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Abstract

This thesis focuses on denoising and in particular video denoising. For a long time, it was not
possible to envisage sophisticated video denoising. This is due to constraints linked with video
processing. While it is possible for an image to require up to a minute of processing, or even
processing it remotely, this is not possible for a video because of the large number of frames that
makes a even a short video. Even though the problem is very similar to image denoising, video
denoising requires specific methods. We show here that not only using the temporal information in
video is very important but also that efficient implementations on GPU allow for real time video
denoising without any major modification of the methods. We also show that the mechanisms
developed can be used for other applications such as anomaly detection and forgery detection.

The first part of the thesis focuses on patch-based methods. We first study one of the most
popular and successful video denoising method called VBM3D. It combines self-similarity, by
looking for similar patches both spatially and temporally, as well as patch filtering. We then take
a more in-depth look at the patch search step for these patch-based methods. In particular we
show the importance of temporal patch search in video. A patch search that searches in the entire
video allows for better denoising. We also propose a novel causal and recursive video denoising
method called NL-Kalman that tries to bridge the gap between lighter temporal filtering methods
and heavier non-causal self-similar methods. Finally, we also show that patch-based methods can
be implemented efficiently of GPU allowing for real time video denoising without any loss in
quality.

We investigate the new trend of machine learning methods for denoising and low-level pro-
cessing in the second part. We first propose one of the first neural network architecture for video
denoising that can compete with the state of the art. In particular we introduce temporal informa-
tion into the network using self-similarity similarly to patch-based methods. We also show that
deep learning offers new opportunities. In particular, it allows for denoising without knowing
the noise model. Thanks to the proposed framework, videos that have been processed with an
unknown processing pipeline can still be denoised. Finally, we take a look at RAW mosaicked
data. Indeed demosaicking and denoising are usually the two first steps of any image processing
pipeline. Some deep learning methods suggest solving the two problems at the same time. We
review the current state of the art for image demosaicking and show that deep learning methods
are much better both qualitatively and quantitatively than hand-crafted methods. We also show
that such demosaicking methods can be trained without requiring ground truth by simply using
pairs of mosaicked images of the same scene. This process allows for realistic joint demosaicking
and denoising and even single burst fine-tuning.

The last part of this thesis apply mechanisms used for denoising methods to other applications.
In particular, we first look at the problem of anomaly detection in images. We show that this
problem can be reduced to detecting anomalies in residual images in which noise and anomalies
prevail. We also look at other applications of patch matching such as forgery detection with the
detection of copy-paste forgeries. We analyze the theory of the the famous PatchMatch method
before presenting how it can be used for copy-paste detection. We also apply an a contrario patch
matching method to increase the robustness to similar objects.



4



5

Résumé

Cette thèse se concentre sur le débruitage et en particulier le débruitage vidéo qui a pendant
longtemps été ignoré. La raison principale est les contraintes liées au traitement de la vidéo.
Pour une image, il est acceptable d’avoir besoin de plusieurs minutes de traitement, voire même
de devoir le faire sur un serveur distant. Cela n’est pas acceptable pour une vidéo en raison
de la taille des données. Bien que le débruitage d’image et de vidéo sont des problèmes très
similaires, il est nécessaire d’avoir des outils spécifiques adaptés à la vidéo. Nous montrons ici
que l’information temporelle est très importante pour le traitement de la vidéo mais aussi que des
implémentations efficaces sur carte graphique permettent d’avoir des méthodes temps-réel sans
avoir à les modifier. Nous montrons aussi que les outils utilisés pour le débruitage peuvent être
utilisés pour d’autres applications comme la détection d’anomalies ou la détection de falsification.

La première partie de cette thèse est dédiée aux méthodes à patches. Nous étudions dans un
premier temps VBM3D, l’une des méthodes les plus populaires. Elle combine l’auto-similarité,
en cherchant des patches similaires à la fois spatialement et temporellement, et le filtrage des
patches. Nous étudions en détail l’étape de recherche de patches des méthodes à patches. Nous
montrons en particulier l’importance de la recherche temporelle de patches dans la vidéo. En
effet, une recherche plus globale permet d’avoir de meilleures performances de débruitage. Nous
proposons aussi une nouvelle méthode de débruitage, appelée NL-Kalman, qui est à la fois récur-
sive et causale. Avec NL-Kalman, nous essayons de réduire l’écart entre les méthodes de type
filtrage temporelle qui sont légères et les méthodes non-causales basées sur l’auto-similarité qui,
bien que très efficaces, sont beaucoup plus coûteuses. Enfin, nous montrons que les méthodes
à patches peuvent être implémentées efficacement sur carte graphique. Cela permet d’avoir un
débruitage temps-réel sans compromis sur la qualité.

Dans une deuxième partie, nous étudions une nouvelle tendance pour le débruitage et les
traitements bas-niveaux basée sur les méthodes d’apprentissage. Nous proposons tout d’abord
l’une des premières architectures de réseaux de neurones pour le débruitage vidéo qui est compéti-
tif avec l’état de l’art. Pour cela nous introduisons de l’information temporelle dans le réseau grâce
à l’auto-similarité, comme dans les méthodes à patches. Nous montrons aussi que les méthodes
basées sur l’apprentissage profond offrent de nouvelles opportunités. En particulier, il devient
possible de débruiter sans connaître le modèle du bruit. Grâce à la méthode proposée, même les
vidéos traitées par une chaîne de traitement inconnue peuvent être débruitées. Nous considérons
aussi des données brutes encore mosaïquées. En effet, le démosaïquage et le débruitage sont,
en général, les deux premières étapes d’une chaîne de traitement d’images. Certaines méthodes
d’apprentissage proposent de résoudre les deux problèmes en même temps. Après avoir examiné
l’état de l’art du démosaïquage, nous pouvons conclure que les méthodes basées sur les réseaux
de neurones sont meilleures de façon quantitative mais aussi visuel que les autres méthodes. Nous
montrons aussi que ces méthodes peuvent être entraînées sans vérité terrain en utilisant unique-
ment des paires d’images mosaïquées de la même scène. Ce procédé permet d’apprendre un
démosaïquage et débruitage réaliste et même d’adapter l’apprentissage à une acquisition rafale
spécifique.

La dernière partie de cette thèse concerne les applications à d’autres problèmes des mécan-
ismes utilisés pour le débruitage. L’un de ces problèmes est la détection d’anomalies dans les
images. Nous montrons que ce problème peut être ramené à détecter des anomalies dans une
image résiduelle dans laquelle du bruit et les anomalies dominent. Nous étudions d’autres appli-
cations à la recherche de patches comme la détection de falsifications telles que la détection de
copié-collé. Nous analysons la théorie derrière la célèbre méthode PatchMatch avant de présenter
comment elle peut être utilisée pour la détection de copié-collé. Nous utilisons aussi la compara-
ison de patches a contrario pour augmenter la robustesse aux objets similaires.
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Introduction

Motivations

Denoising is a fundamental image and video processing problem. While the performance of
denoising methods and imaging sensors has steadily improved over decades of research, new
challenges have also appeared. High-end cameras still acquire noisy images in low lighting con-
ditions. High-speed video cameras use short exposure times, reducing the SNR of the captured
frames. Cheaper, lower quality sensors are used extensively, for example in mobile phones or
surveillance cameras, and require denoising even with a good scene illumination. This state of
facts is amplified by the poor quality of the optic used for these devices, due to cost and space
constraints.

Its relevance has increased with the democratization of mobile imaging devices such as smart-
phones due to the wide variety of usage. For example, these small devices are often used in poor
lighting condition. This degrades the quality of the output image, and the dominant factor in
that quality loss is noise. An example of the necessity of denoising even for high-end modern
smartphones is shown in Figure 1.

Figure 1: While the final output of a Samsung Galaxy S7 doesn’t show apparent noise (left), the RAW image
seen by the sensor is actually very noisy (right). The final output is obtained thanks to a complex processing
that applies denoising as one of its step.

The same problems also arise with other image sensing devices. In particular the same trend
of smaller and cheaper sensors acquiring many images quickly can be observed in remote sensing
imaging. For example, one of the largest provider of satellite images Planet can now acquire
short videos, also called bursts. While these images have a worst ground resolution and more
noise, multi-frame denoising and super-resolution [MSS+14] can be applied to create a single
higher-quality image. Denoising has also been applied to non-optical imaging devices such as
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radar images [DDT+14], ultrasound [CHKB09], fMRI images [WR04] and fluorescent images
[BKB+09] for medical images.

An additional problem with modern devices is the prevalence of proprietary pipelines. Images
are available at the end of an usually unknown processing pipeline or, sometimes, completely raw
data. The noise at the end of the pipeline is difficult to model and quite different from the popular
Gaussian noise model assumed in many methods. While the noise of raw data is easy to model,
a difficulty is caused by mosaicked data. Indeed, most cameras capture only one color per pixel,
this color being determined by a color filter array (CFA) located on top of the sensor. Such
data requires additional processing steps. In this thesis we try to take into account all practical
challenges that come with modern denoising by looking at the possibilities offered by model-blind
denoising and also looking at joint demosaicking and denoising.

While denoising is the main focus of this thesis, we also take a look at the problem of anomaly
detection. The automatic detection of anomalous structure in arbitrary images is concerned with
the problem of delineating regions not conforming with the rest of the data. For example, this is
particularly important to detect defects in a production line. We shall put in evidence a striking
similarity between methods for anomaly detection and for denoising. We also take a look at
forgery detection, another problem with similarity to both denoising and anomaly detection.

Part I (Chapters 1 to 4) presents and extends traditional patch-based methods. In Part II
(Chapters 5 to 8), we take a look at the more recent trend of machine learning for low-level vision
processing and the new exciting opportunities they bring to the table. Finally, Part III (Chapters 9
to 12) deals with detection applications using similar tools than the ones developed for denoising.

1. VBM3D and its extensions

In this chapter we review one of the most popular video denoising methods. VBM3D is an
extension to video of the well-known image denoising algorithm BM3D, which takes advantage
of the sparse representation of stacks of similar patches in a transform domain. The extension
is rather straightforward: the similar 2D patches are taken from a spatio-temporal neighborhood
which includes neighboring frames. In spite of its simplicity, the algorithm offers a good trade-off
between denoising performance and computational complexity. A detailed description is given
and the choice of parameters is thoroughly discussed. Furthermore, we study and compare several
extensions of the original algorithm: (1) a multi-scale implementation, (2) the use of 3D patches,
(3) the use of optical flow to guide the patch search. These extensions allow to obtain results which
are competitive with even the most recent state of the art. Figure 2 presents the core structure of
VBM3D.
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Figure 2: Scheme of the core of the VBM3D algorithm.
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Figure 3: The plots show the position in the spatio-temporal video domain of the matches found for a sample
patch query for different search methods. From left to right: the best matches found with a global exhaustive
search, with a local exhaustive search in a window centered at the query, and with the VPLR search, the
heuristic proposed in this chapter. Notice how the latter discovers the patch trajectories similar to those of
the global exhaustive search.

This method will then be used as reference to compare the denoising methods proposed in
the following chapters. Understanding in details all the mechanisms of the method also led to an
optimized GPU implementation presented in Chapter 4.

2. Global patch-search for denoising

As we show in Chapter 1, patch search is an important mechanism of patch-based methods, and
it will be recurrent throughout the thesis. In the case of a single image, a local search region is
justified by the fact that similar patches are likely to be close to each other in the image domain.
Videos however, have an additional strong source of redundancy given by the temporal consis-
tency. A patch is expected to have similar patches along its motion trajectory, even in distant
frames. It seems intuitive that patch-based methods should benefit from this larger set of simi-
lar exemplars. However, this search is generally performed locally around each target patch for
obvious complexity reasons.

In this chapter we focus on the patch search. We present an efficient global approximate
search technique and demonstrate its impact on video denoising. It permits for the first time to
evaluate the impact of a global search on the video denoising performance.

Figure 3 shows that the method achieves a behavior similar to a global exhaustive search, for
a fraction of the computational cost.

3. A recursive video denoising method: NL-Kalman

Contrary to the methods presented in Chapters 1 and 2, we propose a recursive causal method in
this chapter. This means that the method uses only the current frame and the previous denoised
one. The goal of such methods is to close the gap between high-quality but slow methods and
those efficient but of lower quality.

The proposed method, called NL-Kalman, considers the video as a set of overlapping tem-
poral patch trajectories. Following a Bayesian approach each trajectory is modeled as a linear
dynamic Gaussian model and denoised by a Kalman filter. To estimate its parameters, similar
patches are grouped and their trajectories are considered as sharing the same model parameters.
The filtering is mainly temporal; non-local spatial similarity is only used to estimate the parame-
ters. This temporally causal method obtains results comparable (in terms of PSNR and SSIM) to
state-of-the-art methods using several frames per frame denoised but with a better temporal con-
sistency. While temporal consistency cannot be visualized without looking at the video, Figure 4
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Figure 4: Denoising results when the sequence is corrupted by noise of standard deviation 30. From left to
right: Denoising using NL-Kalman, NL-Kalman with an oracle optical flow, VBM3D, VBM4D and the original
frame. From top to bottom: Crop from the sequence crowd_run and pedestrian_area. Overall the
proposed method preserves more details as it can be seen both in the tree and in the text. Results best
viewed zoomed.

Method SF GPU PSNR Time/frame

NLM ours yes yes 31.54 0.851 ms
BM3D ours yes yes 32.93 4.51 ms
NLM video ours no yes 33.53 10.6 ms
VBM3D [EA20] no no 34.21 2.90 s
VBM3D ours no yes 34.31 3.30 ms

Table 1: Comparison of denoising performance (average PSNR) and average running time per frame of
BM3D, VBM3D and NL-means on the Derf dataset of the compared implementations (noise standard devi-
ation of level 20). Whether the method uses a single frame (SF) or a GPU is indicated.

shows that the proposed method also recovers more details.

4. Fast patch-based denoising on GPU

We show in the previous chapters that denoising is an essential part of any image or video process-
ing pipeline. Unfortunately, due to time processing constraints, many pipelines do not consider
the use of modern denoisers. These algorithms have only CPU implementations or suboptimal
GPU implementations. In this chapter, we propose a new efficient GPU implementation of NL-
means and BM3D, and, to the best of our knowledge, the first GPU implementation of the video
denoising algorithm VBM3D. The performance of these implementations enable their use in real-
time scenarios. Table 1 shows the impact of an optimized implementation for video denoising.

5. Non-Local video denoising by CNN

Non-local patch based methods were until recently state of the art for image denoising but are
now outperformed by machine learning and in particular CNNs. Yet they are still the state of the
art for video denoising, as video redundancy is a key factor to attain high denoising performance.
The problem is that CNN architectures are hardly compatible with the search for self-similarities.
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Figure 5: The architecture of the proposed method. The first module performs a patch-wise nearest neigh-
bor search across neighboring frames. Then, the current frame, and the feature vectors fnl of each pixel
(the center pixels of the nearest neighbors) are fed into the network. The first four layers of the network
perform 1 × 1 convolutions with 32 feature maps. The resulting feature maps are the input of a simplified
DnCNN [ZZC+17a] network with 15 layers.

In this chapter we propose a new and efficient way to feed video self-similarities to a CNN.
The non-locality is incorporated into the network via a first non-trainable layer which finds for
each patch in the input image its most similar patches in a search region. The central values of
these patches are then gathered in a feature vector which is assigned to each image pixel. This
information is presented to a CNN which is trained to predict the clean image. We apply the
proposed architecture to image and video denoising. For video, patches are searched for in a 3D
spatio-temporal volume. The proposed architecture, shown in Figure 5, achieves state-of-the-art
results.

6. Model-blind video denoising via frame-to-frame training

In the previous chapters, the noise model is always considered fixed and known. However, mod-
eling the processing chain that has produced a video is a difficult reverse engineering task, even
when the camera is available. This makes model based video processing a still more complex
task. In this chapter we propose a fully blind video denoising method, with two versions offline
and online. This is achieved by fine-tuning a pre-trained AWGN denoising network to the video
with a novel frame-to-frame training strategy. Our denoiser can be used without knowledge of the
origin of the video and the post-processing steps applied from the camera sensor. The online pro-
cess only requires a couple of frames before achieving visually pleasing results for a wide range
of perturbations. It nonetheless reaches state-of-the-art performance for standard Gaussian noise,
and can be used offline with still better performance. The flexibility of the proposed method is
shown in Figure 6.

7. Demosaicking with deep learning

Most cameras capture the information of only one color for a given pixel. This results in a
mosaicked image that must be interpolated to get three colors at each pixel. The step going
from a mosaicked image to a regular RGB image is called demosaicking. This chapter reviews
two recent demosaicking methods based on convolutional neural networks that achieve artifact-
free state-of-the-art results: Deep joint demosaicking and denoising by Gharbi et al. [GCPD16]
and Color image demosaicking via deep residual learning by Tan et al. [TZZZ17]. These methods
beat by almost two decibels the best human-crafted methods, while being faster by one order of
magnitude. A difficult example of demosaicking where only learning methods performs well is
shown in Figure 7. This, arguably, seals the destiny of human-crafted methods on this subject.
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Figure 6: From the same starting point and only using the video, our fine-tuned network is able to denoise
different noises without any artifact. The top images are the noisy and the bottom ones the denoised.
From left to right: Gaussian noise, Poisson type noise, salt and pepper type noise and JPEG compressed
Gaussian noise.

Figure 7: From top-left to bottom-right: Original, Gharbi et al. [GCPD16], Tan et al. [TZZZ17], MLRI
[KMTO14], ARI [MKTO15], Getreuer [Get12]. Learning based methods produce fewer artifacts while still
being very efficient computationally.
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Original Gharbi et al.: 36.1dB Kokkinos et al.: 35.5dB Ours: 37.3dB

Figure 8: Using a burst, our fine-tuning (starting from the network from Gharbi et al. [GCPD16]) is able to
not only denoise well (σ = 5) but also doesn’t show any artifacts like zipper or moire in the difficult regions.
Best visualized on a screen.

8. Joint demosaicking and denoising by fine-tuning of bursts of raw
images

Demosaicking, studied in Chapter 7, and denoising are the first steps of any camera image pro-
cessing pipeline and are key for obtaining high quality RGB images. A promising current research
trend aims at solving these two problems jointly using convolutional neural networks. Due to the
unavailability of ground truth data these networks cannot be currently trained using real RAW
images. Instead, they resort to simulated data.

In this chapter we present a method to learn demosaicking directly from mosaicked images,
without requiring ground truth RGB data. We apply this to learn joint demosaicking and denoising
only from RAW images, thus enabling the use of real data. This allows to mitigate the training
bias due to simulated data. In addition we show that for this application fine-tuning a network
to a specific burst improves the quality of restoration for both demosaicking and denoising. An
example on synthetic data is shown in Figure 8.

9. How to Reduce Anomaly Detection in Images to Anomaly Detection
in Noise

While denoising is important to improve the visual quality of images and videos, it can also have
a surprising application to seemingly completely unrelated problems. One of such surprising ap-
plications is detecting anomalies. Anomaly detectors address the difficult problem of detecting
automatically exceptions in a background image, that can be as diverse as a fabric or a mammog-
raphy. Detection methods have been proposed by the thousands because each problem requires a
different background model. By analyzing the existing approaches, we show in this chapter that
the problem can be reduced to detecting anomalies in residual images (extracted from the target
image) in which noise and anomalies prevail. Hence, the general and impossible background
modeling problem is replaced by a simple noise model and allows the calculation of rigorous
detection thresholds. Our approach is therefore unsupervised and works on arbitrary images. The
residual images can favorably be computed on dense features of neural networks. Our detector
is powered by the a contrario detection theory, which avoids over-detection by fixing detection
thresholds taking into account the multiple tests. Figure 9 shows detections on real natural images
using different methods for anomaly detection.
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Input pixels conv1_1 conv2_1 conv3_1

SALICON
[HSBZ15]

Itti et al.
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Figure 9: Detection results of our method when using as image representation directly the image pixels
or the activation maps of the VGG neural Network at different layers (conv1_1, conv2_1, conv3_1) and
a comparison to [MC13], [IKN98], [JWY+13] and [HSBZ15] on real examples. The first two images (top
and second row) are part of the Toronto dataset [BT06], while the third and fourth row are from [MC13]
and [TH99] respectively.

10. Analysis of PatchMatch

As seen in the previous chapters, many problems in image/video processing and computer vision
require the computation of a dense k-nearest neighbor field (k-NNF) between two images. For
each patch in a query image, the k-NNF determines the positions of the k most similar patches
in a database image. With the introduction of the PatchMatch algorithm [BSFG09a], Barnes et
al. demonstrated that this large search problem can be approximated efficiently by collaborative
search methods that exploit the local coherency of image patches. After its introduction, several
variants of the original PatchMatch algorithm have been proposed, some of them reducing the
computational time by two orders of magnitude. In this chapter we study the convergence of
PatchMatch and its variants, and derive bounds on their convergence rate. We consider a generic
PatchMatch algorithm from which most specific instances found in the literature can be derived as
particular cases. We also derive more specific bounds for two of these particular cases: the original
PatchMatch and Coherency Sensitive Hashing [KA11]. The proposed bounds are validated by
contrasting them to the convergence observed in practice.

11. Detection of copy-paste forgeries based on PatchMatch

This chapter reviews an application of the PatchMach process studied in Chapter 10. The method
studied in this chapter has been presented in [CPV15]. This method is a forgery detection based
on a dense field of descriptors chosen to be invariant by rotation, for example Zernike moments.
An efficient matching of the descriptors is then performed using PatchMatch, which is extremely
efficient to find duplicate regions. Regions matched by PatchMatch are processed to find the final
detections. This allows a precise and accurate detection of copy-move forgeries inside a single
suspicious image. We also extend successfully the method to the use of dense SIFT descriptors
and show that they are better at detecting forgeries using Poisson editing. An example of detection
is shown in Figure 10.
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(a) Forged image (b) Mask

(c) Displacement map (d) Error map (e) Initial detection mask (f) Final detection mask

Figure 10: Detection of forgery using PatchMatch and Zernike moments for a forgery applying only a trans-
lation.

12. Detection of copy-paste forgeries based on sparse descriptors

The method presented in Chapter 11 suffers from over-detecting similar but genuinely different
regions. This is because detecting reliably copy-move forgeries is difficult and in particular be-
cause images do contain similar objects. These similar objects are detected because most methods
are not robust enough to differentiate clones and similar objects. The question then is: how to
discard natural image self-similarities while still detecting copy-moved parts as being “unnatu-
rally similar”? Especially knowing that copy-move may have been performed after a rotation, a
change of scale and followed by JPEG compression or the addition of noise.

For this reason, we propose another method based on robust patch matching similar to those
presented in Part I. We use keypoints similar to SIFT, meaning sparse keypoints with scale, ro-
tation and illumination invariant descriptors. To discriminate natural descriptor matches from
artificial ones, we introduce an a contrario patch comparison method which gives theoretical
guarantees on the number of false alarms. We validate our method on several databases. Being
fully unsupervised it can be integrated into any generic automated image tampering detection
pipeline. In Figure 11, we show how it is possible to distinguish similar but genuine objects and
forgeries using only local image patches.

13. Publications

This thesis has led to the following publications:

• Global patch search boosts video denoising, Thibaud Ehret, Pablo Arias and Jean-Michel
Morel, International Conference on Computer Vision Theory and Applications, 2017

• Automatic Detection of Internal Copy-Move Forgeries in Images, Thibaud Ehret, Image
Processing On Line, 2018

• Model-blind video denoising via frame-to-frame training, Thibaud Ehret, Axel Davy,
Jean-Michel Morel, Gabriele Facciolo and Pablo Arias, Conference on Computer Vision
and Pattern Recognition, IEEE, 2018

• Non-Local Kalman: A recursive video denoising algorithm, Thibaud Ehret, Jean-
Michel Morel and Pablo Arias, International Conference on Image Processing, IEEE, 2018
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Figure 11: On the left image the two objects are similar but not digital copies of each other. On the right,
one is a digital copy of the other. The patches shown below each respective image correspond to the red
squares in the images. They show that a difference is visible at this level and therefore the descriptors can
be discriminated. This is why the detection method can discard genuinely similar objects.
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Introduction en français

Motivations

Le débruitage est un problème fondamental du traitement de l’image et de la vidéo. Bien que
les performances des méthodes et des capteurs aient continué de s’améliorer au cours de dizaines
d’années de recherche, de nouveaux défis sont apparus. Les appareils haut de gamme produisent
encore des images bruitées dans des conditions de lumière difficiles. Les caméras ultra-rapide ont
des temps de captures très courts, dégradant ainsi le rapport signal à bruit dans les images. Des
capteurs moins chers et de moins bonne qualité sont utilisés à grande échelle pour les téléphones
portable et les caméras de surveillance. Ces capteurs produisent des images bruitées même dans
de bonnes conditions d’illumination. Ce problème est d’autant plus important que l’optique util-
isée pour ces appareils est en général de mauvaise qualité à cause de leur coût et des contraintes
de place.

Son importance est d’autant plus grande avec la démocratisation des téléphones portables à
cause de leurs utilisations très variées. Par exemple, ces appareils sont souvent utilisés dans des
environnements peu éclairés. Cela dégrade la qualité de l’image produite et le facteur prédominant
de cette perte de qualité est le bruit. Un exemple de l’importance du débruitage même avec un
téléphone haut de gamme récents est montré dans la Figure 12.

Figure 12: Bien que l’image produite par un téléphone Samsung Galaxy S7 ne semble pas être bruitée
(gauche), l’image brute correspondante telle que vue par le capteur est en fait très bruitée (droite). L’image
finale est produite par une chaîne complexe de traitement d’image qui applique un débruitage lors d’une
des différentes étapes.

Les mêmes problèmes sont aussi présents avec d’autres systèmes d’acquisition d’images. En
particulier, la tendance d’utiliser des capteurs plus petits et bon marché est aussi présente dans
l’imagerie satellitaire. Par exemple, un des plus gros fournisseur d’images satellitaires, Planet,
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peut maintenant acquérir de courtes séquences d’images. Bien que ces images aient une moins
bonne résolution spatiale et plus de bruit, du débruitage et de la super-résolution multi-image
permettent de créer une unique image de bien meilleure qualité. Le débruitage a aussi été utilisé
pour d’autres types d’imagerie comme des images radar [DDT+14], ultrason [CHKB09], IRM
[WR04] et de l’imagerie par fluorescence [BKB+09] pour des images médicales.

Un problème supplémentaire avec les appareils modernes est l’existence de chaînes de traite-
ment propriétaires. Les images sont soient disponibles après une chaîne de traitement inconnue,
soient, dans certains cas, complètement brutes. Le bruit après la chaîne de traitement est difficile
à modéliser et peut être très différent d’un bruit blanc gaussien qui est très souvent le modèle
supposé par les méthodes. Bien que le bruit des images brutes est plus facile à modéliser, leur
problème vient du mosaïquage des données. En effet, la très grande majorité des appareils ne
capture qu’une couleur par pixel, cette couleur étant déterminée par le filtre de couleur (CFA)
situé sur le capteur. Ces données nécessitent du coup des traitements supplémentaires. Dans cette
thèse, nous essayons de prendre en compte tous les défis pratiques du débruitage “moderne” en
étudiant le débruitage dit “aveugle”, sans avoir besoin de connaître le modèle de bruit à l’avance,
et la résolution jointe du débruitage et du démosaïquage.

Bien que le débruitage soit le sujet principal de cette thèse, nous considérons aussi le problème
de détection d’anomalies. La détection automatique de structures anomaliques dans des images
arbitraires a pour but de délimiter les régions non conformes avec le reste des données. Par
exemple, il est particulièrement important de détecter les défauts d’un produit dans une chaîne de
production. Nous mettrons en lumière une ressemblance frappante entre la détection d’anomalies
et le débruitage. Nous étudierons aussi la détection de falsification, un autre problème avec de
grandes similarités avec le débruitage et la détection d’anomalies.

La Partie I (Chapitres 1 à 4) présente et étend les méthodes à patches pour le débruitage
vidéo. Dans la Partie II (Chapitres 5 à 8), nous considérons le nouvel axe prometteur de recherche
qui propose d’utiliser des méthodes d’apprentissage pour résoudre les problèmes de traitement
d’images et vidéos et les nouvelles opportunités que ces méthodes offrent. Pour finir, la Partie III
(Chapitres 9 à 12) présente différentes applications de détection qui utilisent des outils similaires
à ceux présentés pour le débruitage.

1. VBM3D et ses extensions

Dans ce chapitre nous étudions l’une des méthodes les plus populaires pour le débruitage vidéo.
VBM3D est une extension à la vidéo du célèbre algorithme de débruitage d’image BM3D qui
utilise une représentation parcimonieuse des groupes de patches similaires après transformation.
L’extension est assez directe: les patches 2D similaires sont trouvés dans un voisinage spatio-
temporel qui inclut des images vidéo voisines. Malgré sa simplicité, l’algorithme offre un bon
compromis entre qualité de débruitage et temps de calcul. Une description détaillée de la méth-
ode est donnée et le choix des paramètres discuté. Nous étudions aussi différentes extensions
possible à la méthode originale: (1) une implémentation multi-échelle, (2) l’utilisation de patches
3D, (3) l’utilisation du flot optique pour guider la recherche de patches. Ces extensions perme-
ttent d’obtenir des résultats compétitif avec l’état de l’art. La Figure 13 présente le principe de
fonctionnement de VBM3D.

Cette méthode est utilisée ensuite comme référence pour comparer les différentes méthodes
proposées dans les chapitres suivants. La bonne compréhension de tous les mécanismes de la
méthode a permis d’implémenter efficacement la méthode sur carte graphique. Cette implémen-
tation est présentée dans le Chapitre 4.
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Figure 13: Schéma expliquant le principe de fonctionnement de VBM3D.

Figure 14: Ces images représentent la position des meilleurs patches dans la vidéo trouvés par différentes
techniques de recherche de patches. De gauche à droite: la position des meilleures correspondances pour
la recherche exhaustive globale, pour la recherche exhaustive locale centrée sur la position du patche de
référence et l’heuristique proposée dans ce chapitre. Il est important de remarquer que cette dernière trouve
des trajectoires de patches semblables aux trajectoires trouvées par la recherche exhaustive globale.

2. Recherche de patches globale pour le débruitage

Comme nous l’avons montré dans le Chapitre 1, la recherche de patches est un mécanisme impor-
tant des méthodes à patches. Ce mécanisme est récurrent tout au long de cette thèse. Dans le cas
d’une image unique, chercher dans une région locale est justifié par le fait que les patches les plus
similaires sont plus susceptibles de se retrouver proche dans l’image. Les vidéos ont cependant
une autre source de redondance grâce à la consistance temporelle. Il est normal de s’attendre à
retrouver des patches similaires le long des trajectoires temporelles même dans des images vidéo
distantes dans le temps. Il semble intuitif que les méthodes à patches peuvent bénéficier de cette
source de similarité. Malheureusement, la recherche est cependant faite de façon locale pour
chaque patche à cause de contraintes de temps de calcul évidentes.

Dans ce chapitre nous nous concentrons sur la recherche de patches. Nous présentons une
recherche qui est une bonne approximation de la recherche exhaustive globale et nous montrons
son impact sur le débruitage vidéo. Cela permet pour la première fois d’estimer l’impacte de la
recherche globale sur les performances de débruitage vidéo.

La Figure 14 montre que la méthode proposée a un comportement similaire à une recherche
exhaustive globale pour une fraction du coût de calcul.

3. Une méthode de débruitage vidéo récursive: NL-Kalman

Contrairement aux méthodes présentées dans les Chapitres 1 and 2, nous proposons ici une méth-
ode récursive et causale dans ce chapitre. Cela signifie que la méthode n’utilise que l’image vidéo
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Figure 15: Résultats de débruitage de séquences corrompues par un bruit gaussien avec un écart-type
de 30. De gauche à droite: Débruitage avec NL-Kalman, NL-Kalman avec un flot optique oracle, VBM3D,
VBM4D et l’image de référence. De haut en bas: Extrait de la séquence crowd_run et pedestrian_-
area. La méthode permet de récupérer plus de détails comme par exemple dans l’arbre ou dans le texte.

actuelle et ainsi que la version débruitée de l’image vidéo précédente. Le but de ces méthodes
est de réduire l’écart entre les méthodes de type filtrage temporel qui sont légères et les méth-
odes non-causales basées sur l’auto-similarité qui, bien que très efficaces, sont beaucoup plus
coûteuses.

La méthode proposée, appelée NL-Kalman, considère que la vidéo est un ensemble de tra-
jectoire de patches qui peuvent se superposer. Selon une approche bayesienne, chaque trajec-
toire est modélisée comme un modèle linéaire dynamique gaussien et débruitée par un filtre
de kalman. Pour estimer les différents paramètres, les patches similaires sont regroupés et on
considère que leurs trajectoires partagent les mêmes paramètres. Le filtrage est principalement
temporel. L’information spatiale similaire n’est utilisée que pour estimer les paramètres. Cette
méthode permet d’obtenir des résultats comparables (en PSNR et SSIM) aux méthode de l’état
de l’art utilisant plusieurs images vidéo pour chaque image débruitée. La méthode proposée a
cependant une meilleure consistance temporelle. Bien que la consistance temporelle ne peut pas
être montrée sans la vidéo, la Figure 15 montre que cette méthode préserve plus de détails que les
autres.

4. Débruitage vidéo rapide sur carte graphique

Nous montrons dans les chapitres précédents que le débruitage est une étape essentielle de
n’importe quelle chaîne de traitement de l’image ou de la vidéo. Malheureusement, en général
à cause de contraintes de calculs, les méthodes modernes de débruitage sont rarement consid-
érées pour être intégrée dans les chaînes de traitements. Ces algorithmes n’ont souvent que des
implémentations processeur ou des implémentations carte graphique sous-optimales. Dans ce
chapitre nous proposons une nouvelle implémentation carte graphique efficace de NL-means and
BM3D et pour la première fois, à notre connaissance, l’algorithme de débruitage vidéo VBM3D.
L’efficacité de ces implémentations permet de les utiliser dans des scénarios temps-réel. La Ta-
ble 1 montre l’impact d’une implémentation optimisée pour le débruitage vidéo.
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Méthode IS GPU PSNR Temps/image

NLM ours yes yes 31.54 0.851 ms
BM3D ours yes yes 32.93 4.51 ms
NLM video ours no yes 33.53 10.6 ms
VBM3D [EA20] no no 34.21 2.90 s
VBM3D ours no yes 34.31 3.30 ms

Table 2: Comparaison de la performance de débruitage (PSNR moyen) et du temps de calcul moyen par
image pour différentes implémentations de BM3D, VBM3D et NL-means sur la base Derf (écart-type du
bruit de 20). Il est indiqué si la méthode n’utilise qu’une seule image (IS) ou sur carte graphique (GPU).

1
x
1

 C
o
n

v
 +

 R
e
LU

 

1
x
1

 C
o
n

v
 +

 R
e
LU

 

DnCNN:

15 layers
64 features 
3x3 Conv

1
x
1

 C
o
n

v
 +

 R
e
LU

 

1
x
1

 C
o
n

v
 +

 R
e
LU

 

32 32 32 32

noisy frame + 
n non-local features: 

residual image
noisy video sequence

non-local patch 
search module

       ...  t-2    t-1       t      t+1   t+2 ...

Figure 16: L’architecture du réseau de neurones proposé. Le premier module effectue une recherche de
patches similaires à travers différentes images vidéo. L’image vidéo de référence ainsi que l’information de
similarité (donnée sous la forme d’un vecteur des pixels centraux des patches trouvés) sont données au
réseau. Les quatre premières couches du réseau sont des séries de 32 convolutions de taille 1 × 1. Le
résultat de ces convolutions est ensuite l’entrée d’un réseau de type DnCNN [ZZC+17a] simplifié avec 15
couches.

5. Débruitage vidéo avec un réseau de neurones convolutionnel basé
sur l’auto-similarité

Les méthodes à patches étaient jusqu’à récemment l’état de l’art pour le débruitage d’image
mais ont depuis été dépassées par l’apprentissage et en particulier les réseaux convolutionnels.
Ces méthodes sont cependant encore l’état de l’art pour le débruitage vidéo car la redondance
de l’information dans la vidéo est très important pour atteindre de bonnes performances de
débruitages. Le problème est que les architectures sont en général incompatibles avec l’ajout
d’information auto-similaire.

Dans ce chapitre nous proposons une nouvelle manière d’intégrer de l’information auto-
similaire dans un réseau de neurone convolutionnel. L’information non-locale est introduite dans
le réseau grâce à une première couche, qui n’est pas apprise, qui cherche les patches les plus
proches dans une région d’intérêt pour chaque patche de l’image de référence. Les pixels cen-
traux de ces patches sont ensuite fusionnés en un vecteur associé à chaque pixel de l’image. Cette
information est ensuite donnée à un réseau convolutionnel qui est entraîné pour prédire l’image
débruité. Nous avons appliqué l’approche proposée aux images et aux vidéos. Pour les vidéos,
les patches sont cherchés dans un volume spatio-temporel. L’architecture proposée, montrée dans
la Figure 16, atteint les performances de l’état de l’art.
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Figure 17: À partir du même point de départ et en utilisant uniquement la vidéo disponible, notre méthode
de raffinage de réseau de neurones est capable d’apprendre à débruiter différents types de bruit sans
produire d’artefacts. Les images du haut sont les images bruitées et celles du bas les débruitées. De
gauche à droite: bruit gaussien, poisson, poivre et sel et bruit gaussien compressé par JPEG.

6. Débruitage vidéo sans connaître le modèle du bruit grâce un ap-
prentissage image vidéo à image vidéo

Dans les chapitres précédents, le modèle de bruit a toujours été considéré connu et supposé qu’il
n’évoluait pas dans le temps. Cependant, modéliser la chaîne de traitement qui a produit une
vidéo est une tâche de rétro-ingénierie difficile, même lorsque la caméra est connue. Cela rend le
traitement de la vidéo une tâche encore plus difficile. Nous proposons dans ce chapitre une méth-
ode de débruitage qui ne dépend pas du modèle de bruit, avec une version en ligne et une version
hors ligne. Cela est possible par le raffinage d’un réseau pré-entraîné pour du bruit gaussien blanc
sur une vidéo grâce une stratégie d’apprentissage image vidéo à image vidéo. Notre débruiteur
peut être utilisé sans avoir aucune connaissance sur la provenance de la vidéo et des traitements
appliqués après l’acquisition. Le processus en ligne n’a besoin que de quelques images vidéo
avant d’arriver à produire des résultats agréables visuellement pour un large éventail de dégra-
dations. Cette méthode atteint même les performances de l’état de l’art pour du bruit gaussien,
et peut être utilisée hors ligne pour encore de meilleurs résultats. La flexibilité de la méthode
proposée est illustrée dans la Figure 17.

7. Démosaïquage par méthode à apprentissage profond

La plupart des caméras ne capturent qu’une seule couleur par pixel. L’image ainsi produite est
alors mosaïquée et doit être interpolée pour avoir les trois couleurs pour chaque pixel. Cette
étape de passage d’une image mosaïquée à une image couleur est appelée démosaïquage. Ce
chapitre étudie deux récentes méthodes de démosaïquage basées sur des réseaux de neurones
convolutionnels qui produisent des résultats sans aucun artefacts: Deep joint demosaicking and
denoising de Gharbi et al. [GCPD16] et Color image demosaicking via deep residual learning de
Tan et al. [TZZZ17]. Ces méthodes sont meilleures de presque deux décibels que les méthodes qui
ne sont pas basées sur les réseaux de neurones, tout en étant plus rapide d’un ordre de magnitude.
Un exemple très difficile de démosaïquage est montré dans la Figure 18. Pour cet exemple, seules
les méthodes basées sur les réseaux de neurones produisent de bons résultats. Cela sonne le glas
pour les méthodes qui ne sont pas basées sur l’apprentissage pour le démosaïquage.
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Figure 18: De haut en bas et de gauche à droite: Référence, Gharbi et al. [GCPD16], Tan et al. [TZZZ17],
MLRI [KMTO14], ARI [MKTO15], Getreuer [Get12]. Les méthodes basées sur l’apprentissage produisent
moins d’artefacts tout en ayant de bons temps de calculs.

Original Gharbi et al.: 36.1dB Kokkinos et al.: 35.5dB Ours: 37.3dB

Figure 19: En utilisant une acquisition rafale, notre méthode de raffinage de réseau de neurones (en utilisant
comme point de départ le réseau de Gharbi et al. [GCPD16]) est capable non seulement de débruiter
correctement (σ = 5) mais aussi de ne pas produire d’artefacts visuels comme le zipper ou moiré dans les
régions difficiles.

8. Démosaïquage et débruitage conjoint grâce à un raffinage
d’entraînement sur des séquences rafales brutes

Le démosaïquage, étudié dans le Chapitre 7, et le débruitage sont les deux premières étapes de la
chaîne de traitement d’image de n’importe quelle caméra. Elles sont la clé pour avoir des images
couleurs de bonne qualité. Un nouvel axe prometteur de recherche propose de résoudre les deux
problèmes à la fois en utilisant des réseaux de neurones convolutionnels. Étant donné qu’il est très
difficile, voire impossible, d’obtenir une vérité terrain pour des images naturels, ces réseaux ne
sont pas entraînes avec des données brutes réelles. À la place, des données simulées sont utilisées.

Dans ce chapitre nous présentons une méthode qui permet d’apprendre un réseau directement
à partir d’images brutes encore mosaïquées, sans avoir besoin de vérité terrain couleur. Nous
appliquons cette méthode pour apprendre un démosaïquage et débruitage conjoint directement
depuis des données brutes. Nous montrons aussi que cela peut être appliqué pour raffiner un
réseau sur une acquisition rafale spécifique pour améliorer la qualité globale de la restauration.
Un exemple sur des données synthétiques est présenté dans la Figure 19.
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Input pixels conv1_1 conv2_1 conv3_1

SALICON
[HSBZ15]

Itti et al.
[IKN98]

Mishne-Cohen
[MC13]

DRFI

[JWY+13]

Figure 20: Exemples de détections pour notre méthode en utilisant soit directement les pixels de l’image, soit
en utilisant les cartes d’activations du réseau de neurones VGG pour différentes couches (conv1_1, conv2_-
1, conv3_1) avec une comparaison à [MC13], [IKN98], [JWY+13] et [HSBZ15] sur des exemples réels. Les
deux premières images (première et deuxième lignes) font parties de la base de donnée Toronto [BT06],
les exemples de la troisième et quatrième lignes proviennent de [MC13] et [TH99] respectivement.

9. Comment ramener le problème de détection d’anomalies dans les
images à un problème de détection d’anomalies dans du bruit

Bien que le débruitage soit important pour améliorer la qualité des images et des vidéos, il peut
aussi avoir d’autres applications surprenantes pour des problèmes qui, à première vue, sem-
blent n’avoir aucun lien avec le débruitage. Une de ces applications surprenantes est la détec-
tion d’anomalies. La détection d’anomalies essaye de résoudre le problème difficile de détecter
automatiquement toutes régions sortant de l’ordinaire dans une image de fond qui peut être de
sources variées comme du textile ou une mammographie. Des milliers de méthodes de détection
existent parce que chaque problème nécessite une modélisation différente du fond. Après avoir
analysé les approches existantes, nous montrons dans ce chapitre que ce problème peut être ra-
mené à la détection dans des images résiduelles (extraites de l’image cible) dans laquelle du bruit
et les anomalies dominent. De cette manière, le problème général et difficile de la modélisation
du fond est remplacé par un modèle de bruit beaucoup plus simple et qui permet de calculer des
seuils de détection fiables. De ce fait, notre méthode est complètement non-supervisée et peut
être appliquée à n’importe quelles images. L’image résiduelle peut aussi être calculée en utilisant
des réseaux de neurones. Notre détecteur fonctionne grâce à la théorie de détection a contrario
qui permet d’éviter la sur-détection en prenant en compte le nombre de tests dans la définition
des seuils de détection. La Figure 20 montre les résultats de différentes méthodes de détection
d’anomalie sur des images naturelles.

10. Analyse de PatchMatch

Comme vu dans les chapitres précédents, de nombreux problèmes du traitement d’image et de
la vidéo et de la vision par ordinateur nécessitent le calcul de tous les k-plus proches voisins
(k-NNF) entre deux images. Pour chaque patche de l’image requête, le k-NNF donne la po-
sition des k patches les plus similaires dans l’image référence. Grâce à l’algorithme Patch-
Match [BSFG09a], il est possible d’approximer efficacement la recherche des plus proches voisins
avec une technique de recherche collaborative qui exploite la cohérence locale des patches de
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(a) Image falsifiée (b) Masque

(c) Carte de déplacement (d) Carte d’erreurs (e) Masque initial de détec-
tion (f) Masque final de détection

Figure 21: Détection de falsification en utilisant PatchMatch et des moments de Zernike pour une falsification
de type copié-collé avec une translation.

l’image. Après sa présentation, de nombreuses variantes de PatchMatch ont été proposées. Cer-
taines permettent même de réduire le temps de calcul par deux ordres de grandeur. Dans ce
chapitre, nous étudions la convergence de PatchMatch et de ses variantes et proposons des bornes
sur leurs vitesses de convergence. Pour cela, nous considérons une version générique de Patch-
Match à partir de laquelle il est possible d’exprimer la majorité des variantes trouvées dans la
littérature. Nous calculons aussi de manière explicite les bornes pour deux cas particuliers: la
version originale de PatchMatch et Coherence Sensitive Hashing [KA11]. Les bornes proposées
sont ensuite validées en les comparant à la vitesse de convergence observée en pratique.

11. Détection de falsifications de type copié-collé basée sur Patch-
Match

Ce chapitre présente une application de la méthode PatchMach étudiée en détail dans le
Chapitre 10. La méthode étudiée dans ce chapitre a été présentée dans [CPV15]. Elle détecte
les falsifications en utilisant un ensemble dense de descripteurs choisis pour être invariant par
rotation, par exemple les moments de zernike. Une mise en correspondance efficace des descrip-
teurs est ensuite faite grâce à PatchMatch. Ceci est très efficace pour détecter les régions copiées.
Les régions trouvées par PatchMatch sont ensuite traitées pour trouver les détections finales. Cela
permet une détection précise des régions falsifiées à l’intérieur d’une seule image suspicieuse.
Nous étendons aussi la méthode pour pouvoir utiliser des descripteurs SIFT dense ce qui permet
aussi de détecter les falsifications lors de modifications de type "Poisson editing". Un exemple de
détection est montré dans la Figure 21.

12. Détection de falsifications de type copié-collé basée sur des de-
scripteurs parcimonieux

La méthode présentée dans le Chapitre 11 surdétecte les régions similaires sans qu’elles soient
falsifiées. Cela est due à la difficulté du problème et en particulier parce que les images peuvent
contenir des objets similaires sans forcément avoir de falsifications. Ces objets similaires sont
détectés parce que la plupart des méthodes ne sont pas assez robustes pour pouvoir discerner
entre des copies et des objets similaires. La question qui se pose est comment ne pas détecter
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Figure 22: À gauche, une image avec deux objets similaires mais qui ne sont pas des copies. À droite, une
image où les objets sont des copies. Les patches montrées en dessous de chaque image correspondent
aux carrés rouges. Ces patches montrent qu’une différence est visible à cette échelle et que les descripteurs
peuvent être différenciés. C’est pour cela que la méthode peut discerner entre des copies ou juste des
objets similaires.

les régions qui sont naturellement similaires tout en détectant les régions falsifiées. D’autant plus
que les copies peuvent avoir été faites après rotation, changement d’échelle et suivie parfois par
un ajout de bruit ou une compression comme JPEG par exemple.

C’est pour cette raison que nous proposons une nouvelle méthode basée une comparaison de
patches similaire à celles de la Partie I. Nous utilisons des poins-clés de type SIFT, c’est-à-dire
parcimonieux et avec une invariance à la rotation, au changement d’échelle et aux changements
d’illumination. Pour discerner entre falsification et similarité naturelle, nous introduisons une
comparaison de patches a contrario qui permet d’avoir des garanties théoriques sur le nombre
de fausses alarmes. Cette méthode est ensuite validée sur plusieurs bases d’images. Étant donné
que la méthode est complètement non-supervisée, elle peut être intégrée dans une chaîne de dé-
tection automatique d’images falsifiées. Avec la Figure 22, nous montrons qu’il est possible de
différencier des objets naturellement similaires de falsifications en n’utilisant que des patches
locaux.
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Part I

Patch-based video denoising
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1 VBM3D and its extensions

VBM3D is a popular video denoising method. It is an extension to video of the well-known
image denoising algorithm BM3D, which takes advantage of the sparse representation of
stacks of similar patches in a transform domain. The extension is rather straightforward: the
similar 2D patches are taken from a spatio-temporal neighborhood which includes neighbor-
ing frames. In spite of its simplicity, the algorithm offers a good trade-off between denoising
performance and computational complexity. In this chapter we revisit this method, providing
an open-source C++ implementation reproducing the results. A detailed description is given
and the choice of parameters is thoroughly discussed. Furthermore, we study and compare
several extensions of the original algorithm: (1) a multi-scale implementation, (2) the use of
3D patches, (3) the use of optical flow to guide the patch search. These extensions allow to
obtain results which are competitive with even the most recent state of the art.

1.1 Introduction

VBM3D was proposed by [DFE07] as an adaptation to video denoising of BM3D, the successful
image denoising algorithm [DFKE07b]. The algorithm is designed for additive white Gaussian
noise (AWGN) with zero mean and standard deviation σ, i.e.

v(x) = u(x) + n(x), n(x) ∼ N (0, σ2),

where x is a spatio-temporal position in the video domain (a pixel), v is the noisy video and u the
unknown clean video. We consider that the v consists of f + 1 frames written vi for i between 0
and f . A patch is a small rectangular piece of the video, for example of size 8 × 8 × 3 (8 pixels
width and height, 3 pixels in the temporal dimension). Patches are represented by bold lowercase
letters, e.g. p. If we need to emphasize the location of the patch we write p(x), where x represents
the location on the video of the top-left-front pixel of the patch.

The denoising principle of VBM3D (and BM3D) is based on the redundancy of similar
patches. Groups of similar 2D patches are assembled in a 3D stack of patches. A separable
3D transform is applied to this stack. The stack is denoised by applying a shrinkage operator to
the coefficients in the transformed domain. The algorithm follows four basic steps:

1. Search for similar patches in the sequence, grouping them in a 3D stacks,

2. Apply a 3D linear domain transform to the 3D block,

3. Shrink the transformed coefficients,

4. Apply the inverse transform,
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5. Aggregate the resulting patches in the video.

The underlying idea here is that, due to the high redundancy of a stack of similar patches, the
energy will be concentrated in a few coefficients of the transform, while the noise is spread evenly
among all coefficients. This allows to jointly denoise the patches of each stack. The reconstruction
of the estimated video is obtained by aggregating for each pixel the estimated patches that contain
it. This principle is applied twice. The first time the patches are denoised using a hard threshold in
the transformed domain. In the second iteration a Wiener filter is used, with Wiener coefficients
computed using the output of the first step as oracle. For the parameters of the method we will use
the same notation as in [DFE07]. The different parameters for the patch search are the number N
of patches to return, the number of temporal frames Nf that are being searched, the search region
for the reference frame Ns, the search region for the other frames Npr, the maximum number
Nb of patches to compute for each local search, a correcting factor d and a maximum distance
threshold τ . The threshold parameter in the first step is λ3D. We also write⊗ for the element-wise
product. Similar parameters will be used for the hard thresholding first step and for the Wiener
filtering second step. Because they can have different values for the different steps, they’ll be
differentiated using the subscript hard and wien respectively.

There exist other adaptations to video and 3D images of this framework: BM4D [MKEF13]
and VBM4D [MBFE12]. These methods stack similar 3D spatio-temporal patches in a 4D stack.
The main difference between them is that VBM4D uses motion-compensated patches whereas
BM4D aims at denoising volumetric images (such as those appearing in medical imaging), where
the 3rd dimension is just another spatial dimension. In [AFM18a] however, it was shown that
even non-motion-compensated 3D patches provide a very good denoising performance.

In this chapter, we revisit the VBM3D method, providing an open source implementation and
we discuss some variants introduced in [AFM18a], such as 3D patches (as in BM4D [MKEF13]),
optical flow guided patch search, and a multiscale implementation. In the next section, the algo-
rithm itself is reviewed. In the following sections we consider three possible extensions: multi-
scale, spatio-temporal patches and motion-compensated patch search using an optical flow. Fi-
nally the performance of the algorithm is compared against other state of the art algorithms.

1.2 VBM3D : the algorithm

VBM3D performs two steps, as its image counterpart BM3D. The first hard-thresholding step
computes a a basic estimate which is refined in the Wiener filtering step, yielding the final esti-
mate. Figure 1.1 represents the global structure of the algorithm. The pseudocode of the core of
the algorithm is presented in Algorithm 5.

3D transform

Hard thresholding
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3D transform

Block-wise

estimates Aggregation

Weight
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3D transform
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Figure 1.1: Scheme of the core of the VBM3D algorithm.
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1.2.1 The patch search

The groups of similar patches are built by selecting a reference patch and searching around it
for its nearest neighbors. This patch search is the main difference between BM3D and VBM3D.
The image version of the algorithm searches a square 2D window centered at the reference patch.
While the same could be done in a space-time volume for videos, Dabov et al. [DFE07] propose a
predictive search heuristic to reduce the size of the search window. The idea behind the proposed
search is to track patches in the video. Let p and q be two patches at positions (x, y, t) and
(x′, y′, t′) respectively. The distance between p and q used to find the nearest neighbors for a
given regularizing factor δ is

d(p, q) =
{
‖p− q‖22 − δ if x = x′ and y = y′

‖p− q‖22 otherwise
. (1.1)

This distance regularizes the patch trajectories by assuming that the patch does not move. Suppose
that the reference patch is p located at (x, y, t). The goal of the proposed search is to find (at most)
N patches in a window of 2Nf + 1 frames around frame t. The steps are the following:

1. Find the Nb nearest neighbors to p in frame t in a square search region of size Ns × Ns

centered at the location of the reference patch (x, y, t). Let Lt be the set of found patches.

2. Find the Nb nearest neighbors to p in frames t′ = t+ 1, ..., t+Nf . The search region at t′

is the union of Npr × Npr square regions centered at positions of the candidates in Lt′−1,
where Npr < Ns. This is depicted in Figure 1.2.

3. Similarly, find Nb nearest neighbors to p in frames t′ = t− 1, t− 2, ..., t−Nf . This time
the search region is the union of squares centered at the positions of the patches in Lt′+1.

4. Remove the candidates with distance (1.1) larger than τ from

L =
t+Nf⋃

t′=t−Nf

Lt′ ,

the set combining all the candidates computed in each frame.

5. Keep the best N candidates from L.

6. Because the next steps of the algorithm (in particular the domain transforms) require a
number of patches that is a power of 2, only the largest power of 2 smaller or equal to N is
kept.

These steps are summarized in Algorithms 1 and 2.

1.2.2 Patch stack filtering: hard-threshold step

The first step processes each frame by filtering stacks of similar patches and aggregating them in
an output image. The reference patches for the stacks are all patches on a sub-grid of step sthard.
For each group there is first an estimation, followed by an aggregation.
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Algorithm 1: compute_similar_patches: VBM3D patch search
input : Noisy video v = (v0, . . . , vf ), a reference patch p, the number of patches to

return N , a number of temporal frames Nf , a search region for the reference
frame Ns, a search region for the other frames Npr, the maximum number of
patches to compute with each local search Nb, the size of the patch k, a
correcting factor d, a maximum distance threshold τ

output : L the list of the N patches closest to p and their distance
1 t← frame at which p is located
2 Lt ← local_search(p,p, Ns, k,Nb, d, ut) // Centered on p using p as

a reference
// Search in the Nf following frames

3 for tf = (t+ 1) to min(t+Nf , f − 1) do
4 for q ∈ Ltf−1 do
5 Ltf ← local_search(q,p, Npr, k,Nb, d, utf ) // Centered on q

using p as a reference

// Search in the Nf previous frames
6 for tp = t− 1 to max(t−Nf , 0) do
7 for q ∈ Ltp+1 do
8 Ltp ← local_search(q,p, Npr, k,Nb, d, utp) // Centered on q

using p as a reference

9 L←
⋃
i∈Jt−Nf ;t+Nf K Li

10 L← elements from L with distance smaller than τ
// the 3D transform requires a number of patches which is a

power of 2
11 Nl ←closest power of 2 small or equal than min(sizeofL,N)
12 if L has more than Nl elements then
13 L← Nl best candidate from L
14 return L

Algorithm 2: local_search: Local search
input : A patch p center of the search region, a reference patch p′, the search region

size s, the size of the patch k, the number of patches to return Nb, a correcting
factor d, a frame u

output : L the list of the patches closest to p′ in the region described by p and s and
their distance

// Compute the distances for all the patches in the local
region

1 for each patch q of size k × k in the spatial region of size s× s centered on p do
2 if q is at the same spatial position than p then
3 Add (‖q − p′‖22 − d, q) to L
4 else
5 Add (‖q − p′‖22, q) to L
6 Sort L according to the value of the distance
7 Keep the Nb best elements in L
8 return L
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Figure 1.2: The patch search starts with a local spatial search in the current frame of size Ns×Ns. Only the
Nb best candidates are then used in the following frame to predict where to search. This leads to Nb local
spatial searches (each centered at the candidates from the previous frame), of size Npr ×Npr. In practice,
Ns = 7, Npr = 5 and Nb = 2.

Estimation. For a given reference patch p, we first find its similar patches L as described in
Section 1.2.1. These patches are stacked in a 3D volume P(p), of size k × k × N . The first
spatial slice of this stack is the reference patch, and the remaining ones are the similar patches
in L ordered by their distance to p. A 3D domain transform is first applied to the group of
patches followed by a thresholding of the resulting spectrum (excepting the DC component of
every patch). The inverse 3D domain transform is then applied to the thresholded coefficients to
obtain the estimation, i.e.

P̂(p) = T−1
3D (HTλ(T3D(P(p)))) (1.2)

where HT is defined by

HTλσ(ν) =
{
ν if ν is a DC component or |ν| > λσ

0 otherwise.
(1.3)

In practice the 3D transforms are chosen to be separable, consisting of a 2D spatial transform
applied directly on the patches of P(p), typically a bi-orthogonal wavelet transform, followed
by an 1D transform along the third dimension of the stack, typically a Haar transform. The
pseudocode of the estimation for the first step is presented in Algorithm 3.

Aggregation. An output pixel is estimated several times, since it belongs to several patches and
each patch can be estimated multiple times (once for each group it belongs to). To compute the
output frame û these estimates are aggregated. For a pixel ρ of the frame, this aggregation is
performed as

û(ρ) =

∑
patch p of v

∑
q∈P̂(p) ωp(ρ)q(ρ)∑

patch p of v ωp(ρ) (1.4)

where a patch p has a support of the size of the image and is zero everywhere except on the actual
location of the patch. The weights ω used during the aggregation have two contributions. A “per-
stack” contribution wht computed during the estimation is wht(p) = 1

σ2Nhard(p) where Nhard(p)
corresponds to the number of coefficients that have not been thresholded during the estimation
of P̂(p). Each coefficient wht(p) is properly defined because Nhard(p) is always positive as
the DC component is never thresholded. These weights penalize estimates with large variance,
as proposed in [Gul03]. In addition a “per-pixel” aggregation weight is used to smooth out the
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blocking artifacts that result from working with patches. This weight comes from a 2D Kaiser
window K(p) of size khard × khard (see Eq. (1.6)) located on the position of p. The Kaiser
window of size Lx × Ly of parameter β is

K(p)(x, y) = I0

(
β
√

1− (2x/Lx)2
)
I0

(
β
√

1− (2y/Ly)2
)
/I0(β)2 (1.5)

with 0 6 x 6 Lx, 0 6 y 6 Ly and I0 the zeroth-order modified Bessel function (1.6)

Finally the (patch) weight is defined by ωp = wht(p)K(p). The pseudocode with the aggregation
step can be found in Algorithm 5.

