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Chapitre 1

Introduction

Cette thèse s’intéresse à des problèmes de gestion de portefeuille avec incertitude et à
leurs applications en finance et en assurance. Le modèle le plus célèbre est celui proposé
en 1951 par Markowitz [54]. Il est encore très utilisé de nos jours. Sa force réside dans sa
simplicité : il n’a que deux périodes. Il offre une solution optimale explicite et le modèle ne
dépend que du vecteur de moyennes et de la matrice de variance-covariance des rendements.
Il suffit de calibrer le modèle et de choisir un niveau de risque, complètement caractérisé par
la variance, et on obtient le portefeuille à acquérir en période initiale afin d’avoir le meilleur
rendement moyen en période terminale sous la contrainte de risque choisie.

Toutefois, ce modèle très simple repose sur des hypothèses très fortes. L’une d’entre elles
est la liquidité parfaite des actifs. Acquérir ou liquider une position importante ne peut pas
se faire de façon immédiate sans payer un coût élevé, voir par exemple [35]. De plus, en
fonction de l’aversion au risque ou des conditions de marché par exemple, l’agent peut avoir
intérêt à rebalancer son portefeuille avant la date terminale. Ainsi, le cadre mathématique
naturel pour une gestion de portefeuille avancée est celui des modèles mathématiques en
temps continu.

Lorsque les actifs sont supposés être des semi-martingales d’Itô, l’agent observe d ∈ N∗

actifs sur [0, T ], notés (Su)0≤u≤T . Ils sont supposés être solution forte d’une équation diffé-
rentielle stochastique brownienne. Si (Wu)0≤u≤T est un mouvement brownien de dimension
d, on suppose que :

St,s := s+
∫ ·

t
µS(u, St,s

u )du+
∫ ·

t
σS(u, St,s

u )dWu. (1.0.1)

Une stratégie à un instant 0 ≤ u ≤ T consiste à posséder le vecteur d’actif αu ∈ A où A
est un sous-ensemble de Rd. Dans ce cas, la valeur du portefeuille évolue en fonction de la
variation des actifs possédés à chaque instant :

V t,v := v +
∫ ·

t
αudS

t,s
u = v +

∫ ·

t
αuµS(u, St,s

u )du+
∫ ·

t
αuσS(u, St,s

u )dWu,

où (αu)0≤u≤T est un processus progressivement mesurable à valeurs dans A. L’objectif est
de trouver la stratégie (αu)0≤u≤T qui maximise l’espérance de V t,v

T à travers une fonction
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d’utilité.
Ce problème est un cas particulier du problème de contrôle stochastique suivant :

v(t, x) := sup
α∈At,x

E
[
g(X t,x,α

T )
]
, (t, x) ∈ [0, T ] × Rd (1.0.2)

avec g : Rd 7→ R une fonction à croissance au plus polynomiale dont la régularité sera donnée
par le contexte, et X est défini par l’équation différentielle stochastique :

X t,x,α := x+
∫ ·

t
µ(s,X t,x,α

s , αs)ds+
∫ ·

t
σ(s,X t,x,α

s , αs)dWs (1.0.3)

où α est fixé dans At,x qui est l’ensemble des contrôles admissibles.
Dans un cas un peu plus général 1, l’agent peut avoir à payer un coût instantanné lié au

choix de son contrôle (par exemple, un coût de liquidité). Si f : [0, T ] × Rd × A 7→ R est
une fonction continue qui décrit le gain (si f est positive) ou un coût (si f est négative), le
problème de contrôle stochastique devient :

v(t, x) := sup
α∈At,x

E
[∫ T

t
f(s,X t,x,α

s , αs)ds+ g(X t,x,α
T )

]
, (t, x) ∈ [0, T ] × Rd. (1.0.4)

Dans ce genre de problème, l’objectif premier est de trouver un contrôle optimal (ou
presque optimal) α : [0, T ] × Ω 7→ A, il s’agit de l’approche standard. Ici, par définition de α
et de X t,x,α, l’agent agit en temps continu et le processus X est continu. Cette approche ne
contient pas, par exemple, les modèles avec coût de transaction non proportionnel qui font
sauter la composante d’argent liquide de l’agent. Et dans ce cas, par construction, il ne pourra
agir qu’un nombre fini de fois : il supporterait un coût infini, sinon. Le contrôle devient une
suite φ := (τi, αi)i≥1 où, pour tout i ≥ 1, τi est un temps d’arrêt et αi est Fτi

-mesurable et à
valeurs dans un ensemble A. Le processus X peut s’écrire par exemple :

dX t,x,φ
s := µ(s,X t,x,φ

s )ds+ σ(s,X t,x,φ
s )dWs sur N 0

φ

X t,x,φ
τi

:= F (τi, X
t,x,φ
τi− , αi) i ≥ 1

(1.0.5)

où N 0
φ := ⋃

i≥0[τi, τi+1[∩[0, T ] avec τ0 := 0.

Dans ce cas, le problème de contrôle optimal est :

v(t, x) := sup
φ∈Φt,x

E
[
g(X t,x,φ

T )
]
, (t, x) ∈ [0, T ] × Rd, (1.0.6)

avec Φt,x l’ensemble des contrôles admissibles.

Le Chapitre 2 repose sur deux articles écrits en collaboration avec Bruno Bouchard et
Ngoc Minh Dang : Optimal control under uncertainty and bayesian parameters adjustments

1. Le coût intantanné peut toutefois être ajouté directement dans le vecteur X.
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(publié dans SIAM Journal on Control and Optimization) [10] et Optimal trading with online
parameter revisions (publié dans Market Microstructure and Liquidity) [9].

Par rapport à (1.0.5), nous considérons qu’il y a de l’incertitude sur la réaction lorsqu’on
joue le contrôle. Nous traduisons cette incertitude par l’ajout d’un paramètre inconnu de
l’agent υ ∈ U , où U est un espace polonais, et une suite i.i.d. (εi) dont chaque composante
est à valeurs dans un espace polonais E et de loi Pε.

L’équation de X t,x,φ en τi se réécrit :

X t,x,φ
τi

= F (τi, X
t,x,φ
τi− , αi, υ, εi), i ≥ 1,

De tels problèmes de contrôle optimal ont été étudiés en temps discret, voir par exemple [37]
pour des références. L’objectif de ce chapitre est d’étudier ce problème de contrôle optimal
en temps continu.

On s’autorise également à ce que notre action ne soit pas immédiate, voir par exemple
[21], mais puisse intervenir après un délai aléatoire : par exemple, lorsqu’on place un ordre à
cours limité et qu’on attend son éventuelle exécution. On définit les variables aléatoires :

ϑi := $(τi, Xτi−, αi, υ, εi), i ≥ 1,
avec $ une fonction mesurable qui vérifie $(t, ·) ≥ t. L’équation différentielle stochastique

(1.0.5) se réécrit :

dX t,x,φ
s := µX(s,X t,x,φ

s )ds+ σX(s,X t,x,φ
s )dWs sur Nφ

X t,x,φ
ϑi

:= F (τi, X
t,x,φ
τi− , αi, υ, ε) i ≥ 1

(1.0.7)

où Nφ := ⋃
i≥0[ϑi, τi+1[∩[0, T ] avec ϑ0 := 0.

On introduit (F t,x,φ
s )s≥t la filtration génénée par X t,x,φ. C’est celle observée par l’agent et

sur laquelle va s’appuyer la stratégie de l’agent. La filtration dépend de manière non triviale
des conditions initiales ce qui se révèlera être une difficulté afin d’établir un principe de
programmation dynamique.

L’ajout du paramètre inconnu υ ∈ U n’est pas anodin. Il est commun à toutes les im-
pulsions. À chaque fois que l’agent agit sur le système, il obtient de l’information sur υ.
La fonction valeur ne peut pas seulement dépendre de (t, x), elle doit aussi dépendre de
l’information sur υ.

Étant donnée une loi à priori m ∈ M sur υ où M est un sous-ensemble des mesures de
probabilité boréliennes sur U , on introduit le processus M t,x,m,φ défini pour tout borélien
B ∈ B(U) par :

M t,x,m,φ
s (B) := E

(
1{υ∈B} | F t,x,m,φ

s

)
. (1.0.8)

La fonction valeur va naturellement dépendre de la loi de υ à l’instant t. Cette définition
amène à une révision Bayesienne de M en ϑi sachant Mτi− et en dehors, le processus est
constant. C’est en agissant sur le système qu’on obtient de l’information nouvelle sur υ et
que M s’actualise, ce qui permet d’éviter toute diffusion infinitésimale sur M .
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L’objectif est de caractériser sous forme de solution de viscosité la solution du problème :

v(t, x,m) := sup
φ∈Φt,x

E
[
g(T [φ], X t,x,φ

T [φ] ,M
t,x,m,φ
T [φ] )

]
, (t, x,m) ∈ [0, T ] × Rd × M, (1.0.9)

où g : [T,+∞[×Rd × M 7→ R est une fonction continue bornée. Puisque, une fois la dernière
action effectuée en τi ≤ T , on récupère (X t,x,φ,M t,x,m,φ) en ϑi, il se peut que ϑi > T . Dans ce
cas T [φ] = ϑi, sinon T [φ] = T . La fonction g peut ne pas dépendre de M t,x,m,φ

T [φ] , dans ce cas la
fonction valeur dépendra encore naturellement de m. L’introduction de l’espace des mesures
dans la définition de la fonction valeur amène à des difficultés techniques résolues à travers
les résultats de [17].

Pour introduire l’équation aux dérivées partielles (au sens de la viscosité) satisfaite par
v, supposons-la suffisamment régulière. Supposons avoir à notre disposition un principe de
programmation dynamique, en considérant un contrôle φ◦ tel que P{τ1 > T} = 1, on devrait
avoir v(t, x,m) ≥ E[v(t + h,X t,x,φ◦

t+h ,m)]. En appliquant Itô, puis en divisant par h et en
le faisant tendre vers 0, on devrait avoir −Lv(t, x,m) ≥ 0 où L est l’opérateur de Dynkin
associé à X t,x,φ◦ ,

Lϕ := ∂tϕ+ 〈µ,Dϕ〉 + 1
2Tr[σσ>D2ϕ].

D’autre part, en considérant un contrôle φa tel que P(τ1 = t, α1 = a) = 1 avec a ∈ A
compact, on devrait avoir

v(t, x,m) ≥ Kv(t, x,m),

où Kϕ := supa∈A Kaϕ avec Kaϕ := E
[
ϕ(ϑ1, X

t,x,φa

ϑ1 ,M t,x,m,φa

ϑ1 )
]
.

De même, à la frontière en T , on devrait avoir v(T, ·) ≥ KTg et v(T, ·) ≥ Kv(T, ·), où
KTg(·,m) :=

∫
U

∫
E g(·,m, u, e)dPε(e)dm(u).

Enfin, par optimalité, v devrait être solution (de viscosité) de l’équation quasi-variationnelle

min {−Lϕ , ϕ− Kϕ} = 0 sur [0, T ) × Rd × M (1.0.10)
min {ϕ− KTg, ϕ− Kϕ} = 0 sur {T} × Rd × M. (1.0.11)

Nous supposons tout d’abord l’existence d’un principe de comparaison.

Hypothèse 1.0.1. Soit u (resp. v) une sous- (resp. sur-) solution de viscosité semi-continue
supérieurement (resp. inférieurement) et bornée de (1.0.10)-(1.0.11). On suppose de plus que
u ≤ v sur (T,∞) × Rd × M. Alors, u ≤ v sur [0, T ] × Rd × M.

Le résultat principal que nous établissons est le suivant.

Théorème 1.0.1. Supposons que l’Hypothèse 1.0.1 est vérifiée. Alors, v est continue sur
[0, T ] × Rd × M et est l’unique solution de viscosité bornée de (1.0.10)-(1.0.11).
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La difficulté principale afin d’obtenir ce résultat est d’établir un principe de programma-
tion dynamique. Nous n’avons pas d’hypothèse de régularité a priori, nous pourrions établir
un principe de programmation dynamique faible. Nous ne pouvons cependant pas utiliser
Bouchard et Touzi [22] (voir aussi Dumitrescu et al. [36]) car la filtration dépend des condi-
tions initiales de manière non triviale.

L’inégalité majorante du principe de programmation dynamique (faisant intervenir l’en-
veloppe semi-continue supérieure) dans notre problème ne pose pas de difficulté particulière,
car la démonstration repose sur un argument de conditionnement. Nous établissons une par-
tie du principe de programmation dynamique faible pour des temps d’arrêt de la forme :
χ = θ ∧ τ1 où θ est le temps de sortie de (X t,x,φ,M t,x,m,φ) d’une boule (Proposition 2.4.2). Il
est construit pour en déduire la propriété de sous-solution de viscosité (Proposition 2.4.1).

L’autre sens du principe de programmation dynamique est plus délicat. Nous approximons
notre problème de contrôle optimal en temps continu par une suite de versions discrètes
(vn)n≥1 dans lesquelles l’agent joue à temps discret. Sur cette version discrète, afin détablir
le principe de programmation dynamique sans régularité a priori, l’argument principal est
un argument de sélection mesurable. Nous montrons que pour tout n ≥ 1, vn satisfait un
principe de programmation dynamique. Nous montrons ensuite que la limite inférieure relaxée
de (vn) est sur-solution de notre problème et nous en déduisons le Théorème 1.0.1 grâce à
l’Hypothèse 1.0.1.

Nous donnons ensuite une condition suffisante à l’Hypothèse 1.0.1 (Proposition 2.5.1) qui
nécessite l’existence d’une sur-solution stricte Ψ.

Nous proposons ensuite un schéma numérique convergent (Section 2.6) qui repose sur une
adaptation des arguments de [14] à notre contexte.

Nous terminons ce chapitre avec deux exemples d’application. Le premier porte sur l’ac-
quisition optimale d’une position en passant des ordres au marché. Cela se traduit par la
possibilité, à chaque instant, de passer un ordre d’achat immédiat pour plusieurs actions.
Le prix de marché est endogène : à chaque fois que nous achetons il y a une augmentation
immédiate du prix de manière aléatoire. C’est cette augmentation qui dépend du paramètre
inconnu υ qu’on apprend au fil de l’eau à chaque fois que nous agissons.

Dans le second exemple, nous envoyons des odres à cours limité et nous attendons qu’ils
soient exécutés ou non, en nous fixant un temps d’attente maximum ` > 0. Plus la limite
de l’ordre est basse, plus le temps d’attente est long en moyenne. Le temps d’attente est
supposé suivre une loi exponentielle, et le paramètre inconnu est le paramètre de cette loi
exponentielle que nous apprenons au fil de l’eau.

Le Chapitre 3 repose sur l’article Optimal control under uncertainty : Application to the
issue of CAT bonds (en prépublication) [7].

Nous nous plaçons cette fois-ci dans un cadre actuariel. Le risque n’est plus associé à
l’évolution d’un mouvement brownien mais à une mesure aléatoire de Poisson à activité
finie : il y a un nombre fini de sauts sur [0, T ] et la mesure aléatoire de Poisson s’assimile à
un processus de Poisson composé qui représente l’arrivée des sinistres. Pour un état de l’art
sur les solutions de viscosité avec des mesures de aléatoires Poisson générales, voir [13].
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Le cadre est le suivant : un assureur (ou un réassureur) possède un portefeuille qui est
exposé à un risque de catastrophes naturelles. Il peut, afin de se couvrir, émettre des obli-
gations catastrophes : des CAT bonds 2 (voir par exemple [32] ou [33] pour une introduction
générale).

Nous introduisons à nouveau un contrôle impulsionnel de la même forme que précédem-
ment : φ := (τi, αi)i≥1 où τi correspond à la date d’émission du ième CAT bond et αi représente
les caractéristiques de ce CAT bond (région et péril, tranche, etc). La maturité des CAT bonds
est fixée à une durée ` > 0. On introduit la suite (ϑi)i≥1 qui sont les dates de fin des CAT
bonds émis en (τi)i≥1, par arrivée à l’échance ou par défaut.

Lors de l’émission, le coupon n’est pas parfaitement connu à l’avance (le coupon sera
déterminé au moment de l’émission sur le marché), et on s’autorise à avoir une incertitude
sur la loi comme au Chapitre 2. Nous introduisons à nouveau un paramètre υ0 ∈ Uυ où Uυ

est un espace polonais. Mais cette fois-ci, il y a également incertitude sur la diffusion : on
considère une intensité inhomogène qui dépend d’un paramètre inconnu λ0 ∈ Uλ et, en cas
de sinistre, ce sinitre suit une loi qui dépend d’un paramètre γ0 ∈ Uγ où Uλ et Uγ sont des
ensembles polonais. Le processus X t,x,φ est solution de :

X := x+
∫ ·

t
µ(s,Xs)ds+

∫ ·

t

∫
Rd
β(s,Xs−, u)N(ds, du)

+
∑
i≥1

1{t≤τi<·}H(τi, Xτi
, αi)

+
∑
i≥1

1{t∨τi≤·}

∫ ·∧ϑi

t∨τi

C(s, ri)ds

+
∑
i≥1

1{t≤ϑi≤·}F (ϑi, Xϑi−, Xτi
, ri, αi, ϑi − τi, ui)1{ϑi−τi 6=`},

(1.0.12)

où ri := C0(τi, Xτi−, αi, υ, εi) et ui est la taille du sinistre associé à la mesure de Poisson N à
la date ϑi (en cas de sinistre).

On fixe un nombre κ ∈ N∗ de CAT bonds que l’assureur peut avoir en cours d’exécution
simultanément. On remarque que, si κ = 1, dès que l’assureur émet un CAT bond, il est
obligé d’attendre la fin de celui-ci pour pouvoir en lancer un autre. Dans ce cas particulier,
on pourrait reformuler (1.0.12) afin de retrouver une équation de la forme (1.0.5) et avoir
un problème de contrôle impulsionnel identique au Chapitre 2, à l’exception du mouvement
brownien remplacé par une mesure aléatoire de Poisson.

Dans ce chapitre, on s’autorise à avoir plusieurs CAT bonds en cours, ce qui correspond
à plusieurs impulsions en cours.

Le processus (1.0.12) n’est pas markovien, même sans paramètre inconnu. En effet, il faut
retenir les contrats signés afin d’appliquer le paiement des coupons et les payoff éventuels en
cas de sinistre. Nous introduisons un processus (C,L) où C est le processus des caractéris-
tiques des CAT bonds en cours et L les durées associées. Nous séparons les caractéristiques

2. Les obligations catastrophe, ou CAT bonds, sont des obligations négociables à taux variable. Le risque
associé à CAT bond n’est pas lié à la défaillance d’une entité (État ou société) mais est lié à la survenance
d’une catastrophe.
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de la durée car elles joueront un rôle différent dans l’EDP. Le processus C est un processus
constant par morceaux qui saute à l’émission ou à l’échéance d’un CAT bond. Le processus
L évolue continument : c’est le temps écoulé depuis l’émission. Nous notons CL l’ensemble
dans lequel le processus (C,L) prend ses valeurs.

On introduit (F t,x,φ
s )s≥t la filtration génénée par (X t,x,φ, N). Une fois cette définition

introduite, comme dans le chapitre précédent, afin d’établir un principe de programmation
dynamique et de caractériser la solution comme unique solution de viscosité d’une certaine
équation, nous introduisons les processus Mλ,Mγ et Mυ qui sont définis par :

Mλ,t,m
s (B) := E

(
1{λ∈B} | F t,x,φ

s

)
, Mγ,t,m

s (B) := E
(
1{γ∈B} | F t,x,φ

s

)
,

Mυ,x,m,φ
s (B) := E

(
1{υ∈B} | F t,x,φ

s

)
.

(1.0.13)

Comme Mγ et Mυ n’évoluent que lors de la survenance de sauts (par la mesure de Poisson
pour le premier, par le contrôle pour le second), la révision Bayésienne se définit comme
précédemment. Pour Mλ, le processus évolue continument et saute lors de la survenance de
sinistres. Afin d’avoir un générateur infinitésimal classique, nous supposons que Mλ prend
ses valeurs dans un ensemble Mλ homéomorphe à un sous-ensemble P de Rd, puis nous
travaillons sur le processus défini sur Rd et nous le notons P . On pose M := (Mγ,Mυ) à
valeurs dans un ensemble de mesure de probabilité boréliennes M.

L’objectif est de caractériser sous forme de solution de viscosité la solution du problème :

v(z, p,m) := sup
φ∈Φt,x

E
[
g(Xz,φ

T , Cz,φ
T , Lz,φ

T , P t,p
T ,M z,m,φ

T )
]
, (z, p,m) ∈ [0, T ]×Rd ×CL×P×M,

où g : Rd × CL × P × M est une fonction continue bornée et z := (t, x, c, l).

On introduit L?ϕ := E [Lϕ] qui est l’espérance de l’opérateur de Dynkin associé à notre
problème. L’espérance est prise à travers mλ et mγ.

En supposant que v est régulière et qu’on a à notre disposition un principe de program-
mation dynamique, si on pose π(c, l) le nombre de CAT bonds en cours, on s’attend à avoir

v ≥ −L?v1{π(c,l)=κ} + min {−L?v, v − Kv} 1{π(c,l)6=κ}, (1.0.14)

où Kϕ := supa∈A Kaϕ avec Kaϕ := E
[
ϕ(τ1, X

z,φa

τ1+ , C
z,φa

τ1+ , L
z,φa

τ1+ , P
t,p
τ1+,M

z,m,φa

τ1+ )
]

avec φa qui
vérifie P(τ1 = t, α1 = a) = 1 (pour a ∈ A compact).

De même, à la frontière en T , on devrait avoir v(T, ·) ≥ g et v(T, ·) ≥ Kv(T, ·) si π(c, l) 6=
κ.

Pour des contrats en cours d’exécution dans les indices J ⊂ {1, . . . , κ}, on introduit
l’opérateur LJ′

J , avec J′ ⊂ J, défini par :
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LJ′

J : [0, `]J → [0, `]J (1.0.15)
(lj)1≤j≤κ 7→ (`1{j∈J′} + lj1{j 6∈J′})1≤j≤κ. (1.0.16)

avec [0, `]J := {l ∈ ([0, `] ∪ ∂)κ : lj 6= ∂ ⇔ j ∈ J}, lj = ∂ s’il n’y a pas de contrat dans cet
indice. Cet opérateur représente les contrats arrivant à maturité sans déclenchement de payoff.

Lorsqu’un CAT bond arrive à maturité, il n’y a pas de payoff. On devrait avoir, si on
note C`

− la fonction qui, à un ensemble de contrats (c, l), supprime ceux arrivés à maturité `,

lim
l′→LJ′

J (l)
v(., c, l′, .) = max{v(.,C`

−[c,LJ′

J (l)], .),Kv(.,C`
−[c,LJ′

J (l)], .)}.

Enfin pour J ⊂ {1, . . . , κ} et J 6= ∅, par optimalité, v devrait être solution (de viscosité)
de l’équation quasi-variationnelle

1{π(c,l)=κ} [−L?ϕ] + 1{π(c,l) 6=κ} min{−L?ϕ, ϕ− Kϕ} = 0 sur D◦ (1.0.17)
ϕ = 1{π(c,l)=κ}g + 1{π(c,l) 6=κ} max {Kg, g} sur DT (1.0.18)

lim
l′→LJ′

J (l)
ϕ(., c, l′, .) = max{ϕ(.,C`

−[c,LJ′

J (l)], .),Kϕ(.,C`
−[c,LJ′

J (l)], .)} sur D◦ ∪ DT , (1.0.19)

où
D◦ := [0, T ) × Rd × CLJ × P × M,

DT := {T} × Rd × CL × P × M.

Le résultat principal que nous établissons est le suivant.

Théorème 1.0.2. Supposons qu’il existe un principe de comparaison. Alors, v est continue
sur [0, T ]×Rd ×CL×P×M et est l’unique solution de viscosité bornée de (1.0.17)-(1.0.18)-
(1.0.19).

Outre les sauts, la première différence avec le Chapitre 2 est que le générateur infinitésimal
dépend de λ0 et de γ0 qui sont aléatoires. C’est L? qui apparaît dans l’équation, c’est-à-dire
son espérance. On montre que le générateur est continu sous des hypothèses raisonnables
(Lemme 6), propriété qui intervient dans l’établissement des propriétés de solution de visco-
sité. Une autre différence est la condition au bord associée à l’arrivée à échéance d’un CAT
bond qui n’a pas fait défaut.

Afin d’établir le principe de programmation dynamique, nous avons la même difficulté
de dépendance non triviale de la filtration aux conditions initiales. On s’appuie sur les résul-
tats du Chapitre 2 afin de l’établir. On caractérise ensuite la fonction valeur comme unique
solution de viscosité de (1.0.17)-(1.0.18)-(1.0.19) en adaptant les arguments du Chapitre 2.

À nouveau, nous donnons une condition suffisante à l’hypothèse d’existence d’un principe
de comparaison (Proposition 3.5.1) où nous construisons une sur-solution stricte au moyen
d’une fonction Ψ.
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Nous établissons ensuite un schéma numérique convergent (Section 3.6) qui repose sur
[14].

Enfin, on s’intéresse à une application d’assurance face au péril des ouragans en Floride.
L’assureur a une part de marché de la valeur assurable en Floride et fait face au risque
d’ouragans. Il peut souscrire des CAT bonds à différentes tranches afin de couvrir son risque.
Toutefois, il ne connait pas non plus parfaitement l’intensité d’arrivée des sinistres. Dans un
premier cas, on ne considère pas de réchauffement climatique et l’incertitude est sur le niveau
d’intensité, contrainte liée au fait qu’on se fixe une loi a priori de la famille Gamma. Dans le
second cas, on suppose que l’ensemble des paramètres possibles pour l’intensité est discret et
fini. Ce second cas, plus simple en terme de loi a priori, permet d’intégrer une inconnue sur
le seul facteur d’accroissement de l’intensité en conséquence du réchauffement climatique.

Le Chapitre 4 repose sur un article écrit en collaboration avec Bruno Bouchard, David
Evangelista et Othmane Mounjid : Optimal inventory management and order book modeling
(à paraître dans ESAIM : Proceedings and Surveys) [11].

Dans ce chapitre, on n’utilise plus une approche avec prix de marché unique mais on
modélise le carnet d’ordre. L’objectif est de proposer une modélisation de carnet d’ordre
endogène aux agents. Ce sont les actions d’agents économiques rationnels qui font bouger
le carnet d’ordre et par conséquent le prix. Ces agents économiques résolvent des problèmes
de programmation dynamique qu’ils appliquent ensuite sur le carnet d’ordre. Nous mettons
ensuite ces agents ensemble sur le même carnet d’ordre, ce qui construit notre carnet d’ordre
endogène.

En finance, le carnet d’ordre est la rencontre de la courbe d’offre et de demande sur un
actif. Les offres d’achat et de vente sont discrètes : l’écart minimum entre deux prix est appelé
le tick. Si on note le tick δ > 0, l’ensemble des prix possibles est δZ.

Un agent peut passer un ordre d’achat au prix pb pour une quantité nb. Cet ordre est
enregistré et, sauf s’il venait à être annulé, il sera exécuté si, à un instant, personne n’a de
meilleure offre d’achat et qu’une offre de vente se fait au prix pb. La meilleure offre d’achat
est appelée prix bid, que l’on note pb. La meilleure offre de vente est appelée prix ask, que
l’on note pa. Par construction, pb < pa. En effet, s’ils étaient égaux, il y aurait échange au
prix pb = pa jusqu’à ce qu’ils soient distincts. La valeur pa − pb ∈ δN∗ est appelée le bid-ask
spread.

Un agent économique peut placer un ordre d’achat à cours limité dans le carnet au meilleur
prix, pb. Toutefois, si d’autres ordres sont placés avant lui au même prix, ils sont prioritaires
et l’ensemble des ordres à ce prix forme une queue. Si une offre de vente se fait au prix pb,
c’est l’ordre d’arrivée dans la queue qui prime. Nous souhaitons calculer la stratégie optimale
de placement d’ordre sur un tel carnet : il nous faut tenir compte de la quantité placée ainsi
que de la position dans la queue.

Le modèle est proche de ceux utilisés dans [29], [46], [47] et [52]. Empiriquement, la plupart
des ordres sont placés aux meilleurs limites, voir par exemple [19]. Ainsi, par parcimonie, nous
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ne modélisons que la queue associée à la meilleure offre d’achat, pb, et la queue associée à la
meilleure offre de vente, pa. Lorsqu’une queue est détruite, par exemple celle d’achat, nous
appliquons une loi aléatoire de découverte de queue à un tick plus bas, au prix pb − δ. Nous
modélisons jusqu’à deux ticks, on a pa − pb ∈ {δ, 2δ}. Enfin, des ordres d’achat et de vente
arrivent selon une mesure aléatoire de Poisson qui dépend de la structure du carnet d’ordre
à travers l’imbalance, voir par exemple [18].

Les agents peuvent placer des ordres à cours limité, des ordres au marché (aussi appelés
ordres agressifs) et, lorsque pa − pb = 2δ, placer des ordres à cours limité au prix pb + δ. Ils
peuvent également annuler leurs ordres à cours limité non exécutés ou partiellement exécutés.
Ils peuvent placer jusqu’à un ordre à cours limité à l’achat et un autre ordre à cours limité
à la vente.

Face à ce carnet d’ordre, nous nous intéressons à plusieurs agents économiques. Le premier
est le teneur de marché, ou market maker. Celui-ci va essayer de se faire acheter au prix pb

tout en vendant au prix pa et ainsi, d’empocher le bid-ask spread pa −pb. La mesure aléatoire
de Poisson dépend des paramètres du carnet d’ordre : en particulier de la taille des queues. Le
teneur de marché pourra également être amené à jouer sur une anticipation de mouvement
du prix. Intuitivement, il placera des ordres à cours limité de chaque côté du carnet d’ordre et
pourra être amené à placer des ordres au marché si son inventaire devient trop déséquilibré.

Nous construisons un problème de contrôle optimal pour le teneur de marché où celui-ci
gère son inventaire et vise à maximiser la valeur de ses opérations sur le carnet d’ordre sur
une période [0, T ] à travers une fonction d’utilité. Nous proposons un schéma numérique
convergent et complètement explicite afin de le résoudre.

Nous nous intéressons ensuite au comportement d’un trader haute fréquence, ou High
Frequency Trader. Celui-ci ne cherche pas à empocher le bid-ask spread mais à profiter d’un
écart de cours entre l’actif d’une part, et un future sur ce même actif d’autre part. Lorsqu’il
réalise une transaction sur le marché de l’actif, il réalise l’opération inverse immédiatement
sur le marché des futures. Le marché des futures est modélisé sans carnet d’ordre, plus
précisément, on modélise uniquement l’écart de prix entre le future et l’action. Cet écart
profite d’un effet retour à la moyenne vers 0 que le trader haute fréquence va chercher à
exploiter.

Nous construisons un problème de contrôle optimal pour le trader haute fréquence où
celui-ci gère son inventaire composé d’actifs et de futures en sens opposé et vise à maximiser
la valeur de ses opérations mixtes sur les deux marchés, en plaçant des ordres sur le carnet
d’ordre de l’actif. Si un ordre est exécuté, il réalise automatiquement l’opération inverse sur
le marché des futures. Nous proposons un schéma numérique convergent et complètement
explicite afin de le résoudre.

À ces deux types d’agent, nous ajoutons des investisseurs institutionnels qui suivent des
stratégies classiques d’acquisition ou de liquidation d’actifs : la stratégie VWAP (Volume
Weighted Average Price) et des stratégies qui reposent sur le volume de marché (robots).

Enfin, grâce à un unique programme (en C++ avec OpenMP) qui résout dans un premier
temps les problèmes de contrôle optimal, nous faisons jouer tous ces agents ensemble sur un
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marché. Seul l’écart de prix entre l’action et le future sur celle-ci est simulé. Les agents inter-
ragissent sur le carnet d’ordre avec leurs contrôles pré-calculés et nous observons l’évolution
de celui-ci et les stratégies des différents agents.
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Chapitre 2

Optimal control under uncertainty
and Bayesian parameters
adjustments : Application to trading
algorithms

We propose a general framework for the optimal control/design of trading algorithms
in situations where market conditions or impact parameters are uncertain. Given a prior
on the distribution of the unknown parameters, we explain how it should evolve according
to the classical Bayesian rule after each sequence of trades. Taking these progressive prior-
adjustments into account, we characterize the optimal policy through a quasi-variational
parabolic equation, which can be solved numerically. From the mathematical point of view,
we indeed treat a quite general impulse control problem with unknown parameters, and the
derivation of the dynamic programming equation seems to be new in this context. The main
difficulty lies in the nature of the set of controls which depends in a non trivial way on the
initial data through the filtration itself. Typical examples of application are discussed.

2.1 Introduction
When trading at a high frequency level, several market parameters become of major

importance. It can be the nature of the market impact of aggressive orders, or the time to be
executed when entering a book order queue, see e.g. [51] and the references therein. However,
the knowledge of these execution conditions is in general not perfect. One can try to estimate
them but they remain random and can change from one market/platform to another one, or
depending on the current market conditions. Most importantly, they can only be estimated
by actually acting on the market. We therefore face the typical problem of estimating a
reaction parameters (impact/execution time) while actually controlling a system (trading)
that depends on these parameters.

Such problems have been widely studied in the discrete time stochastic optimal control
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literature, see e.g. [37] for references. One fixes a certain prior distribution on the unknown
parameter, and re-evaluate it each time an action is taken, by applying the standard Bayesian
rule to the observed reactions. The optimal strategy generically results from a compromise
between acting on the system, to get more information, and being not too aggressive, be-
cause of the uncertainty on the real value of the parameters. If the support of the initial
prior contains the true value of the parameters, one can expect (under natural identification
conditions) that the sequence of updated priors actually converges to it in the long range.

It is a-priori much more difficult to handle in a continuous time framework with continuous
time monitoring, as it leads to a filtering problem, leaving on an infinite dimensional space.
However, optimal trading under market impact can very naturally be considered in the
impulse form, as robots send orders in a discrete time manner. In a sense, we are back
to a discrete time problem which dimension can be finite (depending on the nature of the
uncertainty), although interventions on the system may occur at any time.

In this paper, we thus consider a general impulse control problem with an unknown
parameter, under which an initial prior law is set. Given this prior, we aim at maximizing a
certain gain functional. We show that the corresponding value function can be characterized
as the unique viscosity solution (in a suitable class) of a quasi-variational parabolic equation,
for which a convergent numerical scheme is constructed. To better fit with market practices,
we allow for (possibly) not observing immediately the effect of an impulse. This applies for
instance to trading robots that are launched for a certain time period and whose impact will
be observed only at the end of this period, or to dark pools in which nothing is observed but
the execution time.

The study of such non-classical impulse control problems seems to be new in the literature.
From the mathematical point of view, the main difficulty consists in establishing a dynamic
programming principle. The principal reason lies in the choice of the filtration. Because of the
uncertainty on the parameter driving the dynamics, the only natural filtration to which the
control policy should be adapted is the one generated by the controlled process himself. This
implies in particular that the set of admissible controls depends heavily (and in a very non
trivial way) on the initial state of the system at the starting time of the strategy. Hence, no
a priori regularity nor good measurability properties can be expected to construct explicitly
measurable almost optimal controls, see e.g. [22], or to apply a measurable selection theorem,
see e.g. [17]. We therefore proceed differently. The (usually considered as) easy part of the
dynamic programming can actually be proved, as it only requires a conditioning argument.
It leads as usual to a sub-solution characterization. We surround the difficulty in proving the
second (difficult) part by considering a discrete time version of our initial continuous time
control problem. When the time step goes to 0, it provides a super-solution of the targeted
dynamic programming equation. Using comparison and the natural ordering on the value
functions associated to the continuous and the discrete time model, we show that the two
coincide at the limit.

We consider two examples of applications. In the first one, aggressive orders are send
in a model with immediate and resilient impact. The unknown are the parameters of the
impact and liquidity costs functions. In the second one, we only consider limit orders. The
unknown is the distribution of the time to be executed. In both situations, the problems
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can be solved numerically without much difficulties and we provide numerical illustrations
showing the dependence of the optimal strategies on the current priors.

The rest of the chapter is organized as follows. The model is described in Section 2.2. In
Section 2.3, we provide the PDE characterization of the value function. Proofs are collected
in Section 2.4 (viscosity solution properties) and in Section 2.5 (comparison). An example
of numerical scheme is provided in Section 2.6. Section 2.7 is dedicated to two examples of
application.

2.2 The impulse problem with parameters adjustment
All over this paper, C([0, T ],Rd) is the space of continuous functions from [0, T ] into Rd

which start at 0 at the origin. Recall that it is a Polish space for the sup-norm topology.
We denote by W (ω) = ω the canonical process and let P be the Wiener measure. We also
consider a Polish space (U,B(U)) that will support an unknown parameter υ. We denote by
M a locally compact subset 1 of the set of Borel probability measures on U endowed with the
topology of weak convergence. In particular, it is Polish. A prior on the unknown parameter
υ will be an element m ∈ M. To allow for additional randomness in the measurement of the
effects of actions on the system, we consider another Polish space E on which is defined a
family (εi)i≥0 of i.i.d. random variables with common measure Pε on E. On the product space
Ω := C([0, T ],Rd) × U × EN, we consider the family of measures {P × m × P⊗N

ε : m ∈ M}
and denote by Pm an element of this family whenever m ∈ M is fixed. The operator Em is
the expectation associated to Pm. Note that W , υ and (εi)i≥0 are independent under each
Pm. For m ∈ M given, we let Fm = (Fm

t )t≥0 denote the Pm-augmentation of the filtration
F = (Ft)t≥0 defined by Ft = σ((Ws)s≤t, υ, (εi)i≥0) for t ≥ 0. Hereafter, all the random
variables are considered with respect to the probability space (Ω,Fm

T ) with m ∈ M given by
the context, and where T is a fixed time horizon.

