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Cette these est consacrée a I’homogénéisation stochastique, qui cherche a étudier le
comportement d’équations aux dérivées partielles présentant des coefficients aléatoires
oscillants rapidement. L’étude de ces systemes se révele en général difficile et une idée
classique en homogénéisation consiste a réaliser une analyse asymptotique pour obtenir,
lorsque le rapport entre les échelles tend vers I'infini, une équation limite appelée équation
homogene. Cette équation est typiquement déterministe et a coefficients constants ce qui
en facilite I’étude.

Un des objets central de ce manuscrit est I’équation elliptique linéaire sous forme de
divergence,

~v-(a(z)vu) = f inUcR?
ol le coefficient a est une variable aléatoire stationnaire a valeurs dans ’ensemble des
matrices symétriques définies positives. L’étude de ces équations est reliée aux marches
aléatoires en milieux aléatoires et peut également étre utilisée pour mieux comprendre les
propriétés effectives de matériaux composites, via par exemple la conduction thermique ou
I’électromagnétisme.

Jusqu’a présent, la majorité des travaux réalisés en homogénéisation stochastique repose
sur une hypothese d’uniforme ellipticité sur ’environnement. Cependant de nombreux
modeles physiques ne satisfont pas cette hypothese et la question de I'extension de la théorie
se pose alors. Un bon exemple de systeme dégénéré peut étre obtenu en considérant le
réseau discret Z¢ et en autorisant les conductances aléatoires (i.e. 1'équivalent du coefficient
a dans le contexte discret) a prendre la valeur 0 - avec une probabilité strictement inférieure
a 1—p., ol p. est le seuil de percolation critique. Ce cadre d’étude est ’objet du Chapitre 2,
ou nous établissons un théoreme d’homogénéisation quantitative ainsi qu'une théorie de
la régularité a grande échelle dans ce contexte dégénéré. La principale nouveauté repose
sur un argument de renormalisation pour la composante connexe infinie : en utilisant des
résultats classiques de percolation en régime surcritique, nous construisons une partition
de Z? en bons cubes (en un sens a préciser) de tailles variables. Cette partition fournit
une échelle aléatoire au-dessus de laquelle la géométrie de 'amas infini de percolation est
similaire & celle du réseau euclidien Z¢,

Dans le Chapitre 3, ces résultats sont approfondis et appliqués a ’étude d’un objet
clé en homogénéisation stochastique : le correcteur. En combinant des outils de trois
types différents : la structure de renormalisation pour 'amas infini, 'inégalité de Poincaré
multi-échelle et une inégalité de concentration de type Efron-Stein, nous obtenons des
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6 RESUME DE LA THESE

estimées spatiales optimales pour le correcteur. De telles estimations peuvent par la suite
étre utilisées pour obtenir des information sur la marche aléatoire sur I’amas infini en
percolation supercritique.

Dans le Chapitre 4, nous étudions un autre type d’environnement dégénéré : le cas des
formes différentielles. En nous appuyant sur des résultats de la théorie de la régularité pour
les formes différentielles, nous sommes en mesure d’étendre les outils d’analyse fonctionnelle
utilisés en homogénéisation a ce cadre plus général. Ceci permet d’étendre la théorie
de 'homogénéisation développée sous une hypothese d’uniforme ellipticité et d’établir
un théoreme d’homogénéisation quantitative pour un systeme d’équations elliptiques
dégénérées impliquant des formes différentielles.

Dans le Chapitre 5, nous appliquons les idées de I’homogénéisation a un modele issu
de la physique statistique : le modele de Ginzburg-Landau discret. Dans ce chapitre,
nous revisitons le début de la théorie de I’homogénéisation stochastique et 'adaptons a ce
nouveau modele. Nous obtenons un taux de convergence quantitatif pour la tension de
surface en volume fini du modele. Une fois ceci établi, nous en déduisons une estimation
quantitative de sous-linéarité pour la norme L? de 'interface aléatoire avec une condition
de bord de Dirichlet affine. L’argument repose sur des idées venant de la théorie du
transport optimal, nouvelles dans 1’étude du modele de Ginzburg-Landau discret, ainsi
que des techniques d’homogénéisation.

Le reste de cette introduction est organisé comme suit. Dans la Section 0.1, nous
présentons une introduction générale a la théorie de ’homogénéisation stochastique. Dans
la Section 0.2, nous présentons le modele de la percolation de Bernoulli par arétes et
exposons quelques résultats importants du domaine. Nous expliquons ensuite comment
construire une structure de renormalisation pour le 'amas infini et terminons cette
section en présentant les résultats d’homogénéisation obtenus dans cette direction. La
Section 0.3 est consacrée a la présentation du Chapitre 4 : nous motivons I'étude des
formes différentielles, présentons le modele étudié au Chapitre 4 et expliquons les difficultés
rencontrées pour étendre la théorie a ce nouveau contexte. Dans la Section 0.4, nous
présentons le modele de Ginzburg-Landau discret et les principaux objets et outils utilisés
dans le Chapitre 5, ainsi que le résultat principal que nous obtenons.
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0.1. Introduction : Homogénéisation stochastique

0.1.1. Introduction générale. L’objectif général de la théorie de I'homogénéisation
est de répondre a la question suivante : étant donné un milieu hétérogene présentant
des variations microscopiques dans sa composition, peut-on dire que, a grande échelle,
les propriétés de l'environnement sont similaires a celles d’un milieu homogene ? Ce
phénomene, quand il se produit, s’appelle homogénéisation. Il repose sur l'intuition
que si les variations dans la composition sont distribuées de suffisamment maniéres
aléatoire, elles se compenseront au niveau macroscopique, suivant une sorte de loi des
grands nombres. Il est intéressant de comprendre précisément quand et comment ce
phénoméne se produit, en effet de nombreux modeles physiques, impliquant par exemple la
conduction thermique ou 'électromagnétisme, traitent d’environnements hétérogenes. Les
équations obtenues a partir de ces modeles physiques présentent des oscillations rapides
et sont cotiteuses a résoudre numériquement. Néanmoins, il est tout de méme possible
d’obtenir des informations pertinentes avec un cout numérique réduit grace a la théorie de
I’homogénéisation : une stratégie intéressante consiste a prouver qu'un systeme hétérogene
donné homogénéise, puis a résoudre I’équation homogénéisée et enfin a déduire de ces
calculs des informations sur le milieu hétérogene.

Un exemple de situation physiquement pertinente ou 1'on s’attend a observer un
phénomene d’homogénéisation est la conduction thermique dans un environnement hétérogene.
Prenons I'exemple d'un milieu composite constitué de différents matériaux ayant des pro-
priétés thermiques différentes. Nous souhaitons étudier la conduction thermique dans ce
matériau. Mathématiquement, ceci peut étre modélisé par I’équation parabolique

Ou—V - (a(x)vVu) =0,

avec des conditions de bord adaptées. En considérant la limite ou le temps tend vers
I'infini, la distribution d’énergie thermique stationnaire est solution de I’équation elliptique

(0.1.1) V- (a(z)Vu) =0.

Le fait que le milieu soit hétérogene signifie que la matrice a(x) varie dans l’espace.
L’équation (0.1.1) est le principal objet d’étude de cette these, et nous présentons main-
tenant un modele précis d’homogénéisation stochastique pour étudier cette équation aux
dérivées partielles. Considérons une dimension d > 1, et notons S(R?) I'ensemble des
matrices symétriques de R?. Nous considérons ensuite une fonction aléatoire

{ R - S(R9)

z~a(x),

qui est mesurable par rapport aux tribus boréliennes sur R? et S(R?). Nous supposons
par ailleurs qu’il existe deux constantes d’ellipticité 0 < A < A < oo telles que

(0.1.2) My <a(z) <Al

La matrice a est appelée I’environnement. Comme il a déja été mentionné, nous supposons
que I'environnement a est aléatoire, désignons par P la loi et par E 'espérance associée a
cette mesure de probabilité. On suppose par ailleurs que la loi P satisfait les propriétés
suivantes :

o Stationnarité: la loi P est invariante par translation par un vecteur de Z¢, c’est-a-
dire pour tout y € Z%, les lois de a et de a(y +-) sont identiques.

e Frgodicité: la loi P de 'environnement est ergodique par rapport aux translations
sur Z°.



8 RESUME DE LA THESE

FIGURE 0.1.1. Un environnement typique satisfaisant les hypotheses de stationnarité
et de dépendance & portée finie est le damier : on choisit deux matrices (déterministes)
symétriques définies positives a; et as. L’environnement a est défini de telle sorte que a
est égal & a; sur les cellules noires et égal a as sur les cellules blanches. La couleur des
cellules est choisie grace & une percolation de Bernoulli par site de probabilité p € [0,1].

Grace a ces deux hypotheses, il est possible développer une théorie de 'homogénéisation
stochastique qualitative, i.e. établir des théorémes de convergence sans aucun taux explicite.
L’hypothese d’ergodicité est de nature purement qualitative et on ne peut s’attendre a
obtenir que des résultats qualitatifs sous cette hypothese.

Au cours des dernieres années, de nombreux progres ont été réalisés dans le développement
d’une théorie de I’homogénéisation stochastique quantitative, i.e. visant a établir des
théoremes de convergence avec des taux explicites. C’est 'objet d’étude de cette these et
il est nécessaire, pour établir de tels résultats, de renforcer I’hypothese d’ergodicité. Une
possibilité, parmi tant d’autres, est de supposer une hypothese de dépendance a portée
finie sur I'environnement a.

e Dépendance a portée finie. Si, pour tout ouvert U ¢ R¢ nous définissons F(U)
comme étant la tribu borélienne engendrée par la famille d’applications,

a~ [ o(@a(@)ds, ¢cCE(U),

alors les tribus F(U) et F(V') sont indépendantes des que dist(U, V') > 1.

L’objectif est alors d’étudier le comportement a grande échelle des solutions de 1’équation
elliptique (0.1.1). Pour ce faire, il est d’usage d’introduire un parametre 0 < € < 1, qui
représente le rapport entre 1’échelle microscopique et 1’échelle macroscopique, et de réaliser
le changement d’échelles suivant :
v (a(f) Vue) =0.
€

Un théoreme d’homogénéisation typique que 'on souhaiterait montrer est le suivant :
étant donné un domaine borné U € RY et une fonction f € H'(U), la famille des solutions
uf des problemes elliptiques

V-(a(%)vus)=0 iU
013 (76 i

converge dans L?(U) lorsque ¢ tend vers 0 vers la solution w de I’équation elliptique

v-(avu)=0 inU
(0.1.4) { u=f on OU,
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ou la matrice a, appelée environnement homogénéisé, est déterministe et constante.
Résoudre le probleme elliptique (0.1.4) est équivalent, moyennant un changement de vari-
ables, a résoudre le probleme de Poisson sur le domaine U et est moins cotiteux a résoudre
numériquement que ’équation hétérogene (0.1.1). Il est a noter que I'environnement
homogénéisé a dépend uniquement de la loi de I'environnement a (en particulier il ne
dépend ni du domaine U ni de la condition de bord f). Cependant il dépend de maniére
complexe de la loi de I'environnement et il n’y a en général pas de formule explicite
pour décrire cette quantité : en particulier, et sauf cas exceptionnels, & n’est pas égal a
I’espérance de a.

0.1.2. Histoire de I’homogénéisation stochastique. Une théorie qualitative de
I’homogénéisation stochastique a été initiée au début des années 80, avec les travaux
de Kozlov [107], Papanicolaou et Varadhan [135] et Yurinskii [150]. Ces résultats ont
ensuite été étendus par Dal Maso et Modica in [49, 50|, qui ont utilisé des arguments
variationnels pour étudier des équations elliptiques non linéaires. Leurs preuves reposent
sur une application du théoreme ergodique et sont donc purement qualitatives.

Pour aller au-dela de la théorie qualitative et obtenir des taux de convergence quan-
titatifs en homogénéisation, il est nécessaire que la loi de 'environnement a satisfasse
certaines conditions d’ergodicités quantitatives, telles que, par exemple, I’hypothese de
dépendance de portée finie mentionnée dans la section précédente. La principale difficulté
de ce probleme est que les solutions de I’équation elliptique V-aVv dépendent d’une maniere
trées compliquée de I'environnement a, et il n’est donc pas clair de la fagon dont il faut
procéder pour transférer les hypotheses d’ergodicités quantitatives de I’environnement aux
solutions. Il s’agit d’'un domaine de recherche actif qui a connu de nombreux progres au
cours des dernieres années et la théorie est maintenant bien comprise, du moins dans le
contexte uniformément elliptique.

Les premiers résultats quantitatifs ont été obtenus par Yurinskii dans [149], ou il
démontre un taux de convergence algébrique sous-optimal pour ’erreur d’homogénéisation
sous une hypothese de mélange uniforme sur ’environnement, en dimension d > 3. Dix ans
plus tard, dans [133], Naddaf et Spencer, a 'aide d’outils issus de la mécanique statistique,
ont pu obtenir des taux de convergence optimaux dans le cadre d'un contraste d’ellipticité
faible. Des résultats supplémentaires ont été obtenus dans cette direction par Conlon et
Naddaf [45] et Conlon et Spencer dans [46], ou les fonctions de Green ont été étudiées.

Dans le cas général, les premiers résultats quantitatifs satisfaisants ont été obtenus par
Gloria et Otto in [82, 83]. Ils ont étudié le cas ot 'environnement peut étre décomposé en
un nombre dénombrable de variables aléatoires indépendantes et identiquement distribuées.
Leur approche, qui s’appuie sur les idées de Naddaf et Spencer [133], repose sur des
inégalités de concentration, telles que les inégalités de trou spectral ou les inégalités de
Sobolev logarithmiques. En particulier, ils ont obtenu des estimations sur le correcteur,
les fluctuations de la densité d’énergie du correcteur et ’approximation de la matrice
homogénéisée qui sont optimales en termes d’échelle spatiale et sous-optimales en termes
d’intégrabilité stochastique. Puis, en collaboration avec Neukamm in [81], ils ont étendu
les idées de [82, 83] et ont pu obtenir une estimée optimale sur la décroissance dans le
temps de 1’équation parabolique associée au correcteur, ce qui a permis d’en déduire des
bornes sur les moments du correcteur.

Une autre approche a été initiée par Armstrong et Smart dans [21], qui ont étendu les
techniques d’Avellaneda et Lin [22, 23] et celles de Dal Maso et Modica [49, 50]. Ils ont
été en mesure d’obtenir une théorie de régularité C%! & grande échelle sous une hypothése
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de dépendance a portée finie. Armstrong, Kuusi et Mourrat I'ont ensuite généralisée a
des conditions de mélange plus générales ainsi qu’a d’autres types d’équations [20, 16]
et 'ont améliorée pour obtenir des taux de convergence optimaux [17]. La théorie de la
régularité a grande échelle a également été étudiée dans les travaux de Gloria, Neukamm
et Otto [80]. Ces résultats ont été étendus par Fischer et Otto in [65], qui ont développé
une théorie de régularité d’ordre supérieur C*!. Dans [84], Gloria et Otto ont obtenu des
estimées optimales sur la moyenne spatiale du gradient et du flux du correcteur et en ont
déduit des estimées sur la croissance du correcteur ainsi que des estimations d’erreurs pour
I’expansion a deux échelles.

La structure de corrélation et des fluctuations du correcteur a été étudiée par Mourrat
et Otto [131], Mourrat et Nolen [130], Gu et Mourrat [88]. Les preuves reposent sur la
formule de représentation d’Helffer-Sjostrand, initialement introduite dans [93, 145] et
utilisée par la suite par Naddaf et Spencer dans [132] afin d’obtenir un théoréme central
limit pour le modele de Ginzburg-Landau discret (voir Section 0.4 pour une définition
du modele). Ces travaux s’appuient sur des idées présentes dans les travaux précités de
Gloria, Neukamm, Otto ainsi que dans ceux de Gloria, Neukamm, Otto [79] et Marahrens
et Otto [110]. Une théorie générale pour comprendre la structure des fluctuations en
I’homogénéisation stochastique est établie par Duerinckx, Gloria et Otto dans [60, 61].

Dans la monographe [18], Armstrong Mourrat et Kuusi ont achevé le programme
initié quelques années auparavant dans [21]. Ils ont pu obtenir des estimées optimales
sur le correcteur ainsi que des estimations optimales pour 'erreur dans ’expansion a
deux échelles. Ils ont également adapté la théorie au cas des équations paraboliques (voir
aussi [12, 27]) et obtenu des estimées optimales d’homogénéisation pour les fonctions de
Green elliptiques et paraboliques.

La théorie décrite dans les paragraphes précédents est principalement la théorie de
I’homogénéisation stochastique des équations linéaires uniformément elliptiques, mais
elle peut étre généralisée a de nombreux autres contextes dans différentes directions,
notamment :

e Traiter le cas des fonctionnelles uniformément convexes non linéaires, i.e. étudier
les minimiseurs des problemes

(0.1.5) muinfUL(:E, Vu(z))dz,

ou U ¢ R est ouvert et (z,p) » L(x,p) est aléatoire, convexe en la seconde
variable. Cette situation a été étudiée par Dal Maso et Modica [49] et par
Armstrong et Smart dans [21]. Le Chapitre 15 de [98] est consacré au cas des
intégrandes ergodiques stationnaires et convexes. Armstrong et Mourrat dans [20]
ont établi une théorie de régularité aux ordres supérieures et ont démontré des
bornes Lipschitz pour les minimiseurs avec une intégrabilité stochastique optimale.
Plus récemment, Armstrong, Ferguson et Kuusi ont prouvé dans [14] une estimée
de régularité Lipschitz pour la différence de deux solutions, la principale difficulté
étant que dans le cas non linéaire, I’ensemble des minimiseurs n’est pas un espace
vectoriel et la différence de deux solutions n’est pas, en général, une solution.
Dans [59], Duerinckx et Gloria ont établi un résultat d’homogénéisation qualitative
pour une famille de fonctionnelles non convexes.

e Affaiblir 'hypothese d’uniforme ellipticité : ceci nécessite d’affaiblir I’hypothese

VzeRY A <a(z) <Al
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La recherche dans cette direction a attiré beaucoup d’attention dernierement, no-
tamment en raison de la relation entre I'homogénéisation et les marches aléatoires
en milieux aléatoires. Dans [108], Lamacz, Neukamm et Otto ont adapté la
théorie de 'homogénéisation a un modele de percolation de Bernoulli, ou le
modele standard est modifié de sorte que toutes les arétes dans une direction fixé
sont déclarées ouvertes. Une autre facon commune d’étudier les environnements
dégénérés est de supposer que les constantes d’ellipticité A et A sont aléatoires et
d’imposer une hypothese d’intégrabilité de la forme suivante : il existe p,q € [1, c0)
tels que

(0.1.6) E[A "] +E[AY] < o,

Ce cadre a été étudié par Andres, Deuschel, Slowik dans [9] (voir aussi [10]),
puis par Chiarini et Deuschel dans [44]. Ils obtiennent un principe d’invariance
quenched pour le processus de diffusion sous '’hypothese 1/p+1/q < 2/d. Dans [28],
Bella, Fehrman et Otto, travaillant toujours sous I'hypothese 1/p + 1/q < 2/d, ont
obtenu un théoreme de Liouville et une estimation de régularité a grande échelle
C1 pour les fonctions a-harmoniques. Andres, Chiarini, Deuschel et Slowik ont
étendu ces résultats au cas des coefficients dépendants du temps dans [8]. La
condition (1.1.19) exige que la valeur des conductances soit non nulle presque
stirement, une extension de ce modele dans un cas ou les conductances peuvent a
la fois étre nulles et petites (sous certaines conditions) a été étudiée par Deuschel,
Nguyen et Slowik dans [57]. Dans [75], Giunti, Hofer et Velazquez ont étudié
I’homogénéisation de I’équation de Poisson dans un domaine perforé aléatoirement.

0.2. Chapitres 2 et 3 : Percolation sur-critique

Les Chapitres 2 et 3 sont consacrés a I’adaptation de la théorie de 'homogénéisation
stochastique dans le contexte de la percolation sur-critique. La principale difficulté vient du
fait que 'hypothese d’uniforme ellipticité (0.1.2) est mise en défaut, il faut donc trouver une
substitution appropriée. Ceci est accompli en construisant une structure de renormalisation
pour l'amas infini, et repose sur certains résultats du domaine (voir [11, 136]). Nous
commengons cette section en définissant le modele de la percolation de Bernoulli par
arétes et en passant en revue quelques résultats importants du domaine. Nous expliquons
ensuite la structure de renormalisation en bons cubes, qui est un élément essentiel dans les
Chapitres 2 et 3 et présentons finalement les principaux résultats obtenus dans ces deux
chapitres.

0.2.1. Le modele de la percolation de Bernoulli par arétes.

0.2.1.1. Définition du modele et premieres propriétés. Le modele de la percolation de
Bernoulli a été introduit pour la premiere fois par Broadbent et Hammersley en 1957
dans Particle [39]. C’est I'un des modeles mathématiques les plus simples qui présente
une transition de phase. Malgré son apparente simplicité, il a donné lieu a une théorie
mathématique complexe et méme si de nombreuses propriétés importantes relatives a ce
modele ont pu étre comprises au cours des 70 dernieres années, de nombreuses questions
restent encore ouvertes. Avant de commencer a décrire le modele, nous mentionnons les
livres [87, 102, 37, 147], ou l'on pourra trouver un apergu plus complet du sujet.

On considere Z le réseau euclidien standard en dimension d > 2. Un point z € Z% est
appelé un sommet. Nous équipons cet ensemble avec la norme 1 définie, pour chaque
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sommet z = (x1,...,24) € Z%, par

d
ey = D L.
i=1

Nous disons que deux sommets x,y € Z? sont plus proches voisins si ||« — y||; = 1. Une
paire non orientée {x,y} de plus proches voisins de Z¢ est appelée une aréte. On note Ey
étre I'ensemble des arétes de Z<,

Fa={{e.5} + o,y €28 and 2yl =1},

Le modele probabiliste de percolation de Bernoulli par arétes est défini comme suit : nous
considérons 'espace mesurable (2, F), ou £ est 'ensemble des fonctions de 1’ensemble
des arétes Ey A valeurs dans {0,1}, i.e. Q:={0,1}", et F est la tribu engendrée par les
événements dépendants d’'un nombre fini d’arétes. Une configuration de percolation est un
élément w € €2, et étant donné une aréte e € E;, nous désignons par w(e) € {0,1} la valeur
de la configuration w a l'aréte e. Etant donné une configuration w, on dit que I'aréte e
est fermée si w(e) =0 et ouverte si w(e) = 1. Une composante connexe d’arétes ouvertes
est appelée un amas. Etant donné une probabilité p € [0,1], nous notons P, 'unique
mesure de probabilité sur (€, F) telle que la famille de variables aléatoires (w(e)),, est
indépendante et identiquement distribuée suivant une loi de Bernoulli de parametre p.

Le but de la théorie de la percolation est d’étudier la géométrie des amas lorsque
le parametre p varie entre 0 et 1. Une premiere question intéressante est la suivante :
existe-t-il un amas infini 7 Une premiere étape pour étudier cette problématique est de
remarquer que 1’événement

E. :={il existe un amas infini d’arétes ouvertes}

est invariant par translation. Par une application de la loi du 0 — 1, la probabilité de cet
événement doit étre 0 ou 1. Par ailleurs, nous définissons pour p € [0,1],

0(p) :=P, (0 appartient & une composante connexe infinie d’arétes ouvertes) .

Par des arguments standards, nous savons que la fonction p — 0(p) est croissante et les
trois énoncés suivants sont équivalents :
(i) 6(p) >0,
(i) Pp (Ew) =1,
(iii) il existe un amas infini P,-presque stirement.

Nous définissons donc la probabilité critique p, := p.(d) comme étant

pe:=inf{pe[0,1] : 6(p)>0}.

Si 0 < p. <1, on dit que le modele présente une transition de phase. Dans ce cas, on peut
distinguer trois régimes distincts :

(i) la phase sous-critique, quand 0 < p < p,, tous les amas sont finis,
(ii) la phase critique, quand p = p,,
(iii) la phase sur-critique, quand p. < p < 1, il existe au moins un amas infini.
Cette distinction n’a lieu d’étre que si la probabilité critique p. est strictement comprise
entre 0 et 1. Le premier résultat que nous aimerions énoncer est dii a Broadbent et
Hammersley [39] et Hammersley [89, 90] prouve 'existence d’une transition de phase
pour ce modele.
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PRrOPOSITION 0.2.1 (Existence d’'une transition de phase [39, 89, 90]). Pour toute
dimension d > 2, nous avons

0<pe(d) <1.

La question de la valeur précise de p. est épineuse. Il a été prouvé par Kesten que sa
valeur en dimension 2 est 1/2.

THEOREM (.2.1 (Kesten [100]). Nous avons l’égalité p.(2) = 5.

I1 est peu probable que 'on puisse obtenir une formule explicite utilisable pour p.(d)
en dimension supérieure a 3. La raison justifiant la valeur exacte en dimension 2 est que
le réseau carré Z? satisfait une propriété d’auto-dualité (voir [87, Chapitre 1]), qui est
tres spécifique a cette dimension. Cette propriété est un ingrédient clé dans la preuve du
Théoreme 0.2.1 et dans I’étude de la percolation en dimension 2 en général.

Dans cette these, nous nous intéressons principalement a ’application de la théorie de
I’homogénéisation stochastique sur ’amas infini de percolation en phase sur-critique, et
nous nous concentrons uniquement sur cette phase dans la suite de cette introduction.

0.2.1.2. La phase sur-critique. Dans cette phase, il existe, par définition, au moins
un amas infini presque strement. Une premiere question intéressante est de déterminer
le nombre d’amas infinis. Si on dénote par N ce nombre, qui est une variable aléatoire
prenant ces valeurs dans N* u {oo}, on remarque que celle-ci est invariante par translation.
Par une application de la loi du 0 — 1, elle doit étre constante presque stirement, et nous
avons donc montré

Il existe k e N* U {co} tel que P, (N =k) = 1.

Ce résultat a été amélioré en 1987 par Aizenman, Kesten et Newman dans [4, 5] qui
ont prouvé que le nombre k est égal a 1 pour chaque p € (p, 1]. Ceci est résumé dans le
théoreme suivant.

THEOREM 0.2.2 (Unicité de l'amas infini [4, 5]). Pour chaque p € (p., 1], nous avons
P, (1l eziste un unique amas infini) = 1.

Dans la suite, nous désignons par %, cet unique amas infini. Maintenant que I’existence
et I'unicité de %, sont établies, I’étape suivante consiste a comprendre sa géométrie. L’idée
générale a garder a 'esprit est I’Ansatz suivante : dans la phase sur-critique, ’amas infini
s’étend essentiellement dans tout ’espace. Sa géométrie est, au moins a grande échelle,
similaire & celle de Z? et il coexiste avec de petits amas isolés et finis. Ceci est illustré par
la Figure 0.2.1.

En suivant cette philosophie, nous souhaitons construire une structure de renormali-
sation pour 'amas infini et procédons comme suit. La premiere étape, qui est I'une des
idées clés des articles [11, 136] d’Antal, Penrose et Pisztora, est d’introduire une version
I’Ansatz décrite précedemment en volume fini. Etant donné un domaine borné et connexe
D c Z%, on souhaite dire qu’avec une grande probabilité :

(i) Il y a un grand amas dans D qui joue le role de I'amas infini,
(ii) tous les autres amas sont petits.

Pour des raisons de simplicité, nous nous restreignons a une famille spécifique de domaines
de Z? : les cubes. Un énoncé mathématique précis est donné dans la définition et la
proposition suivantes.
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FIGURE 0.2.1. Un cube pré-bon. L’amas %,(0) est dessiné en bleu et touche les 4 cotés
du carré. Il coexiste avec de petits amas isolés dessinés en rouge.

DEFINITION 0.2.2 (Cube pré-bon). On définit un cube de Z¢ comme étant un sous-
ensemble de la forme

[#,2+N]*, ©eZ? NeN.

un cube générique est dénoté par O et 'entier N est appelé la taille du cube. Etant donné
une configuration de percolation w, on dit qu'un cube O de taille N est pré-bon s’il satisfait
les propriétés suivantes:

e [l existe un amas qui intersecte les 2d faces du cube, cet amas est désigné par la
notation %, (D),
e le diametre de tous les autres amas est plus petit que N/1000.

Le principal résultat concernant cette notion est que, pour chaque p > p,., la probabilité
qu’'un grand cube soit pré-bon est exponentiellement proche de 1 lorsque la taille du
cube est grande. Ceci fut démontré par Penrose et Pisztora dans [136]. L’énoncé donné
ci-dessous est une application de leur Théoreme 5 avec ¢,, = n/1000.

THEOREM 0.2.3 (Theorem 5 of [136]). Pour chaque dimension d > 2 and p > p., il
existe une constante ¢ >0 telle que pour chaque cube O € Z¢ de taille n,

P, (O est pré-bon) > 1 —exp (—cn).

L’objectif est maintenant de construire une partition de Z? en cubes pré-bons. Une
premiere exigence nécessaire a ’obtention d’une partition utilisable est la propriété de
connectivité suivante : étant donné deux cubes pré-bons voisins 0Oy, Os et de tailles similaires,
les amas €, (0;1) et €. (02) sont connectés dans 0Oy U Oy. Malheureusement cette propriété
ne peut se déduire directement de Definition 0.2.2, mais il est possible de trouver une
solution : en utilisant que le Théoreme 1.2.8 fournit un taux de convergence tres rapide
sur la probabilité qu’un cube soit pré-bon, on peut définir la notion suivante de bon cube.

DEFINITION 0.2.3 (Bon cube). Etant donné une configuration de percolation w, on dit
qu'un cube O de taille N est bon s’il satisfait les propriétés suivantes :

e Le cube O est pré-bon,
e tous les cubes O’ de taille comprise entre N/10 et 10N et qui intersecte le cube O
sont aussi pré-bons.
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FIGURE 0.2.2. Une réalisation de la partition P.

REMARK 0.2.4. Le nombre de cubes O’ satisfaisant la deuxieme hypothese de la
définition précédente est fini et peut étre borné par C N1, En utilisant le Théoréme 0.2.3,
nous pouvons montrer que la probabilité quun cube soit bon est exponentiellement proche
de 1 : en réduisant la taille de 'exposant ¢, nous avons

(0.2.1) P, (O est bon) > 1 —exp (—cn).

Avec cette définition, il est possible de prouver la propriété de connectivité mentionnée
ci-dessus. Nous ne détaillons pas la preuve, qui est assez directe et renvoyons au Chapitre 2,
Lemme 2.2.8.

Nous soulevons maintenant la question suivante : étant donné une configuration de
percolation w, est-il possible de partitionner Z¢ en bons cubes seulement ?

Notons d’abord que la probabilité qu’un cube soit bon n’est jamais exactement 1, il
existe toujours un événement de faible probabilité ou le cube ne satisfait pas les hypotheses
de la Définition 1.2.3. Par le lemme de Borel-Cantelli, il n’est pas possible d’espérer
construire une partition de Z? en cubes qui sont a la fois bons et de méme taille. La
premiere propriété est la plus importante pour nous et donc nous renongons a la seconde :
I'objectif est dorénavant de construire une partition de Z¢ en bons cubes de tailles variables.

Nous limitons notre réflexion & un sous-ensemble des cubes de Z¢ qui est bien adapté a
la construction de partitions, a savoir les cubes triadiques.

DEFINITION 0.2.5. Pour chaque entier n € N, nous définissons le cube O,, par

[—S—R, 3—n] nZ2.

2 2
Pour n € N, nous notons 7, I'ensemble des cubes triadiques de taille 37, défini par la
formule

O,

To={z+0, : 2€3"Z%}.
L’ensemble 7 de tous les cubes triadiques est défini par

T = G'EL
n=0

Ces cubes satisfont la propriété pratique suivante : deux cubes triadiques O et O’
sont soit inclus I'un dans I'autre soit disjoints. Cette propriété rend ce sous-ensemble de
cubes de Z¢ bien adapté a la conception de partitions. En utilisant 'estimée (1.2.1) sur la
probabilité qu’'un cube soit bon, il est possible construire la partition suivante.
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PrOPOSITION 0.2.6 (Chapitre 2, Proposition 2.2.1). Pour chaque dimension d > 2
et chaque probabilité p € (p., 1], il existe, P,-presque stirement, une partition P de Z2 en
cubes triadiques de tailles variables telle que

(i) chaque cube O € P est un bon cube,
(i) deux cubes adjacents O,0' € P ont des tailles comparables,
1 < w < 3.
3~ size(O')
(iii) Pour chaque sommet x € Z2, si l’on dénote par Op(x) lunique cube de la partition
P contenant x, alors la taille du cube Op(x) est une variable aléatoire satisfaisant
l’estimée suivante

size (Op(2)) < 01 (C).

La preuve de cette proposition peut étre trouvée dans le Chapitre 2, et la Figure 1.2.5
illustre ce a quoi ressemble cette partition. Cette partition est un ingrédient crucial dans
les preuves des Chapitres 2 et 3, puisqu’elle permet de développer un calcul fonctionnel
sur ’amas infini. Plus spécifiquement, en utilisant cette partition il est possible de prouver
des inégalités de Poincaré, des inégalités de Sobolev et une estimation de Meyers pour des
fonctions définies sur ’amas infini et nous renvoyons a la Section 2.3 du Chapitre 2 pour
plus de détails.

0.2.2. Homogénéisation quantitative sur ’amas de percolation. Dans cette
section, nous présentons les résultats obtenus en adaptant la théorie de I’lhomogénéisation
stochastique sur ’amas de percolation. C’est 'objet du Chapitre 2 ainsi que des articles [13,
51]. Décrivons tout d’abord le modele. Etant donné un parametre dellipticité fixé \ e (0,1],
nous définissons 'environnement a dans ce contexte discret comme étant une variable
aléatoire

a:E;—~{0}u[A1],
de sorte que la famille (a(e)),., est indépendante et identiquement distribuée. Ces
variables aléatoires sont appelées les conductances. Nous désignons par P la loi de
I’environnement et supposons que, pour chaque aréte e € Fy,

p:=P(a(e) € [A1]) > pc(d),
de maniere a assurer I'existence presque sire d'une composante connexe infinie d’arétes
de conductance non nulle, qui sera dénotée par la suite %,,. Nous définissons ensuite

Iopérateur elliptique V -aV comme suit, pour chaque fonction v : % — R et chaque
T € Coo,

(0.2.2) v-avu(z) = ), a({z,y})(u(y) - u(z)).
Y~T
On dit qu’'une fonction u est a-harmonique si elle satisfait
V- (avu) =0 dans €.
Le premier résultat obtenu dans cette these fournit un théoreme d’homogénéisation

quantitative pour les problemes elliptiques sur I'amas de percolation.

THEOREM 0.2.4 (Chapitre 2, Théoreme 2.1.1). Fizons un exposant p > 2. Il existe
deux exposants s > 0, a > 0, une constante C < oo et une variable aléatoire positive X
satisfaisant l’estimée sous-exponentielle

(0.2.3) P (X >1) < Cexp(-C't*),
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telle que les énoncés suivants sont vérifiés : pour chaque entier m € N tel que 3™ > X, le
cube O, est un bon cube, et pour chaque fonction u:%€,(0,,) - R qui est a-harmonique,
c’est-a-dire qui satisfait

-V-avu=0 dans €.(On),

il existe une fonction harmonique unom qui est définie sur le cube triadique continu
[-3m/2,3m/2]¢ telle que

(0.2.4) U= Upom Sur le bord €.(0,,) N OO,
et
(025) Hu - U/hom HLQ(%*(Dm)) S C:))—m(l—oc) HUHLP(%*(EIm)) .

Nous déduisons du théoreme précédent une théorie de la régularité a grande échelle
et une description précise de I’ensemble Ay (%) des fonctions a-harmoniques sur 'amas
infini qui croissent plus lentement quun polynome de degré k, défini précisément par

Ay () = {u :Goo = R : V- (aVu) = 0 in €, and limsup R~ |l L2(gonmp) = 0}.
R—o0 -

THEOREM 0.2.5 (Théorie de la régularité, Chapitre 2, Théoreme 2.1.2). [l existe
deux exposants s,6 > 0 et une variable aléatoire positive X satisfaisant l’estimée sous-
exponentielle

P(X >t) <Cexp(-C't),
tels que:

(i) Pour chaque entier k € N, il existe une constante C < oo telle que, pour chaque
u € Ap(€w), il existe un polynome harmonique p de degré au plus k tel que, pour
chaque r > X,

(0.2.6) [ =Pl 2 gnp,y < Cr7° 1Pl g2, ) -

(ii) Pour chaque entier k € N et chaque polynéme harmonique p de degré au plus k, il
existe u € Ay tel que, pour chaque r > X, l'inégalité (0.2.6) est vérifiée.

(iii) Pour chaque entier k € N, il existe une constante C' < oo telle que, pour chaque
R >2X et chaque fonction a-harmonique u: 6o N Br = R, il existe ¢ € Ap(Cw)
telle que, pour chaque r € [X, %R], nous avons

k+1
,
=81ty <C (%) Nlgaans

Une conséquence de ce résultat est que I'espace vectoriel (aléatoire) Ay (%) est presque
surement de dimension fini et sa dimension est donnée par

d+k—1)+(d+k—2)
k k-1 )
Un cas particulier intéressant est celui de l'espace A; (¢ ) qui grace au théoreme

précédent est presque sirement de dimension (d + 1). Nous pouvons par ailleurs déduire
de (i) que chaque fonction a-harmonique u € A; (%~ ) peut s’écrire sous la forme

dim Ay (€.0) = (

u(z) =p-x+¢,(x) +c, pour certains pe R?, ceR.
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La fonction ¢, s’appelle le correcteur et est une quantité essentielle en homogénisation.
De (i), on en déduit que le correcteur a une croissance sous-linéaire : il existe un exposant
0 > 0 tel que

) 1

L’objet de la section suivante est d’améliorer I'estimée précédente afin d’obtenir une borne
optimale pour la croissance du correcteur.

H¢p - (¢p)chnBRH£2(%mBR) =0, IP- presque surement.

0.2.3. Estimée spatiale optimale pour le correcteur. Cette section est consacrée
a la présentation du Chapitre 3. L’objectif principal est d’améliorer la borne sous-linéaire
du correcteur (0.2.7) et d’obtenir les bornes spatiales optimales pour cette quantité. Le
théoreme que nous démontrons est le suivant.

THEOREM 0.2.6 (Estimée spatiale optimale pour le correcteur, Chapitre 3, Théoreme 3.1.1).
Pour chaque dimension d > 3, il existe un exposant s >0, une constante C < oo tels que,
pour chaque x,y € Z4, et chaque p € By,

|¢p(x) - ¢p(y)| ]l{:c,ye%’oo} < 08 (C) :

En dimension 2, la croissance du correcteur se comporte comme la racine carrée d’un
logarithme, i.e.,

60(%) = 65 ()| 1 (2 ety < Ox (Clog? |z =91

Dans les énoncés précédents, nous utilisons la notation O, pour quantifier l'intégrabilité
stochastique, elle est définie de la maniere suivante : étant donnés une variable aléatoire
positive X et un nombre réel positif 0, on écrit

X <O4(0) si et seulement si E [exp ((%) )] <2.

La preuve repose sur les inégalités de concentration, introduites en I’homogénéisation
par Naddaf et Spencer [133]. Un exemple classique d’une telle inégalité est celle d’Efron-
Stein qui peut s’énoncer comme suit : si X = (X3,...,X,,) est une famille de variables
aléatoires indépendantes et si (Xj,...,X]) est une copie indépendante de X, alors pour
toute fonction mesurable F,

1 n
(0.2.8) var [F] < o Svar [(F (X1, Xict, X, X -, X)) - F(X))?].
i=1
Dans le Chapitre 3, nous souhaitons appliquer cette inégalité lorsque F' est le correcteur
et X l'environnement a. Ceci souleve deux difficultés :

(1) 'environnement a est indexé sur les arétes de Z¢ et contient un nombre infini de
variables aléatoires. Nous avons donc besoin d'une généralisation de (1.2.8) pour
une famille infinie de variables aléatoires.

(2) I'inégalité d’Efron-Stein donne une estimation sur la variance de la variable
aléatoire, alors que nous souhaitons obtenir une intégrabilité stochastique sous-
exponentielle, il nous faut donc une version sous-exponentielle de cette inégalité.

Une telle généralisation existe, est énoncée dans la Proposition 3.2.16 du Chapitre 3 et
provient de [19]. Un deuxiéme outil important est I'inégalité de Poincaré multi-échelle qui
permet de transférer les informations des moyennes spatiales du gradient du correcteur au
correcteur lui-méme.
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0.3. Chapitre 4 : Formes différentielles

Dans la section précédente, nous avons présenté une maniere d’étendre la théorie de
I’homogénéisation stochastique dans le cadre dégénéré de ’amas infini en percolation
sur-critique. Il était possible d’adapter la théorie connue dans le cadre uniformément
elliptique grace a une structure de renormalisation de ’amas infini. Dans cette section,
nous développons une autre maniere d’étendre la théorie dans un autre contexte dégénéré,
celui des formes différentielles.

Pour introduire le probleme, nous fixons une dimension d > 2 et un entier k € [0, d].
Nous notons A* (R?) 'ensemble des applications k-multilinéaires alternées. C’est un espace

vectoriel de dimension (g) Une base canonique de cet espace est donnée par la famille

(()31) d%/\/\d%k, 1321<<Zk§d

Etant donné un domaine U ¢ R4, une forme différentielle u sur U est alors définie
comme une application de U dans A¥ (R?) ; en utilisant la base canonique A* (R?), elle
peut étre décomposée comme

(R - aro)
' X = Zl$i1<---<ikﬁd Uiy on i, (.Z') dxil VANRERIVAN dxlk

Nous supposons toujours que les fonctions u;,...;, sont mesurables et nous supposons
fréquemment des propriétés supplémentaires sur ces fonctions en imposant leur apparte-
nance a certains espaces fonctionnels tels que L2(U), H'(U), C*(U) etc. Notons également
que dans le cas particulier k£ = 0, ’ensemble des formes différentielles peut étre identifié
avec ’ensemble des fonctions de U dans R et dans le cas de k =1, 'ensemble des formes
différentielles 1 peut étre identifié avec I’ensemble des champs de vecteurs de U dans R?.

Nous présentons ensuite quelques outils utiles en rapport avec cette notion. Premierement,
I'espace A¥ (R?) peut étre équippé d’un produit scalaire (-,-) en déclarant que la base
canonique (0.3.1) est une base orthonormale. Etant donné un domaine U ¢ RY, ce produit
scalaire peut étre étendu a ’espace vectoriel des formes différentielles dont les coefficients
(ui17...7ik)1§i1<m<ik§d sont dans L?(U) grace a la formule, pour deux formes u, v,

(0.3.2) (0 oy = Y fU Wiy iy (€)1 oy (2) di.

1<iy <<i<d

Un deuxieme outil essentiel pour étudier les formes différentielles est la notion de dérivée
extérieure : pour k € [0,d—1], étant donné une forme différentielle u définie sur un domaine
U c R%, nous dénotons par du la (k + 1)-forme définie formellement par

d Oue
du=> > %(x)dxl Adzi, A Aday,

i=1 1<iy<<ip<d

et étendons la définition de la dérivée extérieure aux d-formes en définissant du = 0 si u est
une d-forme. Une autre opérateur intéressant est l’adjoint formel de la dérivée extérieure
d par rapport au produit scalaire (0.3.2), appelé la codifferentielle et dénotée par §. Cet
opérateur différentiel envoie les k-formes sur les (k — 1)-formes, suivant la formule

su= Y 3 (-1)@‘#(:5)01@1A--.A@A.-.Adxik,

1<ip<+<ig<d ’iE{’il,...,ik}



20 RESUME DE LA THESE

ou la notation dfgz?Z signifie que le terme dx; est effacé du produit extérieur dx;, A--- Aday, .
Nous notons également I'une des propriétés clés de ces opérateurs : ils satisfont les identités

(0.3.3) dod=0et §06=0.

Un des principaux intérét de ce formalisme est qu’il englobe la plupart des opérateurs
différentiels fréquemment utilisés. Par exemple, les opérateurs différentiels suivants peuvent
étre exprimés dans le langage des formes différentielles : pour une k-forme f, nous avons

e si k=0, alors la 1-forme (ou le champ de vecteurs) df peut étre identifiée avec
Vi,

e si k=1, alors la 0-forme (ou la fonction) § f peut étre identifiée avec div f,

e en dimension 3, l'espace vectoriel A? (R3) est de dimension 3. L’espace des 2-
formes peut donc étre identifié avec I'espace des champs de vecteurs de R3. Si
k=1, alors df est une 2-forme (ou un champ de vecteurs) et peut étre identifiée

—

avec rot f.
e pour k € [0,d], nous retrouvons le Laplacien usuel grace a la formule
(d5 + (5d) f(ZE) = Z Af21772k(13) dl‘il VANRERIVAN dl’zk
1<iyp<+<igp<d

L’objectif principal du Chapitre 4 est d’étendre la théorie de 'homogénéisation stochas-
tique dans le contexte des formes différentielles. Etant donné un nombre entier k € [0, d]
et un domaine U ¢ R?, nous définissons HiA* (U) comme étant 'adhérence des k-formes
différentielles lisses a support compact par rapport a la norme

HfHHcliAk(U) = HfHL2(U) + ||df||L2(U) :

Nous introduisons aussi ’espace des matrices symétriques sur ’espace vectoriel euclidien
AF (R?), cet espace sera dénoté S (A* (R?)) par la suite. Comme dans la théorie classique
de I’homogénéisation stochastique, nous définissons un environnement a comme étant une
variable aléatoire
R4 - S (A* (R9))
Lo

qui satisfait la méme hypothese d’uniforme ellipticité que celle énoncée en (0.1.2). Nous
supposons par ailleurs que cet environnement est aléatoire et satisfait les hypotheses de
stationnarité et de dépendance a portée finie énoncées dans la Section 0.1.1. L’objectif est
alors d’étudier les solutions de I’équation

u~d(adu) =0in U,
qui sont les points critiques associés a la fonctionnelle
(0.3.4) (du,adu) 2y -

Nous remarquons que ce contexte est strictement plus général que celui présenté dans
la Section 0.1.1. En effet, en choisissant de se concentrer sur le cas particulier £ =0, la
dérivée extérieure du peut étre identifiée avec le gradient de u et on retrouve le cadre
habituel. D’autre part, ce formalisme s’inscrit dans le cadre plus général des systemes
d’équations elliptiques : puisque les dimensions des espaces A* (R?) sont toujours finies,
I’équation dadu = 0 peut étre décrite par un systeme d’équations elliptiques.

Une motivation pour étudier ces systemes vient du cas spécifique ou r = 1 et ’espace
sous-jacent est de dimension 4 : dans ce contexte le systeme d’équations (1.3.4) possede
la méme structure que les équations de Mazwell (voir par exemple [109, Section 1.2)),
avec cependant une différence fondamentale : ici nous supposons que I'environnement a
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est riemannien, c’est-a-dire elliptique au sens de (4.1.21), alors que pour les équations de
Maxwell la structure géométrique sous-jacente est lorentzienne. Le remplacement d’une
structure lorentzienne par une structure riemannienne, une procédure parfois appelée
"rotation de Wick”, est tres courante en théorie quantique des champs, voir par exemple
[78, Section 6.1(ii)]. Bien que les objets que nous étudions ici sont des minimiseurs d’un
Lagrangien aléatoire, nous espérons que les techniques développées dans le Chapitre 4
seront instructives pour étudier les mesures de Gibbs associées a ces Lagrangiens.

La principale difficulté de ce chapitre réside dans 'extension des inégalités fonctionnelles
utiles en ’homogénéisation dans le contexte plus général des formes différentielles. Ceci
est obtenu en utilisant les résultats de Mitrea, Mitrea, Monniaux [120], Mitrea, Mitrea,
Mitrea, Shaw [122] et la monographe de Schwarz [142].

0.4. Chapitre 5 : Modele de Ginzburg-Landau discret

0.4.1. Définition du modele et de la tension de surface. De nombreux phénomenes
physiques présentent une transition entre deux phases pures, particulierement a basse
température, comme c’est le cas par exemple pour 'eau liquide et la glace a température
nulle. L’étude de la géométrie de 'interface qui assure la transition entre ces deux phases
est un sujet d’étude pour les mathématiciens depuis le début du 20eme siecle. Le premier
modele mathématique permettant de décrire de telles interfaces fut introduit par Wulff
en 1901 dans l'article [148] : les interfaces y sont caractérisées comme les minimiseurs
d’une certaine fonctionnelle, dite fonctionnelle de Wulff, et définie, pour un sous-ensemble
E ¢ R?, suivant la formule

W(E)= [ o) ds.

ou n(z) est la normale extérieure & OF au point = et o est la tension de surface entre
les deux phases. Le minimiseur de la fonctionnelle de Wulff est appelé la forme Wulff.
D’un point de vue mathématique, les interfaces sont des objets macroscopiques, que 'on
souhaiterait décrire a partir de modeles issus de la mécanique statistique qui sont définis
au niveau microscopique. De nombreux résultats importants dans cette direction ont
été obtenus dans les années 90 ; dans [6], Alexander, Chayes et Chayes ont obtenu une
construction de Wulff dans le cas de la percolation de Bernoulli sur-critique en dimension
2. Dans la monographe [58], Dobrushin, Kotecky et Shlosman, établirent une construction
de Wulff pour le modele d’Ising ferromagnétique bidimensionel a basse température avec
des conditions de bord périodiques. Ces résultats ont par la suite été étendus a toutes
les températures sous le seuil critique, on pourra se référer aux travaux de loffe [94, 95],
Schonmann, Shlosman [141] et Pfister, Velenik [137] et Ioffe et Schonmann in [96] pour
plus d’informations.

En dimension 3, Cerf a démontré dans [41] une forme de construction de Wulff pour la
percolation Bernoulli en régime sur-critique. Bodineau dans [35], a prouvé un résultat
similaire pour le modele Ising pour toutes les dimensions d > 3 et a basse température.

Dans cette section, nous considérons un modele mathématique d’interface plus simple,
a savoir le modele de Ginzburg-Landau discret. Il modélise les interfaces comme des
fonctions ¢ : R4 — R, qui varient autour de 'interface plate ¢ = 0. Pour étre plus précis,
nous discrétisons 'espace continu R? et considérons les applications ¢ : Z¢ — R. L’interface
discrete est alors représentée par 'ensemble {(xz, ¢(x)) = x € Z?} € Z¢ xR et nous associons
a une interface ¢ une énergie qui peut étre calculée grace au hamiltonien

H(¢)= ), V(s(z)-0()).

lz-yl1=1
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ou V est un potentiel élastique satisfaisant les propriétés :
(1) V est pair : V(x) =V (-z) pour chaque z € R,
(2) V est uniformément convexe : il existe A € (0, 1] tel que pour chaque z,y € R,

1
(0.4.1) )\|x—y|2SV(:E)JrV(y)—ZV(ery) £X|x—y|2.
La mesure d’équilibre formelle associée a ce modele est donnée par la mesure de Gibbs
1
(0.42) Zoxp (-H (6) [T d6 ()

ou Z est une constante de normalisation qui fait de la mesure ci-dessus une mesure de
probabilité et que I'on appelle la fonction de partition. Un autre aspect important du
modele est son interprétation dynamique : on considere deux phases pures séparées par
une interface ¢;—o au temps t = 0 et on laisse cette interface évoluer dans le temps. Elle
évoluera en cherchant a minimiser son énergie et, en ’absence de lois de conservation,
cette évolution ne sera affectée que par un bruit. Ceci conduit a la dynamique de Langevin
gouvernée par ’équation différentielle stochastique

doe(z) == Y. V' (du(x) - du(y)) dt + V2dB; (z)

ly-z|1=1

ot (By (x)),czq est une famille de mouvements browniens standard indépendants. Formelle-
ment, la mesure (1.4.2) est invariante pour cette équation différentielle stochastique et elle
rend la dynamique réversible.

Un résultat informel que I'on souhaiterait démontrer est qu’une version correctement
rééchelonnée de l'interface, qui est a priori un objet aléatoire distribué selon la mesure
de probabilité (0.4.2), contracte autour d’une forme déterministe, que nous souhaiterions
caractériser dans 'esprit de la construction de Wulff. Pour cela, une quantité cruciale est
la tension de surface qui est définie comme suit : étant donné un sous-ensemble connexe,
borné et discret U € Z?, nous définissons la mesure de probabilité associée au modele de
Ginzburg-Landau dans le domaine U avec une condition de bord affine de pente p € R4
suivant la formule

Py, (do) := Z), exp (— >, Vi) - ¢(y))) [Tdo(z) T] 0y (0y).
2,Y€Qn,;|z-yl1=1 xeU yedU
La quantité qui nous intéresse est alors la fonction de partition Zy, ou plus précisément,
la version correctement redimensionnée de celle-ci,

1
v(U,p) := 0 log Zy .
Cette valeur est appelée la tension de surface en volume fini pour le domaine U et est une
quantité importante pour obtenir des informations sur le modele. Un premier résultat qui
peut étre obtenu est le suivant : étant donné un entier n € N, nous dénotons par @),, le cube
discret [-n, n]d NZ4, il est alors possible de démontrer, par un argument de sous-additivité,
que la suite (v (Qn, D)),y converge lorsque la taille du cube tend vers I'infini, et nous
dénotons par 7 (p) sa limite, i.e.,

v(p) = lim v (Qn,p),

cette quantité est appelée la tension de surface du modele. Nous référons a 'article de
Funaki et Spohn [70] pour la démonstration originelle de ce résultat.
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La tension de surface est fondamentale pour la compréhension des propriétés macro-
scopiques du modele. Elle apparait par exemple dans des principes de grandes déviations,
comme cela a été étudié par Deuschel, Giacomin et loffe dans [56]. Leurs démonstrations
reposent sur la formule de représentation d’Helffer-Sjostrand qui fut introduite pour la
premiere fois dans I’étude ce modele par Naddaf et Spencer dans I'article [132], ou ils sont
en mesure de démontrer prouver un théoreme central limite pour le champ de gradient en
combinant cette formule avec des techniques de la théorie qualitative de 'homogénéisation.
Dans le cadre dynamique, Funaki et Spohn dans [70] ont établi une loi de grand nombre
pour 'évolution et le processus de limite est caractérisé par une équation aux dérivées
partielles parabolique non linéaire définie a partir de la tension de surface. Les fluctuations
de la dynamique ont été étudiées par Giacomin Olla et Spohn dans [72], ot ils ont prouvé
qu’elles sont gouvernées a grande échelle par un processus Ornstein-Uhlenbeck en dimension
infinie. Tous ces résultats font intervenir la tension de surface et nous mentionnons la
référence [68] pour plus d’information sur le sujet.

L’objectif du Chapitre 5 est revisiter le début de la théorie de I’homogénéisatiom
stochastique telle que présentée dans le monographe [18]. Pour cela la premiere étape
consiste a quantifier la vitesse de convergence de la tension de surface en volume fini et
nous obtenons un taux algébrique énoncé dans le théoreme suivant.

THEOREM 0.4.1 (Chapitre 5, Théoreme 5.1.1). Il eziste un exposant a > 0 et une
constante C < oo tels que pour chaque p € RY,

lv (Qn,p) -7(p)| < Cn™™ (1 n |p|2) .

La preuve de ce résultat repose sur des idées provenant de deux domaines différents:
I’homogénisation stochastique d’une part et le transport optimal d’autre part.






CHAPTER 1

Introduction
Contents
1.1. Stochastic homogenization 29
1.2. Supercritical percolation 53
1.3. Stochastic homogenization of differential forms 63
1.4. Stochastic homogenization applied to the V¢ model 65
1.5. Perspectives 69

This thesis is devoted to the study of stochastic homogenization, which aims at understanding
the behavior of partial differential equations with highly heterogeneous, but statistically homoge-
neous, random coefficients. Analyzing an equation with heterogeneous random coefficients is
very difficult, and the classical idea of homogenization is to perform an asymptotic analysis by
deriving, as the ratio of the length scales tends to infinity, an effective or homogenized equation.
This limiting equation is typically deterministic, has constant coefficients, and is therefore much
simpler to analyze.

A central object of study in this thesis is the linear elliptic equation in divergence form,

~v-(a(z)Vu) = f in UcR?

where the coefficient a is a stationary random variable valued in the set of positive definite
matrices. The study of these equations is related to random walks in random environments and
also has applications to the study of effective properties of composite materials through, for
instance, heat conduction or electromagnetism.

So far, most of the quantitative theory for stochastic homogenization has been developed
under the assumption of uniform ellipticity. However, many physical models do not satisfy this
assumption and it is important to develop a theory in randomly perforated media. Perhaps the
best example is on the discrete lattice and concerns random conductances which may be zero
with probability strictly less than 1 — p., where p. is the critical percolation threshold. This
setting is studied in Chapter 2, where quantitative homogenization, large scale regularity and
Liouville results are established and provide the first quantitative results in porous medium.
The main novelty is a renormalization argument for the infinite cluster: building on standard
percolation results, one is able to design a partition of Z¢ into only good cubes (in some sense to
be made precise) of varying sizes, which provides a large scale above which the geometry of the
infinite percolation cluster is similar to the one of the euclidean lattice Z°.

In Chapter 3, these results are further extended and applied to study a key object in
stochastic homogenization: the first-order corrector. By combining tools of three different types:
the renormalization structure for the infinite cluster, the multiscale Poincaré inequality and an
Efron-Stein type concentration inequality, we derive optimal spatial scaling estimates for the
corrector. Such estimates can be used to derive information about the random walk on the
supercritical percolation cluster.

In Chapter 4, we study another type of degenerate environment: the setting of differential
forms. Building on results from the regularity theory of differential forms, we are able to extend
the tools of functional analysis used in homogenization to this more general setting. We are
then able to extend the theory of homogenization developed in the uniformly elliptic setting and
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establish a quantitative homogenization theorem for a degenerate elliptic system of equations
involving differential forms.

In Chapter 5, we apply ideas from homogenization to a model of statistical physics: the
discrete Ginzburg-Landau or V¢ model. In this chapter, we revisit the beginning of the theory of
stochastic homogenization and adapt it to this new model. The result we obtain is a quantitative
rate of convergence for the finite-volume surface tension. Once this is established, we deduce
a quantitative sublinearity estimate for the L? norm of the random interface with Dirichlet
boundary condition. The argument relies on ideas from optimal transport and the techniques
from homogenization, which are new in the study of the discrete Ginzburg-Landau model.

The rest of this introduction is organized as follows. In Section 1.1, we present an introduction
to the theory of stochastic homogenization and review some of the key notions and results of
the theory. In Section 1.2, we introduce the model of Bernoulli bond percolation and present
a few important results in this field. When then explain how to construct a renormalization
structure for the infinite cluster and complete this section by introducing the results obtained in
this direction. Section 1.3 is devoted to the presentation of Chapter 4: we motivate the study of
differential forms, present the model studied in Chapter 4 and explain the difficulties encountered
to extend to results of stochastic homogenization to this new setting. In Section 1.4, we present
the V¢ model and the main objects and tools which are used in Chapter 5, as well as the main
result we obtained.
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Index of notation
The following list records the most frequently used notations in the introduction of this thesis.
These notations are essentially consistent with the rest of the thesis.

General notation pertaining to homogenization.

S(RY) : set of symmetric positive definite matrices of R?,

V : gradient operator,

V- or div : divergence operator,

a : heterogeneous environment,

a : homogeneous environment,

A and A : lower and upper bound for the ellipticity of the environment,

a-harmonic functions : functions v : R - R satisfying V - (avVu) = 0,

a-harmonic functions : functions v : R - R satisfying V - (aVu) = 0,

€ : size of the microscopic scale,

U : a bounded domain of R?,

U : closure of the set U,

OU : the topological boundary of U,

@, : the cube of size r and centered in 0 defined by @, := (—g, %)d,

B, and B,(z) : balls of radius 7 centered in 0 and x, with z € R?, respectively,

oscy : oscillation of a function over a set U defined by oscy f :=supy f —infy f,

I, : the affine function of slope p € R? defined by I,(z) = p- =,

|U| : Lebesgue measure of the Borel set U,

{; : averaged integral over the Borel set U defined by §,; = ﬁ Jus

(v)y : average value of a measurable function v: U — R, defined by (v),; := f; v(z) dz,

1y : indicator function of the set U,

C*(U),Ce(U) : set of smooth and smooth compactly supported functions from U to RY,
c* (ﬁ) : set of the functions from U to R, which are equal to the restriction to U of a function
feC>(V), for some open set V such that U c V,

C*(U) : set of functions which are k-times continuously differentiable with k € N,

CP(U) : set of f-Holder functions from U to RY with 8 € (0,1],

LP(U), for pe[1,00) : set of measurable functions from U to R such that the p-th power of their
absolute value is Lebesgue integrable,

Il Loy @nd || o1y ¢ the LP and rescaled LP norms on the space LP(U), defined by

1oy = ( ] 1P da:)‘l’ and |fl o = f, 1£@F dx)’l’ ,

L*=(U) : set of essentially bounded measurable functions from U to R,

WHP(U) : Sobolev space with regularity k € N and integrability p € [1, co],

WeP(U) : fractional Sobolev space with regularity « € (0, 00) and integrability p € [1, oo],
I-lwee I-lwasry : Sobolev norm on the spaces WHP(U) and WhP(U),

WEP(U), WEP(U) : the closure of C2(U) in WFP(U), WeP(U).

HY(U) and H}(U) : Sobolev spaces with regularity parameter k = 1 and integrability p = 2, i.e.
HY(U) = W"2(U) and HY(U) = Wy (U),

|| &1ty + Sobolev norm on the space HY(U).

Notation pertaining to percolation.

Ey; : set of edges of Z¢,

% : unique maximal infinite cluster of open edges,

C(z) : the maximal cluster containing a point x € Z,

dist(z,y) : the distance between two points z,y € Z¢ given by dist(z,y) = XL, |z - vil,
diste (x,y) : the graph distance between two points x,y € €, within the subgraph € of Z¢,
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U : generic discrete bounded and connected subset U ¢ Z¢,

AU : discrete boundary of the set U ¢ Z¢,

|U| : cardinality of the set U,

O, : discrete triadic cube of size 3", defined by 0O, := [—%, %] VAR

V : the discrete gradient defined by, for each function u:Z% - R, and each edge e = (x,y) € Ey,

vu(e) = u(x) —u(y).
Notation pertaining to differential forms.

AF(R?) : set of k-alterning mutilinear maps of R?,
A @ exterior product,

d : exterior derivative,

dz; : differential of the i-th coordinate,

0 : codifferential operator.

Notation pertaining to the V¢ model.

6§, : the Dirac measure centered on z € R,

RY : for a discrete bounded subset U ¢ Z¢, RY denotes the set of functions from U to R,

P (]RU) : the set of probability measure on RY,

Leb : Lebesgue measure on RY,

P « Leb : means that the probability measure P € P (RU) is absolutely continuous with respect
to the Lebesgue measure,

% : the Radon-Nikodym derivative of P with respect to the Lebesgue measure, assuming that
P « Leb,

f+«P : pushforward of a measure P € P (]RU) by a measurable function f:RY - RY.
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1.1. Stochastic homogenization

1.1.1. General introduction. The general goal of the theory of homogenization is to
answer the following question: given a heterogeneous medium exhibiting microscopic variations
in its composition, do the properties of the environment on a large scale behave like the ones of
a homogeneous medium? This phenomenon, when it happens, is called homogenization. It relies
on the intuition that if the variations in the composition are distributed randomly, they will
average out on a large scale, following some sort of law of large numbers. Understanding precisely
when and how homogenization happens is useful since many physical models, involving heat
conduction or electromagnetism, are dealing with heterogeneous environments. The equations
obtained from the physical models exhibit quick oscillations and are costly to solve numerically.
Nevertheless, it is possible to derive valuable information with a much lower numerical cost thanks
to the theory of homogenization: an interesting strategy is to prove that a given heterogeneous
system homogenizes, to solve the homogenized equation, and deduce from these computations
information on the heterogeneous medium.

An example of a physically relevant situation where homogenization is expected to happen
is heat conduction in a heterogeneous environment. Consider a composite medium made of
different materials with different heat conductivity properties. We wish to study heat conduction
in this composite material. Mathematically, it is modeled by the parabolic equation

ou -V - (a(x)Vu) =0,

with suitable boundary conditions. Sending the time to infinity, the steady state energy profile
satisfies the elliptic equation

(1.1.1) V- (a(z)Vu) =0.

The fact that the medium is heterogeneous means that the diffusivity matrix a(x) varies in space.
The equation (1.1.1) is the main object of study of this thesis, and we now introduce a precise
model of stochastic homogenization to study this partial differential equation. Fix a dimension
d > 1 and denote by S(R?) the set of symmetric matrices of R?. We then consider a random
mapping

{ R? - S(R?)

x> a(z),

which is measurable with respect to the Borel sigma-algebras on R? and S(R?). We assume
additionally that there exist two ellipticity constants 0 < A < A < o0

(1.1.2) Mg <a(x) <Al

The matrix a is called the environment. As was mentioned above, we suppose that the environment
a is random, denote by P its law and by E the expectation associated to this probability measure.
The law P is assumed to satisfy the following properties:

e Stationarity: the law P is invariant under translations by any vector of Z?, i.e. for any
y € Z4, the laws of a and of a(y +-) are the same.
e Frgodicity: the law P of the environment is ergodic with respect to the translations of
YA
With these two assumptions, one can develop a qualitative theory of stochastic homogenization,
i.e. establish convergence theorem without any explicit rate. The assumption of ergodicity is
qualitative in nature and one can only expect to obtain qualitative results under this assumption.
Over the past few years, much progress was achieved to develop a quantitative theory of
stochastic homogenization, i.e. establish convergence theorems, with explicit rates. It is the
object of study of this thesis and one must strengthen the ergodicity assumption to obtain
such results. A possibility, among many others, is to assume a finite range dependence on the
coefficient field a.
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FIGURE 1.1.1. A typical environment satisfying the stationarity and finite range de-
pendence assumption is the checkerboard: select two deterministic symmetric positive
definite matrices a; and as. The environment a is defined such that such that a is equal
to a; on the black cells and is equal to as on the white cells. The color of the cells is
chosen according to a Bernoulli site percolation of probability p € [0, 1].

e Finite range dependence. If, for any open subset U ¢ RY, we let F(U) be the sigma-
algebra generated by the family of mappings,

a~ [ o(w)a@)dr, ¢cC2(U).

then the sigma-algebras F(U) and F (V') are independent as soon as dist(U, V') > 1.

One then wishes to study the large scale behavior of the solutions of the equation (1.1.1). To
this end, it is customary to introduce a parameter 0 < € << 1, which represents the ratio between
the microscopic and the macroscopic scale, and to rescale the equation as

9 (a(2)var) 0.

A typical homogenization theorem one wishes to show is the following: given a bounded domain
U cR? and a function f € H L(U), the family of solutions u® of the elliptic problems

{ V-(a(2)ves)=0 inU

(1.1.3) M on U,

converges in L?(U) as ¢ tends to 0 to the solution % of the elliptic equation

{v-(aw):o in U

(1.1.4) u=f on 0U,

where the matrix &, called the effective or homogenized environment, is deterministic and constant
in space. Solving the elliptic problem (1.1.4) is equivalent, up to a change of variables, to solving
the standard Poisson problem on the domain U and is less costly to solve numerically than the
heterogeneous equation (1.1.3). The homogenized environment & depends only on the law of
the coefficient field a (in particular it does not depend on the domain U nor on the boundary
condition f) but it depends in a complicated manner on the law of the environment. There is in
general no explicit formula to describe this quantity and a is not equal to the expectation of a in
general.

1.1.2. Two-scale expansion and the corrector. In this section we introduce one of the
most important tools to study homogenization: the two-scale expansion. It can be described by
the following Ansatz: we let u® be the solution to (1.1.3) and postulate that u® can be expanded,



1.1. STOCHASTIC HOMOGENIZATION 31

as € tends to zero, according to

9 9 9

where the function wg, u1, us, etc. are reasonable and do not depend on e. This Ansatz is called
the two-scale expansion and yields precious information about homogenization, as we shall now
explain. A first computation one can perform is to differentiate the previous identity formally.
We denote by V, (resp. V,) the gradient with respect to the first variable = (resp. the second
variable Z). We differentiate (1.1.5) and sort the different terms obtained according to the powers
of the factors €. This yields

(1.1.6)

c 1 x T T T x
Vu (.T) ==Vyup|x,— |+ |Vzuo|x,— |+ Vyur |z, — )| +e|Vzur |2, — |+ Vyua {z,— )]+
€ 15 15 € 15 €

Since u° is a solution of the elliptic equation (1.1.3), its gradient cannot be too large (it is at
least bounded in L?(U)) and thus we expect, at least heuristically,

(1.1.7) Vo (m E) - 0.
9

With this new piece of information, the two-scale expansion can be rewritten

Ug(fl,‘) ~ Uy ((L‘) + EUq (:I,‘7 {) +52uZ (g;’ E) R
g 13

Sending ¢ to zero should imply

e u® —ug converges to 0 in L?(U) as ¢ goes to zero,
o VU - Vug (z) - Vyus (z, f) converges to zero in L?(U).
These remarks already give some valuable information, indeed while we expect u® to converge to

the function ug, we do not expect that it will be the case for the gradient of u®: there should be
a corrective term Vyuq (ac, %) preventing Vu® from converging to Vug in L.

More information can be obtained from this Ansatz such as

(1) identifying the homogenized matrix & and obtaining a heuristic argument to characterize
up as the solution of the equation (1.1.4),
(2) identifying the corrective term u; (x, f),

as we shall now explain. The first step is to define a quantity of interest in homogenization,
the first-order corrector. To this end, we simplify the problem (1.1.3) and consider a specific
case: the situation where the boundary condition is affine. For p e R%, we let l, be the affine
function of slope p, i.e. l,(x) = p-z. In this setting, ug is expected to be the affine function i,
since the affine functions are a-harmonic (independently of the value of a). We define, for each
peR? and e >0,

This function is defined to verify the expansion
x
u(x)=p-z+ gb}/a (—)
€

Note also that qﬁll/ © belongs to the Sobolev space H& (%U ) By a change of variables, one can

bound the rescaled L? norm of V(;S}lo/ °

|ver”

LQ(%U) < C|p|7
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Applying the Poincaré inequality for functions in H& (%U ), we obtain an estimate on the averaged

L? norm of gbzl,/g,

T

On a heuristic level, one can interpret these two inequalities the following way: the growth of
the function (b]lg/ ¢ is at most linear and the gradient of gbll,/ © is of order 1. Following the heuristic

of the two-scale expansion, one can postulate a stronger result on the growth of gbzl/ °: since uf is
expected to converge to I, in L?(U), one expects

qu?l’/g L*(iv)

which means that this function has sublinear growth.

Even though we are not justifying this fact in this section, it is possible to take the limit ¢ — 0
for the mapping Vd)é/ °. This gives rise to a gradient field V¢, : R? - R?. From this gradient field,
one recovers a function ¢, : R? - R, which is only defined up to a constant since we only have
access to information about its gradient. This map is called the corrector and plays a central
role in homogenization. Since we need to use the corrector, and not only its gradient, in the rest
of the introduction, and do not want to work with an ill-defined quantity, we select one corrector
among all the possibilities according to the arbitrary criterion

f[o,l]d ¢p(x)dx = 0.

Note that the corrector depends on the environment a and is thus a random function. For
simplification, this dependence is not displayed in the notation. We expose below, without proof
and heuristically, a few properties of the corrector.

< 5_1,

(i) The corrector is sublinear, for each R > 0, one has

(1.1.8) ||¢pHLoo(BR) <R,
(ii) It is solution of the elliptic equation
(1.1.9) V-(a(p+Vep))=0in R%

(iii) It is unique up to a constant: if ¢,, ¢, are two functions satisfying (i) and (ii) then
there exists a constant ¢ € R such that

Vo eRY, ¢,(x) = dp(x) +c.
In particular, V¢, is uniquely defined.
(iv) The mapping p — V¢, is linear.
(v) The gradient of the corrector is Z?-stationary, for each y € Z9,

Vép and V¢, (y +-) have the same law.

REMARK 1.1.1. The sublinearity of the corrector is a very important property even in the
very definition of the corrector: if we allow the corrector to have linear growth then one can
simply take ¢, = —[,, which is a solution to (1.1.9). Of course looking at this kind of solutions
does not have any mathematical interest.

REMARK 1.1.2. The linearity property (iv) is a consequence of the properties (i), (ii)
and (iii). Indeed if one selects two vectors p,q € R?, then the mapping ¢p + ¢g satisfies
V-(a(p+q+Vep+Ve,)) =0 and has sublinear oscillations.

REMARK 1.1.3. The stationarity property is also a consequence of the properties (i), (ii) and
(iii). Given an environment a, we let ¢5 the corrector for the environment a. For y € 74, it is
clear that

V-(a(p+v¢§)) =0in R? = V-(a(y+-) (p+V¢2(y+-))) =0 in R%.
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The mapping * - ¢5(y + x) also has sublinear oscillations. Using the uniqueness property (iii),
we obtain the following identity

Véh(y +-) = v,
The stationarity property on the environment implies that V¢, and V¢,(y +-) have the same

law.

The corrector is a useful object and can be used to define the homogenized matrix a and the
corrective term wuy in the two-scale expansion. This is the subject of the next paragraph and we
first explain how to define the homogenized environment a in terms of the corrector.

DEFINITION 1.1.4. Using the linearity of the mapping p - V¢,, we define the matrix a
according to, for each p € R?,

(1.1.10) ész[/[OJ]da(m) (p+ V) d:r].

From this formula, we see that the matrix a depends on the environment a in a complicated
fashion involving the corrector, in particular,

we expect that a + E [f . a(x) dm] in general.
0,1

We next record, without proof, a few properties of the corrector and the homogenized matrix
a.
PROPOSITION 1.1.5. The homogenized environment a satisfies the following properties.

o [t is symmetric positive definite and satisfies
Mg <a<Al.

o Using the stationarity and ergodicity assumptions on the environment, the equality in
expectation (1.1.10) can be refined: one has the almost sure weak convergence,

a(g) (p+ ngp(g)) —~ap in L? ([O,l]d) as € — 0.

REMARK 1.1.6. Computing the value of the homogenized matrix & given the law of an
environment is a very difficult problem in general and can only be solved exactly in some very
specific cases:

e In dimension 1, in that case the differential equation (1.1.3) can be solved explicitly
and the problem reduces to a law of large numbers. An explicit computation gives

5 (E[fola(x)_ldx])

e In dimension 2 under a specific assumption on the law of the environment (see [98,
Section 7.3]). We do not make this condition explicit here but mention that it is satisfied
by the checkerboard described in Figure 1.1.1 with a; = als, as = 815, a, 5 > 0 and
probability p = 1/2. The homogenized matrix is given by

a=/afl.

We now come back to the two-scale expansion introduced at the beginning of this section,
explain how the corrector can be used in this expansion and why the term wug satisfies the elliptic
equation (1.1.4) for the definition of a stated in (1.1.10).

Using the computation for the gradient of u® presented in (1.1.6) together with (1.1.7), gives

(1.1.11) Vu(x) = Vug () + Vyur (x, ;) +e (V:Eul (w, g) + VU (x, g)) T

-1
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FIGURE 1.1.2. The function u®, drawn in red, is expected to fluctuate around the
homogenized and smoother function ug, drawn in blue.

The main contribution in the gradient of u° is given by the term V,ug (z) + Vyu1 (=, f) Since
u® solves the elliptic equation (1.1.3), we expect

(1.1.12) v.(a(g)(vuo (z) + Vyus (xg))) ~ 0.

The key idea is then to distinguish two scales, the macroscopic scale, which corresponds to the
variable x, and the microscopic one, which corresponds to the variable 2:/e. The function V, uq
is a function of x and oscillates on the macroscopic scale of size typically 1. These oscillations
are very slow compared to the ones of the maps a (E) and Vyuq (-, E)’ which happen on a scale
of size ¢ (see Figure 1.1.2). This leads us to make the rough but fruitful assumption that the
term Vzug (z) can be treated, in first order approximation, as a constant.

To emphasize this idea, we set the notation p := V,ug (z) in the next display. The iden-

tity (1.1.12) becomes
722 roma(=2)))

At this point of the argument, the corrector ¢, is a natural candidate for u; and we set

(o) o))

To simplify the previous display, we decompose the gradient of uy along the canonical basis of
R? and write Vug () = Zle g—g(x)ei. Together with the linearity of the mapping p - ¢, this
implies
d
T T Oug ( T )
ur\xr, — | = -] = x =]
1( 5) Pvuo o) (5) ,L; 8:101-( o £

Using the corrector, we were able to identify, at least heuristically, the term u; in the two-scale
expansion of u®. This argument can be made rigorous as we will see later. It also highlights the
importance of the corrector in homogenization: if one can understand precisely how this function
behaves: one should be able to get precise information on the solutions of the elliptic equation
V-a (%) Vu =0, with very general boundary conditions.

An important point remains to be treated: we need to explain, at least heuristically, why
up solves the homogenized equation (1.1.4). Now that the first error term w; in the two-scale

12

0.
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expansion has been identified, the argument is rather straightforward, indeed (1.1.11) becomes

Vu®(x) = Vug (z) + 21 8

( ) + lower order terms

d

Z

i + Vo, ) + lower order terms,

and thus

0=V- (a(g) Vua(:v)) = Zd: V- ( ( ) (ei+ Vor,) (91;0 (x)) + lower order terms.

=1 7

Taking the limit ¢ — 0, we expect

a(f) (ei + Ve,) — ae; in L*(U),
£

and thus

d
x ou
ZV-(a(—)(ei+V¢ez 0 ) ZV (aeZ
i=1 =
where the convergence holds at least in the sense of dlstrlbutlons. The lower order terms are also
expected to converge to 0, at least in the sense of distributions. This implies
V- (aVug) = 0.

This series of ideas about the two-scale expansion can be made rigorous and is summarized
in the following theorem.

() = - (@Vuo).

THEOREM 1.1.1 (Homogenization Theorem, qualitative version [106, 135, 150]). Let U be
a bounded smooth domain of R% and let f e C*™ (U) Under the assumptions of stationarity and
ergodicity of the environment, if we let u® be the solution of

(1.1.13) { Z;(;(%)WE) =0 ojzn8UU,

and ug be the deterministic solution of

{v-(awo)zo in U

(1.1.14) v~ f on OU.

then
£ - Imost ly.
lu® = woll 2 = 0 almost surely

The gradient of u® does not converge to the gradient of ug: there is a corrective term which can
be identified thanks to the two-scale expansion and one has

R 4 Jug :
Vu® - Vug — ; 8—%%% (g)

— 0.

e—0

(1.1.15) ’
L2(U)

REMARK 1.1.7. As was mentioned above, Vu® does not converge to Vug strongly in L? but
the convergence is true for the weak topology in L?. This can be justified by the following
arguments

e By the stationarity and ergodicity assumptions on the environment, together with the
ergodic theorem, we have

lim sup H Vo, (—)
€

E—>0Q

=E [/ \Y4 2] < oo almost-surely.
L2(U) (0,1 | ¢p| Y

In particular, almost surely, one can extract a subsequence of (V(Z)p (é))5>0 which

converges weakly in L2(U).
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e Using the sublinearity of the corrector, one has, for each g € C° (U),

ng(:r)Wﬁp (f) dz = [Udivg(:c)g¢p (g) dz
(2)

Using the sublinearity of ¢,, we know that ¢ Hqﬁp (g)

< | div € .
|div g 120y L2

H L2(U) converges to zero almost
surely. Consequently

x
—|d 0.
| o@ve, (%) dz —

e Using that ug is a solution of the elliptic equation (1.1.14), one knows, by regularity
theory, that it is very smooth: precise pointwise bounds on uy as well as on all its
derivatives are available. The previous argument for the weak convergence of the
corrector can be adapted to show

6u0
8xi

Combining this result with the strong L? convergence given in (1.1.15), shows

() Vo, (g) -~ 01in LQ(U), almost surely.

Vuf —~ Vug in L2(U), almost surely.

REMARK 1.1.8. The L? convergence can be upgraded into an L* convergence. Indeed the
De Giorgi-Nash-Moser theory (see [54, 125, 126] or [74, Chapter 8]) shows that the solutions
of (1.1.13) and (1.1.14) are a-Hdlder continuous, for some small exponent « > 0, as well as the
bounds
||u€||ca(U) <C and HUOHCO‘(U) <C.

One can then conclude by interpolating the L norm between the L? norm (which is small) and
the C* norm (which is bounded).

1.1.3. The probabilistic approach. The problem of stochastic homogenization was pre-
sented in the previous sections in an analytical framework. It can also have interesting applications
in probability and more specifically in random walks in random environments.

Given a uniformly elliptic environment environment a, we denote by (X}):»o the diffusion
process associated with the generator -V -aV, and by Pj and by Ej its law and expectation
started from y € RY.

1.1.3.1. The elliptic problem. Obtaining information on the generator —V -aV yields infor-
mation of the random walker itself. A first example of this can be the relation between the
random walker and the solution of the Dirichlet problem: let f e C* (El), then the solution of
the elliptic equation

(1.1.16) { V- (avu) =0 in B,

u=f on 0B

satisfies the identity u(z) = E3 [ f (XTaBl)], where 7yp, is the stopping time for the diffusion
process X;

ToOB, = inf{t € R_,, : Xt € 831}
Introducing a microscopic scale € > 0 and performing a change of variables shows that the solution
u® of the Dirichlet problem

v-(a(%)vu)=0in By,
u® = f on 0By

satisfies

S (2) =B, | f(Xms_, )]
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The homogenization theorem stated in the previous section (Theorem 1.1.1) or more precisely
the third point of the Remark 1.1.7 upgrading the L? convergence into an L* convergence, shows
that

u®(z) = uo(x), Va € By, almost surely,

where g is the solution of the homogenized equation (1.1.14). If we let B® be a brownian motion
of diffusivity 2a starting form x, we have the representation formula

a
)= (55,)]
This arguments tells us that the rescaled process €X,-2; behaves like a brownian motion of
diffusivity 2a, almost surely in the environment: we expect a quenched invariance principle for
the diffusion process to hold. For a precise statement of the result, we refer to the work of
Papanicolaou and Varadhan [135] or to the one of Osada [134].
1.1.3.2. The parabolic problem. The approach of the previous paragraph can be made much
more precise by studying the following parabolic problem: for f e C2° (R?), we let u: R, xR? - R
be the solution of the parabolic equation

dru+ V- (avu) =0 in (0,00) x RY,
u(0,-) = f in {0} x R,
The Markov process X; is related to the function u through the identity

u(t,z) =E3[f (X¢)].
In particular, information on the solutions of the parabolic problem can be transferred into
information on the random walker. The theory of stochastic homogenization introduced in the
previous section was presented in the setting of elliptic equations mostly for the sake of simplicity:
it can be extended to the setting of parabolic equations (see [135]). One can prove a parabolic
version of Theorem 1.1.1 and expect that the rescaled process e X.-2; satisfies

B2, [f (eXe2)] — E[f (BF)].

A theorem associated to this heuristic result was established in [135] and requires to average on
the starting point of the diffusion.

(1.1.17)

1.1.3.3. Probabilistic use of the corrector. Another, more probabilistic, approach to show a
quenched invariance principle for the diffusion process, makes use of the corrector. If one denotes
by x = (Xe1»---» Xe,) the vector-valued corrector, then the process

X; + x(X}) is a martingale.

The strategy is to apply a standard martingale convergence theorem and then to derive a
quenched invariance principle for the rescaled process X /.2 + ex (X, /52)- Using the sublinearity
of the corrector x allows to show that the term y(X}) is negligible compared to the main term
X, and eventually to deduce that the diffusion process X; itself satisfies a quenched central limit
theorem. This strategy was carried out by Kozlov in [105], Kipnis and Varadhan in [104] and
by Boivin in [36].

1.1.4. History of stochastic homogenization. A qualitative theory of stochastic ho-
mogenization was initiated in the early 80s, with the works of Kozlov [107], Papanicolaou and
Varadhan [135] and Yurinskii [150]. These results were then extended by Dal Maso and Modica
in [49, 50], who used variational arguments to study nonlinear elliptic equations. Their proofs
rely on an application of the ergodic theorem and are thus purely qualitative.

To go beyond the qualitative theory and obtain quantitative rates of convergence for homog-
enization, it is necessary that the law of the environment a satisfies some quantitative ergodic
conditions, such as, but not necessarily restricted to, the finite range dependence assumption
mentioned in Section 1.1.1. The main difficulty in this problem is that the solutions of the elliptic
equations V -aV depend in a very complicated manner on the coefficient field a, and it is thus
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not clear how to proceed to transfer the quantitative ergodic conditions from the environment to
the solutions. This has been an active field of research over the past few years and the theory is
now well-understood, at least in the uniformly elliptic setting.

The first quantitative results were achieved by Yurinskii in [149], where he obtained an
algebraic, suboptimal rate of convergence for the homogenization error under a uniform mixing
condition on the environment, in dimension d > 3. Ten years later, in [133], Naddaf and Spencer,
using tools from statistical mechanics were able to derive optimal rates of convergence in the
setting of small ellipticity contrast. Additional results were obtained in this direction by Conlon
and Naddaf [45] and Conlon and Spencer in [46], where Green’s functions were studied.

In the general case, the first satisfactory quantitative results were obtained by Gloria and Otto
in [82, 83]. They studied the case when the environment can be decomposed into a countable
number of independent identically distributed random variables. Their approach, which builds
upon the ideas of Naddaf and Spencer [133], relies on concentration inequalities, such as Spectral
Gap or Logarithmic Sobolev inequalities, to transfer quantitative information from the coefficient
field to the solutions. In particular, they obtained estimates on the corrector, the fluctuations of
the energy density of the corrector and the approximation of the homogenized matrix which are
optimal in terms of spatial scaling and suboptimal in terms of stochastic integrability. Then in
collaboration with Neukamm in [81], they extended the ideas of [82, 83] and were able to obtain
an optimal estimate for the decay in time of the parabolic equation associated to the corrector
and to deduce moments bounds for the corrector.

Another approach was initiated by Armstrong and Smart in [21], who extended the techniques
of Avellaneda and Lin [22, 23] and the ones of Dal Maso and Modica [49, 50]. They were
able to obtain a quenched large scale C%! regularity theory under an assumption of finite range
dependence on the environment. This was then generalized by Armstrong, Kuusi and Mourrat
to general mixing conditions and to other types of equations [20, 16] and improved to obtain
optimal rates of convergence [17]. The large scale regularity theory was also studied in the works
of Gloria, Neukamm and Otto [80]. These results were extended by Fischer and Otto in [65],
who developed a higher-order C*! regularity theory, in the spirit of Theorem 1.1.4 below. In [84]
Gloria and Otto obtained optimal bounds on the spatial average of the gradient and flux of the
corrector and deduced from it bounds on the growth of the corrector as well as error estimates
for the two-scale expansion.

The structure of correlations and fluctuations of the corrector were studied by Mourrat and
Otto [131], Mourrat and Nolen [130], Gu and Mourrat [88]. The proofs rely on the Helffer-
Sjostrand representation formula, initially introduced in [93, 145] and then used by Naddaf
and Spencer in [132] to derive a central limit theorem for the V¢ model (see Section 1.4 for
a definition of this model). These works build on ideas present in the aforementioned works
of Gloria, Neukamm, Otto as well as the ones of Gloria, Neukamm, Otto [79] and Marahrens
and Otto [110]. A general theory to understand the structure of fluctuations in stochastic
homogenization is established by Duerinckx, Gloria and Otto in [60, 61].

In the monograph [18], Armstrong Mourrat and Kuusi completed the program initiated a
few years ago in [21] and were able to obtain optimal bounds on the first-order corrector, and
optimal error estimates for the two-scale expansion. They also adapted the theory to the setting
of parabolic equations (see also [12, 27]) and obtained optimal homogenization estimates for the
elliptic and parabolic Green’s functions.

The theory described in the previous paragraphs is mostly the theory of stochastic homoge-
nization of uniformly elliptic linear equations, but it can be generalized to many other settings
in different directions including:

e Treating nonlinear uniformly convex functionals, i.e. studying the minimizers of the
problems

(1.1.18) muinfUL(x,Vu(:z))dx,



(1.1.19)
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where U ¢ R? is open and (x,p) = L(x,p) is random, convex in the second variable.
This setting was considered by Dal Maso and Modica [49] and by Armstrong and
Smart in [21]. Chapter 15 of [98] is devoted to the case of convex stationary ergodic
integrands. Armstrong and Mourrat in [20] established a higher regularity theory
and proved Lipschitz bounds for the minimizers with optimal stochastic integrability.
More recently, Armstrong, Ferguson and Kuusi proved in [14] a Lipschitz regularity
estimate for the differences of solutions, the main difficulty being that in the non-linear
setting, the set of minimizers, or equivalently the set of solutions of the equation
div (VL(z,Vu(z))) = 0, is not a vector space and the difference of two solutions is not,
in general, a solution. In [59], Duerinckx and Gloria managed to prove qualitative
homogenization for a family of nonconvex functionals with convex growth.

Relaxing the uniform ellipticity assumption: this requires to weaken the uniform
ellipticity assumption

Vo e RY, Ay <a(x) <Al

Research in this direction has attracted a lot of attention lately, in particular due
to the relation between homogenization and random walks in random environments
described in Section 1.1.3. In [108], Lamacz, Neukamm and Otto adapted the theory of
homogenization to a model of Bernoulli bond percolation, where the standard model is
modified such that all the bonds in a fixed direction are open. Another common way to
study degenerate environments is to make the assumption that the ellipticity constants
A and A are random and to assume a moment condition: there exist p,q € [1, o] such
that

E[A"] +E[AY] < co.

This setting was first considered by Andres, Deuschel, Slowik in [9] (see also [10]), and
then by Chiarini and Deuschel in [44]. They are able to derive a quenched invariance
principle for the diffusion process under the assumption 1/p + 1/q < 2/d. In [28], Bella,
Fehrman and Otto, still working under the assumption 1/p + 1/q < 2/d, obtained a
first-order Liouville theorem and a large scale C1® estimate for a-harmonic functions.
An extension of these results to the case of time-dependent coefficients has been carried
out by Andres, Chiarini, Deuschel, and Slowik in [8]. The condition (1.1.19) requires
the value of the conductances to be non-zero almost surely, an extension of this model
in a case when the conductances are allowed to be zero and to be small (under some
moment conditions) was investigated by Deuschel, Nguyen and Slowik in [57]. In [76],
Giunti and Mourrat proved relaxation decay for the solutions of the parabolic equation,
in the discrete setting, under the assumptions that the environment is bounded from
above, i.e. a(z) < I, and satisfies the degenerate lower bound condition E [a(x)7P] < co.
In [75], Giunti, Hofer and Veldzquez studied homogenization for the Poisson equation
in a randomly perforated domain.

1.1.5. The additive structure of stochastic homogenization. This section focuses on
the theory of stochastic homogenization developed by Armstrong, Kuusi and Mourrat in [18]
which contains most of the tools needed in this thesis. The approach relies on studying the
energy quantities associated to the elliptic problem. In [49], Dal Maso and Modica were the first
to study homogenization through the energy quantities. Given a bounded domain U ¢ R?, we
define, for p € R?,

(1.1.20)

1
Up)= it f Svveav,
v(U:p) vezpi%rg(u) U2 vrave

where [, is the affine function given by [,(z) := p-z. By the assumption of uniform ellipticity
made on the environment a, one knows that this quantity is well-defined and that there exists a
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unique minimizer which is the solution to the elliptic equation

V-(avu)=0 inU,
(1.1.21) { u=1l on OU.
This quantity satisfies a number of convenient properties, one of the simplest and most remarkable
is its subadditivity: consider Uy,...,U, a partition of the open bounded set U ¢ R? into open

sets, i.e. U; €U and U ~NU}, Us| = 0, then

- U]

(1.1.22) v(U,p) <y, 0] v (Ui, p).
i=1
The proof of this inequality is rather short: for each ¢ € {1,...,n}, we let u; be the solution of

the equation (1.1.21) in the domain U;, and u be the solution in the full domain U. The function
(1.1.23) z e Y u(z) 1y, ()
i=1

belongs to the space I, + H} (U) and can be used as a test function in the definition of v(U,p),

which implies the subadditivity result. For later purpose, we record that this statement can be

quantified: by using the uniform ellipticity assumption on the environment a, one derives
(Uil 2 - UGl

(1.1.24) 8 s = ul?epyy < = (v (Ui,p) -v(U,p)),
&gy el <X &)

following the conventions of the calculus of variations, we refer to this identity as the second
variation.

REMARK 1.1.9. This shows in particular that the term on the left-hand side of the previous
inequality is positive, which is (1.1.22).

If we restrict our consideration to cubes and introduce the notation

d
ror
QT = (_5) 5) 9
by the subadditive ergodic theorem the sequence v (Q,,p) converges as r tends to infinity almost
surely and in L'(P) to a deterministic value, which we denote by 7(p). Since the mapping
p~ v (Qr,p) is quadratic (because the solution u of the equation (1.1.21) seen as a function of

p is linear), we obtain that the limit 7(p) is also quadratic. The following proposition relates
p— 7(p) to the homogenized matrix a.

PROPOSITION 1.1.10. For each p € R%, one has the equality
_ 1 _
v(p) = 5p-ap.

REMARK 1.1.11. In [18], the matrix & is defined by the previous identity, the corrector is
then defined later in the proofs, the identity presented in Definition 1.1.4 becomes a proposition.

As was already mentioned in Section 1.1.4, the main difficulty to develop a quantitative theory
of stochastic homogenization is to transfer information from the coefficient field to the solutions of
the elliptic equation, since these solutions depend on the environment in a complicated, non-local
and non-linear way. The core idea is to use the energy as an intermediate quantity and to split
the argument into two steps:

e First we transfer information from the coefficient field to the energy, essentially by
establishing a quantitative rate of convergence of v (Q;,p) toward %p -ap.

e Second, we transfer information from the energy quantity v (Q,,p) to the solutions,
this is explained in Section 1.1.8.
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To investigate the first point, we note that the quantity v (Q,,p) is local, as can be immediately
seen from its definition. Moreover as the size of the domain diverges, v is expected to converge and
the inequality (1.1.22) will become an equality. Under the finite range dependence assumption,
this means that v(U,p) can be written, up to a small error, as a sum of independent random
variables. But sum of independent random variables are very well-understood and thanks to
this, one can deduce precise quantitative estimates on the energy quantity. Once its behavior is
well-understood, one can transfer information from it to the solutions of the elliptic PDE: one
has used the energy as an intermediate quantity between the coefficient field and the solutions of
the PDE.

The problem of the convergence of the energy can be separated into two distinct problems:

(1) Establishing a quantitative rate of convergence of E[v (Q,,p)] to p-ap as r tends to
infinity,
(2) Studying the fluctuations of v (Q,,p) around its expectation.
In the next two sections, we give a heuristic description of the proofs for the points (1) and (2).
The precise arguments can be found in [18, Chapter 2].

1.1.6. Convergence of the expectation of the energy. To summarize what has been
achieve so far, we know by a subadditivity argument that

1
E[v(Qr,p)] is decreasing and converges toward 3P ap.

Quantifying this convergence requires to solve the following difficulty: the subadditive ergodic
theorem is intrinsically qualitative and cannot be quantified in general. In particular, it only relies
on the ergodicity assumption on the environment which is not sufficient to derive a quantitative
theory. To develop such a theory, one needs to find a replacement for this theorem which requires
to make use of stronger mixing conditions on the law of the environment.

The main idea to quantify the rate of convergence is to note that v is quadratic, uniformly
convex in the p variable and to use its Legendre-Fenchel transform defined by

(1.1.25) v (Qr,q) :=sup (p-q-v(Qr,p)) -
peRd

We know that v* is quadratic (since v is quadratic), and it satisfies

(1.1.26) Vp,q e R% v* (Qr, @)+ (Qr,q) 2 p-q, and Vp e R, 3g e RY, v* (Qy,q) +v (Qryq) = p-q.

Moreover, since v (Q,,p) converges, as r tends to infinity to %p -ap, one expects v*(Qy,q) to
converge to %q . é_lq.

To obtain properties on v* which do not only come from the definition (1.1.25), one would
like to find another characterization of this quantity, and more specifically, one would like to
obtain a variational formulation for v* in the spirit of (1.1.20). The definition of v is a variational
formulation of an elliptic PDE with Dirichlet boundary condition, to find a dual quantity, it is
natural to try to solve an elliptic PDE with Neumann boundary condition. The correct definition
is given by

1
(1.1.27) w(U,q) == sup -—Vv-aVuv+q- V.
veHI(U) U 2
This quantity was first introduced by Armstrong and Smart in [21] and is a good candidate in
view of the properties it satisfies.

(1) It corresponds to the energy of a Neumann problem: the maximizer of (1.1.27) exists,
is unique up to a constant and solves the Neumann boundary problem

{V-(aVv)zO inU

(1128) n.aVU:n-q on (9U
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(2) Testing the minimizer of the definition of v into the variational formulation for p yields

(1.1.29) Vp,q e R 1 (Qr,q) +v (Qryq) 214,

which is similar to the first property of (1.1.26). The second property of (1.1.26) is not
exactly true and we do not have y = v*, but as we will see below, the main objective
will be to quantify the defect between these two quantities and to show that this defect
vanishes as the size r of the cube @, diverges.

The quantity p satisfies a number of properties which are similar to the ones of v: it is subadditive,

if one considers a partition of an open set U into open sets Uy, ..., Uy,
- Uil

(1.1.30) M(Mq)SEIM”u(U@q%
i=1

it is quadratic and by an application of the ergodic subadditive theorem, there exists a symmetric
positive definite matrix b e § (Rd) such that

1
w(Qr,q) — §q -bg almost surely and in L' (P).
T—>00

In particular, one deduces from the subadditivity property
1
E[u(Qr,q)] decreases and converges toward 54 bgq.

Based on the heuristic that p is a good substitute for v*, one can postulate
b=al,

which is correct as will be explained below. At this point of the argument, we cannot obtain the
previous equality, but from (1.1.29), one still has the lower bound

1 1
(1.1.31) Vp,qeR%, §q-bq+§p-ﬁp2p'q — b>a’,

where the inequality is understood in the sense of symmetric matrices.
The core idea of [18, Chapter 2] is to show that u is indeed a good approximation of v*.
Informally speaking, they show that for each p € R, there exists ¢ € R? such that, for each 7 > 0,

(1'1'32) E[M(Qra‘])]+E[V(Qrap)]_p'q£7-r7

where 7, is a sequence converging to 0 as r tends to infinity, which will be made explicit below.
This inequality implies two important properties: first, letting r tend to infinity, we get

1 1
(1.1.33) VpeR?, 3geRY, §q-bq+§p-ﬁp—p-q=0.

Together with (1.1.31), this shows b = a~!. The second important property can be deduced from
the first one: by subtracting (1.1.33) from (1.1.32), one obtains

(11.31) (Bl (@) - Ja-ba)+ (B (@) - -39 <

>0 >0

which implies in particular

(1.1.35) OSE[I/(QT,p)]—%p-épSTT.

In a word, a precise understanding of the quantity (p,q) » E[pu(Qr,q)] +E[v (Qr,p)] -D-q
gives precise information on the quantity p » E [v (Q.,p)] - %p -ap. This is important for the
following reasons:
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(1) A major problem to quantify the subadditive ergodic theorem was that very little
information is available on the homogenized environment &. One had to look at
the environment in the entire space R? to know its value, which made the task of
understanding E [v (Q,,p)] - %p -ap complicated. By using the dual quantity pu, it is
enough to understand the environment in @, to deduce how close E[v (Q,,p)] is from
its limit.

(2) The right-hand sides of (1.1.32) and (1.1.35) are the same, this means that the proof is
quantitative: if one obtains a rate of convergence for 7, in (1.1.32), it can be transferred
into a rate of convergence in (1.1.35).

In [18, Chapter 2], one does not obtain directly a quantified rate of convergence for the error
term 7, but one has the formula

1136) 7= C (sp (B0 Q)] - B[ (Qarap)]) + 509 (B0 (@r)) B (@) ).

peB1 qeB
This is still enough to obtain a quantified rate of convergence: if one denotes by

1 __ 1
Ay = sup (E [0 (Qr, )] - 502 Y+ E[v(Qr.p)] - §p-ap) :
p,qeB1
then (1.1.34) can be reformulated into
0<A, <C(A—Ay).

This last inequality requires an argument to prove 7, < C' (A, — Ag,) and is achieved by using
the convexity of the mappings x and v and the fact that R? is finite dimensional, we refer to [18,
Proposition 2.11] for the details. The inequality can then be rewritten into

AQT <

A,.
Cc+1

O n
Aogn, < A,
2 (C+1)

Going down the scales and using the bound A, < C', which can be obtained by using the variational
definitions of v and v*, one deduces

Iterating this argument gives

Vr>0, A, <Cr ¢,

with a := —log (%) > 0. This is an algebraic, quantitative rate of convergence.

1.1.7. Fluctuations around the expectation. Now that we have established an algebraic
suboptimal rate of convergence for the energy v (Q,,p) of the form

(1.1.37) E [y (@rp)] - 38| <Cr

one would like to understand the fluctuations of v (Q,,p) around its average. This is achieved by
combining the four following ingredients:

(1) For any domain U < R? and any p € R%, the random variables v (U, p) are bounded:
v (U,p) < Clp|*, P - almost-surely.
(2) The subadditivity property (1.1.22): if Uy,...,U, is a partition of open sets of U then

& Uil
V(Uap) < Trr1
2101

(3) The observation that for each open bounded domain U ¢ RY,
v (U,p) is F (U) — measurable.

v(Us,p) .
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(4) The finite range dependence assumption: if U,V are two domains of R? such that
dist (U, V) > 1 then

F(U) and F (V) are independent.

The idea is then to combine the four previous ingredients to obtain that v (U, p) is bounded from
above by a sum of independent bounded random variables, for which one can apply concentration
inequalities. The precise result provides an exponential moment bound:

(1.1.38) Vit >0, P(V (Qr,p) - %p-ép >COr*(1+ t)) <exp(-t).

Using similar arguments for the dual subadditive quantity p and the one-sided convex dual-
ity (1.1.29), one derives a control for the fluctuations of v from below,

1
(1.1.39) Vi>0, P (1/ (Qr,p) - i ap<-Cr*(1+ t)) <exp(-t).
A combination of (1.1.38) and (1.1.39) implies

v(Qr,p) - %p'ép <Cr e (1+ t)) <exp(-t).

This highlights an important fact in quantitative stochastic homogenization: there are two types
of quantity to quantify, the spatial variables, such as the convergence of the expectation of the
energy, the sublinearity of the corrector (see (1.1.8) for a qualitative statement and (1.1.42) or
Theorem 1.1.6 below for quantitative statements), and stochastic integrability such as (1.1.40).
Exponential stochastic integrability is a standard type of stochastic integrability and appears in
many results, we thus introduce a specific notation to describe this phenomenon.

For a non-negative random variable X and a constant 6 € (0, 0), we denote by

(1.1.40) V>0, IP’(

X <0 (0) if and only if E [exp (%)] <2,

which means that the random variable X is in average of size # and has an exponential tail.
With this notation, the estimate (1.1.40) can be rewritten

(1.1.41) v(Qr,p)—%p-ép

Exponential integrability is not the only one appearing and we need to generalize the O notation:
for s € (0,00), we define

<Oy (Cr_a) .

X <O (0) if and only if ]E[exp((%) )] <2

REMARK 1.1.12. The larger s is, the better the stochastic integrability is, and one can show
the following statement: given s,s’ € (0,00) with s’ < s, there exists a constant C := C(s") < o0
such that

X <0y (0) = X<0,(CH).

REMARK 1.1.13. The case s = 2 corresponds to the Gaussian stochastic integrability.

1.1.8. Convergence of the minimizers and the multiscale Poincaré inequality. In
the previous sections, we established a quantitative rate of convergence for the energy v, but the
final goal of the theory of stochastic homogenization is to study the behavior of the solutions of
the elliptic PDE (1.1.1). In this section, we show how to transfer information from the energy
quantities to the solutions.

For the sake of simplicity, we focus on the energy v and denote by u, the minimizer associated
to the variational formulation (1.1.20). It is the solution of the equation

v'(avuT):O in QTa
up =1, on 0Q),.
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Reusing the notation of Section 1.1.2, we introduce

bp = Ur — 1.

Studying this quantity is interesting because, as was already mentioned in Section 1.1.2, the
gradient V¢, is expected to converge to the gradient of corrector ¢, as the size r of the cube
tends to infinity. In particular, one would like to obtain a quantified version of the sublinearity
of the corrector.

PROPOSITION 1.1.14. The mapping ¢,, satisfies the quantitative L? sublinearity property

(1.1.42) O: (Cr'™®).

T
193] 220, <
The proof of this fact relies on a refinement of the Poincaré inequality, called the multiscale
Poincaré inequality. The reason behind the introduction of this new inequality is the following:
for a function v € H} (Q,), the standard Poincaré inequality reads

[Vl 22,y £ Cr Vol L2(q,y -

In our setting, we wish to apply this inequality to the approximation ¢, of the corrector. It is a
function which

(1) oscillates quickly on a microscopic scale, so its gradient is expected to be constantly of
size 1,
(2) has small macroscopic oscillations, this is what we aim at proving.

Consequently, the L? norm of the gradient of the approximation of the corrector ¢, should be,
at least heuristically, bounded from above and below

cs HV%HB(QT) <C.

Applying the Poincaré inequality can only provide a linear bound on the L? norm of the corrector
of the form

“¢;“L2(QT) <Cr,

which shows that the corrector has at most linear growth. This is obviously a much weaker
statement than (1.1.42) and is not satisfactory.

The idea is then to define a new tool to treat functions which are oscillating quickly on a
microscopic scale but have sublinear global oscillations. A first observation is that, by the Stokes
formula, the spatial averages of the gradient of these functions must be small: for x € ), and
1 « s <r such that the ball B(x,s) is included in Q,, the spatial average of the gradient of (o8
can be estimated by the macroscopic oscillations of the same function on the ball 0B(z, s),

L1 )
]g(w’s) V(bp B |B(13, S)| jt;B(m,s) ¢p(y)n(y) dy

<— osc ¢

S 0B(z,s) P
where the oscillation of a function f is defined according to the formula

058 T onery!  ontes
When s is large, the oscillation term on the right-hand side is small, since the mapping ¢, has
sublinear oscillations.
To use this idea, one would like to obtain a new version of the Poincaré inequality, where
the right-hand side contains spatial averages of the gradient. This is achieved by the following
proposition.
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F1GURE 1.1.3. A cube @, together with the collections of subcubes (z + QT/?’)zezl and
(Z + QT/Q)ZEZQ .

PROPOSITION 1.1.15 (Multiscale Poincaré inequality, Proposition 1.12 of [18]). Fix
r > 1, for each integer n € [0,logs ], we define Z, := 37 Ze0Q, so that the family (z + Q31r) ez,
is a partition of Q, (see Figure (1.1.3)). Then for each function v satisfying either v e H} (Q;)
orveH' (Q,) and (v)g, =0,

[logs 7]
(1.1.43) [0132(0,) < ClVOli20y +C D 37|24
n=0

2€Z,

2
Vu(z)dx| .
£+Q3—n7. ( )

REMARK 1.1.16. By an application of the Jensen inequality, the right-hand side of the
previous display is bounded by Cr ][Qy- |Vv|2 , and one recovers the standard Poincaré inequality.

