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Automatique, Génie informatique, Traitement du signal et des images

Par

Ayoub Belhadji
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1
I N T R O D U C T I O N

The real world is much smaller than the imaginary

Friedrich Nietzsche

Subsampling is a recurrent task in applied mathematics. This paradigm has many
applications in data analysis, signal processing, machine learning and statistics: con-
tinuous signal discretization, numerical integration, dimension reduction, learning
on budget, preconditioning... Seemingly unrelated, these problems can be tackled
using the same strategy: looking for the most representative elements in a set. For
example, the aim of subset selection is to select the most representative elements of a
large set to approximate an object that can be scalar, a vector, or a matrix. On the other
hand, quadrature and interpolation aim to select the most representative elements of a
continuous domain to approximate a function or an integral. These approximations
are conducted, mainly, for three purposes: improving the numerical complexity of an
existing algorithm (numerical issue), reducing the cost of labelling (sensing issue), or
making an algorithm more interpretable (interpretation issue).

For some problems with linear structure, the set can be embedded in a vector space.
A good subset of representatives would have a geometric characterization that can be
expressed in a simple way using the spectrum of some linear operator. In other words,
the sub-sampling problem boils down to a geometric problem. One way to set up a
linear representation on a set is to define a kernel. Indeed, kernels are universal tools
that can be defined on discrete sets or continuous domains. Moreover, they combine
well with linearisation.

Once an embedding is defined, one can make use of the abundant tools of linear
operators such as linear algebra or functional analysis to solve the geometrical problem
that corresponds to the sub-sampling problem. Under this perspective, we can explain
the recourse to random sub-sampling in many problems with linear structure: non-
asymptotic random matrix theory offers strong tools to tackle these geometric problems
in a universal way. A universality that lacks to deterministic sub-sampling approaches.

Until now, sampling vectors independently, with a probability proportional to their
(squared) length was the gold standard of randomized subsampling. Indeed, lengths
are amenable to fast evaluation, approximation, and sampling. Moreover, these simple
sub-sampling schemes come with relatively strong guarantees. Still, lengths contain
only first-order information about the set to be sampled. One may expect to improve
the quality of sampling by considering high-order information such as volumes.

Indeed, a good subset of representatives would capture the substance of the infor-
mation avoiding any unnecessary redundancy. This redundancy may be measured
by the volume spanned by these elements. Intuitively, a subset of vectors would be
redundant if defining a polytope with small volume, and it would be non-redundant
if defining a polytope with large volume. It turns out that there exists a family of
probabilistic models that define random subsets with a repulsion property: informally,
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the probability of appearance of a subset is proportional to the squared volume it
defines in the vector space. These models are called determinantal point processes and
they were the topic of intense research in various fields: random matrices, quantum
optics, spatial statistics, image processing, machine learning and recently numerical
integration. These probabilistic models seem to furnish the plausible framework for
the study of sub-sampling using high-order information. Indeed, these probabilistic
models are expressed using the language of linear operators and kernels: they naturally
extend first-order sub-sampling schemes.

This thesis is devoted to investigate the suitability and the pertinence of using
determinantal point processes as models for randomized sub-sampling for problems
with a linear structure.

1.1 subsampling problems with linear structure

In order to situate the contributions of this thesis, a brief review of randomized
subsampling techniques for problems with a linear structure is given in the following.

We start by the problem of linear regression under constraint on the number
of observations. Consider a matrix X ∈ RN×d that contains the d features of N
observations, with N ≥ d, and assume the rank of X is equal to d. A recurrent task
in data analysis and statistics is linear regression, which consists in looking for the
minimum-length vector w ∈ Rd among the vectors minimizing the residual

‖y− Xw‖2, (1.1)

for a given vector of labels y ∈ RN . It is well known that the solution is given by
w∗ = X+y, where X+ is the Moore-Penrose pseudo-inverse of X and the optimal
residual writes

‖y− XX+y‖2 = ‖y−UUᵀy‖2, (1.2)

with U ∈ RN×d is a matrix containing the left eigenvectors of X.
In some situations, calculating w∗ using a pseudo-inverse formula is not affordable,

either because N is very large and the computation resources are not sufficient (the
numerical issue), or because obtaining the N labels (yn)n∈[N] is expensive (the sensing
issue). In such a situation, looking for representatives can be beneficial.

Formally, a family of representatives corresponds to a subset S = {i1, . . . , ic} ⊂ [N]

with c ∈ N∗, i1 < i2 < · · · < ic, and a matrix S ∈ Rc×N such that for j ∈ [c],
Sj,ij = sj > 0, and the other elements of S are equal to 0. The constant c represents the
budget of sub-sampling, and SᵀX ∈ Rc×d is the sub-matrix of X that corresponds to the
subset S, after rescaling the rows by the factors si.

Now, one can define an approximation of w∗ based on the subset S. For example,
Drineas, Mahoney, and Muthukrishnan, 2006 proposed

w∗S = (SᵀX)+(Sᵀy). (1.3)

In this approximation, the pair (X, y) was replaced by the reduced pair (SᵀX, Sᵀy). A
good choice of the representatives would define a sampling matrix S that satisfies

∀y ∈ RN , ‖y− Xw∗S‖2 ≤ (1 + ε)‖y− Xw∗‖2, (1.4)
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for some tolerable error ε > 0. This condition can be written as

(1− ε)Id ≺ ∑
j∈[c]

sj x̃ij x̃
ᵀ
ij
≺ (1 + ε)Id ⇐⇒

∥∥Id − ∑
j∈[c]

sj x̃ij x̃
ᵀ
ij

∥∥
2 ≤ ε, (1.5)

where Id is the identity matrix of dimension d, x̃n = (XᵀX)−1/2xn and ‖.‖2 is the
spectral norm.

Therefore, the sub-sampling problem boils down to looking for a matrix S that
makes the reduced matrix ∑j∈[c] sj x̃ij x̃

ᵀ
ij

close to the identity matrix Id, which itself
writes as the sum of rank one matrices

Id = ∑
n∈[N]

x̃n x̃ᵀn. (1.6)

One way to design a sampling matrix S that satisfies condition (1.5) is to consider a
randomized sub-sum of (1.6), and to make use of a matrix concentration inequality to
prove that this sub-sum concentrates around Id. For example, consider the following
random sum

Ic =
1
c ∑

i∈[c]

1
pni

x̃ni x̃
ᵀ
ni , (1.7)

where the pn are positive and sum to one, and the ni are sampled independently from
the multinomial random variable of parameter p = (pn)n∈[N]. We can easily prove
that E Ic = Id. Moreover, the fluctuations of Ic around Id can be controlled using a
concentration inequality.

Theorem 1.1 (Matrix Bernstein concentration inequality). (Tropp, 2015) Consider a finite
sequence (Xj) of independent, random, self-adjoint d× d matrices. Assume that each matrix Xj
satisfies

E Xj = 0d×d, (1.8)

‖Xj‖2 ≤ τ, (1.9)

where τ > 0, and define σ2 = ‖E ∑
j

X2
j ‖. Then for ε > 0,

P

(∥∥∑
j

Xj
∥∥

2 ≥ ε

)
≤ 2de−

3
2

ε2

3σ2+τε . (1.10)

Theorem 1.1 can be applied to the matrix Ic in (1.7) by considering the random
matrices Xi = (x̃ni x̃

ᵀ
ni /pni − Id)/c. In particular, when p = (1/N), the bounds of

Theorem 1.1 are significant if c ≥ CN log(d)maxn∈[N] ‖x̃n‖2, where C is a universal
constant that does not depend on d and N: if there exists n such that ‖x̃n‖ = 1, then
one needs to take c ≥ CN log(d) and the subsampling does not allow to reduce the
complexity of the problem; however, if maxn∈[N] ‖x̃n‖2 is equal to its minimal value
d/N, then the budget c = Cd log(d) is enough to have good guarantees. In other
words, uniform sub-sampling reduces the complexity of the problem if the coherence
maxn∈[N] ‖x̃n‖2 approaches its lowest possible value d/N, otherwise the minimal budget
has to be larger than N, which is at odds with the idea of sub-sampling. Intuitively,
the variance of such a randomized sub-sum is governed by the vectors x̃n that have
large norms, and including them in this sum with a probability larger than 1/N would
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make this variance low. This intuition motivates the introduction of the leverage scores
(`n)n∈[N] defined by

`n = ‖x̃n‖2. (1.11)

Indeed, using again Theorem 1.1, if p = (`n/d)n∈[N], the budget c = Cd log(d) is
enough to have good guarantees independently of the value of the coherence, and
more importantly, independently of N. This constitutes a significant reduction of the
complexity of the problem in situations where N is very large compared to d.

Beside vanilla linear regression, this reduction can be beneficial in other problems
with a linear structure. For example, for the problem of graph sparsification, i.e.
sub-sampling the edges of a graph while maintaining its spectral properties. For this
problem, the dimension d is the number of nodes, which can be very small compared
to the number of edges N. Leverage score sampling was studied for this problem
under the name of effective resistance sampling (Spielman and Teng, 2004; Spielman and
Srivastava, 2011). Sub-sampling nodes in a graph can also be beneficial, e.g. for the
recovery of band-limited signals (Puy, Tremblay, Gribonval, and Vandergheynst, 2018).
In this setting, d is the size of the band of the signal and N is the number of nodes.
Finally, the notion of leverage score sampling was used for low-rank approximations, of
general matrices (Drineas, Mahoney, and Muthukrishnan, 2007), as we shall see more
in detail in Chapter 3.

Another field of application of matrix sub-sampling is low-rank approximation
of kernel matrices. These approximations are widely used to scale up kernel meth-
ods (Schölkopf and Smola, 2018; Shawe-Taylor and Cristianini, 2004). To give an
example, consider the kernel ridge regression problem, defined for some elements
x1, . . . , xN of a metric space X equipped with a p.s.d. kernel k : X ×X → R as

min
α∈RN

1
2
‖y− K(x)α‖2 + λαᵀK(x)α, (1.12)

where y ∈ RN and K(x) = (k(xn, xn′))n,n′∈[N] ∈ RN×N . The solution of (1.12) has a
tractable form

α∗ = (K(x) + NλIN)
−1y, (1.13)

yet it is impractical to compute for large values of N, because the required number of
operations to invert K(x) + NλIN scales as O(N3). One way to scale up this problem is
to consider a low rank approximation of the kernel matrix K(x). Indeed, if a low rank
approximation of K(x) is known, then approximating of w∗ can be done in O(Nr + r3),
with r the rank of the approximation (Smola and Schölkopf, 2000; Williams and Seeger,
2001). Nyström approximation is a widely used low rank approximation; it is simple
to implement and amenable to theoretical analysis. This approximation is based on a
subset S ⊂ [N], and writes

K(x) ≈ K(x):,SK(x)+S,SK(x)ᵀ:,S, (1.14)

where K(x):,S and K(x)S,S are respectively the columns and the sub-matrix of K(x)
corresponding to the indices in the set S.

The theoretical analysis of Nyström approximation for kernel ridge regression was
carried out in (Bach, 2013) under uniform sub-sampling, and in (Alaoui and Mahoney,
2015) under the ridge leverage score distribution defined by

`λ
n = k(xn, .)ᵀ

(
K(x) + NλIN

)−1k(xn, .). (1.15)
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If a spectral decomposition of K(x) = U Diag((σ`)`∈[N])Uᵀ is known, then

`λ
n = ∑

`∈[N]

σ`
σ` + Nλ

U2
n,`. (1.16)

The analysis conducted in these works highlighted the importance of a quantity
called the effective dimension defined by

deff(λ) = Tr K(x)(K(x) + NλIN)
−1. (1.17)

The effective dimension plays the same role as the dimension d for the sparsification
of the identity matrix Id reviewed around Theorem 1.1: the minimal budget |S| has to
scale as O(deff(λ) log deff(λ)) to obtain a statistical risk within a factor (1 + ε) of the
statistical risk obtained when the full matrix K(x) is used. This suggests that kernel
ridge regression under ridge leverage score sampling would scale as O(Ndeff(λ)

2).
Nevertheless, the calculation of the ridge leverage scores through the definition (1.15),
or the spectral representation (1.16) is as expensive as the initial problem. To close the
loop, many approximation schemes of the ridge leverage scores were proposed and
analysed. These methods scale better with N; see (Calandriello, Lazaric, and Valko,
2017; Calandriello, 2017) for an algorithm that runs in O(Ndeff(λ)

3) operations.
As one would observe, all the problems we reviewed so far are fixed design problems,

in the sense that it is required to sub-sample from a given set {x1, . . . , xN}. This
setting is typical in numerical linear algebra and machine learning applications, where
{x1, . . . , xN} corresponds to some fixed matrix or dataset. Yet, as it was shown by Bach,
2017, the analysis of some random design problems can be conducted using the same
spectral techniques used for fixed design problems. Indeed, the author considered the
problem of approximating a function µ defined on some metric space X by a finite
mixture of kernel translates k(xn, .)

