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Résumé en français

Introduction

L’urgence du réchauffement climatique a poussé de nombreux États à prendre des engagements en faveur

du climat, ce qui s’est traduit notamment par des objectifs de réduction des émissions de gaz à effet

de serre. Dans le secteur de l’énergie, fortement émetteur de CO2, le recours aux énergies renouvelables

(EnR) a été l’une des pistes privilégiées pour « décarboner » le secteur, bien qu’elles ne fassent pas

l’unanimité pour répondre aux défis du développement durable. L’Union européenne s’est par exemple

engagée en 2008 dans ses objectifs pour 2020 (dits des « 20-20-20 ») à : réduire de 20% les émissions

de gaz à effet de serre par rapport à 1990, porter à 20% la part des énergies renouvelables dans la

consommation d’énergie finale, et d’augmenter de 20% l’efficacité énergétique par rapport à 1990. En

2014, ces cibles ont été étendues à respectivement 40%, 27% et 27% pour 2030. Dans le secteur électrique,

les « nouvelles » EnR telles que le photovoltaïque (PV), l’éolien, la biomasse ou la géothermie ont été

subventionnées pendant de nombreuses années. Elles le sont toujours pour la plupart, puisqu’elles ne sont

en général pas aussi rentables que les moyens de production conventionnels (charbon, gaz, hydraulique,

nucléaire historique, etc.). Ce soutien a le plus souvent pris la forme de tarifs d’obligation d’achat

(feed-in tariffs en anglais), qui tendent à être remplacés par des compléments de rémunération (feed-in

premiums) pour la plupart des nouvelles installations en Europe. Dans l’UE, ces aides sont désormais

majoritairement attribuées à l’issue d’appels d’offres, bien qu’il existe encore des « guichets ouverts »

pour les plus petites installations. Enfin, d’autres mécanismes de soutien existent également, tels que

les quotas échangeables, ou « certificats verts »1

Compte tenu du poids budgétaire qu’elle peuvent représenter (5,5 Mde en France en 2018, d’après la

Commission de régulation de l’énergie2), la double question de l’efficacité et de la possible amélioration

de ces politiques de soutien se pose. Cette problématique est d’autant plus prégnante que l’on prévoir
1Contrairement aux subventions, qui sont des mécanismes de soutien par les prix, ces derniers sont basés sur la quantité.

L’efficacité relative de ces deux formes a été étudiée notamment par Weitzman (1974).
2CRE (2018).
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une accumulation d’installations subventionnées (sur des durées de l’ordre de la vingtaine d’années)

dans les années à venir3.

Dans le premier chapitre, j’étudie donc la diffusion du PV chez les particuliers en France, et plus

précisément l’impact des subventions nationales (tarifs d’achat) et locales (primes fixes ou variables, le

plus souvent à l’installation) sur la dynamique de cette filière, première en nombre d’installations mais

marginale en puissance installée.

Par ailleurs, le développement des EnR s’est accompagné de nouvelles réglementations et suscite

encore des interrogations quant à la manière de les réguler tout en continuant à les promouvoir efficace-

ment, et sans générer de distorsions économiques trop importantes. Par exemple, la question des coûts

de raccordement et de renforcement du réseau, quoique relativement absente de la littérature, a poten-

tiellement des implications sur les choix d’investissement dans les EnR. La France a ainsi proposé des

schémas de raccordement innovants, dont l’étude dans le cas de l’éolien terrestre (onshore) fait l’objet

du deuxième chapitre.

Si les deux premiers chapitres concernent l’évaluation a posteriori de politiques publiques, il est des

situations dans lesquelles le manque de recul empêche une telle analyse, dite positive (ou descriptive).

C’est en particulier le cas pour les tarifs de réseau qui, bien qu’existant depuis longtemps, sont confrontés

à de nouveaux problèmes liés au développement des EnR, tels que l’autoconsommation4. Les outils de la

théorie économique peuvent alors aider à dresser des recommandations d’ordre plus ou moins normatif.

Dans le troisième chapitre, je m’intéresse donc à la pertinence de la tarification à l’énergie et à la

puissance souscrite telle qu’elle existe notamment en France, et sur l’évolution qu’elle devrait prendre

en présence d’autoconsommateurs.

Enfin, après avoir étudié des questions liées aux investissements dans les moyens de production

renouvelable, il convient de s’interroger des possibles impacts de ces derniers sur les marchés de l’élec-

tricité, où l’on souhaiterait qu’ils deviennent un jour rentables. En effet, un tel niveau de compétitivité

permettrait de se passer de politiques de soutien. Malheureusement, les aides dites « hors marché »5

telles que celles pratiquées actuellement ont pour effet pervers de créer un choc d’offre dont le coût

marginal de production est quasi-nul, et dont la conséquence principale est de une baisse des prix. Ceci

a pour effet de faire chuter la rentabilité des autres moyens de production, ce qui risque de créer des

problèmes de sécurité d’approvisionnement. D’autre part, cela compromet à long terme la rentabilité
3« Près de la moitié du montant des charges 2022 relève de dépenses engagées avant 2011 » (CRE, 2018).
4C’est-à-dire le fait de consommer sa propre production, par exemple solaire, au lieu de la valoriser sur le marché ou

via des tarifs d’achat.
5Dont le contraire serait par exemple une taxe carbone.
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des EnR en l’absence de subventions. Le quatrième et dernier chapitre est donc consacré à l’analyse de

l’impact de la production renouvelable sur les prix de gros en Allemagne, où la capacité installée est

très importante du fait d’un soutien aux EnR plus ancien, par rapport à d’autres pays européens. Ce

dernier chapitre a été publié dans Energy Policy (Martin de Lagarde et Lantz, 2018).

Chapitre I - Diffusion du photovoltaïque chez les particuliers et ses

déterminants

Ce premier chapitre s’intéresse à l’impact des subventions aux installations photovoltaïques de moins

de 3 kW (qui concernent majoritairement des particuliers installant un panneau solaire sur leur toit)

en France, ainsi qu’à la dynamique de cette filière. En effet, ce segment a été subventionné pendant

de nombreuses années, à la fois par l’État à travers des tarifs d’obligation d’achat et par différentes

régions, départements et communes, le plus souvent via des primes à l’installation. Par ailleurs, le PV

étant une technologie relativement nouvelle dans son utilisation à grande échelle, son développement

est susceptible de suivre un processus dit de « diffusion » qui lui est propre. Aux niveaux national et

régional, on observe en particulier une courbe en « S » pour la quantité installée cumulée, comme décrit

pour la première fois par Griliches (1957) pour la diffusion du maïs hybride aux États-Unis. Cette

caractéristique commune à de nombreux biens durables a été modélisée notamment par Bass (1969)

dans un article fondateur, qui fut adapté maintes fois par la suite.

Bass (1969) décrit l’adoption d’un nouveau produit comme se faisant par des « innovateurs », qui

réagissent à une communication externe (type publicité) et par des « imitateurs », qui sont influencés

par le bouche à oreille (communication interne). Au début de la diffusion, seuls les innovateurs, en

proportion fixe dans la population, achètent le produit, puis au fur et à mesure que la part de marché

augmente, le bouche à oreille prend de l’ampleur, ce qui donne lieu à une accélération du nombre de

ventes. Lorsque le marché arrive à saturation, une décélération se produit du fait du moindre nombre

d’acheteurs potentiels restants. Cette modélisation relativement simple permet ainsi de paramétrer les

courbes en « S », et dans sa version linéarisée d’ajouter des variables explicatives. La simplification la

plus répandue consiste à utiliser la quantité cumulée de ventes passées (la « base installée ») comme

covariable modélisant la « contagion ». Dans la version linéarisée originale de Bass (1969), le carré de

cette variable est également utilisé, ce qui permet de donner la forme en « S » et modélise donc le

ralentissement dû à l’accumulation du stock dans un marché de taille finie.
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Données

L’analyse des subventions au niveau local requiert l’emploi de données très désagrégées. Ceci a été rendu

possible par Enedis, gestionnaire de 95% du réseau de distribution d’électricité français, qui m’a fourni

l’ensemble des demandes de raccordement de panneaux solaires de moins de 3 kW sur son réseau. Ces

données révèlent que la grande majorité des installations font en réalité 3 kW, ce qui permet de modéliser

le nombre d’installations en lieu et place de la puissance raccordée. À partir de mars 2011, on constate

également un pic de demande à la fin de chaque trimestre, soit juste avant que le tarif d’achat ne soit

réévalué (à la baisse), comme prévu par les arrêtés tarifaires à partir de cette date6. Ainsi, il est logique

d’agréger ces données au pas de temps trimestriel. N’ayant pas d’information sur les individus ayant

fait une demande de raccordement, j’agrège par ailleurs les demandes au niveau communal. Le jeu de

données final comporte ainsi plus d’un million d’observations, dont 94% de zéros. Il s’ensuit une majorité

de 1, tandis que le maximum est de 18 demandes dans un trimestre donné (Calais au quatrième trimestre

2010 et Niort au premier trimestre 2011, soit au moment de la « bulle » décrite précédemment).

Par ailleurs, j’utilise un ensemble de données publiques : coût d’une installation PV de moins de

3 kW (estimations de l’ADEME7), tarifs d’obligation d’achat pour le segment 0-3 kW, subventions

locales (recensement Enerplan et personnel auprès des régions), ensoleillement (PVGIS - Joint Research

Centre, Commission européenne). Ces données me permettent de calculer un taux de rentabilité interne

(TRI) par commune et par trimestre, en utilisant des hypothèses simplificatrices sur l’efficacité, le coût

de maintenance ou l’orientation des panneaux. Ces hypothèses « moyennes » sont nécessaires compte

tenu de l’absence d’information sur les panneaux installés, mais ne semblent pas déraisonnables ni avoir

une influence majeure sur les résultats. L’analyse des TRI met en lumière l’importance de certaines

subventions locales dans la rentabilité des projets PV, avec des taux aussi voire plus élevés dans en

Nord-Pas-de-Calais ou Lorraine qu’en Provence-Alpes-Côte d’Azur.

Enfin, j’utilise des données IRIS (Îlots regroupés pour l’information statistique) de l’INSEE8, compre-

nant notamment le nombre de logements et leur type (maison/appartement, résidence principale/secondaire),

que j’ai également agrégées par commune. Ces données n’étant disponibles que sur peu d’années, j’ai

choisi celles de 2013. L’utilisation de données en coupe (c’est-à-dire à date fixée) empêche de facto l’em-

ploi d’effets fixes alors que les autres données sont longitudinales (panel). Néanmoins, le faible nombre
6À la fin des années 2000, les subventions étaient telles qu’une quasi « bulle » du photovoltaïque s’était formée, ce qui a

donné lieu à un moratoire de trois mois sur les tarifs d’achat, de décembre 2010 à mars 2011. Ce moratoire n’a cependant
pas concerné le PV de moins de 3 kW, qui nous intéresse ici. À son issue néanmoins, les tarifs ont largement diminués et
ont commencé à être révisés tous les trimestres.

7Agence de l’environnement et de la maîtrise de l’énergie.
8Institut national de la statistique et des études économiques.
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d’observations positives (62 909 pour 33 842 communes) risquerait de fausser les résultats par surap-

prentissage (overfitting) en présence d’effets fixes. De plus, le calcul d’une quantité aussi importante de

paramètres est compliqué d’un point de vue numérique.

Modèle économétrique

En raison de l’abondance de zéros de la variable dépendante (ou à expliquer), il est nécessaire d’utiliser

une modélisation adaptée à cette particularité. Si plusieurs alternatives sont possibles (Min et Agresti,

2002), j’ai choisi de modéliser séparément la probabilité qu’il y ait une installation dans une commune

durant un trimestre donné et le nombre d’installation(s) lorsque celui-ci est strictement positif. Cette

approche en deux temps a été proposée initialement par Mullahy (1986), et permet une interprétation

plus simple que la plupart des alternatives. Concernant la probabilité d’adoption, j’ai choisi d’utiliser une

régression logistique, qui fournit des queues de distribution plus épaisses qu’une régression de type probit,

et dont les coefficients sont plus facilement interprétables. Pour ce qui est du nombre d’installations,

j’utilise une loi négative binomiale tronquée, qui est une généralisation de la loi de Poisson tronquée.

Les variables explicatives choisies sont pour les deux régressions : le TRI, calculé uniquement avec

le tarif d’achat ; la différence entre le TRI calculé en tenant compte des subventions locales et sans

celles-ci ; le logarithme du nombre de logements ; la proportion de résidences principales ; la proportion

de maisons. Par ailleurs, j’utilise le nombre cumulé de demandes passées et son carré dans le modèle

de choix discret (logit) afin de modéliser la diffusion. Le choix du logarithme du nombre de logements

s’explique par la quasi-proportionnalité attendue entre le nombre de logements pouvant disposer d’un

panneau solaire et le nombre effectif d’installations. Cela se traduit dans un modèle de comptage de

type Poisson (avec lien logarithmique) par l’utilisation d’une variable dite d’exposition, c’est-à-dire sous

forme logarithmique et dont le coefficient est contraint d’être égal à 1. Dans notre cas, le modèle de

comptage étant tronqué, ce lien est perdu et la valeur du coefficient n’est pas contrainte. Comme il est

attendu que la plupart des installations se font sur des maisons, on utilise la proportion de celles-ci. De

même, on suppose que les particuliers seront plus enclins à investir pour leur résidence principale que

secondaire.

Résultats et interprétations

Concernant la régression logistique, tous les coefficients sont significatifs, et leur interprétation est usuelle

en économétrie, à savoir que leur exponentielle est égale au rapport des cotes ou des chances (odds ratio).
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Ainsi, au premier ordre le stock cumulé a un effet similaire au TRI (calculé uniquement sur la base des

tarifs d’achat), c’est-à-dire que l’existence d’une installation supplémentaire par le passé impacte autant

la probabilité d’adoption qu’un point de TRI. Ceci est loin d’être négligeable : en effet, un point de TRI

supplémentaire augmente la chance qu’il y ait une installation de 10% en moyenne, ce qui entraînerait un

passage de 94% à 93,5% de zéros. En revanche, les subventions locales ont un impact bien plus modéré,

puisqu’une augmentation d’un point de TRI par le biais de subventions locales n’augmente la cote que

de 1,4%. Par ailleurs, on observe le début d’un effet de stock (négatif), pour le moment très léger, mais

qui montre que la dynamique de diffusion en « S » est également présente au niveau local.

Pour ce qui est du modèle de comptage, on peut s’appuyer sur le fait qu’il y a une majorité de

1 pour montrer qu’au premier ordre les coefficients sont des semi-élasticités (ou des élasticités si les

covariables sont sous forme logarithmique) pour le nombre moyen de demandes moins un. Pour avoir

un effet multiplicatif (sur la moyenne moins un), il suffit de regarder de nouveau l’exponentielle des

coefficients.

Les résultats révèlent que contrairement à la régression logistique, les subventions locales ont un

impact bien plus important que les tarifs d’achat sur le nombre d’installations (le TRI « simple » n’est

d’ailleurs pas significatif au seuil des 22%). Une augmentation d’un point de TRI par des subventions

locales fait ainsi passer la demande trimestrielle moyenne de 1,267 à 1,308 (+3.2%). Enfin, les variables

de contrôle sont fortement significatives dans les deux parties du modèle, et ont un impact très fort sur

la probabilité et le nombre d’adoptions.

Ainsi, il peut être tout aussi efficace et moins coûteux pour les finances publiques de développer les

énergies renouvelables en informant mieux les individus, car le phénomène de diffusion est avant tout

lié à la communication, aussi bien interne qu’externe. Pour des projets de plus grande envergure, cela

peut par exemple passer par davantage de financement participatif, qui favorise l’acceptabilité des EnR

au niveau local.

Chapitre II - Schémas de raccordement au réseau des énergies renou-

velables : une analyse spatiale

En France, le calcul des frais de raccordement d’une centrale au réseau électrique prévoit que si un

renforcement est nécessaire (nouvelle ligne ou transformateur, par exemple), le producteur qui en est à

l’origine le paie intégralement. Or ces renforcements sont par nature « discrets » (au sens mathématique,

c’est-à-dire par paliers), et sont donc a priori suffisants pour accueillir plusieurs raccordements successifs

viii



Résumé en français

si la centrale en question n’est pas trop importante. Les quelques producteurs suivants éventuels n’auront

donc pas à le payer. Si cette approche n’est pas nécessairement gênante pour les « grosses » unités de

production centralisées, pour lesquelles un tel coût est quasiment systématique tout en étant relativement

modeste par rapport au coût total de la centrale, elle l’est beaucoup plus pour les EnR. En effet, celles-ci

étant le plus souvent de petite taille et « décentralisées », c’est-à-dire (dans l’acception la plus courante)

connectées au réseau de distribution9. Une alternative, qui existe par exemple en Allemagne, consiste

à ne jamais faire payer les renforcements aux producteurs, qui ne paient alors que le coût de leur

raccordement. Dans ce cas, ce sont les consommateurs qui paient les renforcements directement via

le tarif d’utilisation du réseau. L’inconvénient principal de cette méthode est qu’elle n’incite pas les

producteurs à se raccorder là où le réseau est moins contraint.

Afin de ne pas pénaliser les filières renouvelables en leur faisant payer les coûts complets des renfor-

cements, tout en évitant l’écueil mentionné précédemment, la France a décidé de les mutualiser entre

producteurs renouvelables de plus de 100 kW, et d’en exonérer les plus petits. Cette mesure a été prise

dans la loi « Grenelle II »10, qui a introduit l’obligation pour les régions de se doter de Schémas Régio-

naux Climat Air Énergie (SRCAE), lesquels les objectifs « 20-20-20 » à l’échelle régionale, et auxquels

sont adossés des Schémas Régionaux de Raccordement au Réseau des Énergies Renouvelables (S3REnR,

ou SRRRER). Ces derniers, réalisés par les gestionnaires des réseaux de transport et de distribution,

partent des objectifs des SRCAE et définissent par poste électrique la capacité renouvelable raccordable

et le coût correspondant à l’échelle de la région. Il en résulte des capacité réservées aux énergies renouve-

lables par poste source (elle est potentiellement nulle), et un coût total qui, rapporté à la capacité, donne

une quote-part (en e/kW) dont les producteurs EnR de plus de 100 kW doivent s’acquitter. Ainsi, en

plus de mutualiser les coûts de réseau, ces schémas fournissent de fait un signal prix régionalisé, censé

inciter les projets à se développer dans les régions où le réseau est moins contraint et donc la quote-part

moins élevée, du fait d’un moindre besoin de renforcement. La question est donc de savoir si d’une part

cet objectif de différentiation spatiale a été rempli, c’est-à-dire si les porteurs de projet sont effectivement

sensibles à cette « taxe » régionalisée ; et si d’autre part cela a été bénéfique, ou tout du moins neutre,

sur le développement des EnR.
9La définition de la distribution et du transport d’électricité varie entre les pays, mais la distribution concerne généra-

lement la basse, moyenne, et parfois haute tension, alors que le transport concerne en général la très haute tension. Par
exemple en France, la limite réglementaire est fixée à 50 kV, mais le réseau de transport opère généralement à 63, 90, 225
et 400 kV, tandis que la haute tension au sens de la distribution est généralement de 20 kV.

10LOI no 2010-788 du 12 juillet 2010 portant engagement national pour l’environnement (2010).
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Données

Je m’attache à répondre à cette question dans le cas de l’éolien, qui est avec le photovoltaïque la

filière renouvelable la plus dynamique. Contrairement à cette dernière, il est possible d’appréhender la

filière éolienne dans son ensemble, car les projets sont plus homogènes en termes de puissance. Pour

réaliser cette étude, je m’appuie de nouveau sur les demandes de raccordement au réseau d’Enedis. Plus

précisément, je choisis comme variable dépendante la puissance entrant en file d’attente (i.e. la somme

des puissances des projets pour lesquels une convention de raccordement a été signée avec Enedis). Afin

d’analyser les S3REnR, j’agrège ces données à l’échelle régionale et au pas de temps trimestriel. Si ce

premier choix est plutôt évident, le second permet de prendre en compte des dates d’entrée en vigueur

très différentes, tout en gardant un nombre suffisant d’observations non nulles. Malgré un fort taux

d’abandon des projets (environ 35%), et donc de sortie de file d’attente, les demandes de raccordement

fournissent tout de même un bon indicateur du dynamisme de la filière, et sont responsables de l’arrivée

à saturation des schémas, et donc de leur révision. Par ailleurs, ne s’intéresser qu’aux demandes ayant

abouti à un raccordement ne permettrait pas d’étudier l’impact des schémas, en raison du délai important

entre l’entrée en file d’attente et le raccordement, et de l’incertitude concernant un possible abandon du

projet éolien.

L’analyse descriptive de ces données est en elle-même intéressante et révèle que plusieurs projets font

en réalité plus de 12 MW, qui est la puissance maximale autorisée pour les raccordements au réseau de

distribution (il existe une dérogation possible jusqu’à 17 MW, mais les données montrent que cela reste

marginal). En effet, de nombreux porteurs de projets de plus de 12 MW préfèrent effectuer plusieurs

raccordements sur le réseau de distribution plutôt qu’un unique raccordement, souvent plus onéreux

et plus compliqué, sur le réseau de transport. On distingue également clairement que la majorité des

turbines font 2 MW, car la puissance des projets en est en général un multiple.

Les deux composantes des schémas de raccordement qui nous intéressent sont la quote-part et la

date d’entrée en vigueur. Les S3REnR pouvant être approuvés et publiés à n’importe quelle date dans

un trimestre donné, j’ai choisi d’utiliser deux variables explicatives pour quantifier l’effet de l’entrée en

vigueur : une variable indicatrice (dummy variable) du trimestre en question, et une variable indicatrice

pour tous les suivants. Par ailleurs, afin de tenir compte de la dynamique « intrinsèque » de la filière,

j’utilise le nombre de raccordements effectivement réalisés par le passé afin de modéliser le processus

de diffusion. Cela permet de juger de l’effet « épidémique » du développement, comme dans le cas du

photovoltaïque étudié précédemment. En revanche, les courbes n’ont pas encore une forme de « S » et
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ne laissent donc pas supposer l’existence d’un effet de « stock », à ce stade tout du moins. Ceci conduit

à ne pas utiliser le carré du nombre de raccordements passés, contrairement à l’étude précédente.

Modèle économétrique

En raison du caractère géographique des données, il convient de prêter attention aux possibles auto-

corrélations spatiales, qui risquent de biaiser et rendre non-convergents les estimateurs « classiques »

(Elhorst, 2014). Pour cela, j’estime le modèle d’économétrie spatiale le plus général, à savoir le general

nesting spatial (GNS) model, dans lequel on considère l’autocorrélation spatiale de la variable dépen-

dante, des variables indépendantes, et des résidus. Les données étant longitudinales (panel), j’utilise

également des effets fixes temporels et individuels (régionaux) afin de capturer au maximum l’effet des

variables inobservées telles que l’évolution du coût des turbines et des tarifs d’achat et l’hétérogénéité

des régions (richesse, potentiel éolien, etc.).

Afin de modéliser les interactions spatiales, il est nécessaire de définir une relation de voisinage entre

les entités observées (les régions dans notre cas). Compte tenu de la situation étudiée, une relation de

type rook ou queen (c’est-à-dire la tour et la reine dans un jeu d’échec) semble la plus adaptée, car elle

considère que deux entités sont voisines si et seulement si elles partagent une arête dans le premier cas,

et une arête ou un coin dans le deuxième. En ce qui concerne les régions françaises, le résultat est le

même pour ces deux définitions. Ceci donne une matrice de voisinage W de taille N ×N , dont les lignes

et les colonnes représentent les N entités géographiques, et dont les coefficients sont égaux à 1 lorsque

celles-ci sont voisines (au sens de la relation choisie), et 0 sinon (en particulier, les éléments diagonaux

sont nuls car une région n’est pas considérée comme étant son propre voisin). Les coefficients de chaque

ligne sont ensuite normalisés afin que leur somme soit égale à 1.

La matrice est ensuite appliquée aux variables souhaitées, en introduisant un coefficient d’autocor-

rélation pour la variable dépendante ainsi que pour les erreurs, de façon semblable à un modèle auto-

régressif à moyenne mobile en séries temporelles. On l’applique également aux variables explicatrices,

similairement à un modèle auto-régressif à retards échelonnés en séries temporelles.

Le coefficient d’autocorrélation de la variable dépendante peut alors s’interpréter comme un taux de

substitution entre les régions, qui peut être négatif si les demandes sont substituables ou positif si elles

sont complémentaires, par exemple si elles font l’objet d’un phénomène de bouche à oreille spatialisé.

Ce dernier cas est le plus fréquent en économétrie spatiale et correspond à un phénomène de clustering

(regroupement) de la variable observée (taux de pauvreté ou de délinquance par exemple).
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Résultats et interprétations

L’estimation du modèle révèle la présence d’autocorrélation spatiale négative et significative, ainsi qu’une

autocorrélation résiduelle positive et significative, ce qui confirme le choix du modèle. Usuellement, les

deux sont de même signe et sont donc difficilement discernables car ils ont des effets similaires, ce

qui n’est pas le cas ici. Ainsi, les demandes de raccordement dans les différentes régions apparaissent

comme étant assez fortement substituables l’une à l’autre, tandis qu’il existe une ou plusieurs variables

inobservées corrélées positivement. Cela pourrait être lié en partie aux vitesses de vent, pour lesquelles

c’est le cas (il y a plus vent sur les façades maritimes ainsi que le long du couloir rhodanien, donc bel et

bien sur des régions contiguës) et qui ne sont pas prises en compte explicitement11.

Les coefficients d’un modèle spatial autorégressif n’étant pas interprétables directement, il faut cal-

culer les effets marginaux des variables explicatives. Ceux-ci s’écrivent sous la forme d’une matrice dont

les coefficients s’interprètent comme l’impact d’un changement infinitésimal de la covariable considérée

dans une région donnée sur la demande dans une autre région. En particulier, les termes diagonaux

représentent les effets directs des variables explicatives, et les éléments non-diagonaux leurs effets indi-

rects, i.e. sur les autres régions. Les résultats montrent qu’en moyenne, l’augmentation de la quote-part

d’un euro par kilowatt entraîne dans la région concernée une baisse des demandes de raccordement de

300 kW et une hausse cumulée dans les régions voisines de 138 kW. L’effet total de la quote-part est

donc légèrement négatif, mais cela est compensé par l’effet positif lié à l’entrée en vigueur des S3REnR.

On peut en effet calculer qu’en moyenne au niveau national, les schémas ont entraîné une réalloca-

tion trimestrielle de 23,8 MW et une augmentation nette de 4,5 MW des demandes trimestrielles de

raccordement.

Par ailleurs, les raccordements passés ont un impact positif et significatif sur la demande, ce qui

confirme le caractère « épidémique » de la diffusion. En moyenne, chaque mégawatt supplémentaire par

région induit une hausse de la demande trimestrielle de 30,2 kW. Cela peut sembler peu, mais il ne

faut pas oublier le caractère exponentiel d’une telle dynamique. En définitive, le bilan de ces schémas

incitatifs apparaît donc comme positif, aussi bien en termes de réallocation spatiale des raccordements

qu’en termes de demande globale.
11L’utilisation de la vitesse du vent comme variable explicative est compliquée compte tenu de son hétérogénéité au

sein même des régions (qui sont assez étendues), de la relation non-linéaire inconnue (car dépendante de la technologie
notamment) entre vitesse et productible, et du fait que cela empêcherait de fait d’utiliser des effets fixes pour contrôler
les autres variables inobservables.
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Chapitre III - La puissance souscrite revisitée : extensions et application

à l’autoconsommation

Bien que la majorité des pays européens aient adopté un système de tarification du réseau électrique

basé uniquement sur l’énergie consommée (parfois avec une part fixe), certains pays (dont la France) ont

également une composante liée à la puissance souscrite par l’utilisateur du réseau. Chez les consomma-

teurs particuliers, celle-ci ne peut en général pas être dépassée en raison de la présence d’un disjoncteur,

et l’on peut alors parler d’auto-rationnement (self-rationing).

Par ailleurs, si les tarifs de réseaux semblent partager des objectifs communs (recouvrement des

coûts, utilisation efficace du réseau, etc.), aucune structure ne semble faire l’unanimité. En effet, on

observe une assez forte hétérogénéité dans les proportions que les parts énergie et puissance prennent

dans la facture finale du consommateur, dans les pays qui disposent de ces deux outils de tarification.

La tarification à l’énergie en temps réel (real-time pricing), et en particulier en pointe (peak-load

pricing) est quant à elle considérée comme la solution théorique optimale, et a fait l’objet de nom-

breux traitements théoriques depuis les premières contribution de Boiteux (1951), Steiner (1957)

et Williamson (1966) notamment. Elle pose cependant des problèmes d’implémentation (il faut des

compteurs « intelligents », tels que les compteurs Linky en cours de déploiement en France), mais égale-

ment de coûts de transaction pour les consommateurs, dont on imagine mal qu’ils soient prêts à ajuster

leur consommation en continu en fonction du prix. Une variante moins contraignante mais moins efficace

consiste à avoir des tarifs horosaisonnalisés (heures pleines/heures creuses par exemple), qui existent en

France, combinés à une tarification à la puissance souscrite.

D’autre part, le développement de l’autoconsommation, c’est-à-dire le fait de consommer sa propre

production (le plus souvent celle d’un panneau solaire) complique la tâche de l’élaboration du tarif. En

effet, une tarification à l’énergie consommée nette (ce qui équivaut à valoriser la vente du surplus au

prix de détail, qui contient notamment des taxes et la part variable du tarif de réseau) diminue l’assiette

disponible pour recouvrer les coûts fixes du réseau, lorsqu’ils sont présents. On peut considérer que c’est

le cas à court terme, car le réseau a déjà été construit et ne peut pas s’adapter instantanément à une

nouvelle situation. De même, avec une tarification de la puissance souscrite, la possible diminution de

cette dernière par des autoconsommateurs engendre le même problème, mais a priori dans une moindre

mesure.

La présence de coûts fixes est un cas particulier d’économies d’échelles, qui justifient l’existence d’un
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monopole, dit « naturel »12. Si le recouvrement des coûts fixes via une somme forfaitaire est la solution

optimale d’un point de vue économique (car ne créant pas de distorsion de consommation), elle ne paraît

pas toujours « équitable » aux yeux de tous. Une alternative consiste à rechercher l’écart optimal du

prix par rapport au coût marginal, ce qui conduit à un optimum économique dit de second rang (second

best). Ce problème a été formulé pour la première fois par Ramsey (1927) pour la taxation optimale, et

indépendamment par Boiteux (1956) pour les monopoles naturels, ce qui fait que l’on parle également

de tarification à la « Ramsey-Boiteux ». Un des objectifs de ce papier est de déterminer ces prix avec

et sans autoconsommateurs.

Cas général

La question de l’auto-rationnement a été traitée en premier lieu par Panzar et Sibley (1978), dont

le travail a été complété notamment par Schwarz et Taylor (1987). Selon leurs hypothèses, qui sont

standard en économie industrielle, les consommateurs maximisent leur surplus espéré13 par rapport à

leur puissance souscrite, lorsque leur demande et les prix auxquels ils font face sont stochastiques. Cela

les conduit à égaliser en espérance le prix de la puissance souscrite à l’utilité marginale qu’ils peuvent

dégager d’une unité additionnelle de cette puissance.

Dans le cas de coûts marginaux de fourniture et de capacité réseau constants, si les consommateurs

ont des préférences faiblement séparables en consommation et « goût » (qui caractérise l’hétérogénéité

des consommateurs), alors ils atteignent leur puissance souscrite simultanément et il est optimal de tarifer

l’énergie et la puissance à leurs coûts marginaux respectifs. De plus, cela conduit à l’optimum économique

de premier rang. Sous cette hypothèse, il suffit donc de considérer un consommateur représentatif, ce que

nous ferons par la suite. Par ailleurs, on considère pour simplifier que la consommation peut être haute

ou basse avec des probabilités fixes (et bien évidemment complémentaires). On fait de plus l’hypothèse

que la puissance souscrite n’est atteinte qu’en période haute, et est donc strictement supérieure à la

consommation en période basse.

Application à l’autoconsommation

Afin de traiter le cas de l’autoconsommation, on introduit de l’hétérogénéité entre les consommateurs

à la manière de Gautier et al. (2018), en considérant que le coût marginal d’un moyen de production
12En réalité, il faut que la fonction de coût soit sous-additive, ce qui est moins restrictif lorsque celle-ci a plusieurs

arguments (Baumol, 1977).
13Dans ces modèles, les consommateurs ont une fonction d’utilité quasi-linéaire par rapport à leur revenu, ce qui rend

la maximisation de l’utilité équivalente à la maximisation du surplus.
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décentralisé (comme un panneau solaire) est constant jusqu’à une certaine capacité (par exemple 3 kW)

et infini au-delà (par exemple car il n’y a plus de place sur le toit). De plus, on suppose que ce coût

est distribué dans la population selon une loi de probabilité connue de tous. En supposant que la

production décentralisée est maximale en période basse et infinitésimale en période haute, et que les

autoconsommateurs sont uniquement facturés en fonction de leur consommation nette, ils diminuent

leur puissance souscrite de cette quantité infinitésimale dès lors que leur coût marginal de capacité

décentralisée est inférieur à un certain seuil. Ce seuil correspond à l’économie marginale liée à la non-

consommation depuis le réseau et à la réduction de la puissance souscrite permise par le moyen de

production décentralisé. La proportion d’autoconsommateurs est alors endogène et donnée par la valeur

de la fonction de répartition du coût marginal de production au seuil considéré.

Long terme

À long terme, la capacité du réseau est variable, et en l’absence d’économies d’échelles il est optimal de

tarifer l’énergie et la capacité au coût marginal. Dans le cas contraire, par exemple s’il y a des coûts

fixes, alors il est facile de montrer qu’en l’absence d’autoconsommateurs le prix second best de l’énergie

suit la règle usuelle de l’inverse de l’élasticité (aussi dite de Ramsey-Boiteux), c’est-a-dire que l’écart du

prix au coût marginal de production (et d’acheminement dans notre cas) est inversement proportionnel

à l’élasticité de la demande en période basse. En présence d’autoconsommateurs, on a toujours un prix

supérieur au coût marginal, et la proportion d’autoconsommateurs est également supérieure au niveau

optimal. De plus, lorsqu’ils sont très peu nombreux, alors le prix à l’optimum de second rang baisse.

Quant au prix Ramsey-Boiteux de la capacité, il ne suit pas la règle de l’inverse de l’élasticité, et

peut être supérieur ou inférieur au coût marginal. Cependant, si l’élasticité de la demande est plus élevée

en heures creuses qu’en heures pleines, le prix est bien supérieur au coût marginal, et cela reste vrai en

présence d’autoconsommateurs. En revanche, savoir s’il est plus élevé avec ou sans ces derniers est plus

compliqué et dépend notamment des élasticités et de la proportion d’autoconsommateurs. Si celle-ci

est élevée et si le prix en leur absence est supérieur au coût marginal, il est probable qu’il augmente

par rapport à ce dernier, une condition suffisante étant que la densité du coût marginal de la capacité

décentralisée tende vers 0 quand la proportion d’autoconsommateurs tend vers 1.

xv



Résumé en français

Court terme

À court terme, la capacité du réseau est fixe et son coût peut donc être considéré comme échoué. Dans ce

cas, les résultats obtenus pour le long terme s’étendent en considérant simplement un coût marginal de

la capacité réseau égal à zéro. Une alternative peut être de tarifer énergie et puissance au coût marginal,

en empêchant les consommateurs de choisir leur puissance souscrite. Dans ce cas, ils remboursent tous

intégralement le coût de leur connexion au réseau. Le problème est qu’une telle solution n’est pas

optimale à long terme car elle conduirait à un nombre insuffisant d’autoconsommateurs et donc à trop

de capacité réseau.

Ce chapitre théorique a donc montré qu’il était possible d’appliquer la théorie de l’optimum écono-

mique de second rang à la tarification du réseau de distribution lorsque les (auto)consommateurs peuvent

choisir leur puissance souscrite. Si les résultats obtenus ne sont pas forcément évidents et requièrent une

analyse détaillée de la situation, certaines grandes tendances ont pu être dégagées.

Chapitre IV - Comment la production renouvelable impacte les prix de

l’électricité : le cas de l’Allemagne

La production d’électricité à partir de sources d’énergie renouvelable n’est également pas sans consé-

quence sur les prix de gros de l’électricité. En effet, si les coûts d’investissement des EnR peuvent être

relativement importants, le coût marginal de production d’une éolienne ou d’un panneau solaire est

en revanche presque nul. Leur utilisation à court terme est donc prioritaire, dans le respect de l’ordre

de préséance économique (merit order) des moyens de production, i.e. du coût marginal le plus faible

au plus élevé. En situation (idéalisée) de concurrence parfaite, la courbe d’offre sur le marché de gros

respecte cet ordre et est donc constituée des couples volume/coût marginal de production ordonnés

par ordre croissant des coûts marginaux. Ainsi, les productions solaire et éolienne viennent « décaler »

cette courbe vers la droite, ce qui se traduit par une baisse des prix. Ce merit order effect (MOE) a

déjà fait l’objet de nombreuses études, qui ont aussi souvent mis en évidence l’impact de la production

renouvelable sur la volatilité des prix (Ketterer, 2014).