Algorithm 3: ht_filtering: Hard thresholding
input : A group of similar patches L, a 3D transform T3D, the noise variance σ2

output : A list of filtered patches L̂, the aggregation weight ω
1 L← T3D(L)
2 n← 0
3 for each patch p in L do
4 for each pixel ρ of p do
5 if p(ρ) > λσ or ρ is the DC component then
6 n← n+ 1
7 p̂(ρ)← p(ρ)
8 else
9 p̂(ρ)← 0

10 ω = 1
σ2n

11 L̂← T−1
3D (L)

12 return L̂, ω

Algorithm 4: wiener_filtering: Wiener thresholding
input : A group of similar patches L, a first estimate of L called L′, a 3D transform

T3D, the noise variance σ2

output : A list of filtered patches L̂, the aggregation weight ω
1 L← T3D(L)
2 ω ← 0
3 for each patch p in L, p′ the corresponding patch in L′ do
4 for each pixel ρ of p do
5 α← p′(ρ)2

p′(ρ)2+σ2

6 p̂(ρ)← αp(ρ)
7 ω ← ω + α2

8 ω ← 1
σ2ω

9 L̂← T−1
3D (L̂)

10 return L̂, ω

1.2.3 Patch stack filtering: Wiener filtering step

The second step of the algorithm uses the basic estimate computed during the first step for the
patch search to compute the coefficients of a Wiener shrinkage of the transformed coefficients.
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The video is processed by building groups of patches around reference patches from a coarse
subgrid with step stwien.

Estimation. Given a reference patch p, a group of similar patches is selected as described in
Section 1.2.1, but using patches extracted from the basic estimate for computing the patch dis-
tance. Two sets of patches are extracted: one from the noisy sequence and the other one from
the basic estimate at the same locations. Each set of patches is stacked in a 3D volume: P(p)
for the noisy patches and P(p̂) for patches of the basic sequence. The noisy stack is denoised
with a Wiener filter. The filtering coefficients are estimated from P(p̂). Just like the first step, a
3D domain transform is first applied to the group of patches before the application of the Wiener
filter. The computation is done following Equation (1.7).

P̂(p) = T−1
3D (WF (T3D(P(p)))) (1.7)

whereWF on a frequency ν (with ν̂ corresponding to the same frequency in the basic estimation)
is defined by

WF (ν) = ν̂2

ν̂2 + σ2 f (1.8)

In practice the 3D transforms are chosen as a 2D transform applied directly on the patches of
P(p) and P(p̂), typically a DCT, followed by an 1D transform along the third dimension of the
group, typically a Haar transform. The pseudocode of the estimation for the first step is presented
in Algorithm 4.

Aggregation. Just as with the first step, the estimation gives multiple estimates per pixel. There-
fore the different estimates are aggregated using the same principle as in Section 1.2.2, defined
by Equation (1.4). The only difference lies in the weights. The weights ω used during the aggre-
gation are computed in part during the estimation. The part wwf computed during the estimation

is wwf (p) = 1
σ2

(∑
ρ

(
p̂i(ρ)2

p̂i(ρ)2+σ2

)2)−1
which is actually linked to the squared `2 norm of the

vector of coefficients used for the filtering. The rest of the weight come from a 2D Kaiser window
K(p) of size kwien × kwien applied to avoid boundary effects from the patches. Finally the pixel
weight is defined by ωp(x) = wwf (p)K(p). The pseudocode with the aggregation step can be
found in Algorithm 5.

1.2.4 Reproducing the original VBM3D

We now compare the results obtained with our implementation and with the binaries released
by the authors of the original VBM3D [DFE07]1. Throughout this work we will use a test set
of seven grayscale test sequences obtained from the Derf’s Test Media collection2. The original
sequences are of higher resolution and in RGB. They have been downscaled and converted to
grayscale.

Table 1.1 compares the PSNR obtained by our implementation to that of the original binaries.
Our results are slightly below: The average gap starts at 0.27dB for σ = 10 and reduces to 0.18dB
for σ = 40. Station and sunflower are the sequences where the gap is larger, reaching 0.68dB
for the later at σ = 10. A visual comparison of both results is shown in Figure 1.3, for noise
σ = 40. Both results are visually very similar, with the same type of artifacts. A closer inspection
reveals that the result of the original VBM3D is slightly smoother, resulting in less noticeable

1Available at http://www.cs.tut.fi/~foi/GCF-BM3D/.
2https://media.xiph.org/video/derf/.
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Algorithm 5: VBM3D algorithm
input : A video v, the noise variance σ2, the number of similar patches to compute N ,

a number of temporal frames Nf , the size of the search region in the reference
frame Ns, the size of the search region in the other frame Npr the number of
patches kept in each frame Nb, the size of the patch k, d, the distance threshold
τ , the thresholding parameter λ3D, the domain transform T3D, the coefficient
fo the Kaiser window β, the step of the grid on which the patch are taken st

output : An final estimate denoised video v̂(2)

1 K1 ← Kaiser window of size khard and coefficient βhard
2 K2 ← Kaiser window of size kwien and coefficient βwien
// Step 1

3 for each p on the grid of step sthard do
// Search for similar patches in the noisy video

4 Lp ←
compute_similar_patches(v,p, Nhard, Nf , Ns, Npr, Nb, khard, dhard, τhard)

// Filter the group of patches using a hard thresholding

5 (L̂p, ω)← ht_filtering(Lp, T3D,hard, σ
2)

6 for q ∈ L̂p do
7 a(q)← a(q) + ωK1 ⊗ q
8 w(q)← w(q) + ωK1
9 for each pixel x do

10 v̂(1)(x)← a(x)/w(x)
// Step 2

11 for each p on the grid of step stwien do
// Search for similar patches in the basic estimate

12 L′p ←
compute_similar_patches(v̂(1),p, Nwien, Nf , Ns, Npr, Nb, kwien, dwien, τwien)

13 Lp ← patches from v at the same position than the one from L′p
// Filter the group of patches using a Wiener filtering

14 (L̂p, ω)← wiener_filtering(Lp, L′p, T3D,wien, σ
2)

15 for q ∈ L̂p do
16 a(q)← a(q) + ωK2 ⊗ q
17 w(q)← w(q) + ωK2
18 for each pixel x do
19 v̂(2)(x)← a(x)/w(x)
20 return v̂(2)
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σ Method Crowd Park Pedestrians Station Sunflower Touchdown Tractor Average

10 VBM3D (original) 35.65 34.75 40.83 38.93 40.49 39.04 37.01 38.10
VBM3D (ours) 35.52 34.59 40.65 38.38 39.81 39.01 36.82 37.83

20 VBM3D (original) 32.25 31.25 36.94 35.45 36.46 36.08 33.07 34.50
VBM3D (ours) 32.06 31.12 36.81 35.10 35.95 36.05 32.97 34.30

40 VBM3D (original) 28.65 27.68 32.81 32.02 32.65 33.52 29.41 30.96
VBM3D (ours) 28.39 27.64 32.62 31.80 32.31 33.35 29.38 30.78

Table 1.1: Comparison of the denoising quality with the binary program provided by Dabov et al.with
[DFKE07a]. Results were both computed using the normal profile ’np’ parameters.

DCT artifacts and on some textures with decreased contrast (see for instance the grass in the
rightmost figure).

Figure 1.3: Top: results of VBM3D [DFE07], with the original authors’ implementation. Bottom: result
obtained with our implementation. The noise level is σ = 40. The contrast has been linearly scaled for
better visualization.
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1.3 Extensions

1.3.1 Using optical flow to guide the search

Many video denoising methods take advantage of the optical flow to estimate motion in the video.
Typically, optical flow is used by video denoising methods that require aggregating information
along motion trajectories [BK95, LF10, BLM16, EMA18, AM19a]. These methods require a mo-
tion estimate as accurate as possible. Most patch-based methods, on the other hand, do not require
such an accurate motion estimate, as they are based on finding similar patches in a 3D search re-
gion [BCM05b, DFE07, MBFE12]. These methods either do not use any motion estimate at all,
or use a very rough one (e.g. block matching) to guide the search region. However, it has been
observed that using optical flow to shape the search region can still be beneficial for patch based
methods [AM18a, AFM18a], as it allows to find better matches.

For a pair of two images A and B, the optical flow aims at finding a vector field o(x, y) =
(δx, δy) such that any point (x, y) of the image domain solves

A(x+ δx, y + δy) = B(x, y). (1.9)

The displacement vector can be sub-pixel, in which case the imageA needs to be interpolated. We
decided to use the TVL1 optical flow method [ZPB07], in particular the implementation provided
in [SPMLF13]. We compute the optical flow in a downscaled version of the video by a factor of
4, and scale it back to the original resolution. This reduces the running time and the impact of the
noise while still having a reasonable precision, as shown in [EMA18].

We add the optical flow to VBM3D as a guide, the same way it is done for VNLB [AM18a].
The spatio-temporal search region is defined as two sequences of Nf square windows of size
Npr × Npr (plus the Ns × Ns window corresponding to the reference frame), whose centers
follow the motion trajectory of the reference patch. The trajectory is estimated using the forward
and backward optical flow. We use the center corresponding to the position of the reference patch
propagated in previous, respectively following, frames using the backward, respectively forward,
optical flow. The forward half of the trajectory ϕx,y,t passing through (x, y, t) is computed by
integrating the forward optical flow of (also indexed by time on top of the spatial position) as
follows:

ϕx,y,t(h) = of ([ϕx,y,t(h− 1)], h− 1) + ϕx,y,t(h− 1), h = t+ 1, . . . , t+Nf , (1.10)

where [ · ] and b·c denote the round and floor operators. The backward half of the trajectory is
defined analogously using the backward optical flow ob.

This also means that only one center needs to be tracked, in contrast to the Nb required by a
regular VBM3D search. Parameters are kept the same as in the original algorithm. The guided
version of the search is summarized in Algorithm 6.

We also tested setting the parameter d to zero for both steps since one can assume that it
would be redundant with the regularization of the patch search offered by the optical flow. PSNR
results are shown in Table 1.2. Using the optical flow as a guide greatly improves the quality of
the denoising. The non-zero d yields better results both with and without the optical flow guide,
thus we decided to keep it in our final version.

Figure 1.4 shows results obtained with the different extensions that will be described in this
section. The first column corresponds to VBM3D with the default parameters, and the 3rd column
to the one using an optical flow guided search region (denoted “VBM3D OF”). Guiding the patch
search allows to recover more details. This is because the tracking of patches is more robust to
motion than the block-matching suggested for the original VBM3D and therefore provides better
matches. Moreover, the optical flow is not required to be very precise since it is used only as a
guide for the center of the search region.
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Algorithm 6: compute_similar_patches: VBM3D patch search guided by the
optical flow

input : Noisy video v = (v0, . . . , vf ), a reference patch p, the number of patches to
return N , a number of temporal frames Nf , a search region for the reference
frame Ns, a search region for the other frames Npr, the maximum number of
patches to compute with each local search Nb, the size of the patch k, a
correcting factor d, a maximum distance threshold τ , the forward and
backward optical flows of and ob

output : L the list of the N patches closest to p and their distance
1 t← frame at which p is located
2 Lt ← local_search(p,p, Ns, k,Nb, d, ut)
// Search in the Nf following frames

3 q ← p
4 for tf = (t+ 1) to min(t+Nf , f − 1) do
5 q ← of (q, tf − 1) Follow the center using the forward optical

flow
6 Ltf ← local_search(q,p, Npr, k,Nb, d, utf )
// Search in the Nf previous frames

7 q ← p
8 for tp = t− 1 to max(t−Nf , 0) do
9 q ← ob(q, tp + 1) Follow the center using the forward optical

flow
10 Ltp ← local_search(q,p, Npr, k,Nb, d, utp)
11 L←

⋃
i∈Jt−Nf ;t+Nf K Li

12 L← elements from L with distance smaller than τ
// the 3D transform requires a number of patch which is a

power of 2
13 Nl ←closest power of 2 small or equal than min(sizeofL,N)
14 if L has more than Nl elements then
15 L← Nl best candidate from L
16 return L

σ Method Crowd Park Pedestrians station Sunflower Touchdown Tractor Average

10 VBM3D (without) 35.52 34.59 40.65 38.38 39.81 39.01 36.82 37.83
VBM3D (without,d=0) 35.72 35.00 40.13 39.34 40.18 39.01 36.94 38.05
VBM3D (with) 35.61 34.94 41.04 39.79 41.75 39.89 38.43 38.78
VBM3D (with,d=0) 35.78 35.19 40.61 40.27 41.85 39.75 38.51 38.85

20 VBM3D (without) 32.06 31.12 36.81 35.10 35.95 36.05 32.97 34.30
VBM3D (without,d=0) 32.00 31.24 36.13 35.38 36.09 35.83 33.03 34.24
VBM3D (with) 32.17 31.44 37.32 36.26 38.02 36.91 34.58 35.24
VBM3D (with,d=0) 32.10 31.49 36.72 36.32 37.98 36.61 34.58 35.11

40 VBM3D (without) 28.39 27.64 32.62 31.80 32.31 33.35 29.38 30.78
VBM3D (without,d=0) 28.29 27.65 32.24 31.79 32.33 33.11 29.40 30.69
VBM3D (with) 28.55 27.99 33.29 32.80 34.46 34.00 30.79 31.70
VBM3D (with,d=0) 28.45 27.98 32.94 32.75 34.40 33.79 30.76 31.58

Table 1.2: Comparison of the denoising quality with and without guiding with an optical flow. Guiding the
search leads to much better results. It is also better in general to keep the additional regularization given by
d.
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1.3.2 Spatio-temporal patches

The patch similarity is determined based on the (squared) Euclidean distance between patches.
Due to the noise, the Euclidean distance follows a non-central χ2 distribution, with variance

var
{ 1
m
‖q1 − q2‖2

}
= 8σ2

m

(
σ2 + 1

m
‖p1 − p2‖2

)
,

where q1, q2 are the noisy versions of the patches p1,p2, and m denotes the number of pixels
in the patch. The noise in the distance can be reduced by considering larger patches. However,
increasing the spatial size of the patch also increases the distances between patches and reduces
the likelihood of finding similar ones. Adding an additional temporal dimension in a spatio-
temporal patch allows to increase the number of pixels in the patch, without increasing its spatial
size. Due to the high redundancy of the video in the temporal dimension, increasing the temporal
size of the patch causes a much lower increase in the patch distances. In practice, a spatio-
temporal patch can be seen as a set of 2d patches from consecutive frames. Excepted in the case
of motion compensated patched presented right after, these 2d patches are centered on the same
spatial position in each frame.

When the motion is known or can be estimated, then it is natural to consider motion-
compensated spatio-temporal patches (see for instance [MBFE12, BLM16]). Alternatively, rect-
angular spatio-temporal patches with no motion compensation have been also used [PE09,
AM18a]. For more complex types of motion, using rectangular spatio-temporal patches will
result in a larger variability in the set of nearest neighbors of a given patch, due to the fact that
both the spatial texture and the motion pattern may vary. At least in principle, better results should
be obtained using motion compensation. However, in practice, for higher levels of noise the bad
quality of the estimated motion can undermine the final result.

The principle of BM3D has been applied to 3D patches with and without motion compen-
sation. VBM4D, introduced in [MBFE12], uses motion-compensated spatio-temporal patches
for video denoising (the “V” stands for video). The motion is estimated using block matching.
BM4D uses cubic patches without motion compensation (of size 4× 4× 4 or 5× 5× 5), aiming
at filtering volumetric images [MKEF13]. In [MKEF13] the authors compare the performance of
both VBM4D and BM4D on video denoising concluding that VBM4D was the best video filtering
strategy.

However, in [AM18a, AFM18a] it is shown that rectangular spatio-temporal patches with a
temporal size of only two frames improve the denoising quality and still provide higher temporal
consistency than a 2D patch. Based on those results, in this chapter we evaluate rectangular
spatio-temporal patches of size 8× 8× 2 in the first step and 7× 7× 2 in the second (i.e we keep
the spatial patch size).

In Table 1.3 we compare the quantitative results obtained by using spatial and spatio-temporal
patches (denoted by “ST” in the table). We also consider the effect of guiding the patch search
using an optical flow, indicated as “OF”.

The first four columns of Figure 1.4 show results with/out motion-compensated search and
spatio-temporal patches. From a qualitative point of view, using spatio-temporal patches provides
better temporal consistency. In addition, the patch distance is more reliable since the number
of pixels in the patches is doubled. This helps retrieve details and textures for regions with a
simple motion (e.g. translational). For low noise levels, the effect of these 3d patches is mixed.
While the results seem more consistent temporally, they are blurrier for sequences with complex
motions. This explains the drop in PSNR observed for pedestrians, sunflower and touchdown
between VBM3D and VBM3D ST for σ = 10. As the noise level increases this detail loss is
out-weighted by the increased robustness to noise of the patch matching.
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When spatio-temporal patches are used in conjunction with the optical-flow-guided search,
their positive impact is magnified. Although the patches are not themselves motion-compensated,
having a motion-compensated search region helps find better matches, even in sequences with
more complex motion patterns. The motion-compensated search region also improves the tempo-
ral consistency, although to a lesser extent than the spatio-temporal patches. The best result, both
in terms of PSNR and temporal consistency, is obtained when both strategies are used together
(VBM3D ST+OF).

σ Method Crowd Park Pedestrians Station Sunflower Touchdown Tractor average
10 VBM3D [DFE07] 35.65 34.75 40.83 38.93 40.49 39.04 37.01 38.10

VBM3D (ours) 35.52 34.59 40.65 38.38 39.81 39.01 36.82 37.83
VBM3D ST 35.65 34.66 40.41 38.55 39.65 38.91 36.90 37.82
VBM3D OF 35.61 34.94 41.04 39.79 41.75 39.89 38.43 38.78
VBM3D ST+OF 35.74 35.04 41.01 40.41 41.91 39.98 38.71 38.97

20 VBM3D [DFE07] 32.25 31.25 36.94 35.45 36.46 36.08 33.07 34.50
VBM3D (ours) 32.06 31.12 36.81 35.10 35.95 36.05 32.97 34.30
VBM3D ST 32.39 31.36 36.97 35.57 36.14 36.16 33.23 34.55
VBM3D OF 32.17 31.44 37.32 36.26 38.02 36.91 34.58 35.24
VBM3D ST+OF 32.48 31.71 37.61 37.02 38.45 37.19 35.18 35.66

40 VBM3D [DFE07] 28.65 27.68 32.81 32.02 32.65 33.52 29.41 30.96
VBM3D (ours) 28.39 27.64 32.62 31.80 32.31 33.35 29.38 30.78
VBM3D ST 29.18 28.13 33.35 32.50 32.70 33.65 29.66 31.31
VBM3D OF 28.55 27.99 33.29 32.80 34.46 34.00 30.79 31.70
VBM3D ST+OF 29.30 28.50 34.21 33.68 35.06 34.47 31.46 32.38

Table 1.3: Quantitative denoising results (PSNR and SSIM) for seven grayscale test sequences of size
960 × 540 from the Derf’s Test Media collection for several variants of VBM3D. We highlighted the best
performance in black and the second best in brown.

1.3.3 Multiscale video denoising

Multiscale approaches have shown to both reduce the residual noise but also improve the visual
quality of the result. Indeed, most denoising algorithms work by processing local regions of the
image/video (a patch, a group of patches, the receptive field of a neuron, etc). As a result, these
methods fail to remove the lower frequencies of the noise. This results in smooth bumps mostly
noticeable in large non-textured areas. Multiscale approaches are able to reduce this artifact by
applying the denoising algorithm at different scales.

There are two main approaches for multi-scale denoising in the literature. The first one
consists in modifying the denoising algorithm to consider several scales of the image/video.
See for instance the multiscale version of the EPLL method [ZW11] proposed by Papyan and
Elad [PE16]. Another approach proposed in [FPM17a, PMF17] considers the denoising algo-
rithm as a black box, applying it as is at multiple scales. The result is then obtained by merging
the results of each scale. This has the benefit that it can be applied to any denoising method,
without any adaptation needed.

The multiscaler of [FPM17a] first creates a pyramid from the noisy input image v0 = v by
applying a downscaling operator D

vs+1 = D(vs), for s = 0, ..., S − 1. (1.11)

At each scale, the denoising algorithm is applied and yields denoised images ûs. These are then
recomposed into a single multiscale output ûms. The recomposition is recursive. The recursion is
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initialized at the coarsest level by defining ûSms = ûS , and then proceeds as follows:

ûsms = ûs − U(L(D(ûs), frec)) + U(L(ûs+1
ms , frec)), (1.12)

where U is the upscaling operator, and L( · , frec) is a low-pass filter with cutoff frequency param-
eterized by frec (frec does not depend on the scale). This equation substitutes the low frequencies
of the single-scale result ûs with the multiscale solution ûs+1

ms , computed using the coarser scales
s+ 1, ..., S. The recomposition parameter frec determines which low frequencies are substituted.
In one extreme, the low-pass filter lets all frequencies pass, in which case the whole coarse solu-
tion is used. At the other end, frec filters out all frequencies: the solution at the coarser level ûs+1

ms
is discarded, and the output of the recomposition is the single scale denoising û0. In [FPM17a] it
is found that the optimum is to filter out some of the high frequencies of the coarser level ûs+1

ms .
However, the exact amount depends on the denoiser.

To apply the multiscaler on a video, we apply it spatially, i.e. the temporal dimension is not
downscaled. We first create a spatial pyramid of the entire video by creating a pyramid of each
frame. We then denoise these videos, and recompose them by applying Eq. (1.12) to each frame.
This is summarized in Algorithm 7.

Algorithm 7: : Multi-scale processing
input : A video v, a list of scales S, parameters for VBM3D, p
output : The denoised video v̂

1 for each scale s in S do
// Compute the video vs at the given scale

2 for each frame vi in v do
3 vsi ← vi at scale s

// Denoise the video vs

4 v̂s ← VBM3D(vs, p)
5 for each frame index i do
6 v̂i ← Combine the vsi for s in S
7 return v̂

The parameters of the multiscaler are the number of scales, the downsampling ratio and the
recomposition parameter frec. We shall set the downscaling ratio to 2 (the default), and try differ-
ent values for the number of scales and the recomposition factor. There are different possibilities
for the down/upscaling operators and the low-pass filter.

DCT pyramid. The DCT multiscaler uses a DCT pyramid which guarantees white Gaussian
noise at all scales. The downscaling is performed by computing the DCT transform of the
image and keeping only the quadrant of the image corresponding to the lowest frequencies.
The upscaling is done by zero-padding in the DCT domain, and the low-pass filtering zeroes
out the highest frequencies in the DCT domain. In this case frec represents the ratio of
frequencies that are left: frec = 1 corresponds to an all-pass filter, where as frec = 0 filters
out all the image.

Laplacian pyramid. The downscaling and upscaling operators samples the image using a Lanc-
zos kernel:

ka(x) =
{

sinc(x)sinc(x/a) if |x| < a
0 otherwise.

(1.13)

We set a = 3. For the downscaling, to reduce aliasing, the image is downsampled using a
scaled version of the kernel k3( · /2) (as described in [Sch92]).3 The low pass filter used is

3This corresponds to Matlab’s imresize scaling function using the lanczos3 interpolation kernel.
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Figure 1.5: Effect of the DCT multiscaler for VBM3D without extensions (square markers) and VBM3D
ST+OF (round markers). Each plot shows the average PSNR over our seven test sequences obtained
when varying the recomposition factor frec for different number of scales. The single scale case correspond
to frec = 0. From left to right, σ = 10, 20, 40. The multiscaler has a positive effect on the original VBM3D,
but not on the improved VBM3D ST+OF.

the Gaussian filter of width frec. When frec → ∞ we obtain the single scale output, and if
frec = 0 no frequencies from the coarser solutions are discarded.

Figures 1.5 and 1.6 show plots of the average PSNR for our seven test sequences obtained
with the two multiscalers varying the number of scales and the recomposition cutoff parameter
frec. In each figure, we show the results of the multiscaler applied to the standard VBM3D, and
to the one with statio-temporal patches and guided patch search (VBM3D ST+OF).

Both multiscalers have a positive impact when applied to the standard VBM3D. The gain can
be up to 0.3dB for noise 10, 0.5dB for noise 20 and 0.8dB for noise 40. However, when applied
to the VBM3D ST+OF version of the algorithm, the multiscaler does not improve the result. In
fact, for noise 10 and 20, the best PSNR is attained by the single scale algorithm and the PSNR
deteriorates as the cutoff frequency of the low-pass filter is increased (i.e. as more frequency
components from the coarse solution are used).

The multiscaler achieves a better denoising of large objects with smooth textures by removing
low-frequency noise left by the denoiser. This low-frequency noise is much stronger for the
VBM3D denoiser than for the VBM3D ST+OF version. Hence, the improvement provided by
the multiscaler is smaller for the latter. This also depends on the characteristics of the sequence.
Frames with smooth objects occupying larger areas will benefit from the multiscaler. Yet, the
multiscaler introduces artifacts penalizing the PSNR (particularly additional ringing for the DCT
multiscaler). These artifacts are not temporally coherent and can therefore be quite noticeable.

Based on these plots we chose to select the Lanczos3 multiscaler. We use 2 scales and a
recomposition factor frec = 1 when applied to VBM3D ST+OF (i.e. VBM3D ST+OF+MS) and 3
scales with recomposition factor frec = 0.6 when applied to the standard VBM3D (VBM3D MS).
Table 1.4 shows the obtained PSNRs. The visual results of VBM3D ST+OF+MS are shown in
Figure 1.4. The impact of the multiscaler can be noticed in the top row (results for pedestrian) as
a reduction of the low-frequency noise in the smooth areas in the image. For the other sequences,
since they are highly textured, the effect of the multiscaler is subtle. A careful examination reveals
some texture loss.

1.4 Comparison with the state of the art and conclusion

In Table 1.5, we compare the PSNR of different recent denoising methods with VBM3D as well
as with versions of VBM3D modified using different combinations of the improvements sug-
gested in Sections 1.3.3, 1.3.2, 1.3.1. We included the patch-based methods SPTWO [BLM16]
and VNLB [AM18a] and VNLnet [DEF+18], a convolutional neural network (CNN). SPTWO
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Figure 1.6: Effect of the Lanczos multiscaler for VBM3D without extensions (square markers) and VBM3D
ST+OF (round markers). Each plot shows the average PSNR over our seven test sequences obtained when
varying the recomposition factor frec for different number of scales. From left to right, σ = 10, 20, 40. The
multiscaler has a positive effect on the original VBM3D, and on the improved VBM3D ST+OF for σ = 40.

σ Method Crowd Park Pedestrians Station Sunflower Touchdown Tractor average
10 VBM3D (ours) 35.52 34.59 40.65 38.38 39.81 39.01 36.82 37.83

VBM3D MS (DCT) 35.28 34.42 40.73 38.62 40.51 39.23 36.93 37.96
VBM3D MS (Lanczos) 35.48 34.57 40.79 38.59 40.35 39.19 36.93 37.99
VBM3D ST+OF 35.74 35.04 41.01 40.41 41.91 39.98 38.71 38.97
VBM3D ST+OF+MS (DCT) 35.48 34.74 40.82 39.56 41.16 39.62 38.06 38.49
VBM3D ST+OF+MS (Lanczos) 35.72 35.01 41.05 40.34 41.88 39.97 38.66 38.95

20 VBM3D (ours) 32.06 31.12 36.81 35.10 35.95 36.05 32.97 34.30
VBM3D MS (DCT) 31.75 30.92 37.31 35.49 37.22 36.33 33.49 34.64
VBM3D MS (Lanczos) 32.04 31.13 37.29 35.45 36.95 36.31 33.35 34.65
VBM3D ST+OF 32.48 31.71 37.61 37.02 38.45 37.19 35.18 35.66
VBM3D ST+OF+MS (DCT) 32.08 31.32 37.47 36.27 37.71 36.71 34.51 35.15
VBM3D ST+OF+MS (Lanczos) 32.46 31.68 37.74 36.99 38.45 37.16 35.18 35.67

40 VBM3D (ours) 28.39 27.64 32.62 31.80 32.31 33.35 29.38 30.78
VBM3D MS (DCT) 28.31 27.68 33.75 32.42 33.90 33.60 30.27 31.42
VBM3D MS (Lanczos) 28.51 27.78 33.54 32.31 33.55 33.64 30.01 31.33
VBM3D ST+OF 29.30 28.50 34.21 33.68 35.06 34.47 31.46 32.38
VBM3D ST+OF+MS (DCT) 28.90 28.18 34.25 33.19 34.41 34.04 31.00 32.03
VBM3D ST+OF+MS (Lanczos) 29.30 28.51 34.46 33.70 35.06 34.50 31.56 32.44

Table 1.4: Quantitative denoising results (PSNR and SSIM) for seven grayscale test sequences of size
960 × 540 from the Derf’s Test Media collection for several variants of VBM3D. We used two scales and
frec = 1 for ST+OF and three scales and frec = 0.6 for ST+OF+MS. We highlighted the best performance in
black and the second best in brown.

55



and VNLB methods are based on grouping similar patches and filtering them on a transformed
domain. However, instead of a pre-defined transform, an optimal transform is estimated for each
group (the principal directions of the group of patches). While this gives good results, it requires
computing an SVD of the matrix formed by the similar patches, resulting in very slow algorithms.
VNLB groups 3D patches 10 × 10 × 2, similar to our spatio-temporal patches. SPTWO instead
uses long 3D spatio-temporal patches which are motion compensated, producing highly tempo-
rally consistent results. VNLnet applies a CNN to a stack of frames. The frames are all registered
using block matching with a large block size. It produces good results with high temporal con-
sistency except when the block matching fails to find good matches. Since it is implemented on
GPU it runs much faster than VNLB and SPTWO, although it also has a high computational cost.

VBM3D combined with spatio-temporal patches and a patch-search guided with an optical
flow gives very competitive results even compared to the latest state of the art, and especially for
higher noises. When combined with the other improvements, it seems that multiscaling does not
increase the quality of the denoising and can even degrade it in terms of PSNR. Visual examples
are shown in Figures 1.4, where we compare results obtained with the original VBM3D with our
implementation, using 3D patches and an optical flow to guide the search region.

In conclusion the proposed implementation of VBM3D and its variants, provide a video de-
noising framework represent an interesting trade-off between denoising quality and computational
complexity.

σ Method Crowd Park Pedestrians Station Sunflower Touchdown Tractor average
10 VBM3D [DFE07] 35.65 34.75 40.83 38.93 40.49 39.04 37.01 38.10

BM4D [MKEF13] 35.84 34.45 41.15 40.23 40.97 39.78 37.33 38.54
VBM4D [MBFE12] 36.05 35.31 40.61 40.85 41.88 39.79 37.73 38.88
SPTWO [BLM16] 36.57 35.87 41.02 41.24 42.84 40.45 38.92 39.56
VNLnet [DEF+18] 37.00 36.39 41.96 42.44 43.76 41.05 38.89 40.21
VNLB [AM18a] 37.24 36.48 42.23 42.14 43.70 41.23 40.20 40.57
VBM3D ST+OF+MS 35.72 35.01 41.05 40.34 41.88 39.97 38.66 38.95

20 VBM3D [DFE07] 32.25 31.25 36.94 35.45 36.46 36.08 33.07 34.50
BM4D [MKEF13] 32.37 30.96 37.43 36.71 37.13 36.54 33.53 34.95
VBM4D [MBFE12] 32.40 31.60 36.72 36.84 37.78 36.44 33.95 35.10
SPTWO [BLM16] 32.94 32.35 37.01 38.09 38.83 37.55 35.15 35.99
VNLnet [DEF+18] 33.40 32.94 38.32 38.49 39.88 37.11 35.23 36.47
VNLB [AM18a] 33.49 32.80 38.61 38.78 39.82 37.47 36.67 36.81
VBM3D ST+OF+MS 32.46 31.68 37.74 36.99 38.45 37.16 35.18 35.67

40 VBM3D [DFE07] 28.65 27.68 32.81 32.02 32.65 33.52 29.41 30.96
BM4D [MKEF13] 29.10 27.82 33.44 32.98 33.06 33.68 29.84 31.42
VBM4D [MBFE12] 28.72 27.99 32.62 32.93 33.66 33.68 30.20 31.40
SPTWO [BLM16] 29.02 28.79 31.32 32.37 32.61 31.80 30.61 30.93
VNLnet [DEF+18] 29.69 28.29 34.21 33.96 35.12 33.88 31.41 32.51
VNLB [AM18a] 29.88 29.28 34.68 34.65 35.44 34.18 32.58 32.95
VBM3D ST+OF+MS 29.30 28.51 34.46 33.70 35.06 34.50 31.56 32.44

Table 1.5: Quantitative denoising results (PSNR and SSIM) for seven grayscale test sequences of size
960 × 540 from the Derf’s Test Media collection on several state-of-the-art video denoising algorithms. We
highlighted the best performance in black and the second best in brown.
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2 Global patch-search for denoising

With the increasing popularity of mobile imaging devices and the emergence of video surveil-
lance, the need for fast and accurate denoising algorithms has also increased. Patch-based
methods, which are currently state-of-the-art in image and video denoising, search for simi-
lar patches in the signal. This search is generally performed locally around each target patch
for obvious complexity reasons. We propose here a new and efficient approximate patch
search algorithm. It allows, for the first time, to evaluate the impact of a global search on
video denoising performance. A global search is particularly justified in video denoising,
where a strong temporal redundancy is often available. We first verify that the patches found
by our new approximate search are far more concentrated than those obtained by exact lo-
cal search, and are obtained in comparable time. To demonstrate the potential of the global
search in video denoising, we take two patch-based image denoising algorithms and apply
them to video. While with a classical local search their performance is poor, with the pro-
posed global search they even improve the latest state-of-the-art video denoising methods.
This work has been published in [EAM17].

2.1 Introduction

Figure 2.1: The plots show the position in the spatio-temporal video domain of the matches found for a
sample patch query for different search methods. From left to right: the best matches found with a global
exhaustive search, with a local exhaustive search in a window centered at the query, and with the VPLR
search, the heuristic proposed in this chapter. Notice how the latter discovers the patch trajectories similar
to those of the global exhaustive search.

Patch-based methods are among the state-of-the-art both in image denoising [DFKE07b,
LBM13a, MBP+09] and video denoising [DFE07, MBFE12, LZD11, BLM16]. As we have seen
in Chapter 1, these methods exploit the self-similarity of images and videos and filter together
groups of similar patches which are then aggregated to create an estimate of the clean signal.
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Most contributions in the area have focused on how to model and filter the groups of similar
patches, but little attention has been given to how these groups are built. Typically similar patches
are grouped by selecting a reference patch and searching exhaustively for the similar ones in a
local 2D, or 3D for videos, neighborhood. The size of the search region is a parameter of the
algorithm which trades off quality of the result for computational cost.

In the case of a single image, a local search region is justified by the fact that similar patches
are likely to be close to each other in the image domain. Videos however, have an additional
strong source of redundancy given by the temporal consistency. A patch is expected to have
similar patches along its motion trajectory, even in distant frames. It seems intuitive that patch-
based methods should benefit from this larger set of similar exemplars. Some methods estimate
the motion in the video to tackle this problem. A motion compensated search window can track
the patch trajectories for a certain number of frames [LF10, BLM16]. Nevertheless, the size of
these search regions is still limited by the computational cost and the accumulation of errors in
the estimated motion.

In this chapter we focus on the patch search. We present an efficient global approximate
search technique and demonstrate its impact on video denoising. To that end we take two patch-
based image denoising methods, namely BM3D [DFKE07b] and NL-Bayes [LBM13a] and adapt
them to video (simply by searching similar patches in multiple frames instead of just the current
one). We provide an extensive experimental evaluation in grayscale and color sequences. Our
results show that substantial gains in performance are obtained by searching globally in the video
sequence, indicating that video denoising still has significant room for improvement by using
clever global search methods. In particular, the NL-Bayes method with global search outperforms
state-of-the-art methods such as V-BM3D [DFE07] and V-BM4D [MBFE12] by a significant
margin, and the recently proposed SPTWO [BLM16] by a lower margin.

In recent years several efficient techniques for approximate nearest neighbor search have been
proposed, after the introduction of the PatchMatch algorithm by Barnes et al. [BSFG09a]. These
methods compute a nearest neighbor field for patches located in a dense or semi-dense grid, and
use heuristics that benefit from the overlap of adjacent patches in the grid. Most of these works
focus on finding the nearest neighbor, but they can be extended to handle k nearest neighbors
[BSGF10]. In practice k is kept small since even with these efficient techniques, computing a
large number k of nearest neighbors for a dense grid of patches remains too costly.

In this chapter we focus on a significantly different problem: compute a large number, namely
k, of nearest neighbors for a single query patch. By allowing independent queries, our technique
is more flexible, and is straightforward to apply to patch-based denoising methods. In particular,
this is useful for certain denoising algorithms which save computations by processing a sparse
set of reference patches dynamically determined during the execution of the algorithm, and also
makes parallelization easier.

The rest of the chapter is organized as follows: in §2.2 we describe briefly two state-of-the-art
image denoising algorithms (NL-Bayes [LBM13a] and BM3D [DFKE07b]) which we selected
to demonstrate our global search. In §2.3 we propose a new heuristic to accelerate approximate
nearest neighbor search for patches in images and videos. A comparison with state-of-the-art
methods is performed in §2.4. Concluding remarks are given in §2.5.

2.2 NL-Bayes and BM3D

BM3D and NL-Bayes are patch based methods which follow the same overall framework to
denoise an image. For each patch in a set of patches to be denoised, they first search for similar
patches inside the image. This search region is usually rectangular and centered on the query
patch. The patches found during the search are then processed to compute an estimate of the
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corresponding clean patches. The denoised patches are then aggregated to create a first (also
called basic) estimate of the clean image. This process is then iterated once. In the second step,
the basic estimate is used as a pilot for the patch search and the processing of the similar patches.

To test the proposed global search, we consider extensions to video of these algorithms
by searching for similar 2D patches in a spatio-temporal volume in the video, as proposed
in [DFE07], [AM15]. This framework is presented in Algorithm 8.

The main difference between BM3D and NL-Bayes algorithms lies in the processing of the
set of similar patches. NL-Bayes learns a Gaussian a priori model for the set of patches and
computes the patches as the maximum a posteriori estimate. BM3D stacks the patches in a 3D
signal which is denoised using shrinkage on a transformed domain. A more detailed presentation
of BM3D is available in Chapter 4.

We use a slight modification of video NL-Bayes [AM15] which caps the rank of the patch
covariance matrices for the groups of similar patches. This improves both performance and speed
of this algorithm, and adds a rank parameter r to each step.

We modified the search (corresponding to steps 2 and 6 in Algorithm 8) by considering three
different approaches: a local approach which uses the local search in a spatio-temporal volume
centered at the reference patch for both denoising iterations; a global approach which searches in
the full video volume for both steps of the algorithm; and mixed approach which uses the local
search in the first step and the global in the second iteration (step 6 in the pseudocode). The global
patch search heuristic is presented in Section 2.3.

Algorithm 8: Image/video denoising framework
input : Noisy image/video v, noise level σ
output : Estimate of noiseless image/video v̂

1 for all patch q in v do
2 Retrieve n nearest neighbors to q
3 Process the set of similar patches and compute a denoised estimate q′ of q
4 Aggregate estimated patches on v′ to compute the basic estimate
5 for all patch q in v′ do
6 Retrieve n nearest neighbors to q
7 Process the set of similar patches and compute a denoised estimate q̂ of q
8 Aggregate estimated patches on v̂ to compute the final estimate
9 return v̂

In the Section 2.4 we shall compare these approaches among them and also with other video
extensions of BM3D and NL-Bayes which use sophisticated local patch search regions, V-BM3D
(presented in Chapter 1) and SPTWO. V-BM4D [MBFE12] is an extension of V-BM3D.

SPTWO [BLM16] is based on NL-Bayes but performs a more elaborate search. First, the
optical flow towards the adjacent six frames is computed and used to warp them to the reference
frame. A s× s× 13 spatio-temporal patch is then associated to each s× s patch in the reference
frame by extending its temporal dimension on the volume defined by the warped frames. Then,
k patches closest to the reference are searched for in a local neighborhood. The final set of
matches is given by the 13k 2D slices from the newly found extended patches (some of them
might be discarded by an occlusion detection step). The usage of these extended patches reduces
the noise in the distance while still keeping a small spatial patch (the patch spatial size is s = 5).
Furthermore, the patches are warped by the optical flow. This is useful in cases where the motion
is not translational. On the downside, this method relies heavily on the optical flow.
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2.3 Heuristics for global patch search

There are already a number of efficient patch search techniques which exploit the so-called image
coherency: Neighboring query patches, since they overlap, have high chances of having neighbor-
ing matches in the database image. Thus knowing the position of a good match for a patch helps
in determining good matches for its neighbors. This idea was first applied by [BSFG09a] to com-
pute a nearest neighbor field (NNF), assigning the closest k patches to each patch in the image.
The original algorithm was presented for images but can easily be extended to video. More recent
works reported significant improvements (between one and two orders of magnitude) by combin-
ing PatchMatch with more classic search data structures such as partition trees (more specifically
KD-trees) [OA12, HS12] and locality sensitive hashing [KA11, BZL+15].

All these methods compute a dense k-NNF, typically for a small k. The reason is that when
k is large (e.g. k > 20) computing a dense NNF is too costly. In such cases it is preferable
(if the application allows to) to compute the k nearest neighbors for a small set of patches. In
particular, for image/video denoising, a common speed-up strategy of patch-based methods is to
reduce the number of query patches. For instance, in [DFKE07b] the query patches form a regular
subgrid, and in [LBM13a] the query patches are irregularly located and are determined during the
evolution of the algorithm. This is why we need a method that can compute nearest patches for a
set of selected patches without having to do it for all patches of the image/video. There is a vast
literature on data structures for nearest neighbor search on generic metric spaces or vector spaces;
but these classical tools do not exploit the image coherency. In this section we briefly review one
of such approaches, namely partition trees, and show a simple yet effective modification for a fast
approximate k-nearest neighbor search of image patches.

2.3.1 Partition Trees

A partition tree is an inductive data structure encoding the position of a set of n points in Rd (the
database). Once the partition tree has been built it is used to search for the nearest neighbors of a
point (the query). Nodes in the tree can either be leaves (also called bins) containing a maximum
number of elements, or a split value between two subtrees: the “left” subtree and the “right”
subtree. A partition tree splits recursively the data space by applying a simple split at each node
(with the exception of the leaves). At each splitting operation, the set of elements in the current
subtree is split in two equally sized subsets which are then used to construct the child subtrees.
The construction of the tree is fully specified by a split value function and a split function. The
split value function assigns a split value to a set of elements, whereas the split function assigns
one of two groups to an element.

A partition tree can be directly used to search for the exact k-nearest neighbors with expected
complexity of O(log(n)), where n is the number of points. In practice when the dimensionality
of the elements is too large, its performance drops and becomes comparable to a linear search,
this problem was shown with image patches by Kumar et al. in [KZN08]. This is indeed the case
for image and video patches, so we shall rule out exact search and settle with the so-called first
bin heuristic: The candidates for the k-nearest neighbors are taken only from the bin of the query
patch. On its own, the first bin heuristic does not suffice to provide good quality matches, but
this will be solved by combining it with other heuristics that exploit the fact that patches lie on
images. This allows to be much faster than other approximative search such as FLANN [ML09]
for the same quality of nearest neighbors.

By randomizing the construction of these trees, forests can be built. It is then possible to per-
form independent parallel queries with each tree and select the best elements, therefore improving
the quality of the elements retrieved using the first bin search. Since the queries can be done in
parallel, this improvement does not take more time than the basic tree search.
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2.3.2 Partition Tree Search With Local Refinement

We propose to use the first bin search in a partition tree (or a forest) to obtain a first set of
m ≈ k initial candidates matches, and refine this set of candidates as follows: For each of the
elements of the candidate list, we search in a small 2d local region in the image centered at
the candidate. We call the resulting strategy Partition Tree with Local Refinement (PTRL). The
complete pseudocode for this technique is presented in Algorithm 9. This refinement is inspired
by the local refinement of PatchMatch that will be studied in Chapter 10.

Note that the proposed approximate search heuristic can in principle be applied in con-
junction to other data structures for nearest neighbor search such as those based on hashing
[AI06, AINR14]. We do not pursue this in the present work.

Algorithm 9: PTLR search heuristic
input : v an input video, F a Partition tree forest constructed with the patches from v,

p a request patch from v, κ× κ the size of local search region
output : A list of matches for p

1 Retrieve the list {ϕ1, . . . , ϕk} of k best matches from the forest F using the retrieval
algorithm from a partition tree forest

2 for i = 1 to k do
3 Perform an exhaustive search in a local 2d region of size κ× κ centered on ϕi for

better matches
4 return the list {ϕ′1, . . . , ϕ′k} of k best matches after the update using the PTLR search

2.3.3 Search Parameters

The choice of the partition tree has a strong impact on the performance. The most common
partition tree is the KD-tree [Ben75]. However, it has been shown that VP-trees [Yia93] produce
better results when working with image patches [KZN08].

The VP-tree is characterized by the split value being a hyperball and the split function being
the indicator function of this ball. The VP-tree splits the data set according to the distance of each
point to a vantage point. The vantage point is one of the data points, chosen according to some
criteria. Forests of VP-trees where the vantage point is chosen at random have been shown to
have a good retrieval power [OD+13].

For our experiments, we used a forest of four VP-trees, randomized as in [OD+13]. We set
the size of the bins to 2n, where n is the number of nearest neighbors of the query. The trees
are constructed using all patches in the video. For the query, the local refinement area is of size
8× 8× 3. We found these parameters to give a reasonable trade-off between computational cost
and search accuracy. In the following, we will use the abbreviation VP with local refinement
(VPLR) instead of partition tree with local refinement (PTLR) to remind that the partition tree is
specifically a VP-tree.

In Figure 2.2 we compare the results obtained with the local search, the “first bin” search,
and the proposed VPLR search for the classical test sequence bus1. The plot shows the Euclidean
distances to the n = 300 nearest neighbors averaged over 1000 query patches randomly chosen
in the same video. The patches are of size s × s with s = 10, RGB (thus their dimensionality is
300) and their distance is rescaled between 0 and 1 as d(p, q) = ‖p− q‖/(255

√
3s).

The first conclusion is that the local exhaustive search finds worse matches than the approxi-
mate global search methods (the search window of the local search is of size 45×45×5). The best
method is the VPLR search, performing much better than the basic VP-forest “first bin” approx-

1https://media.xiph.org/video/derf/
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Figure 2.2: Comparison of the quality of the matches. The plots show the normalized distance to the ith
nearest neighbor i = 1, ..., 300, averaged over 1000 query patches sampled randomly in the bus video.

Method σ n1 n2 r1 r2

NLB-local grayscale all 160 40 + 4
7 (σ − 6) max{8, 48− 16

21 (σ − 6)} max{8, 16− 4
9 (σ − 6)}

NLB-global grayscale 6 10 100 60 16 16

> 10 100 60 16 8
NLB-local/global color all 350 150 full rank 40− (σ − 10)/3
BM3D-mix 6 20 4× 2σ/10 32 - -

> 20 32 32 - -
BM3D-global all 32 32 - -

Table 2.1: Parameters used for the different algorithms.

imate search. This result shows the effectiveness of the proposed search heuristic. We computed
the corresponding plot on the other videos and always found the same qualitative behavior.

It is also interesting to visualize the position of the matches found by each method in the
spatio-temporal domain of the video. Figure 2.1 presents the position of the nearest patches
found for a specific query in the bus video. Note how the matches found by searching globally
are organized in trajectories.

For the same parameters, the number of distance computations for each method is 10125
and around 20000 for respectively the local search and the VPLR search for the first step of the
algorithm (an equivalent local search region would be close to 63× 63× 5).

2.4 Experimental results

We evaluated the effect of the global search on the BM3D and NL-Bayes image denoising al-
gorithms. Since the source code of BM3D is not public we use the implementation available
in [Leb12]. We adapted it to process image sequences and modify only the patch search as ex-
plained in §2.2. For NL-Bayes (referred as NLB in the following), we built our implementation
upon [LBM13b] , and modified to limit the rank of the a priori covariance matrix (see §2.2).
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For each method we considered the three versions depending on the type of search used in
each step: the local (exhaustive in a small spatio-temporal volume) and global (approximative in
the entire video) versions use the corresponding search in both denoising steps, and an additional
mixed approach, which uses the local search in the first step and the global one in the second. The
reason for this will be explained later.

We compared these methods against V-BM3D [DFE07], V-BM4D [MBFE12] and SPTWO
[BLM16], which represent the current state-of-the-art in video denoising.

Regarding the parameters, we considered 2D patches of size 10× 10 for NL-Bayes and 8× 8
for BM3D. For the local search we used a window of size 45×45×5 for NL-Bayes and 32×32×5
for BM3D.

The remaining parameters for NL-Bayes are the number of similar patches used in each step
n1, n2 and the maximum ranks of the a priori covariance matrix r1, r2. For BM3D we also
needed to specify n1, n2, in addition to the hard threshold in the first step λ1 as well as the
distance threshold in both steps, τ1 and τ2. The values for λ1, τ1 and τ2 are the same as the
ones in VBM3D. The rest of the parameters were tuned by optimizing the PSNR on a training
set consisting of short videos. The optimal parameters depend on the noise level. Table 2.1
synthesizes the different parameters as a function of the noise.

These patches are somewhat larger than the typical sizes used by patch-based methods. The
reason for this is that the global search is more sensitive to the noise in the patch distance. Con-
sider for example a noisy flat image. Since the image is flat, the closest neighbors to a patch are
the ones with the closest noise pattern. If enough nearest neighbors share the same noise pattern, it
will be interpreted as a signal component and will not be filtered out. The global search increases
the probability of finding a large number of matches with a similar noise pattern (overfitting to this
specific noise pattern). In practice, this becomes an issue for patches in homogeneous regions and
high noise values. This problem can be mitigated by involving a larger number of similar patches.
An interesting aspect of global search is that it is still possible to find many similar patches even
for large patch sizes.

Our quantitative comparison criterion was the PSNR. We first evaluated the effect of the
global search for NL-Bayes and BM3D. Tables 2.2 and 2.3 show the gain in PSNR with a global
search, on grayscale and color sequences.2. In almost all cases the global search performed sig-
nificantly better than the local for NL-Bayes. This is also true, but to a minor extent for BM3D.
For NL-Bayes the highest gain was obtained using the global search in both steps of the denoising
algorithm: The average gain between NLB-global and NLB-local is of around 1dB for grayscale
sequences and of 1.5dB for color sequences. This gain is consistent across the different noise
levels we used in our tests. For BM3D the best alternative is BM3D-mix, which uses the global
search only in the second step. The performance of BM3D-global is superior for σ = 10, but
drops severely when the noise increases, becoming comparable or even worse than BM3D-local
for the highest levels of noise.

A possible reason for this is that BM3D uses a much smaller number of similar patches n than
NL-Bayes. As explained before, for patches with low SNR, the global search increases the risk
of finding a set of nearest neighbors sharing a similar noise pattern, particularly for small n. Note
also that the performance of BM3D is worse than that of NL-Bayes, and in most cases worse than
V-BM3D (see Table 2.4). This is because our version of BM3D is an adaptation to video of the
one published in [Leb12]. In particular, the search strategies of our BM3D-local and V-BM3D
differ, V-BM3D uses the predictive block matching described in §2.2 that is optimized to search
in a large temporal window while our search is very local both in space and in time.

2The color sequences are from https://media.xiph.org/video/derf/. The grayscale sequences are
from http://www.cs.tut.fi/~foi/GCF-BM3D/, except for football and mobile, which have been obtained
by averaging the channels from the corresponding RGB sequences.
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σ Method Bus Fore. Sales. Tennis Foot. Mobi. Ave.

10 NLB-local 34.85 36.33 35.87 33.94 35.29 34.29 35.10

NLB-mix +0.54 +0.36 +0.90 +0.42 +0.06 +1.30 +0.60

NLB-global +0.94 +0.50 +2.01 +0.64 -0.02 +1.60 +0.95

BM3D-local 34.25 35.77 35.79 33.55 35.15 32.97 34.58

BM3D-mix +0.15 +0.55 +1.08 =0.09 -0.08 +0.81 +0.43

BM3D-global +0.09 +0.92 +1.66 -0.03 -0.19 +1.54 +0.67

20 NLB-local 30.75 32.59 32.06 30.12 31.36 29.80 31.11

NLB-mix +0.53 +0.62 +1.15 +0.50 +0.11 +1.91 +0.80

NLB-global +0.70 +0.69 +1.96 +0.70 -0.05 +2.46 +1.08

BM3D-local 30.28 32.17 31.84 29.90 31.23 29.02 30.74

BM3D-mix +0.17 +0.52 +0.74 +0.19 +0.05 +0.81 +0.41

BM3D-global +0.05 +0.50 +0.78 +0.13 -0.14 +1.52 +0.47

30 NLB-local 28.46 30.53 29.86 27.99 29.26 26.95 28.84

NLB-mix +0.46 +0.06 +0.55 +0.63 -0.14 +2.24 +0.63

NLB-global +0.41 +0.04 +0.84 +0.73 -0.33 +2.68 +0.73

BM3D-local 28.06 29.92 29.38 28.12 29.18 26.47 28.52

BM3D-mix +0.23 +0.48 +0.63 +0.45 +0.15 +0.65 +0.43

BM3D-global +0.00 +0.07 +0.38 +0.34 -0.19 +0.92 +0.25

Table 2.2: Comparison between search strategies on grayscale sequences. For each sequence and noise
level, we show the PSNR obtained with the local search, and the difference in PSNR between each global
search strategy and the local search.

We compared the performance of NLB-local and NLB-global with the state-of-the-art meth-
ods V-BM3D [DFE07], V-BM4D [MBFE12] for grayscale (Table 2.4) and color (Table 2.5)
videos. The sequences used in these tables were the same as in Tables 2.2 and 2.3. The results
of V-BM3D3 and V-BM4D were computed using the authors’ implementation.4 For grayscale
sequences and σ = 10, NLB-global has the best performance. On average NLB-global has a
PSNR .78dB higher than V-BM4D. When the noise increases, the gap between NLB-global and
the V-BMxD methods closes. For most sequences, better results can be obtained with NLB using
a larger patch for higher noise levels. This suggest that the problem comes from the distance
estimation in these high noise cases.

We also include a comparison with SPTWO in Table 2.6. We computed the result of our
algorithm for some of the sequences used in [BLM16]. Note that the sequences in Table 2.6 have
30 frames and that the values shown correspond to the PSNR of the central frame of the sequence.
The results depends largely on the sequence. In particular SPTWO performs better in tennis, and
bus. The fact that the bus sequence has a very fast motion which can be easily estimated might
explain the performance gap in favor of motion estimation on this sequence.

Two examples of denoised results are presented in Figures 2.5 and 2.6. Comparing the differ-
ent results of denoising, we can see that the VPLR search allows a better detail reconstruction. In

3For V-BM3D we show only grayscale results since there are no Linux binaries for the color version of V-BM3D.
4http://www.cs.tut.fi/~foi/GCF-BM3D/
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σ Method Bus City Cont. Mobile Tennis Fore. Coast. Ave.

10 NLB-local 36.47 37.35 38.29 34.76 35.30 38.34 36.60 36.73

NLB-mix 0.64 1.37 1.16 1.46 0.74 1.18 0.52 1.01

NLB-global 0.83 2.06 1.72 2.25 0.97 1.64 0.75 1.46

BM3D-local 35.57 36.50 37.26 33.59 34.61 37.60 35.73 35.84

BM3D-mix 0.22 0.73 1.08 0.44 0.40 0.57 0.22 0.52

BM3D-global 0.12 1.02 1.44 0.76 0.19 0.70 0.21 0.63

20 NLB-local 32.42 33.31 34.47 30.74 31.52 35.09 32.69 32.89

NLB-mix 0.73 1.76 1.77 1.58 0.67 1.04 0.67 1.17

NLB-global 0.90 2.34 2.34 2.58 0.84 1.37 0.86 1.60

BM3D-local 31.72 32.75 33.68 29.75 30.87 34.39 31.99 32.16

BM3D-mix 0.21 0.71 1.30 0.55 0.24 0.72 0.26 0.57

BM3D-global -0.01 0.43 1.68 1.21 -0.04 0.62 0.17 0.58

40 NLB-local 28.52 29.24 30.79 26.62 28.25 32.18 29.09 29.24

NLB-mix 0.71 1.32 2.33 1.93 0.64 0.83 0.75 1.22

NLB-global 0.73 1.28 2.78 2.93 0.59 0.82 0.82 1.42

BM3D-local 27.89 28.45 30.23 26.07 27.62 31.04 28.34 28.52

BM3D-mix 0.35 0.48 1.49 0.80 0.53 1.00 0.47 0.73

BM3D-global -0.13 -0.54 1.79 1.28 0.25 0.54 0.11 0.47

Table 2.3: Comparison between search strategies on color sequences. For each sequence and noise level,
we show the PSNR obtained with the local search, and the difference in PSNR between each global search
strategy and the local search.

σ Method Bus Fore. Sales. Tennis Foot. Mobi. Ave.

10 V-BM3D* 33.32 36.02 37.21 34.68 34.82 34.09 35.02

V-BM4D* 33.85 36.36 37.48 34.78 34.95 34.11 35.26

NLB-local 34.85 36.33 35.87 33.94 35.29 34.29 35.09

NLB-global 35.79 36.83 37.88 34.58 35.27 35.89 36.04
20 V-BM3D* 29.57 32.87 34.04 31.20 31.04 30.35 31.51

V-BM4D* 30.00 33.11 33.46 30.70 31.06 30.49 31.47

NLB-local 30.75 32.59 32.06 30.12 31.36 29.80 31.11

NLB-global 31.45 33.28 34.02 30.82 31.31 32.26 32.19
30 V-BM3D* 27.59 30.85 31.68 29.22 29.04 27.85 29.37

V-BM4D* 27.96 31.06 31.02 28.74 28.98 27.99 29.29

NLB-local 28.46 30.53 29.86 27.99 29.26 26.95 28.84

NLB-global 28.87 30.57 30.70 28.72 28.93 29.63 29.57

Table 2.4: Comparison with V-BM3D and V-BM4D on grayscale sequences. PSNR of the full sequence.
See text for details. Results with a star were computed using the binary provided by the author.
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σ Method Bus City Cont. Mobile Tennis Fore. Coast. Ave.

10 V-BM4D-mp* 35.39 37.14 38.78 34.18 35.91 37.95 36.05 36.49

NLB-local 36.47 37.35 38.29 34.76 35.30 38.34 36.60 36.73

NLB-global 37.30 39.41 40.01 37.01 36.27 39.98 37.35 38.19
20 V-BM4D-mp* 31.35 33.41 34.94 30.47 31.99 34.53 32.14 32.69

NLB-local 32.42 33.31 34.47 30.74 31.52 35.09 32.69 32.89

NLB-global 33.32 35.65 36.81 33.32 32.36 36.46 33.55 34.50
30 V-BM4D-mp* 29.04 31.04 32.63 28.35 29.73 32.54 29.97 30.47

NLB-local 30.10 30.92 32.32 28.33 29.53 33.37 30.55 30.73

NLB-global 30.92 32.79 34.97 31.17 30.24 34.42 31.38 32.27
40 V-BM4D-mp* 27.44 29.31 30.94 26.79 28.15 31.08 28.49 28.89

NLB-local 28.52 29.24 30.79 26.62 28.25 32.18 29.09 29.24

NLB-global 29.25 30.52 33.57 29.55 28.84 33.00 29.91 30.66
50 V-BM4D-mp* 26.24 27.97 29.60 25.52 27.03 29.90 27.34 27.66

NLB-local 27.33 27.98 29.59 25.29 27.31 31.22 27.99 28.10

NLB-global 27.99 28.77 32.39 28.22 27.86 31.87 28.79 29.41

Table 2.5: Comparison with V-BM4D on color sequences. PSNR of the full sequence. See text for details.
Results with a star were computed using the binary provided by the author.

