86)
The equation for the conservation of energy requires some attention. [START_REF] Stein | Convection and its in uence on oscillations[END_REF] argued that the rst term in the of Eq. (3.85) almost vanishes. Moreover, they showed that the divergence uxes (2 nd and 3 rd terms of of Eq. (3.85)) have opposite signs and nearly cancel each other. Assuming that there are no departures from the perfect gas law, their sum is proportional to the total ux divergence (Rosenthal et al., 1999). Rosenthal et al. (1999) considered that their perturbation could be neglected, meaning that the heating/cooling terms are zero. This a rmation follows from the adiabatic equation. In reality, simulations show that the non-adiabatic e ects are small but non-negligible. This can be seen from the residual frequency a er correction in Fig. 3.9. Part of the remaining surface e ect is due to the non-adiabaticity. Therefore, the whole perturbation of the of Eq. (3.85) can be neglected. Furthermore, in order to stick to the adiabatic treatment, (Rosenthal et al., 1999) suggested that either one of the following approximations could be made: With this approximation, the linearised Eq. (3.85) reads:

∂p 1 ∂t + u z,1 ∂p 0 ∂z + Γ r 1 ∂u z,1 ∂z = 0 with Γ r 1 ≡ p g Γ 1 p 0 , (3.89)
where we introduced the reduced Γ r 1 . • Gas Γ 1 approximation ( ): The Lagrangian perturbation of the turbulent pressure is assumed to be equal to the perturbation of the gas pressure (Houdek et al., 2017):

δp t p t δp g p g = Γ 1 δρ ρ . (3.90)
Thus, the linearised Eq. (3.85) reads:

∂ρ 1 ∂t + u z,1 ∂ρ 0 ∂z + p g Γ 1 ∂u z,1 ∂z = 0. (3.91)
Which approximation must we use ? Rosenthal et al. (1999) have compared the frequency di erences that these approximations generate when the frequency spectrum is computed with
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Figure 3.10: Relative di erence between F rad /F conv and the mean value of F rad /F conv of all the models in our grid. Values are computed at the altitude in the atmosphere where T = T eff .

a patched and an unpatched model. The unpatched model has its turbulent pressure set to zero, therefore neither the or the changes anything in the frequencies. On the contrary, the patched model has non-zero turbulent pressure computed using 3D -code. Therefore frequencies are a ected in a di erent way by the or the . Rosenthal et al. (1999) computed the 1D part of their models with two di erent prescriptions. In the rst case, they used the Model S (Christensen-Dalsgaard et al., 1996) (which at that time was considered as the state-of-the-art solar model) and a model called (Standard Envelope Model), where the mixing-length parameter was adjusted so that its adiabatic convective zone and the one of the 3D model have the same entropy. Since the entropy is related to the extent of the convective zone, this manipulation amounts to having the same convection zone depth as in the 3D model. The aim of the second model is to isolate the e ect of convection from other possible e ects. The di erences between and Model S, according to Rosenthal et al. (1999), come mainly from a di erent treatment of the atmosphere which results in a change in the temperature and density strati cations. Those changes are located in the very near-surface layers, and explain the divergence for high frequency (> 3000 µHz) while the divergence started around 2000 µHz between patched and 1D models (see Fig 3 .9). It appears from gure 3.9, on the le , that the frequency di erences between and are almost twice as high as the di erences between and . Furthermore, the right panel of gure 3.9 shows quite a good agreement between observations and . Consequently, we conclude that the most accurate approximation in order to include the e ects of turbulent pressure while keeping an adiabatic treatment of the oscillations is the Gas Γ 1 approximation. This has been con rmed later by Sonoi et al. (2017) with modern 3D simulations. In Manchon et al. (2018), the computation of adiabatic oscillations are made in the framework of the Gas Γ 1 approximation.

more detail on the approximation F rad /F conv cnst

In Manchon et al. (2018), just a er equation ( 9), we make the hypothesis that the ratio F rad /F conv of the radiative ux to the convective ux at the surface is nearly constant from one star to an other. This is a strong hypothesis and the question whether it is justi ed or not has been raised by the referee. Our answer satis ed the referee but was not reproduced in the published article. I provide here further justi cation.

First of all, this assumption is only made at the surface of the star. The surface is de ned, in our case, by the location where the horizontally averaged temperature equals the e ective temperature. Below this point, energy is dominantly carried by convection, we have F conv F rad . Above this point, we enter the atmosphere and the medium becomes radiative again because the opacity suddenly drops, and we have F rad F conv . In the transition region, F rad should be roughly of the same order as F conv . In order to test this approximation, we compared the relative di erence between F rad /F conv obtained at the location where T (r) = T eff , and the mean value of F rad /F conv of all the models of our grid. The main characteristics of this grid as well as the labels of each model are de ned in the Table 1. of Manchon et al. (2018). Despite a few outliers, for all models F rad and F conv approximately have the same order of magnitude. This approximation may seem harsh and would certainly need re nement. However, it allows us to understand physically some aspects of the problem at stake (here the in uence of the chemical composition on the surface e ects).

Recent developments

Since the publication of Manchon et al. (2018), the study of surface e ects has known some evolutions. First of all, concerning the method of model patching and its use to correct the surface e ects. Normally, patched models are only used for theoretical studies. Indeed, computing a 3D stellar atmosphere model is time consuming. We usually have a grid of 3D models ready to use and the goal is to nd a matching 1D model. It is much easier to compute, but painful. Indeed, the good 1D model is found using a Levenberg-Marquardt algorithm [START_REF] Press | Numerical Recipes in FORTRAN[END_REF] which sometimes necessitates to compute dozens of 1D stellar models in order to be close enough to the desired matching point. Being able to compute a patched model for any star would provide a very precise correction of the surface e ects. However, due to the computational cost, astronomers use empirical correction laws calibrated on small grid of patched models. The idea developed by Jørgensen et al. (2018); Mosumgaard et al. (2019) is to couple 1D model to 3D atmospheres on-the-y along evolution. They computed once and for all a large and tight grid of 3D stellar atmosphere models spanning a populated part of the diagram. From this grid is extracted a grid of horizontally averaged 1D strati cations. When a 1D stellar evolution is computed, the upper layers are not computed using MLT and with a simple atmospheric model such as Eddington atmosphere (see Sect. 1.1.2, atmospheres), but the upper strati cation is directly interpolated in the grid of 3D strati cations. The matching point between the 3D model atmosphere and the 1D stellar model is limited by the maximum depth of the 3D model. However, Jørgensen et al. (2018) did not found that their 1D models were sensitive on the location of this matching point, owing to the fact that their 3D simulations are all su ciently deep. They found limitations on the size of their 3D grid, but this is not a problem of the method. They later used their on-the-y method to investigate its impact of the surface e ects (Jørgensen & Weiss, 2019). By comparing the observed frequencies of the Sun with the one calculated on a present-day model the Sun, whose evolution has been computed using the on-the-y method. They found that it suppresses the structural e ects and only leaves the modal one. This conclusion is rather expected but is a good validation of their method. Their grid has been recently extended to include non-solar metallicities models

Introduction

Thespace-bornemissionsCoRoT (Baglin et al.2006;Michel et al. 2008;[START_REF] Auvergne | [END_REF]) and Kepler (Borucki et al. 2010) have provided a rich harvest of high-quality seismic data for solar-like pulsators. This has allowed a leap forward in our understanding and modelling of low-mass stars (see the reviews by Chaplin & Miglio 2013;Hekker & Christensen-Dalsgaard 2017). However, for the last three decades (e.g. Dziembowski et al. 1988) it has been known that the comparison between modelled and observed acoustic-mode frequencies suffer from systematic discrepancies. This bias is called the surface effect and has been widely studied in the solar case (Rosenthal et al. 1995;Christensen-Dalsgaard & Thompson 1997;Rosenthal & Christensen-Dalsgaard 1999). They are attributed to our deficient modelling of the uppermost layers of stars with a convective envelope. Indeed, 1D stellar models hardly take into account the complexity of these layers that are subject Present address: Institut d'Astrophysique Spatiale, Université Paris Sud, Orsay, France to highly turbulent flows as well as a complex transition between a convective to a radiative-dominated energy flux transport (e.g. Kupka & Muthsam 2017).

More generally, these frequency residuals prevent a direct comparison between modelled and observed frequencies. Frequency combinations are commonly used to circumvent this problem (e.g. Roxburgh & Vorontsov 2003), but still, an accurate determination of frequencies is highly desirable to take advantage of the full potential of asteroseismology. To reach this goal, a handful of empirical prescriptions with adjustable free parameters have been proposed (Kjeldsen et al. 2008;Ball & Gizon 2014, 2017;Sonoi et al. 2015) and allow one to apply a posteriori corrections to the modelled frequencies. Such an approach is now widely used (e.g. Lebreton & Goupil 2014;Silva Aguirre et al. 2017) and has proven to be quite efficient in inferring a stellar model that fits the observed frequencies. However, it suffers from some fundamental drawbacks. The choice of the parameters is not physically motivated. Consequently, there is no guarantee that this optimal model is unique and accurate (i.e. that it properly reproduces the real physical structure of the observed star).
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Another complementary approach then consists of investigating the physical nature of the surface effect. This motivated a number of studies to unveil and constrain the physical ingredients responsible for these biases. More precisely, surface effect has been shown to be the result of two distinct effects (e.g. Houdek et al. 2017): structural effects coming mainly from turbulent pressure in the hydrostatic equation which is usually absent in 1D stellar evolution codes, and modal effects gathering modifications of the eigenmodes, mostly due to nonadiabaticity (e.g. Balmforth 1992;Houdek et al. 2017) as well as the perturbation of turbulent pressure induced by the oscillations (Sonoi et al. 2017). Other related processes were also invoked, such as convective backwarming (Trampedach et al. 2017) or magnetic activity (Piau et al. 2014;Magic & Weiss 2016). Nonetheless, as demonstrated by the early work by Rosenthal & Christensen-Dalsgaard (1999) on the Sun using a 3D hydrodynamical simulation, the dominant physical ingredient is thought to be the turbulent pressure that modifies the hydrostatic equilibrium and subsequently introduces an elevation of the star surface. Then, the acoustic cavity is modified and therefore the frequencies are as well.

Based on a grid of 3D numerical simulations, this method was used by Sonoi et al. (2015), Ball et al. (2016), Trampedach et al. (2017) who investigated the surface effect variations across the Hertzsprung-Russell diagram. These works clearly demonstrated that surface effects sharply depend on effective temperature and surface gravity of star. In addition, Sonoi et al. (2015) presented a way to provide parameters for the empirical surface corrections by fitting them against a physically motivated scaling relation derived by Samadi et al. (2013). However, all these works considered solar metallicity models while the distribution of metallicity for observed solar-like pulsators is quite large (see e.g. Pinsonneault et al. 2014). Our goal is thus to study the influence of metallicity on the surface effects and propose a method to account for it.

The article is organized as follows: in Sect. 2 we describe the method of model patching, which is constructed by replacing the upper layers of a 1D model by horizontally averaged stratification of a 3D model atmosphere, and our set of models. Then in Sect. 3 we show that metallicity has a strong impact on the frequency residuals and therefore its influence cannot be ignored. We also study the variation of the frequency differences with effective temperature, surface gravity and opacity and give a theoretical justification. Finally, in Sect. 4 we provide constraints on the various parameters usually used in the empirical surface effect function across the T eff -log g -log κ space.

Model-patching method

In this section we explain the method we used to patch our models and describe our final set of models.

Grid of 3D models

We used a grid of 3D hydrodynamical models from the CIFIST grid of stellar atmosphere including the superadiabatic region to the shallowest layers of the photosphere, computed using the CO 5 BOLD code (see Ludwig et al. 2009;Freytag et al. 2012 for details). The chemical mixture is based on the solar abundances of Grevesse & Sauval (1998) apart from the CNO elements which follow Asplund et al. (2005). We considered 29 models with effective temperature (T eff ) ranging from 4500 K to 6800 K, a surface gravity (log g) ranging from 3.5 to 4.5, and a metallicity [Fe/H] = -1.0, -0.5, +0.0, +0.5. We note that 5000 5500 6000 6500

T eff [K] 3.50 Table 1 summarizes the global parameters of the 3D models. The range of metallicities we considered corresponds to the metallicities of observed solar-like pulsators (Anders et al. 2017;Serenelli et al. 2017). Table 1 exhibits small groups of models (labelled with same first letter) with very similar T eff and log g. Those groups for instance in Fig. 1 at log g = 4.0, help us to investigate the influence of metallicity on the surface effect by keeping other global parameters fixed. However, we pointed out that, whereas within a group the dispersion in log g is rather small (of the order of 0.1%), the dispersion in T eff is much higher (of the order of 1%). Indeed, surface gravity is an input parameter of the hydrodynamical simulations while effective temperature is controlled by adjusting the entropy at the bottom of 3D models. It is therefore difficult to match an accurate effective temperature.

Computation of patched models

For each 3D model, both a patched (hereafter PM) and an unpatched model (hereafter UPM) have been constructed. A patched model is a model computed using a 1D stellar evolutionary code in which we replaced the surface layers with the stratification obtained by horizontally averaging a 3D model computed with a R-MHD code. The fully 1D model is called an unpatched model. The construction of PM and UPM has been widely described in Trampedach (1997), Samadi et al. (2007Samadi et al. ( , 2008)), Sonoi et al. (2015), Jørgensen et al. (2017). The 1D counterparts of 3D hydrodynamical models have been obtained using the 1D stellar evolutionary code CESTAM (Morel 1997;Marques et al. 2013) by tuning the age (or the central temperature for advanced stages), the total stellar mass M, and the mixing length parameter α MLT in order to match the effective temperature, the surface gravity and the temperature at the bottom of the 3D model, located just below the superadiabatic region. We chose to remove the first four bottom layers and the last top layer of the 3D hydrodynamical model to be sure to remove any numerically induced errors and that the patching point is deeply inside the A107, page 2 of 14 L. Manchon et al.: Influence of metallicity on the near-surface effect on oscillation frequencies Table 1. Characteristics of the 3D hydrodynamical models and of the UPM and PM.

Model

T eff log g from the one of UPM. The initial helium and metal abundances are close to the ones at the surface. We recall that the metal abundance is different from the iron abundance [Fe/H] imposed in our models. The evolutionary stages PMS, MS, and SG stand for pre-main-sequence, main-sequence and sub-giant.

T b ν max M Age Y init Z init α MLT R PM ∆r/R PM Stage K (×10 4 ) K µHz (M ) (Myr) % % (R ) (×10 -
adiabatic region, which has been shown to be a condition for a obtaining reliable PM (Jørgensen et al. 2017). The 1D models use the equation of state, and opacities given by OPAL2005 (Rogers & Nayfonov 2002;Iglesias & Rogers 1996) and implement standard mixing-length theory (Böhm-Vitense 1958) with no overshoot. We ignore diffusion processes, rotation and turbulent pressure. The atmosphere is computed using the Eddington approximation. The helium abundance in 1D models is set to the one used in 3D models.

Finally, we note that for some 3D models one can find a degenerate solution for the corresponding 1D model: we could patch either a PMS or a sub-giant model. We opted for evolved models since they corresponds to stars in which solar-like oscillations are observed so far. However, when the evolved models are too old (older than the age of the Universe) we kept the PMS model, except if lying on the Hayashi track.

Table 1 also summarizes the stellar parameters of both UPM and PM together with relative radius differences R PM /R UPM -1. Our set of models covers a wide portion of the Hertzsprung-Russel Diagram for intermediate mass stars. We note that our patched models with metallicity [Fe/H] = +0.5 only have log g = 4.0. Indeed, 3D models from the CIFIST grid with [Fe/H] = +0.5 were only available for log g ≥ 4.0. In addition, 3D models with log g 4.5 are located below the main sequence diagonal, and therefore it is impossible to find a 1D model matching their characteristics (with the physical ingredients we used). Thus, a large portion of our initial [Fe/H] = +0.5 3D hydrodynamical models were not suitable for our purposes.

Computation of oscillation frequencies

In this work, we consider only structural effects and an adiabatic treatment of the oscillations. The frequencies are computed using the ADIPLS code (Christensen-Dalsgaard 2011) for both UPM and PM by assuming the gas Γ 1 approximation, which assumes that the relative Lagrangian perturbations of gas pressure and turbulent pressure are equal (Rosenthal & Christensen-Dalsgaard 1999;Sonoi et al. 2017). Besides this distinction in the treatment of Γ 1 entering the calculation of the model frequencies, we emphasize that the frequency differences studied in this work are only emerging A107, page 3 of 14 A&A 620, A107 (2018) from structural effects. Therefore, it should be emphasized that the frequency differences studied in this work concern only purely structural effects. We have checked that we recovered the previous results of Sonoi et al. (2015) for the solar metallicity. For the sake of simplicity, we mainly focussed on the surface effect affecting radial modes: non-radial modes exhibit a mixed behaviour that would make our analysis more complex (however, see Sect. 4.2.2 for a discussion).

Influence of metallicity

Until now, surface effects have always been studied assuming a solar metallicity. Corrections depend only on T eff and log g such as the power law proposed by Kjeldsen et al. (2008), cubic and combined inverse-cubic laws (Ball & Gizon 2014), or a modified Lorentzian (Sonoi et al. 2015). This section is intended to motivate the investigation of the dependence of the surface effect on metallicity.

Qualitative influence of metallicity on frequency differences

We begin this section by quickly describing the effects of a change of metallicity on the frequency residuals. Frequency differences are induced by the surface elevation between PM and UPM due to turbulent pressure, which extends the size of the resonant cavities and therefore decreases the mode frequencies for PM, leading to negative frequency differences δν = ν PMν UPM .

Up to now, only the influence of effective temperature and surface gravity on surface effects have been studied. However, the abundance of heavy elements has a strong impact on opacity and hence on the convective flux imposed by a change in the radiative flux. In turn, a change in the convective flux leads to a change of convective velocity and therefore a change of turbulent pressure and finally it changes the location of the surface. We mention here that metallicity also has an effect on gas pressure, through the mean molecular weight µ, which varies in the opposite direction of the turbulent pressure and therefore counteracts its effect. Finally, while mechanisms by which a change of metallicity can act on the surface effect are known, those mechanisms are too intricate to identify the resulting effect on the variations of surface term without a deeper analysis as will be demonstrated in the following (see Sect. 4).

Figure 2 shows the (purely structural) frequency differences for three groups of models that have approximately the same effective temperature and surface gravity. The discrepancies in ν n between two models appear at relatively low frequencies and generally increase towards high frequencies. As for finding a general trend of the evolution of the surface effect against the metallicity, it seems from Fig. 2 no such trend exists: in the top panel, frequency differences, at ν max for instance, slightly decrease from [Fe/H] = -0.5 to 0.0 and then are much higher for the [Fe/H] = +0.5 model. In the middle panel, the frequency residual at ν max significantly increases from [Fe/H] = -0.5 to 0.0. Finally, in the bottom panel, very little variations at ν max can be noticed from one composition to an other. However, the variation of the frequency differences seems to follow closely the variations of the elevation of the stellar surface between UPM and PM:

∆r ≡ R PM -R UPM .
(1)

The slight disagreement between [Fe/H] = 0.0 and -0.5 in the top panel may be explained by the large dispersion in effective temperature. 

Effect of the elevation on the frequency differences

To gain some insight into the influence of metallicity on surface effect, we tried to scale the normalized frequency differences at ν max for our set of models. This is a necessary step to allow an estimate of the surface effect correction parameters (see Sect. 4). Thus, let us start with the perturbative approach as adopted by (Christensen-Dalsgaard & Thompson 1997; see also Goldreich et al. 1991;Balmforth et al. 1996). The authors show A107, page 4 of 14 L. Manchon et al.: Influence of metallicity on the near-surface effect on oscillation frequencies that the frequency difference can be well approximated by

δν ν = R 0 Kn c 2 ,v δ m c 2 c 2 + Kn v,c 2 δ m v v dr (2) R 0 Kn v,c 2 δ m v v dr , (3) 
where c is the adiabatic sound speed, the variable v is defined by v = Γ 1 /c, Kn c 2 ,v and Kn v,c 2 are the kernels that can be determined from eigenfunctions, δ m c 2 and δ m v are the Lagrangian differences of c 2 and v, respectively, at fixed mass.

Rosenthal & Christensen-Dalsgaard (1999) further approximated the frequency differences for radial modes, based on the expression of Kn v,c 2 and using a first-order asymptotic expansion for the eigen-function, by

δν ν ∆ν∆r c ph , ( 4 
)
where ∆ν is the asymptotic large frequency separation, ∆r is the previously defined elevation, and c ph the photospheric sound speed (see Appendix A for a demonstration of this relation). This relation has been previously tested by Sonoi et al. (2015) at solar metallicity using surface effect derived from a grid of 3D numerical simulations. It turns out that Eq. ( 4) reproduces the overall scale of the surface effect (such as in Fig. 3 were the surface effect is considered at ν max ) for a set of models. It is thus necessary to determine whether this relation holds for models with a non-solar metallicity. To this end, we have compared frequency residuals at ν = ν max given by Eq. ( 4) as shown in Fig. 3 (top panel). There is still a good agreement between the frequency differences and the approximated expression given by Eq. ( 4). Moreover, it appears that the frequency differences are dominated by the surface elevation ∆r. To understand the link to metallicity, it is thus necessary to go a step further and to investigate the relation between surface elevation and metallicity.

Scaling law for the frequency differences

In this section, we aim to determine a relation between frequency differences at ν max and global parameters of the models. First, as shown in the previous section, there is no clear trend between the surface term and metallicity. Indeed, at constant metallicity and considering our rather large range of effective temperatures and surface gravities, the dominant opacity mechanisms are not the same from a model to an other for instance, the opacity at the surface is dominated by the negative hydrogen ions for T eff 5000 K. Therefore, the relation between δν/ν and Z is non-trivial. To overcome this problem, we directly consider the Rosseland mean opacity at the photosphere instead of the metallicity as a global parameter in addition to the effective temperature and to the surface gravity (in the following, the photosphere is defined as the radius at which T = T eff ).

Let us begin by considering the elevation in Eq. (1) which must be expressed as a function of these global parameters. Using the hydrostatic equilibrium equation, it reads

∆r = R PM 0 H PM p dp tot p tot - R UPM 0 H UPM p dp g p g , (5) 
where H PM p and H UPM p are the pressure scale heights at the photosphere associated with the patched and unpatched models, p tot is the total pressure such as p tot = p turb + p g with p turb and p g the turbulent and gas pressure, respectively. Further assuming that Finally, since the pressure scale-height scales as T eff /g, the elevation scales as ∆r ∝ (T eff p turb )/(gp g ).

To go further, we need to find an expression for p turb /p g . Near the photosphere, the turbulent pressure can be written as

p turb = ρv 2 conv , (7) 
where v conv is the vertical component of the convective velocity. We now need an expression for this velocity and for the density. Assuming a standard Eddington grey atmosphere, the optical depth is approximated by τ = H p ρκ, and in the Eddington approximation, we have τ = 2 /3 at the bottom of the photosphere. Then, and accordingly:

ρ ∝ g T eff κ • (8)
As for finding an expression for v conv , we note that F tot = F rad +F conv , with F rad and F conv the radiative and convective component of the total energy flux respectively. The convective flux A107, page 5 of 14 A&A 620, A107 ( 2018)

is proportional to the kinetic energy flux (as shown for instance within the MLT framework). Then,

ρv 3 conv ∝ T 4 eff 1 + F rad F conv -1 • (9)
The ratio F rad /F conv is assumed to remain nearly constant from one model to an other. Therefore, v conv finally reads,

v 2 conv ∝ T 8 /3 eff ρ 2 /3 • (10)
Inserting the expressions of Eqs. ( 8) and (10) into Eq. ( 7) leads to:

p turb ∝ T eff T eff 7 /3 g g 1 /3 κ κ -1 /3 , (11) 
where κ = 0.415 cm 2 g -1 . From the perfect gas law for, p g ∝ ρT eff and using Eq. ( 8), we can rewrite ∆r as

∆r ∝ T eff T eff 10 /3 g g -5 /3 κ κ 2 /3 • (12)
Replacing ∆r into Eq. ( 4) one finally obtains the following estimate:

δν ν ∝ ∆ν ∆ν T eff T eff 17 /6 g g -5 /3 κ κ 2 /3 ≡ z 1 . (13) 
This expression provides us with a simple relation between the frequency differences and the global parameters. The dependence on the metallicity is embedded into the Rosseland mean opacity. We note that it is possible to go further and to explicitly introduce the metallicity. For instance, in the vicinity of the solar effective temperature and gravity, the opacity is dominated by the H -so that κ ∝ ρ -1 /2 T 9 eff Z. However, given the wide range of effective temperatures and surface gravities of our grid of models, it is more relevant to keep the Rosseland mean opacity at T = T eff (surface opacity) as a global parameter. Indeed, the Rosseland mean opacity is a quantity available in any 1D stellar evolutionary code.

Then, using Eq. ( 13) as a guideline, we performed a fit where the powers of the temperature (p), gravity (q), and opacity (s) have been adjusted at ν = ν max for each model. Figure 3, bottom panel, displays the result. This figure shows a very good agreement between exponents derived in Eq. ( 13) and the one actually obtained using our simulations. Consequently this scaling can be used to provide a physically-grounded values for the parameters of the empirical correction function of the surface effect. Finally, we note that using the opacity instead of the metallicity allows us to take a detailed mixture into account.

In addition to our crude approximations, a possible source of discrepancies between values predicted by Eq. ( 13) and the one calculated can be that we did not fix the helium abundance from one model to the other when varying the metallicity. The changing helium abundances have an impact both on the evolution of the model and on its opacity at the surface. However, the helium abundances [He/H] range between -5.8 × 10 -3 and +1.2 × 10 -2 and should be a negligible source of uncertainty. A final source of error comes from the method we used to average the 3D stratifications. Indeed, since the Rosseland opacity is involved Eq. ( 13), it would be more precise to patch the models using a stratification averaged against the Rosseland optical depth instead of the actual geometrically averaged stratification, but this is beyond the scope of this paper and will be investigated in a forthcoming work.

Surface-effect corrections

A handful of empirical functions have been suggested to perform a posteriori corrections on the modelled frequencies. After having given a theoretical background that explains variations of δν/ν, we considered the most commonly used correction models to study the evolution of the related free parameters as a function of effective temperature, surface gravity, and surface opacity. This is intended to provide constraints on those parameters and thus to provide physically-grounded values for use on seismic observations. 4.1. Empirical functions for correcting modelled frequencies 4.1.1. Kjeldsen et al. (2008) power law Kjeldsen et al. (2008) proposed a power law which was found to match the frequency differences obtained between the observed and modelled solar frequencies:

δν ν max = a ν PM (n) ν max b , (14) 
where a and b are the parameter to be adjusted. They found a = -4.73 and b = 4.9 for their model of the Sun by matching a subset of nine radial modes centred on ν max . Kjeldsen et al. (2008) provided a method to correct the frequency for a star similar to the Sun without having to calibrate b. Let us assume we want to model a star with near solar global parameters and we want to constrain our model using the individual frequencies. The radial mode frequencies spectrum of our best model which include a surface term are denoted ν i,best and the frequencies of solar radial modes for the same order are denoted ν i,ref . Then, Kjeldsen et al. (2008) proposed that the frequencies can be linked, to a good approximation, by ν i,best rν i,ref , using the proportionality factor r between mean densities of both models: ρbest = r 2 ρref . Using this relation and the large separations of both models, they provided a way to obtain a and b. Further assuming b constant (the value of which depends of the physical ingredients used in the model), they derived a value for a for a set of theoretical models close to the Sun.

This power law has been widely used since and many authors (e.g. Metcalfe et al. 2009;Bedding et al. 2010) have used a constant value for b (not necessarily 4.90 though) derived from solar frequency measurements. Keeping b constant is often necessary in the case for which observations do not provide enough constraints to adjust it. However, using the solar value leads to a bad correction if the modelled star is too different from the Sun (e.g. Kallinger et al. 2010). Furthermore, b depends on the input physics. Otherwise, b can be considered as a variable parameter in the modelling and therefore significantly improve the correction. Different models of the star HD 52265 have been compared by Lebreton & Goupil (2014) using various input physics and found approximatively the same predicted age models when either frequency ratios (Roxburgh & Vorontsov 2003) or individual corrected frequencies were used as constraints. The age dispersion was slightly higher with models constrained by individual corrected frequencies (∼±9.5%) and using uncorrected individual frequencies lead to ages 40% larger (Lebreton et al. 2014).

In the following, we have studied two versions of this parametric function. The first, adjusted on the whole radial mode frequency spectrum for frequency less than the acoustic cut-off frequency, will be referred to as K08. The second, adjusted on A107, page 6 of 14 L. Manchon et al.: Influence of metallicity on the near-surface effect on oscillation frequencies a reduced frequency interval 0 < ν/ν max < 1.05 is refered to as K08r (see Fig. 6 and Appendixes B and C).

Ball & Gizon (2014) cubic and combined inverse-cubic laws

Ball & Gizon (2014) suggested a new function to correct frequency differences. It is partially based on the early work by [START_REF] Gough | Progress of Seismology of the Sun and Stars[END_REF] for the cubic part). They accounted for two leading effects introducing systematic errors in the theoretical computation of the frequency spectrum: the modification of the sound speed caused by a magnetic field concentrated into a filament by convective motions, causing a frequency shift scaling as ν 3 /E [START_REF] Libbrecht | Observations of Solar Cycle Variations in Solar p-mode Frequencies and Splittings[END_REF]), E being the normalized mode inertia; and the modification of the pressure scale height caused by a poor description of convection, inducing a frequency shift scaling as ν -1 /E. This correction funtional has the advantages of being independent of a solar calibration and including a dependence on the normalized mode inertia which allows us to correct non-radial modes, without the need of re-scaling their frequency differences. Because of this, they suggested a cubic correction taking only into account the dominant effect and a combined inverse-cubic correction including the perturbation.

The cubic correction (in the following BG1) is defined by

δν ν max = a 3,BG1 E ν ν max 3 , (15) 
and the combined inverse-cubic correction (in the following BG2) is

δν ν max = 1 E        a -1,BG2 ν ν max -1 + a 3,BG2 ν ν max 3        , ( 16 
)
where E is the normalized mode mass:

E = 4π R 0 |ξ r (r)| 2 + ( + 1)|ξ h (r)| 2 ρr 2 dr M |ξ r (R)| 2 + ( + 1)|ξ h (R)| 2 , ( 17 
)
where R, M, and ρ are respectively the photospheric radius, mass and density of the star, and ξ r and ξ h are the radial and the horizontal component of the displacement of an eigenmode of degree . a 3,BG1 , a -1,BG2 , and a 3,BG2 are the parameters to be adjusted. They used the acoustic cut-off frequency ν c instead of ν max in order to normalize their fitting parameters: it only results in a modification of a -1 and a 3 and does not change the law itself.

Sonoi et al. (2015) modified Lorentzian

The final function to be introduced was a modified Lorentzian (Sonoi et al. 2015) that was found to better correct the surface effect derived from the 3D simulations at high frequency. It reads

δν ν max = α           1 - 1 1 + ν PM ν max β           , (18) 
where α and β parameters are to be determined. When ν PM /ν max 1 we get back to Kjeldsen et al. (2008) law. When ν PM = ν max , δν/ν max = α/2. Therefore, a and α are directly linked to δν/ν given by Eq. ( 13), which gives physical justification for its variations. In the following, we will refer to this correction law as S15. Ball & Gizon (2017) found no correction to be clearly superior than the others for all stars. However BG2 and then BG1 performed slightly better than the others, followed by the free power law, S15 and finally K08. S15 was shown to poorly correct high frequencies and the K08 with b = 5.0 correction gave worse results than no correction for their of their stars. We present very similar conclusions in the following.

Variation of the coefficients in the ∆ν

-T eff -log g -κ space 4.2.

Prescriptions for radial modes

In order to fit the parameters of the correction functions and to determine the fitting parameters, we used a least square minimization algorithm implementing a Levenberg-Marquardt A107, page 8 of 14 L. Manchon et al.: Influence of metallicity on the near-surface effect on oscillation frequencies method which minimizes the squared deviation defined as

D = N i = 1 ν PM,i -ν UPM,i -δν i ν max 2 , ( 19 
)
where i corresponds to the eigenmode index, N to the total number of radial modes and δν the correction computed from the considered correction relation. Tables B.1 and C.1 summarize the coefficients and their squared deviations from our computations. We also define √ D/N as the root-mean frequency differences after correction.

Coefficients a and b involved in Eq. ( 14) and a 3,BG2 from Eq. ( 16) are presented in T eff -log g plane in Fig. 4. Furthermore, all coefficients are represented as a function of log z 1 in Fig. 5. a, α and a 3,BG2 (and therefore a 3,BG1 ) show similar trends. Indeed, they are related to the amplitude of the surface effect at ν max and Eq. ( 13) allows one to understand their variations. However, this theoretical justification for the variations of a, α, a 3,BG1 and a 3,BG2 does not provide a way to favour one correction law over an other. Coefficient a -1,BG2 exhibits the same behaviour as above. However, we cannot offer the same explanation for its trend because the inverse term in BG2 is a second correction to the cubic term and is not related to the amplitude of the surface effect at ν max .

The trends followed by b and β are related to the slope of the frequency differences. As shown in Sonoi et al. (2015) and in Fig. 4, the coefficients b (whatever the metallicity) increase significantly towards cooler stars, which again contradicts the assumption of a constant b. Regarding the relevance of giving a prescription for log b and log β thanks to the linear relationship with log z 1 , we can see in Fig. 5 that log b and log β are affected by a high dispersion compared to the grey line. This could mean either that we omitted a physical dependency in Eq. ( 13) that only affects the agreement with log b and log β, or a prescription based on same other physical basis should be investigated.

Table 2 shows the prescriptions for the variations in the T efflog gκ space of all coefficients c 0 studied in this article in the form

log c 0 = c 1 log ∆ν/∆ν + c 2 log T eff /T eff + c 3 log g/g + c 4 log κ/κ + c 5 . ( 20 
)
We note that the opacity has a strong impact on each of the coefficients and must, therefore be taken into account when correcting the surface effect.

The top panel of Fig. 6, top panel also shows the value of the root-mean frequency differences after correction for each model and each correction law. From this, we see that BG1 is the worst performer followed by K08. Those laws provide a correction that leaves frequency residuals comprised between 1 and 10 µHz which are still higher than the frequency resolution provided by CoRoT and Kepler. The better performance of K08 over BG1 can be explained by the fact that K08 have two degrees of freedom whereas BG1 has only one. For radial modes, the inclusion of the normalized mode mass E n in BG1 does not compensate the loss of a degree of freedom.

Then, the remaining laws K08r, S15 and BG2 provide correction almost as good as the resolution of CoRoT and Kepler. K08r and BG2 are slightly better than S15, yet K08r is applied only on the frequency range 0 < ν/ν max < 1.05.

Mixed-modes case

We also performed the same test as in Ball & Gizon (2017) on evolved models that present mixed-modes in their frequency spectrum. In Sect. 4.1.2 we see that, thanks to the dependence in the normalized mode inertia, BG1 and BG2 can be applied to non-radial modes without any change of the law. However, in order to be able to compare all empirical corrections on non-radial modes, one had to rescale the frequency differences on which K08, K08r and S15 by mean of the inertia ratio Q n for a mode of frequency ν n defined as the ratio of the inertia of this mode by the inertia of a radial mode interpolated at the frequency ν n : Rosenthal & Christensen-Dalsgaard 1999). Furthermore, we added one last empirical relation by modifying the expression given for S15 in Eq. ( 18) similarly to BG1 and BG2 in which we replaced α by α/E where E is defined in Eq. ( 17) (the new function is denoted S15E). This allows S15E to be applied directly on non-radial modes frequency differences.

Q n = E n /E n0 (ν n ) (e.g.
The empirical relations K08, K08r and S15 were then adjusted on Q n δν n , with 0 ≤ ≤ 2 and S15E, BG1 and BG2 were adjusted directly on δν n , with 0 ≤ ≤ 2. For 9 of the 16 evolved models considered, the least-square algorithm converge to a solution of K08, K08r or S15 very remote from the general trend of frequency differences, whereas for the second group of relations (S15E, BG1 and BG2), the residual root-mean frequency differences after correction are greatly improved to a value between 0.1 and 1 µHz.

As a third test, we performed the same fits excluding the quadrupolar modes (i.e. we fit modes with 0 ≤ ≤ 1). This time, corrections laws accuracies are similar to the one presented in Sect. 4.2.1. As for the newly introduced S15E, it performs slightly worse than S15 but still better than K08. This third test suggests that the failure of K08, K08r and S15 in fitting Q n δν n , with 0 ≤ ≤ 2 is due to quadripolar modes. There are two reasons for it.

First, the p and g cavity are less coupled for = 2 than for = 1 mixed-modes which induces more important changes on the behaviour of a mode when the surface layers are changed between UPM and PM. Indeed, modifying the surface layers changes the frequency of pure p modes that couple with different g modes for PM and UPM (Ball & Gizon 2017). As a consequence, when computing Q n,2 δν n,2 , it so happens that we deal with mixed-modes from PM and UPM that have different properties. Second, due to the presence of mixed-modes, Q n,2 sometimes becomes higher than ten, while it is normally of the order of unity (see example of Cm10 in Fig. 7). It over-scales the corresponding quadrupolar mixed-modes and gives much weight A107, page 9 of 14 A&A 620, A107 (2018)
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Fig. 6. Root-mean frequency differences ν max √ D/N of radial modes after correction for each empirical law and for each model. It shall be noticed that the deviation for K08r is computed only on the range 0 < ν/ν max < 1.05. Black dots corresponds to uncorrected frequencies (UC), that is root mean frequency differences between PM and UPM frequencies.

to those modes, which in turns has strong impact on the quality of the fit. The peaks in the value of Q n,2 arise for mixed-modes having most of their amplitude in the g mode cavity, contrary to dipolar mixed-modes which have their Q n,1 staying close to unity. On the other hand, fitting directly δν n with S15E, BG1 and BG2 does not amplify the frequency differences affecting mixed-modes, providing a much better correction.

For all these reasons, we recommend the use of BG2 or S15E when correcting sets of radial and non-radial modes and we recommend either S15 or BG2 when correcting only radial modes (K08r can be used for frequencies ν max ). The remaining advantages of S15 over BG2 is that the coefficients α and β are better described as a function of Eq. ( 13) than coefficients of BG2 which present a bigger dispersion on Fig. 5. This being said, many of the correction laws considered in this paper gives a rootmean frequency difference of the order of 0.1 µHz (at least for few models), similar to the frequency uncertainties of CoRoT and Kepler. Furthermore, the search for the best a posteriori correction law should not set aside the need of a theoretical understanding of the surface effect.

Conclusion

We have computed a grid of 29 couples of one dimensional models using the method of patched models consisting in replacing poorly modelled surface layers of a 1D model by the stratification, averaged over the geometrical depth and time, computed from 3D hydrodynamical models. The grid includes models with effective temperature ranging from T eff = 5000 K to 6800 K, surface gravity ranging from log g = 3.5 to 4.5 and iron abundance ranging from [Fe/H] = -1.0 to +0.5.

Our aim was to estimate and understand the impact of varying metallicities on the surface effect. Our main result is that, in the considered range of metallicities (i.e. [Fe/H] = -1.0 to +0.5) the amplitude of the surface effect computed at ν max , and for models with same effective temperature and same surface gravity, can be up to a factor of three between the model with the 0.8 1.0 1.2 1.4 ν n /ν max (µHz) lowest amplitude and the model with the highest one. However, it appears that studying the amplitude as a function of the metallicity does not lead to a clear trend, whereas the Rosseland mean opacity κ turned out to be the adapted quantity for understanding the variation of the surface effect. Based on relatively simple physical arguments, consolidated using the grid of 3D models, we found a scaling relation between the amplitude of the surface effect and the global parameters T eff , log g and the opacity κ computed at the photosphere.

10 0 10 1 Q n (ν n ) = 0 = 1 = 2
We also tested the accuracy of existing surface effect empirical corrections of radial modes frequency differences on each model of our grid in order to obtain a prescription for the A107, page 10 of 14 L. Manchon et al.: Influence of metallicity on the near-surface effect on oscillation frequencies coefficients. Then, we tested those laws on radial and non-radial modes for evolved models exhibiting mixed-modes, in order to test how the empirical corrections perform when mixed-modes are involved. Overall, the combined correction law proposed by Ball & Gizon (2014) is found to give the best performer, closely followed by the law proposed by Sonoi et al. (2015). These two laws leave frequency differences that are less than 1 µHz on average, even reaching 0.1 µHz for the coolest stars of our set of model, which is of the order the frequency resolution provided by CoRoT and Kepler. We note that, on a low frequency range (0 < ν/ν max < 1.05), the Kjeldsen et al. (2008) power law (calibrated on this reduced range) gives equivalent results. Then the Kjeldsen et al. (2008) power law calibrated on the whole range of frequency and the purely cubic correction proposed by Ball & Gizon (2014) are the worst performer with remaining mean frequency differences of the order of few µHz. When applying those corrections on frequency spectra including mixed-modes, only the empirical corrections BG1 and BG2 proposed by Ball & Gizon (2014) and the modified S15E where we added a factor of 1/E improve the mean frequency dispersion. Only S15E and BG2 leave a satisfying root-mean dispersion of the order of the CoRoT and Kepler frequency resolution.

Therefore, we derived prescriptions for the fitting parameters of those radial modes correction empirical models as functions of log ∆ν, log T eff , log g and log κ which are quantities easily computed by 1D stellar evolution model. The next step will be to test our prescriptions against observed frequency spectrum in order to determine their degree of accuracy. We will focus on this in a furture work.

Finally, we only considered in this article the issue of structural effects. However, other effects such as non-adiabaticity effects may also play a non-negligible role in the propagation of acoustic waves in the surface layers. This will be studied in a forthcoming paper. 4πr 2 ρc 2 s , (A.1)

where ω = 2πν and ξ r are respectively the angular frequency and the radial displacement of the mode, c s is the sound speed and M and R are respectively the total mass and the total radius of the star.

The first term in parentheses in the expression of Kn v,c 2 is the inertia of a mode:

I M 0 ξ 2 r dm = R 0 ξ r 2 4πr 2 ρdr. (A.2)
Using a first-order expansion, we can write the radial displacement as (e.g. Unno et al. 1989):

ξ r (r) Aρ -1 /2 c -1 /2 s r -1 cos ω r 0 dr c s -ζ , (A.3)
where A is a constant and ζ is a phase factor. Further inserting Eq. (A.3) into Eq. (A.2) leads to

I = R 0 4πA 2 cos 2 ω R 0 dr c s -ζ dr c s • (A.4)
Averaging the cosine term gives 1 /2 and then simply

I = 2πA 2 R 0 dr c s = πA 2 ∆ν , (A.5) with ∆ν defined by ∆ν = 2 R 0 dr/c s -1 . Then, Knl v,c 2 reads Kn v,c 2 = ω -2 ∆ν πA 2 dξ r dr 2 4πr 2 ρc 2 s . (A.6) Yet, (dξ r /dr) 2 k 2 r ξ 2 r = ω 2 ξ 2 r /c 2 s . Then, Kn v,c 2 = ω -2 ∆ν πA 2 ω 2 c 2 s 4πr 2 ρc 2 s ξ 2 r = 4∆ν A 2 r 2 ρA 2 ρ -1 c -1 s r -2 cos 2 ω r 0 dr c s -ζ , (A.7)
where the last line was obtained by replacing ξ 2 r by its expression. Finally, by simplifying this expression we obtain:

Kn v,c 2 2∆ν c s cos 2 ω r 0 dr c s -ζ • (A.8)
Eventually, inserting Eq. (A.8) into Eq. ( 3), approximating the cosine by 1 /2 as in (A.5) and using Eq. ( 19) from Rosenthal & Christensen-Dalsgaard (1999): Notes. Coefficients a, α, a 3,BG1 , a -1,BG2 and a 3,BG2 are all negative.
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Appendix C: Root-mean frequency differences after correction

In Table C.1 we gather the values of the root-mean frequency differences ν max √ D/N of radial modes after correction for each empirical law shown in Fig. 6. In the three previous chapters, I have presented the standard modelling of stellar-structure and angular momentum transport as well as the key concepts of rotating asteroseismology. I expose in this chapter the main observations that plead for a complete reappraisal of the modelling of rotation. My PhD work focuses on the modelling and theoretical aspect of the angular momentum transport problem. However, theory should never lose sight of experimental and observational facts. I introduce this Chapter with the main methods and instruments that are used today to infer direct or indirect constraints on stellar rotation. Then I show the principal results on the rotation of the Sun and for other stars with di erent evolutionary status.

Methods and instruments

Methods

For the majority of stars, the only information we know about their rotation is their surface rotation velocity. In their pioneering work, [START_REF] Struve | [END_REF] proposed to use the Doppler broadening induced by rotation on the many absorption lines produced by elements at the stellar atmosphere to measure surface rotation. On the side of the star coming toward the observer, lines are blue-shi ed and on the side moving away, lines are red-shi ed. The measured Doppler broadening is the result of the projected equatorial velocity onto the line of sight: v sin i, with the angle i between the rotation axis and the line of sight. For instance, a star seen pole-on will not have its absorption lines Doppler-shi ed and no rotation measurement can be made. The v sin i have been measured for a large number of stars, assuming a uniform distribution of the orientation of rotation axis. Doing so allows astronomers to retrieve a distribution of the absolute surface velocities, not only the projected one (e.g. [START_REF] Hill | [END_REF]Royer et al., 2002;Zorec et al., 2017;Houdebine et al., 2016).

The v sin i measurement, for an unresolved star, gathers the signal emitted by the whole surface and does not allow physicists to measure di erential rotation. However, the presence of an inhomogeneity can locally change the emission properties of the surface. Such an inhomogeneity can be caused by the passage of a spot or a change in chemical abundances, which enhances or reduces local stellar emission. If this local enhancement or reduction is strong enough, it produces visible variations of the total signal emitted by the star. The distortion depends on the intrinsic characteristic of the inhomogeneity and on its location on the surface. This location cannot be determined by only one observation. Yet, the star being in rotation, the signal perturbation will move from the blue-side of the Doppler broadening to the red side. Therefore, by studying the signal time-series, one can extract the stellar rotation velocity at the very location of the inhomogeneity. For a large number of inhomogeneities located at di erent latitudes, the latitudinal rotation pro le can be determined [START_REF] Kochukhov | Doppler and Zeeman Doppler Imaging of Stars[END_REF].

If, in addition, the star is able to maintain a (strong) magnetic eld, the light emitted by a star is polarized. Its polarization state can be decomposed into four Stokes coe cients, each coe cient carrying speci c information about the magnetic eld characteristics (modulus, magnetic eld vectors projected on the line of sight, etc.). Magnetization of the emission zone causes the so-called Zeeman e ect, i.e. line splitting or broadening. The Zeeman e ect preferably produces circular rather than a linear polarization (about 10 times more). The former is the one providing information on the magnetic elds vectors. Zeeman-Doppler imaging allows the observer to reconstruct the magnetic eld morphology, even tiny details such as spots, and the modulation of the circular polarization reveals the e ect rotation (Babcock, 1947;Semel, 1989;[START_REF] Kochukhov | Doppler and Zeeman Doppler Imaging of Stars[END_REF].

We have described the information that can be gleaned from spectroscopy and spectropolarimetry on the surface rotation of the stars. In order to learn about their interior rotation pro le we shall turn to asteroseismology. We have seen in Chapter 3, that the general oscillation equations in a non-rotating star. Here, we assume the star is slowly rotating, the e ect of the deformation due to the centrifugal acceleration is small compared to the e ect of the Coriolis acceleration. Therefore, in Eq. (3.25), the term -(ξ • ∇Ω 2 )r sin θe s is neglected and the momentum conservation equation reads

-ρω 2 ξ + 2iρωΩ × ξ = ρ ρ ∇p -∇p -ρ∇φ . (4.1)
In order to avoid confusions in the forthcoming developments, I have dropped the 0 subscripts for equilibrium quantities. I recall that here, ω = ω + mΩ. However, ω is not the same frequency as in the non-rotating case because ω veri es a di erent system of equations. In order to clarify, I note ω 0 = ω n the angular frequency in case of no rotation and ω m = ω n m the angular frequency in the corotating frame of a star. Therefore, we will now use ωm = ω m + mΩ instead of ω.