2.2.1 The controlled system
Let A ⊂ [0, T ] ×Rd be a (non-empty) compact set. Given N ∈ N and m ∈ M, we denote by
Φ◦,m

N the collection of sequences of random variables φ = (τi, αi)i≥1 on (Ω,Fm
T ) with values in

R+ ×A such that (τi)i≥1 is a non-decreasing sequence of Fm-stopping times satisfying τj > T
Pm − a.s. for j > N . We set

Φ◦,m :=
⋃

N≥1
Φ◦,m

N .

An element φ = (τi, αi)1≤i≤N ∈ Φ◦,m will be our impulse control and we write αi in the form

αi = (`i, βi) with `i ∈ [0, T ] and βi ∈ Rd Pm − a.s.

More precisely, the τi’s will be the times at which an impulse is made on the system (e.g. a
trading robot is launched), βi will model the nature of the order send at time τi (e.g. the

1. In many situations, the family of probability measures of interest will in fact be parameterized or be
the set of measures on a compact metrizable space, see Remark 2.2.1 below.
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parameters used for the trading robot), and `i will stand for the maximal time length during
which no new intervention on the system can be made (e.g. the time prescribed to the robot
to send orders on the market). Later on we shall impose more precise non-anticipativity
conditions.
From now on, we shall always use the notation (τφ

i , α
φ
i )i≥1 with αφ

i = (`φ
i , β

φ
i ) to refer to a

control φ ∈ Φ◦,m.
We allow for not observing nor being able to act on the system before a random time ϑφ

i

defined by
ϑφ

i := $(τφ
i , X

φ

τφ
i −
, αφ

i , υ, εi),

where Xφ is the controlled state process that will be described below, and

$ : R+ × Rd × A × U × E → [0, T ] is measurable, such that $(t, ·) ≥ t for all t ≥ 0.(2.2.1)

In the case where the actions consist in launching a trading robot at τφ
i during a certain time

`φ
i , we can naturally take ϑφ

i = τφ
i + `φ

i . If the action consists in placing a limit order during
a maximal duration `φ

i , ϑφ
i is the time at which the limit order is executed if it is less than

τφ
i + `φ

i , and τφ
i + `φ

i otherwise.
We say that φ ∈ Φ◦,m belongs to Φm if ϑφ

i ≤ τφ
i+1 and τφ

i < τφ
i+1 Pm-a.s. for all i ≥ 1, and

define

N φ :=
[
∪i≥1[τφ

i , ϑ
φ
i )
]c
. (2.2.2)

We are now in a position to describe our controlled state process. Given some initial data
z := (t, x) ∈ Z := [0, T ] × Rd, and φ ∈ Φm, we let Xz,φ be the unique strong solution on
[t, 2T ] of

X = x+
(∫ ·

t
1N φ(s)µ (s,Xs) ds+

∫ ·

t
1N φ(s)σ (s,Xs) dWs

)
+
∑
i≥1

1{t≤ϑφ
i ≤·}[F (τφ

i , Xτφ
i −, α

φ
i , υ, εi) −Xτφ

i −]. (2.2.3)

In the above, the function

(µ, σ, F ) : R+ × Rd × A × U × E 7→ Rd × Md × Rd is measurable.
The map (µ, σ) is continuous, and Lipschitz with linear growth

in its second argument, uniformly in the first one,
(2.2.4)

with Md defined as the set of d × d matrices. This dynamics means the following. When
no action is currently made on the system, i.e. on the intervals in N φ, the system evolves
according to a stochastic differential equation driven by the Brownian motion W :

dXs = µ (s,Xs) ds+ σ (s,Xs) dWs on N φ.

When an impulse is made at τφ
i , we freeze the dynamics up to the end of the action at time ϑφ

i .
This amounts to saying that we do not observe the current evolution up to ϑφ

i . At the end of
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the action, the state process takes a new value Xϑφ
i

= F (τφ
i , Xτφ

i −, α
φ
i , υ, εi). The fact that F

depends on the unknown parameter υ and the additional noise εi models the fact the correct
model is not known with certainty, and that the exact value of the unknown parameter υ
can (possibly) not be measured precisely just by observing (ϑφ

i − τφ
i , Xϑφ

i
−Xτφ

i −).

In order to simplify the notations, we shall now write :

Zz,φ := (·, Xz,φ) and Zz,◦ := (·, Xz,◦) (2.2.5)

in which Xz,◦ denotes the solution of (2.2.3) for φ such that τφ
1 > T and satisfying Xz,◦

t = x.
This corresponds to the stochastic differential equation (2.2.3) in the absence of impulse.
Note in particular that

Zz,φ

ϑφ
1

= z′(Zz,◦
τφ

1 −
, αφ

1 , υ, ε1) on {τφ
1 ≥ t}, with z′ := ($,F ). (2.2.6)

From now on, we denote by Fz,m,φ = (F z,m,φ
s )t≤s≤2T the Pm-augmentation of the filtration

generated by (Xz,φ,
∑

i≥1 1[ϑφ
i ,∞)) on [t, 2T ]. We say that φ ∈ Φm belongs to Φz,m if (τφ

i )i≥1

is a sequence of Fz,m,φ-stopping times and αφ
i is F z,m,φ

τφ
i

-measurable, for each i ≥ 1. Hereafter
an admissible control will be an element of Φz,m.

2.2.2 Bayesian updates
Obviously, the prior m will evolve with time, as the value of the unknown parameter is
partially revealed through the observation of the impacts of the actions on the system :
at time t, one has observed {z′(Zz,φ

τφ
i −
, αφ

i , υ, εi) : i ≥ 1, ϑφ
i ≤ t}. It should therefore be

considered as a state variable, in any case, as its dynamics will naturally appear in any
dynamic programming principle related to the optimal control of Xz,φ, see Proposition 2.4.2
below. Moreover, its evolution can be of interest in itself. One can for instance be interested
by the precision of our (updated) prior at the end of the control period, as it can serve as a
new prior for another control problem.

In this section, we describe how it is updated with time, according to the usual Bayesian proce-
dure. Given z = (t, x) ∈ Z, u ∈ U and a ∈ A, we assume that the law under Pε of z′[z, a, u, ε1],
recall (2.2.6), is given by q(·|z, a, u)dQ(·|z, a), in which q(·|·) is a Borel measurable map and
Q(·|z, a) is a dominating measure on Z for each (z, a) ∈ Z × A. For z = (t, x) ∈ Z, m ∈ M
and φ ∈ Φz,m, let M z,m,φ be the process defined by

M z,m,φ
s [C] := Pm[υ ∈ C|F z,m,φ

s ], C ∈ B(U), s ≥ t. (2.2.7)

As no new information is revealed in between the end of an action and the start of the next
one, the prior should remain constant on these time intervals :

M z,m,φ = M z,m,φ

ϑφ
i

on [ϑφ
i , τ

φ
i+1) , i ≥ 0, (2.2.8)
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with the conventions ϑφ
0 = 0 and M z,m,φ

0 = m. But, M z,m,φ should jump from each τφ
i to each

ϑφ
i , i ≥ 1, according to the Bayes rule :

M z,m,φ

ϑφ
i

= M(M z,m,φ

τφ
i −

;Zz,φ

ϑφ
i

, Zz,φ

τφ
i −
, αφ

i ), i ≥ 1, (2.2.9)

in which

M(mo; z′
o, zo, ao)[C] :=

∫
C q(z′

o|zo, ao, u)dmo(u)∫
U q(z′

o|zo, ao, u)dmo(u) , (2.2.10)

for almost all (zo, z
′
o, ao,mo) ∈ Z2 × A × M and C ∈ B(U).

Note that we did not specify M z,m,φ on each [τφ
i , ϑ

φ
i ) since the controller must wait until ϑφ

i

before being able to make another action. A partial information on υ through ϑφ
i is known

as a right-censored observation of ϑφ
i is revealed through the interval [τφ

i , ϑ
φ
i ).

In order to ensure that M z,m,φ remains in M whenever m ∈ M, we need the following
standing assumption :

Assumption 2.2.1 (Standing Assumption).

M(M; ·) ⊂ M.

Remark 2.2.1. The above assumption means that we have to define a locally compact space
M such the initial prior belongs to M, and that is stable under the operator M. It is important
for the use of viscosity solutions. This is clearly a limitation of our approach, from a theoretical
point of view. An alternative would be to lift M to the space of square integrable random
variables, and then use the methodologies developed in the context of mean-field games (see
e.g. [25, Section 6]). We prevent from doing this for sake of clarity. On the other hand, our
assumptions are satisfied in many practical applications where M is either a set of measures
defined on a metrizable compact space, see e.g. [17, Proposition 7.22 p130], or a parameterized
family (which needs to be the case eventually if a numerical resolution is performed). If it
is a parameterized family, it suffices to find an homeomorphism f from an open set of Rk,
k ≥ 1, to M to ensure that M is locally compact. On the other hand, the stability of M with
respect to M can be ensured by using conjugate families, as explained in e.g. [16, Chapter
5.2]. The simplest example being the convex hull of a family of Dirac masses. See Section 2.7
for examples of applications.

We formalize the dynamics of M z,m,φ in the next proposition.

Proposition 2.2.1. For all z = (t, x) ∈ Z, m ∈ M and φ ∈ Φz,m, the process M z,m,φ is M
valued and follows the dynamics (2.2.8)-(2.2.9) on [t, 2T ].

Proof. Let C be a Borel set of U and ϕ be a Borel bounded function on the Skorohod
space Dd+1 of càdlàg functions with values in Rd+1. Set ξφ := ∑

i≥1 1[ϑφ
i ,∞) and set δX i :=

Xz,φ

·∨ϑφ
i

−Xz,φ

ϑφ
i

. One can find a Borel measurable map ϕ̄ on D2d+1 such that

ϕ(Xz,φ
·∧s , ξ

φ
·∧s)1{ϑφ

i ≤s<τφ
i+1} = ϕ̄(Xz,φ

·∧ϑφ
i

, δX i
·∧s, ξ

φ

·∧ϑφ
i

)1{ϑφ
i ≤s<τφ

i+1}.
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Then, the independence of υ with respect to σ(W·∨ϑφ
i

−Wϑφ
i
) given F z,m,φ

ϑφ
i

, and the fact that

τφ
i+1 is measurable with respect to the sigma-algebra generated by σ(W·∨ϑφ

i
−Wϑφ

i
) and F z,m,φ

ϑφ
i

imply that, for s ≥ 0,

Em

[
1{υ∈C}ϕ(Xz,φ

·∧s , ξ
φ
·∧s)1{ϑφ

i ≤s<τφ
i+1}

]
= Em

[
1{υ∈C}ϕ̄(Xz,φ

·∧ϑφ
i

, δX i
·∧s, ξ

φ

·∧ϑφ
i

)1{ϑφ
i ≤s<τφ

i+1}

]
= Em

[
M z,m,φ

ϑφ
i

[C]ϕ̄(Xz,φ

·∧ϑφ
i

, δX i
·∧s, ξ

φ

·∧ϑφ
i

)1{ϑφ
i ≤s<τφ

i+1}

]
= Em

[
M z,m,φ

ϑφ
i

[C]ϕ(Xz,φ
·∧s , ξ

φ
·∧s)1{ϑφ

i ≤s<τφ
i+1}

]
.

This shows that M z,m,φ
s [C]1{ϑφ

i ≤s<τφ
i+1} = M z,m,φ

ϑφ
i

[C]1{ϑφ
i ≤s<τφ

i+1} Pm − a.s.
It remains to compute M z,m,φ

ϑφ
i

. Note that (2.2.3) implies that (Xz,φ

τφ
i −
, ξφ

τφ
i −

) = (Xz,φ

ϑφ
i −
, ξφ

ϑφ
i −

).
Let ϕ be as above, and let ϕ̄ be a Borel measurable map on Dd+1 × R+ × Rd such that

ϕ(Xz,φ

·∧ϑφ
i

, ξφ

·∧ϑφ
i

) = ϕ̄(Xz,φ

·∧τφ
i −
, ξφ

·∧τφ
i −
, ϑφ

i , X
z,φ

ϑφ
i

) = ϕ̄(Xz,φ

·∧τφ
i −
, ξφ

·∧τφ
i −
, z′[τφ

i , X
z,φ

τφ
i −
, αφ

i , υ, εi]).

Then, since εi is independent of F z,m,φ

τφ
i

and has the same law as ε1,

Em

[
1{υ∈C}ϕ(Xz,φ

·∧ϑφ
i

, ξφ

·∧ϑφ
i

)
]

= Em

[
1{υ∈C}ϕ̄(Xz,φ

·∧τφ
i −
, ξφ

·∧τφ
i −
, z′[τφ

i , X
z,φ

τφ
i −
, αφ

i , υ, εi])
]

= Em

[∫
1{υ∈C}ϕ̄(Xz,φ

·∧τφ
i −
, ξφ

·∧τφ
i −
, z′)q(z′|Zz,φ

τφ
i −
, αφ

i , υ)dQ(z′|Zz,φ

τφ
i −
, αφ

i ))
]

= Em

[∫
ϕ̄(Xz,φ

·∧τφ
i −
, ξφ

·∧τφ
i −
, z′)

(∫
C

q(z′|Zz,φ

τφ
i −
, αφ

i , u)dM z,m,φ

τφ
i −

(u)
)
dQ(z′|Zz,φ

τφ
i −
, αφ

i ))
]
.

Let us now introduce the notation Mi[C](z′) := M(M z,m,φ

τφ
i −

; z′, Zz,φ

τφ
i −
, αφ

i ). Then,

Em

[
1{υ∈C}ϕ(Xz,φ

·∧ϑφ
i

, ξφ

·∧ϑφ
i

)
]

= Em

[∫
ϕ̄(Xz,φ

·∧τφ
i −
, ξφ

·∧τφ
i −
, z′)Mi[C](z′)q(z′|Zz,φ

τφ
i −
, αφ

i , υ)dQ(z′|Zz,φ

τφ
i −
, αφ

i ))
]

= Em

[
ϕ(Xz,φ

·∧ϑφ
i

, ξφ

·∧ϑφ
i

)Mi[C](Zz,φ

ϑφ
i

)
]
.

This concludes the proof. �

Remark 2.2.2. For later use, note that the above provides the joint conditional distribution
of (Zz,φ

ϑφ
i

,M z,m,φ

ϑφ
i

) given F z,m,φ
τi− . Namely, for Borel sets B ∈ B([t, T ]×Rd) and D ∈ B(M), a

simple application of Fubini’s Lemma implies that

P[(Zz,φ

ϑφ
i

,M z,m,φ

ϑφ
i

) ∈ B ×D|F z,m,φ

τφ
i −

] = k(B ×D|Zz,φ

τφ
i −
,M z,mφ

τφ
i −

, αφ
i ) (2.2.11)
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in which

k(B ×D|zo,mo, ao) :=
∫

U

∫
B

1D(M(mo; z′, zo, ao))q(z′|zo, ao, u)dQ(z′|z, a)dmo(u), (2.2.12)

for (zo,mo, ao) ∈ Z × M × A.

2.2.3 Gain function
Given z = (t, x) ∈ Z and m ∈ M, the aim of the controller is to maximize the expected value
of the gain functional

φ ∈ Φz,m 7→ Gz,m(φ) := g(Zz,φ
T[φ],M

z,m,φ
T[φ] , υ, ε0),

in which T[φ] is the end of the last action after T :

T[φ] := sup{ϑφ
i : i ≥ 1, τφ

i ≤ T} ∨ T.

As suggested earlier, the gain may not only depend on the value of the original time-space
state process Zz,φ

T[φ] but also on M z,m,φ
T[φ] , to model the fact that we are also interested by the

precision of the estimation made on υ at the final time. One also allows for terminating the
last action after T . However, since g can depend on T[φ] through Zz,φ

T[φ], one can penalize the
actions that actually terminates strictly after T .

Hereafter, the function g is assumed to be measurable and bounded 2 on Z × M × U × E.

Given φ ∈ Φz,m, the expected gain is

J(z,m;φ) := Em [Gz,m(φ)] ,

and

v(z,m) := sup
φ∈Φz,m

J(z,m;φ)1{t≤T } + 1{t>T }Em [g(z,m, υ, ε0)] (2.2.13)

is the corresponding value function. Note that v depends on m through the set of admissible
controls Φz,m and the expectation operator Em, even if g does not depend on M z,m,φ

T[φ] .

Remark 2.2.3. Note that a running gain term could be added without any difficulty. One
usually reduces to a Mayer formulation by adding a component to the space process and by
modifying the terminal reward accordingly. Here, if this running gain only covers the period
[0, T ], it should be added explicitly because of the modified time horizon T[φ] at which the
terminal gain is computed.

2. Boundedness is just for sake of simplicity. Much more general frameworks could easily be considered.
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2.3 Value function characterization
The aim of this section is to provide a characterization of the value function v. As usual, it
should be related to a dynamic programming principle. In our setting, it corresponds to :
Given z = (t, x) ∈ Z and m ∈ M, then

v(z,m) = sup
φ∈Φz,m

Em[v(Zz,φ
θφ ,M

z,m,φ
θφ )], (2.3.1)

for all collection (θφ, φ ∈ Φz,m) of Fz,m,φ-stopping times with values in [t, 2T ] such that
θφ ∈ N φ ∩ [t,T[φ]] Pm − a.s., recall the definition of N φ in (2.2.2).
Let us comment this. First, one should restrict to stopping times such that θφ ∈ N φ. The
reason is that no new impulse can be made outside of N φ, each interval [τφ

i , ϑ
φ
i ) is a latency

period. Second, the terminal gain is evaluated at T[φ], which in general is different from T .
Hence, the fact that θφ is only bounded by T[φ].
A partial version of (2.3.1) will be proved in Proposition 2.4.2 below and will be used to
provide a sub-solution property. As already mentioned in the introduction, we are not able to
prove a full version (2.3.1). The reason is that the value function v depends on z = (t, x) ∈ Z
and m ∈ M through the set of admissible controls Φz,m, and more precisely through the
choice of the filtration Fz,m,φ, which even depends on φ itself. This makes this dependence
highly singular and we are neither in position to play with any a-priori smoothness, see
e.g. [22], nor to apply a measurable selection theorem, see e.g. [17].
We continue our discussion, assuming that (2.3.1) holds and that v is sufficiently smooth.
Then, it should in particular satisfy v(z,m) ≥ Em[v(Zz,◦

t+h,m)] whenever z = (t, x) ∈ [0, T ) ×
Rd and 0 < h ≤ T − t (Zz,◦ is defined after (2.2.5)). This corresponds to the sub-optimality
of the control consisting in making no impulse on [t, t + h]. Applying Itô’s lemma, dividing
by h and letting h go to 0, we obtain −Lv(z,m) ≥ 0 in which L is the Dynkin operator
associated to Xz,◦,

Lϕ := ∂tϕ+ 〈µ,Dϕ〉 + 1
2Tr[σσ>D2ϕ].

On the other hand, it follows from (2.3.1) and Remark 2.2.2 that

v(z,m) ≥ sup
a∈A

Em[v(z′[z, a, υ, ε1],M(m; z′[z, a, υ, ε1], z, a))] = Kv(z,m)

where Kϕ := sup
a∈A

Kaϕ with Kaϕ :=
∫
ϕ(z′,m′)dk(z′,m′|·, a) for a ∈ A. (2.3.2)

As for the time-T boundary condition, the same reasoning as above implies v(T, ·) ≥ KTg
and v(T, ·) ≥ Kv(T, ·), in which

KTg(·,m) =
∫

U

∫
E
g(·,m, u, e)dPε(e)dm(u). (2.3.3)

By optimality, v should therefore solve the quasi-variational equations

min {−Lϕ , ϕ− Kϕ} = 0 on [0, T ) × Rd × M (2.3.4)
min {ϕ− KTg, ϕ− Kϕ} = 0 on {T} × Rd × M, (2.3.5)

in the sense of the following definition (given for sake of clarity).
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Definition 2.3.1. We say that a lower-semicontinuous function U on R+ × Rd × M is
a viscosity super-solution of (2.3.4)-(2.3.5) if for any z◦ = (t◦, x◦) ∈ Z, m◦ ∈ M, and
ϕ ∈ C1,2,0([0, T ] × Rd × M) such that minZ×M(U − ϕ) = (U − ϕ)(z◦,m◦) = 0 we have[

min {−Lϕ , ϕ− KU} 1{t◦<T } + min {ϕ− KTg, ϕ− KU} 1{t◦=T }
]

(z◦,m◦) ≥ 0.

We say that a upper-semicontinuous function U on R+ × Rd × M is a viscosity sub-solution
of (2.3.4)-(2.3.5) if for any z◦ = (t◦, x◦) ∈ Z, m◦ ∈ M and ϕ ∈ C1,2,0([0, T ] × Rd × M) such
that maxZ×M(U − ϕ) = (U − ϕ)(z◦,m◦) = 0 we have[

min {−Lϕ , ϕ− KU} 1{t◦<T } + min {ϕ− KTg, ϕ− KU} 1{t◦=T }
]

(z◦,m◦) ≤ 0.

We say that a continuous function U on R+ ×Rd ×M is a viscosity solution of (2.3.4)-(2.3.5)
if it is a super- and a sub-solution.

To ensure that the above operator is continuous, we assume from now on that, on R+×Rd×M,

KTg is continuous, and Kϕ is upper- (resp. lower-) semicontinuous,
for all upper- (resp. lower-) semicontinuous bounded function ϕ. (2.3.6)

A sufficient condition for (2.3.6) to hold is that k defined in (2.2.12) is a continuous stochastic
kernel, see [17, Proposition 7.31 and 7.32 page 148].
Finally, we assume that comparison holds for (2.3.4)-(2.3.5).

Assumption 2.3.1. Let U (resp. V ) be a upper- (resp. lower-) semicontinuous bounded
viscosity sub- (resp. super-) solution of (2.3.4)-(2.3.5). Assume further that U ≤ V on (T,∞)×
Rd × M. Then, U ≤ V on Z × M.

See Proposition 2.5.1 below for a sufficient condition. We are now in position to state the
main result of this paper. The proof is provided in the next section.

Theorem 2.3.1. Let Assumption 2.3.1 (or the conditions of Proposition 2.5.1 below) hold.
Then, v is continuous on Z×M and is the unique bounded viscosity solution of (2.3.4)-(2.3.5).

Remark 2.3.1. We do not discuss here the issue of existence of an optimal control, we refer
to subsection 2.6.2 for the construction of approximately optimal controls. Note also that the
construction of Section 2.4.2 below produces an almost optimal control as the arguments of
Section 2.4.4 show that the sequence of value functions (vn)n≥1 actually converges to v.

2.4 Viscosity solution properties
This part is dedicated to the proof of the viscosity solution characterization of Theorem
2.3.1. We start with the sub-solution property, which is the more classical part. As for the
super-solution property, we shall later on introduce a discrete time version of the model that
will provide a natural lower bound. We will then show that the sequence of corresponding
value functions converges to a super-solution of our quasi-variational equation as the time
step goes to 0. By comparison, we will finally identify this (limit) lower bound to the original
value function, thus showing that the later is also a super-solution.
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2.4.1 Sub-solution property
We start with the sub-solution property and show that it is satisfied by the upper-semicontinuous
envelope of v defined in (2.2.13) :

v∗(z,m) := lim sup
(z′,m′)→(z,m)

v(z′,m′) , (z,m) ∈ R+ × Rd × M.

Proposition 2.4.1. v∗ is a viscosity subsolution of (2.3.4)-(2.3.5).

The proof is rather standard. As usual, it is based on the partial dynamic programming
principle contained in Proposition 2.4.2 below, that can be established by adapting standard
lines of arguments, see e.g. [22]. For this part, the dependency of the filtration on the initial
data is not problematic as it only requires a conditioning argument. Before to state it, let us
make an observation.

Remark 2.4.1. Note that, given z = (t, x) ∈ Z, the process Xz,◦ defined in (2.2.5) is
predictable with respect to the P-augmentation of the raw filtration Ft,W generated by (W·∨t −
Wt). By [34, Lemma 7, Appendix I], it is indistinguishable from a Ft,W -predictable process.
Using this identification, Xz,◦

s (ω) = Xz,◦
s (ωt,s) for s ≥ t, with ωt,s := ωt∨·∧s − ωt. Similarly,

τφ
1 and αφ

1 can be identified to Borel measurable maps on C([0, T ];Rd) that depends only on
ωt,τφ

1 (ωt,T ) so that (Zz,φ

ϑφ
1
,M z,m,φ

ϑφ
1

) can be seen as a Borel map on C([0, T ];Rd) × U × E, while

(Zz,φ

τφ
1 −
,M z,m,φ

τφ
1 −

) can be seen as a Borel map on C([0, T ];Rd) that only depends on ωt,τφ
1 (ωt,T ),

recall (2.2.6), (2.2.8) and (2.2.9). Iterating this argument, we also obtain that (Zz,φ
T[φ],M

z,m,φ
T[φ] )

is equal, up to Pm-null sets, to a Borel map on C([0, T ];Rd) × U × EN , for some N ≥ 1 that
depends on φ.

We use the notations introduced in (2.2.5), (2.3.2) and (2.3.3) in the following.

Proposition 2.4.2. Fix (z,m) ∈ Z × M, and let θ be the first exit time of Zz,◦ from a Borel
set B ⊂ Z containing (z,m). Then,

v(z,m) ≤ sup
φ∈Φz,m

≥t

Em[f(Zz,◦
θ ,m)1{θ<τφ

1 } + Kαφ
1 f(Zz,◦

τφ
1 −
,m)]1{θ≥τφ

1 }] (2.4.1)

in which z := (t, x), Φz,m
≥t := {φ ∈ Φz,m : τφ

1 ≥ t} and

f(z′,m′) := v∗(z′,m′)1{t′<T } + KTg(z′,m′)1{t′≥T } (2.4.2)

for z′ = (t′, x′) ∈ A and m′ ∈ M.

Proof. Let N ≥ 1 be such that τφ
i > T for i ≥ N . By right continuity of (Zz,φ,M z,m,φ) and

upper-semicontinuity of f and Kf on [0, T )×Rd×M, see (2.3.6), it suffices to prove the result
for the projections on the right of θ and τφ

1 on a deterministic time grid. Then, it is enough to
consider the case where (θ, τφ

1 ) ≡ (s, s′) ∈ [t, T ]2, by arguing as below and conditioning by the
values taken by (θ, τφ

1 ) on the grid. In the following, we use regular conditional expectation
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operators. We shall make use of Remark 2.4.1. In particular, we write φ(ω, u, (ei)i≤N) to
denote the Borel map (ω, u, (ei)i≤N) ∈ C([0, T ];Rd) × U × EN 7→ {(τφ

i , α
φ
i )(ωt,T , u, (ej)j≤i−1),

i ≤ N} associated to φ. If s < s′, we have Pm-a.s.

Em[Gz,m(φ)|F z,m,φ
s ](ω, u, (ei)i≥1) = Em[GZz,◦

s (ωt,s),m(φωt,s)]

= Em[KTg(X
Zz,◦

s (ωt,s),φωt,s

T ,M
Zz,◦

s (ωt,s),m,φωt,s

T )]

in which KT is defined in (2.3.3) and

φωt,s : (ω′, u, (ei)i≤N) ∈ C([s, T ];Rd) × U × EN 7→ φ(ωt,s + ω′
·∨s − ω′

s, u, (ei)i≤N)

is an element of ΦZz,◦
s (ωt,s),m,φωt,s . It follows that Em[Gz,m(φ)|F z,m,φ

s ]1s<s′ ≤ f(Zz,◦
s ,m)1s<s′

Pm − a.s. Similarly, if s ≥ s′, we have Pm-a.s.

Em[Gz,m(φ)|F z,m,φ
s′− ](ω, u, (ei)i≤N) = Em[Gξ(ωt,s′

,υ,ε1,αφ
1 (ωt,s′ ))(φωt,s′ )]

with

ξ(ωt,s′
, υ, ε1, α

φ
1 (ωt,s′)) =

(
·,M(m; ·, Zz,◦

s′−(ωt,s′), αφ
1 (ωt,s′))

)
◦ z′(Zz,◦

s′−(ωt,s′), αφ
1 (ωt,s′), υ, ε1),

recall the notations in (2.2.6) and (2.2.10). Hence, Pm-a.s.,

Em[Gz,m(φ)|F z,m,φ
s′− ](ω, u, (ei)i≤N) ≤ Em[f(ξ(ωt,s′

, υ, ε1, α
φ
1 (ωt,s′)))] = Kαφ

1 (ωt,s′ )f(Zz,◦
s′−(ωt,s′),m),

in which a ∈ A 7→ Ka is defined in (2.3.2). �

Proof of Proposition 2.4.1 As already mentioned, the proof is standard, we provide it for
completeness. Let ϕ be a (bounded) C1,2,0 function and fix (z◦,m◦) ∈ Z × M such that

0 = (v∗ − ϕ)(z◦,m◦) = max
Z×M

(v∗ − ϕ). (2.4.3)

We use the notation z◦ = (t◦, x◦) ∈ [0, T ] × Rd.
Step 1. We first assume that t◦ < T . Let us suppose that min {−Lϕ , ϕ− Kv∗} (z◦,m◦) > 0,
and work towards a contradiction to Proposition 2.4.2. Let dM be a metric compatible with
the weak topology and let ‖ · ‖Z be the Euclidean norm on Z. We define

ϕ̄(z′,m′) := ϕ(z′,m′) + ‖z′ − z◦‖4
Z + dM(m′,m◦).

If the above holds, then min {−Lϕ̄ , ϕ̄− Kv∗} (z◦,m◦) > 0. By our continuity assumption
(2.3.6), we can find ι, η > 0, such that

min {−Lϕ̄ , ϕ̄− Kv∗} ≥ η on Bι, (2.4.4)

in which

Bι := {(z′,m′) ∈ Z × M : ‖z′ − z◦‖4
Z + dM(m′,m◦) < ι} ⊂ [0, T ) × Rd × M.
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Note that, after possibly changing η > 0, we can assume that

(v∗ − ϕ̄) ≤ −η on (Bι)c. (2.4.5)

In the following, we let (z,m) ∈ Bι be such that

|v(z,m) − ϕ̄(z,m)| ≤ η/2, (2.4.6)

recall (2.4.3). As above, we write z = (t, x) ∈ [0, T ]×Rd. Fix φ ∈ Φz,m. We write (τi, αi, ϑi)i≥1,
Z and M for (τφ

i , α
φ
i , ϑ

φ
i )i≥1, Zz,φ and M z,m,φ. Let θ be the first time when (Z,M) exits Bι.

Without loss of generality, one can assume that τ1 ≥ t. Define χ := θ1{θ<τ1} + 1{θ≥τ1}ϑ1. In
view of (2.4.4), (2.4.5) and (2.4.6),

Em[v∗(Zχ,Mχ)] = Em[v∗(Zϑ1 ,Mϑ1)1{χ 6=θ} + v∗(Zθ,Mθ)1{χ=θ}]
≤ Em[Kv∗(Zτ1−,Mτ1−)1{χ 6=θ} + v∗(Zθ,Mθ)1{χ=θ}]
≤ Em[ϕ̄(Zθ∧τ1−,Mθ∧τ1−)] − η

≤ ϕ̄(z,m) − η

≤ v(z,m) − η/2.

Since χ < T , this contradicts Proposition 2.4.2 by arbitrariness of φ.
Step 2. We now consider the case t◦ = T . We assume that min {ϕ− Kv∗ , ϕ− KTg} (z◦,m◦) >
0, and work toward a contradiction. Let us define

ϕ̄(t′, x′,m′) := ϕ̄(t′, x′,m′) + C(T − t′) + ‖(t′, x′) − z◦‖4
Z + dM(m′,m◦)

and note that, for C large enough, min {−Lϕ̄ , ϕ̄− Kv∗ , ϕ̄− KTg} (z◦,m◦) > 0. Then, as
in Step 1, we can find ι, η > 0, such that

min {−Lϕ̄ , ϕ̄− Kv∗ , ϕ̄− KTg} ≥ η on Bι,

in which

Bι := {(t′, x′,m′) ∈ (T − ι, T ] × M : ‖x′ − x◦‖4
Rd + dM(m′,m◦) < ι}.

After possibly changing η > 0, one can assume that

(v∗ − ϕ̄) ≤ −η on (Bι)c.

Let (t, x,m) ∈ Bι be such that

|v(t, x,m) − ϕ̄(t, x,m)| ≤ η/2.

One can assume that t < T . Otherwise, this would mean that

v∗(z◦,m◦) = lim sup
(T,x′,m′)→(z◦,m◦)

v(T, x′,m′) = lim sup
(T,x′,m′)→(z◦,m◦)

KT (T, x′,m′) = KTg(z◦,m◦),

recall (2.3.6), and there is nothing to prove. Given φ ∈ Φz,m, with z := (t, x), let (τ1, ϑ1, Z =
(·, X),M) be defined as in Step 1 with respect to φ and (z,m), and consider χ := θ1{θ<τ1} +
1{θ≥τ1}ϑ1, where θ is the first exit time of (X,M) from {(x′,m′) ∈ Rd × M : ‖x′ − x◦‖4

Rd +
dM(m′,m◦) < ι}. As in Step 1, the above implies that Em[v∗(Zχ,Mχ)] ≤ v(z,m)−η/2, which
contradicts Proposition 2.4.2 by arbitrariness of φ. �

25



2.4.2 Discrete time approximation and dynamic programming
In this part, we prepare for the proof of the super-solution property. As already mentioned
above, we could not provide the opposite inequality in (2.4.1), with v∗ replaced by the lower-
semicontinuous envelope of v, because of the non-trivial dependence of Fz,m,φ with respect to
the initial data. Instead, we use the natural idea of approximating our continuous time control
problem by a sequence of discrete time counterparts defined on a sequence of time grids. In
discrete time, the dynamic programming principle can be proved along the lines of [17] for
the corresponding value functions (vn)n≥1. Passing to the limit as the time mesh vanishes
provides a super-solution v◦ of (2.3.4)-(2.3.5). As v∗ is a sub-solution of the same equation,
Assumption 2.3.1 will imply that v◦ ≥ v∗, while the opposite will hold by construction. Then,
we will conclude that v is a actually a super-solution, and is even continuous. This approach
is similar to the one used in [38] in the context of differential games.
We first construct the sequence of discrete time optimal control problems. For n ≥ 1, let
πn := {tnj , j ≤ 2n} with tnj := jT/2n, and let Φz,m

n be the set of controls φ = (τφ
i , α

φ
i )i≥1 in

Φz,m such that (τφ
i )i≥1 takes values in πn ∪{t}∪ [T,∞), if z = (t, x). The corresponding value

function is
vn(z,m) = sup

φ∈Φz,m
n

J(z,m, φ), (z,m) ∈ Z × M.

We extend vn by setting

vn := KTg, on (T,∞) × M, (2.4.7)

Remark 2.4.2. Note that vn ≤ v ≤ v∗ by construction.
We first prove that vn satisfies a dynamic programming principle. This requires additional
notations. We first define the next time on the grid at which a new action can be made, given
that a is plaid :

sn,a[t, x] := min{s ∈ πn ∪ [T,∞) : s ≥ $(t, x, a, υ, εj) and s > t}.

Let ∂ denote a cemetery point that does not belong to A. Given a ∈ A∪{∂}, we make a slight
abuse of notation by denoting by (Z(t,x),a,M (t,x),m,a) the process defined as (Z(t,x),φ,M (t,x),m,φ)
for φ such that

(τφ
1 , α

φ
1 ) = (t, a)1{a6=∂} + (T + 1, a?)1{a=∂}

in which a? ∈ A and τφ
i > T + 1 for i > 1. Then, we set

J̄(T, ·; a) := KT Kag , v̄n(T, ·) := sup
a∈A∪{∂}

J̄(T, ·; a) on Rd × M × (A ∪ {∂}),

with the convention that K∂ is the identity, and define by backward induction on the intervals
[tnj , T ), j = n− 1, · · · , 0,

J̄(z,m; a) := Em[v̄n(Zz,a
sn,a[z],M

z,m,a
sn,a[z])] , v̄n := sup

a∈A∪{∂}
J̄(·; a),

together with the extension

v̄n := KTg on (T,∞) × Rd × M.
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Lemma 2.4.1. Fix ι > 0. Then, there exists a universally measurable map (z,m) ∈ Z×M 7→
ân,ι[z,m] ∈ A ∪ {∂} such that J̄(·; ân,ι[·]) ≥ v̄n − ι on Z × M. Moreover, the map v̄n is upper
semi-analytic.

Proof. Since KTg is assumed to be upper semi-analytic (indeed continuous), it follows from
[17, Proposition 7.48 page 180] that J̄ is upper semi-analytic on [tnn−1, T ]×Rd×M×(A∪{∂}).
Then, the required result holds on [tnn−2, T ] × Rd × M by [17, Proposition 7.50 page 184]. It
is then extended to [0, T ] × Rd × M by a backward induction. �

Proposition 2.4.3. v̄n = vn on Z×M. Moreover, given a random variable (ζ, µ) with values
in Z × M and ι > 0, there exists a measurable map (z,m) 7→ φι[z,m] such that

J(ζ, µ;φι[ζ, µ]) ≥ vn(ζ, µ) − ι Pm − a.s.

