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Chapter 1

General Introduction

In the thesis we are interested in controlled diffusions on a network structure and on the associated partial differential equations. We address here three basic problems: the existence of a diffusion, the optimal control of this diffusion (dynamic programming principle) and the well-posedness of the associated Hamilton-Jacobi equation. For simplicity of notation, we will focus on a network consisting in a single junction, as the multi-junction setting can be treated with similar tools. In this framework the diffusion satisfies the following controlled reflected stochastic differential equation dx(t) = σ i(t) (t, x(t), β i(t) (t))dW (t) + b i(t) (t, x(t), β i(t) (t))dt + dl(t), 0 ≤ t ≤ T (1.1) where l(•) is a non decreasing process starting from 0, satisfying T 0 1 {x(s)>0} dl(s) = 0, and W is a standard one dimensional brownian motion.

The corresponding Ito's formula is given by

df i(t) (t, x(t)) = ∂ x f i(t) (t, x(t))σ i(t) (t, x(t), β i(t) (t))dW (t) + ∂ t f i(t) (t, x(t)) + 1 2 ∂ x,x f i(t) (t, x(t))σ 2 i(t) (t, x(t), β i(t) (t)) + ∂ x f i(t) (t, x(t))b i(t) (t, x(t), β i(t) (t)) dt + I i=1 ∂ x f i (t, 0)α i (t)dl(t), 0 ≤ t ≤ T, (1.2) 
for f regular enough.

We recall that a junction J consists in a vertex and a finite number I ∈ N * of edges.

More precisely: J = X = (x, i), x ∈ R + and i ∈ {1, . . . , I} , where all the points (0, i), i = 1, . . . , I, are identified to the vertex denoted by 0. We can then write

J = I i=1 J i ,
with J i := R + × {i} and J i ∩ J j = {0} for i = j.

They will be two types of control. The first ones are the β i appearing on each edge J * i in (1.1), and are classical from a mathematical point of view for a problem of control. The second ones are the terms α i appearing in (1.2), in front of the term of reflection l, that we will call in the sequel the control at the junction point, and can be interpreted as the probabilities of moving to another edge as soon as the junction point is reached by the process.

The optimal control consists in minimizing the cost

E P I i=1 T t 1
x(u),i(u) ∈J * i h i (u, x(u), β i (u))du + T t h 0 (u, α 1 (u) . . . α I (u))dl(u) + g(X T ) , with cost h i on each edge J * i , cost h 0 at the junction point, and the terminal condition g. The value function v associated with this problem satisfies (at least formally) the following backward Hamilton-Jacobi equation at the junction, with non linear Kirchoff condition at the vertex

           ∂ t u i (t, x) + H i (t, x, u i (t, x), ∂ x u i (t, x), ∂ x,x u i (t, x)) = 0, if (t, x) ∈ (0, T ) × (0, +∞), F (t, u(t, 0), ∂ x u(t, 0)) = 0, if t ∈ (0, T ), u(T, •) = g(•), (1.3) 
where Let us recall that the concept of ramified spaces and the analysis of (linear) partial differential equation on these spaces were first introduced by Nikol'skii [START_REF] Nikol'skii | The properties of certain classes of functions of many variables on differentiable manifolds[END_REF] and Lumer [START_REF] Lumer | Connecting of local operators and evolution equations on networks[END_REF][START_REF] Lumer | Equations de diffusion sur des réseaux infinis[END_REF].

H i (t, x, u, p, S) = inf k i ∈K i 1 2 σ 2 i (t, x, k i )S + b i (t, x, k i )p + h i (t, x, k i ) , F ( 
They are naturally associated with stochastic processes as in (1.1) living on graphs. These processes were introduced in the seminal papers [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF] and [START_REF] Freidlin | Diffusion processes on an open book and the averaging principle[END_REF], where they appear as the singular perturbation of Hamiltonian systems. Since then there has been a large literature on the subject: see for instance the survey paper [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF] on similar (multi-dimensional) stochastic systems and their interpretations.

On the PDE side, there has been several works on linear and quasilinear parabolic equations of the form (1.3), with more general Hamltonians on the edges. For linear equations, von Below [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF] shows that, under natural smoothness and compatibility conditions, linear boundary value problems on a network with a linear Kirchhoff are well-posed and enjoy a strong maximum principle. In [START_REF] Below | An existence result for semi linear parabolic network equations with dynamical node conditions[END_REF] he also studies the classical global solvability for a class of semilinear parabolic equations on ramified networks, where a dynamical node condition is prescribed. Still in the linear setting, another approach, yielding similar existence results, was developed by Fijavz, Mugnolo and Sikolya in [START_REF] Fijavz | Variational and semigroup methods for waves and diffusion in networks[END_REF]: the idea is to use semi-group theory as well as variational methods to understand how the spectrum of the operator is related to the structure of the network.

Equations of the form (1.3) can also be analyzed in terms of viscosity solutions. The first results on viscosity solutions for Hamilton-Jacobi equations on networks have been obtained by Schieborn in [START_REF] Schieborn | Viscosity solutions of Hamilton-Jacobi equations of Eikonal type on ramified spaces[END_REF] for the Eikonal equations and later discussed in many contributions on first order problems [START_REF] Camilli | The vanishing viscosity limit for Hamilton-Jacobi equations on networks[END_REF][START_REF] Imbert | Generalized junction conditions for degenerate parabolic equations[END_REF][START_REF] Lions | Lectures at Collège de France[END_REF], elliptic equations [START_REF] Lions | Viscosity solutions for junctions: Well posedness and stability[END_REF] and second order problems with vanishing diffusion at the vertex [START_REF] Lions | Well posedness for multi-dimensional junction problems with Kirchhoff-type conditions[END_REF]. Let us finally quote the very recent paper [START_REF] Achdou | A Class of Infinite Horizon Mean Field Games on Networks[END_REF] which discusses the well-posedness of stationary Hamilton-Jacobi equations on a network and builds solutions to ergodic mean field game systems on this network. The same authors will in a forthcoming work treat the finite horizon MFGs, in the nonstationary case. Still in the MFGs theory on networks in the nonstationary case, we refer to the following recent thesis [START_REF] Dao | Hamilton Jacobi equations and Mean Field Games on Networks[END_REF], where the author studies MFG PDE system on a junction, with linear Kirchoff condition at the junction point, and build weak solutions of the system in Sobolev spaces, with Lipschitz Hamiltonians.

The main reason for studying equation (1.3) is the optimal control of a diffusion living on the junction. Control problems on stratified domains or networks have already been well-studied in the literature, most often for first order problems, and we refer for instance to [START_REF] Bachmann | Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients[END_REF], [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi Bellman equations[END_REF], [START_REF] Barles | Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit[END_REF], [START_REF] Ghilli | Junction conditions for finite horizon optimal control problems on multi-domains with continuous and discontinuous solutions[END_REF], [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF], [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF]... On the other hand, for stochastic control problems with reflection and controllability at the boundary, we refer to [START_REF] Bouchard | Optimal reflection of diffusions and barrier options pricing under constraints[END_REF], where the author studied optimal reflection with some applications in financial markets.

Let us recall in the sequel, the main difficulties and motivations that we have faced out in this thesis:

First of all, to study a problem of control, with control at the junction point, which involves the behavior of the process l(•) given in (1.2), we can not consider second order terms vanishing at the junction, since the quadratic variation of l(•) is centrally related to the assumption of ellipticity. From a PDE point of view, we will study the quasi linear case, since in the literature, the viscosity context have been seldom considered, and a comparison Theorem for the problem (1.3), with non vanishing viscosity at the junction point is still an open problem. Moreover, in the quasi linear context, classical solutions and their uniqueness have been proved in [START_REF] Below | An existence result for semi linear parabolic network equations with dynamical node conditions[END_REF], but with a dynamical Neumann condition at the junction point, which can not been used for our problem regarding to the generator giving in (1.2). The same author proves the existence and uniqueness of a solution, when the Neumann boundary condition is non dynamical, but with viscosity vanishing at the junction point. The proof uses classical fixed point arguments, and this method is not well adapted for our problem. This is why, we will consider an elliptic scheme, since the non degenerate elliptic problem is well known in literature.

The second main difficulty for studying a problem of control at the junction, is that we should be able to get the existence of a diffusion with measurable, and time dependent coefficients. This the main motivation of Chapter 3, where we propose another proof of the existence on a diffusion, since semi-groups techniques used in [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF] are not adapted to this context. The main problem we face out, is that we are not able to have measurable coefficients α i at the junction point, and this the key point to formulate a verification Theorem in the theory of stochastic control. However, in the last Chapter 4, we will prove the dynammic programming principle, adapting classical arguments of compactification methods, to our problem which is a good starting point. We get several technical results, that will be used in a future framework to improve this theory.

Our contributions to the topic are the following:

• Well-posedness of the Hamilton-Jacobi equation (1.3), in the time dependent and uniformly parabolic setting.

In Chapter 2, we prove the existence of classical quasi linear solution to equation (1.3). Our main assumptions are that the equation is uniformly parabolic with smooth coefficients and that the term F = F (u, p) at the junction is either decreasing with respect to u or increasing with respect to p. Note that, in contrast with most previous works, we assume that the diffusion is not degenerate (in particular at the junction) and of evolution type. We also prove a comparison principle, from which we derive the uniqueness of the solution.

The main idea of the proof is to use a time discretization, exploiting at each step the solvability of the associated elliptic problem:

    
-σ i (x, ∂ x u i (x))∂ x,x u i (x) + H i (x, u i (x), ∂ x u i (x)) = 0, F (u(0), ∂ x u(0)) = 0.

(1.4)

• Construction of a solution to the diffusion (1.1).

Before discussing the optimal control problem (1.3), we show how to build a stochastic process of the form (1.1). Let us recall that in [START_REF] Freidlin | Diffusion processes on an open book and the averaging principle[END_REF], this process is built by semi-group techniques.

The aim of Chapter 3 is to provide a different and more intuitive method for the construction of the diffusion (1.1). We explain this construction in the time-independent framework, where the coefficient of the diffusion at the junction α = (α i ) are fixed.

Our idea is to build the process as the limit, as the small parameter δ tends to 0, of processes which jump at a position δ on a branch as soon as it touches the junction point 0. The branch i is chosen randomly (and independently of the process) with probability α i . We also describe the process l as the limit of the quadratic variation of X over the times spent at the neighborhood of 0.

• Dynamic programming principle for the optimal control problem (1.3).

In Chapter 4, we study stochastic control problems at the junction, with control at the junction point. This kind of problem has not been studied before and our main result is a dynamic programming principle. For this we follow the classical strategy of proof introduced in [START_REF] Karoui | Compactification methods in the control of degenerate diffusions : existence of an optimal control[END_REF]. We use a weak formulation in the problem, the main novelty (as well as the main difficulty) being to treat the reflexion at the junction point, which is responsible for the process l in (1.1). Our first main step is to prove the compactness of the class of admissible controls. Then we show stability properties of the set of controls by conditioning and concatenation at stopping times, from which we derive the dynamic programming principle.

Beside this introduction, the thesis is organized in 3 Chapters: in the first one we analyze the Hamilton-Jacobi equation with a Neumann boundary condition at the junction; in the second one we build a solution to the reflected process while the last one is dedicated to optimal control problems on the junction.

Different topics can be treated in futur frameworks, as the viscosity theory for equations of type 1.3, the verification theorem for the stochastic problem, and applications in MFGs.

Chapter 2

Quasi linear parabolic PDE in a junction with non linear Neumann vertex condition

This chapter is based on a paper written under the supervision of P. Cardaliaguet and submitted for publication: "I.Wahbi. Quasi linear parabolic PDE in a junction, with non linear Neumann boundary condition. ArXiv:1807.04032, 2018," [START_REF] Wahbi | Quasi linear PDE with non linear boundary conditions at the junctions point[END_REF].

Introduction

In this Chapter, we study non degenerate quasi linear parabolic partial differential equations on a junction, satisfying a non linear Neumann boundary condition at the junction point x = 0:

           ∂ t u i (t, x) -σ i (x, ∂ x u i (t, x))∂ 2 x,x u i (t, x) + H i (x, u i (t, x), ∂ x u i (t, x)) = 0,
for all x > 0, and for all i ∈ {1 . . . I}, F (u(t, 0), ∂ x u(t, 0)) = 0.

(2.1)

The well-known Kirchhoff law corresponds to the case where F is linear in ∂ x u and independent of u.

Originally introduced by Nikol'skii [START_REF] Nikol'skii | The properties of certain classes of functions of many variables on differentiable manifolds[END_REF] and Lumer [START_REF] Lumer | Connecting of local operators and evolution equations on networks[END_REF][START_REF] Lumer | Equations de diffusion sur des réseaux infinis[END_REF], the concept of ramified spaces and the analysis of partial differential equation on these spaces have attracted a lot of attention in the last 30 years. As explained in [START_REF] Nikol'skii | The properties of certain classes of functions of many variables on differentiable manifolds[END_REF], the main motivations are applications in physics, chemistry, and biology (for instance small transverse vibrations in a grid of strings, vibration of a grid of beams, drainage system, electrical equation with Kirchhoff law, wave equation, heat equation,...). Linear diffusions of the form (4.4), with a Kirchhoff law, are also naturally associated with stochastic processes living on graphs.

These processes were introduced in the seminal papers [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF] and [START_REF] Freidlin | Diffusion processes on an open book and the averaging principle[END_REF]. Another motivation for studying (4.4) is the analysis of associated stochastic optimal control problems with a control at the junction. The result of this Chapter will allow us in a future work to characterize the value function of such problems.

There has been several works on linear and quasilinear parabolic equations of the form (4.4). For linear equations, von Below [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF] shows that, under natural smoothness and compatibility conditions, linear boundary value problems on a network with a linear Kirchhoff condition at the vertex point, are well-posed. The proof consists mainly in showing that the initial boundary value problem on a junction is equivalent to a well-posed initial boundary value problem for a parabolic system, where the boundary conditions are such that the classical results on linear parabolic equations [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF] can be applied. The same author investigates in [START_REF] Below | A maximum principle for semi linear parabolic network equations[END_REF] the strong maximum principle for semi linear parabolic operators with Kirchhoff condition, while in [START_REF] Below | An existence result for semi linear parabolic network equations with dynamical node conditions[END_REF] he studies the classical global solvability for a class of semilinear parabolic equations on ramified networks, where a dynamical node condition is prescribed: Namely the Neumann condition at the junction point x = 0 in (4.4), is replaced by the dynamic one

∂ t u(t, 0) + F (t, u(t, 0), ∂ x u(t, 0)) = 0.
In this way the application of classical estimates for domains established in [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF] becomes possible. The author then establish the classical solvability in the class C 1+α,2+α , with the aid of the Leray-Schauder-principle and the maximum principle of [START_REF] Below | A maximum principle for semi linear parabolic network equations[END_REF]. Let us note that this kind of proof fails for equation (4.4) because in this case one cannot expect an uniform bound for the term |∂ t u(t, 0)| (the proof of Lemma 3.1 of [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF] VI.3 fails). Still in the linear setting, another approach, yielding similar existence results, was developed by Fijavz, Mugnolo and Sikolya in [START_REF] Fijavz | Variational and semigroup methods for waves and diffusion in networks[END_REF]: the idea is to use semi-group theory as well as variational methods to understand how the spectrum of the operator is related to the structure of the network.

Equations of the form (4.4) can also be analyzed in terms of viscosity solutions. The first results on viscosity solutions for Hamilton-Jacobi equations on networks have been obtained by Schieborn in [START_REF] Schieborn | Viscosity solutions of Hamilton-Jacobi equations of Eikonal type on ramified spaces[END_REF] for the Eikonal equations and later discussed in many contributions on first order problems [START_REF] Camilli | The vanishing viscosity limit for Hamilton-Jacobi equations on networks[END_REF][START_REF] Imbert | Generalized junction conditions for degenerate parabolic equations[END_REF][START_REF] Lions | Lectures at Collège de France[END_REF], elliptic equations [START_REF] Lions | Viscosity solutions for junctions: Well posedness and stability[END_REF] and second order problems with vanishing diffusion at the vertex [START_REF] Lions | Well posedness for multi-dimensional junction problems with Kirchhoff-type conditions[END_REF].

In contrast second order Hamilton-Jacobi equations with a non vanishing viscosity at the boundary have seldom been studied in the literature and our aim is to show the well-posedness of classical solutions for (4.4) in suitable Höder spaces: see Theorem 2.2.2

for the existence and Theorem 2.2.4 for the comparison, and thus the uniqueness. Our main assumptions are that the equation is uniformly parabolic with smooth coefficients and that the term F = F (u, p) at the junction is either decreasing with respect to u or increasing with respect to p.

The main idea of the proof is to use a time discretization, exploiting at each step the solvability in C 2+α of the elliptic problem

     -σ i (x, ∂ x u i (x))∂ 2 x,x u i (x) + H i (x, u i (x), ∂ x u i (x)) = 0, F (u(0), ∂ x u(0)) = 0.
(2.

2)

The Chapter is organized as follows. In section 2.2, we introduce the notations and state our main results. In Section 2.3, we review the mains results of existence and uniqueness of the elliptic problem (2.2). Finally Section 2.4, is dedicated to the proof of our main results.

Main results

In this section we state our main result Theorem 2.2.2, on the solvability of the parabolic problem with Neumann boundary condition at the vertex, on a bounded junction

                         ∂ t u i (t, x) -σ i (x, ∂ x u i (t, x))∂ x,x u i (t, x)+ H i (x, u i (t, x), ∂ x u i (t, x)) = 0, if (t, x) ∈ (0, T ) × (0, a i ), F (u(t, 0), ∂ x u(t, 0)) = 0, if t ∈ [0, T ), ∀i ∈ {1 . . . I}, u i (t, a i ) = φ i (t), if t ∈ [0, T ], ∀i ∈ {1 . . . I}, u i (0, x) = g i (x), if x ∈ [0, a i ].
(

2.3)

There will be two typical assumptions for F = F (u, p): either F is decreasing with respect to u or F is increasing with respect to p (Kirchhoff conditions).

Notations and preliminary results

Let us start by introducing the main notation used in this Chapter as well as an interpolation result.

Let I ∈ N * be the number of edges, and a = (a 1 , . . . a I ) ∈ (0, ∞) I be the length of each edge.

The bounded junction is defined by

J a = X = (x, i), x ∈ [0, a i ] and i ∈ {1, . . . , I} ,
where all the points (0, i), i = 1, . . . , I, are identified to the vertex denoted by 0. We can then write

J a = I i=1 J a i i , with J a i i := [0, a i ] × {i}, J a i i ∩ J a j j = {0}.
For T > 0, the time-space domain J a T is defined by

J a T = [0, T ] × J a .
The interior of J a T set minus the junction point 0 is denoted by • J a T , and is defined by

• J a T = (0, T ) × I i=1 • J a i i .
For the functionnal spaces that will be used in the sequel, we use here the notations of Chapter 1.1 of [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF]. For the convenience of the reader, we recall these notations in Appendix A.

In addition we introduce the parabolic Hölder space on the junction

C l 2 ,l (J a T ), . C l 2 ,l (J a T )
and the space

C l 2 ,l b ( • J a T )
, defined by (where l > 0, see Appendix A for more details)

C l 2 ,l (J a T ) := f : J a T → R, (t, (x, i)) → f i (t, x), ∀(i, j) ∈ {1 . . . I} 2 , ∀t ∈ (0, T ), f i (t, 0) = f j (t, 0) = f (t, 0), ∀i ∈ {1 . . . I}, (t, x) → f i (t, x) ∈ C l 2 ,l ([0, T ] × [0, a i ]) , C l 2 ,l b ( • J a T ) := f : J a T → R, (t, (x, i)) → f i (t, x), ∀i ∈ {1 . . . I}, (t, x) → f i (t, x) ∈ C l 2 ,l b ((0, T ) × (0, a i )) , with u C l 2 ,l (J a T ) = 1≤i≤I u i C l 2 ,l ([0,T ]×[0,a i ])
.

We will use the same notations, when the domain does not depend on time, namely T = 0, Ω T = Ω, removing the dependence on the time variable.

We continue with the definition of a nondecreasing maps F : R I → R.

Let (x = (x 1 , . . . x I ), y = (y 1 . . . y I )) ∈ R 2I , we say that

x ≤ y, if ∀i ∈ {1 . . . I}, x i ≤ y i , and 
x < y, if x ≤ y, and there exists j ∈ {1 . . . I}, x j < y j .

We say that

F ∈ C(R I , R) is nondecreasing if ∀(x, y) ∈ R I , if x ≤ y, then F (x) ≤ F (y), increasing if ∀(x, y) ∈ R I , if x < y, then F (x) < F (y).
Next we recall an interpolation inequality, which will be useful in the sequel. 

Lemma 2.2.1. Suppose that u ∈ C 0,1 ([0, T ] × [0, R]) satisfies an Hölder condition in t in [0, T ] × [0, R], with exponent α ∈ (0, 1], constant ν 1 ,
∀(t, s) ∈ [0, T ] 2 , |t -s| ≤ 1, ∀x ∈ [0, R], |∂ x u(t, x) -∂ x u(s, x)| ≤ 2ν 2 ν 1 γν 2 γ 1+γ + 2ν 1 γν 2 ν 1 -1 1+γ |t -s| αγ 1+γ .
This is a special case of Lemma II.3.1, in [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF], (see also [START_REF] Nikol'skii | The properties of certain classes of functions of many variables on differentiable manifolds[END_REF]). The main difference is that we are able to get global Hölder regularity in [0, T ]×[0, R] for ∂ x u in its first variable.

Let us recall that this kind of result fails in higher dimensions.

Proof. Let (t, s) ∈ [0, T ] 2 , with |t -s| ≤ 1, and x ∈ [0, R]. Suppose first that x ∈ [0, R 2 ]. Let y ∈ [0, R], with y = x, we write ∂ x u(t, x) -∂ x u(s, x) = 1 y -x y x (∂ x u(t, x) -∂ x u(t, z)) + (∂ x u(t, z) -∂ x u(s, z)) + (∂ x u(s, z) -∂ x u(s, x)) dz.
Using the Hölder condition in time satisfied by u, we have

1 y -x y x (∂ x u(t, z) -∂ x u(s, z))dz ≤ 2ν 1 |t -s| α |y -x| .
On the other hand, using the Hölder regularity of ∂ x u in space satisfied, we have

1 y -x y x (∂ x u(t, x) -∂ x u(t, z)) + (∂ x u(s, z) -∂ x u(s, x))dz ≤ 2ν 2 |y -x| γ .

It follows

|∂ x u(t, x) -∂ x u(s, x)| ≤ 2ν 2 |y -x| γ + 2ν 1 |t -s| α |y -x| . Assuming that |t -s| ≤ ( 3R 2 ) 1+γ γν 2 ν 1 1 α ∧ 1, minimizing in y ∈ [0, R],
for y > x, the right side of the last equation, we get that the infimum is reached for

y * = x + ν 1 |t -s| α γν 2 1 1+γ ,
and then

|∂ x u(t, x) -∂ x u(s, x)| ≤ C(ν 1 , ν 2 , γ)|t -s| αγ 1+γ ,
where the constant C(ν 1 , ν 2 , γ), depends only on the data (ν 1 , ν 2 , γ), and is given by

C(ν 1 , ν 2 , γ) = 2ν 2 ν 1 γν 2 γ 1+γ + 2ν 1 γν 2 ν 1 -1 1+γ .
For the cases y < x, and x ∈ [ R 2 , R], we argue similarly, that completes the proof.

Assumptions and main results

We state in this subsection the central Theorem of this Chapter, namely the solvability and uniqueness of (2.3) in the class

C α 2 ,1+α (J a T ) ∩ C 1+ α 2 ,2+α b ( • J a T ).
In the rest of these Chapter we fix α ∈ (0, 1).

Let us state the assumptions we will work on.

Assumption (P)

We introduce the following data

     F ∈ C 0 (R × R I , R) g ∈ C 1 (J a ) ∩ C 2 b ( • J a )
,

and for each i ∈ {1 . . . I}            σ i ∈ C 1 ([0, a i ] × R, R) H i ∈ C 1 ([0, a i ] × R 2 , R) φ i ∈ C 1 ([0, T ], R)
.

We suppose furthermore that the data satisfy

(i) Assumption on F            a) F is decreasing with respect to its first variable, b) F is nondecreasing with respect to its second variable, c) ∃(b, B) ∈ R × R I , F (b, B) = 0,
or satisfies the Kirchhoff condition

           a)
F is nonincreasing with respect to its first variable, b) F is increasing with respect to its second variable,

c) ∃(b, B) ∈ R × R I , F (b, B) = 0.
We suppose moreover that there exists a parameter m ∈ R, m ≥ 2 such that we have (ii) The (uniform) ellipticity condition on the (σ i ) i∈{1...I} : there exists ν, ν, strictly positive

constants such that ∀i ∈ {1 . . . I}, ∀(x, p) ∈ [0, a i ] × R, ν(1 + |p|) m-2 ≤ σ i (x, p) ≤ ν(1 + |p|) m-2 .
(iii) The growth of the (H i ) i∈{1...I} with respect to p exceed the growth of the σ i with respect to p by no more than two, namely there exists µ an increasing real continuous

function such that ∀i ∈ {1 . . . I}, ∀(x, u, p) ∈ [0, a i ] × R 2 , |H i (x, u, p)| ≤ µ(|u|)(1 + |p|) m .
(iv) We impose the following restrictions on the growth with respect to p of the derivatives for the coefficients (σ i , H i ) i∈{1...I} , which are for all i ∈ {1 . . . I},

a) |∂ p σ i | [0,a i ]×R 2 (1 + |p|) 2 + |∂ p H i | [0,a i ]×R 2 ≤ γ(|u|)(1 + |p|) m-1 , b) |∂ x σ i | [0,a i ]×R 2 (1 + |p|) 2 + |∂ x H i | [0,a i ]×R 2 ≤ ε(|u|) + P (|u|, |p|) (1 + |p|) m+1 , c) ∀(x, u, p) ∈ [0, a i ] × R 3 , -C H ≤ ∂ u H i (x, u, p) ≤ ε(|u|) + P (|u|, |p|) (1 + |p|) m ,
where γ and ε are continuous non negative increasing functions. P is a continuous function, increasing with respect to its first variable, and tends to 0 for p → +∞, uniformly with respect to its first variable, from [0, u 1 ] with u 1 ∈ R, and C H > 0 is real strictly positive number. We assume that (γ, ε, P, C H ) are independent of i ∈ {1 . . . I}.

(v) A compatibility conditions for g and

(φ i ) {1...I} F (g(0), ∂ x g(0)) = 0 ; ∀i ∈ {1 . . . I}, g i (a i ) = φ i (0).
Theorem 2.2.2. Assume (P). Then system (2.3) is uniquely solvable in the class

C α 2 ,1+α (J a T )∩ C 1+ α 2 ,2+α b ( • J a T ).
There exist constants (M 1 , M 2 , M 3 ), depending only the data introduced in assumption (P),

M 1 = M 1 max i∈{1...I} sup x∈(0,a i ) | -σ i (x, ∂ x g i (x))∂ 2 x g i (x) + H i (x, g i (x), ∂ x g i (x))| + |∂ t φ i | (0,T ) , max i∈{1...I} |g i | (0,a i ) , C H , M 2 = M 2 ν, ν, µ(M 1 ), γ(M 1 ), ε(M 1 ), sup |p|≥0 P (M 1 , |p|), |∂ x g i | (0,a i ) , M 1 , M 3 = M 3 M 1 , ν(1 + |p|) m-2 , µ(|u|)(1 + |p|) m , |u| ≤ M 1 , |p| ≤ M 2 , such that ||u|| C(J a T ) ≤ M 1 , ||∂ x u|| C(J a T ) ≤ M 2 , ||∂ t u|| C(J a T ) ≤ M 1 , ||∂ x,x u|| C(J a T ) ≤ M 3 .
Moreover, there exists a constant M (α) depending on α, M 1 , M 2 , M 3 such that

||u|| C α 2 ,1+α (J a T ) ≤ M (α).
We continue this Section by giving the definitions of super and sub solution, and stating a comparison Theorem for our problem.