We now explain how to apply this inequality to derive (1.1.42). This requires to make
use of the second variation: we fix n € N and denote by wui,...,uzin the minimizers of
v(Qt,p),...,v (din,p) respectively, by the second variation (1.1.24), one has

3dn 3dn
37 Y IVur = Vil [ gny < €37 3 (v(QF,p) ~ v (Qr.p))
i=1 =1

Sdn

< C3_dn(ZV(Q?,p) —p-ép) - (v (Qr,p)-p-ap).

i=1
We then use that, since u; €, + H} (QF),

Vu;(x)dx = p.
Jg? (¢)dz=p

Consequently, by the Jensen inequality

Sdn

3= 3 ][ Vi, —p
i=1 [/ Q7

2 gdn
<C3™ (Z v(Qi'p) —p-ép) - (v (Qr,p) —p-ap).
=1

This inequality shows that the spatial averages of the gradient of the approximation of the
corrector ¢, can be estimated by the difference between the energies v on different scales. Since
in the previous section we obtained a quantitative rate of convergence for the energy, it can be
transferred to the spatial averages of the gradients: using (1.1.41), one obtains
2

<O (C (3_”7')_0‘) .

3dn

3—d7l f
2%

VO

k3
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Applying the multiscale Poincaré inequality to the function ¢;, and using the almost sure bound
on the L? norm of its gradient (which is an immediate consequence of its definition),

logs T

|logs |
T 2 T 2 -n -n -
H%HL?(QT) <C vaprLQ(QT) +Cr Z_;) 370 (C(37"r))

[logs 7]
<C+Cr Y 3701 (C(37"r)™).
n=0

Using the standard properties of the O4 notation, see [18, Appendix A], one has

|logs 7|
“¢;“ZQ(QT) <C+ C’r’l_a(f)l ( Z:%) 3—(1—a)n)

<O (Cr'™),

which proves (1.1.42) and establishes a quantitative sublinearity estimate for the approximate
corrector ¢,

1.1.9. Homogenization of the Dirichlet problem. In the previous sections, we saw how
to obtain an algebraic rate of convergence for the energy quantity and how to derive from it
information on the finite volume approximation of the corrector ¢,. The next step of the theory
is to generalize Proposition 1.1.14: now that one has obtained quantitative estimates for solutions
on cubes with affine boundary conditions, is it possible to derive information for general domains
with general boundary conditions?

The key idea here is that thanks to the heuristic of the two-scale expansion, it is enough to
have information on the corrector (or its approximation qS;). By combining the technique of the
two-scale expansion together with the bounds obtained on the approximate corrector, one can
prove a quantitative version of Theorem 1.1.1.

THEOREM 1.1.2 (Homogenization theorem, Theorem 2.18 of [18]). Fiz a bounded Lipschitz
domain U ¢ R and let f e WH2*(U). For € € (0,1], consider the solutions u® of the elliptic
boundary value problems

{ v-(a(2)ves)=0 U
u=f on OU,
and w the solution of
vV-(avu)=0 inU
{ u=f on OU,

then there exists an exponent >0 such that the quantitative convergence for the L? norm holds
[uf = ull g2y < O1 (C 1 f lwraes iy &)

and one has the following estimate in H',

I3 —_ d 1/6 —
u® —u-— Z ¢, O
i=1

<01 (C I f lwravsqry e®)-
HY(U)

This statement is quite general and we allow for somewhat rough boundary conditions:
the domain U can be Lipschitz and the boundary condition f has to be only slightly better
than H'(U), namely W1 (U). Going beyond these regularity assumptions, and in particular
assuming f € H! (U), is however not possible in general, the problem is that for the two-scale
expansion to work, one needs to have some regularity estimates on the homogenized function.
Since this function is solution to a constant-coefficient elliptic equation, the theory of elliptic
regularity (see [74, Chapter 2]) provides such estimates in the interior of the domain U. If the
boundary condition f is too irregular, then the solution v may be also irregular in a boundary
layer close to OU, and it can be enough to invalidate the quantitative convergence estimate.
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By requiring some regularity on the boundary condition f, one derives some regularity on
the function @ up to the boundary: in the case presented here we assume an L**0 estimate on
f and its gradient, to obtain, by applying the Meyers estimate (see [118]), some additional
integrability on the gradient of u which eventually allows to neglect the boundary layer on which
homogenization does not occur.

1.1.10. Large scale regularity theory. The next step to develop a robust theory of
homogenization is to improve the rates of convergence. At this point of the analysis, we are
able to provide a quantitative rate of convergence with an exponent o > 0 whose value is tiny
and suboptimal. To improve this rate, it is necessary to obtain a deeper understanding on the
behavior of a-harmonic functions. For these solutions, it is known, by the De Giorgi-Nash-Moser
theory, that they are 8-Holder continuous for some small 5 > 0. One would like to improve this
regularity by using the specific properties of stochastic homogenization. The idea is the following:
by performing the change of variables y = Z in Theorem 1.1.2, one knows that on large scales, an
a-harmonic function is well approximated by an a-harmonic function, for which an extensive
theory of regularity is available. It is then possible to use this proximity to borrow the regularity
of the a-harmonic functions and transfer it to the rougher a-harmonic function.

It has to be noted that this strategy only provides regularity for a-harmonic functions on
large scales and highlights an important point: the theory of stochastic homogenization can only
provide information on scales which are greater than the correlation length, and will not deliver
any relevant information about what is happening on small scales.

A first estimate which is satisfied for a-harmonic functions but not for a-harmonic function is
the pointwise bound on the gradient of the solutions: for every a-harmonic function @: R% - R,
and every R > 0,

- c,._ _
(1.1.44) |va(0)] < = @~ (“)BRHg(BR) :

The strategy presented above can be implemented to prove a suitable version of this bound
on the gradient of a-harmonic functions on large scales, as stated in the following theorem.

THEOREM 1.1.3 (Quenched C%!-type estimate, Theorem 3.3 of [18]). There exists a non-
negative random variable

X <0, (C) ,
such that for every R> X and every weak solution u € H' (Bg) of
-V -(avu) =0 in Bg,

one has, for every r € [X, R], the estimate

1 C
o CR COFN PRIPRE=1 Ll CORM FPrem

which by the Caccioppoli and Poincaré inequalities is equivalent to

C
[Vul 25,y < R Ju- (U)BRHLQ(BR) :

As was the case in Section 1.1.9, there is a set of small probability where the environment a
behaves very differently from the homogenized environment &. On this set of small probability,
the previous result will not apply. To remedy this, essentially two options are available: either
write inequalities with a random right-hand side, as was done in Theorem 1.1.2, or introduce a
random variable X which represents a minimal scale above which the result applies. When the
environment a behaves badly, the random variable X is large. One cannot expect this minimal
scale to be bounded, but fortunately good stochastic integrability is available: it has exponential
moments and can only be large on events of exponentially small probability.
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By taking r = X v 1 in the previous theorem, we obtain

da
C(xvl)z
IVul 2y € —

Hu - (U)BR HL2(BR) ’

and since the random variable X has exponential moments, one can morally think of it as being
bounded: in this case we recover an inequality similar to the C%! regularity for a-harmonic
functions stated in (1.1.44). As was already mentioned, homogenization cannot provide pointwise
information and only studies behavior of a-harmonic functions on scales larger than the correlation
length. Here the correlation length is of order 1, and thus one can only obtain meaningful results
on length scales larger than 1. This justifies why there is a left-hand side of the form |Vu| 2,

instead of the pointwise bound |Vu(0)|.

_The regularity theory can be further extended thanks to the following remark. For k € N, we
let Ay be the set of &-harmonic polynomials of degree less than k. This space can be equivalently
characterized as the a-harmonic functions with controlled L? growth: one has the identity

Ay = {p € Hoe (RY) : ~V-(aVp) =0, and lim r™ |p] 2, = 0}-

This characterization of the a-harmonic polynomials of degree less than k is the correct definition
to establish a large scale regularity theory: to develop such a theory, one needs to find a suitable
version of the set Aj, to work with a-harmonic functions. Since the environment a is not constant
in space, an a-harmonic function which does not grow faster than a polynomial of degree k is
not in general a polynomial. The characterization by the growth of the L? norm can however be
extended (see (1.1.46) below) and is a crucial ingredient in the statement of Theorem 1.1.4.

From the theory of regularity of a-harmonic functions, one can estimate the (k + 1)-th
derivative of an a-harmonic function @ according to the formula, for each r > 0,

_ ¢ .-
(1.1.45) [vF1(0)| < oot 0f [Tl 2, -
peAyg

Note that the specific case k = 0 is precisely (1.1.44). For a general a-harmonic function, one
cannot make sense of V*u as a function, but one can make sense of the right-hand side of
the previous display: instead of subtracting an &-harmonic polynomial, one can subtract an
a-harmonic function which does not grow faster than a polynomial of degree k. We let A be
the set of such a-harmonic functions,

(1.1.46) Ay = {u e HE . (RY) : —v-(avu) =0 and }Lrglo Rl lullp2(s,) = 0}.

Then one would like to

(1) characterize the random vector space Ay, for instance one would to know whether it is
finite dimensional almost surely and compute its dimension.

(2) Prove a large scale C*!-regularity estimate of the form: there exists a random variable
X with exponential stochastic integrability such that for each a-harmonic function
u:R? > R and each R,7 € [1,00) satisfying X <r < R,

r k+1
inf ||u - <C|—= inf ||u- .
inf Ju=plpgsy <€) nf lu-plpe,
The previous questions can be answered by the following theorem.

THEOREM 1.1.4 (Higher-order large-scale regularity, Theorem 3.8 of [18]). There exist an
exponent >0 and a non-negative random variable X satisfying the moment bound condition

X <0, (C) ,
such that the following statements hold: for each k € N,
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(i) Bvery element of Ay, is well approzimated by a polynomial of Ay: for each u € Ay, there
exists p € Ay such that for every r > X,

lu=pl2s,) < cr™’ lul 2,
(ii) Every polynomial of Ay, is well approzimated by an element of Ag: for each p € Ay,
there exists u € Ay such that for every r > X,
|@—m@%&)§CFM@h%&)
(iii) For every radius R> X, and every weak solution u € H' (Bg) of
~v-(avu) =0 in Bg,

there exists an element ¢ € Ay such that for every r € [X, R], one has the estimate

r k+1
lu=lgzsy <C(5)  lulzzon-

REMARK 1.1.17. A combination of (i) and (ii) shows that the space Aj is almost surely
finite-dimensional, and its dimension is the same as the one of Aj:
d+k—1)+(d+k—2
k k-1
The case k =0 is a Liouville theorem: the dimension of the space Ag is equal to 1 almost surely
and is reduced to the constant functions. The case k =1 is also interesting, since it establishes

the existence and sublinearity of the correctors defined on the full space: the dimension of A; is
equal to (d+1) almost surely, and by properties (i) and (ii), every function u € A; can be written

dim A, = dim Ay, = ( ), P — almost surely.

u=1l,+¢,+c, for somepeRd,ceR,

where the function ¢, is the corrector. It is defined up to a constant and satisfies the sublinear
growth estimate

1-6
(1.1.47) |60 = (90)5, [ 125, < CloIr ™.
As in Section 1.1.2, we select one corrector arbitrarily thanks to the criterion
= 07
B O

so that the corrector is a well-defined quantity. Note that with this definition, the corrector is
not stationary.

REMARK 1.1.18. As was done for the C%! estimate, taking the value r = X v 1 in (iii) leads
to, for every r > 1,

- . C (X v 1)d/2+lc+1
Plel}étk Hu _pHLZ(Bl) - rk+1 HUHLQ(BT) ’

which is a large-scale version of the C**!-regularity estimate for &-harmonic functions stated
in (1.1.45).

1.1.11. Optimal rates of convergence. Now that one has developed a regularity theory
for a-harmonic functions, it is possible to improve the suboptimal rates of convergence given
in (1.1.41) and Theorem 1.1.2. Obtaining optimal rates of convergence is accomplished through a
bootstrap argument: the idea is to start from the suboptimal exponents obtained in the previous
sections and to improve them until they reach optimality. In this section, we record the optimal
results one can obtain in stochastic homogenization without detailing the proofs, we refer the
reader to [18, Chapters 4 and 6] for the details.
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1.1.11.1. Optimal rates of convergence for the energy quantities v and v*. In Section 1.1.6,
we obtained an algebraic rate of convergence for E[v (Q,,p)] and E [v* (@, q)]. Improving the
exponent o which appears in (1.1.37) is interesting because it can then be transferred to obtain
information on the a-harmonic functions, as was explained in the previous sections. Unfortunately,
when one tries to improve this exponent a problem appear: on a boundary layer of size of order
1 around 9Q),, one cannot control the behavior of the energy. Because of this, one cannot expect
to obtain better than

1 .
E[v(Qrp)]-5p-ap|<Cr Y

which provides the exponent « = 1. This limitation does not come from the intrinsic structure
of stochastic homogenization but rather from a boundary layer effect, and one can hope to
improve this rate by solving this issue. To this end, the first step is to find a new variational
formulation for v (Q,,p). As in Section 1.1.8, we let u, be the minimizer in the variational
formulation (1.1.20) of v (Q,,p), it is characterized as the unique solution of

V- (aVur) =0 in Q,
ur =1, on 0Q);.

In particular u, — I, belongs to the space H}(U) thus, for every a-harmonic function v € A(Q,.),

][ (Vu, —p)avo = 0.
Qr
Moreover since u, € A(Q,), we obtain that it is the unique maximizer of the variational problem

1

sup (——Vv-aVv +p-aVv).
veA(U) Qr 2

The previous variational problem is written with a supremum so as to have the following property,

by the first and second variation,

1 1
sup -—Vv-aVv +p-aVv:][ —Vu-avVu=v(Q,,p).
ve A(U) JQr Qr 2
This formulation is more convenient because the set A (Q,) does not involve looking at the values
of the function on the boundary, as was the case with I, + H} (Q,).
To remove the boundary layer, we denote by
1 2
O, (z) = — ~ exp (—ﬂ) for z e RY, >0,

d 2
T2r r

so that it satisfies the three following properties

(1) @, is approximately equal to 7~¢ on the cube Q,,
(2) ®, is decaying fast outside the cube @, and is approximately 0 far away from Q,,
(3) @, is smooth.

With these new notation, we define a new version of the energy, for p € R%,
1
v(®,, ::inff -0 (— v-aVv+p-a U),
( r p) A, Jrd r 2v \v p-aV

where we are minimizing over the set 4; of a-harmonic function with at most linear growth to
ensure that the term on the right-hand side is well-defined. Since the minimizer of the energy
v(Qyr,p) is expected to converge to a function of the form [, + ¢, + ¢ the choice of space A; is
sensible.

Note that the definition of the quantity v (Q,,p) can be rewritten as

. 1p,
v(Q,p) = inf _r_]fl(

1
A(By) JRd _vv'ava'avv)'

2
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To define v (®,,p) we have replaced the function 1p, by the function ®,. The point is that the
latter function is much more regular than the indicator 1p,, one can show that with this new
definition, the boundary layer effect disappear and obtain a much faster rate of convergence.

PROPOSITION 1.1.19 (Optimal rate for the convergence of the energy, Theorem 4.6 of [18]).
One has the following optimal rates of convergence:

e Control of the expectation: there exists a constant C < co such that, for every p € By,
[E[v(®,,p)] -p-ap| < Cr e,
o CLT scaling of the fluctuations: for every s <2, one has, for every p € By,
|V((I>rup) -E [V ((I)ryp)“ <Os (CT_d/z) .

REMARK 1.1.20. The CLT scaling for the energy is a predictable result: if one follows the
heuristic according to which the inequality in the subadditivity (1.1.22) of v becomes an equality
when 7 is large, then the random variable v (®,,p) can essentially be written as the average
of 7% independent and bounded random variables, for which one has a Gaussian bound on the
fluctuations Oy (r‘d/ 2). Here we cannot obtain exactly the Gaussian stochastic inegrability O,
but we have the slightly weaker result with Oy stochastic integrability, for each s < 2.

1.1.11.2. Optimal rates for the Homogenization Theorem. In this section, we record the
optimal version of Theorem 1.1.2. As it was the case in the previous section, the error caused by
the boundary layer is the limiting factor and one obtains an optimal rate of order £'/2, with an
additional logarithmic factor in dimension 2. Since the boundary layer is the limiting factor, one
has to be careful with the regularity of the boundary condition. The result is summarized in the
following theorem.

THEOREM 1.1.5 (Quantitative two-scale expansion, Theorem 6.11 of [18]). Consider a
Lipschitz domain U € R?, and a function @ € WP (U), for some o € (0,00) and p € (2, 00].

Then for each € € (0, %] and each s € (0,2), there exists a non-negative random variable X
satisfying the stochastic integrability estimate

0, (Ce |1ogs|%) ifd=2,
X: < 1
Oy (Cea) ifd>2,
such that if we let w® be the two-scale expansion of u defined according to
d x
W= (@) +e 3 (00,75 6) (@), ().
k=1
where (. =% (E) and ¢ is a standard smooth compactly supported mollifier and if we let u® be

the solution of the Dirichlet problem

-v-(a(%)vu)=-v-(ava) inU,
uf =u on OU,

then we have the H' estimate
(1148) ||u‘€ - wa “Hl(U) < Xs HU||W1+a,p(U) .

REMARK 1.1.21. The two-scale expansion presented in the previous theorem requires to use
the mollifier {; on the function w. This is necessary to have a well-defined two-scale expansion:
since we only assumed u € W3/2P(U), the mapping 9,,7(x)de, (f) may not be in the Sobolev
space H! (U) so that (1.1.48) is meaningful.
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1.1.11.3. Optimal bounds on the corrector. By optimizing the bound (1.1.47) on the corrector,
one can show a much more precise bound: it is essentially bounded in dimension 3 and higher,
and grows like the square root of logarithm in dimension 2.

THEOREM 1.1.6 (Optimal bounds on the corrector, Theorem 4.1 of [18]). For every
dimension d > 3, there exists a constant C < oo such that, for each p € By, and each x € R¢

”¢7’||L2(B1(x)) <02 (C).

In dimension 2, the situation is different both in terms of stochastic integrability and spatial
behavior: for each integrability parameter s < 2, there exists a constant C' < oo such that for each
z € R? and each p e RY,

1
”(bP”LQ(Bl(z)) < Os (010g2 |.CL'|) .

REMARK 1.1.22. These estimates are optimal both in terms of scaling and stochastic integra-
bility. In particular the square root of the logarithm which appears in dimension 2 is optimal, a
reason to justify this scaling is that the properly rescaled version of the corrector is known to
converge to the Gaussian free field (see [18, Chapter 5]). Since in dimension 2, the variance of
this field behaves like a logarithm, we can expect the field to grow like the square root of the
logarithm.

REMARK 1.1.23. We recall that to select one corrector among all the possibilities, we made
the additional assumption [ B, ¢p = 0.

1.2. Supercritical percolation

Chapters 2 and 3 are devoted to adapting the theory of stochastic homogenization developed
in Section 1.1.5 to the setting of supercritical percolation. The main difficulty is that the uniform
ellipticity assumptions (1.1.2) does not hold in this new setting, and one needs to find a proper
replacement for it. This is achieved by constructing a renormalization structure, or coarse graining
procedure, for the infinite cluster, building upon existing results in the field (see [11, 136]).
We begin this section by defining the model of Bernoulli bond percolation and reviewing a few
results in the field. We then explain the renormalization structure, which is a critical input in
Chapters 2 and 3 and eventually present the main results obtained in these two chapters.

1.2.1. The model of Bernoulli bond percolation. The Bernoulli bond percolation
model was first introduced by Broadbent and Hammersley in 1957 [39]. It is one of the simplest
mathematical models which exhibits a phase transition. Despite its apparent simplicity, it gave
rise to a deep mathematical theory and even though mathematicians managed to understand
a number of important properties pertaining to this model over the past 70 years, many
open questions remain to be solved. Before we start describing the model, we refer to the
books [87, 102, 37, 147| for a more complete overview of the topic.

Let Z% be the standard euclidean lattice in dimension d > 2. A point x € Z¢ is called a vertex.
We equip this set with the standard 1-norm defined, for each x = (x1,...,x4) € Z%, by

d
ey =22 |l
i=1

We say that two vertices z,y € Z? are nearest neighbors if |2 —y|; = 1. An unoriented pair {z,y}
of nearest neighbors of Z¢ is called an edge. We let E; be the set of edges of Z,

Ey:={{z,y} : v,yeZ% and |z -y[1 =1}.
The probabilistic model of Bernoulli bond percolation is defined as follows: we consider the

measurable space (€, F), where Q is the set of functions defined from the space E4 to {0,1},

ie. Q:=/0, 1}Ed, and F is the o-algebra generated by the events depending on finitely many
edges. A percolation configuration is an element w € ), and given an edge e € E;, we denote by
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w(e) € {0,1} the value of the configuration at the edge e. Given a configuration, we say that
the edge e is closed if w(e) = 0 and open if w(e) = 1. A connected component of open edges
is called a cluster. Given a probability p € [0,1], we let P, be the unique probability measure
on (£, F) such that the family of random variables(w(e)),.p, is a collection of i.i.d Bernoulli
random variables of parameter p.

The goal of the theory of percolation is to study the geometry of the clusters as the parameter
p varies between 0 and 1. A first question of interest is: does there exist an infinite cluster? A
first step to study this issue is to note that the event

E := {there exists an infinite connected cluster of open edges}

is translation invariant. By an application of the 0 — 1 law, the probability of this event must be
0 or 1. Additionally, we define for p € [0,1],

8(p) := P, (0 belongs to an infinite cluster) .

By standard arguments, the mapping p — 6(p) is nondecreasing and the three following statements
are equivalent:

(i) o(p) >0,
(il) Pp (Eoo) =1,

(iii) there exists an infinite cluster of open edges Pp-almost surely.

We then define the critical probability p. := p.(d) as
pe:=inf{p e [0,1] : O(p) > 0}.

If 0 < p. < 1, then one says that the model exhibits a phase transition. In this case, one can
distinguish three different regimes:

(i) the subcritical phase, when 0 < p < p,, all the clusters are finite,
(ii) the critical phase, when p = p,,
(iii) the supercritical phase, when p. < p < 1, there exists at least one infinite cluster.

This distinction occurs only if the critical probability p. is strictly between 0 and 1. The
first result we would like to record is due to Broadbent and Hammersley in 1957 [39] and
Hammersley [89, 90] shows the existence of a phase transition.

ProOPOSITION 1.2.1 (Existence of a phase transition, [39, 89, 90]). For each dimension d > 2,
one has

0<pe(d)<1.

The question of the precise value of p. is a thorny issue. It was proved by Kesten that its
value in dimension 2 is 1/2.

THEOREM 1.2.1 (Kesten [100]). One has the identity p.(2) = %

It is unlikely that one can obtain a useful explicit formula for p.(d) in dimension more
than 3. The reason behind the exact value in dimension 2 is that the square lattice Z? satisfies a
self-duality property (see [87, Chapter 1]), which is very specific to this dimension and is a key
ingredient in the proof of Theorem 1.2.1.

We now gather some information about what is known for each of the three phases. In this
thesis, we are mainly interested in applying the theory of quantitative stochastic homogenization
on the infinite percolation cluster in the supercritical phase, and we will review the results more
precisely in this setting.
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FIGURE 1.2.1. A percola- FIGURE 1.2.2. A percola-
tion configuration in the tion configuration in the
subcritical regime with critical regime with p =

p=0.3 0.5

FIGURE 1.2.3. A percola-
tion configuration in the

supercritical regime with
p=0.7

1.2.1.1. The critical phase. In this phase very little information is known and most of the
open questions of percolation are about trying to understand it better. The first question is
the one of the existence of an infinite cluster at p.. In dimension 2, Harris proved in [92] that
6(1/2) = 0, which together with the result of Kesten p. = 1/2 implies that there is no infinite
cluster at criticality. In [91] Hara and Slade answered the question negatively in dimension larger
than 19. The result was later improved by Fitzner and van der Hofstad [66] to prove that there
is no infinite cluster at criticality in dimension larger than 11.

THEOREM 1.2.2. In dimension 2 and dimension larger than 11, there is no infinite cluster at
criticality

O(pc) =0 for d=2 and d > 11.

It is conjectured that there is no infinite cluster at criticality in every dimension, but the
question remains open.

1.2.1.2. The subcritical phase. In this phase, all clusters are finite almost surely. The general
philosophy of the subcritical phase is that there are only small isolated and finite clusters.
In particular, the size of a cluster containing a given fixed vertex x € Z% is known to have
an exponential tail. This is illustrated by the following Theorem. We refer to the works of
Menshikov [117], Aizenman and Barsky [2] and Kesten [101] for the proofs.

THEOREM 1.2.3 ([117, 2, 101]). For each p € [0,p.), there exists a constant c:=c(d,p) >0
such that for each n e N
P, (0 is connected to B(0,n)) <e "
and
P, (IC(0)| 2 n) < e,

where, as in the previous section, |C(0)| denotes the cardinality of the cluster containing 0.
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1.2.1.3. The supercritical phase. In this phase there exists at least one infinite cluster almost
surely. A first interesting question is to determine the number of such infinite clusters. If one
denotes by N the number of infinite clusters, which almost surely belongs to N* u {co}, one sees
that this random variable is translation invariant. By an application of the 0 — 1 law, it must be
constant almost surely,

there exists k € N* u {oco} such that P, (N =k) = 1.

This result was refined in 1987 by Aizenman, Kesten and Newman in [4, 5] who proved that the
number £ is equal to 1 for every p € (pc, 1]. This is summarized in the following theorem.

THEOREM 1.2.4 (Uniqueness of the infinite cluster [4, 5]). For each p € (p.,1], one has
P, (There ezists a unique infinite cluster) = 1.

From now on, we denote by %, the unique infinite cluster. Now that the existence and
uniqueness of €., are established, one would like to understand its geometry. The broad picture
to keep in mind is the following Ansatz: in the supercritical phase the infinite cluster spreads in
most of the space. Its geometry is, at least on large scales, similar to the one of Z?. Additionally
this infinite cluster coexists with small isolated and finite clusters. This can be seen in the
Figures 1.2.3 and 1.2.4.

To illustrate this fact mathematically, we record a few classical results. The first result was
proved by Chayes, Chayes, Grimmett, Kesten and Schonmann in 1989 [43]. It provides an
exponential bound on the tail of the radius of a large finite cluster.

THEOREM 1.2.5 (Chayes, Chayes, Grimmett, Kesten and Schonmann [43]). For each dimen-
sion d >2 and each p € (p.(d), 1], the limit

1
o(p) = lim ——logP, (0 is connected to 0B(0,n) and 0 ¢ Co)
n—o00 n

exists, and satisfies 0 < o(p) < co. Moreover, there exists a constant C < oo such that for each
neN
P, (0 is connected to AB(0,n) and 0 ¢ €a) < Cnexp (-a(p)n).

The size of the finite cluster satisfies a subexponential bound. A proof of this result can be
found in [3] and [103].

THEOREM 1.2.6 ([3, 103]). For each dimension d > 2 and each probability p € (p.(d),1],
there exist two constants ci,co >0 such that, for every n e N,

exp (_Cln%) <P, (|C(0)] =n) <exp (—CQTL%) .
By a summation, one obtains the following upper bound, for some constants c3 >0 and C < oo,
P, (n <|C(0)| < o) < Cexp (_an%l) ,

To illustrate that the infinite cluster spreads in the entire space, we record a result which is
an almost immediate consequence of the result of Penrose and Pisztora [136, Theorem 1].

PROPOSITION 1.2.2. For each p > p., there exist two constants c¢,C € (0,00) such that
P, (dist (0, %) > 1) < Cexp (—cnd_l) .

This proposition tells us that the probability for 0 to be far from the infinite cluster is
exponentially small. It confirms the idea that the infinite cluster spreads over the entire lattice
Z%: typically, in a ball of size R, no point will be at distance more than log R from the infinite
cluster. To illustrate that the geometry of the infinite cluster resembles the one of Z%, a quantity
of interest can be the chemical distance: given two points x,y € G, we define the chemical
distance dist¢,_ (x,y) to be the graph distance between z and y inside the infinite cluster. In [11]
and building upon the results of [138, 136], Antal and Pisztora proved that the chemical distance
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FIGURE 1.2.4. A pre-good box. The cluster €, (0O) is drawn in blue and touches the four
faces of the cubes. It coexists with small isolated clusters drawn in red.

of the infinite cluster behaves like the euclidean distance of Z%. More specifically, they proved a
slightly stronger version of following theorem.

THEOREM 1.2.7 (Antal, Pisztora [11]). For each dimension d > 2 and each probability
p € (pe, 1], there exist three constants C,c,p € (0,00) such that for each y € 72,

Py (0,y € Coo and diste,, (0,y) 2 ply|) < Cexp (=cly]).

1.2.2. Partitioning the infinite cluster into good cubes. In this section we define a
renormalization structure of the infinite supercritical percolation cluster. This renormalization is
instrumental in order to establish a theory of quantitative homogenization of the infinite cluster.
The first step, which is one of the key ideas in the articles [11, 136] of Antal, Penrose and
Pisztora, is to introduce a finite-volume version of the Ansatz described in Section 1.2.1.3. Given
a bounded and connected subset D ¢ Z%, one wishes to say that with large probability:

(i) there is one large cluster of open edges in D which morally plays the part of the infinite
cluster,
(ii) except for this large cluster, there are only small isolated clusters.

For the sake of simplicity, we only consider a specific family of domains of Z%: the cubes. A
precise mathematical statement is given in the following definition and proposition.
DEFINITION 1.2.3 (Pre-good cube). We define a cube of Z% to be a set of the form
[z,2+N]?, zeZ? NeN.

A generic cube will be denoted by O and the integer IV will be referred to as the size of the cube.
Given a percolation configuration w, we say that a cube O of size IV is pre-good if it satisfies the
following properties:

e There exists a cluster of open edges which intersects the 2d faces of the cube O, this
cluster is denoted by %, (D),
e The diameter of all the other clusters is smaller than N/1000.

REMARK 1.2.4. The value 1000 is arbitrary, we only need the constant to be large.

REMARK 1.2.5. The Figure 1.2.4 is a good illustration of what a pre-good cube looks like,
the blue cluster is the large clusters and the red ones are the small isolated clusters.

The main result pertaining to this notion of pre-good cube is that, for each p > p., the
probability of a large cube to be pre-good is exponentially close to one as the size of the cube
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goes to infinity. This was proved by Penrose and Pisztora in [136]. The statement given here is
an application of their Theorem 5 with ¢,, = n/1000.

THEOREM 1.2.8 (Theorem 5 of [136]). For each dimension d >2 and p > p., there exists a
constant ¢ > 0 such that for each cube 0 < Z? of size n,

P, (O is a pre-good cube) > 1 —exp (—cn).

The objective is now to construct a partition of Z¢ into pre-good cubes. A first important
requirement to obtain a usable partition is the following connectivity property: given two
neighboring pre-good cubes 07,02 of similar sizes, the clusters €% (0;) and €. (02) are connected
within 0O; uO9. Unfortunately this property does not follow directly from Definition 1.2.3, but
there is still a solution: using that Theorem 1.2.8 provides a very strong rate of convergence on
the probability of a cube to be pre-good, one can define the following notion of good cubes.

DEFINITION 1.2.6 (Good cube). Given a percolation configuration w, we say that a cube O
of size N is good if it satisfies the following properties:

e the cube O is pre-good,
e every cube O’ whose size is between N /10 and 10N and which has non-empty intersection
with O is also a pre-good cube.

REMARK 1.2.7. Note that the first point of the previous definition is implied by the second
one since the cube O has a size between N /10 and 10N and has nonempty intersection with 0.

REMARK 1.2.8. The number 10 is arbitrary and could be replaced by another constant.

REMARK 1.2.9. The number of cubes 0O’ satisfying the second assumption mentioned in the
previous definition is finite and can be bounded by CN!. Using Theorem 1.2.8 and a union
bound, we can show that the probability of a cube to be good is exponentially close to 1: by
reducing the size of the exponent ¢, one has

(1.2.1) P, (O is good) > 1 —exp (—cn).

With this definition, one can prove the connectivity property mentioned above. We do not
detail the proof, which is quite straightforward and refer to Chapter 2, Lemma 2.2.8.

We now raise the following question: given a percolation configuration w, is it possible to
partition Z¢ into only good cubes?

We first note that the probability of a cube to be good is never exactly 1, there is always an
event of small probability where the cube does not satisfy the assumptions of Definition 1.2.3. By
an application of the Borel-Cantelli Lemma, one cannot hope to have a partition of Z? into cubes
which are both all goods and all have the same size. The first property is the most important to
us and so we renounce the second one: we will build a partition of Z¢ into good cubes of varying
S12€8.

To this end, we restrict our consideration to a subset of the cubes of Z? which are well-suited
to construct partitions, namely the triadic cubes.

DEFINITION 1.2.10. For each n € N, we let O,, be the discrete cube

Snn d
O, :=|-——.— | nZ%
" [ 2’2]

For n € N, we let T, be the set of triadic cubes of size 3" defined by
Tni={z+0, : 2e3"Z%}.
The set T of triadic cubes is defined by

s

T:=]Tn

0

n
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FI1GURE 1.2.5. A realization of the partition P.

These cubes satisfy the following convenient properties: two triadic cubes O and O’ are either
included in one another or disjoint. This property makes this subset of cubes of Z¢ well-suited
to design partitions. Using the bound (1.2.1) on the probability of a cube to be good, one can
construct the following partition.

PROPOSITION 1.2.11 (Chapter 2, Proposition 2.2.1). For each dimension d > 2 and each
probability p € (pe, 1], there exists, P, almost surely, a partition P of 7% into triadic cubes of
varying sizes such that

(i) every cube O € P is a good cube,
(i) two neighboring cubes 0,0 € P have comparable sizes,

1 < m < 3.
3~ size(O’)
(iii) For x € Z%, if we denote by Op(x) the unique cube of the partition P containing x, then
the size of Op(x) is a random variable satisfying the following exponential tail estimate

SiZG(Dp(l’)) <Oy (C) .

REMARK 1.2.12. The second condition ensures that with the definition of good cubes given
in Definition 1.2.6, for any two neighboring cubes 0,0 of the partition P, the clusters %, (0)
and %, (0') are connected.

REMARK 1.2.13. Since the main clusters of the cubes of the partition are connected to one
another, this implies that they belong to the infinite cluster,

VoeP, €x(0) € Coo-

REMARK 1.2.14. From the previous remark, we note that this partition is not local: given
point x € Z%, in order to know the size of Op (), one needs to look at the percolation configuration
in the entire Z%. We also note that the set of triadic cubes is not translation invariant: for each
z € Z% one has

z+T +T.

A consequence of this remark is that the partition P is not stationary.

The proof of this proposition can be found in Chapter 2, and Figure 1.2.5 illustrates what this
partition typically looks like. It can be used in the following way: given two points z,y € Z%, we
choose a deterministic path between x and y. We consider a configuration w such that x,y € G
and look at the partition P for this configuration. Then, using that the main clusters of the
cubes of the partition are connected, one can find a path going from x to y which is included in
the infinite cluster % and which lies within the boxes crossed by the deterministic path. Since
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one has an exponential tail on the size of the cubes, one can, at least heuristically, think of these
cubes as being bounded. This gives the following heuristic result: given a deterministic path
between two points z,y € €, there exists a path in the infinite cluster which stays at (almost)
bounded distance from the deterministic path. This is, in spirit, very similar to the result of
Antal and Pisztora [11]. Of course, it is reasonable to obtain such a result since we used the
same definition of good cubes they used to prove Theorem 1.2.7.

This partition is a crucial ingredient of the proofs in Chapters 2 and 3, since it allows to
develop a functional calculus on the infinite cluster. More specifically, using this partition one
can prove Poincaré inequalities, Sobolev inequalities and a Meyers estimate for functions defined
on the infinite cluster, see Section 2.3 of Chapter 2.

1.2.3. Quantitative homogenization on the percolation cluster. In this section, we
present the results obtained by adapting the theory of stochastic homogenization to the percolation
cluster. This is the subject of Chapter 2 of this thesis and of the articles [13, 51]. Let us first
describe the model. Given a fixed ellipticity parameter A € (0,1], we define the environment a in
the discrete setting as a random map

a:E;—> {0} u[\1],

such that the collection (a(e))..p, forms a family of i.i.d. random variables and refer to
these random variables as the conductances. We denote by P the law of the environment and
additionally require that, for each edge e € Ey,

p:=P(a(e) € [N 1]) > pe(d),

so that there exists almost surely an infinite connected component of edges with nonzero
conductances, denoted by €. We then define the elliptic operator V-aV as follows, for each
function u : ¥ — R and each z € €,

(1.2.2) v-avu(z) = 3 a({z,y})(u(y) - u(@)).
Yy~
This is the discrete version of the theory presented in Section 1.1. Switching from the continuous
setting to the discrete setting does not impact the theory of stochastic homogenization and all
the results obtained in the former setting remain valid in the latter. We refer to [82, 83| for
some works in stochastic homogenization of discrete elliptic equations. We also note that the
assumptions of stationarity and finite range dependence are replaced by their discrete analogues:
the assumption i.i.d. on the environment. A major difference here is that the environment is
degenerate: the value 0 is allowed.
We say that a function u : ¥ — R is a-harmonic if it satisfies

V- (avu) =0 in G-

The first result presented in this thesis provides quantitative homogenization estimates for the
elliptic problems on the percolation clusters. It is reminiscent of Theorem 1.1.2. This statement
is slightly different from Theorem 1.1.2 due to a boundary layer effect: in the continuous and
uniformly elliptic setting, it is possible to prove that the impact of the boundary layer is negligible,
by assuming some additional regularity on the boundary condition. This is not the case on the
percolation clusters and one needs to find a way around it. To treat the boundary layer effect,
we assumed some additional integrability on the gradient of u, namely Vu € LP for p > 2, and
obtain a homogenization error (right-hand side of (1.2.5)) in terms of the LP norm of u.

THEOREM 1.2.9 (Chapter 2, Theorem 2.1.1). Fiz an exponent p > 2. There exist two
exponents s >0, a >0, a constant C' < oo and a non-negative random variable X satisfying the
subexponential estimate

(1.2.3) X <05 (0),



1.2. SUPERCRITICAL PERCOLATION 61

such that the following statement holds: for every m € N such that 3™ > X, the cube Oy, is a good
cube, and for every function u: €, (0m) > R which is a-harmonic, i.e. which satisfies

-V-aVu=0 in €.(0n),

there exists a continuous harmonic function unem which is defined on the continuous triadic cube
[-3™/2,37/2]% such that

(1.2.4) U= Upom 0N the boundary x € €. (0p) N OO,
and
(125) ||u - uhom”LQ((g*(Dm)) < 03—m(1—a) HUHL”(%(Dm)) .

REMARK 1.2.15. The stochastic integrability of the minimal scale X" is subexponential: the
exponent s in (1.2.3) is strictly positive but very small. The reason behind this subexponential
decay is mainly technical: the renormalization structure must be taken into account in the
computations and the fact that the size of the cubes of the partition is not bounded, but rather
has an exponential moment bound, prevents us from obtaining optimal stochastic integrability.

REMARK 1.2.16. The homogenized function ey, is not discrete but continuous. The reason
behind it is that this homogenization result is valid on large scales, and on these scales the lattice
Z% is a good approximation of the continuum R?. We also note that, contrary to Theorem 1.1.2,
there is no homogenized matrix & in this statement, or more precisely the homogenized matrix is
equal to a multiple of the identity I;. This is due to the symmetries of the problem: every linear
transformation which preserves the lattice Z? also preserves the law of the environment a. These
symmetries can be transferred to the homogenized coefficient &, and there are sufficiently many
of them to prove that a has to be a multiple of the identity.

REMARK 1.2.17. The randomness here is in the minimal scale X, and not in the right-hand
side of the homogenization estimate as was the case in Theorem 1.1.2. As was already discussed
in the Section 1.1.10, both choices are essentially equivalent. A reason to justify this particular
choice here is that in this degenerate setting, the domain of the functions is the infinite cluster,
which is random. To prove a homogenization theorem on a cube requires at least that the infinite
cluster intersects the cube. The choice of the minimal scale ensures that the cube belongs to the
partition P and settles the difficulty.

As was the case in stochastic homogenization in the uniformly elliptic setting, we can deduce
from the previous theorem a large scale regularity theory and a precise description of the set
A (%) of a-harmonic functions on the infinite cluster that grow more slowly than a polynomial
of degree k + 1, precisely defined by

Ai(Co) = {u G > R : V- (aVu) =0 in Gs and limsup R~ Hu”Lz(%,meR) = 0},
R—oo -

The following result is the percolation version of Theorem 1.1.4.

THEOREM 1.2.10 (Regularity theory, Chapter 2, Theorem 2.1.2). There exist two exponents
s,0 >0 and a nonnegative random variable X satisfying the subexponential estimate

X <05(C),
such that the following hold:

(i) For each k € N, there exists a constant C < oo such that, for every u € Ap(€w), there
exists a harmonic polynomial p of degree less than k such that, for every r > X,

(1.2.6) [k —P”y(%me,«) <Cr Hp”E(BT) :

(ii) For every k € N and every harmonic polynomial p of degree less than k, there exists
u e Ay such that, for every r > X, the inequality (1.2.6) holds.
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(iii) For each k € N, there exists C < oo such that, for every R >2X and every a-harmonic
function u: €s N B — R, there exists ¢ € Ax(Coo) such that, for every r e [X, %R], we
have

r\F+l
lu=lizaansy SC(5)  Tolgeunsn

A consequence of this result is that the (random) vector space Ag(%w) is almost surely
finite-dimensional, and its dimension is given by

d+k—1) (d+l<;—2)
k k-1 )

A specific space of interest is the space Aj (%) which thanks to the previous theorem is
almost surely of dimension (d + 1). We note that this result, in the case k = 1, had already been
proved by Benjamini, Duminil Copin, Kozma and Yadin in [29]. Theorem 1.2.10 generalizes

their result and answers one of their open questions.
We can also deduce from (i) that every a-harmonic function u € A4; (%) can be written as

dim Ay, (€0) = (

w(z) =p-x+¢p(x) +c, for some pe RY, ceR,
where ¢, is the percolation version of the corrector already introduced in the uniformly elliptic
setting. From (i), one also deduces that the corrector has sublinear growth: there exists an
exponent d > 0 such that

1
(1.2.7) lim

Jim =75 H% - (d)P)%mBR‘ =0, P - almost surely.

L*(€=nBr)

1.2.4. Optimal scaling estimates for the corrector. This section is devoted to the
presentation of Chapter 3. The main goal is to improve the sublinear bound on the corrector (1.2.7)
and to derive the optimal scaling estimates, similar to the ones of Theorem 1.1.6.

Before stating the result, we remark that a specificity of the discrete setting is that the
microscopic scale is of size 1. As was noted above, homogenization can only provide information
on scales which are larger than 1 (or more precisely larger the correlation length of the coefficient
field). This was the source of some technical difficulties in the continuous setting: one cannot
present pointwise bounds but rather has to rely on average versions of these estimates (see
Theorem 1.1.6). Here this issue disappears and one derives pointwise bounds on the corrector.

THEOREM 1.2.11 (Optimal scaling estimates for the corrector, Chapter 3, Theorem 3.1.1).
For each dimension d > 3, there exist an exponent s >0 and a constant C' < oo such that, for each
z,y € Z? and each p € By,

|¢p(x) - ¢p(y)| ]l{m,ye(@”oo} <0 (0).

In dimension 2, the growth of the corrector behaves like the square root of the logarithm, i.e.,

6p(2) = Dp ()] Lz yez) < O5 (Clog? |2 - 9).

The proof bypasses the route presented in Section 1.1.11 and does not rely on an improvement
of the rate of convergence of the subadditive quantities. Instead we rely on concentration
inequalities, introduced in homogenization by Naddaf and Spencer [133]. A typical example of
concentration inequality is the Efron-Stein inequality, which states that if X = (X1,...,X,,) is a
family of independent random variables and if (X7,..., X)) is an independent copy of X, then
for any measurable function F,

(1.2.8) var [F] < % ivar[(F (X1, X, X X1 -, X)) - F(X))2].
i=1

In Chapter 3, we wish to apply this inequality when F' is the corrector and X is the environment
a. This raises two difficulties:
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(1) the environment a is indexed on the edges of Z? and contains an infinite number of
random variables. We thus need a generalization of (1.2.8) for infinite family of random
variables.

(2) the Efron-Stein inequality gives an estimate on the variance, while we are aiming at
subexponential integrability, we thus need a subexponential version of this inequality.

Such a generalization exists, is stated in Proposition 3.2.16 of Chapter 3 and comes from [19].
A second important tool is the multiscale Poincaré inequality, already introduced in Proposi-
tion 1.1.15, which allows to transfer information from the spatial averages of the gradient of the
corrector to the corrector itself.

1.3. Stochastic homogenization of differential forms

In the previous section, we presented a way to extend the theory of stochastic homogenization
to the degenerate environment of the supercritical percolation cluster. It was possible to adapt
the theory developed in the uniformly elliptic setting thanks to a renormalization structure for
the infinite cluster. In this section, we develop another way to extend the theory to a degenerate
setting: the case of differential forms.

To introduce the problem, we fix a dimension d > 2 and an integer k € [0,d], and let A* (Rd)
be the set of k-alternating multilinear maps. It is a finite-dimensional vector space of dimension
(Z) A canonical basis for this space is given by the family

(1.3.1) d:cil/\---/\dxik, 1<41 << <d.

Given a domain U ¢ R?, a k-differential form u on U is then defined as a mapping from U to
AF (Rd); using the canonical basis of AF (]Rd), it can be decomposed as

N
oz = lei1<-~-<ik£d Uiy ooy (z) dziy A Ada,.
We always assume that the mappings u;, ...;, are measurable and we frequently assume some
additional properties on these functions by requiring them to belong to some functional spaces
such as L2(U), HY(U),C*(U) etc. We also note that in the specific case k = 0, the set of
0-differential forms can be identified with the set of functions from U to R and in the case k=1,
the set of 1-differential forms can be identified with the set of vector fields from U to R

We next introduce a few useful tools pertaining to this notion. First, the space AF (Rd)
can be endowed with a scalar product (-,-) by declaring the canonical basis (1.3.1) to be an
orthonormal basis. Given a domain U ¢ R?, this scalar product can be extended to the vector
space of differential forms whose coefficients (wi, ..\ );, <...ci, <q @1€ I L?(U) according to the
formula, for any two such forms u, v,

(13.2) Wolawy= L[ i @0 () do
1<ip<<ip<d 7U
A second essential tool to study differential forms is the notion of exterior derivative: for
k € [0,d - 1], given a differential form u defined on a domain U ¢ R? we denote by du the
(k + 1)-form formally defined by

d Uiy i
du=) > %(w)dm Adzgy A Aday,,

i=11<i1<-<ip<d L
and extend the definition of the exterior derivative to d-forms by setting du =0 if u is a d-form.
Another quantity of interest is the formal adjoint of d with respect to the scalar product (1.3.2),
called the codifferential and denoted by §. This differential operator sends k-forms onto (k- 1)-
forms, according to the formula

U, i —
ou = > > (—1)1M(:1:)da:i1 Ao Adag A A da,,

1<iy<<ig<d iefi,....ixg} O;
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where the notation CE means that the term dx; is removed from the exterior product dz;, A---Adx;, .
We also record one of the key properties of these operators: they satisfy the identities

(1.3.3) dod=0and §od=0.

This formalism is interesting because it encompasses most of the differential operators which
are commonly used. For instance, the following differential operators can be expressed in the
language of differential forms: for a k-form f, one has

e if k=0, then the 1-form (or vector field) df can be identified with V f,

e if k=1, then the O-form (or function) §f can be identified with div f,

e in dimension 3, the space A2 (Rg) is of dimension 3. From this we deduce that the
vector space of 2-forms can be identified with the space of vector fields of R?. If k =1,
then df is a 2-form (or a vector field) and can be identified with curlf.

e for k€ [0,d], one recovers the laplacian thanks to the formula

(dd+4dd) f(x) = Yoo Afiy (@) daiy A Ada,.
1<igp<<igp<d
The main objective of this chapter is to extend the theory of stochastic homogenization to the
setting of differential forms. Given an integer k € [0,d] and a domain U ¢ RY, we let HIA* (U)
be the closure of the set of k-differential forms with smooth compactly supported coeflicients
with respect to the norm

Hf“H(}Ak(U) =2y + 14 I 2wy -

We also let S (Ak (Rd)) be the set of symmetric matrices on the euclidean vector space A* (Rd).
As was the case in the classical theory of stochastic homogenization, an environment a is then

defined as a random mapping
{ R? - S (A% (RY))

x+— a(x),
which satisfies the same uniform ellipticity assumption as (1.1.2). We assume that this environ-

ment is random and satisfies the assumptions of stationarity and finite range dependence stated
in Section 1.1.1. The goal is then to study the solutions of the equation

u~d(adu) =0in U,
which are the critical points associated to the functional

Note that working in this setting strictly contains the framework of Section 1.1.5. Indeed by
choosing to work with k = 0, the exterior derivative du can be identified with the gradient of u
and one recovers the usual framework. On the other hand, this formalism is part of the more
general framework of the elliptic systems of partial differential equations: since the dimensions of
the spaces A* (Rd) are always finite, the equation dadu = 0 can be written as an elliptic system.

A motivation to study these systems comes from the specific case when r = 1 and the
underlying space is 4-dimensional: in this setting the system of equations in (1.3.4) has the same
structure as Mazwell’s equations (see e.g. [109, Section 1.2]), with yet a fundamental difference:
here we assume a(z) to be Riemannian, that is, elliptic in the sense of (1.1.2), while for Maxwell’s
equations the underlying geometric structure is Lorentzian. Replacing a Lorentzian geometry by
a Riemannian one, a procedure sometimes referred to as “Wick’s rotation”, is very common in
constructive quantum field theory, see e.g. [78, Section 6.1(ii)]. While the objects we study here
are minimizers of a random Lagrangian, we believe that the techniques developed in Chapter 4
will be equally informative for the study of the Gibbs measures associated with such Lagrangians.

In the theory presented in Section 1.1.5, we did not make use of tools which are known to be
true for elliptic equations and false for elliptic systems, such as the maximum principle or the De
Giorgi-Nash-Moser regularity theory. All the results of Section 1.1.5 are valid for elliptic systems,
and it is only for notational convenience that the theory was presented for elliptic equations.
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One can even go beyond the results of Section 1.1.5: most of the results of the book [18] are
valid for elliptic systems, up to a few sections which require to use De Giorgi-Nash-Moser theory.
We refer to [18, Frequently Asked Questions| for details.

However there is still a crucial difference to be noted: the theory can be adapted only to
uniformly elliptic systems. Such a requirement is not verified here: one has

(du,adu) ;2 vy = 0 implies du = 0, which does not imply that  is constant.

Indeed by the property (1.3.3), every k-form u which can be written u = df satisfies du = 0 but is
not necessarily constant. In Chapter 5, we show how to adapt the theory and are able to prove a
version of the quantitative convergence of the energy (Theorem 4.1.1) and of the homogenization
theorem (Theorem 4.1.2).

The main difficulty is to extend all the functional inequalities useful in homogenization, such
as the Poincaré inequality or the multiscale Poincaré inequality (Proposition 1.1.15), to the
setting of differential forms. This is achieved by using results of Mitrea, Mitrea, Monniaux [120],
Mitrea, Mitrea, Shaw [122] and the monograph of Schwarz [142].

1.4. Stochastic homogenization applied to the V¢ model

1.4.1. Definition of the model and the surface tension. Many physical phenomena
exhibit a transition between two pure phases, especially at low temperature, such is for instance
the case for liquid water and ice at zero temperature. This transition motivates studying the
interface between two phases. It has been a topic of interest for mathematicians since the dawn
of the 20th century. The first mathematical model to describe interfaces was introduced by Wulff
in 1901 in [148]: it characterizes interfaces as minimizers of the Wulff functional, defined, for a
subset F ¢ R?, by

W(E)= [ o(n@)ds,

where n is the outward normal to JF at z and o is a surface tension between the two phases.
The minimizer of the Wulff functional is called the Wulff shape. From a mathematical point of
view, the interfaces are macroscopic objects, and one would like to describe them using models
from statistical mechanics which are defined on a microscopic level. Many important results
in this direction were obtained in the 90s; in [6], Alexander, Chayes and Chayes derived a
Wulff construction for the two dimensional supercritical Bernoulli bond percolation. In the
monograph [58], Dobrushin, Kotecky and Shlosman, studied the two dimensional ferromagnetic
Ising model at low temperature with periodic boundary conditions. These results were later
extended to every temperature below the critical one, one can refer to the works of Ioffe [94, 95],
Schonmann, Shlosman [141] and Pfister, Velenik [137] and by loffe and Schonmann in [96].

In dimension 3, Cerf proved in [41] a form of Wulff construction for the supercritical Bernoulli
bound percolation. Bodineau in [35], proved a similar result for the Ising model in any dimension
d > 3 at low temperature. Cerf and Pisztora in [42] proved a Wulff construction for Ising in
dimension larger than 3 for temperatures below a limit of slab-thresholds.

In this section, we consider a simpler mathematical model of interfaces, namely the V¢ model.
It encodes deviations from a perfectly flat interface by modeling it as a scalar field ¢ : R? » R,
which fluctuates around the ¢ = 0 interface. To be more precise, we discretize R? and consider
mappings ¢ : Z¢ » R. The discretized interface is represented by the set {(w, o(xz)) s xe€ Zd} c
Z% x R. We call ¢(x) the height variable at x, and associate to a configuration ¢ an energy
computed through the hamiltonian,

H(¢):= ), V(o(x)-6y)),
lz-yl1=1
where V' : R - R is an elastic potential satisfying the properties

(1) Vis even: V(x) =V(-xz) for each z € R,
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(2) V is uniformly convex: there exists A € (0,1] such that for each z,y € R,

1
(1.4.1) N =2 < V() + V(y) - 2V(x+y)sx|x—y|2.
The formal equilibrium measure associated to this model is given by the Gibbs measure
1
(1.4.2) 7 P (=H (¢)) [[do(x)

where Z is a normalization constant that makes the above measure a probability measure.
Another important aspect of the model is its dynamical interpretation: one considers two pure
phases separated by an interface ¢:-o at time £ = 0 and let this interface evolve through time.
The interface will then try to relax slowly over time to minimize its energy and, in the absence
of conservation laws, this evolution will only be affected by a noise. This leads to the Langevin
dynamics governed by the stochastic differential equation

dge(z) =— > V' (¢e(x) - ¢e(y)) dt +V2dBy (z)

ly—z|1=1

where (By(x)),cza is a family of independent standard Brownian motions. Formally, the
measure (1.4.2) is invariant for this SDE and makes the dynamics reversible.

A typical result one wishes to prove is that a properly rescaled version of the interface,
which is a priori a random object distributed according to the probability measure (1.4.2),
approaches a deterministic shape over large scales and characterize this object in the spirit of
a Wulff construction. This kind of result is similar in spirit to Theorem 1.1.2 in stochastic
homogenization.

To characterize the limiting deterministic interface, a quantity of interest is the surface
tension. It is defined as follows: given a discrete bounded connected subset U € Z¢, we define the
probability measure associated to the V¢ model in U with affine Dirichlet boundary condition of
slope p € R? to be

-1
Pup(de) == Z exp (— >, V(e(a)- ¢>(y))) [Tde(@) [T opy (4y)-
Z,YeQn,|lz—y|1=1 xelU yeoU
This corresponds to the equilibrium measure of the interface in a finite volume box, where one
has enforced an affine boundary condition of slope p for the interface. The quantity of interest is
then the partition function Zi, or more precisely, the properly rescaled version of it,

v (U,p) = ——=1log Zy,.

1
Ul
This quantity is called the finite-volume surface tension. We use the same notation for this
quantity as the one for the energy associated to the Dirichlet problem with affine boundary
condition in stochastic homogenization (see (1.1.20)) on purpose: these quantities share a number
of common properties and play similar role in both models. Note however that there is an
important difference: the finite volume surface tension v (@, p) is a deterministic number, while
the energy in homogenization is a random variable, depending on the environment a.

A first common property is that both quantities satisfy a subadditivity property. For the
energy of stochastic homogenization, the inequality was stated in (1.1.22). For the finite volume
surface tension, Funaki and Spohn in [70] essentially proved that, given a bounded connected set
U c Z¢ partitioned into connected subsets Uy,...,U,, and a slope p € R%, one has

z ?: aUz

which is similar to the homogenizatlon settmg, with an additional term on the right-hand side.
Nevertheless, if one considers a partition of a set into subsets which are not too irregular, i.e.
which satisfy |0U;| « |U;|, then this additional term can be neglected.
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As a consequence of this subadditivity property, Funaki and Spohn deduced the convergence
of the finite volume surface tension.

THEOREM 1.4.1 (Proposition 1.1 of [70]). Let Q,, be the discrete cube of size n defined by

Qn =[-n, n]d NZ%. For each p € RY, the sequence v (Qn,p) converges as n tends to infinity. We
write

v(p) = lim v (Qn,p)-
This limit is called the infinite volume surface tension.

The surface tensions, in finite or infinite volume, satisfy another property similar to the
energy in stochastic homogenization: they are uniformly convex in the p variable. It is proved
in [70, Proposition 1.1] that the surface tension v belongs to C* (]Rd), its derivative is Lipschitz
and it is an even function. In [56, 72] it is proved that the surface tension is uniformly convex
from above and below: for each p,q € R,

1 1
5P - g’ <v(p)-v(q) - (p—-q) Vv (q) < - ql’,

where A is the constant of (1.4.1). Contrary to the setting of stochastic homogenization, we do
not have that v is quadratic. This property was strongly related to the linear structure of the
elliptic equation V- (aVu) = 0 and no such structure is available here. Nevertheless, the uniform
ellipticity of the elastic potential shows that the surface tension has a quadratic growth: one has
the inequalities

0 (0)+ AP < (p) <2 (0) + 1 bl

The infinite volume surface tension plays a role similar to the homogenized matrix a in
stochastic homogenization. It is fundamental to the understanding of the macroscopic properties
of the model. It appears for instance as the rate functional in large deviations principles, as
was investigated by Deuschel, Giacomin and Ioffe in [56]. Their proofs relies on the Helffer-
Sjostrand representation formula which was first introduced to study the V¢ model by Naddaf
and Spencer in [132]. In this article they were able to combine this formula with techniques from
the qualitative theory of homogenization to prove a central limit theorem for the gradient field.
In [69], Funaki and Sakagawa established a large deviation principle in the presence of a weak
self potential. In the dynamic setting, Funaki and Spohn [70] established a law of large number
for the evolution and the limiting process is characterized by a nonlinear parabolic PDE defined
in terms of the surface tension. The fluctuations of the dynamics were studied by Giacomin Olla
and Spohn in [72], who proved that they are governed on large scales by an infinite dimensionnal
Ornstein-Uhlenbeck process. All these results involve the surface tension and we refer to [68] for
a general review of the topic.

1.4.2. Quantitative convergence of the finite volume surface tension. The main
goal of Chapter 5 is to revisit the beginning of the theory of quantitative stochastic homogenization
following [18], applied to the V¢ model. More precisely, we have already established that the
finite volume surface tension v (Q,,p) is a good analogue to the Dirichlet energy with affine
boundary conditions in stochastic homogenization. The first result one would like to establish
is an equivalent statement to the quantitative bound (1.1.37), which derives an algebraic rate
of convergence for the surface tension. This is carried out in Chapter 5 where we obtain the
following result.

THEOREM 1.4.2 (Chapter 5, Theorem 5.1.1). There exist an exponent o> 0 and a constant
C < oo such that for each p € R?,

v (Qn.p) —7(p)| < Cr~* (1 +p]).
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The first step to implement this program is to find a dual quantity, similar to p in stochastic
homogenization. In view of its definition given in (1.1.27), and of the definition of the finite
volume surface tension, it is natural to define, for a bounded connected subset U ¢ Z%, and

d
q € RY,

1
u(U,q)==mlong1(U)exp(— > V(w(w)—w(y))—q-(w—y)w(m)—w(y)))dw-

z,yeU,|xz—y|1=1

where the space foLl(U ) is the space of functions from U to R, with vanishing average

ﬁ1<U>:={w:U»R : Zw(a:>=0},

zeU

and the notation dvy stands for the Lebesgue measure on foLl(U). This space is natural since
in stochastic homogenization, we know that the dual quantity p is the energy associated to an
elliptic problem with Neumann boundary condition (see (1.1.28)). The space naturally associated
to the Neumann boundary condition is the space of functions in H! with zero average: this is the
space we are trying to replicate here. This definition is actually a good candidate and satisfies
all the properties we want it to satisfy, as is summarized in the following proposition.

ProOPOSITION 1.4.1. The dual quantity p satisfies the following properties.

e Quadratic growth and convexity: for each connected bounded subset U € Z2,
1
g~ (U, q) is convez and for each q € RY, 1u(0) + Ag*> < 1 (U, q) < p(0) + X|q|2.

e Subadditivity: given a bounded connected set U € Z¢ partitioned into connected subsets

Ui,...,Up, for each q € R,
M(U,p)SZ| |
=1

Yic1 [OUi]
Ul

U]

H (Uzvp) +C
e Convex duality from below: For each p,q e R,

u(Qr,q)W(Qr,q)Zp-q—g(1+lpl2+q2)-

This statement is a good analogue to (1.1.29), there is an additional error term on the
right-hand side which is small as r tends to infinity and which does not not impact the
analysis.

Following Section 1.1.6, the core of the analysis is to show the convex duality from above. If
one denotes by, for ¢ € RY,

77(q) = 1 (Qr,p) — 11 (Q2r, ),

then one would like to prove a result similar to (1.1.32), namely that for each ¢ € R?, there exists
p € R? such that

1 (Qroq) +v(Qr.p) —p-q <7 (q),

in order to derive an algebraic rate of convergence. The precise statement for this proposition
can be found in Chapter 5, Proposition 5.4.5.

We complete this introduction by reviewing two important tools in the proofs. First we note
that in stochastic homogenization, the energy quantity with affine boundary condition has a
variational formulation (1.1.20). This formulation is very useful to develop the theory and one of
the key results it provides is the second variation formula (1.1.24). This formula is crucial in the
derivation of the proofs: if one wishes to apply these techniques to the V¢ model, it is necessary
to find an alternative version of this statement.

The existence of a variational formulation for the finite volume surface tension is given by a
large deviation principle: it is the infimum of an energy-entropy minimization problem. To be
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more specific, given a bounded connected subset U ¢ Z% and a probability measure P on RV, we
define its entropy by

P P P P
f d—(a:)log( d (w)) dz if P < Leb and 2 log( d )eL1 (RV),
H (P) :=< JrV dLeb dLeb dLeb dLeb

+00 otherwise.

Then the surface tension v (U, p) is the solution of the minimization problem

1
Ul

> Velp-(z-y)+o(x) —¢>(y))] +

z,yeU, [e—y|1=1

1
) = i f —E H (P .
v (On,p) Pe?gr(lRU)(|U| ( ))

To derive a second variation estimate, the idea is to obtain uniform convexity of the functional
above. This functional involves two terms: an energy term, for which convexity is provided by
the assumptions made on the elastic energy V', and the entropy term. To obtain convexity for
the latter, we appeal to the notion of displacement convexity introduced by McCann in [115] in
the setting of optimal transport and provides convexity for the entropy: given two probability
measures Py and P; on RY and t € [0,1], we define P; := ((1-t)Ig+tT), Py, where T is the
optimal transport map sending Py to P;. The displacement convexity of McCann then asserts
that the mapping ¢t - H (P;) is convex in [0, 1], i.e.,

H (By) < tH (Po) + (1 - t)H (Py), Vte[0,1].

Combining the uniform convexity of the energy and the convexity of the entropy provides a
uniform convexity statement for the functional one wishes to minimize in the surface tension.

1.5. Perspectives

1.5.1. About percolation. An important motivation in the development of a quantitative
theory of stochastic homogenization is its relation with the random walker on the infinite
supercritical cluster: given a discrete environment a satisfying the assumptions of Section 1.2.3,
one can consider the continuous-time random walk (X;);>¢ whose generator is the discrete elliptic
operator —V -aV, defined in (1.2.2), started from a point y in the infinite cluster %5 of edges
with nonzero conductance. For t > 0, we denote by p? (t,-,y) the law of the random walker X at
time t. Similarly to what is explained in Section 1.1.3, one can prove that the law p?(-,-,y) is
the solution of the parabolic equation

(1.5.1) Op* () = V- (avp? (559)) =0 in (0,00) X Con,
o pa (07 ay) = 6y in %oo

As a consequence, deriving precise information on the parabolic Green’s function, i.e. the solution
of (1.5.1), provides information on the law of the random walker (X;),5o. In [18, Chapters 8
and 9], a quantitative homogenization theorem is proved for the parabolic Green’s function in
the uniformly elliptic setting. The proof of this result makes use of the two-scale expansion,
which relies on quantitative bounds on the corrector. An interesting question to investigate
could be to use the optimal bounds obtained for the corrector on the percolation cluster in
Chapter 3, to perform the two-scale expansion associated to the parabolic Green’s function
and to derive a quantitative homogenization theorem for the parabolic Green’s function on the
percolation cluster, i.e. prove that there exists a minimal scale random variable X < O, (C), for
some integrability exponent s > 0, such that for every ¢ > X,

a —5,-d/2 |z - y|2
‘pa (t,z,y) —p* (t,z, y)‘ <Ct°t™ " exp —OéT ,



70 1. INTRODUCTION

for some nonnegative exponents «,d > 0, where p? (¢,z,y) is the parabolic Green’s function
associated to the homogenized equation

Oip® (t,,y) + V- (8Vp? (t,2,y)) =0 for (t,2) € (0,00) x RY,
p5 (Oa 7y) = 6y in Rda

which can be explicitly computed according to the formula

=1
P2 (t,z,y) = (47rt)_d/2 (det 5)_1/2 exp (— (z-y) ‘Zt (z-y) ) .

1.5.2. About the V¢ model. Using the new ideas introduced in Chapter 5, a few directions
of research can be considered. First the results established in this chapter correspond to the
beginning of the theory of stochastic homogenization: obtaining a quantitative rate of convergence
for the energy quantity v as stated in (1.1.37). The next step of this program is to prove that
on a large scale the interface ¢ concentrates around a deterministic interface which can be
characterized as a critical point of a Wulff functional involving the infinite volume surface tension
V. A result of this type would be a version of the homogenization Theorem 1.1.2 applied to
the Ginzburg-Landau model. In the long run and similarly to what was achieved in stochastic
homogenization, this program could hopefully provide an optimal rate of convergence for the
finite volume surface tension as well as optimal rates for the convergence of the interface. Finally
the analogous quantity of the corrector ¢, in the discrete Ginzburg-Landau model is the field
¢ whose law is distributed according the Funaki-Spohn state of slope p (see [70, 72] or [68,
Chapter 4] for a precise definition of the Funaki-Spohn state). In this introduction, we mentioned
the optimal bounds which can be derived on the corrector (Theorem 1.1.6) but one can prove a
stronger result: following [18, Chapter 5|, one knows that the properly rescaled version of the
corrector converges to a Gaussian free field. Such a result was established by Naddaf and Spencer
in [133] and requires to use the Helffer-Sjostrand representation formula. This approach could
hopefully provide a new proof of this result which does not rely on the Helffer-Sjostrand formula.

Second, many models from statistical physics are dealing with elastic potential V' which
do not satisfy a uniform ellipticity assumption. The Helffer-Sjostrand representation formula
requires uniform convexity of the potential and going beyond the setting of uniform ellipticity is a
challenging problem. Nevertheless, it has been proved that the theory of stochastic homogenization
is robust enough to prove interesting results in some non uniformly elliptic setting: this is the
subject of Chapters 2, 3 and 4 of this thesis and we refer to Section 1.1.4 for a review of some
other works achieved in this direction. Hopefully the new ideas introduced in Chapter 5, which
forgo any reference to the Helffer-Sjostrand representation formula, can be used to study some
non uniformly elliptic systems in statistical physics as well.




CHAPTER 2

Elliptic regularity and quantitative homogenization on
percolation clusters

We establish quantitative homogenization, large-scale regularity and Liouville
results for the random conductance model on a supercritical (Bernoulli bond)
percolation cluster. The results are also new in the case that the conductivity
is constant on the cluster. The argument passes through a series of renormal-
ization steps: first, we use standard percolation results to find a large scale
above which the geometry of the percolation cluster behaves (in a sense made
precise) like that of Euclidean space. Then, following the work of Barlow [24],
we find a succession of larger scales on which certain functional and elliptic
estimates hold. This gives us the analytic tools to adapt the quantitative
homogenization program of Armstrong and Smart [21] to estimate the yet
larger scale on which solutions on the cluster can be well-approximated by
harmonic functions on R¢. This is the first quantitative homogenization result
in a porous medium and the harmonic approximation allows us to estimate the
scale on which a higher-order regularity theory holds. The size of each of these
random scales is shown to have at least a stretched exponential moment. As a
consequence of this regularity theory, we obtain a Liouville-type result that
states that, for each k € N, the vector space of solutions growing at most like
o(|z**1) as |#| = oo has the same dimension as the set of harmonic polynomials
of degree at most k, generalizing a result of Benjamini, Duminil-Copin, Kozma,
and Yadin [29] from k<1 to ke N.

This chapter corresponds to the article [13] written in collaboration with
S. Armstrong and published in Communications on Pure and Applied Mathe-

matics.
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2.1. Introduction

2.1.1. Motivation and informal summary of results. Consider the random conduc-
tance model on the infinite percolation cluster for supercritical bond percolation on the graph
(Z%, By) in dimension d > 2. Here By is the set of bonds, that is, unordered pairs {z,y} with

71
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z,y € Z% satisfying |z —y| = 1. We are given X € (0,1) and a function
a: By — {0}U[\ 1],

We call a({z,y}) the conductance of the bond {z,y} € By and we assume that {a(e)}ccp, is
an i.id. ensemble. We assume that the Bernoulli random variable 1 ,(.)+0) has parameter
p > pc(d), where p.(d) is the bond percolation threshold for the lattice Z¢. Tt follows that the
graph (Z¢,£(a)), where £(a) is the set of edges e € By for which a(e) # 0, has a unique infinite
connected component, which we denote by %o = ¢ (a).

Our interest in this paper is in the elliptic finite difference equation
(2.1.1) -V-aVu =0 in .
Here the elliptic operator —V -aV is defined on functions u : % — R by

(2.1.2) (-V-avu) (z) = ) a((z,9)) (u(@) - u(y)) .
Yy~

The operator —V -aV is the generator of a continuous-time Markov chain {X(#)},,, which can
be briefly described as follows. Each edge e € B, is endowed with a clock which rings after
exponential waiting times with expectation a~'(e). The random walker begins at the origin, i.e.,
X(0) =0. When X (t) = z € Z%, the random walker waits until one of the clocks at an adjacent
edge to x rings, and then instantly moves across the edge to the neighboring point. The reader
may choose to focus on the special case that the conductance a takes only the values {0,1} and
the model reduces to the simple random walk on the supercritical percolation cluster, with the
generator being the Laplacian. The results in this paper are new even in this simpler situation.

Of primary interest is the scaling limit of this random walk (conditioned on the event that
0 € €= ), and more generally its long-time behavior. A quenched invariance principle for the
random walk X (¢) in the case a € {0,1} was first proved in dimensions d > 4 by Sidoravicius and
Sznitman [144] and later, in every dimension d > 2 by Berger and Biskup [30] and, independently,
Mathieu and Piatnitski [113]. It states that, P[-|0 € % ]-a.s., the process {EX (s_Qt)}t>0
converges in law, as € - 0, to a non-degenerate Brownian motion with covariance matrix o1j.
This result was extended to the setting considered here (and to even greater generality) by Biskup
and Prescott [33] and Mathieu [112] (see also Andres, Barlow, Deuschel and Hambly [7]). We
refer to the survey of Biskup [32] and the references therein for more on the many recent works
on this problem.

The quenched invariance principle for the process { X;}:»0 is closely related to questions of
homogenization, that is, the study of the solutions of (2.1.1) on large length scales. The basic
qualitative homogenization result states that, P-a.s., a solution u, of (2.1.1) in % N B, converges,
as r — oo, to solutions of the (continuum) partial differential equation

-V-avu, =0 in B,
in the sense that

(2.1.3) lim sup % > fur(x) ~u(z) =0,

r—ooo T T€C0NBy

where u, and @, are given the same Dirichlet boundary condition f,(x) =rf (%) for a fixed func-
tion f:9B; - R. The matrix a = %O’ZId, where o > 0 is the covariance of the limiting Brownian
motion from the invariance principle. The study of (2.1.1) can be motivated independently, from
the PDE perspective, by the desire to extend the theory of elliptic homogenization to random
porous media (supercritical bond percolation being a very natural model of a random porous
medium). However, from the probability point of view, the important point is that a homogeniza-
tion result is essentially equivalent to an invariance principle. Certainly a quenched invariance
principle implies a qualitative homogenization result, while quantitative homogenization results
give quantitative invariance principles. Indeed, perhaps the main difficulty in proving a quenched
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invariance principle is establishing the sublinear growth of correctors (cf. [30, 32]), which is
nothing but a quantitative homogenization estimate. (The definition of the correctors is given in
the comments following Theorem 2.1.2, below.)

It is a well-known open problem to obtain quantitative information (for instance, rates
of convergence) for this model, both in terms of the quenched invariance principle as well as
homogenization. It is mentioned for example in [32, Section 4.4], [26, below Theorem 1.2]
and [108]. The obstacle is that the various qualitative proofs of the quenched invariance principle
rely on an appeal to the ergodic theorem which is difficult to quantify. On the other hand, in the
uniformly elliptic setting (when all bonds are open and a € [\, 1]), there is now a very precise
quantitative theory due to Gloria and Otto [82, 83] (see also [81]) with implications to random
walks explained in [63]. However, it is not obvious to see how to extend the methods of these
papers to the case of percolation clusters since they rely heavily on uniform ellipticity and seem
to require the geometry of the random environment to posses some homogeneity down to the
smallest scales. In a recent work, Lamacz, Neukamm and Otto [108] adapt these methods to the
case of Bernoulli bond percolation which is modified so that all bonds in a fixed unit direction
are open. However, this model has the property that every lattice point of Z¢ belongs to the
infinite cluster and is still quite far from the setting of supercritical percolation clusters.

In this paper, we prove the first quantitative homogenization results for the random conduc-
tance model on supercritical percolation clusters (see Theorems 2.1.1 and 2.1.2 below for the
precise statements). In particular, we give explicit bounds on the sublinear growth of correctors
and rates of convergence for the limit (2.1.3). We also prove a higher-order regularity theory,
extending recent results in the uniformly elliptic case [21, 20, 81] to this setting. In particular,
we prove Liouville-type results of every order, which characterize the set of solutions on the
infinite cluster which exhibit polynomial growth. Such a regularity theory also provides important
gradient estimates which are an essential ingredient for obtaining an optimal quantitative theory
and obtaining scaling limits for correctors. We expect that the results in this paper will open the
way for the development of such a theory on percolation clusters and to resolve several open
problems mentioned for example in [30, 32]. Indeed, in a forthcoming sequel [51] to this paper,
we establish optimal bounds on the scaling of correctors as well as the decay of the gradient of
the Green’s function.

A main source of our inspiration comes from the work of the first author and Smart [21],
who recently introduced an alternative approach to quantitative theory of homogenization in
the uniformly elliptic setting. Their method is based on studying certain subadditive quantities
related to the variational formulation of the equation (i.e., the Dirichlet form) and quantifying
their convergence by an iteration argument. At each step of the iteration, one passes information
from a certain (large) length scale to a multiple of the length scale, showing that the error
contracts by a factor less than 1. In this way the method resembles a renormalization argument.
Critically, information at the smallest scales can be “forgotten” and we only need to ensure that
the model behaves like a uniformly elliptic equation, in some sense, on large scales. This adds
some flexibility and robustness to the approach and, as we show here, it is well-suited to handling
difficulties encountered in attempting a generalization to percolation clusters.

The ideas are therefore relatively straightforward, even if the details are many and the
proofs are long. We begin in Sections 2.2 and 2.3 by finding a large (random) scale on which
the percolation cluster has geometric properties which are close to those of R%. Since this
random scale is not uniformly bounded (there will be some large regions where the cluster is
badly behaved) we partition Z% into triadic cubes of different sizes such that every cube is
well-connected in the sense of Antal and Pisztora [11], using a Calder6n-Zygmund-type stopping
time argument. In regions where this partition is rather coarse, the geometry of the cluster
is less well-behaved and where it is finer, the cluster is well-connected. Inspired by the work
of Barlow [24] (which was itself inspired by the earlier work of Mathieu and Remy [114]), we
continue to coarsen the graph in stages, obtaining functional and elliptic inequalities on larger
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and larger scales: first we pass to a larger scale on which a Sobolev-Poincaré holds, then obtain
a scale on which solutions of (2.1.1) satisfy a reverse Holder inequality, and again to get a scale
on which the gradients of solutions satisfy a Meyers-type higher integrability estimate.

This provides us with the elliptic estimates needed to run the arguments of [21], which
takes up the bulk of the analysis in the paper. In Section 2.4, we introduce analogues of the
subadditive energy quantities and show that they possess similar properties to the ones in the
uniformly elliptic setting, at least on large scales and with high probability. The main part of
the analysis comes in Section 2.5, where we show convergence of the subadditive quantities to
their deterministic limits. The main difficulty compared to the analysis of [21] is to deal with
the possibility that the energy density of the solutions may be very large in regions of the cluster
in which the connectivity is poor (i.e., where the cube partition mentioned above is quite coarse).
The resolution comes by using the gain of integrability from Meyers estimate to show that spatial
averages of the gradients of the solutions cannot concentrate in small regions, which gives us just
what we need.

At this stage in the development of our theory, the difference in difficulty between the uniformly
elliptic case and the percolation cluster has basically vanished. We conclude by showing first
in Section 2.6, by a deterministic argument resembling a numerical analysis exercise, that the
convergence of the subadditive quantities implies control of the error in homogenization for the
Dirichlet problem. This concludes the proof of our first main result and gives us the harmonic
approximation we need to run the arguments of [21, 20, 81, 17] to obtain the quantitative ckl
regularity theory and, in particular, the Liouville results. The latter is summarized in Section 2.7.

We continue in the next two subsections by giving the precise assumptions and then the
statements of the main results.

2.1.2. Notation and assumptions. Let Z? be the standard d-dimensional hypercube
lattice and By := {{x, yy i xyeZd |z —y| = 1} denote the set of nearest neighbor, non-oriented
edges. We denote the standard basis in R? by {ey,...,eq}. For z,y € Z¢, we write z ~ y if z and y
are nearest neighbors. We usually denote a generic edge by e. We fix a parameter X € (0,1] and
denote by € the set of all functions a: By - {0} U[\, 1], in other words, = ({0} U[X, 1])%? and
we let a denote the canonical element of ). The Borel o-algebra on 2 is denoted by F. For each
U cZ? welet F(U) € F denote the smallest o-algebra such that each of the random variables
a—a({x,y}), for x,y € U with z ~ y, is F(U)-measurable.

We fix an i.i.d. probability measure P on (€2, F), that is, a measure of the form P = POB d
where Py is the law of a random variable a(0) taking values in {0} u [\, 1] with the property
that, for a fixed edge e,

p:=Py[a(e) 0] > p.(d)
and p(d) is the bond percolation threshold for the lattice Z%. We denote by E the expectation
with respect to P.

Given a € 2, we say that an edge e € By is occupied if a(e) > 0 and wvacant if a(e) = 0.
Given vertices z,y € Z%, a path connecting x and y is a sequence of occupied edges of the form
{z, 21}, {21, 22}, .-, {zn, Zns1}, ..., {2N,y}. We say that x and y are connected and write x <, y
if there exists a path connecting = and y. A cluster is a subset € ¢ Z? with the property that, for

every x,y € €, there exists a path connecting x and y consisting only of edges between elements
of €. The a-interior of a subset U ¢ Z¢ is the subset

inta(U) :={zeU :y~zand a{z,y})+0 = yeU}

The a-boundary of U is 0aU := U N inta(U). The interior and boundary with respect to the
nearest-neighbor lattice (Z4, By) are denoted by

int(U):={zxeU :y~x = yeU} and U :=U \int(U).
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We write & <>5 oo if  belongs to an unbounded cluster and we denote by
Coo :={meZd : x<—>aoo}
the maximal unbounded cluster, which P-almost surely exists and is unique [40].
We next introduce our notation for vector fields and Dirichlet forms. We let
Eq:={(z,y) : z,y € VANRS y}

denote the set of oriented nearest-neighbor pairs and E4(U) = {(z,y) : z,y € U,z ~ y} denote
the edges lying in a subset U € Z%. A vector field G on U is a function

G:E4U)->R
which is antisymmetric, that is, G(z,y) = -G(y,x) for every (x,y) € E4(U). If u:U — R, then
Vu is the vector field defined by
(Vu)(@,y) = u(z) - u(y)
and aVu is the vector field defined by
(avu) (z,y) =a({z,y}) (u(z) - u(y)) .
If ¢ e RY, we also let ¢ denote the constant vector field given by
a(@,y) =q-(x-y).

If F is a vector field on U, then we define, for each x € U,

(2.1.4) |F|<x)::(§ > |F(x,y>|2).

yeU, y~x

We note that the definition of |F| depends on the underlying domain U, but we do not display
this dependence explicitly since it is always clear from the context. We put an inner product
(-,-)yy on the space of vector fields on U, defined by

<F7G>U = Z F(:z:,y)G(a:,y)

m7y€U7 ZNy
We denote by (F);; the unique vector in R? such that, for every p e RY,
p- (F>U = <p7F>U'

Given a € Q and two functions u,v : U - R, the (bilinear) Dirichlet form can be written in this
notation as

(Vwavo)y =5 X () -uly)aley)) (o) ~v(n)).

z,yel, z~y
The elliptic operator —V -aV is defined for each u:U - R and z € U by

(-v-avu) ()= > (avu)(z,y)= ), a({zy})(u@)-u(y)).

yeU, z~y yeU, z~y
We denote set of solutions (i.e., a-harmonic functions) on a subset U ¢ Z¢ by
(2.1.5) AU) :={u:U->R: -v-avu(z) =0 for every x €inta(U)}.

We denote by C3(U) the set of functions w: U — R with compact support and satisfying w = 0
on 0,U. Then it is easy to check that

(2.1.6) ue A(U) < (Vw,aVu); =0 for every w e C§(U).

We next introduce our notation for keeping track of the sizes and stochastic integrability of
random variables. Given s,60 >0 and a random variable X on (Q,F), we write

x<0.0) = Blow((¥))] <2
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Note that by Markov’s inequality, X < Os(0) implies that, for every t > 0,
P[X > 6t] <2exp (-t°),

so roughly the notation means that X has characteristic size at most § with the tails of the
distribution of §7'X decaying at most like S exp (~t°). If Y is another random variable and
a >0, we also write

X <Y +a04(0) < X -Y <O4(ab)
and, if Y is nonnegative,
X<0,(0)Y — % <O,(9).
This notation is transitive in the sense that (cf. [17, Lemma 2.3(i)]), for a universal constant C
depending only on s, which may be taken to be 1 if s> 1,
(2.1.7) X <O4(61) and Y < O5(02) = X +Y <O4(C(61 +62))

Moreover, by [17, Lemma 2.3(ii)], for any s > 0 there exists C'(s) < oo such that, for every
measure space (X,F,u) and measurable function f: E — R, and jointly measurable family
{X(2) }+er of nonnegative random variables,

(2.1.8) Vze B, X(2)<04(1) —> fEX(z) du(z) < 04(C).
Young’s and Hélder’s inequalities imply (cf. [17, Remark 2.2])
(2.1.9) | X| <O, (01) and Y] < Os,(02) = | XY < (’)% (6102) .
It is easy to check from the Young’s inequality that, for every s1,s9 € (0,00), every t € [0,1] and
random variable X, we have for o = mif#)sg
(2.1.10) X <04, (1) and X < Oy, (02) = X < Oy, 4(1-1)5, (07057%).
For a finite U ¢ Z% and w : U - R, we often denote sums by integrals; for example,
(2.1.11) we often write wa(:U) dz in place of xgjw(:r)

If U is a finite set, we denote its cardinality by |U|. Sometimes we also use |V| to denote the
Lebesgue measure of a subset V ¢ RY, but the meaning will always be clear from context. The
normalized integral for a function w: U — R for a finite subset U ¢ Z% is denoted

1 1
][Uw(x)dxz W/Uw(:r)dxz mx;]w(:r)

For pe[1,00), we denote the LP and normalized LP norms of w by

1 1
ol = f) 0@ do)” and ol gy = ( £ @ dz)”

and |w] e gy = supgey [w(z)|. We define the distance function dist with respect to the fo

norm on the coordinates, i.e., dist(z,y) = max;_; 4 |z; — ;| and extend this to subsets of R? by

dist(U, V) = inf ey yev dist(z, y).
A cube is a subset of Z% of the form

de(z+[O,N)d), 278 NeN.

-----

We define the center and size of the cube given in the previous display above to be z and N,
respectively, and denote the size of a cube O by size(O). For a cube 0O and r > 0, we use the
nonstandard convention of denoting by r0O the cube with size |rsize(0)| and having the same
center as O. A triadic cube is a cube of the form

Lo 1om)\?
Om(2) = Zdr‘n(z+(—§3m,§3m) ), ze3™Z%, meN.
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We also write Oy, = 0,,(0). Observe that size(O,,) = 3". For every m,n € N with n < m, each
triadic cube O,,(2) may be uniquely partitioned into exactly 34m=n) disjoint triadic cubes of
the form 0, (y), y € 3"Z%. Moreover, any two triadic cubes (of possibly different sizes) are either
disjoint or else one is a subset of the other. We denote the collection of triadic cubes by 7 and
the set of triadic cubes of size 3" by 7,. Note that 7, := {z +0, : 2 € S”Zd}. For each O e T, the
predecessor of O is the unique triadic cube O € T satisfying

size(d)

2.1.12 co d =
( ) HEboan size(O)

3.

If O is the predecessor of O, then we also say that O is a successor of 0. Note that, since we
are working with subsets of the discrete lattice Z%, disjoint triadic cubes will be separated by a
distance of at least 1. In fact, two disjoint cubes O, O’ are neighbors if and only if dist(0,0’) = 1.

2.1.3. Statement of the main results. The first main result gives an estimate of the
length scale on which the homogenization approximation holds, up to an algebraic error threshold.
In the statement, we use the notation %%, (0,,) which is not defined until Section 2.2, but roughly
denotes the largest connected component of €. N Oy, (which is also the same as o N O;y, up to
a small number of vertices near the boundary of O,,).

THEOREM 2.1.1 (Quantitative homogenization). Fizx an exponent p > 2. Then there exist
s(p,d,p,A\) >0 and a(p,d,p,\) >0, a constant C(p,d,p,\) < 0o, a symmetric matriz & such that

1
—I;<a< (]
olasa d

and a nonnegative random variable X satisfying
X <04(C)

such that the following holds: for every m € N such that 3™ > X and function u: €, (0p) = R
satisfying
-V-avVu=0 in €(0mn) 00,

. - . . d . .
there exists an a-harmonic function upom on [—%(3”‘ -1), %(3m - 1)] satisfying

d
(2.1.13) u(x) = upom ()  for every x € € (0m) N O (—%(?fn -1), %(3m - 1)) ,
2.1.14 ][ Vitthom (2)[? dz < Vul e |” (@
( ) (_%(3m_1)’%(3m—1))d‘ " ( )’ | m | J?E%?Dm)‘ { #:0}‘ ( )

and

[SIE

1 P
sC?fW(— > |Vu]l{a¢o}‘p(1:)) :

| Om | zeotonm)

(2.1.15) 3""(L 3 |u(a:)—Uhom(:v)l2)

|Om | yeoon)

In view of (2.1.13), Theorem 2.1.1 can be thought of as an error estimate for the Dirichlet
problem. Indeed, as we will see in the proof in Section 2.6, the function upqy, is constructed by
solving the Dirichlet problem with boundary data obtained by smoothing out w itself near d0,,.
The first estimate (2.1.14) just says that the gradient of upey, in LP is no larger than that of u
itself. The second estimate (2.1.15) is the main part of the conclusion, which states that the
(properly scaled) L? difference between u and upey, is smaller than the size of Vu in LP by the
factor 37, that is, some power of the length scale.

We turn to an important consequence of Theorem 2.1.1, namely the large-scale regularity
theory for solutions on the infinite cluster, which we denote by A(% ). For each k € N, we also
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let A (%) denote the subspace of A(%w ) consisting of functions growing more slowly at infinity
than a polynomial of degree k + 1:

Ap(Foo) = {u € A(%o) : limsup R~ w2 g = o}.

R—oo

Our second main result (see Theorem 2.1.2 below) concerns the structure of Ay (% ).

THEOREM 2.1.2 (Regularity theory). There exist s(d,p,A) >0, §(d,p,\) >0 and a nonnegative
random variable X satisfying

(2.1.16) X <0,(C(d,p, )

such that the following hold:

(i) For each k €N, there exists a constant C(k,d,p,\) < oo such that, for every u € Ax(€w),
there exists p € A such that, for every r > X,

(2.1.17) lu=pl2(ns,) <O P25, -

(ii) For every k € N and p € Ay, there exists u € Ay, such that, for every r > X, the
inequality (2.1.17) holds.

(iii) For each k € N, there exists C(k,d,p,\) < oo such that, for every R > 2X and u €
A(%s N BR), there exists ¢ € Ax(C) such that, for every r e [X, %R], we have

r k+1
lu=¢l2(4nnp,) < C(E) Il 22 (i -

A consequence of statements (i) and (ii) of Theorem 2.1.2 is that the vector space Ak (%)
has the same dimension as Ay, that is, the same dimension as the space of harmonic polynomials
of order at most k. This was previous proved in the case k = 1 and a € {0,1} by Benjamini,
Duminil-Copin, Kozma, and Yadin [29]. For k > 1, it was previously proved (in greater generality)
that the subspace of A(%) of functions growing at most like O(|z|*) had finite dimension: see
Sapozhnikov [140].

The Liouville result summarized in (i) and (ii) imply, in the case k = 1, that every element u
of A1(%) can be written as

w(z) =c+p-x+xp(z)

where ¢ € R, p e R? and Xp is a function satisfying, for every r > X,
1-6

These functions {x, : p € Rd} are called the correctors and their sublinear growth is a very
important property that was previously proved only qualitatively (cf. [30, 32]). Together with
the bound on & in (2.1.16), this provides the first quantitative bound on the sublinearity of x,.

Moreover, the qualitative Liouville result is quantified by the third statement (iii), which
tells us much more: any a-harmonic function may be expanded to arbitrary order in terms of
elements of Ay (%) in the same way that analytic functions can be approximated by Taylor
polynomials of degree k. Even this statement for k£ = 0 is new and, combining it with Caccioppoli
inequality (see Lemma 2.3.5), gives the following gradient bound may be compared to the results
of [21, 20]: for every X <7< R,

(2.1.19) Hvun{a¢0} HLZ(%OOOBT) <C HVu]l{a;tg} HLZ(%OOHBR) ’

Gradient estimates like (2.1.19) play an important role in obtaining optimal quantitative
homogenization estimates, in particular estimates for the sublinearity of the correctors in the
uniformly elliptic setting; see [80]. In the forthcoming sequel [13] to this paper, we explore the
consequences of (2.1.19) in the setting of supercritical percolation clusters and show that they
allow us to prove optimal estimates on the decay of the Green’s function, its gradient as well
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as optimal bounds on the scaling of the correctors. In particular, we improve (2.1.18) to the
optimal sublinearity bound in all dimensions.

REMARK 2.1.1. The gradient bound (2.1.19) allows us to immediately upgrade the bound
in (2.1.18) from L*(%s N B,) to L®(%x N B,). To see this, we use the following interpolation
inequality for L°° between L? and C%!: there exists C(d) < oo such that, for every w: Zn B, - R
with zero mean on Z%n B,, we have

Wl

2
[l g zing,) < C 1012 gans,y (T190] oz,
Next, we deduce from (2.1.16), (2.1.18) and (2.1.19) the bound

d d
[V Liaso| (0) < CX2 [Vapliavoy| 20 ) S ClPIXE < O25a (CloD)
Therefore, by stationarity and (2.1.8), for every m > 1,

d

HVXP]1{3¢0}HL°°((€°QHBT) < Crm [Vxplasoy]

L™ (€wnB,) S O2s/a (CT%]M) .

Here the C' depends additionally on m. We deduce that, for every 8 > 0, there exists s(d,p,\) >0
and C'(3,d,p,\) < oo such that

(2.1.20) [V (03 | o g,y < Os (Cllr?).

We may now apply the interpolation inequality above to the coarsened function [x,], (see
Definition 2.3.1), using the previous estimates (2.1.18) and (2.1.20) and Lemmas 2.3.2 and 2.3.3
to obtain, for some s(d,p,A) >0 and C(d,p, ) < oo,

-0
(2.1.21) [0 1ol o 5, < Os (CloIr'=72).
Finally, we can then use Lemma 2.3.2 and the previous inequality to get
(2.1.22) 15Xl o (50, < Os (ClPIF' 72,
as desired.

We conclude with some comments regarding some of the parameters appearing in the
main theorems. First, we do not obtain the optimal exponent s(d,p,\) > 0 for the stochastic
integrability appearing in Theorems 2.1.1 and 2.1.2. In the uniformly elliptic setting, it is proved
in [21] that we may take any s € (0,d), which is the optimal stochastic integrability (in the sense
that the results are false for s > d). The arguments here do lead to an explicit estimate of s,
although we expect that it is impossible to find the optimal exponent s (which should depend
only on d) without a very deep understanding of the geometry of the percolation cluster which,
at least for p close to p. and d > 2, remains elusive. We therefore have not made any attempt to
optimize or even keep track of the explicit s we obtain. Likewise, it would be very interesting to
show that the constant ¢(d,p,\) > 0 in the lower bound for the effective diffusivity we obtain
in (2.5.1) depends on p like a power of p — p. that is, for some (3 > 0,

e(d,p,2) 2 co(d. A) - (p —pc) .
Our arguments actually give such a bound provided we can quantify the constants ¢(d,p) and
C(d,p) in Lemma 2.2.7 below, which is proved in Antal and Pisztora [11] and contains the basic
geometric information about the supercritical percolation clusters that all of our renormalization
argument rely on. We are not aware of any work which estimates these constants, even crudely,
and such an estimate would obviously be of fundamental interest to the study of percolation
clusters beyond its implications to random walks on the clusters.

The basic theme we wish to emphasize is that the bottleneck to getting estimates of these
parameters, and improving our quantitative understanding in other ways, lies not in improving
our quantitative homogenization methodology but rather in obtaining a better quantitative,
geometric understanding of supercritical percolation clusters (especially near criticality).
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As a final remark, we would like to mention that the arguments in this paper give similar
results for other random graphs (besides the particular case of a supercritical percolation cluster),
provided that we have some quantitative estimate, like the one in Lemma 2.2.7, which says that
the graph behaves like Euclidean space above some random scale.

2.2. Triadic partitions of good cubes

The geometry of the percolation cluster ¢ and, more generally, the behavior of solutions
of (2.1.1), is highly irregular on small scales but becomes more regular as we look on larger scales.
A large part of our effort in this paper is to quantify this vague assertion for various notions of
“good behavior.” To this end, we will find it very useful to partition Z% and certain subsets of Z¢
into “good” cubes (in which the percolation cluster and solutions of (2.1.1) are well-behaved
in some sense). These partitions will be random and in particular the sizes of the cubes will
necessarily be non-uniform, but we will prove quantitative estimates on the size of a typical cube
(which will depend on what “good” means). The coarseness of the partition therefore provides a
measure of the local scale above which the system is well-behaved.

In this section, we give a general scheme for creating such partitions. Then, as a first
application, we partition Z% into “well-connected” cubes which greatly simplifies the geometry of
the cluster and will allow us in the next section to prove functional inequalities (for example, a
Sobolev inequality) for functions on subsets of €.

2.2.1. A general scheme for partitions of good cubes. The construction of the par-
tition is accomplished by a stopping time argument reminiscent of a Calderén-Zygmund-type
decomposition. We are given a notion of “good cube” represented by an F-measurable function
which maps €2 into the set of all subsets of 7. In order words, for each a € ), we are given a
subcollection G(a) ¢ T of triadic cubes. We think of O € T as being a good cube if 0 € G(a). As
usual, we typically drop the dependence on a and just write G.

PROPOSITION 2.2.1. Let G €T be a random collection of triadic cubes, as above. Suppose
that G satisfies, for everyO=z+0,€ 7T,

(2.2.1) the event {0 ¢ G} is F(z + Ons1)-measurable,

and, for some constants K,s >0,

(2.2.2) sup Plz+0, ¢G] < Kexp (—K_IS”S).
ze3n 74

Then, P-almost surely, there exists a partition S €T of Z% into triadic cubes with the following
properties:

(i) All predecessors of elements of S are good: for every 0,0 €T,
D'coandn’ €S = Oeg.

(ii) Neighboring elements of S have comparable sizes: for every 0,0 € S such that
dist(o,0") < 1, we have
13 size(d') <3
3~ size(O)
(iii) Estimate for the coarseness of S: if we denote Og(x) the unique element of S containing
a point x € Z%, then there exists C(s, K,d) < oo such that, for every x € Z,

size (Os(x)) = Os(O).

(iv) Approzimate locality of S: for each m € N with m > n and z € 3™Z%, there exists a
constant C(s, K,d) < oo and a partition Sioc(z+0m) €T of 2+ 0y, which is F (z + 0y, )-
measurable, finer than S and satisfies, for

0™ = {z en,, : dist(z,d0,) > 3"},
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the estimate
P [Elx cz+0M™ ng(x) # Dsloc(zmm)(“’)] <C3™ "exp (-C7'3™).

PRrROOF. We begin by giving an algorithmic construction of S. First, we shrink G to make
it closed under taking predecessors and neighbors of predecessors. This requires the following
definition: for each O e T, we set

K(@):={0'eT : IneNand0’...,0"e T such that o’ =0, 0" =0,
Vm e {1,--,n}, size(0™) = 3" size(O), and dist (ﬁm,Dm_l) <1}.

In other words, K(O) is the collection of triadic cubes we can obtain in finitely many steps
starting from 0O and where, in the mth step, we move from a cube 0™ ! of size 3™ ! size(DO) to a
cube O™ of size 3™ size(O) whose predecessor is the neighbor of, or contains, 0™ !. Recall that
the predecessor O of O is defined in the sentence ending in (2.1.12).

It is clear from the definition of C(O) that
(2.2.3) 0" e K(O) = K(o') c K(O).
We now define B
G:={oeG:K(O)cg}.
By (2.2.3) we see immediately that

(2.2.4) oDeG — K(o)cg.

To estimate the probability that a cube belongs to G, we use a union bound, (2.2.2) and the fact
that, for each m € N, there are at most C' distinct cubes of size 3™ size(O) belonging to K(0O)
(this is a consequence of (2.2.5), below). The union bound gives, for each O € G,

P [D ¢§] < i CK exp (—K_13ms size(D)S) <Cexp (—C’_l SiZG(D)S) .
m=0

It follows immediately that, P-a.s., every element of Z¢ belongs to infinitely many elements of G.
In particular, G covers Z¢.

We then introduce the partition S by defining, for each z € Z¢, the cube Os(z) to be the
largest element of G containing  which has a successor which does not belong to G. If there is no
such cube, we set Os(x) := x + O = {z}, which must then (P-a.s.) belong to G. It is easy to see
from this construction that S is indeed a partition. Moreover, we can estimate, for each n € N,

P [size (Os(z)) =3"] <3¢ sup P [2+ 051 £G] < Cexp (—0_13(”_1)5) .
ze3n-17d
It follows that
size(Os(x)) = O, (C),
which confirms property (iii).

To check property (i), we note simply that S G ¢ G and that G is closed under taking
predecessors.

To check property (ii), consider an element 0O € S and another cube O € T with dist(0,0’) = 1
and size(0") > 9size(0). To see that O’ cannot belong to S, observe that, since dist(0’,0) < 1,
each of the successors of 0’ belongs to (O). Therefore each of the successors of 0’ belongs G
by (2.2.4) and the fact that 0e S < G. Thus 0’ ¢ S by the definition of S.

We have left to check property (iv), which is accomplished by localizing the construction
above. First we observe that there exists C'(d) < co such that

(2.2.5) Oe7 and 0’ € K(O) = dist(0,0’) < Csize(d').
To see this, suppose that 0,0! € 7 are such that
size(O1) = 3size(0) and dist (§1,0) < 1.
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This implies that
dist(o',0) < diam (El) + dist (El, 0) <9diam(0) + 1 < C'size(D).
Then if 0°,...,0" are as in the definition of K(0), we obtain
n . n .
dist(0,0") < C' ) size(0’) = C'size(0) ) 3/ < C3"size(D) = C'size(0').
j=1 J=1
This yields (2.2.5).

The implication (2.2.5) allows us to localize the previous construction of S by looking only
at the triadic cubes for which we can evaluate membership in G by only looking at the edges in
z + Op,. All other triadic cubes will be considered to be “good” by default. This motivates the
definition

Gloc (z+0Om) ::gu(u{y+un :neN, yGS"Zd, y+|:|n+1¢_z+ljm}).
Using the property (2.2.1), we see that for every 0’ € T,
the event {a €eQ:0€Go(2+ Dm)} is F(z + O,,)—measurable.

We now define Sjc (2 + O, ) to be the partition obtained by applying the previous construction
t0 Gloc (2 +Om). We write Sipe = Sioc (2 +0p,) for short. It is clear from the construction
that Spoc is completely determined by the environment in z + O,,, that is, Sjoc is F(z + O )—
measurable. Moreover, we see immediately that Os(z) and Og,_ («) may differ only if there
exists 0’ € K(Os,, (z)) N G such that 0’ =y + O, and y + O,+1 ¢ 2+ Oyy,. In this case, we have
dist (z,0(z + Oy,)) < size (Ds,,. (x)) + dist (Os,,. (2),0) + 3diam(a’)
< size (Os,,, (7)) + C'size(0")
< C'size(D').

Thus there exists ko(d) € N such that, for every x € z + O,,,

Og (z) # Os,., ()
— 30,0 €T st. zen, 0 e K(O) NG, dist (x,0(z+0p)) < 3% size(D).
By (2.2.5), for each j € N with j < m, there are at most C3™7 elements of the set
{0':30eT, onz+0, @, O €K(D), size(n') =37}

while, for j > m, then there are at most C' elements of this set. Thus by a union bound and (2.2.2),

m

P [Hx cz+0M™ og(z) # Dgloc(x)] <CK Y (3™7 +1)exp(-K'3%)
J=n—ko

<C3"™ " exp (-c3™7).
This completes the proof of (iv). O

Many times in this paper we will be required to estimate, with S as in the previous proposition
and for a finite subset U ¢ Z% and exponent ¢ > 1, the random variable

(2.2.6) MUS) = T sise(os(@)i= = Y size(D)®,

‘ ‘ zecls(U) ’U’ Sanecls(U)

where, given an arbitrary subset U ¢ Z%, we define the closure cls(U) of U with respect to a
partition S by
Clp(U) = U DS(Z).
zeU
As in the statement of Proposition 2.2.1, we let Og(z) denote the unique element of S contain-
ing z e Z%.
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An immediate consequence of Proposition 2.2.1(iii) and (2.1.8) is the estimate
(2.2.7) A(U,S) < 0:(C),

for some constant C := C(t,s, K,d) < +oo. While (2.2.7) is quite useful, some of our arguments
require something slightly stronger: the existence of a random scale M(S) € N, with good
quantitative bounds on the size of M(S), and a deterministic constant C(t, K,s,d,\,p) < oo
such that, for every m e N,

m > My(S) = A(On,S) <C.

The precise result is stated below in Proposition 2.2.4. To prove it, we need to use independence
and thus the localization provided by Proposition 2.2.1(iv). In the following lemma, we put the
localization statement into a more convenient form, in terms of A;(U,S).

LEMMA 2.2.2. Let K,s >0, S and Sioc be as in the statement of Proposition 2.2.1. Fix
te[1,00). Then, for every t' > 1, there exists C(t',t,K,s,d) < oo such that, for every m € N and
ze3m7e,

(2.2.8) A(z+0,S) < Ae(2+ O, Stoc(2 + Omer1)) + O

S
t+t!

(c3m).
PROOF. Fix m € N and z € 3"Z% and write S, in place of Sioc(z + Om+1) to lighten the
notation and let D,, denote the event
D,,, := {3z € z + Oy, such that Os (z) # 05, ()} .
(m)

According to Proposition 2.2.1, since O,, € O,, 7, we have
(2.2.9) P[Dy,] < Cexp (-c3™%).
We estimate
1 .
A(z+0m,S)Lawp,, = (— > sme(Dg(az))t) 1o.p,,
’ Dm | rez+0m

< At(z + Dmasloc)
On the other hand, (2.2.9) implies that, for every ¢’ > 1,

1p

m

=0, (057)

and, therefore by (2.1.9),

At(Z + Dm78)]le < O%(C) . Oti, (C3fmt’) < Otft, (Cgfmtl) ‘
Combining the above displays yields (2.2.8). 0

We need the following technical lemma.

LEMMA 2.2.3. Fiz K > 1, s >0 and 8 > 0 and suppose that {X, }nen s a sequence of
nonnegative random variables satisfying, for every n e N,

(2.2.10) X, <05 (K39).
Then there exists C(s,3,K) < oo such that the random scale

M :=sup{3"eN: X, >1}
satisfies the estimate

(2.2.11) M < 044(C).
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PROOF. Chebyshev’s inequality and (2.2.10) imply
PX, > 1] <2exp (- (K'377)°).

Fix t >0 and § > 0 and compute
E[exp (6M%)] <1+ 3 630Dt exgp (93501 [0 > 3]
k=0
<1+ i 513D exp (93+)1) i P[X,>1]
k=0 n=k
<1+ 3 253+t e (a3t+0)1) i p(-(K7'377))

k=0

<1+C6t i 3D exp (53(k+1)t) exp (— (0_13_%)8) )
k=0

Taking t := s and imposing the condition ¢ < 37_150’5, we get
s 1 s
E [exp (5Mt)] <1+Cosp Z 3(k+1)texp (—5 (C_IS_kﬁ) ) <1+ CHsB.
k=0

Taking § < Csp gives E [exp (5Mt)] <2, thus
M<04(67"),
and the proof of (2.2.11) is complete. O

PROPOSITION 2.2.4 (Minimal scales for S). Let K,s >0 and S be as in Proposition 2.2.1.
Fiz t € [1,00). Then there exist C(t,K,s,d,p) < oo, an N-valued random variable M(S) and,
for every exponent r € (0 sd ), a constant C'(r,t,K,s,d,p) < oo such that

) d+t+s
(2.2.12) My(8) = 0.(C")
and
(2.2.13) meN, 3" > M (S) = A(0,,S)<C and sup size(Os(x)) < 3,

xrelm

PROOF. The proof is organized as follows. In steps 1 and 2, we prove that there exists a
random variable MY (S) satisfying (2.2.12) and

meN, 3™ > MYS) — A(am,S) <C.
In step 3 we prove that there exists andom variable M} (S) satisfying (2.2.12) and

meN, 3™ > M} (S) = sup 51ze(|:|3(3:))<3d+t

r€Om

We then define M;(S) := max(MY(S), M}(S)) which, in view of the previous results, clearly
satisfies (2.2.12) and (2.2.13).

Step 1. Fix t € [1,00) and r € (0 S—d). Also fix m,n € N with m > n. To shorten the

’ d+t+s
notation, we write Sioe(2') = Sioe (2’ + Op41) for each 2’ € 3"Z¢. Using Lemma 2.2.2, we have

(2.2.14) Ay(z + O, S)

= |Dn| Z At(ZI+Dn,S)

| Hm | 2'€3"ZAN(2+0m)

[0 | > Ay (2" + 05, Sioe(2)) + O, (Cg—nt') )

| Om | 2'€3"ZAN(2+0m)

<
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Denote

_ 0] > Ay (2" + 00, Soe(2)) -

| Om ‘ 2'€3"Z4N(2+0m )

We estimate Z, using independence. The claim is that
(2.2.15) Z<C+ 0y (C3mimm).
First we note that, by the properties of Sjo.(2’), we have

A2 + 00, Sioe(2')) < 3™, Pas.