σ Method Bus Tennis Salesman Bike Average

10 SPTWO 36.07 34.69 36.38 36.74 35.97

NLB-local 34.89 32.86 35.92 37.10 35.19

NLB-global 35.60 34.31 37.10 38.30 36.33
20 SPTWO 32.24 30.59 32.95 33.01 32.20

NLB-local 30.75 28.23 32.02 33.39 31.10

NLB-global 31.02 28.71 34.45 35.56 32.44
30 SPTWO 30.05 27.48 30.95 31.62 30.02

NLB-local 28.48 26.24 29.92 31.17 28.95

NLB-global 28.87 26.63 31.49 33.28 30.07

Table 2.6: Comparison with SPTWO. As in [BLM16], only the first 30 frames of the sequence are considered,
and the shown PSNRs corresponding to the frame 15 of each sequences (indexing starts with 1). The values
in each cell correspond to SPTWO, NLB-local and NLB-global.
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Figure 2.3: Comparison of the PSNR frame by frame for different methods on the grayscale bus sequence
with noise 10.
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Figure 2.4: Comparison of the PSNR frame by frame for different methods on color mobile sequence with
noise 20.

particular, in Figure 2.5 the numbers of the calendar do not show a blur around them compared
to the other methods based on a local search. For the example from grayscale bus, the improve-
ments can be seen mostly for the woman inside the bus, who is more distinct with the global
search than with the local search; but also on the ad where most details of the singer’s face are
better reconstructed.

In section 2.3.3, we briefly discussed the computation complexity (in number of distance com-
putation) of each search method per query. When these searches are integrated into the denoising
algorithm, the full computation time (including the construction of the VP-tree) is of the same
order of magnitude than the one when using the local search. Nevertheless, NL-Bayes based
methods are reasonably slower than V-BM3D and V-BM4D when using the "normal profile".

2.5 Conclusions

We studied the performance gain obtained by expanding the local patch search into a global one
for patch-based video denoising algorithm. To the best of our knowledge, this is the first time that
denoising results using global patch search were reported in videos with hundreds of frames. With
the global search the patches found can follow long trajectories in the video, thus fully benefiting
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Figure 2.5: Results of denoising for mobile (zoom on frame 37, noise 20). Top: ground truth, NL-Bayes
local, BM3D local, VBM4D; bottom: Noisy, NL-Bayes global and BM3D mix.

Figure 2.6: Results of denoising for grayscale bus (zoom on frame 70, noise 20). Top: ground truth, NL-
Bayes local, BM3D local, VBM4D; bottom: Noisy, NL-Bayes global, BM3D mix and VBM3D.

from the temporal redundancy of videos.
Our analysis of the most common patch search algorithms showed that an approach based on

a global tree structure, more specifically based on a VP-tree, performed very well compared to the
local search. Exact global search in the VP-tree is still too costly for the denoising application,
which is why we proposed a simple heuristic for efficient approximate search, the VPLR search
(VP-tree search with local refinement).

We then applied it to extend BM3D and NL-Bayes, two image denoising algorithms, to video.
We obtained a significant boost on the denoising performance. This performance boost is only
slightly more costly than a local exhaustive search, including the time spent building the tree
thanks to an easy parallelization.

Latest contributions in video denoising advocate for the use of 3D patches as a mechanism to
impose temporal consistency in the video [PE09,LF10,MBFE12]. Yet, in this chapter we showed
that state-of-the-art results can be obtained with 2D patches, using global search. The results
obtained are visually better frame-by-frame, but can suffer from a flickering artifact due to the
lack of temporal consistency. This is most noticeable for higher values of noise. Ongoing work
focuses on extending the current results to 3D patches and video specific algorithms. One of the
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current limiting factors associated to the global search is that it increases the risk of matching the
noise pattern for patches with low SNR. We were able to alleviate this problem in most cases by
using large 2D patches, but this causes problems with random, low-contrasted textures which are
better denoised with small patches. 3D patches can reduce the spatial patch size while still keeping
accurate distances (same dimension than the 2D patches), and therefore be more appropriate for
these types of textures.

The proposed heuristics for approximate global patch search are not limited to the denoising
application and are useful for other applications requiring a large number of nearest neighbors.
An example of application to anomaly detection is presented in Chapter 9.
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3 A recursive video denoising
method: NL-Kalman

In this chapter we propose a new recursive video denoising method with high performance.
The method is recursive and uses only the current frame and the previous denoised one. It
considers the video as a set of overlapping temporal patch trajectories. Following a Bayesian
approach each trajectory is modeled as linear dynamic Gaussian model and denoised by a
Kalman filter. To estimate its parameters, similar patches are grouped and their trajectories
are considered as sharing the same model parameters. The filtering is mainly temporal; non-
local spatial similarity is only used to estimate the parameters. This temporally causal method
obtains results comparable (in terms of PSNR and SSIM) to methods using several frames
per frame denoised, but with a higher temporal consistency. This work has been published
in [EMA18].

3.1 Introduction

There are two current trends in video denoising. The first one aims at producing the best video de-
noising possible whatever the computation required, while the second trend focuses on producing
the fastest causal video denoising algorithm with the goal of real-time processing.

In terms of output quality the state of the art is achieved in part by patch-based methods
[DFE07, MBFE12, AM18a, EAM17, BLM16, WLPB17]. As we have previously seen in Chapter
1, they exploit the self-similarity of natural images and videos, namely that most patches have
several similar patches around them (spatially and temporally). Each patch is denoised using
its similar patches, which are searched for in a region around it. The search region generally is
a spatio-temporal cube, but more sophisticated search strategies have also been used. Because
of the use of such neighborhoods these methods are called non-local. While these algorithms
perform very well, they often are unpractical: they use a frame’s past and future and therefore
can only be used off-line. Because of their complexity they are unfit for high resolution video
processing.

Fast algorithms rely on much simpler principles which can be implemented efficiently on
GPUs or FPGAs. For example [PPR+17] relies on a bilateral filter and a Kalman filter to produce
a real-time video denoising algorithm. A recursive version of the non-local means algorithm is
proposed in [AH17]. These methods use simple denoising strategies yet generally result in poor
denoising quality for high noise levels.

Convolutional networks have been successfully applied to image denoising, and also to other
video processing tasks such as deblurring [SDW+17] or video synthesis. Their application to
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video denoising has been limited so far. In [CSY16] a recurrent architecture is proposed, but the
results are quite below the state of the art. Recently [GMU18a] focused on the related problem of
image burst denoising reporting very good results.

In this chapter we present a video denoising method that tries to close the gap between high-
quality but slow methods and those efficient but of lower quality. It is much faster than most
state-of-the art algorithms (yet not real-time) but in contrast to them it is causal temporally and
recursive, i.e. it uses only the current frame and the previous denoised frame. In spite of these
strong design constraints it achieves a state-of-the-art performance in image quality.

3.2 Proposed Method

In the following we denote by u a clean video which has been contaminated by an additive Gaus-
sian white noise n of (known) standard deviation σ, i.e. only v = u + n is observed. Even
though the additive white Gaussian model seems simplistic, it is enough to also process more
realistic Poisson noise. Indeed, Poisson noise can be reduced to nearly white Gaussian by a vari-
ance stabilizing transform [ZFSOM07]. The video u, respectively v, is made of f frames indexed
between 0 and f − 1; the frames are denoted by ut, respectively vt, with t ∈ J0, f − 1K. We will
work with two dimensional square patches of size s× s, a patch will be denoted by a bold lower
case letter such as p, considered as a vector of dimension s2.

3.2.1 Framework

Our method works by temporal filtering along patch trajectories using a Kalman filter associated
to each trajectory. The Kalman filter requires for its operation to keep track of the state covariance
matrix. The state in our case is the clean patch that we want to estimate (arranged as a vector of s2

components), and the state covariance is a s2×s2 matrix. We use a simple dynamic model for the
temporal evolution of the patch trajectories, which requires the estimation of a single parameter
at each time step: the state transition covariance matrix. It models how a (clean) patch can
vary from one frame to the next. Estimating the state transition covariance matrix is in general
a difficult problem. We resort to non-locality for obtaining a reliable estimate. To that aim, we
group trajectories based on the similarity of the first patch, and assume that these trajectories share
the same model. The covariance matrix is obtained from the statistics of the trajectories in the
group. This assumption also allows us to reduce the memory consumption of the method, since all
the trajectories in the group, because they share the same transition covariance, also share the state
covariance. Because there is still a small high frequency residual noise after the NL-Kalman pass,
the multiscale DCT denoising algorithm [PMF17] is applied to each frame as a post-processing.

The definition of patch trajectories, and their computation from an optical flow is explained in
Section 3.2.2. Patch trajectories can be terminated if an occlusion happens (or more generally due
to a registration error). This is explained in section Section 3.2.5. The spatial denoising algorithm
is responsible for initializing the groups of trajectories, and is explained in Section 3.2.3. Finally,
the key of our contribution, namely the non-local Kalman filters running on groups of trajectories,
is explained in Section 3.2.4.

3.2.2 Patch trajectories

A patch trajectory is temporal sequence of s×s patches q0, q1, . . . , qt extracted from consecutive
frames in the video. The centers of these patches follow a motion trajectory, which is estimated
using an optical flow algorithm.
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Figure 3.1: Evolution of the quality of the denoising during the warm-up stage. Artifacts due to the spatial
denoising quickly disappear after few iterations of the temporal filtering.

Suppose we know the trajectory of a patch until frame t−1, q0, q1, . . . , qt−1. The next patch
in the trajectory at frame t is computed by tracing the optical flow between frames t and t+1. We
assume that all the pixels in the patch move with the same optical flow as the patch center. This
is a crude approximation but it allows for a simpler dynamic model.

We use an optical flow to compute the patch trajectories because it is dense and is not restricted
to any particular type of motion (as opposed to e.g. global parametric models). In particular, we
used the implementation of [SPMLF13] of the TV-L1 optical flow [ZPB07]. Any other motion
model can be used, as long as it provides a dense set of correspondences. Optical flow is less ro-
bust to noise than global parametric models. To gain robustness to noise (and speed), we compute
it on a downscaled version of the frames, similar to [LYT+14].

3.2.3 Spatial denoising and starting groups trajectories

The spatial denoising is used when no temporal information from the previous frame is available
(e.g. in a dis-occluded area). The goal here is not only to denoise these areas, but also initialize
the groups of trajectories for the temporal denoising of these areas in the future frames. We use a
single step of the NL-Bayes denoising algorithm [LBM13a], which has the benefit of computing
groups similar patches and their covariance matrices (needed for the Kalman filters) as part of the
denoising.

Given a patch q of the noisy frame vt, and the corresponding unknown patch p of the clean
frame ut, the following Gaussian linear model of p and q is assumed: P(p) = N (µ, C) and
P(q|p) = N (p, σI). Once the mean patch µ and the covariance matrix C have been estimated
from the noisy video, the MAP estimate p̂ given a noisy patch q is obtained as in [LBM13a]:
p̂ = µ+ C(C + σ2I)−1(q − µ).

The parameters of the a priori model are learned from the noisy frame. For each noisy patch
q, N similar patches are selected from the frame. Let qi, i = 1, . . . , N be the set of patches
similar to q (with q1 = q). The estimates for µ and C are given by µ̂ = 1

N

∑N
i=1 qi and

Ĉ = 1
N

∑N
i=1 qiq

T
i − σ2I, where qi = qi − µ̂ are the centered patches.

We call group of trajectories such a set of patches with their C associated. The idea is to
follow the evolution of that group of patches by tracking their respective trajectories. We assume
a common destiny for all these patches and so we update C jointly for all these patches along the
trajectories. This recursive step is presented in the next section.
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σ Method Bus Foreman
Pedestrian

area Crowd_run
Touchdown

pass Station2 Average

10 VBM3D* 33.32/.7824 37.40/.6681 40.78/.6577 35.62/.8017 39.08/.6103 38.92/.7266 37.52/.7078
VBM4D-np* 33.39/.8237 37.39/.6871 40.56/.7463 35.69/.8457 39.60/.6752 39.93/.7746 37.76/.7588
NL-Kalman 33.34/.8502 36.16/.6782 38.67/.7420 34.29/.8383 38.82/.6940 39.91/.7916 36.86/.7657
NL-Kalman

(oracle) 33.87/.8713 36.93/.7230 39.23/.7592 34.64/.8514 39.58/.7433 40.50/.8059 37.46/.7923

20 VBM3D* 29.57/.6064 34.60/.5763 36.93/.5579 32.22/.7122 36.09/.4703 35.45/.5689 34.14/.5820
VBM4D-np* 29.55/.6856 34.61/.6073 36.75/.6468 32.07/.7439 36.41/.4795 36.23/.6395 34.27/.6338
NL-Kalman 29.58/.7291 33.19/.5844 35.61/.6444 30.89/.7478 35.91/.5181 36.81/.6868 33.66/.6518
NL-Kalman

(oracle) 30.43/.7752 34.18/.6301 36.45/.6738 31.44/.7746 36.99/.6135 37.46/.7116 34.49/.6965

30 VBM3D* 27.59/.4995 32.77/.5224 34.44/.4869 30.14/.6394 34.55/.3906 33.36/.4536 32.14/.4987
VBM4D-np* 27.53/.5988 32.91/.5612 34.45/.5745 29.95/.6704 34.76/.3801 34.14/.5420 32.29/.5545
NL-Kalman 27.30/.6327 31.27/.5335 33.27/.5680 28.64/.6708 33.91/.4034 34.73/.5986 31.52/.5678
NL-Kalman

(oracle) 28.48/.6993 32.50/.5802 34.43/.6102 29.44/.7078 35.20/.5186 35.46/.6338 32.59/.6250

Table 3.1: Quantitative comparison with VBM3D and VBM4D on grayscale sequences. NL-Kalman (oracle)
corresponds to the proposed method using an optical flow computed on the clean sequence. Results with a
star were computed using the binary provided by the author. Best results are in bold (results from the oracle
are excluded). VBM3D has the lowest running times, followed by NL-Kalman and finally VBM4D. Other
state-of-the-art methods like SPTWO [BLM16] and video NL-Bayes [AM18a] can achieve better results, but
with a significantly higher running time. See text for details.

3.2.4 Temporal filtering

We propose a recursive temporal filtering. We assume available a set of groups of trajectories
estimated from the previous frame (either from the temporal filtering or the spatial initialization)
such that the union of all trajectories in the groups covers that frame. To denoise the frame t, we
loop on the groups updating the parameters of the Kalman filter and operating it to estimate the
clean patches of the trajectories in the group at frame t.

Let G = {p̂t−1,1, . . . , p̂t−1,N} be a group of trajectories. For each patch p̂t−1,i we have
a noisy observation qt,i. The registration test compares p̂t−1,i and qt,i and determines if the
registration is correct or not. This is detailed in Section 3.2.5. The trajectories that do not pass
this test are terminated and removed from the group. In the following we assume that the N
trajectories in the group passed the test. For such patches, we have a prediction, namely the
previous denoised patch in the trajectory.

We assume that the evolution of the patch along a trajectory follows a simple linear dynamic
Gaussian model, described as follows:

pt+1,i = pt,i +wt,i with wt,i ∼ N (0, Ct) (3.1)

qt,i = pt,i + nt,i with nt,i ∼ N (0, σ2I). (3.2)

Herewt,i ∼ N (0, Ct) is the process noise, modelling the variations of a patch from one frame to
the next. It depends on t because we assume that patches can evolve (slowly) in time. The only
model parameters that need to be estimated are the state transition covariances Ct associated to
the group. It is easy to verify that

E{(qt,i − qt−1,i)(qt,i − qt−1,i)T } = Ct + 2σ2I. (3.3)

By assuming that the patches in a group are independent realizations of the same dynamic model,
we can estimate the expectation as the sample covariance matrix of the innovation vectors qt,i −
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Figure 3.2: Denoising results when the sequence is corrupted by noise of standard deviation 30. From left to
right: Denoising using NL-Kalman, NL-Kalman with the oracle optical flow, VBM3D, VBM4D and the original.
From top to bottom: Crop from the sequence crowd_run and pedestrian_area. Overall the proposed
method preserves more details as can be seen both in the tree and in the text. Results best viewed zoomed.

qt−1,i of the trajectories in the group. We thus estimate Ct as the following spatio-temporal
average:

Ct = βCt−1 + (1− β) ·
(

N∑
i=1

(qt,i − qt−1,i)(qt,i − qt−1,i)T

N − 1 − 2σ2I

)
, (3.4)

To increase the temporal stability of the estimate, we combine the non-local average over the
group with the previous estimate Ct−1, with a forgetting factor β ∈ [0, 1]. The initial C0 is set as
the covariance of the spatial denoising. We estimate the patches and update their covariance with
the Kalman filter equations [Kal60]:

Predicted estimate cov. P ′t = Pt−1 + Ct (3.5)

Optimal Kalman gain Kt = P ′t(P ′t + σ2I)−1 (3.6)

Update state p̂t,i = p̂t−1,i +Kt(qt − p̂t−1,i) (3.7)

Updated estimate cov. Pt = P ′t −Kt(P ′t + σ2I)KT
t (3.8)

Here Pt is the state covariance matrix, it needs to be stored with the group of patches (as the
state transition covariance Ct). The dynamic model is initialized using the result of the spatial
denoising on the patch group. In particular the initial state covariance matrix is taken as the
covariance computed by the NL-Bayes spatial denoising algorithm.

The proposed model can be interpreted as a dynamical version of the video NL-Bayes de-
noising method [AM18a]. Their similar 3D patches (of size around 7 × 7 × 2) are assumed to
be normally distributed. The parameters of these Gaussian distributions are estimated from the
set of similar patches, gathered from past and future frames. The estimated covariance matrix
represents the modes of variation of the population from the estimated mean patch. Instead our
Gaussian dynamical models represent temporal variations along patch trajectories.

3.2.5 Registration quality assessment

We now address the registration quality assessment, to detect occlusions and errors in the optical
flow. The quality must be assessed for each patch trajectory individually. The idea is to compare
the denoised patch (the prediction in the Kalman filter) to the new noisy observation. Let qt be the
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patch candidate and pt−1 the result of the denoising for the corresponding patch at the previous
frame. The assumption underlying the registration quality assessment is that qt is a noisy version
of pt−1 (Eq. (3.2)). Therefore ‖p−q‖

2
2

σ2 ∼ χ2(d). Our goal is to reject patches that are too different,
as the dynamic system can only deal with small changes. The optimal test to assess the quality
of the matching corresponds to ‖p−q‖

2
2

σ2 ≥ c. In practice it is better to also take into account the
temporal variation of patches but this will be disregarded here for simplicity.

In order to choose the best possible c, one can use a statistical approach like in [DMM07,
VGJMR10, PGvG12, LGvGRM14, MS04, PGvGO13] based on a number of false alarm (NFA).
We would like the patch p to be rejected if and only if we are confident enough that it is not a
good match and not because of the noise i.e. NP

(‖p−q‖2
2

σ2 ≥ c
)
≤ ε where ε corresponds to the

number of false matches that can be accepted and N to the number of time a patch is added to
trajectory. This leads to c ≥ G−1 (1− ε

N

)
where G−1 the inverse cdf of a chi square distribution

of dimension d. A sound value for N is the number of pixels of a frame. Indeed, fixing ε = 1
amounts then to admit at most one false matching on average per frame.

3.3 Experiments

We compared the performance of our algorithm against the state-of-the-art denoising algorithms
VBM3D and VBM4D. Our causal recursive method requires a couple of frames to warm up.
Therefore we remove the first five frames in the computation of the PSNR and SSIM to get a
fair comparison. Figure 3.1 shows the quick improvement of the denoising quality in the first
three frames used as warm up. Table 3.1 presents denoising results on 1920 × 1080 sequences
from Derf’s video database1 that have been converted to gray by averaging the RGB channels and
downscaled by two so as to ensure that they contain little noise. A Gaussian blur was applied
before downscaling to avoid aliasing.

Overall the proposed method performs better than VBM3D and VBM4D in SSIM but shows a
lower PSNR. The main limitation of NL-Kalman stems from the optical flow. Estimating the op-
tical flow from noisy data is challenging. This causes miss-registration errors which explains the
observed drop in PSNR performance. To evaluate this we compare the denoising results obtained
with optical flow computed on the noisy data to those obtained from ground truth optical flow. In
spite of this, the result of NL-Kalman shows a much higher visual quality, in terms of temporal
consistency and in the amount of recovered details. This explains why the difference between
the SSIM measure, where NL-Kalman leads, and PSNR, where the average difference is about
0.7db in favor of VBM4D. A comparable result in terms of temporal consistency is attained with
SPTWO [BLM16], a more complex method using 10 frames for each frame denoised. SPTWO is
also based on the optical flow, but is not recursive. To denoise each frame it computes the optical
flow between the target frame and n neighboring frames (n/2 past plus n/2 future frames). We
computed SPTWO with n = 8 for σ = 30 and obtained an average PSNR of 32.45 (SSIM .6114).

Among the algorithms compared, the faster one is VBM3D. Our current implementation in
non-optimized C++ code is between two to three times slower than VBM3D. The main reason for
this is that the number of groups grows as time evolves, since new groups are created for covering
patches in dis-occluded areas. We are currently working on faster versions of the algorithm by
limiting the number of groups.

1https://media.xiph.org/video/derf/
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3.4 Conclusion

We presented a novel patch-based video denoising method and showed that it is competitive with
the state of the art. It is based on temporal filtering along trajectories of patches. The temporal
filtering is carried out by Kalman filters whose parameters are estimated non-locally. The resulting
method is recursive, as to denoise one frame it uses solely information from the previous frame.
Results show a performance comparable to more complex patch-based methods that use around
ten frames to denoise each single frame. The main limitation of the method is that it relies heavily
on the optical flow. Slight errors in registration cause a drop in PSNR, even if visual quality of
the result is much superior to the one of related algorithms, both in terms of details and temporal
consistency. This work also shows the limits of the PSNR and SSIM as quantitative measures for
video quality.
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4 Fast patch-based denoising on
GPU

We have seen in the previous chapters that denoising is an essential part of any image or video
processing pipeline. Unfortunately, due to time processing constraints, many pipelines do not
consider the use of modern denoisers. These algorithms have only CPU implementations or
suboptimal GPU implementations. In this chapter, we propose a new efficient GPU imple-
mentation of NL-means and BM3D, and, to our knowledge, the first GPU implementation of
the video denoising algorithm VBM3D. The performance of these implementations enable
their use in real-time scenarios. This work has been published in [DE].

4.1 Introduction

As we have seen in Chapters 1, 2 and 3, there are two current trends in video denoising. The
first one aims at producing the best video denoising possible whatever the computation required
(Chapters 1 and 2), while the second trend focuses on producing the fastest causal video denoising
algorithm with possibly the goal of real-time processing (3).

An interesting middle ground that we will present in this chapter is to produce optimized
implementations of the well performing denoising methods for optimized hardware such as GPUs
or FPGAs. This has often been done for image denoising with optimized implementations of NL-
means [MP13, DFBCH11] and BM3D [HK19, WXW18]. However, even though performance is
even more crucial for video, little work has been done to optimize video denoising methods. The
only exception being for video versions of NL-means [GLA+10].

In this chapter, we propose real-time GPU implementations of an improved patchwise NL-
means and BM3D. Both implementations outperform all previous proposed GPU implementa-
tions, without diminishing the quality of the results. We also use the same backbone to get the
first optimized GPU implementation of VBM3D. The performance of this implementation is suf-
ficient for real-time video filtering. This is achieved by regrouping all the filtering operations
(fetching the patch data, the data transpositions, the 1D filterings and the thresholding) into one
kernel without requiring an intermediate buffer for the patches being processed. This signifi-
cantly reduces the use of memory bandwidth. Moreover, all memory accesses are designed so as
to reduce bandwidth and benefit from the cache.

The chapter is organized as follows. Section 4.2 presents the studied methods. Section 4.3
presents the specificity of GPU implementations. Section 4.4 presents the efficient GPU imple-
mentations for the methods presented in Section 4.2. The efficiency of the proposed implementa-
tions are measured in Section 4.5. Finally Section 4.6 concludes.
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4.2 Architecture of the implemented Non-local denoising algorithms

Both NL-means and BM3D (and their video extensions) are based on a self-similarity principle.
This means that their architectures are relatively similar; built around a patch search step as well
as a patch group processing step. We present the different methods in detail in Sections 4.2.1,
4.2.2 and 4.2.3 as well as the different implementation options.

4.2.1 NL-means and its extension to video

Original NL-means. NL-means [BCM05a] is a popular image and video denoising algorithm,
due to its simplicity and speed. It introduced the self-similarity hypothesis: for a patch (a small
region of the image) of a natural image, many similar patches can be found in its neighborhood.
For noisy images, these similar patches will have different noise realizations and therefore their
information can be combined to estimate the restored information. The original NL-means works
as follows: for each position (x, y) of an image u, consider the corresponding reference patch
P (x, y) centered at this position. The value of the estimated image û at position (x, y) is com-
puted as a weighted average of all patches in the small local neighborhood N(x, y) centered on
(x, y). While the self-similarity hypothesis says that similar patches should be found, not all
patches in the local region are similar. The weights are therefore used to reduce the impact of
patches that are too different. The original NL-means suggested the weighted average presented
in Equation (4.1) where the only parameter h is here to take into account the noise.

û(x, y) = 1
Cx,y

∑
x′,y′∈N(x,y)

wx,y(x′, y′)u(x′, y′). (4.1)

with

wx,y(x′, y′) = exp
(
−‖P (x, y)− P (x′, y′)‖22

h2

)
(4.2)

and
Cx,y =

∑
x′,y′∈N(x,y)

wx,y(x′, y′) (4.3)

Improved NL-means. In this chapter, an alternative version of NL-means is implemented. The
alternative version was preferred since it is more efficient (it requires less computations) while
still achieving denoising on par with the original implementation. The improved version follows
the same global structure as the NL-means presented in the previous paragraph. The alternative
relies on four major differences.

First, we use Equation (4.4) instead of Equation (4.2). This improvement proposed in
[BCM11] was shown to reduce a matching noise bias in [FK18].

wx,y(x′, y′) = exp
(
−
(
‖P (x, y)− P (x′, y′)‖22 − 2σ2)

+
h2

)
(4.4)

We decided to limit the number of patches used in Equation (4.1). Indeed instead of using all
patches from the local search region N(x, y), only use a subset comprised of the n best nearest
neighbors is used. This is possible since most patches in the search contribute very little in
Equation (4.1). Very often only a few patches have a distance small enough to contribute. The
exception of the flat regions is mentioned later. This choice is principally for computation reasons
as it speeds up the method as shown in [MS05] and [CYB06]. However it can also improve the
quality of the results, acting as a regularizer as shown in [GO07] and [KBC07].
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Original NL-means Improved NL-means

Patches used
All patches in

the local region

n patches in
the local region closest

to the reference
Flat patches Same as other patches Average all pixels

Weights e

(
−
‖p−p′‖22
h2

)
e

(
−

(‖p−p′‖22−2σ2)+
h2

)

Aggregation
Center pixel of

the estimated patch

All pixels of
the estimated patch

with bilinear weights

Table 4.1: Difference between the original NL-means and the improved NL-means version used for this
work.

We also added a “flat patch trick” similar to NL-Bayes [LBM13a]. For that, a simple test
on the variance of the n patches found is added. A flat region is detected when the variance of
the pixels from these patches is too close to the variance of the noise (see Equation (4.5) with
β = 1.05).

V ar[{Pi | i ∈ {1, . . . , n}}] < βσ2 (4.5)

In that case we simply average the contribution of all pixels to produce the estimated patch (all
pixels of the estimated patch have the same value). This means that n × p × p contributions are
averaged instead of only n contributions where p is the width of the patch. This improves the
quality of the denoising in flat regions, especially when the number of patches used is small.

The last improvement is the use of a patchwise NL-means as proposed in [BCM11]. In the
patchwise NL-means variant, the entire patch is denoised by averaging and the entire estimated
patch is aggregated instead of just its center pixel. However, instead of using the uniform weight-
ing of [BCM11] for the aggregation, we use bilinear weighting. This means that pixels near the
center ot the patch will have a greater impact during aggregation. The advantage of the patch-
wise NL-means variant is that an aggregation step can be introduced to skip some pixels like in
BM3D [DFKE07b] and NL-Bayes [LBM13a] and thus limits the amount of computation. The
final estimate of these pixels comes from the aggregation of the overlapping results from the other
patches. The improved version of NL-means is described in Algorithm 10 (also shown in 4.1) and
the differences are summarized in Table 4.1.

This is not the first work to try to improve NL-means running time or improve the denoising
performance. Examples of acceleration are [BKC08] which uses a cluster tree for the patch
search and [WGY+06] which use FFT and the Summed Squares Image for the filter computation.
Examples of denoising performance improvements are [KBC07] which uses a Bayesian model to
replace the NL-means weights. Instead of using all the patches in the window, a locally adapted
dictionary is extracted locally from the image in a first pass, and from a first denoising result - or
oracle - in a second, [DAG10] proposes a local adaptation of the smoothing parameter h using a
method based on SURE, [SDA14] improves the output of NL-means, especially on regions with
few good neighbors, by minimizing a global cost function involving the NL-means weights, the
NL-means output and the TV norm, [JGKL17] replaces the NL-means weights with triangular
kernels and a scheme to automatically adapt the smoothing parameter. The authors claim that
their proposed kernels can be compared to the one proposed in [BCM11] which we use. However
all these works focus on CPU implementations. Indeed their modifications are not adapted for
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Figure 4.1: Scheme of the NL-means algorithm

GPU contrary to our improved NL-means that is specifically adapted for GPU.

Algorithm 10: Proposed improved NL-means version
Input: Input image u, N the number of similar neighbors, s the patch step

1 Create an empty image v (using u size)
2 for each patch p of u on a grid of step s do
3 Search p1, . . . , pN the N nearest neighbors of p
4 if p1, . . . , pN are all flats (test with (4.4)) then
5 Average all pixels into a flat patch p̂
6 Aggregate all pixels of p̂ in v
7 else
8 Compute the aggregation weights wi for pi with (4.4)
9 p̂ =

∑N
i=1wipi

10 Aggregate all pixels of p̂ in v
11 return v

NL-means extension to video. The extension of NL-means to video is simply done by search-
ing patches in a 3D neighborhood as mentioned in [MS05].

4.2.2 BM3D by Dabov et al.

The denoising principle of BM3D exploits the redundancy of similar patches. Groups of similar
2D patches are assembled in a 3D stack. A separable 3D orthonormal transform is applied to this
stack. The stack is denoised by applying a shrinkage operator to the coefficients in a transformed
domain. The transform is selected to reveal sparsity in the transformed domain. Most DCT patch
coefficients are for example negligible in natural images. However the transform being a patch
isometry, the noise remains spread evenly among all DCT coefficients. The algorithm follows
four basic steps:

1. Search for similar patches in the image and group them in 3D stacks,

2. Apply a 3D linear domain transform to the 3D blocks,

3. Shrink the transformed coefficients,

4. Apply the inverse transform,
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Figure 4.2: Scheme of the BM3D algorithm

σ Method Crowd Park Pedestrians Station Sunflower Touchdown Tractor Average
10 VBM3D (7× 7) 35.57 34.66 40.84 38.60 40.18 39.14 37.08 38.01

VBM3D (8× 8) 35.55 34.68 40.88 38.70 40.30 39.16 37.12 38.06
20 VBM3D (7× 7) 32.06 31.16 36.88 35.22 36.14 36.13 33.11 34.39

VBM3D (8× 8) 32.06 31.20 36.97 35.33 36.27 36.15 33.19 34.45
40 VBM3D (7× 7) 28.40 27.68 32.61 31.84 32.36 33.37 29.45 30.82

VBM3D (8× 8) 28.40 27.69 32.62 31.85 32.36 33.38 29.44 30.82

Table 4.2: Comparison of denoising quality using either 7 × 7 or 8 × 8 patches for the Wiener estimation
of VBM3D. Both have very similar results and therefore justify our usage of 8 × 8 patches instead of the
suggested 7× 7.

5. Aggregate the resulting patches in the image.

The construction of the estimated image is done by aggregation, i.e. by combining the results of
all the different estimations. This principle is applied twice, once to compute a basic estimate and
a second time, using the basic estimate as a guide, for a final estimation. In the second stage, this
process is indeed repeated but uses the denoised patches of the first "basic" step to find similar
patches. Furthermore, transform thresholding is also replaced by a Wiener denoising using the
denoised patch as oracle. The method is synthesized in Figure 4.2. In short, we implement exactly
the same method as the one presented in [DFKE07b].

4.2.3 VBM3D by Dabov et al.

As we have seen in Chapter 1, VBM3D is a straightforward extension of BM3D to video. The
only major difference lies in the patch search. The method was synthesized in Figure 1.1. Since
the 7× 7 patch size of the second step is difficult to implement efficiently on a GPU, we decided
to use 8× 8. We checked using the implementation from Chapter 1, that this choice incurs in no
significant performance loss. See Table 4.2. This is the only difference compared to the method
proposed in [DFE07].

4.3 An introduction to GPU architecture

To understand some of the implementation choices in Section 4.4, some knowledge about GPU
computing workloads is required. We shall thus give an overview of the main particularities and
challenges of GPU programming. In this section, we define a coherent hardware terminology.
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GPUs and OpenCL for highly parallel workloads. Modern GPUs have a highly superior
computing power compared to modern CPUs; they are highly multithreaded. There can be 105 to
106 threads running at the same time. While parallelization of many data processing algorithms
is generally straightforward on CPU since CPUs’ cores are fairly independent, GPUs need more
care to take advantage of their highly parallelized architecture. In OpenCL, the programmer writes
kernels, which are functions executing on the GPU. All assigned threads execute the same kernel
code but start with a different work-item index. This leads each kernel to do different portions
of the work that needs to be parallelized. Alongside kernels, an OpenCL program also needs
CPU code to manage the GPU memory and define when and with which arguments these kernels
should be executed.

The programmer has some control on how indices are assigned to GPU threads. First, threads
are assigned linearly. This enables optimizations so to have consecutive threads access consec-
utive memory regions. Second, the programmer can define a workgroup size (called local size).
The global size is divided into regions of size defined by the local size. Each region is assigned to
a workgroup. The main interest of a workgroup is that its threads have access to a common local
shared memory only visible to them. This memory enables fast communications between threads.
It can be used to store common computations or to cache memory accesses.

A single instruction multiple threads (SIMT) model When assigning indices to threads, the
hardware groups consecutive indices of a same workgroup into a warp. Each thread inside a warp
will execute in lockstep. Thus every thread will execute the same instruction at the same time.
For example their memory accesses will be simultaneous. This knowledge can be used to reduce
the cost of memory accesses. However this model also implies that if several threads need to take
different code paths – this phenomenon is called thread divergence – all code paths taken need to
be executed by the warp, disabling the threads that should not take this code path.

Memory accesses with GPUs Memory accesses are affected by both latency and bandwidth.
Latency is the time taken for an operation to complete. GPUs have two ways of hiding latency.
First the code instructions can be organized to have non-dependent computations inserted between
a memory access and the code requiring its result. In this case the hardware only needs to wait
if the memory access has not finished when the code requiring its results needs to be executed.
Second several warps are scheduled on the same computing resources. When a warp has to wait,
other warps can be executed.

The bandwidth is the maximum amount of data the hardware can read or write from the
memory per second. To maximize the usage of available bandwidth, optimized memory access
patterns are required. Any access to read memory at a given location actually loads a batch of
consecutive elements (called cache line).

Memory accesses are cached to improve latency and bandwidth. Reading the same data again
while it is still in cache enables faster access. However, GPU caches are very small relative to the
number of threads executing. To compensate for this, GPU threads have access to a significant
number of registers, which are local storage only accessible by a given thread.

More details on GPUs can be found in technical documents such as [Jun15,AMD15,NVI09].

4.4 Implementation details

4.4.1 Patch search with a large, 2D or 3D, fixed window

In this section we shall describe how to implement an efficient patch search in a predefined 2D
(or 3D in the case of video) search window. The problem can be described as such: Given an
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image subgrid with a pixel spacing of step pixels, we want to compute the n best neighbors for
each position (the distance between patches used can be L1 or L2 for example). The patch is of
size p×p and the w×w search window is centered on the reference patch. In the case of a video,
a temporal depth is added to the window. Typical values for the parameters are p = 8, w = 21, n
in {8, 16, 32} and step in {3, 4}.

Design choices

Implementing this algorithm raises several challenges. Memory accesses must be optimized to
make optimal use of the cache. Indeed some computation is common for neighboring patches
when p > step and therefore can be shared. Writing in memory all the computed distances would
be heavy and thus only a table of the best n patches must be maintained during patch comparison.
Only the positions (and if needed the distances) of the n best patches are written at the end.

For the best efficiency, tables of best patch positions and their weights must be stored in
GPU registers. This leads to solutions where one thread will manage all the best neighbors for
a given location. This also discourages solutions where a given thread would compute, for a
given window offset, the distances between several reference patches and their compared patches.
Or solutions where a given thread would handle all distances for a compared patch rather than
a reference patch. Thus in the following a given thread will always track distances for a fixed
reference position.

When a given thread computes the distances between a reference patch and patches in a win-
dow, a lot of data is shared between the computations: the reference patch data is used for all
computations and most of the data is in common between a compared patch and its neighbor. The
distances must however be recomputed from scratch as different pixels are compared. Because
of the restricted register space, storing in registers the equivalent of two p× p patches per thread
may not be possible or be desirable. This encourages spreading distance computations for a given
reference patch among several threads. These threads would store a part of the reference patch as
well as a part of compared patches and reuse them across computation.

Efficient nearest neighbor table Since writing all patch distances in memory would not only
require a lot of memory space, but also bandwidth, we want to only store the final best n neigh-
bors. This implies at any point of the algorithm to remember the best n neighbors seen so far
(their positions and their distances), and forget the other positions and distances.

On many hardware, accessing an array with a dynamic index (an index unknown at compi-
lation time) requires storing the array in memory rather than in registers. Even if the array ends
up staying in cache, the accesses would suffer from latency and bandwidth limitations. Thus
to prevent suboptimal performance, the table accesses must always be done with a fixed index.
When accessing the array with an index depending on a loop counter, for example, the loop must
be unrolled (compiler hints enable that operation). Unrolling the loop means the generated code
does not contain the loop jump. Instead the loop content is repeated for each loop index value,
thus the array index is known during compilation. Small arrays with only fixed indices accesses
can have their content assigned to registers instead of memory.

We propose two alternative algorithms to keep the n best distances and positions: Algo-
rithms 11 and 12. Keeping an ordered table (Algorithm 11) has several advantages over an un-
ordered table (Algorithm 12): The maximum distance is known directly and does not need to be
recomputed, and thread divergence is lower. Indeed in Algorithm 12, threads are more likely to
insert their elements at different indices than in Algorithm 11.

We found Algorithm 11 to be slightly faster indeed in our tests on a NVIDIA GPU. However,
in our tests on INTEL and AMD GPUs, the performance was significantly lower due to the com-
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Algorithm 11: Keeping an ordered table of distances and positions
Input: New position pos and distance dist, two tables Positions and Distances of length

n each.
1 if dist < Distances[n-1] then
2 for i from n-1 to 1 do
3 insert← Distances[i-1] ≤ dist
4 Positions[i]← pos if insert else Positions[i-1]
5 Distances[i]← dist if insert else Distances[i-1]
6 quit function if insert
7 Positions[0]← pos
8 Distances[0]← dist

Algorithm 12: Keeping an unordered table of distances and positions
Input: New position pos and distance dist, two tables Positions and Distances of length

n each.
1 max_distance← max(Distances[0], . . . , Distances[n-1])
2 if dist < max_distance then
3 for i from 0 to n-1 do
4 if Distances[i] = max_distance then
5 Positions[i]← pos
6 Distances[i]← dist
7 quit function

piler reorganizing the iterations in an unoptimized way for this algorithm, while not having issues
with Algorithm 12.

Naïve algorithm

In this naïve algorithm, each thread is assigned a different reference patch for which to compute
all the distances and maintain the best n neighbors. No particular effort is spent to encourage the
compiler to use registers as a cache to reduce the number of memory accesses.

Threads of the same workgroup are assigned to reference patches on the same row. Thus all
memory accesses are done on the same image rows, to minimize the number of cache lines per
memory accesses in a warp, and more generally improve the cache usage in our scenario. The
efficient nearest neighbor table presented above is used.

Convolution algorithm

This algorithm conceptually implements distance computations as separable convolutions while
avoiding storing distances. Threads of a workgroup get assigned consecutive positions on a row.
For each window offset, each thread will compute the distance between the p pixels of the column
at its reference position and at the compared position. This partial result is written in local shared
memory. Each thread then reads the results of neighboring threads in order to determine the
distance for the whole current p × p patch. Only threads with positions on the image subgrid
maintain the best n neighbors. For step = 1, this algorithm is the best performing among the
proposed algorithms, due to its very efficient work-sharing and memory pattern. However for
higher steps, some computation resources are wasted as a lot of threads do not maintain any
nearest neighbor table, an operation with non-negligible cost (due to the phenomenon described
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in Section 4.3). Note that no threads are assigned to rows which do not intersect with the image
subgrid of reference patches.

As p is small enough, the reference pixels can be stored in registers and not reloaded. As
for the pixels of the compared patches, on systems with fast local shared memory, memory ac-
cesses can be sped up by storing once (and reusing multiple times) the data required for all the
comparisons for a given row of the search window.

Square algorithm

This algorithm is optimized for the case p = 8 and step = 4. In that specific case, the distances
between a reference patch and its compared patches can be split into four distances of 4 × 4
smaller patches, and these sub-distances are exactly shared among four reference patches. Thus
this algorithm proposes to divide the image subgrid into 16× 16 squares. Each square is assigned
to a workgroup (thus workgroups of 256 threads). Each thread tracks the distances for a given
reference patch, but only needs to compute the distances for the top 4× 4 region of its reference
patch. Each thread writes its intermediate result to local shared memory. They can then retrieve
the distance for the entire 8 × 8 patch by reading the results from three other threads. Naturally,
threads at the bottom and right borders of the square workgroup cannot compute the full distances,
as no thread computed the required remaining distances outside the square. Thus the workgroup
computes the neighbors for a 15×15 region of the subgrid. Some overlapping is required to cover
the whole image.

This work subdivision reduces efficiently memory accesses (the reference 4 × 4 patch can
be stored in registers, and the memory accessed for the compared patch can be reused for the
next patch and kept in registers). Moreover, threads can use memory commands to load four
consecutive pixels per call, which reduces the memory instruction count.

Column computations algorithm

This algorithm is an extension of the convolution algorithm, adapting ideas from the square algo-
rithm. It is less efficient than the square algorithm due to p not being as neatly divided by step,
but is more efficient than the convolution algorithm when step > 1. Similarly to the convolution
algorithm, a group of threads is assigned on a row to compute distances between a reference col-
umn and a compared column each. However, contrarily to the convolution algorithm, each thread
computes not one, but k + 1 distances. The columns are composed of p + k ∗ step pixels, and
the computed distances are the k + 1 partial distances for the intersecting reference patches on
the subgrid. The partial results are written in local shared memory and some threads (possibly
the same ones) access the results to track the distances for a given reference patch. While for the
convolution algorithm, the number of reference patches tracked per thread was low (on average
1/step), in this algorithm k can be controlled to have almost one patch tracked per thread.

Optionally, the partial distance computations and the neighbor tracking can be done on dif-
ferent threads (from separate warps preferably to not waste computational resources), and thus
the total register need can be reduced per thread. Indeed if threads do either the partial distance
computations or the best distances tracking, the registers used to keep the best weights and dis-
tances can be the same as the ones used to store the column reference pixels for example. While
for some algorithms and hardware, it is advised to use a low number of registers to have better
memory latency reduction, in our case performance was not affected. We believe latency was not
an issue for our algorithm.
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4.4.2 VBM3D’s patch search

In this section we shall describe how to implement an efficient video patch search on the model
of VBM3D’s patch search. This patch search is similar to the one of Section 4.4.1. However this
time the search is performed in multiple frames of the video. First, the q most similar patches
are found in each frame. Then, the n best among these neighbors are kept for the rest of the
processing. The reference frame (frame containing the reference patch) has a search window of
size w1 × w1 centered on the reference patch while the other frames have search regions that are
the union of q search windows of size w2 × w2 centered on the best neighbors of the previous
frame. Each time the reference patch is of size p× p and is sampled on a subgrid of pixel spacing
of step pixels. Default VBM3D parameters are p = 8, w1 = 7, w2 = 5, q = 2, n = 8, step = 6
for the first pass and step = 4 for the second.

Design choices

The challenge of this patch search compared to the one of Section 4.4.1 is that, except for the
reference frame, the search windows are shifted by an offset that depends on the patch. While
threads treating patches on the same row of the subgrid would access the same rows at the same
time for Section 4.4.1, in this section different rows would be accessed because of the patch-
dependent shifts. Moreover a step of 6 means there is quite a gap between the areas accessed by
the threads, thus more cache lines would be accessed if using such a partition.

To keep efficient memory access patterns, several threads can be assigned to the same ref-
erence patch. Threads can either handle comparisons for different parts of the search windows
or the reference patch can be separated into subpatches where each thread is assigned the com-
parisons of one subpatch. In both cases, the partial results computed from each thread must be
communicated to a main thread that will combine them.

Naive algorithm

For this naive algorithm, each reference patch is assigned one thread that computes all distances
and determines the n best neighbors with the required temporal constraints (a maximum of q
neighbors per frame). Except for the differences in handling the search region, it is essentially
similar to the naive algorithm of Section 4.4.1.

Subdividing the test window

For this algorithm, t threads are assigned per reference patch. For example t can be set to w1
or w2. The search windows are divided into columns, and each thread searches for the q nearest
neighbors in its assigned column(s). One thread combines the results of the other threads using
local shared memory. This work partition optimizes the memory access pattern. Indeed all t
threads will access neighboring data.

However, as said in Section 4.4.1, due to the restricted register space, storing the equivalent
of two p × p patches in registers may not be possible or desirable. Thanks to the subdivision in
columns, the number of distances computed per thread is small enough so that distances can be
computed in several steps by storing partial results in registers. In order to do that, the patches are
divided into l blocks (composed of columns of the patch). We compute all the distances for a given
block, then the next, until the whole distances have been computed. With this method, the partial
patch data is small enough to be kept in registers during the computation of the partial distances
for a given block. This optimization reduces the number of memory operations significantly.
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Figure 4.3: Memory layout of NL-means. Buffers in green are read-only and buffers in blue are read-write.
Note that there is no intermediate buffer for the processing of the patches.

Subdividing the tested patches

For this algorithm, p threads are assigned per reference patch. Each thread computes all partial
distances for one column of the patch. The partial distances are added to get the actual distance
(reduce-add). Since p is small enough, each thread can keep the reference data in registers and
thus avoid reloading the full compared data every time a different position is tested. Moreover the
memory accesses are optimized as each thread loads consecutive data.

Compared to Section 4.4.2, this algorithm requires much more communication between
threads. However, some hardware support specific fast instructions to share data between threads,
which can be used to implement an efficient reduce-add operation. For hardware with such sup-
port, this variant can be faster than the previous algorithm.

4.4.3 NL-means’ averaging and aggregation

Design choices

Once the best neighbors and their distances are computed, patch distances need to be converted to
NL-means weights. We chose to do this computation before saving the results of the patch search,
thus saving directly NL-means weights. While it is possible to do both averaging and aggregation
at the same time (using a scheme inspired from Section 7), we did not obtain good performance.
Thus we separated the averaging and the aggregation steps. The memory layout of the proposed
improved NL-means is presented in Figure 4.3.

Naive averaging

In the naive algorithm, a thread computes the averages for a single patch. In order to keep register
usage low, all computations are divided per row, moving to the next row only when the results of
the previous row has been saved for aggregation.

Optimized averaging

GPUs have specific instructions to access several consecutive data elements per threads. However
depending on the data type and the patch width p, it is not possible to read or save a whole
patch row in a single memory instruction when using a single thread. Keeping that in mind,
in this optimized variant several threads are used to reduce even further the number of memory
commands required. Instead of assigning one thread per patch, p threads can be assigned per
patch. Each thread handles the averaging for a column of the patch. Reading or writing a row is
done in one memory command, thus guaranteeing optimal memory access patterns. The resulting
kernel is summarized on Algorithm 13.
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Algorithm 13: Proposed NL-means filtering kernel
Input: Input image u, the output accumulator’s numerator num and denominator den,

the positions of the nearest neighbors positions and the corresponding weights
w, the reference patch position and the column j to process

1 mean← 0
2 var← 0
3 for i from 0 to p-1 do
4 for k from 0 to n-1 do
5 data← u[k-th neighbor row i col j] // for patches of width p, p

consecutive threads access the same patch at
consecutive columns

6 mean← mean + data
7 var← var + data * data
8 mean← reduce_add(mean) / (p*p*n)
9 var← reduce_add(var) / (p*p*n) // The reduce operation is only

among the p threads treating a same patch
10 var← var - mean * mean
11 flatpatch← var <= βσ2

12 for i from 0 to p-1 do
13 if flatpatch then
14 denoised_pixel← mean
15 else
16 denoised_pixel← 0
17 for k from 0 to n-1 do
18 denoised_pixel← denoised_pixel + w[k-th neighbor] * u[k-th neighbor row i

col j]
19 Accumulate denoised_pixel on num and den with bilinear weighting
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Aggregation using atomics

For NL-means, only the results of the denoised version of the reference patch are aggregated
(contrarily to BM3D and VBM3D where all similar patches are denoised and aggregated). Thus,
the number of patches covering a given pixel aggregated together is known in advance. In this
case, it is not required to keep count of the number of covering patches for each pixel and their
weights. Each result can be added with atomics on a single buffer, which will then be normalized
correctly for each pixel. Atomics are necessary because several threads from different warps can
write at the same positions. However, the normalization code is required to handle explicitly all
patch sizes and step. Thus our code does not implement this optimization, and simply uses an
accumulation buffer for the sum of the weighted denoised patches, and a second accumulation
buffer for the sum of the weights. Then a simple shader divides the former by the later.

NL-means weights being floats, the averaging results are floats. Depending on the data dy-
namic and the required precision, int or long atomics can be used to aggregate data thresholded
up a given precision (for example 1.000123 gets written as the integer 10001). Float atomics can
also be used, but unfortunately to date most hardware do not support float atomics and hardware
which do don’t support them in OpenCL. Emulating float atomics can be done with int atomics,
but with a significantly higher cost. Indeed, a float add needs to be implemented as several int
atomic operations: ’reading the data’, ’writing the data plus our result if the data is still set to
the one we read previously’ (this operation returns the value of the data before the operation).
This needs to be repeated if the return value of this last operation is not what we expected (it
means other threads updated the value after you accessed it). This atomic float add emulation is

Algorithm 14: Emulated atomic float add
Input: Write address p and content to add a

1 current← p[0] // Reads initial value
2 repeat
3 expected_current← current
4 next← expected_current + a // Compute float add
5 current← atomic_cmpxchg(p, expected_current, next) // Try to update

6 until as_uint(current) = as_uint(expected_current) // Repeat if value
changed before updating

presented on Algorithm 14.

Aggregation without atomics

As said in Section 19, for fixed p and step, only one accumulation buffer is enough for the
aggregation since the patch aggregation weights are known in advance. If step is large enough,
for example p = 8 and step = 4, it can be advantageous to not even use an accumulation buffer
and thus avoid atomics completely. Instead of having a single buffer containing the aggregated
value, we write the different values to aggregate per pixel to several different buffers (four buffers
in the example above). These buffers can then be read, summed and normalized all a once to get
the final output.
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Algorithm 15: Proposed BM3D filtering kernel (for the first pass, when the maximum
number of neighbors is 8, the 2D transform is the DCT and the 1D transform is the
Hadamard transform)

Input: Input image u, the output accumulator’s numerator num and denominator den,
the positions of the nearest neighbors positions, the reference patch position to
process for this kernel call

1 Retrieve the patch stack from positions // Each of the 64 threads
starts with a table T of 8 elements containing one row of
the stack

2 Apply the 1D DCT on T
3 Apply Algorithm 18 on T
4 Apply the 1D DCT on T
5 Apply Algorithm 19 on T
6 Apply Hadamard on T
7 Apply BM3D’s hard thresholding on T
8 Apply Hadamard on T // Hadamard is its own inverse
9 Apply the inverse of Algorithm 19 on T

10 Apply the 1D DCT on T // The normalized DCT is its own inverse
11 Apply Algorithm 18 on T // Algorithm 18 is its own inverse
12 Apply the 1D DCT on T
13 Accumulate the results on num and den with BM3D’s weighting scheme

4.4.4 BM3D and VBM3D’s filtering and aggregation

Design choices

Both BM3D’s first and second pass as well as VBM3D’s first pass use 8 × 8 patches. While
VBM3D uses 7 × 7 patches for its second pass. We believe implementing VBM3D’s second
pass using 8× 8 patches does not change the algorithm performance (see Section 4.2.3). For this
reason, we will focus on using 8×8 patches only. The number of considered patches per location
is always a power of two, 1, 2, 4 or 8 (VBM3D and BM3D), 16 or 32 (BM3D).

One way of solving the filtering is first to read the nearest neighbors for each position, form
the associated 3D stack of patches, and write it to memory. The filtering can then be implemented
as successive passes on the buffer containing all the stacks. However, the bandwidth needed to
write and process the 3D stacks would lead to a suboptimal algorithm. Instead we propose to
use the high number of registers available on a GPU to save bandwidth. All considered hardware
have workgroups of 64 threads and at least 128 registers available per thread. Thus it is possible
to store the 8× 8× 32 elements of a 3D stack of patches in the registers of the threads of a given
workgroup.

Our proposal is to assign a workgroup of 64 threads for each position to process. The 3D
filtering can be implemented as three separate 1D filtering operations (one for each dimension),
followed by a shrinking operation (thresholding or Wiener) and finally the three separate inverse
1D filtering operations. At all times, one thread only has direct access to a subset of the 3D stack,
such as a few rows. To perform the 3D filtering, each thread performs a 1D filtering operation,
and then exchanges its data with the other threads so to have a new dimension of the data (for
example columns instead of rows). We call that operation transposition. A transposition, for
example, moves from a state where each thread contains one (or a few) patch column(s) to a state
where each thread contains one (or a few) patch row(s). Implementing efficient 1D filtering or
shrinking operations is not hard, thus in the following we focus on the transposition operations.
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Figure 4.4: Memory layout of BM3D and VBM3D. Buffers in green are read-only and buffers in blue are
read-write. Note that there is no intermediate buffer for the processing of the patch stack.

The overall pseudo-code of BM3D’s filtering kernel is presented in Algorithm 15 for the specific
case of the first pass with a maximum number of 8 neighbors. For 16 or 32 neighbors, each thread
reads not one, but two or four rows, respectively, and the operations are repeated for each. The
memory layout of the proposed design choices is presented in Figure 4.4.

Efficient transpose operations

We describe here the case of eight patches (of width p = 8) and will then extend to the other
number of patches.

Initially, each of the 64 threads contains a column of one of the patches. Thus each thread
contains eight elements and can apply one of the 1D transforms.

swapping columns and rows The first step is to swap the data so that each thread gets one row
of one of the patches instead of a column. To proceed with the swap, each thread writes the eight
pixel values it has in local shared memory, which is a fast memory reserved for the 64 threads.
Then each thread can read from the local shared memory its target eight pixel values. Doing that
efficiently is not as simple as it sounds. Extra care must be taken when reading and writing data
so to achieve good performance.

Let us first formalize the transpose operation. It starts with values stored in a table T of size
[8][8][8] representing the 3D patch stack. T is stored in the threads, each thread containing the
section [zi][.][yi] (corresponding to the column yi of patch zi) where i is the thread index (from 0
to 63), and zi, yi thread coordinates, with yi = i mod 8 and zi = i/8 . The goal is to have the data
reorganized as in a second table T ′′ such as T ′′[zi][yi][.] = T [zi][.][yi] . In practice the memory
of T is reused for T ′′.

The most “naive” way of performing the swap is to simply write T in local shared memory
in an arbitrary order, and then read the indices in the right order. Examples of such "naive"
algorithms are described in Algorithms 16 and 17. Both algorithms are equivalent.

Algorithm 16: Swapping columns and rows (Naive - variant 1)
Input: zi, yi thread indices, T thread-specific table of length 8, T ′ table in local shared

memory
1 for k from 0 to 7 do
2 T ′[64k + 8zi + yi]← T [k]
3 barrier() // Wait for all threads to finish writing
4 for k from 0 to 7 do
5 T [k]← T ′[64yi + 8zi + k]
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Algorithm 17: Swapping columns and rows (Naive - variant 2)
Input: zi, yi thread indices, T thread-specific table of length 8, T ′ table in local shared

memory
1 for k from 0 to 7 do
2 T ′[64yi + 8zi + k]← T [k]
3 barrier() // Wait for all threads to finish writing
4 for k from 0 to 7 do
5 T [k]← T ′[64k + 8zi + yi]

We shall analyze more in depth Algorithm 17. In this naive version, the data is written into
an intermediate 3D table T ′ of size 512 in local shared memory. The table T ′ is organized as a
buffer of size [8][8][8] . Each thread (zi, xi) writes its data so as T ′[yi][zi][.] = T [zi][.][yi] . It just
remains to read T ′ in the right order to obtain T ′′, T ′′[zi][yi][.] = T ′[.][zi][yi] . Elements are writ-
ten and read one by one in each thread (loop on k in Algorithm 17), thus resulting into eight write
instructions and eight read instructions for each thread (ignoring the instruction merging men-
tioned later). While at read time, the threads load 64 consecutive elements and thus guaranteeing
no bank conflicts, at writing time the proposed pattern triggers bank conflicts Indeed threads 0, 4,
8, etc, write in their first call at cases 0, 32, 64, which map to the same memory bank (all current
hardware have either 16 or 32 banks). The same problem happens with the other similar groups
of threads. The bank conflicts cause the accesses to the same banks to be serialized, thus being
executed as several separate calls. The write performance will thus be suboptimal. The solution
to improve performance is to ’shift’ the locations of the data written by the threads. The corrected
algorithm is identical except T ′ has padding. It is of size [8][64 + x] , but is interpreted as a table
of size [8][8][8] as before, but with an offset of x times the index of the first dimension.

This performance trick is well documented and is described for example in [NVI09], which
suggests x = 1 in the case of a matrix transpose. However, it does not give the best performance
on all hardware: Indeed optimal performance is achieved by maximizing the use of banks per
calls. However, some hardware can write or read several consecutive elements per thread in one
call. The tested INTEL hardware, which can have a warp size of eight, can support reading
or writing four elements per thread in one call. Reading or writing only one element results in
suboptimal performance as the banks are underutilized. The tested AMD hardware, which has a
warp size of 64, executes local shared memory commands in four parts, first the first 16 threads,
etc, until the last 16 threads, and ideally each of these subcalls should use all the banks (they
have 32). Like for the INTEL GPU, the tested AMD GPU can write or read several consecutive
elements per thread in one call (two per call). The tested NVIDIA hardware has warps of 32
threads, has 32 banks, and does not process them in two subcalls. Note that we assume that
a bank covers elements of four bytes, which is the size of a float (The NVIDIA hardware can
configure it to eight bytes).

Based on this variety of behaviors, it is difficult to design read or write patterns that are
optimal on all hardware as it depends on the warp size, the number of banks and how they are
accessed. However, assuming the number of banks is a divisor of 64 - our workgroup size -, we
noticed that having each thread write (or read) the maximum number of consecutive elements it
can write (or read) in one instruction is always an optimal pattern. The same can be noticed when
having threads write (or read) from consecutive addresses modulo 64 (thus to consecutive banks).
We will use these access patterns in our algorithms for best performance and compatibility (we
expect these patterns will still be optimal for future generations).

This leads us to Algorithm 18. The best x corresponds to the maximum number of consecutive
elements the hardware can read or write per thread per access. Thus, for the tested hardware, x =
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Algorithm 18: Swapping columns and rows
Input: zi, yi thread indices, T table of 8 registers for the thread, T ′ table in local shared

memory
1 for k from 0 to 7 do
2 T ′[(64 + x)yi + 8zi + k]← T [k]
3 barrier() // Wait for all threads to finish writing
4 for k from 0 to 7 do
5 T [k]← T ′[(64 + x)k + 8zi + yi]

4 should be best for INTEL, x = 2 for AMD, and x = 1 for NVIDIA. We verified experimentally
that indeed these parameters proved to be the best performing for each hardware. We also checked
the generated assembly code to confirm that the compiler combines the writes of consecutive data
into write packets of x elements. We expect the best value of x to change for future hardware
generations and should be set accordingly. When memory organization and the memory command
packing abilities are not known for a specific hardware, the best x can be determined empirically.

The proposed writing order covers all the banks per groups of threads in a warp and uses all
the banks. It is therefore the best possible pattern. For example, on the INTEL hardware with
x = 4, the first write of thread 0 writes to banks 0, 1, 2, 3, thread 1 writes to banks 4, 5, 6, 7, etc.
This corresponds indeed to the optimal pattern we suggested.

