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Abstract

Rotation has important consequences for stellar internal structure and evolution. The centrifu-
gal acceleration deforms the star and balances the gravitational one, mimicking a lower mass
star. Most importantly, meridional circulations and rotation-induced turbulence mix chemical
elements, extending the life of the star and a�ecting stellar age determinations, one of the most
important problems in astrophysics. Lastly, the interaction between rotation and convection
generates magnetic �elds, maintaining a dynamo. The associated activity has a determining
in�uence on the survival of stellar atmospheres.

Asteroseismic observations from the space missions CoRoT and Kepler have clearly shown
that current 1D models of angular momentum transport in stellar radiative zones (turbulent
viscosity and meridional circulation) are not satisfactory. Other mechanisms must be in action,
such as internal gravity waves, magnetic �elds and mixed modes. All models proposed for
these mechanisms are incomplete. In particular, their description must account for 2D e�ects.

The 1D description of rotation is usually justi�ed by the fact that horizontal turbulence is
much stronger than the vertical in stellar radiative zones, and it suppresses all the latitudinal
gradients. Rotation should then be uniform in latitude. This is surely not the case in a
convection zone which has di�erential rotation in latitude. Because internal gravity waves are
generated at the base of convective envelopes, the Doppler shi� experienced by these waves
when they enter the radiation zone should depend on latitude. These waves are further �ltered
in the transition zone between the convection and radiation zones (the so-called tachocline), a
zone that has a strong di�erential rotation.

This PhD thesis is devoted to the implementation of a simpli�ed treatment of transport of
angular momentum in a stellar evolution code in which the structure is still partly treated in
1D. This treatment is based on a deformation method that enables the computation of the 2D
structure of the star, as well as the induced perturbation of the various �elds (density, e�ective
gravity, etc.). The transport of angular momentum is then treated in 2D, and will allow the
further study of additional mechanisms of transport.
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Résumé

La rotation a des conséquences importantes sur la structure interne et l’évolution stellaire.
La force centrifuge déforme l’étoile et équilibre en partie la gravité, imitant une étoile de
masse inférieure. Plus important encore, la circulation méridienne et la turbulences induites
par la rotation mélangent les éléments chimiques, prolongeant la vie de l’étoile et a�ectant
la détermination de l’âge stellaire, l’un des problèmes les plus importants en astrophysique.
En�n, l’interaction entre la rotation et la convection génère des champs magnétiques. L’activité
associée a une in�uence déterminante sur la survie des atmosphères stellaires.

Les observations astérosismiques des missions spatiales CoRoT et Kepler ont clairement
montré que les modèles 1D actuels de transport du moment cinétique dans les zones radiatives
stellaires (viscosité turbulente et circulation méridienne) ne sont pas satisfaisants. D’autres
mécanismes entrent certainement en jeu, tels que les ondes de gravité interne, les champs
magnétiques ou les modes mixtes. Tous les modèles proposés pour ces mécanismes sont, pour
l’instant, incomplets. En particulier, leur description doit tenir compte des e�ets en 2D.

La description 1D de la rotation est généralement justi�ée par le fait que la turbulence
horizontale est beaucoup plus forte que la verticale dans les zones radiatives stellaires, et
supprime tous les gradients latitudinaux. La rotation doit donc être uniforme en latitude. Ce
n’est cependant pas le cas dans une zone de convection qui présente une rotation di�érentielle
en latitude. Comme les ondes de gravité internes sont générées à la base des enveloppes
convectives, le décalage Doppler subi par ces ondes lorsqu’elles entrent dans la zone radiative
devrait dépendre de la latitude. Ces ondes sont ensuite �ltrées dans la zone de transition entre
les zones de convection et de rayonnement (appelée tachocline), une zone qui présente une
forte rotation di�érentielle.

Ce doctorat est consacré à la mise en œuvre d’un traitement simpli�é du transport du
moment cinétique dans un code d’évolution stellaire dans lequel la structure est toujours traitée
en 1D. Ce traitement est basé sur une méthode de déformation qui permet de calculer la
structure 2D de l’étoile, ainsi que la perturbation induite des di�érents champs (densité, gravité
e�ective, etc.). Le transport du moment angulaire est ensuite traité en 2D, et permettra
d’étudier plus en détail d’autres mécanismes de transport.
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Introduction:
Context and objectives

On clear winter nights, I have stood on mountains just to
be closer to the stars. Some say that these shimmering
lights are the souls of warriors who have died in battle;
some say that at the beginning of time, Arwe himself
cast an in�nite number of diamonds into the sky to shine
forever and defeat the darkness of night. But I believe
the stars are other suns like our own.

The Lightstone, Part One: The Ninth Kingdom, Ea Cycle,
David Zindell

On the transport of angular momentum in stellar radiative zones

Stars are some of the most opaque objects in the Universe. The only photons we can gather
from them are emitted in their atmosphere. Thus we cannot obtain direct and precise infor-
mation on their interior. Photons emitted from the atmosphere carry global information on the
surface such as luminosity, e�ective temperature, surface chemical composition or information
on characteristics of the upper �uid motions. Therefore, for a long time, the only way to glean
knowledge on stellar interiors was through analytical and numerical modelling. The theoretical
e�orts to understand the stellar internal structure started during the second half of the 19th

century with the progress made in thermodynamics in the 1st and 2nd industrial revolutions.
Simple models of stellar-structure had been established using polytropic relations1 (e.g. Lane,
1870; Emden, 1902). But the origin of stellar energy remained an enigma. This question is
deeper than it may seem because, asking the question of the mechanism of energy genera-
tion brings to mind that stars may not be eternal objects and are evolving. The industrial
revolutions supported the development of thermodynamics and statistical physics. Classical
mechanics had also been well developed before and physicists had almost all the necessary
knowledge to understand the physics of stars. W. Thomson (Lord Kelvin) and H. Helmholtz
suggested that the Sun got its energy from gravitational contraction and derived an age for the
Sun of ∼ 20 Myr (Thomson 1862; see Stacey 2000 for a review). This was in disagreement
with the oldest fossils known at the time (Darwin, 1859; Lyell, 1863) and was ruled out at the
dawn of the 20th century when much older fossils and sediments were studied.

At the turn of the century, Becquerel (1896) discovered natural radioactivity and soon a�er
Einstein (1905) understood that matter contained a formidable amount of energy. Eddington

1A polytropic relation expresses the pressure as a power law of the density. See further details in this manuscript.
It conveniently does not require a computer to obtain a pressure, temperature and density pro�le inside stars.
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(1926) was among the �rst to propose that energy was dominantly produced by thermonuclear
reactions inside stars (Eddington, 1926). Since then, stellar models have experienced important
developments. Henyey et al. (1955, 1959a,b, 1964) were the �rst to compute stellar models using
computers and these models were extended by Iben (1965a,b, 1966a,b). These works lead to
the standard model of stellar physics (for general texts, see Chandrasekhar, 1957; Cox & Giuli,
1968; Kippenhahn et al., 2012). Star are considered as plasma spheres in hydrostatic and local
thermal equilibrium. The energy produced by nuclear fusion reactions, or lost by neutrinos
inside stars can be radiated away or converted into thermal energy. All other phenomena that
could complicate the physics of stars had, for a long time, been neglected. Among them, one
could cite turbulence, magnetic �elds, di�usion processes, tidal forces, rotation, etc. With these
hypotheses, a physical system as complex as a star can be simpli�ed to a one dimensional
system, i.e. all the quantities depend only on the radial coordinate. Despite its simplicity, this
modelling is extremely powerful. One of its greatest achievements was the correct prediction
of the solar neutrino �ux, that forced particle physicists to revise their models. Indeed, three
�avours of neutrinos were known: ν, ντ and νµ; but they were thought to be massless.
The resolution of the neutrino problem came by understanding that neutrinos could oscillate
from one �avour to the other, implying that they had a mass (Haxton, 1995). However, many
other models needed direct measurements to be tested which were lacking because of the
impossibility to observe the stellar interiors.

Fortunately, a new way of making direct observations of the stellar interior appeared more
than half a century ago with the advent of asteroseismology. Asteroseismology is the study
of stellar oscillations. The properties of these waves are a�ected by the characteristics of the
medium in which they propagate and, therefore, carry information about it. Helioseismology,
the seismology of the Sun, started with the observation of the �ve-minute oscillation on its
surface (Leighton, 1960; Leighton et al., 1962; Evans & Michard, 1962). A�er these detections,
theoretical works started to study their physical nature, and to relate them to physical phe-
nomena taking place inside stars. Ulrich (1970) and Leibacher & Stein (1971) showed that the
waves observed at the surface of the Sun are standing acoustic waves. The development of
physical theories together with the development of mathematical methods quickly allowed di-
rect tests of models of stellar-structure. For instance the study of long time series of the Sun’s
photometry or velocity made possible the measurement of the sound speed pro�les which
provides constraints on the pressure and on the density. Accounting for the impact of the
rotation on the mode frequencies also lead to the inversion of the internal solar rotation pro�le
(Brown & Morrow, 1987).

In parallel, theoretical models were being developed to include a description of the evolution
of the rotation pro�le in the standard model in which it was supposed to be neglected (von
Zeipel, 1924; Sweet, 1950; Mestel, 1953; Zahn, 1974; Endal & So�a, 1976, 1978, 1979; Busse, 1981,
1982). modelling the rotation pro�le and its evolution is needed for several reasons. Rotation
is intimately linked to stellar magnetic activity through its interaction with convection. An
enhanced magnetic activity induces an increased emission of UV and X-rays, which, in turn,
impacts the atmosphere of planets and may hinder the development of life on them. The
Sun is thought to have known such an intense-activity phase, soon a�er its formation. It is
one of the reasons for suggesting that on Earth, life started to develop in seas or in pools,
water being opaque to UV (Miller, 1953; Rosing et al., 2006; Gallet et al., 2017). The second
main reason to study rotation is related to the age estimation of stars. Stars are very o�en
used as proxies for estimating the age of their host and hosted structures (clusters, galaxies,
exoplanets, etc.). The alteration of the estimation of the age by rotation is mainly attributable
to two phenomena. First, in stars with a central convective zone, hydrogen-rich material from
the radiative zone (rz) can be injected by rotation-induced turbulent di�usion into the central
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regions in which thermonuclear reactions take place. Since there is more hydrogen to burn,
the stellar life-time is extended. Secondly, the surface chemical composition can also be altered
by rotation and change during its evolution. This is, in particular, the case of Lithium, which
is observed to be depleted in stars in a very speci�c mass range ( 1.3M� < M < 1.5M�).
However, the temperature in the convective zone of these stars is not high enough to consume
Li. The only way to explain the Li depletion is to call on a rotation-induced mechanism
transporting Li-poor material inside the convective envelope. Rotation also induces large scale
�ows (meridional circulation), in the convective zone and rz

2. The induced chemical mixing
modi�es the surface chemical abundances and if this mixing is not properly modelled, the age
is misestimated.

Until the end of the 1980s, most stellar rotation models assumed stars to be barotropic, i.e.,
they assumed that isobars coincide with isopycnals3. Such a hypothesis is valid only under if
the angular velocity is constant on cylinders. The measurement of the solar internal rotation
pro�le obtained by Brown & Morrow (1987) made apparent that the barotropic approximation
was not veri�ed and revealed other disagreements. Indeed, in the convection zone, the angular
velocity varies with radius and latitude but is not constant on cylinders. In the rz although,
it seems to be nearly constant in the upper part and still unknown elsewhere. The transition
region between these two zones (coined the tachocline) is very thin, suggesting that here,
shear is very strong. Soon, Spiegel & Zahn (1992) and Zahn (1992) proposed a model to explain
the shape of the rotation pro�le in the rz and its evolution. This model relies on three main
ideas. First, in the rz, angular momentum is advected by the meridional circulation. During
the star’s evolution, small readjustments of pressure and density gradients creates a baroclinic
torque that must be compensated by a meridional circulation so that the star is in baroclinic
equilibrium. Second, the angular velocity gradients create shears, prone to instabilities. Thus,
the angular velocity is di�used by shear-induced turbulence. They argued that the shear-
induced turbulence would be much stronger horizontally than radially, because of the stable
strati�cation. This results in the so-called shellular rotation approximation, which is the third
assumption of the model. This approximation amounts to assuming that the rotation pro�le is
constant in latitude. Within this assumption, the rotating stellar-structure equations maintain
a one dimensional form, while describing a non-spherical star. The quantities do not depend
on the radius any more but on the pressure. This model predicts a width of the tachocline
that agrees with the observed one.

The development of asteroseismology for stars other than the Sun and especially the high-
quality data made available by the space-borne missions CoRoT (Catala et al., 1995; Baglin et al.,
2006; Michel et al., 2008), Kepler (Borucki et al., 2010) and tess (Ricker et al., 2014) made ap-
parent disparities between models’ predictions and reality. Despite a predicted tachocline width
in agreement with the observed one, Zahn (1992)’s model and its later re�nements (Maeder,
1995; Meynet & Maeder, 1997; Talon et al., 1997; Maeder, 2003) still predict a radial di�erential
rotation in the solar rz, in contradiction with the nearly constant rotation pro�le. Furthermore,
the core rotation rate of red giants stars has been found to be around two orders of magnitude
lower than that predicted by models (Beck et al., 2012; Deheuvels et al., 2012; Marques et al.,
2013). These observations made clear that additional mechanisms of transport of angular mo-
mentum need to be included in the modelling of stellar rotation evolution. Many of them have
been suggested: hydrodynamic instabilities, magneto-hydrodynamic (mhd) instabilities, trans-
port by mixed modes, internal gravity waves (igw), etc. Currently, none of these mechanisms
are properly and self-consistently modelled. Indeed, mhd instabilities would require that the
magnetic �eld is accounted for in stellar models, which is not the case. As of today, there exists

2Although in these zones motion velocities are order of magnitude apart.
3Isopycnals are surfaces of constant density.
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no complete model of igw excitation. In addition, igw are known to induce on small scales
very sharp gradients of angular velocity , the sign of which oscillates on very small time scales.
This phenomenon, still poorly modelled, is known as a shear layer oscillation (slo) and �lters
out igw in certain ranges of frequencies. In order to allow for a proper modelling of these
additional mechanisms of transport of angular momentum, some changes must be made to the
standard model of stellar physics.

I choose to relax the hypothesis of spherical symmetry. Di�erent arguments may be put
forward to motivate this change in the modelling. First of all, we have seen that in the con-
vective zone, the angular velocity depends on latitude. Therefore, at the transition between
the convective and rz, the boundary condition varies in latitude, not only in radius. Another
reason is that the centrifugal acceleration breaks the spherical symmetry. We have seen that
the assumption of a shellular pro�le, underpinned by the fact that turbulence is thought to be
much stronger horizontally than radially, allows physicists to keep a 1D description. The tur-
bulent viscosity coe�cients are proportional to the gradient of rotation velocity with respect
to the distance to the rotation axis. Near the poles, the rotation velocity vanishes and so does
its derivative. Therefore the shear becomes negligible, turbulence disappears, and nothing
can prevent latitudinal gradients from existing. In this case, the shellular rotation approxi-
mation would break down and a 2D description would be needed. Finally, a 2D description
is fundamental for a proper modelling of the additional transport mechanisms. For the case
of instabilities, many instability criteria depend on the latitude. As a consequence, several
instabilities may occur only above or below a certain latitude. This aspect would certainly
be missed by a one dimensional description. In the case of waves, and especially internal
gravity waves, their properties and the amount of angular momentum that they carry depend
on their region of excitation. Internal gravity waves are excited in the convective zone, the
angular velocity of which depends on latitude and must be described in two dimensions.

In the early 2000s, models were developed to incorporate two-dimensional e�ects in
stellar modelling. Roxburgh (2004, 2006) developed a method that allows us to deform a 1D
model, rotating with a possibly non-uniform angular velocity. This method is able to provide
the �uctuations of density, of gravitational potential and of e�ective gravity over isobars. It
also enables the computation of various quantities averaged over isobars that are needed in
the modi�ed stellar-structure equations. Mathis & Zahn (2004, 2005) further extended Zahn
(1992)’s formalism to go beyond the shellular approximation. I implemented those models in an
originally one dimensional stellar evolution code cestam (Morel, 1997; Morel & Lebreton, 2008;
Marques et al., 2013), which is now able to study stellar evolution with a modelling of the
2D e�ect of rotation on the interior structure. These developments are primarily intended
for testing the transport of angular momentum by internal gravity waves (Kumar et al., 1999;
Pinçon et al., 2016).

In this work I restricted ourselves to modelling the transport of angular momentum in the
rz. I set aside the description of rotating convective zones which would require dedicated
models. The convective motions have been primarily studied as a mechanism of transport of
thermal energy and atomic species but they also transport angular momentum with Reynolds
stresses and meridional circulation. Rotation, through the action of the Coriolis force, modi�es
the trajectories of the convective �uid parcels. The best approach available at the moment
is to impose a boundary condition between a radiative and convective zone derived from
observations or from 3D simulations. This transition region requires some care because, at
this location, exchanges of angular momentum and atomic species can occur. The stars I focused
on are low- and intermediate-mass stars, but nothing prevents cestam from modelling higher-
mass stars (except the domain of validity of the equation of state and opacity tables). The only
physical restriction on the stellar mass is the lower limit of ∼ 0.3M� because below that mass,
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stars are completely convective. For stars with mass higher than 1.4M�, other mechanisms
should be included in the standard model of stellar physics, such as radiative acceleration and
mass loss. These phenomena are studied in parallel by other teams using cestam (e.g. Deal
et al., 2020). The mass range studied in this PhD is quite representative of the majority of
stars in the Kepler sample (e.g. Yu et al., 2018).

On the problem of surface e�ects on adiabatic oscillations

At the beginning of my PhD, I continued the work started during my Masters thesis on the study
of the signi�cant disparities between observed and modelled frequencies of modes probing
mainly the surface regions of stars. Such systematic discrepancies have now been observed
for around three decades (Dziembowski et al., 1988). They are called the surface e�ects because
they are attributed to the de�cient modelling of the upper layers of stars with a convective
envelope and to the neglect of energy exchanges between modes and convection in this region.
One dimensional stellar models oversimplify the physics of these layers, which are subject to
highly turbulent �ows as well as a complex transition between a convective to a radiative-
dominated region (e.g. Kupka & Muthsam, 2017). The e�ects have been thoroughly studied in
the solar case (Rosenthal et al., 1995; Christensen-Dalsgaard & Thompson, 1997; Rosenthal et al.,
1999).

Individual frequencies are used to constrain models and the shi� of the mode frequen-
cies prevent a direct comparison between observations and models. To overcome this issue,
frequency combinations are o�en used. These combinations are less sensitive to the surface
modelling (e.g. Roxburgh & Vorontsov, 2003). Yet, an accurate determination of frequencies
is necessary to unlock the full potential of asteroseismology. To that end, several empirical
correction laws, relying on adjustable parameters, have been proposed to correct the modelled
frequencies (Kjeldsen et al., 2008; Ball & Gizon, 2014; Sonoi et al., 2015). These corrections
have proven to be very e�ective in reproducing the target frequencies and are now widely
used in the community (e.g. Lebreton & Goupil, 2014; Silva Aguirre et al., 2017). Nonetheless,
the correction laws have at least two caveats. First, the values of their adjustable parameters
are not physically grounded. Therefore, di�erent models could be corrected to �t the same
observations. It poses a problem of uniqueness of the solution. Secondly, these empirical
correction laws do not teach us anything about the physical causes of the problem of surface
e�ect.

Consequently, the physical nature of the surface e�ect has been the focus of intense work.
The e�ects of the poor modelling of the uppermost convective layers on oscillation frequencies
are classi�ed into two categories (e.g. Houdek et al., 2017). The �rst category, called the struc-
tural e�ects, results from neglecting the turbulent pressure in the stellar-structure. It translates
into a smaller resonant cavity and increases the frequencies of its modes of oscillation. The
second category, called the modal e�ects, encompasses the e�ects coming from oversimpli�ca-
tions of oscillation equations. These simpli�cations come from the adiabatic hypothesis which
is not perfectly valid in the uppermost layers of stars (Balmforth, 1992; Houdek et al., 2017), and
from the neglect of the perturbation of the turbulent pressure by the oscillations (Sonoi et al.,
2017). Other mechanisms have been suggested to have an impact on the mode frequencies
such as convective back-warming (Trampedach et al., 2017) or magnetic activity (Piau et al.,
2014; Magic & Weiss, 2016). Still, the dominant source of surface e�ects is due to the neglect
of turbulent pressure, as shown by the pioneering work of Rosenthal et al. (1999) who used
more realistic 3D simulation of the Sun’s uppermost layers and estimated the elevation of the
surface when turbulent pressure was added to hydrostatic equilibrium. They found a relation
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depending on the surface elevation that matches very well the frequency di�erences.
The method of coupling 1D stellar models to 3D models of stellar atmospheres has been

used to study the variations of the surface e�ects across the Teff − log g plane (Kiel diagram)
(Sonoi et al., 2015; Ball et al., 2016; Trampedach et al., 2017). Sonoi et al. (2015) also proposed
a physically motivated scaling relation (Samadi et al., 2013) depending on e�ective temperature
and on surface gravity, that prescribes the value of the adjustable parameters of the correction
laws. In all previously mentioned works, the chemical composition was assumed to be the
same as in the Sun. However, the distribution of metallicity observed in solar-like pulsators
spans quite a large range (e.g. Pinsonneault et al., 2014). Our goal in this work is then to study
what in�uences can the metallicity have on the surface e�ects.

Structure of the manuscript

• Chapter 1: I start by deriving the stellar-structure equations without rotation and I
provide a description of the main physical ingredients that must be added to the modelling
in addition to the structural quantities. I then show how the structure equations are
modi�ed when rotation is included. I explain why these equations must now be solved
on isobars and not on spheres if one wants to keep a 1D modelling.

• Chapter 2: The main aspects of the transport of angular momentum are reviewed. I
start with the mechanisms that transfer angular momentum out of the system. Then I
show that rotating stars cannot locally be in a radiative equilibrium. This is Von Zeipel’s
theorem, and it results in a misalignment of isobars and isopycnals, which in turn induces
a meridional circulation advecting angular momentum. Then, prescriptions for the shear-
induced turbulence that di�uses angular velocity are exposed. The formalisms for the
computation of the e�ective gravity, the velocity of the meridional circulation and of the
transport of angular momentum are derived.

• Chapter 3: The problem of the surface e�ects is discussed. I start by writing the oscil-
lation equation in the case of no rotation and by giving some general concepts used in
asteroseismology. Then I detail my work on the problem of surface e�ects, which led
to an article Manchon et al. (2018). This Chapter also prepares the groundwork for the
seismology of a rotating star, needed in the rest of this PhD thesis.

• Chapter 4: I summarize the observational constraints that we have on the rotation pro�les
of stars across the Hertzsprung-Russell diagram. The agreement between observed and
model rotation pro�les is discussed.

• Chapter 5: The additional transport mechanisms that have been proposed to the present
are described. It also advocates for the inclusion of a 2D description in stellar evolution
modelling.

• Chapter 6: I present all the numerical methods and the algorithm that I implemented
into cestam. It starts with a brief description of how cestam works without the new
2D modules. Then I describe the numerical methods used to deform the models and to
compute the velocity of the meridional circulation and to solve the equation of transport
of angular momentum. I emphasize some points that are usually le� aside in the literature
but that are trickier than it seems.
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• Chapter 7 I devoted this chapter to the testing and the validation of my work. Each
aspect of the algorithms is thoroughly inspected. The testing is performed partly with
the help of acor, a 2D, non-perturbative oscillation code (Ouazzani et al., 2012).

• Chapter 8: I conclude this work and present what remains to be done and what stud-
ies are made possible with this new version of cestam. I also describe the on-going
collaborations that have been started.
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Part I

Basic concepts of stellar evolution and
rotation
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Chapter 1

Stellar interior modelling

Nous imitons, horreur ! la toupie et la boule
Dans leur valse et leurs bonds; même dans nos sommeils
La Curiosité nous tourmente et nous roule,
Comme un Ange cruel qui fouette des soleils

C. Baudelaire, Le voyage, Les Fleurs du Mal
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A�er the star’s formation, its evolution begins with a phase of contraction. During this
phase, the e�ective temperature stays almost constant while the total luminosity decreases
because the star is shrinking. This is the Hayashi track (Hayashi, 1961). The core temperature
increases by 1 − 2 order of magnitudes and the opacity decreases. A�er a short time (∼ 1
Myr, depending on the stellar mass), the opacity becomes small enough so that a radiative core
appears. The luminosity and the e�ective temperature then start to increase slowly. From the
moment where they start increasing, we enter a stage called the Henyey line (Henyey et al.,
1955). In the core, temperature and density increase, resulting in the ignition of the nuclear
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reactions. The Hayashi track and the Henyey line form the Pre-Main Sequence (pms) stage. pms
stars radiate energy coming mainly from the potential gravitational energy released during the
contraction. The star leaves the pms to enter the Main Sequence (ms) phase. This moment is
called the Zero Age Main Sequence (zams) and it is usually de�ned as the moment where the
luminosity is dominated at least at 99% by nuclear reactions. A star spends most of its life
in the ms where it is subject to very slow transformations. In low mass stars (. 1.25M�) the
principal nuclear reactions are the fusion of hydrogen nuclei to form 4He through the PP chains.
Above 1.25M�, fusion of H into 4He proceeds dominantly through the CNO cycles. Eventually, at
some point all the core hydrogen is exhausted. It marks the end of the ms and the star becomes
a subgiant star. The core contracts with temperature increasing while the envelope slowly
decouples and expands. Hydrogen continues to burn in a shell around a helium core. Then,
the star enters the Red Giant Branch (rgb). Its radius can increase by more than two orders of
magnitude. The core temperature keeps increasing until reaching ∼ 108 K and the degenerate
4He core ignites. In stars with M . 2.3M�, this ignition produces the so-called helium �ash,
a phenomenon that is extremely violent. In a few hours, the region of helium fusion extends
and eventually settles burning He in non-degenerate conditions, releasing an energy of order
1041 J. A�er He is exhausted in the core, it continues in a shell for around 100 Myr (depending
on the mass) and the star reaches the Asymptotic Giant Branch (agb). Stars with initial mass
below ∼ 8M� end up becoming white dwarfs, above that they become neutron stars or even
black holes.

The following chapter is divided as follows. The �rst section presents the standard stellar-
structure equations in the case where rotation is neglected. Then I derive those equations
assuming shellular rotation in a baroclinic star. Finally, I give a bit of an overview of the way
I computed the equilibrium quantities on isobars. The notations de�ned in these sections will
be used in all the manuscript.

1.1 One dimensional stellar modelling in a nutshell

I start by deriving the structure equations and the physical ingredients used in the standard,
one dimensional, model of stellar physics, so that the reader has all the necessary basics.

1.1.1 Derivation of the structure equations in 1D

A star is a static sphere of plasma. Its dynamics can be described by the Navier-Stokes
equations. Let us write the equation of motion in which we neglected the viscous stress:

ρ
dv
dt = ρg−∇p, (1.1)

where ρ is the density �eld, v is the velocity, g = ger is the gravitational acceleration, p the
pressure, and er the unit vector in the radial direction. On a sphere of radius r inside the star,
the gravitational acceleration is given by:

g = −Gm
r2 , (1.2)

where G is the universal gravitational constant1 and m is the mass inside the sphere of radius
r. The star being spherical, the gradient operator reduces to the radial partial derivative and

1Values of main universal constants are given in App. A..
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1.1. One dimensional stellar modelling in a nutshell

Eq. (1.1) becomes:

d2r

dt2 = −Gm
r2 −

1
ρ

∂p

∂r
. (1.3)

What is the typical value of the acceleration (le� hand side of Eq. (1.3))? Let us imagine that
the gravitational force is much stronger than the pressure gradient. In this case, the system
evolves with a characteristic time-scale called the dynamical time-scale, de�ned as

τdyn =
√

R3
?

GM?
. (1.4)

Using solar values (see App. A.), τdyn ' 1.6×103 s ' 30 min. It is evident that such rapid trans-
formations of the Sun are not observed, which means that stars are in hydrostatic equilibrium:

1
ρ

∂p

∂r
= −Gm

r2 . (1.5)

This equation provides us with a �rst equation for the stellar-structure. However, we shall
see that using the radius as our coordinate of reference is not the best choice we can do.
The current description is called a Eulerian description. In stellar evolution modelling we
actually prefer a Lagrangian description, with the mass as our reference coordinate, for several
reasons. While the radius can vary by several orders of magnitude (because of contraction
during the pms and dilation of the envelope a�er ms), the total mass experiences usually very
small changes. These changes can either be due to the mass being converted to energy
by nuclear reactions, mass lost through stellar winds or gained by accretion. However, the
cumulated mass gain/loss is very small (at least during the main sequence). From its birth to
the present day, the Sun’s mass loss adds up to ∼ 10−5M�

2 (Kippenhahn et al., 2012). More
importantly, even if the mass change is large, it can be computed before the calculation of
the new structure. Therefore the upper mass limit is �xed during the computation, while the
total radius is the result of computation of the stellar-structure and cannot be known a priori.
Furthermore, since Lagrangian description amounts to following a mass element, the substantial
or material derivative d/dt equals the partial time derivative ∂/∂t|m. In this framework, all
the conservation laws can be written much more simply than if we were using the Eulerian
time derivative ∂/∂t|r.

In order to switch from the Eulerian description used in (1.5) to the Lagrangian description,
one needs to express the derivative ∂r/∂m. With m(r, t) the mass contained inside a sphere
of radius r, one can write its in�nitesimal change as:

dm(r, t) = 4πρr2dr − 4πρr2vdt. (1.6)

The �rst term in the right hand side is the change of mass due to a change in radius dr and
the second term is the change of mass due to the displacement of �uid with velocity v during
a time dt. From this equation, one obtains that the time derivative of the mass at constant
radius is:

∂m

∂t

∣∣∣∣
r

= −4πr2ρv. (1.7)

2In this PhD, we focused on stars with M . 10M�. In these stars accretion is negligible, even during the pms.
However for more massive stars, accretion can be added to the modelling. Haemmerlé et al. (2019) have computed
grid of stellar models up to 120M�. For stars with M > 20M�, the accretion phase overlaps with the ms and for
M > 70M�, hydrogen is already signi�cantly depleted at the centre when accretion stops.
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Figure 1.1: Mean free paths against radius normalized to total radius, in a 1M� model at ' 4700 Myr.
The radiative mean free path `rad is represented as solid lines and estimates for the conductive one,
`cond = kBT/(

√
2πd2p) are represented as dotted-dashed lines (for dH ' 53 pm), dashed lines (for

dHe ' 128 pm) and dotted lines (for dα ' 100 fm). The radius of the convection zone is represented as
vertical dashed line.

Since we considered that the star is static, the above derivative is zero. Therefore, in the
Lagrangian description

mass conservation:
∂r

∂m
= 1

4πρr2 . (1.8)

This equation is nothing more than the expression of the density or, more pompously, it is also
called the continuity equation.

Now that this derivative is known, we can rewrite the hydrostatic equilibrium in its La-
grangian form:

hydrostatic equilibrium:
∂p

∂m
= − Gm4πr4 . (1.9)

Equations (1.8) and (1.9) describe the mechanical equilibrium of the star. Eqs. (1.8) involves the
density which, generally, depends on pressure and temperature (among others). We already
have an equation describing pressure variations, we need one for temperature.

Energy is generated and transported inside stars and we will start with the latter. Using
the chain rule,

energy transport:
∂T

∂m
= ∂p

∂m

dT
dp = − Gm4πr4

T

p
∇, (1.10)

where we have de�ned the actual temperature gradient ∇ = d lnT
d ln p = p

T
dT
dp .
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1.1. One dimensional stellar modelling in a nutshell

The temperature gradient depends on the energy transport mechanism. There are three of
them: conduction, convection and radiation. An easy way to compare the e�ciency of radiation
with respect to conduction is to compare their mean free path, i.e. the mean distance a photon
travels before interacting with a particle (in case of radiation) and the mean distance a particle
carrying thermal energy can travel before interacting with another one (in case of conduction).
The mean free path of a photon is of the order of 10−2 m on average in a main-sequence star
and 10−4 m in the core, while that of conduction is 10−5 m on average and 10−9 m in the core.
Furthermore, the velocity of photons is much higher than the thermal velocity of particles in
the plasma. Therefore, radiation is, everywhere in a star, a much more e�cient transport
process than conduction (Kippenhahn et al., 2012). In Fig. 1.1 are represented the mean free
paths of radiation and estimates for the one of conduction. The mean free path of radiation is
computed using the relation ` = (κρ)−1. The one of conduction is more di�cult to estimate.
The kinetic theory of gas gives the following relation for a gas of molecules:

` = kBT√
2πd2p

, (1.11)

where p is the pressure and T the temperature, kB is the Boltzmann constant and πd2 is the
collisional cross-section of the molecules. It is rather complicated to �nd a good estimate for
the cross-section because stars are composed of plasma with complex chemical compositions.
I computed three estimates for the Bohr radius of Hydrogen: dH ' 53 pm (nucleus and electron
in �rst orbit); for the equivalent of the Bohr radius for Helium: dHe ' 128 pm; and �nally for
the radius of alpha particles (ionized helium) estimated by scattering 5 MeV alpha particle on
gold nuclei: dα ' 100 fm. This last radius represents an extreme value. In any case, the mean
free path of radiation is much higher than the one of conduction.

Stellar radiative media are optically thick because the radiative mean free path is very
small compared to the characteristic scale of the radiative zone (rz). Thus, these zones are in
radiative equilibrium. In such a case, the radiative �ux Fr = F · ur can be written as follows:

Fr = −D∇U = − c

3κρ∇U, (1.12)

where D = c
3κρ is a di�usion coe�cient, c the speed of light, κ the Rosseland opacity and U

the radiation energy density (Kippenhahn et al., 2012). Because the medium is in radiative
equilibrium, the radiation energy density is linked to the temperature by the Stephan’s law:
U = aT 4, with a = 7.565× 1016 Jm−3 K−4. Furthermore, the luminosity l is the �ux integrated
over a sphere of radius r: l = 4πr2F . Putting everything together leads to

F = l

4πr2 = − c

3κρ
∂U

∂r
= − 4ac

3κρT
3∂T

∂r
. (1.13)

Using the continuity equation (1.8) and then the de�nition of the temperature gradient of Eq.
(1.10), we obtain:

l = −64π2r4ac

3κ T 3 ∂T

∂m
= 16πacG

3
mT 4

κp
∇. (1.14)

This equation allows us to de�ne the radiative gradient:

∇rad = 3
16πacG

κlp

mT 4 . (1.15)

And in the radiative zone, ∇ = ∇rad, therefore the temperature gradients reads

∂T

∂m
= − Gm4πr4

T

p
∇rad. (1.16)
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Stellar interior modelling

In this expression, l/m = ε̄ corresponds to the averaged energy generation rate in a sphere or
radius r. If the actual gradient is too high, the medium becomes convectively unstable.

The medium can become convectively unstable for two reasons: κ or ε̄ become too high.
In most of the star, opacity is either dominated by free-free (�) interactions (regions with
T & 104 K), or by bound-free (bf) interactions (regions with T . 104 K). In these cases,
the opacities can be approximated by the Kramers law, which have the same form for both
interactions: κ ∝ ρT−3.5. Despite having the same form, the bf interactions leads to much higher
opacities that the � ones. In stars with masses & 1.4M�, the temperature is so high that �
interactions dominate in almost the whole star apart from the uppermost layers. For stars
with masses ' 1M�, the temperature is su�ciently low so that the opacity is dominated by bf
interactions in a signi�cantly large envelope. In this region, κ is high enough for convection to
take place (in the Sun, the radial extent of the convection zone is around 0.3R�). This mechanism
is responsible for the formation of an envelope convective zone. On the main sequence, stars
with mass above ∼ 1.25M� have a core temperature so high that the CNO cycle3 dominates
the nuclear production of energy. The nuclear reaction rate of the CNO cycle is proportional
to T 16, while for the PP chain4 it is only proportional to T 4. The consequence is that, with
CNO cycles becoming dominant, the nuclear energy generation rate ε̄ become so high that it
is responsible for the formation of a core convective zone. In stars with 1.25 . M . 2.5M�)
the extent of the core convection zone is ' 10% of the total radius. A special case is found for
stars with M . 0.5M� which are fully convective because of a high opacity. In a convective
medium, the temperature gradient takes a di�erent form from a radiative one.

Let us consider a small parcel of �uid rising to a small height. If it does not exchange
heat with its surroundings, it expands and cools adiabatically because the pressure of the
environment is lower. But if the temperature gradient in the surroundings is more negative than
in the parcel, the parcel of gas remains hotter than the environment and buoyancy accelerates its
rise. This con�guration is encountered when, during the expansion of the parcel of gas, adiabatic
change of temperature with respect to pressure is smaller than the change of temperature with
respect to pressure in the surrounding (Schwarzschild & Härm, 1958; Ledoux, 1947). This rule
can be formalized as follows. A medium is convective if:

∂T

∂m

∣∣∣∣
surrounding

≤ ∂T

∂m

∣∣∣∣
parcel

≤ ∂T

∂m

∣∣∣∣
adiabatic

, (1.17)

or in terms of pressure derivatives (note the change of the inequality due to ∂m/∂p < 0):
∂ lnT
∂ ln p

∣∣∣∣
ad
≤ ∂ lnT

∂ ln p

∣∣∣∣
surrounding

. (1.18)

In a radiative medium, ∂ lnT
∂ ln p

∣∣∣
sur.

= ∇rad and by denoting ∂ lnT
∂ ln p

∣∣∣
ad.

= ∇ad, one can write the
Schwarzschild criterion for convection instability:

∇ad < ∇rad. (1.19)

Using a more rigorous formalism, the above reasoning can be written as an equation of
motion for the �uid parcel at radius r:

ρp
d2r

dt2 = −gρp −
dp
dr , (1.20)

3The CNO cycle can actually take the form of 4 cycles. The most probable one goes through the following steps:
12
6 C→ 13

7 N→ 13
6 C→ 14

7 N→ 15
8 O→ 15

7 N→ 12
6 C, generating 26.73 MeV. Noteworthy, 15

8 O is a radioactive isotope of
oxygen, but the other CNO cycles can produce stable isotopes.

4The PP chain is the sequence of nuclear reactions leading to the production of 4He from four protons. Three
di�erent chains are possible and they are called PP1, PP2 and PP3. I give only PP1 but the other two can be found
easily. PP1 is written 1H(p, e+νe)2H(p, γ)3He(3He, 2p)4He (in the stellar core, 1H are actually protons).
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1.1. One dimensional stellar modelling in a nutshell

where ρp is the density in the parcel and g the gravity. The pressure gradient felt by the
parcel is dp/dr = −ρsg, where ρs is the density of the surrounding. Thus, the above equation
reduces to

ρp
d2r

dt2 + g(ρp − ρs) = 0, (1.21)

Assuming that the parcel is displaced from an equilibrium location r0 ' r with equilibrium
density ρ0 = ρp(r0) = ρs(r0), the above equation can be developed to �rst order as

d2r

dt2 + g

ρ

(
dρp

dr

∣∣∣∣
r0

− dρs

dr

∣∣∣∣
r0

)
(r − r0) = 0. (1.22)

The properties of this equation depend on the quantity

N2 = g

ρ

(
dρp

dr

∣∣∣∣
r0

− dρs

dr

∣∣∣∣
r0

)
. (1.23)

If N2, called the square of the Brunt-Väisälä frequency, is positive, Eq. (1.22) is the di�erential
equation of a harmonic oscillator. Its solutions are oscillating and we are in a radiative zone.
In this case, N corresponds to the frequency at which a small displaced parcel would oscillate.
The resulting waves are called gravity waves. If on the contrary N2 is negative, the amplitude
of the solution diverges exponentially and we are in a convectively unstable medium.

We have expressed the Brunt-Väisälä frequency with density gradients but we are looking
to obtain an expression with temperature gradients. In a general way, the radial derivative
d ln ρ/dr can be rewritten

d ln ρ
dr = ∂ ln ρ

∂ ln p

∣∣∣∣
T,µ

d ln p
dr + ∂ ln ρ

∂ lnT

∣∣∣∣
p,µ

d lnT
dr + ∂ ln ρ

∂ lnµ

∣∣∣∣
p,T

d lnµ
dr = α

d ln p
dr︸ ︷︷ ︸
(i)

−δ d lnT
dr︸ ︷︷ ︸
(ii)

+ϕ d lnµ
dr︸ ︷︷ ︸
(iii)

,

(1.24)

with µ the mean molecular weight. The parcel and the surrounding are supposed to be in
pressure equilibrium therefore the term (i) is the same in the parcel and in the environment.
The second term (ii) is equal to the adiabatic gradient in the parcel and to the actual gradient
in the surrounding. Finally, the composition of the parcel is unchanged during its rise, therefore,
term (iii) is 0 inside it. This term is, however, not necessarily 0 in the environment. In a region
with constant chemical composition, the Brunt-Väisälä frequency reads

N2 = gδ

Hp
(∇ad −∇) with

1
Hp

= −d ln p
dr , (1.25)

where all the terms vanished, except the temperature gradients. The quantity Hp is called the
pressure scale height. We recognize the term between parenthesis to be the Schwarzschild
criterion, and this term decides the sign of N2. The term (iii) of Eq. (1.24) in the surrounding
can be non-zero when the composition varies with the radius. In this case, the Schwarzschild
criterion can be modi�ed to include it and becomes the Ledoux criterion (Ledoux, 1947):

N2 = gδ

Hp
(∇ad −∇) + gϕ

Hp
∇µ = N2

T +N2
µ, (1.26)

where ∇µ = d lnµ/d ln p is the mean molecular weight gradient. The terms N2
T and N2

µ are
the thermal and composition parts of the Brunt-Väisälä frequency. Because nuclear reactions

17
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increase the mass of nuclei in the core, the mean molecular weight is usually a decreasing
function of the radius. Therefore, N2

µ is in general positive and acts as a stabilizing e�ect because
it increases the value of N2. Brunt-Väisälä frequency allows us to rewrite the convective
instability criterion:

Schwarzschild criterion: N2
T < 0, (1.27)

Ledoux criterion: N2
T +N2

µ < 0. (1.28)

We have drawn the main ideas allowing us to understand the physics of convection but we still
do not have an expression for ∇ in the convective zones. Such an expression is established by
ad hoc models, as we will see later. For the moment, we need one last equation that would
express the variations of the luminosity that appeared in the formulation of the radiative
gradient, in Eq. (1.15). The equations for the conservation of energy will provide this last
missing piece. The �ux of energy going outward a spherical shell is the energy produced
within it minus the one converted into heat. The energy production encompasses the energy
gained by nuclear reaction or lost by neutrinos. The energy �ux simply writes

energy conservation:
∂l

∂m
= εnuc + εgrav − εν , (1.29)

where εnuc (resp. εgrav and εν ) is the energy production rates by nuclear reactions (resp. heat
gained and neutrinos) per unit mass . The energy conservation can be seen other way. The
energy �owing outside a sphere S of radius r and mass m during a certain interval of time is
the energy produced in the sphere minus the heat gained/lost by the �uid:˛

S
F · dσ =

ˆ m

0
εdm−

ˆ m

0

dq
dt dm. (1.30)

Here, F is the energy �ux, σ the surface element, q the speci�c heat gained by the �uid per
unit time and ε = εnuc − εν the speci�c energy produced in the �uid per unit time. This heat
gained/lost may have been converted to internal energy or into work to change the volume:

dq = du+ pdv (1.31)

with u the speci�c internal energy and dv the change of speci�c volume. Using Ostrogradsky
theorem in Eq. (1.30), the le� hand side can be written as the volume integral of the divergence
of the �ux and therefore, by integrating over the volume of the sphere, it leads to

∇ · F = ρε− ρdq
dt . (1.32)

By de�nition of l, ∇ · F = ρ∂l/∂m and we obtain

∂l

∂m
− ε = −dq

dt = −T ∂s
∂t
, (1.33)

where s is the specif entropy. The last term correspond to the term εgrav in Eq. (1.29).
Finally, equations (1.8), (1.9), (1.29), (1.10) form a set of the four standard structure equations:

∂r

∂m
= 1

4πρr2 ,

∂p

∂m
= − Gm4πr4 ,

∂T

∂m
= ∂p

∂m

T

p
∇,

∂l

∂m
= εnuc + εgrav − εν = εnuc − εν − T

∂s

∂t
,

(1.34)

with ∇ = ∇rad in the rz, and prescribed by a convection model in convective zones.
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1.1. One dimensional stellar modelling in a nutshell

1.1.2 Physical ingredients

To solve system (1.34), we need the quantities ρ = ρ(p, T, µ), κ = κ(p, T, µ), ε = ε(p, T, µ),
u = u(p, T, µ), ∇ad, etc. These quantities are speci�c to the material and they can be pro-
vided by laboratory experiments, computations or prescribed by models and observations.
The chemical composition needs also to be provided and is either measured in stars using
spectroscopic observations or assumed. Since some of the following points are discussed in
much more detail in upcoming chapters, I will only present the general picture.

Equation of state (eos) and opacity tables

ρ(p, T, µ) and κ(p, T, µ) are provided by Equation of State eos and opacity tables. An eos can
refer to two di�erent concepts. The �rst one, more limited, is called the thermal equation
of state and provides ρ as a function of p, T and µ. The second, more general, provides the
thermodynamic potential that allows us to recover all other thermodynamic quantities. The
eos could simply be derived assuming a monoatomic or a perfect gas but such an approach
would neglect many complex phenomena such as radiation pressure, Coulomb interactions,
etc. Modern stellar evolution codes use eos provided in tables ready for interpolation. These
tables have been calculated by groups specialized in atomic computations who o�en also com-
pute opacity tables providing κ. The most popular of them are the opal opacity table (Rogers
& Iglesias, 1992; Iglesias & Rogers, 1996; Rogers & Nayfonov, 2002) and op from the Opacity
Project (Seaton et al., 1994; Badnell et al., 2005; Seaton, 2005, 2007) which are more precise
than opal but cover a smaller parameter space. eos is also provided by opal or by mhd (Hum-
mer & Mihalas, 1988) associated with op. These tables are supplemented at low temperatures
by the Wichita opacity tables (Ferguson et al., 2005).

Concerning the adiabatic gradient, it is usually an entry of the eos. If it is not, it can be
expressed through another quantity given in them: the 2nd adiabatic index Γ2 (Chandrasekhar,
1957)

∇ad = Γ2 − 1
Γ2

with
dp
p

+ Γ2

1− Γ2

dT
T

= 0. (1.35)

Nuclear reaction rates

An imprecision on the nuclear reaction rates actually does not change much the longevity
of a star because the energy production rate adapts to the luminosity. However, they do
have an impact on the structure. Furthermore, nuclear reaction rates are a combination of
experimental data and theory-based extrapolations from high to low energy regime because
laboratory conditions in which those data are measured are very far from the conditions of
density, pressure or temperature in the centre of stars. Finally, for national security reasons,
high precision nuclear reaction data are classi�ed. Popular nuclear reaction tables are nacre

(Aikawa et al., 2006) and its update nacreii (Xu et al., 2013) and the luna collaboration (Broggini
et al., 2018).

Chemical composition

Elements are separated into three categories: Hydrogen (X ), Helium (Y ) and metals (Z) which
includes all other elements. Quite precise abundances can be measured for the Sun and it has
been the object of many publications through the years with lower and lower uncertainties
a�ecting abundances (Grevesse & Noels, 1993; Grevesse & Sauval, 1998; Asplund et al., 2005,
2009). The abundances of certain non-volatile elements (Ne, Mg, Si, S, Fe) have also been
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re�ned using meteorites (Scott et al., 2015b,a; Grevesse et al., 2015). See Serenelli (2016) for a
review.

The initial chemical composition5 is a problem in stellar modelling because, apart from the
Sun, we only have access to approximate chemical abundances in the stellar atmosphere of
other stars. Since elements are usually not depleted by nuclear reactions in the convective
envelope (stars with mass . 0.5M� are completely convective, therefore, nuclear reactions
do occur in the cz), the changes between the current and the initial chemical composition are
only due to mixing processes: di�usion or advection. If the modelling does not include these
processes, we can assume that the abundances measured in atmosphere are unchanged since
the formation of the star. This is actually not a very good approximation, �rst because di�usion
can have a major impact (for instance, see Sect. 2.5), second because at the frontier between
radiative and convective zones, mixing does occur (see Sect. 1.1.2, convection). It can have an
important impact on the evolution of the star. For instance, the hydrogen rich material injected
from convective to a radiative region and vice versa, can increase the lifetime of the star. Mixing
is also the cause of a nagging problem in stellar physics: the well mixed convective envelope
of a large fraction of stars seem to lack lithium, although, lithium burning temperature is not
reached in it. This lithium depletion pleads for complex mixing processes involving convection
and rotation (see 4.3.2, lithium depletion problem).

In order to �nd a prescription for the initial chemical composition of other stars, it is o�en
assumed to scale as the one of the Sun. We usually de�ne ratios of elements to hydrogen, for
instance metals to hydrogen: Z/X ; or Iron to hydrogen: [Fe/H]. If a star is measured to be
10% less metallic than the Sun, its initial composition of metal is taken to be 10% less than the
one of the Sun and X and Y are modi�ed accordingly.

Convection

Convection is a thorny issue in stellar physics. Convection is a purely 3D phenomenon. More-
over, convective motions are highly turbulent in stars (Reynolds number going up to 1014),
very sensitive to boundary conditions, and of primary importance in stellar evolution. For a
one dimensional treatment, however, ad hoc theories of convection have been developed. The
goal of such theories is to provide an expression for the actual gradient ∇ of Eq. (1.10). The
Mixing Length Theory (mlt; Böhm-Vitense, 1958) is the most used. mlt assumes that all the
convective �ux is carried by the largest turbulent eddy. In other words, it approximates the
turbulence spectrum by a Dirac distribution. mlt supposes that a blob of �uid, hotter and less
dense than its surrounding medium rises to a height of `MLT, so-called mixing length, before
mixing and releasing its energy. The convective �ux, i.e. energy carried by convection, can be
written as (Hubeny & Mihalas, 2014):

Fconv =
(
gQHp

32

)1/2

ρcpT (∇−∇parcel)
3/2

(
`MLT

Hp

)2

, (1.36)

where g is the gravity, Q = 1 − ∂ lnµ/∂ lnT |p with µ the mean molecular weight and cp
the speci�c heat at constant pressure. mlt makes the assumption that the mixing length is
proportional to the pressure scale height: `MLT = αMLTHp, with αMLT called the mlt parameter.
The coe�cient αMLT is a free parameter adjusted to retrieve some observables of a particular
star. In case of the Sun, αMLT ' 1.65. In the deep interior, convection is adiabatic which
means that rising gas parcel exchange very little energy with the surrounding medium and
∇parcel ' ∇ad ' ∇ (Böhm-Vitense, 1992). In the mlt framework, this is con�rmed by a quick

5In this context, "initial" means "at the formation of the star", not "at the formation of the Universe".
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1.1. One dimensional stellar modelling in a nutshell

calculation. In the Sun, the bottom boundary of the convective zone starts at r ' 0.70R� and
m ' 0.98M�. Here, Fconv ' 1.29 × 1011 erg cm−2 s−1, g ' 5.47 × 104 cm s−2, T ' 2.2 × 106 K,
ρ ' 1.8×10−1 g cm−3, cp ' 3.5×108 erg K−1, `MLT = αMLTHp with αMLT = 1.65 andHp = 0.08R�,
and �nally Q = 1. With these values, the di�erence of the thermal gradients are

−HpT (∇−∇parcel) =
(

dT
dr

∣∣∣∣
parcel

− dT
dr

)
' 4.9× 10−11K cm−1, (1.37)

and average along a distance of `MLT/2 it gives(
dT
dr

∣∣∣∣
parcel

− dT
dr

)
`MLT

2 ' 2.2× 10−1K. (1.38)

It means that only a di�erence of order 10−1K between the convective parcels and the sur-
rounding medium is able to carry all the necessary �ux up to the surface. Near the surface,
convection becomes ine�cient and the convective parcels exchange large amounts of energy
with the medium. Such zone is called superadiabatic because ∇ > ∇parcel > ∇ad and the mlt

provide an expression for ∇ and ∇parcel.
mlt is one model among a myriad of convection models. We can cite the Full Spectrum of

Turbulence (fst) models (Canuto & Mazzitelli, 1991, 1992; Canuto et al., 1996) which provide a
more detailed spectrum for the turbulence, or models that propose to introduce new structure
equations, some of them describing the geometry of the convection. This has been done for
core convection where most of the �ux is carried by plumes (Gabriel & Belkacem, 2018). All
those models make use of adjustable parameters. The fst models introduce a quantity Λ = z
where z is the distance to the nearest cz limit. The quantity Λ is thought of as a mixing length
and fst models assume that Λ is the same whatever the star is, in other words, fst models
do not introduce adjustable parameters. Ludwig et al. (1999) tried to verify this assumption
by writing Λ = αCMz with αCM a parameter adjusted to match observable parameter of
various stars. If fst models were to be right in their assumption that they do not contain any
adjustable parameter, αCM would be constant from one star to the other. Ludwig et al. (1999)
actually showed that αCM vary as much as αMLT (although their value is not identical). The
core convection model of Gabriel & Belkacem (2018) introduce even more free parameters.
The energy is carried by N ascending plumes and ND descending ones, N and ND being
free parameters. Furthermore, the energy �ux is divided into three parts: the radiation �ux,
the �ux of kinetic energy dissipated by plumes (to which is a�ected an equivalent of the free
parameter αMLT) and a convective �ux (to which is a�ected another free parameter α2). Taking
into account the kinetic energy �ux makes the overshoot possible (which in the mlt formalism
should be added a�erwards). The convective �ux is the �ux of energy associated with the
plumes and has di�erent sign for ascending and descending ones.

Atmosphere

The structure equations derived above need boundary conditions. While they are simple to
derive at the centre of the star, the cases of the top boundary conditions are more complicated.
To tackle this issue, an ad hoc modelling of the �rst layers of the atmosphere is added and the
idea is to connect the solutions of the structure equations to the solution in the atmosphere.
Many atmosphere models can be found, from strati�cation extracted from complex and speci�c
1D, 2D or 3D models patched at the surface of the star (see Sect. 3.3) to simple analytical
models. The atmosphere can be modelled as a single layer or reconstructed on a grid, if
more precision is needed. The atmosphere’s structure is described with a modi�ed version
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of the structure equations and with the optical depth τ as the independent variable. The
temperature is directly given as a function of the optical depth, the so-called T (τ) relations.
With dτ = −κρdr, the structure equations read

dm
dτ = −4πr2

κ
, (1.39)

dp
dτ = Gm

κr2 , (1.40)

dT
dτ = T

p

dp
dτ∇, (1.41)

dr
dτ = − 1

κρ
. (1.42)

The luminosity is assumed constant in the atmosphere and taken as the one at the surface
of the star. The surface, and therefore the beginning of the photosphere, is de�ned as the
location where the optical depth reaches a certain value τph. In the Eddington approximation6,
τph = 2/3.

1.2 The Modi�ed structure equations in the case of shellular rota-
tion

The above equations have been derived assuming no rotation. But stars do rotate. We would
want to incorporate the e�ects of rotation into the stellar-structure equations in a way that
does not change much their shape. It would allow us to keep the same numerical scheme for
the structure equations with and without rotation. If we want to properly take rotation into
account, the structure equations need to be adapted to the new geometry. Fortunately, we
will see that by suitably describing the geometry of the star, structure equations can still be
written in one dimension provided some quantities are computed in two dimensions and then
averaged over a well chosen surface.

1.2.1 Shellular rotation

In the following, we assume that the angular velocity is constant in spherical or spheroidal
shells. The structure equations can then be written in a very convenient way. Such a rota-

6In the gray atmosphere model, we make the approximation that the opacity of the medium does not depend
on the wavelength (Hubeny & Mihalas, 2014). Using the plane-parallel approximation, one can write the transfer
equation of speci�c intensity Iµν (integrated over frequency) in a direction with angle µ = cos θ:

µ
∂Iµ
∂τ

= Iµ − S = Iµ − J,

where S is the source function and J is the mean intensity averaged over solid angles. The functions S and J are
integrated over frequencies and S ≡ J because of the hypothesis of radiative equilibrium. Further assuming local
thermodynamic equilibrium, J as a function of the optical depth is given by the Stephan-Boltzmann law:

J(τ) = σ

π
T (τ)4.

Furthermore, in the di�usion limit (τ →∞),

J(τ) = 3
2

ˆ 1

−1
Iν [τ + q(τ)]µdµ = 3H [τ + q(τ)] = 3

4πσT
4
eff [τ + q(τ)] ,

where H is called the 1st angular moment of I , and the q(τ) is called the Hopf function. The provision of q(τ)
allows us to de�ne a T (τ) relation. The Eddington approximation amounts to approximating the Hopf function as a
constant. Its value can be found to be 2/3.
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1.2. The Modi�ed structure equations in the case of shellular rotation

tion pro�le is called a shellular rotation pro�le (Zahn, 1992). This approximation is justi�ed if
turbulent viscosity is much higher horizontally than vertically:

νh �
l2h
l2v
νv, (1.43)

where νh (resp. νv) is the horizontal (resp. vertical) turbulent viscosity and lh (resp. lv)
is the horizontal (resp. vertical) distance over which the transported quantity signi�cantly
varies (see Sect. 2.3). This quantity can be the angular momentum but it can also be the
chemical abundances. If criterion (1.43) is respected, any small horizontal gradient of Ω would
be immediately �attened by turbulent viscosity. A shellular rotation pro�le is formalized as
follow:

Ω(r, θ) = Ω(r) + Ω̂(r, θ) with Ω(r) =
´

Ω sin3 θdθ´
sin3 θdθ , (1.44)

and with Ω̂ � Ω, Ω is almost constant in a spherical shell. The quantity θ denotes the co-
latitude, i.e the angle is taken from the pole (see Fig. 1.2). The �uctuation Ω̂ can be decomposed
over functions of θ. Zahn (1992) �rst proposed to decompose them into Legendre polynomials
P` (see de�nition in App. B.), and Mathis & Zahn (2004) slightly modi�ed the decomposition of
the 2nd order term, this leading to simpli�cations in the equation for horizontal transport of
angular momentum (see Sect. 2.7 for an explanation). This decomposition reads:

Ω̂(r, θ) =
∑
k=1

Ω2kQ2k(cos θ), (1.45)

where

Q`(cos θ) = P`(cos θ)− I` with I` =
´
P`(cos θ) sin3 θdθ´

sin3 θdθ = δ`,0 −
1
5δ`,2, (1.46)

with δi,j being the Kronecker symbol. For the origin of the factor 1/5, see the de�nition of the
scalar product of two Legendre polynomials in Eq. (B.12). Then, Q2(cos θ) = P2(cos θ) + 1

5 and
higher degrees reduce to P`.

In the following, any quantity X can be decomposed as a linear combination of Legendre
polynomials on spherical surfaces

X(r, θ) =
∑
k=0

X̂2k(r)P2k(cos θ) = X0(r) +
∑
k=1

X̂2k(r)P2k(cos θ), (1.47)

or as a linear combination of Legendre polynomials on isobars:

X(p, θ) =
∑
k=0

X̃2k(p)P2k(cos θ) = X(p) +
∑
k=1

X̃2k(p)P2k(cos θ), (1.48)

with X̃2k 6= X̂2k and the 0th order term X0 is de�ned as

X0(r) = X(p) =
´ π

0 X(r, θ) sin θdθ´ π
0 sin θdθ

. (1.49)

If we limit the expansion to P2, the angle at which X(p, θ) = X(p) is a critical angle θm =
arccos(1/

√
3). At this particular angle, only the 0th-order (θ-independent) component plays a

role (see Fig. 1.2).

23



Stellar interior modelling

θm
r(p, θ)

θ

$ = r sin θ

ε

Figure 1.2: Spheroidal polar coordinate system. The radius r(p, θ) of an isobar p is represented in black.
A spherical surface intersecting the isobar at an angle θm is represented in red dashes. ε is the angle
between the vector normal to a sphere and normal to an isobar. Of course, ε varies over isobar.

1.2.2 Force balance

When rotation is taken into account, one cannot rigorously speak of hydrostatic equilibrium
because another force enters the equation: the centrifugal force. Nonetheless, for simplicity, I
will keep using the expression "hydrostatic equilibrium" instead of the more general expression
"force balance". Let us write the Navier-Stokes equation for a rotating �uid:

Du
Dt = −∇φ− 1

ρ
∇p−Ω× (Ω× r)− 2Ω× u, (1.50)

where u is the velocity �eld, p the pressure, ρ the density, φ the gravitational potential,
Ω(r, θ) = Ω(r, θ)ez = Ω(r, θ) cos θer − Ω(r, θ) sin θeθ the angular velocity and r = rer is the
position vector. We neglected the viscous term. In a static system, u = 0, and the Coriolis
acceleration can also be neglected. The star being static, the le� hand side vanishes and one
can write:

1
ρ

∇p = −∇φ+ Ω2$ = geff , (1.51)

where $ = $e⊥ = $ sin θer +$ cos θeθ with $ = r sin θ and we de�ned the e�ective gravity
or gravito-centrifugal acceleration geff , whose radial and colatitudinal components are:

geff,r = −∂φ
∂r

+ Ω2r sin2 θ = 1
ρ

∂p

∂r
, (1.52)

geff,θ = −1
r

∂φ

∂θ
+ Ω2r sin θ cos θ = 1

ρr

∂p

∂θ
. (1.53)

Fig. 1.3, le� panel, represents the relative di�erence between |geff | at di�erent latitudes and its
value averaged over an isobar (see de�nition in Eq. (1.69). It clearly shows that the e�ective
gravity is stronger near the pole than near the equator.
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Figure 1.3: Model of mass 1.5M� and an age of 1000 Myr with an initial disk lifetime of τdisk = 5 Myr
and period of the disk Pdisk = 3 Myr. The angular velocity is around 42% of ΩK,surf (∼ 44% in the core
and ∼ 40% at the surface). The dashed vertical black lines represent the location of the top limit (resp.
the bottom limit) of the core (resp. envelope) convective zone. Le�: Relative di�erences between the
e�ective gravity at a colatitude θ and the average e�ective gravity 〈geff〉 as a function of radius. The
ordinate 0 is represented as a solid black line and makes it apparent that 〈geff〉 (r) 6= geff(r, θm). The
quantity geff(r, θm) is represented as the orange line. Right: Relative di�erence between the density at
θ and the density at θm as a function of radius.

One interesting thing is that Eq. (1.52) provides a criterion to establish if the star rotates
too fast and has reached the break-up velocity. This criterion is

∂φ

∂r
− Ω2r sin2 θ < 0, (1.54)

and it amounts to saying that the centrifugal acceleration in the vertical direction is stronger
than the gravity in the vertical direction. If this condition is met, the star starts loosing material
because it is sent into orbit. By writing, near the equator ∂φ/∂r = GM/R2, we de�ne the
surface Keplerian break-up velocity ΩK:

ΩK,surf =

√
GM
R3 . (1.55)

In the remainder of the manuscript, the rotation rate Ω will o�en be expressed in units of the
surface Keplerian break-up velocity, which provides a rapid estimate of the importance of the
centrifugal acceleration in the star. It must be noted that Ω(r, θ) can reach values higher that
ΩK,surf because, ΩK is not constant in the interior. Since the radial gradient of angular velocity
remains quite unimportant and since the centrifugal force decreases as we get closer to the
centre, higher rotation rates are possible in the deep interior.

By taking the curl of the force balance expressed in Eq. (1.51) we obtain the equation for
the baroclinic equilibrium:

∇ρ×∇p

ρ2 = ∇ρ× geff

ρ
= −1

2∇
(
Ω2
)
×∇

(
r2 sin2 θ

)
. (1.56)

The right hand side is actually the cylindrical derivative of Ω2: −r sin θ∂Ω2/∂zeϕ, with z
being the vertical coordinate, parallel to the rotation axis. Therefore the baroclinic equilibrium
reduces to

∇ρ×∇p

ρ2 = −r sin θ∂Ω2

∂z
eϕ. (1.57)
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And this relation is of fundamental importance. The torque on the le� hand side is called the
baroclinic torque, created by a misalignment between isobars and isopycnals, which balances
the torque of the centrifugal force on the right hand side. If isobars coincide with isopycnals,
∇ρ ‖∇p and therefore the baroclinic torque is null and ∂Ω/∂z must also be zero. However, any
small misalignment of ∇ρ or ∇p results in the apparition of a gradient of Ω in the z-direction.
And the reverse is true. The implications of this relation will be studied in more detail in
Chapter 2.

Going back to Eq. (1.51), one can de�ne the quantity ψ (Meynet & Maeder, 1997) such that:

gravito-centrifugal quasi-potential: ψ = φ− 1
2Ω2$2. (1.58)

In the case where Ω is constant, ψ is indeed a true potential, constant over non-spherical
surfaces and the gravity and centrifugal accelerations are derived from it:

1
ρ

∇p = −∇ψ and ∇ψ = ∇φ+ Ω2$. (1.59)

Here, equipotentials and isobars coincide (as well as isopycnals7). Such stars are said to be
barotropic. This is also the case of stars with Ω constant in cylinders, although the gravito-
centrifugal potential is not given in general by Eq. (1.58).

In any other case, ψ cannot be considered as a potential in the sense that geff 6= −∇ψ does
not hold. From Eq. (1.51), we have

1
ρ

∇p = −∇ψ −$2Ω∇Ω = geff . (1.60)

As we will see shortly, iso-ψ are not equipotential any more but are isobars. Isobars cross
isopycnals (as well as isotherms, isentropics etc.) and the star is said to be baroclinic. With
any rotation pro�le but a shellular, isobars cross iso-ψ.

As we will see, averaging the structure equations (1.34) over isobars provide a very con-
venient way to keep a one dimensional description. In the following, we add a subscript p
to denote quantities over an isobar. We would want to use mp, the mass inside the volume
enclosed by the isobar located by p, as the independent variable. We have to �nd an expression
for dψ/dmp. Let dn be the distance between two in�nitely close isobars, at a given latitude.

geff = dψ
dn +$2ΩdΩ

dn = dψ
dn +$2ΩdΩ

dψ
dψ
dn , (1.61)

with geff = |geff |. All the terms in this equation depend on the colatitude but we did not write
it for simplicity. Since we assumed shellular rotation, Ω is constant over isobars, therefore,
∇Ω ‖∇ψ and one can write ∇Ω = −α∇ψ, with α = |dΩ/dψ|. Thus, Eq. (1.61) reads

geff = (1−$2Ωα)dψ
dn . (1.62)

Hence,

dp
dn = −ρ(1−$2Ωα)dψ

dn , (1.63)

dp
dψ = −ρ(1−$2Ωα), (1.64)

7If in addition there is no �uctuations of mean molecular weight over isobars, isobars also coincide with isotherms
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1.2. The Modi�ed structure equations in the case of shellular rotation

and dψ
dn = geff

1−$2Ωα. (1.65)

We deduce that ρ(1−$2Ωα) is constant over isobars since isobars are iso-ψ. Then, by denoting
ψp the iso-ψ identi�ed by the pressure coordinate, we shall write the mass enclosed between
two in�nitely close isobars

dmp =
ˆ
ψp

ρdndσ =
ˆ
ψp

ρdψ dn
dψdσ = dψ

ˆ
ψp

ρ
1−$2Ωα

geff
dσ, (1.66)

with dσ an isobar surface element de�ned by

dσ = r2 sin θdϕdθ
cos ε with cos ε = − geff · r

|geff | · |r|
= 1√

1 + 1
r2

(
dr
dθ

)2
, (1.67)

where r = r(p, θ) is the radius of an isobar (for simplicity we have omitted the θ-dependence),
and ε is the angle between the e�ective gravity and the vector n perpendicular to an isobar.
Since ρ(1−$2Ωα) is constant over an isobar, it simply follows that

dψ
dmp

= 1
ρ(1−$2Ωα)

1
Sp
〈
g−1

eff

〉 , (1.68)

where Sp is the surface of the isobar and we have de�ne the average 〈·〉 of a quantity f over
an isobar as

〈f〉 = 1
Sp

ˆ
ψp

fdσ. (1.69)

Coming back to the hydrostatic equilibrium, using Eqs. (1.64) and (1.68), it now reads

hydrostatic equilibrium:
∂p

∂mp
= dp

dψ
∂ψ

∂mp
= − 1

Sp
〈
g−1

eff

〉 = −Gmp

4πr4
p

fp, (1.70)

where we have introduce a two new quantities: rp and fp. The �rst is de�ned as the radius
of a sphere such that its volume equals the volume Vp enclosed in an isobar:

Vp = 4π
3 r3

p. (1.71)

The second quantity is

fp =
4πr4

p

Gmp

1
Sp
〈
g−1

eff

〉 . (1.72)

The new expression of the hydrostatic equilibrium is almost identical to the non-rotating case.
The gradient ∂p/∂mp and the mass mp do not depend on θ, therefore the right hand side must
only depend on one coordinate: the radius. The computation of fp needs the knowledge of geff
and rp in two dimensions in order to compute the averages but fp needs to be evaluated at
only one colatitude. Fig. 1.4, le� panel, represents the value of fp computed in a 1.5M� model
rotating at around 41% of the surface Keplerian break-up velocity. The value of fp is very
close to unity but reaches 0.89 at the surface, which marks an important deviation from the
1D solution. This is also coherent with the value of the relative di�erence between the surface
of a sphere of radius rp and the surface of the isobar Sp, represented in the right panel. The
closer we are to the surface, the larger the relative di�erences are.
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Figure 1.4: Model of mass 1.5M� and an age of 1000 Myr with an initial disk lifetime of τdisk = 5 Myr
and period of the disk Pdisk = 3 Myr. The angular velocity is around 42% of ΩK,surf (∼ 44% in the core
and ∼ 40% at the surface). The dashed vertical black lines represent the location of the top limit (resp.
the bottom limit) of the core (resp. envelope) convective zone. Le�: value of fp − 1, fT /fp − 1, fT − 1
and fd − 1 as a function of the radius along θm. The �rst two almost superimpose, therefore fT /fp − 1
is plotted as a dashed line in order to distinguish it from fp − 1. Right: Relative di�erence between the
surface of a sphere of radius r(θm) and the surface of the isobar located by p as a function of the radius.
The quantity 4πr(θm)2/Sp − 1 changes sign at the location indicated by the dotted vertical black line.
Here, we plotted the log of its absolute value, which explains the sharp glitch at this location.

1.2.3 Conservation of mass

Let dVp be the element of volume comprised between two isobars (Meynet & Maeder, 1997;
Palacios, 2013):

dVp =
ˆ
ψp

dndσ = dψ
ˆ
ψp

dn
dψdσ = dψ

ˆ
ψp

1−$2Ωα
geff

dσ = dψSp
[〈
g−1

eff

〉
−
〈
g−1

eff $
2
〉

Ωα
]
. (1.73)

Using Eq. (1.68), we obtain

mass conservation:
∂rp
∂mp

= 1
4πr2

pρ̆
. (1.74)

Doing so, we have de�ned ρ̆, the mean density in the volume between two in�nitely close
isobars. This quantity is not equal to average quantity over an isobar ρ de�ned in Eq. (1.49).
In a spherical star, the density found in the mass conservation equation, for instance in Eq.
(1.8) is also this mean density between two in�nitely close spherical surfaces. However, in this
particular case, it is also the average density over a spherical surface, because of the spherical
symmetry. In our case, since the star is deformed by the centrifugal acceleration, two isobars
are closer near the pole than near the equator. Therefore, ρ̆ 6= ρ. Following Eq. (1.73), ρ̆ is
formally de�ned as

ρ̆ =
ρ
(
1−$2Ωα

) 〈
g−1

eff

〉
〈
g−1

eff

〉
−
〈
g−1

eff $
2
〉

Ωα
= ρfd with fd =

(
1−$2Ωα

) 〈
g−1

eff

〉
〈
g−1

eff

〉
−
〈
g−1

eff $
2
〉

Ωα
. (1.75)

It shall be noted that ρ̆ is also not equal to ρ̄ de�ned by the Legendre decomposition of Eq.
(1.48). The value of fd for a 1.5M� model is represented in Fig. 1.4, le� panel. Among the
quantities plotted in this panel, this is the one that is the closest to one.
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1.2. The Modi�ed structure equations in the case of shellular rotation

In our model, we assume that the convective zones either have a uniform angular velocity
(see Eq. (2.122)) or have a uniform speci�c angular momentum distribution (see Sect. 2.7.3).
These assumptions are not correct. As we will see in Chapter 4, the convective zone of the Sun
is di�erentially rotating in latitude and radius. However, we assume these pro�les for the sake
of simplicity because these distributions satisfy the conditions for a shellular rotation. The
model used in Fig. 1.4 was computed with a uniformly rotating convection zone. Therefore,
in those regions, fd = 1. Indeed, fd depends on the gradient of angular velocity through
α = |dΩ/dψ|, which is zero in the convection zones. The only discrepancies between fd and
unity are purely numerical.

1.2.4 Conservation of energy

The net energy �owing from a volume comprised between two in�nitely close isobars is:

dLp =
ˆ
ψp

ερdndσ = dψ
ˆ
ψp

ερ
dn
dψdσ, (1.76)

where we introduced ε = εnucl + εgrav − εν the net energy production rate in the shell de�ned
in Eq. (1.29). Making use of Eq. (1.65), it follows

dLp = dψ
〈
ε

geff

〉
Spρ(1−$2Ωα), (1.77)

and using again Eq. (1.68),

energy conservation:
∂Lp
∂mp

=

〈
(εnucl + εgrav − εν)g−1

eff

〉
〈
g−1

eff

〉 . (1.78)

We do not have a simple way of calculating the average of the energy generation rates
over an isobar. Meynet & Maeder (1997) proposed to use the 0th-order term in the Legendre
decomposition of T and ρ and approximate 〈εi〉 by εi(ρ, T ). However, energy generation rates
have been de�ned by integrating over a small volume. Therefore, it would be more appropriate
to use mean density ρ̆ and temperature T̆ in the volume between two in�nitely close isobars.
As we do not have a simple expression for T̆ we will use〈

(εnucl + εgrav − εν)g−1
eff

〉
〈
g−1

eff

〉 ' εnucl(ρ̆, T ) + εgrav(ρ̆, T )− εν(ρ̆, T ). (1.79)

This leads to:

simpli�ed energy conservation:
∂Lp
∂mp

= εnucl(ρ̆, T ) + εgrav(ρ̆, T )− εν(ρ̆, T ). (1.80)

1.2.5 Energy transport

As in Sect. 1.1.1, the temperature gradient can be written in a general way

dT
dmp

= ∂p

∂mp

dT
dp . (1.81)

Using the ∇ notation and injecting Eq. (1.70) in Eq. (1.81) we obtain:

dT
dmp

= −Gmp

4πr4
p

fp
T

p
∇, (1.82)

where once again the only di�erence with Eq. (1.10) is the factor fp. The next step is to �nd an
expression for ∇. The reasoning follows the same steps as for the standard energy transport
equation but this time with averaging over isobars.
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In a radiative medium

Eq. (1.12) expressed with Eq. (1.65) and (1.68) yields

F = −4acT 3

3κρ
dT
dn = −4acT 3

3κ
dT

dmp

〈
g−1

eff

〉
Spgeff . (1.83)

We may think that we implicitly supposed that ∇T ‖ geff . However, this is not true: dT/dn
depends on dT/dmp. If we had ∇T ‖ geff , then dT/dmp would depend only on the pressure,
not on latitude. But this is not true because, in general, isotherms cross isobars, thus cross iso-
geff . And by integrating this �ux over an isobar, one retrieves an expression for the luminosity

Lp = −4ac
3
〈
g−1

eff

〉
S2
p

〈
T 3geff

κ

dT
dmp

〉
, (1.84)

leading to a modi�ed expression of the radiative gradient:

∇rad,p = 3κ
16πacG

p

T 4
Lp
mp

fT
fp

= ∇rad
fT
fp

with fT =
(

4πr2
p

Sp

)2 1
〈geff〉

〈
g−1

eff

〉 . (1.85)

The values di�erences between fT or fT /fp and unity are represented in Fig. 1.4. The quantity
fT −1 is almost 2-3 orders of magnitude below fp−1, which explains that |fT /fp−1| ' |fp−1|.

In a convective medium

In a convection zone, one has locally

d lnT
d ln p = ∇conv, (1.86)

where ∇conv is obtained from a model of convection. Averaging over an isobar,〈d lnT
d ln p

〉
= 〈∇conv〉 . (1.87)

In convective zones, the chemical composition is the same everywhere because of the very
e�cient mixing and we can write the following approximations:〈

T 3geff

κ

dT
dmp

〉
' T

3 〈geff〉
κ(ρ̆, T )

dT
dmp

, (1.88)

〈d lnT
d ln p

〉
' d lnT

d ln p , (1.89)

〈∇conv〉 ' ∇conv(ρ̆, T ). (1.90)

Finally,

energy transport:
∂T

∂mp
= −Gmp

4πr4
p

fpmin
[
∇conv,∇rad

fT
fp

]
. (1.91)

In this equation, the min(·, ·) operator plays the role of the Schwarzschild criterion. This
expression states the radiative equilibrium on average over an isobar, whereas Eq. (1.83) shows
that the local radiative �ux depends on latitude through geff(p, θ) and therefore its direction
varies over an isobar.
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It is also interesting to go back on the equation of motion (1.21) derived for a displaced
parcel of material in a stellar interior. In the case of rotating star, an additional term must be
added to the equation related to the additional rotation motion experienced by the parcel. Eq.
(1.21) becomes

d2r

dt2 + g

ρp
(ρp − ρs)−$

(
Ω2

p − Ω2
s

)
= 0. (1.92)

Hence, the linearised equation of motion (1.22) now reads

d2r

dt2 +
[
g

ρ

(
dρp

dr

∣∣∣∣
r0

− dρs

dr

∣∣∣∣
r0

)
+ 1
$3

d$4Ω2

d$ sin θ
]

(r − r0) = 0, (1.93)

where we used ($4Ω2
p −$4Ω2

s )/$3 ' 1
$3

(
d$4Ω2/d$

)
($ −$0). The term in square brackets

de�nes a new expression for the Brunt-Väisälä frequency that incorporates the e�ect of the
angular momentum distribution (Wasiutynski 1946)

N2 = gδ

Hp
(∇ad −∇) + gϕ

Hp
∇µ + 1

$3
d$4Ω2

d$ sin θ = N2
T +N2

µ +N2
Ω sin θ, (1.94)

and allows us to write:

Solberg-Høiland criterion: N2
T +N2

µ +N2
Ω sin θ < 0, (1.95)

where N2
Ω is called the Rayleigh-Taylor frequency or the epicyclic frequency. The angular

momentum has a stabilizing e�ect when d$4Ω2/d$ > 0 (or, equivalently, N2
Ω > 0), which is the

case in general. When N2
Ω < 0, the angular momentum distribution can destabilize the medium

if it overcomes the e�ects of N2
T and N2

µ . If so, it gives rise to the Rayleigh-Taylor instability,
described in 5.1.1.