µ ≈ ∑
n∈[N]

wnk(xn, .). (1.18)

More precisely, X is assumed to be a measurable space equipped with a measure
ω, and µ is assumed to write as

µ = µg :=
∫
X

k(x, .)g(x)dω(x), (1.19)

with g ∈ L2(dω). By construction, µ belongs to the RKHS F associated to the kernel
k, which we assume to be embedded in L2(dω). Ensuring a ”good” approximation
in (1.18) is particulary useful for quadrature. Indeed, we have

∀ f ∈ F ,
∣∣∣ ∫
X

f (x)g(x)dω(x)− ∑
n∈N

wn f (xn)
∣∣∣ ≤ ‖ f ‖F

∥∥∥µg − ∑
n∈[N]

wnk(xn, .)
∥∥∥
F

, (1.20)

so that controlling the approximation error in r.h.s. of (1.20) yields a control on the
integration error in the l.h.s. Moreover, ‖µg −∑n∈[N] wnk(xn, .)‖F is actually the worst
case integration error on the unit ball of F .

Bach, 2017 proposed to choose the nodes xn to be independent random variables that
follow a density q with respect to the measure ω, and to choose the weights (wn)n∈N

as the solution of the optimization problem

min
w∈RN

∥∥∥µg − ∑
n∈[N]

wn

q(xn)1/2 k(xn, .)
∥∥∥2

F
+ Nλ‖w‖2. (1.21)
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This optimization problem admits a unique solution

w∗ = (K(x) + λIN)
−1µg(x), (1.22)

where µg(x) = (µg(xn))n∈[N] ∈ RN , and K(x) = (q(xn)−1/2k(xn, xn′)q(xn′)
−1/2)n,n′∈[N].

In particular, there exists a density q∗λ called the continuous ridge leverage score density for
which

sup
g∈L2(dω)
‖g‖dω≤1

∥∥∥µg − ∑
n∈[N]

w∗n
q∗λ(xn)1/2 k(xn, .)

∥∥∥2

F
≤ λ, (1.23)

with high probability, whenever N ≥ Cdeff(λ) log deff(λ), with deff(λ) is the effective
degree of freedom defined by

deff(λ) = Tr Σ(Σ + λIF )
−1, (1.24)

and Σ is the integration operator associated to the kernel k and the measure ω, defined
on L2(dω) by Σg =

∫
X g(.)k(x, .)dω(x). Similarly to the discrete ridge leverage score

distribution, the continuous ridge leverage score density has a spectral expression

q∗λ(x) = ∑
n∈N∗

σn

σn + λ
en(x)2, (1.25)

where the (σn, en) are the eigenpairs of the integration operator Σ.
In a nutshell, this result implies that the resulting quadrature (x, w∗) has a worst case

integration error that goes below λ, with high probability, if N ≥ Cdeff(λ) log deff(λ).
Yet, for a fixed level of regularization λ, sampling more nodes from q∗λ does not improve
the worst case integration error. Nevertheless, one can build up an infinite sequence of
quadratures (xt, w∗t )t∈N∗ , each associated to a regularization parameter λt, such that
limt→+∞ λt → 0. This way, Bach, 2017 was able to derive the rates of convergence of
these sequence of quadratures in the limiting asymptotic λ → 0 in different RKHSs.
While intricate, this method allows to prove that the rates of the resulting quadratures
are almost optimal, up to logarithmic terms. Moreover, these rates depend on the
eigenvalues σn of the integration operator: the smoother the kernel, the faster the
convergence to 0. However, and unlike the discrete case, the ridge leverage score
density 1.25 may not have a tractable expression, in general; even worse the spectral
decomposition of Σ may not be available.

Remarkably, the proof of this result relies on an extension of Bernstein matrix
concentration inequality to self-adjoint operators (Minsker, 2017). This suggests that
even random design problems can be analysed using spectral techniques.

We continue on this direction on Chapter 4 and Chapter 5 where we try to solve the
problem of the intractability of the continuous ridge leverage score density using DPPs
and one of its variants, continuous volume sampling. We mention that the contributions
of these two chapters are extensions of the work initiated in Chapter 3 on the column
subset selection problem. In particular, we investigated in this chapter volume sampling
through the lens of DPPs. Before giving a detailed account of these contributions, we
review, in the following section, the existing work on the volume sampling distribution
and some of its applications to subsampling problems with a linear structure.
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1.2 determinantal sampling

As we have seen in the previous section, independent sampling was used in a variety
of approximation tasks that have linear structure. These sub-sampling methods rely on
first-order information such as the leverage score distribution.

Now we will review another approach of sampling that relies on high order infor-
mation. This is achieved by determinantal point processes and their variants. Indeed,
this class of distributions defines the most natural extension of leverage score sampling
with negative correlation property.

We start again with the problem of linear regression under budget constraint.
Remember that, for this problem, it is required to estimate X+y using a subset of
[N]. Now, if X is of full rank, the Moore-Penrose pseudo inverse has a determinantal
representation (Ben-Tal and Teboulle, 1990)

X+y = ∑
I∈IN,d

∆I

∆
X+

I,:yI , (1.26)

where IN,d = {I ⊂ [N], |I| = d}, ∆I = Det2 XI,: and ∆ = ∑I∈IN,d
∆I . In other words,

the solution of the regression problem defined for the pair (X, y) is a mixture of the
solutions of the smaller regression problems defined by the pairs (XI,:, yI), and the
weight is proportional to Det2 XI,: that is, the volume spanned by the rows of XI,: in
the space Rd. In particular, singular sub-matrices XI,: do not participate in this mixture.
Obviously, this determinantal representation cannot be used in this raw form. Indeed,
an exhaustive enumeration of IN,d would cost much more than calculating X+y. Yet, its
structure is amenable to a probabilistic interpretation. Indeed, if we consider a random
element S of IN,d such that

∀I ∈ IN,d, P(S = I) = ∆I/∆, (1.27)

then
X+y = E X+

S,:yS . (1.28)

In other words, under the distribution (1.27), also called volume sampling, w∗S = X+
S,:yS

is an unbiased estimator of w∗ = X+y . This idea was exploited in (Derezinski and
Warmuth, 2017), where the authors studied the mean square error of this estimator and
proved that

E ‖y− Xw∗S‖2 ≤ (1 + d)‖y− Xw∗‖2. (1.29)

This bound holds for a budget of subsampling that is equal to the dimension d, that
is, the smallest budget that we can expect, otherwise the rank of the submatrix XS,:

is smaller than d and and the estimator w∗S is ill-defined. This ”sparsity level” has
no equivalent under independent sampling for which the minimal budget scales as
O(d log d). Indeed, under leverage score sampling (with or without replacement) and
in the ”minimalist sampling” regime i.e. when c is very close to d, the matrix XS,: is
rank-defficient with high probability; see (Ipsen and Wentworth, 2014) for details on
this phenomenon and Section 6.1.2 in (Tropp, 2015) for a discussion on the optimality
of the Matrix Bernstein concentration inequality. On the other hand, the bound (1.29)
does not tell much about the high-order moments of ‖y− Xw∗S‖2, which would be



16 introduction

useful to derive probabilistic bounds with exponential tails as it is the case for leverage
score sampling. Therefore, the two distributions are not comparable.

However, if we must compare the two distributions, we may recall that volume
sampling belongs to a larger class of distributions called dual volume sampling. These
distributions charge subsets I ⊂ [N] of a fixed cardinality c ≥ d as follows

P(S = I) ∝ Det Xᵀ
I,:XI,:1{|I|=c}. (1.30)

In particular the case c = d corresponds to the volume sampling distribution. These
distributions satisfy the unbiasedness property (1.28), as shown by Derezinski and
Warmuth, 2017. However, the empirical investigation conducted in (Derezinski et al.,
2018) showed that dual volume sampling in the regime c = Ω(d log d) can lead to an
inferior approximation compared to leverage score sampling. In other words, dual
volume sampling is better used in the ”minimalist sampling” regime c ≈ d, and leverage
score sampling is better used in ”Bernstein” regime c = Ω(d log d).

This suggests that volume sampling should be used for problems where we need to
keep the budget of sub-sampling c to its lowest possible value. As an example, volume
sampling can be used to tackle the column subset selection problem, which we discuss
in detail in Chapter 3. In a nutshell, the subset selection, in this setting, is meant to
resolve the interpretation issue of principal component analysis. The latter outputs
features that do not have, in general, a physical meaning. Hence, the idea to sub-sample
a set of features S of the matrix X, that are represented by the matrix C = X:,S, with the
constraint to control the residual X −ΠSpan CX, where ΠSpan C the projection onto the
subspace of RN spanned by the columns C. In this setting, volume sampling is defined
on the set of subsets of [d] by

PVS(S = I) ∝ Det(Xᵀ
:,I X:,I)1{|I|=k} . (1.31)

It satisfies (Deshpande, Rademacher, Vempala, and Wang, 2006)

EVS ‖X −ΠSpan CX‖2
Fr ≤ (1 + k)‖X −ΠkX‖2

Fr, (1.32)

and
EVS ‖X −ΠSpan CX‖2

2 ≤ (d− k)(1 + k)‖X −ΠkX‖2
2, (1.33)

where Πk is the projection onto the first left eigenvectors of X. As we shall see in
Chapter 3, the constant 1 + k in (1.32) is optimal in the sense that there exists a matrix
X for which this bound is almost matched.

The starting point of this thesis is to challenge the optimality of this bound. The first
step was to see the volume sampling distribution through the lens of determinantal
point processes. This perspective allows us to propose a new sub-sampling algorithm
based on a DPP, which has a better geometric interpretation than volume sampling,
and which leads to better theoretical guarantees and empirical results under some
conditions. Intuitively, we can see that this specific choice of DPP defines a distribution
on the set of subspaces of Rd of dimension k, the Grassmannian G(Rd, k), that favours
the subspaces that are close to the (right) principal subspace of X of dimension k. This
is to be compared to the uniform distribution on the Grassmannian G(Rd, k) usually
used in the compressed sensing literature (Chikuse, 2012)[Theorem 2.2.1.]. We push this
geometric interpretation further in Chapter 4 to tackle the problem of kernel quadrature
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in an RKHS. In particular we connect the previous work on numerical integration using
DPPs (Bardenet and Hardy, 2020) and the work of (Bach, 2017) to propose a new class
of quadrature, based on DPP nodes, and weights that solve the unregularized version
of the optimization problem (1.21). We prove convergence bounds of these quadratures
for smooth kernels. This contribution partially solves the problem of intractability of
the continuous ridge leverage density of (Bach, 2017). Indeed, under the condition that
the spectral decomposition of Σ is known, the numerical implementation of this DPP
is tractable as it relies only on the first eigenfunctions of Σ. Finally, by reconsidering
the links between DPPs and volume sampling that we have discussed in Chapter 3, we
define the continuous volume sampling distribution in Chapter 5 to tackle the more
general problem of kernel interpolation. We prove sharp bounds for kernel interpolation
under this distribution along with other properties related to the unbiasedness of
volume sampling in the finite setting. The advantage of continuous volume sampling
is that it is amenable to approximate sampling via a fully kernelized MCMC algorithm:
this approximate sampler can be implemented using only evaluations of the kernel k,
without needing to the spectral decomposition of Σ.

layout of the thesis and the contributions

We give in the following a detailed layout of the manuscript, and mention the associated
publications.

Determinantal point processes

Chapter 2 is dedicated to give a formal introduction to determinantal point processes
(DPPs). We give an abstract definition that includes the two settings: discrete DPPs and
continuous DPPs. Moreover, we give several examples of DPPs, and we recall some
elements on the numerical simulation of these probabilistic models.

Column subset selection using Projection DPPs

In Chapter 3, we propose and analyze a new column subset selection algorithm for
low rank matrix factorization based on a projection DPP. In particular, we compare a
particular projection DPP with volume sampling, and we prove that this projection DPP
can lead to better theoretical guarantees and empirical results under a condition called
the sparsity of the k-leverage scores. Moreover, we prove theoretical guarantees under a
more realistic condition called the relaxed sparsity of the k-leverage scores. Interestingly, the
introduction of this notion of sparsity is inspired from an analysis that we conducted of
a worst-case example in the literature (Deshpande and Rademacher, 2010). Our novel
analysis proves that it is possible to bypass this lower bound if we assume a sparsity
condition. These sparsity conditions are shown to be satisfied by several datasets. A
major contribution of this chapter is to highlight the importance of geometric parameters
called the principal angles between subspaces. Besides their geometric intuition, the
introduction of these parameters enables closed form calculation of some upper bounds
of the expected approximation error under the projection DPP distribution. This new
parametrization also allows to give a simultaneous analysis under the Frobenius norm
and the spectral norm. Moreover, the conducted analysis allows the study of the
regression bias. Figure 1.1 illustrates the bound of the projection DPP, that improves
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Figure 1.1 – The projection DPP improves on volume sampling under the condition of sparsity
of the k-leverage scores quantified by parameter p on the x-axis.

when the sparsity of the k-leverage scores is small, compared to the bound of volume
sampling on toy datasets. The material of this chapter is based on the following article

• A. Belhadji, R. Bardenet, and P. Chainais (2020a). “A determinantal point process
for column subset selection”. In: Journal of Machine Learning Research 21.197,
pp. 1–62.