Proof. The proof proceeds by induction. Our claim follows from definitions on [tnn, T ]×Rd ×
M. Assume that it holds on [tnj+1, T ] × Rd × M for some j ≤ n− 1. For the following, we fix
z = (t, x) ∈ Z with t ∈ [tnj , tnj+1) and m ∈ M.
Step 1 : In this step, we first construct a suitable candidate to be an almost-optimal control.
Fix ε1, . . . , εn > 0, ε0 := 0, and set ε(i) := (ε0, ε1, . . . , εi). Let (ân,ι)ι>0 be as in Lemma 2.4.1,
and consider its extension defined by ân,ι = a? on (T,∞) × Rd × M. Define rε(0)

1 := t and
φ

ε(1)
1 ∈ Φz,m

n by

(τφ
ε(1)
1

i , α
φ

ε(1)
1

i ) = (rε(0)
1 , ãn,ε1 [rε(0)

1 , x,m])1{i=1} + 1{i>1}(T + i, a?) , i ≥ 1.

where
ãn,ε1 [rε(0)

1 , x,m] := ân,ε1 [rε(0)
1 , x,m].

We then set

r
ε(1)
2 := min πn ∩ [ϑφ

ε(1)
1

1 , 2T ] ∩ (rε(0)
1 ,∞).

By Lemma 2.4.1 and [17, Lemma 7.27 page 173] applied to the pull-back measure of (Zz,φ
ε(1)
1

r
ε(1)
2

,

M
z,m,φ

ε(1)
1

r
ε(1)
2

), we can find a Borel measurable map (t′, x′,m′) ∈ Z × M 7→ ãn,ε2
2 [t′, x′,m′] ∈

A ∪ {∂} such that

ãn,ε2 [Zz,φ
ε(1)
1

r
ε(1)
2

,M
z,m,φ

ε(1)
1

r
ε(1)
2

] = ân,ε2 [Zz,φ
ε(1)
1

r
ε(1)
2

,M
z,m,φ

ε(1)
1

r
ε(1)
2

] Pm − a.s.

We define φε(2)
2 by

(τφ
ε(2)
2

i , α
φ

ε(2)
2

i ) = (rε(1)
2 , ãn,ε2 [Zz,φ

ε(1)
1

r
ε(1)
2

,M
z,m,φ

ε(1)
1

r
ε(1)
2

])1{i=2,r
ε(1)
2 ≤T } + (τφ

ε(1)
1

i , α
φ

ε(1)
1

i )1{i 6=2}∪{r
ε(1)
2 >T },
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for i ≥ 1. We then define recursively for k ≥ 2

r
ε(k)
k+1 := inf πn ∩ [ϑφ

ε(k)
k

k , 2T ] ∩ (rε(k−1)
k ,∞)

(τφ
ε(k+1)
k+1

i , α
φ

ε(k+1)
k+1

i ) =(rε(k)
k+1, ã

n,εk+1 [Zz,φ
ε(k)
k

r
ε(k)
k+1

,M
z,m,φ

ε(k)
k

r
ε(k)
k+1

])1{i=k+1,r
ε(k)
k+1≤T }

+ (τφ
ε(k)
k

i , α
φ

ε(k)
k

i )1{i 6=k+1}∪{r
ε(k)
k+1>T },

for i ≥ 1, in which (t′, x′,m′) ∈ Z × M 7→ ã
n,εk+1
k+1 [t′, x′,m′] ∈ A ∪ {∂} is a Borel measurable

map such that

ãn,εk+1 [Zz,φ
ε(k)
k

r
ε(k)
k+1

,M
z,m,φ

ε(k)
k

r
ε(k)
k+1

] = ân,εk+1 [Zz,φ
ε(k)
k

r
ε(k)
k+1

,M
z,m,φ

ε(k)
k

r
ε(k)
k+1

] Pm − a.s.

We finally set
φε := (τφ

ε(i)
i

i , α
φ

ε(i)
i

i )i≥1 ∈ Φz,m
n .

Step 2 : We now prove that v̄n(z,m) ≥ vn(z,m). By the above construction and Lemma
2.4.1,

v̄n(z,m) ≥ J̄(z,m;αφ
ε(1)
1

1 ) ≥ v̄n(z,m) − ε1.

Since vn(tk, ·) = v̄n(tk, ·) for k > j by our induction hypothesis, we obtain

v̄n(z,m) ≥ sup
a∈A∪{∂}

Em[vn(Zz,a

r
ε(1)
2
,M z,m,a

r
ε(1)
2

)] − ε1 ≥ vn(z,m) − ε1,

in which the last inequality follows from a simple conditioning argument as in the proof of
Proposition 2.4.2. By arbitrariness of ε1 > 0, this implies that v̄n(z,m) ≥ vn(z,m).
Step 3 : It remains to prove that v̄n(z,m) ≤ vn(z,m). Define

Y
ε(i−1)

i := (Zz,φε

r
ε(i−1)
i

,M z,m,φε

r
ε(i−1)
i

), i ≥ 1,

with Y
ε(−1)

0 := (z,m), and observe that Y ε(i−1)
i and F z,m,φε

r
ε(i−1)
i

only depend on ε(i − 1). Then,
for each i ≥ 0,

v̄n(Y ε(i−1)
i ) = lim

εi↓0
Em[v̄n(ZY

ε(i−1)
i ,φ

ε(i)
i

r
ε(i)
i+1

,M
Y

ε(i−1)
i ,φ

ε(i)
i

r
ε(i)
i+1

)|F z,m,φε

r
ε(i−1)
i

]]

= lim
εi↓0

Em[1{r
ε(i)
i+1≤T }v̄n(ZY

ε(i−1)
i ,φ

ε(i)
i

r
ε(i)
i+1

,M
Y

ε(i−1)
i ,φ

ε(i)
i

r
ε(i)
i+1

)|F z,m,φε

r
ε(i−1)
i

]

+ lim
εi↓0

Em[1{r
ε(i)
i+1>T }g(Z

Y
ε(i−1)

i ,φ
ε(i)
i

r
ε(i)
i+1

,M
Y

ε(i−1)
i ,φ

ε(i)
i

r
ε(i)
i+1

, υ, ε0)|F z,m,φε

r
ε(i−1)
i

] Pm − a.s.

on {rε(i−1)
i ≤ T}. Since g is bounded, so is v̄n. The above combined with the dominated

convergence theorem then implies

v̄n(z,m) = lim
ε1↓0

· · · lim
εn↓0

Em[
n∑

i=0
1{r

ε(i)
i+1>T ≥r

ε(i−1)
i }g(Z

Y
ε(i−1)

i ,φ
ε(i)
i

r
ε(i)
i+1

,M
Y

ε(i−1)
i ,φ

ε(i)
i

r
ε(i)
i+1

, υ, ε0)]

= lim
ε1↓0

· · · lim
εn↓0

J(z,m;φε) ≤ vn(z,m),
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which concludes the proof that v̄n = vn.
Step 4. The second assertion of the proposition is obtained by observing that, given a ran-
dom variable (ζ, µ) with values in Z × M, one can choose ãn,ε1 Borel measurable such that
ãn,ε1 [ζ, µ] = ân,ε1 [ζ, µ] Pm − a.s. �

We are now in position to conclude that vn satisfies a dynamic programming principle.

Corollary 2.4.1. Fix z = (t, x) ∈ Z and m ∈ M. Let (θφ, φ ∈ Φz,m
n ) be such that each θφ

is a Fz,m,φ-stopping time with values in [t, 2T ] ∩ (πn ∪ [T,∞)) such that θφ ∈ N φ ∩ [t,T[φ]]
Pm − a.s. for φ ∈ Φz,m

n . Then,

vn(z,m) = sup
φ∈Φz,m

n

Em[vn(Zz,φ
θφ ,M

z,m,φ
θφ )].

Proof. The inequality ≤ can be obtained trivially by a conditioning argument. Fix φ ∈ Φz,m
n .

By Proposition 2.4.3, we can find a Borel measurable map (z′,m′) 7→ φι[z′,m′] such that

J(Zz,φ
θφ ,M

z,m,φ
θφ ;φι[Zz,φ

θφ ,M
z,m,φ
θφ ]) ≥ vn(Zz,φ

θφ ,M
z,m,φ
θφ ) − ι.

Let us now simply write φι for φι[Zz,φ
θφ ,M

z,m,φ
θφ ]. Without loss of generality, one can assume

that τφ
1 ≥ t and that τφι

1 ≥ θφ. Let I := card{i ≥ 1 : τφ
i < θφ}. Then, J(z,m; φ̃ι) ≥

Em[vn(Zz,φ
θφ ,M

z,m,φ
θφ )] − ι in which (τ φ̃ι

i , αφ̃ι

i ) = 1i≤I(τφ
i , α

φ
i ) + 1i>I(τφι

i−I , α
φι

i−I), i ≥ 1. Sending
ι → 0 leads to the required result. �

2.4.3 Super-solution property as the time step vanishes
We now consider the limit n → ∞. Let us set, for (z,m) ∈ R+ × Rd × M,

v◦(z,m) := lim inf
(t′,x′,m′,n)→(z,m,∞)

vn(t′, x′,m′).

Remark 2.4.3. Note that (2.4.7) and (2.3.6) implies that v◦ = KTg on (T,∞) × Rd × M.

Proposition 2.4.4. The function v◦ is a viscosity super-solution of (2.3.4)-(2.3.5).

Proof. Let nk → ∞ and (zk,mk) → (zo,m◦) be such that vnk
(zk,mk) → v◦(zo,mo).

Step 1. We first show that v◦(z◦,m◦) ≥ Kv◦(z◦,m◦). By Corollary 2.4.1 applied to vnk
with

a control φk defined by (τ k
i , α

k
i ) = (tk, ak)1{i=1} +∑

j>1(T + j, a?)1{i=j}, i ≥ 1, with ak ∈ A,
we obtain

vnk
(zk,mk) ≥ sup

ak∈A

∫
E[vnk

(Zz′,◦
s

nk
+ [z′],m

′)]dk(z′,m′|zk,mk, ak)] = KE[vnk
(Z ·,◦

s
nk
+ [·], ·)](zk,mk),

in which snk
+ [t, x] := min πnk

∩ [t,∞). Let ϕk◦ be the lower-semicontinuous envelope of
inf{E[vnk

(Z ·,◦
s

nk
+ [·], ·)], k ≥ k◦}. Then, for k ≥ k◦, vnk

(zk,mk) ≥
∫
ϕk◦(z′,m′)dk(z′,m′|zk,mk, ak),

and, by (2.3.6), passing to the limit k → ∞ leads to v◦(z◦,m◦) ≥
∫
ϕk◦(z′,m′)dk(z′,m′|z◦,m◦, a◦).

We shall prove in step 3 that limk◦→∞ ϕk◦ ≥ v◦. These maps are bounded, since g is. Domi-
nated convergence then implies that v◦(z◦,m◦) ≥

∫
v◦(z′,m′)dk(z′,m′|z◦,m◦, a◦).
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Step 2. Let ϕ be a (bounded) C1,2,0([0, T ] ×Rd × M) function and (z◦,m◦) ∈ [0, T ) ×Rd × M
be a minimal point of v◦ − ϕ on Z × M. Without loss of generality, one can assume that
(v◦ − ϕ)(z◦,m◦) = 0. Let B and (zk,mk, nk)n≥1 be as in Lemma 2.4.2 below. We write
zk = (tk, xk), z◦ = (t◦, x◦) ∈ [0, T ] × Rd. On the other hand, by considering the control φk

defined by (τ k
i , α

k
i ) = (T + i, a?), i ≥ 1, we obtain from Corollary 2.4.1 that

vnk
(zk,mk) ≥ Em[vnk

(Zzk,◦
tk+hk

,m)]

with hk ∈ T2−nk(N ∪ {0}) such that tk + hk < T if t◦ 6= T and tk + hk = T otherwise.
Let C > 0 be a common bound for (vn)n≥1 and ϕ. Then we can choose (hk)k≥1 such that

δk := (ϕ(zk,mk) − vnk
(zk,mk) − 2C P[Zzk,◦

tk+hk
/∈ B])/hk → 0.

This follows from standard estimates on the solution of sde’s with Lipschitz coefficients. Then,
if t◦ < T ,

0 ≥ h−1
k Em[ϕ(Zzk,◦

tk+hk
,mk) − ϕnk

(zk,mk)] + δk = Em[h−1
k

∫ tk+hk

tk

Lϕ(Zzk,◦
s ,mk)ds] + δk,

sending k → ∞ leads to Lϕ(z◦,m◦) ≤ 0. If t◦ = T , vnk
(zk,mk) ≥ Em[g(Zzk,◦

T ,mk, υ, ε0)] =
Em[KTg(Zzk,◦

T ,mk)] and passing to the limit leads to ϕ(z◦,m◦) ≥ KTg(z◦,m◦), recall (2.3.6).
Finally, ϕ(z◦,m◦) ≥ Kϕ(z◦,m◦) by Step 1. �
Step 3 : It remains to prove the claim used in Step 1. Let us set

ϕ̄k◦(z′,m′) := inf
k≥k◦

{
E
[
vnk

(
Zz′,◦

s
nk
+

[z′],m′)
)]}

,

so that ϕk◦ is the lower-semicontinuous envelope of ϕ̄k◦ . Note that Zz′,◦
s

nk
+ [z′] converges a.s. to

z as (z′, k) → (z,∞). Hence, for all ε > 0, there exist open neighborhoods Bε(z,m) and
B ε

2
(z,m) of (z,m), as well as kε ∈ N such that P[(Zz′,◦

s
nk
+ [z′],m

′) /∈ Bε(z,m)] ≤ ε for k ≥ kε

and (z′,m′) ∈ B ε
2
(z,m). One can also choose kε and B ε

2
(z,m) such that infk≥kε vnk

(z′,m′) ≥
v◦(z,m′) − ε for all k ≥ kε and (z′,m′) ∈ B ε

2
(z,m). Let C > 0 be a bound for (|vn|)n≥1 and

|v◦|, recall that g is bounded. Then, for k◦ large enough and (z′,m′) ∈ B ε
2
(z,m),

ϕ̄k◦(z′,m′) ≥ v◦(z,m) − ε− 2C sup
k≥k◦

P[(Zz′,◦
s

nk
+ [z′],m

′) /∈ Bε(z,m)] ≥ v◦(z,m) − ε(1 + 2C).

Hence, since v◦ is lower-semicontinuous,

lim
k◦→∞

ϕk◦(z,m) = lim
k◦→∞

lim inf
(z′,m′)→(z,m)

ϕ̄k◦(z′,m′) ≥ v◦(z,m).

�

We conclude this section with the technical lemma that was used in the above proof.
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Lemma 2.4.2. Let (un)n≥1 be a sequence of lower semi-continuous maps on Z × M and
define u◦ := lim inf(z′,m′,n)→(·,∞) un(z′,m′) on Z × M. Assume that u◦ is locally bounded. Let
ϕ be a continuous map and assume that (z◦,m◦) is a strict minimal point of u◦ −ϕ on Z×M.
Then, one can find a bounded open set B of [0, T ] × Rd and a sequence (zk,mk, nk)n≥1 ⊂
B × M × N such that nk → ∞, (zk,mk) is a minimum point of unk

− ϕ on B × M and
(zk,mk, unk

(zk,mk)) → (zo,m◦, u◦(zo,mo)).

Proof. Since M is assumed to be locally compact, it suffices to repeat the arguments in the
proof of [12, p80, Proof of Lemma 6.1]. �

2.4.4 Conclusion of the proof of Theorem 2.3.1
We already know from Proposition 2.4.1 and Proposition 2.4.4 that v∗ and v◦ are respectively
a bounded viscosity sub- and super-solution of (2.3.4)-(2.3.5). By (2.2.13), Remark 2.4.3 and
(2.3.6), we also have v◦ ≥ v∗ on (0, T ) × Rd × M. In view of Assumption 2.3.1 and Remark
2.4.2, v is continuous on Z×M and is the unique bounded viscosity solution of (2.3.4)-(2.3.5).

�

Remark 2.4.4. The above arguments actually show that (vn)n≥1 converges to v.

2.5 A sufficient condition for the comparison
In this section, we provide a sufficient condition for Assumption 2.3.1 to hold.

Proposition 2.5.1. Assumption 2.3.1 holds whenever there exists a continuous function Ψ
on [0, 2T ] × Rd × M satisfying

(i) Ψ(.,m) ∈ C1,2([0, T ) × Rd), for all m ∈ M.
(ii) %Ψ ≥ LΨ on [0, T ] × Rd × M for some constant % > 0,
(iii) Ψ − KΨ ≥ δ on [0, T ] × Rd × M for some δ > 0,
(iv) Ψ ≥ KT [g̃] on [T,∞) × Rd × M with g̃(t, .) := e%tg(t, .) and % is defined in (ii),
(v) Ψ− is bounded.

The idea of the proof is the same as in [20, Proposition 4.12]. Note that their condition H2
(v) is not required here because we only consider bounded sub and super-solutions and we
take a different approach. To avoid it, we slighlty reinforce the hypothesis H2 (iii) and asked
for Ψ− to be bounded.
Proof. Step 1. As usual, we shall argue by contradiction. We assume that there exists
(z0,m0) ∈ Z × M such that (U − V )(z0,m0) > 0, in which U and V are as in Assumption
2.3.1. Recall the definition of Ψ, % and g̃ in Proposition 2.5.1. We set ũ(t, x,m) := e%tU(t, x,m)
and ṽ(t, x,m) := e%tV (t, x,m) for all (t, x,m) ∈ Z × M. Then, there exists λ ∈ (0, 1) such
that

(ũ− ṽλ)(z0,m0) > 0, (2.5.1)
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in which ṽλ := (1 − λ)ṽ + λΨ. Note that ũ and ṽ are sub and supersolution on Z × M of

min {%ϕ− Lϕ, ϕ− Kϕ} = 0 (2.5.2)

associated to the boundary condition

min {ϕ− KT g̃, ϕ− Kϕ} = 0. (2.5.3)

Step 2. Let dM be a metric on M compatible with the topology of weak convergence. For
(t, x, y,m) ∈ Z × X × M, we set

Γε(t, x, y,m) := ũ(t, x,m) − ṽλ(t, y,m) − ε
(
‖x‖2 + ‖y‖2 + dM(m)

)
(2.5.4)

with ε > 0 small enough such that Γε(t0, x0, x0,m0) > 0. Note that the supremum of
(t, x,m) 7→ Γε(t, x, x,m) over Z × X × M is achieved by some (tε, xε, xε,mε). This fol-
lows from the the upper semi-continuity of Γε and the fact that ũ,−ṽ,−Ψ are bounded from
above. Recall that M is locally compact. For (t, x, y,m) ∈ Z × X × M, we set

Θn
ε (t, x, y,m) := Γε(t, x, y,m) − n‖x− y‖2.

Again, there is (tεn, xε
n, y

ε
n,m

ε
n) ∈ Z × X × M such that supZ×X×M Θn

ε = Θn
ε (tεn, xε

n, y
ε
n,m

ε
n). It

is standard to show that, after possibly considering a subsequence,

(tεn, xε
n, y

ε
n,m

ε
n) → (t̂ε, x̂ε, x̂ε, m̂ε) ∈ Z × X × M, n‖xε

n − yε
n‖2 → 0,

and Θn
ε (tεn, xε

n, y
ε
n,m

ε
n) → Γε(t̂ε, x̂ε, x̂ε, m̂ε) = Γε(tε, xε, xε,mε),

(2.5.5)

see e.g. [31, Lemma 3.1].
Step 3. We first assume that, up to a subsequence, (ũ − Kũ)(tεn, xε

n,m
ε
n) ≤ 0, for n ≥ 1. It

follows from the supersolution property of ṽ and Condition (iii) of Proposition 2.5.1 that

ũ(tεn, xε
n,m

ε
n) − ṽλ(tεn, yε

n,m
ε
n) ≤ Kũ(tεn, xε

n,m
ε
n) − Kṽλ(tεn, yε

n,m
ε
n) − λδ.

Passing to the lim sup and using (2.5.5) and (2.3.6), we obtain (ũ − ṽλ)(t̂ε, x̂ε, m̂ε) + λδ ≤
K(ũ− ṽλ)(t̂ε, x̂ε, m̂ε). In particular, by (2.5.4), Γε(t̂ε, x̂ε, x̂ε, m̂ε) + λδ ≤ K(ũ− ṽλ)(t̂ε, x̂ε, m̂ε).
Now let us observe that

sup
Z×M

(ũ− ṽλ) = lim
ε→0

sup
(t,x,m)∈Z×M

Γε(t, x, x,m) = lim
ε→0

Γε(tε, xε, xε,mε) = lim
ε→0

Γε(t̂ε, x̂ε, x̂ε, m̂ε),

(2.5.6)

in which the last identity follows from (2.5.5). Combined with the above inequality, this shows
that supZ×M(ũ− ṽλ) + λδ ≤ limε→0 K(ũ− ṽλ)(t̂ε, x̂ε, m̂ε), which leads to a contradiction for
ε small enough.
Step 4. We now show that there is a subsequence such that tεn < T for all n ≥ 1. If not, one
can assume that tεn = T and it follows from the boundary condition (2.5.3) and step 3 that
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ũ(T, xε
n,m

ε
n) ≤ KT g̃(T, xε

n,m
ε
n) for all n ≥ 1. Since, by (2.5.3) and Condition (iv) of Propo-

sition 2.5.1, ṽλ(T, yε
n,m

ε
n) ≥ KT g̃(T, yε

n,m
ε
n), it follows that ũ(T, xε

n,m
ε
n) − ṽλ(T, yε

n,m
ε
n) ≤

KT g̃(T, xε
n,m

ε
n)−KT g̃(T, yε

n,m
ε
n). Hence, Γε(T, xε

n, y
ε
n,m

ε
n) ≤ KT g̃(T, xε

n,m
ε
n)−KT g̃(T, yε

n,m
ε
n).

Combining (2.3.6), (2.5.5) and (2.5.6) as above, we obtain sup(ũ− ṽλ) ≤ 0, a contradiction.

Step 5. In view of step 3 and 4, we may assume that tεn < T and (ũ − Kũ)(tεn, xε
n,m

ε
n) > 0

for all n ≥ 1. Using Ishii’s Lemma and following standard arguments, see Theorem 8.3 and
the discussion after Theorem 3.2 in [31], we deduce from the sub- and supersolution viscosity
property of ũ and ṽλ, and the Lipschitz continuity assumptions on µ and σ, that

%
(
ũ(tεn, xε

n,m
ε
n) − ṽλ(tεn, yε

n,m
ε
n)
)

≤ C
(
n‖xε

n − yε
n‖2 + ε

(
1 + ‖xε

n‖2 + ‖yε
n‖2

))
,

for some C > 0, independent on n and ε. In view of (2.5.4) and (2.5.5), we get

%Γε(t̂ε, x̂ε, x̂ε, m̂ε) ≤ 2Cε
(
1 + ‖x̂ε‖2

)
. (2.5.7)

We shall prove in next step that the right-hand side of (2.5.7) goes to 0 as ε → 0, up to a
subsequence. Combined with (2.5.6), this leads to a contradiction to (2.5.1).

Step 6. We conclude the proof by proving the claim used above. First note that we can always
construct a sequence (t̃ε, x̃ε, m̃ε)ε>0 such that

Γε(t̃ε, x̃ε, x̃ε, m̃ε) → sup
Z×M

(ũ− ṽλ) and ε(‖x̃ε‖2 + dM(m̃ε)) → 0 as ε → 0.

By (2.5.5), Γε(t̃ε, x̃ε, x̃ε, m̃ε) ≤ Γε(t̂ε, x̂ε, x̂ε, m̂ε). Hence, supZ×M(ũ− ṽλ) ≤ supZ×M(ũ− ṽλ) −
2 lim infε→0 ε‖x̂ε‖2. �

2.6 Numerical approximation

2.6.1 An example of numerical scheme
When the comparison result of Assumption 2.3.1 holds, one can easily derive a convergent
finite different scheme for (2.3.4)-(2.3.5).
We consider here a simple explicit scheme based on [23, 24]. We let h0 be a time-discretization
step so that T/h0 is an integer, and set Th0 := {th0

j := jh0, j ≤ T/h0}. The space Rd

is discretized with a space step h1 on a rectangle [−c, c]d, containing Nx
h1 points on each

direction. The corresponding finite set is denoted by Xh1
c .

The first order derivatives ∂tϕ and (∂ϕ/∂xi)i≤d are approximated by using the standard
up-wind approximations :

∆h0
t ϕ(t, x,m) := h−1

0 (ϕ(t+ h0, x,m) − ϕ(t, x,m))

∆h0
h1,iϕ(t, x,m) :=

{
h−1

1 (ϕ(t+ h0, x+ eih1,m) − ϕ(t, x,m)) if µi(x) ≥ 0
h−1

1 (ϕ(t, x,m) − ϕ(t+ h0, x− eih1,m)) if µi(x) < 0,
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in which ei is i-th unit vector of Rd.
As for the second order term, we use the fact that each point x ∈ Rd can be approximated
as a weighted combination

x =
∑

x′∈Ch1 (x)
x′ω(x′|x)

of the points x′ lying on the corners Ch1(x) of the cube formed by the partition of Rd it belongs
too. Then, given another small parameter h2 > 0, we approximate Tr[σ(x)σ(x)>D2ϕ(t, x,m)]
by Th2

h0,h1 [ϕ](t, x,m) defined as

(h2d)−1
d∑

i=1
[ϕ]h1(t+ h0, x+

√
h2σ

i(x),m) + [ϕ]h(t+ h0, x−
√
h2σ

i(x),m)

− 2h−1
2 ϕ(t, x,m)

in which σi is the i-th column of σ and

[ϕ]h(t, x,m) :=
∑

x′∈Ch1 (x)
ω(x′|x)ϕ([t]h, x′,m) with [t]h := min[t, 2T ] ∩

(
Th0 ∪ [T, 2T ]

)
,

is a piecewise linear approximation of ϕ. In the case where only the first row σ1· of σ is not
identically equal to 0, one can use the usual simpler approximation

(h1)−1‖σ1·‖2
(
ϕ(t+ h0, x+

√
h1e1,m) + ϕ(t+ h0, x−

√
h1e1,m)

)
− 2(h1)−1‖σ1·‖2ϕ(t, x,m).

Similarly, we approximate Kϕ by

Kh0,h1ϕ(t, x,m) := sup
a∈A

∫
[ϕ]h(max(t+ h0, t

′), x′,m′)dk(t′, x′,m′|t, x,m, a).

Letting h := (h0, h1, h2), and setting

Lhϕ := ∆h0
t ϕ+

∑
i≤d

µi∆h0
h1,iϕ+ 1

2Th2
h0,h1 [ϕ], (2.6.1)

our numerical scheme consists in solving

min
{
−Lhϕ , ϕ− Kh1ϕ

}
= 0 on (Th0 \ {T}) × (Xh1

c \ ∂Xh1
c ) × M, (2.6.2)

min{ϕ− KTg , ϕ− Kh1ϕ} = 0 on {T} × (Xh1
c \ ∂Xh1

c ) × M, (2.6.3)
ϕ− KTg := 0 on ([0, T ] × ∂Xh1

c × M) ∪ ((T, 2T ] × Rd × M). (2.6.4)

We specify here a precise boundary condition on ∂Xh1
c but any other (bounded) boundary

condition could be used. Finally, we extend vc
h to the whole space by setting vc

h = [vc
h]h on

[0, T ] × Rd × M.
This scheme is always convergent as (h2, h1/h2, h0/h1) → 0 and c → ∞.
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Proposition 2.6.1. Let vc
h denote the solution of (2.6.2)-(2.6.3)-(2.6.4). If Assumptions 2.3.1

holds, then vc
h → v as (h2, h1/h2, h0/h1) → 0 and then c → ∞.

Proof. Using Lemma 2.6.1, one easily checks that our scheme satisfies the conditions of [14,
Theorem 2.1.]. In particular, |vc

h| ≤ sup |g| < ∞. Then, the convergence holds by the same
arguments as in [14, Theorem 2.1.], it suffices to replace their assertion (2.7) by Lemma 2.4.2
stated below. �

Remark 2.6.1. We did not discuss in the above the problem of the discrete approximation
of M. Applications will typically be based on a parameterized family M = {mθ, θ ∈ Θ}, for a
subset Θ of a finite dimensional space. We can then further approximate Θ by a sequence of
finite sets to build up a numerical scheme. Similarly, the set of control values A need to be
approximated in practice. If the corresponding sequences of approximations are dense, then
convergence of the numerical scheme will still hold.

We conclude this section with the technical lemmas that were used in the above proof.

Lemma 2.6.1. If (un)n≥1 is a bounded sequence of functions on Z × M and (zn,mn)n≥1 is
a sequence in Z × M that converges to (z◦,m◦), then

lim inf
n → ∞

(h0, h1) → (0, 0)

Kh0,h1un(zn,mn) ≥ Ku◦(z◦,m◦) ,where u◦ := lim inf
n → ∞

(z′, m′) → ·

un(z′,m′),

and

lim sup
n → ∞

(h0, h1) → (0, 0)

Kh0,h1un(zn,mn) ≤ Ku◦(z◦,m◦) ,where u◦ := lim sup
n → ∞

(z′, m′) → ·

un(z′,m′).

Proof. We first rewrite

Kh0,h1un(zn,mn) = sup
a∈A

∫
un,h(z′,m′)dk(z′,m′|zn,mn, a) (2.6.5)

where un,h(z′,m′) := [un]h1(max(tn + h0, t
′), x′,m′). Let ūn◦,h◦ be the lower-semicontinuous

envelope of infn≥n◦,h≤h◦ un,h. From (2.6.5), we get, for n ≥ n◦ and h ≤ h◦,

Kun,h(zn,mn) ≥ Kūn◦,h◦(zn,mn),

and, by (2.3.6), passing to the limit inf as (n, h) → (+∞, 0) leads to

lim inf
(n,h)→(+∞,0)

Kun,h(zn,mn) ≥ Kūn◦,h◦(z◦,m◦).

Moreover, ūn◦,h◦ ↑ u◦ point-wise. The required result is then obtained by monotone conver-
gence.
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2.6.2 Construction of ε-optimal controls
It remains to explain how to deduce the optimal policy. At each of point (t, x) of the time-
space grid and for each prior m, one computes

(ˆ̀(t, x,m), b̂(t, x,m)) ∈ arg max
{∫

vc
h(z′,m′)dk(z′,m′|(t, x),m, (`, b)), (`, b) ∈ A

}
.

If vc
h(t, x,m) is equal to the above maximum, then we play the control (ˆ̀(t, x,m), b̂(t, x,m)),

otherwise we wait for the next time step. This is the usual philosophy : we act on the system
only if this increases the expected gain. As already argued, here the gain should not only
be considered as an improvement of the current future reward, it can also be a gain in the
precision of our prior which will then lead to better future rewards.
This produces a Markovian control which is optimal for the discrete time problem associated
to our numerical scheme, and asymptotically optimal for the original control problem. We
shall use this algorithm for the toy examples presented in the next section.

2.7 Applications to optimal trading
This section is devoted to the study of two examples of application. Each of them corresponds
to an idealized model, the aim here is not to come up with a good model but rather to show
the flexibility of our approach, and to illustrate numerically the behavior of our backward
algorithm.

2.7.1 Immediate impact of aggressive orders
We consider first a model in which the impact of each single order sent to the market is taken
into account. It means that αi represents the number of shares bought exactly at time τi, so
that `i = 0, for each i. This corresponds to A = {0} × B in which B ⊂ R+ is a compact set
of values of admissible orders. Therefore, one can identify A to B in the following, and we
will only write b for a = (0, b) ∈ A and βi for αi = (`i, βi).
Our model can be viewed as a scheduling model or as a model for illiquid market. The first
component of X represents the stock price. We consider a simple linear impact : when a trade
of size βi occurs at τi, the stock price jumps by

X1
ϑi

= X1
τi− + βi(υ + εi)/2

in which υ ∈ R is the unknown linear impact parameter, (εi)i≥1 is a sequence of independent
noises following a centered Gaussian distribution with standard deviation σε. The coefficient
1/2 in the dynamics of X1 stands for a 50% proportion of immediate resilience.
It evolves according to a Brownian diffusion between two trades and has a residual resilience
effect :

dX1
t = σdW 1

t + dX4
t and dX4

t = −ρX4
t dt, (2.7.1)
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where σ, ρ > 0 and X1
0 ∈ R are constants. The process X4 represents the drift of X1 due to

the non immediate resilience and X4
0 = 0. When a trade occurs, it jumps according to

X4
ϑi

= X4
τi− + βi(υ + εi)/2.

We call it spread hereafter. This is part of the deviation from the un-impacted dynamic.
The third component, which describes the total cost, evolves as

X2
ϑi

= X2
τi− +X1

τi−βi + (υ + εi)
β2

i

2 .

Finally, the last component is used to keep track of the cumulative number of shares bought :

X3
ϑi

= X3
τi− + βi.

We are interest in the cost of buying N shares, and minimize the criteria

Em[eηL(XT ,υ) ∧ C]

where η > 0 is a risk aversion parameter, C > 0, and

L(XT , υ) := X2
T +X1

T (N −X3
T ) + (υ + ε0)

(N −X3
T )2

2
represents the total cost after setting the total number of shares bought to N at T .
If the prior law m on υ is a Gaussian distribution, then q(·|t, x, b, u) is a Gaussian density
with respect to

dQ(x′|t, x, b) = dx1′
dδx2+bx1′ (x2′)dδx3+b(x3′)dδx4+(x1′ −x1)(x4′)

and the transition map

M(m; t′, x′, t, x, b)[C] =
∫

C q(x′|t, x, b, u)dm(u)∫
R q(x′|t, x, b, u)dm(u) ,

maps Gaussian distributions into Gaussian distributions, which, in practice, enables us to
restrict M to the set of Gaussian distributions. More precisely, if (mυ(τi−), συ(τi−)) are the
mean and the standard deviation of Mτi−, then the values corresponding to the posterior
distribution Mϑi

are

συ(ϑi) = 1{συ(τi−)6=0}

(
1

συ(τi−)2 + 1
σ2

ε

)− 1
2

,

mυ(ϑi) = mυ(τi−)1{συ(τi−)=0} +
(
σ2

εmυ(τi−) + συ(τi−)2(X1
ϑi

−X1
τi−)

σ2
ε + συ(τi−)2

)
1{συ(τi−)6=0}.

Comparing to the general result of the previous section, we add a boundary condition
v(t, x1, x2, N, x4) = 1 and restrict the domain of X3 to be {0, . . . , N}. Since this parame-
ter x3 is discrete this does not change the nature of our general results.
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Note also that the map Ψ(t, x,m) = N − x3 defined on [0, T ] × R2 × {0, . . . , N} × R × M
actually satisfies the conditions of Proposition 2.5.1 to ensure that Assumption 2.3.1 holds.
We now discuss a numerical illustration. We consider 30 seconds of trading and N = 25
shares to buy. We take η = 1, x0 = 100 and σ = 0.4x0 which corresponds to a volatility of
40% in annual terms. The trading period is divided into intervals of 1 second-length. The size
of an order βi ranges in {1, 2, 3, 4, 5}. We take σε = 10−4 and ρ such that the spread X4 is
divided by 3 every second if no new order is sent. We start with a prior given by a Gaussian
distribution with mean mυ(0) and standard deviation σv(0). Finally, we take C = 10200 which
makes this threshold parameter essentially inefficient while still ensuring that the terminal
condition is bounded.
In Figure 2.1, we plot the optimal strategy for συ(0) = 5.10−4 and mv(0) = 5.10−2 in
terms of (X2, X3). Clearly, the level of spread X4 has a significant impact : when it is
large, it is better to wait for it to decrease before sending a new order. This can also be
observed in Figure 2.2 which provides a simulated path corresponding to an initial prior
(mv(0) = 2.10−2, συ(0) = 10−3) : after 15 seconds the algorithm alternates between sending
an order and doing nothing, i.e. waiting for the spread to be reduced at the next time step.
On the top right graph, we can also observe that the low mean of the initial prior combined
with a zero initial resilience leads to sending an order of size 3 at first, then the mean of the
prior is quickly adjusted to a higher level and the algorithm slows down immediately.
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Figure 2.1 – Evolution of β in terms of (X3, X4) at time 0s (top), 15s (left) and 25s (right),
for (mυ, συ) = (5.10−2, 5.10−4).
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Figure 2.2 – Evolution of β (top left), price before (circles) and after (triangles) the impact
(top right), mυ (bottom left), συ (bottom right), with time in second. The true value of υ is
5.10−2. x-axis : time in seconds.
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Let us now consider the case ρ = 0, i.e. without dynamic resilience, with a trading period
of 60 seconds and N = 50. In Figure 2.3, we provide the optimal policy (number of traded
shares) in terms of the number X3 of already traded shares and the prior’s mean parameter
mυ for different times. Not surprisingly the algorithm is more aggressive as the prior’s mean
decreases and the remaining number of shares to buy increases. It is rather stable in time
(compare t = 0s with t = 30s) up to the end where it is forced to accelerate to avoid a
large final impact cost. It is also much more aggressive compared to the case ρ > 0 presented
above : we can no more make profit of the decrease of the resilience term X4, and there is
no reason to wait.
In Figure 2.4, we provide a simulated path of (X,α,mυ, συ) that shows how the prior on the
unknown coefficients υ can adapt to changing market conditions. The red dashed lines and
circles correspond to the same path of Brownian motion and the same realized noises (εi)i≥1
as the black solid lines and crosses, but the true parameter is changed from 5.10−2 to 5.10−4

after 5 seconds. It is more aggressive quite quickly after the shock as the prior adapts to the
new small level of impact. Note that the total number of shares is bought slightly before 30s,
so that the prior do not change anymore after this date.
In Figure 2.5, we plot the log of the value function minus the cost 5.103 of buying the total
shares without impact (similar to the implementation shortfall), in terms of the different
quantities of interest.
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Figure 2.3 – Evolution of α in terms of (mυ, X
3) at time 0s (top), 30s (left) and 55s (right),

for συ = 5.10−4.
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Figure 2.4 – Evolution of α (top), συ (left), mυ (right) with time. Black crosses and black
solid lines : the true value of υ is 5.10−2. Red circles and red dashed lines : the true value of
υ is 5.10−2 for the first 5 seconds, and then jumps to 5.10−4.
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Figure 2.5 – Top : ln(v) − 5.103 in terms of (x3,mυ) for συ = 5.10−4 and t = 0. Bottom :
ln(v) − 5.103 in terms of συ for (x3,mυ) = (0, 2.10−2) at t = 0.
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2.7.2 Random execution times : application to strategies using
limit-orders

In this section, we consider a limit-order trading model. X1 now represents a mid-price (of
reference) and, between two trades, has the dynamic

dX1
t = σdW 1

t . (2.7.2)

An order is of the form (`, β) in which ` is the maximal time we are ready to wait before
being executed, while β is the price at which the limit order is sent 3. For simplicity, each
order corresponds to buying one share.
We assume that the time θ it takes to be executed follows an exponential distribution of
parameter ρ(υ,X1

τ − β), given the information at time τ . One can send a new order only
after ϑ := τ + ` ∧ θ.
Hence, given a flow of orders φ = (τi, `i, βi)i≥1, the number X3 of shares bought evolves
according to

X3 = X3
ϑi

on [ϑi, τi+1)
X3

ϑi
= X3

τi− + 1{θi≤`i},

in which ϑi := τi+`i∧θi. Each θi follows an exponential distribution of parameter ρ(υ,X1
τi

−βi)
given F z,m,φ

τi− . As in the previous model, X3 is restricted to {0, . . . , N}. The total cost X2 of
buying the shares has the dynamics

X2 = X2
ϑi

on [ϑi, τi+1)
X2

ϑi
= X2

τi− + βi1{θi≤`i}.