Thus Z < 3™, P-a.s.

We now take an enumeration {27 : 1 < j < 3%m=7=D} of the elements of the set 37129 n
Om. Next, for each 1 < j < 3™ we let {z%/ : 1 < i < 3%} be an enumeration of the ele-
ments of the set 3"Z%n (zj +|:|n+1), such that, for every 1 < j,5' < 3%m=7-1) and 1 < i <
34 20 — 27" = 247 — 743 The point of this is that, for every 1 <i<3%and 1 <j < j <
3d(m=—n-1) " we have dist (z” + Dn,zi’j’ +Dn) > 3" and therefore, Ay (z” + On, Sloc (z”)) and
Ay (z’;’j’ + Opn, Sloc (zi’j/)) are P—independent. Now fix A > 0 and compute, using the Holder
inequality and the independence

logE [exp (h37"tZ)]

3d gd(m-n-1) . .
=logE !H [T exp (h3_"t_d(m_n)/\t (Zm + Onp, Sloc(ZZ’J)))]

i=1  j=1

3d gd(m-n-1)
i=1 j=1

3d 3d(7n—n—1)

<37 Z; z; logE [eXP (h3_m_d(m_"_1)/\t (2" +0On, SIOC(ZZ'J)))] '
i= j=

This inequality can be rewritten
logE [exp (hS_”tZ)]
<3S logE[exp (3TN, (2404, Si0e(2)) ]

2e3nZ4n(z+0m)
Next we use the elementary inequality
Vye[0,1], exp(y)<1+2y
to get, for every h € [0,3%m="-1)],
exp (h3_"t_d(m_"_1)At (z' + 0Oy, Sloc(z'))) <1+ 2p3 Mdlm—n-1) 5, (z' +Op, Sloc(z')) )
Taking the expectation of this, applying the previous display and using the elementary inequality
Vy >0, log(1+y) <y,
we get
log E [exp (h37"2)] < 3% log (1 + 2037~ DE[A, (2 + 0y, Sioe(2')) )

< 203" IR Ay (2 + O, Sioe(2))]

<Ch3™™.
Taking h := 3471 yields

E [exp (Sd(m_"_l)_"tZ)] <exp (CSd(m_”)_”t) .
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From this and Chebyshev’s inequality, we obtain a constant C' such that
P[Z > C +h] <exp(-h3mmt)

This implies (2.2.15).
Step 2. We complete the proof by applying union bounds. Combining (2.2.14) and (2.2.15)
yields

A(z+ O, 8) < Co + Oy (C3MHm ) L 0 (C37).

t+t!
n._| m |
' d+1/+5

Ao(z+ 0, 8) < o + 01 (C3TE) 4 O (c:rﬁm).

We now choose

so that the previous line becomes

t+t!

Define
MO(S) :=sup{3™ : Ay(z+ 0, S) > Cp+2}
and apply Lemma 2.2.3 to find that

M?(S)sodi(cwo awa (CY<O  aa (O).

(t+t") (d+t+s) (t+t") (d+t+s)
Taking t' sufficiently large, depending on (r,d, s,t), then
st'd
(t+t)(d+t+s)

and thus we obtain

MO(S) £0,(C).
Step 3. By Proposition 2.2.1 (iii), we have, for every m ¢ N

P| sup size(Os(x)) > SZZ] <y P[size(ug(x)) > 3%] <2.3m exp(—C_l?)ddiT).

T€Om x€Om

From this we deduce that for every m e N

dsm

<Oy (03_ d+t ) .

am
{SUPzemm size(Og (x))>3d+t }

Applying Lemma 2.2.3 with s =1, § = % and
X, =2-1 m
m {supzemm size(Os (z))>3%}

shows that the random variable
Mi(S):=sup{3™eN : X, >1}

satisfies

M(S) < Oan (C).

< _dm_ . dm

< s S 4o We also have

Since r
M;(8)<0:(C)
and by definition of (X,), oy and M} (S), we have
meN, 3™ > MYS) = sup size(Os(z)) < 3.
reOm,

The proof is complete. O
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2.2.2. The partition P of well-connected cubes. We apply the construction of the
previous subsection to obtain a random partition P of Z? which simplifies the geometry of the
percolation cluster. This partition plays an important role in the rest of the paper. For bounds
on the “good event” which allows us to construct the partition, we use the important results of
Pisztora [138], Penrose and Pisztora [136] and Antal and Pisztora [11]. We first recall some
definitions introduced in those works.

DEFINITION 2.2.5 (Crossability and Crossing cluster). We say that a cube O is crossable
(with respect to a € Q) if each of the d pairs of opposite (d - 1)—dimensional faces of O are joined
by an open path in 0. We say that a cluster € ¢ O is a crossing cluster for O if € intersects each
of the (d — 1)—dimensional faces of O.

DEFINITION 2.2.6 (Good cube). We say that a triadic cube 0O € T is well-connected if there
exists a crossing cluster % for the cube O such that:
(i) each cube O’ with size(0') € [% size(D), 3 size(0)] and 0’ N 20 # @ is crossable; and
(ii) for every cube O’ as in (i) and every path v € 0’ with diam(y) > % size(O), we have
that v is connected to ¢ within 0’. That is, there is another path +' within O’ which
connects a point of v to a point of %.

We say that 0 € 7 is a good cube if size(00) > 3, O is well-connected and each of the 3¢ successors
of O are well-connected. We say that 0 €7 is a bad cube if it is not a good cube.

The following estimate on the probability of the cube O, being good is a consequence [138,
Theorem 3.2] and [136, Theorem 5], as recalled in [11, (2.24)].

LEMMA 2.2.7 ([11, (2.24)]). There exist C(d,p) < co and c¢(d,p) € (0, %] such that, for every
m e N,

(2.2.16) P[o, is good] >1 - Cexp (-c3").

It follows from Definition 2.2.6 that, for every good cube O, there exists a unique maximal
crossing cluster for O which is contained in 0. We denote this cluster by %,(0). In the next
lemma, we record the observation that adjacent triadic cubes which have similar sizes and are
both good have connected clusters.

LEMMA 2.2.8. Let n,n' € N with [n—n'| <1 and z,2' € 3"Z% such that
dist (0, (2), 0w (2)) < 1.
Suppose also that 0,(z) and O, (2") are good cubes. Then there exists a cluster € such that
€ (0n(2)) UG (On(2)) €€ cOn(z) uon ().

PROOF. We may suppose that n <n’. Let x be the center point on the face of 0O, (z) which
is adjacent to O,/(2"). If n’ =n + 1, then we let O/, be the successor of O,/ (2") which is adjacent
to O, (z) and otherwise, if n’ = n, we set O, := O,/ (2’). Consider the cube O of size $3" centered
at x. Since O,(z) is a good cube and therefore well-connected, O is crossable. Let v € O be
a path which connects the two faces of O which are parallel to the face of 0O, (z) containing x.
There are two subpaths of v € O which, respectively, lie inside of O0,(z) and O, and have length
at least }13". Therefore, since both of the cubes 0,(z) and O], are well-connected, we conclude
that v intersects both €, (0,(2)) and €, (0),) € €. (0w (2')). Taking € to be the cluster

€ =y U%.(00(2)) UE. (O ()
completes the proof. O

We next define our partition P.
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DEFINITION 2.2.9. We let P ¢ T be the partition S of Z¢ obtained by applying Proposi-
tion 2.2.1 to the collection

G:={0eT : 0 is good}.

We also let Ploc(z + Oy,) denote the local partitions Sic(z + Op,) in the statement of Proposi-
tion 2.2.1(iv).

The (random) partition P plays an important role throughout the rest of the paper. We also
denote by P. the collection of triadic cubes which contain some element of P, that is,

P.:={0: Ois a triadic cube and 020’ for some O’ € P} .

Notice that every element of P, can be written in a unique way as a disjoint union of elements
of P. According to Proposition 2.2.1(i), every triadic cube containing an element of P is good.
By Propositions 2.2.1(iii) and Lemma 2.2.7, there exists C(d, p) < oo such that, for every z ¢ Z¢,

(2.2.17) size (Op(x)) < O1(C).

By the properties of P given in Proposition 2.2.1(i) and (ii) and Lemma 2.2.8, the maximal
crossing cluster %, (0) of an element O € P, must satisfy %, (0) € €, since the union of all
crossing clusters of elements of P is unbounded and connected. Indeed, we have the stronger
property that, for every n € N and z € 3"Z¢,

(2.2.18) Ont1 (2) € P = @ % 6o (00(2)) € Co(0n11(2)) NOn(2) = Coo NOn(2).

Given O € P with 0 = O,,1(2) for n € N and z € 3""1Z%, we let Z(O) denote the element
of €.(0) nO,(z) which is closest to z in the manhattan distance; if this is not unique, then we
break ties by the lexicographical order.

COROLLARY 2.2.10. For every x,y € Z¢ and path vy connecting x and y, there exists a path
v € G connecting Z(Op(x)) and Z(Op(y)) such that

v< U op(2).

2€7%0

PROOF. This is immediate from Lemma 2.2.8 and the property of P from Proposition 2.2.1(ii).
O

2.3. Elliptic and functional inequalities on clusters

In this section, we use the partition P constructed in the previous section to tame the
large-scale geometry of the percolation cluster. In particular, we give direct arguments leading
to a quantitative Sobolev-Poincaré inequality. This allows us to develop some basic elliptic
estimates we will need later in the paper. Many of the results in this section are similar to, and
overlap with, those of Barlow [24]. Our approach however is somewhat different and, we believe,
can be pushed beyond the particular case of a Bernoulli bond percolation cluster considered in
this paper. Also, some of the estimates we prove (e.g., the Meyers estimate in Proposition 2.3.8)
are new and needed in the following sections.

2.3.1. Functional inequalities on clusters. As in the previous section, for each 0 € P,,
we let €, (0) denote the unique maximal crossing cluster for O. Recall that, given an arbitrary
subset U ¢ Z%, we define the closure clp(U) of U with respect to P by

lep(U) = U Dp(z).
zeU

We then define €. (U) to be the maximal cluster contained in clp(U) which contains each of the
clusters €. (0Op(z)) for every z € U.
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DEFINITION 2.3.1. Given a function w: €, (U) - R, the coarsening [w]p of w with respect
to P is a function clp(U) - R defined by

[w]p(z) =w(Z(Op(x))), xzeclp(U).
where Z (Op(x)) is the point of €, (0Op(x)) which is the closest to the center of the cube for
the infinite norm |- | (if there is more than one candidat, pick the one that comes first for the
lexicographical order). In particular, [w], we note that is defined on the closure clp(U) and is
constant on the elements of P.

The advantage of [w], is that it allows us to make use of the simpler and more favorable
geometric structure of Z¢ compared to the percolation clusters. The price to pay is the difference
between w and [w]p, which depends of course on the coarseness of the partition P and the
control one has on Vu. Indeed, we show next that the difference w - [w]p can be controlled in
L* (%, (U)) for s €[1,00) in terms of a weighted L*(%.(U)) norm of Vw. The weight function
represents the coarseness of the partition P in clp(U). In what follows, Vw1l {az0} denotes the
vector field of Vw restricted to the open edges:

(Vwljazy) (€) = Vw(e)Liace)e0y, €€ Eq(U).
Recall that the notation |F|(z) for a vector field F' is defined in (2.1.4).

LEMMA 2.3.2. For every bounded U € Z¢, 1 < s < 0o and w: €. (U) - R,
2.3.1 [ w(z) - [w]p(2)|® de < C* size(O Sdf Vwl *(z) d.
@31 [ o) - [wlp() @ [ et )

PROOF. For each = € €, (U), there is a non-self intersecting path connecting x and z (Op(x))
which belongs to the union of the elements O of P which are contained in clp(U) and satisfy
dist(0,0p(x)) < 1. It follows that

(2.3.2) w(z) - [w]p ()] = [w(z) - w(z (Op(2)))]

- Z /mmsa(U) |vw1{a¢0}‘ (v) dy.

neP, dist(O,0p (x))<1

Summing over x € 0N 6. (U) for a fixed O € P with O € clp(U) and using property (ii) from
Proposition 2.2.1 for P yields

_ S S ]1 s

Ji 0@ - @) dr |u|( [ [T {a¢0}|<x>dx)
S S S

<C*|g| [m%w)’vwn{a*()}‘ (z) da.

Summing over O € P with O € clp(U) yields the lemma. O

We next show that we can control L® norms of |V [w]p| by those of |Vw]l{a¢0}‘ and the
coarseness of the partition P. The proof is very simple and similar to that of the previous lemma.

LEMMA 2.3.3. For every bounded U € Z%, 1< 5 < 0o and w: €,(U) - R,

2.3.3 / vV [w]p| (x)dx < C° size(O Sd_lf Vul ol (2)dz.
239 [, T @dsc S @ [ el @

PROOF. The gradient V[w], is supported on the edges {z,y} such z € 0 and y e 0’ for two
disjoint, neighboring elements 0 ~ 0’ of P. On such edges, we have

|V [wlp ({2, y})] = [w(Z(0(2))) ~wEz(E ()))]
Recalling that there exists a path between zZ(O(z)) and Z(0'(y)) which lies entirely in ou o’
and summing over the edges along this path, we find that

[w(z(e()) - wEE' @) <C |

1 dz.
(0UD )% (U) [Vl iacoy| (2) d2
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Since two neighboring elements of P have sizes within a factor of three, a property given by
Proposition 2.2.1(ii), the number of such edges between O and O’ is at least
csize(D) T
Finally, we note that every O € P has at least 2¢ neighboring elements of P.
The above assertions imply that

V [w]p|’ (z) dx
Lo IVl @)
s . d-1 B
<C > size(O) > (f(uum/)m%(U) ‘Vw]l{a#)}‘ (2) dz)

oeP,occlp (U) o’'eP, O~
_ -1 s
<C*® size(0)4! oud| / Vwl .ol (2)dz
DEP,D%;IP(U) D’€7DZ,I::I~D" ‘ (ouo")n% (U) | {a }‘

< ou Z size(l])d_1+d(5_1) [
]

DeP,occlp (U)

) |Vw]l{a¢0}‘ (2)dz.

This completes the proof. O

The previous two lemmas imply a Sobolev-Poincaré-type inequality on the clusters, borrowing
the result from the classical inequalities on R? by comparing w to [w]p. This is strong evidence
of our informal assertion that “the geometry of % is quantitatively like that of R? on scales
larger than P.”

Before giving the statement, we recall that if s € [1,00) then the Sobolev conjugates s* and
s, of s in dimension d are defined by

sd
if s<d
s lg s 1 s <d,
00 if s >d.
If se [%, oo), then we also define ]
Sy i= i
s+d

so that (s.)* =s.

d

PROPOSITION 2.3.4 (Sobolev inequality for 4, (0)). Suppose that s € [,

Let w: €. (0) — R satisfy one of the following conditions:

f w(z)der=0 or w(x)=0 for every x € 00,
¢« (0)

) and O € P,.

(2.3.4)
/D [w]p (x)dz =0 or [w]p(x)=0 for every x €0a0.

Then there exists C(s,d,p) < oo such that

s

(2.3.5) [5 @) dos 0( S size(n')™ fD S [l ey | (:v)dx)

O'eP,o’co
Before giving the proof of Proposition 2.3.4, let us comment on the form of the right side

in (2.3.5). The classical Sobolev inequality for functions w € WO1 **(0) (or mean-zero functions
w e W (0)) in a cube 0 ¢ RY states that

fD|w(1‘)|s da < C([D|Vw(:n)|s* dm);*.

The term on the right side of this inequality is similar to the first term on the right side of (2.3.5),
except there is the weight size(D’ )Sd representing the size of the local cube in the partition P.
The size of the elements of P are of course not uniformly bounded, however they are typically
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of unit size, by (2.2.17), with exponential stochastic integrability. In particular, one may use
Hélder’s inequality to separate this weight from the function |Vw|™* in the integrand at the cost
of an arbitrarily small loss of the exponent s, while the sums over the weights can be controlled
above a minimal scale by Proposition 2.2.4.

PROOF OF PROPOSITION 2.3.4. Rather than (2.3.4), we first prove the proposition under
the assumption that

(2.3.6) L [w]p(z)dr =0 or [w]p=0o0nd,0O.

In this case, the usual Sobolev inequality on Z? (which follows easily from the one on R? by
affine interpolation, for example) applied to [w]p gives us that

(f| w]p(2)) dg;)i <O(f|v 1o () dx)l

We then apply Lemma 2.3.3 to estimate the right side, which gives

([Ilpor az)

and use Lemma 2.3.2 and the triangle inequality to estimate the left side and combine this with
the previous inequality to get

1

( > size(0’)%4! /DID%(D)‘lel{a#O}F* (x)d:r) ,

OeP,0’cOo

IN

1
H ™
w(x)|® da;)s <C size(0’)%41 f Vwl o] (2) da
([a(@' (@) (D,GPZD,ED @) D,H%(Dﬂ {¢0}‘ (2)

s

+ C( > size(')*? /D'm‘ﬁ © ‘Vw]l{aqto}‘s (z) da:)

O’'eP,0’co

We may estimate the second term on the right side thanks to the following inequality: since
i > 1, we have that, for every n € N and finite sequence of nonnegative real numbers {a;},.;.,,

Z a;* < (Z ai) .
Applying this to the second term on the right side gives

S

. rysd S
( > size(D') /DIO%(D)’VLUIL{MO}‘ (x)dx)

O'eP,0’co
1

< ( > size(')*+? [D'n?f © |Vw]1{a¢0}‘s* (z) dx) )

O'eP,0'cOo

Noticing that s.d < sd and sd -1 <

< sd completes the proof of the proposition under the
assumption (2.3.6).

To prove the proposition under the assumption

2.3.7 f dz =0,
(2.3.7) %(D)w(l‘) T
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we apply the result to the function w— W*—%D)l f%(U) [w]p () dz which satisfies assumption (2.3.6).
This yields
so\w
dx)
1

(v/:&(m)
SC . !/ Sd*l\/ ]]. Sx d -
( > size(D') i (0) ‘Vw {a¢0}| (z)dx

O’eP,0'co

1
w(x) - 7@ Jo.w [w]p () dx

1
+C size(O’ Sd/ Vwl ra.or|” (2)dz
(D’ePz,\::\’CD (=) D'ﬁ(@”*(‘ﬂ)‘ {¢0}‘ (@)

To complete the proof we use Lemma 2.3.2 to obtain

1
‘m .[;;(U) [w]P(x) dz
1

1
: ‘M [*(U) (o) de = @] Sy PP (@) 47
1

() - [w]p ()] da

S

S

< —
% (0)| Je.)
C® : ’ sdf s
< size(O Vwly, x)dz.
I%(D)meZ ©) Jrenoy VL0t @)

P,0'cO

Combining the two previous displays completes the proposition under the assumption (2.3.7).
We finally prove the proposition under the assumption

w(z) =0 for every x € 00

The main idea is to apply the Sobolev inequality under the assumption [w], =0 on dd. To do
so we define the following function v on O

v(z) = { [w]p (z) if Op (2) ¢ OpO,
' 0 if op (z)edpO.

The function v is almost equal to [w]p with a slight modification on the boundary cubes of the
partition where we set v = 0. Since v =0 on 0,0 and in view of Definition 2.3.1, one can observe
that the results of Lemmas 2.3.2 and 2.3.3 hold with v instead of [w],. We then complete the
proof of the Sobolev inequality by adapting the argument as in the case [w]p = 0 on 0O with v
instead of [w]p. O

2.3.2. Basic elliptic estimates on clusters. In this subsection, we record some basic
elliptic estimates and show how these allow us to improve some of the estimates from the
previous subsection for a-harmonic functions. We remark that the estimates in this section do
not use the independence of the ensemble {a(e)}ccf,, merely the independence of the ensemble
{]l{a(z)¢0}}€e E4» and so they work for general coefficient fields defined on the percolation clusters.

We begin with Caccioppoli’s inequality, following the standard argument.

LEMMA 2.3.5 (Caccioppoli inequality). Assume U ¢ Z% is a cluster and V € U such that
dist(V,0,U) 27 > 1. Suppose that uw e A(U). Then there exists C(\) < co such that

2 C 2
(2.3.8) /V‘Vull{a#o” (x)dxsﬁflj\int(v) |u(x)|” de.

PROOF. Select a function n € C*(R?) satisfying

Cn

(2.3.9) Iy <n<l, 7n=00ndU, and [vy|*<—5.
T
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Testing the equation for u with nu (that is, applying (2.1.6) with w = nu) yields

0=" >  (@)u@)-nyuly) a{z,y}) (u(z) - u(y))

x,yelU,x~y
= 2 n@) (u@) - u(y))a{z,y}) (u(@) - u(y))
z,yelU,x~y
+ %: u(y) (n(x) - n(y)) a{z,y}) (u(@) - u(y)) .

Thus we obtain

> n@al{z,y)) (ule) - u(y))’

z,yeU,x~y

< Y lu@lin() -nw)la({z,y}) (u(z) - u(y))
z,yelU,x~y

+ EU: C((z, y))a({z, y})n(x) (u(z) - uly))

) —n@)F e

SCQ:,yEU,awy 77(95)"‘77(2’4) | (y)|

S ) nw)alie ) () —u())

z,yeU,x~y

<G Y e @@y Y a@aliey)? () - u(w)’.

z,yelU,x~y z,yelU,x~y

We obtain (2.3.8) after absorbing the last term on the right back on the left side and rewriting
the expression, using a > M 5.y and (2.3.9). ]

An important tool for the arguments later in the paper is Meyers’ improvement of integrability
for the gradients of solutions, adapted to percolation clusters. In the classical setup (for uniformly
elliptic equations in R%), this is a very simple consequence of the Caccioppoli and Sobolev
inequalities which imply a reverse Holder inequality and thus, after an application of the Gehring
lemma, the desired estimate. The situation is more complicated in our setting, since the Sobolev
inequality is not uniform and depends on the local coarseness of the partition P, as we have
seen. The first step is therefore to quantify the probability of a (deterministic) reverse Holder
inequality on large triadic cubes. This will give us another notion of “good cube” and thus
another triadic partition R which we will use to prove our generalization of Meyers’ estimate.

To simplify the statement, we define, for each cube O and exponent s > %(d +2) (so the
Holder conjugate s’ satisfies s’ < %), the quantity

1
1 2 2
= Vulg, (z)dx
sup (‘D| f%(m)| { ¢0}‘ ) T if O is good,

u€A(%nax(3D)) (ﬁ f%pmax(SD) |v’l,l,]l{a:;:0}‘512yt (.I') dx)E

+ o0 if O is bad,

RH, (D) :=

where € ax(30) denote the maximal cluster of 30 containing %, (0). Notice that if both O and
30 are good cubes (which is in particular the case if O € P,) then €ax(30) = €% (30) but thanks
to this definition the random variable RH¢(O) is F(30)—measurable and thus hypothesis (2.2.1)
will be satisfied when we apply Proposition 2.2.1 is Definition 2.3.7 below. Also we obviously
mean the supremum to exclude constant functions. In other words, RHg(O) is the smallest
constant C' such that every u € A(%nax(30)) satisfies the reverse Holder inequality

1 1 1 _1
2 2 8’2* s/24
(2310) (H [jﬂ%&[l) ‘Vu]l{a¢0}| (3:) dSU) < C (M G (30) ‘vu]l{a#)}‘ (l‘) dl‘) .
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We next estimate the probability that RHs(O,,) is larger than a fixed deterministic constant.
Recall that the random variable M;(P) is given in Proposition 2.2.4.

LEMMA 2.3.6 (Reverse Holder inequality). Fiz an exponent s > %(d +2). Then there exists a
constant C(s,d, \,p) < oo such that, for every m e N,

(2.3.11) 3" > Mysa(P)+C = RH,(On,) < C.

In particular, for everym € N and exponent t € (0, mﬂ, there exists a constant C'(t,s,d, \,p) <
oo such that

(2.3.12) P[RH,(On) > C] < O exp (-3™).

PRrROOF. To setup the argument, fix an exponent
1
> —(d+2).
5> 5(d+2)
We also fix an integer m € N satisfying
3" > Mst(P)
and a function u € A(%,(0,,)). Note that m > Myg(P) implies that
1
—— 3" size (op(2)* < C

|Dm| x€Om

(2.3.13)

and, in particular, that 0,, is good. The goal is to prove (2.3.10) for a deterministic constant
C(s,d, \,p) < oo.

We begin by applying (2.3.8) and then (2.3.5), which give us

2
2.3.14 f 1, d
(2.3.11) [l @) e

< C372™inf lu(z) - af? do
aeR Cg*(l:lm+1)
2

2.
—2m . 2*
<0372 ( > size(0) fm%(umu) ‘Vuﬂ{a¢0}| (x) dx) :

0eP, 0SOpm+1

We turn our attention to the first term on the right of (2.3.14). Using the Hélder inequality with

exponents s and its Holder conjugate s := 7 < %, we get
. 24
S size(n')* ) (Vul auoy| " (@) da
0eP, OC0ms1 ON%s (Om+1)

1

< S size(o)®hHd
0eP,0S0m+1

1

1 2* S, s7
1 1 d
X( 2 |D|(|u|fm%<um+1>|w ey (@) x) )

0eP, 0S0m+1

L 1
7

. S B 5'24 8
s( 3 size(op(x))? d) (f |Vul (az0y| ($)dx)
T€0m+1 l')d*(\:"mﬁrl)

1

1 5'24 E
<Clpal* ([ WUl ™ @z)”.
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where in the last line we used the first inequality of (2.3.13). Combining the above displays, we
obtain
1

| Om | J6(am)

_2
gC3‘m(d+2‘5ﬁ)( L . 1)\Vu]1{a¢o}\82* (:c)da:)”*

‘Vu]l{a¢0}|2 (x)dx

2

1 o2, Eon

=C Vul x)dx .
(| O+t | € (Ome1) ‘ {a#O}‘ (@) )

This completes the proof of (2.3.10) and therefore of (2.3.11). The second statement is obtained

from the first and (2.2.12). O

DEFINITION 2.3.7 (The partition R and minimal scale M;(R)). We denote by R the
partition obtained by applying Proposition 2.2.1 to the family of “good events” given by

G:={0€eT : RHy2(0O) < C} in which a deterministic reverse Holder inequality holds for gradients
of elements of A(%,(0)) with exponent s'2, = %dl and with C'(d,\,p) < oo as in the statement

of Lemma 2.3.6. Given an exponent ¢ > 1 and according to Proposition 2.2.4, we denote the
minimal scale for this partition M;(R), which we note has integrability

d2
2.3.15 M(R) = O.(C'(r,t,d,\ for every re |0 .
(2815 (R) =0 (C ) forevery re (o)
We next obtain a version of the Meyers improvement of integrability estimate. For uniformly
elliptic equations in Euclidean space, this estimate asserts the existence of an exponent £ > 0
(depending only on dimension and ellipticity) and a constant C' such that, for every solution u in

the ball Bg,
2
(]gR |Vu(z)|**e al:c)2+E < C][J;?R \Vu(z))? da.

This deterministic gain in integrability is an important ingredient in the theory developed in [21].
In our setting, the analogue presented below (which holds only above a random scale) plays an
even more essential role in the developments in Section 2.5 because it allows us to “Holder away”
the sizes of random partitions from our estimates without giving up any exponent.

We define, for each triadic O € 7 and exponent € > 0, the random variable
1

= [ Vulazo 2 (x)dx e
sup (|D| %(D)‘ fas }‘ ) - if 30 is good,

ME, (o) := ’ :
<(0) 1= | wed(max(30)) (|3—15| S 30) |Vuﬂ{a¢o}\2 (»”C)dfff)2

+ 00 if 30 is bad.

We are interesting in showing that, for an exponent e(d, A,p) > 0, the quantity ME.(D) is
bounded by a deterministic constant above a random scale. The statement is given in the
following proposition.

PROPOSITION 2.3.8 (Meyers estimate). There exist e(d,A\,p) >0 and t(d,\,p) < oo and a
deterministic constant C(d, \,p) < oo such that, for every m e N,

(2.3.16) 3" > My(R)+C = ME.(g0,) <C.
In particular, there exists 6(d, \,p) >0 and C(d,\,p) < oo such that, for every m €N,
(2.3.17) P[ME.(0,,) > C] < C'exp (-3™).

PROOF. The classical proof of the Meyers estimate (cf. [73]) is a combination of the reverse
Holder inequality (given by the Caccioppoli and Sobolev inequalities, as in the previous lemma)
and the Gehring lemma (cf. [77]). Here the situation is more complicated, because we only
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have the reverse Holder inequality above a random scale, and therefore we must modify the
strategy slightly by applying the Gehring lemma to a coarsening of |Vu]1 {aqto}f with respect to
R, using the reverse Holder inequality holds on scales larger than R, to obtain an improvement
of integrability. Then we use the Hélder’s inequality to get rid of the partition.

We fix m € N with m > M(R) + C and ¢ is a fixed exponent to be selected at the end of the
proof in such a way that it depends only on (d,\,p). We fix a solution u € A(%€%(0Om+1)) and
introduce the coarsened function

1 24
f(x):= Dz;zﬂ{[x]em} (E [m{; ) [Vul (au0p | (y)dy), z eR%
€ * m+

Step 1. We write the reverse Holder estimate from the previous lemma in terms of f. The
claim is that there exists a constant C'(d, \,p) < oo such that, for every cube @ < R,

(2.3.18) ]g f) 5 de<C (]ggQ (@) dm)d;l .

First, observe that if the size of ) is smaller than 100, then since f is constant on all cubes of

the form 2z + [-3, 1]? with z € Z%, it is easy to see that
1
sup f(z) < 24 / xd:ESC][ x)dx.
wp () <Y i [ f@yaszC f s

Therefore we need only to check (2.3.18) for cubes of size larger than 100. Note that every
cube @ of size at least 100 contains some cube of the form %EI for some triadic cube O € 7.

Let O be the largest triadic cube satisfying %D c @. It follows from simple geometric
considerations that Q € 0. If O ¢ R, then Q € O’ for some O’ € R. In this case, f is constant
on @ and therefore the bound (2.3.18) is obvious. We may therefore assume 0 € R.. We now
compute, using (2.3.10),

d+1

]gf(x)d%l d:cSC]éf(:c)T dx

2
< c][ 1, d
D%(Dm)\vu (a0 (v) dy

d+1
d

1 2d
< C - \V4 1 d+1 d

(\3 0| Je.(30) [Vl sy |7 () x)
Let W be the union of elements of R which have nonempty intersection with 30. It is easy to
check from the fact that R has property (ii) of Proposition 2.2.1 that W ¢ 70. Thus

d+1
d

1 2d.
(ﬁ % (30) |Vu]l{a¢0}‘d+l (:C) dx)

o] 1 (1) d E
< - ]1 +1
= (|W| A/m%*(mnl) |Vu {a#O}‘ (z) x)

1 d+1

=C(]€Vf(x)da:)d;£C(]€Df(m)dm) .

Since 70 € 63Q, this completes the proof of (2.3.18).

Step 2. We apply the Gehring Lemma to the function f and show that the result im-
plies (2.3.20). By an application of Theorem 6.6 & Corollary 6.1 from [77] (we again can get the
result in the discrete case from the continuum case by using affine interpolation), we obtain the
existence of an exponent £(d, \,p) >0 and a constant C'(d, \,p) < oo such that

(2.3.19) ]ém Fz) T W9 gy < c(]émﬂ flz) T dx)HE.
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It is obvious that

2
d <~[ 1 dzx.
| @) de o [Pty (2) o

To bound the left side of (2.3.19) from below, observe that for each 0 € R and x € €, (Opm+1), we
have

f(@) > |og (J2])[™ !Vu]l{a¢0}|“‘“( -
Therefore, by Holder’s inequality,

2+€

[& o Vi@ (@) de
2+¢e

2rze —dtL(14¢) Z+ac
S([&(Dm)’VU]I‘ILfJ‘#)}' (z) [or(x)|” ¢ ©7F dx)

(2+a)(1+s)(d+1) 515
d
([, IR @ )
2+ €
o (210) (1) (ds1) Sror
gc(f F(2) 5059 g )“ (/ Or ()| da:)“
m} (gx-(Dm)

2+e

1 2 2
<OPnl|—— Vuly, z)dx
| | (|Dm+1| Cx(Oma+1) ‘ { ¢0}‘ ( ) )
1 @re)(1+e)(d+l) pIeE
V= or(z 2ed da:) .
(|Dm‘ %*(Dm)| ( )|
_ (2+e)(1+e)(d+1)
We now choose t : = e which, as required, depends only on (d,\,p). Under the

assumption that m > M;(R), the second factor on the right is then bounded by C(d, A, p) and
we obtain, for every u € A(%, (D)),

2+e

2+e 9 >
O %;(Dm)‘vu]l{aw}| (m)dxéc(bmul %(umﬂ)‘v“ﬂ{aw}‘ (w)dx)

Thus ME.(0,,) < C, completing the proof of (2.3.16). The bound (2.3.17) is then a consequence
of (2.3.16), (2.3.15) and the Chebyshev inequality. O

(2.3.20)

We finish this section with the definition of the partition @ quantifying the local scale on
which the Meyers estimate holds.

DEFINITION 2.3.9 (The partition Q@ and minimal scale M;(Q)). We denote by Q the
partition obtained by applying Proposition 2.2.1 to the family of “good events” given by
G:={0eT : ME.(O,,) < C} in which a deterministic Meyers estimates holds for gradients of
elements of A(%,(0)) with exponent e(d, \,p) >0 and with C'(d,\,p) < oo as in the statement
of Proposition 2.3.8. We denote, for each exponent ¢ > 1, the minimal scale for this partition
(given by Proposition 2.2.4) by M;(Q). Note that

d+t+06
where 0 :=6(d,\,p) >0 is as in the statement of Proposition 2.3.8.

(2.3.21) My(Q) = O (C'(r,t,d, A p))  for every 1 ¢ (o, 5—d).

2.4. Subadditive energy quantities and basic properties

Here we introduce the subadditive energy quantities, which are modeled on the ones from [21],
and record their basic properties. We also prove estimates on their uniform convexity, boundedness,
the ordering relation between them and their subadditivity. These properties are mostly trivial
in the uniformly elliptic case, but more technical in our setting since we must take into account
the geometry of the percolation clusters (using the results from the previous two sections).
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2.4.1. Definition of the subadditive energy quantities. We next introduce the subad-
ditive quantities. These are based on similar quantities introduced in the continuum, uniformly
elliptic setting in [21] and variants of the quantities which have been recently used to ob-
tain optimal estimates and scaling limits in stochastic homogenization of uniformly elliptic
equations [16, 17].

We first define, for each finite subset U ¢ Z¢, the set

A (U)={u:6.(U)>R: -V-avu(z) =0, Yz e €. (U)\ dclp(U)}.
Note that A(%:(U)) ¢ A.(U) since 0,6.(U) < dclp(U), but neither of these inclusions in
necessarily an equality. As in (2.1.6), we have,
(2.4.1) ue A (U) <= (Vw,avu); =0 for every w e Co(U),

where Co(U) denotes the set of functions w : €, (U) - R equal to 0 on €, (U) nclp(U).

DEFINITION 2.4.1. For each U € Z% and p, ¢ € R%, we define the random variables

. 1 1
u(U.q) = ueifii(:U) T (0] (5 (Vu,aVu)y, () = (4, V[U]p>clp(U))
and 1
U= sup e (=5 (V0.aV) g ) + .2V 0 ).
veAu (1) |C17D(U)| 92 €« (U) €« (U)

The optimization problems in the above definitions of (U, q) and v(U,p) are strictly convex
and concave, respectively, and therefore they have unique optimizers in A, (U), up to additive
constants, which we denote by

u(-,U, q) := minimizing element of A,(U) in the definition of u(U, q)

and
v(+, U, p) := maximizing element of A, (U) in the definition of v (U, q).

We choose the additive constants for u(-,U,q) and v(-,U, p) so that
2.4.2 ][ u(-, U, z)dr=0 and ][ v(-, U, x)dx =0.
242  f U0k [ U@

Notice that, for each bounded U ¢ Z¢,
g~ -u(U,q) and pw~v(U,p) are nonnegative and quadratic.

In particular, these maps are convex.

In Lemma 2.4.3, below, we will show that the function v(-, U, p) is the solution of the Dirichlet
problem in €, (U) with affine data 2 — p-x + ¢ on €, (U) ndclp(U), for some ¢ € R. Therefore
v(U,p) is just (up to the normalization) the energy of the familiar cell problem solution in
%+ (U). The quantity p represents the energy of the “dual” cell problem introduced in [21]. It
is important here that the linear term in the definition of 4t is not (g, Vu)e, 17y, which is what
one might naively guess when attempting to generalize from the uniformly elliptic case. This
will not possess the correct convex dual relationship with v: in particular, (2.4.29) would be
false, rendering attempts at proving Proposition 2.5.2 hopeless. Indeed, if u is close to an affine
function with slope p (for example, the function v(-,U,p)), there is no reason to expect that
(q, Vu)%*(U) should be close to ¢q - p, because we are “missing” the contribution of Vu in the
closed edges. While the exact form of the linear term is not very important, we need something
that will be close to ¢-p if (as expected on large scales) u(-,U, q) is close to an affine function
with slope p. Using the spatial average of the gradient V [u]p of the coarsened function satisfies
this property and turns out to be very convenient. One of the central ideas of [21] is that one
should focus on the spatial averages of the gradients and energy densities of the solutions. We
do the same in the generalization here, except that when it comes to gradient we consistently
replace a solution u with its coarsening [u]p.
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In the next section, we quantify the convergence of quantities p(0,q) and v(0,p) foroe T
as size(O) — oo, see Proposition 2.5.2. In the rest of this section, we prepare for this analysis by
presenting some basic properties of these quantities. The geometry of the percolation cluster forces
us to give up some very nice properties possessed by p and v in the continuum uniformly elliptic
setting [21]. For example, —u and v are not (strictly speaking) uniformly convex independently
of U, because in general the partition can be quite coarse and the geometry of the percolation
cluster very complicated. They are not stationary with respect to Z%translations (because the
partition P is not stationary), nor are they local quantities (since they depend on the coefficient
field a(-) on the whole of By, since P does), nor are they precisely subadditive. Most of this
section is therefore consumed by the quite technical task of showing that each of these important
properties does in fact hold in an approximate sense which is quantified with sufficiently strong
stochastic integrability.

We conclude this subsection by computing the first and second variations of the optimization
problems in the definitions of ;1 and v and then checking that the function v is the solution of
the Dirichlet problem with affine data as claimed above.

LEMMA 2.4.2 (First and second variations). Fiz a bounded U ¢ Z% and p,q € R:. For every
we A (U),

(243) (vw7 aVu(-, Ua q))%*(U) = <qa v[w]P>cl7>(U) )
1 1
(2.4.4) Tl ()] (5 (Vw,avVw)g, )~ (¢ V[w]p)dp(U))
1 1
= ,U(U, Q) + m5 (V(w - u('v U7Q))7 av(w - u(', Ua Q))>%*(U) ;
(245) <V’U), avv('v UaP))%,,(U) = <pa avw)?,ﬁ(U) )
and
1 1
(2.4.6) m (—5 (Vw,avw)y, ) + (D, an)%(U))
1

~u(Up) - o 3V - o U av (- ol Up))

|clp(U)]

PrOOF. Let w € A(%.(U)). For each h € [0,1), define uy, := u(-,U,q) + hw. By comparing
up to u:=wup =u(-,U,q) in the definition of u(U,q), we obtain, for every h > 0,

()

1 1

02 5 (Vu,avVu)y, ) - B (Vun, aVup)g, 0y = (@ V [u = un]p) g, @
1

= _§h2 (Vw,aVw)y, () = h{(Vw,aVu)g, oy + h{q, V[w]p) g 1) -

Rearranging this and dividing by A > 0 gives

1
~(Vu,avVuw)y, () + (¢, V [w]P>clp(U) < §h (Vw,avw)y, ) -
Sending h — 0 yields, for every w € A(¢,(U)),

(0, VIwlp, ) < (Vi,aVw)g, @y -

The reverse of the previous inequality follows by replacing w by —w, which completes the proof
of (2.4.3). Returning now to the first display and inserting (2.4.3), we obtain (2.4.4) for uy in
place of w.

The proofs of (2.4.5) and (2.4.6) are similar and thus omitted. O
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For future reference, we record some identities which are consequences of those in Lemma 2.4.2.
By combining (2.4.5) and (2.4.6) with w = v(-,U,p), we get

1 1

(2.4.7) VD)= T

<V’U(', Uap)v aVU(‘, UaP))%;(U) .
Next, inserting this into (2.4.4) with w = v(-,U,p), we get

(2.4.8) v(U,p) - (U, q) = (a0 V[v(, U. D) ety )

1 1
= —| ()] 3 (V(v(,U,p) —u(-,U,q)),av(v(-U,p) —u(-,U,q)))¢, ) -

We next show that v(-,0,p) is the solution of the Dirichlet problem with affine boundary
data. Recall that the space Co(U) is defined between (2.1.5) and (2.4.1), above.

LEMMA 2.4.3. There exists ¢ € R such that
(2.4.9) v(z,Up)=p-xz+c for every x € €. (U)ndclp(U)
and

v(U,p) = ((p+Vw),a(p+Vw))yg, 1 -

N
weCo(clp(U)) 2| clp (U)|

PROOF. From Lemma 2.4.2 we have that, for every w € A, (U),
(2.4.10) (Vw,a((Vo(-,U,p) = p))¢, @) =0

Pick w € A,(U) such that w(x) = v(z,U,p) —p-x for every = € €.(U) ndclp(U). Then
w=v(,U,p)—p-xeCo(clp(U)), since w € A, (U), we have

(2.4.11) (Vw,a(Vw-v(-,U,p) +p))g, ) =0
Summing the equations (2.4.10) and (2.4.11) gives
(Vw,aVw)g, ) = 0.

Therefore w is constant and so = = v(z,U,p) —p- z is constant on €, (U) ndclp(U).
Since v € A.(U) and v(z,U,p) =p-x +c on €, (U) ndclp(U), we have, by (2.4.7),

V(va) = <V'U(', U)p)v avv('v UvP))%’)*(U)

= inf +Vw),a(p+ Vw .
weCo(%(U))((p ).a(p M.y

The proof of (2.4.3) is complete. O
2.4.2. Subadditivity, boundedness, uniform convexity, and ordering. The purpose

of this subsection is to prove that p and v retain most of their essential properties from the
uniformly elliptic setting, with errors arising due to the coarseness of the random partition P.

We begin by proving the upper bounds for —p and v. While the one for v is obvious, the one
for —p uses the estimate (2.2.17).

LEMMA 2.4.4. There exists a constant C(d,p,\) < oo such that, for each e T and p,q € R?,

(2.4.12) —u(3,q) < Clqf? ]é size (Op(2))242 dz
and

(2.4.13) v(3,p) < Clpf.
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PROOF. We begin by noticing that the bound (2.4.13) is immediate from Young’s inequality.
We thus focus on the bound for —u. For convenience, we denote u := u(-,0,q). Applying
Lemma 2.3.3 with s =1 gives

fclP(D)IV[u]pl(w)deC > size(@)™! fD ,m(g*(m)‘Vu]l{aqbo}‘(x)dx.

O’'eP,0’'cclp (O)

By the Holder inequality, we deduce that

(2.4.14) f1 o Tllp @) de

-

. 3d- 2 2
<C > size(0) 2971 (’/D,n%(m) ‘Vu]l{aio}‘ (z) daz)

o’'eP,0’'celp (O)
1
2

e 2 3
< C( > size(') 2) (/%(D) |Vu]l{a¢0}‘ (z) dx)

O’eP,0’'celp (O)

1 1
SC(/ size(Op(x 2d_2da:)2(/ Vuly, *(x da:)Q.
(@) (Op (7)) %(D)\ (az0}] (@)

Young’s inequality then yields

. _ 1
(0.9 1] )an oy < Claf [, size(@p(a) 2 da+ 3 (Vusa¥ul, o
Hence
! 1
-1(0,q) = [cp(@)] (—5 (Vu,aVu)y, o) + (¢ V[“]P)m)
< OlgP? ][ size(Op(2)) 242 da.
clp(0)
Notice that if clp(O) # O then for each x € clp(D), size(Op(z)) = size(clp(O)) and thus
(2.4.15) ][1 ( )size(|:|7>(;v))2d_2 dz = size(clp(0))?42 = ][ size(0p (2))?* 2 du.
clp(O O
Combining the two previous displays gives (2.4.12). O

Observe that (2.2.17) and (2.4.16) imply that
(2.4.16) -p(0,9) <O _1_ (C’|q|2) .

1
2d-2

It is also useful to notice that we can bound the right side slightly differently (so that the random
part is scaling better) to obtain

(2.4.17) - u(,q) < Clg* + O _1_(Clg*size™ (D))

1
2d+1

To see this, we combine (2.4.12) with the bounds for the minimal scale Msy_o(P) given in
Proposition 2.2.4 to obtain

(2.4.18) ]é size (ap(e))*? dr < O ]é size (Op (2))°2 da gy, ,(pysan)

n

<C+3 " Mag2(P) ][ size (Op(2))* " dz
On

SC+O%(C3_ )'Oﬁ(C)

§C+OT11(C37H).
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For future reference, we also note that (2.4.16) and (2.4.13) imply upper bounds for the L? norm
of the gradients of u(-,0, ¢q), v(-,0,p) and their coarsenings. Indeed, by the first variations (2.4.3)
and (2.4.5), we have

1 1
n(U,q) = ERGE (Vu(-,U,q),avu(-,U,q))q, @), and
(2.4.19) N
V(Uap) = m§ (V’U(', va)a aVv(-, U7p)>c17>(U)
and thus (2.4.12) and (2.4.18) imply
1 2
(2.4.20) Vu(-,U,q) 1 (azoy| (2) dz

)] Jo.o)
< ClqP ][SiZG(D’p(LE))2d72 dx
O

2 2 2. -1
SOﬁ(CM )/\(C|q| +0 (C|q| size (D)))

a1
and (2.4.13) implies

1
|clp(0)] J2.(0)
Combining these with (2.4.14), (2.4.15) and the analogous bound for v(-,0, p), we get the following
bounds for the L' norm of the coarsened functions:

(2.4.22) ][1 o IV [u(-0,9)]p| (x) dz < Clq] ]€ size (Op(2))?% do < O_1_(Clal)

and

2
(2.4.21) Vo(, U, p)Lasy| (z) dz < Clp|*.

1

423)  f IVCe)l @) de < Ol f sine (@p()* dz) <0, (o).

By (2.2.17), we have that for every ¢ >0

P [supsize(Dp(a?)) > t] < > P[size (Op(z)) > ]

zeD zen
< C'size(0)? exp (—C‘lt) .
From this we deduce that for every § > 0, there exists C := C'(d,p,d) < oo such that
sué) size (Op(x)) < O1 (Csize(D)‘s) .
e

Combining this with Lemma 2.3.3 (with s = 2) gives

(2.4.24) ][ IV [u(-,0,9)]p[* (w) da < Clgf’ (Sup size (Dp(x))le) ][ size(0)2472 da
clp(O) xeO O
2 : 0
<|q (’)2(;7_1 (C'size(O) )(’)T{Q(C)
2 .: 6
< Oﬁ (Clgf* size(n)°).
Similarly we obtain for each § > 0 and for some C := C(d,p,d) < oo

1

(2.4.25) JQP(D) |V [v(:, D,p)]P|2 (z)dz < Clp|* (ilelé) size (Dp(x))zd_l) (]g size(0)242 dav)§

<[pPO_1_(C'size(n)’) O (C)

1
2d-1 d-1

<O 1 (Clp|size(D)°).

1
3d-2
We next prove the ordering relation between p and v. In the uniformly elliptic case, this is
proved in one line and comes from testing the definition of p with the minimizer of v and using
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an integration by parts to see that the spatial average of Vv is exactly p. In our situation, the
latter computation is not exact but holds up to a coarsening error, as stated in the following
lemma.

LEMMA 2.4.5. There exists a constant C(d,\,p) < oo such that, for every 0 €T and q,p € R?,

(2.4.26)

. _1
(¢ V[0 0,2 p)atp oy ~ P 4| <O 2 (Clpllalsize(p)2).

_
| clp(O)|

PrOOF. Fix p € R? and denote v = v(-,0,p). The estimate (2.4.26) is a consequence
of (2.2.17) and the following claimed inequality:

(2.4.27)

9 \
|CT1(|:|)|<Q7V[U]7>)C1P(D)—p-q‘§C|p||q|(| pO| +( 1 > size (Op (z))2 1) )

ol \IDl .,

Recall that
opo:=J{o' eP: 0 co, dist(0,00) =0} .

First, we deal with the case clp(0) # 0. In that case, we know, by definition of the partition P,
that [v]p is constant, thus

[clp()] (0, VIvlp)a, @) = 0-

We also have by definition of 0pO
O cclp(D) = 0pO

Thus
1
@@ VRl ~P-a| = -
<Ipllq|
Op 0O
< Cppllg22].
El

which shows (2.4.27). We now assume for the rest of the proof clp(0) = 0.
For z € 0, denote the outer normal vector n(z) € R? to 90 at x by

d
n(z) =Y (eil{zeeny — €il{zreeny) -
=1

Note that [n(z)| < d. Applying the discrete Stokes formula, we find that

@Sl =| 7 [ (e ) -0y nto) o

dlq
smjamuv]p(x)—p-ﬂ dz.

For each 0’ € P with 0 ¢ 9pO, we can find a point 5(0') € 9,%.(0) and thus, by Lemma 2.4.3,
for each x € 0O,

[v]p (z) —p-z| = v (Z (Op(2))) - v (G (Op(x)))| +|p- (z -7 (Op(x)))]
< .[:p(x)n%;(u) |Vv]l{a¢o}‘ (z") dx" + Clp|size (Op(x)) .
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Integrating this over z € 90 and using the Holder inequality gives

— . d
[ w)p(@) -l do
’]l .
. fam ([am)nmp(x) [V aso| (4) dy + C|p|51ze(DP($))) dx
1
1 2 2
< Clp| |8PD|+/8|]|D73 (x)|2([&(D)mp(x)\wn{a#oﬂ (y)dy) dr

_ Clollo : N 3d-1 ([
p| |opDO| + Y, size(d’)? ()

Ps0/copO

<Clpllopal+| size<ﬂ’>3d‘2)( >

Ps0'cdpD Psorcdpn 7 ¢+ (0)ND

1
2 2
Vol fazoy|” () dy) )

2
2
Vol (asoy|” () dy)

< Clpl|opa|+ | ¥ size(um))%l) ([ 7ot @)

€00
The first variation (2.4.5) for v combined with (2.4.13) yields that

1 1
@2 VP aVa o = (@) < Ol

Thus 1
2 2
(f%(m)\Wll{am}l (y)dy) < Clp|clp()|.

Combining the above inequalities gives the desired bound (2.4.27).
To obtain (2.4.26), we observe that (2.2.17) implies that

(2.4.28) —‘(TPDD|| <O (Size(D)_l)
and
1 ~ 2i1)? 0a]\ "2 i ‘ .
(ngusme(ﬂp(:ﬁ)) ) S(Qﬁ (C(H ‘Oﬁ (Csme(u) 2), N

COROLLARY 2.4.6. There exists a constant C(d,\,p) < oo such that, for every 0 €T and
d
p,q € RY,

(2.4.29) | (v(O,p) - (0, q) =p-q)
1 1
" elp(0)]2 (V(v(-0,p) —u(-0,9)),av(v(-,0,p) —u(-,0,9)) ), (o)
. 1
<0_s (Clpllglsize(0)"2).
PRrROOF. Combine (2.4.8) and Lemma 2.4.5. O

We next show that the combination of the upper bounds in Lemma 2.4.4 and the inequality
in Corollary 2.4.6 give us the desired lower bounds.

LEMMA 2.4.7. There exists a constant C = C(d,p,\) < oo such that, for every 0 €T and
p,qeR?,
1 1
2 . _1
(2.4.30) - p(O,q) >|q| (6 - 0% (C’Slze(D) 2))

1
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and
(2.4.31) v(o,p) > |p/? (é -0 (Csize(D)_%)) :

PRrROOF. These estimates are consequences of Lemma 2.4.4 and Lemma 2.4.6. We first give
the lower bound for —u. Combining (2.4.13) and (2.4.29), we find that, for every p, q € RY,

_2
2d+1

_1
1(9,0) <v(0,p) = p-q+ O 2 (Clpllalsize(o) )
. _1
(Clpllgl size(m) %)

Choosing p = ¢/2C' to minimize the first two terms on the right, we get

H(E.0) <~ Sl + O (Clasize(2) ).

2d-1

<Clpf-p-q+0

_2
2d-1

which is (2.4.30).

To prove the lower bound for v, we argue similarly: by (2.4.16) and (2.4.29), for every
p,q € R we have

_1
v(0.p) > p(0,q) +p-a-O__(Clllalsize(0) 7

> —ClqP? (]é size (Op (1)) 242 d:v) +p-q-0_s_(Clpllglsize(0) ).

2
2d-1

-1
Optimize by taking ¢ := C1 ( {5 size (Dp(a:))2d_2 da:) p in order to maximize the first two terms
on the right side, we get

(.02 (& (ot @r )2 ) -0y (o)) )

Estimating the first term on the right side of the previous line by (2.4.18), we obtain

1 2
2d+1 2d-1

v(0,p) 2 |P|2(é -0 (CSize(D)fl) -0 2 (C’Size(D)fé) )

Since v(O, p) is nonnegative (and thus bounded below almost surely), the previous line and (2.1.10)
implies

v(Q,p) > |p|2(é - OQ;T (C’size(D)_%) ) O

The final result of this subsection concerns the approximate subadditivity of —y and v.

LEMMA 2.4.8. For every p,q € R* and m,n € N with n <m and 0 € T,,,

(2.4.32) u(@,q) 23707 (n(2),9) - g0 _ (Cla?37E)
ze3n7Z4n0 2d-1
and
(2.4.33) v(0,p) <370 N w(oa(2),p) + PO _2 (C37).
2€377Z4n0 -

PROOF. We first give the proof of (2.4.32). Denote u := u(-,0,q). Testing the definition
of (2 + 0y, q) for z € 3"Z% n O with u gives

1 1
(2.4.34) p(2 + O, q)]l{z-%—DnE'P*} < m (5 (Vu, avu)%*(zﬂ:ln) - (g, V[U]P>z+\]n) Liio,ep,)-
n

If we sum the right side over z € 3"Z% n O, the result is close to (3, q). There are two sources of
error: (i) €,(0) contains edges which do not belong to any of the clusters €. (z + 0,); (ii) when
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we sum the second term in parentheses we miss the edges between two adjacent subcubes and
edges deleted because z + O, ¢ P.. We treat each of these errors in turn. The claim is that

1 1
m Z (5 (Vu, aVu)%(zmn) —(q, V[“]7D>Z+Dn) Liiouery

ze3nZ4n0O

(2.4.35)

26-2
SM(D7Q)+Oﬁ(C|Q| 3 4)-

First, it is clear that while €% (0)n(z+0,) and %, (z+0,) may be different, every open edges
in the latter cluster belongs to the former. Therefore, since the quadratic form is nonnegative on
each edge, we have, for every z € 3"Z%n o,

1 1
Z 5 (vuv avu)%*(zﬂjn) ]l{z+|:|n673*} < 5 (VU, avu)%*(m) :
z€3"Z4n0
Next, let V' be the set of vertices x € O with an adjacent edge {x,y} such that y ¢ O, (x) or such
that O, (x) ¢ P.. It is clear that

|V| < C| O |3—n +C Z ]l{size(ljp(:c))>3"} < | O | (03_n + O (3—11)) <O (C| O |3—n) .

xed
From this, the Holder inequality and (2.4.24) with § = i, we get
1
& (g, V[ulp)y - ZZ:d (0 V[ulp),ig, Lizroner.)
ze3"Z4N0O
Cla|
<] vl ) dr

oMY (Liv 0k @)’

< Clq|- O (03—5) 02 (C|q|34)
<01 (ClaP37%).

Combining the above yields (2.4.35). To obtain (2.4.32) from (2.4.34) and (2.4.35), we just recall
that p(z + On, @) Liig,¢p.y = 0.

We turn to the proof of (2.4.33), which is only slightly different. Testing the definition of
v(z +0p,p) with v:=v(-,0,p) gives

1
(2.4.36) V(Z"‘Dnyp)]l{erDnG'P* 2

1
} - | O | (_5 (V'Uyavv)%*(z+[|n) + <p7avv>cg*(z+mn)) ]l{ZJanezp*}.

As above, we have

>
2€3nZ4n0
Let W denote the set of vertices x € O with an edge {x,y} belonging to the cluster €.(0) but
not any of the clusters €, (z +0,) for z € 3"Z? satisfying z + 0, € P,. It is clear that W must be
contained in the union of elements of P which touch the boundaries of one of the cubes z + O,
and those cubes z + 0,, which do not belong to P.. Therefore, in view of (2.4.28),

1
(V’U, avv)%*(zﬂjn) ]l{z+|:|ne'P*} < 5 (vv7 avv)%*(m) '

DN | =

(2.4.37) Wi<| U op(z+o,)|+ U (z+0Op)

2€3nZ4n0 2€3"Z4n0, z+0,¢Px
<C Y 10p(z+00)|+ C Y Lgie(op(2))>37)
ze3"74n0 el

<O, (Clol3™).
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By the previous inequality, the Holder inequality and (2.4.21), we get

o] (p,aVv)y, (o) — > (P, aVV)e, (2m,) Lizroner.)

ze3nZ4n0
el
| a | Wn%,(O)

1 1
Wi\2( 1 / 2 2
< - — 1 d
_C|p|(||:|| o] %(D)‘VU {a¢0}| (z)dx

<Clp|>- O, (03—%)
<0, (Clp*37%).
Combining these yields
1 1
(2438) m Z (—— (V’U,aVv)%(erDn) + <p, avv>(g*(z+un))]l{z+une'p*}

2€3"7Z4n0 2

‘Vvll{a#)}‘ (x)dx

>1(0,q) - O (ClpP’37%).
Combined with (2.4.36), this yields
v(O,p) < 37d(m7n) Z v(z+ Dnap)]l{zﬂjnep*} + 0y (C|p|237%) .
2€3"74n0
This implies (2.4.33) since v is nonnegative. O
2.4.3. Localization and approximate stationarity. We next define local and stationary

versions of p and v and show that they are the same as the original quantities, up to a small
error. For each m,n € N satisfying m > n, we denote

T = {2+ 0y : 2€3"2%)
and define the following random family of good cubes
g™ =gu (u{o' e T : size(n’) >3"}),
where G is the set of cube cubes from Definition 2.2.9. We then apply Proposition 2.2.1 which

gives two partitions P and 7)1(;1)(‘])' Notice that thanks to this construction we obtain a

partition P(") which is stationary for translations of vectors within 3"Z¢ (in particular, this will
ensure that (2.4.40) holds) and will be important in Section 6. Before introducing the local and
stationary versions of u and v, we prove a quantitative result, showing that P and P are
equals on O on a set of large probability.

PROPOSITION 2.4.9. For each m,n € N satisfying m >n, 3" >Cm and O € TWQ”), the following
estimates holds

P[Vz €0, Op(x) = Open (2)] 2 1 - Cexp (-C7'3").
PROOF. For each x € O, we have
Op (@) # Opm) (2) <= 30" e K (Opw) (2)) N G
Thus, with a similar argument as in the proof of (iv) of Proposition 2.2.1
Jzen, Op(z) # Opm (z) = 30' ¢ G, size(0’) > 3" and dist(0’,0) < C'size(D’)

and thus

P[Vz e, Op(z) # Opm (2)] < C3™ ™ exp (-C7'3")

<Cexp (—0713") )

The proof is complete. O
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Now, for O € Tn(q,n), consider the event

Ap(D) = sup size(o’) <3"7!
D’ePl(O’g)(D)

Observe that A, (0) € F(O). As in Section 2.2, we define, for n € N,
o™ = {z e : dist(z,00) > 3"}.

Note that on the event A, (0), by definition of the local partition P(n) in Proposition 2.2.1,

every cube belonging to 73( )(D) contained in 0() is good (in the sense of Definition 2.2.6),

so that the union of the clusters (‘5* (Dp(n)(m)(x))) o over z € 0™ is connected. We then
loc zen(n

define the local cluster C&(n)(m) as the maximal cluster which is a subset of O and which contains

every cluster of the form (CK ( P(n)(m)(az))) - with 2 € 0. If A, (0) fails to hold, we define
loc el

‘5*(”)([!) to be empty.

From the local cluster we define the local versions of the energy quantities by

1 /1
m| =1 inf ( Vu,avVu) - ( ,V n ) )
MlOC ( q) An (D) ueA(‘fg(n)(D)) | O | ( >(gf >(D) q [ ]Pl(oc)(l:‘) o(n)

and
1

1
o] ( —(Vv, aVv)%*(n)(D) +(p, aVv)%ﬂ*(n)(D)) .

n(0,q) = Ta,@  sup
veA(7M ()
In other words, ,uloc)(D q) is the same as u(0,q) except that we use the local partltlon 73( )(D)

instead of P and that we integrate the second term only on 0(™; meanwhile 2% )(D q) is the
same as v(0,q), except in the event (which is unlikely for O large and n large) that A, (0) does
not hold.

It is immediate from Proposition 2.2.1(iv), which gives the locality of PI(O?(D), that for every

Oe TTSLH) and p,q € R,

(2.4.39) Mloc (D q) and 1/100 (D p) are F(O)-measurable.

It is clear that the construction above yields that u (n) O, q) and ALY Om, p) are 3MZ% stationary
loc loc

and thus

(2.4.40) the laws of . )(z +0Opm,q) and Vloc)(z + O, p) are independent of z € 3"Z.

and {u n)(z + Dm,p)} are i.i.d.

In particular, {,LLIOC)(Z + Oy, Q)} myd

e3mzd

We denote by uloc ( 0,q) and ”1:;)( 0, q) the optimizers in the definitions of uloc)(D q) and
l/loc) (O,p), respectively. We choose the additive constant in the same way as above, so that (2.4.2)
holds. In the event that A, (0) does not hold, we define uloc (‘, 0,q) = vloc)( 0,p) =0.

Most of the estimates that we proved in the previous subsection continue to hold for the

localized quantities. In particular, since 771(07? is finer than P which is finer than P, we have,
by the same proof as the one in Lemma 2.4.4, the bounds

- 10(5,9) < Claf? f size (p(2))* da,

(2.4.41)
" (3, p) < Clpl?.



2.4. SUBADDITIVE ENERGY QUANTITIES AND BASIC PROPERTIES 109

We also record the fact that, by the same argument as the one leading to (2.4.20), (2.4.21)
and (2.4.24), we have the estimates

(24.42) o 7210 (5,00 L aso ‘Q(x)dx<0|q|2 ][ size (0p (7)) dx
TG LA e s g :
]‘ n
a1 oo [T o nf @< i

() ()

We next estimate the difference between p and p ; as well as v and v 7 and their minimizers.

PROPOSITION 2.4.10. There exists C(d, \,p) < oo such that, for every m,n € N with m >n
and 3" > Cm, every O € Tn(f) and p,q € R%, we have

(2.4.43) {‘“ 0.4) - 'uloc)(D )| <0 (ClaP (372" +37)).
[v(0,p) - v (0,p)| < O1 (CIpP3 7).
and
]1{‘5*(\]):‘(9”*(")([])}
(2.4.44) o] f%(m) (w(.,m,q)—wloc( O q))]l{a#)}‘ (2) do

<O (C’|q| (3% +3m)).

PROOF First note that on the event {sup,.;size(Op(z)) < 3"}, ‘Kf")(m) =%.(0). Moreover,
since 73 (D) is finer than P, we have

{igg size(Op(x)) < 3"} c A, (o).

By Proposition 2.2.1 (iii) and the assumption 3" > C'm, we can estimate the probability of this
event by

(2.4.45) P [sup size(Op(x)) > 3"] < 39 exp(~C713") < Cexp (-c7'3m).
xed

It is clear that I/(n)(D p) = v(O,p) if ‘ia”(n)(D) = ¢»(0) and A,(0) holds. Thus on the event

loc
{sup,e size(op(x)) < 3™}, Vln)(D p) = v(Q,p). Using the bounds (2.4.13) and (2.4.41), we
therefore obtain

|V(D p) loc D?p)| < (|V(Dap)| Vlo )(D p)‘) ﬂ{supzeus1ze(\]p(m))>3"}

< C|p|2]1{supzem size(Op (z))>3"}
<O (ClpI*37™).

We turn to the bound for p. Denote by B, (0O) the event

B, (0) := {itelé)size(up(m)) < 3”} ﬂ{\m co™, op(z) = DPI(OZ)(J:)}.

By (iv) of Proposition 2.2.1, Proposition 2.4.9, and (2.4.45), we can estimate
P[B,(0)]>1-3"exp(-C7'3") - C3™ "exp (-C'3")
>1-Cexp (—0_13”) )
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On this event, we can use the function u(-,0,¢) as a minimizer candidate for ,uloc)(lj q). This
yields

fi0c(0, q) 2 o 1|(1 (Vu,aVulg, g) - ( Vu ]P(")(D)>D(n>)

loc

1 /1
2 o (5 (Vu,aVu)y, o) — (4, V[“‘]'P)g("))

> (0, q) - "i (¢, V[ulp)ggm

> 1(0,9) - lgl— IV [u(-,0,9)]p| (z) dx.

||:|| o(n)

To estimate the last term on the right-hand side, we can extract from the proof of Lemma 2.3.3
with s = 1 the following inequality

]|;|\D(n) [uloc)( O Q):I |(.’E) dx
<C D size(0)%! fu,m%(u)‘vul(:c)]l{a”}’(x)dx

o’eP,0'cono(n-1)

1

1
2
. 3d-2 (n) 2 2
< C( z : SIZG(D) ) (./(\D\D("‘l))ﬂ(ﬁ*(lj) ‘vuloc ]l{aﬂ]}’ (3}‘) d:l;‘)

o’eP,0’cono(n-1)

1 1
: 2d-2 ; |2 (n) 2 2
C([D\D(TH) size(Op(z)) d:U) ([&(D) |VuloC ]l{a¢0}| (x) d;p)

IN

This gives

| Oa | f\[ﬂ")

1 2
n-m . 2d-2
< 03" (—‘D = fm(n_n size(Op () dm)

1
= (n) 2 b
’ (| =) —[5)*(\]) ‘vubc ]l{a¢0}| (z) da:)
This yields by (2.1.8) and (2.4.42)

(2.4.46) Mloc(DaQ)]an(D) 2 M(DaQ)]an(D) -03"% (C)O%( )
> (0,1, @) -0 _1 (Clql2 ).
(n)

Similarly and still on the event B, (0), using u, ’ as a minimizer candidate for p(O,q) shows

loc

u(o, q)_|1|(1<vuloc,awloc>mu) (q V[uloC]P)D)

1
2 Mloc(Dv CI) - ‘ﬁ <Qa V[UIOC]P>D\D(n)

lal |

>M10C(D q)_ ||:]| g

Y [uloc('a 0, Q)]p| (.%') dx.
Thus

(2.4.47) w301 p, o) > (8, ¢) g, o) - Oﬁ(CIqIQ?)%)-
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Combining (2.4.46) and (2.4.47) gives

1(0.9) - 13 (0,)| 15,0 <O_L (C’Iql2 =)
On the event Q \ B, (0O), we have by (2.4.41),

‘H(qu) _ Ml(&)(qu)‘ LionB.()) < (|M(D,q)| + ‘ufﬁ?(u,q)‘) Lo B.(0)}
<O, (Clg*)01 (Clal*3™)
<(’) 1 (C|Q| 3 )

Summing the two previous displays completes the proof of (2.4.43).

We now turn to the proof of (2.4.44). We apply the second variations (2.4.4) to w =

ul(g?( 0,q), on the event B,(0O), which yields

1 (1 "
= ( (Vaoeavall?), - (0.9 [ufoc>]7>>u)

=u(O,q) + %5 (Vul(gc) vu, a(Vul(:C) Vu))(g*(m).

On the other hand, we have the estimate

L (G lvuava), e [42],))

<ty (") (5, ¢) + 12 lal

o] Jovaw

[ulo)( ] q)] |(m)dw

Combining the two previous displays with the same computation as the one leading to (2.4.47),
we obtain

loc loc

|_;| (vuie) - vu,a(vufy - vu)), © 1B

<2|ud(0,0) - p(o.@)|+ O__(Cla’3™3") <O0_v_(Clal’3™2").

On the event {CK*(D) = ‘ﬂ(n)(u)} \ B, (O), we have, by (2.4.20) and (2.4.42),

1
{#(@=2 @) B (o)} (n) (n)
| O | <Vuloc - Vu,a (VUIOC B vu))(&,(m)

<O (Clg)0i (3™ <0 1 (ClgP3™).

Combining the two previous displays and recalling that a > Al ,.0y completes the proof of (2.4.44).
O

We conclude this section by recording some consequences of Proposition 2.4.10, for our
reference. According to (2.4.40) and (2.4.43) with n = [%], we have, for every m € N,

sup |E [1(2 +Bm»q)] - E [1(0m, q)]| < Clg|*377 .

ze3mzd
Combining this with (2.4.32), we obtain, for each m e N,

E[(Om+1,9)] 2 E[p(Om, q)] - Clg[’37%.
Summing this from n to m -1 yields that, for every m,n € N with n < m,

(2.4.48) E[1(Om. )] 2 E [1(0n, q)] - Clq*375.
By a similar argument, we have the bound

(2.4.49) E [v(Om,p)] <E[v(0,,p)] + Clp|*37™.
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As a consequence of (2.4.44), we also get a localization estimate for the coarsened functions,
summarized in the following lemma.

LEMMA 2.4.11. There exist C(d,\,p) < oo and s(d) >0 such that, for every m,n € N with
3" >Cm, every O € T,,S”) and p,q € R, we have

(2.4.50) ]é o ’v [u(-0,0)]p - ¥ [u) (-0 q)]P(n)(D) (w)dz <O, (Clgl (375 +375)).

PrOOF. Write u :=u(-,0,q) and ul(:C) =yl )( 0, q) for short. We recall the definition of the
event B, (0):

loc

B,(D) := {supsize(Dp(:c)) < 3"}ﬂ{Vx co™, op(z) = Dp(n)(:c)}
xed
We also record that for some C := C(d,p,\) < +o0,
Lo, (o) < 01 (C37™).
We split the left side of (2.4.50):

(2.4.51) ]é(n)

viulp-v [“&)]P&’?(u)

(o 71615 2] |01 ) 1,

' (]é(m

We estimate the first term on the right side of (2.4.51) using (2.3.3) and (2.4.44): for some
s(d) > 0, we have,

]é(n) Viulp-v [”1(:6)] ‘(Qﬁ)dx']an(D)

Clp, (o L ndel (n)
= |D(n)‘ Paglzgzm(n) SIZG(D ) L’ﬂ(f*(ﬂ(")) ’(VU - vuloc )]l{ai()}‘ (‘T) dx

(z)dx

o) (z) di’?)'ﬂQ\Bn(m)-

Viulp -V [“1@]7)(7»

loc

N =

1
Clp, (o) A (n) ?
< —— > size(D) > L’m%*(m(")) ‘(Vu - Vu. ) ]l{a¢0}‘ (x)dx

||:|(n)‘ Pso’ea(n) Ps’co(n)
: 1 2 2
— 1 ; 2d-2 (n)
“hme (I o], &, e () ) (Iuw\ S (72752 1| @) dx)
1
<C1 L > size(O (z))%42 2 1 f ‘(Vu - Vu(n)) 1 |2 (x)dx :
= Bn(O) | ( )‘ S P | O | %,(0) loc {a#0}

<CO_2 (C)0 2 (Cla (3705 +372))

0. (Cll( ) +571)),

where we used that, for m > n, we have |0 < 3¢ |D(")‘, 1p,@o) < ]l{

€. (O).
To estimate the second term on the right side of (2.4.51), notice that if clp(O) # O then
V [u]p is constant. This remark and (2.4.22) yields

£ 19 sl (2) dz < © £ 19 [ulpl () da < Clal f sine(Op())* 2o < O_y_(Clal).

%*(D):(gfn)(m)} and €. (D(n)) c
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(n)

A similar computation gives the same result with [“1oc

]7’1(”) instead of [u],. Thus we have, for

some (possibly smaller) exponent s(d) > 0,

]{\(n)

<( £, 7 lulpl @) +
<O_1 (Clah0u(C3™)

<O (Clgl3™).-
This completes the proof of (2.4.50). O

Viulp -V [Uf&)]pgg(m

v [ul(;?]ﬂ(o?(m)

(z)dz 1o B, (o)

(z) dx) 1o, @)

2.5. Convergence of the subadditive quantities

An immediate consequence of the approximate subadditivity (2.4.33) and stationarity stated
in (2.4.40), (2.4.43) is the approximate monotonicity of n — E [v(O,,p)]: we have that, for every
peR? and m,n € N with n <m,

E [v(Tm,p)] < E [v(T4,0)] + Clp’37".
It follows that, for each p € R,

lim E[v(On,p)] exists.
n—oo

Since p — E[v(0Om,p)] is a quadratic form which, for sufficiently large n, is bounded above and
below by multiples of [p|*> by (2.4.13) and (2.4.31), the same is true of lim,, e E [v/(Tyn,p)]. This
allows us to make the following definition.

DEFINITION 2.5.1 (Homogenized diffusion matrix &). We define a to be the unique (deter-
ministic) positive matrix a

%pﬁp = lim E [v(0m, p)].
By the bounds (2.4.13) and (2.4.31) on v, there exist 0 < ¢(d, A\, p) < C(d, \) < oo such that
(2.5.1) cly<a<Cly.

Arguing in a similar manner, we can show that E[-u(0O,,¢)] also has a limit as n - oo to a
quadratic function in ¢ which is bounded above and below by |q|2. As we will prove in this
section, that quadratic form turns out to be ¢ — %q -a'q, the convex dual of the quadratic
form p %p -ap. Moreover, by the approximate localization property (2.4.43), one can argue as
in the proof of the subadditive ergodic theorem that these quantities converge P—a.s. to these
deterministic constants.

The main result of this section is a quantitative rate of convergence for the subadditive
quantities to their limits, which is summarized in the following proposition.

PROPOSITION 2.5.2. There exist s(d) >0, a(d,p,\) € (0, }1] and C(d,p,\) < oo such that, for
every d €T and p,qeRY,

1 _ . —a
(25.2) 503 0+ 1(E.0)| < O, (Clal size(m) )
and

1 _ . o
(2.5.3) ‘§p-ap—l/(D,p) <Os (C|p|281ze(|:|) ).
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The proof of Proposition 2.5.2 is an adaptation of arguments in [21]. The main step is to
control the expectations of the quantities under the absolute value signs in (2.5.2) and (2.5.3).
That is, we want to show that there exists an exponent a(d,p,A) > 0 such that, for every n e N
and p, g € R%,

1 —— —no
(2.5.4) E[(On,q)] + =¢84 <C (|pf +1gl*) 37

2

Once this is accomplished, we obtain the conclusion of Proposition 2.5.2 by gaining stochastic
integrability via a straightforward use of subadditivity and independence.

+

E[0(00,p)] - 5030

It may appear from (2.5.4) that we have two estimates to prove, but one of the insights
from [21] is that it is really just one estimate. Indeed, let us consider the quantity w(O,q),
defined for each o e 7 and ¢ € R? by

w(0,9)=v(0,8 ") - u(0,9) —¢-a"'q.
In order to prove (2.5.4), it is enough to show that, for every n e N and ¢ € R,
(2.5.5) E[w(On,¢)+] < Clg|*37.
Since this fact motivates the rest of the analysis in this section, we pause now to prove it.

LEMMA 2.5.3. There exists C(d, \,p) < oo such that

1
+ sup T3
peRd |p|

1 1 __ 1 _
(2.5.6) sup W w(o,q) + iq aly v(Q,p) - Ep'ap‘

qeRd

1
<C sup w(O,e)2+0_2 (Csize_i(m)).
ccdB, 2d+1

PRrROOF. According to Lemma 2.4.7, there exists C' < oo such that

1 1 .1
(2.5.7) k(D) := 56111&1(31 (5 + Wu(u,q)) < O% (C’Slze 2([!)).

Fix p €e R Define the function
f(@)=v(0,p) - w(0,q) —q-p+k(D)lgl*, geR"
Observe that f is a quadratic function and
L oo
fl@)2v(@p) + Zld* ~q-p.

It follows that f is uniformly convex. Thus there exists a unique point gy € R% at which f attains
its minimum. From the inequality f(qo) < f(0) we see that |go| < C|p|, and we have

p=-vu(3,-)(qo) + 2k(0)qo-
In particular,
(2.5.8) Ip+V1(D,)(a0)| < Claolk(m) < O__ (Clplsize™2 (D).

By the uniform convexity of f and the fact it achieves its minimum at g,
= 1
f(ap) > f(q0) + ~ lap - gl
By (2.4.29) and (2.5.7),

f(q0) 2 k(@)|go* = O 2 (Clpllgol size(m) 2) 2 -0 _2_(ClpP'size™2 ().

2
2d-1 2d-1
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Thus we obtain
lap - qol* < C (f(8p) - £(q0))
<Cf(ap)+0 = (ClpP size-%(?))
< Ce(D,8p) + O 2 (C’|p|281ze_5(u)) .

Since —u(d,-) is quadratic, for every q € RY,

1
~#(0,q) = =54~ Vu(3,)(0).
The bound (2.4.17) gives us that, for every qi, g € RY,

V(0. ) (1) = Va0, ) (@2)] < Clar = ol (1+ 02 (Csize™2 (1))

2
2d+1

We deduce from the previous three displays, [ap — qo| < C|p| and (2.5.8) that
= o
-u(o, ap) - SP@p

= ‘—%ﬁp- vu(o,-)(ap) - %p-ép‘

< lap|[vu(B,-)(ap) + p|

< Clpl (1V1(0, ) (@p) = Vi(D, Y a0)| + O (Clp| size”2 (D) ))
< Clpl (’517 —qo|+0 2 (C|p\ size’%(u)))

2
2d+
(C'|p|2 size_%(D)))% +0 (C’|p|2 size_%(D)).

2
2d+1

<Clp| (w(l], ap) + O

2
2d-1

From this and (2.5.1), we deduce that

1
<Clgf* sup w(D,e) +0O = (C’|q|2 Size_%(u)).
ccd By 2d+1

1 __
‘—N(D,Q) -50d g
Using the previous inequality and
.1
(@) - w(o,8p)| = k(D)lap <O 2 (Clpf size™> ()
we also obtain

1
<Clp* sup w(o,e)? +O_2_ (C|10|2 size’i(m)).
ec0B; 2d+1

1 _
v(Q,p) - 5P 3P

This completes the proof. [l

In view of the previous lemma, we are motivated to prove the bound (2.5.5), which would
follow if we can show that the expectation of w(O,,q)+ contracts by a factor 8(d,p,\) <1 as we
pass from scale n to scale n+1 (so that an iteration produces the desired estimate). It is therefore
natural to work with the change in the expectation of w between triadic scales n and n+ 1. In
fact, it is convenient to use the slightly different quantity

d d
Tp = Z; (E[p(On+1,¢)] —E[p(On, e)]), + Z; (E [V(Dn,ﬁ_lei)] ~E[v(Tnq1, 5_121)])+ .
Recall that, by (2.4.48) and (2.4.49),

E [1(Tns1,9)] — E[16(0n,¢)] + Clg|?37% 2 0, and
E[v(0,,8'p)] - E[v(0n,8 'p)] + Clp37 2 0.
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Since these are quadratic functions of ¢ and p, respectively, it follows that they are convex and
therefore sums control supremums:

sup i (B0(01,0) B (20, 0)] + Ol %) < 35 (B (@i, €] - ELi(o,00) + 037F)

d
qeR4 |Q|2 i=1

with a similar inequality for v. Using this observation, we deduce that, for every n € N and
d
p,q € RY,

(25.9)  (E[n(One,9)] - E[1(On, @)]), + (E[v(Tn, p)] - E[v(Ona,p)]).
<C(pP +a*) (7 + C37%).
Since w(0O,-) is almost nonnegative and the quantities w(-,q), —u(-,¢) and v(-,a 1q) are almost

subadditive, and therefore their expectations are (almost) monotone, 7, is essentially the same
(up to negligible errors) as

U

> (E[w(@n, )] - Ew(Tne,e)])-

i=1

Thus to prove the inequality E [w(O,11,€)] < 0E [w(Op,e)] for 0 < 1, it suffices to show that
E[w(Op,e)] < Ct, for some C < co. We do not prove exactly this, but something close enough
(see the statement of Lemma 2.5.9, below) which can still be iterated to obtain (2.5.5); see
Lemma 2.5.10, below.

The proof of Proposition 2.5.2 begins with the simple observation that, by quadratic response,
the expected difference in the gradients of u(-,0,¢) at two successive triadic scales is controlled
by 7,. This will aid us by localizing the functions u(-,0,¢). In the uniform elliptic setting, this
argument is two lines (cf. [21, (2.25)]). In our situation, the idea is the same but the statement is
necessarily weaker and the proof is more technical due to the discreteness and the non-uniformity
of the geometry of the clusters.

LEMMA 2.5.4. There exists C(d,\,p) < oo such that, for every m,n € N with n € [lm,m),

2
e T, and p,q € R?,

(2.5.10) E[L 5 f

2
[V (u(-,0,9) = u(, 2+ On, @) Liawoy|” (%) da
| U | ze3nZ9n0O

1
+E[H Z f*(z+Dn)‘v (v(-,D,p)—v(-,z+|:|n,p))]l{a¢o}‘2 ($) d(l)]

2€3nZ4n0
m—1 "
< C’(]p]Q + |q|2) ( Y T+ 34) .
k=n
PROOF. For convenience, we write u := u(-,0,¢) and u, = u(-, 2 + Oy, ¢) for z € 3"Z%no. The
second variation (2.4.4) gives, for every z € 3"Z% n 0,

1
| Oy |

2
/:*(ZH]”) ‘V(u B uz)]l{aio}| (z) dx ]l{zﬂ]ne’P,,}

1 1
<C ( | O | (5 (VU, avu)‘ﬁ*(zﬂjn) - (q7 v[u]P>z+Dn) - IU(Z + DYL,(D) ﬂ{Z-HZ\nE’P*}'
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Summing this inequality over z € 3"Z% n o yields

0, 1 2
% Z m-[ (z+O )‘V(U_u2)1{3¢0}| ($) d.’f]}.{z+|jne73*}

ze3nZ4n0O
1 1
< C Z 5 <Vu7avu)%’*(z+|:|n) - <Q’ V[u]'p>z+un ]1{Z+E|n€73*}
|D| ze3nZ4n0
1 Z (z+0Op,q) 1
- z , .
|3nZd n I:|| Z€3nZan/'L n q {Z+Dn€73x.}

Next, we notice that if z + O, ¢ P., then clp(z + 0,) is an element of P, thus all coarsened
functions are constant on clp(z+0,) and so u, =0 and u(z+0,,q) = 0. Thus we may remove the
indicator function in the last line of the previous display. Combining the above and using (2.4.35)
gives

1 2
(2.5.11) — > f*(zmn)\V(u—uz)]l{a#o}\ (z)dz 1 p,ep

Ol Lesnzno
< C(M(D,q) =37 S (e Dn,Q)) +0_2 (ClaP37%).
ze37Z4n0
Let I" denote the event
I:= {Hz € 3"Z%n o such that z + 0, ¢ 77*}.
Observe that
P[I]< Y Plz+0,¢P.]< €34 oxp (-c3™) < Cexp (—03%) :

z€3"Z4n0

Thus 1r < O (03_%). Using this bound, (2.1.9) and (2.4.16) (and again the fact that u, =0 if
Z+ 0Oy, ¢ P.), we obtain

2
> f(zm) (u=u)asy|” () do Lizin,pp,

| o | ze3"Zd
2
’D| ?)Zde - )’VU]l{a¢0}| (2)dz 10, ¢p.
ze3n * n
1

2
— 1 dx 1
N | O | (g*(Z+Dn) ‘vu {a#zo}l (x) v

<0 (ClaP)-01(C37%)
so# (c37%).

2d-1
Combining this with (2.5.11), taking the expectation of the result and applying (2.4.48) yields
the estimate for the first term on the left side of (2.5.10). The estimate of the second term is
similar and we omit the details, except for the remark that (2.4.38) should be used in place
of (2.4.35). O

We next obtain a version of the previous lemma for the spatial averages of the gradients of
the coarsened functions [u]p. This is tricky and somewhat technical, because in passing from u
to [u]p, using (2.3.3), we make errors depending on the coarseness of the partition P. If the
energy density |Vu|? happens to be concentrated in the very largest cubes of P, then this does
not give us a good enough estimate. We deal with this issue by using the Meyers estimate,
Proposition 2.3.8, which allows us to “Holder away” the factors representing the coarseness of P
on the right of (2.3.3).
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LEMMA 2.5.5. There exists C(d, \,p) < oo such that, for every m,n € N withn € [(igi;) m,m),
e 7T, and p,q € R,

3—d(m—n)

(2.5.12) ]E[ > [[vu0,0)]p)..q, — ([Vul,z + 0, q)]p)szQI

‘ Un |2 2€3"Z4N0m,

2€3"Z9N0

3—d(m—n) )
+E!— > \([W("D’p)]pkmn-([VU('>z+Dn,p)]p)z+Dn\]

m+1
< C(|p|2 + |q|2) ( Z e + 3_4) .
k=n

PROOF. The proof of the estimate for the second term on the left of (2.5.12) will be omitted,
since it follows from a very similar argument as for the estimate of the first term. For convenience
and simplicity, we give the proof only in the case that 0O =0,,. Throughout, we work with the
partition Q defined in Definition 2.3.9 which gives us good cubes for the Meyers estimate. We
estimate the left side of (2.5.12) by the left side of (2.5.10). For this we use (2.3.3), the Holder
inequality and the Meyers estimate.

We fix ¢ € R? and denote, for z € 3"Z%nno, the functions v := u(-, Oy, q) and u,, = u(-, z+0,, ).

Step 1. We reduce to a “good” event in which every element of the partition Q in Oy, 2 O,
is not too large. Denote this event by

I:= {max size(Og(x)) < 331} :
xrelan
By (2.3.21), there exists an exponent s(d, \,p) < oo such that

Tour <3727 sup size(Dg(x)) < 372410, (03%) <O (03_3?”) .

T€Oon
Using (2.4.24) with § = %, the fact that u, =0 (resp. u =0) if z+ O, ¢ P, (resp. Oy, ¢ P.) and
the Holder inequality, we obtain

3—d(7n—n) 2
ST ‘(V [u]'P>z+Dn -V [UZ]P>Z+Dn| Lowr

2€3"Z4N0,

eyt 5 (f (9l )+ 19 [wlpR@) do) Tor

ze3nZ4n0,,

SC(J[ VlulpP@)de+s 5 f |V[uz]p|2<:c>dw) Lour

Om ze3n7Z4n0,, @ #THn

| T [

<0 (ClgP3t)-0,(c37F).

1
4d-3

We deduce that

Sfd(m—n) 9 T
(2.5.13) E[— S (VIulp) o, ~(VIuwlp) .o, | Laur | < ClaP375.

ze3nZn0O,,

Step 2. We further prepare for the use of the Meyers estimate application by removing a
boundary layer around each of the subcubes z+0,,. This is necessary because Proposition 2.3.8 is
only an interior estimate and we do not have a good boundary condition anyway for minimizers
of pu. Let K, denote the union of the elements of 7}, /o) which are subsets of z + 0O, and intersect
the boundary of z + O,:

K, =/ {D’ €T :size(n') =32 o' c 2+, dist(0',d(z+0,)) = 0} :
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Let E, denote the edges (z,y) such that z or y belongs to K. Then by the Holder inequality,
the triangle inequality, and the fact that |K.| < C372|0, |, we find that, for each z € 3"Z% nO,,,

1
E 2
5|

Summing over z € 3"Z% nO,, and using (2.4.24) with § = i gives

2

Z V[u-u.]p(e)

eck,

<cr[ L] [ (whpe) + oo o) do]

0l

<33R [][D (19 ulpP(@) + [V[u:1pP (@) da:] .

1

|Dn|2

> Vu-u.]p(e)

(2.5.14) grdlm=m) S E
eeF,

2€3"Z9N0m,

2
] < Clg|?37%.

Step 3. We estimate the expected difference between V [u]p and V [u.]p in the strong L?
norm, after removing the K,’s and in the case that the good event I" holds. The precise objective
of this step is to prove (2.5.20), below.

We begin by using (2.3.3) to estimate, for each z € 3"Z nO,y,,
2
Viu- dr 1
S e [V L=l (2) et

<C > size(')24 ! f

Po0'c(z+0n)NK ()

<C > size(0')??! f

Os0'c(z+0n )NK 2 (')

V(u-12)1 aegy|” () dz Ip

2
V(U - uz)]l{a¢0}| (:L’) dx ]lr.

Here we used that Q is coarser than P and that no element of Q in z + O, is larger than 3ln/2]
on the event I'. Applying the Holder inequality to the previous sum yields, for every s € (2, 00),

1
| O, ’ (z+0n )NK

|v [’LL - uz]'p|2 (l‘) dx 1y

=2

< C’( ! > size(D')S(id;))

’ Un | O30/ c(z+0n )N K,

2
1 ) 2
’ ( Z [&(g/) |v(u_uz)]l{a¢0}‘ (ZC) dx) 1r.

| Un ’ Qs0'c(z+0n )NK 2

Take s =2+ ¢ with (d, \,p) > 0 as in Proposition 2.3.8 and apply the proposition in each 0’ € Q,
o’ ¢ (z+0,) \ K., which we note that on the event " implies 30’ € 2z + O, to get an estimate of
the second factor on the right side:

2
1 S 2
( Z ,/%*(Dr) V(u - uz)]l{a¢0}| (.T) d:L') 1r

| Un | O30/ c(z+0n )N K,

1 nf 1 2 B

| Un | Q0'c(z+0n )NK 2
1

@ N

A\

< ’

[=

2.1 2

e PRl [g(gm,)W(u—uz)]l{a;to}’ (z) da Lr
"1 Qsn'c(z+0n)NK2 *
1

2
—uy)lr, d
i oy [P w2 st (@)

IA

| On |
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To get the last line, we used that every point of €. (z + 0,) belongs to €.(30") for at most C

elements O’ of the sum, since Q satisfies property (ii) of Proposition 2.2.1, and | & |%71 <1
Putting the above inequalities together, we get

1

2.5.15
( ) ‘ O, ’ (z+0On )NK»

IV [u—u]pl* (z) do 1y

5=2

1
| O | J.(2+00)

s(2d-1)

SC’( L > size(n') 2 )S 1p

’ On | Q>0/cz+0y,

[9(u = )L aey | ().

s(2d-1) _ s(2d-1)

It follows that, for r:= ==

, which we note depends only on (d, \,p),

5-2

) I Tgnon (2 < C-

1)

C’(L > size(D')S(ii

| On | Q>0/cz+0p

and therefore

(2.5.16) IV (= u]pl” (2) do Tr L on; o))

C
T O | JE(z+an)

| O, | (z+Op)NK

V(1 =) Loy | ().

To complete the proof of (2.5.12), we split the expectation of the left side of (2.5.15), using the
minimal scale for the partition Q:

2517) E| f TP (2)d ]1]
( ° 7) [ (z+Dn)\Kz|V[u b ]P| (I) AT
2
SIEI:]l(-zHZ\n)\KZ |V [u_uz]Pl ((E) dm]lF]l{”ZNr(z)}:I
E ][ - Uz 2 dz1lr1l ]
’ [ anyre, |V T Ul (@) de e L ey, o))

Taking the expectation of (2.5.16) gives an estimate for the first term on the right side:
2
@518) B[ f IV [u=wlpl @) detr Lo

1 2
< CE[M \/%*(zﬂjn) ’V(U—Uz)]l{a;to}‘ (.Z‘) ClZL‘:| .

We estimate the second term on the right of (2.5.15) rather crudely: we use (2.1.9) and combine
this with (2.4.24) (with § = i) to obtain, for some small exponent so(d, A,p) >0,

]2 IV [u—w.]pl (2) dz Linap ()

<2(3% ) L9 ulpf @) dz s £ |9 (ol (@) d) Lewi o
So (C’q’23d(m n)+7—n) )

Taking the expectation of this yields

(2:5.19) B[ 90 ol (2) de 1 en |« Pt
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Notice that the assumptions n > (ig:; ) m implies that d(m —n) +

observation with (2.5.17), (2.5.18) and (2.5.19) yields

T —n<-5. Combining this

_1 2
E — Uz dx 1
[w oy, [V [ el () do ]

_n 1 2
<Clg*3™> +CE[E[5 (40 )‘V(u—uz)]l{aﬂ)}‘ (z) dl‘]-

Summing over z € 3"Z? nO,, and using Lemma 2.5.4, we get

1
| On | (z+0n)NK

(2.5.20) 3~dm=m) W\ E[

2€3"ZN0,,

|v [u - uz]'p|2 (l’) dx 1F:|

m—1
SC|q|2(Z Tk+32).

k=n

Step 4. The conclusion. Combining (2.5.13), (2.5.14) and (2.5.20), we obtain

3—d(m—n) ) ) _— .
o 2 B[lues, - (Veslp)ug ] < ClaP | X me+37H).
n 2€3"Z4N0m, Pt
This completes the proof of the lemma. O

DEFINITION 2.5.6 (The matrix &g,). We define 85" to be the matrix satisfying, for every
qeR?,
1

(2.5.21) 54+ 85,0=E[-(0n,)].

Since the right side of (2.5.21) is a nonnegative and quadratic function of ¢, it can be written in
terms of a matrix and thus 87" is well-defined.

We continue with some observations regarding the matrices a,. Notice that (2.4.16)
and (2.4.30) imply the existence of C'(d, A, p) < oo such that, for every n e N with n > C,

1
(2.5.22) 5Id <ag <CIy.

Since our model is invariant under permutations and reflections of the coordinate axes, the
matrices &'1‘5711 (as well as &) are actually a multiple of the identity I;. However, since we do not
use this anywhere and our arguments which actually can handle more general models, we ignore
this fact.

According to the first variation (2.4.3), we can also write ﬁai in terms of the expected spatial

average of the minimizers of p(0,,q): for every ¢,q" € RY,

1
2.5.23 “aglq=E|—— (¢ : :
In other words,
1 [ 1
= ]E —_— . ns .
Aond | |clp(Tn)] WEst, B Dlplar @)

For future reference, we record, for every m,n € N with m > n, the estimate

m—1
(2.5.24) a;l -ajl|<C (3—4 + 3 Tk).
k=n
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To prove (2.5.24), we use (2.4.48) and (2.5.21) to see that, for every ¢ € RY,

50800~ 5a-8sta] = [E [u(Om, )] - E[n(0n. )]
<’: E [1(0k1.0)] ~ E[1(0r. )
<% (B0~ Eern0), + 037
< Clql? (3-2 +T:2:§d; (B [1(Og+1, )] - E[p(Og, ei)])+)
< Clql? (3 1 +7:ZIT,€)

Taking the supremum of the previous inequality over ¢ € R? \ {0}, after dividing by |¢|?,
yields (2.5.24).

We show in the next lemma that the variance of (V[u(:,0n,¢)]p)y, (o,,) is controlled by 7.

This is perhaps the main step in the proof of Proposition 2.5.2. It is a variation of [21, Lemma
3.2].

LEMMA 2.5.7. There exists C(d,p,\) < co such that, for every n e N and q e R?,

V[u(, 0n,0)]p)y, ~aha| | <ClaP (ra+37%).

(2.5.25) [

PrROOF. Fix a unit direction e € 9B;.

Step 1. We construct a (deterministic) compactly supported, bounded and solenoidal vector
field G on 0,41 which is constant and equal to e on O,,. Precisely, the claim is that G is a vector
field on O,, satisfying

(2.5.26) sup |G(z,y)| <C,
(z,y)eEa(On+1)

is constant in the middle third subcube, i.e.,

(2.5.27) G(z,y)=e-(x-y) forall z,yen, with z~y,
and is almost (discretely) divergence-free in the sense that, for every w: 0,1 - R, we have
(2.5.28) (Vw,G)y  [<C3™ 3 |vuw| ().

T€On+1

According to the proof of [21, Lemma 3.2|, there exists a smooth, (continuum) vector field
g € C°°(R% R?) satisfying, for every k e N,

suppg € [-3,3]%, g(x)=ein [-1,1], V-g=0inR’ |V'g|<C(k,d).
We define the (discrete) vector field G by

G(z,y) == (g(3 "t)+g(3"y)) - (x-y), T,y€E€Opn.

To check (2.5.28), we fix w: Op41 > R, assume without loss of generality that (w), =0, and
compute

(V.G =2 T (w(x)-wy) (g3 ) +g () - (2 - 1)

2 x7yEDn+1 K xwy

= > w@) Y (8(3"2) +g(37"y)) - (z-y).

x€0n+1 Yy~
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For each x, we have
Ye@Mz) - (x-y)=g@B"x) ) (x-y) =0,
Yy~ Yy~

and therefore

> (8(37"2)+g(37"y)) (z-y) = X (8(37"y) —~g(37"x)) - (z - ).

y~x Yy~

The divergence-free condition and ‘V2g‘ < C yield, for each fixed =z,

< +(037n

Y (8B My)-gB M) (z-y)| <D (z-y) - Va3 "x) (y - x)
Yy~

Yy~x
=2|v-g(37"x)|+C37" = 037,

Combining the above yields

(Vw,G)g, < D [w(z)]

T€0n+1

<C3™" > Jw(z)l.

T€On+1

> (g(37"x) +g(37"y)) - (z-)

Yy~

The Poincaré inequality and (w), . =0 now yields (2.5.28).
Step 2. We next show that

(2529) [{V[u(+0ns1,0)]p,G)y. = > (V[u(:0n1,0)]p,G)..q,

2€3"7Z9N0, 41

4d-3

<O 3 (C| Onst ||q|3-%).
For any vector field F,
<F7 G>Dn+1 - Z <F7 G>z+|jn = Z (F, G)z+|:|n

2€3"Z9N0y 41 (z,y)eD
where D is the set of edges (z,y) such that x,y € 0,41 and x and y belong to different subcubes
of the form z +0,, z € {-3",0,3"}%. Notice that |D| < C3™| 0,41 |. By the Hélder inequality and
the bound |G| < C, we therefore obtain

(F’G>E\n+1_ Z (F7G>z+mn < Z <F7G>Z+Dn
2€3"Z4N0p 41 (x,y)eD
<C f Fl(z)d
[ 1P (2) de
1
sC|D|%(fD|F|2 (:L")dac)2

1
<C37 5Oy | (f Tak (x)dg:)2.
On+1
Applying this inequality with F' = V [u(-,0pn+1,¢)]p and then using (2.4.24) with § = % to bound
the right side of the result, we obtain (2.5.29).

Step 3. The conclusion. We apply (2.5.28) with w = [u(-,0p11,¢9)]p and combine this
with (2.4.20), (2.5.12) and (2.5.29) to get

>

2€3"79N0p 41

2
1

| O |

(2.5.30) E[ (VIuC,2+0n,9)]p, G), 0, < Clql? (Tn+3_%).
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We conclude by noticing that, since the elements in the sum on the left side are almost P—
independent, the variance of each term in the sum should be controlled by the variance of the
entire sum. To make this precise, we prove the following inequality:

(2531) E” o (T2 4 00l G )i,
2
e oet A (LGRS N) I TCon | N B Y R
| D’I’L | 10C loc(Z'H:"n) z+0n
To prove this inequality, we first appeal to (2.4.50), which gives
”| u( Z+Dn7Q)]’P7G(‘T y))(zH:l y([m/2D)
2
—L<V[ n/Z)( z+0 q)] G(z y)) <C375.
| o, | Uyoe ns Proc(2+0n) ) ) (z+|:\n)(["/2D hS

and combine it with the result of the following computation, which is an application of (2.4.24)
(with ¢ = %L)

2
1
E[ m(v [u(-,z+Dn,q)]P,G(x,y))(z+mn)\(z+mn)([n/z]) ]
1 2
<O | Op | J(z+00) (240, )(n/2)W[U(.’Z—FDMQ)]PHJU)dx ]
|(z+Dn) (+0,) 2D ,
SC]E ||:l | |V[U(',Z+Dn,q)]'p| (LL')dl‘
n z+0n
<C374
Since
(V[u /2] )( z2+0 q)] G(z y)) is F(z + O,)-measurable
loc n Proc(240n) ) ) (z+|:|n)([”/2]) n )

and |G| < C by (2.5.26), we may use independence (in the second line in the display below), (2.5.31)
and the triangle inequality (twice, in the first and third lines) and (2.5.30) (in the fourth line) to
obtain

Var[ 1 (V [u(-,On, Q)]p ,G(z, y)>mn]

| O, |
1 < [n/2]) ] n
S var| —— v z+0 ’q , G x’ > + 03 1
zeznz;nmn+1 [| On | [ Hoc - " )]Ploc(zmn) (.y) (2+0,) /2D
_ X ( N ) _
=var \Y Z+0Op,q , , +(3° 4
_ZES”Z;‘E\TL_H ‘ Dn | [ IOC ( " )] IOC(Z-HJ”) ( y) (Z+D7L)([n/2])

+C371

< var Z

| 2€3"Z9N05 41 ‘ ”’

< Clg? (Tn + 3*%) .

(VIuC:z+0n,9)]p, G(2,9)).1q,
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Using (2.5.27), we may rewrite this as
1 _n
var | ——(V [u(-,0n,9)]p . €) 5 ] < C(Tn +37a ) )
| On | "
Summing this over e € {e1,..., ¢4} and recalling (2.5.23) completes the proof. O
We next pass from control of the spatial averages of V [u], given in the previous lemma to

control over the function [u]p itself. The ingredients for this are Lemmas 2.5.5 and 2.5.7 and
the (discrete) multiscale Poincaré inequality (Proposition 2.A.2).

LEMMA 2.5.8. There exists C(d,p,\) < oo such that, for n € N and p,q € R?,
(2.5.32) E []é 1 |[u(, On+1,9)]p(x) — 2 - éaiq‘z dw] < Olq*3*" (3_(4dl+2)" +3™" i 3k7k) .
n+ k=0
and
(2533) E []é [0 Baen )] @) = - dx] < O3 (3-(2«131)" i3y 3’%) .
n+ k=0

PrROOF. We first give the proof of (2.5.32). The main tool for passing from spatial aver-
ages of gradients to strong norms for the function itself is the multiscale Poincaré inequality
(Proposition 2.A.2), which we apply to the function

2w [u(,Bp41,9)]p(x) — 285 g

We note that this function has zero mean on 0,41 by the chosen normalization (2.4.2). Proposi-

tion 2.A.2 yields, for ng := [(ﬁié) (n+ 1)],

(2.5.34)
__ 2 n, —— 2
]‘[:\ |[u('7Dn+17Q):|'P(x) _‘,I:.aD}lQ‘ dx < 032 0 ][ ‘v[u('7Dn+17q)]P(m) _aDiQ‘ dx
n+1

On+1
1
2)2

The first term on the right side is controlled by the triangle inequality, (2.4.24) (with § = ﬁ)
and (2.5.22), which give

2

1 __
_| (V [U(, On+1, Q)]’P)Z-ij - al:liq

+C i 3’“(361(”’“) D

k=ng 2€3FZ4n0p41

12
(2:5.35) £ 9o a)lpe) -8zt do
n+1
1 g2
= ][D IV [u]p(, One1, @) da + a5 g
n+1

<Oy (ClaPaw)+ Ol <O_y_(ClaP3w).

1
4d-3

To bound the second term on the right side of (2.5.34), we have to estimate the expectation

of the (square of the) difference between ﬁ (V [u(-,0n41,9)]p). g, and a5 ¢ in all successors

z + Ok of O,41, down to the mesoscale of size 3™. The claim is that, for every k > ny,

1 __
ol (V[u(:0041,9)1p)..0, — 8o

Z€3kZdﬂDn+1

2 n
(2.5.36) 374k W IE[ ] < Clg)? ( > T +3-’Z).
m=k
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This inequality is a consequence of what we have shown above. Indeed, by the inequality
(a+b+c)?<3(a®+b%+c?), (2.5.12), (2.5.22), (2.5.24) and (2.5.25), we have

|

—d(n— 1 .
g-dnk)  §° E[—<V[u(-,Dn+1,Q)]p>z+Dk—aDiq

2€3FZ4n0y 41 Uk |
317d(n7k) 2
| O |2 Z ]EI:’(v [u('7Dn+laQ)]7D>Z+Dk _<V [u('72+Dk7Q)]7D>z+Dk ]
k ze3kZdnO, 11
1 2
+ 31—d(n—k) Z El|l— (v [’LL(, Z + Ok, Q)]'P)z+|:|k a\:\iq
2€3k7Z4n0p 41 Uk |

P .

£C|q|2(z Tm+3_4).

m=k
This is (2.5.36).

We next combine (2.5.36) with (2.5.34) and (2.5.35), after taking the expectation of the
latter two inequalities, to obtain the estimate

2
n 1
B[ £ [lu 00, 0)p () - 285l d] < 32"°+4d+2|q|2+E[(Z BkXﬁ)]
On+1 k=ng

where the random variable

2

-1

Xk =3 d(n-k) Z _| <V [u(7 Un+1, q)]7’>Z+Dk aan

2€3k7Z4n0, 41

satisfies

E[X;] < Clgl? ( i T + 3—’2) .

m=k

Using the fact that

2
( D 3’“X,§ ) <03" Y 3k X,

k=ng k=ng

and taking expectations, we obtain

E []énl [, One1, 0) 1 (

Z,daz] < Clq|? (32"0*4542 +3" Z 3’“(2 T + 37 ))

k=ng
_n_ 3ng
< Clgf? (32”0+4d+z +3" T 3" Z 3%) :
k=0

Observe from the definition of ng that
g+ < ogPoraE < 032,

We thus obtain
E [][ (-, On41,9)]p(z) — - 85" q‘ dx] <Clql*3%" (3 ( ~(azz)n 4 3 3 3k7k) )
On+1 k=0

This completes the proof of (2.5.32). The proof of (2.5.33) is so similar to that of (2.5.32) that
we omit the details. The only difference is that we do not need Lemma 2.5.7 and, in place



2.5. CONVERGENCE OF THE SUBADDITIVE QUANTITIES 127

of (2.5.25), use the estimate (2.4.26), which implies

2
1 _
E|: |Dk| <v[v(’7Z+Dk7p)]’P>z+gk_p SC1|p|23 k'
This completes the proof of the lemma. O

We now combine the previous lemma, the Caccioppoli inequality (Lemma 2.3.5) and quadratic
response (2.4.6) to obtain an estimate on the expectation of a quantity very close to w(Oy,q) in
terms of a weighted average of {7k} k<n-

LEMMA 2.5.9. There exists a constant C(d,p,\) < oo such that for every n € N and q e R,
n
(2:5.37) E[|v (0n.85,4) - (0. 0) ~ - 85q]] < Claf (3%)” 5 3knTk) .
k=0
PROOF. Denote P, := a5 g. According to Corollary 2.4.6 and |p,| < Clql,

(2.5.38)  |v(On,B,) — 1(On, q) = q By

1 _ 2 25-1
< | o, | %2 (On) ‘(VU(-, Dnvq) - V’U(-, Dnapn)) ]l{a;tO}l (:IZ) dz + 02(127_1 (C|Q| 32 ) :

We focus the rest of the argument on estimating the expectation of the first term on the right
side of (2.5.38). Using (2.5.10) and the Caccioppoli inequality (Lemma 2.3.5), we have that

! 2
2.5.39 E O q) = VO (-, Oy ) 1 p
( ) [|Dn| %(Dn)\(Vu(,D q) = Vo(, 00, 5,)) Lasoy| () x]
— 2
S]E S On+1, — -, Oy 7_n 1 a d
[|Dn| . o | (V0 Bne1,0) = V00 D1, P0)) Lacop | () x]
m-—1
+Clqgl? ( > Tk+3_2)
k=n
C3—2n )
<k f s On+1,q) = 0(2, Ons1,Pp)|” d
[ | On | %(Dml)m(x +1,9) = (2, On+1,Dy,)| x:|

m—1 "
+Clqg|? ( > Tk +3_2) .
k=n
This reduces the lemma to an appropriate estimate of the last expectation in the previous display.