We follow the derivation of [START_REF] Goupil | Seismic Diagnostics for Rotating Massive Main Sequence Stars[END_REF]. First, we introduce the notation ω m = ω 0 + ω 1,m (n are omitted) with ω 1,m ω m , ω 0 , and ξ = ξ 0 + ξ 1 with ξ 1 ξ, ξ 0 . Eigenfunctions ξ 0 and ξ 1 can be decomposed in spherical harmonics. Therefore, abbreviating n by k, ξ 1,k can be written as a linear combination of other 0-th order solution ξ 0,i =k [START_REF] Ouazzani | PhD: La rotation et son interaction avec les oscillations dans les étoiles Ouazzani[END_REF]:

ξ 1,k = i =k a i k ξ 0,i . (4.2)
In addition, since the uctuations of density, pressure and gravitational potential can also be perturbed in the same way, we denote with L 0 (Y m ) = L(ξ 0 ) the right hand side of (4.1):

L 0 (Y m ) = L(ξ 0 ) = ρ ρ 0 ∇p 0 -∇p -ρ 0 ∇φ and L(ξ 0 ) = -ρω 2 0 ξ 0 , (4.3) and now, L = L 0 + L 1 .
Injecting all these quantities into Eq. (4.1) and keeping only the 1 st -order terms in Ω yields:

-ρ 2ω 0 (ω 1,m + mΩ)ξ 0 + ω 2 0 ξ 1 = L(ξ 1 ) -2iρω 0 Ω × ξ 0 , (4.4)
where we used the second equation in Eq. ( 4.3). We now project onto ξ 0 . To that end, we de ne the scalar product:

a|b = ˆV a * • bd 3 r. (4.5)
with V the volume of the star and • * being the complex conjugate. It can be shown that ξ 0 |ξ 1 = 0, therefore

-ξ 0 |ρ 2ω 0 (ω 1,m + mΩ)ξ 0 + ω 2 0 ξ 1 = ξ 0 |L(ξ 1 ) -2iρω 0 Ω × ξ 0 . (4.6) It follows that, ω 1,m ˆV ρξ * 0 ξ 0 d 3 r = ˆV ρξ * 0 (iΩ × ξ 0 -mΩξ 0 ) d 3 r. (4.7)
In above equation, we de ne two quantities I 0 and R as

I 0 = ˆV ρξ * 0 ξ 0 d 3 r and R = ˆV ρξ * 0 (iΩ × ξ 0 -mΩξ 0 ) d 3 r, (4.8)
where I 0 is called the mode inertia 1 . Developing R gives [START_REF] Aerts | Frontiers in Nuclear Structure, Astrophysics, and Reactions[END_REF])

R = i ˆV ρΩξ * 0 -ξ h ∂Y m ∂ϕ e r -ξ h cos θ sin θ ∂Y m ∂ϕ e θ + ξ r sin θY m + ξ h cos θ ∂Y m ∂θ e ϕ d 3 r
1 This term is also o en referred to as the mode moment of inertia. This denomination seems quite improper because the moment of inertia is de ned as the product of the mass with the square of the distance to the pivot point or to the rotation axis. In the de nition of I0, ξ 0 is only the displacement from an equilibrium location, induced by the passage of an oscillation (in the case of no rotation). Nor can it be called the perturbed moment of inertia of the mode because if an element of uid is displaced from r to r + ξ 0 by an oscillation, the perturbation of its moment of inertia with respect to its equilibrium moment of inertia is, at rst order, 2ρr * ξ 0 .

Observational constraints on rotation

-m ˆV ρΩ|ξ 0 | 2 d 3 r = i ˆV ρΩ -ξ * r Y m | * ξ h ∂Y m ∂ϕ -|ξ h | 2 cos θ sin θ ∂Y m ∂θ * ∂Y m ∂ϕ + ξ * h ξ r ∂Y m ∂ϕ * Y m +|ξ h | 2 cos θ sin θ ∂Y m ∂ϕ * ∂Y m ∂θ d 3 r -m ˆV ρΩ|ξ 0 | 2 d 3 r. (4.9)
Useful relations concerning spherical harmonics are de ned in (B.15). In particular, the ϕderivatives of the spherical harmonics are, ∂Y m /∂ϕ = imY m and ∂ Y m | * /∂ϕ = -imY m . Thus, above expression of R becomes

R = mc 2 m ˆV ρΩ |ξ r | 2 P m (cos θ) 2 + |ξ h | 2 dP m dθ 2 + m 2 sin 2 θ P m (cos θ) 2 -P m (cos θ) 2 [ξ * r ξ h + ξ r ξ * h ] -2|ξ h | 2 cos θ sin θ P m (cos θ) dP m dθ d 3 r, (4.10)
and the mode inertia is

I 0 = ˆV ρξ * 0 ξ 0 d 3 r = c 2 m ˆV ρ |ξ r | 2 P m (cos θ) 2 + |ξ h | 2 dP m dθ 2 + m 2 sin 2 θ P m (cos θ) 2 d 3 r (4.11)
.

(4.12)

Since we neglected centrifugal acceleration, the star is spherical. Therefore ´V d 3 r = ´π 0 ´R 0 sin θr 2 dθdr and I 0 further reduces to:

I 0 = c 2 m ˆπ 0 ˆR 0 ρP m (cos θ) 2 |ξ r | 2 + ( + 1)|ξ h | 2 r 2 sin θdθdr = c 2 m 2( + |m|)! (2 + 1)( -|m|)! ˆR 0 ρ |ξ r | 2 + ( + 1)|ξ h | 2 r 2 dr, (4.13) 
where Eqs. (B.11) and (B.12) have been used. Until now, we have made no assumption on the angular velocity pro le, except that Ω is small. From now on, we also assume a shellular rotation pro le, which allows us to write

R =mc 2 m ˆπ 0 ˆR 0 |ξ r | 2 + ( + 1)|ξ h | 2 -(ξ * r ξ h + ξ r ξ * h ) -|ξ h | 2 ρΩP m (cos θ) 2 r 2 sin θdθdr =c 2 m 2( + |m|)! (2 + 1)( -|m|)! ˆR 0 |ξ r | 2 + ( + 1)|ξ h | 2 -(ξ * r ξ h + ξ r ξ * h ) -|ξ h | 2 ρΩr 2 dr. (4.14)
Finally, the small change of frequency induced by a small rotation rate can be written

ω 1,m = R I 0 = m ˆR 0 |ξ r | 2 + ( ( + 1) -1)|ξ h | 2 -(ξ * r ξ h + ξ r ξ * h ) ρΩr 2 dr ˆR 0 ρ |ξ r | 2 + ( + 1)|ξ h | 2 r 2 dr = m R n m I n m , (4.15)
where R n m and I n m have been de ned to follow standard notation (e.g. [START_REF] Aerts | Frontiers in Nuclear Structure, Astrophysics, and Reactions[END_REF].

It is common to de ne the generalised rotational splitting δν n m (or sometimes noted S m ; Goupil 2011) as

δν n m = ω 1,m -ω 1,-m 2m = ˆR 0 K n m (r)Ω(r)dr, (4.16)
where K n m is the rotational kernel:

K n m (r) = |ξ r | 2 + ( ( + 1) -1)|ξ h | 2 -(ξ * r ξ h + ξ r ξ * h ) ρr 2 I n m . (4.17)
Obtaining the rotation pro le from rotational splittings is done through so-called inversion techniques. We gave the expression of the rotational splitting for an angular velocity depending only on r. Let us move a step forward and assume that it has the same functional form in 2D:

δν n m = ˆR 0 ˆπ 0 K n m (r, θ)Ω(r, θ)rdrdθ + ε n m , (4.18)
where ε n m is the measurement error on the rotational splitting and K n m (r, θ) is the rotational kernel of Eq. (4.17) in two dimensions. 2D inversion methods, such as the one developed by Schou et al. (1994), amounts to nding Ω(r, θ) such that in Eq. (4.18), equals . More precisely, Schou et al. (1994) proposed to use a regularized least square method which enforces smoothness on the second derivatives of Ω. The quantity to minimize is:

χ 2 = n m δν n m -´R 0 ´π 0 K n m (r, θ)Ω(r, θ)rdrdθ 2 σ 2 n m + µ 2 r ˆR 0 ˆπ 0 f r (r, θ) d 2 Ω dr 2 2 drdθ +µ 2 θ ˆR 0 ˆπ 0 f θ (r, θ) d 2 Ω dθ 2 2 drdθ, (4.19)
where σ n m is the standard deviation of the error a ecting δν n m , µ r and µ θ are so-called trade-o parameters and are meant to control the accepted variation of the solution. Finally, f r and f θ are non-negative functions attributing a weight to di erent points. This quantity can easily be minimized using a least squares method to nd Ω from rotation splittings.

Ground-based observations

The ). [START_REF] Aurière | EAS Publications Series[END_REF] on the Bernard Lyot Telescope ( ) at the Pic du Midi Observatory is a twin of a n and is designed to take over a n 's nights of observations. Finally, (High Accuracy Radial Velocity Planet Searcher; [START_REF] Pepe | From Extrasolar Planets to Cosmology: The VLT Opening Symposium[END_REF] is installed on the ESO 3.6m telescope at La Silla.

Asteroseismology requires very long time series of stellar photometry or velocimetry/spectrometry, ideally up to several months. On Earth this is a complicated task with only one telescope except at the poles. In Earth's polar regions, the Sun is observable with astronomical conditions during uninterrupted weeks. For other stars, international consortia have built networks of telescopes capable of observing stars without interruption during a very long time. Observers take advantage of the powerful and large optics only possible in ground telescopes. However, they need to cope with atmospheric distortion, wind turbulence, ltering e ect of the atmosphere, etc. Among those networks one can cite the Global Oscillation Network Group ( ; [START_REF] Harvey | [END_REF]) that counts 6 telescopes around the globe and its younger brother ++ that incorporates continuous magnetogram measurements [START_REF] Hill | Local and Global Helioseismology: the Present and Future[END_REF]; the Birmingham Solar Oscillation Network ( i ; [START_REF] Chaplin | American Astronomical Society Meeting Abstracts[END_REF], also composed of 6 telescopes. These three networks are devoted only to the Sun, in complement of space-based operations. Finally the Stellar Oscillation Network Group ( ; [START_REF] Grundahl | A New Era of Seismology of the Sun and Solar-Like Stars[END_REF]) aims at observing stars other than the Sun, which is still under construction and have 3 telescopes at the moment.

Space-based observations

The availability of detailed constraints on stellar internal structure and rotation have made a big step forward with the advent of space-borne missions. The rst mission launched into space, dedicated to the study of internal structure of the Sun using asteroseismology was SoHO (Solar and Heliospheric Observatory) launched in 1995 and still in activity today. o takes on board two spectrometers, (Global Oscillations at Low Frequencies; Gabriel et al. 1995) and SOI-MDI (The Solar Oscillations Investigation -Michelson Doppler Imager; Scherrer et al. 1995) to measure small variations of velocity due to pressure modes in the outer envelope of the Sun. Velocity-measurement time series more than 24 years long are available for both these instruments and allow solar physicists to reach unprecedented precision on frequencies and on the solar internal structure inverted from them. In addition to helioseismic data, o was also able to study the solar photosphere, chromosphere, corona and solar wind from di erent points of view: temperature, chemical composition, magnetic topology and intensity, density, etc. A er o , other satellites joined the armada, studying the Sun. The (Solar Terrestrial Relations Observatory; 2006) spacecra s for stereoscopic imaging of, i.e. coronal mass ejection;

(Solar Dynamics Observatory; 2010) which studies the Sun's atmosphere and internal structure through imaging and helioseismology (velocity measurements). More recently launched, the Parker Solar Probe (2018) and Solar Orbiter (2020) will approach the Sun closely. They are mainly devoted to the study of the mechanisms of acceleration of the solar wind and its dynamics. Solar Orbiter will, in addition increase the inclination of its orbit in order to have a better view on the poles, regions of emanation of the fast solar wind. Vast and precise studies of the internal structure of other stars began with the space telescope CoRoT (Convection Rotation and Transits) originally devoted to the detection of stellar oscillations using photometry [START_REF] Catala | COROT: A Proposal to Study Stellar Convection and Internal Rotation[END_REF]Baglin et al., 2006;Michel et al., 2008) and secondarily extended to the exo-planetologists community during the development phase [START_REF] Deleuil | Detection of Earth-Sized Planets with the COROT Space Mission[END_REF]. The detection surface is paved with 4

: two devoted to asteroseismology with an exposure time of 1 s, and two dedicated to nding exoplanets, with an exposure time of 32 s (faint stars are favoured in order to get a large number of targets for exoplanet hunting). These last two s actually appeared to be well designed for detecting oscillations in stars which oscillate much slower than stars. CoRoT observed x regions of the sky during continuous periods of around 150 days (long runs) for detailed study of oscillating stars and for the detection of planets; and during periods of around 10 to 20 days (short runs) for exploratory programs. CoRoT measured its rst light early in 2007 and was retired mid-2013, a er twice the nominal duration.

Two years a er CoRoT's rst light, on march 2009, 's space telescope Kepler started operating. Kepler (Borucki et al., 2010) is equipped with 42 s, read every 6.5 s and addedup to 59 s for short cadence targets and to 29.4 min for long cadence targets. During 4 years, from may 2009 to may 2013, Kepler stared at a 105 square degree region in Cygnus-Lyra. The mission was then further extended in degraded mode following the brake-down of two reaction wheels. The secondary mission, called K2 takes advantage of the radiation pressure of solar photons to keep its orientation, but is forced to stare at regions near the ecliptic plane in order to maintain a symmetric pressure, and to change the region of interest every 83.5 days. The regions observed by Kepler are displayed in Fig. 4.4, right panel. As CoRoT, Kepler's goal was to nd exoplanets and measure stellar oscillation spectra. During its nominal mission, it observed around 200 000 stars with magnitudes ranging from 9 to 16. As I write these lines, Kepler found 2341 con rmed exoplanets and K2 found 409 (among the 4274 exoplanets reported by the Encyclopédie des Planètes Extrasolaires2 ).

The last space-borne mission is (Transiting Exoplanet Survey Satellite; [START_REF] Ricker | Society of Photo-Optical Instrumentation Engineers[END_REF]. It was launched in April 2018 with the primary goal of measuring stellar oscillation spectra and detecting smaller exoplanets than Kepler did. In practice it needs to observe brighter stars. Contrary to Kepler, has four on-board wide-angle camera which span a band of 24 • in azimuth from pole to equator (actually the equator is not mapped, the eld of view stops 6 • above it) and stare at it for 27.4 days (two orbits around Earth). The eld of view is represented in Fig. 4.2, on the le , on a sphere aligned with the ecliptic pole. A er 27.4

Observational constraints on rotation days of observations, the satellite rotates 28 • and repeats the observations. A er 13 periods of observation, will have done a complete revolution around itself and mapped a whole hemisphere. It ips over and then maps the other hemisphere with 13 new sectors. Apart from scarce regions around the ecliptic plane, will gather photometric data on all the celestial sphere for at least 27.4 days. Furthermore, a er each rotation, some regions mapped by superimpose (see Fig. 4.2, right part). The duration of observation will add-up for those regions, increasing the signal-to-noise ratio and the number of exoplanets discoverable. The mission has recently been extended for 2 years for a second full map if the sky. Up to now, 51 new exoplanets observed by (at mid 20203 ) have been con rmed, but more than 2 000 objects are suspected to host one or more exoplanets and are waiting for con rmation.

Apart from broad surveys, the advent of nanosatellites makes it possible to focus on a very limited number of stars. For instance, the constellation of nanosatellites (Bright-star Target Explorer; Weiss et al. 2014) is composed of 6 nanosatellites (actually one of them is not responding). They carry a 3 cm aperture telescope, with a blue lter for three of them and a red lter for other the three. Each telescope can see approximately 15 stars at the same time. As we will see later, multi-band photometry is crucial for mode identi cation. Although CoRoT supported three-band photometry, the constellation provides two-band photometry at a much cheaper cost. Furthermore, as is a constellation with redundant instruments, it allows continuous observations of targeted stars.

What for the future?

Concerning long photometric measurements, an mission is being prepared for launch in 2026:

(PLAnetary Transits and Oscillations of stars; Rauer et al. 2014). is constituted of 26 cameras: 2 fast cadence (2.5 s) cameras meant primarily to observe bright stars and 24 slow cadence cameras (25 s) for other stars. The slow cadence cameras are divided into 4 groups, each group pointing towards a slightly di erent direction. Fig. 4.4, le panel, represents these four elds of view. Due to overlapping, regions are seen not only by 6 cameras but by 12, 18 or 24. It is designed for a 6 years primary mission decomposed into two phases. First, will look at two regions for 2 years each. These regions have been chosen because they present a high density of solar-like stars. The duration of two years would allow astronomers to observe two transits of an exoplanet with an Earth-like orbit period. The next phase is called step-and-stare.

will cover around half of the whole sky by staring at regions for up to 5 months.

Despite many claims of detection, there is no community consensus on the discovery of g -modes in Sun and even less in solar-like stars. The only detectable oscillations that can propagate in the radiative zone of these stars are from mixed-modes. The amplitude of perturbations generated by purely g -modes at the surface of the Sun is currently below the sensitivity of our instruments. However, with the recent detection of gravitational waves4 , old ideas have re-emerged. Gravity modes propagating inside the radiative zone of the Sun induce perturbations in the gravitational eld. With space-borne interferometer (Laser Interferometer Space Antenna; Amaro-Seoane et al. 2017;[START_REF] Baker | [END_REF]) dedicated to the detection of very small amplitude gravitational waves, such tiny perturbations in the gravitational eld could become measurable. Previous works have shown that, with the speci cations of known at the turn of the new millennium, amplitude of the order of 1 -10 mm s -1 at the surface of the Sun would be detectable (Giampieri et al., 1998;Roxburgh et al., 2001). The studying of data has shown that the amplitude of velocity variations generated by g -modes at the surface of the Sun should be less than 10 mm s -1 which is not incompatible with ' sensitivity. In the following I will rst detail the observational constraints that we have on the Sun's rotation pro le and in the next section I will focus on other stars.

Constraints on the Sun's rotation pro le

From the surface to 0.4R

The rst evidence that the Sun was rotating came from the observation of sunspots dri ing at its surface. Johannes Fabricius was the rst in 1611 to systematically study the motions of those spots for few months and to propose that their apparent motion was due to rotation of the Sun. Later, in 1630, Christoph Scheiner measured the equatorial surface rotation period to be of 27 days and noticed that the rotation speed was lower as he came nearer to the poles. This is the rst evidence of a surface di erential rotation. Nowadays, the surface solar rotation rate Ω s is expressed in the following form (e.g. [START_REF] Schröter | [END_REF]: = 2.868 × 10 -6 rad s -1 456 nHz. In velocity, it gives 1.98 km s -1 . I give this value in various units because in the rest of this thesis, it will facilitate the comparison with stellar rotation rates that can be expressed in di erent physical units. At a latitude of 60 • , the rotation rate is Ω s 11.5 deg d -1 370 nHz, thus corresponding to a period of 31.2 days.

Ω s (θ) = A + B sin 2 θ + C sin 4 θ, ( 4 
Using 15 days of discontinuous Doppler measurements of the surface of the Sun, Brown & Morrow (1987) were the rst to determine a two-dimensional rotation pro le of the Sun. They found that Ω varies in latitude and radii in the convective zone and then stays constant in the radiative zone, at least down to 0.4 R . This result was later re ned with the continuous 144 days time series from the early measurements of on board o . Kosovichev & Schou (1997) detected latitudinal di erential rotation below the surface of the Sun for the rst time. In order to do that, they used the rotational splitting of the fundamental mode (f-mode: n = 0) for degrees in the range 120 to 2505 . Fig. 4.5, le panel, taken from Kosovichev & Schou (1997) represents the measured rotation rate as a function of latitude at the surface and at a depth of 2 -9 Mm (0.29 -1.29 %R ) below the surface. This gure shows that the latitudinal di erential rotation stays almost the same as we go just below the surface. Using the same data, the rotation rate pro le at di erent latitudes are shown in Fig. 4.5, right panel, for the whole star (Schou & SOE Internal Rotation Team, 1998). At the very right of this graph, we recognize the same variation of the rotation rate with latitude near the surface as measured by Kosovichev & Schou (1997). Following the solid lines from right to le , we notice a distinct increase of the rotation rate at high latitudes and an decrease at low latitudes. For the rotation rate at 75 • , we see between 0.9 and 0.95R a brusque increase. This was coined a "jet" of fast rotation by Schou & SOE Internal Rotation Team (1998). However, the jet was absent in the more recent inversions made, for instance, with GONG data (Howe et al., 2000) and it is now considered as an artefact induced by the data analysis. As long as we go deeper, the 1 -σ uncertainties increase but the inverted rotation rate at di erent latitudes do not overlap, until all measured rotation rates converges around 0.7R . This is the location of the tachocline, a region of transition between the convective and radiative region. From 0.7 and 0.3R , the rotation rates at any latitude converge to a mean value around 440 nHz. More recent inversions reduced the dispersion on the inverted values and con rmed a solid rotation in this region (no r or θ gradients). From 0.3R to the centre, the 1σ uncertainties diverge and nothing can be said about this region. The modes propagating in this region are radial p-modes and g -modes. The former are not a ected by rotation and measuring the rotational splitting of the latter would require at least detecting them, which we do not.

Stellar models did not always compare favourably with these rotation pro les. In his seminal paper, [START_REF] Zahn | [END_REF] produces solar-like stellar models with shear-induced turbulence and winddriven meridional circulation. However, these models end up with di erential rotation in their radiative zones. By adding an additional transport mechanism, internal gravity waves ( ; see Chapter 5), Talon & Zahn (1998) managed to obtain a nearly at rotation pro le for a solar model a er 2.8 gigayr. However they used a prescription for the angular momentum luminosity that overestimates their e ciency, they say. A more recent work has con rm this result [START_REF] Charbonnel | [END_REF] but starting from the , with an initially at rotation pro le. However, such a model requires non-standard mechanisms of transport of . There are a lot of candidates and their possible interactions when put together in a stellar evolution have never been tested (see Chapter 5). Turck-Chièze et al. ( 2010) tested the impact of initial conditions on the rotation evolution of a solar model. They used two di erent stellar evolution codes, no additional transport mechanism (and no magnetic braking) and three di erent initial conditions: ∼ 2 km s -1 , ∼ 20 km s -1 and ∼ 53 km s -1 . The rst corresponds to a very low (unrealistic) initial rotation velocity while the last two are more realistic. They found that only the rst initial condition produces, at the age of the Sun, a rotation pro le not too far from the current solar rotation pro le. The last two end up with rotation rates around four time larger than the one presumed in the radiative zone of the Sun.

From 0.4R to the centre

In order to obtain information on the very core of the Sun through asteroseismology, one must detect the modes in which the core oscillates: g -modes. However, g -modes are evanescent in the convective zones and their detection is hindered by their very small residual amplitude at the surface of the Sun. Their discovery has been the object of many claims in the history of helioseismology. Nonetheless, all claims have been intensely debated and no consensus is emerging in the community regarding their detection. García et al. (2007) were the rst to claim the detection of solar g -modes. They studied the power spectrum density ( ) obtained from almost 10 years of measurements. They found a large bump in the period domain of asymptotic g -modes6 , between 25 µHz and 140 µHz. The likelihood that this bump is not produced by noise is at least 99.85 %. Furthermore, its location is close to the one predicted with theoretical models. However, this detection has not been reproduced by other methods or in data (Appourchaux & Pallé, 2013). Recently, Fossat et al. (2017); Fossat & Schmider (2018) argued for a new detection of solar g -modes based on a di erent method. They were not searching directly for g -modes but for modulation of p-mode frequencies due to small changes 4.3. Constraints on the stellar rotation pro les across the Hertzsprung-Russell diagram magnetized winds. The same process must occur for more massive stars ( 1.5M ). These stars quickly develop a central radiative zone and it rapidly becomes the dominant zone, in mass and in extent. The remaining convective zone is forced to co-rotate with the possibly present disk. However, it is not clear if the radiative zone is also coupled to the disk or if it can evolve freely.

Large surveys of young stellar cluster ( ) have provided data to test this scenario. A o ers many advantages. As it is formed from one molecular cloud, all stars in it have the same age and the same chemical composition. They o er a homogeneous sample where only the mass and the initial rotation vary. Fig. 4.7, le panel, displays the rotation period of stars with a mass 0.1M < M < 1.0M in various stellar clusters with di erent ages. Stars with 1M reach the main sequence at ∼ 40 Myr and stars with mass below 0.5M reach it a er ∼ 150 Myr. Therefore, only a small fraction of the stars represented on this graph are not on the . As long as the age increases, the proportion of fast rotators also increases, which is coherent with the above model. Irwin et al. (2008) tested it in more detail. They rst used stellar models calibrated to reproduce global quantities of the Orion Nebula Cluster ( ) (Fig. 4.7, le panel, top graph) computed with solid body rotation and losses by magnetized winds but no disk locking. A er an evolution from 1 Myr to 5 Myr, the periods of rotation of their synthetic cluster are signi cantly faster than the one of a cluster of equivalent age (NGC 2362), strongly suggesting that a process of loss is missing. It is worth noting that the hypothesis of solid rotation is to be ruled out as a cause of these high rotation rates because such young and low mass stars are fully convective and the should be well mixed at this stage. The authors point out that the age of the cluster is subject to a controversy and that it is sometimes estimated around 2 Myr. However, even by assuming this initial age, the stars in the modelled cluster still rotate too fast. Starting with another synthetic 2 Myr cluster (NGC 2264) evolved to 5 Myr again gave too rapid rotators.

However, while Irwin et al. (2008)'s work clearly shows the need for an additional loss mechanism, the disk-locking -model does not produce unanimity among astrophysicists. More recent studies have shown that the rotation periods of disk-less and disk-bearing stars overlap (Cody & Hillenbrand, 2010). Concerns have also been raised on the interpretation given to the measured rotation period. It is usually assumed that the rotation-induced brightness modulation observed in stars is due to spots on the surface. Artemenko et al. (2012) suggested that it could also be due to accretion disk and the measured rotation period would not only be the one of the star. Moreover, the disk-locking -model supposes that the magnetic eld lines are closed and that they connect almost to the whole disk. A work by Matt et al. (2015) have shown that if a high enough di erential rotation sets-in between the star and the disk, the eld lines tend to open, reducing the extent of the disk coupled to the star and the amount of torque felt by the star from the disk. The authors encouraged the use of more detailed models of star-disk interaction when considering the evolution of angular momentum.

Rotation in main-sequence stars

Solar-like stars

Solar-type stars are stars with a signi cant convective envelope 7 . The study of such stars allows us to gather information about the past and future of the Sun. The exploitation of CoRoT, Kepler and data have allowed astronomers to retrieve surface rotation periods and internal rotation pro les of dozens of thousands of solar-type main sequence stars. [START_REF] Leão | [END_REF] extracted from the CoRoT and Kepler input catalogues three samples of stars. In diagram of the CoRoT sample described in 4.3.2. The rotation period is colour-and shape-coded. Credits: [START_REF] Leão | [END_REF]. Bottom right: Average period with associated uncertainties for each spectral types in a sample of ∼ 12000 stars (in green). The Sun is a G2 type star. Red shaded area corresponds to an earlier determination. Credits: Nielsen et al. (2013).

Constraints on the stellar rotation pro les across the Hertzsprung-Russell diagram

order to select solar-like stars, they start with global parameters close to the solar values, within the range allowed by CoRoT or Kepler uncertainties on the measurement. Hence, the stars in the CoRoT sample have T eff = T eff, ± 300 K and log g = log g ± 0.4 dex, for a total of 175 stars; and two samples from Kepler with T eff = T eff, ± 170 K, log g = log g ± 0.2 dex and [Fe/H] = [Fe/H] ± 0.2 dex, for a total of 1836 and 2525 stars. These ranges correspond to CoRoT and Kepler typical uncertainties. All three samples actually contains , and more evolved stars. [START_REF] Leão | [END_REF] divided them into two groups: below 1 Gyr old and above. The surface rotation rates of stars in the CoRoT sample are represented in Fig. 4.7, top right panel. We immediately see that as stars age, their rotation periods increase, as predicted by the Skumanich law. This is con rmed by the period distribution of the two groups de ned above: the peak in the period distribution of the young Kepler group is of ∼ 12 days and ∼ 18 days for the old one. Another study on ∼ 12000 Kepler main-sequence stars (not only solar-type) show that B-or A-type stars are signi cantly faster rotators than later types (see Fig. 4.7, bottom right panel; Nielsen et al. 2013). The Sun is a G2-type star but rotates almost twice slower than the average rotation period found in this work. However, their sample is biased toward shorter period, as mentioned by the authors.

More detailed measurements have been made possible using asteroseismology. Benomar et al. (2015) have compared the surface rotation rates measured using v sin i and the average internal rotation rate (excluding the core convective zone, if present) measured using rotational splittings. They found a maximum factor 2 between surface and internal rotation rates for 21 of their 22 stars. Such a nearly at rotation pro le could be reproduced with the standard transport of angular momentum described in Chapter 2. Benomar et al. (2018) later managed to extract from the rotational splittings evidence of latitudinal di erential rotation in 13 solar-type main sequence stars. Fig. 4.8, le panel shows the latitudinal di erential rotation between the equator and a latitude of 45 • as a function of the average rotation rate measured using rotational splittings. Surface rotation pro les where the equator rotates faster than higher latitudes are called solar rotation, otherwise they are called anti-solar rotation. Half of the stars in this sample have their equatorial rotation rates 64% higher than their rotation rate at 45 • . It must be noted that the uncertainty on the di erential rotation increases when the average rotation rate decreases. This explains the large error bars for the slow rotators. The authors also found stars showing anti-solar rotation but the uncertainty was so important that the detection was not reliable. In comparison, Sun's 45 • latitude rotates at 90% of its equator angular velocity. Some of the stars present in the sample have a signi cantly higher di erential rotation. Such high latitudinal di erential rotation was not reproduced by models, suggesting that a mechanism counteracts the turbulence reductive e ect on shear. M 2.5M . On the , their nuclear energy generation process is mainly the CNO cycle which can reduce to 12 C + 4 1 H → 12 C + 4 He + 2e + + 2ν e , by going through the production of nitrogen and oxygen. As this cycle produces an enormous amount of energy, their core is convective, inducing chemical transport by penetrative convection inside the radiative region. These stars are also rapid rotators and we might expect important transport of chemicals and by shear-induced turbulence and meridional circulation. They are of interest for us because the e ects of rotation are easily visible and they can be used to test our models (see Sect. 8.2.2).

The categories of γ Dor and δ Sct are very close to one another in the diagram (see Fig. 4.6). What di erentiates them is the properties of their oscillation modes: the former oscillate in g -modes while the latter oscillate in p-modes. In δ Sct stars, the modes are excited by the κ mechanism enhanced in the H and He ionization regions. In the case of γ Dor stars, there are two driving mechanisms, depending on whether the γ Dor is warm or cold. For cold γ Dor, the driving mechanism is the so-called convective blocking mechanism (Pesnell, 1987;[START_REF] Guzik | [END_REF]. At the base of convective envelope, if the characteristic convective time-scale is smaller than the pulsation period, then the convection will not be fast enough to adapt to a small excess of luminosity caused by the energy brought by the wave. This energy is blocked, the pressure increases and drives a pulsation. For that to be true, the convective envelope needs to have a precise extent. For warm γ Dor, the convective envelope is too shallow and convective blocking is not e cient. Pulsations in these stars are excited by κ mechanism due to second ionization of helium (Xiong et al., 2016).

Exploiting the information contained in the oscillation spectra of γ Dor and δ Sct is a thorny issue because rapid rotation of high or intermediate mass causes the creation of complicated oscillation patterns (Lignières & Georgeot, 2009;[START_REF] Reese | [END_REF]. In order to extract information on their interior, astronomers must combine multiple techniques. The detailed study of δ Sct such as HD 174966 (García Hernández et al., 2013), HD 50870 (Mantegazza et al., 2012) or massive study of CoRoT or Kepler δ Sct targets (Michel et al., 2017;Balona & Dziembowski, 2011) have revealed regular patterns in their oscillation spectra which could provide the same kind of information as ∆ν or ν max of solar-like and red giant stars. Let us take the example of HD 174966 (García Hernández et al., 2013). The authors used the CoRoT light curve and extracted from it 185 mode frequencies between 0 µHz to 900 µHz with the highest amplitude modes grouped around 300 µHz. These data where complemented by 53 nights of spectroscopic observations using the spectrographs , and . It allowed them to obtain a rst estimate of global parameters: T eff = 7555 ± 50 K, log g = 4.21 ± 0.05, [Fe/H] = -0.08±0.1, M = 1.70±0.20 M and R = 1.70±0.20R . In the spectroscopic time series, they also isolated 18 mode frequencies, 12 shared with CoRoT frequencies. Furthermore, the rotational surface velocity was estimated to be 142 km s -1 or equivalently have a period of 0.64 days. It is actually estimated to be 33% of its break-up velocity (424 km s -1 ), much faster than the Sun. In order to identify the di erent modes, the authors used multi-band photometry technique. Pulsations introduce amplitude variations and phase shi s between the light curves measured in di erent photometric bands that depends on the order of the mode (Garrido et al., 1990). As this method does not make possible the determination of the azimuthal number m in a unique way, multi-band photometry can lead to degenerate mode identi cation. The degeneracy should be li by using modelling methods. However, the models used in (García Hernández et al., 2013) neglect the in uence of rotation on mode propagation which could lead to mis-identi cation. Nonetheless, they looked for periodicities in the oscillation spectra and found a period pattern with a frequency spacing of 64 µHz that they related to the large separation. Knowing the large separation is important because it provides a very precise measurement of the stellar mean density (see Eq. (3.53)).

In order to explore the internal rotation pro le, new asteroseismic diagnostics must be developed. In the case of a non-rotating star, the period spacing of g -modes is almost constant as the period of the mode varies. In the case of γ Dor stars however, the period spacings ∆Π do not stay constant any more but follow a linear relation as a function of the period. Ouazzani et al. (2017) de ne this relation as:

∆Π n m = Σ m Π n m + r n m , (4.21)
where σ m is the slope and r n m is the value of ∆Π n m extrapolated at the origin. They show that σ m does not depend on the internal structure but only on , m and on the rotation rate. They applied this method on 4 Kepler stars and found internal periods of rotation ranging from 2.31 days to 0.68 days. Guo et al. (2017) found for a hybrid γ Dor/δ Sct KIC 9592855 an internal period of 0.8 days. Furthermore, this star is part of a binary system with orbital frequency also of 0.8 days, suggesting that the star is synchronized and is in a nearly-uniform rotation. Further studies managed to determine near-core rotation rates for dozens of γ Dor stars [START_REF] Van Reeth | [END_REF]Christophe et al., 2018;Ouazzani et al., 2019) and con rmed previous individual results: rotation periods are comprised between ∼ 0.4 d and ∼ 2 d.

The signi cant number of measurements of near-core rotation rates allows stellar physicists to perform comparisons with rotation evolution models. Ouazzani et al. (2019) compared the core rotation rate of 37 γ Dor stars observed with Kepler to "standard" rotation models with meridional circulation and shear-induced turbulence. The set of models is composed of three di erent masses (1.4, 1.6 and 1.8M ) with fast initial conditions (P disk = 2.4 d, and τ disk = 3 Myr) or slow initial conditions (P disk = 7.2 d). Those initial conditions were determined based on surface rotation in young stellar clusters. The results are represented as solid blue line in Fig. 4.9, le panel. It displays observed or computed near-core rotation rates as a function of the buoyancy radius P 0

P 0 = 2π 2 ˆg cav. N (r) r dr -1 , (4.22)
which decreases with age. Standard models fail to reproduce the near-core rotation of the slowest rotators. Moreover, it tends to predict young fast rotators that are not observed. Ouazzani et al. (2019) also tried to include overshooting (Fig. 4.9, purple lines) which increases the size of the inner convective zone and therefore increases the buoyancy radius and decreases the apparent age of the star. As a matter of fact, purple lines are basically blue lines shi ed to the young side in Fig. 4.9. It reduces discrepancies concerning the number of fast young rotators but does not explain the slow ones. A better agreement is found for models with solid rotation which is not physically motivated but it suggests that an e cient transport mechanism that would enforce solid body rotation is lacking. They also tried to mimic such an additional mechanism by increasing the horizontal or the vertical viscosities, keeping the standard framework. This gives quite similar results to solid body rotation. It is another peace of evidence for a missing process transporting . All these observations of γ Dor and δ Sct stars show that they are fast rotators with rotation periods of the order of a day. An average internal rotation frequency can be found for γ Dor by exploiting their period spacing if enough of them are measured. Obtaining a detailed rotation pro le is still a challenging task. Even in the domain of fast rotation, the study of γ Dor and δ Sct stars show that, once again, the standard modelling of angular momentum transport is strikingly de cient.

The lithium depletion problem

A nagging problem in stellar physics is the so-called lithium depletion problem. It has now been known for more than sixty years that the Li abundance measured at the surface decreases with stellar age. Fig. 4.8, right panel, shows measured Li abundances for cool stars in Hyades cluster (625 Myr). The hottest stars in this sample have an abundance close to the initial Li abundance, measured in younger stellar clusters. The initial abundance can decrease in several ways. Li is consumed through proton capture at a temperature of T Li ∼ 2.5 × 10 6 K. If this temperature is reached inside the convective zone, convection mixes up the material and Li abundance decreases. This is the case at the very right of the graph. Otherwise, if this temperature is reached below the surface convective zone, Li abundance should only decrease through di usion. However, Fig. 4.8, right panel, clearly shows a gap around T eff 6700 K called the Li dip (Boesgaard, 1991). The Li dip is not only observed in the Hyades cluster but in all clusters with age 300 Myr. Understanding this dip has been a challenge since its discovery because the location where the proton capture occurs is located well below the convective zone. The usual explanation is to invoke convective overshoot coupled with rotational e ects. Overshoot causes exchanges of material between the radiative and the convective zones, which explains the decrease in Li abundance between the di usion dominated region at T eff 6200 K to the region where T Li is reached inside the convective zone. In a non-rotating star, the radiative zone is not mixed, except by di usion, and if overshoot cannot reach the location where T Li is reached, no lithium poor material is brought inside the convective zone. If on the contrary the star is rotating, meridional circulations participate to the mixing of the radiative zone. This mechanism has been tested and works for the hot side of the Li dip (Palacios et al., 2003), but fails for the cool side. Indeed, as we pass to the cool side of the dip, the convective zone deepens which increases the magnetic torque applied to the star. We should then see still a decrease of the Li abundance, and it is obviously not the case. This observation pleads for the existence of another mechanism that transports and therefore reduces the radial di erential rotation, but at the same time do not transport chemicals. Concomitantly, such additional mechanisms, namely Internal Gravity Waves ( ), have been tested (Talon & Charbonnel, 2003;[START_REF] Charbonnel | [END_REF].

are better excited as the convection deepens and according to excitation models, they must have a non negligible impact on the transport of angular momentum around the temperature of the cool side. Including has been found to reproduce the cool side of dip in the Hyades (Talon & Charbonnel, 2003;[START_REF] Charbonnel | [END_REF].

While the model reproduces the observations, these works rely on modelling of excitation that are not unique and have not been fully validated. They also computed angular momentum uxes with 1D rotation pro le, while they should be strongly impacted by 2D e ects. Furthermore, other transport mechanisms have been proposed such as mechanisms relying on magneto-hydrodynamic processes (see Sect. 5.2) that should also be investigated. 

Rotation in red giant stars ( stars)

Red giant stars have been extensively studied since the launch of CoRoT and Kepler. In particular, thanks to its very long time series, Kepler gave the opportunity to detect mixed modes that propagate as g -modes in the radiative region of stars and as p-modes into the convective region. Mosser et al. (2011) showed that their detection and the measurement of their rotational splittings makes possible to access the rotation pro le of those stars. Yet, For stars with ∆ν > 10 µHz, it is di cult not to mistake rotational multiplets and mixed-modes. Mosser et al. (2012) demonstrated that gravity-dominated mixed-modes (which are more numerous than pressure-dominated ones) have characteristics very similar to pure g -modes. In particular, their distribution in period is close to that of asymptotic pure g -modes.

It was rst done by Beck et al. (2012) and Deheuvels et al. (2012) in two di erent stars of the Kepler catalogue. They measured rotational splittings of the order 0.1 µHz and revealed that the core was rotating at least 5 times faster than the envelope. This result was among the rst con rmations of the predicted strong radial di erential rotation of stars. Indeed, as a star evolves and leaves the main sequence, its envelope expands and slows down and its core contracts and speeds up, due to conservation. Deheuvels et al. ( 2014) repeated the same process on 6 Kepler low-mass stars. They used inversion technique on the measured rotational splittings (again of order 0.1 µHz) and found 6 rotation pro le, showing again similar core-to-envelope rotation rate ratios. There results are represented in Fig. 4.9, right panel.

These observational constraints have rapidly been confronted with stellar rotation evolution models. Marques et al. (2013) used an earlier version of to compute 1D stellar model with standard physics as well as standard transport of including shear-induced turbulence and meridional circulation as well as a magnetic breaking for some of the models. The initial rotation velocity was chosen to be 20 km s -1 . They calibrated a solar model with and without braking in order to match solar luminosity, radius and metallicity. They also computed similar models but with a mass of 1.3M , which is a typical mass of stars. Stars with a mass of M 1.3M also have a central convective zone which allow them to test the in uence of an overshoot: the penetration of the central into the brings hydrogen rich material in the region where the nuclear reactions are the most e cient, thus increasing the stellar lifetime.

The modelled internal structure have been given as input to an oscillation code: ADIPLS (Christensen-Dalsgaard, 2008), that produces an oscillation spectrum from which oscillation characteristics such as rotational splittings can be extracted.

These models, evolved up to the phase, have an important radial di erential rotation in the radiative region. However, the core rotation rate is much larger than the one observed. Indeed, the computed rotational splitting are of the order of 10 to 100 µHz, compared with ∼ 0.1 µHz observed. The authors suggest that uncertainty on the physics used in the standard modelling could explain such a high rotation velocity. First, the impact of initial rotation condition can be ruled-out as the surface rotation of such an evolved star does not depend on initial conditions. A di erent prescription for the magnetic breaking law changes the core rotation rate of only ∼ 2%. Second, a 1.3M star has convective overshoot during the phase. The presence of overshoot mimics a higher mass. Therefore, for a star to reach a given radius on the , a star with overshoot would have less time to speed up and the rotation rate would be reduced (of ∼ 30% in this case). Third, other hydrodynamic instabilities may occur, such as the instability (see Chapter 5). They found that it changes the central rotation rate of only ∼ 3%. Finally, the turbulent di usion coe cient can be underestimated. In order to increase the extraction of angular of angular momentum from the radiative zone to the convective zone, the velocity of the meridional circulation and the vertical di usion coe cient of the shear-induced turbulent should be increased. To that end, Marques et al. (2013) increased by two orders of magnitude the value of D h and set the critical Richardson number to 1. The change in the value of D h is motivated by the fact that an enhanced horizontal di usion reduces the inhibiting e ect of the µ-gradient on the meridional circulation velocity. We have seen in Sect. 2.3 that there is no consensus on the prescription of D h and increasing it by a factor 100 represents a limit value. The change in the critical Richardson number Ri c has an impact on the value of the vertical di usion coe cient D v . All prescriptions express D v in quite a similar form, the value of the critical Richardson number that they assume changes. A value of Ri c = 1 is recommended by Woods (1969); Canuto (2002). They argue that the original value of Ri c = 1 4 proposed by Taylor (1931) was derived by looking at the critical Richardson number that characterizes the passage from a laminar to a turbulent ow. However, Woods (1969); Canuto (2002) looked at the situation where the ow is already turbulent and what should be the threshold value of Ri for the ow to become laminar. They found it to be Ri c = 1. This enhancement of extraction of angular momentum, produces a reduction by a factor 10 of the core rotation velocity, still ten times higher than the observed one, thus providing another argument in favour of a missing mechanism of transport of angular momentum.

Conclusion of Part I

This rst part was devoted to the basic concepts required to understand the stellar rotation evolution. Classically, a star is assumed to be a sphere of gas in which the pressure gradient counterbalances gravity. The mean ow is assumed to be steady, and static and the physics is kept rather simple. Therefore there is no di usion, the convection is reduced to its essence, i.e. a single vertical eddy, magnetic elds and rotation are neglected. This modelling may seem simplistic but has known many achievement. It reproduces with a remarkable precision the majority of the stellar parameters accessible to observation, it has succeeded in obliging the particle physicists to include two new types of neutrinos.

In-depth study of stellar interior is made possible by asteroseismology which allows astronomers to collect information about the zones of propagation of waves observed at the surface. We describe the main principles of asteroseismology in the case of rotation and no rotation and we made a detour on a tiny blip in the well-oiled machinery of standard models. Indeed, the high-frequency oscillation modes of the upper zone of stars are observed with slightly di erent frequencies than the ones predicted. While this discrepancy is around 1% of the mode frequency, it is around 100 times larger than the observation resolution, and therefore, highly signi cant. This gap between models and reality is caused by an oversimpli ed modelling of convection at the surface of the star. Here, the hypotheses that made possible the approximation of convection by a single eddy breaks down. The turbulence that is normally forgotten in the computation of the stellar-structure becomes non-negligible and the frequencies are modi ed. This problem called the surface e ect has for long been tackled by trying to correct a posteriori the discrepancies. Correction laws are given depending on main stellar parameters: T eff and log g. However, these works forgot the in uence of other parameters such as the chemical composition and above all, rarely study the physical motivations of such a correction law. These two drawbacks have been the focus of a work and a rst author article realized during the rst year of my PhD (Manchon et al., 2018).

The standard model of stellar physics allows modellers to incorporate non-standard processes, in a very approximate way. Indeed, the impact of these processes are o en studied a posteriori, i.e. a er the evolution of a model is done. Therefore, they have no impact on the physics of the star: they depend on the stellar-structure but the stellar-structure does not depend on them. Therefore, the standard modelling of rotation evolution neglects almost all the e ects of rotation on the structure equation. Rotation intervenes only through an additional term of approximated centrifugal acceleration in the hydrostatic equation. Then in the star, the transport of angular momentum is described in the following way. Convective zones ( ) are assumed to have a uniform angular velocity or a uniform angular momentum distribution. The surface can lose through magnetized wind or because it is forced to co-rotate with an accretion disk, and all s can exchange with the radiative zone through the meridional circulation. In the radiative zone ( ), can be advected by meridional circulation and angular velocity can be di used by shear-induced turbulence.

Another major contribution of asteroseismology has been to provide the proof that this 123
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modelling of rotation evolution is de cient. Indeed, the Sun is observed to have latitudinal di erential rotation pro le in its and a nearly at rotation pro le in the , while models predict radial di erential rotation in the and at rotation pro le in the . In other stars, young stars with e ective temperatures around 6500 K are observed to lack Lithium in their photosphere which argues for the presence of a mechanism transporting chemicals (linked to the transport of ). Main sequence fast rotators (γ Dor and δ Sct) have an almost rigid rotation pro le in their interior while standard models predict strong radial di erential rotation. Finally, the asteroseismic study of red giant branch stars has revealed that they do have a radial di erential rotation in their core, as expected by models, but with a core rotation velocity 100 times smaller than the one anticipated. All these strong disagreements support the need for a better modelling of the transport of angular momentum and for the inclusion of additional transport processes.