We want to minimize

E
[
e

X2
T[φ]+1.02(N−X3

T[φ])+
5.102

2 (N−X3
T[φ])

2
∧ C

]
,

in which 1.02 is the best ask (kept constant) and 5.102 is an impact coefficient. This corres-
ponds to the cost of liquidating instantaneously the remaining shares (N − x3)+ at T . This
model is a version of [6], [42], [45], see also [43].
Direct computations show that the prior process M evolves according to

M = Mϑi
on [ϑi, τi+1)

Mϑi
= M1(Mτi−;Zϑi

, Zτi−, αi)1{θi≤`i} + M2(Mτi−;Zϑi
, Zτi−, αi)1{θi>`i}

in which

M1(m; t′, x′, t, x, l, b)[B] :=
∫

B ρ(u, x1 − b)e−ρ(u,x1−b)t′
dm(u)∫

R+ ρ(u, x1 − b)e−ρ(u,x1−b)t′dm(u)

3. Dark pool strategies could be considered similarly, in this case, β would rather describe the choice of
the trading platform
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Figure 2.6 – Solid : u = 0.8. Dashed : u = 0.3

and
M2(m; t′, x′, t, x, l, b)[B] :=

∫
B e

−ρ(u,x1−b)ldm(u)∫
R+ e−ρ(u,x1−b)ldm(u)

for all Borel set B.
In the case where M is the convex hull of a finite number of Dirac masses, then the weights
associated to M can be computed explicitly.
Here again, the map Ψ(t, x,m) = N−x3 satisfies the conditions of Proposition 2.5.1 to ensure
that Assumption 2.3.1 holds.
We now consider a numerical illustration. We take C = 10200. The time horizon is T = 15
minutes. To simplify, we fix the reference mid-price to be X1 ≡ 1 (i.e. σ = 0) and restrict to
` = 1, i.e. an order is sent each minute. We take N = 10. One can send limit buy orders in
the range B := {0.90, 0.92, 0.94, 0.96, 0.98}.
As for the intensity of the execution time, we use an exponential form as in [42] : ρ(u, x1−b) =
λ(u)e−20(0.98−b) in which λ(u) = − ln(1 − u). This means that the probability to be executed
at the price 0.98 within one minute is u. Orders are sent each minute, but we use a finer
time grid in order to take into account that it can be executed before this maximal time-
length. The original prior is supported by two Dirac masses at u = 0.3 and u = 0.8. The
corresponding probabilities of being executed within one minute are plotted in Figure 2.6.
Our time step corresponds to 15 seconds, so that every 15 seconds the controller can launch
a new order if the previous one has been executed before the maximal 1 minute time-length.
In Figure 2.7, we plot the difference, in logarithms, between the value functions obtained
in the latter case and for a time step of 1 minute (in which case a new order cannot be
launched before one minute). Clearly, the possibility of launching new orders in advance is
an advantage.
In Figure 2.8, we plot the optimal policy at time t = 0 and t = 7.5 minutes. As expected,
the algorithm is more aggressive when the probability of having υ = 0.8 is higher.
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Figure 2.7 – Launching new orders in advance, if the previous one is executed, is an advan-
tage.

In Figure 2.9, we plot a simulated path. The red and black lines and points correspond to the
same realization of the random variables at hand, but for different values of the real value of
υ. Black corresponds to the most favorable case υ = 0.8, while red corresponds to υ = 0.8 for
the first 7.5 minutes and υ = 0.3 for the remaining time. The initial prior is P[υ = 0.8] = 9%.
Again, the algorithm adapts pretty well to this shock on the true parameter. We also see
that it is more aggressive when the prior probability of being in the favorable case is high.
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Figure 2.8 – Top : t = 0. Bottom : t = 7.5 minutes
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Figure 2.9 – Black crosses and solid lines : υ = 0.8. Red circles and dashed lines : υ = 0.8
before t = 7.5 minutes and υ = 0.3 after ; x-axis= time in minutes.
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Chapitre 3

Optimal Control under uncertainty :
Application to the issue of CAT bonds

We propose a general framework for studying optimal issue of CAT bonds in the presence
of uncertainty on the parameters. In particular, the intensity of arrival of natural disasters is
inhomogeneous and may depend on unknown parameters. Given a prior on the distribution
of the unknown parameters, we explain how it should evolve according to the classical Bayes
rule. Taking these progressive prior-adjustments into account, we characterize the optimal
policy through a quasi-variational parabolic equation, which can be solved numerically. We
provide examples of application in the context of hurricanes in Florida.

3.1 Introduction
We consider an insurer or a reinsurer who holds a portfolio in non-life insurance exposed

to one or several natural disasters. He can issue one or several CAT bonds 1 in order to reduce
the risk taken, see e.g. [32] or [33] for a general introduction to CAT bonds.

The first CAT bonds where issued at the end of the 1990s and the market is globally
increasing, with a total risk capital outstanding greater that USD 30 billion at the end of
2017, see [5] and [26]. CAT bonds give a strong alternative to the classical reinsurance market.

However, issuing a CAT bond leads to the choice of several parameters, as the layer e.g.
and the date of issuance. The coupon is not a priori perfectly known as well as the claim
distribution. Moreover, the global warming will lead to an increase of several natural disasters
which is a source of uncertainty on the distribution of future claims. For example, in [55],
the authors estimate that if the temperature rises of 2.5 degrees in the next decades, the
frequency of Hurricanes in North Atlantic will rise by 30%.

The aim of this paper is to provide a rigorous continuous-time framework in which we
can establish the optimal behavior policy in issuing CAT bonds, taking into account the

1. Catastrophe bonds, or CAT bonds, are tradable floating rate notes. The risk associated with a CAT
bond is not linked to the default of one entity (state or corporate) but is related to the occurrence of a
catastrophe.
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uncertainty described above as the risk evolution.
The coupon of the CAT bond is generally not known in advance, even its distribution is not

always clearly fixed. We therefore need to model it as a random variable whose distribution
depends on unknown parameters. It is the same for the distribution of the natural disasters.

The particular case of acting on a system with partially unknown response distributions
has been studied in [10] in a Brownian framework, see the references therein for the case of
discrete settings. They fix a prior distribution on the unknown parameter and introduce a
stochastic process on the space of measures which leads to a dynamic programming principle
and a PDE characterization of the value function (in the viscosity solution sense).

In this paper, the natural disasters will be represented by a random Poisson measure 2

and two parameters are unknown : the distribution of the severity of the natural disasters
and the intensity of their arrivals. As in [10], we allow the agent to issue new CAT bonds at
any time, the actions are discrete but chosen in a continuous time framework.

To the best of our knowledge, the study of such a general problem with an application
to the CAT bonds seems to be new in the literature, even in the case where all parameters
are known. From a mathematical point of view, the main difficulty comes from the fact that
the conditional distribution on the unknown parameters evolves continuously and jumps at
the occurrence times of a catastrophic event. In [10], it was only evolving when an action
was taken on the system. For tractability, we assume that the associated process remains in
a finite-dimensional space which can be linked smoothly to a subset of Rd for some d ≥ 1.

Although the model presented below has been designed for the particular case of CAT
bonds, it is quite general from a mathematical view-point and can be applied to all cases
where the agent faces a random Poisson measure and can issue contracts from which he pays
a premium and receives a specific payoff depending on some event.

3.2 The framework

3.2.1 General framework

All over this paper, D([0, T ],Rd) is the Skorohod space of càdlàg 3 functions from [0, T ]
into Rd, P is a probability measure on this space, and T > 0 is a fixed time horizon.

We consider three Polish spaces : (Uλ,B(Uλ)) , (Uγ,B(Uγ)) and (Uυ,B(Uυ)) that will
support three unknown parameters, respectively λ0, γ0 and υ0. Here B(.) denotes the Borel
σ-algebra. We set U := (Uλ, Uγ, Uυ).

Let N(dt, du) be a random Poisson measure with compensator ν(dt, du) such that ν is
finite on (Rd∗,B(Rd∗)) where Rd∗ := Rd \{0Rd}. The intensity of the random Poisson measure
is supposed to be inhomogeneous of intensity s 7→ Λ(s, λ0) where λ0 is a random variable
valued in Uλ. The jump distribution is assumed to be Υ(γ0, ·) where γ0 is a random variable
valued in Uγ. We denote by Mλ a subset of the set of Borel probability measures on Uλ and

2. The activity of the random Poisson measure will be finite, by construction
3. continue à droite, limite à gauche (Right continuous with left limits)
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by Mγ ⊗ Mυ =: M the product of two locally compact subsets of the set of Borel probability
measures, respectively on Uγ and Uυ, endowed with the weak topology.

We also allow an additional randomness when acting on the system and consider another
Polish space (E,B(E)) on which is defined a family (εi)i≥1 of i.i.d. random variables with
common probability measure Pε on B(E).

On the product space Ω := D([0, T ],Rd) × U × EN∗ , we consider the family of measures
{P × m × P⊗N∗

ε ,m ∈ M} where M := Mλ ⊗ M. We denote by Pm an element of this
family whenever m ∈ M is fixed. The operator Em is the expectation associated to Pm.
Note that N(dt, du) and (εi)i≥1 are independent under each Pm. For m ∈ M given, we
let Fm := (Fm

t )t≥0 denote the Pm-augmentation of the filtration F := (Ft)t≥0 defined by
Ft := σ(N([0, s]×·)s≤t, λ0, γ0, υ0, (εi)i≥1). Hereafter, all random variables are considered with
respect to the probability space (Ω,Fm

T ,Pm) with m ∈ M given by the context.

3.2.2 CAT Bond framework
In this framework, d ∈ N∗ is the number of perils. The insurer has some exposure related

to these perils and may issue CAT bonds to reduce the risk taken. The random Poisson
measure represents the arrival of claims. The intensity of arrival is s 7→ Λ(s, λ0) in which λ0,
valued in Uλ, may be unknown to the insurer. The dependence in time may represent the
seasonality or a structural change, for example caused by the global warming.

The measure mλ ∈ Mλ is the initial knowledge of the insurer on λ0 and will evolve through
the observations of N , whose jumps model the arrival of natural disasters. The severity
distribution of the claims may also be unknown, it depends on the unknown parameter
γ0, valued in Uγ. An initial prior is given as an element mγ ∈ Mγ. Acting on the system
consists in issuing a CAT bond, which means transferring a part of the risk to the market.
The equilibrium premium that the insurer will pay is random (since it comes from the law of
supply and demand and is not know when the decision to issue is taken), and the distribution
may not be perfectly known. We assume that it depends on the unknown parameter υ0, valued
in Uυ. Its prior distribution is represented by some mυ ∈ Mυ.

We fix a maximum of n ∈ N possible CAT bonds in term of risk covered. The possible
risk coverages are denoted by (Aj)1≤j≤n with Aj ⊂ B(Rd∗) in which B(Rd∗) denotes all Borel
sets of Rd∗. In practice, it will represent the layer of one peril for one region, and then,
if for j = 1, it is the first dimension (risk) of N which is covered, Aj will have the form
[a,+∞[×R × . . . × R with a > 0. If a claim u ∈ Rd∗ satisfies u ∈ A1, it will give a payoff of
the form (u1 − a) bounded by some b > 0 associated to this layer (the layer is [a, a+ b]).

3.2.3 The controlled system
Let A ⊂ Rd+1 be a non-empty compact set. Let ` ∈ R∗

+ be the time-length of each
action on the controlled system. Given m ∈ M, we denote by Φ◦,m the collection of random
variables φ = (τφ

i , α
φ
i )i≥1 on (Ω,Fm

T ) with values in R+ × A such that (τφ
i )i≥1 is a non-

decreasing sequence of Fm-stopping times and each αi is Fm
τi

-measurable for i ≥ 1. We shall
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write αφ
i := (kφ

i , n
φ
i ) ∈ A where kφ

i and nφ
i are Rd and R-valued. To each kφ

i , we associate a
non-empty closed set Akφ

i
⊂ Rd∗ through a one-to-one map.

The τφ
i ’s will be the times at which a CAT bond is issued. The fixed value ` is the time-

length (or maturity) of all CAT bonds. In αφ
i := (kφ

i , n
φ
i ) ∈ A, nφ

i is related to the notional
and Akφ

i
is the layer chosen for one peril and one region : it is the characteristics of the CAT

bonds associated to the risk covered. If a natural disaster occurs and its severity is in the
layer Akφ

i
, i.e. the random Poisson measure has a jump in Akφ

i
, then the CAT bonds ends and

the reinsurer gains a payoff proportional to the notional nφ
i .

We denote by ϑφ
i the end of the i-th CAT Bond defined by :

ϑφ
i := inf{t > τφ

i , N({t} × Aφ
ki

) = 1} ∧ (τφ
i + `). (3.2.1)

Remark 3.2.1. According to the definition of (ϑφ
i )i≥1, it can happen that ϑφ

i1 = ϑφ
i2 for i1 6= i2.

Moreover,
τφ

i < ϑφ
i ≤ τφ

i + `.

We are now in position to describe the controlled state process. Given some initial data
(t, x) ∈ [0, T ] × Rd, and φ ∈ Φ◦,m, we let X t,x,φ be a strong solution on [t, T ] of

X := x+
∫ ·

t
µ(s,Xs)ds+

∫ ·

t

∫
Rd
β(s,Xs−, u)N(ds, du)

+
∑
i≥1

1{t≤τφ
i <·}H(τφ

i , Xτφ
i
, αφ

i )

+
∑
i≥1

1{t∨τφ
i ≤·}

∫ ·∧ϑφ
i

t∨τφ
i

C(s, rφ
i )ds

+
∑
i≥1

1{t≤ϑφ
i ≤·}F (ϑφ

i , Xϑφ
i −, Xτφ

i
, rφ

i , α
φ
i , ϑ

φ
i − τφ

i , ui)1{ϑφ
i −τφ

i 6=`},

(3.2.2)

in which rφ
i := C0(τφ

i , Xτφ
i −, α

φ
i , υ, εi) with C0 : [0, T ]×Rd ×A×Uυ ×E → R a measurable

function and ui is the jump size of the random Poisson measure N at ϑi.
To guarantee existence and uniqueness of the above, we make the following standard

assumptions.

Assumption 3.2.1. µ : [0, T ]×Rd 7→ Rd, β : [0, T ]×Rd ×Rd 7→ Md and C : [0, T ]×R 7→ R,
are assumed to be measurable, continuous, and Lipschitz with linear growth in their second
argument, uniformly in the other ones.

The maps H : [0, T ]×Rd ×A, and F : [0, T ]×Rd ×Rd ×R×A× [0, `]×Rd are assumed to
be measurable. Moreover, H (resp. F ) has linear growth in its second (resp. third) component.

This dynamics means the following. Without any CAT bond, the process X follows a pure
jump process with a drift on the first line of (3.2.2). The second line refers to a jump of the
whole process when a CAT bond is issued, for example, a fixed cost. The third line represents
the instantaneous cash flows generated by the closed and current active CAT bonds. The last
line represents the final cash flow if the policy ends before the maturity.
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The first component of the process X will be the cash. The second may record the
aversion of the market for the CAT bonds : when a natural disaster occurs, it jumps and
then decrease again over time. The function µ can be the drift associated to some interest
rate or the decrease of the risk aversion of the market when no natural disaster occurs. The
function β can represent the exposure in cash of the reinsurer for each peril, and also the
sensitivity of the CAT bond market (for the second component of X) when a natural disaster
occurs. The function H represents an initial cost to issue the CAT bond. The function C̄ is
the continuous premium paid by the reinsurer for the CAT bond and rφ

i is the level of the
coupon (a random variable which is determined by an unknown parameter υ and a noise εi).
The function F is the payout, ϑφ

i − τφ
i 6= ` means that the CAT Bond ends with an event.

We denote by Ft,x,m,φ :=
(
F t,x,m,φ

s

)
s≥0

the Pm-augmentation of the filtration generated

by
(
X t,x,φ,

∑
i≥1 r

φ
i 1[τφ

i ,+∞[, N([t, s] × ·)s≥t

)
.

For κ ∈ N∗, we say that φ ∈ Φ◦,m belongs to Φt,x,m
κ if the condition∑

i≥1
1{τφ

i <t≤ϑφ
i } ≤ κ ∀t ≤ T (3.2.3)

holds. The set Φt,x,m
κ is the set of admissible controls. The constraint (3.2.3) refers to the fact

that the controller cannot have more that κ simultaneous running CAT bonds at each time.
Note that X t,x,φ has a jump of size H(τφ

i , X
t,x,φ

τφ
i

, αφ
i ) at each τφ

i and is left-continuous at
this point, whereas it is right-continuous at each ϑi. This allows to observe a jump from the
left from the random Poisson measure and then issue immediately a new CAT bond, leading
to an immediate jump of X from the right. The process X t,x,φ defined above is làdlàg.

3.2.4 The CAT bonds process
We need to keep track of how many CAT bonds are running, and which parameters are

associated to. Corresponding to the definition of the process X in (3.2.2), the effect of a
CAT bond will be measured by the value of (X t,x,φ

τφ
i

, rφ
i , α

φ
i ) determined at τi, for (t, x) ∈

[0, T ] ×Rd, φ ∈ Φt,x,φ
κ . Moreover, a CAT bond will end from a jump or after the time-length

`. We need to define a process which will keep track of this information. We introduce the
sets C :=

(
(Rd × R × A) ∪ ∂

)κ
, L := ([0, `[∪∂)κ, in which

— An element of the set Rd ×R× A represents the initial parameters of the CAT bond ;
— An element of the set [0, `[ represents the time-length elapsed of a running CAT bond ;
— The point ∂ represents the absence of CAT bond, it is a cemetery point.

The set of CAT bonds is

CL := {(c, l) ∈ C × L | cj = ∂ ⇐⇒ lj = ∂, ∀ 1 ≤ j ≤ κ}

and we denote by CL its closure. We set K := {0, . . . , κ} and we define by P(K) the set of
subsets of K. We can now define the sets CLJ with J ∈ P(K) :

CLJ := {(c, l) ∈ CL | j ∈ J ⇐⇒ cj 6= ∂, ∀ 1 ≤ j ≤ κ}
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which represent the sets of CAT Bonds in which there is CAT Bonds running exactly in the
indexes of J.

Moreover, for (c, l) ∈ CL\CLK, we introduce :

Π0(c, l) := min{1 ≤ j ≤ κ : cj = ∂},

which is the first index with no CAT bond.
For z := (t, x, c, l) ∈ Z := [0, T ] × Rd × CL and a control φ ∈ Φt,x,m

κ , we now define the
process ((C,L)z,φ,j

s )1≤j≤κ
t≤s≤T valued in CL and denoted hereafter (C,L) for ease of notation. The

process (C,L) will jump at the τ ′
is (new CAT bond) and at the ϑi’s (end of one or several

CAT bonds). C will be a pure jump process whereas the indexes of L will evolve continuously
over time, recall that it represents the elapsed time-length of the CAT bonds.

We now define the functions associated to the jumps of (C,L). The first one, denoted by
C+, represents the arrival of one new CAT bond with parameters (x, r, a) ∈ Rd ×R× A and
is defined by

C+ : (CL\CLK) × Rd × R × A → CL
(c, l;x, r, a) 7→ C+(c, l;x, r, a)

where, if we write (c+, l+) for C+(c, l;x, r, a),

(c+, l+)Π0(c,l) := ((x, r, a), 0),
(c+, l+)j = (c, l)j j 6= Π0(c, l).

(3.2.4)

The second function, denoted by C−, represents the end of the CAT bonds by an event
associated to the random Poisson measure, of severity u ∈ Rd∗, and is defined by

C− : CL × Rd∗ → CL
(c, l;u) 7→ C−(c, l;u).

Nonetheless, several CAT bonds may end with a single event. We define the set of indexes
in c ∈ C which end after the natural disaster u ∈ Rd∗, by

J (c;u) :=
{
j ∈ {1, . . . , κ} | cj 6= ∂, u ∈ Akj

}
. (3.2.5)

Using this set, C−(c, l;u) is defined simply through its j-component

C−(c, l;u)j :=
{
∂ × ∂ if j ∈ J (c;u)
(c, l)j if j 6∈ J (c;u) , 1 ≤ j ≤ κ . (3.2.6)

It remains to consider the case where a CAT Bond ends because lj = ` for some 1 ≤ j ≤ κ.
We define :

C`
− : (CL\CL∅) → CL

(c, l) 7→ C`
−(c, l),

where, for all 1 ≤ j ≤ κ,

C`
−(c, l)j = (∂ × ∂)1{lj=`} + (c, l)j1{lj 6=`}.
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We are now in position to define the processes Cz,φ and Lz,φ for φ ∈ Φt,x,m
κ . The process

evolves at τφ
i and ϑφ

i , for i ≥ 1, according to :

(C,L)z,φ

τφ
i +

:= C+((C,L)z,φ

τφ
i

);Xz,φ

τφ
i

, rφ
i , α

φ
i );

(C,L)z,φ

ϑφ
i

:= 1{ϑφ
i <τφ

i +`}C−((C,L)z,φ

ϑφ
i −
, ui) + 1{ϑφ

i =τφ
i +`}C

`
−((C,L)z,φ

ϑφ
i −

).
(3.2.7)

Elsewhere, Cz,φ is constant. For 1 ≤ j ≤ κ, Lz,φ,j evolves according to :

dLz,φ,j
t = 1{Lz,φ,j

t 6=∂}dt.

This closes the definition of the process (C,L). Note that we separated both the initial
parameters with the elapsed time-length since the second one will play a different role in the
PDE characterization in consequence of its continuous part.

Remark 3.2.2. If c 7→ Π(c) := #{j ∈ K : cj 6= ∂}, the process Cz,φ (and also, by construc-
tion, Lz,φ) satisfies :

Π(Cz,φ
s ) ≤ κ, ∀s ∈ [t, T ], Pm − a.s.

Π(Cz,φ

τφ
i

) ≤ κ− 1, ∀i ≥ 1, Pm − a.s..

We also give a metric on CL.

Definition 3.2.1. We associate to CL the metric d defined by

d [(c, l), (c′, l′)] :=
∑

j∈J∩J′

[
‖cj − c′

j‖2 + (lj − l′j)2
]

+
∑

j∈J\J′

(‖cj‖2 + l2j )

+
∑

j∈J′\J
(‖c′

j‖2 + (l′j)2) + Card(J∆J′),

where J and J′ are respectively the set of running CAT bonds of parameters (c, l) and (c′, l′).

Remark 3.2.3. For z := (t, x, c, l) ∈ Z, we shall write Xz,φ for the process X starting with
the CAT bonds (c, l) and Fz,φ the same filtration as Ft,x,m,φ but also starting with the CAT
bonds (c, l). Note that (C,L) is adapted Fz,m,φ-adapted. Moreover, we define Φz,m

κ as Φt,x,m
κ

but, again, starting with CAT bonds (c, l).

3.2.5 Bayesian updates
Obviously, the prior m ∈ M will evolve over time. Recall that M := Mλ ⊗ M and denote

by m := (mλ,mγ,mυ) the corresponding element. The observation of X over time will lead
to a continuous update of mλ, whereas mγ will be updated by observing the size of a jump
from N and the measure mυ will be updated by acting on the system at times τφ

i . This leads
to the definition of the process M := (Mλ,Mγ,Mυ) valued in M. We first focus on mλ.
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Evolution of the intensity

We start with the assumption associated to the unknown and inhomogeneous intensity
of the random Poisson measure.

Assumption 3.2.2. For all mλ ∈ Mλ,
i)
∫ t

s Λ(u, λ0)du < +∞ mλ − a.s., for all 0 ≤ s ≤ t.
ii) t 7→ Λ(t, λ0) is a càdlàg process mλ − a.s.
iii) For almost every s ≥ 0 such that Λ(s, λ0) > 0 mλ − a.s., there exists h0 > 0 and

K > 0 such that
∫ s+h

s Λ(u, λ0)du ≤ KhΛ(s, λ0) for all h ≤ h0.
iv)

∫+∞
0 Λ(u, λ0)du = +∞ mλ − a.s.

Between two jumps of the random Poisson measure, the probability measure associated
to λ0 will evolve continuously. When a jump occurs, it jumps as well. We first deal with what
happens between two jumps.

Remark 3.2.4. Remark that, since a càdlàg function has at most a countable set of points
of discontinuity, under ii) of Assumption 3.2.2 we have

∫ t

s
Λ(u, λ0)e−

∫ u

α
Λ(v,λ0)dvdu = e−

∫ s

α
Λ(v,λ0)dv − e−

∫ t

α
Λ(v,λ0)dv mλ-a.e. (3.2.8)

for almost all 0 ≤ α ≤ s ≤ t.

Given B ∈ B(Uλ), we set M t,mλ

s (B) := Em

(
1{λ0∈B}|F z,m,φ

s

)
for z = (t, x, c, l) and φ ∈

Φz,m
κ . We shall see below that M t,mλ

s does not depend on x and φ. From now on, we denote
by (ζi)i≥1 the jump times associated to the random Poisson measure.

Lemma 1. For all z = (t, x, c, l) ∈ Z and s > t,

M t,mλ

s (B)1{ζi≤s<ζi+1} = Mλ(B; ζi, s)1{ζi≤s<ζi+1}

where

Mλ(B; ζi, s) :=
∫

B e
−
∫ s

ζi
Λ(u,λ)du

M t,mλ

ζi
(dλ)∫

R+
e

−
∫ s

ζi
Λ(u,λ)du

M t,mλ

ζi
(dλ)

1{ζi≤s}.

Proof. Let ϕ be a Borel bounded function on D([0, T ],Rd+1). Set ξφ := ∑
i≥1 r

φ
i 1[τφ

i ,+∞[,
δX i := Xz,φ

·∨ζi
−Xz,φ

ζi
, and δξi := ξ·∨ζi

−ξζi
. Note that δξi

·∧s1{ζi≤s<ζi+1} is σ(F z,m,φ
ζi

∪σ(υ, (εj)1≤j≤K))-
measurable. We can find a Borel measurable map ϕ such that

ϕ(Xz,φ
·∧s , ξ

φ
·∧s)1{ζi≤s<ζi+1} = ϕ(Xz,φ

·∧ζi
, ξφ

·∧ζi
, δX i

·∧s, δξ
i
·∧s)1{ζi≤s<ζi+1}.
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In view of Remark 3.2.4, it then follows :

Em

(
1{λ0∈B}1{ζi≤s<ζi+1}ϕ(Xz,φ

·∧s , ξ
φ
·∧s)

)
= Em

(
1{λ0∈B}1{ζi≤s<ζi+1}ϕ(Xz,φ

·∧ζi
, ξφ

·∧ζi
, δX i

·∧s, δξ
i
·∧s)

)
= Em

(∫
R+

1{λ0∈B}1{ζi≤s<u}ϕ(Xz,φ
·∧ζi

, ξφ
·∧ζi

, δX i
·∧s, δξ

i
·∧s)Λ(u, λ0)e

−
∫ u

ζi
Λ(v,λ0)dv

du

)

= Em

(
1{λ0∈B}ϕ(Xz,φ

·∧ζi
, ξφ

·∧ζi
, δX i

·∧s, δξ
i
·∧s)

∫
R+

1{ζi≤s<u}Λ(u, λ0)e
−
∫ u

ζi
Λ(v,λ0)dv

du

)

= Em

(
1{λ0∈B}ϕ(Xz,φ

·∧ζi
, ξφ

·∧ζi
, δX i

·∧s, δξ
i
·∧s)1{ζi≤s}e

−
∫ s

ζi
Λ(v,λ0)dv

)
= Em

(
ϕ(Xz,φ

·∧ζi
, ξφ

·∧ζi
, δX i

·∧s, δξ
i
·∧s)1{ζi≤s}

∫
B
e

−
∫ s

ζi
Λ(v,λ)dv

M t,mλ

ζi
(dλ)

)
= Em

(
ϕ(Xz,φ

·∧ζi
, ξφ

·∧ζi
, δX i

·∧s, δξ
i
·∧s)1{ζi≤s}Mλ(B; ζi, s)

∫
R+
e

−
∫ s

ζi
Λ(v,λ)dv

M t,mλ

ζi
(dλ)

)
= Em

(
ϕ(Xz,φ

·∧ζi
, ξφ

·∧ζi
, δX i

·∧s, δξ
i
·∧s)1{ζi≤s<ζi+1}Mλ(B; ζi, s)

)
= Em

(
ϕ(Xz,φ

·∧s , ξ
φ
·∧s)1{ζi≤s<ζi+1}Mλ(B; ζi, s)

)
This shows that M t,mλ

s (B)1{ζi≤s<ζi+1} = Mλ(B; ζi, s)1{ζi≤s<ζi+1} Pm-a.s.

Lemma 2. For all mλ ∈ Mλ and almost all s ≥ t, we have
i) ∫

Uλ
Λ(s, λ)M t,mλ

s (dλ) < +∞ Pm − a.s.

ii) ∫
Uλ

Λ(ζi, λ)M t,mλ

ζi− (dλ) < +∞ Pm − a.s, i ≥ 1.

iii) ∫
Uλ

Λ(s, λ)M t,mλ

s− (dλ) < +∞ Pm − a.s.

Proof. Step 1. For almost all λ ∈ Uλ, we fix Nλ ⊂ [0, T ] the set of discontinuity of
t 7→ Λ(t, λ) which is, at most, countable. We introduce :

N c := {∀i ≥ 1, ζi 6∈ Nλ0}.

We shall show that P(N c) = 1 by showing that P(ζi ∈ Nλ0) = 0 for all i ≥ 1. Fix i ≥ 1 and
remark that, given λ ∈ Uλ, the distribution of ζi | {λ0 = λ} is absolutely continuous with
respect to the Lebesgue measure. Denote by fi|λ a corresponding density function. Then,

Pm(ζi ∈ Nλ0) =
∫

Uλ

[∫
R+

1Nλ
(z)fi|λ(z)dz

]
dmλ(λ) =

∫
Uλ

0 dmλ(λ) = 0.

59



Step 2. We show i). We set :

Ki(s) :=
(∫

Uλ
e

−
∫ s

ζi
Λ(u,λ)du

M t,mλ

ζi
(dλ)

)−1
≤ Ki(ζi+1) on {ζi ≤ s < ζi+1.

We have, by i) of Assumption 3.2.2,

Ki(ζi+1) < +∞.

Moreover, by Fubini’s Lemma and Remark 3.2.4,

∫ ζi+1

ζi

∫
Uλ

Λ(s, λ)e−
∫ s

ζi
Λ(u,λ)du

M t,mλ

ζi
(dλ)ds =

∫
Uλ

∫ ζi+1

ζi

Λ(s, λ)e−
∫ s

ζi
Λ(u,λ)du

dsM t,mλ

ζi
(dλ)

=
∫

Uλ
[1 − e

−
∫ ζi+1

ζi
Λ(u,λ)du]M t,mλ

ζi
(dλ) < +∞,

on N c. On the other hand, using Lemma 1,∫ ζi+1

ζi

∫
Uλ

Λ(s, λ)M t,mλ

s (dλ)ds ≤ Ki(ζi+1)
∫ ζi+1

ζi

∫
Uλ

Λ(s, λ)e−
∫ s

ζi
Λ(u,λ)du

M t,mλ

ζi
(dλ)ds < +∞

on N c. This shows that, for almost all s ≥ t,

1{ζi<s<ζi+1}

∫
Uλ

Λ(s, λ)M t,mλ

s (dλ) < +∞ on N c.

This leads to the result since ζi → +∞ when i → +∞ for almost all ω.
Step 3. We show ii). Since M t,mλ evolves continuously on all ]ζi, ζi+1[, we also have,∫

Uλ
Λ(ζi−, λ)M t,mλ

ζi− (dλ) < +∞ Pm − a.s.

Moreover, on N c, ζi cannot be on a discontinuity of Λ by construction, i ≥ 1. Then, we
have, on N c, ∫

Uλ
Λ(ζi, λ)M t,mλ

ζi− (dλ) < +∞.

Step 4. We show iii). We introduce :

A := {s ∈ [t, T ] : mλ [Λ(s, λ0) = 0] < 1}.

Recall that, by construction, M t,mλ

s << mλ for all s ≥ t. If s ∈ A,
∫

Uλ Λ(s, λ)M t,mλ

s (dλ) =
0 < +∞. If s 6∈ A, the distribution of ζi is equivalent to the Lebesgue measure and then, by
ii), we get the result.

We now look at the intensity at the observation of a jump ζi.

Lemma 3. For all z = (t, x, c, l) ∈ Z and B ∈ B(Uλ),

M t,mλ

ζi
(B) =

∫
B Λ(ζi, λ)M t,mλ

ζi− (dλ)∫
Uλ Λ(ζi, λ)M t,mλ

ζi− (dλ)
, i ≥ 1.
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Proof. We use the same notations as in the proof of Lemma 1.
1. For ease of notation, we set Bi(ζ) := {ζi−1 < s, ζi ∈ [s, s+ h], s+ h < ζi+1}. For s > 0,

we show that, with ζ0 := 0,

M t,mλ

s+h (B)1Bi(ζ) = M′
λ(B;M t,mλ

s− , s, h)1Bi(ζ), (3.2.9)

where

M′
λ(B;M t,mλ

s− , s, h) :=
∫

B

[∫ s+h
s Λ(u, λ)du

]
e−
∫ s+h

s
Λ(u,λ)duM t,mλ

s− (dλ)∫
Uλ

[∫ s+h
s Λ(u, λ)du

]
e−
∫ s+h

s
Λ(u,λ)duM t,mλ

s− (dλ)
.

Let ϕ be a Borel bounded function of D([0, T ],Rd+1), we can find a Borel measurable
map ϕ such that

ϕ(Xz,φ
·∧s+h, ξ

φ
·∧s+h)1Bi(ζ) = ϕ(Xz,φ

·∧s , ξ
φ
·∧s, δX

i
·∧s+h, δξ

i
·∧s+h)1Bi(ζ).

We shall write ϕ(X, ξ) for ϕ(Xz,φ
·∧s , ξ

φ
·∧s, δX

i
·∧s+h, δξ

i
·∧s+h). It then follows :

Em

(
1{λ0∈B}1Bi(ζ)ϕ(Xz,φ

·∧s+h, ξ
φ
·∧s+h)

)
= Em

(
1{λ0∈B}1Bi(ζ)ϕ(X, ξ)

)
= Em

(∫
Uλ

1{λ∈B}1{ζi−1<s}ϕ(X, ξ)
[∫ s+h

s
Λ(u, λ)du

]
e−
∫ s+h

s
Λ(u,λ)duM t,mλ

s− (dλ)
)

= Em

(
ϕ(X, ξ)1{ζi−1<s}

∫
B

[∫ s+h

s
Λ(u, λ)du

]
e−
∫ s+h

s
Λ(u,λ)duM t,mλ

s− (dλ)
)

= Em

(
ϕ(X, ξ)1{ζi−1<s}M

′
λ(B;M t,mλ

s− , s, h)
∫

Uλ

[∫ s+h

s
Λ(u, λ)du

]
e−
∫ s+h

s
Λ(u,λ)duM t,mλ

s− (dλ)
)

= Em

(
ϕ(X, ξ)1Bi(ζ)M

′
λ(B;M t,mλ

s− , s, h)
)

= Em

(
ϕ(Xz,φ

·∧s+h, ξ
φ
·∧s+h)1Bi(ζ)M

′
λ(B;M t,mλ

s− , s, h)
)

This shows that (3.2.9) hold Pm-a.s.
2. For i = 1, on {ζ1 ≥ s}, by Lemma 2, Λ(s, λ0) ∈ L1(M t,mλ

s− ) for almost all s. Using iii)
of Assumption 3.2.2, by the dominated convergence theorem, we deduce that

M t,mλ

s (B)1{ζ0<s,ζ1=s} =
∫

B Λ(s, λ)M t,mλ

s− (dλ)∫
Uλ Λ(s, λ)M t,mλ

s− (dλ)
,

i.e., since the law of ζ1 is absolutely continuous with respect to the Lebesgue measure,

M t,mλ

ζ1 (B) =
∫

B Λ(ζ1, λ)M t,mλ

ζ1− (dλ)∫
Uλ Λ(ζ1, λ)M t,mλ

ζ1− (dλ)
Pm - a.s.