Definition 2.2.3. We say that u

∈ C 0,1 (J a T ) ∩ C 1,2 ( • J a T ), is a super solution (resp. sub solution) of            ∂ t u i (t, x) -σ i (x, ∂ x u i (t, x))∂ x,x u i (t, x)+ H i (x, u i (t, x), ∂ x u i (t, x)) = 0, if (t, x) ∈ (0, T ) × (0, a i ), F (u(t, 0), ∂ x u(t, 0)) = 0, if t ∈ (0, T ), (2.4) if            ∂ t u i (t, x) -σ i (x, ∂ x u i (t, x))∂ x,x u i (t, x)+ H i (x, u i (t, x), ∂ x u i (t, x)) ≥ 0, (resp. ≤ 0), ∀(t, x) ∈ (0, T ) × (0, a i ), F (u(t, 0), ∂ x u(t, 0)) ≤ 0, (resp. ≥ 0), ∀t ∈ (0, T ) Theorem 2.2.4. Parabolic comparison. Assume (P). Let u ∈ C 0,1 (J a T ) ∩ C 1,2 b ( • J a T ) (resp. v ∈ C 0,1 (J a T ) ∩ C 1,2 b ( • J a T )
) a super solution (resp. a sub solution) of (2.4), satisfying for all i ∈ {1 . . . I}, u i (t, a i ) ≥ v i (t, a i ), for all t ∈ [0, T ], and u i (0, x) ≥ v i (0, x), for all x ∈ [0, a i ].

Then for each (t, (x, i)) ∈ J a T :

u i (t, x) ≥ v i (t, x).
Proof. We start by showing that for each 0 ≤ s < T , for all (t, (x, i))

∈ J a s , u i (t, x) ≥ v i (t, x). Let λ > 0. Suppose that λ > C 1 + C 2 ,
where the expression of the constants (C 1 , C 2 ) are given in the sequel (see (2.5), and (2.6)). We argue by contradiction assuming that

sup (t,(x,i))∈J a s exp(-λt + x) v i (t, x) -u i (t, x) > 0.
Using the boundary conditions satisfied by u and v, the supremum above is reached at a point (t 0 , (x 0 , j 0 )) ∈ (0, s] × J , with 0 ≤ x 0 < a j 0 . Suppose first that x 0 > 0, the optimality conditions imply that

exp(-λt 0 + x 0 ) -λ(v j 0 (t 0 , x 0 ) -u j 0 (t 0 , x 0 )) + ∂ t v j 0 (t 0 , x 0 ) -∂ t u j 0 (t 0 , x 0 ) ≥ 0, exp(-λt 0 + x 0 )) v j 0 (t 0 , x 0 ) -u j 0 (t 0 , x 0 ) + ∂ x v j 0 (t 0 , x 0 ) -∂ x u j 0 (t 0 , x 0 ) = 0, exp(-λt 0 + x 0 ) v j 0 (t 0 , x 0 ) -u j 0 (t 0 , x 0 ) + 2 ∂ x v j 0 (t 0 , x 0 ) -∂ x u j 0 (t 0 , x 0 ) + ∂ x,x v j 0 (t 0 , x 0 ) -∂ x,x u j 0 (t 0 , x 0 ) = exp(-λt 0 + x 0 ) -v j 0 (t 0 , x 0 ) -u j 0 (t 0 , x 0 ) + ∂ x,x v j 0 (t 0 , x 0 ) -∂ x,x u j 0 (t 0 , x 0 ) ≤ 0.
Using assumptions (P) (iv) a), (iv) c) and the optimality conditions above we have

H j 0 (x 0 , u i (t 0 , x 0 ), ∂ x u j 0 (t 0 , x 0 )) -H j 0 (x 0 , v j 0 (t 0 , x 0 ), ∂ x v j 0 (t 0 , x 0 )) ≤ v j 0 (t 0 , x 0 ) -u j 0 (t 0 , x 0 ) C H + γ(|∂ x v j 0 (t 0 , x 0 )|) (1 + |∂ x u j 0 (t 0 , x 0 ))| ∨ |∂ x v j 0 (t 0 , x 0 ))|) m-1 ≤ C 1 v j 0 (t 0 , x 0 ) -u j 0 (t 0 , x 0 ) ,
where

C 1 := max i∈{1...I} sup (t,x)∈[0,T ]×[0,a i ] C H + γ(|∂ x v i (t, x)| 1 + |∂ x u i (t, x))| ∨|∂ x v i (t, x))| m-1
.

(2.5)

On the other hand we have using assumption (P) (ii), (iv) a), (iv) c), and the optimality conditions

σ j 0 (x 0 , ∂ x v j 0 (t 0 , x 0 ))∂ x,x v j 0 (t 0 , x 0 ) -σ j 0 (x 0 , ∂ x u j 0 (t 0 , x 0 ))∂ x,x u j 0 (t 0 , x 0 ) ≤ v j 0 (t 0 , x 0 ) -u j 0 (t 0 , x 0 ) ν(1 + |∂ x v j 0 (t 0 , x 0 )|) m-2 + ∂ x,x u j 0 (t 0 , x 0 ) + γ(|∂ x u j 0 (t 0 , x 0 )|)(1 + |∂ x u j 0 (t 0 , x 0 ))| ∨ |∂ x v j 0 (t 0 , x 0 ))|) m-1 ≤ C 2 v j 0 (t 0 , x 0 ) -u j 0 (t 0 , x 0 ) ,
where

C 2 := max i∈{1...I} sup (t,x)∈[0,T ]×[0,a i ] ν(1 + |∂ x v i (t, x)|) m-2 + ∂ x,x u i (t, x) + γ(|∂ x u i (t, x)|)(1 + |∂ x u i (t, x))| + |∂ x v i (t, x))|) m-1 . (2.6)
Using now the fact that v is a sub-solution while u is a super-solution, we get

0 ≤ ∂ t u j 0 (t 0 , x 0 ) -σ j 0 (x 0 , ∂ x u j 0 (t 0 , x 0 ))∂ x,x u j 0 (t 0 , x 0 ) + H j 0 (x 0 , u i (t 0 , x 0 ), ∂ x u j 0 (t 0 , x 0 )) -∂ t v j 0 (t 0 , x 0 ) + σ j 0 (x 0 , ∂ x v j 0 (t 0 , x 0 ))∂ x,x v j 0 (t 0 , x 0 ) -H j 0 (x 0 , v j 0 (t 0 , x 0 ), ∂ x v j 0 (t 0 , x 0 )) ≤ -(λ -(C 1 + C 2 ))(v j 0 (t 0 , x 0 ) -u j 0 (t 0 , x 0 )) < 0,
which is a contradiction. Therefore the supremum is reached at (t 0 , 0), with t 0 ∈ (0, s].

We apply a first order Taylor expansion in space, in the neighborhood of the junction point 0. Since for all (i, j) ∈ {1 . . . I}, u i (t 0 , 0) = u j (t 0 , 0) = u(t 0 , 0), and v i (t 0 , 0) = v j (t 0 , 0) = v(t 0 , 0), we get from

∀(i, j) ∈ {1, . . . I} 2 , ∀h ∈ (0, min i∈{1...I} a i ] v j (t 0 , 0) -u j (t 0 , 0) ≥ exp(h) v i (t 0 , h) -u i (t 0 , h) , that ∀(i, j) ∈ {1, . . . I} 2 , ∀h ∈ (0, min i∈{1...I} a i ] v j (t 0 , 0) -u j (t 0 , 0) ≥ v i (t 0 , 0) -u i (t 0 , 0) + h v i (t 0 , 0) -u i (t 0 , 0) + ∂ x v i (t 0 , 0) -∂ x u i (t 0 , 0) + hε i (h),
where ∀i ∈ {1, . . . I}, lim h→0 ε i (h) = 0.

We get then

∀i ∈ {1, . . . I}, ∂ x v i (t 0 , 0) ≤ ∂ x u i (t 0 , 0) -v i (t 0 , 0) -u i (t 0 , 0) < ∂ x u i (t 0 , 0).
Using the growth assumptions on F (assumption (P)(i)), and the fact that v is a subsolution while u is a super-solution, we get

0 ≤ F (t 0 , v(t 0 , 0), ∂ x v(t 0 , 0)) < F (t 0 , u(t 0 , 0), ∂ x u(t 0 , 0)) ≤ 0,
and then a contradiction.

We deduce then for all 0 ≤ s < T , for all (t, (x, i))

∈ [0, s] × J a , exp(-λt + x) v i (t, x) -u i (t, x) ≤ 0.
Using the continuity of u and v, we deduce finally that for all (t, (x, i))

∈ [0, T ] × J a , v i (t, x) ≤ u i (t, x).

The elliptic problem

As explained in the general Introduction 2.1, the construction of a solution for our parabolic problem (2.3) relies on a time discretization and on the solvability of the associated elliptic problem. We review in this section the well-posedness of the elliptic problem

     -σ i (x, ∂ x u i (x))∂ x,x u i (x) + H i (x, u i (x), ∂ x u i (x)) = 0, F (u(0), ∂ x u(0)) = 0 , (2.7) 
which is formulated for regular maps (x, i) → u i (x), continuous at the junction point, namely for each i = j ∈ {1 . . . I}, u i (0) = u j (0) = u(0), that follows at each edge

-σ i (x, ∂ x u i (x))∂ x,x u i (x) + H i (x, u i (x), ∂ x u i (x)) = 0,
and u i satisfy the following non linear Neumann boundary condition at the vertex

F (u(0), ∂ x u(0)) = 0, where ∂ x u(0) = (∂ x u 1 (0), . . . , ∂ x u I (0)).
We introduce the following data for i ∈ {1 . . . I}

                   F ∈ C(R × R I , R), σ i ∈ C 1 ([0, a i ] × R, R) H i ∈ C 1 ([0, a i ] × R 2 , R) φ i ∈ R
, satisfying the following assumptions

Assumption (E) (i) Assumption on F            a)
F is decreasing with respect to its first variable, b) F is nondecreasing with respect to its second variable,

c) ∃(b, B) ∈ R × R I , such that : F (b, B) = 0, or F satisfies the Kirchhoff condition            a)
F is nonincreasing with respect to its first variable, b) F is increasing with respect to its second variable,

c) ∃(b, B) ∈ R × R I , such that : F (b, B) = 0.
(ii) The ellipticity condition on the

σ i ∃c > 0, ∀i ∈ {1 . . . I}, ∀(x, p) ∈ [0, a i ] × R, σ i (x, p) ≥ c.
(iii) For the Hamiltonians H i , we suppose

∃C H > 0, ∀i ∈ {1 . . . I}, ∀(x, u, v, p) ∈ (0, a i ) × R 3 , if u ≤ v, C H (u -v) ≤ H i (x, u, p) -H i (x, v, p).
For each i ∈ {1 . . . I}, we define the following differential operators

(δ i , δ i ) i∈{1...I} acting on C 1 ([0, a i ] × R 2 , R), for f = f (x, u, p) by δ i := ∂ u + 1 p ∂ x ; δ i := p∂ p .
(iv) We impose the following restrictions on the growth with respect to p for the coefficients (σ i , H i ) i∈{1...I} = (σ i (x, p), H i (x, u, p)) i∈{1...I} , which are for all i ∈ {1 . . . I}

δ i σ i = o(σ i ), δ i σ i = O(σ i ), H i = O(σ i p 2 ), δ i H i ≤ o(σ i p 2 ), δ i H i ≤ O(σ i p 2 ),
where the limits behind are understood as p → +∞, uniformly in x, for bounded u.

The main result of this section is the following Theorem, for the solvability and uniqueness of the elliptic problem at the junction, with non linear Neumann condition at the junction point.

Theorem 2.3.1. Assume (E). The following elliptic problem at the junction, with Neumann boundary condition at the vertex

           -σ i (x, ∂ x u i (x))∂ x,x u i (x) + H i (x, u i (x), ∂ x u i (x)) = 0, if x ∈ (0, a i ), F (u(0), ∂ x u(0)) = 0, ∀i ∈ {1 . . . I}, u i (a i ) = φ i , (2.8) 
is uniquely solvable in the class C 2+α (J a ).

Theorem 2.3.1 is stated without proof in [START_REF] Lions | Viscosity solutions for junctions: Well posedness and stability[END_REF]. For the convenience of the reader, we sketch its proof in the Appendix B.

The uniqueness of the solution of (2.8), is a consequence of the elliptic comparison Theorem for smooth solutions, for the Neumann problem, stated in this Section, and whose proof uses the same arguments of the proof of the parabolic comparison Theorem 2.2.4.

We complete this section by recalling the definition of super and sub solution for the elliptic problem (2.8), and the corresponding elliptic comparison Theorem.

Definition 2.3.2. Let u ∈ C 2 (J a ). We say that u is a super solution (resp. sub solution)

of

     -σ i (x, ∂ x f i (x))∂ x,x f i (x) + H i (x, f i (x), ∂ x f i (x)) = 0, if x ∈ (0, a i ), F (f (0), ∂ x f (0)) = 0, (2.9) if      -σ i (x, ∂ x u i (x))∂ x,x u i (x) + H i (x, u i (x), ∂ x u i (x)) ≥ 0, (resp. ≤ 0), if x ∈ (0, a i ), F (u(0), ∂ x u(0)) ≤ 0, (resp. ≥ 0).
Theorem 2.3.3. Elliptic comparison Theorem, see for instance Theorem 2.1 of [START_REF] Lions | Viscosity solutions for junctions: Well posedness and stability[END_REF].

Assume (E). Let u ∈ C 2 (J a ) (resp. v ∈ C 2 (J a )) a super solution (resp. a sub solution) of (2.9), satisfying for all i ∈ {1 . . . I}, u i (a i ) ≥ v i (a i ). Then for each (x, i) ∈ J a :

u i (x) ≥ v i (x).

The parabolic problem

In this Section, we prove Theorem 2.2.2. The construction of the solution is based on the results obtained in Section 2.3 for the elliptic problem, and is done by considering a sequence u n ∈ C 2 (J a ), solving on a time grid an elliptic scheme defined by induction. We will prove that the solution u n converges to the required solution.

Estimates on the discretized scheme

Let n ∈ N * , we consider the following time grid, (t n k = kT n ) 0≤k≤n of [0, T ], and the following sequence (u k ) 0≤k≤n of C 2+α (J a ), defined recursively by for k = 0, u 0 = g, and for 1 ≤ k ≤ n, u k is the unique solution of the following elliptic problem

                   n(u i,k (x) -u i,k-1 (x)) -σ i (x, ∂ x u i,k (x))∂ x,x u i,k (x))+ H i (x, u i,k (x), ∂ x u i,k (x)) = 0, if x ∈ (0, a i ), F (u k (0), ∂ x u k (0)) = 0, ∀i ∈ {1 . . . I}, u i,k (a i ) = φ i (t n k ).
(2.10)

The solvability of the elliptic scheme (2.10) can be proved by induction, using the same arguments as for Theorem 2. 

) |-σ i (x, ∂ x g i (x))∂ 2 x g i (x)+H i (x, g i (x), ∂ x g i (x))|+ |∂ t φ i | (0,T ) , C H , such that sup n≥0 max k∈{1...n} max i∈{1...I} n|u i,k -u i,k-1 | (0,a i ) ≤ C,
|u i,k | (0,a i ) ≤ C + max i∈{1...I} |g i | (0,a i ) .
Proof. Let n > ⌊C H ⌋, where C H is defined in assumption (P) (iv) c). Let k ∈ {1 . . . n}, we define the following sequence

     M 0 = max i∈{1...I} sup x∈(0,a i ) | -σ i (x, ∂ x g i (x))∂ 2 x g i (x) + H i (x, g i (x), ∂ x g i (x))| + |∂ t φ i | (0,T ) , M k,n = n n -C H M k-1,n , k ∈ {1 . . . n}.
We claim that for each k ∈ {1 . . . n}

max i∈{1...I} n|u i,k -u i,k-1 | (0,a i ) ≤ M k,n .
We give a proof by induction. For this, if k = 1, let us show that the map h defined on the junction by

h :=      J a → R (x, i) → M 1,n n + g i (x),
is a super solution of (2.10), for k = 1. For this we will use the Elliptic Comparison Theorem 2.3.3.

Using the compatibility conditions satisfied by g, namely assumption (P) (v), and the assumptions of growth on F , assumption (P) (i), we get for the boundary conditions

F (h(0), ∂ x h(0)) = F ( M 1,n n + g(0), ∂ x g(0)) ≤ F (g(0), ∂ x g(0)) = 0, h(a i ) = M 1,n n + g i (a i ) ≥ M 0,n n + g i (a i ) ≥ φ i (t n 1 ).
For all i ∈ {1 . . . I}, and x ∈ (0, a i ), we get using assumption (P) (iii)

n(h i (x) -g i (x)) -σ i (x, ∂ x h i (x))∂ 2 x h i (x) + H i (x, h i (x), ∂ x h i (x)) = M 1,n -σ i (x, ∂ x g i (x))∂ 2 x g i (x) + H i (x, M 1,n n + g i (x), ∂ x g i (x)) ≥ M 1,n -σ i (x, ∂ x g i (x))∂ 2 x g i (x) + H i (x, g i (x), ∂ x g i (x)) - M 1,n C H n ≥ 0.
It follows from the comparison Theorem 2.3.3, that for all i ∈ {1 . . . I}, and x ∈ [0, a i ]

u 1,i (x) ≤ M 1,n n + g i (x).
Using the same arguments, we show that

h :=      J a → R (x, i) → -M 1,n n + g i (x),
is a sub solution of (2.10) for k = 1, and we then get

max i∈{1...I} sup x∈(0,a i ) n|u 1,i (x) -g i (x)| ≤ M 1,n .
Let 2 ≤ k ≤ n, suppose that the assumption of induction holds true. Let us show that the following map

h :=      J a → R (x, i) → M k,n n + u i,k-1 (x),
is a super solution of (2.10). For the boundary conditions, using assumption (P) (i), we get

F (h(0), ∂ x h(0)) = F ( M k,n n + u k-1 (0), ∂ x u k-1 (0)) ≤ F (u k-1 (0), ∂ x u k-1 (0)) ≤ 0, h(a i ) = M k,n n + u i,k-1 (a i ) ≥ M 0,n n + u i,k-1 (a i ) ≥ φ i (t n k ).
For all i ∈ {1 . . . I}, and x ∈ (0, a i )

n(h i (x) -u i,k-1 (x)) -σ i (x, ∂ x h(x))∂ 2 x h(x) + H i (x, h(x), ∂ x h(x)) = M k,n -σ i (x, ∂ x u i,k-1 (x))∂ 2 x u i,k-1 (x) + H i (x, M k,n n + u i,k-1 (x), ∂ x u k-1 (x)) ≥ M k,n -σ i (x, ∂ x u i,k-1 (x))∂ 2 x u i,k-1 (x) + H i (x, u i,k-1 (x), ∂ x u k-1 (x)) - C H M k,n n .
Since we have for all x ∈ (0, a i )

-σ i (x, ∂ x u i,k-1 (x))∂ 2 x u i,k-1 (x) + H i (x, u i,k-1 (x), ∂ x u i,k-1 (x)) = -n(u i,k-1 (x) -u i,k-2 (x)),
using the induction assumption we get

n(h i (x) -u i,k-1 (x)) -σ i (x, ∂ x h(x))∂ 2 x h(x) + H i (x, ∂ x h(x), ∂ x h(x)) ≥ M k,n -n(u i,k-1 (x) -u i,k-2 (x)) - C H M k,n n ≥ M k,n n -C H n -M k-1,n ≥ 0.
It follows from the comparison Theorem 2.3.3, that for all (x, i)

∈ J a u i,k (x) ≤ M k,n n + u i,k-1 (x).
Using the same arguments, we show that

h :=      J a → R (x, i) → - M k,n n + u i,k-1 (x),
is a sub solution of (2.10), and we get

max i∈{1...I} n|u i,k (x) -u i,k-1 (x)| (0,a i ) ≤ M k,n .
We obtain finally using that for all k ∈ {1 . . . n}

     M k,n ≤ M n,n , M k,n = n n -C H k M 0 , and 
M n,n n→+∞ ----→ M := exp(C H ) max i∈{1...I} sup x∈(0,a i ) | -σ i (x, ∂ x g i (x))∂ 2 x g i (x) + H i (x, g i (x), ∂ x g i (x))| + |∂ t φ i | (0,T ) , that sup n≥0 max k∈{1...n} max i∈{1...I} n|u i,k -u i,k-1 | (0,a i ) ≤ C, sup n≥0 max k∈{0...n} max i∈{1...I} |u i,k | (0,a i ) ≤ C + max i∈{1...I} |g i | (0,a i ) .
That completes the proof.

The next step consists in obtaining uniform estimates for |∂ x u k | (0,a i ) , in terms of n|u ku k-1 | (0,a i ) and the quantities (ν, ν, µ, γ, ε, P ) introduced in assumption (P) (ii), (iii) and (iv). More precisely, we use similar arguments as for the proof of Theorem 14.1 of [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF],

using a classical argument of upper and lower barrier functions at the boundary. The assumption of growth (P) (ii) and (iii) are used in a key way to get an uniform bound on the gradient at the boundary. Finally to conclude, we appeal to a gradient maximum principle, using the growth assumption (P) (iv), adapting Theorem 15.2 of [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] to our elliptic scheme. The basic idea, which goes back as far as Bernstein's work, involves differentiation of each quasi linear equation in each edge of (2.10), with respect to x.

Thereafter, the maximum principle is applied to the resulting equation in the function

|∂ x u i,k | 2 .
Lemma 2.4. 

|u i,k | (0,a i ) + n|u i,k -u i,k-1 | (0,a i ) ≤ M.
We fix i ∈ {1 . . . I}. We apply a barrier method consisting in building two functions

w + i,k , w - i,k satisfying in a neighborhood of 0, for example [0, κ], with κ ≤ a i Q i (x, w + i,k (x), ∂ x w + i,k (x), ∂ 2 x w + i,k (x)) ≥ 0, ∀x ∈ [0, κ], w + i,k (0) = u i,k (0), w + i,k (κ) ≥ M, Q i (x, w - i,k (x), ∂ x w - i,k (x), ∂ 2 x w - i,k (x)) ≤ 0, ∀x ∈ [0, κ], w - i,k (0) = u i,k (0), w - i,k (κ) ≤ -M,
where we recall that for each (x, u, p, S)

∈ [0, a i ] × R 3 Q i (x, u, p, S) = n(u -u i,k-1 (x)) -σ i (x, p)S + H i (x, u, p).
For n > ⌊C H ⌋, where C H is defined in assumption P (iv) c), it follows then from the comparison principle that

w - i,k (x) ≤ u i,k (x) ≤ w + i,k (x), ∀x ∈ [0, κ],
and then

∂ x w - i,k (0) ≤ ∂ x u i,k (0) ≤ ∂ x w + i,k (0) 
.

We look for w + i,k defined on [0, κ] of the form

w + i,0 = g i (x) w + i,k : x → u i,k (0) + 1 β ln(1 + θx),
where the constants (β, θ, κ) will be chosen in the sequel independent of k.

Remark first that for all x ∈ [0, κ], ∂ 2 x w + i,k (x) = -β∂ x w + i,k (x) 2 , and w + i,k (0) = u i,k (0). Let us choose (θ, κ), such that ∀k ∈ {1 . . . n}, 0 < κ ≤ min i∈{1...I} a i , w + i,k (κ) ≥ M, ∂ x w + i,k (κ) ≥ β. (2.11)
We choose for instance

θ = β 2 exp(2βM ) + 1 min i∈{1...I} a i exp(2βM ) κ = 1 θ exp(2βM ) -1 . (2.12) 
The constant β will be chosen in order to get

β ≥ sup k∈{1...n} sup x∈[0,κ] µ(w + i,k (x))(1 + ∂ x w + i,k (x)) m + M ν(1 + ∂ x w + i,k (x)) m-2 ∂ x w + i,k (x) 2 , (2.13) 
where (µ(.), ν, m) are defined in assumption (P) (ii) and (iii). Since we have

∀x ∈ [0, κ], w + i,k (x) ≤ w + i,k (κ) = 2M, β ≤ ∂ x w + i,k (κ) ≤ ∂ x w + i,k (x) ≤ ∂ x w + i,k (0).
We can then choose β large enough to get (2.13), for instance

β ≥ µ(2M ) ν 1 + 1 β 2 + M νβ 2 .
It is easy to show by induction that w + i,k is lower barrier of u i,k in the neighborhood [0, κ]. More precisely, since w + i,0 = u i,0 , and for all k ∈ {1 . . . n}

w + i,k (0) = u i,k (0), w + i,k (κ) ≥ u i,k (κ), w + i,k (x) = w + i,k-1 (x) + u i,k (0) -u i,k-1 (0) ≥ w + i,k-1 (x) - M n ,
we get using the assumption of induction, assumption (P) (ii) and (iii), and (2.13) that for all x ∈ (0, κ)

n(w + i,k (x) -u i,k-1 (x)) -σ i (x, ∂ x w + i,k (x))∂ x,x w + i,k (x) + H i (x, w + i,k (x), ∂ x w + i,k (x)) ≥ -M + βσ i (x, ∂ x w + i,k (x))∂ x w + i,k (x) 2 + H i (x, w + i,k (x), ∂ x w + i,k (x)) ≥ -M + βν(1 + ∂ x w + i,k (x)) m-2 ∂ x w + i,k (x) 2 + µ(w + i,k (x))(1 + ∂ x w + i,k (x)) m ≥ 0.
We obtain therefore

sup n≥0 max k∈{0...n} max i∈{1...I} ∂ x u i,k (0) ≤ θ β ∨ ∂ x g i (0).
With the same arguments we can show that

w - i,0 = g i (x) w - i,k : x → u i,k (0) - 1 β ln(1 + θx),
is a lower barrier in the neighborhood of 0. Using the same method, we can show that

∂ x u i,k (a i
) is uniformly bounded by the same upper bounds, that completes the proof of

Step 1.