Chapters 1 and 2 presented how to properly model the transport of angular momentum in 2D and how structure equations should be modi ed to correctly take into account the in uence of a rotating ow. As said before, the standard modelling of rotation, implements simplistic versions of these equations. It is now time to describe in detail the main work I have done during my PhD, i.e. the implementation in the stellar evolution code of the modelling of transport of angular momentum in 2D. This work is the base upon which additional transport mechanisms modelling will be built. We have shown in Chapter 2 that the variation of angular momentum ( ) per unit time in the radiative zone amounts, on one side of the equation, to the extracted from or injected into it and results, on the other side, in an advection of by meridional circulation in addition to a di usion of angular velocity induced by shear instability, which is thought to be the most dominant instability. However, as we have argued in Chapter 4, this modelling is far from being complete, which suggests that, either mechanisms of extraction/injection of are missing on the le hand side, or sources of di usion have been missed on the right hand side.

I gathered those additional mechanisms into four categories. First, the instabilities that may occur without the intervention of a magnetic eld. They may be quali ed as baroclinic instabilities in the sense that they stem from displacement of uid particles along misaligned isobars, isopycnals, isentropics, etc. Then, we have the magneto-hydrodynamic ( ) instabilities. Since they involve a magnetic eld that we excluded from our modelling, their inclusion in a stellar evolution code must be regarded with much care. Some caveats may be raised. All those instabilities are usually modelled as di usive processes and their contribution is included in the equations for the transport of by adding their di usion coe cients and completely ignoring correlations between them. Furthermore, prescriptions o en assume a linear growth of the instabilities. The possibility of a saturation is rarely evoked. These restrictions are addressed in Sect 5.3. Once we are nished, we will move to another kind of carriers: waves. Two types of waves have been envisaged to transport outside/inside radiative zones. Mixed-modes have recently been suggested (Belkacem et al., 2015b,a) and are described in Sect 5.4. Then, a long time candidate are internal gravity waves. I describe them in more detail.

Hydrodynamic (non-magnetic) instabilities

Rayleigh-Taylor instability

As for now we have only seen the shear instabilities that are described by the Richardson criterion. However, there exist many more instabilities. The rst in the list is the Rayleigh-Taylor instability (Rayleigh, 1916). The criterion for this instability has already been derived in Chapter 1, with the equation of motion (1.92). In an axisymmetric uid, we consider two in nitely close uid particles at a distance and 2 = + δ from the rotation axis and with a speci c of j = 2 Ω and j 2 = 2 2 Ω 2 . At each of these locations, the uid is at an equilibrium state, i.e. forces balance each other. Now, let us imagine that the inner particle, rotating with an angular velocity Ω is moved to location 2 . The equation of motion of this particle is the same as Eq. (1.92), assuming no change in the density:

d 2 r dt 2 = 2 Ω 2 -Ω 2 2 .
(5.1)

From this, we see that, if Ω = Ω 2 , the equilibrium is maintained. If Ω < Ω 2 then the acceleration is negative, the particle is pushed back to its initial position and the situation is stable. Finally, if Ω > Ω 2 , the acceleration is positive and the displaced particle is moved further away, leading to an unstable ow. This condition can be formalized in another way by a rst order approximation of the right hand side:

2 Ω 2 -Ω 2 2 1 3 j 2 -j 2 2 = - 1 3 d 2 Ω 2 d ( -2 ) = -N 2 Ω δ , (5.2)
where the epicyclic frequency has been introduced (see Eq. (1.94)). We see that the medium is stable to Rayleigh-Taylor instability if N 2 Ω > 0, i.e. if the j = 2 Ω is increasing outward. Therefore, a necessary condition for a distribution of to be stable is to satisfy everywhere the criterion N 2 Ω > 0, while it su ces to have N 2 Ω < 0 somewhere for this distribution to be unstable. This instability acts on a time scale of 1/N Ω , which is of the order of a rotation period Ω -1 .

Goldreich-Schubert-Fricke ( ) instability

The Goldreich-Schubert-Fricke ( ) instability was rst theorized by Goldreich & Schubert (1967) in the case of a negligible ratio of viscosity to thermal di usivity and then extended in the case of a non-negligible one by Fricke (1968); [START_REF] Acheson | [END_REF]. They showed that an instability occurs if one of these two conditions is met:

ν K N 2 T + N 2 Ω < 0 or ∂Ω 2 ∂z > ν K N 2 T , (5.3)
where ν is the viscosity, K is the thermal di usivity and z is the coordinate in a cylindrical frame, parallel to the rotation axis. I also recall that N T is the thermal part of the Brunt-Väisälä frequency, de ned in Eq. (1.26); and N Ω is its rotation part or equivalently the epicyclic 5.1. Hydrodynamic (non-magnetic) instabilities frequency, de ned in Eq. (1.95). The rst condition is similar to the Solberg-Høiland with no compositional gradient and taking into account the thermal di usion. Indeed, we have seen above that, if N 2 Ω is negative somewhere, the distribution of is unstable. This is not counting on the stabilizing e ect of the buoyancy that raises the threshold on N 2 Ω . However, this argument assumes the displacement to be adiabatic, i.e. there is no exchange of heat between a slightly perturbed material and the surrounding. If one allows now for exchanges of heat, then the stabilizing e ect of buoyancy is reduced and the uid becomes more easily unstable. This inequality can also be modi ed to include the stabilizing e ects of a µ-gradient:

ν K N 2 T + ν K µ N 2 µ + N 2 Ω < 0, (5.4)
where K µ ν is the particle di usivity (Talon & Zahn, 1997;Hirschi & Maeder, 2010) and N µ is the composition part of the Brunt-Väisälä frequency, already de ned in Eq. (1.26). In Eq. ( 5.3), the second inequality shows that for the uid to be stable, in the absence of any other force (e.g. a magnetic eld), the rotation velocity pro le must not deviate too much from cylindrical rotation. With the assumption of shellular rotation, this condition is met almost nowhere, except near the equator where a shellular rotation pro le can be approximated by a cylindrical pro le. Therefore, the region near the equator is the least prone to develop the instability (e.g. Barker et al., 2019). This point makes it clear that a 2D description of Ω is needed to properly model the transport of angular momentum by the instability. This instability is somewhat similar to the thermohaline (or double-di usive) instability that we have seen at the end of Sect. 2.5. The thermohaline instability occurs for instance in the ocean when hot salty water sits on cooler and less salty water. Since salt di uses more slowly than heat, when a small perturbation brings a salty water parcel downward, the temperature rapidly equals the surrounding temperature and the saltier (and denser) parcel keeps descending. This instability has the shape of radially elongated eddies called " ngers". The same situation appears in stars when angular momentum and temperature1 decrease upward. The instability creates elongated vortices that carry angular momentum upwards (Knobloch & Spruit, 1982;[START_REF] Korycansky | [END_REF]. However, due to rotation, ngers do not exactly look like salt ngers but are sheared in the azimuthal direction. This shear again creates instabilities which limits the growth of instability. The implementation of in stellar evolution code su ers inconsistencies. It is modelled through a coe cient of di usion and it is assumed that takes place in a inviscid medium. However, we have shown that viscosity has a stabilizing e ect on instability and indeed, when molecular viscosity and kinematic viscosity coming from shear-induced turbulence are taken into account, instability is be suppressed, especially in the tachocline where shear becomes very important [START_REF] Caleo | [END_REF].

Axisymmetric BaroClinic Di usive ( ) instability

instability (Knobloch & Spruit, 1983) is not very di erent from the instability when also taking into account µ-gradients, except that this time it is the thermal di usion and not the particle di usivity that reduces the stabilizing e ect of the chemical strati cation.

ν K N 2 T + N 2 µ + N 2 Ω < 0.
(5.5)

As the instability, instability acts on the thermal time-scale.

Magneto-hydrodynamic instabilities

In radiative zones, a magnetic eld can also be sustained by induction generated by the motion of electrically charged particles due to rotation and to meridional circulation (Mathis & Zahn, 2005). The torque and the divergence of the Lorentz force are included into, respectively, the equation of the transport of and of the velocity of the meridional circulation (see Eq. (2.105)). However, the implementation of this kind of model in a stellar evolution code is a formidable task and would only account for axisymmetric elds and would skip all its dynamical e ects2 , especially instabilities. Nonetheless, some of the e ects of the magnetic eld can readily be implemented into codes following prescriptions derived from more complex simulations. We have already seen that the interaction of rotation and convection can create or sustain an already existing magnetic eld thanks to the dynamo e ect. This magnetic eld has an important impact on the rotation evolution through stellar wind that carries away angular momentum or through magnetic eld lines frozen into the star and into the disk that forces them to rotate as a solid body.

When a di erentially rotating star is plunged into a magnetic eld, instabilities may occur. These instabilities have been the subject of a lot of study for more than half of a century and have been brought to the eld of stellar physics by Spruit (1999). In this seminal paper, he identi es at least 5 instabilities, including the magnetorotational instability ( ) and the Tayler instability (also known as Tayler-Spruit instability). I describe both of them in the following.

Magnetorotational instability

This instability is also called the magnetic shear instability (Velikhov, 1959;[START_REF] Chandrasekhar | [END_REF][START_REF] Balbus | [END_REF]. Let us consider a di erentially rotating star with angular velocity decreasing outward. This star is immersed into a vertical axisymmetric magnetic eld for which the axis of symmetry is the rotation axis. We imagine that a small parcel of uid is displaced outward. Due to the conservation of angular momentum, the angular velocity of this parcel should decrease. However, magnetic eld lines tend to maintain rigid rotation. Therefore, the parcel has an excess of centrifugal force compared to its surrounding, which chases it away. This is of course a destabilizing e ect. On the other hand, because of the frozen ux theorem, magnetic eld lines acts as a restoring force for any perturbation that would move material away from them. It provides a stabilizing e ects, in addition to the e ect of the stable strati cation. A su cient and necessary condition for instability is that

q = - d ln Ω d ln r > N 2 T 2Ω 2 η K , (5.6)
where η is the magnetic di usivity. It should be noticed that the eld strength does not appear in the instability criterion. The reason is that the magnetic eld is responsible for both stabilizing and destabilizing e ects. This expression is somewhat very similar to the GSF or Solberg-Høiland criterion in which N 2 Ω has been replaced by 2Ω 2 d ln Ω/d ln r. The angular momentum transported by is o en modelled as a di usive phenomena with di usion coe cient η 2Ω 2 qK/N 2 T . is thought to be important only in stars with a strong radial di erential rotation.

Tayler-Spruit instability

This instability was originally found by Tayler (1973), this time considering a weak toroidal magnetic eld B, i.e. with eld loops wrapped-up around the rotation axis. This con guration is thought to occur in rotating stars thanks to the winding-up mechanism. Indeed, with a poloidal eld as initial condition, the rotating material will stretch the frozen-in eld lines (magnetic di usivity is very weak) around the rotation axis. The wound up line increases the magnetic eld strength at each turn. The magnetic eld creates a magnetic pressure perpendicular to the eld lines, which compresses the loops. In more simple words, one can imagine the magnetic eld loops wrapped-up around the rotation axis as a high stack of plates. The loops are compressed by magnetic pressure as the plates are compressed by gravity. Therefore, it is easy to imagine that a little pinch in the stack sends all the plates to the oor. This instability may occur even if the eld is weak, which makes it very interesting as a way of transporting angular momentum. In this case, an instability could not gain a lot of energy from the eld to ght against the gas pressure or the buoyancy force. Therefore, the instability that would develop from this eld would tend to minimize its work against pressure and buoyancy, meaning that the displacement will be almost parallel to isobars and equipotentials (Spruit, 2002). In order to nd condition for the stability of this magnetic eld, we shall study its response to a wave-like perturbation of the form

exp [i (l + mϕ + nz -σt)] ,
(5.7)

where we have adopted a cylindrical frame ( , ϕ, z), and l, m, n and σ are constant integers with σ = σ R + iσ I the complex frequency [START_REF] Acheson | [END_REF]Zahn et al., 2007). Because horizontal modes are more unstable, we assume n → 0 and by neglecting thermal and magnetic di usion, it can be shown that the conditions for instabilities are (Tayler, 1957;Spruit, 1999)

p ≡ d ln B d ln > m 2 2 -1 for m = 0 p > 1 for m = 0.
(5.8)

For the moment, we did not included the e ect of rotation on the instability, it was just invoked to provide a justi cation for the geometry of the assumed magnetic eld. In the equations governing the dynamic of the perturbation, rotation appears only in the equation of motion through the centrifugal acceleration Ω × (Ω × r) and the Coriolis acceleration 2Ω × v, where v is the velocity of the perturbation. With Pitts & Tayler (1985) we assume that Ω is small enough so that the e ects on the shape of the star due to centrifugal acceleration are negligible. Then we are le with only the in uence of the Coriolis term. It shall be recalled that, in a radiative zone, the restoring force is buoyancy. Therefore, we see that the impact of rotation on Tayler-Spruit instability will depend on the orientation of Ω with respect to g. Near the pole, close to the rotation axis, Ω g and Ω × v ⊥ g. Here, the Coriolis force has no impact on the evolution of the instability. On the contrary, near the equator, Ω ⊥ g and Ω × v is not perpendicular to g and the last two vectors have opposite directions. In this region, the Coriolis force will have a stabilizing e ect on the growth of the instability. With no rotation, the characteristic growth rate of the instability is of the order of the Alfvén frequency Spruit, 1999;Pitts & Tayler, 1985). When the Coriolis force intervenes, the characteristic growth rate is modi ed by a factor ω A /Ω 1. As usual, the transported by the Tayler-Spruit instability is modelled as a di usive process. A general expression for this additional viscosity is proposed by [START_REF] Maeder | Physics, Formation and Evolution of Rotating Stars Maeder[END_REF] without making the approximation of no thermal and magnetic di usion:

ω A = B/(r √ 4πρ) Ω (
ν = Ωr 2 q ω A Ω 3 Ω N B with q = - d ln Ω d ln r , (5.9)
and N is a slightly di erent Brunt-Väisälä frequency:

N 2 B = η/K η/K + 2 N 2 T + N 2 µ .
(5.10) This expression is consistent with the previous expressions found by Spruit (2002).

As a side remark, Tayler-Spruit instability has been proposed by Spruit (2002) to be the engine of a dynamo in a radiative zone. We have seen that, starting from a purely poloidal eld, rotation wind-up the magnetic eld lines to create a toroidal eld. Then this con guration is destabilized by the Tayler-Spruit instability and recreates a poloidal eld and so on. This is a similar mechanism as the one invoked for the dynamo into convective zones, however di erential rotation is much stronger inside the convective than radiative zone. As we have seen in Chapter 4, the core rotation of the Sun is almost uniform while in its envelope, there is a di erence of rotation rate between pole and equator of about 40%. This di erence vanishes when going from the convective region to the tachocline (Spiegel & Zahn, 1992) which is about 0.05R thick. In the tachocline, Spruit (2002) showed that the conditions for the instability to occur are gathered and operates on a characteristic time-scale of the order of 100 years. With such a short time-scale, any speed-up of rotation would immediately be attened by the Tayler-Spruit instability. This hypothesis was tested in the case of RGB stars (Cantiello et al., 2014) including hydrodynamic rotational instabilities (Sect. 5.1) as well as the Tayler-Spruit dynamo. They modelled two red giants for which rotational splittings are available. Their di erent models were started with an initial rotation period and then le to evolve. For their models with only the hydrodynamic instabilities, even with an extremely low initial rotation period, their modelled rotational splittings are still one order of magnitude too high. With more realistic initial rotation period and all the instabilities taken into account, they could not do better than one order of magnitude too high, even by arti cially increasing the Tayler-Spruit viscosity by a factor 100. It shall be stressed that the remaining gap of a factor 10 between actual and modelled rotation rate of RGB stars is still far better than the factor 10 3 that exists when implementing the standard transport of . While the physics of Tayler-Spruit instability is well understood, the fact that Tayler-Spruit dynamo actually occurs in stars is still largely debated.

The e ciency of these instabilities in transporting angular momentum has been tested in magneto-hydrodynamic (

) codes (e.g Rüdiger et al., 2015;Jouve et al., 2015). Rüdiger et al. (2015) tested the impact on the rotation pro le on turbulent viscosity ν T associated with the azimuthal magneto-rotational instability. They imposed two types of cylindrical rotation pro le: Ω ∝ 1/s or Ω ∝ 1/s 2 . They found that ν T scales as the rotation pro le, i.e. the stronger the angular velocity, the stronger the turbulent viscosity. In simulation, a useful way

Correlation between instabilities

to characterize the medium is to give is magnetic Prandtl number, which is the ratio of the molecular viscosity ν to the magnetic one η: Pm = ν/η. For a model of red giant with Pm = 1, they found that the decay time of the di erential rotation to be around 200 times the period of rotation, making a very e cient mechanism of transport. The study of the angular momentum transport near the tachocline show a strong latitudinal dependence (Rüdiger et al., 2014). These results are reproduced in Fig. 5.1 for two intensities of the toroidal magnetic eld. The latitudinal dependence of the -induced angular momentum transport is, of course, a new justi cation for the 2D description of the stellar interior and angular velocity pro le. Because of this anisotropy, and of the e ect of the toroidal eld, Rüdiger et al. (2014) propose to de ne an e ective magnetic Prandtl number Pm eff which incorporate an additional molecular and magnetic viscosity. Rüdiger et al. (2016) showed that the -induced transport of angular momentum could explain the small radial di erential rotation pro le in the core of red giant at the condition that the di erential rotation decreases faster than the intensity of the magnetic eld. This condition is ful lled when Pm eff 1. In the core of the Sun, Pm 5 × 10 -3 (not Pm eff ) while in the core of red giants, it is between 0.1 and 10. However, the e ective magnetic Prandtl is estimated to be of order 10 3 at the top of the solar convection zone which suggest an e cient in this region.

Correlation between instabilities

In the two previous sections, I gave an overview of the principal instabilities that may occur in rotating, possibly magnetized, stars and the criteria necessary for them to occur. I have also tried to make apparent the entanglements between many instabilities. When non-standard transport mechanisms are added into the modelling they are o en treated as di usive processes and the total di usion coe cient is the sum of the independent di usion coe cients. Such a summation supposes that the occurrence of an instability is not impacted by the presence of another one in the medium, which seems clearly wrong. For instance, if shear turbulence develops somewhere in the star, the µ-gradient is changed, therefore, all the criterion that depends on N 2 µ must take into account that its value is also a ected by shear (Maeder et al., 2013). A similar idea could be applied to Rayleigh-Taylor instability. In the Rayleigh-Taylor instability, it is the di erence of centrifugal acceleration acquired by a displaced element of uid that can destabilized the uid if this acceleration is su ciently important to overcome stable strati cation. However, if this condition is almost satis ed in a region where shear-turbulence occur" the small additional velocity of the turbulence can provide the missing kinetic energy needed to overcome stable strati cation. In other words, Rayleigh-Taylor instability could occur in a region where N 2 Ω > 0. As a last example, a single look at the criterion for and instabilities look like the same instability in two di erent regimes. Maeder et al. (2013) aimed at taking into account all the couplings between instabilities to provide a proper modelling for them. Let us take a look at their criterion for Rayleigh-Taylor instabilities: .11) with Γ being the ratio of the energy transported by an element of uid to the energy lost during this motion by thermal di usion, and Γ µ is the same but with the energy being lost by particle di usion, and Ri c is the critical Richardson number that controls shear turbulence. The rst term represents the stabilizing e ect of buoyancy, but also takes into account the thermal di usivity that may reduce it. Next we have the stabilizing e ect of the chemical strati cation with the same limitation as before but this time due to the particle di usion induced by the shear turbulence (through D h ). Finally we have the epicyclic frequency for the stabilizing e ect of the distribution of angular momentum and the Richardson criterion. What is needed here is a way of nding a di usion coe cient that takes into consideration all the above. We recall that the coe cient of di usion can be written D tot = v /3 (see Eq. (2.15)), with v and the characteristic velocity and mean free path of the uid motion. To introduce v and into Eq. ( 5.11), one must nd an expression for Γ and Γ µ . Such expressions are provided by Maeder (1995); Talon & Zahn (1997). It is based on the same idea as the one underlying the mixing length theory for convection. A turbulent eddy of dimension is approximated by a sphere of volume V , surface A and V /A = /6. The eddy is further assumed optically thick and therefore within the mixing length frame work, [START_REF] Kippenhahn | stellar-structure and Evolution[END_REF], the amount of energy carried E c by the eddy and lost E l during its motion are: (5.12) where ∆T is the di erence of temperature between the eddy and the surroundings, /v is the motion duration and all other quantities have their usual meanings. From this, it follows that (5.13) where the expression for Γ µ was derived by replacing ∆T by ∆µ and K by D h (Talon & Zahn, 1997). Finally, by injecting Eq. ( 5.13) into Eq. ( 5.11) and replacing v by x, one obtains a polynomial inequality, easy to solve for D tot = 2x: (5.14) where N 2 Ω+δv is the slightly modi ed epicyclic frequency which introduces the little di erence of velocity brought by shear turbulence:

Γ Γ + 1 N 2 T + Γ µ Γ µ + 1 N 2 µ + N 2 Ω sin θ < Ri c dv dr 2 , ( 5 
E c = 2c p ρ∆T V and E l = 4ac 3κρ ∆T 2 v A,
Γ = v 6K and Γ µ = v 6D h ,
x x + K + D h N 2 T + x x + D h N 2 µ + N 2 Ω+δv < 0,
N 2 Ω+δv = 1 3 d 4 Ω 2 d sin θ + Ri c dv dr 2 .
(5.15)

Mixed modes

We now turn to another kind of physical processes transporting angular momentum: waves. Waves and modes can exchange angular momentum and energy with the mean ow. In stellar radiative zones, two kinds of modes have been studied: mixed-modes and internal gravity waves ( ). Section 5.4 is devoted to mixed-modes and Section 5.5 to . Mixed-modes as a mechanism of transport of have been suggested very recently by Belkacem et al. (2015b,a). Their modelling couples the action of non-radial mixed-modes on the angular momentum transport equation and, a fact that is o en neglected, on the equation of the transport of energy. This transport mechanism is thought to have non-negligible e ects in subgiants and red giants stars. In these stars, mixed-modes are excited by turbulent convection. Furthermore, their amplitudes have been measured by missions CoRoT, Kepler and (e.g. Mosser et al., 2011) and have been theoretically studied (Belkacem & Samadi, 2013). I present here the main ideas leading to the expression of the mixed-modes-induced transport of angular momentum.

Mixed modes

We start from the system of equations stated at the beginning of Chapter 3: Eqs. (3.1) to (3.3). In these equations, for clarity and to stick to Belkacem et al. (2015b)'s notations, we gathered the non-conservative forces X and all the heating and cooling terms Q as

X = ρf + ∇ • τ ,
(5.16)

Q = ρ(ε nuc + ε visc ) -∇ • F.
(5.17)

By denoting h = u ϕ = 2 Ω the speci c angular momentum, Eq. (3.2), once projected on the azimuthal component, becomes:

∂ρh ∂t + ∇ • (ρhu) = ∂p ∂ϕ -ρ ∂φ ∂ϕ + X ϕ .
(5.18)

Each of the elds A above can be decomposed as a sum of a mean eld A and a non-radial wave perturbation A , with A = 1 2π ´2π 0 Adϕ. In addition we make the following assumptions. First, for low frequency waves (frequency much lower than the Brunt-Väisälä frequency), the anelastic approximation applies and the terms in factor of ρ can be neglected. Secondly, the Cowling approximation allows us to neglect the terms φ . Hence, by injecting the eld decomposition in our system, by averaging along the azimuth and by doing the above-mentioned approximations, our equations become: (5.21) where ∇ m = ∂/∂r, 1 r ∂/∂θ, 0 is the gradient in the meridional plane, and u m = (u r , u θ , 0) is the meridional component of the velocity. This system is supplemented by an equation of state giving s(p, ρ) and a fourth equation: the baroclinic equation, in order to link h and s:

∂ρ ∂t + ∇ m • (ρ u m ) = 0, (5.19) ρ ∂h ∂t + ρ (u m • ∇ m ) h = -∇ m • ρu ϕ u m + X ϕ , (5.20) ρ ∂s ∂t + ρ (u m • ∇ m ) s = -∇ m • ρs u m + Q,
ρ 2 ∇ m h 2 u ϕ × ∇ m = -∇ m ρ × ∇ m p. (5.22)
The ux of mean speci c angular momentum (resp. mean speci c entropy) carried by the waves is: ρu ϕ u m (resp. ρs u m ). Since h and s are coupled by the baroclinic equation, the waves can induce a meridional circulation and therefore they have an impact on the mean ow.

In order to separate the changes on the mean ow due to the waves and the part that is truly a perturbation, Belkacem et al. (2015b) make use of the so-called transformed Eulerian mean ( ) formalism. The wave heat ux R = s u m is written as the sum of a vector perpendicular to isentropics and of one parallel to them, called the skew ux:

R = (n × R) × n skew ux +(n • R)n with n = ∇ m s |∇ m s| , (5.23)
where n is the normal vector to isentropics. In Eq. (5.20), R appears on the right hand side, the meridional gradient acting on it. A er few steps, one obtains

∇ m • [(n × R) × n] = u • ∇ m s with u = ∇ m × ∇ m s × R |∇ m s| 2 = ∇ m × (ψe ϕ ), (5.24)
where ψ is a stream function. Therefore, we see that the meridional gradient of the skew ux behaves like an advection of the mean entropy gradient by an additional meridional circulation u. This is the contribution of the wave heat ux to the mean ow. This additional meridional circulation is added to the mean ow which can be written as

ρu † = ρu + ∇ m × (ρψe ϕ ).
(5.25)

We de ne the ux of speci c angular momentum F = (F r , F θ ) and the ux of speci c heat G = (G r , G θ ) carried by the waves as

F r = u ϕ u r + ψ r ∂h ∂θ , F θ = u ϕ u θ + ψ r ∂h ∂r ,
(5.26)

G r = s u r + ψ r ∂s ∂θ , G θ = s u θ + ψ r ∂s ∂r .
(5.27)

(5.28)

And by injecting Eqs. (5.24) and (5.25) into Eqs. (5.19)-(5.21), the system nally reads

∂ρ ∂t + ∇ m • ρ u † = 0, (5.29) ρ ∂h ∂t + ρ u † • ∇ m h = -∇ m • (ρF) + X ϕ , (5.30) ρ ∂s ∂t + ρ u † • ∇ m s = -∇ m • (ρG) + Q. (5.31)
For the moment, no assumptions have been made as to the nature of the mode (except low frequency). Assuming that the rotation pro le is shellular and that isentropics nearly superimpose with isobars, the vertical equation for the transport of angular momentum can be written as

ρ dr 2 Ω dt = 1 r 2 ∂ ∂r r 2 (F U + F ν + F waves ) .
(5.32) I recall that here, ρ = ρ is the density averaged over isobars, where • is the average over an isobar de ned in Eq. (1.69). The expression of F U and F ν are derived easily from Eq. (2.118), and Belkacem et al. (2015b) derive F waves as:

F waves = ρ u ϕ u r + 2 cos θΩ 0 u θ s d s dr -1 , (5.33)
where Ω 0 (r) temporarily denotes Ω(r) de ned in Eq. (1.44), so as not to mistake it with the mean ow notation. Belkacem et al. (2015b) provide a more detailed expression for F waves carried by waves with degree and azimuthal number m. I do not reproduce either the relation or the long calculation necessary to its computation. It depends on equilibrium quantities as well as on the rotation pro le and on the amplitudes of the displacement ξ m r,θ or, equivalently, on the amplitudes of velocity u m r,θ of the waves. As said at the beginning of this section, mixed-modes have been the subject of a lot of observations which allowed the development of scaling relations providing, in case of low rotation rates and in the asymptotic limit, the surface velocity of radial ( = 0) and non-radial ( > 0) modes (Belkacem & Samadi, 2013;Belkacem et al., 2015a). The amplitude of the velocity of radial modes at ν max is given as a power law of global quantities: T eff , ν max and ∆ν. For a radial mode with any frequency ν, the amplitude is found assuming a Gaussian envelope of the amplitudes. For non-radial modes, Belkacem et al. (2015a) found a relation between the non-radial amplitude, the radial one and the ratio of the radial to non-radial mode inertia. In order to implement this mechanism of transport of in a stellar evolution code, one needs the frequencies of each mixed-mode. Of course, the frequency spectrum could be provided by an oscillation code, but it would lengthen the computations a lot and it would not be portable at all. The mixed-mode frequency spectrum, at each time step, is computed using asymptotic relations. References are provided at the end of Sect. 3.2.2. Belkacem et al. (2015a) estimated the e ciency of the mixed-modes-induced transport by comparing two time-scales. The rst one is the contraction time-scale T c that characterizes the time-scale on which the rotation of the star increases/decreases due to contraction/dilation. The second one, T L , is the ratio of the angular momentum contained in the same spherical shell in solid body rotation Ω 0 (r) to the ux of angular momentum extracted from a spherical shell of radius r per unit time. Those time-scales were computed using three stellar models of subgiant, start of and , on which they supposed a rotation pro le of the form of an erf function. The frequency spectrum was computed using (Christensen-Dalsgaard, 2008). It must be noted that the two time-scales were computed a posteriori, i.e. assuming no coupling between the rotation pro le and the transport of by mixed-modes. They found that for the subgiant and young models, T L T c meaning that mixed-modes are very ine cient to transport . In the evolved model, T L T c in the hydrogen-burning shell. However, in the upper and deepest layers of the radiative region, mixed-modes become ine cient again. Mixed-modes are therefore an important extractor of angular momentum in very evolved stars. Furthermore, the authors did not take into account the feedback of the mixed-modes transport on the structure and on the mean ow. Indeed, T L and T c are computed a posteriori a er the complete evolution of the model. In the regions of the model where is e ciently extracted, the gradient of angular velocity should appear and induce shear induced turbulence as well as meridional circulation which should couple the regions of the radiative zone where mixed-modes are e cient and ine cient.

Internal gravity waves

Internal gravity waves in uid: a simple approach

Internal gravity waves (

) are waves which have gravity as a restoring force. These waves are found in stars but also in the Earth's oceans3 and atmosphere. Their study in geophysics has preceded their study in stellar interiors. Since, in the Earth, have a small extent, which usually is below the spatial resolution of meteorological simulations, their interactions with the mean ow cannot be simulated from rst principles and must be treated as a prescription.

The study of such phenomena has motivated the development of wave-mean ow interaction theories (e.g. [START_REF] Bühler | Waves and Mean Flows[END_REF]. Here, I want to describe the main and most interesting features of . One of the simplest models in which can be found is a Boussinesq system. The model that will be developed here captures quite well the dynamics of in the Earth's oceans. It is very far from what happens in the Earth's atmosphere or in stars but it is su cient to reveal the main properties of . In the following, we assume that the density gradients are small 4 and that no sound waves can propagate: ∇ • u = 0. Furthermore, we write the equilibrium quantities, constant in time, with a 0 subscript. We place ourselves in a Cartesian coordinate system with a basis (e x , e y , e z ), z being the vertical coordinate. Within this framework, the Euler equation reads (5.34) where all the quantities have their usual meanings and I recall that d/dt is the material derivative ∂/∂t + u • ∇. Since the density gradients are small, ρ/ρ 0 is close to unity, except in factor of gravity. We de ne p = p/ρ 0 and S = ρg 0 /ρ 0 , and this equation may be written as

ρ ρ 0 du dt + ∇ p ρ 0 = ρ ρ 0 g 0 e z ,
du dt + ∇ p = Se z .
(5.35)

Furthermore, the continuity equation together with the hypothesis of ∇•u = 0 gives dS/dt = 0.

The quantity S is called the strati cation and, in this case, surfaces of iso-S are isopycnals.

Assuming that the background strati cation S 0 (z) is known, new quantities can be introduced: p = p -P 0 and S = b + S 0 (z), where b is denoted the buoyancy. The buoyancy b is the perturbation of that equilibrium strati cation S 0 and a b = 0 induces a change in the vertical velocity. Indeed, by using those new quantities and u = ue x + ve y + we z , above equation becomes

du dt + ∇p = be z and db dt + N 2 w = 0, (5.36)
where N 2 is the Brunt-Väisälä frequency, or to stick to the denominations, usual in this kind of models, the buoyancy frequency. The vertical motion induced by a change in the buoyancy b is evident from last equation. The strati cation S can also be written in an integral form:

S = b + ˆN 2 dz.
(5.37)

Assuming that N 2 does not depend on z, S 0 (z) = N 2 z. Eqs. (5.36) form the Boussinesq equations but for the moment, we did not see any waves. To make them emerge, Eqs. (5.36) is linearised by writing all quantities as the sum of a constant eld and of a perturbation: x = X + x , with x X. Then 

dω dt = N 2 e z × ∇ ⊥ ζ d 2 ω dt 2 = N 2 e z × ∇ ⊥ w d 2 ∇ 2 w dt 2 = -N 2 ∇ 2 ⊥ w , d dt
∇× and projection on e z

(5.43)

where ∇ ⊥ = (∂/∂x, 0, ∂/∂z) has been de ned [START_REF] Davidson | Turbulence in Rotating, Strati ed and Electrically Conducting Fluids[END_REF]) and where we used the identity

∇ × (∇ × u) = ∇(∇ • u) -∇ 2 u.
We assume a plane wave shape for u with a wave number k = (n, , m), and a frequency σ. In Chapter 3, we use ω to denote the frequency. We change notations locally so as not to confuse the frequency and the vorticity ω. With these notations, the dispersion relation is given by

σ σ 2 -N 2 n 2 + 2 n 2 + 2 + m 2 = 0.
(5.44)

One of the solutions for this equation is, of course, σ = 0. For this to be true, one must have w = 0, ∇p = b e z and ∂u /∂x + ∂v /∂y = 0. Such mode conserves the so-called potential vorticity q (Vallis, 2006). The potential vorticity is the part of the vorticity that is frozen into the uid, perpendicular to the strati cation. In our case q = (∇×u)•∇S ρ . Such modes are called vortical modes. On the contrary, waves with σ = 0, called planar internal gravity waves have a zero potential vorticity. Due the approximation that ∇ • u = 0, it follows that the velocity u of the uid is always perpendicular to the wave number k, making them transverse waves. Two solutions remain valid for the dispersion relation (5.44):

σ = ±N n 2 + 2 n 2 + 2 + m 2 .
(5.45)

These two solutions are actually a prograde and a retrograde wave. They propagate in two directions separated by an angle close to π/2 and form the famous shape of a Saint Andrew's cross (see Fig. 5.2). Furthermore, by adopting Einstein's notations, where c g is the group velocity while c ϕ = kσ/|k| 2 is the phase velocity. Interestingly, we have c g ⊥ c ϕ , c g ⊥ k and c ϕ k. This situation is illustrated Fig. 5.3 in which a propagates with a wave number making an angle sin θ = (n 2 + 2 ) / (n 2 + 2 + m 2 ) with the vertical. Following the k direction, we go from crest of high density with uid motion perpendicular to k in a given direction, to a crest of low density with uid motion in the opposite direction.

k i ∂σ ∂k i = k i c i g = 0,
Those are some striking properties of . Of course the Boussinesq models capture only the essence of and almost nothing more. Speci c models should be designed to t speci c situations.

Internal gravity waves excitation models

In order to account for the e ects of in the transport of angular momentum, a model describing their excitation should be provided. Many authors have work on this problem and developed a myriad of excitation models. All of them agree on the fact that are excited by convective motions at the transition between convective and radiative zones. I will describe in this section two models that assume very di erent excitation mechanism: excitation by Reynolds stresses (Press, 1981;Garcia Lopez & Spruit, 1991;Kumar & Quataert, 1997;Kumar et al., 1999) and excitation by convective plumes (Pinçon et al., 2016). These two models must not be seen as competitors because both Reynolds stress and plumes do excite in stellar interiors. They are rather complementary since Reynolds stress models seems to miss part of the contribution of low frequency waves while the plume model does not excite high frequency . I will not provide a full derivation of the wave uxes and of all of the terms they include but I will present the main ideas and originalities of the models developed by Kumar et al. (1999) (herea er K99) and Pinçon et al. (2016) (herea er P16).

First of all, one needs to de ne the angular momentum ux of an of intrinsic frequency ω and quantum numbers and m., i.e. the amount of angular momentum crossing through a unit surface. This ux can be expressed as a function of the wave energy ux F E per unit frequency, and with same quantum numbers:

F A ( , m, ω; r) = mF E ( , m, ω; r) ω .
(5.47)

Internal gravity waves

It is also very common to de ne the angular momentum luminosity of a wave with , m and ω and the ux F A integrated over a spherical surface of radius r:

L A ( , m, ω; r) = 4πr 2 F A ( , m, ω; r).

(5.48)

Similarly, a wave energy luminosity L E can be associated the ux F E and the angular momentum luminosity can be written:

L A ( , m, ω; r) = mL E ( , m, ω; r) ω .
(5.49)

If the star is adiabatic, the total angular momentum ux (resp. luminosity) is the sum over and m and integral over frequency of F A ( , m, ω; r) (resp. L A ( , m, ω; r)). It amounts to considering that the waves do not impact the mean ow. However, these waves experience damping as they propagate inside the star and their total e ect is modulated by a damping term: (5.50) or (5.51) where τ (ω, , m; r) can be seen as a "optical" damping depth and r C is the radius of excitation of internal gravity waves, or the radius from which can propagate without any energy being added to it. This location can be located just below the convective zone (Kumar et al., 1999;Pinçon et al., 2016), in the overshoot region Press (1981); Lecoanet & Quataert (2013).

F A (r) = ,m ˆ+∞ 0 F A ( , m, ω; r C ) exp [-τ (ω, , m; r)] dω,
L A (r) = ,m ˆ+∞ 0 L A ( , m, ω; r C ) exp [-τ (ω, , m; r)] dω,
The excitation models presented below provide an expression for F E ( , m, ω; r) and τ (ω, , m; r).

Reynold stress excitation model (Kumar et al., 1999)

The model of excitation developed by K99 is an evolution of the model designed by Press (1981). The excitation mechanism is the same but the region in which the waves are excited is not. In both models, are excited by the turbulent pressure. While in K99's model, are excited in all the convective zone and then tunneled into the radiative one, the Press (1981) model assumes that the waves are only excited inside the overshoot region. This idea is also developed by Lecoanet & Quataert (2013). I will only describe K99 because it is one of the most used.

This model is based on an expression for the energy ux F C E ( , m, ω) per unit frequency at the base of the convection zone derived by Goldreich et al. (1994):

F C E ( , m, ω) = ω 2 4π ˆrC t r C b ρ 2 r 2 ∂ξ r ∂r 2 + ( + 1) ∂ξ h ∂r 2 exp - h 2 ω ( + 1) 2r 2 v 3 L 4 1 + (ωτ L ) 15 /2 dr.
(5.52)

This expression was derived under the hypothesis that turbulence follows a Kolmogorov spectrum and ignoring the excitation of waves in the overshoot regions. The limits r C b and r C t stand for the bottom and top boundary radii of the convection zone. The eigenfunctions ξ r and ξ h are the radial and horizontal displacements normalized by unit of energy right below the convective zone. The displacements can be expressed using the approximation (Je reys-Wentzel-Kramers-Brillouin). This approximation is valid when the wavelength of the wave is much shorter than the characteristic spatial scale of variation of the equilibrium quantities, or else that the phase should vary much faster that the amplitude of the wave (for more detail, see [START_REF] Aerts | Frontiers in Nuclear Structure, Astrophysics, and Reactions[END_REF]. The quantity v is the convective velocity and L the characteristic size of the eddies transporting energy. The duration τ L L/v is called the convective turnover time. Finally, h ω (r) is the radial characteristic size of the largest eddy with frequency ω at radius r. This model assumes that the eddies providing energy to follow a Gaussian distribution with standard deviation √ 2/(h ω ( + 1)). The length h ω is de ned by

h ω = Lmin 1, (2ωτ L ) -3 /2 .
Those waves are assumed to be damped by radiation. K99 provide an expression for the damping depth τ (ω, , m; r):

τ (ω, , m; r) = ˆrC b r γ(ω , ; r ) v gr (ω , ; r ) dr with ω (r) = ω + m [Ω C -Ω(r)] = ω + mδΩ, (5.53)
where γ is the damping rate (already mentioned in Eq. (3.68)), v gr ω 2 /(k h N ) is the group velocity of the wave, and ω is the well-known intrinsic frequency, but with the angular velocity measured with respect to the angular velocity at the base of the convective zone Ω C . The damping rate is expressed by

γ(ω, , m; r) Kk 2 r with K = 16σT 3 3ρ 2 κc p 2F r H T 5p , (5.54)
where K is the thermal di usivity, already de ned and used in Eq. (1.16), k r k h N/ω is the radial wave number, F r is the radiative ux and H T the temperature scale height, also de ned in Eq. (2.99).

Convective plume excitation model (Pinçon et al., 2016)

As stressed by K99, the two dominant processes of excitation in stellar interiors are the Reynold stresses and the convective plumes, with the last one thought by the authors to be the most important. However, because of the poor models of plumes available (at that time), they focused only on excitation by Reynolds stresses. The study of convective penetration has been the subject of numerical (e.g. Dintrans et al., 2005;Rogers & Glatzmaier, 2006;Alvan et al., 2014) and theoretical studies, especially models of plumes (Rieutord & Zahn, 1995).

The model of Pinçon et al. (2016) assumes that, N plumes per unit time penetrate into the radiative zone, exciting waves. Each plume is located at latitude and azimuth (θ i , ϕ i ) (see Fig. 5.4, le panel), and, assuming that N is su ciently large, the mean radial wave energy ux is given by: τ P . Finally, v gr (ω, ; r) is the radial component of the group velocity which has the following expression (P16):

F E (ω, , m; r) = N E m (ω; r)v gr (ω, ; r), (5.55) with E m (ω; r) = ν P 8π 2 ρ ˆΩ0 |v r, m | 2 + ( + 1)|v h, m | 2 dΩ 0 4π , ( 5 
v gr (ω, ; r) = ω 2 N 2 (N 2 -ω 2 ) 1 /2 k h with k h = ( + 1) r .
(5.57)

In order to be able to compute the various unknowns introduced above, this model needs to be supplemented by a geometrical description of a plume (Rieutord & Zahn, 1995). Fig. 5.4, right panel, represents a schematic view of a plume. Inside a plume located at angles θ 0 and ϕ 0 , the velocity eld is assumed to have a Gaussian shape in the horizontal direction and in time: (5.58) where

V P (r) = V 0 (r)e -S 2 h /2b 2 e -t 2 /τ 2 P e r ,
• S h is the distance on a sphere of radius r to the axis of symmetry of the plume:

S h (r; θ 0 , ϕ 0 ) = r arccos [sin θ 0 sin θ cos(ϕ -ϕ 0 ) + cos θ cos θ 0 ] .
(5.59)

• V 0 is the vertical convective plume velocity: (5.60) where z = r b -r the distance between the base of the convective zone r b and the radius r, V b is the initial velocity of the plume at the base of the convective zone, L P is the penetration distance of the plume (P16 estimated it to be around 0.1H p , given the lack of consensus on its value), F 1,P is the sum of the kinetic and enthalpic luminosities carried by the plume and ρ b its density. The authors propose to write N F 1,P LA, where L is the star luminosity and A = N b 2 /4r 2 b is the lling factor, i.e. fraction occupied by plumes at the base of the convective zone. Using this expression, V b simpli es to

V 0 (z) = V b 1 - z L P 2 1 /3 with V b = 8F 1,P πρ b b 2 1 /3 ,
V b = 2L πρ b r 2 b 1 /3 .
(5.61)

• b is the plume radius at the bottom of the convective zone:

b = z 0 √ 2 3α E (Γ 1 -1) 2Γ 1 -1 , (5.62)
with z 0 the thickness of the convective zone and α E is the entrainment coe cient5 . The entrainment coe cient α E ρ b bV b can be seen as the amount of matter that is swept away by the plume (Rieutord & Zahn, 1995).

• τ P is the lifetime of the plume. In order to estimate it, one must nd a damping mechanism for the plume (not to be mistaken with the damping mechanism of the excited waves). P16 suggest three mechanisms:

-Radiative thermalization: it is the destruction of the plume due to the radiative thermal di usion. They nd it to be highly ine cient because it operates on timescales much longer than the dynamical time-scale LP/V b 10 4 s of the propagation of the plume;

-Turbulence inside the plume: in the description of the plume, it is assumed that the ow is laminar, while in reality it is turbulent. The turbulence destroys the plume in a few turnovers, i.e. on a turbulence time-scale t turb b/V b . This time-scale is one order of magnitude higher than the dynamical time-scale scale but much shorter than the radiative thermalization time-scale.

-The last mechanism suggested by P16 is the restrati cation by lateral baroclinic eddies that was rst suggested in oceanic physics. When the convective plume penetrates into the radiative region, the density gradient between them drives baroclinic instabilities taking the form of lateral eddies mixing the material of both regions. The restrati cation time-scale is hard to evaluate but can be estimated around two or three orders of magnitude higher than the dynamical time-scale.

Without any better prescription, the author took τ P ∈ [10 5 --10 7 ] s in case of the Sun.

Internal gravity waves

The plumes are supposed to penetrate on a distance L P where the Brunt-Väisälä frequency is nearly zero. Then the plume stops and are excited. They rst propagate in a transition region of size d in which the Brunt-Väisälä frequency goes from nearly 0 to a nearly constant value N 2 0 , and then in the radiative zone. The bottom radius of the transition region (therefore the radius at which we enter the radiative region) is r d = r b -L P -d. In the transition region, the velocity of the plume is much lower than V b . A er some mathematical manipulations, P16 arrive at an expression of the energy ux of the form:

F E (ω, , m; r) = f (γ d ) N 4 ( + 1) 4πr 2 (N 2 0 -ω 2 ) 1 /2 N 2 0 e -ω 2 /4ν 2 P ν P B H 2 .
(5.63)

The new terms have the following signi cation:

• f (γ d ) is a transmission function that characterizes the smoothness of the transition (γ d 1: very sharp; γ d 1: very smooth). The function f is given by

f (x) = 1 if x < 1 D √ x 1 -ω 2 N 2 0 if x > 1 (D 3.7) .
(5.64) and γ d by

γ d = k h dN 0 ω 2 /3 N 2 0 -ω 2 N 2 0 (k r d) 2 /3 .
(5.65)

• e -ω 2 /4ν 2 P /ν P is the temporal correlation term. A longer plume lifetime causes the energy to be transferred to higher frequency waves.

• The horizontal spatial wave/plume correlation is expressed as (5.66) with Y m the Fourier transform of the spherical harmonics. The function B is the average of β m over angular position (θ 0 , ϕ 0 ) of a plume:

β m (θ 0 , ϕ 0 ) = ˆΩ exp - S 2 h b 2 Y m dΩ,
B = 1 4π ˆΩ0 |β m | 2 dΩ 0 .
(5.67)

• Finally, H is coined the wave driving term and is expressed by

H = ˆrb r b -L P dρV 2 0 dr ρ -1 /2 r 1 /2 r b -L P r √ ( +1)
dr.

(5.68)

The quantity H is the power injected into a wave per unit time.

The expression for the energy ux F E can be further simpli ed as explained in P16. It remains to provide an expression for the damping depth and the author follow the work done by Press (1981) and use (5.69) where ω has the same de nition as in Eq. (5.53). Pinçon et al. (2016). Right: spin-down characteristic time-scale as a function of the normalized radius for a low di erential rotation δΩ = 0.15×10 -6 rad s -1 (dashed lines) and a stronger one δΩ = 10 -6 rad s -1 (solid lines). Credits: Pinçon et al. (2016). Pinçon et al. (2016) performed an extensive testing of their model and the impact of the various parameters, especially the impact of di erent pro les for the transition region. They compared the e ciency of their model of excitation in transporting angular momentum against the one K99, but also compared it to the one developed by Press (1981) and Lecoanet & Quataert (2013). Press (1981); Kumar et al. (1999); Lecoanet & Quataert (2013) produce quite similar mean radial energy uxes, therefore I will only describe the di erences for K99 and P16. In Fig. 5.5 is represented the mean radial energy per unit frequency computed for K99 and P16 in a solar model. K99 predicts a higher energy ux in waves with ω < 10 -6 rad s -1 than P16, then P16 predicts that plume are much more e cient in exciting waves in the range 1.5 × 10 -6 rad s -1 ω < 5.5 × 10 -6 rad s -1 , and then the Reynolds stress becomes more e cient again. Of course, this result depends on the values of the chosen parameters, especially the value of L P that changes the wave amplitude and τ P that changes the frequency range of excited waves. This gure also supports the fact that these two models are complementary because they do not excite preferentially the same range of frequency.