Swapping rows and channels Thanks to the transpose presented previously, the first two 1D
transforms can be applied on both the rows and the columns. The last 1D transform must be
applied on the third dimension of the 3D patch stack. This means that each thread must contain the
third dimension of the 3D stack for a given patch pixel. The only constraint for this transposition
is for the position (0, 0) of each transformed patch. The rest of the elements does not require any
specific ordering as long as the inverse transposition puts back the data in the correct thread. In
our case we will require that the position (0, 0) of each transformed patch is put in the thread 0.
Furthermore we will assume x is either 1, 2, 4 or 8.

To reformulate the problem, we start with data as a table T of size [8][8][8] stored in the
threads. Each thread starts with the section [zi][yi][.] where i is the thread index, and zi, yi thread
coordinates. We want the data to be stored as [.][µi][νi] , with µi, νi thread coordinates. We will
use local shared memory as intermediate table T ′ of size [8][8/x+ 64][8][x] , and assign

T ′[zi][j/x+ zi ∗ 8][yi][j mod x] = T [zi][yi][j].

This writing pattern verifies the conditions set in the previous paragraph. It avoids bank conflicts
and enables full use of the ability of the hardware to write x elements in one call. At reading time,
we assign T [j][zi][yi] = T ′[j][ai + j ∗ 8][bi][ci] , where ai ∗ 8 ∗ x + bi ∗ x + ci = zi ∗ 8 + yi .
As among threads, yi increases first, then zi , the pattern also prevents bank conflicts (it verifies
again the conditions set previously). Contrary to when writing T ′, the read commands cannot be
combined to read more than one value per call.

One problem with this proposed algorithm is the size of T ′ which can be huge: It is of length
512(1 + x). However T ′ can be fit in a much smaller table of size [8][8/x][8][x] , that is of length
512, while maintaining an optimal access pattern. To do so, modulus will be used in the writing
and read address computations.

Algorithm 19 presents the entire algorithm (with T ′ a 1D table of length 512). It is easier
to visualize on Algorithm 19 that the algorithm is correct and that it indeed gives the pattern we
described in the previous paragraph: Since (8zi + yi) indexes threads from 0 to 63, the loops of
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Algorithm 19: Swapping rows and channels
Input: zi, yi thread indices, T table of 8 registers for the thread, T ′ table in local shared

memory
1 for h from 0 to (8/x - 1) do
2 for j from 0 to x-1 // The x memory operations are merged
3 do
4 T ′[64zi + (8zix+ 8hx+ yix+ j) mod 64]← T [hx+ j]
5 barrier() // Wait for all threads to finish writing
6 for k from 0 to 7 do
7 T [k]← T ′[64k + (8kx+ 8zi + yi) mod 64]

Algorithm 19 access indeed consecutive addresses modulo 64 for a fixed h and a fixed k. Thus
optimal performance is guaranteed.

Generalizing to 1, 2, 4, 16 or 32 patches The swapping operations presented previously as-
sumed we have to process eight patches. In order to generalize to more patches, we simply need
to store several columns of data initially per thread, and call the transposition functions presented
previously several times. When having fewer patches, some operations could be avoided. How-
ever, we simply called the function for eight patches while setting the missing patches to 0 and
therefore just ignoring them in the 1D transforms.

On the use of atomics for the aggregation

Due to the non-uniform weighting, the weighted pixel values being aggregated have a wide range
and, contrarily to NL-means, many elements are aggregated per pixel for BM3D and VBM3D.
We found that even with 8-bit RGB images, 32 bits integers could be insufficient to store the
weighted sum in some corner cases. Long atomics (64-bits integers) are recommended. When
not supported, the emulation of float atomics discussed in the Section 19 should be used. Integer
atomics could be used if reducing the range of the weights used for the aggregation, though the
PSNR could be affected.

4.4.5 Conclusion

In this section, we have explained in detail different optimized implementations (as well as their
naive versions) of the pieces of code required for NL-means, BM3D and VBM3D. In our imple-
mentation, which we compare to other implementations in Section 4.5, we have selected the best
optimized codes among the ones described, depending on the parameters. For the patch search
of NL-means and BM3D, we use the fast variant described in Section 7 when possible (p = 8,
step = 4), else use the variant of Section 7, except for step = 1, in which case the variant of Sec-
tion 7 is fastest. The naive variant is only used for border handling when needed. For NL-means,
we use the optimized averaging, rather than the naive one. We do aggregation using atomics for
all methods. Last, VBM3D’s patch search uses Section 4.4.2 for INTEL GPUs, else the algorithm
of Section 4.4.2.

4.5 Benchmarks

In this section we will compare the performance, both in terms of running time and PSNR, of our
implementations with several reference implementations. To remove the effects of differences

98



Acc. Description Bandwidth Float ops

0 Intel Xeon W-2145 CPU (18.1.0.0920) 63 GB/s 1.8 T/s
1 INTEL i7-6600U GPU (NEO 18.21.10858) 23 GB/s 380 G/s
2 AMD Radeon RX 480 (2766.4) 209 GB/s 5.7 T/s
3 NVIDIA TITAN V (390.129) 611 GB/s 13.7 T/s

Table 4.3: Compared configurations: The first accelerator is a 16-core CPU, while the other accelerators
are GPUs with different levels of performance. The bandwidth and number of operations per seconds were
obtained with Clpeak, which estimates the actual peak figures which can be obtained with OpenCL.

Method BSD68 Kodak IPOL

[BCM11] 28.81 29.93 31.89
OpenCV 28.27 29.33 31.53
OpenCV GPU 28.24 29.31 31.55
Ours P5,S1 28.92 30.13 32.60
Ours 28.51 29.76 32.12

Table 4.4: Comparison of NL-means’ denoising performance (average PSNR) on several datasets with the
compared implementations (noise standard deviation of level 20).

in color handling, all the experiments in this chapter are grayscale. The denoising performance
will be compared on several datasets: BSD68 a set of 68 images from the Berkeley segmentation
dataset [MFTM01], Kodak a set of 24 images from the Kodak dataset [Fra99] and IPOL a set of
16 images from [Col14]1. In addition, we compare the denoising performance and running time
for two images: Lena and CMLA (from [BD19]). The former is a 512 × 512 image, while the
latter is 4608 × 3456. Table 4.3 shows the different OpenCL devices, called accelerators (acc.)
later on, considered. We consider a high-end multicore CPU (0), an integrated GPU (1), and
middle-range consumer grade GPU (2) and a high-end GPU (3).

NL-means In this section, we compare our GPU implementation to the reference CPU code
of [BCM11] and to OpenCV (version 4.1.0 [Bra00]) with both a CPU and a GPU implementation.
We compare the denoising performance with additive white Gaussian noise of standard deviation
σ = 20. For this noise level, [BCM11] recommends 5× 5 patches and h = 0.4σ = 8. However,
likely due to differences in the implementation choices, h = 8 did not give good results for
OpenCV. By maximizing the PSNR on a serie of images of the Waterloo dataset [MDW+17],
we found the best parameter for OpenCV to be h = 20 for this noise level with 5 × 5 patches.
Due to the differences in our implementation (number of neighbors, patch size, flat patch trick,
aggregation), a different parameter h was needed as well. We used h = σ. We compare our
implementation for two patch sizes. By default, our implementation uses 8 × 8 patches with a
subgrid step of four. Thus a pixel is covered by four patches. We also show results for patches
of size 5 × 5 and a subgrid step of one, which corresponds to the parameters of the reference
implementation.

We illustrate the denoising performance of the implementations on standard datasets in Ta-

1Available on http://mcolom.info/download/no_noise_images/no_noise_images.zip
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Method Lena (PSNR-Time) CMLA (PSNR-Time)

[BCM11] 31.59 - 8.5 ±0.2 s 31.75 - 522 ±5 s
OpenCV 31.20 - 279 ±2 ms 31.12 - 16.0 ±0.3 s
OpenCV GPU 31.18 - 6 ±1 ms Out of memory
Ours P5,S1 32.05 - 4.27 ±0.02 ms 32.32 - 219.2 ±0.5 ms
Ours 31.86 - 0.699 ±0.007 ms 31.99 - 20.7 ±0.1 ms

Table 4.5: Comparison of NL-means’ denoising performance (PSNR) and execution time with the compared
implementations. CPU methods were run on a single core of an Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz.
GPU methods were run on accelerator 3. The running times and the 95% confidence intervals were esti-
mated from 100 runs. Running time for GPU methods corresponds to the sum of time spent running GPU
kernels, obtained with nvprof or OpenCL profiling information. Running time for CPU methods corresponds
to execution time after the image is loaded and before the result is saved.

Accelerator search filtering Total

0 1672 ±6 ms 282 ±4 ms 1950 ±7 ms
2 40 ±1 ms 24.0 ±0.3 ms 64.5 ±0.5 ms
3 15.91 ±0.08 ms 4.44 ±0.02 ms 20.7 ±0.1 ms

Table 4.6: Comparison of the time taken on the compared accelerators for the main passes (NL-means with
our default parameters) on the CMLA. The running times and the 95% confidence intervals were estimated
from 100 runs.

ble 4.4. As can be seen, OpenCV performs about the same with the CPU and GPU backends, but
underperforms compared to the reference implementation. Our code with the default parameters
(Ours) was slightly outperformed by the reference implementation on BSD68 and Kodak, but
performed better on the IPOL dataset. When analyzing the results, one can see that our method
has better denoising performance on images with flat regions thanks to the flat patch trick. Due to
the use of larger patches than recommended for this noise level, the performance is slightly lower
elsewhere. When using our code with 5 × 5 patches and a subgrid step of 1 (Ours P5, S1), our
method outperforms the reference implementation on all datasets tested. The gains over [BCM11]
can be explained by the use of a bilinear scheme for the combination of the results of overlapping
patches, instead of using a constant weight, and by the flat patch trick.

In Table 4.5, we compare both the denoising performance (PSNR) and the execution time on
Lena and CMLA. One can observe that OpenCV’s CPU implementation is more than 30 times
faster than the reference code, although at the cost of a lower PSNR. Our GPU code runs signifi-
cantly faster with the default parameters than with 5 × 5 patches and a subgrid step of 1, but the
denoising quality is slightly lower. Both compared versions of our code ran faster than OpenCV’s
GPU implementation on Lena, while obtaining better denoising results. OpenCV could not de-
noise CMLA on the GPU as it required intermediate buffers that would not fit in the 12GB GPU
memory. One can see that the execution time of our implementation does not scale linearly with
the image resolution. The difference in running time per pixel between both images can be ex-
plained by the effects of cache (Lena fits completely in the GPU cache) and better use of the
parallelization capabilities of a GPU in the case of CMLA which is bigger. The running time of
our implementation on three different accelerator is analyzed in Table 4.6. Most of the running
time is spent on the patch search, rather than the NL-means weighting (filtering). The aggregation
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Method patch size search region size 2D transform 1D transform
patch
step

Number
of nearest
neighbors

Maximum
distance for

a nearest
neighbor

[DFKE07b] 8× 8 / 8× 8 39× 39 / 39× 39 Bior/DCT Haar/Haar 3/3 16/32 2500/400
[Leb12] 8× 8 / 8× 8 33× 33 / 33× 33 Bior/DCT Hadamard/Hadamard 3/3 16/32 2500/400
OpenCV 4× 4 / 4× 4 16× 16 / 16× 16 Haar/Haar Haar/Haar 1/1 8/8 2500/400
[HK19] 8× 8 / 8× 8 23× 23 / 23× 23 DCT/DCT Hadamard/Hadamard 3/3 16/32 3000/400
[WS17] 8× 8 / 8× 8 32× 32 / 32× 32 DCT/DCT DCT/DCT 4/4 8/8 3000/400
Ours 8× 8 / 8× 8 21× 21 / 21× 21 Bior/DCT Hadamard/Hadamard 4/4 8/8 2500/400

Table 4.7: Default parameters for σ = 20 for all BM3D methods compared. Parameters in gray can be
modified easily by changing a value in the code, or passing an argument when calling the method.

Method BSD68 Kodak IPOL

[Leb12]* 29.32 30.68 33.06
[HK19]* 29.26 30.65 33.05
Ours* 29.27 30.66 33.06

[Leb12] 29.50 30.83 33.23
OpenCV 29.04 30.24 31.82
[HK19] 29.26 30.61 32.94
[WS17] 27.34 29.60 31.94
Ours 29.34 30.65 32.91

Table 4.8: Comparison of denoising performance (average PSNR) of BM3D on several datasets of the
compared implementations (noise standard deviation of level 20). *: The default parameters were replaced
by the fixed parameters used to compare the three implementations.

of the results (normalization of an aggregation buffer) is small and therefore not displayed. It is
nonetheless included in the total running time. Accelerator 1 could not compute the result on
CMLA as the execution time was more than the timeout threshold of this GPU. We can notice our
code executing on CPU (accelerator 0) is competitive with the compared CPU implementations
(the equivalent single core time is 31s, compared to OpenCV’s 16s and [BCM11]’s 522s), even
though our code was not optimized for CPU specifically. This is likely due to an efficient use of
the CPU extended instruction set (SSE, AVX, etc) for the code generated by OpenCL.

BM3D There are many different implementations of BM3D available. We compare our code to
two GPU implementations, [HK19, HK18] and [WS17], and two CPU implementations, [Leb12]
and OpenCV’s. [Leb12] is a reference CPU re-implementation of the original paper and OpenCV
is the implementation that can be found in OpenCV. We only consider open-source implementa-
tions reproducing the original method described in [DFKE07b].

In Table 4.7, we show the default parameters of these methods as well as which parameters
can be modified. No other methods use the default parameter proposed in the original BM3D
publication. Only our method can be configured to have exactly these parameters. It has to be
noted, though, that the Hadamard and Haar transforms have been shown to give equivalent results
in [DFKE07b], thus arguably, [Leb12]’s parameters are almost identical to the original, except for
the default search region size.

Due to the different sets of 3D filters supported by each implementation, they are not exactly
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Method Lena (PSNR-Time) CMLA (PSNR-Time)

[Leb12]* 32.98 - 7.68 ±0.06 s 33.39 - 491 ±5 s
[HK19]* 32.97 - 22.24 ±0.07 ms 33.40 - 986.5 ±0.8 ms
Ours* 32.98 - 16.15 ±0.05 ms 33.40 - 513 ±4 ms

[Leb12] 33.04 - 6.84 ±0.08 s 33.38 - 425 ±3 s
OpenCV 31.87 - 3.36 ±0.07 s 31.71 - 204.6 ±0.5 s
[HK19] 32.94 - 17.97 ±0.04 ms 33.07 - 760.7 ±0.7 ms
[WS17] 32.11 - 52 ±4 ms 32.67 - 5.06 ±0.01 s
Ours 32.71 - 2.59 ±0.02 ms 32.89 - 91.9 ±0.5 ms

Table 4.9: Comparison of denoising performance (PSNR) and execution time between for the compared
BM3D implementations. CPU methods were run on a single core of a Intel(R) Xeon(R) W-2145 CPU @
3.70GHz. GPU methods were run on accelerator 3. The running times and the 95% confidence intervals
were estimated from 100 runs. Running time for GPU methods corresponds to the sum of time spent
running GPU kernels, obtained with nvprof or OpenCL profiling information. Running time for CPU methods
corresponds to execution time after the image is loaded and before the result is saved. *: The default
parameters were replaced by the fixed parameters used to compare the three implementations.

Acc. search filtering search filtering Total

0 446 ±5 2106 ±9 5230 ±10 2150 ±10 9930 ±30
1 1090 ±10 962 ±4 1081 ±5 713 ±4 3860 ±10
2 17.6 ±0.2 87.2 ±0.2 30.2 ±0.2 105.0 ±0.2 241.9 ±0.2
2* 17.6 ±0.3 35.3 ±0.4 20.2 ±0.3 38.3 ±0.3 124.6 ±0.5
3 6.47 ±0.04 33.34 ±0.07 11.75 ±0.05 39.61 ±0.07 91.8 ±0.2

Table 4.10: Comparison of the time taken (in ms) on the compared accelerators for the main passes (BM3D
with our default parameters) on CMLA. The running times and the 95% confidence intervals were estimated
from 100 runs. *: Using long atomics instead of float atomics
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comparable. Thus, we only compare using the same parameters, [Leb12], [HK19] and our im-
plementation. The patch search region is set to 39 × 39, the 2D transforms are both set to DCT,
and the 1D transforms to Hadamard. The patch step is 3, and the maximum number of nearest
neighbors is 16 for the first pass, and 32 for the second pass.

We also compare the performance of all implementations with their default parameters. Simi-
larly as before, we show the denoising performance on standard datasets in Table 4.8 and denois-
ing performance and running time for two images in Table 4.9. Details about the running time
of our method can be found in Table 4.10. As we can see, OpenCV and [WS17] underperform
compared to other methods. This is likely due to their choice of 2D or 1D transforms.

The three compared methods set to the same fixed parameters had similar denoising perfor-
mance, which validates the equivalence of these implementations, besides the default parameters.
However our implementation was faster than the other GPU implementation [HK19]. The main
optimization compared to [HK19] is the use of a single kernel to implement all the filtering op-
erations (see Section 4.4.4). When comparing the performance of all the implementations with
their default parameters, [Leb12] had the best denoised results, and our implementation was the
fastest. Our default parameters were chosen to maximize denoising performance while looking
for aggressive speedups. As a result, it ran almost nine times faster than the closest competitor.
However as our parameters can easily be changed, our code can also be used to reproduce the re-
sults of the best performing [Leb12]. This is done at a cost similar to the one reported in Table 4.9
as the main difference between the parameters suggested in [DFKE07b] and the fixed one used
for the table is the use of Bior instead of DCT for the first pass.

Table 4.10, which analyzes the running time of our method on several accelerators, shows
that, contrary to NL-means, most of the running time is spent in the filtering of the patch stacks,
rather than in the search of neighbors. One limiting factor of this filtering is the writing of the
results on an accumulation buffer with emulated float atomics. As said in Section 7, hardware long
atomics can be used if the range of the input is known. We can see in Table 4.10 that accelerator
2 benefits significantly from hardware long atomics since the total running time is almost divided
by two. The hardware of accelerator 3 is able to do hardware float atomics and long atomics
(available in CUDA), but these functionalities are not available for the OpenCL driver at the time
of writing. Both implementations [HK19] and [WS17], written in CUDA, used hardware float
atomics. We notice that, like it was for NL-means, our BM3D code running on accelerator 0
(CPU) is competitive with the compared CPU implementations. It runs at an equivalent single-
core execution time of 159s, compared to 205s for OpenCV and 425s for [Leb12]. One has to be
careful though when comparing these results because the parameters are different.

VBM3D and video NL-means In this section, we delve into the performance of the video
variations of the previous algorithms.

While NL-means has been previously used for video denoising, there is no standard video
version. Thus, for this comparison, we use our code extending the search to a 3D window in-
cluding the 4 past images and the 4 future images of the current sequence (similarly to VBM3D).
In addition, we use 16 × 16 patches. The use of bigger patches is justified for video denoising
as it results in better matches of the same content in the previous frames, which improves the
denoising result and the temporal consistency.

We compared with VBM3D using the original parameters of [DFE07] as implemented
by [EA20], and our implementation (which has a different patch size for the second pass, as
explained in 4.2.3). To highlight the improvements of the video algorithms over the image ver-
sions, we show the denoising performance of NL-means and BM3D with our default parameters,
used separately on each frame (no 3D search window).

Table 4.11 shows the denoising performance and average running time per frame on the Derf
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Method SF GPU PSNR Time/frame

NLM ours yes yes 31.54 0.83 ±0.06 ms
BM3D ours yes yes 32.93 4.7 ±0.3 ms
NLM video ours no yes 33.53 10.0 ±0.3 ms
VBM3D [EA20] no no 34.21 3.0 ±0.2 s
VBM3D ours no yes 34.31 3.4 ±0.2 ms

Table 4.11: Comparison of denoising performance (average PSNR) and average running time per frame of
VBM3D and NL-means on the Derf dataset of the compared implementations (noise standard deviation of
level 20). Whether the method uses a single frame (SF) or a GPU is indicated.

Acc. search filtering search filtering Total

0 22.5 ±0.7 31.5 ±0.6 48 ±1 72 ±1 174 ±4
1 28 ±1 20.5 ±0.8 65 ±2 50 ±2 164 ±8
2 1.7 ±0.1 1.13 ±0.04 3.3 ±0.2 2.6 ±0.3 9.0 ±0.5
3 0.54 ±0.07 0.55 ±0.05 0.90 ±0.02 1.1 ±0.1 3.4 ±0.2

Table 4.12: Comparison of the average time per frame taken (in ms) on the compared accelerators for the
main passes for our VBM3D implementation (with our default params) on the Derf dataset.

dataset of the compared implementations. The Derf dataset corresponds to the Derf’s Test Media
collection2 as processed in [AFM18a]: The original videos are RGB of size 1920 × 1080, and
seven grayscale sequences of 100 frames were extracted and down-sampled by a factor two (the
resolution is thus 960× 540).

Video methods obtain a significantly superior PSNR (a 1.99 db gain for NL-means and 1.28db
for BM3D). While NL-means is slower in its video version than its image version, due to the big-
ger patch search region, VBM3D is faster than our BM3D with default parameters. This is due to
the competitive video patch search algorithm of VBM3D, and due to the first pass of the algorithm
using a patch step of 6 for VBM3D, while our BM3D uses 4. The fact that our GPU implemen-
tation has a slightly better denoising performance (of 0.10 db) compared to the reference CPU
implementation is due to the use of 8 × 8 patches in the second pass. This phenomenon was al-
ready observed in Table 4.2, on the same dataset (with a different noise generation). For VBM3D,
Table 4.12 shows that computation time is quite balanced between all steps even though the search
takes slightly more time than the filtering. It’s also important to notice that the implementation
achieves real-time denoising on these sequences for both accelerators 2 and 3.

4.6 Conclusion

In this chapter, we proposed a GPU implementation of NL-means, BM3D and VBM3D. The tech-
nical challenges of this endeavor and of the proposed solutions have been discussed. The PSNR
denoising performance was shown to match, and sometimes even to surpass thanks to careful
implementation choices, the denoising performance of the reference CPU implementations while
being several orders of magnitude faster. We also proposed compromises for the default parame-

2https://media.xiph.org/video/derf
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ters to get an even larger speedup at a minor cost for the denoising performance. This work paves
the way to new uses of these algorithms in time constrained environments.
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Part II

Learning-based video and burst
denoising
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5 Non-Local video denoising by CNN

Non-local patch based methods were until recently the state of the art for image denoising but
are now outperformed by CNNs. In video denoising however, they are still competitive with
CNNs, as they can effectively exploit the video temporal redundancy, which is a key factor to
attain high denoising performance. The problem is that CNN architectures are not compatible
with the search for self-similarities. In this chapter we propose a simple, yet efficient way
to feed video self-similarities to a CNN. The non-locality is incorporated into the network
via a first non-trainable layer which finds for each patch in the input image its most similar
patches in a search region. The central values of these patches are then gathered in a feature
vector which is assigned to each image pixel. This information is presented to a CNN which
is trained to predict the clean image. We apply the proposed method to image and video
denoising. In the case of video, the patches are searched for in a 3D spatio-temporal volume.
The proposed method achieves state-of-the-art performance. This work has been published
in [DEM+19] and [DEM+20].

5.1 Introduction

Recently, we have seen denoising methods moving away from patch-based methods presented in
Part I and a new trend using machine learning for denoising emerging.

Image denoising has a vast literature where a variety of methods have been applied: PDEs and
variational methods (including Markov random fields, MRF, models) [ROF92a,CCC+10,Rot05],
transform domain methods [DJ94], non-local (or patch-based) methods [BCM05b, DFKE07b],
multiscale approaches [FPM17b], etc. See [LCBM12] for a review. In the last two or three
years, CNNs have taken over the state of the art. In addition to attaining better results, CNNs
are amenable to efficient parallelization on GPUs potentially enabling real-time performance. We
can distinguish two types of CNN approaches to image denoising: trainable inference networks
and black box networks.

In the first type, the architecture mimics the operations performed by a few iterations of op-
timization algorithms used for MAP inference with MRFs prior models. Some approaches are
based on the Fields-of-Experts model [Rot05], such as [Bar09, SR14, CP17]. The architecture
of [VTL16] is based on EPLL [ZW11], which models the a priori distribution of image patches
as a Gaussian mixture model. Trainable inference networks reflect the operations of an optimiza-
tion algorithm, which leads in some cases to unusual architectures, and to some restrictions in
the network design. For example, in the trainable nonlinear reaction diffusion network (TNRD)
of [CP17] even layers must be an image (i.e. have only one feature). As pointed out in [KKHP17]
these architectures have strong similarities with the residual networks of [HZRS16].
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The black-box approaches treat denoising as a standard regression problem, not using much
of the domain knowledge acquired during decades of research in denoising. The first denoising
approaches using neural networks were proposed in the mid and late 2000s. Jain and Seung
[JS09] proposed a five layer CNN with 5 × 5 filters, with 24 features in the hidden layers and
sigmoid activation functions. Burger et al. [BSH12] reported the first results competitive with
patch-based methods using a multilayer perceptron trained to denoise 17 × 17 patches, but with
a heavy architecture. More recently, DnCNN [ZZC+17b] obtained impressive results with a far
lighter 17 layer deep CNN with 3 × 3 convolutions, ReLU activations and batch normalization
[IS15]. This work also proposes a blind denoising network that can denoise an image with an
unknown noise level σ ∈ [0, 55], and a multi-noise network trained to denoise blindly three types
of noise. A faster version of DnCNN, named FFDNet, was proposed in [ZZZ18], which also
allows handling spatially varying noise by adding a noise map σ(x) as an additional input. The
architectures of DnCNN and FFDNet keep the same image size throughout the network. Other
architectures [MSY16, SMD17, CCXK18] use pooling or strided convolutions to downscale the
image, and then up-convolutional layers to upscale it back. Skip connections connect the layers
before the pooling with the output of the up-convolution to avoid loss of spatial resolution. Skip
connections are used extensively in [TYLX17].

noisy frame + 
n-1 non-local features: 

residual image
noisy video sequence

non-local patch 
search module

convolutional 
neuronal 
network

       ...  t-2    t-1       t      t+1   t+2 ...

Figure 5.1: Illustration of the proposed Video Non-Local Network (VNLnet). The first module performs a
patch-wise nearest neighbor search across neighboring frames. Then, the current frame, and the feature
vectors fnl of each pixel (the center pixels of the nearest neighbors) are fed into the network.

Although these architectures produce very good results, for textures formed by repetitive pat-
terns non-local patch-based methods still perform better [ZZC+17b, BSH12]. Some works have
therefore attempted to incorporate the non-local patch similarity into a CNN framework. Qiao et
al. [QDF+17] proposed inference networks derived from the non-local FoE MRF model [ST11].
This can be seen as a non-local version of the TNRD network of [CP17]. A different non-local
TNRD was introduced by [Lef17]. BM3D-net [YS18] pre-computes for each pixel a stack of
similar patches and feeds them into a CNN that reproduces the operations done by (the first step
of) the BM3D algorithm: a linear transformation of the group of patches, a non-linear shrinkage
function and a second linear transform (the inverse of the first). The linear transformations and
the shrinkage function are the trainable parameters. In [CFKE18] the authors propose an iterative
approach that can be used to reinforce non-locality to any denoiser. Each iteration consists of the
application of the denoiser followed by a non-local filtering step. An inconvenience is that the
resulting algorithm requires to iterate the denoising network. Trainable non-local modules have
been recently proposed by using differentiable relaxations of the nearest neighbor [LWF+18] and
k nearest neighbors [PR18] selection rules, or using Graph CNNs [VFM19], where the graph
edges encode the non-local connections between pixels with similar features. These approaches
are very interesting as they allow the combination of local and non-local interactions in a trainable
way.

CNNs have been successfully applied to several video processing tasks such as deblur-
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ring [SDW+17], video frame synthesis [LYT+17] or super-resolution [HWW15, SVB18], but
their application to video denoising has been limited so far. In [CSY16] a recurrent architecture
is proposed, but the results are below the state of the art. More recently, Tassano et al. [TDV19a]
proposed DVDnet, a convolutional architecture which processes five consecutive frames to pre-
dict the central frame. Each frame is first denoised spatially, and then warped to frame t via an
optical flow. The aligned frames are stacked together with the central frame and processed by
a “temporal denoising” network. The authors use a non-trainable optical flow, which prevents
the network from being trained end-to-end. Two recent works proposed networks without ex-
plicit motion estimation: ViDeNN-G [CvG19] processes three consecutive frames, and applies
first a spatial denoising followed by temporal denoising, similar to [TDV19a], except that the
frames are stacked without aligning them. A different architecture, named fastDVDnet, was pro-
posed in [TDV19b]. Instead of first using a spatial denoising, three consecutive noisy frames are
stacked together. The stack is processed by a U-net [RFB15] which predicts the central frame.
To extend the temporal receptive field of the network, the authors cascade two levels of these net-
works. The overall network takes five frames as input. Recently [GMU18b,MBC+18a,EDAF19]
focused on the related problem of image burst denoising reporting very good results. There is also
recent work focusing on unknown noise-model denoising for videos that use self-supervision for
training [EDM+19, EDAF19].

Before the advent of CNNs, patch-based methods were the state of the art [DFE07,MBFE12,
AM18b, EAM17, BLM16, WLPB17], and some continue to be competitive in terms of denoising
performance [AM18b,EAM17], albeit with a larger computational cost). They exploit extensively
the self-similarity of natural images and videos, namely the fact that most patches have several
similar patches around them (spatially and temporally). Each patch is denoised using these similar
patches, which are searched for in a region around it. The search region generally is a space-time
cube, but more sophisticated search strategies have also been used. Because of the use of such
broad search neighborhoods these methods are called non-local. While these video denoising
algorithms perform very well, they often are computationally costly.

Patch-based methods usually follow three steps that can be iterated: (1) search for similar
patches, (2) denoise the group of similar patches, (3) aggregate the denoised patches to form the
denoised frame. VBM3D [DFE07] improves the image denoising algorithm BM3D [DFKE07b]
by searching for similar patches in neighboring frames using a “predictive search" strategy which
speeds up the search and gives some temporal consistency. VBM4D [MBFE12] generalizes this
idea to 3D patches. In VNLB [AM15], video extension of [LBM13c], spatio-temporal patches
that were not motion compensated are used to improve the temporal consistency. In [EAM17] a
generic search method extends every patch-based denoising algorithm into a global video de-
noising algorithm by extending the patch search to the entire video. SPTWO [BLM16] and
DDVD [BL17] use optical flow to warp the neighboring frames to each target frame. Each patch
of the target frame is then denoised using the similar patches in this volume with a Bayesian strat-
egy similar to [LBM13c]. Recently, [WLPB17] proposed to learn an adaptive optimal transform
using batches of frames.

Patch-based approaches have also been applied in frame-recursive denoising methods
[EMA18, AM19b], that denoise each frame using only the corresponding noisy frame and the
previous denoised frame.

It works particularly well in the case of video denoising, where it achieves state-of-the-art
performance.

The method first computes for each image patch the n most similar neighbors in a rectangular
spatio-temporal search window and gathers their central pixels forming a feature vector which is
assigned to each image location. This results in an image with n channels, which is fed to a CNN
trained to predict the clean image from this high dimensional vector. We trained our network for
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Figure 5.2: Spatio-temporal video crop (top row) and the features extracted by the non-local search for the
central frame (bottom row), applying the restriction of one neighbor per frame.

grayscale and color video denoising. Practically, training this architecture is made possible by a
GPU implementation of the patch search that allows computing the nearest neighbors efficiently.

To train our network we created a dataset of 17k video segments. In the two testing datasets,
our network obtains state-of-the-art results on both color and grayscale video denoising. The
code to generate the datasets and reproduce our results is available online1. A preliminary version
of this work was presented in [DEM+19]. The present version includes an extension to color
videos, a detailed comparison with recent works, extended discussions comparing these methods,
and new experiments.

5.2 Proposed method

Let u be a grayscale video and u(x, t) denote its value at pixel position x in frame t. We observe
v, a noisy version of u contaminated by additive white Gaussian noise:

v = u+ r, where, r(x, t) ∼ N (0, σ2). (5.1)

Our video denoising network processes the video frame by frame. Before it is fed to the
network, each frame is pre-processed by a non-local patch search module which computes a
non-local feature vector at each image position. A diagram of the proposed method is shown in
Figure 5.1. We call our method VNLnet for Video Non-Local Network.

5.2.1 Non-local features

Each frame in the video is pre-processed by the non-local patch search module to produce a 3D
tensor fnl of n channels. This is the input to the network. The parameter n is the number of
nearest neighbor patches searched for each pixel by this pre-processing module.

Let P be a patch of size s × s centered at pixel x in frame t. The patches are arranged as
vectors with s2 components. The patch search module computes the L2 distances between the
patch P and the patches in a 3D rectangular search region of size ws×ws×wt centered at (x, t).
The positions of the n most similar patches are (xi, ti), ordered either by increasing distance or
by increasing frame index ti.

The pixel values at those positions are gathered to produce the n-dimensional non-local fea-
ture vector associated to pixel (x, t):

fnl(x, t) = [v(x1, t1), ..., v(xn, tn)]. (5.2)
1The code to reproduce our results, the training and testing datasets can be found at https://github.com/

axeldavy/vnlnet.
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The non-local features correspond to n images which resemble the frame v(·, t) (see Figure 5.2).
One of them is v(·, t) itself, as the reference patch P is always among the n nearest neighbors.
The remaining n − 1 images are built from the central pixels of the most similar patches to each
patch in v(·, t).

One neighbor per frame. We will also consider a restricted version of the patch search, not
allowing more than one match per-frame. In this variant, we set the number of matches n to be
equal to the number of frames in the search region, resulting in a match for each frame. The
neighbors are sorted by frame index instead of the patch distance. With this configuration, the ith
non-local feature map corresponds to a warped version of the ith neighboring frame, aligned to
the reference frame t. An example is shown in Figure 5.2, for n = 15. This can be related to
[TDV19a, XCW+19], which align the input frames using an optical flow. Indeed patch matching
can be seen as a rough optical flow with integer displacements.

Other alternatives. The proposed non-local features are inspired by classical patch-based
methods such as [BCM05c]. Selecting similar patches with the L2 distance and extracting their
central pixel is possibly the simplest way of providing the network with a non-local context.
The L2 distance is widely used, and was shown to be optimal for additive white Gaussian noise
(AWGN) [DDT12]. The same work also shows that other patch distances should be used for other
noise distributions.

We considered some alternatives to feeding only the central pixels to the network: such as pro-
viding as well the patch similarities (which could be used by the network to ignore bad matches),
or extracting a small patch (3× 3 or 5× 5) around the center of every matching patch, instead of
the central pixel. However, we did not observe a significant improvement to justify the increase in
complexity: the differences in the validation PSNR for these variants were within a 0.1dB range.
The reason for this is probably that the added pixels in the patch around the central pixel are
redundant with the central pixels of the similar patches for neighboring pixels.

In a previous version of our work [DEM+19] we also included four 1×1 convolutional layers
as a trainable transformation of the non-local features. We removed them in this work as we found
that the same performance can be achieved with a simpler design.

5.2.2 Network architecture

For processing the non-local features, we considered standard architectures used in image restora-
tion modifying their input layer to the n channel input tensor. We have tested three such architec-
tures.

DnCNN. The DnCNN architecture was proposed in [ZZC+17b] for still image denoising. It
consists of a feed-forward network with 17 layers with 64 3 × 3 convolution kernels, each one
followed by batch normalization and ReLU activations. The output layer is a 3 × 3 convolution.
The network outputs a residual image, which has to be subtracted to the noisy image to get the
denoised one.

U-Net. U-Nets (also called hourglass networks) have been introduced in [RFB15] for image
segmentation. This architecture consists of an encoder-decoder convolutional network. The en-
coder part downscales the input by a series of pooling layers or strided convolutions, whereas the
decoder upscales the coarse features to the desired output resolution. The differentiating aspect
of U-Nets from previous encoder-decoder networks are skip connections that bypass each coarser
scale. These networks have been applied to many tasks, among them denoising of both single
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images [CCXK18,SMD17] and videos [TDV19a]. In our experiments, we use the U-Nets blocks
of [TDV19b], except that the first two layers, which feature group convolutions and a number
of kernels computed from the number of input frames, are replaced by two standard convolution
layers of 32 kernels.

EDSR. EDSR [LSK+17] is a residual CNN architecture tuned for super-resolution. The main
architectural differences with DnCNN are the introduction of skip connections every two con-
volution layers, and the removal of the batchnorm layers. Thus in our experiments we took our
DnCNN networks and applied these two changes (the number of convolutional layers and their
parameters are kept).

5.3 Datasets and training

We denote by F the application of the network. The input to F at time t is fnl
t = fnl(·, t), the n-

channel image with non-local features gathered from a window of frames around t. The training
loss is the mean square error (MSE) between the reconstructed frame and the ground truth clean
frame:

l(F(fnl
t ), ut) = ||F(fnl

t )− ut||22. (5.3)

We use residual training, as in [ZZC+17b]. This means that the network actually predicts the
noise, and therefore the denoised image is obtained by subtracting the predicted noise from the
noisy input.

For RGB videos, we compute the patch search on grayscale frame resulting from averaging
the color channels. To form the non-local features we take the RGB components of the central
pixels of the matching patches, resulting in a input tensor with 3n channels. For RGB videos we
only trained a DnCNN network, with 25 layers and 96 channels (i.e. about three times the number
of parameters used for grayscale video).

5.3.1 Datasets

For the training and validation sets we used a database of short segments of 16 frames extracted
from YouTube videos. Only HD videos with Creative Commons license were used. From each
video we extracted several segments, separated by at least 10s. In total the database consists
of 16950 segments extracted from 1068 videos, organized in 64 categories (such as antelope,
cars, factory, etc.). As the original videos might contain compression artifacts, noise, etc, we
downscaled the video to a height of 540 pixels. This removes the minor artifacts of the videos and
better represents clean targets. In addition, we randomized the anti-aliasing filter width (Gaussian
blur) of the downscaling. This results in a variety of sharpness/blur in the training dataset, and
thus helps reducing dataset bias. We separated 6% of the videos of the database for the validation
(one video for each category). For grayscale networks, grayscale data is obtained by converting
the previous color datasets.

For training we ignored the first and last frames of each segment for which the 3D patch
search window did not fit in the video. During validation we only considered the central frame of
each sequence. The resulting validation score is thus computed on 503 sequences (1 frame each).

For testing, we used two distinct datasets. The first one is the dataset of [AFM18b], which was
extracted from the Derf’s Test Media collection.2 It is composed of seven sequences of 100 frames
of size 960 × 540. In this dataset, the camera is either still or has a smooth motion. The second
one is the test-dev split of the DAVIS video segmentation challenge [PTPC+17]. It consists

2https://media.xiph.org/video/derf

114

https://media.xiph.org/video/derf


original noisy CNN CNN+NLF CNN+NLF (oracle)

Figure 5.3: Results on still image denoising (AWGN with σ = 25). Original clean image, noisy image,
result obtained with the baseline CNN, result of incorporating the non-local features by finding the nearest
neighbors on the noisy image or the oracle noise-less image. Contrast has been linearly scaled for better
visualization.

of 30 videos having between 25 and 90 frames. In this dataset, the motion is more challenging. In
order to remove compression artifacts and noise present in the original images, both datasets were
obtained with a similar downscaling as for the training set (the original images ranged between
HD and 4K). Each dataset was processed using a different anti-aliasing filter width.

5.3.2 Training details

At each training epoch, first a subset of the videos of the dataset is selected and noise is added to
generate noisy samples. Second the non-local patch search module is run on every video selected.
This results in videos of non-local features where each frame has n channels containing the output
of the patch search module. Third the network is trained on mini-batches built from small crops
extracted at random positions on the videos of non-local features.

During training, we ignore spatio-temporal border effects by excluding the first and last wt/2
frames and ignoring crops at borders. At testing time, we simply extended the video by mirroring
it at the start and the end of the sequence and adding black borders for the patch-search module.

The training epochs comprise 17000 mini-batches of size 64 square crops of 44 pixels width.
We trained for 30 epochs using a combination of recent new optimization techniques which
give small performance improvements on various machine learning tasks: Lookahead [ZLBH19],
RAdam [LJH+19] and Gradient Centralization [YHHZ20].3 In addition, we reduced the learning
rate at epochs 15 and 27 (from 1e−3 to 1e−4 and 1e−6 respectively). Training a network takes
about 14 hours on a NVIDIA TITAN V for grayscale videos, and 24 hours for color videos.

5.4 Experiments and parameter tuning

In this section we evaluate the effect of the non-local features first in still image denoising, and
then, after studying the impact of the parameters, in video denoising. Unless otherwise stated, the
results reported were obtained using a DnCNN architecture for the fusion network. The network
is trained from scratch for each different parameter setting.

5.4.1 The potential of non-locality

Although the focus of this work is in video denoising, it is still interesting to study the performance
of the proposed non-local CNN on a single image. Figure 5.3 shows a comparison between a
baseline CNN (a 15 layer DnCNN [ZZC+17b]) and a version of our method trained for still

3We used the implementation of https://github.com/lessw2020/
Ranger-Deep-Learning-Optimizer
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Input Noisy No patch Patch width 9 Patch width 15 Patch width 21 Patch width 31 Patch width 41

Figure 5.4: Example of denoised results with our method when changing the patch size, respectively no
patch search, 9× 9, 15× 15, 21× 21, 31× 31 and 41× 41 patches. The 3D search window has 15 frames
for these experiments.

image denoising (it collects 9 neighbors by comparing 9× 9 patches and uses a 15 layer DnCNN
architecture. The non-local features are sorted by patch distance. The results with and without
non-local information are very similar. The only differences are visible on very self-similar parts
like the shutters in Figure 5.3. This is confirmed by quantitative results. The average PSNR on
the CBSD68 dataset [MFTM01, ZZC+17b] (noise with σ = 25) obtained for the baseline CNN
is of 31.24dB. The non-local CNN only leads to a 0.04dB improvement (31.28dB). The figure
also shows the result of an oracular method: the nearest neighbor search is performed on the
noise-free image, though the pixel values are taken from the noisy image. The method obtains an
average PSNR of 31.85dB, 0.6dB over the baseline. The oracular results show that non-locality
has a great potential to improve the results of CNNs. However, this improvement is hindered by
the difficulty of finding accurate matches in the presence of noise. A way to reduce the matching
errors is to use larger patches. But on images, larger patches have fewer matches. In contrast, as
we will see below, the temporal redundancy of videos allows using very large patches.

5.4.2 Parameter tuning for video denoising

The non-local search has three main parameters: The patch size, the number of retained matches
and the size of in the search region (both spatially and in number of frames). We expect the best
matches to be past or future versions of the current patch, so we set the number of matches as
the number of frames on which we search. In the following we study the impact of the different
parameters. Note that for each different parameter, we retrain the fusion network to make sure that
it is the optimal one for the chosen parameters. In all cases, we consider denoising of grayscale
videos with σ = 20.

Patch size. In Table 5.1a, we explore the impact of the patch size used for the matching. For
each patch size we show results with the unconstrained patch search and with the restriction of
one neighbor per frame (ONPF). In both cases, the results improve with the patch size, even for
patches much larger than the ones typically used in patch-based methods. The ONPF restriction
produces a slight improvement in performance, particularly for larger patches. Figure 5.4 shows
visual results obtained with the ONPF restriction. As the patch size grows, there is a noticeable
increase in the amount of details recovered from the background.

Number of frames in the search region. In Table 5.1b and Figure 5.5, we see the impact of
the number of frames used in the search window (and thus the number of nearest neighbors). One
can see that the more frames, the better. Increasing the number of frames beyond 15 (7 past,
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Input Noisy No Patch 3 Neighbors 7 Neighbors 11 Neighbors 15 Neighbors

Figure 5.5: Example of denoised results with our method when changing the number of frames considered
in the 3D search window (respectively no patch search, 3, 7, 11 and 15). 41 × 41 patches were used for
these experiments.

Patch size no patch 9×9 15×15 21×21 31×31 41×41
ONPF 33.88 35.70 36.62 37.07 37.39 37.51

free 33.88 35.68 36.55 36.95 37.20 37.32
(a) Impact of the patch size (with 15 frames)

# search frames no patch 3 7 11 15

ONPF 33.88 35.85 36.93 37.27 37.51
(b) Impact of number of frames (patch size is 41× 41)

search size 5× 5 11× 11 21× 21 41× 41 51× 51
ONPF 36.84 37.13 37.35 37.51 37.53

(c) Impact of search region size (patch size is 41× 41, with 15 frames, ONPF)

Table 5.1: Effect of patch size, search region size and number of frames (the number of neighbors is kept
equal to the number of frames). All values correspond to the PSNR computed on the validation set for noise
with σ = 20. In 5.1a we compare the performance with the one-neighbor-per-frame restriction (ONPF) and
without it (free).

# fusion net DnCNN U-Net EDSR
PSNR 37.51 37.42 37.55

Table 5.2: Impact of the architecture of the CNN used for fusing the features.

# stacked frames 1 3 7 11 15
PSNR 33.88 35.56 36.22 36.42 36.57

Table 5.3: Impact of the number of frames considered for the video-DnCNN network (the network input is a
3D crop rather than the result of the non-local search). PSNR on the validation set AWGN with σ = 20.

117



current, and 7 future) does not justify the small increase of performance. Foreground moving
objects are unlikely to get good neighbors for the selected patch size, unlike background objects,
thus it comes to no surprise that the visual quality of the background improves with the number
of patches, while foreground moving objects (for example the legs in Figure 5.5) do not improve
much.

Spatial size of the search region. Results varying the size of the search region are shown
in Table 5.1c. The results improve for larger search regions, although with diminishing returns.
From 41×41 to 51×51 there is no significant improvement. Our search region is not compensated
by motion, thus having a large search region is necessary to find matching patches on distant
frames for moving objects.

Choice of the fusion network. We have evaluated the performance obtained with the two other
architectures for the fusion network described in Section 5.2. The results obtained are shown in
Table 5.2. The three networks were trained with the same training set and the same procedure.
All networks achieve a very similar PSNR, within a 0.13dB range. This shows that the fusion
architecture is not critical.

Throughout the rest of the paper, we shall use 41×41 patches and a search volume of 41×41
pixels and 15 frames as the parameters for the patch search. For the fusion network we will use
the DnCNN architecture.

5.4.3 Discussion

Surprisingly large patches

An immediate question is why do such big patches achieve such a good performance. On one
hand, increasing the patch size has the effect of reducing the variance of the noise in the patch
distance, resulting in matches that are less affected by it. This explains the details recovered in the
background in Figures 5.4 and 5.5. The large size allow to reliably match the background patches
even if the texture seems to be completely obfuscated by noise.

On the other hand, a large patch size becomes a disadvantage for objects with a non-
translational motion. In these cases, finding similar matches in the neighboring frames becomes
less likely for larger patches. This can be seen in Figure 5.2. The person in the foreground is
rotating as she performs a backflip jump. Patches in the foreground object have similar matches
only for the closest neighboring frames (e.g. the face cannot be reconstructed for t± 4), whereas
patches in the background can be matched throughout all the temporal extend of the search region.
As a consequence, different pixels will have a different number of relevant non-local features. The
fusion network learns during training to be robust to these bad matches. It seems to be able to
identify when the patch search fails, relying only on the non-local features that are correlated
with the target pixel, and adapting accordingly the amounts of spatial denoising and non-local
denoising.

This phenomenon can be observed in Figure 5.6, where we compare the results of the pro-
posed VNLnet against the single frame DnCNN from [ZZC+17b] and a Non-Local Pixel Mean
(NLPM), which simply averages the values of the non-local features given by the patch-matching
(please ignore for the moment the column labeled video-DnCNN). On the first two rows, the
motion is consistent on the whole crop, and thus the output of NLPM is sharp, indicating good
matches. As a result, VNLnet’s output shows more details than the single frame DnCNN. How-
ever the Non-Local Pixel Mean output is blurry for the person in the third row and the background
of the fourth row. For these regions, VNLnet and DnCNN both have similar quality. Meanwhile,
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Input Noisy Non-Local Pixel Mean DnCNN video-DnCNN VNLnet (Ours)

Figure 5.6: Example of denoised result for Non-Local Pixel Mean, DnCNN, video-DnCNN (see Section
5.4.3) and VNLnet, for AWGN with σ = 20. The four crops highlight the results on frames feature various
kinds of motion. The videos are part of the DAVIS dataset. Non-Local Pixel Mean corresponds to the
average of the output of the non-local patch search.

for the regions of these two crops with good matches (the background of the third row, and the
person of the fourth row), the quality is improved. Using bigger patches will increase the number
of patches covering regions of conflicting motion. As a result, we see that the performance gain
from 31× 31 to 41× 41 is rather small.

A note on motion handling

To evaluate the effectiveness of the non-local features we also train a network with the same
architecture, but instead of feeding it with the n non-local features we feed it with the stack of the
n neighboring frames. We call this network video-DnCNN. We do this for different values of n,
and show the results obtained on Table 5.3.

The performance of the video-DnCNN network increases with the number of frames, al-
though less than the proposed VNLnet (see Table 5.1b). In particular, for video-DnCNN the
average PSNR on the validation set stagnates at 11 frames. The reason for this is that while the
denoising performance increases on sequences with majority of small and smooth motions, it
drops significantly when there are many large or irregular motions.

Without the non-local patch-search module, the network has to learn to handle motion im-
plicitly, which makes the task significantly harder. As the number of input frames increases, so
does the complexity of the internal motion compensation the network has to learn to denoise ac-
curately. The video-DnCNN network then overfits to the most frequent motion patterns in the
training set, and fails when it encounters a different motion. By factoring out the motion, the
non-local patch search module removes the need for the network to learn to adapt to various types
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Figure 5.7: PSNR gain of VNLnet versus the network without patch search of Table 5.3 (15 input frames)
on grayscale DAVIS (σ = 20) (35.48db versus 34.59db).

of motion, enabling a better generalization on various moving scenes.
This can be seen in Figure 5.6, by comparing the results of video-DnCNN and VNLnet, for

objects with fast/irregular motion patterns. VNLnet is able to recover much more details, thanks
to the patch search.

Figure 5.7 shows the PSNR gain of VNLnet over video-DnCNN for each sequence on the
grayscale DAVIS test set. The gain given by the non-local patch-search module is significant,
except only for two sequences. These feature fixed cameras and static backgrounds covering
most of the frame. The sequences with larger gains have complex motion.

Texture is also an important aspect, as patches with a distinct and highly contrasted texture can
be matched more reliably. In Figure 5.8 we plot the per patch PSNR gain of VNLnet against the
video-DnCNN method and a single frame DnCNN, in terms of a measure of patch "texturedness".
We measure patch texturedness as the sum of the squared gradient magnitudes in a patch:

T (x, t) =
∑
h

‖∇u(x+ h, t)‖2 (5.4)

where h varies in a patch centered at x,∇u is spatial gradient of u(·, t) and ‖ · ‖ is the Euclidean
norm. The texturedness is computed on the clean video. We denoised the grayscale DAVIS test set
with σ = 20, and for each 41×41 patch, we compute its texturedness T (x, t) and the PSNR gain,
which we denote byG(x, t). We bin these quantities in a 2D histogram with 400×400 bins which
is illustrated by the grayscale image in Figure 5.8 (darker pixels correspond to bins with higher
frequency). The figure also shows in red the mean PSNR gain for each level of texturedness, and
in blue the same mean, but multiplied by the relative frequency of each texturedness level in the
dataset.

The figures confirm that the PSNR gain with respect to both video-DnCNN and single image
DnCNN increases with patch texturedness. As expected, the gain is larger with respect to the
single frame DnCNN. For patches with very low texturedness the video-DnCNN performs better
than the VNLnet. This makes sense, as for those patches the matching will be influenced by the
noise. A similar behavior has been observed for patch-based methods in global video denois-
ing [EAM17] and external denoising [MZI13]. Such patches are relatively rare in the test set,
which explains the overall positive gains in Figure 5.7.
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A related question is whether better results could be obtained replacing the patch search by a
frame matching using a standard optical flow. The results of Table 5.1a highlight the importance of
very reliable matches, and thus the optical flow would have to be chosen with care. In [TDV19b],
the authors of DVDnet [TDV19a] stressed the difficulty of finding a fast and reliable optical flow,
and moved away from it for FastDVDnet [TDV19b]. In [XCW+19], the optical flow is computed
with a reduced version of SpyNet [RB17], which is trained together with the rest of the network.
In our case, the patch search module is not trainable, and the network is trained to process its
output.

5.5 Comparison with other methods

In this section, we compare the proposed method VNLnet to VBM3D [DFE07], VNLB [AM15],
and DnCNN [ZZC+17b] for grayscale videos, and VBM3D [DFE07], VNLB [AM15], DnCNN
[ZZC+17b], ViDeNN-G [CvG19], DVDnet [TDV19a], and FastDVDnet [TDV19b] for color
videos. DnCNN was applied frame-by-frame.

We trained grayscale and color networks for AWGN of standard deviation 10, 20 and 40. To
highlight the fact that a CNN method can be easily re-targeted to different noise distributions, we
also trained a grayscale network for Gaussian noise correlated by a 3× 3 box kernel such that the
final standard deviation is σ = 20, and 25% uniform Salt and Pepper noise (removed pixels are
replaced by random uniform noise).

Table 5.4 shows the denoising results obtained on the two compared datasets. For grayscale
videos, we also include results for SPTWO [BLM16] and VBM4D [MBFE11], computed
in [AFM18b] for the DERF dataset. Figures 5.9 and 5.10 show results for the most relevant
RGB methods. VNLB (Video Non-Local Bayes) outperformed on average all other methods on
the DERF dataset. Meanwhile on the DAVIS dataset, our method performed the best both in
grayscale and color, for all the three tested noise levels. VNLB ranked second, except in color for
high noise levels, where it was surpassed by DVDnet and FastDVDnet.

A comparison of the results for grayscale and color in Table 5.4 reveals that CNN-based
methods exploit better the correlations between color channels: while for grayscale, VBM3D
significantly outperforms DnCNN in PSNR on the DAVIS dataset, the reverse occurs for color.
Moreover, VNLnet performed proportionally better in color than in grayscale. This should not
come as a surprise, since the way in which VBM3D and VNLB treat color is rather heuristic: an
orthogonal color transform is applied to the video which is supposed to decorrelate color infor-
mation. Then the processing of each color channel of a group of patches is done independently.

In order to better compare qualitative aspects of the results we show some details in Fig-
ures 5.9 and 5.10. For some scenes, VNLnet recovers significantly more details in the background,
as shown in Figure 5.9. In general, we observe that VNLnet, and the other video CNN methods
(ViDeNN-G, DVDnet, and FastDVDnet) have better background reconstruction than VNLB. This
can be seen in Figure 5.9 and Figure 5.10. Some details however are better recovered by VNLB
and VNLnet. For example in Figure 5.10 both methods recover the red lights in the top left corner
of the image in the first column, while for the three other methods the lights do not appear. In
the second column, VNLB does not reconstruct the trees as well as the CNN-based methods, but
manages to recover the color of the clothes of the person in the bottom left. VNLnet not only
recovers better the tree structure, but also recovers the clothes correctly. None of the methods
restore satisfyingly the grass texture in the third column of Figure 5.10 for the tested noise level.
This highlights that there is room for improvement. All five methods achieve reasonable temporal
consistency, which is an important quality requirement for video denoising.

One of the benefits of CNNs over traditional model-based approaches is that they can be easily
targeted to handle other noise distributions by simply re-training them. We demonstrate this by
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Figure 5.8: Patch PSNR gain between VNLnet versus video-DnCNN (top) and DnCNN (bottom) on
grayscale DAVIS with σ = 20, as a function of a measure of the patch texturedness (defined here by
the patch gradient magnitude). The grayscale image depicts the 2D histogram of PSNR gains and patch
texturedness computed from all 41 × 41 patches in the test set. The red curve shows the average PSNR
gain for each texturedness level, and the blue curve shows the same average PSNR gain, but weighted by
the frequency of each texturedness level.
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Method σ = 10 σ = 20 σ = 40
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F
SPTWO 39.56 / .9675 35.99 / .9368 30.93 / .7901
VBM3D 38.24 / .9599 34.68 / .9100 31.11 / .8360
VBM4D 38.88 / .9534 35.10 / .9169 31.40 / .8432
VNLB 40.57 / .9731 36.81 / .9428 32.95 / .8856
DnCNN 37.28 / .9482 33.60 / .8973 30.09 / .8156
VNLnet 40.22 / .9730 36.51 / .9415 32.60 / .8772

Corr. Gaussian noise Uniform S&P 25%
VNLB 25.39 / .5922 23.49 / .7264
VNLnet 32.92 / .8899 48.05 / .9952

σ = 10 σ = 20 σ = 40

D
AV

IS VBM3D 37.43 / .9425 33.75 / .8870 30.12 / .8068
VNLB 38.84 / .9634 35.26 / .9240 31.88 / .8622
DnCNN 36.80 / .9451 32.94 / .8878 28.69 / .7940
VNLnet 39.10 / .9661 35.53 / .9305 32.03 / .8692

C
O

L
O

R

D
E

R
F

VBM3D 38.19 / .9560 34.80 / .9165 31.65 / .8568
VNLB 40.93 / .9760 37.62 / .9528 33.97 / .9042
DnCNN 38.00 / .9588 34.44 / .9171 31.14 / .8520
ViDeNN-G 38.16 / .9588 35.34 / .9291 32.25 / .8757
DVDnet 39.08 / .9689 36.48 / .9474 33.43 / .9051
FastDVDnet 39.01 / .9669 36.16 / .9427 33.21 / .9010
VNLnet 40.46 / .9748 37.36 / .9542 33.79 / .9079

D
AV

IS

VBM3D 38.43 / .9591 34.74 / .9157 31.38 / .8473
VNLB 40.31 / .9725 36.79 / .9420 33.34 / .8896
DnCNN 38.91 / .9655 35.24 / .9278 31.81 / .8637
ViDeNN-G 38.46 / .9619 35.47 / .9314 32.32 / .8756
DVDnet 39.31 / .9702 36.66 / .9488 33.61 / .9059
FastDVDnet 39.74 / .9714 36.50 / .9457 33.35 / .9013
VNLnet 40.70 / .9760 37.32 / .9528 33.72 / .9054

Table 5.4: Quantitative comparison (PSNR and SSIM) of other methods versus the proposed VNLnet on
two test sets, both in grayscale and in color. We highlighted the best performance in bold and the second
best in bold brown.
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Input Noisy DVDnetViDeNN-G VNLB VNLnet (Ours)FastDVDnet

Figure 5.9: Example of denoised result for several algorithms (AWGN with σ = 20) on a sequence of the
color DAVIS dataset [PTPC+17]. The crops highlight the results on non-moving and moving parts of the
video.

reporting the results of our method on salt-and-pepper noise and correlated noise in Table 5.4. We
include the result of VNLB as a reference.

In summary, the proposed approach for video denoising obtains state-of-the-art results on
both test sets. In particular, it outperforms previous CNN approaches. In light of this, we can
conclude that effectively exploiting a large number of surrounding frames is key. Indeed, the
proposed VNLnet uses 15 frames, in comparison to the 3 frames used by ViDeNN-G and 5
frames of DVDnet and FastDVDnet. Most of these methods avoid relying on an explicit optical
flow computation, which can be unreliable given that the input frames are noisy. FastDVDnet
and ViDeNN-G do so by performing an early fusion of triplets of consecutive frames without
alignment. The non-local features computed via patch correspondences result in an effective way
to present the information of large frame neighborhoods to a network that merges them. Training
the fusion network is then straightforward.

5.5.1 Running times and number of parameters

In Tables 5.5 and 5.6, we compare the running time in grayscale and color of several methods
when denoising a video frame. As before, we consider DnCNN as the fusion network. In Ta-
ble 5.5, the compared methods are run on a single CPU core, while in Table 5.6, a system with
an Intel Xeon W-2145 and a NVIDIA TITAN V is used. For both tables, the loading and writing
time of the videos were subtracted. Since we do not have a CPU implementation of the patch
search layer, we cannot measure a CPU time for VNLnet. On the GPU, for grayscale videos of
960 × 540 the non-local search takes 822ms, where as the DnCNN fusion network takes 95ms.
Extrapolating this, we could expect a CPU time 8 to 9 times slower than DnCNN.