Projection DPPs for kernel quadrature

In Chapter 4, we introduce a new class of quadratures based on projection DPPs.
These quadratures are suited for functions living in a reproducing kernel Hilbert space.
Compared to the work of Bach, 2017, our quadrature is ridgeless (λ = 0), i.e. we solve
the optimization problem

min
w∈RN

‖µg − ∑
n∈[N]

wnk(xn, .)‖2
F . (1.34)

The solution of (1.34) writes ŵ = K(x)−1µg(x), and the optimal mixture ∑n∈[N] ŵnk(xn, .)
is the projection of µg on the subspace T (x) = Span(k(xn, .)n∈[N]) denoted ΠT (x)µg,
and the optimal value of (1.34) is called the interpolation error of µg. As for the nodes,
we take a random set x = {x1, . . . , xN} that follows the distribution of a projection DPP
that depends only on the first eigenfunctions of Σ: this projection DPP provides an
implementable alternative to the continuous ridge leverage scores distribution when
the spectral decomposition of Σ is known.

We give a theoretical analysis of this class of quadratures and we show that the
convergence rate depends on the eigenvalues (σn)n∈N∗ of the integration operator
as O(N ∑n≥N+1 σn), where N is the number of quadrature nodes. Numerical sim-
ulations hint that the rate of convergence actually scales as fast as O(σN). This
is illustrated in Figure 1.2, where we compare the worst-case interpolation error
sup‖g‖dω≤1 ‖µg − ΠT (x)µg‖2

F of our quadrature (DPPKQ) compared the rate O(σN+1)

and the quadrature based on continuous ridge leverage score sampling (LVSQ) and the
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Figure 1.2 – The worst-case interpolation error on the unit ball of L2(dω) under projection
DPP (DPPKQ), continuous ridge leverage score density (LVSQ) and the uniform grid (UGKQ)
compared to the eigenvalue of order σN+1, in the periodic Sobolev space of order s = 3.

quadrature based on uniform grid (UGKQ) and the weights that solve the optimization
problem (1.34) in the case of the periodic Sobolev space of order s = 3.

From a technical point of view, we harness the geometric intuitions developed in
Chapter 3 to work out the theoretical analysis of these quadratures. In particular, we
make use of the notion of principal angles between subspaces to derive a tractable
upper bound of the expected value of the squared interpolation error

EDPP ‖µg − ΠT (x)µg‖2
F , (1.35)

which has no tractable formula. The material of this chapter is based on the following
article

• A. Belhadji, R. Bardenet, and P. Chainais (2019a). “Kernel quadrature with DPPs”.
In: Advances in Neural Information Processing Systems 32, pp. 12907–12917.

Continuous volume sampling for kernel interpolation

In Chapter 5, we continue the line of research initiated in Chapter 3 and Chapter 4, and
we study kernel quadrature and kernel interpolation based on nodes that follow the
continuous volume sampling distribution, a generalization of discrete volume sampling.
Contrary to the projection DPP of Chapter 4, we show that the expected value of the
squared interpolation error has a closed formula under the distribution of continuous
volume sampling

ECVS ‖µg −ΠT (x)µg‖2
F = ∑

m∈N∗
〈g, em〉2dωεm(N), (1.36)

where

εm(N) = ∑
|T|=N
m/∈T

∏
t∈T

σt

/
∑
|T|=N

∏
t∈T

σt. (1.37)
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Figure 1.3 – The theoretical values of the εm(N) compared to the empirical estimation using a
fully kernelized MCMC. The RKHS is the periodic Sobolev space of order s = 2.

Moreover, we show that the εm(N) scales as σN+1 for several RKHSs, and we give
convergence guarantees for interpolation outside the scope of kernel quadrature. Finally,
we prove an extension of the unbiasedness property (1.28) of the discrete volume
sampling distribution, and we give an interpretation of this result.

The advantage of this distribution is that it is amenable to approximation using
an MCMC algorithm that does not require the spectral decomposition of Σ, unlike
projection DPP of Chapter 4 and the continuous ridge leverage score density of (Bach,
2017).

Figure 1.3 illustrates the comparison between the theoretical values of the εm(N))

and their estimation using the MCMC sampler of (Rezaei and Gharan, 2019) in the case
of the periodic Sobolev space of order s = 2. The material of this chapter is based on
the following article

• A. Belhadji, R. Bardenet, and P. Chainais (2020b). “Kernel interpolation with
continuous volume sampling”. In: Proceedings of the 37th International Conference
on Machine Learning, pp. 725–735.

Table 1.1 situates the contributions of this thesis regarding the related work.

Distribution/ Setting Discrete Continuous
Projection DPP Belhadji et al., 2020a Belhadji et al., 2019a

Volume sampling Beck and Teboulle, 2003 Belhadji et al., 2020b
Deshpande et al., 2006

Derezinski and Warmuth, 2017

Ridge leverage scores Bach, 2013 Bach, 2017

Alaoui and Mahoney, 2015

Table 1.1 – A summary of the contributions of this thesis compared to existing of work.
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2
D E T E R M I N A N TA L P O I N T P R O C E S S E S

Determinantal point processes (DPPs) were introduced by Macchi, 1975 as probabilistic
models for beams of fermions in quantum optics and their use widely spread after
the 2000s in random matrix theory (Johansson, 2005), machine learning (Kulesza and
Taskar, 2012), spatial statistics (Lavancier et al., 2015), image processing (Launay,
Desolneux, and Galerne, 2020a), and Monte Carlo methods (Bardenet and Hardy, 2020),
among others.

This chapter is dedicated to give a formal introduction on DPPs. Intuitively, a DPP
defines a random discrete subset of negatively correlated particles. These probabilistic
models appear mainly in two forms: discrete DPPs and continuous DPPs. We shall give
an abstract definition that includes the two settings to emphasize on the universality of
this mathematical object.

We start by recalling some elements of the theory of point processes in Section 2.1.
The definition of a DPP along with existence results and some basic properties of DPPs
are given in Section 2.2. In particular, we give several examples of DPPs in Section 2.2.4
and we recall some elements on the numerical simulation of a DPP in Section 2.2.5.

We adopted a different notation in this chapter that will change in the next chapters.
The rationale behind this choice is to keep the notation as close as possible to the usual
ones in the corresponding literatures.

2.1 point processes

Intuitively, a point process is a random discrete subset of points in some measurable
space (D,B). In order to define this object rigorously, it is more convenient to see a
discrete subset of D as an atomic measure defined on D as illustrated in Figure 2.1.
Indeed, as we shall see, under some conditions on D, the set of measures on D have
nice properties that are compatible with the standard setting of probability theory.

x1

x2

x3

x4

D

Figure 2.1 – A set {x1, x2, x3, x4} can be identified with the atomic measure
4
∑

n=1
δxn .



24 determinantal point processes

Polish spaces are recurrently used in probability theory. They define a large class of
topological spaces that includes any countable set equipped with the discrete topology,
closed subspaces of Rd endowed with the usual topology induced by Euclidean norm
and many more. This abstract class seems to be convenient to give a unified definition
of DPPs.

Definition 2.1. Let (D, T ) be a topological space. (D, T ) is said to be a Polish space, if there
exists a metric δ on D such that

• (D, δ) is a complete metric space,

• (D, δ) is separable: there exists a countable subset {xn; n ∈N} ⊂ D dense in D,

and the topology induced by δ is equal to T .

We say that a Polish space is a separable completely metrizable topological space. The
requirements of a Polish space allow to work with the classical concepts of probability
theory: the existence of conditional distributions, the definition of weak convergence,
the regularity of probability measures...

2.1.1 Discrete subsets as counting measures

Once we have defined the topological space, we move to defining the corresponding
Borel σ-algebra B: the smallest σ-algebra in D that contains all open subsets of D. Its
elements are called Borel sets. A measure µ is a function from B to R+ ∪ {∞} that
is non-negative, σ-additive and vanishes at the empty set. A locally finite measure is a
measure µ on (D,B) such that for every B ∈ B that is relatively compact (its closure is
compact) we have

µ(B) < +∞. (2.1)

Denote by M(D) the set of locally finite measures on D. We supply M(D) with the
σ-algebraM(D) generated by the evaluation maps defined for every Borel set B ∈ B

ΦB :M(D) −→ R+ ∪ {∞}.
µ 7−→ µ(B)

In other words,M(D) is the smallest σ-algebra for which all the evaluations maps
ΦB are measurables. This σ-algebra is generated by the cylinder sets{

µ ∈M(D), µ(B1) ∈ [0, r1], . . . , µ(Bm) ∈ [0, rm]
}

, (2.2)

where m ∈N∗, B1, . . . , Bm are relatively compact open subsets of D and r1, . . . , rm ∈ R+;
see Lemma 3.1.1 in (Schneider and Weil, 2008).

The set of counting measures defined by

N(D) =
{

γ ∈M(D); ∀B ∈ B, γ(B) ∈N∪ {+∞}
}

(2.3)

is an example of an element ofM(D); see Lemma 3.1.2 in (Schneider and Weil, 2008).
Another example is given by the set of simple counting measures Lemma 3.1.4 in
(Schneider and Weil, 2008)

Ns(D) =
{

γ ∈M(D); ∀x ∈ D, γ({x}) ∈ {0, 1}
}

. (2.4)
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γ as a discrete subset γ as a simple counting measure
x ∈ γ γ({x}) = 1

{x1, . . . , xN} ⊂ γ γ({x1, . . . , xN}) = N
|γ| = M γ(D) = M

γ ∩ C = ∅ γ(C) = 0
|γ ∩ C| = M γ(C) = M

Table 2.1 – A dictionary of notations between discrete subsets and simple counting measures.

Starting from a collection of points x1, . . . , xN in D, one can define a counting measure

γ = ∑
n∈[N]

δxn , (2.5)

where

δx(A) =

{
1 if x ∈ A
0 otherwise.

In this case, γ ∈ Ns(D) if and only if the xn are pairwise distinct; and γ can be
identified to the subset {x1, . . . , xN}. In particular, many operations on discrete subsets
can be expressed using operations on simple counting measures. Table 2.1 contains
some of these operations expressed using both notations. These two notations will be
used interchangeably in this manuscript. Now, if an element xn is repeated more than
once in the collection, γ is no longer simple and it can be seen as a discrete subset of D
with multiplicities. This intuition is based on the following result.

Theorem 2.1 ((Daley and Vere-Jones, 2007)[Proposition 9.1.III). ] Let γ be a counting
measure on D. Then γ can be written as

γ = ∑
i∈I

miδxi , (2.6)

where I is a countable set and (xi)i∈I is a sequence of points in D without accumulation point
and (mi)i∈I is a sequence of positive integers.

In the case of a simple counting measure, the integers mi belong to {0, 1}.

2.1.2 Point processes as random measures

Now, we give the definition of a point process. It is a special case of a random measure.

Definition 2.2. A random measure γ on D is a measurable map from some probability space
(Ω,A, P) into the measurable space (M(D),M(D)). The distribution of γ is given by the
probability measure Pγ defined onM(D) by

∀M ∈ M(D), Pγ(M) = P(γ ∈ M). (2.7)

Intuitively, a random measure γ on D defines a stochastic process with values in
R+ indexed by B: {γ(B)}B∈B ; see Proposition 1.1.7. in (Baccelli, Błaszczyszyn, and
Karray, 2020).
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Definition 2.3. A point process γ on D is a random measure on D such that

P
(
γ ∈ N(D)

)
= 1. (2.8)

The point process γ is said to be a simple if

P
(
γ ∈ Ns(D)

)
= 1. (2.9)

Consider the following example. Let ω be a probability measure on D and let ν

be a probability measure on N. Let x0, x1 . . . , be independent random variables that
follow the distribution ω and N a random variable that follows the distribution ν. Then
the random measure γ defined by

γ = ∑
n∈[N]

δxn , (2.10)

is a point process on D. This point process is called the mixed binomial process with
mixing distribution ν and sampling distribution ω. Now, if ν = δN0 for some N0 ∈N∗,
we recover the binomial process defined by

∀B ∈ B, ∀n ∈ {0, . . . , N0}, P(γ(B) = n) =
(

N0

n

)
ω(B)n(1−ω(B))N0−n. (2.11)

On the other hand, if ν follows the distribution of a Poisson random variable of
parameter 1, then we recover a Poisson point process of intensity ω that we define in
the following.