Step 2 : For the convenience of the reader, we do not detail all the computations of this

Step, since they can be found in the proof of Theorem 15.2 of [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]. It follows from Lemma 2.4.1 that there exists M > 0 such that

sup n≥0 max k∈{0...n} max i∈{1...I} |u i,k | (0,a i ) ≤ M.
We set furthermore

∀(x, u, p) ∈ [0, a i ] × R 2 , H n i,k (x, u, p) = n(u -u i,k-1 (x)) + H i (x, u, p).
Let u be a solution of the elliptic equation, for x ∈ (0, a i )

σ i (x, ∂ x u(x))∂ x,x u(x) -H n i,k (x, u(x), ∂ x u(x)) = 0,
and assume that |u| (0,a i ) ≤ M . The main key of the proof will be in the use of the following equalities

δ i H n i,k (x, u, p) = δ i H i (x, u, p) + n(p -∂ x u i,k-1 (x)) p , δ i H n i,k (x, u, p) = δ i H i (x, u, p),(2.14)
where we recall that the operators δ i and δi are defined in assumption (E) (iii). We follow the proof of Theorem 15.2 in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]. Let u such that u = ψ(u), where

ψ ∈ C 3 [m, M ], is
strictly increasing and m = ψ(-M ), M = ψ(M ). In the sequel, we will set

v = ∂ x u 2 and v = ∂ x u 2 .
To simplify the notations, we will omit the variables (x, u(x), ∂ x u(x)) in the functions σ i and H n i,k , and the variable u for ψ. We assume first that the solution u ∈ C 3 ([-M, M ]), and we follow exactly all the computations that lead to equation of (15.25) of [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] to get the following inequality

σ i ∂ x,x v + B i ∂ x v + G n i,k ≥ 0, (2.15) 
where B i and G n i,k have the same expression in (15.26) of [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] with (σ i = σ * i , c i = 0). We choose (r = 0, s = 0), since we will see in the sequel (2.17), that condition (15.32) of [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] holds under assumption assumption (P). We have more precisely

B i = ψ ′ ∂ p σ i ∂ x,x u -∂ p H i + ω∂ p (σ i p 2 ), G n i,k = ω ′ ψ ′ + κ i ω 2 + β i ω + θ n i,k , ω = ψ ′′ ψ ′2 ∈ C 1 ([m, M ]), κ i = 1 σ i p 2 δ i (σ i p 2 ) + p 2 4σ i |(δ i + 1)σ i | 2 , β i = 1 σ i p 2 δ i (σ i p 2 ) -δ i H i + p 2 2σ i ((δ i + 1)σ i )(δ i σ i ) , θ n i,k = 1 σ i p 2 p 2 4σ i |δ i σ i | 2 -δ i H n i,k = θ i - 1 σ i p 2 n(p -∂ x u i,k-1 ) p , θ i = 1 σ i p 2 p 2 4σ i |δ i σ i | 2 -δ i H i .
We set in the sequel

G i = ∂ x ω ∂ x ψ + κ i ω 2 + β i ω + θ i , in order to get G n i,k = G i - 1 σ i p 2 n(p -∂ x u i,k-1 ) p . (2.16)
More precisely, we see from (2.14) that all the coefficients (B i , κ i , β i , θ i ) can be chosen independent of n and u i,k-1 . The main argument then to get a bound of ∂ x u is to apply a maximum principle for v in (2.15), and this will be done as soon as we ensure

G n i,k ≤ 0, for |∂ x u| ≥ L n k .
Hence, we have

sup x∈Ω L v = sup x∈∂Ω L v, Ω L = {x ∈ [0, a i ], |∂ x u(x)| ≥ L n k }
On the other hand, using assumption (P) (ii) (iii) and (iv), it is easy to check that there exists a constants (a, b, c), depending only on the data

ν, ν, µ(M ), γ(M ), ε(M ), sup |p|≥0 P (M, |p|) , such that sup x∈[0,a i ],|u|≤M lim sup |p|→+∞ κ i (x, u, p) ≤ a, sup x∈[0,a i ],|u|≤M lim sup |p|→+∞ β i (x, u, p) ≤ b, sup x∈[0,a i ],|u|≤M lim sup |p|→+∞ θ i (x, u, p) ≤ c, where a = 1 ν (γ(M ) + ν) + 1 2 + γ(M ) 2 ν 2 , b = ε(M ) + sup |p|≥0 P (M, |p|) + γ(M ) ν + (ε(M ) + sup |p|≥0 P (M, |p|))(ν + γ(M )) ν 2 , c = (ε(M ) + sup |p|≥0 P (M, |p|)) 2 4ν 2 + 2(ε(M ) + sup |p|≥0 P (M, |p|)) ν .
Therefore, fixing ε > 0, using (2.16), we can find L = L(a, b, c), such that for all p ≥ L(a, b, c)

G i ≤ ∂ x ω ∂ x ψ + aω 2 + bω + c + ε.
As it has been done in the proof of Theorem 15.2 of [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], using Riccati's equation, we

choose ψ(•) = ψ(a, b, c)(•) such that we ensure G i ≤ 0, if |∂ x u(x)| ≥ L(a, b, c).
We see then from the expression of θ n i,k that we get

G n i,k ≤ 0, if |∂ x u(x)| ≥ L(a, b, c) ∨ |∂ x u i,k-1 (x)|.
Therefore applying the maximum principle to v in (2.15), and from the relation

u = ψ(u), v = ∂ x u 2 we get finally |∂ x u| (0,a i ) ≤ max max ψ ′ (a, b, c)(•) min ψ ′ (a, b, c)(•) |∂ x u| ∂(0,a i ) , L(a, b, c), |∂ x u i,k-1 | (0,a i ) .
This upper bound still holds if u ∈ C 2 ([0, a i ]), (cf. (15.30) and (15.31) of the proof of Theorem 15.2 in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]). Finally applying the upper bound above to the solution u k , we get by induction that

sup n≥0 max k∈{0...n} max i∈{1...I} |∂ x u i,k | (0,a i ) ≤ max max ψ ′ (a, b, c)(•) min ψ ′ (a, b, c)(•) |∂ x u i,k | ∂(0,a i ) , L(a, b, c), |∂ x g i | (0,a i ) .
This completes the proof.

The following Proposition follows from Lemmas 2.4.1 and 2.4.2, assumption (P) (ii) (iii), and from the relation

∀x ∈ [0, a i ], |∂ x,x u i,k (x))| ≤ |n(u i,k (x) -u i,k-1 (x))| + |H i (x, u i,k (x), ∂ x u i,k (x))| σ i (x, ∂ x u i,k (x)) ≤ |n(u i,k (x) -u i,k-1 (x))| + µ(|u i,k (x)|)(1 + |∂ x u i,k (x)| m ) ν(1 + |∂ x u i,k (x)| m-2 ) .
Proposition 2.4.3. Assume (P). There exist constants (M 1 , M 2 , M 3 ), depending only the data introduced in assumption (P)

M 1 = M 1 max i∈{1...I} sup x∈(0,a i ) | -σ i (x, ∂ x g i (x))∂ 2 x g i (x) + H i (x, g i (x), ∂ x g i (x))| + |∂ t φ i | (0,T ) , max i∈{1...I} |g i | (0,a i ) , C H , M 2 = M 2 ν, ν, µ(M 1 ), γ(M 1 ), ε(M 1 ), sup |p|≥0 P (M 1 , |p|), |∂ x g i | (0,a i ) , M 1 , M 3 = M 3 M 1 , ν(1 + |p|) m-2 , µ(|u|)(1 + |p|) m , |u| ≤ M 1 , |p| ≤ M 2 , such that sup n≥0 max k∈{0...n} max i∈{1...I} |u i,k | (0,a i ) ≤ M 1 , sup n≥0 max k∈{0...n} max i∈{1...I} |∂ x u i,k | (0,a i ) ≤ M 2 , sup n≥0 max k∈{1...n} max i∈{1...I} |n(u i,k -u i,k-1 )| (0,a i ) ≤ M 1 , sup n≥0 max k∈{0...n} max i∈{1...I} |∂ x,x u i,k | (0,a i ) ≤ M 3 .
Unfortunately, we are unable to give an upper bound of the modulus of continuity of

∂ x,x u i,k in C α ([0, a]
) independent of n. However, we are able to formulate in the weak sense a limit solution. From the regularity of the coefficients, using some tools introduced in Section 2.2.1, Lemma 2.2.1, we get interior regularity, and a smooth limit solution.

Proof of Theorem 2.2.2.

Proof. The uniqueness is a result of the comparison Theorem 2.2.4. To simplify the notations, we set for each i ∈ {1 . . . I}, and for each (x, q, u, p, S)

∈ [0, a i ] × R 4 Q i (x, u, q, p, S) = q -σ i (x, p)S + H i (x, u, p). Let n ≥ 0. Consider the subdivision (t n k = kT n ) 0≤k≤n of [0, T ],
and (u k ) 0≤k≤n the solution of (2.10).

From estimates of Proposition 2.4.3, there exists a constant M > 0 independent of n, such that

sup n≥0 max k∈{1...n} max i∈{1...I} |u i,k | (0,a i ) + |n(u i,k -u i,k-1 )| (0,a i ) + |∂ x u i,k | (0,a i ) + |∂ x,x u i,k | (0,a i ) ≤ M.
(2.17)

We define the following sequence (v n ) n≥0 in C 0,2 (J a T ), piecewise differentiable with respect to its first variable by

∀i ∈ {1 . . . I}, v i,0 (0, x) = g i (x) if x ∈ [0, a i ], v i,n (t, x) = u i,k (x) + n(t -t n k )(u i,k+1 (x) -u i,k (x)) if (t, x) ∈ [t n k , t n k+1 ) × [0, a i ].
We deduce then from (2.17), that there exists a constant M 1 independent of n, depending only on the data of the system, such that for all i ∈ {1 . . . I}

|v i,n | α [0,T ]×[0,a i ] + |∂ x v i,n | α x,[0,T ]×[0,a i ] ≤ M 1 .
Using Lemma 2.2.1, we deduce that there exists a constant M 2 (α) > 0, independent of n, such that for all i ∈ {1 . . . I}, we have the following global Hölder condition

|∂ x v i,n | α 2 t,[0,T ]×[0,a i ] + |∂ x v i,n | α x,[0,T ]×[0,a i ] ≤ M 2 (α).
We deduce then from Ascoli's Theorem, that up to a sub sequence n,

(v i,n ) n≥0 converge in C 0,1 ([0, T ] × [0, a i ]) to v i , and then v i ∈ C α 2 ,1+α ([0, T ] × [0, a i ]
). Since v n satisfies the following continuity condition at the junction point

∀(i, j) ∈ {1 . . . I} 2 , ∀n ≥ 0, ∀t ∈ [0, T ], v i,n (t, 0) = v j,n (t, 0) = v n (t, 0), we deduce then v ∈ C α 2 ,1+α (J a T ). We now focus on the regularity of v in • J a
T , and we will prove that v ∈ C 1+ α 2 ,2+α (

• J a T ), and satisfies on each edge

Q i (x, v i (t, x), ∂ t v i (t, x), ∂ x v i (t, x), ∂ x,x v i (t, x)) = 0, if (t, x) ∈ (0, T ) × (0, a i ).
Using once again (2.17), there exists a constant M 3 independent of n, such that for each

i ∈ {1 . . . I} ∂ t v i,n L 2 ((0,T )×(0,a i )) ≤ M 3 , ∂ x,x v i,n L 2 ((0,T )×(0,a i )) ≤ M 3 .
Hence we get up to a sub sequence, that

∂ t v i,n ⇀ ∂ t v i , ∂ x,x v i,n ⇀ ∂ x,x v i , weakly in L 2 ((0, T ) × (0, a i )).
The continuity of the coefficients (σ i , H i ) i∈{1...I} , Lebesgue's Theorem, the linearity of Q i in the variable ∂ t and ∂ x,x , allows us to get for each i ∈ {1 . . . I}, up to a subsequence n p T 0

a i 0 Q i (x, v i,np (t, x), ∂ t v i,np (t, x), ∂ x v i,np (t, x), ∂ x,x v i,np (t, x)) ψ(t, x)dxdt p→+∞ ----→ T 0 a i 0 Q i (x, v i (t, x), ∂ t v i (t, x), ∂ x v i (t, x), ∂ x,x v i (t, x)) ψ(t, x)dxdt, ∀ψ ∈ C ∞ c ((0, T ) × (0, a i )).
We now prove that for any

ψ ∈ C ∞ c ((0, T ) × (0, a i )) T 0 a i 0 Q i (x, v i,np (t, x), ∂ t v i,np (t, x), ∂ x v i,np (t, x), ∂ x,x v i,np (t, x))) ψ(t, x)dxdt p→+∞ ----→ 0.
Using that (u k ) 0≤k≤n is the solution of (2.10), we get for any

ψ ∈ C ∞ c ((0, T ) × (0, a i )) T 0 a i 0 Q i (x, v i,n (t, x), ∂ t v i,n (t, x), ∂ x v i,n (t, x), ∂ x,x v i,n (t, x)) ψ(t, x)dxdt = n-1 k=0 t n k+1 t n k a i 0 σ i (x, ∂ x u i,k+1 (x))∂ x,x u i,k+1 (x) -σ i (x, ∂ x v i,n (t, x))∂ x,x v i,n (t, x) +H i (x, v i,n (t, x), ∂ x v i,n (t, x)) -H i (x, u i,k+1 (x), ∂ x u i,k+1 (x)) ψ(t, x)dxdt. (2.18)
Using assumption (P) more precisely the Lipschitz continuity of the Hamiltonians H i , the Hölder equicontinuity in time of

(v i,n , ∂ x v i,n ), there exists a constant M 4 (α) independent of n, such that for each i ∈ {1 . . . I}, for each (t, x) ∈ [t n k , t n k+1 ] × [0, a i ] |H i (x, u i,k+1 (x), ∂ x u i,k+1 (x)) -H i (x, v i,n (t, x), ∂ x v i,n (t, x))| ≤ M 4 (α)(t -t n k ) α 2 ,
and therefore for any

ψ ∈ C ∞ c ((0, T ) × (0, a i )) n-1 k=0 t n k+1 t n k a i 0 H i (x, u i,k+1 (x), ∂ x u i,k+1 (x)) -H i (x, v i,n (t, x), ∂ x v i,n (t, x)) ψ(t, x)dxdt ≤ a i M 4 (α)|ψ| (0,T )×(0,a i ) n -α 2 n→+∞ ----→ 0.
For the last term in (2.18), we write for each i ∈ {1 . . . I}, for each (t, x) ∈ (t n k , t n k+1 )×(0, a i )

σ i (x, ∂ x u i,k+1 (x))∂ x,x u i,k+1 (x) -σ i (x, ∂ x v i,n (t, x))∂ x,x v i,n (t, x) = σ i (x, ∂ x u i,k+1 (x)) -σ i (x, ∂ x v i,n (t, x)) ∂ x,x u i,k (x) + (2.19) σ i (x, ∂ x u i,k+1 (x)) -n(t -t n k )σ i (x, ∂ x v i,n (t, x)) ∂ x,x u i,k+1 (x) -∂ x,x u i,k (x) .(2.20)
Using again the Hölder equicontinuity in time of (v i,n , ∂ x v i,n ) as well as the uniform bound

on |∂ x,x u i,k | [0,a i ] (2.17), we can show that for (2.19), for any ψ ∈ C ∞ c ((0, T ) × (0, a i )), n-1 k=0 t n k+1 t n k a i 0 σ i (x, ∂ x u i,k+1 (x)) -σ i (x, ∂ x v i,n (t, x)) ∂ x,x u i,k (x)ψ(t, x)dxdt n→+∞ ----→ 0.
Finally, from assumptions (P), for all i ∈ {1 . . . I}, σ i is differentiable with respect to all its variable, integrating by part we get for (2.20)

n-1 k=0 t n k+1 t n k a i 0 σ i (x, ∂ x u i,k+1 (x)) -n(t -t n k )σ i (x, ∂ x v i,n (t, x)) ∂ x,x u i,k+1 (x) -∂ x,x u i,k (x) ψ(t, x)dxdt = n-1 k=0 t n k+1 t n k a i 0 ∂ x σ i (x, ∂ x u i,k+1 (t, x))ψ(t, x) -n(t -t n k )∂ x σ i (x, ∂ x v i,n (t, x))ψ(t, x) ∂ x u i,k+1 (x) -∂ x u i,k (x) dxdt n→+∞ ----→ 0.
We conclude that for any

ψ ∈ C ∞ c ((0, T ) × (0, a i )) T 0 a i 0 Q i (x, v i (t, x), ∂ t v i (t, x), ∂ x v i (t, x), ∂ x,x v i (t, x))) ψ(t, x)dxdt = 0.
It is then possible to consider the last equation as a linear one, with coefficients σi (t, x) =

σ i (x, ∂ x v i (t, x)), Hi (t, x) = H i (x, v i (t, x), ∂ x v i (t, x)) belonging to the class C α 2 ,α ((0, T ) × (0, a i ))
, and using Theorem III.12.2 of [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF], we get finally that for all i ∈ {1 .

. . I}, v i ∈ C 1+ α 2 ,2+α ((0, T ) × (0, a i )), which means that v ∈ C 1+ α 2 ,2+α ( • J a T
). We deduce that v i satisfies on each edge

Q i (x, v i (t, x), ∂ t v i (t, x), ∂ x v i (t, x), ∂ x,x v i (t, x))) = 0, if (t, x) ∈ (0, T ) × (0, a i ).
From the estimates (2.17), we know that ∂ t v i,n and ∂ x,x v i,n are uniformly bounded by n.

We deduce finally that v ∈ C

1+ α 2 ,2+α b ( • J a T )
. We conclude by proving that v satisfies the non linear Neumann boundary condition at the vertex. For this, let t ∈ (0, T ); we have up to a sub sequence n p

F (v np (t, 0), ∂ x v np (t, 0)) ----→ p→+∞ F (v(t, 0), ∂ x v(t, 0)).
On the other hand, using that F (u k (0), ∂ 0 u k (x)) = 0, we know from the continuity of F (assumption (P)), the Hölder equicontinuity in time of t → v n (t, 0), and

t → ∂ x v(t, 0), that there exists a constant M 5 (α) independent of n, such that if t ∈ [t n k , t n k+1 ) |F (v n (t, 0), ∂ x v n (t, 0))| = |F (v n (t, 0), ∂ x v n (t, 0)) -F (u k (0), ∂ x u k (0))| ≤ sup |F (u, x) -F (v, y)|, |u -v| + x -y R I ≤ M 5 (α)n -α 2 n→+∞ ----→ 0.
Therefore, we conclude once more from the continuity of F (assumption (P)), the compatibility condition (assumption (P) (v)), that for each t ∈ [0, T )

F (v(t, 0), ∂ x v(t, 0)) = 0.
On the other hand, it is easy to get

∀i ∈ {1 . . . I}, ∀x ∈ [0, a i ], v i (0, x) = g i (x), ∀t ∈ [0, T ], v i (t, a i ) = φ i (t).
Finally, the expression of the upper bounds of the solution given in Theorem 2.2.2, are a consequence of Proposition 2.4.3, and Lemma 2.2.1, that completes the proof.

On the existence for unbounded junction

We give in this subsection a result on the existence and the uniqueness of the solution for the parabolic problem (2.3), in a unbounded junction J defined for I ∈ N * edges by J = X = (x, i), x ∈ R + and i ∈ {1, . . . , I} .

In the sequel, C 0,1

(J T ) ∩ C 1,2 ( • J T ) is the class of function with regularity C 0,1 ([0, T ] × [0, +∞)) ∩ C 1,2 ((0, T ) × (0, +∞))
on each edge, and L ∞ (J T ) is the set of measurable real bounded maps defined on J T .

We introduce the following data

     F ∈ C 0 (R × R I , R) g ∈ C 1 b (J ) ∩ C 2 b ( • J )
,

and for each i ∈ {1 . . . I}            σ i ∈ C 1 (R + × R, R) H i ∈ C 1 (R + × R 2 , R) φ i ∈ C 1 ([0, T ], R)
.

We suppose furthermore that the data satisfy the following assumption

Assumption (P ∞ ) (i) Assumption on F            a) F is decreasing with respect to its first variable, b) F is nondecreasing with respect to its second variable, c) ∃(b, B) ∈ R × R I , F (b, B) = 0, or the Kirchhoff condition            a)
F is nonincreasing with respect to its first variable, b) F is increasing with respect to its second variable,

c) ∃(b, B) ∈ R × R I , F (b, B) = 0.
We suppose moreover that there exist a parameter m ∈ R, m ≥ 2 such that we have (ii) The (uniform) ellipticity condition on the (σ i ) i∈{1...I} : there exists ν, ν, strictly positive

constants such that ∀i ∈ {1 . . . I}, ∀(x, p) ∈ R + × R, ν(1 + |p|) m-2 ≤ σ i (x, p) ≤ ν(1 + |p|) m-2 .
(iii) The growth of the (H i ) i∈{1...I} with respect to p exceed the growth of the σ i with respect to p by no more than two, namely there exists µ an increasing real continuous

function such that ∀i ∈ {1 . . . I}, ∀(x, u, p) ∈ R + × R 2 , |H i (x, u, p)| ≤ µ(|u|)(1 + |p|) m .
(iv) We impose the following restrictions on the growth with respect to p of the derivatives for the coefficients (σ i , H i ) i∈{1...I} , which are for all i ∈ {1 . . . I},

a) |∂ p σ i | R + ×R 2 (1 + |p|) 2 + |∂ p H i | R + ×R 2 ≤ γ(|u|)(1 + |p|) m-1 , b) |∂ x σ i | R + ×R 2 (1 + |p|) 2 + |∂ x H i | R + ×R 2 ≤ ε(|u|) + P (|u|, |p|) (1 + |p|) m+1 , c) ∀(x, u, p) ∈ R + × R 2 , -C H ≤ ∂ u H i (x, u, p) ≤ ε(|u|) + P (|u|, |p|) (1 + |p|) m ,
where γ and ε are continuous non negative increasing functions. P is a continuous function, increasing with respect to its first variable, and tends to 0 for p → +∞, uniformly with respect to its first variable, from [0, u 1 ] with u 1 ∈ R, and C H > 0 is real strictly positive number. We assume that (γ, ε, P, C H ) are independent of i ∈ {1 . . . I}.

(v) A compatibility conditions for g F (g(0), ∂ x g(0)) = 0.

We state here a comparison Theorem for the problem (2.3), in a unbounded junction.

Theorem 2.4.4. Assume (P ∞ ). Let u ∈ C 0,1 (J T ) ∩ C 1,2 ( • J T ) ∩ L ∞ (J T ) (resp. v ∈ C 0,1 (J T ) ∩ C 1,2 ( • J T ) ∩ L ∞ (J T
)) be a super solution (resp. a sub solution) of (2.4) (where

a i = +∞), satisfying for all i ∈ {1 . . . I} for all x ∈ [0, +∞), u i (0, x) ≥ v i (0, x). Then for each (t, (x, i)) ∈ J T : u i (t, x) ≥ v i (t, x). Proof. Let s ∈ [0, T ), K = (K . . . K) > (1, . . . 1) in R I
, and λ = λ(K) > 0, that will be chosen in the sequel. We argue as in the proof of Theorem 2.2.4, assuming

sup (t,(x,i))∈J K s exp(-λt - (x -1) 2 2 ) v i (t, x) -u i (t, x) > 0.
Using the boundary conditions satisfied by u and v, the above supremum is reached at a point (t 0 , (x 0 , j 0 )) ∈ (0, s] × J , with 0 ≤ x 0 ≤ K.

If x 0 ∈ [0, K), the optimality conditions are given for x 0 = 0 by

-λ(v j 0 (t 0 , x 0 ) -u j 0 (t 0 , x 0 )) + ∂ t v j 0 (t 0 , x 0 ) -∂ t u j 0 (t 0 , x 0 ) ≥ 0, -(x 0 -1) v j 0 (t 0 , x 0 ) -u j 0 (t 0 , x 0 ) + ∂ x v j 0 (t 0 , x 0 ) -∂ x u j 0 (t 0 , x 0 ) = 0, v j 0 (t 0 , x 0 ) -u j 0 (t 0 , x 0 ) -2(x 0 -1) 2 v j 0 (t 0 , x 0 ) -u j 0 (t 0 , x 0 ) + ∂ x,x v j 0 (t 0 , x 0 ) -∂ x,x u j 0 (t 0 , x 0 ) ≤ 0,
and if x 0 = 0, ∀i ∈ {1, . . . I}, ∂ x v i (t 0 , 0) ≤ ∂ x u i (t 0 , 0) -v i (t 0 , 0) -u i (t 0 , 0) < ∂ x u i (t 0 , 0).
If x 0 = 0, we obtain a contradiction exactly as in the proof of Theorem 2.2.4. On the other hand if x 0 ∈ (0, K), using assumptions (P) (iv) a), (iv) c) and the optimality conditions, we can choose λ(K) of the form λ(K) = C(1 + K 2 ), (see (2.5) and (2.6)), where C > 0 is a constant independent of K, to get again a contradiction. We deduce that, if

sup (t,(x,i))∈J K s exp(-λ(K)t - (x -1) 2 2 ) v i (t, x) -u i (t, x) > 0, then for all (t, (x, i)) ∈ [0, T ] × J K exp(-λ(K)t - (x -1) 2 2 ) v i (t, x) -u i (t, x) ≤ exp(-λ(K)t - (K -1) 2 2 ) v i (t, K) -u i (t, K) .
Hence for all (t, (x, i))

∈ [0, T ] × J K exp(- (x -1) 2 2 ) v i (t, x) -u i (t, x) ≤ exp(- (K -1) 2 2 ) v i (t, K) -u i (t, K) .
On the other hand, if

sup (t,(x,i))∈J K s exp(-λ(K)t - (x -1) 2 2 ) v i (t, x) -u i (t, x) ≤ 0, then for all (t, (x, i)) ∈ [0, T ] × J K exp(-λ(K)t - (x -1) 2 2 ) v i (t, x) -u i (t, x) ≤ 0. So exp(- (x -1) 2 2 ) v i (t, x) -u i (t, x) ≤ 0.
Finally we have, for all (t, (x, i))

∈ [0, T ] × J K max 0, exp(- (x -1) 2 2 ) v i (t, x) -u i (t, x) ≤ exp(- (K -1) 2 2 ) ||u|| L ∞ (J T ) + ||v|| L ∞ (J T ) .
Sending K → ∞ and using the boundedness of u and v, we deduce the inequality v ≤ u in [0, T ] × J . 

                   ∂ t u i (t, x) -σ i (x, ∂ x u i (t, x))∂ x,x u i (t, x)+ H i (x, u i (t, x), ∂ x u i (t, x)) = 0, if (t, x) ∈ (0, T ) × (0, +∞), F (u(t, 0), ∂ x u(t, 0)) = 0, if t ∈ [0, T ), ∀i ∈ {1 . . . I}, u i (0, x) = g i (x), if x ∈ [0, +∞), (2.21) is uniquely solvable in the class C α 2 ,1+α (J T )∩C 1+ α 2 ,2+α ( • J T ). There exist constants (M 1 , M 2 , M 3 ),
depending only the data introduced in assumption (P ∞ )

M 1 = M 1 max i∈{1...I} sup x∈(0,+∞) | -σ i (x, ∂ x g i (x))∂ 2 x g i (x) + H i (x, g i (x), ∂ x g i (x))| , max i∈{1...I} |g i | (0,+∞) , C H , M 2 = M 2 ν, ν, µ(M 1 ), γ(M 1 ), ε(M 1 ), sup |p|≥0 P (M 1 , |p|), |∂ x g i | (0,+∞) , M 1 , M 3 = M 3 M 1 , ν(1 + |p|) m-2 , µ(|u|)(1 + |p|) m , |u| ≤ M 1 , |p| ≤ M 2 , such that ||u|| C(J T ) ≤ M 1 , ||∂ x u|| C(J T ) ≤ M 2 , ||∂ t u|| C(J T ) ≤ M 1 , ||∂ x,x u|| C(J T ) ≤ M 3 .
Moreover, there exists a constant M (α) depending on α, M 1 , M 2 , M 3 such that for any

a ∈ (0, +∞) I ||u|| C α 2 ,1+α (J a T ) ≤ M (α).
Proof. Assume (P ∞ ) and let a = (a, . . . , a) ∈ (0, +∞) I . Applying Theorem 2.2.2, we can

define u a ∈ C 0,1 (J a T ) ∩ C 1,2 ( • J a T ) as the unique solution of                          ∂ t u i (t, x) -σ i (x, ∂ x u i (t, x))∂ x,x u i (t, x)+ H i (x, u i (t, x), ∂ x u i (t, x)) = 0, if (t, x) ∈ (0, T ) × (0, a), F (u(t, 0), ∂ x u(t, 0)) = 0, if t ∈ [0, T ), ∀i ∈ {1 . . . I}, u i (t, a) = g i (a), if t ∈ [0, T ], ∀i ∈ {1 . . . I}, u i (0, x) = g i (x), if x ∈ [0, a]. (2.22) 
Using assumption (P ∞ ) and Theorem 2.2.2, we get that there exists a constant C > 0 independent of a such that

sup a≥0 ||u a || C 1,2 (J a T ) ≤ C.
We are going to send a to +∞ in (2.22).

Following the same argument as for the proof of Theorem 2.2.2, we get that, up to a sub sequence, u a converges locally uniformly to some map u which solves (2.21). On the other hand, uniqueness of u is a direct consequence of the comparison Theorem 2.4.4, since u ∈ L ∞ (J T ). Finally the expression of the upper bounds of the derivatives of u given in Theorem 2.4.5, are a consequence of Theorem 2.2.2 and assumption (P ∞ ).

Appendix A

Functionnal spaces

Let l ∈ R * + , T > 0, and Ω a smooth open and bounded subset of R n , (n > 0). We set Ω T = (0, T ) × Ω, and we introduce the following spaces :

-if l ∈ 2N * , the Banach space C l 2 ,l (Ω T ), • C l 2 ,l (Ω T )
, whose elements are continuous functions (t, x) → u(t, x) in Ω T , together with all its derivatives of the form

∂ r t ∂ s x u, with 2r + s < l. The norm • C l 2 ,l (Ω T ) is defined for all u ∈ C l 2 ,l (Ω T ) by u C l 2 ,l (Ω T ) = 2r+s=j sup (t,x)∈Ω T |∂ r t ∂ s x u(t, x)|. -if l / ∈ N * , the Banach space C l 2 ,l (Ω T ), . C l 2 ,l (Ω T )
, whose elements are continuous functions (t, x) → u(t, x) in Ω T , together with all its derivatives of the form ∂ r t ∂ s x u, with 2r + s < l, and satisfying an Hölder condition with exponent l-2r-s 2 in their first variable, and with exponent (l -⌊l⌋) in their second variable, over all the connected components of Ω T whose radius is smaller than 1.