Par ailleurs, les coûts marginaux de production étant généralement de plus en plus élevés pour des

capacités de plus en plus faibles, la courbe d’offre est le plus souvent convexe. Par conséquent, le MOE

est a priori plus important lorsque les prix sont élevés : une baisse de la demande résiduelle correspondant

alors à une baisse plus importante des prix que lorsque ceux-ci sont faibles. Pourtant, il n’existe pas
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d’étude prenant en compte ce phénomène, qui est donc l’objet de cet article.

Données

Afin d’analyser le MOE, il convient d’utiliser des données de prix spot telles que celles du day-ahead

market, qui sont calculés la veille pour le lendemain sur la base des courbes d’offre et de demande

fournies par les participants au marché. Le cas de l’Allemagne est particulièrement intéressant, car la

production renouvelable y est conséquente et son marché spot est relativement liquide. Nous avons donc

décidé de modéliser son prix day-ahead sur les années 2014 et 2015. En raison de la forte saisonnalité

des prix, qui est essentiellement due à la demande, nous utilisons cette dernière dans notre modélisation,

en partant de données fournies par ENTSO-E14. Afin de quantifier l’impact de la production éolienne

et photovoltaïque sur les prix, nous nous basons sur les données des quatre gestionnaires du réseau

de transport d’électricité allemand15, que nous ramenons à la demande. En effet, ces variables ont un

meilleur pouvoir explicatif que leur équivalent « brut », de même que la demande résiduelle (c’est-à-

dire la demande moins la production renouvelable), que nous pouvons donc utiliser. Malgré le risque

de multicollinéarité entre ces variables, nous verrons qu’il n’y a pas de problème de significativité des

coefficients.

Modèle économétrique

Une des difficultés liées à la modélisation des prix de l’électricité est la dépendance temporelle de ceux-ci.

Si une partie est due à leur saisonnalité et est donc capturée par la demande (résiduelle), il convient

néanmoins de garder une continuité dans l’échantillon de données, alors qu’il serait tentant de le diviser

suivant différents niveaux de prix pour étudier le MOE séparément. Afin de palier ce problème, nous

utilisons une transformation non-linéaire du prix à l’aide de la fonction sinus hyperbolique réciproque,

centrée sur la moyenne des prix. Cette fonction a un comportement logarithmique à l’infini, aussi bien

dans les valeurs positives que négatives16, et linéaire entre les deux. Cela permet de limiter le poids

des valeurs extrêmes, comme c’est le cas pour une transformation logarithmique usuelle. La distribution

résultante est bimodale, ce qui la rend particulièrement adaptée à un modèle à changement de régime.

Nous choisissons donc de modéliser ce prix transformé à l’aide d’un modèle à changement de régime

markovien à deux états (ou régimes), tel que développé par Hamilton (1989). Cela permet d’estimer
14European Network of Transmission System Operators for Electricity, ou Réseau européen des gestionnaires de réseau

de transport d’électricité.
1550Hertz, Amprion, TenneT, et TransnetBW.
16Les prix de l’électricité ont la particularité de pouvoir être négatifs, notamment en raison de contraintes de gradient

de production et de la priorité à l’injection des EnR.
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des coefficients et des variances résiduelles différents en fonction des régime, qui sont déterminés auto-

matiquement lors de la procédure d’estimation. Comme indiqué précédemment, les variables explicatives

choisies sont : les parts des productions solaire et éolienne dans la demande, et la demande résiduelle.

La structure choisie est markovienne de rang un, c’est-à-dire que la probabilité d’être dans un état à

un instant donné ne dépend que de l’état précédent. Par ailleurs, on autorise les probabilités de transition

(i.e. les probabilités de changer de régime ou non) à dépendre du temps suivant une loi logistique, dont

les paramètres sont les parts des productions solaire et éolienne dans la demande d’électricité. En effet,

l’utilisation de la demande résiduelle empêchait l’estimation de converger.

Résultats et interprétations

Les deux régimes de prix sont bien identifiés lors de l’estimation, avec des probabilités d’être dans un

régime ou l’autre très proches de 1 ou 0, suivant le cas. Si les coefficients de l’équation de la moyenne ne

sont pas directement interprétables, il est néanmoins possible de calculer les effets marginaux moyens

dans chaque état. On montre ainsi qu’en moyenne, un gigawatt additionnel de production éolienne

diminue le prix spot de 0,77e/MWh lorsque les prix sont faibles, et de 1e/MWh lorsqu’ils sont élevés.

De façon similaire, ces effets marginaux sont de 0,73e/MWh et 0,96e/MWh pour le solaire. Ces résultats

valident donc l’hypothèse d’un MOE croissant avec le niveau des prix.

De plus, l’analyse met en lumière l’impact de la production renouvelable sur les changements de

régime. En effet, en l’absence d’EnR les prix sont relativement proportionnels à la demande, tandis qu’en

leur présence on observe des épisodes de prix faibles lorsque la demande est élevée. Ce phénomène est

quantifié par les coefficients de la régression logistique sur les probabilités de transition, dont on montre

qu’à un coefficient près ils peuvent s’interpréter de façon approximative comme des semi-élasticités pour

la durée résiduelle moyenne des régimes (i.e. le temps moyen restant sachant que l’on est déjà dans le

régime considéré). En particulier, on montre que la production éolienne a un impact bien plus important

que la production solaire sur les changements d’état. Ceci est probablement dû au fait que les prix élevés

ont lieu en matinée et en soirée, lorsque la production solaire est faible (voire nulle en hiver).

Ainsi, la production renouvelable modifie la distribution des prix de manière globale, et pas seulement

à la marge à travers le MOE. En plus de l’effet sur la durée des régimes mentionné ci-dessus, leur

fréquence est également impactée, car la production renouvelable, par nature intermittente, induit des

épisodes de prix bas de plus en plus nombreux. Ceci, en plus du MOE plus important en période de

prix élevés, pénalise la rentabilité des centrales dites de pointe (turbines à combustion et centrales
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au fioul notamment), qui sont nécessaires à la sécurité d’approvisionnement. En ne considérant qu’un

MOE moyen, on risque de sous-estimer le risque financier que font peser les EnR sur ces moyens de

production. En ne considérant que le MOE, on néglige également les variations plus soudaines du prix,

qui peuvent être problématiques pour certaines centrales électriques, notamment si elles sont soumises

à des contraintes de ramping, c’est-à-dire de gradient temporel de production.
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Introduction

The emergency of climate change has pushed several governments to invest more or less massively

in renewable energy sources (RES), convinced that they would be the key to reduce greenhouse gas

emissions, and simultaneously energy dependence towards fossil fuels and the countries producing them.

Whether this strategy is justified ecologically and economically or not has been subject to intense debate,

even among scientific experts. Nevertheless, it is clear that it is an ongoing path for many developed

economies. In the European Union for instance, the last two “energy packages” have set renewable

energy targets for 2020 and 2030, among other goals.

In such countries, the promotion of RES has given rise to a number of subsidies and other regulations.

This has been particularly true in the electricity sector, where off-market support mechanisms using

prices (such as feed-in tariffs - FIT, or premiums - FIP), or quantities (e.g., tradable certificates) have

been widely used for more than a decade. In addition, other forms of regulation exist or are being

discussed. In particular, most RES being “decentralised” (i.e. connected to the distribution instead of the

transmission network17), their interaction with the electricity network is subject to sharp discussions.

More precisely, the question of connection charges and network tariffs are crucial, as both have an

impact on investment choices in decentralised generation (DG) and, in the case of tariffs, on network

use (Brandstätt et al., 2011). For example, network tariffs may incentivise the adoption of decentralised

production units (DPU), even in the absence of subsidies. Indeed, depending on the structure and

level of the tariff components, installing a DPU may become profitable. This is the case of so-called

“prosumers” (i.e. producers-consumers) who install for instance a solar panel on their roof.

Unfortunately, subsidies and other regulations are usually not free of perverse effects, as they may

cause distortions and hence indirect costs in addition to the obviously direct ones (e.g. public spending in

the case of subsidies, network investment costs, etc.), which should be controlled as well. Upstream, i.e.
17The definition of the limit between both networks varies between countries, but electricity distribution is often con-

sidered as covering low to medium/high voltage levels, whereas electricity transport deals with high and very high voltage
levels. For example in France, the limit is set at 50 kV, although the distribution network mainly operates at 20 kV and
below, and the transmission one between 63 and 400 kV.
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on the production side, off-market subsidies create a positive supply shock with (almost) zero marginal

cost. This results in particular in a decrease in electricity wholesale prices on the spot market (Cludius et

al., 2014;Ketterer, 2014), which reduces the profitability of all power plants, including RES themselves.

As a consequence, there may be less investment in other technologies of production such peak power

plants, that are essential to the security of supply. Downstream, the development of DG is likely to lead

to a revenue shortfall for distribution system operators (DSOs) or public utilities, and may also create

cross-subsidies from regular consumers to prosumers, depending on the structure of network tariffs (Eid

et al., 2014). In-between, additional management and reinforcement costs of electricity networks can also

be a consequence of the expansion of DG, although it may also be beneficial to the system (Picciariello

et al., 2015).

A first natural question thus concerns the efficacy and efficiency of such policies, i.e. whether they

effectively reach their objectives, and at what cost. Policy analysis has become a frequent task for

economists and scientists in public administrations as well as a subject of research among scholars. This

positive (or descriptive) approach relies especially on data analysis which often aims at measuring causal

relationships using e.g. econometrics. Such tools can also be used to quantify impacts of public policies

more widely, i.e. effects other than the desired ones, such as spillovers (which can be positive or negative,

such as perverse effects).

Another question relates to what ought to be done in an economy. This approach, which is said to

be normative, can be useful in situations in which no or very little feedback is available, but can apply

to other situations as well. Although it is sometimes based on ideas and opinions, it also uses theoretical

frameworks to describe the problem in a simplified manner in order to draw conclusions. In particular,

mathematics can be used as a powerful tool in this field as they can help derive optimal allocation rules.

This thesis deals with several economic aspects of renewable electricity, from downstream investment

decisions in renewable production to upstream impacts on wholesale markets, and is thus organised in

this order, as detailed below. Although most of the work is empirical and is based econometrics, I also

use theoretical modelling in the study of electricity network tariffs.

In the first chapter, I model the pattern of adoption of individual solar photovoltaic (PV) panels by

residential consumers in France. More precisely, I focus on the impact of national and local subsidies

on the probability and number of quarterly installations from the end of 2008 to mid-2016, for the

33,842 municipalities (cities) served by Enedis, which is the DSO for 95% of the French population and

who provided this unique data of more than a million observations. Due to the very high number of
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zeros, I use the two-part “hurdle” model of Mullahy (1986), which deals with zeros and positive values

separately. I show that whereas the probability of adoption has mainly been the result of FITs, local

subsidies have had a weaker effect on the probability but a stronger one on the number of connection

requests. Building on the common linearisation of the Bass (1969) model, I find that the probability is

positively impacted by the number of past installations. This supports the hypothesis of an “epidemic”

diffusion process, as is frequently observed for new durable goods and for RES in particular. A “stock”

effect, i.e. a decrease in the epidemic effect, is also observed, which is consistent with the observation of

“S” curves (Griliches, 1957) at the national and regional levels. The analysis reveals that an additional

past installation in a city has relatively the same impact on the probability of adoption as a one-point

increase of the internal rate of return. This results calls for more communication on RES projects, which

can be done for example through local ownership.

In chapter II, I assess the effectiveness of the 21 French regional network connection schemes on

the development of wind energy, from 1998 to mid-2016 (1554 obervations over 74 quarters). These

schemes are a relatively unique and original regulation and aim at sharing network reinforcement costs

between RES producers, while providing a regionally differentiated price signal that should incentivise

connections in regions where the network is less constrained. I analyse this phenomenon thanks to a

general nesting spatial (GNS) panel model, that enables to take spatial autocorrelations of variables and

residuals into account as well as spatial interactions of the covariates. Omitting these would result in

biased and inconsistent estimates (Elhorst, 2014). Using the quarterly capacity of connection requests

on Enedis’ network as dependent variable, I show that the schemes have reached their goal in reallocating

connection requests more efficiently, without altering the dynamic. As for solar panels, I find evidence

of an epidemic effect, but no stock effect, due to the relatively early development of wind compared to

PV. In addition, I show that regions are substitutes to one another in the sense that connection requests

in a region impact negatively those in the neighbouring ones.

In the third chapter, I study electricity distribution tariffs in the presence of prosumers. Contrarily

to the other chapters, I address the subject from a theoretical point of view, which enables to provide

rather normative results. Starting from the literature on self-rationing (i.e. capacity subscription by

electricity consumers) initiated by Panzar and Sibley (1978) and Schwarz and Taylor (1987), I introduce

prosumers in a simplified but standard framework, following in particular the endogenous specification of

Gautier et al. (2018). Then, I derive optimal departures from marginal-cost pricing, i.e. so-called second-

best, or Ramsey (1927)-Boiteux (1956) prices. These give indications on how energy and capacity prices

3



Introduction

should be balanced with respect to each other and to marginal costs, and how they are modified by

prosumption. In particular, I show that they are highly dependent on peak and off-peak elasticities, as

well as on the level of prosumers.

In the fourth and last chapter, which is co-authored by Frédéric Lantz and has been published in

Energy Policy (Martin de Lagarde and Lantz, 2018), we analyse the impact of wind and solar productions

on electricity spot prices in Germany, that has invested early and massively in RES. We use the Markov

regime-switching model of Hamilton (1989), which we estimate on hourly price and RES production

data over the years 2014 and 2016. Thanks to an appropriate inverse-hyperbolic sine transformation

(Johnson, 1949) of electricity prices, we show that the merit order effect (i.e. the decrease in electricity

prices) is stronger during high-price regimes than in low-price ones, as expected from the theory on

wholesale electricity markets. Furthermore, we highlight how the distribution of prices can be more

globally affected by renewable production, which is found to have a significant impact on the frequency

and mean duration of high- and low-price regimes.
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Chapter I

Drivers and diffusion of residential

photovoltaics in France
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Abstract

This paper analyses the diffusion of residential solar panels in France and the impact of financial in-
centives on this dynamic. We use a unique database provided by Enedis, the main French DSO, giving
the number of connection requests for 33,842 municipalities and 31 quarters, from the end of 2008 to
mid-2016. Using solar irradiance, panel costs, national feed-in tariffs (FIT) and local subsidies, we
compute an internal rate of return (IRR) per municipality and per quarter. In order to disentangle the
effect of FIT and local subsidies, we compute and IRR with and without the latter. Due to the high
number of zero-installation data points, we adopt a two-stage (“hurdle”) methodology: we first model
the probability of having at least one installation, and then their number (the vast majority being 3-kW
panels). Controlling for individual characteristics of the municipalities, we find that whereas FIT had
a positive and significant impact on the probability of adoption, local subsidies mostly impacted the
number of connection requests. Furthermore, we show that the diffusion process exhibits “epidemic” and
“stock” effects, which are consistent with the “S”-shaped diffusion curve observed at the national and
regional levels. Considering only epidemic effects, we show that an additional past installation in a city
has the same effect as a one-point increase of the IRR, that is, an increase of the odds of installing at
least one solar panel by roughly 10%. Hence, informing households more thoroughly could help promote
renewables at a lower cost. This could be done for example through more implication of citizens at the
local level.
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1 Introduction

In the fight against global warming, many governments have chosen to develop renewable energy sources

(RES). Indeed, these should hopefully help reduce greenhouse gas emissions associated with energy

production, if they can be substituted to fossil fuels. In the electricity sector, renewables have been

developing at high pace in many developed countries, mainly thanks to public subsidies. If these are

often justified by the necessity to reduce CO2 emissions, they also aim at internalising the learning effect

(or “learning-by-doing”), i.e. the decrease in costs associated with the development of the technology.

Indeed, without subsidies, RES would be installed in meager quantities as their cost would be too high

compared to conventional power plants. In the long run, RES supporters expect that they will be

competitive with other means of production.

A rather common way of subsidising electric renewables has been to use feed-in tariffs (FITs), that

guarantee a price ex-ante for each unit of energy (e.g. kilowatt-hour - kWh) produced over the duration of

the contract (usually fifteen to twenty years). This remuneration does not depend on the time at which

the electricity is produced, and hence on the spot market price. As many other European countries

such as Germany (who was a pioneer for RES in Europe), France has had such FIT for over a decade,

before switching to ex-post feed-in premiums (FIPs) in 2015 for most of the new installations1. However,

the cost of these subsidies is sometimes passed on to consumers through taxes in the electricity bill2.

Furthermore, residential solar panels have been subsidised at the national level through other instruments

such as reduced VAT or tax credits, and several regions, departments, or cities have decided to subsidise

them as well. These other subsidies are on the contrary borne by taxpayers.

Distributed3 production units such as small-scale residential photovoltaic (PV) solar panels play an

increasing role in this energy transition. Indeed, in France more than 95% of newly installed renew-

able production is connected to the distribution grid, and household solar panels represent the most

widespread technology in number of installations (but not in capacity). However, the distribution net-

work was originally designed to deliver electricity to end-users, which were almost only consumers. Now

that decentralised producers and “prosumers” (i.e. producing consumers) massively invest in RES, many

reinforcements need to be made at the distribution level in order to adapt to this whole new envi-
1LOI no 2015-992 du 17 août 2015 relative à la transition énergétique pour la croissance verte (2015).
2The electricity bill of a French residential customer is almost equally divided between the cost of energy, the network

tariff, and taxes, according to the French ministry in charge of energy (MTES, 2016). In 2016, support mechanisms for
electric renewables accounted for approximately a quarter of the taxes, according to the French energy regulator (CRE,
2016). Afterwards, the funding of RES have been separated from the taxes on electricity consumption.

3There are several definitions of distributed (or decentralised), but the most widespread is to call distributed all devices
(panels, batteries...) that are connected to the distribution network. In France, the limit between electricity transmission
and distribution is set at 50 kV, but this limit can differ between countries.

8



1. Introduction

ronment. The transmission network also needs to be reinforced as RES generation is variable, which

calls for more global system integration and balancing. The cost of these investments is also borne by

consumers, through the network tariff. It is therefore crucial for both policy makers, distribution and

transmission system operators (DSO and TSO) to understand the dynamic of adoption of RES, and

in particular solar panels, in order to limit unnecessary costs and inefficiencies. This can be done by

conceiving efficient subsidies, network tariffs and electricity pricing methodologies.

Although electric renewables would probably not have emerged quite so swiftly without subsidies,

financial issues are not expected to be the only drivers of renewable development. Indeed, considering

them as relatively new products, their diffusion pattern is also likely to follow an “S”-shaped curve at

the aggregate level, as famously modelled by Bass (1969) for durable consumer goods. Accordingly, the

diffusion process is expected to benefit from an “epidemic” or “contagion” effect (word-of-mouth): the

more the technology spreads, the more it becomes known and accepted, and adopted in return. It might

also exhibit a “stock” effect, i.e. a decrease of the epidemic effect in the long run, due to the finite size of

the market4. However, to the best of our knowledge, the impact of financial incentives (and especially

local ones) on the diffusion of solar panels (or other products) has not yet been studied at a very small

scale.

Thus, we model the demand for solar panels by households, using a unique data set of all connection

requests for small (< 3 kW) solar panels received by Enedis, the DSO for 95% of distributed customers

and more than 95% of installed PV projects in France.

The contribution of this article is then threefold. First, we show that households act in a rather

rational way. Indeed, they tend to maximise their installed capacity, and they strongly react to quarterly

changes in the FIT. Second, using public data for national and local subsidies, solar irradiance and panel

costs, we are able to compute an internal rate of return (IRR) for each city whose distribution network

is managed by Enedis (33,842) over 31 quarters, from the end of 2008 to mid-2016. We use this

variable to measure the impact of financial incentives on the probability and number of installations,

and we disentangle the effect of national and local subsidies. In addition, we control for individual

(municipal) characteristics such as population or the proportion of houses, which also affect the number

of installations in a given city. Therefore, we are able to measure the effect of variables that are often

omitted or averaged in large-scale studies, despite their strong heterogeneity. Third, we are able to

analyse the “intrinsic” diffusion process by adapting the famous Bass (1969) model at a very fine scale,
4A more detailed description of the different diffusion effects can be found in Karshenas and Stoneman (1993), along

with an empirical application to the computer numerically controlled control machine tools market
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using data at the municipality and quarterly levels. This requires taking into account the very important

number of zeros in the data set. We manage to do this using the two-part “hurdle” model of Mullahy

(1986), which we apply to the number of connection requests, as most PV systems have the same nominal

capacity of 3 kW. In the end, we show that an additional past installation and a one-percentage point

increase of the IRR have a similar effect, which is an increase the odds of having a connection request by

almost 10%. In addition, the IRR also has a positive effect on the number of installed panels in a given

city during a quarter. This result calls for more “advertising” on RES at the local level, as information is

essential in a diffusion process. Given the very high value of the observed subsidies and IRR, increased

information is likely to help promote renewables at a lower cost. This may be encouraged by a better

implication of local residents in RES projects, for example through shared ownership.

The remainder of the paper is organised as follows. Section 2 first presents a literature review on

the subject. In section 3, we describe the data on connection requests, before presenting the rest of the

data and the computation of the IRR in section 4. In section 5, we detail our modelling strategy of the

diffusion process and the hurdle model. The results are then shown and discussed in section 6. Section

7 concludes and presents future research avenues.

2 Literature review

Many articles have analysed the development of RES in several countries or regions. Although support

schemes have been studied and compared theoretically (Marschinski and Quirion, 2014; Mir-Artigues

and Río, 2014; Boomsma and Linnerud, 2015; Bauner and Crago, 2015) and empirically (Kilinc-Ata,

2016; Aguirre and Ibikunle, 2014), we will focus on empirical studies in the rest of the review. In

particular, the impact of support schemes on the development of RES has been widely discussed: feed-

in tariffs, as one of the most widespread support schemes, but other mechanisms such as renewable

portfolio standards, green certificates or carbon taxes have also been analysed. Most studies find a

positive and significant effect of these on the development of solar PV, whilst there is less evidence

concerning wind power. For example, Zhang et al. (2011) investigate the impact of regional subsidies on

the diffusion of solar PV in Japan using panel data at the municipal level. Their results indicate that

regional policies tend to promote the adoption of solar panels, while installation costs have a negative

impact, and housing investment and environmental awareness a positive one. Jenner et al. (2013) use

panel data in 26 European countries for the period 1992-2008 and construct a return-on-investment

indicator for FIT strength in order to take into account in particular variability in tariff level and
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contact duration between countries. They conclude that FITs have driven solar PV but find no evidence

concerning wind energy, and also argue that the influence of FITs highly depends on several factors such

as production costs or electricity prices. Dijkgraaf et al. (2018) perform a similar analysis in 30 OECD

countries for the period 1990-2011 and find a positive effect of FITs on the adoption of solar panels

per capita. They also show that some features of the contract, such as the duration of the absence

or presence of a cap have an impact on the adoption as well. Many authors have also studied other

factors such as political ones (Cadoret and Padovano, 2016; Strunz et al., 2016), location, socio-economic

drivers, local subsidies and spatial spillovers (Schmidt et al., 2013; Ek et al., 2013; Müller and Rode,

2013; Graziano and Gillingham, 2015; Schaffer and Brun, 2015; Balta-Ozkan et al., 2015; Schaffer and

Düvelmeyer, 2016; Carfora et al., 2017; Allan and McIntyre, 2017).

Furthermore, several authors have modelled the pattern of adoption of electric renewables using “S-

curves”, as first introduced by Griliches (1957): see for example Schilling and Esmundo (2009) for solar

PV. These curves can also be fitted using a diffusion model in the line of Bass (1969), such as in the

work of Guidolin and Mortarino (2010). In addition, several diffusion models have been developed to

incorporate external influence such as price or advertising. A review of such models is provided by Radas

(2006). However, these are often highly non-linear, such as the Generalised Bass Model (Bass et al.,

1994), which makes them less flexible and complicates their estimation. As a consequence, some authors

have used linear(ised) diffusion models when studying RES development. For example, Liu and Wei

(2016) derive a linear regression equation from a logistic growth function, following the work of Benthem

et al. (2008) for solar PV. They show that the development of wind power in China has been driven by

financial incentives as well as by epidemic effects, using panel data from clean development mechanism

projects in China. Similarly, using data at the zip code and street levels and a linear probability panel

model, Bollinger and Gillingham (2012) show that diffusion has had a strong impact on PV adoption

in California by the means of peer effects.

A drawback of these studies, and of diffusion models in general, is that they require relatively

“smooth” data to be fit, as they predict a strictly positive number of sales (except in the long run: when

the market is fully reached, sales drop to zero). This issue challenges their applicability to low-level data

such as ours, where the number of installations is very low and often equal to zero. Indeed, we want

to study the impact of both national and local subsidies, at a quarterly time step. Therefore, our data

contains many zeros (it is said to be “zero-inflated”). This peculiarity automatically rules out the use

of a linear regression model, which would predict many negative values, and in particular not enough

11
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zeros. Fortunately, there exist several possibilities to deal with this kind of data, and the interested

reader can have a look for example at Min and Agresti (2002) for a quick survey. Such models can be

decomposed in several categories, depending on the data being (semi-)continuous or discrete, on the

model proposing a single underlying mechanism for the creation of zeros or two separate mechanisms

for zero and non-zero values, on the type of distribution (single, compound, finite mixture...), etc.

One of the first and most famous of these is the Tobit model (Tobin, 1958), which assumes a unique

Gaussian data generating process for semi-continuous data. It has been used for example by Hitaj

(2013) to analyse the drivers of wind development in the United States. However, the Tobit model

is more adapted to censored data, as the same process determines whether the dependent variable is

zero or is value when it is positive. Furthermore, it assumes (semi-)continuous data, which would not

be adapted to small-scale PV projects. Indeed, we we will see in section 3 why using count data (i.e.

the number of installations) is more adequate. For instance, Kwan (2012) use a zero-inflated negative

binomial (ZINB) model to analyse the number of PV installations at the ZIP code level in the United

States. Although this enables to model accurately to large number of zeros, the interpretation can be

difficult, as zeros are produced twice: first by a binomial regression, and then by a count model. Thus,

De Groote et al. (2016) prefer using a Poisson regression, although their data is zero-inflated, but not

as much as ours. In our case, we apply the two-part “hurdle” model of Mullahy (1986) to the number of

installations. Unlike zero-inflated models, hurdle models deal separately with zeros and non-zero values,

hence leading to an easier interpretation. We will further motivate this choice in section 5, as it is due

to some characteristics of the data that will be presented in the following section.

3 Data

3.1 Connection requests

In order to study the dynamic of household PV adoptions, we use a unique database provided by Enedis,

which is the distribution system operator (DSO) for 95% of French clients. We have received from

Enedis the register of all received connection requests for PV projects until mid-20165. We restricted

ourselves to the small-scale (< 3 kW) segment, as it mostly corresponds to connection requests from

households. It also has the advantage of having benefited from relatively stable subsidies, compared

to other segments. Indeed, other categories have seen their capacity boundaries changed several times

and tariffs have sometimes been dependent on the type of building or building integration, for which
5In France, all generating capacity under 17 MW must be connected to the distribution network.
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we have no information. In particular, this segment was the only one that was not concerned by the

three-month moratorium on feed-in tariffs from December 9 2010 to March 9 2011.

The original data being at the municipal and daily levels, we had to aggregate it in order to avoid

having too many zeros (we still have a lot of zeros at the end of the aggregation process). Due to

the high heterogeneity between municipalities in terms of solar irradiance, local subsidies, but also

population characteristics, we find preferable to keep the data at this scale. Unfortunately, we are not

able to consider household heterogeneity within a given city, due to the absence of personal data. In

particular, the data set has been anonymised. Hence, our “individuals” will be municipalities rather than

households. In the time range, quarterly aggregation appears as a rather natural choice for small-scale

solar PV, as FITs have been changing quarterly since 2011.

Thus, we end up with 31 quarters of observations for 33,842 municipalities, which represents 1,049,102

observations, only 62,909 (6%) of which are non-zeros, as can be seen from table I.1. Then, most of

non-zero values are ones (83%). Mid-2016, there are still 13,011 municipalities (38%) with no domestic

solar panel at all. Table I.2 below displays some descriptive statistics for the demand of connection

requests, in count and in capacity (kW), as well as for the cumulative data for the last quarter of the

sample. Due to the very high number of zeros, we present statistics for the non-truncated data and for

the strictly positive one, as these will be modelled separately. These statistics show that the demand

and count data are overdispersed (i.e. the variance is bigger than the mean), while the strictly positive

count data is underdispersed. However, although most of the time there is only one connection request,

this number can rise up to 18. Interestingly, this maximum happened in Q4 2010 in Calais, which is

one of the northernmost cities in France, and in 2011 Q1 in Niort (centre-west).

Number of requests 0 1 2 3 4 5 6 7 8
Occurrences 986193 51948 7828 1930 608 274 119 62 55

Number of requests 9 10 11 13 12 14 16 15 18
Occurrences 26 22 11 11 5 3 3 2 2

Table I.1 – Occurrences of the number of connection requests

To get an idea of the diffusion process and its heterogeneity, figures I.7 and I.8 in appendix A and

B show the quarterly demand and cumulative demand for PV projects per region6. These graphs show

that the dynamic is already highly heterogeneous between regions, but the "S"-shaped curve can still
6Although there has been a change in the number of regions in January 2016 (from 20 to 12 in metropolitan France,

Corsica excluded - Enedis is not the DSO there), we have decided to keep the initial regions as there have been several
regional subsidies before this reform.
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Statistic N Mean St. Dev. Min Median Max

Demand (kW) 1,049,102 0.213 0.999 0 0 51.6

Demand >0 (kW) 62,909 3.557 2.178 0.100 3 51.6

Cumulative demand (2016 Q2) 33,842 6.611 12.605 0 3 456

Count 1,049,102 0.076 0.356 0 0 18

Count >0 62,909 1.267 0.774 1 1 18

Cumulative count (2016 Q2) 33,842 2.356 4.516 0 1 162

Table I.2 – Descriptive statistics of connection requests

be observed for all of them. It would also be observed at the national scale, but not at the scale of most

municipalities, as there are usually very few installations, or none at all. Finally, the left map in figure

I.1 shows the regional cumulative capacity at the end of June 2016, while the right map presents the

mean annual optimal irradiance (i.e. for the best possible angle). Quite interestingly, these two maps

seem almost uncorrelated, or even negatively correlated. For example, Nord-Pas-de-Calais, which is the

northernmost region, and Lorraine, a northeastern region, have very high installed capacities compared

to their received irradiance.

Figure I.1 – Left: Regional cumulative PV capacity (kW) of projects of less than 3 kW, mid-2016.
Right: Annual optimal irradiance (source: PVGIS, JRC).

3.2 Analysis of households behaviour

When studying the effect of financial incentives on the adoption of solar panels by households, we hope

to find that these latter are rather rational, in that they react positively to subsidies. Without any

modelling, the raw data can already give some confirmation that the behaviour of the households is

14



3. Data

Figure I.2 – Histogram of individual capacity de-
mands (kW)
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Figure I.3 – Average capacity per connection re-
quest (kW)

indeed quite rational.

First, assuming that a PV project is profitable for the investor, and considering the fact that FITs

are designed by segments of power, agents should maximise their installed capacity while staying under

the tariff change power threshold. We expect only physical constraints such as the available area on the

roof to limit the installed capacity. As a matter of fact, most roofs are large enough for 3-kW panels

(approximately 10 m2 per kW are required). Figure I.2 shows that most installations are indeed 3-kW

ones. Furthermore, figure I.3 illustrates that the average capacity per connection request has slightly

increased towards 3 kW over time. This could be the sign of a “learning” process, of more confidence of

investors, or maybe of a standardisation of panels. Besides, this characteristic of the installations will

allow us to use the number of installations rather than the demand in kW, as we will explain in section

5.

Another feature of FITs for solar PV is that they have been revised quarterly since the end of the

moratorium on March 10, 2011 (which coincides with the first observed peak in figure I.4)7. Indeed, at

the end of each quarter the tariff is adjusted by a coefficient decreasing with the accumulated capacity.

As a consequence, we expect connection requests to rise at the end of each quarter, in what we could

call a “deadline effect”, as agents would rather hurry in order to benefit from the highest possible FIT

before it decreases. Figure I.4 shows that this is indeed the case, as the spikes correspond to the end of

each quarter. Thus, it is preferable that the minimum temporal aggregation be at least at the quarterly

level, to avoid the difficulty of modelling this behaviour. This also comforts us in thinking that agents

are price-sensitive, hence legitimating the question of quantifying the role of incentives in the diffusion

process.
7There has also been a change at the beginning of February 2013, with a huge decrease in the number of FIT categories,

but it did not concern small PV installations.
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Figure I.4 – Illustration of the “deadline effect”

4 Other data

In order to analyse the diffusion of residential PV, we need data on costs and subsidies for such instal-

lations, but also control variables, as the number of installations is likely to depend on socio-economic

factors.

4.1 Costs and feed-in tariffs

While FIT data is publicly published on official websites, data for system costs (panels, power inverter8,

installation...) can be more difficult to find. Given the heterogeneity of sources, we have chosen annual

data9 provided by the French Environment and Energy Management Agency (ADEME). Figure I.5

below shows the evolution of FITs and gross system costs from the end of 2008 to mid-2016. The

graph shows that despite an overall decreasing trend for both costs and FITs, the latter have remained

relatively constant until the end of 2010, whilst costs were declining. This explains at least partly the

“bubble” observed at the end of 2010, which led to the three-month moratorium, and later an important

decrease and a quarterly revision of FITs.

In addition to the FIT, the State has also decided to subsidise RES in several ways. Indeed, some

installations entitle their owner to tax credits under certain conditions (e.g. income, type of installation,

etc.). Also, VAT is reduced to 10% (instead of 20%) for solar panels, and to 5% for projects eligible to tax

credits. Finally, the National agency for housing (Agence national de l’habitat) can also subsidise RES

installations in case of renovation works for low-income households. Unfortunately, we are not able to

determine whether projects were eligible to some of these subsidies or not, so we will not consider them.

However, we believe they have had a smaller impact on the diffusion than FITs and local subsidies.
8Electric device used to change direct current (DC) produced by the panel, to alternative current (AC).
9In order to get quarterly data, we used linear interpolation.

16



4. Other data

20
08

Q
4

20
09

Q
1

20
09

Q
2

20
09

Q
3

20
09

Q
4

20
10

Q
1

20
10

Q
2

20
10

Q
3

20
10

Q
4

20
11

Q
1

20
11

Q
2

20
11

Q
3

20
11

Q
4

20
12

Q
1

20
12

Q
2

20
12

Q
3

20
12

Q
4

20
13

Q
1

20
13

Q
2

20
13

Q
3

20
13

Q
4

20
14

Q
1

20
14

Q
2

20
14

Q
3

20
14

Q
4

20
15

Q
1

20
15

Q
2

20
15

Q
3

20
15

Q
4

20
16

Q
1

20
16

Q
20

10

20

30

40

50

60

70
F
IT

(c
e
/k
W

h)

0

2

4

6

8

Sy
st
em

co
st

(e
/W

)

Feed-in tariff
System cost

Figure I.5 – Evolution of feed-in tariffs and system costs for small-scale PV (< 3 kW). Sources: ADEME
(costs) and Photovoltaique.info (tariffs).

4.2 Local subsidies

As already mentioned, many local entities have chosen to subsidise RES, and in particular small-scale

PV, in addition to the existing national subsidies. In France, the main sub-national administrative

entities are the 21 regions, 94 departments and roughly 36,000 communes (municipalities) of Metropoli-

tan France (Corsica excluded). Several of them have decided to subsidise RES in their various ways,

for example through a fixed or proportional subsidy for the entire system or for the installation only

(usually with a certified installer only); a subsidy per kilowatt-peak (sometimes with an upper limit); a

premium on the FIT for a few years; etc. Due to the heterogeneity of local subsidies, and as most of

panels have a capacity of 3 kW, we consider for simplicity reasons that all projects have this capacity,

so that we can compare them. A summary of these subsidies is displayed in table I.3 below.

As can be seen from the table, positive regional subsidies concern 17.5% of all observations, with

relatively high mean and maximum values (recall that the price of 3-kW modules have varied between

roughly 24,000e and 7,300e). Subsidies at the department and municipality levels concern much less

observations (3.4% and 0.66%, respectively), but attained values are rather high as well.
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Entity N. obs. N. obs. Mean St. Dev. Min Max
(entity level) (municipality level)

Regions 651 1,049,102 368 970 0 6,000

Regions (>0) 120 183,578 1,998 1,364 300 6,000

Departments 2,914 1,049,102 53.9 384 0 6,396

Departments (>0) 97 36,016 1,619 1,384 300 6,396

Municipalities 1,049,102 1,049,102 5.78 92.1 0 3,690

Municipalities (>0) 6,935 6,935 874 723 75 3,690

Table I.3 – Descriptive statistics of local subsidies (in euros) for a 3-kW PV project, from 2008 Q1 to
2016 Q2, for several administrative levels.