Definition 2.4. Let µ be a locally finite measure on D. A Poisson process with intensity
measure dω is a point process γ such that for all pairwise disjoint Borel sets B1, . . . , Bm ∈ B, the
random variables γ(B1), . . . , γ(Bm) are independent Poisson random variables with respective
parameters ω(B1), . . . , ω(Bm).

In other words, under a Poisson point process of intensity ω, for every B1, . . . , Bm ∈
B pairwise disjoint Borel sets, and n1, . . . , nm ∈N

P
(

γ(B1) = n1, . . . , γ(Bm) = nm

)
= e−ω(B1)

ω(B1)
n1

n1!
× · · · × e−ω(Bm) ω(Bm)nm

nm!
. (2.12)

A Poisson point process is simple if and only if its intensity measure is diffuse, i.e. it
has no atoms (Lemma 3.2.1 in (Schneider and Weil, 2008))

∀x ∈ D, ω({x}) = 0. (2.13)

2.1.3 The mean measure of a point process

The description of a point process through the cylinder sets{
γ(B1) = n1, . . . , γ(Bm) = nm

}
is convenient in some cases such as the binomial process and the Poisson point process.
However, in general the probability

P
(

γ(B1) = n1, . . . , γ(Bm) = nm

)
(2.14)

have no tractable formula and it is more convenient to work with an alternative
description offered by the moment measures that are defined in the following. We start
with the mean measure.
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Definition 2.5. Let γ be a point process. The mean measure of γ is the measure γ1 defined by

∀B ∈ B, γ1(B) = Eγ(B). (2.15)

The mean measure is well defined but may take infinite values.

Example 2.1. Let γ be a Poisson point process associated to an intensity ω. It is immediate
from (2.12) that

∀B ∈ B, Eγ(B) = ω(B). (2.16)

Therefore, the mean measure of γ is equal to ω.

Now, consider ω to be a measure on (D,B) that we call the reference measure. If γ1

is absolutely continuous with respect to ω, then the Radon Nikodym derivative ρ1 is
called the first intensity function and it satisfies

∀B ∈ B, Eγ(B) = γ1(B) =
∫

B
ρ1(x)dω(x). (2.17)

Example 2.2. Let D be a finite set and define the counting measure ω = ∑
x∈D

δx. Let γ be a

simple point process defined on D. Then, by definition of γ1

γ1(B) = ∑
n∈N∗

P(γ(B) = n)n (2.18)

= ∑
n∈N∗

P(γ(B) = n) ∑
b∈B

P
(
γ({b}) = 1|γ(B) = n

)
= ∑

b∈B
∑

n∈N∗
P(γ(B) = n)P

(
γ({b}) = 1|γ(B) = n

)
= ∑

b∈B
P
(
γ({b}) = 1

)
= ∑

b∈B
P
(
γ({b}) = 1

)
ω({b})

=
∫

B
ρ1(x)dω(x),

where
ρ1(x) = P

(
γ({x}) = 1

)
= P

(
x ∈ γ

)
. (2.19)

In other words, the first intensity function of a simple point process is the inclusion probability
P
(
x ∈ γ

)
.

We shall see later a similar characterization of the first intensity function of simple
point processes in the case of a continuous domain.

Now, given a simple point process γ, and by Theorem 2.1, the identity (2.15) can be
rewritten

∀B ∈ B,
∫
D

1Bdγ1(x) = E ∑
x∈γ

1B(x). (2.20)

The measurable function 1B in the identity (2.20) can be replaced by any nonnegative
measurable function as it is shown in the following result.
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Theorem 2.2 (Campbell–Hardy theorem). Let γ be simple point process in D, and let
f : D → R be a nonnegative measurable function. Then ∑

x∈γ
f (x) is measurable and

∫
D

f dγ1(x) = E ∑
x∈γ

f (x). (2.21)

In particular, if γ1 is absolutely continuous with respect to ω, then∫
D

f (x)ρ1(x)dω(x) = E ∑
x∈γ

f (x). (2.22)

Note that the Campbell theorem can be applied for general point processes: the term
∑x∈γ f (x) should be replaced by

∫
D f dγ. Moreover, it can be extended to functions

f : D → R that are integrable with respect to γ1. See Theorem 1.2.5 in (Baccelli et al.,
2020) for a general statement and its proof.

2.1.4 High-order moment measures of a point process

The mean measure gives an idea of the random measure γ evaluated on one Borel set
B ∈ B yet it does not capture the correlations between the evaluation of γ on a family
of Borel sets B1, . . . , BL ∈ B. There are many ways to estimate this interaction. For
example, we can define the L-th power of γ that is a point process on the measurable
space DL, equipped with the product σ-algebra, defined by

∀ ∏
`∈[L]

B` ∈ BL, γ⊗L( ∏
`∈[L]

B`) = ∏
`∈[L]

γ(B`), (2.23)

and we consider the mean measure of γ⊗L defined by

γ⊗L
1

(
∏
`∈[L]

B`

)
= E γ⊗L

(
∏
`∈[L]

B`

)
= E ∏

`∈[L]
γ(B`). (2.24)

The measure γ⊗L
1 is also called the L-th moment measure of γ. The definition of γ⊗L

1
is straightforward, yet it is not convenient in the study of DPPs that will be presented
later. An alternative definition that is more compatible with the structure of DPPs is
slightly more technical, and it is given in the following.

Define
DL
6= = {(x1, . . . , xL) ∈ DL; ∀`, `′ ∈ [L], x` 6= x`′ }. (2.25)

The set DL
6= is an open set of DL (equipped with the product topology), therefore

DL
6= ∈ BL; and we can define the restriction of the point process γ⊗L to DL

6=, denoted
γ⊗LbDL

6=, by

γ⊗LbDL
6=
(

∏
`∈[L]

B`

)
= γ⊗L

(
∏
`∈[L]

B` ∩DL
6=
)
. (2.26)

γ⊗LbDL
6= is a point process on DL and we can define its mean measure that we denote

γL

γL
(

∏
`∈[L]

B`

)
= E γ⊗LbDL

6=
(

∏
`∈[L]

B`

)
= E γ⊗L

(
∏
`∈[L]

B` ∩DL
6=
)
. (2.27)
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Now, by definition of DL
6=, if the B1, . . . , BL are pairwise distinct, then

γL
(

∏
`∈[L]

B`

)
= E γ⊗L

(
∏
`∈[L]

B` ∩DL
6=
)
= E γ⊗L

(
∏
`∈[L]

B`

)
= E ∏

`∈[L]
γ(B`). (2.28)

Yet, the equality between γL
(

∏`∈[L] B`

)
and E ∏`∈[L] γ(B`) is not valid in general, and

this is the main difference between the point process γ⊗L and the point process γ⊗LbDL
6=.

This difference is better illustrated for simple point processes.
Let γ be a simple point process, the two point processes γ⊗L and γ⊗LbDL

6= are simple.
Indeed, let ∏

`∈[L]
{x`} ⊂ DL, we have by the simplicity of γ

γ⊗L( ∏
`∈[L]
{x`}) = ∏

`∈[L]
γ
(
{x`}

)
∈ {0, 1}, a.s. (2.29)

As for γ⊗LbDL
6=, we have two cases: either ∏

`∈[L]
{x`} ⊂ DL

6= or ∏
`∈[L]
{x`} ∩DL

6= = ∅. In

the first case

γ⊗LbDL
6=( ∏

`∈[L]
{x`}) = γ⊗L( ∏

`∈[L]
{x`}) = ∏

`∈[L]
γ({x`}) ∈ {0, 1}. (2.30)

In the second case,

γ⊗LbDL
6=( ∏

`∈[L]
{x`}) = γ⊗L(∅) = 0 ∈ {0, 1}. (2.31)

In other words, γ⊗LbDL
6= excludes any family (x1, . . . , xL) that contains the same

element more than once; this is not the case of γ⊗L .

Definition 2.6. Let γ be a simple point process. If γL is absolutely continuous with respect to
ω⊗L , then the corresponding Radon Nikodym derivative ρL can be defined and it is called the
L-intensity function or the joint intensity function of order L. In particular, for any family of
pairwise disjoint Borel subsets B1, . . . , BL ∈ B

E ∏
`∈[L]

γ(B`) =
∫

∏
`∈[L]

B`

ρL(x1, . . . , xL)dω(x1) . . . dω(xL). (2.32)

We give in the following two examples, the intuition behind the joint intensity
functions.

Example 2.3. Consider D = Rd equipped with Lebesgue measure ω. Let γ be a simple point
process on D. Let x1, . . . , xL ∈ D pairwise distinct and let ε > 0 such that the balls Bε(x`),
centered around the x` and of radii equal to ε, are pairwise distinct. Under some assumptions
on the point process γ, we can prove that (see Chapter 1 of (Hough et al., 2009))

ρL(x1, . . . , xL) = lim
ε→0

P

(
∀` ∈ [L], γ(Bε(x`)) = 1

)
ω

(
Bε(x`)

) . (2.33)
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Example 2.4. Let D be a finite set and define the counting measure ω = ∑
x∈D

δx; and we

consider a simple point process γ. Using a similar analysis to the one in Example 2.2, we can
prove that

ρL(x1, . . . , xL) = P
(
∀` ∈ [L], γ({x`}) = 1

)
. (2.34)

This can be rewritten as

ρL(x1, . . . , xL) = P
(
{x1, . . . , xL} ⊂ γ

)
. (2.35)

Again, ρL(x1, . . . , xL) can be interpreted as an inclusion probability.

The Campbell-Hardy theorem can be applied to the point process γ⊗LbDL
6=. By

observing that, for a nonnegative measurable function f : DL → R, the sum

∑
(x1,...,xL)∈γ⊗L bDL

6=

f (x1, . . . , xL) (2.36)

can be simplified to
∑

(x1,...,xL)∈γ⊗L

x` 6=x
`
′

f (x1, . . . , xL), (2.37)

we obtain the following result.

Theorem 2.3. Let γ be simple point process in D, and let f : DL → R be a nonnegative
measurable function. Then

∑
(x1,...,xL)∈γ⊗L

x` 6=x
`
′

f (x1, . . . , xL) (2.38)

is measurable and
E ∑

(x1,...,xL)∈γ⊗L

x` 6=x
`
′

f (x1, . . . , xL) =
∫
DL

f dγL. (2.39)

In particular, if the joint intensity ρL is defined

E ∑
(x1,...,xL)∈γ⊗L

x` 6=x
`
′

f (x1, . . . , xL) =
∫
DL

f (x1, . . . , xL)ρL(x1, . . . , xL)dω(x1)× · · · × dω(xL).

(2.40)

Theorem 2.3 may be called the ”fundamental theorem of calculus” using point
processes. It is at the heart of many theoretical analysis that concern DPPs.

2.1.5 The orthogonality of Poisson point processes

We conclude this section with a property of Poisson point processes that motivates the
introduction of DPPs in Section 2.2.

Let γ be a Poisson point process on D associated to an intensity ω. Let B1, . . . , BL ∈
B be pairwise disjoint Borel sets. By (2.12), we have

γL( ∏
`∈[L]

B`) = E ∏
`∈[L]

γ(B`) = ∏
`∈[L]

ω(B`). (2.41)
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The identity (2.41) reflects the independence of the random variables γ(B1), . . . , γ(BL)

when γ follows the distribution of a Poisson point process. In other words, under the
law of Poisson point process, there is no interaction between pairwise disjoint Borel
sets. This is to be compared to the correlations that appear under the distribution of a
determinantal point process.

2.2 determinantal point processes

2.2.1 Definition

We give now the definition of a DPP.

Definition 2.7. Let κ : D ×D → C be a measurable function. A simple point process γ on D
is said to be a determinantal point process with kernel κ and reference measure dω if the joint
intensities ρL with respect to the measure dω are well defined for L ∈N∗ and satisfy

ρL(x1, . . . , xL) = Det κ
(
x1, . . . , xL

)
, (2.42)

where κ
(

x1, . . . , xL
)
= (κ(x`, x`′ ))`,`′∈[L] ∈ CN×N .