The norm

• C l 2 ,l (Ω T ) is defined for all u ∈ C l 2 ,l (Ω T ) by u C l 2 ,l (Ω T ) = |u| l Ω T + ⌊l⌋ j=0 |u| j Ω T , with ∀j ∈ {0, . . . , l}, |u| j Ω T = 2r+s=j sup (t,x)∈Ω T |∂ r t ∂ s x u(t, x)|, |u| l Ω T = |u| l x,Ω T + |u| l 2 t,Ω T , |u| l x,Ω T = 2r+s=⌊l⌋ |∂ r t ∂ s x u(t, x)| l-⌊l⌋ x,Ω T , |u| l t,Ω T = 0<l-2r-s<2 |∂ r t ∂ s x u(t, x)| l-2r-s 2 t,Ω T , |u| α x,Ω T = sup t∈(0,T ) sup x,y∈Ω,x =y,|x-y|≤1 |u(t, x) -u(t, y)| |x -y| α , 0 < α < 1, |u| α t,Ω T = sup x∈Ω sup t,s∈(0,T ),t =s,|t-s|≤1 |u(t, x) -u(s, x)| |t -s| α , 0 < α < 1.
-C l 2 ,l (Ω T ), the set whose elements f verify, for any open set O T separated from the boundary of Ω T by a strictly positive distance, namely

inf y∈∂Ω T ,x∈O T ||x -y|| R n > 0, then f ∈ C l 2 ,l (O T ). -C l 2 ,l b (Ω T ), the subset of C l 2
,l (Ω T ), whose derivatives of the form ∂ r t ∂ s x u, (with 2r + s < l) are bounded, namely sup (t,x)∈Ω T |∂ r t ∂ s x u(t, x)| < +∞. We use the same notations, when the domain does not depend on time, namely T = 0, Ω T = Ω, removing the dependence on the time variable.

For R > 0, we denote by L 2 ((0, T )×(0, R)) the usual space of square integrable maps, and

C ∞ c ((0, T ) × (0, R)) the set of infinite continuous differentiable functions on (0, T ) × (0, R), vanishing at the lateral surface of (0, T ) × (0, R), namely [0, T ] × ∂(0, R).
Proof of Theorem 2.3.1.

Proof. The uniqueness of (2.8) results from the elliptic comparison Theorem 2.3.3.

We turn to the solvalbility, and for this let θ ∈ R. We consider the elliptic Dirichlet problem at the junction

           -σ i (x, ∂ x u i (x))∂ x,x u i (x) + H i (x, u i (x), ∂ x u i (x)) = 0, if x ∈ (0, a i ) ∀i ∈ {1 . . . I}, u i (0) = u(0) = θ, u i (a i ) = φ i . (B.2)
For all i ∈ {1 . . . I}, each elliptic problem is uniquely solvable on each edge in C 2+α ([0, a i ]), then (3.49) is uniquely solvable in the class C 2+α (J a ), and we denote by u θ its solution.

We turn to the Neumann boundary condition at the vertex. Let us recall assumption

(E)(i)     
F is strictly decreasing in its first variable, increasing in its second variable,

∃(b, B) ∈ R × R I , such that : F (b, B) = 0.
.

Fix now

K i = sup (x,u)∈(0,a i )×(-a i B i ,a i B i ) |H i (x, u, B i )|, θ ≥ |b| + max i∈{1...I} |φ i | + |a i B i | + K i C H ,
and let us show that f : x → θ + B i x, is a super solution on each edge J a i i of (3.49). We have the boundary conditions

f (0) = θ, f (a i ) = θ + a i B i ≥ |φ i | + |a i B i | + a i B i ≥ φ i ,
and using assumption (E) (iii), we have for all x ∈ (0, a i )

Q i (x, θ + B i x, B i , 0) = H i (x, θ + B i x, B i ) ≥ H i (x, B i x, B i ) + C H θ ≥ H i (x, B i x, B i ) + K i ≥ 0.
We then get that for each i ∈ {1 . . . I}, x ∈ [0, a i ], u θ i (x) ≤ θ+B i x, and a Taylor expansion in the neighborhood of the junction point gives that for each i ∈ {1 . . . I}, ∂ x u θ i (0) ≤ B i . Since u θ (0) = θ ≥ b, we then get from assumption (E) (i)

F (u θ (0), ∂ x u θ (0)) ≤ F (b, B) ≤ 0. Similarly, fixing θ ≤ -|b| -min i∈{1...I} -|φ i | -|a i B i | - K i C H , the map f : x → θ + xB i is a sub solution on each vertex J a i i of (3.49), then for each i ∈ {1 . . . I}, ∂ x u θ i (0) ≥ B i , which means F (u θ (0), ∂ x u θ (0)) ≥ 0.
From Proposition B.0.1, we know that the real maps θ → u θ (0) and θ → ∂ x u θ (0) are continuous. Using the continuity of F (assumption

(E)), we get that θ → F (u θ (0), ∂ x u θ (0))
is continuous, and therefore there exists θ * ∈ R such that

F (u θ * (0), ∂ x u θ * (0)) = 0.
We remark that θ * is bounded by the data, namely θ * belongs to the following interval

-|b| -max i∈{1...I} |φ i | + |a i B i | + sup (x,u)∈(0,a i ) |H i (x,B i x,B i )| C H , |b| + max i∈{1...I} |φ i | + |a i B i | + sup (x,u)∈(0,a i ) |H i (x,B i x,B i )| C H ,
This completes the proof. Finally, since the solution u θ * of (2.8) is unique, we get the uniqueness of θ * .

Chapter 3

Diffusion on a junction

Introduction

Originally introduced by Freidlin and Sheu in [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF] and Freidlin and Wetzell in [START_REF] Freidlin | Diffusion processes on an open book and the averaging principle[END_REF], stochastic diffusions in graphs have attracted a lot of intention in the last 20 years. In [START_REF] Freidlin | Diffusion processes on an open book and the averaging principle[END_REF] the authors studied an elliptic linear operator on a junction, with Kirchoff condition, and the process generated by its semi group. More precisely, given a junction J = I i=1 J i , with J i = {0, {i} × (0, +∞)}, i = 1, . . . , I, and (σ i , b i ) regular functions from R + to R, the authors have defined the elliptic operator L on the set of twice continuous differentiable function at the junction C 2 (J ), by

L :      C 2 (J ) → C(J ) f = f i (x) → x → 1 2 σ 2 i (x)∂ x,x f i (x) + b i (x)∂ x f i (x), (x, i) ∈ J i , with domain D(L) := f ∈ C 2 (J ), I i=1 α i ∂ x f (0, i) = 0 ,
where α 1 , . . . , α I are non-negative constants such that

α 1 + • • • + α I = 1.
The authors of [START_REF] Freidlin | Diffusion processes on an open book and the averaging principle[END_REF] have proved that there exists a continuous Markov process X = (x, i) defined on J generated by L. Then [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF] showed that there exists a one dimensional Wiener process W defined on a probability space (Ω, F, P), adapted to the natural filtration of X = (x, i), such that the process x satisfies on each time interval [0, T ] the stochastic differential equation:

dx(t) = σ i(t) (x(t))dW (t) + b i(t) (x(t))dt + dl(t) , 0 ≤ t ≤ T, (3.1) 
where l is a nondecreasing process starting from zero and satisfying:

P ( t 0 1 {x(s)>0} dl(s)) 0≤t≤T = 0 = 1.
Moreover, [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF] gives the following Itô's formula:

df (X(t)) = L f i(t) (x(t)) dt + ∂ x f i(t) (x(t))σ i(t) (x(t))dW (t) + I i=1 α i ∂ x f i (0)dl(t), (3.2) 
for any sufficiently smooth test function f .

The aim of this Chapter is to provide a different method for the construction of the diffusion on the junction J . Our main idea is to build the process as the limit of the càdlàg 1 process X δ (with parameter δ > 0) which jumps at position δ on the edge J i with probability α i each time it reaches the junction 0. We prove that the process X δ converges weakly, as δ tends to 0, to a continuous diffusion process X valued in J and with dynamics similar to (4.1). The additional randomness due to the process i, prevent us from completely describing the behavior of the component x with its dynamics (4.1).

We therefore use the previous convergence to establish an Itô's formula for the process X, which completely characterizes it. We then focus on the process l involved in (4.1).

This process can be seen as the local time of x at the vertex. We therefore provide an estimate of this process as the limit of the quadratic variation of x over the times spent at the neighborhood of 0.

The Chapter is organized as follows. In Section 3.2, we introduce the mathematical material that will be used throughout this work. Section 3.3 deals with the construction of the non-homogeneous diffusion on the junction. Finally, Section 3.4 is dedicated to Itô's formula, and local time estimates on the vertex.
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3.2 Introductory material

Notations and preliminary results

Let I ∈ N * , be the number of edges. We recall that a junction J consists in a vertex and a finite number I of edges. More precisely:

J = X = (x, i), x ∈ R + and i ∈ {1, . . . , I} ,
where all the points (0, i), i = 1, . . . , I, are identified to the vertex denoted by 0. We can then write

J = I i=1 J i , with J i := R + × {i} and J i ∩ J j = {0} for i = j.
Let T > 0, we set

J T = [0, T ] × J .
We use here the notations of Section 2.2.1, and we recall for the convenience of the reader the definition of following spaces

C 0,1 b (J T ) := f : J T → R, (t, (x, i)) → f i (t, x), ∀i ∈ {1 . . . I}, (t, x) → f i (t, x) ∈ C 0,1 b ([0, T ] × [0, +∞)), and 
∀(i, j) ∈ {1 . . . I} 2 , ∀t ∈ [0, T ], f i (t, 0) = f j (t, 0) = f (t, 0) , C 1,2 b ( • J T ) := f : J T → R, ∀i ∈ {1 . . . I}, (t, x) → f i (t, x) ∈ C 1,2 b ((0, T ) × (0, +∞)) .
We introduce the following Polish spaces, that will be useful in the sequel for the construction of the process in Section 3.3:

(i) (J , d J )
, where d J is defined by

∀ (x, i), (y, j) ∈ J 2 , d J (x, i), (y, j) =    |x -y| if i = j , x + y if i = j .
(ii) (U , d U ), the set of sequences valued in {1, . . . , I}, where d U is defined by

∀(u, z) ∈ U 2 , d U (u, z) = +∞ n=0 |u n -z n | 2 n . (iii) (N, d N )
, where d N is defined by

∀(u, p) ∈ N, d N (u, p) = |u -p|.
As explained in the Introduction 3.1, the limit process is valued in the space of continuous functions from [0, T ] to (J , d J ), which we denote by C J ([0, T ]). This space is endowed with the following uniform norm d J (0,T ) , defined by

∀ (x(•), i(•)), (y(•), j(•)) ∈ C J ([0, T ]) 2 , d J (0,T ) (X, Y ) = sup 0≤s≤T d J (x(s), i(s)), (y(s), j(s)) ,
and then is Polish.

We recall that for (E, d E ) a Polish space E, endowed with its metric d E , the Polish space

(D E ([0, T ]), d E sko ), consists of càdlàg maps defined on [0, T ],
valued in E endowed with the Skohokhod's metric d E sko defined by

∀ z(•), u(•) ∈ D E ([0, T ]), d E sko (z, u) = inf λ∈Λ sup t =s ln λ(t)-λ(s) t-s ∨ sup 0≤t≤T d E z(λ(t)), u(t) ,
where Λ denotes the set of continuous increasing homeomorphism from [0, T ] to itself, and |.| (0,T ) the standard uniform norm of C([0, T ]) (see, for instance, [START_REF] Billingsley | Convergence of Probability Measures[END_REF]).

Remark 3.2.1. We recall that d E sko is equivalent to the following metric defined on

D E ([0, T ]) by ∀ z(•), u(•) ∈ D E ([0, T ]), d E,o sko (z, u) = inf λ∈Λ |λ -Id| (0,T ) | ∨ sup 0≤t≤T d E z(λ(t)), u(t) ,
see for instance Theorem 12.1 in ( [START_REF] Billingsley | Convergence of Probability Measures[END_REF]).

We get therefore, that

(D J ([0, T ]), d J sko ), (D U ([0, T ]), d U sko ), (D N ([0, T ]), d N sko ) are Pol- ish spaces.
As it has been said in the general introduction (contributions ??), for δ > 0, the approximate càdlàg process X δ jumps at position δ on the edge J i with probability α i each time it reaches the junction. Therefore it is valued in the space D J δ ([0, T ]) defined by

D J δ ([0, T ]) := x(•), i(•) ∈ D J ([0, T ]), if d J (x(s), i(s)), (x(s-), i(s-) = 0, then x(s-) = 0 and x(s) = δ ,
namely all the càdlàg maps whose jumps are of size δ and can only occur at the junction point. This set inherits of the structure of D J ([0, T ]).

Proposition 3.2.2. (D J δ ([0, T ]), d J sko ) is closed in (D J ([0, T ]), d J sko )
, and then a Polish space.

Proof. Let X n (•) = x n (•), i n (•) be a sequence in D J δ ([0, T ]) which converges to X(•) = x(•), i(•) ∈ D J ([0, T ]), and let us show that X(•) ∈ D J δ ([0, T ]).
There exists a sequence of continuous increasing homeomorphism λ n : [0, T ] → [0, T ], such that :

sup t =s ln λ n (t) -λ n (s) t -s ∨ d J (0,T ) (X n • λ n , X) ----→ n→+∞ 0 .
Using Remark 3.2.1, we get that

|λ n -Id| (0,T ) ∨ d J (0,T ) (X n • λ n , X) ----→ n→+∞ 0 . (3.3) Let t ∈ [0, T ], we have x(t) -x(t-) = x(t) -x n (λ n (t)) + x n (λ n (t)) -x n (λ n (t)-) + x n (λ n (t)-) -x(t-). (3.4) From (3.3), we get |x(t) -x n (λ n (t))| + |x n (λ n (t)-) -x(t-)| ----→ n→+∞ 0 .
Knowing that the sequence

X n • λ n (•) is valued too in D J δ ([0, T ]
), we have therefore using (3.4)

x(t) -x(t-) = x(t) -x n (λ n (t)) + x n (λ n (t)-) -x(t-), or, x(t) -x(t-) = x(t) -x n (λ n (t)) + δ + x n (λ n (t)-) -x(t-),
and sending n to +∞ we obtain finally x(t)x(t-) ∈ {0, δ} .

We now prove that a discontinuity of x(•) only can occurs for x(

•-) = 0. Fix t ∈ [0, T ] such that x(t) -x(t-) = δ. Let ε ≤ δ
4 , there exists n 0 ∈ N, such that for all n ≥ n 0 , |x n • λ n -x| (0,T ) ≤ ε. We therefore get using (3.4)

x n (λ n (t)) -x n (λ n (t)-) ≥ δ -2ε,
and hence

x n (λ n (t)) -x n (λ n (t)-) ≥ δ 2 ,
and then necessarily, for all n ≥ n 0 , x n (λ n (t)) = δ and x n (λ n (t)-) = 0. Hence x(t) = δ,

x(t-) = 0, that completes the proof.

Construction of the process on the junction

In this section, we fix a terminal time T > 0, and we build a diffusion process (X(t) = (x(t), i(t))) 0≤t≤T valued in C J ([0, T ]). The continuous process (X(t) = (x(t), i(t))) 0≤t≤T

is approximated by a classical càdlàg process X δ with parameter δ > 0 which jumps at position δ on the edge J i with probability α i each time it reaches the junction.

To this end we consider a family of processes (X δ (t) = (x δ (t), i δ (t))) 0≤t≤T , depending on a parameter δ > 0, such that (X δ (t)) 0≤t≤T is valued in D J δ ([0, T ]). We prove the tightness of this sequence and get a continuous limit satisfying a stochastic differential equation on J .

Let us introduce the following data

                        
(Ω, A, P) a probability space, W a standard one dimensional Brownian motion defined on (Ω, A, P), Z = (Z n ) n≥0 a random variable valued in U , defined on (Ω, A, P),

(α i ) ∈ (0, 1) I , x 0 ∈ L 2 (Ω), such that x 0 > 0, P a.s, and for each i ∈ {1 . . . I}      σ i ∈ W 1,∞ ([0, +∞), R) b i ∈ W 1,∞ ([0, +∞), R)
.

We suppose furthermore that the data satisfy the following assumptions:

Assumption (H) (i) ∃c > 0, ∀i ∈ {1 . . . I}, ∀x ∈ [0, +∞), σ i (x) ≥ c, (ii) ∀i ∈ {1 . . . I}, (σ i , b i ) ∈ L ∞ ((0, +∞), R), (iii) 
I i=1 α i = 1,
(iv) x 0 is independent of W and Z, (v) Z = (Z n ) n≥0 are independent and identically distributed (i.i.d.), with P(Z n = i) = α i .

Diffusion with jumps at the vertex

We consider the sequence of diffusion processes (x δ n ) n≥0 and stopping times (τ δ n ) n≥0 defined recursively by

     x δ 0 (t) = x 0 + t 0 b Z 0 x δ 0 (s) ds + t 0 σ Z 0 x δ 0 (s) dW (s), 0 ≤ t ≤ T, τ δ 0 = 0, P a.s.
and, for n ≥ 0,

             x δ n+1 (t) = δ + t 0 1 [τ n+1 ,+∞) (s)b Z n+1 x δ n+1 (s) ds + t 0 1 [τ n+1 ,+∞) (s)σ Z n+1 x δ n+1 (s) dW (s), 0 ≤ t ≤ T, τ δ n+1 = inf t > τ δ n : x δ n (t) = 0 , P a.s. ( 3.5) 
We now define the process

X δ (t) = x δ (t), i δ (t) 0≤t≤T valued in D J δ ([0, T ]) by          x δ (t) = n≥0 x δ n (t)1 [τ δ n ,τ δ n+1 ) (t), i δ (t) = n≥0 Z n 1 [τ δ n ,τ δ n+1 ) (t), P a.s.
We notice that the process x δ (t)

0≤t≤T
is valued in (0, +∞) and satisfies the following equation, for all t ∈ [0, T ]

x δ (t) = x 0 + τ δ 1 ∧t 0 b i δ (s) (x δ (s))ds + τ δ 1 ∧t 0 σ i δ (s) (x δ (s))dW (s) + n≥1 1 {τ δ n ≤t<τ δ n+1 } δ + t τ δ n b i δ (s) (x δ (s))ds + t τ δ n σ i δ (s) (x δ (s))dW (s) , P a.s. (3.6)
From the ellipticity assumption (H) (i), we underline that each stopping time (τ δ n ) n≥0 is almost surely finite. We denote by (F δ t ) 0≤t≤T the right continuous and complete filtration generated by X δ (t) = x δ (t), i δ (t))

0≤t≤T

. The dynamics can be rewritten as

                   X δ (0) = (x 0 , Z 0 ) dx δ (t) = b i δ (t) (x δ (t))dt + σ i δ (t) (x δ (t))dW (t) + δd( 0≤s≤t 1 {x δ (s-)=0} ) i δ (t) = Z 0≤s≤t 1 {x δ (s-)=0} , P a.s. (3.7)
In the next subsection we prove that the sequence

X δ (t) = x δ (t), i δ (t)) 0≤t≤T is C- tight, namely up to a subsequence X δ (t) = x δ (t), i δ (t)) 0≤t≤T converges weakly to a random variable X(t) = x(t), i(t)) 0≤t≤T
, with continuous paths. In other words the limit X(t) = x(t), i(t)) 0≤t≤T is valued in C J ([0, T ]).

Weak convergence

For Y ∈ D J ([0, T ]), we denote by ω T (Y, .) the modulus of continuity of Y on [0, T ] defined by 

ω T (Y, θ) = sup d J Y (s), Y (u) , (u, s) ∈ [t, t + θ], 0 ≤ t ≤ t + θ ≤ T , (3.
{|σ i | (0,+∞) , |b i | (0,+∞) } , such that E P |x δ | 2 (0,T ) ≤ C 1 + E P x 2 0 + δ 2 , (3.9 
)

∀θ ∈ (0, T ], E P ω T (X δ , θ) 2 ≤ C δ 2 + θ ln 2T θ . (3.10) 
Proof. Let t ∈ [0, T ]. We use the stopping times (τ δ n ) defined in (3.5) and we introduce the following random times

τ δ t := inf τ δ n , τ δ n ≥ t and τ δ t := sup τ δ n ; τ δ n ≤ t .
Using (3.5) and (3.7), we have

|x δ (t)| 2 ≤ 3 |x δ (τ δ t )| 2 + t τ δ t b i δ (s) (x δ (s))ds 2 + t τ δ t σ i δ (s) (x δ (s))dW (s) 2 ≤ 3 |x 0 | 2 + δ 2 + T 2 max i∈{1...I} {|b i | 2 (0,+∞) } + 2 sup t∈[0,T ] t 0 σ i δ (s) (x δ (s))dW (s) 2 
, P a.s.

Using assumption (H) and Doob-Meyer inequality, we get that there exists a constant C independent of δ, depending only on T, max i∈{1...I} {|σ i | (0,+∞) , |b i | (0,+∞) } such that

E P |x δ | 2 (0,T ) ≤ C 1 + E P x 2 0 + δ 2 .
Let θ ∈ (0, T ], and (t, s) ∈ [0, T ] 2 , such that s ≤ t and |t -s| ≤ θ. We define the process

V δ (t) 0≤t≤T by V δ (t) = t 0 b i δ (s) (x δ (s))ds + t 0 σ i δ (s) (x δ (s))dW (s), P a.s.
We have:

if s≤u≤t 1 {x δ (s-)=0} = 0, then d J (X δ (s), X δ (t)) ≤ ω T (V δ , θ), if s≤u≤t 1 {x δ (s-)=0} ≥ 1, then d J (X δ (s), X δ (t)) ≤ d J (X δ (s), X δ (τ δ s -)) + d J (X δ (τ δ t -), X δ (τ δ t +)) + d J (X δ (τ δ t +), X δ (t)) ≤ δ + 2ω T (V δ , θ), P a.s.
Using Theorem 1 of [START_REF] Fischer | On the moments of the modulus of continuity of Itô processes[END_REF], and assumption (H), we get that there exists a constant C independent of δ, depending only on T, max i∈{1...I} {|σ i | (0,+∞) , |b i | (0,+∞) } , such that

E P ω T (V δ , θ) 2 ≤ Cθ ln 2T θ .
Therefore

E P ω T (X δ , θ) 2 ≤ C δ 2 + θ ln 2T θ .
This completes the proof. Now we have the necessary tools to prove the C-tightness of the sequence

X δ (t) = (x δ (t), i δ (t)) 0≤t≤T . Theorem 3.3.2. The sequence X δ (t) = (x δ (t), i δ (t)) 0≤t≤T is C-tight.
Proof. Let δ > 0, θ > 0, η > 0 and h > 0. Using Proposition 3.3.1 and Markov inequality, there exists a constant C, independent of δ and depending only on T and on max i∈{1...I} {|σ i | (0,+∞) , |b i | (0,+∞) }, such that

P |x δ | (0,T ) > h ≤ C 1 + E P x 2 0 + δ 2 h , P ω T (X δ , θ) ≥ η ≤ C δ 2 + θ ln 2T θ η .
Therefore we get

lim h→+∞ lim sup δ→0 P |x δ | (0,T ) > h = 0 ; lim η→0+ lim sup θ→0 lim sup δ→0 P ω T (X δ , θ) ≥ η = 0.
Theorem 3.21 and Proposition 3.26 of [START_REF] Jacod | Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité[END_REF] then imply the tightness of X δ (t) = (x δ (t), i δ (t))

0≤t≤T as δ tends to 0.

From Prokhorov's Theorem, there is a subsequence, denoted in the same way, such that

P X δ law --→ δ→0 µ,
where µ is a probability measure defined on C J ([0, T ]).

Identification of the limit law

The aim of this subsection is to identify the law µ.

To this end, we transform the weak convergence of X δ into a strong one using Skorokhod's representation Theorem. Using Tikhonov's Theorem, we know that U is compact, therefore is it easy to get that the random variable (x 0 , X δ , W, Z) is precompact for the weak topology. There exists a probability space (E, E, µ) and random variables y δ 0 , Y δ = (y δ , j δ ), B δ , A δ and y 0 , Y = (y, j), B, A , taking their values in the following Polish spaces

[0, +∞) × D J δ ([0, T ]) × C([0, T ]) × U , |.| + d J sko + |.| (0,T ) + d U ,
and respectively

[0, +∞) × C J ([0, T ]) × C([0, T ]) × U , |.| + d J (0,T ) + |.| (0,T ) + d U , such that ∀δ > 0, (y δ 0 , Y δ , B δ , A δ ) law = (x 0 , X δ , W, Z) (y 0 , Y, B, A) law = (x 0 , X, W, Z)
and

|y δ 0 -y 0 | + d J sko (Y δ , Y ) + |B δ -B| (0,T ) + d U (A δ , A) µ-a.s.
---→ δ→0 0 .

(3.11)

To make easier the reading, in the rest of these Chapter, we denote by

N δ (t)
0≤t≤T the following process valued in N, whose paths are defined by

N δ (t) = 0≤s≤t 1 {y δ (s-)=0} , µ a.s. (3.12) 
Proposition 3.3.3. For any δ > 0, the process y δ (t), j δ (t)

0≤t≤T satisfies y δ (t) = y δ 0 + t 0 b j δ (s) (y δ (s))ds + t 0 σ j δ (s) (y δ (s))dB δ (s) + δN δ (t) 0≤t≤T , j δ (t) = A δ N δ (t) 0≤t≤T
, µ a.s.

Proof. Let i ∈ {1 . . . I}, and γ > 0. We define (b γ i , σ γ i ) by

σ γ i (x) = σ i (x)1 x>γ + σ i (γ) γ x1 0≤x≤γ , if x ∈ [0, +∞), b γ i (x) = b i (x)1 x>γ + b i (γ) γ x1 0≤x≤γ , if x ∈ [0, +∞).
Therefore for all i ∈ {1 . . . I}, (b γ i , σ γ i ) ∈ W 1,∞ ((0, +∞)) and satisfies the following continuity condition at the junction point ∀i, j ∈ {1 . . . I}, i = j, σ γ i (0) = σ γ j (0), b γ i (0) = b γ j (0).

Step 1. For n ≥ 0, we start by proving that the following maps

ρ :=        D J δ ([0, T ]) → D N ([0, T ]) x(•), i(•) → 0≤s≤t 1 {x(s)-x(s-)=δ} 0≤t≤T , κ :=          U × D J δ ([0, T ]) → D U ([0, T ]) Z, (x(•), i(•)) → Z 0≤s≤t 1 {x(s)-x(s-)=δ} 0≤t≤T , ψ n,γ :=          C([0, T ]) × D J δ ([0, T ]) → D R ([0, T ]) w(•), (x(•), i(•)) → 2 n -1 j=0 σ γ i( jt 2 n ) (x( jt 2 n ))(w (j+1)t 2 n -w jt 2 n ) 0≤t≤T , φ n,γ :=          D J δ ([0, T ]) → D R ([0, T ]) x(•), i(•) → x(0) + 1 n n-1 j=0 b γ i( jt 2 n ) (x( jt 2 n )) 0≤t≤T , are continuous. To this end let Z k , w k (•), (x k (•), i k (•)) converge to Z, w(•), (x(•), i(•)) in U × C[0, T ] × D J δ ([0, T ]
). Using Remark 3.2.1, we get that for all ε > 0, there exists k ε ∈ N, and a sequence λ k valued in Λ (the set of continuous increasing homeomorphism from [0, T ] to itself), such that for all k ≥ k ε n≥0

|Z k n -Z n | 2 n + |w k -w| (0,T ) + |λ k -Id| (0,T ) ∨ d J (0,T ) (x k • λ k (•), i k • λ k (•)), (x(•), i(•)) ≤ ε. (3.14)
Substep 1.1 ρ and κ are continuous:

Let ε < δ 4 ∧ 1 2 . We have δ 2 ≥ x k (λ k (s)) -x k (λ k (s)-) -(x(s) -x(s-)) ≥ - δ 2 . (3.15) for each s ∈ [0, T ]. Since, from Proposition 3.2.2, D J δ ([0, T ]) is closed, (x(•), i(•)) ∈ D J δ ([0, T ]). Using (3.15)
and the assumption ε < δ/4, we then have

s ∈ [0, t], x(s) -x(s-) = δ = s ∈ [0, t], x k (λ k (s)) -x k (λ k (s)-) = δ which implies that 0≤s≤λ k (t) 1 {x k (s)-x k (s-)=δ} = 0≤s≤t 1 {x(s)-x(s-)=δ} , (3.16) 
and

|λ k -Id| (0,T ) ∨ sup 0≤t≤T d N 0≤s≤λ k (t) 1 {x k (s)-x k (s-)=δ} , 0≤s≤t 1 {x(s)-x(s)=δ} ≤ ε,
namely ρ is continuous.