We continue by writing u := u(x,O,41,¢) and v := v(x,0p41, P, ) for short. We also allow s
to be a positive exponent depending on d which may vary in each occurrence. According to
Lemma 2.3.3,

(2.5.40) f%(um) (u-v)(x) - [u-v]p(2) du

2
<C sup )\Dp(m)|2 ‘V(u—v)]l{a#()}‘ (z)dx.

me%”,,(l]nﬂ %*(Dn-#l)

Let A, be the event
Ay = sup  |[op(x)|>3% .
I'E(éj*(\]n+1)

Then according to Proposition 2.2.4, there exists s(d) > 0 such that

La, swp [op(2)<372 sup [op(x)] <O,(C).

xe(g*(un+1) xEclr)p*(Dn+1)

n
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Hence, by (2.5.40) and the bounds (2.4.20) and (2.4.21), we get
oo [ 0)@) = [u=vlp (@) da

<C sup |op(2)P )(‘Vu]l{a¢0}|2(x)+|Vv]l{a¢0}‘2(m))dm

Z‘E%*(Dywl) %*(Dru-l

n 2 2
<C3 [éi«(\:\nu) (‘VU]I{a¢O}| (z) + ‘v”]l{a¢0}| (x)) dx

2 2
+C1y, sup ||:|'P(x)|2 %(DMI)(‘VU]I{%O” (:r)+‘Vv]l{a¢0}‘ (w)) dx

TE€Cx (|:|n+1 )

<(C3"+0,(C) O_t_(ClonllgP)

2d

<0, (C|on|]g*3™).

Thus
1 2 2
E| — u-v)(z) - [u-v]p(x)|]" dz| < Clq|*3".
| o o 6= @) - = o | <l
Taking expectations and using the triangle inequality, we get
03—2n 9
2.5.41 E—[ u(zx) —v(x)|” dr
o)) B[ o)) ]
1 2
<C3PE|— - dz |+ Clq*37".
|57 o |10 - @) |+l
Combining (2.5.39) and (2.5.41), we get
E ! [(Vu-vo)l ‘2 (z)dz
10, | . (0n) (a0}
1 9 m—1 "
<C3™"E| — u]p(x) - [v]p ()] da |+ Clg|? +372 ).
|1 o | 00p @) = el ClaP (£ e 572)

An application of Lemma 2.5.8 and the triangle inequality yields

5 [[ﬁ(gnﬂ) [ulp(z) - [U]P($)|2 dl‘] < Clq[*3*" (3—(2;:1)71 " i 3k;_n7_k) ‘

k=0
The previous two displays and (2.5.38) imply (2.5.37) and complete the proof.

We next show that an iteration of the result of the previous lemma yields a rate of decay for

the expectation of w.

LEMMA 2.5.10. There exist an exponent a(d,p,\) >0 and C(d,p,\) < oo such that for every

neN,

1 —no
(2.5.42) E [51;5 P (w(ap, q))+:| <C3™.
qe

PROOF. In view of the left side of (2.5.37), it is natural to consider the quantity D,, defined

for each n € N by

d
Dy := > E[v(0n, ) — (0On, 8o, ¢5) — ¢; - ag, ] -
i1

Notice that (2.4.13) and (2.4.16) imply that D,, is bounded and Corollary 2.4.6 implies that D,

has a small negative part: for every n € N,

(2.5.43) -C373<D,<C.
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As we will see in Step 4, below, D,, controls E [supqeRd g% (w(On,q)), ] in the sense that (2.5.44)
implies (2.5.42). Therefore our goal is to show that, for & and C as in the statement of the
lemma,

(2.5.44) D, <C37,

Step 1. We show that the existence of ¢(d, \,p) >0, C(d,\,p) < oo and Ny(d, \,p) € N such
that, for every n € N with n > Ny,

(2.5.45) Dy <Dy —cry + 0371,

By the definition of the matrix ag,,,, we have that, for each p ¢ R?, the map

1
g -E[p(One1, )] -p-q = 5q-agfmq—p-q

achieves its minimum at the point ¢ = &g,,,p. By quadratic response and the bounds on
E [1(On+1,q)] implied by (2.4.16), this implies the existence of C(d, \,p) < oo such that, for every
qeR?,
(2.5.46) ~E[1(On+1,8g,,,0)] — ¢ 8g,,,, 0

<-E[1(On+1,9)] - ¢i-q

< -E[(On+1,80,.,¢)] - ¢ - &g, ¢ + Clg - 8o, el
Using the first line of (2.5.46) with ¢ = a5, ¢; yields

d
D1 = Z (E[(v (On+1, ) = (Ons+1,80,,,¢) = ¢ - 8n,,,¢)])
i=1
d
<Y (E[(v (Onets i) — p(Ona1, 8o, ¢) — ¢ - 8g, e5)])
i=1

d
Dy + ; (E[v (Ons1,¢)] - E[v (On, ¢:)])

d
=2 (E[u(On+1,80,¢)] - E[1(0n, 80, ¢)])
i=1
<D, -cr, +C377,
where in the last line we used the bounds (2.4.48), (2.4.49) and (2.5.22), which hold for all
sufficiently large n depending only on (d, \,p). This completes the proof of (2.5.45).

In view of the form of the right side of (2.5.37) as well as the result of the previous step, it is
natural to modify D, slightly by defining, for every n > No,

n

D,:=3% Y 32Dy

k=No
Notice that D, is, up to a constant, a weighted average of Dpyy,..., D, and, in particular,
by (2.5.43), we have that
n—-1
(2.5.47) Dp=D,+3% Y 32Dy >D,-Cn3 % >D,-C37%,

k=No
Therefore, rather than (2.5.44), we may prove the stronger bound
(2.5.48) D, <C37",

Step 2. We show that there exists 6(d, \,p) € [%, 1) and C(d, \,p) < oo such that, for every
n € N with n > Ny,

(2.5.49) D1 < 0D, + 03 (Gam)n,
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Using (2.5.43) and (2.5.45), we find that

n
(2.5.50) Dy =Dpi1=372 ), 35 (D, - Dj_1) - ?,%(No—(ml))DN0
k=No

n n k n n n L k n
>c37% ) 3% (n,-C37%)-C3 32378 Y 33— C37H
k=No k=No

Next, we apply Lemma 2.5.9, which tells us that

2 k 2 n
D <C (3(2d+1)k + 23”“71) <C (3(w+1)k £ ) 3”%) .

1=0 X
Summing this over k € {No,...,n} gives
=~ n n k 2 k
D,<C372 ) 32 (3—(m+1)k+ S 3k
n k
=37z Yy ) 37534y + 03~ (zi)n
k=Np =Ny
3% N N gkl (52 )n
=032 Z 23 23" + C37\2d41
=N k=l
_n s 1 (2
<C3z2 Z 327+ C3 (2d+1)"‘

I=No
Combining the previous displays with (2.5.50) gives
Dyt < (1-¢)Dy, + 03 (za)n,

This completes the proof of (2.5.49).

Step 3. We complete the proof of (2.5.48). By an interation of (2.5.49) we get, for every
n > Ny,

n
Bo<( 3 araaoen | By,
k=Np
2
Taking 6 closer to 1, if necessary, so that 6 > (%) 2d-1 we get that each term in the sum is at
most ™. Using also Dy, < C, we therefore obtain

D, <Cnf" <CO%2.

Taking « :=log 3/2|log 6| so that 03 =37 yields the desired bound (2.5.48).

Step 4. We complete the proof of (2.5.42). First, we observe that, due to Corollary 2.4.29,
we have the function

g~ w(On,q) + C372 g,
is nonnegative and quadratic and hence convex. It follows that
1 1 n d .
sup —5 (W(Dnv Q))+ < sup T (W(Dn7Q) + 03—§|q|2) < Zw(Dn, Ei) L O3E
qeRd |q| qE]Rd ]q[ =

Next we observe that (2.4.29) and (2.5.44) (which we recall is a consequence of (2.5.47)
and (2.5.48)) imply that

|Dy| < C37".
Using this and (2.5.45), we find that

Tn <0372 + C(Dp — Dpyr) < C37.
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According to the previous line and (2.5.24), we deduce that
|ag, —a| < 037",
Therefore, by the previous line, (2.4.29) and (2.5.46) applied with ¢ = ae;, we find
E [w(Op,¢)+] = E[v(On, ¢;) = u(On, 8n,,0) = ¢; - &g, 0]
<|E[w(Tn, ¢)] = E [v (On, &) = (T, 8o, €) - ¢ - A, ¢]| + C372
<Clag, —-a+C372
<C3™"e,
Combining the above and using (2.5.44) again, we get
E [sup P (w(Dn,q))+] < iE [(w(Op, )] +C372

qeRd i=1

E[v(On,¢;) — u(0p, a0, ¢) — ¢ -ag, ;] + C37"¢

M

S
Il
—_

, + O3

37,

I
QU

IN

This completes the argument. U

To complete the proof of Proposition 2.5.2, we need to show that the control over the
expectation of w given in the previous lemma can be enhanced, using independence, to control
over exponential moments of w. This is a consequence of the following lemma.

LEMMA 2.5.11. There exist exponents s(d) >0 and a(s,\,p) >0 and a constant C(s,d, \,p) <
oo such that, for every 0 e T,

1 . —a
(2.5.51) 235 W lw(o,q)| = O, (C (size(D)) ™).

PROOF. The argument is an application of the exponential moment method and subadditivity,
modified to take care of the fact that w is not a bounded random variable. It is enough to
prove the result for cubes of the form O = 0g,, for m € N by approximate stationarity, see (2.4.40)
and (2.4.43). We fix m € N and set n := [Qm] and k := [4m] Throughout the argument, we let s
denote a positive exponent depending only on d which may vary in each occurrence. Likewise o
is a positive exponent depending only on (d, A,p) which may vary.

We denote, for each 0 e T,

p(B) = sup — (w(D,4)), -
geR4 |Q|

(k )

To prepare for the use of independence, we also let p, | and wl(fc) denote the same quantities as

() ()

p and w except with the local quantities y, : and vy’ in place of 1 and v in their definitions.
That is,
k
Wit (0.0) = ) (0,87q) ~ i) (B,0) —q 87
and )
k) (k)
P (D) 1= sup — (wi) (0,q)
: qeR4 | |2( : )+
By (2.4.39) and Proposition 2.4.10, we see that
(2.5.52) ploc)(D) and wloc (D q) is F(O)-measurable
and

(2.5.53) |w(D,q)—wloc(D q)\ ‘P(D ploc)(D)|<O (03_7)
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Step 1. By removing a bad event of small probability, we essentially reduce to the case that
p(z +Oy) is bounded on the subcubes z + O, € O,,.

According to Lemma 2.4.4, its consequence (2.4.17) and the Markov inequality, there exists
C1(d,p,\) < oo such that, for every z € 3"Z9,

1 =
[P’[p(z + Dn) > Cl] < Cexp (—532d+1 ) .
By (2.5.53), this implies that
_n_ 1 ks
P [ (2 +0n) > C1] < Cexp (_(_1?3%1) + Coxp (_53%)

1
<C —3M).
exp( c )
Thus
P| sup pl(fg(z +0y,) > Cl] < 034Um) exp (—éBmQ) <Cexp (—éBmo‘) .

z€3nZ4N0,,

For each z € 3"Z¢, denote the events

G, {ploc)(z +0,) < cl}

and

H::{ sup ploc)(Z+Dn)>Cl}=Q\( N Gz).

ze3nZ4n0,, ze3nZ4N0,,

Note that G, € F(z +0,). Note that the estimate above gives a bound for 1:
1y <0 (C37™M%),
and thus we can bound w from above on the “bad” event H:
(2.5.54) p(On) 1 <O (C)- 01 (C3T) < Os (C37™Y).
Step 2. The concentration argument. The claimed estimate is
(2.5.55) p(Op) 1oy < Os (C37MY).

We begin by noticing that (2.4.32), (2.4.33) and (2.5.53) give us the approximate subadditivity
bound

(2.5.56) ()l <37 S ()1, + O, (€37 4)
237790y,
< 3~d(m-n) > ploc)(z +0,) ACp + Oy (03 )
ze3nZ4n0O,,

Note that for z, 2’ € 3"Z%nO,, with z # 2/,

(2.5.57) ploc) (z+0,) and p( ) (z' + Dn) are P-independent.

loc

We now fix ¢t > 0 and compute

logE[eXp (t > ploc)(z+|2|n) /\Cl)]

2€3" 7900,

:]og]E[ I exp(tpl )(z+Dn)/\C1)]

2€3"Z9N0O,

<y logE[ exp (t,oloc) (z+0Op) A C’l)] (by (2.5.57))

2€3"ZN0O,

=390 log  [exp (1p{1 () £ C1 )] (by (2.4.40)).
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We take ¢ := 1/K and estimate the last term using the elementary inequalities

exp(s) <1+Cs forall 0<s<Cy,
log(1+s)<s  forall s>0,

to get

3710mn) 160 |

exp (C1 > pl(fc)(erDn)/\Cl):l <CE [pl(fc)(un)]

ze€3nZN0,,

Applying (2.5.42) and (2.5.53), we find that
E [pl(fc)(un)] < (3" < 03—%

The previous two lines and Chebyshev’s inequality imply that

p lB—d(m—m S oWz ro) Al >t <exp (—c3d<m—”> (t - 03—%)) :

ze3nZaN0,,

This implies that

3-d(m-n) Z pl(:c) (2+0,)AC1 <O (037%) .

ze3nZN0,,

Combined with (2.5.56), we get
p(Om)Lau < 01 (C375 ) + 0, (C37%) < 0, (C37™),

which is (2.5.55).
Step 3. We complete the argument. By combining the previous steps, we get
p(Om) = p(On) Lo + p(O) g < O (€375,

We also recall that, by (2.4.29), we have

1 m
sup —Zw(Dm,q) >-0_ o (0377).
geR4 |Q| 2d-1

The previous two inequalities yield the lemma after we shrink a. O

PROOF OF PROPOSITION 2.5.2. Applying Lemma 2.5.3 and then Lemma 2.5.11, we obtain

2 2

1 1
+sup — (v(0,p) - 5p-ap
peRd |p’ 2

1 1,
sup — |1(0,9) - 5¢-8" ¢
geR4 ’q’ 2

< C( sup w(O,e); +O_1

1
66831 2d+1

(C size(l:l)_% )) <04 (Csize(n)™).

Taking square roots and shrinking « gives the desired bound for some s(d, A\, p) > 0. Using (2.1.10)
to interpolate this results with the bounds (2.4.16) and (2.4.13), we can allow the exponent s to
depend only on d by further shrinking «. O

We conclude this section by introducing N which will be an important tool in the proofs of
Section 6.
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DEFINITION 2.5.12. For m € N, we define the random variable N by

e fomesia-[] -[],

1 1 1 _
pu(z+0p,q) - qa |+ SupW V(Z+Dn,p)—§p-ap

1
sup Sup —=
’ ’ peRd [P

ze3kZ4nO,, \ geR? |4
> C3‘m°‘}.

Here the exponent o = a(d,p, \) >0 is defined in the proof of the following proposition, and may
be smaller than the one in Proposition 2.5.2.

PROPOSITION 2.5.13. There exist s(d,p,\) >0 and C(d,p,\) < oo such that

(2.5.58) N <O,(0).
PROOF. First we prove, for each fixed m € N and z € 3*Z¢, an estimate of the form
1 =1 -mao _r—lg-am
P sup||2 p(z+0n,q9)—-q-a ¢q|>C3 <Cexp(-C~'37%™"),
qeR4

where n := [%] To do this we apply Proposition 2.4.10 and use the stationarity property (2.4.40)
and (2.4.43) to obtain

1 1
P [sup 5 |#(2 + On, q) - q-alql> C3m°‘:|
geRd | |
1 1 C
<P|sup — ,uloc)(z +0p,q)— —q-a ¢ > —3mo‘] +Cexp (—07137‘””)
| geRd |Q| 2 2
[ 1| k) 1 C.,- -
<P|su ,q) — = ql> =3+ Cex 3am
A 1) (On. q) 5¢-a 5 ] p( )
[ 1 1 C
<P|sup — |toc(On,q) — =q -8 'q| > —3‘””‘] +Cexp(-C™'37™)
| geRd |Q| 2 4

<Cexp (—0713"””) .
This results and the fact that 3™ > Cn gives to

1 1
P[ sup  sup — (2 +On,q) — 54~ algl> CB_ma]
2€3kZ4n0y, qeR4 | | 2
1 _ C._
< > IP’[sup — ,uloc)(z+ On,q) = 34 | > 53 ma:|
ze3kZ4n0O,, geRd | |

< 3%m=k) Cexp (—C_IS_M”)
< Cexp (—0_13_“m) .

Similarly, we obtain

1 _
v(z+0p,p) - SPap

P[ sup  sup —s > 03_ma] < Cexp (—0_13_0"”) .

ze3kZ4na,, peRd |p|2

The estimate (2.5.58) is now a consequence of Lemma 2.2.3 with X, defined as the indicator
function of the event

1 1,
sup | sup — [u(z+0On,q) - 5q-87 ¢
z€3k 740, \ geR? |Q|

+ sup —5
9 p

peRd |p|2

1
v(z+0Op,p) - §p-5p‘) > C’3ma}. O
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2.6. Homogenization error estimates for the Dirichlet problem

In this section, we pass from control on the subadditive quantities —u and v to quenched control
on the error in homogenization for the Dirichlet problem. Combined with Proposition 2.5.2, this
allows us to complete the proof of Theorem 2.1.1. The arguments here are entirely deterministic
in the sense that they produce an estimate for the homogenization error in terms of the coarseness
of the partition P and the convergence of —u and v in mesoscopic cubes. In particular, we are
not using theory developed in the previous section. The arguments here are a variation of similar
ones in [21].

In this section, we abuse notation by using the symbol O,, to also denote the continuum cube
1 1 d
[—5(37”—1),5(37"—1) cR?

It will be made clear from the context whether O, refers to the continuum cube or the discrete
one. Moreover in this section we will use

| O | = Card(g,,) = 3%

which is slightly different from Leb(D,,) = (3" - 1)%. We will also write fa, = ﬁ fo, =37 .
We further abuse notation by extending the coarsened function [u]p to be defined on a continuum

. . . . d .
domain by taking it to be constant on each unit cube of the form z + (—%, %] with z € Z¢. To
avoid confusion, here we will use the symbols [ and f only to denote integration with respect to

Lebesgue measure on R? and write sums with Y.

We fix, once and for all, a positive integer m € N and a function u € A, (Q,,). We also fix an
exponent p > 2 and set
1 P
M := ( > |Vu]la¢o|p(ac)) :
|Om | sesnm)
To define upom on the continuum cube 0O,,, we first define

() = {u(:p) if z € €. (0 ) N OOy,

[u]p () otherwise.
We then extend @ to the continuum by taking it to be constant on unit cubes of the form
d . . . . . .
zZ+ (—%, %] with z € Z¢. We then make it smooth by convolving it with a smooth bump function

pE Cé"’(Rd,R) which is supported in (—%, %)d and has unit mass. Call the function obtained in

this way w € C*°(0,,) and notice that,

Vo eZ4no,,, w(z) = @(x).
We take upom € H'(O,,) to be the solution of the homogenized Dirichlet problem
- V- (aVupom) =0 in Oy,
{uhom =w on d0,, .
The purpose of this section is to prove the following proposition which, in view of our setup in
this section, implies Theorem 2.1.1.

We recall that the random scales M; and A are given in Proposition 2.2.4 and Definition 2.5.12,
respectively, and the partition Q is the one for the Meyers estimate (see Definition 2.3.9) which
is coarser than P.

PROPOSITION 2.6.1. There exist t := t(d,p,\,p) < +oo, «a = a(d,p,\,p) > 0 and C :=
C(d,p,\,p) < +oo such that 3™ > N'v M(Q) implies that
1
Z |U(ﬂf) - uhOm(x)|2 < CM2 SiZ@(Dm)(Zia)'
O | aeis (o)



136 2. REGULARITY AND QUANTITATIVE HOMOGENIZATION ON PERCOLATION CLUSTERS

The main idea in the proof of the proposition is to construct a function @ € w + H(O,,)
which satisfies the property that its continuous homogenized energy is smaller that the discrete
heterogeneous energy of u. This is explicited in Lemma 2.6.2. In the other direction, we will
construct a function U : €% (0,) — R which statisfies the following three properties:

(1) TUpom is equal to w on €. (0y,) N IO,

(2) The discrete heterogenous energy of Upep, is smaller than the continuous homogenized
energy of Unom,

(3) The discrete L?-norm of Uom — Unom 1S small.

This is specified in Lemma 2.6.3. We will then deduce Proposition 2.6.1 from these results.
LEMMA 2.6.2. There exists t := t(d,p,\,p) < +o0, a:= a(d,p,\,p) >0 and C = C(d,p,\,p) <

+00 such that, in the case that 3™ > N'vM(Q), there exists a function T € w+HE (T satisfying
the energy bound

(2.6.1) ]ém Vii(x) -aVi(x) dr < —— (Vu,aVu)g, o, ) + CM?37.

[ Om |

LEMMA 2.6.3. There ezist t :=t(d,p,\,p) < +o0, a:= a(d,p,\,p) >0 and C = C(d,p,\,p) <
+oo such that, in the case that 3™ > N'v M (Q), there exists a function Upom : €+ (0m) > R
satisfying the following three properties:

(i) Boundary condition:
Vo € €(0m) NO00m,  TUhom(z) = u(z).
(ii) Energy estimate:
1 - - - -
5 Vithon,a() Vilhon i 5, < ]g (Vithom (2) - B8V tnom () dz + CM?3™™,
m m
(iii) L? estimate:

3—2m

> (Tnom(®) — thom (2))* < CM237™,
|Om | et

We now prove Proposition 2.6.1 and postpone the proof of these Lemmas.

PROOF OF PROPOSITION 2.6.1. Using that u € A.(0,,), the definition of upep,, Lemma 2.6.2
and Property (ii) of Lemma 2.6.3, we have the following series of inequalities

][D Vuhom () - AVupom () dx < ][D (Vu-ava)de
’ 1

| Om
1
=

< ][ Vithom () - BV tthom () dz: + €37,
Om

(2.6.2) < (Vu,avu), +C37"

A

(Vﬂhom, avﬁhom)mm + (3 M«

Using that for every e € By(0,,), a(e) € {0} x [A, 1], we obtain, for every e € By(%6%(0,,)) such
that a(e) #0

A (Vihom(e) - Vu(e))? < a(e) (Vithom (z) — Vu(e))®
< 2a(e) (Vihom(€))? + 2a(e) (Vu(e))®

SN (LSO RLIG))
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Summing over e € By(%%(0m)) and using (2.6.2) yields

1 ;; _ 2 —mao
O Z ‘ (uhom U)]l{a;to}‘ (13)<C3
’ m‘

€% (Om)

1
+ 0(4— (Vu,avu),
| Om | "

By Property (i) of Lemma 2.6.3, Upom = © on €4 (0n,) N 00y, Thus, since u € A, (On),

4! <Vﬂh0m+w aVﬂh0m+vU> )
| O, | 2 ’ 2 Om ]

(vuhom * VU,aVUhom * Vu> <(Vu,avu), .
2 2 Om "

This eventually gives

L Uhom — ) 1 2 <CM?*3Tme

> |V (Whom — ) Lasoy|” () < :

|Om | yeoton)

The Poincaré inequality (Proposition 2.3.4 with s = 2) then gives

3—2m

> (Whom(w) —u())”

| Um | J»’E%()*(Dm)

e )\v(ahom—um{aw}f(x)
m 1 ze6«(0Om

< ( sup size (Dp(x))Qd)
relm
Thus since P is finer than Q, and 3™ > M;(Q), we have, for ¢ large enough,

3—2m

(2.6.3) > (Thom(z) —u(z))® < CM237™,

|Om | sesonm)

Combining this with Property (iii) of Lemma 2.6.3 shows
3—2m

> (unom(w) —u(z))* < CMZ3™
| Um | €% (Om)

and the proof is complete. O

Before starting the proof of Lemmas 2.6.2 and 2.6.3, we need to introduce some definitions
and vocabulary which will be useful for the proof of both lemmas. We keep the same notations

as in Definition 2.5.12 and set
m m
n = [—] and k := [—],
4 8

so that by definition of N, for every p,q € R? and z € 3*Z% no,,,

1
(2.6.4) 34" atg+ pu(z+0n,q)| < Clgf3™
and

1
(2.6.5) §p-ép+u(z+|jn,p) < Clp|*37™,

We also pick ¢ large enough such that
3™ > My (Q) = sup size (0g(x)) < 3%,

xe€Om

in particular since P is finer than Q,

3M > My(Q) = sup size (Op(z)) < 3.

xelm
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We define [ the size of a boundary layer we need to remove in our argument:

-]

so that 3! ~ SiZG(Dm)% is the size of the boundary layer. Notice that & < m <[. From this we
define the two interior cubes

3’m_3l 3m_3l d
o°:=|- ,
S
and

I [_3m—2-3l 3m—2-3l]d
int "7 2 ’ 2 .

They correspond to the cube Oy, to which one has removed a boundary layer of size respectively

3" and 2-3'. From this we define 1 € C=°(0,,) which satisfies the following properties

(2.6.6) n=1lon0},, n=0on O,~0° and |Vvn|<C37.

int»

In what follows, it is convenient to work with three different scales: the microscopic scale
(of size 1), the macroscopic scale (of size size(O,,) = 3") and the mesoscopic scale (of size

m
4

size(Dm)% =31 ). The last step before starting the proofs of Lemmas 2.6.2 and 2.6.3 is to prove
some estimates pertaining to w.

LEMMA 2.6.4. The following properties hold:

(i) For every x € Z4nn,, such that dist(x,00,,) > 1 and for every y € x + [—%, %]d,
w(y) - [ulp @< > [V[ulpl(2)
2€Z%| 2700 <1

. d
and for every x € Z N0, such that dist(z,00,,) <1, every y € x + [—%, %] N O,

w(y) - [ulp (@) < 2 V[ulplz)+ 2 [Vl fazoy|(2)-

2€Z%:|2- 7|00 <1 2€6% (Om )NO":0'eP dist (07 ,0p (2))<1
(ii) There exists a constant C := supga |Vp| < +00 such that, for every z € Z¢ n0,, satisfying
-5.3]"
Vwl<C > [VIulpl(z)

2€Z%|z—x| 00 <1

dist(z,00,,) > 1 and for every y € x + [

and for every x € Z N0, such that dist(z,00,,) <1, every y € x + [—%, %]d N O,
Vu(ylI<C > [V[ulpl(z)+C 2. [Vl fazopl(2).

2€Z%:|2-2| o<1 2% (Om )NO":0'eP dist (0, 0p (z) )<1

(iii) For every p' € [2, 1%2], there exists a constant C := C(s,d,p,p) < +oo such that

1
(][ V() dx)p <CM.
Om

(iv) For every p’ € [2, [%2], there exists C := C(s,d,p,p) < +oo such that

1

(]ém |w(x)|p’)? <OM3™.

PrOOF. We prove (i). For every z € Z% n0,, and every y € (:1: + [—%,

w(y) - [ulp @) < [ 17) - [u]p @) ply - 2) dz.

]d) N O,

o[
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Since supp p € (—%, %)d we have
lw(y) - [u]p ()] < sup |@(2) = [ulp (2)]
zemmn(z+[—1,1]d)
< sup [@(2) - [ulp (2)]

2€Z4N0m 2|00 <1
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If dist(z,00,,) > 1, then for every z € Z% n O, such that |z — z|e < 1, 2 € intO,, and thus

W(z) = [u]p (2). Hence
lw(y) = [ulp (@) < sup  |@(2) - [u]p ()]

2€Z%|2-x] o<1

< sup o |[u]p (2) - [ulp (2)]

2€Z%:|z—|oo<1

< X Vvl

2€7%:] 2|00 <1

If dist(z,d0,,) < 1, then for every z € Z% nO,, such that |z — z|e < 1 we have either @(z) = u(2)

or W(z) = [u]p (2). Thus

w(y) - [ulp (z)] < . <1I@(Z)—[U]p(w)l
< sup (Ilulp (2) = [ulp (@) + |@(2) - [ulp (2)])

2€Z9N0m | 2— 2|0 <1

< D IV [ulp|(2) + sup |@(2) - [u]p (2)].

2€Z4N0m |20 <1 2€Z4N0m | 2—2|oe <1
Using the first inequality (2.3.2) in the proof of Lemma 2.3.2 yields
sup [@(2) = [ulp (2)] < > [Vull (az03|(2)-

2€29N0m:|z-7|eo<1 266y (Om )NO":0' P dist (0 ,0p (2))<1

The proof of (i) is complete. To prove (ii), notice that for every = € Z4no,, and y € (:c + [— ,

Um,

Vel =19 (- [ulp (@) ()] < ((w = [u]p (2)) < Vp) (1)
< [ 1)~ [ulp ()] [Vp(y - 2)] dz

S(swplval) s (@)~ [ulp )
Rd zel:\mn(x+[—1,l]d)
<C s ) - [ulp @)

2€Z4N0m |2~ T|ee <1

The end of the proof of (ii) is similar to the proof of (i) and thus omitted.
To prove (iii), we split the integral
’ 1 4
][ V(o) de = —— Vw (@) da +
Om

| O | Jom~0pom | Om | JOpom

[vw(z)| da.

The first term of the right-hand side can be estimated by using the first inequality of (ii),

/

p

> IVIulpl(2)

2€Z%) 2|00 <1

<c 3 > Vulpl(2)

T€Om \OpOm zeZ%|2—z]00<1

<C Y |V[ulp P (2).

T€Om,

Pdr<C
| o, [T d >

T€Om \679 Om

N

)
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Applying Lemma 2.3.3 yields

f IVw(z) P dx
OmNOpOm

<C > size(o)P'4! > ‘Vu]l{a¢0}‘p’ (x)

0eP,0cclp (Om) ON%x (0Om)
7 Y
. (v'd- » P » p
<C > size(D) v’ > ‘Vu]l{a¢0}| (z)] .
0eP,0cclp (Om) €6+ (Om)

Taking the exponent ¢ large enough and using the assumption 3™ > M;(Q), we obtain

(2.6.7)

r If IV dz<on”.
m NOpOm

The second term of the right-hand side can be estimated by using the second inequality of (ii):

[ IVw(z) P dx
a’PDm

<C > ( > IV [u]p |(2) + > |Vuﬂ{a¢0}|(z))

x€0pOm \ 2eZIN0p:|2—2|co<1 2€6: (Om )NO":0/eP dist(0/,0p (2))<1

<C Z |V[U]p|p,($)+c Z size(ljp(x))d(l_i)

z€0m, r€dpOm

x > VUl sy P (2)

2e6%(Om )ND’, 0 eP, dist(0/,0p (z))<1

<C Y Vulpl@+c ¥ SiZG(D'p(l’))d(2_§)|Vu]l{a¢0}|p,(x)
T€Om, (EE(K*(Dm)
/ 1)\_p 1_%
<C Y |V[ulp P (z) + C( > SiZG(Dp(.ﬁE))d(2_p’)p—p’)
2€0m €0m

/
y

( 5 |vml{a¢0}|p<m>) gy

€% (Om)

Taking the exponent t large enough and using size(0,,) = 3™ > M;(Q) again, we get
1
| Om | OpOm

Combining (2.6.7) and (2.6.8) yields (iii).
The proof of (iv) is a consequence the usual Sobolev inequality on Z? (2.3.1), the assump-
tion (2.4.2) and the estimate which follows easily from Lemma 2.6.4[(i)] and the assumption

3™ > M(Q),

(£ e ar)” <o 8 wr @)’

(2.6.8) IVw(z)[P doz < CMP'

o=
=

€Om

We can now prove Lemma 2.6.2.

PROOF OF LEMMA 2.6.2. We now construct the function @ € C*(0,,) by removing the
microscopic oscillations from u. More precisely we remove the microscopic oscillations of w,
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which is close to u, by considering spatial averages of w on a mesoscopic scale. We thus define,
for every x € O,, such that z + O, € O,,,

&(x) = ][ w(z)dz.
x+0n
We next modify £ in order to get an element of C*°(0,,), equal to w on d0,,, by setting

u(x) = n(x)§(x) + (1 -n(x))w(z).
It is clear that @ € w + HE (O ), so we now focus on the proof of (2.6.1). We split the argument
into several steps.
Step 1. Denote for each y e O°,

1
p(y) =VE(y) = N

[ Vw(z)dz e R® and ¢(y) := ap(y) € R%
y+On

For y € 3*Z% n 0°, testing v as a minimizer candidate in the definition of y(y + On, ¢(y)), gives

1

<VU, avu)(g*(y+|:|n) - m <q(y)7 \Y% [U]P>y+Dn .

(2.6.9) 1(y +On,q(y)) < BN

Combining this result with (2.6.4),

1 -ma
(Vu,aVu)g, (i)~ 7= (0(), V [ulp),.o, + Cla(y)I*3

1 . 1
-5q(y)-a q(y) € 5——
54(Y) (¥) o] o]

Ao (Ve avule, e, ~a() W) + Clg(y)P37me

Tl —p<y>‘ .

Thus by definition of g(y)

= _ 1
p(y) - ap(y) < EN (Vu,aVu)g, (.o, + Cla(y) P37 + 2la(y)] ‘ EN (VI[ulp)yq, —P©)|-
Summing over y € 3*Z% n O;c and multiplying by |D3Tk| yields
int
3dk:
(2.6.10) =] >, p(y)-ap(y)
int ye3kZdﬁDi°m
3k 1 9o _
< > {VwaVu)g, g,y + CM?3Te
| Dint | yggkzdmmiom | Dn |
3 1
ST 2| 9 1, 0]
| Dint | yegkzdm\]iont | Dn |
Since by (iii) of Lemma 2.6.4 with p’ =2
3dk 5 3dk 5
T Y PO T )
int | ye3kZInog int | ye3kZno |

SC][ \Vw(z)* dz
D?nt

< C][ Vw(2) dz
m}
<CM?.

The rest of the proof is organized as follows:
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e In Step 2: we show

>, law)l

| int | ye3kzZinog | O |

3dk‘

(v [U]P>y+[|n _p(y) < CMZ?’ima‘
e In Step 3: we show

2

| Diont | yggkzdﬁmiom | Dn |

Sdk
(Vu,aVu)y, g, ) + CM?37",

(Vu, avu)%(yﬂ:\n) dy

“ ol

e In Step 4 and Step 5 : we show
dk

> p(y)-ap(y) + CM?37™.

- | int | yeSkZdﬂD

]gm Vi(y) -avi(y) dy <

Combining these three results with (2.6.10) completes the proof of Lemma 2.6.2.
Step 2. We want to show

dk
’ >, la(w)l

int | ye3kZdnog O |

(2.6.11) (V[ulp)yss, —P(y)| < CM37™.

|o?

We already saw that
gdk

> e <CM>

| int | ye3kZdnos

By the Cauchy-Schwarz inequality it is enough to obtain (2.6.11) to prove

2

int ‘ yeSkZdﬂD

3k 1 2 .
(2.6.12) o] (VIulp)yn, —py)| <CM73T"

| o°

To prove this, we will prove, for every y € 3¥Z%n mA

(2.6.13) ’(v[ujp)ymn—f V() dz

Yy+0n

<C ) [V[ulpl(a).

€00,

For the sake of simplicity we assume y =0 to prove (2.6.13). By the discrete Stokes formula,

(VIulp)y, = 2. [ulp (2)n(a).
€Oy,
For i={-d,...,-1,1,...,d}, denote by 9;0, the ith face of O, given by

0;0,, = {er N0, : xi|:sign(i)%(3”—1)}.

Denote also by n; the associated outer normal vector, i.e, n; = ¢; for ¢ positive and n; = —e; for ¢
negative. The previous identity can be rewritten

(Vluplg, = X X lulp(@)n:
i=+1,,+d x€d;0p
Thus
(V[ulp)g, - fDn Vw(z)dz = i:ﬂ;”id (maz;m [u]p (z) - j(;imn w(z) dz) n;.

Without loss of generality, it is sufficient to prove (2.6.13) to show

<C ) IV[ulpl(z).

xedOn

(2.6.14)

>, lulp(@)- w(z) dz

x€d1 0, UO0_10p 010,U0-10n
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With a few modifications of the proof of (i) of Lemma 2.6.4, we can show: for every x € 010,U0-10,
and every z € (x +{0} x [-1, %]d_l) N oo,
(2.6.15) w(z) = [u]p (x)] < > |V [ulp |(y)-
YeZINO0n:|y—T|oo<1

The idea of the proof of (2.6.14) is to apply (2.6.15) with = € 010, (resp. 0-10,) and z €
(az +{0} x [—%, %]d_l) N 00,. Unfortunately, a technical difficulty appears if = lies on the bound-
ary of 010,, (resp. 0-10,) which we denote by

0010y, = {x e O, : Jie{2,-,d}, z; is maximal or minimal} .

We define similarly 09-10,. Thus we distinguish two cases, whether x € 9010,, (resp. 90-10,,)
or not.
Case 1: x € 0y Oy NOO10,, then by (2.6.15)

P @ [ S T [Tul(2)

_1 l
27 2 2€00n2— |00 <1

Symmetrically for x € -1 O, \00-10,

P @ [ @S T [9upl(2)

_1 l
27 2 2€00n:|2— 7|00 <1

Case 2: x € 0010, then denote by T :=x — (3" —1)ey € 90-10,,. We have

371

[ulp () = [ulp (@)] < Z\V ulp| (z —ie1).

Summing over x € 9010, yields

37-1
>, Mulp @) -lulp @< > ) IV[ulpl(z-ie)
r€d010n zedd1O, =0
> [V Iulpl(2),

€00
since for every z € 90,0, and every i € {0,--+,3" — 1}, z —ie; € 90,, (and for every y € 90,, there
existsat most one x € 90,0, and one i € {0,---,3" — 1} such that y =z —ieq).
d—
Moreover, for every x € 9010, and every z € (a: +{0} x [—%, %] 1) N 0g,, we define Z :=
z—(3"=1)e;. By (2.6.15) and the previous computations

lw(z) —w(@)| < |w(z) - [u]p ()| + | [u]p (z) - [u]lp (@) +]|[u]p (F) - w(Z)|
gm
< X |V[u]73|(y)+;|V[U]p|(x—ie1)

Y€Omi|y—T|oo <1

+ 2 Vvl

YeOm|y-Tloo<1

Thus, integrating over (x +{0} x [—%, %]dil) N o0,

‘faﬁ{()}

w(z)dz

ll
22

)noo nw(z)dz_/(f+{0}x[—; ) noo,
3n-1
< Y Vlulpl+ X IVIulpl@—ie)+ > [V[ulpl(y).

YeOn:y—x|ee <1 1=0 YeOn:|y—Tleo<1
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Summing over x € 9010,, yields

>

:)36881 On

w(z)dz

<C Y VIulpl(®)-

yedOn,

- w(z dz—f _
f(x+{0}x[—;7;]d )noon, (@) (@+{0y<[-$.3]"") nomn

Combining the displays of cases 1 and 2 and using the triangle inequality shows
>, lulp(@)- w(z)dz| <C Y [V[u]p|(2),
€D 0,U_10,, 010n09-10n z€d0y,

which is (2.6.13). We now turn to the proof of (2.6.12).
Applying the Cauchy-Schwarz inequality yields

2
Sc(mmm)( Ly |v[u]7,|2<z>)

| n | | Un | ze(y+0n)

1 1
57V lp)yeo, -

Vw(z)dz

| Opn | y+0n,

sC?f”( ! > IV[u]p|2(z))-

Summing this over 3*Z¢n ¢ . and applying (iii) of Lemma 2.6.4 with p’ = 2 yields (2.6.12) and
consequently the main result of this step (2.6.11).
Step 3. We want to show

Sdk

(2.6.16) —(Vu,aVu)g, (Vu,aVu)g, g,y + CM?3™me,

‘D?nt‘ yengan;}nt | Dn | (y'H:‘n) < | ‘

Notice that, while €, (0,,) N (2 +0,) and %.(z + O,) may be different, every open edge in
the latter cluster belongs to the former. This remark shows the following inequality, for each
y €3z n Ot »

(Vu,aVu)y, (y.0,) < (Vu,aVu)g, g, )ne0,) -
This allows us to bound

1
|E|— Z | (VU, avu)%,(yﬂ:\n)

int | yeSkZdﬂD | Dn

3dk

3dk
<

Z _l (Vu, avu)%*(mm)n(yﬂjn) = |E|T (Vu, avu)(bﬂ*(mm) )

| Ij;)nt | ye3kzZanog | U int |

To complete the proof, we need to show the following estimate

——(Vu,aVu)g,

T (Vu,avVu)g, g,y + CM?37™me,

1
(D"L) _ | |

int |

The previous estimate follows from the following computation

’DPt m(VU,&VU)cg*(Dm)

Om N D?n
< 19 > Ol | ( > |Vuﬂ{a¢o}|2(ﬂf)) +

€6« (Om)

1

> VUl (ae0y* (2)

| ml meg*(mm)\ljmt

We recall the definition of [ which is the size of the boundary layer. We have

|Dm Dlnt|<c3lm<c3 ma
| Om |
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This allows to bound the first term on the right-hand side

| Hm N Dln | -mao
|E|—|t Z |Vu]l{a¢0}|2(x) <C3 M?.
m €6 (Om,)

The second term can be bounded by applying the Holder inequality,

1
> IVulja P (2)

| Um | €6 (Om ) NO5,,

C(M)(L > |m{a¢0}|fﬂ<:c>)

| U ‘ | Um | €C% (Om ) N0,

SELN

2
(-mye=2 [ 1 v
<C3 D Y VUl ey [P ()

|Om | yeon)
< O3 MmN,

The proof of (2.6.16) is complete.
Step 4. We want to show

dk
(2.6.17) ]é p(z) ap(z)dr < —— % p(y)-ép(y)+CM23_ma.

int | int | ze3kZIno?

o 31(: 3k d
For every xz €0j , and y e x + -5 5

1
(@) PN <o [ V()] ds

(|(:1:+ Dn)A(y+ Dn)|)l ( 1

=" | O | J(e+00) Ay+0n)

1
s (][ IVw(z)[? alz)2
r+0p+0g

1
<cgme ( £ )P dz)2
r+0n+0p

IVw(2)|? dz)2

Thus

272

p(z)-ap(z) - ][ " Sk]dp(y) ap(y)dy‘

< sup Ip(fﬂ) p(| (Ip(x)| +p(y))
yeos[- 2 2]

<C3™™me (][ [Vw(z)[? dz) .
Y+O0m +0g

145
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Summing over z € 3¥Z% nof . and using (iii) of Lemma 2.6.4

Sdk _ _
S Y @) ap@) - p(a)-Ep(a) do
| Uing | we3kZdno? | Hing

. 3—ma Sdk

2, (J[ [V (z) dz)

(o)
| 0; t | k7d~0°
int | ze3 NOgL

1
< 3_m°‘( - [ |V (z)[? dz)
| Ijint ‘ Om
<CM?*3™™me,

The proof of (2.6.17) is complete.
Step 5. We want to show

(2.6.18) ]é vu(y) -ava(y) dy < ]‘[jo p(y) -ap(y) dz + CM?37™,

int
First we need to prove the following estimate: there exists C := C(s,d,p, \,p) < +oo such that for
cach p’ € [2, ’%2],

(2.6.19) ][ V()P de < CMP.
Om

Differentiating the expression for %, we get
Vi(x) = Vi(z)(§(z) —w(z)) + n(z)(VE(z) - Vw(z)) + Vw(z).
By Lemma 2.6.4(iii), to prove (2.6.19) it suffices to prove the following estimate:
(2.6.20) ][ (37 ¢ () - w(z)| + |VE())) da < CMP.
DO

We first estimate the second term in the integrand:

, 4
£ove@l a- £ | £ vu@iay] as
o° o° r+0n
< ][ ][ IVw(y)lF dy dx
0° Jz+0n

| Om |
~ oo
<CM?.

vw(z)P dz
Om

To estimate the first term in the integrand, we use that for every y € 0°,

|D—1n| [ k@ -u@ do

4

_ ! w(x) - ! w(z)dz ’ dz
- | Oy, | Yy+0np | On | T+0n
<O [ @) - [ w(z)d "
w(r) - —————— w(z)dz| dx
B | Opn | y+0p Leb(Dn) y+0p
1 1 1 v
+C w(z)dz - f w(z)dz| dx
| On | Yy+0n | Oy, | T+0p | On | y+0n

+CO((3"- 1)‘d—3*d")p/ " i

-[ymn w(z)dz
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’

p
do < 03P ][ |Vw(z)|P dx.

Y+0n

Thanks to the Poincaré inequality, we can bound the first term on the right-hand side:
1
w(xr) - ——— w(z)dz

]£+|:|n Leb(O,) Jy+o,

To compute the second term, we observe that for every y € 0° and x € y + Oy,

1
]£+\:|n w(z)dz - ]gmn w(z)dz ]én fo (x-—y) - Vw(te+(1-t)y+2)dtdz
<C3 ]gmnﬂ |Vw(z)| dz.

Assembling these yields

_ P’ p'n
]£+Dn|§(m) w(@)P de < C3 ][

Y+0On+1

|Vw(x)|p’ da + 377" ][ |w(:c)|p’ de
Y+0On
and then integrating over y € 0% and applying Lemma 2.6.4[(iii) and (iv)] yields
][ €(@) ~w(@)l de < C (37 + 377 mmY,
DO

Inequality (2.6.19) is then a consequence of the two estimates [ > n and [ > m —n.
To prove (2.6.18), notice that for y € 0°, Vu(y) = p(y). Hence we can write

]ém Viu(y) -avau(y) dy - ]éo p(y)-ap(y) dy

|Om ~O° _ 1 _
< ‘TT]—| ]éo \Va(x)|? da + o /D = \Vii(z)? dx
m m m\

p=2 4

o 2 + +2

cogmapg o (1B DL V()| de |
=} | O | Jom~oe

4
<3N £ oy ( £ i) dx)
Om
<C3TMM3,
This completes the proof of (2.6.18) and thus the proof of Lemma 2.6.2. O

Before starting the proof of Lemma 2.6.3, we need to record two estimates from the regularity
theory

PROPOSITION 2.6.5 (Meyers and H? estimates [77]). Suppose t € (2,00), f e Whi(o,,) and
ve HY(On) satisfy
V-avue =0 in O,
v=F1in d0,,.
Then there exist r:=r(d,\,t) € (2,t) and a constant C = C(d,\,t) < +o0 such that ve W (0,,)

and
(]ém |Vo(z)|" dac); <C (]ém |Vv(1‘)|tdx)? :

Moreover for every cube 0’ € O, with dist(d’,00,,) >0, ve H*(Oy,) and

dist(0’, 00,,,) (]‘[], IVvw(z)]? alaﬁ)é <C (]gm |Vv(:/v)|tda:)1 :

Applying this result with ¢ = 1%2, f=w, 0" =0° and using (iii) of Lemma 2.6.4 shows: there

exists r:=r(d,\,p) € (2, ’%2) such that

(2.6.21) (]ém Vo ()] d;c)’l“ <M
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and

1
(2.6.22) 3 ( f |VVuhom(x)|2d:c)2 <CM.
DO

These two estimates will be useful in the proof of Lemma 2.6.3.

PROOF OF LEMMA 2.6.3. We construct Unem, from upem by patching together mesoscopic
minimizers.
For every y in O°, we set

((y) = ﬁ fymn Unom () dz, p(y) =V {(y) = ﬁ fymn Vnom () dz and q(y) = ap(y).

We begin the construction by defining an affine approximation to upem in the mesoscopic cube
y + 0O, by setting, for each y € 0° n 3"Z¢,

ly:=p(y) - (x-y)+C(y).
For each y € 0° n 3"Z¢, denote by vy the unique element of

Ay +0n) 0 (ly +Co (€. (y +0n))) ,
that is, v, is the unique element of [, + Cy (€% (y + O, )) which satisfies:

(Vuy,aVuy) < (Vw,avVw) for every w e l, + Co (¢+(y +0y)) -

y+0n Yy+0n

The objective is then to patch these functions together to obtain a function defined on %, (0,,).
A first technical issue has to be treated: in general we don’t have €, (0, ) N (y + O,) = G (y+0,).
To deal with this technical point, we extend vy to €. (0, ) N (y + Oy) by setting

vy(z) := 1y (x) for every x € (€+(Om) N (y+0,)) N\ Cu(y +0n).

In other words, v, is the maximizer in the definition of v(y + 0,,p(y)) except that we added a
constant to it and extended its definition to the slightly larger set €. (0,,) N (y +0,). We patch
these functions together by setting for each z € €. (0,,)

(2.6.23) T(x)= ), vy(@)lzeyrn,-

yeoen3nzd
Finally, we modify ¥ to match the boundary condition. Take 1 € C$°(R?) to be the cutoff function
satisfying (2.6.6) and define, for each x € €. (0,,)
Uom () = 1(2)0(2) + (1 - 1(x)) thom (2).
With this definition, it is clear that Uy, satisfies the boundary condition (i):
Vo € € (Om) N OO0, Unom(x) =u(x).

We now prove the energy estimate (ii). We split the proof into three steps:
e In Steps 1 and 2, we prove the interior estimate
1 o _ -
o] (VT,aV0)y, g, )noe ~ ]éo Vthom () - AVUnom () dz < CM?37me,
e In Step 3 we prove the two boundary estimates
~ ~ 1 SO _
| - | (vuhomyavuhom><g*(gm) < _l o | (Vv,aVv)%(Dm)mo + CM?3™me
m

and

][ Vhom () - AVupom () dx < ][ Vunhom () - @VUpom () dx + CM?3™me,
oe Om
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Combining these three results gives the energy estimate (ii).
Step 1. In this step, we show the following interior estimate: for each y € 3"Z¢nn°,
1

(Om)N(y+0,) | O, ‘ y+0n

(2.6.24) —— (Vuy,avVuy),, Vithom () - AVunom () dz < |p(y)|?37™<.

| O |

For y € 3"Z% n0°, using vy as a test function in the variational formulation associated to
p(y +On,q(y)) yields

1 1
p(y +0n,q(y)) < m <Vvya avvy)%*(y.pgn) - m <Q(y)> \Y% [Uy]p>y+un .

As in the proof of Lemma 2.4.5, we have

% (). VIvylp),,0, —a() )

| O

sc|p<y>||q<y>|w+0|p<y>||q<y>|(L 5 sizemp(x))w—l).

| On | = 2€d(y+0n)

Taking ¢ large enough and using that 3" > M;(Q), we have
max size(Op(z)) < 03%
z€0m

and thus

d(2d-1)m
d+t

S sine(op(x))2 < 02 < o3ome
z€d(y+0n) 3

1
| O |

and

dm

n 1 . - -
|37>(|yD+;I| )| _ |D | Z Slze(l]p(m)) SC33dmt <C3™me,
n N | 2ed(y+0n)

Combining the two previous displays yields

1o (V00 aV0i, (gumy ~000) 2 () (Y + Bnna(v)) + Clp(y)[P37™,

Then, by (2.6.4),
Ip(y) -ap(y) - q(y) - p(y) = w(y + On, q(y))| = [p(y) - ap(y) + p(y + On, q(y))|
< |p(y)P37m.
This shows

]. - —-mo
m (Voy, avvy)g@(ymn) -p(y)-ap(y) < C|p(y)|23 .

To complete the proof of (2.6.24), it is sufficient to show the two following inequalities

(2:6.25) £, Vo (@) - & () do 2 p(y) - Ep(y) = Clo(y) 37
and

1 -mao
(2626) m (Vvy,aVvy)%(Dm)ﬁ(ymn) < m (Vvy,aVvy)%(ymn) +C|p(y)|23 .

The proof of (2.6.25) relies on a convexity argument: we have, for every p e RY,

p-ap>p(y)-ap(y) +2p(y) -a(p-p(y)).
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Rewriting this inequality with p = Vupem () and integrating over y + 0,, gives

][ vuhom(x) : évuhom(x) dx
y+0On

(3" -1)4 _ -
L) Ep() +2 £ p(y) - &(Vunom (@) - p(y) da
| Opn | y+0n
3" -1)7
| On |
by definition of p(y). This gives (2.6.25). We now turn to the proof of (2.6.26). By the
construction of the partition P, it is clear that (€% (0m) N (y+0,)) N € (y +0,) must be

contained in the union of elements of P which intersect the boundary of the cube y + O,.
Therefore,

p(y)-ap(y) > p(y) - ap(y) - Clp(y)[?37™*

)

[(€2(@m) N (y+0n)) NG (y +0n) [ <[0p(y + On)|
By definition of v,

vy(z) :=ly(x) for every x € (€+(Om) N (y+0,)) N\ Cu(y +0n).
Combining the two previous displays yields

n C\p(y)lQ |a77(y + Dn)|

1
— (Vuy,aVuy)y, iy, aVuy )y,

< -
| O | (@m)n(y+0n) = | g, | { (y+0n) =N
1 _
< o (Vuy,aVuy)y (e + Clp(y)|*37 ™.
n

This completes the proof of (2.6.26) and consequently the proof of (2.6.24).

Step 2. In this step we prove the following interior estimate,

(2.6.27) — (Vo, aV@')D?m - ]go Vtthom () - AVtpom (z) dz < CM?37™,
int int

Summing (2.6.24) over all y e O, N 3m7Z4 and noticing that

3dn
— ¥ OP<C S [Vunom(@)Pdv< M
Dint| yeoe  n3nz4 Om
gives
1 . _ -
. > (VT,aV0)y, (@, )n(y+0n) ~ ][o Vtthom () - AVtpom (z) dz < CM?37™e,
Dint| yeoe  n3nzd o

The technical point relies on the fact that %, (0,,) contains edges which do not belong to any
of the clusters (€.(0m) N (¥ + Om)) yegnzdnge K These edges are contained in the set V' of edges

connecting two vertices in different triadic cubes of size 3", i.e.
Vi={{z,2} : x,2€2% Fy,y €3"Z Ny, y#y, vey+O, and zey +0,}.

Let e = {x, 2} € B4 (€+(0m)) NV be an edge connecting the two triadic cubes y + 0,, and y’ + O,,.
We have

(Vo(e)] = [ly(z) - 1y (2)]
=Ip(y) - (z-y) +C(y) —p(y') - (2= y") = ¢
<[(p(y) -p(¥") - (x =yl +pWI(z - 2)| +Ip(y) - (¥ - y) + {(y) = C(Y)]
<3"[p(y) = p(W)| + (W) + Ip(v) (¥ = y) + C(y) = ()]
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We estimate the first term on the right-hand side

) ~pW)I= | £ (Titon(®) = Vithom (4 ~1) do
Fo [ VTt (10 = 9)) (-1 d ]
<ly-o/| [ £ [9Vumon(a+ -0 - )| dods

1
<3 f ][ IV Vtnom (2)| dz dt
0 Y+On+1

<3 ][ IV V tthom ()] dz.
Y+On+1

<

A similar computation yields

p(y)- (v - y) +{(y) - ¢yl < C3*" ][ IV Vtthom ()] daz.

Y+0On+1

For y € 3"Z% n &°, denote by V, the set of edges of V' connecting y + 0,, to another cube, i.c.
Vy={{z,z} eV : zey+0,0orzey+0,}.

The previous displays yield, for y € 3"Z¢no?

int?

1 Op n n
> wnef <P ok r @ s £ v (@)l )
|Om | cev, i@ (o) | O | Y+On1
<03 (@) +3" £ 19Vt (@)] da).
Y+On+1
Thus
1 . 1 e
S > (VT,aV0)¢, (@, )n(y+0,) ~ T=57 (VD @V, (a,)n0e
| |y6D°ﬂ3"Zd |D |
1 ~
< =l 3 > |va(e))?

ye0°n3nZ4d e€Vynés (Om)

Dm -n n
<olfml s (sl e 8 £ v @)
n+l

| o° | yeoen3nzd
<C3™M?+ (3% ( ][ |V Vtthom (2)[° dx)
DO
< Cg—nMQ 4 033n—21M2.

Here we used (2.6.22) to derive the last line. Recall that we defined m = [%] and [ = [377"] and
so, for some «a > 0,

37" < C37™ and 3% < 37,
This completes the proof of (2.6.27).

Step 3. In this final step, we estimate the contribution of upom and Upem, in the boundary

layer O,, \ 07 ;. The claim is that

(2.6.28) ]éo Vhom () - AVupem () dx < ]é Vthom (2) - AVunom () dz + CM?37m
and
(2629) m (Vﬂhom, aVﬂhom>cg*(Dm) | (VU av’U>cg (Om )ﬂ\]o + CM23_777»04

int |
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To prove (2.6.28), we first recall the Meyers estimate (2.6.21) which gives, for some r := (d, A, p) €
(2.557)
) 2 )

1
(£ 1@ dz) <
Om
This allows to compute

][ vuhom(x) ) 5vuhom(x) dx — ][ vUho]rn(x) : 5vuhom(x) dx
I:I.O

|Dm\D
o]

mt|][ |V thom ( x)| dm+ |Vuh0m(x)| dx

O |

<C3 " M? ¢ O > Ol | T |Vthom ()| dx '
EN EN hom
m m m\Dmt

2

< CM23™me 4 3= (1-3) (][ |V thom ()] dw);
Om
<OM?*3me

and completes the proof of (2.6.28).

The proof of (2.6.29) follows from a similar computation but we need to prove the following
discrete estimates

1

(2.6.30) 3 |Vihom 1 {azoy*(z) < CM?37™.
| Um | €% (Om )N (Om O
*( m) ( m mt)
and
1
(2.6.31) > |Vhom 1 asoy [ (z) < CM>.

| Om | e ()

We will only prove (2.6.30). The proof of (2.6.31) is similar and can be easily deduced from the
proof of (2.6.30).

For z,y € €, (0., ) such that = ~ y and a({z,y}) # 0, we compute
Vihom ((z,4)) = n(y) Vi((2,y)) + (1 = 1(y)) Vtnom (2, y)) + V1 ((2,9)) (V(x) = thom (2))-
Thus to prove (2.6.30) it is sufficient to prove the following three estimates:
(1) An estimate on V7:

1

o] > VL ey |* () < M3
| st @nn(eons,)
(2) An estimate on Vupom:
1
| O ’ Z |vuhom]l{a¢0}|2(l’) < CM23_ma.
m

26, (Om)N(Om 02, )

(3) An estimate on U — upom:

3—2l
= > (@(2) - unom(w))? < CMZ3T.

| Um | €% (Om )NO°
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We prove the first estimate (1). For y € 3"Z% n0°, we have
1

o] >, Yoy L auoy ()

"1 2e€ (Om)N(y+0n)
1

< N Z |vvy]l{a¢0}|2($) + EN |Vly]l{a¢0}|2(a7)
n | zety(y+0n) "1 2€€, (Om)N(Y+0n )\ (y+0n)
1 C

< (V0 AV ) (e T > Ip(y)I”

| Op, | | Un | 2€C% (Om )N(y+0n ) Cx (y+0n)

1

< m < ly) avly>cg*(y+|:|n) + C|p(y)|2

< Clp(y)I*-

As in the second step, we prove that for every edge e belonging to the cluster €, (0,,) and
connecting the triadic cube (y + 0,) to another triadic cube of the same size,

VIO < lpw)P + 3" f

Notice that there are at most C3(4"D" such edges since they must lie on the boundary of (y+0,).
Combining the two previous displays yields

|Vvuhom($)|2 d.
+1

n

1 —
> Vol ()
|00 | se, (0myn(y+0n)
<O +C3" )P + 08" £ VYo (@) da
< Clp(y)2 + C3*" ]g IV Vtnom ()| dz
n+1

<C ][ Vinom (2)|? dz + C3" ][
y+0n y+0O
Summing over y € 3"Z%n (0° \ O, ) gives

C

|0 | Joono

|V Vtnom () dz.
+1

n

— > Vol () <

| O | €%, (Om)n(0°N0E,, )

. |Vuhom(37)|2 dx

int

33n 9
ve— [ |V Vthom ()| d.
[mEANE ]

‘ Dm ’ nt TR

The first term of the right-hand side can be estimated using the Meyers estimate as in the proof
of (2.6.28). We obtain

1
| Om |

The second term of the right-hand side can be estimated using the interior H? estimate stated in
Proposition 2.6.5,

f Vtthom ()2 d < CM237me.
DO\D;’nt

33n N 33n 9
1o o o [FTwn@F drs o f oV () da
m | JO°NO;  +0n |Dm| o°NOp +0n
33n

|V Vtthom (2)|* dr

- | Om | 0°+0p

< O33n-20 )2

<CM?*37™,
The proof of (1) is complete.
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To prove (2) we prove the stronger result

1

> |Vithon| % (2) s CM™E 37,

| Dm ’ Te€Om,

where r > 2 is the exponent which appears in the Meyers estimate (2.6.22). This implies (2)
by the same argument as in the proof of (2.6.28). Let z,z € Z% n O, with = ~ z. We need to
distinguish three cases.

Case 1: x,z € int(Oy,). If 2,2 € int(O,,)

1
Vtnom ({2, 2}) = thom(2) = tnom () = /0 Vupom (tx + (1 -t)2) - (x - z) dt.

Since upom is &-harmonic, Vu is also a-harmonic hence it satisfies the mean value principle: for
every x € O,, and every R >0 such that B(x, R) € Oy,

Vu(z) = det(a) ™! ]g e VU 0

Denote for z, z € int O,,,

1 1\¢ 1 1\?
W, = (m + (_Ea 5) )U (Z + (—5, 5) ) .
From this we deduce that, for every z, z € intO,, and every t € [0, 1],

Vitnom(tz+ (1=0)2)|<C [ [vu(y)ldy.

thus
Vatnom ({2, 2D <C [ [vu(y)]dy.

By the Jensen inequality, we obtain

+2 +2
[Vaho ({2, 2)"% <C [ [Tunom@)I™F dy.
Case 2: x,z € 00,,.
VUhom ({.1', Z}) =Vw ({Jf, Z}) .

Case 3: x € int(0,,) and z € 00,,. Without loss of generality, we assume that x — z = ¢;.
Denote by Sy the surface

d-1
S = 2+ {0} x (_i i) ,

and Sy its translation of vector e;
1 1\4-1
Syi=Sp+er =2+ {1} x (_Z’Z) .
By definition of w, we have for each y € Sy,

w(y) = w(z).

Since upom = w on the boundary of d0,,, for each y € Sy,

uhom(z) = uhom(y)'
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With this in mind we have

[Uhom (2) = Unom ()]

£, thon() dy = thom (@)
So
1
SC‘[ ][ Vhom (Y + ter) dy dt +C‘][ uhom(y)dy_uhom(x)‘
0o Jso S1

1
<C [ £ [Vtnom(y + ten)] dydt + C £ Jutnom(y) = thom ()] dy.
0 So S

but for each y € Sy,

|uh0m(y) - uhom(x)l <

1
fo Vunom (ty + (1 —t)z) dt‘

1
< fo IVunom (ty + (1 - £)z)| di

by the mean value property

<Cf f Ly, | Vunom(y)] dy dt

2’2

< Cf 11 |Vuhom(y)| dy

2’2

v (B0 (3))=)

The previous computation yields

Denote by

Vitnom ({2.2D)| < C [ [Ftom (y) dy.
We then apply the Jensen inequality to obtain
+2 2
Vitnom ({22 D% <C [ Vo ()™ d

Summing over all the edges of O,, gives

+2
S vu"T (@)

| m | r€d0m

> [ Vttnom[™ X (x)<][ |V tunom (2)]™" B+

|Dm|z

By Lemma 2.6.4 (ii) and a similar computation as in the proof of Lemma 2.6.4 (iii), we obtain

1 > |Vw|mp%2 (z) < CM™E

| Um | x€d0m
Combining the two previous displays yield
1

Ap+2

Z |V tnom|™" E (:p)<C’M’"

| Dm | T€Om

We now prove (3). Since 3™ > M;(Q), picking ¢ large enough, we obtain, by an application
of the Poincaré inequality (which is a consequence of Proposition 2.3.4 with s = 2) combined with
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the bound on the L? norm of v, given in (2.4.21): for every y € 3"7% no,

Z (Uy(ac)_ly(m))2

€65 (Om )N (y+0n)

Y Wy (@)

Un | 2€6% (Om )N(y+0n)
c 5 )
> Vv fasoy| (2) + Clp(y)|
|00 | e, (@myn(y+on)
< Clp(y).

Since [, is also &-harmonic, we can apply the mean value principle to the function I, (2) — upom ()
as in the proof of (2),

3—2l

3—2n

| On |

IA

IA

T Y (@) wen())? <8 £ @) - o (@) da
M| 26 (Om )N (y+0n) y+0n
Applying the Poincaré inequality twice and taking into account that fy ‘o, = 3-dn [y ‘o, F

m [y .o, by the conventions established at the beginning of this section then gives

3—%
| On |

» (Iy () = Unom (z))?

€% (Om )N(y+0n)

<0372 ]g o, (@) ~ v (2))?

<32 ]gm Ip(y) - Vuhom(x)|2 dx + 03722 ]g |uhom(sc)|2 dx

+0n

<032 L9 Gup (@) d + O3 p() + €32 g () dr
y+0p Yy+On

Combining the two previous displays and using that [ —n > am yields, for each y € 3"Z% no°

3—2l
| On |

> (vy(2) = tunom (2))?

€% (Om )N(y+0n)

<03 £ 9Vt () da + Clp()P3 + O3 L g ()P dar
Yy+0n y+0O

Summing over y € 3mZ% N 0° gives

32n 9

o] fD |V Vtthom ()| dz
m

O3 mo ) 3—2n—2[ 5
+— f |Vtuhom (2)|° dx + C— / [tuhom (2)|* dx.
| Om | o° | O, | oe

To estimate the last term on the right-hand side, we recall that upom € w + Hg (0O, ). By applying
the Poincaré inequality

1
f |uh0m($)‘2 dx < ][ |Uh0m($)|2 dx
| Dm | o° Om
<C ][ lw(2) 2 dz + C32™ ][ Vithom (2) — V()2 dz
Om Om

< c][ |w(x)|2d:v+C’32m][ IV (z)? de
Om Om
<CM?3*™,

3—2[
= Z (Uy('r)_uhom(x))2 <C

| Um | €% (Om )NO°
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by (iii) and (iv) of Lemma 2.6.4. The estimate stated in (3) is then a consequence of the interior
H? estimate of Proposition 2.6.5 and the fact that, by definition of [ and n, we have l+n-m > am.
This completes the proof of (3) and consequently the proof of Lemma 2.6.3(ii).

We now prove the L? estimate in (iii). By definition of upem, we have

ﬁhom(x) - Uhom(x) = 77(35)(’77(33) - uhom(m))'

Using the previous estimates as well as m — 1 > am gives

3—2m _ . 3—2l _
> (Fhom(7) —upom(2))” <37 = S (@) - thom (2))?
| Um | €65 (Om,) | Um | €€+ (Om )NO°
<CM?*3T™me
and the proof of (iii) is complete. O

2.7. Regularity theory

With Theorem 2.1.1 now proved, the second main result of the paper, Theorem 2.1.2,
essentially follows from the arguments introduced in the uniformly elliptic case in [21] and
elaborated in [16, 17]. The main idea is that an appropriate quantitative homogenization
result, like Theorem 2.1.1, can be thought of as a result about harmonic approximation: it
implies that an arbitrary solution of the heterogeneous equation can be well-approximated by an
a-harmonic function. This allows us to transfer the regularity possessed by a—harmonic functions
to a-harmonic functions, following the classical ideas from elliptic regularity theory (as in, for
instance, the proofs of the Schauder estimates). Of course, the regularity we obtain will only be
valid on length scales on which the harmonic approximation is valid, which in our situation is all
scales larger than a fixed (random) length scale of size O5(C).

In this section, we abuse notation by letting O,, denote the continuum cube

d
(—13’",137") cRY.
2 2

It will be made clear from the context whether O,, refers to the continuum cube or the discrete
one. We further abuse notation by extending the coarsened function [u], to be defined on a
continuum domain by taking it to be constant on each unit cube of the form z + 0Oy with z € Z%.
To avoid confusion, here we will use the symbols [ and f only to denote integration with respect
to Lebesgue measure on R? and write sums with 3.

The first step in the proof of Theorem 2.1.2 is to post-process the error estimate proved in
Theorem 2.1.1 by writing it in a form that is more convenient for the analysis in this section.
We put it in terms of the coarsened functions [u], and emphasize harmonic approximation.
The coarsening causes some technicalities to appear in the statement, so we emphasize that the
second and third terms of the right side of (2.7.2) can be considered to be “small.”

LEMMA 2.7.1. There exist s(d,\,p) >0, a(d,\,p) >0, C(d,\,p) < oo and a random variable
X satisfying

(2.7.1) X <0, (0)
such that, for every m e N with 3" > X and every u € A(€«(Om+3)),

(27.2)  inf

u —w
Lt 1l -l

n—1
<C3inf |[ulp - af 2,y + €37 Y g h(m+3 (kD)) inf | [ulp - a 12
ae = m k=1 ae =

4 Os—ma—n(m+ % (n+1)

(Dm+3k)

_1
) gﬁlﬂg |Om3n] 2 Ju- a”L?(%’*(men)) )
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PROOF. We take p :=2+¢, where e(d, \,p) > 0 is as in the statement of Proposition 2.3.8. We
also take a(d, \,p) > 0 to be the exponent given in Theorem 2.1.1 with respect to the exponent p
above (and which may be made smaller, if desired, in the course of the argument) and X" to
be the maximum of the random variable X appearing in the statement of Theorem 2.1.1 and
My(Q) + C" appearing in (2.3.16) with C’ and ¢ are large constants depending on (d, \,p) to be
selected in the course of the argument. It is clear then that X satisfies (2.7.1) for an exponent
s(d, \,p) >0 and constant C(d, A,p) > 0.

Step 1. We slightly tweak the statement of the error estimate. The claim is that there exists
an exponent p’(d, \,p) > 2 such that, for every m € N with 3™ > X and every u € A(€%(Om+3)),

3—7710&

_1
(2.7.3) inf (O] Ju = w] g, @) < C

1
inf |0, 2 |u - . )
weA (T inf [0m| 2 |u - all 2%, (010

Fix u € A(Op42) and take w = upom € A(Opmi1) to be the d-harmonic function given in the
statement of Theorem 2.1.1 for the domain O = O,,+1. Then the conclusion of Theorem 2.1.1
gives the estimate

_1 m(l-a
|Dm| 2 ||u_wHL2(<§*(Dm+1)) = <C3 (1= )|D | p Hvun{a¢0} HLP(E\»,,H.l)

The Meyers estimate (Proposition 2.3.8) and the Caccioppoli inequality (Lemma 2.3.5) yield
1 1
(2.7.4) 0|77 [ Vul fasoy | 1@y S C 10ml2 | Vul azoy | - (Gome)

1
_m . -5
<C3 ;Ielﬂg‘uml 2 u=all 24, (0.9)) -

The last two displays give us

(2.7.5) lu=wl2, @) €3 mf|Dm| : lu—al L2,

(Dm+3)) ’

It remains to improve the norm on the left side from L? to LP. It is clear from the construction
in Section 2.6, namely Lemma 2.6.4(iii), and the fact that w is harmonic that

(276) ”vw||L°°(Dm) < vaHLQ(DmH) <C HVU]l{a¢O}HLp(Dm+1)

< O3 inf 10l 7% = 0l 2 0,00
We used 2.7.4 again in the last line above. Now take p’ := %(2 +p) and apply the Sobolev-
Poincaré inequality (Proposition 2.3.4) and then the Holder inequality to deduce that, by taking
t(d,\,p) < oo sufficiently large,

_1
O] " [Ju - wHLP’(%(Dm))

1 .
< 037”( Z 51ze(|:|)t) O] g HV(u w)]l{a‘tO}HLP(‘F*(Dm))

| Um | OeP, OSOm

S =
=

_1
<Cinf [om[ 2 Ju=al pag, (0,0.0)) -

The previous line and ) give us, by interpolation between L? and L?" the bound, for the

(2.7.5
exponent p”’ ;:< (— %)) > 2, of

“mf2inf10, 172 |u - af ;2
acR L2(%x

|Dm|_ﬁ Jlu— wHLp”(sf;*(gm)) <C3 6x(Oma+3)) *

After redefining « to be slightly smaller, this yields (2.7.3).

Step 2. We estimate the L? difference between [u]p and w on the entire (continuum) cube
O, using the estimate from the previous step. The claim is that, for every m € N with 3" > X
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and every u € A(€:(Om+3)),
(2.7.7) inf

| 3
weA(Om)

_1
]nf|Dm| 2 ||u_ aHL2(%>(—(Dm+3)) ’

[U]P - wHL2(Dm) S C ocR

Taking w as in the previous step and using that [u], is constant and equal to u(Z(0)) on every
element O of P, we see that

[l -l == X [ (@) - uGE)F

| O | 0eP, OO,

= (Il GEE) - uEE)E [ @ - wEE)E).

| Um | OeP, OSOm,

<

The estimate for the second term inside the sum follows easily from (2.7.6):

Loy [ u(@) - w@)f d

’ Om ‘ OeP, OSUm,

1

. 2 2 -2m -1 2

< > size(D) [Vw]fe(g,,) <C3 7"t [On| |u-aliz, @) -
’ Um | OeP, OSOm aeR

The estimate for the first term follows from (2.7.3) and the Holder inequality, after making the

parameter t(d, \,p) < co larger once again:

7 2 lol(E) -uGEe)F

1 %’2 p’ 1 ~ o y
< (| O | DE,P’ZDQDm i=iE ) (| o] Dgp’zngum lw(z(0)) - u(z(O))| )

SC’( ! > |w(av)—u(a:)|p’)p

| Om | et ()

[

~

P

-2 . -1 2
<3 inf o] v = el i)

Combining the previous three displays yields (2.7.7).
Step 3. We compare u and [u]p. The claim is that there exists p'(d, A, p) > 2 such that, for

every m € N with 3™ > X and every u € A (€, (0m+3)),

_1 - 1
(2.7.8) Ol u = [ulpl 1, (@,0)) S C3 ;2H£|Dm| 2 Ju=al 24, (0.5 -

In fact, we can take p’ := %(p+2). Then by (2.3.1), the Hélder inequality, and taking ¢(d, \,p) < oo
to be large enough, we get

-1 P’
|Dm| Hu_ [u]'PHLP'(%’*(DmH))

C . / '
< Z sme(l])pd[ |VU1{a¢0}‘p (z) da
|Oma1] 0P, OCSOm+1 .
p-p’

d(@'+1)p

1 ’ /
SC( Z size(O) »# ) ”VUﬂ{aio}HZP(DWl)

’Dm+1| 0eP,0S0m+1

pl
<Clveliaolp @,
Combining this with (2.7.4), we get

1 . _1
Om| #" Ju- [U]PHLP'(%*(Dm+1)) <C3 mlllfelﬂg|ﬂm| 2 ||U_GHL2(%(Dm+3))'
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This yields (2.7.8).

Step 4. We complete the proof of the lemma by combining ingredients proved in the previous
steps. According to (2.7.8) and the triangle inequality, for every n € N with 3" > X and every
ue A(C(Ons3)),

1
g;ﬂgfﬂm' 2 u~- GHL2(%(Dm))

_ 1 1
< é§£|‘:‘m| 2 lulp = all g2, (@) + 10ml 2 = [ulpl 224 )

1
. N 1
< (1112112 [lulp - al 2, +C3 ;123£||:|m| 2 u=al 24, @) -

An iteration of this inequality yields, for every m,n € N with 3™ > X and every u € A (€% (Om+3n)),
the bound

_1
(111611£|Dm| 2 u~ GHLQ(%(Dm))

n—1
: _ } : - ¥k (m+3)) 5 _
< ilelﬂg |[u]p a”LQ(Dm) +C ft 3 o= (11161]1{ Tl GHL2(Dm+3k)

- (m+3j) - -3 —
+ (3™ %=1 égﬂg‘mm+3n| 2 H’U, GHLQ(%;*(DmHSn))

n—1
. ~k(m+3 (k+1))
= inf [l - al o, + € X 37D ind [lulp - al

- +2(n+1)) : -1 B
+ g (m+3(n )2161H£|Dm+3n| 2 ||lu a||L2(%(Dm+3n)).

Applying (2.7.7), we deduce that, for every m,n € N with 3™ > X and every u € A (€. (Om+3n))

inf Ulp —w
TN I

n-1
< O3 inf [ulp - a 2,y + €37 S gk(me g (k) inf | [u]p - a2

kel (Dm+3k)

—ma-n(m+32(n+1)) ; -1 _
+C3 ( 2 ) ;Iglg ||:|m+3n| 2 ”U a||L2((to”*(Dm+3n)) .

This is (2.7.2). O
With the result of the previous lemma in mind, we next give an elementary real analysis

lemma which formalizes the transfer of regularity from harmonic functions to functions which are
well-approximated by harmonic functions on large scales. It is a variation of [16, Lemma 2.4].

LEMMA 2.7.2. Fiz A>2, R>2, a>0 and u € L*>(Bg). For each k e N and s € (0, R], denote

Di(s) = imf flu-wlpzg,) -
€

weAy
Assume that X € [1, A'R] and E > 0 have the property that, for every r € [X, A_lR],
D E
(279) iﬂf ||U—U||L2(B ) £?”1_O‘( sup ﬁ_l__)
veA(By) =T Ar<s<sR 8 r

Then, for each k € N, there exists a constant C(k, A,a,d,\,p) < oo such that, for every r €
[X v, %R],

(2.7.10) Di(r) <C (%)k” Du(R) + Ol (Do](%R) . g)
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PrOOF. Fix k € N. Throughout we denote by C and ¢ positive constants which depend only
on (k,A,a,d,\,p) and may vary in each occurrence.

Step 1. We show that, for every r ¢ [X, %R] and every s € (0, %r], we have

Nl

g\k+l T2
@11y D) <C(2) it fumwlpny+0(2) it lu- vl

WEAL (US

Select v so that

lu=v]p2p,) = vlfelfz H“ - U,HL2(BT) :

Since v is an a-harmonic function, we have that
s k+1
inf ||v—wl|;e SC(—) inf |v—wl|;: i
o= wlmny <O(3) it fo-wly)

Using this and the triangle inequality twice, we find that
Dy(s) = ifﬁ lu—wlp2p,)
we k

< inf Jo-wl|p2p,y +u-v]gzs,)
weA k

\ SR

k+1 |B |
( ) nf o= wllLl(B>+C(|B|) Ju=vl 25,
k+1 k+1 g
< ( ) inf Ju—w|, (B)+C lu-vl 25,
weAy,
k+1 S %
< ( ) inf |ju- w||L1(B)+C'(—) (T U||L2(B)
weA k r

s k+1 s
:C(;) J?j u— wHL1(B)+C' .

k

This is (2.7.11). Note that it also implies

2
) mf Hu UHLQ(BT)'

[N

s k+1 s\ 72 .
(2.7.12) Dk(s)sC(—) Dk(r)+C(—) inf |u-v]g2p,y-
r r veA

Step 2. We organize the rest of the argument. Denote
Dy(r) =r""Dy(r) =" inf Ju-w]p2g,,-

WEAL
We also take wy, € Ay such that

[ =k

= inf |lu-w =Dy (7).
oy = o8 1wl = DR

y (2.7.12), there exists 0(k,d, \,p) € ( ,5] such that, for every r e [X, %R],
Dy(6r) < §5k(r) +Cr % inf |u - V]2, -

ve A

Using the harmonic approximation hypothesis (2.7.9), we get

~ 1~ D, E
(2.7.13) Dy(6r) < =Dy (r) + Cri-k« ( sup Do(s) + —) :
2 Ar<s<R S r
We will complete the proof of the lemma by iterating (2.7.13). We first must take care of the
case k = 0 before handling general k € N.
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Step 3. We prove (2.7.10) for k= 0. That is, we claim that, for every r ¢ [X v C, %R],

(2.7.14) DOngC(@U%).

By adding a constant to u, we may suppose that wo g =0. Then

w1,k |L2(BR) < ||U||£2(BR) +|lu-wir

and therefore (note that wy , is affine so that Vw, , is a constant vector)

C
(2.7.15) |Vw17R| < EDO(R).

Using the triangle inequality, we find that, for every n e N with "R > X v C,

HngnR - wl’gnHRHLQ(BgnHR) < wanR - UHLQ(BgnHR) + Hu - w179n+1R‘ L2(Bynr 1)

1

. 2

< ( |B9 R| ) Dl (enR) +D1 (0n+1R)
|B9n+1R|

= 072Dy (0"R) + Dy ("' R).

Hence

1
‘leﬁnR - Vw179n+1R| < m le,H"R - wl,@"“RHL?(B

<C (51(9”}%) + 51 (9n+1R)) .
Summing this and using (2.7.15), we deduce that, for every n € N with "R > X v C,

gn+1 R)

|Vw179n+1pb‘ < |V’(U1’R| + Zn: |vw1’9kR - waknR‘
k=0

C n+1 .
< —=Do(R)+C Y Di(0"R).
R k=0

Since the triangle inequality gives us
Do(8"'R) < 0" R|Vw, g g| + D1(0"' R),

we obtain
D0(9n+1R) DO(R) n+l %
2.7.16 <C Di(6"R) |.
( ) iR 7t k;) 1(0°R)

By an iteration of (2.7.13), we get
~ ~ -a D -
D1(0*R) <27%Dy(R) + C (6" R) ( sup Dos) , (6" R) ' E)
Abk<s<srR S
and thus

n+l A . o Do(S) -1
Y Di(0"R) <CD:i(R)+C (8"R) ( sup ——=+(0"R) E) .
k=0 Abn+lcs<R S

Combining the above with (2.7.16) and using D;(R) < R™'Dy(R) yields

Do(0™'R) < C(DO(R) + (9n+1R)—a( Dy(s) + (0n+1R)_1 E))
< R . .

9n+1R

07+1<s<R
If we take C sufficiently large, we obtain that "R > X v C implies C(0"R) ™ * < CX < %19“%
and we get from this and the previous display that
D n+1
0(9 R) < CD()(R) +l sup Do(S) n FE '
O1R R 29ncs<r S (O R)1re
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This and an easy induction argument gives us, for all such n € N,
Dy(6"R) < CDy(R) N E
orR R (9n+1R)1+a ’

This implies (2.7.14).

Step 3. The proof of (2.7.10) for general k € N. In view of (2.7.14), we can improve (2.7.13)
to the bound

~ 1~ D E
(2.7.17) Dy (0r) < =Dy (r) + Cri-h= Do(R) +—.
2 R T
The details of the proof of (2.7.10) for general k € N now follow very closely from the argument
in Step 3 in the proof of [16, Lemma 2.4]. We omit the details. O

Following [16, 17], we next show that Theorem 2.1.1 and Lemma 2.7.2 imply a form of
higher regularity for coarsenings of a-harmonic functions on mesoscopic scales. The following
lemma can be compared to [16, Theorem 2.1].

LEMMA 2.7.3. There exist exponents s(d) > 0, 6(d,p,\) > 0 and a random wvariable X
satisfying
X <0, (C(d;p, M)
and, for each k € N, a constant C(k,d,p,\) < co such that, for every R >2X, ue A(%s N BR)
and r € [X, %R],

' 1
(2.7.18)  inf |By|? [u-w| 240,

weAk
clr S ¢ 1Bal3 cr (L) |1Bgl 2
<Olg) b IBal™ o -wligenmy + O\ g 1B Tl p2ononn

PROOF. We take & as in the proof of Lemma 2.7.1 and fix R > 24X and u € A(%w N BRr).
Note that, due to the definition of X, for every r > X and m € N such that B, ¢ O,,, we have
that oo N By € €« (Om+1). As in the statement of Lemma 2.7.2, we denote

Di(s) == inf [[u]p - wl2p,) -

WEAL
Also define
1. _d
E:= Ei&gR 2 u - a”LQ(‘KmmBR) :
Note that if r < %d_%R, then O,,43 € Bg. Thus (2.7.2) implies that, for every r € [X,cR],
. _ DQ(S) E
inf ulp —w <Cri™ sup (—+—
weA(By) I ]P ”£2(BT) r<s<R S r

An application of Lemma 2.7.2 therefore gives us that, for every r € [X, cR],

k+
(2.7.19) Di(r) gc(%) ' Di(eR) + Crie (%+§),

Using (2.7.11), we also have that
Di(eR) <€ inf |[ulp ~wl s
’wEAk

(the second c is larger) and therefore we deduce that

r\k+t . —a Do(cR) E
(2.7.20) D) <C(g) it ke~ + OF (_R ; 7) .
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The bound (2.7.20) is close to the desired result. What is left to do is to rewrite it in terms of u
rather than [u]p. To this end, it is useful to define

~ 1
Dy(s) = inf |Bs| "2 |u-w| 204 nB.) -
WEAL

The required approximations are presented in the following two steps and then the conclusion in
the third and final step. As usual, C' denotes a positive constant depending only on (k,d,p,\)
which may vary.

Step 1. We claim there exists C < oo such that, for every r € [X, C’IR],
~ 1~
(2.7.21) Du(r) < C (Dk(C'r) . —DO(CT)).
T

Take m € N such that 3™ ! <r < 3™. Observe that the condition on r, if C' is large enough, gives
us that 3™ > X and that O,,+4 € Bg. We may therefore apply (2.7.8) to deduce

~ _1
Dy (r) < C inf [O,,] 2 ”u_w”L?(f@”ooan)
WEAL

_1
< C lrg‘ |Dm| 2 ”u_wHL2(%)x—(D'm+1))
WEAL

. -1 -m - -1
<C Hﬁ |E|m| 2 || [u]P - w||L2((z(}p*(Dm+1)) +C3 (11I61]£|E|m| 2 ||’LL—(ZHL2(<&(DM+4))

wE.Ak
<C (Dk(Cr) . EEO(CT)),
T

which confirms (2.7.21).
Step 2. We claim that there exists C < oo such that

D)

(2.7.22) inf [ [ulp - wl g, < c(ﬁk(R) -

weAy

With m as in Step 1 for r = ¢R, we compute, for any w € Ay,
Ilulp —wlpr g,

<Cloml ® [ulp - w1,
C
Tl ool o uEE) - u@) da
< % (ol EO) - wEO)+ [ ) - wEE) dr)

- |Dm| 0eP,0S0m,
_1
<Clopl 2 Hu—w”m(%,nmmﬂ) + ||Vw||Loo(g )

To get the last line, we use Holder’s inequality and make the exponent ¢ in the definition of X
larger, if necessary. We now take w € A}, to achieve the infimum in the definition of Dk(R) This
yields that

inf [[ulp - wl 1., < COR(R) + C |Vl o

weAy (Bm) *

It remains to show that
(2.7.23) | VW] o,y < CR™ Do(R).
To see this, we note that since w is a harmonic polynomial, we have

.
HVwHLw(Dm) <C3 gelug w - a||L1(Dm) .
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By the Holder inequality, we have, for any a € R,

c
> lw-alpg

) <
’ Um | OeP,0S0m

<SS () -l +size(@p(2) 2 [Vl e, y)

- | Um | LE€G oo NOm

lw-alyi,

-1
<O1Om [ w = al i gng,) + ClIVEl L (g,
Combining these after optimizing over a € R, we get

[Vl < €37 inf| B ™ w = all pr g nmyy + €37 VW] o, -

Since 3™ > cR > C, we can absorb the second term on the right side to get
V0l ) < S 0 1B =l 1 i
™) R aeR oo bim
Since w achieves the infimum in the definition of Dy (R), we have
inf | Oy [ w0 = al 1 g0, < it [BRI7? [w - al 25,
< Do(R) + Di(R) < 2Dy(R).

This completes the proof of (2.7.23) and thus of (2.7.22).
Step 3. The conclusion. Combining (2.7.20), (2.7.21) and (2.7.22), we obtain that, for every

re[X,C'R],

(2.7.24) Dy(r) < C (%)k” Bu(R) + O 1’30]21%)_

By adjusting the constants C, we obtain the same inequality for all r € [X , %R] This
yields (2.7.18) and completes the proof. O

Notice that Lemma 2.7.3 already gives the statement of Theorem 2.1.2 in the case k = 0 and
gives us the Lipschitz estimate (2.1.19). To complete the proof of Theorem 2.1.2, we need to do
an induction on k.

PrROOF OF THEOREM 2.1.2. Now that we have proved Lemma 2.7.3, the proof of Theo-
rem 2.1.2 closely follows the argument of [17, Proposition 3.1] with only very minor (mostly
notational) modifications, using Theorem 2.1.1 and Lemma 2.7.3 in place of [17, Proposition 3.2]
and [17, Proposition 3.3], respectively. We therefore refer the reader to [17] and do not repeat
the argument here. (Il

2.A. Multiscale Poincaré inequality

The purpose of this appendix is to recall a useful inequality introduced in [16], modified here
for the discrete lattice, which allows for controlling the L? norm of a function by the spatial
averages of its gradient.

In this appendix, we will deviate from the notation for cubes introduced in Section 2.2 and
used in the rest of the paper by denoting

Lom 1om)®
O = [-=3™, —3m) c R4

" ( 2" 2
Thus O,, is an open subset of R? and not just a collection of integer lattice points. We will also
reserve the symbols [ and £ to denote integration with respect to Lebesgue measure on subsets
of R, with discrete sums denoted by 3.
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The inequality we consider here is a refinement of the usual Poincaré inequality which asserts
that, for a constant C(d) < oo and every u € H'(O,,),

(2.1.1) £ @) - @, [ o<z £ vu()? de.
Om Om
The discrete version of this inequality can be written
2 m
(2.1.2) > fu@) - (), [T <0 Y vl (2).
z€ZaN0Om x€Z4N0Om

Here we denote averages by (u); = f; u(z)dx or (u)y = |ZYn U[' ¥yepany u(z), depending
on whether u denotes a continuum or discrete function (which will always be clear from the
context). It is not possible to improve the scaling of the constant C'3%™ on the right side of these
inequalities for general functions, as we see by considering the case that u is affine. However, if
the gradient Vu of u has spatial averages on large scales which are very small compared to the
(normalized) L? norm of |Vu|, then it is possible to improve the scaling of the constant. In other
words, we can improve the scaling in the Poincaré inequality if we use the weaker H~' norm on
the right side rather than the L? norm. This is, of course, the situation we often find ourselves in
when considering highly oscillating functions. The following result, which we call the multiscale
Poincaré inequality, was proved in [16].

PROPOSITION 2.A.1 ([16, Proposition 6.1]). Fiz n,m € N with n <m. Then there exists a
constant C(d) < co such that, for every w e H'(O,,),

1
n 1 2\’
(2.1.3) Hu—(u)DmHLz(D )_C3 IVul z2(g,,) + € Z 3k(m > ‘(Vu)ymk‘ )

ye3kZ4AnO,

The purpose of this appendix is to explain how to use affine interpolation to derive from
Proposition 2.A.1 the following discrete version of it.

PROPOSITION 2.A.2. Fizn,meN with n e [2
such that, for every u:Z%na,, - R,

m]. Then there exists a constant C(d) < oo

1
2)2

PROOF. We construct a smooth @ € C*(0,,) which is close to the discrete function u by first
extending u to be constant on each cube of the form z + 0Oy with z € Z% N0, and then taking the
convolution of it against a smooth approximation of the identity with support contained in By ;.
It follows that %(2) = u(z) for each z € Z?n0O,, and, for each z € Zn0O,,,

sup |Vu(z)|<C >, |Vul(2).

xrez+0p yEZd,|y—z\oo§1

2

(2.1.4) Hﬁ(zdnmm)

1

|3kZd N Oy (vu>Zdﬁ(y+Dk)

< C3"|Vul 2(zan0,,) + € Z 3k(

ye3kZdno,, |D |

We then check from these facts, the discrete and continuum Stokes formulas and a similar
calculation as in (2.6.14) that, for each z € ZYn 0, and k € N with k < m,

: > vul(y)

1
(VT),,0 — — (Vt)ga <C—
20 gl o | S L

<0375 (L > |VU|2(y)) :

|Dk7 | yeZand(2+0k)

Applying Proposition 2.A.1 to & and using the above inequalities to rewrite the result in terms
of u, we get (2.1.4), as desired. O



CHAPTER 3

Optimal corrector estimates on percolation clusters

We prove optimal quantitative estimates on the first-order correctors on super-
critical percolation clusters: we show that they are bounded in d > 3 and have
logarithmic growth in d = 2, in the sense of stretched exponential moments. The
main ingredients are a renormalization scheme of the supercritical percolation
cluster, following the works of Pisztora [138]; large-scale regularity estimates
developed in the previous paper [13]; and a nonlinear concentration inequality
of Efron-Stein type which is used to transfer quantitative information from
the environment to the correctors.
This chapter corresponds to the article [51].
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3.1. Introduction

3.1.1. Motivation and informal summary of results. We consider the random con-
ductance model on the supercritical percolation cluster defined as follows. We let Z¢ be the
standard hypercubic lattice and By be the set of bonds of Z<. We fix a parameter A € (0,1) and
we are given a function

(3.1.1) a:B;—{0}u[A1],

the value a(e) is called the conductance of the bond e and we assume that the collection (a(e)),.p,
is an i.i.d collection of random variables. We assume that the probability p := P (a(e) # 0) > p.(d),
where p.(d) is the bond percolation threshold for the lattice Z%. Tt follows that, almost surely,
there exists a unique maximal connected component of bonds with nonzero conductance which
we denote by G = Goo(a). One then wishes to study the continuous time random walk X; in
the random environment a defined as follows. We select an environment a such that 0 € ¥ and
start a random walker at the origin, X (0) = 0. Each edge e is equipped with a random clock
and rings after exponential waiting time with expectation a(e)™!. When X (t) = z, the random
walker waits until a clock of an edge adjacent to x rings and then moves across that edge. Note
that the random walker is confined to the infinite cluster $». This random walk is a Markov
process and a common strategy to study it is to look at its generator, which is given by the
random discrete elliptic PDE

-V-avVu =0 in %,
167
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where the operator =V - aVu is defined on functions u : €% — R by, for each x € €,
v-avu(z) = 3] a({z,y})(u(y) - u(@)).
Yy~

In this article, we wish to study this random elliptic PDE by studying the (random) set of
harmonic functions for this operator. In [29], it was proved, in the case when a takes only the two
values 0 and 1, that every harmonic function h with prescribed linear growth is close to a linear
function: the random vector space of harmonic functions with growth at most linear is finite
dimensional, and its dimension is (d + 1) almost surely. Moreover for each harmonic function
in this space, there exists a unique vector p € R? such that the difference xp(z) =h(z)-p-x
is o(|z|) as * - oo. This result was quantified and extended to the generality presented in
this introduction by Armstrong and the author in [13], where it is shown that the corrector is
o (Jz|*%) for some small but strictly positive 4.

The map ¥, is called the corrector and is the central object of this article: our goal is to
prove optimal bounds in terms of spatial scaling (and suboptimal with respect to stochastic
integrability) on the first-order correctors. We show, in the sense of stretched exponential
moments, that the correctors are bounded in dimensions d > 3, and have increments which grow
like the square root of the logarithm of the distance in dimension 2. This is summarized in the
following theorem.

THEOREM 3.1.1 (Optimal L™ estimates for first-order correctors). There exist an exponent
s:=5(d,p,\) >0 and a constant C:= C(d,p,\) < 0o such that for each z,y € Z% and each p e R?,

1 .
O, (Clpllog? [e —yl) ifd=2,
Os (Clpl) ifd>3,

where, for a random variable X, we write X < O4(K), to mean

o (2]

Obtaining information on the corrector is important and has proved to be useful. For instance,
qualitative sublinarity of the corrector can be used to prove invariance principles for the random
walker X; following the general principle described below: if one denotes by x := (x1,-.--,xaq) the
vector-valued corrector, where y; is the corrector such that e; - z + x;(x) is harmonic, then the
process

|Xp(1") - Xp(y)| ]l{x,ye?o”oo} < {

Xt + x(Xt) is a martingale, almost surely with respect to the environment.

The strategy is to apply a standard martingale convergence theorem and then to derive a
quenched invariance principle for the rescaled process X2 + EX(Xt/az). Using the sublinearity
of the corrector x allows to prove an invariance principle for the diffusion process X itself. This
was carried out on the infinite supercritical cluster (in the case when a takes only the values 0
and 1) first by Sidoravicius and Sznitman in [144] in dimension larger than 4, and a few years
later by Mathieu, Piatnitski [11] and Berger, Biskup in [30] in all dimensions d > 2. Prior to
these results, the generator of the random walk was studied by Barlow in [24] and by Mathieu,
Remy in [114], who proved heat-kernel type bounds for the transition probability.

In the more general setting of i.i.d random conductances, when a can a priori take values in
[0,00), a quenched functional central limit theorem was established by Andres, Barlow, Deuschel
and Hambly in [7], provided that there exists an infinite cluster of nonzero conductances, based
on the previous works of Mathieu [112], Biskup and Prescott [33], Barlow and Deuschel [25].
More general model of random walks on percolation clusters with long range correlation, including
random interlacements and level sets of the Gaussian free field, are studied by Procaccia, Rosenthal
and Sapozhnikov in [139].

Tight bounds on the corrector are useful to derive invariance principles but they are also the
crucial ingredient for the derivation of optimal error and two-scale expansion estimates for the



3.1. INTRODUCTION 169

homogenization of general boundary value problems. They can be used to obtain a Berry-Fssen
theorem, in the spirit of Mourrat [128] in the uniformly elliptic setting and are also important to
obtain precise information on the Green’s function for the Laplacian on the infinite cluster as
well as on the transition probability for the random walk, as is explained in [18, Chapters 8 and
9]. They can also inform the performance of numerical algorithms for the computation of the
homogenized diffusivity [129] and of solutions to the heterogeneous equation [15].

The tools developed in this article come from the theory of stochastic homogenization which
studies the solutions of the elliptic equations

-V-avVu =0in Rd,

where the environment a is a random map from R? to the set of symmetric matrices, satisfying
some assumptions of ellipticity, stationarity and ergodicity. There have been recent developments
in the quantitative homogenization of uniformly elliptic random envionments, which started with
the work of Gloria and Otto in [82]. In this article they were able to obtain moments bounds
on the corrector with an optimal spatial scaling, by using a Spectral Gap inequality, which was
first introduced into stochastic homogenization by Naddaf and Spencer in [133], to quantify
the ergodicity. This program was then continued by Gloria and Otto in [83, 85, 86] and by
Neukamm Gloria and Otto in [79, 81, 80] and has implications to random walks as explained
in [63].

Another approach was later initiated by Armstrong and Smart in [21], who extended the
techniques of Avellaneda and Lin [22, 23] and the ones of Dal Maso and Modica [49, 50], and
were able to obtain a large scale C%! regularity theory under an assumption of finite range
dependence on the environment. This was then generalized by Armstrong, Kuusi and Mourrat
to general mixing conditions and to other types of equation [20] and improved to obtain optimal
rates of convergence [17, 18].

The theory is now well-understood in the uniformly elliptic setting. Going beyond this
setting has been the subject of much research recently in different directions. In [108], Lamacz,
Neukamm and Otto were able to extend these results to a model of Bernoulli bond percolation,
where the standard model is modified such that all the bonds in a fixed unit direction are always
open. Another way of removing the ellipticity assumption can be the following: we define some
(scalar) random variables 0 < A < p < co according to the formulas

= in §a2§ and p:= sup %,
geRaN{0} |§‘ geRIN{0} ‘gl

and add an assumption on the integrability of A and p of the form : there exist p,q € [1, 00] such
that

(3.1.2) E[AP]+E[p?] < oo.

This setting was first considered by Andres, Deuschel, Slowik in [9] (see also [10]), and then by
Chiarini and Deuschel in [44]. They are able to derive an invariance principle for the diffusion
process under the assumption 1/p + 1/¢ < 2/d, which allowed them to perform a Moser iteration.
In [28], Bella, Fehrman and Otto, still working under the assumption 1/p + 1/q < 2/d, were able
to obtain a first-order Liouville theorem and a large scale C'1® estimate for a-harmonic functions.
An extension of these results to the case of time-dependent coefficients has been carried out
by [8]. The condition (3.1.2) requires the value of the conductances to be non-zero almost surely,
an extension of this model in a case when the conductance is allowed to be zero and to be small
(under some moments condition) was investigated by Deuschel, Nguyen and Slowik in [57].

The setting considered in this article is different from the models satisfying condition (3.1.2):
we are working with the i.i.d. random conductance model, and we assume the value of the
conductances to be either 0 or larger than some deterministic constant A >0 (see (3.1.1)), with
the property that P (a(e) #0) > p.(d). Despite this difference, the main challenge is essentially
the same: adapting the various tools and proofs, available in the uniformly elliptic setting, to the
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degenerate elliptic environment. To this end, we follow the strategy initiated in the previous
paper [13] and appeal to a renormalization structure for the supercritical percolation cluster.
The construction is recalled in Section 3.2, where Z¢ is partitioned into triadic cubes of different
random sizes, well-connected in the sense of Antal an Pisztora [11]. This partition allows to
distinguish regions of Z¢ where the infinite cluster is well-behaved, its geometry looks like the
geometry of the lattice Z¢, from regions where the infinite cluster is badly-behaved. In the first
case, it is rather straightforward to adapt the theory developed in the uniformly elliptic setting.
Problems arise where the infinite cluster is badly-behaved. In this situation the theory cannot be
adapted. Fortunately there are few regions were the cluster is badly-behaved, and the theory of
stochastic homogenization in the uniformly elliptic setting is robust enough to be adapted to the
supercritical cluster.

Our strategy to prove the optimal scaling of the corrector relies on a concentration inequality
(cf. Proposition 3.2.16), which gives us a convenient way to transfer quantitative information
from the coefficients to the correctors. This idea originates in an unpublished paper from Naddaf
and Spencer [133], and was then developed by Gloria and Otto [82, 83] and Gloria, Neukamm
and Otto [81] (see also Mourrat [127]) to study stochastic homogenization. More precisely,
thanks to this inequality we are able to obtain quantitative estimates on the spatial average of
the gradient of the corrector.

We then need one last ingredient to transfer bounds on the spatial average of the gradient of
the corrector to the oscillation of the correctors. This will be achieved by the multiscale Poincaré
inequality, Proposition 3.2.17. This inequality is a refinement of the Poincaré inequality, more
suited to the study of rapidly oscillating functions such as the corrector.

3.1.2. Notation and assumptions.

3.1.2.1. General notation for the probabilistic model. We denote by Z% the standard d-
dimensional hypercubic lattice. A point z € Z% will often be called a vertez. The set of
edges of Z9, that is the set of unoriented pairs of nearest neighbors, is denoted by By :=
{{x,y} cxyyeZ lx -yl = 1}. More specifically, given a subset U ¢ Z¢, we denote by Bq(U)
the set of the edges of U, i.e., Bg(U) = {{z,y} : 2,y € U,|x —y|; = 1}. The canonical basis of R?
is denoted by e1,...,¢q. For z,y € Z%, we write  ~ y if {z,y} € By. For some fixed parameter
A € (0,1], we define the probability space 2 := ({0} U [\, 1])Bd and we equip this probability
space with the Borel o-algebra F := B ({0} U [\, 1])®%4. Given an edge e € By, we denote by a(e)
the projection

o). { 0 > {0} oAl

(we')e’eBd = We-
We denote by a the collection (a(e)),.z, and we refer to this mapping as the environment. For
every U ¢ Z%, we denote by F(U) € F the o-algebra generated by the mappings (a(e))eeBd(U).
We fix a probability measure Py supported in {0} U [\, 1] satisfying the property

(3.1.3) p:=Po ([A,1]) > pe(d).

where p¢(d) is the bond percolation threshold for the lattice Z%. We then equip the measurable
space (€, F) with the i.i.d. probability measure P = IPE)@B”’, so that the sequence of random
variables (a(e))ees, is an ii.d. family of random variables of law Py. The expectation with
respect to [P is denoted by E.

Given an environment a, we say that an edge e € By is open if a(e) >0 and closed if a(e) = 0.
Given two vertices z,y € Z%, we say that there is a path connecting = and y if there exists a
sequence of open edges of the form {x,z1},...,{2n, 2ns1},---,{2n,y}. The two vertices x and y
are then said to be connected, which we denote by x <>, y, if there exists a path connecting x
and y. A cluster is a connected subset € ¢ Z¢. Thanks to (3.1.3), we know that, P—almost surely,
there exists a unique maximal infinite cluster [40]. This cluster is denoted by €% := € (a).



3.1. INTRODUCTION 171

We also denote by E,4 := {(z, Y) T,y € 7%, 2 ~ y} the set of oriented edges. More generally,
we define, for a subset U € Z4, Ey(U) = {(x,y) : x,y e U,z ~y}.
For x € Z%, we define the translation 7, on  to be the application

. Q -
. (wﬁ)eeBd e (w€+x)e€Bd :
Note that the measure P is stationary with respect to the Z%translations: for each z € Z,
(3.1.4) (12),P=P,
where (7,), P is the pushforward measure defined by, for each A € F, (1), P(4) =P (7;* (4)).

T

3.1.2.2. Notation for functions. We define a vector field to be a function G : E; - R satisfying
the following antisymmetry property: for each (z,y) € Ey,

G(l‘a y) = _G(y7 .’L‘)
For a given a function u : Z% - R, we define its gradient Vu to be the vector field
(Vu)(@,y) = u(z) - u(y).

For a random function defined on a cluster %, u: ¥ — R, we define Vu to be the vector field
defined by

(3.1.5) (V) (2,y) = { () u(y) iy < and a (o)) 20

and aVu to be the vector field defined by

(avu) (z,y) = a({z,y}) (Vu)(z,y).
We typically think of " as being the infinite cluster G-
For q € R?, we denote by ¢ the constant vector field, defined according to the formula
q(z,y)=q-(z-y).

For a given vector field G, we define, for every z € Z,

(3.1.6) |G|(m):=(% > |G(1:,y)|2).

(mvy)EEd
For a given a subset U ¢ Z¢, we equip the space of vector fields with a scalar product, defined by
<F7G>U:: Z F(l‘,y)G(I‘,y)
(z,y)eEq(U)
We will also frequently make use of the following notation, given a vector field G, we define
(Gly= X Gly(z-y).
(z,y)eEq(U)

Given an environment a, two functions u,v : Z% - R, and a subset U ¢ Z%, the Dirichlet form
can be written with the previous notation as

(Vu,avo)y = > (u(@) - u(y))a({z,y}) (v(@) -v(y)) .

(z,y)eEq(U)

We then define the elliptic operator —V - aV by, for each u:Z? - R and z € Z¢,

(-v-avu) (2) = ) a({z,y})(w(@) - u(y)).

T~y
For a given a subset U ¢ Z¢, we define the random set of a-harmonic functions in U by,

AU) ={u: U~ R : (-V-avu) (z) =0, z € intaU},
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where intaU is the interior of U with respect to the environment a, defined according to the
formula

intaU:={zeU : VyeZ? (y~x and a({z,y}) #0) — yeU}.