Eqs. (1.70), (1.74), (1.80) and (1.91) form the new structure equations system in case of shellular
rotation:

∂rp
∂mp

= 1
4πr2

pρ̆
,

dp
dmp

= Gmp

4πr4
p

fp,

∂T

∂mp
= Gmp

4πr4
p

fpmin
[
∇conv,∇rad

fT
fp

]
,

∂Lp
∂mp

=

〈
(εnucl + εgrav − εν)g−1

eff

〉
〈
g−1

eff

〉 ,

(1.96)

where ∇conv stands for the gradient in the convective zone, which should be prescribed by a
convection theory.

Finding a way to keep a one dimensional form for the baroclinic structure equations without
the shellular approximation is a task that remains to be done, and may not even be possible.

31





Chapter 2

Transport of angular momentum in
radiative zones

Il faut beaucoup de chaos en soi pour faire surgir une
étoile qui danse.

Nietzsche
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2.7.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A star is not strictly speaking isolated because, a�er its formation, it can exchange angular
momentum (am in the following) with a residual accretion disk or loose some through stellar
winds. Such processes extract am from the upper regions of the star and need to be taken
into account into the modelling because they determine the angular velocity at the surface. In
the rest of the stellar interior, am can be transported by various processes. It has been said
in the introduction that one of the major problems of rotation is that it induces a transport
of chemicals and it perturbs our estimation of stellar ages. The issue is less important in
convective zones because here, chemicals are very well mixed by convective motions. In such
regions, the rotation pro�le can be prescribed, either from observations or from models. In
the radiative zone, one of these mechanisms is the advection of am by a large scale stream,
called the meridional circulation. If the transport of am leads to sharp gradients of angular
velocity, the shear can become su�ciently strong to overcome the stabilizing e�ect of the
strati�cation and creates instabilities. The shear-induced turbulence results in the di�usion of
angular velocity.

The mechanisms of transport of am mentioned above are going to be discussed in this
Chapter. They are now implemented in a many 1D stellar evolution codes, with the simplifying
assumption that the star is spherical. However, while the meridional circulation advects am,
it is o�en modelled as a purely di�usive process (e.g. Paxton et al., 2019). During this PhD, I
implemented the model described in this Chapter by relaxing the hypothesis of sphericity and
by e�ectively modelling the action of the meridional circulation as an advection.

2.1 Losses of angular momentum

2.1.1 Disk magnetic braking

The path from a molecular cloud to a rotating star is not a simple process. Any molecular cloud
has a non zero am. If the material would collapse straight onto the protostar, by conservation of
am, the angular velocity would become extremely high and the centrifugal acceleration would
overcome gravity by several orders of magnitude. The same can be said for the magnetic �eld.
The collapse would concentrate the magnetic �eld and increase the magnetic pressure which
would also overcome gravity. However, stars do form. There must therefore exist mechanisms
that prevent am and magnetic �elds to concentrate into the collapsing cloud. In reality, the
gas does not fall directly to the centre but forms an accretion disk. At the beginning of the
accretion, the disk is optically thick and is called a Class 0, Young Accreting Protostar.1

Once the disk becomes su�ciently thin, the accretion rate decreases and becomes negligible.
This is the beginning of the pms and such a star is called a Classical T Tauri Star (ctts). Despite
all the angular momentum and magnetic �elds extracted during the accretion process, ctts are
fast rotators with intense magnetic �elds. The strong magnetic �eld is sustained by a dynamo
e�ect caused by the interaction between rotation and convection. Bouvier et al. (1997) have
proposed the model of disk locking, suggesting that due to Alfvén’s frozen-in theorem, the
magnetic �eld lines that spread across the outer convective zone and the disk force them to
co-rotate as a solid body. During this phase, the ctts is still contracting but the disk locking

1We are not even on the pre-main-sequence. André (2002). As long as the rotation velocity of the inner layers
increases, they transfer part of their am (and magnetic �eld) to the outer layers due to the turbulent viscosity of
the disk. With the am being slowly transported from the central layers to the outer ones, the gas slowly spiral and
accrete to form a star.
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allows the star to transfer a large amount of angular momentum to the disk. The remaining
disk dissipates itself by forming planets and the star unlocks from the disk.

Typical disk lifetimes τdisk can be estimated from observational data (e.g. Czekala et al.,
2019) to be between 0.1 Myr to 10 Myr, with a median of 3 Myr, and a Keplerian rotation
period Pdisk of 1 to 10 d. It seems coherent with observations that are starting to be possible
using radio interferometry. Czekala et al. (2019) studied the disks around binary systems with
Pdisk ∈ [1; 103] d but fast rotating disks (Pdisk < 50 d) are less than 0.2 a.u. from their host
star, while slowly rotating disks (Pdisk > 50 d) were above 1 a.u. and up to 100 a.u., suggesting
that slow and far disks may be magnetically decoupled from the host star. Apart from a few
outliers, all the systems considered in their sample were less than 10 Myr old.

2.1.2 Stellar winds

A�er the decoupling between star and disk, a magnetic �eld remains. The magnetic �eld
maintains a hot corona and the hotter material is blown away into the interplanetary medium
to form the so-called stellar winds. Solar winds have �rst been theorized by Eugene Parker
in 1958 (Parker, 1958) and then predicted in ctts (Kuhi, 1964, 1966). In order to understand the
behaviour of the stellar wind and the associated am transport, it is interesting to introduce a
quantity called the Alfvén radius rA. The Alfvén radius is de�ned as the location where the
magnetic pressure equals the kinetic energy density of the wind. Between the corona and rA,
the dynamics are dominated by the magnetic �eld and the wind follows the magnetic �eld
lines. Above rA, it is the magnetic �eld lines that are carried by the wind. This wind also
carries an amount of am associated to a lever arm equal to the Alfvén radius (Weber & Davis,
1967). In order to provide a law for the amount of am lost by a star as a function of relevant
parameters, we shall see how magnetism and rotation are linked.

An important stellar magnetic activity induces a higher ratio of X-ray luminosity to the
bolometric (total) luminosity. Therefore the ratio RX = LX/Lbol can be used as a proxy of
stellar activity. On the other hand, the e�ciency of the dynamo e�ect can be estimated
through a dimensionless number called the Rossby number Ro = Prot/τ , with Prot the surface
rotation period of the star and τ the convective turnover time, i.e. the time it takes for a parcel
of material to rise from the bottom of the outer convective zone to reach the surface and then
go back to the bottom. This number measures the interaction between rotation and convection.
A high Rossby number is associated to a slow rotator. Measurements and comparisons of RX
and Ro have been performed by many authors in �eld stars or open cluster2 stars (e.g. Wright
et al., 2011; Núñez et al., 2015). They have shown that for Ro greater than a certain threshold
Rosat, RX ∝ Roβ , with β < 0. Below this threshold, RX remains constant equal to RX,sat. It
means that, for a reason yet to be understood, above a certain angular velocity of saturation
Ωsat, the dynamo e�ect saturates. Many authors have proposed laws based on this saturation
feature. The �rst of them, and the simplest was proposed by Kawaler (1988). The am dJ /dt
lost by a wind that co-rotates with the star up to a radius rA is, for Ω < Ωsat,

dJ
dt = −KWΩ3

(
R

R�

)1/2 ( M

M�

)−1/2

, (2.1)

and for Ω > Ωsat,

dJ
dt = −KWΩΩ2

sat

(
R

R�

)1/2 ( M

M�

)−1/2

, (2.2)

2An open cluster is a cluster of young stars that are loosely linked by gravity. The interesting point for stellar
physicists is that these stars are formed from the same molecular cloud and, therefore, they have the same chemical
composition and the same age.
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where KW ' 6.5 · 1047 g cm−2 is a free parameter, adjusted to observations, M and R the mass
and radius of the star. The value of Ωsat is not precisely prescribed and is o�en taken to be 8Ω�

To summarize, at the beginning of its formation, the star is magnetically coupled with its
disk and its outer convective zone is forced to co-rotate with the disk, with a constant angular
velocity during the disk lifetime. A�er a few million years, the disk becomes sparse enough so
that the star decouples. Since it is still contracting, the angular velocity increases and possibly
exceeds the saturation velocity. The faster the star rotates, the more e�cient magnetic breaking
is. With the combined action of magnetic braking and of the end of the contraction phase, the
star starts to slow down. In order to see how surface rotation evolves during Main Sequence
(ms), one can write Eq. (2.1) assuming that there is no contraction or dilation. In this case the
moment of inertia I , the total radius R and total mass M are constant and the am variation
rate reads

dJ
dt = dIΩ

dt = I dΩ
dt = −KWΩ3

(
R

R�

)1/2 ( M

M�

)−1/2

= −kΩ3. (2.3)

By setting Ω0 the initial angular velocity, the solution as a function of time of this equation
immediately follows:

Ω(t) =
√

1
2 kI t+ Ω−2

0
∝ t−

1/2. (2.4)

The decrease of angular velocity as an inverse square root of time is called the Skumanich’s law
(Skumanich, 1972). It shall be noted that as t increases, Ω(t) becomes less and less impacted by
the initial condition. This means that a�er around 1 Gyr, all stars have their surface rotating
with the same velocity, regardless of the initial angular disk period and lifetime. As the star
leaves the main sequence and its upper layers start dilating, surface angular velocity drops
dramatically. Indeed, Fig. 2.1 shows models with the same disk lifetime but with di�erent
initial disk periods. These models have extremely di�erent surface angular velocity during the
pms but quickly reach a value close to the one predicted by the Skumanich law. More complex
models have been obtained by �tting power law similar to Eqs. (2.1) and (2.2) on loss of am

computed using 3D MHD simulations which account for non-ideal (not open or dipolar �eld)
magnetic �eld geometry (Matt et al., 2015). They lead to very similar results, except in fast
rotating phase a�er the disappearance of the disk. However, at the moment, observations are
not precise enough to constraint the di�erent models.

2.1.3 Coronal mass ejections

Another candidate has recently been brought up as a mechanism of loss of am. While stars lose
am through stellar winds in a continuous way, at least some of them also experience highly
energetic eruptions called coronal mass ejections (cme) that expel material (and therefore am)
into interplanetary space in a very short time. As for now, am loss by cme has only been
studied through order of magnitude considerations. In particular, the e�ciency of cme am-loss
is studied by comparing the characteristic spin-down time of stellar wind and cme with the
characteristic time of angular velocity evolution caused by contraction or dilation of the star.
Those studies have estimated mass-loss and am-loss using Kepler ’s measurements of �ares
(sudden increase of luminosity) emission frequencies and cme-�are association distributions
(Aarnio et al., 2012, 2013). These authors found that in case of the Sun, cme am-loss could
represent 10% of the am lost by solar wind. For ctts, they estimate the cme mass-loss to be
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Figure 2.1: Surface angular velocity as a function of stellar age. Models are computed with a disk lifetime
of 5 Myr and a period of the disk of 3 days (orange) and 10 days (blue). The am loss is computed
for 2 models: Kawaler (1988) (solid lines) and Matt et al. (2015) (dashed lines). The angular velocity
predicted by the Skumanich law with initial angular velocity of 4×10−5 rad s−1 is represented as a black
dotted-dashed line.

around 4% of the wind mass-loss. However, due to their very strong magnetic �eld, their Alfvén
radius is much farther, so the amount of am-loss could be much higher. These estimates are to
be taken with caution because part of the data used are obtained from extrapolated data of the
Sun. Furthermore, strong biases tarnish the measurement of the distribution of cme frequency
as a function of their energy because low-energy cmes are not seen but are numerous. In
stars other than the Sun, the occurrence of cmes is inferred by the detection of �ares. But not
all �ares are associated with cme and the knowledge of the �are-cme association probability
still su�ers from many uncertainties (Odert et al., 2017; Odert et al., 2020). Eventually, in the
case of the Sun, cme are much more frequent during the high activity phase of the solar cycle.
However, not all stars display an activity cycle pattern (Brandenburg, 2020), therefore it would
be interesting to know if cme am-loss would have an impact on those stars.

2.2 From the Von-Zeipel theorem to the meridional circulation

Let us write again the baroclinic equilibrium equation. We take the curl of Eq. (1.50) and the
new equation states the conservation of vorticity ω = ∇× v:

∂ω

∂t
+ (u ·∇)ω = [(ω ·∇) u− ω · (∇ · u)] + ∇p×∇ρ

ρ2 + 1
2∇Ω2 ×∇ (r sin θ)2 . (2.5)

We recognize, from le� to right, the time variation of vorticity, the advection of vorticity,
the stretching of vorticity by shear, the stretching of vorticity due to �uid compressibility
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and then the so-called baroclinic torque and the curl of the centrifugal acceleration (Ouazzani,
2011). By assuming that in the radiative zone, u and ω are small, the terms (u ·∇)ω and
[(ω ·∇)ω − ω · (∇ · u)] are 2nd-order terms and can be neglected. Doing so, one obtains a
simpli�ed equation for the time variation of vorticity:

∂ω

∂t
= ∇p×∇ρ

ρ2 + 1
2∇Ω2 ×∇ (r sin θ)2 . (2.6)

Since we consider only steady state solutions, ∂tω = 0. Furthermore, recalling that the last
term of the right hand side is the cylindrical derivative of Ω2: r sin θ∂Ω2/∂zeϕ, with z the
coordinate along the rotation axis, we obtain the crucial baroclinic equilibrium

∇p×∇ρ

ρ2 = r sin θ∂Ω2

∂z
eϕ. (2.7)

Any change in the density or pressure pro�le automatically translates into a change of the
z-gradient of Ω. Any change in the z-gradient of Ω automatically translates into a change of
the pressure and density pro�les.

In the radiative zone of a non-rotating star, we have seen with Eq. (1.12) that the radiative
�ux is proportional to dT/dr. It means that the radiative �ux is constant over spherical surface
and therefore is perpendicular to it. Let us now consider the radiative zone of a star in
solid-body rotation (therefore barotropic). We have shown that the radiative �ux has a slightly
di�erent form and in particular is not constant any more over a spherical surfaces or isobars.
This is seen if we express ∇U in (1.12) with respect to the gravito-centrifugal quasi-potential
ψ:

Fr = −χdT
dψ∇ψ with χ = 4acT 3

3κρ , (2.8)

where χ is the thermal di�usivity. In this case, Fr is parallel and proportional to ∇ψ since
χdT/dψ is constant over an isobar. Consequently, a change in T or any other quantity enclosed
in χ will only change the averaged value of Fr, not its direction. The radiative �ux can simply
be expressed in terms of the e�ective gravity geff :

Fr = χ
dT
dψgeff . (2.9)

This expression was �rst derived by von Zeipel (1924) for barotropic stars. At the poles, the
iso-ψ are closer to one another, in other words, the e�ective gravity and the radiative �ux are
larger. This e�ect is called the gravity darkening. To go further, let us write the divergence of
the radiative �ux in a layer, which expresses the local energy conservation:

∇ · Fr = − d
dψ

(4acT 3

3κρ
dT
dψ

)
︸ ︷︷ ︸

(i)

(∇ψ)2

︸ ︷︷ ︸
(ii)

−
(4acT 3

3κρ
dT
dψ

)
︸ ︷︷ ︸

(iii)

∇2ψ︸ ︷︷ ︸
(iv)

= ρε(ρ, T )︸ ︷︷ ︸
(v)

. (2.10)

The divergence of the radiative �ux equals the production of energy ρε in the layer. In solid-
body rotating stars, isobars coincide with isopycnals and iso-ψ. In this case, terms (i), (iii)
are constant on isobars because ∇T ‖ ∇ψ. Term (iv) is constant in case of barotropicity and
uniform rotation (see Eq. (1.58) and the Poisson equation). In the right hand side, ε depends
on density and on the temperature, therefore is also constant on isobars. We are le� with
term (ii) which is not constant, even for a cylindrical rotation pro�le, because the direction and
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the value of ∇ψ varies over an isobar. To summarize, we have a not constant le� hand side
equaling a constant right hand side ! This is the so-called Von Zeipel paradox.

In order to overcome this paradox, von Zeipel (1924) suggested that there should be heating
and cooling at di�erent regions on the same isobars. This means that equation for energy
conservation is satis�ed on average over an isobar (i.e. 〈∇ · Fr〉 = 〈ρε〉, where 〈·〉 stands for
the isobar averaging), but not locally. In the case of cylindrical rotation, it results into polar
regions becoming hotter than the equatorial region3. The gravity darkening can be used to
test Von Zeipel theorem and more generally model predictions (Ohishi et al., 2004; Domiciano
de Souza et al., 2005; Bouchaud et al., 2020). The original Von Zeipel theorem was derived
assuming a constant angular velocity. This assumption was found to overestimate the variation
of e�ective temperature with latitude (Lovekin et al., 2006; McAlister et al., 2005; Zhao et al.,
2009). Von Zeipel-like laws accounting for baroclinicity lead to a much better agreement
between observation and theory (Espinosa Lara & Rieutord, 2011). It shall be stressed that the
previous reasoning only holds in the radiative region of a star. In a convective zone, as we
have seen in Chapter 1, the thermal �ux takes a di�erent form and therefore, the formulation
of the Von Zeipel theorem is not identical to the one in the radiative zone (Lucy, 1967).

The implications of Von Zeipel theorem are of crucial importance in stellar physics. Soon
a�er Von Zeipel published his paper, Eddington (1925) and independently Vogt (1925) proposed
the following picture. Let us imagine a star in radiative equilibrium, isotherms equal isobars.
Then suddenly, rotation is enforced and Von Zeipel’s theorem applies. What happens? We have
seen that di�erent locations on the same isobar are heated or cooled di�erentially. Temperature,
density and pressure being linked through an equation of state, the heating and cooling modi�es
the direction of ∇p and ∇ρ which creates a baroclinic torque and therefore creates a gradient
of Ω in the z direction, breaking barotropicity. In other words, barotropicity, even if assumed as
initial state, cannot be sustained and baroclinicity settles. To easily see that, one may imagine
the caricatural situation where isopycnals are not only inclined to isobars but perpendicular
(see Fig. 2.2). In this case, on the same isobar, the �uid goes from heavier to lighter as we move
to the right in Fig. 2.2. As on a weighing scale, the �uid leans to the le�, creating vorticity.

isobar

isopycnal

ρ1 ρ2 < ρ1

Figure 2.2: Extreme case of isobar perpendicular to isopycnals. Density decreases from le� to right.

The later work of Sweet (1950) gave a more formal description assuming a steady circulation

3Although, inside the star, it may not be the case.
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in an inviscid �uid, with no magnetic �elds, which allowed him to estimate a characteristic
time-scale over which equilibrium is restored. They are called Eddington-Sweet (herea�er es)
circulation and time-scale. A simple expression for the velocity U of this circulation is derived
by Sweet (1950) as

U ∝ 1
∇ad −∇+ φ

δ∇µ
LR5Ω2

G2M3 ∝
LR5Ω2

G2M3 , (2.11)

and the es time-scale is de�ned as the time needed for this circulation to cover a distance of
a stellar radius:

tES = R

U
' G

2M3

LR4Ω2 ' tKH
GM

Ω2R3 , (2.12)

with tKH = GM2

RL the Kelvin-Helmholtz time-scale corresponding to the time needed for a star
to radiate with a luminosity L all its gravitational energy (it is for instance the characteristic
time-scale of the pms phase). The time-scale tES is the time needed to reach a steady state
a�er a contraction or dilation of the star. For slow rotators, tES � tKH and therefore, the es is
too slow to adapt to a change in the structure. However, for rapid rotators, tES ' tKH meaning
that a steady state is reached on a Kelvin-Helmholtz time-scale. Few years a�er Sweet (1950),
Mestel (1953) showed the stabilizing e�ect of µ-gradient to the es circulation. Its e�ect can be
seen in Eq. (2.11) where an increase in ∇µ decreases U and therefore increases tES.

However, Sweet’s solution of meridional circulation has some caveats that have been pointed
out by Busse (1981) (and later Busse 1982) in a paper asking the question Do Eddington–Sweet
circulations exist?. Eddington-Sweet circulation advects angular momentum but if tES is larger
(or comparable) to the stellar lifetime, it can be considered that the amount of angular momen-
tum advected is so small that the es circulation corresponds to a steady state. It has already
been said that this is not veri�ed for rapid rotators, but Busse (1981) actually showed that the
solution of the es circulation breaks down on a much shorter time scale, incompatible with the
assumption of a steady state. Assuming an inviscid star with an es circulation as initial state, he
showed that, owing to the little deviation in angular velocity due to the non-local conservation
of am, an extra centrifugal force develops, rapidly overcoming the pressure and slowing down
the es circulation in a time of order the rotation period: ∼ (2Ω)−1. To completely understand
meridional circulation, Busse’s idea was that the am advected by the circulation should be bal-
anced by the angular velocity di�used by any force (magnetic forces or shear-induces viscous
stresses).

This idea was exploited �rst by Zahn (1992) who proposed that, due to the stable strat-
i�cation of the radiative zone, horizontal di�usion caused by the shear turbulence would be
much stronger than the vertical one. In his formalism, quantities were decomposed in Legendre
series, only up to the 2nd order Legendre polynomial (in the same way as in Eqs. (1.47) and
(1.48)), with a simpli�ed equation of state and neglecting the µ-gradients. Zahn (1992) couples
the baroclinic equation to provide an expression for the �uctuations of density and gravity
on isobars, the equation of transport of am to ensure its conservation and the equation of
transport of energy. These hypotheses (except the order of the development) were relaxed
by Maeder & Zahn (1998). Mathis & Zahn (2004) later developed the equations to provide
solutions for the meridional circulation and the transport of angular momentum for any order
in the decomposition in Legendre polynomials. Soon a�er, Mathis & Zahn (2005) introduced
the e�ect of an axisymmetric magnetic �elds balancing the am advected by meridional circu-
lation. This work is motivated by observations that tend to show that magnetic �elds can be
found in a large variety of main-sequence stars (see Donati & Landstreet, 2009, for a review).
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cestam does not support modelling of magnetic �elds, therefore I have only implemented the
formalism of Mathis & Zahn (2004) for any degree `, described in Sect. 2.6. The equations
for the transport of am are described in Sect. 2.7. But �rst, I will describe the modelling of
shear-induced turbulence.

2.3 Shear-induced turbulence

Stellar radiative zones are prone to many magneto-hydrodynamic (mhd) instabilities. Those
instabilities do not occur on the same characteristic time-scales and will be detailed in Sect.
5.2. However, one of them acts on a shorter time-scale and is much more e�cient. In ra-
diative zones, the settlement of meridional circulation increases the shear between successive
layers. If the stabilizing e�ect of stable strati�cation is overcome, the shear can induce the well
known Kelvin–Helmholtz instability (see, for instance, Davidson, 2013). The criterion setting the
threshold for the Kelvin-Helmholtz is known as the Richardson criterion for instability which
compares buoyancy to shear. Let us imagine a small parcel of material rising from a layer of
depth z and velocity U to another layer of depth z + δz and velocity U + δU . At this new
location, the parcel has a di�erence of density ∆ρ with its surrounding. If the di�erence of
velocity ∆U were to be 0, we have seen that the parcel oscillates around an equilibrium posi-
tion and the the motion is stable (we are in a radiative zone). The gradient of density d∆ρ/dz
can be seen as a potential barrier. However, if the the velocity di�erence is su�ciently high,
it can overcome the potential barrier and instead of oscillating, the parcel diverges, leading
to an instability. In 1920, under these conditions, Lewis Richardson proposed a criterion for
instability of the form

Ri ≡ g

ρ

d∆ρ/dz
(dU/dz)2 <

1
4 , (2.13)

and Ri being the Richardson number. This criterion is known as the Richardson criterion.
The threshold 1/4 was derived by Taylor (1931), although the value of the critical Richardson
number Ricrit is subject to question since numerical simulations have shown that instabilities
may occur with Ri ' 1.0 (Brüggen & Hillebrandt, 2001). Indeed, a solid estimation of Ricrit
requires a theory of turbulence which is lacking (Maeder, 1995; Canuto, 2002). In any case, this
criterion is almost never met because in general d∆ρ/dz � dU/dz. We also recognize in the
expression (2.13) the thermal component of the Brunt-Väisälä frequency N2

T ≡ (g/ρ)d∆ρ/dz,
de�ned in Eq. (1.23). Furthermore, other stabilizing or destabilizing e�ects such as the energy
lost through radiation by the turbulent �ow (Townsend, 1958) could also be taken into account
in the expression of Ri. Zahn (1992) derived a new criterion:

N2
T

(dU/dz)2
vl

K
< Ricrit, (2.14)

where v and l are the velocity and the size of an eddy in the turbulent �ow behaving adiabat-
ically, and K is the thermal di�usivity. Let us expand the reasoning we made above with the
small displaced parcel of material, this time accounting for the thermal di�usivity. The term
vl could be seen as the kinetic energy per unit time and mass advected by the small parcel
and K corresponds to the ability of the material of losing energy by radiation. If K � vl, the
small parcel loses very little energy through di�usion, the sum of kinetic and potential energy
is conserved along its path and the parcel is pushed back to its equilibrium position. On the
contrary, K � vl amounts to saying that the transformation of the small parcel is not adia-
batic any more, which reduces the stabilizing e�ect of the stable strati�cation. The quantity
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Pe ≡ vl/K de�nes the Péclet number which measure the importance of the energy carried
by advection compared to the energy lost by radiation. This number is related to the shear
viscosity4. Rieutord (2015) gives ν = βv` with β = O(1), v is a characteristic velocity in the
direction of the shear and ` is the mean free path of particles in the �uid. In stellar radiative
interiors, taking criterion (2.14) leads to predicting much more turbulent regions than what
would have been obtained with (2.13). With a little more work it is also possible to include the
e�ect of the µ-gradients (Maeder, 1995).

The study of shear instabilities and especially its impact through turbulent viscosities and
di�usion coe�cients is of crucial importance. Indeed, shellular rotation is based on the as-
sumption that the horizontal di�usion coe�cient νh is large compare to the vertical one (νv).
With this assumption, any horizontal �uctuation of the angular velocity would immediately be
�attened up by horizontal shear and enforce shellular rotation (Zahn, 1992). This assumption is
supported by the fact that, in the rotating turbulent �ow, the vertical motions of the largest ed-
dies will be attenuated by the stable strati�cation. Moreover, shear instabilities also contribute
to the transport of chemicals inside the star, strongly in�uencing its evolution path.

A lot of prescriptions have been proposed for the di�usion and viscosity coe�cients. It
is o�en complicated to determine which one is the more physically correct. Some are based
on laboratory experiments with the risk of oversimplifying the processes operating in a star.
Some are supported by numerical simulations that can only reproduce turbulent �ows with a
Reynolds number very far from what can be reached in stars (see Kupka & Muthsam, 2017, for a
review). Sorting through all the di�erent prescriptions by comparing-models to observations
can be very tricky as we will see in Chapter 4, because the e�ects of a di�erent modelling
of turbulence is buried under layers of somewhat dubious modelling of rotation-related phe-
nomenon. As a side remark, if we wanted to be particularly rigorous, we should use viscosity
coe�cients νi in the angular momentum transport equation and di�usion coe�cients Di in the
chemical transport equations and we will keep these notations in this text. However, many
authors consider that νi ' Di (e.g. Talon & Zahn, 1997; Mathis et al., 2004, 2018).

2.3.1 A �rst approach (Zahn, 1992)

Zahn (1992) gave an estimate of νh, neglecting the µ-gradients and for small Péclet numbers,
i.e. for turbulent eddies with important radiation losses. Based on Eq. (2.14), Zahn (1992)
provides the following expression for the vertical turbulent viscosity created by the vertical
shear, averaged over an isobar:

νv,v = vl

3 = 8Ricrit

45 K

(
r

NT

dΩ
dr

)2
, (2.15)

where r is the radius of an isobar and rdΩ/dr is the shear, equivalent to the term dU/dz of
Eqs. (2.13) and (2.14). This shear was averaged over the colatitude θ to give expression (2.15).
Zahn (1992) also gives an expression for vertical turbulent viscosity created by the horizontal
shear. To reach such an expression, he �rst writes the rate of energy εt injected locally by the

4In the �uid dynamics literature, this quantity is o�en called the kinematic viscosity (for instance, see Feireisl
et al., 2016). For a �ow of velocity u = [ui(t,x)] and velocity gradient ∇xu = {∂xjui}Ni,j,=1, one can de�ne the
stress tensor S of this �ow by

S = µ
(
∇xu +∇Tx u− 2

3∇ · uI
)

+ η∇ · uI.

In this case, µ is termed the shear or dynamic viscosity and η the bulk viscosity, while the kinematic viscosity
ν = µ

ρ
∝ v` is what is called "shear viscosity" in stellar physics.
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2.3. Shear-induced turbulence

shear into the turbulent motions:

εt(r, θ) = νh

(
sin θ∂Ω2

∂θ

)2
, (2.16)

where Ω2 is the 2nd-order term of the angular velocity in the Legendre decomposition, and νh
is the horizontal turbulent viscosity created by the horizontal shear. Assuming that turbulence
follows a Kolmogorov’s law (e.g. Davidson, 2013), one can write v3/l ∝ εt. Furthermore,
Townsend (1958) proposed to write, in the case of a strati�ed region destabilized by radiation
v/l3 ' N2

T

K . Therefore, the local vertical turbulent viscosity created by the horizontal shear ν†v,h
is

ν†v,h '
vl

3 '
√
εtK

3N =
√
νhK

3N

∣∣∣∣sin θ∂Ω2

∂θ

∣∣∣∣ . (2.17)

To include this e�ect in a 1D stellar evolution code, one need to average it over isobars:

νv,h '
1
10

Ω
NT

(
K

νh

)1/2

r|2V2 − αU2| with α = 1
2

d ln r2Ω
d ln r . (2.18)

To be more rigorous, we must say that this formulation hides a multiplicative term, factor of the
whole expression. This constant is estimated to be of order unity by laboratory experiments
and this is why we did not write it. In Eq. (2.18), U2 (resp. V2) is the radial (resp. latitudinal)
component of the meridional circulation. The change from ∂Ω2/∂θ to a combination of U2
and V2 comes from the equation for the horizontal transport of angular momentum detailed
in section 2.7. We now only need to �nd an expression for νh. Despite the fact that it cannot
be derived from �rst principles, Zahn (1992) shows that the only way for the shellular rotation
approximation to be veri�ed is to consider that

νh = 1
ch
r|2V2 − αU2| with ch = 5Ω2

Ω
. (2.19)

This relation follows from the equation giving the 2nd-order term Ω2 of the angular velocity
(see Eq. (2.120)). Zahn (1992)’s modelling relies on the assumption that all the kinetic energy of
the turbulence is dissipated into heat through viscous stresses. One could argue, however, that
part of the energy is injected into gravito-inertial waves, or is lost through radiation because
of the small Péclet number hypothesis. But, Maeder (2003) have stressed many issues in this
formulation. First, Ω2 does not depends on νh, which is expected to be the case. Then, the
ratio Ω2

Ω is also independent of Ω, meaning that the �uctuations of angular velocity are always
the same, for low and fast rotators. Finally, Maeder (2003) showed that, for stars with low
metallicity, νh becomes of the same order as νv which would break the necessary conditions
for shellular rotation to exist. This last point is justi�ed in Sect. 2.6.

It is worth noting that Zahn (1992) adopts a local point of view on vertical di�usion in the
sense that the vertical coe�cients depend on local gradient or local Richardson number. It
means that the vertical shear in Zahn (1992)’s theory does not depend on properties of the
turbulence far from the region studied. This is only true if the shear-induced turbulence acts
on a small enough scale. If the characteristic scale of turbulent eddies becomes too important,
the di�usion properties in one point do not depend on the local properties of the medium only,
but mixes e�ects from a broader region.

2.3.2 Inclusion of Coriolis e�ects (Maeder, 2003)

The next decade has seen many re�nements of the Richardson criterion, with the attempt
of many authors to include the e�ects of µ-gradients (Maeder, 1995), to better estimate Ric
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(Brüggen & Hillebrandt, 2001; Canuto, 2002) and with the implementation of Zahn (1992)’s
theory of transport of angular momentum in stellar evolution codes (Meynet & Maeder, 1997;
Maeder & Zahn, 1998). In order to palliate the above shortcomings of Zahn’s theory, Maeder
(2003) proposed to focus on the characteristic time-scale τ on which a little excess of kinetic
energy is �attened by turbulence. Turbulence can be impacted by di�erential rotation, by the
radial or the latitudinal component of the meridional circulation, or by the Coriolis force. If the
last three are dominant, then τ '

√
r

Ω2V2
and

νh = A
√
r3Ω2V2 = Ar

(
rΩV2 (2V2 − αU2)

)1/3
, (2.20)

where A is a constant estimated to be less than 0.1. To obtain the last side of this equation,
Ω2 was replaced by the simpli�ed expression (2.121).

The vertical di�usion coe�cient incorporates the e�ects of µ-gradients (Meynet & Maeder,
1997) and of horizontal shear (Talon & Zahn, 1997):

νv = 2Ric
N2
T

K+νh
+ N2

µ

νh

(
r

dΩ
dr

)2
, (2.21)

where N2
T and N2

µ have been de�ned in Eq. (1.26). This expression has been widely used with
slight changes to the factor 2: Palacios et al. (2003) use 8

5 , Mathis et al. (2004) use 1, etc.

2.3.3 Prescription derived from laboratory experiments (Mathis et al., 2004)

The kind of �ow encountered in rotating radiative zones can be approached in a laboratory with
a Taylor-Couette �ow (Taylor, 1923). A Taylor-Couette apparatus is composed of two coaxial
cylinders separated by a gap with a viscous �uid �lling it. The two cylinders have a radius
r1 and r2 and can rotate at di�erent rotation rates Ω1 and Ω2 (for instance, see Davidson,
2013; Regev et al., 2016). Let us imagine that we start to rotate the inner cylinder with a
small angular velocity. Angular momentum is transferred to the �uid and rapidly, all the �uid
simply rotates di�erentially between the two cylinders. The angular momentum is r2

1Ω1 at
the inner cylinder and 0 at the other. Such a �ow where angular momentum is decreasing
with increasing radius (contrary to what is expected in stars) is subject to instabilities. Indeed,
Rayleigh criterion states that an axisymmetric rotating inviscid �uid is stable to turbulence if

1
r3

dr2Ω
dr ≥ 0. (2.22)

This criterion amounts to saying that the epicyclic frequency de�ned in Eq. (1.95) is positive. It
emerges from the linearised equation of motion written in Eq. (1.93), in the case of a unstrati�ed
�uid. In our case, since the �uid is not inviscid, for slow enough rotation, the �ow is stable.
However, above a certain threshold in Ω, turbulence starts to develop. The turbulent �ow takes
the form of axisymmetric steady poloidal vortices called Taylor’s vortices or Taylor cells (see
Fig. 2.3, picture a.). The total motion is a composition of the primary rotational motion and of
the poloidal vortices. Therefore, particles follow helicoidal trajectories. If Ω1 keeps increasing,
a new regime is reached where the Taylor vortices are composed to a wavy motion. These are
called wavy Taylor vortices (pictures b. and c.). Finally, a�er a third threshold, the �ow becomes
unsteady and turbulent but still resembles Taylor vortices when time-averaged (pictures d. and
e.).

Richard & Zahn (1999) made the assumption that in radiative zones, shear-induced tur-
bulence follow the same turbulent regime as in the Taylor-Couette �ow. In this case where
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2.3. Shear-induced turbulence

Figure 2.3: Flow in a Taylor-Couette apparatus. The rotation rate of the inner cylinder increases from
(a) to (e). See the text for a description of the �ow. Credits: Davidson (2013).

the turbulence is purely dominated by di�erential rotation, they measured that the turbulent
viscosity νt follows from:

νt = β$3
∣∣∣∣ dΩ
d$

∣∣∣∣ , (2.23)

with β = 1.5 ± 0.5 · 10−5 and $ = r sin θ is the distance to rotation axis de�ned in Eq. (1.51).
Using the Legendre decomposition, Mathis et al. (2004) proposed to write this viscosity

νt = βr3|Ω2| sin3 θ

∣∣∣∣dP2

dθ

∣∣∣∣ horiz. av.−−−−−→ νh = 1
2βr

2|Ω2| =

√
β

10r
2Ωr|2V2 − αU2|. (2.24)

As for the vertical shear coe�cient, Mathis et al. (2004) use Eq. (2.21) with a factor 1 instead
of 2 and Ric = 1

6 . Maeder (2003) and Mathis et al. (2004) reach rather similar results, although
the �rst one gives a little more weight to the e�ect of meridional circulation velocity in the
di�usion by shear.

2.3.4 E�ects of rotation and strati�cation (Mathis et al., 2018)

The most recent prescription of di�usion coe�cients was proposed by Mathis et al. (2018) who
tried to relate νh and νv to the characteristic dynamical time-scale of turbulence τ , i.e the time
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needed for turbulence to be damped. This approach somewhat resembles Maeder (2003)’s
who also tried to estimate the characteristic turbulent time-scale. In a general way, νv (and
the same for νh) can be written

νv ∝ uv`v = u2
vτ = `2v

τ
, (2.25)

where uv and `v are the characteristic velocity and distance in the vertical direction. Mathis
et al. (2018) follow a spectral method developed by Kitchatinov & Brandenburg (2012) in order
to express the ratio νv/νh. Their method allows us to express the velocity �eld u = [ur, uθ, uϕ]
of turbulence generated in a rotating stably strati�ed medium by assuming that the velocity
�eld u0 of turbulence in a non rotating strati�ed �uid is known. Skipping the details, they
derived an expression for the statistically average squared component of the velocity �eld:〈

u2
θ

〉
'
〈
u2
ϕ

〉
'
〈
(u0)2〉

2 and
〈
u2
r

〉
'
〈

(u0)2
〉 2Ω2

τ 2N4
T

,

with u2
⊥ =

〈
u2
θ

〉
+
〈
u2
ϕ

〉
and u2

‖ =
〈
u2
r

〉
. (2.26)

Using these expression yields

νv

νh
=
u2
‖

u2
⊥

= 2
(

2Ω
N2
T τ

)2

. (2.27)

Contrary to previous prescriptions, this result is deduced from �rst principles, and does not in-
corporate results of laboratory experiments. Moreover, these expressions treat simultaneously
the e�ect of stable strati�cation and Coriolis force. There only remains to �nd an expression
for either νv or νh and τ .

The studies of turbulence in radiative zones using 3D numerical simulations (Prat & Lig-
nières, 2013; Prat et al., 2016; Garaud & Kulenthirarajah, 2016) have corroborated the pre-
scription for the vertical shear di�usion coe�cients suggested by Zahn (1992) (Eq. (2.15)). The
approach synthesized in Maeder (2003) is not found to appropriately reproduce νv, Prat &
Lignières (2014) found. However, more recent papers (Garaud et al., 2017; Gagnier & Garaud,
2018; Kulenthirarajah & Garaud, 2018) have shown that Zahn (1992)’s model only works when
the hypothesis of locality is valid. Indeed, they showed that as Ri Pe

Re (Re ≡ vl/ν is the Reynolds
number which characterize the susceptibility of the �uid to be turbulent5) decreases, the ver-
tical size of turbulent eddies increases until reaching a size that is comparable to the size of
the radiative region, which breaks locality.

Nonetheless, we will assume with Mathis et al. (2018) that νv = νv,v is given by

νv = Ric
3 K

(
r sin θ∂rΩ

NT

)2
, (2.28)

which is the un-horizontally-averaged version of Eq. (2.15). We �nally need an expression for
τ . Mathis et al. (2018) identi�es three possible expressions for τ .

• If the turbulence is dominated by radial shears S = r sin θ∂rΩ, then τ = 1/S. With this
expression of τ together with expression (2.28) for νv in the equation (2.27) relating νh
and νv, we obtain:

νh = 2Ric
3 K

(
NT

2Ω

)2
. (2.29)

5I use the word "susceptibility" because there exists no �xed threshold for the Reynolds number below which
the �ow is laminar and turbulent above. For instance, in an in�nite plumbing pipe, �rst small eddies appear for
Re & 5. The fuselage of some air-planes is designed to push the transition at Re & 105 − 106.
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2.4. Fluctuations over isobars

• When the rotation become non-negligible, the Coriolis acceleration starts to act in addi-
tion to the shear and τ = 1/(2Ω + S). We notice that for Ω → 0, we recover the above
time-scale. Injected in Eq. (2.27) yields νh average over θ:

νh = 2Ric
3 K

(
NT

2Ω

)2
〈

sin2 θ[
r

2Ω∂rΩ
]−1 + sin2 θ

〉
θ

with 〈f〉θ =
´ π

0 f sin θdθ´ π
0 sin θdθ

. (2.30)

• One �nal characteristic time-scale proposed by Mathis et al. (2018) is to use the epicyclic
frequency de�ned in Eq. (1.95) which characterizes the stability of rotating di�erentially
rotating �ows. With this choice, τ = 1

NΩ
= (2Ω(2Ω + S sin θ))−1/2. If this alternative were

to be chosen, caution should be used to ensure that N2
Ω does not become negative because

the �ow would become prone to Rayleigh-Taylor instability, needing its own modelling
of turbulence (see Chapter 5). In addition, it should be noted that this de�nition of τ
is not compatible with the two previous choices because in the case where S � 2Ω,
τ '
√

2ΩS sin θ 6= 1
S . Yet, with this value of τ , νh reads

νh = 2Ric
3 K

(
NT

2Ω

)2
〈

r
2Ω∂rΩ sin2 θ[

r
2Ω∂rΩ

]−1 + sin2 θ

〉
θ

. (2.31)

Mathis et al. (2018) argue that it will be possible to test those choices when 3D numerical
simulations of radiative zones will be able to reach stellar turbulent regimes. Moreover, the
dependence on the NT /(2Ω) ratio is the same for any choice of characteristic time-scale which
can be seen as a sign of consistency in this model of shear-induced turbulence.

2.4 Fluctuations over isobars

We have seen the main mechanism involved in the loss and in the transport of angular momen-
tum. The goal of the upcoming sections is to built the mathematical formalism necessary to
include those physical processes into the modelling. As we said in Chapter 1, structure equa-
tions will be expressed on isobars instead of spheres. Therefore, the �rst thing we need to do
is provide a way to compute the locations of these isobars, and then to express the �uctuations
of density, gravitational potential and e�ective gravity over isobars. To my knowledge, there
exists two methods that have been developed to compute these �uctuations in baroclinic stars.
Both of them decompose any �eld X in the same way as the one written in Eqs. (1.47) and
(1.48). Describing the angular variations of X with Legendre polynomials is particularly suitable
for the resolution of the Poisson equation, as we will see shortly. The �rst method has been
developed by Mathis & Zahn (2004) and relies on the hydrostatic equilibrium equation (1.51) and
on the baroclinic equilibrium equation (1.56) to express the terms ρ̃`, φ̃` and g̃` of the Legendre
decomposition of density, gravitational potential and e�ective gravity respectively, for any de-
gree `. They are expressed as functions of the di�erent terms Ω̃` of the angular velocity. The
expressions of these functions quickly become cumbersome as the degree ` increases.

Thus, we turned to the second method, developed by Roxburgh (2004, 2006). While
the �rst paper treats the case of uniformly rotating (therefore barotropic) stars, the second
applies to baroclinic stars, with any rotation pro�le. The idea of Roxburgh is to start from
the structure of a 1D model and deform it. In particular, for any quantity X decomposed
in Legendre polynomials on a given isobar located by p, there always exists at least one
characteristic latitude θc such that∑

`=0
X̃`(p)P`(cos θc) = X 1D(p). (2.32)
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I will only derive the equations and the way I solve them is described in Sect. 6.2. It
seemed important to me that the reader have some idea on how �uctuations can be computed,
since they will be extensively used in the mathematics developed in the current Chapter.

With Roxburgh (2006), we consider an axisymmetric rotating star. The equations to be
solved are the hydrostatic equilibrium equation in its complete form of Eq. (1.51) and the Poisson
equation (Roxburgh, 2004, 2006):

1
ρ

∇p = −∇φ+ Ω2$ = geff , (2.33)

∇2φ = 4πGρ. (2.34)

Roxburgh (2006)’s method works by determining iteratively the solution of the �uctuations of
the gravitational potential and of the density over isobars. In other words, the computation of
these �uctuations needs to repeated until convergence. We compute φ knowing ρ and then ρ
knowing φ.

2.4.1 Computation of φ knowing ρ

We decompose φ and ρ on a Legendre polynomial6 basis on the spherical mesh:

φ(r, θ) =
N∑̀
`=0

φ̃`(r)P`(cos θ) = φ̄(r) +
N∑̀
`=1

φ̃`(r)P`(cos θ), (2.35)

ρ(r, θ) =
N∑̀
`=0

ρ̃`(r)P`(cos θ) = ρ̄(r) +
N∑̀
`=1

ρ̃`(r)P`(cos θ). (2.36)

All odd degrees ` are null because otherwise, the solutions would not be symmetrical with
respect to the equatorial plane. Injecting Eqs. (2.35) and (2.36) in Eq. (2.34) leads to:

1
r2

d
dr

[
r2 dφ̃`

dr

]
P`(cos θ) + 1

r2 sin θ
d
dθ

[
sin θdP`(cos θ)

dθ

]
φ̃` = 4πGρ̃`P`(cos θ),

1
r2

d
dr

[
r2 dφ̃`

dr

]
− `(`+ 1)

r2 φ̃` = 4πGρ̃`, (2.37)

where the last line was obtained by projecting on P`(cos θ). Eq. (2.37) obeys the boundary
condition φ̃`(0) = 0, ` 6= 0 and outside the star, ρ̃` = 0 and therefore admits an analytical
solution of the form φ̃` = Ara, where A and a are constants. Plugging this solution into Eq.
(2.37), leads to a = ` or a = −(`+ 1). The �rst solution is unphysical because ρ̃` would diverge
with increasing r. Therefore, keeping the second solution allows us to provide a limit condition,
outside the star:

(`+ 1)φ̃` + r
dφ̃`
dr = 0. (2.38)

With ρ̃` being provided, φ̃` are found computing an integral form of the solution of Eq. (2.37)
together with (2.38) (Roxburgh, 2006):

φ̃`(r) = r`
ˆ r

Rmax

4πG
r2`+2

[ˆ r

0
ρ̃`(r)r`+2dr

]
dr − λ`r`, (2.39)

6If the reader wants to refresh hir memory concerning Legendre polynomials, Appendix B. is devoted to them.
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where

λ` = 4πG
(2`+ 1)R2`+1

max

ˆ Rmax

0
ρ̃`(r)r`+2dr, (2.40)

and Rmax is a distance outside the star.

2.4.2 Computation of ρ knowing φ

Following Roxburgh (2006), we take the curl of Eq. (1.51) which leads to a new di�erential
equation:

∇×
(
ρ
[
∇φ− Ω2$

])
= 0. (2.41)

We de�ne

F = ∇φ− Ω2$ = Frer + Fθeθ, (2.42)

and we shall compute ∇× (ρF)

1
r

(
∂rρFθ
∂r

− ∂ρFr
∂θ

)
= 0,(

Fθ
∂ρ

∂r
− 1
r
Fr
∂ρ

∂θ

)
eϕ = 1

r
ρ

(
∂Fr
∂θ
− Fθ − r

∂Fθ
∂r

)
eϕ = ρ∇× F = ρ∇× (Ω2$),

∂ρ

∂θ
− rFθ

Fr

∂ρ

∂r
= − r

Fr
ρ∇× (Ω2$) · eϕ. (2.43)

The last line is a partial di�erential equation (pde). In order to reduce it to a system of ordinary
di�erential equations (odes), we shall use the method of characteristics.

We de�ne a surface S ≡ [r; θ; ρ(r, θ)]. The vector [∂ρ/∂r; ∂ρ/∂θ;−1] is normal
to the surface while a tangent vector could be de�ned by [a(r, θ); b(r, θ); c(r, θ)] =[
rFθ/Fr;−1; (r/Fr)ρ∇× (Ω2$) · eϕ

]
. We look for a curve C parametrized by s lying in S

such that [a(r(s), θ(s)); b(r(s), θ(s)); c(r(s), θ(s))] is tangent to C. Therefore, C should satisfy the
three following ODEs:

dr
ds = a(r(s), θ(s)) = −rFθ

Fr
, (2.44)

dθ
ds = b(r(s), θ(s)) = 1, (2.45)

dρ
ds = c(r(s), θ(s)) = − r

Fr
ρ∇× (Ω2$) · eϕ. (2.46)

Eq. (2.45) implies dθ = ds and we can choose s = θ. The characteristic curves r(θ) actually
de�ne the radius of an isobars p and ρ(θ) is the density over such an isobar. The function r(θ)
satis�es (2.44):

dr
dθ = −

∂φ
∂θ − Ω2r2 sin θ cos θ

∂φ
∂r − Ω2r sin2 θ

, (2.47)

and density over isobars satis�es

dρ
dθ = −rρ∇× (Ω2$) · eϕ

∂φ
∂r − Ω2r sin2 θ

= −ρ
∂
∂r

(
Ω2r2 sin θ cos θ

)
− ∂

∂θ

(
Ω2r sin2 θ

)
∂φ
∂r − Ω2r sin2 θ

. (2.48)
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Once the radius of the characteristics, the gravitational potential and the density over isobars
are known, it is easy to compute the e�ective gravity using Eqs. (1.52) and (1.53).

One could think that with Roxburgh’s method, local radiative equilibrium is not ensured
because the equation for energy transport is not solved together with hydrostatic equilibrium
and Poisson equations. However, this is not a problem because rotating stars cannot be in
local radiative equilibrium as shown in Sect. 2.2 together with von Zeipel (1924).

2.5 Transport of chemical elements

Before exposing the modern formalism used to model the meridional circulation and the as-
sociated transport of angular momentum, I make a little detour via the transport of chemical
elements as it will facilitate the understanding of the e�ect of µ-gradients on the meridional
circulation.

2.5.1 Fluctuations of chemical abundances over isobars

Shear-induced turbulence has a direct e�ect on latitudinal µ-gradients because if chemical in-
homogeneities starts building-up, turbulence immediately erases them and strongly attenuates
abundance �uctuations over isobars. For a chemical abundance per unit mass ci of a chemical
species i, the equation of transport of chemicals reads (Mathis & Zahn, 2004):

ρ
∂ci
∂t

+ ρU ·∇ci = 1
r2

∂

∂r

(
r2ρDv

∂ci
∂r

)
+ 1
r sin θ

∂

∂θ

(
sin θρDh

∂ci
∂θ

)
, (2.49)

where the velocity �eld U is a combination of contraction/dilation of the star, meridional
circulation velocities and microscopic di�usion velocity Udiff

i of elements:

U = ṙer + UM + Udiff
i er = ṙer +

∑
`>0

U`P`(cos θ)er + V`
dP`(cos θ)

dθ eθ + Udiff
i er. (2.50)

By combining the terms ρ∂ci/∂t and ρ (ṙer) · ∇ci, we obtain the material derivative (time
derivative at constant mass) dci/dt.

Microscopic di�usion, or atomic di�usion, directly stems from the di�erent response of
chemical species (for instance due to their di�erent masses or di�erent cross-section) to the
forces at stake in stars (gravity, radiative acceleration, etc.). Udiff

i gathers the di�usion velocities
due to the various microscopic di�usion processes such as the di�usion due to a gradient of
concentration, the gravitational settling, the radiative accelerations, the thermal di�usion, etc.
The question of their importance in the transport of chemicals is discussed at the end of this
section. Macroscopic di�usion is induced by large scale �ows such as meridional circulation
and instabilities. The abundance ci can be decomposed according to Eq. (1.48):

ci = ci +
∑
`>0

c̃i,`P`(cos θ) = ci + c′i. (2.51)

We inject this expression in Eq. (2.49) and average the result in latitude (with the same averaging
as de�ned in Eq. (2.30)) and with the usual approximation that Dh � Dv,

ρ
dci
dt + 1

r2
∂

∂r

[
r2ρ

〈
c′i
∑
`>0

U`P`(cos θ)
〉]

+ 1
r2

∂

∂r

(
r2ρciU

diff
i

)
= 1
r2

∂

∂r

(
r2ρDv

∂ci
∂r

)
, (2.52)
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where the anelastic approximation ∇ · (ρUM) = 0 was used. We shall also write the equation
for the transport of �uctuations

ρ
dc′i
dt + ρ

∑
`>0

U`P`(cos θ)∂ci
∂r

+ ρUM ·∇c′i −
1
r2

∂

∂r

[
r2ρ

〈
c′i
∑
`>0

U`P`(cos θ)
〉]

= 1
r2

∂

∂r

(
r2ρDv

∂c′i
∂r

)
+ 1
r sin θ

∂

∂θ

(
sin θρDh

∂c′i
∂θ

)
. (2.53)

Finally, by assuming |∇c′i| � ∂rci, one obtains

dc̃i`
dt + U`

∂ci
∂r

= −`(`+ 1)
r2 Dhc̃i`. (2.54)

Further assuming that the time of evolution dt is much longer than the characteristic time of
horizontal di�usion r2/Dh (which is valid on the main sequence), the above equation reduces
to

c̃i` = − r2U`
`(`+ 1)Dh

∂ci
∂r

(2.55)

and

ρ
dci
dt + 1

r2
∂

∂r

(
r2ρciU

diff
i

)
= 1
r2

∂

∂r

[
r2ρ(Dv +Deff)∂ci

∂r

]
, (2.56)

where

Deff =
∑
`>0

r2U2
`

`(`+ 1)(2`+ 1))Dh
, (2.57)

The development in Legendre polynomials is o�en stopped at ` = 2 and we usually �nd
Deff = (rU2)2/ (30Dh) (Zahn, 1992; Maeder & Zahn, 1998; Mathis & Zahn, 2004).

2.5.2 Microscopic di�usion

For a long time, the study of microscopic di�usion has been considered beyond the scope of
standard stellar modelling, which lead to neglecting the term of advection by Udiff

i . Nonetheless,
the inclusion of its e�ect is now quite common. Taking it into account has revealed that micro-
scopic di�usion can have an important impact on the interior structure of stars. Microscopic
di�usion can have many origins. Let us take the equation of motion veri�ed by an element i of
mass mi, with a small abundance such that it does not modify the total density (test element
approximation7). Each particle of element i has a velocity Ui = U + Vi where U is the mean
�ow velocity (for instance, the meridional circulation) and Vi is the peculiar velocity of this
particle, in other word, a discrepancy with respect to the mean �ow velocity. One can also
de�ne the average velocity of all particle of the same element i. It is de�ned as the average in
the phase space P (Maeder, 2009):

〈Ui〉 = 1
ni

ˆ
P

fiUidτP with
ˆ
P

fidτP = ni, (2.58)

7The test element approximation is valid only for element with nimi � ρ. In particular it is not veri�ed for H
and He, the expression of the di�usion velocity of which should be modi�ed.
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where we used fi(x,v, t) the probability distribution to �nd particle of an element i at position
x, velocity Ui and time t in the phase space. Therefore, the mean �ow velocity is the average
of the velocities 〈Ui〉 for all elements:

U =
∑
imini 〈Ui〉∑

imini
, (2.59)

where ni is chemical abundance per mole (contrary to ci which is the chemical abundance per
unit mass). The mean peculiar velocity, or di�usion velocity, of element i is written as:

Udiff
i = 〈Vi〉 = 1

ni

ˆ
P

fiVidτP. (2.60)

From (2.59), we see that the di�usion velocity must satisfy the condition∑
i

miniUdiff
i = 0, (2.61)

ensuring that on average, a di�usive process does not have momentum (it is actually a necessary
condition for a process to be considered di�usive).

Let us start with a simple case. We suppose that pressure, density and temperature are
constant and the abundance of element i varies along r only. We de�ne the mass �ux of the
element i (projected along direction er) J = ρciU

diff
i . This �ux a little above or below can be

written

J(r ± δr) = 1
6ρ
(
ci(r)±

∂ci
∂r

δr

)
Udiff
i . (2.62)

The origin of factor 1/6 is two fold. First a factor 1/3 comes from the fact that we projected
the �ux along one of the three degree of freedom. Second, a factor 1/2 comes from the fact
that we look only along er or −er. The net �ux is

J = J(r + δr)− J(r − δr) = ρciU
diff
i = 1

3ρU
diff
i

∂ci
∂r

δr. (2.63)

As we have seen in Sect. 2.3, for instance in Eq. (2.15), di�usion coe�cients are de�ned
as D = vl/3. Identifying vl with Udiff

i δr, we obtain for the di�usion velocity caused by an
abundance gradient the following expression:

Udiff
i = −D∂ ln ci

∂r
. (2.64)

An element i can be further subjected to a net force Fi = miai, with ai the acceleration.
The equilibrium is reached when:

∂pi
∂r
− ρciai = 0, (2.65)

with pi the partial pressure associated with element i and ρci the fraction per unit volume of
element i. Assuming that it is a perfect gas, pi = ρcikBT/mi, and Eq. (2.65) reads

∂ ln ci
∂r

− Fi
kBT

= 0. (2.66)

Using this expression, one can de�ne the expression for the di�usion velocity when other
forces are accounted for:

Udiff
i = −Di

(
∂ ln ci
∂r

− Fi
kBT

)
. (2.67)
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We see that when Udiff
i = 0, the equilibrium state is reached. One could account for gravity

e�ects with Fi = −mig and for the screening e�ect due to the separation of ions an electron
in the form:

Udiff
i = −Di

(
∂ ln ci
∂r

− kp
∂ ln p
∂r

)
, (2.68)

where kp is a coe�cient that we do not reproduce here but that gather the e�ects of the
gravitational and electric �eld (Chapman & Cowling, 1970). This e�ect is called the gravitational
settling. Despite acting on long time-scales, it leads to the concentration of massive elements
in the inner region of stars if no other transport processes come against it.

Likewise, atoms can be di�used by thermal gradients. At a microscopic level, a higher
temperature translates into a thermal agitation with higher velocities. Imagine that at a location
r, atoms are agitated with a mean velocity vT (r). On average, some of them move to a hotter
region r + dr, where particles are agitated with a mean velocity vT+dT (r + dr). By successive
shocks, the original mean velocity vT will increase. This process further depends on the cross-
section of the considered element which is related to the probability that two particles interact.
The cross-section of neutral elements do not vary with temperature while the one of ionized
ones are proportional to T−2. Obviously, neutral elements are found in the coolest region of
the stars and di�erential e�ects of thermal di�usion on neutral and ionized elements usually
have no impact in most of the radiative zone. In addition, at a given temperature T , particles
with di�erent masses do not move with same velocity. Indeed, the average kinetic energy of
element i is given by 3nikBT/2, independently of the mass. We see immediately that heavier
particles will move slower than lighter one. Hence, light element will di�use faster. It must
be noted that this e�ect exists also when no temperature gradient is present. Using a thermal
di�usivity kT , Chapman & Cowling (1970) propose to include the e�ect of thermal di�usion in
(2.68) as

Udiff
i = −Di

(
∂ ln ci
∂r

− kp
∂ ln p
∂r
− kT

∂ lnT
∂r

)
. (2.69)

Finally, a very interesting mechanism of di�usion is the radiative acceleration induced by
the interaction between photon and ions. Radiative acceleration pushes high opacity particles
towards the surface. Its e�ect is added through the force Fi, in Eq. (2.66), that is replaced by
−migrad,i:

Udiff
i = −Di

(
∂ ln ci
∂r

− kp
∂ ln p
∂r
− kT

∂ lnT
∂r

+ migrad,i

kBT

)
, (2.70)

where grad,i is the acceleration resulting from the interaction between photons and ions. It
is proportional to the frequency integral of the product of the energy �ux and the cross-
section of a given absorption (this integral is slightly modi�ed in case the absorption leads
to another ionization). Radiative acceleration is important in massive stars where the energy
�ux is high. With increasing mass, this process can rapidly compete with gravitational settling.
This competition can produce an accumulation of certain elements in small regions of the star.
In some cases, it can create the so-called thermohaline or double-di�usive convection (Théado
et al., 2009). Indeed, if locally ∇µ > 0 (µ increases upward), ∇µ can overcome the stabilizing
e�ect of the density strati�cation and the medium becomes unstable (if the Ledoux criterion
(1.28) is satis�ed). If this accumulation occurs in a region where this element contributes
to increase opacity, the convective zone deepens and the star is able to maintain a stronger
dynamo e�ect. As shown in Sect. 2.1, it increases the amount of am blown in the interplanetary
medium. In turn, rotational mixing is increased and the importance of microscopic di�usion is
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lowered (Deal et al., 2020). We have seen in Sect. 2.2, that the am advected by meridional
circulation may rapidly yield a region with strong di�usion of angular velocity by shear-induced
turbulence. Therefore, meridional circulation, shear-induced turbulence and stellar wind form
a highly coupled system. The shear-induced di�usion coe�cients depend not only on the
circulation velocities but indirectly on the am lost by winds. Deal et al. (2020) have studied
the interaction between rotation, atomic di�usion with/without radiative acceleration, and am

loss by winds. They have shown that, for stars with mass around and below 1.3M�, there
is no accumulation of chemical species anywhere in the star, which suggests that rotational
mixing annihilates microscopic di�usion. Above 1.44M�, stars show large accumulation of iron
at their surface when they are modelled accounting for radiative acceleration, suggesting that
in this case, microscopic di�usion overcome rotational mixing. However, Deal et al. (2020)
stress that this accumulation is not observed in Kepler data, suggesting that a mechanism(s) of
transport of chemicals remains to be found.

2.6 Modern formalism of meridional circulation

The modern formalism for computing the velocity of meridional circulation has been devel-
oped by Mathis & Zahn (2004). In this section we will make pro�table use of the Legendre
polynomial decomposition, then it shall be recalled that we assume that any quantity can be
written following Eq. (1.48). We start our derivation from the time dependent equation for the
conservation of thermal energy:

ρT

[
∂s

∂t
+ U ·∇s

]
= ∇ · (χ∇T ) + ρε−∇ · Fh, (2.71)

where s is the speci�c entropy, U is the combination of the contraction/dilation term and of
the meridional �ow, χ is the thermal conductivity, ε is the nuclear energy generation rate per
unit mass and Fh if the energy �ux carried by horizontal turbulence. The �ux carried by
vertical turbulence has been neglected because of the hypothesis of shellular rotation relying
on the assumption that the horizontal turbulence di�usion coe�cient Dh is much higher than
its vertical counterpart. We will tackle the terms one by one.

2.6.1 Entropy’s material derivative

We project the le� hand side term on the Legendre polynomial basis and it reads:

ρT

[
∂s

∂t
+ U ·∇s

]
= ρT

[
ds
dt +

∑
`>0

(ds̃`
dt + U`

∂s

∂r

)
P`(cos θ)

]
, (2.72)

where ρTds/dt = −ρεg. The velocity �eld U is expressed by

U = ṙer +
∑
`>0

[
U`(r)P`(cos θ)er + V`(r)

dP`(cos θ)
dθ eθ

]
= ṙer + UM. (2.73)

The term ṙer is the contraction/dilation term. The next ones are the vertical component U`
and the horizontal component V` of the meridional circulation. The 0th-order terms U0 and V0
are zeros because otherwise, a �ow would constantly ascend or descend in the star. It would
not be possible to consider it as a perturbation. In this section and the following we make the
anelastic approximation: ∇ · (ρUM) = 0. The anelastic approximation amounts to saying that
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any acoustic wave is �ltered out. In this case, using relation (B.7), a simple relation between U`
and V` can be obtained:

V`(r) = 1
`(`+ 1)ρr

d
dr
(
ρr2U`

)
. (2.74)

For a variable chemical composition, the change of entropy can be expressed as (Maeder &
Zahn, 1998):

ds = cp

(dT
T
−∇ad

dp
p

+ Φ(p, T, µ)dµ
µ

)
, (2.75)

where Φ = ds/d lnµ depends on the mean molecular weight and on the abundances of the
di�erent elements. An expression for Φ is provided in App. C.1.

By multiplying Eq. (2.75) by 1/d ln p and keeping only the 0th-order term, we derive the
expression for ∂rs:

∂rs = cp
Hp

(∇ad −∇− Φ∇µ) , (2.76)

where Hp is the previously de�ned pressure scale height (see Eq. (1.25)) and ∇µ = d lnµ/d ln p
is the µ-gradient.

In order to give an expression for the terms s̃`, one needs �rst to de�ne several quantities.
Instead of using ρ̃`, T̃` and µ̃` we will o�en use their ratio to the 0th order term:

Θ` = ρ̃`
ρ

Ψ` = T̃`

T
Λ` = µ̃`

µ
. (2.77)

A relation between the three is found from a general equation of state (Kippenhahn et al., 2012):

dρ
ρ

= ∂ ln ρ
∂ ln p

∣∣∣∣
T,µ

dp
p

+ ∂ ln ρ
∂ lnT

∣∣∣∣
p,µ

dT
T

+ ∂ ln ρ
∂ lnµ

∣∣∣∣
p,T

dµ
µ
, (2.78)

which, when written on an isobar, gives, by setting δ = − ∂ ln ρ/∂ lnT |p,µ and ϕ =
∂ ln ρ/∂ lnµ|p,T

Θ` = ϕΛ` − δΨ`, (2.79)

thus providing a link between Θ`, Ψ` and Λ`. Then, using these notations, it is easy to keep
only the `th-order component of equation (2.75) and write

s̃` = cp (Ψ` + ΦΛ`) . (2.80)

Then, from Eqs. (2.76) and (2.80), we can write

T

(ds̃`
dt + U`

∂s`
∂r

)
= cpT

(
dΨ`

dt + ΦdΛ`

dt + U`
Hp

(∇ad −∇− Φ∇µ)
)
. (2.81)

2.6.2 Time variation of mean molecular weight �uctuations

Eq. (2.81) includes two time derivatives, coupled by Eq. (2.79). We need another expression for
one of them. Eq. (2.54) gave an expression for the transport of the �uctuations of chemicals.
The mean molecular weight is de�ned as

1
µ

=
∑
i

1 + Zi
Ai

ci, (2.82)
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where Zi is the number of electrons and Ai the number of nucleons. Then from Eq. (2.54) we
write the equation for time variation of mean molecular weight �uctuations:

dΛ`

dt = U`
Hp
∇µ + d lnµ

dt Λ` −
`(`+ 1)
r2 DhΛ`. (2.83)

Finally we go back to Eq. (2.81) and by injecting Eq. (2.83) in it we obtain

ρT

(ds̃`
dt + U`

∂s

∂r

)
= cpρT

[dΨ`

dt + Φ
(
U`
Hp
∇µ + d lnµ

dt Λ` −
`(`+ 1)
r2 DhΛ`

)
+ U`
Hp

(∇ad −∇− Φ∇µ)
]

= cpρT

[
dΨ`

dt + Φd lnµ
dt Λ` −

`(`+ 1)
r2 ΦDhΛ` + U`

Hp
(∇ad −∇)

]
. (2.84)

We have the le� hand side of (2.71).

2.6.3 Horizontal turbulent energy �ux

Let us turn to the last term of Eq. (2.71). Only the horizontal part of the turbulent energy �ux
has been retained because turbulent di�usion is much stronger horizontally. Maeder & Zahn
(1998) approximate the horizontal turbulent energy Fh by −DhρT∇S and

∇ · Fh = − 1
r2 sin θ

∂

∂θ

[
sin θDhρT

∂s(r, θ)
∂θ

]
=
∑
`>0

`(`+ 1)
r2 ρTDhs̃(r, θ)P`(cos θ)

=
∑
`>0

`(`+ 1)
r2 ρTDhcp (Ψ` + ΦΛ`)P`(cos θ). (2.85)

2.6.4 Radiative transport

The temperature, as any other variable, is decomposed on the Legendre basis on an isobar:

T (p, θ) = T (p) +
∞∑
`>0

T̃`(p)P`(cos θ). (2.86)

Its gradient is

∇T = dT
dp

dp
drer +

∞∑
`>0

∂T̃`
∂p

∂p

∂r
P`(cos θ)er + 1

r

∞∑
`>0

∂T̃`
∂p

∂p

∂θ
P`(cos θ)eθ + 1

r

∞∑
`>0

T̃`
∂P`
∂θ

(cos θ)eθ

= ρ

[
dT
dp +

∞∑
`>0

∂T̃`
∂p

P`(cos θ)
]

∇p

ρ
+
∞∑
`>0

T̃`∇P`(cos θ). (2.87)

Latitudinal derivatives of pressure disappeared because we are on an isobar. The term for
thermal di�usion reads

∇ (χ∇T ) = ρχ

(
dT
dp +

∞∑
`>0

∂T̃`
∂p

P`(cos θ)
)

∇ ·
(∇p

ρ

)
+ ∇

[
ρχ

(
dT
dp +

∞∑
`>0

∂T̃`
∂p

P`(cos θ)
)]
· ∇p

ρ

+
∞∑
`>0

∇(χT̃`) ·∇P`(cos θ) +
∞∑
`>0

χT̃`∇2P`(cos θ). (2.88)
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We need to �nd an expression for each of these terms. First, the equation for hydrostatic
equilibrium is easily recognized:

∇p

ρ
= g = −∇ϕ+ FC, with

 |g| = g(p) +
∑
`>0

g̃`(p)P`(cos θ)

FC = 1
2Ω2∇(r sin2 θ)

. (2.89)

Here, g denotes the e�ective gravity and FC is the centrifugal force. This decomposition will
be useful for the expression of the divergence of the hydrostatic equation. Indeed,

∇ ·
(∇p

ρ

)
= −∇2ϕ+ ∇ · FC. (2.90)

First term is obviously given by the Poisson equation:

∇2ϕ = 4πGρ+ 4πG
∑
`>0

ρ̃`P`(cos θ), (2.91)

and the divergence of FC is expanded on Legendre polynomials:

∇ · FC = fC +
∑
`>0

f̃C,`P`(cos θ). (2.92)

Mathis & Zahn (2004) provide an analytical expression for the components of this divergence,
at any degree `. However, we will see in Chapter 6 that we can obtain it numerically in a
way that is more consistent with the rest of our approach. Finally, the product ρχ is also
decomposed on Legendre polynomials:

ρχ = ρχ+
∑
`>0

ρ̃χ`P`(cos θ). (2.93)

2.6.5 Right hand side

It is now time to put everything back together. We recall that from Eq. (2.71), the right hand
side reads

∇ · (χ∇T ) + ρε+ ρεg −∇ · Fh = RHS, (2.94)

where ρεg comes from the other side. The details of the following calculation are described in
App. C.2. The right hand side can be written in the form:

RHS =
〈
ρχ

dT
dp
(
fC − 4πGρ

)
+ ρ

d
dp

(
ρχ

dT
dp

)
g2 + ρ(ε+ εg)

〉

+
∞∑
`>0

{(
ρχ

dT̃`
dp + ρ̃χ`

dT
dp

)(
fC − 4πGρ

)
+ ρχ

dT
dp
(
f̃C,` − 4πGρ̃`

)

+2ρ d
dp

(
ρχ

dT
dp

)
gg̃` + ρ̃

d
dp

(
ρχ

dT
dp

)
g2 + ρ

d
dp

(
ρχ

dT̃`
dp

)
g2 + ρ

d
dp

(
ρ̃χ`

dT
dp

)
g2

−`(`+ 1)
r2

(
χT̃` + ρTDhcp (Ψ` + ΦΛ`)

)
+ ρ̃ε`

}
P`(cos θ). (2.95)

The term between angular brackets is zero because it states the global radiative equilibrium
(equilibrium over an isobar, not locally). This term vanishes but it shall be kept in mind because
it will provide a useful relation to simplify the right hand side.
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Remember that this large expression is equal to the le� hand side stated in Eq. (2.84). All the
quantities with a tilde are �uctuations over isobars. Let us imagine that the star is barotropic,
steady and that there are no latitudinal gradients of mean-molecular weight. Then, isobars and
isopycnals coincide, hence, Θ` = 0. In addition, with Λ` = 0, Ψ` is also 0. With the steadiness
hypothesis, dΨ`/dt = 0. Then on the le� hand side (Eq. (2.84)), only the term in factor of
U` remains. On the right hand side (Eq. (2.95)), all terms are 0. If the star is barotropic, if
Λ` = 0 and if the star is steady, then U` is necessarily 0. However, is this situation even
possible ? We have seen with the Von Zeipel theorem that rotating stars (even barotropic)
experience di�erential heating and cooling over a given isobar. Therefore, even if we assume
an initial state with no �uctuation of temperature over an isobar (Ψ` = 0), such �uctuations
will necessarily appear and dΨ`/dt 6= 0. The hypothesis of a steady description of meridional
circulation is unphysical. The only way to satisfy above equation with Θ` = 0, Λ` = 0, Ψ` = 0
and dΨ`/dt 6= 0 is to have U` 6= 0. The non-vanishing meridional circulation will advect angular
momentum (see next section), and the initially assumed barotropicity will break.

A�er some manipulations described in App. C.3, the right hand side simpli�es to:

RHS = −ρ
(

dT̃`
dT

+ ρ̃χ`
ρχ

)
(ε+ εg) + L

4πGM
(
f̃C,` − 4πGρ̃`

)
+Lρ

M

{(
1− fC

4πGρ −
M

L
(ε+ εg)

)(
2 g̃`
g

+ Θ`

)
− g

4πGρ
d
dr

(
dT̃`
dT

+ ρ̃χ`
ρχ

)}
−`(`+ 1)

r2

(
χT̃` + ρTDhcp (Ψ` + ΦΛ`)

)
+ ρ̃ε`. (2.96)

We can now bring back the le� (Eq. (2.84)) and right (Eq. (2.96)) hand sides together:

cpρT

[
dΨ`

dt + Φd lnµ
dt Λ` −

`(`+ 1)
r2 ΦDhΛ` + U`

Hp
(∇ad −∇)

]

= −ρ
(

dT̃`
dT

+ ρ̃χ`
ρχ

)
(ε+ εg) + L

4πGM
(
f̃C,` − 4πGρ̃`

)
+Lρ

M

{(
1− fC

4πGρ −
M

L
(ε+ εg)

)(
2 g̃`
g

+ Θ`

)
− g

4πGρ
d
dr

(
dT̃`
dT

+ ρ̃χ`
ρχ

)}
−`(`+ 1)

r2

(
χT̃` + ρTDhcp (Ψ` + ΦΛ`)

)
+ ρ̃ε`. (2.97)

The terms of di�usion of �uctuations of mean molecular weight cancel from both sides. More-
over, we divide everything by ρ:

cpT

[
dΨ`

dt + Φd lnµ
dt Λ` + U`

Hp
(∇ad −∇)

]

= L

M

{
2
(

1− fC
4πGρ −

M

L
(ε+ εg)

)
g̃`
g

+ f̃C,`

4πGρ −
(

fC
4πGρ + M

L
(ε+ εg)

)
Θ`

−
(

dT̃`
dT

+ ρ̃χ`
ρχ

)
M

L
(ε+ εg) + Mε

L

ρ̃ε`
ρε
− g

4πGρ
d
dr

(
dT̃`
dT

+ ρ̃χ`
ρχ

)

−`(`+ 1)
r2 cpT

M

L

(
χ

cpρ
+Dh

)
Ψ`

}
. (2.98)

We shall introduce several quantities in order to simplify above equation. First, one can write

dT̃`
dT

= Ψ` −HT
∂Ψ`

∂r
with HT = −T dr

dT
, (2.99)
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2.6. Modern formalism of meridional circulation

where HT is called the temperature scale height. Furthermore, a simplifying expression for
χ̃`/χ and ε̃`/ε can be provided.