On the other hand we get using (3.14) and (3.16), that forall t ∈ [0, T ]

d U κ Z k , (x k (•), i k (•)) λ k (t) , κ Z, (x(•), i(•)) t = n≥0 Z k n 1 { 0≤s≤λ k (t) 1 {x k (s)-x k (s-)=δ} = n} -Z n 1 { 0≤s≤t 1 {x(s)-x(s-)=δ} = n} 2 n ≤ ε.
Therefore

|λ k -Id| (0,T ) ∨ sup 0≤t≤T d U κ Z k , (x k (•), i k (•)) λ k (t) , κ Z, (x(•), i(•)) t ≤ ε,
and κ is continuous.

Substep 1.2 Let us show now that ψ n,γ and φ n,γ are continuous.

Let j ∈ {0, . . . 2 n -1}, and t ∈ [0, T ], we write

σ γ i( jλ k (t) 2 n ) (x k ( jλ k (t) 2 n )) -σ γ i( jt 2 n ) (x( jt 2 n )) ≤ σ γ i( jλ k (t) 2 n ) (x k ( jλ k (t) 2 n )) -σ γ i( jλ k (t) 2 n ) (0) + σ γ i( jλ k (t) 2 n ) (0) -σ γ i( jt 2 n ) (0) + σ γ i( jt 2 n ) (0) -σ γ i( jt Since ∀i, j ∈ {1 . . . I}, i = j, σ γ i (0) = σ γ j (0),
we get from assumption (H) and (3.14)

|σ γ i( jλ k (t) 2 n ) (x k ( jλ k (t) 2 n )) -σ γ i( jt 2 n ) (x( jt 2 n ))| ≤ max i∈{1...I} ||∂ x σ γ i || L ∞ ((0,+∞)) ε.
Therefore, simple computations allows us to write that there exists a constant C > 0, independent of k, depending only on the data

(n, max i∈{1...I} |σ γ i | L ∞ ((0,+∞)) , max i∈{1...I} |∂ x σ γ i | L ∞ ((0,+∞)) , |w| (0,T ) ), such that |λ k -Id| (0,T ) ∨ sup 0≤t≤T ψ n,γ (w k , (x k , i k )) • λ k (t), ψ n,γ (w(t), (x(t), i(t)) ≤ Cε.
We conclude then that ψ n,γ is continuous.

With the same arguments used for the continuity of ψ n,γ , we can show then that φ n,γ is continuous.

Step 2.

We have now from the results of Step 1 the mains tools to prove Proposition 3.3.3.

Let (g, h) ∈ C b D([0, T ]), R × C b D U ([0, T ]), R .
Since ρ, κ, ψ n,γ , φ n,γ are continuous, we have

E P g x δ (•) -φ n,γ (X δ )(•) + ψ n,γ (W, X δ )(•) + δρ(X δ )(•) = E µ g y δ (•) -φ n,γ (Y δ )(•) + ψ n,γ (B δ , Y δ )(•) + δρ(Y δ )(•) , (3.17) 
and

E P h i δ (•) -κ(Z, X δ )(•) = E µ h j δ (•) -κ(A δ , Y δ )(•) . (3.18)
From assumption (H) and Burkholder-Davis-Gundy inequality we have, up to a subse-

quence n k ψ n k ,γ (W, X δ )(•) - • 0 σ γ i δ (s) (x δ (s))dW (s) (0,T ) P-a.s.
-----→

n k →+∞ 0 , and 
ψ n k ,γ (B δ , Y δ )(•) - • 0 σ γ j δ (s) (y δ (s))dB δ (s) (0,T ) µ-a.s.
-----→ n k →+∞ 0 .

Still using Burkholder-Davis-Gundy inequality and (H), there exists a constant C independent of γ, depending only on (max i∈{1...I} ||σ i || L ∞ ((0,∞)) ), such that

E P • 0 σ i δ (s) (x δ (s))dW (s) - • 0 σ γ i δ (s) (x δ (s))dW (s) (0,T ) ≤ CE P T 0 1 {x δ (s)≤γ} ds , and 
E µ • 0 σ j δ (s) (y δ (s))dB δ (s) - • 0 σ γ j δ (s) (y δ (s))dB δ (s) (0,T ) ≤ CE µ T 0 1 {y δ (s)≤γ} ds .
Using that y δ (•) and x δ (•) have the same law, we have for each s ∈ [0, T ] µ y δ (s) = 0 = P x δ (s) = 0 = 0.

We get therefore from the dominated convergence's Theorem

lim γ→0 E P • 0 σ i δ (s) (x δ (s))dW (s) - • 0 σ γ i δ (s) (x δ (s))dW (s) (0,T ) = lim γ→0 E µ • 0 σ j δ (s) (y δ (s))dB δ (s) - • 0 σ γ j δ (s) (y δ (s))dB δ (s) (0,T ) = 0.
Therefore up to a subsequence γ p

• 0 σ i δ (s) (x δ (s))dW (s) - • 0 σ γp i δ (s) (x δ (s))dW (s) (0,T ) P-a.s.
---→ γp→0 0 , and

• 0 σ j δ (s) (y δ (s))dB δ (s) - • 0 σ γp j δ (s) (y δ (s))dB δ (s) (0,T ) µ-a.s.
---→ γp→0 0 .

Using the same arguments, we can show that up to another subsequence

(γ p ′ , n k ′ ) lim γ p ′ →0 lim sup n k ′ →+∞ • 0 b i δ (s) (x δ (s))dW (s) -φ n ′ k ,γ ′ p (X δ )(•) (0,T ) P-a.s.
---→ 0,

lim γ p ′ →0 lim sup n k ′ →+∞ • 0 b j δ (s) (y δ (s))dB δ (s) -φ n ′ k ,γ ′ p (Y δ )(•) (0,T ) µ-a.s.
---→ 0.

On the other hand using that 0≤s≤•

1 {x(s)-x(s-)=δ} = 0≤s≤• 1 {x(s-)=0} , P a.s, ∀s ∈ [0, T ], µ y δ (s) -y δ (s-) = δ, y δ (s-) > 0 = P x δ (s) -x δ (s-) = δ, x δ (s-) > 0 = 0,
and applying Lebesgue's Theorem, we get from (3.17), that for any

g ∈ C b D([0, T ]), R lim γ p ′ →0 lim sup n k ′ →+∞ E P g x δ (•) -φ n k ′ ,γ p ′ (X δ )(•) + ψ n k ′ ,γ p ′ (W, X δ )(•) + δρ(X δ )(•) = E P g x δ (•) -x 0 - • 0 b i δ (s) (x δ (s))ds - • 0 σ i δ (s) (x δ (s))dW (s) + δ( 0≤s≤.
1 {x δ (s-)=0} ) , and lim

γ p ′ →0 lim sup n k ′ →+∞ E µ g y δ (•) -φ n k ′ ,γ p ′ (Y δ )(•) + ψ n k ′ ,γ p ′ (B δ , Y δ )(•) + δρ(Y δ )(•) = E µ g y δ (•) -y δ 0 - • 0 b j δ (s) (y δ (s))ds - • 0 σ j δ (s) (y δ (s))dB δ (s) + δ( 0≤s≤.
1 {y δ (s-)=0} ) .

Therefore for any g ∈ C b (D([0, T ]), R)

E P g x δ (•) -x 0 - • 0 b i δ (s) (x δ (s))ds - • 0 σ i δ (s) (x δ (s))dW (s) + δ( 0≤s≤. 1 {x δ (s-)=0} ) = E µ g y δ (•) -y δ 0 - • 0 b j δ (s) (y δ (s))ds - • 0 σ j δ (s) (y δ (s))dB δ (s) + δ( 0≤s≤.
1 {y δ (s-)=0} ) .

Considering a sequence g n of C b (D([0, T ]), R), uniformly bounded, converging to x → 1 {x=0} in the pointwise sense, we get that

µ y δ (t) = y δ 0 - t 0 b j δ (s) (y δ (s))ds - t 0 σ j δ (s) (y δ (s))dB δ (s) + δ( 0≤s≤t 1 {y δ (s-)=0} ) 0≤t≤T = 1.
Using the same arguments and the continuity of κ we also infer that

µ j δ (t) = A δ 0≤s≤t 1 {y δ (s-)=0} 0≤t≤T = 1,
that completes the proof of Proposition 3.3.3.

Remark 3.3.4. As a consequence of (3.13) and Proposition 3.3.1, it is easy to get that there exists a constant C independent of δ, depending only on

T, max i∈{1...I} {|σ i | (0,+∞) , |b i | (0,+∞) }, E µ [y 2 0 ] ,
such that

E µ |y δ | 2 (0,T ) ≤ C 1 + δ 2 , E µ |δN δ (•)| 2 (0,T ) ≤ C 1 + δ 2 .
For simplicity, we denote by y δ 0 , Y δ = (y δ , j δ ), B δ , A δ the subsequence converging almost surely to y 0 , Y = (y, j), B, A . Using Proposition 3.3.3, we know that the process

Y δ = (y δ , j δ ) satisfies                    y δ (•) = y δ 0 + γ δ 1 ∧• 0 b j δ (s) (y δ (s))ds + γ δ 1 ∧• 0 σ j δ (s) (y δ (s))dB δ (s) + n≥1 1 {γ δ n ≤.<γ δ n+1 } δ + γ δ n+1 ∧• γ δ n b j δ (s) (y δ (s))ds + γ δ n+1 ∧• γ δ n σ j δ (s) (y δ (s))dB δ (s) j δ (•) = n≥0 A δ n 1 [γ δ n ,γ δ n+1 ) (•)
, µ a.s. (3.19) where we have defined recursively the following stopping times

γ δ 0 = 0, γ δ n+1 = inf T ≥ t > γ δ n : y δ (t) = 0 , µ a.s. (3.20)
We denote by (G δ t ) 0≤t≤T the right continuous and complete filtration generated by Y δ (t) = (y δ (t), j δ (t))

0≤t≤T

. We also denote by (G t ) 0≤t≤T the right continuous and complete filtration generated by the process Y (t) = (y(t), j(t))

0≤t≤T

. We now state some properties of the process Y (t) = (y(t), j(t)) 

Y (t) = (y(t), j(t)) 0≤t≤T
, namely:

d J (0,T ) (Y δ , Y ) µ-a.s. ---→ δ→0 0, (3.21) 
and therefore

|y δ -y| (0,T ) µ-a.s. ---→ δ→0 0. (3.22) 
Proof. From (3.11) and Remark 3.2.1, there exists a (random) change of time λ δ such that

|λ δ -Id| (0,T ) ∨ d J (0,T ) (Y δ • λ δ , Y ) µ-a.s.
---→ δ→0 0 .

We then have 

d J (0,T ) (Y δ , Y ) ≤ d J (0,T ) (Y δ • λ δ • λ -1 δ , Y • λ -1 δ ) + d J (0,T ) (Y • λ -1 δ , Y ) ≤ d J (0,T ) (Y δ • λ δ , Y ) + d J (0,T ) (Y • λ -1 δ , Y ),
E µ exp(M y δ (T )) ≤ C exp(M δ). (3.23) 
Proof. We define the following map φ by

φ :=      [0, +∞) → R x → exp(M x) -M x -1 .
Let k ≥ 0, we introduce the following stopping times

θ k := inf{s ∈ [t, T ], x(s) ≥ k}, γ δ T := sup γ δ n ; γ δ n ≤ T ,
where the sequence (γ δ n ) n≥0 is defined in (3.20). Hence, applying Ito's formula in the following interval (γ δ T , T ), using (3.19) and Remark 3.3.4, we get

E µ exp(M y δ (T ∧ θ k )) = exp(M δ) -M δ 1 {γ δ T >0} + exp(M y δ (0)) -M y δ (0) 1 {γ δ T =0} + E µ M y δ (T ∧ θ k ) + E µ T ∧θ k γ δ T 1 2 σ 2 i (x(u))∂ x,x φ(x(u)) + b i (x(u))∂ x φ(x(u)) du ≤ C exp(M δ) 1 + E µ T ∧θ k γ δ T exp(M y δ (u))du ,
where C is a constant depending only on T, M, max Hence sending k → +∞, we get using monotone convergence's Theorem, and Fubini's Theorem

E µ exp(M y δ (T )) ≤ C exp(M δ) 1 + E µ T γ δ T exp(M y δ (u))du ≤ C exp(M δ) 1 + E µ T 0 exp(M y δ (u))du ≤ C exp(M δ) 1 + T 0 E µ exp(M y δ (u))du .
We conclude finally using Gronwall's Lemma to the following measurable map

ρ :=      [0, T ] → R s → E µ exp(M y δ (s))
.

We now study the behavior of the jump part of y δ (•). To this end, we estimate the time spent by y(•) at the junction point, and we state the following proposition that will be useful in the sequel. Proof. Let ε > δ, and

β ε ∈ C([0, +∞), R + ) satisfying ∀x ≥ 2ε, β ε (x) = 0, ∀x ≥ 0, 1 {x≤ε} ≤ β ε (x) ≤ 1. (3.25) 
For all i ∈ {1 . . . I}, we define u ε i ∈ C 2 ([0, +∞)) as the unique solution of the following ordinary second order differential equation

           σ i (x) 2 2 ∂ x,x u ε i (x) + b i (x)∂ x u ε i (x) = β ε (x), if x ∈ (0, +∞), ∂ x u ε i (0) = 0,
u ε i (0) = 0. (3.26)
For each i ∈ {1 . . . I}, the solution is given by

u ε i (x) = x 0 exp - z 0 2b i (u) σ 2 i (u) du z 0 2β ε i (u) σ 2 i (u) exp( u 0 2b i (r) σ 2 i (r) dr)dudz.
By the assumption on β ε , and using assumption (H), we get that that there exists a constant M > 0 independent of ε and i, dependng only on the data (c, max i∈{1...

I} |b i | L ∞ ((0,+∞)) )
introduced in assumption (H), such that

∀x ≥ 0, 0 ≤ ∂ x u ε (x) ≤ 2ε exp(M x), 0 ≤ u ε (x) ≤ 2ε M (exp(M x) -1) (3.27)
We define the function u ǫ on the junction by

u ǫ :=      J → R (x, i) → u i ǫ (x)
.

We recall the definition of the stopping times (3.20)

γ δ 0 = 0, γ δ n+1 = inf T ≥ t > γ δ n : y δ (t) = 0 , µ a.s.
We write then

u ε j δ (T ) y δ (T ) -u ε j δ (0) y δ (0) = n≥0 u ε j δ (γ δ n+1 -) y δ (γ δ n+1 -) -u ε j δ (γ δ n +) y δ (γ δ n+1 +) (3.28) + n≥0 u ε j δ (γ δ n +) y δ (γ δ n +) -u ε j δ (γ δ n -) y δ (γ δ n -) µ a.s. (3.29)
For (3.28), we apply Itô's formula and use (4.12) on each interval γ δ n , γ δ n+1to get (after an argument of localization with stopping times)

E µ n≥0 u ε j δ (γ δ n+1 -) y δ (γ δ n+1 -) -u ε j δ (γ δ n +) y δ (γ δ n+1 +) = E µ T 0 β ε j δ (s) (y δ (s))ds + T 0 σ j δ (s) (y δ (s))∂ x u ε j δ (s) (y δ (s))dB δ (s) = E µ T 0 β ε j δ (s) (y δ (s))ds .
We now study the term (3.29). Using the continuity of u ε at the junction point, namely

∀(i, j) ∈ {1 . . . I} 2 , u ε i (0) = u ε j (0) = 0,
and (3.27), we get

E µ |(3.29)| ≤ max i∈{1...I} |u i ǫ (δ) -u i ǫ (0)| E µ N δ (T ) ≤ 2ε exp(M δ)δE µ N δ (T ) .
Using Remark 3.3.4, it is easy to get that there exists a constant K > 0 such that

E µ δN δ (T ) ≤ K(1 + δ 2 ) 1/2 , hence E µ T 0 β ε j δ (s) (y δ (s))ds ≤ E µ u ε j δ (T ) y δ (T ) -u ε j δ (0) y δ (0) + 2ε exp(M δ)δεE µ N δ (T ) ≤ 2ε M E µ (exp(M y δ (T )) -1) + 2ε exp(M δ)K(1 + δ 2 ) 1/2 .
We get then using Lemma 3.3.6

lim ε→0 lim sup δ→0 E µ T 0 β ε j δ (s) (y δ (s))ds = 0.
Finally, using that x → 1 {0≤x<ε} is lower semicontinuous, x → 1 {0≤x<ε} ≤ β ε (x), Propo- 

ψ :=      D R + ([0, T ]) × D R + c ([0, T ]) → R + , (y, l) → T 0 1 {y(s)>0} dl(s)
,

(where D R + c ([0, T ]) is the set of càdlàg nondecreasing maps valued in R + ), is lower semi- continuous at any (y, l) ∈ C([0, T ], R + ) × C([0, T ], R + ) ∩ D R + c ([0, T ]) . Proof. Let y k (•) be a sequence in D R + ([0, T ]) converging to y(•) ∈ C([0, T ], R + ), and 
l k (•) in D R + c ([0, T ]) converging to l(•) ∈ C([0, T ], R + ) ∩ D R + c ([0, T ]
) . Using Proposition 3.3.5, we get that y k (•) converges uniformly to y(•), and with the same arguments l k (•) converges uniformly to l(•) . Let p ≥ 0 and φ p ∈ C([0, +∞)) a continuous sequence uniformly bounded, converging from below to x → 1 {x>0} in the pointwise sense, as p → +∞. We write then

T 0 φ p (y k (u))dl k (u) - T 0 φ p (y(u))dl(u) ≤ T 0 φ p (y k (u)) -φ p (y(u)) dl k (u) + T 0 φ p (y(u))dl k (u) - T 0 φ p (y(u))dl(u) ≤ φ p (y k (•)) -φ p (y(•)) (0,T ) l k (T ) + T 0 φ p (y(u))dl k (u) - T 0 φ p (y(u))dl(u) .
Hence we get using that l k (T ) is uniformly bounded in k, and that l k converges weakly to l ∀p ≥ 0, lim That completes the proof.

k→+∞ T 0 φ p (y k (u))dl k (u) = T 0 φ p (y(u))dl(u).

Finally writing

T 0 1 {y k (u)>0} dl k (u) ≥ T 0 φ p (y k (u))dl k (u),
We are now ready to identify the SDE satisfied by the limit process y(t) 0≤t≤T . Theorem 3.3.9. There exists a nondecreasing process l(t) 0≤t≤T such that y(t) 0≤t≤T satisfies the stochastic differential equation

     y(0) = y 0 dy(t) = b j(t) (y(t))dt + σ j(t) (j(t))dB(t) + dl(t), 0 ≤ t ≤ T µ a.s, (3.30) 
with

     l(0) = 0 t 0 1 {y(s)>0} dl(s) = 0, 0 ≤ t ≤ T µ a.s.
Moreover the process N δ (t) 0≤t≤T converges uniformly to l(t) 0≤t≤T , namely

δN δ (•) -l(•) (0,T ) --→ δ→0 0, µ a.s. (3.31)
Proof.

Step 1 : We start to prove that up to a subsequence again denoted δ

lim δ→0 y δ (0) + • 0 b j δ (s) (y δ (s))ds + • 0 σ j δ (s) (y δ (s))dB δ (s) -y 0 + • 0 b j(s) (y(s))ds + • 0 σ i(s) (s, y(s))dB(s) (0,T ) = 0.
For all γ > 0, we introduce the map (x, i) → σ γ i (x) defined by

σ γ i (x) = σ i (x)1 x>γ + σ i (γ) γ x1 0≤x≤γ
for (x, i) ∈ J .

For n ≥ 0, we define the functions

ψ n,γ from C[0, T ] × D J ([0, T ]) to D([0, T ]) by ψ n,γ w(•), (x(•), i(•)) = 2 n -1 j=0 σ γ i( jT 2 n ) ( jT 2 n , x( jT 2 n ))(w (j+1)T 2 n ∧t -w jT 2 n ∧t ) 0≤t≤T , for all w(•), (x(•), i(•)) ∈ C[0, T ] × D J ([0, T ]).
We write then

• 0 σ j δ (s) (y δ (s))dB δ (s) - • 0 σ j(s) (y(s))dB(s) (0,T ) ≤ (3.32) • 0 σ j δ (s) (y δ (s))dB δ (s) - • 0 σ γ j δ (s) (y δ (s))dB δ (s) (0,T ) + (3.33) • 0 σ γ j δ (s) (y δ (s))dB δ (s) -ψ n,γ (B δ , (y δ , i δ ))(•) (0,T ) + (3.34) ψ n,γ (B δ , (y δ , i δ ))(•) -ψ n,γ (B, (y, i))(•) (0,T ) + (3.35) ψ n,γ (B, (y, i))(•) - • 0 σ γ j(s) (y(s))dB(s) (0,T ) + (3.36) • 0 σ γ j(s) (y(s))dB(s) - • 0 σ j(s) (y(s))dB(s) (0,T ) . (3.37) 
Now we prove that (3.32) tends to 0 as δ goes to 0 in L 2 (E). Using Burkholder-Davis-Gundy inequality and assumption (H), there exists a constant C > 0, independent of δ, n, γ, such that for (3.33) and (3.37)

E µ • 0 σ j δ (s) (y δ (s))dB δ (s) - • 0 σ γ j δ (s) (y δ (s))dB δ (s) 2 (0,T ) ≤ CE µ T 0 1 {y δ (s)≤γ} ds , E µ • 0 σ γ j(s) (y(s))dB(s) - • 0 σ j(s) (y(s))dB(s) 2 (0,T ) ≤ CE µ T 0 1 {y(s)≤γ} ds .
Using then Proposition 3. 

E µ • 0 σ γ j δ (s) (y δ (s))dB δ (s) -ψ n,γ (B δ , (y δ , i δ )) (•) 2 (0,T ) ≤ C(γ)E µ sup σ γ j δ (s) (y δ (s)) -σ γ j δ (t) (y δ (t)) 2 , |t -s| ≤ 1 2 n , (t, s) ∈ [0, T ] .
Using Proposition 3.3.5 and the continuity of σ γ i , we deduce then by Lebesgue's Theorem

lim sup δ→0 E µ • 0 σ γ j δ (s) (y δ (s))dB δ (s) -ψ n,γ (B δ , (y δ , i δ )) (•) 2 (0,T ) ≤ C(γ)E µ sup σ γ j(s) (y(s)) -σ γ j(t) (y(t)) 2 , |t -s| ≤ 1 2 n , (t, s) ∈ [0, T ] .
Finally using the continuity of the paths of the process Y (•) and once again the continuity of σ γ we get

lim n→+∞ lim sup δ→0 E µ • 0 σ γ j δ (s) (y δ (s))dB δ (s) -ψ n,γ (B δ , (y δ , i δ )) (•) 2 (0,T ) = 0.
Similarly we have lim n→+∞ lim sup δ→0 E µ (3.36) = 0. Finally for (3.35) we get that there exists a constant C(γ) independent of (n, δ) such that

ψ n,γ (B δ , (y δ , i δ )) (•) -ψ n,γ (B, (y, i))(•) (0,T ) ≤ 2 n+1 C(γ) |B δ -B| (0,T ) + |σ γ j δ (•) (y δ (•)) -σ γ j(•) (y(•))| (0,T ) .
Using once more Proposition 3.3.5, assumption (H), and the continuity of σ γ we get by Lebesgue's Theorem that lim δ→0 E µ (3.35) = 0. Therefore we have With the same arguments, we can show that

lim δ→0 E µ • 0 σ j δ (s) (y δ (s))dB δ (s) - • 0 σ j(s) (y(s))dB(s)
lim δ→0 E µ • 0 b j δ (s) (y δ (s))ds - • 0 b j(s) (y(s))ds (0,T ) = 0.
Choosing again a subsequence δ, to get an almost convergence sense, we have µ almost surely

lim δ→0 y δ (0) + • 0 b j δ (s) (y δ (s))ds + • 0 σ j δ (s) (y δ (s))dB δ (s) -y(0) + • 0 b j(s) (y(s))ds + • 0 σ i(s) (y(s))dB(s) (0,T ) = 0.
We recall that from Proposition 3.3.3, we have

µ y δ (t) = y δ 0 + t 0 b j δ (s) (y δ (s))ds + t 0 σ j δ (s) (y δ (s))dB δ (s) + δ( 0≤s≤t 1 {y δ (s-)=0} ) 0≤t≤T = 1.
The continuity of both processes y(t) Hence, using the lower semi continuity of the real map x → 1 {x>0} , we obtain

lim inf δ→0 1 T 0 1 {y δ (s)>0} dδN δ (s) > 0 ≥ 1 T 0 1 {y(s)>0} dl(s)) > 0 , µ a.s.
Therefore, using Fatou's Lemma we have

lim inf δ→0 µ T 0 1 {y δ (s)>0} dδN δ (s) > 0 ≥ µ lim inf δ→0 T 0 1 {y δ (s)>0} dδN δ (s) > 0 ≥ µ T 0 1 {y(s)>0} dl(s) > 0 ,
and using that µ T 0 1 {y δ (s)>0} dδN δ (s) > 0 = 0, we get finally

µ ( t 0 1 {y(s)>0} dl(s)) 0≤t≤T = 0) = 1.
We conclude then that y(t) . In order to better characterize the behavior of the process

Y (t) = (y(t), j(t)) 0≤t≤T
, we test its dynamic against regular maps f defined on the junction. This is the aim of the following Itô's formula.

Theorem 3.4.1. Let f ∈ C 0,1 b (J T ) ∩ C 1,2 b ( • J T ). We have f (t, Y (t)) -f (0, Y (0)) = t 0 L(f )(s, Y (s))ds + t 0 ∂ y f j(s) (s, y(s))σ j(s) (y(s))dB(s) + I i=1 α i t 0 ∂ y f i (s, 0)dl(s) 0≤t≤T , µ a.s.(3.38)
The Dynkin operator L(f ) is defined by

L(f )(t, (y, j)) = ∂ t f j (t, y) + ∂ y f j (t, y)b j (y) + 1 2 ∂ 2 y,y f j (t, y)σ 2 j (y),
for any (t, (y, j)) ∈ J T .

Proof. Suppose first that f does not depend on time:

∀ t, (y, j) ∈ J T , f j (t, y) = f j (y).

We first show that

f (Y (t)) -f (Y (0)) = t 0 L(f )(y(s), j(s))ds + t 0 ∂ y f j(s) (y(s))σ j(s) (y(s))dB(s) + I i=1 α i ∂ y f i (0)l(t) 0≤t≤T µ a.s.
We recall the definition of the stopping times (3.20)

γ δ 0 = 0, γ δ n+1 = inf t > γ δ n : y δ (t) = 0 , µ a.s.
Let t ∈ [0, T ], we have then the following decomposition

f j δ (t) (y δ (t)) -f j δ (0) (y δ (0)) = n≥0 f j δ (t∧γ δ n+1 -) y δ (t ∧ γ δ n+1 -) -f j δ (t∧γ δ n +) y δ (t ∧ γ δ n +) (3.39) 
+ n≥0 f j δ (t∧γ δ n +) y δ (t ∧ γ δ n +) -f j δ (t∧γ δ n -) y δ (t ∧ γ δ n -) , µ a.s. (3.40)
For (3.39), we apply Itô's formula on each interval t ∧ γ δ n +, t ∧ γ δ n+1 -, to get

n≥0 f j δ (t∧γ δ n+1 -) y δ (t ∧ γ δ n+1 -) -f j δ (t∧γ δ n +) y δ (t ∧ γ δ n+1 +) = t 0 L(f )(y δ (s), j δ (s))ds + t 0 σ j δ (s) (y δ (s))∂ y f j δ (s) (y δ (s))dB δ (s), µ a.s.
Using the same arguments as in the proof of Theorem 3.3.9, it is easy to show that up to a subsequence δ

lim δ→0 • 0 L(f )(y δ (s), j δ (s))ds + • 0 σ j δ (s) (y δ (s))∂ x f j δ (s) (y δ (s))dB δ (s) - • 0 L(f )(y(s), j(s))ds + • 0 σ j(s) (y(s))∂ y f j(s) (y(s))dB(s) (0,T ) = 0, µ a.s.
Using the continuity of f at the junction point, namely ∀(i, j) ∈ {1 . . . I} 2 , f i (0) = f j (0) = f (0), we get for (3.40) (where we recall that N δ (t) = 0≤s≤t 1 {y δ (s-,ω)=0} , µ a.s.)

n≥0 f j δ (t∧γ δ n +) y δ (t ∧ γ δ n +) -f j δ (t∧γ δ n -) y δ (t ∧ γ δ n -) , = N δ (t) n=0 f j δ (γ δ n ) (δ) -f j δ (γ δ n ) (0) 1 {N δ (t)>0} = N δ (t) n=0 δ∂ y f j δ (γ δ n ) (0) + δε j(γ δ n ) (δ) 1 {N δ (t)>0} , µ a.s,
where for each i ∈ {1 . . . I}, lim δ→0 ε i (δ) = 0.