Given a subset U ¢ Z% and a function w : U - R, we generally denote sums by integrals; for
instance,

(3.1.7) we write /Uw(m) dz instead of ) w(z).
xeU

If U is a finite (resp. a continuous) set, we denote its cardinality (resp. its Lebesgue measure) by
|U|. It will always be clear from context whether we are referring to the continuous integral (resp.
to the Lebesgue measure) or to the discrete integral (resp. the cardinality). The normalized
integral for a discrete (resp. continuous) function w : U — R defined on a discrete (resp. continous)
subset U ¢ Z¢ (resp. U ¢ R%) is denoted by

]gw(x)da::ﬁwa(x)dx.

To shorten the notation, we sometimes write

(w)y = ]gw(a:) dx.

We denote by C(R% R) (resp. C* (R4, R)) the set of smooth compactly supported (resp.
smooth) functions in R? and by S(R?) the Schwartz space, i.e.,

S(Rd) = {f € Cw(Rd,R) 2V (k,aq,aq) € N sup |$|k |0f‘1---8§df(x)‘ < oo}
zeRd

and by S’(R%) (or &' for short) its topological dual, the space of tempered distribution. Given
U ¢ R? a domain, we denote by C®(U,R) (resp. C*(U,R)) the set of smooth compactly
supported (resp. smooth) functions in U.

For g € [1,00), we denote the LY and normalized L? norms by

1 1
q q
ol oy = [ lo@) de) and Jul oy = ( f, @) dz)”.
Moreover, we write |w| ey = Sup,ep [w(z)[. For k € N, we denote by WH4(U) the Sobolev
space, by W(;C’q(U) the closure of C°(U,R) in W*4(U) , and by WF(U) the space of local

loc
Sobolev functions. For k € Z with k < 0, we denote by W*4(U) the topological dual of W(;k’p(U),
with p = %.

For vectors of R?, we denote by |-| the standard infinite norm given by |z| = max;-i,.._q|Til|.
This distance can then be extended to a pseudometric on the subsets of Z? by dist(U, V) =
inf ey yev |z —yl.

We also use the notation Br(z) to denote the ball centered in z € Z? with radius R > 0 with
respect to the infinite norm. The ball Bg(0) is simply denoted Bg.

3.1.2.3. Notation for cubes. A cube is a subset of Z¢ of the form
(z + (=N, N)d) nZd NeN,zezd

For the cube given in the previous display, which we denote by O, we define its center and its
size to be the point z € Z¢ and the integer 2N — 1. We denote its size by size(d). In particular,
with this convention, we have |0 = (size(0))?. For a non-negative real number 7 > 0 and a cube
O, of center z € Z? and size N € N, we denote by ro the cube

ro:= (z + (-rN, rN)d) nz4.
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This notation is non-standard because the multiplication by r only affects the size of the cube,
indeed the cube rO has size |rsize(O) |, but the center of the cube remains unchanged. We now
introduce a specific category of cubes, namely the triadic cubes. A triadic cube is a cube of the
form

1o, 1.,\?
(3.1.8) Op (2) = (z + (—53”, 53") ) nZ% neN, z e 3"z

To simplify the notation, we also write O,, = 0,(0). This collection of cubes enjoys a number of
very convenient properties. First, any two triadic cubes (of possibly different sizes) are either
disjoint or else one is included in the other. Moreover, for every m,n € N with n < m, the triadic
cube O,, can be uniquely partitioned into 3d(m-n) disjoint triadic cubes of size 3™, i.e., cubes
of the form 0O, (z) with z € 3"Z%. We denote by T the collection of triadic cubes and by 7;, the
collection of triadic cubes of size 3", i.e. Ty, = {z +0, : 2€ 3"Zd}.

For each n € N and each O € 7,, we define the predecessor of O, to be the unique triadic cube
0 € Tpy1 such that oc@. If O is the predecessor of O, then we also say that O is a successor 0.
In particular, a cube of 7o does not have any successor, while each cube of T \ 7Ty has exactly 3¢
SUCCESSOTS.

3.1.2.4. The Oy notation. We next introduce a series of notation and properties which will
be useful to measure the stochastic integrability and sizes of random variables. Given two
parameters s,6 > 0 and a non-negative random variable X, we denote by

X < O4(0) if and only ifE[exp((%) )] <2

Note that by Markov’s inequality, the tail of a random variable X satisfying X < O(0) decreases
exponentially fast: for every ¢ > 0,

P[X > 0t] <2exp (-t7).

For a given sequence (Y;);en of non-negative random variables and a sequence (6;);ey of non-
negative real numbers, we write

ieN
if there exists a sequence of non-negative random variables (Z;);eny such that for each i € N,
Z; < 05(01) and

X <) Yz
1eN

We now record some properties pertaining to this notation. All these properties are proved
in [18, Appendix A] and we refer to this reference for the proofs. This notation is compatible
with the addition, meaning that, for any s > 0, there exists a constant C' depending only on s,
which may be taken to be 1 if s > 1, such that

(3.1.9) X < 03(91) and X5 < 05(92) — X7+ X5 < 05(0(91 +(92)).

More generally, for any s > 0, there exists a constant C(s) < co such that, for every measure
space (X, F,u), every jointly measurable family {X (z)}.cg of non-negative random variables
and every measurable function 6 : F - R, , we have

(3.1.10) Vie B, X(2)<0,(0(x) = [ X()du(x) <O, (C’[EG(x) du(x)).
Moreover the constant can be chosen to be
1
(3.1.11) C(s) = (513)
C(s)=1
From the definition, we have, for each A € R,

X <04(0) = AX < O4(N\9).

1
s ifs<l1
if s> 1.
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This notation is also compatible with the multiplication in the sense that

(3.1.12) |X1| < 051(91) and ’X2| < 052(02) - |XY‘ <O sysg (9192)
s1+89

Moreover, it is easy to check that one can decrease the integrability exponent s, i.e., for each
0 < s’ < s, there exists a constant C := C'(s) < oo such that

(3.1.13) X< 05(01) = X < 031(001).

3.1.2.5. Conwvention for constants and exponents. In this article, the symbols ¢ and C' denote
positive constants which may vary from line to line. These constants depend mainly on three
parameters which are fixed through the proofs: the dimension of the space d, the ellipticity A and
the probability p = P[a(e) # 0]. Usually, we use C for large constants (whose value is expected
to belong to [1,00)) and ¢ for small constants (whose value is expected to be small (0,1]).

For the stochastic integrability, we use the letter s and will typically have inequalities of the
form X < O4(C). This exponent s depends on the parameters d, A and p. Its value can also vary
from line to line and is expected to be small.

In Sections 3.4 and 3.5, another parameter will be involved in the dependence of the constants
and exponents, the spatial integrability ¢ € (2,00) (see Theorem 3.1.2 below), the dependence
in this additional parameter will be displayed thanks to the following convention : we write
C:=C(d,\,p) < oo (resp. C:=C(d, \,p,q) < o) to mean that the constant C' depends only on the
parameters d, A\, p (resp. d, A, p,q) and that its value is expected to be large. For small constants
or exponents we use the notations ¢ :=¢(d, \,p) >0, s:=s(d,\,p) >0 (resp. c¢:=c(d,\,p,q) >0,
5= 3(d7 /\7p7q) > 0)

3.1.3. Outline of the paper. The rest of the paper is organized as follows. In Section 3.2,
we recall (mostly without proof) some properties of the infinite cluster which were stated and
proved in [13] to develop a quantitative homogenization theory on the infinite percolation cluster.
In Subsections 3.2.5 and 3.2.6, we state the concentration inequality and the multiscale Poincaré
inequality, which are the two key ideas in the proof of Theorem 3.1.2. In Section 3.3, we use
the concentration inequality and the properties of the infinite cluster recorded in Section 3.2 to
obtain an estimate on the spatial averages of the corrector. In Section 3.4, we use the result
established in Section 3.3 combined with the multiscale Poincaré inequality to prove the optimal
L%-bound on the gradient of the corrector, stated in the following theorem.

THEOREM 3.1.2 (Optimal L9 estimates for first-order corrector). For each q > 2, there exist

an exponent s := s(d,p,\) >0 and a constant C(d,p,\,q) < oo such that for each R >1 and each
d
peR,

1 1
- q Os (C|p|log2 R) ifd=2
3.1.14 R df —(xp)s q)q < ( )
( ) ( %eonBr |X” (X”)%”BR‘ O, (Clp)) if d> 3.

This theorem is strictly weaker than Theorem 3.1.1 but is an important step in its proof. In
Section 3.5 we upgrade the previous L? bound into the L® bound stated in Theorem 3.1.1. In
Appendix 3.A, we give a proof of the multiscale Poincaré inequality stated in subsection 3.2.6.
In Appendix 3.B, we give the proof of a technical lemma used in Section 3.3.

Acknowledgement. I would like to thank Scott Armstrong, Jean-Christophe Mourrat and
Chenlin Gu for helpful discussions and comments.

3.2. Preliminaries

In this section we record some properties about the infinite percolation cluster in the
supercritical regime. Most of these properties were established in [13].
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3.2.1. The corrector : Existence and first properties. Denote by A; the (random)
vector space of a-harmonic functions with at most linear growth, i.e.

1
Ap:&u%xeR‘v(awﬁzom%QamiggjﬁMy%wmm=0}

By [13, Theorem 2|, we know that, P-almost surely, the space A; has dimension (d + 1) and
that every function u € A; is close to a linear function : there exists p € R? and ¢ € R such that u
can be written u =c+p-x + xp(z). The functions {Xp}pE]Rd are called the correctors. They are
defined up to a constant and are unique. In particular, to work with these quantities, one has
to be careful to only consider quantities which are invariant by adding a constant, such as the
oscillation, the gradient, the difference x,(x) — x,(y) etc.

The sublinear growth of the corrector is already known, indeed by [13, (1.22)], there exist
two exponents ¢ := §(d,p,\) >0, s:=s(d,p,\) >0 and a constant C := C(d,p,\) such that, for
each R > 1,

3.2.1 < O, (Clp|R™).
(3.2.1) 2956 Xp < Os (CIpIR'™)
where the oscillation, on a subset A ¢ Z%, of a function f : A - R is defined by osca f :=
supy f —inf4 f. The sublinear growth of the corrector is a very important property which was

proven quantitatively in [13] and qualitatively in [55]. It can also be expressed with a minimal
scale, indeed by [13, (1.18)], there exists a random variable X satisfying

X <04(0),
such that for each R > X,
< Clp|R'.

(3.2.2) HXP B (XP)%OBR‘L%%@BR)

Moreover, the corrector satisfies the following stationarity property, for each z,y € Z¢, each p e R?
and each z € Z,

(3'2'3) (Xp(m) - Xp(y)) n{z,yeﬁﬁx}(a) = (Xp(m + z) - Xp(y + Z)) ]l{z+x,z+ye‘€w}(7—za)'

3.2.2. Triadic partitions of good cubes. This second section shows how to use the tools
developed by Antal and Pisztora [11] to obtain a renormalization structure of the infinite cluster
of supercritical percolation.

3.2.2.1. A general scheme for partition of good cubes. The construction of the partition is
accomplished by a stopping time argument reminiscent of a Calderén-Zygmund-type decomposi-
tion. We are given a notion of “good cube” represented by an F-measurable function which maps
) into the set of all subsets of 7. In order words, for each a € 2, we are given a subcollection
G(a) c T of triadic cubes. We think of O € 7 as being a good cube if O € G(a). We frequently
drop the dependence in a and write G.

PROPOSITION 3.2.1 (Proposition 2.1 of [13]). Let G € T be a random collection of triadic
cubes, as above. Suppose that G satisfies, for everyQ=z+0, €T,

(3.2.4) the event {0 ¢ G} is F(z+ Ops1)-measurable,
and, for some constants K,s >0,

sup P[z+0, ¢G] < Kexp(—K_13"8) .

ze3nZd

Then, P-almost surely, there exists a partition S €T of Z¢ into triadic cubes with the following
properties:

(i) All predecessors of elements of S are good: for every 0,0 € T,

Ocoando’ €S = oeg.
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(ii) Neighboring elements of S have comparable sizes: for every 0,0 € S such that
dist(0,0") < 1, we have
: !
1 < 81‘ze(|:| ) <3
3~ size(D)

(iii) Estimate for the coarseness of S: if we denote by Os(z) the unique element of S
containing a point x € Z%, then there exists C(s,K,d) < oo such that, for every x € 72,

size (Os(x)) < Os(C).
In addition, if one has the following independence property, for every 0 =z+0, €T,
(3.2.5) the event {0 ¢ G} is F(z + Op+1)-measurable,

then one has the following minimal scale property

(iv) Minimal scale for S. For eacht € [1,00), there exists C' := C(t,s, K,d) < oo, an N-valued
random variable My(S) and exponent r :=r(t,s, K,d) >0 such that

M(S) <0, (C)
and for each m € N satisfying 3™ > My(S),
1

> size (os(z))'<C  and  sup size (Os(x)) < 3T

| Dm | T€OMm, T€Om

3.2.2.2. The partition P of well-connected cubes. We apply the construction of the previous
subsection to obtain a random partition P of Z% which simplifies the geometry of the percolation
cluster. This partition plays an important role in the rest of the paper. To obtain bounds on
the “good event” which allows us to construct the partition, we use the important results of
Pisztora [138], Penrose and Pisztora [136] and Antal and Pisztora [11]. We first recall some
definitions introduced in those works.

DEFINITION 3.2.2 (Crossability and crossing cluster). We say that a cube O is crossable (with
respect to an environment a € 2) if each of the d pairs of opposite (d — 1)-dimensional faces of
O is joined by an open path in 0. We say that a cluster ¢ ¢ O is a crossing cluster for 0 if €
intersects each of the (d — 1)—dimensional faces of O.

DEFINITION 3.2.3 (Good cube). We say that a triadic cube 0O € T is well-connected if there
exists a crossing cluster ¥ for the cube O such that:

(i) each cube O’ with size(0’") € [% size(D), 3 size(0)] and 0’ N 20 # @ is crossable; and

(i) every path v c o’ with diam(vy) > % size(O) is connected to ¢ within O'.

We say that 0 € T is a good cube if size() > 3, O is well-connected and each of the 3¢ successors
of O are well-connected. We say that 0O €7 is a bad cube if it is not a good cube.

The following estimate on the probability of the cube O, being good is a consequence [138,
Theorem 3.2] and [136, Theorem 5], as recalled in [11, (2.24)].

LEMMA 3.2.4 ([11, (2.24)]). For each p € (p¢, 1], there exists C(d,p) < oo such that, for every
nelN,

3.2.6 P[0, is good] > 1 - Cexp(-C713").
(3.2.6)

It follows from Definition 3.2.3 that, for every good cube O, there exists a unique maximal
crossing cluster for O which is contained in 0. We denote this cluster by %,(0). In the next
lemma, we record the observation that adjacent triadic cubes which have similar sizes and are
both good have connected clusters.
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LeEMMA 3.2.5 (Lemma 2.8 of [13]). Let n,n’ € N with [n—n'| <1 and z, 2" € 3"Z¢ such that
dist (0, (2), 0w (")) < 1.
Suppose also that O,(2) and O,/ (2") are good cubes. Then there exists a cluster € such that
Ce(On(2)) UG (O (2')) €€ € On(2) U (2).
We next define our partition P.

DEFINITION 3.2.6. We let P € T be the partition S of Z¢ obtained by applying Proposi-
tion 3.2.1 to the collection
G:={0eT :0 is good}.
More generally, for each y € Z¢, we let be Py & T be the partition S of Z% obtained by applying
Proposition 3.2.1 to the collection

G:={y+0:0eTandy+0O is good}.
From the construction of P and P, we also have
Py=y+P(r—ya)={y+0:0eP(1ya)}.

The (random) partition P plays an important role throughout the rest of the paper. We also
denote by P, the collection of triadic cubes which contains some elements of P, that is,

P.:={0: Ois a triadic cube and 020’ for some O’ € P}.

Notice that every element of P, can be written in a unique way as a disjoint union of elements
of P. According to Proposition 3.2.1(i), every triadic cube containing an element of P is good.
By Proposition 3.2.1(iii) and Lemma 3.2.4, there exists C(d,p) < co such that, for every z € Z%,

(3.2.7) size (Op(x)) < O1(C).

By the properties of P given in Proposition 3.2.1(i) and (ii) and Lemma 3.2.5, the maximal
crossing cluster % (0) of an element O € P, must satisfy €, (0) € €, since the union of all
crossing clusters of elements of P is unbounded and connected. Notice also that, although we
may not have €, (0) = ¥ N O, by definition of the partition P and (ii) of Definition 3.2.3, we
have that, for every cube O € P, there exists a cluster ¢ such that
(3.2.8) CnNOCEC U o’.
o’eP, dist(o,0")<1

In other words, for any cube 0 € P and every x,y € € N O, there exists a path connecting x to y
which stays in O or in its neighbors.

It is also interesting to note that, for m € N such that 3" > Myy (P), €:(0m), Coo N Oy, and
O,, are of comparable size, precisely, there exists a constant C := C(d,p) < co such that

(3.2.9) CYam | <16 (Om)] € Boo N O < [Ty

This result is a consequence of the Cauchy-Schwarz inequality and the three relations, under the
assumption 3™ > My, (P), which implies in particular that 0,, is good,
Y 1< (Om), >, size (0p)? = [Om|  and > size (0p)*? < C' |0y -

0eP,0C0m 0eP,0C0m 0eP,0C0m
The first inequality comes from the fact that each cube of P contained in O,, must have non-empty
intersection with %% (0, ), the second is the preservation of the volume and the third is where we
use the assumption 3" > Mo, (P).

Given O € P, we let Z(O) denote the element of €, (0) which is closest to z in the Manhattan

distance; if this is not unique, we break ties by the lexicographical order.

DEFINITION 3.2.7. Given a function u : w — R, we define the coarsened function with respect

to P to be
[ulp = Z% - R

v = u(z(Op@).
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The reason we use the coarsened function is that it is defined on the entire lattice Z¢ and
not on the infinite cluster. This allows to make use of the simpler and more favorable geometric
structure of Z%. The price to pay is the difference between u and [u]p. This depends on the
coarseness of the partition P and the control one has on Vu in a way that is made precise in the
following proposition. The dependence on the coarseness of P is present via the size of the cubes
of the partition. Recall that the notation |F|(x) for a vector field F' is defined in (3.1.6).

PROPOSITION 3.2.8 (Lemma 3.2 of [13]). For every triadic cube O € Py, 1 < s < o0 and
W:Coo = R,

3.2.10 f - °d sCSf i |\ gwl® (z) dz.
(3:2.10) [ @) - Llp@) dr< € [ se(@p(@)[vul (1) do
More generally, for any family of disjoint cubes {Q;}, € (77*)], we have
(3211) \[g*(uidgi) |'UJ(ZIT) - [UJ],P(Q;‘NS dx < CS \/%*(Uidmi) SiZe(DP(x))Sd |VUJ|$ (l’) d.’L‘,

where €. (Ujer0;) denotes the union of the mazximal clusters of each connected component of
UierU; -

REMARK 3.2.9. Unfortunately, we do not have €. (Ujer0;) = Ujer €% (3;). The problem is the
same than the one we had in (3.2.8) and thus (3.2.11) can not be directly obtained from (3.2.10).
Nevertheless, thanks to this equation, we do have the inclusion

(3.2.12) CoonOCE U o' |.
o’eP, dist(o,0’)<1

Moreover we can control the L* norm of the vector field V [w], depending on the L® norm
of Vw and the coarseness of the partition P thanks to the following proposition.

PROPOSITION 3.2.10 (Lemma 3.3 of [13]). For every triadic cube O € Py, 1 < s < oo and
W: G > R,

(3.2.13) f(g o T llpl” @) dw < [6 o size(op (2))*4Y [Vl (2) da.
More generally, for any family of disjoint cubes {Q;}, € (77*)[, we have

s s : sd-1 s
(3.2.14) [g ooy [Tl (@) < [g sy S20(OP (@) [Tl (&) do

3.2.3. Solving the Poisson equation with divergence form source term. In this
section we study the existence and uniqueness of the equation -V -avu = -V - £ on the infinite
cluster .. We denote by Y ... the sum over all the edges of the infinite cluster of nonzero
conductances.

The results of this section can be summarized in the two following propositions.

PROPOSITION 3.2.11 (Gradient of Green’s function). For a € (2, let e = (x,y) be an edge of
E§. There exist a constant C = C(d,\) < oo and a function VG(e,-) : 6o = R, whose gradient
with respect to the second variable, denoted by VVG satisfies,

(3.2.15) (VVG(e,-), VVG(e, )y <C,
and is a solution to the equation

-V -aV (VG(e,-)) =0z — 0y N Coo,
Moreover, we have, for each e,e’ € E%,
(3.2.16) VVG(e,e') =VVG(€, e).

We then deduce how to solve the general equation -V -aVwe = -V - £ from the previous
proposition.
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PRrOPOSITION 3.2.12. Let & : Eg — R be a vector field satisfying
(3.2.17) &(z,y)=0ifa(z,y) =0 orz,y ¢ Co.
If € satisfies (£,6)q, < oo then there exists a unique (a.s in the environment and up to a constant)
solution we of
~V-aVwe = -V £ in Coo.
Moreover, we have the following representation

(3.2.18) Vwe(-) = > &(e)VVG (e,-).

eCCo
PROOF OF PROPOSITION 3.2.11 AND 3.2.12. Let & be a vector field satisfying (3.2.17) and
(£,€)y. < 0. We denote by H' the space of functions defined on the infinite cluster whose
gradient is L?, i.e. H' := {u 1 G0 > R (Vu,Vu), < oo}, and look at the minimization problem
inf < (Vu,avu),, - (& Vu) |
ueH1 2 oo OO
By the standard techniques of the calculus of variations, there exists a unique solution (up to a

constant) to this problem denoted by wg. In particular, when & is the indicator of an edge e, we
obtain the function VG (e,-). To prove (3.2.16), we note that

VVG(e' e) = (VVG(e, -),aVVG(e',e))%o =VVG(e,e).
The representation formula (3.2.18) follows from standard arguments. O

3.2.4. Regularity theory. In this subsection, we record a result from the regularity theory
established in [13] giving a Lipschitz bound for the gradient of a-harmonic functions. This result
is only a small part of the regularity theory established in [13, Theorem 2], but is the only result
needed in the proofs of Theorems 3.1.1 and 3.1.2.

PROPOSITION 3.2.13 (Regularity theory). There exist a constant C < oo, an exponent s >0
and a random variable X satisfying

(3.2.19) X <0,(0),
such that for each u: € — R solution of the equation
(3.2.20) ~-V-avu=0

and each R>r > X, we have
r

We also introduce the notation, for each z € Z¢
X(x):=Xory.
This proposition is much weaker than Theorem 2 of [13], it is indeed a consequence of the

Caccioppoli inequality and Theorem 2 (iii) of [13] for k = 0. As a consequence, we obtain the
following Lipschitz bound on the corrector.

PROPOSITION 3.2.14 (Lipschitz bound on the corrector). There exists a constant C' < oo and
an exponent s >0 such that, for each edge e = (x,y) € E4 and each p € RY,

(3.2.21) VXp () T jecry < ClplX P (2).
which implies by (3.2.19),
(3.2.22) IVxp(e)| Lieesny < Os (Clpl)

for some smaller exponent s (c.f. Subsection 3.1.2.5). Moreover the same estimate holds for the
coarsened corrector

(3.2.23) |V Dxplp (€] < Os(Clpl).
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REMARK 3.2.15. The same estimate than (3.2.21) would hold with X%?(y) instead of X%?(z)
in the right-hand side.

PRrROOF. By the stationarity of the law of the corrector, we can assume that the edge e
touches 0, i.e. that x = 0. First note that, for each r > 1

d
IVxp(O) Lieetn) <NVl L2048, -

By applying Proposition 3.2.13 with r = X, and taking the limit R — oo, we obtain

1
I+ VX0l 2y < CX P Himint 2l + X0l 2nptany < Xl

A combination of the two previous displays with the integrability estimate (3.2.19) yields (3.2.22).
To prove (3.2.23), we combine (3.2.22) with Proposition 3.2.10 and use the integrability estimate
size (Op(2)) < Os(C), for each 2 € Z%. This is performed in the following computation: for each
edge e = (z,y) e R?, we have

3.2.24 v < f v " da'
( ) v bolp (©) %(w(z)ump(y))‘ Diplp| (o) e

<C size (DP(CCI))d_l IV xp| (2) da’

‘[é)me(x,Csize(Dp(m)))
_ -1
<C Z ]1{x’e%oomB(x,Csize(Dp(:c)))} s1ze (DP($,)) |VXp| (:L")

x'eZ
Moreover for each z € Z4, size (Op(x)) < O4(C). As a consequence

size (Op(z)) ! . 0s(0)
|:E _ I'|d+1 vl ~ |JU _ xl|d+l Vv 1’

(3.2.25) L{areB(a,Csize(op (2)))}y < C

where we used the notation a v b = max(a,b). Using the summability of the map z — |z|~971,
the properties (3.1.10) and (3.1.12) on the Oy notation and the Lipschitz bounds (3.2.22) on the

corrector, we obtain the result. O

We now present the two main tools to prove Theorem 3.1.2. The first one is a concentration
inequality, thanks to which we can obtain some quantitative control on the spatial averages of the
gradient at scale R (see Proposition 3.3.3). We then deduce Theorem 3.1.2 from Proposition 3.3.3
thanks to the multiscale Poincaré inequality.

3.2.5. Concentration inequality for stretched exponential moments. The following
concentration inequality is the key point in the proof of Proposition 3.3.3 in the next section. A
proof of this inequality can be found in [19, Proposition 2.2].

PROPOSITION 3.2.16 (Proposition 2.2 of [19]). Fiz § € (0,2). Let X be a random variable on
(Q, F,P) and set for each e € B4(Z?),

X! =E[X|F By~ {e})] and V[X]= ¥ (X -X!)°,

e€Bd

then there exists C := C(d, ) < oo such that

E [exp (X - E[X]")] < CE [eXp ((CV[X])?ii)]Q_[f .
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3.2.6. Multiscale Poincaré inequality. The next proposition is a version of the multiscale
Poincaré inequality. It controls the oscillations of a function in the L9 norm (left-hand side
of (3.2.26)) by the spatial average of the gradient of the function (right-hand side of (3.2.26)).

PROPOSITION 3.2.17 (Multiscale Poincaré inequality, heat kernel version). For each r >0, we

define
R - R
O i= exp (- 25).

r = 7 exp( 2

For each q > 1, there exists a constant C := C(d,q) < oo such that for each tempered distribution
ue€ V[/I})’Cq(]Rd) nS'"(R%) and each R >0,

|| 2R % %
_d -1z 2
(3.2.26) Ju = () e oy sC’([RdR dg-t2k (/O r B, * Vu(z)| dr) ) .

Moreover the dependence on the variable q of the constant C can be estimated as follows, for
each q > 2

C(d,q) < Ag?
for some constant A := A(d) < oo.

The proof of this proposition heavily relies on [18, Proposition D.1 and Remark D.6] and is
presented in Appendix A.

3.3. Estimates of the spatial averages of the first-order correctors

We now have all the necessary tools to prove the optimal L? bounds of the corrector, stated
in Theorem 3.1.2. The idea is to first prove Proposition 3.3.3 thanks to the concentration
inequality, Proposition 3.2.16. We then deduce the bound on the coarsened corrector thanks
to the multiscale Poincaré inequality, Proposition 3.2.17 and remove the coarsening thanks to
Proposition 3.2.8. This eventually yields Theorem 3.1.2.

DEFINITION 3.3.1. Fix a function n e CZ° (B;) satisfying
2
Ve eRY n(x) >0 and [Rd n(x)dx = 1.

Given a function w : € = R, we consider the function [w], defined on the entire lattice 7. We

then extend this function to a function piecewise constant on R? by setting, for each z € Z% and

each y € x + B1, [w]p (y) = [w]p (z). We then smoothen this function by taking the convolution
2

O

against n and define

Prle = ([wlpxn) (@)

This creates a smooth function defined on R?. This property will be convenient when we
apply the multiscale Poincaré inequality, to obtain Theorem 3.1.2. This is the only reason we need
to go from a discrete function defined on Z¢ to a continuous function defined on R¢. Additionally,
this function satisfies a number of convenient properties, recorded in the following proposition.

PROPOSITION 3.3.2. Given a function w : Ge = R, the function [w]% defined in Defini-
tion 3.3.1 satisfies
(i) For each x € 7.2,
[w]p (z) = [w]p (2).

(ii) For each v € Z% and each y € Z% + Bi, we have,
2

|V [wlp ()] < CIV [wlp] (@),
for some constant C' depending only on d and n.
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We now state the main technical proposition of this article.

PROPOSITION 3.3.3. For each R > 1, and each x € R?, the quantity vV (Pp* [Xp]%) (x) is
well-defined and there exist an exponent s >0 and a constant C < oo such that it satisfies

(3:3.1) [V (@ * [xp]p) (2)] < 05 (ClpIRE),
where we used the notation introduced earlier for the gaussian function
RY - R
Pr ::{ T R’dexp(—%).

We now turn to the proof of (3.3.1). By stationarity of the gradient of the corrector, it is
enough to prove the result when x = 0. By linearity of the mapping p — x,, we may and do
assume |p| = 1. We denote by X =V (®g * [xp]%) (0). We are going to prove

X|<0,(CRrE),

The main idea of the proof is to apply Proposition 3.2.16 to X. To do so, we need to prove the
two following lemmas. The first one focuses on the expectation of X.

LEMMA 3.3.4. There exists a constant C < oo such that
[E[X]<CR%.
The second one estimates the quantity V[ X].
LEMMA 3.3.5. There exists a constant C < co and an exponent s >0, such that
V[X] <O, (CR™).
These lemmas are proved in the following two subsections.

3.3.1. Estimating the expectation of the spatial averages. The main objective of
this step is to show Lemma 3.3.4.

Proof of Lemma 3.3.4. The idea of the proof is to use the stationarity and the sublinearity
of the corrector to prove that the expectation of its gradient is 0. The technical difficulty which
arises is that the partition P is not stationary and consequently we lose the stationarity of the
random variable V [x,]% (0). To fix this issue we introduce a stationary partition Pstay which is
stationary and equal to P on a set of large probability. We finally show that the error we make
by considering Pgtat instead of P is small.

For each z,y, z € Z¢ with = ~ y, denote by 7.a the translated environment defined by

ra({z,y})=a({x-z,y-z}).

For k € N, we construct the partition Psktat by applying Proposition 3.2.1 to the collection of
triadic cubes

ko =
gstat :gU(U 7;5)
n==k
Note that this collection is not a set of good cubes in the sense of Definition 3.2.3 but it is
3¥Z4-translation invariant. A straightforward consequence is that Pk, . is 3¥Z%-stationary: for

every environment a, every z € Z%, z € 3874,

(3.3.2) size (Dps;cmt (z+ z)) (1.a) = size (DPS;Ctat (x)) (a).
With a proof similar to the proof of [13, Proposition 2.1 (iv)], we derive
(3.3.3) P[32 €0y, Op(2) # O (2)] < Cexp (-C7'3%).
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For a function u: € — R, we define the coarsened function with respect to the partition P% .
by the formula

[ulps,, = (Zs (s, (@)

with the notation, for oe T,

zZ(O) if Z(O) € ¢ and Ois a good cube,
(3.3.4) Zstat (O) = | argmindist (z,0) otherwise.
2€C oo

If there is more than one choice in the argument of the minima, we select the one which is
minimal for the lexicographical order. In particular, by the statinarity of the gradient of the
corrector and (3.3.2), we have

(3.3.5) v [Xp]7ch is 3¥7% - stationnary,

stat

where [Xp];];k is defined from [x;],x by a convolution with 7, as in Definition 3.3.1. We fix
stat stat
k € Z4 such that 3F < R2 <351 and split the proof of Lemma 3.3.4 into three steps.
(i) In Step 1, we prove
B[|7 (@r* [ 1p) (0) - 7 (2 x Do T, ) (0)

(ii) In Step 2, we prove

]sCR—%.

" [/(ak syt V [xplp (@) dx] -

d
k k . .
Note that we wrote (—%, 37) and not O because we are referring to the continuous

cube and not the discrete one as it was defined in (3.1.8).
(iii) In Step 3, we use the result obtained in Step 2 to show

B[V (2n Dol )O)]

Lemma, 3.3.4 is then a consequence of the main results of Steps 1 and 3.

d
<CR™ 2.

Step 1. The main result of this step is a consequence of the following computation, by (3.1.5),
Proposition 3.3.2 and Proposition 3.2.10,

(3.3.6) E[\v(@w[m%)m) v(@rx Dol )]

<IE”/ (33) V[Xp]pk (g;))(I)R(a:)d:c {HaceBRQ:D,Pftat(l’)*DP(m)}]

5| fRd\Bﬁ (7Dl () - ¥ bl (@) @t |

The first term on the right-hand side can be estimated crudely the following way. We denote by
Uy the set

Uo= U op(a),

:L‘GBRQ

we then enlarge this set by adding two additional layers of cubes and define

Uy := U o and U:= U 0.
OeP,dist(0,Up)<1 DeP,dist(o,U7)<1
Note that, by the properties of the partition P, and (3.1.10),
(3.3.7) U|=Clh| <ClUo|<C Y size(op(x))? < 05 (CR™).

xGBRQ
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Also with these definitions, the definition of ¥ [Xp]g;k , which essentially amounts to (3.3.4),
stat

and (3.2.8), we have, for each = € B2,

Vool @< [ vl dy

Similarly, by definition of V¥ [Xp];]; and the properties of the partition P, we have, for each
T € .BRZ7

IV [xplh (2)] < f%omU Vx| () dy.

This leads to the estimate

(3.3.8)

fB 2 (v [Xpl% (2) =V [xp];lfmt (:c)) D p(z)de

<o [ ol [ en@)ds

R
<C V dy.
@ mU| Xp|(y) Y

Using Proposition 3.2.22, the estimate on the volume of U given in (3.3.7) and a computation
similar to the one performed in (3.2.24), we obtain

\V4 dy < Oy CR*.
‘[meU ‘ Xp’ (y) y= ( )
Then by (3.3.3), we also have

]P’[Ela: € Bpe : Dpskm(x) + Dp(x)] < > P[EI:U €z+0p : Dpsktat(x) * Dp(x)]

ZG3kZdﬁBR2
2d
L (32 ¢ 0y Ope (2) 2 0p(2)]
R2d 1ok
< ok exp(—C’ 3).

In particular, since k has been chosen such that 3* < R3 < 3%*1, for each ¢ > 0, there exist a
constant C := C(d,p, A\, q) < co and an exponent s := s(d,p, A\, q) > 0 such that

} <O4(CR™).

{EIxeBRg (z'): \:\7;,éCtat (z)#0p (x)

Combining the three previous displays with ¢ chosen large enough, the Cauchy-Schwarz inequality
and (3.1.12), we obtain

J:

which yields in particular

(VDolh @) - VDol @) @) da

1 <O (CR‘g) ;
{EIweBRg :ngat (z)+0p (:c)}

R2

CR%.

1 <
{erBRQ :Dpfwt(x)#&\]p(z)}

E ”'[332 (V [Xp]% (x) -V [Xp];skm (m)) Pr(r)dr

We now focus on estimating the second term on the right-hand side of (3.3.6). With the same
computation as the one we just wrote, we obtain,

J:

VDolp () =V xplge ()] de <O (CRY),

R2
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indeed the proof is the same, we only need to replace fBR2 ®r(x)dz by CR?® in (3.3.8). Since
this result is true for any R > 1, we obtain, for any n e N,

n n n n
L oo |7 DT @) = VD ()] dr < f%wsn Vwlh @) - VDol (@) de

< Os (034dn) )
This allows the computation
E[ jﬂ;d\Bm (v [Xplp (2) -V [xp];;skm (x)) () de ]

+00 32n
< 5 lew(-)r ) V0ol @) -7 [yl ()] ]
n-21i0gs (R)] R (01 \On)
+00 32n dodd
< Z exp (_ﬁ) R™“3 "
n=2logs(R)
<Cexp (—C_le) .
Combining the estimates of the first and the second terms of the right-hand side completes the
proof of Step 1.

REMARK 3.3.6. Most of the estimates of this proof are very crude and precise estimates are
not needed. Indeed the same proof shows the following stronger result: for each ¢ > 0, there

exists C':= C(d, p, \, q) < oo such that for each R > 1 and k € N such that 3% < R3 < 3%+1,

E Hv (@ Do lp) - 9 (2 Dol )

but the proof of Lemma 3.3.4 only requires the result with ¢ = %

] <CR™,

Step 2. We prove the main result of this step by combining the stationarity property (3.3.5)
with the sublinear growth of the corrector. First notice that by (3.2.1), we have, for each R > 1,

(gog% Xp < Oy (CRl_‘S).

By the Stokes formula and the definition of [Xp];lpk we have, for each n € N,

stat

’[ ank 3nk aV Xp]Pftat (x)dx

2 7 2

= w oknd\ Xplh, (z)n(z)dr
[8((_3n ey DTy, ()

<31 ose g
(goomB:»)kn

<0, (03’“"(“)) .

This yields in particular

< C3kn(d-0)

‘E [f(_gnk k! VDolp. (@) da:]

27 2

Or we also have, by the stationarity property (3.3.5).

A TR D VI [ A R P

-5 tat
22 z€(3kZ4n0g,) 2 2 s

dkn
S| fL sy VD0l ]

stat
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Combining the two previous results shows

B |:/(l3k g)d v [Xp];];kt ) () dm] < 03dkg-kns
2 sta

Sending n — oo shows

Step 3. First notice that
B[ (0r* v Do,
By (3.3.5), the function

R? - R
f‘:{ o = E[vhuly, @]

stat

. oo . z4
is 3¥Z%-periodic, consequently there exists (an)yeza € (Cd) such that

Fz) = Z anexp(%wn-x)‘

nezZd 3k

By an explicit computation, we obtain

(<I>R + [V [Xp]gfm]) 0)=> anm? exp (—’7(572‘2) :

nezZd

Notice that the main result of Step 2 is equivalent to the following equality

ao,-,0) = 0.

Using this relation and the Cauchy-Schwarz inequality, we obtain

2 7Rn|?
SC( > |an|2)( > exp(—2| 32k| ) )
neZ2~\(0,-,0) neZ~(0,-,0)

In particular, since k was chosen such that 3* < R> < 3%+1 we have
2
3.3.10 exp _2|7ar| <Cexp(-C'R).
2k
neZdax(0,-,0) 3
2
2 n
ne;zzd lan|” <E I:/{ 3k 3k )d \Y [Xp]pskmt (z) d$:| .

With the same computation as the one performed in Step 1, we obtain

oy

272

(3.3.9) ‘(@R +E [v [xp];gﬁm]) (0)

Moreover, we have

272

2
VDol (@) de<Os (Clpl23%4)

Taking the expectation yields
S Janf? < 0344,

neZd

Combining this with (3.3.9) and (3.3.10), we obtain

(2r-E[viul, )@

where we increased the value of the constant C' in the second inequality to absorb the term R2?.
This implies in particular the main result of Step 3 and completes the proof of Lemma 3.3.4.

2
<CR* exp (—C‘lR) <Cexp (—C‘lR) ,
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3.3.2. Estimating the resampling of the spatial averages. In this section, we prove
Lemma 3.3.5, which we recall below.

LEMMA 3.3.5. There exists a constant C' < oo and an exponent s >0, such that
V[X]< O, (CR™).
Proof of Lemma 3.3.5. We recall Proposition 3.2.16 and the notation X =V (<I>R * [Xp]%) (0).

Given an environment a € 2 and an edge e = (z,y) € E4, we want to estimate (X — Xé)Q. To do
so, we need to understand how changing the value of the edge e can impact the infinite cluster
%% and the partition P. This is studied in the following lemma.

LEMMA 3.3.7. There exist two constants Cy = Cy(d) < o0 and C := C(d) < oo such that for
each edge e = (x,y) € Eq, environments a,a € Q satisfying a(e’) =a(e") for each edge €' € E4~ {e}
and for every z € Z \ B (z, Cysize (Op(z))),

size (I:Irp(g) (Z)) < C'size (D”P(a) (:E)) .
Moreover, if z € Z¢ \ B (x, Cysize (Op(z))) then

size (Dp(a)(Z)) = size (Dp(a)(z)) :
PrOOF OF LEMMA 3.3.7. The main ingredients of the proof are the following:

(1) If a good cube O € P, is such that 30n {z,y} = @ then the cube O is a good cube under
the environment a.

(2) By the properties of the partition P, every cube O € P which does not contain z nor y
is crossable under the environment a. The predecessors of Op(z) and Op(y) are also
crossable under the environment a.

(3) Notice that by resampling one edge we cannot create an isolated cluster which is not
connected to €w of size larger than C'size(Op(z)), for some Cy := Cy(d) < oo. In
particular, there exists a constant C := C'(d) < oo such that every good cube of size
larger than C'size (Op(z)) under the environment a satisfies (ii) of Definition 3.2.3
under the environment a.

(4) There exists a constant C' := C(d) < oo such that every cube of size larger than
C'size (Op(x)) intersecting Op(z) is crossable by a cluster which does not intersect
Dp(x).

(5) If, for y € B (z,Cysize (Op(x))), the cube Op(y) is larger than the cube C'size (Op(z)),
then the point = belongs to the cube Op(y) or one of its neighbors and thus size (Op(y)) <
C'size (Op(x)).

Combining these properties shows that every good cube O under the environment a satisfying
size(O) > C'size (Op(x)) is a good cube under the environment @. It is then straightforward to see
from the previous remarks and the construction of the partition P in the proof of Proposition 3.2.1
that the conclusion of the lemma is valid. O

To estimate (X — Xé)Q, we introduce an extended probability space by doubling the variables
(Q,F.P)=(QxQFeF,P®P). For a given environment (a(e),a(e))cen, € ', we denote
by pr; (resp. pry) the first (resp. second) projection, i.e., pr; ((a(e),a(e))) = (a(e))een, (resp.
pry((a(e),a(e))) = (aA(e))een,). Any random variable Z defined on (€2, F,P) can be seen as a
random variable defined on the extended space (', F',P’) by the formula Z = Z o pry, i.e.

Z ((a(e),ale))ees,) = Z ((ale))ees,) -
All the random variables in this proof must be considered as random variable on (Q', F' | P),
unless explicitly stated.
We will denote E’ the expectation of a random variable Z : Q' — R with respect to the
measure . For a constant C € (0,00) and an exponent s > 0, we denote

Z < 0L(C) if and only if E’ [exp((%) )] <2
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In particular any random variable Z defined on (2, F,P) satisfying Z < O4(C') satisfies, as a
random variable defined on (', F',P'), Z < OL(C).

Given an enlarged environment given the enlarged environment (a(e),a(e))..p,, we denote
by a the environment (a(e)),..s, and by a® the environment ((a(e))eegd\{e,},ﬁ(e’)). Similarly,
given Z a random variable defined on Q and e’ € By an edge, we denote by Z¢ the random
variable defined on (Q', F',P’) by the formula, for each (a(e),a(e))ces, €

7 ((a(e),a(e)) ep,) = Z (ae,) '

We give a similar definition for partitions, P¢ will denote the random partition of Z¢ under the
environment a® , and for the infinite cluster (P’ almost surely there exists a unique infinite cluster
under the environment a® which will be denoted by €2 ).

To prove Lemma 3.3.5, we will prove the following estimate

(3.3.11) SV (@ (Do ls - [xS2)) O go;(%).
eeBy

This is enough to prove Result 2 as we now prove. With the same argument as in [18, Lemma
2.3], we have

—_x")?2 s
)

) Seet, o ¥ (@r+ (Do lp - [ 15.) @) @)\
= Joew CR-

dP(a)

2 S
dP@E) | | dP(a)

Sees, |V (21 * (Dp)h - [XE] 7)) ()]
: erXp fg o

c Dp * p77_ e"e x 2\’
o [ o[BGl ST DE ) g

CR™

Sees, [ (@5 + (Db - D) @Y
CR4

< CE' |exp

<2C.

This yields, after redefinition of the constant C,

S (x-x1)° 305(%).

eeBd

Before starting the proof of (3.3.11), we select one of the correctors x;, arbitrarily (we recall
that they are a priori defined up to a constant) and wish to give a meaning to the function, for

€= {1"’ y} € Bd7
"
Gl
as a random variable defined on the extended probability space €2'.
Since we do not necessarily have %o = €2, we cannot simply write [X;j] »(2) = x5 (2 (Op(2))).
Nevertheless, since the two environments ((a(e'))efegd\{e} ,a(e)) and (a(e’))een, are only different

by one edge, we have either € € €5, or €, € €. In the former case, we can define [XZQJ]P (2) =
Xp (2 (0p(2))). In the latter case, oo \ G is connected to Go, by the edge e. Without loss of
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generality, we denote by e = (z,y) and assume that x € 2. One can then check that the function

{Cﬁoo - R
w =

3.3.12 e e
( ) 2 o X)L egey + (P (= 2) + X5(2)) Ligey

is a solution of
-V-(av(p-z+w))=0
and more precisely that x - p-x + w(z) € A1 (% ). In particular, this gives
w = Xp-
This leads to the definition,
[X;]p = [w]P‘
We then extend [Xf;] ptoa piecewise constant function on R? and perform the convolution with

7, as in Definition 3.3.1, to obtain a smooth function [X;]Z It satisfies the equality

(3.3.13) vgls =V Ielp

To prove the estimate (3.3.11), we split the sum into two terms

(33.14) [V (B * (Do)~ [xe]5)) O
<2|v (@r* (615 - DEln) ) +2]v (@ + (Do )b - [xg13)) (O

Step 1. We estimate the first term on the right-hand side of (3.3.14) the following way. Using
Proposition 3.3.2, Lemma 3.3.7 and Proposition 3.2.8 with s =1, we have

(@ + (v [X]h - v [xo]p.)) (O

2
VIGl O+ VDGl (D dz) s #hea)

<(/;
( 70 B(z,C size(Op (z))) zeB(xz,Csize(Op(z)))

2
SC(/ size (Op ()4 (|vxe| (2) + 1 d) su D2 (2).
€ nB(x,C size(Op(z))) (O (2)) (‘ Xp‘( ) ) Y zeB(z,Csiz(E)(Dp(x))) 1(?)

The ”+1” term on the right-hand side comes from the fact that we assumed |p| = 1 combined
with the definition of w in (3.3.12), in the case when € € €. This gives

(@ (v [x5]5 -V G TR) OF
< Csize (Op(z))*" 2/

& 2 2
CgfoﬁB(%Csize(\]p(x))) (‘VXP‘ (Z) + 1) dy sup (I)R(Z).

zeB(z,C'size(Op(x)))

Moreover, there exists a constant C(d) < co such that, for each z € Z9,

1

d+1
|22

(3.3.15) exp(-|z*) < C Al

We denote by ¢ the function on the right-hand side, i.e., {(z) :=C ||++1 A 1. We similarly denote
zl 72

Cr(z) = %{ (%) We will use this function instead of ® i to complete the estimate of the term

on the right-hand side because, since it is decreasing slower than ®g, it satisfies the following

properties

2 . d+1 : 2 2
sup (p(z) < Csize (Op(x inf (r(z and ((2)* < o0.
zeB(z,C size(Op (z))) #(?) (O(2)) zeB(x,C size(Op (7)) () ZezZ:d (2)
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In particular, the previous estimate can be rewritten

(@r+ (V[ -7 [ ln)) OF
< Csize (Op(z))**! /s” Cr(2)? (\szf (2) + 1) dz

£ NB(xz,Csize(Op(z)))

Summing over all the edges e € By gives

(3.3.16) ;\(fbw( Deln - v [xeln)) 0
<C Z SiZG(Dp(x))4d_1/

¢ nB(z,Csize(Op(z)))

Cr(2)* (vl (2) +1) dz

zeZd
<C Y Cr(2)? ( > <|VX§|2 (2) + 1) size (Op ()" ]l{ze%”ci,ﬁB(z,Csize([\»p(:r)))}) :
zeZd zeZd

But, since for each x € Z, size (Op(z)) < OL(C), we have

size (Op(2))™ . OL(C)
|a7 _ Z|d+1 = |IL‘ _ Z|d+1 ’

]l{ZGB(I,CSiZG(Dp CONES ¢

Additionally, by Proposition 3.2.22, we have the Lipschitz bound on the corrector, for each z € Z,

(3.3.17) VX5 (2)| Lizeze y < OL(C).
Since ¥pezd (2} m < oo, we can use (3.1.10) to obtain
e|2 . -
(3.3.18) > (19x5]" (2) + 1) size (0p(2) ™ 1 zepenp(o.Csine(an @)y < OLC).
xeZd

which in turn gives

> (@r (V] -V 61 ) O <€ T r@)*00).

eeBy yeZd
Since Y ez4 Cr(y)? < %, we can use the estimate (3.1.10) to obtain

> 1@+ (901 -9 D)) OF <01 (£).

6EBd

This completes the proof of the estimate of the first term on the right-hand side of (3.3.14).
Step 2. We now estimate the second term on the right-hand side of (3.3.14)

(@r+ ([ -1 OF <0 ().

To prove this estimate, we need to distinguish three cases, we recall that we denoted e = (x,y).
Case 1. (2 ¢ € and y ¢ €) or a=a’. In that case, . = €, and the two correctors x,
and X, are equal up to a constant. In particular, this yields

(@r+ (v o= ]3) O =0.
Case 2. G + €5. In that case, (3.3.13) is true. It implies
(@r* (v [w-x]5) O =0.
Case 3. 1,y € 6 and % = ¢, and a # a°. We compute
V- (av(x-x;)) = V- ((a-a) v (p-2+x3)),
which can be rewritten
(3.3.19) -V-(av(xp-xp)) = (a—a®) (z,9) (p- (z—) + xp () = x5 () (62 = 5,) .
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Recall the notation VG(e,-) introduced in Proposition 3.2.11. If the edge e = (x,y) does not
belong to the infinite cluster, i.e., if a(e) = 0, then denote by eq,...,e, a path of edges of the
infinite cluster connecting = to y and denote by

(3.3.20) Ve, ) = 3 VG en, ).
=1

This function is the unique solution (up to a constant) of the equation
-V-av (VG(e,-)) = 05— 0y.
We can solve (3.3.19) by using Proposition 3.2.11. Indeed the function
Xp— Xy — (a-2°) (z,9) (p- (z - y) + x5 () - x;(y)) VG(e,) is a - harmonic.

Moreover, by the sublinear growth of the corrector (3.2.2), the L%-bound on the gradient of the
function VG(e,-) stated in (3.2.15) and a version of the Poincaré inequality on the percolation
cluster (see for instance the proof of Proposition 3.2.13), one can show that the function

Xp =X~ (a=a) (z,9) (p- (& —y) + xp(2) = x;(y)) VG(e, ) has a sublinear growth.
This implies, by [13, Theorem 2| that this function is constant. In particular, this shows
Vxp — Vxp = (a-a%) (z,9) (p- (@ —y) + xp(2) = x5 (1)) V(VG(e, ) -
But, if a®(e) =a(e) # 0, we have the estimate, by (3.3.17),

IXS(2) = XS] L pyerse a(ere0y < [TXGW)| Lpyersey < O (X(2)) 2.

If a®(e) =a(e) = 0, then there exists a path going from = to y which lies in the cube Ope(z)
and its neighbors (its neighbors because we may not have Ope(x) = Ope(y) or we may have
Z,Y € oo N Ci (Ope(x))). Combining this remark with Lemma 3.3.7, we obtain

IXg(z) = x5 ()| < C Vx| (2) dz

¢ nB(z,Csize(Op(x)))
. d e
< Csize (@ ()" | V5] 12 o no e )
Using the Lipschitz bounds on the corrector again, we have
IXG(2) = X5 ()| Lz yee ey -0y < size (Op ()" (X°(2)) 2.
Thus
e 2 2. e

(33.21) [V(2r*([xp-x5]7)) (O <[V (®r * ([VG(e,)]h)) (0)] size (mp(x))* (X(x))?.

The next step of the proof consists in removing the coarsening in the right-hand side of (3.3.21).
To this end, we prove that there exist a constant C := C'(d) < oo and a (random) vector field
vr : B4 — R satisfying, for each e’ = (2,y') € Ey,

"yR(e')| < CSiZG(D’p(.T,))QdCR (m')
such that for each function u: G — R satisfying (Vu, Vu),, < oo,

(3.3.22) (®r*V[u]p)(0) = (yr, Vu)y,_ -
We first compute

(Or*V[ul}p) (0) = [, @r(=) V[l (2)dz

:fRd Oy () fBl [ulp (2 - 8)Vi(s) ds dz
= [Lon () [ ([ulp (= =)~ [u]p (2)) Tn(s) dsdz.
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But [u]p (2) and [u]p (2 - s) are only different if the points z and (z - s) belong to two different
cubes of the partition P, in that case, we have

[ulp (2 =) = [ulp (2) = u(z(Op (2 - 5))) - u(Z(Op(2))).

Recall that there exists a path between Z(Op(z)) and Z(Op(z — s)) which lies entirely in
Op(z) uOp(z —s), which will be denoted p, .—s € E4. Summing over the edges along this path,
we find that

u(Z(0p(2))) —uE(Ep(2-5))) = Y, Vule) = 3 Vule)live, . -

elepz,zfs eleEd

If z and z — s belongs to the same cube of the partition P, we keep the same notation with the
convention p, ,_s = @. Consequently, we have for each (z,s) € R? x By,

[ulp (2= 5) = [ulp (2) = 3] Vu() e, . .-

€’EEd

With this formula, we can rewrite

S [u];]’) (0)= [1;4 /Bl/z O (2) ([ulp (2= s) = [ulp (2)) Vn(s) dsdz
= e/;gd Vu(e') /Rd me Pr(2) Lieep, . . VN(s) dsdz
= (YR, vu)gm

with for each e’ € By
yr(€') = [Rd me PR (2) Tfeep. . 3 VN(s) dsdz.

But, for each pair of points (z,s) € R? x By o such that the cube Op (2 - s) is not equal to the
cube Op(z), the path connecting the points Z(Op(z — s)) and zZ(Op(z)) lies entirely in the set
Op(z—s)ubp(z). In particular an edge e’ = (2',y") belongs to the set p, ._s only if the point z
belongs to the set 0 Op (') + By /. This shows

Yr(e") = PR (1) Uerep, . 1 VN(s)dsdz

00p (2')+B12 ‘[31/2

and thus, we have the estimate,

el<C f br(z) dsdz
r(e)] S r(2)

< Op(2) dz.
-[8579(33’)+B1/2 & (7)

As in (3.3.15), we appeal to the inequality, for each x € R%, exp(—|z|?) < ¢(z). The function (g
satisfies the inequality, for each triadic cube O e T,

a1
sup (g < Csize(O) 2 inf(R.
D+B1/2 o

As a consequence of the two previous displays, we can rewrite the previous estimate
(3.3.23) vr(e)] < f Oy (2) dz
‘ ‘ 00p(2')+By s

< C'size(op(2'))?! sup (R
807 (2/)+ B

<C size(Dp(wl))2dCR($,)a

which is the desired estimate. This completes the proof of (3.3.22).
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Applying this property with u = VG (e,-), the inequality (3.3.21) becomes

[(@r (Vo= x6]5)) O < [(1r, TG (e, )| size (Op(2))* (%(2))".
Applying Proposition 3.2.12, we denote by w.,, : € — R the solution of the elliptic equation
-V - (aVwy,) = =V YR in Ce,
so that, for each edge €’ in the infinite cluster €w,

Vwy, (') = Z@; vr(e)VVGE (e,e') = Zgz vr(e)VVG(€ e) = <VR,VVG(6',-)>%O

This implies in particular, in both cases a(e) =0 and a(e) # 0,
va(x) - w'm(y) = <’7Ra VVG (e, ))&fw

This gives consequently

(@5 % (9 [xp = X5]0)) () < e (@) = wn (1) size (Tp () (X° ().

We now combine Cases 1, 2 and 3 to obtain the following estimate, using the new notation,
for each z € Z¢, Bj = {{x, Yy} rye 7%,y ~ :L'} the set of bonds connecting x to another vertex of
7%, One has

> l(#r* (v 1w -x15) OF
<C > [y () = wr, (y) P size (0p (2))* > (A°(2))°.
Z,Y€b oo |x—yl1=1 eeBY

Using that for each x,y € €& with |z —y|; = 1, there exists a path connecting x to y which is
contained in %, the cube Op(z) and its neighbors (the path is simply (z,v) if a({z,y}) #0),
we obtain

(3324) X |(®r* (V[ -xD)) (O

eéBd

<C Lﬂ VW, (2) size (op(2))™

x > (X))’

zeZ4, dist(Op (J:),D‘p(Z))SLEEBi

To estimate the term on the right-hand side, we note, by definition of w.,, and (3.1.10),

]%M |Vwm|2 (2)dz < C/(F & (2)dz

oo

<C fZ Csize(0p(2)) “Cr (2) da

C
<0 ().

There remains to estimate the term size (0p(z))* Lrezd, dist(0p (x),0p (2))<1eeB (xe(x))* on

the right-hand side of (3.3.24). To this end, we need to prove a minimal scale statement and a
Meyers estimate as stated below.

LEMMA 3.3.8 (Minimal scale). There ezist a constant C := C(d,p,\) < oo, an exponent
s:=s(d,p,\) >0 and a random variable My < OL(C) such that for each integer m € N satisfying
the inequality 3™ > M1,
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2+e

(3.3.25) 30 S ige (Op(2)) 3 xe@)!| <o

2€0m weZd, dist(0p (2),0p (2))<1, e<BBE
where € :=e(d,p,\) >0 is the exponent which appears in Proposition 3.C.2.
DEFINITION 3.3.9 (The partition U). We define the following family of good cubes
={0eT :(3.3.4) and (3.3.25) hold}

in which a deterministic Meyers estimate and a minimal scale inequality hold. By Lemma 3.3.8
and Proposition 3.C.2, this family satisfies the assumptions of Proposition 3.2.1 (but not the
assumption (3.2.5)). We denote by U the partition thus obtained. By (iii) of Proposition 3.2.1,
one has the inequality

size (Oy () < O4(0),
for some exponent s := s(d,p,\) >0 and some constant C := C(d,p, \) < oo.

We postpone the proof of Lemma 3.3.8 and complete the proof of Lemma 3.3.5. Using the
partition U, we have

[ 19w, ()size (Bp(2))™ ) (1+2())"

7o zeZd, dist(Op (x),0p(2))<1, ecBY

= Z[ % vw'YRl (2)

Ol

x size (Op(2))>? 3 (1+Xx°(z))*
zeZd, dist(Op (z),0p (2))<1, eeBY

2

<X 0l(i [ vl ()

e
3d(2+¢) +6)
] Z(SIZG(DP(Z))) > (1+x%(x))*
zed zeZd, dist(Op (¢),0p(2))<1, ecBY
<CZ ﬁ |Vw,m| (z)dz+|O| %ﬂ 2+8(w)d:v -
o \ 73" |50/ J§on%e

To estimate the term on the right-hand side, we note that the cube %D is included in the
set Uprey, dist(cr,n)<1 O and the cardinality of the set {0’ e/ : dist(0',0) < 1} is bounded by a
constant depending only on the dimension d. This leads to

2 2
) [gmma (@)da<C [ [w,,f (@)de

C

!

<0 ga)

To estimate the second term on the right-hand side, we recall the discrete I — [*-estimate: for
any finite sequence of positive numbers (b;)o<i<n € R7™ and any ¢ > 1, ¥, bt < (22, bz-)t. Using
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this inequality gives

2

2+e
2+5 2
O T <C O f z) dx
E\EZ/I| |(‘4D|f (x) ) D%A s 4Dn%°’YR( )

<C ) Vr(x)® Slze(Du(:L‘)) -5e)

T€b oo

<C ) Cr(x)?size (Op (2))*? size (Du(x))d(l‘ﬁ) ]
xeZd
Using the inequalities size (T («)) < O4(C), size (Tp(x)) < O4(C) and (3.1.10) we obtain

2
27‘*'5 C
o f 22 () da gog(—).
G \Jig| Rd

The proof of Result 2, and thus of Proposition 3.3.3, is complete.

3.4. Optimal L? estimates for first order corrector

We now show how to obtain the L? optimal scaling bounds on the corrector, Theorem 3.1.2,
from Proposition 3.3.3. Theorem 3.1.2, is restated below and proved in this section.

THEOREM 3.1.2 (Optimal LY estimates for first order corrector). There exist two exponents
s:=s(d,p,\) >0, k:=k(d,p,\) < oo and a constant C(d,p,\) < oo such that for each R > 1, each
g>1 and each p e R?,

1 1
_ g O, (Clplg* log? R) if d =2,
3.4.1 R f - q) < (
( ) ( %onBr ‘Xp (Xp)%omBR| < 0, (Clplqk) if d> 3.

Before starting the proof, we mention an important caveat. In this section we need to keep
track of the dependence on the parameter g of the constants. We will thus be careful to track
every dependence in the ¢ variable. This will be useful in the next section to obtain the L*
bounds on the corrector. In particular in this section the exponent k may vary from line to line
but will always remain finite and will depend solely on the variables d, p, A.

PROOF OF THEOREM 3.1.2. As in the proof of Proposition 3.3.3, we assume that [p| = 1
to ease the notations. Additionally, note that by the Jensen inequality, it is enough to prove
Theorem 3.1.2 in the case q > 2. We consequently make this assumption for the rest of the proof.
The proof of this theorem is split into two steps.

e In Step 1, we use Proposition 3.3.3 and the multiscale Poincaré inequality, Proposi-
tion 3.2.17, to show, for each R > 1,

1 1
0\a _ | Os(Cq"logz R) ifd=2,
(]633 |[Xp]7> - ([XP]P)BR| ) < { O, ngk) ) if d>3,

with C, k and s depending only on s, p, A.
e In Step 2, we remove the coarsening, thanks to Proposition 3.2.8, to eventually obtain

1 1
4 7\q O, (Cq¢*logz R) ifd=2,
(R l;”oomBR ‘X”_(Xp)%o”BR‘ ) S{ O, Ech) ) if d>3.

Step 1. Fix some R > 1. The main idea of this step is to apply Proposition 3.2.17 to the
function u = [Xp] The assumption of Proposition 3.2.17 is satisfied (it is a consequence of the



196 3. OPTIMAL CORRECTOR ESTIMATES ON PERCOLATION CLUSTERS

construction of [x,]} and of the sublinearity property (3.2.2)). Consequently, we have, for each

R>1,
g 1
kL (2R AT
Lq(BR)SC fRde 2R (fo r|@r * v [xp]5 ()| dr) dz | .

To study the term on the right-hand side, we split the interior integral into two terms
(3.4.2)

2R . 9 2R n 2
./0 7@, * V [xplp (z)| dr = f 7@, %V [xp]h x)‘ dr+f1 7| @ %V [xp]% (@) dr.
But, by Proposition 3.3.3, we know that for each r > 1 and each x € R,
_d
@,V [xp]p (2)] < O, (Cr72).

|Del = (Do 1p) 5,

This implies,

2 _
@, % V [xp )5 ()| < O (Cr7).
The second term on the right-hand side can be estimated by using Proposition 3.3.3 and the
inequality (3.1.10), this yields

Os(ClogR) if d=2,
S e bl @ ar {OS(C) ifd>3.

To estimate the first term on the right-hand side of (3.4.2), we use Proposition 3.2.14 which
reads, for each x € RY,

IV [l (2)| < 05 (C).
By this and (3.1.10), we obtain

[01 7| @ * V [xp)h (m)|2 dr <0, (C).

Combining the previous displays shows

Os(ClogR) ifd=2,
[0 r 1@, + V Dl (2)] dr<{ 0, (0) if d > 3.

We then obtain

2R . 9 \2 (’)E(C’%(logR)%) if d =2,
q

([ vt @f ) <) oF gy s
q

We then apply (3.1.10) and keep track of the constants thanks to (3.1.11), we obtain

2R 3 Oﬁ( P C% (logR)? ) if d=2,
R ([Tl v bolp @) dr) dws] ()
e 0 (( c%) if d> 3.

2s
q

This eventually yields
T (0o (¢5C (logR)?) ifd=2
x s s O, 1 = 4,
R def% (f ‘Q) * YV Xp .CU)‘ dT) de| < ql :
R 0, (q*C) if d>3.

We now set k := 1 + %. This exponent depends only on the parameters d,p, A\. By applying

Proposition 3.2. 17 we obtain

N\ [ 0,(Cqlogz R) ifd=2,
(3.4.3) (]{BR“XP]%_([XP]WP)BR‘ ) S{ 0, gcgk)l ° R) ileiz;
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The next goal is to remove the regularization by convolution by 1. We first apply (3.3.2) to

obtain
(Faulite = @ul)n,[') < 0(£, [oott = o))

Note that by the triangle inequality and Jensen inequality, we have

(£, Ibw)e- ([prp)BRr)é <2t (£, [owlp-dl' @) dx);
<2 (ﬁR Do - ([xp]%)BRr)
<0(£ 0okt (Culb),, ")

Combining the previous estimates completes the proof of Step 1.

Q=

S

Step 2. We remove the coarsening, thanks to Proposition 3.2.8. We split the L? norm of the
corrector into two terms,

1 1
q q q q
(_[gwmm xp - (Xp)‘&om\jm‘ (z) dl’) = (_[gwmm X~ (Xp)cgwmgm‘ (z) dfv) L 3msmag(P)y

1
q q
’ ([fwﬂmm ‘Xp - (Xp)%"mu’”‘ () dx) Ligm oy (P)}-

The reason we use the indicator 1 3mcpq,,(p)} 8 to be able to apply (3.2.9) in the computation
below. But first, we estimate the first term on the right-hand side, to do so we can use the L*
bound (3.2.1) (applied with § = 0 to simplify the computation), this gives:

1
q q
(]{fmmt\m ‘Xp - (Xp)%mmmm‘ (z) dl') ]1{3m£M2d(73)} < HXP - (Xp)‘foo"“:‘m HL”((&WDW) 1{3m£M2d(P)}
< Os(C3")Lzmepyy(P))-

Since 1 ygmept,, )y < Os (37™), we obtain,

1
(3.4.4) (£ o= (oo, @) Lgnarey < OO

To estimate the second term in the right-hand side, we compute

1
(3.4.5) ( ]@ - Xp =~ )i, | (@) dw) " LigmaMaa(P))
1
< Cﬂ{Bszgd(P)} (]é; o |Xp - [XP]P“I (z) da:) q

1
. 1
+ Cn{3m2M2d(7’)} (]{g o ‘[XP]P - ([XP]P)%OODM‘ (2) dx) "

To estimate the first term on the right-hand side, we first use (3.2.8) and Proposition 3.2.8, to
obtain for each m € N such that O, € P.

[fwnmm ‘Xp - [XP]P|q () dr < L*(D7,L+1) |Xp B [XP]P‘Q (z)dx

<C size(Tp(2)) ™ |Vx,l* (2) da

%*(Dm+1)

<C size(Op () |Vx,|! (z) de.

fooﬂl]m.;.l
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By the Lipschitz bounds on the gradient of the corrector and the property of the partition P, we
have, for each z € Z¢

size(0p (2))™ [V xpl7 (2)1 ey < O (C7).

Consequently, by (3.1.10) and using (3.1.11) to keep track of the dependence of the constants in
the ¢ variable

[ sime(ep@) 9l (0 dr= 3 size(p (@) [l (0)L e

T€Om+1

q
Os Sd(m+1) L ° ol
: Q( sln(2)

< 03 (3d(m+1)q%Cq) )

In particular, if 3™ is larger than Msy(P), then the cube O, belongs to P., the previous
computations consequently show

m+1) 4
LamantaaPyy J, D= Dolpl' () do< 0 (317 Dgic).

Then by (3.2.9), we obtain

1
L(gmzpMou(P)} ( ]{Dﬂmmm Xp = Dol () dﬂﬁ)q <0, ().

To estimate the second term on the right-hand side of (3.4.5), we compute, by (3.2.9)

1
(]{gmmm Dol - ([xp]p)%mmr (z) d:v)q 1 (sms Mau(P))

1
. q 5
ot (£ ol 0 tpnr

<2(f
CooNOm

<C (]gm ‘[xp]p - ([Xp]p)umyq (x) dﬂf); Ligms Mo (P)}-

We then apply (3.4.3) and obtain

(]{&m\:m |Xp - (Xp)‘ﬁoomjm

for some exponents k := k(d,p,\), s := s(d,p,\) > 0 and some constant C := C(d,p,\) < oco.
Combining this with (3.4.4), we obtain

[Xplp - ([xp]p)gm‘q (z) dw)a Ligms Moy (P))

O, (chm%) ifd=2,
0 (¢*C) if d>3,

1
" () dfc)q LigmaMog(P)) < {

1 k 1 .
q q Os qu2) ifd=2,
_ d <
(]l%x,m:\m |XP (XP)‘Kooﬂljm‘ (x) 1') = { O, Ech) if d>3,

The result of Theorem 3.1.2 requires to prove the previous inequality for a general ball By and
not a cube O,,. This result is obtained by selecting, for each radius R > 1, the integer [ such that
3™ < R < 3™ and by performing a similar analysis. O

3.5. Optimal L> estimates for the first order corrector

In this section, we prove the L* bound on the corrector, Theorem 3.1.1.
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THEOREM 3.1.1 (Optimal L* estimates for first order correctors). There exist an exponent
s:=s(d,p,\) >0 and a constant C := C(d,p,\) < oo such that for each x,y € Z% and each p € R?,

1 .
O, (Clpllog? [ —y|) ifd=2,

- 1 Tyeboo} S
IXp(2) = xp ()] {z,yet} {(’)S(Clpl) if d> 3.

PRrROOF OF THEOREM 3.1.1. First by the stationarity of the gradient of the corrector, we
can assume without loss of generality that y = 0. Without loss of generality, we can also assume
|p| = 1, as it was done in the proofs of Proposition 3.3.3 and of Theorem 3.1.2. We thus want to
prove, for each z € Z¢,

0, (Clog2 [a]) ifd=2,

—xp ()| 110 ez <
xp(2) = xp(0)| L (0 wec) {@S (©) if d>3.

Before starting the proof, note that, for every ¢ > 0 and every =z € R,

(2)2 —2
exp(xr) 2 ——.
q9exp(—q)
This implies, for each s,q,0 >0,
q
(3.5.1) X <0,(0) = E[X] gzeq(g)s exp(g).

We split the proof into six steps.
e In Step 1, we prove that for each ¢ > 1 and each m e N,

! < C’qqqkm% if d=2,
Cqk if d > 3.

E [Xp]p (0) - g-2dm Z Z [Xp]p (2)

YyeOm z€ey+0Om

e In Step 2, we use the result of Step 1 to prove that for each ¢ > 1 and each m e N,

e I I (IS | B L e

YOy, 2€T+y+0m if d>3.

Note that this statement is not just a consequence of Step 1 and the stationarity of the
corrector since the partition P is not stationary. One additional argument is needed to
conclude.

e In Step 3, we prove that for each ¢ > 1 and m € N, chosen such that 3™ < |z| < 3m+l,

E[ q] < { C’qqqkm% if d=2,

<
Cq9* if d> 3.
e In Step 4, we combine Steps 2 and 3 to obtain, for each ¢ > 1

(3.5.2) E [|[Xp]7: () - [xplp (0)‘(1] < { gZZZZmQ i Z ; ?3’

[Xp]p (0) - 3-2dm Z Z [Xp]p (2)

YE€Om z€x+y+0Om

e In Step 5, we prove that there exist an exponent s := s(d,p,\) > 0 and a constant
C :=C(d,p,\) < oo such that

Os (Clog% |x|) if d =2,

(3.5.3) Do) (2) = [xp)p (0)] < { 0, (C) if d>3.

e In Step 6, we remove the coarsening and eventually show that

Os (C’log% |x|) if d =2,

()| Lo peg 1 <
(%) = Xp(0)[ L 0.2e.0) {OS(O) if d> 3.
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Step 1. The main tool of this step is the following inequality which was proved in Step 1 of
the proof of Theorem 3.1.2, for each m € N, and each ¢ > 1,

1
\a [ Os(Cg*/m) ifd=2,
(3.5.4) (J[Dm |[Xp]79 - ([XP]P)Dm| ) < { 0, (Cq") ifd>3.
Note that this implies, by increasing the values of C' and k,
q Clq™m3 if d=2,
35 5[ £, [bwln- (o), 6] Catm™ H472

For some fixed y € Z%, note that by stationarity of the corrector (3.2.3), for almost every a €,
one has

(Donlp () - (D), ) (@) = ([xp]py (0) - ([xp]py)m) (),

where we recall the notation P, = y+P(7_ya). Using the stationarity property (3.1.4), we obtain,
for each ¢ > 1,

Yy+0Om

el[buls, ©-(10l,), . | ]-E0wle 0 - (0olp),, 1]

Since this is true for each y € Z¢%, we can integrate over y to obtain

£ Ellwls, ©-(0oln,) o [ Tav= £ E[0wle (0 - (0ulp),
Thus, by (3.5.5),

q] dy.

Y+0Om

a Clg*ms if d=2,
(3.5.6) 2 []ém ‘[Xp]m ©-(Dolp, ), 0, | 4 ] : { Cig* ifd>3.
We now remove the translation of the partition and prove, for each z € Z¢
(3.5.7) Dalp, (2) - D lp (2)] < 04(C).

To prove this, note that, by definition of the coarsening (3.2.7), we have

[olp, (2) = Dol (2) = X0 (Z(B, (2))) = X (2(BP(2)))
and by definition of the two partitions 7P and Py, there exists a path connecting Op, (2) to Op(z)
which lies in B (z, C max (size (Dpy(z)) ,size (Dp(z)))). To simplify the notation in the following

computation, we denote by R’ = C max (size (Dpy(z)) ,size (Dp(z))). As a consequence, we have
the estimate

ule, ) -Dule ()< [ 19l () da

oo By (2)

By Propositions 3.2.13, the bounds R’ < O4(C) and X (2) < Os(C) and the assumption [p| = 1,
we have

dy < O4(0).
S [T 0 £ 0.(O)

Combining the previous displays completes the proof of (3.5.7). To remove the parameter y
in (3.5.6), we compute

(358  E []ém D6le 0 = (Derlp) oo, | dy]
< 29E []gm ’[Xp]Py (0) - ([Xp]Py)ymm
+29E []gm [Xp]Py (0) - ([Xp]Py)

q
dy]

- [xplp (0) - ([Xp]’P)y+Dm

q
dy] .

Yy+Om
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By (3.5.7) and (3.1.10), we have, for each y € Oy,

bols, ©) - (Dol

- [Xp]p (0) - ([Xp]p)yH]m < Os(c)a

y+0m
and thus .
E[|buln, 0~ (Dol = Dolp O = (Dolp),.q, | | <C10™

Integrating over y € O, yields

E []gm ‘[Xp]Py (0) - ([Xp]py)ymm ~[xplp (0) - ([XP]P)ymm

By the previous display and (3.5.6), we have

q
dy] < gk,

i 7 ] Clg%ms if d=2,
e _]ém Dole 0 = (D6 Tp) ., | 0] < { Cig  ifd>3.

By the Jensen inequality, we obtain

[ 7 Cig%m: ifd=2,
£ ‘]ém [alp (0) = (D6 )p),c,, ] | < { Cag®  ifd> 3.

but notice that

£ 0l - (061p)yea, W =D01p -3 3 5 [uls ().

ye€Om z€y+0m

Combining the two previous displays completes the proof of Step 1.
Step 2. By the stationarity of the corrector (3.2.3), for almost every a € {2, every y, z € 74,

Delp (2)(a) = Dplp, (2 +9) (7).

]

< quqkm% ifd=2,
=\ Cgek if d> 3.

Using this property, we have
q
Doing the same computation as in (3.5.8), we can replace P, by P in the previous display, this

yields
?|

This completes the proof of the main estimate of Step 2.

[Xp]pgc (z) - g=2dm Z Z [Xp]px (%)

YyelOm zex+y+0Om

el (0) =372 57 57 [plp (2)

YyeOm z€y+0Om

J[ Ccigtmi itd=2,

[XP]P (x) - 3~2dm Z Z [XP]’P (2) ] = { gk if d> 3.

YEOm z€x+y+0Om

Step 3. This step is similar to Step 1, but the main tool of this step is slightly different and
presented below. For m € N such that 3™ < |z| < 3™*!, and for each ¢ > 1,

1
a\4q Os (qu\/m) if d=2,
(]Em Lol = (Dle)., | ) : { 0, (Cq¥) if d>3.
To prove this result, we note that x + O,, € O;42. With this in mind, we can compute

(]ém |[Xp]7> - ([XP]P)I+Dm|q);

co(f
Om+2

-

[Xplp - ([XP]P)

Om+2

N el ol - (el |
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We estimate the second term on the right-hand side as follows

(o), = (00)p)ea | € £ |06l @) = (il | do
<ol - [ )

Combining the two previous displays with (3.5.4) shows

N\a [ O4(Cqty/m) ifd=2,
(]£m|[XP]P‘([Xp]P)x+Dm|) S{ 0, Ecgks/_) ilelz?).

With the same proof as in Step 1, we obtain, for each ¢ > 1

(| £. ol O (ol ]| Gyt 12

Cq9* if d > 3.
But note that

[Xp]p (0) - g-2dm Z Z [Xp]p (2) = ]{\m [X’p]p (0) - ([Xp]'p)wmgm dy.

YEOm z€x+y+0Om

Combining the two previous displays completes the proof of Step 3.
Step 4. In this step, we first split the integral,

[Xp]'P (0) - 372m Z Z [XP]P (2)

YE€Om z€x+y+0Om

[Xp]p (x) - g-2am Z Z [Xp]p (2)

Ye€Om z€x+y+0m

E[|Dolp () - [xlp O] < qu[

q
+27E [ ] .
Combining the results of Step 2 and Step 3, we have, for m € N chosen such that 3™ < |z| <
and for each g > 1,

3m+1

1q9%m3  if d =
Ellbade @ Dulp O] < { S0 1477

10g Il“\

Since m < , the proof of Step 3 is complete.

Step 5. First we extend the result of Step 4 to the case 0 < ¢ < 1. By the Jensen inequality,
we have, for each 0 < g <1

E(lule () - Dolp O] <E[[Do] 0) - Dole 0] < {gm a55

We now prove the main result of this step. We ﬁrst deal with the case d = 2. Select an
exponent s >0 depending only on d,p, A such that s < ¢, where k is the exponent (depending
only on d,p,A) which appears in (3.5.2).

We then compute

. [exp (( Lolp (@) - bl O) ))]
log? |z|

e
| —

Il
o
o~

E[\[ xolp (@) = Dalp (O)f ]

: log® le

— =~

w |
—

Csl ) Osl (Sl)Skl

ﬁZ

IA

=0 l

A
3
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by the Stirling formula. We now set ¢ := max log?2 ,1|>0. Note that o
log(

sl oo sl(s1)skl
5 CTJ'ZH%] c (“z> )
depends only on d,p, \. With this value of o, we have

ool (P )|

From this computation, we obtain
11
Dxe)p () = [ p (0)] < O (07 og? o)

Setting C := o*‘é, we obtain (3.5.3). The proof in dimension d > 3 follows the same lines and is
even simpler since we do not have the square root of the logarithm.

Step 6. In this step, we remove the coarsening. To do so, we prove, for each y € Z,

‘Xp(y) - [Xp]p (y)| ]l{ye%o} <0s(0).

To prove this note that if y € ¥ then there exists a path connecting y to zZ (Op(y)) which lies in
Op(y) and its neighbors. Consequently we have the estimate

) = Dolp )] 1 yee) < [ Vx| (2) da.
‘p plp ‘ {yebo} G B ine(op (1)) P

By Proposition 3.2.13, this gives
‘Xp(@/) - [Xp]p (y)| Liyesny < 04(C).
From this we deduce
IXp(2) = xp(0) L(0,2e%00}
< xp(0) = Dxplp (0] Lyoeay + X0 (#) = [xolp (0)] L mery + |x0]p () =[xl (0)]-
Combining the result of Step 5 with the previous displays shows
O, (mog% |x|) ifd=2,
O (C) if d > 3.
The proof of Step 6 is complete. O

IXp(x) = xp(0)] L40,2e4.0) < {

3.A. Proof of the L? multiscale Poincaré inequality
In this appendix, we prove the L? multiscale Poincaré inequality.

PROPOSITION 3.2.17 (Multiscale Poincaré inequality, heat kernel version). For each r > 0,
we define

RY - R
(3.1.1) iy Tdexp( ||2).

for each q > 2, there exists a constant C := C(d,q) < oo such that for each tempered distribution
uwe WHI(RY) nS'(RY) and each R >0,

loc

(3.1.2) lu~ (W) gl Lo gC([ R-de-d (foRT@MW(x)'Z dr)g)q

Moreover the dependence on the q variable of the constant C can be estimated as follows, for
each q > 2,
1
C(d,q) < Aqz,

for some constant A := A(d) < oo.
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Before starting the proof, we need to state the following proposition from [18, Proposition
D.1 and Remark D.6] and to record a result from the elliptic regularity theory.

PROPOSITION 3.A.1 (Proposition D.1 and Remark D.6 of [18]). For each q > 2, there exists
a constant C = C(d,q) < oo such that for every tempered distribution w € S'(R?),

oy L
—|z 1 2 2\
[l - 1q<Bl><C(fd H(fo r|®, « w(a)| dr) .

Moreover the constant C' satisfies, for each q > 2

C(d,q) < A/q,
for some constant A := A(d) < oo.

REMARK 3.A.2. (1) The Proposition D.1 and Remark D.6 of [18] are written with
the standard heat kernel defined by ®(¢,z) := t~%2 exp( o ) which is related to our
definition of ®, in (3.1.1) through the identity

®, = o(r%,-).
This explains why the result stated in [18] is slightly different from the one presented
here: one has to perform a change of variable to go from one to the other.

(2) The dependence on the ¢ variable of the constant C' is not explicit in [18]. It can
nevertheless be recovered by a careful investigation of the proof.

We then record a result from the theory of elliptic regularity, it can be found in [74, Lemma
7.12 and Proposition 9.9].

PROPOSITION 3.A.3 (Lemma 7.12 and Proposition 9.9 of [74]). Let V ¢ R? be a bounded
domain of RY. Let f e LP(V), 1 <p< oo, and let w be the Newtonian potential of f, i.e.,

w(@)= [ T@=-y)()dy.
where I' is the fundamental solution of the Laplace equation, i.e.,

5= log |z if d =2,
T =
(33) { rem d)wd|‘r|2 d Zfd >3,

where wq is the volume of the unit sphere in R%. Then w e W?P(V),Aw = f a.e,

Hv2wHLp(Q) < CO ”f”LP(V)
and
Hw”LP(V) + HVWHLP(V) <Gy Hf“LP(V) ’

for some constants Cy := C1(d, V') < oo and Cy := Cy(d,p, V') < 0o. Moreover, the dependence on
p of the constant Cy can be explicited:

1
Co(d,p, V)< Ap, ifp>2 and Co(d,p,V)< A 1 if1<p<2,
p_

for some A:=A(d,V) < 0.

Before starting the proof, we mention that the dependence on the p variable is not explicit
in [74, Proposition 9.9], but can be recovered by keeping track of the constant p in the application
of the Marcinkiewicz interpolation theorem. We also mention that the case of the logarithmic
potential is not considered in [74, Lemma 7.12] (it is useful to obtain the estimate of the LP norm
of w in dimension 2). Nevertheless their proof is general enough to be applied in this setting.

PROOF OF PROPOSITION 3.2. 17 Let ¢ e C° (B1 R) and 2 < g < co. We denote by p the
conjugate exponent of ¢, i.e. p:= —L € (1,2]. We split the proof into 5 steps.
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In Step 1, we show that there exists a constant C' := C(d, 1) < oo such that, for each
ue Wl (By),

Bj
1

lu =) * u“W*Lq( ) <C|Vuly-ra) -
In Step 2, we prove that there exists a constant C := C(d, 1)) < oo such that, for each
ue Wh (By),

Ju—1 = u(0)||W_1,q(B ) <Clvuly-1aep,)-

3
1
In Step 3, we prove that there exists a constant C := C(d, q, 1) < oo such that, for each
uwe Whi(By),

ol
1
2

) <C|vul -4,y +C HUHW_LQ(BS)
1

and that the constant C' satisfies C'(d,,q) < Aq for some A := A(d, 1) < oo.
In Step 4, we show that there exists a constant C' := C'(d, ¢, ) < oo such that, for each
uwe Whi(By),

<CVuly-1aes)

HU - (U)31
Hlos(s,)

and that the constant C' satisfies C'(d, 1, q) < Aq for some A := A(d, 1)) < oo.

In Step 5, we show that for each tempered distribution u € I/Vlth (R nS’(RY) and each

R>0,

|| 2R 9 3 %
= sl oy <C | LB ([ iy« vu(@) dr) ) .

Step 1. We prove that there exists a constant C := C'(d) < oo such that

”U —ux* ¢||W_1,q(33) <C ”VUHW’LQ(Bl) ’
4

Let v e C° (Bi,IR{) and define, for n € N,

e lz)

Since 9, * u — u in LY (B 3 ), we can use the triangle inequality to bound
4

(3.1.4)

o]
Ju = * u”WiLq(B?)) < ZO [¥nar * u =t + uHW,l,q(Ba) :
I n= 4

Since the function vy — vy is compactly supported in Bi and of mean 0, we can apply [18,
4

Lemma 5.7], to show that there exists a function ¥ e C° (B 1 ,R) satisfying
4

V-V =11 — .

For each n € N, we denote

._o-d )
U, =2 "\Iz(z—n)

by scaling invariance we also have

anv ' \IIn = ¢n+1 - wn
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For each function g € T/VO1 P (B 3 ), we have
[(BS) (o1 =) #u(@)g(@) dz =27 [ [ V- wi(a-y)u()e(e) dedy
=27" [Rd Vu(y) - (/}Rd U, (z-y)g(x) dx) dy.

By construction, the function y — (fRd U, (z-y)g(x) dx) is supported in By, we can thus

estimate

Jing) o =0 oo <2 ([ ot —rate) )
Moreover, one can check that there exists a constant C := C'(d, 1) < oo such that
‘ ([}Rd U, (z--)g(x) dx)

Taking the supremum over g € I/VO1 P (B 3 ) of norm 1 and combining this with (3.1.4), we obtain
4

<2

Vulyy-1, .
‘W&”’(Bl) IVelw-rae

Wol,p(Bl)

S C ”g”WOl’p(Bl) = C ||gHW01,p( 3)
1

lu=9= u“W—l,q(BB) <¢ HVUHW_L‘I(BU )
1

for some constant C := C'(d) < co. The proof of Step 1 is complete.
Step 2. We split the norm

(3.1.5) ||u_¢*u(0)||w—l,q(3§) < ||u—LZJ>eU||W_1’ ( ) |p * u— Lﬁ*u(O)HW lq( §).

3
4

But note that, for each x € B%,
(3.1.6) ¢« u(z) = *u(0)| < C|Vuly-14¢p,) -

The proof of this estimate is very similar to the previous step, only simpler: by [18, Lemma 5.7,
we represent ¢ (- —x) — ¢ in the form

V¥ =1/1('—90)—¢

with ¥, € C2° (B1,R) and then prove (3.1.6) thanks to an integration by parts. From this we
deduce

[ *u=y>u0)] N <CVuly-1acp,) -

4
Combining this estimate with (3.1.5) and the estimate proved in the previous step completes the
proof of Step 2.
Step 3. Let ne C° (By) be a cutoff function satisfying
1p, <n<lp,, and ‘V2n‘+|v77|30.
2 4

For any function f € LP (B;), we denote by wy the Newtonian potential of f introduced in
Proposition 3.A.3 with 2 = B;. We then compute

[, n@u@ @)dr= [y swg (@) dr
= [, Vn@u(@)vws(@) + n@) V(@) Vuy (@) do

el ) 99705 D) * 19D ) Fr 0]

W[}’P(B

)

HWWfHWm( )+H77VWfHW1p( ) = [Vavwsl o g,y + Vw0l e sy < CU s,
4 4

oo

§
4

By the properties of n and by Proposition 3.A.3, we have
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for some constant C':= C'(d, p,n) < oo satisfying

1
C(dvpa 77) < A_a
p-1
with A := A(d,n) < oo. Consequently
ul, oy < Mrlamy = s [ (@) f(e)do
1a(By) B reLn (811 1o gy -1 B
< C(Ullw_l,q(BS) + Vu”WLq(Bl))‘
4

The proof of Step 3 is complete.
Step 4. Applying the main result of the previous step to the function u — 1 * u(0), we have

lu =+ u(O)”Lq(Bl) < C(Hu—w * u(0)||W_1,q(B§) + ||Vu|w1,q(31)) :

Then by Step 2, we obtain

Ju— *U(O)\\Lq(B ) <C|Vuly-1ap,) -

1
2

But we have, for each a € R

u-(u)p

B

I <2u-al
3 Lq(

1o(2,) A

<2inf ||U-a|\Lq(B%) <2fu-v *U(O)HLQ(B%) :

N

Thus

H“ (s,

vo(my)
Combining the previous displays completes the proof of Step 4.
Step 5. Applying the result of Step 4 and Proposition 3.A.1, we obtain, for each ¢ > 2 and

each u e S’ (Rd) nWhe (Rd),
_‘x| 1 v 2 % %
Lq(‘ %) ¢ []Rde ([o 7°|<I>7~ i u(x)| d?“)

loc
3
2

H“ (g,

For some constant C' := C(d,q) satisfying C(d,q) < Aq
eventually shows

. Rescaling the previous estimates

|| 2R 9 3 %
||u—<u>BRLq<BR>SC( LR ([ e« vu@) ar) ) .

and the proof of Proposition 3.2.17 is complete. O

3.B. Proof of Lemma 3.3.8
In this appendix, we prove Lemma 3.3.8. We first restate the lemma.

LEMMA 3.3.8 (Minimal scale). There exist a constant C := C(d,p,\) < oo, an exponent
s = s(d,p,\) > 0 and a random variable My < OL(C) such that for each m € N satisfying
3M > My,

37 S Sige (Op(2)) 3 (1+xc@)?| <c

Z€0m xEZd7diSt(Dp(l‘),D'p(Z))Sl,eEBg
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where € :=e(d,p,\) >0 is the exponent which appears in Proposition 3.C.2.

Proor orF LEMMA 3.3.8. First, notice that one can rewrite

3d(2+¢)

37 N size (op(2))” ¢ S (1+x°%(z))?
z€0m xeZd, dist(Op (¢),0p (2))<1, eeB%
—d . 3d(2+e)+2 q2te
<037 3 size(Op(2))” - > (1+X°(x))" =
Z€0m, zeZd, dist(Op (x),0p (2))<1, ecB%
_d . 3d(2+e)+2 d2*e
<C3™m Z size (Op(z))” = (1+X%x))" <

zeZe, dist(Op (x),0m )<1, eeBy

6d(2+¢)+4
g

By (iv) of Proposition 3.2.1 applied with ¢ = , it is clear that for each m € N satisfying

3™ > M(P), we have
(1) supgeq,,,, size (Op(x)) < 3%, this implies in particular
{z €7 dist (Op(x),0m) <1} € Omat.

(2) the following estimate

1 1

Gl ’ (2+e)+4 \ 2
Size(DP(l’))W) < C(Sd(m”) > size(DP(x))W)

3*dm
zeZd, dist(Op (z),0m )<1 T€0m+1

<C.

Thus by the Cauchy-Schwarz inequality, it is enough to prove that there exists a random variable
M satisfying M < O%(C), such that for each m € N satisfying 3" > M,

(3.2.1) 3y (X))

r€0m, eele”

d(4+2¢)
= <C.

Unfortunately, we cannot prove this exact statement but we will prove a slightly weaker estimate,
Lemma 3.B.1, which is still strong enough to prove Proposition 3.3.3. Define, for each C > 0, the
random variable

Xo=inf{re[l,00) : V', R' €[r,o0), with v’ < R', Vu € A(6 N Bg')
,r/
IVul L2408, < Cﬁ ||VU\L2(<gmeR,)} ,

and we similarly define, for each z € Z,
Xo(x) = Xo o7y

Denote by Cj := Co(d,p\) < oo the constant appearing in Proposition 3.2.13. By definition we
have

Xco

0

=X.

Note also that Xy is decreasing in C. With this new notation in mind, we have the following
lemma.

LEMMA 3.B.1. For every integrability parameter t > 0, there exist a constant C(d,p,\,t) < oo,
an exponent s(d,p, \,t) >0 and a random variable ./\/l{\‘/ satisfying

M <0ol(C)

such that for every m € N satisfying
3> M
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the following inequality holds
t
ng(x)‘ <C.

S*dm Z

€Oy, eeBﬁ

REMARK 3.B.2. (1) This statement is weaker than (3.2.1) since, for each z € Z¢ and
ee By,
ng () < X, (x) = X°(x).

Nevertheless it is enough to prove Result 2, since we only need to replace Cy by Cg
in every computation involving the estimates on the random variables X;(x) and the
result remain the same, only the value of the constants will be increased.

(2) Applying this result with ¢ = dd+2)

—— completes the proof of Lemma 3.3.8.

O

There remains to prove Lemma 3.B.1 but before starting the proof, we need to introduce
a few ingredients and preliminary results. First define, for R,C € [1, o), the random variable
Xrc by the formula,

(32.2) Xpc:=inf{re[1,R]: Vr' R e[r,R], withr' <R, Vu € A(Gnax(Br) N Br')

,r/
IVl 2 (BrInB) < O ||V“L2<<fm<BR>nBRI>}’

Where Gnax(Br) denotes the largest cluster contained in Bgi. Similarly we define, for each
zeZ?,
Xo(x) = Xo o7y

Note that this random variable is defined on the enlarged probability space §2 x 2 and is
measurable with respect to F(z + Br) ® {@,Q2} (it depends on the edges in the ball x + B of
the first variable and does not depend on the edges of the second variable).

The reason why we were careful to write @max(Br) in (3.2.2) and not €.(BRr) or € N Br
(these three clusters are morally equal for large R), is to constrain the random variable X ¢ be
measurable with respect to F(Bg) ® {@,Q}.

The only incentive of this quantity is that the random variable X ¢ is local (or is measurable
with respect to F(Bgr) ® {&,}) and in particular the random variables Xr ¢ (x) and Xr c(y)
are independent as soon as |z —y| > 2R.

Note also that X ¢ is decreasing in the C' variable and, for R > M,(P), it is increasing in
the R variable. We thus denote by, for each C' > 1

Xo = I%im Apc =limsup Xp o € [1, co].

R>1
By Proposition 3.2.13, we know that there exists a constant Cy := Cy(d,p, \) < oo such that
(3.2.3) Xo, = X < 0L(O).

thus, for each R > M(P),
XR,CO < XCO < O;(C).

Moreover, for each R € [1, M(P)], we have

XRr.cp < M (P) < O;(C)
Combining the two previous displays yields, for each R > 1,

XR,C’O < O;(C).

We now prove the following inequality, for each R,C > 1,
(3.2.4) Xee < XR,C+R]1{R$Mt(P)} +XC]1{XC>R}-

We split the proof of this inequality into two cases.
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Case 1. If Xo > R, then since C > 1 and X is decreasing in C, the inequality (3.2.4) follows
from the computation

Xo2 < Xo < Xpc + Rlipea,(p)y + XclixosRy-
Case 2. If Xo < R and R < My(P), then
Xez < RLipapy(pyy € AR, + RLigam, (pyy + Xolixosry-

Case 3. If Xo < R and R > My(P) then €nax(Br) is equal to the maximal connected
component of € N Br and we have, for each r, R’ > R with R’ >r

r
IVl 2np,) < €4 VUl 2gnsg) -

Moreover, for each 7, R' € [Xgr ¢, R] with R" > r, we have

r
IVl 24 np,) < Cﬁ IVul L2 (4nBpy) -
Recall that we picked C' under the assumption C' > 1 so that C? > C. Combining the two previous
displays yields for each r, R’ > Xp ¢ with R > r,
o T
IVul 2npy <€ g Vel L2 (npp)

and thus by definition of X2,
XC2 <X R,C

and the proof of the inequality (3.2.4) is complete.
For z € Z% e = {x,y} € By,C,R € [1,00), denote by X&C(SL') the translated and resampled
random variable

Xk o(x) = inf {re[1,R] : such that V1 <r' < R' < R, ue A (%o (Br(z)) n Br(x))
74/
IVl L2 g (BB @) < O 1VUl 265 (Bre) B @) | -

We also define, for each x € Z¢
Xé(x) = im Xf o(x) =limsup Xf o(x) € [1, 00].
R—oo > R>1 ’
The second ingredient in the proof of Lemma 3.B.1 is the following minimal scale lemma.

It is a slight modification of [13, Lemma 2.3] and will be used at the very end of the proof of
Lemma 3.B.1.

LEMMA 3.B.3. Fiz K >1, s>0 and 8> 0 and suppose that { X, }nen is a sequence of random
variables satisfying, for everyn e N,

X, <K +0,(K3™).
Then there exists C(s,3,K) < oo such that the random scale
M:=sup{3"eN: X, >K+1}

satisfies the estimate

M < OsB(C)~

PROOF. This result can be deduced by applying [13, Lemma 2.3] to the sequence of random
variables X, = max (X,, - K,0). O

We now turn to the proof of Lemma 3.B.1.
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PrRoOOF OF LEMMA 3.B.1. Fix t € (0,00) and m,n € N with m >n. Using (3.2.4), we have

(3.2.5) grdm 3

T€0m, eeBY

<03 Y (X o (@) ez S \Xgo(x>\tn{xgo(m)>3n}

T€0m, eeBg T€0m, eeBg

+C3_dm Z Sm]l{?)"s./\/lt(’/))} O Tp.

T€Om

t
ég(x)’

Since X¢ (z) < Oy(C), for every ¢,t' > 0, there exist an exponent s'(d,p,\,t,t") > 0 and a
constant C'(d, p, A, t,t") < oo such that

3_dm Z ‘Xéo (x)‘t ]I{XEO($)>3n} < O;/(CIB_nt,)

T€Om, eEBi

and

g-dm Z 3nt]l{3n2Mt(p)} 0T, < O;/(Cl?)_nt,).

T€0m, eeBY

Combining the previous displays yields

g Y @] so3tm Y | g @) + 0L,

T€Om, eeBg r€0m, 6685

Moreover, notice that by definition of the localized random variable Xy, - (), we have for each
zelZd

S | Xy ()] < 2d x 3™
eeBy
The proof of the lemma is then the same as the proof of Steps 1 and 2 of [13, Proposition 2.1]
t t
with 3-4m L et Bl ng (m)| dz instead of A¢(z+0,,S) and 379" LireztOn, el ’Xen,cg (x)’ dz

instead of A¢(2" + Oy, Sioe(2')). We rewrite it for completeness.

We denote

Z=3m 3 \X§n7co(x)|t=|5”| >oogdm 3 ‘anpo(x)r.

x€0m, eeBY | Um ‘ ze€3nZ4N0,, T€z+0n, eeBY

We first prove that there exists a constant C' := C'(d,p, \,t) < oo such that
(3.2.6) Z<C+0f(3mAmm).

To do so, choose an enumeration {27 : 1 < j < 3%M™=2)} of the elements of the set 3"*2Z% n
Opn. Next, for each 1 < j < 3% 2 we let {7 : 1 < i < 32?} be an enumeration of
the elements of the set 3"Z%n (zj + Dmg), such that, for every 1 < 7,j" < 34 "-2) and 1 <
i <32 50 _ 23" = 24— 243" The point of this is that, for every 1 <i<3* and 1<j<j' <

- - t
. ! -_
34m=n-2) "we have dist (2" + 0, 2% +0,) > 3" and therefore, 379 Yrezii 0y, et |X§n c2 (.CC)|

t
and 3-dm erzivj,+ﬂn7556;§ X?fn,Cg (:B)| are independent. Now fix A > 0 and compute, using the

Holder inequality and the independence
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logE [exp (h3_"tZ)]

32d 3d(m—n—2)

t
=1ogE|]] exp | hg~t-d(m=n)g-dm Z X:fn’cz(x)|
i=1 j=1 xezimfﬁ-ljn,eeBﬁ 0
32d 3d(mfn72) ¢ 1
-2d -nt—d(m-n-2) q—dm e
<373 logE H exp | h3 ( )3 . > X3n703 (33)‘
i=1 j=1 zezbI+0y, eeBy
32d 3d(m—n—2) ¢ 1
-2d -nt—-d(m-n-2) q—dm e
<3 Z ' logE|exp| h3 ( )3 | Z ‘X n,cg(ﬁf)‘
=1 g=1 x€z"I +0p, eeBY

This inequality can be rewritten

logE [exp (h?f”tZ)]

<372 Z logE [exp (h3_"t_d(m_"_2)3_dm Z |X67L7Cg (x)‘t)] .

2/€3n 74N (24+0m) zez'+0n, ecBY
Next we use the elementary inequality
Vye[0,1], exp(y)<1l+2y
to get, for every h e [0, (2d)~t3%(m=n-2)],

exp (hB—nt—d(m—n—Q) Z

rez'+0n, eeBﬂd”

t
X;mcg(x)‘ .

t -nt—-a(m-n—
ngg(:n)\ )g1+2h3 frd(m=n=2) %

zeZ' +0n, eeBZ3

Taking the expectation in the previous display and using the elementary inequality
Yy >0, log(1+y) <y,

we get

logE [exp (h3_ntZ)] < gd(m-n) log| 1+ op3-nt-d(m-n-1)g Z
zez’+Dn,eeB§

X;n,cgm)lt])

< 2h3‘”“dE! 3

z€2'+0n, eeBY

t

<Ch3™™.
Taking h := (2d)~*34m=2) yields
E[exp ((2d) '3/ Z) | < exp (C370m ).
From this and Chebyshev’s inequality, we obtain a constant C' such that
P[Z>C+h] <exp (—h0_13d(m_n)_nt)
This implies (3.2.6).
Step 2. We complete the proof by applying a union bound. Combining (3.2.5) and (3.2.6)

yields
Y X @) <0+ 0 (C3mimm) Lo (C37).

T€0m, eeBY

We set
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so that the previous line becomes

Y |Ho @) drsCv0f(C3EmT) <O (O3 mE").

r€0m, eEBZl”

Thus, by (3.1.13) and (3.1.9), we obtain the existence of two exponents s := s(d,p,\,t) > 0,
B :=B(d,p,\,t) >0 and of a constant C := Cy(d,p, A, t) < co such that

S |, ()] de < Co+ OL(Co37™).
xel:lm,eele”
Define
MY = sup{3™ : > |X3€n700 (l’)‘t dx > Cp+1

xGDm,eEBﬁ
We want to prove

M <044(C)
This is exactly Lemma 3.B.3 with X, = ¥, cene ‘X?fn’CO (."L‘)|t dx and K = C.

3.C. Elliptic inequalities on the supercritical percolation cluster

In this section, we record some simple elliptic inequalities, the Caccioppoli inequality and the
Meyers estimate. These inequalities were written in [13] for harmonic functions. In our context,
we need to apply these results when the right-hand term is not 0 but the divergence of a vector
field.

PROPOSITION 3.C.1 (Caccioppoli inequality). Assume that we are given a function u : € — R
and a vector field £ : Eq4 — R satisfying the following condition

(3.3.1) E(x,y) =0 ifa(z,y) =0 or z,y ¢ €.

In particular, gradients of functions defined on the infinite cluster satisfy this condition by (3.1.5).
Assume additionally that uw and & satisfy the following equation,

-V-(avVu) = -V & in Ce-

Select two bounded sets U,V ¢ 74 such that V ¢ U and dist(V,0U) > r > 1. Then there exists
C'(\) < oo such that

c
3.2 f 2(2)da < = / 24 f 2(2) da.
(3:32) %nv'vu' () da r2 Jéwn(U ) fu(@)l” dw + C CoorlU P () de

PRrROOF. The strategy of the proof follows the standard technique to prove the Caccioppoli
inequality, we select a cutoff function 7 : Z? - R satisfying

(3.3.3)
Ty <n<1, n=0onRI\U, and Va,y € Z% such that = ~y, [n(z) -n(y)f < ¢ (77(517)2“‘ n(y))
r

)

test the equation satisfied by u with nu and perform a straightforward computation as well as
the usual simplifications. O

The second important elliptic estimate needed in this article is the Meyers estimate. This
estimate was also proved in [13] in the case of a-harmonic functions.

PROPOSITION 3.C.2 (Meyers estimate). There exist a constant C = C(d,\,p) < oo, two
exponents s = s(d,\,p) >0 and € :=e(d,\,p) >0 and a random variable Myteyers < O5(C) such
that for each m € N with 3™ > Mueyers, and each function v: 6o — R satisfying

-V-(avv) = -V £ in €,
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for some wvector field £ : Eq — R satisfying (3.3.1), the following estimate holds,

(3.3.4) (L Vo> (2) dac)%s

| Om | OmNeo

1 2 : 1 24e 2
<C —f dz| +C —f de| .
(|§Dm\ somen VY ) x) (ggm\ s 1)

PROOF OF PROPOSITION 3.C.2. The results of Proposition 3.8 and Definition 3.9 of [13] can
be adapted in our context to prove (3.3.4). The Meyers estimate is indeed a consequence of the
three following ingredients: the Caccioppoli inequality, the Sobolev inequality and the Gehring’s
lemma. But Proposition 3.C.1 provides a version of the Caccioppoli inequality well-suited to
deal with a divergence form right-hand side. The Sobolev inequality is valid for any functions.
The usual version of the Gehring’s Lemma, see for instance Theorem 6.6 & Corollary 6.1 of [77],
is general enough to be applied in our context.

O



CHAPTER 4

Quantitative Homogenization of Differential Forms

We develop a quantitative theory of stochastic homogenization in the more
general framework of differential forms. Inspired by recent progress in the
uniformly elliptic setting, the analysis relies on the study of certain subadditive
quantities. We establish an algebraic rate of convergence from these quantities
and deduce from this an algebraic error estimate for the homogenization of
the Dirichlet problem. Most of the ideas needed in this article comes from
two distinct theories, the theory of quantitative stochastic homogenization,
and the generalization of the main results of functional analysis and of the
regularity theory of second-order elliptic equations to the setting of differential
forms.
This chapter corresponds to the article [52].

Contents
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4.2. Some results pertaining to forms 225
4.3. Functional inequalities and differential forms 228
4.4. Quantitative Homogenization 233
4.5. Homogenization of the Dirichlet problem 246
4.6. Duality 252
4.A. Regularity estimates for differential forms 254

4.1. Introduction

The classical theory of stochastic homogenization focuses on the study of the second-order
elliptic equation

(4.1.1) V- (a(z)Vu) =0,

where a is a random, rapidly oscillating, uniformly elliptic coefficient field with law P. The
basic qualitative result roughly states that, under appropriate assumptions on P, a solution wu,
of (4.1.1) in B(0,r), the ball of center 0 and radius r, converges as r - oo, P-a.s, to a solution
u, of the equation

(4.1.2) V- (ava,) =0,
where a is a constant, symmetric, definite-positive matrix, in the sense that

1
(4.1.3) 7 o |u,(2) -5 ()| da — 0.
This second equation (4.1.2) is frequently called the homogenized equation. Obtaining quantitative
information, for instance rates of convergence in (4.1.3), drew a lot of attention in the recent
years, and there has been some notable progress, in particular by the works of Armstrong, Kuusi,
Mourrat and Smart [21, 20, 17, 18] and the works of Gloria, Neukamm and Otto [81, 82, 83, 85].
Quantitative rates of convergence are also interesting in particular because they can provide

215



216 4. QUANTITATIVE HOMOGENIZATION OF DIFFERENTIAL FORMS

information on the performance of numerical algorithms for the computation of the homogenized
coefficients [129].

The purpose of this article is to develop a theory of quantitative stochastic homogenization
for the more general equation

(4.1.4) d(a(z)du) =0,

where w is an r-form, d is the exterior derivative and a is a random, rapidly oscillating tensor which
maps the space of r-forms into the space of (d - r)-forms, satisfying some suitable properties
which will be described below. When r = 0, u is a 0-form, that is to say a function, the
differential equation (4.1.4) reduces to (4.1.1) and we recover the classical theory of stochastic
homogenization.