In other words, a DPP defines a point process with the correlations, defined through
the joint intensity functions, are described by the kernel κ. From Definition 2.7, we can
already define a point process with the negative correlation property. Indeed, let γ be a
DPP of kernel κ and reference measure dω. Assume that the kernel κ is Hermitian

κ(x, y) = κ(y, x). (2.43)

Let B1, B2 two disjoint Borel sets. By (2.42), we have

E γ(B1)γ(B2) =
∫

B1×B2

Det κ(x1, x2)dω(x1)dω(x2)

=
∫

B1×B2

(
κ(x1, x1)κ(x2, x2)− κ(x1, x2)κ(x2, x1)

)
dω(x1)dω(x2)

=
∫

B1

κ(x1, x1)dω(x1)
∫

B2

κ(x2, x2)dω(x2)−
∫

B1×B2

|κ(x1, x2)|2dω(x1)dω(x2)

= E γ(B1)E γ(B2)−
∫

B1×B2

|κ(x1, x2)|2dω(x1)dω(x2). (2.44)

Therefore

Cov
(

γ(B1), γ(B2)
)
= −

∫
B1×B2

|κ(x1, x2)|2dω(x1)dω(x2) ≤ 0. (2.45)

In other words, the covariance of the random variables γ(B1) and γ(B1) is non-
positive. It is negative, when

∫
B1×B2

|κ(x1, x2)|2dω(x1)dω(x2) > 0, and the two variables
are negatively correlated. This is to be compared with a Poisson point process where
the random variables γ(B1) and γ(B1) are independents.

Observe the importance of the condition (2.43) from the second line to the third line
in the development of (2.44) where we have used∫

B1×B2

κ(x1, x2)κ(x2, x1)dω(x1)dω(x2) =
∫

B1×B2

κ(x1, x2)κ(x1, x2)dω(x1)dω(x2).

(2.46)
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Without the condition (2.43), the negative correlation property does not hold. We
present in the next section a class of kernels that satisfy this condition and define DPPs
with interesting properties.

2.2.2 DPPs associated to trace class kernels

The existence of a simple point process that satisfies (2.42) enforces some constraints on
κ. First, since the joint intensities functions are non-negative functions κ should satisfy

Det κ
(
x1, . . . , xL

)
≥ 0 (2.47)

The constraint (2.47) is satisfied whenever κ is Hermitian (2.43) and positive

∀L ∈N∗, ∀a1, . . . , aL ∈ C, ∀x1, . . . , xL ∈ D, ∑
`,`′∈[L]

a`a`′κ(x`, x`′ ) ≥ 0. (2.48)

In order to define DPPs with interesting properties, we make a further assumption:
κ is square integrable on D2, that is∫

D2
|κ(x, y)|2dω(x)dω(y) < +∞, (2.49)

so that we can define the corresponding integration operator with respect to dω

Σκ : L2(dω) −→ L2(dω)

g 7−→
∫
D

g(.)κ(., y)dω(y).

Now the condition (2.43) implies that Σκ is a self-adjoint operator on L2(dω); the
condition (2.48) implies that Σκ is non-negative definite; and (2.49) implies that Σκ is
a compact operator. Therefore, by the the spectral theorem for compact self-adjoint
operators (Chapter 6 in (Brezis, 2010)), L2(dω) have an orthonormal basis (vn)n∈N∗

of eigenfunctions of Σκ, the corresponding eigenvalues σn are non-negative, have
finite multiplicities and 0 is the only possible accumulation point of the spectrum.
Furthermore, Σκ is said to be of trace class if

∑
n∈N∗

σn < +∞. (2.50)

In the following we call conditions (2.43), (2.48), (2.49) and (2.50) the usual conditions.
Now, we are ready to recall a fundamental characterization of kernels that define

DPPs.

Theorem 2.4 (Macchi, 1975; Soshnikov, 2000). Let κ such that Σκ satisfies the usual
conditions. Then κ defines a DPP if and only if the spectrum of Σκ is contained in [0, 1].

Projection kernels form a large class of kernels that satisfy the conditions of The-
orem 2.4 and they define what is commonly known as projection DPPs. They define
DPPs with deterministic cardinalities as it is stated in the following result.
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Proposition 2.1 (Lemma 17 in (Hough et al., 2006)). Let v1, . . . , vM ∈ L2(dω), such that
(vm)m∈[M] is an orthonormal family of L2(dω), and define the kernel

κ(x, y) = ∑
m∈[M]

vm(x)vm(y). (2.51)

Let γ be the DPP associated to the kernel κ and reference measure dω, then

P
(
γ(D) = M

)
= 1. (2.52)

These DPPs are important in the characterization of DPPs that satisfy the conditions
of Theorem 2.4. Indeed, we have the following result.

Theorem 2.5 (Theorem 7 in (Hough et al., 2006)). Let κ be a kernel such that Σκ satisfies
the usual conditions and denote (σm, vm) its eigenpairs. Assume that the spectrum of Σκ is
included in [0, 1].

Let γ be the random measure defined as follows. Let I1, I2, . . . be independent Bernoulli
random variables such that for every m ∈N∗, the parameter of Im is equal to σm; and let γ be a
random counting measure that follows the distribution of the projection DPP associated to the
reference measure dω and the kernel

κI(x, y) = ∑
m∈N∗

Imvm(x)vm(y). (2.53)

Then γ follows the distribution of the determinantal point process associated to the kernel κ

and the reference measure dω.

Theorem 2.5 implies that any DPP defined trough a kernel κ that satisfies the usual
conditions is a mixture of projection DPPs. Observe that the intermediate projection
kernel κI is of finite rank a.s. This is a consequence of the trace class condition that
guarantees that

∑
m∈N∗

Im < +∞ a.s. (2.54)

The distribution of the cardinality of this class of DPPs follows immediately from
Theorem 2.5 and Proposition 2.1.

Corollary 2.1. Let γ be the DPP associated to the kernel κ and reference measure dω, then

γ(D) ∼ ∑
m∈N∗

Im. (2.55)

We shall see in Section 2.2.4 another class of mixtures of projection DPPs that define
point processes with determinsitic cardinality.

2.2.3 The definition of DPPs under weaker assumptions

The usual assumptions (2.43), (2.49) and (2.50) made previously can be relaxed in many
ways. We review two relaxations that are common in the literature.

First, the assumption (2.49) is usually relaxed so that κ is only assumed to be locally
square integrable: for any compact set C of D∫

C2
|κ(x, y)|2dω(x)dω(y) < +∞. (2.56)
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Under this relaxed assumption, the domain of definition of the integration operator
Σκ should be restrained to elements of L2(dω) that vanish a.e. outside a compact subset
of D. Moreover, Theorem 2.4 remains valid and Theorem 2.5 and its consequences are
still valid for the restricted integration operators: if γ follows the distribution of a DPP
of kernel κ and reference measure dω then for every compact set C ⊂ D, γ ∩ C follows
the distribution of a DPP of the kernel κ and the reference measure dωC defined by

∀B ∈ B, ωC(B) = ω(B ∩ C). (2.57)

The Hermitianity of κ can be relaxed too: there are examples of DPPs associated to
non-Hermitian kernels ; see Section 2.5 in (Soshnikov, 2000) and (Brunel, 2018). Yet,
many interesting aspects of DPPs require this condition: negative correlations, tractable
numerical simulation . . .

2.2.4 Examples

We review in this section some examples of DPPs.

discrete dpps This class of DPPs was the topic of intense research recently for
machine learning applications; we refer the reader to (Kulesza and Taskar, 2012) for
details. In this setting, the domain is taken to be D = [d] and usually; the reference
measure is the counting measure ω = ∑

i∈[d]
δi; and the definition 2.7 is equivalent to the

following.

Definition 2.8 (Discrete DPP). Let K ∈ Rd×d be a positive semi-definite matrix. A random
subset Y ⊆ [d] is drawn from a DPP of marginal kernel K if and only if

∀S ⊆ [N], P(S ⊆ Y) = Det(KS), (2.58)

where KS = [Ki,j]i,j∈S. We take as a convention Det(K∅) = 1.

In this setting, κ(i, j) = Ki,j for every pair (i, j) ∈ D2, and L2(dω) coincides with
Rd and the integration operator Σκ is given by

Σκg(i) =
∫
D

g(j)κ(i, j)dω(j) = ∑
j∈[d]

gjKi,j = (Kg)i, (2.59)

therefore
∀g ∈ Rd, Σκg = Kg. (2.60)

According to Theorem 2.4, a sufficient condition, for a given matrix K to consistently
define a DPP, is that K is symmetric and its spectrum is in [0, 1]. Moreover, for a
symmetric matrix K, a DPP can be seen as a repulsive distribution, in the sense that for
all i, j ∈ [d]

P({i, j} ⊆ Y) = Ki,iKj,j − K2
i,j (2.61)

= P({i} ⊆ Y)P({j} ⊆ Y)− K2
i,j (2.62)

≤ P({i} ⊆ Y)P({j} ⊆ Y). (2.63)

Besides projection DPPs, there is another natural way of using a kernel matrix to
define a random subset of [d] with prespecified cardinality k.
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Definition 2.9 (k-DPP). Let L ∈ Rd×d be a positive semidefinite matrix. A random subset
Y ⊆ [d] is drawn from a k-DPP of kernel L if and only if

∀S ⊆ [d], P(Y = S) ∝ 1{|S|=k}Det(LS) (2.64)

where LS = [Li,j]i,j∈S.

DPPs and k-DPPs are closely related but different objects. For starters, k-DPPs are
always well-defined provided L has a nonzero minor of size k. The next proposition
establishes that k-DPPs also are mixtures of projection DPPs.

Proposition 2.2. (Kulesza and Taskar (2012, Section 5.2.2)) Let Y be a random subset of [d]
sampled from a k-DPP with kernel L. We further assume that L is symmetric, we denote its
rank by r and its diagonalization by L = VΛVᵀ. Finally, let k ≤ r. It holds that

P(Y = S) = ∑
T⊆[r]
|T|=k

µT

[
1
k!

Det
(

VT,SVᵀ
T,S

)]
(2.65)

where
µT =

∏i∈T λi

∑
U⊆[r]
|U|=k

∏i∈U λi
. (2.66)

Each mixture component in square brackets in (2.65) is a projection DPP with
cardinality k. The main difference between k-DPPs and DPPs is that all mixture
components in (2.65) have the same cardinality k. In particular, projection DPPs are the
only DPPs that are also k-DPPs.

the circular unitary ensemble The set of the eigenvalues of a random matrix
chosen uniformly (from the Haar measure) on the unitary group UN , also called the
Circular Unitary Ensemble (CUE), was introduced by Dyson, 1962. It is an example of
a DPP on a continuous domain: D is the unit circle in the complex plane and ω is the
Lebesgue measure on D. The construction of this DPP goes as follows.

For N ∈ N∗, denote by UN the group of N × N unitary matrices. UN endowed
with the induced topology, as a subset of the set of N × N complex-valued matrices,
is compact; therefore, there exists a unique Borel probability measure dM on UN ,
called Haar measure, that is invariant under left multiplication by unitary matrices; see
Theorem 5.14 in (Rudin, 1991). The following result is fundamental in the statistical
description of the CUE.

Theorem 2.6 (Weyl, 1946). Let f : UN → C satisfy

∀V, M ∈ UN , f (V−1MV) = f (M), (2.67)

and denote for θ = (θn)n∈[N] ∈ [0, 2π]N , the diagonal matrix D(θ) = Diag(eiθn)n∈[N]. Then∫
UN

f (M)dM =
1

N!(2π)N

∫
[0,2π]N

f (D(θ))∆(θ)2dNθ, (2.68)

where
∆(θ) = ∏

1≤n,n′≤N
|eiθn − eiθn′ |. (2.69)
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Figure 2.2 – Three realizations from the CUE with N = 15 particles (top) compared to 15

particles sampled i.i.d in the unit circle (bottom).

The identity (2.68) is known as the Weyl integration formula: it gives an explicit
formula to integrate over UN a function that only depends on the eigenvalues. This
identity highlights the important term ∆(θ)2 that has a determinantal representation

∆(θ)2 = Det(κ(eiθn , eiθ
n′ ))n,n′∈[N], (2.70)

where

κ(eiθ , eiθ
′
) =

1
2π ∑

n∈[N]

e2πni(θ−θ
′
). (2.71)

This representation implies the following result.

Theorem 2.7 (Dyson, 1962). The counting measure of the CUE is a determinantal point
process on the unit complex circle U = {u ∈ C, |u| = 1} with kernel κ and reference measure
the Lebesgue measure on U.

Observe that the cardinality of this DPP is constant a.s. This is an illustration of
Proposition 2.1: the kernel κ defines a projection operator onto the N dimensional
subspace spanned by the functions z 7→ zn; n ∈ {0, . . . , N − 1}.