4.3 Internal rate of return

Motivation

To analyse the influence of subsidies on the demand for solar panels, we need in fact to assess the

profitability of PV projects, taking into account costs and subsidies in this profitability measure. Using

these directly as covariates would be inappropriate: first, they are likely to evolve simultaneously over

time (see figure I.5) and hence be somewhat correlated; second, they would not entirely capture the

profitability of a project, as they would ignore key local factors such as sun irradiation. The latter could

be used as a proxy for profitability, but only in a cross-section analysis, as in Davidson et al. (2014).

Knowing these local factors, an alternative would be to use the net present value (NPV), as in Liu

and Wei (2016). For a given FIT (possibly enhanced by a premium), discount rate i, investment cost

I (possibly reduced through various subsidies) and annual electricity output q, the NPV is defined as

follow10:

NPV = −I +

T∑
t=1

FIT× q
(1 + i)t

(I.1)

Despite its simplicity of use, we think that a NPV can be difficult to interpret, in particular for

people who are not familiar with the currency (whereas the euro is relatively well-known, the use of the

same methodology elsewhere could lead to a more difficult interpretation for foreigners). In addition,

its computation requires making an assumption regarding the discount rate. Other authors have used a

return-on-investment (ROI) variable, but then an discount rate is either needed (as in Dharshing, 2017),

or ignored (as in Jenner et al., 2013). Therefore, we find it more convenient to compute the rate which
10The choice of having the payments made at the end of each year is arbitrary, and another choice might be more

appropriate, but would have a rather small impact on the computed value.
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sets the NPV to zero, namely the internal rate of return (IRR). Furthermore, the IRR enables to compare

projects independently of the initial investment, while higher investments will give higher NPVs for the

same IRR. On that account, we believe that it is a more adequate tool to make an investment decision.

Finally, note that some authors use several profitability metrics such as NPV, IRR, payback period or

discounted cash flows (e.g. Campoccia et al., 2014; De Boeck et al., 2016; Dusonchet and Telaretti,

2015; Dusonchet and Telaretti, 2010), but these studies aim more at comparing policy instruments in

different countries than explaining the installation rates quantitatively.

Assumptions

In order to compute the IRR for each city, we need to make several assumptions concerning the charac-

teristics of the PV systems. First of all, the efficiency of a solar panel decreases with age. In practice,

solar panel manufacturers guarantee a minimum performance, usually 90% for the 10 first years, and

80% up to 25 years (Energy Informative, 2013). This is relatively consistent with an annual decrease of

1% (assumption H1), which yields 83% efficiency on the 20th year and 79% on the 25th. This assumption

decreases the IRR by roughly 1 percentage point with respect to a constant efficiency.

In addition, we have to make assumptions concerning operation and maintenance (O&M) costs.

Whereas panels are usually guaranteed for a certain duration (e.g. 25 years) and do not necessitate any

particular maintenance, the inverter usually needs to be replaced every 8-10 years, with a cost varying

between 0.3e/kW and 0.6e/kW, i.e. between 900e and 1800e for a 3-kW panel (photovoltaique.info,

2018). For simplicity, we consider an additional cost of 1000eafter 10 years, but this only decreases

the IRR by 0.3 percentage point. Furthermore, the producer has to pay the distribution network

for managing its production contract and for the metering of the electricity production. These cost

respectively 14.88e and 19.8e (plus VAT) in 2018 (photovoltaique.info, 2018). The latter being very

small, we neglect them for simplicity, and only consider the cost 1000e after ten years (H2).

In France, FIT contracts for small-scale PV have a duration of 20 years. However, solar panels

usually have a longer lifetime, so that their production becomes a substitute to the electricity sold by

the retailer. The profitability of a panel which is no longer subsidised by FIT will depend on the future

retail prices and cost of inverter (if it needs to be replaced). It will also depend on how synchronised

production and consumption are. It may also be possible to sell the produced output on the wholesale

market, for example via an aggregator. Given these uncertainties, we assume that the solar panels have

no residual value at the end of the contract (H3). This probably underestimates their profitability, but

only moderately as it concerns a potential benefit after 20 years.
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Then, in order to compute the annual production q of a solar panel, we have to make additional

hypotheses. Indeed, this output depends on several factors, such as solar irradiance, panel efficiency

and orientation, temperature, etc. Solar irradiance (or irradiation) is the power per unit area which is

received from the sun by a surface at a particular location. It can be given for example in kW/m2 or

in kWh/m2.year, depending on the use we make of it. Although the orientation of the panel changes

its received irradiance, we do not have this information and thus we use irradiance data for horizontal

panels (H4). This assumption may lead to an underestimation of the IRR, as panels are usually set

on the “best” (i.e. south, if possible) side of an inclined roof, or face the optimal direction when on a

horizontal roof. In some cases however it could lead to an overestimation of the IRR, if the orientation

is constrained, or if the panel is partly shaded by trees.t

We downloaded irradiance data from the Photovoltaic Geographical Information System (PVGIS)

of the Joint Research Centre (JRC) the European Commission11. It consists in the yearly sum of global

irradiance (in kWh/m2.year) on a horizontal surface, averaged over ten years (1981-1990), with a grid

cell size of 1000 meters, for all Europe. Using a Geographical Information System software, we managed

to average this solar irradiation for each French municipality.

Knowing the irradiance, the efficiency characterises how much of the received energy is converted to

electricity by the panel. For simplicity, we assume that panels have an efficiency of 15% (H5), which is

a frequently encountered value (construction21.org, 2012; solarpanelsphotovoltaic.net, 2014). Another

characteristic of the panel is its size. As a matter of fact, the power produced by a panel depends on the

received irradiance, on its efficiency and on its area. The output is then just a product of these three

variables. However, solar panels have a nominal power output (or nameplate capacity), sometimes given

in kilowatt-peak (kWp), which corresponds to the maximum measured power output of the panel under

some Standard Test Conditions (STC)12. The ratio between the nominal and the real power output is

the well-known capacity factor. The nameplate capacity is the information requested by the DSO to

anyone asking to connect its panel to the grid, and so it is what we have in our data. To simplify the

reasoning, we assume that the area of all solar panels is 10 m2/kWp (H6), which is also a common value

(Engie, 2017).

Unfortunately, we do not have precise information on the characteristics of the installed panels,

apart from their nameplate capacity. Hence, H4-H6 may lead to an under- or overestimation of the

IRR, depending on the situation, so that their impact on the IRR is ambiguous. In any case, we think
11Data available at http://re.jrc.ec.europa.eu/pvgis/download/solar_radiation_classic_laea_download.html
12STCs are usually defined by a particular irradiance, temperature, and light spectrum.
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that our assumptions (summarised in table I.4 below) will not change the results dramatically, and that

the heterogeneity of the IRR across municipalities will still be captured.

H1 H2 H3 H4 H5 H6
Category Efficiency O&M Residual Panel Initial Panel

loss costs value orientation efficiency area
Assumption 1% 1000e none horizontal 15% 10m2/kWp

per year 11th year

Table I.4 – Assumptions made for the computation of the IRR

Given assumptions H1-H6, we are able to compute an IRR per municipality and per quarter, with and

without local subsidies. Although the values are not to be taken with certainty given these assumptions,

we believe they are still quite reasonable. In any case, they are a good indicator of the heterogeneity of

the profitability of a PV project, and we have discussed how they may influence the IRR. Table I.5 below

presents some descriptive statistics of the computed IRR, with and without local subsidies. Although

on average their impact may seem rather limited because they have not always been in place, figure I.6

illustrates their effect in the fourth quarter of 2010. We clearly see on these maps that local subsidies

can strongly influence the IRR, which can become as high in northern regions as in southern ones.

Statistic Mean St. Dev. Min Q1 Median Q3 Max

Without local subsidies 14.273 2.665 6.339 12.524 14.111 16.094 24.916

With local subsidies 14.725 2.560 6.362 12.893 14.493 16.489 24.925

Table I.5 – Descriptive statistics of the computed IRR

4.4 Cities characteristics

In order to control for the heterogeneity of the municipalities, we use publicly available data on socioe-

conomic characteristics. These are available at an infra-municipal level called IRIS13, and are provided

by the National Institute of Statistics and Economic Studies (INSEE - Institut national de la statistique

et des études économiques). Unfortunately, this data is not available for the most recent years, so we

will only use the 2013 data set to control for these characteristics. This will de facto prevent us from

using individual fixed effects in our model, but with only 62,909 positive counts for 33,842 cities, the

risk of overfitting the data with as many fixed effects would be relatively high. In the end, we believe

that most of the heterogeneity can be captured by the chosen explanatory variables. The 2013 IRIS
13Îlots Regroupés pour l’Information Statistique, or “aggregated units for statistical information”
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Figure I.6 – Left: average IRR without local subsidies for a project of less than 3 kW, Q4 2010.
Right: average IRR with local subsidies for a project of less than 3 kW, Q4 2010.

data set consists of more than a hundred variables, but we will only need a few of them. Indeed, we

have tested several specifications using several variables or combinations of them, but we are only going

to present the ones that we finally kept in the model.

Ceteris paribus, the number of installations in a city should be proportional to the number of available

sites, i.e. essentially the number houses and residential buildings roofs. Unfortunately, this data is not

publicly available, but we can use proxies. To this end, we use the number of dwellings, which does not

differentiate between apartments and houses and that can hence capture installations on houses and on

buildings. To add another degree of control, we use the proportion of houses (the number of houses

would be too collinear with the number of dwellings). We also tried using only the number of houses,

but the fit was not as good.

Statistic Mean St. Dev. Min Median Max

Number of dwellings 918 4,566 0 234 273,699
Number of primary residences 760 3,956 0 179 244,352
Proportion of primary residences 0.784 0.158 0.000 0.831 1.000
Number of houses 512 1,137 0 219 46,443
Proportion of houses 0.902 0.144 0.003 0.955 1.000

Table I.6 – Descriptive statistics of the control variables

Additionally, We use the proportion of primary residences, which we expect to have a positive effect

for at least four reasons (that are debatable). First, we think that people are more likely to get more

information about local subsidies where they live than where they go on vacation. Second, even though
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self-consumption (or “prosumption”) is still little developed in France, some people might value the fact

of consuming their own electricity, or at least electricity produced locally. As a consequence, it may

make more sense for people to invest in a solar panel where they consume the most, i.e. their primary

residence. Third, we could argue that people are more likely to invest in something that brings value

to their principal residence rather than to a secondary one. Finally, we can expect people to want to

be able to be present if there is a problem with the installation. Some descriptive statistics for these

variables are shown in table I.6.

5 Modelling strategy

5.1 Diffusion

The original work of Bass (1969) models the diffusion of innovations by considering that purchases (or

sales) S of a new durable good come from “innovators”, in fixed proportion p in the remaining market

of size m−Y (m is the market size and Y is the stock of cumulative sales), and from “imitators”, whose

number is a fixed proportion q of the attained market share Y/m. In continuous time, the model then

writes:

∀t > 0 S(t) = Max
(

0, p(m− Y (t)) + q
Y (t)

m
(m− Y (t)) = pm+ (q − p)Y (t)− q

m
[Y (t)]2

)
(I.2)

In discrete time, assuming S > 0 for the sake of simplicity, we obtain:

∀t ∈ N\{0} St = a+ bYt−1 + cY 2
t−1 (I.3)

where it is possible to identify coefficients a, b and c to m, p and q:

m =
−b±

√
b2 − 4ca

2c
, p =

a

m
, q = −mc (I.4)

In practice, b and c must be of opposite sign in order to have m > 0, and more precisely we expect

to have b > 0 (epidemic effect) and c < 0 (stock effect): the influence of past sales is positive and

decreasing with time. Equation I.3 has the advantage of being linear, while equation I.2 can be solved

analytically and estimated by non-linear least squares. As we will use a non-linear model for which

convergence can be difficult to achieve, we will add the Yt−1 and Y 2
t−1 terms of the linearised equation

I.3 to our set of covariates and keep a linear combination of covariates.
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Although the Bass (1969) model does not originally included additional covariates, we keep the

assumption of “additivity” of the terms in the equation, in order to keep it linear. Such a modelling

of RES diffusion has been done for example by Bollinger and Gillingham (2012) (only for the epidemic

effect).

5.2 Model

As seen before, we are dealing with “zero-inflated” data, which requires the use of an appropriate model

to take into account the non-negativity and the important proportion of zeros in the data. In our case,

as almost all non-negative requests are for projects of 3 kW, it would be rather difficult to directly use

demand as dependent variable, because its distribution is multimodal, with peaks at 3 kW, 6 kW, etc.

For this reason, we prefer to model instead the number of connection requests as zero-inflated count

data rather than demand as semi-continuous data. Furthermore, the observed zeros are “real” ones, i.e.

are the result of a choice of non-installation, or of non-awareness of the technology (which is linked to

the idea of diffusion and adoption of the technology). For this reason, we find it more realistic to model

separately the number of zeros.

Hence, we use the “hurdle” model of Mullahy (1986), which consists in two parts: a discrete choice

regression first models the proportion of zeros based on the distribution fzero with covariates z; the

proportion of strictly positive values is then estimated using a truncated count model. The non-truncated

density probability of the count model is fcount and depends on covariates x, which need not be the

same as z. Hence, the number of installation requests in municipality i during quarter t, Sit, follows the

following “hurdle” distribution:

fhurdle(Sit|zit, xit) =


fzero(0|zit) if Sit = 0

(1− fzero(0|zit))
fcount(Sit|xit)

1− fcount(0|xit)
if Sit > 0

(I.5)

We choose a logistic distribution for the first part of the model, and a negative binomial for the

second part. The choice of a logit specification instead of e.g. a probit one is more consistent with the

presence of heavy tails (recall that we have a large amount of zeros), and leads to more interpretable

coefficients (logarithm of odds ratios). Furthermore, the results of a discrete choice regression are usually

little affected by the choice of the distribution. The negative binomial distribution is on the other hand

a common generalisation of the Poisson distribution which gives more flexibility as it allows the variance

to be different from the mean.
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Hence, we first assume that Sit > 0 with probability pit = P[Sit > 0|zit] such that:

logit(pit) = ln

(
pit

1− pit

)
= z′itγ (I.6)

and then that fcount(Sit|xit) NegBin(θ, µit), such that:


fcount(Sit|xit) =

Γ(Sit + θ)

Sit!Γ(θ)

(
θ

θ + µit

)θ ( µit
θ + µit

)Sit
ln(µit) = x′itβ

(I.7)

where Γ is the gamma function. Concerning the covariates, we used for both parts of the model:

• the IRR in the absence of local subsidies;

• ∆IRR, i.e. the difference between the IRR with and without local subsidies;

• the logarithm of the number of dwellings;

• the proportion of primary residences;

• the proportion of houses.

What should really drive the investment decision of a rational agent is the difference between the IRR

and a reference rate of return, for example a risk-free one. However, this is captured by the constant.

The use of both IRR and ∆IRR enables to disentangle the effect of national and local subsidies. The

characteristics of the cities have been chosen in order to have the lowest information criterion.

For the logistic regression, we also added the diffusion variables Yt−1 and Y 2
t−1, to take into account

epidemic and stock effects. This is similar to El Zarwi et al. (2017), who use the cumulative number

of adopters at the previous period and other explanatory variables to study the diffusion of new trans-

portation services, using a discrete choice model. However their model differs from ours in that they

use three latent classes, namely “imitators”, “innovators” and “non-adopters”, and use the cumulative

number of adopters as a covariate only for the first class, which is consistent with the idea of contagion.

Note that we did not use these variables in the count model, as the estimation produces NA coefficients

for these variables.

The negative binomial distribution has the advantage of generalising the Poisson distribution for over-

dispersed data, while keeping the same interpretation for the coefficients in case of a log link. Indeed,

the conditional mean is then equal to the distribution parameter µ, whose logarithmic dependence with
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respect to the covariates enables to interpret the coefficients as semi-elasticities (if the covariates are in

level) or elasticities (if the covariates are in logarithmic form). Then, whereas the variance of the Poisson

distribution is also equal to µ, it is equal to µ(1 + µ/θ) > µ for the negative binomial distribution.

In our case, the non-truncated count data is over-dispersed (as it is usually the case with zero-

inflated data), while the strictly positive count data is under-dispersed. Concerning the zero-truncated

distributions, the Poisson distribution leads to under-dispersion while the negative binomial can give

both under and over-dispersion, depending on the value of θ, which makes it more flexible and adapted to

our case. Although the interpretation of the coefficients is not as straightforward as in the non-truncated

case, we will show in the next section how we can still interpret them in our case.

Finally, the use of the logarithm of the number of housing units is justified by the fact that we

would expect the number of installations to be rather proportional to the number of dwellings. In a

non-truncated model with log link, this is called an exposure variable, whose logarithm is used as an

offset, i.e. a covariate with coefficient (elasticity) equal to one. In a zero-truncated negative binomial

model however, the expected count is not equal to µ anymore, so that the coefficient of the exposure

variable should not be constrained to one.

6 Results and interpretation

Equations I.6 and I.7 are estimated for the whole sample using the R package pscl developed by Jackman

(2017). We kept the model with the highest Akaike information criterion (AIC), but the results are robust

when changing control variables for others (e.g. number of houses instead of number of dwellings).

6.1 Binomial model (hurdle part)

The estimation results of the hurdle part are presented in table I.7 below. We see that all coefficients are

significant and have the expected sign. Although they cannot be interpreted directly, it is well known

that in a logistic regression the exponential of a coefficient can be interpreted as an odds ratio:

eγj = ORj =

P[S > 0|xj + 1]

1− P[S > 0|xj + 1]

P[S > 0|xj ]
1− P[S > 0|xj ]

(I.8)

Hence, table I.8 shows the exponential of the coefficients (we have omitted the intercept). From

this, we can determine that a one-point increase of the IRR (without local subsidies) increases the
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odd of having at least one installation by 10%. The mean odds of installation would then increase

from 6/94 ' 0.064 on average to 0.070, i.e. there would be 93.5% of zeros instead of 94%. This is not

negligible, as it represents an 8% increase of the probability of adoption. However, we see that the

additional profitability due to local subsidies has a much more moderate (and slightly less significant)

impact (seven times lower). This result show that the probability of adoption has been mainly driven

by national subsidies, and less by local ones.

Furthermore, we observe epidemic and stock effects. In particular, at the first order (i.e. considering

only Yt−1) we find that an additional installation in the past periods increases the chance of adoption by

9.1%, which is almost the same impact as an additional point of IRR. This highlights the importance of

word-of-mouth in the diffusion mechanism. Also, although residential solar panels are not widespread in

France yet, we do find a stock effect, i.e. a decrease in the epidemic effect with the number of installations.

This effect is very small and plays a minor role in the diffusion at this stage, but it is likely to become

more important in the future. Finally, the proportions of primary residences and houses have a much

stronger influence. However, recall that these are only control variables, on which public policies have

little to no impact in the short run.

Estimate Std. Error z value p-value
(Intercept) -12.0227 0.0706 -170.38 < 2e-16

IRR 0.0957 0.0018 53.90 < 2e-16
∆IRR 0.0142 0.0046 3.04 0.0023

ln(Dwellings) 0.7320 0.0053 137.08 < 2e-16
Proportion of primary residences 1.7260 0.0355 48.65 < 2e-16

Proportion of houses 2.1164 0.0362 58.44 < 2e-16
Yt−1 0.0874 0.0016 53.53 < 2e-16
Y 2
t−1 -0.0012 0.0000 -29.03 < 2e-16

Table I.7 – Estimation results of the hurdle part

IRR ∆IRR ln(Dwellings) Prop. of prim. res. Prop. of houses Yt−1 Y 2
t−1

1.100 1.014 2.079 5.618 8.301 1.091 0.9988

Table I.8 – Exponentiated coefficients of the hurdle part

Concerning the explanatory power of the covariates, we use the AIC as means of comparison. Table

I.11 in appendix C shows the value of the AIC for several specifications of the binomial model. We see

that the IRR improves the AIC almost as well as the diffusion variables. We can thereupon consider

that their explanatory power is quite similar.
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6.2 Count model

The estimation results of the count part are shown in table I.9 below. As for the logistic regression,

all coefficients are highly significant (except for the IRR) and have the expected sign. Unfortunately,

convergence could not be achieved using diffusion variables Yt−1 and Y 2
t−1. However, as the main outcome

is one, the first part of the model explains most of the adoptions, while the second part can be seen as

a second-order refinement. Nevertheless the count model is expected to have an increasing explanatory

power as the diffusion progresses, and to become influenced by the diffusion variables as well.

Estimate Std. Error z value p-value
(Intercept) -10.63159 0.201990 -52.634 < 2e-16

IRR 0.005505 0.004524 1.217 0.224
∆IRR 0.142033 0.009593 14.806 < 2e-16

ln(Dwellings) 0.803501 0.012278 65.442 < 2e-16
Proportion of primary residences 1.082461 0.091995 11.767 < 2e-16

Proportion of houses 2.143338 0.079656 26.908 < 2e-16
ln(θ) -0.997328 0.117984 -8.453 < 2e-16

Table I.9 – Estimation results of the count part

For a standard Poisson or negative binomial regression with logarithmic link (i.e. ln(µit) = x′itβ),

coefficients are semi-elasticities of the conditional mean (an increase of xj by one unit leads to an increase

of the dependent variable Y by 100× βj percent:

E[Y |X] = λ = eX
′β ⇒ 1

E[Y |X]

∂E[Y |X]

∂xj
= βj (I.9)

Alternatively, exponential of coefficients have a multiplicative impact when there is a one-unit increase:

E[Y |xj + 1] = eβjE[Y |xj ] (I.10)

At the difference of the non-truncated distribution, the zero-truncated negative binomial of parameters

µ and θ have a mean equal to E[S|X,S > 0] =
not.

ν =
µ

1− (1 + µ/θ)−θ
> µ, so that the exponential

of the coefficients cannot longer be interpreted as multiplicative incremental effects on the conditional

mean. However, when µ→ 0 i.e. when the main outcome is S = 1 (which is our case), we have:

ν ∼
µ→0

1 +
θ + 1

2θ
µ (I.11)
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This enables to compute the following partial derivatives:

1

ν − 1

∂(ν − 1)

∂xj
' βj (I.12)

or alternatively:

(E[S|xj + 1, S > 0]− 1) ' eβj (E[S|xj , S > 0]− 1) (I.13)

Coefficients are hence semi-elasticities (or elasticities when covariates are in logarithmic form) for the

conditional mean minus one. Although these is not as easily interpretable as a “real” (semi-)elasticities,

they nevertheless help to compute the effect of a given variable, as we will see now. Exponentiated

coefficients are even more easily interpretable because they act in a multiplicative way on the conditional

mean minus one. In our case, the main strictly positive outcome is 1, and the expected number of strictly

positive counts is 1.267. Thus, we are in the case described above and we can interpret exponentiated

coefficients presented in table I.10 (we have removed the intercept).

IRR ∆IRR ln(Dwellings) Prop. of prim. res. Prop. of houses θ

1.006 1.153 2.233 2.952 8.528 0.369

Table I.10 – Exponentiated coefficients of the zero-truncated count model

For example, starting from the mean (1.267), a one-point increase of the proportion of primary

residences will drive the average strictly positive count up to 2.952× 0.267 + 1 = 1.788 (+41%). More

generally, as for the hurdle part, the impact of the control variables is much stronger. In particular,

the coefficient associated with the number of dwellings is relatively close to one (this would indicate

proportionality in the case of a non-truncated model, as explained in section 5). Then, whereas the IRR

is non-significant, ∆IRR is highly significant and has a rather non-negligible impact on the number of

adoptions. Indeed, a one-point increase leads to an average positive count of 1.153× 0.267 + 1 = 1.308

(+3.2%). Interestingly, we observe an “inversion” of the roles of national and local subsidies with respect

to the probability of adoption. In particular, it helps explain the very high adoption rates.

7 Conclusions

This paper has investigated the diffusion of domestic solar panels in France. Thanks to a novel modelling

methodology, we are able to exhibit “epidemic” and “stock” effects down to the local (municipal) level,

even though the data is highly disaggregated and presents a vast majority of zeros. Furthermore, we
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manage to disentangle the effect of national feed-in tariffs (FIT) and local subsidies by computing an

internal rate of return per quarter, for all 33,842 municipalities whose distribution network is managed

by Enedis. We have shown that local subsidies can deeply influence the IRR, which has reached values

in the north of France as high as in the south. However, their impact on the probability of installing

a solar panel is much more limited compared to the effect of national FIT. Conversely, they have a

stronger impact on the number of connection requests than the FIT, whose influence was found to be

non-significant.

This, along with other evidence from the data, indicates that households act in a rather rational

way. It is thus the combination of financial incentives and an intrinsic diffusion process that enabled

the development of residential solar panels in France. In particular, we show that an additional past

installation in a city has the same impact as a one-point increase of the IRR. This result calls for more

information and “advertising” of RES projects, as it can help promote RES at a lower cost than direct

public subsidies. This could be done for example by better informing people, but also by encouraging

local ownership and funding of such projects (this is still underdeveloped in France, whereas it is much

more common in Germany for example). Thence, our conclusions support the findings of other authors,

who have pointed out the important role of neighbours and installers (Rai et al., 2016) as well as local

organisations promoting PV and local utilities (Palm, 2016).

Future avenues of research could aim at analysing the spatial dependence in the diffusion of residential

solar panels. Indeed, several authors have found positive spatial correlation (Müller and Rode, 2013;

Balta-Ozkan et al., 2015) or spatial clustering (Bollinger and Gillingham, 2012) of PV deployment.

Although these authors have highlighted the presence of local peer effects, they did not analyse stock

effects or looked into local subsidies. To the best of our knowledge, no study analyses both diffusion

and the impact of all applicable subsidies at a fine spatio-temporal scale. Nevertheless, we might need

higher resolution data to be able to perform such an analysis, as in Müller and Rode (2013), who used

building-level data in the city of Wiesbaden, Germany. Also, the French market might not be mature

enough, with an insufficient number of installations.

Another continuation of this work could include forecasts based on our model, in order to compare

the trajectories with national and regional targets. Such a study could also help answer the question of

the end of subsidies, as policy makers would like RES to be competitive with other means of production

as soon as possible. When a technology reaches the grid parity (i.e. a levelised cost of electricity -

LCOE - equal to the retail price), it becomes interesting for a consumer to invest in order to consume
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its own production. However, this behaviour might create cross-subsidies from “regular” consumers to

“prosumers” through the variable energy-related component of the network tariff. In turn the latter

tends to increase, in order to compensate for the incurred loss in revenue. This might lead to the so-

called “death spiral”, i.e. disconnection of most consumers, due to very high network charges. Thus,

the incorporation of retail electricity prices and network tariff in a diffusion model of “prosumption”

could help forecast future revenues for the DSO, and hence design efficient tariffs and electricity pricing

methodologies that enable the DSO to recover its costs while ensuring an efficient use of the network.

This may also be done using for example system dynamics, which has proven to be adapted to describe

the diffusion of RES (e.g. Bildik et al., 2015), but could still use our model as a valuable input. Finally,

our methodology could also be used to describe the diffusion of other relatively new technologies, such

as alternative-fuel vehicles or batteries, at a high spatio-temporal resolution.

Appendices

A Demand for 3-kW PV projects per region

Figure I.7 – Quarterly demand for PV projects of less than 3 kW
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B Cumulative demand for 3-kW PV projects per region

Figure I.8 – Quarterly cumulative demand for PV projects of less than 3 kW

C AIC of several binomial models

Constant Control variables Diffusion and IRR and control All
Only only control variables variables variables

474, 579 416, 033 411, 995 412, 947 409, 171

Table I.11 – AIC for several binomial model specifications
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Chapter II

Network connection schemes for renewable

energy: a spatial analysis
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Abstract

This paper aims at assessing the impact of regional network connection schemes for renewable energy
sources (RES). These have been set in France in order to avoid “large” (i.e. > 100 kW) RES producers
to pay deep-cost connection charges, that were seen as a brake on the development of renewable energy,
and to give locational price signals. The schemes have been designed by transmission and distribution
system operators and are based on regional targets of renewable capacity. These will require network
reinforcements, the costs of which have been determined by network operators. Divided by the regional
targets, they give a per-kW charge that varies between regions. Using a unique database of connection
applications by wind producers to the main French DSO’s (Enedis) network, we develop a spatial panel
model that captures the effect of this innovative regulation as well as spatial dependences of the variables.
Thus, we show that the schemes have managed to redirect connection requests towards less constrained
regions without altering the global level of connections, and that spatial substitution occurred between
regions. On average, an increase of the network charge of e/kW in a region reduces quarterly connection
requests by 300 kW in the region while increasing them by 138 kW in the neighbouring ones. Finally,
we show that the diffusion of wind energy exhibits an “epidemic” effect, i.e. there is a positive impact of
the number of past installations on the number of connection requests.
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1 Introduction

Following the third European energy package, the 2020 “20-20-20” objectives1 were transposed into

French law in August 2009, setting i.a. a target of 23% of renewable energy sources (RES) in the final

energy consumption in 20202. This law was completed in July 2010 and an obligation was made for each

region to work out a scheme for climate, air and energy (SRCAE3), setting regional targets for RES for

20204. Along with these schemes, the transmission and distribution system operators (the TSO - RTE,

and DSOs such as Enedis, the DSO for 95% of the population) also had to design a network connection

scheme for renewable energy sources for each region. These are named S3REnR or SRRRER5.

The idea behind this planning tool is to make RES producers share network reinforcement charges,

instead of applying the so-called “deep cost” methodology which otherwise prevails in France for elec-

tricity production units. This approach charges all network reinforcement costs to the first producer

that triggers the reinforcement in question. The resulting uncertainty was considered a barrier to in-

vestments in renewable energy projects, which are usually decentralised. They are therefore relatively

small compared to centralised units, for which such additional charges weigh less in the total installation

cost. On the contrary, RES developers may not afford important network reinforcement charges, so it

was decided that they would instead share these costs. Each plant with capacity higher than 100 kW

would thus be charged proportionally to its capacity. Note that renewable producers with capacity

lower than 100 kW do not pay reinforcement charges at all, and it was even decided that the smallest

ones would have their connection subsidised up to 40%. Moreover, regionally differentiated network

connection charges were expected to give a locational price signal to RES producers, and hence lead to

a more efficient use of the existing network. Higher charges actually mean more network constraints,

which should make additional renewable energy production less desirable.

Following the publication of the SRCAE schemes, S3REnRs have been designed by RTE and the

DSOs, based on the 2020 targets. In order to meet these targets, they identified a potential RES capacity

per electrical substation and computed the associated reinforcement costs. Furthermore, each substation

has some capacity (which can be zero) reserved for RES projects, that can be publicly monitored on a

dedicated website6. When all reserved capacities have been allocated, the scheme is said to be saturated,
1Reduction of 20% of greenhouse gas emissions with respect to 1990, 20% of renewable energy in final energy consump-

tion, and a 20% increase in energy efficiency.
2LOI no 2009-967 du 3 août 2009 de programmation relative à la mise en œuvre du Grenelle de l’environ-nement (2009)
3In French: Schémas Régionaux Climat, Air, Énergie, i.e. literally: regional schemes for climate, air and energy.
4LOI no 2010-788 du 12 juillet 2010 portant engagement national pour l’environnement (2010)
5In French: Schémas Régionaux de Raccordement au Réseau des Énergies Renouvelables, i.e. literally: regional network

connection schemes for renewable energy sources.
6https://capareseau.fr/
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and another scheme is to be designed and published, with new reserved capacities and associated network

charges. However, nothing is planned in case the target is not met. This issue, among others, has led

to some criticisms towards S3REnRs7. Thus, the goal of this paper is to assess its efficacy, i.e. whether

it provides efficient locational price signals and enhances the development of renewable energy (through

the reduction of the uncertainty about network connection charges). Our analysis reveals that this is

indeed the case for wind energy, which we have chosen as it is the second RES technology in France

(after hydroelectricity). It is also the leading technology being developed, along with solar photovoltaics

(PV). The latter is however more difficult to analyse, because of multiple support schemes depending

in particular on capacity thresholds and types of installation.

In order to do so, we develop a spatial panel model, whose dependent variable is the number of

connection requests of wind farms of more than 100 kW. The model takes into account the spatial

autocorrelation of both the dependent and independent variables such as the network connection charge.

Since we are dealing with regionally differentiated schemes, we expect RES developers to choose a

production site not only based on its production potential (i.e. wind speeds), but also on the value of

the network charge. Hence, if a site with a strong potential is located on two or more neighbouring

regions, installation is more likely to occur in the “cheapest” one. In other words, we can think of

neighbouring regions as substitutes for one another. This is confirmed by our results, as they reveal

the existence of negative and significant spatial autocorrelation. This contrasts with previous spatial

analyses of RES, that have mainly focused on solar PV, but on a much smaller scale (municipalities

or even streets in a city). In these studies, a positive spatial autocorrelation (i.e. a positive influence

from the vicinity) was found, which was interpreted as peer effects (see for example Dharshing, 2017 for

an application to German counties and a review of the literature on PV). Using a unique data set of

connection requests provided by Enedis, which we aggregate into 1154 observations of 21 regions over

74 quarters, we show that on average, an increase of the network charge of 1 e/kW in a region reduces

quarterly connection requests by 300 kW in the concerned region while increasing them by 138 kW in

the neighbouring ones.

Furthermore, the development of wind energy, like other RES, is expected to exhibit an intrinsic

diffusion process, as originally described by Bass (1969) for durable goods. Thus, we take into account

this characteristic, adding an “epidemic” term to the equation. We show that past installations have

had a positive and significant impact on the diffusion of wind energy, which is in line with most of the
7See for instance the early criticisms of the French Energy Regulator (in French): http://www.cre.fr/documents/

deliberations/avis/energies-renouvelables/consulter-la-deliberation.
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literature on renewable energy. However, we do not observe a “stock” effect yet, which shows that the

growth is still on the increase.

Finally, we take into account residual autocorrelation, which is on the contrary found to be positive.

This highlights the existence of spatially correlated unobservable variables. These could be wind speeds,

as they are positively correlated and undoubtedly have an influence on the choice of location of a wind

farm. The remainder of the paper is then organised as follows: section 2 provides a review of the

literature, and section 3 presents the data used in our analysis. The spatial panel model is then detailed

in section 4, followed by the presentation and discussion of the results in section 5. Section 6 concludes

the paper.

2 Literature review

Our article is based on several strands of the literature on RES. The first one is quite general and

deals with network regulation and its impact on RES development and spatial location; the second is

based on the literature on diffusion, which has widely been applied to RES; the third one studies spatial

interactions in RES development.

First of all, few authors have studied the impact of network regulatory rules on the development and

spatial location of distributed RES. In a rather qualitative fashion, Anaya and Pollitt (2015) analyse

regulation and trends in Germany, Denmark and Sweden, focusing on network access and connection

charges as well as support mechanisms. They conclude that early support of RES, as in Germany, is a

key driver of the their adoption. They also compare connection mechanisms and conclude that the “deep

cost” methodology is likely to have a negative impact on the development of RES compared to a “shallow

cost” one (in which no reinforcement charges are paid), especially in the case of very high connection

charges. Previously, Lopes et al. (2007) and Klessmann et al. (2008) had already briefly identified the

role of “deep”, “shallow”, and “shallowish”8 network connection charges. On a slightly different subject,

Brandstätt et al. (2011) compare the effectiveness of locational energy pricing, locational network pricing,

and “smart contracts” in reducing network investments in smart distribution grids. We trust that our

research will contribute to this literature by presenting the rather unique French S3REnR network

connection schemes and providing quantitative impacts of these schemes.

Secondly, in order to isolate the effect of the S3REnR regulation on wind energy development, it is

essential to control for the diffusion process followed by this somewhat new technology. Indeed, several
8Under such charges, only some reinforcement costs are borne by the producer. The French S3REnR schemes could

come under this terminology.
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studies have modelled the deployment of electric renewables as following an “S-curve”, in the line of the

seminal work of Griliches (1957), such as Schilling and Esmundo (2009) for solar photovoltaics. Others

have used diffusion models à la Bass (1969), mostly to assess the impact of subsidies and/or peer (social)

effects on the development of solar photovoltaics (e.g. Bollinger and Gillingham, 2012; Richter, 2013).

In the case of wind energy, Liu and Wei (2016) found that the development of wind power in China

has been driven by financial incentives as well as by epidemic effects, using a linear regression equation

from a logistic growth function. They follow Benthem et al. (2008), who had previously addressed the

subject of subsidies for solar photovoltaics in California in the presence of learning-by-doing. More

recently, Baudry and Bonnet (2018) used a micro-founded diffusion model to analyse the effectiveness

of demand-pull policies on wind energy development in several European countries.