Since almost surely, ζi+1 > ζi, i ≥ 1, and since the law of each ζi is absolutely continuous
with respect to the Lebesgue measure, we deduce the result by a straightforward induction.
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We provide a sufficient condition for Assumption 3.2.2 to hold.

Lemma 4. Assume that Λ can be written as follows :

Λ(s, λ) = 1A(s)
n∑

i=1
fi(s)gi(λ),

for all (s, λ) ∈ [0, T ] × Uλ where :
— A is a Borel set of [0, T ] such that s 7→ 1A(s) is càdlàg,
— (gi)1≤i≤n : Uλ 7→ R+ are measurable and positive,
— (fi)1≤i≤n : [0, T ] 7→ R+ are càdlàg, positive and locally bounded by below.
Then Assumption 3.2.2 holds.

Proof. Let ε > 0. Since for each 1 ≤ i ≤ p, fi is right continuous and locally bounded by
bellow, there exists hi

0 > 0 and ci > 0 such that, for all 0 ≤ h ≤ hi
0, ci ≤ fi(s+h) ≤ fi(s) + ε.

Let h0 := min1≤i≤p h
i
0 and c := min1≤i≤p c

i. Then, for 0 ≤ h ≤ h0∫ s+h

s
Λ(u, λ)du =

p∑
i=1

gi(λ)
∫ s+h

s
1A(u)fi(u)du ≤

p∑
i=1

gi(λ)
∫ s+h

s
(fi(s) + ε)du

≤ hΛ(s, λ)
(

1 + ε
∑p

i=1 gi(λ)∑p
i=1 fi(s)gi(λ)

)
≤ hΛ(s, λ)

(
1 + c−1ε

)
.

Evolution of the parameters γ0 and υ0

We use the notations of Section 3.2.5. We define M t,mγ

s (B) := Em

(
1{γ∈B}|F z,m,φ

s

)
and

M z,mυ ,φ
s (B) := Em

(
1{υ∈B}|F z,m,φ

s

)
.

Between two jumps of the random Poisson measure, no information about the size distri-
bution of the jumps is revealed, and therefore, about γ0. Whereas no information is revealed
about υ between two jumps from our control. In this case, both processes should remain
constant. At the i-th Poisson jump of size ui, the process M t,mγ should evolve according to
the classical Bayes rule. The process M z,mυ ,φ should evolve at the time the j-th CAT bonds
with the coupon cj is issued according to, again, the Bayes rule.

Lemma 5. Fix s ≥ 0. Assume that, for almost all γ ∈ Uγ, the claim size distribution is
dominated by some common measure µ◦. We have

M t,mγ

s (B)1{ζi≤s<ζi+1} = M t,mγ

ζi
(B)1{ζi≤s<ζi+1}

M t,mγ

ζi
(B) = Mγ(M t,mγ

ζi− (B);Ui)

in which
Mγ(mγ

◦ ;u◦) =
∫

B qγ(u◦ | γ)dmγ
◦(γ)∫

U qγ(u◦ | γ)dmγ
◦(γ) .

for almost all (mγ
◦ , u◦) ∈ Mγ ×Rd∗, in which qγ(u◦ | γ) is the conditional density, with respect

to mγ
◦ , of observing a jump of size u◦ knowing {γ0 = γ}.
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Moreover,
M t,mυ ,φ

s (B)1{τj≤s<τj+1} = M t,mυ ,φ
τj

(B)1{τj≤s<τj+1}

M t,mυ ,φ
τj

(B) = Mυ(M t,mυ ,φ
τj− (B); rj, τj, X

z,φ
τj−, αj)

in which
Mυ(mυ

◦ ; r◦, t◦, x◦, a◦) =
∫

C qυ(r◦ | t◦, x◦, a◦, υ)dmυ
◦(υ)∫

U qυ(r◦ | t◦, x◦, a◦, υ)dmυ
◦(υ) .

for almost all (mυ
◦ , r◦, t◦, x◦, a◦) ∈ Mυ × R × [0, T ] × Rd × A, in which qυ(r◦ | t◦, x◦, a◦, υ)

is the conditional density, with respect to mυ
◦ , of observing a jump of size r◦ knowing {τj =

t◦, X
z,φ
τj− = x◦, αi = a◦, υ0 = υ}.

Proof. Use the same arguments as in the proof of Proposition 2.2.1 in Chapter 2.

3.2.6 Parametrization of the set Mλ

Here, we have three measures on which will depend the value function. The one associated
to the distribution of the jumps of the Poisson measure and the one from the unknown para-
meter evolve by a finite number of jumps on each bounded interval : the first one according
to the jumps of the random Poisson process and the second one according to the impulses
from the control. Those will not lead to deal with derivatives on the space of measures and
a specific Itô formula nor generator of the diffusion. However, the measure associated to the
parameter of the intensity evolves continuously. To deal with this, we will assume that the
associated space of measures can be linked smoothly to a subset of Rk for some k ≥ 1.

Assumption 3.2.3. We assume that there exists an open or compact set P ⊂ Rk, for some
k ∈ N∗, and a function

f : P → Mλ

θ 7→ f(θ),

which is a homeomorphism between P and Mλ.

Remark 3.2.5. The process P t,p defined by :

p = f−1(mλ), P t,p
s := f−1(M t,mλ

s ), s ≥ t,

remains, by construction, in P. Moreover, Lemma 1 and 3 provide that M t,mλ only
depends on the stopping times of the jumps of the random Poisson measure on [0, t], thus,
M t,mλ is FN := s 7→ σ (N(u, ·), t ≤ u ≤ s)-adapted. Then, from Assumption 3.2.3, P t,p is
also FN -adapted. Moreover, P t,p does not depend on the size of the jumps.

According to Remark 3.2.5, we formulate the following assumption.

Assumption 3.2.4. Let P t,p be the process defined in Remark 3.2.5.
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There exists Lipschitz maps h1 : [0, T ] × P → Rk and h2 : [0, T ] × P → Rk with linear
growth such that

P t,p = p+
∫ ·

t
h1(s, P t,p

s )ds+
∫ ·

t

∫
Rd∗

h2(s, P t,p
s−)N(ds, du)

= p+
∫ ·

t
h1(s, P t,p

s )ds+
∫ ·

t
h2(s, P t,p

s−)dNs,

where we use the notation : dNs := N(ds,Rd∗).

We provide two examples in which the Assumptions 3.2.3 and 3.2.4 are fulfilled.

Example 1. Assume that there exists a càdlàg function h : [0, T ] 7→ R+ such that Λ(t, λ) =
λh(t) for all t ≥ 0, λ ∈ Uλ. Set mλ = M t,mλ

t := G(αt, βt), where G denotes the Gamma
distribution. Then, if we define

(α, β) :=
(
αt +N −Nt, βt +

∫ ·

t
h(u)du

)
,

it follows that

M t,mλ = G (α, β) ,

and P t,p = (α, β) satisfies Assumption 3.2.4.

Example 2. Assume that Uλ := {λ1, . . . , λn} ∈ (R∗
+)n. Define, for p = (pi)1≤i≤n with

pi > 0, 1 ≤ i ≤ n, the distribution D(p) by :

D(p) :=
∑n

i=1 piδλi∑n
i=1 pi

.

Set, for s ≥ t,

P t,p,i
s := pi

 Ns∏
j=Nt+1

Λ(ζj, λi)
 e−

∫ t

s
Λ(u,λi)du, 1 ≤ i ≤ n.

Then M t,mλ = D(P t,p) and the process above satisfies the stochastic differential equation :

P t,p,i = pi −
∫ ·

t
P t,p,i

s Λ(s, λi)ds+
∫ ·

t
P t,p,i

s− [Λ(s, λi) − 1]dNs, 1 ≤ i ≤ n.

3.2.7 Gain function
Given z = (t, x, c, l) ∈ Z and (p,m) ∈ P × M, the aim of the controller is to maximize

the expected value of the gain functional

φ ∈ Φz,m 7→ Gz,p,m(φ) := g(Xz,φ
T , Cz,φ

T , Lz,φ
T , P t,p

T ,M z,m,φ
T ),
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in which g is a continuous and bounded function on Rd × CL × P × M. Recall that Cz,φ
T is

the random variable which represents all CAT bonds which are still active at the end and
that Lz,φ

T is the elapsed time. If there is an initial cost when a CAT bond is issued 4, recall
the function H, one should not issue any CAT bond too close to the end, this allows to
compensate it.

Given φ ∈ Φz,m
κ , the expected gain is

J(z, p,m;φ) := Em[Gz,p,m(φ)],

and
v(z, p,m) := sup

φ∈Φz,m
κ

J(z, p,m;φ)

is the corresponding value function. Note that v is bounded.

3.3 Value function characterization
In order to introduce the PDE, we first need the definition of a new function. Recall the

set J (c;u) defined in (3.2.5). Then,

F(z;u) :=
∑

j∈J (c;u)
F (t, x, cj, lj;u), z := (t, x, c, l),

represents the total payoff for the ends of the CAT bonds according to the jump u. Recall
that Π : C → K gives the number of running policies where K := {0, . . . , κ}.

For ease of notation, we define D := [0, T ] × Rd × CL × P × M, and for J ∈ P(K),
DJ := [0, T ] ×Rd × CLJ × P × M. To J ∈ P(K), we denote by 1J = (1J(j))1≤j≤κ the vector
in Rκ in which 1J(j) = 1 if j ∈ J, 0 else.

For (z, p,m) ∈ D and u ∈ Rd∗, we introduce the operator I defined, for all (z, p,m) ∈ D,
by :

I[ϕ, u](z, p,m) := ϕ(t, x+ β(t, x, u) + F(z;u),C−(c, l;u), p+ h2(t, p),Mγ(mγ;u),mυ).

Thus, the Dynkin operator associated to our problem with policies running in indexes J
is :

LJϕ := ∂tϕ+ 〈µ+
κ∑

j=1
1J(j)C(t, cj), Dϕ〉 + 〈1J, Dlϕ〉 + 〈h1, Dpϕ〉+∫

Rd
[I[ϕ, u] − ϕ] Λ(t, λ0)Υ(γ0, du),

in which recall that Υ denotes the size distribution of the jumps of the random Poisson
measure N . Moreover, we introduce :

LJ
?ϕ := Em

[
LJϕ

]
,

4. To issue a CAT bond has a cost.
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and
D◦ := [0, T ) × Rd × CLJ × P × M,

DT := {T} × Rd × CL × P × M.

Then, we expect that v is a viscosity solution of, for each J ∈ P(K) and non-empty J′ ⊂ J,

1{J=K}
[
−LK

? ϕ
]

+ 1{J6=K} min{−LJ
?ϕ, ϕ− Kϕ} = 0 on D◦ (3.3.1)

ϕ = 1{J=K}g + 1{J6=K} max {Kg, g} on DT (3.3.2)
lim

l′→LJ′
J (l)

ϕ(., c, l′, .) = max{ϕ(.,C`
−[c,LJ′

J (l)], .),Kϕ(.,C`
−[c,LJ′

J (l)], .)} on D\D∅ (3.3.3)

in which, for (z, p,m) ∈ DJ and φa ∈ Φz,m a control such that {τφa

1 = t, αφa

1 = a} holds with
probability one,

Kϕ := sup
a∈A

Kaϕ, Kaϕ(z, p,m) := Em[ϕ(Zz,φa

t+ , p,M z,m,φa

t+ )];

and, for J′ ⊂ J,

LJ′

J : [0, `]J → [0, `]J (3.3.4)
(lj)1≤j≤κ 7→ (`1{j∈J′} + lj1{j 6∈J′})1≤j≤k, (3.3.5)

where [0, `]J := {l ∈ ([0, `] ∪ ∂)κ : lj 6= ∂ ⇔ j ∈ J}.

Remark 3.3.1. Note that the above corresponds to the definition of a system of PDEs linked
by the common boundary conditions.

We now define what is a viscosity solution of (3.3.1)-(3.3.2)-(3.3.3). For J ∈ P(K), we
define :

C 1
J :=

{
ϕ : DJ 7→ R, ϕ ∈ C1,1,(0,1),1,0(DJ)

}
.

Definition 3.3.1. We say that a upper-semicontinuous function u on D is a viscosity sub-
solution of (3.3.1)-(3.3.2)-(3.3.3) if, for any J ∈ P(K), (z◦, p◦,m◦) ∈ DJ, and ϕ ∈ C 1

J such
that maxDJ(u− ϕ) = (u− ϕ)(z◦, p◦,m◦) = 0 we have, if t◦ < T ,

1{J=K}
[
−LK

? ϕ
]

+ 1{J6=K} min{−LJ
?ϕ, ϕ− Ku)}(z◦, p◦,m◦) ≤ 0,

if J 6= ∅, for any non-empty J′ ∈ P(J), with d◦ = (t◦, x◦, c◦,L
J′
J (l◦), p◦,m◦) and d′

◦ =
(t◦, x◦,C

`
−[c◦,L

J′
J (l◦)], p◦,m◦),

lim sup
(z,p,m)→d◦

u(z, p,m) ≤ max {u(d′
◦),Ku(d′

◦)} ,

and, if t◦ = T ,

u(z◦, p◦,m◦) ≤
{
1{J=K}g + 1{J6=K} max(Kg, g)

}
(x◦, c◦, l◦, p◦,m◦).
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We say that a lower-semicontinuous function v on D is a viscosity super-solution of
(3.3.1)-(3.3.2)-(3.3.3) if, for any J ∈ P(K), (z◦, p◦,m◦) ∈ DJ, and ϕ ∈ C 1

J such that
minDJ(v − ϕ) = (v − ϕ)(z◦, p◦,m◦) = 0 we have, if t◦ < T ,

1{J=K}
[
−LK

? ϕ
]

+ 1{J 6=K} min{−LJ
?ϕ, ϕ− Kv)}(z◦, p◦,m◦) ≥ 0,

if J 6= ∅, for any non-empty J′ ∈ P(J), with d◦ = (t◦, x◦, c◦,L
J′
J (l◦), p◦,m◦) and d′

◦ =
(t◦, x◦,C

`
−[c◦,L

J′
J (l◦)], p◦,m◦),

lim inf
(z,p,m)→d◦

v(z, p,m) ≥ max {v(d′
◦),Kv(d′

◦)}

and, if t◦ = T ,

v(z◦, p◦,m◦) ≥
{
1{J=K}g + 1{J 6=K} max(Kg, g)

}
(x◦, c◦, l◦, p◦,m◦).

We say that a function u is a viscosity solution of (3.3.1)-(3.3.2)-(3.3.3) if its upper-
semicontinuous envelope u∗ is a viscosity sub-solution and its lower-semicontinuous envelope
u∗ is a viscosity super-solution of (3.3.1)-(3.3.2)-(3.3.3).

To ensure that the above operator is continuous, we first assume that :

Assumption 3.3.1. Kϕ is upper- (resp. lower-) semicontinuous, for all upper- (resp. lower-)
semicontinuous bounded function ϕ.

A sufficient condition for Assumption 3.3.1 to hold is provided in Chapter 2, see the
discussion after equation (2.3.6).

In order to ensure that LJ
∗ is continuous for all J ∈ P(K), we make the following assump-

tion.

Assumption 3.3.2. We assume that
— The functions F and Mγ are continuous ;
— The stochastic kernel γ 7→ Υ(γ, du) is continuous ;
— There map (t, λ) 7→ Λ(t, λ) is continuous.

Lemma 6. Assume that Assumption 3.3.2 holds. Then, for all (c,m) ∈ C × M, with J :=
{j ∈ K : cj 6= ∂}, and for all bounded function ϕ ∈ C 1

J , the operator LJ
?ϕ is continuous.

Proof. Let (c,m) ∈ C × M and J defined as above. Recall that

LJ
?ϕ = ∂tϕ+ 〈µ+

κ∑
j=1

1J(j)C(t, cj), Dϕ〉 + 〈1J, Dlϕ〉 + 〈h1, Dpϕ〉

+ Em

[∫
Rd

[I[ϕ, u] − ϕ] Λ(t, λ0)Υ(γ0, du)
]
.

For the first line above, since all involved functions are continuous, the operator is conti-
nuous. For the second line, since ϕ is bounded, one easily checks that the expected value with
respect to (λ, γ) is well defined and one can apply Fubini’s theorem. This is rewritten :
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Λ(t, p)
∫

Uγ

[∫
Rd

[I[ϕ, u] − ϕ] Υ(γ, du)
]
dmγ(γ)

with Λ(t, p) :=
∫

Uλ Λ(t, λ)dmλ(λ) which is continuous, see [17, Proposition 7.30 p145].
Now, remark that the function integrated through Υ(γ, du) with γ ∈ Uγ fixed is conti-

nuous by definition. Since the stochastic kernel γ 7→ Υ(γ, du) is assumed to be continuous, we
get again from [Proposition 7.30 p145] that the function integrated through mγ is continuous
and bounded. And then, the operator is continuous.

We now assume that we have a comparison principle. A sufficient condition is provided
in Proposition 3.5.1 below.
Assumption 3.3.3. Let U (resp. V ) be a upper- (resp. lower-) semicontinuous bounded
viscosity sub- (resp. super-) solution of (3.3.1)-(3.3.2)-(3.3.3). Assume further that U ≤ V
on DT . Then, U ≤ V on D.
Theorem 1. The function v is the unique viscosity solution of (3.3.1)-(3.3.2)-(3.3.3).

3.4 Viscosity solution properties
This part is dedicated to the proof of the viscosity solution characterization of Theorem 1.

We start with the sub-solution property and continue with the super-solution property. The
main difficulty relies on the fact that the filtration depends on the initial data. The results
can be obtained along the lines of Chapter 2.

3.4.1 Sub-solution property
Proposition 3.4.1. The function v is a viscosity sub-solution of (3.3.1)-(3.3.2)-(3.3.3).

The proof of this proposition, as usual, relies on a dynamic programming principle. For
this part, the dependency of the filtration on the initial data in not problematic as it only
requires a conditioning argument. We have the following result :
Proposition 3.4.2. Fix J ∈ P(K) and (z, p,m) ∈ DJ, and let θ be the first exit time of
(Zz,φ0

, P t,p) from a Borel set B ⊂ DJ containing (z, p,m) where φ0 ∈ Φz,m is a control such
that τφ0

1 > t. Then,

v(z, p,m) ≤ sup
φ∈Φz,m

≥t

Em

[
v∗(Zz,φ

θ , P t,p
θ ,m)1{θ<τφ

1 } + Kαφ
1 v∗(Zz,φ

τφ
1 −
, P t,p

τφ
1 −
,m)1{θ≥τφ

1 }

]
(3.4.1)

in which z := (t, x, c, l), Φz,m
≥t := {φ ∈ Φz,m

κ : τφ
1 ≥ t}.

Proof. It suffices to follow the arguments of Proposition 2.4.2 in Chapter 2.
We now prove Proposition 3.4.1.

Proof.
Since, for each J ∈ P(K), the operator LJ

? is continuous, the proof of (3.3.1) and (3.3.2)
can be obtained by using the same arguments as in Proposition 2.4.1 in Chapter 2.

To prove (3.3.3), one can use the same arguments used in order to prove (3.3.2).
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3.4.2 Super-solution property
Because of the non-trivial dependence of the filtration Fz,m,φ with respect to the initial

data, in order to prove the super-solution property associated to Theorem 1, we shall use a
discrete version of our impulse control problem, as in Chapter 2. We shall show that the limit
problem is a super-solution of (3.3.1)-(3.3.2)-(3.3.3). Proposition 3.4.1 and the comparison
assumption will show that the limit problem is v.

We shall use a dynamic programing principle in some discrete form defined below.

Proposition 3.4.3. Fix J ∈ P(K) and (z, p,m) ∈ DJ. Let Φz,m
n be the subset of elements

of Φz,m
κ such that the stopping times τφ

i , i ≥ 1 are valued in {t} ∪ πn ∩ [t, T ] with πn :=
{kT/2n; 0 ≤ k ≤ 2n}. The corresponding value function is :

vn(z, p,m) := sup
φ∈Φz,m

n

J(z, p,m;φ), (z, p,m) ∈ D.

Let (θφ, φ ∈ Φz,m
n ) be such that θφ is a Fz,m,φ-stopping time valued in {t} ∪ πn ∩ [t, T ].

Then,

vn(z, p,m) = sup
φ∈Φz,m

n

Em

[
vn(Zz,φ

θφ , P
t,p
θφ ,M

z,m,φ
θφ )

]
.

Proof. It suffices to follow the arguments of Lemma 2.4.1, Proposition 2.4.3 and Corollary
2.4.1 in Chapter 2.

We now consider the limit n → +∞. Let us set, for (z, p,m) ∈ D,

v◦(z, p,m) := lim inf
(z′,p′,m′,n)→(z,p,m,+∞)

vn(z′, p′,m′).

Proposition 3.4.4. The function v◦ is a viscosity super-solution of (3.3.1)-(3.3.2)-(3.3.3).

Proof.
The equations (3.3.1) and (3.3.2) can be obtained by using Proposition 3.4.3 and following

the arguments in the proof of Proposition 2.4.4 in Chapter 2.
We now prove the boundary condition (3.3.3).
Step 1. Fix J ⊂ P(K) and (z, p,m) ∈ DJ.
Let nk → +∞ and (zk, pk,mk) → (z, p,m) such that vnk

(zk, pk,mk) → v◦(z, p,m). Let
k◦ ≥ 1 and define the lower semi-continuous function ϕk◦ as in the proof of Proposition 2.4.4
in Chapter 2. Then, from Proposition 3.4.3, with φ0 ∈ Φt,x,m a control such that τφ0

1 > T , we
get for k ≥ k◦

vnk
(zk, pk,mk) ≥ Em

[
ϕk◦(Zzk,φ0

θφ0 , P tk,pk

θφ0 ,M zk,mk,φ0

θφ0 )
]
.

Then, k → +∞ leads to

v◦(z, p,m) ≥ Em

[
ϕk◦(Zz,φ0

θφ0 , P
t,p

θφ0 ,M
z,m,φ0

θφ0 )
]
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and, again from the proof of Proposition 2.4.4 in Chapter 2, we get that limk◦→+∞ ϕk◦ ≥
v◦. By Fatou’s lemma we have

v◦(z, p,m) ≥ Em

[
v◦(Zz,φ0

θφ0 , P
t,p

θφ0 ,M
z,m,φ0

θφ0 )
]
.

Step 2. Now fix J′ ⊂ J and (z◦, p◦,m◦) ∈ DJ. Let k → +∞ and (zk, pk,mk) →
(t◦, x◦, c◦,L

J′
J (l◦), p◦,m◦) such that

v◦(zk, pk,mk) → lim inf
(z,p,m)→(t◦,x◦,c◦,LJ′

J (l◦),p◦,m◦)
v◦(z, p,m).

We introduce hk := LJ′
J (l◦) − lk. Then, for k◦ large enough, we can find ε > 0 such that

supk≥k◦ maxj∈J′ hj
k < ε < infk≥k◦ maxj∈J\J′(`− ljk). Then, for k ≥ k◦,

v◦(tk, xk, ck,L
J′

J (l◦) − hk, pk,mk) ≥ E
[
v◦(Zzk,φ0

t+ε , P tk,pk
t+ε ,M zk,mk,φ0

t+ε )
]
.

Now, we send k → +∞, since the functions in the diffusion are Lipschitz, using Fatou’s
lemma leads to

lim
k→+∞

v◦(tk, xk, ck,L
J′

J (l◦) − hk, pk,mk) ≥ E
[
v◦(Zz,φ0

t+ε , P
t,p
t+ε,M

z,m,φ0
t+ε )

]
.

Since, under the control φ0, the processes X, P and M are driven here by the random
Poisson measure with finite activity, they satisfy the stochastic continuity property. Moreover,
since the probability of observing a jump decreases to 0 when ε → 0, one easily shows that,

lim
k→+∞

v◦(tk, xk, ck,L
J′

J (l◦) − hk, pk,mk) ≥ v◦(t◦, x◦,C
`
−[c◦,L

J′

J (l◦)], p◦,m◦),

by using the fact that v◦ is bounded and the definition of the process C and L after the end
of one or several CAT bonds.

Step 3. In order to show the second inequality, repeat Step 1. and Step 2. using, instead
of φ0, a control φa ∈ Φz,m

κ such that {τφa

1 = t, αφa

1 = a, τφa

2 > T} holds with probability one.
We now prove Theorem 1.

Proof. [Proof of Theorem 1.] We already know that v∗ and v◦ are respectively a bounded
sub- and super-solution of (3.3.1)-(3.3.2)-(3.3.3). Then, under Assumption 3.3.3, v∗ ≤ v◦.
Moreover, by construction, v◦ ≤ v ≤ v∗. Then, v is continuous and the unique solution of
(3.3.1)-(3.3.2)-(3.3.3).

Remark 3.4.1. If we denote by SK the set of permutation of {1 ≤ k ≤ κ}, then, by symmetry,

v(z, p,m) = v(t, x, (c, l) ◦ Σ, p,m)

for each Σ ∈ SK, (z, p,m) ∈ D. From a numerical point of view, this allows to only compute
the value function on κ + 1 different dimensions for the CAT bonds space CL on which we
can order them, instead of 2κ different dimensions with no order.

70



3.5 A sufficient condition for the comparison
In this section, we provide a sufficient condition for Assumption 3.3.3 to hold.

Proposition 3.5.1. Assumption 3.3.3 holds whenever there exists a function Ψ on [0, T ) ×
Rd × CL × P × M such that, for each J ∈ P(K),

(i) (t, x, l, p) 7→ Ψ(t, x, c, l, p,m) ∈ C1,1,1,1([0, T )×Rd × [0, `)×P) for all (c,m) ∈ C×M,
(ii) %Ψ ≥ LJ

∗Ψ on DJ for some % > 0,
(iii) Ψ − KΨ ≥ δ on DJ for some δ > 0,
(iv) Ψ ≥ max(Kg̃, g̃) on Rd × CLJ × P × M with g̃(t, ·) := e%tg(t, ·) and % is defined in

(ii),
(v) lim inf l′→LJ′

J (l) Ψ(·, c, l′, ·) − Ψ(·,C`
−(c,LJ′

J (l)), .) ≥ 0 for all J′ ⊂ J,
(vi) Ψ− ≤ Ψ(x) = o(‖x‖2) as ‖x‖2 → +∞ for some Ψ : Rd → R.

Proof.
Step 1. As usual, we shall argue by contradiction. We assume that there exists some

J0 ∈ P(K) and some (z0, p0,m0) ∈ DJ such that (U−V )(z0, p0,m0) > 0, in which U is a sub-
solution of (3.3.1)-(3.3.2)-(3.3.3) and V is a super-solution of (3.3.1)-(3.3.2)-(3.3.3). Recall the
definition of Ψ, % and g̃ in Proposition 3.5.1. We set ũ(t, .) = e%tU(t, .) and ṽ(t, .) = e%tV (t, .)
for all (t, .) ∈ DJ for all J ∈ P(K). Then, there exists λ ∈ (0, 1) such that

(ũ− ṽλ)(z0, p0,m0) > 0, (3.5.1)

in which ṽλ := (1 − λ)ṽ + λΨ. Note that ũ and ṽ are sub and super-solution on DJ of

min
{
%ϕ− LJ

∗ϕ, ϕ− Kϕ
}

= 0

for each J ∈ P(K), with the boundary conditions

1{J=K}(ϕ(T, ·) − g̃) + 1{J6=K} min {ϕ(T, ·) − g̃, ϕ(T, ·) − Kg̃} = 0, (3.5.2)

and
lim

l′→LJ′
J (l)

ϕ(., c, l′, .) = ϕ(.,C`
−[c,LJ′

J (l)], .) ∀J′ ⊂ J, (c, l) ∈ CLJ (3.5.3)

Step 2. Let dM be a metric on M compatible with the weak topology. For (t, x, y, c, l, p, q,m) ∈
D′ := [0, T ] × Rd × Rd × CL × P2 × M, we set :

Γε(t, x, y, c, l, p, q,m) :=ũ(t, x, c, l, p,m) − ṽλ(t, y, c, l, q,m)
− ε

(
‖x‖2 + ‖y‖2 + d(c, l) + ‖p‖2 + ‖q‖2 + dM(m)

) (3.5.4)

with ε > 0 small enough such that Γε(t0, x0, x0, c0, l0, p0, p0,m0) > 0. Although [0, `) is
not closed, note that the supremum is achieved for some Jε ∈ P(K) by some (tε, xε, yε,
cε, lε, pε, qε,mε) ∈ DJε . This follows from the upper-semicontinuity of Γε, the fact that ũ,−ṽ
and −Ψ are bounded from above, and by the fact that

lim sup
l′→Lk

J(l)
(ũ− ṽλ)(., c, l′, .) ≤ (ũ− ṽλ)(.,C`

−(c,Lk
J(l)), .).
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For (t, x, y, c, l, p, q,m) ∈ D′, we set

Θn
ε (t, x, y, c, l, p, q,m) = Γε(t, x, y, c, l, p, q,m) − n

(
‖x− y‖2 + ‖p− q‖2

)
.

Again, there is (tεn, xε
n, y

ε
n, c

ε
n, l

ε
n, p

ε
n, q

ε
n,m

ε
n) ∈ D′ such that

sup
D′

Θn
ε = Θn

ε (tεn, xε
n, y

ε
n, c

ε
n, l

ε
n, p

ε
n, q

ε
n,m

ε
n).

It is standard to show that, after possibly considering a subsequence,

(tεn, xε
n, y

ε
n, c

ε
n, l

ε
n, p

ε
n, q

ε
n,m

ε
n) → (t̂ε, x̂ε, ŷε, ĉε, l̂ε, p̂ε, q̂ε, m̂ε) ∈ D′,

n
(
‖xε

n − yε
n‖2 + ‖pε

n − qε
n‖2

)
→ 0, and

Θn
ε (tεn, xε

n, y
ε
n, c

ε
n, l

ε
n, p

ε
n, q

ε
n,m

ε
n) → Γε(t̂ε, x̂ε, ŷε, ĉε, l̂ε, p̂ε, q̂ε, m̂ε) = Γε(tε, xε, yε, cε, lε, pε, qε,mε),

(3.5.5)
see e.g. [31, Lemma 3.1]. Moreover, up to a subsequence, there exists n0 ∈ N, such that, for
all n ≥ n0, (tεn, xε

n, c
ε
n, l

ε
n, p

ε
n,m

ε
n) ∈ DJε and (tεn, yε

n, c
ε
n, l

ε
n, q

ε
n,m

ε
n) ∈ DJε .

Step 3. We first assume that, up to a subsequence, (ũ− Kũ)(tεn, xε
n, c

ε
n, l

ε
n, p

ε
n,m

ε
n) ≤ 0, for

n ≥ 1. Then, it follows from the supersolution property of ṽ and Condition (iii) that

ũ(tεn, xε
n, c

ε
n, l

ε
n, p

ε
n,m

ε
n) − ṽλ(tεn, yε

n, c
ε
n, l

ε
n, q

ε
n,m

ε
n) ≤

Kũ(tεn, xε
n, c

ε
n, l

ε
n, p

ε
n,m

ε
n) − Kṽλ(tεn, yε

n, c
ε
n, l

ε
n, q

ε
n,m

ε
n) − λδ.

Passing to the lim sup and using (3.5.5) and (3.3.1), we obtain

(ũ− ṽλ)(t̂ε, x̂ε, ĉε, l̂ε, p̂ε, m̂ε) + λδ ≤ K(ũ− ṽλ)(t̂ε, x̂ε, ĉε, l̂ε, p̂ε, m̂ε)

Now let us observe that

sup
D

(ũ− ṽλ) = lim
ε→0

sup
(t,x,c,l,p,m)∈D

Γε(t, x, x, c, l, p, p,m)

= lim
ε→0

Γε(tε, xε, xε, cε, lε, pε, pε,mε)

= lim
ε→0

Γε(t̂ε, x̂ε, x̂ε, ĉε, l̂ε, p̂ε, p̂ε, m̂ε),

(3.5.6)

in which the last identity follows from (3.5.5). Combined with the above inequality, this
shows that supD(ũ − ṽλ) + λδ ≤ lim supε→0 K(ũ − ṽλ)(t̂ε, x̂ε, ĉε, l̂ε, p̂ε, m̂ε), which leads to a
contradiction for ε small enough.

Step 4. We now show that there is a subsequence such that tεn < T for all n ≥ 1. If not,
one can assume that tεn = T . If, up to a subsequence, one can have ũ(T, xε

n, c
ε
n, l

ε
n, p

ε
n,m

ε
n)) ≤

g̃(T, xε
n, c

ε
n, l

ε
n, p

ε
n,m

ε
n), then it follows from (3.5.2) and Condition (iv) that,

ũ(T, xε
n, c

ε
n, l

ε
n, p

ε
n,m

ε
n))−ṽλ(T, yε

n, c
ε
n, l

ε
n, q

ε
n,m

ε
n) ≤ g̃(T, xε

n, c
ε
n, l

ε
n, p

ε
n,m

ε
n)−g̃(T, yε

n, c
ε
n, l

ε
n, q

ε
n,m

ε
n).

Hence,

Γε(tε, xε, xε, cε, lε, pε, pε,mε) ≤ g̃(T, xε
n, c

ε
n, l

ε
n, p

ε
n,m

ε
n) − g̃(T, yε

n, c
ε
n, l

ε
n, q

ε
n,m

ε
n),
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and (3.5.5) with (3.5.6) leads to supD(ũ− ṽλ) ≤ 0, a contradiction. If, up to a subsequence,
ũ(T, xε

n, c
ε
n, l

ε
n, p

ε
n,m

ε
n) ≤ Kg̃(T, xε

n, c
ε
n, l

ε
n, p

ε
n,m

ε
n), by (3.5.2) and Condition (iv),

ũ(T, xε
n, c

ε
n, l

ε
n, p

ε
n,m

ε
n)−ṽλ(T, yε

n, c
ε
n, l

ε
n, q

ε
n,m

ε
n) ≤ Kg̃(T, xε

n, c
ε
n, l

ε
n, p

ε
n,m

ε
n)−Kg̃(T, yε

n, c
ε
n, l

ε
n, q

ε
n,m

ε
n).

Hence,

Γε(tε, xε, xε, cε, lε, pε, pε,mε) ≤ Kg̃(T, xε
n, c

ε
n, l

ε
n, p

ε
n,m

ε
n) − Kg̃(T, yε

n, c
ε
n, l

ε
n, q

ε
n,m

ε
n),

and combining Assumption 3.3.1 with (3.5.5) and (3.5.6) leads to supD(ũ− ṽλ) ≤ 0, the same
contradiction.

Step 5. In view of step 2, 3, 4, one can assume that tεn < T , (ũ−Kũ)(tεn, xε
n, c

ε
n, l

ε
n, p

ε
n,m

ε
n) >

0 and (cε
n, l

ε
n) ∈ CLJε for all n ≥ 1. Using Ishii’s Lemma and following standard arguments,

see Theorem 8.3 and the discussion after Theorem 3.2 in [31], we deduce from the sub-
and supersolution viscosity solutions property of ũ and ṽλ, and the Lipschitz continuity
assumptions on µ, σ and β, that

%
(
ũ(tεn, xε

n, c
ε
n, l

ε
n, p

ε
n,m

ε
n) − ṽλ(tεn, yε

n, c
ε
n, l

ε
n, q

ε
n,m

ε
n)
)

≤

C
(
n(‖xε

n − yε
n‖2 + ‖pε

n − qε
n‖2) + ε(1 + ‖xε

n‖2 + ‖yε
n‖2 + ‖pε

n‖2 + ‖qε
n‖2)

)
,

for some C > 0, independent of n and ε. In view of (3.5.4) and (3.5.5), we get

%Γε(t̂ε, x̂ε, x̂ε, ĉε, l̂ε, p̂ε, p̂ε, m̂ε) ≤ 2Cε
(
1 + ‖x̂ε‖2 + ‖p̂ε‖2

)
. (3.5.7)

We shall prove in next step that the right-hand side of (3.5.7) goes to 0 as ε → 0, up to a
subsequence. Combined with (3.5.6), this leads to a contradiction of (3.5.1).

Step 6. We conclude the proof by proving the claim used above. First note that we can
always construct a sequence (t̃ε, x̃ε, c̃ε, l̃ε, p̃ε, m̃ε)ε)ε>0 such that

Γε(t̃ε, x̃ε, x̃ε, c̃ε, l̃ε, p̃ε, p̃ε, m̃ε) → sup
D

(ũ− ṽλ) and

ε
(
‖x̃ε‖2 + d(c̃ε, l̃ε) + ‖p̃ε‖2 + dM(m̃ε)

)
→ 0 as ε → 0.