Most of the running time of our method is spent in the patch search. Our GPU implementation
of patch search is similar to the convolution-based patch search described in [DE20]. With the
default parameters, the non-local search is costly because matches are searched in 15 frames for
patches centered at every pixel of our image. These parameters can be modified, trading off
speed by denoising quality. In the Tables 5.7 we show how the time spent in the patch search as
a function of the patch size, spatial search region size and number of frames. These behave as
expected: the time grows linearly with the number of frames, and quadratically with respect to the
patch and search sizes. For example, with a search region of 21× 21, the per frame patch search
time is reduced by more than three times, while the drop in PSNR is only 0.16dB (see Table 5.1c).
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Figure 5.10: Examples of areas where the level of restored detail of the methods differs significantly (AWGN
with σ = 40) in videos of DERF.
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VBM3D DnCNN VBM4D VNLB SPTWO
1.3s 13s 52s 140s 210s

Table 5.5: Running time per frame on a grayscale 960× 540 video for VBM3D, DnCNN, VBM4D, VNLB and
SPTWO on a single CPU core.

VNLB ViDeNN-G DVDnet FastDVDnet VNLnet
26.94s 0.186s 2.67s 0.074s 1.16s

Table 5.6: Running time per frame on a color 960 × 540 video for VNLB, ViDeNN, DVDnet, FastDVDnet,
VNLnet on a system with a 16-cores CPU (Intel Xeon W-2145) and a NVIDIA TITAN V.

The table also shows the patch search time normalized by the number of frames that need to be
aligned in the search region.

The implementation could be further accelerated by reducing the size of the 3D window using
tricks explored in other papers. VBM3D for example centers the search on each frame on small
windows around the best matches found in the previous frame. A related acceleration is to use a
search strategy based on PatchMatch [BSFG09b].

One of the benefits of the proposed approach is that the fusion network can be simple, result-
ing in an easier training and a smaller memory footprint of the network weights. The three tested
architectures were designed for single image denoising. This reduces the number of trainable pa-
rameters, in comparison with other video processing networks. The DnCNN and EDSR networks
have both around 0.56M parameters, while the U-Net has 1M. For RGB videos, our DnCNN with
25 layers and 96 channels has 1.9M parameters, roughly the same as, FastDVDnet [TDV19b],
which requires 2M parameters as it uses two U-Nets.

Other works such as [XCW+19, TDV19a] use an optical flow sub-network for aligning the
frames. This has the advantage that the alignment can be trained together with the fusion network
[XCW+19]. However, the smallest current optical flow networks have between 1M and 5M
parameters [TD20], and take around 50ms to 100ms (depending on the desired quality) to estimate
the optical flow between a pair of frames.

5.6 Conclusions

We described an effective way of incorporating temporal non-local information into a CNN for
video denoising. The proposed method computes for each image patch the n most similar neigh-
bors on a spatio-temporal window and gathers their central pixels to form a non-local feature
vector which is fed to a CNN. Our method yields a significant gain compared to other CNN
approaches. It has similar performance to the best non-CNN method evaluated, VNLB, outper-
forming it on the largest of our test datasets. In addition, we noted that CNN approaches tend
to better reconstruct backgrounds than VNLB, which are perceptually relevant areas. To pre-
vent dataset bias we also proposed a public training set comprising 17k videos from 64 different
categories and a simulation strategy that emulates different levels of sharpness.

We have seen the importance of reliable matches: On the validation set, the best performing
method used patches of size 41 × 41 for the patch search. We have also noticed that on regions
with non-reliable matches (complex motion), the network seems to revert to a result similar to
single image denoising. Thus we believe future works should focus on improving this area.
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9×9 15×15 21×21 31×31 41×41
Per frame 126 201 327 545 822

Normalized 9 14 23 39 59
(a) Average patch search time per frame (in ms) for different patch sizes on a 960×540 video (with a 41×41×15 search
region), and the averaged time normalized by the depth of the search region (minus the central frame).

3 7 11 15

Per frame 118 346 585 822

Normalized 59 58 59 59
(b) Average patch search time per frame (in ms) for different numbers of frames in the search region on a 960×540 video
(patch size is 41×41, search region spatial size is 41×41), and the averaged time normalized by the depth of the search
region (minus the central frame).

5× 5 11× 11 21× 21 41× 41 51× 51
Per frame 54 100 253 822 1269

Normalized 4 7 18 59 91
(c) Average patch search time per frame (in ms) for different search region spatial sizes on a 960× 540 video (patch size
is 41×41, with 15 frames), and the averaged time normalized by the depth of the search region (minus the central frame).

Table 5.7: Time spent in the patch search, for different values of the parameters. We report both the average
total time spent in the search (considering all frames in the search region) and the time normalized by the
depth of the search region (minus the central frame for which there is no search).
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6 Model-blind video denoising via
frame-to-frame training

In the previous chapters, the noise model is always considered fixed and known. However,
modeling the processing chain that has produced a video is a difficult reverse engineering
task, even when information on the camera is available. This makes model based video
processing still a more complex task. In this chapter we propose a fully blind video de-
noising method, with two versions batch and online. This is achieved by fine-tuning a pre-
trained AWGN image denoising network to the video with a novel frame-to-frame training
strategy. Our denoiser can be used without knowledge of the origin of the video and the
post-processing steps applied from the camera sensor. The on-line process only requires a
couple of frames before achieving visually pleasing results for a wide range of perturbations.
It nonetheless reaches state-of-the-art performance for standard Gaussian noise, and can be
used offline with the batch fine-tuning for even better performance. This work has been
published in [EDM+19].

6.1 Introduction

As we have already seen, a plethora of approaches have been proposed for image and video
denoising: PDE and variational methods [ROF92b,CL97], bilateral filters [TM98], domain trans-
form methods [ML99, PSWS03], non-local patch-based methods [BCM05a]. In the last decade,
most research focused on modeling image patches [ZW11, YSM12, EA06] or groups of similar
patches [DF06, MBP+09, LBM13a, GZZF14, BSH12]. Recently the focus has shifted towards
neural networks.

As we have seen in the previous chapters, the most widely adopted assumption in the lit-
erature is that noise is additive white Gaussian (AWGN). This is justified by the fact that the
noise generated by the photon count process at the imaging sensor can be modeled as Pois-
son noise, which in turn can be approximated by AWGN after a variance stabilizing transform
(VST) [Ans48,MF11b,MF11a]. However, in many practical applications the data available is not
the raw data straight from the sensor. The camera output is the result of a processing pipeline,
which can include quantization, demosaicking, gamma correction, compression, etc. The noise
at the end of the pipeline is spatially correlated and signal dependent, and it is difficult to model.
Furthermore the details of the processes undergone by an image or video are usually unknown.
To make things even more difficult, a large amount of images and videos are generated by mo-
bile phone applications which apply their own processing of the data (for example compression,
filters, or effects selected by the user). The specifics of this processing are unknown, and might
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change with different releases.

The literature addressing the case of an unknown noise model is much more limited. The
works [LCM15, GPMA18] address denoising noisy compressed images. RF3D [MSMF14] han-
dles correlated noise in infrared videos. Data-driven approaches provide an interesting alternative
when modeling is not challenging. CNNs have been applied successfully to denoise images with
non-Gaussian noise [ZZC+17a, CCXK18, GYZ+18]. In applications in which the noise type is
unknown, one could use model-blind networks such as DnCNN-3 [ZZC+17a] trained to denoise
several types of noise, or the blind denoiser of [GYZ+18]. These however have two important
limitations. First, the performance of such model-blind denoising networks very often drops with
respect to model-specific networks [ZZC+17a]. Second, training the network requires a dataset
of images corrupted with each type of noise that we wish to remove (or the ability to generate
it synthetically [GYZ+18]). However, generating ground truth data for real photographs is not
straightforward [PR17, CCXK18]. Furthermore, in many occasions we do not have access to the
camera, and a single image or a video is all that we have.

In this chapter we show that, for certain kinds of noise, in the context of video denoising one
video is enough: a network can be trained from a single noisy video by considering the video itself
as a dataset. Our approach is inspired by two works: the one-shot object segmentation method
[CMPT+17] and the noise-to-noise training proposed in the context of denoising by [LMH+18].

The aim of one-shot learning is to train a classifier network to classify a new class with only
a very limited amount of labeled examples. Recently Caelles et al. [CMPT+17] suggested a one-
shot framework for object segmentation in video, where an object is manually segmented on the
first frame and the objective is to segment it in the rest of the frames. Their main contribution is
the use of a pre-trained classification network, which is fine-tuned to a manual segmentation of
the first frame. This fine-tuned network is then able to segment the object in the rest of the frames.
This generalizes the one-shot principle from classification to other types of problems. Borrowing
the concept from [CMPT+17], our work can be interpreted as a one-shot blind video denoising
method: a network can denoise an unseen noise type by fine-tuning it to a single video. In our
case, however, we do not require “labels” (i.e. the ground truth images without noise). Instead,
we benefit from the noise-to-noise training proposed by [LMH+18]: a denoising network can
be trained by penalizing the loss between the predicted output given a noisy and a second noisy
version of the same image, with an independent realization of the noise. We benefit from the
temporal redundancy of videos and use the noise-to-noise training between adjacent frames to
fine-tune a pre-trained denoising network. That is, the network is trained by minimizing the
error between the predicted frame and the past (or future) frame. The noise used to pre-train the
network can be very different from the type of noise in the video.

We present the different tools, namely one of the state-of-the-art denoising network DnCNN
[ZZC+17a] and a training principle for denoising called noise2noise [LMH+18], necessary to
derive our refined model in Section 6.2. We present our truly blind denoising principle in Section
6.3. We compare the quality of our blind denoiser to the state of the art in Section 6.4. Finally we
conclude and open new perspectives for this type of denoising in Section 6.5.

6.2 Preliminaries

The proposed model-blind denoiser builds upon DnCNN and the noise-to-noise training. In this
section we provide a brief review of these works, plus some other related work.
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Figure 6.1: From the same starting point and only using the video, our fine-tuned network is able to denoise
different noises without any artifact. The top images are the noisy and the bottom ones the denoised.
From left to right: Gaussian noise, Poisson type noise, salt and pepper type noise and JPEG compressed
Gaussian noise.

6.2.1 DnCNN

DnCNN [ZZC+17a] was the first neural network to report a significant improvement over patch-
based methods such as BM3D [DF06] and WNNM [GZZF14]. It has a simple architecture con-
sisting of 17 convolutional layers. The first layer consists of 64 3×3 followed by ReLU activations
and outputs 64 feature maps. The next 15 layers also compute 64 3×3 convolutions, followed by
batch normalization [IS15] and ReLU. The output layer is simply a 3× 3 convolutional layer.

To improve training, in addition to the batch normalization layers, DnCNN uses residual
learning, which means that network is trained to predict the noise in the input image instead of
the clean image. The intuition behind this is that if the mapping from the noisy input f to the
clean target u is close to the identity function, then it is easier for the network to learn the residual
mapping, f 7→ f − u.

DnCNN provides state-of-the-art image denoising for Gaussian noise with a rather simple
architecture. For this reason we will use it for all our experiments.

6.2.2 Noise-to-noise training

The usual approach for training a neural network for denoising (or other image restoration prob-
lems) is to synthesize a degraded image fi from a clean one ui according to a noise model.
Training is then achieved by minimizing the empirical risk which penalizes the loss between
the network prediction Fθ(fi) and the clean target ui. This method cannot be applied for many
practical cases where the noise model is not known. In these settings, noise cannot be synthet-
ically added to a clean image. One can generate noisy data by acquiring it (for example by
taking pictures with a camera), but the corresponding clean targets are unknown, or are hard to
acquire [CCCY18, PR17].

Lehtinen et al. [LMH+18] recently pointed out that for certain types of noise it is possible
to train a denoising network from pairs of noisy images (fi, gi) corresponding to the same clean
underlying data and independent noise realizations, thus eliminating the need for clean data. This
allows learning networks for noise that cannot be easily modeled (an appropriate choice of the
loss is still necessary though so that the network converges to a good denoising).

Assume that the pairs (f, u) are distributed according to p(f, u) = p(u|f)p(f). For a dataset
of infinite size, the empirical risk of an estimator F converges to the Bayesian risk, i.e. the
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expected loss (law of large numbers): R(F) = Ef,u{`(F(u), f)}. The optimal estimator F∗
depends on the choice of the loss. From Bayesian estimation theory [Kay93] we know that:1

` = L2 ⇒ F∗(f) = E{u|f} (6.1)

` = L1 ⇒ F∗(f) = median{u|f} (6.2)

` = L0 ⇒ F∗(f) ≈ mode{u|f} (6.3)

Here E{u|f} denotes by the expectation of the posterior distribution p(u|f) given the noisy ob-
servation f . During training, the network learns to approximate the mapping f 7→ F ∗(f).

The key observation leading to noise-to-noise training is that the same optimal estimators
apply when the loss is computed between F(f) and g, a second noisy version of u. In this case
we obtain the respectively the mean, median or mode of the posterior p(g|f). Then, for example
if the noise is such that E{g|f} = E{u|f}, then the network can be trained by minimizing the
MSE loss between F (f) and a second noisy observation g. If the median (resp. the mode) is
preserved by the noise, then the L1 loss (resp. the L0) loss can be used. The network F is
then trained on pairs of realizations of the same image (x1

i , x
2
i ), using the self-supervised loss

L =
∑

(x1
i ,x

2
i )
‖f(x1

i )− x2
i ‖p.

6.3 Model-blind video denoising

In this section we show how one can use a pre-trained denoising network learned for an arbitrary
noise and fine-tune it to other target noise types using a single video sequence, attaining the same
performance as a network trained specifically for the target noise for classic noise. This fine
tuning can be done with batches (using the whole video as a dataset) or online, i.e. frame-by-
frame, depending on the application and the computational resources at hand.

As we will show in Section 6.4, starting from a pre-trained network is key for the success of
the proposed training, as we do not have a large dataset available as in [LMH+18], but only a
single video sequence. The use of a pre-trained network is in part motivated by works on transfer
learning such as Zamir et al. [ZSS+18]. Denoising different noise models are related tasks. Our
intuition is that a part of the network focuses on the noise type while the rest encodes features of
natural images.

Our approach is inspired by the one-shot video object segmentation approach of [CMPT+17],
where a classification network is fine-tuned using the manually segmented first frame, and then
applied to the other frames. As opposed to the segmentation problem, we do not assume that we
have a ground truth (clean frames). Instead, we adapt the noise-to-noise training to a single video.

We need pairs of independent noisy observations of the same underlying clean image. For
that we take advantage of the temporal redundancy in videos: we consider consecutive frames
as observations of the same underlying clean signal transformed by the motion in the scene. To
account for the motion we need to estimate it and warp one frame to the other. We estimate the
motion using an optical flow. We use the TV-L1 optical flow [ZPB07] with an implementation
available in [SPMLF13]. This method is reasonably fast and is quite robust to noise when the
flow is computed at a coarser scale.

Let us denote by ot the optical flow from frame ft to frame ft−1. The warped ft−1 is then
fwt−1(x) = ft−1(x+ ot(x)) (we use bilinear interpolation). Similarly, we define the warped clean
frame uwt−1. We assume

(i) that the warped clean frame uwt−1 matches ut, i.e. ut(x) ≈ uwt−1(x), and

1The median and mode are taken element-wise. For a continuous random variable the L0-loss is defined as a limit.
See [Kay93] and [LMH+18].
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(ii) that the noise of consecutive frames is independent.

Occluded pixels in the backward flow from t to t− 1 do not have a correspondence in frame
t − 1. Nevertheless, the optical flow assigns them a value. We use a simple occlusion detector
to eliminate these false correspondences from our loss. A simple way to detect occlusions is to
determine regions where the divergence of the optical flow is larger than a threshold τ . This idea
and how τ is computed is presented in [BLM16]. We therefore define a binary occlusion mask as

κt(x) =
{

0 if |div ot(x)| > τ

1 if |div ot(x)| ≤ τ.
(6.4)

Pixels with an optical flow that points out of the image domain are considered occluded. In
practice, we compute a more conservative occlusion mask by dilating the result of Eq. (6.4).

We then compute the loss masking out occluded pixels. For example, for the L1 loss we have:

`1(f, g, κ) =
∑
x

κ(x) |f(x)− g(x)| . (6.5)

Similarly one can define masked versions of other losses. In the noise-to-noise setting, the choice
of the loss depends on the properties of the noise [LMH+18]. The noise types that can be handled
by each loss in noise-to-noise have a precise characterization (the mean/median/mode of the noisy
posterior p(g|f) have to be equal to those of the clean posterior p(u|f)). Verifying this requires
some knowledge about noise distribution. In the absence of such knowledge, since the method is
reasonably fast, an alternative would be to test different losses and see which one gives the best
result.

In principle our method is able to deal with the same noise types as noise-to-noise. In practice
we have some limitation imposed by the registration as it degrades for severe noise. For this
reason we do not show examples with non-median preserving noise requiring the L0 loss. For
all our experiments we use the masked L1 loss since it has better training properties than the L2
[ZGFK17]. Most relevant noise types often encountered in practice (Poisson, jpeg-compressed,
low-freq. noise) can be handled by the L1 loss and the registration.

We now have pairs of images (ft, fwt1 ) and the corresponding occlusion masks κt and we
apply the noise-to-noise principle to fine-tune the network on this dataset. In order to increase
the number of training samples the symmetric warping can also be done, i.e. warping ft+1 to ft
using the forward optical flow from ft to ft+1. This allows to double the amount of data used for
the fine-tuning. We consider two settings: batch and online training.

Batch fine-tuning. We denote the network as a parametrized functionFθ, where θ is the param-
eter vector. In the batch setting we fine-tune the network parameters θ by doing a fixed number
N of steps of the minimization of the masked loss over all frames in the video:

θft =
N,θ0

arg min
θ

T∑
t=1

`1(Fθ(ft), fwt−1, κt) (6.6)

where by
N,θ0

arg min
θ

E(θ) we denote an operator which does N optimization steps of function E

starting from θ0 and following a given optimization algorithm (for instance gradient descent,
Adam [KB14], etc.). The initial condition for the optimization is the parameter vector of the
pre-trained network. The fine-tuned network is then applied to the rest of the video.
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On-line fine-tuning In the on-line setting we train the network in a frame-by-frame fashion.
As a consequence we denoise each frame with a different parameter vector θft

t . At frame t we
compute θft

t by doingN optimization steps corresponding to the minimization of the loss between
frames t and t− 1:

θft
t =

N,θft
t−1

arg min
θ

`1(Fθ(ft), fwt−1, κt). (6.7)

The initial condition for this iteration is given by the fine-tuned parameter vector at the previous
frame θft

t . The first frame is denoised using the pre-trained network. The fine-tuning starts for
the second frame. A reasonable concern is that the network overfits the given realization of the
noise and the frame at each step. This is indeed the case if we use a large number of optimization
iterations N at a single frame. A similar behavior is reported in [UVL18], which trains a network
to minimize the loss on a single data point. We prevent this from happening by using a small
number of iterations (e.g. N = 20). We have observed that the parameters fine-tuned at t can be
applied to denoise any other frame without any significant drop in performance.

The on-line fine-tuning addresses the problem of lifelong learning [ZSS+18] by continuously
adapting the network to changes in the distribution of noise and signal. This is particularly useful
when the statistics of the noise depend on time-varying parameters (such as imaging sensors
affected by temperature).

6.4 Experiments

In this section we demonstrate the flexibility of the proposed fine-tuning blind denoising approach
with several experimental results. For all these experiments the starting point for the fine-tuning
process is a DnCNN network trained for an additive white Gaussian noise of standard deviation
σ = 25. In all cases we use the same hyper-parameters for the fine tuning: a learning rate of
5.10−5 and N = 20 iterations of the Adam optimizer. For the batch case we use the entire video.
The videos used in this section come from Derf’s database2. They’ve been converted to grayscale
by averaging the three color channels and downscaled by a factor two in each direction to ensure
that they contain little to no noise. The code and data to reproduce the results presented in this
section are available on https://github.com/tehret/blind-denoising.

To the best of our knowledge there is not any other blind video denoising method in the liter-
ature. We will compare with state-of-the-art methods on different types of noise. Most methods
have been crafted (or trained) for a specific noise model and often a specific noise level. We
will also compare with the only available blind denoising method we found, an image denoising
method proposed by Lebrun et al. [LCM15] which assumes a Gaussian noise model with vari-
ance depending on the intensity and the local frequency of the image. This model was proposed
for denoising of compressed noisy images. We cannot compare with some more recent blind
denoising methods, such as [CCCY18], because there is no code available. We will also com-
pare with DnCNN [ZZC+17a] and VBM3D [DFE07]. VBM3D is a video denoising algorithm.
All the other methods are image denoising applied frame-by-frame (perspectives for videos are
mentioned in Section 6.5).

The goal of the first experiment is to compare against reference networks trained for these
noises the regular way. The per-frame PSNRs are presented in Figure 6.2. We applied the pro-
posed learning process to a sequence contaminated with AWGN with standard deviation σ = 25,
which is precisely the type of noise the network was trained on and verified that it does not dete-
riorate the pre-training. The batch fine-tuning performs on par with the pre-trained network. The
PSNR of the on-line process has a higher variance, with some significant drops for some frames.

2https://media.xiph.org/video/derf/
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Figure 6.2: The fine-tuning process is done on a sequence corrupted by an additive Gaussian noise of
standard deviation σ = 25 (left) or σ = 50 (right). The fine-tuned networks (batch and online) achieve
comparable performance than the reference networks.

For σ = 50, we can see that both fine-tuned networks perform better than the pre-trained network
for σ = 25. In fact their performance is as good as the DnCNN network trained specifically for
σ = 50 (actually the batch trained performs even slightly better than the reference network). Our
process also outperforms the “noise clinic” of [LCM15].

We have also tested the proposed fine-tuning on four other types of noise: multiplicative
Gaussian, correlated, salt and pepper and compressed Gaussian. We present the corresponding
per-frame PSNRs in Figure 6.3. The multiplicative Gaussian noise is given by

ft(x) = ut(x) + rt(x)ut(x), (6.8)

where rt(x) is white Gaussian noise with standard deviation of 75/255 (the images are within the
range [0,1]). The resulting variance σ2

t (x) depends on the pixel intensity ut(x). The correlated
noise is obtained by convolving AWGN with a disk kernel. The resulting standard deviation is
σ = 25. The salt and pepper uniform noise is like the one used [LMH+18], obtained by replacing
with probability 0.25 the value of a pixel with a value sampled uniformly in [0, 1]. Finally, the
compressed Gaussian noise, results from compressing an image corrupted by an AWGN of σ =
25 with JPEG. The last one is particularly interesting because it is a realistic use case for which the
noise model is quite hard to estimate [GPMA18]. While in this case the noise can be generated
synthetically for training a network over a dataset, this is not possible with other compression
tools (for example for proprietary technologies). We can see the effectiveness of the fine-tuning
for all examples. The batch training is more stable (smaller variance) and gives slightly better
results, although the difference is small.

A visual comparison with other methods is shown in Figure 6.4 for JPEG compressed noise
and in Figure 6.5 for AWGN with σ = 50. Visual examples on real data are presented in the
supplementary material. The result of the fine-tuned network has no visible artifacts and is vi-
sually pleasing even though the network has never seen this type of noise before the fine-tuning.
A limitation of the method is the oversmoothing of texture. Indeed DnCNN has a tendency of
oversmoothing textures. Using a network designed for video denoising should help recover more
texture and improve temporal consistency [DEM+19]. Another cause is the optical flow. Since
it is computed on downscaled noisy frames it is imprecise around edges. This leads to false cor-
respondences between frames and introduces some blur. Improved registration should lead to
sharper results.

In Tables 6.1 and 6.2 we show the PSNR of the results obtained on 4 sequences for AWGN
of σ = 50 and JPEG compressed AWGN of σ = 25 and compression factor 10. For the case
of AWGN the fine-tuned networks attain the performance of the DnCNN trained for that specific
noise. For JPEG compressed Gaussian noise, the batch fine-tuned network is on average 0.3dB
above the pre-trained network.

Figure 6.6 shows the impact of different parameters of the method. The main parameters of
the proposed training are the learning rate and the number of per-frame iterations. Fewer iterations
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Figure 6.3: Different types of noise. From top-left to bottom right: multiplicative Gaussian noise, correlated
Gaussian noise, salt and pepper noise, Gaussian noise after JPEG compression. The fine-tuned network
(both online and batch) always performs better than the original network.

Figure 6.4: Example of denoising of an image corrupted by a JPEG compressed Gaussian noise. The fine-
tuned network doesn’t produce any visible artifacts, contrary to the original DnCNN used for the fine-tuning
process. From left to right, top to bottom: Noisy, fine-tuned, VBM3D, ground truth, DnCNN trained for a
Gaussian noise, noise clinic.
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Figure 6.5: Example of denoising of an image corrupted by a Gaussian noise of standard deviation σ = 50.
The fine-tuned network doesn’t produce any visible artifact, the results are comparable to a DnCNN trained
for this particular type of noise. From left to right, top to bottom: Noisy, fine-tuned, DnCNN trained for a
Gaussian noise with σ = 50, VBM3D, ground truth, noise clinic, DnCNN trained for a Gaussian noise with
σ = 25.

Method walk crowd football station Average

DnCNN 25 17.02 11.24 15.09 13.86 14.30
DnCNN 50 31.02 25.83 31.67 30.09 29.65
Online fine-tuned 30.84 25.58 31.33 29.90 29.59
Batch fine-tuned 31.22 25.83 31.54 30.39 29.75
Noise Clinic 23.85 22.13 24.57 24.39 23.74
VBM3D 31.57 27.02 31.97 31.33 30.47

Table 6.1: PSNR values for 4 sequences with AGWN of standard deviation σ = 50.

Method walk crowd football station Average

DnCNN 25 32.62 27.31 32.48 31.48 30.97
Online fine-tuned 32.86 27.20 32.79 30.88 30.94
Batch fine-tuned 33.28 27.19 32.91 31.58 31.24
Noise Clinic 27.62 25.17 27.20 26.89 26.72
VBM3D 34.16 28.95 33.83 33.53 32.62

Table 6.2: PSNR values on JPEG compressed AWGN noise with σ = 25 and compression factor 10.
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Figure 6.6: Impact of parameters. Left: Impact of the learning rate and the number of iterations. It also
shows the gap between using a pre-trained network and random initialization. Right: Impact of the number
of frames used for fine-tuning.
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Figure 6.7: Lifelong learning. Left: Slow change. Right: sudden change. The fine-tuned network adapts
without difficulty to slow changes and sudden changes. See text for more details

require more frames for convergence. In turn the result has smaller variance. A similar analysis
can be done for the learning rate. We also show the importance of using a pre-trained network
compared to a random initialization. There is a 2dB gap in favor of the pre-trained network.
The other important parameter is the number of frames used for fine-tuning. The fine-tuning is
stopped at a frame t0 and θft

t0 is used to process the remaining frame. We can see that the more
frames used for the fine-tuning the better the performance.

Finally Figure 6.7 shows examples of lifelong learning. The first example shows a slowly
evolving noise (starting with a Gaussian noise with standard deviation σ = 25 that linearly in-
creases up to σ = 50). The fine-tuned network performs better than the two reference networks
for respectively σ = 25 and σ = 50. The second example shows a sudden change (starting with
a Gaussian noise with standard deviation σ = 50 and changes to Salt and pepper noise at frame
200). In that case the fine-tuned network adapts quickly to the new noise model.

The running time depends on the network. We used DnCNN but other networks can be used
instead and trained with the proposed method. Each fine-tuning iteration runs a back-propagation
step which takes 0.33s on a NVIDIA Titan XP for DnCNN for a 960 × 540 frame. Fifty frames
with 20 iterations per frame take 5 mins. For comparison, training DnCNN from scratch over
a dataset requires around 6h (and a dataset). By using a lighter network and reducing the per-
frame-iterations it might be possible to achieve real time frame rates. Moreover, the fine-tuning
can be done on a fixed number of frames at the beginning or run in the background each number
of frames for cases when the computational efficiency is important.

A challenging test case of our blind denoising is old digitalized films. The difficulty with this
data is that the film quality degraded gradually with time and can be physically damaged during
its manipulation and reproduction, creating several type of artifacts. The two examples shown in
Figures 6.8, 6.9, and 6.10 are examples from footage of World War I 3. In addition to the noise
and the damaged parts of the film, there’s also a strong compression that has been applied after
digitalization. All of this makes modelling the noise very difficult. Yet, the proposed frame-to-

3https://www.army.mil/
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Figure 6.8: Blind denoising (on the right) of images coming from a video taken during World War I (original
on the left). Blind denoising is useful in this case because it would be nearly impossible to recreate this type
of noise to train a network.

frame fine-tuning strategy is still able to learn to denoise these sequences. The blind denoiser
is able to remove most of what can be consider as noise while retaining most details. In Figure
6.9 we show a comparison with the pre-trained network (starting point of the fine-tuning) and the
result of VBM3D. VBM3D receives as input the noise level σ. We tested several noise levels
and chose then one the seemed best. As one can see in Figure 6.9 the blind denoiser keeps more
details in the fields, the building or the airplane than the pre-trained network and VBM3D.

Our last experiment is with a video shot with a Samsung Galaxy S7. The video is shot in a low
light, and processed by the camera pipeline. This means that it has been demosaicked, denoised
(by a fast method running directly on the phone), among other quality enhancement algorithms,
and finally compressed. The remaining noise is therefore completely distorted, being colored and
non-stationary. We used a pretrained network which is a color DnCNN trained for Gaussian noise
with standard deviation σ = 25. We use these hyper-parameters for the fine tuning: a learning
rate of 1.10−4 and N = 10 iterations of the Adam optimizer. Figure 6.11 presents a crop of the
video. Here again, blind denoising largely removes the artifacts left by the phone’s pipeline and
therefore improves the overall visual quality of the video.

6.5 Discussion and perspectives

Denoising methods based on deep learning often require large datasets to achieve state-of-the-
art performance. Lehtinen et al. [LMH+18] pointed out that in many cases the clean ground
truth images are not necessary, thus simplifying the acquisition of the training datasets. With
the framework presented in this chapter we take a step further and show that a single video is
often enough, removing the need for a dataset of images. By applying a simple frame-to-frame
training on a generic pre-trained network (for example a DnCNN network trained for additive
Gaussian noise with fixed standard deviation), we successfully denoise a wide range of different
noise models even though the network has never seen the video nor the noise model before its
fine-tuning. This opens the possibility to easily process data from any unknown origin.

Future works will focus on improving the denoising quality and computation speed. First,
given that the application is video denoising, it is expected that better results will be achieved by a
video denoising network (the DnCNN network processes each frame independent of the others).
Using the temporal information could improve the denoising quality, just like video denoising
methods improve over frame-by-frame image denoising methods, but also might stabilize the
variance of the result for the on-line fine-tuning. Recent works have also shown the possibility of
real time fine-tuning [TRJ+19, TTP+19] paving the way to improve computation time.
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Figure 6.9: Blind denoising better preserves details than methods for a predefined noise. From top to
bottom, left to right: original, blind denoising, denoising with the pre-trained network and VBM3D with hand-
tuned noise parameter.

Figure 6.10: Blind denoising (on the right) of images coming from a video taken during World War I (original
on the left). Blind denoising is useful in this case because it would be nearly impossible to recreate this type
of noise to train a network.
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Figure 6.11: Example of denoised image (right) coming from a mobile phone (left). The results is more
natural and pleasing to the eye as it doesn’t have all these ugly artifacts.
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7 Demosaicking with deep learning

Most cameras capture the information of only one color for a given pixel. This results in a
mosaicked image that must be interpolated to get three colors at each pixel. The step going
from a mosaicked image to a regular RGB image is called demosaicking. This chapter stud-
ies two recent demosaicking methods based on convolutional neural networks that achieve
artifact-free state-of-the-art results: Deep joint demosaicking and denoising by Gharbi et
al.and Color image demosaicking via deep residual learning by Tan et al.. We show that
these methods beat by almost two decibels the best human-crafted methods, while being
faster by one order of magnitude. The review presented in this chapter motivates the need for
the self-supervised learning presented in the next chapter.

7.1 Introduction

Most cameras capture only one color per pixel, this color being determined by a color filter array
(CFA) located on top of the sensor. The most commonly used CFA is the so-called Bayer pattern,
consisting of a regular subsampling of each color channel. This means that each pixel of the re-
sulting raw image contains one third of the necessary information, and that the color channels are
sampled on different grids. The problem of interpolating the missing color channels at each pixel,
by using the information available in a neighborhood, is called demosaicking. It is a challenging
ill-posed inverse problem.

The simplest demosaicking method is the independent bilinear interpolation of each channel.
Yet recent methods are far more sophisticated. Getreuer [Get12] solves the demosaicking by using
contours of objects as guide. Mairal et al. [MBP+09] suggested combining group sparsity and
dictionary learning to achieve optimal performance. In a series of paper, Kiku et al. [KMTO13],
[KMTO14] and [MKTO15] proposed increasingly complex interpolation methods where they use
the interpolated Green channel as a guide for the Red and Blue channels. These last four methods
may be considered among the best ones designed by humans. A recently emerged trend consists
in using convolutional neural networks for image processing and computer vision applications.
See for example the early attempt in [WL15]. These methods have by now reached state-of-the-art
results.

The rest of the chapter is organized as follows: In Section 7.2 we present the method “Deep
joint demosaicking and denoising" by Gharbi et al. [GCPD16], in Section 7.3 we present the
method “Color image demosaicking via deep residual learning" by Tan et al. [TZZZ17]. A quan-
titative and qualitative comparison with previous state-of-the-arts methods is made in Section 7.4.
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Figure 7.1: Architecture used for demosaicking by Gharbi et al. [GCPD16].

Bayer X-Trans

Figure 7.2: Mosaicking patterns: Bayer (2× 2) and Fujifilm X-Trans (6× 6).

7.2 Deep joint demosaicking and denoising by Gharbi et
al. [GCPD16]

7.2.1 Architecture

The network starts by downsampling the CFA image into a four-channel image that then goes
through a serie of 14 Conv+bias layers with 64 features and 3× 3 convolutions. A 15th layer of
Conv+BN+ReLu produces 12 features with 3 × 3 convolutions. It is followed by an upsampling
layer producing an RGB image of twice the width and twice the height. The CFA input is split
into the respective channels and concatenated to this intermediate RGB image. This layer acts
as a residual layer. After this concatenation, a Conv+bias layer is added before the final layer
producing the RGB output. The architecture is depicted in Figure 7.1.

The architecture is slightly modified when working with noisy or Fujifilm X-Trans data. For
X-Trans data, the image is not downsampled. Indeed Gharbi et al.argue that since the X-Trans
pattern is 6 × 6 (as illustrated in Figure 7.2), the downsampling would be too aggressive. The
layer acting as a residual layer is also removed. For noisy data, the noise level (noise standard
deviation) σ is concatenated into the downsampling layer (using a channel with values all equal
to σ). The rest of the network stays the same.

7.2.2 Training

Loss A classic L2 loss is used for training in all three cases (Bayer demosaicking, X-Trans
demosaicking and joint demosaicking and denoising). All noise levels are trained at the same
time for joint demosaicking and denoising.

Training dataset A first pre-training was done using natural images. In particular 1.3 millions
images from ImageNet [DDS+09] and 1 million images from MirFlickr [HL08] were chosen for
this pre-training. The images chosen had a minimum size of 16M pixels and then were down-
sampled by a factor of 4. Data augmentation was performed by flipping, rotating and applying a
1 pixel-shift. CFA images were obtained by masking.

Gharbi et al. argue that classic metrics such as L2 and PSNR are not much impacted by
demosaicking artifacts. Moreover, since difficult patches are rare, this means that it would be
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Figure 7.3: Example of images from the luminance dataset (two on the left) and the moiré dataset (two on
the right).

hard to train a network for demosaicking without artifacts unless the training set be biased to-
wards the creation of such artifacts. For this reason, they created two datasets (one for each type
of artifact, namely luminance and moiré) containing only difficult patches used to fine-tune the
network. Using the pre-trained network, luminance artifacts are found using the HDR-VDP2 met-
ric [MKRH11]. Moiré artifacts are found by looking at frequencies that have a much larger energy
in Fourier for the demosaicked patch. Figure 7.3 shows examples of patches in these datasets.

Weights initialization He et al.suggested in [HZRS15] a way to generalize the "Xavier" initial-
ization initially proposed by Glorot and Bengio [GB10] to take into account ReLUs non-linearity.
This allows for a good convergence even for very deep models. He et al.derive conditions on the
weights of the kernels at each layer to avoid the problems of vanishing or exploding gradients
and vanishing or exploding signal. It leads to initializing all kernels using a zero-mean Gaussian
distribution with variance 2

n where n is the size of the kernel.

Training parameters While most parameters were initialized using the method presented in
the previous paragraph, biases were initialized to 0. The patch size for the training was set to
128 × 128 and the batch size to 64. The training was done using the Adam optimizer [KB14].
The learning rate was set to 1.10−4 and an L2 weight decay to 1.10−8. The other parameters
for the Adam optimizer were left to their default value. On top of the weight decay, there was
a decrease of the learning rate of a factor 10 when the validation error stagnated for ten epochs.
The model took about two to three weeks to train on a NVIDIA Titan X1.

7.3 Color image demosaicking via deep residual learning by Tan et
al. [TZZZ17]

7.3.1 Architecture

The network starts with a bilinear interpolation of the CFA image into a first-estimate RGB image
that then goes through a series of 6 convolutional layers (the three middle layers also have batch-
normalization (BN) [IS15] and a ReLU) with 64 features and 3 × 3 convolutions (convolutions
are padded to ensure that the output has the same size as the input). The bilinearly interpolated
image is added to the result of these convolutional layers producing a first estimate RGB image. It
then goes through a second series of 5 convolutions (the three middle layers also have BN+ReLU)
before adding the first estimate to produce the final result. The architecture is depicted in Figure
7.4.

1This description of the network training is based on the authors’ description. We did not attempt to emulate this
training. The neural network weights used here therefore are the original ones provided by the authors.
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Figure 7.4: Architecture for demosaicking used by Tan et al. [TZZZ17].

Figure 7.5: Example of images from the Waterloo dataset [MDW+17]

7.3.2 Training

Loss The network can be decomposed into two steps: The first part (corresponding to the first
residual section) estimates the green channel and the second estimates the other two channels
(using the estimated green channel as a guide). For this reason the loss is split into two terms: the
first term focuses only on the green channel and the second one takes into account the final result.
For a training pair (x, y), where x is the CFA image and y the corresponding RGB image, and
θ = (θ1, θ2) the parameters of the network (respectively the first and second part of the network
for θ1 and θ2, the loss is defined as

L(x, y, θ = (θ1, θ2)) = ‖yG −Nθ1(x)G‖22 + ‖Nθ(x)− y‖22 (7.1)

where the G sub-index corresponds to extracting the green channel andNθ1 is the partial network
up to the first residual section.

Training dataset The dataset used for training is the Waterloo dataset presented in [MDW+17].
A sample of images is shown in Figure 7.5. It is made of 4744 images, out of which 100 are used
for validation. Data augmentation was performed by flipping and rotating the images. CFA
images were generated by appropriate masking. Finally, out of all training images, 3000 batches
of 128 patches were extracted.

Training parameters The network was initialized using the same methods than [GCPD16]
presented in Section 7.2.2. The patch size for the training was set to 50× 50 and the batch size to
128. The training was done using the Adam optimizer [KB14] with default parameters except for
the learning rate. The learning rate was set to 2.10−4 for the beginning of the training and 1.10−4

for the rest of the training. Early stopping of the training was done as soon as the training error
stagnated for more than three epochs. The model took about one day to train on a NVIDIA Titan
X2.

2This description of the network training is based on the authors’ description. We did not attempt to emulate this
training. The neural network weights used here therefore are the original ones provided by the authors.
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Method Kodak McMaster Flickr500 All

Gharbi et al. [GCPD16] 41.82 39.08 32.22 38.54
Tan et al. [TZZZ17] 41.99 39.02 32.08 38.56
LSSC [MBP+09] 41.44 36.21 29.86 36.86
RI [KMTO13] 39.77 34.76 29.46 35.58
ARI [MKTO15] 39.24 37.48 30.42 36.47
MLRI [KMTO14] 39.85 35.29 29.62 35.83
Getreuer [Get12] 39.30 35.95 29.36 35.74

Table 7.1: Quantitative comparison of different demosaicking methods. The table shows PSNRs on three
datasets: the Kodak dataset, the McMaster dataset [ZWBL11] and a subset of the Flickr500 dataset
[SCC18].

Method
Gharbi et al.
[GCPD16]

Tan et al.
[TZZZ17]

LSSC
[MBP+09]

RI
[KMTO13]

ARI
[MKTO15]

MLRI
[KMTO14]

Getreuer
[Get12]

Time 13.97 14.06 736.18 1.86 61.32 1.79 3.07

Table 7.2: Computation time of the compared methods. Computation time was computed for the lighthouse
image of the Kodak dataset and is given in seconds.

7.4 Quantitative and qualitative comparison

In this section we compare both quantitatively and qualitatively some of the most efficient de-
mosaicking methods. We used the state-of-the-art methods LSSC [MBP+09], RI [KMTO13],
ARI [MKTO15], MLRI [KMTO14] and Getreuer [Get12] that are compared in most recent pa-
pers and retain a low rank in most. Actually, ARI and LSSC are generally considered the best
handcrafted methods, but they are also very complex. Table 7.1 presents the PSNR for all these
methods. As one can see the two CNN based methods outperform all previous demosaicking
methods. The PSNRs were computed on the Kodak dataset comprised of 24 images, the McMas-
ter dataset from Zhang et al. [ZWBL11] comprised of 18 images and a subset of 14 images from
the Flickr500 dataset from Syu et al. [SCC18]. We also added the average PSNR on a dataset
made of the images from all three datasets. In order to avoid boundary effects, the images were
first padded (with a padding of 48 pixels) using symmetry before generating the CFA image. This
padding was removed before computing PSNRs. Extra care was taken to make sure that the CFA
images used for each method were the same. We also used the parameters recommended by the
authors for each method. Table 7.2 shows that not only do these methods perform well in terms of
PSNR but that they are also reasonably fast. The method [GCPD16] is written in Python and the
methods [TZZZ17, MBP+09, KMTO13, KMTO14, MKTO15] are written in Matlab. All compu-
tation times were computed on an Intel Core i7-7820HQ even for CNN methods. The CNN based
methods were tested without using a GPU. We used the weights provided by the authors for the
both CNN methods.

Figures 7.6, 7.7, 7.8 and 7.9 present visual examples of the different demosaicking methods.
In particular Figure 7.7 shows that the method with the least moiré artifacts is the method that was
trained specifically to avoid this artifact. Figure 7.8 shows that both CNN based methods have no
visible zipper effects.

Overall, the two reviewed CNN methods outperform both visually and in terms of PSNR all
previous demosaicking methods while also being reasonably fast, even without a GPU.
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Figure 7.6: From top-left to bottom-right: Original, Gharbi et al. [GCPD16], Tan et al. [TZZZ17], MLRI
[KMTO14], ARI [MKTO15], Getreuer [Get12]. All demosaicking methods shown here perform well overall,
with no visible strong artifacts. Yet a moiré artifact appears in the fence for some of the methods.
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Figure 7.7: From top-left to bottom-right: Original, Gharbi et al. [GCPD16], Tan et al. [TZZZ17], MLRI
[KMTO14], ARI [MKTO15], Getreuer [Get12]. All demosaicking methods still present some moiré artifacts
on the shutters. However, the Gharbi et al.method, which was trained specifically to avoid this artifact, has
fewer than the other methods.

Figure 7.8: From top-left to bottom-right: Original, Gharbi et al. [GCPD16], Tan et al. [TZZZ17], MLRI
[KMTO14], ARI [MKTO15], Getreuer [Get12]. Most methods perform well regarding luminance artifacts.
Nevertheless the Gharbi et al.method still performs best.
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Figure 7.9: From top-left to bottom-right: Original, Gharbi et al. [GCPD16], Tan et al. [TZZZ17], MLRI
[KMTO14], ARI [MKTO15], Getreuer [Get12]. Only the Gharbi et al.method performs well visually on really
difficult examples.

7.5 Conclusion

We have seen that the CNN based demosaicking methods beat by almost two decibels the best
human-crafted methods, while being faster by one order of magnitude. To reach this performance,
they did not rely on the clever human techniques established by the anterior state of the art, but
simply applied rather standard CNN architectures. This success is explainable. The first reason
is that human-crafted algorithms rely on the iteration of nonlinear local filters, the most complex
one, ARI, having more than 20 such iterations. But deep convolution networks have the same
structure and are in addition scalable in depth and number of filters, until they reach the best
performance. Furthermore, human-crafted methods have been designed to avoid certain artifacts,
probably to the cost of losing in PSNR. CNNs, on the contrary, can be taught to learn intricate
casuistry by the variety of presented of images, and to keep a memory of complex image statistics.
Being trained to reach the best PSNR, they definitely reach that goal. Finally, the Gharbi et al.
method succeeded in biasing the learning process so as to avoid completely the most annoying
moiré and zipper effects, thus achieving the most visually pleasing results of all methods, while
still retaining the best PNSR! This shows a clear superiority of deep learning based method over
traditional ones and motivates the need for the self-supervised learning presented in the next
chapter.
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8 Joint demosaicking and denoising
by fine-tuning of bursts of raw im-
ages

Demosaicking and denoising are the first steps of any camera image processing pipeline
and are key for obtaining high quality RGB images. A promising current research trend
aims at solving these two problems jointly using convolutional neural networks. Due to
the unavailability of ground truth data these networks cannot be currently trained using real
RAW images. Instead, they resort to simulated data. In this chapter we present a method
to learn demosaicking directly from mosaicked images, without requiring ground truth RGB
data. We apply this to learn joint demosaicking and denoising only from RAW images, thus
enabling the use of real data. This allows to mitigate the training bias due to simulated data.
In addition we show that for this application fine-tuning a network to a specific burst improves
the quality of restoration for both demosaicking and denoising. The burst processing is done
by fine-tuning a pre-trained network over the pairs of the specific burst. This work has been
published in [EDAF19].

8.1 Introduction

As we have seen in Chapter 7, most camera sensors capture a single color at each photoreceptor,
determined by a color filter array (CFA) located on top of the sensor. The most commonly used
CFA is the so-called Bayer pattern, consisting of a regular subsampling of each color channel.
This means, not only that each pixel of the resulting raw image contains one third of the necessary
information, but also that the color channels are never sampled at the same positions. The problem
of interpolating the missing colors is called demosaicking and is a challenging ill-posed inverse
problem. To further complicate things, the captured data is contaminated with noise.

For these reasons the first two steps of a camera processing pipeline are demosaicking and
denoising. Traditionally, these problems have been treated separately, but this is suboptimal.
Demosaicking first a noisy RAW image correlates the noise making its subsequent denoising
harder [PKL+09]. Alternatively, if denoising is applied on the mosaicked data it becomes harder
to exploit the cross-color correlations, which are useful for color image denoising [DFKE07a,
DVF+09].

Until recently, just like for demosaicking in Chapter 7, state-of-the-art methods for joint de-
mosaicking and denoising were based on carefully crafted heuristics, such as avoiding interpola-
tion across image edges [HP06, PKL+09, ATO15]. Other methods resort to variational principles
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Original Gharbi et al.: 36.1dB Kokkinos et al.: 35.5dB Ours: 37.3dB

Figure 8.1: Using a burst, our fine-tuning (starting from the network from Gharbi et al. [GCPD16]) is able to
not only denoise well (σ = 5) but also doesn’t show any artifacts like zipper or moire in the difficult regions.
Best visualized on a screen.

where the heuristics are encoded as a prior model [CM12, HEK+14]. In [WGDE+19] both prob-
lems are addressed simultaneously by aligning and fusing RAW bursts of frames.

Recent data-driven approaches have significantly outperformed traditional model-based meth-
ods [KNJF14, GCPD16,KHKP16,KL18a, KL18b,SCC18]. In [GCPD16], state-of-the-art results
are reported with a network trained on a special dataset tailored to demosaicking in which hard
cases are over-represented. In [KL18a] an iterative neural network is proposed, later improved
by [KL18b] obtaining state-of-the-art performance on both real and synthetic datasets. These net-
works are relatively lightweight and do not need a lot of training data. The authors in [SCC18]
propose two networks for demosaicking. They train on several CFA patterns to compare perfor-
mance and integrate the handling of denoising with a fine-tuning step. In [ZGFK17] the authors
find that the artifacts of challenging cases are better dealt with L1 norm, or their proposed combi-
nation of the L1 norm with MS-SSIM. Meanwhile in [KCBI19] alternative metrics to PSNR are
also considered.

The major difficulty in training data-driven demosaicking and denoising methods is the diffi-
culty to obtain realistic datasets of pairs of noisy RAW and ground truth RGB images. For this
reason demosaicking networks are trained with simulated data generated by mosaicking existing
RGB images. However simulated data follows a statistic that can be different from real data. The
RGB images used for training have already been processed by a full ISP (Image Signal Proces-
sors) pipeline which includes demosaicking and denoising steps which leave their footprint on the
output image. Additionally, the Poisson noise model is only an approximation to the real noise of
a specific camera. Several factors can cause deviations. For example the noise can have spatial
variations due to temperature gradients in the sensor, or caused by the vignetting or the electronic
components in its surroundings.

The need for a specific treatment of realistic noise has been identified in the denoising litera-
ture. Indeed most of the existing works target synthetic types of noise, e.g. Gaussian noise. Since
the noise distribution is well defined, specific methods can be crafted [DF06, LBM13a, GZZF14]
and data can be simulated with ground truth so to train neural networks [ZZC+17a,ZZZ18]. How-
ever, it has been shown recently in [PR17] and [ALB18] that networks trained on synthetic noise
often fail to generalize to realistic types of noise. This has started a trend of study of "real noisy
images". For example [CCXK18, GYZ+18] acquire datasets where a low-noise reference image
is created by using a longer exposure time. Creating this type of dataset is time consuming and
prone to bias, as to avoid motion blur in the long exposure the images need to be acquired with a
tripod and the scene has to be static.
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Figure 8.2: Proposed pipeline to train for demosaicking without using any ground truth. The output after
applying the network D on the first image is warped using the transform T and masked with M so to be
compared to the second masked mosaicked image. The black corners seen in at the last stage of the
diagram indicate the undefined pixels after the transform, which are not considered by the loss.

Contribution In this chapter we introduce a mosaic-to-mosaic training strategy analog to the
noise-to-noise [LMH+18] and the model-blind fine-tuning presented in Chapter 6 frameworks
to be able to handle mosaicked RAW data. The trained network learns to interpolate two thirds
of the image data, without having ever seen a complete image. This allows us to train both de-
mosaicking and joint demosaicking and denoising networks without requiring ground truth. The
resulting networks attain state-of-the-art results, thus eliminating the need to simulate simplistic
noise models or to capture time-consuming datasets with long exposure reference frames. Al-
though we show results only with a Bayer pattern, our method can equally be applied to other
CFA patterns, such as the Fujifilm X-Trans. To the best of our knowledge, this is the first method
that learns joint demosaicking and denoising without any ground truth whatsoever; the network
has only seen noisy mosaicked images.

With the proposed framework, we can fine-tune a pre-trained network to a RAW burst. This
allows leveraging the already available multi-frame burst data that is present on many mobile
camera phones [WGDE+19]. The fine-tuning not only adapts the network to the specificities
of the camera noise, but it also overfits to the burst. We demonstrate that this overfitting, when
controlled, can be beneficial. A similar conclusion in the context of single-image super-resolution
was reached by the authors of [SCI18]. Additionally, when used with an L1 loss, the fine-tuned
network naturally handles noise clipping, a common but challenging problem [LMH+18,ZSC19].

The proposed strategy can be used to fine-tune other demosaicking networks, for example in
this chapter we show this for the network of [GCPD16] (see Figure 8.1), but it could be used
in conjunction with more recent burst denoising networks such as [GMU18a] and [MBC+18b]
adapted for CFA images.

The rest of the chapter is organized as follows. In Section 8.2 we present the proposed mosaic-
to-mosaic training of a demosaicking network from a dataset of RAW mosaicked data without
ground truth. In Section 8.3 we address the problem of joint demosaicking and denoising given a
burst of RAW mosaicked noisy images. Results are shown in Section 8.4.

8.2 Learning demosaicking w/o ground truth

In this section, we propose a learning method to train demosaicking networks without any ground
truth RGB images. Consider two different mosaicked pictures of a same scene I1 and I2. We
shall use one image as partial ground truth to learn demosaicking the other (provided that there
is a slight movement between the two, so that with high probability the mosaic patterns do not
match).

Our method requires that the two pictures can be registered, which is possible when the view-
points are not too different. This condition is typically met for bursts of images. Modern cameras
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Figure 8.3: Architecture of the network used to compare the performance of learning on RGB ground truth
or only with pairs of RAW images.

systematically take bursts of images, these sequences allow to eliminate shutter lag, to apply tem-
poral noise reduction, and to increase the dynamic range of the device. Nevertheless, the pair of
pictures can also be acquired manually by taking two separate pictures of the same scene.

In the following, we suppose we have a set of pairs of images (for example extracted from
bursts), where each pair (I1, I2) consists of pictures of the same scene for which we have estimated
a transformation T that registers I1 to I2. An affinity is often sufficient to accurately register a pair
of images from a burst. Pairs that cannot be registered accurately won’t be processed together.
The original mosaicked image can be obtained from its demosaicked one by masking pixels.
Thus, if we apply a demosaicking network D to I1, then apply the transformation T followed
by the mosaicking mask, we are supposed to get I2. We can compute M(T (D(I1))), where M
represents the mosaicking operation (masking pixels), compute a distance to I2, which acts as
ground truth, and backpropagate the gradient to trainD. In some sense, I2 acts as a partial ground
truth, as only parts of T (D(I1)) gets compared to I2 (for a Bayer pattern, one fourth is compared
for the red and blue channels, one half for the green channel). However, contrary to artifical
RGB ground truths, we do not suffer from bias introduced by the RGB processing pipeline, nor
require complex settings to produce these RGB ground truths. We implemented T with a bicubic
interpolation through which gradient can be backpropagated. This results in the following loss:

`p(D(I1), I2) = ‖M(T (D(I1)))− I2‖pp, (8.1)

where p = 1, 2. The norm is computed only in the pixels where both images are defined. In this
section we use p = 2 (squared L2 norm). The training method is depicted in Figure 8.2. Our
learning process can be linked with [LMH+18, BR19]. The main difference is that we have an a
priori on the position of the degraded pixels.

Demosaicking network To test the proposed training, we will use in this section a network
architecture heavily inspired by the one from Gharbi et al. [GCPD16], as we have seen Chapter
7 that it performs very well, while using improvements suggested in more recent work with the
usage batch normalization layers [IS15] as well as residual learning [HZRS16]. These techniques
are known to speed-up training time and sometimes increase performance. The network starts
with a four-channel Bayer image that goes through a series of 14 Conv+BN+ReLu layers with
64 features and 3 × 3 convolutions. A 15th layer of Conv+BN+ReLu produces 12 features with
3× 3 convolutions. It is followed by an upsampling layer producing an RGB image of twice the
width and twice the height. Like Gharbi et al. we added a layer (a Conv+BN+ReLu with 3 × 3
convolutions) before the layer producing the final output. We need add the bilinearly interpolated
RGB image to the output of our network to produce the final result. All convolution layers have
padding to keep the resolution constant from beginning to end. The architecture of the network is
depicted in Figure 8.3.
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Figure 8.4: Evolution of the average PSNR on the validation dataset when training with ground truth data
and when training without RGB ground truth data available. Training without RGB ground truth behaves the
same than training with an RGB ground truth.

Comparing learning with ground truth RGB and our method We verify that this method
for training demosaicking without ground truth is competitive with classic supervised training
by training the same architecture with both methods and show comparable results. For this ex-
periment we considered a mosaicking with Bayer pattern which is the most frequent mosaicking
pattern.

In order to be able to compare the results of training with and without ground truth, we decided
to simulate the pairs on which the demosaicking is trained. For both trainings we use the dataset
of [SCC18], which consists of 500 images (of sizes around 700 × 500) from Flickr. To generate
pairs to learn with our method, we warped the same RGB image with a random affinity - thus
simulating two views - and generated the mosaicked images from them. To speed-up the training
we chose the same transform for all patches of a same batch. We trained both networks for 45
epochs using Adam and a learning rate of 10−2. We reduced the learning rate by a factor of 10 at
epochs 20 and 40.

Figure 8.4 compares the evolution of the PSNR on the validation dataset (we use here the
Kodak dataset1) while training our network with ground truth against the training without ground
truth. It can be observed that training without ground truth behaves the same as with the ground
truth. The convergence speed seems to be equivalent as well as the final demosaicking quality.

Table 8.1 shows the quality of demosaicking using either ground truth or no ground truth
versus the state of the art in image demosaicking. The model learned without having ever seen
an RGB image is able to achieve the same quality than the same network trained using the RGB
ground truth, which indicates that having a ground truth is not necessary to obtain state-of-the-art
performance on this task. For comparison, we also show the results obtained with model-based
methods [Get11, HEK+14] that do not need training with ground truth (they do not need training
at all).

8.3 Joint demosaicking and denoising by fine-tuning on a burst

In the previous section, we demonstrated that having a training dataset with RGB ground truth
is not mandatory to reach state-of-the-art performance: Similar demosaicking performance is
reached with a just a database of pairs of mosaicked data. While this was demonstrated on syn-
thetic noise-free images, it can also be done when images are actual noisy RAW data. In this
section we show an application of the method to online fine-tuning on bursts. We present the
method on two networks: the noiseless network from Section 8.2 where the network has to learn

1http://r0k.us/graphics/kodak/
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Method With ground truth Without ground truth

Getreuer et al. [Get11] - 38.1
Heide et al. [HEK+14] - 40.0
Gharbi et al. [GCPD16] 41.2 -
Network from §8.2 41.2 41.3

Table 8.1: PSNR results for different demosaicking methods on the Kodak dataset. Training without ground
truth (network from §8.2) outperforms the methods without ground truth while still achieving state-of-the-art
PSNRs.

to denoise using only the burst (this is a sort of a toy example) and the state-of-the-art network
from [GCPD16].

Joint demosaicking and denoising without ground truth Using the noise-to-noise framework
presented in [LMH+18], we aim to train a network with parameters θ. Supervised learning of a
joint demosaicking and denoising network corresponds to solving

arg min
θ

∑
i

L(fθ(xi), yi), (8.2)

where the xi are noisy mosaicked images, and the yi are their ideal noise-free demosaicked im-
ages, L is a loss such as L2 or L1. In the noise-to-noise framework, the equivalent problem
(conditionally on the noise being mean preserving for L2, or median preserving for L1) is to
solve

arg min
θ

∑
i

L(fθ(xi), x′i), (8.3)

where xi and x′i are two noisy observations of the same scene.
Our proposal is to solve

arg min
θ

∑
i

`1(fθ(xi), x′i), (8.4)

where the (xi, x′i)s are pairs of noisy mosaicked images of the same scene and `p is the loss
introduced in Equation (8.1). We use p = 1 in this section (L1 norm), which allows to handle
clipped noise (see discussion on the choice of the loss).

The loss requires the computation of a transform T matching each pair of mosaicked images.
For that we use the inverse compositional algorithm [TRU98, BM01] to estimate a parametric
transform (in practice we estimate an affinity which we found to be well-suited for bursts). An
implementation of this method is available in [BFS18]. The advantage of this method is that it is
robust to noise and can register two images very precisely (provided that they can be registered
with an affinity). Since we only have access to Bayer images of size W × H , the first step is
to generate four-channel images of size W

2 ×
H
2 corresponding to the four phases of the Bayer

pattern. The transform is then estimated on these images before upscaling it to the correct size.
Having the pairs with the associated transform, one can finally apply the pipeline presented in

Section 8.2 and in Figure 8.2. As in [EDM+19] we initialize the network using a pretrained one.
In particular in the following, we use the network trained for demosaicking without ground truth
presented in Section 8.2, as well as the network from [GCPD16].