Ultimately, since we are dealing with geographical data, spatial dependence is also likely to occur

and hence bias the estimators if not taken into account (Elhorst, 2014). Consequently, several authors

have highlighted the existence of spatial dependence, either when modelling the diffusion processes

of RES or when studying their determinants of adoption. For instance, Balta-Ozkan et al. (2015)

analyse the deployment of solar PV in the UK using a cross-section spatial econometrics approach, and

find that there are significant regional spillover effects. Spatial panel models have also be used, for

example by Graziano and Gillingham (2015), who show that adoptions of residential PV in Connecticut

(US) have also been driven by neighbouring installations (peer effects), while Müller and Rode (2013)

previously presented similar evidence in the city of Wiesbaden (Germany) using a spatial panel logit

model. More recently, Dharshing (2017) performed a spatial panel econometrics study on the dynamics

of adoption of residential solar panels in Germany. In all these studies, spatial spillovers are positive

and are then interpreted as peer effects at the local level. To the best of our knowledge however, no

one has investigated the presence of spatial dependence in the case of wind power yet. Wind power

being usually much more capital intensive than small-scale PV, there are fewer projects than PV ones.

As a consequence, higher spatial aggregation is required, so that positive spillovers are likely to be

“diluted” and hence be absent at this scale. On the contrary, we will show that spatial autocorrelation

is negative as a result of substitution in the choice of a location, but that there exist positive residual

autocorrelation. Our model thus constitutes a rare example among spatial econometric models, whilst

keeping an intuitive interpretation9.
9As noted by Anselin and Bera (1998): “Of the two types of spatial autocorrelation, positive autocorrelation is by far

the more intuitive. Negative spatial autocorrelation implies a checkerboard pattern of values and does not always have a
meaningful substantive interpretation”.
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3 Data

In order to perform our analysis, we use publicly available dates of enforcement and shares of connection

charges for of all 21 regional schemes, as well as connection requests data provided by Enedis for wind

farms with a capacity higher than 36 kW, from January 1998 to June 2016.

3.1 Network connection charges

On the one hand, we used publicly available data on S3REnRs. The documents relative to these network

connection schemes are published on the RTE’s website10. The corresponding documents contain a lot

of information: a description of the regional network and its evolution, how the scheme was prepared

and realised, which reinforcements have been selected and how much they cost, how much reserved

capacity11 there is per substation, etc. They are published along with other documents, such as public

consultation reports, technical and financial status, transfer12 or saturation13 notifications. All this

information can be very useful to RES project developers in particular. For the purpose of our study

however, we are only interested in the date of enforcement of the scheme, and the related network charge,

in e/kW, and their possible changes (only one region - Champagne-Ardenne, has been concerned with

a change so far, as a saturation was anticipated14).

Figure II.1 below shows the variation of the network charge per region, and table II.1 presents some

descriptive statistics. We have used the first value of the charge in Champagne-Ardenne, which rose

from 49.26 to 53.17e/kW at the end of 2015. From these can be seen that network charges are rather

heterogeneous, although six regions (out of twenty-one) have a charge almost equal to 10e/kW, and

eleven have a charge “concentrated” between 9e/kW and 20e/kW only. The aforementioned features

appear clearly on the whole data set (II.7) or the histogram (figure II.9) in appendix A. Nevertheless,

eight values are relatively spread between 20 and 70e/kW.

In addition, these charges can be compared with the other driving costs of a wind farm project. As

an indication, CRE (2014) and SER (2014) give a cost magnitude of about 1000e/kW for wind turbines,
10https://www.rte-france.com/fr/article/les-schemas-regionaux-de-raccordement-au-reseau-des-energies-

renouvelables-des-outils (in French).
11The schemes are based on a regional target for RES capacity, which is then subdivided in “reserved capacities” for

each substation, that cannot be used for non-RES projects.
12Reserved capacity at a substation can be “transferred” to another substation within the same scheme, provided the

global capacity and the network charge remain unchanged. This allows some flexibility in the scheme, if all substations
are not used as originally planned.

13When all reserved capacity has been allocated to RES projects, the scheme is said to be saturated, and a new scheme
is to be designed and published. Until then, the network charge remains unchanged. So far only two regions - Picardie
and Nord-Pas-de-Calais, have their scheme saturated, but no revision has been published yet.

14See the new scheme (RTE, 2015).
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Figure II.1 – Network reinforcement charges per region (e/kW), before revision.

Min Q1 Med. Mean Q3 Max S.D.
0 10.11 18.21 23.72 35.63 69.90 19.40

Table II.1 – Descriptive statistics of regional network reinforcement charges (e/kW), before revision

which represent roughly 75% of total costs. Although the network reinforcement charges are very small

compared to the cost of the turbine, we need to remember that wind farms have been subsidised thanks

to feed-in tariffs, which have now been replaced by feed-in premiums. These subsidies aim at giving an

“adequate” return on investment to project developers. As a result, they take into account the capital

and operating costs, but not the regional charges, or at least not on a per-region basis. Consequently,

we can still expect these to have an impact on the location choice of wind farms.

Dates of enforcement are also quite heterogeneous in time, and it took more than three years to

have all schemes came into effect. In order to have enough data per period, we chose to aggregate it at

the quarterly time step. This keeps the heterogeneity of dates of enforcement, as at most four schemes

came into force during the same quarter (Q4 2012). As they have not particularly been enforced at the

beginning or end of a quarter, we consider that the share of reinforcement costs was still equal to zero

during the quarter of implementation, and we control this simplification by adding a dummy variable for

the quarter in question. This dummy is also a measure of the effectiveness of the scheme. In particular,
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we expect it to have a lower coefficient than the post-enforcement dummy, since it captures the effect

of the reform for less than a quarter.

3.2 Network connection requests

On the other hand, we used data provided by Enedis, the distribution system operator (DSO) for 95%

of French customers. More precisely, we have information on the date at which they entered the “waiting

list”, which makes them eligible for the applicable feed-in tariff and liable for the network charge. We

also have details on their location (city) and capacity.

After a request is addressed to the network operator, it has three months to send back a technical

and financial proposition, which is then valid for three months. When the proposition is accepted, the

project enters the waiting list, for which it stays on average for 782 days. However, about 35% of projects

are abandoned and withdrawn from the waiting list without being connected, in which case the mean

stay in the waiting list is still of 427 days. If on the contrary the connection is completed, it is of 1010

days, and the longest connection project took 4409 days (12 years).

Thus, due to the long delay between the connection request and the actual connection or the abandon-

ment of the project, it is impossible to study the number of requests that effectively led to a connection

without removing a large part of the sample. Even doing so, we would remove projects that may have

led to a connection in the future. We have thereupon decided to focus on connection requests, which

nonetheless give a good proxy of the future number of wind farms (one could still assume a constant

rate of abandonment). They are also responsible for the lengthening of the waiting list and hence for

the possible saturation of the schemes and the triggering of network reinforcements.

This data is quite relevant for the analysis of the regional schemes, since up to mid-2016 (which

is when our data set finishes) 89% of wind capacity has been connected to Enedis’ network, and 71%

of the wind-energy waiting list is on Enedis’ network as well. It increases mainly on its network too

(RTE et al., 2016). This can be explained by the fact that the capacity limit between the distribution

and the transmission networks is equal to 12 MW for production units, with a possible extension up

to 17 MW, while the average size of a wind farm was 15.3 MW in 2016 (France Énergie Éolienne,

2017). Furthermore, bigger wind farms tend to ask for several connections to the distribution network

rather than one connection to the transmission network. This can be seen by looking at the number

of connection requests that occur the same day in the same city. Indeed, we have 20.3% of “multiple

connections”, which are mostly “double connections” (16.6%). The comparison of statistics in table II.2

46



3. Data

and II.3 below also highlights this fact. However, aggregated request can only be used as a proxy for

the study of multiple connections, since some wind farms are connected to substations in different cities,

and sometimes at different dates. This probably leads to an underestimation of this phenomenon. On

the contrary, there could be several connection requests in the same city at the same date for distinct

projects, but this seems very unlikely. A more rigorous analysis would require a long and thorough

examination of the data set and would be beyond the scope of this study.

Unfortunately, we do not have connection requests data from RTE, nor from the other small DS0s

(approximately 5% of DSOs’ customers). However, the number of connections on RTE’s network is

rather limited, and the use of regional fixed effects should control for the presence of some relatively

large DSOs in some regions. Moreover, we have 78 out of 2388 connection requests for which we do

not have the location. This accounts for 3.4% of the data in terms of number of observations as well as

connection capacity.

Single requests 12000 10000 8000 11500 6000 9200 4000 9000 6900 2000
N 410 285 143 124 77 72 59 49 47 38

Aggregated requests 12000 10000 8000 11500 6000 4000 16000 13800 24000 9200
N 255 171 101 77 61 40 37 34 32 30

Table II.2 – Ten most frequent capacities for single and aggregated (city-day) connection requests (kW)

N Min Q1 Median Q3 Max Mean Std. dev.
Single requests 2308 106 7500 10000 12000 17000 9225 3564

Aggregated requests 1837 106 8000 11000 13800 99750 11590 7561

Table II.3 – Descriptive statistics for single and aggregated (city-day) connection requests (kW)

Since we use connection requests for wind projects of more than 100 kW, i.e. those concerned by

the network charge, there could be some “down-sizing” behaviour for wind projects just above 100 kW

to avoid paying the network charge. However, projects under 100 kW represent only 0.002% of total

capacities (and 0.75% of the number of connection requests), and are therefore negligible. This is

confirmed by the non-truncated histogram of connection requests capacities in figure II.2, which also

highlights the 12 MW and 17 MW limits15. The histogram also reveals the fact that most wind farms

probably rely on 2 MW-turbines, which is also confirmed by table II.2, as most frequent connection

requests are multiples of 2 MW.

Figure II.3 displays the temporal evolution of quarterly demand for wind projects of more than

100 kW on Enedis’ network. It is clear from this graph that the dynamic is very different from one
15We have removed two “outliers” at 152.300 MW and 64.580 MW, which correspond to abandoned wind farm projects.

It is not clear why such big projects were in the DSO’s register instead of the TSO’s one.
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Figure II.2 – Histogram of connection requests capacities (kW)

region to another, as some regions have no wind farm at all (Aquitaine) or almost none (e.g. Alsace

and Provence-Alpes-Côte d’Azur). On the contrary, Picardie and Champagne-Ardenne (and to a lesser

extent Nord-Pas-de-Calais) are the most advanced regions in terms of installed wind capacity, as can be

seen on figure II.6 and II.5 in the next subsection. This explains why the scheme in Picardie is already

saturated and the ones in Champagne-Ardenne and Nord-Pas-de-Calais have been revised.

Figure II.4 helps visualise the actual heterogeneity between regions, as it displays the quarterly mean

demand for wind farms with a 95% confidence interval. We see that the confidence interval can be up

to twice as large as the mean, which is the sign of a very strong inter-regional dispersion.

3.3 Installed base

Following the work of Bass (1969), we will use the installed base, i.e. the cumulative connected capacity

in a given quarter, as an indicator of diffusion. Indeed, the development of wind energy is expected to

follow an intrinsic diffusion process, which needs to be controlled for. However, it would not be relevant

to compute the installed base from cumulative demands as is usually the case, for the reasons we have

just mentioned (delays and abandonment of projects). Furthermore, as pointed out by Narayanan

and Nair (2013), the use of the cumulative stock of the dependent variable in a panel regression gives

biased and inconsistent estimators because it introduces a covariate which is serially correlated with the

dependent variable. They advocate the use of an instrumental variable, which can be very difficult to

find, or a bias-correction approach, which requires no error autocorrelation.

Noting this issue, Bollinger and Gillingham (2012) show in the case of solar panels that if the lag

between the adoption decision and the installation is sufficiently large (with respect to the order of

autocorrelation of errors), then the estimators are consistent and unbiased. This is particularly suitable
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Figure II.3 – Quarterly demand for wind projects of more than 100 kW

Figure II.4 – Heterogeneity of connection requests between regions
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for our study, because of the very long delay between the request and the actual connection. Figure II.5

and II.6 below display the evolution of the installed base per region and their geographical distribution

at the end of June 2016. It can be noted that it is highly heterogeneous, which is a direct consequence

of the heterogeneity of connection requests. Also, figure II.5 shows that most diffusion curves do not

have the shape of an S yet, so that we can consider the technology to still be at a fairly early stage. In

particular, this excludes the use of the squared installed base as a diffusion variable, which usually aims

at capturing the “stock” effect, i.e. the saturation of the market.

Figure II.5 – Installed based per region

4 Modelling strategy

Assessing the impact of the S3REnR charge on wind energy deployment requires to consider the data set

as a panel, despite the strong observed heterogeneity between regions. Indeed, independent regressions

could not give us an estimate of this effect. At best we could get an average value of the impact of the

scheme per region, for example using a difference-in-differences approach. However, this would ignore

the intensity of the reinforcement charge, which can vary widely across regions. Ergo, we develop a panel

data model with region and time fixed effects in order to capture as much heterogeneity as possible.

The data being geographical, we also take spatial interactions into account, as explained in the following

subsection.
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Figure II.6 – Regional cumulative wind capacities (kW) connected to Enedis’ network, mid-2016

4.1 Spatial interactions

Since we are dealing with geographical data, it is necessary to investigate possible spatial autocorrelation

of the variables in order to avoid having biased and inconsistent estimators. In particular, spatial

interaction can be present in the three following forms. First of all, it can be endogenous, when the

outcome in a region impacts the outcome in a neighbouring one, for example as a consequence of peer

effects or substitution, as described in section 1. Spatial interaction may also be exogenous, when

it comes from the covariates, i.e. if a variable change in a region has an effect in the neighbouring

ones. This could be the case for network connection charges. Thirdly, there can be a residual spatial

interaction, when spatially correlated unobservable variables affect the dependent variable. For instance,

wind speeds are expected to be a rather influential factor in the location choice of a wind farm, and they

are spatially autocorrelated (positively), as can be seen from figure II.7. In France, winds are strongest

on the Channel and Atlantic coasts, as well as on the Mediterranean coast. Wind corridors such as

the Rhône valley in the southeast also exist. Although wind is not unobservable strictly speaking, it

is difficult to integrate it as an explanatory variable for several reasons. Firstly, there is no simple

relationship between wind speeds and wind energy potential. It is in general nonlinear and dependent
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on the technology used. Secondly, even if this relationship was known, wind speeds (and hence potential

output) can vary within a single region. In this case, a unique indicator will not capture the diversity of

wind regimes within a same region. For example, one could use the maximum, mean or median value,

or other statistic, but there is no obvious choice. Finally, the use of a single-valued (i.e. non-panel)

covariate per region would prevent us from using individual fixed effects, that provide the means to

capture other unobservable variables as well.

Figure II.7 – Wind speeds in Europe. Source: Troen and Lundtang Petersen (1989).
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4.2 Spatial panel model

In order to take spatial interactions into account, one needs to define a vicinity relationship between

the N = 21 regions under study. In spatial econometrics, the relationship takes the form of a N × N

symmetric matrix W , whose coefficients wij (weights) describe the vicinity relationship between regions

i and j, and are usually distance or contiguity-based. Distance-based coefficients can be useful for

instance in “gravity-like” models and have the advantage of being parameterised in relatively “simple”

spatial models. In our case, we find it more relevant to use a contiguity-based matrix, as is often the case

in spatial econometrics. In particular, we use a first-order contiguity-based matrix, whose weights wij

are equal to 1 if regions i and j are considered as neighbours, and 0 otherwise16. More precisely, we use

a rook-style weight matrix, were regions that share a common edge are considered as neighbours17, as

represented by the graph in figure II.8. This choice is frequent in spatial econometrics, and quite natural

for our study, since we are interested in possible substitution between neighbouring regions. Indeed, the

potential location of a wind farm is not likely to extend over non-contiguous regions, as exploration of

potential sites can be relatively costly for wind energy companies.

Figure II.8 – Graph of rook neighbours

As a consequence of all possible spatial interactions described in the previous subsection, we choose

to model connection requests capacity using the following general nesting spatial (GNS) panel model
16wii = 0, i.e. a region is not considered to be its own neighbour.
17A similar possibility, the queen-style weight matrix, considers that regions that share a common edge or corner are

neighbours. In our case, this would lead to the exact same matrix as the rook-style one.
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with space and time fixed effects:


S = ρ(1T ⊗WN )S +Xβ + (1T ⊗WN )Xθ + (ιT ⊗ ν) + (δ ⊗ ιN ) + u

u = λ(1T ⊗WN )u+ ε

(II.1)

whereWN is the N×N row-standardised weight matrix18, ⊗ denotes the Kronecker (or tensor) product

and 1T is the identity matrix of dimension T , so that 1T ⊗WN is an NT × NT block matrix whose

diagonal elements are T WN matrices. The dependent variable S is represented in stacked form as a

NT × 1 vector, as well as the error terms ε and u. Independent variables X are stacked in a NT ×K

matrix, where K is the number of covariates. The parameters to be estimated are hence: ρ and λ, the

spatial autoregressive and spatial error coefficients; β and θ, the coefficients of covariates and spatially

lagged ones, of length K; ν, a vector of individual fixed effects of length N ; δ, a vector of time fixed

effects of length T , and ιN (resp. ιT ) is a vector of length N (resp. T ) filled with ones. Moreover, it is

assumed that the idiosyncratic error vector ε verifies: E[ε] = 0 and E[εε′] = σ21NT , and is identically and

independently distributed. Additionally, regional and time fixed effects verify ν ′ιn = 0 and δ′ιT = 0. For

simplicity, the model can be rewritten in the following “instantaneous” form, omitting the N subscript

for the weight matrix: 
St = ρWSt +Xtβ +WXtθ + ν + δtιN + ut

ut = λWut + εt

εt  IID(0, σ2)

(II.2)

where St, ut and εt are vectors of length N , and Xt is a N ×K matrix.

So, the GNS model contains the three types of spatial interactions described above: endogenous

(ρ), exogenous (θ) and residual (λ). However, it has been criticised for often giving non-significant

estimates (Elhorst, 2014), and it is thus rarely used in spatial econometrics. Researchers usually use

several restrictions of the GNS model, which are similar to time series models (in their denomination). If

covariates are only considered locally (i.e. when θ = 0), we have a spatial autoregressive combined (SAC),

or spatial autoregressive errors (SARAR) model. If in addition λ = 0 it is called a spatial autoregressive

(SAR) model, and if on the contrary ρ = 0 it is a spatial error (SEM), or spatial moving average (SMA)

one. A less frequent kind of model is the spatial cross regressive, or spatial lag independent variables

(SLX) one where only θ 6= 0. Finally, a SAR (resp. SEM) with spatially lagged covariates is called a
18The matrix is standardised so that the sum of the terms in each row is equal to 1 (or zero if a region has no neighbour)
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spatial Durbin (error) model (SD(E)M).

Elhorst (2014) recommends using the two latter, but warns that “both models tend to produce

spillover effects that are comparable to each other in terms of magnitude and significance, and because

interaction effects among the dependent variable on the one hand and interaction effects among the

error terms on the other hand are only weakly identified. Precisely for this reason, the general nesting

spatial (GNS) model is not of much help either. It generally leads to a model that is overparameterized,

as a result of which the significance levels of the variables tend to go down.” (p.33). In our case, all

spatial interactions are justified from an economic and physical (in the case of wind speeds) point of

view. Consequently, we have decided to keep the GNS model, whose estimates are almost all statistically

significant, as we will show in the next section.

Finally, the independent variables inX are: the installed base Y defined earlier, the regional S3REnR

charge T (which is considered to be zero up to the quarter of enforcement ti, included), a dummy variable

for when the regional scheme is enforced, and a dummy variable equal to 1 afterwards. The use to these

two dummy variables takes into account the fact that the enforcement does not usually happen at

the beginning or end of a quarter. Furthermore, the enforcement quarter dummy aims at capturing

a possible “deadline” effect, i.e. a possible “rush” before the enforcement, in order to avoid paying the

network charge.

5 Results and interpretation

5.1 Estimation results and first interpretations

We estimate the model II.2 over the whole sample (T = 74 and N = 21) using the R package splm

developed by Millo and Piras (2012). The main estimation results are displayed in table II.4 below,

while time and region fixed effects can be found in appendix B. The R-squared is R2 = 0.308879, which

is an “acceptable” value (although not of much interest) for panel models, and the results are robust

when considering time lags of the installed base a well as a SAC specification.

Because of the endogenous spatial correlation, we cannot readily interpret the numerical value of

all these coefficients (see next subsections). Nonetheless, we can do so for the spatial autocorrelation

parameters ρ and λ. First of all, they are both highly significant. Secondly, the former is negative,

contrarily to what has been observed for residential solar panels. So, we do not observe peer effects, but

rather some substitutability between regions: the more connection requests in a given region, the less

connection requests in the neighbouring ones. In a way, a negative ρ can be interpreted as the “marginal
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Estimate Std. Error t-value p-value
ρ -0.4272 0.1090 -3.92 0.0001
λ 0.3277 0.0902 3.63 0.0003
Y 0.0415 0.0051 8.17 0.0000

W × Y -0.0068 0.0093 -0.73 0.4628
T -285.8 92.85 -3.08 0.0021

W × T -363.2 177.6 -2.04 0.0409
1[t > ti] 7,579 4,297 1.76 0.0778

W × 1[t > ti] 10,801 9,283 1.16 0.2446
1[t = ti] 12,904 5,395 2.39 0.0168

W × 1[t = ti] 20,676 11,069 1.87 0.0618

Table II.4 – Estimation results of the GNS panel model

rate of substitution” between two neighbouring regions, all other things held constant. This could have

several explanations, the most simple of which is the existence of arbitrage when the choice of a region is

to be made. Indeed, as the number of “large” wind energy projects is rather limited19, the location choice

of a wind farm in a region may come at the expense of a neighbouring but as promising one (all other

things being equal). On the contrary, the residual autocorrelation coefficient λ is positive. This may

reflect the autocorrelation of wind speeds, as described in the previous section, but other unobservable

variables such as population or income may also be spatially correlated (although not necessarily at

such a large scale).

Finally, we see that ρ and λ are well identified. This may be due to the fact that they have opposite

signs, whereas negative spatial autocorrelation seems to be pretty rare elsewhere in spatial econometrics,

which probably makes the two coefficients less identifiable. In particular, results are relatively robust

under the other specifications described above, unless the estimates of ρ and λ when one of them is set

to zero. Indeed, in that case it can be hard to determine whether spatial interaction is endogenous or

residual. Ergo, the estimation of one of the two parameters when the other is zero gives an “average”

value of the two, which in our case is roughly equal to -0.1. In the SAC (SARAR) specification however,

both estimates are very close to the ones of the GNS model.

5.2 Interpreting coefficients: simplified example

Similarly to autoregressive models in time series, the coefficients of spatially autoregressive models

cannot be interpreted directly20. To see this, let us first consider a simplified SDM model with only two

neighbouring regions and one covariate X. For the sake of simplicity, we do not write the error term, as
19In comparison, the number of small-scale PV projects is very large, so that the market could almost be considered as

atomistic.
20If there is no spatial autocorrelation, i.e. if ρ = 0, the interpretation of the coefficients is the same as in an OLS

regression. This is the case in particular for SEM, SDEM and SLX models.
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it plays no role in the computation of the marginal effects. Thus, we have the two following equations:


S1t = α1 + βX1t + θX2t + ρS2t

S2t = α2 + βX2t + θX1t + ρS1t

(II.3)

which can be solved for example either by substituting variables in the two equations, or computing the

inverse of the matrix 1− ρW . Solving the system leads to:


S1t =

α1 + ρα2

1− ρ2
+
β + ρθ

1− ρ2
X1t +

θ + ρβ

1− ρ2
X2t

S2t =
α2 + ρα1

1− ρ2
+
β + ρθ

1− ρ2
X2t +

θ + ρβ

1− ρ2
X1t

(II.4)

From this simple resolution it is clear that demands in both regions are interrelated, and that a change

in Xi will have both a (direct) impact on Si, with a sign equal to β+ρθ’s sign, and an (indirect) impact

on Sj (i 6= j), with a sign equal to θ + ρβ’s sign. When theta = 0, the direct impact is “amplified” by
1

1− ρ2
> 1. This is a result of “feedback”, i.e. the fact that a region is a neighbour of its neighbours,

and is impacted by even powers of ρW accordingly.

From equation II.3, we see that if ρ > 0, an increase of the dependent variable in a region increases

it also in the neighbouring one, i.e. there is a complementarity effect. If on the contrary ρ < 0, there is

a substitution effects. Furthermore, if ρ > 0 and |θ| is “small enough” compared to |beta| (or if θ and β

have the same sign), then the direct and indirect marginal effects of X have the same sign, so that the

regions are indeed complements with respect to the variable X. Conversely, if ρ < 0 and |θ| is “small

enough” (or if θ has the sign of −β), they have opposite signs, and the regions are indeed substitutes.

In our case for example, a higher S3REnR charge in a given region is expected to decrease the number

of connection requests within this region, but a higher charge in neighbouring regions is expected to

increase it if substitution between region is possible.

Finally, it is also interesting to write the gradient of S = (S1, S2) with respect to X = (X1, X2), as

this representation will be use in the next subsection for the general case:

dS

dX
=

 ∂S1
∂X1

∂S1
∂X2

∂S2
∂X1

∂S2
∂X2

 =

β+ρθ
1−ρ2

θ+ρβ
1−ρ2

θ+ρβ
1−ρ2

β+ρθ
1−ρ2

 (II.5)

The diagonal terms are therefore the marginal effects of covariates X1 and X2 on S1 and S2, respectively.

The off-diagonal terms are the marginal impacts of X2 (resp. X1) on S1 (resp. S2).
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5.3 Interpreting coefficients: general case

More generally, equation II.2 can be rewritten:

St = (1− ρW )−1(Xtβ +WXtθ + ν + δtιN + ut) (II.6)

Using the Taylor expansion of the inverse matrix: (1− ρW )−1 = 1 + ρW + ρ2W 2 + ..., we see that in

fact an infinite number of spatially lagged values of the covariates and of the error term appear in the

equation for S, corresponding to neighbours of neighbours, etc. Also, as |ρ| < 1, the closest neighbours

have the most influence. LeSage and Pace (2009) suggest that the marginal effect be decomposed into

a direct effect and an indirect (or spillover) effect, the sum of which is the total effect (which can only

be considered when the change in a covariate occurs globally and identically). Indeed, we can write the

marginal effects of the rth covariate on the dependent variable as the following N ×N matrix, which is

the generalisation of equation II.5:

∂S

∂x′r
= (1− ρW )−1(1Nβr +Wθr) (II.7)

As in the simplified case, the partial derivative at line i and column j quantifies how an infinitesimal

change of covariate r in region j impacts S in region i. In particular, the diagonal terms represent the

direct marginal effects and off-diagonal elements the indirect ones. From there, we can compute average

direct, indirect and total marginal effects, the latter being the sum of the two former ones21.

Finally, measures of dispersion of the estimated direct, indirect and total marginal effects are also

needed for inference. Indeed, due to their computation, nothing can be said for these from the standard

deviations and levels of significance of the “raw” estimates. Again, we follow LeSage and Pace (2009),

who suggest to produce empirical distributions of the parameters “using a large number of simulated

parameters drawn from the multivariate normal distribution of the parameters implied by the maximum

likelihood estimates” (p.39). LeSage and Pace (2014) then suggest to use medians as point estimates and

scaled median absolute deviations (MAD) as measures of dispersion, which are more robust to outliers

and distribution asymmetry than the sample mean and standard deviation.
21In SDEM and SLX models, (in)direct effects are simply the coefficients of the (spatially lagged) covariates, since there

is no endogenous spatial autocorrelation.
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5.4 Direct, indirect and total marginal effects

Table II.5 below shows the simulated direct, indirect and total marginal effects, along with p-values,

levels of significance, and 95% confidence intervals, as recommended e.g. by Armstrong (2012). These

are based on 10,000 simulations realised using a personal program written in R.

Direct Indirect Total
Y (kW/kW) 0.0435∗∗∗ -0.0132∗∗∗ 0.0302∗∗∗

(2×10−16) (3×10−4) (6×10−12)
[0.0344;0.0524] [-0.0f195;-0.0077] [0.0230;0.0375]

T (e/kW/kW) -300∗∗∗ 138∗∗∗ -155∗∗

(0.002) (0.010) (0.033)
[-460;-137] [61;239] [-279;-39]

1[t > ti] (kW) 7,855∗ -3,717 3,915
(0.082) (0.105) (0.209)

[484;15,457] [-8,063;-420] [-1,093;9,178]

1[t = ti] (kW) 13,497∗∗ -6,726∗∗ 6,394∗

(0.018) (0.036) (0.091)
[4,381;22,866] [-12,786;-2,268] [480;13,064]

Note: p-values are in parentheses.
Asterisks denote significance levels of 99% (***), 95% (**), and 90% (*).
95% confidence intervals are in brackets.

Table II.5 – Direct, indirect and total marginal effects of the GNS model

As expected, the direct and total marginal effects have the sign of the coefficients of the non-lagged

variables in table II.4, and the indirect ones have the opposite sign. The direct marginal effects are

higher, which is a consequence of the “feedback”, but the increase is more than compensated by the

indirect effects, so that the total effects are smaller than the non-lagged estimates. This illustrates

the difficulty to interpret the “raw” estimates. Only the post-enforcement quarter dummy has little

significance, especially in its total marginal effect.

Concerning the installed base, we see that on average, an additional MW in a region increases the

quarterly requests by 43.5 kW, and an additional MW in each region leads to an increase of 30.2 kW.

These values may seem small but can nevertheless lead to an important increase in the long run, as long

as there is no “stock” effect.

An increase of the network charge in a region T of 1e/kW reduces the connection requests by 300 kW

and increases it by 138 kW in neighbouring regions, as a consequence of substitution. These values are

quite significant and relatively high, which shows that the schemes have sent appropriate locational

signals. For instance, the inter-quartile difference of network charges is equal to 25.52e/kW, which

means a (direct effect) difference of 7,656 kW in quarterly connection requests, while the mean capacity
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request is equal to 9,225 kW (see table II.3). In the short run, the implementation of the schemes

have had a positive impact on the connection requests, which may be due to a “deadline” effect. On

average, 6,394 additional kW have been installed in each region due to the enforcement of the schemes.

In the long run, the impact would be of 3,915 kW/quarter, although this estimate is not very significant

(contrarily to the direct impact).

Finally, table II.6 below displays the overall direct, indirect and total effects of the network charge

plus scheme enforcement per region (i.e. βT ×T +β1[t>ti]). We see that the direct and total impacts are

positive in 15 out of 21 regions, and negative in 6. Thus, the positive effect of the schemes compensates

the negative one of the network charge in most regions. On average, the schemes have only slightly

increased the quarterly demand for wind projects, and are consequently almost neutral regarding the

capacity requests at the national level. Nevertheless, they have led to a more efficient (in the sense of

network constraints) spatial distribution of these requests, which was one of the goals of this regulation.

Although these values do not reflect the exact reality, since they have been computed using statistical

estimates, it is interesting to analyse them by looking at neighbouring regions. For instance in the South,

the Rhône-Alpes region may have benefited from a rather low network charge while its neighbours

Auvergne and Languedoc-Roussillon were negatively affected. Similarly, in the North, Nord-Pas-de-

Calais and Haute-Normandie may have benefited from a low charge as well as from a high charge in the

neighbouring Picardie. Looking at the map of connected wind farms in appendix C, we can see that

there exist several wind farms close to the borders of these regions. This makes the above explanations

quite plausible. In addition, substitution may also occur on a larger scale than just across the borders,

depending on how large potential sites are.

6 Conclusions and policy implications

We have shown that regional network connection schemes for renewable energy have had a significant

impact on the diffusion of wind energy. This relatively unique regulation consists in a per-kW fee that

aims at sharing network reinforcement costs among RES producers of more than 100 kW. This charge is

differentiated between regions, which enhances locational arbitrage opportunities when adjacent regions

have distinct charges or when only some of them have implemented their scheme. This substitution can

be seen through the study of spatial autocorrelation, which is found to be negative, as is the impact

of the network charge. The regulatory framework also aims at removing the uncertainty on connection

charges due to the deep-cost methodology that prevails in France, and we show that this is indeed the
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Region Charge (e/kW) Direct Indirect Total
Alsace 0 7,855 -3,717 3,915

Aquitaine 23.37 843 -441 300
Auvergne 48.4 -6,657 2,948 -3,587

Basse-Normandie 9.81 4,911 -2,334 2,384
Bourgogne 16.92 2,829 -1,353 1,245
Bretagne 10.11 4,840 -2,270 2,303

Centre 20 1,822 -876 784
Champagne-Ardenne 49.26 -6,876 3,077 -3,794

Franche-Comté 10.64 4,671 -2,217 2,235
Haute-Normandie 10.19 4,837 -2,271 2,297

Île-de-France 1.5 7,418 -3,503 3,685
Languedoc-Roussillon 35.63 -2,807 1,232 -1,628

Limousin 22.56 1,073 -534 383
Lorraine 18.21 2,373 -1,184 1,002

Midi-Pyrénées 69.9 -13,022 5,944 -6,936
Nord-Pas-de-Calais 9.19 5,156 -2,417 2,501

Pays de la Loire 13.38 3,889 -1,805 1,812
Picardie 58.6 -9,722 4,343 -5,163

Poitou-Charentes 42.36 -4,734 2,158 -2,667
Provence-Alpes-Côte d’Azur 18.48 2,358 -1,111 998

Rhône-Alpes 9.51 5,002 -2,364 2,460
Average 23.7 765 -414 216

Table II.6 – Expected regional effects of the regional connection schemes (kW/quarter)

case, as the overall effect is almost neutral on average and positive for most regions.

Moreover, we have shown that the cumulative installed capacity has had a positive and significant

impact on connection requests. This highlights the “epidemic” behaviour of the diffusion process, which

is sometimes neglected in the assessment of renewable energy policies. Similarly, spatial interactions are

often forgotten in econometric studies. This is unfortunate, as their omission usually gives biased and

inconsistent estimators. Hence, we hope that our positive results will encourage more econometricians

to use spatial models in the future.