By (3.5.5), Γε(t̃ε, x̃ε, x̃ε, c̃ε, l̃ε, p̃ε, p̃ε, m̃ε) ≤ Γε(t̂ε, x̂ε, x̂ε, ĉε, l̂ε, p̂ε, p̂ε, m̂ε). Hence, supD(ũ−ṽλ) ≤
supD(ũ− ṽλ) − 2 lim infε→0 ε (‖x̂ε‖2 + ‖p̂ε‖2).

3.6 Numerical Scheme
We let h◦ be a time-discretization step such that both T/h◦ and `/h◦ are an integer. In

order to ensure the existence of such a h◦, we shall assume that (T/`) ∈ Q∗
+ which does not

appear as a restriction from a practical point of view. We set Th◦ := {th◦
i := ih◦, i ≤ T/h◦}

and, for J ∈ P(K), we set Lh◦
J = ∏κ

j=1(∂1Jc(j) + Lh◦1J(j)) in which Lh◦ := {lh◦
i := ih◦, i <

`/h◦}.
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The space Rd is discretized with a space step h? on a rectangle [−c, c]d containing Nx
h?

points on each direction. The corresponding set is denoted by Xh?
c . Recall that P is a subset

of Rd. We again discretise Rd with the same step space h? on a rectangle [−c, c]d containing
Np

h?
points. The corresponding set is denoted by P◦,h?

c , thus, the discretization of P is Ph?
c :=

P◦,h?
c ∩ P.

We set h = (h◦, h?). The first order derivatives (∂tϕ), (∂xi
ϕ)i≤d, (∂liϕ)i≤κ and (∂pi

ϕ)i≤d

are approximated by using the standard up-wind approximations :

∆h◦,t
i ϕ(z, p,m) := h−1

◦ (ϕ(t+ h◦, ·) − ϕ)

∆h?,x
i ϕ(z, p,m) :=

{
h−1

? (ϕ(·, x+ eih?, ·) − ϕ) if µi +∑κ
j=1 C ≥ 0

h−1
? (ϕ− ϕ(·, x− eih?, ·)) else

∆h?,`
i ϕ(z, p,m) :=

{
h−1

? (ϕ(·, l + eih?, ·) − ϕ) if i ∈ J
0 else

∆h?,p
i ϕ(z, p,m) :=

{
h−1

? (ϕ(·, p+ eih?, ·) − ϕ) if h1 ≥ 0
h−1

? (ϕ− ϕ(·, p− eih?, ·)) else

in which ei is i− th unit vector of Rd.
We shall assume that A is finite. We introduce :

Ch?
J :=

κ∏
j=1

(∂1Jc(j) + (Xh?
c × Rh?

c × A)1J(j)),

in which Rh?
c := {ih? : −c/h? ≤ i ≤ c/h?}.

Then, the discrete counter-part of the set of policies running in indexes J is defined by

CLh
J := Ch?

J × Lh◦
J .

We introduce :
Λ[h◦](t, p) = h−1

◦

∫ t+h◦

t

∫
Uλ

Λ(s, λ)dmλ(λ)ds,

in which mλ is completely determined by p, recall Assumption 3.2.3.
Note that, for u ∈ Uγ, we may have x+β(·, u)+F(·;u) 6∈ Xh?

cx
. One needs to approximate

ϕ with the closest points in Xh?
cx

. We have the same issue with Ph?
cp

. We define [ϕ]h? as an
approximation of ϕ by

[ϕ]h? =
∑

(x′,p′)∈Ch? (x)×Ch? (p)
ω(x′, p′ | x, p)ϕ(·, x′, ·, p′, ·).

in which Ch?(x) (resp. Ch?(p)) denotes the corners of the cube of Rd (resp. Rd) in which x
(resp. p) belongs too and ω(· | x, p) is a weight function.

Moreover, in order to integrate the boundary condition when lj → ` for some j ∈ J, we
define Lh◦ = Lh◦ ∪ ` and Lh◦

J = ∏κ
j=1(∂1Jc(j) + Lh◦1J(j)). We introduce

[ϕ]`(·, c, l, ·) = ϕ(·,C`
−(c, l), ·), (c, l) ∈ Ch?

J × Lh◦
J .
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And finally,

[ϕ]`h?
= [[ϕ]`]h? .

The discrete counterpart of LJ
∗ for all J ∈ P(K) is

LJ
hϕ := ∆h◦,t

i [ϕ]` +
∑

1≤i≤d

µi∆h?,x
i [ϕ]` +

∑
i∈J

∆h?,`
i [ϕ]` +

∑
1≤i≤d

h1∆h?,p
i [ϕ]`

+ Λ[h◦]
∫

Uγ

∫
Rd

[
I
[
[ϕ]`h?

, u
]

(t+ h◦, ·) − ϕ
]

Υ(γ, du)dmγ(γ).
(3.6.1)

For the sequel, we set φ◦ ∈ Φz,m
κ a control such that τφ◦

1 > T a.s. and φa ∈ Φz,m
κ a control

such that τφa

1 = t a.s. and τφa

2 > T a.s. for a ∈ A. Thus, the discrete counterpart of K is

Khϕ := sup
a∈A

Em

[
[ϕ]`h?

(Zz,φa

t+h◦ , P
t,p
t+h◦ ,M

z,m,φa

t+h◦ )
]
. (3.6.2)

We set X̊h?
cx

:= (Xh?
cx

\∂Xh?
cx

), and P̊h?
cp

:= (Ph?
cp

\∂P◦,h?
cp

).
Our numerical scheme consists in solving, for all J ∈ P(K) :

0 =1{J=K}
[
−LJ

hϕ
]

+ 1{J6=K} min
{
−LJ

hϕ , ϕ− Khϕ
}

on (Th◦\T ) × X̊h?
cx

× CLh
J × P̊h?

cp
× M

(3.6.3)
ϕ =g1{J=K} + (g ∨ K[g]h?) 1{J6=K} on {T} × X̊h?

cx
× CLh

J × P̊h?
cp

× M
(3.6.4)

ϕ =g on Th◦ × ∂Xh?
c × CLh

J × P̊h?
c × M
(3.6.5)

Proposition 3.6.1. Let vc
h denote the solution of (3.6.3)-(3.6.4)-(3.6.5). Then vc

h → v when
(h?, h◦/h?) → 0 and c → +∞.

Proof. We check that the conditions of [14, Theorem 2.1.] are satisfied as in [9].

3.7 Example : CAT bonds in a per event framework for
Hurricanes in Florida

Here we focus on a simple example where the controller is an insurance or a reinsurance
company which can issue CAT bonds in order to cover its risk in natural disasters.

We will consider CAT bonds of per event type. The time-unit will be the year and we fix
` = 3 which corresponds to the average maturity of CAT bonds in years.

We will consider the case of hurricanes occurring on the US Atlantic coast. More specifi-
cally, on Florida. The motivation comes from the fact that this region is well exposed, about
one hurricane every two years in average, see [53] ; and has an important and increasing
insured value about 4000 billion in 2015, see [60].
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Thus, we build an example in which an insurer has a strong exposition in Florida against
the hurricanes, and can launch CAT bonds to cover it.

We consider a 1-dimension random Poisson measure N , which represents the intensity of
arrival and the severity of Hurricanes. We first on the case with a Gamma distribution as a
prior.

3.7.1 Intensity of Hurricanes : the Gamma case
We define the intensity Λ as the function :

Λ(t, λ) = λh(t), (t, λ) ∈ [0, T ] × R∗
+,

in which h : t 7→ h(t) is a positive continuous function which represents the seasonality of
the arrival of hurricanes and some growth according to the global warming. The parameter
λ ∈ Uλ := R∗

+, which is unknown, represents a level of intensity.
We set mλ

0 = G(α0, β0) with (α0, β0) ∈ (R∗
+)2 as an initial prior on λ.

Thus, by Example 1, we deduce that the process M t,mλ , starting from mλ := Γ(αt, βt) at
t ∈ [0, T ], remains in the family of Gamma distributions and, for all s ≥ t,

Ms = G
(
αt +Ns −Nt, βt +

∫ s

t
h(u)du

)
.

Moreover, we can define two processes Pα and P β :

Pα = Pα
t +

∫ ·

t
dNs,

P β = P β
t +

∫ ·

t
h(s)ds.

and, by construction, M = G(Pα, P β).
For the function h, we need to add seasonality. We will add growth’s intensity in the

Bernoulli case. For the seasonality, especially on big Hurricanes, we refer to [56] in which
the authors give a curve based on a kernel density estimation. One close parametric density
function over one year can be found in the form :

h0 : [0, 1] → R+ (3.7.1)

t 7→
{
fα̂,β̂

(
t−d0

d1−d0

)
if t ∈ (d0, d1)

0 else
(3.7.2)

in which fα̂,β̂ is the density function of the Beta distribution of parameters (α̂, β̂) ∈ (R∗
+)2.

The Figure 3.1 shows a representation of h0 close to the one obtained in [56].

76



Jan Mar May Jul Sep Nov Jan

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Normalized intensity over one year

Time

In
te

ns
ity

Figure 3.1 – Representation of h over one year with d0 = 1st July, d1 = 15th November,
α̂ = 8 and β̂ = 6.

3.7.2 Intensity of Hurricanes : the Bernoulli case

Although the Gamma prior gives parameters that belongs in R+, in order to remains in
the Gamma distribution over time, it requires the form (t, λ) 7→ λh(t) and then the intensity
of the whole period is proportional in λ. We introduce a Bernoulli case with three alternatives
in which one can place any function depending on time.

With E : R+ 7→ N the integer part function, we define the intensity as :

Λ(t, λ) = 1
2h(t)

(
1 + E(t)

T
λ

)
, (t, λ) ∈ [0, T ] × {λ1, λ2, λ3}, (3.7.3)

in which the parameter λ ∈ {λ1, λ2, λ3} ⊂ R+ represents 3 scenarios of the evolution of the
intensity, as a consequence of the global warming.

Following Example 2, we can define 3 processes, starting from p := (p1, p2, p3) ∈ R3
+ at

time t ∈ [0, T ] :

P i := pi −
∫ ·

t
PsΛ(s, λi)ds+

∫ ·

t
Ps− [Λ(s, λi) − 1] dNs (3.7.4)
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3.7.3 Severity of the Hurricanes
As in [53], we use a Generalized Pareto Distribution for the simulation of the severity of

the claim, over the exposure of 4000 billion. Their threshold (minimum claim size) is µ = 0.25
billion for an exposure of 2000 billion. Here, we shall use : µ = 0.5, σ = 5 and ξ = 0.5. To fix
ideas, the median is 4.5 billion, the quantile at 90% is 22 billion and the quantile at 99.5% is
132 billion. We also bound the distribution by the total exposure of 4000 billion.

Now we define the possible CAT bonds to issue. We will work with per event CAT bonds.
We introduce the so-called Occurrence Exceedance Probability (OEP) curve. To this aim,

we introduce the random variable :

ιt := max
t≤s≤t+1

∫
R∗
uN(du, {s}),

which is the greatest Hurricane in [t, t+ 1] for t ∈ [0, T − 1]. The OEP curve is simply :

OEP t
t := inf

{
x ∈ R : P (ιt ≤ x) ≥ 1 − 1

t

}
, t ≥ 0,

in which t is called the Return period. By construction, OEP t
t is the quantile of order 1 − 1/t

of ιt.
The Figure 3.2 shows the corresponding OEP curve with the prior (pα, pβ) := (25, 50).
We now define the set of controls and the output process.

3.7.4 The set of controls and the output process
Recall that a control φ has the form (τφ

i , k
φ
i , n

φ
i ). Here ni is the percentage of the Insured

Value in the portfolio of the Insurer and is the notional of the CAT bond. It is fixed to one.
We introduce {K1, K2, K3, K4} := {10, 50, 200, 1000}. We introduce what will be the capacity
of the CAT bonds : ltKj

= OEP t
Kj+1

−OEP t
Kj

for 1 ≤ j ≤ 3 and t ∈ [0, T − 1].
The value ki can be chosen in {K1, K2, K3} and the associated sets Aki

are defined by :

At
ki

= [OEP t
ki
,+∞[, i ≥ 1.

If a Hurricane leads to a cost in At
ki

, then the default of the CAT bond is activated. It
remains to define the payout for the insurer in the default case. It corresponds to cover the
layer [OEP t

ki
, OEP t

ki
+ ltki

] at a ratio of ni. We define the payout of the j − th CAT bonds
as :

Fj(t, x, c, l, n, k, u) := nj

[(
u−OEP

t−lj
kj

)+
∧ lkj

]
, j ∈ {1, 2}.

Note that, in our example, the risk cannot be covered above the return period of 1000.
We consider the process X := (X1, X2) valued in R2. The first component represents

the cash of the Insurer/Reinsurer and the second component represents the risk premium, in
term of percentage of the pure premium, of the market about the CAT bonds.

78



0 200 400 600 800 1000

0
50

10
0

15
0

20
0

OEP curve

Return period

O
E

P

Figure 3.2 – Representation of an OEP curve, with the parameter (µ, σ, ξ) defined in the
text and with the prior (pα, pβ) := (25, 50).

We shall denote by ρ > 0 the speed mean return of the price of CAT bonds, by ρ? : R 7→ R
the increase function of the price after a claim and by H0 > 0 the initial cost of issuing a
CAT bond. We set, with x := (x1, x2) :

µ(t, x) =
(
µ+ rx1

−ρx2

)
,

β(t, x, u) =
(

u
ρ?(u)

)
,

H(t, x, a) =
(

−H0
0

)
,

C(t, c) =
(
c
0

)
,

F =
(∑κ

j=1 Fj

0

)
.

The parameter µ represents the premium rate, the insurer is profitable if µ > Em [Λ(t, λ)]
∫
R∗ uΥ(du),

and r > 0 is the constant interest rate.
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3.7.5 Gain function and dimension reduction
The controller wants to maximize, for some γ > 0, the criteria

g(x, c, l, p,m) := − exp
[
−γ

(
x1 + H0

`

κ∑
k=1

1{lk 6=∂}(`− lk)
)]

∨ Ĉ.

The right part inside the exponential function compensates the initial cost for remaining
CAT bonds, in order to avoid particular behavior of issuing nothing close to the end. We
take Ĉ := −10300 which ensures that g is bounded and big enough such that it will not play
an essential role.

Note that in the Gamma prior case, we have P β = P β
t +

∫ ·
t hsds which is a function of

time. Then, one can avoid it in the numerical scheme since it is a function of time fully
characterized by the initial prior.

In the Bernoulli case, one can see that, if we set for the prior

p′ := δp,

for some δ > 0, then, for all s ≥ t, we have P ′
s = δPs and then D(P ′

s) = D(Ps). One can
normalized P such that the sum is 1 and avoid the last component.

3.7.6 The choice of the parameters
We choose here the form and the functions and the parameters for our toy examples. We

first describe the Gamma case (for the prior) and then describes the Bernoulli case.
Just after the occurrence of Katrina, the price of the reinsurance was about two or three

times greater with a persistence of about two years and can be also seen on the CAT bond
market, see Figure 9 in [33]. Thus, we set

ρ := 2.

Moreover, the estimated return-period of such event is about 20-year return period, see [48].
Since the increase was about two of three times greater, we set

ρ?(u) := 0.05
1 − Fµ,σ,ξ(u) ,

in which Fµ,σ,ξ denotes the cumulative distribution function of the Pareto distribution
of parameters (µ, σ, ξ). Then, here, for a return period of 40 years (recall that we have in
average one claim each 2-year period), it gives an increase of 100% of the price.

The insurer has a market share of e0 ∈]0, 1] that we fix at 10%. We shall assume that,
the insurer is profitable until λ = 0.65. Then, the premium rate is

µ := 0.65 e0

∫
R∗
uΥ(du) = 0.65 × e0 ×

(
µ0 + σ0

1 − ξ

)
= 0.6825.
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If ki = Kj with j ∈ {1, 2, 3},

ri = C0(τi, Xτi
, αi, εi) = ni

[
e0

(
1

Kj+1
+ 1

2

(
1
Kj

− 1
Kj+1

))]
lKj

(
1 + x2 + εi

)
. (3.7.5)

Thus, the CAT bond price is decomposed by :
— The part 1

Kj+1
which is the probability that a claim is above the layer within one year

and then the payout is the layer
— The part 1

Kj
− 1

Kj+1
which is the probability that the greatest claim is in the layer,

and we multiply it by one half like if it was uniformly distributed in the layer, which
is greater than the true value.

— The factor x2 is the risk aversion of the market, and εi is some random value about
the price the coupon.

Finally, the cost of issuing a CAT bond is fixed at : H0 := 0.0025, the interest rate is
fixed at r := 1% and the market share at e0 := 10%.

Remark 3.7.1. In these examples, we deal with per event CAT bonds. One also can deal
with aggregated losses within the period. In this case, one needs to remember the current
accumulation of claims and to introduce another dimension in the output process X.

Remark 3.7.2. In practice, in general, a partial default below 70%-80% of the capacity does
not end the CAT bonds : the coupon is reduced by the proportional loss and another loss may
lead to the complete default, using the same limits. Here, for simplification, the CAT bond
ends whenever the layer is attained.

Remark 3.7.3. Note that the function Ψ(x, c, l, p) := µ
r

+ x1 + δ satisfies the conditions of
Proposition 3.5.1, for δ > 0 great enough.

Note that, in this example, we did not add any global warming effect, it will be added
in the Bernoulli case. Actually here, we could only add a deterministic global warming effect
since the Bayes stability requires an intensity of the form Λ(t, λ) = λh(t).

With a convex hull of Dirac masses

In this case, the intensity grows over time, recall (3.7.3). We fix λ1 = 0.2, λ2 = 0.3, λ3 = 0.4
and P 1

0 = P 2
0 = P 3

0 = 1
3 , recall (3.7.4).

To be consistent, we say that the premium rate also rises over time following the rise of
intensity, but by 35%, and then is :

µ(t, x) =
(
µ
(
1 + 0.35 t

T

)
+ rx1

−ρx2

)
, (t, x) ∈ [0, T ] × R2.

We assume that the market is updating the OEP with :

OEP t := OEP 0
(

1 + 0.35 t
T

)
, t ∈ [0, T ].
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3.7.7 Results
Recall that, for each CAT bond that the insurer can issue, we need to add its characte-

ristics and then the complexity increases hugely in κ, depending on possible policies. Thus,
in our simulation, we use κ = 2 and thus, the controller can choose at most 2 layers among
the three available (recall them in term of return periods : [10, 50], [50, 200] and [200, 1000]
which correspond to [1.23, 4], [4, 9], and [9, 21.5] in billion dollars).

With the Gamma prior

In Figure 3.3, we provide a simulated path of the optimal strategy in which the Pareto
distribution is discretized in 2500 points (the highest possible value is 49 billion dollars). The
top left graphic describes the control played by the insurer. The top part represents the issue
of CAT bonds, the level is the lower bound of the layer. The bottom part represents the
running CAT bonds with respect to the layer. The double dash says that two CAT bonds at
the same layer are running. The top right graphic describes the arrival of natural disasters.
The bottom part gives the size of the claim of the insurer while the top part gives the payoff of
the CAT bond(s). The middle left graphic describes the evolution of the cash of the insurer.
The middle right graphic gives the evolution oh X2, the price penalty of the CAT bonds
which appears in (3.7.5). The bottom left graphic gives the evolution of the mean of the
estimated distribution of λ0, defined by P α

P β , and the bottom right graphic gives the evolution
of the standard deviation, defined by

√
P α

P β .
At the beginning, the insurer does not issue any CAT bond. Since we start in January,

there is no risk to experiment a claim and thus the insurer delay the issue. Just when the
season starts, he first chooses to issue two CAT bonds on the layer [200, 1000]. Recall that it is
the highest layer which corresponds to [9, 21.5] in billion dollars. It is possible to have a claim
highly above the layer and having a double cover on this big layer gives, indirectly, a cover
against huge claims above the layer (recall that the maximum claim size is 49 billion dollars).
He renews each CAT bond at the maturity until he meets a claim with a return period above
1000 during the 5th year. He gets the associated payoff. Despite the huge increase of the price
of CAT bonds, by almost 400%, he immediately issues a new one on the layer [200, 1000],
but only one. He waits the next season, with a better expected price, to issue the other one.
After, he follows this strategy to the end, except very close to the end where he optimizes
the cost of CAT bonds.

In Figure 3.4, we represent the approximated density (by kernel estimation) of the total
cash of the insurer at the end of the 30 years. On the left, it is the case with λ0 = 0.6 (as it
is also the case in Figure 3.3) and on the right with λ0 = 0.5, i.e. what believes the insurer
at the beginning. The solid curve is the case when the insurer plays the optimal control and
the dashed curve is when he never issues any CAT bond. We also add the quantiles at 99.5%
in term of losses, see the legend. In the case with λ0 = 0.6 (left), from which the paths in
Figure 3.3 come from, we can see that the standard deviation is reduced. And the quantile
at 99.5% is strongly reduced. One can observe that the case λ0 = 0.6 strongly reduces the
expected net return in average.
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Figure 3.3 – Simulated path of the optimal strategy of the insurer.
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Figure 3.4 – Cash distribution (with 200 000 simulations) for λ0 = 0.6 (left) and λ0 = 0.5
(right) with the optimal control (solid dark blue) and without any CAT bond (dashed black).

We now look at the case with a discretization of 500 of the Pareto distribution. In par-
ticular, the maximum claim size is 21.4 billion which does not exceed the maximum layer
[9.0, 21.5]. In general, the risk is lower. In Figure 3.5, we show a simulated path. This time,
the insurer chooses to get two CAT bonds at the layer [50, 200]. Actually, with this discretiza-
tion, the layer [200, 1000] appears to be less competitive since the discretization of 500 leads
to a lower expected payoff. In the first years, the expected intensity is revised higher and the
relative price of the layer [10, 50] decreases (this layer requires the highest coupon since it is
frequently hit). At the 4th year, he changes his strategy and gets one CAT bond on the layer
[10, 50] and the other one on the layer [50, 200]. A catastrophe above the return period of 200
occurs at the 20th year and both CAT bonds end. He prefers to wait the next season because
of the consecutive price increase. Note that, in the previous cases (with Pareto distribution
discretized in 2500 points), he was never without any CAT bond, even after an increase of
400%. Then, he continues his strategy to get a CAT bond on the layer [10, 50] and the other
one on the layer [50, 200], until the end.
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Figure 3.5 – Simulated path of the optimal strategy of the insurer.
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With the Bernoulli prior

In Figure 3.6, we provide a simulated path of the optimal strategy in which the Pareto
distribution is discretized in 2500 points (recall that the highest possible value is 49 billion
dollars). As in the Gamma prior case, the insurer chooses to get two CAT bonds at the higher
layer. When he experiences a huge claim during the second year, he still gets twice the layer
but prefers to wait before to take a new CAT bond, according to the huge rise of the price.
He waits the next year and restarts the same strategy until the 12th year. Then, he issues
CAT bonds on the layer [50, 200] and [200, 1000] until close the end.

The estimated probabilities on λ0 evolve slowly at the beginning since λ0 has an impact
which rises over time.

In Figure 3.7, we represent the approximated density (by kernel estimation) of the total
cash of the insurer at the end of the 30 years. On the left, it is the case with λ0 = 0.4 (as it
is also the case in Figure 3.3) and on the right with λ0 = 0.3. The legend is the same as in
Figure 3.4 and we get close distributions.

We now look at the case with a discretization of 500 of the Pareto distribution and show
a simulated path in Figure 3.8. As in the Gamma prior case, at the beginning, the insurer
chooses to get two CAT bonds at the layer [50, 200]. He follows this strategy until he meets
a huge claim in the 16th year. He waits the next season and restarts the same strategy. At
the 24th year, he chooses to issue CAT bonds on two different layers, at [50, 200] and [10, 50].
As in Figure 3.5, this results in a change on the belief on the intensity.

Finally, in Figure 3.9, we display the distribution of the probabilities on λ0. This highlights
the fact that it is very difficult to estimate it with observations through time.
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Figure 3.6 – Simulated path of the optimal strategy of the insurer.
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Figure 3.7 – Cash distribution (with 200 000 simulations) for the increase parameter λ0 =
0.4 (left) and λ0 = 0.3 (right) with the optimal control (solid dark blue) and without any
CAT bonds (dashed black).
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Figure 3.8 – Simulated path of the optimal strategy of the insurer.
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90



Chapitre 4

Optimal inventory management and
order book modeling

We model the behavior of three agent classes acting dynamically in a limit order book of
a financial asset. Namely, we consider market makers (MM), high-frequency trading (HFT)
firms, and institutional brokers (IB). Given a prior dynamic of the order book, similar to
the one considered in the Queue-Reactive models [29, 46, 47], the MM and the HFT define
their trading strategy by optimizing the expected utility of terminal wealth, while the IB
has a prescheduled task to sell or buy many shares of the considered asset. We derive the
variational partial differential equations that characterize the value functions of the MM and
HFT and explain how almost optimal control can be deduced from them. We then provide
a first illustration of the interactions that can take place between these different market
participants by simulating the dynamic of an order book in which each of them plays his own
(optimal) strategy.

4.1 Introduction
The comprehension of the order book dynamic has become a fundamental issue for all

market participants and for regulators that try to increase the market transparency and
efficiency. A deep understanding of the order book dynamic and agents behaviors enables :
market makers to ensure liquidity provision at cheaper prices, high-frequency traders to
reduce arbitrage opportunities, investors to reduce their transaction costs, policy makers to
design relevant rules, to strengthen market transparency and to reduce market manipulation.
Moreover, modeling the order book provides insights on the behavior of the price at larger
time scales since the price formation process starts at the order book level, see e.g. [28] for
Brownian diffusion asymptotic of rescaled price processes. Recently, the widespread market
electronification has facilitated the access of high quality data describing market participants
decisions and interactions at the finest time scale, on which statistics can be based. The
availability of the order book data certainly allows a better understanding of the market
activity. On the other hand, the recent market fragmentation and the increase of trading
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frequency rise the complexity of agents actions and interactions.
The main objective of the present paper is to propose a flexible order book dynamics model

close to the one of [29, 46, 47, 52], construct a first building block towards a realistic order
book modeling, and try to better understand the various regimes related to the presence of
different market participants. Instead of considering a pure statistical dynamics as in e.g. [29],
we construct an endogenous dynamics, see e.g. [27, 52], based on the optimal behavior of
agents that are assumed to be rational. For numerical tractability, we simplify the market in
three classes of (most significant) participants : the market makers (MM), the high-frequency
trading (HFT) firms, and the institutional brokers (IB). Each of them decides of his policy in
an optimal way, given prior statistics, and then interact with the others given the endogenous
realizations of the market.

More precisely, we postulate that they assume an order book model similar to the one
suggested by the Queue-Reactive model [46], see also [1, 29, 44], in which we restrict to
the best bid and ask queues 1 : limit and aggressive orders arrive with certain intensities,
when a queue is depleted it is regenerated according to a certain law and possibly after a
price move, the spread can take two different values 2. Importantly, we also take the order
book’s imbalance into account in the modeling of the different transition probabilities, see
e.g. Besson et al. [18].

The market participants can either put limit or aggressive orders. The aim of a market
maker is to gain the spread. He should therefore essentially put limit orders, aggressive orders
being used when his inventory is too desequilibrated. In our model, he can only acts on the
given order book. The high-frequency trader is assumed to play on the correlation between
the order book dynamics, viewed as the stock price, and the price of another asset, called
futures hereafter. Indeed, he believes that the difference between the stock and the futures
prices is mean-reverting. Whenever he buys/sells one unit of the stock, he sells/buys back
one unit of the futures. We do not handle the order book associated to the futures but simply
model the price of the futures as the mid-price of the stock to which a mean-reverting process
is added. Still, we introduce a (possibly equal to 0) transaction cost proportional to the size of
the transaction. As the market-makers, he seeks for a zero inventory at the end of the trading
period. Finally, institutional brokers are simply assumed to play VWAP (Volume Weighted
Average Price)- or Volume-based strategies (robots). Again, they essentially use limit orders
and become aggressive when they are too late in their schedule.

We focus on the derivation of the optimal strategies of the market makers and the high-
frequency traders, and on how they can be computed numerically by solving the associated
variational partial differential equations. Note that it is important to consider their strategies
within a dynamical model as current actions impact the order book and therefore may modify
its futures dynamics. We will actually see that, in certain situations, participants can place
aggressive orders or limit orders in the spread just to try to manipulate the order book’s
dynamics in a favorable way. Note that the dimension of our control space is higher than

1. This limitation is for numerical tractability. It is already enough for most markets.
2. One could consider a larger set of possible spreads in theory, but refrains to doing this for numerical

tractability.
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in [1, 44, 27, 52] since more complex decisions are required to tackle the market making
problem.

However, the ultimate goal of this work is to provide a market simulator. In the last sec-
tion, we already present simulations of the market behavior given the pre-computed optimal
strategies of the different actors. More precisely, we will only simulate the evolution of the
mean-reverting process (driving the difference between the stock and the futures price) to-
gether with the reconstruction of the queues when prices move, and let the participants play
their optimal strategies given the evolution of the order book due to their different actions.
This should allow us to study how these different market participants may interact among
each other if each of them is playing his optimal policy. In particular, one should observe
different market regimes depending on the proportion of the different participants in the total
population, on their risk aversion, etc. First simulations are provided in this paper, a more
throughout study will be conducted in the companion paper [8].

Our approach therefore lies in between two current streams of literature. The first one is
based on “general equilibrium models”, including economic models, where the market activity
is generated by interactions between rational agents who take optimal decisions that interact
through the market netting process, see e.g. [39, 57, 58]. The second stream of literature
considers purely statistical models where the order book is seen as a random process, see
e.g. [2, 3, 15, 29, 30, 41, 46, 47, 49, 50, 59]. The statistical models focus on reproducing
many salient features of a real market rather than agents behaviors and interactions. In our
approach, we take into account that the agent’s behavior are essentially based on statistical
approaches, but that they eventually interact with each other.

We end this introduction with an outline of this chapter. In Section 4.2, we present the
general order book dynamics. The marker maker control problem is studied in details in
Section 4.3. There, we present the equations satisfied by their optimal strategy and propose
a numerical solution for this problem, together with numerical illustrations. In Section 4.4,
we formulate the high-frequency trader control problem and perform a similar analysis. The
institutional broker strategy is described in Section 4.5, where we restrict to VWAP and
Volume liquidation problems. Finally, in Section 4.6, we simulate a realistic market using the
three agent’s optimal trading strategies.

4.2 General order book presentation and priors of the
market participants

As mentioned above, we focus on a single order book and only model the best bid and ask
prices, in a similar way to [29]. In this section, we describe the general market mechanisms as
well as the priors on which the optimal strategies of the agents are based. We fix a terminal
time horizon T and consider a probability space (Ω,P). Here, Ω := Ω1 ×Ω2 and P := P1 ⊗P2,
where Ω1 is the space of R11-valued càdlàg paths on [0, T ] endowed with a probability measure
P1 with full support on Ω1, and Ω2 is the one dimensional Wiener space endowed with the
Wiener measure P2.
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We denote respectively by (P b
t )t≥0 and (P a

t )t≥0 the best bid offer and the best ask offer
processes on the market. They are valued in dZ where d > 0 is the tick size. We denote
by (Qb

t )t≥0 and (Qa
t )t≥0 the sizes of the corresponding queues valued in N∗. To simplify

the notation, we introduce P := (P b, P a), Q := (Qb, Qa) and define the spread process as
δP := P a − P b. Moreover, we assume 3 that δPt ∈ {d, 2d} for all t ≥ 0.

We denote by (τi)i≥1 the times at which orders are sent to the market. We assume that
this sequence is increasing and that #{i ∈ N : τi < T} < ∞ a.s. The market participants
can send different types of orders at each time τi :

— Aggressive orders of size αb
i ∈ N ∩ [0, Qb] at the bid or of size αa

i ∈ N ∩ [0, Qa] at
the ask : the size of the corresponding queue, Qb or Qa, decreases by the size of the
aggressive order, αb

i or αa
i .

— Limit orders of size Lb
i ∈ N at the bid or of size La

i ∈ N at the ask : the size of the
corresponding queue, Qb or Qa, increases by the size of the limit order, Lb

i or La
i .

— When δP = 2d : Limit orders of size Lb, 1
2

i ∈ N at the bid or of size La, 1
2

i ∈ N at the
ask : the order is placed inside the spread, at the price P b +d = P a −d, this generates
a new queue at the bid or at the ask, of size Lb, 1

2
i or La, 1

2
i , and a price move.

— Cancellations : Cancellations of M b
i ∈ N∩[0, Qb] orders at the bid or of M a

i ∈ N∩[0, Qa]
orders at the ask. The difference between cancellations and aggressive orders is that
aggressive orders consume the bottom of the limit while we see cancellations as only
consuming the top of the limit first.

We assume that the sequence (αb
i , α

a
i , L

b
i , L

a
i , L

b, 1
2

i , L
a, 1

2
i ,M b

i ,M
a
i )i≥1 is made of random

variables leaving, with probability one, on the state space C◦ defined as the collection of
elements (ab, aa, `b, `a, `b, 1

2 , `a, 1
2 ,mb,ma) ∈ N8 such that

abaa = 0
`b = `a = 0 if max{ab, aa} ≥ 1
`b, 1

2 = 0 if max{ab, aa, `b} ≥ 1
`a, 1

2 = 0 if max{ab, aa, `a} ≥ 1
mb = 0 if max{ab, aa, `b, `b, 1

2 } ≥ 1
ma = 0 if max{ab, aa, `a, `a, 1

2 } ≥ 1

. (4.2.1)

We interpret the above expression as follows. First, aggressive orders can not be sent simul-
taneously at the bid and at the ask. Next, limit orders (at the current bid/ask prices) can not
be placed at the same time that aggressive orders are sent. Finally, one can not place limit
orders within the spread if limit orders at the current bid/ask prices are placed. Because we
only consider the first limits, these conditions are natural whenever one presumes that orders
of different market participants do not arrive exactly at the same time.

Depending on the arrival of orders, queues can be depleted. In this case, new queues can
be re-generated, at the same prices or at different prices, and possibly with a change of the

3. The extension to more possible spread values is straightforward. We stick to this setting for notational
and computational simplicity. Note that this limit is also justified by empirical evidences for many stocks,
see [29].
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spread value. To model this, we introduces a sequence of random variables (εi, ε
b
i , ε

a
i )i≥1 with

values in {0, 1} × (N∗)2. The sequence (εi)i≥1 will describe possible jumps of the bid/ask
prices, while the sequence (εbi , εai )i≥1 will describe the new sizes of the queues when they are
re-generated, after one of them is depleted. More precisely, we postulate the dynamics

P b
τi

= P b
τi−1

+ d

[
1{εi=1}

(
−1{Qb

τi−1 =α̂b
i } + 1{δPτi−1 =2d}1{Qa

τi−1 =α̂a
i }

)
+ 1

{L
b, 1

2
i >0}

]

P a
τi

= P a
τi−1

+ d

[
1{εi=1}

(
1{Qa

τi−1 =α̂a
i } − 1{δPτi−1 =2d}1{Qb

τi−1 =α̂b
i }

)
− 1

{L
a, 1

2
i >0}

]
Qb

τi
= Qb

τi−1
+ Lb

i + (Lb, 1
2

i −Qb
τi−1

)1
{L

b, 1
2

i >0}
− α̂b

i 1{∆P b
τi

=0} + (εbi −Qb
τi−1

)1{∆P b
τi

6=0}∪{α̂b
i =Qb

τi−1 }

Qa
τi

= Qa
τi−1

+ La
i + (La, 1

2
i −Qa

τi−1
)1

{L
a, 1

2
i >0}

− α̂a
i 1{∆P a

τi
=0} + (εai −Qa

τi−1
)1{∆P a

τi
6=0}∪{α̂a

i =Qa
τi−1 }

(4.2.2)

for i ≥ 1, where
α̂
b/a
i := α

b/a
i +M

b/a
i ,

with

(P b
0 , P

a
0 , Q

b
0, Q

a
0) ∈ DP,Q := {(pb, pa, q) ∈ (dZ)2 × (N∗)2 : pa − pb ∈ {d, 2d}},

and the convention τ0 = 0−. We refer to (4.2.1) to see that this dynamics is consistent. In
particular, prices can move only if one of the queues is depleted because of the arrival of
aggressive orders or if a new limit order is inserted within the spread. These two situations
can not occur simultaneously. The ask price can move by d when the ask queue is depleted.
If the spread was already 2d, then the bid price moves up as well. The other way around if
the bid queue is depleted. In the following, we extend the dynamics of (P,Q) by considering
it as a step constant right-continuous process on [0, T ].