The main result of this article, Theorem 4.1.2 below, is to prove a quantitative homogenization
theorem for differential forms, i.e a quantitative version of (4.1.3) for differential forms. In our
last main result, stated in Theorem 4.1.3 below, we prove that homogenization commutes with
the natural duality structure of differential forms. This duality structure is behind certain
exact formulas for the homogenized matrix which are known to hold in dimension d = 2 (see
for instance [98, Chapter 1]). We note that similar results were obtained independently by
Serre [143] in the case of periodic coefficients.

Note that the system (4.1.4), under natural assumptions on the coefficient field a, is elliptic
but not uniformly elliptic (since the operator vanishes on every closed form). To our knowledge,
the results in this paper are the first quantitative stochastic homogenization estimates for such
degenerate elliptic systems. The proof of our main results are based on an adaptation of the
theory of quantitative stochastic homogenization developed in [18].

4.1.1. Notations and assumptions. In this section, we introduce the main notation and
assumptions needed in this paper as well as a statement of the main theorems, Theorems 4.1.1
and 4.1.2.

4.1.1.1. General Notations and Definitions. We begin by recalling some definitions and
recording some properties about differential forms which will be useful in this article. We consider

the space R? for some positive integer d, equipped with the standard |-|. Denote by eq,...,¢q
the canonical basis of R%. A cube of R?, generally denoted by O, is a set of the form
(4.1.5) z+ R(-1,1)<.

Given a cube 0O := z + R(-1,1)¢, we also denote by size(O) the size of the cube, in this case
size = R. A triadic cube of R? is a cube of the specific form

gm gm d
z+(——,—) ,meN,ze3mzl.

22
We use the notation, for m € N,

gm gm d
Omi=-—,—] .
" ( 272 )

If U is a measurable subset of R? we denote its Lebesgue measure by |U|. The normalized
integral for a function u: U — R for a measurable subset U ¢ R? is denoted by

]gu(a:) dz := ﬁv/[;u(x) dz.

Given two sets U,V ¢ R?, we denote by dist(U, V) := inf e yev |2 -yl
For 0 < r < d, we denote by A"(R?) the space of r-linear forms. This is a vector space of
dimension (f), a canonical basis is given by

dxil/\---/\dxim 1<41<...<%,.<d.
We will denote by
dey:=day A . Anday,, for T={i,... i,y c{1,...,d}.
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Given U an open subset of R, a differential form is a map
U - A'(RY),
WYz > Y u(z)day.
\I|=r
Given & := &req + -+ + £geqg € RY, we denote by d¢ := & day + -+ + Egdag € AT (R?).
In practice, we need to assume some regularity on u, so we introduce the following spaces.

e The space of smooth differential forms on U up to the boundary, denoted by C*°A" (U),
i.e,

C*AN" (U) := {uz Y up(z)dzy 2 VI, upe C*° (U)}
|I|=r

e The space of compactly supported smooth differential forms on U, denoted by C°A™(U),
i.e,
CPAN(U) = {u = > wy(z)dz; : VI, use C’éx’(U)}
|I|=r

With this definition in mind, we denote by D,.(U) the space of r-currents, i.e, the space
of formal sums

Z uIde
[I|=r

where the uy are distributions on §2. It is equivalently defined as the topological dual of
CPA" (U).
e For 1< p< oo the set of LP differential forms on U, denoted by LPA"(U) i.e,

LPA™(U) := {u: > up(z)dy = VI, up eLp(U)}
|I|=r

equipped with the norm

”u”LPAT(U) = Z “uI”LPAT(U)v
[1]=r

and, for 1 < p < oo, the normalized LP-norm
il = 3 f jug ()] i = |U| > [ lu@)P dz.
[|=r

We also equip the space LQAT(U) with the scalar product (u,v)y = X712 (ur, vr) 217y
e For s € R, the set of H® differential forms on U, denoted by H*A"(U), i.e,

HA"(U) := {u: > wp(z)dzy = VI, ug eHS(U)}
[I|=r

equipped with the scalar product (u, U)HSAT(U) = Yi1j=r (ur, ’U[)HS(U).

IfUcRandu:U — A" (Rd), we denote the ith-partial derivative of u by d;u, it is understood in
the sense of currents according to the formula

8,-u = Z 8iu1dx1,
|I|=r

where O;u; is understood in the sense of distribution. The gradient of u, denoted by Vu :=
(O1u,...,0qu), is a vector-valued differential form. Higher derivatives, which are also vector-
valued forms, are denoted by, for [ > 1,

v U= (821 o u)lly 77'le{1’ ) } ’
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Given an m-form « and an r-form w, we consider the exterior product a A w which is an
(m + r)-form and satisfies the following property

arnw=(-1)"wnra.

If m+r>d, weset wna=0.
We then define the exterior derivative which maps C°A” (U) to C*°A™! (U) according to
the formula,

du = Z Z %dxk ndzy,
[I|=r kel Ay,

and can then be extended to currents. In particular, if u is a differential form of degree d, then
du = 0. This operator satisfies the following properties

(4.1.6) dod=0and d(uAv) =(du) Av+(=1)"un (dv).

Given a form u = ¥, urdr; € C*A"(U), an open set V' ¢ R? and a smooth map & =
(®1,...,94): V - U, we define the pullback u by ® to be the smooth form

V- AT(RY),

Q=g >, ur (2(x))d®s (z) A AdP;, (2).
I={i1,...,ir}

where d®(z) denotes the differential of ® evaluated at x. The pullback satisfies the following
properties, given an r-form v and an m-form v,

(4.1.7) O du =d®*u and ®* (uAv) = P uA P w.

Given another open set W ¢ R? and another smooth map ¥ : W — V, we have the composition
rule

U* (" u) = (PoW) v.
Moreover, if we assume that ® is a smooth diffeomorphism from V to U such that all the

derivatives of ® are bounded then, for k € N, ®* maps H*A"(U) into H*A"(V') and we have the
estimate

(4.1.8) |97l o pr vy < Ol grear oy

for some C := C(d, k,®) < co.
We can also define a scalar product on A”(R?) such that (dx )|1}=r is an orthonormal basis,
ie,

(4.1.9) (Z ardxy, Z ,Bjd:cj) = Z arfy.
[I|=r |I|=r [I|=r
We will use the notation, for a € A"(R?)
ol = V(o ).
We denote by BiA"(R?Y) the unit ball of A”(R?), i.e,
BiA"(RY) := {a e A"(RY) : |al < 1}.
Moreover for each r, notice that
dim A”(R%) = dim A" (RY) = (d).
r
There is a canonical bijection between these spaces, the Hodge star operator, denoted by , which
sends A”(R?) to A=) (R?) and satisfies the property, for each «, 3 € A"(R%)
an (xB) = (a,B)dxy A+ Adxy.
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It is defined on the canonical basis by
* (dzi, A Aday,) i=day,,, A Adag,

where (i1,...,iq) is an even permutation of {1,...,d}. An important property of this operator
is the following, for each o € A"(R?),

(4.1.10) wxa = (-1)"@ Mg,

We then define the integral of a d—form over a domain U. Let u =uy;  gydz1 A Adzg be a
d—form over U. If ugy gy € LY (U), we say that u is integrable and define

(4.1.11) fUu::fUu{Lwd}(x)dx.

In particular, the scalar product on L?A"(U) can be rewritten, for each o, 3 € L>A”(U),

(u,v); = /Uu/\ (xv).

Additionally, if ® is a smooth diffeomorphism mapping V' to U positively oriented, i.e if det d® > 0,
then the change of variables formula reads, for each integrable d-form u,

(4.1.12) /Vq)*u:fUu.

We then want to define the normal and tangential components of a form u on the boundary of
a smooth bounded domain U. To achieve this, consider U ¢ R? a smooth bounded domain of R¢,
denote by v the outward normal of U and fix u € C*A"(R?) a smooth r-form. For each z € 9U,
we define nu(x) € A" (Rd), the normal component of u(x), to be the orthogonal projection of
u(z) with respect to the scalar product (-,-) defined in (4.1.9) on the kernel of the mapping

Ar(Rd) N Ar+1(Rd)’
v —dv(z) Av.

(4.1.13) dv(z) A - {

The tangential component of u(x), denoted by tu(x), is given by the formula
(4.1.14) tu(z) = u(x) — nu(x).

Let now u € C*°A%1(U), using the previous notation there exists a smooth function v:dU - R
such that, for each x € OU,

tu(z) = v(x)de] A+ Ade)_q,

where ef,... e} | € R? are such that (ef,...,e5_1,v(x)) is an orthonormal basis positively
oriented of R, With this notation, we define the integral of u on OU by the formula

(4.1.15) faUu= faUv(:z:)defl(x),

where H%! is the Hausdorff measure of dimension (d - 1) on R
The two definition of integrals (4.1.11) and (4.1.15) are linked together by the Stokes’ formula:
for each smooth bounded domain U ¢ R? and each u ¢ C°A%1(U),

(4.1.16) [aUu:fUdu.

We can now define 4, the formal adjoint of d with respect to the scalar product {-,-) 2r (),
i.e, the operator which satisfies for each (u,v) e CA™H(U) x C A" (U),

<du7 ’U>L2A7-(U) = (U, 5U>L2A7"_1(U) .
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This operator can be explicitly computed using the second equality in (4.1.6), the equality (4.1.10),
and the Stokes’ formula (4.1.16). Indeed we have

O:f :fd 1 T*lf d
aUu/\(*v) u un (xv)+(-1) LUA (*v)
- [4q 1 r—1+(r—1)(d—r+1)f dxv).
fU un*v+(-1) Uu/\*(* * V)
Consequently,
(4.1.17) §=(-1) DL gy

We now define the set of L? forms u such that du is also L?. This will play a crucial role in
this article. Note that this space is different from the Sobolev space H'A”(U) introduced earlier.

DEFINITION 4.1.1. For each open subset U ¢ R?, and each 0 < r < d, we define the space
HYA™(U) to be the set of forms in L2A”(U) such that du € L2A™(U), i.e,

HIA™(U) = {ueLQAT(U) : HfeLZAT“(U),VUeCfAd_r_l(U),[(](uAdv+(—1)TdU/\v)=O}.

If u e HIA"(U), we denote by du the unique form in L2A™!(U) which satisfies, for every
ve CeANTHT),

(4.1.18) [U(u/\dv+(—1)7"du/\v) - 0.
This space is a Hilbert space equipped with the norm
Jul g oy = (s )y + (e, du)y
In the case r = d, we have du = 0 for each u € L2A%(U) and HIAY(U) = L2A%(U). We also denote
by HiOAT(U) the closure of C°A™(U) in HIA™(U), i.e,

1AT
H oA (U) = C=ar (@) .

Symmetrically, for each 0 < r < d, we define H{ A"(U) to be the set of forms in L?A”(U) such
that du e L?A™"Y(U), i.e,

HIA™(U) = {ueL2AT(U) : 3feLQAH(U),VUec;°Ad-’“+1(U),[U(uA5v+(-1)d—rfw):o}.

and in that case, we denote by du = f. In the case r = 0, we have éu = 0 for each u € L?>(U) and
H}A(U) = L*(U). We also denote by H(;OAT(U) the closure of C°A"(U) in H{A™(U), i.e,
—_HA"(U
Hi A" (U) = Cohr(@y .

We then introduce the subspaces of closed (resp. co-closed) forms of HIA"(U) (resp.
HIAT(U)).

DEFINITION 4.1.2. For each open U ¢ R? and each 0 < 7 < d, we say that a form u e H}A™(U)
is closed (resp. co-closed) if and only if du =0 (resp. éu =0). We denote by C}(U) the subset of
closed r forms, i.e,

Ci(U) ={ue HIA"(U) : du=0}.
We also define
Cio(U) = C{(U) n Hygh" (U).
Symetrically, we denote by C5(U) the subset of co-closed r forms, i.e,
C5(U)={ue HIA"(U) : su=0}.
We also define
Cho(U) = C5(U) n HigA™(U).
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4.1.1.2. Notation related to the probability space. For a random variable X, an exponent
s € (0,+00) and a constant C' € (0, 00), we write

X <04(C)

()]

where X, := max(X,0). The notation is clearly homogeneous:

to mean that

X <04(C) <= % <04(1).

More generally, for 0y,01,...,60, e R* and C1,...,C, € Rf, we write
X <00+ 6104 (Cr) +-+ 0,05 (C)

to mean that there exist nonnegative random variables X1,..., X, satisfying X; < O, (C,,) such
that

X<bp+601 X1+ +0,X,.
We now record an important property about this notation, the proof of which can be found
in [18, Lemma A .4].

PROPOSITION 4.1.3. For each s € (0,00), there exists a constant Cs < oo such that the
following holds. Let p be a measure over an arbitrary measurable space E, let 6 : E — (0, 00)

be a measurable function and (X (x))zep be a jointly measurable family of nonnegative random
variables such that, for every x € E, X (x) < Os (C(z)). We have

(4.1.19) [ X@u(an <o, (cs _/EC'(:E),u(d:B)).
We then record a corollary which will be useful in Section 4.4.

COROLLARY 4.1.4. (i) Given positive random variables Xy, ..., X, such that, for each
ie{l,...,n}, X;<O5(C;), then

n n
ZXZ < Os (05201)7
i=1 i=1
where Cy is the constant in Proposition 4.1.3.

(ii) Given a real number r > 1 and X1, ..., X, such that for eachie{1,...,n},X; <Os(C),
then

n o ,rn+1
Sixi <0, (csc_) |
=1 T = 1
where Cy is the constant in Proposition 4.1.3.

4.1.1.3. Notation and assumptions related to homogenization. Given A€ (0,1] and 1 <r <d,
we consider the space of measurable functions from R? to £ (AT (RY), A(d‘r)(Rd)) satisfying the
symmetry assumption, for each = € RY,

(4.1.20) pAa(z)g=qnra(z)p, Vp,qe A" (R?),

and the ellipticity assumption, for each z € R,

(4.1.21) Apl2 < *(p A a(2)p) < §|p|2, Vp e AT(RY),

We denote by €2, the collection of all such measurable functions,

(4.1.22) Q,:= {a(-) ra:RY > L (AT(Rd), Al (]Rd)) is Lebesgue measurable

and satisfies (4.1.20) and (4.1.21)}.



222 4. QUANTITATIVE HOMOGENIZATION OF DIFFERENTIAL FORMS

We endow €, with the translation group (7y),cga, acting on €2, via

(rya) (z) = a(z +y)
and with the family {F,.(U)} of o-algebras on 2, with F,.(U) defined for each Borel subset
U cR% by

F-(U):= {U—algebra on (2, generated by the family of maps

as [ pralasta),n e ATRD, o C ()
The largest of these o-algebras is F;.(R?), simply denoted by F,. The translation group may be
naturally extended to F, itself by defining, for A € F,,
(4.1.23) TyA={r,a:aecA}.

We then endow the measurable space (€2, F,.) with a probability measure P, satisfying the two
following conditions:

e P, is invariant under Z%translations: for every z € Z%, A e F,,
(4.1.24) P[r,A] =P[A].

e P, has a unit range dependence: for every pair of Borel subsets U,V ¢ R% with
dist(U, V) > 1,

(4.1.25) Fr(U) and F,.(V) are independent.

The expectation of an F,.-measurable random variable X with respect to P, is denoted by E, [ X]
or simply E[ X ] when there is no confusion about the value of .

DEFINITION 4.1.5. Given an integer 1 <r < d, an environment a € €2, and an open subset
U cR?, we say that u € H&AT’l(U) is a solution of the equation

d(adu) =0,
if for every smooth compactly supported form v e CA"(U),

f du A adv = 0.
U
We denote by A2(U) the set of solutions, i.e,

(4.1.26) A2(U) = {u e HIA"(U) : Yo e CA™(U), [Jdu Aadv = 0}.
When there is no confusion, we omit the subscripts r and a and only write A(U).

4.1.2. Statement of the main results.

DEFINITION 4.1.6. For every convex bounded domain U ¢ R?, we define, for (p,q) € A" (R?) x
A(d—r) (Rd),

1
(4.1.27) J(U,p,q) := sup (——dv/\adv—p/\adv+dv/\q).
veA(U)JU\ 2

The quantity J is nonnegative and satisfies a subadditivity property with respect to the
domain U: see [18, Chapter 2] or Proposition 4.4.1 below. In particular the mapping

n = E[J(On,p,q)]

is decreasing and nonnegative, thus it converges as n — co. The idea is then to show that there
exists a linear mapping a € £ (AT(]Rd), Ald=") (]Rd)) such that for each r-form p, J(O,,p,ap) tends
to 0 and to quantify this statement. Precisely, we prove the following result.
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THEOREM 4.1.1 (Quantitative homogenization). Given 1 < r < d, there exist an exponent
a(d,\) >0, a constant C(d,\) < oo and a unique linear mapping a € E(AT(Rd),A(d_T)(Rd)),
which is symmetric and satisfies the ellipticity condition (4.1.21), such that for every n € N,

(4.1.28) sup  J(Op,p,ap) < O (C37"Y).
pGBlAT(Rd)

This is the subject of Section 4.4. In Section 4.5, we study the solvability of the equation
dadu = 0 on a smooth bounded domain U. The first main proposition is the following, which
establishes the well-posedness of the Dirichlet problem for differential forms.

PROPOSITION 4.1.7. Let U be a bounded smooth domain of RY and 1 < r < d. Let f €
HdlAr_l(U), then for any measurable map a: R? > £ (AT(Rd),A(d_T) (Rd)) satisfying (4.1.21)
and (4.1.20), there exists a unique solution in f + Hcll’OA’”_l(U) N (057_01(U))l of the equation
d(adu)=0 inU

tu=tf onOU,

(4.1.29)

in the sense that, for each v € HiOA’"_l(U),

de/\adv:O.
U

Moreover if we enlarge the space of admissible solutions to the space f + HiOAT’l(U), we loose
the uniqueness property, but if v,w € f + Hd1 0A”_I(U) are two solutions of (4.1.29), then

v-weChy.

Before stating the homogenization theorem, there are two things to note about this proposition.
First the suitable notion to replace the trace of a function when the degree of the form is not 0
is the tangential part of the form. This is the only information which is available when one has
access to the form u and its differential derivative du. It will become clear in the next section
when Propositions 4.2.2 and 4.2.3 are stated. Also note that for functions, or 0-forms, the notion
of trace and tangential trace are the same.

Second, note that if v € Cgbl(U) and u is a solution of (4.1.29), then u + v is also a solution
of (4.1.29). This problem does not appear when one works with functions (or 0-forms) because
in that case C’gO(U) ={0}. This explains why we need to be careful when solving (4.1.29).

We then deduce from the previous proposition and Theorem 4.1.1 the homogenization
theorem.

THEOREM 4.1.2 (Homogenization Theorem). Let U be a bounded smooth domain of R and
1<r<d, fitee(0,1] and f e H*A™Y(U). Let v,ue f+ H(}’OA’"‘I(U) n(Ch 0(U))l respectively
denote the solutions of the Dirichlet problems

d(a(L)dUE)zo in U d(adu)=0 inU
€ and
tu®=tf on OU. tu=tf on OU.
Then there exist an exponent o := a(d,\,U) >0 and a constant C := C(d,\,U) < oo such that
[ =l ey + Idu7 = dull -1 e (1 < Ot (CIAf | ar(ery =) -

The previous theorem is often stated, when one is dealing with functions (or O-forms) in the
case that U is a bounded Lipschitz domain and with a boundary condition f e W12 (U) for
some 0 > 0: see for instance [18, Theorem 2.16]. This is convenient since this assumption ensures
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that the energy of the solution does not concentrate in a region of small Lebesgue measure
near OU. Indeed, the global Meyers estimate gives some additional regularity on the function w,

( ][U !Vu|2+s(x)da;)2ig < c( ][U v f|2+5(a:)da:)21€,

for some tiny € > 0. On the other hand, this assumption is natural in view of the interior Meyers
estimate, which ensures that the restriction of any solution to the heterogeneous equation to a
smaller domain will possess such regularity.

Unfortunately, we were not able to prove a global Meyers-type estimate for the solutions of

d(adu)=0 inU,
tu=tf on OU.

To bypass this difficulty, we made the additional assumptions U smooth and df € H'A™(U), this
implies, by Proposition 4.A.4 that du e H'A™(U) with the estimate

ldu] gaar @y < ClAf |l grary -
Then, via the Sobolev embedding Theorem, we obtain that du belongs to some LP, for some
p = p(d) > 2. This allows to control the L? norm of du in a boundary layer of small volume, as it
used to be done with the Meyers’ estimate.
The last section is devoted to the study of the following dual problem. If a € )., then
for each z € R%, a(z) is invertible and a~' € L(A® ) (RY), A7(R?)) satisfies the symmetry
assumption (4.1.20) and the following ellipticity condition

1 - =T
el <a(@)pap <Al vpe AUTI(RY).
We can thus define, for each (p,q) € Al (R?) x A"(R?) and each m € N, the random variable

1
Jinv(Om, P, q) == sup ][ (——a_ldu Adu-atduap+ga du) )
Om

ue A (O, )

where A™ (O,,) is the set of solution under the environment a™?, i.e,
Ainy (Op) = {u e HIAWT D (g,) : voe C®A (O,,), / dunatdv = 0} .
Om

In Section 4.6, we prove that there exist a constant C(d, \) < oo, an exponent a(d, ) > 0 a linear
operator inva € L (A(d_T)(Rd), A"(R%)) such that, for each m € N,

sup Jiny(Om, p,invap) < O (C37M%).
peB1 Ald-) (R4)

We also prove that inv a is linked to & according to the following theorem.
THEOREM 4.1.3 (Duality). The homogenized linear maps a and inv a satisfy
va=(a)™".

Outline of the paper. The rest of this article is organized as follows. In Section 4.2, we
state without proof some important properties of differential forms, in particular we give a
trace theorem for differential forms, study the solvability of the equation df = u and state the
Hodge-Morrey decomposition theorem. In Section 4.3, we generalize some inequalities known
for functions to the setting of differential forms, in particular the Caccioppoli inequality and
the multiscale Poincaré inequality. In Section 4.4, we combine all the ingredients established
in the previous sections and prove the first main theorem of this article, Theorem 4.1.1. In
Section 4.5, we use the results from Section 4.4 and the regularity estimates (pointwise interior
estimate and boundary H 2—1regulalrity) proved in the Appendix 4.A, to show the second main
theorem of this article, Theorem 4.1.2. In Section 4.6, we study a duality structure between
r-forms and (d — r)-forms and we deduce from that some results about the homogenized matrix
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in the case d = 2 and r = 1. Finally Appendix 4.A is devoted to the proof of some regularity
estimates (more specifically pointwise interior estimate and H? boundary estimate) for the
solution of the elliptic degenerate system dadwu = 0, where a is a linear mapping sending r-forms
to (d —r)-forms satisfying some suitable properties of symmetry and ellipticity, more formally
explained in Section 4.1.1.

Acknowledgement. 1 would like to thank Scott Armstrong and Jean-Christophe Mourrat for
helpful discussions and comments.

4.2. Some results pertaining to forms

In this section, we record some properties related to the spaces HIA"(U), HIA"(U) and
Ci(U). Most of these results and their proofs can be found in [121] and [123].

4.2.1. Tangential and normal trace of a differential form. Given U ¢ R¢ Lipschitz
and bounded, we define the Sobolev space HY?(dU) as the set of functions of L?(dU) which

satisfy
e = ( [y oy SO a2yt ) <

|z — y[d+1
It is a Hilbert space equipped with the norm
|9l 1200y = 191 200y + (9] 2 007) -
Define H-Y2(dU) to be the dual of HY2(3U), i.e,
HP(9U) = (H'(00))
We can then extend this definition to differential forms by defining, for each 0 < r < d,
H'2A™(0U) := {u € L2A™(9U) st u = > wrdzy and VI, [wr] gz oy < oo}.
[I|=r

This is also a Hilbert space, equipped with the norm,

HUHH1/2AT(8U) = ul p2arouy + Z [UI]Hl/z(aU)-
I|=r

We can also define HY 2A7(9U) by duality, according to the formula,
H™'PAT(0U) = (H'AT (00))

We then recall the classical Sobolev Trace Theorem for Lipschitz domains, it is a special case
of [99, Chapter VII, Theorem 1] (see also [111]). The second half of this result is a consequence
of the solvability of the Dirichlet problem for the Poisson equation in Lipschitz domains, which
was proved in [97] or [64, Theorem 10.1].

PROPOSITION 4.2.1 (Sobolev Trace Theorem). Let U be a bounded Lipschitz domain. The
linear operator C*° (U) — Lip(9U) that restricts a smooth function on U to OU has an extension
to a bounded linear mapping H'(U) - HY2(dU). That is, there exists a linear operator

Tr: HY(U) - H'/?(0U),
and a constant C(d,U) < oo such that for each ue H*(U),
|Trull g1/ gy < Cllul v

and for each u e C* (U),
Tru=wu on OU.



226 4. QUANTITATIVE HOMOGENIZATION OF DIFFERENTIAL FORMS

Moreover this map has a bounded right-inverse
E:H'?(0U) > H'(U).
In particular, the map Tr is surjective.

The trace can then be extended to differential forms by setting, for u = ¥, urdz; €
HA(U),
Tru= ) Trurdze HY2A™(0U).
[I]=r

In the case when u does not belong to the space H'A"(U) but only belongs to the larger space
H éAT(U ), one still has a Sobolev trace theorem, but one can only get information about the
tangential component of the trace of u. The following proposition is a specific case of [123,
Proposition 4.1 and Proposition 4.3] .

PROPOSITION 4.2.2 ([123], Proposition 4.1 and Proposition 4.3). For each ue HiA" Y (U),
the map

HY2AE) (0U) - R,

z/Jer(duA\Il+(—1)ruAd\I/),

where ¥ € H'A"(U) is chosen such that Tr U = 1), is well-defined, linear and bounded. The
tangential trace

(tu,-):

.. HIN™(U) > H YA (0U),
| ou (bu,-).
is linear and continuous. Moreover this notation is consistent with the tangential component

introduced in (4.1.14). Similarly, one can define the normal trace for HgA’”’l(U) according to
the formula, for each ve H{A™(U),

H'2AE(oU) > R,
Y - /U (v A+ (-1)" "0 AdT),

where U e HYAY"(U) is chosen such that Tr W = vp. The linear operator v - nv sends HYA"(U) to

HY 2AT(OU), is continuous and the notation is consistent with the normal component introduced
in (4.1.13).

(nv,-):

The following property shows that, when U is Lipschitz, the space H(} oA"(U) (resp.
H(;OAT(U)) is also the space of differential forms in HJA"(U) (resp. H}A"(U)) with tan-
gential (resp. normal) trace equal to 0. A proof for these results can be found in [121, Lemma
2.13].

PROPOSITION 4.2.3 ([121], Lemma 2.13). Let U be an open bounded Lipschitz subset of R?.
For each 0 <r <d, the following results hold:
o The space of smooth differential forms C®A"(U) is dense in HIA"(U) (resp.
HIA™(U)).
e The space C°A" (U) of smooth and compactly supported differential forms is dense in
{u e HIA"(U) : tus= O} and in {u e HIA"(U) : nu= O}) In particular, one has
HyoA"(U) = {ue HJA"(U) : tu=0} and HioA"(U) ={ue H;A"(U) : nu=0}.
An interesting corollary of this proposition is that the space of solutions A(U), defined
by (4.1.26), can be equivalently defined by the formula

(4.2.1) AU) = {ue HIN(U) s Vo e HL A (U), [ dunado= o}.
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4.2.2. Solvability of the equation du = f. We then record one important result concern-
ing the solvability of the equation du = f on bounded Lipschitz star-shaped domains.

PROPOSITION 4.2.4 ([121], Theorem 1.5 and Theorem 4.1). Let U € R? be a bounded Lipschitz
star-shaped domain. The following statements hold.

o For1<r<d (resp. 0<r<d-1), given f e L2A"(U), the problem

du = f in U, ou=fin U,
(4.22) { we HAA™L(U), resp- { we HIA™L(U),

has a solution if and only if f satisfies df =0 (resp. f =0). In this case, there ezist a
constant C(d,U) < co and a solution u of (4.2.2) which belongs to H*A""Y(U) (resp.
uwe HYA™(U)) and satisfies

lul grar-@y < ClflLearq@y resp. |ullgrara @y < Clf | L2ar@y-

o Forl1<r<d-1, given f e L2A"(U), the problem

193 du = f, ou=f in U,
(4.2.3) we HY AY(D), TP we HE AU,

has a solution if and only if f satisfies

df:O, 5f:07
{tf:O. Tesp- {nf:O.

In this case, there exist a constant C(d,U) < oo and a solution u of (4.2.3) which
belongs to HYA™"Y(U) (resp. ue H'A™Y(U)) and satisfies

(4.2.4) lull grar-1 @y < Clfllp2ar@y resp- |ull griarawy < Clflp2arwy-
o Forr=d (resp. r=0), given f € L*>A"(U), the problem
du = f, du=f in U,
we HY JA1(U), resp- we HE AN(U),

has a solution if and only if f satisfies

fo=0 resp. fU*fzo.

Moreover there exists a solution u € H'ATYU) (resp. w e H'AY(U)) which satis-
fies (4.2.4).

4.2.3. The Hodge-Morrey Decomposition Theorem. In this section, we record the
Hodge-Morrey Decomposition Theorem. This requires to introduce the subspaces of exact,
co-exact and harmonic forms.

DEFINITION 4.2.5. For each open U € R? and each 1 < r < d, we say that a form u € H}A"(U)
is exact if and only if there exists o € H} (A" (U) such that da = u. We denote by £"(U) the
subset of exact r forms with null tangential trace, i.e,

E(U):={uce HIA(U) : Jace HiOA’"_l(U) such that da = u} c Cy(U),
the subset of co-exact r forms with null normal trace C"(U) , i.e,

C"(U):={ve HZA"(U) : 3B HsoA"*"(U) such that 58 = v} c C5(U),
and the subset of r harmonic forms, i.e,

H'(U):={weL*A"(U) : dw=0and dw=0}.
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We now state the Hodge decomposition Theorem. This theorem is stated for two kinds of
bounded domains, the convex domains in which case the situation is simple and the result can
be deduced from Proposition 4.2.4, and the smooth domains. In the latter case the proof is more
complicated and we refer to [142, Theorem 2.4.2] for the demonstration.

PROPOSITION 4.2.6 (Hodge-Morrey Decomposition, Theorem 2.4.2 of [142]). Let U < R be
an open, bounded domain. We assume that this domain is either convex or smooth, then for each
0<r<d,

(i) the spaces E(U), C"(U) and H"(U) are closed in the L*A™(U) topology.
(ii) the following orthogonal decomposition holds

L2A(U) = E"(U) & C"(U) @ H' (V).
4.3. Functional inequalities and differential forms

The goal of this section is to prove some functional inequalities which will be important in the
proof of Theorem 4.1.1 in Section 4.5. To do so, we first deduce from the results of the previous
section the Poincaré inequality for differential forms on convex or smooth bounded domains of
R?, Proposition 4.3.2 and Proposition 4.3.1. We then state, without proof, the Gaffney-Friedrichs
inequality for convex or smooth bounded domains of RY. We deduce from these propositions the
multiscale Poincaré inequality, Proposition 4.3.6. We finally conclude this section by stating and
proving the Caccioppoli inequality for differential forms.

4.3.1. The Poincaré inequality. The goal of this section is to generalize the standard
Poincaré inequalities to the setting of differential forms.

PROPOSITION 4.3.1 (Poincaré). Let U be a bounded domain of RY. We assume that U is

either smooth or convex. There exists a constant C := C(U) < oo, such that for all 0 <r <d, for
all v e HiOAT(U),

431 i f - r SC d r+ .
( ) aeoli(m lv = 24 ) Idvllz2a L)

Moreover, the contant C' has the following scaling property, for each X >0,
c(U) =xc\to.

The Poincaré Wirtinger inequality can also be generalized according to the following proposi-
tion.

PROPOSITION 4.3.2 (Poincaré-Wirtinger). Let U be a bounded domain of R?. We assume
that U is either smooth or convex. There exists a constant C := C(U) < oo, such that for all

ve HIA™(U),

(432) aeé’%{U} ||’U - oz||L2Ar(U) < CHdUHLQA""“(U)'

Moreover, the constant C' has the following scaling property, for each A >0,
c(U) = e\ to.

PROOF OF PROPOSITIONS 4.3.1 AND 4.3.2. First notice that both estimates are easy when
r = d since in that case C%(U) = HIA(U). From now on, we assume 0 <7 < d - 1. In the case
U convex, both inequalities (4.3.1) and (4.3.2) are a consequence of Proposition 4.2.4. We thus
assume that U is smooth. The proof can be split into two steps.

e In Step 1, we prove that the space
{we L*A™(U) : Ja e H{A"(U) such that u = da}

is closed in the L2A™! topology.
e In Step 2, we deduce, from Step 1 and Proposition 4.2.6, the estimates (4.3.1) and (4.3.2).
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Step 1. The argument relies on a decomposition of the space H"*!(U) of harmonic forms,
called the Friedrichs decomposition. By [142, Theorem 2.4.8], we have the following orthogonal
decomposition,

HHU) = (HHH(U) 0 Hi A (U)) ® {ue H*'(U) | Ja e HYA™(U) such that u = da}.
Combining this result with Proposition 4.2.6 shows that
{ue L’A™(U) : 3a e HIA(U) such that u = da}
=&"(U) o {ue H(U) | 3o € HIA(U) such that u = da}

is closed for the L?2A"*! topology.
Step 2. We first prove (4.3.1). By Proposition 4.2.6, we know that the space £" is closed in
L2A™Y(U). This yields that the range of the linear operator

L [HRN @) = A ),
' u — du.

is closed. Thus, by the Open Mapping Theorem, see [38, Theorem 2.6 and Corollary 2.7], there
exists a constant C(d,U) < oo such that for each v e H} ,A"(U),

Jnf v -afeprw) <Cldo].

But one has kerd = C(U) n H} ;A" (U). This completes the proof of (4.3.1).
The proof of (4.3.2) is similar, the only difference is that we use Step 1, instead of Proposi-
tion 4.2.6, to obtain that

{ue L*A™N(U) : 3ae HIA™(U) such that u = da}

is closed in the L2A™! topology.
The scaling of the constant comes from the change of variable x — Az. O

4.3.2. The Gaffney-Friedrichs inequality. We now state the Gaffney-Friedrichs inequal-
ity. The idea behind this inequality is to measure the global smoothness of a form u satisfying

(4.3.3) du e LA™Y (U), 6ue L?A"Y(U) and tu =0 on dU.

According to a result from Gaffney [71] and Friedrichs [67], provided that U is smooth, the
former assumption (4.3.3) implies that u is H*A"(U) with the estimate

(4.3.4) lull griary <€ (”dUHLQAM(U) +oul 2 arry + HUHLQAT(U))7

for some C':= C(d,U) < co. Conversely, one clearly has

(Idul g2prer @y + 160l g2ars oy ) € CIVul 2ar ey -

Thus one can wonder whether the former inequality (4.3.4) can be refined into

(435) Hvu||L2A7"(U) < C (”duHL2AT+1(U) + ||(5UHL2AT—1(U)) .

This inequality is false in general, indeed the set of harmonic forms with Dirichlet boundary
condition

T = {ueLzAT(U) : du =0, 5u=0andtu=00n0U}

is known to be finite dimensional and of dimension %" (U), the Betti number of the set U,
cf [142, Theorem 2.2.2]. In particular, as soon as dim 17, > 0, the inequality (4.3.5) cannot hold.
Nevertheless it is the only obstruction and we have the following result, which is a consequence
of [142, Proposition 2.2.3].
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PROPOSITION 4.3.3 (Gaffney-Friedrichs inequality for smooth domains). Let U be a bounded
smooth domain of RY, then there exists a constant C = C(d,U) < oo such that if w e L2A™(U)
satisfies dw € L2A™1(U), 6w e L2A™1(U), tw =0 on OU and w € (HY,))"*, then we H'A"(U) and

VWl z2ar@y € C (l1dwl p2ara @y + 6wl z2ar-1(17) ) -

One can also expect the inequality (4.3.5) to be true on convex domains, which are not
necessarily smooth but satisfy 87(U) = 0 for each 0 < r < d. This result is stated in the following
proposition and can be found in [124, Theorem 5.5].

PROPOSITION 4.3.4 (Gaffney-Friedrichs inequality for convex domains). Let U be a convex
bounded domain of RY. Then there exists a constant C := C(d,U) < oo such that if w e L2A"(U)
satisfies dw € L*A™Y(U), 6w € L?A™Y(U) and either tw =0 or nw =0 on U, then w e H'A"(U)
and

[Vwlp2ar@wy € C (dwl p2ars @y + 16w] L2ar-10ry) -

These inequalities are a key ingredient in the proofs of Theorem 4.1.1 and Theorem 4.1.2.

4.3.3. The multiscale Poincaré inequality. Another important ingredient needed in the
proof of Theorem 4.1.1 is the multiscale Poincaré inequality stated below (Proposition 4.3.6).
This inequality is valid for cubes and the statement and the proofs of Theorems 4.1.1 and 4.1.2
only require to apply the following results to cubes of R%. Thus, from now on and until the
end of Section 4.3, we will only be dealing with cubes of R?, denoted by O, instead of convex
bounded domains. Recall that a cube of R? is a set of the form

z+R(-1,1)? with z e R, Re R,
and a triadic cube, denoted by O,,, for m € N, is defined according to the formula
gm gm d
Op = -——,— .
" ( 27 2 )
We then define the mean value of a form on a cube according to the following proposition.

DEFINITION 4.3.5. Given O a cube of R? and 0 <7 < d and a form a = Yir=r ardy € LA™ (D).
We denote by

(@g= 3 (][ o (2) dw) dap e A7(RY).
[I]=r \7/E
The multiscale Poincaré inequality then reads.

PROPOSITION 4.3.6 (Multiscale Poincaré). Fiz m € N and, for each 0 <r < d, each n € N,

n < m, define Zp,p = 3"7Z% N 0,,. There exists a constant C(d) < oo such that, for every
ueCHU),

m—1 2
||UHL2(Dm) < C”dUHg(Dm) +C z;) 3" (\Zm,nl‘l Z ’(du)z+mn|2) :

2€Zm,n
To prove this estimate, we first need to introduce the following H~! norm for cubes.

DEFINITION 4.3.7. For each cube 0O of R? and each w € L2A"(00), we define the following H !

norm
1 o
leoll -1 ar oy = sup{— (w, @), + e H'A™(D), size() ™ (@) o] + IValpzar @) < 1}.

o]

By the Poincaré-Wirtinger inequality, there exists a constant C'(d) < co such that,
[l g4 o) < Csize(@lel 2o o)

The Multiscale Poincaré inequality is a consequence of this improved version of the Poincaré-
Wirtinger inequality. The particular case r = 0 of this statement can be found in [18, Lemma 1.9].
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PROPOSITION 4.3.8. There exists a constant C := C(d) < oo such that for every cube O € RY,
every 0 <r <d and every u € HjAT(D),

aegif(u) lu- 0‘||£2Ar(u) < C”dUHg—lAHI(D)-

Before starting the proof, we need to state and prove the following lemma.
LEMMA 4.3.9. There exists C := C(d) < oo such that for each cube 0 eR%, each 0 <r < (d-1)

and each u € C5(0)*, there exists a unique w € HIA"(0) n C5(0)* solution of the Neumann

problem
(4.3.6) {6dw:u in O,

ndw =0 on 00,

in the sense that, for each v e HYA"(U),
(dw,dv), = (u,v)

O-
Moreover, dw e H'A™(0) and
(4.3.7) ||deHLQAT+1(D) < C||UHL2AT(D).

PROOF. The proof can be split in two steps, first we need to prove that there exists a function
w in H}A"(0) solution of the Neumann problem (4.3.6) and then that the function w satisfies
dw e H'A™(0) with the regularity estimate (4.3.7).
Step 1. To solve (4.3.6), denote for v € H}A"(O) by
j(v) = <d1],d’l)>D - (u7 U)\j
and look at the variational problem

inf J(v).
veHIA™(O)nCY(O)*

By the standard minimization techniques of the calculus of variations and the Poincaré-Wirtinger
inequality (Proposition 4.3.2), it is straightforward to prove that there exists a unique minimizer
w of this problem. By the first variation, w solves (4.3.6).

Step 2. This proof is an adaptation from [124, Corollary 6.6]. The main ingredient of this
step is the Gaffney-Friedrichs inequality (Proposition 4.3.4) applied with U = 0 and w = dw. This
form satisfies w € LA™ (0), dw = ddu = 0 € L?A™*2(0), 0w = v € L?A"(0) and nw = 0. Thus, by
the Gaffney-Friedrichs inequality, w € H'*A™*(0), and for some C := C(0) < o,

IVw|L2ar(my < Clu]r2army-
By translation and scaling invariance, one obtains the existence of a constant C := C(d) < oo
such that

IVw] p2ar+1 (o) < Cllullp2ar@)-
This is exactly (4.3.7). O

We now apply Lemma 4.3.9 to prove Proposition 4.3.8.

PROOF OF PROPOSITION 4.3.8. First notice that is enough to prove the result when u €
HIA™(O)n (Cg(D))l. Using the function w € H}A"(O) solution of the Neumann problem (4.3.6)
in the cube O, one has

1
2
N O i

1
= E (du, d'lU)D

< |l duf g1 pr1 ) (size([l)f1 |(dw),| + ||deHL2AT+1(EI)> :
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By Lemma 4.3.9,

[Vdw] g2 pr1 gy < Cllul p2pr @)

To complete the proof, there remains to estimate ‘(dw)u‘, to do so denote by

L (dw)g
Pe i1<Z<ip pih.“’ipdliil e dxil - m
and
RY - Ap(Rd),
(438) lp : €T — Z pi1,~~-,ip$i1dxi2 ARMARIA dl‘ip,
11 < <1

such that di, = p. Testing the equation (4.3.6) with « =[,, one obtains

1 1
|(dw)| = i [(p, dw)g| = o |(dip, dw) |
1
7o (I, u) g

S C SiZe(D) ||u||L2AT(D)
Combining the previous results completes the proof of the proposition. [l

We then apply the Multiscale Poincaré inequality stated below. A proof of this inequality
can be found in [18, Proposition 1.8].

PROPOSITION 4.3.10 (Multiscale Poincaré, Proposition 1.8 of [18]). Fiz m € N and, for each
n €N, such that n <m, define Z,, , = 3"Z%na,,. There exists a constant C(d) < oo such that,
for every f e L*(0,,),

1

m-1 2

||fH-I(Dm)scnﬂg(umﬁcZ3“(|zm,n|—1 3 |<f>mn|2) .
n=0

2€Zm,n

PROOF OF PROPOSITION 4.3.6. The result is then a consequence of Proposition 4.3.8 and
Proposition 4.3.10 applied with f = du. Il

4.3.4. The Caccioppoli inequality. We complete Section 4.3 by proving a version of the
Caccioppoli inequality for differential forms. Recall the definitions of the space €2, in (4.1.22)
and, given an environment a € €),., the definition of the space of solutions A(U) in (4.1.26).

PROPOSITION 4.3.11 (Caccioppoli inequality). There exists a constant C := C(d,\) < oo such
that, for every 1 <r <d, every open subsets V,U € R? satisfying V € U, and every u € AU),

C
|dul 2y < W\\u“mm(wvy
PROOF. Let ne CZ(U) be such that
C
1y <n<l, |V77|SW.

The r-form nu belongs to H, iOAT(U ) from this we deduce that

d d =0,
L u A ad(nu)
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which gives

O:fUdu/\ad(T]QU)
:—/U(du/\adn2/\u+du/\an2du)
=/I;(du/\a2nd77/\u+du/\an2du).

Thus, since by the ellipticity assumption (4.1.21) and the symmetry assumption (4.1.20), for
each x € RY, the bilinear form (p,p’) = p A a(z)p’ is a scalar product on A"(R?). In particular
one can apply the Cauchy-Schwarz inequality in the following computation.

du A 2d:fd/\ 2ndn A
j;]uanuUua(nnu)

S2([Udu/\a(772du))é (/Udn/\u/\(adn/\u))é.

Using the ellipticity condition (4.1.21), one obtains

ldul p2prer vy < Cldn A p2ar vy

C
< R — ” N .
< TtV a0) lull p2ar vy
The proof is complete. O

4.4. Quantitative Homogenization

4.4.1. the subadditive quantity J and some of its properties. The goal of this
section is to study the quantity J defined, according to Definition 4.1.6, by the formula, for
(p,q) € A"(R?) x AT"(RY)

J(U,p,q) == sup (—ldv/\adv—p/\adv+dv/\q).
veA(U) JU N\ 2

Thanks to the Poincaré-Wirtinger inequality, Proposition 4.3.2, one can prove that there exists a

unique maximizer in A(U) N Cg_l(U)l, denoted by v(-,U,p, q). The proof is very similar to Step

1 of the proof of Lemma 4.3.9 and the details are omitted.

We first record some useful properties about .J, Proposition 4.4.1. We then establish a
series of Lemmas, Lemmas 4.4.2 to 4.4.8, before proving the main result of this section, namely
Theorem 4.1.1. We eventually deduce from Theorem 4.1.1 a corollary pertaining to the maximizer
v(-,U,p,q), Proposition 4.4.10.

PROPOSITION 4.4.1 (Basic propeties of .J). Fiz a bounded Lipschitz domain U € RY. For each
1 <r<d, the quantity J(U,p,q) and its mazimizer v(-,U, p,q) satisfy the following properties:

(1) Decomposition of the maximizer v(-,U,p,q). The map

(44.) {A’"(R‘% x AR = AU) 0 CFH(U)
(p,q) = v(U,p,q),
is linear. Moreover, v(-,U,p,0) is, up to a closed form, equal to a solution of the
Dirichlet problem
d(adu) =0¢eU,
(442) {tu =tl_, on OU,

where 1, is defined by (4.3.8). The precise interpretation of (4.4.2) is:

u solves (4.4.2) = wel_p,+ HéVOA(T_l)(U) and Yw € Hé,OA(T_l)(U), fU du A adw = 0.
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(4.4.3)
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Similarly v(-,U,0,q) is a solution of the Neumann problem
d(adu) =0 in U,
{t (adu) = tq on OU.
the precise interpretation of (4.4.3) is:

u solves (4.4.3) < we HIN"(U) and Yw e HIA" 1 (U), _/Udu Aadw —dw A q =0.

(2)

(4.4.4)

(4.4.5)

(4.4.6)

(4.4.7)

(4.4.8)

(4.4.9)

(4.4.10)
(4)

(4.4.11)

(4.4.12)

(4.4.13)

(4.4.14)

Decomposition of J(U, p,q). For each (p,q) € A"(R?) x AT (R?), the quantity J(U,p,q)
can be decomposed

J(U,p,q) =v(U,p) +v*(U,q) - *(prq),

where p — v(U,p) and q - v*(U,q) are quadratic forms given by the formulas

U.p) = inf ][ du A ad
v(U.p) uel,p+Hlér’loAT—1(U) U “ “

and

1
v (U,q) = sup ][ (—idu/\adu+du/\q).
ueHIAT-1(U) YU

As a remark note that there is a star before ¢ Ap in (4.4.4) because q Ap is a d-form
and all the other terms are real numbers.

Upper and lower bound on v(U,p) and v*(U,q). There exists a constant C(d,\) < oo
such that for every p e A"(R?), g € A4 (RY),

1
Glpl* <v(U.p) < Clpf*
and
1
Sla* <v*(U,q) < Clg*.
This implies, according to (4.4.4), for some C = C(d,\) < oo,
J(U,p,q) < C(lpf* +a*)
and
|doC,U,p, @)l 2ar 17y < C(pl + ).

Uniform convexity and C1! regularity in the p and g variables separately. There exists
C(d,\) < oo such that for every pi,ps € A"(R?) and q e AT (RY),

1 1 1 +
el -pof?< 37 (U.p1,0) + 5T (U,p2,4) - J(U7 o p27q) < Clp1 - p2f*.
For every qi,q2 € AT (R?) and p e A"(R?),
1 1 1 +
5|Q1 -l < QJ(UJMH) + §J(UaP,QQ) - J(UJ% an 5 q2) < Clq1 - gof.

Subadditivity. Let Uy,...,U, € U be bounded Lipschitz domains that form a partition
of U, in the sense that
N
UnUj=@2 if i+j and ‘U\UUi =0,
i-1

then, for every (p,q) € A7(R?) x AT (R?),

N
i=1
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(6) First variation for J. For each (p,q) € A"(R?) x A" (R?), the function v(-,U,p,q)
is characterized as the unique element of A(U)n Ci Y (U)* which satisfies, for each

ue AU),
(4.4.15) /Udv/\adu:/U(—p/\adu+du/\q)

(7) Quadratic response For every (p,q) € AT(R?) x A%"(R?) and w e A(U),

1
(4'4'16) 5 ”dw - d?}(-, U7p7 q)HiQA""(U)
1
< J(U,p,q)—][U(—Edw/\adw—p/\adw+dw/\q)
< C Hdw - d’U(', U7p7 q)HEZAT(U) .

(8) Control of the difference of the optimizers by the subadditivity. Let Uy,...,U, €U be
bounded Lipschitz domains that form a partition of U, in the sense of (4.4.13). Then
for each (p,q) e A"(RY) x AT (RY),

(4.4.17) Z |U| q) —dou(-,U;, p, q)HLzAT(UZ Z ’|U|| (J(Uiyp,q) - J(U,p,q)) .
-1 i=1

PROOF. These properties are easy to check and their proofs are almost the same of those of
[18, Lemma 2.2], so we omit the details. O

We now turn to the proof of a series of lemmas, which will be then used in the proof of
Theorem 4.1.1. In the following lemma, we denote by Z,,,, = 3"Z%no,,. It is a finite set of

cardinality 3%m-").

LEMMA 4.4.2. Fizm,n €N withn <m, (p,q) € A"(RY) x A" (R?) and (€} ez € AT (RY),
then
(4.4.18)

1

|
[SIES

2

‘ Om ’ 2€Zn.m

S( > Iq;|2) ( > J(Z+DmpaQ)‘J(DmapaQ))

2€2Zn.m 2€Zn m

f (dv-dv,) Aq,
z+0p,

Proor. We shorten the notations by setting, for each z € Z,, ,,
V= v('7Dm7p7Q)7 Vy = U('7z+Dnap7Q)'

We compute, using Holder inequality,
1
> / q. A (dv —dv,)
z+0n

| Om | 2€Zn.m
o] ZGZZ a2 I1(dv = dv2) | 12240,

SO(l 1 5 |q;|2)( 1 > ||(dU—dUz)||%2(z+Dn))

2€Zpm | Om | 2€Zpm

[SIE

by (4.4.17),

SC’( > qul2) ( > J(Z+Dn7p>Q)_J(Dm7p>Q)) : O

2€Zn.m 2€Zn.m
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4.4.2. Estimate on the variance of the slope of the maximizer v. Given a differential
form u, by analogy to the case of functions, we refer to the slope of u over a bounded domain
U c R? as the mean value of its exterior derivative, (dv(-,Om,p,q))y -

LEMMA 4.4.3. Let m,n € N with 0 <n <m—2. Then there exists C(d,\) < oo such that, for
every (p,q) € BIA"(R?) x BiA“"(R?),
(4.4.19)
var [(dv(’ Um, P, q))mm] < Cg—d(m—n) var [(dU(, On, Dy q))mn] +CE [J(Dnap7 CI) - J(Dmap7 Q)] :

PrOOF. We first fix n € N with n < m -2, ¢’ € BiAT"(R?) and apply Lemma 4.4.2 with
q. = ¢’ to derive

(4.4.20) ——

| O |

f dv(-,Om,p, ) Aq = > f dv(-, 2+ 0n,p,q) A G
Om

Zezn,m z+0n

sC( > J(zmn,p,q)—J(Dm,paq)) :

2€Zn.m

From this we obtain

var [][ dv(-,Om,p,q) A q'] < 2var[
D'!n

/ dv(, z+0p,p,q) A q']
zZ+0p

> J(z+0n,pq) - J(Dm’p7Q))] .

| Om | 2€Zpn m

+2CE

z€Zn,m

We take an enumeration {z;; : 1<i< 3d, 1<5¢< 3d(m_”_l)} of Z,, n such that for each 1 < < 3d
and each 1 < j, j/ < 34m=n-1),
|Z7;7j - Zl'7j'| >2-3".
This gives in particular
dist(z;; + Op, zi j7 + Op) > 3",
and, according to the finite range dependence assumption (4.1.25),

Fr(zij +0p) and Fr(z j +0Oy) are independent.

We can thus estimate the first term on the right-hand side of (4.4.18), using the previous display
and the stationarity (4.1.24) to get

1
ar dv(-,z+ 0O N
Vi [|Dm|ZEZEn’m LH:IH (7 n>p7q) q]

3d 3d(m—n—1)

=3_2dmvarlz Z
=1 j=1

d’U(', Zi,§ +UOn, D, Q) A q,]

Zi,j+t0n
3d 3d(mfn71)
—2dm+d !
<372 AN ar | Y dv (', 25 + On,p.0) A Q
=1 j=1 Zi,j+0n

3d 3d(mfn71)

< 32dm+d Z Z var [/ dv(:, 2ij + O, P, q) A q/]
i j=1 Zi,]"H:‘n
< 3d(—m+1—n) var [/ d’U(', Dn7p7 q) A q,]
On

< 037401 oy [][ dv(-,0p,p,9) A q'] .
D7L
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Combining the previous display with (4.4.20) and taking the supremum over ¢’ € B;A%"(RY)
completes the proof of the lemma. O

The previous lemma controls the fluctuations of the slope of the maximizer v in the L? norm
by the variation of the energy between two different scales. This latter quantity is an essential
ingredients in the proofs of Theorems 4.1.1 and 4.1.2. This prompts the introduction of the
following definition.

DEFINITION 4.4.4. For n € N, we define by

T i= sup E[J(Dn,p,Q) _J(Dn+lap7q):|
(P.g)eB1 A" (RY)x By Ad= (RY)

= sup E[v(0,,p)-v(On+1,p)]+ sup  E[v(On,q) - v (On+1,4)]
pEBlAT(Rd) qulAd—r(Rd)

With this definition, one can prove the following lemma.

LEMMA 4.4.5. For each n € N, there exists a constant C(d,\) < oo and an exponent [ :=
B(d,\) >0 such that for every (p,q) € BiA"(R?) x BiAY"(R?),

(4.4.21) var [ (dv (-, O, p, q))Dm] <C> 3f=m) -+ C37m,
n=0

PROOF. Denote by C := C(d, \) < oo the constant of Lemma 4.4.3 and select [ :=1(d,\) e N
such that

1 <0379 < 1
9 3
The inequality (4.4.19) applied with n =m —1 yields
1 n
var [(dv(-, O, P, q))DwH] < 3 var [(dv(‘, O, Ps q))\:\m—l] +C Z Tk
k=n-1

Iterating this estimate and using the bound on the L? norm of dv (4.4.10) gives, for some
C:=C(d,\) < oo,

var [(dv(-, Om, p,q))g, ] < C37T +C Y 3T 7.
k=0

This completes the proof of the lemma with 8 = % O

4.4.3. Flatness of the maximizers and control of the energy. We begin this section
by defining, for a bounded domain U ¢ R? an approximation of the homogenized matrix &
obtained by considering the environment only in the domain U.

DEFINITION 4.4.6. Consider U a bounded open subset of R?. Since ¢ - J(U, 0, q) is quadratic
and bounded from above and below according to (4.4.8), there exists a linear mapping, denoted
by ap, from A"(R?) to A4"(R?), satisfying the symmetry assumption (4.1.20) and such that,
for every q e AT (R?),

1 _
(4.4.22) E[J(U,0,9)] = 5 * (B A g)-
We also write a,, = ag,, for short.

There are two properties to notice about this quantity. First since J satisfies the subadditivity
property (4.4.14), and by the stationarity assumption (4.1.24), the sequence (E[J(Bx,0,¢)]),exn
is decreasing. Consequently it converges for each ¢ € AT"(R?). From this, we deduce that there
exists a linear symmetric map & e £ (A"(R?), A“"(R?)) such that, for each g e A% (R?)

E [J(Dna 0, Q)]

—
n—o00

1 .
5*(3 lq/\Q)
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which also implies

a, »ain £(A"(R?), AT (R)).
Moreover, by (4.4.8), one can check that there exists a constant C(d, \) < co such that, for each
peA"(R?) and each n ¢ N,

1 _
5|10|2 <pAd.p<ClpP.

Sending n — co shows that the same estimate holds for a.
Second, one has the formula, for ¢ € A% (R?),

(4.4.23) a,'q=E[(dv(-,04,0,9))g, |-
To prove this formula, one has, according to the first variation (4.4.15), for each ¢ € A% (RY),
J(On,0,q) = ]‘[j dv(-,0,,0,9) A g
Taking the expectation proves ’
a,'qAq=E[(dv(-,00,0,9))g, | A g

To prove (4.4.23), it is thus sufficient to prove that ¢ — E [(dv(-7 O, 0, q))Dn] satisfies the following
symmetry property, for each ¢,q’ € A (R?),

E [(dv('v On, 0, Q))\jn] A q, =k [(d’U(-, On, 0, q,))Dn] N

It is a consequence of the following computation

E[(dv(,00,0,0)5,] A0 =E| £ dv(-,un,o,q)Aq’]

=E ][ dv('7Dn707Q)Aadv('7Dn>O>q,):|

L/ On

=E ][ dv(',Dn,O,q')/\adv(',Dn,O,q)]

L D'”/
=E f dv('7D'fZ707q,)/\Q:|
L/ On

-E _(dv(-, Dn,O,q’))Dn] AQ.
We then note that, for every ¢ € BiA%"(R?), m,n € N such that n < m, we have
(4.4.24) latg—atq)?

n

2

2€3"ZAN0Om,

E[(dv(-,um,o,q))um _3d(n—m) Z (dU(',Z+Dn,O,q))Z+Dn]

<E [?f“”‘m) > [dv(:,0m,0,9) = dv(-, 2+ 0, 0,9) |iZAT<U)]

2€3"Z9N0O,

< CE[J(O4,0,q) = J(Om,0,q)]

m—1
<C Z Tk-
k=n
For p € A"(R%) and m € N, we denote by [," the unique element of C’g_l(ljm)l such that
dl' = p. It is the projection of the function I, defined in (4.3.8) on Cr N om)*.

LEMMA 4.4.7. There exists C = C(d,\) < oo such that, for every meN, (p,q) € BiA"(R?%) x
BlAd_r(Rd),
IE[ o

am q-p

2 m
(-, Om+1,D,q) :| < 03Z-PAm . c32-Fm Z 3%k .

L2A™1(Opme1) k=0
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PrOOF. Fix (p,q) € BiA"(R?) x BiAY"(R?) and denote by Z, ,, = 3"Z% 0 Oyny1. We split
the proof into two steps.

Step 1. Since, by definition, both v (-, Op,+1, p, q) and lgfll are in C771(Op41)*%, the difference
m 4P
belongs to Cg_l(Derl)l, thus we can apply the Multiscale Poincaré inequality (4.3.6),

.0 —mt
’U(u m+l7p)Q) am%q,p L2A7'_1(Dm+1)
__ 2
(4.4.25) <Ol dv, Bma1p.0) =8 0+ 9l 2oy

(SIS

m 2
+C 23”(|zm,n|‘1 > |(dv(:r:,Dm+1,p,q)d:r—ﬁﬁqw)zmn‘)

n=0 yGZm,n
We first bound the first term on the right-hand side

__ 2 _ 2
Hdv(-, Oms1, P, q) — 8 1q +pH£2AT <2 ‘—amlq +p‘ +2||dv (-, Omas1, p, q)szAT(DmH) <C.

(Dm+1)

Step 2. We prove the estimate, for every 0 <n <m,

E

2 n m
|Zm7n|—1 Z ’(dv(-7 Om+1,D0,q) — 57_,11q +p)y+Dn’ ] <C (3_” + Z 3F "+ Z Tk) .
k=0 k=n

YeZm,n

By (4.4.17), we have, for every (p,q) € BiA"(R?) x BjA%"(R%),

- 2
|Zm7n| ! Z ||dU('aDm+lap>Q) _dv('vz+DnapaQ)”L2AT(y+gn)
YyeZm,n -

<C1Zmal™ Y (J(2+0n,0,q) = J(Om,p,q)) -

2€Zm,n

Taking expectations and using the stationarity yields

|Zm,n|_1E [ Z ”dU(, Om+1,D, Q) - dv(‘? z+0On,D, q) ”22AT(y+Dn):|
yezm,n -

<CE[J(Tn,p,q) = J(Om,p, )] <C 3 7.
k=n

The triangle inequality, the previous display and Lemma 4.4.5 then yield,

2
|Zm,n|71 Z E[‘(dv('amm+17p7Q)_5n1q+p)y+mn‘]
Y€Zm,n

<3| Zmnl " ZZ E[|(dv(, Oms1,p,0) - dv(@, 5 + 00, 2, 0)) o, ||
Ye€Zm,n

2
3 Znal Y E U(dv(-,y +0,,0,0) &'+ D), | ]
Y€Zm,n
+3Ja, q-a,"q/
m n
<CY m+ Y 380 4 ogon,
k=n k=0

Combining this estimate and inequality (4.4.25) shows

2 m 1 2
<C|l1+ 3"X2
LQAT_I(Derl) (TLZ—;] )

lm+1
T l=-1
a,, q-p

(4.4.26) v(, Om+1,P:q)
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where the random variable

= |Znal™ Y |(dv(z, Omsr,p, @) do - &g + p)
YeZm,n

2

Yy+0n

satisfies
m n
E[X,]<CY m+C Y 3y o370n,
k=n k=0
By the Cauchy-Schwarz inequality,
(Z 3"X,%) < (Z 3”) (Z 3”Xn) <C3" Y 3" X,
n=0 n=0 n=0 n=0

Taking the expectation thus yields

m 2 m. m m n m
E [( 2 3an%) ] <Co3™ (Z S 30y Y 3UDngihy Lo 3 3(15)n) '

n=0 n=0k=n n=0 k=0 n=0

We then compute the term on the right-hand side

Zz3nTk—ZZ3nTk<CZBka

n=0k=n k=07n=0
and

Z Z 3(1-Bngh, Z Z 3(1-Bngh. o cig(1-H)m Z 36k
n=0 k=0 k=0n=k

Combining the three previous displays shows
m 1 2 m m
(4.4.27) E [( 3 3”X,$) ] < 3 Am 03 Am N 3Bk o3 Y 3k
n=0 k=0 k=0

Moreover, since 0 < 3 < 1, we notice that for each k,m ¢ N with k < m, 3(¢=m) < 38(k-m) 1
particular the third term on the right-hand side of (4.4.27) is smaller than the second term on
the right-hand side. Consequently, estimate (4.4.27) can be simplified to obtain

E l( Z‘b 3" X2 ) ] < 03(ZPm | 032-B)m ;;) QL

Thus the estimate (4.4.26) becomes
7

Now that we have some control on the flatness of the maximizers of J(O,,,p,q), we can
estimate J(Oy,, p, &,p) thanks to the Caccioppoli inequality.

2
_ZWHJ

U('7Dm+17paq) Z_iilq—p
m

] < 03FAm | ¢3(2-A)m i 3% 7.
L2A™1(Omye1) k=0

O

LEMMA 4.4.8. There ezists a constant C(d,\) < oo such that, for every m € N and p €
BiA"(R?),

m
E [J(Qm,p,amp)] < C379™ + C37Fm S 30k
k=0
PROOF. Fix p e BiA"(RY), by Lemma 4.4.7,

E [||v(-, Om+1,D, mD) ||22Ar71(mm+1)] < 032Bm L o3(2-f)m 3 3%k,
k=0
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Applying the Caccioppoli inequality, Proposition 4.3.11, one obtains
m
(4.4.28) E[[dv(, Omet, 2, 8mp) | J2pr 10, | < O3 + €37 kzosﬁ’%k.

By (4.4.17), we have

3_d Z E I:Hdv(7 Um+1, D, 5mp) - d’U(', Y+ Um,D, 5mp)||22AT(y+Dm):| < CTm.

ye3MZANO, 41

In particular, this yields
E [Hdv(.’ Om+1, P, @mp) — dv(-, Om, b, amp)Hi2AT(|:\m):| < Ctp.

Combining the previous display with (4.4.28) gives

m
E [Hdv(-, O, Py AmD) ||22AT(DW)] < Ot +C37Pm 4 0379 S 3k,

k=0
m
<037 037Pm N 3Pk
k=0
By (4.4.16) with w =0, we deduce
m
E [J(Qm,p, 8mp)] < C37P™ + C37Pm S 30k,
k=0
The proof of the lemma is complete. O

4.4.4. Quantitative convergence of the subadditive quantity J. We are now able to
prove Theorem 4.1.1.

ProOOF OF THEOREM 4.1.1. First note that since, for each m € N, the mapping p —
E[J(Om,p,amp)] is a positive definite quadratic form, we have

1d
p S E[J(Tm,€ir8me;)] < sup  E[J(Tm,p,amp)] € O E[J(Om, €5, 8me;)] -

d
i=1 peB1 AT (R4) i=1

Thus if we denote by

d
D, = ZE [J(Om, ei, ame;)],
i=1

we get from the previous remark that the estimate (4.1.28) is equivalent to
(4.4.29) D,, <C37*™.
The reason we consider this particular quantity is because of the bound, for some ¢ := ¢(d,\) > 0,
(4.4.30) Dy, — Dpyi1 2 e
Moreover notice that using the definition of &,,.1 (4.4.22) and the decomposition of J (4.4.4),
for each p e A"(R?), the quadratic form

¢~ E[/@no1,0.0)) = B[O 9)] ++ (53l aana-p )

attains it minimum at ¢ = 8,,;1p. Consequently

d d

Dins1 = Y E[J(Ome1, €5, 8me1€i)] < Y E[J(Tme1, €5, 8mei)]
i=1 1=1
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Thus we can compute

Dy = D1 = 2 (E[J(Om, ei; amei)] = E[J(Omq1, i, @mi1ei)])

'M& :

> _1( [J (O €5, 8mei) ] = E[J(Qme1, €5, 8mei)])
d
Z;( [V(Om,€)] —E[v(Oms1,€)])

o 3 B[ @ Bne)] ~ B[V Omen, Bones)])
i=1
>c sup  E[v'(Om,e)]-E[v (Ome,e)]
pGBlAT(Rd)

+c¢  sup  E[v'(Om,e)]-E[v (Ome1,ei)]
pEBlAT(Rd)

> CTyp,-

The main ingredient in the proof of Theorem 4.1.1 is to define the alternative quantity
Bm m Bn
2 Z 32 D
n=0

where 3 := (B(d,)\) is the exponent which appears in Lemmas 4.4.7 and 4.4.8, and to use
Lemma 4.4.8 to prove the estimate

(4.4.31) D,, < C37™,
for some « := a(d, \) > 0. The estimate (4.4.29) follows since, for each m ¢ N
Dy, < Dyy,.

The proof of (4.4.31) can be split in 5 steps
Step 1. We show that there exist 6(d,\) € (0,1) and C(d, \) < oo such that, for every m €N,

(4.4.32) Dins1 < 0D, + O3~ %

By (4.4.30) and Dy < C, we have
~ m Bm m M gn Bm
Dy~ D1 =372 3 3% (D= Doy ) - C37% > ‘TZ 327,-C3 2.

n=0
In particular, the previous estimate gives

Em+1 < Em + 03_%

From this and Lemma 4.4.8, we compute

~ ~ _Bm__pm X pn _Bm
Dm+1§Dm+D03 2 =3 2 232Dn+D03 2

_Bm N\ _pn —Bn —Bn L Bk _Bm
<C372 Y32 (377437 Y 3% |+ C37 2
n=0 k=0
gm I 2, _pn Bm
<3z Y N3 stk 0372
n=0 k=0
Bm m m
<0372 Y S 3723%n 403
k=0n=k
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Combining the two previous displays gives
~ ~ ~ Bm
Dyns1 <C(Dyy = Dipy1) +C37 2.
A rearrangement of this estimates yields (4.4.32).
Step 2. Tterating (4.4.32) gives
~ n B(m=k)
Dy <0™Do+C Y 08372 .
k=0
s
Without loss of generality, we can assume 6 > 372 (since we can make 6 closer to 1 if necessary).
With this assumption, the second term on the right-hand side can be estimated,

n —
3 k3= < com,
k=0

Combining this with the fact that Dy = Dy < C, we obtain
D,, <Co™,
which can be rewritten, with a = —% >0,
Dy, < C37%™,

Step 3. We need to get the same estimate as (4.4.29) but with a instead of &,,. First notice
that by (4.4.29) and (4.4.30),

¢Tm < Dy — Dye1 < Dy, < C379™,
Thus by (4.4.24), for every ¢ € BiA"(R?), every m € N,

el =3
a7 - = lhm 8 g -8, g < Ym<C ), 37k < o37om,
o k=m k=m

Using the ellipticity assumption (4.1.21), we deduce, for each p € BjA%™"(R?),
|ap - &,,p|* < C37™.
Using that J is a quadratic form according to (4.4.9), one obtains that there exists a constant
C(d,\) < oo such that, for each m e N, each p, p’ € A"(R?) and each ¢,¢’ ¢ AT"(R?),
|7 (Oms2,4) = J (O, P, a")| < CIp = 2' + lg = DIl + P'] + lal +|d)-
Consequently, for each p € B;A"(R?) and each m e N
|J(Om, p, &p) = J(Om, p, 8mp)| < Clap — &np| (1 + |ap| + [@np])
<C373™,

o
2
Step 4. We need to show that the mapping a is unique. Given two maps a,a’ ¢

L (A"(R?), A% (R?)) such that the estimate (4.1.28) is satisfied, one has, by (4.4.12), for each
m €N, and each p e BjA"(R?),

Redefining oo = & completes the proof of the quantitative homogenization estimate (4.1.28).

1 1 1
Zlap- a9 <B|2I@np.8p) + 5T Gnp. 7))
<C3™ ™.

Sending m — oo gives, for each p € BjA"(R?), ap = a’p. Consequently a = @’ and the proof of the
first part of Theorem 4.1.1 is complete.

Step 5. We can now complete the proof of Theorem 4.1.1 by upgrading the stochastic
integrability. This is a consequence of the following Lemma, the proof of which can be found
in [18, Lemma 2.14].
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LEMMA 4.4.9. Suppose that U — p(U) is a (random) map from the set of bounded Lipschitz
domains to [0,+00) and satisfies, for a fized K >0:

p(U) is F(U) — measurable

p(U) < K.
and, whenever U 1is the disjoint union of U1, ..., Uy up to a set of zero Lebesque measure, one has
= Ui
p(U) <Y —=p(Us)
Sl

Then there exists a universal constant C < oo such that, for every m,n € N,
p (Onims1) < 2E[p(0n)] + 01 (CK3™™Y).

Applying this result to

p(U) :=sup J (U,p,ap),
peBy

gives, for each m,n e N,
P(Onams1) < 2E[p(0n)] + O1 (C37™F) < €37 + 01 (C37™).
Taking n = m yields, for every n € N,
p(Oans1) < C37" + 01 (C374).
p(0,) <C3 "+ 01 (C37"Y) <O (C3Y).
The proof of Theorem 4.1.1 is now complete. (I

By redefining « := min( ), we obtain, for each n € N,

4.4.5. Quantitative convergence of the exterior derivative of the maximizer v.
Before turning to the proof of Theorem 4.1.2 in the next section, we state and prove the following
proposition, which is a consequence of Theorem 4.1.1 and gives some information about the
flatness of the minimizers.

PROPOSITION 4.4.10. There ezist o := a(d,\) >0 and C := C(d,\) < oo such that for each
1<r<d, each (p,q) € BiA"(R?) x BiA®"(R?) and each m €N,
(4.4.33) 37 |dv (-,0m,p,q) - (z'i_lq -p) HQ‘IAT(D) +37" |adv (,0m,p,q) = (¢ - ap)| g-1pd-r (o)
<O (C37MY).
PROOF. The proof is split into 2 steps.
e Step 1. We prove that, for each ¢ € BjA%"(R?) and every m,n € N such that m > n

(4.4.34) 3m) S |(dv (0, 0,0) ~& 1)
YeZn,m

2
<0 (C37M)

y+0n ‘

Similarly, for each p € BiA"(R?) and every m,n € N such that m >n

n-m - 2 —-an
(4.4.35) 37 S |(adv (¢, O, p,0) - @p) 0, | < O1(C37°7).
YE€Zn,m

o Step 2. We deduce from the previous step and the multiscale Poincaré inequality,
Proposition 4.3.10, the estimate (4.4.33).

Step 1. We first deal with the case m = n. In this specific case, the estimate (4.4.34) reads
2
|(dv(54,0,9) &), | <01 (C37m).
To argue this, note that, by the first variation for J,

1
J(Dnuouq) = 5 (d’U(', DmaOaQ))Dm Ng.
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Moreover, the map q = (dv(+,0m,0,q)),  is bounded by (4.4.10) and symmetric since, for each
¢,4' € AT (R),

(d?] ('a Om,s 07 q,))ljm NG = [m dv ('7 Om, 07 q,) A adv ('7 Dm707 q)

O
= ][ dv (-,0pm,0,q) Aadv (-,Dm,O,q')
Om

= (dU (') Om, 05 q))Dm A q/'

A combination of the two previous ideas and Theorem 4.1.1 gives

2
(4.4.36) sup |(dv (,0,,0,0) ~a"q), [ <C sup | J(00,0,¢)-& g g
qulAd”” n qEBlAd#"
<O (C377).
To obtain the general case m > n from the specific case m = n, we compute
2
Y _
3 (n-m) Z ‘(dU (’,Dm707q)_a 1q)y+|:|n
YeZn,m
< C3d(n—M) Z ‘(d’U ('7 Om, 0, Q) —dv ('7 Y + On, 0, q))y+‘:‘n|2
YeZn,m
2
+ ¢ ZZ |(dv (Y +0n,0,9) - é_lq)ymn
Y€Zn,m

< CBd(nim) Z ”d/U ('7Dm707Q) —dv(',y+Dn,O7Q)“22(y+Dn)
YeZn,m

+ C34nm) > |(dv (y+0n,0,q9) - 5_1(])
Y€Zn,m

2

y+0n
<031 N (Y +0,,0,q) = J(Qm, 0, q)

YEZn,m

+ C3dn=m) Z |(dv (,y+0n,0,q9) - 5_1(])

YeZn,m

2

Y+0n
To deal with the first term on the right-hand side, we note that, for each y € Z,, ,,,
J(y+0,,0,9) - J(Om,0,q) < ‘J(y+[1n,0,q) —5’1q/\q| + |J(Dm,0,q) —algng
<O1(C37*) + O1(C37Y™)
<O1(C37%),
by the stationarity assumption (4.1.24). Using the inequality (4.1.19), we eventually obtain

3d(nim) Z J(y"an,O,q) - J(Dmaoaq) < 01(0377104)'
Y€Zn,m

To deal with the second term on the right-hand side, we have by the stationarity assump-
tion (4.1.24) and (4.4.36), for each y € Zp, p,

‘(dv(~,y+Dn,0,q)—5‘lq) <o, (03,

Using the inequality (4.1.19), we obtain

gtn=m) 3 |(dv(-,y+Dn,0,q)—5_1q)

YeZn,m

y‘H:‘n’

2 —
| <oi(csem).

y+0n

The proof of (4.4.34) is thus complete. The proof of (4.4.35) is similar, the details are left to the
reader.
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Step 2. From Step 1 and (ii) of Corollary 4.1.4, one has
m—1

2
S gdln=m) ‘(dv (y+ 00,0, q) - a—lq)ymn\ <Oy (03(1—a>m)
n=0 YEZn,m
and .
Z 3d(n-m) Z ‘(adv (¥ +0n,p,0) - ﬁp)yﬂjnf <Oy (03(1_a)m) .
n=0 YeZn,m

By the multiscale Poincaré inequality, Proposition 4.3.6, the bound on the L? norm of dwv,
estimate (4.4.10), and the previous estimates, one obtains for each (p, q) € BiA"(R%)xB; A%~ (RY),

[dv (0,2, 4) = (870 =) | ;-1 pr oy + 120 (O, 2, 0) = (0= 89) [ -1 pa-r oy < O (€37™).

Dividing both sides of the previous inequality by 3™ yields (4.4.33) and completes the proof of
Proposition 4.4.10. [l

4.5. Homogenization of the Dirichlet problem

The goal of this section is to study the Dirichlet problem for the equation dadu =0 and to
establish Theorem 4.1.2. We first prove existence and uniqueness of solution for this equation.

PROPOSITION 4.1.7. Let U be a bounded smooth domain of R* and 1 <r < d. Let f €
HéAT_l(U), then for any measurable map a: R? > L (AT(]Rd),A(d_T) (Rd)) satisfying (4.1.21)
and (4.1.20), there exists a unique solution in f + H(}’OAT_l(U) N (C'&_()l(U))l of the equation
d(adu)=0 inU

tu=tf on U,

(4.5.1)

in the sense that, for each v € HiOA’"_l(U),

/{; du Aadv =0.
The solution satisfies the estimate, for some C := C(d,\,U) < oo,

[l zriar-1 @y < ClASf ] 2ar @y -

Moreover if we enlarge the set of admissible solutions to the space f + Hé OAT_l(U), one looses
the uniqueness property, but if v,w e f + Hé?OA’”_l(U) are two solutions of (4.5.1), then

v—wngbl.

PrOOF. The existence and uniqueness of such a solution are obtained by minimizing the
quantity
J(v) =(df +dv,df +dv);,

on the space H iOA’"_l(U )n (C’&O)L and requires to use the Poincaré inequality, Proposition 4.3.1.
The techniques are standard, we thus omit the details. O

We now turn to the statement and the proof of the main theorem of this section, Theorem 4.1.2.

THEOREM 4.1.2 (Homogenization Theorem). Let U be a bounded smooth domain of R?
and 1 < r < d. Fize e (0,1] and f € HIA"N(U) such that df € HIA"(U). Let uf,u €
[+ HiOAT_l(U) N (C'dT’O(U))L respectively denote the solutions of the Dirichlet problems

d(a(;)due):o in U d(adu)=0 inU
€ and
tu®=tf on OU. tu=tf on OU.
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Then there exist an exponent o := a(d,\,U) >0 and a constant C := C(d,\,U) < oo such that
u® - u”LQAT(U) + [ du” - du”g-lAT(U) <O (C de”HlAT(U) Ea) :

PrOOF. Without loss of generality, one can assume that |U| = 1. Fix [ > 0, this parameter
represents the thickness of a boundary layer we need to remove in the argument, it will be
chosen at the end of the proof and shall solely depend on e. For R > 0, denote by Upg :=
{x €U : dist (x,0U) > R}. For I c {1,...,d} of cardinality » and m € N, we denote by ¢, 1 the

unique solution in lq,, + Hi(]/\’”_1 (Om)n (C&O (I:Im))l of
{d (adu) =0 in Oy,
tu =tlg,, on 00,

where lq,, is defined in (4.3.8) satisfies dlg,, = dz7. In particular, one has

dom,r =dv (-,0m,p) .
Let m be the smallest integer such that

U C eOpy,
and define the two-scale expansion, with the convention du := ¥ 7., (du)dzy,
(45.2) U5(0) = ) +2a) 3 (@i (@) ().
=r
where (; € C2°(U) is a smooth cutoff function satisfying, for every k e N:
(4.5.3) 0<G<l, G=1linUy, ¢=0mUNU, |[VFQ|<COkd,U)™.
Note that wg € f+ H é’OA’"’l(U ). Since it is more convenient to work with an element of
f+ HiOAT‘l(U) N (CZLO(U))L (to have the Poincaré inequality), we further define
w = f + PrOj(Cﬁ,o(U))L (wg—f).

where Proj( )i denotes the L?-orthogonal projection on the space (C’g 0(U))l. Note that

CioV)
wef+ HiOAT‘l(U) N (CGTLO(U))l by construction and that it satisfies
(4.5.4) dwg = dw® in U.
We then consider the map
' Hio N (U) > R,
€ v—>_[dw6/\a(—)dv.
U 5

and denote by
(4.5.5)

) € € x . 1 r—1
Hd(a(g)dw ) {/wa /\a(g)dv.veHd’OA (U) s.t ”U”HéAT(U) gl}.

The idea of the proof is to compare u® to the function w*®. The proof is split into 7 steps.

Step 1. In this step, we show that the norm H7'AY"*1(U) defined in (4.5.5) is equivalent to
the norm

) € € z . 1ar-1
‘d(a(g)dw ) {/wa /\a(g)dv.veHOA (U) st HUHHlAT(U)Sl}.
This result is a consequence of the following property, for some C := C'(d,\,U) < oo,

Vve HioA""(U), 3w e HyA" ' (U) such that dw = dv and lwlzar @y < Clolmiarwy -

‘ = sup
H(;lAr—l(U)

= sup
H-1Ad-T+1 (U)
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To prove this, we follow the arguments of the proof of [121, Theorem 1.1]. Let (O;),_; y be a

finite, open covering of U such that O;nU is a Lipschitz bounded star-shaped domain. Then
let (d)j)lsjgN be a smooth partition of unity such that supp¢; ¢ O; for 1 < j < N. Note that

the form ¢;v belongs to Hé 01\7"_1 (OjnU). Thus by Proposition 4.2.4, there exists a function
w; € HYA™1 (0 nU) satisfying
ijHHlArfl(oij) <C H@UHHéAH(oij) :
We then extend the forms ¢;jv and w; by 0 to R?, so that Pv € Hé OA”_1 (Rd) and w; €
HA™! (Rd) satisfy
dw; = d (¢;v) in R
We then define
N
w = Z wy,
j=1
so that
N
we HyA"™ (U) and dw = Y d(¢;v) = dv.
j=1

We also have the estimate
lwl gm0y < Cloliarwy -
This completes the proof of Step 1.
Step 2. We show the H 1AL (U) estimate

1 e .
. Cde”HlAr(U) (lde +01 (l3+—d/2)) 1fd23,
(4.5.6) Hd(a(—)dws) ‘ < 1 Lo

e TN Caf e (zz +01( )) ifd=2.
We first compute the exterior derivative of w®, by (4.5.2) and (4.5.4),

13+d/2
dw® =du+¢ Y (du)rddm 1 (g) +e > d(G(du)r) A g g (g)

[|=r [|=r

—(1-)du+ Y Gdu); (dx1+d¢m,1(é)) b Y d(Q(du)I)¢mJ(é).

[I]=r [|=r

From this we deduce, in the weak sense

d(a(é) dwa) = d (a(g) ((1 ~¢)du + smz::rd(g(du)j) D1 (g)))

+ 3 d(¢G(du)r) /\a(é) (dx, +dom. 1 (g))

[I|=r
On the other hand, since u satisfies d(adu) = 0, one sees that

HZ d(Q (du)I) N E_:ldfl,’[ = d({lﬁdu) =-d ((1 - Cl)édu) .
I|=r

Consequently, in the weak sense

1(a(2) ) =a((=(2)-z) o) w2 2 afaZ)acatanrn noms ()

+ 3 d(G(du)) A (a(g) (de + A1 (g)) -adxf) .

[|=r
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It follows that
J#(a(2) )
£ H-1AT-1 (U)

< S 14D sy [l () (001 + dom (2)) s

[|=r

o) o-0nd,,,
+8|1|Z=r a(é)d(g(du)”wm[(é) L2Ar (V)
=T +To+ T3

To bound the term on the right-hand side, we appeal to the interior regularity estimate, Proposi-
tion 4.A.3 and the assumption (4.5.3) on (j, so that one has

C
(4.5.7) I (G(du) ) [0y < a2 |dflz2ar @),
hence by Proposition 4.4.10,
c o
I < l3+d/2 de”Hl(U)Ol (6 )

The bound for T3 is similar, by Proposition 4.4.10 and the Poincaré inequality, Proposition 4.3.1,

one has
d)m,l ( - )
15

c o
I < g ldf L @y Or (%) -

To estimate the second term 75, the idea is to apply the boundary regularity result proved in the
appendix, Proposition 4.A.4. Since df is assumed to be in H'A™(U) and U is assumed to be
smooth, one has

3

<Oy (CEQ) .
L2AT(U)

So by (4.5.7), one has

|du] g1 pr oy < CldAASf] Lo parr iy < ClAf | giary -

This implies, via the Sobolev imbedding Theorem, that du is in L%AT(U) if d > 3 and any
LPAT(U) if d = 2, with the estimate

{Hdulmmw) <C Ay, ifd23,
ldulpopr@y <Cp ldflgipr@y fd=2,

for some C':= C(d,U) < 00 and Cy, := C'(p,U) < co. We now set p =4 (but any p > 2 would work).
Using this estimate and the fact that (1 - (;) is supported in U \ Uy, gives, by Holder inequality,

C|U \ Uy|72 Idul 2, ) iFd23,

Ty < C|dul 2pr (v, < { 1
ClUNUx|* |dul paprry  ifd=2,
Combining the few previous results completes the proof of (4.5.6).
Step 3. We deduce from the previous step the H' estimate

N g .
C ||deH1A7‘(U) (ldf2 + 01 (l3+—d/2)) lf d > 3,

159 g e
Cldfl grarw) (l4 +01 (W—dﬂ)) if d=2.



250 4. QUANTITATIVE HOMOGENIZATION OF DIFFERENTIAL FORMS

Indeed, testing (4.5.6) with u® —w*® € Hé,o(U)’ and using Step 1, one obtains
€ € z € € € ) €
‘[Ud(u —w )(a:)/\a(g)dw (o) < v —w ||H3AT71(U) Hd(a(g)dw )

< fu® = w | grar1 oy Hd(a(g)dwe)

Meanwhile, testing this equation with u® shows

/l;d (u® —w) (z) A a(g) du(z) =0.

Combining the two previous displays with the Poincaré inequality yields,

Hdue—dwEH%zN(U)SC/Ud(uE—wE) (a:)/\a(g)d(ug—v‘s)(w)
<Cu® —w® . Hd(a(;)dwe)‘
b = g o (2(2) )], 1y

< C ”dUE - dwEHLzAT(U) Hd (a (g) dwa)

HglAr—l(U)

HA™L(U)

‘HlATl(U) '
Thus
I = dw| 2y ) < C

da (-) dw® .
£ H-TA™1(U)

Using the estimate (4.5.6) and another application of the Poincaré inequality completes the proof
of (4.5.8)

Step 4. Recall that at the beginning of the proof, we assumed |U| = 1. We extend Defini-
tion 4.3.7 to the set U by setting, for each w € L2A™(U),
|l g1 ar oy = 5D {(w, @)y = a e HUAT(U), [(@)y] + [ Val oary <1} -

Note that this norm is a slightly stronger than the standard H~! norm which only requires to
have test functions in Hj. In this step, we prove that for each w e Hj (A" 1 (U) n (C} 0)l, one
has

|wllz2ar-1 oy < ldwl g-1pr0ry-
To do so, let v be the unique solution in HiOAT_l(U) n (C’g?o)l of the problem
{5dv =win U

(4.5.9) tv =0 on OU.

The existence and uniqueness of such a solution are obtained by minimizing the quantity
._7(’[)) = (dvadU>U - <w7U>U
on the space H dl 0Ar_l(U )n (Cg 0)L and requires to use the Poincaré inequality, Proposition 4.3.1.

The details are left to the reader.

If v is a solution (4.5.9), note that ddv = 0 € L2A"™(U), édv = w e L2A™1(U) and tdw =0
(this last property is implied by the condition tv = 0, see for instance [123]). As a consequence,
the Gaffney-Friedrichs inequality, Proposition 4.3.3, implies that dv e H'A"(U ), together with
the estimate

Idvl1ar 0y € C (0] 21y + 140l 2arcery )
Testing (4.5.9) with v and using the Poincaré inequality also shows
|dv]p2ar @y € Clwl p2ar1 0y -
Combining the two previous displays shows

(4.5.10) [dvl gaar @y < Clwl p2pr1y -
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Testing (4.5.9) with w then shows,
(dw,dv)y = (w, w)y; = [w]L2pr-1(0)-
On the other hand, by the definition of the H~! norm and (4.5.10), one has

(dw,dv)y < [[dw|| g1 pr oy [dv] 1Ay

< Jdwl g1 pr o 0] 2410,

Combining the two previous displays completes the proof of Step 4.
Step 5. We prove that

C 1S | pr i €°
(4.5.11) dwa—dquAr(U)sOl( 4 ae o) )

[2+d/2

One has that

dw® —du=d (EQ 2. (d)ioms (E))

|I|=r

and therefore, since w® —u € Hcl1 0A’“_I(U)7 one has

oui()

But with the same proof as in Step 4, with 0,, instead of U, and Proposition 4.4.10, one has

syl )

then, by Proposition 4.A.3, one has

dw® —du| g-14r gy < Cllduf e € :
I | 14y |dul, (UT)%::T L2AT(U)

<e
L2AT(U)

<0, (Ce™),
L2A7(eOm)

€

Ce®
Hdws - dwnﬂ—lAr(U) < de”LQA’“(U)O1 (l1+d/2) ’

This completes the proof of (4.5.11).
Step 6. The conclusion. By Steps 2 an 3, one can compute

||du€ - duHﬁflAr(U) < Hdua - dwa||£71AT(U) + Hdwa - duHﬁflAr(U)

< du® = dw®|| popr gy + [ dw” = dul g1ye 1y -

This yields
e g .
C1afgrarcor (ZH o (zS—d/z)) it d>3,

1 e® .
Cldflarar ) (l4 +0O1 (l?”—d/?)) if d =2.

Finally, the bound for |u® — u| 2(v) 1s obtained from the previous inequality and Step 4. Indeed,

since u — u’ € HiOA”_l(U) N (Cg7o)l, one has

|du® = du -1 5r 0y <

|du® = dull p2pr vy < C |l du” = dul g-1pr 17y

Step 7. The conclusion. The estimate obtained is valid for any 0 <[ < 1, in particular we can
choose [ to be a small power of € such that l3i—d/2 is still a small power of €. This completes the
proof of Theorem 4.1.2. O
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4.6. Duality

The goal of this section is to study a duality property between the homogenization of r-forms
and (d - r)-forms. We note that similar results were obtained independently by Serre [143]
in the case of periodic coefficients. For each a € €, and each x ¢ R?, the operator a(z) €
L (AT(Rd),A(d‘T)(Rd)) satisfies the ellipticity assumption (4.1.21), so it is invertible and one
can define the inverse operator (a(z))™ € £ (A(d’r)(Rd), A"(R%)), which satisfies the symmetry
assumption (4.1.20) and the following ellipticity condition

1
(4.6.1) 1Pl sa(@)pap < AP, vpe AUTI(RY).
We denote by
Q= {a(-) ca:RY L (A(d_r)(]Rd),Ar (Rd)) is Lebesgue measurable
and satisfies (4.1.20) and (4.6.1)}.

We equip this set with a family of sigma-algebras, for each U ¢ R¢,

F(U) = {a—algebra on ! generated by the family of maps

a~ [ pra@)ao@). pge AR, ¢>e0§°<U>}.

One also defines inv to be the mapping

!
. QT - Qdfw
mv : 1

a—a .

We then define inv,P the probability measure defined on the measured space (€2,_,.,F,_,.) by, for
each AeF) .

inv,P.(A) =P, (inv_1 A),
the probability space (€2,_,.,F,_,.,inv.[P,) satisfies the stationarity assumption (4.1.24) and the
independence assumption (4.1.25). The idea is then to define, for each (p, q) € A (R?)x A" (R?)
and each m € N,

1
Jiny(Om, P, q) == sup ][ (——a_ldu Adu-atdurp+gn du) ,
Om

we Ainv (0,,)

where A™ (O,,) is the set of solutions under the environment a™!, i.e.

Ay (O, = {ue HIAGY (@) : Yo e A (On), f dunaldv = o},
Om

and this quantity satisfies the conclusions of Proposition 4.4.1 and Theorem 4.1.1. In particular,
there exist a constant C'(d,\) < oo, an exponent a(d,\) >0 and a linear operator

vael (A<d-’“>(Rd), A’"(]Rd))
such that, for each m € N,

sup B [Jiny(Om,p,invap)] < €37
pEBlA(d_r) (Rd)

The following theorem determines inv a.
THEOREM 4.1.3 (Duality). The homogenized linear maps & and inv a satisfy

mva=(a)™".
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PRroOF. First we need to prove the following result, for each 0 < r < d and each bounded
m e N,
Ainy (Om) = {1} e HIAWD (g,,) : dv=adu with u e A(Dm)} .
We split the proof into 2 steps
e We prove that each v € HIAD (g,,) satisfying dv = adu for some u € A(0y,)

belongs to Ainy (O,,). Indeed, for each w € C°A™ ! (O,,), one has, by the symmetry
assumption (4.1.20), and (4.1.18),

(4.6.2) [ dvratdw= f dwaalde = f dw A du = 0.
Om Om Om

e We prove that for each v € A;yy, (Oy,), there exists u € A(Q,,) such that dv = adu.
Indeed, if v € Ajny (O,,), then a~'dv belongs to L2A” (O,,) and satisfies

d (a_ldv) =0in Q,,.
Consequently a~'dv € HéAT (Om). We can apply Proposition 4.2.4, to prove that there
exists u € HA" (O,,) such that
a'dv=duin O -

There only remains to prove that u € A (0O,,), it is a consequence of the following com-

putation: for each w € C§°A(d_r_1) (Om), one has, by the symmetry assumption (4.1.20)
and (4.1.18),

/ du/\adw:f dw/\adu:/ dwAadv=0.
Om Om Om
Using (4.6.2), one has

1
Jinv(Om,p,q) = sup ][ (——a_ldu/\du—a_ldu/\p-i-q/\du)
Om

ueAin (0y,)

sup (—%(adv) A (adv) —a ' (adv) Ap+qa (adv))

’UEA(Dm) Om

1
sup (—§dv/\adv—dv/\p+q/\adv)

veA(Op, ) ¥ Hm
= J (Om, =4, -D)
=J (Om, q,p) -
Thus, by Theorem 4.1.1, for each m e N,

sup  E[Jinw(Om,.8p,p)]=  sup E[J(Om,p,8p)] <C3*™.
pEBlAT(Rd) pEBlAT(Rd)
The previous inequality can be rewritten
sup E [Jinv(Dm,p, é_lp)] <C3™m,
qEB1A(d_T) (Rd)

1

Since the homogenized matrix is unique, we have 8™~ = inva. This gives the expected result. [

REMARK 4.6.1. The previous result can be applied in the particular case d = 2,7 =1 and the
standard homogenization problem

V-(avu) =0
can be rewritten with the formalism of forms
d(xadu) =0

(we identify the space R? with the space A!'(R?) canonically). Thus, one can compute the dual
problem,
d(a™ «du) =0,
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which can be rewritten in the standard formalism,

(4.6.3) vi-(atviu) =0,
where we used the notation
—Oof
Lg_ 2
Vi ( s )
0 1
P [_1 0].

Performing the change of variables u(z) — u(Pz), the equation (4.6.3) becomes

(4.6.4) v-((atoP)vu) =0,

Denote by

where a™! o P is defined by, for each x € R,
aloP(z)=a(Pz).

With this in mind, one can compute the homogenized matrix a™' o P of the problem (4.6.4). We
obtain according to Theorem 4.1.3,
(4.6.5) a'oP=a".

In particular, if we assume that the environment satisfies, for some positive constant k and for
each z € R,

a(x)a(Px) = kg,
then a(z) = ka ' (Px) and (4.6.5) gives

I
V]

Eol

which implies
a=Vkl,.

This formula is known as the Dykhne formula which was originally proved in [62].

4.A. Regularity estimates for differential forms

In this appendix, we record some properties about the regularity of the solutions of the
constant coefficient equation dadu. The two main results are the pointwise interior estimate,
Proposition 4.A.3 and the H? boundary estimate, Proposition 4.A.4. Both results are used in
the proof of Theorem 4.1.2. Most of these proofs are an adaptation of the classical proofs of the
regularity theory of uniformly elliptic equations (c.f. [74]).

We first state two propositions, Proposition 4.A.1, an interior Gaffney-Friedrich inequality,
and Proposition 4.A.2, an interior H? regularity estimate. We then use these two ingredients to
prove the pointwise interior estimate, Proposition 4.A.3. We finally prove a global H? regularity
result for the solutions of dadu = 0, Proposition 4.A 4.

The following proposition is an interior version of the Gaffney-Friedrich inequality, Proposi-
tions 4.3.3 and 4.3.4. The result is weaker then the ones aforementioned because it is only an
interior estimate, but it does not require any regularity for the domain U nor any assumption on
the value of the form on the boundary of the domain.

PROPOSITION 4.A.1 (Interior Gaffney-Friedrich inequality). There exists a constant. C =
C(d) < oo such that, for every 0 < <d, every open bounded subsets V,U € R satisfying V c U,
and every uw e L2A" (U) such that du € L2A™ (U) and du e L>A™ (U), one has u e H'A" (V)

with the estimate,

1
(4.1.1) IVul p2prry <€ (”du||L2A7‘(U) + 16wl oar oy + Jst(V,a0) ”u||L2AT'(U)) :
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PROOF. The proof relies on the following observation, given a form w = ¥y, urdzy €
C*A"(U), one has

(d6+d6d)u= ) Ausdz;.
|I|=r

Select a function n € C°(U) such that

1v<n<1 |v|<#
VRIS S VIS Gise(V, 00)

We then compute

IVulionrwy = 3 [, Ivurl (@) da
1
SZ/|Vum|2 (z)dx
7 JU

=% [, (@A) da
= (un, (dd + dd)un),
= (d(un),d(un))y + (6(un),d(un))y
By (4.1.6), one has
(d(un),d(un))y = (ndu +dn Au,ndu + dn A u)y,

IN

2 (ndu,ndu)y; + 2 (dn A u,dn A u);

2 1 2
<C (||du|L2Ar+1(U) + dist(V, 002 u”LQAT(U)) :

A similar computation yields

2 1 2
(6(un),d(un))y <C (HM\LzAM(U) * dist(V, 002 u”L2A"(U)) -
Combining the three previous displays completes the proof of (4.1.1). O

We then use the previous interior Gaffney-Friedrich inequality to prove the following interior
H? estimate. The proof of the following proposition is an adaptation of the standard interior H?
estimate for the solutions of uniformly elliptic equations, cf [74, Theorem 8.8].

PROPOSITION 4.A.2 (Interior H? regularity estimate). For every open bounded subsets
U,V cR? such that V c U, every 1 <r <d and every u € HéA(T_l)(U) solution of the equation

(4.1.2) d(adu) =0 in U,
one has du € H'A™(V) and it satisfies the interior estimate

1 1
1. /17 ATy d r _— —
dise(v,0) |+ gy e 1><U>)

for some constant C := C(d,\) < oo.

[wuliaaey <

PROOF. The main idea of this proof is to follow the proof of [74, Theorem 8.8] and combine
it with the interior Gaffney-Friedrich inequality.

First note that without loss of generality, one can assume that u € C5H(U)*. Select
an open subset V ¢ U such that V ¢ U and select two other open spaces W, W; such that
VcWcWcW,cW,; cU and such that

dist(V, 0W)

(4.1.3) dist(V,0W) = dist(W, 0W;) = dist(W;,0U) = ;



256 4. QUANTITATIVE HOMOGENIZATION OF DIFFERENTIAL FORMS

Additionally, we select a cutoff function n € C°(U) such that

C
4.1.4 Ly <n <1y, <— .
(4.1.4) vEns . [Vl g

Let h >0 be small, choose k€ {1,...,d} and denote by
v:= D" (172D2u) ,
where D,}; is the difference quotient, defined by
u(x + heg) —u(x)
h
If h is small enough then v € HiOA”_l(U) can be used as a test function in (4.1.2). We obtain

(du,adv);; =0.
Thanks to (4.1.6) and the equality dDu = Ddu, one computes
dv = D" (d(n*Djtu)) = D" (2ndn A Dpu) + D" (n* Djtdu) .
Combining the two previous displays yields
(du, aD;" (nzDZdu))U = - (du, aD;" (217d77 A D,’;u))U .
Performing a discrete integration by parts shows
(D,};du, a (nzDZdu))U = - (DZdu, a (ann A DZu))U .
By the Cauchy-Schwarz inequality, one obtains

Dhu(z) =

=

(Dpdu,a (n’Dypdu)),, <2 ((Dpdu,a (nQDZdu))U)% ((dn A Diu,adn A Dju),,)? .

and consequently, by (4.A.1) and the ellipticity assumption (4.1.21),
PR
V7 dist(V,0U )2
Since we assumed u € C;~1(U)*, one has du =0 in U and in particular du € LA™ 2(V'). From

this we deduce that u satisfies the assumptions of Proposition 4.A.1 and consequently « is in
HIA™1(W). Moreover it satisfies the estimate

(Djdu, Djidu) (Dju, D), -

1
IVul2arcwyy < C |l duf p2ar @y + WHUHLQA(T—I)(U)

1
<C (”dU\BAr(U) + W’u”L2A(T1)(U)) ;

where we used (4.1.4) in the second inequality. Additionally, according to [74, Lemma 7.23], one
has the inequality

(4.1.5) HD’,;uHL2(W) < C|Vul p2arwy)
for h > 0 small enough. Combining the three previous displays shows
C 2 1 2
v geraoe 1w e e von)

Since this inequality is true for every |h| > 0 small enough, one has, according to [74, Lemma

7.24], du e H'A™Y(V) and

(DZdu, DZdu)

C 1
2 2 2
|Vdul72pr iy < Jist(V, 00 )2 (”duHLQAT(U) + WHUL2A(T1)(U))

and the proof is complete. [l
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PropPoOSITION 4.A.3 (Elliptic regularity). There exists a constant C := C(d,k,\) < oo such
that for every open bounded subset U € R%, every 0<r <d, every k e N, every R >0, and every
solution of the equation

d(adu) =0 in U,
the following pointwise estimate holds

C
k
(4.1.6) [V du] ey < T2 |dull 2 pr 0y »
where we denoted by Ug := {x € U : dist(x,0U) > R}.
PROOF. Select an integer k € N, a non-negative real number R > 0, and a point x € Ug. It is
sufficient to prove (4.1.6), to show the estimate
C

k

(4.1.7) |V du(x)‘ < W Hdu”ller(BR(x)) 5

for some constant C' = C'(d, k,A) < co. We split the proof into two steps
Step 1. We prove that there exists a constant C' = C(d, \) < oo, such that for every [ € N,
due H'A" (BR/2z(ac)) and
01212 /2
l
(4.1.8) v duHLzAT(BR/Ql(w)) < TR Idul 2 pr (B (a)) -
This inequality can be proved by induction on [. It is true for [ = 0. We can use Proposition 4.A.2 to
go from [ to [+1. Assume that (4.1.8) holds with . In that case, one has V'du € L?A" (BR/QL (z)).
It is easy to check
d (Vldu) =0.
Thus by Proposition 4.2.4, there exists a form v; € HJA™™ (BR/zz(ac)) such that
v eCyt (BR/Zz(ac))L and dv; = V'du.
It is moreover a straightforward computation to check
d (é_ld'l}l) =0.
Consequently, one can apply Proposition 4.A.2 to v; with U = B (x) and V' = Bpgr (2). This
gives Vi*ldu e HIA" (BR/21+1(:U)), and thus du e H*1A" (BR/Qm(x)) with the estimate

11 021+1 ; I+1
HV duHLZAT(BR/Qm (w)) < R (HV du”LzN'(BR/Qz (m))) + ?Hvl ||L2A(r—1)(BR/2l (x))).

By Proposition 4.3.1, v; satisfies the Poincaré inequality

2t
Hwhmww@W@»SGﬁWUMme%W@W

Combining the two previous displays yields
02l+1 ;
< -=
R/2l+l (I)) N R HV dUHLQAT(BR/Ql (Ct))
for some C := C(d,A) < co. Applying the induction hypothesis completes the proof.
Step 2. From the first step, we get that for every [ € N, v¥*'du e L2A" (BR/QM(:L‘)). In
particular, by the Sobolev injection, see for instance [1, Chapter 4], one has

deu € LOOAT (BR/2k+d/2+1 (x)) )

9 aul 2o

together with the estimate

< Jdu|
LMAVI.(BR/2k+d/2+1 (l")) B Rk+d/2 " L2AT(Br()) -

This completes the proof of (4.1.7). O

| V¥ du]
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We then establish the following global H? estimate for the solutions of dadu = 0.

PROPOSITION 4.A.4 (Global H? regularity). Let U ¢ R? be a smooth bounded domain of
Re. For 0<r<d, let fe HIA™ (U) be such that df e H'A""1 (U). Let ue Hcll’OA’"_l(U) be a
solution of the equation

(4.1.9) {d(édu) =0in U,

tu=f on OU,
then du € H'A"(U) and one has the estimate
(4.1.10) ldul griar oy < 1dF | iar oy -

PrROOF. First note that two solutions of (4.1.9) differ by a form in Cgbl, this implies that
two solutions of (4.1.9) have the same exterior derivative. Thus to prove (4.1.10), it is enough to
prove it for a particular solution of (4.A.4).

The strategy of the proof is the following: one want to apply the result from the regularity
theory of strongly elliptic operators to the differential form u, see (4.1.18) for a definition and [116]
for a reference on the topic of strongly differential operators. Unfortunately the operator dad
is not strongly elliptic, thus the result cannot directly apply. The strategy is then to solve the
problem dad + (-1)" » ddu = 0 with appropriate boundary conditions so that *ddu = 0 and u is in
fact a solution of (4.1.9). Contrary to dad, the operator dad + (-1)" = d¢ is strongly elliptic and
a regularity theory exists for these operators. Thanks to this, one is able to derive H? boundary
regularity for the function w. This implies (4.1.10) by the previous remark.

The main ideas of the proof are standard and can be found in [142, Chapter 2| and [116,
Chapter 4]. We recall the notation for the set of harmonic forms with Dirichlet boundary
condition introduced in Proposition 4.3.4,

HNU) =H N (U) ﬂHiO(U) ={ue L*A""(U) : du=0, du=0in U and tu=0on OU}.

We split the proof into 8 steps

e In Step 1, we show that there exists a unique solution in u € ’Hgl(U )* to the elliptic
system

dadu + (-1)" « déu = dadf,
(4.1.11) tu =0 on U,
tou =0 on OU.
e In Step 2, we show that the form u defined in Step 1 satisfies ddu = 0 and is actually a
solution of (4.1.9).

e Steps 3 to 6 are the technical steps, we show the H? boundary regularity for the solution
of the more general problem,

dadu + (-1)" » ddu = dadf,

tu =0 on OU,

tdu =0 on OU,

using the theory of strongly elliptic operators developed in [116].
e In Steps 7 and 8, we combine the results of the previous steps to prove (4.1.10).
Step 1. First, we prove that there exists a unique solution u € H';*(U)* of the system

dadu + (-1)" » ddu = dadf,

tu =0 on OU,

téu =0 on OU.
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This equation can be rewritten variationally the following way, there exists u € H'A™1(U) n
Hy1(U)* such that tu = 0 and for each v e H'A™"!(U) satisfying tv =0,

(4.1.12) fduAédv+f5UA*6v:[deadv.
U U U

To solve this, we look at the associated energy: for v e H'A™ 1 (U) nH'; 1 (U)* satisfying the
boundary condition tv = 0, we define

j(v):z/;]dvAédv+/[]5vA*5v—/l]deédv.

Since a satisfies the ellipticity assumption (4.1.21), one has

LdvAﬁdv+/U(Sv/\*dvz)\HdUHLgAT(U)+||5UHL2AT(U).