χ̃`
χ

= ∂ lnχ
∂ lnT

∣∣∣∣
p,µ

Ψ` + ∂ lnχ
∂ lnµ

∣∣∣∣
p,T

Λ` = χTΨ` + χµΛ`, (2.100)

and

ε̃`
ε

= ∂ ln ε
∂ lnT

∣∣∣∣
p,µ

Ψ` + ∂ ln ε
∂ lnµ

∣∣∣∣
p,T

Λ` = εTΨ` + εµΛ`. (2.101)

From these, one can express ρ̃ε/ρε and ρ̃χ/ρχ:

ρ̃χ

ρχ
= ∂ ln ρχ

∂ lnT Ψ` + ∂ ln ρχ
∂ lnµ Λ` = (χT − δ) Ψ` + (ϕ+ χµ) Λ`, (2.102)

and

ρ̃ε

ρε
= ∂ ln ρε

∂ lnT Ψ` + ∂ ln ρε
∂ lnµ Λ` = (εT − δ) Ψ` + (ϕ+ εµ) Λ`, (2.103)

Then, we can de�ne some shorthand notations proposed by Mathis & Zahn (2004) as

εm = L(r)
M(r) K = χ

ρcp
fε = ε

ε+ εg
ρm = m(r)

4
3πr

3 . (2.104)

Eventually, a�er some steps described in App. C.4 and using the above new notations, Eq.
(2.98) simpli�es and the term of degree ` of the meridional circulation is

Tcp

[
dΨ`

dt + Φd lnµ
dt Λ` + U`

Hp
(∇ad −∇)

]
= Lp
Mp
T`, (2.105)

where we de�ned T` in the same way as Mathis & Zahn (2004):

T` = 2
(

1− fC
4πGρ −

ε+ εg

εm

)
g̃`
g

+ f̃C,`

4πGρ −
fC

4πGρΘ`

+ ρm

ρ

[
r

3
d
dr

(
HT

∂Ψ`

∂r
− (1− δ + χT ) Ψ` − (ϕ+ χµ) Λ`

)
− `(`+ 1)HT

3r

(
1 + Dh

K

)
Ψ`

]
+ ε+ εg

εm

[(
HT

∂Ψ`

∂r
− (1− δ + χT ) Ψ` − (ϕ+ χµ) Λ`

)
+ (fεεT − fεδ + δ) Ψ`

+ (fεεµ + fεϕ− ϕ) Λ`

]
. (2.106)

Because it will simplify its resolution we stress that by de�ning a new quantity Υ` :

Υ` = HT
∂Ψ`

∂r
− (1− δ + χT ) Ψ` − (ϕ+ χµ) Λ`. (2.107)

The term T` becomes a �rst order partial di�erential equation.
The resolution of this equation requires the provision of a boundary condition. Since the

meridional circulation depends on Ω, boundary conditions for both the meridional circulation
and the angular velocity will be provided a�er the derivation of the equation for the transport
of angular momentum, at the end of this Chapter (Sect. 2.7.3)
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Transport of angular momentum in radiative zones

In Sect. 2.3, we said that the prescription for the horizontal turbulent viscosity νh proposed
by Zahn (1992) su�ered from some problem, in particular that in low metallic stars, νh ∼ νv at
the surface. Zahn (1992) gives νh = 1

ch
r|2V2 − αU2| ' r|U2|. If we are close to the surface, the

energy generation rates ε + εg are small. In addition, if the mean molecular weight gradients
are negligible, T` is dominated by the �rst term:

T` ' 2
(

1− fC
4πGρ

)
g̃`
g
. (2.108)

The term fC/4πGρ ' Ω2
/4πGρ is called the Gratton–Öpik term (Gratton, 1945; Öpik, 1951).

Near the surface, the density becomes very small, so that T` changes sign and the meridional
velocity changes direction in the uppermost layers. The surface-meridional-circulation cell,
rotating in the opposite direction of the inner cell, is called the Gratton–Öpik cell. In this cell,
due to the very low density, U2 can become very large so that νh � νv and the shellular
rotation approximation stays valid. However, in very sub-metallic stars (Z = 10−5 in Meynet
& Maeder 2002, while Z� ' 0.02) the velocity of the meridional circulation near the surface
stays small. Near the surface, the opacity is mainly due to negative hydrogen and is given by
(Hansen & Kawaler, 1994):

κH− ∝ ρ
1/2T 9Z. (2.109)

In our case, the metallicity is small, and so is the opacity. Therefore, the luminosity is higher,
the stellar radius smaller and the density is higher (the star is more compact than a highly
metallic star with the same mass). The density being important, T` is signi�cantly reduced, and
the velocity in the Gratton–Öpik cell especially so. In this special case, one can have νh ' νv.

2.7 Equations for the transport of angular momentum

The in�nitesimal amount of am contained in a small element of volume at a distance r of the
centre and colatitude θ, with density ρ and angular velocity Ω is

dJ = ρr4 sin3 θΩdrdθdϕ, (2.110)

where the mass of this small element is ρr2 sin θdrdθdϕ and the angular momentum is r2 sin2 θΩ.
Following (Maeder, 2009), the time derivative of am at a constant mass coordinate m is

ρ
d
dt
(
r2 sin2 θΩ

)∣∣∣∣
m

= ∂

∂t

(
ρr2 sin2 θΩ

)∣∣∣∣
r

+ U ·∇
(
ρr2 sin2 θΩ

)
− r2 sin2 θΩ dρ

dt

∣∣∣∣
m

, (2.111)

where U is the velocity of the �ow, in this case, the meridional circulation and the contrac-
tion/dilation. The di�erentials drdθdϕ have been simpli�ed on both sides. Again, we express
the time derivative of ρ as

dρ
dt

∣∣∣∣
m

= ∂ρ

∂t

∣∣∣∣
r

+ U ·∇ρ = −ρ∇ · U , (2.112)

where the continuity equation has been used. Injecting this expression into Eq. (2.111) leads to

ρ
d
dt
(
r2 sin2 θΩ

)∣∣∣∣
m

= ∂

∂t

(
ρr2 sin2 θΩ

)∣∣∣∣
r

+ ∇ ·
(
Uρr2 sin2 θΩ

)
. (2.113)

Furthermore, the time variation of am is of course equal to the torque of the (viscous)
forces applied to the element of volume. Those forces are produced by the shear and follow
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2.7. Equations for the transport of angular momentum

the direction of the velocity gradient. We separate them in a vertical force fv per unit surface
and a horizontal force fh per unit surface:

fv = ρνvr sin θ∂Ω
∂r

and fh = ρνh sin θ∂rΩ
∂θ

, (2.114)

fv applies on a small horizontal surface element r2 sin θdθdϕ and fh applies on a small vertical
surface element r sin θdrdϕ. These forces apply with a lever arm of r sin θ, therefore the
associated torque Mv (resp. Mh) gained by a small element of volume submitted to fv (resp.
fh) are

Mv = ∂

∂r

(
ρνvr

4 sin3 θdθdϕ∂Ω
∂r

)
dr and Mh = 1

r

∂

∂θ

(
ρνhr

2 sin3 θdrdϕ∂Ω
∂θ

)
rdθ. (2.115)

Then, the time variation of angular momentum at �xed mass coordinate reads (we simpli�ed
the di�erentials drdθdϕ):

ρr2 sin θ ∂

∂t

(
ρr2 sin2 θΩ

)∣∣∣∣
m

= ∂

∂r

(
ρνvr

4 sin3 θ
∂Ω
∂r

)
+ ∂

∂θ

(
ρνhr

2 sin3 θ
∂Ω
∂θ

)
. (2.116)

And �nally one can use it to express the le� hand side of Eq. (2.113) and reorganize it to obtain
the general equation for the transport of angular momentum:

∂

∂t

(
ρr2 sin2 θΩ

)
+∇·

(
ρr2 sin2 θΩU

)
= sin2 θ

r2
∂

∂r

(
ρνvr

4∂Ω
∂r

)
+ 1

sin θ
∂

∂θ

(
ρνh sin3 θ

∂Ω
∂θ

)
. (2.117)

2.7.1 Vertical transport of angular momentum

The details necessary to go from Eq. (2.117) to the equation for the vertical transport of angular
momentum are exposed in App. D.1. This equation can be written in the form

ρ
dr2Ω

dt = 1
5r2

∂

∂r

(
ρr4ΩU2

)
+ 1
r2

∂

∂r

(
ρνvr

4∂Ω
∂r

)
, (2.118)

where Ω is de�ned as

Ω(r) =
´ π

0 Ω(r, θ) sin3 θdθ´ π
0 sin3 θdθ

. (2.119)

2.7.2 Horizontal transport of angular momentum

In the following we limit ourself to the 2nd-order term in the Legendre decomposition, but
adding higher orders would follow quite simply (but painfully). Again, the details are gathered
in App. D.2. The �nal form of the equation for the horizontal transport of angular momentum
is:

ρ
d
dt
(
r2Ω2

)
+ 1
r2

∂

∂r

(
ρr4Ω̄U2

)
− 10

6
dρr2U2

dr Ω̄ = 1
r2

∂

∂r

[
ρνvr

4∂Ω2

∂r

]
− 10ρνhΩ2. (2.120)

During the main sequence, d
dt
(
r2Ω2

)
' 0 and assuming νv � νh one can neglect the �rst

term of right hand side. In this case, Eq. (2.120) reads

νhΩ2 = 1
5r [2V2 − αU2] Ω, (2.121)

where α as de�ned in Eq. (2.18).
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Transport of angular momentum in radiative zones

2.7.3 Boundary conditions

Equation (2.105) needs to be supplemented by boundary conditions (bc) that link the radiative
zone to an eventual convective zone. The expression of the bc depends on the way angular
momentum (am) conservation is treated in the convection zone: either solid body rotation
(uniform Ω) or local conservation of am (uniform speci�c angular momentum). It must be noted
that neither of these models reproduce well the rotation pro�le observed in stars, especially
the latitudinal variations (see Chapter 4).

Properly de�ned bc should obviously conserve am in the stars. The amount of am in
the convective zone can vary in two ways: either am is lost through stellar wind or am is
extracted/injected from/in cz by meridional circulation or any other process connecting the
radiative and convective zone such as mixed modes, internal gravity waves, etc (see Chapter
5).

• Uniform angular velocity: The convective zones are assumed to be in uniform rotation.
Denoting mb and mt the bottom and top mass limits of the radiative zone, one can write
the �rst bc on Ω. The radial gradient of angular velocity at each boundary of the radiative
zone is supposed to vanish:

∂Ω
∂r

∣∣∣∣∣
mb,t

= 0. (2.122)

Then, the conservation of am can be written:

d
dt

(ˆ M?

0
r2Ωdm

)
= d

dt

(ˆ mb

0
r2Ωdm

)
+ d

dt

(ˆ mt

mb

r2Ωdm
)

+ d
dt

(ˆ M?

mt

r2Ωdm
)

= 0.

(2.123)

The 2nd term of the right hand side is given by Eq. (2.118).

1
4π

d
dt

(ˆ mt

mb

r2Ωdm
)

=
ˆ rt

rb

r2ρ
dr2Ω

dt dr =
[1

5ρr
4ΩU2

]mt

mb

, (2.124)

where we used Eq. (2.122). Then, a bc can be derived for U2 at bottom and at the top.
At the bottomˆ mb

0

dr2Ω
dt dm = 1

5ρr
4ΩU2

∣∣∣∣
mb

. (2.125)

And at the top

d
dt

(ˆ mt

0
Ωr2dm

)
= 1

5ρr
4ΩU2

∣∣∣∣
mt

− dJwind

dt −
ˆ mb

0

dJextra

dt
dm
ρ
. (2.126)

Here we have introduced two other quantities. The rate dJwind/dt corresponds to the
amount of am lost by winds. It can be provided by Eqs. (2.1)-(2.3) or any other model.
The quantity dJextra/dt encapsulates the angular momentum per unit mass extracted by
any other mechanism of transport of angular momentum.

• Uniform speci�c angular momentum: In this case, the angular velocity pro�les in the
convective zones are assumed to follow Ω(r) = Ω(rb,t)r2

b,t/r
2, where rb,t is either the

radius of the bottom limit or of the top limit of the radiative zone. The factor Ω(rb,t) is
the angular velocity at these limits. Then, the reasoning is the same as above but with
this particular pro�le.
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Chapter 3

The problem of the surface e�ects

Au bord du lac il y a un écho. On s’y tient avec un livre
ouvert dont les passages préférés sont redits de l’autre
côté par la voix qui s’éloigne et répète. Au double écho,
Lucie Maure crie la phrase de Phénarète, je dis que ce qui
est, est. Je dis que ce qui n’est pas, est également. Quand
elle reprend plusieurs fois la phrase, la voix dédoublée,
puis triple, superpose sans cesse ce qui est et ce qui
n’est pas. Les ombres couchées sur le lac bougent et se
mettent à trembler à cause des vibrations de la voix.

Monique Wittig, Les guérillères
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Asteroseismology is the study of the propagation of waves and resulting modes inside stars.
The wave frequencies depend on the physical characteristics of the medium in which the waves
propagate, and therefore carry information on the stellar interior. To fully exploit the potential
of asteroseismology, we need to know by which mechanisms waves are excited and damped
in a star, and what are their resulting characteristics (frequency, amplitude, ...). This chapter is
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The problem of the surface e�ects

organized as follows. In the �rst section I derive the system of equations that describe stellar
oscillations. In this section we make no particular assumption on the rotation pro�le of the star.
The next section is devoted to solving the oscillation equations when the star is not rotating.
The last section presents the work I performed on the surface e�ects on the frequencies of
stellar oscillations.

3.1 Non-radial oscillations equation

The equations we will use to describe oscillations are the time dependent versions of Eqs.
(1.50), (1.6) and (2.71) and for a general �ow u (Unno et al., 1989). Those equations read:

∂ρ

∂t
+ ∇ · (ρu) = 0, (3.1)

ρ

(
∂

∂t
+ u ·∇

)
u = ρf −∇p− ρ∇φ+ ∇ · τ , (3.2)

ρT

(
∂

∂t
+ u ·∇

)
s = ρ (εnuc + εvisc)−∇ · F, (3.3)

∇2φ = 4πGρ, (3.4)

where ρ is the density, t the time, p the pressure, φ the gravitational potential, T the temper-
ature, s the entropy, εnuc the nuclear energy production rate, f the external forces (electro-
magnetic or others) felt by the �ow, τ the viscous stress tensor, εvisc the viscous heat generation
rate and F the radiative �ux. The convective �ux is already included in the le� hand side be-
cause the convection velocity is part of the velocity u. The external forces are usually neglected,
as well as the viscous heat generation. In stellar convective zones, convection �ows certainly
have an impact on wave propagation and conversely. However, treating both phenomena at
the same time is a di�cult problem in stellar physics (see e.g. Gough, 1977; Grigahcène et al.,
2005; Xiong et al., 2015). The dynamics of convection and oscillations are usually modelled
independently. Because the dynamical time-scale of evolution of the waves is much shorter
than the thermal time-scale, oscillations are o�en assumed to be adiabatic. In the remaining of
this Chapter, I will make this assumption, unless mentioned otherwise.

3.1.1 Equilibrium solutions

The equilibrium solutions to these equations are given in Chapter 1. In the following, the
equilibrium quantities will be denoted with a 0. For the sake of clarity, I recall the di�erential
equations satis�ed by equilibrium quantities:

∇ · (ρ0u0) = 0, (3.5)

(u0 ·∇) u0 = − 1
ρ0

∇p0 −∇φ0, (3.6)

ρ0T0 (u0 ·∇) s0 = ρ0 (εnuc,0 + εvisc,0) , (3.7)

∇2φ0 = 4πGρ0. (3.8)

The equilibrium state is supposed steady (∂/∂t = 0). Since convection is treated separately, the
equilibrium �ow is supposed to be solely composed of the axisymmetrical rotation: u0 = Ω×r.
Using these notations, one can de�ne the linear Eulerian perturbation X ′ of a quantity X around
the equilibrium value X0:

X(r, t) = X0(r, t) +X ′(r, t), (3.9)
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3.1. Non-radial oscillations equation

with X ′ � X0. From the Lagrangian point of view, the small displacement from an equilibrium
point r0 to a location r = r0 + δr results, for the quantity X , in a small change:

δX = X(r, t)−X0(r0, t). (3.10)

The small displacement is o�en noted with a ξ = (ξr, ξθ, ξϕ) (Aerts et al., 2010), which allows
us to express the Lagrangian perturbation as a function of the Eulerian one:

δX = X ′ + ξ ·∇X0, (3.11)

where, ξ is also linked to the Eulerian perturbation of the velocity of the �ow:

u′ = ∂ξ

∂t
+ (u0 ·∇)ξ − (ξ ·∇)u0. (3.12)

3.1.2 linearised equations with rotation

The perturbed equations in the adiabatic approximation are (e.g. Ouazzani et al., 2010)(
∂

∂t
+ u0 ·∇

)
ρ′ + ∇ · (ρ0u′) = 0, (3.13)(

∂

∂t
+ u0 ·∇

)
u′ + 2Ω× u′ + [u′ ·∇Ω] r sin θeϕ = ρ′

ρ2
0
∇p0 −

1
ρ0

∇p′ −∇φ′, (3.14)(
∂

∂t
+ u0 ·∇

)(
ρ′

ρ0
− 1

Γ1

p′

p0

)
+ u′

(∇ρ0

ρ0
− 1

Γ1

∇p0

p0

)
= [ρ (εnuc + εvisc)]′ −∇ · F′,

= 0 (3.15)

∇2φ′ = 4πGρ′, (3.16)

where Γ1 is the 1st adiabatic index de�ned by Γ1 = ∂ ln p/∂ ln ρ|ad or by the relation dp/p +
Γ1dV /V = 0 (Chandrasekhar, 1957). The right hand side of Eq. (3.15) vanishes because of the
hypothesis of adiabaticity. Eqs. (3.13)-(3.16) form a set of equations for four variables u′ (in the
literature, one also �nd those equations written with ξ as independent variable), p′, ρ′ and φ′.
We will further simplify this system.

Eq. (3.15), reduces to the adiabatic relation

δρ

ρ0
= 1

Γ1

δp

p0
, (3.17)

thanks to the adiabatic approximation: δs = 0. Replacing the Lagrangian perturbations by the
Eulerian ones, leads to:

ρ′

ρ0
− 1

Γ1

p′

p0
+ ξ ·A = 0 with A = ∇ ln ρ− 1

Γ1
∇ ln p, (3.18)

where, A is the Schwarzschild discriminant. With geff = −∇p/ρ, the square of the Brunt-
Väisälä frequency can be rewritten in term of the Schwarzschild discriminant:

N2 = geff ·A (3.19)

We recall that the Brunt-Väisälä frequency is the frequency at which a small displaced parcel
oscillates in a stably strati�ed zone. By using Eq. (3.12) in Eq. (3.13) the linearised continuity
equation can be written:

ρ′ + ∇ (ρ0ξ) = 0. (3.20)
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Equations in system (3.13) to (3.15) are linear 1st order di�erential equations in time t and azimuth
ϕ. Furthermore, the coe�cients of these di�erential equations are independent of time and
azimuth because they are only combinations of equilibrium quantities. Therefore, the temporal
and azimuthal dependencies in the perturbed quantities, are of the form exp(i(ωt+mϕ)). The
term ω is the temporal angular frequency and the integer m is the so called azimuthal number
and it enforces the 2π periodicity in ϕ. Therefore, the advection of any scalar X or vector V
by u0 simpli�es to

u0 ·∇X = Ω∂X
∂ϕ

= imΩX, (3.21)

and

u0 ·∇V = imΩV + Ω×V. (3.22)

Therefore, the Lagrangian time derivatives (D/Dt = ∂/∂t + u0 ·∇) at the beginnings of Eqs.
(3.13)-(3.15) are replaced by(

∂

∂t
+ (u0 ·∇)

)
= iω + imΩ = iω̂, (3.23)

where ω̂ is the oscillation intrinsic angular frequency1 of the wave in the co-rotating (with the
star or with a given layer) frame of reference. Using this relation, the perturbed part of the
velocity, Eq. (3.12) becomes:

u′ = iω̂ξ − (ξ ·∇Ω)r sin θeϕ. (3.24)

Hence, the momentum conservation equation (3.14) reads:

−ω̂2ξ + 2iω̂Ω× ξ − (ξ ·∇Ω2)r sin θe⊥ = ρ′

ρ2
0
∇p0 −

1
ρ0

∇p′ −∇φ′, (3.25)

where e⊥ = sin θer+cos θeθ, already de�ned in (1.51), corresponds to the vector in the direction
perpendicular to the rotation axis. Eqs. (3.20), (3.25), (3.18) and (3.16) form a system equivalent
to the system (3.13)-(3.16) but expressed with the displacement instead of velocity �uctuations.

We will be looking for particular solutions of the perturbed quantities, developed on spher-
ical harmonics. Because of the non-spherical symmetry, the solutions are non-separable into
a radial part and angular part, as is the case when rotation is neglected. However, one can
express any vector V or scalar X , solution of system (3.13)-(3.16), in the following general form
(Rieutord, 1987):

V(r, θ, ϕ, t) = eiωt
∑
`,m

u`m(rp)Y m
` (θ, ϕ)er + v`m(rp)∇Y m

` (θ, ϕ) + w`m(rp)∇× (Y m
` (θ, ϕ)er)

= eiωt
∑
`,m

u`m(rp)Rm
` (θ, ϕ) + v`m(rp)Sm` (θ, ϕ) + w`m(rp)Tm

` (θ, ϕ), (3.26)

and

X(r, θ, ϕ, t) = eiωt
∑
`,m

x`m(rp)Y m
` (θ, ϕ), (3.27)

1Several frequencies can be de�ned. The intrinsic frequency ω̂ is the frequency in the reference frame, actually
in rad s−1. It is related to the cyclic frequency ν̂, in s−1 by the relation: ω̂ = 2πν̂. The same relation exists for the
temporal frequency ω.
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3.2. Non-rotating asteroseismology

Figure 3.1: Real part of the radial component of (l,m) = {(1, 0), (5, 0), (3, 2), (10, 5), (15, 12)} modes. The
red and the blue surfaces can be viewed respectively as an elevation and a depression of the surface,
due to stellar oscillation.

where u`m, v`m and w`m are the projections of V on Rm
` , Sm` and Tm

` . The radius rp is the
radius of an isobar as de�ned in Eq. (2.47). It can be any other suitable parametrization, the
important point being that this coordinate must depends on the radius and on the latitude.
Finally, Y m

` (θ, ϕ) are the spherical harmonics (see Fig. 3.1) de�ned by

Y m
` (θ, ϕ) = (−1)mc`,mPm

` (cos θ)eimϕ with c`,m =
√

2`+ 1
4π

(`−m)!
(`+m)! , (3.28)

where c`,m is a normalization constant allowing the integral of |Y m
` |2 over a unit sphere to

equal unity, and Pm
` is the associated Legendre polynomial (see Eq. (B.9)).

• n ∈ Z is called the radial order. It is the number of radial nodes of an eigenfunction along
the stellar radius (although this is not true for mixed modes which have two more nodes;
Scu�aire 1974);

• ` ∈ J0;nK is called the degree of the mode. It corresponds to the total number of nodal
lines on the sphere, parallel to the latitudes or to the longitudes (see Fig. 3.1). The
surfaces formed by the "latitudinal" nodal lines are conical surfaces, while the one formed
by "longitudinal" nodal lines are planes;

• m ∈ J`; `K is the azimuthal order. It is the number of the nodal planes parallel to the
longitudes. Consequently, the integer `−m is the number of plane parallel to the latitudes.

As said in the introduction, my goal in this Chapter is not to provide a full resolution of the
system (3.13)-(3.16), especially since this system is not completely solved yet. Oscillation codes
such as top (two-dimensional Oscillation Program; Reese et al. 2006) or acor (Adiabatic Code of
Oscillation including Rotation; Ouazzani et al. 2012) can however provide 2D non-perturbative
solutions to oscillation equations (including rotation). They also provide a framework to test
various methods developed to approximate oscillation spectra of rotating stars. I will quickly
describe some of these approximations, starting from no rotation at all, then slow and �nally
fast rotation.

3.2 Non-rotating asteroseismology

3.2.1 Oscillation equations

A large fraction of stars are slow rotators. A very good description of their frequency spectrum
can be reached by assuming no rotation in the system (3.13)-(3.16). We decompose the dis-
placement vector δr = ξ into a radial component ξr and horizontal component ξh = (0, ξθ, ξϕ)
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and δr = ξrer + ξh. With Ω = 0, Eq. (3.25) projected on the radial and horizontal direction
becomes (Aerts et al., 2010):

∂2ξr
∂t2

= −ω2ξr = − 1
ρ0

∂p′

∂r
− ρ′

ρ0
g0 −

∂φ′

∂r
, (3.29)

and
∂2ξh
∂t2

= −ω2ξh = −∇h

(
p′

ρ0
+ φ′

)
, (3.30)

where ∇h = (0, 1
r
∂
∂θ ,

1
r sin θ

∂
∂ϕ) is the horizontal spherical gradient. We need three more equa-

tions for p′ ρ′ and φ′. We inject Eqs. (3.29) and (3.30) into Eq. (3.20) and we further develop
the Poisson equation to separate the radial and horizontal part:

ρ′ + ξr
∂ρ0

∂r
+ ρ0

r2
∂r2ξr
∂r

+ ρ0

ω2∇
2
h

(
p′

ρ0
+ φ′

)
= 0 (3.31)

1
r2

∂

∂r

(
r2∂φ

′

∂r

)
+∇2

hφ
′ = 4πGρ′. (3.32)

Finally, in the case of no rotation, Eq. (3.18) only depends on ξr because of the spherical
symmetry:

ρ′

ρ0
− 1

Γ1

p′

p0
+ ξrAr = 0 with Ar = ∂ ln ρ

∂r
− 1

Γ1

∂ ln p
∂r

. (3.33)

Therefore, Eqs. (3.29), (3.31), (3.32) and (3.33) form a system with ξr, p′, ρ′ and φ′ as unknowns.
Because of the spherical symmetry, the solution for the components of the displacement

are, this time, separable into a radial and an angular part. The displacement (eigenfunctions)
of an eigenmode is identi�ed by the quantum numbers (n, `,m) in the (r, θ, ϕ) directions:

ξr(r, θ, ϕ, t) = ξr,n`(r)Y m
` (θ, ϕ) exp(−2iπνn`mt), (3.34)

ξθ(r, θ, ϕ, t) = ξh,n`(r)
∂Y m

`

∂θ
(θ, ϕ) exp(−2iπνn`mt), (3.35)

ξϕ(r, θ, ϕ, t) = ξh,n`(r)
sin θ

∂Y m
`

∂ϕ
(θ, ϕ) exp(−2iπνn`mt), (3.36)

where νn`m = ωn`m/2π is the cyclic frequency. Moreover, any scalar can be written in the same
way as in Eq. (3.27) with the amplitudes depending on rp = r. We note that the horizontal
Laplacian of a spherical harmonics is:

∇2
hY

m
` (θ, ϕ) = −`(`+ 1)

r2 Y m
` (θ, ϕ). (3.37)

We also introduce the so-called Lamb frequency (Lamb, 1881):

S2
` = `(`+ 1)

r2 c2
s with c2

s =
√

Γ1p0

ρ0
, (3.38)

where c2
s is the sound speed. The quantity k2

h ≡ `(`+1)/r2 is the horizontal wave number. The
Lamb frequency is thus the inverse of the time needed for a wave to cross a distance 2π/kh at
speed cs. Now, from Eq. (3.18) we derive:

ρ′ = p′

c2
s

+ ξr
ρ0N

2

g0
and

∂ρ0

∂r
= −ρ0

(
g0

c2
s

+ N2

g0

)
. (3.39)
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Then using relations (3.39) successively into Eq (3.29), (3.31) and (3.32), gives for Eq (3.29)

−ω2ξr = − 1
ρ0

∂p′

∂r
−
(

p′

ρ0c2
s

+ ξr
N2

g0

)
g0 −

∂φ′

∂r

∂p′

∂r
+ g0

c2
s
p′ = ρ0

(
ω2 −N2

)
ξr − ρ0

∂φ′

∂r
, (3.40)

for Eq. (3.31):

p′

c2
s

+ ξr
ρ0N

2

g0
+ ρ0

(2
r
ξr + ∂ξr

∂r

)
= ρ0ξr

(
g0

c2
s

+ N2

g0

)
+ `(`+ 1)

r2ω2 (p′ + ρ0φ
′) ,

∂ξr
∂r

+ ξr

(2
r
− g0

c2
s

)
= `(`+ 1)

r2ω2 φ′ + p′

ρ0c2
s

(
S2
`

ω2 − 1
)
, (3.41)

and for Eq. (3.32):

1
r2

∂

∂r

(
r2∂φ

′

∂r

)
− `(`+ 1)

r2 φ′ = 4πG
(
p′

c2
s

+ ξr
ρ0N

2

g0

)
. (3.42)

The solution of the radial parts of the perturbed gravitational potential φ′ can be expressed
as (Aerts et al., 2010)

φ′(r) = − 4πG
2`+ 1

[
1

r`+1

ˆ r

0
ρ′(r2)r`+2

2 dr2 + r`
ˆ R

r

ρ′(r2)
r`−1

2
dr2

]
. (3.43)

When ` is large, the ratios r`+2
2 /r`+1 and r`/r`−1

2 in both integral are small because in the �rst
one r2/r1 < 1 and in the second one, r1/r2 < 1. There is also the factor 1/(2`+ 1) that reduces
further the value of φ′. When n is large, the perturbation of the density is fast-varying and
the integrals are small. Therefore, for large n and large `, φ′ goes to 0. It justi�es the so-called
Cowling approximation (Cowling, 1941) which amounts to assuming that the �uctuations of the
gravitational potential vanish. This approximation is justi�ed for waves propagating in regions
of low density, i.e. the envelope of the star. With this approximation, our system simpli�es to
only two equations:

∂p′

∂r
+ g0

c2
s
p′ = ρ0

(
ω2 −N2

)
ξr, (3.44)

∂ξr
∂r

+ ξr

(2
r
− g0

c2
s

)
= p′

ρ0c2
s

(
S2
`

ω2 − 1
)
. (3.45)

The term g0/c
2
s is of the order of the inverse of the pressure scale height2. Eigenfunctions of

oscillations with large n vary on spatial scales much shorter than the equilibrium structure
of the star (which vary on characteristic scales of order Hp). Therefore, one can make the
hypothesis that g0/c

2
s is small compared to ∂ξr/∂r. Moreover, the term 2/r, near the surface

goes to 0 and is also small compared to ∂ξr/∂r. The second term of the le� hand side of Eq.
(3.45) can then be neglected3. Hence, the above system becomes

∂p′

∂r
= ρ0

(
ω2 −N2

)
ξr, (3.46)

2I recall that the pressure scale height is de�ned as

1
Hp

= −d ln p
dr .

3These approximations are questionable. Indeed the pressure scale height goes to 0 near the surface, therefore
the neglect of g0/c

2
s is not valid at the surface. On the other side, 2/r becomes high near the centre and cannot be

neglected either.

69



The problem of the surface e�ects

0.0 0.2 0.4 0.6 0.8
r/R�

10−1

100

ν
/ν

m
ax

N

S`, ` = 1

S`, ` = 2

S`, ` = 3

0 1 2 3 4
r/R�

10−1

100

ν
/ν

m
ax

N

S`, ` = 1

S`, ` = 2

S`, ` = 3

Figure 3.2: Propagation diagram for two stellar models. Mode with frequency (normalized by νmax).
Shaded areas represent the zones where degree l = 1 modes vanish. le�: Sun model with νmax =
3090 µHz and an age of 4570 Myr (main-sequence star). right: Model with M = 2.21 M�, R = 4.37 R�,
νmax = 347 µHz and an age of 1016 Myr (sub-giant star).

∂ξr
∂r

= p′

ρ0c2
s

(
S2
`

ω2 − 1
)
. (3.47)

And �nally we obtain a wave equation for ξr (or p′):

∂2ξr
∂r2 = ω2

c2
s

(
1− N2

ω2

)(
S2
`

ω2 − 1
)
ξr = −ω2k2(r)ξr, (3.48)

∂2ξr
∂r2 − k

2(r)∂
2ξr
∂t2

= 0 (3.49)

Figure 3.2 represents the pro�le of the Brunt-Väisälä frequency N and of the Lamb frequency
S` for three values of `. The frequency N is positive inside the radiative region. The behaviour

of ξr is determined by the sign of k2(r) = 1
c2

(
1− N2

ω2

) (
1− S2

`

ω2

)
, the local wave number.

• If k2(r) > 0: the solution is a propagating wave. This happens when

– (i): ω2 > N2 and ω2 > S2
` ;

– (ii): ω2 < N2 and ω2 < S2
` ;

• If k2(r) < 0: the solution is an exponentially increasing or decreasing wave. This happens
when

– (iii): S2
` < ω2 < N2 ;

– (iv): N2 < ω2 < S2
` .

The regions where conditions (iii) or (iv) are satis�ed are represented as grey shaded areas
in �gure 3.2. Waves existing in such regions are called evanescent waves. In propagating
regions, in case some conditions on the excitation and damping rates are met (see Sect 3.2.4),
the wave re�ections form standing waves. Those regions are o�en called trapping regions and
are separated from each other by evanescent regions. Therefore, standing waves are con�ned
in the trapping region. One can identify two types of modes:
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3.2. Non-rotating asteroseismology

• modes satisfying condition (i) (high-frequency): they are called p-modes because their
restoring force is the pressure gradient and they are con�ned to the surface layers;

• modes satisfying condition (ii) (low-frequency): they are called g-modes because their
restoring force is the gravity and they are con�ned to the radiative zones.

Consequently, a single mode displays di�erent behaviours according to the region we are
looking at. It is oscillating everywhere, however its amplitude exponentially decreases while
propagating in evanescent regions. Let us imagine that a star has two distinct regions, and
that a mode can propagate in the central regions and is evanescent in the outer one. If
the exponentially decreasing amplitude has not vanished at the surface, this mode could be
observable. This is for instance not the case in the Sun in which g-modes are not measurable
at the surface because they are con�ned in the deep interior of the star, and their residual
amplitude at the surface is almost 0. Modes in a particular range of frequencies, can display
both g-mode and p-mode behaviour because the corresponding cavities are so close to one
another and a mode can propagate into both cavities and be measured at the surface. Those
modes are called mixed-modes and they provide a powerful opportunity to collect data from
the stellar core structure (e.g. Mosser et al., 2014).

3.2.2 Asymptotic relations

The study of the oscillation equations and of seismic observations have revealed the presence
of regular patterns in the frequency spectra. Indeed, it can be shown that the frequencies
of modes with large n (asymptotic modes) follow very simple relations, called asymptotic
relations (Shibahashi, 1979; Tassoul, 1980, 1990; Vorontsov, 1991). These relations are powerful
tools because they allow astronomers to easily identify the di�erent modes (i.e. identify the
quantum numbers associated with a particular mode), which enables them to use them as
constraints for the modelling of a speci�c star. For p-modes, the frequency νn` of a mode
for n large can be approximated by a 2nd order asymptotic approximation (even a 4th-order
approximation has been proposed; Roxburgh & Vorontsov 1994):

νn` '
(
n+ `

2 + 1
4 + α(νn`)

)
∆ν − 1

νn`
(A`(`+ 1)− 2Φ) ∆ν2. (3.50)

Here, α contains the residual of the neglected higher orders and the so-called surface e�ect,
that will be discussed in more detail in Sect 3.3. The term α depends on the stellar-structure
and on the frequency. The term α∆ν and the 2nd-order term (factor of ∆ν2) are very small
compared with the remaining 1st-order one. Therefore, one sees that, if α was not here, the
mode νn+1,` would have the same frequency as νn,`+2. This degeneracy is li�ed by α. The
factor ∆ν is called the large separation. In a 1st-order approximation, one can consider that
∆ν is constant over the whole spectrum:

∀n ∈ N, ` ∈ J0;nK, ∆ν ' ∆νn,` = νn+1,` − νn,`. (3.51)

The p-modes are therefore said to be evenly spaced in frequency. Asymptotically, the large
separation is proportional to the inverse of the stellar acoustic diameter, i.e. the time a sound
wave takes to travel across a stellar diameter:

∆ν =
(

2
ˆ R?

0

dr
c

)−1

. (3.52)
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Figure 3.3: le�: Sound speed pro�le as a function of mass at di�erent stages in the main-sequence phase
of a 1M� stellar model. right: H1 mass fraction pro�le as a function of mass at di�erent stages in the
main-sequence phase of a 1M� stellar model.

This particular frequency is of extreme importance in asteroseismology because it is very easy
to measure (with only a few measured frequencies) and it is linked to the mean density of the
star (Ulrich, 1986):

∆ν ∝

√
M

R3 ∝
√
〈ρ〉. (3.53)

The term in factor of ∆ν2 includes a quantity A:

A = 1
4π2∆ν

(
cs(R?)
R?

−
ˆ R?

0

dcs

dr
dr
r

)
. (3.54)

This quantity is linked to another regularity in the frequency pattern called the small separation:

δνn` = νn` − νn−1,`+2 ' −(4`+ 6) ∆ν
4π2νn`

ˆ R?

0

dcs

dr
dr
r
. (3.55)

This expression neglects the in�uence of the gravitational potential perturbation. A more
detailed discussion can be found in Gabriel (1989). The small separation δν depends on the
sound-speed gradient which is much higher in the stellar core. As shown in Fig. 3.3, the sound
speed is a marker of the composition at the centre and it decreases during the evolution due
to the increasing of the mean molecular weight in the core. Therefore δν provides a proxy for
stellar evolution.

The �nal term needing a de�nition is the quantity Φ in Eq. (3.50). A very complex expression
for Φ is given in Vorontsov (1991), I do not reproduce it here but it depends mostly on quantities
such as the gravity, the gravitational potential, the sound speed, the Brunt-Väisälä frequency
and the radius.

In the case of g-modes, the asymptotic relation is di�erent. Indeed, g-modes are not
evenly spaced in frequency but in period. Therefore we will not talk about the large frequency
separation but about the period spacing. This asymptotic relation is given as an integral
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relation:

ˆ r2

r1

(
N2

ν2
n`

− 1
)1/2 dr

r
= π(n+ /̀2 + αg)

`(`+ 1) . (3.56)

First of all, the radii r1 and r2 are the limit (called turning points) of the trapping cavity in
which the considered g-mode propagates. The term αg ' 1 plays a similar role as α in Eq.
(3.50) but its value depends on the nature of the interface on which the g-mode is re�ected.
By assuming, νn` � N , one can write for the period Pn`:

Pn` ' ∆Π`(n+ /̀2 + αg) with ∆Π` = 2π2

`(`+ 1)

ˆ r2

r1

N
dr
r
, (3.57)

with ∆Π` being the period spacing.
An asymptotic relation for mixed-modes, that behave as g-modes in the g cavity and as

p-modes in the p cavity, can also be de�ned. It has been the subject of many works since the
advent of CoRoT and Kepler because mixed modes carry a wealth of information on stellar
cores. This asymptotic relation depends on the coupling between the two cavities (Shibahashi,
1979; Unno et al., 1989; Mosser et al., 2012, 2014, 2015; Vrard et al., 2016; Mosser et al., 2017,
2018; Pinçon et al., 2020).

3.2.3 Ensemble asteroseismology

As shown with Eq. (3.53), characteristic oscillation frequencies can provide important informa-
tion on stellar global parameters. Since, for instance, ∆ν is proportional to the mean stellar
density, dividing Eq. (3.53) by solar values gives access to a very precise measurement of the
mean density of any star for which ∆ν is measured:

∆ν
∆ν�

'
√
M

R3
R3
�

M�
'
√
〈ρ〉
〈ρ〉�

with ∆ν� = 134.9 µHz and 〈ρ〉� = 1408 kg m−3. (3.58)

This method is called ensemble asteroseismology. Since the resolution on the measurement of
the frequency spectrum is much better than the determination of mass and radius for isolated
stars by other means, the parameters estimated through asteroseismology are of much higher
quality. Nonetheless, this relation is not quite exact, as it should account for e�ects from a
varying e�ective temperature or metallicity (White et al., 2011).

Other interesting frequencies are the acoustic cut-o� frequency νac and frequency of the
maximum power νmax (see Fig. (3.4)) which share a close link. Stellar oscillation spectra have
a Gaussian-shaped envelop. This Gaussian peaks at the frequency νmax. This frequency is
directly linked to the acoustic cut-o� frequency:

νac = cs

4πHp
and νmax ∝ νac, (3.59)

where cs is the sound speed. Above this frequency there is no total re�ection at the stellar
surface any more. Furthermore,

1
Hp

= −1
p

∂p

∂r
= 1
p
ρg ∝ g

T
∝

surface

g

Teff
. (3.60)

Then, since c2
s ∝

√
p/ρ, we �nally have

νmax ∝ νac ∝
g√
Teff
∝ M

R2√Teff
. (3.61)
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Figure 3.4: modelled solar spectrum showing Gaussian-shaped arbitrary amplitude as a function of
frequencies of eigenmodes. Because of the adiabatic hypothesis, the amplitudes do not come from
physical computation but are assumed to have a Gaussian shaped centreed on νmax = 3090 µHz (vertical
dashed line). The Gaussian-shaped enveloped of the ` = 0 modes is represented by the black dashed
curve.

This scaling relation is remarkably well veri�ed by observation and Belkacem et al. (2011)
provided a theoretical explanation for it.

Finally, one can use νmax and ∆ν jointly by writing:

∆ν
∆ν�

∝
(
M

M�

)−1/4
(
Teff

Teff,�

)3/8(
νmax

νmax,�

)3/4

, (3.62)

which provides a link between ∆ν and the e�ective temperature. We will see in Sect. 3.3 that
it is possible to derive many more scaling relations.

3.2.4 Mode excitation and damping

As we will see shortly, the adiabatic approximation is valid in a large portion of the star.
However, it is the energy exchanges between the wave and the medium that excite and damp
the waves and control their amplitudes. Therefore, the adiabatic approximation has ruled
out the possibility of predicting oscillation amplitudes, which would be especially helpful for
identifying modes and for searching and de�ning new classes of pulsators.

When variations of entropy are not neglected, i.e. the non-adiabatic case, the thermody-
namic identity de�ned in Eq. (3.17) reads

δρ

ρ0
= 1

Γ1

δp

p0
− ρ0

p0

(Γ3 − 1)
Γ1

Tδs with Γ3 − 1 =
(
∂ lnT
∂ ln ρ

)
ad
. (3.63)

If one takes the time derivative of this equation (bearing in mind that the time derivative of
equilibrium quantities is zero), one obtains

1
ρ0

∂δρ

∂t
= 1

Γ1p0

∂δp

∂t
− ρ0

p0

(Γ3 − 1)
Γ1

T
∂δs

∂t
. (3.64)
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From Eq. (1.33), we shall also derive

T
∂δs

∂t
= δ

(
ε− ∂l

∂m

)
, (3.65)

with l(m) the luminosity. For simplicity, we assume oscillating solutions for δρ, δp and δs. We
see that, if these quantities do not reach their maximums at the same time, one can have for
instance when ∂δp/∂t = 0,

∂δρ

∂t
= ρ2

0
p0

(Γ3 − 1)
Γ1

T
∂δs

∂t
6= 0. (3.66)

The phase-lag between δp and δρ translates into the wave gaining or losing energy. With Eq.
(3.63) taken into account and with appropriate boundary conditions, the eigenmode solution
of the system look like (Samadi et al., 2015)

ξ(r, t) = ξ(r)e−iωteγt = ξ(r)e−iω†t with ω† = ω − iγ, (3.67)

where γ is called the growth/damping rate. In order to decide whether a mode is stable or
not, one should study the cumulated gain/loss of energy over a wave cycle. To do so, we have
to study γ de�ned as

γ =

〈
dW
dt

〉
cycle

〈Eosc〉cycle
. (3.68)

The quantity dW/dt is the positive or negative work received by the mode from the medium
per unit time and Eosc is the total energy of the mode. The operator 〈·〉cycle denotes the average
over a pulsation cycle.

• If γ > 0, the mode is growing and unstable. The eigenmode will obey the linear system
of equations we derived above until the linear approximation breaks down. At that point,
other mechanisms come into play. For instance it is the case of modes observed in δ Scuti
stars (see Sect. 4.3.2, γ Dor and δ Sct), excited by the κ mechanism in H and He ionization
regions. Where H or He become ionized, the opacity suddenly increases due to the in-
creased concentration of electrons (Thomson4 and Compton5 scattering; e.g. Kippenhahn
et al. 2012). The enhanced opacity acts as a pot lid and blocks radiation. Temperature
increases and the star expands. This is the beginning of an unstable growing-mode. Non-
linear e�ects appear when due to dilation, density and opacity decrease which leads to
the star contraction.

• If γ < 0, the mode is stable and its amplitude will progressively decrease. This is the case
of solar-like pulsators where pressure modes are mainly excited by stochastic convective
turbulence (Samadi & Goupil, 2001) and by convective plumes (Belkacem et al., 2006a,b).

In order to �nd the region where the adiabatic relation is a good approximation or not, one
introduces two characteristic time-scales. First, the dynamical time-scale τdyn is of the same
order as the modal period Π. If one takes as an example the oscillation at maximum power
of the Sun, its frequency is νmax = 3090 µHz and its period is Πmax = 324 s = 5 min 24 s.
The second characteristic time-scale is the thermal time-scale τth which gives the approximate

4When an electromagnetic wave encounters an electron, it starts oscillating and radiates part of the energy in
other directions. This phenomenon is called Thomson scattering.

5Same as Thomson scattering but with relativistic corrections (needed when T & 108 K).
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Figure 3.5: Thermal time-scale pro�les for models of 1M�, 2M�, 2.5M� as a function of le�: log T and
right: log(m/M?). The speci�c heat capacity at constant volume cv is computed in two ways: either
cv = cp− δ2p

ρTα (solid lines) or cv = cp
Γ1

(dashed lines). The solid black line corresponds to a modal period
Π of 5.39 min, i.e. the period of νmax,� = 3090 µHz.

amount of time needed for a small parcel of warm (cold) material to lose (gain) energy. In a
region where nuclear reactions do not occur, τth at radius r is the ratio of the thermal energy
contained into the material divided by the energy loss rate, i.e. the luminosity:

τth '
〈cvT 〉∆m

L
with 〈cvT 〉 =

´ R?
r cvTdm´ R?
r dm

, (3.69)

where ∆m is the mass enclosed between the surface and the sphere of radius r, i.e. the mass
above r, cv is the speci�c heat capacity at constant volume. The Fig. 3.5 represents the
thermal time-scale pro�le for three models of mass 1M�, 2M�, 2.5M�. We see that a thermal
time-scale of the same order of the modal period Πmax is reached very close to the surface
(m/M? ' 1). In regions where τth � Π holds, the time-scale on which a wave exchanges energy
with the propagative medium is much longer than the oscillation period. Therefore, energy
exchanges can be neglected and adiabatic approximation holds. However, this is not the case in
non-adiabatic regions where τth . Π. In this region, waves can be excited if the medium gives
energy to the wave and conversely, the wave is damped if it gives energy to the medium. For
a given mode, one can �nd damping dominated regions and excitation dominated regions. In
the model with 2M�, the region where τth < Π has a signi�cantly larger extent than for the
other two models.

3.3 The problem of near-surface e�ects on oscillation frequencies

This section presents and provides further information on an article (Manchon et al. 2018; also
attached to the present manuscript at page 886).

3.3.1 Context

Turbulent convection has an in�uence on p-modes eigenfrequencies. Indeed, an inhomogeneous
velocity, temperature and density �eld a�ects the phase of the oscillation and its propagation,

6Reproduced with permission © ESO.
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Figure 3.6: Scaled frequency di�erences between observed (Tomczyk et al., 1995; Bachmann et al., 1995)
and modelled (Christensen-Dalsgaard et al., 1996) frequencies. Credits: Rosenthal et al. (1999).

in general slowing it down and decreasing the frequency (Brown, 1984). However, 1D stellar
models implement simpli�ed models of convection (such as the mixing-length theory; mlt) that
completely remove turbulence from the problem. Dziembowski et al. (1988) was the �rst to
observe the e�ect of the neglecting of the turbulent convection on eigenfrequencies, pointing
out systematic discrepancies at high frequency between observed and calculated p-modes
and called theoreticians for an in-depth study of what causes those dissonances. Those have
been studied in more detail by Rosenthal et al. (1995); Christensen-Dalsgaard & Thompson
(1997); Rosenthal et al. (1999). Figure 3.6 shows scaled frequency di�erences between observed
and computed solar frequencies: δνn` ≡ νobs

n` − νmod
n` . The observations gather data from the

instrument lowl deployed at hao’s observing station on Mauna Loa, Hawaii (Tomczyk et al.,
1995) for low-degree oscillations and from High-L Helioseismometer (hlh) installed on Kitt
Peak telescope (Bachmann et al., 1995), for high-degree oscillations. Modelled frequencies are
computed using the Model S of the Sun (Christensen-Dalsgaard et al., 1996) that was the state-
of-the-art solar model at that time. In Fig. 3.6, we distinguish several groups of frequencies
that follows similar trends. Each of those groups correspond to modes with the same degree `.
Because the high-degree modes propagate less deeply, in a less dense medium than low-degree
modes, their mode inertia is smaller and therefore they are more a�ected by perturbations
in the shallowest layers of the star (Christensen-Dalsgaard & Thompson, 1997). In order to
suppress this e�ect, Rosenthal et al. (1999) use a scale factor Qn` de�ned as being the ratio at
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The problem of the surface e�ects

Figure 3.7: Actual temperature gradient (solid blue line), adiabatic gradient (dashed orange line) and
radiative gradient (dotted green line) as a function of the radius (le�) and of the pressure (right), for a
1M� model with solar chemical composition and an age of 4613 Myr. Convective zone is represented
by shaded area.

frequency ωn` of the mode inertia In` of modes of degrees n` and n0:

Qn` = In`
In0(ωn`)

. (3.70)

This is those scaled frequency di�erences that are represented in �gure 3.6. Although the
scaling factor Qn` does not mask completely the degree dependency to surface e�ects.

From the theoretical analysis of the causes of surface e�ects, it emerged that two main
consequences of the convection on the propagation of oscillations can be found (Houdek et al.,
2017).

• The �rst e�ects are due to modi�cation of the mean stellar-structure due to the neglect
of the turbulent pressure term, therefore, they are called structural e�ects. The turbulent
pressure term adds support against the gravity in the hydrostatic equilibrium equilibrium.
It extends the cavity and increases the frequency of its modes of oscillation.

• The second source of surface e�ects comes from simpli�cations of the oscillation equa-
tions. First of all, these equations are derived within the adiabatic approximation. In
reality, non-adiabatic e�ects become less negligible near the limit of the propagation
cavity (especially at the surface). Non-adiabatic terms appear in the perturbed energy
conservation equation (3.63) and modify the wave propagation. Secondly, as we will
see shortly, it is quite uncertain how the turbulent pressure should be included in the
oscillation equation. More precisely, the e�ect of a mode on the Lagrangian perturbation
of the turbulent pressure is still undecided (Sonoi et al., 2017). They are called modal
e�ects (Balmforth, 1992).

The caveats of mixing-length theory (mlt)

Figure 3.7 shows the values for the actual gradient ∇, the adiabatic gradient ∇ad and the
radiative gradient ∇rad inside a 1 M� ms star. The convective envelope starts where ∇ad
becomes smaller than ∇rad. In the deep convective zone, we see that, as we said in Sect.
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3.3. The problem of near-surface e�ects on oscillation frequencies

1.1.2, ∇ ' ∇ad. In this region, the entropy is constant and a convection theory is actually
not needed because the value of the actual gradient is given by the adiabatic one. Near the
surface, for log p ∈ [12 − 17], ∇ > ∇ad, and even ∇ � ∇ad very close to the surface. In this
region, convection becomes ine�cient, due to the sudden decrease in mass density. Becoming
ine�cient means that the velocity of the convective �ow has to increase dramatically in order
to maintain the required energy �ux. This zone is called the superadiabatic zone because
∇ > ∇ad. This di�erence between ∇ and ∇ad means that there is an entropy jump between
the beginning of the superadiabatic zone and the surface. The mlt is actually designed to
reproduce, through the adjustment of αMLT, the desired entropy jump.

The mlt may seem too simple, even simplistic, but works surprisingly very well. However,
it has some de�ciencies that hinder the modelling of stellar upper layers (see Trampedach,
2010, for a review):

• The mlt is based on the Boussinesq approximation that justi�es neglecting the compress-
ibility of the convective �ow if `MLT � Hp, i.e. αMLT � 1. In practice, this condition is
never met and is actually very far from being met. In the solar model used to produce
Fig. 3.7, αMLT ' 1.65;

• There exists no theoretical formulation that gives the mixing length `MLT, therefore it
must be calibrated7 (Trampedach & Stein, 2011; Serenelli, 2016). Very o�en, the data
and/or the time is lacking for a proper calibration of the αMLT and the solar αMLT is
assumed, whatever the characteristics of the star. This is obviously not satisfying from
a physical point of view;

• Furthermore, αMLT is assumed to be constant inside the star and for all its convection
zones and does not change along stellar evolution, despite the dimension of the surface
convective zone varying over several orders of magnitude (Kippenhahn et al., 2012);

• In the mlt framework, the kinetic energy spectrum E(k) is treated as if there were only
one large eddy, and one forgets about all other turbulent motions (Canuto & Mazzitelli,
1991). In mlt, E(k) is approximated by a Dirac distribution;

• mlt cannot describe overshooting. Overshoot is the �uid motion outside the convective
zone due to the velocity gained during convective motion. Overshoot of the core con-
vective zone8 is a very important process in stellar evolution because it connects the
hydrogen-rich radiative zone to core convective zone where nuclear reactions take place.
Overshoot thus injects a hydrogen-rich material into this zone, which extends the lifetime
of the star and perturbs our estimation of the age.

Some other models have been introduced in order to overcome those limitations, including
the Full Spectrum Turbulent (fst) convective model which proposes to replace the Dirac dis-
tribution approximation of the turbulence spectrum by a Kolmogorov one (Canuto & Mazzitelli,
1991, 1992; Canuto et al., 1996). Whilst the turbulent velocity spectrum is much better described
than with mlt, this theory still has a free parameter: a mixing length that also corresponds
to the size of the largest eddy, which is found smaller than with mlt, because of the energy
distributed within a larger spectrum. However, fst model assumes a homogeneous turbulence
for up and down �ows, which is not con�rmed by realistic 3D simulations of surface convection
that predicts a laminar up-�ow and a turbulent down-�ow.

7The value of αMLT is calculated by adjusting it so that the modelled stars display the same values for some
global parameters. For instance, if one wants to model a star with a speci�c luminosity and a speci�c radius, it is
usual to adjust the initial helium abundance and αMLT to do so.

8A core convective zone is present in stars with M > 1.2 M�.
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A method to study theoretically surface e�ects

Surface e�ects appear when comparing observed frequencies with frequencies computed in
a 1D model. In order to study theoretically surface e�ects, we need a way to arti�cially
replace observed frequencies. For a proper computation of the �uid motions at the surface
of the star, we can make use of 3D stellar convection codes. Those numerical codes compute
convective motions directly from �rst principles, i.e. directly from magnetohydrodynamics
(mhd) equations: no assumption is made about the turbulence spectrum. They are called
Direct Numerical Simulation (dns) codes. They are three-dimensional, time-dependent and the
radiative transfer is also treated in three dimensions. Last but not least, they make no use of
tunable parameters. 3D codes produces more physically realistic simulations than 1D stellar
codes.

Ideal mhd relies on the following assumptions (Spruit, 2013):

• The �uid approximation: the plasma is a �uid where the thermodynamic quantities are
meaningful and the variations of these quantities are slow compare to the characteristic
time scales of the microscopic processes taking place in the plasma;

• The relation between the electric �eld and the current density (The Ohm’s law) is assumed
instantaneous;

• The plasma is globally neutral.

The mhd equations combine the Navier-Stokes equations for a plasma (i.e. taking into account
the extra electromagnetic terms), the Maxwell-Ampère equation and the Ohm’s law.

Codes solving these equations are o�en coupled to a radiative transfer solver, especially
for spectroscopic usages. They are called r-mhd codes. Notable r-mhd codes used to perform
surface convection simulations are the stagger-code (Nordlund & Galsgaard, 1995), the muram
code (Vögler, 2003) and the one used in this work: co5

bold (Freytag et al., 2002, 2012). r-mhd
codes can be considered as solvers of r-mhd equations. One just has to specify some boundary
conditions in order to model the physical phenomenon needed. The same code can, therefore,
simulate radiative transfer in the interstellar medium, dynamics of plasma jets, sunspots, or
convection. No extra ad hoc theory is needed.

But using a r-mhd code to compute the complete stellar-structure is completely out of reach
(Kupka & Muthsam, 2017). And actually, we do not really need that to obtain a more realistic
model, we just need a 3D model of the superadiabatic region and a 1D model for the rest of the
star. This is the idea behind patched models (pm). A pm is build by connecting a 1D stellar model
to a horizontally-averaged 3D model. The matching point is the location where the pressure
and the temperature of both models are equal (see Fig. 3.8). A�er this operation, we obtain two
models. The pm (more realistic) is the combination of the 1D model and the 1D strati�cation
obtained from a 3D model. The unpatched model (upm) is the original 1D model with no
amendment. In order to perform our theoretical work, we will compare two sets of frequencies.
The one obtained from the pm which are the closest to the observations, and the one issued
from the upm that are surface-a�ected. This method gives νPM

n` − νUPM
n` ' νobs

n` − νmod
n` ≡ δνn`.

3.3.2 Adiabatic oscillation including turbulent pressure

We have seen that the two main causes of the surface e�ects are the adiabatic approxima-
tion, which acts through the modal e�ects, and the turbulent pressure which acts through
the structural and modal ones. The impacts of the turbulent pressure and of the adiabatic
approximation are hard to disentangle, therefore, we must �nd a way to focus on the �rst one,
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3.3. The problem of near-surface e�ects on oscillation frequencies

Figure 3.8: Temperature and total pressure strati�cations for a patched (orange line) and unpatched (blue
line) model of the Sun. The matching point is represented by the black point.

while keeping an adiabatic treatment. To that end, we follow the reasoning established by
Rosenthal et al. (1999).

First of all, we place ourselves in a plane-parallel description of the stellar atmosphere. This
approximation is justi�ed because the atmosphere is thin, therefore the curvature is negligible.
In this case, the coordinates are (x, y, z; t), the usual Cartesian coordinates. Let f be any �eld.
We introduce a �rst decomposition of f of the form:

f = f + f ′, (3.71)

where · denotes the horizontal average operator. The quantity f contains both the mean value9

of f and the p-mode oscillation part. Here it is important to stress that · does not average over
time, therefore saying that f contains the oscillation part is meaningful: at a given altitude, f
oscillates in time but not horizontally. This is no problem for a radial mode (` = 0) because
p-mode amplitudes are constant over a sphere (at least in non-rotating stars). This is not
true if we are considering a non-radial mode. In this case, the horizontal average operator
removes part or all the information on the mode. The primed quantity f ′ is the convective
�uctuation and we have, by de�nition, f ′ = 0. In addition, the Eulerian perturbation of the
average quantity f(z, t) can be written as (Rosenthal et al., 1999)

f(z, t) = f0(z) + εf1(z, t), (3.72)

where f0(z) is the time averaged value of f(z, t), ε is a very small non-dimensional number
and f1(z, t) is a time-dependent perturbation. The only special case is for the velocity �eld.
For instance, the z-component is de�ned by: ûz = ρuz/ρ. This expression has two advantages:
(i): it will simplify the future calculation and (ii): ρuz corresponds to the mean mass �ux, which
vanishes when averaged over time because of the conservation of mass in the star, therefore
this expression makes the oscillations more visible. The perturbed form of uz slightly changes
because, due to the density weighted average, its average is not zero:

uz = ûz + u′z ⇒ ρuz = ρ
ρuz
ρ

+ ρu′z ⇒ ρuz = ρuz + ρu′z ⇒ ρu′z = 0 . (3.73)

9Here, the expression mean value stands for the value of the mean �ow or of the mean stellar-structure. It is
the one given by 1D stellar code.

81



The problem of the surface e�ects

As for the Eulerian perturbation of uz , we assume that uz,0 = 0, which amounts to saying that
uz is at rest except for the perturbation due to the p-mode ûz and for the vertical velocity
of the convective �ow u′z . The total pressure will be separated into its two sources: the gas
pressure pg and the turbulent pressure pt due to the �uctuations of the velocity �eld. Its
expression will be given later.

With those notations, the continuity equation (3.1) reads

∂

∂t
(ρ+ ρ′) + ∇ · [(ρ+ ρ′)(û + u′)] = 0. (3.74)

By keeping only 1st-order term and averaging horizontally, it becomes

∂ρ

∂t
+ ∂

∂z
(ρuz) = 0. (3.75)

The momentum conservation equation (3.2) needs a little more work. This equation can be
written in a slightly more suitable way for us:

∂ρu
∂t

+ ∇ · (ρuu) = −∇pg + ρg. (3.76)

A�er injecting perturbed quantities, developing, projecting on z and averaging horizontally we
obtain the following equation:

∂

∂t

[
ρ(ûz + u′z)

]
+ ∇ ·

(
ρ(ûz2 + 2ûzu′z + u′2z )

)
= −∇(pg + pt) + ρ(g + g′). (3.77)

Let us tackle the terms one by one

• 1st term:

ρ(ûz + u′z) = ρûz = ρûz (3.78)

• 2nd term:

ρ (û2
z + 2u′zûz + u′2z ) = ρû2

z + 2 ρu′z︸︷︷︸
=0

ûz + ρu′2z = ρu2
z + ρu′2z . (3.79)

• 3rd term:

∂

∂z
pg + p′g = ∂pg

∂z
. (3.80)

• 4th term: the plane-parallel approximation amounts to making the Cowling approximation,
i.e. the perturbation g′ of the gravitational �eld can be neglected. This approximation is
also applied in 3D simulations. Therefore, g + g′ = g and thus,

(ρ+ ρ′)g = ρg. (3.81)

Finally, Eq. (3.76) reads:

∂ρûz
∂t

= − ∂

∂z

(
ρu2

z + ρu′2z

)
− ∂pg

∂z
+ ρg. (3.82)
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With p = pg + pt, pt the turbulent pressure, an expression for the turbulent pressure can be
extracted from the above equation:

∂ρûz
∂t

= −∂ρû
2
z

∂z
− ∂p

∂z
+ ρg with pt ≡ ρu′2z . (3.83)

Contrarily to ρu′z , pt does not vanish.
Eventually, we apply the same recipe on Eq. (3.63):

∂pg

∂t
+ uz

∂pg

∂z
+ pgΓ1

ρ

(
ρ
∂uz
∂z

)
= −(Γ3 − 1)∇ · Frad

∂pg

∂t
+ ûz

∂pg

∂z
+ u′z

∂pg

∂z
+ pgΓ1

(
∂ûz
∂z

+ ∂u′z
∂z

)
= −(Γ3 − 1)∇ · Frad

∂pg

∂t
+ ûz

∂pg

∂z
+ ∂pgu′z

∂z
− pg

∂u′z
∂z

+ pgΓ1

(
∂ûz
∂z

+ ∂u′z
∂z

)
= −(Γ3 − 1)∇ · Frad.

horizontal
average

(3.84)

A�er tidying up, we obtain

∂pg

∂t
+ ûz

∂pg

∂z
+ pgΓ1

∂ûz
∂z

= −pg(Γ1 − 1)∂u
′
z

∂z
− ∂pgu′z

∂z
− (Γ3 − 1)∇ · Frad. (3.85)

On the right hand side, the �rst term is the compressible work and the second and third terms
are respectively the divergence of the convective �ux and of the radiative �ux, both multiplied
by Γ3 − 1.

We now introduce the Eulerian perturbation de�ned in Eq. (3.72). The linearised Eqs. (3.75)
and (3.83) now read:

∂ρ

∂t
+ ∂ρ0uz,1

∂z
= 0 and ρ0

∂uz,1
∂t

= ∂p1

∂z
+ ρ1g. (3.86)

The equation for the conservation of energy requires some attention. Stein & Nordlund
(1991) argued that the �rst term in the rhs of Eq. (3.85) almost vanishes. Moreover, they
showed that the divergence �uxes (2nd and 3rd terms of rhs of Eq. (3.85)) have opposite signs
and nearly cancel each other. Assuming that there are no departures from the perfect gas law,
their sum is proportional to the total �ux divergence (Rosenthal et al., 1999). Rosenthal et al.
(1999) considered that their perturbation could be neglected, meaning that the heating/cooling
terms are zero. This a�rmation follows from the adiabatic equation. In reality, simulations
show that the non-adiabatic e�ects are small but non-negligible. This can be seen from the
residual frequency a�er correction in Fig. 3.9. Part of the remaining surface e�ect is due to the
non-adiabaticity. Therefore, the whole perturbation of the rhs of Eq. (3.85) can be neglected.
Furthermore, in order to stick to the adiabatic treatment, (Rosenthal et al., 1999) suggested that
either one of the following approximations could be made:

• Reduced Γ1 approximation (rgm):
The Lagrangian perturbation of the turbulent pressure is neglected, leading to

δp

p
= δpg

pg
⇐⇒ δpt

pt
= 0, (3.87)

where δ is the Lagrangian perturbation. Therefore,

∂p

∂z
= ∂pg

∂z
and

∂p

∂t
= ∂pg

∂t
, (3.88)
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Figure 3.9: le�: Comparison between scaled frequency di�erences between patched model and pure
1D models. right: Scaled frequency di�erences between real observations and ggm. Observations are
described in detail in Chapter 2, Section 3. (Credits: Rosenthal et al. (1999)).

With this approximation, the linearised Eq. (3.85) reads:

∂p1

∂t
+ uz,1

∂p0

∂z
+ Γr

1
∂uz,1
∂z

= 0 with Γr
1 ≡

pgΓ1

p0
, (3.89)

where we introduced the reduced Γr
1.

• Gas Γ1 approximation (ggm):
The Lagrangian perturbation of the turbulent pressure is assumed to be equal to the
perturbation of the gas pressure (Houdek et al., 2017):

δpt

pt
' δpg

pg
= Γ1

δρ

ρ
. (3.90)

Thus, the linearised Eq. (3.85) reads:

∂ρ1

∂t
+ uz,1

∂ρ0

∂z
+ pgΓ1

∂uz,1
∂z

= 0. (3.91)

Which approximation must we use ? Rosenthal et al. (1999) have compared the frequency
di�erences that these approximations generate when the frequency spectrum is computed with
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Figure 3.10: Relative di�erence between Frad/Fconv and the mean value of Frad/Fconv of all the models
in our grid. Values are computed at the altitude in the atmosphere where T = Teff .

a patched and an unpatched model. The unpatched model has its turbulent pressure set to zero,
therefore neither the ggm or the rgm changes anything in the frequencies. On the contrary, the
patched model has non-zero turbulent pressure computed using 3D r-mhd code. Therefore
frequencies are a�ected in a di�erent way by the ggm or the rgm. Rosenthal et al. (1999)
computed the 1D part of their models with two di�erent prescriptions. In the �rst case, they
used the Model S (Christensen-Dalsgaard et al., 1996) (which at that time was considered as
the state-of-the-art solar model) and a model called sem (Standard Envelope Model), where the
mixing-length parameter was adjusted so that its adiabatic convective zone and the one of the
3D model have the same entropy. Since the entropy is related to the extent of the convective
zone, this manipulation amounts to having the same convection zone depth as in the 3D model.
The aim of the second model is to isolate the e�ect of convection from other possible e�ects.
The di�erences between sem and Model S, according to Rosenthal et al. (1999), come mainly
from a di�erent treatment of the atmosphere which results in a change in the temperature and
density strati�cations. Those changes are located in the very near-surface layers, and explain
the divergence for high frequency (> 3000 µHz) while the divergence started around 2000 µHz
between patched and 1D models (see Fig 3.9).

It appears from �gure 3.9, on the le�, that the frequency di�erences between rgm and sem

are almost twice as high as the di�erences between ggm and sem. Furthermore, the right panel
of �gure 3.9 shows quite a good agreement between observations and ggm. Consequently,
we conclude that the most accurate approximation in order to include the e�ects of turbulent
pressure while keeping an adiabatic treatment of the oscillations is the Gas Γ1 approximation.
This has been con�rmed later by Sonoi et al. (2017) with modern 3D simulations. In Manchon
et al. (2018), the computation of adiabatic oscillations are made in the framework of the Gas
Γ1 approximation.
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3.3.3 more detail on the approximation Frad/Fconv ' cnst

In Manchon et al. (2018), just a�er equation (9), we make the hypothesis that the ratio Frad/Fconv
of the radiative �ux to the convective �ux at the surface is nearly constant from one star to
an other. This is a strong hypothesis and the question whether it is justi�ed or not has been
raised by the referee. Our answer satis�ed the referee but was not reproduced in the published
article. I provide here further justi�cation.

First of all, this assumption is only made at the surface of the star. The surface is de�ned,
in our case, by the location where the horizontally averaged temperature equals the e�ective
temperature. Below this point, energy is dominantly carried by convection, we have Fconv �
Frad. Above this point, we enter the atmosphere and the medium becomes radiative again
because the opacity suddenly drops, and we have Frad � Fconv. In the transition region, Frad
should be roughly of the same order as Fconv. In order to test this approximation, we compared
the relative di�erence between Frad/Fconv obtained at the location where T (r) = Teff , and the
mean value of Frad/Fconv of all the models of our grid. The main characteristics of this grid as
well as the labels of each model are de�ned in the Table 1. of Manchon et al. (2018). Despite
a few outliers, for all models Frad and Fconv approximately have the same order of magnitude.
This approximation may seem harsh and would certainly need re�nement. However, it allows
us to understand physically some aspects of the problem at stake (here the in�uence of the
chemical composition on the surface e�ects).

3.3.4 Recent developments

Since the publication of Manchon et al. (2018), the study of surface e�ects has known some
evolutions. First of all, concerning the method of model patching and its use to correct the
surface e�ects. Normally, patched models are only used for theoretical studies. Indeed, com-
puting a 3D stellar atmosphere model is time consuming. We usually have a grid of 3D models
ready to use and the goal is to �nd a matching 1D model. It is much easier to compute, but
painful. Indeed, the good 1D model is found using a Levenberg-Marquardt algorithm (Press
et al., 1992) which sometimes necessitates to compute dozens of 1D stellar models in order
to be close enough to the desired matching point. Being able to compute a patched model
for any star would provide a very precise correction of the surface e�ects. However, due to
the computational cost, astronomers use empirical correction laws calibrated on small grid of
patched models. The idea developed by Jørgensen et al. (2018); Mosumgaard et al. (2019) is to
couple 1D model to 3D atmospheres on-the-�y along evolution. They computed once and for
all a large and tight grid of 3D stellar atmosphere models spanning a populated part of the hr

diagram. From this grid is extracted a grid of horizontally averaged 1D strati�cations. When
a 1D stellar evolution is computed, the upper layers are not computed using MLT and with a
simple atmospheric model such as Eddington atmosphere (see Sect. 1.1.2, atmospheres), but the
upper strati�cation is directly interpolated in the grid of 3D strati�cations. The matching point
between the 3D model atmosphere and the 1D stellar model is limited by the maximum depth
of the 3D model. However, Jørgensen et al. (2018) did not found that their 1D models were
sensitive on the location of this matching point, owing to the fact that their 3D simulations
are all su�ciently deep. They found limitations on the size of their 3D grid, but this is not
a problem of the method. They later used their on-the-�y method to investigate its impact
of the surface e�ects (Jørgensen & Weiss, 2019). By comparing the observed frequencies of
the Sun with the one calculated on a present-day model the Sun, whose evolution has been
computed using the on-the-�y method. They found that it suppresses the structural e�ects
and only leaves the modal one. This conclusion is rather expected but is a good validation of
their method. Their grid has been recently extended to include non-solar metallicities models
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(Jørgensen et al., 2019).
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ABSTRACT

Context. The CoRoT and Kepler missions have provided high-quality measurements of the frequency spectra of solar-like pulsators,
enabling us to probe stellar interiors with a very high degree of accuracy by comparing the observed and modelled frequencies.
However, the frequencies computed with 1D models suffer from systematic errors related to the poor modelling of the uppermost
layers of stars. These biases are what is commonly named the near-surface effect. The dominant effect is thought to be related to the
turbulent pressure that modifies the hydrostatic equilibrium and thus the frequencies. This has already been investigated using grids
of 3D hydrodynamical simulations, which also were used to constrain the parameters of the empirical correction models. However,
the effect of metallicity has not been considered so far.
Aims. We aim to study the impact of metallicity on the surface effect, investigating its influence across the Hertzsprung-Russell
diagram, and providing a method for accounting for it when using the empirical correction models.
Methods. We computed a grid of patched 1D stellar models with the stellar evolution code CESTAM in which poorly modelled
surface layers have been replaced by averaged stratification computed with the 3D hydrodynamical code CO5BOLD. It allowed us to
investigate the dependence of both the surface effect and the empirical correction functions on the metallicity.
Results. We found that metallicity has a strong impact on the surface effect: keeping Teff and log g constant, the frequency residuals
can vary by up to a factor of two (for instance from [Fe/H] = +0.0 to [Fe/H] = +0.5). Therefore, the influence of metallicity cannot
be neglected. We found that the correct way of accounting for it is to consider the surface Rosseland mean opacity. It allowed us to
give a physically grounded justification as well as a scaling relation for the frequency differences at νmax as a function of Teff , log g
and κ. Finally, we provide prescriptions for the fitting parameters of the most commonly used correction functions.
Conclusions. We show that the impact of metallicity through the Rosseland mean opacity must be taken into account when studying
and correcting the surface effect.

Key words. asteroseismology – convection – stars: low-mass – stars: oscillations – stars: solar-type

1. Introduction

Thespace-bornemissionsCoRoT(Baglin et al.2006;Michel et al.
2008; Auvergne et al. 2009) and Kepler (Borucki et al. 2010)
have provided a rich harvest of high-quality seismic data for
solar-like pulsators. This has allowed a leap forward in our under-
standing and modelling of low-mass stars (see the reviews by
Chaplin & Miglio 2013; Hekker & Christensen-Dalsgaard 2017).
However, for the last three decades (e.g. Dziembowski et al.
1988) it has been known that the comparison between
modelled and observed acoustic-mode frequencies suffer
from systematic discrepancies. This bias is called the sur-
face effect and has been widely studied in the solar case
(Rosenthal et al. 1995; Christensen-Dalsgaard & Thompson
1997; Rosenthal & Christensen-Dalsgaard 1999). They are
attributed to our deficient modelling of the uppermost layers of
stars with a convective envelope. Indeed, 1D stellar models hardly
take into account the complexity of these layers that are subject

? Present address: Institut d’Astrophysique Spatiale, Université Paris
Sud, Orsay, France

to highly turbulent flows as well as a complex transition between
a convective to a radiative-dominated energy flux transport (e.g.
Kupka & Muthsam 2017).

More generally, these frequency residuals prevent a direct
comparison between modelled and observed frequencies. Fre-
quency combinations are commonly used to circumvent this
problem (e.g. Roxburgh & Vorontsov 2003), but still, an accu-
rate determination of frequencies is highly desirable to take
advantage of the full potential of asteroseismology. To reach
this goal, a handful of empirical prescriptions with adjustable
free parameters have been proposed (Kjeldsen et al. 2008;
Ball & Gizon 2014, 2017; Sonoi et al. 2015) and allow one to
apply a posteriori corrections to the modelled frequencies. Such
an approach is now widely used (e.g. Lebreton & Goupil 2014;
Silva Aguirre et al. 2017) and has proven to be quite efficient in
inferring a stellar model that fits the observed frequencies. How-
ever, it suffers from some fundamental drawbacks. The choice of
the parameters is not physically motivated. Consequently, there
is no guarantee that this optimal model is unique and accurate
(i.e. that it properly reproduces the real physical structure of the
observed star).

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Another complementary approach then consists of inves-
tigating the physical nature of the surface effect. This moti-
vated a number of studies to unveil and constrain the physical
ingredients responsible for these biases. More precisely, surface
effect has been shown to be the result of two distinct effects
(e.g. Houdek et al. 2017): structural effects coming mainly from
turbulent pressure in the hydrostatic equation which is usu-
ally absent in 1D stellar evolution codes, and modal effects
gathering modifications of the eigenmodes, mostly due to non-
adiabaticity (e.g. Balmforth 1992; Houdek et al. 2017) as well
as the perturbation of turbulent pressure induced by the oscil-
lations (Sonoi et al. 2017). Other related processes were also
invoked, such as convective backwarming (Trampedach et al.
2017) or magnetic activity (Piau et al. 2014; Magic & Weiss
2016). Nonetheless, as demonstrated by the early work by
Rosenthal & Christensen-Dalsgaard (1999) on the Sun using a
3D hydrodynamical simulation, the dominant physical ingre-
dient is thought to be the turbulent pressure that modifies the
hydrostatic equilibrium and subsequently introduces an eleva-
tion of the star surface. Then, the acoustic cavity is modified and
therefore the frequencies are as well.

Based on a grid of 3D numerical simulations, this
method was used by Sonoi et al. (2015), Ball et al. (2016),
Trampedach et al. (2017) who investigated the surface effect
variations across the Hertzsprung-Russell diagram. These works
clearly demonstrated that surface effects sharply depend on
effective temperature and surface gravity of star. In addition,
Sonoi et al. (2015) presented a way to provide parameters for the
empirical surface corrections by fitting them against a physically
motivated scaling relation derived by Samadi et al. (2013). How-
ever, all these works considered solar metallicity models while
the distribution of metallicity for observed solar-like pulsators is
quite large (see e.g. Pinsonneault et al. 2014). Our goal is thus
to study the influence of metallicity on the surface effects and
propose a method to account for it.

The article is organized as follows: in Sect. 2 we describe the
method of model patching, which is constructed by replacing the
upper layers of a 1D model by horizontally averaged stratifica-
tion of a 3D model atmosphere, and our set of models. Then in
Sect. 3 we show that metallicity has a strong impact on the fre-
quency residuals and therefore its influence cannot be ignored.
We also study the variation of the frequency differences with
effective temperature, surface gravity and opacity and give a the-
oretical justification. Finally, in Sect. 4 we provide constraints
on the various parameters usually used in the empirical surface
effect function across the Teff − log g − log κ space.

2. Model-patching method

In this section we explain the method we used to patch our mod-
els and describe our final set of models.