Choice of Loss One particularly well known problem with denoising is clipped noise: The un-
derlying signal I belongs to a fixed range, but the noise can make it leave that intensity range. Due
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Figure 8.5: Fine-tuning a denoising network (DnCNN [ZZC+17a] σ = 25) on a burst of 10 noisy (σ = 25)
grayscale images with saturated regions. From left to right: PSNRs over the whole image, on non-saturated
regions, and on the saturated regions. After fine-tuning, the network works better both on saturated and
non-saturated regions. While L2 is not able to deal with clipping, using L1 for fine-tuning performs similarly
to fine-tuning without clipping.
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Figure 8.6: From left to right: reference image, noisy (σ = 25), pretrained DnCNN and DnCNN after fine-
tuning. The details, such as the trees, are sharper and more distinguishable after fine-tuning. Figure best
visualized zoomed-in on a computer.
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Figure 8.7: From left to right: image of binary noise and an image of stripes. Fine-tuning DnCNN on the
very self-similar image of stripes leads to a much bigger increase in quality compared to the image of binary
noise.

to hardware clipping, the measured image is inside the fixed range, and thus the noise statistics are
biased. When minimizing with the L1 norm over the same image with several noise realizations,
the best estimator is the median of the realizations [LMH+18], which is unaffected by the hard-
ware clipping. Thus by using L1 norm and fine tuning on a burst, our method handles clipping
without any pre or post-processing required. This phenomenon is illustrated in Figure 8.5 with a
classic denoising network, DnCNN [ZZC+17a].

Fine-tuning to a single scene By fine-tuning over a single burst the network ends up overfitting
the data. Usually overfitting to the training data is avoided as it results in a poor generalization
ability. However, in our case the fine-tuned network will only be applied to that burst, and over-
fitting improves the result for that specific burst. There are other examples in the literature where
a network is overfitted to a specific input (or a small dataset of inputs). For example, [CMPT+17]
turns an object classification network into a video segmentation one by fine-tuning it on the first
frame, which is labeled. The network then learns to track the labeled objects in the following
frames.

This fine-tuning is also reminiscent of traditional image processing methods that fit a model
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Figure 8.8: Fine-tuning a pre-trained denoising network (DnCNN σ = 25) to a specific sequence increase
the quality of the result. The visible drops correspond to each change of image considered (pairs are
considered in lexicographical order). It is important to finish with the reference image as to maximise the
performance. The fine-tuned network, which takes as input a single frame, comes close to the performance
of DnCNN applied to the temporal average of all frames.

to the patches of the image. In [YSM12] the image patches are modeled using a Gaussian mix-
ture model (GMM), in [EA06] by representing them sparsely over a learned dictionary, and
in [MSH08] via sparse convolutions over a set of kernels. In all these cases the models were
trained on the input image. The assumption underlying these methods is that images are self-
similar and highly redundant, allowing for compact representations of their patches.

Figure 8.6 shows that fine-tuning a grayscale denoising network (DnCNN) on a burst of im-
ages can significantly improve the denoising results. The likely explanation is that the network
is able to capture a part of the image self-similarity, similar to the model-based methods. Figure
8.7 illustrates the performance evolution when fine-tuning a denoising network on a set of noisy
realizations of two synthetic images, one of stripes (thus very self-similar) and a binary noise im-
age (thus not self-similar). The performance gap is explained by the self-similarity of the former
image.

8.4 Experimental results

To evaluate quantitatively the performance of the proposed training strategy, we first apply it on
simulated data, since there are no real noisy raw bursts with ground truth publicly available. We
generate the burst from a single image by applying random affinities. In the cases where noise is
considered, the added noise is white Gaussian. During training, the affinities are estimated from
the noisy raw data. Code to reproduce the results is available on https://github.com/
tehret/mosaic-to-mosaic

Network fine-tuning on a sequence outperforms single image denoising Fine-tuning a net-
work to a sequence allows to restore the image beyond the performance of a single image denois-
ing. In this paragraph we consider a sequence of images with no motion and without mosaicking
pattern. Figure 8.8 shows the PSNR evolution as the fine-tuning processes all the pairs of a se-
quence of 10 frames (90 pairs in total) without mosaicking pattern nor motion is considered. We
consider the pairs in lexicographical order, that is every time a new input image is selected it is
sequentially paired with all other images in the sequence. Note the characteristic shape traced by
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Figure 8.9: From left to right: reference image, the network from §8.2, the network from §8.2 after fine-
tuning and Gharbi et al.. Because of the reduced size of the training set our blind network still has some
moire artifact but they completely disappear after fine-tuning on the data achieving a result visually close to
Gharbi et al.without having to learn on a specific well-chosen dataset. Figure best visualized zoomed-in on
a computer.

Method kodim19 Kodak dataset

§8.2 fine-tuned on kodim19 44.4 40.4
§8.2 without fine-tuning 42.1 41.3

Table 8.2: PSNR results using an fine-tuned network on the lighthouse image of the Kodak dataset
(kodim19) versus the same network without fine-tuning. While fine-tuning improves on the specific image,
the overall performance on the dataset is decreased.

the PSNR curve: every time a new input image is selected the performance first drops and then
steadily improves surpassing the previous peak. This shows that not only the network is adapting
the current input image but it is also building upon previously seen images.

We argue that this fine tuning can be linked to a temporal noise reduction (TNR). We compare
our fine-tuning based denoising strategy with three other denoising strategies: simply averaging
the frames (“Average”), which amounts to a naive TNR, denoising a single frame with DnCNN
(“DnCNN (25)”), which doesn’t take advantage of the multiple frames, and denoising the naive
TNR result with the optimal DnCNN (“Av. + DnCNN (10)”), which amounts to the best possible
TNR result in this ideal case. Note that the fine tuning is largely surpassing the performance
of single image denoising and approaches TNR with DnCNN. In practice temporal averaging
followed by denoising is not as straightforward on mosaicked images, so there is no equivalent of
this upper bound on mosaicked images. This justifies the relevance of the proposed method.

Improving demosaicking by fine-tuning Similarly to denoising, fine-tuning improves demo-
saicking. The evolution of the improvement, showed in Figure 8.10, is quite similar to the one
presented for denoising. Moreover artifacts that existed in the initial network, due to a low amount
of training, are removed completely by the fine-tuning, see Figure 8.9. The result then looks vi-
sually very similar to the result from Gharbi et al.that was trained specially to deal with these
difficult cases.

Table 8.2 compares the PSNR obtained for different networks on the Kodak dataset. The
network from Section 8.2 was fine-tuned on kodim19, which is singled out in the table. As
expected, the fine-tuned network works well on the reference image but its performance decreases
on the other images. The network without fine-tuning performs better on the whole Kodak dataset
than the network that was fine-tuned on a specific image. The increase in performance for this
reference image after fine-tuning was of more than 2dB.
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Figure 8.10: Fine-tuning a pre-trained demosaicking network (from Section 8.2) to a specific sequence
increase the quality of the result. The visible drops correspond to each change of image considered (pairs
are considered in lexicographical order). It is important to finish with the reference image as to maximise
the performance.

Images, noise level Methods

[GCPD16] [KL18b]
§8.2 + our
fine-tuning

[GCPD16] + our
fine-tuning

01, σ=5 (10 images) 34.9/.9584 34.5/.9540 35.1/.9545 35.9/.9633
13, σ=5 (10 images) 32.9/.9574 32.3/.9515 33.6/.9587 34.3/.9641
16, σ=5 (10 images) 37.1/.9496 36.5/.9390 36.1/.9399 38.2/.9570
19, σ=5 (10 images) 36.1/.9430 35.5/.9380 36.3/.9375 37.3/.9500
All, σ= 5 (10 images) 36.2/.9465 35.2/.9329 36.0/.9401 37.6/.9559

19, σ=10 (10 images) 33.2/.8958 31.1/.8612 32.9/.8877 34.0/.9067
19, σ=10 (20 images) 33.2/.8958 31.1/.8612 33.2/.8935 34.3/.9091

Table 8.3: PSNR results of different methods for the task of joint demosaicking and denoising. It shows that
even though our method is completely blind, it is able to compete with the state of the art. The rows identify
different images from the Kodak dataset, and noise levels. Moreover increasing the length of the burst also
allows to improve the quality in the cases where it might perform worse otherwise. Our method used the
network trained in Section 8.2 and was fine-tuned with 10 generated noisy images except when mentioned
otherwise.

Joint demosaicking and denoising using fine-tuning The final application of fine-tuning is
to do both previous applications at the same time. Table 8.3 compares our method to two other
methods of joint demosaicking and denoising. The networks were fine-tuned on each image
individually. Overall our fine-tuning approach is very competitive. A network that has not been
trained with noisy data prior to fine-tuning (§8.2 + our fine-tuning) is now able to perform at
the same level as one of the best network trained for this specific application. When using the
state-of-the-art network from [GCPD16], our fine-tuning improves the final quality by more than
1dB.

Not only do we achieve competitive results in terms of PSNR, the results are free of demo-
saicking artifacts. Indeed, as shown in Figure 8.1, even in the regions that are particularly hard
such as the fence. For example there is no zippering compared to the result of Gharbi et al..

The final experiment is on real data. We took a burst from the HDR+ dataset [HSG+16]
and applied our process. We compare the result of a simple bilinear interpolation, the result of
[GCPD16] and [GCPD16] with our fine-tuning in 8.11. Fine-tuning allows for a better denoising
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Figure 8.11: Experiment on a real burst. Left to right: The result of the HDR+ pipeline [HSG+16], bilinear
interpolation, [GCPD16] and [GCPD16] with our fine-tuning. Contrast was enhanced for all methods except
HDR+. Note that the HDR+ pipeline includes color balance as well as sharpening. It also uses all the
images of the burst to produce the result (all other methods use only the reference frame). Figure best
visualized zoomed in on a computer.

and a better reconstruction of details while limiting artifacts. We present additional result on the
HDR+ dataset in Figures 8.12, 8.13, 8.14. In these figures we show the result from the HDR+
pipeline [HSG+16], a bilinear interpolation, the result of Gharbi et al. [GCPD16], and the result
of Gharbi et al. [GCPD16] with our fine-tuning.

Remarks on computation cost We empirically found that the amount of data needed for fine-
tuning the network is linked to the number of pixels and not the number of images of a burst. This
allows to fine-tune even on short bursts like the ones from the HDR+ dataset (of size 2400×1300)
using at most six images. Regarding computation time, we presented fine-tuning as an offline
application, for example for professional photography where best quality is required. However,
recent works [TRJ+19,TTP+19] have shown that fine-tuning can also be achieved in real time for
videos.

8.5 Conclusion

In this chapter, we have proposed a novel way of training demosaicking neural network without
any RGB ground truth, by using instead other mosaicked data of the same scene (such as from
a burst of images). Based on it and on recent neural network advances, we proposed a method
to train jointly demosaicking and denoising with bursts of noisy raw images. We show that fine-
tuning on a given burst both boosts the reconstruction performance and handles clipped noise
natively. It also presents a specific case where overfitting a network to the training data is valuable.
Since we do not expect generalization there’s only benefits from this overfitting.

We hope our work can lead to new camera pipeline calibration procedures, and general im-
provement of the image quality when a burst is available.
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Part III

Application of patch-search to detection
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9 How to Reduce Anomaly Detection
in Images to Anomaly Detection in
Noise

Anomaly detectors address the difficult problem of detecting automatically exceptions in a
background image. The background image can be as diverse as representing fabric or a mam-
mography. Detection methods have been proposed by the thousands because each problem
requires a different background model. By analyzing the existing approaches, we show that
the problem can be reduced to detecting anomalies in residual images (extracted from the
target image) in which noise and anomalies prevail. Hence, the general and impossible back-
ground modeling problem is replaced by a simple noise model, and allows the calculation
of rigorous detection thresholds. Our approach is therefore unsupervised and works on ar-
bitrary images. The residual images can favorably be computed on dense features of neural
networks. Our detector is powered by the a contrario detection theory, which avoids over-
detection by fixing detection thresholds taking into account the multiple tests. This work was
published in [DEMD18] and [EDMD19].

9.1 Introduction

The automatic detection of anomalous structure in arbitrary images is concerned with the problem
of delineating image regions not conforming with the rest of the image. This is a challenging
computer vision problem, as there seems to be no straightforward definition of what is (ab)normal
for a given image.

Anomalous structure in images can be generally described as being either caused by high-level
or low-level outliers. High-level anomalies are related to the semantic information presented in
the scene. For example, human observers immediately detect a person inappropriately dressed for
a given social event. In this chapter, we focus on the problem of detecting anomalies due to low-
or mid-level rare events (e.g., patterns) present in images. This is an important problem in many
industrial or biomedical applications where a fast and reliable way of detecting rare patterns is
needed.

We propose here an unsupervised method for detecting anomalies in an arbitrary image. The
method doesn’t rely on a training dataset of normal or abnormal images, neither on any other
prior knowledge about the image statistics. It directly detects anomalies with respect to residual
images estimated solely from the image itself. We only use a generic, qualitative background
image model: we assume that anything that repeats in an image is not an anomaly. Hence we
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Input

(a)

(b)

Figure 9.1: Image anomalies are successfully detected by removing all self-similar content and then looking
for structure in the residual noise, which parameters are easy to estimate. First row: an image with a color
anomaly (the red dot); (a): the detections (first column) obtained from principal components of CNN feature
maps (2nd-5th columns) (b): the detection map on the same features obtained after removing the self-similar
content. In the detection maps, cyan means good detection and orange extremely salient detection.

extract from the input image a residual image containing everything that does not repeat. This
unstructured image is akin to noise, but still contains the anomalies if any.

Detecting anomalies in noise is far easier and can be made rigorous and unsupervised by the
a-contrario theory [DMM07] which is a probabilistic formalization of the non-accidentalness
principle [Low85]. The a-contrario framework has produced impressive results in many different
detection or estimation computer vision tasks, such as, segment detection [VGJMR10], ellipse
detection [PGvG12], spots detection [GM09], vanishing points detection [LGvGRM14], funda-
mental matrix estimation [MS04], mirror-symmetry detection [PGvGO13], among others. The
fundamental property of the a-contrario theory is that it provides a way for automatically com-
puting detection thresholds that yield a control on the number of false alarms (NFA). It follows
that not only one can detect anomalies in arbitrary images without complex modeling, but in ad-
dition the anomalies are associated an NFA which is often very small and therefore offers a strong
guarantee of detection.

In a nutshell, our method removes from the image its self-similar content (considered as being
normal). The residual can be modeled after a simple equalization as Gaussian noise, but still
contains the anomalies according to their definition: they do not repeat. We shall show detections
performed directly on the residual, or alternatively on residuals extracted from dense low- and
mid-level features of VGG [SZ15] the popular pre-trained deep neural network. Our method is
general and works equally well on these different image representations.

A preliminary short version of this work was published in a conference [DEMD18].
The anomaly detection method developed here is also described briefly in our review paper
[EDMD19]. Our Section 2 below summarized some of the conclusions about the literature con-
tained in this last paper. The present version incorporates a more detailed analysis of the detection
method and its implementation.

The remainder of the chapter is organized as follows. Section 9.2 discusses in detail previous
work and the substantial differences to what we propose. Section 9.3 explains the method and
its implementation. In Section 9.4 we present results of the proposed method on both real and
synthetic data, comparing the algorithm to other state-of-the-art anomaly detection methods. We
finally close in Section 9.5.

170



Multiscale

decomposition

Dense 

features

representation

Dimensionality

reduction

Residual after 

self-similarity 

modeling

Distribution 

normalization

Detection

using

a statistical

test

Optional steps

Figure 9.2: Our method applies the same framework at all the different scales. The framework computes
the difference between the image (possibly using a dense representation using a neural network) and its
self-similar model before normalizing this difference output distribution. The detection is then done on these
normalized distributions. The corresponding pseudocode is presented in 20.

9.2 An analysis of the literature

The 2009 review [CBK09] examining some 400 papers on anomaly detection considered al-
legedly all existing techniques and all application fields. It is fairly well completed by the more
recent [PCCT14] review. These reviews agree that classification techniques like SVM can be
discarded, because anomalies are generally not observed in sufficient number and lack statistical
coherence. There are exceptions like the recent method [DLBM14] which defines anomalies as
exceptional events that cannot be learned, but after estimating a background density model, the
right detection thresholds are nevertheless learned from anomalies. A broad-related literature ex-
ists on saliency measures, for which learning from average fixation maps by humans is possible.
For example [TRH11] trained on average human fixation maps to learn both the anomalies and
their surround vectors as Gaussian vectors. This reduces the problem to a two class Bayesian
classification problem. The goal of saliency detectors is only to deliver a fuzzy saliency map.
Anomaly detectors instead signal anomalous regions. The saliency detectors try to mimic the
human visual perception and in general introduce semantic prior knowledge related to the per-
ceptual system (e.g., face detectors). This approach works particularly well with neural networks
because attention maps obtained by gaze trackers can be used as a ground truth for the training
step. SALICON [HSBZ15] from Huang et al.is one of these deep neural networks architecture
achieving state of the art performance. In [Kum03] a neural network is trained on a base of
defect/non-defect, thus again performing two classes classification. But the anomaly detection
problem has been generally handled as a “one class” learning problem. The 2003 very complete
review by Markou and Singh [MS03] concluded that most research on anomaly detection was
driven by modeling background data distributions, to estimate the probability that test data do not
belong to such distributions. Hence the mainstream methods can be classified by their approach
to background modeling.

9.2.1 Probabilistic background models

Their principle is that anomalies occur in the low probability regions of the background model.
This stochastic model can be parametric (Gaussian, Gaussian mixture, regression), or nonpara-
metric. For example in “spectral anomaly detection”, an anomaly is defined by having deviant
coordinates with respect to normal PCA coordinates. In [AT10] a Gaussian background Fourier
model of the image phase is followed by a Mahalanobis threshold. In [DZ11] a Gaussian back-
ground model from random pixels is similarly followed by a Mahalanobis threshold. In [GC04]
the background is characterized in a feature space of principal components, and hypothesis testing
is used for the detection of anomalous pixels. In [THCB95] the assumption is made that abnor-
malities are uniformly distributed outside the boundaries of normality, defined as the probability
density estimation of the training data. In [HN01] Honda and Nayar introduced a generic method
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which works on all type of images. The main idea is to estimate the probability of a region con-
ditioned on the surroundings. The method employs independent component analysis to find a
compact representation of the region space and its surroundings. The [GM09] method models
the background image as a Gaussian stationary process. This is rather restrictive, but this precise
model allows computing an accurate Number of False Alarms [DMM07] for anomalies.

Thus, in methods relying on a probabilistic background model, outliers are detected as inco-
herent with a probability distribution estimated from the input image(s). The anomaly threshold
is a statistical likelihood test on the learned background model. We now pass to non-stochastic
background models.

NN-based background reconstruction. “Replicator” neural networks [HHWB02] can model
a background. These are multi-layer feed forward neural networks with same number of input
and output neurons. The training involves compressing data into hidden layers. The testing phase
reconstructs each data sample. Its reconstruction error for the test instance is used as an anomaly
score. The work in [SSW+17] is also equivalent to using an autoencoder and looking at the norm
between the original and the output. A GAN is trained (generator + discriminator) via gradient
descent, a representation in latent space is computed, and the output is compared to the input. The
discriminator cost is then used alongside the representation on the input by the network to find
the anomalies. This paper is related to [An16] that computes a reconstruction probability from a
variational autoencoder.

Fourier Background subtraction. Perhaps the most successful background based method is
the detection of anomalies in periodic patterns of textile [TH99,TH03,PCC10]. This can be done
naturally by cutting specific frequencies in the Fourier domain and thresholding the residual to
find the defects.

9.2.2 Non constructive background models

These methods present the big advantage that they no longer require the construction of a back-
ground model, which for most images is anyway impossible. Hence, they simply make structural
assumptions on the background image that would be violated by anomalies.

Center-surround enhancement. These methods are mainly used for creating saliency maps.
Their rationale is that anomalies pop up as local events contrasted with their surroundings.
In [IKN98], center surround detectors based on color, orientation and intensity filters are com-
bined to produce a final saliency map. Detection is then done on a simple winner-takes-all
scheme on the maximum of the response maps. In [MVOP11] a saliency map is obtained from
center-surround contrast coefficients for wavelet filters. An image wavelet pyramid reconstruc-
tion with these coefficients enhances local anomalies. Detection in images and videos is also
done in [GMV08] with center-surround saliency detectors which stem from [IK00] adopting sim-
ilar image features. In [HN01], the main idea of a fast and general anomaly detection method is to
estimate the probability of a region conditioned on the surroundings. The method employs ICA
and KLT to find a compact (with elements as independent as possible) of the region space and its
surroundings.

The sparsity model. A more recent nonparametric trend is to learn a sparse dictionary rep-
resenting the background (i.e., normality) and to characterize outliers by their non-sparsity.
In [MTZM13] the patch background model is simply its PCA and the patch saliency is com-
puted as the L1 norm of the patch coefficients in PCA. Aggregating these values gives a pixel
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saliency. The saliency formation in [XM07] builds a Gaussian mixture model for patches, and
probability thresholds are learned on images without anomalies. The final result is a saliency map.
In [BCW14] the background model is a learned patch dictionary from a database of anomaly-free
data. The abnormality of a patch is measured as its Mahalanobis distance to a 2D Gaussian learned
on the parameter pairs composed by the L1 norm of the coefficients and of their reconstruction
error. An extension [CBFW15] learns a convolutional sparse dictionary. Similarly in [ESV12] a
patch is anomalous when the L1 norm of its sparse decomposition on a learned dictionary is too
large.

Defining anomaly detection as a variational problem where anomalies are detected as non-
sparse is also the core of the method proposed in [AEHOR15]. The L1 norm of the coefficients
on the learned background dictionary is used as an anomaly measure.

The self-similarity model. The self-similarity principle has been successfully used in many
different applications. In particular in image denoising such as the bilateral filter [TM98] or non-
local means [BCM05a] for example; but also for texture synthesis in the pioneering work by Efros
and Leung [EL99]. The basic assumption of this generic background model, applicable to most
images, is that in normal data, features are densely clustered. Anomalies instead occur far from
their closest neighbors. This idea can be implemented by clustering (anomalies being detected
as far away from the centroid of their own cluster), or by nearest neighbor search (NN). NN
search leads to simple direct rarity measurements. For example in [SM09] the saliency measure

is Si =
(∑N

j=1 exp
(
−1+ρ(Fi,Fj)

σ2

))−1
where Fi are local features, and Fj the closest features

to Fi. If all Fj are far away from Fi, the saliency is high. The algorithm in [ZC10] is inspired
from NL-means [BCM05a]: a) fix a similarity threshold learned in a reference image without
anomalies and b) compare each patch of the source image to the patches of the reference; if the
distance is higher than the similarity threshold, then the patch is an anomaly. A similar idea
can be found back in [TD98] : “The distance of the new object and its nearest neighbor in the
training set is found and the distance of this nearest neighbor and its nearest neighbor in the
training set is also found. The quotient between the first and the second distance is taken as
indication of the novelty of the object.” The self-similarity measurement in [GZMT12] finds for
each patch pi its 64 most similar patches qk in a spatial neighborhood and computes its saliency
as Si = 1− exp

(
− 1

64
∑64
k=1 d(pi, qk)

)
.

A similar method and saliency detector is proposed in [MC14]. This method performs a
dimension reduction thanks to a low dimensional embedding of a nearest neighbor graph using the
coordinates of points on the eigenvectors of the graph Laplacian. The anomaly score is then given
by the distance to the first nearest neighbors with the diffusion distances. In [BI07], image regions
are matched (with deformation allowed) to others in the same image or video. The probability of
the deformation is estimated and gives a saliency map.

Boracchi and Roveri [BR14] proposed to detect structural changes in time-series by exploiting
the self-similarity. Their general idea is that a normal patch should have at least one very similar
patch along the sequence. Given a temporal patch (a small temporal window) the residual with
respect to the most similar patch in the sequence is computed. This leads to a new residual
sequence (i.e., change indicator sequence). The final step is to apply a traditional change detector
test (CDT) on the residual sequence. CDTs are statistical tests to detect structural changes in
sequences, that is, when the monitored data no longer conform to the independent and identical
distributed initial model. CDTs run in an online and sequential fashion.

Global rarity measurement. Generally histogram based, these methods assign an anomaly
score to each tested feature based on the inverse of the height of the bin to which it belongs.
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Similarly in [RMD+13] a saliency map is obtained by summing up the rarity of 32 multiscale
oriented features, computed for each pixel as a weight inversely proportional to its rarity in the
wavelet histogram. Patches are represented in [BI12] by their coefficients on a patch dictionary
learned on natural images. The final saliency is the inverse of a patch probability of happening.
The method is finally combined with a local center-surround saliency measure.

9.2.3 Discussion and our proposition

We now discuss briefly the previous classification. Background probabilistic modeling is very
powerful when images belong to a restricted class of homogeneous objects, like textiles. Indeed,
it furnishes rigorous detection thresholds based on the estimated probability density function. But,
regrettably, this method is nearly impossible to apply on generic images. For the same reason,
background reconstruction models based on CNNs are restrictive and do not rely on provable
detection thresholds. Center-surround contrast methods are successful for saliency enhancement,
but lack a detection mechanism. Hence, they only furnish a saliency image, not a binary anomaly
decision. The sparsity and the self-similarity models are tempting and thriving. Their big advan-
tage is their universality: they can be applied to most images. But again, excepting [BCW14],
they lack a rigorous detection mechanism, because they work on a feature space that is not easily
modeled.

Our proposition is to benefit of the advances of the above methods while avoiding their men-
tioned limitations. To this aim, we construct a probabilistic background model on a new feature
image that we call the residual. This residual is obtained by reconstructing a self-similar ver-
sion of the target image. The difference between the target and its self-similar version is called
the residual and becomes our new background. Being not self-similar, this background is akin
to a colored noise. Hence hypothesis testing can be applied to it, and more precisely multiple
hypothesis testing (also called a contrario method), as proposed in [GM09].

In that way, a general and simple method can be built that works on all images and detects
anomalies by a rigorous threshold. It does not require learning, and it is easily made multiscale.
Our underlying model can therefore be considered as fully generic in the sense that it decomposes
any image into a self-similar part and its “residual”, which contains only noise and the anomalies.

9.3 Method

The anomaly detection method that we propose is therefore built on two main blocks: a removal
of the self-similar part of the image, and a simple statistical detection test based on the a contrario
framework on the residual. The pipeline is summarized in Figure 9.2 and in Algorithm 20.

9.3.1 Self-similarity Background Modeling

The proposed self-similarity based background subtraction is inspired from patch-based denoising
algorithms, but with a crucial difference. All self-similarity based denoising algorithms share a
similar procedure. First, a set of similar patches is computed. This search is generally performed
locally around each patch [DFKE07b, BCM05a] to keep computational cost low and to avoid
noise overfitting. An “self-similar estimate” of the query patch is then built using the nearest
neighbors found at the previous step. These nearest neighbors will be picked with a different rule
for anomaly detection than for denoising, as we shall see next.

Self-similarity from exclusively non-local patches. Image denoising tries to maximize the
quality of the result and must therefore perform acceptably even with the non self-similar parts of
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Algorithm 20: Anomaly detection algorithm
input : Input image u, reference image v, size of patch sp, number of nearest

neighbors n, h the patch similarity parameter, a list R of disk radii to test, the
NFA threshold ε, a neural network nn (optional)

output : List of detections l (contains size and position)
1 (ui)← multiscaleDecomposition(u, nscales) // See Section 9.3.2
2 (vi)← multiscaleDecomposition(v, nscales) // and Algorithm 26
3 for scale i = 0 to 3 do
4 if nn is provided then
5 ûi ← extractFeatures(ui, nn) // Use neural network features

to represent ui
6 v̂v ← extractFeatures(vv, nn) // See Section 9.3.3

7 else
8 ûi ← ui
9 v̂i ← vi

10 ri ← computeResidual(ûi, v̂i, sp, n) // See Algo. 24
11 ri ← fitResidual(ri) // See Algo. 7
12 li ← detect(ri, height(û0), width(û0), channels(û0), R, ε) // See algo.

27
13 Add li to l

the image. For anomaly detection instead, the algorithm should perform well only if a clear struc-
ture emerges. Furthermore, we want our self-similarity search to be made on the whole image.
But the main difference with classical denoising is that we forbid local comparisons. Thus, con-
trary to classic denoising algorithms, the search is performed outside a square region surrounding
each query patch only. Otherwise any anomaly with some internal structure might be considered
a structure. What matters is that the event represented by the anomaly is unique in the image.

Searching for similar patches. In image patch-based methods, searching for similar patches is
usually done in a small squared region surrounding the query patch. For denoising, searching in
a small region acts as a regularizer and speeds up the processing. In our case this can’t be done
because we forbid a local squared region around the query patch. We’d also like to take advantage
of the whole image; repetitions could appear anywhere in the image and not necessarily locally.
This is why we used the global search presented in Chapter 2. The search is summarized in
Algorithm 23 with each step shown in Figure 9.3. Another advantage of this search is that the
query image and the reference image can be different without any loss in performance. This is
similar to an external search in a database made of one or multiple images (See Figure 9.4).

In this chapter we suggest using VP-trees for the global search since it has been shown to
work well for a similar problem [EAM17]. However, other global patch search methods, such as
PatchMatch [BSFG09a], can also be used. While PatchMatch has more convergence guarantees,
see Chapter 10, it is also less computation efficient. PatchMatch is very efficient when looking
for very few (namely one or two) nearest neighbors but struggles for a large number of nearest
neighbors. PatchMatch also requires the computation of similar patches for the entire database
while the current approach only does it for the image that is being processed. Moreover this
approach is easier to parallelize than PatchMatch.
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(a) Step 1: the search of the bin of
the query patch in the VP-tree

(b) Step 2: the local search based
on the elements found with the VP-
tree

Final list

(c) Step 3: combination of the re-
sults from each local search

Figure 9.3: Steps of the VPLR search

Algorithm 21: Construction of a VP-tree
input : A set of points in a metric space S, b the number of elements to be used for the

computation of the vantage point, m the maximum size of the bins
output : The VP-tree TS

1 if |S| ≤ m then
2 No splitting is needed
3 return an empty tree
4 s← chooseV antage(S, b) // See Algo. 22
5 Compute the median distance p from s to the other elements of S
6 Construct T1 using the elements of S which are closer than p from s
7 Construct T2 using the elements of S which are further than p from s
8 return ((s,p), T1, T2)

Background model computation. The background removal step follows the steps of the Non-
local means algorithm [BCM05a]. For a similarity parameter and for each patch P in the image
the n most similar patches denoted by Pi are searched and averaged to get a self-similar estimate
P̂ for the patch,

P̂ = 1∑n
i=1 exp

(
−‖P−Pi‖

2
2

h2

) n∑
i=1

exp
(
−‖P − Pi‖

2
2

h2

)
Pi. (9.1)

Aggregating these estimated patches produce a self-similar model of the tested image. The resid-
ual is then the difference between this self-similar model and the input image. As it can be seen
in Figure 9.1, this process separates the content of the image (background) from the noise and
anomalies. We argue this residual is much easier to model since it doesn’t contain any complex
structure. Algorithm 24 gives a generic pseudocode for this process.

Residual distribution. The detection process, as presented in 9.3.2, relies on the residual be-
ing Gaussian. However, the distribution of r(u) is not necessarily Gaussian. In [ZLZ+17] it is
hinted that r(u) might follow a Laplace distribution for natural images for some denoising algo-
rithm. The fact that non-local means transforms white Gaussian noise into white Gaussian noise
is substantiated in [BCM08]. Based on these remarks, we add an additional step to transform the
residual (which can be either Laplacian or Gaussian) into the required distribution: We fit a few
distributions on the residual (See Algorithm 7). The distribution depends on the image and on the
choice of the input features, depending on whether we work directly on an image or on features
from a neural network (as mentioned in Section 9.3.3). In the case of a neural network, Zeros
are ignored when estimating the distribution. Indeed, when using CNNs, RELUs cause zero to be
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Algorithm 22: chooseV antage: Choose a vantage point
input : A set of points in a metric space S , b the number of elements to be used for the

computation of the vantage point
output : A vantage point s

1 Draw a set of b points P from S
2 for s ∈ P do
3 Compute the median distance p from s to the elements of S
4 Compute the second moment of {‖s− u‖ − p | u ∈ S}
5 return s ∈ P with the largest second moment

Database

Request

VP-tree constructed 

on the database

Figure 9.4: Using the global search to search in a database

over-represented. To equalize the residuals and simplify the detection model, we use a non-linear
transform and rescale r(u) in order to fit a centered Gaussian distribution with unit variance.

9.3.2 Statistical detection by the a contrario approach

The a contrario model. Our goal is to detect structure in the feature image residual r(u) =
û − u. We are in a much better situation modeling r(u) than u. Indeed, contrarily to u, r(u) is
by construction unstructured and akin to a colored noise. We treat it as a stationary probabilistic
spatial process and follow [GM09], who proposed automatic detection thresholds in any colored
Gaussian noise.

Their a contrario framework computes a Number of False Alarms (NFA) for each value in
excess in a colored noise image, under the null hypothesis that the residual is centered Gaussian
noise of unit variance. The null hypothesis doesn’t require the noise to be uncorrelated. Since
anomalies are expected to deviate from this background model, this amounts to checking the
tails of the Gaussian and to retain high values as significant if their tail has a very small area.
Computing an NFA is justified by the intensive multiple testing involved in the detection. Indeed
every pixel of each residual channel are tested.

More precisely, given a set of random variables (Xi)i∈[|1,N |], understood as a set of threshold
tests, a function f verifies the NFA property if it guarantees a bound on the expectation of its
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Algorithm 23: VPLR search algorithm
input : v an image, F a VP-tree forest constructed with the patches from v, p a query

patch, κ× κ the size of local search regions, k the number of patches required,
a forbidden region (possibly empty)

output : A list of matches for p
1 Initialize an empty list l
2 for each tree T in F do
3 Initialize t to T
4 while t is not a bin do
5 (s, d), T1, T2 ← t
6 if the distance from p to s is smaller than d then
7 t← T1
8 else
9 t← T2

10 Retrieve the list {ϕ1, . . . , ϕk} of k best matches from t that are outside the forbidden
region and add them to l

11 Keep the k best matches from l
12 for each ϕi in l do
13 Search in the region of size κ× κ centered on ϕi in v for better matches (consider

only patches outside the forbidden region)
14 Keep the k best matches in l
15 return the list l = {ϕ′1, . . . , ϕ′k} of k best matches after the update using the VPLR

search

Algorithm 24: computeResidual: Computation of the unstructured residual
input : A multichannel image u, a multichannel reference image v, n the number of

nearest neighbors, h the similarity parameter, patch size sp // v is
potentially equal to u

output : Residual r(u) = û− u where û is the model of u.
1 for all multichannel patch P of u do
2 Estimate the n nearest neighbors (P1, . . . , Pn) of P in v deprived from a square

region around P if v is u. // See Algo. 23
3 Reconstruct the patch (using (9.1))
4 for pixels j in u do

5 û(j) =
∑

i∈{s|j∈Ws}
P̂i(j)

#{s|j∈Ws} // Aggregate the different estimates

6 return r(u) = û− u
7 Notation convention: Ws is the set of pixels in the patch centered at s. P̂i(j) is the value

at pixel j of the reconstructed patch centered at i.
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Algorithm 25: fitResidual: Fit the residual distribution and convert it to a Gaussian
input : r a set of residual values obtained from Alg. 24
output : r′ the resulting modified residual

1 Ignore all zeros for the distribution estimation.
2 for all α in [0.5, 0.6, . . . , 1.4] do
3 Test if rα is Laplacian
4 Test if rα is Gaussian
5 The best distribution D and α are kept.

//

Best distribution in terms of
minimizing the l2 distance from
the uniform distribution of
the cumulative histogram of
cdfD(rα), where D is the tested
distribution.

6 r′ ← inv_cdfGaussian(0,1)(cdfD(rα)) // Applied element-wise

7

number of false alarms under the null-hypothesis, namely:

∀ε > 0,E[#{i, f(i,Xi) ≤ ε}] ≤ ε. (9.2)

A common way to build an NFA is to take, for each feature channel image, f(i,x) = NP(Xi ≥
xi), or

f(i,x) = NP(|Xi| ≥ |xi|) (9.3)

where Xi denotes a residual image. N is the number of tests, generally the overall number of
pixels of all tested images.

Detection of anomalies of different sizes at a given scale. When working with colored noise,
Grosjean and Moisan [GM09] recommend to convolve the noise with a measure kernel to detect
spots of a certain size. This corresponds to the generation of new channels r̄(u) = r(u) ∗ K
where K is the normalized support of a disk of a given radius. But since we apply the detection at
all dyadic scales, the tested radii are limited to a small set of Nconv values (1 to 3) at each scale.
The disks are normalized to keep unit variance. Because the residual is assumed to be a stationary
Gaussian field, the results after the filtering are also Gaussian. In that case, the test function is
then

f(r̄(u)) = N
1
2erfc

( |r̄(u)|
σ

)
(9.4)

with sigma the variance of r̄(u). The combination of the detections on the different versions of
the residual is explicitly handled by the statistical test. Thus, the inputs to the detection phase
are multichannel images of different scales, where each one is assumed to be a centered Gaussian
field having unit variance at each pixel.

Multiscaling. The problem of anomaly detection is fundamentally multiscale. One would like
to find both anomalies at a fine scale, for example small anomalies inside a texture, or at a coarser
scale, for example a hole inside a textile. If one wants to be thorough, all these anomalies need
to be detected whatever the scale they appear in. Even though the detection algorithm presented
previously is not inherently multiscale, it can become so by applying it to all the different scales
of the image. The idea to generate the different scales, process them and combine the result is
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inspired by multiscale denoising such as [PMF17]. The scaled images can be computed by Gaus-
sian subsampling. A Gaussian blur of parameter λ is applied to the image before a subsampling
of 2 in each direction (so 4 in total). The standard deviation of the Gaussian λ is chosen so that
the image has the same blur as the original one after subsampling. This blur is assumed to be
of the order of 0.8 for natural well sampled images [Low04]. This means that the target blur
before subsampling is λ′ = 2 × 0.8. We are searching for the blur λ such that the the Gaussian
convolutions G verify

Gλ′ = Gλ (G0.8) (9.5)

Since the variances of convolved Gaussians add up, this amounts to imposing a blur such that

λ′2 = 0.82 + λ2 (9.6)

i.e.
0.82 + λ2 = (2× 0.8)2 (9.7)

and therefore
λ =
√

3× 0.8 ≈ 1.39. (9.8)

The process can then be iterated to compute all the dyadic scales. The corresponding pseudocode
is in Algorithm 26.

Algorithm 26:multiscaleDecomposition: decompose an image in its different scales
input : An image u
output : A set (ui) of images representing the different scales

1 u0 ← u // The first scale corresponds to the original image
2 for i = 1 to 3 do
3 ui ← G1.39 ∗ ui−1

//
G1.39 is a Gaussian kernel of standard
deviation 1.39, the convolution is computed
using a discrete filter of size 2b4σ + 0.5c+ 1

4 ui ← subsample(ui) // Subsample by a factor 4 (2 in each
direction)

The statistical test. To detect anomalies for both sides of the tails, we use the NFA given
in (9.3). It remains to compute the number of tests N which is significantly larger than the
number of image pixels. Indeed, the detection occurs on Nscales different scales of the residuals,
computed by Gaussian subsampling. The first scale is of the size of the original image, while
each other scale is reduced by a factor of two. The produced residuals are of the size of their
input images (in the case of the pixel method), or smaller (in the case of CNN features. See
Section 9.3.3). Furthermore, the images have several channels and each test is replicated on all
channels.

Denoting by Ωs the set of pixels for the residual at scale s, Nconv the number of convolution
filters and Nchan the number of channels, the number of tests is

N = NconvNchan

Nscales−1∑
i=0

|Ωs|. (9.9)

In our case, Nchan corresponds to the number of channels of the image, Nconv to the number
of radii tested and

∑Nscales−1
i=0 |Ωs| = 4uhuw

3 with uw and uh the width and the height the input
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image. This leads to

N = 4uhuw
3 NchanNconv (9.10)

The detection process is summarized in Algorithm 27.

Algorithm 27: detect: Detecting anomalies in a residual image
input : A residual image r, (uw, uh, uc) the size of original image u (before any

downsampling), the list R of disk radii to test, the NFA threshold ε, sp the
patch size used for Alg. 24

output : A list of detections l
1 for Ri in R do
2 Compute the disk kernel function f of radius Ri
3 r̂ ← r ∗ fi // Convolve the image with the kernel (exact

convolution done in Fourier)
4 Estimate σ the standard deviation of r̂
5 for each pixel r̂k of r̂ outside of the border of size sp/2 // Detections are

unreliable on the border
6 do
7 if log

(
4uhuwuc

6 length(R) erfc
(
|r̂k|
σ

))
< ε // See Eqs (9.4) and (9.10)

8 then
9 Add the position of the pixel and Ri to l

9.3.3 Choice of the image features

We now describe the image features, or channels, on which anomalies are detected. This is often
considered an important step in anomaly detection. We found that our detection in the residual,
which is unstructured noise, is fairly independent of the channel choice. We used with equal
success the raw RGB colors as channels, or the intermediate feature channels of a pre-trained
neural network. To that last purpose we used the VGG network [SZ15], a CNN trained on the
ImageNet database [DDS+09].

We removed the network padding to guarantee spatial invariance. Indeed if the network
padding is kept, the feature distributions differ at the borders of the feature maps [RDDM18].
We took the normalized version of the network and found slightly better results by working on
the square root of the raw network features. Before the residual computation on NN features, we
reduce their dimensionality with a PCA filter trained independently for each input image. This
reduction is a compromise between the expressive power of the complete set of NN features and a
compact image representation where visually almost-similar objects have similar representations.
This transformation is represented on Figure 9.2.

9.3.4 Algorithm parameters

The main parameter of the statistical test is the number of allowed false alarms. In all of our
experiments it was set to 1/100. Hence an anomaly is detected at pixel x in channel i if and only
if the NFA function f(i,x) is below ε = 10−2. This means a theoretical expectation of less than
10−2 “casual” detection per image under the null hypothesis. We shall anyway observe much
smaller NFAs for the real anomalies.

Another setting is the size of the disks for the convolutions. We got better results with disks
of radius one and two for the basic method working on pixels, and radius one, two and three with
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Neural Network features (See section 9.3.3). Neural Networks need bigger disks to remedy to the
fact that medium-sized spots for the residual at a given scale may disappear at the following scale
because Neural Networks features tend to ignore very small elements.

The other parameters are fixed as follows. We set the number of scales Nscale to 4 in all of
our tests. The patch size for Algorithm 24 is set to 8 × 8 × 3 for the basic version, while when
using Neural Network features, we take the first five components with PCA and use a patch size
of 5 × 5 × 5. In both cases, the number n of patches for the search is set to 16. The similarity
parameter h is set to 10.

9.4 Experiments

In this section we shall compare six methods methods:

• The [GM09] stochastic parametric background model. We denote this method
by Grosjean.

• The [AT10] Fourier homogeneous model. We denote this method by Aiger.

• The [ZC10] non-local self-similar model. We denote this method by Zontak.

• The sparsity-based background model of [BCW14]. We denote this method by Boracchi.

• The non-local self-similar model of [MC14]. We denote this method by Mishne.

• Our non-local self-similar model [DEMD18]. We denote this method by Davy.

We use the NFA modified versions of these methods, presented in [EDMD19], whenever it is
possible. The advantage is that the detection process is then only controlled by a single parameter
making them easier to compare, especially for AUC estimation.

We propose two types of experimental comparison.

• The first comparison is a qualitative sanity check. For this qualitative analysis we tested
on synthetic examples having obvious anomalies of different types (color, shape, cluster),
or inexistent (white noise). These toy examples provide a sanity check since one would
expect all algorithms to perform perfectly on them. We will also examine the results of the
competitors on challenging examples taken from anomaly detection articles.

• The second protocol is a quantitative evaluation. We generated anomaly-free images as
samples of colored random Gaussian noise. Being a spatially homogeneous random pro-
cess, such images should remain neutral for an anomaly detector. We then introduced
small anomalies to these images and evaluated whether these synthetic anomalies were de-
tected by the competitors. This leads to evaluate a true positive detection rate (TP) for each
method on these images. We also evaluated how much of the anomaly free background was
wrongly detected, namely the false positive detection rate (FP). Disposing of TP-FP pairs
yields ROC curves that will be opportunely discussed. Undoubtedly, the colored Gaussian
noise used in this experiment could be replaced by any other spatially homogeneous ran-
dom process. We varied the background texture by varying strongly the process’s power
spectrum.
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9.4.1 Qualitative evaluation

The toy examples are probably the easiest to analyze. We show the results in Figure 9.9. We
generated images in the classic form used in anomaly detection benchmarks like in [RMD+13],
where the anomaly is the shape or the color that is unique in the figure. In the third toy example
most rectangles are well spaced except in a small region. The anomaly therefore is a change
in spatial density. Even though these examples are extremely simple to analyze, they appear to
challenge several methods, as can be seen in Figure 9.9. Only [DEMD18] is able to detect accu-
rately the anomaly in all three examples. This is explained in the second row where the residual
after background subtraction is shown. In the residual details of the anomalies stand out on a
noise-like background. While [AT10] works well with the color and the shape, it fails to detect
the spatial density anomaly. [ZC10] detects well but also lots of false detection. The other meth-
ods [ZC10, MC14, GM09] and [BCW14] over-detect the contours of the non anomalous shapes,
thus leading to many false positives. We also tried a sanity check with a pure white Gaussian noise
image. This is done in the last two examples of Figure 9.9. [DEMD18], and [GM09] soundly de-
tect no anomaly in white noise, as expected. However a few detections are made by [BCW14] and
almost everything is detected by [MC14]. It can be noted that the background model of the first
three papers is directly respected in the case of white Gaussian noise, which explains the perfect
result. (In the case of the model of [DEMD18], it has to be noted that non-local means asymptot-
ically transforms white Gaussian noise into white Gaussian noise [BCM08]). The over-detection
in [MC14] can be explained by the lack of an automatic statistical threshold. The few spurious
detections in [BCW14] show that the feature used for the detection doesn’t follow a Gaussian
distribution, contrarily to the method’s testing assumption. It is also clear that one cannot build a
sound sparse dictionary for white noise.

The same test was done after adding a small anomalous spot to the noise, and the conclusion
is similar: [DEMD18,GM09] perform well, [BCW14] has a couple of false detections and doesn’t
detect the anomaly. One method, [ZC10], doesn’t detect anything. Finally [MC14] over-detects.
Both noise images were taken from [GM09].

We then analyze three examples coming from previous papers. The first one (first column in
Figure 9.10) is a radar image of an undersea mine borrowed from [MC14]. The mine is detected
by [DEMD18, GM09] without any false detections. Both [MC14, BCW14] have false detections;
[ZC10] over-detects and [AT10] misses the mine. The second example (second column in Figure
9.9) shows an example of near-periodic texture. This is one of the examples where Fourier based
methods are ideally well suited. It was therefore important to check if more generic methods were
still able to detect the anomaly. Two methods [AT10] and [GM09] fail to detect the anomaly, the
other three methods performing really well. This makes the case for self-similarity and sparsity
based methods, that generalize nicely the background’s periodicity assumption. The final example
(third column from Figure 9.10) is a real example of medical imaging borrowed from [GM09]
where the goal is to detect the tumor (the large white region). [AT10, BCW14] fail to detect the
tumor. A strong detection is given by [ZC10, MC14] but the false alarms are also strong and
numerous. Finally [DEMD18] has stronger tumor detections than [GM09]) (a NFA of 10−6.6

against 10−2.8) but it has several false alarms as well.
Finally we tested the methods on real photographs taken from the Toronto dataset [BT06].

This clearly takes several of the methods out of their specific context and type of images (tumors
in X-ray images, mine detection in sonar scans, clot detection in microfibers, wafer defects,...)
On the other hand, the principles of the algorithms are general. So by testing on these examples,
our goal is to explore the limits of several detection principles, not to compare these specific
algorithms. Clearly some of the methods are more adapted for spatially homogeneous background
than to an outdoor cluttered scene.

Another issue when using real photographs is that anomalies detected by humans may be
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semantic. None of the methods we consider was made to detect semantic anomalies, that can
only be learned on human annotated images. Nevertheless, the tests’ results are still enlightening.
Detections are very different from one method to the other. The fourth example in Figure 9.10
shows a man walking in front of some trees. [AT10, GM09] and [MC14] don’t detect anything.
Both [ZC10,BCW14] detect mostly the trees and the transition between the road and the sidewalk.
Surprisingly [DEMD18] only detects the man. Indeed in the noise like residual one can check
that the man stands out. The second example shows a garage door as well as a brick wall. This
time the algorithms tend to agree more. The conspicuous sign on the door is well detected by
all methods as well the lens flare. A gap at the bottom between the brick wall and the door is
detected by [DEMD18, MC14, GM09, BCW14]. The methods [MC14] and [BCW14] also detect
the transition between the wall and and the brick wall. Finally some detections on the brick
wall are made by [DEMD18] and [BCW14]. The residuals of [DEMD18] on the second row are
much closer to noise than the background, which amply justify the interest of detecting on the
residual rather than on the background. Nevertheless, the residual has no reason to be uniform,
as is apparent in the garage’s residual. Even if the detections look any way acceptable, this non-
uniformity of the residual noise suggests that center-surround detectors based on a local variance
(as done in [GM09]) might eventually be preferable.

Fixing a target number of 10−2 for the NFA means that under the (H0) model, only 10−2

false positives should occur per image. Yet, many of them shown examples show several false
positives. Given the mathematical justification of these thresholds, false positives come from
discrepancies between the hypothetical (H0) model and the image. In the case of [ZC10], the
over-detection in the trees of the picture with a man can be explained by the limited self-similarity
of the trees: for this region, the nearest patches won’t be close enough to the patch to reconstruct
to fit the model, which requires at least one would-be-identical-except-for-the-noise patch in the
neighborhood. The over-detection in the case of the undersea mine is likely a mismatch of the
noise model with the picture noise. The many false alarms of this method for the other examples,
makes us wonder if the model hypothesis is not too strong. The [BCW14] method triggers many
false detections in almost all examples tested. As we mentioned, this suggests that the Gaussian
model for the detection pairs is inaccurate. This is not necessarily a problem for specific fault
detection applications where the false alarm curves can be learned.

9.4.2 Quantitative evaluation

Estimating how well an anomaly detector works “in general” is a challenging evaluation task.
Qualitative experiments such as the ones presented in section 9.4.1 give no final decision. Our goal
now is to address the performance evaluation in terms of true positive rate (TP) and false positive
rate (FP). To that aim, we generated a set of ten RPN textures [GGM11a] which are deprived
of any statistical anomalies. We then introduced one artificial anomaly per rpn by merging a
small piece of another image inside each of them. This was made by simple blending or by
Poisson editing [PGB03] using the implementation of [DMFML16]. This method provides a set
of images where a ground truth is known. Hence the detection quality measure can be clearly
defined. Figure 9.5 shows one of the generated RPN images with an anomaly added and the
anomaly’s ground truth locus. Table 9.1 shows the result for our six methods on this dataset.

Table 9.1 demonstrates that for all methods, the predicted number of false positives (namely
the theoretical NFA) is not always achieved. Indeed, the threshold for Table 9.1 was chosen
so that the theoretical number of false detections per image should be 10−2. When taking into
account the total number of pixels, this means that only around 4×10−6% false detections should
be made by any method in this table. Only two methods are close to this number: [AT10] and
[DEMD18], while the other compared methods make too many false detections. Such a false
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Figure 9.5: A ground truth (on the right) for anomaly detection has been generated by introducing an
anomaly in a RPN [GGM11b] texture (on the left), which is anomaly free. The detection is then done
on the result (in the middle).

TP pixels (in %) FP pixels (in %) TP anomalies (in %) FP anomalies (in %)

[AT10] 56.2 7.60× 10−4 90 40
[ZC10] 0 0 0 0
[MC14] 23.4 8.52 90 90

[BCW14] 78.2 0.87 100 100
[GM09] 11.6 0.16 30 20

[DEMD18] 33.1 1.79× 10−5 80 10

Table 9.1: Quantitative comparative results for anomaly detection. The number of true positive (TP) and
false positive (FP) for different metrics is shown. TP pixels and FP pixels correspond to detections at a pixel
level. A true positive is when an anomalous pixel is detected, and a false positive when a normal pixel is
detected as anomalous. TP anomalies and FP anomalies evaluate if anomalies have been detected at all.
A true positive is counted when there is at least one detected pixel in an anomalous region, and a false
positive when there is at least one detection completely outside an anomalous region (with a maximum of 1
FP per image). These results were computed on a dataset of random uniform textures with a single anomaly
added to each image. The thresholds were set for a targer number of false alarms (NFA) of 10−2 per image
(theoretical FP pixels of 4 × 10−6%). An example of an image from the dataset is shown in Figure 9.5.
A method works correctly if it detects a high percentage of anomalies (third column) while having a good
pixel coverage (first column), and a minimal false positive rate (second and fourth columns). Having a very
low false positive rate is crucial for massive fault detection. In that sense, the best methods are [AT10]
and [DEMD18].

positive target might seem too strict. Yet, it is an important requirement of anomaly detectors
in fault detection to minimize the false alarm rate. Indeed excessive false alarms may put a
production chain in jeopardy. Images are generally of the order of 107 pixels. Therefore if one
wants to limit the false detection rate in a series of tested images, the false positive rate needs to be
really small. The methods compared - except [MC14] - used the NFA framework. Therefore the
discrepancy between the theoretical target and the obtained number of false alarms is explained
by an inadequate (H0) for the images. In fact, only the background model of [AT10] matches
completely these really specific textures that are RPNs.

To better compare the methods, we also computed ROC curves for all methods, Figures 9.7
and 9.8, as well as the table of true positive areas and false positive areas for a fixed positive rate
of 1% (Table 9.2). The ROC curve aren’t impacted by the choice of thresholds. Figure 9.7 is
shown with a log scale for the number of false positives because its low or very low false positive
section is much more relevant for anomaly detection than the rest. From these ROC curves and
tables we can conclude, for this specific example, that [AT10] (Area under the curve (AUC)
7.52) (which theoretically should be optimal for this problem) performs the best followed closely
by [DEMD18] (AUC 7.03). It’s worth noting that [DEMD18] is performing better than [AT10]
for very low false positive region. We then have [BCW14] (AUC 5.79). The trailing methods
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TP pixels (in %) FP pixels (in %) TP anomalies (in %) FP anomalies (in %)

[AT10] 79.1 1.0 100 100
[ZC10] 27.2 1.0 60 60
[MC14] 12.5 1.0 50 90

[BCW14] 80.1 1.0 100 100
[GM09] 24.2 1.0 70 100

[DEMD18] 65.0 1.0 100 100

Table 9.2: This table is similar to Table 9.1, but in this case each method detection threshold is set so as
there are 1% false positives. Hence, the criterion is to detect as many anomalies as possible (third column)
while having a high true positive rate. The winners are clearly [BCW14] and [AT10].

Figure 9.6: Example of detections for all the different methods on 9.5. It corresponds to the one showed in
Table 9.1. From left to right: [AT10], [BCW14], [DEMD18], [GM09], [MC13] and [ZC10].

are [GM09] (AUC 3.30), [ZC10] (AUC 2.92) and finally [MC14] (AUC 1.98) . Nevertheless, if
a moderate number of false positives can be tolerated, then [BCW14] becomes really attractive
because of its high detection precision. Figure 9.8 illustrates the problem of false detections.
Most methods requires many false detections to achieve a reasonable detection rate. Only [AT10]
(AUC 0.82) and [DEMD18] (AUC 0.87) detect well while still keeping a zero false detection
rate. This confirms the results from Table 9.1. Table 9.2 also shows that having a 1% detection is
useful to obtain a good precision but leads to almost all images getting false positives. In practice
1% is too large a tolerance for images. In Figure 9.6 we show the result of the detections on 9.5
corresponding to Table 9.1 for the different methods.

9.4.3 Computation time analysis

In this section we do a brief computation time analysis. All algorithms have wildly different
computation times. For example [AT10] method is really fast as no really complex computations
are needed. On the contrary the [MC14] method is really slow. Table 9.3 summarizes the com-
putation time for the different algorithms for the parameter used for the experiment. It’s worth
noting that for the larger parameters the [MC14] method requires many hours to compute a single
result. It’s also worth noting that even though the [BCW14] and [DEMD18] algorithms are not
the fastest ones, the dictionaries of patches and indexes for the searches can be precomputed and
therefore accelerated for fast industrial applications. For example the processing of [BCW14]
only takes 12s when the dictionary is prelearned. The computation time estimation was done on a
core i7-7820HQ 2.90GHz using authors’ code whenever it was available ( [BCW14], [DEMD18]
and [MC14] are multithreaded so actual computation times are reported. We report 1/8 of the
actual computation time for [AT10], [GM09] and [ZC10] for a fair comparison).

[AT10] [BCW14] [DEMD18] [GM09] [MC14] [ZC10]

0.09 1375 57 1.4 749 394

Table 9.3: Computation time (in seconds) for the different methods reviewed in details with the parameter
chosen for the experiments for the door image (size: 600× 450).
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Figure 9.7: ROC curve computed on the dataset of synthetic images. A true positive corresponds to
an anomalous pixel detected. A false positive corresponds to a normal pixel that has been detected as
anomalous. In deep blue [AT10] (Area Under the Curve (AUC) 7.52), in red [BCW14] (AUC 5.79), in yel-
low [DEMD18] (AUC 7.03), in purple [GM09] (AUC 3.30), in green [MC14] (AUC 1.98) and in light blue [ZC10]
(AUC 2.92).

Figure 9.8: ROC curve computed on the dataset of synthetic images. A true positive is when an anomaly
is detected (in the sense that at least one detection has been made inside the anomalous region). A false
positive is when there is a detection outside the anomalous region. In deep blue [AT10] (Area Under the
Curve (AUC) 0.82), in red [BCW14] (AUC 0.585), in yellow [DEMD18] (AUC 0.87), in purple [GM09] (AUC
0.52), in green [MC14] (AUC 0.28) and in light blue [ZC10] (AUC 0.625).
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Figure 9.9: From left to right: Image presenting an anomaly in colors, in shape and in density, image of
pure noise, and image of noise with an anomaly in the middle (from [GM09]). From top to bottom: The
original image, the image residual of one of the scales computed in [DEMD18] (the scale shown is the one
where the anomaly is the most salient, the contrast has been adjusted for visualization purpose), algorithm
detections for: [DEMD18], [AT10], [ZC10], [MC14], [GM09] and [BCW14]. Detections are shown using the
following color coding: white is a weak detection - threshold with NFA ∈ [10−3, 10−2], cyan is a mild detection
- threshold with NFA ∈ [10−8, 10−3], green is a strong detection - threshold with NFA ∈ [10−21, 10−8], and
orange is very strong - threshold with NFA ≤ 10−21. When available, red is the detection with the threshold
corresponding to the lowest NFA. For [MC14] we adopted a similar color coding: white between 0 and 0.5,
cyan between 0.5 and 0.7, green between 0.7 and 0.9 and orange above 0.9.
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Figure 9.10: From left to right: image of an undersea mine from [MC14], image of a periodic textile
from [TH99], image of a tumor from [GM09], image of a man from the Toronto dataset [BT06], image of
a garage door from [BT06]. From top to bottom: The original image, the image residual of one of the scales
computed in [DEMD18] (the scale shown is the one where the anomaly is the most salient, the contrast
has been adjusted for visualization purpose), algorithm detections for: [DEMD18], [AT10], [ZC10], [MC14],
[GM09] and [BCW14]. Detections are shown using the following color coding: white is a weak detection
- threshold with NFA ∈ [10−3, 10−2], cyan is a mild detection - threshold with NFA ∈ [10−8, 10−3], green
is a strong detection - threshold with NFA ∈ [10−21, 10−8], and orange is very strong - threshold with NFA
≤ 10−21. When available red is the detection with the threshold corresponding to the lowest NFA. For [MC14]
we adopted a similar color coding: white between 0 and 0.5, cyan between 0.5 and 0.7, green between 0.7
and 0.9 and orange above 0.9.
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9.5 Conclusions

We shall now address the objections that come to mind.