τ (ω , ; r) = [ ( + 1)] 3 /2 ˆrd r K N 3 ω 4 N 2 N 2 -ω 2 1 /2 dr r 3 ,

E ciency of internal gravity waves excitation and associated transport

P16 also studied the e ciency of the transport of angular momentum by by comparing the spin-down time-scale already de ned in Sect. 5.4. Their results for a present-day solar model are shown in Fig. 5.5, right panel, for K99 and P16 models and for two di erential rotations. This time, it accounts for the energy ux integrated on all the frequency range and summed for all degree (in this case the development is stopped at = 50) and azimuthal number m. This gure shows that the turbulent-related spin-down time-scale T K99 L is always almost 10 time higher than the plume-related one T P16 L . It suggest that the plume excitation mechanism is more e cient than the turbulent one, as already expected by Kumar et al. (1999). However, some caveats must be raised. First of all, plumes are not present in all stellar convective zones, but only in the one with large Péclet numbers, i.e. where radiative thermalization is ine cient. In such regions, the turbulent excitation must be more important. Furthermore, in the case of the Sun, T P16 L 0.1T K99 L meaning that the turbulent excitation mechanism is less e cient than the plume, but still it contributes to around 10% of it, which 5.5. Internal gravity waves makes it non negligible. The results presented in Fig. 5.5, right panel, show that the stronger the rotation gradient, the more e cient the are in extracting angular momentum. The spin-down time is of the order of 100 Myr for plumes in case of small di erential rotation and of 10000 yr in the case of a strong one.

The interactions between the two excitation mechanisms should also be studied. Indeed, the plumes are supposed to stay coherent before vanishing into the radiative medium. In reality they are turbulent and the e ect of the turbulence of the plumes on the excitation of may also be included into the Reynolds stresses description. One must also point one of the limits of the testing presented above. The angular momentum ux is computed a posteriori on the model, i.e.

had no feedback on the stellar-structure and on the rotation pro le. are known to produce the so-called shear layer oscillations ( ; equivalent to the quasi-biennal oscillation on Earth), which are caused by the local depositing of by . It produces a strong and very localized gradient of angular velocity which oscillates on a small extent with a period of a few years. This has the main e ect of ltering out and therefore reducing the amount of deposited below or above the location of the . This e ect is very complicated to implement in stellar evolution codes because it acts on a very small time-scale, much shorter that the nuclear or contraction time-scales (e.g. Talon & Charbonnel, 2003). Finally, the e ect of the Coriolis force on the propagation of the plume must also be taken into account as the Coriolis force deforms the trajectory of the plumes. This work is already ongoing.

How works

Grid point allocation

As said in Chapter 1, the mass enclosed in a spherical shell of radius r plays the role of our independent variable. Each spherical shell is then labelled by a mass m k . Hence, how should we choose them? We want to increase the resolution where the gradients of the signi cant quantities are strong. Therefore, the masses should be chosen so that these gradients are minimized, or at least so that they stay below a certain threshold. To that end, we introduce a quantity Q called the spacing function. It is a quantity that must been de ned so that, at a given time step, the variation of Q between two consecutive masses m k of layers k is constant:

Q(m k+1 , t) -Q(m k ) = dQ dq t ≡ ψ(t) = cst and d 2 Q dq 2 t = 0, (6.1)
where q is called the index function and takes integer values at each layer, from 1 to n, if n is the total number of layers. These integers also nicely correspond to the indices of Fortran's arrays.

The quantity ψ becomes a sixth independent quantity added to the ve others: p, T, L, r and m, dependent on the variable q. The de nition of ψ can be written as a function of the mass:

dQ dq t = dQ dm t dm dq t = θ(t) dm dq t = ψ(t). (6.2)
It must be noted that, of course, θ(t) and ψ(t) have, nothing to do with, respectively, the colatitude and the gravito-centrifugal quasi-potential de ned in Chapter 1. We now nd ourselves with two more di erential equations that are to be added to the four structure equations.

dm dq = ψ θ and dψ dq = 0. (6.3) Equations ( 6.3) are complemented by boundary conditions: at q = 1, m = 0 and at q = n, m = M . We still need a de nition for the spacing function Q. Strictly speaking, Q is de ned as follow:

Q(m, t) = p ∆p + T ∆T + L ∆L + r ∆r + m ∆m , (6.4)
where the operator ∆ is de ned as ∆f ≡ f (n) -f (1). The terms ∆f are called repartition factors and are weighting the importance of each quantity. With this choice, we see that

Q(m k+1 , t) -Q(m k )
is the sum of the normalized gradients of each independent variables. If no quantity is to be favoured over the others, Eq. ( 6.4) can be used. However, years of use of have shown that a simpler expression of Q may be used: Q = ap + bm, with a -1 and b 15. They can be tweaked to meet more rigorous resolution requirements.

Dimensionless quantities

In , the physical quantities are expressed in terms of dimensionless variables, of order 1, in order to improve oating-point precision. These dimensionless variables are ξ = ln p, η = ln T , λ = (L/L ) a , ζ = (r/R ) 2 and ν = (m/M ) 2/3 . The power a on the luminosity is either 2/3 or 1. Powers 2/3 have been chosen in order to avoid problems of derivability near the centre, but we now use a = 1. In terms of these dimensionless variables, the structure equation system reads (accounting for the 2D modi cations):

∂ξ ∂q = -3G 8π M R 2 2 ν ζ 2 exp(-ξ)f p ψ θ , ∂η ∂q = ∂ξ ∂q min ∇ ad , ∇ rad f T f p , ∂ζ ∂q = 3 4π M R 3 ν ζ 1 /2 1 ρ ψ θ , (a = 1) ∂λ ∂q = M ν 1 /2 L λ 1 /2 ε - ∂U ∂t + exp ξ ρ 2 ∂ρ ∂t ψ θ = M ν 1 /2 L λ 1 /2 Λ ψ θ , (a = 2 /3) ∂λ ∂q = 3 2 M ν 1 /2 L ε - ∂U ∂t + exp ξ ρ 2 ∂ρ ∂t ψ θ = 3 2 M ν 1 /2 L Λ ψ θ , ∂ν ∂q = ψ θ , ∂ψ ∂q = 0. (6.5)
I gave here the system incorporating the rotation-induced modi cations, highlighted in blue.

Removing the blue parts allows us to retrieve the "standard" system.

Collocation method

Let us rewrite the above system of rst order ordinary di erential equations in a more compact way. By denoting y = (y 1 , y 2 , y 3 , y 4 , y 5 , y 6 ) = (ξ, η, ζ, λ, ν, ψ) our unknowns, system (6.5) may be written on the form: E(q; y, y ) = dy dq g(q, y) = 0 with q ∈ [q 1 , q n ], (6.6) with g a suitable vector of functions representing the di erential system. The quantities to be minimized are therefore (keeping only a = 1 for simplicity):

E 1 = ∂y 1 ∂q - -3G 8π M R 2 2 y 5 y 3 2 exp(-y 1 )f p y 6 θ = 0, E 2 = ∂y 2 ∂q - ∂y 1 ∂q min ∇ ad , ∇ rad f T f p = 0, E 3 = ∂y 3 ∂q - 3 4π M R 3 y 5 y 3 1 /2 1 ρ y 6 θ = 0, E 4 = ∂y 4 ∂q - M y 1 /2 5 L y 1 /2 4 Λ y 6 θ = 0, E 5 = ∂y 5 ∂q - y 6 θ = 0, E 6 = ∂y 6 ∂q = 0. (6.7)
And we look for E i = 0, ∀i ∈ 1; 6 . This system is also supplemented with a set of bottom and top boundary conditions E b (q 1 , y) and E t (q n , y). This system can be solve using a pseudo-spectral method called the collocation method (e.g De [START_REF] De Boor | A practical guide to splines[END_REF]. Unknowns {y i } ne i=1 , with n e the number of unknowns (n e = 6 in the 6.1. How works above system) will be decomposed as a linear combination of B-Splines. Let {q i } n i=0 be a set of abscissa that verify the condition a = q 0 < q 1 • • • < q n = b with a and b the limits of the interval on which system (6.6) is to be solved. We denote {N m i } M i=1 the basis of B-Splines of the vector space of dimension M of all the piecewise polynomials of order2 m that match at {q i } n-1 i=1 . Important properties of B-Splines are:

• B-Splines have a closed support;

• They are always positive or zero;

• At each point, there exists at most m non-zero B-Splines;

• The derivative of the B-Splines of order m is a linear combination of B-Splines of order m -1.

Any unknown y i of system (6.6) can be decomposed as:

y i (q) = M j=1 y ij N m j (q) and y i (q) = dy i dq = M j=1 y ij dN m j dq . (6.8)
Finally, let us de ne J = 1; n e , and B ⊆ J (resp. T = C J B, with C J B the complementary of B in J ) is the set of indices of the unknowns for which a bottom (resp. top) boundary condition is provided. We found ourselves with a set of equations of the form:

• At the bottom:

E b i , with i ∈ B is E b i   M j=1
y 1,j N m j (q 1 ); . . . ;

M j=1

y ne,j N m j (q 1 )   = 0; (6.9)

• At the top:

E t i , with i ∈ T is E t i   M j=1 y 1,j N m j (q n ); . . . ; M j=1 y ne,j N m j (q n )   = 0;
(6.10)

• Elsewhere (q ∈ [q 1 ; q n ]), for i ∈ J , (6.11) This time, we are looking for the coe cients y i,j . On M -1 well chosen collocation points (using Gauss-Legendre quadrature) c k ∈]q 1 , q n [ (see De Boor, 2001, for details), the coe cients y i,j are found using an iterative method: the Newton-Raphson method. The solution, at a given iteration p ≥ 0, is estimated by : • At the bottom: ∀i ∈ B,

E i   q; M j=1 y 1,j N m j ; . . . ; M j=1 y ne,j N m j ; M j=1 y 1,j dN m j dq ; . . . ; M j=1 y ne,j dN m j dq   = 0.
E b i   M j=1 y p 1,j N m j (q 1 ); . . . ; M j=1 y p ne,j N m j (q 1 )   = ne l=1 M j=1 ∂E b i ∂y l N m j (q 1 )dy p lj ;
(6.12)

• At the top: ∀i ∈ T ,

E t i   M j=1 y p 1,j N m j (q n ); . . . ; M j=1 y p ne,j N m j (q n )   = ne l=1 M j=1 ∂E t i ∂y l N m j (q n )dy p lj ; (6.13) • Elsewhere, ∀j ∈ J , ∀k ∈ 1; M -1 , E i   c k ; M j=1 y p 1,j N m j (c k ); . . . ; M j=1 y p ne,j N m j (c k ); M j=1 y p 1,j dN m j dq (c k ); . . . ; M j=1 y p ne,j dN m j dq (c k )   = ne l=1 M j=1 ∂E i ∂y l N m j (c k ) + ∂E i ∂y l dN m j dq (c k ) dy p lj . (6.14)
The quantities dy p lj are small corrections to the coe cients y p lj and they are our unknowns. With the value of dy p lj , we can determine the value of y lj at next iteration:

y p+1 lj = y p lj -dy p lj ; ∀l ∈ 1; n e , ∀j ∈ 1; M . (6.15)
The collocation method o er the advantage of superconvergence. Indeed, instead of reaching a precision of order m, the collocation method, by choosing the point in a judicious way, reaches a precision of order 2m.

The General owchart of

The general path followed by to compute the evolution during one time step is summarized in Fig. 6.1. At the end of the computation at a given time t, a new time step ∆t is estimated. During the computation of the next time step t + ∆t, will use some quantities that have been computed using the previous structure. Such quantities are the factors f p , f T and f d (de ned in Eq. (1.75)), the radii of isobars, the meridional circulation pro le, etc. Concerning factors f p , f T and f d , this approximation is justi ed because their values are close to one, even for a high rotation rate, and they do not change much between two consecutive time steps. Concerning the radii r(p, θ) of an isobar, it can be written:

r(p, θ) = r(p) + r (p)P (cos θ). (6.16)
The value of r(p) depends a lot on the new quasi-static structure, and indeed, it is an unknown of the system of structure equations. Therefore, r(p) is not taken from previous time step. However, the terms r (p) will not change much. Thus, until its new determination (at point 6. in Fig 6 .1), r t+∆t (p, θ) r t+∆t (p) + rt (p)P (cos θ). Finally, the most questionable approximation is the one on the meridional circulation pro le. The pro le of meridional circulation from the previous time step is used for computing the transport of chemicals. During the main sequence this simpli cation does not lead to large inconsistencies because the star's properties vary slowly. However, during the or evolved phases, it could lead to rather important modi cations of the stellar-structure. This last point should be studied in more detail in a future work.

Then goes to the evolution of the chemical composition, that incorporates evolution due to nuclear reactions, convection and di usion by shear-induced turbulence. In parallel of my work, Morgan Deal (e.g. Deal et al., 2020) is working on the implementation of microscopic and radiative di usion in . These non-standard processes can also be integrated into 6.1. How works 0. At time t + ∆t 1. First guess: stellar-structure at time t 1D quantities as well as f p , f T , radii of isobars, 2D rotation rates, ...

Find limit CZ/RZ

Find the limits between radiative and convective zones using previous quasi-static structure.

Computation of rotation prole and meridional circulation

Find new rotation pro le with previous quasi-static structure. Rotation pro le can be computed in 1D or 2D. → Depending on the description, U and Ω are known. convergence ?

Evolution of chemical composition

Chemical composition evolution with/without di usion, nuclear reactions. convergence ?

Compute new quasi-static structure

Find solution of structure equations at t + ∆t with previous rotation pro le. Coe cients f p and f T are taken from point 1. → p, T, L, r, m and ψ are known. convergence ?

Compute 2D geometry of the model

Compute the radius of isobars, the density on isobars, the e ective gravity on the whole surface. Compute f p , f T , and various average quantities. the modelling. If the computation of the chemical composition does not converge, the time step is divided by two and we restart from last time step. Otherwise, with the chemical composition known at time t + ∆t, looks to precisely determine the junctions between the radiative and convective zones by studying Schwarzschild's criterion (or Ledoux's) using dichotomy method 3 . If needed, more layers can be added or removed in order to preserve the desired resolution and so that the limits of the zones fall exactly on grid points. If the grid changes, so does the spacing function and hence the B-Splines basis on which quantities are interpolated. Sometimes, convective zones can be found near the centre or near the surface or somewhere in the star, but with too short an extent. Those spurious zones are eliminated.

With properly determined limits, structure equations (6.7) are solved using the collocation method described above. Again, if it does not converge (convergence is reached when the correction applied to the solutions goes below a certain threshold), the time step is divided by two, otherwise goes to the next step. The non-convergence criterion is manifold: the number of iterations exceeds a prede ned value, the correction between two consecutive time steps is too high, the break-up velocity was reached somewhere inside the star, etc. The next step is the solving of angular momentum transport equations and of meridional circulation. Section 6.3 describes how I implemented it for the 2D case. Upon convergence, we proceed the same as before. And we nally arrive at the point where the quasi-static structure and the rotation pro le are known. The model can be deformed in order to compute f p , f T , etc. needed for the next time step. The deformation is described in Section 6.2.

: another code for the stellar rotation in 2D

(Evolution STEllaire en Rotation) is a 2D code that initially simulated the steady state of fully radiative stars (Espinosa Lara & Rieutord, 2007, 2013) and then was improved to provide a modelling of convection zones [START_REF] Rieutord | Fluid Dynamics: An Introduction Rieutord[END_REF]. It relies on spectral methods to solve 1 st principle equations: Poisson equation, conservation of mass, momentum and energy, and an equation of state. The scalars and vectors are decomposed on spherical harmonics for the angular parts and on Tchebyshev polynomials for the radial one, using a multi-domain approach. Each of the equations to be solved are projected onto them. The convection zones are modelled assuming that the entropy is constant everywhere in them: ∇s = 0. The approximation is valid almost everywhere (it actually supports the modelling), except at the surface (where we have seen that the modelling of convection needs re nement). Until recently, was not capable of simulating stellar evolution. Gagnier et al. (2019) recently implemented a simpli ed temporal evolution into that assumes small variations, i.e. evolution along the main sequence only. The chemical composition is evolved by computing the hydrogen mass fraction X change due to PP-chain between two time steps. This change is expressed as

∂X ∂t = - 4m p Q L core M core , ( 6.18) 
3 Gabriel et al. (2014) have shown that the only proper way to de ne the boundary of a convective zone (in the MLT framework) is that, at this location, the following conditions are met: (6.17) where F rad is the radiative ux, F is the total ux and vr is the radial component of the convective velocity. This condition is currently being implemented into .

F rad = F, vr = 0, ∇ rad = ∇ ad ,

The deformation of a 1D model

where Q is the energy released by the fusion of four protons into a helium nucleus, m p is the mass of a proton, L core is the Luminosity at the boundary of the core convection zone and M core its mass. They proceed as follow: a steady model of the star is computed in 2D at a given time, the change of X a er a given duration ∆T is computed, a new steady model with the new chemical composition is computed, etc. This approach is considered valid if the time-scales of dynamical processes (Eddington-Sweet and Kelvin-Helmholtz time-scales; see Eq. (2.12)) are small compare to the time scales of evolution (nuclear and mass-loss timescales). Comparisons with non-rotating model of the time needed for hydrogen to entirely fuse in the core was performed with the Geneva 1D stellar evolution code (Eggenberger et al., 2008). overestimated this time by 20% (> 10 Gyr instead of 8 Gyr for the Geneva model), which is quite large.

The deformation of a 1D model 6.2.1 Isobaric mesh and initialization

The deformation of a 1D spherical model into a 2D spheroidal one necessitates adding an angular mesh to the radial one. The former is xed, i.e. the number of angular sectors is and their locations do not change overtime (except for one, as we will see in Sect. 6.2.3). Let us de ne two systems of coordinates. The rst system, herea er referred to as the spherical (coordinate) system, is the union of an angular mesh in which each angular sector has colatitude θ j and of a radial mesh in which each layer has a radius r i . The radial mesh may not be evenly spaced, whereas the angular mesh is never evenly spaced, as we will see shortly. The second system, herea er referred to as the isobaric (coordinate) system, is the union of the same angular mesh and of the radius r pi (θ j ) of isobars. The construction of this isobaric system will be described later. In the following, n θ denotes the number of angles in the angular mesh and N 1D r (resp. N 2D r ) denotes the number of layers in the initial 1D model (resp. in the new 2D model).

How must we choose the angles? Remember that we want, at the end, to evaluate integrals over spheroidal surfaces. Indeed the deformation of a 1D model must provide averages of some quantities needed to compute f p , f T , etc., such as g eff , g -1 eff , etc. A naive approach would be to pick angles evenly. In this case, the integral of a function f between 0 and π can be expressed using the trapezoidal rule:

ˆπ 0 f (θ)dθ = 1 2 n θ k=2 ∆θ i (f i + f i-1 ) + E trpz n θ . (6.19)
The angles θ i are evenly spaced angles between 0 and π, with

θ 1 = 0, θ n θ = π and ∀i ∈ 2; n θ , θ i -θ i-1 = ∆θ i . The values f i = f (θ i ) and E trpz (n θ ) = O(n -3 θ )
are the error committed on approximating the integral. It decreases linearly with n θ as n θ increases. Can the abscissa be chosen in a way that the error decreases faster ? Gauss found a way to do so [START_REF] Gauss | Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores Gerkema[END_REF]. If one assumes that f can be decomposed on Legendre polynomials, which is our case, the Gauss-Legendre quadrature provides a method to calculate a set of angles {θ i } n θ 1 and of weights (6.20) and

{w i } n θ 1 so that ˆπ 0 f (θ)dθ = n θ k=1 w i f i + E GL n θ ,
E GL n θ = O(f (2n θ ) (ξ)/(2n θ )!), with ξ ∈ [0, π].
Our angular mesh is therefore composed of n θ angles θ j , each of them a ected by a weight w j given by Gauss-Legendre quadrature. Angles θ j ∈]0, π 2 [ because, for symmetry reasons, the Figure 6.2: Representation of spherical mesh (green and grey) and spheroidal mesh (blue and grey), for an arbitrary deformation. The grey lines are plotted at angles determined by a Gauss-Legendre quadrature for 32 points. The red line corresponds to the characteristic angle θ m such that P 2 (cos θ m ) = 0. The purple lines correspond to the angles at θ = 0 and θ = π /2.

quarter of a meridional cross-section su ces to retrieve the whole solution in 2D. This set of angles does not contain:

• θ = π /2 and θ = 0. Knowing the value of any quantity at these points would ensure continuity of the solution between each quarter.

• θ m such that P 2 (cos θ m ) = 0 → θ m = arccos(1/ √ 3). This angle is the intersection angle between spherical and isobaric systems (when only P 0 and P 2 are taken into account). In the following, any quantity

X along θ = θ m is written X(r, θ m ) = X m (r) = X(r).
In , these angles are added to the angular mesh with a null weight so that the value of the Gauss-Legendre quadrature is not a ected. For this reason I call them ghost angles. The nal mesh then includes N θ = n θ + 3 angles (see Fig. 6.2). Let us denote R the radius of the 1D model. The new radial mesh has a radius of R max = 2R . From 0 to R , the layers are positioned at the same radii as for the 1D model. Above R , the layers are evenly spaced, with a radial spacing of dr = R /N 1D r . The new radial coordinates 6.2. The deformation of a 1D model go from 0 to 2R max with N 2D r = 2N 1D r + 1 layers. Adopting such a radial mesh amounts to plunging the star into a spherical void with twice the radius of the star. The initial guess for the deformation is obtained by interpolating all the 1D quantities obtained in point 4. of Fig. 6.1. For instance, the rst guess of the density is

ρ(r i , θ j ) = ρ(r i ) 1D , for r ∈ [0, R ] ρ(r i , θ j ) = 0, for r ∈ [R , 2R ] . (6.21)
The initialization of the angular mesh is done once and for all while the radial mesh and the rst guesses are, of course, renewed at each time step.

Computation of the e ective gravity and of averaged quantities

A er having de ned the rst guesses (box 1. of Fig. 6.3), Eq. (2.39) for the gravitational potential is solved assuming ρ 2D (r, θ) is known, and then the radius of isobars (characteristic radius; Eq. (2.47)) and the density on isobars (Eq. (2.48)) are computed. If the maximum change between φ(r, θ) computed at current and previous iteration exceeds a certain maximum error, then φ is computed again. It usually necessitates four iterations to go below a 10 -12 maximum variation. However, for fast and massive rotating stars (M 2M ), it can take forever and the process is usually forced to stop a er 42 unsuccessful iterations.

Once the solutions for φ and ρ have converged, the r-and θ-components of g eff can be computed using Eq. (1.52) and (1.53). Then p(r, θ) is deduced from:

∂p ∂r = -ρ ∂φ ∂r -Ω 2 r p sin 2 θ m . (6.22)
This equation is complemented with the boundary condition:

p(R , θ m ) = p 1D (R ).
It is needless to say that since we are computing solution over isobars, the pressure needs to be known at only one angle. The averages of g eff follows from their de nition in Eqs. (1.69), with the slight di erence that we actually compute S p g eff , (resp. S p 1/g eff , etc.) instead of just g eff , (resp. 1/g eff , etc.), because the factor S p is always present when averages of g eff are used. Those averages are computed using Gauss-Legendre quadrature (Eq. (6.20)). The expression of the needed averages are:

S p g eff = 4π
ˆψp g eff r 2 p sin θdθ cos ε , (6.23)

S p g -1 eff = 4π ˆψp g -1 eff r 2 p sin θdθ cos ε , (6.24) S p g -1 eff 2 = 4π ˆψp g -1 eff r 4 p sin 3 θdθ cos ε . (6.25)
The factor cos ε easily follow from Eq. (1.67), once r p (θ) is known. The above averages enter in the composition of f p , f T and f d , that I recall: 

f p = 4πr 4 p Gm p 1 S p g -1 eff , (6.26) f T = 4πr 2 p S p 2 1 g eff g -1 eff , (6.27) f d = 1 -2 Ωα g -1 eff g -1 eff -g -1 eff 2 Ωα . ( 6 

Get φ

We get φ(r, θ) solving the Eq. (2.34) using previous ρ(r, θ).

New guess for φ

Get ρ

We get ρ(r, θ) solving the Eq. (2.48) using previous φ(r, θ).

New guess for ρ on the spherical and the isobaric mesh. Guess for characteristic radii.

φ converged ?

Correct the new mass

Mass coordinates are corrected to enforce the mass conservation impacted by numerical uncertainties.

Get g eff

From φ(r, θ), g eff (r, θ) is computed on spherical mesh using Eqs. (1.52) and (1.53).

Get p(r, θ m )

The new pressure is recomputed at θ = θ m using Eq. (6.22). p(r p , θ) is known.

8. Get g eff , g -1 eff , ... g eff (r, θ) is interpolated on the isobaric mesh and average over each isobars g eff , g -1 eff and ρ are known. 9. f p , f T , f d , etc. can be computed no yes Figure 6.3: Schematic representation of the steps followed until the determination of g eff (r) averaged over each isobars. 160 6.2. The deformation of a 1D model

Various points of interest

I will now give some details about issues or questions that the implementation has raised and which, in my opinion, will help someone whose project is to perform the same task in another stellar evolution code.

On the decomposition on Legendre polynomials above 2 nd order Above, I made pro table use of the critical angle θ m . In the literature, it is o en assumed that, for any quantity X, at θ m = arccos(1/ √ 3),

X(r) + ∞ =0 X P (cos θ m ) = X(r) = X(r, θ). (6.29)
However, this is, in general, not true. While arccos(1/ √ 3) is a root of P 2 , it is not one of P >2 . Therefore, except by accident, (6.30) where P 4 (cos θ m ) does not vanish. In the following I denote θ m,2 = arccos(1/ √ 3) the root of P 2 and θ m the hypothetical root for the polynomial

X(r, θ m ) = X(r) + X 4 P 4 (cos θ m ) + . . . = X(r),
=2 X P (cos θ m ).
It is important to notice that the method developed in (Roxburgh, 2004(Roxburgh, , 2006)), does not need a speci c angle to work. Indeed, Roxburgh (2004) uses π /2 as reference angle and Roxburgh (2006) uses arccos(1/ √ 3). This speci c angle is only needed a erward. In reality, the 1D solutions of the structure equation, at a given radius (or pressure), provide the average value over an isobar that the decomposition shall ensure:

X isobar (r) = X(r) = X 1D = X(r, θ m ), (6.31) 
The angle θ m does exist because of rst mean value theorem4 . Can we nd θ m ?

The ρ components are known and ρ 1D is found when computing the quasi-static structure. Let Q be the polynomial de ned as

Q(x) = N k=0 ρ k P k (x) -ρ 1D = N k=0 γ k P k (x), (6.33) 
where γ 0 = ρ 0 -ρ 1D = ρ -ρ 1D and ∀k > 0, γ k = ρ k . The integer N is the maximum order of the Legendre polynomial on which ρ is decomposed.

The angle θ m is among Q's roots, especially, it is inside [0, π/2]. Finding roots of a polynomial is painful when the degree increases, but this is forgetting that Legendre polynomials are orthogonal. [START_REF] Day | [END_REF] developed a very e cient method for nding all roots of such a polynomial. This method reduces to searching for the eigenvalues of an almost diagonal matrix.

Legendre polynomials being orthogonal, there exists a recursive relation of the form:

xP n-1 (x) = n k=0 h k,n-1 P k (x) indeed (n + 1)P n+1 (x) = (2n + 1)xP n (x) -nP n-1 (x). (6.34) Then h i-1,i = i 2i + 1 , (6.35) h i+1,i = i + 1 2i + 1 , ( 6.36) 
and for k = i ± 1, h k,i = 0. (6.37)

Those coe cients form a N × N matrix H N = (h i,j ) 0≤i,j≤N -1 .

H N =                         0 1 /3 0 • • • • • • 0 1 0 2 /5 . . . . . . 0 2 /3 0 0 . . . 0 3 /5 . . . N -3 2N -5 0 . . . 0 0 N -2 2N -3 0 . . . . . . N -2 2N -5 0 N -1 2N -1 0 • • • • • • 0 N -1 2N -3 0                         . ( 6.38) 
We also de ne three vectors:

f N (x) = (P 0 (x), . . . , P N -1 (x)) T , (6.39) c T N = (γ 0 , . . . , γ N -1 ) , ( 6.40) 
e N -1 = (0, . . . , 0, 1) T . (6.41)

Therefore our polynomial P can now be written

Q(x) = f T N (x)c N + γ N P N (x), (6.42) 
whose roots are the eigenvalues of the matrix

B N = H N -h N ,N -1 c N γ N e T N -1 = (6.43) 6.2. The deformation of a 1D model                                           0 h 0,1 0 • • • • • • -h N ,N -1 γ0 γ N h 1,0 0 h 1,2 . . . . . . 0 h 2,1 0 0 . . . 0 h 3,2 . . . h N -4,N -3 0 . . . 0 0 h N -3,N -2 -h N ,N -1 γ N -3 γ N . . . . . . h N -2,N -3 0 h N -2,N -1 - h N ,N -1 γ N -2 γ N 0 • • • • • • 0 h N -1,N -2 -h N ,N -1 γ N -1 γ N                                           B n is upper-Hessenberger, meaning that ∀i, j ∈ [0, n -1], if i > j + 1, then B n,i,j = 0.
The library Lapack [START_REF] Anderson | LAPACK Users' Guide[END_REF] provides Fortran routines built to nd eigenvalues of such a matrix. A special case of upper-Hessenberger matrices are the reduced upper-Hessenberger matrices. However, in general, B n is un-reduced because ∀i ∈ [0, n -2], B n,i+1,i = 0. Two strategies have been adopted in :

• either one extracts the eigenvalues of B n at a given point of the radial mesh and selects θ m as the closest to arccos(1/ √ 3);

• or one extracts them at few points of the radial mesh and keeps the one common to all the sets of eigenvalues;

• or one extracts them at all points of the radial mesh and averages eigenvalues that are close to one another and in the right interval;

• or one extracts θ m at all points of the radial mesh. Then, the representation of θ m as a function of r makes it possible to have a varying θ m at di erent layers.

It is still not clear what is the good choice and they shall be tested thoroughly. However, the penultimate option should probably be ruled out because, at the centre, θ m becomes unde ned. These variations certainly a ect the mean value. The one I usually choose in is the fourth.

Should we deform the atmosphere ? Roxburgh (2004Roxburgh ( , 2006))'s method is developed to deform the internal structure. The atmosphere is just here to provide some boundary conditions. In our rst implementation of the deformation , the equations of the atmosphere structure were modi ed to include the factor f p,T,d , computed at the surface. The atmosphere computed in 1D was then "patched" on the deformed surface. However, if a certain rotation threshold was to be reached, the deformed isobars could cross the small extent of the atmosphere. It was then decided to include the atmosphere in the deformation process. The atmosphere is supposed to rotate uniformly with the same angular velocity as the surface. Of course, more sophisticated models of rotating atmospheres should be developed, but this is less of a priority than a rotating convection model. Roxburgh (2006) pointed out that when deforming a model, the total mass su ered from a slight decrease. This loss of mass is purely numerical and is due to the readjustment of density in 2D. As an example, they showed that when deforming a 2M model, the nal mass a er the deformation was 1.9995M . It may seem small but a change of 10 -4 M is of the same order as the total mass loss that the Sun has experienced through stellar winds during its whole lifetime. In addition, the total numerical mass loss a model would su er along its evolution is not a function of time but of the number of time steps needed to reach the desired age. If a star loses 10 -5 M at each time step due to deformation, a er an evolution counting around 1000 time steps, the change of mass would be of order 1%, which is far from being negligible ! Our implementation of the deformation method in produces a rather better conservation of mass. The mass di erence goes from 10 -12 M to 10 -8 M . Roxburgh (2006) used 2400 radial grid points and 240 angular grid points, which is rather similar to us. We do not have much details on how the radial points were located, but the angles are evenly spaced. Our better mass loss could come from better located radial points and angles chosen with a Gauss-Legendre quadrature. As a workaround, the nal mass of the deformed model is corrected with a multiplicative factor that ensures M 1D = M 2D .

Numerical mass loss

The transport of angular momentum in 2D

Before the adoption of the numerical scheme that will be presented in this section, we hesitated and tested several of them. They all presented stability problem, however it may be interesting in the future to re-investigate the causes of this instabilities and try and make them work. The method that nally worked is based on a relaxation method developed in [START_REF] Press | Numerical Recipes in FORTRAN[END_REF]. By expressing the Jacobian of the system of equation, the successive guesses for the solutions are guided toward the true solution.

Relaxation method

In order to solve our system of equations, we will use a numerical method, called the relaxation method [START_REF] Press | Numerical Recipes in FORTRAN[END_REF], that shares common points with the collocation. This method works on systems of rst order ordinary di erential equations, of the same form as in Eq. (6.6). We denote E = {E i } ne i=1 the vector containing our n e di erential equations. These equations depend on a quantity x and on the n e unknowns y = {y i } ne i=1 and their x-derivatives. With these notations, the system is written E(x; y, y ) = dy dx g(x, y) = 0, (6.44) with g a suitable vector of functions representing the di erential system. For a domain divided into N layers, and by labelling independent variables at each layers with a superscript k, this problem has {y k } k=1,N = {y k i } k=1,N i=1,ne as independent variables, i.e.
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n e N unknowns. We denote

E = {E k i } k=1,N = {E k i } k=1,N i=1
,ne , the equations linking the variables y k i . They are of the form:

∀k ∈ 2; N , E k = y k -y k-1 -(x k -x k-1 )g k (x k , x k-1 , y k , y k-1 ) = 0. (6.45)
Contrarily to the collocation method, the solutions y are not decomposed on a basis of B-Splines, therefore, we do not have to express the di erential system for all coe cients of the B-Splines, at all mesh points. These mesh points are the one located at the faces of each layer already determined by . We do not introduce new points between them using a Gauss-Legendre quadrature and therefore we do not seek to obtain superconvergence. Equation (6.45) provides n e (N -1) equations while we have n e N unknowns. We need n e more equations, E 1 (x 1 , y 1 ) and E N +1 (x N , y N ), that come from boundary conditions, so that the system is complete. There is no need to have the same number of boundary conditions at top and bottom, the n e can be at the same location. Once we have our set of di erential equations, the idea is to start from a rst guess for y, for instance their solutions at previous time step. Then, iteratively, to tweak their values in order to minimize E k i . In order to guide the adjustment of y to the right solution, equations E k i are developed to 1 st -order in Taylor series:

E k (y k + ∆y k , y k-1 + ∆y k-1 ) E k (y k , y k-1 ) + ne i=1 ∂E k ∂y i,k-1 ∆y k-1 i + ne i=1 ∂E k ∂y i,k ∆y k i E k (y k , y k-1 ) + S i k,k-1 ∆y k-1 i + S i k,k ∆y k i .
Einstein notation (6.46)

We want E k (y k + ∆y k , y k-1 + ∆y k-1 ) to be as small as possible. The errors E k (y k , y k-1 ) are known from previous iteration step, S i k,j = ∂E k i /∂y j is the Jacobian of the system (6.7). It gives the slopes that lead to the solutions. We look for the small modi cations ∆y k-1 i and ∆y k i that solve the system:

E k (y k , y k-1 ) + ne i=1 ∂E k i ∂y k-1 ∆y k-1 i + ne i=1 ∂E k i ∂y k ∆y k i = 0.
(6.47)

First order di erential system

I recall that the system of equations we are trying to solve is:

           L p m p T = T c p dΨ dt + Φ d ln µ dt Λ + U H p (∇ ad -∇) ρ dr 2 Ω dt = 1 5r 2 ∂ ∂r ρr 4 ΩU 2 + 1 r 2 ∂ ∂r ρν v r 4 ∂Ω ∂r , (6.48) with T = 2 1 - f C 4πGρ - ε + ε g ε m g g + f C, 4πGρ - f C 4πGρ Θ + ρ m ρ r 3 d dr H T ∂Ψ ∂r -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ - ( + 1)H T 3r 1 + D h K Ψ + ε + ε g ε m H T ∂Ψ ∂r -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ + (f ε ε T -f ε δ + δ) Ψ + (f ε ε µ + f ε ϕ -ϕ) Λ . (6.49)
The rst equation of system (6.48) actually is one equation for each term of the meridional circulation. This system can also be supplemented by the equation for the horizontal transport of angular momentum (or even higher orders):

ρ dr 2 Ω 2 dt + 1 r 2 ∂ ∂r ρr 4 ΩU 2 - 10 6 dρr 2 U 2 dr Ω = 1 r 2 ∂ ∂r ρν v r 4 ∂Ω 2 ∂r -10ρν h Ω 2 .
(6.50) I will treat the systems (6.48) and (6.48)+(6.50) separately.

Our goal is to make use of the relaxation method presented in Sect. 6.3.1 to solve those systems. The relaxation method works on rst order di erential systems, which is the case for neither (6.48) nor (6.50). To transform them into 1 st -order s, we introduce more independent variables. The rst one has been de ned in Eq. (2.107):

Υ = H T ∂Ψ ∂r -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ . (6.51)
The two others are the rst order radial derivatives of Ω and Ω 2 :

F ν,0 = ∂Ω ∂r and F ν,2 = ∂Ω 2 ∂r .
(6.52)

Those new variables having been de ned, our equations reads:

∇ ad -∇ H p U = L p c p T m p 2 1 - f C 4πGρ - ε + ε grav ε m g g + f C 4πGρ - f C 4πGρ Θ + ρ m ρ r p 3 ∂Υ ∂r - ( + 1)H T 3r p 1 + D h K Ψ + ε + ε grav ε m [Υ + (f ε ε T -f ε δ + δ) Ψ + (f ε ε µ -f ε ϕ + ϕ) Λ ] - dΨ dt -Φ d ln µ dt Λ , (6.53) Υ = H T ∂Ψ ∂r -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ , (6.54) ρ dr 2 Ω dt = 1 5r 2 ∂ ∂r ρr 4 ΩU 2 + 1 r 2 ∂ ∂r ρν v r 4 F ν,0 , (6.55) ρ dr 2 Ω 2 dt = 10 6 dρr 2 U 2 dr Ω + 1 r 2 ∂ ∂r ρν v r 4 F ν,2 - 1 r 2 ∂ ∂r ρr 4 ΩU 2 -10ρν h Ω 2 . (6.56)
Just as a side remark, the term (∇ ad -∇) /H p is kept on the le side of the equation because, near the tachocline, the term ∇ ad -∇ goes to zero. If it is in the denominator, the term H p / (∇ ad -∇) would explode and introduce spurious results in the solution of U .

Dimensionless system for U 2 and Ω

For to be able to solve Eqs. (6.53) to (6.55), we need to do more work. First of all, we shall introduce dimensionless variables. While they have the same name as the one de ned in 6.1.2, their de nition is slightly di erent:

ζ = r R → r = ζR = ζR , λ = L p L → L p = λL , m = m p M → m p = mM , ν = m p M 2/3 → m p = ν 3/2 M , ∂ ∂r → ∂ ∂r = 8πR 2 3M ρζ 2 √ ν ∂ ∂ν , ∂ ∂r → ∂ ∂r = 4πR 2 M ρζ 2 ∂ ∂m .
(6.57)
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The radial derivatives in equation for U and Υ will be replaced by ∂/∂ν, while the one in the vertical angular momentum transport equation will be replaced by ∂/∂m. Doing so allows us to clearly see the fact that our numerical scheme conserves angular momentum by construction and mixing m and ν is not a problem for the relaxation method. With those dimensionless quantities, our system reads

Υ = H T 8πR 2 3M ρζ 2 √ ν ∂Ψ ∂ν -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ , ∇ ad -∇ H p U = L M λ c p T ν 3/2 2 1 - f C 4πGρ - ε + ε grav ε m g g + f C 4πGρ - f C 4πGρ Θ + ρ m ρ 8πR 3 9M ζ 3 ρ √ ν ∂Υ ∂ν - ( + 1)H T 3R ζ 1 + D h K Ψ + ε + ε grav ε m [Υ + (f ε ε T -f ε δ + δ) Ψ + (f ε ε µ -f ε ϕ + ϕ) Λ ] - dΨ dt -Φ d ln µ dt Λ , d dt ζ 2 Ω = R 2 M ∂ ∂m 4π 5 ρζ 4 ΩU 2 + R 2 M 2 ∂ ∂m 16π 2 ρ 2 ζ 6 ν v ∂Ω ∂m .
(6.58)

Furthermore, the following quantities may be simpli ed:

H p = - 1 p dp dr = p ρg eff , H T = - 1 T dT dr = H p ∇ = p ρg eff ∇ , ε + ε grav ε m = M p L p ∂L p ∂M p = ∂ ln λ ∂ ln ν , Z = 8πR 2 3M , ( 6.59 
)

f ε = ε ε + ε grav , f ε ε + ε grav ε m = ε ε m = M L ε nuc λ ν 3 /2 .
Injecting those quantities in system (6.57) gives:

Υ = 8πR 2 3M ρζ 2 √ ν H p ∇ ∂Ψ ∂ν -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ , ∇ ad -∇ H p U = L M λ c p T ν 3/2 2 1 - f C 4πGρ - ∂ ln λ ∂ ln ν g g + f C 4πGρ - f C 4πGρ Θ + ρ m ρ 8πR 3 9M ζ 3 ρ √ ν ∂Υ ∂ν - ( + 1) 3R ζ H p ∇ 1 + D h K Ψ + ∂ ln λ ∂ ln ν (Υ + δΨ + ϕΛ ) + M L ε nuc λ ν 3 /2 [(ε T -δ) Ψ + (ε µ -ϕ) Λ ] - dΨ dt -Φ d ln µ dt Λ , d dt ζ 2 Ω = R 2 M ∂ ∂m 4π 5 ρζ 4 ΩU 2 + R 2 M 2 ∂ ∂m 16π 2 ρ 2 ζ 6 ν v ∂Ω ∂m .
(6.60)

From now on, I only restrict myself to the = 2 component. We introduce the notation y 1 = U 2 , y 2 = Υ 2 , y 3,0 = Ω and y 4,0 = ∂Ω ∂m . The variable Ψ 2 , Λ 2 are linked to Θ 2 and U 2 . The 2 nd -order term Θ 2 is precisely computed by Roxburgh (2006)'s method. However, this method is applied at the end of the computation of a time step (see Fig. 6.1). Therefore, the Θ 2 that has been computed using the deformation module, was computed at the previous time step and it may have changed signi cantly. I said earlier that Mathis & Zahn (2004) provide an expression for Θ . We did not used this expression to compute the nal value of Θ 2 , however such a relation can be used to provide an approximate Θ 2 in order to compute U 2 and Ω. When the horizontal transport of angular momentum is neglected,

Θ 2 = r 2 3ḡ eff ∂ Ω2 ∂r = ZR 2 ρ ζ 4 ḡeff y 3,0 y 4,0 . (6.61)
When this expression is injected into the one of U 2 , it explicitly introduces a dependence of U 2 on Ω 2 , which is good for the stability of our algorithm. The uctuations of mean molecular weight are expressed through a time derivative in Eq. (2.83). This time derivative is discretized and reduced as follow:

dΛ dt (m) = Λ (m) -Λ t (m) ∆t = - ( + 1) R 2 ζ 2 D h - d ln µ dt Λ + U H p ∇ µ , (6.62) Λ = Λ t /∆t + U Hp ∇ µ 1 ∆t + ( +1) R 2 ζ 2 D h -d ln µ dt = A 0 + A 1 U , (6.63)
where Λ t (m) is the mean molecular weight uctuation at the previous time step and mass m, and A 0 and A 1 are de ned as

A 0 = Λ t 1 + ∆t ( +1) R 2 ζ 2 D h -d ln μ dt and A 1 = ∇ µ H p 1/∆t + ( +1) R 2 ζ 2 D h -d ln μ dt . (6.64)
With Θ 2 and Λ 2 known, Ψ 2 is simply expressed as:

Ψ 2 = ϕΛ 2 -Θ 2 δ = ϕA 0 + ϕA 1 y 1 -ZR 2 ρ ζ 4 ḡeff y 3,0 y 4,0 δ = C 0 + C 1 y 1 + C 2 y 3,0 y 4,0 , (6.65) 
where we de ned C 0 , C 1 and C 2 as

C 0 = ϕA 0 δ , C 1 = ϕ δ A 1 and C 2 = -ZR 2 ρ ζ 4 ḡeff δ . (6.66)
And we also need the ν-derivative of Ψ 2 :

∂Ψ 2 ∂ν = ∂C 0 ∂ν + ∂C 1 ∂ν y 1 + C 1 ∂y 1 ∂ν + ∂C 2 ∂ν y 3,0 y 4,0 + C 2 ∂y 3,0 ∂ν y 4,0 + C 2 y 3,0 ∂y 4,0 ∂ν = D 0 + D 1 y 1 + C 1 ∂y 1 ∂ν + D 2 y 3,0 y 4,0 + C 2 ∂y 3,0 ∂ν y 4,0 + y 3,0 ∂y 4,0 ∂ν , ( 6.67) 
where

D i = ∂C i /∂ν.
The expressions for Θ 2 , Λ 2 , Ψ 2 and ∂Ψ 2 /∂ν as a function of y 1 , y 2 , y 3,0 and y 4,0 can be injected into system (6.60) and we obtain:

y 2 = Z ρζ 2 √ ν H p ∇ D 0 -(1 -δ + χ T ) C 0 -(ϕ + χ µ ) A 0 (6.68) +y 1 Z ρζ 2 √ ν H p ∇ D 1 -(1 -δ + χ T ) C 1 -(ϕ + χ µ ) A 1 + ∂y 1 ∂ν Z ρζ 2 √ ν H p ∇ C 1 +y 3,0 y 4,0 Z ρζ 2 √ ν H p ∇ D 2 -(1 -δ + χ T ) C 2 + ∂y 3,0 ∂ν y 4,0 + y 3,0 ∂y 4,0 ∂ν Z ρζ 2 √ ν H p ∇ C 2 , ∇ ad -∇ H p y 1 = L M λ c p T ν 3/2 2 1 - f C 4πGρ - ∂ ln λ ∂ ln ν g g + f C 4πGρ + ∂ ln λ ∂ ln ν ϕA 0 + ∂ ln λ ∂ ln ν δ - ρ m ρ H p ∇ ( + 1) 3R ζ 1 + D h K C 0 + ε nuc c p T [(ε T -δ) C 0 + (ε µ -ϕ) A 0 ] + Ψ t -C 0 ∆t -Φ d ln µ dt A 0 +y 2 L M λ c p T ν 3/2 ∂ ln λ ∂ ln ν + ∂y 2 ∂ν L M λ c p T ν 3/2 ρ m ρ Z R 3 ζ 3 ρ √ ν +y 1 L M λ c p T ν 3/2 ∂ ln λ ∂ ln ν δ - ρ m ρ H p ∇ ( + 1) 3R ζ 1 + D h K C 1 + ∂ ln λ ∂ ln ν ϕA 1 + ε nuc c p T [(ε T -δ) C 1 + (ε µ -ϕ) A 1 ] - C 1 ∆t -Φ d ln µ dt A 1 +y 3,0 y 4,0 L M λ c p T ν 3/2 ∂ ln λ ∂ ln ν δC 2 -ZR 2 ρ ζ 4 ḡeff f C 4πGρ - ρ m ρ H p ∇ ( + 1) 3R ζ 1 + D h K C 2 + ε nuc c p T [(ε T -δ) C 2 ] - C 2 ∆t . (6.69)
The last equation of system (6.60) needs a little more work. We integrate it over a spheroidal shell located in between two masses m k-1 and m k , as follow