In the end, the conclusive results of the French regulation could lead other countries to use similar

schemes to help promote renewable energy and planning its development by taking the existing network

constraints into account. This may avoid or delay unnecessary and costly network reinforcements, if

these are charged in a “reasonable” way to the producers. However, the French schemes also have some

drawbacks. For example, once the regional target is attained, another target and a new scheme have to

be defined. On the contrary, if the target is never met, or not in time, some producers may have payed

for unnecessary reinforcements. Also, although the choice of proportional charges is easy to understand

and may seem rather natural, one could think of other cost-sharing methodologies, as discussed in the
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cooperative game theory literature. Finally, one could also challenge the choice of the regional scale for

such schemes. Indeed, transmission and distribution networks may differ in topology within the same

region, hence leading to potential inefficiencies. Despite their imperfections, these schemes remain quite

innovative in a highly regulated energy sector, and have proven to have achieved their goals.
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Appendices

A Regional connection schemes data

Region Enforcement Enforcement Network reinforcement
date (d/m/y) quarter charge (e/kW)

Alsace 21/12/2012 2012 Q4 0
Aquitaine 15/04/2015 2015 Q2 23.37
Auvergne 28/02/2013 2013 Q2 48.40

Basse-Normandie 16/09/2014 2014 Q3 9.81
Bourgogne 21/12/2012 2012 Q4 16.92
Bretagne 07/08/2015 2015 Q3 10.11

Centre 20/06/2013 2013 Q2 20.00
Champagne-Ardenne 27/12/2012 2012 Q4 49.26

Champagne-Ardenne (modified) 29/12/2015 2015 Q4 53.17
Franche-Comté 12/09/2014 2014 Q3 10.64

Haute-Normandie 24/10/2014 2014 Q4 10.19
Île-de-France 04/03/2015 2015 Q1 1.50

Languedoc-Roussillon 08/01/2015 2015 Q1 35.63
Limousin 16/12/2014 2014 Q4 22.56
Lorraine 18/11/2013 2013 Q4 18.21

Midi-Pyrénées 08/02/2013 2013 Q1 69.90
Nord-Pas-de-Calais 21/01/2014 2014 Q1 9.19

Pays de la Loire 13/11/2015 2015 Q4 13.38
Picardie 26/12/2012 2012 Q4 58.60

Poitou-Charentes 07/08/2015 2015 Q3 42.36
Provence-Alpes-Côte d’Azur 26/11/2014 2014 Q4 18.48

Rhône-Alpes 15/01/2016 2016 Q1 9.51

Table II.7 – Regional connection schemes data set

Figure II.9 – Histogram of network connection charges (e/kW
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B Fixed effects of the GNS panel model

Estimate Std. Error t-value p-value
Intercept 13658.83 1260.89 10.83 0.00

Quarter Estimate Std. Error t-value p-value
1998 Q1 -12331.80 4553.97 -2.71 0.01
1998 Q2 -13658.83 4553.97 -3.00 0.00
1998 Q3 -13658.83 4553.97 -3.00 0.00
1998 Q4 -13658.83 4553.97 -3.00 0.00
1999 Q1 -13658.83 4553.97 -3.00 0.00
1999 Q2 -13658.83 4553.97 -3.00 0.00
1999 Q3 -13658.83 4553.97 -3.00 0.00
1999 Q4 -13658.83 4553.97 -3.00 0.00
2000 Q1 -13658.83 4553.97 -3.00 0.00
2000 Q2 -13658.83 4553.97 -3.00 0.00
2000 Q3 -13658.83 4553.97 -3.00 0.00
2000 Q4 -13128.02 4553.97 -2.88 0.00
2001 Q1 -11918.91 4553.97 -2.62 0.01
2001 Q2 -8555.58 4553.97 -1.88 0.06
2001 Q3 -7574.03 4553.97 -1.66 0.10
2001 Q4 -9838.71 4553.97 -2.16 0.03
2002 Q1 -9300.38 4553.97 -2.04 0.04
2002 Q2 -11126.08 4553.97 -2.44 0.01
2002 Q3 2467.16 4553.97 0.54 0.59
2002 Q4 -1776.35 4553.98 -0.39 0.70
2003 Q1 -8289.61 4553.98 -1.82 0.07
2003 Q2 6835.43 4553.99 1.50 0.13
2003 Q3 4561.22 4554.01 1.00 0.32
2003 Q4 717.88 4554.01 0.16 0.87
2004 Q1 8378.78 4554.01 1.84 0.07
2004 Q2 -6821.93 4554.01 -1.50 0.13
2004 Q3 -3484.94 4554.05 -0.77 0.44
2004 Q4 -9374.52 4554.12 -2.06 0.04
2005 Q1 -2611.69 4554.12 -0.57 0.57
2005 Q2 3659.75 4554.38 0.80 0.42
2005 Q3 1909.55 4555.15 0.42 0.68
2005 Q4 1297.88 4556.71 0.28 0.78
2006 Q1 3634.68 4558.26 0.80 0.43
2006 Q2 10894.41 4561.85 2.39 0.02
2006 Q3 9654.99 4568.95 2.11 0.03
2006 Q4 7826.10 4577.97 1.71 0.09
2007 Q1 5428.56 4583.60 1.18 0.24
2007 Q2 8456.60 4589.26 1.84 0.07
2007 Q3 29937.95 4598.13 6.51 0.00
2007 Q4 13056.49 4609.32 2.83 0.00
2008 Q1 15856.06 4611.44 3.44 0.00
2008 Q2 12157.34 4622.11 2.63 0.01
2008 Q3 -834.86 4642.85 -0.18 0.86
2008 Q4 -6099.02 4663.67 -1.31 0.19
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B. Fixed effects of the GNS panel model

Quarter Estimate Std. Error t-value p-value
2009 Q1 -3122.99 4682.30 -0.67 0.50
2009 Q2 -2061.68 4702.77 -0.44 0.66
2009 Q3 1039.38 4711.72 0.22 0.83
2009 Q4 8727.06 4736.49 1.84 0.07
2010 Q1 4279.41 4747.98 0.90 0.37
2010 Q2 -10401.89 4765.46 -2.18 0.03
2010 Q3 2439.00 4785.30 0.51 0.61
2010 Q4 -4456.64 4811.45 -0.93 0.35
2011 Q1 -1557.99 4834.10 -0.32 0.75
2011 Q2 1335.07 4845.17 0.28 0.78
2011 Q3 -4266.10 4874.41 -0.88 0.38
2011 Q4 -158.52 4888.69 -0.03 0.97
2012 Q1 42373.60 4898.91 8.65 0.00
2012 Q2 14026.62 4915.77 2.85 0.00
2012 Q3 10855.68 4943.71 2.20 0.03
2012 Q4 14988.78 5498.87 2.73 0.01
2013 Q1 -3516.84 5296.05 -0.66 0.51
2013 Q2 -5803.78 5442.14 -1.07 0.29
2013 Q3 -2984.61 5494.88 -0.54 0.59
2013 Q4 19814.30 5606.59 3.53 0.00
2014 Q1 8328.60 5708.62 1.46 0.14
2014 Q2 17568.97 5751.89 3.05 0.00
2014 Q3 -2703.37 6113.82 -0.44 0.66
2014 Q4 8235.28 6664.42 1.24 0.22
2015 Q1 4414.29 7156.27 0.62 0.54
2015 Q2 -1122.16 7447.25 -0.15 0.88
2015 Q3 9859.11 7782.28 1.27 0.21
2015 Q4 -4378.45 8100.20 -0.54 0.59
2016 Q1 -3238.09 8431.23 -0.38 0.70
2016 Q2 -5588.10 8636.01 -0.65 0.52

Table II.8 – Time fixed effects

Quarter Estimate Std. Error t-value p-value
Alsace -11740.60 2705.85 -4.34 0.00

Aquitaine -9183.25 2545.21 -3.61 0.00
Auvergne -2771.48 2715.80 -1.02 0.31

Basse-Normandie -3274.91 2936.67 -1.12 0.26
Bourgogne 3871.00 2685.84 1.44 0.15
Bretagne -2751.45 2938.84 -0.94 0.35

Centre -8.61 2819.01 -0.00 1.00
Champagne-Ardenne 11433.49 2843.67 4.02 0.00

Franche-Comté -8299.50 2709.97 -3.06 0.00
Haute-Normandie -622.24 2794.20 -0.22 0.82

Île-de-France -377.90 2930.52 -0.13 0.90
Languedoc-Roussillon -2847.65 2655.58 -1.07 0.28

Limousin -6071.56 2622.98 -2.31 0.02
Lorraine -1345.37 2759.56 -0.49 0.63

Midi-Pyrénées -3204.37 2675.93 -1.20 0.23
Nord-Pas-de-Calais 20745.83 3439.32 6.03 0.00

Pays de la Loire 2202.55 2841.97 0.78 0.44
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Quarter Estimate Std. Error t-value p-value
Picardie 29915.83 3043.46 9.83 0.00

Poitou-Charentes 436.21 2624.18 0.17 0.87
Provence-Alpes-Côte d’Azur -9101.09 2590.67 -3.51 0.00

Rhône-Alpes -7004.94 2592.32 -2.70 0.01

Table II.9 – Region fixed effects
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C. Map of connected wind farms

C Map of connected wind farms

Figure II.10 – Map of wind connected wind farms on January 1st, 2015. Source: Windustry France
(2015). Note: Values of connected capacity do not match our data exactly as we only have connections
on Enedis’ network.
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Chapter III

Self-rationing revisited: extensions and

application to prosumers

About this chapter

Having started this article during the last semester of my PhD, I have not had the time to present it in
seminars, except rather informally at the FAEE summer workshop in July 2018 in Paris. Nevertheless,
I had fruitful conversations with Anna Creti and René Aïd at Dauphine, as well as with Laurent Gilotte
and Mathieu Bordigoni at Enedis. I also received valuable comments from Nicolas Astier at the FAEE
workshop. I thank all five of them for their help and interest in this work.

Abstract

In some countries, electricity network (or utility) tariffs include a capacity charge for residential cus-
tomers, in addition to the more traditional energy rate. This charge is determined by the consumer’s
subscribed capacity, which limits his instantaneous consumption. This paper investigates how this self-
rationing framework can be adapted to modern electricity retail markets, where real-time pricing is
technically feasible and where consumers can install a decentralised production unit (DPU) and become
“prosumers”. Thus, after a thorough review of the literature, we extend the traditional setup of Panzar
and Sibley (1978) to take these specificities into account. The distribution network being subject to
economies of scale, we compute second-best energy and capacity prices. We prove that although the
second-best price of energy is always higher than marginal cost, it is not always the case for the price
of capacity, which highly depends on peak and off-peak elasticities. Then, we analyse how these prices
should vary in the presence of prosumers, in the short and in the long run. In particular, we show that
they can increase or decrease, depending on the attained level of prosumers.
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1 Introduction

Although there is almost a consensus on the fact that electricity networks are natural monopolies1 and

as a consequence should be regulated, there is no consensus on the form this regulation should take,

especially when it comes to distribution network (or, in the US, public utility) tariffs. For example in

Europe, we observe a variety of such tariffs, as illustrated by table III.1 in appendix A.1. Almost all

countries rely on an energy charge, often with a fixed fee (17 out of 28 countries), and nine have in

addition a capacity charge. The Dutch case is particular, as there are only fixed and capacity charges in

the Netherlands, in a “telecommunications fashion”. Also, with the exception of Spain and Sweden (and

of course the Netherlands), all tariffs put more weight on the energy part. Even though for commercial

and industrial customers the capacity charge can refer to the maximum demand reached during a billing

period, AF-Mercados EMI et al. (2015) note that for households maximum power is controlled by the

means of a circuit breaker. In this case, we can talk of subscribed, access, or contracted capacity instead

of maximum demand to avoid ambiguity, and of self-rationing, in opposition to price rationing or priority

service (“interruptible contracts”). Although commercial and industrial customers are billed based on

the real maximum power, AF-Mercados EMI et al. (2015) mention that they often have a capacity

subscription but are not constrained by it and they instead pay a high fee if they consume more than

their contractual capacity. In the US, demand charges rarely concern residential customers and hence

usually refer to maximum demand charges (MDCs).

Within a country, the distribution tariff can be further complicated, in particular with time differ-

entiation and consumer segmentation. In France, the energy rate depends on the capacity subscription,

as shown in table III.2 in appendix A.2. In its fifth version of the tariff, called TURPE2 5, there are five

categories: short use CU, with one or four time ranges; mid use MU, with one or two (peak/off-peak)

time ranges; and long use LU, with no time differentiation. We notice that the lower the time differentia-

tion, the higher the capacity charge and the lower the energy charge. Although the energy rate can take

up to four different values, depending on the time of day (for instance, “peak” time runs from 7 a.m. to

11 p.m.) and season (the “high” season runs from December to February, and includes 61 additional days

to be determined - in practice, it covers the winter, from November to March), “old” meters are at best

only able to differentiate between peak and off-peak. In addition, while new, “smart” meters are being

deployed and can distinguish between up to ten time periods, in fact residential customers are usually
1See for example Filippini (1998), Growitsch et al. (2009) or Farsi et al. (2010) for empirical evidence on economies of

scale in electricity distribution.
2Tarif d’utilisation du réseau public d’électricité, i.e. literally: public electricity network use tariff.
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not faced directly with the distribution tariff, which is paid by directly their electricity supplier. The

latter may, in return, charge the customer in a different manner. These peculiarities can for example be

observed in the regulated retail prices still proposed by the incumbent EDF, which consist in only two

tariffs for residential customers: one without time differentiation, and one with peak/off-peak prices.

These differences in network tariffs raise a number of questions. The first of which is a rather naive

one: what tariff should be adopted? More precisely, is a capacity charge justified, how should it be

designed, and how much should it weigh in the total bill? Also, how can a capacity charge be used in

conjunction with time-of-use (TOU) energy rates, as in the French case? This last question is likely

to become more and more important, as “smart” meters are being deployed, enabling the use of TOU

rates and even real-time pricing. In addition, network tariffs are intimately linked to an objective of

cost recovery, since the existence of a natural monopoly rules out first-best marginal cost pricing as a

viable option. Thus, can energy and capacity prices be used to achieve this goal, and how?

Besides, recent years have seen the emergence and development of electricity “prosumption” (or

self-consumption), with “prosumers” producing (partially or totally) their own electricity using a decen-

tralised production unit (DPU) such as a rooftop solar panel. In the absence of dedicated subsidies,

network tariffs directly affect the profitability of electricity prosumption, and hence its proportion in the

system. In return, despite some possible environmental benefits (e.g. reduction of greenhouse gas emis-

sions), self-consumption, and decentralised generation (DG) in general, raise additional issues regarding

network tariffs.

On the one hand, DG has an influence on network management and investment needs: it may cause

short-run management costs, for instance due to reverse flows, but also reduce power losses if electricity

is consumed locally. In the long run, it may reduce the overall network capacity, if consumption can be

synchronised with production (possibly using a storage device). Tariffs should therefore send efficient

price signals to help minimise short-term congestion and management costs, and long-term investment

costs.

On the other hand, self-consumption is often accused of worsening the cost recovery issue DSOs

and public utilities. Indeed, as we have seen, most tariffs rely on an energy (or volumetric) charge,

and some on a capacity charge as well. In the presence of prosumers, the volume consumed from the

network decreases, which creates less revenue for the DSO. This is particularly true when net-metering

is applied, i.e. when only net imports are used instead of differentiating imports and exports as is the

case in net billing3. This requires either a “smart” meter or two “traditional” ones in order to measure
3Net purchasing, and dual or double metering are other denominations.
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flows in both directions. Even if net purchasing can theoretically solve the issues raised by net metering

(Gautier et al., 2018), it requires of course that optimal prices be implemented. In addition, capacity

charges are also likely to decrease the revenue available to the DSO, as prosumers may choose a lower

capacity subscription. They will do this if they manage to synchronise most of their consumption with

their production, possibly using a storage device such as a battery.

As a consequence, tariffs should be designed so as to raise enough revenue for the DSO while sending

least-distorting incentives towards an efficient use of the grid in the short as in the long run, and towards

a sensible promotion of self-consumption. Building on the existing literature on self-rationing and on

more recent contributions on DG and prosumption, this article addresses these issues in a theoretical

framework. In particular, we show that the “traditional” model of self-rationing can be extended to

include time-varying prices and prosumers, which we treat separately for the sake of simplicity. We also

briefly examine the cases of non-coincident as well as interdependent demands.

Under relatively standard assumptions, we derive second-best prices for energy and capacity with

and without prosumers and discuss the role of several parameters such as peak and off-peak elasticities.

We study four scenarios based on two criteria.

Firstly, we distinguish the short and long-term perspectives: in the short run, capacity costs are

sunk and prosumers worsen the issue of cost recovery, whereas in the long run costs are variable and

the network can adapt to the new environment.

Secondly, we compare the situation in which consumers can choose their contracted capacity (such

as in France) to the hypothetical situation in which they pay according to their connected load. Such a

pricing scheme would work like a (possibly discriminating) fixed fee, as it forces the consumer to pay for

the built capacity, whether he fully uses it or not. This seems more adapted to a short run situation, as

it creates inefficiencies in the long run. Admitting it could make sense for consumers who build a new

house and ask for a new connection, it may seem unfair to other users, who did not decide the capacity

level of their installation. It exists for example in Malaysia, where it is applied to new medium and high

voltage consumers, but only when maximum load remains lower than 75% of the connected load4. In

this case, it aims at discouraging new customers to ask for unnecessary capacity.

Finally, the remainder of the article is organised as follows. In section 2, we put together a compre-

hensive literature review on self-rationing, which is possible since it is rather limited. We also discuss

the literature on cost recovery and the more recent one on prosumers. Then, we expose a general formu-

lation of the self-rationing problem in section 3, before presenting a solution to the consumer program
4https://www.tnb.com.my/commercial-industrial/charges-penalties
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in the case of time-independent demand and stochastic prices, along with some examples. In section

5, we focus instead on time-dependent consumers facing uniform prices, as in the original self-rationing

literature. Restricting ourselves to a two-period situation, we derive second-best prices, and we explore

extensions to non-coincident and interdependent demands in appendix B. Prosumers are then intro-

duced in section 6 using the same two-period model, and second-best prices are computed in the four

scenarios described above. Section 7 concludes.

2 Literature review

2.1 Self-rationing

On the one hand, this paper is directly inspired by the literature on self-rationing, which is, surprisingly,

rather limited. Indeed, scholars have much more often treated the issue of rationing using prices, and

in particular peak-load pricing, following the seminal work of Boiteux (1949, 1960), Houthakker (1951)

and Steiner (1957), just to name the main early contributions. Nevertheless, there are some similarities

between peak-load pricing and self-rationing, which we will highlight in this paper. Although self-

rationing can be applied to several network industries, most authors have stated electricity as the main

(and almost unique) application, as is also the case for peak-load pricing.

Self-rationing was initially studied by Panzar and Sibley (1978), to which we will refer to as P-S. In

their model, consumers buy a “fuse”5 limiting their electricity consumption to a predetermined capacity.

Energy and capacity are priced linearly, and their respective marginal costs are constant. Assuming that

the installed capacity is equal to the sum of all subscribed capacities, P-S show that welfare-maximising

energy and capacity prices under self-rationing are the marginal costs. Furthermore, if all consumers

react similarly to the state of nature (e.g. temperature)6, then it also yields the first-best optimum. If

this is not the case, welfare will generally be lower than “if ex post rationing via greatest willingness to

pay could in fact be accomplished costlessly” (p. 892). The main reason for that is the risk of “excess load

relief”, or “idle capacity”. Indeed, some consumers may be constrained by their fuse without the system

being at maximum capacity. The second reason is that even if all consumers are constrained, there is

no reason for their marginal willingness to pay to be equal. In both cases, welfare would be improved

if capacity could be reallocated or traded costlessly between customers. Also, installed capacity would
5In fact, it would rather be a circuit breaker, as a fuse can only be used once. Also, consumers would not directly

“buy” it, but rather its capacity, which may vary without changing the whole device. With “old” meters this may require
an intervention on the meter, but it can be done remotely with relatively new meters such as “smart” ones.

6Formally, when the utility function of consumers is weakly separable in consumed quantity and consumer type.
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not have to be equal to the sum of all subscriptions.

In a more general framework, Oren et al. (1985) extend the P-S model by deriving the optimal

monopolistic pricing of a service with two attributes (such as consumption rate - i.e. power - and duration,

or quantity and quality) subject to capacity constraints in each attribute. They consider a general

cost function that includes fixed, capacity, and non-constant marginal costs, and derive corresponding

nonlinear prices. They show that usage, capacity and subscription prices follow the inverse-elasticity

rule and are defined recursively, which enables to compute them numerically. However, they do not

address the two problems identified by P-S.

Schwarz and Taylor (1987), to which we will refer as S-T, generalise the P-S model by letting the

fuse capacity be attained several times during a billing period, thus leading to a higher capacity than

in P-S. Furthermore, they consider imperfectly correlated customers, so that installed capacity may be

lower than the total subscribed capacity. In particular, if total expected demand varies proportionally

with the sum of capacity subscriptions, so does the optimal capacity price with respect to the marginal

cost of capacity. However, this does not fully solve the issue of idle capacity. If there is no strict

proportionality between installed and subscribed capacity, they argue that the capacity charge should

be different among customers.

Woo (1990) combines self-rationing (P-S and S-T) with priority service (e.g. Chao and Wilson, 1987;

Marchand, 1974; Wilson, 1989). He suggests that consumers be able consume above their fuse capacity,

but that the system operator may limit their consumption if necessary (it is not clear how that would

be possible in practice) when total consumption reaches system capacity. Although this scheme would

indeed improve welfare in the case of uncorrelated consumers, it does not completely solve the issue of

“excess load relief”, as pointed out by Doucet and Roland (1993) and acknowledged by Woo (1993), as

it brings back to fuse capacity the consumption of those consuming above it.

Meanwhile, Woo (1991) studies how already built capacity should be priced and allocated so that

fixed and capacity costs are recovered. As in P-S, he demonstrates that if consumers react similarly

to the state of nature, then his pricing scheme is optimal. Later, Doorman (2000) studies “random

allocation” and “optimal allocation according to willingness to pay” of the remaining (“idle”) capacity

when fuses (or, in his terms, load-limiting devices - LLD) are activated. Although the latter option

would entail marginal cost pricing and maximum welfare, it would be harder to implement than the

former. He summarises his findings in Doorman (2003).

Lee (1993) extends the model of S-T by adding the possibility for the utility to purchase “electricity
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from third-party suppliers (e.g., independent power producers, IPPs) at some cost greater than its own

operating cost.” This may also model a peak technology with zero capacity cost. Since the utility is

constrained to sell electricity at a uniform price, both energy and capacity prices are affected by this

additional technology, and first-best prices are derived.

Bernard and Roland (2000) analyse self-rationing jointly with “regular service”. They show that if

peak demand is less elastic than average demand, then the profit constraint on the regulated monopoly

is binding (although costs are linear), and “there exists a cross-subsidy from the self-rationing program

to regular service”. If there is in addition a no-cross-subsidy constraint, then the set of regular service

users is not empty only if there is a transaction cost (in their model, a fixed fee) incurred by self-rationed

consumers.

Finally, it is interesting to note that self-rationing is in a way similar to access capacity pricing in

the telecommunications industry, which is also close to the peak-load pricing literature. However in the

latter case, the question concerns access capacity pricing by an incumbent to potential entrants7.

2.2 Prosumers and network cost recovery

On the other hand, we are interested in utility or network tariffs in the presence of prosumers. On

the contrary to self-rationing, the literature on “prosumption” is relatively recent, and has followed the

emergence and growth of decentralised generation during the last two decades. In particular, most of

this literature has focused on optimal promotion policies (e.g., Brown and Sappington, 2017b), tariff

design and (sunk) cost recovery. The latter subject is older and more general, and is not only related to

the development of distributed generation. Indeed, the issue of cost recovery for a natural monopoly8

is a very old one in the economics literature, and began with the so-called “marginal cost controversy”9.

Hotelling (1938) was a pioneer in discussing this issue, followed by Coase (1946, 1947), among others. A

decade later, Boiteux (1956) derived second best prices for a monopoly subject to a budget constraint

and showed that these prices must follow the inverse elasticity rule. This result had been already found

by Ramsey (1927) for optimal taxation, and was later summarised by Baumol and Bradford (1970).

However, these early contributions have rarely been applied to the electricity sector. Rather, network

(or utility) tariffs have more relied on averaged cost, tiered (declining- or increasing-block), and time-

of-use (TOU) pricing, sometimes with additional fixed or capacity charges. Borenstein (2016) discusses
7See for example Calzada (2007) for a review of this literature.
8See Baumol (1977) for a discussion on the definition of a natural monopoly and on relationships among several cost

concepts.
9See for example the review of Frischmann and Hogendorn (2015).
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the pros and cons of several tariff designs aimed at recovering fixed costs. In particular, he considers

(maximum) demand charges (MDCs) to be unjustified economically, in contrast with Seeto et al. (1997),

who argue that “a Hopkinson tariff[10] with demand subscription [i.e. self-rationing] is superior to TOU

rates”.

It is important to note that in the United States, capacity (or demand) charges usually refer to

maximum demand11 reached during a billing period (e.g., a month) rather than to subscribed capacity

by the consumer (which is usually the same over several billing periods). In the latter case, access

capacity is charged whether it will be reached or not. Thus, it is a much more precise load-management

tool for the utility. However, both methodologies are inefficient in that the maximum demand of a

consumer may not coincide with system or network peak. Although MDCs are much more widespread

than access capacity pricing, at least for commercial and industrial customers12, there seems to be even

less theoretical literature on this subject than on self-rationing. Berg and Savvides (1983) seem to have

been the first to model consumers’ behaviour subject to a MDC. They show in particular that the

resulting budget line is kinked, so that the demand curve is not continuously differentiable and may

even be discontinuous. Similarly, we will show that the capacity demand function as well as average

demand are not continuously differentiable either. As opposed to self-rationing however, there exist

some empirical studies on demand charges: Veall (1983), Caves et al. (1984) Taylor and Schwarz (1986,

1990), which showed that a demand charge could indeed help reduce peak consumption.

Distributed generation (DG) further complicates the issues related to network tariffs such as cost

recovery or equity, and calls for new tariff designs (Picciariello et al., 2015a). For example, under net

(or single) metering, prosumers are charged according to their electricity consumption, net of DPU

production. In other words, DPU production is valued at the retail price, which includes in particular

volumetric taxes (some of which are the cost of subsidies to renewable energy sources) and network

charges, which should increase in order for the TSO and DSO to break even. Thus, in addition to

being inefficient (Brown and Sappington, 2017a), net metering has distributional effects, with “regular”

consumers subsidising prosumers (Eid et al., 2014; Picciariello et al., 2015b; Johnson et al., 2017). In

return, there might by an overinvestment in DG, and possibly a so-called “death-spiral”. For example

in Wallonia, Gautier and Jacqmin (2018) show that an increase in 1ce/kWh of the network tariffs led

to an increased new DPU installations by roughly 5%.
10Hopkinson rates or tariff (also known as Wright rates), are another name for a maximum demand charge (although

Hopkinson suggested the use of the “connected load” (Hopkinson, 1892).
11Typically, it is the average demand over 15, 30 or 60 minutes rather than the maximum instantaneous power that is

recorded.
12See for example Neufeld, 1987 or Yakubovich et al., 2005 for a historical perspective.
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However, net metering is not the only cause for that, but it is rather the combination of net metering

with (mostly) volumetric charges that is problematic. In particular, net metering is not used everywhere.

Nevertheless, Gautier et al. (2018) show that under net purchasing, the inefficiencies arising from net

metering disappear. Other authors argue that the use of higher demand charges would be an appropriate

solution (Hledik and Greenstein, 2016; Simshauser, 2016). However, Schittekatte et al. (2018) challenges

these claims. Indeed, using a game-theoretical optimisation model, they study the efficiency and equity

of several network tariffs when network costs are sunk: volumetric with net metering and net billing, and

capacity-based charges. In particular, they show that net billing outperforms a capacity-based tariff.

Finally, in a recent paper Brown and Sappington (2018) analyse the role of MDCs in the presence

of DG under net metering. Using both theoretical modelling and numerical simulations, they show that

MDCs can help increase welfare and secure gains for regular consumers, and sometimes for prosumers

as well.

3 General case

3.1 Preferences

Following the literature on self-rationing, let us consider a continuum of consumers indexed by θ ∈

[θL, θH ]. Their aim is to maximise their expected utility E[U(q, Y, t, n, θ)] subject to the budget con-

straint M = Y + p.q, where p and q are the (possibly continuous) vectors13 of electricity prices and

consumptions over the studied period of length N ,M is the available income, Y the numeraire commod-

ity, t the (possibly multidimensional) state of nature such as temperature, and n is time. For simplicity

and comparability with the literature, we assume the utility of all consumers to be quasilinear in income,

i.e.:

U(q, Y, t, n, θ) = Y + u(q, t, n, θ) (III.1)

Thus, expected utility maximisation is equivalent to expected consumer surplus maximisation, or equiv-

alently, demand is independent of income and consumers are risk-neutral (Stennek, 1999). This assump-

tion is standard in the literature and has been discussed abundantly14. Furthermore, unless specified

otherwise, we do not consider inter-temporal substitution15, so that we can write the instantaneous gross

consumer surplus as ui(qi, θ) =

ˆ qi

0
Pi(q, θ)dq, where i = (t, n), Pi(qi, θ) =

∂ui
∂q

(qi, θ) is the (conditional,

13Vectors are written in bold and . denotes the inner product.
14See Willig (1976) for a discussion on the use of consumer surplus as a welfare measure for non-random prices, and

Schlee (2008) for random prices.
15Interdependent demands are treated in appendix B.3.
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or instantaneous) inverse demand function, or marginal willingness-to-pay, and does not depend on the

consumption at other instants and states of nature. We can also define a demand function Di = P−1i ,

which only depends on the current price pi.

3.2 First-best: peak-load pricing

As a benchmark, let us quickly derive the first-best solution, which is only possible if the consumer can

be charged in real time. Let us suppose that network capacity Q is built at cost CN (Q) and that at

instant n, producing and supplying a quantity qn ≤ Q of electricity costs Cn(qn). Since we are interested

in network tariffs only, we assume that the only constraint is the limited network capacity. In practice

we could consider a system capacity cost that would include plant and network capacity. Consequently,

the social planner’s program is the following:


Max
qi,Q
{E[ui(qi)− Ci(qi)]− CN (Q)}

s.t. ∀i qi ≤ Q
(III.2)

When qi < Q the constraint is not binding and we have Pi(qn) = C ′i(qi), i.e. the price pi paid by

consumers should be equal to the marginal cost of supplying electricity. When qi = Q, the price is given

by the intersection of the demand and supply functions, so that pi = Pi(Q) ≥ C ′i(Q), and the optimal

level of capacity is given by:

E[(Pi(Q)− C ′i(Q))+] = C ′N (Q) (III.3)

where (x)+ =
not.

Max(0, x). Equation 3.2 simply states that at the optimum the marginal cost of network

capacity is equal to the congestion rent when capacity is fully used. This is a special case of peak-load

pricing, as introduced by Boiteux (1949). In particular, it shows that at the optimum the capacity

constraint must be saturated during at least one state of the world with strictly positive measure. It

follows that a network whose capacity is never saturated is sub-optimal.

Unfortunately, it is well known that if the capacity cost function CN is subadditive (which is the case

in presence of increasing returns to scale for a mono-product firm), then costs are not fully recovered

under this pricing scheme. The second-best optimum (in which the network operator has a zero profit)

is then given by the famous Ramsey-Boiteux prices (Ramsey, 1927; Boiteux, 1956), that create the least

distortion with respect to marginal cost pricing.
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3.3 Consumer program

Each consumer is to choose ex ante a subscribed capacity (also called fuse or access capacity) A, which

limits his consumption by the means of a circuit breaker, and for which he pays a fixed amount T (A)16.

Although most recent metering devices can measure both the active and reactive powers, so that

the access capacity is often given in kVA17, we will assume for simplicity that all the power is active,

so that virtually “kVA=W”. This is also called the direct current (DC) approximation, since there is

no reactive power in a DC circuit. In practice however, many domestic appliances use both active and

reactive power, e.g. computers, televisions, refrigerators, LED bulbs, washing machines, phone chargers,

etc. This may force some consumers to change their access capacity when their metering device is

replaced by their distribution system operator (DSO). In France, only customers with access capacity

higher than 36 kVA are charged on both their active and reactive powers.

In France, residential consumers usually choose between 3, 6, 9, or 12 kVA18, even though the

capacity of the lines they are connected to may be higher than that19. According to AF-Mercados EMI

et al. (2015), the average contracted capacity in Europe is 6 kW (or kVA). In Belgium, where there is no

capacity charge, most meters are limited to 40 A, i.e. 8.8 kVA (tension is 220 V)20. The chosen capacity

usually depends on the number of electric appliances, and in particular on the type of heating system.

In the low-voltage domain, subscribed capacities can go up to 36 kVA, still in a discrete fashion. For

simplicity however, we will suppose that access capacity can vary continuously.

We wish to determine the value of A chosen by the consumer when his demand Di and the retail

price pi are stochastic with known joint distribution. When choosing his capacity level, the consumer

faces a trade-off between the additional surplus he can get from low prices thanks to a higher capacity,

and the price of the capacity. The consumer thus maximises the following expected surplus with respect
16In practice he pays it for a billing period, typically a month or a year. As discussed in the previous section, in the

seminal papers on self-rationing consumers were said to “buy a fuse” of limiting capacity A.
17The volt-ampere, or VA, is the unit used to measure the apparent power, which is the square root of the sum of the

squares of real (active) power (in watts - W) and reactive power (in volt-ampere reactive - var).
18Capacity subscriptions within these bounds are also possible, not are usually not proposed by electricity retailers.

Tariffs for residential customers also include 15, 18, 24, 30 and 36 kVA and values in between.
19In reality, it is rather difficult to give a definition of the “connection capacity” of a customer, because it does not only

depend on the capacity of the last cable which connects him, but also upstream cables, transformers, etc. However, a
single residential customer is not likely to affect the whole system upstream by changing his access capacity.

20CallMePower (2018).
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to A:

ES = E[Si(Di(pi))− piDi(pi)|A ≥ Di(pi)]× P[A ≥ Di(pi)] (III.4)

+ E[Si(A)− piA|A ≤ Di(pi)]× P[A ≤ Di(pi)]

− T (A)

which leads to the following optimality conditions:


∂ES

∂A
= E[Pi(A

∗)− pi|A∗ ≤ Di(pi)]× P[A∗ ≤ Di(pi)]− T ′(A∗) ≤ 0

A∗ ≥ 0, A∗.
∂ES

∂A

∣∣∣∣
A=A∗

= 0

(III.5)

This is equivalent to equation (5) in S-T (which was itself an extension of equation (5) in P-S), but

with time-varying prices and a possibly non-linear capacity price. The consumer equalises the expected

marginal net surplus he can get from consuming a quantity A21 when he is constrained to do so with

the marginal cost he faces.

Finally, it is possible to have P[A ≤ Di(pi)] = 1, i.e. the consumer always consumes his maximum

available capacity. This situation is similar to the “shifting peak” initially described by Steiner (1957).

This can arise for instance if the marginal cost of capacity is very high and/or the price of electricity

is very low, or if the demand is constant (e.g. for an industrial customer producing 24/7). In this case,

the problems simplifies to:

E[Pi(A)− pi] = T ′(A) (III.6)

In the following, we will mainly focus on “firm peak” cases, as it is more consistent with reality (for

residential customers at least).

3.4 Social planner’s program

When we consider a population of consumers indexed by θ, P-S and S-T have shown that in the case

of weakly separable preferences in consumption (q) and θ, i.e. when u(q, i, θ) = u(h(q, θ), i), pricing at

marginal cost yields the first best. This assumptions means that the consumers’ reaction to the state

of the world t (e.g., temperature) is “similar”. Extending their result to the case of time-varying supply

costs (i.e. pi = C ′i(q) and T ′ = C ′N ) is straightforward and was done by Oren et al. (1985).

When this assumption is not true, S-T show that marginal cost pricing still stands for energy, but
21In the remainder of the article, we will use A instead of A∗ in order to alleviate notations.
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not for capacity, which should not be priced identically for all consumers.

4 Time-independent consumer facing stochastic prices

4.1 Analytical solution

In this section, we consider a time-independent consumer facing stochastic prices. This enables us to

derive simplified expressions for the capacity demand function. It is a natural and complementary

extension of the traditional setup, which considers uniform prices but varying demand. In particular,

it highlights how a self-rationing consumer would choose his access capacity when faced with real-time

prices (RTP), as may become the case in a somewhat near future thanks to so-called “smart meters”.

More precisely, we assume that the price is exogenous and stochastic with known probability and

cumulative density functions g and G on [pL; pH ], and mean E[pt] =
not.

p. This situation could arise for

example if the consumer is on a real-time meter, that perfect competition on the wholesale market leads

to electricity prices equal to the marginal cost of production, and that his consumption has no effect on

the price.

Under the assumption that T is an increasing function of A, we necessarily have A ≤ D(pL), as

it would not make sense for the consumer to buy more capacity than his maximum consumption. On

the contrary, there are two possibilities regarding high prices: either A ≤ D(pH) (shifting peak) or

A ≥ D(pH) (firm peak). In the former case, the problem is easy to solve, as we then have D(pt) = A

for all i, and equation III.6 rewrites:

A = D[p+ T ′(A)] ≤ D(p) (III.7)

In this special case, the marginal cost of capacity faced by the consumer (or, in the case of a linear

tariff, the price of capacity) plays the same role as the electricity price, which in the case of real-time

pricing and perfect competition is the marginal cost of electricity. The second-order condition yields

E[P ′(A)]−T ′′(A) ≤ 0, and we must also make sure that A ≤ D(pH), i.e. T ′(A) ≥ pH−p. The consumer

will thereupon consume less than what he would wish to do in every state of the world if the marginal

cost of capacity he faces is bigger than the difference between the highest price and the mean price.

Finally, this formula only makes sense if A ≥ 0, or T ′(A) ≤ P (0)− p, and if ES ≥ 0 (which depends on

the level of the fixed charge A). If T is an affine function of A, e.g. if T (A) = m+ kA, then the formula
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becomes explicit:

A = D(p+ k) (III.8)

Let us now consider the situation in which the consumer is not constrained in high-price states of

the world, i.e. A ≥ D(pH), or P (A) ≤ pH . Then, equation III.5 can be rewritten, dropping the index i:

ˆ P (A)

pL

[P (A)− p]g(p)dp = T ′(A) (III.9)

and the second-order condition is: P ′(A)G[P (A)]− T ′′(A) ≤ 0. When the upper bound of the integral

reaches pH , we get the result of the shifting-peak case. Integrating by parts, we obtain the following

implicit formula for A: ˆ P (A)

pL

G(p)dp = T ′(A) (III.10)

It may also be easier to use instead p∗ = P (A)⇔ A = D(p∗), so that the equation becomes:

ˆ p∗

pL

G(p)dp = T ′[D(p∗)] (III.11)

This equation has a solution if and only if
´ pH
pL

G(p)dp ≥ T ′[D(pH)], and in this case the solution is

unique if for example T ′′ ≥ 0, as we then have an increasing left-hand side and a decreasing right-hand

side in the equation. If
´ pH
pL

G(p)dp ≤ T ′[D(pH)], we are in the shifting-peak case A ≤ D(pH) described

above.