Figure 2.2 shows three realizations of the CUE (N = 15) compared to three realiza-
tions from the binomial process (N = 15) corresponding to the Lebesgue measure on
U. We observe that the CUE tends to cover the unit circle with more regularity than
the binomial process. We discuss this regularity later in Section 4.1.3.

ginibre ensemble Ginibre, 1965 studied the statistical properties of the eigenvalues
of matrices with independent complex Gaussian entries. This ensemble bears his name
and follows the distribution of a DPP defined on D = C.
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Figure 2.3 – A realization of the Ginibre ensemble with N = 100 (left), N = 200 (middle) and
N = 500 (right). The histogram of the radii |z| of 1000 realization of the Ginibre ensemble
compared to the theoretical density fN , with N = 100 particles (left) N = 200 particles (middle)
and N = 500 particles (right).

Theorem 2.8 (Ginibre, 1965). Let M be an N × N matrix with i.i.d. standard complex
Gaussian entries. Then the eigenvalues of M follow the distribution of determinantal point
process associated to the kernel defined on the complex plane

κ(z, w) =
N−1

∑
`=0

(zw)`

`!
, (2.72)

with respect to the reference measure dω(z) = 1
π e−|z|

2
dλ(z), where λ is the Lebesgue measure

on C.

The kernel κ defines a projection operator onto the N dimensional subspace spanned
by the functions z 7→ zn; n ∈ {0, . . . , N − 1}, and converges, as N → +∞, to the kernel

κ∞(z, w) = ezw, (2.73)

that defines the space of all entire functions in L2(dω).
The top of Figure 2.3 shows a realization of three Ginibre ensembles corresponding

to N ∈ {100, 200, 500}. We observe that for the three values of N, the configuration
takes a ”spherical form” that can be explained by the rotational invariance of the mean
measure κ(z, z)dω(z). Moreover, the modulus of the elements of the Ginibre ensemble
form a point process on R+, and the corresponding mean measure has a density with
respect to the Lebesgue measure that writes

fN(r) =
2
N

N−1

∑
`=0

r2`+1

`!
e−r2

1R+(r). (2.74)

The bottom of the Figure 2.3 shows histograms of the modulus computed on 1000

samples of the Ginibre ensemble for the three values of N ∈ {100, 200, 500} compared to
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the respective densities f100, f200 and f500. Besides the matching between the theoretical
density fN and the empirical histogram; we observe that density fN is unimodal and
achieves its maximal value at r ≈

√
N, then manifest a sharp drop to very small values.

the spherical enemble The spherical ensemble is another example of a DPP
based on the eigenvalues of random matrices. This ensemble is defined on the complex
plane; yet, using the inverse of the stereographic projection, it can be seen as a DPP on
the sphere S2, hence the name. This ensemble was already used in theoretical physics
for the modeling of repulsive particles in the sphere (Caillol, 1981) (Forrester et al.,
1992). The spectral representation of this DPP was discovered by Krishnapur, 2009.

Theorem 2.9 (Theorem 3 in (Krishnapur, 2009)). Let A, B be independent N × N matrix
with i.i.d. standard complex Gaussian entries. The counting measure corresponding to the
eigenvalues {z1, . . . , zN} ⊂ C of A−1B follows the distribution of the determinantal point
process associated to the kernel defined on the complex plane

κC(z, w) = (1 + zw)N−1, (2.75)

with respect to the reference measure dω(z) = N
π(1+|z|2)N+1 dλ(z), where λ is the Lebesgue

measure on C.

Theorem 2.9 have can be reinterpreted as follows. Let π : C ∪ {∞} → S2 be the
inverse of the stereographic projection defined by

π(z) =
1

1 + |z|2
(

2Re(z), 2Im(z), |z|2 − 1
)

. (2.76)

For every n ∈ [N] let xn = π(zn). Then, {x1, . . . , xN} follows the distribution of the
determinantal point process associated to the kernel

κS2(x, y) = κC(π
−1(x), π−1(y)), (2.77)

with respect to the uniform measure on S2.

2.2.5 Numerical simulation

We recall in this section some algorithms for the numerical simulation of DPPs.

Algorithms based on random matrix models

As we have seen in Section 2.2.4, the eigenvalues of some random matrix models
correspond to specific projection DPPs. This is the case, for example, of the Circular
Unitary Ensemble, the Ginibre Ensemble and the Spherical Ensemble.

Orthogonal Polynomial Ensembles (OPE) on the real line form another class of
projection DPPs that can be represented as the eigenvalues of random matrices. For
this class of DPPs, the kernel κ writes

κ(x, y) =
N−1

∑
n=0

Pn(x)Pn(y), (2.78)
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Figure 2.4 – Three realizations from the spherical ensemble with N = 50 particles (top) compared
to their stereographic projections on the complex plane (bottom).

where (Pn) is a family of orthonormal polynomials with respect to some measure ω.
In particular, when ω is Gaussian, Gamma (Dumitriu and Edelman, 2002), or Beta

(Killip and Nenciu, 2004), the corresponding DPP can be sampled by diagonalizing
a tridiagonal matrix with independent entries, with a cost that scales as O(N2). We
illustrate this technique in Section 4.1.1 in Chapter 4. We refer to (Gautier et al., 2020)
for more details on this topic.

Now, in general, there exists an algorithm for the numerical simulation of a projec-
tion DPP. This algorithm will be recalled in the following section.

The HKPV algorithm for projection DPPs

A universal sampling algorithm of projection DPPs was proposed by Hough et al., 2006.
The idea behind the algorithm goes as follow.

Define the projection kernel

κ(x, y) = ∑
n∈[N]

ψn(x)ψn(y), (2.79)

where (ψn)n∈[N] is an orthonormal family with respect to some reference measure dω.
Consider the random variable (x1, . . . , xN) defined on DN that have the density fκ

with respect to the measure dω(x1, . . . , xN) = ⊗n∈[N]dω(xn)

fκ(x1, . . . , xN) =
1

N!
Det κ(x1, . . . , xn). (2.80)

Then the random counting measure γ = ∑n∈[N] δxn follows the distribution of the
projection DPP (κ, dω).
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Indeed, κ(x1, . . . , xN) is the Gram matrix of the family
(
κ(xn, .)

)
n∈[N]

, whose i, j
entry is given by the product of κ(xi, .) and κ(xj, .) with respect to bilinear form defined
by dω. In fact, by the orthonormality of (ψn)n∈[N]

〈
κ(xi, .), κ(xj, .)

〉
dω

= ∑
n∈[N]

∑
n′∈[N]

∫
X

ψn(xi)ψn(x)ψn′(xj)ψn′(x)dω(x) = κ(xi, xj). (2.81)

Hence, Det κ(x1, . . . , xN) corresponds to the volume of the parallelepiped defined
in L2(dω) and spanned by the vectors (κ(xn, .))n∈[N]. Using base×height formula,
Hough et al., 2006 proved that the density (2.80), with respect to the measure dω(x) =
⊗n∈[N]dω(xn), factorizes as the product of N densities (with respect to dω)

fκ(x1, . . . , xN) = ∏
n∈[N]

fκ,n(xn), (2.82)

where

fκ,1(x) =
1
N

κ(x, x), (2.83)

and for n > 1

fκ,n(x) =
1

N − n + 1

(
κ(x, x)− κ(x, xn)

ᵀκ(xn)
−1κ(x, xn)

)
, (2.84)

where xn = (x1, x2, . . . , xn−1) and κ(x, xn) = (κ(x, x`))`∈[n].

Theorem 2.10 (Proposition 19 in (Hough et al., 2006)). The counting measure associated to
the set of points constructed by Algorithm in Figure 2.5 follows the distribution of projection
DPP of kernel κ and reference measure dω.

HKPV
(
κ, dω

)
1 n←− N

2 dµ(x)←− fκ,1(x)dω(x) . Initialize the distribution

3 x←− ∅

4 while n > 0

5 Pick xN−n+1 in D from µ . Sample from the distribution

6 x←− x ∪ {xN−n+1}
7 n←− n− 1

8 dµ(x)←− fκ,n(x)dω(x) . Update the distribution

9 return x

Figure 2.5 – Pseudocode of the HKPV algorithm for sampling from a projection DPP of marginal
kernel κ.

In practice, the implementation of this algorithm requires to sample from the
conditional distributions fκ,ndω (Step 5 in Algorithm in Figure 2.5). In some cases,
sampling directly from these distributions is possible. We give two examples.
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Example 2.5 (Sampling from a discrete projection DPP). Let D = [d] and ω = ∑
x∈D

δx.

Define the matrix
K = VVᵀ, (2.85)

where V ∈ Rd×k such that
VᵀV = Ik. (2.86)

K is a projection matrix and defines a projection DPP (with respect to ω). The HKPV algorithm
can be implemented using a sampler from multinomial distributions. In particular, the first
density writes

fκ,1(x) =
1
k ∑

i∈[k]
V2

x,i, (2.87)

which can be calculated in a O(kd) operations if the matrix V is known. Similarly, the
conditionals fκ,2, . . . , fκ,k can be calculated in a polynomial time in k and d.

The right of Table 2.2 illustrates the densities fκ,n as a function of n when d = 12 and
k = 8: once a point x is selected at some step n, fκ,m(x) = 0 for every m > n; in other words, a
point in D is selected only once.

Example 2.6 (Sampling from the projection DPP associated to the Haar wavelets
family). Let D = [0, 1] and ω is the uniform measure D. Define the Haar wavelets family
(ψn,m)n∈N,m∈{0,2n−1} by

ψn,m(x) = 2n/2ψ(2n/2x−m), (2.88)

where
ψ(x) = 1[0,1/2[(x)− 1[1/2,1[(x). (2.89)

This is an orthonormal family with respect to ω. We consider the kernel

κ(x, y) =
ν

∑
n=0

2n−1

∑
m=0

ψm,n(x)ψm,n(y). (2.90)

In this case the first density

∀x ∈ [0, 1], fκ,1(x) = 1, (2.91)

is constant, and the conditionals fκ,n are step functions that can be sampled from efficiently.
Therefore, the HKPV algorithm can be implemented efficiently for this family.

The left of Table 2.2 illustrates the densities fκ,n as a function of n when the rank of the
projection DPP is equal to 8 (ν = 2): once a point x is selected at some step n, fκ,m(y) = 0 for
every m > n for every y in the interval [m2−ν, (m + 1)2−ν[.

In general, sampling directly from fκ,n is not possible. Bardenet and Hardy, 2020

proposed to use rejection sampling based on the following observation

fκ,n(x) ≤ N
n

fκ,1(x) =
N
n

κ(x, x). (2.92)

Therefore, it is enough to sample from the first distribution fκ,1dω and use rejection
sampling for the other conditionals.
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n The density fκ,n (Haar wavelets family) The density fκ,n (Projection matrix)

1

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2

f ,
n(x

)

1 2 3 4 5 6 7 8 9 10 11 12
x

0.0

0.2

0.4

0.6

0.8

1.0

f ,
n(x

)
2

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2

f ,
n(x

)

1 2 3 4 5 6 7 8 9 10 11 12
x

0.0

0.2

0.4

0.6

0.8

1.0

f ,
n(x

)

3

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

f ,
n(x

)

1 2 3 4 5 6 7 8 9 10 11 12
x

0.0

0.2

0.4

0.6

0.8

1.0
f ,

n(x
)

4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

f ,
n(x

)

1 2 3 4 5 6 7 8 9 10 11 12
x

0.0

0.2

0.4

0.6

0.8

1.0

f ,
n(x

)

. . . . . . . . .

8

0.0 0.2 0.4 0.6 0.8 1.0
x

0
1
2
3
4
5
6
7
8

f ,
n(x

)

1 2 3 4 5 6 7 8 9 10 11 12
x

0.0

0.2

0.4

0.6

0.8

1.0

f ,
n(x

)

Table 2.2 – The HKPV algorithm in action: the densities fκ,n for the projection DPP defined
by the Haar wavelets family and the uniform measure on [0, 1](left), the densities fκ,n for the
projection DPP defined by an orthogonal matrix of rank 8 and the counting measure on the set
{1, . . . , 12} (right).
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Figure 2.6 – The sharpness of Bernstein’s inequality for bounding the density fκ,1.

Example 2.7. Let (Ln)n∈N be the family of normalized Legendre polynomials defined by∫ 1

−1
Ln(x)Ln′(x)dx = δn,n′ . (2.93)

Let κ be the projection kernel

κ(x, y) =
N−1

∑
n=0

Ln(x)Ln(y). (2.94)

We have
∀x ∈]− 1, 1[, fκ,1(x) ≤ 2

π

1√
1− x2

. (2.95)

Indeed, by Bernstein’s inequality (Lorch, 1983), we have

Ln(x)2 ≤ 2
π

1√
1− x2

. (2.96)

Figure 2.6 illustrates the sharpness of the bound (2.95) for N = 5 and N = 10.