ˆmk m k-1 d dt ζ 2 Ω dm = ˆmk m k-1 R 2 M ∂ ∂m 4π 5 ρζ 4 ΩU 2 dm + ˆmk m k-1 R 2 M 2 ∂ ∂m 16π 2 ρ 2 ζ 6 ν v ∂Ω ∂m dm ˆmk m k-1 ζ 2 Ω dm = ˆmk m k-1 ζ 2 Ω t dm + ∆t R 2 M 4π 5 ρζ 4 ΩU 2 k -ρζ 4 ΩU 2 k-1 +∆t R 2 M 2 16π 2 ρ 2 ζ 6 ν v ∂Ω ∂m k -16π 2 ρ 2 ζ 6 ν v ∂Ω ∂m k-1 , ( 6.70) 
with ζ 2 Ω t the value of ζ 2 Ω at previous time step. Finally:

1 2 ζ 2 y 3,0 k + ζ 2 y 3,0 k-1 (m k -m k-1 ) = 1 2 ζ 2 Ω t k + ζ 2 Ω t k-1 (m k -m k-1 ) + ∆t R 2 M 4π 5 ρζ 4 y 3,0 y 1 k -ρζ 4 y 3,0 y 1 i+1 +16π 2 ∆t R 2 M 2 ρ 2 ζ 6 ν v y 4,0 k -ρ 2 ζ 6 ν v y 4,0 k-1 . (6.71)
Equations (6.68), (6.69) and (6.71) form our new system. The nal way to write it, i.e. the way as it is written in , is to pack and rename all the factors a er the independent variables:

                                           E k 1 = K 1,1 -K 1,5 y 1 -K 1,2 -K 1,3 y 2 -K 1,4 ∂y 2 ∂ν -K 1,6 y 3,0 y 4,0 = 0, E k 2 = y 2 -K 2,1 -K 2,2 y 1 -K 2,3
∂y 1 ∂ν -K 2,4 y 3,0 y 4,0 -K 2,5 ∂y 3,0 ∂ν y 4,0 + y 3,0 ∂y 4,0 ∂ν = 0,

E k 3 = 1 2 K k-1 3,3 y k-1 3,0 + K k 3,3 y k 3,0 ∆m - 1 2 K k-1 3,4 + K k 3,4 ∆m - R 2 ∆t M R 2 M K k 3,1 K k 3,2 y k 4,0 -K k-1 3,1 K k-1 3,2 y k-1 4,0 + 1 5 K k 3,1 y k 3,0 y k 1 -K k-1 3,1 y k-1 3,0 y k-1 1 = 0, E k 4 = y 4,0 - ∂y 3,0 ∂m = 0.
(6.72)

We introduced several notations and de ned several quantities. The notations rst. For variables f de ned on a grid with values {f k } N 1 , f is de ned as:

f = f k + f k-1 2 . (6.73) Also, ∂f ∂ν = f k -f k-1 ν k -ν k-1 , ∂f ∂m = f k -f k-1 m k -m k-1 , ∆ν = ν k -ν k-1 , ∆m = m k -m k-1 . (6.74)
Then the new variables:

K 1,1 = ∇ ad -∇ H p , K 1,2 = L M λ c p T ν 3/2 2 1 - f C 4πGρ - ∂ ln λ ∂ ln ν g g + f C 4πGρ - f C 4πGρ Θ + ∂ ln λ ∂ ln ν ϕA 0 + ∂ ln λ ∂ ln ν δ - ρ m ρ H p ∇ ( + 1) 3R ζ 1 + D h K C 0 + ε nuc c p T [(ε T -δ) C 0 + (ε µ -ϕ) A 0 ] + Ψ t -C 0 ∆t -Φ d ln µ dt A 0 , K 1,3 = L M λ c p T ν 3/2 ∂ ln λ ∂ ln ν , K 1,4 = L M λ c p T ν 3/2 ρ m ρ Z R 3 ζ 3 ρ √ ν , K 1,5 = L M λ c p T ν 3/2 ∂ ln λ ∂ ln ν δ - ρ m ρ H p ∇ ( + 1) 3R ζ 1 + D h K C 1 + ∂ ln λ ∂ ln ν ϕA 1 + ε nuc c p T [(ε T -δ) C 1 + (ε µ -ϕ) A 1 ] - C 1 ∆t -Φ d ln µ dt A 1 , 6.3. The transport of angular momentum in 2D K 1,6 = L M λ c p T ν 3/2 ∂ ln λ ∂ ln ν δC 2 -ZR 2 ρ ζ 4 ḡeff f C 4πGρ - ρ m ρ H p ∇ ( + 1) 3R ζ 1 + D h K C 2 + ε nuc c p T [(ε T -δ) C 2 ] - C 2 ∆t , ( 6.75) 
and

K 2,1 = Z ρζ 2 √ ν H p ∇ D 0 -(1 -δ + χ T ) C 0 -(ϕ + χ µ ) A 0 , K 3,1 = 4πζ 4 ρ, K 2,2 = Z ρζ 2 √ ν H p ∇ D 1 -(1 -δ + χ T ) C 1 -(ϕ + χ µ ) A 1 , K 3,2 = 4π ρζ 2 ν v,k , K 2,3 = Z ρζ 2 √ ν H p ∇ C 1 , K 3,3 = ζ 2 , K 2,4 = Z ρζ 2 √ ν H p ∇ D 2 -(1 -δ + χ T ) C 2 , K 3,4 = ζ 2 t Ω t , K 2,5 = Z ρζ 2 √ ν H p ∇ C 2 . (6.76)
The nal quantity we need to express is the Jacobian of this system de ned in Eq. ( 6.46):

S 1,1 = ∂E 1 ∂y k-1 1 = K 1,1 -K 1,5 2 , S 2,1 = ∂E 2 ∂y k-1 1 = - K 2,2 2 + K 2,3 ∆ν , S 1,2 = ∂E 1 ∂y k-1 2 = - K 1,3 2 + K 1,4 ∆ν , S 2,2 = ∂E 2 ∂y k-1 2 = 1 2 , S 1,3 = ∂E 1 ∂y k-1 3,0 = - K 1,6 2 y 4,0 , S 2,3 = ∂E 2 ∂y k-1 3,0 = y 4,0 K 2,5 ∆ν - K 2,4 2 - K 2,5 2 
∂y 4,0 ∂ν , S 1,4 = ∂E 1 ∂y k-1 4,0 = - K 1,6 2 y 3,0 , S 2,4 = ∂E 2 ∂y k-1 4,0 = y 3,0 K 2,5 ∆ν - K 2,4 2 - K 2,5 2 
∂y 3,0 ∂ν (6.77) S 1,5 = ∂E 1 ∂y k 1 = S 1,1 , S 2,5 = ∂E 2 ∂y k 1 = - K 2,2 2 - K 2,3 ∆ν , S 1,6 = ∂E 1 ∂y k 2 = - K 1,3 2 - K 1,4 ∆ν , S 2,6 = ∂E 2 ∂y k 2 = S 2,2 , S 1,7 = ∂E 1 ∂y k 3,0 = S 1,3 , S 2,7 = ∂E 2 ∂y k 3,0 = -y 4,0 K 2,5 ∆ν + K 2,4 2 - K 2,5 2 
∂y 4,0 ∂ν , S 1,8 = ∂E 1 ∂y k 4,0 = S 1,4 , S 2,8 = ∂E 2 ∂y k 4,0 = -y 3,0 K 2,5 ∆ν + K 2,4 2 - K 2,5 2 
∂y 3,0 ∂ν , and

S 3,1 = ∂E 3 ∂y k-1 1 = R 2 ∆t 5M K k-1 3,1 y k-1 3,0 , S 4,1 = ∂E 4 ∂y k-1 1 = 0, S 3,2 = ∂E 3 ∂y k-1 2 = 0, S 4,2 = ∂E 4 ∂y k-1 2 = 0, S 3,3 = ∂E 3 ∂y k-1 3,0 = K k-1 3,3 2 + R 2 ∆t 5M K k-1 3,1 y k-1 1 , S 4,3 = ∂E 4 ∂y k-1 3,0 = 1 ∆m , S 3,4 = ∂E 3 ∂y k-1 4,0 = R 4 ∆t M 2 K k-1 3,1 K k-1 3,2 , S 4,4 = ∂E 4 ∂y k-1 4,0 = 1 2 , S 3,5 = ∂E 3 ∂y k 1 = - R 2 ∆t 5M K k 3,1 y k 3,0 , S 4,5 = ∂E 4 ∂y k 1 = 0, S 3,6 = ∂E 3 ∂y k 2 = 0, S 4,6 = ∂E 4 ∂y k 2 = 0, S 3,7 = ∂E 3 ∂y k 3,0 = K k 3,3 2 - R 2 ∆t 5M K k 3,1 y k 1 , S 4,7 = ∂E 4 ∂y k 3,0 = - 1 ∆m , S 3,8 = ∂E 3 ∂y k 4,0 = - R 4 ∆t M 2 K k 3,1 K k 3,2 , S 4,8 = ∂E 4 ∂y k 4,0 = 1 2 . (6.78)
Before going to the next subsection, let us show that equation E 3 in the system (6.72) conserves by construction if the mesh is evenly spaced in mass. This equation is nothing more than the time variation of in a shell between mass m k-1 and m k . Let us sum all the terms between m 1 and m N , the masses of the boundaries of the radiative zone. This sum is zero by de nition:

N k=2 E k 3 = N k=2 1 2 K k-1 3,3 y k-1 3,0 + K k 3,3 y k 3,0 ∆m - 1 2 K k-1 3,4 + K k 3,4 ∆m (6.79) - R 2 ∆t M R 2 M K k 3,1 K k 3,2 y k 4,0 -K k-1 3,1 K k-1 3,2 y k-1 4,0 + 1 5 K k 3,1 y k 3,0 y k 1 -K k-1 3,1 y k-1 3,0 y k-1 1 = 0. (6.80)
It is easy to see that consecutive terms cancel each other and we are only le with

N k=2 E k 3 = ∆m 1 2 K 1 3,3 y 1 3,0 + K N 3,3 y N 3,0 -K 1 3,4 -K N 3,4 + N -1 k=2 K k 3,3 y k 3,0 -K k 3,4 (6.81) - R 2 ∆t M R 2 M K N 3,1 K N 3,2 y N 4,0 -K 1 3,1 K 1 3,2 y 1 4,0 + 1 5 K N 3,1 y N 3,0 y N 1 -K 1 3,1 y 1 3,0 y 1 1 = 0. (6.82)
If there is a central or not, y 1,N 4,0 = 0. The above equation simpli es to:

N k=2 E k 3 = ∆m 1 2 K 1 3,3 y 1 3,0 + K N 3,3 y N 3,0 -K 1 3,4 -K N 3,4 + N -1 k=2 K k 3,3 y k 3,0 -K k 3,4
(6.83)

6.3. The transport of angular momentum in 2D = 1 5 R 2 ∆t M K N 3,1 y N 3,0 y N 1 -K 1 3,1 y 1 3,0 y 1 1 . (6.84)
The le hand side formally expresses the variation of the amount of angular momentum in the radiative zone during a time step ∆t. The right hand side expresses this exchange at the boundaries of the radiative zone: it is the angular momentum advected from/to by the meridional circulation. The quantity (-2R 2 ∆t)/(5M )K 1 3,1 y 1 3,0 y 1 1 (resp. (2R 2 ∆t)/(5M )K N 3,1 y N 3,0 y N 1 ) represents the angular momentum given to or received by the bottom (resp. top) convective zone. Integrated over the whole star, the net variation of angular momentum between two time steps is zero (if no losses by stellar winds or by disk-coupling are included).

Dimensionless system for U 2 , Ω and Ω 2

Once we have done that, adding the equation for the horizontal transport of angular momentum is easy. Eq. ( 6.56) expressed with the dimensionless quantities reads

dζ 2 Ω 2 dt + R 2 M ∂ ∂m 4πρζ 4 ΩU 2 - 5 3 R 2 M ζ 2 ∂ ∂m 4πρζ 2 U 2 Ω = R 4 M 2 ∂ ∂m 16π 2 ρ 2 ν v ζ 6 ∂Ω 2 ∂m -10 ν h R 2 Ω 2 . (6.85)
By de ning y 3,2 = Ω 2 and y 4,2 = ∂Ω 2 /∂m, and by integrating over a spheroidal shell located by two masses m k-1 and m k , we obtain

1 2 ζ 2 + 10 ∆t R 2 ν h k y k 3,2 + ζ 2 + 10 ∆t R 2 ν h k-1 y k-1 3,2 ∆m = 1 2 ζ 2 Ω 2 t k + ζ 2 Ω 2 t k-1 ∆m -∆t 4π R 2 M ρζ 4 k y 3,0,k y 1,k -ρζ 4 k-1 y 3,0,k-1 y 1,k-1 + 20π 6 R 2 M ∆m ∂y 1 ∂m ρζ 4 y 3,0 k + ρζ 4 y 3,0 k-1 + ζ 2 ∂ρζ 2 ∂m y 1 y 3,0 k + ζ 2 ∂ρζ 2 ∂m y 1 y 3,0 k-1 +16π 2 R 4 M 2 ρ 2 k ν k v ζ 6 k y 4,2,k -ρ 2 k-1 ν k-1 v ζ 6 k-1 y 4,2,k-1 . (6.86)
And the new independent relations are:

                 E 5 = K 4,1 y 3,2 ∆m -K 4,2 ∆m + ∆t R 2 M K k 4,3 K k 4,4 y k 3,0 y k 1 -K k-1 4,3 K k-1 4,4 y k-1 3,0 y k-1 1 - 5∆m 3 
∂y 1 ∂m K 4,3 K 4,4 y 3,0 + K 4,4 K 4,6 y 3,0 y 1 - R 2 M K k 4,5 K k 4,3 y k 4,2 -K k-1 4,5 K k-1 4,3 y k-1 4,2 E 6 = y 4,2 -∂y3,2 ∂m , (6.87) with K 4,1 = ζ 2 + 10 ∆t R 2 ν h , K 4,2 = ζ 2 t y 4,2 t , K 4,3 = 4πρ k ζ 2 k , K 4,4 = ζ 2 k , K 4,5 = 4πρ k ν v ζ 4 k , K 4,6 = ∂K 4,3 ∂m . (6.88)
The Jacobian is supplemented by these terms:

S 5,1 = ∂E 5 ∂y k-1 1 = ∆t R 2 M 5 3 K 4,3 K 4,4 y 3,0 - ∆m 2 K k-1 4,4 K k-1 4,6 y k-1 3,0 -K k-1 4,3 K k-1 4,4 y k-1 3,0 , S 5,2 = ∂E 5 ∂y k-1 2 = 0, S 5,3 = ∂E 5 ∂y k-1 3,0 = -∆t R 2 M K k-1 4,3 K k-1 4,4 y k-1 1 + 5∆m 6 ∂y 1 ∂m K k-1 4,3 K k-1 4,4 + K k-1 4,4 K k-1 4,6 y k-1 1 , S 5,4 = ∂E 5 ∂y k-1 4,0 = 0, S 5,5 = ∂E 5 ∂y k 3,2 = K k-1 4,1 ∆m 2 , S 5,6 = ∂E 5 ∂y k 4,2 = ∆t R 4 M 2 K k-1 4,5 K k-1 4,3 , S 5,7 = ∂E 5 ∂y k 1 = ∆t R 2 M - 5 3 K 4,3 K 4,4 y 3,0 + ∆m 2 K k 4,4 K k 4,6 y k 3,0 + K k 4,3 K k 4,4 y k 3,0 , S 5,8 = ∂E 5 ∂y k 2 = 0, S 5,9 = ∂E 5 ∂y k 3,0 = ∆t R 2 M K k 4,3 K k 4,4 y k 1 - 5∆m 6 ∂y 1 ∂m K k 4,3 K k 4,4 + K k 4,4 K k 4,6 y k 1 , S 5,10 = ∂E 5 ∂y k 4,0 = 0, S 5,11 = ∂E 5 ∂y k 3,2 = K k 4,1 ∆m 2 , S 5,12 = ∂E 5 ∂y k 4,2 = -∆t R 4 M 2 K k 4,5 K k 4,3 , (6.89) 
and

S 6,1 = ∂E 6 ∂y k-1 1 = 0, S 6,7 = ∂E 6 ∂y k 1 = 0, S 6,2 = ∂E 6 ∂y k-1 2 = 0, S 6,8 = ∂E 6 ∂y k 2 = 0, S 6,3 = ∂E 6 ∂y k-1 3,0 = 0, S 6,9 = ∂E 6 ∂y k 3,0 = 0, S 6,4 = ∂E 6 ∂y k-1 4,0 = 0, S 6,10 = ∂E 6 ∂y k 4,0 = 0, S 6,5 = ∂E 6 ∂y k 3,2 = 1 ∆m , S 6,11 = ∂E 6 ∂y k 3,2 = - 1 ∆m , S 6,6 = ∂E 6 ∂y k 4,2 = 1 2 , S 6,12 = ∂E 6 ∂y k 4,2 = 1 2 . (6.90)
If one takes into account the term Ω 2 , the expression giving us an approximation for the uctuation of the density Θ 2 should be modi ed accordingly. The expression given by Mathis
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& Zahn (2004) is

Θ 2 = r ḡeff r 3 ∂ Ω2 ∂r + 8r 35 ∂ ΩΩ 2 ∂r + 8 7 ΩΩ 2 = R 2 M ζ ḡeff 4πR 2 ρζ 3 2 3 Ω ∂ Ω ∂m + 8 35 Ω 2 ∂ Ω ∂m + Ω ∂Ω 2 ∂m + 8M 7R ΩΩ 2 = 4πR 4 M ρζ 4 ḡeff 2 3 y 3,0 y 4,0 + 8 35 (y 3,2 y 4,0 + y 3,0 y 4,2 ) + R ζ ḡeff 8 7
y 3,0 y 3,2 .

(6.91)

This modi cation impacts the expression of Ψ 2 which in turn makes the expression of U 2 and Υ 2 more complicated. Errors E 1 and E 2 as well as the respective Jacobian must take those changes into account. Nonetheless I will not write them in order not to over complicate the text. The relations needed to compute U 4 , Ω 4 can also be formalized to be added to and we may need to do so in a near future. However, the careful reader may have notice that such a task is painful. This chapter is devoted to the physical and numerical tests of the codes developed during my PhD. As seen in the previous chapter, the implementation is separated into two parts: the deformation module and the new prescription for the resolution of the transport of angular momentum. The advantage is that the deformation module can be used without describing the transport in two dimensions (however the contrary is not possible). This is why this chapter is separated into a test of the deformation module alone, then a test of the transport of angular momentum in the 2D geometry. The chapter is concluded by an evaluation of the additional computational cost that the 2D computations induce.

Validation of the deformation module

Conservation of mass and of angular momentum

The rst thing we need to check is that the deformation does not introduce any change in the total mass or in the total angular momentum ( ) of the star. It must be recalled that, while the 2D treatment of transport only concerns the radiative zone, the deformation is applied to the entire star, even to the reconstructed atmosphere. In order to look at the conservation, we build a small grid of stellar models computed with various initial disk rotation conditions and with and without deformation for each model. The transport of and the computation of the meridional circulation are computed using the formalism of Talon et al. (1997) 1 . This formalism shared many similarities with the one of Mathis & Zahn (2004), however, the uctuation of the gravitational acceleration are computed in a di erent way and radial derivatives of both Θ 2 and Λ 2 are present, instead of only Ψ in the expression derived in Mathis & Zahn (2004) (see Sect. 7.2 for a more detailed description). This grid is described in more detail in Table 7.1.

Global e ects of the deformation on evolution

The global parameters (T eff , R surf (θ m ), log L/L , etc.) of the non-rotating 1D and 2D models are the same. This is of course a necessary condition for our code to be validated because we do not want the deformation module to introduce any deviation on the star's history if it is not deformed. On the contrary, global parameters of rotating stars slightly change between 1D/2D simulations. The di erences are small, except on e ective temperature. These higher variations are due to the fact that rotating stars cannot be in local radiative equilibrium over an isobar. This induces a change in the average e ective temperature. The non-local radiative equilibrium of course does not impact the total luminosity that depends mainly on opacity. This rate is not a ected much by the deformation, because of the small centrifugal force in the core.

Table 7.1: Small grid containing 24 models. Half of them are computed as usual in 1D and the other half are computed with deformation (even the ones without rotation). In both cases, the transport of angular momentum is computed using the formalism of Talon et al. (1997). The initial disk lifetime is 5 Myr for all models and there are no wind-induced loss of angular momentum. The 2D models use 240 angular sectors (without counting the ghost angles). The maximum degree max taken into account in the Legendre decomposition is max = 2. The quantity X c is the central hydrogen abundance. Angle θ m is the critical colatitude. The 1M are stopped at Sun's age, however, these models have also been pushed slightly further, in the early stages of the sub-giant branch. Evolutionary tracks in an diagram are displayed for both 1D and 2D models in Fig. 7.1, top le panel. Non-rotating models and models rotating with an initial period of 10 days follow barely indistinguishable paths. At their nal age, they reach an e ective temperature separated by a few tens of Kelvins. This di erence is almost not measurable (at least without Gaia, [START_REF] Perryman | [END_REF][START_REF] Turon | The Three-Dimensional Universe with[END_REF][START_REF] Lindegren | A Giant Step: from Milli-to Micro-arcsecond Astrometry[END_REF]. On the other side, the models with an initial period of 3 days reach a surface rotation at their nal age around 3 to 4 times faster than the ones with P disk = 10 days. Compared with the non rotating models, their e ective temperature is shi ed by ∼ 80 K for the 0.8M models to ∼ 350 K for the 2M models. Between 1D and 2D models, this di erence goes from ∼ 60 K for the 0.8M models to ∼ 110 K for the 2M models. Those di erences are measurable, even without Gaia, and they could change further if more complex physics (like overshoot) were to be taken into account. the two other columns, the colour scale codes for ρ(p, θ)/ρ -1 on the le side and for Ω in percent of Ω K,surf on the right side. We see, by looking at the rst column, that the stars mean density decreases with increasing stellar mass. Indeed, higher mass stars are more e cient in producing nuclear energy. The hotter material induces a stronger pressure gradient opposed to the gravity and the radius of the star is larger.

Model

M P disk Geom-t final Ω(t final ) X c T eff R (θ m ) log L L [M ] [d] etry [Gyr] [% Ω K,surf ] [%] K [R ] M08P00G1D 0.8 ∞ 1D 15 
In Fig. 7.2, the axes limits go from -1 to 1, in unit of the equatorial radius. The axes aspect ratio is the same, therefore, the deformation that we see in the plots is due to the true deformation, not a graphical artefact. The deformation is barely noticeable for the 2 nd column models (P disk = 10 days) but is striking for the last one (P disk = 3 days). The convective zones are modelled with a uniform rotation pro le and no wind-braking is included. Since Ω is uniform in convective zones, the density is constant over isobars, as stated by Eqs. (2.43) and (2.48). The limits of the convective/radiative zones are therefore visible in the pro le of the uctuations of density and produce a large circle at around 0.7R eq . An other circle is visible is the ρ(p, θ)/ρ -1 pro les of the low mass models. This circle is not due to a central convection zone because those models do not have one, but to a region of steeper Ω gradient. The angular velocity pro le retrieved by the 1D computation of the pro le produces a quite noisy pattern in the Ω radial derivative. This induces large and very localized variations of density uctuation.

Finally, we see that, for almost all the rotating models, density is higher near the equator than near the pole. The latitudinal variations of ρ are described by Eq. (2.48):

dρ dθ = -ρ ∂ ∂r Ω 2 r 2 sin θ cos θ -∂ ∂θ Ω 2 r sin 2 θ ∂φ ∂r -Ω 2 r sin 2 θ . (7.1)
Since the angular velocity pro le, in general, decreases with radius, the rst derivative in the numerator is negative. We have assumed a shellular rotation pro le, therefore the θ-derivative is zero, and the whole numerator is negative. The denominator is a local break-up velocity criterion. It is also positive, otherwise we would have reached the breakup velocity and stopped the evolution. Hence, generally, dρ/dθ is positive and ρ increases from pole to equator. However, we remark that the last two models of the 3 rd column (P disk = 3 days and 1.5M or 7.1. Aspect ratio between the two is the axes is the same. Each row corresponds to a given mass: 0.8M (1 st ), 1M (2 nd ), 1.5M (3 rd ) and 2M (4 th ).

Each column corresponds to an initial rotation period: non-rotting (P disk = ∞ days; 1 st ), P disk = 10 days (2 nd ) P disk = 3 days (3 rd ). On the 1 st column, only the density pro le is represented because the angular velocity is null. For the two other columns, the le part of the 2D map represents ρ(p, θ)/ρ -1 and the other half represents the angular velocity pro le (Ω depending only on p) in units of Ω K,surf .

2M ), the density is higher near the poles. It indicates that, in the region close to the surface, the angular velocity pro le is an increasing function of the radius.

Mass conservation

Let us focus now on mass conservation. Concern has been raised in Chapter 2 that the deformation method could lead to a non-negligible numerical mass loss along the evolution.

In the following, we denote ∆m num the numerical mass loss induced by the deformation. Roxburgh (2006) reported a ∆m num of order 10 -5 M which is quite high. Indeed, an evolution consisting of a thousand time steps would lead to a change of 1% of the total mass. Fig. 7.1, top right panel shows ∆m num in units of solar mass that the models of 2006) used. Although they may be located at di erent positions. Another possible explanation would be that we used higher oating point precision.

In his work, Roxburgh (2006) proposed to correct ∆m num by a multiplicative factor on the density. It implicitly assumes that numerical artefacts introduced in the density distribution should be corrected by the same factor everywhere in the star. This solution raises some questions. The centrifugal acceleration is, in general, stronger at the surface than at the centre. Thus, the unphysical changes to the density distribution induced by the deformation should be stronger at the surface than at the centre. Moreover, the density is higher by several orders of magnitude in the centre than at the surface. Therefore, correcting the density by the same factor everywhere would lead to a numerical concentration of mass at the centre. At each time step, the deformation module implemented by Roxburgh (2006) redistributes 10 -5 M in the star, preferentially in the inner regions. In , we use the same method of correction, however, our ∆m num is at most 10 -7 -10 -8 M which signi cantly diminishes the issue. A last point that we must address in the future would be to verify that the new density pro le still satisfy the o .

Angular momentum conservation

The rst row of plots in Fig. 7.3, displays the relative variations of with respect to the at nal time step. These variations are shown on the le column for 2D models and on the right for 1D models. We did not include in Fig. 7.3 the initial phase where the models are coupled to a disk ( rst 5 Myr). The disk induces a loss of that is physically motivated, contrary to possible numerical losses of that we are trying to nd. In both panels, we see that the maximum variation of over a complete evolution is at most 10 -3 for the fastest rotating, and lowest mass models, which is very good. The variations of are noisier in the 1D models (right) than in the 2D ones (le ). This may be a side e ect of a better description of the e ect of rotation on the structure: it stabilizes the numerical schemes and smooths the evolution of the solutions in time. The second row displays the relative variations of between two consecutive time steps. The relative variation is at most 10 -5 and goes to 10 -9 . We nd again a noisier pattern in the 1D models. As a whole, either for the total or the "instantaneous" relative variations, 1D and 2D models show very similar results. It supports the fact that the deformation module does not introduce signi cant numerical artefacts in the conservation of .

Seismic comparison

The comparison we performed above could have revealed the most important problems of the deformation module. But for a deeper study, one needs to perform a seismic comparison of deformed and non-deformed models. In order to do so, I used the non-perturbative twodimensional oscillation code for which I developed an interface with the 2D version of . In order to understand this section, I need to give some general insight on 2D nonperturbative oscillation codes and explain the pre-processing that performs on input les generated by .

tities vary smoothly. It may be less appropriate when strong gradients, not captured by the polytropic model, are present. However, to my knowledge, no deep comparisons of and have been performed on such models. Those codes have allowed asteroseismologists to distinguish several classes of modes, largely based on the graphical representation of their amplitudes and on ray dynamics. It shall be stressed that, while those distinctions suggest that the di erent classes of modes form strictly separate entities, the transition between two classes may not be as sharp as it seems. Some modes could display features from two di erent classes.

Classi cation of rotating stars' modes of oscillation

Modes can be classi ed using ray tracing methods. A ray is de ned as the trajectory tangent to the group velocity c g . It applies in the asymptotic limit, i.e. high frequencies, and is very similar to the study of geometrical paths in a medium of varying optical index. The study of orbits in a Poincaré section helps to di erentiate the modes.

Pressure modes Let us start by p-modes. Three classes have been identi ed.

• Island modes (see Fig. 7.4, le panel). The modes of this class can be identi ed using modi ed quantum numbers. This feature is very important because mode identi cation is primordial if we want to use the individual frequencies in order to constrain models. The modi ed quantum numbers ( n, ) are de ned as follow (7.4) with α ± an additional constant that depends on the stellar-structure. The term α + is used for modes symmetric with respect to the equatorial plane ( + m even) and α -is used for modes antisymmetric with respect to it ( + m odd). Studying the ray dynamics, Lignières & Georgeot (2009) found physically-grounded expressions of those quantities. For island modes in fast rotating stars, this formulation of the asymptotic relation keeps its form, provided some modi cations are made: (7.5) where

n = 2n + ε and = -|m| -ε 2 with ε = (l + m)(mod 2). ( 7 
ω n m = n ∆ n + ∆ + | m| ∆ m + α ± ,
∆ n = ∆ n /2, ∆ = 2∆ , ∆ m = ∆ + ∆ m , α + = α + and α -= α -+ ∆ -∆ n /2.
In the the Poincaré section, Island modes are form periodic orbits, as the one shown in Fig. 7.5, le panel. All the re ections of a ray are together in a limited region and periodically overlap.

• Chaotic modes (see Fig. 7.4, middle panel). Chaotic modes may occupy a very large fraction of the Poincaré section, depending on the rotation rate. The ray tracing in Fig. 7.5, middle panel, show trajectories that never overlap. It does not mean that the kinetic energy distribution of the mode is homogeneous: the rays are more concentrated in some regions which translates into regions of more concentrated kinetic energy. It is also important to notice that these modes can propagate to the centre of the star, as opposed to p-modes in non-rotating stars. • Whispering gallery modes (see Fig. 7.4, right panel). Finally, whispering gallery modes are the ones that resemble the most the p-modes in non-rotating stars. We see in the gure that the kinetic energy stays in the envelope and does not propagate toward the centre. Their corresponding ray trajectories revolve around the centre, in a limited surface region. Whispering gallery modes also display regular patterns. These modes can also be described using quantum numbers, probably the same as in the non-rotating case.

As the angular velocity, and therefore the distortion, increases, the amplitudes of whispering gallery and island modes may become less and less important. When observed as a point, the surface averaging e ect make them di cult to detect and therefore the oscillation spectra are very complicated to interpret.

Gravito-inertial modes

In rotating stars, the Coriolis force must be taken into account in the case of g -modes. To be precise, these modes should not rigorously be called gravity modes any more but gravito-inertial modes3 ( modes). This denomination stresses the fact that, not only the buoyancy is a restoring force, but also the Coriolis force. Let us consider a mode with displacement of the form ξ ∝ exp(i(k • r -ωt)), with a short wavelength and low frequency. Unno et al. (1989) give the dispersion relation

ω 2 N 2 k 2 h -(2Ω • k) 2 k 2 . ( 7 
.6) If in addition ω, Ω N , the above equation needs k h |k| to be valid. If we furthermore assume that the medium is nearly incompressible, then ∇ • u 0, with u = ∂ξ/∂t the wave velocity eld. It follows from this condition that k•ξ = k r ξ r +k h ξ h 0, yielding ξ r /ξ h -k h /k r . Since k h k r , we have ξ r ξ h . We see that modes propagate almost horizontally, i.e. perpendicular to k. These trajectories are spirals converging toward the centre.

modes can be separated into categories.

• The sub-inertial modes with ω < 2Ω (see Fig. 7.6, middle panel). These modes do not change a lot compared with their equivalent in non-rotating stars. The most striking di erence is the appearance of a forbidden region in which the modes do not propagate.

The condition of propagation is formalized as (Dintrans & Rieutord, 2000)

ω 2 N 2 r 2 sin 2 θ + (f 2 -ω 2 )(ω 2 r 2 -N 2 r 2 cos 2 θ) ≥ 0, (7.7) 
with θ the colatitude and f = 2Ω. With the approximation that N ω, f , the criterion on the limiting angle is | cos θ| ≤ ω/f .

• The super-inertial modes with ω > 2Ω (see Fig. 7.6, le and right panels). The mode on the le panel has almost the same characteristics as the mode with same quantum numbers in a similar non-rotating star. On the contrary, some super-inertial modes (right panel) experience dramatic changes in the shape of their eigenfunctions compared with the non-rotating case. These modes are called rosette modes. These modes have been discovered in numerical simulations by [START_REF] Ballot | Numerical Exploration of Oscillation Modes in Rapidly Rotating Stars[END_REF] and they appear even at low rotation rates. The physical nature of rosette modes have been thoroughly studied by Takata & Saio (2013); Saio & Takata (2014); Takata (2014). These authors have shown that rosette modes are formed from the combination of modes that have quasi-degenerate frequency in a non-rotating star and provided some conditions on their order n and degree are met. In such cases, the Coriolis acceleration can overcome the frequency gaps between the modes and makes the interactions su ciently strong to build rosette modes.

pre-processing

In order to be able to perform a seismic study of my 2D models, I had to interface with .

was already able to read outputs from various stellar evolution codes, especially 1D outputs of . To use it on 2D models, I had to create a new output format specially designed for 's needs. The two kinds of output that can write are the following:

1. 1D output le Output of or any other 1D stellar evolution code.

2D output le

Output of the 2D version of .

Beginning of pre-processing

Computation of derivatives

1 st and 2 nd order derivatives with respect to r are computed using nite element method. Angular derivatives are set to 0.

2. Additional layers near the centre Around 5 additional layers are added to the centre by interpolating input quantities.

Non-dimensionnalization

All quantities are non-dimensionnalized to -speci c dimensions. • .osc les: These les are written for 1D computation of oscillations. It contains a lot of di erent quantities: the radius, the pressure, the temperature, the density, the angular velocity, as well as thermodynamics quantities and derivatives. Not all data are used by . In particular, it does not contain their radial derivatives. Therefore, they must be computed internally by using nite di erence schemes.

Writing of an

• .osc2d les: These les are designed to t 's needs for 2D computations. Therefore, it does not contains the same variables as the .osc les but only the following elds: the radii of isobars, pressure, density, Γ 1 , Ω; their respective 1 st and 2 nd radial derivatives. One also have the derivative of some quantities with respect to ζ = r(θ m ), and the 1 st and 2 nd order derivatives with respect to cos θ. The radial derivatives are computed thanks to the B-Spline representation provided by . The only special case is for the rst radial derivative of the pressure which is computed using Eq. (6.22). This last point is important because it may introduce discrepancies in the comparison of 1D and 2D frequencies. The computation of the cos θ-derivatives are made easier by the decomposition in Legendre polynomials. The derivatives of P are analytical and we do not need to use a numerical approximation. All the quantities written in .osc2d les • A synthetic 1D input le (herea er called input 4) build using an input 1 le in which we replaced the derivatives computed using the nite element method by the one taken from the .osc2d le, computed using B-Splines. Such a le allows us to test the in uence of the method used to compute derivatives.

Results of the seismic comparison

We performed a seismic comparison of the frequencies computed for the four kinds of input described above, for non-rotating models with four di erent masses: 0.8M , 1M , 1.5M and 2M . These models are the non-rotating models described in Table . 7.1. The results are displayed in Figs. 7.8, 7.9 and 7.10. The top panel of each gure displays the frequency di erences δν obtained between the di erent inputs. The radial order n goes from n = 1 to n 20 -30. We focused only on radial modes ( = 0) the advantage is that they propagate in the entire star. Therefore, their frequency is sensitive to changes in the structure anywhere in the star. The middle panel displays a quantity A with variations similar to the Brunt-Väisälä frequency N 2 = g eff • A (although it has the dimensions of an inverse distance). In the middle panel, only the pro le of A extracted from inputs 1 and 2 are represented. The bottom panel represents the relative di erences between these two pro les.

In the top panel, the di erences δν 1,2 between inputs 1 and 2 are represented as blue dots. Figures 7.8 and 7.9 show the better results: δν 1,2 0.4 µHz, which is around 4 times above the frequency resolution of CoRoT and Kepler.

's requirement is to reach a resolution of 0.2 µHz. This is good without being excellent. Indeed, observed rotational splittings are of order 0.1 µHz (Deheuvels et al., 2012). For all other models, the frequency di erences are higher. Do these di erences comes from the deformation module or from the pre-processing of ? The rst possible explanation is that, the deformation module, even when the model is not rotating, introduces some very small asphericities, of the order of the numerical precision. This hypothesis can be tested by comparing input 2 with input 3. Input 3 is created to mimic a perfect sphere, even a er the pre-processing. The frequency di erences δν 3,2 are exactly 0 for all masses, at all frequencies, which rules out this rst possibility. A second explanation would be that the derivatives computed using nite di erence method are too far from the one computed from B-Splines. To test this idea, we compare input 4 and input 2. Input 4 is exactly the same as input 1, except that all the nite di erence derivatives have been replaced by the one computed using B-Splines. The di erences δν 4,2 is represented as green points and are strongly improved compared with δν 1,2 . For models with 0.8M , 1M and 1.5M , the δν 4,2 is well below the space mission's frequency resolution. The one computed for the 2M model, which was not that bad, have been slightly improved by few tens of nHz. However, in this last case, δν 4,2 remains too high. One could think that this has something to do with the mass of the model. Yet, we performed the same analysis on an other 1M model but with an age of 11 Gyr (the one in Fig. 7.9 has an age of 4570 Myr). This model is at the beginning of the sub-giant phase. We see that near the centre, |A| presents a sharper peak than in the 1M model of Fig. 7.9. This peak (or glitch) is not as sharp as in the 1.5M or 2M model but is still signi cant. It betrays the presence of a large gradient of mean molecular weight due to the exhaustion of hydrogen in the core. This model has δν 1,2 0.8 µHz and this bad result is not improved for δν 4,2 . The presence of a peak in the pro le of a certain quantity o en leads to into errors in the numerical computation of the derivatives. This aspect should be studied in more detail in order to nd the cause of such high frequency di erences.

To that end, we compared in more detail the structural pro les written in inputs 1 and 2. Figure 7.11 displays on the rst row the relative di erences η(p) and η(ρ) of the pressure and density between the pro les written in inputs 1 and 2, for all four models. The relative 4

Frequency di erence η of a quantity x is de ned as .10) where x 1D (resp. x 2D (θ m )) is read from input 1 (rep. input 2). The second row displays the relative di erences of their radial derivatives. Pressure pro les are quite in a good agreement, except at the surface where, in a very small region, a gap of around 10% is found between the 1D and the 2D inputs. It can seem unimportant, however the frequency of a star's modes of oscillations strongly depend on boundary conditions. Such a gap at the surface could lead to frequency di erences exceeding the space mission frequency resolution. Moreover, we notice that models with 1M and 2M have the largest η(p) in the rest of star: around 10 -3 for the 1M model and 10 -4 for the 2M model. On the contrary, the density pro les have, in the worst cases, a relative di erence of 10 -6 , which is far better. In addition, they present no peaks at the surface. The only noticeable ripple is very close to the centre, i.e. in the zone in which extra layers were added. Nonetheless, the amplitude of this ripple is very small and probably does not a ect frequencies. How do we explain that the density pro les present better agreement than the pressure between 1D and 2D? When the model is deformed, the density along colatitude θ m is set to be equal to the one from the resolution of the 1D structural equations. At the end of the deformation, the density pro le is corrected so that the total mass of the deformed model matches the one of the initial 1D model. As we have seen in previous section, this correction is small. Furthermore, in order to produce this gure, i.e. to compare densities from 1D and 2D models, at the same mass coordinates, I had to re-interpolate the density pro les using a cubic spline which may have introduced small numerical errors. On the other side, the pressure pro les of the 2D models are computed in a di erent way. Once φ , ρ , r p, and g eff are known, the new pressure pro le is integrated using Eq. (6.22).

η(x) = x 2D (θ m ) -x 1D x 1D , ( 7 

∂p ∂r

= -ρ ∂φ ∂r -Ω 2 r p sin 2 θ m . (7.11) In order to integrate this equation, we assumed that the pressure at the upper atmosphere limit is zero, which physically is not exactly true. This assumption has almost no impact on η(x) = x 2D (θ m )-x 1D

x 1D the nal pressure at the centre. However, the pressure in the upper regions of the star may be signi cantly impacted, which explains the disagreement of order 10% in the upper atmosphere.

Let us now take a look at the second row of Figure 7.11 where the relative di erences η(∂p/∂r) and η(∂ρ/∂r) are presented. The derivative of the pressure shows much better agreement than the pressure itself in the upper 99% of the star. This is consistent with the fact that the discrepancies in the pressure pro les come from the integration constant, not from the computation of Eq. (7.11). The only notable di erence is near the centre where the relative di erences are of order 1%. This could be explained by the extra layers added by , but also by the interpolation that we used to produce the gure, which, near the limit of the interpolation interval may be less reliable. On the contrary, the radial derivatives of the densities display a lot of glitches. We found one located around r/R = 0.1, one around r/R = 0.7 and at the surface. The peaks around r/R = 0.1 are present in the 1.5M and 2M models, while the ones around r/R = 0.7 are present in the 0.8M and 1M models. They translate the transition from a convective to a radiative zone in the rst case and the reverse in the other one. In the rst case, the relative error increases by around 5 orders of magnitude, and 2 orders of magnitude in the second case. Despite being localized in a very thin region, these errors impact the boundary conditions and may cause a shi in the frequencies. We see that the model with the smallest δν 1,2 was the 0.8M model and it also has the smallest increase of η(∂ρ/∂r). The model with the largest δν 1,2 was the 1.5M model and it also has the highest increase of η(∂ρ/∂r). The rise of relative errors at the surface may also cause a shi of frequency, for similar reasons.

However, it does not explain everything: if the problem was only an issue in the computation of the derivatives, δν 4,2 should be always much smaller than δν 1,2 . It is not the case for the 2M model (see Fig. 7.10). In this case, the important δν 4,2 may be only caused by the high η(p) at the surface displayed in top le panel of Fig. 7.11.

For the moment, we only looked at how do the data stored in the input les compare. We looked at the reliability of two di erent numerical methods in approaching a derivative: either using the B-Spline representation or a 2 nd order nite di erence scheme. However, we did not look at the physics. From the Brunt-Väisälä frequency pro les in the middle right panel of Fig. 7.9 and the middle le panel of Fig. 7.10, we see a sharp peak around r/R 0.1 this peak is not there in the lower mass models (except in the old 1M model). The peaks observed in the plots of Fig. 7.11 are caused by numerical approximation, but they also reveal a physical fact of interest. The gap in the frequencies computed from input 1 and input 2 are therefore partly linked to a bad reproduction of the physics of the model at the peak locations. Figure 7.12 represents a zoom on the pro les of ρ, ∂ρ ∂r , p and ∂p ∂r , where the glitches occur, for the two higher mass models. The glitch in the 1.5M is extremely localized: it occurs in one layer, while the one in the 2M occupies more than 10 layers. The glitches mark the discontinuity between the convective and radiative zones. This di erence signi cantly impact the quality of the derivative, especially for the one computed with the B-Splines (see Fig. 7.12). B-Splines are known not to reproduce rapid variations well. However, one could set up the B-Splines basis to handle such discontinuities. The routines that would allow us to do that have already been implemented in for other purposes and will soon be used for the generation of 2D outputs.

On the contrary, the glitches in the pressure pro les are very small and the derivatives are well reproduced. In particular, the one of the 2D model is not interpolated but computed physically from Eq. (7.11). The handling of glitches in mode frequency computations is one of the current most important problem in asteroseismology (e.g. Verma et al., 2014;Pinçon, 2019).

Impact of various numerical parameters

The method used to deform the star depends on several numerical parameters. Its precision is mainly impacted by the number of Legendre polynomial that enter the decomposition of each elds and of the number of angular sectors in the angular mesh. We study the in uence of those parameters in the following sections.

Maximal order max in the Legendre decomposition

As we have already seen, in the 2D version of , any scalar f is decomposed on Legendre polynomials:

f (p, θ) = max f (p)P (cos θ).
(7.12)

All odd degree f with odd are zero, due to the symmetry with respect to the equator. The degree max is decided by the user at the beginning of a simulation. The current implementation supports max ≤ 8, but adding more Legendre polynomial would be simple.

In order to test how an increase of max impacts the evolution of a stellar model, we computed four models with max = 2, 4, 6 and 8, with mass 1.6M , initial disk period of 3.5 days and disk lifetime of 5 Myr. The evolution was pushed until 200 Myr. It must be noted that the model with max = 8 crashed at a few Myr old. This suggest that adding P 8 (cos θ) destabilized the computation and the term f 8 was physically insigni cant. Including the term P 8 (cos θ) for a faster rotating model could be interesting, but not in this case. The model with max = 6, crashed several times during its evolution, however, I was able to resume the computation until reaching the desired age. The models with, max = 2, max = 4 and max = 6 will be called model P 2 , model P 4 and model P 6 . I will come back to it later but I must stress that we neglected the variation of θ m caused by the inclusion of P >2 . It must be recalled that the the deformation module does not need the knowledge of this angle, but it is needed a erwards because the 1D structure is supposed to match the 2D structure at θ m . Figure 7.13, top le panel, displays a meridional cut of the angular velocity in the model. We see that Ω is of the order of 37% Ω K , which makes the star signi cantly deformed. Nonetheless, much strongly deformed models can be computed (see Figure 7.2). The polar radius is around 94% of the equatorial radius. The top right panel is a Kippenhahn diagram. A vertical slice represents the convective zones (grey) and the radiative zone (white) at a given age. At the nal age (200 Myr), the model has a small convective core that concentrates around 18% of the mass and a very thin convective envelope. The bottom le panel represents the rotation pro les of models P 2 , P 4 and P 6 . While the rotation pro les are comparable, small di erences have appeared. Increasing the value of max has changed the values of f p and f t and in turn has a ected the structure. The diagram of the bottom right panel show no discrepancies in the evolutionary tracks. All these changes are certainly not measurable, at least for a star which such parameters, but they must be kept mind because they could have lead to larger di erences if the evolution was to be pushed further.

One last point: in the diagram, we notice that, at the beginning of the evolution in the top right corner, models make a hook to the cool side of the diagram. This is the result of a small numerical trick that I had to implement in order to avoid rotational break-up at the start of an evolution. As I said in Chapter 1, a stellar evolution is started with a cloud that already has the desired mass and that is self gravitating but it also has a very large radius. Of course, if we impose a small initial rotation period (therefore large Ω), the break-up velocity is immediately reached and the model can not collapse. It may be a consequence of the simpli ed modelling of the star formation. In order to be able to evolve fast rotating star and to pass this di cult period, I impose for several time steps (in this case 3) an initial period 10 times higher than the one asked by the user. A er those time steps, the real initial period is set-up and the model continues its evolution. The number of initial time steps that are computed in a reduced rotation rate regime must be adjusted manually. At a given initial rotation period, it also depend on the mass: the heavier the model, the larger the initial radius. However, in order to simplify the comparisons, the same number of slow rotating time steps have been set for all the models. In the Hayashi track, soon a er the desired period of rotation has been set, a second hook is observe, still going to cool side of the diagram. This hook signals the appearance of a central radiative zone which will rapidly extends almost to the top layers. The entropy of radiative zone is an increasing function of the radius while it is constant in a convective zone (except in the superadiabatic zone). Therefore, when an initially convective region becomes radiative, the central entropy must decrease so that that the entropy can increase with the radius. The entropy reduction translates in a loss of heat and and the core contracts. The contraction reduces the stellar surface and the luminosity decreases.