When capacity is priced linearly, i.e. T ′ = k, we have in addition the following partial derivative:

∂A

∂k
=

1

P ′(A)G[P (A)]
< 0 (III.12)

Thus, when k = 0, P (A) = pL and the above derivative becomes infinite. This is also the case when p

is constant and P is stochastic (as in P-S and S-T). When p∗ = pH , it is equal to
1

P ′(A)
= D′(p + k)

and is hence continuous.
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4.2 Examples

Peak and off-peak prices

As a first illustration, let us consider the simple case in which prices can only be equal to pL or pH , with

pL < pH and P[p = pH ] = λ. Then it is easy to show that A is given (implicitly) by:

A =


D

[
pL +

T ′(A)

1− λ

]
if A ≥ D(pH)⇔ T ′(A) ≤ (1− λ)(pH − pL)

D[p+ T ′(A)] if A ≤ D(pH)⇔ T ′(A) ≥ (1− λ)(pH − pL)

(III.13)

From this example we can easily see that if T ′ > 0 then A is a decreasing function of the probability

of high price λ: the less prices are low, the less it becomes interesting to invest in additional capacity

to benefit from these prices (case 1). Above a certain threshold, which is also decreasing with λ, the

consumption becomes always equal to the capacity, which is a decreasing function of the average price

p = λpH + (1− λ)pL, and hence of λ.

Continuous prices

Let us now examine some examples with prices that are uniformly distributed among [0, 1], T (A) =

m + kA, and demand is linear with D(p) = Max(1 − p, 0). The shifting-peak case requires that k ≥

pH − p = 1/2. Then, A = 0, as k + p ≥ 1. For k ≤ 1/2, we can deduce from equation III.11 that

p∗ =
√

2k, which holds as long as p∗ ≤ 1 ⇔ k ≤ 1/2. In the end, we come to the following capacity

demand function:

A(k) =


1−
√

2k if k ≤ 1

2

0 if k ≥ 1

2

(III.14)

If we consider the less elastic demand function D(p) = 1−p/2, we obtain the same result, as neither

the valuation of a free good nor the mean price have changed. If the demand changes proportionally:

D(p) = α(1− p), the result is not changed either. However if the demand becomes D(p) = 2− p while
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keeping the same price distribution then the capacity demand function becomes:

A(k) =


2−
√

2k if k ≤ 1

2
3

2
− k if

1

2
≤ k ≤ 3

2

0 if k ≥ 3

2

(III.15)

In all the above mentioned examples, a too high value of k prevents the consumer from buying, even

though he would like to do so. The average consumption of the consumer is also a function of k and

can be computed easily as well, for instance for this last choice of the demand function:

E[q](k) =


G(p∗(k))A(k) + [1−G(p∗(k))]E[D(p)|p ≥ p∗(k)] if k ≤ 1

2

A(k) if
1

2
≤ k ≤ 3

2

0 if k ≥ 3

2

(III.16)

=



3

2
−
(

3√
2

√
k

)
+ 3k −

√
2k3/2 if k ≤ 1

2

3

2
− k if

1

2
≤ k ≤ 3

2

0 if k ≥ 3

2

(III.17)

Thence, both capacity demand and mean consumption are decreasing with k, which was expected.

Furthermore, we can identify three domains: a firm peak region for 0 ≤ k < 1
2 , a shifting peak one for

1

2
≤ k <

3

2
, and a no-consumption one for k ≥ 3

2
. In this last region, there is no consumption even

though it would be desirable, given that the price of electricity can still be as low as 0. Too high capacity

prices may therefore harm some consumers. On the contrary, a “full” real-time pricing approach (i.e.

without capacity charge) would not prevent consumers willing to consume during low prices from doing

so (but may lead to higher transaction costs, as discussed in the next section).

In addition, as can be seen in figure III.1, contrarily to the capacity demand function, mean con-

sumption is not differentiable at the limit between the firm-peak and the shifting-peak regions. This is

similar to what was observed by Berg and Savvides (1983) for maximum demand charges.

5 Time-varying consumer facing uniform prices

In this section we consider the case of a time-dependent consumer facing a uniform price p. This is the

case for example when consumers are equipped with traditional meters which do not allow real-time
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Figure III.1 – Capacity demand function and average consumption

pricing. This is the usual setup of the self-rationing literature and the previously mentioned results

apply. However, we will present a simplified version of this setup, that will help us introduce several

extensions.

5.1 Simplified consumer program and examples

The demand is supposed to be stochastic and indexed by t, with known pdf f and cdf F on [tL; tH ],

and mean t. For simplicity, we consider a representative consumer (which is equivalent to having weakly

separable preferences), and that Pt increases with t, as in the literature. However, we will relax these

assumptions to analyse non-coincident demands in appendix B.2. As in the previous section, there are

two possible cases: either PtL(A) ≥ p ⇔ A ≤ DtL(p) (shifting peak) or PtL(A) ≤ p ⇔ A ≥ DtL(p)

(firm peak). In the shifting-peak case, the consumption is always equal to A and equation III.6 gives

the following first and second-order conditions:


E[Pt(A)] = p+ T ′(A)

E[P ′t(A)]− T ′′(A) ≤ 0

(III.18)

It is also required that A be indeed lower than DL(p). In order to make the model tractable, we can for

example suppose the following dependence of the demand function: Pt = tP , so that in the shifting-peak

case:

tP (A) = p+ T ′(A) (III.19)
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and A ≤ DL(p) = D

(
p

tL

)
rewrites T ′(A) ≥ t− tL

tL
p. Those equations are similar to the ones encoun-

tered in the stochastic price case. If in addition we have T (A) = m+ kA then:

A = D

(
p+ k

t

)
(III.20)

which is similar to equation III.8 for stochastic prices. If PtL(A) ≤ p⇔ A ≥ DtL(p), then let us define

as in the literature t∗ such that t∗P (A) = p⇔ A = D
( p
t∗

)
. Formula thus III.5 gives:

P (A)

ˆ tH

p
P (A)

tf(t)dt = p

[
1− F

(
p

P (A)

)]
+ T ′(A) (III.21)

which rewritten in terms of t∗ gives:

p

t∗

ˆ tH

t∗
tf(t)dt = p[1− F (t∗)] + T ′

[
D
( p
t∗

)]
(III.22)

which is similar to equation III.11.

Let us now consider a two-period case, in which the demand is low with probability λ and high with

probability 1−λ. This brings the following implicit expression for A, which is similar to equation III.13

for the two-price case:

A =


DH

[
p+

T ′(A)

1− λ

]
if A ≥ DL(p)

λPL(A) + (1− λ)PH(A) = p+ T ′(A) if A ≤ DL(p)

(III.23)

If in addition Pt = tP then we obtain: A ≤ DL(p) ⇔ T ′(A) ≥ (1 − λ)

(
1

tL
− 1

tH

)
p. If we denote by t̃

the harmonic mean of t, i.e. such that:
1

t̃
=

λ

tL
+

1− λ
tH

, the condition rewrites: T ′(A) ≥ p

tL
+
p

t̃
, which

is very similar to the condition T ′(A) ≥ pH − p obtained in the two-price case.

From now on, we will use this simplified model in the firm-peak case to describe some properties

and extensions of the access capacity demand function. To lighten the presentation, we present some

properties regarding the elasticities of the capacity demand function in appendix B.1, and extensions to

non-coincident demands and interdependent demands in appendices B.2 and B.3.
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5.2 First-best prices

Peak-load pricing

Denoting CS the cost function of the electricity supplier, the first-best solution would be to charge the

marginal cost pL = C ′S [DL(PL)] when the demand is low, and pH = PH(A) = C ′S(A) +
C ′N (A)

1− λ
when

the demand is high, which also give the optimal amount of capacity AFB. In the case of constant

production marginal cost b and constant capacity marginal cost β, we reach the following prices and

installed capacity: 

pL = b

pH = b+
β

1− λ

AFB = DH

(
b+

β

1− λ

) (III.24)

Note that the expression for these prices is nothing more than the one given by Williamson (1966).

Hence, with constant marginal costs and no fixed cost, the network operator recover its costs during

peak load periods if it receives the premium paid on the electricity price when demand is high. Similarly,

in the absence of fixed production cost, the electricity supplier recovers its costs fully in both periods.

Optimal energy and capacity prices

Suppose now that the social planner can only set a uniform energy price p and capacity price k (i.e.

T (A) = kA), and perfectly knows the consumer’s behaviour. The social planner’s program is then

modified as follow:

Max
p,k



λ

[ˆ DL(p)

0
PL(q)dq − CS [DL(p)]

]

+(1− λ)

[ˆ DH(p+ k
1−λ)

0
PH(q)dq − CS

[
DH

(
p+

k

1− λ

)]]
−CN

[
DH

(
p+

k

1− λ

)] (III.25)

Still assuming constant production marginal cost b, constant capacity marginal cost β, we get the

following first-order conditions with respect to p and k, respectively:


(k − β + (1− λ)(p− b))D′H

(
p+

k

1− λ

)
+ λ(p− b)D′L(p) = 0

k = β − (1− λ)(p− b)
(III.26)
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which leads to: 

p = b

k = β

A = AFB = DH

(
b+

β

1− λ

) (III.27)

Ergo, pricing electricity and capacity at their marginal costs leads to the first-best equilibrium as

long as there is a single technology of production with constant marginal cost and that preferences are

weakly separable, as originally shown by P-S. An analogy with wholesale electricity markets can be made

at this stage. Indeed, if there is only one technology of production with constant marginal cost b and

long-run capacity cost β, it is optimal to have an uncapped energy-only market as well as a regulated

energy market with capacity payments (or competitive capacity market). If there are two periods such

as in our model, an energy-only market design would achieve spot prices pL and pH as defined above.

On the contrary, a regulated energy market where energy is always priced at its marginal cost would

give p = b, and a capacity payment equal to k = β would allow the recovery of capacity costs. In both

cases, if there are no economies of scale, all costs are recovered.

Self-rationing with peak-load pricing

Whenever there are more than two periods with unconstrained technologies of production, the first-best

will not be achieved by the use of only two price instruments. Contrarily, it is obvious that using the

three instruments pL, pH and k, the two-period problem is overdetermined, even if there are two different

marginal costs cL ≤ cH that correspond to the low and high demand periods. Although we still have

pL = cL, pH and k are linked by the following equation:

k − β
1− λ

+ pH − cH = 0 (III.28)

so that a continuum of possible prices can lead to the optimum. An additional independent equation

would then be required to determine a unique solution. Nevertheless, two “natural” solutions would be

to set either pH = cH and k = β or pH = cH +
β

1− λ
and k = 0.

However, when the number of states becomes “important”, setting k = 0 and relying only on energy

prices may become costly (in terms of transaction costs) for the consumer, who would have to adapt his

consumption to what could come close to “real-time” prices. Therefore, using self-rationing with capacity

pricing may help achieve a more efficient outcome. Indeed, subscribed capacity is a rather simple notion
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to understand, and contrarily to energy prices, the price of capacity does not change with time. If

electricity prices can be relatively anticipated, the consumer will choose his capacity subscription in a

similar way to what we presented in the previous section. On that account, the consumer may wish to

limit the number of possible price signals he may receive, in exchange for being priced according to his

access capacity.

5.3 Second-best pricing

The absence of fixed costs may be true in a long-term perspective, but in the short or medium term, the

network capacity cannot be adjusted as desired. This can be modelled as fixed costs, that need to be

recovered by the network tariff. Even though marginal cost pricing still leads to the first-best outcome,

fixed costs are undoubtedly not recovered. Furthermore, the issue of cost recovery is not just limited

to fixed costs, and emerges as soon as we are dealing with a natural monopoly, i.e. whose cost function

is sub-additive. In this case, the social planner maximises social welfare subject to a zero-profit (or

minimum profit) constraint. In the case of constant marginal costs, this yields:

Proposition 1. In a firm-peak situation with two states of the world, uniform energy and capacity

second-best prices are given by:


pSB = b− µ

(1 + µ)

DL(pSB)

D′L(pSB)

kSB = β + (1− λ)
µ

1 + µ

DL(pSB)

D′L(pSB)
−
DH

(
pSB + kSB

1−λ

)
D′H

(
pSB + kSB

1−λ

)
 (III.29)

where µ > 0 is the Lagrange multiplier associated with the DSO/utility budget constraint. Hence,

p follows the famous Ramsey inverse-elasticity rule:

pSB − b
pSB

=
µ

1 + µ

1

εL(pSB)
> 0 (III.30)

where εL = −pD′L/DL is the low-demand price elasticity. Conversely, the expression for k is more

complicated, and the additional term with respect to the marginal cost does not even have a clear sign.

For example, with constant elasticities εL and εH , we have:

kSB − β
kSB

=
µ

1 + µ

[
1

εH
+ (1− λ)

pSB

kSB

(
1

εH
− 1

εL

)]
(III.31)
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Assuming pSB +
kSB

1− λ
> 0, we then obtain the following corollary:

Corollary 1.1. When peak and off-peak demands have constant but different elasticities, second-best

prices put more relative weight on capacity than on energy if and only if peak demand is less elastic than

off-peak demand, in which case capacity is also priced at a premium:

kSB − β
kSB

≥ pSB − b
pSB

⇔ εH ≤ εL ⇒ kSB > β (III.32)

This result is consistent with the inverse-elasticity rule, even though it writes a little differently.

Nevertheless, if we note pSBL = pSB and pSBH = pSB + kSB

1−λ , which would correspond to low and high

prices in the case of peak-load pricing, it is easy to show that they both follow the inverse-elasticity

rule. Thus, the fact that k may be lower than β is similar to the potential reversal in peak and off-peak

prices described by Bailey and White (1974).

In particular, if peak demand is highly elastic, it may even be optimal to subsidise access capacity.

This is due to the fact that energy and capacity are complements. Indeed, the general formula for

second-best prices, given for example in Crew and Kleindorfer (1986), p.20, writes:

∑
j∈N

(pj − Cj)
Xi

∂Xi

∂pi
=
∑
j∈N

Rj
Ri

(pj − Cj)
pj

ηji = − µ

1 + µ
, i ∈ N (III.33)

where ηji =
pi
Xj

∂Xj

∂pi
is the (cross-)elasticity and Ri = piXi is the revenue from product i. Then, since

they consider a quasi-linear utility function, Hicksian and Marshallian demands coincide, so that the

notions of gross and net substitutes/complements coincide. In particular, cross-derivatives are equal22,

so that the formula becomes: ∑
j∈N

(pj − Cj)
pj

ηij = − µ

1 + µ
, i ∈ N (III.34)

or, in the two-product case:

(pi − Ci)
pi

= − 1

∆

µ

1 + µ

(
ηjj −

Rj
Ri
ηji

)
, i 6= j ∈ {1, 2} (III.35)

where ∆ = η11η22 − η12η21 is positive if own-price elasticities dominate cross-elasticities. As pointed

out by Bernard and Roland (2000) formula III.35 can be applied to subscribed capacity and mean

consumption Ā (= λDL+(1−λ)A in our case). They also show (p.180) that in order to have a markdown
22This is also known as the “integrability condition”, which also makes consumer surplus path-independent in the case

of interdependent demands (Hotelling, 1932).
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on either energy or capacity prices “we must either have the own-price elasticity of subscribed power

(evaluated at optimal prices) dominated by the average consumption cross-elasticity with respect to

subscribed power price k or the own-price elasticity of average consumption dominated by the subscribed

power cross-elasticity with respect to the price of energy.” Our result shows that in a two-state case,

there can only be a mark-down on k, while there is necessarily a mark-up on p. Moreover, we give an

interpretation in terms of peak and off-peak elasticities, which we believe are more easy to compare

than subscribed power and mean consumption elasticities (the former can be defined from peak demand

elasticity, as shown in appendix B.1).

Unfortunately, it is not clear whether peak or off-peak demand is more elastic, as there are arguments

in favour of both situations. On the one hand, one might argue that off-peak consumption consists in

“basic” and rather constant (in a given time period) needs such as lighting, heating and cooling, whereas

peak consumption may include additional appliances such as televisions, computers, washing machines,

electric vehicles, etc. Ergo, it appears that peak consumption can more easily be shifted and is therefore

more elastic. On the other hand, the “basic” needs mentioned above usually coincide with peak demand.

For example in France, there is a peak in electricity consumption on winter evenings. This is due to

individual electric heating and lighting23, which are less used during the day. In this case, peak demand

may appear less elastic. So, peak and off-peak elasticities appear to be time-contingent, which further

complicates the analysis. In addition, when elasticities are not constant with respect to energy rates,

this result does not hold. For example, we have:

Corollary 1.2. When peak and off-peak demand functions are linear and proportional (in which case the

elasticity increases from 0 to infinity as the price increases from 0 to the “no-buy” threshold), capacity

is always subsidised:

kSB − β
kSB

=
−µ

1 + µ
< 0 (III.36)

⇔ kSB =
1 + µ

1 + 2µ
β < β (III.37)

Finally, we can show that under constant marginal costs b and β, and fixed costs F , the zero-profit

condition yields:
µ

1 + µ
= −

FD′LD
′
H

λD2
LD
′
H + (1− λ)D2

HD
′
L

(III.38)

where DL and D′L (resp. DH and D′H) are evaluated at pSB (resp. pSB + kSB

1−λ). This reminds us that

23The importance of lighting decreases as light bulbs become more efficient, especially thanks to LEDs.
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although pSB and kSB seem to be determined independently, they are in fact determined jointly, along

with the Lagrange multiplier. This will become important when we consider prosumers in section 6.

Plugging this into equation III.29 gives:


pSB = b+

FDLD
′
H

λD2
LD
′
H + (1− λ)D2

HD
′
L

kSB = β − (1− λ)F
DLD

′
H −DHD

′
L

λD2
LD
′
H + (1− λ)D2

HD
′
L

(III.39)

Finally, note that we obtain the prices for a profit-maximising integrated monopolist (IM) for µ→

+∞, as is standard:


pIM − b
pIM

=
1

εL(pIM )

kIM − β = (1− λ)

DL(pIM )

D′L(pIM )
−
DH

(
pIM + kIM

1−λ

)
D′H

(
pIM + kIM

1−λ

)
 (III.40)

For linear and proportional demands Di(p) ∝ D(p) = α− γp, these expressions become:


pIM =

α+ γb

2γ

kIM =
γ

2

(III.41)

Interestingly, in this special case the electricity price is hence identical to what a monopolist would

charge on a single market where the demand function is D. It is also easy to show that:

AIM ≤ AFB ⇔ D

(
b+

β

1− λ

)
≥ 0 (III.42)

which is the case by construction. Thus, although capacity is subsidised, it is still lower than its optimal

value.

6 Self-rationing with prosumers

In this section, we introduce prosumers and derive their consumption program, before deriving first-

and second-best prices under several scenarios.
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6.1 Prosumer program

We extend the simplified two-period model of the previous section by adding the possibility for consumers

to install a decentralised production unit (DPU) such as a rooftop solar panel. For simplicity, we

assume synchronous and independent demands, constant marginal cost of supply b and of capacity β,

and uniform energy and capacity prices p and k. Furthermore, we assume that the DPU produces at

full capacity during low-demand periods, but only a fraction δ during high-demand ones. We make

the additional assumption of net metering and that all DPU production is consumed by consumers and

prosumers in both periods. As already discussed, net-metering assumption leads to a sub-optimal pricing

policy, but in our simplified model with no costs associated with DG, it does not matter. Alternatively,

it is tantamount to consider that all DPU production is consumed by the prosumer in each period, so

that he does not export. This could become the case in the long-run with batteries or load-management

programs. Anyway, we are more interested in how a capacity charge influences the choice of installing

a DPU and on cost-recovery.

Although we could have introduced a “cost” incurred by the choice of δ by the consumer24, we keep

it exogenous for simplicity reasons. We also keep λ exogenous, as before. The consumer now chooses

consumed quantity qL (resp. qH) when his demand is low (resp high), and DPU capacity d, that solve

the following maximisation problem, where T ′(A) = k is the price of access capacity and C(d) is the

cost of DPU capacity:

Max
qL,qH ,d



λ

[ˆ qL

0
PL(q)dq − p(q − d)

]
+(1− λ)

[ˆ qH

0
PH(q)dq − p(qH − δd)

]
−T (qH − δd)− C(d)

(III.43)

We follow Gautier et al. (2018) by assuming the size of a DPU is fixed and equal to d25, and that the

marginal cost z of DPU is constant for a given consumer, with its value being distributed on the (possibly

infinite) interval [zL, zH ] with cumulative and probability distribution functions H and H ′ = h26. The

distribution of the marginal cost of DPU may reflect the heterogeneity of location (weather, type of

building) or income. Indeed, solar panels produce more in sunny regions than in less sunny ones, and

are consequently more profitable in the former. Also, richer consumers are more likely to afford a DPU,

and those with a house more likely to be able to install one.
24For example, a battery would enable to increase δ. Alternatively, it could allow to shift production.
25In their article, they denote DPU capacity by k.
26Denoted F and f in Gautier et al. (2018).
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The first-order condition on d of the maximisation problem gives a corner solution: all consumers

such that z ≤ ẑ(p, k) = λ̃p + δk (where λ̃ =
not.

λ + δ(1 − λ)) install a DPU; others do not. As a

deduction, the proportion of prosumers is endogenously given by H[ẑ(p, k)], and the global cost of

DPU is
ˆ ẑ(p,k)

zL

z′h(z′)dz′. If consumers cannot choose their access capacity A, T (A) acts as a fixed

fee, and has no influence on the consumption choices. Then, the proportion of prosumers is given by

H[λ̃p] =
not.

H[z̃(p)].

6.2 Long-run optima

Without economies of scale

In the long run, in the absence of increasing returns to scale, it is still optimal to charge prices p = b

and k = β, if consumers can choose their access capacity. This will lead to the long-run first-best level

of prosumers H[z(b, β)] and total access capacity AFB = DH

(
b+

β

1− λ

)
for regular consumers, and

AFB − δd for prosumers27. The optimal network size is hence QFB = AFB −H[z(b, β)]δd.

However, if consumers cannot choose their capacity subscription A (but the social planner imposes

it), k is no longer a relevant variable for consumption choices (unless it becomes so high that consumers

prefer not to consume, but we have ignored this possibility). Nevertheless, in the long run, the social

planner anticipates that prosumers will be in proportion H[z̃(p)]. Assuming the social planner knows

who the consumers and prosumers are, it installs a total capacity (1 − H[z̃(p)])A for consumers and

H[z̃(p)](A− δd) for prosumers, so that the global network capacity is Q̃(p) = A− δH[z̃(p)]d. Thus, it

solves the following program:

Max
A,p



λ

[ˆ DL(p)

0
PL(q)dq − b(DL(p)−H[z̃(p)]d)

]
+(1− λ)

[ˆ A

0
PH(q)dq − b(A−H[z̃(p)]δd)

]
−β(A−H[z̃(p)]δd)−

ˆ z̃(p)

zL

z′h(z′)dz′

(III.44)

Then, maximising with respect to A and p gives A = AFB, and:

p̃ = b+
δdβλ̃h[z̃(p̃)]

dλ̃2h[z̃(p̃)]− λD′L(p̃)
> b (III.45)

Henceforth, the price of energy has to be above its marginal cost as soon as δ > 0. Indeed, since
27For simplicity, we will use the same notations for individual and group demands and access capacities. It is equivalent

to consider a unique prosumer of “size” H(z) and a unique regular consumer of “size” 1−H(z).
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the price of energy has become the only incentive to invest in DPU, the social planner raises it in order

to increase the number of prosumers. However, it is easy to show that z̃(p̃) ≤ ẑ(b, β) i.e. the level of

prosumers is lower than in the first-best case. So, we necessarily have Q̃(p̃) > QFB. Then, k can be

chosen so that the profit is equal to zero, which yields:

k̃ − β
β

= −
δλ̃d

[
(1− λ)(AFB − δdH[z̃(p̃)]) + λ(DL(p̃)− dH[z̃(p̃)]

]
h[z̃(p̃)]

(AFB − δdH[z̃(p̃)])(λ̃2dh[z̃(p̃)]− λD′L(p̃))
< 0 (III.46)

As a consequence, the price of access capacity has to be lower than its marginal cost, whilst energy

is priced at a premium. Moreover, since for δ = 0 we have p̃ = b and k̃ = β, by continuity, when

δ � 1, its marginal effect on p̃ (resp. k̃) is positive (resp. negative), i.e. the more DPU produces during

peak periods, the higher (resp. lower) the energy (resp. capacity) charge, and hence the higher the

inefficiency of such a tariff design.

All in all, disallowing consumers to choose their access capacity prevents the achievement of the

first-best optimum in the long run. This is due to the fact that prosumers only take into account the

possible reduction of the energy part of their electricity bill, which leads to an underinvestment in DPU.

In such a situation, TOU prices pL = b and pH = b +
β

1− λ
would be more appropriate. They would

restore the optimum, as prosumers would be able to save money during peak-load prices. On that

account, they would have the right incentive to invest in a DPU and the first-best level of prosumers

would be attained. The network operator would then build the first-best capacity accordingly.

Economies of scale

In practice, even in the long run, there may be economies of scales, otherwise electricity networks would

not be viewed as natural monopolies. As we have seen that it is more efficient to let consumers choose

their capacity subscriptions, we will focus on this specification. The question is then to determine

how second-best prices pSB and kSB computed in the previous section are modified in the presence of

prosumers. In that case, the social planner’s program is modified and becomes:
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Max
p,k



λ

{ˆ DL(p)

0
PL(q)dq − b[DL(p)−H[ẑ(p, k)]d]

}

+(1− λ)

{ˆ DH(p+ k
1−λ)

0
PH(q)dq − b

[
DH

(
p+

k

1− λ

)
−H[ẑ(p, k)]δd

]}
−CN

[
DH

(
p+

k

1− λ

)
−H[ẑ(p, k)]δd

]
−
ˆ ẑ(p,k)

zL

z′h(z′)dz′

s.t. π(p, k) = 0

(III.47)

When marginal cost of capacity is constant and equal to k, we can derive the following second-best

prices:


p̂SB = b− µ

(1 + µ)

(DL − dH)D′H + (1− λ)(DH − δDL)δhd

(D′L − λhd)D′H − (1− λ)δ2D′Lhd

k̂SB = β + (1− λ)
µ

(1 + µ)

(DL −Hd)D′H − (DH − δHd)D′L + λ̃(DH − δDL)hd

(D′L − λhd)D′H − (1− λ)δ2D′Lhd

(III.48)

where µ > 0 is the Lagrange multiplier associated with the profit constraint, DL and D′L (resp. DH

and D′H) are evaluated at p̂SB (resp. p̂SB +
k̂SB

1− λ
), and H and h = H ′ at ẑ(p, k). When d = 0 or if

H = h = 0 (i.e. if there are no prosumers), we find the expressions previously obtained for pSB and kSB

(equation III.39). Then, in order to describe the effect of DPU on second-best prices, we have to take

into account the dependence of DPU parameters on µ. Assuming the existence of a fixed cost F > 0,

solving for µ using the zero-profit condition yields:


p̂SB = b+ F

(DL −Hd)D′H + (1− λ)(DH − δDL)δhd

λ(DL −Hd)2D′H + (1− λ)
[
(DH − δHd)2D′L − λ(DH − δDL)2hd

]
k̂SB = β − (1− λ)F

(DL −Hd)D′H − (DH − δHd)D′L + λ̃(DH − δDL)hd

λ(DL −Hd)2D′H + (1− λ)
[
(DH − δHd)2D′L − λ(DH − δDL)2hd

] (III.49)

To help us test the validity of these expressions, we can for instance look at limit cases, such as when

λ = 1 (low demand only). It is then easy to see that k̂SB = β and

p̂SB = b+
F

DL(p̂SB)−H(p̂SB + δβ)d

i.e. capacity is priced at marginal cost and electricity at average cost. Similarly, when λ = 0 (high
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demand only) we get:

p̂SB + k̂SB = b+ β +
F

DH(p̂SB + k̂SB)−H[δ(p̂SB + k̂SB)]δd

Although equation III.49 can be difficult to interpret, we can notwithstanding deduce the following

propositions.

Proposition 2. 1. At the first order in δ, the long-run second-best price of energy is above marginal

cost, i.e. p̂SB ≥ b, and the attained level of prosumers is higher than the first best.

2. Furthermore, in the case of constant elasticities, if εH ≤ εL, then k̂SB ≥ β.

Proof. The inequality p̂SB ≥ b is true for δ = 0, since the denominator in equation III.49 is negative

and DL ≥ dH by assumption. By continuity, it remains true for 0 ≤ δ � 1. For the same continuity

reasons, the second-best level of prosumers is higher than the first-best level H[ẑ(b, β)].

Knowing whether k̂SB is positive or negative is more complicated. When δ = 0, the numerator is

reduced to:

(DL −Hd)D′H −DHD
′
L + λDHdH

′ = DLD
′
H −DHD

′
L −D′HHd+ λDHhd ≥ DLD

′
H −DHD

′
L

When comparing this expression with the one obtained for kSB in equation III.39, we see that both

denominators being negative, the inequality k̂SB ≥ β is easier to satisfy than kSB ≥ β. In particular,

εH ≤ εL is a sufficient condition for having k̂SB ≥ β, as it was already sufficient for kSB ≥ β. By

continuity, this remains true for δ � 1.

Proposition 3. At the first order in δ, if the fixed cost F is unchanged in the presence of prosumers,

long-run second-best prices satisfy:

1. If locally −(2DL −Hd)HD′H ≤ hD2
H , then b ≤ p̂SB ≤ pSB.

If in addition k̂SB ≤ β, then kSB ≤ k̂SB ≤ β.

2. If locally −(2DL −Hd)HD′H ≥ hD2
H and kSB ≥ β, then k̂SB ≥ kSB ≥ β.

Proof. Concerning energy prices, both numerators are negative (at least when δ → 0 in the presence of

prosumers), and it is higher (or lower in absolute value) in equation III.49 than in III.39. For capacity

prices, the numerator in the expression for k̂SB is higher than in the one for kSB, and both fractions

are preceded by a negative sign. Consequently, we have kSB ≥ β ⇒ k̂SB ≥ β and k̂SB ≤ β ⇒ kSB ≤ β.
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Besides, in equation III.39 as well as in III.49, denominators are the same for energy and capacity

prices and are both negative. In addition, it is easy to show that when δ → 0, the denominator in III.49

is higher (lower in absolute value) than the one in III.39 if and only if −(2DL −Hd)HD′H ≥ hD2
H .

Whereas proposition 2 gives indications on whether prices should be above or under marginal costs,

proposition 3 compares second-best prices with and without prosumers. As we have shown, these are

highly dependent on the attained level of prosumers H(z), and in the case of capacity prices, on peak

and off-peak elasticities, as was already the case without prosumers. For example, we have the following:

Corollary 3.1. When the number of prosumers is low, i.e. when H → 0, then b ≤ p̂SB ≤ pSB. If in

addition k̂SB ≤ β, then kSB ≤ k̂SB ≤ β.

Proof. Follows from the first part of proposition 3 and the fact that
H(z)

h(z)
−→
z→0

0 for all probability

distributions (this is straightforward using a Taylor development of H around zero).

It follows that for an early development of prosumption, the second-best price of energy should

decrease if fixed costs are unchanged. If in addition the price of capacity happens to be lower than its

marginal cost (this necessitates in particular that εH be higher than εL, although it is not a sufficient

condition), then it should increase with respect to the no-prosumer case.

Conversely, if the peak elasticity is lower than the off-peak one (εH ≤ εL), not only will capacity

be priced above marginal cost (proposition 2), but the second part of proposition 3 shows that a high

proportion of prosumers might further increase it with respect to the no-prosumer case. Indeed, the

inequality −(2DL −Hd)HD′H ≥ hD2
H is verified in particular when the ratio H/h is “high”. Typically,

this may be the case when H → 1, i.e. when z → zH , provided h → 0 at the same time. This

property is true for all distributions with infinite support to the right, but it may not be satisfied for

distributions with finite support such as the uniform one. However, what interests us is whether this

can be verified for actual distributions of DPU marginal costs. If for instance z refers to a “levelised cost

of capacity”, then it is inversely proportional to solar irradiance. Figure III.2 displays the histogram

of the inverse of solar irradiation in France based on PVGIS data28. From this, we see that for high

values of inverse irradiation, i.e. for high DPU cost, the density decreases strongly, so that the inequality

−(2DL −Hd)HD′H ≥ hD2
H is likely to hold in this region. It may be valid elsewhere as well, if there is

a sufficient decrease in h locally.
28Available at http://re.jrc.ec.europa.eu/pvgis/download/solar_radiation_classic_laea_download.html.
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Figure III.2 – Histogram of the inverse of horizontal solar irradiation in France

6.3 Short-run optima

In the short run, the built network capacity is fixed, equal to Q0, and cannot be adjusted. Therefore,

short-term first-best prices and level of prosumers are p = b, k = 0, and H[z̃(b)] < H[ẑ(b, β)], and are

the same whether consumers can choose their capacity subscription or not. If consumers have no choice

over it, it can simply be imposed at its historical value: A = Q0, and setting k = β enables the DSO to

break even. In this case, kA acts as a fixed fee, which is the same for consumers and prosumers alike

and hence does not create distortions. This contrasts with the long-run perspective, in which such a

pricing scheme was not optimal as it led to too few prosumers and an unduly high network capacity.

If consumers can change their contracted capacity, first-best prices are still p = b and k = 0. However,

these prices prevent the DSO from breaking even. Even if Q0 = QFB, setting k = β does not solve

this issue. Indeed, kA(k) does not act as a fixed fee anymore, as prosumers can now reduce their access

capacity. Then, increasing prices helps recover more costs, but also leads to more prosumers than the

short-run optimum, which in return reduces sources of revenue for the DSO.

Woo (1991) analyses the issue of capacity allocation and cost recovery in the presence of heteroge-

neous consumers (but without prosumers). Assuming energy is priced at “(constant) marginal fuel cost”,

the author shows that capacity is priced so as costs to be recovered, i.e. so that (with our notations29):

kS(k) = βQ0 + β0, where S is the sum of all capacity subscriptions. Capacity is then allocated using

an allocation factor α(k) =
Q0

S(k)
, i.e. each consumer has an effective subscription αA. The allocation

factor can be lower or higher than 1, depending on the system or network being in a situation of under-

or overcapacity.

In our case, the presence of prosumers further complicates the problem as it endogenously changes
29In the original paper, the capacity charge and the energy rate are denoted by p and z, respectively.
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prosumers’ capacity subscriptions. Furthermore, we allow the energy rate as well as the capacity charge

to contribute to cost recovery. We can nonetheless simplify the issue in assuming prosumers and con-

sumers are heterogeneous only with respect to the marginal cost of DPU z. Also, we assume that

S = Q0, which is equivalent of assuming the existence of an allocation factor such as in Woo (1991).

Under these assumptions, second-best prices are the same as in the long-run case (equation III.49) with

β = 0 (remember that in the short term capacity is supposed to be fixed), so that the propositions of

the previous subsection apply.

In the end, in the short run the DSO can break even: either by preventing customers to choose

their access capacity and by making pay p = b and k = β to everyone; or by allowing customers to

choose their subscription and accordingly charging energy above marginal cost, at least for δ � 1. Then,

the capacity charge can be either positive or negative, with its sign depending in particular on price

elasticities and on the number of prosumers.

7 Conclusion

Although self-rationing with capacity subscriptions has been adopted by a certain number of countries,

in particular in Europe, little research has been done on its impacts on modern electricity markets,

where for example consumers can face time-varying rates and invest in decentralised production units

(DPU). After a thorough review of the literature, we have developed some extensions of the traditional

self-rationing model initially proposed by Panzar and Sibley (1978), and made several comparisons with

peak-load pricing, which can be considered as the benchmark. First of all, we have shown that stochastic

prices can be used instead of uniform prices, and that for time-independent demand functions this yields

a relatively tractable expression. We have illustrated this with some examples, which reveal that a too

high capacity price may harm consumers in reducing their consumption even though consumption would

be socially desirable. Then, we have proposed a simplified version of the P-S model in order to introduce

some extensions such as non-coincident demands and interdependent demands. While the later did not

bring much insight to the traditional framework, the former was shown to complicate it and introduce

adverse-selection issues, which would not arise under peak-load pricing.

In addition, second-best prices were investigated, and we found that while the second-best price of

energy follows the inverse-elasticity rule, it is not the case for capacity, which may even be subsidised.

Moreover, peak and off-peak demand elasticities are fundamental to the discussion, as could be expected.