Approximate sampling

As we have seen in Theorem 2.5, DPPs corresponding to trace class Hermitian kernels
are mixtures of projection DPPs. Therefore, one can use the HKPV algorithm to simulate
the intermediate projection DPP κI (in Theorem 2.5). However, in some situations,
this approach can be non-efficient or even can not be applied at all. Indeed, in many
settings both discrete and continuous, the spectral decomposition of Σκ is not tractable.
For this reason, many approximate samplers were proposed for DPPs to circumvent
sampling the mixture.

MCMC algorithms were proposed in (Anari et al., 2016) and (Gautier et al., 2017)
for DPPs and k-DPPs defined in discrete domains. These algorithms do not require the
spectral decomposition of the kernel matrix. An extension of the sampler of (Anari
et al., 2016) to continuous domains was proposed in (Rezaei and Gharan, 2019). We will
present and discuss this algorithm in Chapter 5. Recently, a fast sampler of intractable
OPE was proposed in (Gautier et al., 2020). This algorithm is based on an MCMC in
the domain of tri-diagonal matrices; see Section 4.1.1.
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Another approximate sampler, suited for translation invariant kernels defined on Rd,
was proposed in (Lavancier et al., 2015). This sampler is based on the approximation of
the function φ in the Fourier domain where φ is defined by

κ(x, y) = φ(x− y). (2.97)



3
C O L U M N S U B S E T S E L E C T I O N U S I N G P R O J E C T I O N D P P S

Datasets come in always larger dimensions, and dimension reduction is thus often
one the first steps in any machine learning pipeline. Two of the most widespread
strategies are principal component analysis (PCA) and feature selection. PCA projects
the data in directions of large variance, called principal components. While the initial
features (the canonical coordinates) generally have a direct interpretation, principal
components are linear combinations of these original variables, which makes them
hard to interpret. On the contrary, using a selection of original features will preserve
interpretability when it is desirable. Once the data are gathered in an N × d matrix, of
which each row is an observation encoded by d features, feature selection boils down
to selecting columns of X. Independently of what comes after feature selection in the
machine learning pipeline, a common performance criterion for feature selection is the
approximation error in some norm, that is, the norm of the residual after projecting X
onto the subspace spanned by the selected columns. Optimizing such a criterion over
subsets of {1, . . . , d} requires exhaustive enumeration of all possible subsets, which is
prohibitive in high dimension. One alternative is to use a polynomial-cost, random
subset selection strategy that favours small values of the criterion.

This rationale corresponds to a rich literature on randomized algorithms for column
subset selection (Deshpande and Vempala, 2006; Drineas et al., 2007; Boutsidis et al.,
2011). A prototypal example corresponds to sampling s columns of X i.i.d. from a
multinomial distribution of parameter p ∈ Rd. This parameter p can be the squared
norms of each column (Drineas et al., 2004), for instance, or the more subtle k-leverage
scores (Drineas et al., 2007). While the former only takes O(dN) time to evaluate, it
comes with loose guarantees; see Section 3.2. The k-leverage scores are more expensive
to evaluate, since they call for a truncated SVD of order k, but they come with tight
bounds on the ratio of their expected approximation error over that of PCA.

To minimize approximation error, the subspace spanned by the selected columns
should be as large as possible. Simultaneously, the number of selected columns should
be as small as possible, so that intuitively, diversity among the selected columns is
desirable. The column subset selection problem (CSSP) then becomes a question of
designing a discrete point process over the column indices {1, . . . , d} that favours
diversity in terms of directions covered by the corresponding columns of X. Beyond the
problem of designing such a point process, guarantees on the resulting approximation
error are desirable. Since, given a target dimension k ≤ d after projection, PCA
provides the best approximation in Frobenius or spectral norm, it is often used as a
reference: a good CSS algorithm preserves interpretability of the c selected features
while guaranteeing an approximation error not much worse than that of rank-k PCA,
all of this with c not much larger than k.

In this chapter, we introduce and analyse a new randomized algorithm for selecting
k diverse columns. Diversity is ensured using a determinantal point process (DPP). In
a sense, the DPP we propose is a nonindependent generalization of the multinomial
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sampling with k-leverage scores of Boutsidis et al., 2009. It further naturally connects
to volume sampling, the CSS algorithm that has the best error bounds (Deshpande
et al., 2006). We give error bounds for DPP sampling that exploit sparsity and decay
properties of the k-leverage scores, and outperform volume sampling when these
properties hold. Our claim is backed up by experiments on toy and real datasets.

The chapter is organized as follows. Section 3.1 introduces our notations. Section 3.2
is a survey of column subset selection, up to the state of the art to which we later
compare. In Section 3.3, we discuss determinantal point processes and their connection
to volume sampling. Section 3.4 contains our main results, in the form of both classical
bounds on the approximation error and risk bounds when CSS is a prelude to linear
regression. In Section 3.5, we numerically illustrate the theoretical results. We conclude
with the discussion in Section 3.6. The details of the proofs are gathered in Section 3.7.

The material of this chapter is based on the following article

• A. Belhadji, R. Bardenet, and P. Chainais (2020a). “A determinantal point process
for column subset selection”. In: Journal of Machine Learning Research 21.197,
pp. 1–62.

3.1 notation

We use [n] to denote the set {1, . . . , n}, and [n : m] for {n, . . . , m}. We use bold
capitals A, X, . . . to denote matrices. For a matrix A ∈ Rm×n and subsets of indices
I ⊂ [m] and J ⊂ [n], we denote by AI,J the submatrix of A obtained by keeping
only the rows indexed by I and the columns indexed by J. When we mean to take
all rows or A, we write A:,J , and similarly for all columns. We write rk(A) for the
rank of A, and σi(A), i = 1, . . . , rk(A) for its singular values, ordered decreasingly.
Sometimes, we will need the vectors Σ(A) and Σ(A)2 with respective entries σi(A) and
σ2

i (A), i = 1, . . . , rk(A). Similarly, when A can be diagonalized, Λ(A) (and Λ(A)2) are
vectors with the decreasing eigenvalues (squared eigenvalues) of A as entries. If A is a
symmetric matrix, Sp(A) denotes the vector of its eigenvalues in decreasing order.

The spectral norm of A is ‖A‖2 = σ1(A), while the Frobenius norm of A is defined
by

‖A‖Fr =

√√√√rk(A)

∑
i=1

σi(A)2.

For ` ∈N, we need to introduce the `-th elementary symmetric polynomial on L ∈N

variables, that is
e`(X1, . . . , XL) = ∑

T⊂[L]
|T|=`

∏
j∈T

Xj. (3.1)

Finally, we follow Ben-Israel, 1992 and denote spanned volumes by

Volq(A) =

√
eq

(
σ1(A)2, . . . , σrk(A)(A)2

)
, q = 1, . . . , rk(A).



3.2 related work 47

Throughout the paper, X will always denote an N × d matrix that we think of as
the original data matrix, of which we want to select k ≤ d columns. We do not make
any assumption on how N compares to d. Unless otherwise specified, r is the rank of
X, and matrices U, Σ,V are reserved for the SVD of X, that is,

X = UΣVᵀ (3.2)

=
[

Uk Uk⊥
] [ Σk 0

0 Σk⊥

] [
Vᵀ

k
Vᵀ

k⊥

]
, (3.3)

where U ∈ RN×d and V ∈ Rd×d are orthogonal, and Σ ∈ Rd×d is diagonal. The
diagonal entries of Σ are σi = σi(X), i = 1, . . . , r, and we still assume they are in
decreasing order. We will also need the blocks given in (3.3), where we separate blocks
of size k corresponding to the largest k singular values. To simplify notation, we
abusively write Uk for U:,[k] and Vk for V:,[k] in (3.3), among others. Though they will be
introduced and discussed at length in Section 3.2, we also recall here that we denote by
`k

i = ‖Vi,[k]‖2
2 the so-called k-leverage score of the i-th column of X.

We need some notation for the selection of columns. Let S ⊂ [d] be such that
|S| = k, and let S ∈ {0, 1}d×k be the corresponding sampling matrix: S is defined by
∀M ∈ RN×d, MS = M:,S. In the context of column selection, it is often referred to
XS = X:,S as C. We set for convenience Yᵀ

:,S = (Y:,S)
ᵀ.

The result of column subset selection will usually be compared to the result of
PCA. We denote by ΠkX the best rank-k approximation to X. The sense of best can be
understood either in Frobenius or spectral norm, as both give the same result. On the
other side, for a given subset S ⊂ [d] of size |S| = s and ν ∈ {2, Fr}, let

Πν
S,kX = arg min

A
‖X − A‖ν

where the minimum is taken over all matrices A = X:,SB such that B ∈ Rs×d and
rk B ≤ k; in words, the minimum is taken over matrices of rank at most k that lie
in the column space of C = X:,S. When |S| = k, we simply write Πν

SX = Πν
S,kX. In

practice, the Frobenius projection can be computed as ΠFr
S X = CC+X, where C+ is

the Moore-Penrose pseudo inverse of C , yet there is no simple expression for Π2
SX.

However, ΠFr
S X can be used as a proxy for Π2

SX since

‖X −Π2
SX‖2 ≤ ‖X −ΠFr

S X‖2 ≤
√

2‖X −Π2
SX‖2, (3.4)

see Boutsidis et al., 2011, Lemma 2.3. Finally, define

ΠkX = arg min
rk A≤k

‖X − A‖Fr = arg min
rk A≤k

‖X − A‖2.

3.2 related work

In this section, we survey existing work about column subset selection.

Rank-revealing QR decompositions

The first k-CSSP algorithm can be traced back to the article of Golub, 1965 on pivoted
QR factorization. This work introduced the concept of rank-revealing QR factorization
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Algorithm p2(k, d) Complexity References
Pivoted QR 2k

√
d− k O(dNk) (Golub and Van Loan, 1996)

Strong RRQR (Alg. 3)
√
(d− k)k + 1 not polynomial (Gu and Eisenstat, 1996)

Strong RRQR (Alg. 4)
√

f 2(d− k)k + 1 O(dNk log f (d)) (Gu and Eisenstat, 1996)

Table 3.1 – Examples of some RRQR algorithms and their theoretical performances.

(RRQR). The original motivation was to calculate a well-conditioned QR factorization
of a matrix X that reveals its numerical rank.

Definition 3.1. Let X ∈ RN×d and k ∈N (k ≤ d). A RRQR factorization of X is a 3-tuple
(Π, Q, R) with Π ∈ Rd×d a permutation matrix, Q ∈ RN×d an orthogonal matrix, and
R ∈ Rd×d a triangular matrix, such that XΠ = QR, and

σk(X)

p1(k, d)
≤ σk(R[k],[k]) ≤ σk(X) , (3.5)

and
σk+1(X) ≤ σ1(R[k+1:d],[k+1:d]) ≤ p2(k, d)σk+1(X), (3.6)

where p1(k, d) and p2(k, d) are controlled.

In practice, a RRQR factorization algorithm interchanges pairs of columns and
updates or builds a QR decomposition on the fly. The link between RRQR factorization
and k-CSSP was first discussed by Boutsidis, Mahoney, and Drineas, 2009. The
structure of a RRQR factorization indeed gives a deterministic selection of a subset
of k columns of X. More precisely, if we take C to be the first k columns of XΠ, C is
a subset of columns of X and ‖X −ΠFr

S X‖2 = ‖R[k+1:r],[k+1:r]‖2. By (3.6), any RRQR
algorithm thus provides provable guarantees in spectral norm for k-CSSP.

Following (Golub, 1965), many articles gave algorithms that improved on p1(k, d)
and p2(k, d) in Definition 3.1. Table 3.1 sums up the guarantees of the original algorithm
of Golub, 1965 and the state-of-the-art algorithms of Gu and Eisenstat, 1996. Note
the dependency of p2(k, d) on the dimension d through the term

√
d− k; this term

is common for guarantees in spectral norm for k-CSSP. We refer to (Boutsidis et al.,
2009) for an exhaustive survey on RRQR factorization. A RRQR factorization gives
an example of a deterministic column subset selection with a spectral guarantee. We
present in Section 3.2 a randomized improvement over strong RRQR, called double phase.
As we shall see, randomized algorithms can match the bound in the bottom row of
Table 3.1 and provide guarantees in Frobenius norm as well.

Length square importance sampling and additive bounds

Drineas, Frieze, Kannan, Vempala, and Vinay, 2004 proposed a randomized CSS algo-
rithm based on independently sampling s indices S = {i1, . . . , is} from a multinomial
distribution of parameter p, where

pj =
‖X:,j‖2

2

‖X‖2
Fr

, j ∈ [d]. (3.7)



3.2 related work 49

Figure 3.1 – An illustration of the difference between the length squares distributions and the
k-leverage scores distribution.