From Remark 3.3.4, we know that there exists a constant C > 0 independent of δ, such that

E µ δN δ (•) ≤ C(1 + δ 2 ) 1/2 , (3.41) hence E µ N δ (•) n=0 δε j(γ δ n ) (δ) (0,T ) ≤ C(1 + δ 2 ) 1/2 max i∈{1...I} |ε i (δ)|,
which means that, up to a subsequence δ, we have

lim δ→0 n≥0 f j δ (•∧γ δ n +) y δ (• ∧ γ δ n +) -f j δ (•∧γ δ n -) y δ (• ∧ γ δ n -) - N δ (•) n=0 I i=1 δ∂ y f i (0)1 {j δ (γ δ n )=i} 1 {N δ (•)>0} (0,T ) = 0, µ a.s.
We recall that from assumption (H), (

I i=1 ∂ y f i (0))1 {j δ (γ δ n )=i} ) n≥0 are i.i.d.
Using the law of large numbers, there exists A ∈ E with µ(A) = 1, such that for all ω ∈ A

lim n→+∞ 1 n n k=0 I i=1 ∂ y f i (0)1 {j δ (γ δ n )=i} = I i=1 α i ∂ x f i (0), since for all δ, for all i ∈ {1 . . . I}, E µ [1 {j δ (γ δ n )=i} ] = α i .
On the other hand we have

A = η∈Q * + K∈N * A η,K ,
where

A η,K = ω ∈ A, ∀n ≥ K, 1 n n k=0 I i=1 ∂ y f i (0)1 {j δ (γ δ n )=i} - I i=1 α i ∂ y f i (0) ≤ η .
Given η ∈ Q * + and K ∈ N * , we have

N δ (•) n=0 I i=1 δ∂ y f i (0)1 {j δ (γ δ n )=i} 1 {N δ (t)>0} -l(•) I i=1 α i ∂ y f i (0)) (0,T ) ≤ (3.42) l(•) -δN δ (•) N δ (•) N δ (•) n=0 I i=1 ∂ y f i (0)1 {j δ (γ δ n )=i} 1 {N δ (•)>0} (0,T ) + (3.43) l(•) (0,T ) 1 N δ (•) N δ (•) n=0 I i=1 ∂ y f i (0)1 {j δ (γ δ n )=i} - I i=1 α i ∂ y f i (0) × (3.44) 1 {0<N δ (•)≤K} + 1 {N δ (•)>K} 1 {A η,K } + 1 {A η,K } (0,T ) , µ a.s. 
For (3.43), we have the following upper bound

(3.43) ≤ max i∈{1...I} ∂ x f i (0) δN δ (•) -l(•) (0,T )
.

Recall that from (3.31) in Theorem 3.3.9, we know that

δN δ (•) -l(•) (0,T ) --→ δ→0 0, µ a.s, hence using Lebesgue's Theorem lim δ→0 E µ (3.43) = 0.
We now consider the term (3.44), we have

∀t ∈ [0, T ], 0 ≤ l(t)1 {0<N δ (t)≤K} = (l(t) -δN δ (t) + δN δ (t))1 {0<N δ (t)≤K} ≤ δN δ (•) -l(•) (0,T )
+ δK, µ a.s, and then using Lebesgue's Theorem and once again (3.31), we have

(where C = C(max i∈{1...I} ∂ x f i (0)
) is a constant independent of δ)

lim δ→0 E µ l(•) 1 N δ (•) N δ (•) n=0 I i=1 ∂ y f i (0)1 {j δ (γ δ n )=i} - I i=1 α i ∂ y f i (0) 1 {0<N δ (•)≤K} (0,T ) ≤ C lim δ→0 E µ δN δ (•) -l(•) (0,T ) + δK = 0.
Finally we have the following upper bounds

E µ l(•) 1 N δ (•) N δ (•) n=0 I i=1 ∂ y f i (0)1 {j δ (γ δ n )=i} - I i=1 α i ∂ y f i (0) 1 {N δ (•)>K} 1 {A η,K } (0,T ) ≤ ηE µ l(•) (0,T ) , E µ l(•) 1 N δ (•) N δ (•) n=0 I i=1 ∂ y f i (0)1 {j δ (γ δ n )=i} - I i=1 α i ∂ y f i (0) 1 {N δ (•)>K} 1 {A η,K } (0,T ) ≤ CE µ l(•) (0,T ) 1 {A η,K } .
Therefore

lim η→0 lim sup K→+∞ lim sup δ→0 E µ (3.42) = 0.
We finally get, that up to a subsequence δ

lim δ→0 f j δ (•) (y δ (•)) -f j δ (0) (y δ (0)) - • 0 L(f ) s, (y(s), j(s)) ds+ • 0 ∂ y f j(s) (y(s))σ j(s) (y(s))dB(s) + I i=1 α i ∂ y f i (0)l(•) (0,T ) = 0 , µ a.s.
This completes the proof of Step 1.

Step 2. We generalize the result obtained in Step 1,

for f ∈ C 0,1 b (J T ) ∩ C 1,2 b ( • J T ). To this end, fix t ∈ [0, T ] and set (t n k := kt/n) 0≤k≤n . We have f j(t) t, y(t) -f j(0) 0, y(0) = n k=1 f j(t n k ) t n k , y(t n k ) -f j(t n k ) t n k-1 , y(t n k ) (3.45) + n k=1 f j(t n k ) t n k-1 , y(t n k ) -f j(t n k-1 ) t n k-1 , y(t n k-1 ) . (3.46) 
Using the continuity of f at the junction point, the interior regularity of the (∂ t f i ) i∈{1...I} , the continuity of the paths of y(•) and that T 0 1 {y(s)=0} ds = 0 µ a.s, we get

n k=1 f j(t n k ) t n k , y(t n k ) -f j(t n k ) t n k-1 , y(t n k ) - • 0 ∂ t f j(s) s, y(s) ds (0,T ) ----→ n→+∞ 0, µ a.s.
Using the result obtained in Step 1, we get for (3.46)

n k=1 f j(t n k-1 ) t n k-1 , y(t n k ) -f j(t n k-1 ) t n k-1 , y(t n k-1 ) = n k=1 t n k t n k-1 ∂ y f j(s) t n k-1 , y(s) b j(s) (y(s)) + 1 2 ∂ 2 y,y f j(s) t n k-1 , y(s) σ 2 j (y(s)) ds + t n k t n k-1 ∂ y f j(s) t n k-1 , y(s) σ j(s) (y(s))dB(s) + (l(t n k ) -l(t n k-1 )) I i=1 α i ∂ y f i (t n k-1 , 0) .
Finally, using the regularity of f , and the fact that

T 0 1 {y(s)} ds = 0, µ a.s (Proposition 3.3.7) 
, it is easy to check that up to a subsequence n p np k=1

f j(t np k-1 ) t np k-1 , y(t np k ) -f j(t np k-1 ) t np k-1 , y(t np k-1 ) - • 0 ∂ y f j(s) s, y(s) b j(s) (y(s)) + 1 2 ∂ 2 y,y f j(s) s, y(s) σ 2 j (y(s)) ds + • 0 ∂ y f j(s) s, y(s) σ j(s) (y(s))dB(s) + I i=1 α i • 0 ∂ y f i (s, 0)dl(s) (0,T ) ----→ p→+∞ 0, µ a.s,
that completes the proof.

Local time estimate at the junction

We complete this Chapter by giving a local time estimate of the process Y (t) = (y(t), j(t) 0≤t≤T at the junction point. This estimate is reminiscent of the local time for the reflected Brownian motion.

Theorem 3.4.2. We have:

lim ε→0 E µ 1 2ε I j=1 • 0 σ 2 j (0)1 {0≤y(s)≤ε,j(s)=j} ds -l(•) 2 (0,T ) = 0,
and, more generally, for any subset I ⊂ {1, . . . I}:

lim ε→0 E µ 1 2ε( k∈I α k ) j∈I • 0 σ 2 j (0)1 {0≤y(s)≤ε,j(s)=j} ds -l(•) 2 (0,T ) = 0.
Proof. Let ε > 0. We define the following sequence φ ε on J by

∀(y, j) ∈ J , φ ε (y, j) = φ ε (y) =      y 2 2ε if 0 ≤ y ≤ ε y -ε 2 if y ≥ ε
, and y ∈ J j .

Step 1 : We start by showing that

φ ε (Y (•)) -φ ε (Y (0)) = • 0 ∂ y φ ε (y(s))b j(s) (y(s)) + 1 2 ∂ y,y φ ε (y(s))σ j(s) (y(s)) 2 ds + • 0 ∂ y φ ε (y(s))σ j(s) (y(s))dB(s) 0≤t≤T , µ a.s. (3.47)
Let η > 0, and φ ε,η ∈ C 2 (J ), the sequence of smooth functions satisfying the following conditions (T ):

                     φ ε,η = φ ε on [0, ε/2] ∪ [2ε, +∞), ∂ y,y φ ε,η -∂ y,y φ ε L 1 ((0,+∞)) ------→ η→0 0, |∂ y φ ε,η -∂ y φ ε | [0,+∞) --→ η→0 0, |φ ε,η -φ ε | [0,+∞) --→ η→0 0 .
Let a > ε > 0. We introduce the following stopping time

γ a := inf{t ∈ [0, T ], y(t) = a}, µ a.s.
Applying Itô's formula of Theorem 3.4.1 to φ ε,η ∈ C 2 (J ), we have

φ ε,η (Y (• ∧ γ a )) -φ ε,η (Y (0)) = •∧γa 0 ∂ y φ ε,η (y(s))b j(s) (y(s)) + 1 2 ∂ y,y φ ε,η (y(s))σ j(s) (y(s)) 2 ds + •∧γa 0 ∂ y φ ε,η (y(s))σ j(s) (y(s))dB(s) 0≤t≤T , µ a.s. (3.48) 
We are going to send η → 0 in (3.48). We start by showing that, up to a sub sequence η,

lim η→0 •∧γa 0 ∂ y φ ε,η (y(s))σ j(s) (y(s))dB(s) - •∧γa 0 ∂ y φ ε (y(s))σ j(s) (y(s))dB(s) (0,T ) = 0, µ a.s.
Using assumption (H) and Burkholder-Davis-Gundy inequality, we get that there exists a constant C > 0, independent of a, ε, and η, such that

E µ •∧γa 0 ∂ y φ ε,η (y(s))σ j(s) (y(s))dB(s) - •∧γa 0 ∂ y φ ε (y(s))σ j(s) (y(s))dB(s) 2 (0,T ) ≤ CE µ T ∧γa 0 ∂ y φ ε,η (y(s))σ j(s) (y(s)) -∂ y φ ε (y(s))σ j(s) (y(s)) 2 ds ≤ C ∂ y φ ε,η (•) -∂ y φ ε (•) 2 (0,a)
.

Hence using conditions (T ), we get that up to a sub sequence η

lim η→0 •∧γa 0 ∂ y φ ε,η (y(s))σ j(s) (y(s))dB(s) - •∧γa 0 ∂ y φ ε (y(s))σ j(s) (y(s))dB(s) (0,T ) = 0, µ a.s.
With the same arguments, we get that up to a sub sequence ( denoted in the same way ). Let us denote by C its bound on [ε/2, a]. We have then using conditions assumption (H)

E µ •∧γa 0 1 2 ∂ y,y φ ε,η (y(s))σ j(s) (y(s)) 2 ds - •∧γa 0 1 2 ∂ y,y φ ε (y(s))σ j(s) (y(s)) 2 ds (0,T ) ≤ E µ T 0 1 2 σ j(s) (y(s)) 2 (∂ y,y φ ε (y(s)) -φ ε,η (y(s)))1 {ε/2≤y(s)≤a} ds ≤ max i∈{1...I} 1 2 σ 2 i L ∞ ((0,+∞)) T C ∂ y,y φ ε,η -∂ y,y φ ε L 1 ((ε/2,a)) .
Then, by condition (T ), we have

lim η→0 E µ •∧γa 0 1 2 ∂ y,y φ ε,η (y(s))σ j(s) (y(s)) 2 ds - •∧γa 0 1 2 ∂ y,y φ ε (y(s))σ j(s) (y(s)) 2 ds (0,T ) = 0.
This proves that, for any a > ε,

φ ε (Y (• ∧ γ a )) -φ ε (Y (0)) = •∧γa 0 ∂ y φ ε (y(s))b j(s) (y(s)) + 1 2 ∂ y,y φ ε (y(s))σ j(s) (y(s)) 2 ds + •∧γa 0 ∂ y φ ε (y(s))σ j(s) (y(s))dB(s) 0≤t≤T , µ a.s.
Finally, since the process y(•) has continuous paths, we have

lim a→+∞ γ a = +∞, µ a.s.
Hence sending a to +∞, we obtained (3.47), and that completes the proof of Step 1.

Step 2 : we prove the main result of this Proposition.

Using the result obtained in Step 1 and Theorem 3.3.9, we get using the expression of the derivatives of φ ε :

E µ 1 2ε • 0 σ 2 j(s) (s, y(s))1 {0≤y(s)≤ε} ds -l(•) 2 (0,T ) ≤ 5 E µ φ ε (Y (•)) -φ ε (Y (0))) -y(•) -y (0) 2 (0,T ) (3.49) 
+ E µ • 0 σ j(s) (y(s))1 {0≤y(s)≤ε} dB(s) 2 (0,T ) (3.50) 
+ E µ • 0 b j(s) (y(s))1 {0≤y(s)≤ε} ds 2 (0,T ) (3.51 
)

+ E µ • 0 σ j(s) (y(s))1 {y(s)≥ε} dB(s) - • 0 σ j(s) (y(s))dB(s) 2 (0,T ) (3.52 
)

+ E µ • 0 b j(s) (y(s))1 {y(s)≥ε} ds - • 0 b j(s) (y(s))ds 2 (0,T ) . (3.53) 
For (3.49), recalling that, for all Y = (y, j) ∈ J , |φ ε (Y ) -y| ≤ 2ε, we get by Lebesgue's Theorem

lim ε→0 E µ φ ε (Y (•)) -φ ε (Y (0))) -y(•) -y(0) 2 (0,T ) = 0.
On the other hand for (3.50), using assumption (H) and Burkholder-Davis-Gundy inequality, there exists a constant C > 0 independent of ε, such that

E µ • 0 σ j(s) (y(s))1 {0≤y(s)≤ε} dB(s) 2 (0,T ) ≤ CE µ [ T 0 1 {0≤y(s)≤ε} ds ],
and therefore using Proposition (3.3.7), we get

lim ε→0 E µ • 0 σ j(s) (y(s))1 {0≤y(s)≤ε} dB(s) 2 (0,T ) = 0.
Similarly, we have for (3.51)

lim ε→0 E µ • 0 b j(s) (y(s))1 {0≤y(s)≤ε} ds 2 = 0.
Finally, for (3.52) and (3.53), it easy to check using assumption (H) that

lim ε→0 E µ • 0 σ j(s) (y(s))1 {y(s)≥ε} dB(s) - • 0 σ j(s) (y(s))dB(s) 2 (0,T ) = 0, lim ε→0 E µ • 0 b j(s) (y(s))1 {y(s)≥ε} ds - • 0 b j(s) (y(s))ds 2 (0,T ) = 0.
We get finally

lim ε→0 E µ 1 2ε • 0 σ 2 j(s) (y(s))1 {0≤y(s)≤ε} ds -l(•) 2 (0,T ) = 0.
To conclude, we remark that all t ∈ [0, T ] 1 2ε Using the uniform Lipschitz continuity of all the (σ i ) i∈{1...I} at each edge J i (assumption (H)), we get that there exists a constant C > 0, independent of ε such that for all j ∈ {1 . . . I}, for all s ∈ [0, T ]

σ 2 j (y(s)) -σ 2 j (0) 1 {0≤y(s)≤ε} ≤ Cε1 {0≤y(s)≤ε} , µ a.s,
and then using Proposition (3.3.7)

lim ε→0 E µ I j=1 1 2ε • 0 σ 2 j (y(s)) -σ 2 j (0) 1 {0≤y(s)≤ε,j(s)=j} ds (0,T ) ≤ C lim ε→0 E µ T 0 1 {0≤y(s)≤ε} ds = 0.
We get then the required result, namely

lim ε→0 E µ 1 2ε I j=1 • 0 σ 2 j (0)1 {0≤y(s)≤ε,j(s)=J} ds -l(•) 2 (0,T ) = 0.
We notice that the second approximation, which is for any I ⊂ {1, . . . I}

lim ε→0 E µ 1 2ε( k∈I α k ) j∈I • 0 σ 2 j (0)1 {0≤y(s)≤ε,j(s)=j} ds -l(•) 2 (0,T )
= 0, can be proved with the same arguments above considering the same map φ ε , but vanishing on each edge whose indexes belong to {1, . . . I} \ I.

Chapter 4

Stochastic optimal control at the junction

Introduction

Originally introduced by Freidlin and Sheu in [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF] and Freidlin and Wetzell in [START_REF] Freidlin | Diffusion processes on an open book and the averaging principle[END_REF], stochastic diffusions in graphs have attracted a lot of intention in the last 20 years. More precisely, given a junction J = I i=1 J i , (σ i , b i ) regular functions from R + to R, and α 1 . . . α I nonnegative constants such that α 1 + • • • + α I = 1, the authors in [START_REF] Freidlin | Diffusion processes on an open book and the averaging principle[END_REF] have proved that there exists a continuous Markov process X = (x, i) defined on J .

Thereafter in [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF], it is shown that there exists a one dimensional Wiener process W defined on a probability space (Y (•), F, P), adapted to the natural filtration of X = (x, i), such that the process x satisfies the following stochastic differential equation for a finite time horizon T > 0,

dx(t) = σ i(t) (x(t))dW (t) + b i(t) (x(t))dt + dl(t) , 0 ≤ t ≤ T, (4.1) 
where l is a nondecreasing process starting from zero satisfying

P ( t 0 1 {x(s)>0} dl(s)) 0≤t≤T = 0 = 1.
Moreover, [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF] gives the following Itô's formula

df i(t) (x(t)) = b i(t) (x(t))∂ x f i(t) (x(t)) + 1 2 σ 2 i(t) (x(t))∂ x,x f i(t) (x(t)) dt + ∂ x f i(t) (x(t))σ i(t) (x(t))dW t + I i=1 α i ∂ x f i (0)dl(t), (4.2) 
for f regular enough.

The process l can be interpreted as the local time of the process X at the vertex, whose quadratic approximation is given by

lim ε→0 E P 1 2ε I j=1 • 0 σ 2 j (0)1 {0≤x(s)≤ε,j(s)=j} ds -l(•) 2 (0,T ) = 0. (4.3) 
In this Chapter, we study a stochastic control problem with control at the junction point.

We use a weak martingale formulation, and the method of compactification of the controls,

as it has been introduced in [START_REF] Karoui | Compactification methods in the control of degenerate diffusions : existence of an optimal control[END_REF]. Such a method is a classical one in the deterministic case and even in the stochastic case in [START_REF] Becker | On the existence of optimal random controls[END_REF], however it is not often used any more. For our problem, the method differs from what it has already done in the literature, since we will add a relaxation at the junction point, due to the process l introduced in equation (4.1), which takes into account its behavior. This new method of relaxation is introduced in Section 4.2, where a criterion a compactness is given in Theorem 4.2.1. Thereafter, we establish the compactness of the admissible controls in Theorem 4.3.6. As in [START_REF] Karoui | Compactification methods in the control of degenerate diffusions : existence of an optimal control[END_REF], both stability properties of the set of rules by conditioning and concatenation at stopping times, are the main tools to formulate the dynamic programming principle, which is proved in Theorem 4.4.5. On the other hand, the value function of this problem of control, will allows us to make the link with the theory of non linear parabolic partial differential equations at a junction. Due to the process l and the quadratic approximation (4.3), we will get that the parabolic equation that characterized the value function, has non degenerate viscosity at the junction point x = 0, and satisfy a non linear Neumann and non dynamical boundary condition at x = 0;

F (u(t, 0), ∂ x u(t, 0)) = inf α i ∈[0,1] I , i α i =1 i α i ∂ x u i (t, 0) = 0.
Until now, the only result of existence and uniqueness of these type of equation has been

given in [START_REF] Wahbi | Quasi linear PDE with non linear boundary conditions at the junctions point[END_REF], where the author has shown well-posedness of classical solutions for the following problem

           ∂ t u i (t, x) -σ i (x, ∂ x u i (t, x))∂ 2 x,x u i (t, x) + H i (x, u i (t, x), ∂ x u i (t, x)) = 0,
for all x > 0, and for all i ∈ {1 . . . I},

F (u(t, 0), ∂ x u(t, 0)) = 0, (4.4) 
in suitable Hölder spaces: see Theorem 2.2 for the existence and Theorem 2.4 for the comparison in [START_REF] Wahbi | Quasi linear PDE with non linear boundary conditions at the junctions point[END_REF], and thus the uniqueness. The main assumptions are that the equation is uniformly parabolic with smooth coefficients and that the term F = F (u, p) is increasing with respect to p, which is a natural assumption regarding to the set where the controls (α 1 . . . α I ) are valued. This result will allow us to formulate a Feynman-Kac's representation formula in a futur framework.

Let us mention that the control theory on stratified domains or networks have already been well-studied in the literature, for first order problems, and we refer for instance to [START_REF] Bachmann | Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients[END_REF],

[4], [START_REF] Barles | Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit[END_REF], [START_REF] Ghilli | Junction conditions for finite horizon optimal control problems on multi-domains with continuous and discontinuous solutions[END_REF], [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF], [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF]... On the other hand, for stochastic control problems with reflection and controllability at the boundary, we refer to [START_REF] Bouchard | Optimal reflection of diffusions and barrier options pricing under constraints[END_REF], where the author studied optimal reflection with some applications in financial markets.

The Chapter is organized as follows. We introduce the set of generalized actions that will be used for the compactification method, and the formulation of our martingale problem in Section 4.2. Thereafter, we prove the compactness of the admissible rules in Section 4.3. The dynamic programming principle is established in Section 4.4.

4.2

The set of generalized action, and the martingale problem 

(0) = 0 , resp. (θ f ) f ∈C(A 0 ) θ f :      M c (A 0 ) → R ν → ν(f ) = A 0 f dν .
Since l n converges uniformly to l up to a sub sequence n k , it is easy to get that for any

f ∈ L ∞,1 ([0, T ]) [0,T ] f (t)l νn k (dt) k→+∞ ----→ n k [0,T ] f (t)l(dt), namely ν [0,T ] n k (dt) * ⇀ l(dt) for * σ L ∞,1 ([0, T ]) ′ , L ∞,1 ([0, T ]) .
On the other hand, we have

ν A 0 n C(A 0 ) ′ = sup f ∈C(A 0 ), f ≤1 [0,T ]×A 0 f (t)ν n (dt, dα 1 . . . dα I ) ≤ l n (T ) ≤ C,
and then we deduce that ν A 0 n is relatively compact for the weak topology * σ(C(A 0 ) ′ , C(A 0 )).

We deduce finally using Theorem C.0.4, that ν n is relatively compact, and then converges up to a sub sequence (denoted in the same way by

n k ) to φ ∈ L ∞,1 mc ([0, T ] × A 0 ) ′ , for * σ L ∞,1 mc ([0, T ] × A 0 ) ′ , L ∞,1 mc ([0, T ] × A 0 ) , where L ∞,1 mc ([0, T ] × A 0 ) := f ∈ L ∞ ([0, T ] × A 0 ), ∃B ∈ B([0, T ]), g ∈ C(A 0 ), f = 1 B (t)g(α 1 . . . α I ) .
We now turn to prove that φ can be represented by an element of ν ∈ M mc ([0, T ] × A 0 ),

namely ∃ν ∈ M mc ([0, T ] × A 0 ), ∀f ∈ L ∞,1 mc ([0, T ] × A 0 ), φ(f ) = [0,T ]×A 0 f (t, α 1 . . . α I )ν(dt, dα 1 . . . dα I ).
For this, we use a Riesz representation Theorem, and more precisely we are going to prove that φ satisfies (i) and (ii) of Theorem C.0.5.

Let B ∈ B([0, T ]), we have

(t, α 1 . . . α I ) → 1 B ⊗ 1(t, α 1 . . . α I ) :=      1, if t ∈ B, 0, if t / ∈ B, belongs to L ∞,1 ([0, T ] × A 0 ), and 
ν n k (1 B ⊗ 1) k→+∞ ----→ φ(1 B ⊗ 1), ν n k (1 B ⊗ 1) = l n k (B) k→+∞ ----→ l(B).
By uniqueness of the weak limit, we get that φ(1 B ⊗ 1) = l(B), and since l ∈ L[0, T ], l defines a Borel measure on ([0, T ], B([0, T ])), which means that (i) of Theorem C.0.5 holds true.

On the other hand, since A 0 is compact, we deduce easily that (ii) of Theorem C.0.5 holds true.

We deduce then that there exists

ν ∈ M mc ([0, T ] × A 0 ), such that ∀f ∈ L ∞,1 mc ([0, T ] × A 0 ), φ(f ) = [0,T ]×A 0 f (t, α 1 . . . α I )ν(dt, dα 1 . . . dα I ).
Since φ is a continuous linear form on Span(L ∞,1 mc ([0, T ]×A 0 )), which is dense in L ∞ mc ([0, T ]× A 0 ) for the uniform convergence (see Lemma C.0.6), we deduce that

∀f ∈ L ∞ mc ([0, T ] × A 0 ), φ(f ) = [0,T ]×A 0 f (t, α 1 . . . α I )ν(dt, dα 1 . . . dα I ).
Finally, to complete the proof, it is enough to show that the projection ν [0,T ] (dt) is equal to l(dt). For this we use that, for any B ∈ B([0, T ])

[0,T ] 1 B (t)l νn k (dt) k→+∞ ----→ n k [0,T ] 1 B (t)l(dt), [0,T ]×A 0 1 B (t)ν n (dt, dα 1 . . . dα I ) k→+∞ ----→ n k [0,T ]×A 0 1 B (t)ν(dt, dα 1 . . . dα I ).
Using the uniqueness of the weak limit, we get

∀B ∈ B([0, T ]), [0,T ] 1 B (t)l(dt) = [0,T ]×A 0 1 B (t)ν(dt, dα 1 . . . dα I )
and then

l(dt) = A 0 ν(dt, dα 1 . . . dα I ),
and that completes the proof.