Is the method new? We have listed several saliency or anomaly detection methods based on
rarity (sparsity, lack of similar patches, etc.) Thus involving sparsity or self-similarity is not new.
The novelty of the method seems to be that it builds a new image, the residual, where the self-
similar structure has been eliminated. As we have seen, using the a contrario framework is not
new, but its use was restricted to detection in Gaussian colored noise.

Is the residual really stationary noise? The hypothesis is that the residual is noise, in the
sense that it has lost all self-similarity. But this noise might not be stationary, which would lead to
detection misses. Indeed, as a toy example assume that an image is composed of two textures, one
very contrasted, and the other not. Then, the residual will have higher variance in the contrasted
part. If the anomaly lies in the non-contrasted region, it might be missed because the (global) noise
variance is overestimated (for this region). This can only be solved by localizing the detection,
namely estimating the noise variance more locally, or equalizing its variance to make it stationary.
This remains to be investigated.

Redundant detections? We have shown the detector performance either on the color channels
or on VGG feature channels. Observe that these detections can be fused by a mere union, as they
are all meaningful. They are, as we saw, redundant and were shown to illustrate the independence
of the method from the chosen channel.

Extensions. An extension to video is highly desirable but requires a computationally intensive
implementation to perform nonlocal space-time patch comparison.
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10 Analysis of PatchMatch

Many problems in image/video processing and computer vision require the computation of a
dense k-nearest neighbor field (k-NNF) between two images. For each patch in a query im-
age, the k-NNF determines the positions of the k most similar patches in a database image.
With the introduction of the PatchMatch algorithm, Barnes et al. demonstrated that this large
search problem can be approximated efficiently by collaborative search methods that exploit
the local coherency of image patches. After its introduction, several variants of the original
PatchMatch algorithm have been proposed, some of them reducing the computational time
by two orders of magnitude. In this chapter we study the convergence of PatchMatch and
its variants, and derive bounds on their convergence rate. We consider a generic PatchMatch
algorithm from which most specific instances found in the literature can be derived as partic-
ular cases. We also derive more specific bounds for two of these particular cases: the original
PatchMatch and Coherency Sensitive Hashing. The proposed bounds are validated by con-
trasting them to the convergence observed in practice. This work was published in [EA18].

10.1 Introduction

Patch-based methods are among the state-of-the-art in several image/video processing and com-
puter vision applications. Often these methods require finding for all patches of a query image,
the (approximate) k nearest neighbors among the set of patches of a database image. This is
referred to as an approximate k nearest neighbors field (k-ANNF) from the query image to the
database image.

Examples of the application of k-ANNFs can be found for image completion (and edit-
ing) [AFCS11,BSFG09a], denoising of images [BSGF10] and video [BZZM15,LF10], video styl-
ization [BZL+15, BZZM15], alpha matting [HRR+11], optical flow [BYJ14, FBK15, HBK+14,
LYMD13] and stereo-vision [LYMD13, BRR11]. Also in the close field of computer graphics
ANNFs of 3D surface patches have been applied to mesh tracking [KH11] and texture trans-
fer [CFGS12].

The brute-force computation of the k-NNF scales linearly with the product of the number
of pixels in the query and the database images, and is therefore prohibitively slow. The first
practical approaches rely on data structures such as hash tables or partition trees (see [KZN08]
and references therein). The approximate k nearest neighbors of each query patch are computed
independently. Even if these approaches greatly improve with respect to the brute-force search,
they are still too slow (and moreover scale badly with the patch size) for many applications such
as those requiring user interaction.

The introduction of the PatchMatch algorithm [BSFG09a] and its generalized version
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[BSGF10] has represented a breakthrough in the field. It brings a speed-up of almost two orders
of magnitude over previous search techniques. The main reason for this is that PatchMatch per-
forms all queries simultaneously and in collaboration, exploiting the fact that overlapping query
patches are likely to have overlapping matches in the database image.

PatchMatch is an iterative algorithm which starts from a random initial guess for the k-ANNF
and gradually refines it. In each iteration, each patch propagates its current candidates to its
neighboring patches on the query image grid. Additionally, new candidates are searched randomly
in the database image. This is performed by uniformly sampling in a series of concentric squares
with decreasing radius centered at the position of the current best candidate.

Several works have improved the original PatchMatch algorithm reporting gains of one order
of magnitude or even more. The main theme of these works is to combine PatchMatch with
classical search structures to improve the random initialization or the random search. Coherency
Sensitive Hashing (CSH) [KA11] uses locality sensitive hashing [IM98] to improve both the
propagation and the random search steps. KD-trees [Ben75] are used in [OA12] instead of the
random initialization (after reducing the dimensionality of the patches). In [HS12] a KD-tree is
used for the random search.

In this chapter we extend and generalize the theoretical framework of [ACF12] formalizing
PatchMatch-like techniques. We apply it to study their convergence and give upper bounds on
their convergence speed which are tighter than the ones of [ACF12]. In particular we study
the original PatchMatch [BSFG09a], its generalization to k nearest neighbors [BSGF10] and
CSH [KA11]. Our estimates of a geometric convergence rate confirm the intuitions that led to
the design of these algorithms. They also provide insight that might help improving current
techniques.

We interpret PatchMatch in a general setting, as a collaborative optimization tool. While the
results in [ACF12] consider only the original PatchMatch algorithm with one nearest neighbor,
our results apply to k-nearest neighbors and to more complex PatchMatch algorithms, such as
CSH [KA11], propagation-assisted KD-trees [HS12] and RIANN [BZZM15].

We start by giving a precise definition of a generic PatchMatch algorithm in §10.2. In §10.3
we analyze the convergence of the generic PatchMatch, by bounding the probability of having
energies higher than a given threshold after an iteration of the algorithm. In §10.4 we consider two
specific algorithms, the original PatchMatch [BSFG09a] and CSH [KA11] and derive specialized
bounds for them. Finally, in §10.5 we compare the theoretical bound to empirical cases. The
proofs of our results can be found in the supplementary material.

10.2 Generic fast patch matching algorithm

10.2.1 Notations

We denote the query image by A and the database image by B. We write x ∈ A if x ∈ Rd is a
patch of the image A (with this abuse of notation, A is both an image and the set of its patches).
The k-NNF from image A to B is denoted by ϕ. For a patch x ∈ A the matches associated to x
in B are written as ϕx, which is a set of k distinct patches of B.

Definition 10.1 (Matching energy). The quality of the matching of a patch x ∈ A is measured by
an the energy function Ux(.) defined for any patch z ∈ Rd with values between 0 and +∞. We
generalize this definition to a set of patches u by

Ux(u) = max
y∈u

Ux(y). (10.1)

This means that the minimum value of Ux over a set of k elements without repetitions is 0.
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In practice, the L2 distance in Rd, written as ‖.‖2, is often used to define as matching energy.
To have a minimum value of 0 over k-sets, we write it as

Ux(z) = ‖x− z‖2 −Kx (10.2)

where if Nk(x) ∈ B is the actual kth nearest neighbor of x in B, Kx = ‖x−Nk(x)‖2. It follows
that if u is a set of k distinct patches of B, then Ux(u) > 0. We write ϕx to denote the worst
match in this set, defined by

ϕx = arg max
y∈ϕx

Ux(y), (10.3)

where Ux(.) is the energy function of Definition 10.1.
The k-NNF ϕ assigns to each x ∈ A a k-set ϕx that minimizes Ux, i.e. such that Ux(ϕx) =

0. The goal of PatchMatch algorithms is to find an approximate solution to this optimization
problem. In the following we define a level-set, written {Uz > α}, for η a k-set of elements
η ∈ {Uz > α} if and only if Uz(η) > α.

The following operator selects the k patches with smaller energy Ux from a larger set.

Definition 10.2 (Merge operator). We define mergekx as an operator transforming a set of more
than k patches into a set of exactly k patches satisfying:

|mergekx(u)| = k and ∀p ∈ u\mergekx(u), Ux(p) > Ux(mergekx(u)). (10.4)

We use basic graph notation in the next sections. Consider a graph G = (V, E), where V is
the set of vertices and E the set of edges. By y ∼ x we denote that y is parent of x, i.e. (y, x) ∈ E .
We finally write µ(x) for the number of parents of a node x, i.e.

µ(x) = |{y | y ∼ x}|. (10.5)

A path of size m from x to z corresponds to a set of vertices (ci)i=1,...,m ∈ Vm such that c1 = x,
cm = z and for all i ∈ J1,m− 1K, (ci, ci+1) ∈ E . We write P(x, z) for the set of all paths (of any
size) from x to z.

10.2.2 Propagation graph

In a PatchMatch algorithm all patches in A collaboratively search for their matches in B. This
collaboration is achieved through the propagation of candidate matches from each query patch
to other patches in A following a specific order. This process can be described by defining a
directed acyclic graph over the set of patches of A, which we call the propagation graph following
[ACF12]. The vertices V in the propagation graph G are the set of patches of A, and the directed
edges E describe the propagation relationships: (z, x) ∈ E means that z propagates matches
to x. We associate an action function to each edge to allow for the possibility of applying a
transformation to the propagated matches.

Definition 10.3 (Propagation action). An action associated to an edge e ∈ E in the propagation
graph, written Ae, is a function which takes as argument a patch of an image and returns a patch.
This patch can either be from the same image or be a new one generated by the action.

The vertices in the propagation graph are indexed using a topological ordering (such an or-
dering exists because the graph is acyclic). The propagation follows this ordering. The complete
definition of the propagation graph is the following, and it fully specifies the propagation in a
PatchMatch algorithm.

193



Definition 10.4 (Propagation graph). A propagation graph, written G, corresponds to a triplet
(V, E , A) where V is the set of patches of image A, E a set of edges such that the graph is
connected and acyclic and A are the action functions associated to each edge (Def. 10.3).

For matching image patches, the forward propagation follows the raster order from the top-left
to the bottom-right. Each patch propagates matches to its neighbors on the right and down:

E = {(x, y)∈V×V | y = right(x) or y = down(x)} . (10.6)

The action shifts the candidate patch following the direction of propagation: if x ∈ A has a
candidate z ∈ B, it propagates right(z) ∈ B to right(x). Thus, A(x, right(x)) = right(·), and
analogously A(x, down(x)) = down(·).

Some variants of PatchMatch add additional edges to this basic propagation graph seeking
to enhance the impact of the propagation [BSGF10, KA11]. These additional transitions connect
pairs of patches in A that are similar, and thus good matches for one of patches in the pair are
natural candidates for the other. The action associated with these new edges is simply the identity
function.

PatchMatch algorithms have also been applied on meshes [KH11, CFGS12]. In those cases,
the propagation can be defined by considering a DAG on a subgraph of the mesh.

10.2.3 Random search

For the specification of a PatchMatch algorithm we need a mechanism for gathering random
samples around the current candidates.

Definition 10.5 (Random sampling operator). Given a database image B we define the transition
kernelQ such that for any k-setϕ of patches from image B,Q(ϕ, ·) is a probability on the k-sets of
patches from B. A set of k patches drawn from Q(ϕ, ·) will be denoted by Sϕ, i.e. Sϕ ∼ Q(ϕ, ·).
We consider transition kernels with the property of having a non-zero probability of transitioning
to a k-set of matches with arbitrary positive energy:

Q(ϕ, {Ux < ε}) > 0, ∀ϕ,∀x ∈ A,∀ε > 0. (10.7)

Defined alongside the kernel Q is the worst case transition probability for an energy level ε
at z ∈ A, as the highest probability of transitioning between two sets of patches with energy level
higher than ε:

C(z, ε) := sup
η∈{Uz>ε}

Q(η, {Uz > ε}). (10.8)

Lemma 10.1. For all z ∈ A, C(z, .) is a non-increasing function such that for ε < 0, C(z, ε) ∈
[0, 1[ and C(z, ε) = 1 for ε 6 0.

10.2.4 Algorithm

The generic PatchMatch is presented in Algorithm 28. It starts by initializing the propagation
graph and the candidate matches. The propagation graph is initialized by defining a set of edges
E and the associated propagation actions A.

The core of the algorithm is the iterative process that cycles through the nodes in the topologi-
cal ordering updating the candidate matches according to the steps 5 and 8. The update in step 5 is
the result of selecting the best k matches from a set of candidates given by: the current k matches
ϕnx; the matches Ay,xϕn+1

y propagated from the parent nodes y ∼ x in the propagation graph;
and samples S2Ay,xϕ

n+1
y gathered around them. We call the latter set of samples the randomized
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propagation. In step 8 k random samples S1ϕ
n+1/2
x around the new current matches are drawn to

finish the update process.
The random samplings S1 and S2 are drawn from transition kernels Q1 and Q2 which might

differ. The parent nodes y ∼ x precede x in the topological ordering, therefore they propagate to
x the updated candidates ϕn+1

y .
After each iteration the propagation graph is reversed. The last step considers the possibility

of modifying the propagation graph by adding/removing relevant/irrelevant edges. This is done
for example in CSH [KA11].

Algorithm 28: Generic patch matching algorithm

1 Initialize propagation graph G

2 Initialize matching ϕ0

3 for n ∈ N do
4 Update candidates
5 for x ∈ V following the topological ordering do

6 ϕn+1/2
x = mergekx

(
ϕnx ∪

⋃
y∼x

Ay,xϕ
n+1
y ∪

⋃
y∼x

S2Ay,xϕ
n+1
y

)
7

8 ϕn+1
x = mergekx

(
ϕn+1/2
x ∪ S1ϕ

n+1/2
x

)
9 Reverse propagation graph

10 Update propagation graph

10.3 Convergence of the patch matching algorithms

In this section we study the convergence of the generic PatchMatch algorithm described in the
previous section. We do so by upper-bounding the probability that the energy Ux at a node x is
larger than a threshold ε after an iteration of PatchMatch.

10.3.1 Point-wise energy decay

Our main result is Theorem 10.1 which bounds the decay of the probability of Ux(ϕn+1
x > ε).

The propagation makes this probability smaller, since any of the ancestors of x could find a
candidate that when propagated to x would yields an energy below ε. Indeed, as a consequence
of the propagation, if ϕx has energy higher than ε after a propagation pass, then the energies of
the ancestors z of x need to be higher than a series of levels εzx. The violation of any of these
restrictions would cause the propagation of a candidate match to x with energy Ux below ε. The
higher these levels, the smaller the probability of not sampling random candidates with energies
below them, and thus the smaller P (Ux(ϕn+1

x ) > ε).
In Lemma 10.2 we show that imposing a lower bound ε of the matching energy of a node x

results in lower bounds εz,x for all its ancestors z that can be calculated recursively starting from
x and following the reversed propagation ordering. In Theorem 10.1 we bound the probability
that none of x’s ancestors draw a random candidate with energy lower than the corresponding
εz,x.
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Lemma 10.2 (Constraints propagation). Consider an assignmentϕn+1 resulting from an iteration
of Algorithm 28. Then for each pair of nodes x, z ∈ V ,

Ux(ϕn+1
x ) > ε⇒ Uz(ϕn+1

z ) > εz,x, (10.9)

where the levels εz,x > 0 are as follows. For the ancestors of x (i.e. P(z, x) 6= ∅) the levels
`εz,x are defined via the following recursion starting from x and following the inverse propagation
order:  εz,x = min

{
Uz(θ)

∣∣∣∣∣ θ ∈ ⋂
y s.t. z∼y

A−1
z,y({Uy > εy,x})

}
εx,x = ε.

(10.10)

For the rest of the nodes εz,x = −1.

Once we have established this “allowed” sets for the ancestors of x, the idea of the proof is to
determine the probability of not escaping the allowed sets in any of the random searches.

Suppose z is an ancestor of x with a candidate ϕnz ∈ {Uz > εz,x} (for simplicity assume
k = 1). The probability of keeping the energy higher than ε after one iteration decreases because
there is a non-zero probability of taking a random sample outside this level set. The probability
of sampling a candidate in an upper-level set is

P(Sϕnz ∈ {Uz > l} | ϕnz ∈ {Uz > l}) =
1∫

{Uz>l} P(dϕnz )

∫
{Uz>l}

Q(ϕnz , {Uz > l})P(dϕnz ). (10.11)

If we knew the probability distribution of the candidate ϕnx at iteration n, we could compute the
above probability exactly. Instead, we bound it by assuming that all the mass of the distribution of
ϕnz concentrates on a single point: the one from which it is more unlikely to draw a sample with
energy lower than l. The resulting probability is given by the worst case transition probability C
in (10.8). This is the main intuition in the proof of our main result.

Theorem 10.1 (Point-wise convergence). Consider the field of candidate matches at iteration n,
ϕn. Define ϕn+1 by applying an iteration of the Generic PatchMatch in Algorithm 28. Then, for
all ε > 0, for all x ∈ A, we have

P(Ux(ϕn+1
x ) > ε) 6 P(Ux(ϕnx) > ε)

∏
z∈A

(
C2(z, εz,x)µ(z)C1(z, εz,x)

)
, (10.12)

where µ(z) was defined in (10.5) as the number of parents of node z and Ci denotes the worst
case transition probability for kernel Qi, as in Eq. (10.8).

For notation simplicity the product in (10.12) is over all patches z ∈ A, but the corresponding
Cis are 1 for those z that are not ancestors of x in the propagation graph.

The result from Theorem 10.1 reflects some of the intuitive ideas that led the design of patch
matching algorithms. Due to the propagation, all ancestors of x contribute to the probability of
x of improving its energy. But not all nodes contribute the same to the bound. The larger εz,x
the better, as the Ci(z, .) are non-increasing functions (Lemma 10.1). It is therefore important to
design the propagation graph and its actions to maximize the εz,x. The shift propagation actions
introduced in [BSFG09a] in the patch matching application can be interpreted under the light of
Theorem 10.1 as an heuristic to maximize the levels εz,x.

Indeed, εz,x is given by the minimum energy Uz in the intersection of the sets A−1
z,y({Uy >

εy,x}) for y in the set of nodes to which z propagates. Say y is the right neighbor of z. Then the
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propagation action from z to y is a right shiftAz,y = right( · ). Suppose that the patches are of size
s× s and the matching cost is a function of the sum of pixel-wise matching errors over the patch
(such as any Lp norm). Since the patches at z and y overlap, the energies Uy(η) and Uz(A−1

z,yη)
have s(s − 1) terms in common, and can expected to be similar. Therefore the minimum value
of Uz in A−1

z,y({Uy > εy,x}) should not be much lower than εy,x. By assuming certain regularity
conditions on the image it is possible to bound the difference between εz,x and εy,x. This is out
of the scope of this chapter.

A result that is found in practice is that the rate at which the energy decreases becomes slower
as the matches improve. Less contributions from other nodes are taken into account and mostly the
random search improves the matching. This is in agreement with the theory, since as ε decrease,
the sizes of the allowed set increase and the εz,x decrease as well. According to Theorem 10.1,
this results in a slower energy decrease.

We can also note that adding more edges to the propagation graph can only improve the
convergence rate, requiring a smaller number of iterations to achieve a desired precision in the
result (in probability). However, having more edges implies more computation each iteration. The
optimal number of propagation links results from a trade-off between the computational effort per
iteration and its impact on reducing the energy.

Most variants of PatchMatch use the same propagation graph and change the random search
steps (including the initialization). This can have a dramatic effect of the convergence. In our
bound the choice of the random search determines the coefficients C1 and C2 which depend
directly on the search transition kernel. Two examples of random searches will be reviewed in
§10.4.

In the case of the single nearest neighbor (k = 1) the bound from Theorem 10.1 can be
improved. The improvement comes from a better version of the Ci coefficients that considers the
transition probability of mergekx(η∪Siη). The details are provided in the supplementary material.

10.3.2 Uniform decay and convergence in the mean

One of the advantages of PatchMatch algorithms is that the NNF converges rapidly as a whole.
We now give bounds on uniform convergence and convergence in the mean.

Theorem 10.2. Consider the field of candidate matches at iteration n, ϕn. Define ϕn+1 by
applying an iteration of the Generic PatchMatch in Algorithm 28. Then, for all ε > 0 we have

P(‖U.(ϕn+1
. )‖∞ > ε) 6 P(‖U.(ϕn. )‖∞ > ε)∏

z∈A

(
C2(z, {Uz > ε})µ(z)C1(z, {Uz > ε})

)
. (10.13)

Theorems 10.1 and 10.2, together with the assumption (10.7) on the transition kernels Qi,
imply the convergence in probability of PatchMatch algorithms. Assumption (10.7) is necessary
to ensure that Ci(z, ε) < 1 for ε > 0. A stronger convergence can also be shown once we con-
sidered transition kernels Qi having this good property, the following result shows convergence
in the mean, both point-wise and uniformly for the whole energy field.

Corollary 10.1. Assume that for any pair (η, ξ) of sets of k candidate matches Q1(η, ξ) > 0 (or
Q2(η, ξ) > 0). Let (ϕn) be a sequence defined by Algorithm 28. Then ∀x ∈ A,E[Ux(ϕnx)] −−−→

n→∞
0 and E[‖U.(ϕn. )‖∞] −−−→

n→∞
0.

This assumption on Qi is reasonable when the universe of candidates is finite, such as when
searching matching patches in a database image B. Some variants of PatchMatch have been
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used to minimize a field of functions over continuous parameters (scales and rotations [BSGF10],
planes in 3D [BRR11]). The previous corollary does not apply in these cases. Nevertheless both
Theorems 10.1 and 10.2 remain valid even without assumption (10.7).

10.4 Specific PatchMatch algorithms

We now derive more specific bounds for two particular cases of the generic PatchMatch algorithm
found in the literature.

10.4.1 The original PatchMatch algorithm

The original PatchMatch algorithm was introduced in [BSFG09a] for k = 1, and then generalized
to k-nearest neighbors in [BSGF10] (the heap algorithm) together with other generalizations.
Most of them are covered by Theorem 10.1 as they are particular cases of Algorithm 28. In this
section, we derive a more specific bound for one of these variants.

The field ϕ of k-matches is initialized at random, by uniform sampling from image B. The
propagation graph is the basic one presented in §10.2.2, with the shift actions. For the forward
propagation these are A(x, right(x)) = right(·), A(x, down(x)) = down(·).

We define S1 by taking samples around the current best candidate (the RS best variant in
[BSGF10]). In [BSGF10] these samples are drawn from a sequence of transition probabilities.
The qth sample is sampled uniformly from a box of size [−dαq, dαq]2 centered at the current
match, for q = 0, 1, . . . , qmax, α = 0.5 and d = max{W,H} for a database image B of size
W × H . The number of samples is chosen so that the smallest box is larger than a pixel. The
first sample is taken uniformly on the whole image B, so that there is a positive probability of
transitioning from and to any two patches in B. For simplicity, we assume that the random search
operator S1ϕ

n
x draws k independent patches in B with the same probability distribution Q′(ϕ̃x, .),

where ϕ̃x is the best current match. For all φ ∈ B, the support of Q′(φ, ·) covers all patches in B,
so as in [BSFG09a, BSGF10], there is always a positive probability of transitioning between any
two patches in B.

Without loss of generality, to simplify the notation we consider that the propagation graph is
the same for all iterations (i.e. no alternation between iterations).

Proposition 10.1. The specific basic PatchMatch algorithm described above converges in prob-
ability to a NNF which minimizes the energy, namely

lim
n→∞

P(Ux(ϕnx) > ε) = 0,∀ε > 0, x ∈ A, (10.14)

with a geometric convergence rate. Moreover for all ε > 0, for all x ∈ A, we have that

P(Ux(ϕn+1
x ) > ε) 6 P(Ux(ϕnx) > ε)

∏
z∈A

(
1−

(
1− C ′(z, εz,x)

)k)
,

with C ′(z, α) := supη Q′(η, {Uz > a}). For α > 0 we can guarantee that C ′(z, α) < 1.

Corollary 10.2. If k = 1 the upper bound can be written as

P(Ux(ϕn+1
x ) > ε) 6

∏
z∈A

C ′(z, εz,x)P(Ux(ϕnx) > ε).

with C ′(z, α) := supη∈{Uz>a}Q
′(η, {Uz > a}).

Corollary 10.2 allows a direct comparison of our bound with the bound derived in [ACF12].
Both bounds have the same structure. However, the energy levels εzx [ACF12] are smaller than
ours causing a looser bound.
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10.4.2 The CSH algorithm

Coherency Sensitive Hashing (CSH) was introduced in [KA11]. It uses Locality Sensitive Hash-
ing (LSH) [IM98] to improve the random search and to add propagation edges.

LSH is a method for nearest neighbors search based on partitioning the search space using
a series of hash functions h drawn randomly from a family H. Each hash function partitions
the space in “bins” containing points with the same hash value. The family H has the property
that nearby points collide in the same bin with high probability, while far away points do so with
smaller probability. This is made precise by the following definition 10.6.

Definition 10.6. A family of functions H = {h : Rd → U}, where U is the set of hashes, is
called (R, cR, p1, p2)-sensitive if for any p, q ∈ Rd (for simplicity of notation, we write PH( . ) =
P( . | H))

(1) if ‖p− q‖ 6 R then PH(h(q) = h(p)) > p1,

(2) if ‖p− q‖ > cR then PH(h(q) = h(p)) 6 p2.

This is useful for nearest neighbors search when p1 > p2.

Instead of using directly the elements from H, a second family of functions G, called an OR
family, is created. The function g ∈ G is based on a set of n random functions h1, . . . , hn from
H such that for all p, q, g(p) = g(q) if and only if there exist i ∈ J1, nK such that hi(p) = hi(q).
This will be the set of functions used to define the algorithm.

Lemma 10.3. If H is (R, cR, p1, p2)-sensitive then an OR family G created using n functions
fromH is (R, cR, 1− (1− p1)n, 1− (1− p2)n)-sensitive.

In CSH, hash functions drawn randomly at each iteration are used both to define the random
search operator S1 and the randomized propagation operator S2. Let us define the projection bin
of a patch p ∈ Rd as

Bg(p) = {q ∈ B | g(p) = g(q)}. (10.15)

These projection bins depend on the random choice of the hash function, and are used to define
the candidate set sampling operators. The random search S1 is simply the projection bin of the
query patch x, i.e. S1ϕx := Bg(x). The randomized propagation is defined as the union of the
projection bins corresponding to the best b propagated candidates, where b 6 k is a parameter of
the method, that is:

S2Ay,xϕy = ∪bl=1Bg([Ay,xϕy]l), y ∼ x. (10.16)

Here [Ay,xϕy]l, l = 1, . . . , k are the propagated candidates.
Note that S1ϕx does not depend on the candidate list, but only on the query patch x. This

particularity, together with the properties of the hashing family H, can be exploited to derive
a tighter upper bound than the one given in Theorem 10.1. CSH also uses hashing over the
query image A to connect similar patches in the propagation graph. Our result is valid for any
propagation graph.

Proposition 10.2. For a (R, cR, p1, p2)-sensitive family of hashing functions such that R >
maxz∈A Kz (see Definition 10.1), the sequence (ϕn) defined by the CSH algorithm converges
in probability to a minimizer of the total energy,

lim
n→∞

P(Ux(ϕnx) > ε) = 0, ∀ε > 0, x ∈ A, (10.17)
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with a geometric convergence rate. Moreover for all ε > 0, for all x ∈ A,

P(Ux(ϕn+1
x ) > ε) 6 P(Ux(ϕnx) > ε) (10.18)∏

z∈A
C2(z, `εz,x)µ(z)f(p1, εz,x), (10.19)

where f(α, β) = (1− αk) if β > 0, 1 otherwise.

In practice it is possible to compute an (R, cR, p1, p2)-family of hash functions such that p1
is large enough to outperform the transition kernels used by the original PatchMatch algorithm.
This explains the improved convergence rate of CSH reported in [KA11].

10.5 Experiments and discussion

We show experiments comparing the convergence predicted by the theory with the one found in
practice, for the case of the original PatchMatch algorithm with k = 1 [BSFG09a]. The code to
reproduce the experiments is available at https://github.com/pariasm/pm-bound.

10.5.1 Computation of theoretical bound

Given an energy value ε and a patch x in the query image A, the computation of the bound re-
quires computing the energy levels εz,x and the worst case transition probabilityC1(z, εz,x) for all
ancestors z of x. The ancestors are all pixels located above and to the left of x during the forward
propagation, and below and on the right of x during the backward pass. The original PatchMatch
algorithm does not consider a randomized propagation S2Az,yϕ

n+1
y , thus in the following we will

drop the subindex for C1 and Q1.
The computation of the levels εz,x is straightforward. We loop on the ancestors starting from

x. Following the inverse propagation ordering we apply the recursion (10.10). The inverse actions
A−1
z,y are one pixel shifts in the opposite direction to the propagation. For instance if z propagates

to y at his right, then A−1
z,y{Uy > εy,x} results from shifting to the left all elements of {Uy >

εy,x} ⊆ B.
Figure 10.1 shows examples of the resulting εz,x at two image locations and for ε = 1 and

ε = 15. The larger the εz,x the smaller the coefficient C(z, εz,x) and the faster the convergence.
We can see that the levels εz,x at different points x can be very different. Moreover, increasing ε
increases the levels εz,x locally around x.

To compute the worst case transition probability C(z, εz,x), we compute for all η ∈ {Uz >
εz,x} the probability of drawing a sample from the upper-level set. As in the original PatchMatch,
we take n independent samples following a sequence of uniform distributions Siη ∼ Qi(η, ·) on
square boxes centered at η with a decreasing sequence of radii.1 For the worst case transition, we
need the n samples to be in {Uz > εz,x}, thus:

C(z, εz,x) = max
η∈{Uz>εz,x}

n∏
i=1

Qi(η, {Uz > εz,x}). (10.20)

For each sampling radius r, the probability Qi(·, {Uz > εz,x}) can be computed efficiently
via a convolution of the indicator function of the upper-level set with a box kernel of size 2r +
1× 2r + 12. We use an integral image implementation to speed-up the computation.

1This scheme differs from the one considered in Proposition 10.1, which takes k equally distributed samples Sη ∼
Q′(η, ·). But the theory applies the same as long as C is in accordance with the sampling procedure.

2The kernel needs to be normalized by the area of the portion of the kernel that fits in the image domain.
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Figure 10.1: We represent here the εz,xs for two different points x (top and bottom rows) and for ε = 1 (left)
and ε = 15 (right). The point x is the bottom right pixel.
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Figure 10.2: The different theoretical bounds are compared to the empirical one at the position of the two
points from Figure 10.1 for different values of ε. The plots show the probability than the energy is above
different energy levels. The line without marker corresponds to the empirical probability. The line marked
with a circle corresponds to the bound presented in [ACF12]. The line marked with a star correspond to the
bound presented in this chapter.

10.5.2 Experimental validation

To validate the theory we contrast the predicted evolution of the matching energy with the em-
pirical evolution. Since PatchMatch is a randomized algorithm, we estimate for a given energy
level ε the probability that the energy is above ε for each iteration. The empirical probability
is computed by running N iterations of PatchMatch a number of trials M . For a patch x ∈ A
we define Un,mx the matching energy at iteration n of trial m. Then the empirical probability of
Ux > ε is estimated as

P̂ (x, ε, n) = P̂(Ux(ϕnx) > ε) = 1
M

M∑
m=1

1(Un,mx > ε).

The theoretical bound on this probability is given by

B(x, ε, n) = P(Ux(ϕ0
x) > ε) ·K(x, ε)n, (10.21)

where K(x, ε) =
∏
z∈A C(z, εz,x). The candidates in the original PatchMatch are initialized

by sampling uniformly over the database image B, thus the initial probabilities can be easily
computed as the area ratio between the upper-level set {Ux > ε} and the image domain B.

In Figure 10.2 we plot the estimated probabilities P̂ (x, ε, n) together with the theoretical
boundB(x, ε, n) for a patch x ∈ A and several values of ε. As expected, the estimated probability
is below the worst case bound. For smaller ε the bound becomes looser. For example: for the
energy to be below than ε = 1 with a probability of 0.2, the theoretical bound predicts 178
iterations but in practice 60 were needed.

For k = 1, the gap between the theoretical bound and the empirical decay is mainly due
to upper-bounding the transition probability (10.11) by the worst case probability C. To verify
this we use a simplified random search: the sample Sη is taken uniformly over B (as in the
initialization). In this way, we eliminate the dependence between the sample Sη and the current
candidate η, and we have that P(Sϕnz ∈ {Uz > l} | ϕnz ∈ {Uz > l}) is the area ratio between the
upper level set and the domain of image B, regardless of ϕnz .

We generate two images of random noise. The query image A is of size 24× 24. It contains
q = 20 × 20 = 400 patches of size 5 × 5. The database image B is of size 104 × 104, thus
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Figure 10.3: The effect of the random search. If we simplify the random search and make it uniform, then
convergence is slower and the bound is tight. In this experiment, we match two random noise images. See
text for details.

containing p = 100 × 100 = 104 patches. As before, we compute the empirical probabilities
P̂ and the bound for the bottom right patch. We show two results: one using only the uniform
random search, and another one using the original centered random search. The plots correspond
to an energy level of ε = 0.5, and only the unique global minimum is below ε. When using
the uniform search, the empirical decay matches the theoretical prediction. The centered search
shows a faster convergence.

This experiment also shows that the theoretical bound captures the main intuition behind the
design of the PatchMatch algorithm: if a region of image B is an exact copy of image A (or of a
region in image A) it becomes very likely to find the copied region in the database image. Due
to the propagation, as soon as one node in A finds its match, it will be propagated to all other
nodes. In this case, one can compute exactly the probability that all the ancestors of x miss the
copied region. The probability of missing the global optimum is 1 − 1/p. The probability that
all q ancestors of x miss the optimum is therefore (1− 1/p)q. This coincides with the theoretical
bound.

As a final experiment we show results obtained computing C as an “average” transition prob-
ability instead of the worst case. This average transition results from assuming in (10.11) that
ϕnx is distributed uniformly over the upper-level set. Figure 10.4 compares the predictions of this
average C with the worst case C. While we do not have theoretical guaranties on the average C,
its behavior that is much closer to the empirical case.

10.6 Conclusions

We presented a theoretical analysis of the convergence of PatchMatch algorithms. For an energy
level ε, we show that the probability of having an energy above ε converges to 0 with the number
of iterations, and we provide worst case bounds on the convergence rate. Our analysis applies to
the case of k nearest neighbors, and to most variants of PatchMatch proposed in the literature. We
give specific bounds for two of these algorithms: the original PatchMatch [BSFG09a, BSGF10]
and CHS [KA11]. For the case of the original PatchMatch (with k = 1) we validate our results
by comparing the predicted convergence rate with the one found in practice. The setting of our
framework is rather general: the task of patch matching is viewed as an optimization problem
where the goal is to minimize several non-convex energies Ux over the same domain. This might
allow the application of these techniques to similar optimizations problems in other areas. For
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Figure 10.4: Comparison between the “average” and worst-case C. The curve with the diamonds corre-
sponds to the “average” C whereas the stars show the worst case C.

the case of matching patches, it would interesting to precise the link between the regularity of the
images and the convergence rate, at least for certain simple models of images.
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11 Detection of copy-paste forgeries
based on PatchMatch

This chapter presents an implementation and discussion of the recently proposed ‘Efficient
Dense-Field Copy-Move Forgery Detection’ by Cozzolino et al.. This method is a forgery
detection based on a dense field of descriptors chosen to be invariant by rotation. Zernike
moments were suggested in the original article. An efficient matching of the descriptors
is then performed using PatchMatch, which is extremely efficient to find duplicate regions.
Regions matched by PatchMatch are processed to find the final detections. This allows a
precise and accurate detection of copy-move forgeries inside a single suspicious image. We
also extend successfully the method to the use of dense SIFT descriptors and show that they
are better at detecting forgeries using Poisson editing.

11.1 Introduction

Copy-move forgeries correspond to the case where a region is copied from the image and then
pasted in another position of the same image. The copy could be modified in the meantime,
but the detection presented here is only guaranteed to work when a rotation has been applied.
Nevertheless we shall see that this method is also mildly robust to other perturbations such as
noise. This type of forgery, which can easily be performed with most image editing software
tools, is usually used to hide undesired details in the image, or to add new details. Detecting such
modifications can be challenging, especially when carried out by a professional image editor.

Many different methods have been developed to detect such modifications. In [Far09], Farid
presented a large number of such methods: from the simplest ones such as pixel-based methods
to much more complex physics-based methods by which, for example, the illumination of the
scene is studied. In this study, we focus on a single family of detection methods. These methods,
specialized im detecting copy-move forgeries, are organized in the following way. First, descrip-
tors are computed on the suspicious image. These descriptors are chosen to represent well the
local behavior of the suspicious image. They are then matched to each other during a matching
step to detect abnormal similarities within the image. In the final step, post-processing is applied
to refine detections and diminish the number of false positives. The first papers on this subject
proposed classic sparse image descriptors such as SIFT [PL10] or SURF [SB11]. A recent bench-
mark [CRJ+12] of many different methods based on both sparse descriptors and dense descrip-
tors shows that dense descriptors largely outperform sparse descriptors. For this reason [CPV15]
chose to use dense descriptors. Matching the descriptors, or equivalently finding the nearest
neighbor for each descriptor, is a well studied problem but actually quite hard. Many different
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approaches have been developed but all actually compute approximate matches. The approxi-
mation can be computed using partition trees such as the well known KD-trees [Ben75], or VP-
trees [Yia93], or adapted hashing functions such as LSH [IM98,GIM+99]. A recent breakthrough
for image specific algorithms is PatchMatch, developed by Barnes et al. [BSFG09a, BSGF10].
This algorithm relies on the structural properties of the image and multiple sampling, which in
practice performs extremely well on dense descriptors. It is also the matching algorithm adopted
by the reviewed method.

The rest of the chapter is organized as follows: the descriptors used for the processing, Zernike
moments, are presented in Section 11.2. The matching algorithm PatchMatch and the modifica-
tions implemented to improve the matching for our problem are presented in Section 11.3. Several
pre- and post-processing steps presented in Section 11.4 are then applied to obtain precise and ac-
curate detections. Finally, a couple of experiments where we show success and limits of the
method are presented in Section 11.5, where we successfully extend the method to dense SIFT
descriptors..

11.2 Zernike Moments

The absolute values of Zernike moments are rotation invariant descriptors that are adapted to the
task of detecting image repetitions up to a rotation. We address in this section their efficient
computation by the Xin et al. [XPL07] method. For a patch u of an image I (defined for now
as continuous on [−1, 1]2), the Zernike Anm moment of order n and angular dependence m, for
m < n and m ≡ n[2], is defined by

Anm = n+ 1
π

∫ ∫
D
u(x, y)Vnm(x, y)dxdy, (11.1)

where Vnm is the complex Zernike polynomial of order n and angular dependence and Anm = 0
otherwise (therefore in the following study, the case m 6≡ n[2] will be omitted). The polynomials
are defined over the unit disk D(0, 1) and usually expressed in polar coordinates ρ and θ. They
are fully defined by

Vnm(ρ, θ) = Rnm(ρ)eimθ, (11.2)

Rnm(ρ) =
bn−m2 c∑
s=0

(−1)s(n− s)!ρn−2s

s!(
⌊
n+m

2
⌋
− s)!(

⌊
n−m

2
⌋
− s)!

. (11.3)

Zernike moments can be interpreted as scalar products between the image u and the Zernike
polynomials. The absolute value of these moments is rotationally invariant. Indeed, consider
a rotation of angle α of the given image, or equivalently, a rotation of angle α of the Zernike
polynomials

V α
nm = Vnme

iα,

the studied moment Aαnm would then be

Aαnm = n+ 1
π

∫ ∫
D
u(x, y)V α

nm(x, y)dxdy (11.4)

= n+ 1
π

∫ ∫
D
u(x, y)Vnm(x, y)e−iαdxdy (11.5)

= n+ 1
π

(∫ ∫
D
u(x, y)Vnm(x, y)dxdy

)
e−iα (11.6)

= Anme
−iα, (11.7)
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(a) Cartesian sampling of the unit disk (b) Polar sampling of the unit disk

Figure 11.1: Different types of samplings for the Zernike moments.

and therefore
|Aαnm| = |Anm|, (11.8)

which confirms the rotation invariance of the magnitude of these moments.
In our case, the moments will be computed on each patch of the image (considered as a small

image itself). Within the same framework presented previously, one can also define translation
invariant descriptors by computing a dense field of descriptors over the entire image. The com-
putation is trickier than it appears at first sight because the image (noted u and so far considered
continuous) is sampled over a Cartesian grid whereas Zernike polynomials are more naturally
expressed in polar coordinates. The sampled version of I and u with a sampling step 1

sp will be
noted respectively Ĩ and ũ. The coordinates (x0, y0) denote the center of ũ in Ĩ and ũ is defined
on J−sp, spK. The easiest solution would be to estimate the integral from Equation (11.1) by
sampling over the Cartesian grid by

Anm =
sp∑

sx=−sp

sp∑
sy=−sp

ũ(sx, sy)Vnm(
√
s2
x + s2

y, atan2(sy, sx)). (11.9)

Xin et al. have shown in [XPL07] that this approximation suffers from multiple drawbacks
and is not properly rotation invariant. The rotational invariance being one of the most important
features of the Zernike moments in our case, we shall use the more accurate estimation proposed
in [XPL07]. First, we need to resample the image. Indeed the original Cartesian sampling is not
adapted to the unit disk. Figure 11.1a shows that whatever the choice of pixels taken to do the
integration on, it will never truly form a disk; therefore leading to approximation in the computa-
tions. An adequate image partitioning is required to care for the rotation invariance. First, the unit
disk is split intoK regions along the radial direction. These regions are then divided into “pixels”
with the same area. For this reason each region is split into (2k + 1)L subregions. This sampling
of the unit disk is presented in Figure 11.1b. It has the nice property of not losing resolution
compared to the original image. In addition, the new pixels have approximately the same area
as the old ones. The image is considered piecewise constant over these “pixels”. The value over
such a pixel, noted f(ρkl, θkl), is computed by image interpolation. Xin et al. recommended the
usage of a bicubic interpolation. This yields

f(ρk, θkl) =
bρk cos(θkl)c+2∑

sx=bρk cos(θkl)c−1

bρk sin(θkl)c+2∑
sy=bρk sin(θkl)c−1

ũ(sx, sy)h (ρk cos(θkl)− sx)h (ρk sin(θkl)− sy) ,

(11.10)
where

h(x) =


3
2 |x|

3 − 5
2 |x|

2 + 1 if |x| ≤ 1
−1

2 |x|
3 + 5

2 |x|
2 − 4|x|+ 2 if 1 < |x| ≤ 2

0 otherwise

. (11.11)
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Figure 11.2: Notations for Equations (11.15), (11.16) and (11.17).

We can now express Zernike moments in polar coordinates by a simple change of variable,

Anm = n+ 1
π

∫ 2π

0

∫ 1

0
u(ρ, θ)Vnm(ρ, θ)ρdρdθ. (11.12)

This leads to the following estimate of Anm by sampling the integral over the newly created
regions

Anm = n+ 1
π

∑
k

∑
l

f(ρk, θkl)wnm(ρk, θkl), (11.13)

where wnm corresponds to

wnm(ρk, θkl) =
∫ ∫

Ωkl
Rnm(ρ)e−imθρdρdθ (11.14)

=
(∫ ρk,2

ρk,1
Rnm(ρ)ρdρ

)(∫ θkl,2

θkl,1
e−imθdθ

)
, (11.15)

where the support of the pixel Ωkl is parameterized by ρk,1, ρk,2, θkl,1, θkl,2 (see Figure 11.2).
Besides the two previous integrals can be computed in closed form

∫ ρk,2

ρk,1
Rnm(ρ)ρdρ =

b
n−m

2 c∑
s=0

(−1)s(n− s)!
(
ρn−2s+2
k,2 − ρn−2s+2

k,1

)
(n− 2s+ 2)s!(

⌊
n+m

2
⌋
− s)!(

⌊
n−m

2
⌋
− s)!

 , (11.16)

and ∫ θkl,2

θkl,1
e−imθdθ =

θkl,2 − θkl,1 if m = 0
i
m

(
e−imθkl,2 − e−imθkl,1

)
otherwise

. (11.17)

Xin et al. have shown that computing the moments using this framework allows for a much
better rotation invariance compared to the regular Cartesian approximation. The sums in Equa-
tion (11.13) can be reordered to compute efficiently the entire set of Zernike moments for the
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entire image Ĩ . Indeed Anm can be rewritten

Anm = n+ 1
π

∑
k

∑
l

f(ρk, θkl)wnm(ρk, θkl)

= n+ 1
π

∑
k

∑
l

∑
sx

∑
sy

ũ(sx, sy)h (ρk cos(θkl)− sx)h (ρk sin(θkl)− sy)wnm(ρk, θkl)

= n+ 1
π

∑
sx

∑
sy

∑
k

∑
l

ũ(sx, sy)h (ρk cos(θkl)− sx)h (ρk sin(θkl)− sy)wnm(ρk, θkl)

= n+ 1
π

∑
sx

∑
sy

ũ(sx, sy)
(∑

k

∑
l

h (ρk cos(θkl)− sx)h (ρk sin(θkl)− sy)wnm(ρk, θkl)
)

= n+ 1
π

∑
sx

∑
sy

ũ(sx, sy)Fnmsx,sy , (11.18)

which can now be used to define an “image” of zernike moments such that

Anm(x0, y0) = n+ 1
π

∑
sx

∑
sy

ũ(sx, sy)Fnmsx,sy

= n+ 1
π

∑
sx

∑
sy

Ĩ (x0 + sx, y0 + sy)Fnmsx,sy . (11.19)

Equation (11.19) shows that the Anms can be computed efficiently by convolving the image Ĩ
with the newly defined filter Fnm. A null extension is chosen for the convolution for efficiency
and simplicity. Indeed, the moments computed on the border won’t have any of the properties
required for the matching, whatever the extension (in particular invariance to rotation is the hard-
est to ensure); therefore they should be discarded anyway in the following steps and the choice
should be made only for computation efficiency. The pseudocode for the full computation of the
dense field of moments for a given image is given in Algorithm 19. It yields both translation
and rotation invariant descriptors with which copy-move forgeries will be detected. The two ver-
sions of Zernike moments will be compared for the problem of forgery detection with rotation in
Section 11.5.1.

11.3 Patchmatch

In order to detect forgeries, we’ll have to find the nearest neighbors of the descriptors from Sec-
tion 11.2. Usually finding nearest neighbors in high dimension is a rather difficult problem but,
for the specific case of images, the PatchMatch heuristic is faster and more efficient than non-
specific heuristics. Instead of using the original PatchMatch presented in Chapter 10, we use
an improved version that has a faster convergence. In a follow-up paper [BSGF10], the authors
of PatchMatch proposed several other versions of the algorithm to either solve slightly different
but similar problems or to improve the speed and/or the quality of the matching. In particular,
they considered the problem of matching modulo rotations and scaling. While the modification
for rotation and scaling yields a slow convergence rate in practice (the space of possible matches
becoming far too large for the random search), and is not adapted to rotation invariant descriptors
(it explores the entire space of rotations), we will use the modifications suggested when applying
PatchMatch to the same image. The idea behind this modification is to try to take advantage of
the natural symmetric consistency within the matches. Indeed, if b is the current candidate as
nearest neighbor of a, then a is a good candidate for the nearest neighbor of b.
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Algorithm 29: Zernike moments computation
input : An image I , a half-size of patch sp, a maximum order o
output : A dense descriptor map Z

1 foreach (n,m) s.t. n ∈ J1, oK,m ∈ J1, nK and n ≡ m[2] do
2 for s = 0 to n−m

2 do
3 Cnms ← (−1)s(n−s)!

(n−2s+2)s!(n+m
2 −s)!(n−m2 −s)! // Compute the coefficients

for Equation (11.16)
4 for ρ = 0 to sp− 1 do
5 for θ = 0 to 4(2ρ+ 1)− 1 do
6 foreach (n,m) s.t. n ∈ J1, oK,m ∈ J1, nK and n ≡ m[2] do
7 w ← 0 // Initialize the weights
8 for s = 0 to n−m

2 do

9 w ← w + Cnms

((
ρ+1
sp

)n−2s+2
−
(
ρ
sp

)n−2s+2
)
// See

Equation (11.16)
10 if m = 0 then
11 w ← w × 2π

4(2ρ+1) // See Equation (11.17)
12 else

13 w ← w × i
m

(
e
−im 2(θ+1)π

4(2ρ+1) − e−im
2θπ

4(2ρ+1)

)
// See

Equation (11.17)
14 Fnmsxsy ← 0
15 for sx =

⌊
ρ cos

(
2θπ

4(2ρ+1)

)⌋
− 1 to

⌊
ρ cos

(
2θπ

4(2ρ+1)

)⌋
+ 2 do

16 for sy =
⌊
ρ sin

(
2θπ

4(2ρ+1)

)⌋
− 1 to

⌊
ρ sin

(
2θπ

4(2ρ+1)

)⌋
+ 2 do

17 Fnmsxsy ←
h
(
ρ cos

(
2θπ

4(2ρ+1)

)
− sx

)
h
(
ρ sin

(
2θπ

4(2ρ+1)

)
− sy

)
w + Fnmsxsy

See
Equation (11.18)

18 foreach filter Fnm computed previously do
19 Convolve I (with a null extension) with Fnm and store its modulus in ZMnm.
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(a) Original PatchMatch propagation: elements in blue
are propagated to the one in black

(b) Improved PatchMatch propagation: elements in
blue (original propagations), green (completed zero or-
der propagations) and red (first order propagations)
are propagated to the one in black

Figure 11.3: Different types of PatchMatch propagations.

This will be combined with the modifications suggested by Cozzolino et al. in [CPV15] to take
rotation invariant descriptors into consideration and improve their matching. In order to increase
the quality of the matches – when taking rotations into consideration – two more propagations
are added. These two propagations correspond to a propagation from the top-left patch as well as
from the top-right one. This means that information is propagated to all connecting patches. These
propagations are represented in green in Figure 11.3b. A second set of propagations, called first-
order propagations, are also added to the list of propagations. These propagations are different
from the previous ones because they are not simply a displacement propagation. They propagate
linearly varying offset modifications. In order to simplify the notations for some of the equations,
we also introduce the optimal displacement s alongside an ANNF f such that f(a) = a + s(a).
In the following the ANNF and the optimal displacement will be used interchangeably, the one
leading to the simplest equations will be chosen. For two functions f and g, the composition of
functions is written f ◦ g = f(g(.)). Using a rough Taylor expansion, an approximation of a
function f can be made

f(x+ 1) ≈ f(x) + df(x)
dx

≈ f(x) + f(x)− f(x− 1)
1

≈ 2f(x)− f(x− 1). (11.20)

This approximation is classic in numerical analysis. Translating Equation (11.20) to the current
problem, A being any composition of L, R, U and D, leads to

s(a) ≈ 2s(A(a))− s(A ◦A(a)). (11.21)

The first-order nodes used for these types of propagations are represented in red in Figure 11.3b.
In the end, a total of eight propagations of the different types is done during every iteration of
PatchMatch.

Adding all these modifications to the original PatchMatch algorithm presented in Chapter 10
gives us the version used to solve the problem at hand. The final modified PatchMatch algorithm
is summarized in Algorithm 31.

11.4 Forgery Detection

Once the displacement map, a function that for each patch of the reference image, associates
its nearest neighbor, has been computed using PatchMatch, forgeries can be detected. In order
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Algorithm 30: Modified PatchMatch
Input: A an image, d a distance function for patches, N a number of iterations, w

(usually the width of A) and α = 1
2 parameters for the random search, k the

number of nearest neighbors to be computed, a minimum distance threshold τm
Result: f, a k-ANNF from A to A

1 Initialization:
2 foreach patch a in A do
3 Sample a random patch in A for f(a)
4 Iterations:
5 for n = 1 to N do
6 foreach patch a in A from the top left to the bottom right if n is odd, from the bottom

right to the top left otherwise do
7 Propagation:
8 if n is even then
9 For each propagation, reject candidates that are closer than τm from a in the

image:
10 f(a)← arg minp∈{f(a),R(f(L(a)))} {d(p, a)}// Zero-order

propagation
11 f(a)← arg minp∈{f(a),D(f(U(a)))} {d(p, a)}// Zero-order

propagation
12 f(a)← arg minp∈{f(a),D◦L(f(U◦R(a)))} {d(p, a)}// Zero-order

propagation
13 f(a)← arg minp∈{f(a),D◦R(f(U◦L(a)))} {d(p, a)}// Zero-order

propagation
14 f(a)← arg minp∈{f(a),a+2s(L(a))−s(L◦L(a))} {d(p, a)}// First-order

propagation
15 f(a)← arg minp∈{f(a),a+2s(U(a))−s(U◦U(a))} {d(p, a)}// First-order

propagation
16 f(a)←

arg minp∈{f(a),a+2s(U◦L(a))−s(U◦L◦U◦L(a))} {d(p, a)}// First-order

propagation
17 f(a)←

arg minp∈{f(a),a+2s(U◦R(a))−s(U◦R◦U◦R(a))} {d(p, a)}// First-order

propagation

18 else
19 Do the reverse propagations
20 foreach patch a in A do
21 Symmetrization:
22 f(f(a))← arg minp∈{f(f(a)),a} {d(p, f(a))}
23 foreach patch a in A do
24 Random search:
25 i← 0
26 while wαi > 1 // Multiple scale random search
27 do
28 r ∼ U(J−bwαic; bwαicK× J−bwαic; bwαicK)
29 if f(a) + r is further than τm from a then
30 f(a)← arg minp∈{f(a),f(a)+r} {d(p, a)}
31 i← i+ 1
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to avoid false alarms, multiple pre-processing and post-processing techniques are applied. The
different steps for the detection are:

1. Application of a median filter.

2. Computation of an error map and early detections.

3. Remove detections that are too small.

4. Remove detections that are too close.

5. Symmetrize the detections.

6. Dilate the detections.

The complete algorithm performing forgery detection is presented in Algorithm 37. All these
steps will be developed and explained in the following sections. It is also possible to detect in-
ternal copies where the copies have been flipped. It only requires to compute descriptors for the
flipped patches; this is easily done by computing descriptors on the flipped image and flip the re-
sulting descriptor map. The distance function used for PatchMath in this case is the distance from
the regular descriptors to the flipped version. Another possible solution is to use flip-invariant
descriptors such the one presented in [ZN13] or [XTWZ15] so to avoid two computations of the
descriptors; this is not studied in this chapter though.

11.4.1 Median Filter

The first step is to apply a median filter to the displacement map. It smooths the displacement
and improves the detection rate by reducing the overall error computed in the following step. The
algorithm used for the median filtering is shown in Algorithm 31.

Algorithm 31: medianFilter algorithm
input : A displacement map D, the radius of the filter ρm
output : A filtered displacement map D̃

1 foreach pixel p in D do
2 D̃(p)← median({D(p′) | p′ ∈ D(p, ρm)})

11.4.2 Error Filter and Detection

A copy-move forgery (as its name indicates) copies a region of the image, possibly rotates it, and
pastes it at a different image position. Both regions (the original one and the forged one) can then
be matched by an affine transform. The idea presented in [CPV15] is then to compare the field of
matches created using PatchMatch to the one computed using the best affine transform based on
the field of PatchMatch matches.

Let P ∈M3×n(R) be the homogeneous coordinates of a set of points. We set

P =

 x1 . . . xn
y1 . . . yn
1 . . . 1

 . (11.22)

Let ∆ be the displacement of these same points (still in homogeneous coordinates). Let A ∈
M3×3(R) be a matrix representing an affine transform. We are looking for a region such that the
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transformation error defined by

ε(P ) = min
A∈M3×3(R)

‖∆− (AP − P )‖2, (11.23)

is small. The best affine transform minimizing Equation (11.23) can be estimated using a simple
Least Square Regression, i.e.

A = arg min
A′∈M3×3(R)

‖∆− (A′P − P )‖2. (11.24)

The solution of Equation (11.24) can be expressed as

A = (P + ∆)P T (PP T )−1, (11.25)

therefore the error can be estimated without a minimization step by replacing A by its solution
from Equation (11.25)

ε(P ) = ‖∆− (AP − P )‖2

= ‖∆− ((P + ∆)P T (PP T )−1P − P )‖2

= ‖∆−∆P T (PP T )−1P‖2

= ‖∆(I −H)‖2, where H = P T (PP T )−1P. (11.26)

The set of points P used to estimate this error will be a disk of radius ρe and the error will be
associated to the center of the disk, which delivers an actual error map. In practice the result
is independent of the coordinates in P , as long as ∆ is set conveniently. Therefore H can be
precomputed for all regions. The error detection map is given by thresholding by τ the error map
estimated with Equation (11.26). The features and the error filter aren’t properly defined on the
boundary (it would require to define the behavior of these objects outside the image as well),
therefore detections on the boundary are not well defined either. This is why the boundary of
the image is removed during the detection step so as to avoid any false detection due to a false
matching. The algorithm used to compute the error detection map is summarized in Algorithm 32.

Algorithm 32: errorDetectionFilter algorithm
input : A displacement map D, the radius of the filter ρe, τ a threshold, sp the

half-size of the patch used to compute the features
output : An error detection map E

1 P ← D(0, ρe) // Define the homogeneous coordinates
2 H ← P T (PP T )−1P // See Equation (11.26)
3 H ′ ← I −H
4 foreach pixel p in D do
5 Let ∆ be the displacements corresponding to D(p, ρe)
6 e← ‖∆H ′‖2 // See Equation (11.26)

7 E(p)←
{

1 if e < τ

0 otherwise
8 Remove any detection at the boundary (of size sp) of E

The next steps of the detection correspond to multiple post-processings trying to minimize
false alarms and to adjust the detection mask to the actual forged regions.
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11.4.3 Size Filter

The first post-processing step tries to remove “unlucky” matches. Sometimes good matches can be
created purely by chance, but in practice these fortuitous regions are very small. The application
of a filter which cuts connected components whose area is below a certain threshold removes
these “unluckily” matched regions. Such a filter is presented in Algorithm 33.

Algorithm 33: sizeFilter algorithm
input : A detection mask M , area threshold τs
output : A filtered detection mask M̃

1 foreach 4-connected component c in M do
2 if c is smaller than τs pixels then
3 M̃(c)← 0 // Assignment for each pixels in c

11.4.4 Minimum Displacement Filter

As a last step to remove false alarms, candidates that are too close in the image plane are filtered
out. If the copy is too close to the original, humans detect easily the forgery. Thus, if a detected
forged region is too close to its copy, both are considered false alarms and therefore discarded.
This idea is synthesized in Algorithm 34. While this post-processing is necessary for the method
to work well, it’s actually redundant with the exclusion region from PatchMatch. Indeed setting
τm to the maximum between τm and τd forces all matches of PatchMatch to be at a distance
superior or equal to τd. Therefore there would be no matches to be rejected with this displacement
filter. The deliberate choice to still present the displacement filter was made to describe the
originally proposed post-processing steps, without mixing ideas from different sections.

Algorithm 34: minDispFilter algorithm
input : A mask of detections M , a displacement map D, τd the minimum match

distance
output : A filtered mask M̃

1 foreach pixel p in M do
2 if the distance in the image between p and D(p) is smaller than τd then
3 M̃(p) = 0

11.4.5 Symmetrization of Detections

Because the process is not entirely symmetric, it can happen that both regions detected as forged
have different shape and size. It may even happen that only one of the forged regions is detected
while the other one is missing from the detection mask. To avoid this problem, the detection
mask is symmetrized using the displacement map. This process is presented in Algorithm 35.
This section is necessary even though PatchMatch already has a mechanism favoring the sym-
metry. Indeed PatchMatch only incites it in the sense that if the symmetric match isn’t a better
candidate then it’s rejected. Therefore at the end of the PatchMatch step, the displacement can be
asymmetric (even though in practice it is already quite symmetric). Because a forgery is neces-
sarily symmetric, the final detection map must be symmetric. Therefore the detection regions in
the detection map are symmetrized using the method presented in this section.
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Algorithm 35: symmetrizationFilter algorithm
input : A detection mask M , a displacement map D
output : A filtered displacement map M̃

1 foreach pixel p in M do
2 M̃(D(p))← max{M(p),M(D(p))}

11.4.6 Dilation

Finally, for the last step, each detection is slightly dilated. Indeed both the median filter and the
error filter tend to reduce the size of a detected region. This dilation step mitigates these effects.
This step is presented in Algorithm 36.