We now denote by E the N12-valued step constant right-continuous process defined by

∆Eτi
:= Eτi

− Eτi−1 := (αb
i , α

a
i , L

b
i , L

a
i , L

b, 1
2

i , L
a, 1

2
i ,M b

i ,M
a
i ,εi, ε

b
i , ε

a
i , 1), i ≥ 1,

with Eτ0 := E0 := 0. Later on, we shall only write

(Pτi
, Qτi

) = TP,Q(Pτi−1 , Qτi−1 ,∆Eτi
) (4.2.3)

in which the map TP,Q is defined explicitly by (4.2.2).
The process E models the flow of all the orders on the market. From the viewpoint of

a market participant, it corresponds to its own orders and to the other participants’ orders
that we denote by Ẽ. The process Ẽ has jump times (τ̃i)i≥1 ⊂ (τi)i≥1 of sizes

∆Ẽτ̃i
=
∑
j≥1

1{τ̃i=τj}∆Eτj
, i ≥ 1. (4.2.4)

It induces a counting measure ν̃(dt, de). For a market participant, a prior on this measure
is given by the compensator µ̃ of ν̃ under P. We assume that it is state dependent. More
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precisely, we consider a Borel kernel (p, q) ∈ DP,Q 7→ µ̃(·|p, q) ∈ M([0, T ] × N8), where
M([0, T ] ×N8) denotes the collection of non-negative measures on [0, T ] ×N8. In particular,
it can depend on the order book’s imbalance, as observed in e.g. [18]. To be consistent with
the constraints imposed above, it satisfies :

µ̃(·|p, q) is supported by C◦, for all (p, q) ∈ DP,Q. (4.2.5)

It should also be such that aggressive orders and cancellations are never bigger than the
corresponding queue size, which will be made more explicit in our numerical example sections,
see Section 4.3.4.

Next, we shall denote by Eφ the flows corresponding to the trading strategy of either
a market maker, a high-frequency trader, or an institutional broker. Thus, she will assume
facing a global flow E = Ẽ + Eφ.

Moreover, for simplicity, we shall assume that µ̃ is of the form

dµ̃(c, ε, εb, εa, dt|p, q) = dλ(ε, εb, εa|p, q, c)dβ(c|p, q)dt (4.2.6)

in which λ and β are bounded Borel non-negative kernels and (without loss of generality)∫
dλ(ε, εb, εa|p, q, c) = 1, for all (p, q, c) ∈ DP,Q × C◦. (4.2.7)

Later on, when an order (αb
i , α

a
i , L

b
i , L

a
i , L

b, 1
2

i , L
a, 1

2
i ,M b

i ,M
a
i ) is send by a MM, an HFT or an

IB, we shall also assume that the conditional law of (εi, ε
b
i , ε

a
i ) is given by λ.

Remark 4.2.1. Let γ(p, q) :=
∫
dβ(c|p, q). Then, γ is uniformly bounded by the above as-

sumption. Let τ be a stopping time and fix h > 0. Since λ integrates to one, it follows that
P[#{t ∈ [τ, τ + h] : ∆Ẽt 6= 0} = 1|Fτ ] = hγ(Pτ , Qτ ) + o(h) and P[#{t ∈ [τ, τ + h] : ∆Ẽt 6=
0} > 1|Fτ ] = o(h). Moreover, the process counting the number of jumps of Ẽ is dominated by a
Poisson process with intensity γ̄ := sup γ < ∞. Hence, P[#{t ≤ T : ∆Ẽt 6= 0} ≥ k] ≤ γ̄T/k,
for k ≥ 1, by Markov’s inequality. Similarly, if g is a non-decreasing Borel map, then
E[g(#{t ∈ [0, T ] : ∆Ẽt 6= 0})] ≤ ∑

k≥1 g(k) (γ̄T )k

k! e−γ̄T .

4.3 Market maker’s optimal control problem
In this section, we describe the optimal control problem of the market maker, the key

tools to characterize the solution and how to numerically approximate the optimal control.

4.3.1 Market maker’s strategy and state dynamics
The market maker typically places limit orders in order to make profit of the spread but

can turn aggressive when his inventory is too important. At the end the trading period [0, T ],
the later should be zero. In the following, we denote by G his gain process and by I his
inventory. We also need to keep track of the sizes of his orders already placed at the bid
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queue, N b, and at the ask queue, N a. For simplicity, we impose that new orders can not be
placed at the bid (respectively at the ask) if he already has previously taken a position at the
bid (respectively at the ask). Then, his position at the bid (resp. at the ask) is completely
described by N b (resp. N a) and the number of units Bb before him in the bid-queue (resp. Ba

before him in the ask-queue). Later on, we only write N = (N b, N a) and B = (Bb, Ba).
To define the market maker’s control, we assume that he faces the exogenous process Ẽ

described in Section 4.2.
For him, a control is a sequence of random variables φ = (τφ

i , c
φ
i )i≥1 where (τφ

i )i≥1 is an
increasing sequence of times and each cφ

i = (αb,φ
i , αa,φ

i , Lb,φ
i , La,φ

i , L
b, 1

2 ,φ

i , L
a, 1

2 ,φ

i ,M b,φ
i ,M a,φ

i ) is
C◦-valued, see below for more implicit restrictions. The times (τφ

i )i≥1 are the times at which
he sends orders : the action done at τφ

i is cφ
i , whose components have the same meanings as

in Section 4.2.
Given his own orders and the other participants’ orders, the sequence of times at which

orders are sent to the market is (τi)i≥1 where τ0 := 0− and τi+1 = min{τ̃j > τi, j ≥
1} ∧ min{τφ

j > τi, j ≥ 1}, see (4.2.4) and above.
We denote by Eφ the càdlàg process that jumps only at the times τφ

i s with jump size

∆Eφ

τφ
i

= (cφ
i ,
∑
j≥1

(εj, ε
b
j , ε

a
j)1{τφ

i =τj}), i ≥ 1,

so that 4

E = Eφ + Ẽ

from his point of view. As usual, we impose that Eφ is predictable for the (completed)
filtration Fφ = (Fφ

t )t≥0 generated 5 by E. We will also keep in mind the number of actions

J :=
∑
i≥1

1{τφ
i ≤·}

from time 0 on, as it may induce a cost.
We now impose a minimum and maximum inventory size, denoted by (−I∗, I∗) ∈ (−N)×

N, and that
#{τφ

i ≤ T, i ≥ 1} ≤ kφ ∧ J◦ a.s., for some kφ ∈ N,

for some J◦ ∈ N ∪ {∞}. The constraint on the inventory is classic. The constraint on the
number of operations can be justified by operational constraints. In the case J◦ = ∞, it
just means that each control should be of essentially bounded activity, but the bound is not
uniform on the set of controls and can be as large as needed.

To be admissible, a control φ should therefore be such that each cφ
i is C(Zτφ

i −)-valued,
where

Z := (P,Q,X) with X := (G, I,N,B, J),

4. We keep in mind that E also depends of φ but dot not make this explicit for ease of notations.
5. Note that this creates a dependence of the filtration on the control itself, which is similar to Chapter 2.
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and, for z = (pb, pa, qb, qa, g, i, nb, na, bb, ba, j), C(z) is the collection of elements c := (ab, aa, `b,
`a, `b, 1

2 , `a, 1
2 , mb, ma) ∈ C◦ \ {0} such that :

ab ≤ min
{
i+ I∗ − ba ; qb

}
, aa ≤ min

{
I∗ − i− bb ; qa

}
,

`b ≤ (I∗ − i)1{nb=0} , `
a ≤ (i+ I∗)1{na=0},

`b, 1
2 ≤ (I∗ − i)1{pa−pb=2d}1{nb=0} , `

a, 1
2 ≤ (i+ I∗)1{pa−pb=2d}1{na=0}

mb ≤ nb , ma ≤ na

c = 0 if j = J◦.

Note that the constraints on the first three lines correspond to the fact that we do not
want to take a position that could lead to an inventory out of the limits −I∗ and I∗ if it
was suddenly executed. The indicator functions correspond to additional constraints on the
controls, imposed for numerical tractability : no new limit order can be send on a side if one
has not been executed or has not canceled the position on the same side before, no limit order
can be send in the spread if it is not equal to two ticks. In this case, we write φ ∈ C(0, Z0−).

The dynamics of X is given by

Xτi
= TX(Pτi−1 , Qτi−1 , Xτi−1 ,∆Eφ

τi
)1{∆Eφ

τi
6=0} + T̃X(Pτi−1 , Qτi−1 , Xτi−1 ,∆Ẽτi

)1{∆Eφ
τi

=0},

(4.3.1)

in which TX , T̃X : R22 7→ dZ × N × N4 × N. More precisely, consider the map

exe(a, n, b) := min{(a− b)+, n}, a, b, n ∈ N.

It represents the number of stocks set at a limit that are executed when an aggressive order
of size a arrives, that the position in the queue is b, and the size of the posted block at this
position is n.

Then, having in mind the constraints encoded in C(·) above, see also (4.2.1), we can write

TX = (TG, TI , TNb , TNa , TBb , TBa , TJ) , T̃X = (T̃G, T̃I , T̃Nb , T̃Na , T̃Bb , T̃Ba , T̃J)

where

TG(p, q, x, δ) = g + (ab − exe(ab, nb, bb))pb − (aa − exe(aa, na, ba))pa

TI(p, q, x, δ) = i− (ab − exe(ab, nb, bb)) + (aa − exe(aa, na, ba))
TNb/a(p, q, x, δ) = nb/a + [`b/a − nb/a]+ + `b/a, 1

2 −mb/a − exe(ab/a, nb/a, bb/a)
TBb/a(p, q, x, δ) = bb/a + (qb/a − bb/a)1{`b/a 6=0} − bb/a1{mb/a=nb/a} − (bb/a ∧ ab/a)1{ab/a 6=0} − bb/a1

{`b/a, 1
2 6=0}

TJ(p, q, x, δ) = j + 1
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and

T̃G(p, q, x, δ) = g − exe(ab, nb, bb)pb + exe(aa, na, ba)pa

T̃I(p, q, x, δ) = i+ exe(ab, nb, bb) − exe(aa, na, ba)
T̃Nb/a(p, q, x, δ) = nb/a − exe(ab/a, nb/a, bb/a)
T̃Bb/a(p, q, x, δ) = [bb/a − ab/a]+1{mb/a=0} + (bb/a − [mb/a − (qb/a − bb/a − nb/a)]+)+1{mb/a 6=0}

T̃J(p, q, x, δ) = 0,

for x = (g, i, nb, na, bb, ba, j), δ = (ab, aa, `b, `a, `b, 1
2 , `a, 1

2 ,mb,ma, ε, εb, εa), p = (pb, pa) and
q = (qb, qa) .

Remark 4.3.1. It follows from (4.2.6) and the constraint that Eφ is predictable that the
probability that Eφ and Ẽ jump at the same time on [0, T ] is zero. This justifies the formulation
(4.3.1).

For later use, note that it follows from (4.2.2) and (4.3.1) that

Zτi
= T (Zτi−1 ,∆Eφ

τi
)1{∆Eφ

τi
6=0} + T̃ (Zτi−1 ,∆Ẽτi

)1{∆Eφ
τi

=0}, (4.3.2)

in which

T = (TP,Q, TX) and T̃ = (TP,Q, T̃X).

4.3.2 The optimal control problem
The aim of the market maker is to maximize her expected utility

E[U(ZT )]

in which

U(z) := − exp
(
−η{g + i+pb − i−pa − κ([i+ − qb]+ + [i− − qa]+) − %j}

)
(4.3.3)

for z = (pb, pa, qb, qa, g, i, nb, na, bb, ba, j). In the above, η > 0 is the absolute risk aversion
parameter, and κ > 0 is a penalty term taking into account that liquidating the current
inventory may lead to a worse price than the one corresponding to the best bid or ask : the
quantity i+pb − i−pa corresponds to the liquidation value of the inventory if the bid and ask
queues are big enough to absorb it, the expression starting from κ takes into account the
number of shares that will not be liquidated at the best limit. The coefficient % ≥ 0 penalizes
the number of actions taken by the market maker.

To define the corresponding value function, we now extend the definition of our state
processes by writing

Zt,z,φ = (P t,z,φ, Qt,z,φ, X t,z,φ)
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for the process satisfying (4.2.2)-(4.3.1) for the control φ and with initial condition Zt,z,φ
t− =

z ∈ DZ where DZ is the collection of elements (pb, pa, qb, qa, g, i, nb, na, bb, ba, j) ∈ DP,Q ×dZ×
{−I∗, . . . , I∗} × N4 × {0, . . . , J◦} such that

nb + i ≤ I∗ , i− na ≥ −I∗

bb + nb ≤ qb , ba + na ≤ qa.

The corresponding set of admissible controls is C(t, z), and the filtration associated to
φ ∈ C(t, z) is Ft,z,φ. We then set

v(t, z) := sup
φ∈C(t,z)

J(t, z;φ) for (t, z) ∈ [0, T ] ×DZ ,

where
J(t, z;φ) := E[U(Zt,z,φ

T )].

Remark 4.3.2. For later use, observe that

v(t, z) = e−ηgv(t, pb, pa, qb, qa, 0, i, nb, na, bb, ba, j)

for all t ≤ T and z = (pb, pa, qb, qa, g, i, nb, na, bb, ba, j) ∈ DZ. Moreover, if J◦ = ∞, we also
have

v(t, z) = e−η(g−%j)v̄(t, z) := e−η(g−%j)v(t, pb, pa, qb, qa, 0, i, nb, na, bb, ba, 0).

Remark 4.3.3. Note that v is bounded from above by 0 by definition. On the other hand,
for all z = (pb, pa, qb, qa, g, i, nb, na, bb, ba, j) ∈ DZ,

v(t, z) ≥ min
i∈[−I∗,I∗]

E[U(P t,z,0
T , 0, 0, g, i, 0, 0, 0, 0, j)]

= e−η(g−%j) min
i∈[−I∗,I∗]

E[U(P t,z,0
T , 0, 0, 0, i, 0, 0, 0, 0, 0)],

where P t,z,0 corresponds to the dynamics in the case that the MM does not act on the order
book up to T . Moreover, it follows from (4.3.3) that

E[U(P t,z,0
T , 0, 0, 0, i, 0, 0, 0, 0, 0)] ≥ −eηI∗|pb|E[eηI∗(|P t,z,0,b

T −pb|+2d+κ)]

where
sup

pb∈dZ
E[eηI∗(|P t,z,0,b

T −pb|+2d+κ)] < ∞,

by Remark 4.2.1 and the fact that the price can jump only by d when a market event occurs.
Thus, v belongs to the class Lexp

∞ of functions ϕ such that ϕ/L is bounded, in which

L(pb, g, j) := e−η(g−I∗|pb|−%j)

for (pb, g, j) ∈ dZ × dZ × {0, . . . , J◦}.
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4.3.3 The dynamic programming equation
The derivation of the dynamic programming equation is standard, and is based on the

dynamic programming principle. We state below the weak version of Bouchard and Touzi
[22], we let v∗ and v∗ denote the lower- and upper-semicontinuous envelopes of v.

Proposition 4.3.1. Fix (t, z) ∈ [0, T ] ×DZ and a family {θφ, φ ∈ C(t, z)} such that each θφ

is a [t, T ]-valued Ft,z,φ-stopping time and ‖Zt,z,φ
θφ ‖L∞ < ∞. Then,

sup
φ∈C(t,z)

E
[
v∗(θφ, Zt,z,φ

θφ )
]

≤ v(t, z) ≤ sup
φ∈C(t,z)

E
[
v∗(θφ, Zt,z,φ

θφ )
]
.

Proof. The right-hand side inequality follows from a conditioning argument, see [22]. The
left-hand side is more delicate because the set of admissible controls depends on the initial
data. However, it can be easily proved along the lines of Section 2.4.2 in Chapter 2 when
{θφ, φ ∈ C(t, z)} is [t, T ] ∩ (N ∪ {t, T})-valued. Then, the general case is obtained by ap-
proximating [t, T ]-valued stopping times from the right (recall that Z is right-continuous).
�

One can then derive the corresponding dynamic programming equation. For z = (p, q, x) ∈
DZ , c ∈ C(z), t ≤ T , and a continuous and bounded function ϕ, we set

Iϕ(t, z) :=
∫

(Kcϕ(t, z) − ϕ(t, z))dβ(c|p, q) and Kϕ(t, z) := sup
c∈C(z)

Kcϕ(t, z)

where we use the convention that K0 = sup{∅} = −∞, and

Kcϕ(t, z) :=
∫
ϕ(t, T (z, c, ε, εb, εa))dλ(ε, εb, εa|p, q, c),

recall (4.2.6), (4.2.7) and (4.3.2).
The partial differential equation characterization of v is then at least formally given by

min {−∂tϕ− Iϕ, ϕ− Kϕ} = 0 on [0, T ) ×DZ

min {ϕ− U,ϕ− Kϕ} = 0 on {T} ×DZ .
(4.3.4)

In order to ensure that the above is correct, we need two additional conditions.

Assumption 4.3.1. For all upper-semicontinuous (resp. lower-semicontinous) ϕ ∈ Lexp
∞ , the

map (t, z) ∈ [0, T ]×DZ 7→ (I,K)ϕ(t, z) is upper-semicontinuous (resp. lower-semicontinous)
and belongs to Lexp

∞ .

Assumption 4.3.2. There exists a Borel function ψ that is continuously differentiable in
time and such that

(i) 0 ≥ ∂tψ + Iψ on [0, T ) ×DZ,
(ii) ψ − Kψ ≥ ι on [0, T ] ×DZ for some ι > 0,
(iii) ψ ≥ U on {T} ×DZ,
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(iv) lim inf
n→∞

(ψ/L)(tn, zn) = ∞ if |zn| → ∞ as n → ∞, for all (tn, zn)n≥1 ⊂ [0, T ] ×DZ.

Then, one can actually prove that v is the unique solution of (4.3.4) in the class Lexp
∞

defined in Remark 4.3.3.

Theorem 4.3.1. Let Assumption 4.3.1 hold. Then, v∗ (resp. v∗) is a viscosity supersolution
(resp. subsolution) of (4.3.4). If moreover Assumption 4.3.2 holds, then v is continuous on
[0, T ) × DZ and is the unique viscosity solution of (4.3.4), in the class of (discontinuous)
solutions in Lexp

∞ .

Proof. In view of Proposition 4.3.1, the derivation of the viscosity super- and subsolution
properties is very standard under Assumption 4.3.1, see e.g. Section 2.4 or [22]. As for
uniqueness, let us assume that v and w are respectively a super- and a subsolution. Let ψ be
as in Assumption 4.3.2. Then, (v − w − ψ)(tn, zn) converges to −∞ if |zn| → ∞ as n → ∞,
for any sequence (tn, zn)n≥1 ⊂ [0, T ] × DZ , and showing that v ≥ w on [0, T ] × DZ can be
done by, e.g., following the line of arguments of Proposition 2.5.1. Finally, v∗, v∗ ∈ Lexp

∞ by
Remark 4.3.3. �

Remark 4.3.4. If J◦ < ∞ and the supports of λ(·|p, q, c) and γ(·|p, q) are bounded, uniformly
in (p, q, c) ∈ (dZ)2 × N2 × C◦, then it is not difficult to see that the function defined by

ψ(t, z) := e2η(1+I∗)|z|e−r(j+t), for z = (p, q, g, i, n, b, j) ∈ DZ and t ≤ T,

satisfies the requirements of Assumption 4.3.2, for r large enough. Verifying Assumption
4.3.2 in the case J◦ = ∞ seems much more difficult. On the other hand, the sequence of
value functions associated to a sequence (Jn

◦ )n≥1 increases to the value function associated
to J◦ = ∞ as Jn

◦ → ∞. which provides a natural way to construct a convergent numerical
scheme for the computation of v and the optimal control policy, see Sections 4.3.4 and 4.3.5
below. Standard arguments based on this approximation would also imply that v∗ = v and that
v is the smallest supersolution of (4.3.4), in the class of (discontinuous) solutions in Lexp

∞ .

4.3.4 Dimension reduction, symmetries and numerical resolution
Before to provide a converging numerical scheme for (4.3.4), let us first recall that the

variables g (and j if J◦ = ∞) can be omitted, see Remark 4.3.2. If moreover, the transition
kernels depend on prices only through the spread (which is a natural assumption at least on
a rather short time horizon), then one more dimension can be eliminated.

Assumption 4.3.3. The kernel (p, q, c) ∈ DP,Q × C 7→ (λ(·|p, q, c), β(·|p, q)) depend on
p = (pb, pa) only through the value of the mid-spread δp := (pa − pb)/2.

Indeed, if Assumption 4.3.3 holds, then one easily checks that

e−ηip◦ v̄(t,−δp, δp, qb, qa, 0, i, ·) = v̄(t, p◦ − δp, p◦ + δp, qb, qa, 0, i, ·)
= v̄(t, pb, pa, qb, qa, 0, i, ·)
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with p◦ := (pa + pb)/2, so that

eηi(pb+δp)v̄(t, pb, pb + 2δp, qb, qa, 0, i, ·)

does not depend on pb but only on δp.
The resolution of the equation can also be simplified by using potential symmetries, in

the sense of the following assumption.

Assumption 4.3.4. For all (p, q) ∈ DP,Q, c := (ab, aa, `b, `a, `b, 1
2 , `a, 1

2 ,mb,ma) ∈ C and all
Borel sets O ⊂ {0, 1}, Ob, Oa ⊂ N,∫

O×Ob×Oa
dλ(ε, εb, εa|p, q, c) =

∫
O×Oa×Ob

dλ(ε, εa, εb|p̄, q̄, c̄)

where p̄ = (−pa,−pb), q̄ = (qa, qb) and c̄ = (aa, ab, `a, `b, `a, 1
2 , `b, 1

2 ,ma,mb). Moreover, for all
Borel sets O = Ob

a ×Oa
a ×Ob

` ×Oa
` ×Ob

`
1
2

×Oa

`
1
2

×Ob
m ×Oa

m ⊂ N8,∫
O
dβ(c|p, q) =

∫
Ō
dβ(c|p̄, q̄)

where Ō := Oa
a ×Ob

a ×Oa
` ×Ob

` ×Oa

`
1
2

×Ob

`
1
2

×Oa
m ×Ob

m.

The above assumption implies that the transition probabilities of the order book are
symmetric at the bid and at the ask, whenever the configurations are. Then, v admits a
symmetry which can be exploited to reduce the complexity of the numerical resolution of
(4.3.4). Namely, under Assumption 4.3.4, we have

v̄(t, pb, pa, qb, qa, 0, i, nb, na, bb, ba, j) = v̄(t,−pa,−pb, qa, qb, 0,−i, na, nb, ba, bb, j).

Let us now turn to the definition of a numerical scheme for (4.3.4). We now make the
additional assumption that the supports of λ and β are bounded (not that they are already
discrete, by nature).

Assumption 4.3.5. J◦ < ∞ and there exists finite Borel sets O1 ⊂ N8 and O2 ⊂ N3 such
that β(·|p, q) is supported by O1 and λ(·|p, q, c) is supported by O2, for all (p, q, c) ∈ DP,Q ×C.

Then, the operators I and K are explicit. Hence, the only required discretization is in
time. For a time step T/n > 0, we define a time grid πn := {tni , i ≤ n} where tni = iT/n for
i ≤ n. We next consider the sequence of space domains Dk

Z := DZ ∩ [−k, k]11 for k ≥ 1, and
we let vk

n be the solution of

vk
n(tni , ·) = max

{
vk

n(tni+1, ·) + T

n
Ivk

n(tni+1, ·), max
c∈C(·)

Kc,nvk
n(tni+1, ·)

}
= 0 on Dk

Z , i ≤ n− 1

vk
n − U = 0 on ({T} ×Dk

Z) ∪ (πn × (DZ \Dk
Z)),

(4.3.5)
where

Kc,n = Kc + T

n
I ◦ Kc.

This fully explicit scheme is convergent.

103



Proposition 4.3.2. Let Assumption 4.3.5 hold, then the sequence (vk
n)k,n≥1 converges point-

wise to v on [0, T ) ×DZ as k, n → ∞.

Proof. First note that (vk
n/L)k,n≥1 is uniformly bounded, where L is defined in Remark 4.3.3.

This follows from Assumption 4.3.5 and a simple induction argument, compare with Remark
4.3.3. Then, standard stability results, see e.g. [14] and Section 2.6.1, imply that the relaxed
upper-limit v∞ and lower-limit of v∞ of (vk

n)k,n≥1 are respectively sub- and supersolution of
(4.3.4) and belong to the class Lexp

∞ . The comparison result mentioned in the proof of Theorem
4.3.1, see Remark 4.3.4, thus implies that v∞ ≥ v ≥ v∞ while v∞ ≤ v∞ by definition. �

4.3.5 Approximate optimal controls
In the following, we estimate the optimal control in a classical way. For each i < n, we

choose a measurable map ĉk
n(tni , ·) such that

ĉk
n(tni , ·) ∈ arg max{Kc,nvk

n(thi+1, ·), c ∈ C(·)} on Dk
Z

ĉk
n(tni , ·) = 0 on DZ \Dk

Z ,

and define the sequence of stopping times

τ̂n,k
j+1 := min{tni : i ≥ 0, tni > τ̂n,k

j , (vk
n − Kĉk

nvk
n(tni+1, ·))(tni , Ẑ

n,k
tn
i −) = 0}, j ≥ 0,

with τ̂n,k
0 := 0−, and in which Ẑn,k = (P̂ n,k, Q̂n,k, X̂n,k) is defined as in (4.3.2) for the

initial condition Z0− at 0 and the control associated to φ̂k
n := (τ̂n,k

i , ĉk
n(τ̂n,k

i , Ẑn,k

τ̂n,k
i −

))i≥1 in a
Markovian way. This provides a sequence of controls that is asymptotically optimal.

Proposition 4.3.3. Let the conditions of Proposition 4.3.2 hold. Then,

lim
n,k→∞

E[U(Ẑn,k
T )] = v(0, Z0−).

Proof. Let γ(p, q) :=
∫
dβ(c|p, q) and recall that γ is uniformly bounded by assumption, as

well as the sequence (vk
n)k,n≥1. Then, it follows from Remark 4.2.1 that

vk
n(tni+1, Ẑ

n,k
tn
i

) + T

n
Ivk

n(tni+1, Ẑ
n,k
tn
i

) =vk
n(tni+1, Ẑ

n,k
tn
i

)(1 − T

n
γ(P̂ n,k

tn
i
, Q̂n,k

tn
i

))

+ T

n

∫
Kcvk

n(tni+1, Ẑ
n,k
tn
i

)dβ(c|P̂ n,k
tn
i
, Q̂n,k

tn
i

)

=E[vk
n(tni+1, T̃ (Ẑn,k

tn
i
,∆Ẽtn

i+1
))|F φ̂k

n
tn
i

] + o(n−1)

and, similarly,

K
ĉk

n(τ̂n,k
i ,Ẑn,k

τ̂
n,k
i

−
),n

vk
n(τ̂n,k

i + T

n
, Ẑn,k

τ̂n,k
i −

) =E[vk
n(τ̂n,k

i + T

n
, T̃ (Ẑn,k

τ̂n,k
i + T

n
−
,∆Ẽτ̂n,k

i + T
n
))|F φ̂k

n

τ̂n,k
i −

] + o(n−1)
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with the convention that T̃ (·, 0) is the identity. Let θn
k be the first time when Ẑn,k exists the

domain Dk
Z . In view of (4.3.5), Assumption 4.3.5 (in particular that J0 < ∞) and Remark

4.2.1 (see the arguments at the end of Remark 4.3.3), an induction implies that

vk
n(0, Z0−) = E[U(Ẑn,k

θn
k

)] + on(1) = E[U(Ẑn,k
T )] + on(1) + ok(1)

in which on(1) and ok(1) go to 0 as n → ∞ and k → ∞. It remains to appeal to Proposition
4.3.2. �

4.3.6 Numerical experiments
We now turn to a numerical experiment. We compute an approximation of the optimal

control as described in Section 4.3.5, using the simplifications detailed in Section 4.3.4.

Let us first describe a realistic prior distribution for the evolution of Ẽ. The coefficients
we use are inspired from the behavior of the stock Société Générale (CLE FP) 6 and from
[18]. More precise and realistic statistics will be provided in our companion paper [8].

As for the prior on the dynamics of the market. We simply consider that both market and
limit orders arrive according to a Poisson process. Both limit and aggressive orders arrive
with an intensity of 0.6 per second. When a limit order arrives, it is assigned to the bid or
the ask with probability 1/2. When a market order arrives, we assign it to the bid or the ask
according to the statistics described for big caps in [18, Chart 8 p.10]. Namely, if

Imbτ̃i :=
Qb

τ̃i
−Qa

τ̃i

Qb
τ̃i

+Qa
τ̃i

is the order book imbalance at the time τ̃i at which the market order arrives, then it arrives
at the ask with probability 0.5 + 0.35 ∗ Imbτ̃i

.
To describe the size of the orders and of the inventory, we take 1/2 of the ATS (mediAn 7

Trade Size) as the unit.
The size of the market orders is also assumed to be dependent on the order book imba-

lance. We use [18, Chart 16 p.10] to estimate that the size of the trade arriving at the ask
(if it arrives at the ask), represents a percentage of the queue (that we round to an integer
number, by above). Namely, we set f̂aτ̃i

:= 0.7 + 0.3 ∗ Imbτ̃i
, and assign a (conditional) pro-

bability of 60% that the order is of size round[̂faτ̃i
∗ Qa

τ̃i
] and the same probability that the

executed volume deviates from the latter by one unit (with equal probability to be by one
more and one less unit - if quantities are negative or bigger than the size of the queue, we
obviously set them to 0 or to the size of the queue).

We use a simpler modeling approach for the limit orders. With 55% probability a limit
order (if it arrives) is of size of 2 (recall that the unit is 1/2 of an ATS). It is of size 3 with
probability 10% and of size 1 with probability 35%. Again, it is based on [18].

6. We thank Chevreux-Kepler for providing us these data.
7. Following [18, Page 23].
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When a queue is depleted, the probability of a price move is set to P[εi = 1|Fτ̃i
] = 75%.

If the bid is depleted but the bid price does not go done, the size of the new bid queue is set
to 2 units with probability 60%, 1 unit with probability 25% and 3 units with probability
15%, otherwise it is set to 10 units with probability 60%, 5 units with probability 25% and
12 units with probability 15%. The same applies to the ask price if this is the ask queue that
is depleted.

If both ask and bid prices move, recall (4.2.3), we take the same distribution for both
queues and consider them as being (conditionally) independent. The distribution corresponds
to the one of a price move, as described above.

When the spread is equal to two ticks, the next limit order arrives in the spread with
probability 90%. This models the fact that a spread of two ticks is not common, see e.g. [29].
To be consistent with the probability of arrival of market orders at the bid or at the ask,
we assume that a new bid limit is created in the spread with probability 0.5 + 0.35 ∗ Imbτ̃i

(otherwise, this is a new ask limit). The size of this new limit is 2 with 55%, of size 3 with
probability 10% and of size 1 with probability 35%. This corresponds to the behavior of the
stock Société Générale (CLE FP). We do not change the dynamic of aggressive orders with
the size of the spread.

Let us now describe the other parameters of the Market Maker’s optimal control problem.
We set the bid price to 10 at time 0−, the spread is one tick, and the tick equal to 0.01,
recall from Section 4.3.4 that only the spread size matters (because we have here the required
symmetry) and observe that the latter can be rescaled together with the level of risk aversion,
which is here fixed to η = 1. We take κ = 0.02 and % = 10−20. The time horizon is T = 59
second, and the time step is 1 second. We keep a small time horizon for a better visibility of
the evolution of the order book. We do not consider cancellations from the rest of the market
for simplicity. Moreover, in order to reduce the computation time, we add the additional
constraint that the MM can not cancel only part of position in a queue, he can only cancel
the whole position. We also fix a maximal queue size of 12 and fix the maximal absolute
value of the inventory to I∗ = 7. The size of the limit and market orders sent by the MM
are constrained to be less than 3. This corresponds to adding an additional constraint in the
definition of C(·) which does not change the above analysis.

In Figure 4.2, we provide a simulated path of the optimal strategy, starting from a sym-
metric configuration of the order book, with queue lengths equal to 6. In this simulation,
the MM always play before the other (random) players 8. The top left graphic describes the
control played by the MM. Triangles pointing outward (with respect to the zero line) corres-
pond to limit orders, the number of triangles giving their size. Arrows with triangles pointing
inward are cancellations, again the number of triangles gives the size. Aggressive orders are
symbolized by lines with squares, while limit orders within the spread correspond to the lines
with dots. The top right graphic gives the state of the order book just after the MM has
played, and before the nature (i.e. the other players) plays. The size of the lines gives the total
lenght of each queues, while the dots symbolize the position of the MM in the queue. The
middle left graphic describes the state of the order book after the nature plays. The bottom

8. This is just a convention, since the transition probabilities do not depend on time.
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left graphic gives the value of the portfolio of the MM if he had to liquidate (by sending
aggressive orders) his stock holding at the best bid/ask price. The final value gives the “true”
liquidation value of the book. In the case that the final inventory can not be liquidated at
the best bid/ask price, we liquidate the remaining part at the best bid/ask price minus/plus
one tick. The middle right graphic is the inventory just before he plays and the bottom right
one is the bid and ask prices just after he plays. Figure 4.1 provides the distribution of the
gain made by the MM, it uses 105 simulated paths.

His strategy can seem difficult to interpret at first sight. But, we have to remember that
he believes that the imbalance plays an important role in the book order dynamics, and that
he not only should take care of it but that he can actually use it : some limit orders are
send not to be executed but to influence the evolution of the price in a favorable direction.
Also note that he should avoid the price to go down/up if his inventory is positive/negative.
Having this in mind, it is not surprising that he can be sometimes at the limit of a price
manipulation strategy. Finally, we have to keep in mind that his strategy is constrained.
He sometimes cancels positions to be free to react more quickly to a more favorable market
configuration later on.

Not surprisingly, the MM first send limit orders of equal sizes on both sides of the order
book. Nothing happens until time t = 9. At this time is inventory is 2 and his position at
the ask is still far from the beginning of the queue. In order to avoid increasing again his
inventory, he cancels his remaining position of one unit at the bid. He puts a new position
at the bid at time 10 after the queue has slightly increased, because of an exogenous limit
order. Unfortunately for him, this new position is immediately executed, and his inventory
jumps to 5. After the queue is regenerated, he immediately puts a limit order of size 2 at
the bid. His reasoning is the following : 1. this position has little chance to be executed
immediately, he does not take a risk of again increasing his inventory ; 2. by doing this he
increases the imbalance and therefore the probability of being executed at the ask so has
to gain the spread and reduce his inventory. This strategy is successful since immediately 2
units of his positions at the ask are executed. The imbalance is still good even if he cancels
his last unit at the bid, so as to be free to play the control he wants once his last unit at the
ask will be executed. In fact, it does not work and he decides to refresh his global position
at time 16 by canceling his final unit at the ask and putting limit orders again at time 17 in
a symmetric way. This is a limit spread order at the bid. This makes sense since he has to
avoid the stock price to go down, because he has a positive inventory. The fact that just after
he alternates between putting and canceling limit orders at the ask is probably a numerical
artifact : on the one hand, he wants to have a limit position at the ask because his inventory
is large, on the other hand he does not want to increase the imbalance to avoid having a too
big probability of being executed at the bid and of seeing the price go down. Similarly, he
wants to keep a position at the bid to avoid a downward price move, while he really does not
want to be executed on this side. The aggressive order at the bid at time 19 is just a partial
cancellation, that is completed at time 20. He just does not want to be executed. By doing so,
he unfortunately causes a downward jump of the bid, which is not good for him. Just after
he sends a limit spread order at the bid to fight against this downward pressure, and then
cancels it once the bid is back at a distance one tick of the ask. This strategy is successful.
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The rest of his orders can be interpreted in a similar manner. Just note that he starts to be
aggressive at the bid side at time 49 because his inventory is too big and the maturity starts
to be quite close, in particular the first market order of size 3 compensates the execution of a
position of size 3 at the bid just before (so that the graphic of the inventory does not move,
although the inventory temporary jumps to the upper limit 7).

Histogram of Market Maker return
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Figure 4.1 – Density estimation of the gain made by the Market Maker.
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Figure 4.2 – Simulated path of the optimal strategy of the Market Maker.
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4.4 High frequency trader’s pair trading problem
We now turn to the HFT strategy. We consider a pair trading strategy where the trader

invests in the difference of two highly correlated assets. Here, we choose the futures price of the
stock to be the second asset. The order book defined in Section 4.2 represents the dynamics
of the stock. Whenever the trader buys/sells n units of stocks (being by an aggressive order
or by the execution of a limit order), she sells/buys immediately n units of the futures. Her
inventory should be fully liquidated at T .

4.4.1 The optimal control problem
We assume that the reference price F of the futures is given by

F = P b + P a

2 + S (4.4.1)

where S is a mean-reverting process

S = S0 +
∫ ·

0
ρ(ŝ− St)dt+

∫ ·

0
σ(St)dWt. (4.4.2)

Here, ρ is the strength of mean reversion, ŝ is the average of mean reversion and σ : R 7→ R
is a Lipschitz bounded function representing the volatility of the process. In the following,
we shall assume that

the support of σ is bounded. (4.4.3)

Remark 4.4.1. The above implies in particular that S lies in a certain compact set DS as
soon as S0 does. This could clearly be relaxed to the price of a finer analysis.