Finally, the model was applied to a population with prosumers. Under standard simplifying assumptions,
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7. Conclusion

we showed that disabling the possibility to choose one’s capacity subscription could be useful in the sort

term, but led to inefficiencies in the long run. Thus, we computed short and long-run second best prices

when capacity can be chosen freely. Whereas second-best energy rates were proven to be above marginal

cost, the discussion on capacity prices was more involved. Nevertheless, we managed to derive several

sufficient conditions that enable to compare second-best prices to marginal costs, and with or without

prosumers. Future research could include adverse selection, i.e. when a menu of energy and capacity

rates is proposed, as is the case for example in France and as should be the case when demands are not

perfectly synchronised. The study of prosumers could furthermore be extended to take into account

energy losses, network management costs, and net billing instead of net metering. Finally, the question

of the implementation of such second-best prices could be addressed as well, as analytical expressions

do not always yield unequivocal interpretations.
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Appendices

A Distribution tariffs in Europe and France

A.1 Overview of European distribution tariffs

Country Fixed Capacity Share(Fixed+capacity) Energy Share(Energy)
Austria Yes No 9% Yes 91%
Belgium Yes No N.A Yes NA
Bulgaria N.A N.A N.A N.A NA
Croatia No No 0% Yes 100%
Cyprus Yes No 25% Yes 75%
Czech Republic Yes No 11% Yes 89%
Denmark Yes No N.A Yes NA
Estonia No Yes N.A Yes NA
Finland No Yes N.A Yes NA
France Yes Yes 20% Yes 80%
Germany Yes No 18% Yes 82%
Greece No Yes 7% Yes 93%
Hungary Yes No 4% Yes 96%
Ireland Yes No N.A Yes NA
Italy Yes Yes 34% Yes 66%
Latvia N.A N.A N.A N.A NA
Lithuania Yes No N.A Yes NA
Luxembourg Yes No 10% Yes 90%
Malta Yes No 0% Yes 100%
Poland Yes No 27% Yes 73%
Portugal No Yes 38% Yes 62%
Romania No No 0% Yes 100%
Slovakia No Yes 35% Yes 65%
Slovenia No Yes 29% Yes 71%
Spain No Yes 84% Yes 16%
Sweden Yes No 79% Yes 21%
The Netherlands Yes Yes 100% No 0%
United Kingdom Yes No 14% Yes 86%

Table III.1 – Distribution tariff structure for residential customers in 2015 in Europe (computations
based on data found in AF-Mercados EMI et al., 2015)
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A.2 The French residential distribution tariff

Capacity charge
(e/kVA)

Energy charge (ce/kWh)

Tariff Yearly Peak high Off-peak high Peak low Off-peak low
CU 4 3.72 7.36 3.67 1.88 1.35
CU 4.32 3.67
MU 4 5.88 5.63 3.25 1.31 0.98
MUDT 6.84 3.89 2.38 3.89 2.38
LU 58.56 1.38
CU: short use; MU: medium use; MUDT: medium use with temporal differentiation; LU:
long use.

Table III.2 – Access capacity and energy charge for low-tension (≤ 36 kVA) customers in 2018 in France.
Source: Enedis (2018).

B Properties and extensions of the two-period model

B.1 Elasticities

It may be interesting to know the elasticity of the subscribed capacity with respect to prices p and k for

various reasons. For instance, elasticities play a central role in second-best pricing. In order to do this,

we restrict ourselves to the two-state case, with A(p, k) = DH

(
p+

k

1− λ

)
, and we assume that the

(energy) demand function has a constant elasticity εH : DH(p) = DH0p
−εH . Then, it is easy to show

that the elasticities of access capacity with respect to p and k are:


εA/p =

εH

1 +
k

1− λ

εA/k =
εH

1 + (1− λ)
p

k

(III.50)

Thus, if p > 0, both elasticities are small than ε if and only if k > 0. Also, the elasticity of capacity

demand with respect to the energy rate does not depend on the latter. This is due to the fact that the

price elasticity of energy demand is constant (and also independent of k). Furthermore, the demand for

access capacity is less elastic (with respect to both prices) than the demand for energy, and we can show

that εA/p ≤ εA/k ⇔ k ≥ (1−λ)
√
p, i.e. for relatively high values of k, the consumer will be more elastic

with respect to k. This result is interesting, as a if a regulator wishes to reduce the overall subscribed

capacity, it is more effective to do it by increasing the part of the tariff (energy or capacity) which is

already dominant in the sense of this inequality. Finally, for k = 0 (resp. p = 0), we have εA/p = ε and

105



Chapter III. Self-rationing revisited: extensions and application to prosumers

εA/k = 0 (resp. εA/k = ε), which is rather intuitive.

B.2 Non-coincident demands

In this section, we briefly explore the case of non-coincident demands. As pointed out by Schwarz and

Taylor (1987), if peak consumption is not coincident among consumers, then the maximum Qmax of

expected demands Qn should be different from the sum S of all subscriptions, and probably lower. This

is verified for example in France, where self-rationing is used and where a coefficient (a “use factor”) is

applied between S and Q30. Furthermore, they argue that it would probably not be optimal to charge

capacity identically among consumers, unless
∂Qn
∂S

= C, in which case k = Cβ is optimal.

Let us now consider a simplified setting, which relies on the two-period model established before.

We assume that consumers are divided in two groups, labelled i ∈ {1, 2}, whose demands are perfectly

negatively correlated. That is, with probability λ, group 1 consumes DL1(p1), while group 2 consumes

DH2

(
p2 +

k2
λ

)
, and reciprocally (we assume that each group is in a “firm peak” situation, i.e. DLi(pi) <

DHi

(
pi +

1

1− λi

)
, with λ1 = λ = 1− λ2). We denote by ν the proportion of group 1, and we assume

that it is the “peaking” group, i.e. that:

Q = Max
{
νDH1

(
p1 +

B1

1− λ

)
+ (1− ν)DL2(p2), νDL1(p1) + (1− ν)DH2

(
p2 +

B2

λ

)}
(III.51)

= νDH1

(
p1 +

B1

1− λ

)
+ (1− ν)DL2(p2) (III.52)

Note that with this formulation, Q is in general not proportional to S = νDH1

(
p1 +

B1

1− λ

)
+ (1 −

ν)DH2

(
p2 +

B2

λ

)
. Then, optimal consumption quantities are given by:

q1 = DL1(b), A1 = DH1

(
b+

β

1− λ

)
, q2 = DL2

(
b+

β

1− λ

)
, A2 = DH2(b) (III.53)

which are obviously satisfied by the following discriminating prices:


p1 = b, k1 = β

p2 = b+
β

1− λ
, k2 = − λβ

1− λ

(III.54)

30In the same manner, we could consider that a consumer applies a similar coefficient to the sum of the capacities of all
his electrical appliances in order to determine his subscribed capacity. Although this approach can be used in a bottom-up
modelling of electricity demand, in our case it would ignore the price of capacity in which we are interested.
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or alternatively by non-discriminating off-peak and peak prices pL = b and pH = b +
β

1− λ
. Conse-

quently, at the optimum consumers of group 2 pay a peak-load price for the consumed electricity but are

perfectly compensated by a capacity subsidy, while consumers of the “peaking” group (1) are charged as

in the coincident-peak case. Moreover, in the absence of increasing returns to scale, the DSO or utility

breaks-even. There are however two issues related to these optimal prices. First, it may be difficult for

a regulator to accept the idea of subsidising capacity. Second and more importantly, the issue of adverse

selection may arise. Indeed, focusing only on the electricity bill, if consumers were to choose between

prices (pi, ki), i = 1, 2, they would both choose (p2, k2). Assuming that the quantities consumed and

the gross surplus vary little with prices, the differences in bills between price schemes 1 and 2 are equal

to
λ

1− λ
β(DH1 − DL1) and β(DH2 − DL2), and are hence both positive in the individual firm-peak

case. Although the study of adverse selection is beyond the scope of this article, we find it necessary to

underline it here, as it has many practical consequences.

Interestingly, these results contrasts with the one of Schwarz and Taylor (1987), who state that

energy must be priced at marginal cost. If we constrain the use of a single price p for all consumers, the

optimal values are given by:



p = b+
r(1− ν)D′L2

λν(1− ν)D′L1 + (1− λ)(1− ν)D′L2
> b

B1 =
rλνD′L1

λν(1− ν)D′L1 + (1− λ)(1− ν)D′L2
> 0

B2 = −
rλ(1− ν)D′L2

λν(1− ν)D′L1 + (1− λ)(1− ν)D′L2
< 0

(III.55)

In this case adverse selection is definitely a problem, as all consumers would choose B2. Moreover, the

DSO or utility may make a positive or negative profit. The difference with S-T’s result (marginal cost

pricing of energy) probably comes from the fact that they consider that all consumers react similarly to

the state of nature (e.g., temperature) t, since they assume (as did P-S) that
∂P

∂t
> 0 for all consumers,

whereas in our example consumers react in opposite ways to the state of nature.

This result also seems in contradiction with Brown and Sappington (2018), who show that MDCs

(which are different from the capacity charge we consider here) can increase welfare with respect to

TOU pricing when peak demands are divergent. They argue that in this case the MDC introduces a

discrimination in the TOU price received by consumers and prosumers, and thus helps improve welfare.

In our simplified model, we saw that TOU prices pL and pH lead to the first best optimum, so that

the capacity charge would be useless. The difference may however arise from the fact that Brown and
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Sappington (2018) consider: three time periods instead of two, quadratic production costs, and positive

costs incurred by DG production on transmission, distribution and network management (TDM) costs.

In addition, their result was partly anticipated by Crew and Kleindorfer (1979), p.191-192, and will lead

us to our next subsection:

“The above examples indicate that maximum-demand charges may not be ruled out as inef-

ficient, especially when diversity and substitution possibilities are large. In effect maximum-

demand charges allow each consumer group to self-select their peak period while none the

less providing the right signal to each group as to the social costs of peak demand. In the

absence of such maximum-demand charges, however, one or other of these groups could avoid

the peak charge by shifting demand to their next most preferred period, with possibly dele-

terious aggregate effects. Of course, if there were no diversity (identical preferences), or if

demands were time inelastic (no period substitution effects), then one could accomplish the

same efficient demand manipulation via simple peak-load pricing. Such empirical evidence31

as there is available on European experience with peak-load pricing suggests, however, that

while significant changes in system utilisation can take place with peak-load pricing, control-

ling the time shifts in demand in response to peak-load pricing is also a problem. From the

point of view of recovering costs as well as in providing appropriate price incentives to con-

sumers, therefore, it may well be that maximum-demand charges are desirable ingredients

of practical peak-load tariffs.”

B.3 Interdependent demands

In this section, let us briefly expose the case of interdependent demands when there are two time periods

and one representative consumer. The rationale between interdependent demands is the following: if

a consumer faces varying prices, he may shift loads from one period to another. In particular, we

generally expect the consumptions in high and low price periods to be substitutes32. In the peak-load

pricing literature, it has been relatively little investigated. It was first formalised by Pressman (1970),

using the line integral formulation and the integrability conditions formulated by Hotelling (1932, 1935)

with exogenously given pricing periods of equal length. As we just saw in the previous subsection,

Crew and Kleindorfer (1979) analyse interdependent demands with a MDC in a simple three-period
31Mitchell et al. (1978) give a detailed account of the effects of time-of-day pricing in Europe.
32With more than two time steps, consumptions in two adjacent periods could be complements. For example for a “long”

process such a washing machine cycle, a lower price in a given period could trigger consumption in the given period and
in the following, if the price is not expected to increase too much.
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framework. Burness and Patrick (1991) generalises the peak-load pricing problem with continuous33

and interdependent demand and endogenously chosen periods. More recently, their model was adapted

by Calzada (2007) in a telecommunications context.

Following Pressman (1970), when there are two periods of equal lengths, consumer surplus between

(q1, q2) = (0, 0) and (q1, q2) = (q∗1, q
∗
2) writes:

CS =

˛
C
P(q).dq−P∗.q∗ =

˛ (q∗1 ,q
∗
2)

(0,0)
[P1(q1, q2)dq1 + P2(q1, q2)dq2]− (P ∗1 q

∗
1 + P ∗2 q

∗
2) (III.56)

where C is a piece-wise smooth curve connecting (0, 0) to q∗ = (q∗1, q
∗
2), P∗ = (P ∗1 , P

∗
2 ) and q∗ are

the equilibrium price and quantity vectors. Then, quasilinear preferences imply that the integrability

condition
∂Pi
∂qj

=
∂Pj
∂qi

(i 6= j) is met, so that the line integral defined above is independent of the chosen

path and can for example be rewritten:

˛
C
P.dq =

ˆ q∗1

0
P1(q1, 0)dq1 +

ˆ q∗2

0
P2(q

∗
1, q2)dq2 =

ˆ q∗2

0
P2(0, q2)dq2 +

ˆ q∗1

0
P1(q1, q

∗
2)dq1 (III.57)

Unequal period lengths have been introduced by Burness and Patrick (1991), who write the surplus

using the (instantaneous) demand function D as integrand34, rather than the inverse demand function35:

CS =

˛
C

∑
I

ˆ
t∈I

D(p,PJ, t)dtdp, I, J ∈ {U,L}, I 6= J (III.58)

where U and L are the peak and off-peak periods, respectively, and this time C connects (PU , PL) to

(∞,∞)36. Using again the integrability condition, we have (Lemma 1 in the original article):

CS =

ˆ
t∈U

ˆ ∞
PU

D(p, PL, t)dpdt+

ˆ
t∈L

ˆ ∞
PL

D(p,∞, t)dpdt (III.59)

=

ˆ
t∈L

ˆ ∞
PL

D(p, PU , t)dpdt+

ˆ
t∈U

ˆ ∞
PU

D(p,∞, t)dpdt (III.60)

In particular, the authors show that the integrability condition is true for time-averaged cross-derivatives,
33See for example Craven (1971, 1985) and Dansby (1978).
34The authors use the symbol Q, and other slightly different notations.
35The authors argue that there exists an implicit function theorem for interdependent demands, so that if utility is

determined by the consumption vector q = {q(t), t ∈ [0, T ]}, then demand is determined over the price vector P =
{P (t), t ∈ [0, T ]}.

36It is assumed that demand remains non-negative when prices tend towards infinity and that the integrals are well
defined.
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i.e.: ˆ
t∈I
∇PJD(PI , PJ , t)dt =

ˆ
t∈J
∇PID(PJ , PI , t)dt, I 6= J (III.61)

For that reason, one needs to be cautious not to use an instantaneous demand function that satisfy the

integrability condition, when dealing with unequal period lengths. From here, it is straightforward to

extend this expression to our case: low (resp. high) demand/prices with probability λ (resp. 1 − λ).

Then, expected consumer surplus writes37:

ES(q, A) =

˛
C

[λPL(qL, qH)dqL + (1− λ)PH(qL, qH)dqH ]− λpLq − (1− λ)pHA− kA (III.62)

where C connects (0, 0) to (q, A) and we still assume q < A (firm peak). When the integrability condition

is satisfied, i.e. λ
∂PL
qH

= (1− λ)
∂PH
qL

, the integrand of the line integral is the gradient of a potential38.

From here, the derivatives of the line integral are nothing more than the corresponding coordinates of

the gradient, so that we have the following first-order conditions:


∂ES

∂q
(q,A) = λPL(q, A)− λpL = 0

∂ES

∂A
(q,A) = (1− λ)PH(q, A)− (1− λ)pH − k = 0

(III.63)

which can be (at least locally) inverted in:


q = DL

(
pL, pH +

k

1− λ

)
A = DH

(
pL, pH +

k

1− λ

) (III.64)

so that if peak and off-peak demands are substituable, off-peak consumption increases as a consequence

of peak-load and/or capacity pricing. If off-peak prices decrease, this leads to a decrease in peak

consumption. Hence, interdependence of demands tends to flatten the load curve, as expected.

Nevertheless, we can show that with dependent or independent demands, the first best is still reached

using peak and off-peak prices pL = b and pH = b +
β

1− λ
, or energy and capacity prices p = b and

k = β. The results obtained for non-coincident demands also hold in this framework. These results

are not in contradiction with Crew and Kleindorfer (1979), who in fact considered two energy prices

and a capacity charge in a three-period framework. In fact, subscribed capacity or maximum demand

charges (which are equivalent in a deterministic setting) can be useful if there are less TOU prices than
37At the difference of Burness and Patrick (1991), we prefer to keep the same order of arguments.
38In the case of consumer surplus the potential is the indirect utility function.
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the number of periods. The difference with the conclusions of Brown and Sappington (2018) may be

due to their assumption of quadratic supply costs (as it increases the incentive for the social planner to

reduce peak consumption), or to the fact that they consider prosumers and increasing TDM costs with

DG capacity, or to the number of periods (three in their case).
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Chapter IV

How renewable production depresses

electricity prices: evidence from the

German market

About this chapter

This last chapter was actually my first work as a PhD student, and its subject was suggested to me
by Frédéric Lantz, who coauthored the final paper published in Energy Policy (Martin de Lagarde and
Lantz, 2018). I thus wish to thank two anonymous referees for their constructive comments. Also, I
had the chance to present it multiple times: in June 2016 at the 39th International conference of the
International Association for Energy Economics (IAEE) in Bergen (Norway); in November 2016 at the
21st Young Energy Economists and Engineers Seminar (YEES) in Edinburgh (Scotland); in November
2016 at the FAEE winter workshop in Paris; in May 2017 at the 5th International Symposium on Energy
and Finance Issues (ISEFI) in Paris; and in June 2017 at an internal IFPEN seminar in Rueil-Malmaison.
I am indebted to all participants of these seminars and in particular to Cédric Clastres for his review at
the FAEE winter workshop.

Abstract

The urgency of climate change has led several countries to develop renewable energy in order to reduce
CO2 emissions, through the means of various subsidies. In the electricity sector, one drawback of such
policies is the negative impact on electricity prices, known as the merit order-effect. This paper aims
at assessing the impact of intermittent renewable production on electricity prices in Germany, which
has experienced a significant increase of its renewable capacity over the last two decades. To do so,
we use a two-regime Markov switching model, that enables to disentangle the impact of wind and solar
generation, depending on the price being high or low. We find as expected that renewable production
induces a negative marginal effect, which is stronger in regimes of relatively high prices. In addition,
we show that both wind and solar productions have a significant impact on the frequency and expected
duration of each regime. This has implications in terms of market design, security of supply, and support
mechanisms for renewables.
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1 Introduction

The development of renewable energy sources (RES) is often justified by the need to address global

warming, through the reduction of green-house gases emissions, and is also led by the will to reach

energy independence in fossil and fissile fuel-dependent countries. In the electricity sector, main RES

are wind power and solar photovoltaic (PV). These technologies are spreading throughout the world and

Europe, which has announced RES targets for the next decades: 20% in the final energy consumption

by 2020 and 27% by 2030. To reach these goals, renewables often need to be subsidised, as they would

generally not be competitive otherwise on the wholesale market1. In addition to the aforementioned

goals, the subsidisation of these energies aims at internalising the “learning effect”, i.e. the decrease of

their cost along with their development. This is a positive externality that is by definition not taken

into account by the market, and which would lead to too few investments in these technologies if not

accounted for.

However, the development of electric RES challenges the current design of electricity markets. In-

deed, they were originally designed to reflect the short-term production cost of electricity via the system

marginal price, i.e. the marginal cost of the last unit needed to meet the demand. While marginal costs

were traditionally driven by fuel costs such as coal, gas, oil, or uranium; wind and photovoltaic have on

the contrary (almost) no marginal cost. Therefore, they tend to lower prices when they are producing,

which is commonly known as the “merit-order effect” (Sensfuß et al., 2008). In addition, wind and solar

energies are intermittent (or variable), albeit with seasonal patterns, while electricity prices are highly

seasonal, with seasonality being driven mainly by demand at the daily, weekly and yearly time scales.

Hence, RES generation is likely to have a different impact on electricity prices, depending on the state

of the supply-demand equilibrium. Additionally, renewable production is expected to affect electricity

also globally, and in particular its distribution, which is only partly captured by the analysis of the

merit-order effect.

This article addresses these issues for the German day-ahead market by developing a two-regime

Markov switching (MS) model. In particular, we are able to disentangle the merit-order effect in function

of the price level, while keeping temporal coherence of the time series. Furthermore, we allow for time-

varying probabilities (inhomogeneous model), in order to capture the impact of RES on the switching

mechanism from “high” to “low” prices, and hence on the proportion and duration of each regime.
1However, distributed renewable generation such as rooftop solar PV is becoming more and more profitable for end-

users, as their levelized cost of electricity (LCOE) can in some places be lower than the retail tariff they are faced with
(grid parity). Such consumers, often called “prosumers”, do not need to be subsidised by public funds (even though it is
sometimes the case), but they can benefit from cross-subsidies via the distribution network tariff.
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Studying the merit-order effect in Germany is quite relevant, as the country has had a huge develop-

ment of wind and solar PV over the past two decades (RAP, 2015). Furthermore, since more than 40%

of the electricity production in Germany (and Austria) is traded on the EEX day-ahead spot market,

the related price is a relatively good indicator of the electricity supply-demand equilibrium. Hence, for

these several reasons, the choice of Germany seems quite appropriate.

The remainder of the article is structured as follows. In section 2, we briefly explain the mechanism

behind the merit-order effect as well as other consequences of renewable production on electricity prices.

In section 3, we provide a review of the literature on the impact of RES production on electricity prices

as well as on MS models applied to electricity prices and we explain which gap we aim at filling with

this paper. Then, section 4 briefly describes the data we used. Section 5 then presents the modelling

strategy, and empirical results are presented and discussed in section 6. Finally, section 7 concludes the

article by providing the main findings and policy implications.

2 Theoretical analysis

In this section, we use basic microeconomic tools to illustrate how the merit-order effect arises and why

it is differentiated depending on the price level. We explain also how renewable production is likely to

impact the distribution of prices more globally.

Graphically, we can see that if at the equilibrium the inverse supply curve2 is locally steep, the

impact is expected to be higher than when it is locally flat. In Germany, on average the steepness of the

inverse supply curve increases with load, i.e. it is convex (except in the negative-price zone). It may not

be the case elsewhere, but for example Karakatsani and Bunn (2008) show that in the British market

the aggregate supply function is also convex. Figure IV.1 illustrates this case by showing the variation

of the merit-order effect with the load level.

Formally, this can be seen in the following way: if D : p 7→ D(p) (with (D′ < 0) and S : p 7→ S(p)

(with S′ > 0) are the expressions of the instantaneous demand and supply functions, the impact on the

price of an infinitesimal shock of supply (e.g. RES production) or demand would be at the first order

(proof in appendix A):
∂p

∂Load
=

−1

∂D

∂p
− ∂S

∂p

= − ∂p

∂RES
> 0 (IV.1)

In reality, supply and demand are piecewise constant functions, as they are the result of a bidding process.
2The inverse supply function S−1 gives the price p in function of the supply quantity q. The inverse supply curve is

thus defined by p = S−1(q).
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Hence they have zero derivatives except in points of discontinuity where they are non-differentiable.

Nevertheless, it is convenient to assume differentiability as it gives the right insight, and in the case of

rather small increments it is a good approximation. From equation IV.1, it is clear that the higher the

slope of the inverse supply function S−1, the lower the slope of S (equal to its inverse), and thus the

higher the marginal (merit-order) effect. Note also that on average the impact of wind, solar and load

has no reason to be the same, as all variables and the supply and demand functions vary over time. In

addition to this marginal effect, RES production is expected to have a more global impact on electricity

prices, in particular on its conditional or unconditional distributions. For example, we could expect

prices to be “low” more often, especially if complementary sites can be used for RES installations. Also,

conditional volatility is expected to be higher in periods of “high” prices (because of the same slope

argument), while unconditional volatility can be lower or higher, depending on how much more “low”

prices (with lower conditional volatility) there are.

Figure IV.1 – Differences in the merit-order effect (source: Risø DTU)

3 Literature review

3.1 Impact of renewable production on electricity prices

The impact of subsidised renewable generation on electricity prices and its distributional implications

have been widely discussed empirically and theoretically, e.g. by Meyer and Luther (2004), Munksgaard

and Morthorst (2008), Sáenz de Miera et al. (2008), Sensfuß et al. (2008), Cutler et al. (2011), Tveten

et al. (2013), Cludius et al. (2014), Kallabis et al. (2016) and Bublitz et al. (2017). In this topic, the

use of time series econometrics to study the market impact of RES production is more recent and very
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abundant as well. Many of them used ARMA-GARCH models, such as Woo et al. (2011) in Texas,

Liu and Shi (2013) for the ISO-New England market, Ketterer (2014) in Germany or Karanfil and Li

(2017) for the Danish intraday market, just to cite a few ones. All these analyses found a significant

negative impact of RES generation on electricity prices and a positive one on conditional volatility (when

modelled). However, the measured effect is necessarily averaged over the whole time series due to the

used methods. Additionally, these studies mainly describe the merit-order effect, but do not tell how

renewable production affects the proportion and duration of the price levels, which can be an issue for

the profitability of plants relying on episodes of high prices.

Nevertheless, some authors have used other models in order to capture variability in the merit-

order effect and additional properties. For example, Jónsson et al. (2010) quantify the impact of wind

forecast on electricity prices for each hour of the day using a non-parametric approach. They also

analyse the distributional impacts on the price under several scenarios, and show in particular that

the unconditional volatility decreases with wind penetration. Unfortunately, they do not model the

underlying mechanisms. In a different fashion, Paraschiv et al. (2014) estimate the impact of RES

generation (and other variables) on electricity prices in Germany for each hour of the day, using time-

varying coefficients. In particular, they show that the impact of wind (resp. solar) energy is more

important during afternoon, evening and night hours (resp. noon peak hours).

However, electricity prices are expected to become less and less deterministic as the share of renewable

generation increases and demand-response and storage become more available. This fact calls for a more

flexible approach, which should be based on the level of prices rather than on predefined periods (hours,

days, etc.). In this spirit, Keles et al. (2013) show that the wind power feed-in has a distinct impact

on prices depending on the load and residual load levels (and hence implicitly on the price level) for

each hour and day type. Their analysis is performed using linear regressions on ascending 2-MW load

clusters, which are then used in a simulation of electricity prices. Unfortunately, their modelling does

not take into account the temporal connection between the load clusters, nor discusses the impact on

the price distribution.

3.2 Markov switching models and applications to electricity prices

The general literature on Markov switching models is also wide: Goldfeld and Quandt (1973) and

Hamilton (1989, 1990) for a first introduction to MS models, Cai (1994), Hamilton and Susmel (1994)

and Gray (1996) for MS-(G)ARCH models, and Hamilton (1996) for testing MS models). Finally, one
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can also see Krolzig (1997) for MS-VAR, and Kim et al. (2008) concerning endogenous switching.

Since electricity cannot be stored at a wholesale scale, electricity prices are highly volatile, with the

existence of both positive and negative price peaks, heavy tails, jumps, etc. Hence, first MS models

applied to electricity were for prices “alone”, as they were able to capture these peculiarities (Deng, 1998;

Ethier and Mount, 1998; Huisman and Mahieu, 2003; Janczura and Weron, 2010). On different topics,

Haldrup and Nielsen (2006) and Haldrup et al. (2010) show that Nordic electricity prices present long-

memory and regime-switching behaviours, and Cifter (2013) exhibits two distinct volatility regimes using

a MS-GARCH model. Other authors have studied the impact of exogenous variables on the conditional

mean (Zachmann, 2013), on transition probabilities of inhomogeneous MS models (Mount et al., 2006;

Huisman, 2008), or both (Kanamura and Ōhashi, 2008). Finally, Veraart (2016) models the impact

of wind production on electricity prices using a regime-switching Lévy semi-stationary process, with

regimes depending on the wind penetration index.

3.3 Contribution of the paper to the literature

In the end, we believe that a MS model is an appropriate tool to answer our research question. Indeed, as

mentioned above, it has already be shown that electricity prices present Markovian regime changes. In

addition, MS models estimate time-varying coefficients, while keeping the temporal integrity of the time

series, instead of dividing them in distinct series, that would for instance depend on the price level or on

the hour of the day. Indeed, we will show in section 5 that after applying an appropriate transformation

to the price time series, we can identify two distinct regimes, of respectively “high” and “low” prices.

This feature is very suitable for regime-switching models as they can give mixture distributions. The

estimation then shows that the regimes are serially correlated, hence justifying the Markovian switching

mechanism. Furthermore, the autocorrelation and conditional autoregressive heteroskedasticity observed

in electricity prices can also be captured (Krolzig, 1997). Finally, the chosen MS model allows us

also to quantify some distributional impacts of RES production through the modelling of transition

probabilities, which we link to the proportion and duration of the price regimes and hence on the

distribution of prices.
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4 Data

4.1 Overview of the data and first correlations

Our data is originally composed of four time series for the period 2014-2015, that come from various

sources:

• hourly day-ahead electricity spot prices, obtained from EEX-Powernext;

• solar and wind electricity generation3, obtained from the four TSOs (TenneT, Amprion, 50Hertz,

Transnet BW) websites, at the 15 minutes time step;

• hourly electricity load (from ENTSO-E website).

We summed the RES generation data of the TSOs and aggregated it to the hourly time step, in order

to obtain 17,520 values for each variable. Figure IV.2 represents the corresponding final time series, and

table IV.1 shows the correlation coefficients between the variables.
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Figure IV.2 – Final data

As one would expect, solar energy has a strong yearly seasonality, with much more production

during summer, while wind energy has a relatively opposite seasonality, and they are indeed negatively
3As suggested by Jónsson et al. (2010), the day-ahead forecast would be a better candidate than the actual energy

output, since production decisions are taken on the basis of forecasts. However the forecast data provided by the TSOs
was incomplete, and many actors have they own forecast, which may differ from the one made by the TSOs. Finally,
using real production instead of forecast values should not dramatically change the value of the coefficients, but rather
the goodness of fit.
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Wind Price Load

Solar -0.157 -0.039 0.331
Wind -0.424 0.037
Price 0.674

Table IV.1 – Pearson correlation coefficients between the variables

correlated. Obviously, solar generation follows also a daily pattern (day/night), which is not observed

for wind. The electricity demand is very cyclical as well, with annual and daily patterns, the latter being

probably the reason for the positive correlation with solar production. We also find these patterns in

the price series, which is highly and positively correlated with load, negatively with wind, and almost

not correlated with solar generation. The seasonality of these price and load time series will be more

thoroughly discussed in section 4.4. Finally, although the electricity consumption is higher in winter,

essentially because of heating and lighting, there is a huge decrease in demand (and hence in price)

during the Christmas holidays, because of a drop in the industrial activity (Do et al., 2016).

4.2 Price statistics

Since we are interested in modelling the electricity prices, we need to take a deep look at the price time

series, which is the goal of this subsection. Table IV.2 below present the main descriptive statistics of

the price time series. First of all, we notice that the price is quite volatile, has heavy tails and is slightly

skewed, which are common features of electricity prices, and can be the result of a regime-switching

mechanism (Krolzig, 1997). As already seen in figure IV.2, there are negative prices (190 occurrences,

i.e. a little more than 1% of the total), and high positive spikes as well. These well-known specificities

of electricity prices are mostly due to the fact that electricity is (almost) non storable. Hence, demand

must be met by production at all time, while conventional plants have flexibility constraints (limited

ramp up/down in particular). Any change in demand and/or generation will then have an immediate

impact on the price, that reflects the supply-demand equilibrium. The histogram (figure IV.3 below),

the normal QQ-plot (figure IV.17, appendix B) and the boxplot (figure IV.18, appendix B) illustrate

the previous analysis and show strong evidence of non-normality, which is confirmed by a Jarque-Bera

test ((p-value < 2.2.10−16).

It is also interesting to look at the “complete” histogram in figure IV.19 (appendix B). Indeed, we

can see that there are some isolated spikes, for example near zero, that probably correspond to marginal

prices of some specific units and in particular RES. A closer look around zero shows that there is in fact
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Min Q1 Median Mean Q3

Price (e/MWh) -79.9 25.4 31.1 32.2 40.0

Max S.D. C.V.4 Skewness Kurtosis

Price (e/MWh) 99.8 12.7 0.39 -0.3 6.2

Table IV.2 – Descriptive statistics of the electricity price
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Figure IV.3 – Histogram of price (e/MWh)

a range of prices from approximately -0.10 to 0.10e/MWh (figure IV.20 in appendix B).

Finally, we make sure that the price time series is stationary by performing two unit root tests: aug-

mented Dickey-Fuller, Phillips-Perron; and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationarity

test (appendix B, table IV.8). All these tests show that the price time series is stationary.

4.3 Load-related statistics

If we now look at the histogram of load (figure IV.4, left), we see that there appears to be two modes,

with respectively “high” and “low” demand. When studying relations between price, RES production

and demand, it is frequent to consider the residual demand, i.e. demand minus RES generation. The

histogram of the residual load is visible on figure IV.4 right. We clearly see that the “high-demand

mode” has disappeared, which could be explained by the high correlation between demand and solar

production due to their daily seasonality. The descriptive statistics of the load and residual load are

shown in table IV.3. We see that although the residual demand is still not Gaussian, it is more volatile

(due to the volatility of the wind and solar outputs), and has slighlty heavier tails. It is also interesting

to note that although RES production strongly contribute to off-peak load reduction (-28.9 GW), it

only generates a 1.2 GW decrease of peak demand.

Furthermore, residual load (net demand) has a correlation coefficient with price of 0.88, which makes
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Figure IV.4 – Histogram and estimated mixture model densities of load (left), and histogram of residual
load (right), in MWh

Min Q1 Median Mean Q3

Load (MW) 34, 801 48, 825 57, 237 57, 616 66, 891
Residual load (MW) 5, 903 38, 214 45, 845 45, 939.9 53, 905

Max S.D. C.V. Skewness Kurtosis

Load (MW) 79, 120 10, 332 0.18 -0.02 1.8
Residual load (MW) 77, 898 11, 425 0.25 -0.1 2.9

Table IV.3 – Descriptive statistics of load and residual load

it a “better” candidate for the model than gross demand (ρ = 0.67). Similarly, it is often convenient

to study the relative share of RES production, as suggested by Jónsson et al. (2010). In our case, they

have higher correlation coefficients with price (-0.56 for wind and -0.095 for solar) than RES generation

itself, but also with residual load (-0.62 and -0.18). This could possibly lead to high variance inflation

factors, but as we will see in section 6, the obtained coefficients are significant and stable.

4.4 Price and load seasonality

Electricity prices are highly seasonal, mainly because of the demand seasonality. To illustrate this, the

left graph on figure IV.5 below shows the power spectra (or periodograms) of the price and residual load

time series. These enable to detect the dominant frequencies (or equivalently, periods) in the series. We

find that the price and residual load have identical periods, i.e. 12h, 24h, 168h (a week) in particular,

which was expected. Furthermore, the right graph on figure IV.5 represents the squared coherency

spectrum, which is the amplitude of the cross-correlation function. It shows which percentage of the

variance is shared by the two variables at each frequency5. This analysis confirms that the seasonality

of electricity prices is mainly driven by the (residual) demand.

This seasonality affects the distributions of price and (residual) load, but our analysis strongly
5On this graph the frequency is obtained by dividing the abscissa by the number of observations, i.e. 17,520. The

period is then the inverse of the frequency, as on the left figure. The smallest period is 2h as we are dealing with hourly
data. Hence the maximum frequency is 0.5h-1.
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Figure IV.5 – Smoothed log-periodograms of price (black, left) and residual load (red, left) and squared
coherency spectrum (right)

suggests that these variations will be correlated, given the very high correlation between the price and

the residual load, both in the temporal and frequency domains. Thus, it seems sufficient to control for

this seasonality using the residual load as a covariate in the model. In particular, we seek to keep the

model as parsimonious as possible, as MS models can prove very difficult to estimate. Indeed, having too

many regressors can lead to non-convergence or local convergence (i.e. wrong estimates). Furthermore,

differentiating the model for each season and type day would require dividing the series accordingly and

hence break the temporal integrity, which we wish to avoid as the series present some autocorrelation,

that the MS model takes (at least partly) into account.

5 Methodology

In this section, we first present the transformation that we apply on the price time series, before exposing

the model itself.

5.1 Variable transformation

It is quite common in time series analysis to perform a logarithmic (or sometimes a Box-Cox) trans-

formation. Indeed, the logarithmic transformation has several interesting properties, from reducing the

weight of extreme values (and more generally reducing non-normality). It also enables to interpret co-

efficients of regressions as elasticities, or to interpret first differences of the transformed data as rate of

returns.

However, we cannot take the logarithm of the price, because of negative prices (1% of the total).

This could be artificially prevented by adding an offset value to the series so that it would be strictly

positive, enabling then to use the log transformation, as suggested by Sewalt and De Jong (2003). If

the offset was low enough compared to the mean, it would produce little distortion, but in our case, the

price goes as low as -79.9e/MWh, for a mean of 32.2e/MWh and a maximum of 99.8e/MWh. Hence,
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adding 80e/MWh to prices and taking the logarithm would then highly “compress” high prices together

while maybe giving “too much” importance to negative prices.

Furthermore, we want to be able to distinguish the merit-order effect depending on the level of

prices, while keeping a unique and coherent time series. It is rather obvious that the previously exposed

methodology will not help us identify price regimes, as prices will be “stacked” together. Thus, in order

to enhance regime identification while taking into account negative prices and reducing the importance

of extreme values, we use an inverse hyperbolic sine transformation. This transformation was originally

described by Johnson (1949) and more recently used by Schneider (2012) for electricity prices. This

transformation is achieved by applying the inverse of the hyperbolic sine function, which is defined by

the following expression, with offset and scale parameters ξ, λ ∈ R:

∀x ∈ R f(x, ξ, λ) = sinh−1
(
x− ξ
λ

)
= ln

x− ξ
λ

+

√(
x− ξ
λ

)2

+ 1

 (IV.2)

The behaviour of this function is logarithmic when |x| → ∞ and linear when x→ ξ:

f(x, ξ, λ) ∼
x→ξ

x− ξ
λ

(IV.3)

f(x, ξ, λ) ∼
|x|→+∞

sign(x)× ln

(
2|x|
λ

)
= sign(x)×

[
ln

(
|x|
λ

)
+ ln 2

]
(IV.4)

Hence,the logarithmic behaviour of the function will “compress” the extreme values, while its linear be-

haviour will on the contrary “expand” intermediate values, hopefully leading to the desired distribution.