2.1. Grid of 3D models

We used a grid of 3D hydrodynamical models from the CIFIST
grid of stellar atmosphere including the superadiabatic region
to the shallowest layers of the photosphere, computed using the
CO5BOLD code (see Ludwig et al. 2009; Freytag et al. 2012
for details). The chemical mixture is based on the solar abun-
dances of Grevesse & Sauval (1998) apart from the CNO ele-
ments which follow Asplund et al. (2005). We considered 29
models with effective temperature (Teff) ranging from 4500 K
to 6800 K, a surface gravity (log g) ranging from 3.5 to 4.5,
and a metallicity [Fe/H] = −1.0,−0.5,+0.0,+0.5. We note that
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Fig. 1. Patched models represented in Kiel diagram (see Sect. 2.1).
The metallicities are shape- and colour-coded and are [Fe/H] =
{−1.0,−0.5,+0.0,+0.5}.

[Fe/H] refers to the logarithmic iron abundance, which in our
simulations is different from the logarithmic metallicity abun-
dance [M/H]. Thus, models with same [Fe/H] do not necessarily
have the same [M/H].

Table 1 summarizes the global parameters of the 3D mod-
els. The range of metallicities we considered corresponds to the
metallicities of observed solar-like pulsators (Anders et al. 2017;
Serenelli et al. 2017). Table 1 exhibits small groups of models
(labelled with same first letter) with very similar Teff and log g.
Those groups for instance in Fig. 1 at log g = 4.0, help us to
investigate the influence of metallicity on the surface effect by
keeping other global parameters fixed. However, we pointed out
that, whereas within a group the dispersion in log g is rather
small (of the order of 0.1%), the dispersion in Teff is much higher
(of the order of 1%). Indeed, surface gravity is an input param-
eter of the hydrodynamical simulations while effective temper-
ature is controlled by adjusting the entropy at the bottom of 3D
models. It is therefore difficult to match an accurate effective
temperature.

2.2. Computation of patched models

For each 3D model, both a patched (hereafter PM) and an
unpatched model (hereafter UPM) have been constructed. A
patched model is a model computed using a 1D stellar evolution-
ary code in which we replaced the surface layers with the stratifi-
cation obtained by horizontally averaging a 3D model computed
with a R-MHD code. The fully 1D model is called an unpatched
model. The construction of PM and UPM has been widely
described in Trampedach (1997), Samadi et al. (2007, 2008),
Sonoi et al. (2015), Jørgensen et al. (2017). The 1D counterparts
of 3D hydrodynamical models have been obtained using the 1D
stellar evolutionary code CESTAM (Morel 1997; Marques et al.
2013) by tuning the age (or the central temperature for advanced
stages), the total stellar mass M, and the mixing length param-
eter αMLT in order to match the effective temperature, the sur-
face gravity and the temperature at the bottom of the 3D model,
located just below the superadiabatic region. We chose to remove
the first four bottom layers and the last top layer of the 3D
hydrodynamical model to be sure to remove any numerically
induced errors and that the patching point is deeply inside the
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Table 1. Characteristics of the 3D hydrodynamical models and of the UPM and PM.

Model Teff log g Tb νmax M Age Yinit Zinit αMLT RPM ∆r/RPM Stage
K (×104) K µHz (M�) (Myr) % % (R�) (×10−3)

Cp05 6443 4 3.20 1057 1.91 1341 24.2 4.14 1.61 2.29 1.3 MS
Fp05 6188 4 2.71 1078 1.81 1820 24.2 4.14 1.68 2.23 0.89 MS
Jp05 5877 4 2.17 1103 1.53 4129 24.2 4.16 1.74 2.05 0.67 SG
Lp05 5431 4 2.03 1161 1.32 8361 24.2 4.14 1.74 1.89 0.45 SG
Op05 4933 4 1.98 1205 2.12 3.808 24.2 4.14 1.75 2.41 0.16 PMS
Am00 5776 4.44 1.55 3063 1.02 4628 24.9 1.35 1.65 1.01 0.21 MS
Bm00 6730 4.25 7.89 1839 1.38 1306 24.9 1.35 1.68 1.46 1.4 MS
Cm00 6490 4 2.79 1053 1.48 2397 24.9 1.35 1.65 2.01 1.3 MS
Dm00 6434 4.25 2.76 1881 1.27 2562 24.9 1.35 1.67 1.4 0.77 MS
Fm00 6231 4 2.30 1074 1.28 4352 24.9 1.35 1.69 1.87 0.96 SG
Gm00 6182 3.5 3.63 341.7 1.93 1158 24.9 1.35 1.7 4.09 2.4 SG
Hm00 6101 4.25 2.51 1923 1.13 5413 24.9 1.35 1.67 1.32 0.53 SG
Im00 5861 4.5 2.31 3479 1.09 34.8 24.9 1.35 1.66 0.976 0.2 PMS
Jm00 5936 3.99 2.18 1077 1.16 6753 24.9 1.35 1.74 1.8 0.51 SG
Km00 5886 3.5 2.18 348.5 1.88 1249 24.9 1.35 1.68 4.05 1.5 SG
Mm00 5436 3.5 2.03 364.4 2.21 1017 24.9 1.35 1.71 4.37 0.83 SG
Em05 6227 4.5 2.22 3395 1.02 644.2 25.1 0.597 1.74 0.938 0.24 MS
Fm05 6260 4 2.26 1079 1.06 6520 25.1 0.597 1.79 1.7 0.85 SG
Gm05 6149 3.5 3.27 338.2 1.66 1389 25.1 0.597 1.76 3.82 2 SG
Im05 5897 4.5 2.25 3502 0.902 4290 25.1 0.597 1.62 0.882 0.17 MS
Jm05 5919 4 2.19 1091 0.949 10 130 25.1 0.597 1.76 1.62 0.52 SG
Km05 5764 3.51 2.13 363.2 1.59 1623 25.1 0.597 1.74 3.66 1.5 SG
Mm05 5463 3.5 2.01 359.4 1.63 1483 25.1 0.597 1.74 3.78 0.7 SG
Bm10 6743 4.24 7.60 1801 0.776 12 030 25.3 0.0205 1.84 1.1 1.2 SG
Am10 5771 4.44 1.53 3065 0.768 13.47 25.3 0.0205 1.26 0.875 0.32 PMS
Cm10 6503 4 2.63 1052 0.765 13 770 25.3 0.0205 1.75 1.45 1.4 SG
Fm10 6242 4 2.25 1073 1.17 3.639 25.3 0.0205 1.67 1.79 0.8 PMS
Gm10 6213 3.5 3.14 341 1.03 5093 25.3 0.0275 1.7 2.99 3 SG
Km10 5894 3.5 2.15 349.7 0.906 7858 25.3 0.0205 1.62 2.8 1.9 SG

Notes. The final three letters of the model labels correspond to [Fe/H]: (m00, m05, m10, p05) refer to [Fe/H] = (0.0,−0.5,−1.0,+0.5), respec-
tively. Tb is the mean temperature at the bottom of the 3D model and νmax is the frequency with the largest amplitude in the oscillation power
spectrum (νmax = 3050.0(M/M�)(R2

�/R
2)(5777/Teff)1/2, Kjeldsen & Bedding 1995) and M is the mass of the PM which differs by a fraction .10−7

from the one of UPM. The initial helium and metal abundances are close to the ones at the surface. We recall that the metal abundance is different
from the iron abundance [Fe/H] imposed in our models. The evolutionary stages PMS, MS, and SG stand for pre-main-sequence, main-sequence
and sub-giant.

adiabatic region, which has been shown to be a condition for a
obtaining reliable PM (Jørgensen et al. 2017).

The1Dmodelsuse theequationof state, andopacitiesgivenby
OPAL2005 (Rogers & Nayfonov 2002; Iglesias & Rogers 1996)
and implement standard mixing-length theory (Böhm-Vitense
1958) with no overshoot. We ignore diffusion processes, rotation
and turbulent pressure. The atmosphere is computed using the
Eddington approximation. The helium abundance in 1D models
is set to the one used in 3D models.

Finally, we note that for some 3D models one can find a
degenerate solution for the corresponding 1D model: we could
patch either a PMS or a sub-giant model. We opted for evolved
models since they corresponds to stars in which solar-like oscil-
lations are observed so far. However, when the evolved models
are too old (older than the age of the Universe) we kept the PMS
model, except if lying on the Hayashi track.

Table 1 also summarizes the stellar parameters of both UPM
and PM together with relative radius differences RPM/RUPM − 1.
Our set of models covers a wide portion of the Hertzsprung-
Russel Diagram for intermediate mass stars. We note that our
patched models with metallicity [Fe/H] = +0.5 only have

log g = 4.0. Indeed, 3D models from the CIFIST grid with
[Fe/H] = +0.5 were only available for log g ≥ 4.0. In addi-
tion, 3D models with log g & 4.5 are located below the main
sequence diagonal, and therefore it is impossible to find a 1D
model matching their characteristics (with the physical ingre-
dients we used). Thus, a large portion of our initial [Fe/H] =
+0.5 3D hydrodynamical models were not suitable for our
purposes.

2.3. Computation of oscillation frequencies

In this work, we consider only structural effects and an adi-
abatic treatment of the oscillations. The frequencies are com-
puted using the ADIPLS code (Christensen-Dalsgaard 2011)
for both UPM and PM by assuming the gas Γ1 approx-
imation, which assumes that the relative Lagrangian per-
turbations of gas pressure and turbulent pressure are equal
(Rosenthal & Christensen-Dalsgaard 1999; Sonoi et al. 2017).
Besides this distinction in the treatment of Γ1 entering the
calculation of the model frequencies, we emphasize that the
frequency differences studied in this work are only emerging
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from structural effects. Therefore, it should be emphasized that
the frequency differences studied in this work concern only
purely structural effects. We have checked that we recovered the
previous results of Sonoi et al. (2015) for the solar metallicity.
For the sake of simplicity, we mainly focussed on the surface
effect affecting radial modes: non-radial modes exhibit a mixed
behaviour that would make our analysis more complex (however,
see Sect. 4.2.2 for a discussion).

3. Influence of metallicity

Until now, surface effects have always been studied assuming a
solar metallicity. Corrections depend only on Teff and log g such
as the power law proposed by Kjeldsen et al. (2008), cubic and
combined inverse-cubic laws (Ball & Gizon 2014), or a modified
Lorentzian (Sonoi et al. 2015). This section is intended to moti-
vate the investigation of the dependence of the surface effect on
metallicity.

3.1. Qualitative influence of metallicity on frequency
differences

We begin this section by quickly describing the effects of a
change of metallicity on the frequency residuals. Frequency dif-
ferences are induced by the surface elevation between PM and
UPM due to turbulent pressure, which extends the size of the res-
onant cavities and therefore decreases the mode frequencies for
PM, leading to negative frequency differences δν = νPM − νUPM.

Up to now, only the influence of effective temperature and
surface gravity on surface effects have been studied. However,
the abundance of heavy elements has a strong impact on opac-
ity and hence on the convective flux imposed by a change in the
radiative flux. In turn, a change in the convective flux leads to a
change of convective velocity and therefore a change of turbulent
pressure and finally it changes the location of the surface. We
mention here that metallicity also has an effect on gas pressure,
through the mean molecular weight µ, which varies in the oppo-
site direction of the turbulent pressure and therefore counteracts
its effect. Finally, while mechanisms by which a change of metal-
licity can act on the surface effect are known, those mechanisms
are too intricate to identify the resulting effect on the variations
of surface term without a deeper analysis as will be demonstrated
in the following (see Sect. 4).

Figure 2 shows the (purely structural) frequency differences
for three groups of models that have approximately the same effec-
tive temperature and surface gravity. The discrepancies in νn`
between two models appear at relatively low frequencies and gen-
erally increase towards high frequencies. As for finding a general
trend of the evolution of the surface effect against the metallic-
ity, it seems from Fig. 2 no such trend exists: in the top panel,
frequency differences, at νmax for instance, slightly decrease from
[Fe/H] = −0.5 to 0.0 and then are much higher for the [Fe/H] =
+0.5 model. In the middle panel, the frequency residual at νmax
significantly increases from [Fe/H] = −0.5 to 0.0. Finally, in the
bottom panel, very little variations at νmax can be noticed from one
composition to an other. However, the variation of the frequency
differences seems to follow closely the variations of the elevation
of the stellar surface between UPM and PM:

∆r ≡ RPM − RUPM. (1)

The slight disagreement between [Fe/H] = 0.0 and −0.5 in the
top panel may be explained by the large dispersion in effective
temperature.
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Fig. 2. Frequency differences of PM vs. UPM for radial modes with
frequencies less than the acoustic cut-off frequency νac = c/(4πHp).
Frequencies on the abscissa are normalized by the νmax of each models.
Top panel: models J*: Teff ' 5900 K and log g = 4.0. Middle panel:
models M*: Teff ' 5500 K and log g = 3.5. Bottom panel: models C*:
Teff ' 6500 K and log g = 4.0.

3.2. Effect of the elevation on the frequency differences

To gain some insight into the influence of metallicity on sur-
face effect, we tried to scale the normalized frequency differ-
ences at νmax for our set of models. This is a necessary step
to allow an estimate of the surface effect correction parameters
(see Sect. 4). Thus, let us start with the perturbative approach as
adopted by (Christensen-Dalsgaard & Thompson 1997; see also
Goldreich et al. 1991; Balmforth et al. 1996). The authors show

A107, page 4 of 14



L. Manchon et al.: Influence of metallicity on the near-surface effect on oscillation frequencies

that the frequency difference can be well approximated by

δν

ν
=

∫ R

0

[
K̃n`

c2,v

δmc2

c2 + K̃n`
v,c2

δmv

v

]
dr (2)

'
∫ R

0
K̃n`
v,c2

δmv

v
dr , (3)

where c is the adiabatic sound speed, the variable v is defined
by v = Γ1/c, K̃n`

c2,v
and K̃n`

v,c2 are the kernels that can be deter-
mined from eigenfunctions, δmc2 and δmv are the Lagrangian
differences of c2 and v, respectively, at fixed mass.

Rosenthal & Christensen-Dalsgaard (1999) further approxi-
mated the frequency differences for radial modes, based on the
expression of K̃n`

v,c2 and using a first-order asymptotic expansion
for the eigen-function, by

δν

ν
' ∆ν∆r

cph
, (4)

where ∆ν is the asymptotic large frequency separation, ∆r is
the previously defined elevation, and cph the photospheric sound
speed (see Appendix A for a demonstration of this relation).

This relation has been previously tested by Sonoi et al.
(2015) at solar metallicity using surface effect derived from a
grid of 3D numerical simulations. It turns out that Eq. (4) repro-
duces the overall scale of the surface effect (such as in Fig. 3
were the surface effect is considered at νmax) for a set of models.
It is thus necessary to determine whether this relation holds for
models with a non-solar metallicity. To this end, we have com-
pared frequency residuals at ν = νmax given by Eq. (4) as shown
in Fig. 3 (top panel). There is still a good agreement between the
frequency differences and the approximated expression given by
Eq. (4). Moreover, it appears that the frequency differences are
dominated by the surface elevation ∆r. To understand the link to
metallicity, it is thus necessary to go a step further and to inves-
tigate the relation between surface elevation and metallicity.

3.3. Scaling law for the frequency differences

In this section, we aim to determine a relation between frequency
differences at νmax and global parameters of the models. First, as
shown in the previous section, there is no clear trend between
the surface term and metallicity. Indeed, at constant metallic-
ity and considering our rather large range of effective temper-
atures and surface gravities, the dominant opacity mechanisms
are not the same from a model to an other for instance, the opac-
ity at the surface is dominated by the negative hydrogen ions for
Teff . 5000 K. Therefore, the relation between δν/ν and Z is
non-trivial. To overcome this problem, we directly consider the
Rosseland mean opacity at the photosphere instead of the metal-
licity as a global parameter in addition to the effective tempera-
ture and to the surface gravity (in the following, the photosphere
is defined as the radius at which T = Teff).

Let us begin by considering the elevation in Eq. (1) which
must be expressed as a function of these global parameters.
Using the hydrostatic equilibrium equation, it reads

∆r =

∫ RPM

0
HPM

p
dptot

ptot
−

∫ RUPM

0
HUPM

p
dpg

pg
, (5)

where HPM
p and HUPM

p are the pressure scale heights at the pho-
tosphere associated with the patched and unpatched models, ptot
is the total pressure such as ptot = pturb + pg with pturb and pg the
turbulent and gas pressure, respectively. Further assuming that
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Fig. 3. Frequency differences scaled by the frequency, taken at νmax
against a scaling relation given by Rosenthal & Christensen-Dalsgaard
(1999) (top panel; with σ = 0.89) and a scaling relation given by
Eq. (13) where powers are left free (bottom panel; with σκ = 0.63).

HPM
p ' HUPM

p and pturb/ptot � 1 one can approximate Eq. (5) by

∆r ' HPM
p

pturb

ptot
· (6)

Finally, since the pressure scale-height scales as Teff/g, the ele-
vation scales as ∆r ∝ (Teff pturb)/(gpg).

To go further, we need to find an expression for pturb/pg.
Near the photosphere, the turbulent pressure can be written as

pturb = ρv2
conv, (7)

where vconv is the vertical component of the convective velocity.
We now need an expression for this velocity and for the den-
sity. Assuming a standard Eddington grey atmosphere, the opti-
cal depth is approximated by τ = Hpρκ, and in the Eddington
approximation, we have τ = 2/3 at the bottom of the photosphere.
Then, and accordingly:

ρ ∝ g

Teffκ
· (8)

As for finding an expression for vconv, we note that Ftot =
Frad+Fconv, with Frad and Fconv the radiative and convective com-
ponent of the total energy flux respectively. The convective flux
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is proportional to the kinetic energy flux (as shown for instance
within the MLT framework). Then,

ρv3
conv ∝ T 4

eff

(
1 +

Frad

Fconv

)−1

· (9)

The ratio Frad/Fconv is assumed to remain nearly constant from
one model to an other. Therefore, vconv finally reads,

v2
conv ∝

T 8/3

eff

ρ2/3
· (10)

Inserting the expressions of Eqs. (8) and (10) into Eq. (7)
leads to:

pturb ∝
(

Teff

Teff�

)7/3 (
g

g�

)1/3 (
κ

κ�

)−1/3

, (11)

where κ� = 0.415 cm2 g−1. From the perfect gas law for, pg ∝
ρTeff and using Eq. (8), we can rewrite ∆r as

∆r ∝
(

Teff

Teff�

)10/3 (
g

g�

)−5/3 (
κ

κ�

)2/3

· (12)

Replacing ∆r into Eq. (4) one finally obtains the following esti-
mate:

δν

ν
∝ ∆ν

∆ν�

(
Teff

Teff�

)17/6 (
g

g�

)−5/3 (
κ

κ�

)2/3

≡ z1. (13)

This expression provides us with a simple relation between
the frequency differences and the global parameters. The depen-
dence on the metallicity is embedded into the Rosseland mean
opacity. We note that it is possible to go further and to explicitly
introduce the metallicity. For instance, in the vicinity of the solar
effective temperature and gravity, the opacity is dominated by
the H− so that κ ∝ ρ−1/2 T 9

eff
Z. However, given the wide range of

effective temperatures and surface gravities of our grid of mod-
els, it is more relevant to keep the Rosseland mean opacity at
T = Teff (surface opacity) as a global parameter. Indeed, the
Rosseland mean opacity is a quantity available in any 1D stellar
evolutionary code.

Then, using Eq. (13) as a guideline, we performed a fit where
the powers of the temperature (p), gravity (q), and opacity (s)
have been adjusted at ν = νmax for each model. Figure 3, bottom
panel, displays the result. This figure shows a very good agree-
ment between exponents derived in Eq. (13) and the one actually
obtained using our simulations. Consequently this scaling can be
used to provide a physically-grounded values for the parameters
of the empirical correction function of the surface effect. Finally,
we note that using the opacity instead of the metallicity allows
us to take a detailed mixture into account.

In addition to our crude approximations, a possible source
of discrepancies between values predicted by Eq. (13) and the
one calculated can be that we did not fix the helium abundance
from one model to the other when varying the metallicity. The
changing helium abundances have an impact both on the evo-
lution of the model and on its opacity at the surface. However,
the helium abundances [He/H] range between −5.8 × 10−3 and
+1.2 × 10−2 and should be a negligible source of uncertainty. A
final source of error comes from the method we used to aver-
age the 3D stratifications. Indeed, since the Rosseland opacity is
involved Eq. (13), it would be more precise to patch the mod-
els using a stratification averaged against the Rosseland optical
depth instead of the actual geometrically averaged stratification,
but this is beyond the scope of this paper and will be investigated
in a forthcoming work.

4. Surface-effect corrections

A handful of empirical functions have been suggested to per-
form a posteriori corrections on the modelled frequencies. After
having given a theoretical background that explains variations of
δν/ν, we considered the most commonly used correction models
to study the evolution of the related free parameters as a func-
tion of effective temperature, surface gravity, and surface opac-
ity. This is intended to provide constraints on those parameters
and thus to provide physically-grounded values for use on seis-
mic observations.

4.1. Empirical functions for correcting modelled frequencies

4.1.1. Kjeldsen et al. (2008) power law

Kjeldsen et al. (2008) proposed a power law which was found to
match the frequency differences obtained between the observed
and modelled solar frequencies:

δν

νmax
= a

[
νPM(n)
νmax

]b

, (14)

where a and b are the parameter to be adjusted. They found a =
−4.73 and b = 4.9 for their model of the Sun by matching a
subset of nine radial modes centred on νmax.

Kjeldsen et al. (2008) provided a method to correct the fre-
quency for a star similar to the Sun without having to cali-
brate b. Let us assume we want to model a star with near solar
global parameters and we want to constrain our model using
the individual frequencies. The radial mode frequencies spec-
trum of our best model which include a surface term are denoted
νi,best and the frequencies of solar radial modes for the same
order are denoted νi,ref . Then, Kjeldsen et al. (2008) proposed
that the frequencies can be linked, to a good approximation,
by νi,best ' rνi,ref , using the proportionality factor r between
mean densities of both models: ρ̄best = r2ρ̄ref . Using this rela-
tion and the large separations of both models, they provided a
way to obtain a and b. Further assuming b constant (the value
of which depends of the physical ingredients used in the model),
they derived a value for a for a set of theoretical models close to
the Sun.

This power law has been widely used since and many authors
(e.g. Metcalfe et al. 2009; Bedding et al. 2010) have used a con-
stant value for b (not necessarily 4.90 though) derived from solar
frequency measurements. Keeping b constant is often necessary
in the case for which observations do not provide enough con-
straints to adjust it. However, using the solar value leads to a bad
correction if the modelled star is too different from the Sun (e.g.
Kallinger et al. 2010). Furthermore, b� depends on the input
physics. Otherwise, b can be considered as a variable param-
eter in the modelling and therefore significantly improve the
correction. Different models of the star HD 52265 have been
compared by Lebreton & Goupil (2014) using various input
physics and found approximatively the same predicted age
models when either frequency ratios (Roxburgh & Vorontsov
2003) or individual corrected frequencies were used as con-
straints. The age dispersion was slightly higher with models
constrained by individual corrected frequencies (∼±9.5%) and
using uncorrected individual frequencies lead to ages 40% larger
(Lebreton et al. 2014).

In the following, we have studied two versions of this para-
metric function. The first, adjusted on the whole radial mode
frequency spectrum for frequency less than the acoustic cut-off
frequency, will be referred to as K08. The second, adjusted on
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a reduced frequency interval 0 < ν/νmax < 1.05 is refered to as
K08r (see Fig. 6 and Appendixes B and C).

4.1.2. Ball & Gizon (2014) cubic and combined inverse-cubic
laws

Ball & Gizon (2014) suggested a new function to correct fre-
quency differences. It is partially based on the early work by
Gough (1990; for the cubic part). They accounted for two lead-
ing effects introducing systematic errors in the theoretical com-
putation of the frequency spectrum: the modification of the
sound speed caused by a magnetic field concentrated into a fil-
ament by convective motions, causing a frequency shift scaling
as ν3/E (Libbrecht & Woodard 1990), E being the normalized
mode inertia; and the modification of the pressure scale height
caused by a poor description of convection, inducing a frequency
shift scaling as ν−1/E. This correction funtional has the advan-
tages of being independent of a solar calibration and including
a dependence on the normalized mode inertia which allows us
to correct non-radial modes, without the need of re-scaling their
frequency differences. Because of this, they suggested a cubic
correction taking only into account the dominant effect and a
combined inverse-cubic correction including the perturbation.

The cubic correction (in the following BG1) is defined by

δν

νmax
=

a3,BG1

E

(
ν

νmax

)3

, (15)

and the combined inverse-cubic correction (in the following
BG2) is

δν

νmax
=

1
E

a−1,BG2

(
ν

νmax

)−1

+ a3,BG2

(
ν

νmax

)3 , (16)

where E is the normalized mode mass:

E =
4π

∫ R
0

[
|ξr(r)|2 + `(` + 1)|ξh(r)|2

]
ρr2dr

M
[|ξr(R)|2 + `(` + 1)|ξh(R)|2] , (17)

where R, M, and ρ are respectively the photospheric radius, mass
and density of the star, and ξr and ξh are the radial and the hori-
zontal component of the displacement of an eigenmode of degree
`. a3,BG1, a−1,BG2, and a3,BG2 are the parameters to be adjusted.
They used the acoustic cut-off frequency νc instead of νmax in
order to normalize their fitting parameters: it only results in a
modification of a−1 and a3 and does not change the law itself.

4.1.3. Sonoi et al. (2015) modified Lorentzian

The final function to be introduced was a modified Lorentzian
(Sonoi et al. 2015) that was found to better correct the surface
effect derived from the 3D simulations at high frequency. It reads

δν

νmax
= α

1 −
1

1 +
(
νPM
νmax

)β

 , (18)

where α and β parameters are to be determined. When
νPM/νmax � 1 we get back to Kjeldsen et al. (2008) law. When
νPM = νmax, δν/νmax = α/2. Therefore, a and α are directly
linked to δν/ν given by Eq. (13), which gives physical justifi-
cation for its variations. In the following, we will refer to this
correction law as S15.
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Fig. 4. Parameters a (top panel), b (middle panel) and a3,BG2 (bottom
panel) across the Kiel diagram from K08 and BG2. The symbols refer
to [Fe/H] = −1.0 (diamond), [Fe/H] = −0.5 (square), [Fe/H] = +0.0
(circle) and [Fe/H] = +0.5 (triangle).

A recent comparison of the above correction laws has been
performed by Ball & Gizon (2017) on six sub- and red giants
from the Kepler Input Catalog. We note that since these are
evolved stars, they display mixed-modes which have their fre-
quency residuals off the general trend of radial p-modes fre-
quency residuals. This should have consequences on the quality
of the correction. They computed stellar models matching their
six stars constrained by the effective temperature, the metallicity
and the individual frequencies. They tested five correction rela-
tions: BG1, BG2, S15, and K08 with power b = 5.0 calibrated
with a solar model computed with their own input physics and
K08 with power b left free.
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Fig. 5. Logarithms of K08 (first row), S15 (second row) and BG2 (third row; log |a3,BG1| behaves almost identically to log |a3,BG2|) fitting coefficients
as a function of log z1 (Eq. 13): log f = slope × log z1 + offset. Purple dots (resp. yellow, green and red) corresponds to [Fe/H] = −1.0 (resp. −0.5,
0.0 and +0.5).

Ball & Gizon (2017) found no correction to be clearly supe-
rior than the others for all stars. However BG2 and then BG1
performed slightly better than the others, followed by the free
power law, S15 and finally K08. S15 was shown to poorly correct
high frequencies and the K08 with b = 5.0 correction gave worse
results than no correction for their of their stars. We present very
similar conclusions in the following.

4.2. Variation of the coefficients in the ∆ν − Teff − log g − κ
space

4.2.1. Prescriptions for radial modes

In order to fit the parameters of the correction functions and
to determine the fitting parameters, we used a least square
minimization algorithm implementing a Levenberg-Marquardt
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method which minimizes the squared deviation defined as

D =

N∑

i = 1

[
νPM,i − νUPM,i − δνi

νmax

]2

, (19)

where i corresponds to the eigenmode index, N to the total num-
ber of radial modes and δν the correction computed from the
considered correction relation. Tables B.1 and C.1 summarize
the coefficients and their squared deviations from our computa-
tions. We also define

√D/N as the root-mean frequency differ-
ences after correction.

Coefficients a and b involved in Eq. (14) and a3,BG2 from
Eq. (16) are presented in Teff − log g plane in Fig. 4. Further-
more, all coefficients are represented as a function of log z1 in
Fig. 5. a, α and a3,BG2 (and therefore a3,BG1) show similar trends.
Indeed, they are related to the amplitude of the surface effect at
νmax and Eq. (13) allows one to understand their variations. How-
ever, this theoretical justification for the variations of a, α, a3,BG1
and a3,BG2 does not provide a way to favour one correction law
over an other. Coefficient a−1,BG2 exhibits the same behaviour
as above. However, we cannot offer the same explanation for its
trend because the inverse term in BG2 is a second correction to
the cubic term and is not related to the amplitude of the surface
effect at νmax.

The trends followed by b and β are related to the slope of
the frequency differences. As shown in Sonoi et al. (2015) and
in Fig. 4, the coefficients b (whatever the metallicity) increase
significantly towards cooler stars, which again contradicts the
assumption of a constant b. Regarding the relevance of giving a
prescription for log b and log β thanks to the linear relationship
with log z1, we can see in Fig. 5 that log b and log β are affected
by a high dispersion compared to the grey line. This could mean
either that we omitted a physical dependency in Eq. (13) that
only affects the agreement with log b and log β, or a prescription
based on same other physical basis should be investigated.

Table 2 shows the prescriptions for the variations in the Teff−
log g − κ space of all coefficients c0 studied in this article in the
form

log c0 = c1 log ∆ν/∆ν� + c2 log Teff/Teff�
+ c3 log g/g� + c4 log κ/κ� + c5. (20)

We note that the opacity has a strong impact on each of the
coefficients and must, therefore be taken into account when cor-
recting the surface effect.

The top panel of Fig. 6, top panel also shows the value of the
root-mean frequency differences after correction for each model
and each correction law. From this, we see that BG1 is the worst
performer followed by K08. Those laws provide a correction
that leaves frequency residuals comprised between 1 and 10 µHz
which are still higher than the frequency resolution provided by
CoRoT and Kepler. The better performance of K08 over BG1
can be explained by the fact that K08 have two degrees of free-
dom whereas BG1 has only one. For radial modes, the inclusion
of the normalized mode mass En` in BG1 does not compensate
the loss of a degree of freedom.

Then, the remaining laws K08r, S15 and BG2 provide cor-
rection almost as good as the resolution of CoRoT and Kepler.
K08r and BG2 are slightly better than S15, yet K08r is applied
only on the frequency range 0 < ν/νmax < 1.05.

4.2.2. Mixed-modes case

We also performed the same test as in Ball & Gizon (2017) on
evolved models that present mixed-modes in their frequency

Table 2. Prescriptions for the fitting coefficients involve in the empirical
relations K08, K08r, S15, BG1, BG2.

Law log c0 c1 c2 c3 c4 c5

K08 log |a| 1.03 3.26 −1.75 0.655 −2.72
log b −0.185 −0.584 0.313 −0.117 0.289

K08r log |a| 1.08 3.39 −1.82 0.683 −2.65
log b −0.387 −1.22 0.655 −0.246 0.647

S15 log |α| 0.999 3.15 −1.69 0.635 −2.36
log β −0.477 −1.51 0.808 −0.303 0.787

BG1 log |a3| 1.93 6.09 −3.26 1.22 −11.9
BG2 log |a−1| 2.13 6.72 −3.6 1.35 −12

log |a3| 1.8 5.67 −3.04 1.14 −12

Notes. The prescriptions are written: log c0 = c1 log ∆ν/∆ν� +

c2 log Teff/Teff� + c3 log g/g� + c4 log κ/κ� + c5. Our solar values are
computed from model Am00. ∆ν� = 137 [µHz], Teff� = 5776 [K],
g� = 27511 [cm s−2], and κ� = 0.415 [cm2 g−1].

spectrum. In Sect. 4.1.2 we see that, thanks to the depen-
dence in the normalized mode inertia, BG1 and BG2 can be
applied to non-radial modes without any change of the law.
However, in order to be able to compare all empirical correc-
tions on non-radial modes, one had to rescale the frequency
differences on which K08, K08r and S15 by mean of the
inertia ratio Qn` for a mode of frequency νn` defined as the
ratio of the inertia of this mode by the inertia of a radial
mode interpolated at the frequency νn`: Qn` = En`/En0(νn`)
(e.g. Rosenthal & Christensen-Dalsgaard 1999). Furthermore,
we added one last empirical relation by modifying the expression
given for S15 in Eq. (18) similarly to BG1 and BG2 in which we
replaced α by α/E where E is defined in Eq. (17) (the new func-
tion is denoted S15E). This allows S15E to be applied directly
on non-radial modes frequency differences.

The empirical relations K08, K08r and S15 were then
adjusted on Qn`δνn`, with 0 ≤ ` ≤ 2 and S15E, BG1 and BG2
were adjusted directly on δνn`, with 0 ≤ ` ≤ 2. For 9 of the
16 evolved models considered, the least-square algorithm con-
verge to a solution of K08, K08r or S15 very remote from the
general trend of frequency differences, whereas for the second
group of relations (S15E, BG1 and BG2), the residual root-mean
frequency differences after correction are greatly improved to a
value between 0.1 and 1 µHz.

As a third test, we performed the same fits excluding the
quadrupolar modes (i.e. we fit modes with 0 ≤ ` ≤ 1). This
time, corrections laws accuracies are similar to the one presented
in Sect. 4.2.1. As for the newly introduced S15E, it performs
slightly worse than S15 but still better than K08. This third test
suggests that the failure of K08, K08r and S15 in fitting Qn`δνn`,
with 0 ≤ ` ≤ 2 is due to quadripolar modes. There are two rea-
sons for it.

First, the p and g cavity are less coupled for ` = 2 than for
` = 1 mixed-modes which induces more important changes on
the behaviour of a mode when the surface layers are changed
between UPM and PM. Indeed, modifying the surface layers
changes the frequency of pure p modes that couple with dif-
ferent g modes for PM and UPM (Ball & Gizon 2017). As a
consequence, when computing Qn,2δνn,2, it so happens that we
deal with mixed-modes from PM and UPM that have different
properties. Second, due to the presence of mixed-modes, Qn,2
sometimes becomes higher than ten, while it is normally of the
order of unity (see example of Cm10 in Fig. 7). It over-scales the
corresponding quadrupolar mixed-modes and gives much weight
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Fig. 6. Root-mean frequency differences νmax
√D/N of radial modes after correction for each empirical law and for each model. It shall be noticed

that the deviation for K08r is computed only on the range 0 < ν/νmax < 1.05. Black dots corresponds to uncorrected frequencies (UC), that is root
mean frequency differences between PM and UPM frequencies.

to those modes, which in turns has strong impact on the quality
of the fit. The peaks in the value of Qn,2 arise for mixed-modes
having most of their amplitude in the g mode cavity, contrary
to dipolar mixed-modes which have their Qn,1 staying close to
unity. On the other hand, fitting directly δνn` with S15E, BG1
and BG2 does not amplify the frequency differences affecting
mixed-modes, providing a much better correction.

For all these reasons, we recommend the use of BG2 or S15E
when correcting sets of radial and non-radial modes and we rec-
ommend either S15 or BG2 when correcting only radial modes
(K08r can be used for frequencies .νmax). The remaining advan-
tages of S15 over BG2 is that the coefficients α and β are bet-
ter described as a function of Eq. (13) than coefficients of BG2
which present a bigger dispersion on Fig. 5. This being said,
many of the correction laws considered in this paper gives a root-
mean frequency difference of the order of 0.1 µHz (at least for
few models), similar to the frequency uncertainties of CoRoT
and Kepler. Furthermore, the search for the best a posteriori cor-
rection law should not set aside the need of a theoretical under-
standing of the surface effect.

5. Conclusion

We have computed a grid of 29 couples of one dimensional mod-
els using the method of patched models consisting in replacing
poorly modelled surface layers of a 1D model by the stratifi-
cation, averaged over the geometrical depth and time, computed
from 3D hydrodynamical models. The grid includes models with
effective temperature ranging from Teff = 5000 K to 6800 K, sur-
face gravity ranging from log g = 3.5 to 4.5 and iron abundance
ranging from [Fe/H] = −1.0 to +0.5.

Our aim was to estimate and understand the impact of vary-
ing metallicities on the surface effect. Our main result is that, in
the considered range of metallicities (i.e. [Fe/H] = −1.0 to +0.5)
the amplitude of the surface effect computed at νmax, and for
models with same effective temperature and same surface grav-
ity, can be up to a factor of three between the model with the

0.8 1.0 1.2 1.4
νn`/νmax (µHz)

100

101

Q
n
`(
ν n

`)

` = 0

` = 1

` = 2

Fig. 7. Ratio Qn` of a mode of degree n` against frequency of the same
mode normalized by νmax (only νn`/νmax > 0.75 for clarity), for the sub-
giant model Cm10 with Teff = 6503 K, log g = 4.0 and [Fe/H] = −1.0.
Each colour corresponds to a degree `. Yellow (resp. green) dots break-
ing from the general trend correspond to dipolar (resp. quadrupolar)
mixed modes.

lowest amplitude and the model with the highest one. However,
it appears that studying the amplitude as a function of the metal-
licity does not lead to a clear trend, whereas the Rosseland mean
opacity κ turned out to be the adapted quantity for understand-
ing the variation of the surface effect. Based on relatively simple
physical arguments, consolidated using the grid of 3D models,
we found a scaling relation between the amplitude of the sur-
face effect and the global parameters Teff , log g and the opacity
κ computed at the photosphere.

We also tested the accuracy of existing surface effect empir-
ical corrections of radial modes frequency differences on each
model of our grid in order to obtain a prescription for the
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coefficients. Then, we tested those laws on radial and non-radial
modes for evolved models exhibiting mixed-modes, in order to
test how the empirical corrections perform when mixed-modes
are involved. Overall, the combined correction law proposed
by Ball & Gizon (2014) is found to give the best performer,
closely followed by the law proposed by Sonoi et al. (2015).
These two laws leave frequency differences that are less than
1 µHz on average, even reaching 0.1 µHz for the coolest stars
of our set of model, which is of the order the frequency reso-
lution provided by CoRoT and Kepler. We note that, on a low
frequency range (0 < ν/νmax < 1.05), the Kjeldsen et al. (2008)
power law (calibrated on this reduced range) gives equivalent
results. Then the Kjeldsen et al. (2008) power law calibrated on
the whole range of frequency and the purely cubic correction
proposed by Ball & Gizon (2014) are the worst performer with
remaining mean frequency differences of the order of few µHz.
When applying those corrections on frequency spectra including
mixed-modes, only the empirical corrections BG1 and BG2 pro-
posed by Ball & Gizon (2014) and the modified S15E where we
added a factor of 1/E improve the mean frequency dispersion.
Only S15E and BG2 leave a satisfying root-mean dispersion of
the order of the CoRoT and Kepler frequency resolution.

Therefore, we derived prescriptions for the fitting parame-
ters of those radial modes correction empirical models as func-
tions of log ∆ν, log Teff , log g and log κ which are quantities
easily computed by 1D stellar evolution model. The next step
will be to test our prescriptions against observed frequency spec-
trum in order to determine their degree of accuracy. We will
focus on this in a furture work.

Finally, we only considered in this article the issue of struc-
tural effects. However, other effects such as non-adiabaticity
effects may also play a non-negligible role in the propagation
of acoustic waves in the surface layers. This will be studied in a
forthcoming paper.
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Appendix A: Derivation of the scaling
relation Eq. (4)

We start from Eq. (3). After Christensen-Dalsgaard & Thompson
(1997), we have

K̃n`
c2,v

' 0

K̃n`
v,c2 = ω−2

(∫ M

0
ξ2

r dm
)−1 (

dξr

dr

)2

4πr2ρc2
s , (A.1)

where ω = 2πν and ξr are respectively the angular frequency and
the radial displacement of the mode, cs is the sound speed and M
and R are respectively the total mass and the total radius of the
star.

The first term in parentheses in the expression of K̃n`
v,c2 is the

inertia of a mode:

I '
∫ M

0
ξ2

r dm =

∫ R

0
ξr2 4πr2ρdr. (A.2)

Using a first-order expansion, we can write the radial dis-
placement as (e.g. Unno et al. 1989):

ξr(r) ' Aρ−1/2c−1/2
s r−1 cos

(
ω

∫ r

0

dr′

cs
− ζ

)
, (A.3)

where A is a constant and ζ is a phase factor. Further inserting
Eq. (A.3) into Eq. (A.2) leads to

I =

∫ R

0
4πA2 cos2

(
ω

∫ R

0

dr′

cs
− ζ

)
dr
cs
· (A.4)

Averaging the cosine term gives 1/2 and then simply

I = 2πA2
∫ R

0

dr
cs

=
πA2

∆ν
, (A.5)

with ∆ν defined by ∆ν =

(
2
∫ R

0 dr/cs

)−1
. Then, K̃nl

v,c2 reads

K̃n`
v,c2 =

ω−2∆ν

πA2

(
dξr

dr

)2

4πr2ρc2
s . (A.6)

Yet, (dξr/dr)2 ' k2
r ξ

2
r = ω2ξ2

r /c
2
s . Then,

K̃n`
v,c2 =

ω−2∆ν

πA2

ω2

c2
s

4πr2ρc2
sξ

2
r

=
4∆ν

A2 r2ρA2ρ−1c−1
s r−2 cos2

(
ω

∫ r

0

dr′

cs
− ζ

)
,

(A.7)

where the last line was obtained by replacing ξ2
r by its expres-

sion. Finally, by simplifying this expression we obtain:

K̃n`
v,c2 ' 2∆ν

cs
cos2

(
ω

∫ r

0

dr′

cs
− ζ

)
· (A.8)

Eventually, inserting Eq. (A.8) into Eq. (3), approximating
the cosine by 1/2 as in (A.5) and using Eq. (19) from
Rosenthal & Christensen-Dalsgaard (1999):
∫ R

0

δmv

v

dr
cs
' ∆r

2cs,ph
, (A.9)

with cs,ph the sound speed at the photosphere, we obtain the
expression of the amplitude of the surface effect proposed in
Rosenthal & Christensen-Dalsgaard (1999)

δν

ν
' ∆ν∆r

cs,ph
· (A.10)
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Appendix B: Fitting coefficients

In Table B.1 we gather the values of the fitting parameters intro-
duced in Eqs. (14), (15), (16), and (18) used in order to perform

the fits shown in Fig. 5 and toderive the coefficients for the pre-
scriptions given in Table 2.

Table B.1. Fitting parameters of K08, K08r, S15, BG1, and BG2.

K08 K08r S15 BG1 BG2

Model |a| b |a| b |α/2| β |a3,BG1| |a−1,BG2| |a3,BG2|
Cp05 9.19 × 10−3 1.55 1.06 × 10−2 2.17 1.01 × 10−2 2.98 −9.66 × 10−12 −7.99 × 10−12 −6.01 × 10−12

Fp05 7.13 × 10−3 1.43 9.66 × 10−3 2.74 7.90 × 10−3 3.03 −8.03 × 10−12 −7.98 × 10−12 −5.17 × 10−12

Jp05 5.64 × 10−3 1.64 7.30 × 10−3 2.95 6.32 × 10−3 3.56 −6.94 × 10−12 −7.23 × 10−12 −4.31 × 10−12

Lp05 4.79 × 10−3 1.5 6.03 × 10−3 2.75 5.33 × 10−3 3.36 −6.03 × 10−12 −8.41 × 10−12 −3.38 × 10−12

Op05 1.63 × 10−3 1.74 1.98 × 10−3 4 1.80 × 10−3 5.23 −3.30 × 10−12 −4.03 × 10−12 −2.08 × 10−12

Am00 2.05 × 10−3 1.82 2.39 × 10−3 4.1 2.27 × 10−3 6 −1.24 × 10−12 −1.01 × 10−12 −9.19 × 10−13

Bm00 9.36 × 10−3 1.35 1.14 × 10−2 2.12 1.02 × 10−2 2.65 −4.66 × 10−12 −4.15 × 10−12 −2.96 × 10−12

Cm00 8.93 × 10−3 1.49 1.12 × 10−2 2.51 9.96 × 10−3 3.09 −1.12 × 10−11 −8.32 × 10−12 −7.99 × 10−12

Dm00 6.66 × 10−3 1.43 8.58 × 10−3 2.65 7.40 × 10−3 3.16 −4.19 × 10−12 −3.92 × 10−12 −2.84 × 10−12

Fm00 7.26 × 10−3 1.5 9.54 × 10−3 2.82 8.08 × 10−3 3.29 −1.03 × 10−11 −9.16 × 10−12 −7.00 × 10−12

Gm00 1.41 × 10−2 1.77 1.53 × 10−2 2 1.47 × 10−2 2.85 −9.66 × 10−11 −6.73 × 10−11 −4.44 × 10−11

Hm00 4.61 × 10−3 1.52 5.76 × 10−3 2.93 5.11 × 10−3 3.59 −3.63 × 10−12 −3.53 × 10−12 −2.42 × 10−12

Im00 1.62 × 10−3 2.02 1.90 × 10−3 5.5 1.78 × 10−3 8.09 −8.51 × 10−13 −6.08 × 10−13 −6.50 × 10−13

Jm00 3.06 × 10−3 1.88 3.88 × 10−3 4.54 3.40 × 10−3 5.75 −5.79 × 10−12 −4.12 × 10−12 −4.30 × 10−12

Km00 9.69 × 10−3 1.5 1.32 × 10−2 2.79 1.08 × 10−2 3.13 −7.23 × 10−11 −6.07 × 10−11 −4.88 × 10−11

Mm00 6.61 × 10−3 1.53 8.45 × 10−3 2.8 7.35 × 10−3 3.36 −6.35 × 10−11 −6.43 × 10−11 −4.03 × 10−11

Em05 2.41 × 10−3 1.7 2.92 × 10−3 3.43 2.68 × 10−3 4.38 −1.09 × 10−12 −1.20 × 10−12 −6.75 × 10−13

Fm05 7.00 × 10−3 1.42 9.11 × 10−3 2.59 7.71 × 10−3 3 −1.02 × 10−11 −1.16 × 10−11 −5.92 × 10−12

Gm05 1.03 × 10−2 1.51 1.34 × 10−2 2.47 1.12 × 10−2 2.83 −7.51 × 10−11 −6.21 × 10−11 −4.34 × 10−11

Im05 1.60 × 10−3 2.45 1.79 × 10−3 5.29 1.97 × 10−3 7.72 −1.15 × 10−12 −3.76 × 10−13 −1.02 × 10−12

Jm05 3.44 × 10−3 1.67 4.25 × 10−3 3.52 3.82 × 10−3 4.38 −7.33 × 10−12 −6.72 × 10−12 −4.98 × 10−12

Km05 1.16 × 10−2 1.38 1.41 × 10−2 2.15 1.27 × 10−2 2.73 −1.03 × 10−10 −1.15 × 10−10 −5.85 × 10−11

Mm05 4.55 × 10−3 1.7 5.76 × 10−3 3.38 5.09 × 10−3 4.1 −5.81 × 10−11 −5.01 × 10−11 −3.97 × 10−11

Bm10 6.10 × 10−3 1.37 7.93 × 10−3 2.48 6.64 × 10−3 2.77 −3.21 × 10−12 −3.59 × 10−12 −1.78 × 10−12

Am10 2.45 × 10−3 2.49 2.56 × 10−3 4.79 3.04 × 10−3 7.68 −4.00 × 10−12 −7.97 × 10−13 −3.72 × 10−12

Cm10 8.64 × 10−3 1.41 1.13 × 10−2 2.57 9.51 × 10−3 2.95 −1.11 × 10−11 −1.11 × 10−11 −6.83 × 10−12

Fm10 5.89 × 10−3 1.54 7.47 × 10−3 2.96 6.55 × 10−3 3.57 −1.24 × 10−11 −1.11 × 10−11 −8.41 × 10−12

Gm10 1.48 × 10−2 1.36 1.89 × 10−2 2.3 1.64 × 10−2 2.76 −1.04 × 10−10 −7.87 × 10−11 −7.35 × 10−11

Km10 1.04 × 10−2 1.58 1.23 × 10−2 2.54 1.15 × 10−2 3.4 −1.11 × 10−10 −8.96 × 10−11 −7.59 × 10−11

Notes. Coefficients a, α, a3,BG1, a−1,BG2 and a3,BG2 are all negative.
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Appendix C: Root-mean frequency differences after
correction

In Table C.1 we gather the values of the root-mean frequency
differences νmax

√D/N of radial modes after correction for each
empirical law shown in Fig. 6.

Table C.1. Root-mean frequency differences νmax
√D/N [µHz] of radial

modes after correction for each empirical law K08, K08r, S15, BG1, and
BG2 and for each model.

UC K08 K08r S15 BG1 BG2

Cp05 9.11 1.4 1.03 0.808 2.83 0.398
Fp05 7.99 1.28 0.443 0.675 2.39 0.26
Jp05 6.5 0.931 0.347 0.365 1.87 0.279
Lp05 5.98 0.917 0.311 0.369 1.95 0.308
Op05 2.3 0.456 0.0371 0.175 0.635 0.158
Am00 7.49 1.63 0.249 0.726 1.45 0.272
Bm00 16.8 2.27 1.06 1.23 5.15 1.36
Cm00 9.85 1.42 0.692 0.806 2.56 0.719
Dm00 13.4 2 0.709 0.848 3.66 1.02
Fm00 8.29 1.3 0.455 0.562 2.22 0.474
Gm00 3.47 0.437 0.432 0.306 1.26 0.163
Hm00 9.6 1.57 0.283 0.667 2.48 0.553
Im00 6.82 1.49 0.161 0.419 1.28 0.567
Jm00 3.78 0.822 0.195 0.334 0.8 0.313
Km00 3.5 0.534 0.21 0.267 0.974 0.112
Mm00 2.53 0.39 0.14 0.163 0.728 0.1
Em05 8.88 1.69 0.186 0.761 2.36 0.337
Fm05 7.7 1.29 0.517 0.657 2.48 0.475
Gm05 3.17 0.504 0.205 0.305 1.02 0.146
Im05 7.48 1.05 0.181 0.551 0.691 0.361
Jm05 4.18 0.805 0.0858 0.36 1.01 0.17
Km05 4.19 0.62 0.392 0.329 1.42 0.388
Mm05 1.78 0.301 0.0532 0.117 0.432 0.0624
Bm10 10.7 1.68 0.428 1.03 3.6 0.791
Am10 10.1 1.38 0.219 0.89 0.558 0.229
Cm10 9.3 1.55 0.59 0.838 2.85 0.454
Fm10 6.77 1.16 0.333 0.511 1.72 0.308
Gm10 5.29 0.727 0.32 0.388 1.46 0.478
Km10 3.82 0.544 0.245 0.2 0.975 0.193

Notes. UC denotes νmax
√D/N for uncorrected frequencies.
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Chapter 4

Observational constraints on rotation

Mes nuits blanches ne sont pas blanches
À peine clairsemées d’étoiles
Petits trous dans la toile étanche
Tristes Strass sur le voile

Pomme, Ceux qui rêvent
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In the three previous chapters, I have presented the standard modelling of stellar-structure
and angular momentum transport as well as the key concepts of rotating asteroseismology. I
expose in this chapter the main observations that plead for a complete reappraisal of the mod-
elling of rotation. My PhD work focuses on the modelling and theoretical aspect of the angular
momentum transport problem. However, theory should never lose sight of experimental and
observational facts. I introduce this Chapter with the main methods and instruments that are
used today to infer direct or indirect constraints on stellar rotation. Then I show the principal
results on the rotation of the Sun and for other stars with di�erent evolutionary status.

103



Observational constraints on rotation

4.1 Methods and instruments

4.1.1 Methods

For the majority of stars, the only information we know about their rotation is their surface
rotation velocity. In their pioneering work, Struve & Elvey (1931) proposed to use the Doppler
broadening induced by rotation on the many absorption lines produced by elements at the
stellar atmosphere to measure surface rotation. On the side of the star coming toward the ob-
server, lines are blue-shi�ed and on the side moving away, lines are red-shi�ed. The measured
Doppler broadening is the result of the projected equatorial velocity onto the line of sight:
v sin i, with the angle i between the rotation axis and the line of sight. For instance, a star
seen pole-on will not have its absorption lines Doppler-shi�ed and no rotation measurement
can be made. The v sin i have been measured for a large number of stars, assuming a uniform
distribution of the orientation of rotation axis. Doing so allows astronomers to retrieve a
distribution of the absolute surface velocities, not only the projected one (e.g. Hill, 1995; Royer
et al., 2002; Zorec et al., 2017; Houdebine et al., 2016).

The v sin i measurement, for an unresolved star, gathers the signal emitted by the whole
surface and does not allow physicists to measure di�erential rotation. However, the presence
of an inhomogeneity can locally change the emission properties of the surface. Such an inho-
mogeneity can be caused by the passage of a spot or a change in chemical abundances, which
enhances or reduces local stellar emission. If this local enhancement or reduction is strong
enough, it produces visible variations of the total signal emitted by the star. The distortion
depends on the intrinsic characteristic of the inhomogeneity and on its location on the surface.
This location cannot be determined by only one observation. Yet, the star being in rotation,
the signal perturbation will move from the blue-side of the Doppler broadening to the red
side. Therefore, by studying the signal time-series, one can extract the stellar rotation veloc-
ity at the very location of the inhomogeneity. For a large number of inhomogeneities located
at di�erent latitudes, the latitudinal rotation pro�le can be determined (Kochukhov, 2016).

If, in addition, the star is able to maintain a (strong) magnetic �eld, the light emitted by
a star is polarized. Its polarization state can be decomposed into four Stokes coe�cients,
each coe�cient carrying speci�c information about the magnetic �eld characteristics (modulus,
magnetic �eld vectors projected on the line of sight, etc.). Magnetization of the emission zone
causes the so-called Zeeman e�ect, i.e. line splitting or broadening. The Zeeman e�ect prefer-
ably produces circular rather than a linear polarization (about 10 times more). The former is
the one providing information on the magnetic �elds vectors. Zeeman-Doppler imaging allows
the observer to reconstruct the magnetic �eld morphology, even tiny details such as spots,
and the modulation of the circular polarization reveals the e�ect rotation (Babcock, 1947; Semel,
1989; Kochukhov, 2016).

We have described the information that can be gleaned from spectroscopy and spectropo-
larimetry on the surface rotation of the stars. In order to learn about their interior rotation
pro�le we shall turn to asteroseismology. We have seen in Chapter 3, that the general oscil-
lation equations in a non-rotating star. Here, we assume the star is slowly rotating, the e�ect
of the deformation due to the centrifugal acceleration is small compared to the e�ect of the
Coriolis acceleration. Therefore, in Eq. (3.25), the term −(ξ ·∇Ω2)r sin θes is neglected and the
momentum conservation equation reads

−ρω̂2ξ + 2iρω̂Ω× ξ = ρ′

ρ
∇p−∇p′ − ρ∇φ′. (4.1)

In order to avoid confusions in the forthcoming developments, I have dropped the 0 subscripts
for equilibrium quantities. I recall that here, ω̂ = ω + mΩ. However, ω is not the same
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frequency as in the non-rotating case because ω veri�es a di�erent system of equations. In
order to clarify, I note ω0 = ωn` the angular frequency in case of no rotation and ωm = ωn`m the
angular frequency in the corotating frame of a star. Therefore, we will now use ω̂m = ωm+mΩ
instead of ω̂.

We follow the derivation of Goupil (2011). First, we introduce the notation ωm = ω0 + ω1,m
(n` are omitted) with ω1,m � ωm, ω0, and ξ = ξ0 + ξ1 with ξ1 � ξ, ξ0. Eigenfunctions ξ0 and
ξ1 can be decomposed in spherical harmonics. Therefore, abbreviating n` by k, ξ1,k can be
written as a linear combination of other 0-th order solution ξ0,i 6=k (Ouazzani, 2011):

ξ1,k =
∑
i 6=k

aikξ0,i. (4.2)

In addition, since the �uctuations of density, pressure and gravitational potential can also be
perturbed in the same way, we denote with L0(Y m

` ) = L(ξ0) the right hand side of (4.1):

L0(Y m
` ) = L(ξ0) = ρ′

ρ0
∇p0 −∇p′ − ρ0∇φ′ and L(ξ0) = −ρω̂2

0ξ0, (4.3)

and now, L = L0 + L1.
Injecting all these quantities into Eq. (4.1) and keeping only the 1st-order terms in Ω yields:

−ρ
[
2ω0(ω1,m +mΩ)ξ0 + ω2

0ξ1

]
= L(ξ1)− 2iρω0Ω× ξ0, (4.4)

where we used the second equation in Eq. (4.3). We now project onto ξ0. To that end, we
de�ne the scalar product:

〈a|b〉 =
ˆ
V

a∗ · bd3r. (4.5)

with V the volume of the star and ·∗ being the complex conjugate. It can be shown that
〈ξ0|ξ1〉 = 0, therefore

−
〈
ξ0|ρ

[
2ω0(ω1,m +mΩ)ξ0 + ω2

0ξ1

]〉
= 〈ξ0|L(ξ1)− 2iρω0Ω× ξ0〉 . (4.6)

It follows that,

ω1,m

ˆ
V
ρξ∗0ξ0d3r =

ˆ
V
ρξ∗0 (iΩ× ξ0 −mΩξ0) d3r. (4.7)

In above equation, we de�ne two quantities I0 and R as

I0 =
ˆ
V
ρξ∗0ξ0d3r and R =

ˆ
V
ρξ∗0 (iΩ× ξ0 −mΩξ0) d3r, (4.8)

where I0 is called the mode inertia1. Developing R gives (Aerts et al., 2010)

R = i

ˆ
V
ρΩξ∗0

[
−ξh

∂Y m
`

∂ϕ
er − ξh

cos θ
sin θ

∂Y m
`

∂ϕ
eθ +

(
ξr sin θY m

` + ξh cos θ∂Y
m
`

∂θ

)
eϕ
]

d3r

1This term is also o�en referred to as the mode moment of inertia. This denomination seems quite improper
because the moment of inertia is de�ned as the product of the mass with the square of the distance to the pivot
point or to the rotation axis. In the de�nition of I0, ξ0 is only the displacement from an equilibrium location, induced
by the passage of an oscillation (in the case of no rotation). Nor can it be called the perturbed moment of inertia
of the mode because if an element of �uid is displaced from r to r + ξ0 by an oscillation, the perturbation of its
moment of inertia with respect to its equilibrium moment of inertia is, at �rst order, 2ρr∗ξ0.
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−m
ˆ
V
ρΩ|ξ0|2d3r

= i

ˆ
V
ρΩ
[
− ξ∗r Y m

` |
∗ ξh

∂Y m
`

∂ϕ
− |ξh|2

cos θ
sin θ

∂Y m
`

∂θ

∣∣∣∣∗ ∂Y m
`

∂ϕ
+ ξ∗hξr

∂Y m
`

∂ϕ

∣∣∣∣∗ Y m
`

+|ξh|2
cos θ
sin θ

∂Y m
`

∂ϕ

∣∣∣∣∗ ∂Y m
`

∂θ

]
d3r −m

ˆ
V
ρΩ|ξ0|2d3r. (4.9)

Useful relations concerning spherical harmonics are de�ned in (B.15). In particular, the ϕ-
derivatives of the spherical harmonics are, ∂Y m

` /∂ϕ = imY m
` and ∂ Y m

` |
∗/∂ϕ = −imY m

` . Thus,
above expression of R becomes

R = mc2
`m

ˆ
V
ρΩ
[
|ξr|2Pm

` (cos θ)2 + |ξh|2
[(dPm

`

dθ

)2
+ m2

sin2 θ
Pm
` (cos θ)2

]

−Pm
` (cos θ)2 [ξ∗r ξh + ξrξ

∗
h]− 2|ξh|2

cos θ
sin θ P

m
` (cos θ)dPm

`

dθ

]
d3r, (4.10)

and the mode inertia is

I0 =
ˆ
V
ρξ∗0ξ0d3r

= c2
`m

ˆ
V
ρ

{
|ξr|2Pm

` (cos θ)2 + |ξh|2
[(dPm

`

dθ

)2
+ m2

sin2 θ
Pm
` (cos θ)2

]}
d3r (4.11)

. (4.12)

Since we neglected centrifugal acceleration, the star is spherical. Therefore
´
V d3r =´ π

0
´ R?

0 sin θr2dθdr and I0 further reduces to:

I0 = c2
`m

ˆ π

0

ˆ R?

0
ρPm

` (cos θ)2
(
|ξr|2 + `(`+ 1)|ξh|2

)
r2 sin θdθdr

= c2
`m

2(`+ |m|)!
(2`+ 1)(`− |m|)!

ˆ R?

0
ρ
(
|ξr|2 + `(`+ 1)|ξh|2

)
r2dr, (4.13)

where Eqs. (B.11) and (B.12) have been used. Until now, we have made no assumption on the
angular velocity pro�le, except that Ω is small. From now on, we also assume a shellular
rotation pro�le, which allows us to write

R =mc2
`m

ˆ π

0

ˆ R?

0

[
|ξr|2 + `(`+ 1)|ξh|2 − (ξ∗r ξh + ξrξ

∗
h)− |ξh|2

]
ρΩPm

` (cos θ)2r2 sin θdθdr

=c2
`m

2(`+ |m|)!
(2`+ 1)(`− |m|)!

ˆ R?

0

[
|ξr|2 + `(`+ 1)|ξh|2 − (ξ∗r ξh + ξrξ

∗
h)− |ξh|2

]
ρΩr2dr. (4.14)

Finally, the small change of frequency induced by a small rotation rate can be written

ω1,m = R

I0
= m

ˆ R?

0

[
|ξr|2 + (`(`+ 1)− 1)|ξh|2 − (ξ∗r ξh + ξrξ

∗
h)
]
ρΩr2dr

ˆ R?

0
ρ
(
|ξr|2 + `(`+ 1)|ξh|2

)
r2dr

= m
Rn`m
In`m

, (4.15)
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where Rn`m and In`m have been de�ned to follow standard notation (e.g. Aerts et al., 2010).
It is common to de�ne the generalised rotational splitting δνn`m (or sometimes noted Sm;

Goupil 2011) as

δνn`m = ω1,m − ω1,−m

2m =
ˆ R?

0
Kn`m(r)Ω(r)dr, (4.16)

where Kn`m is the rotational kernel:

Kn`m(r) =
[
|ξr|2 + (`(`+ 1)− 1)|ξh|2 − (ξ∗r ξh + ξrξ

∗
h)
]
ρr2

In`m
. (4.17)

Obtaining the rotation pro�le from rotational splittings is done through so-called inversion
techniques. We gave the expression of the rotational splitting for an angular velocity depending
only on r. Let us move a step forward and assume that it has the same functional form in 2D:

δνn`m =
ˆ R

0

ˆ π

0
Kn`m(r, θ)Ω(r, θ)rdrdθ + εn`m, (4.18)

where εn`m is the measurement error on the rotational splitting and Kn`m(r, θ) is the rotational
kernel of Eq. (4.17) in two dimensions. 2D inversion methods, such as the one developed by
Schou et al. (1994), amounts to �nding Ω(r, θ) such that in Eq. (4.18), lhs equals rhs. More
precisely, Schou et al. (1994) proposed to use a regularized least square method which enforces
smoothness on the second derivatives of Ω. The quantity to minimize is:

χ2 =
∑
n`m

[
δνn`m −

´ R
0
´ π

0 Kn`m(r, θ)Ω(r, θ)rdrdθ
]2

σ2
n`m

+ µ2
r

ˆ R

0

ˆ π

0
fr(r, θ)

(
d2Ω
dr2

)2

drdθ

+µ2
θ

ˆ R

0

ˆ π

0
fθ(r, θ)

(
d2Ω
dθ2

)2

drdθ, (4.19)

where σn`m is the standard deviation of the error a�ecting δνn`m, µr and µθ are so-called
trade-o� parameters and are meant to control the accepted variation of the solution. Finally,
fr and fθ are non-negative functions attributing a weight to di�erent points. This quantity can
easily be minimized using a least squares method to �nd Ω from rotation splittings.

4.1.2 Ground-based observations

The spectroscopic and spectropolarimetric observations are mainly realized with 4 spectropo-
larimeters. espadons (Echelle SpectroPolarimetric Device for the Observation of Stars; Donati
et al. 2006) and spirou (SpectroPolarimetre Infra Rouge; Artigau et al. 2014) installed at the
3.6m Canada-France-Hawaii Telescope (cfht). narval (Aurière, 2003) on the Bernard Lyot
Telescope (tbl) at the Pic du Midi Observatory is a twin of espadons and is designed to take
over espadons’s nights of observations. Finally, harps (High Accuracy Radial Velocity Planet
Searcher; Pepe et al. 2000) is installed on the ESO 3.6m telescope at La Silla.

Asteroseismology requires very long time series of stellar photometry or velocime-
try/spectrometry, ideally up to several months. On Earth this is a complicated task with
only one telescope except at the poles. In Earth’s polar regions, the Sun is observable with
astronomical conditions during uninterrupted weeks. For other stars, international consortia
have built networks of telescopes capable of observing stars without interruption during a
very long time. Observers take advantage of the powerful and large optics only possible in
ground telescopes. However, they need to cope with atmospheric distortion, wind turbulence,
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Figure 4.1: Artistic view of CoRoT (le�) and Kepler (right)

�ltering e�ect of the atmosphere, etc. Among those networks one can cite the Global Oscillation
Network Group (gong; Harvey et al. 1996) that counts 6 telescopes around the globe and its
younger brother gong++ that incorporates continuous magnetogram measurements (Hill et al.,
2003); the Birmingham Solar Oscillation Network (bison; Chaplin et al. 1996), also composed of
6 telescopes. These three networks are devoted only to the Sun, in complement of space-based
operations. Finally the Stellar Oscillation Network Group (song; Grundahl et al. 2011) aims at
observing stars other than the Sun, which is still under construction and have 3 telescopes at
the moment.

4.1.3 Space-based observations

The availability of detailed constraints on stellar internal structure and rotation have made a
big step forward with the advent of space-borne missions. The �rst mission launched into
space, dedicated to the study of internal structure of the Sun using asteroseismology was SoHO
(Solar and Heliospheric Observatory) launched in 1995 and still in activity today. soho takes
on board two spectrometers, golf (Global Oscillations at Low Frequencies; Gabriel et al. 1995)
and SOI-MDI (The Solar Oscillations Investigation - Michelson Doppler Imager; Scherrer et al.
1995) to measure small variations of velocity due to pressure modes in the outer envelope of
the Sun. Velocity-measurement time series more than 24 years long are available for both
these instruments and allow solar physicists to reach unprecedented precision on frequencies
and on the solar internal structure inverted from them. In addition to helioseismic data, soho
was also able to study the solar photosphere, chromosphere, corona and solar wind from
di�erent points of view: temperature, chemical composition, magnetic topology and intensity,
density, etc. A�er soho, other satellites joined the armada, studying the Sun. The stereo (Solar
Terrestrial Relations Observatory; 2006) spacecra�s for stereoscopic imaging of, i.e. coronal
mass ejection; sdo (Solar Dynamics Observatory; 2010) which studies the Sun’s atmosphere
and internal structure through imaging and helioseismology (velocity measurements). More
recently launched, the Parker Solar Probe (2018) and Solar Orbiter (2020) will approach the
Sun closely. They are mainly devoted to the study of the mechanisms of acceleration of the
solar wind and its dynamics. Solar Orbiter will, in addition increase the inclination of its orbit
in order to have a better view on the poles, regions of emanation of the fast solar wind.
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Figure 4.2: tess �eld of view. Graph shows superimposition of each 26 sectors along the two years of
tess mission.

Vast and precise studies of the internal structure of other stars began with the space
telescope CoRoT (Convection Rotation and Transits) originally devoted to the detection of
stellar oscillations using photometry (Catala et al., 1995; Baglin et al., 2006; Michel et al., 2008)
and secondarily extended to the exo-planetologists community during the development phase
(Deleuil et al., 1997). The detection surface is paved with 4 ccd: two devoted to asteroseismology
with an exposure time of 1 s, and two dedicated to �nding exoplanets, with an exposure time
of 32 s (faint stars are favoured in order to get a large number of targets for exoplanet hunting).
These last two ccds actually appeared to be well designed for detecting oscillations in rgb

stars which oscillate much slower than ms stars. CoRoT observed �x regions of the sky during
continuous periods of around 150 days (long runs) for detailed study of oscillating stars and
for the detection of planets; and during periods of around 10 to 20 days (short runs) for
exploratory programs. CoRoT measured its �rst light early in 2007 and was retired mid-2013,
a�er twice the nominal duration.

Two years a�er CoRoT’s �rst light, on march 2009, nasa’s space telescope Kepler started
operating. Kepler (Borucki et al., 2010) is equipped with 42 ccds, read every 6.5 s and added-
up to 59 s for short cadence targets and to 29.4 min for long cadence targets. During 4 years,
from may 2009 to may 2013, Kepler stared at a 105 square degree region in Cygnus-Lyra.
The mission was then further extended in degraded mode following the brake-down of two
reaction wheels. The secondary mission, called K2 takes advantage of the radiation pressure
of solar photons to keep its orientation, but is forced to stare at regions near the ecliptic plane
in order to maintain a symmetric pressure, and to change the region of interest every 83.5
days. The regions observed by Kepler are displayed in Fig. 4.4, right panel. As CoRoT, Kepler ’s
goal was to �nd exoplanets and measure stellar oscillation spectra. During its nominal mission,
it observed around 200 000 stars with magnitudes ranging from 9 to 16. As I write these
lines, Kepler found 2341 con�rmed exoplanets and K2 found 409 (among the 4274 exoplanets
reported by the Encyclopédie des Planètes Extrasolaires2).

The last space-borne mission is tess (Transiting Exoplanet Survey Satellite; Ricker et al.
2014). It was launched in April 2018 with the primary goal of measuring stellar oscillation
spectra and detecting smaller exoplanets than Kepler did. In practice it needs to observe
brighter stars. Contrary to Kepler , tess has four on-board wide-angle camera which span a
band of 24◦ in azimuth from pole to equator (actually the equator is not mapped, the �eld of
view stops 6◦ above it) and stare at it for 27.4 days (two orbits around Earth). The �eld of
view is represented in Fig. 4.2, on the le�, on a sphere aligned with the ecliptic pole. A�er 27.4

2http://exoplanet.eu/

109

http://exoplanet.eu/
http://exoplanet.eu/


Observational constraints on rotation

days of observations, the satellite rotates 28◦ and repeats the observations. A�er 13 periods
of observation, tess will have done a complete revolution around itself and mapped a whole
hemisphere. It �ips over and then maps the other hemisphere with 13 new sectors. Apart
from scarce regions around the ecliptic plane, tess will gather photometric data on all the
celestial sphere for at least 27.4 days. Furthermore, a�er each rotation, some regions mapped
by tess superimpose (see Fig. 4.2, right part). The duration of observation will add-up for
those regions, increasing the signal-to-noise ratio and the number of exoplanets discoverable.
The mission has recently been extended for 2 years for a second full map if the sky. Up to
now, 51 new exoplanets observed by tess (at mid 20203) have been con�rmed, but more than
2 000 objects are suspected to host one or more exoplanets and are waiting for con�rmation.

Apart from broad surveys, the advent of nanosatellites makes it possible to focus on a
very limited number of stars. For instance, the constellation of nanosatellites brite (Bright-star
Target Explorer; Weiss et al. 2014) is composed of 6 nanosatellites (actually one of them is not
responding). They carry a 3 cm aperture telescope, with a blue �lter for three of them and a
red �lter for other the three. Each telescope can see approximately 15 stars at the same time.
As we will see later, multi-band photometry is crucial for mode identi�cation. Although CoRoT
supported three-band photometry, the brite constellation provides two-band photometry at
a much cheaper cost. Furthermore, as brite is a constellation with redundant instruments, it
allows continuous observations of targeted stars.

4.1.4 What for the future?

Concerning long photometric measurements, an esa mission is being prepared for launch in
2026: plato (PLAnetary Transits and Oscillations of stars; Rauer et al. 2014). plato is consti-
tuted of 26 cameras: 2 fast cadence (2.5 s) cameras meant primarily to observe bright stars
and 24 slow cadence cameras (25 s) for other stars. The slow cadence cameras are divided
into 4 groups, each group pointing towards a slightly di�erent direction. Fig. 4.4, le� panel,
represents these four �elds of view. Due to overlapping, regions are seen not only by 6 cam-
eras but by 12, 18 or 24. It is designed for a 6 years primary mission decomposed into two
phases. First, plato will look at two regions for 2 years each. These regions have been chosen
because they present a high density of solar-like stars. The duration of two years would allow
astronomers to observe two transits of an exoplanet with an Earth-like orbit period. The next
phase is called step-and-stare. plato will cover around half of the whole sky by staring at
regions for up to 5 months.

Despite many claims of detection, there is no community consensus on the discovery of
g-modes in Sun and even less in solar-like stars. The only detectable oscillations that can
propagate in the radiative zone of these stars are from mixed-modes. The amplitude of per-
turbations generated by purely g-modes at the surface of the Sun is currently below the
sensitivity of our instruments. However, with the recent detection of gravitational waves4,
old ideas have re-emerged. Gravity modes propagating inside the radiative zone of the Sun
induce perturbations in the gravitational �eld. With space-borne interferometer lisa (Laser
Interferometer Space Antenna; Amaro-Seoane et al. 2017; Baker et al. 2019) dedicated to the
detection of very small amplitude gravitational waves, such tiny perturbations in the gravita-
tional �eld could become measurable. Previous works have shown that, with the speci�cations
of lisa known at the turn of the new millennium, amplitude of the order of 1 − 10 mms−1

3https://tess.mit.edu/publications/
4Not to be confused with gravity waves. Gravity waves are waves for which the restoring force is the gravity.

Gravitational waves are the propagation of a disturbance of the space-time. Their restoring force can be seen as
the elasticity of space-time (Tenev & Horstemeyer, 2018)
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Figure 4.3: Artistic view of tess (le�) and plato (right)
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Figure 4.4: le�: Field of view of the 4 groups of slow-cadence cameras. Each group points in a di�erent
direction separated by an angle of 9.2◦ with the telescope vertical axis. Numbers refer to the number
cameras seeing the �lled zones. right: plato �elds of view are represented in dark blue for the �rst
phase of the mission and light blue for the step-and-stare phase. For comparison, Kepler ’s nominal
mission �eld of view is shown in purple and K2 �elds of view are represented in green. The di�erence
in the shapes of those �elds is due to the two dead ccds. Finally, red rectangles show CoRoT’s �elds of
view.

at the surface of the Sun would be detectable (Giampieri et al., 1998; Roxburgh et al., 2001).
The studying of golf data has shown that the amplitude of velocity variations generated by
g-modes at the surface of the Sun should be less than 10 mms−1 which is not incompatible
with lisa’ sensitivity.

In the following I will �rst detail the observational constraints that we have on the Sun’s
rotation pro�le and in the next section I will focus on other stars.

4.2 Constraints on the Sun’s rotation pro�le

4.2.1 From the surface to 0.4R�
The �rst evidence that the Sun was rotating came from the observation of sunspots dri�ing
at its surface. Johannes Fabricius was the �rst in 1611 to systematically study the motions of
those spots for few months and to propose that their apparent motion was due to rotation of
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the Sun. Later, in 1630, Christoph Scheiner measured the equatorial surface rotation period to
be of 27 days and noticed that the rotation speed was lower as he came nearer to the poles.
This is the �rst evidence of a surface di�erential rotation. Nowadays, the surface solar rotation
rate Ωs is expressed in the following form (e.g. Schröter, 1985):

Ωs(θ) = A+B sin2 θ + C sin4 θ, (4.20)

with θ the latitude and A ' 14.1 deg d−1, B ' −1.7 deg d−1 and C ' −2.3 deg d−1, which gives a
period of rotation at the equator of ' 25.5 days and Ωs ' 14.1 deg d−1 = 1.64× 10−4 deg s−1 =
0.248 rad d−1 = 2.868 × 10−6 rad s−1 ' 456 nHz. In velocity, it gives ' 1.98 kms−1. I give this
value in various units because in the rest of this thesis, it will facilitate the comparison with
stellar rotation rates that can be expressed in di�erent physical units. At a latitude of 60◦, the
rotation rate is Ωs ' 11.5 deg d−1 ' 370 nHz, thus corresponding to a period of 31.2 days.

Using 15 days of discontinuous Doppler measurements of the surface of the Sun, Brown &
Morrow (1987) were the �rst to determine a two-dimensional rotation pro�le of the Sun. They
found that Ω varies in latitude and radii in the convective zone and then stays constant in the
radiative zone, at least down to 0.4 R�. This result was later re�ned with the continuous 144
days time series from the early measurements of mdi on board soho. Kosovichev & Schou
(1997) detected latitudinal di�erential rotation below the surface of the Sun for the �rst time.
In order to do that, they used the rotational splitting of the fundamental mode (f-mode: n = 0)
for degrees ` in the range 120 to 2505. Fig. 4.5, le� panel, taken from Kosovichev & Schou
(1997) represents the measured rotation rate as a function of latitude at the surface and at a
depth of 2− 9 Mm (0.29− 1.29 %R�) below the surface. This �gure shows that the latitudinal
di�erential rotation stays almost the same as we go just below the surface. Using the same
data, the rotation rate pro�le at di�erent latitudes are shown in Fig. 4.5, right panel, for the
whole star (Schou & SOE Internal Rotation Team, 1998). At the very right of this graph, we
recognize the same variation of the rotation rate with latitude near the surface as measured
by Kosovichev & Schou (1997). Following the solid lines from right to le�, we notice a distinct
increase of the rotation rate at high latitudes and an decrease at low latitudes. For the rotation
rate at 75◦, we see between 0.9 and 0.95R� a brusque increase. This was coined a "jet" of fast
rotation by Schou & SOE Internal Rotation Team (1998). However, the jet was absent in the
more recent inversions made, for instance, with GONG data (Howe et al., 2000) and it is now
considered as an artefact induced by the mdi data analysis. As long as we go deeper, the 1− σ
uncertainties increase but the inverted rotation rate at di�erent latitudes do not overlap, until
all measured rotation rates converges around ' 0.7R�. This is the location of the tachocline,
a region of transition between the convective and radiative region. From 0.7 and 0.3R�, the
rotation rates at any latitude converge to a mean value around 440 nHz. More recent inversions
reduced the dispersion on the inverted values and con�rmed a solid rotation in this region (no
r or θ gradients). From 0.3R� to the centre, the 1σ uncertainties diverge and nothing can be
said about this region. The modes propagating in this region are radial p-modes and g-modes.
The former are not a�ected by rotation and measuring the rotational splitting of the latter
would require at least detecting them, which we do not.