In Fig. 7.14, top le panel, we displayed the values of log ρ and log | ρ | for all three models, whenever it was possible. The other panels display the relative di erences between model P max and the reference model P 2 (an arbitrary choice) of ρ (top right), ρ 2 (bottom le ) and ρ 4 (bottom right). All those quantities are in very good agreement. Was it expected ? If one had extended the Legendre decomposition to an unnecessary order max , the coe cient ρ max would not re ect a physical meaning. Then, if one pushes the decomposition further to max +1, coe cient ρ max would not have the same value because its value is the result of numerical artefacts. It does not contain physical information. The fact that all coe cients keep a very similar value when max is increased is a good indication regarding its physical signi cance.

In our case, the highest discrepancies between the ρ are found near r/R eq 0.1, at the location of the limit of the core convective zone. Here, gradients of angular velocity are stronger and may perturb the estimation of ρ . Furthermore, a small change in ρ and ρ induces small shi of the location of the limit and therefore increases the disparities between the di erent models. Overall, even in this region, the agreement between the ρ stays very good. We also see that, around r/R eq 0.7 a sharp peak occurs in the pro les of log | ρ |. These peaks mark the location where ρ change sign. The change of sign corresponds to the change of a region with decreasing Ω as a function of the radius to a region of increasing Ω. Since rotation pro les are not the same from one model to another, the location of the peaks varies and leads to important discrepancies in each pro les of ρ .

We performed the same comparison on models with the same initial parameters (mass and rotation of the disk) but much older (1.78 Gyr), on the sub-giant branch (see Fig. 7.15). This time, the model with max = 6 is not shown. Despite I manage to compute the evolution until the desired age, the rotation pro le became, at some point of the evolution, completely at. It suggests a computational problem somewhere. This point le aside, we see on the meridional cut representing the angular rotation pro le (7.15, top le panel) that the ratio of the polar to equatorial radii has not evolved much. In contrast, the radial gradient of Ω has signi cantly sharpened, with a di erence of rotation rate of around 40% between the core and the surface while it was around 6% for the younger models. This phenomenon is of course due to the contraction of the core and the dilation of the envelope. With an additional mechanism of transport of , the gradient would certainly be reduced. The changes in the evolutionary track are not visible, nonetheless, we see that the core rotation of the model P 2 is a little lower than the one of P 4 . Model P 2 has a core hydrogen abundance of 5.8% while model P 4 have respectively 7.3%. Its seems that model P 2 evolved slightly faster than the other two and it could explain the higher increase of the core rotation rate. The good agreement between the ρ and ρ for all models is still good. The ordering ρ ρ 2 ρ 4 is also preserved is the whole radiative zone.

As a nal test, we applied the same treatment on two models with 2M and 800 Myr (X c 27%). This grid contains only two models because models P 6 and P 8 crashed during the pre-main sequence. The initial rotation conditions were the same as before: τ disk = 5 Myr and P disk = 3 days. The star is signi cantly more distorted than before with R p /R eq 82%. Conclusions similar to what we found before can be drawn. The rotation pro les are quite similar between Model P 2 and P 4 and the evolutionary tracks are almost identical. The quantities ρ and ρ compare as before in a large portion of the star, i.e. ρ 4 ρ 2 ρ. It is unfortunate that the model with max = 6, 8 crashed during the . Indeed, since the star is much more deformed, they should be needed. It may be that the inclusion of these higher order prevents the good convergence of the deformation module during the but would help it a er, once the contraction is nished. In the future, it would be interesting to implement a method to adapt max to the situation and make it possible to vary during evolution.

Variation of θ m

The question of how to take variations of θ m into account is yet to be solved. In Fig 7.17, I present the values of the angle θ m as a function of the radius determined with the method described in 6.2.3, for the model P 4 , with 1.6M at 1 Myr old (le panels) and 200 Myr old (right). In the young model, di erences of order 100 mrad are limited to the surface region. In the evolved model, θ m increases in almost all the star (while the maximal di erence compared with arccos(1/ √ 3 is still of order 100 mrad). It must be noted that θ m was computed a posteriori and for the whole simulation we assumed θ m = arccos(1/ √ 3). The deformation module is able to account for a non constant θ m . However, in the early phase of this model, aberrant values of θ m have been found in the atmospheric regions: θ m increases by ∼ 0.1 rad in a single layer or even no solutions at all in the [0, π 2 ] interval. These "glitches" led to crash at a very early age while the computations would probably go well once this complicated phase is passed. It is worth noting that the peak we see on the bottom right panel of Fig 7.17 cannot be quali ed as a glitches because, here, the variation is of the order of 1 mrad between two 7.1. Axes represent the r(p, θ)/R eq and the aspect ratio between the two is the axes is the same. The number of angular sectors in each models is indicated in the title of each plots. The le part of the meridional cut represents ρ(p, θ)/ρ -1 and the other half represents the angular velocity pro le (Ω depending only on p) in percents of Ω K,surf . layers while the glitches that make crash are of order 100 -1000 mrad. In Sect. 6.2.3, I proposed several solutions on how to account for the variation of θ m in the deformation module. It seems, in the view of Fig. 7.17, that the only good proposition is the last one, i.e. evaluate θ m at every layers of the model and represent it as a function of the radius. It remains to nd a way to avoid the problems of the glitches. It would certainly be a way of improvement for the future.

Number of angular sectors

The last point that needs to be investigated is the in uence of the number of angular sectors on the quality of the models. Let us recall that n θ is the number of angles used in the Gauss-Legendre quadrature. These angles lie in the interval ]0; π/2[. To these n θ angles, 3 ghost angles are added: 0, π/2 and θ m . The rst two are added so that the solutions are known at the poles and at the equator, allowing us to plot continuous 2D functions. They do not improve the quality of the solutions of the various equations that are solved by the deformation module. Indeed, these solution are determined only by using the n θ angles. We already talked in details about the last ghost angle θ m . It is kept in the angular mesh because at this precise colatitude, the 2D quantities match the 1D structure. One last point: the code only uses the quantities de ned at the n θ angles and does not use the ghost ones.

In order to test the in uence of n θ on the quality of the models, we computed a grid of models (see Table 7.2) with three di erent masses and a varying number of n θ . They are evolved up to 200 Myr. In all models, the decomposition in Legendre polynomials is stopped at max = 2. Because the models with 1.6M are the most deformed, we also computed three models with a mass of 1.6M and max = 4. They will be described in more detail later.

Figure 7.18 represents the meridional cut of the 1.6M models (with max = 2) for di erent values of n θ . Lower mass models are less deformed and therefore we do not represent their 2D shape. The le side of each meridional cut represents the density uctuations with respect to the 0 th -order component of the density in the Legendre decomposition: Θ 2 -1. The right side is the angular velocity in unit of Ω K . It is quite easy to see in the rst 2D map ( rst column, rst row) that there are 5 angles in each interval [(i -1)π/2; (i -1)π/2] i=1,2,3,4 : the 2 from the Gauss-Legendre quadrature and the 3 ghost angles. We already see, for instance, by looking at the maximum value of Ω in the colour bar, that the rotation pro les are not found identical when n θ varies.

We computed the radial mode frequencies using for each of these models. At each mass, we took as reference model the one computed with 240 quadrature angles. For all sets of models with same mass, we computed the frequency di erences between a model with any n θ and the reference model. We denote these frequency di erences as δν n θ = ν n θ -ν n θ =240 . The frequency di erences are displayed in Fig. 7.19. It must be noted that at all masses, δν n θ =2 n is so high that it almost never ts in the frames. The frequency resolution speci cation of is 0.2 µHz, therefore, we would want the frequency di erences to converge below this threshold as n θ increases.

The results plotted in Fig. 7.19 do not match these requirements. First of all, we would expect the frequency di erences to decrease as

n θ increases, i.e. |δν 2 n | > |δν 4 n | > . . . > |δν 200 n |.
However, in all panels, the better agreement with the reference model is never reached for the models with the highest n θ . The models with 1M are the one that show the better agreement. Models with any n θ ≥ 8 have frequency di erences falling bellow the threshold of 0.2 µHz. We also notice that in the top panel of Fig. 7.19, all δν n θ n follows a linear trend. This is the result of a small variation in the value of the large separation ∆ν, which is proportional to the mean stellar density. The mass of the model is the same but the radius is not. The equatorial and polar radius are nearly the same for all 1M models (see Table 7.2), at least up to 3 digits, but the small di erence can produce a di erence of ∆ν 0.01 µHz which adds up to a δν n θ n 0.2 µHz for the radial modes with n 20. In the second set of models with 1.2M , δν n θ n is again of order 0.1 µHz but many models have their δν n θ n rising above the resolution threshold. Surprisingly, models with poor angular resolution, n θ = 8 and n θ = 32 display signi cantly better results than the high resolution ones. These good performances may be accidental. The majority of the models have there δν n θ n varying linearly, due to changes in the large separation. Looking at Table 7.2, we see that the changes of R eq and R p from one model to another are more signi cant. Although, in some models, especially the one with n θ = 8, δν n θ n do not follow a linear trend. Such variations probably signal more serious changes in the structure of the star than a simple tiny change in the mean stellar density.

Finally, let us study the frequency di erences in the last set of models with 1.6M (with max = 2). Here, the δν n θ n are enormous, of order 1 µHz if not more. The frequency di erences δν n θ n still varies almost linearly but this time we can see small wavelets superimposed to the linear trend. We actually already saw similar wavelets, although much more pronounced, in the frequency di erences induced by the surface e ects (for instance bottom panel of Fig. 2 in Manchon et al. 2018). These wavelets were caused by glitches due to discrepancies in the locations of the HI and HeII ionization regions. The wavelets observed in the bottom panel of Fig. 7.19 are probably not caused by a shi of the location of these ionization regions because, these would a ect high frequency modes. However they could be caused by other small changes in the structure, deeper in the star, for instance the location of the the boundaries of Table 7.2: Grid of models with varying number of points n θ in the angular mesh used for the Gauss-Legendre quadrature. The models have three di erent masses, di erent initial rotation conditions and an age of 200 Myr. All models are computed with max = 2, except the last three for which max = 4. The angular velocity Ω is given as a percentage of Ω K at the surface and at the nal age of the models. The quantity X c is the abundance of hydrogen at the centre. The radii R eq and R p are the equatorial and polar radii. The quantities p † and ρ † have been de ned in Eq. ( 7.9) and have the dimension of the inverse of a pressure and of a density. the convection zones. How can we explain these bad results? Models with 1.6M are rotating signi cantly faster that the ones above. There rotation rates are around 42% Ω K while they were ∼ 13.4% Ω K for the 1M models and ∼ 18.7% Ω K for the 1.2M . Because of the fast rotation, the error made when computing the values of parameters f p , f T and f d , etc. from one model to another is much more important than for slow rotators. As these coe cients directly impact the structure and the evolution, it may be possible that during the evolution, the structures of these models slowly diverge from each other. Therefore, the models on which we computed frequencies are signi cantly di erent. This is the reason why we compared models that are only 200 Myr old: it reduces the structural di erences due to evolution. However, we would have expected a better agreement with the reference model as long as n θ increases, which is not the case. Another source of error comes from itself. Indeed, the θ derivatives that are calculated using nite di erence methods are of course strongly in uenced by the resolution of the angular mesh. A last explanation comes from the fact that we limited ourselves to a decomposition up to max = 2. In fact, it is likely that at such rotation rates, this simple decomposition "misses" a large fraction of the uctuations of the various elds over isobars, which in the end lead to large di erences between the models with 1.6M . In order to check if the inclusion of a higher order Legendre polynomial in the decomposition would improve the agreement between models with di erent n θ , we computed another set of models with 1.6M and max = 4. Unfortunately, we were not able to keep running with n θ < 128 and max = 4. All defective models stopped at the same age, around 2 Myr, when the surface rotation rate reaches a maximum due to contraction. The use of a higher order Legendre decomposition seems to require a high resolution angular mesh in order to be stable. η( g eff )
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Figure 7.21: Comparison of quantities related to the 2D geometry computed with a varying n θ . The colours code for n θ and their meaning is given in the legend of le panel in the 3 rd row. In all the subplots, η de nes the relative variation of a quantity x as η(x) = (x n θ -x n θ =240 )/x n θ =240 . In the top right panel, η(Θ 2 ) is not signi cant outside the convective zone boundaries because in the present case of shellular rotation, ρ 2 = 0 in the convective zones.
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Validation, results and performances changed much, however, δν 200 n are almost divided by a factor ten. This is encouraging and shows the importance of stopping the decomposition at the right order max . Nevertheless, the δν n θ n stay very high and are still not satisfying. They can be explained by the conjugated e ects of remaining discrepancies and error in the determination of θ m . Concerning the rst e ect, the global parameters presented in Table 7.2 show signi cantly reduced discrepancies from one model to the other compared with what we had when P 4 was not included, but they remain quite large. Figure 7.17 shows the variation of θ m in model M16N240L4 (see Table 7.2). I recall that the computation of θ m is performed a posteriori because the implementation of a varying θ m into is too unstable for the moment. The gap between θ m and arccos(1/ √ 3) are stronger close to the surface. The impact should be rather similar as the surface e ect induced by the omission of the turbulent pressure in the structure and mode equations. Indeed, in Fig. 7.20 δν 200 n do not follow a linear trend symptomatic of a variation of ∆ν, but more a power of a shi ed frequency, similar to surface-induced frequency di erences.

Let us now take a closer look at the structure di erences of all these models. For clarity, we only took a look at structure variations in the 1M set of models, that showed very good frequency agreements, and at structure variations in the 1.6M set of models (with max = 2), that showed very bad frequency agreements. Figure 7.21 is devoted to the 1M models and Fig. 7.22 to the 1.6M ones. In these plots we display the relative variations of various quantities between a model with n θ = i and a reference model with n θ = 240. The relative variation for any quantity X is denoted: .13) It is interesting to notice that the gap between the model's structure and reference's structure reduces when n θ increases. This feature was not observed when studying the frequencies. Its not true for all the quantities represented (e.g. f p second row and column or f d third row, rst column), but the agreement is already very good. Surprisingly, we see that the model with n θ = 64 for the set of 1M and n θ = 8 agree signi cantly better with the reference model than the other ones. The reason why this happens is not clear yet but these two models also have the smallest frequency di erences in Fig. 7.19, top and bottom panel. In Fig. 7.21, rst panel, the density pro le agrees at least to 10 -3 with the reference model, except near the surface where the relative di erences reach values of order 10%. Fortunately, these large errors are restricted to very few layers at the surface. However, we see in the plot in Fig. 7.22 that these large discrepancies exist in a much wider region, probably causing the large frequency di erences displayed in the bottom panel of Fig. 7.19. As we said in the previous section of this Chapter, these errors at the surface may, in part, be from a numerical origin and some hope exists that they could be reduced with no need to increase n θ or the maximum order of the Legendre decomposition. More generally, if we compare each corresponding plot in both gures, we see that the relative errors are almost 100 times higher for the 1.6M models than the 1M ones. In addition, in Fig. 7.21 we see that, very o en, the structure of models with n θ = 128 and 200 agree signi cantly better with the reference model than models with lower n θ . In Fig. 7.22, the relative errors associated with models with n θ = 128 and 200 are always almost of the same order as the models with lower n θ .

η(X) ≡ X n θ -X n θ =240 X n θ =240 . ( 7 
What are the take away from this last section? First, the 2D version of seems to give pretty reliable deformed structures and frequency spectra provided that the modelled star is a slow rotators (Ω 10% Ω K ) and that n θ > 50. Second great care should be taken when modelling fast rotators. Choosing to decompose quantities up to max = 2 implicitly amounts to saying that higher order components are very small compared with the lower ones. This 208

Validation of the deformation module
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Figure 7.22: Comparison of quantities related to the 2D geometry computed with a varying n θ . The colours code for n θ and their meaning is given in the legend of le panel in the 3 rd row. In all the subplots, η de nes the relative variation of a quantity x as η(x) = (x n θ -x n θ =240 )/x n θ =240 . In the top right panel, η(Θ 2 ) is not signi cant outside the convective zone boundaries because in the present case of shellular rotation, ρ 2 = 0 in the convective zones.

hypothesis should be tested and the precision of the modelling adapted to speci c situations. However, now allows great re nements of the description of the geometry.

Validation of the new transport of angular momentum prescription

Now that the deformation module has been thoroughly tested, we can move to the second part of 's new skills: the new prescription for the transport of angular momentum ( ) supported by some insight in the 2D geometry obtained with the deformation method. This new prescription cannot be used without the deformation module. Moreover, the computation of degrees > 2 for U and Ω cannot rely on crude approximations but must take advantage of the ne description of the 2D geometry allowed by the Roxburgh (2006)'s method. Therefore, the models computed with the old transport of prescription and without deformation will be o en referred to as 1D models and the ones with the new transport of and the deformation will be called 2D models. We start by checking that the is well conserved and then we present some results and a comparison with the models computed with the old version of .

Conservation of angular momentum

Similarly to the previous section, one needs to verify that our method for the resolution of the equations for the meridional circulation velocity and transport of does conserve . This time, there is no need to check that mass is conserved because this method does not modify internal structure. Again, we computed a grid of models computed with the old and with the new prescription of transport of angular momentum. Each pairs of 1D and 2D models have the same initial conditions, except for the treatment of the rotation. Models computed with old version of use the formalism of Talon et al. (1997) (herea er T97) and of course, no deformation. The models computed with the new version incorporate the deformation and the model of transport of developed by Mathis & Zahn (2004) (herea er M04) which will allow us to compute terms with > 2. The main global parameters of this grid are summarized in Table 7.3.

The di erences between the formalism of T97 and M04 are the following. M04 developed an expression for the coe cients U , Ω , etc., for any ≥ 2, while T97 stopped at = 2. M04 also tried to make the resolution of there expressions less sensitive to sharp composition gradients, numerically speaking. Therefore, the expressions found in M04 only depend on derivatives of Ψ , while the one in T97 depends on both ∂Θ /∂r and ∂Λ /∂r. In addition, in M04, only the Schwarzschild criterion appears (∇ ad -∇), while T97 introduce Ledoux's criterion (∇ ad -∇ + ϕ∇ µ /δ). Last but not least, T97 uses an approximation for the uctuations of the gravity:

g g 4 3 Ω 2 r 3 GM (7.14)
While M04 provide a full expression, for any ≥ 2 in the case of shellular pro le. In our case we use the value provided by the deformation module and in the near future, we will add the possibility to compute higher order terms ( > 2.

It must be noted that we did not solve the equations for Ω 2 and ∂Ω 2 /∂r because our algorithm is not stable enough for the moment. It su ers from the so-called 2∆x oscillations.

Table 7.3: Small grid containing 20 models. Half of them are computed with the old approach, using Talon et al. (1997) formalism of transport of angular momentum and the other half is computed with deformation and Mathis & Zahn (2004) formalism. The initial disk lifetime is 5 Myr for all models and there are no wind-induced loss of angular momentum. The 2D models use 240 angular sectors (without counting the ghost angles) and max = 2. The quantity X c is the abundance of hydrogen at the centre. The radius R is the radius of th star taken at the characteristic angle θ m . The equation for the radial derivative of Ω 2 is (see Eq. (6.87)) 7.15) supplemented by the boundary conditions ∂Ω 2 /∂m| top/bottom = 0. Generally Ω 2k 0 because the shellular approximation seems well veri ed. Therefore, we have Ω 2,k -Ω 2,k-1 0. A simple solution to this equation is Ω 2,k = (-1) k a and Ω 2,k-1 = (-1) k-1 a, with a, any real. Therefore, consecutive values of Ω 2 oscillates between a and -a, from one grid point to the other. A wavy pattern in the variable ∂Ω 2 /∂m translates into a wavy pattern in the solution of Ω 2 . If Ω 2 is not almost 0, the equation Ω 2,k -Ω 2,k-1 Ω 2 = 0 would also accept an oscillation solution, but the boundary condition prevents this solution from being accepted. Nonetheless, during the main-sequence we have seen that an approximate (algebraic) equation is veri ed by Ω 2 : 7.16) which allows us to retrieve a value for Ω 2 a posteriori. We will show some results for Ω 2 at the end of this section.
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E 6,k = 1 2 (Ω 2,k + Ω 2,k-1 ) - Ω 2,k -Ω 2,k-1 m k -m k-1 = Ω 2k - ∂Ω 2 ∂m = 0, ( 
ν h Ω 2 = 1 5 r [2V 2 -αU 2 ] Ω, ( 
which also acts in the temperature gradient: ∂T /∂m = ∂p/∂m(T ∇/p). The temperature pro les resulting from the old and new approaches of the transport of angular momentum are very similar but di ers by around 1% at the same age, 1D models being hotter. Since the nuclear generation rates heavily depends on the temperature, a di erence of core temperature of 1% can produce noticeable changes in the core chemical composition a er few Gyr of evolution. The 2D models being slightly cooler, nuclear reactions in their core are slightly less e cient leading to a higher X c than in the 1D model of same age.

One could have argued that this di erence of X c comes from a di erent meridional circulation velocity obtained with the old and new transport of . Indeed, in addition to advecting angular momentum, meridional circulation is also responsible for an advection of chemicals (see Eq. (2.56)). During the main sequence, the advection can be treated as a di usion process. Its in uence appears through the expression (2.57) of the e ective di usion coe cient D eff : .18) In the equation for the transport of chemicals, the term of di usion by shears and e ective di usion by meridional circulation is of the form:

D eff = >0 r 2 U 2 ( + 1)(2 + 1))D h =2 = r 2 U 2 2 30D h . ( 7 
1 r 2 ∂ ∂r r 2 ρ(D v + D eff ) ∂c i ∂r , ( 7.19) 
(see Eq. (2.56)). What is the dominant term ? Our simulations show that D eff is actually 3 to 4 orders of magnitude lower than D v in main-sequence stars. Moreover, |U | and D eff is o en found higher with the old than with the new approach (see Figs. 7.24 and 7.27), which is incompatible with the idea that the meridional circulation would be responsible for the large X c in 2D models. Is this idea also ruled out in more evolved stars? Equation (2.56) has been derived assuming the star is slowly evolving and the characteristic time-scale of horizontal di usion r 2 /D h is much shorter than the evolution time-scale. When this approximation is not valid, the time derivative in Eq. (2.54) must not be neglected and the equation of transport of the mean chemical abundances per unit mass becomes:

ρ dc i dt + 1 r 2 ∂ ∂r r 2 ρ >0 c i U 2 + 1 + 1 r 2 ∂ ∂r r 2 ρc i U diff i = 1 r 2 ∂ ∂r r 2 ρD v ∂c i ∂r .
(7.20)

The rst row of Fig. 7.25 do not show striking di erences in the magnitude of the meridional circulation velocities obtained with old and new approaches of the transport of . It is more probable that the di erence of X c is the result of the gap in hydrogen abundance dug during the main-sequence.

Density uctuations over isobars

Regarding the 2 nd order uctuations of the density, the computations with the new and old prescriptions for the transport of produce di erent results. They are displayed in the 2 nd row of Fig. 7.24 and 7.25. We denote by Θ new 2 (resp. Θ old 2 ) the value of Θ 2 computed with the new (resp. old) approach. Going from the bottom of the radiative zone to its top (from le to right), Θ new 

5 -4 -3 -2 -1 0 U 2 cm • s -1 ×10 -7 2D models -5 -4 -3 -2 -1 0 U 2 cm • s -1 ×10 -7
1D models Figure 7.24: The models used in this gure are the 0.8M (blue) and 1M (orange) models presented in Table 7.1. 1 st and 2 nd column are respectively devoted to quantities in models computed with old and new versions of . All quantities are represented as a function of the normalized radius (along θ m in the case of the 2D models). The 1 st row displays the radial velocity of the meridional circulation in the radiative zone. The 2 nd row displays the the uctuations of density Θ 2 = ρ 2 /ρ (only in the radiative zone for the 1D models). The 3 rd row is the angular velocity. For each stellar mass, we have computed an initially fast (solid lines) and slow rotator (dashed lines). Refer to Table 7.3 for more detail on the initial conditions. Vertical dashed lines mark the location of the tachocline. the contrary, Θ old 2 keeps increasing at a regular rate from the bottom to the top of the radiative zone. Both Θ new 2 and Θ old 2 drop to 0 at the very top. A er the tachocline, Θ new 2 and Θ old 2 are 0 because of the hypothesis of shellular rotation.

The reason for these di erences is that we are not solving the same equations. The coe cient Θ old 2 is computed using the approximation .21) proposed by [START_REF] Zahn | [END_REF]. This expression is actually the rst order term of a more complex expression proposed by Mathis & Zahn (2004) and reproduced in Eq. (6.91). It includes higher order terms such as Ω Ω 2 and ∂(Ω Ω 2 )/∂r. This description is derived assuming a shellular rotation pro le. And Θ 2 may not have the same functional form if rotation is not shellular. Furthermore, the solution for Θ old 2 is strongly a ected by the boundary condition at the top of 214 7.2. Validation of the new transport of angular momentum prescription The models used in this gure are the 1.5M , 2M and 2.5M models presented in Table 7.1. See caption of Fig. 7.24 for a description of this gure.. the radiative zone: Θ old 2 = 0. This is neither con rmed by the results from Roxburgh (2006)'s method nor justi ed physically. It is a suitable choice.

Θ 2 = 1 3 r 2 g ∂Ω 2 ∂r , ( 7 
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Our approach is di erent. Let me remind you how we proceed. Our treatment of rotation in the new version of is separated into two parts.

• (i): in the rst part we solve the structure equations, then we solve our system of equations (with unknowns U 2 , Υ 2 , Ω and ∂Ω/∂m) and we iterate until convergence.

• (ii): the second part starts at this point and we deform the 1D model by nding ρ , φ , g eff, , etc.

For the computations of the rst part, Θ 2 = ρ 2 /ρ is needed and its value is known at the previous time step. The assumption that Θ 2 does not vary much from one time step to the next is a good approximation, and we may use it. With such a choice, the di erential equations that provide U 2 and Υ 2 do not depend on Ω and are decoupled from the system of equations for Ω and ∂Ω/∂m (see discussion in Sect. 6.3.4). Therefore we choose to approximate Θ 2 by Eq. ( 7.21), only in the computations of the rst part (i). Despite being very di erent from the "unapproximated" value of Θ 2 , it has little impact on the value of U 2 because it is not in factor

Validation, results and performances of the rst order term. The values of Θ new 2 presented in Figs. 7.24, 7.25 and 7.27 are the one computed with the method developed by Roxburgh (2006).
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Radial velocity of the meridional circulation

It appears from the meridional velocity pro les presented in Fig. 7.24 and 7.25 that the magnitude of U 2 , especially close to the tachocline are o en computed smaller with the new than with the old approach of the transport of angular momentum. To get a clearer picture, we focus on the 1M , initially fast rotating, models (M10P03G1D and M10P03G2D; see Table 7.1). The value of (∇ ad -∇) U 2 are displayed in Fig. 7.26, as well as two approximations for this quantity. Various quantities relevant to the understanding of the variations of the meridional circulation velocity in these models are displayed in Fig. 7.27. Let us recall the expressions of the meridional circulation velocity given in Eqs. (2.105) and (2.106): .22) for simplicity, we dropped the p-subscripts on m and L.

U = LH p T c p m (∇ ad -∇) 2 1 - f C 4πGρ - ε + ε g ε m g g + f C, 4πGρ - f C 4πGρ Θ 216 
ρ m ρ r 3 d dr H T ∂Ψ ∂r -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ - ( + 1)H T 3r 1 + D h K Ψ + ε + ε g ε m H T ∂Ψ ∂r -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ + (f ε ε T -f ε δ + δ) Ψ + (f ε ε µ + f ε ϕ -ϕ) Λ -T c p dΨ dt + Φ d ln µ dt Λ . ( 7 
The behaviour of the radial velocity of the meridional circulation is well approximated by the sum of two terms: .23) We moved the di erence of gradients (∇ ad -∇) to the other side because otherwise it would reach zero in the denominator at the transition between the radiative and the convective zones.

(∇ ad -∇) (i) U 2 2LH p T c p m (ii)              1 - f C 4πGρ - ε + ε g ε m (iv) g g (iii) - ρ m ρ H T r 1 + D h K Ψ (v)              . ( 7 
The quantities ∇ ad and ∇ are dimensionless therefore the le hand side of Eq. ( 7.23) is still a radial velocity. In addition, the multiplication by (∇ ad -∇) do not change the general variations of U 2 (at least in our particular case. Term (ii) × (iii) in Eq. ( 7.23) is sometimes called the barotropic term [START_REF] Maeder | Physics, Formation and Evolution of Rotating Stars Maeder[END_REF] with the argument that it is the only term that exists in a barotropic star. However, this is not exact. In a barotropic star, Θ are indeed zero4 , but Ψ = T /T are zero if and only if Λ = µ /µ is zero too. Moreover, even if this last condition is met, there remains the time derivative dΨ /dt which cannot be zero in a rotation star, as shown by the Von Zeipel paradox (see 2.2 and von Zeipel 1924). For simplicity, we keep the denomination of barotropic term. In Eq. ( 7.23), term (i) is positive because we are in a radiative zone and ∇ < ∇ ad . Term (ii) is also positive and g and g are both negative therefore term (iv) is positive. During the main sequence, the quantity ε + ε g is dominated the nuclear energy generation rate ε in the core. The denominator, ε m is the average power per unit mass in a sphere. In the inner core, (ε + ε g ) /ε m 1 (for r < 1%R in our case). In this region, the Gratton-Öpik term f C / (4πGρ) reaches a nite value. In the case of shellular rotation, the coe cient f C is5 

f C = 2 3r 2 ∂r 3 Ω 2 ∂r = 2 3 3Ω 2 + 2rΩ ∂Ω ∂r .
(7.24)

Thus, the Gratton-Öpik term and therefore term (ii) × (iii) have a nite, very small value at the centre. It can be seen as a problem because it means a non-zero value of U 2 at this location, i.e., matter ows out of the centre. Yet, this value is very small and U 2 = 0 at the centre can be imposed as a boundary condition. Approximation of (∇ ad -∇) U 2 by only the rst part of Eq. ( 7.23), i.e. (ii) × (iii). We see that for r < 0.15R , this approximation follows (∇ ad -∇) U 2 pretty close but quickly diverges. This is caused by the fact that (ε + ε g ) /ε m decreases and reaches a value close to zero at r 0.7R . On the other hand, the Gratton-Öpik term is still small in this region. Toward the surface, when ρ become small, the Gratton-Öpik term becomes dominant. In this case, it can form an surface meridional cell rotating in the inverse direction as the inner cell. This situation is illustrated in Fig. 7.28 This gure represents stream plots of the meridional circulation velocity eld in a 2.5M model at two di erent ages. On the le panel, the model is on the main sequence. We distinguish two cells, the inner one rotates from the poles to the equator which is the sign of a positive value of U 2 . The outer one is rotating in the opposite direction, because of the negative Gratton-Öpik sign. On the right panel, the model in on the subgiant branch. its density is small in a large fraction of the star therefore the meridional circulation is negative on more extended region.

In Eq. (7.23), as long as we move toward the top of the radiative zone, the term (v) becomes dominant. It is part of a bigger term called the driving term, constituted of all the terms in 7.3), at two di erent time steps. Stellar surface is represented with a solid black curve.

factor of Ψ in Eq. (7.22). The approximation of (∇ ad -∇) U 2 suggested in Eq. ( 7.23) is plotted for 1D and 2D models in bottom panel of Fig. 7.26. This approximation reproduce pretty well the variations of (∇ ad -∇) U 2 showed in top panel of Fig. 7.26. In the variations of our approximation, we recognize the bumpy pro le of the horizontal di usion coe cient D h , also displayed in bottom right panel of Fig. 7.27. Of course, the other terms that we neglected smooth these variations and gives the pro le of (∇ ad -∇) U 2 presented in the top panel. The di erence of magnitude in the pro les of meridional circulation at the top of the radiative zone is thus explained by the di erence in the value of D h between the models obtained with the old and new versions. We see in Fig. 7.27, that D old h is higher by almost one order of magnitude compared to D new h .

Estimates of Ω 2

As mentioned above, our code is not stable enough for the moment when solving the equation of transport of angular momentum including Ω 2 . However, we computed an estimate of Ω 2 a posteriori for the main sequence models with M = 0.8M and 1M and the results are displayed in Fig. 7.29. The estimates are computed using the relation

ν h Ω 2 = 1 5 r [2V 2 -αU 2 ] Ω.
The uctuations Ω 2 of the angular velocity are around 10 -8 rad s -1 and can peak at ∼ 5 × 10 -8 rad s -1 , while the angular velocity Ω is of order 10 4 -10 5 rad s -1 . These values are compatible with the hypothesis of shellular rotation pro le: Ω 2 Ω. Of course, this approximation should be tested in more detail with a full calculation of Ω 2 .

Computation of higher orders > 2

As explained in Chapter 6, the new method we implemented for the transport of angular momentum is currently able to compute only 2 nd -order terms U 2 , Υ 2 (see Eq. (2.107)), and Ω. However, the structure of the algorithm has been designed to be easily modi ed if one wants to compute higher order terms U 4 , Υ 4 , Ω 2 , etc. Higher order of Θ are of course made available by the deformation module and, assuming that the uctuations of mean molecular weight Λ

Additional computational time and memory usage

Table 7.4: Time consumption required by the deformation module on a 1.6M model. The integer N θ is the number of angular sector (without counting the three ghost angles), the operator • stand for the average along all the evolution, N it is the average number of iteration needed by the deformation module to converge to the deformed structure, τ is the time needed to perform a single iteration and τ all its is the time needed to perform all iteration until convergence (usually 3 or 4). Finally τ deform is the total time spent in the deformation module at a given time step. It includes the time needed to iterate towards the solution of ρ , φ but also the time needed to compute g eff , f p , f T , etc. are negligible compared with Θ , higher order of the uctuations of temperature can readily be computed. In order to do so, we need to derive the Jacobian of the new system that needs to be solved. This task is currently ongoing and presents no particular mathematical di culty.

Model
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The new results will require some testing (the implementation of the version in which only Ω 2 is added to the unknowns is pretty well advanced). will be the rst stellar evolution code to be able to compute these terms.

Additional computational time and memory usage

Use of numerical resources by the deformation module

What usually hinders the use of higher dimensional simulations is the additional time consumption they induce. Stellar evolution models need to be computed rapidly so that they provide the main feature of the stellar-structure, stellar rotation pro le, etc. for thousands of stars observed by space missions. We cannot a ord spending days or weeks calculating models for each of them. One of the great advantages of our method is that it does not lead to a signi cant increase of the time consumption. We measure the average time needed to deform a 1.6M model as a function of the number of angular sectors used in the angular mesh and with the Legendre decomposition stopped at P 2 . Our results are reproduced in Table 7.4. The average number of iterations needed to converge to the correct deformed structure rapidly converge toward 3.81 while the number of angular sector increases. Noteworthy, the number of iterations can increase for old models. The evolution is stopped if N it exceeds 42. Fortunately, such cases are really rare. These models were evolved until 200 Myr so that the model NT2 took around 14 min to compute and 31 min for NT240. As a comparison, the same model but with no rotation needs around 4 min 30 s to compute and around 14 min also for a model with rotation but in 1D. It may seem important but for N θ = 240 it only double the computation time, while a full 2D computation of evolution (which anyway does not exist) would take a time orders of magnitude higher.

On the side of memory usage, the change to two dimensions increases by around one or two order of magnitudes the size of output les. If the number of angular sectors needed is 100, the size of all working arrays is multiplied by 100. 1D and 2D output les (*.osc and *.osc2d) output roughly the same number of quantities. Therefore, the size of the output should be 100 times larger. The size of these le has been reduced by a factor ∼ 2 by switching from an ASCII output for osc to a binary output for osc2d. It also saves a large amount of time reading those les. But in any case the new size of the les is very important and it must be taken into account if the goal is to compute large stellar model grids in 2D.

Use of numerical resources for the transport of angular momentum

Concerning the time consumption needed for the resolution of the transport of angular momentum, it is surprisingly much faster with the new than with the old approach for the transport of . We measured the time needed to compute an 1M evolutionary model to an age of 4570 Myr (Sun's age) and 12 000 Myr. The resulting computation time are gathered in Table 7.5. How do we explain these results ? It is actually not very clear, however two explanations can be suggested. First of all, the system of equations in 1D has 5 unknowns (Ω, U 2 , Υ 2 , Θ 2 and Λ 2 ), while the new approach has 4 (U , Υ , Ω and ∂Ω/∂r). One equation less does not make a signi cant di erence for the time to compute one iteration. However, 4 equations instead of 5 can reduce the number of iterations until convergence and speed up calculations. The second idea is that because our computation of ρ , g , etc. is more realistic because of the module dedicated to the model deformation, it may also improve the stability of the code and again, reduce the number of iterations • Layers in stars can be di erentiated according to the dominant energy transport process inside them. In convective zones, the energy is mainly advected by large scale uid motions due to the unstably strati ed material. The modelling of these motions and their interaction with rotation is very complicated and would require dedicated models. However, these complicated motions are also an advantage because they lead to simplications. For instance, the convection zone can be considered chemically homogeneous region. For this reason, we focus on the rotation modelling of the radiative zone.

• Stars with mass below 0.3M have no radiative zone. Stars with 0.3M < M < 1.25M have a central radiative region, surrounded by an convective envelope. These stars are quite similar in structure to our Sun, which makes them very interesting. Finally, stars with M > 1.25M have a central convective zone and a very thin or no convective envelope. Furthermore, in these stars, other "non-standard" phenomena come into play such as radiative accelerations or mass loss. The higher the mass, the less negligible they are. The range of mass studied in this PhD spans almost the entire mass range of stars observed by CoRoT, Kepler and .

• Some stellar models o er precise modelling of the stellar rotating interiors, especially (Espinosa Lara & Rieutord, 2007, 2013) which was designed for a fully 2D study of stellar rotation, or the ASH code (Brun & Toomre, 2002;Miesch et al., 2006Miesch et al., , 2008) ) primarily designed for MHD computations of rotating convective zones. They are much more realistic in rendering the e ect of rotation on the structure. However, these codes are computationally expensive and are not able to model the star rotation over evolution time-scales. The possibility to simulate evolution through a varying hydrogen abundance in the core has recently been introduced in , but this prescription is far from being accurate. What can now do is to start from an initial rotation pro le and evolve it to the desired evolutionary stage, in addition to taking into account two-dimensional e ects of rotation.

• Treating part of the problem in two dimensions is motivated my many arguments.

-In order to keep a 1D description of the rotating stellar-structure, we had to assume a shellular rotation pro le, i.e. that the angular velocity is constant over (spheroidal) isobars. The approximation of shellular rotation in the radiative zone is valid if, due to the stable strati cation, the horizontal shear-induced turbulence is much stronger than vertical one. The horizontal di usion coe cient, as we have shown in Sect 2.2 is proportional to the gradient of angular velocity with respect to the distance to the rotation axis. Near this axis, the gradient becomes small and the shellular rotation approximation may no longer be valid. If it is not, it is not clear if one can nd another way to keep structure equations one dimensional. The 2D version of will allows us to test this hypothesis in the radiative zone.

-The rotation pro les presented in Chapter 4 showed that, in convective zones, the angular velocity depends on the radius and on the latitude and then the latitudinal gradients vanish in a thin transition region and stay very small in the radiative one. Therefore, the boundary conditions that need to be applied at the transitions from radiative to convective zones must depend on the latitude, and a 2D approach is necessary for that.

-1D stellar evolution codes that can perform a modelling of rotation evolution reach angular velocity pro les that are orders of magnitude higher than the rotation rates measured in evolved stars (see Chapter 4). To overcome these disparities, many 8.1. Summary additional mechanisms of transport of angular momentum have been suggested and they are summed up in Chapter 5. They can be sorted into two categories: transport by waves or by di usion induced by hydrodynamic or magneto-hydrodynamic instabilities. For the rst categories, the amount of angular momentum transported by a wave and its properties inside the radiative zone depend partly on the latitude of emission. For the second categories, several of the criteria that rule these instabilities depend also on the latitude, which can lead to instabilities occurring only above or below a certain latitude. Here again, the two dimension must be accounted for.

We established the numerical framework that will allow the future studies of stellar rotation evolution. This framework is decomposed into two parts. The rst one is a deformation module that implements a method proposed by Roxburgh (2004Roxburgh ( , 2006)). The main idea is to start from a 1D model and an angular rotation pro le. The method assumes that any eld can be decomposed on Legendre polynomials. By using this decomposition in the Poisson equation and in the force balance equation (hydrostatic equilibrium with centrifugal force), one obtains 1 st -order di erential equations that can easily be solved with the method of characteristics. The characteristic surfaces turn out to be isobars. This method therefore provides us with the coordinates of the isobars, the uctuations of density and gravitational potential over them and the e ective gravity (the combined e ect of the gravity acting radially and the centrifugal acceleration acting perpendicularly to the rotation axis) in 2D. Knowing those quantities allows us to compute the additional factors that enter the modi ed structure equations written on isobars, and to resume the evolution. A er the deformation, the 1D structure taken as input is equal to the 2D one at a particular latitude denoted θ m . This characteristics latitude is the one at which all the Legendre polynomials vanish but the 0 th -order one. In the literature, the angle is taken to be θ m = arccos(1/ √ 3). Nonetheless, the implementation of Roxburgh (2006)'s method was the opportunity to notice that if Legendre polynomials with degree strictly higher than 2 are taken into accounted, this value of θ m is not exact. In particular, near the surface where the centrifugal acceleration is the strongest, it signi cantly diverges from arccos(1/ √ 3) which induces errors in the deformation. I propose a method to implement the Roxburgh (2006)'s method with a varying θ m . This method works during the main sequence but experience some di culties during the pre-main sequence and needs to be polished.

The mass and angular momentum are very well conserved a er the deformation. We also performed a seismic study of our models using the 2D, non-perturbative, oscillation code (Ouazzani et al., 2012). All the elds along the characteristic latitude are almost not modi ed, except for the pressure eld that is recomputed at the end of the deformation. This re-computation results in very small changes in the pressure of the uppermost layers, which induce small frequency changes, quite similar to the surface e ect. This problem is not found in every star and at every evolutionary stage, and we should be able to suppress it a er a deeper study. This "numerical surface e ect" seems also to be the cause of the non convergence of the frequencies computed in models with tighter angular grids. As we have shown, those frequency di erences seem to have two distinct causes. The rst is due to a change in the mean density of the star, related to the large frequency separation ∆ν. The mean density can be a ected by numerical errors in the computation of the density uctuations but most certainly by changes in the value of the surface of isobars, which have a repercussion on the isobar-averaged quantities involved in the structure equation. This change in ∆ν is easily seen by the fact that the frequency di erences vary in a linear way, as expected by the asymptotic relation (3.50). The second cause is related to the maximum order max taken into account in the decomposition in Legendre polynomials. For rapidly rotating stars, stopping the development at max = 2 seems not to be su cient and higher degrees must be added. It will be the work of the modeler to tune the numerical parameters in order to obtain an accurate model.

Regarding the new prescription for the transport of angular momentum, we also obtained very good results. The angular momentum is very well conserved along stellar evolution. Furthermore, the computation performed with the new prescription seems to be more stable than with the old one and signi cantly faster, to our surprise. The results are also very di erent. The central hydrogen abundance is always found higher in 2D than in 1D models, which is due to a slightly higher central temperature in 1D than in 2D models. It has a signi cant impact on the latter stages of stellar evolution. The radial component of the meridional circulation was o en smaller in 2D than in 1D models, leading to sharper gradients in the angular velocity. Nonetheless, it must be noted that our tests have been conducted without loss of angular momentum by magnetized wind. The inclusion of such a process in the modelling induces a coupling between the meridional circulation U 2 near the tachocline and the angular momentum extracted at the surface. It could change the way U 2 compare in 1D and 2D models. Finally we computed the 2 nd order component of the angular velocity Ω 2 in the radiative zones of main sequence stars. The value obtained are consistent with the assumption of a shellular pro le. However, this question should be investigate more thoroughly.

This work open the path to new studies of the transport of angular momentum. Some of these studies have already started and this is the topic Sect. 8.2 in which I summarize the collaborations started soon before the lockdown and the writing of this PhD. The third and nal section 8.3 gather the future prospect for the works that could be carried out with .

On the problem of surface e ects

We have computed a grid of 29 patched models with e ective temperature ranging in T eff = [5000; 6800] K, surface gravities ranging from log g = [3.5; 4.5] and iron to hydrogen ratio ranging from [Fe/H] = [-1.0; +0.5]. Our aim was to study and understand physically what impact a non-solar metallicities would have on the surface e ect. We focused on the turbulent origin of the surface e ect and le the non-adiabatic cause aside. In the region of the parameter space ((T eff ; log g; [Fe/H])) we focused on, we showed that at xed T eff and log g, the frequency di erences computed at ν max could vary by up to a factor 3 with varying [Fe/H] between the lowest and highest frequency di erence. However, it appears that our rst idea which consisted in studying the amplitude of the frequency di erences as a function of the metallicity did not lead to a clear trend. On the contrary, the Rosseland mean opacity κ turned out to be the most adapted quantity for understanding the frequency di erences. Based on simple physical arguments we derived a scaling relation between the frequency di erences at ν max and the global parameters T eff , log g and the opacity κ computed at the photosphere. In a second part, this scaling law was improved using the grid of patched models.

In this work, we also perform a comparison of the existing surface e ects correction laws by comparing the residual frequency di erence a er correction given by all these laws. The corrections were also applied on non-radial mode frequency spectra when mixed-modes were present. We found that, for a vast majority of our models, the cubic correction relation proposed by Ball & Gizon (2014) is found to be the best performer and manages to reduce the frequency di erences below the 0.1 µHz for the coldest models, which is of the order of the CoRoT or Kepler frequency resolution. The Lorentzian correction suggested by Sonoi et al. (2015) is the second best performer with corrected frequency di erences slightly higher than the one corrected by Ball & Gizon (2014). Almost all the proposed correction leave frequency di erences smaller than 1 µHz. The rst ever proposed correction (Kjeldsen et al., 2008) 8.2. Ongoing work have pretty bad results for correcting high frequencies, however, on the low frequency range 0 < ν/ν max < 1.05, it o en provides results similar to the one of Ball & Gizon (2014). As for the correction of mixed modes only a modi ed version (see Manchon et al., 2018) of the corrections proposed by Ball & Gizon (2014) manages to satisfyingly correct the frequency di erences. This review of the correction relation allowed us to provide a scaling relation between the di erent adjustable parameters involved in these laws and the same global parameters as before (T eff , log g and κ). The advantage of such scaling relations is that they could easily be implemented in a 1D stellar evolution code. Furthermore, there is no need to adjust these parameter so that the modelled spectrum ts the observed one. We have seen that this method poses a problem of uniqueness of the solution. With scaling relations that constraint the values of the adjustable parameters, the values of the adjustable parameters depend only on the values of T eff , log g and κ.

8.2 Ongoing work 8.2.1 Implementation and testing of the prescription for the transport of angular moment with > 2

Mathis & Zahn ( 2004) developed the equations for the transport of angular momentum and for the meridional circulation for any degree ≥ 2. The resolution of these equations for > 2 is currently being added into . The usual tests for the conservation of angular momentum will soon be performed. This new version will allow us to compute coe cients U 4 , Λ 4 , Ψ 4 . Furthermore, we will be able to compute Ω 2 not only during the main sequence but also during fast evolution phases. Estimates of Ψ 4 can already be derived with the value of Θ 4 provided by the deformation module if we assume that Λ 4 is very small compared to Θ 4 . In a near future, we will be able to compute even higher orders. However, it has been shown in this PhD that situations where coe cients of order ≥ 8 are physically signi cant seem to be very rare.