The strategy of the HFT is described by the same quantities as the one of the MM in
Section 4.3. The only difference lies in the fact that she constantly holds a number equal to
−I units of the futures F . We assume that buying/selling the futures leads to the payment
of a proportional cost κ ≥ 0. Then, the dynamics of the corresponding state process X is
given by

Xτi
= TX(Sτi

, Pτi−1 , Qτi−1 , Xτi−1 ,∆Eφ
τi

)1{∆Eφ
τi

6=0} + T̃X(Sτi
, Pτi−1 , Qτi−1 , Xτi−1 ,∆Ẽτi

)1{∆Eφ
τi

=0},

(4.4.4)

with TX and T̃X now defined with respect to

TG(s, p, q, x, δ) = g + (ab − exe(ab, nb, bb))∆b
− − (aa − exe(aa, na, ba))∆a

+

TI(s, p, q, x, δ) = i− (ab − exe(ab, nb, bb)) + (aa − exe(aa, na, ba))
TNb/a(s, p, q, x, δ) = nb/a + [`b/a − nb/a]+ + `b/a, 1

2 −mb/a − exe(ab/a, nb/a, bb/a)
TBb/a(p, q, x, δ) = bb/a + (qb/a − bb/a)1{`b/a 6=0} − bb/a1{mb/a=nb/a} − (bb/a ∧ ab/a)1{ab/a 6=0} − bb/a1{`b/a 6=0}

TJ(s, p, q, x, δ) = j + 1
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and

T̃G(s, p, q, x, δ) = g − exe(ab, nb, bb)∆b
+ + exe(aa, na, ba)∆a

−

T̃I(s, p, q, x, δ) = i+ exe(ab, nb, bb) − exe(aa, na, ba)
T̃Nb/a(s, p, q, x, δ) = nb/a − exe(ab/a, nb/a, bb/a)
T̃Bb/a(p, q, x, δ) = [bb/a − ab/a]+1{mb/a=0} + (bb/a − [mb/a − (qb/a − bb/a − nb/a)]+)+1{mb/a 6=0}

T̃J(s, p, q, x, δ) = 0,

in which

∆b
± := pb − pb + pa

2 − s± κ , ∆a
± := pa − pb + pa

2 − s± κ.

In the above, we used the notations x = (g, i, nb, na, bb, ba, j), δ = (ab, aa, `b, `a, `b, 1
2 , `a, 1

2 ,mb,
ma, ε, εb, εa), p = (pb, pa) and q = (qb, qa).

The set of admissible controls C(0, S0, Z0−) is defined as in Section 4.3 but with respect
to the (completed) filtration Fφ = (Fφ

t )t≥0 generated by (S,E).
We also assume that she has an exponential type utility function, with risk aversion

parameter η > 0. Then, she wants to maximize over φ ∈ C(0, S0, Z0−) the expected utility

E[U(ST , Z
φ
T )]

where

U(s, z) := − exp
(
−η{g + i+∆b

− − i−∆a
+ − κ([i+ − qb]+ + [i− − qa]+) − %j}

)
(4.4.5)

for z = (pb, pa, qb, qa, g, i, nb, na, bb, ba, j), and where ∆b
± and ∆a

± are defined as above.

As in Section 4.3, we next extend the definition of our state processes by writing

(St,s, Zt,s,z,φ) = (St,s, P t,s,z,φ, Qt,s,z,φ, X t,s,z,φ)

for the process satisfying (4.2.2)-(4.3.1)-(4.4.2) for the control φ and the initial condition
(St,s

t , Zt,s,z,φ
t− ) = (s, z) ∈ DS × DZ . The corresponding set of admissible controls is C(t, s, z),

and the filtration associated to φ ∈ C(t, s, z) is Ft,s,z,φ = (F t,s,z,φ
s )s∈[t,T ]. We finally define the

value function

v(t, s, z) := sup
φ∈C(t,s,z)

J(t, s, z;φ) for (t, s, z) ∈ [0, T ] ×DS ×DZ ,

where
J(t, s, z;φ) := E[U(St,s

T , Zt,s,z,φ
T )].

We close this section with Remarks that are the counterparts of Remarks 4.3.2 and 4.3.3.
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Remark 4.4.2. For later use, observe that

v(t, s, z) = e−ηgv(t, s, pb, pa, qb, qa, 0, i, nb, na, bb, ba, j)

for all t ≤ T , s ∈ DS and z = (pb, pa, qb, qa, g, i, nb, na, bb, ba, j) ∈ DZ. Moreover, if J◦ = ∞,
we also have

v(t, s, z) = e−η(g−%j)v̄(t, z) := e−η(g−%j)v(t, s, pb, pa, qb, qa, 0, i, nb, na, bb, ba, 0).

Remark 4.4.3. Note that v is bounded from above by 0 by definition. It also follows from
(4.4.3) that St,s takes values in the compact set DS so that v ∈ Lexp

∞ by the same reasoning
as in Remark 4.3.3.

4.4.2 The dynamic programming equation
As in Section 4.3.3, we first provide a dynamic programming principle. Again, we let v∗

and v∗ denote the lower- and upper-semicontinuous envelopes of v.

Proposition 4.4.1. Fix (t, s, z) ∈ [0, T ] × DS × DZ and a family {θφ, φ ∈ C(t, s, z)} such
that each θφ is a [t, T ]-valued Ft,s,z,φ-stopping time and ‖(St,s

θφ , Z
t,s,z,φ
θφ )‖∞ < ∞. Then,

sup
φ∈C(t,x,q)

E
[
v∗(θφ, St,s

θφ , Z
t,s,z,φ
θφ )

]
≤ v(t, s, z) ≤ sup

φ∈C(t,x,q)
E
[
v∗(θφ, St,s

θφ , Z
t,s,z,φ
θφ )

]
.

Proof. Let Ck(t, x, z) be the set of controls φ satisfying the additional constraint #{τφ
i , i ≥

1} ≤ k a.s., and let vk be the corresponding value function, for k ≥ 1. Then, it is not difficult
to see that vk is continuous, and the arguments of [22] imply that

sup
φ∈Ck(t,x,z)

E
[
vk(θφ, St,s

θφ , Z
t,s,z,φ
θφ )

]
≤ vk(t, s, z)

≤ sup
φ∈Ck(t,x,z)

E
[
vk(θφ, St,s

θφ , Z
t,s,z,φ
θφ )

]
≤ sup

φ∈C(t,x,z)
E
[
v(θφ, St,s

θφ , Z
t,s,z,φ
θφ )

]
.

Since by definition v = limk→∞ ↑ vk and C(t, x, z) = ∪k≥1Ck(t, x, z), sending k → ∞ in the
above leads to the required result, recall Remark 4.4.3. �

The partial differential equation associated to v is then at least formally given by

min {−Lϕ− Iϕ, ϕ− Kϕ} = 0 on [0, T ) ×DS ×DZ

min {ϕ− U,ϕ− Kϕ} = 0 on {T} ×DS ×DZ ,
(4.4.6)

in which L is the Dynkin operator associated to (4.4.2) :

Lϕ = ∂tϕ+ ρ(ŝ− s)∂sϕ+ 1
2σ

2∂2
ssϕ.

To fully characterize the value function, we need the additional assumption, similar to
Assumption 4.3.2.
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Assumption 4.4.1. There exists a Borel function ψ ∈ C1,2([0, T ] ×DS ×DZ) such that
(i) 0 ≥ Lψ + Iψ on [0, T ) ×DS ×DZ,
(ii) ψ − Kψ ≥ ι on [0, T ] ×DS ×DZ for some ι > 0,
(iii) ψ ≥ U on {T} ×DS ×DZ,
(iv) lim inf

n→∞
(ψ/L)(tn, sn, zn) = ∞ if |zn| → ∞ as n → ∞, for all (tn, sn, zn)n≥1 ⊂ [0, T ] ×

DS ×DZ.

Theorem 4.4.1. Let Assumption 4.3.1 hold. Then, v∗ (resp. v∗) is a viscosity supersolution
(resp. subsolution) of (4.4.6). If moreover Assumption 4.4.1 holds, then v is continuous on
[0, T ) ×DZ and is the unique viscosity solution of (4.4.6), in the class Lexp

∞ .

Proof. In view of Proposition 4.4.1, the derivation of the viscosity super- and subsolution
properties is very standard under Assumption 4.3.1, see e.g. [22]. As for uniqueness, this
follows from a comparison principle that can be proved in the class Lexp

∞ by arguing as in the
proof of Theorem 4.3.1. �

As for the MM problem, Assumption 4.4.1 is easily checked when J◦ < ∞.

Remark 4.4.4. If J◦ < ∞ and the supports of λ(·|p, q, c) and γ(·|p, q) are bounded, uniformly
in (p, q, c) ∈ (dZ)2 × N2 × C◦, then the function ψ defined in Remark 4.4.4 also satisfies the
requirements of Assumption 4.4.1, for r large enough.

4.4.3 Dimension reduction, symmetries and numerical resolution
As in Section 4.3.4, one can use specificities of the value function to reduce the complexity

of the resolution of (4.4.6). First, the variable g (and j if J◦ = ∞) can be omitted, see Remark
4.4.2. Moreover, if Assumption 4.3.3 holds, then one easily checks that

v̄(t, s, pb, pb + 2δp, qb, qa, 0, i, nb, na, bb, ba, 0)

does not depend on pb. The difference with the relation obtained in Section 4.3.4 is du to
(4.4.1) and the fact that the HFT always hold a symmetric position in the stock and the
futures (he is protected against evolutions of the mid-price). The other symmetry relations
described in Section 4.3.4 do not hold because of the dependence on the process S.

Let us now turn to the definition of a numerical scheme for (4.4.6). Recall that, under
Assumption 4.3.5, the operators I and K are explicit. Hence, the only required discretization
is in time and in the variable s. We shall consider separately the diffusion part and the
obstacle part of the pde. More precisely, we fix a time and a space grid πn

t := {tni , i ≤ nt}
and πn

s := {sn
i , i ≤ ns} where tni = iT/nt for i ≤ nt and sn

i = s+ i(s− s)/ns, i ≤ ns. Here, s
and s are such that DS = [s, s], recall Remark 4.4.1, and n := (nt, ns) ∈ N2. We next define
the sequence of space domains Dk

Z := DZ ∩ [−k, k]11 for k ≥ 1, and we let vk
n be defined by

vk
n = max

{
v̌k

n,Kv̌k
n

}
= 0 on πn

t × πn
s ×Dk

Z ,

vk
n − U = 0 on ({T} × πn

s ×Dk
Z) ∪ (πn

t × πn
s × (DZ \Dk

Z)).
(4.4.7)
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Here, for i ≤ nt − 1 and i′ ≤ ns,

v̌k
n(tni , sn

i′ , ·) = E[vk
n(tni+1, pn(Stn

i ,sn
i′

tn
i+1

), ·)] + T

n
Ivk

n(tni+1, s
n
i′ , ·), on Dk

Z , (4.4.8)

where pn is the left-hand side projection operator on πn
s .

Note that the above numerical scheme is not fully explicit as it requires to compute
conditional expectations. This can however be easily performed either by a finite difference
scheme or by Monte-Carlo techniques in a very classical way. Note in particular that the
randomness in these conditional expectations only comes from a one dimensional factor.

Proposition 4.4.2. Let Assumptions 4.4.1 and 4.3.5 hold, then the sequence (vk
n)n≥1 converges

pointwise to v as nt, ns, k → ∞.

Proof. Note that Assumption 4.4.1 ensures that comparison holds for (4.4.6) in the class Lexp
∞ ,

see e.g., Proposition 2.5.1. Thus, as for Proposition 4.3.2, the result is an easy consequence
of the stability result of [14]. �

4.4.4 Approximate optimal controls
The optimal control can be numerically estimated as in Section 4.3.4. We first extend

(vk
n, v̌k

n) to πn
t ×DS ×DZ by setting (vk

n, v̌k
n)(·, s, ·) := (vk

n, v̌k
n)(·, pn(s), ·). Then, we choose a

measurable map ĉk
n(tni , ·) such that

ĉk
n(tni , ·) ∈ arg max{Kcv̌k

n(thi , s, ·), c ∈ C(·)} , on DS ×Dk
Z

ĉk
n(tni , ·) = 0 on DS × (DZ \Dk

Z),

and define the sequence of stopping times

τ̂n,k
j+1 := min{tni : i ≥ 0, tni > τ̂n,k

j , (vk
n − Kĉk

n v̌k
n(tni , ·))(tni , Stn

i
, Ẑtn

i −) = 0}, j ≥ 0,

with τ̂n,k
0 := 0−, and in which Ẑn,k = (P̂ n,k, Q̂n,k, X̂n,k) is defined as in (4.3.2)-(4.4.2) for the

initial condition Z0− and the control associated to φ̂k
n := (τ̂n,k

i , ĉk
n(τ̂n,k

i , Sτ̂n,k
i
, Ẑn,k

τ̂n,k
i −

))i≥1 in a
Markovian way. Again, this provides a sequence of controls that is asymptotically optimal.

Proposition 4.4.3. Let the conditions of Proposition 4.4.2 hold. Then,

lim
k→∞

lim
nt,ns→∞

E[U(ST , Ẑ
n,k
T )] = v(0, S0, Z0−),

in which the limit is taken along sequences n such that n2
tn

−1
s → 0.

Proof. Let γ(p, q) :=
∫
dβ(c|p, q) and recall that γ is uniformly bounded by assumption. The

family {(vk
n, v̌k

n)/L}k,n≥1 is uniformly bounded, compare with Remark 4.4.3. Also note that
(s, z) ∈ DS ×Dk

Z 7→ U is Ck-Lipschitz, for some Ck > 0 that only depends on k. By induction
(recall that the component s is projected on πn

s ),

|v̌k
n(·, s, ·) − v̌k

n(·, s′, ·)| ≤ C ′
k[|s− s′| + ntO(n−1

s )], for all s, s′ ∈ DS, on Dk
Z ,

114



for some C ′
k > 0 that does not depend on n∈ N2. Since S is 1/2-Hölder in time in L2, together

with Assumption 4.3.5, this implies that

KcIv̌k
n(tni+1, s

n
i′ , z) = KcE[Iv̌k

n(tni+1, S
tn
i ,sn

i′
tn
i+1

, z)] +Ok(n− 1
2

t ) + ntOk(n−1
s ),

= E[v̌k
n(tni+1, S

tn
i ,sn

i′
tn
i+1

, Z
tn
i ,z,c

tn
i+1

)] +Ok(n− 1
2

t ) + ntOk(n−1
s ) for z ∈ Dk

Z , c ∈ C(z),

in which the exponent c in Ztn
i ,z,c means that the impulse c is given at tni , and we use

Remark 4.2.1 again. In the above, Ok(ξ) is a function, that may depend on k, but such that
ξ ∈ R \ {0} 7→ |Ok(ξ)|/ξ is bounded in a neighborhood of 0. By the arguments already used
in the proof of Proposition 4.3.3, it follows that

vk
n(tni , sn

i′ , z) =E[vk
n(tni+1, S

tn
i ,sn

i′
tn
i+1

, Z
tn
i ,z,0

tn
i+1

)] ∨ max
c∈C(z)

E[vk
n(tni+1, S

tn
i ,sn

i′
tn
i+1

, Z
tn
i ,z,c

tn
i+1

)]

+ ok(n−1
t ) + ntOk(n−1

s ),

and therefore

vk
n(0, S0, Z0−) = E[U(Sθn

k
, Ẑn,k

θn
k

)] + ok
n(1) +Ok(n2

tn
−1
s )

= E[U(ST , Ẑ
n,k
T )] + ok

n(1) +Ok(n2
tn

−1
s ) + ok(1)

by induction, in which ok
n(1) goes to 0 as n → ∞, ok(1) goes to 0 as k → ∞, and θn

k is as in
the proof of Proposition 4.3.3. It remains to appeal to Proposition 4.4.2. �

4.4.5 Numerical experiments
We use the same model as the one described in Section 4.3.6. As for the new parameters,

we take ŝ = 0, ρ = 50 and σ = 0.2, in particular the mean reversion parameter is taken to
be large.
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Figure 4.3 – Simulated path of the optimal strategy of the High Frequency Trader.

We approximate the behavior of the spread process S by a trinomial tree based on the
transition probabilities associated to the diffusion (4.4.2), so that the expectation in (4.4.8)
can be computed explicitly. More precisely, we consider a centered 6 points grid with mesh
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equal to half a tick (i.e. 0.005).
The graphics in Figure 4.3 have the same interpretation as in Section 4.3.6 except that

we now also provide the evolution of the Futures process F , this is the dashed line in the
bottom right graphic.
Remember that the HFT does not gain from the evolution of the mid-price, as her position
in stocks in always covered by a symmetric position in the futures. She only gains from the
evolution of the spread process S or from the bid-ask spread of the stock if S does not move.
Not surprisingly, her behavior is quite different from the one of the MM described in Section
4.3.4.
As the MM would do, she first positions herself on the limits in a symmetric ways, because
the spread with the future is 0. She then tries selling at time 4 by sending a limit sell order
in the spread to buy the futures whose price (compared to the mid-price of the stock) is gone
low. She is starting to play on the stock-futures spread. She follows this strategy until time
14. She plays in a more symmetric way after this until time 35, with a slight tendency to
resume her inventory. At time 35, she decides to clearly sell stocks again and buy the futures
whose price is again very low. From time 40 on, she inverts her position on the book to try
buying the stock and thus sell the futures whose price has gown up. She finally inverts her
position again at time 50 when the futures price goes back to the mid price, to liquidate her
position on the pair.
Compared to the positions of the MM in Figure 4.2, her positions in one direction are much
more clear, and are clearly driven by the stock-futures spread. The HFT also does not seem
to try to control the stock’s mid-price as the MM did, again this is because it does not matter
for her.

In Figure 4.4, we provide an estimation of the density of the gain of the HFT based on
105 simulated paths.

4.5 Institutional broker strategies for portfolio liquida-
tion

We now turn to the Institutional Broker problem. We consider in the following the two
mostly used strategies for buying/selling a block of stocks. We focus on the buying side,
selling being performed in a symmetrical way.

4.5.1 Volume strategy
We first consider a simple volume strategy. The aim of the broker is to buy I0 stocks.

By convention, we set I0 = −I◦. She fixes a participation rate f ∈ (0, 1). It corresponds to
the percentage of the total volume of trades that should correspond to trades done by the
broker between the initial time 0 and the time at which the I0 stocks are bought. Therefore,
she should buy f/(1 − f) of the total of the trades of the other market participant. To do
so, she considers subintervals [ti, ti+1] of R+. At the beginning of each of this subintervals
she estimates the conditional probability pi,i+1 that a trade arrives at the bid, given that
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Figure 4.4 – Density estimation of the gain made by the High Frequency Trader.

a trade arrives and given the order book at ti. Then, she puts a limit bid order of size
(f/(1 − f))Qb

ti
/pi,i+1 at ti. When all these units are executed, she adds new limit orders to

keep her position to a level at least equal to (f/(1−f))Qb
ti
/pi,i+1, or do nothing if this level is

still achieved, and so on. In the meantime, she compares her realized volume ∆I := I − I0 to
the volume ṽ(0, ·) + ∆I realized on the market from time 0 on. Given a threshold δI > 0, she
stops adding limit orders and cancels her orders already at the bid if ∆I(1−f) > fṽ(0, ·)+δI

and wait until ∆I(1 − f) ≤ fṽ(0, ·) + δI . If ∆I(1 − f) < fṽ(0, ·) − δI , then she sends an
aggressive order so as to turn to a position ∆I(1 − f) ≥ fṽ(0, ·) − δI as soon as possible. She
stops trading when I ≥ 0.

For our numerical experiment, we take the same model as in Section 4.3.6, we consider
a participation rate f = 0.2 and simply take pi,i+1 = 1/2. The time intervals [ti, ti+1] have
a length of 60 seconds and the time step is 1/2 second. We take δI = 4 (i.e. 2 ATS). The
number of units to buy is I◦ = 250 units. A simulated path of the strategy is provided in
Figure 4.5. In the top left graphic, the dashed lines correspond to the target volume ±δI ,
while the solid curve is the volume traded by the IB. The top right graphic gives the control
of the IB : lines with inward pointing arrows are limit orders, lines with squares are market
orders. The bottom left graphic provides the evolution of the average price at which stocks
have been bought by the IB from time 0 on. The bottom right graphic gives the evolution of
the bid and ask prices. One can see that this very simple strategy is quite efficient in the sense
that only a limited number of market orders are send. On the other hand, the systematic
position of the IB at the bid limit creates an important imbalance that contributes to push
up the price.

Figure 4.6 provides an histogram of the relative error (in %) of the VWAP obtained by
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this strategy with respect to the VWAP realized at the level of the whole market 9. It is based
on 104 simulated paths. One can see that this average price is typically slightly higher than
the VWAP of the market.

Figure 4.5 – Simulated path of the volume strategy.

9. Namely, (VWAPVol − VWAPMarket)/VWAPMarket in which VWAPVol is the VWAP obtained by the
IB by playing his volume strategy.
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Figure 4.6 – Histogram of the VWAP percentage error with respect to the VWAP of the
market, for the Volume strategy.

4.5.2 VWAP
We now present a VWAP (Volume Weighted Average Price) based trading strategy fre-

quently practiced by institutional brokers. Suppose that, at initial time 0, an institutional
broker decides to buy a quantity I0 ∈ N of a tradable asset using a VWAP based strategy,
i.e. by trying to obtain an average execution cost not more than

VWAPT = wT

v(0, T ) where w :=
∫ ·

0
vtPtdt and v(·, T ) :=

∫ T

·
vsds, (4.5.1)

in which v is a deterministic non-negative continuous process such that
∫ T

0 vtdt > 0, which
represents the trading volume of the market, and P models the stock price. 10

Abstract continuous time resolution

Following the seminal work of Almgren and Chriss [4], see also [40, Section 4.4], we first
consider the idealized world in which trading is done continuously at a bounded intensity, the
trading speed ϑ, taken as a process in the class C of non-negative processes adapted to the
(completed) filtration generated by W . She assumes that the dynamics of the asset reference
price P has a permanent linear price impact generated by the agent’s trading activity, see
[4]. More precisely, she assumes that the stock price evolves according to

dPt = βϑtdt+ σdWt, (4.5.2)

with β, σ > 0, while her inventory I follows the dynamics

dIt = ϑtdt

10. We take it deterministic for simplicity. In practice, it generally corresponds to a market volume curve
estimated by the broker.
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with the initial condition I0 = −I0, meaning that she is short at 0 of the I0 stocks she has to
buy on [0, T ].

She also assumes that her wealth G is affected by a temporary linear market impact κϑ,
for some κ > 0, i.e.

dGt = −ϑt

[
Pt + κϑt

]
dt. (4.5.3)

Her goal is to maximize over ϑ ∈ C the expected utility

E
[
− exp[−η{GT + IT (PT − κ̃IT ) − I0

wT

v(0, T )}]
]
, (4.5.4)

for some κ̃ > 0 which represents a penalty in case the inventory does not match 0 at T .

This type of problems has been widely studied, see the book [40] for references. In
the present form, it can be solved explicitly by using a verification argument based on
the explicit solution of the Hamilton-Jacobi-Bellman equation corresponding to the va-
lue function (t, p, i, g, w) ∈ [0, T ] × R4 7→ v(t, p, i, g, w) associated to the initial condition
(Pt, It, Gt,wt) = (t, p, i, g, w) :

0 = sup
u≥0

(
∂tϕ+ 1

2σ
2∂2

ppϕ+ pvt∂wϕ+ u (β∂pϕ+ ∂iϕ− p∂gϕ) − u2κ∂gϕ
)

on [0, T ) × R4

with terminal condition

ϕ(T, p, i, g, w) = −e−η{g+i(p−κ̃i)−m̄0w} for (p, i, g, w) ∈ R4,

where
m̄ := I0/v(0, T ).

To simplify the above, we first write v is the form

v(t, p, i, g, w) = e−η(g−m̄w−pv(t,T )m̄)v̄(t, p, i) with v̄(t, p, i) := v(t, p, i, 0, 0),

so that v̄ formally solves

0 = ∂tϕ+ 1
2σ

2(∂2
ppϕ+2ηv(t, T )m̄∂pϕ+η2v(t, T )2m̄2ϕ)− (β∂pϕ+ βηv(t, T )m̄ϕ+ ∂iϕ+ ηpϕ)2

4κηϕ

on [0, T ) × R4, with terminal condition

ϕ(T, p, i, g, w) = −e−η{i(p−κ̃i)} for (p, i, g, w) ∈ R4.

One possible solution is given by

v̄(t, p, i) = −e−η{i(p−κ̃i)}eh0(t)+h1(t)i+h2(t)i2
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in which h0, h1 and h2 solve 11 on [0, T )

∂th0 = −1
2σ

2(ηv(t, T )m̄)2 + (h1 + βηv(t, T )m̄)2

4κη

∂th1 = σ2η2v(t, T )m̄+ (h1 + βηv(t, T )m̄)−βη + 2ηκ̃+ 2h2

2κη

∂th2 = −η2σ2

2 + [−βη + 2ηκ̃+ 2h2]2

4κη

with h0(T ) = h1(T ) = h2(T ) = 0. The solution of the last equation is of the form

h2(t) = 1
c1 + c2ec3(T −t) − c4

in which the constants c1, . . . , c4 can be computed explicitly by using the above differential
equation and the terminal condition h2(T ) = 0. Namely, set

a0 := −η2σ2

2 + η(2κ̃− β)2

4κ , a1 := 2κ̃− β

κ
, a2 = 1

κη

and let y◦ be a root 12 of

(4a0a2 − a2
1)y2 + (a2

1 − 4a0a2)y + a0a2 = 0,

then
c3 = a1

1 − 2y◦
, c4 = a0

(1 − y◦)c3
, c1 = y◦

c4
, c2 = 1

c4
− c1.

Existence of y◦ is guaranteed since

a2
1 − 4a0a2 = η2σ2

2 > 0.

Then, h0 and h1 are fully characterized.
An easy verification argument shows that this is actually the correct function and that

the optimal control policy is given by

ϑ̂ = v̂(·, I)

where

v̂(t, i) := β∂pv(t, p, i, g, w) + ∂iv(t, p, i, g, w) − p∂gv(t, p, i, g, w)
2κ∂gv(t, p, i, g, w)

= β[i− v(t, T )m̄] − 2κ̃i− [h1(t) + 2h2(t)i]/η
2κ .

11. Just insert the above in the PDE of v̄ and match the orders in the i variable.
12. The function h2 does not depend on the choice of the root.

122



Strategy in practice and simulations

In practice, this optimal strategy can not be implemented within an order book. We
therefore consider a “discrete” version. In this version, we assume that the IB tries to keep
her inventory I equal to the optimal inventory Î :=

∫ ·
0 ϑ̂tdt− I◦. To do this, she fixes a time

grid {ti, i ≤ n} with t0 = 0 and tn = T . At time ti, she estimates that she has to execute
a volume of Vi,i+1 :=

∫ ti+1
ti

v̂(t, Iti
)dt on [ti, ti+1] while the volume of the market will be

Ṽi,i+1 =
∫ ti+1

ti
vtdt. Then, she follows a volume strategy with threshold δI = +∞, see Section

4.5.1 above, on [ti, ti+1] with a target participation rate of f = Vi,i+1/(Ṽi,i+1 + Vi,i+1). When
∆I := I − I0 > Î + δ̄I , for some δ̄I > 0, orders are canceled and she waits until ∆I ≤ Î + δ̄I .
In the case where ∆I < Î− δ̄I , she puts market orders to reduce to the situation ∆I ≥ Î− δ̄I

as soon as possible.
For our numerical experiment, we take the same configuration as in Section 4.5.1, with

δ̄I = 4, i.e. 2 ATS. The optimization of the VWAP strategy is done with a time horizon
of 30 minutes and a flat volume curve (so that the control does in fact not depend on it).
The number of units to buy is I◦ = 250 units. The additional parameters 13 are set to η = 1,
σ = 0.2, β = 0, 0004, κ = 0.003 and κ̃ = κ ∗ 60. The latter corresponds to the cost incurred
when buying the remaining shares IT in 1 additional minute after T , at a flat intensity in
the theoretical continuous time model of Section 4.5.2. The volume intensity v corresponds
to 0.6 ATS per second, i.e. 1.2 units per second.

The interpretation of the different graphics in Figure 4.7 is the same as in Section 4.5.1,
except that the dashed lines in the top left graphic correspond now to the optimal VWAP
trading curve ±2 ATS. Again, we see that only a limited number of market orders were
needed to be send, but that the imbalance created by the robots drives the price up.

Figure 4.8 provides an histogram of the relative error (in %) of the VWAP obtained by this
strategy with respect to the VWAP of the whole market 14. It is based on 104 simulated paths.
One can see that he actually typically performs better than the market. Not surprisingly, this
strategy performs better than the volume strategy in terms of VWAP.

13. The coefficients β and κ are estimated for our book dynamic. Given priors with simulate a bunch of
paths and estimated them by a moment matching approach based on (4.5.2)-(4.5.3). We then use the updated
values to simulate a new bunch of paths and we re-estimate them. And so on, until convergence.

14. Namely, (VWAPMM − VWAPMarket)/VWAPMarket, in which VWAPMM is the VWAP obtained by the
IB by playing his optimal VWAP strategy
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Figure 4.7 – Simulated path of the VWAP strategy.

Figure 4.8 – Histogram of the percentage error with respect to the VWAP of the market,
for the VWAP strategy.
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4.6 Simulation of the full market
We now provide an illustration of possible interactions of several market participants.

Again, a more realistic and general study will be performed in our companion paper [8].

The prior and parameters of the participants are the same as the one that have been used
in the above numerical experiments. More precisely, we consider one MM, one HFT and four
IB. Among the IB, two are playing volume strategies (a buy and a sell) and two are playing
WVAP strategies (a buy and a sell). At each time step, each participant decides of his optimal
control given the current state of the order book. They send their orders at the same time.
The control of the HFT is executed first, then this is the turn of the MM, and finally the
controls of the robots are executed (we choose the order among robots randomly, according
to a uniform distribution). Since the MM and the robots decide before seeing the action
of the HFT, their controls may not be applied or only partially, depending of the state of
the order book after the previous participants have played. The exogenous randomness only
comes from the simulation of the stock-futures spread process S and from the new queues
created when one queue is depleted. If the bid queue is depleted, then the bid price moves
down. If the bid-ask spread is equal to two ticks, then the ask price moves down as well.
The other way round if the ask queue is depleted. If the bid (resp. the ask) price move down
(resp. up), we consider that this is a discovered limit and its size is chosen as in Section 4.3.4 :
10 units with probability 60%, 5 units with probability 25% and 12 units with probability
15%. If the bid (resp. the ask) price move up (resp. down), which can happen if the bid-ask
spread is already of two ticks, we consider that this is a created limit and its size is chosen
again as in Section 4.3.4 : 2 units with probability 60%, 1 unit with probability 25% and 3
units with probability 15%. There is no other randomness, the rest of the dynamics is du to
the HFT, the MM and the four robots.

Note that only the VWAP robots are forced to trade, when they reach the (upper or
lower) limit of their prescribed inventory path. In principle, the MM plays aggressive orders
only when he needs to adjust quickly his inventory. For a typical path of the stock-futures
spread, the HFT also has no incentive to send aggressive orders, except to adjust his inventory.
Without trades, the Volume robots do not act as well (because the market volume does not
move). Therefore, if the MM and the HFT have a zero initial inventory, we expect to have to
wait for the VWAP robots to initiate first aggressive orders, and starts the whole dynamics.

In our illustration, we start with an initial state in which the HFT and the MM have
a zero initial inventory. Each VWAP robots has to buy/sell 75 stocks within 5 minutes of
trading. This corresponds to an average of 0.5 trades per second, which is consistent with
the priors of the MM and the HFT.

The Figures 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 have the same interpretation as in Section
4.3.4 except that now the position of the agent in the queue is in blue in the top right and
middle left graphics (the black part corresponding to the other participants). The top right
graphic is the state of the book just after the control of the agent is executed, the middle left is
the state of the order book after the controls of all the participants have been executed. Note
surprisingly, the trades are essentially due to the VWAP robots, to which the Volume robots
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need to adjust. The aggressive orders send by the HFT and the MM are either cancellations
or corrections of their inventory near the terminal time, except around time 35 at which the
HFT clearly wants to take a position on the stock-futures spread because it is very low. Note
that the first price jump is due to an aggressive sell order of the HFT, slightly before time
275, which pushes the bid price down. He just after sends a limit sell order in the spread,
and the ask price moves down as well. Since he is executed first and all players decide at the
same time, he does not give to the others the opportunity to take this position in the spread.
The last price move, just before T , is due to the HFT and the MM. This time the HFT and
the MM send aggressive buy orders that deplete the queue (we do not see the price move on
the graphics of the HFT, because they provide the prices after the execution of the order of
the agent). As in Section 4.4.5, his position follows the stock-futures spread. In particular,
between time 50 and 100, one can observe that he waits before sending a new sell limit order
because the spread is gone up and he wants to buy stocks to shortsell the futures. When the
spread starts going done, he takes a stronger position at the ask than at the bid, to start
selling back the stock. As for the MM, he finishes with an inventory equal to −1, that will
eventually be liquidated at 10.010, which explains the downward jump of his portfolio value
at T . When his inventory is very low, he balances between putting limit buy orders and
letting the price go down by not supporting the bid limit. It is not successful until the price
eventually moves down around time 275.
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Figure 4.9 – Optimal strategy of the High Frequency Trader when agents play together.
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Figure 4.10 – Optimal strategy of the Market Maker when agents play together.

128



0 50 100 150 200 250 300

−3
−2

−1
0

1
2

3

Controls

Time

Bi
d 

| A
sk

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 50 100 150 200 250 300

−1
0

−5
0

5
10

Queues after Control

Time

Bi
d 

| A
sk

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150 200 250 300

−1
0

−5
0

5
10

Queues after all participants

Time

Bi
d 

| A
sk

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●●●●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150 200 250 300

45
50

55
60

65
70

75
80

Inventory

Time

0 50 100 150 200 250 300

10
.0

06
10

.0
07

10
.0

08
10

.0
09

10
.0

10

Mean Price

Time

0 50 100 150 200 250 300

9.
99

0
9.

99
5

10
.0

00
10

.0
05

10
.0

10

Bid and Ask Price

Time

Bi
d 

| A
sk

Figure 4.11 – Optimal strategy of the Volume robot (seller) when agents play together.

129



0 50 100 150 200 250 300

−3
−2

−1
0

1
2

3

Controls

Time

Bi
d 

| A
sk

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 50 100 150 200 250 300

−1
0

−5
0

5
10

Queues after Control

Time

Bi
d 

| A
sk

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150 200 250 300

−1
0

−5
0

5
10

Queues after all participants

Time

Bi
d 

| A
sk

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150 200 250 300

−8
0

−7
5

−7
0

−6
5

−6
0

−5
5

−5
0

−4
5

Inventory

Time

0 50 100 150 200 250 300

10
.0

00
10

.0
01

10
.0

02
10

.0
03

10
.0

04

Mean Price

Time

0 50 100 150 200 250 300

9.
99

0
9.

99
5

10
.0

00
10

.0
05

10
.0

10

Bid and Ask Price

Time

Bi
d 

| A
sk

Figure 4.12 – Optimal strategy of the Volume robot (buyer) when agents play together.
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Figure 4.13 – Optimal strategy of the VWAP robot (seller) when agents play together.
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Figure 4.14 – Optimal strategy of the VWAP robot (buyer) when agents play together.
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Résumé

Cette thèse se compose de trois cha-

pitres qui portent sur des probléma-

tiques de contrôle impulsionnel. Dans

le premier chapitre, nous introduisons

un cadre général de contrôle impul-

sionnel avec incertitude. Sachant une

loi a priori sur des paramètres in-

connus, nous expliquons comment

celle-ci doit évoluer et l'intégrons

au problème de contrôle optimal.

Nous caractérisons la solution à tra-

vers une équation parabolique quasi-

variationnelle qui se résout numéri-

quement puis donnons des exemples

d'application à la finance. Dans le

deuxième chapitre, nous introduisons

un problème de contrôle impulsion-

nel avec incertitude dans un cadre

actuariel. Un (ré)assureur fait face à

des catastrophes naturelles et peut

émettre des CAT bonds afin de réduire

le risque pris. Nous caractérisons à

nouveau le problème de contrôle op-

timal à travers une équation parabo-

lique quasi-variationnelle qui se ré-

sout numériquement et donnons des

exemples d'application. Dans le der-

nier chapitre, nous proposons unemo-

délisation du prix à travers un car-

net d'ordre complètement endogène.

Nous résolvons des problèmes de

contrôle optimal impulsionnel (place-

ment d'ordre) d'agents économiques

rationnels que nous rassemblons sur

un même marché.

Mots Clés

Contrôle optimal, trading optimal, in-

cidence sur le marché, incertitude, fil-

trage Bayesien, obligation catastrophe

Abstract

This PhD thesis is composed of three

chapters, which deal with applications

of impulse control in Finance and In-

surance. In the first chapter, we in-

troduce a general framework of im-

pulse control with uncertainty. Kno-

wing a prior on unknown parameters,

we explain how it should evolve and

we integrate it in the formulation of

the optimal control problem. We cha-

racterize the solution via a parabo-

lic quasi-variational partial differential

equation, which can be solved nume-

rically. We give examples of applica-

tion in finance. In the second chap-

ter, we define an impulse control pro-

blem with uncertainty arising in ac-

tuarial sciences. A (re-)insurer faces

natural disasters and may issue CAT

bonds in order to reduce the risk taken.

The problem is solved using a PDE ap-

proach. A numerical scheme and dif-

ferent examples of application are pro-

vided. In the last chapter, we propose a

price model defined through a comple-

tely endogenous order book. We solve

optimal impulse control problems (or-

der placement) of rational economic

agents that we gather on the same

market.

Keywords

Optimal control, optimal trading, mar-

ket impact, uncertainty, Bayesian filte-

ring, CAT bond
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