Stellar models did not always compare favourably with these rotation pro�les. In his seminal
paper, Zahn (1992) produces solar-like stellar models with shear-induced turbulence and wind-
driven meridional circulation. However, these models end up with di�erential rotation in their
radiative zones. By adding an additional am transport mechanism, internal gravity waves (igw;
see Chapter 5), Talon & Zahn (1998) managed to obtain a nearly �at rotation pro�le for a solar

5The detection of such high degree oscillations is only possible with the Sun. For other stars, oscillations are
usually detected with degrees ` up to 3 in the best cases.
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Figure 4.5: le�: Rotation of the Sun as a function of latitude at a depth of 2− 9 Mm (solid line) and at the
surface (dashed line). Credits to Kosovichev & Schou (1997). right: Rotation rates inverted for di�erent
latitudes against radius. On the right side of the graph, from top to bottom, the rotation rate are at 0◦,
15◦, 30◦, 45◦, 60◦ and 75◦. The dashed lines represent the 1− σ uncertainty. Credits to Schou & SOE
Internal Rotation Team (1998).

model a�er 2.8 gigayr. However they used a prescription for the igw angular momentum
luminosity that overestimates their e�ciency, they say. A more recent work has con�rm this
result (Charbonnel & Talon, 2005) but starting from the zams, with an initially �at rotation
pro�le. However, such a model requires non-standard mechanisms of transport of am. There
are a lot of candidates and their possible interactions when put together in a stellar evolution
have never been tested (see Chapter 5). Turck-Chièze et al. (2010) tested the impact of initial
conditions on the rotation evolution of a solar model. They used two di�erent stellar evolution
codes, no additional transport mechanism (and no magnetic braking) and three di�erent initial
conditions: ∼ 2 kms−1, ∼ 20 kms−1 and ∼ 53 kms−1. The �rst corresponds to a very low
(unrealistic) initial rotation velocity while the last two are more realistic. They found that only
the �rst initial condition produces, at the age of the Sun, a rotation pro�le not too far from the
current solar rotation pro�le. The last two end up with rotation rates around four time larger
than the one presumed in the radiative zone of the Sun.

4.2.2 From 0.4R� to the centre

In order to obtain information on the very core of the Sun through asteroseismology, one must
detect the modes in which the core oscillates: g-modes. However, g-modes are evanescent
in the convective zones and their detection is hindered by their very small residual amplitude
at the surface of the Sun. Their discovery has been the object of many claims in the history
of helioseismology. Nonetheless, all claims have been intensely debated and no consensus is
emerging in the community regarding their detection. García et al. (2007) were the �rst to
claim the detection of solar g-modes. They studied the power spectrum density (psd) obtained
from almost 10 years of golf measurements. They found a large bump in the period domain
of asymptotic g-modes6, between 25 µHz and 140 µHz. The likelihood that this bump is not
produced by noise is at least 99.85 %. Furthermore, its location is close to the one predicted
with theoretical models. However, this detection has not been reproduced by other methods or
in mdi data (Appourchaux & Pallé, 2013). Recently, Fossat et al. (2017); Fossat & Schmider (2018)
argued for a new detection of solar g-modes based on a di�erent method. They were not
searching directly for g-modes but for modulation of p-mode frequencies due to small changes

6Where the period separation between g-modes of successive order n is nearly constant (see Sect. 3.2.2).
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Figure 4.6: Hertzsprung-Russel diagram in which the location of some of the most important classes of
pulsators (and rotators) are highlighted. Credits: Kim et al. (2006).

in the deep solar structure induced by g-modes. Their results have rapidly been rejected
(Schunker et al., 2018; Appourchaux et al., 2018; Appourchaux & Corbard, 2019; Scherrer &
Gough, 2019).

4.3 Constraints on the stellar rotation pro�les across the
Hertzsprung-Russell diagram

In this section, I present the observational constraints we have on the rotation of stars other
than the Sun. This section is organized according to the stellar evolutionary status. The
Universe counts many varieties of stars (see Fig. 4.6) with di�erent rotation characteristics.
Therefore I will not describe what we know about rotation in all categories of stars but I will
go through the ones that are the most important for this manuscript. In pms stars, rotation
is very much dependent on the characteristics of the disk and has many links to magnetic
activity. Concerning ms stars, I describe the usual solar-like stars and I focus on two categories
of rapid rotators: δ Sct and γ Dor stars. I close this section with evolved stars, and concentrate
on Red Giant Branch (rgb) stars, the aged counterparts of ms solar-like stars.

4.3.1 Rotation in pre-main-sequence stars

The surface rotation velocity of pms stars is fairly well reproduced by models. Low mass
stars (M . 1.5M�) arrive fully convective on the pms. They have their convective zone locked
with the disk due to the magnetic �eld lines connecting them, and co-rotate with it during its
lifetime (Bouvier et al., 1997). A�er their disk disappears, they lose am at the surface through
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magnetized winds. The same process must occur for more massive stars (& 1.5M�). These
stars quickly develop a central radiative zone and it rapidly becomes the dominant zone, in
mass and in extent. The remaining convective zone is forced to co-rotate with the possibly
present disk. However, it is not clear if the radiative zone is also coupled to the disk or if it
can evolve freely.

Large surveys of young stellar cluster (ysc) have provided data to test this scenario. A ysc

o�ers many advantages. As it is formed from one molecular cloud, all stars in it have the same
age and the same chemical composition. They o�er a homogeneous sample where only the
mass and the initial rotation vary. Fig. 4.7, le� panel, displays the rotation period of stars
with a mass 0.1M� < M < 1.0M� in various stellar clusters with di�erent ages. Stars with
1M� reach the main sequence at ∼ 40 Myr and stars with mass below 0.5M� reach it a�er
∼ 150 Myr. Therefore, only a small fraction of the stars represented on this graph are not on
the pms. As long as the age increases, the proportion of fast rotators also increases, which is
coherent with the above model. Irwin et al. (2008) tested it in more detail. They �rst used
stellar models calibrated to reproduce global quantities of the Orion Nebula Cluster (onc) (Fig.
4.7, le� panel, top graph) computed with solid body rotation and am losses by magnetized
winds but no disk locking. A�er an evolution from 1 Myr to 5 Myr, the periods of rotation of
their synthetic cluster are signi�cantly faster than the one of a cluster of equivalent age (NGC
2362), strongly suggesting that a process of am loss is missing. It is worth noting that the
hypothesis of solid rotation is to be ruled out as a cause of these high rotation rates because
such young and low mass stars are fully convective and the am should be well mixed at this
stage. The authors point out that the age of the onc cluster is subject to a controversy and
that it is sometimes estimated around 2 Myr. However, even by assuming this initial age, the
stars in the modelled cluster still rotate too fast. Starting with another synthetic 2 Myr cluster
(NGC 2264) evolved to 5 Myr again gave too rapid rotators.

However, while Irwin et al. (2008)’s work clearly shows the need for an additional am

loss mechanism, the disk-locking-model does not produce unanimity among astrophysicists.
More recent studies have shown that the rotation periods of disk-less and disk-bearing stars
overlap (Cody & Hillenbrand, 2010). Concerns have also been raised on the interpretation given
to the measured rotation period. It is usually assumed that the rotation-induced brightness
modulation observed in stars is due to spots on the surface. Artemenko et al. (2012) suggested
that it could also be due to accretion disk and the measured rotation period would not only
be the one of the star. Moreover, the disk-locking-model supposes that the magnetic �eld lines
are closed and that they connect almost to the whole disk. A work by Matt et al. (2015) have
shown that if a high enough di�erential rotation sets-in between the star and the disk, the
�eld lines tend to open, reducing the extent of the disk coupled to the star and the amount of
torque felt by the star from the disk. The authors encouraged the use of more detailed models
of star-disk interaction when considering the pms evolution of angular momentum.

4.3.2 Rotation in main-sequence stars

Solar-like stars

Solar-type stars are stars with a signi�cant convective envelope 7. The study of such stars
allows us to gather information about the past and future of the Sun. The exploitation of
CoRoT, Kepler and tess data have allowed astronomers to retrieve surface rotation periods
and internal rotation pro�les of dozens of thousands of solar-type main sequence stars. Leão
et al. (2015) extracted from the CoRoT and Kepler input catalogues three samples of stars. In

7The principal solar parameters are given in Appendix A.
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Figure 4.7: Le�: Rotation periods against mass for several young stellar clusters. From top to bottom,
the stellar clusters are onc, NGC 2264, NGC 2362, NGC 2547 and NGC 2516. Credits: Irwin et al. (2008).
Top right: hr diagram of the CoRoT sample described in 4.3.2. The rotation period is colour- and
shape-coded. Credits: Leão et al. (2015). Bottom right: Average period with associated uncertainties for
each spectral types in a sample of ∼ 12000 stars (in green). The Sun is a G2 type star. Red shaded area
corresponds to an earlier determination. Credits: Nielsen et al. (2013).

116



4.3. Constraints on the stellar rotation pro�les across the Hertzsprung-Russell diagram

order to select solar-like stars, they start with global parameters close to the solar values,
within the range allowed by CoRoT or Kepler uncertainties on the measurement. Hence, the
stars in the CoRoT sample have Teff = Teff,� ± 300 K and log g = log g� ± 0.4 dex, for a total of
175 stars; and two samples from Kepler with Teff = Teff,� ± 170 K, log g = log g� ± 0.2 dex and
[Fe/H] = [Fe/H]� ± 0.2 dex, for a total of 1836 and 2525 stars. These ranges correspond to
CoRoT and Kepler typical uncertainties. All three samples actually contains pms, ms and more
evolved stars. Leão et al. (2015) divided them into two groups: below 1 Gyr old and above.
The surface rotation rates of stars in the CoRoT sample are represented in Fig. 4.7, top right
panel. We immediately see that as stars age, their rotation periods increase, as predicted by
the Skumanich law. This is con�rmed by the period distribution of the two groups de�ned
above: the peak in the period distribution of the young Kepler group is of ∼ 12 days and
∼ 18 days for the old one. Another study on ∼ 12000 Kepler main-sequence stars (not only
solar-type) show that B- or A-type stars are signi�cantly faster rotators than later types (see
Fig. 4.7, bottom right panel; Nielsen et al. 2013). The Sun is a G2-type star but rotates almost
twice slower than the average rotation period found in this work. However, their sample is
biased toward shorter period, as mentioned by the authors.

More detailed measurements have been made possible using asteroseismology. Benomar
et al. (2015) have compared the surface rotation rates measured using v sin i and the average
internal rotation rate (excluding the core convective zone, if present) measured using rotational
splittings. They found a maximum factor 2 between surface and internal rotation rates for 21
of their 22 stars. Such a nearly �at rotation pro�le could be reproduced with the standard
transport of angular momentum described in Chapter 2. Benomar et al. (2018) later managed to
extract from the rotational splittings evidence of latitudinal di�erential rotation in 13 solar-type
main sequence stars. Fig. 4.8, le� panel shows the latitudinal di�erential rotation between
the equator and a latitude of 45◦ as a function of the average rotation rate measured using
rotational splittings. Surface rotation pro�les where the equator rotates faster than higher
latitudes are called solar rotation, otherwise they are called anti-solar rotation. Half of the
stars in this sample have their equatorial rotation rates 64% higher than their rotation rate
at 45◦. It must be noted that the uncertainty on the di�erential rotation increases when the
average rotation rate decreases. This explains the large error bars for the slow rotators. The
authors also found stars showing anti-solar rotation but the uncertainty was so important that
the detection was not reliable. In comparison, Sun’s 45◦ latitude rotates at 90% of its equator
angular velocity. Some of the stars present in the sample have a signi�cantly higher di�erential
rotation. Such high latitudinal di�erential rotation was not reproduced by models, suggesting
that a mechanism counteracts the turbulence reductive e�ect on shear.

γ Doradus (γ Dor) and δ Scuti (δ Sct) stars

The classes of γ Dor and δ Sct stars are intermediate mass stars with 1.2M� . M . 2.5M�.
On the ms, their nuclear energy generation process is mainly the CNO cycle which can reduce
to 12C + 41H→ 12C + 4He + 2e+ + 2νe, by going through the production of nitrogen and oxygen.
As this cycle produces an enormous amount of energy, their core is convective, inducing
chemical transport by penetrative convection inside the radiative region. These stars are also
rapid rotators and we might expect important transport of chemicals and am by shear-induced
turbulence and meridional circulation. They are of interest for us because the e�ects of rotation
are easily visible and they can be used to test our models (see Sect. 8.2.2).

The categories of γ Dor and δ Sct are very close to one another in the hr diagram (see Fig.
4.6). What di�erentiates them is the properties of their oscillation modes: the former oscillate
in g-modes while the latter oscillate in p-modes. In δ Sct stars, the modes are excited by the
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κ mechanism enhanced in the H and He ionization regions. In the case of γ Dor stars, there are
two driving mechanisms, depending on whether the γ Dor is warm or cold. For cold γ Dor,
the driving mechanism is the so-called convective blocking mechanism (Pesnell, 1987; Guzik
et al., 2000). At the base of convective envelope, if the characteristic convective time-scale is
smaller than the pulsation period, then the convection will not be fast enough to adapt to a
small excess of luminosity caused by the energy brought by the wave. This energy is blocked,
the pressure increases and drives a pulsation. For that to be true, the convective envelope
needs to have a precise extent. For warm γ Dor, the convective envelope is too shallow and
convective blocking is not e�cient. Pulsations in these stars are excited by κ mechanism due
to second ionization of helium (Xiong et al., 2016).

Exploiting the information contained in the oscillation spectra of γ Dor and δ Sct is a thorny
issue because rapid rotation of high or intermediate mass causes the creation of complicated
oscillation patterns (Lignières & Georgeot, 2009; Reese et al., 2017). In order to extract infor-
mation on their interior, astronomers must combine multiple techniques. The detailed study
of δ Sct such as HD 174966 (García Hernández et al., 2013), HD 50870 (Mantegazza et al., 2012)
or massive study of CoRoT or Kepler δ Sct targets (Michel et al., 2017; Balona & Dziembowski,
2011) have revealed regular patterns in their oscillation spectra which could provide the same
kind of information as ∆ν or νmax of solar-like and red giant stars.

Let us take the example of HD 174966 (García Hernández et al., 2013). The authors used the
CoRoT light curve and extracted from it 185 mode frequencies between 0 µHz to 900 µHz with
the highest amplitude modes grouped around 300 µHz. These data where complemented by
53 nights of spectroscopic observations using the spectrographs sophie, foces and harps. It
allowed them to obtain a �rst estimate of global parameters: Teff = 7555± 50 K, log g = 4.21±
0.05, [Fe/H] = −0.08±0.1, M = 1.70±0.20 M� and R = 1.70±0.20R�. In the spectroscopic time
series, they also isolated 18 mode frequencies, 12 shared with CoRoT frequencies. Furthermore,
the rotational surface velocity was estimated to be 142 kms−1 or equivalently have a period of
0.64 days. It is actually estimated to be ' 33% of its break-up velocity (424 kms−1), much faster
than the Sun. In order to identify the di�erent modes, the authors used multi-band photometry
technique. Pulsations introduce amplitude variations and phase shi�s between the light curves
measured in di�erent photometric bands that depends on the order ` of the mode (Garrido
et al., 1990). As this method does not make possible the determination of the azimuthal number
m in a unique way, multi-band photometry can lead to degenerate mode identi�cation. The
degeneracy should be li� by using modelling methods. However, the models used in (García
Hernández et al., 2013) neglect the in�uence of rotation on mode propagation which could
lead to mis-identi�cation. Nonetheless, they looked for periodicities in the oscillation spectra
and found a period pattern with a frequency spacing of 64 µHz that they related to the large
separation. Knowing the large separation is important because it provides a very precise
measurement of the stellar mean density (see Eq. (3.53)).

In order to explore the internal rotation pro�le, new asteroseismic diagnostics must be
developed. In the case of a non-rotating star, the period spacing of g-modes is almost constant
as the period of the mode varies. In the case of γ Dor stars however, the period spacings ∆Π
do not stay constant any more but follow a linear relation as a function of the period. Ouazzani
et al. (2017) de�ne this relation as:

∆Πn`m = Σ`mΠn`m + rn`m, (4.21)

where σ`m is the slope and rn`m is the value of ∆Πn`m extrapolated at the origin. They show
that σ`m does not depend on the internal structure but only on `, m and on the rotation rate.
They applied this method on 4 Kepler stars and found internal periods of rotation ranging
from 2.31 days to 0.68 days. Guo et al. (2017) found for a hybrid γ Dor/δ Sct KIC 9592855
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an internal period of 0.8 days. Furthermore, this star is part of a binary system with orbital
frequency also of 0.8 days, suggesting that the star is synchronized and is in a nearly-uniform
rotation. Further studies managed to determine near-core rotation rates for dozens of γ Dor
stars (Van Reeth et al., 2016; Christophe et al., 2018; Ouazzani et al., 2019) and con�rmed
previous individual results: rotation periods are comprised between ∼ 0.4 d and ∼ 2 d.

The signi�cant number of measurements of near-core rotation rates allows stellar physicists
to perform comparisons with rotation evolution models. Ouazzani et al. (2019) compared the
core rotation rate of 37 γ Dor stars observed with Kepler to "standard" rotation models with
meridional circulation and shear-induced turbulence. The set of models is composed of three
di�erent masses (1.4, 1.6 and 1.8M�) with fast initial conditions (Pdisk = 2.4 d, and τdisk = 3 Myr)
or slow initial conditions (Pdisk = 7.2 d). Those initial conditions were determined based on
surface rotation in young stellar clusters. The results are represented as solid blue line in Fig.
4.9, le� panel. It displays observed or computed near-core rotation rates as a function of the
buoyancy radius P0

P0 = 2π2
(ˆ

g cav.

N(r)
r

dr
)−1

, (4.22)

which decreases with age. Standard models fail to reproduce the near-core rotation of the
slowest rotators. Moreover, it tends to predict young fast rotators that are not observed.
Ouazzani et al. (2019) also tried to include overshooting (Fig. 4.9, purple lines) which increases
the size of the inner convective zone and therefore increases the buoyancy radius and decreases
the apparent age of the star. As a matter of fact, purple lines are basically blue lines shi�ed
to the young side in Fig. 4.9. It reduces discrepancies concerning the number of fast young
rotators but does not explain the slow ones. A better agreement is found for models with
solid rotation which is not physically motivated but it suggests that an e�cient am transport
mechanism that would enforce solid body rotation is lacking. They also tried to mimic such
an additional mechanism by increasing the horizontal or the vertical viscosities, keeping the
standard framework. This gives quite similar results to solid body rotation. It is another peace
of evidence for a missing process transporting am.

All these observations of γ Dor and δ Sct stars show that they are fast rotators with
rotation periods of the order of a day. An average internal rotation frequency can be found for
γ Dor by exploiting their period spacing if enough of them are measured. Obtaining a detailed
rotation pro�le is still a challenging task. Even in the domain of fast rotation, the study of
γ Dor and δ Sct stars show that, once again, the standard modelling of angular momentum
transport is strikingly de�cient.

The lithium depletion problem

A nagging problem in stellar physics is the so-called lithium depletion problem. It has now been
known for more than sixty years that the Li abundance measured at the surface decreases with
stellar age. Fig. 4.8, right panel, shows measured Li abundances for cool stars in Hyades cluster
(625 Myr). The hottest stars in this sample have an abundance close to the initial Li abundance,
measured in younger stellar clusters. The initial abundance can decrease in several ways. Li
is consumed through proton capture at a temperature of TLi ∼ 2.5× 106 K. If this temperature
is reached inside the convective zone, convection mixes up the material and Li abundance
decreases. This is the case at the very right of the graph. Otherwise, if this temperature
is reached below the surface convective zone, Li abundance should only decrease through
di�usion. However, Fig. 4.8, right panel, clearly shows a gap around Teff ' 6700 K called the Li
dip (Boesgaard, 1991). The Li dip is not only observed in the Hyades cluster but in all clusters
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Figure 4.8: le�: Relative di�erences between rotation rates at the equator and at 45◦ as a function of of
the average rotation rates for 13 main sequence solar-like stars. The red horizontal line is the median
of the sample. Credits: Benomar et al. (2018). Right: Measured lithium abundances for F and G stars of
Hyades cluster as a function of e�ective temperature. Di�erent symbols corresponds to measurements
by di�erent teams. Credits: Boesgaard (1991).

with age & 300 Myr. Understanding this dip has been a challenge since its discovery because
the location where the proton capture occurs is located well below the convective zone. The
usual explanation is to invoke convective overshoot coupled with rotational e�ects. Overshoot
causes exchanges of material between the radiative and the convective zones, which explains
the decrease in Li abundance between the di�usion dominated region at Teff ' 6200 K to the
region where TLi is reached inside the convective zone. In a non-rotating star, the radiative
zone is not mixed, except by di�usion, and if overshoot cannot reach the location where TLi is
reached, no lithium poor material is brought inside the convective zone. If on the contrary the
star is rotating, meridional circulations participate to the mixing of the radiative zone.

This mechanism has been tested and works for the hot side of the Li dip (Palacios et al.,
2003), but fails for the cool side. Indeed, as we pass to the cool side of the dip, the convective
zone deepens which increases the magnetic torque applied to the star. We should then see still
a decrease of the Li abundance, and it is obviously not the case. This observation pleads for the
existence of another mechanism that transports am and therefore reduces the radial di�erential
rotation, but at the same time do not transport chemicals. Concomitantly, such additional
mechanisms, namely Internal Gravity Waves (igw), have been tested (Talon & Charbonnel,
2003; Charbonnel & Talon, 2005). igw are better excited as the convection deepens and
according to excitation models, they must have a non negligible impact on the transport of
angular momentum around the temperature of the cool side. Including igw has been found to
reproduce the cool side of dip in the Hyades (Talon & Charbonnel, 2003; Charbonnel & Talon,
2005).

While the igw model reproduces the observations, these works rely on modelling of igw

excitation that are not unique and have not been fully validated. They also computed igw

angular momentum �uxes with 1D rotation pro�le, while they should be strongly impacted by
2D e�ects. Furthermore, other transport mechanisms have been proposed such as mechanisms
relying on magneto-hydrodynamic processes (see Sect. 5.2) that should also be investigated.
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Figure 4.9: le�: Near-core rotation frequency as a function of the buoyancy radius. Observations are
depicted as black dots. Solid lines represent near-core rotation frequency obtained with a 1.6M� cestam

models with various physical prescriptions and initial conditions. Top lines correspond to fast initial
conditions (Pdisk = 2.4 d, and τdisk = 3 Myr) and bottom lines to slow initial conditions (Pdisk = 7.2 d,
and τdisk = 5 Myr). Credits: Ouazzani et al. (2019). right: Core (red) and envelope (blue) rotation rates
for 6 Kepler stars, as a function of logarithmic surface gravity. Credits: Deheuvels et al. (2014).

4.3.3 Rotation in red giant stars (rgb stars)

Red giant stars have been extensively studied since the launch of CoRoT and Kepler . In partic-
ular, thanks to its very long time series, Kepler gave the opportunity to detect mixed modes
that propagate as g-modes in the radiative region of rgb stars and as p-modes into the con-
vective region. Mosser et al. (2011) showed that their detection and the measurement of their
rotational splittings makes possible to access the rotation pro�le of those stars. Yet, For rgb

stars with ∆ν > 10 µHz, it is di�cult not to mistake rotational multiplets and mixed-modes.
Mosser et al. (2012) demonstrated that gravity-dominated mixed-modes (which are more nu-
merous than pressure-dominated ones) have characteristics very similar to pure g-modes. In
particular, their distribution in period is close to that of asymptotic pure g-modes.

It was �rst done by Beck et al. (2012) and Deheuvels et al. (2012) in two di�erent stars of
the Kepler catalogue. They measured rotational splittings of the order 0.1 µHz and revealed
that the core was rotating at least 5 times faster than the envelope. This result was among
the �rst con�rmations of the predicted strong radial di�erential rotation of rgb stars. Indeed,
as a star evolves and leaves the main sequence, its envelope expands and slows down and its
core contracts and speeds up, due to am conservation. Deheuvels et al. (2014) repeated the
same process on 6 Kepler rgb low-mass stars. They used inversion technique on the measured
rotational splittings (again of order 0.1 µHz) and found 6 rotation pro�le, showing again similar
core-to-envelope rotation rate ratios. There results are represented in Fig. 4.9, right panel.

These observational constraints have rapidly been confronted with stellar rotation evolution
models. Marques et al. (2013) used an earlier version of cestam to compute 1D stellar model
with standard physics as well as standard transport of am including shear-induced turbulence
and meridional circulation as well as a magnetic breaking for some of the models. The initial
rotation velocity was chosen to be 20 kms−1. They calibrated a solar model with and without
braking in order to match solar luminosity, radius and metallicity. They also computed similar
models but with a mass of 1.3M�, which is a typical mass of rgb stars. Stars with a mass of
M ' 1.3M� also have a central convective zone which allow them to test the in�uence of an
overshoot: the penetration of the central cz into the rz brings hydrogen rich material in the
region where the nuclear reactions are the most e�cient, thus increasing the stellar lifetime.
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The modelled internal structure have been given as input to an oscillation code: ADIPLS
(Christensen-Dalsgaard, 2008), that produces an oscillation spectrum from which oscillation
characteristics such as rotational splittings can be extracted.

These models, evolved up to the rgb phase, have an important radial di�erential rotation
in the radiative region. However, the core rotation rate is much larger than the one observed.
Indeed, the computed rotational splitting are of the order of 10 to 100 µHz, compared with
∼ 0.1 µHz observed. The authors suggest that uncertainty on the physics used in the standard
modelling could explain such a high rotation velocity. First, the impact of initial rotation
condition can be ruled-out as the surface rotation of such an evolved star does not depend
on initial conditions. A di�erent prescription for the magnetic breaking law changes the core
rotation rate of only ∼ 2%. Second, a 1.3M� star has convective overshoot during the ms

phase. The presence of overshoot mimics a higher mass. Therefore, for a star to reach a
given radius on the rgb, a star with overshoot would have less time to speed up and the
rotation rate would be reduced (of ∼ 30% in this case). Third, other hydrodynamic instabilities
may occur, such as the gsf instability (see Chapter 5). They found that it changes the central
rotation rate of only ∼ 3%. Finally, the turbulent di�usion coe�cient can be underestimated. In
order to increase the extraction of angular of angular momentum from the radiative zone to the
convective zone, the velocity of the meridional circulation and the vertical di�usion coe�cient
of the shear-induced turbulent should be increased. To that end, Marques et al. (2013) increased
by two orders of magnitude the value of Dh and set the critical Richardson number to 1. The
change in the value of Dh is motivated by the fact that an enhanced horizontal di�usion reduces
the inhibiting e�ect of the µ-gradient on the meridional circulation velocity. We have seen in
Sect. 2.3 that there is no consensus on the prescription of Dh and increasing it by a factor
100 represents a limit value. The change in the critical Richardson number Ric has an impact
on the value of the vertical di�usion coe�cient Dv. All prescriptions express Dv in quite a
similar form, the value of the critical Richardson number that they assume changes. A value of
Ric = 1 is recommended by Woods (1969); Canuto (2002). They argue that the original value
of Ric = 1

4 proposed by Taylor (1931) was derived by looking at the critical Richardson number
that characterizes the passage from a laminar to a turbulent �ow. However, Woods (1969);
Canuto (2002) looked at the situation where the �ow is already turbulent and what should
be the threshold value of Ri for the �ow to become laminar. They found it to be Ric = 1.
This enhancement of extraction of angular momentum, produces a reduction by a factor 10 of
the core rotation velocity, still ten times higher than the observed one, thus providing another
argument in favour of a missing mechanism of transport of angular momentum.
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This �rst part was devoted to the basic concepts required to understand the stellar rotation
evolution. Classically, a star is assumed to be a sphere of gas in which the pressure gradient
counterbalances gravity. The mean �ow is assumed to be steady, and static and the physics
is kept rather simple. Therefore there is no di�usion, the convection is reduced to its essence,
i.e. a single vertical eddy, magnetic �elds and rotation are neglected. This modelling may seem
simplistic but has known many achievement. It reproduces with a remarkable precision the
majority of the stellar parameters accessible to observation, it has succeeded in obliging the
particle physicists to include two new types of neutrinos.

In-depth study of stellar interior is made possible by asteroseismology which allows as-
tronomers to collect information about the zones of propagation of waves observed at the
surface. We describe the main principles of asteroseismology in the case of rotation and no
rotation and we made a detour on a tiny blip in the well-oiled machinery of standard models.
Indeed, the high-frequency oscillation modes of the upper zone of stars are observed with
slightly di�erent frequencies than the ones predicted. While this discrepancy is around 1% of
the mode frequency, it is around 100 times larger than the observation resolution, and there-
fore, highly signi�cant. This gap between models and reality is caused by an oversimpli�ed
modelling of convection at the surface of the star. Here, the hypotheses that made possible the
approximation of convection by a single eddy breaks down. The turbulence that is normally
forgotten in the computation of the stellar-structure becomes non-negligible and the frequen-
cies are modi�ed. This problem called the surface e�ect has for long been tackled by trying
to correct a posteriori the discrepancies. Correction laws are given depending on main stellar
parameters: Teff and log g. However, these works forgot the in�uence of other parameters such
as the chemical composition and above all, rarely study the physical motivations of such a
correction law. These two drawbacks have been the focus of a work and a �rst author article
realized during the �rst year of my PhD (Manchon et al., 2018).

The standard model of stellar physics allows modellers to incorporate non-standard pro-
cesses, in a very approximate way. Indeed, the impact of these processes are o�en studied
a posteriori, i.e. a�er the evolution of a model is done. Therefore, they have no impact on
the physics of the star: they depend on the stellar-structure but the stellar-structure does not
depend on them. Therefore, the standard modelling of rotation evolution neglects almost all
the e�ects of rotation on the structure equation. Rotation intervenes only through an additional
term of approximated centrifugal acceleration in the hydrostatic equation. Then in the star, the
transport of angular momentum is described in the following way. Convective zones (cz) are
assumed to have a uniform angular velocity or a uniform angular momentum distribution. The
surface cz can lose am through magnetized wind or because it is forced to co-rotate with an
accretion disk, and all czs can exchange am with the radiative zone through the meridional
circulation. In the radiative zone (rz), am can be advected by meridional circulation and angular
velocity can be di�used by shear-induced turbulence.

Another major contribution of asteroseismology has been to provide the proof that this
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modelling of rotation evolution is de�cient. Indeed, the Sun is observed to have latitudinal
di�erential rotation pro�le in its cz and a nearly �at rotation pro�le in the rz, while models
predict radial di�erential rotation in the rz and �at rotation pro�le in the cz. In other stars,
young stars with e�ective temperatures around 6500 K are observed to lack Lithium in their
photosphere which argues for the presence of a mechanism transporting chemicals (linked
to the transport of am). Main sequence fast rotators (γ Dor and δ Sct) have an almost rigid
rotation pro�le in their interior while standard models predict strong radial di�erential rotation.
Finally, the asteroseismic study of red giant branch stars has revealed that they do have a radial
di�erential rotation in their core, as expected by models, but with a core rotation velocity 100
times smaller than the one anticipated. All these strong disagreements support the need for
a better modelling of the transport of angular momentum and for the inclusion of additional
transport processes.

Chapters 1 and 2 presented how to properly model the transport of angular momentum in
2D and how structure equations should be modi�ed to correctly take into account the in�uence
of a rotating �ow. As said before, the standard modelling of rotation, implements simplistic
versions of these equations. It is now time to describe in detail the main work I have done
during my PhD, i.e. the implementation in the stellar evolution code cestam of the modelling of
transport of angular momentum in 2D. This work is the base upon which additional transport
mechanisms modelling will be built.
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Part II

Non-standard modelling and numerical
aspects in cestam

125





Chapter 5

Additional transport mechanisms
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We have shown in Chapter 2 that the variation of angular momentum (am) per unit time in
the radiative zone amounts, on one side of the equation, to the am extracted from or injected
into it and results, on the other side, in an advection of am by meridional circulation in addition
to a di�usion of angular velocity induced by shear instability, which is thought to be the most
dominant instability. However, as we have argued in Chapter 4, this modelling is far from being
complete, which suggests that, either mechanisms of extraction/injection of am are missing on
the le� hand side, or sources of di�usion have been missed on the right hand side.

I gathered those additional mechanisms into four categories. First, the instabilities that
may occur without the intervention of a magnetic �eld. They may be quali�ed as baroclinic
instabilities in the sense that they stem from displacement of �uid particles along misaligned
isobars, isopycnals, isentropics, etc. Then, we have the magneto-hydrodynamic (mhd) instabil-
ities. Since they involve a magnetic �eld that we excluded from our modelling, their inclusion
in a stellar evolution code must be regarded with much care. Some caveats may be raised. All
those instabilities are usually modelled as di�usive processes and their contribution is included
in the equations for the transport of am by adding their di�usion coe�cients and completely
ignoring correlations between them. Furthermore, prescriptions o�en assume a linear growth
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of the instabilities. The possibility of a saturation is rarely evoked. These restrictions are
addressed in Sect 5.3. Once we are �nished, we will move to another kind of am carriers:
waves. Two types of waves have been envisaged to transport am outside/inside radiative
zones. Mixed-modes have recently been suggested (Belkacem et al., 2015b,a) and are described
in Sect 5.4. Then, a long time candidate are internal gravity waves. I describe them in more
detail.

5.1 Hydrodynamic (non-magnetic) instabilities

5.1.1 Rayleigh-Taylor instability

As for now we have only seen the shear instabilities that are described by the Richardson
criterion. However, there exist many more instabilities. The �rst in the list is the Rayleigh-
Taylor instability (Rayleigh, 1916). The criterion for this instability has already been derived
in Chapter 1, with the equation of motion (1.92). In an axisymmetric �uid, we consider two
in�nitely close �uid particles at a distance $ and $2 = $ + δ$ from the rotation axis and
with a speci�c am of j = $2Ω and j2 = $2

2Ω2. At each of these locations, the �uid is at an
equilibrium state, i.e. forces balance each other. Now, let us imagine that the inner particle,
rotating with an angular velocity Ω is moved to location $2. The equation of motion of this
particle is the same as Eq. (1.92), assuming no change in the density:

d2r

dt2 = $2
(
Ω2 − Ω2

2

)
. (5.1)

From this, we see that, if Ω = Ω2, the equilibrium is maintained. If Ω < Ω2 then the acceleration
is negative, the particle is pushed back to its initial position and the situation is stable. Finally,
if Ω > Ω2, the acceleration is positive and the displaced particle is moved further away,
leading to an unstable �ow. This condition can be formalized in another way by a �rst order
approximation of the right hand side:

$2
(
Ω2 − Ω2

2

)
' 1
$3

(
j2 − j2

2

)
= − 1

$3
d
(
$2Ω

)2
d$ ($ −$2) = −N2

Ωδ$, (5.2)

where the epicyclic frequency has been introduced (see Eq. (1.94)). We see that the medium
is stable to Rayleigh-Taylor instability if N2

Ω > 0, i.e. if the am j = $2Ω is increasing outward.
Therefore, a necessary condition for a distribution of am to be stable is to satisfy everywhere
the criterion N2

Ω > 0, while it su�ces to have N2
Ω < 0 somewhere for this distribution to be

unstable. This instability acts on a time scale of 1/NΩ, which is of the order of a rotation
period Ω−1.

5.1.2 Goldreich-Schubert-Fricke (gsf) instability

The Goldreich-Schubert-Fricke (gsf) instability was �rst theorized by Goldreich & Schubert
(1967) in the case of a negligible ratio of viscosity to thermal di�usivity and then extended in
the case of a non-negligible one by Fricke (1968); Acheson & Gibbons (1978). They showed that
an instability occurs if one of these two conditions is met:

ν

K
N2
T +N2

Ω < 0 or

∣∣∣∣∣$∂Ω2

∂z

∣∣∣∣∣ > ν

K
N2
T , (5.3)

where ν is the viscosity, K is the thermal di�usivity and z is the coordinate in a cylindrical
frame, parallel to the rotation axis. I also recall that NT is the thermal part of the Brunt-
Väisälä frequency, de�ned in Eq. (1.26); and NΩ is its rotation part or equivalently the epicyclic
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5.1. Hydrodynamic (non-magnetic) instabilities

frequency, de�ned in Eq. (1.95). The �rst condition is similar to the Solberg-Høiland with
no compositional gradient and taking into account the thermal di�usion. Indeed, we have
seen above that, if N2

Ω is negative somewhere, the distribution of am is unstable. This is not
counting on the stabilizing e�ect of the buoyancy that raises the threshold on N2

Ω. However, this
argument assumes the displacement to be adiabatic, i.e. there is no exchange of heat between
a slightly perturbed material and the surrounding. If one allows now for exchanges of heat,
then the stabilizing e�ect of buoyancy is reduced and the �uid becomes more easily unstable.
This inequality can also be modi�ed to include the stabilizing e�ects of a µ-gradient:

ν

K
N2
T + ν

Kµ
N2
µ +N2

Ω < 0, (5.4)

where Kµ ' ν is the particle di�usivity (Talon & Zahn, 1997; Hirschi & Maeder, 2010) and Nµ

is the composition part of the Brunt-Väisälä frequency, already de�ned in Eq. (1.26).
In Eq. (5.3), the second inequality shows that for the �uid to be stable, in the absence of

any other force (e.g. a magnetic �eld), the rotation velocity pro�le must not deviate too much
from cylindrical rotation. With the assumption of shellular rotation, this condition is met almost
nowhere, except near the equator where a shellular rotation pro�le can be approximated by
a cylindrical pro�le. Therefore, the region near the equator is the least prone to develop the
gsf instability (e.g. Barker et al., 2019). This point makes it clear that a 2D description of Ω is
needed to properly model the transport of angular momentum by the gsf instability.

This instability is somewhat similar to the thermohaline (or double-di�usive) instability
that we have seen at the end of Sect. 2.5. The thermohaline instability occurs for instance
in the ocean when hot salty water sits on cooler and less salty water. Since salt di�uses
more slowly than heat, when a small perturbation brings a salty water parcel downward, the
temperature rapidly equals the surrounding temperature and the saltier (and denser) parcel
keeps descending. This instability has the shape of radially elongated eddies called "�ngers".
The same situation appears in stars when angular momentum and temperature1 decrease
upward. The gsf instability creates elongated vortices that carry angular momentum upwards
(Knobloch & Spruit, 1982; Korycansky, 1991). However, due to rotation, am �ngers do not
exactly look like salt �ngers but are sheared in the azimuthal direction. This shear again
creates instabilities which limits the growth of gsf instability.

The implementation of gsf in stellar evolution code su�ers inconsistencies. It is modelled
through a coe�cient of di�usion and it is assumed that gsf takes place in a inviscid medium.
However, we have shown that viscosity has a stabilizing e�ect on gsf instability and indeed,
when molecular viscosity and kinematic viscosity coming from shear-induced turbulence are
taken into account, gsf instability is be suppressed, especially in the tachocline where shear
becomes very important (Caleo et al., 2016).

5.1.3 Axisymmetric BaroClinic Di�usive (abcd) instability

abcd instability (Knobloch & Spruit, 1983) is not very di�erent from the gsf instability when
also taking into account µ-gradients, except that this time it is the thermal di�usion and not
the particle di�usivity that reduces the stabilizing e�ect of the chemical strati�cation.

ν

K

(
N2
T +N2

µ

)
+N2

Ω < 0. (5.5)

As the gsf instability, abcd instability acts on the thermal time-scale.

1Note that this is always the case for temperature to decrease upward in a star.
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5.2 Magneto-hydrodynamic instabilities

In radiative zones, a magnetic �eld can also be sustained by induction generated by the motion
of electrically charged particles due to rotation and to meridional circulation (Mathis & Zahn,
2005). The torque and the divergence of the Lorentz force are included into, respectively,
the equation of the transport of am and of the velocity of the meridional circulation (see
Eq. (2.105)). However, the implementation of this kind of model in a stellar evolution code
is a formidable task and would only account for axisymmetric �elds and would skip all its
dynamical e�ects2, especially instabilities. Nonetheless, some of the e�ects of the magnetic
�eld can readily be implemented into codes following prescriptions derived from more complex
simulations. We have already seen that the interaction of rotation and convection can create or
sustain an already existing magnetic �eld thanks to the dynamo e�ect. This magnetic �eld has
an important impact on the rotation evolution through stellar wind that carries away angular
momentum or through magnetic �eld lines frozen into the star and into the disk that forces
them to rotate as a solid body.

When a di�erentially rotating star is plunged into a magnetic �eld, instabilities may occur.
These instabilities have been the subject of a lot of study for more than half of a century and
have been brought to the �eld of stellar physics by Spruit (1999). In this seminal paper, he
identi�es at least 5 instabilities, including the magnetorotational instability (mri) and the Tayler
instability (also known as Tayler-Spruit instability). I describe both of them in the following.

5.2.1 Magnetorotational instability

This instability is also called the magnetic shear instability (Velikhov, 1959; Chandrasekhar, 1960;
Balbus & Hawley, 1991). Let us consider a di�erentially rotating star with angular velocity
decreasing outward. This star is immersed into a vertical axisymmetric magnetic �eld for
which the axis of symmetry is the rotation axis. We imagine that a small parcel of �uid is
displaced outward. Due to the conservation of angular momentum, the angular velocity of
this parcel should decrease. However, magnetic �eld lines tend to maintain rigid rotation.
Therefore, the parcel has an excess of centrifugal force compared to its surrounding, which
chases it away. This is of course a destabilizing e�ect. On the other hand, because of the
frozen �ux theorem, magnetic �eld lines acts as a restoring force for any perturbation that
would move material away from them. It provides a stabilizing e�ects, in addition to the e�ect
of the stable strati�cation. A su�cient and necessary condition for instability is that

q = −d ln Ω
d ln r >

N2
T

2Ω2
η

K
, (5.6)

where η is the magnetic di�usivity. It should be noticed that the �eld strength does not
appear in the instability criterion. The reason is that the magnetic �eld is responsible for
both stabilizing and destabilizing e�ects. This expression is somewhat very similar to the GSF
or Solberg-Høiland criterion in which N2

Ω has been replaced by 2Ω2d ln Ω/d ln r. The angular
momentum transported by mri is o�en modelled as a di�usive phenomena with di�usion
coe�cient η ' 2Ω2qK/N2

T . mri is thought to be important only in stars with a strong radial
di�erential rotation.

5.2.2 Tayler-Spruit instability

This instability was originally found by Tayler (1973), this time considering a weak toroidal
magnetic �eld B, i.e. with �eld loops wrapped-up around the rotation axis. This con�guration

2Processes occurring on characteristic time-scales much shorter than the nuclear or contraction time-scales.
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is thought to occur in rotating stars thanks to the winding-up mechanism. Indeed, with a
poloidal �eld as initial condition, the rotating material will stretch the frozen-in �eld lines
(magnetic di�usivity is very weak) around the rotation axis. The wound up line increases
the magnetic �eld strength at each turn. The magnetic �eld creates a magnetic pressure
perpendicular to the �eld lines, which compresses the loops. In more simple words, one can
imagine the magnetic �eld loops wrapped-up around the rotation axis as a high stack of plates.
The loops are compressed by magnetic pressure as the plates are compressed by gravity.
Therefore, it is easy to imagine that a little pinch in the stack sends all the plates to the �oor.
This instability may occur even if the �eld is weak, which makes it very interesting as a way of
transporting angular momentum. In this case, an instability could not gain a lot of energy from
the �eld to �ght against the gas pressure or the buoyancy force. Therefore, the instability that
would develop from this �eld would tend to minimize its work against pressure and buoyancy,
meaning that the displacement will be almost parallel to isobars and equipotentials (Spruit,
2002). In order to �nd condition for the stability of this magnetic �eld, we shall study its
response to a wave-like perturbation of the form

exp [i (l$ +mϕ+ nz − σt)] , (5.7)

where we have adopted a cylindrical frame ($,ϕ, z), and l,m, n and σ are constant integers
with σ = σR + iσI the complex frequency (Acheson & Gibbons, 1978; Zahn et al., 2007). Because
horizontal modes are more unstable, we assume n→ 0 and by neglecting thermal and magnetic
di�usion, it can be shown that the conditions for instabilities are (Tayler, 1957; Spruit, 1999)

p ≡ d lnB
d ln$ >

m2

2 − 1 for m 6= 0

p > 1 for m = 0. (5.8)

For the moment, we did not included the e�ect of rotation on the instability, it was just
invoked to provide a justi�cation for the geometry of the assumed magnetic �eld. In the
equations governing the dynamic of the perturbation, rotation appears only in the equation of
motion through the centrifugal acceleration Ω× (Ω× r) and the Coriolis acceleration 2Ω× v,
where v is the velocity of the perturbation. With Pitts & Tayler (1985) we assume that Ω is
small enough so that the e�ects on the shape of the star due to centrifugal acceleration are
negligible. Then we are le� with only the in�uence of the Coriolis term. It shall be recalled
that, in a radiative zone, the restoring force is buoyancy. Therefore, we see that the impact
of rotation on Tayler-Spruit instability will depend on the orientation of Ω with respect to
g. Near the pole, close to the rotation axis, Ω ‖ g and Ω × v ⊥ g. Here, the Coriolis force
has no impact on the evolution of the instability. On the contrary, near the equator, Ω ⊥ g
and Ω× v is not perpendicular to g and the last two vectors have opposite directions. In this
region, the Coriolis force will have a stabilizing e�ect on the growth of the instability. With no
rotation, the characteristic growth rate of the instability is of the order of the Alfvén frequency
ωA = B/(r

√
4πρ)� Ω (Spruit, 1999; Pitts & Tayler, 1985). When the Coriolis force intervenes,

the characteristic growth rate is modi�ed by a factor ωA/Ω� 1.
As usual, the am transported by the Tayler-Spruit instability is modelled as a di�usive

process. A general expression for this additional viscosity is proposed by (Maeder & Meynet,
2004) without making the approximation of no thermal and magnetic di�usion:

ν = Ωr2

q

(
ωA

Ω

)3 ( Ω
NB

)
with q = −d ln Ω

d ln r , (5.9)

and N is a slightly di�erent Brunt-Väisälä frequency:

N2
B = η/K

η/K + 2N
2
T +N2

µ. (5.10)
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Figure 5.1: Latitudinal angular momentum transport near the solar tachocline for b ' 10
√
b(0) the

normalized intensity of the toroidal �eld, with b(0) the intensity of the fossil poloidal �eld. Le�: b = 0.05.
Right: b = 0.1. Credits: Rüdiger et al. (2014).

This expression is consistent with the previous expressions found by Spruit (2002).
As a side remark, Tayler-Spruit instability has been proposed by Spruit (2002) to be the

engine of a dynamo in a radiative zone. We have seen that, starting from a purely poloidal
�eld, rotation wind-up the magnetic �eld lines to create a toroidal �eld. Then this con�guration
is destabilized by the Tayler-Spruit instability and recreates a poloidal �eld and so on. This
is a similar mechanism as the one invoked for the dynamo into convective zones, however
di�erential rotation is much stronger inside the convective than radiative zone. As we have
seen in Chapter 4, the core rotation of the Sun is almost uniform while in its envelope, there is
a di�erence of rotation rate between pole and equator of about 40%. This di�erence vanishes
when going from the convective region to the tachocline (Spiegel & Zahn, 1992) which is about
0.05R� thick. In the tachocline, Spruit (2002) showed that the conditions for the instability
to occur are gathered and operates on a characteristic time-scale of the order of 100 years.
With such a short time-scale, any speed-up of rotation would immediately be �attened by the
Tayler-Spruit instability. This hypothesis was tested in the case of RGB stars (Cantiello et al.,
2014) including hydrodynamic rotational instabilities (Sect. 5.1) as well as the Tayler-Spruit
dynamo. They modelled two red giants for which rotational splittings are available. Their
di�erent models were started with an initial rotation period and then le� to evolve. For their
models with only the hydrodynamic instabilities, even with an extremely low initial rotation
period, their modelled rotational splittings are still one order of magnitude too high. With more
realistic initial rotation period and all the instabilities taken into account, they could not do
better than one order of magnitude too high, even by arti�cially increasing the Tayler-Spruit
viscosity by a factor 100. It shall be stressed that the remaining gap of a factor 10 between
actual and modelled rotation rate of RGB stars is still far better than the factor 103 that exists
when implementing the standard transport of am. While the physics of Tayler-Spruit instability
is well understood, the fact that Tayler-Spruit dynamo actually occurs in stars is still largely
debated.

The e�ciency of these instabilities in transporting angular momentum has been tested
in magneto-hydrodynamic (mhd) codes (e.g Rüdiger et al., 2015; Jouve et al., 2015). Rüdiger
et al. (2015) tested the impact on the rotation pro�le on turbulent viscosity νT associated with
the azimuthal magneto-rotational instability. They imposed two types of cylindrical rotation
pro�le: Ω ∝ 1/s or Ω ∝ 1/s2. They found that νT scales as the rotation pro�le, i.e. the stronger
the angular velocity, the stronger the turbulent viscosity. In mhd simulation, a useful way
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to characterize the medium is to give is magnetic Prandtl number, which is the ratio of the
molecular viscosity ν to the magnetic one η: Pm = ν/η. For a model of red giant with Pm = 1,
they found that the decay time of the di�erential rotation to be around 200 times the period
of rotation, making mri a very e�cient mechanism of transport. The study of the angular
momentum transport near the tachocline show a strong latitudinal dependence (Rüdiger et al.,
2014). These results are reproduced in Fig. 5.1 for two intensities of the toroidal magnetic �eld.
The latitudinal dependence of the mri-induced angular momentum transport is, of course,
a new justi�cation for the 2D description of the stellar interior and angular velocity pro�le.
Because of this anisotropy, and of the e�ect of the toroidal �eld, Rüdiger et al. (2014) propose to
de�ne an e�ective magnetic Prandtl number Pmeff which incorporate an additional molecular
and magnetic viscosity. Rüdiger et al. (2016) showed that the mri-induced transport of angular
momentum could explain the small radial di�erential rotation pro�le in the core of red giant at
the condition that the di�erential rotation decreases faster than the intensity of the magnetic
�eld. This condition is ful�lled when Pmeff � 1. In the core of the Sun, Pm ' 5 × 10−3 (not
Pmeff ) while in the core of red giants, it is between 0.1 and 10. However, the e�ective magnetic
Prandtl is estimated to be of order 103 at the top of the solar convection zone which suggest
an e�cient mri in this region.

5.3 Correlation between instabilities

In the two previous sections, I gave an overview of the principal instabilities that may occur
in rotating, possibly magnetized, stars and the criteria necessary for them to occur. I have also
tried to make apparent the entanglements between many instabilities. When non-standard am

transport mechanisms are added into the modelling they are o�en treated as di�usive processes
and the total di�usion coe�cient is the sum of the independent di�usion coe�cients. Such a
summation supposes that the occurrence of an instability is not impacted by the presence
of another one in the medium, which seems clearly wrong. For instance, if shear turbulence
develops somewhere in the star, the µ-gradient is changed, therefore, all the criterion that
depends on N2

µ must take into account that its value is also a�ected by shear (Maeder et al.,
2013). A similar idea could be applied to Rayleigh-Taylor instability. In the Rayleigh-Taylor
instability, it is the di�erence of centrifugal acceleration acquired by a displaced element of �uid
that can destabilized the �uid if this acceleration is su�ciently important to overcome stable
strati�cation. However, if this condition is almost satis�ed in a region where shear-turbulence
occur„ the small additional velocity of the turbulence can provide the missing kinetic energy
needed to overcome stable strati�cation. In other words, Rayleigh-Taylor instability could
occur in a region where N2

Ω > 0. As a last example, a single look at the criterion for gsf and
abcd instabilities look like the same instability in two di�erent regimes.

Maeder et al. (2013) aimed at taking into account all the couplings between instabilities to
provide a proper modelling for them. Let us take a look at their criterion for Rayleigh-Taylor
instabilities:

Γ
Γ + 1N

2
T + Γµ

Γµ + 1N
2
µ +N2

Ω sin θ < Ric
(dv

dr

)2
, (5.11)

with Γ being the ratio of the energy transported by an element of �uid to the energy lost
during this motion by thermal di�usion, and Γµ is the same but with the energy being lost by
particle di�usion, and Ric is the critical Richardson number that controls shear turbulence. The
�rst term represents the stabilizing e�ect of buoyancy, but also takes into account the thermal
di�usivity that may reduce it. Next we have the stabilizing e�ect of the chemical strati�cation
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with the same limitation as before but this time due to the particle di�usion induced by the
shear turbulence (through Dh). Finally we have the epicyclic frequency for the stabilizing e�ect
of the distribution of angular momentum and the Richardson criterion. What is needed here
is a way of �nding a di�usion coe�cient that takes into consideration all the above. We recall
that the coe�cient of di�usion can be written Dtot = v`/3 (see Eq. (2.15)), with v and ` the
characteristic velocity and mean free path of the �uid motion. To introduce v and ` into Eq.
(5.11), one must �nd an expression for Γ and Γµ. Such expressions are provided by Maeder
(1995); Talon & Zahn (1997). It is based on the same idea as the one underlying the mixing
length theory for convection. A turbulent eddy of dimension ` is approximated by a sphere of
volume V , surface A and V/A = `/6. The eddy is further assumed optically thick and therefore
within the mixing length frame work, (Kippenhahn et al., 2012), the amount of energy carried
Ec by the eddy and lost El during its motion are:

Ec = 2cpρ∆TV and El = 4ac
3κρ

∆T
2`

`

v
A, (5.12)

where ∆T is the di�erence of temperature between the eddy and the surroundings, `/v is the
motion duration and all other quantities have their usual meanings. From this, it follows that

Γ = v`

6K and Γµ = v`

6Dh
, (5.13)

where the expression for Γµ was derived by replacing ∆T by ∆µ and K by Dh (Talon & Zahn,
1997).

Finally, by injecting Eq. (5.13) into Eq. (5.11) and replacing v` by x, one obtains a polynomial
inequality, easy to solve for Dtot = 2x:

x

x+K +Dh
N2
T + x

x+Dh
N2
µ +N2

Ω+δv < 0, (5.14)

where N2
Ω+δv is the slightly modi�ed epicyclic frequency which introduces the little di�erence

of velocity brought by shear turbulence:

N2
Ω+δv = 1

$3
d$4Ω2

d$ sin θ + Ric
(dv

dr

)2
. (5.15)

5.4 Mixed modes

We now turn to another kind of physical processes transporting angular momentum: waves.
Waves and modes can exchange angular momentum and energy with the mean �ow. In stellar
radiative zones, two kinds of modes have been studied: mixed-modes and internal gravity
waves (igw). Section 5.4 is devoted to mixed-modes and Section 5.5 to igw.

Mixed-modes as a mechanism of transport of am have been suggested very recently by
Belkacem et al. (2015b,a). Their modelling couples the action of non-radial mixed-modes on the
angular momentum transport equation and, a fact that is o�en neglected, on the equation of
the transport of energy. This transport mechanism is thought to have non-negligible e�ects in
subgiants and red giants stars. In these stars, mixed-modes are excited by turbulent convection.
Furthermore, their amplitudes have been measured by missions CoRoT, Kepler and tess (e.g.
Mosser et al., 2011) and have been theoretically studied (Belkacem & Samadi, 2013). I present
here the main ideas leading to the expression of the mixed-modes-induced transport of angular
momentum.
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We start from the system of equations stated at the beginning of Chapter 3: Eqs. (3.1) to
(3.3). In these equations, for clarity and to stick to Belkacem et al. (2015b)’s notations, we
gathered the non-conservative forces X and all the heating and cooling terms Q as

X = ρf + ∇ · τ , (5.16)

Q = ρ(εnuc + εvisc)−∇ · F. (5.17)

By denoting h = $uϕ = $2Ω the speci�c angular momentum, Eq. (3.2), once projected on the
azimuthal component, becomes:

∂ρh

∂t
+ ∇ · (ρhu) = ∂p

∂ϕ
− ρ∂φ

∂ϕ
+$Xϕ. (5.18)

Each of the �elds A above can be decomposed as a sum of a mean �eld A and a non-radial wave
perturbation A′, with A = 1

2π
´ 2π

0 Adϕ. In addition we make the following assumptions. First,
for low frequency waves (frequency much lower than the Brunt-Väisälä frequency), the anelastic
approximation applies and the terms in factor of ρ′ can be neglected. Secondly, the Cowling
approximation allows us to neglect the terms φ′. Hence, by injecting the �eld decomposition in
our system, by averaging along the azimuth and by doing the above-mentioned approximations,
our equations become:

∂ρ

∂t
+ ∇m · (ρum) = 0, (5.19)

ρ
∂h

∂t
+ ρ (um ·∇m)h = −∇m ·

(
$ρu′ϕu′m

)
+$Xϕ, (5.20)

ρ
∂s

∂t
+ ρ (um ·∇m) s = −∇m ·

(
$ρs′u′m

)
+Q, (5.21)

where ∇m =
(
∂/∂r, 1

r∂/∂θ, 0
)

is the gradient in the meridional plane, and um = (ur, uθ, 0) is
the meridional component of the velocity. This system is supplemented by an equation of state
giving s(p, ρ) and a fourth equation: the baroclinic equation, in order to link h and s:

ρ2∇m

(
h

$2uϕ

)
×∇m$ = −∇mρ×∇mp. (5.22)

The �ux of mean speci�c angular momentum (resp. mean speci�c entropy) carried by the
waves is: $ρu′ϕu′m (resp. $ρs′u′m). Since h and s are coupled by the baroclinic equation, the
waves can induce a meridional circulation and therefore they have an impact on the mean �ow.
In order to separate the changes on the mean �ow due to the waves and the part that is truly
a perturbation, Belkacem et al. (2015b) make use of the so-called transformed Eulerian mean
(tem) formalism. The wave heat �ux R = s′u′m is written as the sum of a vector perpendicular
to isentropics and of one parallel to them, called the skew �ux:

R = (n×R)× n︸ ︷︷ ︸
skew �ux

+(n ·R)n with n = ∇ms

|∇ms|
, (5.23)

where n is the normal vector to isentropics. In Eq. (5.20), R appears on the right hand side,
the meridional gradient acting on it. A�er few steps, one obtains

∇m · [(n×R)× n] = ũ ·∇ms with ũ = ∇m ×
∇ms×R
|∇ms|2

= ∇m × (ψeϕ), (5.24)
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where ψ is a stream function. Therefore, we see that the meridional gradient of the skew �ux
behaves like an advection of the mean entropy gradient by an additional meridional circulation
ũ. This is the contribution of the wave heat �ux to the mean �ow. This additional meridional
circulation is added to the mean �ow which can be written as

ρu† = ρu + ∇m × (ρψeϕ). (5.25)

We de�ne the �ux of speci�c angular momentum F = (Fr, Fθ) and the �ux of speci�c heat
G = (Gr, Gθ) carried by the waves as

Fr = $u′ϕu
′
r + ψ

r

∂h

∂θ
, Fθ = $u′ϕu

′
θ + ψ

r

∂h

∂r
, (5.26)

Gr = s′u′r + ψ

r

∂s

∂θ
, Gθ = $s′u′θ + ψ

r

∂s

∂r
. (5.27)

(5.28)

And by injecting Eqs. (5.24) and (5.25) into Eqs. (5.19)-(5.21), the system �nally reads

∂ρ

∂t
+ ∇m ·

(
ρu†

)
= 0, (5.29)

ρ
∂h

∂t
+ ρ

(
u† ·∇m

)
h = −∇m · (ρF) +$Xϕ, (5.30)

ρ
∂s

∂t
+ ρ

(
u† ·∇m

)
s = −∇m · (ρG) +Q. (5.31)

For the moment, no assumptions have been made as to the nature of the mode (except
low frequency). Assuming that the rotation pro�le is shellular and that isentropics nearly
superimpose with isobars, the vertical equation for the transport of angular momentum can
be written as

ρ
dr2Ω

dt = 1
r2

∂

∂r

(
r2 (FU + Fν + Fwaves)

)
. (5.32)

I recall that here, ρ = 〈ρ〉 is the density averaged over isobars, where 〈·〉 is the average over
an isobar de�ned in Eq. (1.69). The expression of FU and Fν are derived easily from Eq. (2.118),
and Belkacem et al. (2015b) derive Fwaves as:

Fwaves = ρ

〈
$

[
u′ϕu

′
r + 2 cos θΩ0u′θs

′
(d 〈s〉

dr

)−1]〉
, (5.33)

where Ω0(r) temporarily denotes Ω(r) de�ned in Eq. (1.44), so as not to mistake it with the mean
�ow notation. Belkacem et al. (2015b) provide a more detailed expression for Fwaves carried by
waves with degree ` and azimuthal number m. I do not reproduce either the relation or the
long calculation necessary to its computation. It depends on equilibrium quantities as well as
on the rotation pro�le and on the amplitudes of the displacement ξ`mr,θ or, equivalently, on the
amplitudes of velocity u`mr,θ of the waves.

As said at the beginning of this section, mixed-modes have been the subject of a lot of
observations which allowed the development of scaling relations providing, in case of low
rotation rates and in the asymptotic limit, the surface velocity of radial (` = 0) and non-radial
(` > 0) modes (Belkacem & Samadi, 2013; Belkacem et al., 2015a). The amplitude of the velocity
of radial modes at νmax is given as a power law of global quantities: Teff , νmax and ∆ν. For
a radial mode with any frequency ν, the amplitude is found assuming a Gaussian envelope of
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5.5. Internal gravity waves

the amplitudes. For non-radial modes, Belkacem et al. (2015a) found a relation between the
non-radial amplitude, the radial one and the ratio of the radial to non-radial mode inertia. In
order to implement this mechanism of transport of am in a stellar evolution code, one needs
the frequencies of each mixed-mode. Of course, the frequency spectrum could be provided by
an oscillation code, but it would lengthen the computations a lot and it would not be portable
at all. The mixed-mode frequency spectrum, at each time step, is computed using asymptotic
relations. References are provided at the end of Sect. 3.2.2.

Belkacem et al. (2015a) estimated the e�ciency of the mixed-modes-induced transport by
comparing two time-scales. The �rst one is the contraction time-scale Tc that characterizes
the time-scale on which the rotation of the star increases/decreases due to contraction/dilation.
The second one, TL, is the ratio of the angular momentum contained in the same spherical
shell in solid body rotation Ω0(r) to the �ux of angular momentum extracted from a spherical
shell of radius r per unit time. Those time-scales were computed using three stellar models of
subgiant, start of rgb and rgb, on which they supposed a rotation pro�le of the form of an erf
function. The frequency spectrum was computed using adipls (Christensen-Dalsgaard, 2008).
It must be noted that the two time-scales were computed a posteriori, i.e. assuming no coupling
between the rotation pro�le and the transport of am by mixed-modes. They found that for
the subgiant and young rgb models, TL � Tc meaning that mixed-modes are very ine�cient
to transport am. In the evolved rgb model, TL � Tc in the hydrogen-burning shell. However,
in the upper and deepest layers of the radiative region, mixed-modes become ine�cient again.
Mixed-modes are therefore an important extractor of angular momentum in very evolved stars.
Furthermore, the authors did not take into account the feedback of the mixed-modes transport
on the structure and on the mean �ow. Indeed, TL and Tc are computed a posteriori a�er
the complete evolution of the model. In the regions of the rgb model where am is e�ciently
extracted, the gradient of angular velocity should appear and induce shear induced turbulence
as well as meridional circulation which should couple the regions of the radiative zone where
mixed-modes are e�cient and ine�cient.

5.5 Internal gravity waves

5.5.1 Internal gravity waves in �uid: a simple approach

Internal gravity waves (igw) are waves which have gravity as a restoring force. These waves
are found in stars but also in the Earth’s oceans3 and atmosphere. Their study in geophysics
has preceded their study in stellar interiors. Since, in the Earth, igw have a small extent, which
usually is below the spatial resolution of meteorological simulations, their interactions with the
mean �ow cannot be simulated from �rst principles and must be treated as a prescription.
The study of such phenomena has motivated the development of wave-mean �ow interaction
theories (e.g. Bühler, 2014). Here, I want to describe the main and most interesting features of
igw.

One of the simplest models in which igw can be found is a Boussinesq system. The model
that will be developed here captures quite well the dynamics of igw in the Earth’s oceans. It is
very far from what happens in the Earth’s atmosphere or in stars but it is su�cient to reveal
the main properties of igw. In the following, we assume that the density gradients are small4

3Sea waves are surface gravity waves.
4This is why this model is adapted to oceans and not to the atmosphere. In Earth’s atmosphere, it would be a

better choice to assume that the entropy gradients are small. In the �rst case, it amounts to assuming that isobars
and isopycnals are equal, while in the second case, that isobars equal to isentropics. In reality, the Earth, as well as
rotating stars, is baroclinic and therefore, neither isopycnals nor isentropics equal isobars.
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and that no sound waves can propagate: ∇ · u = 0. Furthermore, we write the equilibrium
quantities, constant in time, with a 0 subscript. We place ourselves in a Cartesian coordinate
system with a basis (ex, ey, ez), z being the vertical coordinate. Within this framework, the
Euler equation reads

ρ

ρ0

du
dt + ∇

(
p

ρ0

)
= ρ

ρ0
g0ez, (5.34)

where all the quantities have their usual meanings and I recall that d/dt is the material derivative
∂/∂t + u ·∇. Since the density gradients are small, ρ/ρ0 is close to unity, except in factor of
gravity. We de�ne p̃ = p/ρ0 and S = ρg0/ρ0, and this equation may be written as

du
dt + ∇p̃ = Sez. (5.35)

Furthermore, the continuity equation together with the hypothesis of ∇·u = 0 gives dS/dt = 0.
The quantity S is called the strati�cation and, in this case, surfaces of iso-S are isopycnals.
Assuming that the background strati�cation S0(z) is known, new quantities can be introduced:
p = p̃ − P̃0 and S = b + S0(z), where b is denoted the buoyancy. The buoyancy b is the
perturbation of that equilibrium strati�cation S0 and a b 6= 0 induces a change in the vertical
velocity. Indeed, by using those new quantities and u = uex + vey + wez , above equation
becomes

du
dt + ∇p = bez and

db
dt +N2w = 0, (5.36)

where N2 is the Brunt-Väisälä frequency, or to stick to the denominations, usual in this kind
of models, the buoyancy frequency. The vertical motion induced by a change in the buoyancy
b is evident from last equation. The strati�cation S can also be written in an integral form:

S = b+
ˆ
N2dz. (5.37)

Assuming that N2 does not depend on z, S0(z) = N2z.
Eqs. (5.36) form the Boussinesq equations but for the moment, we did not see any waves.

To make them emerge, Eqs. (5.36) is linearised by writing all quantities as the sum of a constant
�eld and of a perturbation: x = X + x′, with x′ � X . Then

du′
dt + ∂p

∂x
= 0, dv′

dt + ∂p

∂y
= 0, (5.38)

dw′
dt + ∂p

∂z
− b′ = 0, db′

dt +N2w′ = 0, (5.39)

and the incompressibility constraint still holds: ∇·u′ = 0. Alternatively, the �rst three equations
could be written as du

dt + ∇p+ b′ = 0, with b′ = (0, 0, b′). Recalling that the vorticity is de�ned
as ω = ∇× u (see Eq. (2.5)) we take the curl of this equation and it leads to

d
dt

(
∂u′

∂y
− ∂v′

∂x

)
= 0, (5.40)

d
dt

(
∂v′

∂z
− ∂w′

∂y

)
= ∂b′

∂z
, (5.41)

d
dt

(
∂w′

∂x
− ∂u′

∂z

)
= ∂b′

∂x
. (5.42)
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Figure 5.2: Le�: Saint Andrew’s cross obtained by making vertically oscillate a cylinder in a strati�ed
�uid. The cylinder is viewed from above in the centre of this image. Credits: Mercier et al. (2008)

Finally, introducing the displacements ξ′ = (ξ′, η′, ζ ′) linked to the perturbation velocity by
dξ′/dt = u′ yields ζ ′ = N2w′ and

dω′
dt = N2ez ×∇⊥ζ ′

d2ω′

dt2 = N2ez ×∇⊥w′

d2∇2w′

dt2 = −N2∇2
⊥w
′,

d
dt

∇× and projection on ez

(5.43)

where ∇⊥ = (∂/∂x, 0, ∂/∂z) has been de�ned (Davidson, 2013) and where we used the identity
∇× (∇× u) = ∇(∇ · u)−∇2u.

We assume a plane wave shape for u′ with a wave number k = (n, `,m), and a frequency
σ. In Chapter 3, we use ω to denote the frequency. We change notations locally so as not
to confuse the frequency and the vorticity ω. With these notations, the dispersion relation is
given by

σ

(
σ2 −N2 n2 + `2

n2 + `2 +m2

)
= 0. (5.44)

One of the solutions for this equation is, of course, σ = 0. For this to be true, one must have
w′ = 0, ∇p′ = b′ez and ∂u′/∂x + ∂v′/∂y = 0. Such mode conserves the so-called potential
vorticity q (Vallis, 2006). The potential vorticity is the part of the vorticity that is frozen into
the �uid, perpendicular to the strati�cation. In our case q = (∇×u)·∇S

ρ . Such modes are called
vortical modes. On the contrary, waves with σ 6= 0, called planar internal gravity waves have
a zero potential vorticity. Due the approximation that ∇ · u′ = 0, it follows that the velocity
u′ of the �uid is always perpendicular to the wave number k, making them transverse waves.
Two solutions remain valid for the dispersion relation (5.44):

σ = ±N
√

n2 + `2

n2 + `2 +m2 . (5.45)

These two solutions are actually a prograde and a retrograde wave. They propagate in two
directions separated by an angle close to π/2 and form the famous shape of a Saint Andrew’s
cross (see Fig. 5.2). Furthermore, by adopting Einstein’s notations,

ki
∂σ

∂ki
= kicig = 0, with {ki} = (n, `,m) and cg =

(
∂σ

∂ki

)
, (5.46)
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�uid motions

k

cg

phase propagation

z

x

θ

Figure 5.3: Drawing of an internal gravity wave with phase propagating in the direction k and phase
velocity cp ‖ k, and energy propagating with group velocity cg ⊥ k. Solid blue lines represent surfaces
of higher density and the dashed lines represent the the surfaces of lower density.

where cg is the group velocity while cϕ = kσ/|k|2 is the phase velocity. Interestingly, we have
cg ⊥ cϕ, cg ⊥ k and cϕ ‖ k. This situation is illustrated Fig. 5.3 in which a igw propagates
with a wave number making an angle sin θ =

√
(n2 + `2) / (n2 + `2 +m2) with the vertical.

Following the k direction, we go from crest of high density with �uid motion perpendicular to
k in a given direction, to a crest of low density with �uid motion in the opposite direction.

Those are some striking properties of igw. Of course the Boussinesq models capture only
the essence of igw and almost nothing more. Speci�c models should be designed to �t speci�c
situations.

5.5.2 Internal gravity waves excitation models

In order to account for the e�ects of igw in the transport of angular momentum, a model
describing their excitation should be provided. Many authors have work on this problem and
developed a myriad of igw excitation models. All of them agree on the fact that igw are
excited by convective motions at the transition between convective and radiative zones. I will
describe in this section two models that assume very di�erent excitation mechanism: excitation
by Reynolds stresses (Press, 1981; Garcia Lopez & Spruit, 1991; Kumar & Quataert, 1997; Kumar
et al., 1999) and excitation by convective plumes (Pinçon et al., 2016). These two models must
not be seen as competitors because both Reynolds stress and plumes do excite igw in stellar
interiors. They are rather complementary since Reynolds stress models seems to miss part of
the contribution of low frequency waves while the plume model does not excite high frequency
igw. I will not provide a full derivation of the wave �uxes and of all of the terms they include
but I will present the main ideas and originalities of the models developed by Kumar et al.
(1999) (herea�er K99) and Pinçon et al. (2016) (herea�er P16).

First of all, one needs to de�ne the angular momentum �ux of an igw of intrinsic frequency
ω and quantum numbers ` and m., i.e. the amount of angular momentum crossing through a
unit surface. This �ux can be expressed as a function of the wave energy �ux FE per unit
frequency, and with same quantum numbers:

FA(`,m, ω; r) = mFE(`,m, ω; r)
ω

. (5.47)
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It is also very common to de�ne the angular momentum luminosity of a wave with `, m and
ω and the �ux FA integrated over a spherical surface of radius r:

LA(`,m, ω; r) = 4πr2FA(`,m, ω; r). (5.48)

Similarly, a wave energy luminosity LE can be associated the �ux FE and the angular momentum
luminosity can be written:

LA(`,m, ω; r) = mLE(`,m, ω; r)
ω

. (5.49)

If the star is adiabatic, the total angular momentum �ux (resp. luminosity) is the sum over ` and
m and integral over frequency of FA(`,m, ω; r) (resp. LA(`,m, ω; r)). It amounts to considering
that the waves do not impact the mean �ow. However, these waves experience damping as
they propagate inside the star and their total e�ect is modulated by a damping term:

FA(r) =
∑
`,m

ˆ +∞

0
FA(`,m, ω; rC) exp [−τ(ω, `,m; r)] dω, (5.50)

or

LA(r) =
∑
`,m

ˆ +∞

0
LA(`,m, ω; rC) exp [−τ(ω, `,m; r)] dω, (5.51)

where τ(ω, `,m; r) can be seen as a "optical" damping depth and rC is the radius of excitation
of internal gravity waves, or the radius from which igw can propagate without any energy
being added to it. This location can be located just below the convective zone (Kumar et al.,
1999; Pinçon et al., 2016), in the overshoot region Press (1981); Lecoanet & Quataert (2013).

The excitation models presented below provide an expression for FE(`,m, ω; r) and
τ(ω, `,m; r).

Reynold stress excitation model (Kumar et al., 1999)

The model of excitation developed by K99 is an evolution of the model designed by Press
(1981). The excitation mechanism is the same but the region in which the waves are excited
is not. In both models, igw are excited by the turbulent pressure. While in K99’s model, igw
are excited in all the convective zone and then tunneled into the radiative one, the Press (1981)
model assumes that the waves are only excited inside the overshoot region. This idea is also
developed by Lecoanet & Quataert (2013). I will only describe K99 because it is one of the
most used.

This model is based on an expression for the energy �ux FC
E (`,m, ω) per unit frequency at

the base of the convection zone derived by Goldreich et al. (1994):

FC
E (`,m, ω) = ω2

4π

ˆ rC
t

rC
b

ρ2

r2

[(
∂ξr
∂r

)2
+ `(`+ 1)

(
∂ξh

∂r

)2
]

exp
[
−h

2
ω`(`+ 1)

2r2

]
v3L4

1 + (ωτL)15/2
dr.

(5.52)

This expression was derived under the hypothesis that turbulence follows a Kolmogorov spec-
trum and ignoring the excitation of waves in the overshoot regions. The limits rC

b and rC
t

stand for the bottom and top boundary radii of the convection zone. The eigenfunctions ξr
and ξh are the radial and horizontal displacements normalized by unit of igw energy right
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below the convective zone. The displacements can be expressed using the jwkb approxima-
tion (Je�reys-Wentzel-Kramers-Brillouin). This approximation is valid when the wavelength of
the wave is much shorter than the characteristic spatial scale of variation of the equilibrium
quantities, or else that the phase should vary much faster that the amplitude of the wave
(for more detail, see Aerts et al., 2010). The quantity v is the convective velocity and L the
characteristic size of the eddies transporting energy. The duration τL ' L/v is called the con-
vective turnover time. Finally, hω(r) is the radial characteristic size of the largest eddy with
frequency ω at radius r. This model assumes that the eddies providing energy to igw follow a
Gaussian distribution with standard deviation

√
2/(hω

√
`(`+ 1)). The length hω is de�ned by

hω = Lmin
[
1, (2ωτL)−3/2

]
.

Those waves are assumed to be damped by radiation. K99 provide an expression for the
damping depth τ(ω, `,m; r):

τ(ω, `,m; r) =
ˆ rC

b

r

γ(ω?, `; r′)
vgr(ω?, `; r′)

dr′ with ω?(r) = ω +m [ΩC − Ω(r)] = ω +mδΩ, (5.53)

where γ is the damping rate (already mentioned in Eq. (3.68)), vgr ' ω2/(khN) is the group
velocity of the wave, and ω? is the well-known intrinsic frequency, but with the angular
velocity measured with respect to the angular velocity at the base of the convective zone ΩC.
The damping rate is expressed by

γ(ω, `,m; r) ' Kk2
r with K = 16σT 3

3ρ2κcp
' 2FrHT

5p , (5.54)

where K is the thermal di�usivity, already de�ned and used in Eq. (1.16), kr ' khN/ω is the
radial wave number, Fr is the radiative �ux and HT the temperature scale height, also de�ned
in Eq. (2.99).