Theorem 4.2.2. V ([0, T ]×A 0 ) endowed with the weak topology * σ

L ∞ mc ([0, T ]×A 0 ) ′ , L ∞ mc ([0, T ]× A 0 ) is Polish. Proof. Recall that M mc ([0, T ] × A 0 ) endowed with the weak topology * σ L ∞ mc ([0, T ] × A 0 ) ′ , L ∞ mc ([0, T ] × A 0 ) is separable since M mc ([0, T ] × A 0 ) ⊂ n≥0 φ ∈ L ∞ mc ([0, T ] × A 0 ) ′ , φ ≤ n ,
and from Banach-Alaoglu-Bourbaki's Theorem

∀n ≥ 0, φ ∈ L ∞ mc ([0, T ] × A 0 ) ′ , φ ≤ n is compact for * σ L ∞ mc ([0, T ] × A 0 ) ′ , L ∞ mc ([0, T ] × A 0 ) . As a subset of M mc ([0, T ] × A 0 ), we deduce that V ([0, T ] × A 0 ) is separable for the weak topology * σ L ∞ mc ([0, T ] × A 0 ) ′ , L ∞ mc ([0, T ] × A 0
) . To conclude, let ν n (dt, dα 1 . . . dα I ) := l n (dt)ν t,n (dz) a Cauchy sequence of V ([0, T ] × A 0 ), we have then

∀ε > 0, ∃n 0 ∈ N, ∀n ≥ n 0 , ∀p ≥ 0, ∀f ∈ L ∞ mc ([0, T ] × A 0 ), [0,T ]×A 0 f (t, α 1 . . . α I )ν n+p (dt, dα 1 . . . dα I ) - [0,T ]×A 0 f (t, α 1 . . . α I )ν n (dt, dα 1 . . . dα I ) ≤ ε. Let s ∈ [0, T ], choosing f (t, α 1 . . . α I ) = 1 [0,s] (t)
, we get that l n is a Cauchy sequence of L([0, T ]), and then converges uniformly to l ∈ L([0, T ]). Therefore using the converse of

(i) ∃c > 0, ∀i ∈ {1 . . . I}, ∀(t, x, k i ) ∈ [0, T ] × [0, +∞) × K i , σ i (t, x, k i ) ≥ c, (ii) ∀i ∈ {1 . . . I}, x → (σ i , b i , h i ) ∈ C 1 ([0, +∞)), and 
(∂ x σ i , ∂ x b i , ∂ x h i ) ∈ L ∞ ([0, T ] × [0, +∞) × K i ))).
We recall that C J ([0, T ]) is the set of continuous maps defined in [0, T ], valued in the junction (J, d J ), where d J is defined by

∀ (x, i), (y, j) ∈ J 2 , d J (x, i), (y, j) =    |x -y| if i = j , x + y if i = j .
In the sequel, C 1,2 b (J T ) is the class of continuous functions defined on [0, T ] × J , having a regularity of class C 1,2 ([0, T ] × [0, +∞)) on each edge, and bounded together with all its derivatives.

The canonical space where we will define our process, is the following Polish space

Φ = C J [0, T ] × I i=1 U ([0, T ] × K i ) × V ([0, T ] × A 0 ), endowed with its Borel σ algebra B(Φ).
The canonical process is then defined on the measurable space (Φ, B(Φ)) by X : -(iii) For any f ∈ C 1,2 b (J T ), the following process (M f s ) 0≤s≤T defined on the filtered probability space (Φ, B(Φ), (Ψ t ) 0≤t≤T , P

       [0, T ] × Φ → J × I i=1 M mc ([0, T ] × K i ) × M mc ([0, T ] × A 0 ) s, Y (•) → X(s, Y (•)) = y(s), j(s) ,
(x,i) t ) by ∀s ∈ [t, T ], M f s -M f t = f (s, X(s)) -f (t, X(t)) - I i=1 s t K i 1 x(u),i(u) ∈J * i ∂ t f i (u, x(u)) + 1 2 σ 2 i (u, x(u), k i )∂ x,x f i (u, x(u)) + b i (u, x(u), k i )∂ x f i (u, x(u)) ν i (s)(du, dk i ) - I i=1 s t A 0 α i ∂ x f i (u, 0)ν 0 (s)(du, dα 1 . . . dα I )
is a (Ψ s ) t≤s≤T continuous martingale under the probability measure P (x,i) t

, after time t.

Remark 4.2.3. We assume that A t, (x, i) is non empty, and we will prove it in a future work. More precisely, we will show that there exists P ∈ A t, (x, i) with a constant 

s t A 0 < a, ∂ x f (u, 0) > ν 0 (s)(du, dα 1 . . . dα I ) = I i=1 s t A 0 a i ∂ x f i (u, 0)dl ν 0 (s) (u), with a = (a 1 . . . a I ), ∂ x f (u, 0) = (∂ x f 1 (u, 0) . . . ∂ x f I (u, 0 
)), and < ., . > denotes the classical scalar product in R I .

We can then define the following reward function Λ of our problem, with cost h 0 at the junction point and h i on each edge by Λ :

               A t, (x, i) → R P (x,i) t → E P (x,i) t I i=1 T t K i 1 x(u),i(u) ∈J * i h i (u, x(u), k i )ν i (T )(du, dk i ) + T t
A 0 h 0 (u, α 1 . . . α I )ν 0 (T )(du, dα 1 . . . dα I ) + g(X T ) .

(4.5)

The corresponding value function v is defined by

v :        [0, T ] × J → R t, (x, i) → inf P (x,i) t ∈A(t,(x,i)) Λ(P (x,i) t ) . (4.6)

Compactness of the admissible rule

In this section, we will prove the compactness of the set of admissible rules A t, (x, i) ,

for the weak topology. 

       C J [0, T ] × V ([0, T ] × A 0 ) → R (x(•), i(•)), ν 0 → T t A 0 1 {x(u)>0} ν 0 (du, dα 1 . . . dα I )
, and for all i ∈ {0 . . . I} ρ 0 :

       C J [0, T ] × V ([0, T ] × A 0 ) → R (x(•), i(•), ν 0 → T t A 0 h 0 (u, α 1 . . . α I )ν 0 (du, dα 1 . . . dα I ) , ρ i :        C J [0, T ] × V ([0, T ] × K i ) → R (x(•), i(•)), ν i → T t K i 1 x(u),i(u) ∈J * i h i (u, x(u), k i )ν i (du, dk i ) .
ρ, (ρ i ) i∈{1...I} are lower semi continuous and ρ 0 is continuous.

Proof. We start by showing that ρ is lower semi continuous, and for this let (x n (•), i n (•)), We write then We conclude then that ρ is lower semi continuous. We use the same arguments to show that the (ρ i ) i∈{1...I} are lower semi continuous and ρ 0 is continuous.

In the next Proposition, we characterize the paths of the process x(•), by showing that its martingale part can be represented by a Brownian martingale.

Proposition 4.3.2. Let P (x,i) t ∈ A t, (x, i) , and f ∈ C 1,2 b (J T ), we have ∀s ∈ [t, T ], d < f (•, X(•) > s = I i=1 K i 1 x(u),i(u) ∈J * i ∂ x f i (s, x(s))σ i (s, x(s), k i ) 2 ν i,s (s)(dk i ) ds, P (x,i) t a.s. 
Moreover there exists a standard one dimentionnal Brownian motion W (•), (Ψ s ) t≤s≤T measurable, such that

∀s ∈ [t, T ], x(s) = x + I i=1 s t K i 1 u,x(u),i(u) ∈J * i b i (u, x(u), k i )ν i (s)(du, dk i ) + s t I i=1 K i 1 x(u),i(u) ∈J * i σ i (u, x(u), k i ) 2 ν i,u (s)(dk i ) 1 2 dW (u) + l ν 0 (s) (s), P (x,i) t a.s. (4.7) 
Proof. Let g = g(x) ∈ C 2 b (R, R), we have using the classical Itô's formula

∀s ∈ [t, T ], g • f (s, X(s)) = g • f (s, x) + s t ∂ x g • f (u, X(u))df (u, X(u)) + 1 2 s t ∂ x,x g • f (u, X(u))d < f (•, X(•)) > u , P (x,i) t a.s.
On the other hand we have

s t ∂ x g • f (u, X(u))df (u, X(u)) = I i=1 K i s t 1 x(u),i(u) ∈J * i ∂ x g • f (u, X(u)) ∂ t f i (u, x(u)) + 1 2 σ 2 i (u, x(u), k i )∂ x,x f i (u, x(u)) + b i (u, x(u), k i )∂ x f i (u, x(u)) ν i (s)(du, dk i ) + I i=1 A 0 s t α i ∂ x g • f (u, X(u))∂ x f i (u, 0)ν 0 (s)(du, dα 1 . . . dα I ) + s t ∂ x g • f (u, X(u))dM f (u), P (x,i) t a.s
Using condition (S 0 ) (ii), namely:

s t A 0 1 {x(u)>0} ν 0 (s)(du, dα 1 . . . dα I ) = 0, P (x,i) t
a.s, we get

I i=1 s t A 0 ∂ x g • f (u, X(u))α i ∂ x f i (u, 0)ν 0 (s)(du, dα 1 . . . dα I ) = I i=1 s t A 0 ∂ x g • f (u, 0)α i ∂ x f i (u, 0)ν 0 (s)(du, dα 1 . . . dα I ), P (x,i) t a.s. 
On the other hand, using that g

• f ∈ C 1,2 b (J T ), we know that g • f (s, X(s)) -g • f (t, X(t)) - I i=1 s t K i 1 x(u),i(u) ∈J * i ∂ t (g • f i )(u, x(u)) + 1 2 σ 2 i (u, x(u), k i )∂ x,x (g • f i )(u, x(u)) + b i (u, x(u), k i )∂ x (g • f i )(u, x(u)) ν i (s)(du, dk i ) - I i=1 s t A 0 α i ∂ x (g • f i )(u, 0)ν 0 (s)(du, dα 1 . . . dα I ) t≤s≤T ,
is a (Ψ s ) t≤s≤T continuous martingale under the probability measure P (x,i) t

. Simple computations allows to get that, at each vertex, for all x ∈ J * i and for all s ∈ [t, T ]

∂ t (g • f ) i (s, x) + b i (s, x, k i )∂ x (g • f ) i (s, x) + 1 2 σ 2 i (s, x, k i )∂ x,x (g • f ) i (s, x) = ∂ t f i (s, x)∂ x g • f i (s, x) + b i (s, x, k i )∂ x f i (s, x)∂ x g • f i (s, x) + 1 2 σ 2 i (s, x, k i ) ∂ x,x f i (s, x)∂ x g • f i (s, x) + ∂ x f i (s, x) 2 ∂ x,x g • f i (s, x) .
Identifying the martingale and finite variation terms, we get that

∀s ≥ t, d < f (., X(•) > s = I i=1 K i 1 x(u),i(u) ∈J * i ∂ x f i (s, x(s))σ i (s, x(s), k i ) 2 ν i,s (s)(dk i ) ds, P (x,i) t a.s.
Considering the special case when f (x) = x, if x ∈ J * i , after an argument of localization with stopping times, and (using the ellipticity assumption (i) (H)), if we set 

∀s ≥ t, W (s) = s t 1 I i=1 K i 1 x(u),i(u) ∈J * i σ i (x(u), k i ) 2 ν i,u (s)(dk i ) 1 2 df (u, X(u)), P ( 
i L ∞ ([0,T ]×[0,+∞)×K i ) , σ i L ∞ ([0,T ]×[0,+∞)×K i ) ) 1≤i≤I ), such that E P (x,i) t x(•) 2 (t,s) ≤ C(1 + x 2 ), E P (x,i) t l ν 0 (•) (•) 2 (t,s) ≤ C(1 + x 2 ), E P (x,i) t ω(X(•), θ) 2 ≤ Cθ ln( 2T θ ), E P (x,i) t ω(l ν 0 (•) (•), θ) 2 ≤ Cθ ln( 2T θ ),
where we have defined the following modulus of continuity

ω(X, θ) = sup d J (X(s), X(u)), (u, s) ∈ [t, T ], |u -s| ≤ θ, θ ∈ [0, T ] , ω(l, θ) = sup |l(u) -l(s)|, (u, s) ∈ [t, T ], |u -s| ≤ θ, θ ∈ [0, T ] .
Proof. Let s ≥ t. We define the following map f ∈ C 1,2 (J T ), by f (x, i) = x 2 , if x ∈ J * i . After an argument of localization with stopping times, and using condition (S 0 ) (iii), we get

1 2 x(s) 2 -x 2 ≤ I i=1 s t K i 1 x(u),i(u) ∈J * i b i (u, x(u), k i )x(u) + σ i (u, x(u), k i ) ν i (s)(du, dk i ) + |M f s | ≤ I i=1 . t K i 1 x(u),i(u) ∈J * i b i (u, x(u), k i )x(u) + σ i (u, x(u), k i ) ν i (•)(du, dk i ) (t,s) + |M f . | (t,s) .
From Burkholder-Davis-Gundy inequality, and Proposition 4.3.2 we have

E P (x,i) t |M f . | (t,s) = E P (x,i) t • t I i=1 K i 1 x(u),i(u) ∈J * i 2x(u)σ i (u, x(u), k i ) 2 ν i,u (s)(dk i ) 1 2 dW (u) (t,s) ≤ 4E P (x,i) t s t I i=1 K i 1 x(u),i(u) ∈J * i 2x(u)σ i (u, x(u), k i ) 2 ν i,u (s)(dk i ) du ≤ 16 max i∈{1...I} σ i 2 L ∞ ([0,T ]×[0,+∞)×K i ) E P (x,i) t s t x(•) 2 (t,u)
du .

On the other hand it is easy to see that there exists a constant C, depending only on the data

(T, ( b i L ∞ ([0,T ]×[0,+∞)×K i ) , σ i L ∞ ([0,T ]×[0,+∞)×K i ) ) 1≤i≤I ), such that I i=1 . t K i 1 x(u),i(u) ∈J * i b i (u, x(u), k i )x(u) + σ i (u, x(u), k i ) ν i (•)(du, dk i ) (t,s) ≤ C 1 + s t x(•) 2 (t,u) du .
Therefore there exists a constant C, depending only on the data

(T, ( b i L ∞ ([0,T ]×[0,+∞)×K i ) , σ i L ∞ ([0,T ]×[0,+∞)×K i ) ) 1≤i≤I ),
such that

E P (x,i) t x(•) 2 (t,s) -x 2 ≤ C 1 + s t E P (x,i) t x(•) 2 (t,u)
du .

Applying Gronwall's Lemma to the following measurable function

ρ :=      [t, T ] → R s → E P (x,i) t x(•) 2 (t,s)
, we get that there exists a constant C, depending only on the data

(T, ( b i L ∞ ([0,T ]×[0,+∞)×K i ) , σ i L ∞ ([0,T ]×[0,+∞)×K i ) ) 1≤i≤I ),
such that

E P (x,i) t x(•) 2 (t,s) ≤ C(1 + x 2 ).
On the other hand, using (4.7), it is easy to see that there exists a constant C, depending only on the data

(T, ( b i L ∞ ([0,T ]×[0,+∞)×K i ) , σ i L ∞ ([0,T ]×[0,+∞)×K i ) ) 1≤i≤I ),
such that

E P (x,i) t l ν 0 (•) (•) 2 (t,s) ≤ C(1 + x 2 ).
We turn now to prove the required upper bounds for the modulus of continuity of the process x(s) t≤s≤T , and l ν 0 (s) (s) t≤s≤T . For this end, let ε > 0, we introduce the following sequence of stopping times

θ ε 0 = t ; τ ε 0 = inf t < u ≤ T ; x(u) = 0 ; θ ε 1 = inf τ ε 0 < u ≤ T ; x(u) = ε . . . τ ε n = inf θ ε n < u ≤ T ; x(u) = 0 ; θ ε n+1 = inf τ ε n < u ≤ T ; x(u) = ε ,
and for each u ∈ [t, T ]

θ u := inf θ n ; θ ε n ≥ u , and 
θ u := sup θ n ; θ ε n ≤ u .
Let (u, s) ∈ [t, T ] 2 such that s ≤ u, and us ≤ θ, θ ∈ (0, T ], we have (assuming that the process X(•) has reached the junction point between time [s, u], else inequality (4.8) is still available)

d J (X(u), X(s)) ≤ d J (X(u), X(θ u )) + d J (X(θ u ), X(θ s )) + d J (X(θ s ), X(s)), P (x,i) t a.s.
We get therefore for any ε > 0

ω(X, θ) ≤ 2ω( M , θ) + 2ε, P (x,i) t a.s, (4.8) 
where we have defined the process M (s)

t≤s≤T by ∀s ∈ [t, T ], M (s) = I i=1 s t K i 1 x(u),i(u) ∈J * i b i (u, x(u), k i )ν i (s)(du, dk i ) + s t I i=1 K i 1 x(u),i(u) ∈J * i σ i (u, x(u), k i ) 2 ν i,u (s)(dk i ) 1 2 dW (u), P (x,i) t a.s.
The process M (s)

t≤s≤T satisfies assumptions of Theorem 3.1 of [START_REF] Fischer | On the moments of the modulus of continuity of Itô processes[END_REF], therefore we know that there exists a constant C, depending only on the data

(T, ( b i L ∞ ([0,T ]×[0,+∞)×K i ) , σ i L ∞ ([0,T ]×[0,+∞)×K i ) ) 1≤i≤I ), such that ∀ε > 0, E P (x,i) t ω(X(•), θ) 2 ≤ Cθ ln( 2T θ ) + 2ε,
and then

E P (x,i) t ω(X(•), θ) 2 ≤ Cθ ln( 2T θ ).
We conclude finally using that 

l ν 0 (u) (u) -l ν 0 (s) (s) = x(u) -x(s) -( Mu -Ms ), P ( 
T, M, max i∈{1...I} b i L ∞ ((0,T )×(0,+∞)×K i )) , max i∈{1...I} σ i L ∞ ((0,T )×(0,+∞)×K i )) , x ,
introduced in assumption (H), such that

E P (x,i) t exp(M x(T )) ≤ C. (4.9) 
Proof. We define the following map φ by

φ :=      [0, +∞) → R x → exp(M x) -M x -1 .
Let k ≥ 0, we introduce the following stopping time

θ k := inf{s ∈ [t, T ], x(s) ≥ k}.
Hence, using conditions (S 0 ) (iii) with φ and Proposition 4.3.3, we get

E P (x,i) t exp(M x(T ∧ θ k )) = exp(M x) -M x + E P (x,i) t M x(T ∧ θ k ) + E P (x,i) t I i=1 T ∧θ k t K i 1 x(u),i(u) ∈J * i 1 2 σ 2 i (u, x(u), k i )∂ x,x φ(x(u)) + b i (u, x(u), k i )∂ x φ(x(u)) ν i (s)(du, dk i ) ≤ C 1 + E P (x,i) t T ∧θ k t exp(M x(u))du ,
where C is a constant depending only on

T, M, max i∈{1...I} b i L ∞ ((0,T )×(0,+∞)×K i )) max i∈{1...I} σ i L ∞ ((0,T )×(0,+∞)×K i )) , x .
Hence sending k → +∞, we get using monotone convergence's Theorem and Fubini's Theorem

E P (x,i) t exp(M x(T )) ≤ C 1 + T t E P (x,i) t exp(M x(u)) du .
We conclude finally using Gronwall's Lemma to the following measurable map

ρ :=      [t, T ] → R s → E P (x,i) t exp(M x(s))
.

Proposition 4.3.5. Let P (x,i) t ∈ A t, (x, i) . There exists a constant C > 0, depending only on the data T, max i∈{1..

.I} b i L ∞ ((0,T )×(0,+∞)×K i )) , max i∈{1...I} σ i L ∞ ((0,T )×(0,+∞)×K i )) , c, x , introduced in assumption (H), such that ∀ε > 0, E P (x,i) t T t 1 {x(s)≤ε} ds ≤ Cε. (4.10) 
Proof. Let ε > 0, and

β ε ∈ C([0, +∞), R + ) satisfying ∀x ≥ 2ε, β ε (x) = 0, ∀x ≥ 0, 1 {x≤ε} ≤ β ε (x) ≤ 1. (4.11) 
We define u ε ∈ C 2 ([0, +∞)) as the unique solution of the following ordinary second order differential equation

           ∂ x,x u ε (x) -M ∂ x u ε (x) = 2β ε (x)/c 2 , if x ∈ (0, +∞), ∂ x u ε (0) = 0, u ε (0) = 0. (4.12)
where c is the constant of ellipticty defined in assumption (H)(i), and M is given by

M = max i∈{1...I} b i L ∞ ((0,T )×(0,+∞)×K i )) 1 2 c 2 .
For each i ∈ {1 . . . I}, the solution is given by

u ε (x) = x 0 exp M z z 0 2β ε i (u) c 2 exp(-M u)dudz.
By the assumption on β ε , and assumption (H), we get

∀x ≥ 0, 0 ≤ ∂ x u ε (x) ≤ 4ε/c 2 exp(M x), 0 ≤ u ε (x) ≤ 4ε M c 2 (exp(M x) -1). (4.13) 
Hence applying condition (S 0 ) (iii) (with f = u ε , after an argument of localization with stopping times), we get using (4.11), (4.12) and (4.13)

E P (x,i) t u ε (x(T )) -u ε (x) = E P (x,i) t I i=1 T t K i 1 x(u),i(u) ∈J * i 1 2 σ 2 i (u, x(u), k i )∂ x,x u ε (x(u)) + b i (u, x(u), k i )∂ x u ε (x(u)) ν i (T )(du, dk i ) = E P (x,i) t I i=1 T t K i 1 x(u),i(u) ∈J * i 1 2 σ 2 i (u, x(u), k i ) ∂ x,x u ε (x(u)) + b i (u, x(u), k i ) 1 2 σ 2 i (u, x(u), k i ) ∂ x u ε (x(u)) ν i (T )(du, dk i ) ≥ E P (x,i) t I i=1 T t K i 1 x(u),i(u) ∈J * i 1 2 σ 2 i (u, x(u), k i ) ∂ x,x u ε (x(u)) -M ∂ x u ε (x(u)) ν i (T )(du, dk i ) ≥ E P (x,i) t I i=1 T t K i 1 x(u),i(u) ∈J * i 1 2 c 2 2β ε (x(u))/c 2 ) ν i (T )(du, dk i ) ≥ E P (x,i) t T t β ε (x(u))du ≥ E P (x,i) t T 0 1 {x(u)≤ε} du .
Hence we get using (4.13)

E P (x,i) t T 0 1 {x(s)≤ε} ds ≤ 4ε M c 2 E P (x,i) t exp(M x(T )) -1 .
We conclude using Lemma 4.3.4.

We are able now to prove the main result of this section, namely the compactness of A t, (x, i) .

Theorem 4.3.6. The set of probability measures A t, (x, i) , endowed with the weak topology is non empty, convex and compact. Moreover, the value function v(•, •) attains its minimum. Finally the set of optimal rules is non empty convex and compact.

Proof. We recall that the fact that A t, (x, i) is non empty is a consequence of Remark 4.2.3. Let us show first that A t, (x, i) is precompact for the weak topology.

A 0 ) ′ , L ∞ mc ([0, T ] × A 0 ) . Moreover, using Tchebychev's inequality, we get that

P (x,i) t | V ([0,T ]×A 0 ) ν 0 (s) t≤s≤T / ∈ K ε ≤ E P (x,i) t l ν 0 (•) (•) 2 (t,T ) r 2 ε + E P (x,i) t Y (•)(l ν 0 (•) (•), θ) 2 r 2 ε ≤ ε,
and that proves the precompactness of P

(x,i) t | C J [0,T ] , P (x,i) t ∈ A t, (x, i) . Finally,
knowing that all (V ([0, T ]×K i ) 1≤i≤I are compact, we can show that P

(x,i) t | V ([0,T ]×K i ) , P (x,i) t ∈ A t, (x, i) i∈{1,...I}
are precompact.

We turn now to prove that A t, (x, i) is closed, and for this let P (x,i) t,n converging weakly to P (x,i) t

. We are going to show that P (x,i) t satisfies condition (S 0 ).

Let f p ∈ C b (Φ, R), uniformly bounded in p, converging to 1 (X(u) 0≤u≤t =((x,i),ν 1 (t)...ν I (t),ν 0 (t)) in the pointwise sense, and from above. We have

∀p ≥ 0, E P (x,i) t f p (X(•)) = lim n→+∞ E P (x,i) t,n f p (X(•)) ≥ lim n→+∞ E P (x,i) t,n 1 (X(u) 0≤u≤t =((x,i),ν 1 (t)...ν I (t),ν 0 (t)) = 1 .
Therefore we get

lim p→+∞ E P (x,i) t f p (X(•)) = 1,
and using Lebesgue's Theorem we have

E P (x,i) t 1 (X(u) 0≤u≤t =((x,i),ν 1 (t)...ν I (t),ν 0 (t)) = 1,
which means that (i) of conditions (S 0 ) holds true.

Recall that from Proposition 4.3.1, the following map ρ :

       C J [0, T ] × V ([0, T ] × A 0 ) → R (x(•), i(•) , ν 0 ) → T t A 0 1 {x(u)>0} ν 0 (du, dα 1 . . . dα I )
is lower semi continuous. Consequently, the following set O defined by

O := (x(•), i(•)), ν 0 ∈ C J [0, T ] × V ([0, T ] × A 0 ), T t A 0 1 {x(u)>0} ν 0 (du, dα 1 . . . dα I ) > 0 , is open in C J [0, T ] × V ([0, T ] × A 0 ). We get then P (x,i) t O ≤ lim inf n→+∞ P (x,i) t,n O = 0,
which means that (ii) of condition (S 0 ) holds true. Now let us show that (iii) of condition (S 0 ) holds true. For this let q ∈ C b (Φ, R), Ψ s measurable, and f ∈ C 1,2 b (J T ), we have using Lemma 4.3.5

E P (x,i) t,n T t 1 {x(s)=0} ds = E P (x,i) t T t 1 {x(s)=0} ds = 0. Hence 0 = E P (x,i) t,n q(M f t -M f s ) n→+∞ ----→ E P (x,i) t q(M f t -M f s ) ,
which means that the process

M f s -M f t = f (s, X(s)) -f (t, X(t)) - I i=1 s t K i 1 x(u),i(u) ∈J * i ∂ t f i (u, x(u)) + 1 2 σ 2 i (u, x(u), k i )∂ x,x f i (u, x(u)) + b i (u, x(u), k i )∂ x f i (u, x(u)) ν i (s)(du, dk i ) - I i=1 s t A 0 α i ∂ x f i (u, 0)ν 0 (s)(du, dα 1 . . . dα I ) t≤s≤T ,
is a (Ψ s ) t≤s≤T continuous martingale under the probability measure P (x,i) t

, after time t, and that finally proves that A t, (x, i) is closed for the weak topology.

We end the proof by showing that the value function v(•, •) attains its minimum, and the set of optimal rules is convex and compact. Using Proposition 4.3.1, it is easy to check that the reward function Λ Λ :

                   A t, (x, i) → R P (x,i) t → E P (x,i) t I i=1 T t K i 1 u,x(u),i(u) ∈J * i h i (u, x(u), k i )ν i (T )(du, dk i ) + I i=1 T t A 0 h 0 (u, α 1 . . . α I )ν 0 (T )(du, dα 1 . . . dα I ) + g(X T ) ,
is lower semi continuous for the weak topology. Therefore the value function v(•, •) attains its minimum on the compact set A t, (x, i) . Finally, the fact that the set of optimal rules is convex and compact, is a consequence of the compactness of A t, (x, i) , the lower semi continuity of Λ, and the linearity of

P (x,i) t → Λ(P (x,i) t
).

Proposition 4.3.7. The following map

     [0, T ] × J → P(Φ, (Φ)) (t, (x, i)) → A t, (x, i) (4.14) 
(where P(Φ, (Φ)) is the set of probability measures definded on Φ), is upper semi continuous.

Proof. We endow P(Φ, (Φ)) with the Haussdorf metric defined over all its compact sets.

Since we have shown that A t, (x, i) is compact for the weak topology, we follow then the same arguments of the proof of Proposition 5.10 in [START_REF] Karoui | Compactification methods in the control of degenerate diffusions : existence of an optimal control[END_REF].

Therefore as a consequence of the Proposition 4.3.7, Proposition 4.3.1 and Theorem 5.11 in [START_REF] Karoui | Compactification methods in the control of degenerate diffusions : existence of an optimal control[END_REF], the value function defined in (4.6) by .

v :=      [0, T ] × J → R (t, (x, i)) → v i (t,
We define the following map Assume then first that f ∈ C 1,2 0 (J T ): the class of continuous functions defined on [0, T ]×J , having a regularity of class C 1,2 ([0, T ] × [0, +∞)) on each edge, and vanishing at each edge at +∞. We get then that C 1,2 0 (J T ) is separable with the following norm • C 1,2 0 (J T ) , defined by Hence, let f n a sequence of C 1,2 0 (J T ), dense in C 1,2 0 (J T ), we set

K :=      Φ → B(Φ), Z ( 
N = n≥0 N (f n ).
Thereafter, using that following functional a.s.

κ :=                          C 1,2 0 (J T ) → R f → f (s, X ( 
To conclude, let n ≥ 0, f ∈ C 1,2 b (J T ), and f n ∈ C 1,2 0 (J T ) a sequence converging in the pointwise sens to f , and equal to f on each edge J i ∩ [0, n].