Seismology of δ Sct

As I said earlier in this manuscript, δ Sct and γ Dor o er very good test case for the new 2D abilities of . Indeed, δ Sct and γ Dor are stars with mass ∼ 2 -3M , well in our mass range of interest. They are also fast rotators which translates into very important deformations, with the equatorial radius being more than 10% higher than the polar one. In these stars, the CNO cycle is the dominant source of energy and they have a convective core. Convective overshoot causes injection of hydrogen-rich material in the region where nuclear reactions occur, thus extending the star lifetime. Due to the fast rotation, meridional circulation and shear-induced turbulence inside radiative zones must be important and so is the associated chemical mixing. The questions raised by these stars are therefore, what are their pro le of chemical composition and rotation ? What transport mechanisms do they reveal ?

The seismology of these stars is complicated by the strong distortion that impedes mode identi cation. γ Dor stars oscillate in gravity modes while δ Sct oscillate in pressure modes. I am starting a collaboration that focuses on the latter and associate researchers from the and the in Meudon, France, and from the in Granada, Spain. The general idea is to combine photometric measurements with spectroscopic ones to derive seismic constrains on δ Sct using new 2D evolutionary models computed with and 2D non perturbative oscillation codes (Ouazzani et al., 2012) and (Reese et al., 2006). The ultra-precise photometry will be obtained using the satellites constellation presented in Sect. 4.1, that allows for multi-wavelength measurements. Modes of oscillation do not have the same amplitude and the same phase in all photometric bands. The amplitude ratios and phase di erences depend on the numbers (n, , m). The theoretical prediction of their values have been the focus of many works in the past decades (Balona & Evers, 1999;[START_REF] Brandenburg | Magnetic eld evolution in solar-type stars[END_REF]Reese et al., 2009;Handler et al., 2017;Reese et al., 2018). The multi-band technique mainly works for modes with ≤ 2 (Daszynska- [START_REF] Daszynska-Daszkiewicz | [END_REF]. In order to obtain information in higher degree mode, we must add radial velocity measurements obtained through high-resolution spectroscopic observations. These observations will be mainly collected using the spectrometer. The aim is to measure the variations in time of an absorption line pro le (line pro le variations;

). The are due to the Doppler e ect induced by the mode velocity. Spectroscopy must also provide us with estimates of the inclination angle and of the equatorial velocity. To that end, e ects of the gravity darkening must be estimated and 2D models of will be of great help for that. On the modelling side, the interfacing of with will allow us to nd and study new seismic constraints. We have seen in Chapter 3 that the large separation ∆ν is proportional to the mean stellar density ρ . In moderate and fast rotating stars, regular patterns in the frequency spectra can also be found. In such stars, an equivalent of the ∆ν has been theorized (Ouazzani et al., 2015;Suárez et al., 2014). Suárez et al. (2014), found the following relation ∆ν ∝ ρ 0.46 , pretty close to the one in the non-rotating case. To do so, they used 1D stellar models rotating at most at 40% Ω K , from which they computed the mean densities and a 1D oscillation code for calculating the frequency spectrum and extract the ∆ν. In a very recent work, Rodríguez-Martín et al. ( 2020) performed the same analysis on a grid of fast rotating 1D models, of which they calculated the frequency spectra using a 1D oscillation code with a 2 nd order perturbative method accounting for centrifugal deformation. The models were computed in 1D, therefore the mean density had to be corrected. To that end, they assumed that the models had their shape given by the Roche model (isobars equals equipotentials) and in this case, the mean density is given by:

ρ = 3 4π M R 2 eq R p , (8.1)
where R eq and R p are the equatorial and polar radii. They are given by the Roche model as:

R p = R 1D 1 + Ω 2 R 3 1D 3GM and R eq = 1 + Ω 2 2Ω 2 C , (8.2)
where R 1D is the radius of the star provided by the 1D models and Ω C is a critical velocity in the Roche model, very similar to the Keplerian break-up velocity. When Ω C is reached, the centrifugal acceleration counterbalances the gravitational one and R p = 2/3R eq :

Ω 2 C = 8GM 27R p . (8.3)
This quantities comes from the de nition of Ω K ≡ GM /R 3 eq given in Eq. (1.55), in which the equatorial radius R eq has been replaced by 3/2R p . They nally found the scaling between ρ and ∆ν to be: ρ ∝ ∆ν 2.02±0.10 . In the conclusion of there article, Rodríguez-Martín et al. (2020) propose that this study should be carried again with more precise 2D models. They suggest using models initialized with a 1D seed coming from a 1D model. This would allow to have a more accurate stellar evolution and a more accurate 2D stellar-structure. The new 2D version of can actually do this without the need of interfacing two stellar codes. And this is what we started to with the computation of grid of evolutionary tracks of 2D models. The characteristics of the models in this grid are summarized in Table 8.1. In total, it represents 960 models: 20 di erent masses, 4 di erent metallicities, 2 di erent values of α MLT and 6 di erent initial disk periods. As for now, around 40% of the models have been computed. The computation was slightly delayed by the pandemic and because of insu cient storage on the cluster at the . The grid parameters of Table 8.1 are quite similar to the one of the grid used in Rodríguez-Martín et al. (2020). It appeared that it was impossible to evolve some models past the because they reached the break-up velocity. Interestingly, the break-up velocity can be reached outside the characteristic latitude θ m , which would not have been detected by the 1D version of . This new 2D grid of stellar evolution models will then be exploited with .

Concerning

and the problem of mode identi cation in fast rotating stars, R.-M. Ouazzani recently proposed (private comm.) to use arti cial intelligence ( ) to identify modes. This method has already been used (e.g. Mirouh et al., 2019): should be able to identify, for instance using the 2D spatial distribution of the kinetic energy of a mode (see 7.4), what kind of mode it is (island mode, super-inertial mode, etc.) and its quantum numbers when it is possible. First, the must be trained on a subset of modes that a human already identi ed. As of today, must be trained on very large subset in order to be accurate enough and it complicates their use. The idea here would be to create a project of citizen science. The would be trained by a single human but by, let say smart-phone users, who would identify series of mode and quickly train the .

accounting for centrifugal acceleration

In rotating star, the Coriolis force must be taken into account in the case of g -modes. As we said, to be more rigorous, these modes should not be called gravity modes any more but gravitoinertial modes. This denomination stresses the fact that, not only the gravity is a restoring force, but also the Coriolis force. We focus here on low frequency modes satisfying the conditions 2Ω N and σ N . In this case, the problem can become separable in an angular and a radial part by making the so-called Traditional Approximation of Rotation ( ) (Eckart, 1960;Gerkema et al., 2008), originally developed in geophysics. The consists in neglecting the latitudinal component of the Coriolis force (Lee & Saio, 1997). This approximation relies on the same argument developed in the small calculation performed around the dispersion relation (7.6). For waves with ω, Ω N , we have seen that k h /|k| 0. From Eq. ( 7.6), it yields Ω • k Ω r k r , meaning that the horizontal component of Ω has almost no in uence on the frequency of the mode and can be neglected. This approximation was rst considered together with other approximations such as sphericity (non centrifugal acceleration) and uniform rotation. It has since be generalized for the case of di erential rotation (Ogilvie & Lin, 2004;Mathis, 2009) and recently the formalism has been developed to allow small deformation of the star (Mathis & 8.3. Future work may be possible that the shear instability cannot develop near the rotation axis because the rotation velocity (not the angular velocity) is zero on this axis. Of course, if shear instabilities are not found near the rotation axis, it does not mean that the shellular rotation is not veri ed here. If the zone in which the shear disappears is small, the angular velocity pro le could stay close to a shellular one, for continuity reasons. In this case, it would be interesting to have access to the 2 nd order component Ω 2 to see if it becomes non negligible. This study will also be improved by using the new prescriptions of turbulent di usion coe cients (Prat et al., 2016;Mathis et al., 2018).

• Transport of angular momentum by is suggested to be a very e cient mechanism of transport. For the moment, it has only been tested in 1D stellar evolution codes (e.g. Talon & Charbonnel, 2003;Fuller et al., 2014) and those studies show that cannot reproduce the core rotation of stars. However, as we have explained in this manuscript, the ux of transported by the depend on the latitude of emission and will allow a deeper study of this mechanism of transport.

• In addition to trying to reproduce the core rotation of stars, it will be interesting to see if, when are included, we nd a at rotation pro le in the radiative zone of the Sun. It could be used also to con rm the good results of on the understanding of the cold side of the Li dip (see Sect. 4.3.2).

• M. Deal has recently included a 2D prescription (Barker et al., 2019) for the instability in and the transport by mixed-modes (Belkacem et al., 2015b,a) has already been implemented for a few years. Being able to study all these process of transport with the same stellar evolution code will be a good opportunity to study the interplays between them, similarly to what was done theoretically by Maeder et al. (2013).

Concerning the future of our work on the surface e ects, we could focus on several points

• First of all, the method of model patching may be improved. Until now, the strati cation extracted from the 3D simulations that are patched onto the 1D stellar models are constructed by averaging horizontally the modelled box. Our patching technique is designed to ensure the matching of the e ective temperature, the surface gravity and of the temperature at the bottom of the 3D simulated box. The 1D model and the horizontally averaged strati cation extracted from the 3D one are in hydrostatic equilibrium ( , however the patching technique per se does not preserve the at the junction point. A quick check on two models of our grid showed that they were indeed in but this veri cation should be conducted on all our models. Furthermore, we could think of a way to enforce during the patching process, so that no veri cation would be needed. Of course, one could add a fourth constraint and impose that the quantity ∇p is continuous from the 1D model to the horizontally averaged 3D strati cation, but including a fourth constraint implies that we also include a fourth tunable parameter which increases the complexity of the patching. We could also change our way of obtaining the 3D stratication. The horizontal average is the most simple way of averaging one could think of but we could also average the strati cation at constant pressure scale height H p . With this method, the radial derivative of the pressure would be continuous at the matching point, thus, here, the would be preserved by default a er the patching process.

• Our study of the impact of a di erent chemical composition on the surface-induced frequency di erences have focused on the e ects caused by the turbulence and nonadiabatic e ects were le aside. This aspect was already studied by Houdek et al. (2017) who showed that, on a solar model, when the surface-e ect was corrected only for the turbulent pressure part, non-negligible frequency di erences remained. This residual disappears when non-adiabatic e ects were accounted for. Such study should be carried out on non-solar models and especially with non-solar metallicities.

• Finally, we have see in the last section of Manchon et al. (2018) that mixed-modes can also be surface-a ected. Correcting their modelled frequency is of crucial importance because in many cases, mixed-modes are the only observable waves that probe the radiative region. Only the correction prescriptions proposed by Ball & Gizon (2014) were adapted to mixed-modes. This point should be investigated further.

A. Constants and global solar parameters A.1 Universal constants

Light speed c 299 792 498 m s -1 Stefan-Boltzmann constant σ 5.670373 × 10 -8 W m -2 K -4 Gravitational constant G 6.674 × 10 -11 m 3 kg 

B.2 Integral of triple product

We de ne the integral of the triple product as, ∀i, j, k ∈ N, T (i; j; k) = ˆ1 -1 P i (x)P j (x)P k (x)dx. (B.5)

Following [START_REF] Gupta | Legendre polynomials Triple Product Integral and lowerdegree approximation of polynomials using[END_REF], T (i; j; k) = 0 if either one of these two conditions is met:

• The triplet (i, j, k) does not satisfy to the triangle inequality, i.e. either i + j < k, or i + k < j, or j + k < i.

• (i + j + k) mod 2 = 0

In any other case,

T (i; j; k) = 2 i j k 0 0 0 2 , (B.6)
where the matrix is a Wigner 3-jm symbol. For instance, T (2; 2; 2) = ´1 -1 (P 2 (x)) 3 dx = 4/35.

B.3 Useful relations

Any vector eld of the form F = F r (r)P (cos θ)e r + F θ (r) dP (cos θ) dθ e θ will have its divergence in spherical coordinate written as where δ i,j is the Kronecker symbol and we have used the results sin 2 θ = 2 3 (1 -P 2 (cos θ)) and ´π 0 sin 3 θdθ = 4 /3. where N is the number of moles, R is the perfect gas constant, x i the abundance of i th chemical species and x e the abundance of electrons. Furthermore, x i = µX i /A i and x e = µ i X i Z i /A i , with X i the mass fraction of element i, A i its atomic mass and Z i its number of electrons. For the abundances of hydrogen X, helium Y and metals Z, we can write: 

∇ • F = 1 r 2 ∂r 2

B.6 Useful relations: spherical harmonics

x H =

C.4 Final expression of the meridional circulation velocity

Eventually we will use Eq. (2.79) and we denote T the term between curl brackets:

T = 2 1 - f C 4πGρ - ε + ε g ε m g g + f C, 4πGρ - f C 4πGρ Θ - ε + ε g ε m Θ + ε ε m [(ε T -δ) Ψ + (ϕ + ε µ ) Λ ] + H T ∂Ψ ∂r -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ ε + ε g ε m - ( + 1) r 2 c p T K ε m 1 + D h K Ψ + g 4πGρ d dr H T ∂Ψ ∂r -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ = 2 1 - f C 4πGρ - ε + ε g ε m g g + f C, 4πGρ - f C 4πGρ Θ + ε + ε g ε m H T ∂Ψ ∂r -(1 -δ + χ T ) Ψ 241 -(ϕ + χ µ ) Λ -Θ + (f ε (ε T -δ) Ψ + f ε (ϕ + ε µ ) Λ ) (C.17) + g 4πGρ d dr H T ∂Ψ ∂r -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ - ( + 1) r 2 c p T K ε m 1 + D h K Ψ .
The last line of this equation needs some cleaning. With ρ m = M (r) where we have used Eq. (C.9) between rst and second line. Finally, we write T in the same way as Mathis & Zahn (2004): Until now, we have de ned our horizontal averages of a quantity X as ´X sin θdθ/ ´sin θdθ. With the above equation, it seems that a better choice of averaging in the particular case Ω is to de ne Ω(r) = ´π 0 Ω(r, θ) sin 3 θdθ ´π 0 sin 3 θdθ . (D.3) With this choice, the rst term can be rewritten ∂ t ρr 2 Ω ´π 0 sin 3 θdθ.

T = 2 1 - f C 4πGρ - ε + ε g ε m g g + f C, 4πGρ - f C 4πGρ Θ + ρ m ρ r 3 d dr H T ∂Ψ ∂r -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ - ( + 1)H T 3r 1 + D h K Ψ + ε + ε g ε m H T ∂Ψ ∂r -(1 -δ + χ T ) Ψ -(ϕ + χ µ ) Λ + (f ε ε T -f ε δ + δ) Ψ + (f ε ε µ + f ε ϕ -ϕ) Λ . (C.
We shall do a small break on the decomposition of Ω on Legendre polynomials. Usually, Ω would have been decomposed as any other quantity on Legendre polynomials, with the 0 th -order term following the averaging de ned in Eq. (1.49). But with this new de nition, there is a little subtlety. Indeed, if we keep the usual de nition Ω(r, θ) = Ω (r)P (cos θ) we should have the following: Ω(r) = ´π 0 Ω(r, θ) sin 3 θdθ ´π 0 sin 3 θdθ = Ω(r) + >0 Ω (r) ´π 0 P (cos θ) sin 3 θdθ ´π 0 sin 3 θdθ . (D.4)

Then for this to be true, we should have ∀ ∈ N, ´π 0 P (cos θ) sin 3 θdθ = 0. Yet, the integral in the right hand side is not 0 but δ 0, -1 5 δ 2, (see Eq. (B.13)). Therefore Ω is not decomposed in a linear combination of Legendre polynomials but on a slightly di erent basis of polynomials Q (cos θ) = P (cos θ) -I Ω(r, θ) = Ω (r)Q (cos θ) = Ω(r) + Ω 2 (r) P 2 (cos θ) + 1 5 + Ω 4 P 4 (cos θ) + . . . . (D.5) where the last line was obtained using (B.13).

In a Lagrangian description, the term ṙ conveniently vanishes and we are le with the momentum advected vertically by the horizontal velocity which of course is 0. Indeed, by removing all the terms depending only on r, above integral reads • and last term is zero for the same reason as for the horizontal advection term.

Wrapping up everything and dividing by ´π 0 sin 3 θdθ yields the average equation for the vertical transport of angular momentum: E. Synthèse en français: Du transport de moment cinétique dans les zones radiatives stellaires, en 2D Henyey et al. (1955Henyey et al. ( , 1959aHenyey et al. ( ,b, 1964) ) ont été les premiers à calculer des modèles stellaires en utilisant des ordinateurs et ces modèles ont par la suite été étendus par Iben (1965aIben ( ,b, 1966a,b),b). Ces travaux ont abouti au modèle standard de la physique stellaire. Les étoiles sont considérées comme des sphères de plasma en équilibre hydrostatique et thermique local. L'énergie produite par les réactions de fusion nucléaire, ou perdue par les neutrinos à l'intérieur des étoiles, peut être rayonnée ou convertie en énergie thermique. Tous les autres phénomènes susceptibles de compliquer la physique des étoiles ont été longtemps négligés. Parmi eux, on peut citer les champs magnétiques, les processus de di usion, les forces de marée, la rotation, etc. Avec ces hypothèses, un système physique aussi complexe qu'une étoile peut être simpli é en un système unidimensionnel, c'est-à-dire où toutes les quantités ne dépendent que de la coordonnée radiale. Cependant, la modélisation de la rotation stellaire et de son évolution est importante, et ce pour plusieurs raisons. D'abord, la rotation est intimement liée à l'activité magnétique stellaire par son interaction avec la convection. Une activité magnétique accrue peut avoir un impact déterminant sur l'atmosphère des planètes et peut entraver le développement de la vie sur celles-ci. Une deuxième raison d'étudier la rotation est liée à l'estimation de l'âge des étoiles. Les étoiles sont très souvent utilisées comme des indicateurs pour estimer l'âge de leur structure hôte ou de celles qu'elles hébergent (amas, galaxies, exoplanètes, etc.). Les erreurs dans l'estimation de l'âge sont principalement due au mélange chimique induit par l'interaction de la rotation et de l'overshoot convectif. Cet overshoot injecte du matériau riche en hydrogène dans les régions où se produit la combustion nucléaire. Comme il y a plus d'hydrogène à brûler, la durée de vie stellaire est prolongée.

ρ
Jusqu'à la n des années 80, la plupart des modèles de rotation stellaire supposaient que les étoiles étaient barotropes, c'est-à-dire que la vitesse angulaire est constante dans des cylindres. La mesure du pro l de rotation interne du soleil obtenue par Brown & Morrow (1987) a fait apparaître que l'approximation barotrope n'était pas véri ée. Peu après, Spiegel & Zahn (1992) et [START_REF] Zahn | [END_REF] ont proposé un modèle pour expliquer la forme du pro l de rotation dans la zone radiative et son évolution. Ce modèle repose sur trois idées principales. Premièrement, dans la zone radiative, le moment cinétique est advecté par la circulation méridienne. Deuxièmement, les gradients de vitesse angulaire créent du cisaillement, sujets à des instabilités. La turbulence induite par ce cisaillement etraîne la di usion de la vitesse angulaire. Cette turbulence est supposée être beaucoup plus forte horizontalement que radialement, en raison de la strati cation stable. Il en résulte un pro l de rotation constant en latitude, appelé pro l de rotation shellulaire. Cette hypothèse permet de conserver une description unidimensionnelle de la structure stellaire, même si celle-ci est en rotation.

Le développement de l'astéroséismologie pour d'autres étoiles que le Soleil et surtout les données de haute qualité mises à disposition par les missions spatiales CoRoT [START_REF] Catala | COROT: A Proposal to Study Stellar Convection and Internal Rotation[END_REF]Baglin et al., 2006;Michel et al., 2008) et Kepler (Borucki et al., 2010) ont fait apparaître des décalages importants entre les prédictions des modèles et le pro l de rotation observés. Le modèle de [START_REF] Zahn | [END_REF] et ses améliorations ultérieurs (Maeder, 1995;Meynet & Maeder, 1997;Talon et al., 1997;Maeder, 2003) prévoient une rotation di érentielle radiale dans la zone radiative du Soleil, en contradiction avec le pro l de rotation observé qui est presque constant. De plus, le taux de rotation du coeur des étoiles géantes rouges s'est avéré être environ deux ordres de grandeur plus élevé que celui prédit par les modèles (Beck et al., 2012;Deheuvels et al., 2012;Marques et al., 2013). Ces observations ont montré clairement que des mécanismes supplémentaires de transport du moment angulaire doivent être inclus dans la modélisation. Beaucoup d'entre eux ont été suggérés : instabilités hydrodynamiques, instabilités magnéto-E.. Synthèse en français: Du transport de moment cinétique dans les zones radiatives stellaires, en 2D

hydrodynamiques, modes mixtes, ondes internes de gravité (IGW), etc. Actuellement, aucun de ces mécanismes n'est modélisé correctement et de manière cohérente. Pour permettre une modélisation correcte de ces mécanismes supplémentaires de transport du moment angulaire, il faut apporter quelques modi cations au modèle standard de la physique stellaire. Dans cette thèse, nous avons choisi de sortir de la description unidimensionnelle. Di érents arguments peuvent être avancés pour motiver ce changement dans la modélisation. Tout d'abord, dans la zone convective, la vitesse angulaire dépend de la latitude. Par conséquent, à la transition entre la zone convective et la zone radiative, les conditions aux bords doivent dépendre de la latitude. Une autre raison est que l'accélération centrifuge brise la symétrie sphérique. De plus, l'approximation shellulaire n'est peut être plus valide près de l'axe de rotation car à cet endroit, la vitesse de rotation devient nulle et il ne devrait donc plus y avoir de cisaillement. Or, c'est l'hypothèse d'un pro l de rotation shellulaire qui permet de conserver une description 1D. En n, une description 2D est fondamentale pour une modélisation correcte des mécanismes de transport supplémentaires.

J'ai établi le cadre numérique en améliorant un code d'évolution stellaire, , qui permettra les futures études de l'évolution de la rotation stellaire. Ces améliorations peuvent être séparées en deux parties. La première est un module de déformation qui met en oeuvre une méthode proposée par Roxburgh (2004Roxburgh ( , 2006)). L'idée principale est de partir d'un modèle 1D et d'un pro l de rotation angulaire. On résout ensuite l'équation de Poisson et l'équilibre des forces en supposant que toutes les quantités peuvent être décomposées sur des polynômes de Legendre. Cette méthode nous fournit donc les coordonnées des isobares, les uctuations sur ces idobares de la densité et du potentiel gravitationnel sur celles-ci et la gravité e ective (l'e et combiné de la gravité agissant radialement et de l'accélération centrifuge agissant perpendiculairement à l'axe de rotation). La connaissance de ces quantités nous permet de calculer des facteurs supplémentaires qui entrent dans les équations de la structure modi ée et améliore considérablement la description de l'impact de la rotation sur la structure.

La deuxième partie de ce travail est l'implémentation d'une nouvelle prescription pour le transport du moment cinétique, qui tire parti de la description en 2D de l'étoile. Ce nouveau modèle permettra prochainement d'étudier très nement le champ de vitesse de la circulation méridienne et les éventuelles variations latitudinales de la vitesse angulaire. Ce nouevau code conserve très bien la masse et le moment cinétique. Nous avons également e ectué une étude sismique de nos modèles en utilisant le code d'oscillation 2D, non perturbatif, (Ouazzani et al., 2012). Pour cela, j'ai dû bâtir une interface entre et . Les calculs e ectués avec la nouvelle prescription sont plus stables qu'avec l'ancienne et signi cativement plus rapides.

Ce travail ouvre la voie à de nouvelles études sur le transport de moment cinétique. Certaines de ces études ont déjà commencé. Ce nouveau modèle est, par exemple, utilisé pour améliorer la compréhension de rotateurs rapides tels que les étoiles δ Sct et γ Dor, ou la caractérisation d'analogues solaires. Elle est également utilisée pour tester un nouveau modèle de l'approximation traditionnelle de la rotation, utilisé pour estimer la fréquence des ondes de basse fréquence dans les étoiles en rotation (Mathis & Prat, 2019). Title: On the transport of angular momentum in stellar radiative zones in 2D Keywords: stellar interiors; stars; rotation; turbulence; waves; modelling Abstract: Rotation has important consequences for stellar internal structure and evolution. The centrifugal force deforms the star and balances gravity, mimicking a lower mass star. Most importantly, meridional circulations and rotation-induced turbulence mixes chemical elements, extending the stellar lifetime and a ecting age determinations, one of the most important problems in astrophysics. Lastly, the rotation-convection interaction generates magnetic elds. The associated activity has a determining in uence on the survival of planetary atmospheres.

Asteroseismic data from the space missions CoRoT and Kepler have shown that current 1D models of angular momentum transport in radiative zones (turbulent viscosity and meridional circulation) are not satisfactory. Other mechanisms must be active, such as internal gravity waves, magnetic elds, etc. All models proposed for these mechanisms are incomplete and must, in particular, account for 2D e ects.

The 1D description of rotation is usually justi ed by the fact that turbulence is much stronger horizontally than vertically in radiative zones, suppressing variations of angular velocity. This assumption may not be veri ed at near the rotation axis. Moreover, because internal gravity waves are generated at the base of convective envelopes, the Doppler shi experienced by these waves when they enter the radiative zone should depend on latitude. These waves are further ltered in the transition zone between the convective and radiative zones, a zone that has a strong di erential rotation. This PhD is devoted to the implementation in a stellar evolution code of a simpli ed treatment of transport of angular momentum in 2D. This treatment is based on a deformation method that enables the computation of the 2D structure of the star, as well as the rotation-induced perturbations of the various elds. The transport of angular momentum is then treated in 2D, and will allow the further study of extra mechanisms of transport.
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  Figure 1.1: Mean free paths against radius normalized to total radius, in a 1M model at 4700 Myr. The radiative mean free path rad is represented as solid lines and estimates for the conductive one, cond = k B T /( √ 2πd 2 p) are represented as dotted-dashed lines (for d H 53 pm), dashed lines (for d He 128 pm) and dotted lines (for d α 100 fm). The radius of the convection zone is represented as vertical dashed line.

  where we have de ned the actual temperature gradient ∇ = d ln T d ln p = p T dT dp .

Figure 1

 1 Figure1.2: Spheroidal polar coordinate system. The radius r(p, θ) of an isobar p is represented in black. A spherical surface intersecting the isobar at an angle θ m is represented in red dashes. ε is the angle between the vector normal to a sphere and normal to an isobar. Of course, ε varies over isobar.
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 22 Figure 2.2: Extreme case of isobar perpendicular to isopycnals. Density decreases from le to right.

Figure 2 . 3 :

 23 Figure 2.3: Flow in a Taylor-Couette apparatus. The rotation rate of the inner cylinder increases from (a) to (e). See the text for a description of the ow. Credits: Davidson (2013).

  introduced two other quantities. The rate dJ wind /dt corresponds to the amount of lost by winds. It can be provided by Eqs. (2.1)-(2.3) or any other model. The quantity dJ extra /dt encapsulates the angular momentum per unit mass extracted by any other mechanism of transport of angular momentum.
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  .22) Therefore, the Lagrangian time derivatives (D/Dt = ∂/∂t + u 0 • ∇) at the beginnings of Eqs. (3.13)-(3.15) are replaced by
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 31 Figure 3.1: Real part of the radial component of (l, m) = {(1, 0), (5, 0), (3, 2), (10, 5), (15, 12)} modes. The red and the blue surfaces can be viewed respectively as an elevation and a depression of the surface, due to stellar oscillation.
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 32 Figure 3.2: Propagation diagram for two stellar models. Mode with frequency (normalized by ν max ). Shaded areas represent the zones where degree l = 1 modes vanish. le : Sun model with ν max = 3090 µHz and an age of 4570 Myr (main-sequence star). right: Model with M = 2.21 M , R = 4.37 R , ν max = 347 µHz and an age of 1016 Myr (sub-giant star).

Figure 3 .

 3 Figure 3.2 represents the pro le of the Brunt-Väisälä frequency N and of the Lamb frequency S for three values of . The frequency N is positive inside the radiative region. The behaviour of ξ r is determined by the sign of k 2 (r) = 1 c 2 1 -N 2

Figure 3

 3 Figure 3.3: le : Sound speed pro le as a function of mass at di erent stages in the main-sequence phase of a 1M stellar model. right: H 1 mass fraction pro le as a function of mass at di erent stages in the main-sequence phase of a 1M stellar model.

Figure 3

 3 Figure3.4: modelled solar spectrum showing Gaussian-shaped arbitrary amplitude as a function of frequencies of eigenmodes. Because of the adiabatic hypothesis, the amplitudes do not come from physical computation but are assumed to have a Gaussian shaped centreed on ν max = 3090 µHz (vertical dashed line). The Gaussian-shaped enveloped of the = 0 modes is represented by the black dashed curve.
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 35 Figure 3.5: Thermal time-scale pro les for models of 1M , 2M , 2.5M as a function of le : log T and right: log(m/M ). The speci c heat capacity at constant volume c v is computed in two ways: either c v = c p -δ 2 p ρT α (solid lines) or c v =
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 36 Figure 3.6: Scaled frequency di erences between observed(Tomczyk et al., 1995;Bachmann et al., 1995) and modelled(Christensen-Dalsgaard et al., 1996) frequencies. Credits:Rosenthal et al. (1999).
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 37 Figure 3.7: Actual temperature gradient (solid blue line), adiabatic gradient (dashed orange line) and radiative gradient (dotted green line) as a function of the radius (le ) and of the pressure (right), for a 1M model with solar chemical composition and an age of 4613 Myr. Convective zone is represented by shaded area.
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 3 Figure 3.8: Temperature and total pressure strati cations for a patched (orange line) and unpatched (blue line) model of the Sun. The matching point is represented by the black point.
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 3 Figure 3.9: le : Comparison between scaled frequency di erences between patched model and pure 1D models. right: Scaled frequency di erences between real observations and . Observations are described in detail in Chapter 2, Section 3. (Credits: Rosenthal et al. (1999)).
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 1 Fig. 1. Patched models represented in Kiel diagram (see Sect. 2.1). The metallicities are shape-and colour-coded and are [Fe/H] = {-1.0, -0.5, +0.0, +0.5}.

Notes.

  The final three letters of the model labels correspond to [Fe/H]: (m00, m05, m10, p05) refer to [Fe/H] = (0.0, -0.5, -1.0, +0.5), respectively. T b is the mean temperature at the bottom of the 3D model and ν max is the frequency with the largest amplitude in the oscillation power spectrum (ν max = 3050.0(M/M )(R 2 /R 2 )(5777/T eff ) 1/2 ,Kjeldsen & Bedding 1995) and M is the mass of the PM which differs by a fraction 10 -7

T

  H] = -0.5, ∆r = 5.81 × 10 7[Fe/H] = 0.0, ∆r = 6.43 × 10 7[Fe/H] = +0.5, ∆r = 9.49 × 10 7 H] = -0.5, ∆r = 1.84 × 10 8[Fe/H] = 0.0, ∆r = 2.53 × 10 8 eff 6500 K log g 4.00[Fe/H] = -1.0, ∆r = 1.39 × 10 8[Fe/H] = 0.0, ∆r = 1.77 × 10 8[Fe/H] = +0.5, ∆r = 2.04 × 10 8

Fig. 2 .

 2 Fig. 2. Frequency differences of PM vs. UPM for radial modes with frequencies less than the acoustic cut-off frequency ν ac = c/(4πH p ). Frequencies on the abscissa are normalized by the ν max of each models. Top panel: models J*: T eff 5900 K and log g = 4.0. Middle panel: models M*: T eff 5500 K and log g = 3.5. Bottom panel: models C*: T eff 6500 K and log g = 4.0.

Fig. 3 .

 3 Fig.3. Frequency differences scaled by the frequency, taken at ν max against a scaling relation given by Rosenthal & Christensen-Dalsgaard (1999) (top panel; with σ = 0.89) and a scaling relation given by Eq. (13) where powers are left free (bottom panel; with σ κ = 0.63).
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 45 Fig. 4. Parameters a (top panel), b (middle panel) and a 3,BG2 (bottom panel) across the Kiel diagram from K08 and BG2. The symbols refer to [Fe/H] = -1.0 (diamond), [Fe/H] = -0.5 (square), [Fe/H] = +0.0 (circle) and [Fe/H] = +0.5 (triangle).
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 7 Fig. 7. Ratio Q n of a mode of degree n against frequency of the same mode normalized by ν max (only ν n /ν max > 0.75 for clarity), for the subgiant model Cm10 with T eff = 6503 K, log g = 4.0 and [Fe/H] = -1.0.Each colour corresponds to a degree . Yellow (resp. green) dots breaking from the general trend correspond to dipolar (resp. quadrupolar) mixed modes.

  c s,ph the sound speed at the photosphere, we obtain the expression of the amplitude of the surface effect proposed inRosenthal & Christensen-Dalsgaard (1999) 
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  spectroscopic and spectropolarimetric observations are mainly realized with 4 spectropolarimeters. a n (Echelle SpectroPolarimetric Device for the Observation of Stars; Donati et al. 2006) and ou (SpectroPolarimetre Infra Rouge; Artigau et al. 2014) installed at the 3.6m Canada-France-Hawaii Telescope (
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 4 Figure 4.1: Artistic view of CoRoT (le ) and Kepler (right)

Figure 4

 4 Figure 4.2: eld of view. Graph shows superimposition of each 26 sectors along the two years of mission.
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  Figure 4.3: Artistic view of (le ) and (right)

  .20) with θ the latitude and A 14.1 deg d -1 , B -1.7 deg d -1 and C -2.3 deg d -1 , which gives a period of rotation at the equator of 25.5 days and Ω s 14.1 deg d -1 = 1.64 × 10 -4 deg s -1 = 0.248 rad d -1

Figure 4

 4 Figure 4.5: le : Rotation of the Sun as a function of latitude at a depth of 2 -9 Mm (solid line) and at the surface (dashed line). Credits to Kosovichev & Schou (1997). right: Rotation rates inverted for di erent latitudes against radius. On the right side of the graph, from top to bottom, the rotation rate are at 0 • , 15 • , 30 • , 45 • , 60 • and 75 • . The dashed lines represent the 1 -σ uncertainty. Credits to Schou & SOE Internal Rotation Team (1998).
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 47 Figure 4.7: Le : Rotation periods against mass for several young stellar clusters. From top to bottom, the stellar clusters are , NGC 2264, NGC 2362, NGC 2547 and NGC 2516. Credits: Irwin et al. (2008). Top right:diagram of the CoRoT sample described in 4.3.2. The rotation period is colour-and shape-coded. Credits:[START_REF] Leão | [END_REF]. Bottom right: Average period with associated uncertainties for each spectral types in a sample of ∼ 12000 stars (in green). The Sun is a G2 type star. Red shaded area corresponds to an earlier determination. Credits:Nielsen et al. (2013).
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  Doradus (γ Dor) and δ Scuti (δ Sct) stars The classes of γ Dor and δ Sct stars are intermediate mass stars with 1.2M

Figure 4

 4 Figure 4.8: le : Relative di erences between rotation rates at the equator and at 45 • as a function of of the average rotation rates for 13 main sequence solar-like stars. The red horizontal line is the median of the sample. Credits: Benomar et al. (2018). Right: Measured lithium abundances for F and G stars of Hyades cluster as a function of e ective temperature. Di erent symbols corresponds to measurements by di erent teams. Credits: Boesgaard (1991).
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 4 Figure 4.9: le : Near-core rotation frequency as a function of the buoyancy radius. Observations are depicted as black dots. Solid lines represent near-core rotation frequency obtained with a 1.6M models with various physical prescriptions and initial conditions. Top lines correspond to fast initial conditions (P disk = 2.4 d, and τ disk = 3 Myr) and bottom lines to slow initial conditions (P disk = 7.2 d, and τ disk = 5 Myr). Credits: Ouazzani et al. (2019). right: Core (red) and envelope (blue) rotation rates for 6 Kepler stars, as a function of logarithmic surface gravity. Credits: Deheuvels et al. (2014).
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Figure 5 . 1 :

 51 Figure 5.1: Latitudinal angular momentum transport near the solar tachocline for b 10 √ b (0) the normalized intensity of the toroidal eld, with b (0) the intensity of the fossil poloidal eld. Le : b = 0.05. Right: b = 0.1. Credits: Rüdiger et al. (2014).

  Figure 5.2: Le : Saint Andrew's cross obtained by making vertically oscillate a cylinder in a strati ed uid. The cylinder is viewed from above in the centre of this image. Credits: Mercier et al. (2008)

Figure 5 . 3 :

 53 Figure 5.3: Drawing of an internal gravity wave with phase propagating in the direction k and phase velocity c p k, and energy propagating with group velocity c g ⊥ k. Solid blue lines represent surfaces of higher density and the dashed lines represent the the surfaces of lower density.

Figure 5 . 4 :

 54 Figure 5.4: Le : Drawing of plumes inside stars. Each plumes is characterized by its latitude and azimuth of emission (θ i , ϕ i ). Credits: Pinçon et al. (2016). Right: Schematic view of a plume at angular location (θ 0 , ϕ 0 ), central velocity V 0 , plume velocity eld V P (r) = V 0 e -S 2 h /2b 2 e -t 2 /τ 2 P e r , characteristic radius b, the penetration length L P and initial vertical velocity V b . The dashed line is the axis of symmetry of the plume.

Figure 5 . 5 :

 55 Figure 5.5: Le : Mean radial energy per unit frequency at r d as function of the wave frequency in a solar model, for three di erent order for K99's model (dashed lines) and P16's model (solid lines). Credits: Pinçon et al. (2016). Right:spin-down characteristic time-scale as a function of the normalized radius for a low di erential rotation δΩ = 0.15×10 -6 rad s -1 (dashed lines) and a stronger one δΩ = 10 -6 rad s -1 (solid lines). Credits:Pinçon et al. (2016).

  Figure 6.1: Schematic representation of the steps followed by during the computation of a time step.

  Quantities at θ = θ m are initialized to quantities from the input 1D model at actual time step. Spherical 2D model Especially spherical ρ(r, θ) = ρ m

7. 2 . 2

 22 Comparison with the old version of . . . . . . . . . . . . . . . . . 212 Central hydrogen abundance . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Density uctuations over isobars . . . . . . . . . . . . . . . . . . . . . . . 213 Radial velocity of the meridional circulation . . . . . . . . . . . . . . . . . 216 Estimates of Ω 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Computation of higher orders > 2 . . . . . . . . . . . . . . . . . . . . . . 219 7.3 Additional computational time and memory usage . . . . . . . . . . . . . . 221 7.3.1 Use of numerical resources by the deformation module . . . . . . . . . . 221 7.3.2 Use of numerical resources for the transport of angular momentum . . . 222

Figure 7 .

 7 Figure 7.2 shows a meridional cut of the 2D models of Table7.1. The rst column gathers the non-rotating 2D models. The colour scale represents the density pro le inside the star. In

Figure 7 . 1 :

 71 Figure 7.1: The models are the ones presented in Table 7.1. Le :diagram of all models. Right: Numerical mass loss at the end of each deformation and before correction as a function of the stellar age normalized to nal age. Non rotating models (P disk = ∞ days) are represented with solid lines,P disk = 10 with dotted-dashed lines and P disk = 3 days with dashed lines. 0.8M are in blue, 1M in orange, 1.5M in green and 2M in red.

Figure 7 . 2 :

 72 Figure 7.2: Meridional cut of the 2D models of Table7.1. Aspect ratio between the two is the axes is the same. Each row corresponds to a given mass: 0.8M (1 st ), 1M (2 nd ), 1.5M (3 rd ) and 2M (4 th ). Each column corresponds to an initial rotation period: non-rotting (P disk = ∞ days; 1 st ), P disk = 10 days (2 nd ) P disk = 3 days (3 rd ). On the 1 st column, only the density pro le is represented because the angular velocity is null. For the two other columns, the le part of the 2D map represents ρ(p, θ)/ρ -1 and the other half represents the angular velocity pro le (Ω depending only on p) in units of Ω K,surf .

  .3) They correspond to the number of nodes along the lines drawn in the le panel of Fig. 7.4. The modi ed quantum numbers allowed Lignières et al. (2006) to re-express the asymptotic relation of p-modes in the case of slow-rotating stars. By de ning ∆ n = ω n+1, m -ω n m , ∆ = ω n, +1,m -ω n m and ∆ m = ω n, ,m+1 -ω n m , Eq. (3.50) becomes ω n m = n∆ n + ∆ + |m|∆ m + α ± ,

Figure 7 . 4 :

 74 Figure 7.4: Spatial distributions in the meridional plane of the kinetic energy of p-modes in a 25M polytropic stellar model (µ = 3), rotating at 0.6Ω K . Le : Island mode. middle: Chaotic mode. Right: Whispering gallery mode. Credits: Reese et al. (2009).

Figure 7 . 5 :

 75 Figure 7.5: Ray dynamics in the meridional plane of p-modes in a polytropic stellar model, rotating at 0.59Ω K . Le : Island mode. middle: Chaotic mode. Right: Whispering gallery mode. Credits: Lignières & Georgeot (2008).

Figure 7 . 6 :

 76 Figure 7.6: Spatial distribution in a meridional plane of the kinetic energy of g -modes in a 25M polytropic stellar model (µ = 3), rotating at 0.7Ω K . Le : Mode in the super-inertial domain (ω > 2Ω). middle: Mode in the sub-inertial domain (ω < 2Ω). Right: Special case of super-inertial mode called rosette mode. Credits: Ballot et al. (2013).

  input le A 1D le for an initial 1D stellar model and a 2D le otherwise. End of pre-processing. Beginning of frequency computation.

Figure 7 . 7 :

 77 Figure 7.7: Schematic pre-processing performed by .

Figure 7 . 9 :

 79 Figure 7.9: Same as in Fig.7.8 for 1M models (le ) and 1.5M models (right).

Figure 7 .

 7 Figure 7.10: Same as in Fig.7.8 for 2M models (le ) and for a 11 Gyr old 1M models (right). This model is a subgiant.

Figure 7 .

 7 Figure 7.11: In this gure x 1D is understood as the quantities written in the 1D input le and x 2D (θ m ) is understood as the quantities written in the 2D input le. Those input les are the result of the pre-processing by of a 1D or 2D output le. The colour code for the mass of the non-rotating models: 0.8M (blue), 1M (orange), 1.5M (green) and 2M (red) Top le : Relative di erences of the pressures p(r) as a function of r/R . Top right: Relative di erences of the densities as a function of r/R . Bottom le : Relative di erences of ∂p/∂r as a function of r/R . Bottom right: Relative di erences of ∂ρ/∂r as a function of r/R .

Figure 7 .

 7 Figure 7.12: Zoom in on the pressure and density pro les and their respective radial derivatives. The colour code for the mass of the non-rotating models: 1.5M (green) and 2M (red). Quantities from the 1D models are represented as solid lines, and from the 2D models as dotted-dashed lines. The quantities p c and ρ c are the central pressure and density.

Figure 7 .

 7 Figure 7.14: Same models and colour codes as in Fig. 7.13. The superscript refers to the model from which the quantities are computed. Top le : Logarithm of the density pro le and of the uctuations ρ /ρ, as a function of the normalized equatorial radius. The limits of the convective zones are represented by the vertical dashed black lines.Top right: Relative di erences of ρ with respect to ρ P2 computed in model P 2 as a function of the normalized equatorial radius. Bottom le : Relative di erences of ρ 2 with respect to ρ P2 2 as a function of the normalized equatorial radius. Bottom right: Relative di erences of ρ 4 with respect to ρ P4 4 as a function of the normalized equatorial radius.

Figure 7 .Figure 7 .

 77 Figure 7.16: Same as in Figs. 7.13 and 7.14, but with a 2M model at 800 Myr. The core hydrogen abundance is ∼ 27%.

Figure 7 .

 7 Figure 7.18: Meridional cut of of 1.6M models with varying n θ and max = 2. Models are described in Table7.1. Axes represent the r(p, θ)/R eq and the aspect ratio between the two is the axes is the same. The number of angular sectors in each models is indicated in the title of each plots. The le part of the meridional cut represents ρ(p, θ)/ρ -1 and the other half represents the angular velocity pro le (Ω depending only on p) in percents of Ω K,surf .

Figure 7 .

 7 Figure 7.20: Same as in Fig.7.19 but with the 1.6M models computed with the Legendre decomposition extended to max = 4.

  Nonetheless, we managed to carry out the evolution up to 200 Myr for models with n θ = 128, 200 and 240. The frequency di erences between their spectrum and the reference spectrum of the n θ = 240 model are displayed in Fig. 7.20. The frequency di erences δν 128 n

2

  and Θ old 2 start with quite noisy patterns that are very comparable in terms of magnitude and extent. Θ new 2 then remains almost constant until a sharp peak that marks the change of sign due to the change of sign of dΩ/dr. Right above this region, Θ new 2 keeps increasing by one or two orders of magnitude until the top boundary of the radiative zone. On Validation, results and performances

-

  

Figure 7 .

 7 Figure 7.25: The models used in this gure are the 1.5M , 2M and 2.5M models presented in Table7.1. See caption of Fig.7.24 for a description of this gure..

Figure 7 .

 7 Figure 7.26: Approximation of the radial velocity of the meridional circulation. The models used to produce this Figure are models M10P03G1D (blue lines) and M10P03G2D (orange lines) of Table7.1. All quantities are function of the radius normalized to the surface radius and represented only in the radiative zone. Top: Velocity (∇ ad -∇)U 2 (the term in parenthesis is dimensionless) in the radiative zone as a function of normalized radius. Bottom: Approximation of (∇ ad -∇)U 2 by the expressions written in the labels.

7. 2 . 7 -Figure 7 .

 277 Figure 7.27: Quantities relevant to understanding the pro le of meridional circulation during the . The models used to produce this Figure are models M10P03G1D and M10P03G2D of Table7.1. All quantities are function of the radius normalized to the surface radius and represented only in the radiative zone, even if some of them are also known outside. Solid and dashed lines correspond respectively to quantities from the models computed with the new and old versions of . Top le : 2 nd order component of the meridional circulation U 2 . Top right: Angular velocity Ω. Middle le : 2 nd order component of the density uctuation Θ 2 . Middle right: 2 nd order component of the gravitational acceleration uctuation g 2 /g. Bottom le : 2 nd order component of the mean molecular weight uctuation Λ 2 . Bottom right: Di usion coe cients D eff (blue), D h (orange) and D v (green).

+

  

Figure 7 .