Convective plume excitation model (Pinçon et al., 2016)

As stressed by K99, the two dominant processes of igw excitation in stellar interiors are the
Reynold stresses and the convective plumes, with the last one thought by the authors to be
the most important. However, because of the poor models of plumes available (at that time),
they focused only on excitation by Reynolds stresses. The study of convective penetration has
been the subject of numerical (e.g. Dintrans et al., 2005; Rogers & Glatzmaier, 2006; Alvan
et al., 2014) and theoretical studies, especially models of plumes (Rieutord & Zahn, 1995).

The model of Pinçon et al. (2016) assumes that, N plumes per unit time penetrate into the
radiative zone, exciting waves. Each plume is located at latitude and azimuth (θi, ϕi) (see Fig.
5.4, le� panel), and, assuming that N is su�ciently large, the mean radial wave energy �ux is
given by:

FE(ω, `,m; r) = NẼ`m(ω; r)vgr(ω, `; r), (5.55)

with

Ẽ`m(ω; r) = νP

8π2 ρ

ˆ
Ω0

{
|v̂r,`m|2 + `(`+ 1)|v̂h,`m|2

} dΩ0

4π , (5.56)

where Ẽ`m(ω; r) is the average energy injected by a plume into the component of a wave with
quantum numbers ` and m and frequency ω. The functions v̂r,`m and v̂h,`m are the radial
and horizontal components of the Fourier transform of the wave velocity �eld. The quantity
Ω0 is the solid angle. The term νP = 1/τP is the inverse of the characteristic plume lifetime
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b

Convective zone θ0, ϕ0

Vb

V0

VP(r)

Sh
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Figure 5.4: Le�: Drawing of plumes inside stars. Each plumes is characterized by its latitude and azimuth
of emission (θi, ϕi). Credits: Pinçon et al. (2016). Right: Schematic view of a plume at angular location
(θ0, ϕ0), central velocity V0, plume velocity �eld VP(r) = V0e

−S2
h/2b

2
e−t

2/τ2
Per , characteristic radius b,

the penetration length LP and initial vertical velocity Vb. The dashed line is the axis of symmetry of
the plume.

τP. Finally, vgr(ω, `; r) is the radial component of the group velocity which has the following
expression (P16):

vgr(ω, `; r) = ω2

N2
(N2 − ω2)1/2

kh
with kh =

√
`(`+ 1)
r

. (5.57)

In order to be able to compute the various unknowns introduced above, this model needs to
be supplemented by a geometrical description of a plume (Rieutord & Zahn, 1995). Fig. 5.4,
right panel, represents a schematic view of a plume. Inside a plume located at angles θ0 and
ϕ0, the velocity �eld is assumed to have a Gaussian shape in the horizontal direction and in
time:

VP(r) = V0(r)e−S2
h/2b

2
e−t

2/τ2
Per, (5.58)

where

• Sh is the distance on a sphere of radius r to the axis of symmetry of the plume:

Sh(r; θ0, ϕ0) = r arccos [sin θ0 sin θ cos(ϕ− ϕ0) + cos θ cos θ0] . (5.59)
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• V0 is the vertical convective plume velocity:

V0(z) = Vb

[
1−

(
z

LP

)2
]1/3

with Vb =
( 8F1,P

πρbb2

)1/3

, (5.60)

where z = rb− r the distance between the base of the convective zone rb and the radius
r, Vb is the initial velocity of the plume at the base of the convective zone, LP is the
penetration distance of the plume (P16 estimated it to be around 0.1Hp, given the lack of
consensus on its value), F1,P is the sum of the kinetic and enthalpic luminosities carried
by the plume and ρb its density. The authors propose to write NF1,P ' LA, where L is
the star luminosity and A = N b2/4r2

b is the �lling factor, i.e. fraction occupied by plumes
at the base of the convective zone. Using this expression, Vb simpli�es to

Vb =
(

2L
πρbr2

b

)1/3

. (5.61)

• b is the plume radius at the bottom of the convective zone:

b = z0√
2

3αE(Γ1 − 1)
2Γ1 − 1 , (5.62)

with z0 the thickness of the convective zone and αE is the entrainment coe�cient5. The
entrainment coe�cient αEρbbVb can be seen as the amount of matter that is swept away
by the plume (Rieutord & Zahn, 1995).

• τP is the lifetime of the plume. In order to estimate it, one must �nd a damping mechanism
for the plume (not to be mistaken with the damping mechanism of the excited waves).
P16 suggest three mechanisms:

– Radiative thermalization: it is the destruction of the plume due to the radiative
thermal di�usion. They �nd it to be highly ine�cient because it operates on time-
scales much longer than the dynamical time-scale LP/Vb ' 104 s of the propagation
of the plume;

– Turbulence inside the plume: in the description of the plume, it is assumed that the
�ow is laminar, while in reality it is turbulent. The turbulence destroys the plume in
a few turnovers, i.e. on a turbulence time-scale tturb ' b/Vb. This time-scale is one
order of magnitude higher than the dynamical time-scale scale but much shorter
than the radiative thermalization time-scale.

– The last mechanism suggested by P16 is the restrati�cation by lateral baroclinic
eddies that was �rst suggested in oceanic physics. When the convective plume pen-
etrates into the radiative region, the density gradient between them drives baroclinic
instabilities taking the form of lateral eddies mixing the material of both regions. The
restrati�cation time-scale is hard to evaluate but can be estimated around two or
three orders of magnitude higher than the dynamical time-scale.

Without any better prescription, the author took τP ∈ [105 −−107] s in case of the Sun.

5The word "entrainment" used in Rieutord & Zahn (1995) seems not to be part of any English dictionary. It is the
direct translation of the same French word which, for the English reader, could be translated as "driving coe�cient".
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5.5. Internal gravity waves

The plumes are supposed to penetrate on a distance LP where the Brunt-Väisälä frequency
is nearly zero. Then the plume stops and igw are excited. They �rst propagate in a transition
region of size d in which the Brunt-Väisälä frequency goes from nearly 0 to a nearly constant
value N2

0 , and then in the radiative zone. The bottom radius of the transition region (therefore
the radius at which we enter the radiative region) is rd = rb−LP− d. In the transition region,
the velocity of the plume is much lower than Vb. A�er some mathematical manipulations, P16
arrive at an expression of the energy �ux of the form:

FE(ω, `,m; r) = f(γd)N4

√
`(`+ 1)
4πr2

(N2
0 − ω2)1/2

N2
0

e−ω
2/4ν2

P

νP
B`H2

` . (5.63)

The new terms have the following signi�cation:

• f(γd) is a transmission function that characterizes the smoothness of the transition (γd �
1: very sharp; γd � 1: very smooth). The function f is given by

f(x) =
{

1 if x < 1
D
√
x
(
1− ω2

N2
0

)
if x > 1 (D ' 3.7) . (5.64)

and γd by

γd =
(
khdN0

ω

)2/3 N2
0 − ω2

N2
0

' (krd)2/3. (5.65)

• e−ω
2/4ν2

P/νP is the temporal correlation term. A longer plume lifetime causes the energy
to be transferred to higher frequency waves.

• The horizontal spatial wave/plume correlation is expressed as

βm` (θ0, ϕ0) =
ˆ

Ω
exp

(
−S

2
h
b2

)
Y m
` dΩ, (5.66)

with Y m
` the Fourier transform of the spherical harmonics. The function B` is the average

of βm` over angular position (θ0, ϕ0) of a plume:

B` = 1
4π

ˆ
Ω0

|βm` |2dΩ0. (5.67)

• Finally, H` is coined the wave driving term and is expressed by

H` =
ˆ rb

rb−LP

dρV 2
0

dr ρ−
1/2r

1/2

(
rb − LP

r

)√`(`+1)
dr. (5.68)

The quantity H` is the power injected into a wave per unit time.

The expression for the energy �ux FE can be further simpli�ed as explained in P16. It
remains to provide an expression for the damping depth and the author follow the work done
by Press (1981) and use

τ(ω?, `; r) = [`(`+ 1)]3/2
ˆ rd

r

K
N3

ω4
?

(
N2

N2 − ω2
?

)1/2 dr
r3 , (5.69)

where ω? has the same de�nition as in Eq. (5.53).
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Figure 5.5: Le�: Mean radial energy per unit frequency at rd as function of the wave frequency in a solar
model, for three di�erent order ` for K99’s model (dashed lines) and P16’s model (solid lines). Credits:
Pinçon et al. (2016). Right: igw spin-down characteristic time-scale as a function of the normalized radius
for a low di�erential rotation δΩ = 0.15×10−6 rad s−1 (dashed lines) and a stronger one δΩ = 10−6 rad s−1

(solid lines). Credits: Pinçon et al. (2016).

E�ciency of internal gravity waves excitation and associated transport

Pinçon et al. (2016) performed an extensive testing of their model and the impact of the
various parameters, especially the impact of di�erent pro�les for the transition region. They
compared the e�ciency of their model of igw excitation in transporting angular momentum
against the one K99, but also compared it to the one developed by Press (1981) and Lecoanet
& Quataert (2013). Press (1981); Kumar et al. (1999); Lecoanet & Quataert (2013) produce quite
similar mean radial energy �uxes, therefore I will only describe the di�erences for K99 and
P16. In Fig. 5.5 is represented the mean radial energy per unit frequency computed for K99
and P16 in a solar model. K99 predicts a higher energy �ux in waves with ω < 10−6 rad s−1

than P16, then P16 predicts that plume are much more e�cient in exciting waves in the range
1.5× 10−6 rad s−1ω < 5.5× 10−6 rad s−1, and then the Reynolds stress becomes more e�cient
again. Of course, this result depends on the values of the chosen parameters, especially the
value of LP that changes the wave amplitude and τP that changes the frequency range of excited
waves. This �gure also supports the fact that these two models are complementary because
they do not excite preferentially the same range of frequency.

P16 also studied the e�ciency of the transport of angular momentum by igw by comparing
the spin-down time-scale already de�ned in Sect. 5.4. Their results for a present-day solar
model are shown in Fig. 5.5, right panel, for K99 and P16 models and for two di�erential
rotations. This time, it accounts for the energy �ux integrated on all the frequency range and
summed for all degree ` (in this case the development is stopped at ` = 50) and azimuthal
number m. This �gure shows that the turbulent-related spin-down time-scale TK99

L is always
almost 10 time higher than the plume-related one TP16

L . It suggest that the plume excitation
mechanism is more e�cient than the turbulent one, as already expected by Kumar et al.
(1999). However, some caveats must be raised. First of all, plumes are not present in all
stellar convective zones, but only in the one with large Péclet numbers, i.e. where radiative
thermalization is ine�cient. In such regions, the turbulent excitation must be more important.
Furthermore, in the case of the Sun, TP16

L ' 0.1TK99
L meaning that the turbulent excitation

mechanism is less e�cient than the plume, but still it contributes to around 10% of it, which
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5.5. Internal gravity waves

makes it non negligible. The results presented in Fig. 5.5, right panel, show that the stronger
the rotation gradient, the more e�cient the igw are in extracting angular momentum. The
spin-down time is of the order of 100 Myr for plumes in case of small di�erential rotation and
of 10000 yr in the case of a strong one.

The interactions between the two excitation mechanisms should also be studied. Indeed,
the plumes are supposed to stay coherent before vanishing into the radiative medium. In reality
they are turbulent and the e�ect of the turbulence of the plumes on the excitation of igw may
also be included into the Reynolds stresses description. One must also point one of the limits
of the testing presented above. The angular momentum �ux is computed a posteriori on the
model, i.e. igw had no feedback on the stellar-structure and on the rotation pro�le. igw are
known to produce the so-called shear layer oscillations (slo; equivalent to the quasi-biennal
oscillation on Earth), which are caused by the local depositing of am by igw. It produces
a strong and very localized gradient of angular velocity which oscillates on a small extent
with a period of a few years. This slo has the main e�ect of �ltering out igw and therefore
reducing the amount of am deposited below or above the location of the slo. This e�ect
is very complicated to implement in stellar evolution codes because it acts on a very small
time-scale, much shorter that the nuclear or contraction time-scales (e.g. Talon & Charbonnel,
2003). Finally, the e�ect of the Coriolis force on the propagation of the plume must also be
taken into account as the Coriolis force deforms the trajectory of the plumes. This work is
already ongoing.
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Chapter 6

Implementation of the 2D rotation
modelling in cestam

Il ne faut pas courir. Il faut marcher sans impatience en
comptant le nombre de ses pas. Si on ne se trompe pas,
si on tourne à gauche au moment voulu, on ne touchera
pas de ses bras étendus l’arbre à miel et collant. Il faut à
se stade de la marche interrompre les calculs et repartir
à zéro. Si on ne se trompe pas dans les calculs, si on
saute à pieds joints au moment voulu, on ne tombera pas
dans la fosse aux serpents. A ce stade de la marche, il
faut interrompre les calculs et repartir à zéro. Si on ne se
trompe pas dans les calculs, si on se baisse au moment
voulu, on ne sera pas happé par le piège à mâchoires. A
ce stade de la marche, il faut interrompre les calculs et
repartir à zéro. Si on ne se trompe pas dans les calculs
et si on crie Sara Magre au moment voulu, on tombera
dans les bras de l’incomparable, de la gigantesque, de la
savante Sara.

Monique Wittig, Les guérillères
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The stellar evolution code cesam (Code d’Evolution Stellaire Adaptatif et Modulaire) has been
developed �rst by Berthomieu et al. (1993); Morel (1997) based on earlier codes with the aim
of modelling the evolution of the Sun, from its arrival on the main sequence1 to its present
age. cesam was �rst written in fortran77 and aggregated many other codes to perform the
interpolation of the Equation of State tables, opacity, etc. At the turn of the millennium, the
code was modernized and rewritten in Fortran95 and renamed cesam2k (Morel & Lebreton,
2008). Later it was also redesigned by Marques et al. (2013) to include a description of rotation
in 1D and renamed cestam (Code d’Evolution Stellaire, avec Transport, Adaptatif et Modulaire).
During its almost three decades of life, cestam has been a framework to test many models on
various aspects of stellar evolution. The user can choose between many models of convection,
prescriptions of angular momentum loss by winds, atmospheric models, coe�cients of shear-
induced turbulence, etc, as well as more curious models, for instance falls of planetoids. In the
following, I will always use cestam, either to speak about the 1D version or the 2D one.

I explain in a �rst section how cestam works, numerically speaking: in what order compu-
tations are executed, what numerical methods are used, etc. Then I enter into the details of the
work of code development that I have done during my PhD. The 2nd section is devoted to the
algorithm performing the deformation of a rotating-model (Roxburgh, 2004, 2006) and then I
describe the computation of the meridional circulation and of the angular velocity pro�le. All
along this chapter, I am going to focus on some points of details that are never addressed in
the literature, while they require some care.

6.1 How cestam works

6.1.1 Main numerical methods used in cestam

The vast majority of stellar evolution codes rely on �nite element schemes to solve the stellar-
structure equations. With these schemes, the star is divided into layers and k-th order deriva-
tives are approximated using the values of each quantities at the faces of the nearest layers.
Those methods are very fast, very well tested and simple. However, they provide solutions
only at the faces of each layer and not between them. Furthermore, during stellar evolution,
the mesh frequently needs to be adapted in order to resolve regions with strong gradients.
The re-meshing is complicated by the fact that the solutions are only known at a few discrete
points. cestam follows a di�erent path. In cestam, solutions are represented by a linear combi-
nation of B-Splines (Schumaker, 2007). The B-Splines form an orthogonal basis of piecewise
continuous polynomials. Representing the solution of an equation as a linear combination of
B-Splines provides an (approximate) knowledge of this quantity everywhere, by only knowing
the exact solution at the collocation points. Another advantage is that a di�erent mesh for
di�erent systems of equations can be used. For instance, the masses at which the structure
equations are solved are not the same as the ones on which the equations for the transport of
chemical are solved. It can also be the case for the transport of angular momentum.

1
zams: Zero Age Main Sequence
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Grid point allocation

As said in Chapter 1, the mass enclosed in a spherical shell of radius r plays the role of our
independent variable. Each spherical shell is then labelled by a mass mk. Hence, how should
we choose them? We want to increase the resolution where the gradients of the signi�cant
quantities are strong. Therefore, the masses should be chosen so that these gradients are
minimized, or at least so that they stay below a certain threshold. To that end, we introduce
a quantity Q called the spacing function. It is a quantity that must been de�ned so that, at a
given time step, the variation of Q between two consecutive masses mk of layers k is constant:

Q(mk+1, t)−Q(mk) = dQ
dq

∣∣∣∣
t

≡ ψ(t) = cst and
d2Q

dq2

∣∣∣∣∣
t

= 0, (6.1)

where q is called the index function and takes integer values at each layer, from 1 to n, if n is the
total number of layers. These integers also nicely correspond to the indices of Fortran’s arrays.
The quantity ψ becomes a sixth independent quantity added to the �ve others: p, T, L, r and
m, dependent on the variable q. The de�nition of ψ can be written as a function of the mass:

dQ
dq

∣∣∣∣
t

= dQ
dm

∣∣∣∣
t

dm
dq

∣∣∣∣
t

= θ(t) dm
dq

∣∣∣∣
t

= ψ(t). (6.2)

It must be noted that, of course, θ(t) and ψ(t) have, nothing to do with, respectively, the colat-
itude and the gravito-centrifugal quasi-potential de�ned in Chapter 1. We now �nd ourselves
with two more di�erential equations that are to be added to the four structure equations.

dm
dq = ψ

θ
and

dψ
dq = 0. (6.3)

Equations (6.3) are complemented by boundary conditions: at q = 1, m = 0 and at q = n,
m = M?.

We still need a de�nition for the spacing function Q. Strictly speaking, Q is de�ned as
follow:

Q(m, t) = p

∆p + T

∆T + L

∆L + r

∆r + m

∆m, (6.4)

where the operator ∆ is de�ned as ∆f ≡ f(n) − f(1). The terms ∆f are called repartition
factors and are weighting the importance of each quantity. With this choice, we see that
Q(mk+1, t) − Q(mk) is the sum of the normalized gradients of each independent variables. If
no quantity is to be favoured over the others, Eq. (6.4) can be used. However, years of use of
cestam have shown that a simpler expression of Q may be used: Q = ap + bm, with a ' −1
and b ' 15. They can be tweaked to meet more rigorous resolution requirements.

6.1.2 Dimensionless quantities

In cestam, the physical quantities are expressed in terms of dimensionless variables, of order
1, in order to improve �oating-point precision. These dimensionless variables are ξ = ln p,
η = lnT , λ = (L/L�)a, ζ = (r/R�)2 and ν = (m/M�)2/3. The power a on the luminosity is
either 2/3 or 1. Powers 2/3 have been chosen in order to avoid problems of derivability near
the centre, but we now use a = 1. In terms of these dimensionless variables, the structure
equation system reads (accounting for the 2D modi�cations):

∂ξ

∂q
= −3G

8π

(
M�
R2
�

)2 (
ν

ζ

)2
exp(−ξ)fp

ψ

θ
,
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∂η

∂q
= ∂ξ

∂q
min

(
∇ad,∇rad

fT
fp

)
,

∂ζ

∂q
= 3

4π
M�
R3
�

(
ν

ζ

)1/2 1
ρ

ψ

θ
,

(a = 1) ∂λ

∂q
= M�ν

1/2

L�λ
1/2

(
ε− ∂U

∂t
+ exp ξ

ρ2
∂ρ

∂t

)
ψ

θ
= M�ν

1/2

L�λ
1/2

Λψ
θ
,

(a = 2/3) ∂λ

∂q
= 3

2
M�ν

1/2

L�

(
ε− ∂U

∂t
+ exp ξ

ρ2
∂ρ

∂t

)
ψ

θ
= 3

2
M�ν

1/2

L�
Λψ
θ
,

∂ν

∂q
= ψ

θ
,

∂ψ

∂q
= 0. (6.5)

I gave here the system incorporating the rotation-induced modi�cations, highlighted in blue.
Removing the blue parts allows us to retrieve the "standard" system.

6.1.3 Collocation method

Let us rewrite the above system of �rst order ordinary di�erential equations in a more compact
way. By denoting y = (y1, y2, y3, y4, y5, y6) = (ξ, η, ζ, λ, ν, ψ) our unknowns, system (6.5) may
be written on the form:

E(q; y,y′) = dy
dq − g(q,y) = 0 with q ∈ [q1, qn], (6.6)

with g a suitable vector of functions representing the di�erential system.
The quantities to be minimized are therefore (keeping only a = 1 for simplicity):

E1 = ∂y1

∂q
− −3G

8π

(
M�
R2
�

)2 (
y5

y3

)2
exp(−y1)fp

y6

θ
= 0,

E2 = ∂y2

∂q
− ∂y1

∂q
min

(
∇ad,∇rad

fT
fp

)
= 0,

E3 = ∂y3

∂q
− 3

4π
M�
R3
�

(
y5

y3

)1/2 1
ρ

y6

θ
= 0,

E4 = ∂y4

∂q
− M�y

1/2
5

L�y
1/2
4

Λy6

θ
= 0,

E5 = ∂y5

∂q
− y6

θ
= 0,

E6 = ∂y6

∂q
= 0. (6.7)

And we look for Ei = 0, ∀i ∈ J1; 6K. This system is also supplemented with a set of bottom and
top boundary conditions Eb(q1,y) and Et(qn,y).

This system can be solve using a pseudo-spectral method called the collocation method
(e.g De Boor, 2001). Unknowns {yi}ne

i=1, with ne the number of unknowns (ne = 6 in the
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above system) will be decomposed as a linear combination of B-Splines. Let {qi}ni=0 be a set
of abscissa that verify the condition a = q0 < q1 · · · < qn = b with a and b the limits of the
interval on which system (6.6) is to be solved. We denote {Nm

i }Mi=1 the basis of B-Splines of
the vector space of dimension M of all the piecewise polynomials of order2 m that match at
{qi}n−1

i=1 . Important properties of B-Splines are:

• B-Splines have a closed support;

• They are always positive or zero;

• At each point, there exists at most m non-zero B-Splines;

• The derivative of the B-Splines of order m is a linear combination of B-Splines of order
m− 1.

Any unknown yi of system (6.6) can be decomposed as:

yi(q) =
M∑
j=1

yijN
m
j (q) and y′i(q) = dyi

dq =
M∑
j=1

yij
dNm

j

dq . (6.8)

Finally, let us de�ne J = J1;neK, and B ⊆ J (resp. T = CJB, with CJB the complementary
of B in J ) is the set of indices of the unknowns for which a bottom (resp. top) boundary
condition is provided.

We found ourselves with a set of equations of the form:

• At the bottom: Eb
i , with i ∈ B is

Eb
i

 M∑
j=1

y1,jN
m
j (q1); . . . ;

M∑
j=1

yne,jN
m
j (q1)

 = 0; (6.9)

• At the top: Et
i , with i ∈ T is

Et
i

 M∑
j=1

y1,jN
m
j (qn); . . . ;

M∑
j=1

yne,jN
m
j (qn)

 = 0; (6.10)

• Elsewhere (q ∈ [q1; qn]), for i ∈ J ,

Ei

q; M∑
j=1

y1,jN
m
j ; . . . ;

M∑
j=1

yne,jN
m
j ;

M∑
j=1

y1,j
dNm

j

dq ; . . . ;
M∑
j=1

yne,j

dNm
j

dq

 = 0. (6.11)

This time, we are looking for the coe�cients yi,j .
On M − 1 well chosen collocation points (using Gauss-Legendre quadrature) ck ∈]q1, qn[

(see De Boor, 2001, for details), the coe�cients yi,j are found using an iterative method: the
Newton-Raphson method. The solution, at a given iteration p ≥ 0, is estimated by :

• At the bottom: ∀i ∈ B,

Eb
i

 M∑
j=1

yp1,jN
m
j (q1); . . . ;

M∑
j=1

ypne,j
Nm
j (q1)

 =
ne∑
l=1

M∑
j=1

∂Eb
i

∂yl
Nm
j (q1)dyplj ; (6.12)

2We recall that the order of a polynomial is its degree minus unity.
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• At the top: ∀i ∈ T ,

Et
i

 M∑
j=1

yp1,jN
m
j (qn); . . . ;

M∑
j=1

ypne,j
Nm
j (qn)

 =
ne∑
l=1

M∑
j=1

∂Et
i

∂yl
Nm
j (qn)dyplj ; (6.13)

• Elsewhere, ∀j ∈ J , ∀k ∈ J1;M − 1K,

Ei

ck; M∑
j=1

yp1,jN
m
j (ck); . . . ;

M∑
j=1

ypne,j
Nm
j (ck);

M∑
j=1

yp1,j
dNm

j

dq (ck); . . . ;
M∑
j=1

ypne,j

dNm
j

dq (ck)


=

ne∑
l=1

M∑
j=1

(
∂Ei
∂yl

Nm
j (ck) + ∂Ei

∂y′l

dNm
j

dq (ck)
)

dyplj . (6.14)

The quantities dyplj are small corrections to the coe�cients yplj and they are our unknowns.
With the value of dyplj , we can determine the value of ylj at next iteration:

yp+1
lj = yplj − dyplj ; ∀l ∈ J1;neK ,∀j ∈ J1;MK . (6.15)

The collocation method o�er the advantage of superconvergence. Indeed, instead of reaching a
precision of order m, the collocation method, by choosing the point in a judicious way, reaches
a precision of order 2m.

6.1.4 The General �owchart of cestam

The general path followed by cestam to compute the evolution during one time step is sum-
marized in Fig. 6.1. At the end of the computation at a given time t, a new time step ∆t is
estimated. During the computation of the next time step t + ∆t, cestam will use some quan-
tities that have been computed using the previous structure. Such quantities are the factors
fp, fT and fd (de�ned in Eq. (1.75)), the radii of isobars, the meridional circulation pro�le, etc.
Concerning factors fp, fT and fd, this approximation is justi�ed because their values are close
to one, even for a high rotation rate, and they do not change much between two consecutive
time steps. Concerning the radii r(p, θ) of an isobar, it can be written:

r(p, θ) = r(p) +
∑
`

r̃`(p)P`(cos θ). (6.16)

The value of r(p) depends a lot on the new quasi-static structure, and indeed, it is an unknown
of the system of structure equations. Therefore, r(p) is not taken from previous time step.
However, the terms r̃`(p) will not change much. Thus, until its new determination (at point 6. in
Fig 6.1), rt+∆t(p, θ) ' rt+∆t(p) +

∑
` r̃

t
`(p)P`(cos θ). Finally, the most questionable approximation

is the one on the meridional circulation pro�le. The pro�le of meridional circulation from
the previous time step is used for computing the transport of chemicals. During the main
sequence this simpli�cation does not lead to large inconsistencies because the star’s properties
vary slowly. However, during the pms or evolved phases, it could lead to rather important
modi�cations of the stellar-structure. This last point should be studied in more detail in a
future work.

Then cestam goes to the evolution of the chemical composition, that incorporates evolution
due to nuclear reactions, convection and di�usion by shear-induced turbulence. In parallel of
my work, Morgan Deal (e.g. Deal et al., 2020) is working on the implementation of microscopic
and radiative di�usion in cestam. These non-standard processes can also be integrated into
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0. At time t+ ∆t

1. First guess: stellar-structure at time t

1D quantities as well as fp, fT , radii of isobars, 2D rota-
tion rates, ...

2. Find limit CZ/RZ

Find the limits between radiative and convective zones
using previous quasi-static structure.

3. Computation of rotation pro-
�le and meridional circulation

Find new rotation pro�le with previous quasi-static
structure. Rotation pro�le can be computed in 1D or 2D.
→ Depending on the description, U` and Ω` are known.

convergence ?

4. Evolution of chemical composition

Chemical composition evolution with/without di�usion,
nuclear reactions.

convergence ?

5. Compute new quasi-static structure

Find solution of structure equations at t + ∆t with pre-
vious rotation pro�le. Coe�cients fp and fT are taken
from point 1.
→ p, T, L, r,m and ψ are known.

convergence ?

6. Compute 2D geometry of the model

Compute the radius of isobars, the density on isobars,
the e�ective gravity on the whole surface. Compute fp,
fT , and various average quantities.

7. Next time step

no

yes

yes

no

If no
convergence
was possible,
∆t is reduced:

∆t = ∆t
2

yes

no

Figure 6.1: Schematic representation of the steps followed by cestam during the computation of a time
step.
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the modelling. If the computation of the chemical composition does not converge, the time
step is divided by two and we restart from last time step. Otherwise, with the chemical
composition known at time t+ ∆t, cestam looks to precisely determine the junctions between
the radiative and convective zones by studying Schwarzschild’s criterion (or Ledoux’s) using
dichotomy method3. If needed, more layers can be added or removed in order to preserve the
desired resolution and so that the limits of the zones fall exactly on grid points. If the grid
changes, so does the spacing function and hence the B-Splines basis on which quantities are
interpolated. Sometimes, convective zones can be found near the centre or near the surface
or somewhere in the star, but with too short an extent. Those spurious zones are eliminated.

With properly determined limits, structure equations (6.7) are solved using the collocation
method described above. Again, if it does not converge (convergence is reached when the
correction applied to the solutions goes below a certain threshold), the time step is divided by
two, otherwise cestam goes to the next step. The non-convergence criterion is manifold: the
number of iterations exceeds a prede�ned value, the correction between two consecutive time
steps is too high, the break-up velocity was reached somewhere inside the star, etc. The next
step is the solving of angular momentum transport equations and of meridional circulation.
Section 6.3 describes how I implemented it for the 2D case. Upon convergence, we proceed
the same as before. And we �nally arrive at the point where the quasi-static structure and
the rotation pro�le are known. The model can be deformed in order to compute fp, fT , etc.
needed for the next time step. The deformation is described in Section 6.2.

6.1.5 ester: another code for the stellar rotation in 2D

ester (Evolution STEllaire en Rotation) is a 2D code that initially simulated the steady state of
fully radiative stars (Espinosa Lara & Rieutord, 2007, 2013) and then was improved to provide
a modelling of convection zones (Rieutord et al., 2016). It relies on spectral methods to solve
1st principle equations: Poisson equation, conservation of mass, momentum and energy, and
an equation of state. The scalars and vectors are decomposed on spherical harmonics for
the angular parts and on Tchebyshev polynomials for the radial one, using a multi-domain
approach. Each of the equations to be solved are projected onto them. The convection zones
are modelled assuming that the entropy is constant everywhere in them: ∇s = 0. The
approximation is valid almost everywhere (it actually supports the mlt modelling), except at
the surface (where we have seen that the modelling of convection needs re�nement). Until
recently, ester was not capable of simulating stellar evolution. Gagnier et al. (2019) recently
implemented a simpli�ed temporal evolution into ester that assumes small variations, i.e.
evolution along the main sequence only. The chemical composition is evolved by computing
the hydrogen mass fraction X change due to PP-chain between two time steps. This change is
expressed as

∂X

∂t
= −4mp

Q
Lcore

Mcore
, (6.18)

3Gabriel et al. (2014) have shown that the only proper way to de�ne the boundary of a convective zone (in the
MLT framework) is that, at this location, the following conditions are met:{ Frad = F,

vr = 0,
∇rad = ∇ad,

(6.17)

where Frad is the radiative �ux, F is the total �ux and vr is the radial component of the convective velocity. This
condition is currently being implemented into cestam.
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where Q is the energy released by the fusion of four protons into a helium nucleus, mp is the
mass of a proton, Lcore is the Luminosity at the boundary of the core convection zone and
Mcore its mass. They proceed as follow: a steady model of the star is computed in 2D at
a given time, the change of X a�er a given duration ∆T is computed, a new steady model
with the new chemical composition is computed, etc. This approach is considered valid if
the time-scales of dynamical processes (Eddington-Sweet and Kelvin-Helmholtz time-scales;
see Eq. (2.12)) are small compare to the time scales of evolution (nuclear and mass-loss time-
scales). Comparisons with non-rotating model of the time needed for hydrogen to entirely
fuse in the core was performed with the Geneva 1D stellar evolution code (Eggenberger et al.,
2008). ester overestimated this time by 20% (> 10 Gyr instead of 8 Gyr for the Geneva
model), which is quite large.

6.2 The deformation of a 1D cestam model

6.2.1 Isobaric mesh and initialization

The deformation of a 1D spherical model into a 2D spheroidal one necessitates adding an angular
mesh to the radial one. The former is �xed, i.e. the number of angular sectors is and their
locations do not change overtime (except for one, as we will see in Sect. 6.2.3). Let us de�ne
two systems of coordinates. The �rst system, herea�er referred to as the spherical (coordinate)
system, is the union of an angular mesh in which each angular sector has colatitude θj and of
a radial mesh in which each layer has a radius ri. The radial mesh may not be evenly spaced,
whereas the angular mesh is never evenly spaced, as we will see shortly. The second system,
herea�er referred to as the isobaric (coordinate) system, is the union of the same angular mesh
and of the radius rpi(θj) of isobars. The construction of this isobaric system will be described
later. In the following, nθ denotes the number of angles in the angular mesh and N1D

r (resp.
N2D
r ) denotes the number of layers in the initial 1D model (resp. in the new 2D model).

How must we choose the angles? Remember that we want, at the end, to evaluate integrals
over spheroidal surfaces. Indeed the deformation of a 1D model must provide averages of some
quantities needed to compute fp, fT , etc., such as 〈geff〉,

〈
g−1

eff

〉
, etc. A naive approach would

be to pick angles evenly. In this case, the integral of a function f between 0 and π can be
expressed using the trapezoidal rule:

ˆ π

0
f(θ)dθ = 1

2

nθ∑
k=2

∆θi(fi + fi−1) + Etrpz
nθ

. (6.19)

The angles θi are evenly spaced angles between 0 and π, with θ1 = 0, θnθ = π and ∀i ∈
J2;nθK, θi − θi−1 = ∆θi. The values fi = f(θi) and Etrpz(nθ) = O(n−3

θ ) are the error committed
on approximating the integral. It decreases linearly with nθ as nθ increases. Can the abscissa
be chosen in a way that the error decreases faster ? Gauss found a way to do so (Gauss,
1814). If one assumes that f can be decomposed on Legendre polynomials, which is our case,
the Gauss-Legendre quadrature provides a method to calculate a set of angles {θi}nθ1 and of
weights {wi}nθ1 so that

ˆ π

0
f(θ)dθ =

nθ∑
k=1

wifi + EGL
nθ
, (6.20)

and EGL
nθ

= O(f (2nθ)(ξ)/(2nθ)!), with ξ ∈ [0, π].
Our angular mesh is therefore composed of nθ angles θj , each of them a�ected by a weight

wj given by Gauss-Legendre quadrature. Angles θj ∈]0, π2 [ because, for symmetry reasons, the
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Figure 6.2: Representation of spherical mesh (green and grey) and spheroidal mesh (blue and grey), for an
arbitrary deformation. The grey lines are plotted at angles determined by a Gauss-Legendre quadrature
for 32 points. The red line corresponds to the characteristic angle θm such that P2(cos θm) = 0. The
purple lines correspond to the angles at θ = 0 and θ = π/2.

quarter of a meridional cross-section su�ces to retrieve the whole solution in 2D. This set of
angles does not contain:

• θ = π/2 and θ = 0. Knowing the value of any quantity at these points would ensure
continuity of the solution between each quarter.

• θm such that P2(cos θm) = 0 → θm = arccos(1/
√

3). This angle is the intersection angle
between spherical and isobaric systems (when only P0 and P2 are taken into account). In
the following, any quantity X along θ = θm is written X(r, θm) = Xm(r) = X(r).

In cestam, these angles are added to the angular mesh with a null weight so that the value of
the Gauss-Legendre quadrature is not a�ected. For this reason I call them ghost angles. The
�nal mesh then includes Nθ = nθ + 3 angles (see Fig. 6.2).

Let us denote R? the radius of the 1D model. The new radial mesh has a radius of Rmax =
2R?. From 0 to R?, the layers are positioned at the same radii as for the 1D model. Above R?,
the layers are evenly spaced, with a radial spacing of dr = R?/N

1D
r . The new radial coordinates
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go from 0 to 2Rmax with N2D
r = 2N1D

r + 1 layers. Adopting such a radial mesh amounts to
plunging the star into a spherical void with twice the radius of the star. The initial guess for
the deformation is obtained by interpolating all the 1D quantities obtained in point 4. of Fig.
6.1. For instance, the �rst guess of the density is{

ρ(ri, θj) = ρ(ri)1D, for r ∈ [0, R?]
ρ(ri, θj) = 0, for r ∈ [R?, 2R?]

. (6.21)

The initialization of the angular mesh is done once and for all while the radial mesh and
the �rst guesses are, of course, renewed at each time step.

6.2.2 Computation of the e�ective gravity and of averaged quantities

A�er having de�ned the �rst guesses (box 1. of Fig. 6.3), Eq. (2.39) for the gravitational potential
is solved assuming ρ2D(r, θ) is known, and then the radius of isobars (characteristic radius; Eq.
(2.47)) and the density on isobars (Eq. (2.48)) are computed. If the maximum change between
φ(r, θ) computed at current and previous iteration exceeds a certain maximum error, then φ is
computed again. It usually necessitates four iterations to go below a 10−12 maximum variation.
However, for fast and massive rotating stars (M & 2M�), it can take forever and the process
is usually forced to stop a�er 42 unsuccessful iterations.

Once the solutions for φ and ρ have converged, the r- and θ-components of geff can be
computed using Eq. (1.52) and (1.53). Then p(r, θ) is deduced from:

∂p

∂r
= −ρ

(
∂φ

∂r
− Ω2rp sin2 θm

)
. (6.22)

This equation is complemented with the boundary condition: p(R?, θm) = p1D(R?). It is needless
to say that since we are computing solution over isobars, the pressure needs to be known at
only one angle. The averages of geff follows from their de�nition in Eqs. (1.69), with the slight
di�erence that we actually compute Sp 〈geff〉, (resp. Sp 〈1/geff〉, etc.) instead of just 〈geff〉, (resp.
〈1/geff〉, etc.), because the factor Sp is always present when averages of geff are used. Those
averages are computed using Gauss-Legendre quadrature (Eq. (6.20)). The expression of the
needed averages are:

Sp 〈geff〉 = 4π
ˆ
ψp

geff
r2
p sin θdθ

cos ε , (6.23)

Sp
〈
g−1

eff

〉
= 4π

ˆ
ψp

g−1
eff
r2
p sin θdθ

cos ε , (6.24)

Sp
〈
g−1

eff $
2
〉

= 4π
ˆ
ψp

g−1
eff
r4
p sin3 θdθ

cos ε . (6.25)

The factor cos ε easily follow from Eq. (1.67), once rp(θ) is known. The above averages enter
in the composition of fp, fT and fd, that I recall:

fp =
4πr4

p

Gmp

1
Sp
〈
g−1

eff

〉 , (6.26)

fT =
(

4πr2
p

Sp

)2 1
〈geff〉

〈
g−1

eff

〉 , (6.27)

fd =
(
1−$2Ωα

) 〈
g−1

eff

〉
〈
g−1

eff

〉
−
〈
g−1

eff $
2
〉

Ωα
. (6.28)
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0. Input 1D model

1. Initialization

Quantities at θ = θm are initialized to quan-
tities from the input 1D model at actual time
step.

Spherical 2D model
Especially spherical
ρ(r, θ) = ρm

2. Get φ

We get φ(r, θ) solving the Eq. (2.34) using pre-
vious ρ(r, θ).

New guess for φ

3. Get ρ

We get ρ(r, θ) solving the Eq. (2.48) using pre-
vious φ(r, θ).

New guess for ρ on the
spherical and the isobaric
mesh.
Guess for characteristic radii.

4. φ converged ?

5. Correct the new mass

Mass coordinates are corrected to enforce the
mass conservation impacted by numerical un-
certainties.

6. Get geff

From φ(r, θ), geff(r, θ) is computed on spherical
mesh using Eqs. (1.52) and (1.53).

7. Get p(r, θm)
The new pressure is recomputed at θ = θm
using Eq. (6.22).

p(rp, θ) is known.

8. Get 〈geff〉,
〈
g−1

eff

〉
, ...

geff(r, θ) is interpolated on the isobaric mesh
and average over each isobars

〈geff〉,
〈
g−1

eff

〉
and ρ̆ are

known.

9. fp, fT , fd, etc. can be computed

no

yes

Figure 6.3: Schematic representation of the steps followed until the determination of geff(r) averaged
over each isobars.
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6.2.3 Various points of interest

I will now give some details about issues or questions that the implementation has raised and
which, in my opinion, will help someone whose project is to perform the same task in another
stellar evolution code.

On the decomposition on Legendre polynomials above 2nd order

Above, I made pro�table use of the critical angle θm. In the literature, it is o�en assumed that,
for any quantity X , at θm = arccos(1/

√
3),

X(r) +
∞∑
`=0

X̃`P`(cos θm) = X(r) = X(r, θ). (6.29)

However, this is, in general, not true. While arccos(1/
√

3) is a root of P2, it is not one of P`>2.
Therefore, except by accident,

X(r, θm) = X(r) + X̃4P4(cos θm) + . . . 6= X(r), (6.30)

where P4(cos θm) does not vanish. In the following I denote θm,2 = arccos(1/
√

3) the root of P2
and θm the hypothetical root for the polynomial

∑
`=2 X̃`P`(cos θm).

It is important to notice that the method developed in (Roxburgh, 2004, 2006), does
not need a speci�c angle to work. Indeed, Roxburgh (2004) uses π/2 as reference angle and
Roxburgh (2006) uses arccos(1/

√
3). This speci�c angle is only needed a�erward. In reality,

the 1D solutions of the structure equation, at a given radius (or pressure), provide the average
value over an isobar that the decomposition shall ensure:

〈X〉isobar (r) = X(r) = X1D = X(r, θm), (6.31)

The angle θm does exist because of �rst mean value theorem4. Can we �nd θm ?
The ρ̃` components are known and ρ1D is found when computing the quasi-static structure.

Let Q be the polynomial de�ned as

Q(x) =
N∑̀
k=0

ρ̃kPk(x)− ρ1D =
N∑̀
k=0

γkPk(x), (6.33)

where γ0 = ρ̃0 − ρ1D = ρ− ρ1D and ∀k > 0, γk = ρ̃k. The integer N` is the maximum order of
the Legendre polynomial on which ρ is decomposed.

The angle θm is among Q’s roots, especially, it is inside [0, π/2]. Finding roots of a polynomial
is painful when the degree increases, but this is forgetting that Legendre polynomials are
orthogonal. Day & Romero (2005) developed a very e�cient method for �nding all roots of
such a polynomial. This method reduces to searching for the eigenvalues of an almost diagonal
matrix.

Legendre polynomials being orthogonal, there exists a recursive relation of the form:

xPn−1(x) =
n∑
k=0

hk,n−1Pk(x) indeed (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x). (6.34)

4For a function f de�ned on [a, b]→ R, ∃c ∈ [a, b] such that
ˆ b

a

f(x)dx = f(c)(b− a). (6.32)
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Then

hi−1,i = i

2i+ 1 , (6.35)

hi+1,i = i+ 1
2i+ 1 , (6.36)

and for k 6= i± 1, hk,i = 0. (6.37)

Those coe�cients form a N` ×N` matrix HN` = (hi,j)0≤i,j≤N`−1.

HN` =



0 1/3 0 · · · · · · 0

1 0 2/5
. . .

...

0 2/3 0 0
... 0 3/5

. . . N`−3
2N`−5 0

...

0 0 N`−2
2N`−3 0

...
. . . N`−2

2N`−5 0 N`−1
2N`−1

0 · · · · · · 0 N`−1
2N`−3 0



. (6.38)

We also de�ne three vectors:

fN`(x) = (P0(x), . . . , PN`−1(x))T , (6.39)

cT
N`

= (γ0, . . . , γN`−1) , (6.40)

eN`−1 = (0, . . . , 0, 1)T . (6.41)

Therefore our polynomial P can now be written

Q(x) = fT
N`

(x)cN` + γN`PN`(x), (6.42)

whose roots are the eigenvalues of the matrix

BN` = HN` − hN`,N`−1
cN`
γN`

eT
N`−1 = (6.43)
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0 h0,1 0 · · · · · · −hN`,N`−1
γ0
γN`

h1,0 0 h1,2
. . .

...

0 h2,1 0 0

... 0 h3,2
. . . hN`−4,N`−3 0

...

0 0 hN`−3,N`−2 −hN`,N`−1
γN`−3
γN`

...
. . . hN`−2,N`−3 0 hN`−2,N`−1 −

hN`,N`−1
γN`−2
γN`

0 · · · · · · 0 hN`−1,N`−2 −hN`,N`−1
γN`−1
γN`


Bn is upper-Hessenberger, meaning that ∀i, j ∈ [0, n − 1], if i > j + 1, then Bn,i,j = 0. The

library Lapack (Anderson et al., 1999) provides Fortran routines built to �nd eigenvalues of such
a matrix. A special case of upper-Hessenberger matrices are the reduced upper-Hessenberger
matrices. However, in general, Bn is un-reduced because ∀i ∈ [0, n − 2],Bn,i+1,i 6= 0. Two
strategies have been adopted in cestam:

• either one extracts the eigenvalues of Bn at a given point of the radial mesh and selects
θm as the closest to arccos(1/

√
3);

• or one extracts them at few points of the radial mesh and keeps the one common to all
the sets of eigenvalues;

• or one extracts them at all points of the radial mesh and averages eigenvalues that are
close to one another and in the right interval;

• or one extracts θm at all points of the radial mesh. Then, the representation of θm as a
function of r makes it possible to have a varying θm at di�erent layers.

It is still not clear what is the good choice and they shall be tested thoroughly. However, the
penultimate option should probably be ruled out because, at the centre, θm becomes unde�ned.
These variations certainly a�ect the mean value. The one I usually choose in cestam is the
fourth.

Should we deform the atmosphere ?

Roxburgh (2004, 2006)’s method is developed to deform the internal structure. The atmo-
sphere is just here to provide some boundary conditions. In our �rst implementation of the
deformation cestam, the equations of the atmosphere structure were modi�ed to include the
factor fp,T,d, computed at the surface. The atmosphere computed in 1D was then "patched" on
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the deformed surface. However, if a certain rotation threshold was to be reached, the deformed
isobars could cross the small extent of the atmosphere. It was then decided to include the
atmosphere in the deformation process. The atmosphere is supposed to rotate uniformly with
the same angular velocity as the surface. Of course, more sophisticated models of rotating
atmospheres should be developed, but this is less of a priority than a rotating convection
model.

Numerical mass loss

Roxburgh (2006) pointed out that when deforming a model, the total mass su�ered from a
slight decrease. This loss of mass is purely numerical and is due to the readjustment of density
in 2D. As an example, they showed that when deforming a 2M� model, the �nal mass a�er
the deformation was 1.9995M�. It may seem small but a change of 10−4M� is of the same
order as the total mass loss that the Sun has experienced through stellar winds during its
whole ms lifetime. In addition, the total numerical mass loss a model would su�er along its
evolution is not a function of time but of the number of time steps needed to reach the desired
age. If a star loses 10−5M� at each time step due to deformation, a�er an evolution counting
around 1000 time steps, the change of mass would be of order 1%, which is far from being
negligible ! Our implementation of the deformation method in cestam produces a rather better
conservation of mass. The mass di�erence goes from 10−12M� to 10−8M�. Roxburgh (2006)
used 2400 radial grid points and 240 angular grid points, which is rather similar to us. We
do not have much details on how the radial points were located, but the angles are evenly
spaced. Our better mass loss could come from better located radial points and angles chosen
with a Gauss-Legendre quadrature. As a workaround, the �nal mass of the deformed model is
corrected with a multiplicative factor that ensures M1D = M2D.

6.3 The transport of angular momentum in 2D

Before the adoption of the numerical scheme that will be presented in this section, we hesitated
and tested several of them. They all presented stability problem, however it may be interesting
in the future to re-investigate the causes of this instabilities and try and make them work. The
method that �nally worked is based on a relaxation method developed in Press et al. (1992).
By expressing the Jacobian of the system of equation, the successive guesses for the solutions
are guided toward the true solution.

6.3.1 Relaxation method

In order to solve our system of equations, we will use a numerical method, called the relaxation
method (Press et al., 1992), that shares common points with the collocation. This method works
on systems of �rst order ordinary di�erential equations, of the same form as in Eq. (6.6). We
denote E = {Ei}ne

i=1 the vector containing our ne di�erential equations. These equations
depend on a quantity x and on the ne unknowns y = {yi}ne

i=1 and their x-derivatives. With
these notations, the system is written

E(x; y,y′) = dy
dx − g(x,y) = 0, (6.44)

with g a suitable vector of functions representing the di�erential system.
For a domain divided into N layers, and by labelling independent variables at each layers

with a superscript k, this problem has {yk}k=1,N = {yki }
k=1,N
i=1,ne

as independent variables, i.e.
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neN unknowns. We denote E = {Ek
i }k=1,N = {Ek

i }
k=1,N
i=1,ne

, the equations linking the variables
yki . They are of the form:

∀k ∈ J2;NK, Ek = yk − yk−1 − (xk − xk−1)gk(xk, xk−1,yk,yk−1) = 0. (6.45)

Contrarily to the collocation method, the solutions y are not decomposed on a basis of B-
Splines, therefore, we do not have to express the di�erential system for all coe�cients of the
B-Splines, at all mesh points. These mesh points are the one located at the faces of each
layer already determined by cestam. We do not introduce new points between them using a
Gauss-Legendre quadrature and therefore we do not seek to obtain superconvergence.

Equation (6.45) provides ne(N − 1) equations while we have neN unknowns. We need ne
more equations, E1(x1,y1) and EN+1(xN ,yN ), that come from boundary conditions, so that
the system is complete. There is no need to have the same number of boundary conditions
at top and bottom, the ne can be at the same location. Once we have our set of di�erential
equations, the idea is to start from a �rst guess for y, for instance their solutions at previous
time step. Then, iteratively, to tweak their values in order to minimize Ek

i . In order to guide
the adjustment of y to the right solution, equations Ek

i are developed to 1st-order in Taylor
series:

Ek(yk + ∆yk,yk−1 + ∆yk−1) ' Ek(yk,yk−1) +
ne∑
i=1

∂Ek

∂yi,k−1
∆yk−1

i +
ne∑
i=1

∂Ek

∂yi,k
∆yki

' Ek(yk,yk−1) + Sik,k−1∆yk−1
i + Sik,k∆yki .

Einstein
notation

(6.46)

We want Ek(yk + ∆yk,yk−1 + ∆yk−1) to be as small as possible. The errors Ek(yk,yk−1) are
known from previous iteration step, Sik,j = ∂Ek

i /∂yj is the Jacobian of the system (6.7). It gives
the slopes that lead to the solutions. We look for the small modi�cations ∆yk−1

i and ∆yki that
solve the system:

Ek(yk,yk−1) +
ne∑
i=1

∂Ek
i

∂yk−1 ∆yk−1
i +

ne∑
i=1

∂Ek
i

∂yk
∆yki = 0. (6.47)

6.3.2 First order di�erential system

I recall that the system of equations we are trying to solve is:
Lp
mp
T` = Tcp

[
dΨ`

dt + Φd lnµ
dt Λ` + U`

Hp
(∇ad −∇)

]

ρ
dr2Ω

dt = 1
5r2

∂

∂r

(
ρr4ΩU2

)
+ 1
r2

∂

∂r

(
ρνvr

4∂Ω
∂r

) , (6.48)

with

T` = 2
(

1− fC
4πGρ −

ε+ εg

εm

)
g̃`
g

+ f̃C,`

4πGρ −
fC

4πGρΘ`

+ ρm

ρ

[
r

3
d
dr

(
HT

∂Ψ`

∂r
− (1− δ + χT ) Ψ` − (ϕ+ χµ) Λ`

)
− `(`+ 1)HT

3r

(
1 + Dh

K

)
Ψ`

]
+ ε+ εg

εm

[(
HT

∂Ψ`

∂r
− (1− δ + χT ) Ψ` − (ϕ+ χµ) Λ`

)
+ (fεεT − fεδ + δ) Ψ`

+ (fεεµ + fεϕ− ϕ) Λ`

]
. (6.49)
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The �rst equation of system (6.48) actually is one equation for each term ` of the meridional
circulation. This system can also be supplemented by the equation for the horizontal transport
of angular momentum (or even higher orders):

ρ
dr2Ω2

dt + 1
r2

∂

∂r

(
ρr4ΩU2

)
− 10

6
dρr2U2

dr Ω = 1
r2

∂

∂r

[
ρνvr

4∂Ω2

∂r

]
− 10ρνhΩ2. (6.50)

I will treat the systems (6.48) and (6.48)+(6.50) separately.
Our goal is to make use of the relaxation method presented in Sect. 6.3.1 to solve those

systems. The relaxation method works on �rst order di�erential systems, which is the case for
neither (6.48) nor (6.50). To transform them into 1st-order odes, we introduce more independent
variables. The �rst one has been de�ned in Eq. (2.107):

Υ` = HT
∂Ψ`

∂r
− (1− δ + χT ) Ψ` − (ϕ+ χµ) Λ`. (6.51)

The two others are the �rst order radial derivatives of Ω and Ω2:

Fν,0 = ∂Ω
∂r

and Fν,2 = ∂Ω2

∂r
. (6.52)

Those new variables having been de�ned, our equations reads:

∇ad −∇
Hp

U` = Lp

cpTmp

{
2
(

1− fC
4πGρ −

ε+ εgrav

εm

)
g̃`
g

+ f̃C`

4πGρ −
fC

4πGρΘ`

+ ρm

ρ

[
rp
3
∂Υ`

∂r
− `(`+ 1)HT

3rp

(
1 + Dh

K

)
Ψ`

]

+ ε+ εgrav

εm
[Υ` + (fεεT − fεδ + δ) Ψ` + (fεεµ − fεϕ+ ϕ) Λ`]

}

− dΨ`

dt − Φd lnµ
dt Λ`, (6.53)

Υ` = HT
∂Ψ`

∂r
− (1− δ + χT ) Ψ` − (ϕ+ χµ) Λ`, (6.54)

ρ
dr2Ω

dt = 1
5r2

∂

∂r

(
ρr4ΩU2

)
+ 1
r2

∂

∂r

(
ρνvr

4Fν,0
)
, (6.55)

ρ
dr2Ω2

dt = 10
6

dρr2U2

dr Ω + 1
r2

∂

∂r

[
ρνvr

4Fν,2
]
− 1
r2

∂

∂r

(
ρr4ΩU2

)
− 10ρνhΩ2. (6.56)

Just as a side remark, the term (∇ad −∇) /Hp is kept on the le� side of the equation because,
near the tachocline, the term ∇ad − ∇ goes to zero. If it is in the denominator, the term
Hp/ (∇ad −∇) would explode and introduce spurious results in the solution of U`.

6.3.3 Dimensionless system for U2 and Ω

For cestam to be able to solve Eqs. (6.53) to (6.55), we need to do more work. First of all, we
shall introduce dimensionless variables. While they have the same name as the one de�ned in
6.1.2, their de�nition is slightly di�erent:

ζ = r

R�
→ r = ζR� = ζR�, λ = Lp

L�
→ Lp = λL�,

m = mp

M�
→ mp = mM�, ν =

(
mp

M�

)2/3
→ mp = ν3/2M�,

∂

∂r
→ ∂

∂r
= 8πR2

�
3M�

ρ̆ζ2
√
ν

∂

∂ν
,

∂

∂r
→ ∂

∂r
= 4πR2

�
M�

ρ̆ζ2 ∂

∂m
.

(6.57)
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The radial derivatives in equation for U` and Υ` will be replaced by ∂/∂ν, while the one in the
vertical angular momentum transport equation will be replaced by ∂/∂m. Doing so allows us
to clearly see the fact that our numerical scheme conserves angular momentum by construction
and mixing m and ν is not a problem for the relaxation method. With those dimensionless
quantities, our system reads

Υ` = HT
8πR2

�
3M�

ρ̆ζ2
√
ν

∂Ψ`

∂ν
− (1− δ + χT ) Ψ` − (ϕ+ χµ) Λ`,

∇ad −∇
Hp

U` = L�
M�

λ

cpTν3/2

{
2
(

1− fC
4πGρ −

ε+ εgrav

εm

)
g̃`
g

+ f̃C`

4πGρ −
fC

4πGρΘ`

+ρm

ρ

[
8πR3

�
9M�

ζ3ρ̆√
ν

∂Υ`

∂ν
− `(`+ 1)HT

3R�ζ

(
1 + Dh

K

)
Ψ`

]

+ε+ εgrav

εm
[Υ` + (fεεT − fεδ + δ) Ψ` + (fεεµ − fεϕ+ ϕ) Λ`]

}
−dΨ`

dt − Φd lnµ
dt Λ`,

d
dt
(
ζ2Ω

)
= R2

�
M�

∂

∂m

(4π
5 ρζ4ΩU2

)
+
(
R2
�

M�

)2
∂

∂m

(
16π2ρ2ζ6νv

∂Ω
∂m

)
.

(6.58)

Furthermore, the following quantities may be simpli�ed:

Hp = −1
p

dp
dr = p

ρgeff
, HT = − 1

T

dT
dr = Hp

∇
= p

ρgeff∇
,

ε+ εgrav

εm
= Mp

Lp

∂Lp
∂Mp

= ∂ ln λ
∂ ln ν , Z = 8πR2

�
3M�

, (6.59)

fε = ε

ε+ εgrav
, fε

ε+ εgrav

εm
= ε

εm
= M�

L�

εnuc

λ
ν

3/2.

Injecting those quantities in system (6.57) gives:

Υ` = 8πR2
�

3M�
ρ̆ζ2
√
ν

Hp

∇
∂Ψ`

∂ν
− (1− δ + χT ) Ψ` − (ϕ+ χµ) Λ`,

∇ad −∇
Hp

U` = L�
M�

λ

cpTν3/2

{
2
(

1− fC
4πGρ −

∂ ln λ
∂ ln ν

)
g̃`
g

+ f̃C`

4πGρ −
fC

4πGρΘ`

+ρm

ρ

[
8πR3

�
9M�

ζ3ρ̆√
ν

∂Υ`

∂ν
− `(`+ 1)

3R�ζ
Hp

∇

(
1 + Dh

K

)
Ψ`

]
+ ∂ ln λ
∂ ln ν (Υ` + δΨ` + ϕΛ`)

+M�
L�

εnuc

λ
ν

3/2 [(εT − δ) Ψ` + (εµ − ϕ) Λ`]
}
− dΨ`

dt − Φd lnµ
dt Λ`,

d
dt
(
ζ2Ω

)
= R2

�
M�

∂

∂m

(4π
5 ρζ4ΩU2

)
+
(
R2
�

M�

)2
∂

∂m

(
16π2ρ2ζ6νv

∂Ω
∂m

)
.

(6.60)

From now on, I only restrict myself to the ` = 2 component. We introduce the notation
y1 = U2, y2 = Υ2, y3,0 = Ω and y4,0 = ∂Ω

∂m . The variable Ψ2, Λ2 are linked to Θ2 and U2. The
2nd-order term Θ2 is precisely computed by Roxburgh (2006)’s method. However, this method
is applied at the end of the computation of a time step (see Fig. 6.1). Therefore, the Θ2 that has
been computed using the deformation module, was computed at the previous time step and it
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may have changed signi�cantly. I said earlier that Mathis & Zahn (2004) provide an expression
for Θ`. We did not used this expression to compute the �nal value of Θ2, however such a
relation can be used to provide an approximate Θ2 in order to compute U2 and Ω. When the
horizontal transport of angular momentum is neglected,

Θ2 = r2

3ḡeff

∂Ω̄2

∂r
= ZR2

�ρ̆
ζ4

ḡeff
y3,0y4,0. (6.61)

When this expression is injected into the one of U2, it explicitly introduces a dependence of
U2 on Ω2, which is good for the stability of our algorithm. The �uctuations of mean molecular
weight are expressed through a time derivative in Eq. (2.83). This time derivative is discretized
and reduced as follow:

dΛ`

dt (m) = Λ`(m)− Λt
`(m)

∆t = −
(
`(`+ 1)
R2
�ζ

2 Dh −
d lnµ

dt

)
Λ` + U`

Hp
∇µ, (6.62)

Λ` =
Λt
`/∆t+ U`

Hp
∇µ

1
∆t + `(`+1)

R2
�ζ

2 Dh − d lnµ
dt

= A0 +A1U`, (6.63)

where Λt
`(m) is the mean molecular weight �uctuation at the previous time step and mass m,

and A0 and A1 are de�ned as

A0 = Λt

1 + ∆t
(
`(`+1)
R2
�ζ

2 Dh − d ln µ̄
dt

) and A1 = ∇µ

Hp

(
1/∆t+ `(`+1)

R2
�ζ

2 Dh − d ln µ̄
dt

) . (6.64)

With Θ2 and Λ2 known, Ψ2 is simply expressed as:

Ψ2 = ϕΛ2 −Θ2

δ
=
ϕA0 + ϕA1y1 −ZR2

�ρ̆
ζ4

ḡeff
y3,0y4,0

δ
= C0 + C1y1 + C2y3,0y4,0, (6.65)

where we de�ned C0, C1 and C2 as

C0 = ϕA0

δ
, C1 = ϕ

δ
A1 and C2 = −ZR2

�ρ̆
ζ4

ḡeffδ
. (6.66)

And we also need the ν-derivative of Ψ2:

∂Ψ2

∂ν
= ∂C0

∂ν
+ ∂C1

∂ν
y1 + C1

∂y1

∂ν
+ ∂C2

∂ν
y3,0y4,0 + C2

∂y3,0

∂ν
y4,0 + C2y3,0

∂y4,0

∂ν

= D0 +D1y1 + C1
∂y1

∂ν
+D2y3,0y4,0 + C2

(
∂y3,0

∂ν
y4,0 + y3,0

∂y4,0

∂ν

)
, (6.67)

where Di = ∂Ci/∂ν.
The expressions for Θ2, Λ2, Ψ2 and ∂Ψ2/∂ν as a function of y1, y2, y3,0 and y4,0 can be

injected into system (6.60) and we obtain:

y2 =
[
Z ρ̆ζ

2
√
ν

Hp

∇
D0 − (1− δ + χT ) C0 − (ϕ+ χµ)A0

]
(6.68)

+y1

[
Z ρ̆ζ

2
√
ν

Hp

∇
D1 − (1− δ + χT ) C1 − (ϕ+ χµ)A1

]
+ ∂y1

∂ν

[
Z ρ̆ζ

2
√
ν

Hp

∇
C1

]

+y3,0y4,0

[
Z ρ̆ζ

2
√
ν

Hp

∇
D2 − (1− δ + χT ) C2

]
+
(
∂y3,0

∂ν
y4,0 + y3,0

∂y4,0

∂ν

)[
Z ρ̆ζ

2
√
ν

Hp

∇
C2

]
,
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∇ad −∇
Hp

y1 =
{
L�
M�

λ

cpTν3/2

(
2
[
1− fC

4πGρ −
∂ ln λ
∂ ln ν

]
g̃`
g

+ f̃C`

4πGρ + ∂ ln λ
∂ ln ν ϕA0

+
[
∂ ln λ
∂ ln ν δ −

ρm

ρ

Hp

∇
`(`+ 1)
3R�ζ

(
1 + Dh

K

)]
C0 + εnuc

cpT
[(εT − δ) C0 + (εµ − ϕ)A0]

)

+Ψt
` − C0

∆t − Φd lnµ
dt A0

}

+y2

{
L�
M�

λ

cpTν3/2
∂ ln λ
∂ ln ν

}
+ ∂y2

∂ν

{
L�
M�

λ

cpTν3/2
ρm

ρ
ZR�3

ζ3ρ̆√
ν

}

+y1

{
L�
M�

λ

cpTν3/2

([
∂ ln λ
∂ ln ν δ −

ρm

ρ

Hp

∇
`(`+ 1)
3R�ζ

(
1 + Dh

K

)]
C1 + ∂ ln λ

∂ ln ν ϕA1

)

+εnuc

cpT
[(εT − δ) C1 + (εµ − ϕ)A1]− C1

∆t − Φd lnµ
dt A1

}

+y3,0y4,0

{
L�
M�

λ

cpTν3/2

[
∂ ln λ
∂ ln ν δC2 −ZR2

�ρ̆
ζ4

ḡeff

fC
4πGρ −

ρm

ρ

Hp

∇
`(`+ 1)
3R�ζ

(
1 + Dh

K

)
C2

+εnuc

cpT
[(εT − δ) C2]

]
− C2

∆t

}
. (6.69)

The last equation of system (6.60) needs a little more work. We integrate it over a spheroidal
shell located in between two masses mk−1 and mk, as follow

ˆ mk

mk−1

d
dt
(
ζ2Ω

)
dm =

ˆ mk

mk−1

R2
�

M�

∂

∂m

(4π
5 ρζ4ΩU2

)
dm+

ˆ mk

mk−1

(
R2
�

M�

)2
∂

∂m

(
16π2ρ2ζ6νv

∂Ω
∂m

)
dm

ˆ mk

mk−1

(
ζ2Ω

)
dm =

ˆ mk

mk−1

(
ζ2Ω

)t
dm+ ∆t R

2
�

M�

4π
5

[(
ρζ4ΩU2

)
k
−
(
ρζ4ΩU2

)
k−1

]

+∆t
(
R2
�

M�

)2 [(
16π2ρ2ζ6νv

∂Ω
∂m

)
k

−
(

16π2ρ2ζ6νv
∂Ω
∂m

)
k−1

]
, (6.70)

with
(
ζ2Ω

)t
the value of

(
ζ2Ω

)
at previous time step. Finally:

1
2

[(
ζ2y3,0

)
k

+
(
ζ2y3,0

)
k−1

]
(mk −mk−1)

= 1
2

[(
ζ2Ω

)t
k

+
(
ζ2Ω

)t
k−1

]
(mk −mk−1) + ∆t R

2
�

M�

4π
5

[(
ρζ4y3,0y1

)
k
−
(
ρζ4y3,0y1

)
i+1

]

+16π2∆t
(
R2
�

M�

)2 [(
ρ2ζ6νvy4,0

)
k
−
(
ρ2ζ6νvy4,0

)
k−1

]
. (6.71)

Equations (6.68), (6.69) and (6.71) form our new system. The �nal way to write it, i.e. the way
as it is written in cestam, is to pack and rename all the factors a�er the independent variables:
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(6.72)

We introduced several notations and de�ned several quantities. The notations �rst. For vari-
ables f de�ned on a grid with values {fk}N1 , f is de�ned as:

f = fk + fk−1

2 . (6.73)

Also,

∂f

∂ν
= fk − fk−1

νk − νk−1
,

∂f

∂m
= fk − fk−1

mk −mk−1
,

∆ν = νk − νk−1, ∆m = mk −mk−1. (6.74)

Then the new variables:

K1,1 = ∇ad −∇
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,
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2
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K1,6 = L�
M�

λ

cpTν3/2

[
∂ ln λ
∂ ln ν δC2 −ZR2

�ρ̆
ζ4
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and

K2,1 = Z ρ̆ζ
2
√
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The �nal quantity we need to express is the Jacobian of this system de�ned in Eq. (6.46):
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(6.77)

S1,5 = ∂E1
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,
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and
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(6.78)

Before going to the next subsection, let us show that equation E3 in the system (6.72)
conserves am by construction if the mesh is evenly spaced in mass. This equation is nothing
more than the time variation of am in a shell between mass mk−1 and mk. Let us sum all the
terms between m1 and mN , the masses of the boundaries of the radiative zone. This sum is
zero by de�nition:

N∑
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−
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= 0. (6.80)

It is easy to see that consecutive terms cancel each other and we are only le� with

N∑
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If there is a central cz or not, y1,N
4,0 = 0. The above equation simpli�es to:
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= 1
5
R2
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1
1

)
. (6.84)

The le� hand side formally expresses the variation of the amount of angular momentum in
the radiative zone during a time step ∆t. The right hand side expresses this exchange at the
boundaries of the radiative zone: it is the angular momentum advected from/to by the merid-
ional circulation. The quantity (−2R2

�∆t)/(5M�)K1
3,1y

1
3,0y

1
1 (resp. (2R2

�∆t)/(5M�)KN
3,1y

N
3,0y

N
1 )

represents the angular momentum given to or received by the bottom (resp. top) convective
zone. Integrated over the whole star, the net variation of angular momentum between two
time steps is zero (if no losses by stellar winds or by disk-coupling are included).

6.3.4 Dimensionless system for U2, Ω and Ω2

Once we have done that, adding the equation for the horizontal transport of angular momentum
is easy. Eq. (6.56) expressed with the dimensionless quantities reads
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(6.85)

By de�ning y3,2 = Ω2 and y4,2 = ∂Ω2/∂m, and by integrating over a spheroidal shell located by
two masses mk−1 and mk, we obtain
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And the new independent relations are:
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with
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The Jacobian is supplemented by these terms:
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and
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If one takes into account the term Ω2, the expression giving us an approximation for the
�uctuation of the density Θ2 should be modi�ed accordingly. The expression given by Mathis
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& Zahn (2004) is
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(6.91)

This modi�cation impacts the expression of Ψ2 which in turn makes the expression of U2 and
Υ2 more complicated. Errors E1 and E2 as well as the respective Jacobian must take those
changes into account. Nonetheless I will not write them in order not to over complicate the
text. The relations needed to compute U4, Ω4 can also be formalized to be added to cestam

and we may need to do so in a near future. However, the careful reader may have notice that
such a task is painful.
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Chapter 7

Validation, results and performances

[...]
LE DOCTEUR PARPALAID

Juste! Juste! (On entend une explosion.) Écoutez, mon
cher confrère, comme le moteur part bien. A peine
quelques tours de manivelle pour appeler les gaz, et
tenez... une explosion... une autre... voilà! voilà!... Nous
marchons.

[...]
JEAN, à l’oreille du docteur Parpalaid.

Monsieur, monsieur. Il y a quelque chose qui ne marche
pas. Il faut que je démonte le tuyau d’essence.

Jules Romain, Knock
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This chapter is devoted to the physical and numerical tests of the codes developed during
my PhD. As seen in the previous chapter, the implementation is separated into two parts: the
deformation module and the new prescription for the resolution of the transport of angular
momentum. The advantage is that the deformation module can be used without describing the
transport in two dimensions (however the contrary is not possible). This is why this chapter
is separated into a test of the deformation module alone, then a test of the transport of angular
momentum in the 2D geometry. The chapter is concluded by an evaluation of the additional
computational cost that the 2D computations induce.

7.1 Validation of the deformation module

7.1.1 Conservation of mass and of angular momentum

The �rst thing we need to check is that the deformation does not introduce any change in the
total mass or in the total angular momentum (am) of the star. It must be recalled that, while the
2D treatment of am transport only concerns the radiative zone, the deformation is applied to
the entire star, even to the reconstructed atmosphere. In order to look at the conservation, we
build a small grid of stellar models computed with various initial disk rotation conditions and
with and without deformation for each model. The transport of am and the computation of the
meridional circulation are computed using the formalism of Talon et al. (1997)1. This formalism
shared many similarities with the one of Mathis & Zahn (2004), however, the �uctuation of the
gravitational acceleration are computed in a di�erent way and radial derivatives of both Θ2
and Λ2 are present, instead of only Ψ` in the expression derived in Mathis & Zahn (2004) (see
Sect. 7.2 for a more detailed description). This grid is described in more detail in Table 7.1.

Global e�ects of the deformation on evolution

The global parameters (Teff , Rsurf(θm), logL/L�, etc.) of the non-rotating 1D and 2D models
are the same. This is of course a necessary condition for our code to be validated because
we do not want the deformation module to introduce any deviation on the star’s history if it
is not deformed. On the contrary, global parameters of rotating stars slightly change between
1D/2D simulations. The di�erences are small, except on e�ective temperature. These higher
variations are due to the fact that rotating stars cannot be in local radiative equilibrium over
an isobar. This induces a change in the average e�ective temperature. The non-local radiative
equilibrium of course does not impact the total luminosity that depends mainly on opacity.
This rate is not a�ected much by the deformation, because of the small centrifugal force in the
core.

1in the literature, this formalism is also o�en referred to as the formalism of Maeder & Zahn (1998)

178



7.1. Validation of the deformation module

Table 7.1: Small grid containing 24 models. Half of them are computed as usual in 1D and the other
half are computed with deformation (even the ones without rotation). In both cases, the transport of
angular momentum is computed using the formalism of Talon et al. (1997). The initial disk lifetime is 5
Myr for all models and there are no wind-induced loss of angular momentum. The 2D models use 240
angular sectors (without counting the ghost angles). The maximum degree `max taken into account in
the Legendre decomposition is `max = 2. The quantity Xc is the central hydrogen abundance. Angle
θm is the critical colatitude. The 1M� are stopped at Sun’s age, however, these models have also been
pushed slightly further, in the early stages of the sub-giant branch.

Model M Pdisk Geom- tfinal Ω(tfinal) Xc Teff R?(θm) log L
L�

[M�] [d] etry [Gyr] [% ΩK,surf ] [%] K [R�]
M08P00G1D 0.8 ∞ 1D 15 0 0.233 5159 0.83 −0.36
M08P00G2D 0.8 ∞ 2D 15 0 0.233 5159 0.83 −0.36
M08P10G1D 0.8 10 1D 15 3.91 0.231 5161 0.83 −0.36
M08P10G2D 0.8 10 2D 15 3.91 0.231 5156 0.83 −0.36
M08P03G1D 0.8 3 1D 15 13.16 0.235 5139 0.83 −0.37
M08P03G2D 0.8 3 2D 15 13.90 0.239 5078 0.84 −0.37
M10P00G1D 1.0 ∞ 1D 4.57 0.00 0.384 5778 1.00 0.00
M10P00G2D 1.0 ∞ 2D 4.57 0.00 0.384 5778 1.00 0.00
M10P10G1D 1.0 10 1D 4.57 5.82 0.382 5777 1.00 0.00
M10P10G2D 1.0 10 2D 4.57 5.46 0.382 5771 1.00 0.00
M10P03G1D 1.0 3 1D 4.57 21.77 0.386 5746 1.00 −0.01
M10P03G2D 1.0 3 2D 4.57 19.59 0.388 5664 1.03 −0.01
M15P00G1D 1.5 ∞ 1D 1 0 0.483 7192 1.58 0.78
M15P00G2D 1.5 ∞ 2D 1 0 0.483 7192 1.58 0.78
M15P10G1D 1.5 10 1D 1 14.49 0.487 7179 1.58 0.77
M15P10G2D 1.5 10 2D 1 14.47 0.483 7168 1.58 0.77
M15P03G1D 1.5 3 1D 1 46.71 0.491 7027 1.64 0.77
M15P03G2D 1.5 3 2D 1 46.62 0.491 6980 1.65 0.76
M20P00G1D 2.0 ∞ 1D 0.5 0 0.449 8775 1.91 1.29
M20P00G2D 2.0 ∞ 2D 0.5 0 0.449 8775 1.91 1.29
M20P10G1D 2.0 10 1D 0.5 26.93 0.452 8723 1.93 1.29
M20P10G2D 2.0 10 2D 0.5 26.83 0.454 8705 1.94 1.29
M20P03G1D 2.0 3 1D 0.5 69.79 0.462 8437 2.04 1.28
M20P03G2D 2.0 3 2D 0.5 69.96 0.474 8328 2.05 1.26

Evolutionary tracks in an hr diagram are displayed for both 1D and 2D models in Fig.
7.1, top le� panel. Non-rotating models and models rotating with an initial period of 10 days
follow barely indistinguishable paths. At their �nal age, they reach an e�ective temperature
separated by a few tens of Kelvins. This di�erence is almost not measurable (at least without
Gaia, Perryman et al. 2001; Turon et al. 2005; Lindegren et al. 2008). On the other side, the
models with an initial period of 3 days reach a surface rotation at their �nal age around 3 to
4 times faster than the ones with Pdisk = 10 days. Compared with the non rotating models,
their e�ective temperature is shi�ed by ∼ 80 K for the 0.8M� models to ∼ 350 K for the 2M�
models. Between 1D and 2D models, this di�erence goes from ∼ 60 K for the 0.8M� models to
∼ 110 K for the 2M� models. Those di�erences are measurable, even without Gaia, and they
could change further if more complex physics (like overshoot) were to be taken into account.

Figure 7.2 shows a meridional cut of the 2D models of Table 7.1. The �rst column gathers
the non-rotating 2D models. The colour scale represents the density pro�le inside the star. In

179



Validation, results and performances

8500 7500 6500 5500 4500

Teff [K]

−0.5

0.0

0.5

1.0

lo
g
(L
/L
�

)

0.8M�

1M�

1.5M�

2M�

Pdisc = 0 days

Pdisc = 10 days

Pdisc = 3 days

0.00 0.25 0.50 0.75 1.00

Age (t/tfinal)

−15

−12

−9

−6

lo
g
|∆
m
|[M
�

]

Figure 7.1: The models are the ones presented in Table 7.1. Le�: hr diagram of all models. Right:
Numerical mass loss at the end of each deformation and before correction as a function of the stellar age
normalized to �nal age. Non rotating models (Pdisk =∞ days) are represented with solid lines,Pdisk = 10
with dotted-dashed lines and Pdisk = 3 days with dashed lines. 0.8M� are in blue, 1M� in orange,
1.5M� in green and 2M� in red.

the two other columns, the colour scale codes for ρ(p, θ)/ρ − 1 on the le� side and for Ω in
percent of ΩK,surf on the right side. We see, by looking at the �rst column, that the stars mean
density decreases with increasing stellar mass. Indeed, higher mass stars are more e�cient in
producing nuclear energy. The hotter material induces a stronger pressure gradient opposed
to the gravity and the radius of the star is larger.