Figure IV.6 below represents the inverse hyperbolic sine function with ξ = 0 and λ = 1 in red, and in

green the symmetric logarithmic function (with position factor ln 2) and its symmetric with respect to

the origin.

There are many ways to choose the values for λ and ξ. For example, one could use the values that

give the most normal mixture distribution, or that is best fit by the model. In particular, the choice

of ξ will strongly condition the range of each regime. However, for the sake of simplicity, we simply

decided to take the mean value of the price for ξ. This choice enables us to separate the two regimes

quite clearly, and gives them a relatively similar importance as the mean is quite close to the median.

Additionally, we chose λ = 1 e/MWh for simplicity reasons also. As expected, the histogram of the

transformed price (figure IV.7) lets appear two distinct modes, that could not be seen in the original

histogram. We can highlight the bimodality of the distribution by trying to fit it as a mixture of two

128



5. Methodology

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−2

2

x

x 7→ sinh−1(x) = ln(x+
√
x2 + 1)

x 7→ sign(x)× (ln |x|+ ln 2)

Figure IV.6 – Inverse hyperbolic sine (red) and symmetric logarithm (green) functions

normal distributions. This gives the red and green densities in figure IV.7: the two modes are well

identified, but are not Gaussian (they have no reason to be, nor is it required by the model). However,

extreme values are indeed reduced for each regime.
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Figure IV.7 – Histogram, estimated mixture model densities and kernel density (dashed) of the trans-
formed price

5.2 Model

Now that we have described and transformed the data, we develop an econometric model to quantita-

tively evaluate the impact of RES generation on electricity prices. We consider a discrete-time (t ∈ N),

two-regime MS model, in which the coefficients of the covariates and the variance of the residuals depend

on the value of a latent unobserved state (or regime) variable S ∈ {1; 2}. The state variable is a Markov

chain, i.e. the probability of switching from a regime is Markovian (it only depends on its current state,
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and not its past):

∀ t ∈ N P(St = j|St−1 = i, St−2, ..., S0) = P(St = j|St−1 = i) = pij(t) (IV.5)

as visually described in figure IV.8. We denote by P the stochastic matrix associated with the process:

∀ t ∈ N P (t) =

p11(t) p12(t)

p21(t) p22(t)

 with: ∀ i ∈ {1, 2} pi1 + pi2 = 1 (IV.6)

Then, we have by recurrence that: P(St+k = j|St−1 = i) = P (t)× ...× P (t+ k))(i,j). Furthermore, the

Figure IV.8 – Graph representing the Markov chain process

underlying Markov chain is supposed to be ergodic, i.e. irreducible (it is possible to switch from a state

to another with positive probability) and if all its states are ergodic (i.e. aperiodic and recurrent). We

also allow the Markov chain to be inhomogeneous, with probabilities of transition varying over time. A

simple and widely spread specification for inhomogeneous MS models is to have the probabilities being

described by a logistic function of external regressors6. In our case, we want probabilities to vary with

wind and solar penetration indices. Finally, the model to estimate is given by equations IV.7-IV.9 below

(note that all the parameters of the model are estimated together via maximum likelihood):

∀ t ∈ N Price∗t = β0(t) + β1(t)
Windt
Loadt

β2(t)
Solart
Loadt

+ β3(t)RLoadt + εt (IV.7)

6It would also be possible to use another specification, for example a probit one as in Kim et al. (2008), but we think
that a logit specification allows to interpret the coefficients more easily, and should not fundamentally change the results,
as it is usually the case for discrete choice models.
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where RLoad = Load−Wind− Solar is the residual load, Price∗ is the transformed price, and:

∀ t ∈ N


β(t) = β(1) × 1(St = 1) + β(2) × 1(St = 2) ∈ R4

εt  N (0, (σ1)
2 × 1(St = 1) + (σ2)

2 × 1(St = 2))

(IV.8)

∀ t ∈ N logit(pi1(t)) = ln

(
pi1(t)

1− pi1(t)

)
= α

(i)
0 + α

(i)
1

Windt
Loadt

+ α
(i)
2

Solart
Loadt

(IV.9)

⇔ pi1(t) =
1

1 + exp
(
−α(i)

0 − α
(i)
1

Windt
Loadt

− α(i)
2

Solart
Loadt

) (IV.10)

⇔ pi2(t) = 1− pi1(t) =
1

1 + exp
(
α
(i)
0 + α

(i)
1

Windt
Loadt

+ α
(i)
2

Solart
Loadt

) (IV.11)

It is also possible to compute the expected duration of each state. This is done numerically for an

inhomogeneous model, while for an homogeneous models the expected duration of regime i ∈ {1, 2} has

the following closed-form expression:

Eτi =
+∞∑
k=1

kP(τi = k) =
+∞∑
k=1

kpijp
k−1
ii =

1

pij
=

1

1− pii
(IV.12)

For an homogeneous ergodic Markov chain, one can also compute the stationary distribution π =

(π1, π2), with π1 + π2 = 1, which by definition is the probability distribution of states that does not

change in time. These probabilities can be interpreted as the mean proportion of (or the unconditional

probability of being in) each regime:

πP = π ⇔ π1 = 1− π2 =
p21

p12 + p21
=

Eτ1
Eτ1 + Eτ2

(IV.13)

An ergodic Markov chains has a unique stationary distribution, and if it is homogeneous it is also the

equilibrium (or limiting) distribution, i.e. it is reached asymptotically:

lim
n→+∞

Pn =
not.

P∞ =

π1 π2

π1 π2

 (IV.14)

For an inhomogeneous Markov chain these values have usually no closed-form expressions, but can

nevertheless be estimated numerically, which is done with the estimation.
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6 Results and discussion

Let us now present the estimation results, before discussing more in depth the interpretation of the

regimes in a second subsection. Then, we will derive (average) marginal effects from the model, as

the interpretation of the coefficients is not straightforward. Lastly, we will examine the impact on the

structure of the regimes, and in particular their expected duration.

6.1 Estimation results

The estimation results are presented in tables IV.4 and IV.5 below. All coefficients are highly signifi-

cant and significantly different from a regime to another (Wald tests were performed to test this). It

is surprising at first sight that the coefficients associated with the relative shares of wind and solar

productions are positive. However, we will show in subsection 6.3 that we can indeed deduce negative

marginal effects of wind and solar productions. This is due to the fact that these productions are also

present in the residual load variable7.

Furthermore, we conducted several robustness checks. Indeed, the possible multicollinearity between

the three covariates could lead the estimates to be either non-significant or numerically unstable (Belsley

et al., 2005). The estimation results show that the coefficients are statistically significant, which rules

out the first issue. Regarding numerical stability, we have realised 50 additional estimations after adding

noise to the data. We also estimated the model after removing the first and last four days from the

sample (192 hours in total, i.e. roughly 1% of the whole sample). We found that in all cases the estimates

were little affected by these operations, and we thus consider that multicollinearity is not an issue here.

Concerning the transition matrix parameters, α(i)
1 and α

(i)
2 are both positive, i.e. the probability

of staying in or switching to regime 1 (resp. regime 2) is an increasing (resp. decreasing) function of

the relative shares of wind and solar productions. Figure IV.9 shows the evolution of the modelled

probabilities of transition with the relative shares of wind and solar. This graph reveals two particular

features: firstly, the influence of the wind energy output is much stronger than the influence of the solar

one; secondly, the impact on p11 (and hence on p12) is quite limited, compared to the impact on p21

(and p22).

Table IV.5 below shows that the mean probabilities of transition are also significant, hence justifying

the switching mechanism. Additionally, we showed using Wald tests that p11 and p21 (and thus also
7We could have chosen a specification whose coefficients could be more easily interpreted, but the chosen modelling was

the only one with lowest information criteria and residual variance, which converged, and which was able to distinguish
the two regimes properly.
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Variable Coefficient Std. Error z-Statistic p-value

Regime 1

Intercept −7.171284 0.056058 −127.9269 0.0000
Wind/Load 1.271735 0.064171 19.81791 0.0000
Solar/Load 1.530959 0.064736 23.64942 0.0000
RLoad 0.000114 1.19e− 6 95.71098 0.0000
σ1 0.581968 0.006004 96.93304 0.0000

Regime 2

Intercept −3.416402 0.089319 −38.24955 0.0000
Wind/Load 1.569330 0.135748 11.56058 0.0000
Solar/Load 2.242196 0.126642 17.70505 0.0000
RLoad 0.000106 1.40e− 6 75.80216 0.0000
σ2 0.695252 0.008222 84.56472 0.0000

Transition Matrix Parameters

α
(1)
0 1.109705 0.059471 18.65958 0.0000

α
(1)
1 5.306012 0.345166 15.37235 0.0000

α
(1)
2 4.464573 0.414828 10.76247 0.0000

α
(2)
0 −2.762521 0.069484 −39.75780 0.0000

α
(2)
1 6.971012 0.392717 17.75075 0.0000

α
(2)
2 1.483876 0.441446 3.361400 0.0008

Table IV.4 – Coefficient estimates
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Figure IV.9 – Probabilities of transition
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p12 and p22) were significantly different from one another. This proves that the switching mechanism is

indeed Markovian, at the opposite of a “simple” switching model, for which the probability of being in

a given regime would be unconditional (i.e. p11 = p21 and p22 = p12).

Time-varying transition probabilities pij(t):
1 2

Mean 1 0.876859 0.123141
2 0.182783 0.817217

1 2
Std. Dev. 1 0.060346 0.060346

2 0.150465 0.150465

Time-varying expected durations:

Regime 1 Regime 2
Mean 12.64588 8.048185
Std. Dev. 13.72816 3.877061

Table IV.5 – Time-varying transition probabilities and expected durations

Finally, let us comment the time-varying expected durations: although regime 1 is on average 4.6

hours longer than regime 2, it is also much more variable. Also, one should not be surprised that the

sum of the mean expected durations does not equal 24 hours. In particular, this means that there can

be more than one regime change during a single day.

6.2 Regime visualisation

In this subsection, we now associate the regimes with the levels of prices and other variables. Fortunately,

the estimation procedure computes for each time step the probability of being in each regime. In fact

three kind of probabilities are computed by the algorithm:

• one-step probabilities: P(St = i|St−1);

• filtered probabilities: P(St = i|St−1, ..., S1);

• smoothed probabilities: P(St = i|{St}t∈J1;T K).

Filtered or smoothed probabilities are often used to attribute the regimes to each time step. We will

use smoothed probabilities, but there is almost no difference with the filtered probabilities in the regime

attribution. In practice, the probabilities are very close to 1 or 0, so that the choice between a regime

or another is unambiguous.
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Dynamic visualisation

A very common and useful way to visualise the switching process is shown in figure IV.10 below. From

this short sample (first week of September 2014), we clearly see that as expected, the regimes are

associated to a price mode: prices are higher in regime 2 than in regime 1. Also, these regimes seem to

be quite correlated to the hours of the day. This is normal since prices are strongly seasonal, as already

explained in subsection 4.4. However, there are some exceptions, that the MS model is able to take into

account, as we can see in this example. We find this week to be rather representative, as it presents the

usual daily and weekly seasonalities of electricity demand and prices while showing the influence of the

variable RES production on prices. Also, as can be seen later in figure IV.11 and IV.12, there difference

in the attribution of the regimes is much more driven by the type of day than by the season.

These graphs contain a lot of information, and hence need to be analysed. First of all, we notice the

very regular pattern followed by the load, with a peak at 11am and very low demand during the night

and the weekend. During the first two days, wind and solar production is rather low, and the regimes

seem to be driven by load only: regime 2 coincides with high demand and high prices, from 6am to

10pm, so roughly during daytime. On Wednesday and Thursday however, wind and solar generation

increases. This incurs a change in regime with a decrease in price, respectively from 12pm to 5pm and

3pm. On Friday, the wind energy output is rather low, but solar production reaches its week peak at

1pm, and there is a slight and quick change of regime (P(S = 1) = 0.66). Finally, the load decrease

during the weekend, associated with a still strong solar generation, keeps the prices low.

Seasonality analysis of the regimes

Let us now look at the the frequency of occurrence of regime 1 for each hour, per type of day8 (figure

IV.11) and season9 (figure IV.12). We observe as expected that night hours are mainly during the low-

price regime (1), for all types of day and seasons. The morning peak hours (8-10am) are more associated

to high prices (regime 2), but only for working days. Evening peak hours (6-8pm) are associated with

high prices for all types of days (but less during week-ends), and particularly in autumn.

During working days, the middle of the day is less associated with a specific regime, except during

spring in which prices are relatively lower. Indeed, although the type of day seems to be the main driver

for the level of prices, the frequency of occurrence of regime 1 differs a lot among months, reaching
8We do not consider holidays in this analysis, but we believe that it would not change the results much, and that the

pattern would be rather similar to the one observed for weekends.
9For simplicity, we considered that winter was running from December to February, spring from March to May, etc.
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Figure IV.10 – Price, gross demand, wind and solar productions (blue, left axis) and probability of being
in regime 1 (red, right axis), first week of September 2014

88.7% at 1-2pm in March while it is of only 41.7% in November. This confirms the fact that the model

is indeed able to take the seasonality into account, while staying non-deterministic and hence more

flexible.

Comparison of price and load regimes

We can also visualise the regimes thanks to 2D plots such as figure IV.13: (transformed) price vs.

(logarithm of) load. On this graph the two regimes are easily identifiable. Also, this partly confirms
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Figure IV.11 – Mean frequencies of occurrence of regime 1 for each hour of the day, for working days
and weekends
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Figure IV.12 – Mean frequencies of occurrence of regime 1 for each hour of the day, per season

what we saw previously in figure IV.10, i.e. that price regimes are highly correlated with load regimes.

When looking at the histograms of the transformed price for each regime (figure IV.14), we find that

the two modes correspond to the previously identified ones in figure IV.7.

However, we can see from the Price-Load graph that there exists a region for which the demand

is high, while the price remains low. This is confirmed by taking a look at the histograms of load for

each regime (figure IV.15): during regime 1 there is a (relatively small) proportion of “high” demand,

whereas only a high-demand mode is present in regime 2.

Finally, if we plot the transformed price versus the residual demand (figure IV.16), this region

disappears, and the relationship between the transformed price and the residual load appears to be

rather linear within each regime, hence comforting the choice of the transformation and of the residual
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Figure IV.13 – Transformed price vs. logarithm of load for the two regimes (blue: regime 1, red: regime
2)
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Figure IV.14 – Histograms of the transformed price for regime 1 (left) and 2 (right)
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Figure IV.15 – Histograms of the logarithm of load for regime 1 (left) and 2 (right)

demand as covariate.
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Figure IV.16 – Transformed price vs. residual load in regime 1 (blue) and 2 (red)

6.3 Effect on prices

Average marginal effects

Interpreting the coefficients can be difficult, since the price has been transformed and because we use

wind and solar penetration indices as well as residual load. In particular, the coefficients associated with

wind and solar productions are positive, which would mean at first look that they increase the price.

However, when taking into account the effect of RES through the residual load coefficient we should

find a negative effect. Hence, it is interesting to derive an expression for the average marginal effects

(slopes), that would tell how much the decrease in price is when RES production and load increase.

We do not compute elasticities, because they would be very high when prices approach zero, and would

change sign whenever the price does. For clarity reasons, we put in appendix C the computations and

the formal expressions of the average marginal effects (equations IV.26-IV.28), while we show the results

here (table IV.6)10.

As expected, we find negative average marginal effects for RES generation, and a positive one for

load, for each time step. Then on average, an increase of 1 GW of wind will decrease the price in

regime 1 (resp. 2) by 0.77e/MWh (resp. 1e/MWh). The influence of solar is slightly weaker, as an

extra gigawatt hour lowers the price of 0.73e/MWh in period 1, and 0.96e/MWh in regime 2. On the

contrary, if the demand increases by 1 GW in regime 1 (resp. 2), the price increases on average by

0.93e/MWh (resp. 1.18e/MWh). Moreover, we performed Welch t-tests on the obtained coefficients

to test whether their means are significantly different from one another (from a regime to another and

for each variable within each regime), which seems to be the case.
10The standard deviations are computed directly from the time series generated by equations IV.26-IV.28
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Regime 1 Regime 2

Mean S.D. C.V. Mean S.D. C.V.
∂Price

∂Wind
((e/MWh)/(GW)) -0.77 0.73 0.94 -1.0 0.79 0.79

∂Price

∂Solar
((e/MWh)/(GW)) -0.73 0.68 0.94 -0.96 0.76 0.79

∂Price

∂Load
((e/MWh)/(GW)) 0.93 0.84 0.90 1.18 0.92 0.78

Table IV.6 – Average marginal effect for each regime

Even though we cannot rigorously conclude about the statistical significance of the average marginal

effects, many elements are consistent with the fact the the effect is negative. Indeed, the time series

computed from equations IV.26-IV.27) are fully negative, and the estimated coefficients of the model

are indeed statistically significant. Furthermore, we estimated a model using RES productions in level

instead of their relative shares, which produced statistically significant negative marginal effects on the

transformed price11.

This analysis confirms the existence of different merit-order effects in high-price and low-price

regimes. However, these slopes have very high coefficients of variation, which means that inside each

regime the marginal effect can vary a lot. Nevertheless, these high variations are partly due to the re-

verse transformation that is needed to compute those slopes, and the estimated coefficients β are on the

contrary very well determined, with rather low standard deviations. It is thus important to remember

that these marginal effects are not equivalent to the model, which considers a non-linear transformation

of the price, but only illustrate it in a linear framework. Additionally, when trying to estimate the

MS model for the non-transformed price, we fail to disentangle the two regimes, which confirms the

usefulness of the price transformation. Yet, the existence of different marginal effects for high and low

prices confirms that the inverse supply curves are on average convex, as explained in the introduction.

Similarly, the volatility was found to be higher in regime 2 than in regime 1, which is consistent with

this hypothesis.

Non-marginal effects

Although the average marginal effects are of huge interest, they are only valid inside each regime, i.e.

when there is no switching. Indeed, when there is a regime change, marginal effects are not defined
11Unfortunately, this model could not converge when using time-varying probabilities, which is why we did not use it.

140



6. Results and discussion

since the coefficients change. In particular, the predicted change of the transformed price conditionally

on the previous period is:

E [∆Price∗|St−1 = i] = pii

[
β
(i)
1 ∆

(
Wind

Load

)
+ β

(i)
2 ∆

(
Solar

Load

)
+ β

(i)
3 ∆RLoad

]
+ pij

[
∆β0 + ∆

(
β1
Wind

Load

)
+ ∆

(
β2
Solar

Load

)
+ ∆ (β3RLoad)

]
(IV.15)

We recognise in this expression a weighted average of a regime-i term and a regime-j switching term.

The first term is the equivalent of the marginal effect, which is computed for an infinitesimal change

of the covariates. This cannot be done with the second term, because of the switching coefficients. To

have an idea of the importance of the switching term, the mean price in regime 1 is 23.5e/MWh, while

it is 42.6e/MWh in regime 2, i.e. approximately the first and third quartiles Q1 and Q3.

6.4 Impact on the regimes

Odds ratios

Also of interest is the interpretation of the coefficients of the time-varying probabilities. We have already

analysed the effect of the RES penetration indices on the probabilities through the sign of the coefficients,

but we would also like to assess the impact more quantitatively. The first and natural idea is to look at

odds ratios (eα), which would tell how the odds of switching or staying in a regime vary with the shares

of renewable production. This is given in table IV.7 below:

Variable (1) (2)

eα0 3.033463 0.06313241

eα1/100 1.054493 1.072197

eα2/100 1.045657 1.014949

Table IV.7 – Odds ratios of the logit model for the transition probabilities

From this table we can see for example that an increase of one percentage point of the relative share

of wind energy output would increase the odds of staying in regime 1 by 5.4% while increasing the

odds of switching from regime 2 to regime 1 by 7.2%. Similarly, an increase of one percentage point

of the relative share of solar production would increase the odds of staying in regime 1 by 4.6% while

increasing the odds of switching from regime 2 to regime 1 by 1.5%. These odds ratios show again that

solar generation has a smaller impact than wind generation, especially when it comes to switching from

high to low prices.
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Impacts on regime durations

In addition, we would like to refer to more understandable variables than probabilities of transition, e.g.

the expected duration of each regime Eτi, or the stationary distribution π, as defined at the end of section

5. We have presented closed-form expressions for these variables in the homogeneous case, that are no

longer valid in the inhomogeneous one. However, deriving closed-form expressions for marginal effects on

these variables in the inhomogeneous case can give an idea of the magnitude of the impact, even though

it is not mathematically rigorous. Since the expression of the stationary distribution involves both α(i)

coefficients, we will focus on the expected durations only. Also, we will only derive the impact of RES

production (similar expressions can be derived for the load). We show in appendix C the following

results:

〈 ∂ (Eτ1 − 1)

Eτ1 − 1
∂Wind

〉
' α

(1)
1

〈Load〉
' 9.2 %.GW−1 ;

〈 ∂ (Eτ2 − 1)

Eτ2 − 1
∂Wind

〉
' −α

(2)
1

〈Load〉
' −12 %.GW−1 (IV.16)

〈 ∂ (Eτ1 − 1)

Eτ1 − 1
∂Solar

〉
' α

(1)
2

〈Load〉
' 7.7 %.GW−1 ;

〈 ∂ (Eτ2 − 1)

Eτ2 − 1
∂Solar

〉
' −α

(2)
2

〈Load〉
' −2.6 %.GW−1 (IV.17)

Hence, α
(i)
1

〈Load〉 and
α
(i)
2

〈Load〉 can be interpreted as the (absolute values of the) semi-elasticities of Eτi−1

with respect to wind and solar productions, respectively. The fact that Eτ − 1 is considered instead

of simply Eτ is due to the mathematical derivation of the expressions, but it also reminds us that the

expected duration of a regime cannot be lower than 1, as long as it exists, but it can nevertheless be

very rare. Furthermore, as Eτ is the expected duration of a regime conditionally on being in this regime,

one could interpret Eτ − 1 as the mean “remaining time” in the regime, as the current period is taken

into account in the definition of Eτ .

On average, when there is an additional GW of wind (resp. solar), Eτ1 − 1 increases by 9.2% (resp.

7.7%), while Eτ2 − 1 decreases by 12% (resp. 2.6%). As a reminder, the computed mean expected

durations where Eτ1 = 12.6 h and Eτ2 = 8.04 h. The computed semi-elasticities are quite high (in

absolute value), and it must be remembered that they are only approximate mean values. However,

this confirms that RES generation not only affect electricity prices marginally, but also more globally,

through the expected duration of each regime, but also their frequency (not derived here).

In the long run, with very high shares of renewable production, these estimates have no reason to

stay valid. In particular, the price structure is expected to change, with on average lower prices and

less episodes of high prices. With time, regime 2 as defined here is likely to shrink or disappear, while
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regime 1 will become more and more predominant. In fact, recall that the regimes have more or less

been “predefined”, as we chose the mean price as location parameter for the inverse hyperbolic sine

transformation. Hence, as the mean is expected to decrease as well, a new transformation would have

to be defined at some point. One could also think of including a dynamic modelling of the mean itself,

but this would most certainly prove very difficult to achieve.

7 Conclusions and policy implications

We have assessed the impact of wind and photovoltaic productions on electricity prices, taking into

account the intermittency of these power generating units. For this purpose, we developed a two-state

Markov switching model that we estimated using data from the German market. We exhibited two

regimes, of “low” (1) and a “high” (2) prices, which present intra and inter-regime temporal correlation.

Within each regime, the marginal impact of RES production is shown to be negative, and significantly

different from a regime to another. These results are in line with standard electricity markets theory:

the higher the prices, the higher the merit-order effect, and the higher the volatility as well. This

is due to the fact that (inverse) supply curves are on average convex, as peak power plants have a

relatively high marginal cost but usually provide little capacity compared to base power plants. Also,

while marginal effects are only valid inside each regime (i.e. when there is no switching), we show that is

also a non-marginal switching effect, which is influenced by renewable generation through their impact

on the transition probabilities. Indeed RES production, and especially the wind one, leads to more

frequent and longer low-price episodes. As a consequence, although the regimes are partly deterministic

(due to the strong seasonality of demand), there are many exceptions, i.e. episodes of low prices with

high demand. From the estimation of the transition probabilities, we derived odds ratios as well as

approximations of semi-elasticities for the expected remaining duration of each regime. These values

confirm and help quantify the overall impact of RES production on the structure of prices.

Although we have only considered the effect of RES generation on electricity prices, there is neces-

sarily an impact on the other units of production and on cross-border flows. Hence, we can also expect

to have a differentiated effect on the conventional units, depending on the merit-order and on which

plant is marginal. However, a more thorough analysis would be needed to numerically evaluate this

impact. For example, using a different methodology, Graf and Marcantonini (2016) used panel data

in Italy to show that RES generation effectively reduces CO2 emissions while increasing the average

plant emission factor. Furthermore, although we have only shown that the volatility is higher during
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the high-price regime, intermittent RES production might influence it as well. This could be done for

example using MS-GARCH modelling.

Finally, the policy implications of these results are diverse, but the first related issues are security of

supply and support schemes for renewables. Indeed, since we expect RES production to decrease prices

on average, we might also expect fewer episodes of very high prices. Unfortunately, these are essential

to the profitability of peak power plants, who in turn suffer from “missing money”. This well known

“failure” of the energy-only market has led several countries to adopt capacity remuneration mechanisms

(CRMs), such as capacity payments, capacity obligations, or strategic reserves.

Yet this issue concerns other production facilities as well. In particular, renewables are expected to

become competitive on energy markets (at least on the retail market, which is already the case today in

some places). However competitiveness might not ensure profitability on the wholesale market, if prices

become too low. Indeed, it might then be necessary to keep subsidising RES for longer than expected,

while some conventional power plants could have to be subsidised as well, for example through CRMs12,

if they are valuable to the system as secure capacity. Indeed, it is often considered that security of

supply is a public good, which can then be subsidised if it is not produced in sufficient quantity by the

market (market failure), for example if prices are too low, or high enough on average but with very few

occurrences of very high prices, i.e. with a lot of uncertainty. In the long run, electricity markets and

support mechanisms would have to be redesigned to take into account all these specificities. Hopefully,

dynamic retail pricing and electricity storage might help gain overall efficiency, but it is still uncertain

whether they will be available soon and deliver their promises or not. In any case, it is necessary to start

addressing the problem by thinking about future market design. In this context, this paper contributes

to understanding the market impact of load and renewable production, by highlighting the non-linear

relationship between electricity prices and these particular determinants. Consequently, policy makers

will have to take into account these increasing interactions when designing future electricity markets.

Appendices

A Marginal shock on supply or demand: theory

Let us denote D : p 7→ D(p) (with (D′ < 0) and S : p 7→ S(p) (with S′ > 0) the demand and supply

functions for a certain time step, and let us derive the expression of the marginal effect on price for
12Note that CRMs are not necessarily subsidies, and that other means of subsidies could be used in the present case.
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an infinitesimal change in supply dRES or demand dLoad. At the equilibrium, price and quantity are

jointly determined by equating supply and demand: Q = D(p) = S(p). Suppose that there is a change

in supply so that the equilibrium quantity writes Q = S(p, s), and/or a change in demand so that

Q = D(p, d). Hence, as Q = D(p, d) = S(p, s), when s and d change, p does too so that the equation

continues to hold. We can then write the price as function of s and d: p = p(s, d); and the equilibrium

equation becomes: D(p(s, d), d) = S(p(s, d), s). Differentiating then yields:

∂D

∂p

(
∂p

∂s
ds+

∂p

∂d
dd

)
+
∂D

∂d
dd =

∂S

∂p

(
∂p

∂s
ds+

∂p

∂d
dd

)
+
∂S

∂s
ds (IV.18)

For an additive change in supply only we simply have S(p, s) = S(p) + s and D(p, d) = D(p), so that:

∂D

∂p

∂p

∂s
=
∂S

∂p

∂p

∂s
+ 1 (IV.19)

Rearranging and replacing s by RES gives:

∂p

∂RES
=

1

∂D

∂p
− ∂S

∂p

< 0 (IV.20)

Finally, considering an additive change in demand only we have D(p, d) = D(p) + d and S(p, s) = S(p).

Replacing d by Load then gives equation IV.1:

∂p

∂Load
=

−1

∂D

∂p
− ∂S

∂p

= − ∂p

∂RES
> 0 (IV.21)

B Statistical graphs and tests for the price time series

B.1 Statistical graphs
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Figure IV.17 – Normal QQ-plot
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Figure IV.19 – “Complete” histogram
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Figure IV.20 – Histogram around 0e/MWh
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B.2 Statistical tests: unit roots and stationarity

Null Hypothesis: PRICE has a unit root
Exogenous: Constant

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic −17.13532 0.0000
Test critical values: 1% level −3.430552

5% level −2.861513
10% level −2.566797

*MacKinnon (1996) one-sided p-values.

Null Hypothesis: PRICE has a unit root
Exogenous: Constant

Adj. t-Stat Prob.*

Phillips-Perron test statistic −24.45028 0.0000
Test critical values: 1% level −3.430551

5% level −2.861513
10% level −2.566797

*MacKinnon (1996) one-sided p-values.

Null Hypothesis: PRICE is stationary
Exogenous: Constant, Linear Trend

LM-Stat.

Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.109461
Asymptotic critical values*: 1% level 0.216000

5% level 0.146000
10% level 0.119000

*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)

Table IV.8 – Unit root and stationarity tests without structural breaks for the price time series
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C Mathematical expressions of the marginal effects

C.1 Marginal effects on price

We show here how to derive the expression for the marginal effects in each regime. For simplicity

of presentation, we use the centred variable X = Price − 〈Price〉 (where 〈·〉 is the temporal mean

operator), we denote by W = Wind
Load and S = Solar

Load the relative shares of wind and solar productions,

and we drop the index t. As the derivative of x 7→ sinh−1 x is x 7→ (x2 + 1)−1/2, we have the following

computations13:

sinh−1X = β0 + β1W + β2S + β3RLoad (IV.22)

⇒ dPrice√
X2 + 1

= β1dW + β2dS + β3dRLoad (IV.23)

= β1

(
dWind

Load
− Wind

Load

dLoad

Load

)
+ β2

(
dSolar

Load
− Solar

Load

dLoad

Load

)
(IV.24)

+ β3 (dLoad− dWind− dSolar) (IV.25)

All other variables held constant, we obtain the following expressions for the marginal effects due to

wind and solar productions and load:

∂Price

∂Wind
=
√
X2 + 1

(
β1
Load

− β3
)

(IV.26)

∂Price

∂Solar
=
√
X2 + 1

(
β2
Load

− β3
)

(IV.27)

∂Price

∂Load
=
√
X2 + 1

(
β3 − β1

Wind

Load2
− β2

Solar

Load2

)
(IV.28)

Finally, we compute these marginal effects for each time step and take temporal their mean and standard

deviation, as shown in table IV.614.

C.2 Marginal effects on expected duration

As stated in section 6, the marginal effects computed below are not mathematically rigorous, since we

use formulas for expected duration and stationary distribution that are only valid for homogeneous

Markov chains. Nevertheless we hope that it will give an idea of the magnitude of the marginal effects.
13For simplification, we omit the error term and the regime indices: we consider in fact the expectation of X conditional

on a regime and on the covariates
14The standard deviations are computed directly from the time series generated by equations IV.26-IV.28.
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First, let us recall the aforementioned formulas:

Eτi =
1

pij
=

1

1− pii
and π1 = 1− π2 =

p21
p12 + p21

(IV.29)

We inject the expression of the time-varying probabilities in the equation giving the expected durations,

using W and S as before for the sake of simplicity:

pi1 =
1

1 + exp
(
−α(i)

0 − α
(i)
1 W − α(i)

2 S
) and pi2 =

1

1 + exp
(
α
(i)
0 + α

(i)
1 W + α

(i)
2 S

) (IV.30)

so that we have for the expected durations:

Eτ1 = 1 + exp
(
α
(1)
0 + α

(1)
1 W + α

(1)
2 S

)
(IV.31)

⇒ dEτ1 = α
(1)
1 exp

(
α
(1)
0 + α

(1)
1 W + α

(1)
2 S

)
dW + α

(1)
2 exp

(
α
(1)
0 + α

(1)
1 W + α

(1)
2 S

)
dS (IV.32)

⇒ d (Eτ1 − 1)

Eτ1 − 1
= α

(1)
1 dW + α

(1)
2 dS (IV.33)

= α
(1)
1

(
dWind

Load
− Wind

Load

dLoad

Load

)
+ α

(1)
2

(
dSolar

Load
− Solar

Load

dLoad

Load

)
(IV.34)

and

Eτ2 = 1 + exp
(
−α(2)

0 − α
(2)
1 W − α(2)

2 S
)

(IV.35)

⇒ dEτ2 = −α(2)
1 exp

(
−α(2)

0 − α
(2)
1 W − α(2)

2 S
)

dW − α(2)
2 exp

(
−α(1)

0 − α
(2)
1 W − α(2)

2 S
)

dS (IV.36)

⇒ d (Eτ2 − 1)

Eτ2 − 1
= −α(2)

1 dW − α(2)
2 dS (IV.37)

= −α(2)
1

(
dWind

Load
− Wind

Load

dLoad

Load

)
− α(2)

2

(
dSolar

Load
− Solar

Load

dLoad

Load

)
(IV.38)

Finally, all other variables held constant, we can isolate the marginal effects and take their temporal

mean:

〈 ∂ (Eτ1 − 1)

Eτ1 − 1
∂Wind

〉
=

α
(1)
1

〈Load〉
;

〈 ∂ (Eτ2 − 1)

Eτ2 − 1
∂Wind

〉
=
−α(2)

1

〈Load〉
(IV.39)

〈 ∂ (Eτ1 − 1)

Eτ1 − 1
∂Solar

〉
=

α
(1)
2

〈Load〉
;

〈 ∂ (Eτ2 − 1)

Eτ2 − 1
∂Solar

〉
=
−α(2)

2

〈Load〉
(IV.40)
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Abstract

Keywords

Cette aspects
relatifs des renouvelables
(EnR) Celles-ci ont choisies par
de nombreux pays, de leur
empreinte carbone, dans le cadre de la lutte
contre le changement climatique.

la plupart du temps pas
face aux moyens de production conventionnels,
les EnR des subventions publiques,
la fois nationales et locales, pour

rentables. J'analyse de ces aides
dans le cas du chez les
particuliers en tenant compte des

de communication, qui participent
fortement la diffusion. Je montre combien ces
derniers peuvent un levier
dans le des EnR.

Ensuite, l'impact des
de raccordement au des EnR, dans le
cas de terrestre en France. Ces
introduisent une spatiale des frais
de raccordement. Cela permet de les
investissements vers les dans lesquelles
le est moins contraint, ce que je quantifie.

Les jouent un dans le
des EnR via leur tarification.

Celle-ci est essentielle dans le cas de
l'autoconsommation, qui fait peser des risques
sur du gestionnaire de

Ainsi, je notamment les prix
l'optimum de second rang dans le
cas d'un tarif

Enfin, j'analyse l'impact de la production
renouvelable sur les prix de gros de
en Allemagne. Je montre que les EnR induisent
une baisse des prix en fonction de

offre-demande. Ceci les
centrales de pointe la
d'approvisionnement, ainsi que les EnR de
demain, qui devront se passer de subventions.

This thesis deals with several aspects of the
economics of electric renewable energy sources
(RES). These have been chosen by many
countries, willing to reduce their carbon
footprint, in order to fight climate change.

As RES are usually not competitive against
conventional power plants, they rely on national
and local subsidies in order to be profitable. I
analyse the efficiency of such support schemes
in the case of solar photovoltaics for residential
households in France. Communication
phenomena also take a huge part in the
diffusion process. My work shows in how far
these are an additional driver of RES
development.

Then, I study the impact of regional network
connection schemes for renewables in France,
in the field of onshore wind energy. These
schemes introduce a spatial differentiation of
network connection charges. They enable to
reallocate investments in regions in which the
electricity network is less constrained, and I
quantify this reallocation.

Electricity networks also play a role in the
development of RES through their tarification.
The latter is fundamental in the case of
self-consumption (or "prosumption"), that puts
the budget balance of the network operator at
risk. Thus, I derive second-best prices in the
case of a two-part energy-capacity tariff.

Finally, I analyse the impact of renewable
generation on electricity wholesale prices in
Germany. I show that RES induce a decrease in
prices, which depends on the supply-demand
equilibrium. This penalises peaking power
plants that are necessary to the security of
supply, as well as future renewables, which
shall progressively become profitable without
subsidies.

renouvelables ; ;
de ; subventions ; diffusion ;

autoconsommation

Renewable energy; electricity networks;
electricity markets; subsidies; diffusion;
self-consumption
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