Moreover, by the Gaffney-Friedrich inequality, Proposition 4.3.4, we have

Ldv A adv + /[; ov A *6v 2 A ”dU“LzAr(U) + H5UHL2A’"(U)

> c|Volp2pr1 0y s
for some c:=¢(d,\,U) > 0. Arguing by contradiction, it is straightforward to prove the following
Poincaré inequality: there exists C' = C(d,U) < oo such that for each u e H'A™Y(U) n H}y 1 (U)*
satisfying tu = 0 on OU,
(4.1.13) [Vl L2ar10ry < IVOl 2pr1 (1) -
This implies that the functional J is coercive on the space

{ue H'A" Y (U) nHp (U)* : tu=0o0n U},

equipped with the H' norm. Moreover, this functional is also uniformly convex. The standard
techniques of the calculus of variations then show that there exists a unique minimizer of J
denoted by u. By the first variation formula one has for each v € H'A"™"Y(U) n H;H(U)*
satisfying the boundary condition tv =

[du/\adv+[5u/\*5v—]df/\adv

Also, for each v e H51 (U), one has

fdu/\ﬁdv+f5u/\*5v:fdf/\édv:O.
U U U

Thus for each v e H'A™"1(U) satisfying tv = 0, we have

fdu/\édv+f5u/\*5v:/df/\5dv
U U U

and the proof of Step 1 is complete. As a remark, note that since df € H'A"(U), dadf e
L2A™1(U). Thus, if we denote by g := dadf e LAY "1 (U), one has

(4.1.14) deAédv+f5UA*5v=ngv,
U U U

for each v e H'A™}(U) satisfying tv = 0.
Step 2. We show that the solution u constructed in the previous step satisfies

dadu =dadf in U,
tu =0 on OU.

To prove this, it is enough, by Proposition 4.2.3, to show that for each v € H'A""}(U) satisfying

the boundary condition tv =0,
f du A adv = f df A dv.
U U
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To this end, select some v e H'A™}(U) satisfying tv = 0. Denote by a, the form of C7 ' (U)
such that

ay = argmin v - 21y
angjol U)

and set w = v — . In particular, this form satisfies, for each v e CA™2(U),
<wad7>L2AT*1(U) =0,

which implies dw = 0. Moreover it is clear that dw = dv and that tw = 0. Thus, by the
Gaffney-Friedrich inequality, w € H'A™"}(U) and w can be tested in (4.1.12). This gives

fduAadw:fdeadw,
U U

and since dw = dv, the previous equality can be rewritten

/du/\z'idv:/df/\édv,
U U

which is the desired result. The proof of Step 2 is complete.

Step 3. In this step, we follow the arguments of the proofs of [142, Section 2.3]. Let X be a
smooth vector field supported in U, tangent to the boundary of U. This vector field generates a
global flow th such that for every t € R, th is a smooth diffeomorphism of U. The pullback

(¢tX )* gives rise to the following linear mapping, for ¢t €e R\ {0},
L2AT71(U) — L2Ar71(U)
1 *
W ;((ng) w—w).

This operator satisfies a number of convenient properties which are listed below. Most of these
properties can be found in [142, Section 2.3 and Lemma 2.3.1].

EtX =

LEMMA 4.A.5 (Properties of ¥;X). The operator ©X satisfies the following properties

o Since (T,Z)tX)* commutes with the exterior derivative d, so does E%X,

de(w = Eifdw.

Since (th)* commutes with the projection to the tangential component, so does ¥iX,

tw=0 = tXw=0.

There exists a constant C := C(d,U,X) < oo such that for each t € [-1,1] and each
we HIA™HU),

HEtXWHBAT—l(U) <C HWHHlAT-l(U) .
Let ©;X : LA™ Y(U) — L2A""Y(U) be the operator defined according to

Zf( *x W= *Zf( + *@fw,

then there exists a constant C := C(d,U, X ) < oo such that for each t € [-1,1],

H@§(WHL2AT71 <C H"J”LQAT*1 :

Let @?’X : L2A"(U) - LQAd_”(U) be the operator defined according to the formula
v¥a-an) - (vY) 3%y,
then there exists a constant C := C(d,U, X) < oo such that for each t € [-1,1],

ax
o]

peniry S C 19 lenw)-
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PROOF. All these properties are proved in [142, Section 2.3 and Lemma 2.3.1] except for
the last one, which we now prove.

An explicit computation gives the following formula for @ta ’X,

@ﬁ,x _ (1/’;)*5(1/&)* -a
t - ¢ :

Then with this formula note that there exists smooth functions ¢y ; : [-1,1] x U — R, with
I,Jc{l,...,d} satisfying |I| = r and |J| = d - r, such that, for each w e L2A"(U),

(V) a(v) w= Iszl(x)@,J(t, z)dz,.

Using that all the functions ¢ ; are smooth and that (@ZJ%)* a (zb%yF = a, we obtain the result. [

With these properties, one can prove the following estimate, which allows to perform
integration by parts: there exists a constant C := C'(d, A\, X) < co such that for each ¢ € [-1,1],
and for each v,w e H'A"1(U),

(4.1.15) ‘fUdvAadziiw—fUdEfmadw +

[5251}/\*511}—/61}/\*52{211}
U U

<C HUHHlAT-l(U) HwHHlAT‘l(U) )

To prove this, it is straightforward to show that, for each w,& € L2A"(U)
S (wnag) = N waas - () (waante) + (85) (wa (vF) 0% e).
Integrating this equation over U and using the formula (4.1.12) gives
X, = =y X X\ odX )
_[UEt w A ag _[U(w/\aE_t‘f)+/U(w/\(1/)_t) 0 5)—0.
Applying the previous formula with w = dv and £ = dw and using Lemma 4.A.5 gives

‘LdvAédZﬁw—/(]dEvaédw

<C HUHHlATfl(U) Hw”HlAT*l(U) )

The proof of the second inequality

/5251}/\*510—[60/\*52{210
U U

is similar and we omit the details. They can be found in [142, Lemma 2.3.1].
We then apply (4.1.15) with v = u and w = ¥; u, this gives

< Ol grprrwy Il gar-1 vy

U dmadz:iizfu—/dzfmadzfu N
U U

[ O u A #0%; u — f ou A *52{22514
U U
X
<C ”u“HlAT’l(U) Hzt uHHlATfl(U) .
But, by the definition of u given in Step 1, one has

fUdu ABdSY SN + fU Sun x6EX 5N 0 = /U df nads¥nXe,

The term on the right-hand side can be estimated by (4.1.15),
V df nadsXsXy / ASX f A adsXu

U U

<C ”deHlAT’l(U) HEtXUHHlAr—l(U) .

<

+Cldf g ar oy |25 4] g1 g

Combining the few previous displays implies

fU A5 u A adS u+ /U ITH) VT C(H“HHlAr-l(U) + ”dqulAr-l(U)) Hzg(uHHlArfl(U) .
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By the version of the Gaffney-Friedrich inequality stated in (4.3.4), one obtains

2 2
Hzg(uHHlAr—l(U) <C (”u”HlA“l(U) + de“HlAT*l(U)) HziquHlAr—l(U) +C Hzg(uHLzAr-l(U) :

The previous inequality can be further refined

HE;‘,XuHi_IlAT—l(U) <C (HUHHlA’“‘l(U) + de”HlAr—l(U)) HEi(UHHlAT-l(U) +C ”u”%ﬂAT‘l(U)
and thus
(4.1.16) =5 11 -1 1y < € (ltl raara oy + 18F L arnara o) -

Step 4. Interior regularity. Using the result of Step 3, we prove that w is locally H? in U. To
this end, fix x € U and consider an open subset V, such that

zeVycVycU.
Consider d vector fields X, ..., Xy compactly supported in U such that for each k€ {1,...,d}
Xi(y)=er,  VyeV.

We then recall the notation for the finite difference operator used in Proposition 4.A.2: for h >0
small, and k € {1,...,d}, we denote by
u(z + heg) —u(x)
> .
By (4.1.16), we deduce that for ¢ > 0 small enough and each k € {1,...,d},

Dhu(z) =

HDZUHHlAH(V) < C(HUHHlAr—l(U) + ||deH1Ar—1(U)) :

Thus according to [74, Lemma 7.24], u € H2A" (V) with the estimate
[ulgzar-1qvy < € (Il sy *+ 1dF L arioy) -

Step 5. Boundary regularity I. The first part of this step is to reduce the problem to the
half-ball denoted by B* := {z € B(0,1) : x,, >0}. For further notice, we introduce the notation
B := {xGB(O,%) : :):nzo}.

2

Select z € OU. Since dU is assumed to be smooth there exists an open set V ¢ R? such that
x €V and a smooth positively oriented diffeomorphism @ : B(0,1) — V such that
®(B*)=VnU and ®(0) = z.

Using the change of variables formula (4.1.12) and the definition of the tangential trace (4.2.2),
one obtains that,

veHé’OAr_l(U) — t®"v=0o0n {zeB(0,1) : z, =0}.

To ease the notation, we denote by ug = (®)* u. It is a form defined on B*. The purpose of
this step is to prove that for k € {1,...,d - 1}, 9 Vug € L2A" (B*). As in the previous step,

consider (d —1) vector field Xq,..., X1 compactly supported in B*, tangent to the boundary
and satisfying
Xi(y)=er, VyeBi.
2

Note then that one has the identity, for each k€ {1,...,d -1},
(07%) o = (@)" (%) .
where X}, is the vector field defined on V' according to
Xp(®(2)) = d®(z)(Xy(2)), VzeB".
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Thanks to (4.1.16), one has
)
U <Cl|uw — +|d — ,

)], <€ (lmare * 19 L)

for some C':= C(d, A\, ®, X}) < oo. By (4.1.8), the previous display can be further refined
AN
@) (45)

for some C := C(d,\, ®, X},) < co. This can be rewritten

<C(ul grarr @y + 18f armi o)) s

HIAT™1(V)

I( th)*ULPHHlAT_l(v) <C (Il marawy * 18f Larsn)

for some C := C(d,\, ®, X},) < c0. As in Step 4, we now apply [74, Lemma 7.24] to get that for
each ke {1,...,d -1}, OpVug € L>A” (B*), with the estimate

7ol ) C(Wllinrsn + 19F Lnnawn)
2

for some C := C(d,\, ?) < oo.

Step 6. Boundary regularity II. The purpose of this step is to prove that ug belongs to
H?A™! (B]Ir /2). To this end, we see that, thanks to the previous step, there only remains to

prove that 0;04uqe belongs to L2A™! (B+

1 /2). This is what is proved in this step, along with the

estimate
(4.1.17) |0addua ||L2Ar71(31+/2) <C (”u”HlAT*(U) + de”HlAT*l(U))a

for some constant C := C(d,\,®) < co. The main ingredient is the uniform ellipticity of the
operator

dad + (-1)" » dd.
Since ug = () u, one sees that this differential form is a solution of the following equation
®* (dad + (-1)" +dd) (™) ug = (®)* dadf in B*.
This second order differential operator can be written in the form
®* (dad + (-1)" +dd) (@7') u = i A; 1,0;0ru + i A;0ju+ Au,
j.k=1 j=1

where the coefficients A; 1, A; and A are smooth functions from B* to the space of matrices of
size (rfll) X (rfll) (or equivalently the space of endomorphisms of A™"! (Rd)). Since this operator
is self-adjoint, one knows that the matrices A; ; are symmetric. The idea to prove (4.1.17) is to
show that this operator is strongly elliptic, i.e.

d
(4.1.18) (" Aj (@) & 2 clnPlel Vo eU, vy eRED) ve e RY.

d
Jk=1

To prove the strong ellipticity, it is enough, by [116, Theorem 4.6], to prove that, for each
w e C’t‘;"A’”‘1 (B"),

(4.1.19) fB O (dad + (-1)" *d6) (271) wAw 2 ¢ |wlFp e ey = C lw]Tapr sy -
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This is a consequence of the following computation

fB+ o* (dad + (1) * do) (@71) w A w
:fv(dad+(—1)’"*d5)(<1>*1)*wA(<1f1)*w
- [ad(@) wad(@) we [ 6(07) wars(@7) w

+ H(S(@‘l)*w‘ ?

2 a(e) wl], o)

L2A7(V)

Since w € C°A™™1 (B*), we also have (CIJ_I)* we CPA™ 1 (V) and thus by the Gaffney-Friedrich
inequality,
2

PR R L] (CRR

2

Hd(q)_l)* ), L2AT(V)

L2AT(V)
We then note that

+ H5 (<I>_1)* w‘

lwll giary <C H((I)_l)*wHHlAT(B*)

and

[ T Y o ] et

for some constant C' := C(d, ®) < oo. This implies (4.1.19). Now that one knows that the operator
is strongly elliptic, one knows, by [116, Lemma 4.17], that the coefficient A,, ,, has a uniformly
bounded inverse. As a consequence, one has

|0a0qua HL2A"'(B+) < HAdvdadaduq’ HL?AT(B+)

d d-1 d
< Z; ];1 HAj,kajakUHLQAr(BJ,) + Z‘i HAjajuHL2Ar(B+)
j=1k= £

+ [ Auf p2pr(gey + [T AAAS] f2pd-rer ey -

Using the main result of Step 3, this gives, for some constant C' := C'(d, \, ®) < oo,

[0aaual 2ar 5y < C (1l im0y + 145 | iiarry)
and the proof of Step 6 is complete.
Step 7. The main results of Steps 5 and 6 show that the function ug belongs to H2A™! (B*)
together with the estimate
[ualmzar(zry < C (Il miariqoy + 1df iy )
with C := C(d, A\, ®) < co. This implies
(4.1.20) HUHHQA’“(VHU) <C HUHHIA’“—l(U) +C deHHlA"(VnU) .
Since OU is compact, we can cover QU with finitely many open sets Vi,...,Vy as above. We
sum the resulting estimates, along with the interior estimate proved in Step 3, and obtain
u e H*A™ (U) with the estimate
|l gr2ar @y < C lull grar-1 oy + CldSf | grar-1 @y »

for some C = C(d,\,U) < co. We then simplify the right-hand side. Since we assumed
U € ’HrD_l(U )*, one has, by the Gaffney-Friedrich inequality, Proposition 4.3.3,

IVull 2 pr1y € Cldu] o pr @y + C l10u] p2pr-2 () -

This inequality can be further refined, thanks to the version of the Poincaré inequality stated
in (4.1.13), into

lull a1y < Cldul popr @y + Cl6uf L2 pr2 0y -
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By (4.1.14) and the ellipticity assumption (4.1.21), one has

2 2
[dulz2pr oy + 10ulf2nr2ry < ClASf | giar @y el p2pa-rea oy -
Combining the two previous displays with (4.1.20) shows

|l grzpr-10ry < ClAf | grar oy -
and the proof of Step 7 is complete.

Step 8. The conclusion. Note that, if u is a solution to (4.1.11), then f + wu is a solution
of (4.1.9). Note also that, since two solutions of (4.1.9) differ by a form of C’gbl, so they have
the same exterior derivative. From these remarks and the previous estimate, one obtains (4.1.10).
The proof is complete. O






CHAPTER 5

Quantitative homogenization of the disordered V¢ model

We study the V¢ model with uniformly convex Hamiltonian H(¢) := ¥ V(V¢)
and prove a quantitative rate of convergence for the properly rescaled partition
function as well as a quantitative rate of convergence for the field ¢ subject
to affine boundary condition in the L? norms. One of our motivations is
to develop a new toolbox for studying this problem that does not rely on
the Helffer-Sjostrand representation. Instead, we make use of the variational
formulation of the partition function, the notion of displacement convexity
from the theory of optimal transport, and the recently developed theory of
quantitative stochastic homogenization.
This chapter corresponds to the article [53].
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5.1. Introduction, notation and main results

Let (Zd, B,) be the graph Z% in dimension d > 2 with its nearest-neighbor unoriented edges.
Let XA € (0,1) be a fixed parameter, and let (V;);-1,.. 4 be a family of functions in C?(R) satisfying
(1) Vi(z) = Vi(-=)
(2) 0< A<V (%) < 5 < oo.
In this article, we wish to study the Ginzburg-Landau or V¢ model associated to this potential.
Specifically, we fix a bounded discrete set U ¢ Z¢ and define the boundary dU of U to be the set

of vertices of U which are connected to Z%\ U. With this notation, we define for each function ¢
from U to R the following convex Hamiltonian

H(p) = ) Ve(Vo(e)),
ecU
where Vo(e) = ¢(y) — ¢(x) if the edge is given by e = (z,y) and the function V, is equal to V;
is the edge e is of the form (z,x + ¢;), for x € Z%. The goal of this article is to derive some
quantitative information about the large scale behaviour of the Gibbs measure associated to this
Hamiltonian and defined by, for some p € R?,

dpy = Zl}l €xXp (_ Z Ve (V¢(e))) H d(;ﬁ(:C) H 5p~x(¢(£))7

ecU zeUNOU zedU

as well as some quantitative information about the normalization factor Zi, also referred to as
the partition function, which makes py a probability measure.

267
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This model and its large scale behavior have already been studied in several works. A
common tool to study the V¢ model is the Helffer-Sjostrand PDE representation which originates
in [93]. Naddaf and Spencer in [132] were able to obtain a central limit theorem for this
model by homogenizing the infinite dimensional elliptic PDE obtained from the Helffer-Sjostrand
representation. Funaki and Spohn in [70] studied the dynamics of this model. Deuschel
Giacomin and Ioffe in [56] established the large scale L? convergence of the surface shape to
some deterministic function, which can be characterized as the solution of an elliptic equation,
as well as a large deviation principle. These result were later extended by Funaki and Sakagawa
n [69]. In 2001, Giacomin, Olla and Spohn established in [72] a central limit theorem for the
Langevin dynamic associated to this model. More recently Miller in [119] proved a central limit
theorem for the fluctuation field around a macroscopic tilt.

The Helffer-Sjostrand representation is a very powerful tool, but may also face some limitations.
The PDE operator arising in this representation contains a divergence-form part whose coefficients
are given by V”. In case when V" is singular, or of a varying sign, then it is rather unclear
how to proceed (see however [48, 34, 47]). Besides the specific results to be proved in this
paper, we are interested in developing new tools to study the V¢ model that completely forego
any reference to the Helffer-Sjostrand representation. We will rely instead on the variational
formulation of the free energy, and of the displacement convexity of the associated functional.
To the best of our knowledge, it is the first time that tools from optimal transport are being
used to study this model.

The mechanism by which we will obtain a rate of convergence, as opposed to a qualitative
homogenization result, is inspired by recent developments in the homogenization of divergence-
form operators with random coefficients. The first results in this context date bach to the
early 1980s, with the results of Kozlov [107], Papanicolaou-Varadhan [135] and Yurinskii [150]
who were able to prove qualitative homogenization for linear elliptic equations under very
general assumptions on the coefficient field. These results were later extended by Dal Maso and
Modica in [49, 50] to the nonlinear setting. Obtaining quantitative rates of convergence has
been the subject of much recent study over the past few years. Some notable progress were
achieved by Gloria, Neukamm and Otto [82, 83, 81] and by Armstrong, Kuusi, Mourrat and
Smart [16, 17, 18, 21, 20].

While most of the theory developed to understand stochastic homogenization focuses on
linear elliptic equations, the closest analogy with the V¢ interface model is the stochastic
homogenization of nonlinear equations. In this setting, the results are more sparse: one can
mention the work of Armstrong, Mourrat and Smart [20, 21] who quantified the work of Dal
Maso and Modica [49, 50]. More recently, Arsmtrong, Ferguson and Kuusi [14] were able to
adapt part of the theory developed in the linear setting to the nonlinear setting.

The main results of this article are a sub-optimal algebraic rate of convergence for the
logarithm of the partition function, cf Theorem 5.1.1, and to deduce from the previous result an
algebraic rate of convergence of the field ¢ with affine boundary conditions in the L? norm to an
affine function, c¢f Theorem 5.1.2. The analysis relies on the study of two subadditive quantities,
denoted by v and v*, which are approximately convex dual to one another. These quantities are
reminiscent of those used in stochastic homogenization (cf [18, Chapters 1 and 2]) and which
were key ingredients to develop this theory.

5.1.1. Notations and assumptions.

5.1.1.1. Notations for the lattice and cubes. In dimension d > 2, let Z? be the standard
d-dimensional hypercubic lattice, By := {(as,y) cxyy e Z -y = 1} the set of unnoriented
nearest neighbors and E; be the set of oriented nearest neighbors. We denote the canonical basis
of R? by {ey,...,¢q}. For z,y € Z%, we write = ~ y if x and y are nearest neighbors. For x € Z¢
and 7 > 0, we denote by B(z,r) ¢ Z¢ the discrete ball of center  and of radius r. We usually
denote a generic edge by e. For a given subset U of Z?, we denote by B4(U) the unoriented
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edges of U, i.e,

By(U):={(x,y)eBy : xeU,yeU and x ~y}.
If we wish to talk about an oriented edge we will use an arrow to distinguish them from the
unoriented edge. We denote by ¢a generic oriented edge. Similarly, we denote by Ej; the oriented

edges of U,
E4 (U) :={:U—y>€Ed : meU,yeUand:U~y}
We also denote by 0U the discrete boundary of U, defined by
3U:={er:EIyeZd, y~xandy¢U}
and by U® the discrete interior of U,
U°:=U~0U.

We also denote by |U| the cardinality of U, we may refer to this quantity as the (discrete) volume
of U. For N ¢ N, we write NZ? to refer to the set {Nz : x € Z%} c Z%. A cube of Z¢ is a set of
the form

Z%n (2 +[0,N]%), zeZ NeN.
We define the size of a cube given in the previous display above to be N +1. For n € N, we denote
by O, the discrete triadic cube of size 3",

3n 3n d
On = (__,_) e,
272
We say that a cube O is a triadic cube if it can be written
O=2+0,, for some neN, and z € 3"Z%.

Note that two triadic cubes are either disjoint or included in one another. Moreover for each
n €N, the family of triadic cubes of size 3" forms a partition of Z%. A caveat must be mentioned
here, the family of triadic cubes (2 + Oy, 3174 forms a partition of Z¢ but the family of edges
(B (2+0)) ,e3nga does not form a partition of By, indeed we are missing the edges connecting
two triadic cubes, i.e., the edges of the set

{(az,y)eBd : 32e3"2% zez+0, andy¢z+Dn}.

Sdn

We mention that the volume of a discrete triadic cube of the form z + O, is since this will be

extensively used in this article.
Given two integers m,n € N with m < n, we denote by

(5.1.1) Zonn = 3"2 N Oy,
we also frequently use the shortcut notation
Zp = nn+l = 3nZd N Opt1-

These sets have the property that (z + Om),.z  is a partition of O,,. In particular (z +0y)
is a partition of O,41. ’

5.1.1.2. Notations for functions. For a bounded subset U ¢ Z¢, and a function ¢: U — R, we
denote by (¢)y its mean value, that is to say

() =

2€Zp

ﬁ > o(e).

We let h}(U) and h1(U) be the set of functions from U to R with value zero on the boundary of
U and mean value zero respectively, i.e

ho(U):={¢:U >R : u=0ondU}

and

W (U)={:U~R : (), =0}
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These spaces are finite dimensional and their dimension is given by the formulas
dim h(U) = |U ~ 8U| and dim h*(U) = |U| - 1.

We sometimes need to restrict functions, to this end we introduce the following notation, for any
subsets U,V ¢ Z% satisfying V ¢ U, and any function ¢ : U - R, we denote by @y the restriction
of p to V.

Let U ¢ Z%, a vector field G on U is a function

GiEd(U) - R

which is antisymmetric, that is, G(x_y)) = -G (ﬁ) for each z,y € E4(U). Given a function
¢:U - R, we define its gradient by, for each € = zy € Eq(U),

Vo (€)= o(y) - o().
The divergence of a vector field G is the function from U to R defined by, for each z € U
divG(z)= > G(77).
yeU,y~x
We also define the Laplacian A of a function ¢ : U - R to be, for each z € U

Ap(z) = >, (¢(y) - ¢(2))

yeU,y~x
For p € R?, we also denote by p the constant vector field given by

(5.1.2) p(z,y)=p-(z-y).

Given two vector fields F' and G, we define their product to be the function defined on the set of
unoriented edges by

F-G(z,y) = F(z5)G(zY).

This notation will be frequently applied when F' is a constant vector ¢ and when G is the gradient
of a function V1), so we frequently write, for each (z,y) € By

q-V(z,y) = q(z,y)Vi(z,y).

We also often use the shortcut notation

Ztomean Z .

ecU eeB,4(U)

If one assumes additionally that U is bounded, then for any vector field F : E4(U) — R, we
denote by (F');; the unique vector in R? such that, for each p € R?

p(F)y =2 3 pFe).
’U’ ecU
5.1.1.3. Notations for vector spaces and scalar products. Let V be a finite dimensional real
vector space equipped with a scalar product (-,-)y, this space can be endowed with a canonical
Lebesgue measure denoted by Leby . This measure will be simply denoted by dr when we are
integrating on V', i.e we write, for any measurable, integrable or non-negative, function f:V — R,

(5.1.3) /Vf(a:)dx to mean [/f(x)LebV(dx).

For any linear subspace H ¢ V, we denote by H* the orthogonal complement of H. Given
H,K cV, we use the notation

V=H&KifV=HeK and ¥(h,k) e Hx K, (h,k)y = 0.

Note that from the scalar product on V, one can define scalar products on H and H* naturally
by restricting the scalar product on V to these spaces. Consequently the spaces H and H* are
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equipped with Lebesgue measures denoted by Leby and Leby.. These measures are related to
the Lebesgue measure on V' by the relation

(5.1.4) Leby = Leby ® Leby.,

where the notation ® is used to denote the standard product of measures. Note that we used in

the previous notation the equality V = H ela H* to obtain a canonical isomorphism between the
spaces V' (on which Leby is defined), and the space H x H* (on which Leby ® Leby. is defined).

Given a bounded subset U ¢ Z¢, we equip any linear space V of functions from U to R with
the standard L? scalar product, i.e., for any ¢, € V, we define

(0, 0)v = ), d(x)y(x).

zeU

This in particular applies to the spaces h$(U) and lozl(U ). From now on, we consider that these
spaces are equipped with a scalar product and consequently with Lebesgue measure denoted by
Lebpi ¢y and Leb;ll(U)7 or simply by dz when we use the notation convention (5.1.3).

5.1.1.4. Notations for measures and random variables. For any finite dimensional real vector
space V, we denote by P(V) the set of probability measures on V' equipped with its Borel
o-algebra denoted by B(V'). For a pair of finite dimensional real vector spaces V and W, and a
measure 7 € P(V x W), the first marginal of 7 is the probability measure p € P(V') defined by,
for each A e B(V),

H(A) = 7 (Ax W),

we similarly define the second marginal as a measure in P(W). Given two probability measures
weP(V)and v e P(W), we denote by II(u,v) the set of probability measures of P(V x W)
whose first marginal is ¢ and second marginal is v, i.e.,

O(p,v) ={meP(VxW):V(A,B)e(B(V),B(W)), n(AxW)=p(A) and 7 (V x B) =v(B)}.

We define a coupling between two probability measures p € P(V') and v € P(W) to be a measure
in II(y,v). For a generic random variable X, we denote by Px its law. Given two random
variables X and Y, a coupling between X and Y is a random variable whose law belongs to
I[I(Px,Py).

An important caveat must be mentioned here, in this article we do not assume that we are
given a probability space (£, F,P) on which all the random variables are defined. In short, we
use the random variables as proxy for their laws to simplify the notations. A consequence of
this is that given two random variables X and Y, we have to be careful to first fix a coupling
between X and Y if one wants to define the random variables X +Y, XY etc.

Given a measurable space (X, F) and two o-finite measures p and v on X, we write py << v
to mean that p is absolutely continuous with respect to v, and denote by fl—’lf the Radon-Nikodym
derivative of p with respect to v. If we are given a second measurable space (Y, F’) and a
measurable map T : X - Y, we denote by T u the pushforward of the measure p by the map T

5.1.1.5. Notations for the V¢ model. We consider a family of function (V;);-1, 4 € C?(R)
satisfying the following assumptions, for each i € {1,...,d}

(1) Symmetry: for each z € R, V;(z) = V;(-z),
(2) Uniform convexity: there exists A € (0,1) such that A <V} < 1.
(3) Normalization: The value of V; at 0 are fixed: V;(0) =0
Assumption (2) implies, for each py,ps € R,
D1+ P2
2

From the first and second assumptions, we see that the functions V; have a unique minimum
achieved in 0. The third assumption is not necessary and can be easily removed, but thanks to

1
(5.1.5) )\|p1—p2|2SVz‘(pl)JfW(pl)—QVi( )Sx|p1—p2|2-
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this assumption we have the convenient inequality, for each x € R,
1
Mzl < Vi(z) < X|m|2

For each edge e € By, we define V, := V; where i is the unique integer in {1,...,d} such that e can
be written (x,x + ¢;) for some x € Z%. We then define the partition function, for each bounded
subset U ¢ Z% and for each p € RY,

516 2= [, (- 5 Vo0 vo0)) s

ho(U) ecU
where we recall that the notation p(e) denotes the constant vector field introduced in (5.1.2) and
d¢ stands for the Lebesgue measure on h(l)(U). Note that thanks to the symmetry of the functions
Vi, even if the vector field p + V¢ is defined for oriented edges, the quantity V.(p(e) + Vo(e)))
can be defined for unoriented edges. From this one can define

1

(5.1.7) WUp) =~

InZ,(U)

and the probability measure on h}(U)
exp (= Xecr Ve(p(e) + V(e))) do
Zp (U)

We also denote by ¢, a random variable of law IPy;,. These objects will frequently be used with
triadic cubes, we thus define the shortcut notations, for n € N,

IEDU,p(dgb) =

Prp=Pa,p

and by ¢, , a random variable of law P, ,,. We also define the quantity, for each ¢ ¢ R,

6.08) 2= [, (- T w0 -a-v0(0)) .

ecU
as well as the quantity
1

(5.1.9) v (U,q) = 0

InZ, (U)

and the probability measure

exp (= Zecy (Ve(Vi(€)) ~q-VY(e))) dy

]P)l*],q(dd)) = 7 (U)

We denote by 1y, a random variable of law Py, and we frequently write P, , and 1, ;, instead

*
of P5 , and ¢g, p.

5.1.1.6. Convention for constants and exponents. Throughout this article, the symbols ¢ and
C' denote positive constants which may vary from line to line. These constants may depend
solely on the parameters d, the dimension of the space, and A, the ellipticity bound on the second
derivative of the function V.. Similarly we use the symbols o and 3 to denote positive exponents
which may vary from line to line and depend only on d and A. Usually, we use C for large
constants (whose value is expected to belong to [1,00)) and ¢ for small constants (whose value is
expected to be in (0,1]). The values of the exponents o and 8 are always expected to be small.

We also frequently write C := C'(d, \) < co to mean that the constant C' depends only on the
parameters d, A and that its value is expected to be large. We may also write C' := C'(d) < oo or
C := C()) < oo if the constant C' depends only on d (resp. A). For small constants or exponents
we use the notations ¢ :=c¢(d,\) >0, a:=a(d,\) >0, 8:=3(d,\) > 0.
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5.1.2. Main result. The goal of this article is to show the quantitative convergence of the
quantities v(0,,p) and v*(O,,q). This is stated in the following theorem.

THEOREM 5.1.1 (Quantitative convergence to the Gibbs state). There exists a constant
C = C(d,\) < oo and an exponent o := a(d,\) >0 such that for each p,q € R, there exist two
real numbers U(p) and v*(q) such that

(5.1.10) v (O, p) = 7(p)| < C37*"(1+ |pl*)
and
(5.1.11) v (On,q) -7 ()| < C37" (1 + [¢).

Moreover the functions p — v(p) and q - v*(q) are uniformly convez, there exists a constant
C :=C(d,\) < oo such that for each pi,ps € R?

(5.1.12) % Ip1 = pal® <7 (p1) + 7 (p2) - 27(]91 ;m) <Clp1-pal,
for each q1,q € RY,

(5.1.13) é!ql g’ <7 (q1) + 7" (@2) - 20" (%) <Clgi - gof?
and are dual convez, i.e. for each q € RY

(5.1.14) v*(q) =sup (-v(p) +p-q).

peRd

From this, we deduce that the random variables ¢, , and v, , are close to affine functions
in the expectation of the L? norm. Note that (5.1.12) and (5.1.13) imply that the functions
p—v(p) and ¢ - 7*(q) are C*! and we denote their gradients by V,7 and V,7*.

THEOREM 5.1.2 (L? contraction of the Gibbs measure). There exist a constant C = C(d, \) <
oo and an exponent a = a(d,\) >0 such that for each n €N, p,qeR?,

E [i 5 (1600 @)P + (@) = 747" (0) -a:f)] < O3 (L pf? +1g?)

|On| veo,,

5.1.3. Strategy of the proof. The strategy of the proof is to use the ideas from the theory
of quantitative stochastic homogenization, and in particular the ideas developed by Armstrong,
Kuusi, Mourrat and Smart in [18] and [21] to the setting of the V¢ model. To this end, we
introduce the two quantities v and v*, which are in some sort equivalent to the subadditive
quantities with the same notation used in [18, Chapters 1 and 2].

The idea is then to find a variational formulation for these quantities to rewrite them as a
minimization problem of a convex functional, this in done in the Subsection 5.2.2. Nevertheless
this functionnal involves a term of entropy and it is not a priori clear that the functional is
convex. To solve this issue, we appeal to optimal transport and more specifically to the notion of
displacement convexity to obtain some sort of convexity for the entropy.

Once this is done, we are able to collect some properties about v and v* which match the
basic properties of the equivalent quantities in stochastic homogenization, to see this, one can for
instance compare Propostion 5.3.1 with Lemma 1.1 of [18]. One can then exploit the convex
dualiy between v and v* to obtain a quantitative rate of convergence for these quantities as it is
done in Section 5.4.
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5.1.4. Outline of the paper. The rest of the article is organized as follows. In Section 5.2,
we collect some preliminary results which will be useful to prove the main theorems. Specifically,
we introduce the differential entropy of a measure and state some of its properties, we also record
some definitions from the theory of optimal transport and state the main result we need to borrow
from this theory, namely the displacement convexity of the entropy, Proposition 5.2.10. We also
introduce the variational formulation for v and 7" in Subsection 5.2.2. In Subsection 5.2.4 we
state and prove a technical lemma which allows to construct suitable coupling between random
variables. We then complete Section 5.2 by stating some functional inequalities on the lattice Z¢,
in particular the multiscale Poincaré inequality which is an important ingredient in the theory of
stochastic homogenization.

In Section 5.3, we use the tools from Section 5.2 to prove a series of properties on the
quantities v and v*, summed up in Proposition 5.3.1. These estimates, though not particularly
difficult, are technical and the details are many.

In Section 5.4, we combine the tools collected in Section 5.2 with the result proved in
Section 5.3 to first prove that the variance of the random variable (z/zn’q)un contracts, this is done
in Lemma 5.4.2. We then deduce from this result and the multiscale Poincaré inequality that the
random variable v, 4 is close to an affine function in the L? norm, this is Proposition 5.4.4. We
then use these results combined with a patching construction, reminiscent to the one performed
in [21], to prove Theorems 5.1.1 and 5.1.13.

Appendix 5.A is devoted to the proof of some technical estimates useful in Sections 5.2
and 5.3.

Appendix 5.B is devoted to the proof of some inequalities from the theory of elliptic equations
adapted to the setting of the V¢ model. Namely we prove a version of the Caccioppoli inequality,
the reverse Holder inequality and the Meyers estimate for the V¢ model.

5.1.5. Acknowledgements. I would like to thank Jean-Christophe Mourrat for helpful
discussions and comments.

5.2. Preliminaries

5.2.1. The entropy and some of its properties. In this section, we define one of the
main tools used in this article, the differential entropy, we then collect a few properties of this
quantity which will be useful in the rest of the article. We first give the definition of the entropy.

DEFINITION 5.2.1 (Differential entropy). Let V' be a finite dimensional vector space equipped
with a scalar product. Denote by By the associated Borel set. Consider the Lebesgue measure on
V' and denote it by Leb. For each probability measure P on V', we define its entropy according to

dP dP dP [ dP
o dz if P« Leb and —~—1
H(P) = /VdLeb(x)n(dLeb(x)) e T n(dLeb

) e L (V.B(V). Leb)
+o0o otherwise.

REMARK 5.2.2. e In this article we implicitely extend the function z — xInx by 0 at
0.

e We emphasize that the usual definition of the differential entropy is stated with the
function x — —zlnz instead of the function x - zIlnz. Adopting the other sign
convention is more meaningful in this article because we want the entropy to be convex
in the sense of displacement convexity as it will be explained in the following subsections.

We now record a few properties about the entropy. We first study how the entropy behaves
under translation and affine change of variables. These properties are standard and fairly simple
to prove, the details are thus omitted.

PROPOSITION 5.2.3 (Translation and linear change of variables of the entropy). Let X be a
random variable taking values in a finite dimensional real vector space V' equipped with a scalar
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products. Denote by Px the law of X. For each a €V, if we denote by Px., the law of the
random variable X + a then we have

(5.2.1) H (Px4q) = H (Px)

Now consider L a linear map from V' to V. Then if we denote by Pp(x) the law of the random
variable L(X), then we have

(5.2.2) H (Prxy) = H (Px) - In|det L|.

In particular if L is non invertible then det L =0 and H (IP’L(X)) = 00.

Let V, W be two finite dimensional real vector spaces equipped with scalar product denoted
by (-,-)y and (-,-)},. Denote by Leby and Leby, the Lebesgue measure on V and W. Consider
the space V x W. Define a scalar product on this space by, for each v,v" € V and each w,w’ € W,

((v,w), (v/,w'))vxw = (v,v')v + (w,w’)W.
Then the Lebesgue measure on V & W satisfies
Leby i = Leby ® Lebyy.
The following proposition gives a property about the entropy of a pair of random variables.
PROPOSITION 5.2.4. Let V,W be two finite dimensional real vector spaces equipped with scalar
product. Consider the space V- x W equipped with the scalar product defined above. Let X and Y

be two random variables valued in respectively V- and W. Assume that H (Px) < oo, H (Py) < o0
and that we are given a coupling (X,Y) between X and Y, then we have

H(Pxy))>H (Px)+H (Py),
with equality if and only if X and Y are independent.
REMARK 5.2.5. This inequality states that the entropy of two random variable is minimal
when X and Y are independent while the reader may be used for the entropy to be maximal

when the random variables are independent. This is due to the sign convention adopted in
Definition 5.2.1.

PROOF. These estimates can be obtained using the convexity of the function x - xInx and
the Jensen inequality. The proof is standard and the details are omitted. O

Frequently in this article, the previous proposition will be used with the following formulation

PROPOSITION 5.2.6. Let U be a finite dimensional vector space equipped with a scalar product
and assume that we are given two linear spaces of U, denoted by V and W such that

U=VoW.

Assume moreover that we are given two random variables X and Y taking values respectively
inV and W. Assume that H (Px) < oo, H (Py) < 00 and that we are given a coupling (X,Y")
between X and Y, then we have

H(Px.y)>H (Px)+H (Py),

where the entropy of X +Y (resp. X and Y ) is computed with respect to the Lebesgue measure
on U (resp. V and W ). Moreover there is equality in the previous display if and only if X and
Y are independent.

PRrROOF. This proposition is a consequence of Proposition 5.2.4 and the fact that there exists
a canonical isometry between U and V x W given by

VxW-=U
@:{

(v,w) » v+ w.

(5.2.3)
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5.2.2. Variational formula for v and v*. One of the key ideas of this article is to
introduce a convex functional 7, ;, (resp. F, ;) defined on set of the probability measures on
the space h)(D,) (resp. h'(D,)) such that Ppp (resp. P}, ) is the minimizer of 7, , (vesp. F; ).
The convexity of F; (resp. F; ) allows to perform a perturbative analysis around its minimizer,
i.e. the measure P, ;, (resp. ), ), and to obtain quantitative estimates which will turn out to be
crucial in the proof of Theorem 5.1.1.

DEFINITION 5.2.7. For each n € N and each p,q € R?, we define

P (hé(l]n)) - R

[P’»—>IE|: > Ve(p-e+V¢e)]+H(P)a

eClOp

Fnp

where ¢ is a random variable of law P. Similarly, we define

P(h'(o,)) >R
f;’q : * *
P* > E| Y (Ve(Vi(e)) —avi(e)) [+ H (PY),
ecOy
where 1 is a random variable of law P*.
The main property about this functional is stated in the following proposition.

PROPOSITION 5.2.8. Let V' be a finite dimensional real vector space equipped with a scalar
product. We denote by By be the Borel set associated to V. For any measurable function
f:V = R bounded from below, one has the formula

5.2.4 -1 f - d:'f(/ P(d +H]P’)
(52.4) oz [ exp(-f(@) dr=_int ([ f@)B(dr)+ H (P)
where the integral in the left-hand side is computed with respect to the Lebesgue measure on V.
As a consequence, one has the following formula, for each n € N and each p € R?,
1 1

(5.2.5) v(On,p) = inf (—E[ Ve(p-e+V¢(e))]+—H (IP’)),

rer (o \ 1.1 L2, N
where in the previous formula, ¢ is a random variable of law P. Moreover the minimum is
attained for the measure Py, ,,. Similarly, one has, for each q € RY,

(5.2.6) v (Op,q) = sup (| Dln |E [— Z (Ve (VY(e)) —q- Vw(e))] _ 1 H (P*)),

PreP(hl(on)) eSOn | On |

where in the previous formula, ¥ is a random variable of law P*. Moreover the minimum is
attained for the measure P}, .
b

PROOF. We first prove (5.2.4) and decompose the proof into two steps.

Step 1. Let P be a probability measure on V', we want to show that

(5.2.7) fvf(x)P(dx)+H(P)z—logfvexp(—f(x))dx.

First note that if H(P) = oo, then the term on the left-hand side is equal to co and the inequality
is satisfied. Thus one can assume that H (IP) < oo, this implies that P is absolutely continuous
with respect to the Lebesgue measure on V' and we denote by h its density. In particular, we
have

H(P) = fv h(z)Inh(x) dz.
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Similarly, one can assume that [i, f(z)h(z) dz < oo otherwise the estimate (5.2.7) is automatically
verified. Using that h is a probability density and the Jensen inequality, one obtains

exp (— fv f@)h(z)de - H (IP’)) < /V exp (—f(x) —Inh(z)) h(x) dx.

We then denote
A:={xeV : h(z)>0}eBy,
so that

exp(- [ f@h(@)do-H @) < [ 1a(@)exp (~1(@) ha) hz) do
< [ 1a@)exp (- (2)) do
S/Vexp(—f(:n)) dzx.

This is precisely (5.2.7).
Step 2. We assume that

/Vexp(—f(a:))dx<ooand fvyf(x)\exp(—f(g;)) dz < oo.

and construct a measure P € P (V') satisfying

(5.2.8) [Pf(x)P(dx)+H(P)=—1ogfvexp(—f(a;))dx.

In this case, we define

L ew(f@)
= T.
Jyoxp (=f(x)) da
It is clear that P <« Leby and, from the assumption required on the function f for this step, that
H (P) < co. An explicit computation gives

[ r@rn 5@ = [ f@) - f@) - [ o () dr ) Pan)

:ln(fvexp(—f(x)) da:)]P’(da:).
This completes the proof of (5.2.4).
Step 3. In this step, we assume that

J e (-f@) de=coor [ [f(@)|exp (~f(x)) da=o0
and we construct a sequence of probability measures IP,, such that
[ 1 @)Ba(dn) + H (Bar) — ~log [ exp(~f(2) da.
where we used the convention
—log/‘;exp(—f(x)) dx = —o0 if [/exp(—f(a:)) dx = oo.
To this end, we define, for each n € N,
e (f @) L and fa)<ny
" Jve (CF@E) Lgien and feyen) 97
With this definition, we compute
[ s@ypa(ar) + 1 (P,) - —ln(/‘-/exp(—f(x))]l{lx‘gn and jeyens dx).

Sending n — co gives the result.

dx.
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Step 4. In this step, we prove (5.2.5). First note that by the bound V.(x) < §|x|2, there
exists a constant C := C(d, \) < oo such that for each n € N and each ¢ € h{ (0,),

(5.2.9) > Ve(pre+Vole)) <Cp+C Y o).

ecOy xelp

Using this inequality, we deduce that one can apply (5.2.4) with V' = h(l) (0,,) equipped with the
standard scalar product and f(¢) = Yecg, Ve (p- e+ Vé(e)). Moreover, using the estimate (5.2.9),
one sees

L exp(=f(@) do<ooand [ |f(9)|exp(-£(4)) do < oo.
ho(Dn) hg (O n)
Thus applying the result proved in Steps 1 and 2, one has

[Z Ve (p- e+v¢<e>>]

ecO

v (Op,p) = inf H (P)

PeP(hi(an)) | On | | On |

and the minimum is attained for the measure
o exp(=Yecy Ve(p-e+Vo(e))) dp
]P)n7p(d¢) - *
fh})(mn) exp (= Yecy Ve(p-e+Vo(e))) do

The proof of (5.2.6) is similar and the details are left to the reader. ]

5.2.3. Optimal transport and displacement convexity. In this section, we introduce
a few definitions about optimal transport and state one of the main tools of this article, namely
the displacement convexity. We first give a definition of the optimal coupling. The existence
of this coupling is rather standard and the uniqueness is more involved and is a byproduct of
Brenier’s theorem. We refer to [146, Proposition 2.1 and Theorem 2.12] for this definition.

DEFINITION 5.2.9. Let U be a finite dimensional real vector space equipped with a scalar
product. We denote by |-| the norm associated to this scalar product. Let X and Y be two
random variables taking values in U and denote their laws by Px and Py respectively. Assume
additionally that Px and Py have a finite second moment, i.e,

(5.2.10) E[|X[*] < 00 and E[|Y]*] < 00

and that they are absolutely continuous with respect to the Lebesgue measure on V', then the
minimization problem

x - (dx,d
HeH(mey) f @ - y* pu(dw, dy)
admits a unique minimizer denoted by p(x,yy and called the optimal coupling between X and Y.

For t € [0,1], we denote by T; the mapping
UxU-U
! "{(x,y) > (L= t)z vy,
and for two random variables X and Y taking values in U with finite second moment, we denote
by
pe = (Te), (x,yys
this is the law of (1-¢)X +tY when the coupling between X and Y is the optimal coupling. The

main property we need to use is called the displacement convexity and stated in the following
proposition. We refer to [146, Chapter 5] for this theorem but it is mostly due to McCann [115].

PROPOSITION 5.2.10 (Displacement convexity, Theorem 5.15 of [146]). Let U be a finite
dimensional real vector space equipped with a scalar product, let X andY be two random variables
taking values in U with finite second moment, i.e satisfying (5.2.10), then the function t - H (u;)
is conver, i.e., for each t €[0,1],

H(u)<(1-t)H (Px) +tH (Py).
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5.2.4. Coupling lemmas. Thanks to optimal transport theory and particularly thanks to
Definition 5.2.9, we are able to couple two random variables. The next question which arises,
and which needs to be answered to prove Theorem 5.1.1, is to find a way to couple three random
variables. Broadly speaking, the question we need to answer is the following: assume that we are
given three random variables X, Y and Z, a coupling between X and Y and another coupling
between Y and Z, can we find a coupling between X, Y and Z7 This question can be positively
answered thanks to the following proposition.

PROPOSITION 5.2.11. Let (E1,B1), (E2,B2), (E3,B3) be three Polish spaces equipped with
their Borel o-algebras. Assume that we are given three probability measures Px on Ei, Py on Es
and Pz on E3 as well as a coupling P(x yy between Px, Py and a coupling Py, 7y between Py,
Py, that is to say two measures on (Fy x Ea,81 ® Ba) and (E2 x E3, By ® B3) satisfying, for each
(Bl, BQ, Bg) € (Bl, 82, 83),

IP(X,Y) (Bl X EQ) = IP)X (Bl) s ]P(X,Y) (E X BQ) = IPY (BQ) and
Pey,zy (B2 x E) =Py (Bz), Py z) (£ x B3) =Pz (Bs),

then there exists a probability measure P x y, 7y on (E1 x Bz x E3,B1 ® Ba ® B3) such that for each
Bis € B1 ® By and each Bog € By ® Bs,

(5.2.11) Pix,y,z)y (B2 x E3) = P(x vy (B12) and Px y,z) (E1 x Bas) =Py, z) (Bas) .

REMARK 5.2.12. As was mentioned earlier, in this article we think of random variables as
laws and we do not assume that there is an underlying probability space (€2, F,P) on which all
the random variables are already defined. For instance, we will say that we are given two random
variables (X,Y) and (Y, Z) to mean that we are given two measures P(x y) and P(y ;) such
that the marginals of P(y y) are Px and Py and the marginals of Py, 7y are Py and Pz without
assuming that there exists an implicit probability space on which X,Y and Z are defined, indeed
in that case the statement of the proposition would be trivial.

This convention allows to simplify the notation in the proofs and has the following consequence:
when we are given two random variables X and Y, we need to be careful to always construct a
coupling between X and Y before introducing the random variables X + Y, XY or any other
display involving both X and Y.

The proof of Proposition 5.2.11 relies on the existence of the conditional law which is recalled
below.

PROPOSITION 5.2.13 (Theorem 33.3 and Theorem 34.5 of [31]). Let (E,€) and (F,F)
be two Polish spaces equipped with their Borel o-algebras. Assume that we are given two
probability measures P1 and Py on E and F respectively. Let P19 be a probability measure on
(Ex F,E®F) whose first and second marginals are P1 and Py respectively, then there exists a
mapping v: F1 x F - R, such that

(1) for each x € E, v(x,-) is a probability measure on (F,F)
(2) for each A€ F, the mapping

(E,€) ~ (R,B(R))
v(4) { x—v(x,A)

15 measurable.

(3) For each Ay € E and each Ay € F,
P1a (A1 x A2) = [A v (z, A2) Py (dz).
1

We can now prove Proposition 5.2.11.
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PrROOF OF PROPOSITION 5.2.11. The idea is to apply Proposition 5.2.13 to the two laws
P(x,y) and P(y,z). This gives the existence of two conditional laws denoted by vx and vz such
that for each By, By, Bs € (By, B2, Bs),

Pxyy(B1 x Bg) = fB vx (y, B1) Py (dy) and Py, 7)(B2 x B3) = /B vz (y, B3) Py (dy).
2 2
We can the define for each By, B, B3 € (B, Ba, Bs),
Pexyz (Brx Bax By) = [ vx (v, B1) vz (v, Bs) Py (dy).
2

Using standard tools from measure theory, one can then extend P(y y,z) into a measure on
B1 ® By ® B3 and verify that this measure satisfies (5.2.11). O

5.2.5. Functional inequalities on the lattice. In this section, we want to prove a few
functional inequalities for functions on the lattice Z%, namely the Poincaré inequality, and the
multiscale Poincaré inequality. These inequalities are known on R? so the strategy of the proof
is to extend functions defined on Z? to R%, to apply the inequalities to the extended functions
and then show that the inequality obtained for the extended function is enough to prove the
inequality for the discrete function.

The second inequality presented, called the multiscale Poincaré inequality, is a convenient
tool to control the L? norm of a function by the spatial average of its gradient. It is proved
in [18, Proposition 1.7 and Lemma 1.8]. The philosophy behind it comes from the theory of
stochastic homogenization and roughly states that the usual Poincaré inequality can be refined
by estimating the L? norm of a function by the spatial average of the gradient. This inequality
is useful when one is dealing with rapidly oscillating functions, which frequently appear in
homogenization. Indeed for these functions, the oscillations cancel out in the spatial average
of the gradient, as a result these spatial averages are much smaller than the L? norm of the
gradient. The resulting estimate is thus much more precise than the standard Poincaré inequality.
We recall the definition of Z,, , given in (5.1.1).

PROPOSITION 5.2.14 (Poincaré and Multiscale Poincaré inequalities). Let O be a cube of Z¢
of size R and u:0 — R, then one has the inequality, for some C := C(d) < oo

(5.2.12) S Ju(z) - (), < CR? Y [vu(e)?,
xeld ecO
if one assumes that u=0 on 00O, then one has
(5.2.13) 3 Ju(z)]* < CR® Y |[vu(e) .
xed ecO
For each n € N, there exists a constant C := C(d) < oo such that for each u: 0, — R,

(5.2.14) 3 Ju(@) - (g, [ < C Y [vule)? +C3”Z3k(‘ > \W“)zmk\z)'

n| zeOn, eCOn k | yeZy n
If one assume that u € hi(0,), then one has

(5.2.15) 1 > lu(z)]> < C > [vu(e)? +C’3”23k(

| n| xedy eCOp

1

> \<w>zmkl2)-

| k7n yezk,n

PROOF. The idea is to construct a smooth function @ which is close to u by first extending
it to be piecewise constant on the cubes z + (—%, %)d, where z € O,,. We then make this function
smooth by taking the convolution with a smooth approximation of the identity supported in the
ball Byy. It follows that %(2) = u(z) for each z € O, and that the following estimate on holds:
for each z € Oy,
sup (Vi) < C 3 fuly) - ().

~T

#+(-33)

N
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One can then apply the Poincaré inequalities to the function @ and then check that this is enough
to obtain (5.2.12) and (5.2.13). The proof of (5.2.14) follows the same lines, a proof of this
inequality is stated in Proposition 2.A.2 of Chapter 2. Note that the version stated here is a
slight modification of the one which can be found there but can be deduced from it by applying
the Cauchy-Schwarz inequality.

The version of the multiscale Poincaré inequality with 0 boundary condition given in (5.2.15)
cannot be found in Chapter 2. Nevertheless the continuous version of this inequality is a
consequence of [18, Proposition 1.7 and Lemma 1.8]. The transposition to the discrete setting is
identical to the proof given in Proposition 2.A.2. [l

5.3. Subadditive quantities and their basic properties

The goal of this section is to study the quantities v and v* introduced in the previous sections.
We prove a series of results about these quantities, which are reminiscent of the basic properties
of v and v* in stochastic homogenization, see [18, Lemma 1.1 and Lemma 2.2]. We first state
these properties in the same proposition. Most of them are already known in the literature and
in Remark 5.3.2, we provide references for these results. We then prove the remaining results.

PROPOSITION 5.3.1 (Properties of v and v*). There ezists a constant C := C(d,\) < oo such
that the following properties hold

e Subadditivity. For each n €N and each p € R?,

(5.3.1) v (Ops1,p) <V (Tp,p) + C (1 +[p[*) 37"
Similarly, for each q € R,
(5.3.2) v* (Ops1,9) <V* (Op,q) +C (1 + |q|2) 3.

e One-sided convex duality. For each p,q e R% and each n €N,
(5.3.3) v(Op,p) +v*(0n,q) 2p-q—-C37".

e Quadratic bounds. there exists a small constant ¢ := ¢(d, \) >0 such that for each n € N
and each p € R?

(5.3.4) —C+clpl® <v(0n,p) <C(1+p]%),
and for each q e RY,
(5.3.5) ~C+dgl’ <v* (On,9) <C(1+1]g),
e Uniform convexity of v. For each pg,p: € R?,
1 1 1 Po+p
(536) 5|p0—p1|2ﬁ §V(Dn7p0)+§V(Dn7p1)_y(|:‘n7 0 1) SC’|pO_pl|2‘

e Convexity of v*. The mapping q - v*(0Oy,q) is convez.

e L? bounds for the minimizers. For each p € R?

> [Vénp(e)P|<C(L+[p]).

1
_| ni ecdy,

(5.3.7) E

Similarly, for each q € R, one has

(5.3.8) E| 1 S [9ng(e)f | <O+ lg).

_| n| ecOp

REMARK 5.3.2. The reader can find in the literature the proofs of the following results.
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(1) The subadditivity of v stated in (5.3.1) is essentially proved by Funaki and Spohn
in [70, Lemma II.1].

(2) In Proposition 5.3.9, we prove a quantitative version of the subadditivity inequal-
ity (5.3.2) which is strictly stronger than the estimate (5.3.2).

(3) The quadratic bounds for v stated in (5.3.4) are elementary and we refer to the
monograph of Funaki [68, Section 5.2].

(4) The uniform convexity of the finite volume surface tension v stated in (5.3.6) was
established by Deuschel Giacomin and Ioffe in [56, Lemma 3.6].

(5) The convexity of the mapping g - v* (O,,¢) is a straightforward application of the
Cauchy-Schwarz inequality.

(6) The L? bounds for the minimizers (5.3.7) and (5.3.7) can be obtained the following way.
Using the explicit formula for v and v* together with a computation similar to [56,
Lemma 2.11], one derives the bounds

E[exp ( 5 |v¢n,q|2)] <exp (Ol (1 + o))

ecOy
and E [exp (6 Z |V¢n7q|2)] <exp (C’ |0, (1 + |p|2)) .
ecOy
for some € :=¢(d,\) >0 and C := C(d,\) < oo. By the Jensen inequality, this implies,

and is in fact much stronger than, the desired estimates.

The two statements of Proposition 5.3.1 which remain to be proved are the one-sided convex
duality (5.3.3) and the quadratic bound (5.3.8) for v*. They are established in Propositions 5.3.6
and 5.3.7 respectively.

REMARK 5.3.3. From the subadditivity properties and the quadratic bounds, we obtain that
for each p, q € R?, the quantities v (O,,p) and v* (O,,¢) converge as n — co. Moreover the limit
satisfies the convexity and one-sided duality properties. This is summarized in the following
proposition.

PROPOSITION 5.3.4. For each p € R? and q € R?, the quantities v (Q,,p) and v* (On,q)
converge as n — oo. We denote by U(p) and 7*(q) their respective limits. Moreover, there exists
a constant C := C(d,\) > oo such that the following properties hold

e One-sided convex duality. For each p,q € R?,
v(p)+7"(¢) 2p-q.
e Quadratic bounds. There exists a small constant ¢ := c(d,\) > 0 such that for each
peRY,
~C+cpl’ <7 (p) <C(1+]pP),
and for each q € R,
—-C+ c|q|2 <7"(q) < C(l + |q|2) .

e Convexity and uniform convexity. The mapping q — 7* (q) is convex and for each
d
P1,p2 € R ’

1 ) ]-_ 1_ _( +p1) 2
Zlpo-piff <= + = -7 (=) < Clpo - pi
C,|P0 1 2V(P0) 21/(]91) v 5 Ipo — p1

PROOF. The properties mentioned in the proposition are valid for the quantities v (O,, p)
and v* (Oy,¢). Sending n to infinity implies the results. For the case of the surface tension v,
this result was originally obtained by Funaki and Spohn [70, Proposition 1.1 (i)]. t
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REMARK 5.3.5. The previous proposition proves the estimate (5.1.12) of Theorem 5.1.1. Also
by the previous proposition, to prove (5.1.14), there remains to show the upper bound

7" (q) <sup-v(p) +p-4q,
peRd

since the lower bound follows from the one-sided convex duality. This upper bound will be
proved later in the article. The uniform convexity of 7* stated in (5.1.13) will then be deduced
from (5.1.14) and (5.1.12).

5.3.1. Convex duality: lower bound. We now turn to the proof of the convex duality
for v and v*.

PROPOSITION 5.3.6 (Convex duality). There exists a constant C := C(d,\) < oo such that for
each p,q € R? and each n € N,

v(Op,p) +v*(Op,q) 2p-q—C3™".

PROOF. We recall the notation 00, and O, to denote respectively the boundary and the
interior of the cube O,. We decompose the space h'(0,) into three orthogonal subspaces

(5.3.9) W (m,) = b (9,) ® h! (22) & Ro,
where we use a slight abuse of notation and denote by

Wt (80,) = {pe h(o,) : Yo =0} and Al (29) = {we h(o,) : Yion, =0},

and where v is the function defined by

1 oo ()]
v = | n|]1|:|% _ | ’I’L| ]laDn ,
| O | (=& 00|

Y v(z)=0and ) v(z)? = 1.

zeOy zeOy

so that

Since it will be important later in the proof, we note that, for each n € N,
(5.3.10) dim A' (80,) = |80, - 1 < ¢3(d=1n,

We split the proof into 4 steps.
e In Step 1, we show that, for some C := C(d,\) < oo

1
5.3.11 *(Onyq) > —1 f Y, dy |- 37,
(5.3.11) ) pton( fo o (- T Ve av)
e In Step 2, we show that, for some C = C(d) < o0
1
3.12 n,0)>——1 / — V. du | - 7dn'
5312 wEu0-gton( [ ew(- T viwu) do) - ous

|0, €COn

e In Step 3, we combine the results of Steps 1 and 2 to obtain that there exists C :=
C(d,\) < oo such that,

v*(On,q) +v(0,,0) > -C37".
e In Step 4, we remove the assumption p = 0 and prove for each p, ¢ € R?,

v*(On,q) + v (Op,p) 2p-q-C3™".
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Step 1. First, by (5.3.9), any function 1) € iLl(Dn) can be uniquely decomposed according to
Y=+ +tv

with 11 € h! (80,), 12 € h' (02) and ¢ € R. Note that each function 15 in A! (0°) is equal to 0
on the boundary of O, thus we have, for each g € R?,

Z q-Via(e) =0.
ecOy
Since the function v is constant on 90, we also have

> q-vou(e) =0.

ecOy

To prove (5.3.11), it is sufficient to prove, for each 1 € Al (O;) and each t € R,

(5.3.13) .[le(amn) exp (— Y, (Ve(V (W1 +1a+tv)(e)) —q- le(e))) din

eClOn
3(d71)n
2 e (- $ V(9 (a0 @)
eCOn
for some c := ¢(d,\) > 0. Indeed, the estimate (5.3.11) is then obtained by integrating the
previous inequality over A (02) ® Ruv. To prove (5.3.13), we use the following Taylor expansion
1
Ve(V (41 + 92 +10) (€)) < Ve (V (42 + t0) (€)) + VIV (Y2 +10) (¢)) Vibr(e) + 55 V().
This implies

exp(— S (Ve (¥ (1 + 2 + 1) (e))—q-wl(e)))

2o (= X (VT (o 0) )+ (V% (W 0) €)= () 92 (e) + 5 (980 )

Using the crude inequality for an edge e = (x,y) € O,

IV (e)]? = [ (2) =i (y)IP <2 (@) + 2 (y)],

and summing over all the edges of O,, yields

Y V(e <2d Y di(x),

eSOy, xe€d0y,

d 4 [ Am
N > .
[Rexp(a:r /\ZL‘ )dx_ 7

With the previous estimate and (5.3.10), one proves

But note that for each a € R,

fmmexp(‘ 2 (V9 (ta+ 10) (0)) D1 (€) =4 Vin(6)) + §

ecOy

> |w1<a:>|2) dipy > A

xe€d0n,

for some c:=¢(d, \) > 0. Combining the few previous displays gives

/El(amn) b (_ Z Ve (V (1 + 92 +tv) (€)) - v¢1(e)) dipy

ecOn

> S exp (— > Ve (V (2 + tv) (e))) .

ecOy

This is precisely (5.3.13).
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Step 2. We denote by
- 1

V= —— 1
]
so that ¥, ¥(x)? = 1. Note that the two functions v and ¥ are related by

1 oo 1 oo s
. o, ( o, |n|)]1D%

[3a I\ 100" |0 [mi 00|

NN EAR
| On | miy |00,
To shorten the notation, we denote by

o = VITRL[ 102 1ol )
O | =t 05|

Combining the two previous displays we obtain, for each e € O,,
(5.3.14) vu(e) = a,Vi(e).
Note also that, there exist ¢:= ¢(d) >0 and C := C'(d) < oo such that

(d-1)n @-1n

(5.3.15) 372 <a,<C3 2

We then use the orthogonal decomposition h} (0,,) = Al (20) ® R and the decomposition of the
Lebesgue measure explained in (5.1.4) to obtain

fhé(m)exp (— 2 Ve(Vcb(e))) d¢ = fR/,ﬂZl(D%)exp(— > Ve(w(e)+tw(e))) dedt.

eCdp eCln

Using (5.3.14), we obtain

/h})(un)eXp(_ 2 Ve(v¢(€))) do

ecOyn

= Aﬁl(mg)exp (— > Ve(wb(e)+ainw(e))) dodt

ecdy,

:anfRf;Ll(D%)exp(— D VE(V(JS(G)HVU(G))) dodt

eClpn

S A G e P

ecOy
Taking the logarithm, dividing by | O, | and using (5.3.15), we obtain (5.3.12).
Step 3. Combining the main results of Steps 1 and 2 gives
v (On,q) + v (0,,0) > -C3™™ - Cn3™ " > -C3™.

Step 4. Let p e R%, define V, := V. (p(e) +-) and denote by

1 ~
L) exp(— 5 vg(v¢<e>>) o,

ecU

7(0p,0) = -

and, for every ¢ € R?,

ﬂ*(Dn7Q)::

o8 [ 0 (- % (Fvo(e) - a-v0(0) ) do

ecOy

| On |
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The functions V, satisfy the same property of uniform convexity property (5.1.5) as Vg, thus one
can apply the result of Steps 1, 2 and 3 with these functions. This gives, for every ¢ € R%,
7(0p,0) + 77 (0p, q) > -C37".
But note that
000 - -rotog [ e~ F Tilvaten) ao
| On | hg(n)

ecU

1
s [, (- 5 Vit e v v as

ecU
= V(Dn,p).
Note also that, by translation invariance of the Lebesgue measure on ;Ll(ljn), one can perform

the change of variables ¢ := ¢ —1,,, where [, € iozl(l:ln) is affine the function defined by {,(x) =p- .
This gives, for each ¢q € R,

’ﬁ*(Dn,q)=ﬁlog o P (- D (‘Z(W(e))—q‘vcb(e))) dg

= |Dln|log El(mn)exp —eglj:n (Ve(p.e+v¢(e))_q.v¢(€))) do
1

|10g o P CZD: (Ve(W(e))+(q-e)(p-e)—q-V¢(e))) dy

= o
=v"(0n,q) - P q.
Combining the few previous displays yields, for each p,q € R?,
v(Op,p) +v*(0n,q) 2p-q—C37".
The proof of Proposition 5.3.6 is complete. Il
5.3.2. Quadratic bounds for v*. We now prove the quadratic bound property for v*.

PROPOSITION 5.3.7 (Quadratic bounds for v*). There exist two constants ¢ := c(d,\) >0 and
C = C(d,\) < oo such that, for each q € R? and each n €N,

(5.3.16) —C+dgf <v*(Tn,q) <CA+|qP).
PROOF. We now prove (5.3.16). We start with the upper bound. By (5.3.2), we have for
each integer n € N and each ¢ € R?,
v*(On,q) <v*(O1,9) + C(1+ ).
A straightforward computation gives the bound
v*(O1,9) < C(1 +g*).
Combining the two previous displays gives the upper bound of (5.3.16).

We then prove the lower bound, the idea is to use the convex duality proved in Proposition 5.3.6
combined with the upper bound estimate (5.3.4). By Proposition 5.3.6, for each p,q € R?,

V(On,p) + V" (Onsq) 2p-q—-C37".
Using (5.3.4) and the crude bound 37" < 1, the previous estimate becomes
v (On,q) 2p-q—-C(1+[pf).
Picking p = ¢/2C gives

V' (On, q) 2 la® _
ny = 4C

This is the desired lower bound. O
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5.3.3. Two scales comparison. The goal of this section is obtain a quantitative version
of the subadditivity for the v and v* quantities stated in Proposition 5.3.1. More precisely one
wishes to derive a second variation type of statement, following the techniques of the calculus of
variations, for the surface tensions v and v*: the objective is to construct, for m < n, a coupling
between the random variables ¢y, , and ¢, ,, (resp. ¥y, , and ¥, ,) such that the L? norm of the
gradient of their difference is controlled by v(Oy,,p) — v(On, p).

An interesting consequence of this estimate is that, since the sequence v (O, p) converges,
the difference v(0,, p) — v(Op, p) will be small when m and n are large: this implies that the
gradient of the fields on two different scales are close in the L? norm.

For any pair of integers m,n € N with m < n, the triadic cube O, can be split into 3(n-m)d
cubes of the form z +0,,, with z € Z,, ,. Denote by (¢.):cz,,, a family of random variables such
that

e For each z € 2, ,,, ¢, takes values in h(l) (2 +0Oy,) and the law of ¢, (- — z) is Py,
e The random variables ¢, are independent.
We can then, for each z € Z,, ,, see ¢, as a random variable taking value in hé (On), by
extending it to be 0 on O, \ (z + O,,). We also denote by ¢ := Yz, Pz

PROPOSITION 5.3.8 (Two scale comparison for v). Given m,n € N with m <n and p € R?,
consider the random variable ¢ defined in the previous paragraph and taking values in h(l)(Dn).
There exists a coupling between ¢ and ¢pn, and a constant C = C(d, \) < oo such that,

(5.3.17) E| O |v¢(e)—v¢n,p(e)l2] < C ((Om,q) - v(On,q)) + C372 (1+pf).

| n | ecOy,
PRrROOF. We first introduce the set of vertices 0,0 n € Oy, Which are on the boundary of
one of the z + O,, but not on the boundary of O,

2€Zm,n

(5.3.18) OintOm,n = ( UJ aGz+ Dm)) 00O, .

Note that the cardinality of this set satisfies the upper bound estimate
|0int O | < C37

An idea to obtain (5.3.17) relies on the second variation formula from calculus of variations
applied to the functional F,, ,: by considering the optimal coupling between the laws of ¢ and
®np, one can use the displacement convexity of the entropy and the uniform convexity of Ve to
obtain uniform convexity for the functional 7, , and then apply the standard proof of the second
variation formula for uniformly convex functionals.

Unfortunately a technical problem has to be treated along the way: with the current definition
of the function ¢, one has

Vo e amtljm,n, ¢(.%') =0.
A consequence of the previous identity is that the law of ¢ is not absolutely continuous with
respect to the Lebesgue measure on h(l)(Dn) and thus its entropy is infinite. Nevertheless, this is
the only obstruction and to remedy this the idea is to add a few extra random variables which
are small and whose only purpose is to make the entropy of ¢ finite. We consequently introduce
a random variable X taking values in h(l)(Dn) and satisfying

o for each x € 0jntOp, 1, the law of X () is uniform on [0, 1] and for each x € 0,11\ Ojnt Oy 1,
X(z)=0,

e the R-valued random variables (X (z)),., are independent,

nt0m,n

e the random variables X and ¢ are indepen(tient.
We then consider the random variable ¢’ := ¢ + X. It is a random variable taking value in h}(0y,).
Moreover, by construction, we see that this random variable is absolutely continuous with respect
to the Lebesgue measure on h(0,). We denote by Py its law. The idea to keep in mind is that
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the random variable ¢’ is a small perturbation of the random variable ¢ and thanks to that it
will be possible to obtain estimates on ¢ from estimates on ¢'. This is carried out in Steps 3 and
4 of the proof.

We then split the proof into 6 steps.
e In Step 1, we compute the entropy of Py and prove that

(5.3.19) H(Py)=30"1H (B,,,),

where the entropy on the left-hand side is computed with respect to the Lebesgue
measure on h%)(ljn) and the entropy on the right-hand side is computed with respect to
the Lebesgue measure on hé(Dm).

e In Step 2, we consider the optimal coupling between ¢’ and ¢y, , and prove that, under
this coupling,

1

(5.3.20) IE[ > \W'(e)—v%,p(e)\Q]

| n | ecOn

gc( ! E[Z Ve(p(6)+V¢'(€))]+

|0, | LT,

o, |H (qu) - I/(Dn,p)) .

e In Step 3, we estimate the term on the right-hand side of (5.3.20) and prove

(5.3.21) ! E[Z Ve(p(e)+V¢'(e))]£ Dl ]E[Z Ve(p(e)+v¢>(e))]+C3—’§(1+|p|).

0| Lo, |0, | Le&T,

e In Step 4, we combine the main results of Steps 1 and 3 to obtain
1 1 _m
mE[ Z ‘/e (p(e) + v¢,(€)):| + mH (P¢I) <v (Dn,p) +C3 2 (1 + |p|2)
n ecln n

e In Step 5, we estimate the term on the left-hand side of (5.3.20). We replace the ¢’ by
¢ and show that this operation can be performed up to a small error term:
(5.3.22)

E[ L D |V¢)(e)—V¢)n7p(e)|2]§0E|:

| n | ecOn,

1 m
P+ C37% (1+p)).

2. [Vé'(e) = Vénp(e)

| n | ecOpn
Note that to compute the expectation on the left-hand side, we used the coupling
between ¢ and ¢, , which is induced by the coupling between ¢’ and ¢y, ;.

e In Step 6, the conclusion, we combine the main results of Steps 2, 3, 4 and 5 to
obtain (5.3.17).

Step 1. The idea to obtain (5.3.19) is to use Proposition 5.2.4 pertaining to the entropy of a
pair of random variables. To this end, note that one has the orthogonal decomposition of h(l)(Dn)

J_ .
hi(On) = @ hi(z+0,) ®RInEmn

2€Zmn
where R%nt0m.n gtands for the set of functions from OintOm,n to R.

Using the previous remark, one can apply Proposition 5.2.6 with Y := ¢, Z := X and
consequently Y + Z = ¢'. This leads to

H(]P)d)/) = H(P¢) +H(Px),

where the entropy of ¢’ (resp. ¢ and X) is computed with respect to the Lebesgue measure on
h$(On) (resp. ® hj(z+0,) and RImtOmn),

20int0Om,n
On the one hand, since the random variables (X () )
uniform on [0,1], one has

are independent and of law

int0Om,n

H (Px)=0.
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On the other hand, one also has the equality ¢’ = Y 2e0imiOm.n P2+ Using the independence of
the family (¢.),.z , that for each z € Z,, ,, ¢.(- - 2) has law Py, , and Proposition 5.2.6, with

3(n=m)d random variables instead of two, one deduces
H(Py)= Y H(Py)=30"MH(B,,).
2€Zm,n
Combining the few previous displays yields (5.3.19) and completes the proof of Step 1.

Step 2. Consider the optimal coupling with respect to the L? scalar product on h(l) (0n)

¢ +dnp
2

between ¢' and ¢y, and denote by P44, , the law of the random variable under this

2
coupling. Using Proposition 5.2.10 about the displacement convexity of the entropy, one has

1 1
H (Pélwp) < §H (Py) + 5H (Ppyp) -
2

Also by the uniform convexity of Vg, one has

AE[ 5 [96/(c) - v¢n,p<e>\2]

eCln

<E] 5 V(0 -] B[ 5 V006 900000

ecOp ecOy

2] 5 v [0+ T TEA)],

ecly, 2

By definition of v, the following equality holds
E[ Z V(p-e+ V(;Sn,p(e))] +H (P ) = v(3n,p).
ecn
Using the variational formulation for v given in Proposition 5.2.8, one derives the inequality

(T, p) sE[ D V(p(e)+ Vénp(e) + V' (e))] (m%p)

ecOy 2

Combining the few previous displays provides the inequality

E[ Z ‘ng'(e) - Vqﬁn,p(e)f]

ecdy,

eClOp
This is precisely (5.3.20) and the proof of Step 2 is complete.
Step 3. The main goal of this step is to prove the following estimate

[ Z |7 (p(e) +Vo (e))] [ Z Ve (p(e) + qu(e))] + 03_%(1 +p|).

ecOy eCOn

| On |
To achieve this, we recall that ¢’ is defined from ¢ according to the formula
§= 0+ X,

and that the random variable X is supported in the vertices of 0;,:0,,,. We denote by B,)n(,n the
set of edges of O, where VX is supported, i.e.

Bn)fb,n = {(x,y) € Bd(Dn) X e aint Om,n OT Y € 8int|:'m,n} .
One can estimate the cardinality of B,),in according to

(5.3.23) By | < C3%™,
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We then split the sum and use that V.X is supported on Bﬁyn to get

(5.324) Y Ve(p(e)+Ve'(e))= > Ve(p(e)+Vg'(e))+ 3 Ve(p(e)+Ve'(e))

€S0n e€On\B , eeBX ,,
= 2 Vele)+vee)+ > Ve(p(e)+ve'(e)).
e€On\BX ,, eeBX ,,

The second term on the right-hand side can be estimated by using the uniform convexity of V.
and a Taylor expansion,

>, Ve(p(e)+v¢'(e)) = . Ve(p(e) +Vo(e) + VX (e))

e€BX , eeBY o,
T Vee)+ TO(e)) + VE (e) + Vo)) VX () + HTX (O
eeBX

By definition of X, its gradient is bounded by 1 and by the assumption made on the elastic
potential V., one has

1
vueR, V()< ylal
Using these ideas, the previous estimate can be rewritten

> Ve(ple)+vd'(e)) < 3 (Velple) +Va(e)) +[Ve(e)]) + C[B | (1+p]).

QEBTXn,n eEB%,n

Using the estimate on the cardinality of Bf,fm given in (5.3.23) and the Cauchy-Schwarz inequality,
one has

>, Vel(ple) +vd'(e)) < 3 Ve(p(6)+V¢(6))+3dn2m( ) V¢(6)I2) + O3 (1 + [p).

eeBX eeBX eeBX ,

Taking the expectation and dividing by | O, | gives

E[L 5> Ve<p(e>+v¢’(e>)]sE[ Loy ve<p(e>+v¢(e>>]

| TL| X | n| X
eGBm,n eGBm,n

+3 R ( >, |V¢(€)I2) + 37" (1 +pl)-

X
eeBa

By the Cauchy-Schwarz inequality, we further obtain

IE[ ! 3 Ve(p(e)+V¢'(e))]£]E[

| Un | eeBX ,

>, Velple)+ V(ﬁ(e))]

| Un | eeBX

1

2
+3d"§mE[ S vee)*| +C37(1+p]).
eeBX ,,
Combining the previous display with (5.3.24) gives
1 1
E[|_ 5 ve(p(e>+v¢'<e>)] sEL 5 v;<p(e>+v¢(e>)]
n | ecCn n | eCOp
) 3
+37 2 E[ Z Ivo(e)| +C37™(1+[p|).
eeBX ,
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The proof of (5.3.21) is almost complete: note that by the bound (5.3.7) stated in Propostion 5.3.1

and the construction of the random variable ¢, one has the energy estimate

(5.3.25) [ > |V¢(€)|2] <C(1+[pP).

ecy,

| On
This immediately implies the desired result since

1

E[ 5 rv¢<e>12] sE[z |v¢<e>\2]2

eeBX ,, eChy

Step 4. With the same proof as in Step 2, we can decompose

SV (p(e)+v¢<e)>]

| n | eCly

1
= E
| O |

> 2 Ve((e)+ves(e)+ > Ve(p(e))].

2€Zm,n eS(2+0m) €€Bm,n

Using the estimate V() < %|ac|2 and the bound on the cardinality of By,

|Bp.n| < O3,

one obtains

— [z v<p<e>+v¢<e>>]

ecy

< Z E[|E|1n| Z %(p(e)+v¢z(e))]+03m(1+|p|2)'

z€Zm,n ec(z+0m)

Combining this inequality with the main result (5.3.21) of Step 3, we obtain

n| [CZD Ve(p (e)+v¢'(e))]s|mln| > E[ 3 %(P(e)+v¢z(e))]

26Zm.n ec(z+0m)

+C3™(1+|pP?) +C37Z (1 +]p|).

The error term can be simplified according to

Ent PRACERAC)

ecln

S|E,1 > E[ > V;(p-e+V¢z(e))]+C3_7’?(1+Ipl2)-

n | 2€Zm.n ec(z+0m)

Adding the entropy of Py and using the equality proved in Step 1, we obtain

. [z v (p <e>+v¢'<e>)]+ o ()

eCOy

cgrinmm) S (E[,DL ) n<p<e>+v¢z<e>>]+ﬁH(Pm,p>)

2€Zm.n m | eC(z+0m)
+C372 (1+[p?).

Since the law of ¢, in z + O,, is Py, ,, we have, for each z € Z,,, ,,

SRATCE m(e))]

[| Dm ‘ eCz+0m

m,p) = V(Dm,p).

| Om
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Combining the two previous displays shows

1

E| > Ve(p(e) +ve'(e)) +DLH(IP>¢,)gu(um,p)+c3‘%(1+|p|2)

=Y = O |
and the proof of Step 4 is complete.

Step 5. We proceed as in Step 3 and use that the gradient of X is supported in Bn)g,n to
decompose the sum

(5.3.26) 2 |Ve'(e) = Vonp(e) = X 1Ve(e) + VX (e) - Vo p(e)’

ecn EEBT)g,n

+ Y [Ve(e) - Vonp(e).

eCO, B ,,

We then expand the first term on the right-hand side

>, [Vé(e) + VX (e) = Vny(e)l*

eeBX

= 2 IVB(e) - Voup(e) +2 Y. (Vo(e) = Vonp(e)) VX(e)+ Y [VX(e).

eeBX ., eeBX eeBX

Using that the gradient of X is bounded by 1, the Cauchy-Schwarz inequality and the upper

bound on the cardinality of Bﬁyn, one further obtains

Y. [Vé(e) + VX (e) = Vnp(e)*
eeBX

2
dn-m

> Y |Ve(e) - Vonp(e) - C372 S ve(e) - Vonp(e)?| - c3inm.

eEBém‘ eEB'r)g,n

Dividing by | O, | on both sides of the previous inequality and taking the expectation gives

> IVe(e) = Vonple)

|D” | eeB;X

El L S [96(e) + VX(€) - Véup(e) | 2 E
|D”|eeBern
~C3E|[ X (vele) - Vonp(e) | |-C37m

X
eeBa n

By (5.3.26) and the Cauchy-Schwarz inequality, one obtains

E[ . Z ‘V(b'(e) - V¢n,p(e)|2]

|On | &3,

ZE[ Y rw(e)—wn,p(e)r?]—m‘“5’“1@[ > Ve(e) - Vonp(e)?| - C37™

| n | eca, eeBX
,

There remains to estimate the second term on the right-hand side of the previous equation. To
do so, we recall the energy estimate already introduced in Step 4,

E[ L5 |v¢<e>|2]sc<1+|p|2>,

‘ Dn ecdp
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and by (5.3.7) of Proposition 5.3.1, one has

E[ Ly |v¢n,p<e>|2]sc<1+|p|2>.

| On | &5,

Combining the three previous displays shows

2 5 v - vons o] 2]

| On | &5,

> IVo(e) = Vonp(e)* |- C37% (1+]p)),

| On | &3,
and the proof of Step 5 is complete.
Step 6. The conclusion. First, combining the main results of Steps 2 and 4 gives,
2 _m
E[ > Vo' (e) = Vonp(e)] ] < C (v(Tm,p) = v(Tn,p)) + C372 (1+ |p?).
ecOy,
Then by the main result of Step 5, we obtain
E[ > [Vole) - Wﬁn,p(e)lz] < C' (v(Tm,p) — v(On,p)) + €372 (1 +[p]).
ecOy,
This is exactly (5.3.17) and the proof of Proposition 5.3.8 is complete. U
We now want to prove a version of the two scale comparison for v*. Similarly to what was

performed in Proposition 5.3.8, we fix two integers m,n € N such that m < n and define a family
of random variables v, for z € Z,, ,, according to

e For each z € Z,, ,, 1, takes values in ioll(z +0,), is equal to 0 in O, \ (z + O, ) and the
law of ¥, (-—2) is P}, .
e The random variables 1., for z € Z,, 5, are independent.

We also denote by 1)’ := Y2z ¥z and by Py its law, it is a probability measure on IiLl(Dn).

PROPOSITION 5.3.9 (Two scales comparison for v*). Given n,m € N satisfying m <n and
q €R%, consider the random variables v, and o' defined in the previous paragraph. There exist a
coupling between ' and 1y, 4 and a constant C := C(d, \) < oo such that,

1

(5.327) E > |Va(e) - Vibngle)

| Un | 26Zm, n eS(2+0m )
<C (V" (Om,q) ~v* (On,9)) + C(1 +g[*)37™.

PRrROOF. The first idea of the proof is to consider the following decomposition of the space
A (3,):

(5.3.28) Wop)= © h(z+o,)6H,

2€Zm,n

where we denote by
h! (z2+0m) = {w € ;Ll(Dn) : ¢|Dn\(z+\jm) = O} )
with a slight abuse of notation: we extend the functions of h! (z +0O,,) by 0 outside the cube
(z+0m). )
The remaining space H is the space of functions of h'(d,,) which are constant on the subcubes

(2+0n),cz, - It is a space of dimension 3%n=m) _ 1 and each function h € H can be written in
the following form

h = Z Azﬂzﬂjma

2€Zm n

for some real constants (A;),.z . satisfying ¥ .z, A.=0.
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For z € Z,, »,, we denote by 9, . orthogonal projections of the random variable ¢, 4 on the
space h' (z +0O,,). This defines a random variable taking values in i! (z + Oy,).

We also let i the orthogonal projection of the random variable v, , on the space H. Finally,
we introduce the notation

"4/1;1,(1 = Z T/sz,q-

2€Zm,n

This is a random variable taking values in 2@9 h'(z+0,) € h*(O,). Its law is a measure
Z€Zm,n

defined on the vector space @ h'(z+0p,) and is denoted by Py o

2€Zm,n

As in the proof of the previous proposition, we introduce B,, ,, the set of edges connecting
two subcubes of the form z + O,,, i.e.

(5.3.29) By = {(x,y) :3z,2" € Zyp, 2 # 2’ such thatw € 2 + O andy € 2’ + Dm},

so as to have the decomposition of the sum

(5.3.30) PIEED VDYDY

eCln  z€Zm pn €S2+0m  e€Bmn

Note also that for every h € H, the gradient Vh is supported on the edges of B,, , and
(5.3.31) for each z, 2’ € Z,, , with z # 2’ and for eache ¢ (z' + Dm) , Vy, ,(e) = 0.

This implies, for each z € Z,,, and each e ¢ z + O,

Vi, o(€) = Viy 4 (e).

The same result is valid for ¢": for each z € Z,, ,, and each e C z + Oy,
v (e) = Vips(e).

We now split the proof into 5 Steps. In Steps 1 to 4, we assume ¢ = 0. We then remove this
additional assumption in Step 5.

e In Step 1, we show that the law of ¢ is the minimizer of the variational problem

i%fE[ IS VE(W(G))]+H(P)7

2€Zm,n €C(2+0m )

where the infimum is chosen over all the probability measures on & h! (2 +0,,) and
2€Zm,n

the entropy is computed with respect to the Lebesgue measure on this space.
e In Step 2, we consider the optimal coupling between )" and 1/17’170 and derive the following
inequality,

E[L YOy \v@bZ(e)—vwz,o(e)\Q]

’ On | 2€Zm,n eS(2+0m)

1

SC(V*(DH,O)HE[ > > Vé(waL,o(e))]JriH(P %,o))'

| Dn | Zezm,n €§(Z+I:In) | Dn |

e In Step 3, we prove the following estimate pertaining to the random variables v, ,

(5.3.32) 3 Eﬂ! ! » v(vwi,o(e))]+

2€Zm.n | Un | eC(z+0m)

%H (Puz ) < =" (Bns0) + 3™,

=
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e In Step 4, we complete the proof and show that there exists a coupling between v, o
and 1)’ such that

E[L > X !W’(e)—vwn,o(e)lz]sC(v*(um,O)—u*(un,()))wms-dm,

| On | 2€Zm,n eS(2+0m)

e In Step 5, we remove the assumption ¢ = 0 and prove the more general result: for each
g € R?, there exists a coupling between the random variables ¢’ and Yn,q such that

E[ : > Y VY€)= V() | < O (T, g) — ¥ (D0, ) + C(1+ [g[*)37™.

| Un | 2€Zm,n eS(2+0m)

Step 1. By Proposition 5.2.8, one has

(5.3.33) i%f(E[ >SN Ve(vw(e))]+H(P))

Z€Zm,n GE(Z-H]»m)

:_logfea ﬁl(zmm)eXp(_ 2 Ve(W(e))) "

2Zmn 2€Zm,n eS(z+0n)

where the infimum is considered over all probability measure on @ ht (z+0Om).

2€Zmn

But on the one hand, one has the equality

(5.3.34) f@ ;Ll(zmm)exp(— DI Ve(Vib(e))) dip

ZEZm,n GE(Z+D7n)

gd(n-m)
(ool g rmo)e]

eclm,

z2€Zm,n

On the other hand, since by assumption the random variables 9., for z € Z,, ,, are independent,
one has,
H(Py)= 3 H(Py)=3"0"H ().
2€Zm.n

As a remark, note that the entropy of Py is computed with respect to the Lebesgue measure
on @, zm’niozl (2 + Oy, ), while the entropies of Py, and of P, o are computed with respect to the
Lebesgue measures on ! (2 +0Oy,) and on h! (Op) respectively. The energy part of the random
variable ¢' can be computed explicitly and one derives

E! IO Ve(VW(e))]= 2 E[ 2 Ve(wﬁz(e))]
26Zm n eS(2+0m ) 2€Zm.n ec(z+0m)

_ 3d<n—mJE[ S Va(Veno(e)) |.

ecOy,

Consequently

E[ D ve<vw'<e>>]+H(mf):3d<”-m>(E[z V(Ttmo(e)

2€Zm,n eS(2+0m) eSOm J

CH ;;,0)).

By definition of law P, ), the term on the right-hand side can be explicitly computed, and one
obtains

El 2 X Ve(w’<e)>]+H (Pw)=—3d(”m”og(f,;l(um)eXp(— > ve(vw(e))) dw).

26Zm,n €C(2+0m ) eSOm
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Combining the previous display with (5.3.33) and (5.3.34), we obtain

2€Zm.n eS(z+0m) 2€Zm.n eS(z+0m)

E[ > X %(Vw’(e))]+H(Pw')=i{Igf(E[ > 2 Ve(Vw(e))]+H(P))-

The proof of Step 1 is complete.

Step 2. The idea of this step is similar to the strategy adopted in Step 2 of Proposition 5.3.8:
one uses the uniform convexity of the elastic potential V. and the displacement convexity of the
entropy to prove a uniform convexity result for the functional 7, defined in Definition 5.2.7.
One then applies the techniques used to obtain a second variation formula.

First, we consider the optimal coupling between the random variables ¢" and v, 5. In

particular, by the displacement convexity of the entropy, the law of ¢ +;ZJ 20 gatisfies the inequality

H (Py)+H (P
(5.3.35) H(PW%O)S () 5 ( w"").
2

Moreover, by the uniform convexity of V., one has

(5.3.36) QE[ Z Z Ve(w/”(e) +2V1/)7'z,0(€))]

26Zm,n eC(2+0m )

2€2Zm,n eS(z+0m ) 2€Zm n eS(2+0m)

SE[z > %(vw;,o(e))]+E[Z > n(vw«e»]

—AE[ > 2 \vw'(e)—vw;,o(@f]-

2€Zm,n eS(2+0m)

We can then use Step 1 to compute

E[ DY %(Vw'(e))]+H(P¢')=i%fE[ DY m(vwe))lw(m

2€Zm,n eC(2+0m ) 2€Zm,n eC(2+0m )

V' (e) + Vil (e
o 5 3 w(TOm)
2€Zm.n eS(z+0m) 2
+H (]P’vw'(eww;,o(e) ) :
T n0)

One can then apply (5.3.35) and (5.3.36) to deduce

E[ SN V(v (e)) |+ H (Py)

2€Zm,n eC(2+0m)

<%(E DY Ve(vw’<e)>]+H(Pw))
| 26Zm,n eC(2+0m)

Abls s v ne)

| 2€Zm,n eS(z+0m)

26Zm,n eS(2+0m)

—%E[ IIDY \vwe)—vwg,o(e)fl-
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Note that from Step 1, one also has

d(n-m)
: (E[ > > Ve(VW(e))] +H(P¢/)) = —SD—|Dm|V* (O, 0) = —v* (O, 0).

| Op | 2€Zm,m eC(2+0m ) | " |

Combining the two previous displays and dividing by |3,| gives

gE[ IDD) \vwe)—vwg,o(e)f]

| Un | 2€Zm,n eS(2+0m)

< %V* (Dm,O)-i-%(E[ 1 Z Z V (ano(e))] | 1n| (Pw;,o))'

| On | 26Zm,n eS(2+0m)
This completes the proof of Step 2.

Step 3. Before starting this step, we recall the notation for the edges between two subcubes
By, introduced in (5.3.29) and the decomposition of the sum (5.3.30). This step is the most
technical one, and the main difficulty is to compare the entropies of the random variables v, ¢
and @Z);L,o- The only property which is known about these random variables comes from their
definitions: one has

¢n,0 - 1/}1/170 € H7
where H is the space of functions of mean zero which are constant on the cubes z+0,,, it was first
introduced in (5.3.28). In this situation, it is difficult to compare the two entropies. Fortunately,
one can use the elastic energy of the random variable V1), o on the edges of B,, ,, where the
gradient of 1, o — 1/1%70 is supported to obtain some information: more specifically, we prove the
inequality

! ——H (By, )~ Cm3™.

||

(5.3.37) E[i > Ve(Wﬁn,o(@))]JrﬁH(PZO)

|Dn| e€Bmn

The previous inequality is the crucial argument of this step and once it is established, it is
relatively to conclude. In the next paragraph, we explain how to obtain the main result (5.3.32)
of this step, assuming that (5.3.37) holds: first one deduces from (5.3.37)

IE[L > Ve(V%,O(e))]JFE[ﬁ > %(an,O)]+|E]1—n|H(]P’n,o)

| Dn | ZEZm,n SE(Z-H:\m) eeBm,n

zE[ ! Sy V(ano(e))] BN (P%O)—Cmgfdm.

| O, | 2€Zm,n eS(2+0m)

By the splitting of the sum identity stated in (5.3.30), the term on the left-hand side can be
rewritten

El Z Z Ve(V%p(@))]JFE[ Z V(V¢n0(€ ] |:Z V(V¢n0(€))]

Zme,n 6§(Z+\:|m) eeBy, n ecOn
We then use the equality
| X VT £ () =0 0,0,
eCOn

Combining the few previous results and dividing by |0, | then yields

(5.3.38) —u*(Dn,O)ZE[ > V(Vz/zno(e))] BN (IP’%’O)—CmS‘dm.

| n | 2€Zm,n eS(2+0m)

This is (5.3.32) and completes Step 3 up to two details:
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(1) First there should be a v , instead of a 1,0 on the right-hand side. By definition

Z,o is the orthogonal projection of 1, on the space Al (z+0m), and using the
property (5.3.31), one has

for each z € Z,,, p and eache € z + Oy, Vo 0(e) = Vi, o(e).

With this identity, the inequality (5.3.38) can be rewritten

-v" (0p,0) > E

1 —am
> 2 Ve(Vino) +D—‘H(P¢;70)—Cm3 .

| Dn | Zezm,n BE(Z-H:‘m) ’ n

This settles the first problem.
(2) The second detail which needs to be fixed is the entropy which is not exactly the same
as in (5.3.32). By Proposition 5.2.6, one has

H (Pw;’o) > Y H (sz,o) :

ZGZ"L,TL

which provides a solution.

We now turn to the proof of (5.3.37). We recall the notation Zj(0O,,) introduced in (5.1.8).
We also let p be the density associated to the law P ,; it is defined on h! (0,) by

n,0’
Al (O,) - R
8 R exp(— >V, (W(e)))
Z5(0n) eCOn ‘ .
Using the orthogonal decomposition (5.3.28), and the definition of 1/);70, we can compute the
density p" of the random variable ¢/, ;. It is defined on the space Zga h! (2 +Oy,) according to
’ Z€Zm,n
® h'(z+0,) - R
2€Zm.n
8 1 > Ve (Vi(e) + Th(e))
Y e — fexp(— V. (Vir(e) + Vh(e )dh,
Z5 (0,) JH ecOy, ‘

where the integral is considered with respect to the Lebesgue measure on the space H defined
in (5.3.28). Using that for every h € H, Vh is supported in By, ,, we can use the splitting of the

sum stated in (5.3.30) to obtain, for cach ¢ @ A' (z+0p),

2€2Zm.n

€Xp (_ ZzeZm,n Zegzﬂ:lm 14 (v¢(€))) f (

(5.3.39) p'(y) = 7 (o) exp[- > %(vw(e)wh(e)))dh.
0 n

e€Bm n

The next idea of the proof is to provide an upper bound for the term inside the integral and
prove that its logarithm is relatively small: one can show that there exists C' := C'(d, \) < oo such
that, for each € @ h'(z+0,),

(5.3.40) log fH exp (— > Ve(Vi(e) + Vh(e))) dh < Cm34=m).
e€Bmn

The proof of this estimate is essentially technical and relies on the fact that the dimension of
H is 3%n=m) _ 1 which explains the form of the right-hand side. The proof is postponed to
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Appendix A, Proposition 5.A.1. We now show how to deduce (5.3.37) from (5.3.40). We first

*

compute the entropy of the law P} , this gives
H ()= | 1 d
(Pho) () P(¥) 0g () d

=fﬁl(mn)p(w)(— > Ve(W)) dy —log Zj (On) -

ecy,

Adding the term E [ZeeBm,n Ve(vw(e))] and using the splitting of the sum stated in (5.3.30)
gives

E[L >, Ve(V%,o(e))]JfH( o)

’Dn| e€Bmn

2€Zm,n €S2+0m

- [ﬁl(wp(w(— D) vw(e))) i~ 10g 25 (0)

We focus on the integral on the right-hand side: using the decomposition (5.3.28), one can apply
Fubini’s Theorem and first integrate over H then over @ h'(z+0,,). This gives

2€Zmn

fﬁl(mn)pmp)(— D) %(vw))dw

Zezm,n €§(Z+D7,L)

:fea El(z+Dm)pr(w+h)(_ 2. > %(V¢)) dhdi.

2€Zm,n Zez’m,n 82(Z+\:|m)

Note that here we have used that the gradient of an element of H is supported on B, . Using
the definition of p’ stated in 5.3.39, the previous equality can be rewritten

fmgn)f’(w(‘ DY n(v@)dw

2€Zm,n eC(2+0m )

f o mzmm)p'(w(‘ 2 X Ve(W)) dy.

2 Zmn 2€Zm n eS(2+0m)

Combining the few previous displays then gives

(5.3.41) El > Ve(vwn,o(e))]+H( no)

e€Bm,n

:f® Pl (240 )p’(¢)(_ Z Z Ve(VT/J)) d@b—logZSn_

2 Zmom 2€Zm,n eS(z+0m)

But note that by the definition of p" in (5.3.39) and the technical estimate (5.3.40), one has, for
each e @ hl(z+0nm),

2€Zm,n

logp ()<= > Y V(Vi(e)) dy—log Z5 (3y) + Cm3 ™),

2€Zm,n €C(z+0m )
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This allows to perform the following computation

(5.3.42) H(P%,o):[ . ;Ll(zmm)p'(w)logp’(w)dlﬁ

z€Zm,n

Sf@ ;Ll(erEIm)p,(w)(_ "> V(W(e))) v

2€Zm,n ZEZm,n €§(Z+Dm)

~log Zg (3,) + Cm3d=m),

Combining (5.3.41) and (5.3.42) gives

e€Bmn

H (]P)wiz,o) S El Z Ve(V%,O(e))] + H( ;70) + Cm3d(n7m)‘

This is precisely (5.3.37) and the proof of Step 3 is complete.

Step 4. Combining the main results of Steps 2 and 3, one obtains the existence of a coupling

between the random variables ¢" and 1)y, o, such that

(5.3.43) E[L > > \vwz(e)—vw;p(e)f <C (v (Om,0) - v*(O,,0)) + Cm3™m,

| On ‘ 2€Zm,n eS(2+0m)

The main objective of this step is to find a coupling between the random variables v, o and ¢,
instead of 1%,07 and 1’. Recall that we denoted by h the orthogonal projection of 1, ¢ on the
space H. Denote by P}, its law, it is a probability measure on H.

By Lemma 5.2.11, there exists a coupling between the three probability measures Py, IP’% .

and PPy, such that, under this coupling, the law of (', ;) is the optimal coupling between Py
and Py, -and the law of (¥r,0, 1) is P}, o. This provides the desired coupling between the random

n,07

variables ¢’ and 1, o: under this coupling the inequality (5.3.43) is satisfied. Step 4 is complete.

Step 5. We remove the assumption ¢ = 0. This can be achieved by applying the result
obtained for ¢ = 0 with the tilted elastic potential

Veg(2) = V() - q(e)a.

This new elastic potential satisfies the same uniform ellipticity assumption as V, and one can
perform the same proof with V, , instead of V., the difference is mostly notational: the only place
where it as an impact is in the estimate (5.3.40) and it provides an additional error term which
can be proved to be bounded by C(1 +|q?)39"~™. Dividing by the volume of the triadic cube
|0, | eventually shows

’ Un | 2€Zm,n eS(z+0m )

Ell >y \we)—wn,q(eﬁ]
<C (W (Om,q) = v (On, q)) + Cm3™ ™ + C(1 +|¢?))3™™.

This can be simplified into

<C (W (Om,q)-v*(Op,q)) +C(1 + ]q2\)37m.

Ell S Y ) - Tl

= 2€Zm 0 eS(z+0m)

The proof of Proposition 5.3.9 is complete. (Il
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5.4. Convergence of the subadditive quantities

The main goal of this section is to use the tools developed in Section 5.3 to prove the main
result of this article, namely Theorem 5.1.1. To this end, we first introduce a notation for the
subadditivity defect of the surface tensions v and v*.

DEFINITION 5.4.1. For each p € R? and each n € N, we define

Tn(p) = V(Dnap) -v (Dn+17p)
and for each ¢ e R,
T;(Q) =" (Dna Q) -v (Dn+1a Q) .

These terms correspond to the subadditivity defect in the subadditivity of the surface tensions
and are an important object because they appear in the right-hand side of the main estimates of
Propositions 5.3.8 and 5.3.9. These two propositions are central in the analysis of this sections
and the subadditivity defect quantities 7,,(p) and 7,5 (¢) will be used frequently in the proofs.

We also recall the following notation from the introduction: for a bounded subset U ¢ Z¢ and
a vector field F': Eq(U) - R, we let (F');; be the unique vector in R? such that, for each p € R?

p(F)y= = S p-Fle).

|U| ecU
In the rest of this section, this will be applied when U is a triadic cube and when F' is the
gradient of a function. We may also refer to the quantity (V¢),; as the slope of the function ¢
over the set U.

This section is organized as follows, we first prove, using Proposition 5.3.9, that the variance
of the slope of the random variable 1, ; over the cube O,, contracts as n tends to infinity. More
precisely, one shows a quantitative control of the variance of the slope by the subadditivity defect
7, (q), which is expected to be small as n tends to infinity. This is performed in Proposition 5.4.2
and essentially relies of the two scale comparison for v* stated in Proposition 5.3.9.

Once the slope of the random variable 9, , is controlled, we apply the multiscale Poincaré
inequality, stated in Proposition 5.2.14, to prove that v, 4 is in fact close, in the expectation
of the L?-norm over the cube 0O,, to an affine function. With all these tools at hand, we prove
the technical estimate of this article, Proposition 5.4.5, thanks to a patching construction. This
technical lemma, combined with the convex duality property proved in Proposition 5.3.6, shows
that on a large scale, the functions p — v(0,,p) and ¢ - v*(0,,q) are approximately convex
dual to one another, i.e. they satisfy up to a small error

V" (On,q) = sup —v (On,p) +p- 4.
peRd
Once such a result is established, we turn to the proof of the quantitative convergence of the
surface tension, Theorem 5.1.1.

5.4.1. Contraction of the variance of the slope of ¢, ;. We first prove the contraction
of the variance of the slope of the random interface v, ;. This is stated in the following proposition.

PROPOSITION 5.4.2 (Contraction of the slope of ¢, ;). There exists a constant C = C(d, \) <
oo such that for each n e N, and each q € RY,

(5.4.1) var (Vi1 g)y  |<C(1+gf)3™"+C Y 3
m=0

(m-n)

T (@)

PRrROOF. The proof of this inequality relies crucially on Proposition 5.3.9 and it is necessary
to reintroduce the objects used in the statement of this proposition. This is performed in the
following paragraph.

Consider the family of random variables 1., for z € Z, .1 and the random variable ¢’ :=
Y22, ., Y- which were introduced before the statement of Proposition 5.3.9. We recall that it
satisfies the following properties:
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o for each z € Z,, 5,41, ¢, is a random variable valued in Ioll(Dn_'.l). It is equal to 0 outside
z + 0O, and has law P;’q in z+0,,
e the ¢, are independent.
We also consider the coupling between 9" and 41,4, which was introduced in Proposition 5.3.9.
In particular estimate (5.3.27) holds.

The main idea of the proof is the following: by Proposition 5.3.9, one knows that, up to an
error of size 7,,(q), the gradient of the random interface 1 4 is close to the gradients of 34
independent random variables: the random variables 1,. As a consequence, the slope of the
random interface 41 4 can be written, up to an error of size 7, (¢), as a sum of independent
random variables. One can then apply a standard concentration inequality for the variance of
independent random variables to show the contraction of the slope.

We split the proof into 2 steps
e In Step 1, we use Proposition 5.3.9 to prove
d n
(5.4.2) vars [(Vibna1q)y, ] €372 vars [(Vibng(e))y. | + Cri(@)? +C373 (1 +1]d)).
e In Step 2, we iterate the inequality obtained in Step 1 to derive (5.4.1).

On+1

Step 1. First we recall the definition of the set of edges connecting two subcubes of the form
z + 0Oy,
B, = {(:c,y) 132,27 € 3"7% 1 Oy41 such that z # 2 rez+O,andy e + Dn}
and the decomposition of the sum (5.3.30)
2 =X Xt
eCp+1 2€Z, €S2+0n  e€Bn

This set is equal to the set B,, ,,+1 from the previous sections, but since it depends only on one
parameter, we use the shortcut notation B,,. From the previous decomposition of the sum, one
has the estimate

<v¢n+l,q>un+1 - 3_d Z <v'¢)n+1,q - v¢z)z+|:\n - 3_d Z <V¢Z>z+mn

2€Zy, z€Zy,

1

Z [Vihne1,4(e)]

- | On+1 | eeB,

Taking the square-root of the variance and using the triangle inequality, one obtains

Var% [<an+1’q)liln+1] < Var% |:3-d Z <vwn+1 - V¢z>z+\]n:|

2€Z,

273
> |V¢n+1,q(€)|) ] :

| n+1 | eeBn

+var? |:3_d > (V¢Z)Z+Dn:|+]E[(

2€Zp

We then estimate the three terms on the right-hand side separately. The first term is an error
term which can be estimated by Proposition 5.3.9,

var [B_d > (Vi - V@bz)zmn] < IE[ L Y [Vina(e) - V¢z(6)|2]

2€Zp | On+1 | 2€Z, eSz+0p

<Cr(q)+C(1+ |q|2)3_".

To estimate the second term we use the independence of the random variables v, and the
concentration inequality for a sum of independent random variable,

var [S_d > (sz)zmn] =372 > var [(V@Dz)Zmn] )

z€Z, 2€Z,
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*

1.g0 One obtains
b

Using that the law of ¢, on the subcube z + O,, is P

var [3_d > (V@bZ)Zmn] =3 %var [(Vﬂln,q)m] .

2€Z,

The third term is also an error term and can be estimated thanks to the Cauchy-Schwarz
inequality together with the bound |B,,| < C3™"| On41 |,
2
Z ’V%H(@)\

]E[
| On+1 | eeB,, ] .

By the bound on the L? norm of V1,1 obtained in Proposition 5.3.1, this yields

2

Z V¢n+1(€)

| Un+1 | eeB,

<E [|E|]B—"| > \vwml(e)ﬁ]

n+1 |2 eeB,,

< CB‘"E[

2
<C37(1+]q]),

eBy

1
E! |Dn+1 | ez vwn+l(e)

for some C := C(d, \) < co. Combining the few previous displays gives the estimate

var? [(Vibnitg)y . ] <372 var? [(Veh(e))y, | + Ot (a)% + C373 (1 +q)).

On+1
Step 2. Tteration and conclusion. We denote by

1
Op = varz [(an)un] .
The main estimate of Step 1 can be rewritten with this new notation
d n
Cun <3720 + 0T (q)? + C373 (1+]gl).
An iteration of the previous display gives
n n d(n-m) n d(n-m) m
on <3 Tog+C Y 3T i (q)2 +C(1+g)) Y 3T 3R

m=0 m=0

dn n
<37 200+C ) 3

m=0

d(n-m)

7:(q)7 +C(1+|q])375.