In Fig. 7.2, the axes limits go from −1 to 1, in unit of the equatorial radius. The axes
aspect ratio is the same, therefore, the deformation that we see in the plots is due to the
true deformation, not a graphical artefact. The deformation is barely noticeable for the 2nd

column models (Pdisk = 10 days) but is striking for the last one (Pdisk = 3 days). The convective
zones are modelled with a uniform rotation pro�le and no wind-braking is included. Since Ω
is uniform in convective zones, the density is constant over isobars, as stated by Eqs. (2.43)
and (2.48). The limits of the convective/radiative zones are therefore visible in the pro�le of
the �uctuations of density and produce a large circle at around 0.7Req. An other circle is
visible is the ρ(p, θ)/ρ− 1 pro�les of the low mass models. This circle is not due to a central
convection zone because those models do not have one, but to a region of steeper Ω gradient.
The angular velocity pro�le retrieved by the 1D computation of the am pro�le produces a quite
noisy pattern in the Ω radial derivative. This induces large and very localized variations of
density �uctuation.

Finally, we see that, for almost all the rotating models, density is higher near the equator
than near the pole. The latitudinal variations of ρ are described by Eq. (2.48):

dρ
dθ = −ρ

∂
∂r

(
Ω2r2 sin θ cos θ

)
− ∂

∂θ

(
Ω2r sin2 θ

)
∂φ
∂r − Ω2r sin2 θ

. (7.1)

Since the angular velocity pro�le, in general, decreases with radius, the �rst derivative in the
numerator is negative. We have assumed a shellular rotation pro�le, therefore the θ-derivative
is zero, and the whole numerator is negative. The denominator is a local break-up velocity
criterion. It is also positive, otherwise we would have reached the breakup velocity and
stopped the evolution. Hence, generally, dρ/dθ is positive and ρ increases from pole to equator.
However, we remark that the last two models of the 3rd column (Pdisk = 3 days and 1.5M� or
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Figure 7.2: Meridional cut of the 2D models of Table 7.1. Aspect ratio between the two is the axes is
the same. Each row corresponds to a given mass: 0.8M� (1st), 1M� (2nd), 1.5M� (3rd) and 2M� (4th).
Each column corresponds to an initial rotation period: non-rotting (Pdisk =∞ days; 1st), Pdisk = 10 days
(2nd) Pdisk = 3 days (3rd). On the 1st column, only the density pro�le is represented because the angular
velocity is null. For the two other columns, the le� part of the 2D map represents ρ(p, θ)/ρ− 1 and the
other half represents the angular velocity pro�le (Ω depending only on p) in units of ΩK,surf .

2M�), the density is higher near the poles. It indicates that, in the region close to the surface,
the angular velocity pro�le is an increasing function of the radius.

Mass conservation

Let us focus now on mass conservation. Concern has been raised in Chapter 2 that the
deformation method could lead to a non-negligible numerical mass loss along the evolution.
In the following, we denote ∆mnum the numerical mass loss induced by the deformation.
Roxburgh (2006) reported a ∆mnum of order 10−5M? which is quite high. Indeed, an evolution
consisting of a thousand time steps would lead to a change of 1% of the total mass. Fig. 7.1,
top right panel shows ∆mnum in units of solar mass that the models of Table 7.1 experienced
a�er each deformation. The abscissa is the stellar age normalized to the �nal age of the model.
Our code displays much better results than what Roxburgh (2006) obtained. The non-rotating
models have a ∆mnum of order 10−13 − 10−16M� while the rotating ones have losses of order
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10−8 − 10−11M�. Quite interestingly for us, this rate does not vary much with rotation speed.
The noisy pattern is due to the ∆mnum changing sign. The logarithmic of the absolute value
of ∆mnum introduces the noisy pattern. It is not very clear what are the cause of such better
performances for our code. Our number of grid point in the radial and latitudinal directions
are similar to what Roxburgh (2006) used. Although they may be located at di�erent positions.
Another possible explanation would be that we used higher �oating point precision.

In his work, Roxburgh (2006) proposed to correct ∆mnum by a multiplicative factor on the
density. It implicitly assumes that numerical artefacts introduced in the density distribution
should be corrected by the same factor everywhere in the star. This solution raises some
questions. The centrifugal acceleration is, in general, stronger at the surface than at the centre.
Thus, the unphysical changes to the density distribution induced by the deformation should be
stronger at the surface than at the centre. Moreover, the density is higher by several orders
of magnitude in the centre than at the surface. Therefore, correcting the density by the same
factor everywhere would lead to a numerical concentration of mass at the centre. At each
time step, the deformation module implemented by Roxburgh (2006) redistributes 10−5M? in
the star, preferentially in the inner regions. In cestam, we use the same method of correction,
however, our ∆mnum is at most 10−7− 10−8M� which signi�cantly diminishes the issue. A last
point that we must address in the future would be to verify that the new density pro�le still
satisfy the eos.

Angular momentum conservation

The �rst row of plots in Fig. 7.3, displays the relative variations of am with respect to the am at
�nal time step. These variations are shown on the le� column for 2D models and on the right
for 1D models. We did not include in Fig. 7.3 the initial phase where the models are coupled
to a disk (�rst 5 Myr). The disk induces a loss of am that is physically motivated, contrary to
possible numerical losses of am that we are trying to �nd. In both panels, we see that the
maximum variation of am over a complete evolution is at most 10−3 for the fastest rotating,
and lowest mass models, which is very good. The variations of am are noisier in the 1D models
(right) than in the 2D ones (le�). This may be a side e�ect of a better description of the e�ect
of rotation on the structure: it stabilizes the numerical schemes and smooths the evolution
of the solutions in time. The second row displays the relative variations of am between two
consecutive time steps. The relative variation is at most 10−5 and goes to 10−9. We �nd again
a noisier pattern in the 1D models. As a whole, either for the total or the "instantaneous"
relative variations, 1D and 2D models show very similar results. It supports the fact that the
deformation module does not introduce signi�cant numerical artefacts in the conservation of
am.

7.1.2 Seismic comparison

The comparison we performed above could have revealed the most important problems of
the deformation module. But for a deeper study, one needs to perform a seismic comparison
of deformed and non-deformed models. In order to do so, I used the non-perturbative two-
dimensional oscillation code acor for which I developed an interface with the 2D version of
cestam. In order to understand this section, I need to give some general insight on 2D non-
perturbative oscillation codes and explain the pre-processing that acor performs on input �les
generated by cestam.
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Figure 7.3: The models are the ones presented in Table 7.1. For all panels, the quantities are plotted
as a function of the stellar age normalized to �nal age. The colours code for the mass of the models.
Models with Pdisk = 10 with dotted-dashed lines and Pdisk = 3 days with dashed lines. The total angular
momentum of the star is J =

´ R?
0 r2Ωdm. Refer to Table 7.1 for more detail on the initial conditions. Top

le�: Absolute value of the relative variations between angular momentum at time t to angular momentum
at tfinal, in 2D models. Top right: Same as in top le� panel but with 1D models. Bottom le�: Absolute
value of the relative variations between angular momentum at time t to angular momentum at t + ∆t,
in 2D models. Bottom right: Same as in bottom le� panel but with 1D models.

2D non-perturbative oscillation codes

Rotation can act in two ways on the oscillations of rotating stars. The Coriolis force modi�es
the motions of the waves while the centrifugal force deforms the star and therefore distorts
the propagation cavity. Numerical 2D oscillation codes have been created to account for these
e�ects without having to resort to perturbative methods. Basically, they can be considered
as solvers of oscillation Eqs. (3.13) to (3.16). The main 2D oscillation codes are top (Two-
dimensional Oscillation Program; Reese et al. 2006) and acor (Adiabatic Code of Oscillation
including Rotation; Ouazzani et al. 2012). They work on a similar coordinate system and with
the same surface conditions. However, the central boundary conditions di�er and they im-
plement di�erent numerical schemes to solve their equations. acor relies on �nite di�erent
schemes while top was originally developed to use a spectral method by decomposing the
radial coe�cients on Tchebyshev polynomials. It now also implement �nite di�erent schemes.
This last approach is particularly adapted to polytropic models2 where the structural quan-

2Polytropic models are models in which the pressure is described by a law of the form

p = Kργ , (7.2)

with K called the polytropic constant, γ = 1 + 1/µ is the polytropic exponent and µ (an integer) is the polytropic
index.
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tities vary smoothly. It may be less appropriate when strong gradients, not captured by the
polytropic model, are present. However, to my knowledge, no deep comparisons of top and
acor have been performed on such models.

Those codes have allowed asteroseismologists to distinguish several classes of modes,
largely based on the graphical representation of their amplitudes and on ray dynamics. It
shall be stressed that, while those distinctions suggest that the di�erent classes of modes form
strictly separate entities, the transition between two classes may not be as sharp as it seems.
Some modes could display features from two di�erent classes.

Classi�cation of rotating stars’ modes of oscillation

Modes can be classi�ed using ray tracing methods. A ray is de�ned as the trajectory tangent
to the group velocity cg. It applies in the asymptotic limit, i.e. high frequencies, and is very
similar to the study of geometrical paths in a medium of varying optical index. The study of
orbits in a Poincaré section helps to di�erentiate the modes.

Pressure modes Let us start by p-modes. Three classes have been identi�ed.

• Island modes (see Fig. 7.4, le� panel). The modes of this class can be identi�ed using
modi�ed quantum numbers. This feature is very important because mode identi�cation
is primordial if we want to use the individual frequencies in order to constrain models.
The modi�ed quantum numbers (ñ, ˜̀) are de�ned as follow

ñ = 2n+ ε and ˜̀= `− |m| − ε
2 with ε = (l +m)(mod 2). (7.3)

They correspond to the number of nodes along the lines drawn in the le� panel of Fig.
7.4. The modi�ed quantum numbers allowed Lignières et al. (2006) to re-express the
asymptotic relation of p-modes in the case of slow-rotating stars. By de�ning ∆n =
ωn+1,`m − ωn`m, ∆` = ωn,`+1,m − ωn`m and ∆m = ωn,`,m+1 − ωn`m, Eq. (3.50) becomes

ωn`m = n∆n + `∆` + |m|∆m + α±, (7.4)

with α± an additional constant that depends on the stellar-structure. The term α+ is
used for modes symmetric with respect to the equatorial plane (` + m even) and α− is
used for modes antisymmetric with respect to it (`+m odd). Studying the ray dynamics,
Lignières & Georgeot (2009) found physically-grounded expressions of those quantities.
For island modes in fast rotating stars, this formulation of the asymptotic relation keeps
its form, provided some modi�cations are made:

ωn`m = ñ∆̃n + ˜̀∆̃` + |m̃|∆̃m + α̃±, (7.5)

where ∆̃n = ∆n/2, ∆̃` = 2∆`, ∆̃m = ∆` + ∆m, α̃+ = α+ and α̃− = α− + ∆` −∆n/2. In
the the Poincaré section, Island modes are form periodic orbits, as the one shown in Fig.
7.5, le� panel. All the re�ections of a ray are together in a limited region and periodically
overlap.

• Chaotic modes (see Fig. 7.4, middle panel). Chaotic modes may occupy a very large
fraction of the Poincaré section, depending on the rotation rate. The ray tracing in Fig.
7.5, middle panel, show trajectories that never overlap. It does not mean that the kinetic
energy distribution of the mode is homogeneous: the rays are more concentrated in
some regions which translates into regions of more concentrated kinetic energy. It is also
important to notice that these modes can propagate to the centre of the star, as opposed
to p-modes in non-rotating stars.
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Figure 7.4: Spatial distributions in the meridional plane of the kinetic energy of p-modes in a 25M�
polytropic stellar model (µ = 3), rotating at 0.6ΩK. Le�: Island mode. middle: Chaotic mode. Right:
Whispering gallery mode. Credits: Reese et al. (2009).

Figure 7.5: Ray dynamics in the meridional plane of p-modes in a polytropic stellar model, rotating at
0.59ΩK. Le�: Island mode. middle: Chaotic mode. Right: Whispering gallery mode. Credits: Lignières
& Georgeot (2008).

• Whispering gallery modes (see Fig. 7.4, right panel). Finally, whispering gallery modes
are the ones that resemble the most the p-modes in non-rotating stars. We see in
the �gure that the kinetic energy stays in the envelope and does not propagate toward
the centre. Their corresponding ray trajectories revolve around the centre, in a limited
surface region. Whispering gallery modes also display regular patterns. These modes
can also be described using quantum numbers, probably the same as in the non-rotating
case.

As the angular velocity, and therefore the distortion, increases, the amplitudes of whispering
gallery and island modes may become less and less important. When observed as a point, the
surface averaging e�ect make them di�cult to detect and therefore the oscillation spectra are
very complicated to interpret.

Gravito-inertial modes In rotating stars, the Coriolis force must be taken into account in the
case of g-modes. To be precise, these modes should not rigorously be called gravity modes
any more but gravito-inertial modes3 (gi modes). This denomination stresses the fact that, not
only the buoyancy is a restoring force, but also the Coriolis force. Let us consider a mode with
displacement of the form ξ ∝ exp(i(k · r − ωt)), with a short wavelength and low frequency.
Unno et al. (1989) give the dispersion relation

ω2 ' N2k2
h − (2Ω · k)2

k2 . (7.6)

3Not to be confuse with internal gravity waves.
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Figure 7.6: Spatial distribution in a meridional plane of the kinetic energy of g-modes in a 25M�
polytropic stellar model (µ = 3), rotating at 0.7ΩK. Le�: Mode in the super-inertial domain (ω > 2Ω).
middle: Mode in the sub-inertial domain (ω < 2Ω). Right: Special case of super-inertial mode called
rosette mode. Credits: Ballot et al. (2013).

If in addition ω,Ω � N , the above equation needs kh � |k| to be valid. If we furthermore
assume that the medium is nearly incompressible, then ∇ · u ' 0, with u = ∂ξ/∂t the wave
velocity �eld. It follows from this condition that k ·ξ = krξr+khξh ' 0, yielding ξr/ξh ' −kh/kr.
Since kh � kr, we have ξr � ξh. We see that gi modes propagate almost horizontally, i.e.
perpendicular to k. These trajectories are spirals converging toward the centre. gi modes can
be separated into categories.

• The sub-inertial modes with ω < 2Ω (see Fig. 7.6, middle panel). These modes do not
change a lot compared with their equivalent in non-rotating stars. The most striking
di�erence is the appearance of a forbidden region in which the modes do not propagate.
The condition of propagation is formalized as (Dintrans & Rieutord, 2000)

ω2N2r2 sin2 θ + (f2 − ω2)(ω2r2 −N2r2 cos2 θ) ≥ 0, (7.7)

with θ the colatitude and f = 2Ω. With the approximation that N � ω, f , the criterion
on the limiting angle is | cos θ| ≤ ω/f .

• The super-inertial modes with ω > 2Ω (see Fig. 7.6, le� and right panels). The mode
on the le� panel has almost the same characteristics as the mode with same quantum
numbers in a similar non-rotating star. On the contrary, some super-inertial modes (right
panel) experience dramatic changes in the shape of their eigenfunctions compared with
the non-rotating case. These modes are called rosette modes. These modes have been
discovered in numerical simulations by (Ballot et al., 2012) and they appear even at low
rotation rates. The physical nature of rosette modes have been thoroughly studied by
Takata & Saio (2013); Saio & Takata (2014); Takata (2014). These authors have shown that
rosette modes are formed from the combination of modes that have quasi-degenerate
frequency in a non-rotating star and provided some conditions on their order n and
degree ` are met. In such cases, the Coriolis acceleration can overcome the frequency
gaps between the modes and makes the interactions su�ciently strong to build rosette
modes.

acor pre-processing

In order to be able to perform a seismic study of my 2D models, I had to interface acor with
cestam. acor was already able to read outputs from various stellar evolution codes, especially
1D outputs of cestam. To use it on 2D models, I had to create a new output format specially
designed for acor’s needs. The two kinds of output that cestam can write are the following:
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1. 1D output �le

Output of cestam or any
other 1D stellar evolution code.

1. 2D output �le

Output of the 2D version of cestam.

Beginning of pre-processing

3. Computation of derivatives

1st and 2nd order derivatives with
respect to r are computed us-
ing �nite element method. An-
gular derivatives are set to 0.

2. Additional layers near the centre

Around 5 additional layers are added to the centre by interpolating input quantities.

4. Non-dimensionnalization

All quantities are non-dimensionnalized
to acor-speci�c dimensions.

5. Writing of an acor input �le

A 1D �le for an initial 1D stellar model and a 2D �le otherwise.

End of pre-processing. Beginning of frequency computation.

Figure 7.7: Schematic pre-processing performed by acor.

• .osc �les: These �les are written for 1D computation of oscillations. It contains a lot
of di�erent quantities: the radius, the pressure, the temperature, the density, the angular
velocity, as well as thermodynamics quantities and derivatives. Not all data are used by
acor. In particular, it does not contain their radial derivatives. Therefore, they must be
computed internally by acor using �nite di�erence schemes.

• .osc2d �les: These �les are designed to �t acor’s needs for 2D computations. Therefore,
it does not contains the same variables as the .osc �les but only the following �elds:
the radii of isobars, pressure, density, Γ1, Ω; their respective 1st and 2nd radial derivatives.
One also have the derivative of some quantities with respect to ζ = r(θm), and the 1st

and 2nd order derivatives with respect to cos θ. The radial derivatives are computed
thanks to the B-Spline representation provided by cestam. The only special case is
for the �rst radial derivative of the pressure which is computed using Eq. (6.22). This
last point is important because it may introduce discrepancies in the comparison of 1D
and 2D frequencies. The computation of the cos θ-derivatives are made easier by the
decomposition in Legendre polynomials. The derivatives of P` are analytical and we do
not need to use a numerical approximation. All the quantities written in .osc2d �les
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are actually normalized to acor normalization coe�cients that will be described later.

When a 2D cestam model is computed, we can choose to output, in addition to the .osc2d
�le, the 1D structure written in a .osc �le. This structure is exactly the same as the one before
the deformation, and along θm. If the input �le given to acor is not specially designed for it
(it is generally the case for 1D inputs), acor needs to perform some pre-processing. The pre-
processing steps are summarized in Fig. 7.7. First, the various derivatives need to be computed.
They are approximated using a 2nd order �nite di�erence method. This point is important
because it can introduce di�erences between the derivatives computed internally to cestam

(with B-Splines) or internally to acor (with a �nite di�erence method). Computing derivatives
with B-Spline is more complex, computationally speaking, but gives a more precise estimation
of the derivatives. This di�erence of method can be a source of discrepancies between the
frequencies computed using a 1D or 2D model as input. We will come back to it later.

The next step of the pre-processing is to improve the quality of the boundary conditions.
To do so, in the centre, acor adds a few layers (usually 5). The values of the various �elds
are interpolated at those points using parabolas. This treatment applies for 1D and 2D inputs.
The last step is the normalization of the various quantities. The quantities r, p, ρ and Ω are
replaced by

r̃ = r

Req
p̃ = p× p† ρ̃ = ρ× ρ† Ω = Ω

ΩK
(7.8)

where Req is the equatorial radius, including the atmosphere, ΩK is the Keplerian break-up
velocity and

p† =
4πR4

eq
GM2

?

ρ† =
4πR3

eq
M?

(7.9)

One of the goals of the normalization is to reduce the value of the �oats that will be represented
in memory, which increases the precision. A�er the normalization, a new �le is created. This
�le is called an acor input �le and contains data ready to be digested by acor. Before starting
the seismic studies of the 2D version of cestam, it must be noted that this study may also
reveal some imperfections of acor itself.

To be certain that we are only investigating the numerical e�ects of the deformation module
on the frequencies, we only studied non-rotating models. In this case, frequencies are, of course,
not a�ected by di�erences in the angular velocity. We ensure that, in the acor input �les, Ω,
∂Ω/∂r, ∂Ω/∂ cos θ were indeed exactly 0. acor input �les are basic ascii �les. Therefore, they
are easy to modify a�er acor’s preprocessing if one wants to check the in�uence or a certain
quantity or of certain numerical treatment used to produce these quantities. In particular, we
have already seen that the method used to computed the derivatives is not the same for 2D and
1D computations. It can be seen as a post-pre-processing. Therefore, we studied frequencies
obtained with four kinds of acor input �les.

• A 1D acor input �le (herea�er called input 1) generated from an .osc �le, following the
procedure detailed above (normal pre-processing);

• A 2D acor input �le (herea�er called input 2) generated from an .osc2d �le, following
the procedure detailed above (normal pre-processing);

• A synthetic 1D acor input �le (herea�er called input 3) build using the data at θm in an
.osc2d �le. Such �les allow us to test if the structure in the .osc2d �le is truly
spherical;
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• A synthetic 1D acor input �le (herea�er called input 4) build using an input 1 �le in
which we replaced the derivatives computed using the �nite element method by the one
taken from the .osc2d �le, computed using B-Splines. Such a �le allows us to test the
in�uence of the method used to compute derivatives.

Results of the seismic comparison

We performed a seismic comparison of the frequencies computed for the four kinds of input
described above, for non-rotating models with four di�erent masses: 0.8M�, 1M�, 1.5M�
and 2M�. These models are the non-rotating models described in Table. 7.1. The results
are displayed in Figs. 7.8, 7.9 and 7.10. The top panel of each �gure displays the frequency
di�erences δν obtained between the di�erent inputs. The radial order n goes from n = 1 to
n ' 20− 30. We focused only on radial modes (` = 0) the advantage is that they propagate in
the entire star. Therefore, their frequency is sensitive to changes in the structure anywhere in
the star. The middle panel displays a quantity A with variations similar to the Brunt-Väisälä
frequency N2 = geff ·A (although it has the dimensions of an inverse distance). In the middle
panel, only the pro�le of A extracted from inputs 1 and 2 are represented. The bottom panel
represents the relative di�erences between these two pro�les.

In the top panel, the di�erences δν1,2 between inputs 1 and 2 are represented as blue dots.
Figures 7.8 and 7.9 show the better results: δν1,2 ' 0.4 µHz, which is around 4 times above
the frequency resolution of CoRoT and Kepler . plato’s requirement is to reach a resolution
of 0.2 µHz. This is good without being excellent. Indeed, observed rotational splittings are
of order 0.1 µHz (Deheuvels et al., 2012). For all other models, the frequency di�erences are
higher. Do these di�erences comes from the deformation module or from the pre-processing of
acor? The �rst possible explanation is that, the deformation module, even when the model is
not rotating, introduces some very small asphericities, of the order of the numerical precision.
This hypothesis can be tested by comparing input 2 with input 3. Input 3 is created to mimic
a perfect sphere, even a�er the pre-processing. The frequency di�erences δν3,2 are exactly 0
for all masses, at all frequencies, which rules out this �rst possibility. A second explanation
would be that the derivatives computed using �nite di�erence method are too far from the
one computed from B-Splines. To test this idea, we compare input 4 and input 2. Input 4 is
exactly the same as input 1, except that all the �nite di�erence derivatives have been replaced
by the one computed using B-Splines. The di�erences δν4,2 is represented as green points
and are strongly improved compared with δν1,2. For models with 0.8M�, 1M� and 1.5M�, the
δν4,2 is well below the space mission’s frequency resolution. The one computed for the 2M�
model, which was not that bad, have been slightly improved by few tens of nHz. However, in
this last case, δν4,2 remains too high. One could think that this has something to do with the
mass of the model. Yet, we performed the same analysis on an other 1M� model but with an
age of 11 Gyr (the one in Fig. 7.9 has an age of 4570 Myr). This model is at the beginning of the
sub-giant phase. We see that near the centre, |A| presents a sharper peak than in the 1M�
ms model of Fig. 7.9. This peak (or glitch) is not as sharp as in the 1.5M� or 2M� model but
is still signi�cant. It betrays the presence of a large gradient of mean molecular weight due to
the exhaustion of hydrogen in the core. This model has δν1,2 ' 0.8 µHz and this bad result is
not improved for δν4,2. The presence of a peak in the pro�le of a certain quantity o�en leads
to into errors in the numerical computation of the derivatives. This aspect should be studied
in more detail in order to �nd the cause of such high frequency di�erences.

To that end, we compared in more detail the structural pro�les written in inputs 1 and
2. Figure 7.11 displays on the �rst row the relative di�erences η(p) and η(ρ) of the pressure
and density between the pro�les written in inputs 1 and 2, for all four models. The relative
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Figure 7.8: Seismic comparison of non-rotating 0.8M� models. Top: Di�erences between the frequencies
computed with one of the 1D input model and with the 2D model as a function of the associated mode
frequency. Four non-rotating input models are used: the 1D model (blue, input 1) and the 2D model
(orange, input 2), the 1D model extracted from the 2D model along θm (red, input 3; see text for a
description) and a mixed 1D/2D model (green, input 4; see text for a description). The colour codes the
couples of models being compared: (input1/2; blue), (input3/2; red), (input4/2; green). The dashed black
line represents the 0 frequency di�erence. Middle: value of |A| (see Eq. (3.18)) as a function of r/R? for
model 1 (blue thick line) and input 2 (orange line). Bottom: Relative di�erences between |A| from input
1 and 2 as a function of r/R?. It must be noted that the value of |A| input 1 in the convective zone have
been arti�cially set to 10−30 (only when plotting this �gure), which explain the large, relative di�erences
in those regions.
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Figure 7.9: Same as in Fig. 7.8 for 1M� models (le�) and 1.5M� models (right).

di�erence η of a quantity x is de�ned as

η(x) =
∣∣∣∣x2D(θm)− x1D

x1D

∣∣∣∣ , (7.10)

where x1D (resp. x2D(θm)) is read from input 1 (rep. input 2). The second row displays the
relative di�erences of their radial derivatives. Pressure pro�les are quite in a good agreement,
except at the surface where, in a very small region, a gap of around 10% is found between the
1D and the 2D inputs. It can seem unimportant, however the frequency of a star’s modes of
oscillations strongly depend on boundary conditions. Such a gap at the surface could lead to
frequency di�erences exceeding the space mission frequency resolution. Moreover, we notice
that models with 1M� and 2M� have the largest η(p) in the rest of star: around 10−3 for the
1M� model and 10−4 for the 2M� model. On the contrary, the density pro�les have, in the
worst cases, a relative di�erence of 10−6, which is far better. In addition, they present no peaks
at the surface. The only noticeable ripple is very close to the centre, i.e. in the zone in which
extra layers were added. Nonetheless, the amplitude of this ripple is very small and probably
does not a�ect frequencies.
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Figure 7.10: Same as in Fig. 7.8 for 2M� models (le�) and for a 11 Gyr old 1M� models (right). This
model is a subgiant.

How do we explain that the density pro�les present better agreement than the pressure
between 1D and 2D? When the model is deformed, the density along colatitude θm is set to
be equal to the one from the resolution of the 1D structural equations. At the end of the
deformation, the density pro�le is corrected so that the total mass of the deformed model
matches the one of the initial 1D model. As we have seen in previous section, this correction is
small. Furthermore, in order to produce this �gure, i.e. to compare densities from 1D and 2D
models, at the same mass coordinates, I had to re-interpolate the density pro�les using a cubic
spline which may have introduced small numerical errors. On the other side, the pressure
pro�les of the 2D models are computed in a di�erent way. Once φ̃`, ρ̃`, r̃p,` and geff are known,
the new pressure pro�le is integrated using Eq. (6.22).

∂p

∂r
= −ρ

(
∂φ

∂r
− Ω2rp sin2 θm

)
. (7.11)

In order to integrate this equation, we assumed that the pressure at the upper atmosphere
limit is zero, which physically is not exactly true. This assumption has almost no impact on
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Figure 7.11: In this �gure x1D is understood as the quantities written in the 1D acor input �le and x2D(θm)
is understood as the quantities written in the 2D acor input �le. Those acor input �les are the result
of the pre-processing by acor of a cestam 1D or 2D output �le. The colour code for the mass of
the non-rotating models: 0.8M� (blue), 1M� (orange), 1.5M� (green) and 2M� (red) Top le�: Relative
di�erences of the pressures p(r) as a function of r/R?. Top right: Relative di�erences of the densities
as a function of r/R?. Bottom le�: Relative di�erences of ∂p/∂r as a function of r/R?. Bottom right:
Relative di�erences of ∂ρ/∂r as a function of r/R?.

the �nal pressure at the centre. However, the pressure in the upper regions of the star may be
signi�cantly impacted, which explains the disagreement of order 10% in the upper atmosphere.

Let us now take a look at the second row of Figure 7.11 where the relative di�erences
η(∂p/∂r) and η(∂ρ/∂r) are presented. The derivative of the pressure shows much better
agreement than the pressure itself in the upper 99% of the star. This is consistent with the
fact that the discrepancies in the pressure pro�les come from the integration constant, not
from the computation of Eq. (7.11). The only notable di�erence is near the centre where the
relative di�erences are of order 1%. This could be explained by the extra layers added by
acor, but also by the interpolation that we used to produce the �gure, which, near the limit
of the interpolation interval may be less reliable. On the contrary, the radial derivatives of
the densities display a lot of glitches. We found one located around r/R? = 0.1, one around
r/R? = 0.7 and at the surface. The peaks around r/R? = 0.1 are present in the 1.5M� and 2M�
models, while the ones around r/R? = 0.7 are present in the 0.8M� and 1M� models. They
translate the transition from a convective to a radiative zone in the �rst case and the reverse in
the other one. In the �rst case, the relative error increases by around 5 orders of magnitude,
and 2 orders of magnitude in the second case. Despite being localized in a very thin region,
these errors impact the boundary conditions and may cause a shi� in the frequencies. We
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Figure 7.12: Zoom in on the pressure and density pro�les and their respective radial derivatives. The
colour code for the mass of the non-rotating models: 1.5M� (green) and 2M� (red). Quantities from the
1D models are represented as solid lines, and from the 2D models as dotted-dashed lines. The quantities
pc and ρc are the central pressure and density.

see that the model with the smallest δν1,2 was the 0.8M� model and it also has the smallest
increase of η(∂ρ/∂r). The model with the largest δν1,2 was the 1.5M� model and it also has
the highest increase of η(∂ρ/∂r). The rise of relative errors at the surface may also cause a
shi� of frequency, for similar reasons.

However, it does not explain everything: if the problem was only an issue in the compu-
tation of the derivatives, δν4,2 should be always much smaller than δν1,2. It is not the case for
the 2M� model (see Fig. 7.10). In this case, the important δν4,2 may be only caused by the
high η(p) at the surface displayed in top le� panel of Fig. 7.11.

For the moment, we only looked at how do the data stored in the input �les compare. We
looked at the reliability of two di�erent numerical methods in approaching a derivative: either
using the B-Spline representation or a 2nd order �nite di�erence scheme. However, we did not
look at the physics. From the Brunt-Väisälä frequency pro�les in the middle right panel of Fig.
7.9 and the middle le� panel of Fig. 7.10, we see a sharp peak around r/R? ' 0.1 this peak
is not there in the lower mass models (except in the old 1M� model). The peaks observed in
the plots of Fig. 7.11 are caused by numerical approximation, but they also reveal a physical
fact of interest. The gap in the frequencies computed from input 1 and input 2 are therefore
partly linked to a bad reproduction of the physics of the model at the peak locations. Figure
7.12 represents a zoom on the pro�les of ρ, ∂ρ∂r , p and ∂p

∂r , where the glitches occur, for the two
higher mass models. The glitch in the 1.5M� is extremely localized: it occurs in one layer,
while the one in the 2M� occupies more than 10 layers. The glitches mark the discontinuity
between the convective and radiative zones. This di�erence signi�cantly impact the quality of
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the derivative, especially for the one computed with the B-Splines (see Fig. 7.12). B-Splines
are known not to reproduce rapid variations well. However, one could set up the B-Splines
basis to handle such discontinuities. The routines that would allow us to do that have already
been implemented in cestam for other purposes and will soon be used for the generation of
2D outputs.

On the contrary, the glitches in the pressure pro�les are very small and the derivatives
are well reproduced. In particular, the one of the 2D model is not interpolated but computed
physically from Eq. (7.11). The handling of glitches in mode frequency computations is one of
the current most important problem in asteroseismology (e.g. Verma et al., 2014; Pinçon, 2019).

7.1.3 Impact of various numerical parameters

The method used to deform the star depends on several numerical parameters. Its precision is
mainly impacted by the number of Legendre polynomial that enter the decomposition of each
�elds and of the number of angular sectors in the angular mesh. We study the in�uence of
those parameters in the following sections.

Maximal order `max in the Legendre decomposition

As we have already seen, in the 2D version of cestam, any scalar f is decomposed on Legendre
polynomials:

f(p, θ) =
`max∑
`

f̃`(p)P`(cos θ). (7.12)

All odd degree f̃` with ` odd are zero, due to the symmetry with respect to the equator. The
degree `max is decided by the user at the beginning of a simulation. The current implementation
supports `max ≤ 8, but adding more Legendre polynomial would be simple.

In order to test how an increase of `max impacts the evolution of a stellar model, we
computed four models with `max = 2, 4, 6 and 8, with mass 1.6M�, initial disk period of 3.5
days and disk lifetime of 5 Myr. The evolution was pushed until 200 Myr. It must be noted
that the model with `max = 8 crashed at a few Myr old. This suggest that adding P8(cos θ)
destabilized the computation and the term f̃8 was physically insigni�cant. Including the term
P8(cos θ) for a faster rotating model could be interesting, but not in this case. The model
with `max = 6, crashed several times during its evolution, however, I was able to resume the
computation until reaching the desired age. The models with, `max = 2, `max = 4 and `max = 6
will be called model P2, model P4 and model P6. I will come back to it later but I must stress
that we neglected the variation of θm caused by the inclusion of P`>2. It must be recalled
that the the deformation module does not need the knowledge of this angle, but it is needed
a�erwards because the 1D structure is supposed to match the 2D structure at θm.

Figure 7.13, top le� panel, displays a meridional cut of the angular velocity in the model. We
see that Ω is of the order of 37% ΩK, which makes the star signi�cantly deformed. Nonetheless,
much strongly deformed models can be computed (see Figure 7.2). The polar radius is around
94% of the equatorial radius. The top right panel is a Kippenhahn diagram. A vertical slice
represents the convective zones (grey) and the radiative zone (white) at a given age. At the
�nal age (200 Myr), the model has a small convective core that concentrates around 18% of
the mass and a very thin convective envelope. The bottom le� panel represents the rotation
pro�les of models P2, P4 and P6. While the rotation pro�les are comparable, small di�erences
have appeared. Increasing the value of `max has changed the values of fp and ft and in turn
has a�ected the structure. The hr diagram of the bottom right panel show no discrepancies
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Figure 7.13: Various internal quantities from three models with 1.6M�, an initial disk period of 3.5 days
and disk lifetime of 5 Myr, but with the deformation computed with `max = 2 (blue curves), `max = 4
(orange) and `max = 6 (green), therea�er labelled as the P2, P4 and P6 models. These four models have an
age of 200 Myr and a core mass fraction of hydrogen of 68%. Top le�: Meridional cut showing rotation
pro�le in the P2 model. The angular velocity is normalized by the Keplerian break-up velocity ΩK,surf
computed at the surface. The radius is normalized by the equatorial radius. Top right: Kippenhahn
diagram of the P2 model, representing the evolution of the mass locations of the convective zones
(grey areas) and of the radiative zone (white area), as a function of time. Bottom le�: Angular velocity
normalized to ΩK,surf as a function of the normalized equatorial radius for the three models. Bottom
right: Hertzsprung-Russell diagram of the three models.
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Figure 7.14: Same models and colour codes as in Fig. 7.13. The superscript refers to the model from
which the quantities are computed. Top le�: Logarithm of the density pro�le and of the �uctuations ρ̃`/ρ,
as a function of the normalized equatorial radius. The limits of the convective zones are represented
by the vertical dashed black lines.Top right: Relative di�erences of ρ with respect to ρP2 computed in
model P2 as a function of the normalized equatorial radius. Bottom le�: Relative di�erences of ρ̃2 with
respect to ρ̃P2

2 as a function of the normalized equatorial radius. Bottom right: Relative di�erences of ρ̃4
with respect to ρ̃P4

4 as a function of the normalized equatorial radius.

in the evolutionary tracks. All these changes are certainly not measurable, at least for a star
which such parameters, but they must be kept mind because they could have lead to larger
di�erences if the evolution was to be pushed further.

One last point: in the hr diagram, we notice that, at the beginning of the evolution in the
top right corner, models make a hook to the cool side of the diagram. This is the result of
a small numerical trick that I had to implement in order to avoid rotational break-up at the
start of an evolution. As I said in Chapter 1, a stellar evolution is started with a cloud that
already has the desired mass and that is self gravitating but it also has a very large radius. Of
course, if we impose a small initial rotation period (therefore large Ω), the break-up velocity is
immediately reached and the model can not collapse. It may be a consequence of the simpli�ed
modelling of the star formation. In order to be able to evolve fast rotating star and to pass
this di�cult period, I impose for several time steps (in this case 3) an initial period 10 times
higher than the one asked by the user. A�er those time steps, the real initial period is set-up
and the model continues its evolution. The number of initial time steps that are computed in
a reduced rotation rate regime must be adjusted manually. At a given initial rotation period,
it also depend on the mass: the heavier the model, the larger the initial radius. However, in
order to simplify the comparisons, the same number of slow rotating time steps have been
set for all the models. In the Hayashi track, soon a�er the desired period of rotation has been
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set, a second hook is observe, still going to cool side of the hr diagram. This hook signals
the appearance of a central radiative zone which will rapidly extends almost to the top layers.
The entropy of radiative zone is an increasing function of the radius while it is constant in a
convective zone (except in the superadiabatic zone). Therefore, when an initially convective
region becomes radiative, the central entropy must decrease so that that the entropy can
increase with the radius. The entropy reduction translates in a loss of heat and and the core
contracts. The contraction reduces the stellar surface and the luminosity decreases.

In Fig. 7.14, top le� panel, we displayed the values of log ρ and log |ρ̃`| for all three models,
whenever it was possible. The other panels display the relative di�erences between model
P`max and the reference model P2 (an arbitrary choice) of ρ (top right), ρ̃2 (bottom le�) and
ρ̃4 (bottom right). All those quantities are in very good agreement. Was it expected ? If one
had extended the Legendre decomposition to an unnecessary order `max, the coe�cient ρ̃`max

would not re�ect a physical meaning. Then, if one pushes the decomposition further to `max +1,
coe�cient ρ̃`max would not have the same value because its value is the result of numerical
artefacts. It does not contain physical information. The fact that all coe�cients keep a very
similar value when `max is increased is a good indication regarding its physical signi�cance.

In our case, the highest discrepancies between the ρ̃` are found near r/Req ' 0.1, at the
location of the limit of the core convective zone. Here, gradients of angular velocity are stronger
and may perturb the estimation of ρ̃`. Furthermore, a small change in ρ and ρ̃` induces small
shi� of the location of the limit and therefore increases the disparities between the di�erent
models. Overall, even in this region, the agreement between the ρ̃` stays very good. We also
see that, around r/Req ' 0.7 a sharp peak occurs in the pro�les of log |ρ̃`|. These peaks mark
the location where ρ̃` change sign. The change of sign corresponds to the change of a region
with decreasing Ω as a function of the radius to a region of increasing Ω. Since rotation pro�les
are not the same from one model to another, the location of the peaks varies and leads to
important discrepancies in each pro�les of ρ`.

We performed the same comparison on models with the same initial parameters (mass and
rotation of the disk) but much older (1.78 Gyr), on the sub-giant branch (see Fig. 7.15). This
time, the model with `max = 6 is not shown. Despite I manage to compute the evolution until
the desired age, the rotation pro�le became, at some point of the evolution, completely �at. It
suggests a computational problem somewhere. This point le� aside, we see on the meridional
cut representing the angular rotation pro�le (7.15, top le� panel) that the ratio of the polar to
equatorial radii has not evolved much. In contrast, the radial gradient of Ω has signi�cantly
sharpened, with a di�erence of rotation rate of around 40% between the core and the surface
while it was around 6% for the younger models. This phenomenon is of course due to the
contraction of the core and the dilation of the envelope. With an additional mechanism of
transport of am, the gradient would certainly be reduced. The changes in the evolutionary
track are not visible, nonetheless, we see that the core rotation of the model P2 is a little lower
than the one of P4. Model P2 has a core hydrogen abundance of 5.8% while model P4 have
respectively 7.3%. Its seems that model P2 evolved slightly faster than the other two and it
could explain the higher increase of the core rotation rate. The good agreement between the
ρ and ρ̃` for all models is still good. The ordering ρ� ρ̃2 � ρ̃4 is also preserved is the whole
radiative zone.

As a �nal test, we applied the same treatment on two models with 2M� and 800 Myr
(Xc ' 27%). This grid contains only two models because models P6 and P8 crashed during
the pre-main sequence. The initial rotation conditions were the same as before: τdisk = 5
Myr and Pdisk = 3 days. The star is signi�cantly more distorted than before with Rp/Req '
82%. Conclusions similar to what we found before can be drawn. The rotation pro�les are
quite similar between Model P2 and P4 and the evolutionary tracks are almost identical. The
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Figure 7.15: Same as in Figs. 7.13 and 7.14, but at 1.78 Gyr, i.e. at the beginning of the sub-giant phase.

199



Validation, results and performances

0.00 0.25 0.50 0.75 1.00

r(θ = π/2)/Req

0.65

0.70

0.75

0.80

Ω
/
Ω

K
,s

u
rf

Model P2

Model P4

3.73.83.9

Teff [K]

0.75

1.00

1.25

1.50

lo
g
L
/
L
�

Model P2

Model P4

−10

−5

0

log |ρ|
log |ρ̃2|

log |ρ̃4|

r(θ = θm)/Req

−4

−3

−2

−1

log
∣∣∣ ρ
P4−ρP2

ρP2

∣∣∣

0.2 0.4 0.6 0.8 1.0
r(θ = θm)/Req

−2

0

log

∣∣∣∣
ρ̃
P4
2 −ρ̃

P2
2

ρ̃
P2
2

∣∣∣∣
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abundance is ∼ 27%.
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Figure 7.17: Variation of angle θm as a function of r/Req for a 1.6M� model with τdisk = 5 Myr and
Pdisk = 3 days, and at an age of 1Myr (le�) and of 200Myr (right).

quantities ρ and ρ̃` compare as before in a large portion of the star, i.e. ρ̃4 � ρ̃2 � ρ.
It is unfortunate that the model with `max = 6, 8 crashed during the pms. Indeed, since the

star is much more deformed, they should be needed. It may be that the inclusion of these
higher order prevents the good convergence of the deformation module during the pms but
would help it a�er, once the contraction is �nished. In the future, it would be interesting
to implement a method to adapt `max to the situation and make it possible to vary during
evolution.

Variation of θm

The question of how to take variations of θm into account is yet to be solved. In Fig 7.17, I
present the values of the angle θm as a function of the radius determined with the method
described in 6.2.3, for the model P4, with 1.6M� at 1 Myr old (le� panels) and 200 Myr old
(right). In the young model, di�erences of order 100 mrad are limited to the surface region. In
the evolved model, θm increases in almost all the star (while the maximal di�erence compared
with arccos(1/

√
3 is still of order 100 mrad). It must be noted that θm was computed a posteriori

and for the whole simulation we assumed θm = arccos(1/
√

3). The deformation module is able
to account for a non constant θm. However, in the early phase of this model, aberrant values
of θm have been found in the atmospheric regions: θm increases by ∼ 0.1 rad in a single layer
or even no solutions at all in the [0, π2 ] interval. These "glitches" led cestam to crash at a
very early age while the computations would probably go well once this complicated phase is
passed. It is worth noting that the peak we see on the bottom right panel of Fig 7.17 cannot
be quali�ed as a glitches because, here, the variation is of the order of 1 mrad between two
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Figure 7.18: Meridional cut of of 1.6M� models with varying nθ and `max = 2. Models are described in
Table 7.1. Axes represent the r(p, θ)/Req and the aspect ratio between the two is the axes is the same.
The number of angular sectors in each models is indicated in the title of each plots. The le� part of
the meridional cut represents ρ(p, θ)/ρ− 1 and the other half represents the angular velocity pro�le (Ω
depending only on p) in percents of ΩK,surf .

layers while the glitches that make cestam crash are of order 100− 1000 mrad.
In Sect. 6.2.3, I proposed several solutions on how to account for the variation of θm in

the deformation module. It seems, in the view of Fig. 7.17, that the only good proposition is
the last one, i.e. evaluate θm at every layers of the model and represent it as a function of the
radius. It remains to �nd a way to avoid the problems of the glitches. It would certainly be a
way of improvement for the future.

Number of angular sectors

The last point that needs to be investigated is the in�uence of the number of angular sectors
on the quality of the models. Let us recall that nθ is the number of angles used in the Gauss-
Legendre quadrature. These angles lie in the interval ]0;π/2[. To these nθ angles, 3 ghost
angles are added: 0, π/2 and θm. The �rst two are added so that the solutions are known at
the poles and at the equator, allowing us to plot continuous 2D functions. They do not improve
the quality of the solutions of the various equations that are solved by the deformation module.
Indeed, these solution are determined only by using the nθ angles. We already talked in details
about the last ghost angle θm. It is kept in the angular mesh because at this precise colatitude,
the 2D quantities match the 1D structure. One last point: the acor code only uses the quantities
de�ned at the nθ angles and does not use the ghost ones.

In order to test the in�uence of nθ on the quality of the models, we computed a grid of
models (see Table 7.2) with three di�erent masses and a varying number of nθ. They are
evolved up to 200 Myr. In all models, the decomposition in Legendre polynomials is stopped
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at `max = 2. Because the models with 1.6M� are the most deformed, we also computed three
models with a mass of 1.6M� and `max = 4. They will be described in more detail later.

Figure 7.18 represents the meridional cut of the 1.6M� models (with `max = 2) for di�erent
values of nθ. Lower mass models are less deformed and therefore we do not represent their
2D shape. The le� side of each meridional cut represents the density �uctuations with respect
to the 0th-order component of the density in the Legendre decomposition: Θ2 − 1. The right
side is the angular velocity in unit of ΩK. It is quite easy to see in the �rst 2D map (�rst
column, �rst row) that there are 5 angles in each interval [(i− 1)π/2; (i− 1)π/2]i=1,2,3,4: the 2
from the Gauss-Legendre quadrature and the 3 ghost angles. We already see, for instance, by
looking at the maximum value of Ω in the colour bar, that the rotation pro�les are not found
identical when nθ varies.

We computed the radial mode frequencies using acor for each of these models. At each
mass, we took as reference model the one computed with 240 quadrature angles. For all sets
of models with same mass, we computed the frequency di�erences between a model with any
nθ and the reference model. We denote these frequency di�erences as δνnθ = νnθ − νnθ=240.
The frequency di�erences are displayed in Fig. 7.19. It must be noted that at all masses, δνnθ=2

n

is so high that it almost never �ts in the frames. The frequency resolution speci�cation of
plato is 0.2 µHz, therefore, we would want the frequency di�erences to converge below this
threshold as nθ increases.

The results plotted in Fig. 7.19 do not match these requirements. First of all, we would
expect the frequency di�erences to decrease as nθ increases, i.e. |δν2

n| > |δν4
n| > . . . > |δν200

n |.
However, in all panels, the better agreement with the reference model is never reached for
the models with the highest nθ. The models with 1M� are the one that show the better
agreement. Models with any nθ ≥ 8 have frequency di�erences falling bellow the threshold of
0.2 µHz. We also notice that in the top panel of Fig. 7.19, all δνnθn follows a linear trend. This
is the result of a small variation in the value of the large separation ∆ν, which is proportional
to the mean stellar density. The mass of the model is the same but the radius is not. The
equatorial and polar radius are nearly the same for all 1M� models (see Table 7.2), at least up
to 3 digits, but the small di�erence can produce a di�erence of ∆ν ' 0.01 µHz which adds up
to a δνnθn ' 0.2 µHz for the radial modes with n ' 20.

In the second set of models with 1.2M�, δνnθn is again of order 0.1 µHz but many models have
their δνnθn rising above the plato resolution threshold. Surprisingly, models with poor angular
resolution, nθ = 8 and nθ = 32 display signi�cantly better results than the high resolution
ones. These good performances may be accidental. The majority of the models have there
δνnθn varying linearly, due to changes in the large separation. Looking at Table 7.2, we see that
the changes of Req and Rp from one model to another are more signi�cant. Although, in some
models, especially the one with nθ = 8, δνnθn do not follow a linear trend. Such variations
probably signal more serious changes in the structure of the star than a simple tiny change in
the mean stellar density.

Finally, let us study the frequency di�erences in the last set of models with 1.6M� (with
`max = 2). Here, the δνnθn are enormous, of order 1 µHz if not more. The frequency di�erences
δνnθn still varies almost linearly but this time we can see small wavelets superimposed to the
linear trend. We actually already saw similar wavelets, although much more pronounced, in
the frequency di�erences induced by the surface e�ects (for instance bottom panel of Fig. 2
in Manchon et al. 2018). These wavelets were caused by glitches due to discrepancies in the
locations of the HI and HeII ionization regions. The wavelets observed in the bottom panel of
Fig. 7.19 are probably not caused by a shi� of the location of these ionization regions because,
these would a�ect high frequency modes. However they could be caused by other small
changes in the structure, deeper in the star, for instance the location of the the boundaries of
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Table 7.2: Grid of models with varying number of points nθ in the angular mesh used for the Gauss-
Legendre quadrature. The models have three di�erent masses, di�erent initial rotation conditions and
an age of 200 Myr. All models are computed with `max = 2, except the last three for which `max = 4.
The angular velocity Ω is given as a percentage of ΩK at the surface and at the �nal age of the models.
The quantity Xc is the abundance of hydrogen at the centre. The radii Req and Rp are the equatorial
and polar radii. The quantities p† and ρ† have been de�ned in Eq. (7.9) and have the dimension of the
inverse of a pressure and of a density.

Model nθ Ω Xc Teff Req Rp p† ρ† ΩK
[% ΩK] [%] [K] [R�] [R�] [cgs] [cgs] [mrad s−1]

1M�, Pdisk = 3 days, τdisk = 5 Myr
M10N2 2 13.42 58.58 5647 0.952 0.944 9.162 · 10−16 1.836 0.6758
M10N4 4 13.39 58.58 5648 0.952 0.943 9.158 · 10−16 1.835 0.6759
M10N8 8 13.41 58.58 5647 0.952 0.943 9.162 · 10−16 1.836 0.6758
M10N16 16 13.40 58.58 5647 0.952 0.943 9.164 · 10−16 1.836 0.6757
M10N32 32 13.40 58.58 5647 0.952 0.943 9.165 · 10−16 1.836 0.6757
M10N64 64 13.41 58.58 5647 0.952 0.943 9.166 · 10−16 1.836 0.6757
M10N128 128 13.40 58.58 5647 0.952 0.943 9.165 · 10−16 1.836 0.6757
M10N200 200 13.40 58.58 5647 0.952 0.943 9.164 · 10−16 1.836 0.6757
M10N240 240 13.41 58.58 5647 0.952 0.943 9.166 · 10−16 1.836 0.6757

1.2M�, Pdisk = 4 days, τdisk = 5 Myr
M12N2 2 18.70 62.04 6212 1.198 1.179 1.599 · 10−15 3.053 0.5240
M12N4 4 18.72 61.74 6213 1.199 1.180 1.605 · 10−15 3.062 0.5233
M12N8 8 18.70 61.76 6212 1.200 1.179 1.606 · 10−15 3.063 0.5232
M12N16 16 18.69 62.03 6211 1.198 1.178 1.600 · 10−15 3.055 0.5238
M12N32 32 18.69 62.03 6212 1.198 1.178 1.600 · 10−15 3.054 0.5239
M12N64 64 18.72 62.03 6212 1.198 1.178 1.600 · 10−15 3.055 0.5238
M12N128 128 18.72 62.05 6211 1.199 1.178 1.601 · 10−15 3.056 0.5238
M12N200 200 18.68 62.02 6212 1.198 1.178 1.600 · 10−15 3.055 0.5239
M12N240 240 18.65 62.03 6212 1.198 1.178 1.600 · 10−15 3.054 0.5239

1.6M�, Pdisk = 3 days, τdisk = 5 Myr
M16N2 2 41.94 68.14 7489 1.576 1.454 2.688 · 10−15 5.206 0.4013
M16N4 4 42.24 68.25 7487 1.578 1.453 2.707 · 10−15 5.233 0.4003
M16N8 8 42.55 68.14 7483 1.582 1.452 2.733 · 10−15 5.270 0.3989
M16N16 16 42.45 68.15 7482 1.582 1.451 2.729 · 10−15 5.265 0.3990
M16N32 32 42.79 68.12 7466 1.588 1.455 2.775 · 10−15 5.331 0.3966
M16N64 64 42.33 68.21 7475 1.582 1.451 2.731 · 10−15 5.267 0.3990
M16N128 128 42.35 68.11 7485 1.581 1.451 2.727 · 10−15 5.262 0.3992
M16N200 200 42.48 68.10 7473 1.587 1.455 2.764 · 10−15 5.316 0.3971
M16N240 240 42.41 68.14 7478 1.583 1.452 2.737 · 10−15 5.276 0.3986

1.6M�, Pdisk = 3 days, τdisk = 5 Myr, `max = 4
M16N128L4 128 42.31 68.11 7485 1.581 1.451 2.727 · 10−15 5.262 0.3992
M16N200L4 200 42.22 68.11 7479 1.582 1.452 2.731 · 10−15 5.268 0.3989
M16N240L4 240 42.35 68.11 7482 1.582 1.452 2.734 · 10−15 5.272 0.3988
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Figure 7.19: Seismic comparison of the models described in Table 7.2. Frequency di�erences between
the mode frequencies of models with the same mass but di�erent nθ , compared with a reference model
with nθ = 240. Top: Models with 1M�. Middle: Models with 1.2M�. Bottom: Models with 1.6M� and
Legendre decomposition stopped at `max = 2.
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Figure 7.20: Same as in Fig. 7.19 but with the 1.6M� models computed with the Legendre decomposition
extended to `max = 4.

the convection zones.
How can we explain these bad results? Models with 1.6M� are rotating signi�cantly faster

that the ones above. There rotation rates are around 42% ΩK while they were ∼ 13.4% ΩK for
the 1M� models and ∼ 18.7% ΩK for the 1.2M�. Because of the fast rotation, the error made
when computing the values of parameters fp, fT and fd, etc. from one model to another is
much more important than for slow rotators. As these coe�cients directly impact the structure
and the evolution, it may be possible that during the evolution, the structures of these models
slowly diverge from each other. Therefore, the models on which we computed frequencies
are signi�cantly di�erent. This is the reason why we compared models that are only 200 Myr
old: it reduces the structural di�erences due to evolution. However, we would have expected
a better agreement with the reference model as long as nθ increases, which is not the case.
Another source of error comes from acor itself. Indeed, the θ derivatives that are calculated
using �nite di�erence methods are of course strongly in�uenced by the resolution of the angular
mesh. A last explanation comes from the fact that we limited ourselves to a decomposition up
to `max = 2. In fact, it is likely that at such rotation rates, this simple decomposition "misses" a
large fraction of the �uctuations of the various �elds over isobars, which in the end lead to large
di�erences between the models with 1.6M�. In order to check if the inclusion of a higher order
Legendre polynomial in the decomposition would improve the agreement between models with
di�erent nθ, we computed another set of models with 1.6M� and `max = 4. Unfortunately, we
were not able to keep cestam running with nθ < 128 and `max = 4. All defective models
stopped at the same age, around 2 Myr, when the surface rotation rate reaches a maximum
due to contraction. The use of a higher order Legendre decomposition seems to require a high
resolution angular mesh in order to be stable.

Nonetheless, we managed to carry out the evolution up to 200 Myr for models with nθ =
128, 200 and 240. The frequency di�erences between their spectrum and the reference spectrum
of the nθ = 240 model are displayed in Fig. 7.20. The frequency di�erences δν128

n are not
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Figure 7.21: Comparison of quantities related to the 2D geometry computed with a varying nθ. The
colours code for nθ and their meaning is given in the legend of le� panel in the 3rd row. In all the
subplots, η de�nes the relative variation of a quantity x as η(x) =

∣∣(xnθ − xnθ=240)/xnθ=240
∣∣. In the top

right panel, η(Θ2) is not signi�cant outside the convective zone boundaries because in the present case
of shellular rotation, ρ̃2 = 0 in the convective zones.
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changed much, however, δν200
n are almost divided by a factor ten. This is encouraging and

shows the importance of stopping the decomposition at the right order `max. Nevertheless,
the δνnθn stay very high and are still not satisfying. They can be explained by the conjugated
e�ects of remaining discrepancies and error in the determination of θm. Concerning the �rst
e�ect, the global parameters presented in Table 7.2 show signi�cantly reduced discrepancies
from one model to the other compared with what we had when P4 was not included, but they
remain quite large. Figure 7.17 shows the variation of θm in model M16N240L4 (see Table 7.2).
I recall that the computation of θmis performed a posteriori because the implementation of a
varying θm into cestam is too unstable for the moment. The gap between θm and arccos(1/

√
3)

are stronger close to the surface. The impact should be rather similar as the surface e�ect
induced by the omission of the turbulent pressure in the structure and mode equations. Indeed,
in Fig. 7.20 δν200

n do not follow a linear trend symptomatic of a variation of ∆ν, but more a
power of a shi�ed frequency, similar to surface-induced frequency di�erences.

Let us now take a closer look at the structure di�erences of all these models. For clarity,
we only took a look at structure variations in the 1M� set of models, that showed very good
frequency agreements, and at structure variations in the 1.6M� set of models (with `max = 2),
that showed very bad frequency agreements. Figure 7.21 is devoted to the 1M� models and Fig.
7.22 to the 1.6M� ones. In these plots we display the relative variations of various quantities
between a model with nθ = i and a reference model with nθ = 240. The relative variation for
any quantity X is denoted:

η(X) ≡
∣∣∣∣∣Xnθ −Xnθ=240

Xnθ=240

∣∣∣∣∣ . (7.13)

It is interesting to notice that the gap between the model’s structure and reference’s structure
reduces when nθ increases. This feature was not observed when studying the frequencies. Its
not true for all the quantities represented (e.g. fp second row and column or fd third row, �rst
column), but the agreement is already very good. Surprisingly, we see that the model with
nθ = 64 for the set of 1M� and nθ = 8 agree signi�cantly better with the reference model than
the other ones. The reason why this happens is not clear yet but these two models also have
the smallest frequency di�erences in Fig. 7.19, top and bottom panel. In Fig. 7.21, �rst panel,
the density pro�le agrees at least to 10−3 with the reference model, except near the surface
where the relative di�erences reach values of order 10%. Fortunately, these large errors are
restricted to very few layers at the surface. However, we see in the plot in Fig. 7.22 that
these large discrepancies exist in a much wider region, probably causing the large frequency
di�erences displayed in the bottom panel of Fig. 7.19. As we said in the previous section of
this Chapter, these errors at the surface may, in part, be from a numerical origin and some
hope exists that they could be reduced with no need to increase nθ or the maximum order of
the Legendre decomposition. More generally, if we compare each corresponding plot in both
�gures, we see that the relative errors are almost 100 times higher for the 1.6M� models than
the 1M� ones. In addition, in Fig. 7.21 we see that, very o�en, the structure of models with
nθ = 128 and 200 agree signi�cantly better with the reference model than models with lower
nθ. In Fig. 7.22, the relative errors associated with models with nθ = 128 and 200 are always
almost of the same order as the models with lower nθ.

What are the take away from this last section? First, the 2D version of cestam seems to
give pretty reliable deformed structures and frequency spectra provided that the modelled star
is a slow rotators (Ω . 10% ΩK) and that nθ > 50. Second great care should be taken when
modelling fast rotators. Choosing to decompose quantities up to `max = 2 implicitly amounts
to saying that higher order components are very small compared with the lower ones. This
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Figure 7.22: Comparison of quantities related to the 2D geometry computed with a varying nθ. The
colours code for nθ and their meaning is given in the legend of le� panel in the 3rd row. In all the
subplots, η de�nes the relative variation of a quantity x as η(x) =

∣∣(xnθ − xnθ=240)/xnθ=240
∣∣. In the top

right panel, η(Θ2) is not signi�cant outside the convective zone boundaries because in the present case
of shellular rotation, ρ̃2 = 0 in the convective zones.

209



Validation, results and performances

hypothesis should be tested and the precision of the modelling adapted to speci�c situations.
However, cestam now allows great re�nements of the description of the geometry.

7.2 Validation of the new transport of angular momentum pre-
scription

Now that the deformation module has been thoroughly tested, we can move to the second
part of cestam’s new skills: the new prescription for the transport of angular momentum (am)
supported by some insight in the 2D geometry obtained with the deformation method. This
new prescription cannot be used without the deformation module. Moreover, the computation
of degrees ` > 2 for U` and Ω` cannot rely on crude approximations but must take advantage of
the �ne description of the 2D geometry allowed by the Roxburgh (2006)’s method. Therefore,
the models computed with the old transport of am prescription and without deformation
will be o�en referred to as 1D models and the ones with the new transport of am and the
deformation will be called 2D models. We start by checking that the am is well conserved
and then we present some results and a comparison with the models computed with the old
version of cestam.

7.2.1 Conservation of angular momentum

Similarly to the previous section, one needs to verify that our method for the resolution of the
equations for the meridional circulation velocity and transport of am does conserve am. This
time, there is no need to check that mass is conserved because this method does not modify
internal structure. Again, we computed a grid of models computed with the old and with the
new prescription of transport of angular momentum. Each pairs of 1D and 2D models have
the same initial conditions, except for the treatment of the rotation. Models computed with
old version of cestam use the formalism of Talon et al. (1997) (herea�er T97) and of course, no
deformation. The models computed with the new version incorporate the deformation and the
model of transport of am developed by Mathis & Zahn (2004) (herea�er M04) which will allow
us to compute terms with ` > 2. The main global parameters of this grid are summarized in
Table 7.3.

The di�erences between the formalism of T97 and M04 are the following. M04 developed
an expression for the coe�cients U`, Ω`, etc., for any ` ≥ 2, while T97 stopped at ` = 2.
M04 also tried to make the resolution of there expressions less sensitive to sharp composition
gradients, numerically speaking. Therefore, the expressions found in M04 only depend on
derivatives of Ψ`, while the one in T97 depends on both ∂Θ`/∂r and ∂Λ`/∂r. In addition,
in M04, only the Schwarzschild criterion appears (∇ad − ∇), while T97 introduce Ledoux’s
criterion (∇ad−∇+ϕ∇µ/δ). Last but not least, T97 uses an approximation for the �uctuations
of the gravity:

g̃`
g
' 4

3

(
Ω2r3

GM

)
(7.14)

While M04 provide a full expression, for any ` ≥ 2 in the case of shellular pro�le. In our case
we use the value provided by the deformation module and in the near future, we will add the
possibility to compute higher order terms (` > 2.

It must be noted that we did not solve the equations for Ω2 and ∂Ω2/∂r because our
algorithm is not stable enough for the moment. It su�ers from the so-called 2∆x oscillations.
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7.2. Validation of the new transport of angular momentum prescription

Table 7.3: Small grid containing 20 models. Half of them are computed with the old approach, using
Talon et al. (1997) formalism of transport of angular momentum and the other half is computed with
deformation and Mathis & Zahn (2004) formalism. The initial disk lifetime is 5 Myr for all models and
there are no wind-induced loss of angular momentum. The 2D models use 240 angular sectors (without
counting the ghost angles) and `max = 2. The quantity Xc is the abundance of hydrogen at the centre.
The radius R? is the radius of th star taken at the characteristic angle θm.

Model M Pdisk Geom- tfinal Ω(tfinal) Xc Teff R? log L
L�

M� days etry Gyr % ΩK,surf K R�
M08P03G1D 0.8 3 1D 14 11.82 0.267 5120 0.82 −0.3
M08P03G2D 0.8 3 2D 14 13.66 0.274 5053 0.83 −0.4
M08P10G1D 0.8 10 1D 14 3.86 0.264 5137 0.82 −0.38
M08P10G2D 0.8 10 2D 14 3.87 0.267 5128 0.82 −0.38
M10P03G1D 1.0 3 1D 4.57 18.89 0.386 5746 1.00 −0.01
M10P03G2D 1.0 3 2D 4.57 19.74 0.390 5660 1.03 −0.01
M10P10G1D 1.0 10 1D 4.57 5.50 0.382 5777 1.00 0.00
M10P10G2D 1.0 10 2D 4.57 5.49 0.385 5768 1.00 −0.00
M15P05G1D 1.5 5 1D 2.5 21.84 0.0 5929 2.94 0.98
M15P05G2D 1.5 5 2D 2.5 24.54 0.0 5885 2.98 0.98
M15P10G1D 1.5 10 1D 2.5 9.60 0.0 5875 2.96 0.97
M15P10G2D 1.5 10 2D 2.5 6.58 0.0 5544 3.03 0.89
M20P06G1D 2.0 6 1D 1.026 5.68 0.0 4796 7.75 1.46
M20P06G2D 2.0 6 2D 1.026 8.08 0.0 5034 4.88 1.14
M20P10G1D 2.0 10 1D 0.546 26.93 0.418 8636 1.99 1.29
M20P10G2D 2.0 10 2D 0.545 27.66 0.425 8631 1.99 1.29
M25P04G1D 2.5 4 1D 0.539 6.29 0.0 4757 11.16 1.76
M25P04G2D 2.5 4 2D 0.539 67.52 2.5 · 10−04 9306 3.23 1.85
M25P13G1D 2.5 13 1D 0.508 38.09 1.0 · 10−05 9463 3.10 1.84
M25P13G2D 2.5 13 2D 0.508 40.52 1.9 · 10−02 8657 3.36 1.76

The equation for the radial derivative of Ω2 is (see Eq. (6.87))

E6,k = 1
2(Ω2,k + Ω2,k−1)− Ω2,k − Ω2,k−1

mk −mk−1
= Ω2k −

∂Ω2

∂m
= 0, (7.15)

supplemented by the boundary conditions ∂Ω2/∂m|top/bottom = 0. Generally Ω2k ' 0 because
the shellular approximation seems well veri�ed. Therefore, we have Ω2,k−Ω2,k−1 ' 0. A simple
solution to this equation is Ω2,k = (−1)ka and Ω2,k−1 = (−1)k−1a, with a, any real. Therefore,
consecutive values of Ω2 oscillates between a and −a, from one grid point to the other. A wavy
pattern in the variable ∂Ω2/∂m translates into a wavy pattern in the solution of Ω2. If Ω2 is
not almost 0, the equation Ω2,k − Ω2,k−1 ' Ω2 6= 0 would also accept an oscillation solution,
but the boundary condition prevents this solution from being accepted. Nonetheless, during
the main-sequence we have seen that an approximate (algebraic) equation is veri�ed by Ω2:

νhΩ2 = 1
5r [2V2 − αU2] Ω, (7.16)

which allows us to retrieve a value for Ω2 a posteriori. We will show some results for Ω2 at
the end of this section.
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Figure 7.23: Angular momentum conservation with the new transport of angular momentum prescrip-
tion. The models are the ones presented in Table 7.3. For all panels, the plotted quantities are function
of the stellar age normalized to �nal age. The colours code for the mass of the models. Models with
Pdisk = 10 with dotted-dashed lines and Pdisk = 3 days with dashed lines. The total angular momentum
of the star is J =

´ R?
0 r2Ωdm. Refer to Table 7.3 for more detail on the initial conditions. Top le�:

Absolute value of the relative variations between angular momentum at time t to angular momentum at
tfinal, in 2D models. Top right: Same as in top le� panel but with 1D models. Bottom le�: Absolute value
of the relative variations between angular momentum at time t to angular momentum at t+ ∆t, in 2D
models. Bottom right: Same as in bottom le� panel but with 1D models.

7.2.2 Comparison with the old version of cestam

The goal with this section is to present the main di�erences obtained when computing models
with identical initial parameters but di�erent treatment of the rotation. To begin, we can just
take a look at the global parameters gathered in Table 7.3. Models have been computed for �ve
di�erent masses and di�erent initial rotation conditions. The �nal age is not necessarily the
same for all models with the same mass.

Central hydrogen abundance

Let us �rst focus on core hydrogen abundance Xc. Table 7.3 shows that 2D models have always
a larger Xc that 1D models. The gap is also more pronounced with initially fast rotators. We
recall that rotation modi�es structure equations, especially by the inclusion of a factor fT /fp
(see Eqs. (1.72) and (1.85)) in the expression ∂T/∂m in radiative zones. In models computed
with old approach of transport of am, cestam is not able to compute fT and fP precisely and
the pressure gradient is modi�ed by the addition of an approximated centrifugal force:

∂p

∂m
= − Gm4πr4 + Ω2

6πr , (7.17)
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which also acts in the temperature gradient: ∂T/∂m = ∂p/∂m(T∇/p). The temperature pro�les
resulting from the old and new approaches of the transport of angular momentum are very
similar but di�ers by around 1% at the same age, 1D models being hotter. Since the nuclear
generation rates heavily depends on the temperature, a di�erence of core temperature of 1%
can produce noticeable changes in the core chemical composition a�er few Gyr of evolution.
The 2D models being slightly cooler, nuclear reactions in their core are slightly less e�cient
leading to a higher Xc than in the 1D model of same age.

One could have argued that this di�erence of Xc comes from a di�erent meridional circula-
tion velocity obtained with the old and new transport of am. Indeed, in addition to advecting
angular momentum, meridional circulation is also responsible for an advection of chemicals
(see Eq. (2.56)). During the main sequence, the advection can be treated as a di�usion process.
Its in�uence appears through the expression (2.57) of the e�ective di�usion coe�cient Deff :

Deff =
∑
`>0

r2U2
`

`(`+ 1)(2`+ 1))Dh

`=2= r2U2
2

30Dh
. (7.18)

In the equation for the transport of chemicals, the term of di�usion by shears and e�ective
di�usion by meridional circulation is of the form:

1
r2

∂

∂r

[
r2ρ(Dv +Deff)∂ci

∂r

]
, (7.19)

(see Eq. (2.56)). What is the dominant term ? Our simulations show that Deff is actually 3
to 4 orders of magnitude lower than Dv in main-sequence stars. Moreover, |U`| and Deff is
o�en found higher with the old than with the new approach (see Figs. 7.24 and 7.27), which is
incompatible with the idea that the meridional circulation would be responsible for the large
Xc in 2D models.

Is this idea also ruled out in more evolved stars? Equation (2.56) has been derived assuming
the star is slowly evolving and the characteristic time-scale of horizontal di�usion r2/Dh is
much shorter than the evolution time-scale. When this approximation is not valid, the time
derivative in Eq. (2.54) must not be neglected and the equation of transport of the mean
chemical abundances per unit mass becomes:

ρ
dci
dt + 1

r2
∂

∂r

(
r2ρ

∑
`>0

c̃i`U`
2`+ 1

)
+ 1
r2

∂

∂r

(
r2ρciU

diff
i

)
= 1
r2

∂

∂r

(
r2ρDv

∂ci
∂r

)
. (7.20)

The �rst row of Fig. 7.25 do not show striking di�erences in the magnitude of the meridional
circulation velocities obtained with old and new approaches of the transport of am. It is more
probable that the di�erence of Xc is the result of the gap in hydrogen abundance dug during
the main-sequence.

Density �uctuations over isobars

Regarding the 2nd order �uctuations of the density, the computations with the new and old
prescriptions for the transport of am produce di�erent results. They are displayed in the 2nd

row of Fig. 7.24 and 7.25. We denote by Θnew
2 (resp. Θold

2 ) the value of Θ2 computed with
the new (resp. old) approach. Going from the bottom of the radiative zone to its top (from
le� to right), Θnew

2 and Θold
2 start with quite noisy patterns that are very comparable in terms

of magnitude and extent. Θnew
2 then remains almost constant until a sharp peak that marks

the change of sign due to the change of sign of dΩ/dr. Right above this region, Θnew
2 keeps

increasing by one or two orders of magnitude until the top boundary of the radiative zone. On
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Figure 7.24: The models used in this �gure are the 0.8M� (blue) and 1M� (orange) models presented in
Table 7.1. 1st and 2nd column are respectively devoted to quantities in models computed with old and
new versions of cestam. All quantities are represented as a function of the normalized radius (along θm
in the case of the 2D models). The 1st row displays the radial velocity of the meridional circulation in
the radiative zone. The 2nd row displays the the �uctuations of density Θ2 = ρ̃2/ρ (only in the radiative
zone for the 1D models). The 3rd row is the angular velocity. For each stellar mass, we have computed
an initially fast (solid lines) and slow rotator (dashed lines). Refer to Table 7.3 for more detail on the
initial conditions. Vertical dashed lines mark the location of the tachocline.

the contrary, Θold
2 keeps increasing at a regular rate from the bottom to the top of the radiative

zone. Both Θnew
2 and Θold

2 drop to 0 at the very top. A�er the tachocline, Θnew
2 and Θold

2 are 0
because of the hypothesis of shellular rotation.

The reason for these di�erences is that we are not solving the same equations. The
coe�cient Θold

2 is computed using the approximation

Θ2 = 1
3
r2

g

∂Ω2

∂r
, (7.21)

proposed by Zahn (1992). This expression is actually the �rst order term of a more complex
expression proposed by Mathis & Zahn (2004) and reproduced in Eq. (6.91). It includes higher
order terms such as Ω Ω2 and ∂(Ω Ω2)/∂r. This description is derived assuming a shellular
rotation pro�le. And Θ2 may not have the same functional form if rotation is not shellular.
Furthermore, the solution for Θold

2 is strongly a�ected by the boundary condition at the top of
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Figure 7.25: The models used in this �gure are the 1.5M�, 2M� and 2.5M� models presented in Table
7.1. See caption of Fig. 7.24 for a description of this �gure..

the radiative zone: Θold
2 = 0. This is neither con�rmed by the results from Roxburgh (2006)’s

method nor justi�ed physically. It is a suitable choice.
Our approach is di�erent. Let me remind you how we proceed. Our treatment of rotation

in the new version of cestam is separated into two parts.

• (i): in the �rst part we solve the structure equations, then we solve our system of
equations (with unknowns U2, Υ2, Ω and ∂Ω/∂m) and we iterate until convergence.

• (ii): the second part starts at this point and we deform the 1D model by �nding ρ̃`, φ̃`,
g̃eff,`, etc.

For the computations of the �rst part, Θ2 = ρ̃2/ρ is needed and its value is known at the
previous time step. The assumption that Θ2 does not vary much from one time step to the
next is a good approximation, and we may use it. With such a choice, the di�erential equations
that provide U2 and Υ2 do not depend on Ω and are decoupled from the system of equations
for Ω and ∂Ω/∂m (see discussion in Sect. 6.3.4). Therefore we choose to approximate Θ2 by
Eq. (7.21), only in the computations of the �rst part (i). Despite being very di�erent from the
"unapproximated" value of Θ2, it has little impact on the value of U2 because it is not in factor
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Figure 7.26: Approximation of the radial velocity of the meridional circulation. The models used to
produce this Figure are models M10P03G1D (blue lines) and M10P03G2D (orange lines) of Table 7.1.
All quantities are function of the radius normalized to the surface radius and represented only in the
radiative zone. Top: Velocity (∇ad−∇)U2 (the term in parenthesis is dimensionless) in the radiative zone
as a function of normalized radius. Bottom: Approximation of (∇ad −∇)U2 by the expressions written
in the labels.

of the �rst order term. The values of Θnew
2 presented in Figs. 7.24, 7.25 and 7.27 are the one

computed with the method developed by Roxburgh (2006).

Radial velocity of the meridional circulation

It appears from the meridional velocity pro�les presented in Fig. 7.24 and 7.25 that the
magnitude of U2, especially close to the tachocline are o�en computed smaller with the new
than with the old approach of the transport of angular momentum. To get a clearer picture, we
focus on the 1M�, initially fast rotating, models (M10P03G1D and M10P03G2D; see Table 7.1).
The value of (∇ad −∇)U2 are displayed in Fig. 7.26, as well as two approximations for this
quantity. Various quantities relevant to the understanding of the variations of the meridional
circulation velocity in these models are displayed in Fig. 7.27. Let us recall the expressions of
the meridional circulation velocity given in Eqs. (2.105) and (2.106):

U` = LHp

Tcpm (∇ad −∇)

{
2
(

1− fC
4πGρ −

ε+ εg

εm

)
g̃`
g

+ f̃C,`

4πGρ −
fC

4πGρΘ`
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Figure 7.27: Quantities relevant to understanding the pro�le of meridional circulation during the ms. The
models used to produce this Figure are models M10P03G1D and M10P03G2D of Table 7.1. All quantities
are function of the radius normalized to the surface radius and represented only in the radiative zone, even
if some of them are also known outside. Solid and dashed lines correspond respectively to quantities
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density �uctuation Θ2. Middle right: 2nd order component of the gravitational acceleration �uctuation
g̃2/g. Bottom le�: 2nd order component of the mean molecular weight �uctuation Λ2. Bottom right:
Di�usion coe�cients Deff (blue), Dh (orange) and Dv (green).
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for simplicity, we dropped the p-subscripts on m and L.

The behaviour of the radial velocity of the meridional circulation is well approximated by
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the sum of two terms:
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(v)


. (7.23)

We moved the di�erence of gradients (∇ad −∇) to the other side because otherwise it would
reach zero in the denominator at the transition between the radiative and the convective zones.
The quantities ∇ad and ∇ are dimensionless therefore the le� hand side of Eq. (7.23) is still a
radial velocity. In addition, the multiplication by (∇ad −∇) do not change the general variations
of U2 (at least in our particular case. Term (ii) × (iii) in Eq. (7.23) is sometimes called the
barotropic term (Maeder, 2009) with the argument that it is the only term that exists in a
barotropic star. However, this is not exact. In a barotropic star, Θ` are indeed zero4, but
Ψ` = T̃`/T are zero if and only if Λ` = µ̃`/µ is zero too. Moreover, even if this last condition
is met, there remains the time derivative dΨ`/dt which cannot be zero in a rotation star, as
shown by the Von Zeipel paradox (see 2.2 and von Zeipel 1924). For simplicity, we keep the
denomination of barotropic term.