 7 Figure 7.28: Stream plots of the meridional circulation velocity eld in a 2.5M model (model M25P04G2D of grid presented in Table7.3), at two di erent time steps. Stellar surface is represented with a solid black curve.

  is actually the simpli ed version of a more complex di erential equation:d dx 1 -x 2 dP m (x) dx + ( + 1) -m 2 1 -x 2 P m (x) = 0, (B.8)and the solutions become of the formP m (x) = (-1) m (1 -x 2 ) m /2 d m P dx m . (B.9)This form of the Legendre di erential equation appears for instance when studying propagation of waves in a rotating frame.B.5 Interesting integralsWith x = cos θ and taking into account above relations, P m (cos θ) sin θdθ = ( + 1)ˆ1 -1 P m (x) 2 dx (B.11)And the scalar product of two associated Legendre polynomials with same m and di erent degree now reads P m is found in various expression: I = ´π 0 P (cos θ) sin 3 θdθ ´π 0 sin 3 θdθ = 1 2 ˆπ 0 (P 0 (cos θ)P (cos θ) -P 2 (cos θ)P (cos θ)) sin θdθ = δ 0, -1 5 δ 2, = 0 (B.13)

  Spherical harmonics have been de ned in Eq. (3.28) asY m (θ, ϕ) = (-1) m c ,m P m (cos θ)e imϕ with c ,m = 2 Y m | * the complex conjugate of Y m , it easily follows Y m | * Y m = c 2 m P m (cos θ) 2 ∂Y m ∂θ = (-1) m+1 c ,m ∂P m ∂θ e imϕ ∂ Y m | * ∂θ = (-1) m+1 c ,m m=- (-1) m Y -m (θ 1 , ϕ 1 )Y m (θ 2 , ϕ 2 ) (B.16) with cos(α) = cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos(ϕ 1 -ϕ 2 ) (B.17)C. Some details on the derivation of the meridional circulation velocity C.1 Finding an expression for ΦMaeder & Zahn (1998) provided a simpli ed expression for it and we follow their reasoning to nd a more general expression. The entropy of a mixture can be written:S mix = -N R i (x i ln x i ) + x e ln x e , (C.1)

Titre:

  Du transport de moment cinétique dans les zones radiatives stellaires, en 2D Mots clés: intérieurs stellaires; étoiles; rotation; turbulence; ondes; modélisation Résumé: La rotation a d'importantes conséquences sur la structure interne des étoiles et leur évolution.La force centrifuge déforme l'étoile et s'oppose à la gravité, mimant une étoile de plus faible masse. Plus important encore, la circulation méridienne et la turbulence induites par la rotation mélangent les éléments chimiques, prolongeant la vie de l'étoile et altérant la détermination de son âge, un problème majeur en astrophysique. En n, l'interaction rotationconvection génère des champs magnétiques. L'activité associée a une in uence décisive sur la survie des atmosphères planétaires.Les données astérosismiques des missions spatiales CoRoT et Kepler ont montré que les modèles 1D actuels de transport du moment cinétique dans les zones radiatives (viscosité turbulente et circulation méridienne) ne sont pas satisfaisants. D'autres mécanismes doivent être actifs: les ondes internes de gravité, les champs magnétiques, etc. Tous les modèles les décrivant sont actuellement incomplets et doivent en particulier tenir compte des e ets 2D.La description 1D de la rotation est généralement justi ée par le fait que, dans les zones radiatives, la turbulence est beaucoup plus forte horizontalement que verticalement, supprimant les variation latitudinales de vitesse angulaire. Cette hypothèse pourrait être invalide près de l'axe de rotation. De plus, les ondes internes de gravité étant générées à la base des enveloppes convectives, le décalage Doppler qu'elles subissent en entrant dans la zone radiative dépend de la latitude. Elles sont ensuite ltrées dans la zone de transition entre les régions convective et radiative, présentant une forte rotation di érentielle.Cette thèse est dédiée à l'implémentation dans un code d'évolution stellaire d'un traitement simpli é du transport du moment cinétique en 2D. Ce traitement est basé sur une méthode de déformation permettant de calculer la structure 2D de l'étoile, ainsi que les perturbations des di érents champs induites par la rotation. Le transport du moment cinétique est ensuite traité en 2D, et permettra d'étudier plus en détail d'autres mécanismes de transport.

  

  

  

  

Table 2 .

 2 Prescriptions for the fitting coefficients involve in the empirical relations K08, K08r, S15, BG1, BG2. The prescriptions are written: log c 0 = c 1 log ∆ν/∆ν + c 2 log T eff /T eff + c 3 log g/g + c 4 log κ/κ + c 5 . Our solar values are computed from model Am00. ∆ν = 137 [µHz], T eff = 5776 [K], g = 27511 [cm s -2 ], and κ = 0.415 [cm 2 g -1 ].

	Law	log c 0	c 1	c 2	c 3	c 4	c 5
	K08 K08r log |a| log |a| log b log b S15 log |α| log β BG1 log |a 3 | BG2 log |a -1 | log |a 3 |	1.03 -0.185 -0.584 0.313 -0.117 0.289 3.26 -1.75 0.655 -2.72 1.08 3.39 -1.82 0.683 -2.65 -0.387 -1.22 0.655 -0.246 0.647 0.999 3.15 -1.69 0.635 -2.36 -0.477 -1.51 0.808 -0.303 0.787 1.93 6.09 -3.26 1.22 -11.9 2.13 6.72 -3.6 1.35 -12 1.8 5.67 -3.04 1.14 -12
	Notes.						

Table B

 B 

	.1. Fitting parameters of K08, K08r, S15, BG1, and BG2.			
	K08	K08r	S15	BG1	BG2
	Model Cp05 Fp05 Jp05 Lp05 Op05 Am00 Bm00 Cm00 Dm00 Fm00 Gm00 Hm00 Im00 Jm00 Km00 Mm00 6.61 × 10 -3 |a| 9.19 × 10 -3 7.13 × 10 -3 5.64 × 10 -3 4.79 × 10 -3 1.63 × 10 -3 2.05 × 10 -3 9.36 × 10 -3 8.93 × 10 -3 6.66 × 10 -3 7.26 × 10 -3 1.41 × 10 -2 4.61 × 10 -3 1.62 × 10 -3 3.06 × 10 -3 9.69 × 10 -3 Em05 2.41 × 10 -3 Fm05 7.00 × 10 -3 Gm05 1.03 × 10 -2 Im05 1.60 × 10 -3 Jm05 3.44 × 10 -3 Km05 1.16 × 10 -2 Mm05 4.55 × 10 -3 Bm10 6.10 × 10 -3 Am10 2.45 × 10 -3 Cm10 8.64 × 10 -3 Fm10 5.89 × 10 -3 Gm10 1.48 × 10 -2 Km10 1.04 × 10 -2	b 1.55 1.06 × 10 -2 |a| 1.43 9.66 × 10 -3 1.64 7.30 × 10 -3 1.5 6.03 × 10 -3 1.74 1.98 × 10 -3 1.82 2.39 × 10 -3 1.35 1.14 × 10 -2 1.49 1.12 × 10 -2 1.43 8.58 × 10 -3 1.5 9.54 × 10 -3 1.77 1.53 × 10 -2 1.52 5.76 × 10 -3 2.02 1.90 × 10 -3 1.88 3.88 × 10 -3 1.5 1.32 × 10 -2 1.53 8.45 × 10 -3 1.7 2.92 × 10 -3 1.42 9.11 × 10 -3 1.51 1.34 × 10 -2 2.45 1.79 × 10 -3 1.67 4.25 × 10 -3 1.38 1.41 × 10 -2 1.7 5.76 × 10 -3 1.37 7.93 × 10 -3 2.49 2.56 × 10 -3 1.41 1.13 × 10 -2 1.54 7.47 × 10 -3 1.36 1.89 × 10 -2 1.58 1.23 × 10 -2	b 2.17 1.01 × 10 -2 |α/2| 2.74 7.90 × 10 -3 2.95 6.32 × 10 -3 2.75 5.33 × 10 -3 4 1.80 × 10 -3 4.1 2.27 × 10 -3 2.12 1.02 × 10 -2 2.51 9.96 × 10 -3 2.65 7.40 × 10 -3 2.82 8.08 × 10 -3 2 1.47 × 10 -2 2.93 5.11 × 10 -3 5.5 1.78 × 10 -3 4.54 3.40 × 10 -3 2.79 1.08 × 10 -2 2.8 7.35 × 10 -3 3.43 2.68 × 10 -3 2.59 7.71 × 10 -3 2.47 1.12 × 10 -2 5.29 1.97 × 10 -3 3.52 3.82 × 10 -3 2.15 1.27 × 10 -2 3.38 5.09 × 10 -3 2.48 6.64 × 10 -3 4.79 3.04 × 10 -3 2.57 9.51 × 10 -3 2.96 6.55 × 10 -3 2.3 1.64 × 10 -2 2.54 1.15 × 10 -2	β 2.98 -9.66 × 10 -12 |a 3,BG1 | 3.03 -8.03 × 10 -12 3.56 -6.94 × 10 -12 3.36 -6.03 × 10 -12 5.23 -3.30 × 10 -12 6 -1.24 × 10 -12 2.65 -4.66 × 10 -12 3.09 -1.12 × 10 -11 3.16 -4.19 × 10 -12 3.29 -1.03 × 10 -11 2.85 -9.66 × 10 -11 3.59 -3.63 × 10 -12 8.09 -8.51 × 10 -13 5.75 -5.79 × 10 -12 3.13 -7.23 × 10 -11 3.36 -6.35 × 10 -11 4.38 -1.09 × 10 -12 3 -1.02 × 10 -11 2.83 -7.51 × 10 -11 7.72 -1.15 × 10 -12 4.38 -7.33 × 10 -12 2.73 -1.03 × 10 -10 4.1 -5.81 × 10 -11 2.77 -3.21 × 10 -12 7.68 -4.00 × 10 -12 2.95 -1.11 × 10 -11 3.57 -1.24 × 10 -11 2.76 -1.04 × 10 -10 3.4 -1.11 × 10 -10	|a -1,BG2 | -7.99 × -12 -7.98 × -12 -7.23 × -12 -8.41 × -12 -4.03 × -12 -1.01 × -12 -4.15 × -12 -8.32 × -12 -3.92 × -12 -9.16 × -12 -6.73 × -11 -3.53 × -12 -6.08 × -13 -4.12 × -12 -6.07 × -11 -6.43 × -11 -1.20 × -12 -1.16 × -11 -6.21 × -11 -3.76 × -13 -6.72 × -12 -1.15 × -10 -5.01 × -11 -3.59 × -12 -7.97 × -13 -1.11 × -11 -1.11 × -11 -7.87 × -11 -8.96 × -11	|a 3,BG2 | -6.01 × 10 -12 -5.17 × 10 -12 -4.31 × 10 -12 -3.38 × 10 -12 -2.08 × 10 -12 -9.19 × 10 -13 -2.96 × 10 -12 -7.99 × 10 -12 -2.84 × 10 -12 -7.00 × 10 -12 -4.44 × 10 -11 -2.42 × 10 -12 -6.50 × 10 -13 -4.30 × 10 -12 -4.88 × 10 -11 -4.03 × 10 -11 -6.75 × 10 -13 -5.92 × 10 -12 -4.34 × 10 -11 -1.02 × 10 -12 -4.98 × 10 -12 -5.85 × 10 -11 -3.97 × 10 -11 -1.78 × 10 -12 -3.72 × 10 -12 -6.83 × 10 -12 -8.41 × 10 -12 -7.35 × 10 -11 -7.59 × 10 -11

Table 7

 7 .1 experienced a er each deformation. The abscissa is the stellar age normalized to the nal age of the model. Our code displays much better results than whatRoxburgh (2006) obtained. The non-rotating models have a ∆m num of order 10 -13 -10 -16 M while the rotating ones have losses of order 10 -8 -10 -11 M . Quite interestingly for us, this rate does not vary much with rotation speed. The noisy pattern is due to the ∆m num changing sign. The logarithmic of the absolute value of ∆m num introduces the noisy pattern. It is not very clear what are the cause of such better performances for our code. Our number of grid point in the radial and latitudinal directions are similar to what Roxburgh (

Table 7 .

 7 5: Time needed to compute a 1M with old or new treatment of the transport of angular momentum. The computation time is measured for two age: 4570 Myr and 12 000 Myr.

	Age	Time (old) Time (new)
	4570 Myr	28 min	11 min
	12 000 Myr 2 h 15 min 23 min

Table 8 .

 8 1: Parameters of the grid of 2D models for the study of δ Sct stars. Models are computed without overshoot.

	Parameter	Value or range	step	Unit
	Mass	[1.5; 2.5]	0.05	M
	[Fe/H]	[-0.4; 0.2]	0.2	dex
	α MLT	[1.5; 1.8]	0.3	
	P disk	0, 3, 4, 5, 6, 7		days
	τ disk	5		Myr

Main determinations of solar initial mass abundances

  Legendre polynomials are the solutions of the following di erential equation for x ∈ [-1; 1]

	B. Legendre polynomials
	d dx	1 -x 2 dP (x) dx	+ ( + 1)P (x) = 0,	-1 s -2	(B.1)
	with ∈ N (Abramowitz & Stegun, 1972). One can nd the solutions for any ∈ N using the
	A.2 Main present-day solar parameters Rodrigues formula
	P (x) =	1 2 !	d dx	Age Mass x 2 -1	,	M	4570 Myr 1.9891 × 10 30 kg	(B.2)
	Luminosity Radius which gives, for the 6 rst Legendre polynomials: L R Mean density ρ E ective temperature T eff, P 0 (x) = 1, P 1 (x) = x, Surface gravity log g Surface gravity g P 2 (x) = 1 2 3x 2 -1 , P 3 (x) = 1 2 Large separation ∆ν ν max P 4 (x) = 1 8 35x 4 -30x 2 + 3 , P 5 (x) = 1 8	3.828 × 10 26 W 6.957 × 10 8 m 1 408 kg m -3 5 777 K 4.44 5x 3 -3x , 27 540 cm s -2 134.9 µHz 3 090 µHz 63x 5 -70x 3 + 15x .	(B.3)
	X Y Z P m , P n =	ˆ1 -1	0.735 0.248 0.017 P m (x)P n (x)dx =	2 2n + 1	δ m,n ,	0.7392 0.2486 0.0122	0.7381 0.2485 0.0134	(B.4)
	Z /X				0.023		0.0165	0.0181
	A.4 Grevesse & Sauval (1998) Asplund et al. (2005) Asplund et al. (2009)
	X					0.7120		0.7166	0.7154
	Y					0.2701		0.2704	0.2703
	Z					0.0180		0.0130	0.0142
	Z /X				0.0253		0.0181	0.0199

A.3 Main determinations of present-day solar mass photospheric-abundances

Grevesse & Sauval (1998) Asplund et al. (2005) Asplund et al. (2009)

B.1 Scalar product

We can de ne a scalar product •, • such that ∀n, m ∈ N, where δ m,n is the Kronecker symbol.

First simpli cation of the right hand side

  where dS mix corresponds to the third term in Eq. (2.75). It can be shorten by dS mix = -N RBdµ/µ with B being expressed using Eqs. (C.1) and (C.2) and provide an expression for Φ: T ) and ∇P (cos θ) are orthogonal, therefore their scalar product is zero. ρT D h c p (Ψ + ΦΛ ) P (cos θ)= ρ (ε + ε g ) + + ρT D h c p (Ψ + ΦΛ ) P (cos θ).(C.7)Now we average RHS over an isobar. The horizontal averaging is denoted by • :

	-	∞ >0	( + 1) r 2 χ T P (cos θ) + ρε +	>0	ρε P (cos θ) + ρε g
	-	>0	( + 1) r 2 >0	ρε P (cos θ) -ρχ +	>0	ρχ P (cos θ)	dT dp	+	∞ >0	d T dp	P (cos θ)
	× 4πGρ + 4πG			ρ P (cos θ) -f C -	f C, + ρ +	ρ P (cos θ)
													>0		>0	>0
	× g +	>0		g P (cos θ)	2 d dp	ρχ +	>0	ρχ P (cos θ)	dT dp	+	∞ >0	d T dp	P (cos θ)
	µX -χ T RHS = ρχ x He = µY 4 ∞ >0 ( + 1) r 2 dT dp f C -4πGρ + ρ x Z µZ 16 d , dp	ρχ	dT dp	g 2 + ρ(ε + ε g )	(C.2)
	+	∞ >0		ρχ	d T dp	+ ρχ	dT dp	Y 4	1 + ln f C -4πGρ + ρχ µY 4 + Z 16	1 + ln dT dp f C, -4πG ρ µZ 16	(C.3)
	+ +2ρ	d dp	X + ρχ	Y 2 dT dp	+	µZ 64 g g + ρ	1 + ln X + d dp ρχ dT dp	Y 2 g 2 + ρ + µZ 128 d dp	. ρχ d T dp	g 2 + ρ	d dp	ρχ	dT dp	(C.4) g 2
	C.2 (C.5) -( + 1) r 2 χ T + ρT D
	Gathering Eqs. (2.88) to (2.93) yields:
	RHS = ρχ	dT dp	+		∞ >0	d T dp	P (cos θ) ∇ •	∇p ρ	+ ∇ ρχ	dT dp	+	∞ >0	d T dp	P (cos θ) •	∇p ρ
	+													
															(C.6)
	In this equation, ∇(χ RHS = ρχ +	>0	ρχ P (cos θ)	dT dp	+	∞ >0	d T dp	P (cos θ)
	× -4πGρ -4πG		f C,
															>0
	+	d dr		ρχ +	>0	ρχ P (cos θ)	dT dp	+	∞ >0	d T dp	P (cos θ)	g +	>0	g P (cos θ)
															239

B = Φc p = µ X (1 + ln µX) +

Our goal is to provide an expression for the following term:

∇ • (χ∇T ) + ρε + ρε g -∇ • F h = RHS. ∞ >0 ∇(χ T ) • ∇P (cos θ) + ∞ >0 χ T ∇ 2 P (cos θ) + ρε + >0 ρε P (cos θ) + ρε g ->0 ( + 1)

r 2 ρT D h c p (Ψ + ΦΛ ) P (cos θ). >0 ρ P (cos θ) + f C + h c p (Ψ + ΦΛ ) + ρε P (cos θ). (C.8)

C.

3 Second simpli cation of the right hand side

  In Eq. (C.8), all terms will be simpli ed one by one. Assuming that ρχ = ρ χ, ρχ = ρ χ and that We are almost there. Injecting Eqs. (C.9), (C.10) and (C.14) into the -component of Eq. (2.95) gives:

	we rewrite Eq. (C.11) as										
				L(r)ρ M (r)		1 -	f C 4πGρ			-ρ(ε + ε g ) 2	g g	+ Θ + ρ g 2 d dp	ρχ	d T dp	+ ρχ	dT dp
	=	Lρ M		1 -	f C 4πGρ	-	M L	(ε + ε g )	2	g g	+ Θ + ρ g 2 d dp	ρχ	dT dp	d T dT	+	ρχ ρχ
	=	Lρ M		1 -	f C 4πGρ	-	M L	(ε + ε g )	2	g g	+ Θ + ρ g 2 L(r) 4πGM (r)	d dp	d T dT	+	ρχ ρχ
			+	Lρ M	1 -	f C 4πGρ	-	M L	(ε + ε g )	d T dT	+	ρχ ρχ	.	(C.13)
	Equation (C.11) nally reads						
	Lρ M	1 -	f C 4πGρ	-	M L	(ε + ε g ) 2	g g	+	d T dT	+	ρχ ρχ	+ Θ +	g 2 4πG	d dp	d T dT	+	ρχ ρχ	. (C.14)
	RHS =	Lρ M	d T dT	+	ρχ ρχ					f C 4πGρ	-1 +	L 4πGM	f C, -4πG ρ
			+	Lρ M		1 -	f C 4πGρ	-	M L	(ε + ε g ) 2	g g	+	d T dT	+	ρχ ρχ	+ Θ +	g 2 4πG	d dp	d T dT	+	ρχ ρχ
			-	( + 1) r 2	χ T + ρT D h c p (Ψ + ΦΛ ) + ρε .	(C.15)
	The rst term cancels part of the term in curl brackets. Furthermore, pressure derivatives
	replaced by -1 ρg d/dr											
	RHS = -ρ		d T dT	+	ρχ ρχ			(ε + ε g ) +	L 4πGM	f C, -4πG ρ
	ρχ	dT dp		= + 4πGM (r) L(r) Lρ M 1 -,	f C 4πGρ	-	M L	(ε + ε g )	2	g g	+ Θ -	g 4πGρ	d dr	d T dT	+	ρχ ρχ	(C.9)
	the summed term reads ρχ d T dp + ρχ dT dp -( + 1) r 2	f C -4πGρ = ρχ χ T + ρT D h c p (Ψ + ΦΛ ) + ρε . dT dp d T dT +	ρχ ρχ	f C -4πGρ	(C.16)
																					=	L(r)ρ M (r)	d T dT	+	ρχ ρχ	f C 4πGρ	-1 .	(C.10)
	Next, in Eq. (2.95), the terms in factor of gravity are
	ρ g 2 2	d dp		ρχ	dT dp		g g	+	ρ ρ	d dp	ρχ	dT dp	+	d dp	ρχ	d T dp	+	d dp	ρχ	dT dp	.	(C.11)
	Using the relation stating global radiative equilibrium
	ρ g 2 d dp		ρχ	dT dp			= -ρχ	dT dp		f (C.12)

C -4πGρ -ρ(ε + ε g ),

Some details on the derivation of the transport of angular mo- mentum equations D.1 Vertical transport of angular momentum

  20)And the equation expressing the term of degree of the meridional circulation is In order to recover the equation for the vertical transport of , we integrate Eq. (2.117) times sin θdθ between 0 and π: ˆπ 0 ∂ ∂t ρr 2 sin 2 θΩ sin θdθ + ˆπ 0 ∇ • ρr 2 sin 2 θΩU sin θdθ

	=	ˆπ 0	sin 2 θ r 2	∂ ∂r	ρν v r 4 ∂Ω ∂r	sin θdθ +	ˆπ 0	1 sin θ	∂ ∂θ	ρν h sin 3 θ	∂Ω ∂θ	sin θdθ.	(D.1)
	• The rst term leads to						
		ˆπ 0	∂ ∂t	ρr 2 sin 2 θΩ sin θdθ =	∂ ∂t	ρr 2	ˆπ 0	sin 3 θΩ(r, θ)dθ .	(D.2)
	T c p	dΨ dt	+ Φ	d ln µ dt	Λ +	U H p	(∇ ad -∇) =	L p M p	T .	(C.21)

D.

  ∂ ∂r ρr 4 sin 3 θΩU r dθ. When Ω and U r are replaced by their Legendre decomposition, this equation involves integrals such as, m, n ∈ Nˆπ 0 sin 3 θP m (cos θ)Q n (cos θ)dθ = ˆπ 0 (1 -P 2 (cos θ))P m (x)Q n (x)dx, (D.7)which, in general are not 0 (see Sect. B.2). Therefore, contrary to what many authors said(Mathis & Zahn, 2004), all orders of the vertical meridional circulation are able to advect . However, since ∀ , Ω Ω +1 and U U +1 , one can neglect all terms but the ΩU 2 term (remember that U 0 = 0), leading to

	Let us rst express ´π 0	1 r 2		
	1 r 2 1 r 2 = -= 5r 2 ∂ ∂r ∂ ∂r 1	ρr 4 ρr 4 ΩU 2 ˆπ 0 ∂ ∂r ρr 4 ΩU 2 sin 3 θ sin 3 θP 2 (cos θ)dθ Ω Q (cos θ) ˆπ 0 ˆπ 0 sin 3 θdθ,	U P (cos θ)dθ	(D.8)
	• The second term reads			
	ˆπ 0	∇ • ρr 2 sin 2 θΩU sin θdθ = +	ˆπ 0 ˆπ 0	1 r 2 r sin θ ∂ ∂r 1	ρr 4 sin 3 θΩ(U r + ṙ) dθ ∂ ∂θ ρr 2 sin 3 θΩU θ sin θdθ,	(D.6)
					243	

where we used the de nition of U in Eq. (2.73) by denoting U r (resp. U θ ) the radial (resp. latitudinal) part.

  Some details on the derivation of the transport of angular momentum equations+ 1 r sin θ ∂ θ ρr 2 sin 3 θ Ω + Ω 2 Q 2 (cos θ) V 2 dP 2 (cos θ) dθ (D.13) = sin 2 θ r 2 ∂ r ρν v r 4 ∂ r Ω + Ω 2 Q 2 (cos θ) + 1 sin θ ∂ θ ρν h sin 3 θ∂ θ Ω + Ω 2 Q 2 (cos θ) .Then we multiply Eq. (2.118) by sin 2 θ and subtract it to Eq. (D.14), which givesWe neglect the variations of ρν h over an isobar and we note that1 sin 2 θ ΩU 2 -10ρrV 2 Ω sin 2 θQ 2 (cos θ) (cos θ) -10ρν h Ω 2 sin 2 θQ 2 (cos θ).Finally simplifying by Q 2 (cos θ) and making use of Eq. (2.74) yields the equation for the horizontal transport of angular momentum:

	And by neglecting 4 th order terms, one obtains
			ρ	d dt		r 2 sin 2 θ Ω + Ω 2 Q 2 (cos θ) +	1 r 2	∂ ∂r	ρr 4 sin 2 θ ΩU 2 P 2 (cos θ)
			+	1 r sin θ	ρr 2 V 2	Ω ∂ ∂θ	sin 3 θ	dP 2 (cos θ) dθ
		=	sin 2 θ r 2		∂ ∂r		ρν v r 4 ∂ ∂r Ω	+	∂ ∂r	ρν v r 4 ∂Ω 2 ∂r	Q 2 (cos θ)
			+	1 sin θ	∂ ∂θ	ρν h sin 3 θΩ 2	dQ 2 (cos θ) dθ	.	(D.14)
			ρ	d dt		r 2 sin 2 θΩ 2 Q 2 (cos θ) +	1 r 2	∂ ∂r	ρr 4 sin 2 θ ΩU 2 P 2 (cos θ) +	sin 2 θ 5r 2	∂ ∂r	ρr 4 ΩU 2
		+	1 r sin θ	ρr 2 V 2	Ω ∂ ∂θ	sin 3 θ	dP 2 (cos θ) dθ	=	sin 2 θ r 2	∂ ∂r	ρν v r 4 ∂Ω 2 ∂r	Q 2 (cos θ)
		+	1 sin θ	∂ ∂θ		ρν h sin 3 θΩ 2	dQ 2 (cos θ) dθ	.	(D.15)
															sin θ	d dθ sin 3 θ dP2(cos θ) dθ	sim-
	pli es to -10 sin 2 θQ 2 (cos θ). Therefore,
	ρ ρr 4 = d dt r 2 sin 2 θΩ 2 Q 2 (cos θ) + 1 r 2 P 2 (cos θ) + 1 5 Q2(cos θ) ∂ ∂r sin 2 θ r 2 ∂ ∂r ρν v r 4 ∂Ω 2 ∂r Q 2 (D.16)
	ρ	d dt	r 2 Ω 2 +		1 r 2	∂ ∂r	ρr 4 ΩU 2 -	10 6	dρr 2 U 2 dr	Ω =	1 r 2	∂ ∂r	ρν v r 4 ∂Ω 2 ∂r	-10ρν h Ω 2 .	(D.17)
		dr 2 Ω dt	=	1 5r 2	∂ ∂r		ρr 4 ΩU 2 +	1 r 2	∂ ∂r	ρν v r 4 ∂Ω ∂r	.	(D.12)
	D.2 Horizontal transport of angular momentum

Coming back to Eq. (2.117), we replace

Ω by Ω + Ω 2 Q 2 (cos θ), U by Ω by U 2 P 2 (cos θ) + V 2 dP 2 (cos θ)/dθ. Hence, ρ d dt r 2 sin 2 θ Ω + Ω 2 Q 2 (cos θ) + 1 r 2 ∂ r ρr 4 sin 2 θ Ω + Ω 2 Q 2 (cos θ) U 2 P 2 (cos θ) 244 D..

A polytropic relation expresses the pressure as a power law of the density. See further details in this manuscript. It conveniently does not require a computer to obtain a pressure, temperature and density pro le inside stars.

Values of main universal constants are given in App. A..

The PP chain is the sequence of nuclear reactions leading to the production of 4 He from four protons. Three di erent chains are possible and they are called PP1, PP2 and PP3. I give only PP1 but the other two can be found easily. PP1 is written 1 H(p, e + νe) 2 H(p, γ) 3 He( 3 He, 2p) 4 He (in the stellar core, 1 H are actually protons).

In this context, "initial" means "at the formation of the star", not "at the formation of the Universe".

In the gray atmosphere model, we make the approximation that the opacity of the medium does not depend on the wavelength[START_REF] Hubeny | Theory of stellar atmospheres: An introduction to astrophysical non-equilibrium quantitative spectroscopic analysis[END_REF]. Using the plane-parallel approximation, one can write the transfer equation of speci c intensity Iµν (integrated over frequency) in a direction with angle µ = cos θ:

We are not even on the pre-main-sequence.[START_REF] André | EAS Publications Series[END_REF]. As long as the rotation velocity of the inner layers increases, they transfer part of their (and magnetic eld) to the outer layers due to the turbulent viscosity of the disk. With the being slowly transported from the central layers to the outer ones, the gas slowly spiral and accrete to form a star.

An open cluster is a cluster of young stars that are loosely linked by gravity. The interesting point for stellar physicists is that these stars are formed from the same molecular cloud and, therefore, they have the same chemical composition and the same age.

Although, inside the star, it may not be the case.

In the uid dynamics literature, this quantity is o en called the kinematic viscosity (for instance, see[START_REF] Feireisl | Mathematical Theory of Compressible Viscous Fluids -Analysis and Numerics[END_REF]. For a ow of velocity u = [ui(t, x)] and velocity gradient ∇xu = {∂x j ui} N i,j,=1 , one can de ne the stress tensor S of this ow byS = µ ∇xu + ∇ T x u -2 3 ∇ • uI + η∇ • uI.In this case, µ is termed the shear or dynamic viscosity and η the bulk viscosity, while the kinematic viscosity ν = µ ρ ∝ v is what is called "shear viscosity" in stellar physics.

I use the word "susceptibility" because there exists no xed threshold for the Reynolds number below which the ow is laminar and turbulent above. For instance, in an in nite plumbing pipe, rst small eddies appear for Re 5. The fuselage of some air-planes is designed to push the transition at Re 10 5 -10

.

If the reader wants to refresh hir memory concerning Legendre polynomials, Appendix B. is devoted to them.

The test element approximation is valid only for element with nimi ρ. In particular it is not veri ed for H and He, the expression of the di usion velocity of which should be modi ed.

Several frequencies can be de ned. The intrinsic frequency ω is the frequency in the reference frame, actually in rad s -1 . It is related to the cyclic frequency ν, in s -1 by the relation: ω =

2πν. The same relation exists for the temporal frequency ω.

These approximations are questionable. Indeed the pressure scale height goes to 0 near the surface, therefore the neglect of g0/c 2 s is not valid at the surface. On the other side, 2/r becomes high near the centre and cannot be neglected either.

When an electromagnetic wave encounters an electron, it starts oscillating and radiates part of the energy in other directions. This phenomenon is called Thomson scattering.

Same as Thomson scattering but with relativistic corrections (needed when T 10 8 K).

Reproduced with permission © ESO.

The value of α MLT is calculated by adjusting it so that the modelled stars display the same values for some global parameters. For instance, if one wants to model a star with a speci c luminosity and a speci c radius, it is usual to adjust the initial helium abundance and α MLT to do so.

A core convective zone is present in stars with M > 1.2 M .

Here, the expression mean value stands for the value of the mean ow or of the mean stellar-structure. It is the one given by 1D stellar code.

3.3. The problem of near-surface e ects on oscillation frequencies(Jørgensen et al., 2019).

http://exoplanet.eu/

https://tess.mit.edu/publications/

Not to be confused with gravity waves. Gravity waves are waves for which the restoring force is the gravity. Gravitational waves are the propagation of a disturbance of the space-time. Their restoring force can be seen as the elasticity of space-time(Tenev & Horstemeyer, 2018) 

The detection of such high degree oscillations is only possible with the Sun. For other stars, oscillations are usually detected with degrees up to 3 in the best cases.

Where the period separation between g -modes of successive order n is nearly constant (see Sect. 3.2.2).

The principal solar parameters are given in Appendix A.

Note that this is always the case for temperature to decrease upward in a star.

Processes occurring on characteristic time-scales much shorter than the nuclear or contraction time-scales.

Sea waves are surface gravity waves.

This is why this model is adapted to oceans and not to the atmosphere. In Earth's atmosphere, it would be a better choice to assume that the entropy gradients are small. In the rst case, it amounts to assuming that isobars and isopycnals are equal, while in the second case, that isobars equal to isentropics. In reality, the Earth, as well as rotating stars, is baroclinic and therefore, neither isopycnals nor isentropics equal isobars.

The word "entrainment" used inRieutord & Zahn (1995) seems not to be part of any English dictionary. It is the direct translation of the same French word which, for the English reader, could be translated as "driving coe cient".

: Zero Age Main Sequence

We recall that the order of a polynomial is its degree minus unity.

For a function f de ned on [a, b] → R, ∃c ∈ [a, b] such that ˆb a f (x)dx = f (c)(b -a).(6.32) 

in the literature, this formalism is also o en referred to as the formalism ofMaeder & Zahn (1998) 

Not to be confuse with internal gravity waves.

Because isobars and isopycnals coincide.

The divergence of centrifugal acceleration, decomposed in Legendre polynomials is f C + >0 f C P (cos θ).

Rauer, H., Catala, C., Aerts, C., et al. 2014, Experimental Astronomy, 38, 249 Rayleigh, L. 1916, Proceedings of the Royal Society of London, Philosophical Transactions of the Royal Society, 93 Reese, D. R., Dupret, M.-A., & Rieutord, M. 2018, in
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Appendix A: Derivation of the scaling relation Eq. (4)

We start from Eq. (3). After Christensen-Dalsgaard & Thompson (1997), we have Kn

Appendix B: Fitting coefficients

In Table B.1 we gather the values of the fitting parameters introduced in Eqs. ( 14), ( 15), ( 16), and (18) used in order to perform the fits shown in Fig. 5 and toderive the coefficients for the prescriptions given in Table 2. in the deep solar structure induced by g -modes. Their results have rapidly been rejected [START_REF] Schunker | [END_REF]Appourchaux et al., 2018;Appourchaux & Corbard, 2019;Scherrer & Gough, 2019).

Observational constraints on rotation

Constraints on the stellar rotation pro les across the Hertzsprung-Russell diagram

In this section, I present the observational constraints we have on the rotation of stars other than the Sun. This section is organized according to the stellar evolutionary status. The Universe counts many varieties of stars (see Fig. 4.6) with di erent rotation characteristics. Therefore I will not describe what we know about rotation in all categories of stars but I will go through the ones that are the most important for this manuscript. In stars, rotation is very much dependent on the characteristics of the disk and has many links to magnetic activity. Concerning stars, I describe the usual solar-like stars and I focus on two categories of rapid rotators: δ Sct and γ Dor stars. I close this section with evolved stars, and concentrate on Red Giant Branch ( ) stars, the aged counterparts of solar-like stars.

Rotation in pre-main-sequence stars

The surface rotation velocity of stars is fairly well reproduced by models. Low mass stars (M 1.5M ) arrive fully convective on the . They have their convective zone locked with the disk due to the magnetic eld lines connecting them, and co-rotate with it during its lifetime (Bouvier et al., 1997) The stellar evolution code (Code d'Evolution Stellaire Adaptatif et Modulaire) has been developed rst by Berthomieu et al. (1993); Morel (1997) based on earlier codes with the aim of modelling the evolution of the Sun, from its arrival on the main sequence 1 to its present age.

was rst written in and aggregated many other codes to perform the interpolation of the Equation of State tables, opacity, etc. At the turn of the millennium, the code was modernized and rewritten in Fortran95 and renamed (Morel & Lebreton, 2008). Later it was also redesigned by Marques et al. (2013) to include a description of rotation in 1D and renamed (Code d'Evolution Stellaire, avec Transport, Adaptatif et Modulaire). During its almost three decades of life, has been a framework to test many models on various aspects of stellar evolution. The user can choose between many models of convection, prescriptions of angular momentum loss by winds, atmospheric models, coe cients of shearinduced turbulence, etc, as well as more curious models, for instance falls of planetoids. In the following, I will always use , either to speak about the 1D version or the 2D one. I explain in a rst section how works, numerically speaking: in what order computations are executed, what numerical methods are used, etc. Then I enter into the details of the work of code development that I have done during my PhD. The 2 nd section is devoted to the algorithm performing the deformation of a rotating -model (Roxburgh, 2004(Roxburgh, , 2006) ) and then I describe the computation of the meridional circulation and of the angular velocity pro le. All along this chapter, I am going to focus on some points of details that are never addressed in the literature, while they require some care.

How works

Main numerical methods used in

The vast majority of stellar evolution codes rely on nite element schemes to solve the stellarstructure equations. With these schemes, the star is divided into layers and k-th order derivatives are approximated using the values of each quantities at the faces of the nearest layers.

Those methods are very fast, very well tested and simple. However, they provide solutions only at the faces of each layer and not between them. Furthermore, during stellar evolution, the mesh frequently needs to be adapted in order to resolve regions with strong gradients.

The re-meshing is complicated by the fact that the solutions are only known at a few discrete points. follows a di erent path. In , solutions are represented by a linear combination of B-Splines [START_REF] Schumaker | Spline Functions: Basic Theory[END_REF]. The B-Splines form an orthogonal basis of piecewise continuous polynomials. Representing the solution of an equation as a linear combination of B-Splines provides an (approximate) knowledge of this quantity everywhere, by only knowing the exact solution at the collocation points. Another advantage is that a di erent mesh for di erent systems of equations can be used. For instance, the masses at which the structure equations are solved are not the same as the ones on which the equations for the transport of chemical are solved. It can also be the case for the transport of angular momentum. Age (t/t final )

Validation of the deformation module

Figure 7.3: The models are the ones presented in Table 7.1. For all panels, the quantities are plotted as a function of the stellar age normalized to nal age. The colours code for the mass of the models. Models with P disk = 10 with dotted-dashed lines and P disk = 3 days with dashed lines. The total angular momentum of the star is J = ´R 0 r 2 Ωdm. Refer to Table 7.1 for more detail on the initial conditions. Top le : Absolute value of the relative variations between angular momentum at time t to angular momentum at t final , in 2D models. Top right: Same as in top le panel but with 1D models. Bottom le : Absolute value of the relative variations between angular momentum at time t to angular momentum at t + ∆t, in 2D models. Bottom right: Same as in bottom le panel but with 1D models.

2D non-perturbative oscillation codes

Rotation can act in two ways on the oscillations of rotating stars. The Coriolis force modi es the motions of the waves while the centrifugal force deforms the star and therefore distorts the propagation cavity. Numerical 2D oscillation codes have been created to account for these e ects without having to resort to perturbative methods. Basically, they can be considered as solvers of oscillation Eqs. (3.13) to (3.16). The main 2D oscillation codes are (Twodimensional Oscillation Program; Reese et al. 2006) and

(Adiabatic Code of Oscillation including Rotation; Ouazzani et al. 2012). They work on a similar coordinate system and with the same surface conditions. However, the central boundary conditions di er and they implement di erent numerical schemes to solve their equations.

relies on nite di erent schemes while was originally developed to use a spectral method by decomposing the radial coe cients on Tchebyshev polynomials. It now also implement nite di erent schemes. This last approach is particularly adapted to polytropic models 2 where the structural quan-2 Polytropic models are models in which the pressure is described by a law of the form

with K called the polytropic constant, γ = 1 + 1/µ is the polytropic exponent and µ (an integer) is the polytropic index.

Validation, results and performances are actually normalized to normalization coe cients that will be described later.

When a 2D model is computed, we can choose to output, in addition to the .osc2d le, the 1D structure written in a .osc le. This structure is exactly the same as the one before the deformation, and along θ m . If the input le given to is not specially designed for it (it is generally the case for 1D inputs), needs to perform some pre-processing. The preprocessing steps are summarized in Fig. 7.7. First, the various derivatives need to be computed. They are approximated using a 2 nd order nite di erence method. This point is important because it can introduce di erences between the derivatives computed internally to (with B-Splines) or internally to (with a nite di erence method). Computing derivatives with B-Spline is more complex, computationally speaking, but gives a more precise estimation of the derivatives. This di erence of method can be a source of discrepancies between the frequencies computed using a 1D or 2D model as input. We will come back to it later.

The next step of the pre-processing is to improve the quality of the boundary conditions. To do so, in the centre, adds a few layers (usually 5). The values of the various elds are interpolated at those points using parabolas. This treatment applies for 1D and 2D inputs. The last step is the normalization of the various quantities. The quantities r, p, ρ and Ω are replaced by

where R eq is the equatorial radius, including the atmosphere, Ω K is the Keplerian break-up velocity and

One of the goals of the normalization is to reduce the value of the oats that will be represented in memory, which increases the precision. A er the normalization, a new le is created. This le is called an input le and contains data ready to be digested by . Before starting the seismic studies of the 2D version of , it must be noted that this study may also reveal some imperfections of itself. To be certain that we are only investigating the numerical e ects of the deformation module on the frequencies, we only studied non-rotating models. In this case, frequencies are, of course, not a ected by di erences in the angular velocity. We ensure that, in the input les, Ω, ∂Ω/∂r, ∂Ω/∂ cos θ were indeed exactly 0.

input les are basic les. Therefore, they are easy to modify a er 's preprocessing if one wants to check the in uence or a certain quantity or of certain numerical treatment used to produce these quantities. In particular, we have already seen that the method used to computed the derivatives is not the same for 2D and 1D computations. It can be seen as a post-pre-processing. Therefore, we studied frequencies obtained with four kinds of input les.

• A 1D input le (herea er called input 1) generated from an .osc le, following the procedure detailed above (normal pre-processing);

• A 2D input le (herea er called input 2) generated from an .osc2d le, following the procedure detailed above (normal pre-processing);

• A synthetic 1D input le (herea er called input 3) build using the data at θ m in an .osc2d le. Such les allow us to test if the structure in the .osc2d le is truly spherical;

Validation, results and performances

.8: Seismic comparison of non-rotating 0.8M models. Top: Di erences between the frequencies computed with one of the 1D input model and with the 2D model as a function of the associated mode frequency. Four non-rotating input models are used: the 1D model (blue, input 1) and the 2D model (orange, input 2), the 1D model extracted from the 2D model along θ m (red, input 3; see text for a description) and a mixed 1D/2D model (green, input 4; see text for a description). The colour codes the couples of models being compared: (input1/2; blue), (input3/2; red), (input4/2; green). The dashed black line represents the 0 frequency di erence. Middle: value of |A| (see Eq. (3.18)) as a function of r/R for model 1 (blue thick line) and input 2 (orange line). Bottom: Relative di erences between |A| from input 1 and 2 as a function of r/R . It must be noted that the value of |A| input 1 in the convective zone have been arti cially set to 10 -30 (only when plotting this gure), which explain the large, relative di erences in those regions. 7.2. Frequency di erences between the mode frequencies of models with the same mass but di erent n θ , compared with a reference model with n θ = 240. Top: Models with 1M . Middle: Models with 1.2M . Bottom: Models with 1.6M and Legendre decomposition stopped at max = 2.

Validation, results and performances

2D models

1D models 0.05 0.20 0.35 0.50 0.65 0.80 0.95 Age (t/t final ) 10 -9

10 -6 10 -3

0.05 0.20 0.35 0.50 0.65 0.80 0.95 Age (t/t final )

Figure 7.23: Angular momentum conservation with the new transport of angular momentum prescription. The models are the ones presented in Table 7.3. For all panels, the plotted quantities are function of the stellar age normalized to nal age. The colours code for the mass of the models. Models with P disk = 10 with dotted-dashed lines and P disk = 3 days with dashed lines. The total angular momentum of the star is J = ´R 0 r 2 Ωdm. Refer to Table 7.3 for more detail on the initial conditions. Top le : Absolute value of the relative variations between angular momentum at time t to angular momentum at t final , in 2D models. Top right: Same as in top le panel but with 1D models. Bottom le : Absolute value of the relative variations between angular momentum at time t to angular momentum at t + ∆t, in 2D models. Bottom right: Same as in bottom le panel but with 1D models.

Comparison with the old version of

The goal with this section is to present the main di erences obtained when computing models with identical initial parameters but di erent treatment of the rotation. To begin, we can just take a look at the global parameters gathered in Table 7.3. Models have been computed for ve di erent masses and di erent initial rotation conditions. The nal age is not necessarily the same for all models with the same mass.

Central hydrogen abundance

Let us rst focus on core hydrogen abundance X c . Table 7.3 shows that 2D models have always a larger X c that 1D models. The gap is also more pronounced with initially fast rotators. We recall that rotation modi es structure equations, especially by the inclusion of a factor f T /f p (see Eqs. (1.72) and (1.85)) in the expression ∂T /∂m in radiative zones. In models computed with old approach of transport of , is not able to compute f T and f P precisely and the pressure gradient is modi ed by the addition of an approximated centrifugal force: in models in the radiative zone as a function of the normalized radius. The colours code for the mass of the models: 0.8M (blue), 1M (orange). Vertical dashed lines mark the location of the transition between radiative and convective envelopes. For each stellar mass, we have computed an initially fast (solid lines) and slow rotator (dashed lines). Refer to Table 7.3 for more detail on the initial conditions. In this PhD I focused on the modelling of the transport of angular momentum in the radiative zone of low and intermediate mass stars, across their whole evolution. In addition we choose to include two-dimensional aspects in a modelling that has always been done only in 1D. These choices were motivated by several factors.

• First of all, rotation has always been set aside or simpli ed a lot in stellar modelling.

The main reason for that is because rotation results in a deformation of the star, hence breaking the spherical symmetry upon which the standard model of stellar physics rests. Stars are central for two reasons in astrophysics. (i): they provide energy to their hosted planets and strongly interact with them. (ii): They are used as proxies to estimate the age of their host and hosted structures (clusters, galaxies, exoplanets, etc.). Taking rotation into account in stellar modelling is of crucial importance because, through its implication in the stellar dynamo, an increase of angular velocity, in the end induces an increase of the UV and X ray ux received by the planets orbiting around them and hinders the development of life. Rotation also induces mixing of chemical which alter the element abundances on which age estimates are based. This e ect is very far from being negligible and can lead to mis-estimates of several Gyr.

Ongoing work and conclusions

Prat, 2019). The frequency spectrum found using the has been compared [START_REF] Ballot | Numerical Exploration of Oscillation Modes in Rapidly Rotating Stars[END_REF]) with the one obtained with the full computation made by the code. The authors compared the frequency spectrum computed with with the one computed with on a deformed and on a spherical fast rotating -models, all other things being equal. Their results show very good accordance between and full computations for m = 0 and m = + modes. In the case of m = -, a signi cant discrepancy can be observed when full computations are made on the deformed model but the gap decreases when is applied to the spherical model, suggesting that the error made by the comes from centrifugal acceleration, as expected. The work performed by Mathis & Prat (2019) proposes to adapt the formalism to small centrifugal deformation. In a collaboration involving V. Prat and S. Mathis ( ) and R.-M. Ouazzani ( ), we want to test the prediction of the model developed in Mathis & Prat (2019) by comparing with the oscillation spectrum computed with on deformed models.

Study of two solar analogues

Solar analogues are stars with masses very close to 1M , and possibly di erent age. Their study is very promising to better understand Sun's past and future. Such a study is currently ongoing, focusing on two stars observed by CoRoT: HD42618 (slightly less massive than the Sun) and HD43587 (slightly more massive). modelling and accurate determination of the global parameters of these stars has been conducted using , for the moment without rotation. The new rotation and two-dimensional abilities of will be applied to this model, in order to gain insight on the e ciency of internal mixing and transport of angular momentum.

Future work

First of all, several points must be addressed in the modelling of :

• I will shortly implement in the transport of angular momentum by internal gravity waves (

). This work will be done with C. Pinçon who developed the excitation model by plumes (Pinçon et al., 2016). It would also be interesting to implement a Reynold stresses excitation model (e.g. Kumar et al., 1999), so that both models can be compared.

• We have seen that the modelling of rotation inside convective zone have been le aside.

For the moment it is only modelled assuming a constant angular velocity or a constant angular momentum distribution which do not correspond to what is observed, especially with these approximations, the rotation pro le is constant in latitude. The most consistent way to tackle the problem would be to have a model of rotating-convection. Many have been proposed (Rogachevskii & Kleeorin, 2018;Augustson & Mathis, 2019;Augustson et al., 2020;Jermyn et al., 2020a,b). Choosing one among them will require additional work but in the meantime we shall use prescriptions of angular velocity pro les derived from 3D simulations of convective zones (Brun et al., 2017).

What studies are now feasible with the new 2D version of ? Apart from the three ongoing collaborations described above, some works are already possible or will be soon with the implementation of the transport of angular momentum by .

• Even without the improvements listed above, the hypothesis of shellular rotation can readily be tested. Indeed, is already able to provide the coordinates of isobars and the velocity eld of the meridional circulation. Assuming a shellular rotation pro le, we can study how turbulent viscosity coe cients vary with latitude. In particular, it Appendices