To simplify the previous estimate, we note that by (5.3.5) of Proposition 5.3.1, one has the bound
oo <C(1+]ql),

(m-n)

on<C(1+1g)375 +C 3 37577 (g)3,
m=0

Squaring the previous inequality gives

n

2
T;(q);) <C(1+ ]q]2)3’”+C' Z 3

m=0

(m=n)

(m=n)

[

U?LSC(l+|q|2)3n+C(Z 3 77.(q).

m=0

The proof of Step 2 is complete. U

To finish this section, we record and prove another useful property of the slope of the random
interface v, 4: thanks to an explicit computation, one can relate the expectation of the slope
of the random interface 1, 4 to the gradient in the g variable of the dual surface tension »*
according to the formula

VQV*(D’II7 Q) =E [(Vlbmq)m] :
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This has some interesting consequences: first one derives the bound, for each g € R?,

1

(.43 o @l (E] 2 % 190ma0F )
<1+ ).

Second and for future reference, we record that the difference of the gradient of v* between
different scales can be controlled by the subadditivity defect. This is stated in the following
lemma.

LEMMA 5.4.3. For each m <n and each q € R?

n
(5.4.4) V" (Gm. @) ~ Yo" (On @) £C Y 7 (g) + C(1L+ )37,
k=m

PRrROOF. The arguments for the proof of this lemma are essentially contained in the proof of
Proposition 5.4.2. The core idea is to apply Proposition 5.3.9 and thus we consider the coupling
between the random variables 1, ; and v, introduced in this proposition. With this notation,
one has
2

(5.4.5) Vv (Om,q) = Vov* (On, @) = |E

|Zm7'ﬂ| 2€Zm,n

<V¢n,q(3)>gn ! Z (vw2>z+|:|m:|

We reintroduce the set of edges connecting two cubes of the form z + 0,,,
B i={e=(z,y) O, : 32,2 €320y, 2+ 2, x € 2 +0,, and ye2 +0m}.
We also recall that its cardinality can be estimated according to the formula
|Bm.n| <C37 |0,
and that one can partition the set of edges of O, according to the identity
eco, = 3z¢3™Z%nO,, ecz+0Op0rec By,

which can be restated with sum: one has the following splitting of the sum

2=ty X

€eS0n  e€Bmn 2€Zmpn €52+0m

Combining this with (5.4.5), one obtains

Ve (Bmsq) = Vg (On, q)|” < 2E

> Y Ving(e) - V(o)

| Un ‘ 2€Zm,n €52+0m ]

The first term on the right-hand side can be estimated by Proposition 5.3.9, and the second one
by the Cauchy-Schwarz inequality, similarly to what is written in Proposition 5.4.2. This implies
the desired estimate. 0

Z Vwmq(e)

| n | e€Bm,n

5.4.2. L? contraction of the field Yn,q to an affine function. The main objective of
this section is to combine the multiscale Poincaré inequality with the contraction of the variance
of the slope of 1, 4 proved in the previous section, to obtain that the field v, 4 is close in the L?
norm to an affine function. The right-hand side of the estimate still depends on the subadditivity
defects 7,y (¢) which are expected to be small as n tends to infinity. This is stated in the following
proposition.
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PROPOSITION 5.4.4. There ezists a constant C' := C(d,\) < oo such that, for every n €N and
every q € RY,

1

(m=-n)

546) B[ 3 aale) -0 @) -of | s o (it + 5297500 0))

| Dn | xreln

PRrROOF. By the discrete version of the multiscale Poincaré inequality stated in Proposi-
tion 5.2.14, one has

1 . 2 1 % 2
(5-4'7) — Z W)n,q(x) - VgV (Dna Q) $| <C Z |v¢n,q(e) - VgV (Dna Q) -€|
| On x€0n | O | eShni1
n . m 1 % 2
03" 3 > (Vg sie, — Vo (@n,0)| |-
m=0 |Zm7n| 2€Zmn

By Proposition 5.3.1 and (5.4.3), we can bound the expectation of the first term on the right-hand
side

1
E

D |wn,q(e)—vqu*(un,q).eyz] gﬂ«:[ Dl D |wn,q(e)|2+\vqy*(un,q)|2]

| n | ecOn | n | eSOn

<O +|gP).

We then split the proof into 2 steps

e In Step 1, we estimate the expectation of the second term on the right-hand side and
prove the estimate, for any integer m < n,

1

(548) Z E[‘(an,q)zmm —qu*(DmQ)b]

|Zm7n| 2€Zm.n

_ & (k=m) LA
SC(1+|q|2)3m+C'Z3 2 Tk(q)+CZTk(q).
k=0 k=m

e In Step 2, we deduce (5.4.6) from the previous display.

Step 1. To prove (5.4.8), the two main ingredients are Proposition 5.4.2, proved in the
previous section, and Proposition 5.3.9. We first recall the notations which were used in this
proposition. To apply Proposition 5.3.9, we first recall the family random variables v,, for
2 € Zin n introduced in this proposition as well as the coupling between 1) and v, which satisfies

<C Z () +C(1+ |q|2)3_m.

k=m

(5.4.9) E!L >y Vi, (€) = Vibn q(e)]?

| Un | 2€Zm n €52+0m

With this in mind, we split (5.4.8)

’Zm,n‘ 2€Zm,n

1 E[ 2 |<V¢n,q>z+um‘VqV*(qu)f]

<

> 2. 1 E[ 2. lvwn,q@)—vwz(e)F]

’Zm7n| 2€Zm.n | Um | eCz+0m

Sy E[[(Ve:).es,, = Vor" (Oms )]

+
|Zm7n| 2€Zmn

+3 |Vql/*(|:|n, Q) - qu*(Dm,Q)F 3
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and estimate the three terms separately. The first and third terms term on the right-hand side
are an error terms which can be estimated thanks to (5.4.9) and (5.4.4) respectively. This gives

2€Zmn

1 *
E ‘E Z ‘(an,q>z+gm_vq’/ (Dn,Q)F]

3 1 *
* ol 2 D—E[ S [965(6) = T (O ) -l

2€Zmn | m | eCz+0m,

n
+C Y () +C(1+]g*)3™™
k=m
Thanks to the identity V,v* (O, q) = E[(Vwm,q)mm], one can estimate the remaining term
thanks to Proposition 5.4.2,

1
| Zm.nl

Z E [|<V¢Z>z+um - VqV*(DmNJ)f] = var [<V¢n,q>mm]

2€Zm,n

(k=m)

m
SC(1+|q|2)37m+C'Z3 2 7 (q).
k=0

Combining the previous displays yields
1 * 2 2\o-m o R mm) S

Y E[(V¥ng)ain, ~ Vo (O | <CO+[g?)3™+C Y372 7 (a)+C Y 7 (a):

|Zm,n| 2€Zm.n k=0

k=m

This is (5.4.8). The proof of Step 1 is complete.
Step 2. To ease the notation, we denote by, for each m e {1,...,n},

1
X,, =
" |Zm.nl

> [ Vng)oss, ~ Ve (@n, )| -

2€Zm.n

The main result of Step 1 can be reformulated with this new notation

E[X,]<C1+[g?)3™+CY 357"

7 (q) +C Y 7 (q)
k=0 k=m

and by the multiscale Poincaré inequality stated in (5.4.7), one has
1

o S [ng(2) = Vg (On,q) -2 <C(1+g|*) +C3" 3 3™ X,
n | xeOpn m=0

Taking the expectation on the right-hand side gives

E [3” > 3’”Xm] <C3m Y 3m (0(1 FgP)3m oy 35
m=0

), L
@O Y Tk<q>)
m=0 k=0 k=m
<3 ((1 FlgPn3 ™+ 335 g () + 3 3<’€‘”)n§(q)) .
k=0 k=0

The previous display can be further simplified by appealing to the crude estimates n < C3% and
(k-n)
30k <375

. Then a combination of the few previous displays shows

1 * n - o ) *
B2 Wna)- vt @ ol [ s (st + 3 55 ).
n | xeOpn

m=0

The proof of Proposition 5.4.4 is complete.
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5.4.3. Convex duality: upper bound. The objective of this section is to use the results
of the previous sections, and in particular Proposition 5.4.4 to show that the two surface tensions
v and v* are approximately convex dual to one another. First, we introduce the following
notation: for each n € N, we denote by O; the triadic cube O,, to which one has added a boundary
layer of size 1, i.e.

. ( 3" +1 3n+1)d
O, =|- , :
2 2
It is a cube of size 3" + 2 and satisfies the following convenient property

(o))’ =0

n

The statement of the next proposition can be formulated as follows: if the 7,7 (¢) are small, then
for each ¢ € R, there exists p € R? such that

v(03,,p) + v (On,q) —p-q is small.
Moreover we have an explicit value of p which is V,v*(0,,¢). In a later statement, we will
remove the condition 03, and prove that for each g € R?, there exists p € R? such that

v(On,p) + v (On,q) —p-q is small.
Combining this result with the lower bound on the convex duality proved in Proposition 5.3.6,
one obtains

v (Op,q) = infd (-v(On,p) +p-q) up to a small error.
peR

The main argument in the proof of Proposition 5.4.5 is a patching construction: we need to

patch functions of laws PP, , in the (much larger) cube 03, to build a law on the space hj (03,)
and test it in the variational formulation for v.

PROPOSITION 5.4.5. There exist a constant C := C(d,\) < oo and an exponent 3 := 3(d,\) >0
such that for each ¢ € R and each neN,

(m-

2”)77;;(@).

n
V (O3, VoV (00,9)) + V7 (Ony @) = Vg™ (On, ) ¢ < C ((1 +1g)3"+ Y 3
m=0
PROOF. Fix ¢ € R? and for each p € R%, we denote by l,, the linear function of slope p, defined
by, for each z € R,

ly(z)=p-x.

To simplify the notation, we also write, for each ¢ € R? and each n €N,
V() = Vv (O, q) € RY

We also recall the notation (5.1.2) introduced in Section 5.1 which will be used with p = Vv, (q)
frequently in the proof.

The strategy of the proof is the following: we construct a random variable taking values
in h}(03,), denoted by k3, in the proof. This random variable is essentially constructed by
patching together independent random variables, which are defined on the triadic cubes z + Oy,
for z € Z, 2, and whose laws are the law of 1, 4 — lvy;(q)- The technical details are carried out in
Step 1 below. We then prove that x3, satisfies

1 1
Bl % ve<w;<q)<e>+w5n(e))]+TH(PH;H)s—u* (©na) + V(@) 4
‘DQTT‘ ecoy ‘D2n‘

+C ((1 +]g?)37Pm+ 3 gt T;(q)) )

m=0
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We finally use k3, as a test function in the variational formulation of v (03, Vv,:(¢q)), to obtain
the inequality

v (03,, Vv, (q)) <E

> Ve (Vrn(q) + VEs,(e))

+——H (P .
‘Dgn‘egugn =i (Hgn)

Combining the two previous displays will complete the proof.

We split the proof into 4 steps.
e In Step 1, we construct the random variable x4, taking values in hj (0O3,).
e In Step 2, we show that the entropy of k3, is controlled by the entropy of P}, 4 Precisely,
we prove
1

(5.4.10) —
=5

1 . n
H (P, )< mH (P ,)+Cn3™,

where the entropy on the left-hand side is computed with respect to the Lebesgue
measure on h(l) (o3,,) and the entropy on the right-hand side is computed with respect
to the Lebesgue measure on h'(0y,).

e In Steps 3 and 4, we show that the energy of the random variable x3,, is controlled by
the energy of 1, 4. Precisely, we prove

(5.411) E| 3 vg(wz<q>+w;n<e>>]s1a[i 5 vg(vwn,q@))]

|D§n‘ ecal, (=5 eSOy,

e ((1 PPz 3 3 r;,;<q>) .

m=0

e In Step 5, we combine the results of Steps 3 and 4 to prove

* * * —Bn > (m-n)
v (G TV (0)) ~ v <mn,q)+q~m(q>sc(<1+|q|2)3 oy 303 Tm(q>).

m=0

Step 1. Denote by h'(Os,) the set of functions from Os, to R. There exists a canonical
bijection between h'(0g,) and hi(03,) obtained by extending the functions of h!(D2,) to be 0
on the boundary of 03,,. We first explain the strategy to construct the random interface x3,,.
Consider a family (¢,)..z , of random variables satisfying:

e for each z € Z, 9, 1, is valued in ht (2 +0p) and its law is P;,
e the random variables 1), are independent.
As it is customary, we recall the definition for the set of edges connecting two triadic cubes of
the form z + 0, in Oy,
By op = {e =(z,y) SOy : 32,2 € Zpon, 2% 2,z €2+ 0yandy € 2’ + Dn} ,
as well as the corresponding partition of edges of Oy,
eCOy = 32€3"Z%N0yy, eCz+0,0re€ By on.

With this in mind, we construct a random vector field f defined on the edges Og, by patching
together the vector fields Vi, — Vv,:(q) defined on the edges of z + O,,. Precisely, the vector field
f is defined as follows, for each edge e C Ogy,,
(o) {VT/JZ(Q) - vu,(q)(e) if e € z + Oy, for some z € Z,, 9,

e =

5.4.12
( ) 0 ifee Bn,2n-

The objective of this demonstration is to construct a function k3, with Dirichlet boundary
condition whose gradient is close to the vector field f: one wishes to have, for each e ¢ Oy,

Vg, (e) ~ f(e).
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The meaning of the symbol ”~” will be made precise in the following paragraphs.

A first obstruction is that the vector field f(e) is not in general the gradient of a function in
h (03,,). To remedy this, a natural idea is to consider the orthogonal projection the vector field
f on the space of gradients of functions in h (03,). This is equivalent to solving the Dirichlet
boundary value problem

Ak =divf in Oy,
(5.4.13) {

€ hy (03,).

This solves the first obstruction.

The second obstruction is that the random variable x defined in (5.4.13) almost surely belongs
to a strict linear subspace of h{ (03,,), consequently its law is not absolutely continuous with
respect to the Lebesgue measure on h(l) (o3,,) and its entropy is infinite. To remedy this we add
some independent random variables whose law uniform on [0, 1], as was done in Proposition 5.3.8.

We now turn to the details of the construction. Consider the orthogonal decomposition with
respect to the standard L? scalar product

(5.4.14) W (Owm)= © h'(z+0p) & H,

ZEZn’Qn

1
where H := ( ZGB lozl(z + Dn)) is the vector space of functions which are constant on the
Z€Zn 2n

subcubes z + 0O,,. Its dimension is 3.

Then consider L the linear operator defined on o h'(z +O,) valued in h$ (04,,) defined
Z€Zn 2n

according to the following procedure.

For each h ¢ @ h'(z+0y), let L() be the unique solution to

ZEZn,2n

(5.4.15) {ALW)) = div f in O,

L() € hy (03,,) -
where f is the vector field defined by, for each e ¢ Og,,

Vi (e) if e € z + Oy, for some z € Z,, 9y,
FE=1"0 iteeBonn.

We first verify that the operator L is injective. To this end, we check that the kernel of L is
reduced to {0}. Let v ¢ @ h'(z+0,) such that L(z)) = 0, we want to prove that 1 = 0.

ZEZn’zn

First by definition of L, the condition L(v) =0 implies div f = 0. But the function div f can
be computed explicitly and we have, for each z € Z,, 9,

AZ"'DnT/} = O in zZ+ D’Vl?

where A,.q, is the Laplacian on the graph (z + 0,) and is defined by, for each z € O,,
Asio,¥(x) = Y (W(y) —9(x)).
Yy~x,y€z+0n

Note that this Laplacian is different from the standard Laplacian on 03, which is used in (5.4.15)
and defined by, for each x € 09,
Ap(a) = 3 (V(y) - ¥ (2)).
Yy~x
This difference is fundamental and comes from the fact that f was set to be 0 on the edges of

By, for the Laplacian on the cube z + O,, one is allowed to apply the maximum principle to
derive, for each z € Z,, o,

Ayip,=0in z+0, = 1 is constant in z +0,.
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Combining the previous remark with the assumption ¢y ¢ @ ;Ll(z +0p) gives ¥ =0 and thus

ZEZn’Qn

ker L = {0}. In particular, if we denote by im L the image of L, one has
dim(im L) = dim( ® hl(z+ un)) = 3%dn _ gdn
ZEZn,Qn

We then extend L into an isomorphism of h!(Dg,) into h}(0f,). Recall that one has the
orthogonal decomposition

W (Owm)= © h'(z+0,) & H,

ZGZn’Qn
and consider an orthonormal basis hi, ..., hsna of H. Consider now the L? orthogonal decompo-
sition
(5.4.16) h'(Og,) =imL & (im L)*.
By the injectivity of L, we have dim (im L)* = 39", Let &y, ..., hgna be an orthonormal basis of

(im L)*. the linear operator L is then extended to the full space h'(Dg,) by setting
(5.4.17) L(h;) = hy, Vie{l,...,3%}.

By construction, the linear mapping L is an isomorphism between h'(Qg,) and h} (03,).

We now construct the random variable k3, using the operator L. To this end, consider two

families (12) .z, , and (X;),.;  gna of random variables satisfying

o for each z € Z,, 9, 1, is valued in ht (2 +0Oy,) and its law is Py, .- We extend it by 0
outside z + O, so that it can be seen as a random variable taking values in k' (Oa,),

e for each i e {1,...,3"}, X; is valued in [0,1] and its law is Unif[0, 1],

e the random variables 1, and X; are independent.

We also define for each z € Z,, 2, the random variable o, taking values in h! (O2,,) defined by
subtracting the affine function of slope Vv*(q) to 1., i.e. for each x € Oy,

Y (x) =V, (q) - (x—2) if xez+0Op,
0  otherwise.

(5.4.18) oo (z) = {

Let x and k3, be the random variables valued in k' (Og,) defined by

(5.4.19) n:zL( Z O'Z) and /-;;n:L( Z az+32n:Xihi).

zeann ZGZTL72n =1

With this definition, it is clear that x3,, is a random variable valued in h{ (03,) and that its
law is absolutely continuous with respect to the Lebesgue measure on this space. Moreover
by construction of the operator L, the random variable 3, is one of the functions of h} (003,,)
which is the closest in the L? norm to the vector field f defined in (5.4.12). The definition of &3,
presented in the previous paragraph required two additional technical steps:

(1) First one had to extend the operator L by considering orthonormal basis of the spaces
H and (im L)* in (5.4.16),
(2) Second one had to add a sum Z?:ld Xih;.

These two additional steps are required only to be sure that the entropy of 3, is finite and they
are constructed so as not to impact the analysis.

Step 2. The main objective of this step is to compute the entropy of the random variable k3,
constructed in the previous step.
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Using the canonical bijection between h' (0Og,) and h} (03,), one can see L as an automor-
phism of h(l) (03,,). Combining this remark with the change of variables formula for the differential
entropy, one computes the entropy of 3,

Zzezn’% o235

(5.4.20) H(Py )=H (]P’ snd X,h.) ~1In|det L].

We first focus on the first term on the right-hand side. By construction of o, X;, h; and using the
formula to compute the entropy of two independent random variables given in Proposition 5.2.4,
one has

3nd
H (PZZéZn,gn O'Z+Z?:ld Xihi) = ZEZZ:Q H (Po'z) + 7; H (IP)Xl) .

Using that the law of X; is uniform in [0,1] and since the entropy of a random variable is
translation invariant the previous display can be further simplified

H (Pzzezngn O'z+2?=nld thz) = Z H (Pd)z) .

262 2n

Since the law of v, is P, one obtains

(5.4.21) H (P )=3"H(P;,)-In|det L],

We now focus on the second term on the right-hand side of (5.4.20). More precisely, we prove
that the logarithm of the determinant of L is small compared to | Oy, |: more precisely, we show
the bound,

(5.4.22) IIn |det L|| < 34Dy,

Combining (5.4.21) with (5.4.22) gives the main result (5.4.10) of Step 2.

To prove (5.4.22), note that the dimension of the vector space h} (03,) is 329", Denote by
(l1,...,l324n) the (potentially complex) eigenvalues of L. Note that since L is bijective, none of
these eigenvalues is equal to 0. With this notation the determinant of L can be computed,

32dn
(5.4.23) In|det L| = " In|l.
i=1
To prove that the logarithm of the determinant of L is small, the strategy relies on the two
following ingredients:
(1) One shows that most of the eigenvalues of L are equal to 1,
(2) One then shows that the remaining eigenvalues are bounded from above and below by
C3*" and ¢37*" respectively.
We first show the first item: most of the eigenvalues [; are equal to 1. To this end, we consider
the interior of the cube O,:

O

3n-2 37 -2\
?L::(— R ) nZ'=o,~00,.
In particular, one has 0° ¢ 0O, and thus h! (0°%) is a linear subspace of k! (0,). This implies

that @ h'(z+0°) is a linear subspace of @ h'(z+0,). The important observation is
Z€Zn72n ZEZn,Zn

that for each v € ZGB ! (z+0f) and each edge e € By, p,
Z€Zn 2n

vy (e) = 0.
This is due to the fact that, by definition of the space & h! (z +02), any function belonging to

Zezn,Zu
this space is equal to 0 on the boundaries of the cubes (z +0,), for any z € Z, 5,,. Consequently
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the vector field f defined from ) according to the formula

Vi (e) if e € z + Oy, for some z € Z, 9y,
(5.4.24) f(e) —{ 0 ifeceBon.
satisfy

f=vV.
Thus L()) is the solution of
AL(Y) = Ay in Ogy,
L() € ho (03,,) -

This implies L(t) = ¢ and we just proved
ve o M(z+m), L(®) =

ZEZan

Consequently, the vector space @ h! (z+09) is an eigenspace for L associated to the eigen-
ZEZn,Qn

value 1, its dimension can be estimated by the following computation
dim| & A'(z+0°)]= > dim(foLl (z+0)))
ZGZn,Qn ZGZn,Qn
= 3% dim (h' (29))
=3 (|mpl-1).
The volume of O can then be estimated according to
02| > 3% — ¢3(d-bin,

Combining the two previous displays gives

Zezn,2n

(5.4.25) dim ( ® h' (z+ ug)) > 3%dn _ ¢3(2d-1)n.

Thus we can, without loss of generality, assume that for each i > 32417 . = 1. Using this,
the equality (5.4.23) can be rewritten

C3(2d—1)n
In|det L[ = > Inll].
i=1

We then use the inequalities

—11-1 . ] '
L7 < I L T ] < (1L,

where |||L]|| (resp. |||L7Y||) denotes the operator norm of L (resp. L) with respect to the L2
norm on h} (03,). A combination of the two previous displays gives

(5.4.26) In|det L|| < 3P4 max (In ||| Ll n ||| Z7]]]) -

To complete the proof, there remains to prove an estimate on the operator norms of L and L.
Specifically, we are going to prove,

(5.4.27) L) <C3**  and  |||L7Y|| < C3*"

We first focus on the estimate of the operator norm of L. Let ¢ € h} (05, ) such that Yooy d(x)? <
1, one aims to prove

(5.4.28) S L(8) (x)* < O3,

+
Ty,
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To this end, we decompose ¢ according to the orthogonal decomposition (5.4.14). This gives

p=1+h, withpe @ h'(z+0,)and heH.

2€Zpn 2n

In particular,

> @)+ Y h@)P= Y @) <1

+ + +
Ted,y, rely, zedy,

By definition of L, L(¢) and L(h) are orthogonal in h} (03,) and
> LM @)F = Y @)

+ +
rely, zedsy,

From this we deduce

> L@ @F = Y L) @)+ ¥ L)@ = X L@) @)+ X k(@)

xeOy, xeOs xeOd xeOy, xeOs,
2
< 3 L@@ 1.
xedd

Thus to prove (5.4.28), it is sufficient to prove:
Ve @® h'(z+0,)suchthat > ()P <1, Y |L(v) ()] < O3

2€Zn 2n + +
’ redsy,, red,,,

For each ¢ & h'(z+0,), we know that L(¢) is a solution to

ZEZn’Qn

{AL(zp) =div f in Ogy,
(5.4.29)

L(¥) € hg (93,,) -
where f is defined by
Vi(e) if e € z + Oy, for somez € Z,, oy,

Je) :{ 0 ifee Bon.

Consequently testing L(v) against itself in (5.4.29) shows
> IVI@)(e)f = Y VL) () f(e).

+ +
ecny ecOy

By the Cauchy-Schwarz inequality, this implies

> VL@ < X If(e)f

+ +
ecq, . ec; .

and by definition of f, one obtains

(5.4.30) VL@ P < X Y Ivee)

ecal 2€Zy, 2y €S2+0n
Using the crude inequality, for each e = (z,y) € O,

IV (e)]® = [(z) - v(y) < 2lw()] + 2l (y)F,

we derive the estimate,

oY v < Y W)

ze3nZ49N0g,, €52+0n x€on

Combining the previous displays and using the assumption Y., lt(x)[> < 1 shows

S VL) () <C Y [p(a)f <C.

ecOy T€D2n
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Also, since L(%) € h$ (03,,), one has by the Poincaré inequality

> L) (@) <3 Y VL) ()]

xeOs, ecOos
Combining the two previous displays gives

> L) (@) < o3t

+
rely,

This is the desired result. We now turn to the bound on the operator norm of L™!, we aim to

prove
2= < es™
To this end, let ¢ € h} (03,,), we will prove
(5.4.31) > (@) <03t 3 L) (@)
xedd xedd

First, using the same idea as in the proof of the bound for the operator norm of L, we see that it
is enough to prove (5.4.31) under the additional assumption ¥y € @ h'(z+0,). In this case,

Zezn,Qn
one has

AL(y) =div f in Oy,
L(4) € hg (93,,) -

where f is the vector field defined by

-1
Testing this equation against 1 gives

> AL@)(@)p(x) = ) divf(z)p(z) = Y, f(e)Vi(e).
We then use the definition of ¥ to get

> fevee)= Y Y [vy(e)l.

eCOop 2€Zp 2n €52+0n

vy (e) if e € z + Oy, for some z € 3"Z% N Oy,
0 ifee B2n,n-

Since ¥ belongs to @ h'(z+0,), it has mean 0 on each of the subcubes z + O,,. We can thus

Zezn,?n

apply the Poincaré inequality on each of the subcubes z + O, to get, for some C := C(d) < oo,

> W@Eesn T vee)f,  VreZun.
xrez+0y, ecCz+0n
Summing the previous inequality over each z € Z,, o, gives

> w@P<cs Y Y [vue)f.

T€l2n 2€Zp, 2n €52+0n

Combining the few previous displays gives
> (@) <3 3 ALY (@) ().
xeOoy, x€02n
By the Cauchy-Schwarz inequality, one further obtains
> @)P <C3 Y ALY (@)
xredon xelan

But by definition of the Laplacian, one has, for each x € O,

2
<O [P+ Cl(a).

Yy~

ALY (@) = |3 ((y) ~ ()

Yy~
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From this obtain,

> IAL@) (@) <C Y L) (2)

x€lon x€an

and consequently

> @) <es™ Y L) (a)f.

x€laon x€lon

This is (5.4.31).

We now complete the proof of the bound |In|det L|| stated in (5.4.22). Indeed combin-
ing (5.4.26) and (5.4.27) gives

n|det L|| < €324 D max (In]||Z||[, In ||| Z7(|])
< 03Dy (032)
< 03d-Dny,
The proof of Step 2 is complete.

Step 3. The goal of this step is to show the following estimate

<C’((1+|q| )37 4 2 35 (q))

m=0

(5.4.32) E[# IRORZAC

+
‘ Qn‘ egDQn

where we recall that f is the random vector field defined in (5.4.12). To achieve this, we proceed
as follows.

e We first remove the additional random variable L (Z?:f Xihi). Precisely we prove

—dn
[‘Dgn‘ E: |K2n(x) K(x)’] <3 )

xeod

where the random variable x is defined in (5.4.19).
e Then we construct a random function ¥ taking values in h} (03,) such that

(5.4.33) [‘ | > If(e) - vU(e)f
2n

ecod

<C’((1+|q\ )37 4 2 35 (q))

m=0

for some small exponent /3 := 3(d) > 0.
e We deduce from (5.4.33) that

[‘ | RO W(@)I]<C((1+Iq| 36”+23 m(Q))
2n

ecOy,, m=0

Step 1. We first prove that we can remove the additional random variable L (Z3nd

Xihi)
which was added to k to obtain x3,. These random variables were added so that the law of 3, is
absolutely continuous with respect to the Lebesgue measure on hé (34,,), in order not to obtain
an infinite entropy. They were also chosen in a way that their role in the energy is negligible.

More precisely we prove the following statement

E[% > Iﬂgn(w)—ff(w)l2]£3‘d"~

+
‘ 2n‘m§D2n
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We first recall the definition of L on the subvector space H given in (5.4.17). The previous
estimate is then a consequence of the following computation
2]

Since the family h;, for i € {1,...,3™ is orthonormal with respect to the standard L? scalar
product in h} (03,) and since the random variables (Xi)ieq1,... gnay are iid of law uniform in

3nd

! > Xihi(x)

E[i S Iiha(2) - ()] ] 5

03, | 2é0t =
‘ 2n| xeOy,, 2n wEDQ

-E |3§|X|]

|D

[0,1], one can complete the computation

(5.4.34) [‘ | z kg, () - l{(m)|] <cgin,
2n

mEDQn ‘ 2n‘

Using this and the inequality, for each e = (z,y) € O,
2 2 2 2
|V (13, = 6) ()" = (13, = ) () = (K3 = £) (W] < 2|(K3, = &) ()" + 2|(53, — ) ()"

one derives

(5.4.35) L | S [Vkia(e) - Vr(e)] | < 037,
2n

ecal

The proof of Step 1 is complete

Step 2. We now prove (5.4.33) and construct the random variable ¥. We recall the definition
of the family (¢,), for z € Z,, 2, and extend it to each z € 3"Z% according to
(i) for each z € 3"Z9, 1), is a random function from Z? to R equal to 0 outside z + O,, and
the law of 1, (- - 2) restricted to O, is P,
(ii) the random variables 1, are independent.
It is the same family as in Step 1, except that it was extended to each z € 3"Z¢ and not only for
% € Zp op. The reason behind this extension will become clear later in the proof.

We also define
> ..

ze3n7d
Moreover for each z € Z,, 2,,, we let 1, ,,.1be a random variable such that

Y n+1 is valued in ht (z+Op+1) and the law of ¢, pi1 (- —2) is Py 4 0

As usual we extend this function by 0 outside z + 0,41 so that one can see v, 5,1 as a random
function from Z¢ to R.

The goal of the following argument is to construct a suitable coupling between the random
variables v, 11, for z € Z,, 2y,

For some fixed z € Z,, 2,,, we apply Proposition 5.3.9 and Proposition 5.2.11, with the random
variables X =1, Y =} scanza\ (z40,,,) Y= and Z =1, n.1; we obtain that there exists a coupling
between the random variables ¢ and ). ;.1 such that

(5436) E|— T > [Vdemear(e) - V(o) | < Cri(g) + C(1+ [g)3™

| On | 2'e3"Z9N(2+0n+1) €2'+0n

This is where we used that 1), is defined for some z’ outside Og,. Indeed for some z € 3"Z% N Oa,,,
close to the boundary of Oy, the set 3"Z% N (2 + Op+1) is not included in Ogy,.
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Thanks to the previous argument, we have constructed, for each z € Z,, »,,, a coupling between
Y and ¢, ne1. Let (21,...,230a) be an enumeration of the elements of Z;, o,,.

Applying Proposition 5.2.11 with X =, Y =1, n+1 and Z = 1),, 541 constructs a coupling
between 1, 1, n+1 and 1, n+1 such that (5.4.36) is satisfied.

We then apply Proposition 5.2.11 a second time, with this time the random variables

X = (Y21 41, V2o me1), Y =19 and Z =1, n41 to construct a coupling between 1, 2, i1, V2 ne1
and 1), n+1 such that (5.4.36) is satisfied.

Iterating this construction 3™ times constructs a coupling between the random variables v
and 1, p+1, for z € Z, 9y, such that (5.4.36) is satisfied.

From the previous construction, we derive a coupling between the random variables v, .1,
for z € Z,, 9, which is what we wanted to design. Moreover this coupling satisfies (5.4.36), which
will be a key ingredient later in the proof.

We now build the function ¥ by patching together the random variables 1, ,+1. The argument
relies on a partition of unity: we let xo € h$(0,) be a cutoff function satisfying

_ _ 1
0<xo < O3, > xo(@) =1,  [Vxol<C3 I suppyg C 30
xeZd

We then define, for each z € Z¢

x() = D xo(y—x).

xeOn

Note that x is supported in %Dml, satisfies 0 < y < 1 and the translations of y form a partition
of unity:

> x(-2)=1

ze3nzd

Moreover, one has the bound on the gradient of x

(5.4.37) Vx| < C37".

We next consider the cutoff function ¢ € b} (03,,) satisfying

(5.4.38) 0<(¢<1, (=1on {z ey, : dist(x,d02,) > 3"}, V¢l < 37",

which will be used to remove a boundary layer in the patching construction. We also define the
following discrete set

Zpon={2€3"2% : z€ 2,9, or dist(z,000,) <3"}.

It represents the set Z, 2, with an additional boundary layer of size 1 of points in 3"7Z¢ around
it. We are going to use this set because it satisfies the following property

Vyeos,, >, x(y-z)=1

T
z62n72n

We then define the function ¥ by
U(z)=C(x) Y x(@-2) (o) = Vupa(a) (x-2)).

m
zeZn’Qn

Now that ¥ has been constructed, we prove (5.4.33). The main ingredients to prove this estimate
are (5.4.36), Proposition 5.4.4 and the interior Meyers estimate, Proposition 5.B.5 stated in
Appendix 5.B.
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We first compute the derivative of U. An explicit computation gives, for each e = (x,y) S Oy,

(5.4.39) V¥(e)=C(y) X x(y-2) (VYenn(e) - Vin,(a)(e))

T
zezwn

+ C(y) Z VX(' - Z)(e) (wz,nﬂ(x) - vl/:b+1(q) m)

T
zeZnyzn

+V((e) Z x(z - 2) (¢z,n+1(x) - VV;H(Q) - 1)

ZEZ;,QTL
The second and third terms in the previous display are error terms, which will be proved to be
small: the interesting term is the first one. The L? norm of second term can be estimated thanks
to the bound (5.4.37) on the gradient of x,

2
1 *
El— > <) X x(-2)(e) @ens1(x) = Vi (q) - )
|D2n e=(x,y)col zeZ;’Qn
_ 1 %
SO3YE| = Y % [Wann(®) - V(o) -of
‘Dzn‘ 22}, €2 +Ons
I I | .
<o E[ L S (o) - i) of |
L |Dn+1| T€On+1
We then apply Proposition 5.4.4 to obtain
2
1 *
Elm— X K@) > Ix(-2)(e)@snn(2) = Vrpa(a) )
‘DZn‘ e=(x,y)cOy, zeZ} o,
(m-n)

< c((1+ )3 i S 3 T;L(q)).
m=0

The third term of (5.4.39) can be estimated in a similar manner, using (5.4.38) this time,

2

1 <
El—— > |V > x(@-2)@enn(z)-Vrn(g) o)
|D2n‘ e=(z,y)cof z€Z) o,
_ 1 %
<C3E|l—— Y Y [ana(@) - Vriae)-af
‘DQn‘ Z€Z:'L’2n r€2+0n+1
o | 1 .
<C3 QnE Z |¢n+17q(x) - vVn+1(Q) :U|2:| .
| |Dn+1| T€On+1

We then apply Proposition 5.4.4 again to obtain

2
1 *
El— 2 |V¢(e) X x(z-2)@sn1(z)-Vri(q)-2)
‘DQn‘ e=(x,y)cas, ZEZ;,Zn

(m-n)

sC((1+|q|2)3‘5L + zn_jo?) TTZ(Q))~
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Z‘

Combining the few previous displays then yields

1

2

+
‘D2n ‘ e=(x,y)cOy,

vP(e)-¢(y) 2 x(y-2) (Vizne(e) - Vrna(a)(e))

zeZ*

n,2n

n N (m-n)
sc(u+m%32+z znmw)
m=0

Thus to prove (5.4.33)7 it is sufficient to prove

2

1 *
(5.440) Efi—— > [|f(e)=<¢) > x(y-2)(V¥enii(e) = Vri(g)(e))

|D2n‘ e:(l‘,y)gﬂgn ZEZ;,Qn

<Cri(q) +C(1+]qf*)37°",

for some small exponent 3 := 3(d,\) > 0. We simplify the previous display by removing the
function {. Note that if we denote

0Znon={z€Z},, : dist(z,000,) <2-3"},

2n

then we have the following computation, using the properties of the functions ¢ and Yy,

2
1

El7 2

+
|D2n| e=(x,y)cal,

(1-C) 2 x(y=2) (Vzmer(e) - Vrg,a(a)(e))

m
zeZan

1 d
- >

| ‘D2n e=(x,y)cal

<E

Z x(y - 2) (v¢z,n+1(e) _VV;H(Q)(Q))

Zéaznyzn

—_

<E

>, > Xy =2)|Vpeni(e) - V%l(Q)(e)IQ]

05| e=(aigyensy, 2%
| =20 e=(x,y)c0f,, 2€025 2n

Using that, by definition, the function ¢ is equal to 1 on the set {x € Og,, : dist(z,d02,) > 3"},
we can simplify the previous display and obtain

2
1

2

n
‘DQn‘ e=(z,y)cas,

(1-¢() X x(y=2) (VYznri(e) = Vrii1(g)(e))

"
zeZm271

SEIL > X IWJz,nu(e)—VVZ+1(Q)(6)!2]~

D+
2n| 2€0Z, 25 €S2+0n+1

*

n+1,g0 One has
bl

Using that all the 1), 5,41 have the same law, which is P

2
1

El— 2 [|@-¢w) X x(y-2)(V¥nn(e) - Via(a)(e))
‘DQn’ e=(z,y)cas, zeZ;’271

< |aZn,2n|E|:
o3,

Z|Wmm@%v%d@@ﬂ'

eCOn+1
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But by (5.3.8) of Proposition 5.3.1, the term on the right-hand side is bounded and one has

2
1 "
= > |@=<w) X x(y-2) (Vizmile) = Vupa(a)(e))
2nl| e=(z,y)c0y,, Z€ZY o
0Z ‘|lo
< | n,2n|+ | n+1 |C(1 + |q|2)
‘DQn‘
One then appeals to the estimates
|02, 2n] < C3Dn and |Ons1] = 3d(n+1)
Consequently, one has
2

1
E

2

I
‘DQn‘ e=(x,y)cOs

(1-¢) > x(y-2) (Viznale) - Vrp(a)(e)| | <C3(1+]q).

zeZ*

n,2n

By the previous display and (5.4.40), it is enough to prove (5.4.33) to show

(5.4.41) E L >

|D5n‘ e=(z,y)cal,

fe)- X x(y-2)(Vin(e) - Vg (a)(e))

T
zezm%

<CT(q) +C(1+]g*)37"",

for some small exponent (3 := (d, \) > 0. We now prove this estimate. Using that y is a partition
of unity, we rewrite

IR 2

‘Dgn‘ e=(x,y)cOy,

fle)- > X(y-2) (Vi:nele) = Vina(g)(e))

zeZ*

n,2n

2
S I

T
‘D2n‘ e=(x,y)c0os,

>, x(y-2)(f(e) - Vi ni(e) + Vg, (a)(e))

7
zeann

Using that the function y is supported in %Dml, one obtains

2
1

2

‘Dgn‘ e=(x,y)cOy,

> X(y-2)(f(e) = Vi nar(e) + Vg, (a)(e))

m
zeZn’Qn

b

IN

> > I£(e) = Vzne1(e) + Vi () ().

I
O ‘ + 3
| 2n| zeZ] 5, eg(z+ZDn+1)ﬂD2n

Using the definition of f given in (5.4.24), and splitting the sum according to the partition of
edges,

€SOy, = e€By,, or 3Iz€Z,9, eCz+0,,
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2]

one derives

1
442 o)
(5442) [\DM e:<a:Z

WW)E03,

fle)- 2 X(y—2) (Viznele) = Vua(9)(e))

ZEZn,Qn

< E [L Z Z |sz’(e) - sz,n+1(6)|2]

+
‘Dzn‘ 2,2'€2Zn 2n, 2€2"+0p11 €C2"+0p

+E L Z Z ’vwz,n+1(e)|2

+ ‘ .
‘DQTL 2€Zn 20 eean’nﬁ(z+%Dn+1)

* * 2
+ CVrpa () = Vi (9]
The first term on the right-hand side is estimated thanks to (5.4.36). This gives

(5443) E[L Z Z |V'¢z’(€) - v¢z,n+1(e)|2]

+
|E‘2n| 2,2'€2Zp 20, 2€2"+0p 41 €S2 +0n

> E[ S 5 |vwz,n+1<e)—wzf<e>|2]

‘D%—?’L‘ Zezn,Zn z’E3"Zdﬂ(z+Dn+1) ecz'+0n
<Ot (q)+C(1+ |q|2)3_".
The third term can be estimated thanks to (5.4.4),
* * 2 * _
Vv (@) = Vo () < Cmi(g) + C(1+[gf*)37".
To estimate the second term on the right-hand side of (5.4.42), we first use that all the ¢, ;11

have the same law, which is P, . This gives

SIS S [ Viena(e)f

bl
|D2n 2€Zp 20 eean,nm(er%I:InH)

1
s S E Y [Veg@P
’D2n| ZEZn,Qn eéBgnynﬁ%Dn.pl
1 2
<CE > Vnag(e)]-
|Dn+1|

3
eEBQn,nm 4 On+1

We then estimate this term by the Meyers estimate, Proposition 5.B.5 with v = %. We denote by
6 the exponent of Proposition 5.B.5 and compute

El— T [l

Un+1 3
| | EEBQn,anDnJrI
<

E < > E [|V¢n+l,q(€)|2]

-0 | 3
4 n+l eEB2n,nnZDn+1

1
C |BQn,n N %Dn+1‘% ]1+6 "

Z E [|V¢n+1,q(€)|2

3
€§1Dn+1

o]
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We then use that
BQn nN §|:|n+1
‘ 73 4 | S 03—7’7,’
‘ZDn+d
to derive

1
E

5
Z |V¢n+l,q(e)|2 <C3 " (1+ |Q|2)‘

|Dn+1| EGBQn,nm%DnJrl

Combining the few previous displays gives the following estimate for the second term on the
right-hand side of (5.4.42)

1 —=n
—_— > > Ve ner (o) | < €357 (1 +g?).

’D2n| 2€Zn,2n e€Bap nN(2+30n41)

Combining (5.4.42) with (5.4.43), the previous displays and setting ,6 = 1%5 yields

E[L >

< C1r(q)+C(1+]g*)37P".
105 e=(eryiens,

fle)- X x(y-2)(Viznn(e) - Vrpa(a)- 6)

ze3nZ4d

This is precisely (5.4.41). The proof of (5.4.33) is complete.
Step 3. We now deduce from (5.4.33) that

[‘ ‘ Z If(e) - VR(e)|]<C((1+|q| 3”8"+23 nT (q))
2n

ecod m=0
We recall that x was defined as the solution of the problem
Ax =divf in Oy,
{ k€ hg (03,) -
This implies the almost sure inequality

(5.4.44) > If(e) - vi(e)f = shllnf > ‘f(e) VK (e)‘

ecoy, 6(03,,) ecoy,

> [f(e) - V(o).

v
ecns;

Taking the expectation and using (5.4.33) gives

[‘ PR w<e>|]<c(<1+|q|
2n

ecod

).

Combining the previous display with (5.4.34) proves the estimate

(5.4.45) [‘ | > [f(e) - Vi, ()
2n

ecod

SC(<1+|q|2>3-5" (5”)r;<q>)'

m=0

Step 4. The goal of this step is to use the main result (5.4.45) of Step 3 to prove

(5.4.46) [I PR (q><e>+wzn<e>>] [| |ZV(vwnq<e)>]
2n ecod On eSOy

+c(<1+|q| 3oL 3 gt m<q>).

m=0
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We recall the definition of the random variable o, (z) := ¥, () - Vi (q) - (x - z) introduced
n (5.4.18). The proof relies on the following technical estimate, the proof of which is postponed
to Appendix 5.A, Proposition 5.A.2.

1

(5.4.47) El ooy Ve(vV;(q)(e)+w(e))]sE[ ! > 2 Ve(Vi(e))

|D2n| 2€Zy, o €S2+0n |D2n| 2€Zp, on €S2+0n ]

ooy |vk(e) - Vaz(e)]2

| 2n|zeZn2 eCz+0y

+C(1+|¢)37 2 +CE

We now show how to deduce (5.4.46) from the previous inequality. First, since all the 1, have

the same law which is P}, /. one can simplify the first term on the right-hand side,

|D2n| 2€Zp, 2n, €S2+0n, n| eSO,

E[ ! Z Z Ve (sz(e))] || n%l [Z Ve (V?/an(e))]

5l Ly (vwnqw»]

o nl 0

We now estimate the last term on the right-hand side of (5.4.47). One has

1

(5.4.48) E > Y |Vou(e)-Vi(e)|<E > If(e) - Vr(e))?
||32n‘ 2€Z,, 9n €S2+0n ’D n| eco, ]
<IE— Loy g )|

<E|li— e) — Vk(e)|
_‘ Qn‘ SEDEH g

02| - |03 |) 2
+|—/ " \E Z If(e) - Vk(e)|”|.
( |55n| : |52n| ecoy,

We first estimate the second term on the right-hand side of the previous display. Note that

O] = 103,] _ g-20_1
|03,| - D2n] |20

and using (5.4.44) and the fact that all the v, have the same law, one has

['D N >, If(e) - W(e)I] > If(e)ll

3C|:|+ |D n| ecg*

E[—— ¥ % Isz(e)IQI

| |E‘2n| 2€Zp, 25, €S2+0n,

<CE[ Z |V1nq(€)] ]

Pl &3,

We can then bound the last term on the right-hand side thanks to Proposition 5.3.1. This gives

[| o] Z If(e) - VH(€)| SCE[

ecal,

S [Ving(e) ]<0<1+|q|2>.

| n’ ecOn
Combining the few previous displays shows

IE[ Ly v |vUZ(e)—v/-f.;(e)|2]g]E[L+ S [f(e) - va(e)?

|D2TL| 2€2y 2n €S2+0n ‘ Qn‘ ecod

+ 372 (1 + |¢[).
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We then use (5.4.32) to complete the estimate

(m-n)

E[i >y % |w<e>—wz<e>|2]sc(<1+|q|2>3-5"+i_os )

||32n| 2€Zp,2n €S2+0n

Combining this estimate with (5.4.47) shows

|D2n| 2€Z,, 9y, €S2+0n |D2n| 2€Zy, 2n €S2+0n

E[ Y ¥ Ve(vf/;(q)(e)+w(e))]s1f£[ Ly ¥ Ve(vwz(e))]

(m-

2")r;<q>).

+ 0((1 +g?)37m+ Y3

m=0
To complete the proof of (5.4.46), it is thus sufficient to prove
(5.4.49)
1
E l— > Ve(Vrp(a)(e) + V@n(e))] <E

+
== ecO,

1

> 2 Ve(Vrn(a)(e) + W(e))]

020 2€Zp oy €S2+0n

(m-

2n)ﬂ’;(qr)),

+ c((1 +1g?)37Pm+ 33

m=0

for some constant C := C'(d,\) < oo and some exponent (3 := (d, A) >0. To this end, we prove
the two following inequalities:

(1) We first prove that
(5.4.50)

E[ L v ve<w;(q><e>+w<e>>]s1@

|D2n| ecoy,

1

> 2 Ve(v(a)(e) + W(@))]

|O2n| 2€Z,, on €S2+0n

(m-—

2")r;<q>).

+ c((1 +lg®)37Pm+ Y3

m=0

(2) We then prove

1

> %(VVQ(Q)(€)+W§n(€))]SE[ : > Ve(VVZ(q)(eHW(e))]

(mpy ‘ + Oon +
| 2n| ecOy,, | |69:\2n

(5.4.51) E[
+ O35 (1 +|q)).

Proof of (1). We define B, ,,, to be the set of edges of O3, which do not belong to a cube of

n,2n
the form z +0,, for z € Z, 9,, i.e.

+

mon =€ S0y, * V2€Znon, et 2+0n).

This set has been defined to have the following splitting of the sum

2= 2 2t

+ Cz+ +
ecOy ZeZn,Qn eSz+0n €EBn,2n

Note also that the set By ,, is almost equal to the set By, 2, the only difference is that we
added the edges which belong to O3, but not Oz,, which is a small boundary layer of edges.

Additionally, one has the estimate on the cardinality of B}

n,2n’

‘BJr | SC3in|D2n‘.

n,2n
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We use the splitting of the sum mentioned above to prove the estimate

1 N B e mem)
oo B VR wre) | <o arlafr e 35 )
’DQn| eeB3, m=0
We first use that for each x € R, V() < %1‘2 to prove
1 * 1 2 ‘B5n7n| * 2
El—— > Ve(vrn(@)(e) +Vu(e)) |<CE| —— > [|VA(e)]"|+C N Vv, (9)]

|D2n| eEBgn,n |D2n| eEBgn,n

Z |Vf<;(e)|2 +C(1+|q|2)372".

| 2n| +
QEan,n

1
<CE

Since for each e € By, ,,, one has f(e) = 0, one derives the estimate

1

> |va(e)f sE! L v |f(e)—w(e)|2].

’D2”| eeB%n!n ‘D2”’ ecod

Using the exact same computation as in (5.4.48), one obtains

1 _ N (m-n)
E Z |f(e)—V/<J(e)|2 SC’((1+|q|2)3 pn 4 z 3 Tm(q)).
‘DQTL’ ecol, m=0
Combining the few previous displays shows
]_ " 2 _Bn n (m-n) .
E > Ve(Vrp(a)(e) +Va(e)) | <O (1+]gl)377" + 30 372 7,,(q)
|52n| eeB3, m=0

and consequently

E| > Ve(v’/;((l)(e)“‘V“(e))]=IE[L > Ve(VI/,:(q)(e)+V/@(e))]

‘DQTL’ ecOt ’D2n| 2€2Z,, op €S2+0n
2n B

CE[ S V(v @)(e) + Ta(e)
[Oon ce,

E| 1YY V(vii(a)(e) + V(e))
|D2n| 2€Zy on €S2+0n

(m-—

2")r;l<q>).

+ C((l +lg®)37Pm+ 33

m=0

This is (5.4.50).

Proof of (2). The main tool is the estimate (5.4.35), which we recall

<037,

E[L S [iba(e) - Vae)?

+
O | +
’ 2n| ecOy,,



326 5. QUANTITATIVE HOMOGENIZATION OF THE DISORDERED V¢ MODEL

Using this inequality and a Taylor expansion, together with the assumption V.’ < % one obtains

E['D RA vvn<q>(e>+w<e)>]
2n| ecod

sELD > Ve (VVn(Q)(e)JrV@n)]
2n| ecOy,

+ El|D;| Z VI (Vv (q)(e) + Vi(e)) (Vra,(e) - Vﬁ(e))]

+oiE LD%' DILEACE w(e>|]

First combining the two previous displays, one has

(5.4.52)

L 5 2 V(7 <q><e>+w2n<e>>] L . cg

>, Ve(Vrn(a)(e) + Vizn)

n| ecg‘*‘

+E[I Do Z V! (Ve (g)(e) + Vi(e)) (3, (e) - w(e))]

so that there only remains to study the last term on the right-hand side of the previous display.
This is achieved thanks to the Cauchy-Schwarz inequality

ecol

[(SIES

> VI (v (e) + Va(e))[* S [Vab,(e) - Va(e)
|I:|2n| eco | nl ecTh.
SC3‘§”E|:| o] Z ‘V’(VU (q)(e) +V/£(e))|]

We then use that, for each z e R, [V (z)]| < %|x| to get

<C|vvi(q)f +CE

1 2
o % IR
2n ecOs,

E[ LSV (v @) + k(e

|D2”| ecod
and by the definition of x given in (5.4.19), we have

> Vsl < Y If(e)

+ +
ecOy ecns,,,

< Y ve(e))?.

2€Zn,2n €52+0n
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Taking the expectation and using (5.3.8) of Proposition 5.3.1, one derives

l|m|e§ 'V“(e)'] [1 )P |wz(e)|2]

|D2n|ze2n3negz+ﬂn

1
<[ 3 Wi
’Dn ecOy
<C(1+|gP).
Combining the few previous displays and the bound |V (q)|* < C(1+|g|?) proved in (5.4.3) gives

< C372"(1 +1q)).

Ellmznl Z V! (Vv (q) + VE(e)) (VE3,(e) - VE(e))

Combining this with (5.4.52) gives

Y. Ve(Vupn(q) + Vkan)

ecos,

+C(1+|q))3” gn
|02,

ELD zv<wn<q>+wzn<e>)] [
2n|eCD+

We complete the proof of (5.4.51) by noting that V, is positive and that | Oz, | <| O3, | so that

E[ﬁ 2 Ve(w;i(q)w@n(e))]SE Y %(VVZ(Q)+VH§n(e))]
2n| eco,

| 1B2nl oot

<E

Y. Ve(Vrn(q) +Vk(e))

|D2n‘ eCD+

+(C3 2”(1 +1q])-

This completes the proof of (5.4.51).
We can now conclude this step. Combining (5.4.50) and (5.4.51) implies (5.4.49) and thus
completes the proof of (5.4.46). Step 4 is complete.

Step 5. The conclusion. Combining the main results (5.4.10) of Step 2 and (5.4.11) of Steps
3 and 4, one obtains

E[‘ PR <q>+wzn<e>>] ﬁH(PK;) [| |zv<v¢nq<e>>]
2n Hon On

ECD+ ecn

+LH(]P’;)+C’((1+|q| )3 5’”23 m(q))

|Dn| m=0
But one knows that

v (03, Vrn(q)) = inf E[ H (P)

PeP (hg(3,))

> Ve(Vr(a)(e) + V¢(e))] +

| 2n |eED§n | 2n|

[ 2, VeV, Q)(e)+w2n(e))] H (P, ).
‘ Zn‘eCD+ ‘ 2n|

Moreover, by the definition of P}, . and the equality Vv, (q) = E [\D_lnl Yeca, an,q(e)], one knows
that
v*(On,q) = - [| | IRA an,q(e))] +q-V(q) - | . H (P,
n eCly

Combining the three previous displays shows

v (@ V(@) + 7 (O ) - - T (q><c(<1+\q\ 3oy $ 3 (q>)

m=0
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The proof of Proposition 5.4.5 is complete. U

5.4.4. Quantitative convergence of the partitions functions. Now that Proposi-
tion 5.4.5 is proved, we can deduce the main result of the article. The theorem is recalled
below.

THEOREM 5.1.1 (Quantitative convergence to the Gibbs state). There exist a constant
C:=C(d,\) < 0o and an exponent a = ad,\) >0 such that for each p,q € R
(80, p) = 7(p)] < O3 (1 + [p[*)
and

V" (On,q) =7 (@) < C37" (1 + |qf).

Before starting the proof, we mention that the proof of this proposition only relies on the basic
properties of v and v* together with upper bound for the convex duality given in Proposition 5.4.5.
In particular, we do not use any specific properties of the gradient field model in the rest of this
section.

PROOF. From Proposition 5.3.4, we know that, for each p, g € R%, the sequences (v(0y, p)),,en
and (v*(Op,P)),,cy converge and that, for each p, q € R%,

(5.4.53) v(p)+7"(q) 2p-q.
We split the proof into 5 steps.

e In Step 1, the objective is to remove the O3, condition which appears in Proposition 5.4.5:
the idea is to appeal to the subadditivity of the surface tension v to prove the estimate,
for each p e R,

(5.4.54) v(O3n,p) < v(T3,,p) + C37"(1+ p]).
e In Step 2, we show that for each n € N and each ¢ € R?
* —% - u n-n)
@) -7 @) £ (P 3 355 @),
m=0
e In Step 3, we deduce that there exists an exponent « := a(d, \) > 0 such that,
(5.4.55) |v*(On,q) - 7" (q)| < C37".

e In Step 4, we show that the limiting surface tensions 7 and 7* are dual convex to one
another: one has the equality, for each ¢ € RY,

(5.4.56) v"(q) = sup -v(p) +p-q.
peRd

e In Step 5, we show that there exists an exponent « := a(d, \) > 0 such that,

(5.4.57) lv(On,q) —7(q)| < C37".

Step 1. The main idea of this step is to consider a cube 0O ¢ Z¢ satisfying the two following
properties

(1) The cube O is included in O3, and is almost as large as Oz, in the sense that it satisfies
the volume estimate

(5.4.58) |03, | < O]+ C339" x 37,

(2) The cube O can be decomposed as a disjoint union of cubes of the same size than 0j,,.
i.e. the union of disjoint translated of OF,.
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More precisely, the cube O can be constructed as follows: denote by Z the set
Z:={ze (3" +2)2% : z2+0}, CO3,}

and then define
o=UJ(z+03,).
zeZ
With this definition, it is clear that the cube O satisfies the two properties (1) and (2). Following
the proof of the subadditivity of the finite volume surface tension v given by Funaki and Spohn
in [70], on obtains the estimate
z+035,]

|
v(Os, NO,p)+ ) ——=*
| Osp, | T zé,’ | Osn |

|D3n\D|

(5.4.59) v (Osn,p) < v(z+05,,p) + C372"(1+ |pl*).

Using Proposition 5.A.3, proved in Appendix 5.A; one knows that v (Osz, \ O,p) is bounded by
C(1+ |p|?), thus by (5.4.58), one can estimate

| O3, N O
|DSn|

From (5.4.59) and the previous display, one obtains

v(Os3, ~N0O,p) <C3 (1 + \p\Q).

z+ 04
v (O3n,p) < ), |D—2n|

v(z+03,,p) + C372"(1+ p]*).
2eZ | 3n|

But, one has for each z € Z, v(z + 03, p) = v(03,,,p), thus
O3y N I:||

| O3 |

Z |Z + D§n|

|
v(z+03,,p) = v(03,,, ).

zeZ | U3n |

Using Proposition 5.3.7, we have v(03 ,p) > —~C + Alp|*>. Combining this bound with (5.4.58), the
previous display can be refined

O3, N O _
Bon 0, (03,.p) < v p) + O+ )3
‘ O3n
Combining the few previous displays eventually shows
v (Q3n,p) < v(03,,p) + C37"(1+|p|*),
which is the desired result. The proof of Step 1 is complete.
Step 2. First, by the formula, for each g € R?,

1

vqy* (Dna Q) =E Z V¢n,q(€)

| n | ecOy,
and by the estimate (5.3.8) of Proposition 5.3.1, one has
[Vqr™ (Bn, @) < C(L+]ql).
As a consequence, by the main result (5.4.54) of Step 1, one has
v (Tsn, Vv (Bn:4)) < V(T3 Vgr™ (Bns9)) + C37 (L +[gl*).
Combining the previous display with Proposition 5.4.5, one obtains
(5.4.60) v (O3p, Vg™ (On,q))+v" (On,q)+q- Ve (On,q) < C ((1 + |q|2)375n + i03(m2n)7';1(q)) .
m=

Moreover using the inequality (5.4.53) applied with p = V,v* (O,,¢) and ¢ gives
0 < ;(qu* (D’VM Q)) + v*(Q) - Vq’/* (D’VM Q) : q
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A combination of the two previous displays gives
(5.4.61) (v (Osn, Vv™ (On,q)) — (Vv (On,q))) + (v"(On, @) =" (q))

<C ((1 +g?)37m+ Y gt T;;(q)) .

m=0

But by the subadditivity for v stated in Proposition 5.3.1, one sees that there exists a constant

C := C(d,\) < oo (in particular larger than the one appearing in the proposition) such the

sequence n — v (Oy,,p) + C(1 + |p*)3™ is decreasing. As a consequence, for each n € N, and each
d

peRY,

v (O, p) 27(p) - C(1+[p|*)37™.
This implies, for each ¢ € RY,
v (O30, V" (On, @) = 7(Vgr™ (On,q)) 2 -C(1 +|¢[*)37".
Combining the previous inequality with (5.4.61) shows
N (m-n)
(5.4.62) v (On,q)-7"(q) <C ((1 +q?)37P" + Y 3z T;L(q)) :
m=0

The proof of Step 2 is complete.

Step 3. Let C := C(d,\) < oo be a constant large enough so that the sequence v*(0,,q) +
C(1+|q[*)3™™ is decreasing. To shorten the notation, we denote by, for q € RY,

(5.4.63) Fo(q) =v*(On,q) + C(L+|q])37" - 7" (q),

so that F,(q) is decreasing and tends to 0 as n tends to infinity. Moreover, one has the following
inequality

7 (@) < Fu(q) = Fuii(a)-
We can then rewrite the main result (5.4.62) of Step 3 with this notation

(5.4.64) F.(¢)<C ((1 +]g?)37%" + i 37 (F(q) - Fm+1(Q))) :

m=0

We then define

Fu(@) =35 3 3% Fu(e).

m=0

We next show that there exist 6 := 8(d,\) € (0,1), C := C(d,\) < o0 and 8 := (d,\) > 0 such
that for every n e N,

(5.4.65) Fp(q) <0F,(q) +C37°.

Using the inequality Fy(q) < C(1 +]g|?), one has

(5.4.66) Fo(q) - Fori(q) 2371 i 3% (Fn(q) - Fina1(q)) - C(1+1g/*)37%.

m=0

Since F),(q) is a decreasing sequence, we deduce from the previous display that, for each n € N,

Foii(q) < Eu(g) + C(1+]g*)371,
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By (5.4.64) and reducing the exponent f if necessary, one deduces
Frai(q) < Fo(g) +C(1+gf*)37%

<371 Y 3T F,(q) + C(1+]g*)37%

m=0
& m _Bm Mo (k-m) _n
<03 Y 3 ((<1+\q\2)3 o $0 545 <Fk(q>—Fk+1<q>>))+c<1+|q|2>3 ;
m=0 k=0
<C37H Y 33732 (Fu(a) - Fra(a) + C(1+ |37
m=0 k=0
<0371 Y Y 37432 (Fi(q) - Frer(q)) + C(1 +g*)377m
k=0 m=k

(Fi(q) - Fre1(q)) + C(1+|g|)377".

IN
Q
“
w3
ol
NgE
w
INES

Comparing the previous display with (5.4.66) gives
Fru1(q) < C (Fulq) - Fraa(q)) + C(1+ |g)37%™.
A rearrangement of this inequality gives (5.4.65). An iteration of (5.4.65) yields

Fn(Q) < Hnﬁo +CO(1+ ‘q‘Q) Z gk3-B(n-k)
k=0

By making € closer to 1 if necessary, one has
S k37808 < o,
k=0

Combining the few previous displays shows
Fou(q) <C(1+lgf*)0".

Setting « := —% so that 6 = 37 gives the bound F),(¢q) < C37°". By the definition of F;,(q), one

has the clear inequality
Fu(q) < Fu(a),

and thus

Fo(q) < C(1+gf*)37".
We conclude the proof by noting that F,(q) was defined so that it is decreasing and tends to 0.
In particular, it is positive. By the explicit formula (5.4.63) for F}, and the previous display, one
obtains

~C(1+q*)3™" <v*(On,9) -7 (q) < C(1 +|¢[*)37",
for some C := C(d,\) < o0 and « := a(d,\) > 0. By making « closer to 0 if necessary, one
eventually obtains
V" (B0, 4) =7 (q)] < C(1 + [g*)37".
The proof of Step 3 is complete.
Step 4. First note that, by (5.4.53), for each p,q € R?

(5.4.67) 0<o(p)+7"(q)-p-q.
This implies

7*(q) 2 sup -U(p) +p-q
peRd

The main idea of this step is to use Proposition 5.4.5 to show the two following results:
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(1) For each q € R?, the sequence Vqv*(Op, q) converges as n tends to infinity. We denote
its limit by P(q). Moreover one has that the following quantitative estimate

(5.4.68) Vg™ (Bn,q) - P(q)] < C(1+[q])37".

REMARK 5.4.6. We would like to say that the limit is in fact V,7*(q) but at this
point of the argument, one only knows that the function ¢ — 7*(q) is convex and in
particular we do not know that it is differentiable everywhere. We will prove later that
7*(q) is in fact C'(R) and this will imply P(q) = V,7*(q).

(2) We deduce from (1) that for each ¢ € R%, one has the following quantitative convergence
estimate
(5.4.69) lv(O3n, Vor*(On,q)) -7 (P(q))| < C(1 + lg]*)37"

We first prove (1). From the main result of the previous step (5.4.56), we deduce that, for
each g € R?,

7 (9) =" (O, q) = V" (Ops1,9) < C(1+]g)37",
Combining this result with (5.4.4) gives, for each ¢ € R?,
|qu*(Dn+17 q) - VqV*(Dm Q)< C(1+ |Q|2)3_Cm'

The previous display implies that the sequence V4v*(0p+1,¢) converges for each g € R? together
with the quantitative rate of convergence (5.4.68). We denote by P(q) its limit. The proof of (1)
is complete.

We now prove (2). We first split (5.4.69) thanks to the triangle inequality

‘V(DSm Vv (On,q)) —ﬁ(ﬁ(Q)” < ‘I/(Dgn, Vv (On,q)) —v (D3n7ﬁ(q))‘
+|v (D3n, P(q)) -7 (P(q))|-

Since one has the bound, for each n € N, |V,v*(0Op,¢)| < C(1 + |q|), one obtains by taking the
limit n tends to infinity,

(5.4.70) |P(q)| < C(1+]q]).
Combining the previous bound with (5.4.55) gives
|v(03n, P(9)) -7 (P(q))] < C(1 +1g/*)37".
To prove (5.4.69), it is sufficient to prove
‘V(Dgn, Ve (On.q)) —v (Dgn,ﬁ(q))‘ <CO(1+ |q|2)3_‘m.
To this end, we first prove the following property: for each p,p’ € R%, and each n €N,
(B, p) = v(On, ) < C(Ipl + DDl - P

The idea to prove the previous inequality is to compute the gradient of p —» v(O,,p). A
straightforward computation gives

1

5 \ve'<p‘e+v¢n,p<e>>|].

| n | eedn

|Vp(Bn, p)| < E[

Using the bound, for each z € R V() < %|m| and the Jensen inequality, we obtain

9,0 (Gn )| < 1] +E [L 5 |v¢n,p(e>|]

| Dn eedn

1

5 w%,p(e)\z]?

| Dn e€ldn

S|p|+E[
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We then apply the estimate (5.3.7) Proposition 5.3.1 to derive the bound
(5.4.71) [V (O, p)| < C(1+p|).

This implies that, for each n € N and each p,p’ € RY, v(0,,-) is C(1 + |p| + [p|)-Lipschitz in the
ball B(0,|p| +[p'|). Since both p and p" belongs to B(0, |p| + [p’|), one has

(5.4.72) (T, p) —v(On,p")| < C(1+|p| + p')Ip - 'l

This is the desired result. Applying the previous estimate with p = V,v*(0p,q) and p’ = P(q)
gives

(@30, Vv (B0, @) = v(Tsn, P(q))] € C(L+ V" (B0, @) + [P(@))) Vv (B0, 0) — P(a)]-
By (5.4.70), for each q € RY,
[P(a)] < C(1+]al).
Combining the three previous displays with (5.4.68) gives
(5.4.73) (O30, V" (O, 9)) = v(D3n, P(9))] < C(1 +[g[*)37°"
and completes the proof of (2).

We now prove the main result (5.4.56) of Step 4. By (5.4.60) and the main result (5.4.55) of
Step 3, one has, for each g € R?,

v (D3n> vqu* (Dn7 Q)) + V* (Dnv Q) - qu* (Dnv Q) °q < C(l + |Q|2)3_Om‘
By (5.4.68) and (5.4.69), one also has the convergence
v (O3n, Vo™ (On, @) + v (Bn, @) = Vo™ (@n, @) -q — 7(P()) + 7" (0) - P(q) - ¢
A combination of the two previous displays gives
v(P(q)) +7" (q) - P(q) -4 <0.
Together with (5.4.67), the previous estimate gives in particular
v(P(q)) +7" (9) - P(q) -4 =0,
and thus

7" (q) = sup -v(p) +p-q.
peRd

This is precisely (5.4.56) and the proof of Step 4 is complete.

Step 5. The main result (5.4.56) of Step 4 asserts that 7" is the Legendre-Fenchel transform
of 7. But by Proposition 5.3.4, one knows that for each pi, py € R%,

+
Po 22?1) < Clpo - pr 2.

With the two previous ideas, one deduces that 7* is also uniformly convex. As a consequence, it
is in CY'(R?) and one has the following equalities, for each p, q € R?,

(5.4.74) Vol (Vq7*(q)) = ¢, Vv (Vo (q)) = ¢, and P(q) = V7" ().
We are now ready to prove (5.4.57). We start from (5.4.61), which reads for each g € RY,

(5~4-75) (V (D37L7 VqV* (Dm Q)) —ﬁ(vqy* (Dna Q))) + (V*(Dm Q) -v (Q))
cclavprne 35 ),
m=0

We then apply (5.4.55) which allows to estimate most of the terms in the previous display.
Precisely, one has the inequalities

v (On,q) = 7" (q) < O(L+[g*)37"

1 1_ 1_ _
6|p0 _pl|2 < §V(Dn,p0) + §V(Dn7pl) -V (Dn’
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and

(m=-n)

Y37z 1(g)<C(1+ lq*)37™.
m=0

With these estimates, the inequality (5.4.75) becomes
v (B3n, Vgv™ (On,q)) = 7(Vgv" (Bn,)) < C(L+|g*)37".
Then by (5.4.73), one has
[V (@30, Vor* (On, ) = (B30, P(q))| < C(1 +|g[*)37°".
Then by sending n to infinity in (5.4.72), one obtains for each p,p’ € R?
(5.4.76) 7(p) = 2(") < Clpl + ' DIp - |-
With the same proof as the one which gives (5.4.73), one obtains
(Ve (On,0)) - 7(P(q))| < C(1 + [g*)37".

Combining the few previous displays shows, for each ¢ € R?,

v (D30, P(0)) -7 (P(q)) < C(1+]g)37".
Applying the previous inequality with ¢ = V,7(p) gives, thanks to (5.4.74),

v (Tsn,0) =7 (p) < C(1+ [V, 0 (p)[*)37".

We then simplify the term on the right-hand side. Thanks to (5.4.76), one obtains the bound on
the gradient of 7, for each p € R,

Vv ()] < C(1+[p).
A combination of the two previous displays gives, for each n € N, and each p € R?,
v (Bsn,0) =7 (p) < C(1 + [p*)37°".

We now want to remove the 3n term. To this end, we use the subadditivity of v stated in
Proposition 5.3.1, to obtain, for each p € R? and each n €N,

v (Q3n42,P) = 7 (p) < v (Osns1,p) — 7 (p) + C(L+ |p[*)37" < v (g0, p) — 7 (p) + C(L + [p*)37"
<O+ [p)3om.

From the previous display and by making a smaller, one obtains for each n € N and each p € RY,

v(On,p)-7(p) <C(1+ |p|2)3—an.

The proof of (5.4.57) is almost complete, there only remains to prove a lower bound for v (0, p) -
7 (p). But one knows that there exists a constant C' := C(d,\) < oo such that the sequence
v (O,,p) + O(1+|p|*)37™ is decreasing and converges to 7 (p). This implies in particular that, for
each n € N and each p € R?,

v (B,p) ~7 (p) 2 =C(1+ p])3™"

and provides the lower bound. Indeed a combination of the two previous displays shows

v (On,p) — T (p)| < C(1 + [p*)37"

and completes the proof of Step 5 and of Theorem 5.1.1. O
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5.4.5. Quantitative contraction of the fields ¢, , and 9, , to affine functions. Now
that Theorem 5.1.1 is proved, we deduce the L? estimate on the random variables ¢y, , and v,
stated in Theorem 5.1.2. The theorem is recalled below.

THEOREM 5.1.2 (L? contraction of the Gibbs measure). There exist a constant C = C(d, \) <
oo and an exponent a = a(d,\) >0 such that for each n €N, p,qeR?,

1 —x 2 n(2-a
E[E > (190 (@) + (@) - 947 () 2] )] < €37 (1 pf +1gP).
n| xeOpn
Proor. We first prove the estimate for the random variable 1, 4, i.e.
1 —% n(z—«o
(5.4.77) E[E > [ng(2) = Va7 (9) |] < 03" (14 Jgf?).
n| xelp

Indeed in that case all the tools have already been developed and this allows for a short proof.
First by Theorem 5.1.1, one knows that, for each g € R?,

7a(@) 37" (L +af).

Using the previous display together with Proposition 5.4.4, we obtain

E[ 1 > [ng(x) = Vo (Qn, q) -arIQ] <3 (1+|qP).

| Dn | xeln

But by (5.4.68) and (5.4.74), one also has

Vv (On, @) = Vo7 ()] < C37" (1 + [g*).
A combination of the two previous displays gives (5.4.77) and completes the proof.

We now want to prove the estimate with the random variable ¢, p, i.e.,
1 2 (2-a)n 2
E|— > |#np(2) -p-2’|<C3 (1+1pl%).
|Dn| xedyn

The proof follows the same lines as the proof of (5.4.77) except that we have not proved an
equivalent version of Proposition 5.4.4. The proof of this statement is split into 2 steps.

e In Step 1, we show that, for each m € N with m < n,

: 2 2\ qg—am
Z ] ZE;WE[\(V%MHDW\ ]sc(1+|p| )3-om.

e In Step 2, we deduce from the previous step and the multiscale Poincaré inequality

1 - )n
E[— 5 |¢n,p|2]sc<1+|p|2>3<2 3

On| veo,,

Step 1. Consider the random variable ¢ =} ..z ¢. introduced in Proposition 5.3.8 as well
as the coupling between ¢ and ¢, ) introduced in the same proposition. The following estimate
holds

- E[ > |v¢<e>—v¢n,p<e>|2] < C (O 0) ~ (O 0)) + O3 7% (1+ o).

| n | ecy

Using Theorem 5.1.1, the previous estimate can be refined and one obtains

! E[ S [vo(e) - v%,p(e)ﬁ] < C(L+ p)y3em,

’ Dn ‘ ecOy
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Using this estimate, one has

1
Zol L Ellvon)is, ]
< —— Y E[[(véhs 2]+ [Z|v¢<e> Vonp(e)
Zomnl 252 =oul 1 o, L&, ’
1
SZ L E[[(V6).q, ]+ C(1+ o357,

We then note that for each z € Zp p, (V®),,5 = (Vé:)..q and that, since ¢, € hi(z+0p), one
has (V¢.), 1o, = 0. Consequently, the previous display can be simplified and one obtains

¥ E[[(Vonp)..o, | ] <CO+IpR3™,

2€Zm.n

!Zmnl

Step 2. We now apply the multiscale Poincaré inequality stated in Proposition 5.2.14 for
functions in h}(0,), this gives

S 1onp () <C Y [9onp()f + O3 3. 3m(

|DTL| xeOp, eCOy, m=1

Z |<v¢nvp>z+\:\m |2) '

|Zm n| Y€Zm,n

Taking the expectation and using Proposition 5.3.7 to estimate the first term on the right-hand
side and the main result of Step 1 to estimate the second term gives

[| | 2 [np(@)| < CA+Ipl*) + O+ [p)3" 3 3737

n redn m=1
<C(1+p[?)3Zm,

This is the desired result. The proof of Theorem 5.1.2 is complete. O

5.A. Technical estimates

Before stating the first proposition of this appendix, we recall that the space H mentioned in
the following propsoition is the space of functions of fOLl(Dn) which are constant on the subcubes
Z + O, for z € Z,, ,. It is a space of dimension 34(n=m) _ 1 and each function h € H can be
written in the following form

h = Z )\z]lz+|:|ma

2€Zmn

for some constants (A.),.z  satisfying ¥.cz A, =0.

PROPOSITION 5.A.1. There exists a constant C := C(d, \) < oo such that the following estimate
holds, for each v € h'(Oy,),

log/ exp(

PROOF. By the assumptions made on the elastic potential V,, one has, for each x € R,

Ve (V)(e) + Vh(e))) dh < Cm34n=m)

e€Bmn

Vo(x) 2 Az?.
This gives the following estimate, for each 1 € ga Al (z+0Om),
2€Zm
(5.1.1) — 3 Ve(VY(e) +Vh(e)) <= > A(Vi(e) + Vh(e))?.
eGBmm eeBm,n

For the rest of the proof, we introduce the following notation: for z, 2" € Z,, ,,, we write

z ~Z'if and only if|z - 2’|, = 3™.
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That is to say, we write z ~ 2’ if and only if z and 2’ are neighbors in the rescaled lattice 3™Z<.
With this notation, the set By, , can be partitioned according to

Bm,n = U Fz,z’a

2,2'€Zm n,2~2"
where we introduced the notation
F, .= {ez (z,y) €Op41 : T €z +0, and yez'+|:|n}.

With this notation, the right-hand side of (5.1.1) can be rewritten

> (V(e) +Vh(e) = ) S (Vih(e) + A = As)P

e€Bm,n 2,2'€Zmm, 2~z e€F, s
,

Expanding the square gives, for each z,z’ € Z,, ,, satisfying z ~ 2/,

S (Vi) + A =A) = Y [Ve(e)]? +2vi(e) (A — As) + [Aw = Aof

eEFz,z’ eGFz,z’

2
:|FZ,Z,1(AZ,—AZ+L 5 Vl/}(e))

F, .
| z,z |
) eEFz,z’

2
1
- 2 e + Y e,
| Z»Z,| 6€Fzyzl eGFz,z’
But one has
2
1
———| Y w(e)| + Y Ivu(e)’ 20,
|FZ,Z” eEFz,z/ eeryz/

thus one derives

2
2 1
Z (v¢(€)+>‘;_)‘z) 2 |Fz,z’| )\z’_)\z+— Z VQ,Z)(G) .
EGFZ’ZI |Fz,Z,| eEFz,z’

Note that the cardinality |F; .| is the same for each z,2z’ € Z,, , such that z ~ 2. It is indeed the
cardinality of a face of the cube Oy, and is equal to 3(*)™_ This cardinality will be denoted by
|Fn| in the rest of the proof.

The next step of the proof is to construct an isometry between the spaces H and iLl(Dn_m).
To do so, note that one has the equality

m
Zm,n =3 Un-m,

in particular if z € Z,,,, then 2/3™ € O,_,,. From this one obtains that the existence of an
isometry between the spaces H and h' (0,_,,) given by

H - Bl n-m
P { (o )

(5.1.2) dm
h:= Zzezmm )\Z]l{zﬂjm} = (p(h) =32 ZZEZm,n /\252/3m,

where ¢, is the function defined by d, (2') =1 if z = 2’ and §, (2') = 0 otherwise. The scalar 3%

is here to ensure that
Z h(l’)2 _ Z 3dm|)\z|2
redy 2€Zm.n

is equal to

> oem@?’= Y A

T€0zenn—m 2€Zm,mn
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We also denote by X, the vector field defined on the edges of O,_,, by
z 2 1
Xol—,— | =— .
p (3m7 3m) |Fm| 66%2, vw(e)

Performing the change of variables by the isometry ® shows

[H exp(— > A(W(e)Wh(e))Q) dh

e€Bmn
_dm 2
Sfﬁl(mnim)exp _egDZn,mMFm’(?) FVh(e) + Xy(e)) | dh

Using the equality |E,,| = 3¢¢")™ one obtains

(5.1.3) Lexp(— > A(V¢(e)+Vh(e))2) dh

e€Bmn
_ (d-1)m [o-4m _ 2
< ./El(mn_m) exp( egémm A3 (3 2 Vh(e) Xw(e)) ) dh.

We denote by V(O,-y,) the vector space of vector fields of O,_,, and equip it with the standard
L? scalar product. The idea is then to consider the following orthogonal decomposition

V(Onm) = VA (Onm) ® (VA (0n_m)) "
so that the vector field Xy, can be decomposed according to the formula
X¢ = Vhw + Xé;,

where hy, € A (Op_m) and Xy € (Vﬁl(mn_m))L. Using this decomposition, one has

Y (FEv0-%0) = T (e ) T ()

eCOpn—m eClp—m eCln—m

> ¥ (3*dTth(e)—Vh¢)2.

eCOp-m

2

Using the previous inequality, the estimate (5.1.3) becomes

[H exp(— > A(W(e)+vh(e))2) dh

e€Bm n
m 2
< - A3@Dm (3= gn(e) = Vhy) | dh.
fﬁl(un_m)exp( eEDZn_m ( P Vh(e) =V 1/1)

We then use the translation invariance of the Lebesgue measure to prove

m 2
fﬁl( )exp(— D A3<d—1)m(3-szh(e)—Vhw))dh
On-m

eClp—m
= - A3"™vh(e)? | dh.
/fil(un_m)eXp( Z Vh(e) )

eCOpn—m

Combining the two previous displays yields

fHexp(- 5 A(V¢(e)+vh(e))2) dhg];ll(mnm)exp(— 5 Ag—mvh(e)Q) dh.

EEBm’n eCln-m
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We then perform a change of variables to get,

[H exp(— > A(vw(e)wme))?) dh

e€Bm n
gd(n-m)_4
3m

S( 3 ) ’ /;;I(Dn_m)exp(— > Vh(e)Q) dh,

eCp—m

since dim iOLl(Dn_m) = 3d(n-m) _ 1, Taking the logarithm and applying Proposition 5.3.7, one sees
that

1ongexp (— S A(V(e) + Vh(e))z) dh < Cm (37 ~1) + C|Op |
e€Bm,n
< Cm34rn=m),
This completes the proof of Proposition 5.A.1. O

We now turn to the proof of the second technical lemma of the appendix which allows to use
the uniform convexity of V to obtain an L?estimate when perturbing around . This lemma
and the notation are used in Step 4 of the proof of Proposition 5.4.5.

PROPOSITION 5.A.2. There exists a constant C := C(d,\) < oo such that for each n €N,

(514) E[— ¥ T w(wg(q)(e)+w(e))]s1a[ YR ACRC)

|D2n| 2€Zy, o €S2+0n |D2n| 2€Z,, on €S2+0n

O +]g?)3 % + oR|

> > |vk(e) - Vaz(e)|2] )

’DQn| 2€Zy, on €S2+0n

PROOF. Denote by o the random variable taking values in ®.cz, ,, h'(z +0,) given by

o= Z 0z,

ZEZn,2n
we also recall that the random variable o, is defined by the identity
VzeZpon, Ve ez+0,, o.(x)=1¢,(z)-Vv,(q) .

Let P be the orthogonal projection from h'(Da,) to ®.cz iLl(Z +0y). Note the operator P

satisfies the following property
(5.1.5) Vgeh' (Do), V2 € Z,0n, Ye € 2 +0,, VPg(e) = Vg(e).

n,2n

Denote by £ the random variable taking values in @, gn’inozl(z +0,), defined according to

& =20 - Pk,

£+ Pk

so that o = >5—. Using the uniform convexity of the elastic potential V¢, one has

1
2E

D Ve(v«bz(e))]zﬂi[ Ly oy vg(vV,:(q)(e)wa(e))]

’DQn| 2€Zy, 2y, €S2+0n |D2n‘ 2€Zp, on €S2+0n

IE! LSS V(i (a)(e) + VPR(e)

D25 2€Z,, on €S2+0n

- C]El Yooy |vos(e) - VP/i(e)|2] )

2€Zp on €52+0n
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We then use (5.1.5) to get

1

(5.1.6) 2E ooy Ve(vwz(e))]zﬂzl ! > Ve(WZ(q)(eHVﬁ(e))]

|D2n| 2€Zy, on €S2+0n |D2n| 2€Zp, on €S2+0n

E[ Ly ¥ v;<w;<q><e>+w<e>>]

’D2n| 2€Zy, on €S2+0n

-CE

> IW(e)—W(e)IQ]-

2€2p 2n €S2+0n

Note that the random variable }..z , . is the minimizer of the problem

int E[ > X (Ve<w')—q-vw’<e>>]+H<P>>

2€Zp, 2n €52+0n

where the infimum is taken over all the probability measures on ®.cz, ,, h'(z+0,) and ¢ is a

random variable of law P. In particular, using the translation invariance of the entropy gives

(5.1.7) EIL >y Ve(vV;(q)(e)+V§(e))—q-(VVZ(Q)+V§)(e)]+@H(Ps)

|D2n’ 2€Zy, opn €S2+0n

zE! D) v;(vwz(e))—qwz<e>]+LH(PZ@)-

‘D%’ 2€Z,, 95 €S2+0n ‘Dn’

We first simplify a slightly the previous display by removing the linear terms in the left and
right-hand side. Using that Vv, (q) =E [(an,q>mn], we obtain

IE[ ! ooy q-vwz(e)]w-vwi(q),

|52n| 2€Zy, o €S2+0n

and, using the definition of o,

1

Y Y q-vPx(e)|.

|D2n| 2€Zp, 2n €S2+0n

> 2 4 (Vra(g) +vE) (6)]=Q-VV;§(q)+E[

D25 2€Z,, on €S2+0n

We denote by B}

o the set of edges of Og,, which do not belong to a cube of the form z + Oy, for
2 € Zy on, i.€.

B o, ={ecOy, : YzeZnon, etz +0n}.

Using this set, one can split the sum

2= X 2t

cOot eCz+ +
ecOy, ~— 2€Zp,on €S2+0n eeBan

Note also that the set B ,, is almost equal to the set By, 2,, the only difference is that we
added the edges which belong to O3, but not O,, which is a small boundary layer of edges.
Additionally, one has the estimate on the cardinality of B}

n,2n?

‘BJr | SC3in|D2n‘.

n,2n
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Using the partition of the sum, the fact that & € h} (03,) and the property (5.1.5), one obtains,

1

[ 1
> 2 ¢ (VPr)(e)|=E S Y g-va(e)
|D2n| 2€Z, on €S2+0n | 02| 2€Zp oy €S2+0n

=K

> que)

|D2"| eeB; ,

We then apply the Cauchy-Schwarz inequality as well as the definition of k given in (5.4.19) to
obtain

=
N|=

B+
> q-Vk(e) S|Q|(‘ vl . > ve(e)

|D2n‘ eeB} |D2n’ ‘ 2”’ e€B}) 5,

> |va(e)l ])2

SCq?)_%
d ( o

ecos

_ 1
2
<ClgI37 2 |E S |f(e))?
|D2n|ecg+

SCI(JI3_%(1+!q!)-

But using the definition of f given in (5.4.12) together with the estimate (5.3.8) of Proposition 5.3.1,

one has
> If(e)?
| 2n| eC\j+

A combination of the previous displays gives

E[L > > q-VPk(e)

|D2n| 2€Zp, o €S2+0n

) <C(1+]q)).

<0373 (1+]gP).

Using the previous estimate in (5.1.7), one obtains the simplified display

(5.1.8) E[L > Y Vel(vy, (q)(6)+V€(e))] Dol H (P¢)

|D2n’ 2€Z, 2, €S2+0n

>E H(Py)-C372(1+gf).

S v<vwz<e>>] E

|D2n’ 2€2y 2n €S2+0n n‘

We now show the following estimate comparing the entropies of P¢ and Py,

1

5.1.9
(5.1.9) O

H(P¢) < —H(P;,,)+C37"

First we recall the definition of the linear operator L given in (5.4.15) and that the random

variable k is defined by
k=1L Z o, .
ZGZ’”’QH

= (2Id - Po L),

We consequently have
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where 2Id - Po L is seen as a linear operator from @,z El(z +0y,) into itself. Using the change

n,2n
of variables formula for the entropy, one obtains
1 1
——H (P¢) = —H (P;,,) —In|det(2ld - Po L)|.
024 |On| ’
Since the dimension of @ ,¢ gn72n31 (z+0,) is 324" -39 e denote by Iy, . . ., I32dn_gan the eigenvalues
(potentially complex and with repetition) of P o L. We thus have

(5.1.10)

32dn73dn
In|det(2ld- PoL)|= Y In|2-1]
i=0

We now prove the two following statements on I;

(1) for each i e {1,...,3%d" — 34} |1 < 1.

(2) There exists a constant C := C(d) < oo such that at least 329" — C39" eigenvalues I; are

equal to 1.

To prove the first fact, note that, by (5.1.5), for each 1 € @Zezn’%foll(z +0p),

> Y IWPoL@) ()= Y > VL) (e)f.

262y 2n €S2+0n 2€Zp 2n €S2+0n

Moreover by (5.4.30), one has
> VL@ P s ¥ 3 [vee)f.

ecod 2€Zp, on €S2+0n
Since one clearly has
2 2
>, 2 VL) (e < X IVL(¥)(e)l,
ZEZn’Qn ecz+0p eg];rn

one obtains

> X [VPeL@) el < ¥ Y Vi)

2€2Zy 2n €£2+0n 2€Zp, 2n €52+0n
Thus if [; is an eigenvalue of Po L, consider 1; an eigenvector (which may be complex) associated
to this eigenvalue. Then one has

2 2 2
LE > 2 vl < X X Ivdi(e)l,
2€Zp 2n €S2+0n 2€2y 2n €S2+0n
which implies |I;| <1 as soon as Y.z, Yecsia, |Vi(€)? is not 0, but since ¢; € ®,cz A (z +
On), one also has

n,2n

> Ivei(e) =0 =1y =0.

2€2p 2n €S2+0n
This completes the proof of the first item.
We now prove the second item. To this end we proceed exactly as in Step 1 of Proposition 5.4.5,
where it is proved proved that if one considers the interior O},
( 3n-2 3"-2
o= (- ,
2 2
then for each 1 € @zezwjzl (z +0)) one has
L(y) = 4.

Moreover, from (5.4.25) one has the estimate on the dimension of EBZGZM”}OLI (z+0O,),

d
) nZ% =g, \ 00,,

dim( ® h'(z+ D;)) > 3%dn _ ¢3(2d-1)n,

ZGZnygn

This implies that among the [;, at least 324" — C3(24-1" of them are equal to 1. Without loss of
generality, we can thus assume that for each i e {1,..., 3% - 03(2‘1_1)"}, I; =1.
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Combining (1) and (2), we obtain

32dn_3dn

In|det(2ld - Po L)[[< > [In[2-1|
|‘32n| i=0

1

32dn_3dn

< > In |2 — I;]]

§=32dn_('3(2d-1)n
Thus
1
| O2n |
Combining this estimate with (5.1.10) gives
1
||32n|

lIn|det(2Id - P o L)|| < C37".

1 . .
H (P¢) < mH(]P’mq) +C37".

This is precisely (5.1.9).
We then combine (5.1.8) and (5.1.9) to obtain

Ell Ty n(vs(@)]zﬂa[

’D2n| 2€Zy, on €S2+0n

1

2 %(sz(e))]—0(1+|q|2)3—2,

‘D2n’ 2€Zy, op €S2+0n

Using this inequality together with (5.1.6) gives

1

> Y Ve(Vk(e)|-C(1+]gf)372

|D2TL| 2€Zy on €€2+0n

- CE|: YooY ve(e) - V/s:(e)|2] )

2€Zn, 2n €52+0n

E[L D ve(vwe))]zm:[

|D2TL| 2€Zy on €S2+0n

This is (5.1.4) and thus the proof of Lemma 5.A.2 is complete. O

We then prove the last lemma of this appendix. It gives a quadratic upper bound for the
value of v(U,p) for any bounded domain U ¢ 7.

PROPOSITION 5.A.3. There exists a constant C = C(d,\) < oo such that for each bounded
domain U € Z% and each p € RY,

v (U,p) < C(1+p*).

REMARK 5.A.4. This statement is a more general version of the upper bound for v than the
one given in Proposition 5.3.7, since it is valid for any bounded domain U ¢ Z%, nevertheless
the argument presented here does not give a lower bound as the one we computed in the case
of cubes. It also does not give bounds on v*, this is why this statement is presented in the
appendix.

PROOF. Consider a random variable X, taking values in h$(U) whose law is defined by

e for each z € U, the law of X (z) is uniform in [0, 1]
e the random variables X (), for x € U are independent.

Using that the entropy of the law uniform in [0, 1] is equal to 0 together with Proposition 5.2.4,
one obtains

H (Px) =0.
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Then by Proposition 5.2.8, one has the following computation

AU0) < B | V0l + 9X (@)« ot ()

<E| i TV 600 vx (@)

ecU

We then use the bound V() < %|:13|2 combined with the estimate |VX (e)| <1 for each e €U to
obtain

[|U| S V. (p(e)+VX(e))] <C(1+pf).

ecU
A combination of the two previous displays completes the proof of the proposition. O

5.B. Functional inequalities

The goal of this second appendix is to prove some classic inequalities from the theory of
elliptic equations in the setting of the V¢ model. These inequalities are proved with the random
variable v, 4 associated to the law P}, . because it is needed in the proof of Theorem 5.1.2,
nevertheless similar statements, with similar proofs, should exist for the random variable ¢,
associated to the law P, ;.

PRrOPOSITION 5.B.1 (Interior Caccioppoli inequality). There exists a constant C := C(d,\) <
oo such that for every integer n > 1, every x € O, and every r > 1 such that B(x,2r) €O,

ecB(x,r) zeB(z,2r)

C
El Z |an7q(e)|2] < ﬁEl: Z ‘wn,q(y) - (¢n,q)B(z,2r)|2 + Crd-

PrOOF. Let n be a cutoff function defined on the discrete lattice O, taking values in R
satisfying
]lB(ac,r) <n< ]lB(:c,Qr) and Ve = (x,y) € Op, |V77(€)|2 < CT_Q (77(95) + 7](1/)) .
For t > 0, denote by L; the following linear operator
;Ll(Dn) - ;Ll(Dn)
Lt =
v e e (- W)pean) ~ (0 (Y- Wpan)),

As a remark, note that the last term on the right-hand side can be rewritten

(0 +tn (v - @Wpan)), =t(n(¥ - Dpean)), -

since 1) € iLl(Dn). Note that Lg is the identity of h'(0,). We now show the following inequality
which estimates the distance between L; and the identity of h'(d,), in the L? operator norm:
2 2 2
Vet (Tn), Y 1) - L) (@) <[t Y (@)
x€Op T€0n
This is a consequence of the computation

> (@) - L) (@) < X |m() (0(x) = () pan)|

xeln xeln

<P Y (@) = () sgan|”

zeB(x,2r)

<ff Y )P

zeB(x,2r)

This implies in particular that for each ¢ € (=1, 1), the operator L, is bijective. Note also that by
definition of L,

(5.2.1) ¥ e h'(n), Ve € On, VLi(¥)(e) = Vi (e) +tV (1 (¢ - (¥) pwary)) (€)
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Fix ¢ e R. We use the random variable L; (¢, 4) as a test random variable in Proposition 5.2.8.
This yields

-3 (%(vwn,q@))—q-wn,q«z))]—H(IP;;,q>

>E [ 5 (Ve (VL () () =0T () <e>>] ~H (Pr(p,.)

First note that, since 7 is supported in B(x,2r) € O,
(VLt (¢n,q)>gn = <V¢n,q>gn )

consequently,
B T 0 90| -E| £ 0 vni0 @)

Thus one can simplify the previous display

E[ 5 n(vwn,q@»]—ﬂ(mq) zE[— S V. (VL wn,q)<e>>]—H(PLt<%,Q)).

ecOn eCOy,
By Proposition 5.2.3,
H(PL,(p,,)) = H(P; ) —Indet L;.

Using the previous display and the formula for L;, one obtains, for each ¢t € (-1,1),

E[ Z Ve (an,q(e) +1V (77 (¢n,q - (wn,q)B(x,Qr))) (e)) -Ve (an,q(e))] —Indet L; 2 0.

ecln

It is clear that the function ¢ — Indet L; is smooth for ¢ € (=1,1). In particular, dividing the
previous display by ¢ and sending ¢ to 0 gives

d
(5.2.2) E[ >V (V) (€)Y (1 (Yng = (na) 5ear)) <e>] et L= 0
ecOy, =

We first deal with the term coming from the entropy. By the chain rule, one has the formula

d

—  Indet L; = tr I

dt|t=0 naehfe =i R,
where L{, denote the derivative of the operator L; at ¢t =0, it is given by the explicit formula

, iLl(Dn) - ;ll(Dn)
=V e (- @ sean) - (1(4 - () pean))
TI B(LL‘72T‘) ”7 B(g;’Q’r) o, .

In particular, for each 1) € ioll(ljn),

S L) @) < X In(@) (b(@) = () paan )|

xeln xredy

Z W(ﬂf) - (¢)B(z,2r)|2

zeB(x,2r)

< Y @)P.

zeB(z,2r)

IN

This implies that every function ¢ supported in 0, ~ B(z,2r) is in the kernel of L{, and thus one
has

dimker L, > |0, | - Cr?.
Combining the two previous displays shows

(5.2.3) |tr Lj| < dim h'(0,) - dimker L < Cr<.
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We now turn to the first term on the right-hand side of (5.2.2). To simplify the notation in the
following computation, we set

Xn,q *= ¢n,q - (wn,q)B(x,Zr)
and compute
Z V;a, (vXn,q)(e)) V(an,q)(e)

ecB(z,2r)

= (Z : (n(@)Xn,q(x) = 1(Y) Xn,q(¥)) V(Ix,y) (Xn,q(z) = Xn,q())
z,yeB(xz,2r),x~y

= > (@) (g (@) = Xng (1)) Vi) (g () = Xng (7))
z,yeB(z,2r),x~y

+ > X (@) = 1Y) Vi) (g () = Xng () -
z,yeB(x,2r),x~y

Using the uniform convexity of V. and (5.2.2), one obtains, by taking the expectation,

AE Z n(x) (Xn,q($) - Xn,q(y))2
z,yeB(x,2r),z~y
<E Z n(x) (Xn,q(2) = Xn,q(¥)) V(lgn,y) (Xn,q(z) - Xn7q(x)):|
| ©,yeB(z,2r),z~y
El Y bona® @ =00 |Vs ) Ctnala) - xn,q<m>>|] e L)
| z,yeB(z,2r),z~y

We then use the bound V. (z) < Az|. This yields

AE! Y. (@) (ng(@) - Xn,q(y))2]

x,yeB(x,2r),z~y
n(x) - n(y)
z,yeB(z,2r),z~y 7](3:) + U(y)

FE|2 R () (1) (g () —Xn,q(y))2] Tt L)

<CE

|Xn,q(y)|2]

| 4 z,yeB(x,2r),x~y

<372 > |Xn,q(y)|2] + éE[ > (@) [xng(z) - xn,q(y)l2] +|tr Lg-

_x,yeB(x,Qr),a:~y 2 z7y€U7zNy

Absorbing the second term on the right back into the left-hand side and using the estimate (5.2.3)
gives,

E[ > (@) (g (@) = xna ()

z,yeB(z,2r),z~y

<Cr’E [Z |Xn7q(x)|2] +ord,

Now we replace Xn,q by ¥n,q = (¥n,q) B(z,2r) to eventually obtain

Z ‘d}”,q(e) - (d)n,q)B(x,Qr)E] + C’l“d.

ecB(x,2r)

E[ 3 |vwn,q(e)|2]gcr‘2E

ecB(z,r)
This is the desired result. ]
The next statement one wishes to obtain is a reverse Holder inequality for the random

variable 1), 4. It is obtained by combining the Caccioppoli inequality proved in the previous
proposition with the Sobolev inequality recalled below.



5.B. FUNCTIONAL INEQUALITIES 347

PROPOSITION 5.B.2 (Sobolev inequality on Z9). There exists a constant C = C(d) < co such
that for each x € Z%, each r > 1, each exponent s € (%, oo) and each function f: B(x,r) - R
satisfying

>, f@)=0,

zeB(z,r)

one has the estimate

( 5 If(w)ls)séc( 5 |Vf<e>|8*)s*,

zeB(z,r) ecB(z,r)
where s, is the Sobolev conjugate defined from s by the formula

sd
s+d’

Sy i=

This inequality can be deduced from the continuous Sobolev inequality (on R?) by an
interpolation argument. From the Sobolev inequality and the Cacioppoli inequality, we deduce
the following reverse Holder inequality

PROPOSITION 5.B.3 (Reverse Hélder inequality for Py, ). There exists a constant C :=
C(d,\) < oo such that for every integer n > 1, every x € O,, every r > 1 such that B(x,2r) € O,,
and every g € R?,

_ )2 I 2 ra &
|B(z,7)] Y Vibn( )|]SC(|B(ZL‘,2T)| > E[|VYng(e)l’] ) +C.

ecB(z,r) ecB(z,2r)

E

PRrROOF. Fix g € R%, an integer n > 1, and a ball B(z,r) with = € O, such that B(z,2r) c O,.
By Proposition 5.B.1, one has the inequality

C 2
El Z |V¢n,q(e)|2] < _2E|: Z Wn,q(y) - (wmq)B(m,zr)' +Crt,
ecB(z,r) r zeB(x,2r)
We then apply Proposition 5.B.2 with s =2 and s, = % and obtain

(52.4) E[ > rvwn,q(e>\2]s%( > Eﬂvwn,q(e)ﬂf@) ror

ecB(z,r) ecB(z,r)
Then for each N € N, we introduce the following notation for the half space
Riv = {(xl,...,xN) eRY 1 21,>0,... 28 20}.

Note that the mapping

= _d_
($1,"',$N) g (ZegB(x,r) |$i|d+2) ’

is concave. Then we pick N to be the number of edges of O,, and we apply Jensen’s inequality to

the random variable (|V¢n7q(e)|2)ecRN, which is valued in RY, to obtain

d+2 a+2

E( > |vwn,q<e>|ff2) s( 5 Enm,q(e»ﬂﬂ?) |

ecB(z,r) ecB(z,r)

Combining this estimate with (5.2.4) and dividing by r® completes the proof of Proposition 5.B.3.
O
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We then combine the previous estimate with the discrete version of the Gehring’s Lemma,
which is stated in the following proposition. The continuous version of this result can be found
in [77].

PROPOSITION 5.B.4 (Discrete Gehring Lemma). Fiz ¢<1, K >1 and R > 0. Suppose that
we are given two (discrete) functions f,g: B(0,R) - R, and that f satisfies the following reverse
Hélder inequality, for each z € Z% and each r > 1 such that B(z,2r) ¢ B(0,R),

1 1 q% K )
B 'f(”'SK(—w(x,w 2 |f<l“>|) fBeay o, 9@

xeB(z,r) zeB(z,2r) zeB(z,2r)

then there exist an exponent ¢ := 6(q, K,d) >0 and a constant C := C(q, K, d) < oo such that

m S @) sc(m > If(w)l)

i) xeB(x,g) B(z,R)
1

4 1 T 1+6 e
C(|B<x,R>|x€Z o) ) |

B(z,R)

From this estimate, one obtains the following version of the interior Meyers estimate for the
V¢ model. The idea is to combine the reverse Holder inequality and the Gehring’s Lemma to
improve the integrability of the expectation of the field v, , (seen as a function from the triadic
cube O, to R) form L? to L**.

PROPOSITION 5.B.5 (Interior Meyers estimate for P}, ). For each v € (0,1] and each n €N,
denote by vO,, the cube

3n 3n d
e

Fiz ¢ e R%. For each v € (0,1), each n € N, there exist an exponent § := §(d,\) >0 and a constant
C:=C(d,\,7y) < oo such that

1

( Loy Euwn,q(e»?]”)* « O S B[[penF]+C

[0 eCyOn =™ eCn

PRrROOF. The main idea of the proof is to apply the Gehring’s Lemma, Proposition 5.B.4,
with the following choice of functions

Vo edn, f(z):= E[ > Iwn,q(y)\z] and g(z) = 1.

yeOn,x~Y

By Proposition 5.B.3, one has the following reverse Holder inequality: there exists a constant
C = C(d, \) < oo such that for each z € Z% and each r > 1 satisfying B(z,2r) € O,,

1 1 sz s C
Bl i 'f(x)'gc(w(x,w z,, ) B2 i,

B(z,r) zeB(x,2r) zeB(x,2r)
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Applying Proposition 5.B.4, there exist an exponent § := §(d,A) > 0 and a constant C := C(d, \) <
oo, such that for each z € O,, R > 1 satisfying B(z,2R) ¢ O,,

1

_ AT C )
(|B(x,R)|$€Z 7 (@)l ) < Blram)] o, @)

B(z,R) (z,2R)
1 s ns
+Cl| m o lg ()"
( |B(x,2R)| zeB(Zz:,QR)
Which can be rewritten
1 211+6 v C 2

I E[|Vthn,q(z)["] < E[|Vtbn,q(2)[7] + C.
(|B (z, R)| egB%,R) ! |B(x,2R)| meB(Za::QR) !

We then conclude that, for each ~ € [0,1), the cube vO,, ca be covered by finitely many balls of
the form B(z, R) such that B(x,2R) is included in O,. The cardinality of this covering family
can be bounded from above by a constant depending only on d and ~. This implies that, for each
~v € (0,1), there exist an exponent 0 := d(d,\) >0 and a constant C := C(d, \,7) < oo such that

(# > Enwn,qu)ﬁ]“é)“ < S RV @)P]+ O

|7Dn|eg'yljn | n | xeOn

O
REMARK 5.B.6. Combining the Meyers estimate with (5.3.8) of Proposition 5.3.1, one obtains

[un
|

1+

( Loy E[van,q(e)l2]1+6) <C(1+aP).

folm™ €S n
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RESUME

Cette thése est consacrée a 'homogénéisation stochastique, qui cherche a étudier le comportement d’équations aux
dérivées partielles présentant des coefficients aléatoires oscillant rapidement. Elle est divisée en trois parties.

La premiére partie correspond aux Chapitres 2 et 3 et cherche a étendre la théorie de 'homogénéisation stochastique
quantitative, développée sous une hypothese d’uniforme ellipticité, au contexte dégénéré de la percolation de Bernoulli
sur-critique. Nous obtenons dans le Chapitre 2, un théoréme d’homogénéisation quantitative ainsi qu’une théorie de la
régularité a grande échelle pour les fonctions harmoniques sur I'amas infini. Dans le Chapitre 3, nous obtenons des
estimées spatiales optimales en toute dimension pour le correcteur sur I'amas infini.

Dans le Chapitre 4, nous étudions un autre type d’environnement dégénéré impliquant des formes différentielles et
démontrons, dans ce contexte, un théoréme d’homogénéisation quantitative.

Dans le Chapitre 5, nous appliquons les idées de 'homogénéisation stochastique a un modeéle issu de la physique
statistique : le modéle de Ginzburg-Landau discret. Nous revisitons le début de la théorie de 'homogénéisation et
la combinons avec des arguments de la théorie du transport optimal afin de démontrer un théoréeme de convergence
quantitative pour la tension de surface du modéle.

MOTS CLES

Homogénéisation, percolation, formes différentielles, modéle d’interface

ABSTRACT

This thesis is devoted to the study of stochastic homogenization, which aims at studying the behavior of partial differential
equations with highly heterogeneous, but statistically homogeneous, random coefficients. It is divided into three parts.
The first part corresponds to Chapters 2 and 3 and tries to extend the theory of quantitative stochastic homogenization,
developed under an assumption of uniform ellipticity, to the degenerate setting of supercritical Bernoulli bond percolation.
In Chapter 2, we prove a quantitative homogenization theorem as well as a large scale regularity theory and Liouville
results for harmonic functions on the infinite cluster. In Chapter 3, we obtain optimal spatial estimates in all dimension for
the corrector on the infinite cluster.

In Chapter 4, we study another type of degenerate environment involving differential forms and prove, in this setting, a
quantitative homogenization theorem.

In Chapter 5, we apply ideas from homogenization to a model of statistical physics: the discrete Ginzburg-Landau model.
In this chapter, we revisit the beginning of the theory of stochastic homogenization and combine it with arguments from
the theory of optimal transport to derive a quantitative rate of convergence for the finite-volume surface tension of the
model.

KEYWORDS

Homogenization, percolation, differential forms, stochastic interface model
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