In Eq. (7.23), term (i) is positive because we are in a radiative zone and ∇ < ∇ad. Term
(ii) is also positive and g and g̃` are both negative therefore term (iv) is positive. During the
main sequence, the quantity ε + εg is dominated the nuclear energy generation rate ε in the
core. The denominator, εm is the average power per unit mass in a sphere. In the inner core,
(ε+ εg) /εm ' 1 (for r < 1%R� in our case). In this region, the Gratton–Öpik term fC/ (4πGρ)
reaches a �nite value. In the case of shellular rotation, the coe�cient fC is5

fC = 2
3r2

∂r3Ω2

∂r
= 2

3

(
3Ω2 + 2rΩ∂Ω

∂r

)
. (7.24)

Thus, the Gratton–Öpik term and therefore term (ii) × (iii) have a �nite, very small value at
the centre. It can be seen as a problem because it means a non-zero value of U2 at this location,
i.e., matter �ows out of the centre. Yet, this value is very small and U2 = 0 at the centre can
be imposed as a boundary condition. Approximation of (∇ad −∇)U2 by only the �rst part of
Eq. (7.23), i.e. (ii)× (iii). We see that for r < 0.15R?, this approximation follows (∇ad −∇)U2
pretty close but quickly diverges. This is caused by the fact that (ε+ εg) /εm decreases and
reaches a value close to zero at r ' 0.7R?. On the other hand, the Gratton–Öpik term is still
small in this region.

Toward the surface, when ρ become small, the Gratton–Öpik term becomes dominant. In
this case, it can form an surface meridional cell rotating in the inverse direction as the inner cell.
This situation is illustrated in Fig. 7.28 This �gure represents stream plots of the meridional
circulation velocity �eld in a 2.5M� model at two di�erent ages. On the le� panel, the model
is on the main sequence. We distinguish two cells, the inner one rotates from the poles to the
equator which is the sign of a positive value of U2. The outer one is rotating in the opposite
direction, because of the negative Gratton–Öpik sign. On the right panel, the model in on the
subgiant branch. its density is small in a large fraction of the star therefore the meridional
circulation is negative on more extended region.

In Eq. (7.23), as long as we move toward the top of the radiative zone, the term (v) becomes
dominant. It is part of a bigger term called the driving term, constituted of all the terms in

4Because isobars and isopycnals coincide.
5The divergence of centrifugal acceleration, decomposed in Legendre polynomials is fC +

∑
`>0 f̃C`P`(cos θ).
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7.2. Validation of the new transport of angular momentum prescription

Figure 7.28: Stream plots of the meridional circulation velocity �eld in a 2.5M� model (model
M25P04G2D of grid presented in Table 7.3), at two di�erent time steps. Stellar surface is represented
with a solid black curve.

factor of Ψ` in Eq. (7.22). The approximation of (∇ad −∇)U2 suggested in Eq. (7.23) is plotted
for 1D and 2D models in bottom panel of Fig. 7.26. This approximation reproduce pretty
well the variations of (∇ad −∇)U2 showed in top panel of Fig. 7.26. In the variations of our
approximation, we recognize the bumpy pro�le of the horizontal di�usion coe�cient Dh, also
displayed in bottom right panel of Fig. 7.27. Of course, the other terms that we neglected
smooth these variations and gives the pro�le of (∇ad −∇)U2 presented in the top panel. The
di�erence of magnitude in the pro�les of meridional circulation at the top of the radiative zone
is thus explained by the di�erence in the value of Dh between the models obtained with the old
and new versions. We see in Fig. 7.27, that Dold

h is higher by almost one order of magnitude
compared to Dnew

h .

Estimates of Ω2

As mentioned above, our code is not stable enough for the moment when solving the equation of
transport of angular momentum including Ω2. However, we computed an estimate of Ω2 a pos-
teriori for the main sequence models with M = 0.8M� and 1M� and the results are displayed
in Fig. 7.29. The estimates are computed using the relation νhΩ2 = 1

5r [2V2 − αU2] Ω. The �uc-
tuations Ω2 of the angular velocity are around 10−8 rad s−1 and can peak at ∼ 5× 10−8 rad s−1,
while the angular velocity Ω is of order 104 − 105 rad s−1. These values are compatible with
the hypothesis of shellular rotation pro�le: Ω2 � Ω. Of course, this approximation should be
tested in more detail with a full calculation of Ω2.

Computation of higher orders ` > 2

As explained in Chapter 6, the new method we implemented for the transport of angular
momentum is currently able to compute only 2nd-order terms U2, Υ2 (see Eq. (2.107)), and Ω.
However, the structure of the algorithm has been designed to be easily modi�ed if one wants
to compute higher order terms U4, Υ4, Ω2, etc. Higher order of Θ` are of course made available
by the deformation module and, assuming that the �uctuations of mean molecular weight Λ`
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Figure 7.29: Estimates of Ω2 with the new version of cestam in ms models in the radiative zone as a
function of the normalized radius. The colours code for the mass of the models: 0.8M� (blue), 1M�
(orange). Vertical dashed lines mark the location of the transition between radiative and convective
envelopes. For each stellar mass, we have computed an initially fast (solid lines) and slow rotator
(dashed lines). Refer to Table 7.3 for more detail on the initial conditions.
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Table 7.4: Time consumption required by the deformation module on a 1.6M� model. The integer Nθ
is the number of angular sector (without counting the three ghost angles), the operator 〈·〉 stand for
the average along all the evolution, 〈Nit〉 is the average number of iteration needed by the deformation
module to converge to the deformed structure, τ is the time needed to perform a single iteration and
τall its is the time needed to perform all iteration until convergence (usually 3 or 4). Finally τdeform is the
total time spent in the deformation module at a given time step. It includes the time needed to iterate
towards the solution of ρ̃`, φ̃` but also the time needed to compute geff , fp, fT , etc.

Model Nθ 〈Nit〉 〈τit〉 〈τall its〉 〈τdeform〉
[s] [s] [s]

NT2 2 2.75 0.03 0.19 0.34
NT4 4 3.87 0.08 0.40 0.71
NT8 8 3.90 0.09 0.42 0.75
NT16 16 3.80 0.11 0.49 0.86
NT32 32 3.85 0.15 0.63 1.06
NT64 64 3.81 0.22 0.87 1.43
NT128 128 3.81 0.38 1.41 2.27
NT240 240 3.81 0.63 2.20 3.51

are negligible compared with Θ`, higher order of the �uctuations of temperature can readily
be computed. In order to do so, we need to derive the Jacobian of the new system that needs
to be solved. This task is currently ongoing and presents no particular mathematical di�culty.
The new results will require some testing (the implementation of the version in which only Ω2
is added to the unknowns is pretty well advanced). cestam will be the �rst stellar evolution
code to be able to compute these terms.

7.3 Additional computational time and memory usage

7.3.1 Use of numerical resources by the deformation module

What usually hinders the use of higher dimensional simulations is the additional time consump-
tion they induce. Stellar evolution models need to be computed rapidly so that they provide
the main feature of the stellar-structure, stellar rotation pro�le, etc. for thousands of stars
observed by space missions. We cannot a�ord spending days or weeks calculating models
for each of them. One of the great advantages of our method is that it does not lead to a
signi�cant increase of the time consumption. We measure the average time needed to deform
a 1.6M� model as a function of the number of angular sectors used in the angular mesh and
with the Legendre decomposition stopped at P2. Our results are reproduced in Table 7.4. The
average number of iterations needed to converge to the correct deformed structure rapidly
converge toward 3.81 while the number of angular sector increases. Noteworthy, the number of
iterations can increase for old models. The evolution is stopped if Nit exceeds 42. Fortunately,
such cases are really rare. These models were evolved until 200 Myr so that the model NT2
took around 14 min to compute and 31 min for NT240. As a comparison, the same model but
with no rotation needs around 4 min 30 s to compute and around 14 min also for a model with
rotation but in 1D. It may seem important but for Nθ = 240 it only double the computation
time, while a full 2D computation of evolution (which anyway does not exist) would take a
time orders of magnitude higher.

On the side of memory usage, the change to two dimensions increases by around one or
two order of magnitudes the size of output �les. If the number of angular sectors needed is
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Table 7.5: Time needed to compute a 1M� with old or new treatment of the transport of angular
momentum. The computation time is measured for two age: 4570 Myr and 12 000 Myr.

Age Time (old) Time (new)

4570 Myr 28 min 11 min
12 000 Myr 2 h 15 min 23 min

100, the size of all working arrays is multiplied by 100. 1D and 2D output �les (*.osc and
*.osc2d) output roughly the same number of quantities. Therefore, the size of the output
should be 100 times larger. The size of these �le has been reduced by a factor ∼ 2 by switching
from an ASCII output for osc to a binary output for osc2d. It also saves a large amount of
time reading those �les. But in any case the new size of the �les is very important and it must
be taken into account if the goal is to compute large stellar model grids in 2D.

7.3.2 Use of numerical resources for the transport of angular momentum

Concerning the time consumption needed for the resolution of the transport of angular momen-
tum, it is surprisingly much faster with the new than with the old approach for the transport
of am. We measured the time needed to compute an 1M� evolutionary model to an age of
4570 Myr (Sun’s age) and 12 000 Myr. The resulting computation time are gathered in Table 7.5.
How do we explain these results ? It is actually not very clear, however two explanations can
be suggested. First of all, the system of equations in 1D has 5 unknowns (Ω, U2, Υ2, Θ2 and
Λ2), while the new approach has 4 (U`, Υ`, Ω and ∂Ω/∂r). One equation less does not make a
signi�cant di�erence for the time to compute one iteration. However, 4 equations instead of 5
can reduce the number of iterations until convergence and speed up calculations. The second
idea is that because our computation of ρ̃`, g̃`, etc. is more realistic because of the module
dedicated to the model deformation, it may also improve the stability of the code and again,
reduce the number of iterations
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Chapter 8

Ongoing work and conclusions

Contents
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

8.1.1 On the transport of angular momentum . . . . . . . . . . . . . . . . . . . 223

8.1.2 On the problem of surface e�ects . . . . . . . . . . . . . . . . . . . . . . . 226

8.2 Ongoing work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

8.2.1 Implementation and testing of the prescription for the transport of an-
gular moment with ` > 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

8.2.2 Seismology of δ Sct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

8.2.3 tar accounting for centrifugal acceleration . . . . . . . . . . . . . . . . . . 229

8.2.4 Study of two solar analogues . . . . . . . . . . . . . . . . . . . . . . . . . . 230

8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

8.1 Summary

8.1.1 On the transport of angular momentum

In this PhD I focused on the modelling of the transport of angular momentum in the radiative
zone of low and intermediate mass stars, across their whole evolution. In addition we choose
to include two-dimensional aspects in a modelling that has always been done only in 1D. These
choices were motivated by several factors.

• First of all, rotation has always been set aside or simpli�ed a lot in stellar modelling.
The main reason for that is because rotation results in a deformation of the star, hence
breaking the spherical symmetry upon which the standard model of stellar physics rests.
Stars are central for two reasons in astrophysics. (i): they provide energy to their hosted
planets and strongly interact with them. (ii): They are used as proxies to estimate the age
of their host and hosted structures (clusters, galaxies, exoplanets, etc.). Taking rotation
into account in stellar modelling is of crucial importance because, through its implication
in the stellar dynamo, an increase of angular velocity, in the end induces an increase of
the UV and X ray �ux received by the planets orbiting around them and hinders the
development of life. Rotation also induces mixing of chemical which alter the element
abundances on which age estimates are based. This e�ect is very far from being negligible
and can lead to mis-estimates of several Gyr.
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• Layers in stars can be di�erentiated according to the dominant energy transport pro-
cess inside them. In convective zones, the energy is mainly advected by large scale �uid
motions due to the unstably strati�ed material. The modelling of these motions and
their interaction with rotation is very complicated and would require dedicated models.
However, these complicated motions are also an advantage because they lead to simpli-
�cations. For instance, the convection zone can be considered chemically homogeneous
region. For this reason, we focus on the rotation modelling of the radiative zone.

• Stars with mass below 0.3M� have no radiative zone. Stars with 0.3M� < M < 1.25M�
have a central radiative region, surrounded by an convective envelope. These stars are
quite similar in structure to our Sun, which makes them very interesting. Finally, stars
with M > 1.25M� have a central convective zone and a very thin or no convective
envelope. Furthermore, in these stars, other "non-standard" phenomena come into play
such as radiative accelerations or mass loss. The higher the mass, the less negligible they
are. The range of mass studied in this PhD spans almost the entire mass range of stars
observed by CoRoT, Kepler and tess.

• Some stellar models o�er precise modelling of the stellar rotating interiors, especially
ester (Espinosa Lara & Rieutord, 2007, 2013) which was designed for a fully 2D study
of stellar rotation, or the ASH code (Brun & Toomre, 2002; Miesch et al., 2006, 2008)
primarily designed for MHD computations of rotating convective zones. They are much
more realistic in rendering the e�ect of rotation on the structure. However, these codes
are computationally expensive and are not able to model the star rotation over evolution
time-scales. The possibility to simulate evolution through a varying hydrogen abundance
in the core has recently been introduced in ester, but this prescription is far from being
accurate. What cestam can now do is to start from an initial rotation pro�le and evolve
it to the desired evolutionary stage, in addition to taking into account two-dimensional
e�ects of rotation.

• Treating part of the problem in two dimensions is motivated my many arguments.

– In order to keep a 1D description of the rotating stellar-structure, we had to assume
a shellular rotation pro�le, i.e. that the angular velocity is constant over (spheroidal)
isobars. The approximation of shellular rotation in the radiative zone is valid if, due
to the stable strati�cation, the horizontal shear-induced turbulence is much stronger
than vertical one. The horizontal di�usion coe�cient, as we have shown in Sect
2.2 is proportional to the gradient of angular velocity with respect to the distance
to the rotation axis. Near this axis, the gradient becomes small and the shellular
rotation approximation may no longer be valid. If it is not, it is not clear if one can
�nd another way to keep structure equations one dimensional. The 2D version of
cestam will allows us to test this hypothesis in the radiative zone.

– The rotation pro�les presented in Chapter 4 showed that, in convective zones, the
angular velocity depends on the radius and on the latitude and then the latitudinal
gradients vanish in a thin transition region and stay very small in the radiative one.
Therefore, the boundary conditions that need to be applied at the transitions from
radiative to convective zones must depend on the latitude, and a 2D approach is
necessary for that.

– 1D stellar evolution codes that can perform a modelling of rotation evolution reach
angular velocity pro�les that are orders of magnitude higher than the rotation rates
measured in evolved stars (see Chapter 4). To overcome these disparities, many
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additional mechanisms of transport of angular momentum have been suggested and
they are summed up in Chapter 5. They can be sorted into two categories: trans-
port by waves or by di�usion induced by hydrodynamic or magneto-hydrodynamic
instabilities. For the �rst categories, the amount of angular momentum transported
by a wave and its properties inside the radiative zone depend partly on the latitude
of emission. For the second categories, several of the criteria that rule these insta-
bilities depend also on the latitude, which can lead to instabilities occurring only
above or below a certain latitude. Here again, the two dimension must be accounted
for.

We established the numerical framework that will allow the future studies of stellar rotation
evolution. This framework is decomposed into two parts. The �rst one is a deformation
module that implements a method proposed by Roxburgh (2004, 2006). The main idea is to
start from a 1D model and an angular rotation pro�le. The method assumes that any �eld can
be decomposed on Legendre polynomials. By using this decomposition in the Poisson equation
and in the force balance equation (hydrostatic equilibrium with centrifugal force), one obtains
1st-order di�erential equations that can easily be solved with the method of characteristics.
The characteristic surfaces turn out to be isobars. This method therefore provides us with
the coordinates of the isobars, the �uctuations of density and gravitational potential over them
and the e�ective gravity (the combined e�ect of the gravity acting radially and the centrifugal
acceleration acting perpendicularly to the rotation axis) in 2D. Knowing those quantities allows
us to compute the additional factors that enter the modi�ed structure equations written on
isobars, and to resume the evolution. A�er the deformation, the 1D structure taken as input is
equal to the 2D one at a particular latitude denoted θm. This characteristics latitude is the one at
which all the Legendre polynomials vanish but the 0th-order one. In the literature, the angle is
taken to be θm = arccos(1/

√
3). Nonetheless, the implementation of Roxburgh (2006)’s method

was the opportunity to notice that if Legendre polynomials with degree strictly higher than 2
are taken into accounted, this value of θm is not exact. In particular, near the surface where
the centrifugal acceleration is the strongest, it signi�cantly diverges from arccos(1/

√
3) which

induces errors in the deformation. I propose a method to implement the Roxburgh (2006)’s
method with a varying θm. This method works during the main sequence but experience some
di�culties during the pre-main sequence and needs to be polished.

The mass and angular momentum are very well conserved a�er the deformation. We also
performed a seismic study of our models using the 2D, non-perturbative, oscillation code
acor (Ouazzani et al., 2012). All the �elds along the characteristic latitude are almost not
modi�ed, except for the pressure �eld that is recomputed at the end of the deformation. This
re-computation results in very small changes in the pressure of the uppermost layers, which
induce small frequency changes, quite similar to the surface e�ect. This problem is not found
in every star and at every evolutionary stage, and we should be able to suppress it a�er a
deeper study. This "numerical surface e�ect" seems also to be the cause of the non convergence
of the frequencies computed in models with tighter angular grids. As we have shown, those
frequency di�erences seem to have two distinct causes. The �rst is due to a change in the
mean density of the star, related to the large frequency separation ∆ν. The mean density
can be a�ected by numerical errors in the computation of the density �uctuations but most
certainly by changes in the value of the surface of isobars, which have a repercussion on the
isobar-averaged quantities involved in the structure equation. This change in ∆ν is easily seen
by the fact that the frequency di�erences vary in a linear way, as expected by the asymptotic
relation (3.50). The second cause is related to the maximum order `max taken into account in the
decomposition in Legendre polynomials. For rapidly rotating stars, stopping the development
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at `max = 2 seems not to be su�cient and higher degrees must be added. It will be the work
of the modeler to tune the numerical parameters in order to obtain an accurate model.

Regarding the new prescription for the transport of angular momentum, we also obtained
very good results. The angular momentum is very well conserved along stellar evolution.
Furthermore, the computation performed with the new prescription seems to be more stable
than with the old one and signi�cantly faster, to our surprise. The results are also very di�erent.
The central hydrogen abundance is always found higher in 2D than in 1D models, which is due
to a slightly higher central temperature in 1D than in 2D models. It has a signi�cant impact on
the latter stages of stellar evolution. The radial component of the meridional circulation was
o�en smaller in 2D than in 1D models, leading to sharper gradients in the angular velocity.
Nonetheless, it must be noted that our tests have been conducted without loss of angular
momentum by magnetized wind. The inclusion of such a process in the modelling induces a
coupling between the meridional circulation U2 near the tachocline and the angular momentum
extracted at the surface. It could change the way U2 compare in 1D and 2D models. Finally we
computed the 2nd order component of the angular velocity Ω2 in the radiative zones of main
sequence stars. The value obtained are consistent with the assumption of a shellular pro�le.
However, this question should be investigate more thoroughly.

This work open the path to new studies of the transport of angular momentum. Some
of these studies have already started and this is the topic Sect. 8.2 in which I summarize
the collaborations started soon before the lockdown and the writing of this PhD. The third
and �nal section 8.3 gather the future prospect for the works that could be carried out with
cestam.

8.1.2 On the problem of surface e�ects

We have computed a grid of 29 patched models with e�ective temperature ranging in Teff =
[5000; 6800] K, surface gravities ranging from log g = [3.5; 4.5] and iron to hydrogen ratio ranging
from [Fe/H] = [−1.0; +0.5]. Our aim was to study and understand physically what impact a
non-solar metallicities would have on the surface e�ect. We focused on the turbulent origin
of the surface e�ect and le� the non-adiabatic cause aside. In the region of the parameter
space ((Teff ; log g; [Fe/H])) we focused on, we showed that at �xed Teff and log g, the frequency
di�erences computed at νmax could vary by up to a factor 3 with varying [Fe/H] between
the lowest and highest frequency di�erence. However, it appears that our �rst idea which
consisted in studying the amplitude of the frequency di�erences as a function of the metallicity
did not lead to a clear trend. On the contrary, the Rosseland mean opacity κ turned out to
be the most adapted quantity for understanding the frequency di�erences. Based on simple
physical arguments we derived a scaling relation between the frequency di�erences at νmax
and the global parameters Teff , log g and the opacity κ computed at the photosphere. In a
second part, this scaling law was improved using the grid of patched models.

In this work, we also perform a comparison of the existing surface e�ects correction
laws by comparing the residual frequency di�erence a�er correction given by all these laws.
The corrections were also applied on non-radial mode frequency spectra when mixed-modes
were present. We found that, for a vast majority of our models, the cubic correction relation
proposed by Ball & Gizon (2014) is found to be the best performer and manages to reduce the
frequency di�erences below the 0.1 µHz for the coldest models, which is of the order of the
CoRoT or Kepler frequency resolution. The Lorentzian correction suggested by Sonoi et al.
(2015) is the second best performer with corrected frequency di�erences slightly higher than
the one corrected by Ball & Gizon (2014). Almost all the proposed correction leave frequency
di�erences smaller than 1 µHz. The �rst ever proposed correction (Kjeldsen et al., 2008)
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have pretty bad results for correcting high frequencies, however, on the low frequency range
0 < ν/νmax < 1.05, it o�en provides results similar to the one of Ball & Gizon (2014). As for the
correction of mixed modes only a modi�ed version (see Manchon et al., 2018) of the corrections
proposed by Ball & Gizon (2014) manages to satisfyingly correct the frequency di�erences.

This review of the correction relation allowed us to provide a scaling relation between
the di�erent adjustable parameters involved in these laws and the same global parameters as
before (Teff , log g and κ). The advantage of such scaling relations is that they could easily
be implemented in a 1D stellar evolution code. Furthermore, there is no need to adjust these
parameter so that the modelled spectrum �ts the observed one. We have seen that this method
poses a problem of uniqueness of the solution. With scaling relations that constraint the values
of the adjustable parameters, the values of the adjustable parameters depend only on the values
of Teff , log g and κ.

8.2 Ongoing work

8.2.1 Implementation and testing of the prescription for the transport of angular
moment with ` > 2

Mathis & Zahn (2004) developed the equations for the transport of angular momentum and for
the meridional circulation for any degree ` ≥ 2. The resolution of these equations for ` > 2 is
currently being added into cestam. The usual tests for the conservation of angular momentum
will soon be performed. This new version will allow us to compute coe�cients U4, Λ4, Ψ4.
Furthermore, we will be able to compute Ω2 not only during the main sequence but also during
fast evolution phases. Estimates of Ψ4 can already be derived with the value of Θ4 provided by
the deformation module if we assume that Λ4 is very small compared to Θ4. In a near future,
we will be able to compute even higher orders. However, it has been shown in this PhD that
situations where coe�cients of order ` ≥ 8 are physically signi�cant seem to be very rare.

8.2.2 Seismology of δ Sct

As I said earlier in this manuscript, δ Sct and γ Dor o�er very good test case for the new
2D abilities of cestam. Indeed, δ Sct and γ Dor are stars with mass ∼ 2 − 3M�, well in
our mass range of interest. They are also fast rotators which translates into very important
deformations, with the equatorial radius being more than 10% higher than the polar one. In
these stars, the CNO cycle is the dominant source of energy and they have a convective core.
Convective overshoot causes injection of hydrogen-rich material in the region where nuclear
reactions occur, thus extending the star lifetime. Due to the fast rotation, meridional circulation
and shear-induced turbulence inside radiative zones must be important and so is the associated
chemical mixing. The questions raised by these stars are therefore, what are their pro�le of
chemical composition and rotation ? What transport mechanisms do they reveal ?

The seismology of these stars is complicated by the strong distortion that impedes mode
identi�cation. γ Dor stars oscillate in gravity modes while δ Sct oscillate in pressure modes. I
am starting a collaboration that focuses on the latter and associate researchers from the lesia

and the gepi in Meudon, France, and from the iaa in Granada, Spain. The general idea is to
combine photometric measurements with spectroscopic ones to derive seismic constrains on
δ Sct using new 2D evolutionary models computed with cestam and 2D non perturbative
oscillation codes acor (Ouazzani et al., 2012) and top (Reese et al., 2006).

The ultra-precise photometry will be obtained using the brite satellites constellation pre-
sented in Sect. 4.1, that allows for multi-wavelength measurements. Modes of oscillation do not
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have the same amplitude and the same phase in all photometric bands. The amplitude ratios
and phase di�erences depend on the numbers (n, `,m). The theoretical prediction of their val-
ues have been the focus of many works in the past decades (Balona & Evers, 1999; Breger et al.,
1999; Reese et al., 2009; Handler et al., 2017; Reese et al., 2018). The multi-band technique
mainly works for modes with ` ≤ 2 (Daszynska-Daszkiewicz, 2008). In order to obtain infor-
mation in higher degree mode, we must add radial velocity measurements obtained through
high-resolution spectroscopic observations. These observations will be mainly collected using
the sophie spectrometer. The aim is to measure the variations in time of an absorption line
pro�le (line pro�le variations; lpv). The lpv are due to the Doppler e�ect induced by the mode
velocity. Spectroscopy must also provide us with estimates of the inclination angle and of the
equatorial velocity. To that end, e�ects of the gravity darkening must be estimated and 2D
models of cestam will be of great help for that.

On the modelling side, the interfacing of cestam with acor will allow us to �nd and
study new seismic constraints. We have seen in Chapter 3 that the large separation ∆ν is
proportional to the mean stellar density

√
〈ρ〉. In moderate and fast rotating stars, regular

patterns in the frequency spectra can also be found. In such stars, an equivalent of the ∆ν
has been theorized (Ouazzani et al., 2015; Suárez et al., 2014). Suárez et al. (2014), found the
following relation ∆ν ∝ 〈ρ〉0.46, pretty close to the one in the non-rotating case. To do so,
they used 1D stellar models rotating at most at 40% ΩK, from which they computed the mean
densities and a 1D oscillation code for calculating the frequency spectrum and extract the ∆ν.
In a very recent work, Rodríguez-Martín et al. (2020) performed the same analysis on a grid
of fast rotating 1D cestam models, of which they calculated the frequency spectra using a 1D
oscillation code with a 2nd order perturbative method accounting for centrifugal deformation.
The cestam models were computed in 1D, therefore the mean density had to be corrected. To
that end, they assumed that the models had their shape given by the Roche model (isobars
equals equipotentials) and in this case, the mean density is given by:

〈ρ〉 = 3
4π

M?

R2
eqRp

, (8.1)

where Req and Rp are the equatorial and polar radii. They are given by the Roche model as:

Rp = R1D

1 + Ω2R3
1D

3GM?

and Req = 1 + Ω2

2Ω2
C
, (8.2)

where R1D is the radius of the star provided by the 1D cestam models and ΩC is a critical
velocity in the Roche model, very similar to the Keplerian break-up velocity. When ΩC is
reached, the centrifugal acceleration counterbalances the gravitational one and Rp = 2/3Req:

Ω2
C = 8GM?

27Rp
. (8.3)

This quantities comes from the de�nition of ΩK ≡
√
GM/R3

eq given in Eq. (1.55), in which the
equatorial radius Req has been replaced by 3/2Rp. They �nally found the scaling between 〈ρ〉
and ∆ν to be: 〈ρ〉 ∝ ∆ν2.02±0.10. In the conclusion of there article, Rodríguez-Martín et al.
(2020) propose that this study should be carried again with more precise 2D models. They
suggest using ester models initialized with a 1D seed coming from a 1D cestam model. This
would allow to have a more accurate stellar evolution and a more accurate 2D stellar-structure.
The new 2D version of cestam can actually do this without the need of interfacing two stellar
codes.
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Table 8.1: Parameters of the grid of 2D cestam models for the study of δ Sct stars. Models are computed
without overshoot.

Parameter Value or range step Unit
Mass [1.5; 2.5] 0.05 M�
[Fe/H] [−0.4; 0.2] 0.2 dex
αMLT [1.5; 1.8] 0.3
Pdisk 0, 3, 4, 5, 6, 7 days
τdisk 5 Myr

And this is what we started to with the computation of grid of evolutionary tracks of 2D
cestam models. The characteristics of the models in this grid are summarized in Table 8.1. In
total, it represents 960 models: 20 di�erent masses, 4 di�erent metallicities, 2 di�erent values
of αMLT and 6 di�erent initial disk periods. As for now, around 40% of the models have been
computed. The computation was slightly delayed by the pandemic and because of insu�cient
storage on the cluster at the ias. The grid parameters of Table 8.1 are quite similar to the
one of the grid used in Rodríguez-Martín et al. (2020). It appeared that it was impossible to
evolve some models past the pms because they reached the break-up velocity. Interestingly,
the break-up velocity can be reached outside the characteristic latitude θm, which would not
have been detected by the 1D version of cestam. This new 2D grid of stellar evolution models
will then be exploited with acor.

Concerning acor and the problem of mode identi�cation in fast rotating stars, R.-M. Ouaz-
zani recently proposed (private comm.) to use arti�cial intelligence (ai) to identify modes. This
method has already been used (e.g. Mirouh et al., 2019): ai should be able to identify, for in-
stance using the 2D spatial distribution of the kinetic energy of a mode (see 7.4), what kind
of mode it is (island mode, super-inertial mode, etc.) and its quantum numbers when it is
possible. First, the ai must be trained on a subset of modes that a human already identi�ed.
As of today, ai must be trained on very large subset in order to be accurate enough and it
complicates their use. The idea here would be to create a project of citizen science. The ai

would be trained by a single human but by, let say smart-phone users, who would identify
series of mode and quickly train the ai.

8.2.3 tar accounting for centrifugal acceleration

In rotating star, the Coriolis force must be taken into account in the case of g-modes. As we said,
to be more rigorous, these modes should not be called gravity modes any more but gravito-
inertial modes. This denomination stresses the fact that, not only the gravity is a restoring force,
but also the Coriolis force. We focus here on low frequency modes satisfying the conditions
2Ω� N and σ � N . In this case, the problem can become separable in an angular and a radial
part by making the so-called Traditional Approximation of Rotation (tar) (Eckart, 1960; Gerkema
et al., 2008), originally developed in geophysics. The tar consists in neglecting the latitudinal
component of the Coriolis force (Lee & Saio, 1997). This approximation relies on the same
argument developed in the small calculation performed around the dispersion relation (7.6).
For waves with ω,Ω� N , we have seen that kh/|k| ' 0. From Eq. (7.6), it yields Ω · k ' Ωrkr,
meaning that the horizontal component of Ω has almost no in�uence on the frequency of the
mode and can be neglected. This approximation was �rst considered together with other
approximations such as sphericity (non centrifugal acceleration) and uniform rotation. It has
since be generalized for the case of di�erential rotation (Ogilvie & Lin, 2004; Mathis, 2009) and
recently the formalism has been developed to allow small deformation of the star (Mathis &
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Prat, 2019). The frequency spectrum found using the tar has been compared (Ballot et al., 2012)
with the one obtained with the full computation made by the top code. The authors compared
the frequency spectrum computed with tar with the one computed with top on a deformed
and on a spherical fast rotating-models, all other things being equal. Their results show very
good accordance between tar and full computations for m = 0 and m = +` modes. In the case
of m = −`, a signi�cant discrepancy can be observed when full computations are made on the
deformed model but the gap decreases when top is applied to the spherical model, suggesting
that the error made by the tar comes from centrifugal acceleration, as expected. The work
performed by Mathis & Prat (2019) proposes to adapt the tar formalism to small centrifugal
deformation. In a collaboration involving V. Prat and S. Mathis (cea) and R.-M. Ouazzani (lesia),
we want to test the prediction of the model developed in Mathis & Prat (2019) by comparing
with the oscillation spectrum computed with acor on deformed cestam models.

8.2.4 Study of two solar analogues

Solar analogues are stars with masses very close to 1M�, and possibly di�erent age. Their
study is very promising to better understand Sun’s past and future. Such a study is currently
ongoing, focusing on two stars observed by CoRoT: HD42618 (slightly less massive than the
Sun) and HD43587 (slightly more massive). modelling and accurate determination of the global
parameters of these stars has been conducted using cestam, for the moment without rotation.
The new rotation and two-dimensional abilities of cestam will be applied to this model, in
order to gain insight on the e�ciency of internal mixing and transport of angular momentum.

8.3 Future work

First of all, several points must be addressed in the modelling of cestam:

• I will shortly implement in cestam the transport of angular momentum by internal gravity
waves (igw). This work will be done with C. Pinçon who developed the igw excitation
model by plumes (Pinçon et al., 2016). It would also be interesting to implement a Reynold
stresses excitation model (e.g. Kumar et al., 1999), so that both models can be compared.

• We have seen that the modelling of rotation inside convective zone have been le� aside.
For the moment it is only modelled assuming a constant angular velocity or a constant
angular momentum distribution which do not correspond to what is observed, especially
with these approximations, the rotation pro�le is constant in latitude. The most consistent
way to tackle the problem would be to have a model of rotating-convection. Many have
been proposed (Rogachevskii & Kleeorin, 2018; Augustson & Mathis, 2019; Augustson et al.,
2020; Jermyn et al., 2020a,b). Choosing one among them will require additional work
but in the meantime we shall use prescriptions of angular velocity pro�les derived from
3D simulations of convective zones (Brun et al., 2017).

What studies are now feasible with the new 2D version of cestam? Apart from the three
ongoing collaborations described above, some works are already possible or will be soon with
the implementation of the transport of angular momentum by igw.

• Even without the improvements listed above, the hypothesis of shellular rotation can
readily be tested. Indeed, cestam is already able to provide the coordinates of isobars
and the velocity �eld of the meridional circulation. Assuming a shellular rotation pro�le,
we can study how turbulent viscosity coe�cients vary with latitude. In particular, it
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may be possible that the shear instability cannot develop near the rotation axis because
the rotation velocity (not the angular velocity) is zero on this axis. Of course, if shear
instabilities are not found near the rotation axis, it does not mean that the shellular
rotation is not veri�ed here. If the zone in which the shear disappears is small, the
angular velocity pro�le could stay close to a shellular one, for continuity reasons. In this
case, it would be interesting to have access to the 2nd order component Ω2 to see if it
becomes non negligible. This study will also be improved by using the new prescriptions
of turbulent di�usion coe�cients (Prat et al., 2016; Mathis et al., 2018).

• Transport of angular momentum by igw is suggested to be a very e�cient mechanism of
transport. For the moment, it has only been tested in 1D stellar evolution codes (e.g. Talon
& Charbonnel, 2003; Fuller et al., 2014) and those studies show that igw cannot reproduce
the core rotation of rgb stars. However, as we have explained in this manuscript, the
�ux of am transported by the igw depend on the latitude of emission and cestam2d will
allow a deeper study of this mechanism of transport.

• In addition to trying to reproduce the core rotation of rgb stars, it will be interesting to
see if, when igw are included, we �nd a �at rotation pro�le in the radiative zone of the
Sun. It could be used also to con�rm the good results of igw on the understanding of
the cold side of the Li dip (see Sect. 4.3.2).

• M. Deal has recently included a 2D prescription (Barker et al., 2019) for the gsf instability
in cestam and the transport by mixed-modes (Belkacem et al., 2015b,a) has already been
implemented for a few years. Being able to study all these process of transport with the
same stellar evolution code will be a good opportunity to study the interplays between
them, similarly to what was done theoretically by Maeder et al. (2013).

Concerning the future of our work on the surface e�ects, we could focus on several points

• First of all, the method of model patching may be improved. Until now, the strati�ca-
tion extracted from the 3D simulations that are patched onto the 1D stellar models are
constructed by averaging horizontally the modelled box. Our patching technique is de-
signed to ensure the matching of the e�ective temperature, the surface gravity and of the
temperature at the bottom of the 3D simulated box. The 1D model and the horizontally
averaged strati�cation extracted from the 3D one are in hydrostatic equilibrium (hse,
however the patching technique per se does not preserve the hse at the junction point.
A quick check on two models of our grid showed that they were indeed in hse but this
veri�cation should be conducted on all our models. Furthermore, we could think of a way
to enforce hse during the patching process, so that no veri�cation would be needed. Of
course, one could add a fourth constraint and impose that the quantity ∇p is continuous
from the 1D model to the horizontally averaged 3D strati�cation, but including a fourth
constraint implies that we also include a fourth tunable parameter which increases the
complexity of the patching. We could also change our way of obtaining the 3D strati�-
cation. The horizontal average is the most simple way of averaging one could think of
but we could also average the strati�cation at constant pressure scale height Hp. With
this method, the radial derivative of the pressure would be continuous at the matching
point, thus, here, the hse would be preserved by default a�er the patching process.

• Our study of the impact of a di�erent chemical composition on the surface-induced
frequency di�erences have focused on the e�ects caused by the turbulence and non-
adiabatic e�ects were le� aside. This aspect was already studied by Houdek et al. (2017)
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who showed that, on a solar model, when the surface-e�ect was corrected only for the
turbulent pressure part, non-negligible frequency di�erences remained. This residual
disappears when non-adiabatic e�ects were accounted for. Such study should be carried
out on non-solar models and especially with non-solar metallicities.

• Finally, we have see in the last section of Manchon et al. (2018) that mixed-modes can
also be surface-a�ected. Correcting their modelled frequency is of crucial importance
because in many cases, mixed-modes are the only observable waves that probe the
radiative region. Only the correction prescriptions proposed by Ball & Gizon (2014) were
adapted to mixed-modes. This point should be investigated further.
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A.. Constants and global solar parameters

A. Constants and global solar parameters

A.1 Universal constants

Light speed c 299 792 498 ms−1

Stefan-Boltzmann constant σ 5.670373× 10−8 Wm−2 K−4

Gravitational constant G 6.674× 10−11m3 kg−1 s−2

A.2 Main present-day solar parameters

Age 4570 Myr
Mass M� 1.9891× 1030 kg
Luminosity L� 3.828× 1026 W
Radius R� 6.957× 108 m
Mean density 〈ρ〉� 1 408 kgm−3

E�ective temperature Teff,� 5 777 K
Surface gravity log g� 4.44
Surface gravity g� 27 540 cm s−2

Large separation ∆ν� 134.9 µHz
νmax 3 090 µHz

A.3 Main determinations of present-day solar mass photospheric-abundances

Grevesse & Sauval (1998) Asplund et al. (2005) Asplund et al. (2009)
X� 0.735 0.7392 0.7381
Y� 0.248 0.2486 0.2485
Z� 0.017 0.0122 0.0134

Z�/X� 0.023 0.0165 0.0181

A.4 Main determinations of solar initial mass abundances

Grevesse & Sauval (1998) Asplund et al. (2005) Asplund et al. (2009)
X� 0.7120 0.7166 0.7154
Y� 0.2701 0.2704 0.2703
Z� 0.0180 0.0130 0.0142

Z�/X� 0.0253 0.0181 0.0199
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B. Legendre polynomials

Legendre polynomials are the solutions of the following di�erential equation for x ∈ [−1; 1]

d
dx

[(
1− x2

) dP`(x)
dx

]
+ `(`+ 1)P`(x) = 0, (B.1)

with ` ∈ N (Abramowitz & Stegun, 1972). One can �nd the solutions for any ` ∈ N using the
Rodrigues formula

P`(x) = 1
2``!

d`
dx`

[(
x2 − 1

)`]
, (B.2)

which gives, for the 6 �rst Legendre polynomials:

P0(x) = 1, P1(x) = x,

P2(x) = 1
2
(
3x2 − 1

)
, P3(x) = 1

2
(
5x3 − 3x

)
,

P4(x) = 1
8
(
35x4 − 30x2 + 3

)
, P5(x) = 1

8
(
63x5 − 70x3 + 15x

)
. (B.3)

B.1 Scalar product

We can de�ne a scalar product 〈·, ·〉 such that ∀n,m ∈ N,

〈Pm, Pn〉 =
ˆ 1

−1
Pm(x)Pn(x)dx = 2

2n+ 1δm,n, (B.4)

where δm,n is the Kronecker symbol.

B.2 Integral of triple product

We de�ne the integral of the triple product as, ∀i, j, k ∈ N,

T (i; j; k) =
ˆ 1

−1
Pi(x)Pj(x)Pk(x)dx. (B.5)

Following Gupta & Narasimhan (2007), T (i; j; k) = 0 if either one of these two conditions is
met:

• The triplet (i, j, k) does not satisfy to the triangle inequality, i.e. either i + j < k, or
i+ k < j, or j + k < i.

• (i+ j + k) mod 2 6= 0

In any other case,

T (i; j; k) = 2
(
i j k

0 0 0

)2

, (B.6)

where the matrix is a Wigner 3-jm symbol. For instance, T (2; 2; 2) =
´ 1
−1(P2(x))3dx = 4/35.
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B.. Legendre polynomials

B.3 Useful relations

Any vector �eld of the form F = Fr(r)P`(cos θ)er + Fθ(r)dP`(cos θ)
dθ eθ will have its divergence in

spherical coordinate written as

∇ · F = 1
r2
∂r2Fr
∂r

P`(cos θ) + Fθ
1

r sin θ
d
dθ

[
sin θdP`(cos θ)

dθ

]
= 1

r2
∂r2Fr
∂r

P`(cos θ) + Fθ
`(`+ 1)

r
P`(cos θ). (B.7)

B.4 Associated Legendre polynomial

Equation (B.1) is actually the simpli�ed version of a more complex di�erential equation:

d
dx

[(
1− x2

) dPm
` (x)
dx

]
+
[
`(`+ 1)− m2

1− x2

]
Pm
` (x) = 0, (B.8)

and the solutions become of the form

Pm
` (x) = (−1)m(1− x2)m/2 dmP`

dxm . (B.9)

This form of the Legendre di�erential equation appears for instance when studying propagation
of waves in a rotating frame.

B.5 Interesting integrals

With x = cos θ and taking into account above relations,

ˆ π

0
Pm
` (cos θ)dPm

`

dθ
cos θ
sin θ sin θdθ = 1

2

ˆ 1

−1
Pm
` (x)2dx (B.10)

ˆ π

0

[(dPm
`

dθ

)2
+ m2

sin2 θ
Pm
` (cos θ)

]
sin θdθ = `(`+ 1)

ˆ 1

−1
Pm
` (x)2dx (B.11)

And the scalar product of two associated Legendre polynomials with same m and di�erent
degree ` now reads

〈Pm
` , P

m
k 〉 =

ˆ 1

−1
Pm
` (x)Pm

k (x)dx = 2(`+ |m|)!
(2`+ 1)(`− |m|)!δ`,k (B.12)

The following integral is found in various expression:

I` =
´ π

0 P`(cos θ) sin3 θdθ´ π
0 sin3 θdθ

= 1
2

ˆ π

0
(P0(cos θ)P`(cos θ)− P2(cos θ)P`(cos θ)) sin θdθ

= δ0,` −
1
5δ2,` 6= 0 (B.13)

where δi,j is the Kronecker symbol and we have used the results sin2 θ = 2
3(1− P2(cos θ)) and´ π

0 sin3 θdθ = 4/3.
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B.6 Useful relations: spherical harmonics

Spherical harmonics have been de�ned in Eq. (3.28) as

Y m
` (θ, ϕ) = (−1)mc`,mPm

` (cos θ)eimϕ with c`,m =
√

2`+ 1
4π

(`−m)!
(`+m)! (B.14)

Noting Y m
` |
∗ the complex conjugate of Y m

` , it easily follows

Y m
` |
∗ Y m

` = c2
`mP

m
` (cos θ)2

∂Y m
`

∂θ
= (−1)m+1c`,m

∂Pm
`

∂θ
eimϕ

∂ Y m
` |
∗

∂θ
= (−1)m+1c`,m

∂Pm
`

∂θ
e−imϕ

∂Y m
`

∂ϕ
= imY m

`

∂ Y m
` |
∗

∂ϕ
= −imY m

`

(B.15)

B.7 Spherical harmonics addition theorem

P`(cosα) = 4π
2`+ 1

∑̀
m=−`

(−1)mY −m` (θ1, ϕ1)Y m
` (θ2, ϕ2) (B.16)

with

cos(α) = cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2) (B.17)
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C.. Some details on the derivation of the meridional circulation velocity

C. Some details on the derivation of the meridional circulation
velocity

C.1 Finding an expression for Φ

Maeder & Zahn (1998) provided a simpli�ed expression for it and we follow their reasoning to
�nd a more general expression. The entropy of a mixture can be written:

Smix = −NR
∑
i

(xi ln xi) + xe ln xe, (C.1)

where N is the number of moles, R is the perfect gas constant, xi the abundance of ith chemical
species and xe the abundance of electrons. Furthermore, xi = µXi/Ai and xe = µ

∑
iXiZi/Ai,

with Xi the mass fraction of element i, Ai its atomic mass and Zi its number of electrons. For
the abundances of hydrogen X , helium Y and metals Z , we can write:

xH = µX xHe = µY

4 xZ '
µZ

16 ,
(C.2)

where dSmix corresponds to the third term in Eq. (2.75). It can be shorten by dSmix =
−NRBdµ/µ with B being expressed using Eqs. (C.1) and (C.2) and provide an expression for
Φ:

B = Φcp = µ
[
X (1 + lnµX) + Y

4

(
1 + ln µY4

)
+ Z

16

(
1 + ln µZ16

)
(C.3)

+
(
X + Y

2 + µZ

64

)(
1 + ln

(
X + Y

2 + µZ

128

)) ]
. (C.4)

C.2 First simpli�cation of the right hand side

Our goal is to provide an expression for the following term:

∇ · (χ∇T ) + ρε+ ρεg −∇ · Fh = RHS. (C.5)

Gathering Eqs. (2.88) to (2.93) yields:

RHS = ρχ

(
dT
dp +

∞∑
`>0

dT̃`
dp P`(cos θ)

)
∇ ·

(∇p

ρ

)
+ ∇

[
ρχ

(
dT
dp +

∞∑
`>0

dT̃`
dp P`(cos θ)

)]
· ∇p

ρ

+
∞∑
`>0

∇(χT̃`) ·∇P`(cos θ) +
∞∑
`>0

χT̃`∇2P`(cos θ) + ρε+
∑
`>0

ρ̃ε`P`(cos θ) + ρεg

−
∑
`>0

`(`+ 1)
r2 ρTDhcp (Ψ` + ΦΛ`)P`(cos θ).

(C.6)

In this equation, ∇(χT̃`) and ∇P`(cos θ) are orthogonal, therefore their scalar product is zero.

RHS =
(
ρχ+

∑
`>0

ρ̃χ`P`(cos θ)
)(

dT
dp +

∞∑
`>0

dT̃`
dp P`(cos θ)

)

×
(
−4πGρ− 4πG

∑
`>0

ρ̃`P`(cos θ) + fC +
∑
`>0

f̃C,`

)

+ d
dr

[(
ρχ+

∑
`>0

ρ̃χ`P`(cos θ)
)(

dT
dp +

∞∑
`>0

dT̃`
dp P`(cos θ)

)](
g +

∑
`>0

g̃`P`(cos θ)
)
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−
∞∑
`>0

`(`+ 1)
r2 χT̃`P`(cos θ) + ρε+

∑
`>0

ρ̃ε`P`(cos θ) + ρεg

−
∑
`>0

`(`+ 1)
r2 ρTDhcp (Ψ` + ΦΛ`)P`(cos θ)

= ρ (ε+ εg) +
∑
`>0

ρ̃ε`P`(cos θ)−
(
ρχ+

∑
`>0

ρ̃χ`P`(cos θ)
)(

dT
dp +

∞∑
`>0

dT̃`
dp P`(cos θ)

)

×
(

4πGρ+ 4πG
∑
`>0

ρ̃`P`(cos θ)− fC −
∑
`>0

f̃C,`

)
+
(
ρ+

∑
`>0

ρ̃`P`(cos θ)
)

×
(
g +

∑
`>0

g̃`P`(cos θ)
)2 d

dp

[(
ρχ+

∑
`>0

ρ̃χ`P`(cos θ)
)(

dT
dp +

∞∑
`>0

dT̃`
dp P`(cos θ)

)]

−
∞∑
`>0

`(`+ 1)
r2

(
χT̃` + ρTDhcp (Ψ` + ΦΛ`)

)
P`(cos θ). (C.7)

Now we average RHS over an isobar. The horizontal averaging is denoted by 〈·〉:

RHS =
〈
ρχ

dT
dp
(
fC − 4πGρ

)
+ ρ

d
dp

(
ρχ

dT
dp

)
g2 + ρ(ε+ εg)

〉

+
∞∑
`>0

{(
ρχ

dT̃`
dp + ρ̃χ`

dT
dp

)(
fC − 4πGρ

)
+ ρχ

dT
dp
(
f̃C,` − 4πGρ̃`

)

+2ρ d
dp

(
ρχ

dT
dp

)
gg̃` + ρ̃

d
dp

(
ρχ

dT
dp

)
g2 + ρ

d
dp

(
ρχ

dT̃`
dp

)
g2 + ρ

d
dp

(
ρ̃χ`

dT
dp

)
g2

−`(`+ 1)
r2

(
χT̃` + ρTDhcp (Ψ` + ΦΛ`)

)
+ ρ̃ε`

}
P`(cos θ). (C.8)

C.3 Second simpli�cation of the right hand side

In Eq. (C.8), all terms will be simpli�ed one by one. Assuming that ρχ = ρ̄χ̄, ρ̃χ = ρ̃χ̃ and that

ρχ
dT
dp = L(r)

4πGM(r) , (C.9)

the summed term reads(
ρχ

dT̃`
dp + ρ̃χ`

dT
dp

)(
fC − 4πGρ

)
= ρχ

dT
dp

(
dT̃`
dT

+ ρ̃χ`
ρχ

)(
fC − 4πGρ

)
= L(r)ρ

M(r)

(
dT̃`
dT

+ ρ̃χ`
ρχ

)(
fC

4πGρ − 1
)
. (C.10)

Next, in Eq. (2.95), the terms in factor of gravity are

ρ g2
[
2 d

dp

(
ρχ

dT
dp

)
g̃`
g

+ ρ̃`
ρ

d
dp

(
ρχ

dT
dp

)
+ d

dp

(
ρχ

dT̃`
dp

)
+ d

dp

(
ρ̃χ`

dT
dp

)]
. (C.11)

Using the relation stating global radiative equilibrium

ρ g2 d
dp

(
ρχ

dT
dp

)
= −ρχdT

dp
(
fC − 4πGρ

)
− ρ(ε+ εg), (C.12)
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we rewrite Eq. (C.11) as[
L(r)ρ
M(r)

(
1− fC

4πGρ

)
− ρ(ε+ εg)

](
2 g̃`
g

+ Θ`

)
+ ρ g2 d

dp

(
ρχ

dT̃`
dp + ρ̃χ`

dT
dp

)

= Lρ

M

(
1− fC

4πGρ −
M

L
(ε+ εg)

)(
2 g̃`
g

+ Θ`

)
+ ρ g2 d

dp

(
ρχ

dT
dp

(
dT̃`
dT

+ ρ̃χ`
ρχ

))

= Lρ

M

(
1− fC

4πGρ −
M

L
(ε+ εg)

)(
2 g̃`
g

+ Θ`

)
+ ρ g2 L(r)

4πGM(r)
d
dp

(
dT̃`
dT

+ ρ̃χ`
ρχ

)

+Lρ

M

(
1− fC

4πGρ −
M

L
(ε+ εg)

)(
dT̃`
dT

+ ρ̃χ`
ρχ

)
. (C.13)

Equation (C.11) �nally reads

Lρ

M

{[
1− fC

4πGρ −
M

L
(ε+ εg)

](
2 g̃`
g

+ dT̃`
dT

+ ρ̃χ`
ρχ

+ Θ`

)
+ g2

4πG
d
dp

(
dT̃`
dT

+ ρ̃χ`
ρχ

)}
. (C.14)

We are almost there. Injecting Eqs. (C.9), (C.10) and (C.14) into the `-component of Eq. (2.95)
gives:

RHS = Lρ

M

(
dT̃`
dT

+ ρ̃χ`
ρχ

)(
fC

4πGρ − 1
)

+ L

4πGM
(
f̃C,` − 4πGρ̃`

)
+Lρ

M

{[
1− fC

4πGρ −
M

L
(ε+ εg)

](
2 g̃`
g

+ dT̃`
dT

+ ρ̃χ`
ρχ

+ Θ`

)
+ g2

4πG
d
dp

(
dT̃`
dT

+ ρ̃χ`
ρχ

)}
−`(`+ 1)

r2

(
χT̃` + ρTDhcp (Ψ` + ΦΛ`)

)
+ ρ̃ε`. (C.15)

The �rst term cancels part of the term in curl brackets. Furthermore, pressure derivatives
replaced by − 1

ρgd/dr

RHS = −ρ
(

dT̃`
dT

+ ρ̃χ`
ρχ

)
(ε+ εg) + L

4πGM
(
f̃C,` − 4πGρ̃`

)
+Lρ

M

{(
1− fC

4πGρ −
M

L
(ε+ εg)

)(
2 g̃`
g

+ Θ`

)
− g

4πGρ
d
dr

(
dT̃`
dT

+ ρ̃χ`
ρχ

)}
−`(`+ 1)

r2

(
χT̃` + ρTDhcp (Ψ` + ΦΛ`)

)
+ ρ̃ε`. (C.16)

C.4 Final expression of the meridional circulation velocity

Eventually we will use Eq. (2.79) and we denote T` the term between curl brackets:

T` = 2
(

1− fC
4πGρ −

ε+ εg

εm

)
g̃`
g

+ f̃C,`

4πGρ −
fC

4πGρΘ` −
ε+ εg

εm
Θ`

+ ε

εm
[(εT − δ) Ψ` + (ϕ+ εµ) Λ`] +

(
HT

∂Ψ`

∂r
− (1− δ + χT ) Ψ` − (ϕ+ χµ) Λ`

)
ε+ εg

εm

−`(`+ 1)
r2 cpT

K

εm

(
1 + Dh

K

)
Ψ` + g

4πGρ
d
dr

(
HT

∂Ψ`

∂r
− (1− δ + χT ) Ψ` − (ϕ+ χµ) Λ`

)
= 2

(
1− fC

4πGρ −
ε+ εg

εm

)
g̃`
g

+ f̃C,`

4πGρ −
fC

4πGρΘ` + ε+ εg

εm

[(
HT

∂Ψ`

∂r
− (1− δ + χT ) Ψ`
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− (ϕ+ χµ) Λ`

)
−Θ` + (fε (εT − δ) Ψ` + fε (ϕ+ εµ) Λ`)

]
(C.17)

+ g

4πGρ
d
dr

(
HT

∂Ψ`

∂r
− (1− δ + χT ) Ψ` − (ϕ+ χµ) Λ`

)
− `(`+ 1)

r2 cpT
K

εm

(
1 + Dh

K

)
Ψ`.

The last line of this equation needs some cleaning. With ρm = M(r)
4
3πr

3 and g ' GMr2 , and by setting

Υ` = HT
∂Ψ`

∂r
− (1− δ + χT ) Ψ` − (ϕ+ χµ) Λ`, (C.18)

(which will be useful in Chapter 6), we obtain:

g

4πGρ
dΥ`

dr −
`(`+ 1)
r2 cpT

K

εm

(
1 + Dh

K

)
Ψ` = M

4πr2ρ

dΥ`

dr + `(`+ 1)
r2

HTM

L

dT
dr

χ

ρ

(
1 + Dh

K

)
Ψ`

= ρm

ρ

r

3
dΥ`

dr −
`(`+ 1)
r2 HT

g

4πGρ

(
1 + Dh

K

)
Ψ`

= ρm

ρ

(
r

3
dΥ`

dr −
`(`+ 1)HT

3r

(
1 + Dh

K

)
Ψ`

)
,

(C.19)

where we have used Eq. (C.9) between �rst and second line. Finally, we write T` in the same
way as Mathis & Zahn (2004):

T` = 2
(

1− fC
4πGρ −

ε+ εg

εm

)
g̃`
g

+ f̃C,`

4πGρ −
fC

4πGρΘ`

+ ρm

ρ

[
r

3
d
dr

(
HT

∂Ψ`

∂r
− (1− δ + χT ) Ψ` − (ϕ+ χµ) Λ`

)
− `(`+ 1)HT

3r

(
1 + Dh

K

)
Ψ`

]
+ ε+ εg

εm

[(
HT

∂Ψ`

∂r
− (1− δ + χT ) Ψ` − (ϕ+ χµ) Λ`

)
+ (fεεT − fεδ + δ) Ψ`

+ (fεεµ + fεϕ− ϕ) Λ`

]
. (C.20)

And the equation expressing the term of degree ` of the meridional circulation is

Tcp

[
dΨ`

dt + Φd lnµ
dt Λ` + U`

Hp
(∇ad −∇)

]
= Lp
Mp
T`. (C.21)
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D.. Some details on the derivation of the transport of angular momentum equations

D. Some details on the derivation of the transport of angular mo-
mentum equations

D.1 Vertical transport of angular momentum

In order to recover the equation for the vertical transport of am, we integrate Eq. (2.117) times
sin θdθ between 0 and π:ˆ π

0

∂

∂t

(
ρr2 sin2 θΩ

)
sin θdθ +

ˆ π

0
∇ ·

(
ρr2 sin2 θΩU

)
sin θdθ

=
ˆ π

0

sin2 θ

r2
∂

∂r

(
ρνvr

4∂Ω
∂r

)
sin θdθ +

ˆ π

0

1
sin θ

∂

∂θ

(
ρνh sin3 θ

∂Ω
∂θ

)
sin θdθ. (D.1)

• The �rst term leads toˆ π

0

∂

∂t

(
ρr2 sin2 θΩ

)
sin θdθ = ∂

∂t

(
ρr2
ˆ π

0
sin3 θΩ(r, θ)dθ

)
. (D.2)

Until now, we have de�ned our horizontal averages of a quantity X as´
X sin θdθ/

´
sin θdθ. With the above equation, it seems that a better choice of aver-

aging in the particular case Ω is to de�ne

Ω(r) =
´ π

0 Ω(r, θ) sin3 θdθ´ π
0 sin3 θdθ

. (D.3)

With this choice, the �rst term can be rewritten ∂t
(
ρr2Ω

) ´ π
0 sin3 θdθ.

We shall do a small break on the decomposition of Ω on Legendre polynomials. Usually, Ω
would have been decomposed as any other quantity on Legendre polynomials, with the
0th-order term following the averaging de�ned in Eq. (1.49). But with this new de�nition,
there is a little subtlety. Indeed, if we keep the usual de�nition Ω(r, θ) =

∑
` Ω̃`(r)P`(cos θ)

we should have the following:

Ω(r) =
´ π

0 Ω(r, θ) sin3 θdθ´ π
0 sin3 θdθ

= Ω(r) +
∑
`>0

Ω̃`(r)
´ π

0 P`(cos θ) sin3 θdθ´ π
0 sin3 θdθ

. (D.4)

Then for this to be true, we should have ∀` ∈ N,
´ π

0 P`(cos θ) sin3 θdθ = 0. Yet, the
integral in the right hand side is not 0 but δ0,` − 1

5δ2,` (see Eq. (B.13)). Therefore Ω is not
decomposed in a linear combination of Legendre polynomials but on a slightly di�erent
basis of polynomials Q`(cos θ) = P`(cos θ)− I`

Ω(r, θ) =
∑
`

Ω̃`(r)Q`(cos θ) = Ω(r) + Ω̃2(r)
[
P2(cos θ) + 1

5

]
+ Ω̃4P4(cos θ) + . . . . (D.5)

• The second term reads
ˆ π

0
∇ ·

(
ρr2 sin2 θΩU

)
sin θdθ =

ˆ π

0

1
r2

∂

∂r

(
ρr4 sin3 θΩ(Ur + ṙ)

)
dθ

+
ˆ π

0

1
r sin θ

∂

∂θ

(
ρr2 sin3 θΩUθ

)
sin θdθ, (D.6)

where we used the de�nition of U in Eq. (2.73) by denoting Ur (resp. Uθ) the radial (resp.
latitudinal) part.
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Let us �rst express
´ π

0
1
r2

∂
∂r

(
ρr4 sin3 θΩUr

)
dθ. When Ω and Ur are replaced by their

Legendre decomposition, this equation involves integrals such as, m,n ∈ N
ˆ π

0
sin3 θPm(cos θ)Qn(cos θ)dθ =

ˆ π

0
(1− P2(cos θ))Pm(x)Qn(x)dx, (D.7)

which, in general are not 0 (see Sect. B.2). Therefore, contrary to what many authors
said (Mathis & Zahn, 2004), all orders of the vertical meridional circulation are able to
advect am. However, since ∀`, Ω̃` � Ω̃`+1 and U` � U`+1, one can neglect all terms but
the ΩU2 term (remember that U0 = 0), leading to

1
r2

∂

∂r

(
ρr4
ˆ π

0
sin3 θ

∑
`

Ω̃`Q`(cos θ)
∑
`

U`P`(cos θ)dθ
)

= 1
r2

∂

∂r

(
ρr4ΩU2

ˆ π

0
sin3 θP2(cos θ)dθ

)
= − 1

5r2
∂

∂r

(
ρr4ΩU2

)ˆ π

0
sin3 θdθ, (D.8)

where the last line was obtained using (B.13).

In a Lagrangian description, the term ṙ conveniently vanishes and we are le� with the
momentum advected vertically by the horizontal velocity which of course is 0. Indeed,
by removing all the terms depending only on r, above integral reads

ˆ π

0

1
sin θ

∂

∂θ

(
sin3 θΩUθ

)
sin θdθ (D.9)

=
ˆ π

0

∂

∂θ

(
sin3 θ

∑
`

Ω̃`Q`(cos θ)
∑
`

V`
∂P`(cos θ)

∂θ
dθ
)

dθ

= sin3 θ
∑
`

Ω̃`Q`(cos θ)
∑
`

V`
∂P`(cos θ)

∂θ

∣∣∣∣∣
π

0
= 0. (D.10)

• Third term is again very simple:
ˆ π

0

sin2 θ

r2
∂

∂r

(
ρνvr

4∂Ω
∂r

)
sin θdθ = 1

r2
∂

∂r

(
ρνvr

4∂Ω
∂r

)ˆ π

0
sin3 θdθ. (D.11)

• and last term is zero for the same reason as for the horizontal advection term.

Wrapping up everything and dividing by
´ π

0 sin3 θdθ yields the average equation for the
vertical transport of angular momentum:

ρ
dr2Ω

dt = 1
5r2

∂

∂r

(
ρr4ΩU2

)
+ 1
r2

∂

∂r

(
ρνvr

4∂Ω
∂r

)
. (D.12)

D.2 Horizontal transport of angular momentum

Coming back to Eq. (2.117), we replace Ω by Ω̄ + Ω2Q2(cos θ), U by Ω by U2P2(cos θ) +
V2dP2(cos θ)/dθ. Hence,

ρ
d
dt
[
r2 sin2 θ

(
Ω̄ + Ω2Q2(cos θ)

)]
+ 1
r2∂r

[
ρr4 sin2 θ

(
Ω̄ + Ω2Q2(cos θ)

)
U2P2(cos θ)

]
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+ 1
r sin θ∂θ

[
ρr2 sin3 θ

(
Ω̄ + Ω2Q2(cos θ)

)
V2

dP2(cos θ)
dθ

]
(D.13)

= sin2 θ

r2 ∂r
[
ρνvr

4∂r
(
Ω̄ + Ω2Q2(cos θ)

)]
+ 1

sin θ∂θ
[
ρνh sin3 θ∂θ

(
Ω̄ + Ω2Q2(cos θ)

)]
.

And by neglecting 4th order terms, one obtains

ρ
d
dt
(
r2 sin2 θ

(
Ω̄ + Ω2Q2(cos θ)

))
+ 1
r2

∂

∂r

(
ρr4 sin2 θΩ̄U2

)
P2(cos θ)

+ 1
r sin θρr

2V2Ω̄ ∂

∂θ

(
sin3 θ

dP2(cos θ)
dθ

)
= sin2 θ

r2

[
∂

∂r

(
ρνvr

4∂Ω̄
∂r

)
+ ∂

∂r

(
ρνvr

4∂Ω2

∂r
Q2(cos θ)

)]

+ 1
sin θ

∂

∂θ

(
ρνh sin3 θΩ2

dQ2(cos θ)
dθ

)
. (D.14)

Then we multiply Eq. (2.118) by sin2 θ and subtract it to Eq. (D.14), which gives

ρ
d
dt
(
r2 sin2 θΩ2Q2(cos θ)

)
+ 1
r2

∂

∂r

(
ρr4 sin2 θΩ̄U2

)
P2(cos θ) + sin2 θ

5r2
∂

∂r

(
ρr4Ω̄U2

)
+ 1

r sin θρr
2V2Ω̄ ∂

∂θ

[
sin3 θ

dP2(cos θ)
dθ

]
= sin2 θ

r2
∂

∂r

[
ρνvr

4∂Ω2

∂r
Q2(cos θ)

]
+ 1

sin θ
∂

∂θ

[
ρνh sin3 θΩ2

dQ2(cos θ)
dθ

]
. (D.15)

We neglect the variations of ρνh over an isobar and we note that 1
sin θ

d
dθ

(
sin3 θ dP2(cos θ)

dθ

)
sim-

pli�es to −10 sin2 θQ2(cos θ). Therefore,

ρ
d
dt
(
r2 sin2 θΩ2Q2(cos θ)

)
+ 1
r2

(
P2(cos θ) + 1

5

)
︸ ︷︷ ︸

Q2(cos θ)

∂

∂r

(
ρr4 sin2 θΩ̄U2

)
− 10ρrV2Ω̄ sin2 θQ2(cos θ)

= sin2 θ

r2
∂

∂r

[
ρνvr

4∂Ω2

∂r
Q2(cos θ)

]
− 10ρνhΩ2 sin2 θQ2(cos θ).

(D.16)

Finally simplifying by Q2(cos θ) and making use of Eq. (2.74) yields the equation for the hori-
zontal transport of angular momentum:

ρ
d
dt
(
r2Ω2

)
+ 1
r2

∂

∂r

(
ρr4Ω̄U2

)
− 10

6
dρr2U2

dr Ω̄ = 1
r2

∂

∂r

[
ρνvr

4∂Ω2

∂r

]
− 10ρνhΩ2. (D.17)
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E. Synthèse en français: Du transport de moment cinétique dans
les zones radiatives stellaires, en 2D

Henyey et al. (1955, 1959a,b, 1964) ont été les premiers à calculer des modèles stellaires en
utilisant des ordinateurs et ces modèles ont par la suite été étendus par Iben (1965a,b, 1966a,b).
Ces travaux ont abouti au modèle standard de la physique stellaire. Les étoiles sont considérées
comme des sphères de plasma en équilibre hydrostatique et thermique local. L’énergie produite
par les réactions de fusion nucléaire, ou perdue par les neutrinos à l’intérieur des étoiles, peut
être rayonnée ou convertie en énergie thermique. Tous les autres phénomènes susceptibles
de compliquer la physique des étoiles ont été longtemps négligés. Parmi eux, on peut citer les
champs magnétiques, les processus de di�usion, les forces de marée, la rotation, etc. Avec ces
hypothèses, un système physique aussi complexe qu’une étoile peut être simpli�é en un système
unidimensionnel, c’est-à-dire où toutes les quantités ne dépendent que de la coordonnée radiale.

Cependant, la modélisation de la rotation stellaire et de son évolution est importante, et
ce pour plusieurs raisons. D’abord, la rotation est intimement liée à l’activité magnétique
stellaire par son interaction avec la convection. Une activité magnétique accrue peut avoir un
impact déterminant sur l’atmosphère des planètes et peut entraver le développement de la
vie sur celles-ci. Une deuxième raison d’étudier la rotation est liée à l’estimation de l’âge des
étoiles. Les étoiles sont très souvent utilisées comme des indicateurs pour estimer l’âge de leur
structure hôte ou de celles qu’elles hébergent (amas, galaxies, exoplanètes, etc.). Les erreurs
dans l’estimation de l’âge sont principalement due au mélange chimique induit par l’interaction
de la rotation et de l’overshoot convectif. Cet overshoot injecte du matériau riche en hydrogène
dans les régions où se produit la combustion nucléaire. Comme il y a plus d’hydrogène à brûler,
la durée de vie stellaire est prolongée.

Jusqu’à la �n des années 80, la plupart des modèles de rotation stellaire supposaient que
les étoiles étaient barotropes, c’est-à-dire que la vitesse angulaire est constante dans des cylin-
dres. La mesure du pro�l de rotation interne du soleil obtenue par Brown & Morrow (1987)
a fait apparaître que l’approximation barotrope n’était pas véri�ée. Peu après, Spiegel & Zahn
(1992) et Zahn (1992) ont proposé un modèle pour expliquer la forme du pro�l de rotation dans
la zone radiative et son évolution. Ce modèle repose sur trois idées principales. Premièrement,
dans la zone radiative, le moment cinétique est advecté par la circulation méridienne. Deux-
ièmement, les gradients de vitesse angulaire créent du cisaillement, sujets à des instabilités.
La turbulence induite par ce cisaillement etraîne la di�usion de la vitesse angulaire. Cette tur-
bulence est supposée être beaucoup plus forte horizontalement que radialement, en raison de
la strati�cation stable. Il en résulte un pro�l de rotation constant en latitude, appelé pro�l de
rotation shellulaire. Cette hypothèse permet de conserver une description unidimensionnelle
de la structure stellaire, même si celle-ci est en rotation.

Le développement de l’astéroséismologie pour d’autres étoiles que le Soleil et surtout les
données de haute qualité mises à disposition par les missions spatiales CoRoT (Catala et al.,
1995; Baglin et al., 2006; Michel et al., 2008) et Kepler (Borucki et al., 2010) ont fait apparaître
des décalages importants entre les prédictions des modèles et le pro�l de rotation observés.
Le modèle de Zahn (1992) et ses améliorations ultérieurs (Maeder, 1995; Meynet & Maeder,
1997; Talon et al., 1997; Maeder, 2003) prévoient une rotation di�érentielle radiale dans la zone
radiative du Soleil, en contradiction avec le pro�l de rotation observé qui est presque constant.
De plus, le taux de rotation du cœur des étoiles géantes rouges s’est avéré être environ deux
ordres de grandeur plus élevé que celui prédit par les modèles (Beck et al., 2012; Deheuvels
et al., 2012; Marques et al., 2013). Ces observations ont montré clairement que des mécanismes
supplémentaires de transport du moment angulaire doivent être inclus dans la modélisation.
Beaucoup d’entre eux ont été suggérés : instabilités hydrodynamiques, instabilités magnéto-
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hydrodynamiques, modes mixtes, ondes internes de gravité (IGW), etc. Actuellement, aucun
de ces mécanismes n’est modélisé correctement et de manière cohérente. Pour permettre une
modélisation correcte de ces mécanismes supplémentaires de transport du moment angulaire,
il faut apporter quelques modi�cations au modèle standard de la physique stellaire.

Dans cette thèse, nous avons choisi de sortir de la description unidimensionnelle. Di�érents
arguments peuvent être avancés pour motiver ce changement dans la modélisation. Tout
d’abord, dans la zone convective, la vitesse angulaire dépend de la latitude. Par conséquent,
à la transition entre la zone convective et la zone radiative, les conditions aux bords doivent
dépendre de la latitude. Une autre raison est que l’accélération centrifuge brise la symétrie
sphérique. De plus, l’approximation shellulaire n’est peut être plus valide près de l’axe de
rotation car à cet endroit, la vitesse de rotation devient nulle et il ne devrait donc plus y avoir
de cisaillement. Or, c’est l’hypothèse d’un pro�l de rotation shellulaire qui permet de conserver
une description 1D. En�n, une description 2D est fondamentale pour une modélisation correcte
des mécanismes de transport supplémentaires.

J’ai établi le cadre numérique en améliorant un code d’évolution stellaire, cestam, qui per-
mettra les futures études de l’évolution de la rotation stellaire. Ces améliorations peuvent être
séparées en deux parties. La première est un module de déformation qui met en œuvre une
méthode proposée par Roxburgh (2004, 2006). L’idée principale est de partir d’un modèle 1D
et d’un pro�l de rotation angulaire. On résout ensuite l’équation de Poisson et l’équilibre des
forces en supposant que toutes les quantités peuvent être décomposées sur des polynômes
de Legendre. Cette méthode nous fournit donc les coordonnées des isobares, les �uctuations
sur ces idobares de la densité et du potentiel gravitationnel sur celles-ci et la gravité e�ec-
tive (l’e�et combiné de la gravité agissant radialement et de l’accélération centrifuge agissant
perpendiculairement à l’axe de rotation). La connaissance de ces quantités nous permet de
calculer des facteurs supplémentaires qui entrent dans les équations de la structure modi�ée
et améliore considérablement la description de l’impact de la rotation sur la structure.

La deuxième partie de ce travail est l’implémentation d’une nouvelle prescription pour le
transport du moment cinétique, qui tire parti de la description en 2D de l’étoile. Ce nouveau
modèle permettra prochainement d’étudier très �nement le champ de vitesse de la circulation
méridienne et les éventuelles variations latitudinales de la vitesse angulaire. Ce nouevau code
conserve très bien la masse et le moment cinétique. Nous avons également e�ectué une étude
sismique de nos modèles en utilisant le code d’oscillation 2D, non perturbatif, acor (Ouazzani
et al., 2012). Pour cela, j’ai dû bâtir une interface entre acor et cestam. Les calculs e�ectués avec
la nouvelle prescription sont plus stables qu’avec l’ancienne et signi�cativement plus rapides.

Ce travail ouvre la voie à de nouvelles études sur le transport de moment cinétique.
Certaines de ces études ont déjà commencé. Ce nouveau modèle est, par exemple, utilisé
pour améliorer la compréhension de rotateurs rapides tels que les étoiles δ Sct et γ Dor, ou la
caractérisation d’analogues solaires. Elle est également utilisée pour tester un nouveau modèle
de l’approximation traditionnelle de la rotation, utilisé pour estimer la fréquence des ondes de
basse fréquence dans les étoiles en rotation (Mathis & Prat, 2019).
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Titre: Du transport de moment cinétique dans les zones radiatives stellaires, en 2D

Mots clés: intérieurs stellaires; étoiles; rotation; turbulence; ondes; modélisation

Résumé: La rotation a d’importantes conséquences
sur la structure interne des étoiles et leur évolution.
La force centrifuge déforme l’étoile et s’oppose à la
gravité, mimant une étoile de plus faible masse. Plus
important encore, la circulation méridienne et la tur-
bulence induites par la rotation mélangent les élé-
ments chimiques, prolongeant la vie de l’étoile et al-
térant la détermination de son âge, un problème ma-
jeur en astrophysique. En�n, l’interaction rotation-
convection génère des champs magnétiques. L’activité
associée a une in�uence décisive sur la survie des at-
mosphères planétaires.

Les données astérosismiques des missions spa-
tiales CoRoT et Kepler ont montré que les modèles
1D actuels de transport du moment cinétique dans
les zones radiatives (viscosité turbulente et circula-
tion méridienne) ne sont pas satisfaisants. D’autres
mécanismes doivent être actifs: les ondes internes
de gravité, les champs magnétiques, etc. Tous les
modèles les décrivant sont actuellement incomplets
et doivent en particulier tenir compte des e�ets 2D.

La description 1D de la rotation est généralement
justi�ée par le fait que, dans les zones radiatives, la
turbulence est beaucoup plus forte horizontalement
que verticalement, supprimant les variation latitudi-
nales de vitesse angulaire. Cette hypothèse pourrait
être invalide près de l’axe de rotation. De plus, les on-
des internes de gravité étant générées à la base des
enveloppes convectives, le décalage Doppler qu’elles
subissent en entrant dans la zone radiative dépend
de la latitude. Elles sont ensuite �ltrées dans la zone
de transition entre les régions convective et radiative,
présentant une forte rotation di�érentielle.

Cette thèse est dédiée à l’implémentation dans un
code d’évolution stellaire d’un traitement simpli�é du
transport du moment cinétique en 2D. Ce traitement
est basé sur une méthode de déformation permet-
tant de calculer la structure 2D de l’étoile, ainsi que
les perturbations des di�érents champs induites par
la rotation. Le transport du moment cinétique est
ensuite traité en 2D, et permettra d’étudier plus en
détail d’autres mécanismes de transport.
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Abstract: Rotation has important consequences
for stellar internal structure and evolution. The cen-
trifugal force deforms the star and balances grav-
ity, mimicking a lower mass star. Most importantly,
meridional circulations and rotation-induced turbu-
lence mixes chemical elements, extending the stel-
lar lifetime and a�ecting age determinations, one of
the most important problems in astrophysics. Lastly,
the rotation-convection interaction generates mag-
netic �elds. The associated activity has a determining
in�uence on the survival of planetary atmospheres.

Asteroseismic data from the space missions
CoRoT and Kepler have shown that current 1D mod-
els of angular momentum transport in radiative zones
(turbulent viscosity and meridional circulation) are not
satisfactory. Other mechanisms must be active, such
as internal gravity waves, magnetic �elds, etc. All
models proposed for these mechanisms are incom-
plete and must, in particular, account for 2D e�ects.

The 1D description of rotation is usually justi�ed

by the fact that turbulence is much stronger horizon-
tally than vertically in radiative zones, suppressing
variations of angular velocity. This assumption may
not be veri�ed at near the rotation axis. Moreover,
because internal gravity waves are generated at the
base of convective envelopes, the Doppler shi� expe-
rienced by these waves when they enter the radiative
zone should depend on latitude. These waves are fur-
ther �ltered in the transition zone between the con-
vective and radiative zones, a zone that has a strong
di�erential rotation.

This PhD is devoted to the implementation in
a stellar evolution code of a simpli�ed treatment of
transport of angular momentum in 2D. This treat-
ment is based on a deformation method that enables
the computation of the 2D structure of the star, as
well as the rotation-induced perturbations of the var-
ious �elds. The transport of angular momentum is
then treated in 2D, and will allow the further study
of extra mechanisms of transport.
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