Algorithm 36: dilationFilter algorithm
input : A mask of detections M , the radius of the filter ρ
output : A dilated mask M̃

1 foreach pixel p in M do
2 M̃(p)← max{M(p′) | p′ ∈ D(p, ρ)} // D(p, ρ) is the set of elements

at distance smaller or equal than ρ from p

The complete algorithm regrouping all the steps presented in the previous sections 11.2, 11.3
and 11.4 is summarized in Algorithm 37.

Algorithm 37: Copy-move forgery detection
input : A suspect I , sp half-size of the patches, ni number of PatchMatch iteration, τm

minimum match distance for PatchMatch, the radius ρm, respectively ρe, for
the median, respectively error computation, τ error threshold, τs size
threshold, distance threshold τd

output : A final detection mask F and binary forgery decision
1 Z ← ZernikeMoment(I, sp) // See Algorithm 19
2 D ← Patchmatch(Z, ni) // See Algorithm 31

3 D̃ ← medianFilter(D, ρm) // See Algorithm 31

4 E ← errorDetectionF ilter(D̃, ρe, τ) // See Algorithm 32

5 M̃1 ← sizeF ilter(E, τs) // See Algorithm 33

6 M̃2 ← minDispF ilter(M̃1, τd) // See Algorithm 34

7 M̃3 ← symmetrizationF ilter(M̃2) // See Algorithm 35

8 F ← dilationF ilter(M̃2, ρm + ρe) // See Algorithm 36
9 return F and whether F is empty or not

11.5 Experiments

In this section, results showing both the strengths and the limits of the method are presented. The
displacement results presented in this section will have the same visualization. The color scheme
used to represent the direction and magnitude of the displacement is shown in Figure 11.4.
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Maximum order of the Zernike descriptors o 5

Half-size of patch used to compute the moments sp 8

Number of PatchMatch iterations N 8

Minimum distance between two PatchMatch matches τm 8

Minimum distance between two clones τd 50

Error threshold τ 300

Minimum size of a clone τs 1200

Radius of the median filter ρm 4

Radius of the error filter ρe 6

Table 11.1: Value of the parameters used during the computation of the results in Section 11.5.1.

Figure 11.4: Color scheme representing the direction and magnitude of the displacement

11.5.1 Using Zernike Moments

The parameters that will be used for the experiments are those suggested in [CPV15]. They are
reminded in Table 11.1. The different images used in this section come from the FAU database
presented by Christlein et al. in [CRJ+12]. The first example, shown in Figure 11.5, is a straight-
forward example illustrating the quality of the detections by the method in the simplest case. We
can see that every step performs as expected and provides an accurate estimation of the forged
regions. It is also important to test the method’s resilience to false positives. This is why we
applied the exact same method to an intact image containing several instances of a similar object,
shown in Figure 11.5. The result confirms the absence of detection in this case even though some
regions could have appeared forged due to their similarity.

One of the requirements of the method was to be rotation resilient. An example of forgery
with a rotation is presented in Figure 11.5. It actually confirms that the detection succeeds when
a rotation has been applied. Even though only a single example is shown, more tests confirming
the rotation resilience have been done with varying degrees of rotation. The same experiments
have also been done using basic Cartesian Zernike moments in order to see the importance of
the resampled version presented in Section 11.2. In this case, also presented in Figure 11.5,
the detection is much worse (only a much smaller region is detected) than when the resampled
Zernike moments are used.

We also tested other classic perturbations such as the addition of noise. Figure 11.6 presents a
result with a small amount of noise added after the forgery. The method still works in presence of
small noise. The addition of a large noise in a forgery would make the image suspicious anyway.
Figure 11.6 shows the importance of also taking account flipped copies.
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The next example of Figure 11.6 is no longer a simple copy-move forgery but an actual editing
of the image. Indeed the copied section was integrated using the Poisson editing method presented
in [PGB03] and implemented in [DMFML16]. Poisson editing is quite adapted to forgery as
it blends nicely the pasted region in the image. This time, the algorithm actually fails. This
shows the limitation not of the method itself but of the descriptors, namely the amplitude of
Zernike moments. Those descriptors achieve the wanted invariance but at the same time they
are extremely rigid. With appropriate descriptors, the exact same methodology could be applied
and should yield good detections. Removing the Zernike moment of order 0 from the list of
descriptors used (which actually corresponds to the mean of the local region) didn’t improve the
results for Poisson editing.

Another limit of the method is the presence of multiple copies. In such a case, the PatchMatch
displacement field is at risk of splitting between the multiple copies, which increases the error and
decreases the chance of an actual detection. Figure 11.6 shows an example where this problem
arises. In that case, parts of each of the copies are actually detected but none is entirely detected
for the reasons explained above.

11.5.2 Using Dense SIFT Descriptors

Although the method performs as expected, as shown in Section 11.5.1, it is disappointing that
forgeries such as Poisson editing are not detected. For this reason, the same experiments have
been repeated after changing the Zernike moments by dense SIFT descriptors. SIFT descriptors,
presented by Lowe in [Low99], have been shown to be state of the art descriptors in image match-
ing thanks to their invariance to noise, changes of lighting or to small changes of viewpoint. In
particular, they are rotation invariant, just like the Zernike moments. A dense version of these
descriptors can be computed by considering all patches instead of those marked by points of in-
terest. The dense version was the one used for the experiments. The VLFeat implementation of
dense SIFT from [VF08] was used. The parameters are listed in Table 11.2. Figures 11.7 and 11.8
show the results of the same experiments shown in Section 11.5.1. As one can see, dense SIFT
descriptors perform as well as the Zernike moments on the successful experiments but also suc-
cessfully detect Poisson editing. Nevertheless, dense SIFT descriptors seem to incur into a higher
risk of false positives, see Figure 11.7 (clean image) and 11.8 (Poisson).

Number of SIFT bins 4

Size of SIFT bins 5

Number of PatchMatch iterations N 8

Minimum distance between two PatchMatch matches τm 8

Minimum distance between two clones τd 50

Error threshold τ 300

Minimum size of a clone τs 1200

Radius of the median filter ρm 4

Radius of the error filter ρe 6

Table 11.2: Value of the parameters used during the computation of the results in Section 11.5.2.
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11.6 Conclusion

The forgery detection method analyzed in the present chapter proves to be an efficient detector.
One of its major advantages is its resilience to rotations. It is also robust to image perturbations
such as the addition of noise. Nevertheless, it is not deprived of drawbacks. In particular, the
results are particularly disappointing when considering multiple copies of an object or when the
forgery has been performed by a classic copy-paste method such as Poisson editing. A better
choice for the descriptor should be able to fix this deficiency of the method though. Dense SIFT
descriptors were considered as an alternative to improve the detection of forgeries performed by
Poisson editing. Even though these descriptors allow for better detections, they are more likely to
produce false positives. Nevertheless, this shows that the method can be modified and improved
by varying the descriptors. The only drawbacks found – which are mainly linked to the usage of
PatchMatch – is the inability of the method to detect multiple copies but also to not distinguish
well similar objects from actual copies.
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12 Detection of copy-paste forgeries
based on sparse descriptors

Detecting reliably copy-move forgeries is difficult because images do contain similar ob-
jects. The question is : how to discard natural image self-similarities while still detecting
copy-moved parts as being “unnaturally similar”? Copy-move may have been performed af-
ter a rotation, a change of scale and followed by JPEG compression or the addition of noise.
For this reason, we base our method on SIFT, which provides sparse keypoints with scale, ro-
tation and illumination invariant descriptors. To discriminate natural descriptor matches from
artificial ones, we introduce an a contrario method which gives theoretical guarantees on the
number of false alarms. We validate our method on several databases. Being fully unsuper-
vised it can be integrated into any generic automated image tampering detection pipeline.

12.1 Introduction

Photo and video editing includes the insertion or removal of parts of the image, often performed by
internal or external copy-move operations. The Poisson editing technique [PGB03, DMFML16]
allows for seamless insertions and is now routinely used for special effects in movies, in software
like Photoshop or in popular mobile phone applications. Most editing operations are driven by
aesthetic goals. Yet their usage can easily become malicious and help forging false evidence, fake
news, or alter results in scientific publications [BCF16].

It is therefore of primary importance to provide public and professionals with reliable scien-
tific tools detecting traces of any intentional alteration of a photograph. Several different tech-
niques are relevant here: image splicing (internal or external) can be detected through its local al-
terations of the compression encoding and of the JPEG blocks [LHTT09,CGFY12,NGvGCM18],
its inconsistent demosaicking traces [PF05, FBDRP12, BGvGM18], or directly [NCS04, HC07,
HLOE18]. Methods tracking other features such as noise inconsistencies, lightning inconsisten-
cies, chromatic aberration inconsistencies, etc. were listed in the broad review [Far09].

This chapter focuses on a specific type of image splicing called “copy-move". As its name
indicates it consists in copying a region of the image and pasting it somewhere else. Rotation,
scaling, change of contrasts and other manipulations are sometimes applied to the piece being
copied before pasting it. The method can be used to replicate objects, but sometimes also to hide
an object by a texture borrowed elsewhere in the image. Copy-move detection methods can be
divided into two main categories: Block-based and keypoint-based. The block-based approaches
try to match regions by blocks. In order to match the blocks more easily and more efficiently it
is frequent to represent the block in a compact form by dimensionality reduction, e.g. with PCA,
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DCT [CGFY12] or DWT [LWTS07]. The compact representation may also ensure the invariance
of the detection to rotations by using Zernike moments [CPV15,Ehr18] or a similarity invariance
with the Fourier-Mellin transform [BSM09,LY10]. These methods generally manage to detect the
forged regions, but are computationally demanding. Instead of directly trying to match blocks,
featured-based methods compute sets of keypoints and then match these keypoints. Many of these
methods are based on SIFT [ABC+10, ABM10] or SURF [BJGY10]. The descriptors associated
to the keypoints are invariant to rotation, scaling and even moderate affine distortions. Yet, pre-
cisely out of too much robustness, these methods may cause false detections when similar objects
are present in an image. As argued in [WZS+16], most methods therefore suffer from a false
positive problem caused by the occurrence of “natural” self-similarity. This is the problem that
we attempt to tackle here.

Section 12.2 introduces our method and Section 12.3 shows experimental results on different
datasets. Finally perspectives are going to be presented in Section 12.4.

12.2 Copy-move matching with SIFT-like matching

Like in the SIFT algorithm [Low99] we start by computing a set of sparse keypoints. These
keypoints are usually located in textured regions. Then a descriptor is associated to each of these
keypoints. Finally the descriptors are matched to each other to define the detection. These three
steps are summarized in the next paragraphs.

12.2.1 Keypoints

The keypoints correspond to the extrema of the normalized Laplacian scale-space. In practice
they are computed using differences of Gaussians. The positions of the maxima are then found
for each scale. To each keypoint is associated a scale and a principal orientation. A more detailed
analysis can be found in [ROD14].

12.2.2 Descriptors

This first, classic, SIFT step gives a list K = (ki) of keypoints. From each of these keypoints
(consisting of a spatial position, a scale and an orientation), a square patch pi of size (N + 2) ×
(N + 2) can be sampled. The gradients in both directions are then computed from these patches
yielding an N ×N gradient patch Di with vector values (∂pi∂x ,

∂pi
∂y ).

Contrary to SIFT, we keep these matrices for the matching step. Indeed, using histograms
of gradients (HOGs) to represent the gradient patch would be too robust a representation and
lead to the detection of natural repetitions. Hence, following [GP15] and [RGvG18]. we encode
the key point ki by its gradient patch Di. This allows for an invariance to uniform illumination
changes. In SIFT, the descriptors are computed on a grayscale version of the image for matching
applications. In the forgery case, it is interesting to consider all information available. So our
gradient descriptors keep three channels, one for each color. For simplicity our matching step
will be presented using a grayscale descriptor, but extends immediately to color as well. Color
descriptors will be used for the experiments in Section 12.3.

12.2.3 Matching

Two naturally similar objects are rarely exactly similar. This is because there are always dif-
ferences in their illumination in a real scene, and physical differences that do not necessarily
catch the eye, in addition to the acquisition noise. Our matching process takes advantage of
these serious variations to discriminate between similar objects and digital copies. Consider
two keypoints ki and kj located respectively on the original object and on the forged copy, so
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Figure 12.1: On the left image the two objects are similar but not digital copies of each other. On the right,
one is a digital copy of the other. The patches shown below each respective image correspond to the red
dots in the images. They show that a difference is visible at this level and therefore the descriptors can be
discriminated. This is why the detection method can discard genuinely similar objects.

that they match with a regular matching method such as SIFT [Low99] or [RGvG18]. In that
case the descriptors Di and Dj associated to these keypoints should be exactly the same, namely
∀k, l ∈ {1, . . . , N},Dik,l = Djk,l. Of course this perfect quality is not reached in practice. Several
copy-move steps could introduce small differences such as: the interpolation due to a rotation
or zoom or even a post-processing step such as the addition of noise and/or a compression after
forgery. Nevertheless, we can enforce a very close match between each part of the descriptors by
an exigence like ∀k, l ∈ {1, . . . , N}, ‖Dik,l −D

j
k,l‖22 6 τ . For the distance dmax defined by

dmax(Di,Dj) = max
k,l∈{1,...,N}

‖Dik,l −D
j
k,l‖

2
2, (12.1)

the suspicious match test is simply dmax(Di,Dj) 6 τ . This corresponds to a stricter version of
matching than the one presented to match patches in Chapter 3.

The key question is to fix the right detection threshold τ , to have a matching criterion that re-
jects genuinely similar objects while still detecting well copy-move forgeries. This threshold can
be computed rigorously using the a-contrario theory [DMM07] which is a probabilistic formal-
ization of the non-accidentalness principle [Low85]. This principle has shown its practical use
for detection purposes such as segment detection [VGJMR10], vanishing points detection [LGv-
GRM14] and anomaly detection [DEMD18]. The a-contrario theory provides a way to compute
automatically detection thresholds while having a control on the number of false alarms (NFA). It
replaces the usual p-value by drawing into account the number of tests and therefore controlling
the overall number of false alarms in a given detection task. The method only requires a simple
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a contrario stochastic model on the perturbation. We will consider for now that Di and Dj are
derived from the same patch but one of them has been corrupted by Gaussian noise of variance
σ2 i.e. since the descriptors consist of gradients ∀k, l,Djk,l = Dik,l +nk,l where nk,l ∼ N (0, 2σ2)
and are independent. Matching both descriptors requires that maxk,l n2

k,l 6 τ . The probability of
matching in this case is then

P
(

max
k,l

n2
k,l 6 τ

)
=
∏
k,l

P
(
n2
k,l 6 τ

)
= P

(
n 6

τ

2σ2

)N2

(12.2)

where n follows a χ2 distribution with 1 degree of freedom. We can therefore control the number
of false detections by choosing the proper τ according to

τ = 2σ2 × chi2inv
(

N2
√

ε

Ntests

)
, (12.3)

where ε is the number of false alarms per Ntests number of tests and chi2inv is inverse of the
χ2 cumulative distribution function. The main point of formula (12.3) is that it reduces the initial
method dependency on many detection parameters to just one, namely σ. We can argue that
this last one is not critical. Indeed, even though the dependency on σ is strong, as long as the
degradation is not too large, there will be a scale in which σ is small enough so the detection
will work: indeed σ is divided by two at each octave in the SIFT method. For example, this
exigent threshold can work for a noise of 4, but requires the tampered area to be four times larger
for a detection. It might be objected that zooming down also makes naturally similar objects
become more similar. Yet our experiments indicate that this is not the case, indeed their small but
significant differences encompass all scales. To summarize, granting that we allow for one false
detection on average on a set of images, the method is parameterless as it adapts to the number
of tests and to the patch size. Of course it might be coupled with an automatic noise estimator
to give an good guess of σ. Assuming a perturbation noise of variance σ2 = 1 and the use of
descriptors of size 4×4×3 (derived from 6×6 color patches), a number of false alarms of ε = 1
and testing on 100 images with on average 50 keypoints (this corresponds to the COVERAGE
dataset presented in Section 12.3), Equation (12.3) gives τ = 2.9. The advantage of using color
descriptors in this case is either to increase the size of the descriptor (allowing for a larger τ
and detecting more) or to reduce the spatial size for a same size of descriptor (allowing to detect
smaller forgeries).

An interesting side effect is that this test is really fast to compute. Indeed to detect forgeries
each keypoint must to compared against all others. Since we are comparing keypoints inside a
single image this gives (K−1)(K−2)

2 pairs to be tested, where K is the number of descriptors.
(Of course all descriptor self-matches are discarded). For large images the computation of the
distance becomes quickly a bottleneck for distances that are costly. In our case it is not necessary
to compute dmax before doing the test, the test can be done during the computation of dmax which
allows for early stopping. Since most keypoints won’t match, the number of operations done per
comparison is in practice much smaller than the size N2 of the descriptor. An experimental
verification of this fact is made in Section 12.3.

Finally we need to take into account all possible flips for the forged regions. While the
matching process doesn’t detect flips it is possible to still detect them at the cost of a few more
computations. The modified distance to test flips is then

dflip(Di,Dj) = max
k,l

(
xik,l − x

j
k,l

)2
+
(
yik,l + yjN−k+1,l

)2
(12.4)

where Dk,l = (xk,l, yk,l). Indeed when flipped, the indexes in one direction are reversed but also
the gradients in that direction are opposite. Thanks to the rotation invariance all flips are taken
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Dataset Method
True

detections
False

detections

COVERAGE Proposed 43% 1%
Previous 50.5% -

GRIP Proposed 70% 1.3%
Previous 71% -

IM Proposed 81.2% 0%
Previous 75% -

IM JPEG80 Proposed 64.6% 0%

IM NOISE20 Proposed 79.2% 0%

Table 12.1: Detection statistics on the different datasets compared to the reported results from [WZS+16].
The proposed method achieves similar true positive detections for a very limited number of false detections.
The only false detection is shown in 12.3. The false detections are computed on the original images (with
no forgeries).

into account by just testing the flip in one direction (in our case in the y direction). In the end, we
test each pair of keypoints with both distances to take into account flips. Having to do twice the
computation is not a problem in practice as each test is very efficient.

12.3 Experiments

In this section the images are all shown in grayscale even though they are originally in color.
This allows for a better visualization of the matches. Nevertheless, the descriptors were color
descriptors. We present results on three different datasets: GRIP [CPV15], Image Manipulation
(IM) [CRJ+12] and COVERAGE [WZS+16] which is the dataset that inspired this study as it
focuses on distinguishing forgeries from similar but genuine objects. All images shown in this
section come from these datasets.

We decided to use descriptors of size 3 × 8 × 8 for the IM dataset and 3 × 4 × 4 otherwise
as the images from the IM dataset are much larger than the ones from the other datasets. Indeed
the size of the descriptors needs be chosen so to be smaller than the expected size of the forged
regions. Each time the threshold was computed using Equation (12.3) from Section 12.2.3. We
also verified that the number of comparisons done to compare two descriptors was much smaller
than the size of a descriptor. For example for the image shown in Figure 12.1, of size 424× 421
and containing 207 descriptors only 1.1 comparisons were necessary on average for a descriptor
size of 3× 6× 6 = 108 that is almost the size of the descriptor used for SIFT. Thus the detection
is really fast even for large images with a large number of keypoints.

Table 12.1 shows that while the methods focuses on being robust to similar objects and re-
duces as much as possible false detections, it is actually competitive with previous keypoint based
methods. Moreover, the number of false alarm is definitely under control : only very little false
alarms were found in all three datasets. One of these false detection is shown in Figure 12.3. We
also verified that while robust to similar objects (and therefore very precise) the method still is
robust to reasonable noise and compression.

Figure 12.2 shows different examples of successful detections. The method is able to detect
well rotation, uniform illumination changes, scaling and compression. As can be seen, the more
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Figure 12.2: Examples of forgeries that were successfully detected in the different datasets. From the top to
bottom, left to right: an example with a rotation, a change of illumination, a change of scale and with JPEG
compression.

texture the forged region has the easier it is to detect. This is because a textured region will
generate more keypoints and therefore will increase its chances of matching.

Figure 12.3 shows several failure examples. Most failures come from the fact that the method
can’t deal with more severe distortions such as a tilt or non-uniform illumination change. The
method also fails to detect flat regions, as no keypoints are computed on these regions. As for the
false detection, it does not contradict the a contrario model. We requested at most ε = 1 false
detection per 100 images with the threshold given in Section 12.2.3, and we found one with 200
images tested for the COVERAGE dataset.

12.4 Perspectives

In this chapter we have presented an unsupervised method to detect copy-move forgeries that is
not only invariant to rotation, scaling and global change of illumination, but also robust to the
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Figure 12.3: Examples of forgeries that were not successfully detect in the different datasets. From top to
bottom, left to right: an example where the forged region is completely flat, with a non-uniform change of
illumination, with a tilt applied and the false detection.
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presence of similar but genuinely different objects or regions. The method, being parameter-
less and very fast, can be included in the necessary long series of tampering tests applied to a
suspicious image.

The limits of the method are closely linked to its strength. Because it is robust to the presence
of naturally similar objects, it is less reliable in case of large degradation of a copied digital
ones. We nevertheless found that the method is robust enough to usual noise and compression
levels. An image that has been degraded too much is suspicious anyway, since nowadays the
quality of an image taken with a mobile is very good. Thus only images with a good enough
quality should be tested. Highly degraded images would be anyway suspicious regardless of any
such more sophisticated examination. The second limit is the usage of sparse keypoints. These
keypoints are only computed in regions that are contrasted enough (non-flat areas) which means
that forgeries in these regions might not detected. Finally matching keypoints give anchor points
and do not delimit forged regions precisely. A natural extension of the method would be to extract
the forged regions from the anchor points while still keeping a good control over the number of
false detections. Finally coupling the method with a noise estimator could arguably make it still
more discriminant.
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Conclusion

The main focus of this dissertation was video denoising, with detours to other problems that can
be approached by applying some of the same techniques used for video denoising. We first studied
patch-based methods, which were the state-of-the-art at the beginning of the thesis. We looked at
many different aspects of patch-based methods: the models for similar patches, patch shapes and
the patch search. We took an in-depth look at a popular video denoising method called VBM3D in
Chapter 1. We also looked at how to integrate new improvements such as multi-scale, optical flow
and spatio-temporal patches. In particular, VBM3D combined with spatio-temporal patches and
a patch-search guided with an optical flow gives very competitive results even when compared
to the latest state of the art, especially for higher noises. VBM3D and its variants provide an
interesting trade-off between denoising quality and computational complexity.

We then turned our attention to the patch search, a rather overlooked aspect of patch-based
methods for video. We studied the performance gain obtained by expanding the local patch search
into a global one for patch-based video denoising algorithms in Chapter 2. With the global search,
the patches found can follow long trajectories in the video, thus fully benefiting from the temporal
redundancy of videos. Thanks to an efficient approximate search, we proposed global video
denoising methods by extending to video BM3D and NL-Bayes, two patch-based image denoising
algorithms. We obtained a significant boost on the denoising performance. This performance
boost is only slightly more costly than a local exhaustive search, including the time spent building
the tree, thanks to a simple parallelization.

Finally, we focused on how to obtain real-time performance with patch-based methods: First
by proposing novel recursive algorithms, then GPU implementations of existing methods. A
global patch search such as the one presented in Chapter 2 is still too costly for practical video de-
noising applications. This is why we presented a novel patch-based video denoising in Chapter 3
combining temporal filtering and non-locality. The temporal filtering is carried out by Kalman
filters whose parameters are estimated non-locally. The resulting method is recursive: to denoise
one frame, it uses solely information from the previous frame. Results show a performance com-
parable to more complex patch-based methods that use around ten frames to denoise each single
frame. The main limitation of the method is that it relies heavily on the optical flow. Slight errors
in registration cause a drop in PSNR. Nevertheless, visual quality of the result is superior, both in
terms of details and temporal consistency, to algorithms with comparable running times.

In Chapter 4, we proposed a GPU implementation of NL-means, BM3D and VBM3D to fur-
ther reduce computation times. This chapter focuses on the technical challenges of such imple-
mentations and how to overcome them. We also proposed compromises for the default parameters
to get an even larger speedup with only a minor penalty for the denoising performance. This work
paves the way to new uses of these algorithms in time constrained environments and for practical
applications.

During the course of this thesis, the image processing community experienced a revolution as
it was demonstrated that convolutional neural networks, trained with supervision, achieved much

233



better performance than traditional methods across a wide range of image restoration tasks, in-
cluding image denoising. This lead us to shift the focus of our research on how to apply those
machine learning methods to video denoising. In particular, we described an effective way of in-
corporating temporal non-local information into a CNN for video denoising in Chapter 5. The pro-
posed method computes for each image patch the n most similar neighbors on a spatio-temporal
window and gathers the value of the central pixel of each similar patch to form a non-local fea-
ture vector which is given to a CNN. Our method yields a significant gain compared to other
CNN approaches. It even has similar performance to the best non-CNN method evaluated, even
outperforming them on the largest of our test datasets.

With the framework presented in Chapter 6, we show that a single video is often enough to
“train” a denoising network, removing the need for a dataset of images. By applying a simple
frame-to-frame training on a generic pre-trained network (for example a DnCNN network trained
for additive Gaussian noise with fixed standard deviation), we successfully denoised a wide range
of different noise models even though the network has never seen the video nor the noise model
before its fine-tuning. This opens the possibility to easily process data from any unknown ori-
gin. We think that the current fine-tuning process can still be improved. First, given that the
application is video denoising, it is expected that better results will be achieved by a video de-
noising network (the DnCNN network processes each frame independent of the others). Using
the temporal information could improve the denoising quality, just like video denoising methods
improve over frame-by-frame image denoising methods, but also might stabilize the variance of
the result for the on-line fine-tuning. Recent works have also shown the possibility of real time
fine-tuning [TRJ+19, TTP+19] paving the way to improve computation time.

Fine-tuning on a single video is very useful for data that has been processed by an unknown
pipeline but it can also be used on raw data, i.e. mosaicked raw video. Indeed, it is possible
to both demosaick and denoise at the same time with a single network. While videos are rarely
shot in raw, this approach is particularly useful for image bursts that are more and more popular,
especially with mobile phones. We have seen that the CNN based demosaicking methods beat by
almost two decibels the best human-crafted methods while being faster by one order of magnitude
in Chapter 7. To reach this performance, they did not rely on the clever human techniques estab-
lished by the anterior state of the art, but simply applied rather standard CNN architectures. This
success is explainable. The first reason is that human-crafted algorithms rely on the iteration of
nonlinear local filters, the most complex one, ARI, having more than 20 such iterations. But deep
convolution networks have the same structure and are in addition scalable in depth and number
of filters, until they reach the best performance. Furthermore, human-crafted methods have been
designed to avoid certain artifacts, probably to the cost of losing in PSNR. CNNs, on the con-
trary, can be taught to learn intricate casuistry by the variety of presented images, and to keep a
memory of complex image statistics. Being trained to reach the best PSNR, they definitely reach
that goal. Finally, the Gharbi et al. method succeeded in biasing the learning process so as to
avoid completely the most annoying moiré and zipper effects, thus also achieving the most acute
requirement of demosaicking methods, while still retaining the best PNSR. This performance
arguably seals the destiny of human-crafted methods on this subject.

In Chapter 8, we proposed a novel way of training demosaicking neural networks without
any RGB ground truth. We use instead other mosaicked data of the same scene (such as from a
burst of images). Based on it and on recent neural network advances, we proposed a method to
train jointly demosaicking and denoising with bursts of noisy raw images. We showed that fine-
tuning on a given burst boosts the reconstruction performance. Clipped noise, a hard problem, is
handled natively. It also presents a specific case where overfitting a network to the training data is
valuable. Since we do not expect generalization there’s only benefits from this overfitting. While
the process of fine-tuning is costly and might not always be useful, training without ground truth
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is always an improvement to regular training. We hope our work can lead to new camera pipeline
calibration procedures, and general improvement of the image quality when a burst is available.

The last part tackled a different set of problems, namely detection. In particular, we looked
at anomaly detection in images and forgery detection and how these problems can be linked to
denoising. We have first shown in Chapter 9 that anomalies are easier detected on a residual im-
age, computed by removing the self-similar component, and then performing hypothesis testing.
It is reassuring to see that our method finds all anomalies proposed in the literature with very low
NFA. In addition, we have experimentally shown that the method verifies the non-accidentalness
principle: no anomalies are detected in white noise. We plan to extend the method to videos, by
analyzing anomalies in the motion field.

We then presented a theoretical analysis of the convergence of PatchMatch algorithms in
Chapter 10. For an energy level ε, we show that the probability of having an energy above
ε converges to zero with the number of iterations, and we provide worst case bounds on the
convergence rate. Our analysis applies to the case of k nearest neighbors, and to most variants
of PatchMatch proposed in the literature. We give specific bounds for two of these algorithms:
the original PatchMatch [BSFG09a, BSGF10] and CHS [KA11]. For the case of the original
PatchMatch (with k = 1) we validate our results by comparing the predicted convergence rate
with the one found in practice. The setting of our framework is rather general: the task of patch
matching is viewed as an optimization problem where the goal is to minimize several non-convex
energies Ux over the same domain. This might allow the application of these techniques to similar
optimizations problems in other areas. For the case of matching patches, it would interesting to
precise the link between the regularity of the images and the convergence rate, at least for certain
simple models of images.

The forgery detection method analyzed in Chapter 11 takes advantage of PatchMatch. One
of its major improvements is its resilience to rotations. It is also robust to image perturbations
such as the addition of noise. Nevertheless, it is not deprived of drawbacks. In particular, the
results are particularly disappointing when considering multiple copies of an object or when the
forgery has been performed by a classic copy-paste method such as Poisson editing. A better
choice for the descriptor should be able to fix this deficiency of the method though. Dense SIFT
descriptors were considered as an alternative to improve the detection of forgeries performed by
Poisson editing. Even though these descriptors allow for better detection, they are more likely to
produce false positives. Nevertheless, this shows that the method can be modified and improved
by varying the descriptors. The only drawbacks found – which are mainly linked to the usage of
PatchMatch – is the inability of the method to detect multiple copies but also to not distinguish
well similar objects from actual copies.

Finally, in Chapter 12 we have presented an unsupervised method to detect copy-move forg-
eries that is not only invariant to rotation, scaling and global change of illumination, but also
robust to the presence of similar but genuinely different objects or regions. The method, being
parameter-less and very fast, can be included in the necessary long series of tampering tests ap-
plied to a suspicious image. The limits of the method are closely linked to its strength. Because it
is robust to the presence of naturally similar objects, it is less reliable in case of large degradations.
We nevertheless found that the method is robust enough to usual noise and compression levels.
An image that has been degraded too much is suspicious anyway since nowadays the quality of
an image taken with a mobile is very good. Thus only images with a good enough quality should
be tested. Highly degraded images would be anyway suspicious regardless of a sophisticated ex-
amination. The second limit is the usage of sparse keypoints. These keypoints are only computed
in regions that are contrasted enough (non-flat areas) which means that forgeries in these regions
might not detected. Finally matching keypoints give anchor points and do not delimit forged re-
gions precisely. A natural extension of the method would be to extract the forged regions from
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the anchor points while still keeping a good control over the number of false detections. Finally
coupling the method with a noise estimator could arguably make it still more discriminant.
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A Analysis of PatchMatch (proofs)

A.1 Generic fast patch matching algorithm

A.1.1 Random search

In the following, we will say that η ∈ {Uz > α}, η being a k-set of elements, if and only if
Uz(η) > α (Uz being defined in Def. (10.1)).

Lemma 11.1. For all z ∈ A, C(z, .) is a non-increasing function such that for ε > 0, C(z, ε) ∈
[0, 1[ and C(z, ε) = 1 for ε 6 0.

Proof. Let us recall the definition of C:

C(z, α) = sup
η∈{Uz>α}

Q(η, {Uz > α}). (A.1)

The function C(z, ·) is a supremum of probabilities (in fact it is a maximum because the set
{Uz > ε} is finite). We remind the property for a candidate η,Q(η, L) < 1 if the set of acceptable
list of candidatesL is not empty. ThusC(z, ε) ∈ [0, 1[, for all z ∈ A and ε > 0. Since inf Uz = 0,
the probability of transitioning to a negative energy is 0, and thus C(z, ε) = 1 for ε 6 0. If
ε1, ε2 ∈ R+ are such that ε1 > ε2, we have {Uz > ε1} ⊆ {Uz > ε2}. Therefore for all η a set
of candidates of B, because Q is a stochastic kernel, Q(η, {Uz > ε1}) 6 Q(η, {Uz > ε2}). This
implies that

sup
η∈{Uz>ε1}

Q(η, {Uz > ε1}) 6 sup
η∈{Uz>ε1}

Q(η, {Uz > ε2}) 6 sup
η∈{Uz>ε2}

Q(η, {Uz > ε2}).

(A.2)
and therefore C(z, ε1) 6 C(z, ε2).

A.2 Convergence of the patch matching algorithms

For the proof of Lemma 10.2, we will use the following lemma and its subsequent corollary.

Lemma A.1. Let y, x be real random variables (x with pdf f according to Lebesgue measure
µ) and E an event of the form si ∈]ai,+∞[, ai ∈ R, for i ∈ J1, NK. We assume that y is
conditionally independent from E given x. Then for any Y,X:

P(y ∈ Y |x ∈ X,E) 6 sup
x∈X

P(y ∈ Y |x). (A.3)
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Proof. The proof follows from Bayes rule and the conditional independence between y and E:

P(y ∈ Y |x ∈ X,E) = P(y ∈ Y, x ∈ X|E)
P(x ∈ X|E) = 1

P(x ∈ X|E)

∫
x∈X

P(y ∈ Y |x,E)f(x)dµ(x)

= 1
P(x ∈ X|E)

∫
x∈X

P(y ∈ Y |x)f(x)dµ(x) 6 sup
x∈X

P(y ∈ Y |x) 1
P(x ∈ X|E)

∫
x∈X

f(x)dµ(x).

(A.4)

Corollary A.1. Let y1, . . . , yn, x1, . . . , xn be real random variables and E an arbitrary random
event of the form defined in Lemma A.1. We assume that for all i ∈ J1, nK, given xi, yi is
conditionally independent from E, xj and yj , for j 6= i. Then for any Yi, Xi:

P (∀i ∈ Ji, nK, yi ∈ Yi|∀i ∈ J1, nK, xi ∈ Xi, E) 6
n∏
i=1

sup
x∈Xi

P(yi ∈ Yi|x). (A.5)

Proof. Using Bayes rule,

P (∀i ∈ Ji, nK, yi ∈ Yi|∀i ∈ J1, nK, xi ∈ Xi, E) (A.6)

=
n∏
i=1

P (yi ∈ Yi|∀j ∈ J1, nK, xj ∈ Xj , E, ∀k ∈ J1, i− 1K, yk ∈ Yk) (A.7)

6
n∏
i=1

sup
x∈Xi

P(yi ∈ Yi|x) (A.8)

where the last inequality is given by the application of Lemma A.1 on each term of the product.

A.2.1 Energy decay in the nth step

Lemma 11.2 (Constraints propagation). Consider an assignmentϕn+1 resulting from an iteration
of Algorithm 28. Then for each pair of nodes x, z ∈ V ,

Ux(ϕn+1
x ) > ε⇒ Uz(ϕn+1

z ) > εz,x, (A.9)

where the levels εz,x > 0 are as follows. For the ancestors of x (i.e. P(z, x) 6= ∅) the levels
εz,x are defined via the following recursion starting from x and following the inverse propagation
order:  εz,x = inf

{
Uz(θ)

∣∣∣∣∣ θ ∈ ⋂
y s.t. z∼y

A−1
z,y({Uy > εy,x})

}
εx,x = ε.

(A.10)

For the rest of the nodes εz,x = −1.

Proof. We start by observing the following property of the merge operator. Consider a node
y ∈ V and two sets of candidates patches ξ, η. Then it is easy to show that

|ξ| > k and Uy(ξ) < ε ⇒ Uy(mergeky(ξ ∪ η)) < ε. (A.11)

The proof of the lemma is trivial for the nodes that are not ancestors of x. To prove it for the
ancestors we proceed by induction starting from x and following the inverse propagation order.
Let z, a node in the query image A, be an ancestor of x. We assume that the statement holds for
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the nodes preceding z in the inverse propagation order (or equivalently those succeeding z with
the propagation order).

In particular let y be a child of z, i.e. z ∼ y, and assume that ϕn+1/2
y ∈ {Uy > εy,x}. The

candidates ϕn+1/2
y result from the propagation from the parents of y, among them is z. By (A.11)

it follows that if Uy(Az,yϕn+1
z ) < εy,x, then Uy(ϕn+1/2

y ) < εy,x, violating our assumption. Thus,
necessarily

Uy(ϕn+1/2
y ) > εy,x ⇒ Uz(Az,yϕn+1

z ) > εy,x ⇒ ϕn+1
z ∈ A−1

z,y{Uy > εy,x}. (A.12)

Since this holds for all children y of z, we have that

ϕn+1
z ∈

⋂
z∼y

A−1
z,y{Uy > εy,x} = Lεz,x. (A.13)

Therefore
Uz(ϕn+1

z ) > inf Uz
(
Lεz,x

)
i.e. ϕn+1

z ∈ {Uz > εy,x}. (A.14)

In the case of the nearest neighbor search, we can directly use the Lεy,xs instead of having to use
the upper level sets defined by the εy,xs in the following proof for a tighter bound.

Theorem 11.1 (Point-wise convergence). Consider the field of candidate matches at iteration n,
ϕn. Define ϕn+1 by applying an iteration of the Generic PatchMatch in Algorithm 28. Then, for
all ε > 0, for all x ∈ A, we have

P(Ux(ϕn+1
x ) > ε) 6 P(Ux(ϕnx) > ε)

∏
z∈A

(
C2(z, εz,x)µ(z)C1(z, εz,x)

)
, (A.15)

where µ(z) was defined in (10.5) as the number of parents of node z and Ci denotes the worst
case transition probability for kernel Qi, as in Eq. (10.8).

Proof. We consider a topological ordering of the nodes in the query image. Given two nodes
z, y ∈ A, we use the notation z < y if z precedes y. We denote by y − 1 and y + 1 the nodes
before and after y in the ordering.

The proof consist on a recursion on the ordered set of nodes. For y ∈ A we define the
following events:

Sy : ∀z > y, Uz(ϕnz ) > εz,x

Py : ∀z 6 y, Uz(ϕn+1
z ) > εz,x.

(A.16)

The event Sy restricts the candidates at iteration n of the nodes succeeding y, whereas the event
Py considers the candidates at iteration n+ 1 of the nodes preceding y.

From Lemma 11.2 we have that: Ux(ϕn+1
x ) > ε ⇒ ∀z, Uz(ϕn+1

z ) > εz,x. Taking probabili-
ties

P(Ux(ϕn+1
x ) > ε) 6 P(∀z, Uz(ϕn+1

z ) > εz,x) 6 P(Px ; Sx). (A.17)

The last equality holds because for z > x as the level εz,x is defined as −1. Therefore the
conditions over ϕn+1

z or ϕnz for such nodes are trivially satisfied.
We proceed by showing that the following recursive relation holds for any node y:

P(Py ; Sy) 6 P(Py−1 ; Sy−1)C1(y, εy,x)C2(y, εy,x)µ(y). (A.18)

The result then follows by applying this recursion backwards from x until the first node in the
topological ordering. To show (A.18) we note that P(Py ; Sy) = P(Py−1 ; Sy ; Uy(ϕn+1

y ) >
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εy,x). Since ϕn+1
y results from a propagation step 8, we have that

Uy(ϕn+1
y ) ≥ εy,x ⇒ Uy(mergeky(ϕn+1/2

y ∪ S1ϕ
n+1/2
y )) > εy,x

⇒ Uy(ϕn+1/2
y ) > εy,x and Uy(S1ϕ

n+1/2
y ) > εy,x. (A.19)

Thus we have the following inequality:

P(Py ; Sy) 6 P(Py−1 ; Sy ; Uy(ϕn+1/2
y ) > εy,x ; Uy(S1ϕ

n+1/2
y ) > εy,x)

6 P(Uy(S1ϕ
n+1/2
y ) > εy,x | Py−1 ; Sy ; Uy(ϕn+1/2

y ) > εy,x)
P(Py−1 ; Sy ; Uy(ϕn+1/2

y ) > εy,x)
6 sup {Q1,y(η, {Uy > εy,x}) : η ∈ {Uy > εy,x}}P(Py−1 ; Sy ; Uy(ϕn+1/2

y ) > εy,x)
6 C1(y, εy,x)P(Py−1 ; Sy ; Uy(ϕn+1/2

y ) > εy,x). (A.20)

The third inequality comes from the application of Lemma A.1. The last step follows from the
definition of C1 in (10.8). We continue by noticing that,

Uy(ϕn+1/2
y ) > εy,x ⇒ Uy(mergeky(ϕny ∪

⋃
z∼y

Az,yϕ
n+1
z ∪

⋃
z∼y

S2Az,yϕ
n+1
z )) > εy,x ⇒

Uy(ϕny ) > εy,x ; ∀z ∼ y, Uy(Az,yϕn+1
z ) > εy,x ; ∀z ∼ y, Uy(S2Az,yϕ

n+1
z ) > εy,x. (A.21)

To simplify the notation, in the following we will drop the subscripts from Az,y. The implication
(A.21), yields the following

P(Py−1 ; Sy ; Uy(ϕn+1/2
y ) > εy,x)

6 P(Py−1 ; Sy ; ∀z ∼ y, Uy(Aϕn+1
z ) > εy,x, Uy(S2Aϕ

n+1
z ) > εy,x ; Uy(ϕny ) > εy,x)

6 P(Py−1 ; Sy−1 ; ∀z ∼ y, Uy(Aϕn+1
z ) > εy,x, Uy(S2Aϕ

n+1
z ) > εy,x)

6 P(∀z ∼ y, Uy(S2Aϕ
n+1
z ) > εy,x | Py−1 ; Sy−1 ; ∀z ∼ y, Uy(Aϕn+1

z ) > εy,x)
P(Py−1 ; Sy−1 ; ∀z ∼ y , Uy(Aϕn+1

z ) > εy,x)
6
∏
z∼y

sup {Q2,y(η, {Uy > εy,x}) : η ∈ {Uy > εy,x}}

P(Py−1 ; Sy−1 ; ∀z ∼ y , Uy(Aϕn+1
z ) > εy,x)

6 C2(y, {Uy > εy,x})µ(x)P(Py−1 ; Sy−1 ; ∀z ∼ y , Uy(Aϕn+1
z ) > εy,x)

6 C2(y, {Uy > εy,x})µ(x)P(Py−1 ; Sy−1). (A.22)

In the third step we have applied Corollary A.1, whereas the forth step results from the definition
of C2.

The recursion (A.18) follows from (A.20) and (A.22).

Remark A.1. The proof is based on the fact that, due to the propagation, restricting the energy
of the candidates at x implies constraints on the candidates of its ancestors (Lemma 11.2). We
then bound the probability of all random samples drawn to satisfy those constraints. The more
restrictive those constraints are, the smaller the probability of satisfying them. The Lemma in
11.2 establishes that ϕn+1

z ∈ {Uz > εz,x}. However, during the proof of Lemma 11.2 it is
shown that the candidate sets ϕn+1

z belong to a set Lεz,x, which can be smaller than {Uz > εz,x}
(i.e. Lεz,x ⊆ {Uz > εz,x}. A tighter bound can be derived by considering this more restrictive

constraint, and bounding the probability of S1ϕ
n+1/2
z ∈ Lεz,x. In the cases of k-sets, the set Lεz,x

is a set of k-sets, and it is difficult to evaluate the probability of sampling a k-set in that set. This
difficulty disappears for k = 1. Then Lεz,x ⊆ B, and computing the probability of sampling in the
allowed set becomes easier. Thus a tighter bound can be computed for k = 1.
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Theorem 11.2. Consider the field of candidate matches at iteration n, ϕn. Define ϕn+1 by
applying an iteration of the Generic PatchMatch in Algorithm 28. Then, for all ε > 0 we have

P(‖U.(ϕn+1
. )‖∞ > ε) 6 P(‖U.(ϕn. )‖∞ > ε)

∏
z∈A

(
C2(z, ε)µ(z)C1(z, ε)

)
. (A.23)

Proof. The proof is similar to the one of Theorem 11.1 where instead of using Lemma 11.2 we
use ‖U.(ϕn+1

. )‖∞ > ε, i.e. ∀x ∈ A, Ux(ϕn+1
x ) > ε.

Corollary 11.1. Assume that for any pair (η, ξ) of sets of k candidate matches Q1(η, ξ) > 0 (or
Q2(η, ξ) > 0). Let (ϕn) be a sequence defined by Algorithm 28. Then ∀x ∈ A,E[Ux(ϕnx)] −−−→

n→∞
0 and E[‖U.(ϕn. )‖∞] −−−→

n→∞
0.

Proof. We will show the convergence in the mean for a single node x ∈ A, i.e.
E[|Ux(ϕnx)|] −−−→

n→∞
0.We recall that for a non-negative random variableX , E[X] =

∫
x>0 P(X >

x). Then we have:

E[|Ux(ϕn+1
x )|] = E[Ux(ϕn+1

x )] =
∫
ε>0

P(Ux(ϕn+1
x ) > ε) (A.24)

6
∫
ε>0

∏
z∈A

(
C2(z, εz,x)µ(z)C1(z, εz,x)

)
P(Ux(ϕnx) > ε) (A.25)

6
∫
ε>0

C2(x, ε)µ(x)C1(x, ε) P(Ux(ϕnx) > ε) (A.26)

6
∫
ε>0

(
sup
α>0

C2(x, α)
)µ(x) (

sup
α>0

C1(x, α)
)
P(Ux(ϕnx) > ε) (A.27)

6
(

sup
α>0

C2(x, α)
)µ(x) (

sup
α>0

C1(x, α)
)∫

ε>0
P(Ux(ϕnx) > ε) (A.28)

6
(

sup
α>0

C2(x, α)
)µ(x) (

sup
α>0

C1(x, α)
)
E[Ux(ϕnx)]. (A.29)

Since Q1(η, ξ) > 0, for all η, ξ, we have that Q1(η, {Ux = 0}) > 0 for any η. In the discrete
case (the one only one considered for this theorem) the sup is achieved and is not 1. Therefore
supα>0C1(x, α) = maxα>0C1(x, α) < 1 and the convergence follows. With a similar deriva-
tion can be used to show the convergence of the L∞ norm of the whole NNF.

A.3 Specific PatchMatch algorithms

A.3.1 The original PatchMatch algorithm

Proposition 11.1. The specific basic PatchMatch algorithm described in this section algorithm
converges in probability to a NNF which minimizes the energy, namely

lim
n→∞

P(Ux(ϕnx) > ε) = 0,∀ε > 0, x ∈ A, (A.30)

with a geometric convergence rate.
Moreover for all ε > 0, for all x ∈ A, we have that

P(Ux(ϕn+1
x ) > ε) 6 P(Ux(ϕnx) > ε)

∏
z∈A

(
1−

(
1− C ′(ci, εz,x)

)k)
, (A.31)

with
C ′(z, α) := sup

η
Q′(η, {Uz > a}). (A.32)

For α > 0 we can guarantee that C ′(z, α) < 1.
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Proof. The bound in Theorem 11.1 applies. We now express C1 in terms of the new C ′. For
that, we compute an upper bound for P(Uz(S1ϕ

n
z ) > a | Uz(ϕnz ) > a,E) with a > 0 and E any

event, ∀z ∈ A. We first remark that, if Si1ϕ is the ith sample generated from the random sampling
around ϕ,

P(Uz(S1ϕ
n
z ) > a | Uz(ϕnz ) > a,E) = 1−

k∏
l=1

P(Uz(Sl1ϕnz ) 6 a | Uz(ϕnz ) > a,E). (A.33)

For a candidate φ ∈ S1ϕ
n
z ,

P(Uz(φ) > a | Uz(ϕnz ) > a,E) 6 sup
η∈{Uz>a}

Q(η, {Uz > a}) (A.34)

Let us remind that η and Sη are k-sets, i.e. sets of k distinct candidates. The candidates in Sη are
sampled centered at the best candidate in η (the one minimizingUz). We know that η ∈ {Uz > a},
which only constrains the worst candidate in η, but says nothing about the best candidate. This is
why for this proof there is no restriction on where the sample comes from. Therefore, with

sup
η
Q′(η, {Uz > a}) =: C ′(z, a) (A.35)

we have
P(Uz(φ) 6 a | Uz(ϕnz ) > a,E) > 1− C ′(z, a) (A.36)

and
P(Uz(S1ϕ

n
z ) > a | Uz(ϕnz ) > a,E) 6 1− (1− C ′(z, a))k. (A.37)

Since the support of the random search is the full image, it guarantees that ∀z ∈ A, ∀a >
0, C ′(z, a) < 1. This implies that the bound found is strictly inferior to one and therefore the
convergence is insured.

Corollary 11.2. In the case of the search of the nearest neighbor, the upper bound can be written
as

P(Ux(ϕn+1
x ) > ε) 6

∏
z∈A

C ′(z, εz,x)P(Ux(ϕnx) > ε). (A.38)

with
C ′(z, α) := sup

η∈{Uz>a}
Q′(η, {Uz > a}). (A.39)

This bound is actually tighter than the one derived in [ACF12].

Proof. The derivation of the tighter bound presented in Equation (A.38) is the same as in Propo-
sition 11.1. The difference comes from the that in the case k = 1, the best current match is also
the worst current match therefore the element used to sample is necessarily with an energy larger
than εz,x.

The second part of the proof concerns the comparison with the bound of [ACF12]. The
difference between the bound (A.38) and the one in [ACF12] lies in the levels εz,x inside the
factors C ′. The levels used in [ACF12] are of the form ε− `z,x, where `z,x is defined as follows:

`z,x = min
c∈P(z,x)

n∑
i=1

dci,ci−1 (A.40)

with P(z, x) being the set of all the paths from z to x in the graph and dci,ci−1 = ‖Uci − Uci−1 ◦
A‖∞ Therefore, due to the monotonicity of C ′ we just have to show that εz,x > ε− `z,x.
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For z = x, εz,x = ε and `z,x = 0 therefore the property is verified. Suppose now that the
property is true for any y such that y > z. We will show that in this case the property stays true for
z. Suppose that εz,x < ε − `z,x. Because εz,x = inf Uz(Lεz,x), this means that it exists η ∈ Lεz,x
such that Uz(η) < ε − `z,x. Let y be the child of z such that `z,x = `y,x + dz,y. In this case we
have that

Uz(η) + dz,y < ε− `z,x + dz,y (A.41)

therefore
Uy(Aη) 6 Uz(η) + dz,y < ε− `y,x. (A.42)

We then have found η ∈ Lεy,x i.e. Aη ∈ {Uy > εy,x} therefore εy,x 6 Uy(Aη) < ε− `y,x which
is contradictory with the hypothesis. The property is then also valid for z.

Remark A.2. The tighter bound for the specific case of k = 1 mentioned in the Remark after the
proof of Theorem A.15 applies in this case as well, yielding a bound for the original PatchMatch
that is tighter than the one from Proposition 11.1. We compared both bounds and in practice the
difference between them is small. For our experiments in the paper we have used a bound similar
to the one of the Proposition 11.1.

A.3.2 The CSH algorithm

Lemma 11.3. If H is (R, cR, p1, p2)-sensitive then an OR family G created using n functions
fromH is (R, cR, 1− (1− p1)n, 1− (1− p2)n)-sensitive.

Proof. Let p, q such that ‖p − q‖ 6 R and g ∈ G generated by h1, . . . , hn ∈ H with H
(R, cR, p1, p2)-sensitive.

PG(g(p) 6= g(q)) = PH(h1(p) 6= h1(q), . . . , hn(p) 6= hn(q)) (A.43)

Because the his are independent,

PH(h1(p) 6= h1(q), . . . , hn(p) 6= hn(q)) =
n∏
i=1

PH(hi(p) 6= hi(q)) (A.44)

Using the (R, cR, p1, p2)-sensitive property ofH, for all i

PH(hi(p) 6= hi(q)) = 1− PH(hi(p) = hi(q)) (A.45)

6 1− p1 (A.46)

Therefore
PG(g(p) 6= g(q)) 6 (1− p1)n (A.47)

and
PG(g(p) = g(q)) > 1− (1− p1)n. (A.48)

Using similar derivation, the corresponding result can be proved for the second part of the sensi-
tive definition. This result in G an OR family function being (R, cR, 1−(1−p1)n, 1−(1−p2)n)-
sensitive.

Proposition 11.2. For a (R, cR, p1, p2)-sensitive family of hashing functions such that R >
maxz∈A Kz (see Definition 10.1), the sequence (ϕn) defined by the CSH algorithm converges
in probability to a minimizer of the total energy, in the sense that

lim
n→∞

P(Ux(ϕnx) > ε) = 0, ∀ε > 0, x ∈ A, (A.49)

243



with a geometric convergence rate. Moreover for all ε > 0, for all x ∈ A,

P(Ux(ϕn+1
x ) > ε) 6 P(Ux(ϕnx) > ε)

∏
z∈A

C2(z, {Uz > εz,x})µ(z)f(p1, εz,x}), (A.50)

where f(α, β) = (1− αk) if εz,x > 0, 1 otherwise.

From a set of LSH hash functions H, a OR family of function G can also be defined. The
function g ∈ G is based on a set of n random functions h1, . . . , hn from H such that for all p, q,
g(p) = g(q) if and only if there exist i ∈ J1, nK such that hi(p) = hi(q).

Proof. Let R > maxz∈A Kz and H an (R, cR, p1, p2)-sensitive family of functions. Consider
also G an OR family function based on H so that a function from G is generated using at least k
functions from H. An upper bound for P(Ux(S1ϕ

n
x) > a | E) with a > 0, ∀x ∈ A and E an

undefined event will now be derived.
Firstly,

∀p ∈ B, ‖p− x‖ 6 R⇒ P(h(p) = h(x)) > p1. (A.51)

R is then chosen such that for all x ∈ A, ‖x−Nk(x)‖ 6 R, where Nk(x) ∈ B is the kth nearest
neighbor of x. This property is true for the lth nearest neighbor Nl(x), with l 6 k. Therefore we
have P(h(Nl(x)) = h(x)) > p1. Moreover the binning is independent from the current matching
ϕnx .

For a given h ∈ H andH′ ⊂ H such that h ∈ H′, for a query q, for all p ∈ B

h(q) = h(p)⇒ ∃h′ ∈ H′, h′(q) = h′(p) (A.52)

Therefore for a list H ′ = {h1, . . . , hk} ⊂ H, for a query q, for all p ∈ B

h1(q) = h1(p1), . . . , hk(q) = hk(pn)⇒ (∃h ∈ H′, h(q) = h(p1)), . . . , (∃h ∈ H′, h(q) = h(pk))
(A.53)

and

P(h1(q) = h1(p1), . . . , hk(q) = hk(pn))
6 P((∃h ∈ H′, h(q) = h(p1)), . . . , (∃h ∈ H′, h(q) = h(pk))) (A.54)

When working with the elements of the OR family G, we can define H′ as the set functions from
H used to generate g (H′ verifies the properties of the previously used H′ because at least k
functions are used to generate each element of G),

PG(g(q) = g(p1), . . . , g(q) = g(pn))
= PH((∃h ∈ H′, h(q) = h(p1)), . . . , (∃h ∈ H′, h(q) = h(pn)))

> PH(h1(q) = h1(p1), . . . , hn(q) = hn(pn)) (A.55)

which leads to

PG(g(q) = g(p1), . . . , g(q) = g(pk)) > PH(h1(q) = h1(p1), . . . , hk(q) = hk(pk)) (A.56)

because the hi are independent

PG(g(q) = g(p1), . . . , g(q) = g(pn)) >
k∏
i=1

PH(hi(q) = hi(pi)) > pk1 (A.57)
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when using the original LSH property forH. This implies that

P(Ux(S1ϕ
n
x) = 0) = PG(g(q) = g(p1), . . . , g(q) = g(pn)) > pk1 (A.58)

Finally, P(Ux(S1ϕ
n
x) > a |E) 6 1−P(Ux(S1ϕ

n
x) 6 a |E) 6 1−P(Ux(S1ϕ

n
x) = 0 |E) 6 1−pk1

Replacing C1(z, ε), for z ∈ A and ε > 0, by (1 − pk1) in the proof of Theorem 10.1 gives the
result in Proposition 10.2.
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Titre : Débruitage vidéo et applications

Mots clés : Débruitage, Débruitage à patches, Apprentissage profond, Démosaı̈quage, Détection d’anoma-
lies, PatchMatch, Détection de falsification

Résumé : Cette thèse est dédiée au débruitage
vidéo. La première partie se concentre sur les
méthodes à patches pour le débruitage de vidéo.
Nous étudions en détail VBM3D, une méthode po-
pulaire de débruitage vidéo, pour comprendre les
mécanismes qui ont fait son succès. Nous présentons
aussi une implémentation temps-réel sur carte gra-
phique de cette méthode. Nous étudions ensuite l’im-
pacte de la recherche de patches pour le débruitage
vidéo et en particulier comment une recherche glo-
bale peut améliorer la qualité du débruitage. Enfin,
nous proposons une nouvelle méthode causale et
récursive appelée NL-Kalman qui produit une très
bonne consistance temporelle. Dans la deuxième
partie, nous étudions les méthodes d’apprentissage
pour le débruitage. Nous présentons l’une des toutes
premières architecture de réseau qui est compétitive
avec l’état de l’art. Nous montrons aussi que les
méthodes basées sur l’apprentissage profond offrent
de nouvelles opportunités. En particulier, il devient
possible de débruiter sans connaı̂tre le modèle du

bruit. Grâce à la méthode proposée, même les
vidéos traitées par une chaı̂ne de traitement incon-
nue peuvent être débruitées. Nous étudions aussi
le cas de données mosaı̈quées. En particulier, nous
montrons que les réseaux de neurones sont large-
ment supérieurs aux méthodes précédentes. Nous
proposons aussi une nouvelle méthode d’appren-
tissage pour le démosaı̈quage sans avoir besoin
de vérité terrain. Dans une troisième partie nous
présentons différentes applications aux techniques
utilisées pour le débruitage. Le premier problème
étudié est la détection d’anomalie. Nous montrons
que ce problème peut être ramené à détecter des
anomalies dans du bruit. Nous regardons aussi la
détection de falsifications et en particulier la détection
de copié-collé. Tout comme le débruitage à patches,
ce problème peut être résolu à l’aide d’une recherche
de patches similaires. Pour cela, nous étudions en
détail PatchMatch et l’utilisons pour détecter des falsi-
fications. Nous présentons aussi une méthode basée
sur une association de patches parcimonieuse.

Title : Video denoising and applications

Keywords : Denoising, Patch-based denoising, Deep learning, Demosaicking, Anomaly detection, Patch-
Match, Forgery detection

Abstract : This thesis studies the problem of video
denoising. In the first part we focus on patch-based vi-
deo denoising methods. We study in details VBM3D,
a popular video denoising method, to understand the
mechanisms that made its success. We also present
a real-time implementation on GPU of this method.
We then study the impact of patch search in video
denoising and in particular how searching for simi-
lar patches in the entire video, a global patch search,
improves the denoising quality. Finally, we propose a
novel causal and recursive method called NL-Kalman
that produces very good temporal consistency. In the
second part, we look at the newer trend of deep lear-
ning for image and video denoising. We present one
of the first neural network architecture, using temporal
self-similarity, competitive with state-of-the-art patch-
based video denoising methods. We also show that
deep learning offers new opportunities. In particular, it
allows for denoising without knowing the noise model.
We propose a framework that allows denoising of vi-

deos that have been through an unknown processing
pipeline. We then look at the case of mosaicked data.
In particular, we show that deep learning is undenia-
bly superior to previous approaches for demosaicking.
We also propose a novel training process for demo-
saicking without ground-truth based on multiple raw
acquisition. This allows training for real case applica-
tions. In the third part we present different applica-
tions taking advantage of mechanisms similar those
studied for denoising. The first problem studied is ano-
maly detection. We show that this problem can be re-
duced to detecting anomalies in noise. We also look
at forgery detection and in particular copy-paste forge-
ries. Just like for patch-based denoising, solving this
problem requires searching for similar patches. For
that, we do an in-depth study of PatchMatch and see
how it can be used for detecting forgeries. We also
present an efficient method based on sparse patch
matching.
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