Let then θ a Ψ τ stopping time, using Proposition 4.3.3, Tchebychev's inequality and assumption (H), it is easy to get that there exists a constant C > 0 independent of n such that We define then the following concatenated Borel probability measure P Let us show now that P (x,i) t ∈ A t, (x, i) , and that conditions (S 0 ) holds true.

E P (xτ ,
We have

P (x,i) t Y ⊕ τ (Z(•)) Ỹ (•) ∈ Φ ∩ K(Z(•)), ∀s ≤ t, X s, Y ⊕ τ (Z(•)) Ỹ (•) = X t, Y ⊕ τ (Z(•)) Ỹ (•) = Q (x,i) t Y (•) ∈ Φ, ∀s ≤ t, X s, Y (•) = X t, Y (•) = 1,
which means that (i) of (S 0 ) holds true.

On the other hand, we get which means that (ii) of conditions (S 0 ) is true. We finish with the martingale conditions (iii) of (S 0 ). For this, we use once again as in the proof of Proposition 4.4.3, the reverse of Theorem 1.2.10 of [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF], Lemma 4.3.5, and the argument of separability of C 1,2 0 (J T ). We can conclude that (iii) conditions of (S 0 ) holds true and that completes the proof. Now we have the necessary tools in order prove the main result of this Section, namely the dynamic programming principle. ∈ A t, (x, i) . Taking the infimum over all the P (x,i) t ∈ A t, (x, i) , we conclude for the reverse inequality, and that completes the proof.

E P (x,i) t T t 1 {x(u,Y ⊕ τ (Z(•)) Ỹ (•))>0} l ν 0 ⊕ τ (Z(•)) ν0 (u) (T )(du) = E Q (x,i)
-L ∞ (E ×F ) is the set of measurable bounded real functions defined on E ×F, E ⊗B(F ) .

-M(E) the set consisting of non negative finite measures on (E, E).

-M(F ) the set consisting of non negative finite measures on (F, B(F )).

-M(E × F ) the set consisting of non negative finite measures on E × F, E ⊗ B(F ) .

We set furthermore 

L ∞ mc (E × F ) := f ∈ L ∞ (E × F ), x → f (s, x) ∈ C(F ), ∀s ∈ E , L ∞,1 mc (E × F ) := f ∈ L ∞ mc (E × F ), ∃A ∈ E, g ∈ C u (F ), f (x, z) = 1 A (x)g(z). , L ∞,2 mc (E × F )) := f ∈ L ∞ mc (E × F ), ∃(A n ) a partition of E,
θ f :      M(F ) → R ν → ν(f ) = E f dν , (θ f ) f ∈L ∞ mc (E×F ) , θ f :      M(E × F ) → R ν → ν(f ) = E×F f dν .)
We identify M mc (E × F ) (resp. M m (E), M c (F )), as subsets of the dual spaces L ∞ mc (E × F ) ′ (resp. L ∞ m (E) ′ , C(F ) ′ ), endowed with the weak topologies * σ

L ∞ mc (E × F ) ′ , L ∞ mc (E × F ) (resp. * σ L ∞ m (E) ′ , L ∞ m (E) , * σ C(F ) ′ , C(F ) ).
We recall that a sequence ν n of L ∞ mc (E × F ) For any ν ∈ M(E × F ), we denote by ν E (resp. ν F ), the marginal of ν on E (resp. on (See for instance Proposition 2.10 in [START_REF] Jacod | Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité[END_REF].)

′ (resp. L ∞ m (E) ′ , C(F ) ′ ), converges to ν ∈ L ∞ mc (E × F ) ′ , (
Theorem C.0.5. Let φ be a positive linear form defined on the vectorial space generated by L ∞,1 mc (E × F ) satisfying (i)

     E → R A → φ(1 A ⊗ 1)
is a measure on (E, E), where we define for each (x, z) ∈ E × F , 1 A ⊗ 1(x, z) = 1, if

x ∈ A and 1 A ⊗ 1(x, z) = 0, if x / ∈ A.

(ii) for each ε > 0, there exist a compact set K ε of F such that φ(1)φ(1 ⊗ f ) ≤ ε, for any f ∈ C u (F ), satisfying 1 Kε ≤ f ≤ 1, where we define for each (x, z) ∈ E × F , 1(x, z) = 1, and 1 ⊗ f (x, z) = f (z).

Then there exists ν ∈ M mc (E × F ) such that ∀f ∈ L ∞,1 mc (E × F ), φ(f ) = E×F f dν.

  t, u, p) = inf α=(α 1 ,...α I )∈A 0 I i=1 α i p + h 0 (t, α 1 . . . α I )

Theorem 2 . 4 . 5 .

 245 Assume (P ∞ ). The following parabolic problem with Neumann boundary condition at the vertex

8 )

 8 for all θ ∈ [0, T ]. Proposition 3.3.1. There exists a constant C independent of δ, depending only on T, max i∈{1...I}

0≤t≤T .Proposition 3 . 3 . 5 .

 0≤t≤T335 The process Y δ (t) = (y δ (t), j δ (t)) 0≤t≤T converges uniformly to

From Theorem 3 . 3 . 2 ,Lemma 3 . 3 . 6 .

 332336 µ a.s. Y is continuous and hence uniformly continuous on [0, T ]. Fix M > 0. There exists a constant C > 0, independent of δ, depending only on the data T, M, max i∈{1...I} |b i | (0,+∞) , max i∈{1...I} |σ i | (0,+∞) , y(0) , introduced in assumption (H), such that

  i∈{1...I} |b i | (0,+∞) , max i∈{1...I} |σ i | (0,+∞) , y(0) , since from: (3.11) |y δ (0)y(0)| → 0.

1 0 1Proposition 3 . 3 . 8 .

 0338 {y δ (s)≤ε} ds = 0. Therefore µ T {y(s)=0} ds = 0 = 1, that completes the proof. The following map

1 0 1 0 1

 00 {y k (u)>0} dl k (u) ≥ T 0 φ p (y(u))dl(u), and hence using Lebesgue's Theorem lim inf k→+∞ T {y k (u)>0} dl k (u) ≥ lim sup p→+∞ T 0 φ p (y(u))dl(u) = T {y(u)>0} dl(u).

1 0 1

 0 {y(s)≤γ} ds = E µ T {y(s)=0} ds = 0, and with the same arguments lim γ→0 E µ (3.37) = 0. For (3.34), we get that there exists a constant C(γ) independent of δ, n, depending only on γ such that

≤

  lim γ→0 lim sup n→+∞ lim sup δ→0 E µ ((3.32) + (3.33) + (3.34) + (3.35) + (3.36) + (3.37)) = 0.

0≤t≤T and t 0 b1 0 1

 00 j(s) (y(s))ds+ t 0 σ j(s) (y(s))dB(s) 0≤t≤T , implies that δ( 0≤s≤t 1 {y δ (s-)=0} ) 0≤t≤T tends almost surely uniformly to a continuous process l(t) when the process Y (t) = (y(t), j(t)) 0≤t≤T reaches the junction point 0. The fact that l(0) = 0, µ almost surely is obvious. Since the paths of y δ (•) and δN δ (•) converge uniformly to the continuous processes y(•) and l(•), {y δ (s)>0} dδN δ (s) ≥ T {y(s)>0} dl(s), µ a.s.

. 3 . 4

 34 0≤t≤T satisfies the differential stochastic equation (3.30), with the required conditions on l(t) 0≤t≤T Itô's formula and local time estimate at the junction 3.4.1 Itô's formula. The stochastic differential equation (3.30) satisfied by the process y(t) 0≤t≤T , does not completely characterize the process, since the randomness due to j(t) 0≤t≤T is hidden in the process l(t)

  0≤t≤T

∂

  y φ ε,η (y(s))b j(s) (y(s))ds -•∧γa 0 ∂ y φ ε (y(s))b j(s) (y(s))ds (0,T ) = 0, µ a.s.Finally, as the stochastic differential equation (3.30) has continuous and bounded coefficients, the process y(t) 0≤t≤T has a continuous density on (0, +∞) (see Proposition 1.1.2 and Theorem 1.8.3 of[START_REF] Krylov | Controlled Diffusion Processes (Stochastic Modelling and Applied Probability[END_REF] 

2 j

 2 (y(s))σ 2 j (0) 1 {0≤y(s)≤ε,j(s)=j} ds , µ a.s.

4. 2 . 1

 21 The set of generalized actionsIn this sub section we define the set of generalized actions at the junction point, and we give a criterion of compactness Theorem 4.2.1. Let us introduce L[0, T ] := l : [0, T ] → R, continuous nondecreasing such that : l

  control at the junction point: namely for (a 1 . . . a I ) ∈ A 0 ∀s ∈ [0, T ], ∀ν 0 ∈ V ([0, T ] × A 0 ), ν 0 (s)(dt, dα 1 . . . dα I ) = 1 [0,s] (t)δ (a 1 ...a I ) (α 1 . . . α I ), then A 0 δ (a 1 ...a I ) (α 1 . . . α I ) = 1, and

Proposition 4 . 3 . 1 .

 431 Define the following maps ρ :

ν n 0

 0 (dt, dα 1 . . . dα I ) in C J [0, T ]×V ([0, T ]×A 0 ) converging to (x(•), i(•)), ν 0 (dt, dα 1 . . . dα I ) . Let p ≥ 0 and φ p ∈ C([0, +∞)) a sequence converging from below to x → 1 {x>0} in the pointwise sense, as p → +∞. Since ν n (dt, dα 1 . . . dα I ) * ⇀ ν(dt, dα 1 . . . dα I ), we can findθ ∈ M mc ([0, T ] × A 0 ), such that ∀f ∈ L ∞ mc ([0, T ] × A 0 ), ∀n ≥ 0,[0,T ]×A 0 |f (u, α 1 . . . α I )|ν n (dx, dα 1 . . . dα I ) ≤ [0,T ]×A 0 |f (u, α 1 . . . α I )|θ(dx, dα 1 . . . dα I ).

1 Tτ 1 x 2 iα

 112 •) → K Z(•) := Y (•) ∈ Φ, X(s, Y (•)) = X(τ (Z(•)), Y (•)), ∀s ∈ [t, τ (Z(•))] .On the other hand we set ∀B ∈ B(Φ), P (xτ ,iτ ) to prove that P(xτ ,iτ ) τ ∈ A τ, (x τ , i τ ) , P (x,i) t a.s.From the definition of K(•), it is easy to get that (i) of condition (S 0 ) holds true. On the other hand writingE P (x,i) t (Z(•)) 1 {x(u)>0} l ν 0 (s) (du) = 0 = E P (x,i) t E P (xτ ,iτ ) u,Y (•)))>0} l ν 0 (T,Y (•)) (du) ) of condition (S 0 ) holds true. Finally, let f ∈ C 1,2b (J T ). Using Theorem 1.2.10 of[START_REF] Stroock | Multidimensional Diffusion Processes[END_REF], we getM f s := f (s, X(s))f (τ, X(τ )) -(u),i(u) ∈J * i ∂ t f i (u, x(u)) (u, x(u), k i )∂ x,x f i (u, x(u)) + b i (u, x(u), k i )∂ x f i (u, x(u)) ν i (s)(du, dk i ) i ∂ x f i (u, 0)ν 0 (s)(du, dα 1 . . . dα I ) τ ≤s≤T , is a (Ψ s ) τ ≤s≤T continuous martingale under the probability measure P (xτ ,iτ ) τ , after the stopping time τ , P (x,i) t a.s, but on a negligible set depending on f , that we denote by N (f ).

  ∀f ∈ C 1,2 0 (J T ), f C 1,2 0 (J T ) = 1≤i≤I f i C 1,2 ([0,T ]×[0,+∞)) ,with :f i C 1,2 (J T ) = sup (t,x)∈[0,T ]×[0,+∞) |f i (t, x)| + sup (t,x)∈[0,T ]×[0,+∞) |∂ t f i (t, x)| + sup (t,x)∈[0,T ]×[0,+∞) |∂ x f i (t, x)| + sup (t,x)∈[0,T ]×[0,+∞) |∂ x,x f i (t, x)|.

1 x 2 iα 5 E

 125 (u),i(u) ∈J i ∂ t f i (u, x(u)) (u, x(u), k i )∂ x,x f i (u, x(u)) + b i (u, x(u), k i )∂ x f i (u, x(u)) ν i (s)(du, dk i ) i ∂ x f i (u, 0)ν 0 (s)(du, dα 1 . . . dα I ) τ ≤s≤T , is continuous for any x(•), i(•) , ν 1 . . . ν I , ν 0 ∈ C J [0, T ] × I i=1 U ([0, T ] × K i ) × V ([0, T ] × A 0 ),it is easy to check using Lebesgue's Theorem that (M f s ) τ ≤s≤T is a (Ψ s ) τ ≤s≤T continuous martingale under the probability measure P (xτ ,iτ ) τ , after the stopping time τ , P (x,i) t a.s, on the negligible set N , using once again that from Lemma 4.3.P(xτ ,iτ ) 

2 .

 2 ) → N Z(•) := Y (•) ∈ Φ, X τ (Z(•)), Y (•) = X τ (Z(•)), Z(•).Consider now Y (•) = y(•), j(•) , ν 1 . . . ν I , ν 0 , Ỹ (•) = ỹ(•), j(•) , ν1 . . . νI , ν0 ∈ K Z(•) We define the following concatenated Y ⊕ τ Ỹ (•) variable of Φ, whose projection on C J ([0, T ]) is given by Y ⊕ τ Ỹ (•)| C J ([0,T ]) := y(•), j(•) ⊕ τ ỹ(.), j(.) ), j(s) , if s ≤ τ (Z(•)) ỹ(s), j(s) , if τ (Z(•)) ≤ s ≤ T .On the other, for each i ∈ {1 . . . I}, the projections ofY ⊕ τ Ỹ (•) on each V ([0, T ] × K i )are given byY ⊕ τ Ỹ (•)| V ([0,T ]×K i ) := ν i ⊕ τ νi = 1 {•≤τ (Z(•))} (•)ν i (ds, dk i ) + 1 {•≥τ (Z(•)} (•) νi (ds, dk i ).Finally, the projection ofY ⊕ τ Ỹ (•) on V ([0, T ] × A 0 ) is given by Y ⊕ τ Ỹ (•)| V ([0,T ]×A 0 ) := ν 0 ⊕ τ ν0 = 1 {•≤τ (Z(•))} l ν 0 (•) (ds)ν 0,• (dα 1 . . . dα I ) + 1 {•≥τ (Z(•))} lν 0 (•) (ds)ν 0,• (dα 1 . . . dα I ).where we have defined for each s ≥ τ (Z(•)) lν 0 (s) (s) = lν 0 (s) (s)1 {s≥τ (Z(•))} + l ν 0 (s) (τ (Z(•)) -lν 0 (s) (s)(τ (Z(•))) 1 {s≤τ (Z(•))} .

1 B

 1 ((Y ⊕ τ Ỹ )(•))dQ (x τ (Z(•)) ,i τ (Z(•)) ) τ (Z(•)) 1 {K(Z(•))} dQ (x,i) t dQ (x,i) t

1 1 1

 11 {x(u,Y (•))>0} l ν 0 (u) (τ (Z(•)))(du) + E Q (x,i) {x(u, Ỹ (•))>0} l ν0 (u) (T )(du) {x(u)>0} l ν 0 ⊕τ ν0 (u)(T )(du) = 0, P (x,i) t a.s,(4.16)

tion 4 . 4 . 1 , 1 yh 0 1 xh 0

 4411010 with G = P(Φ, B(Φ)), H = (Φ, B(Φ)), Z(•) → K Z(•) = A τ (Z(•)), (x τ (Z(•)) , i τ (Z(•)) ) , B(Φ)) × (Φ, B(Φ)) → R P, Y (•) → E (u),j(u) ∈J * i h i (u, y(u), k i )ν i (T )(du, dk i )+ (u, α 1 . . . α I )ν 0 (T )(du, dα 1 . . . dα I ) + g(X T ), From Proposition 4.3.1, we know that w is lower semi continuous. On the other hand, we know from Theorem 4.3.6, that for eachZ(•) ∈ Φ, K Z(•) = A τ (Z(•)), (x τ (Z(•)) , i τ (Z(•)) )is compact for the weak topology. We get thenE P (x,i) t v iτ (τ, x τ ) = inf E P (x,i) t E P (xτ ,iτ ) (u),i(u) ∈J * i h i (u, x(u), k i )ν i (T )(du, dk i ) + (u, α 1 . . . α I )ν 0 (T )(du, dα 1 . . . dα I ) + g(X T ) , Z(•) → P x(τ (Z(•))),i(τ (Z(•))) τ (Z(•))measurable, Px(τ (Z(•))),i(τ (Z(•))) τ (Z(•))∈ A τ (Z(•)), (x(τ (Z(•))), i(τ (Z(•))

  and a sequence(g n ) of ∈ C u (F ), f (x, z) = n 1 An (x)g n (z). . On the other hand M(E) (resp. M(F ), M(E×F )) are denoted by M m (E), (resp.M c (F ),M mc (E × F )) when they are endowed with the finest topology making continuous the following family of linear forms (θ f ) f ∈L ∞ (E) , defined byθ f : (θ f ) f ∈C(F )

  resp. L ∞ m (E) ′ , C(F ) ′ )for the weak topology * , and we denoteν n * ⇀ ν, if and only if ∀f ∈ L ∞ mc (E × F ), ν n (f ) n→+∞ ----→ ν(f ), resp. ∀f ∈ L ∞ m (E), ν n (f ) n→+∞ ----→ ν(f ), ∀f ∈ C(F ), ν n (f ) n→+∞ ----→ ν(f ) .

F

  ), defined byν E (dx) = z∈F ν(dz), ν F (dz) = x∈E ν(dx).Proposition C.0.3. Suppose that E is countably generated, then M mc (E × F ) is metrizable. (See for instance Proposition 2.10 in[START_REF] Jacod | Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité[END_REF].)Theorem C.0.4. Let N be a subset of M mc (E × F ). Then N is relatively compact if and only if (i) ν F , ν ∈ N is relatively compact in M m (E), (ii) ν E , ν ∈ N is relatively compact in M c (F ).

  3.1. The next step consists in obtaining uniform estimates of (u k ) 0≤k≤n . We start first by getting uniform bounds for n|u ku k-1 | (0,a i ) using the comparison Theorem 2.3.3.

	Lemma 2.4.1. Assume (P). There exists a constant C > 0, independent of n, depending
	only the data C = C max i∈{1...I}	sup x∈(0,a i

  ν 1 (s) . . . ν I (s), ν 0 (s) , where for each i ∈ {0, . . . I}, ν i (s)(dt, dα 1 . . . dα I ) = 1 [0,s] (t)ν i (dt, dα 1 . . . dα I ). ) 0≤t≤T the right continuous filtration generated by this process. Let t, (x, i) ∈ [0, T ] × J , we define the set of admissible rules A t, (x, i) , as the set of all the probability measures P

	-(i) For each u ≤ t, X(u) =	(x, i), ν 1 (t) . . . ν I (t), ν 0 (t) , P	(x,i) t	a.s.
	-(ii) For each s ≥ t,				
	s	1 {x(u)>0} ν 0 (s)(du, dα 1 . . . dα I ) =	s	1 {x(u)>0} l ν 0 (s) (du) = 0, P	(x,i) t	a.s.
	t	A 0			t	
	It is easy to check that the process X(s)	0≤s≤T	has continuous paths. We denote in the
	sequel by (Ψ t (x,i) t	defined on the filtered probability space Φ, (Ψ t ) 0≤t≤T
	satisfying				
				Conditions (S 0 )

  (du, dα 1 . . . dα I ) ≤ (du, dα 1 . . . dα I ) ≤ (du, dα 1 . . . dα I ) . (du, dα 1 . . . dα I ). (du, dα 1 . . . dα I ).

	and hence					
					T			T
	lim inf n→+∞		t	A 0	1 {x n (u)>0} ν n 0 (du, dα 1 . . . dα I ) ≥ lim sup p→+∞	t	A 0	φ p (x(u))ν 0 (du, dα 1 . . . dα I )
								T
								=	1 {x(u)>0} ν 0
								t	A 0
		T						T
	t		A 0	φ p (x n (u))ν n 0 (du, dα 1 . . . dα I ) -φ p (x(u))ν 0 T t A 0
						t		A 0	φ p (x n (u)) -φ p (x(u)) ν n 0 (du, dα 1 . . . dα I )
		T					T
	+	t	A 0	φ p (x(u))ν n 0 (du, dα 1 . . . dα I ) -φ p (x(u))ν 0 T t A 0
								φ p (x n (u)) -φ p (x(u)) θ(du, dα 1 . . . dα I )
						t		A 0
			T					T
	+ φ p (x(u))ν 0 Therefore we get that t A 0 φ p (x(u))ν n 0 (du, dα 1 . . . dα I ) -t A 0
					T			T
	∀p ≥ 0, lim n→+∞ φ p (x(u))ν 0 Finally writing t A 0 φ p (x n (u))ν n 0 (du, dα 1 . . . dα I ) = t A 0
	T							T
	t	A 0	1 {x n (u)>0} ν n 0 (du, dα 1 . . . dα I ) ≥	t	A 0	φ p (x n (u))ν n 0 (du, dα 1 . . . dα I ),
	we get						
					T			T
	∀p ≥ 0, lim inf n→+∞	t	A 0	1 {x n (u)>0} ν n 0 (du, dα 1 . . . dα I ) ≥	t	A 0	φ p (x(u))ν 0 (du, dα 1 . . . dα I ),

  Proposition 4.4.3. A t, (x, i) is stable under conditioning. More precisely, let P (x, i) , and τ a (Ψ s ) s≥t stopping time, then there exists a r.c.p.d (regular condi-(x, i) . Since the canonical space Φ is Polish, we know from Theorem 1.3.4 of[START_REF] Stroock | Multidimensional Diffusion Processes[END_REF], that there exist a r.c.p.d of P
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i h i i h i (u, x(u), k i )ν i (T )(du, dk i ) + (xτ ,iτ ) * τ

n ) (x( jt 2 n )) .
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Appendix B

The Elliptic problem Proposition B.0.1. Let θ ∈ R and assume assumption (E). Suppose that u ∈ C 2 ([0, a i ])

is the solution of

then the following map

Proof. Let θ n a sequence converging to θ. Using the Schauder estimates Theorem 6.6 of [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], we get that there exists a constant M > 0 independent of n, depending only the data, such that for all α ∈ (0, 1)

From Ascoli's Theorem, u θn converges up to a subsequence to v in C 2 ([0, a i ]) solution of (B.1). By uniqueness of the solution of (B.1), u θn converges necessary to the solution u θ of (B.1) in C 2 ([0, a i ]), that completes the proof.

which is the space where the process l(.) introduced in (4.1) takes its value. We define furthermore the following compact set A 0 of R I by

which is the set where the controls α i at the junction point appearing in the Ito's formula Theorem (3.4.1) are valued.

In the sequel, we use the notations introduced in Appendix C, and for the convenience of the reader we recall that

and

, endowed with the finest topology making continuous the following family of linear forms

The set of generalized actions at the junction point, denoted V ([0, T ] × A 0 ) is defined by

where

As a consequence of the disintegration Theorem of a measure, (see for instance [START_REF] Kallenberg | Invariant measures and disintegrations with applications to Palm and related kernels[END_REF]), we will use the following notation for ν ∈ V ([0, T ] × A 0 ):

where ν . is a measurable kernel of mass 1 on (A 0 , B(A 0 )). As explained in the general Introduction 4.1, we establish here a criterion of compactness for V ([0, T ] × A 0 ), that will be useful in the proof of the compactness of the admissible rules in Section 4.3.

Theorem 4.2.1. Let V be a subset of V ([0, T ] × A 0 ). Assume that there exists a constant C > 0, and a modulus of continuity w ∈ C(R + , R), with w(0) = 0, such that

Proof. Since the σ Borel algebra B([0, T ]) of [0, T ] is countably generated, we get from Proposition C.0.3, that M mc ([0, T ] × A 0 ) is metrizable, therefore V is metrizable and the compactness can be proved sequentially.

Let ν n be a sequence of V, we know that there exists a sequence l νn of L[0, T ], such that

Using the assumptions satisfied by the sequence l νn , applying Ascoli's Theorem, we get that l νn converges uniformly up to a sub sequence to l ∈ C[0, T ], and since

, and for this we are going to apply Theorem C.0.4.

We now show that ν [0,T ] n and (resp.

, where we recall that

and M m ([0, T ]), (resp.M c (A 0 )), are the set of finite positive finite measures on [0, T ] (resp. A 0 ), endowed with the finest topology making continuous the following family of linear forms

Ascoli's Theorem, we get that the sequence l n satisfies

We conclude then using Theorem 4.2.1, that

, and that completes the proof.

Weak martingale formulation of the problem of control

In this sub section we define the martingale problem. We use a classical relaxation on each edge. Let then

As it has been done in the proof of Proposition 4.2.1, we can show that for each i ∈

To formulate the martingale problem, we introduce in the sequel the following data,

, satisfying the following assumptions

Assumption (H)

It is enough to show that all the following projections 

such that

and let us set

Using Proposition 4.2.1, we know that K ε is compact for the weak topology * σ L ∞ mc ([0, T ]×

Dynamic Programming Principle

The following section is dedicated to the proof of the dynamic programming principle.

Both stability of the set A t, (x, i) by conditioning and concatenation are proved.

We recall first a lemma of measurable selection, that will be useful in the sequel, (see for instance Corollary 5.4 in [START_REF] Karoui | Compactification methods in the control of degenerate diffusions : existence of an optimal control[END_REF]). 

-for each probability measure P on H

Proof. Recall that

and the space where is defined our canonical process X(•)

We can use then the same arguments of the proof of Lemma 1.3.3 in [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF], to get the result.

We start first by showing the stability of the set A t, (x, i) by conditioning.

Appendix C

Some analysis tools

We recall here some definitions and functional analysis tools. Let

(X, T ) be a topological space and Σ a σ algebra on X, (E, E) be a measurable space, (F, d) be a Polish space, endowed with its metric d, and B(F ) its Borel algebra.

Definition C.0.1. (E, E) is said to be countably generated, if there exists a countable base generating E. Namely there exists a sequence

Since F is Polish, the measurable space (F, B(F )) is countably generated, (see for instance Proposition 3.1 in [START_REF] Preston | Some Notes on Standard Borel and Related Spaces[END_REF]).

Definition C.0.2. Let P be a measure on (X, Σ). We say that P is regular if for any measurable subset B ∈ Σ

We recall that any Borel probability measure, or in other terms any probability measure on a metric space endowed with its σ-Borel algebra, is regular. (see for instance Proposition 2.3 in [START_REF] Preston | Some Notes on Standard Borel and Related Spaces[END_REF]).

We denote by :

-L ∞ (E) the set consisting of all measurable real bounded maps on (E, E).

-C(F ), (resp. C u (F )), are the set of continuous (resp. uniformly continuous) bounded functions on F .

(See for instance Theorem 2.6 in [START_REF] Jacod | Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité[END_REF]).

Lemma C.0.6. Let K be a compact set of F , and f ∈ L ∞ mc (E × F ). Then there exist a sequence f n of L ∞,2 mc (E × F ) converging to f uniformly on E × K. (See for instance Lemma 2.5 in [START_REF] Jacod | Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité[END_REF]). 

Abstract

This thesis consists of three parts which deal with quasi linear parabolic PDE on a junction, stochastic diffusion on a junction and stochastic control on a junction with control at the junction point. We begin in the first Chapter by introducing and studying a new class of non degenerate quasi linear parabolic PDE on a junction, satisfying a Neumann (or Kirchoff) non linear and non dynamical condition at the junction point. We prove the existence and the uniqueness of a classical solution. The main motivation of studying this new mathematical object is the analysis of stochastic control problems with control at the junction point, and the characterization of the value function of the problem in terms of Hamilton Jacobi Bellman equations. For this end, in the second Chapter we give a proof of the existence of a diffusion on a junction. The process is characterized by its local time at the junction point, whose quadratic approximation is centrally related to the ellipticty assumption of the second order terms around the junction point. We then provide an It 's formula for this process. Thanks to the previous results, in the last Chapter we study a problem of stochastic control on a junction, with control at the junction point. The set of controls is the set of the probability measures (admissible rules) satisfying a martingale problem. We prove the compactness of the admissible rules and the dynamic programming principle.