The rationale is that columns with large norms should be kept. Let C = X:,S be the
corresponding submatrix. First, we note that some columns of X may appear more
than once in C. Second, Drineas et al., 2004, Theorem 3 states that

P

(
‖X −ΠFr

S,kX‖2
Fr ≤ ‖X −ΠkX‖2

Fr + 2

(
1 +

√
8 log

(
2
δ

))√
k
s
‖X‖2

Fr

)
≥ 1− δ.

(3.8)
Equation (3.8) is a high-probability, additive upper bound for ‖X − ΠFr

S X‖2
Fr. The

drawback of such bounds is that they can be very loose if the first k singular values of X
are large compared to σk+1. For this reason, multiplicative approximation bounds have
been investigated, using a different distribution that takes into account the geometry of
the dataset.

k-leverage scores sampling and multiplicative bounds

Drineas, Mahoney, and Muthukrishnan, 2007 proposed an algorithm with a provable
multiplicative upper bound using multinomial sampling, but this time according to
k-leverage scores.

Definition 3.2 (k-leverage scores). Let X = UΣVᵀ ∈ RN×d be the SVD of X. We denote
by Vk = V:,[k] the first k columns of V . For i ∈ [d], the k-leverage score of the i-th column of X
is defined by

`k
i =

k

∑
j=1

V2
i,j. (3.9)

Intuitively, a large value of `k
i in (3.9) indicates that the i-th canonical vector is

close to the space spanned by the first k eigenvectors. We shall make this intuition
more precise in Section 3.3.1. See Figure 3.1 for a graphical depiction of the difference
between the length square distribution and the k-leverage scores distribution. For now,
we note that

∑
i∈[d]

`k
i = ∑

i∈[d]
‖(Vᵀ

k ):,i‖2
2 = Tr(VkVᵀ

k ) = k, (3.10)

since Vk is an orthogonal matrix. Therefore, one can consider the multinomial distribu-
tion on [d] with parameters

pi =
`k

i
k

, i ∈ [d]. (3.11)
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This multinomial is called the k-leverage scores distribution.

Theorem 3.1 (Drineas et al., 2007, Theorem 3). If the number s of sampled columns satisfies

s ≥ 3200k2

ε2 , (3.12)

then, under i.i.d. sampling from the k-leverage scores distribution,

P

(
‖X −ΠFr

S,kX‖2
Fr ≤ (1 + ε)‖X −ΠkX‖2

Fr

)
≥ 0.7. (3.13)

Drineas et al., 2007 also considered replacing multinomial with Bernoulli sampling,
still using the k-leverage scores. The expected number of columns needed for (3.13) to
hold is then lowered to O( k log k

ε2 ). A natural question is then to understand how low
the number of columns can be, while still guaranteeing a multiplicative bound like
(3.13). A partial answer has been given by Deshpande and Vempala, 2006.

Proposition 3.1 (Deshpande and Vempala, 2006, Proposition 4). Given ε > 0, k, d ∈N

such that dε ≥ 2k, there exists a matrix Xε ∈ Rkd×k(d+1) such that for any S ⊂ [d],

‖Xε −ΠFr
S,kXε‖2

Fr ≥ (1 + ε)‖Xε − Xε
k‖2

Fr. (3.14)

This suggests that a lower bound for the number of columns is 2k/ε, at least in
the worst case sense of Proposition 3.1. Interestingly, the k-leverage scores distribution
of the matrix Xε in the proof of Proposition 3.1 is uniform, so that k-leverage score
sampling boils down to uniform sampling.

Finally, a deterministic algorithm based on k-leverage score sampling was proposed
by Papailiopoulos, Kyrillidis, and Boutsidis, 2014. The algorithm selects the c(θ)
columns of X with the largest k-leverage scores, where

c(θ) ∈ arg min
u

(
u

∑
i=1

`k
i > θ

)
, (3.15)

and θ is a free parameter that controls the approximation error. To guarantee that
there exists a matrix of rank k in the subspace spanned by the selected columns,
Papailiopoulos et al., 2014 assume that

0 ≤ k− θ < 1. (3.16)

Loosely speaking, this condition is satisfied for a low value of c(θ) if the k-leverage
scores (after ordering) are decreasing rapidly enough. The authors give empirical
evidence that this condition is satisfied by a large proportion of real datasets.

Theorem 3.2 (Papailiopoulos et al., 2014, Theorem 2). Let ε = k− θ ∈ [0, 1), letting S
index the columns with the c(θ) largest k-leverage scores,

‖X −Πν
S,kX‖ν ≤

1
1− ε

‖X −ΠkX‖ν, ν ∈ {2, Fr}. (3.17)

In particular, if ε ∈ [0, 1
2 ],

‖X −Πν
S,kX‖ν ≤ (1 + 2ε)‖X −ΠkX‖ν, ν ∈ {2, Fr}. (3.18)
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Furthermore, they proved that if the k-leverage scores decay like a power law, the
number of columns needed to obtain a multiplicative bound can actually be smaller
than k/ε.

Theorem 3.3 (Papailiopoulos et al., 2014, Theorem 3). Assume, for η > 0,

`k
i =

`k
1

iη+1 . (3.19)

Let ε = k− θ ∈ [0, 1), then

c(θ) = max
{(

4k
ε

) 1
η+1

− 1,
(

4k
ηε

) 1
η

, k
}

. (3.20)

This complements the fact that the worst case example in Proposition 3.1 had
uniform k-leverage scores. Loosely speaking, matrices with fast decaying k-leverage
scores can be efficiently subsampled.

Negative correlation: volume sampling and the double phase algorithm

In this section, we survey algorithms that randomly sample exactly k columns from X,
further requiring the columns to be somehow negatively correlated to avoid redundancy.
This is to be compared to the multinomial sampling schemes of Sections 3.2 and 3.2,
which ignore the joint structure of X and typically require more than k columns.

Deshpande, Rademacher, Vempala, and Wang, 2006 obtained a multiplicative bound
on the expected approximation error, with only k columns, using the so-called volume
sampling.

Theorem 3.4 (Deshpande et al., 2006). Let S be a random subset of [d], chosen with
probability

PVS(S) = Z−1 Det(Xᵀ
:,SX:,S) 1{|S|=k}, (3.21)

where Z = ∑
|S|=k

Det(Xᵀ
:,SX:,S). Then

EVS ‖X −ΠFr
S X‖2

Fr ≤ (k + 1)‖X −ΠkX‖2
Fr (3.22)

and
EVS ‖X −Π2

SX‖2
2 ≤ (d− k)(k + 1)‖X −ΠkX‖2

2. (3.23)

Note that the bound for the spectral norm was proven in Deshpande et al., 2006

for the Frobenius projection, that is, they bound ‖X −ΠFr
S X‖2. The bound (3.23) easily

follows from (3.4). A more precise description of the approximation error under volume
sampling was given in Guruswami and Sinop, 2012.

Theorem 3.5 (Theorem 3.1, Guruswami and Sinop, 2012). Let X ∈ RN×d, and let σ ∈ Rd

be the vector containing the square of the singular values of X. The function

σ 7→ EVS‖X −ΠSX‖2
Fr = (k + 1)

ek(σ)

ek−1(σ)
(3.24)

is Schur-concave.
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In other words, the expected approximation error under the distribution of volume
sampling for the Frobenius norm is low for flat spectrum and it is large otherwise; see
Appendix 3.B for the formal definition of Schur-concavity.

Later, sampling according to (3.21) was shown to be doable in polynomial time
(Deshpande and Rademacher, 2010). Using a worst case example, Deshpande et al.,
2006 proved that the k + 1 factor in (3.22) cannot be improved.

Proposition 3.2 (Deshpande et al., 2006). Let ε > 0. There exists a (k + 1) × (k + 1)
matrix Xε such that for every subset S of k columns of Xε,

‖Xε −ΠFr
S Xε‖2

Fr > (1− ε)(k + 1)‖Xε −ΠkXε‖2
Fr. (3.25)

We note that there has been recent interest in a similar but different distribution
called dual volume sampling (Li, Jegelka, and Sra, 2017a; Derezinski and Warmuth, 2018),
sometimes also confusingly termed volume sampling. The main application of dual VS
is row subset selection of a matrix X for linear regression on label budget constraints.

Boutsidis et al., 2009 proposed a k-CSSP algorithm, called double phase, that combines
ideas from multinomial sampling and RRQR factorization. The motivating idea is that
the theoretical performance of RRQR factorizations depends on the dimension through
a factor

√
d− k; see Table 3.1. To improve on that, the authors propose to first reduce

the dimension d to c by preselecting a large number of columns c > k using multinomial
sampling from the k-leverage scores distribution, as in Section 3.2. Then only, they
perform a RRQR factorization of the reduced matrix Vᵀ

k S1D1 ∈ Rk×c, where S1 ∈ Rd×c

is the sampling matrix of the multinomial phase and D1 ∈ Rc×c is a scaling matrix.

Theorem 3.6 (Boutsidis et al., 2009). Let S be the output of the double phase algorithm with
c = 1600c2

0k log(800c2
0k). Then

PDPh

(
‖X −ΠFr

S X‖Fr ≤ (1 + 8
√

2k(c− k) + 1)‖X −ΠkX‖Fr

)
≥ 0.8 , (3.26)

and

PDPh

(
‖X −Π2

SX‖2 ≤
(
1+2

√
2k(c− k) + 1

)
‖X −ΠkX‖2

+
8
√

2k(c− k) + 1
c1/4 ‖X −ΠkX‖Fr

)
≥ 0.8 . (3.27)

We note that c0 is an unknown constant from (Rudelson and Vershynin, 2007).
Although not explicitly stated by Boutsidis et al., 2009, the spectral bound (3.27) easily
follows from their result using (3.4). We also note that to obtain their spectral bound,
Boutsidis et al., 2009 use a slight modification of the leverage scores in the random
phase.

Excess risk in sketched linear regression

So far, we have focused on approximation bounds in spectral or Frobenius norm for the
residual X −Πν

S,kX. This is a reasonable generic measure of error as long as it is not
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known what the practitioner wants to do with the submatrix X:,S. In this section, we
assume that the ultimate goal is to perform linear regression of some y ∈ RN onto X.

Other measures of performance then become of interest, such as the excess risk
incurred by regressing onto X:,S rather than X. We use here the framework of Slawski,
2018, further assuming well-specification for simplicity. For every i ∈ [N], assume
yi = Xi,:w∗ + ξi, where the noises ξi are i.i.d. real variables with mean 0 and variance v.
For a given estimator w = w(X, y), the excess risk is defined as

E(w) = Eξ

[
‖Xw∗ − Xw‖2

2
N

]
. (3.28)

In particular, it is easy to show that the ordinary least squares (OLS) estimator ŵ = X+y
has excess risk

E(ŵ) = v× rk(X)

N
. (3.29)

Selecting k columns indexed by S in X prior to performing linear regression yields
wS = (XS)+y ∈ Rk. We are interested in the excess risk of the corresponding sparse
vector

ŵS := SwS = S(XS)+y ∈ Rd

which has all coordinates zero, except those indexed by S.

Proposition 3.3 (Theorem 9, Mor-Yosef and Avron, 2019). Let S ⊂ [d], such that |S| = k.
Let (θi(S))i∈[k] be the principal angles between Span S and Span Vk, see Appendix 3.A. Then

E(ŵS) ≤
1
N

(
1 + max

i∈[k]
tan2 θi(S)

)
‖w∗‖2σ2

k+1 +
vk
N

. (3.30)

Compared to the excess risk (3.29) of the OLS estimator, the second term of the
right-hand side of (3.30) replaces rkX by k. But the price is the first term of the right-
hand side of (3.30), which we loosely term bias. To interpret this bias term, we first look
at the excess risk of the principal component regressor (PCR)

w∗k ∈ arg min
w∈Span Vk

Eξ

[
‖y− Xw‖2/N

]
. (3.31)

Proposition 3.4 (Corollary 11, Mor-Yosef and Avron, 2019).

E(w∗k ) ≤
‖w∗‖2σ2

k+1

N
+

vk
N

. (3.32)

The right-hand side of (3.32) is almost that of (3.30), except that the bias term in the
CSS risk (3.30) is larger by a factor that measures how well the subspace spanned by S is
aligned with the principal eigenspace Vk. This makes intuitive sense: the performance
of CSS will match PCR if selecting columns yields almost the same eigenspace.

The excess risk (3.30) is yet another motivation to investigate DPPs for column
subset selection. We shall see in Section 3.4.2 that the expectation of (3.30) under a
well-chosen DPP for S has a particularly simple bias term.

Finally, as mentioned in Section 3.2, probability distributions similar to volume
sampling but for row subset selection were investigated in the context of regression
(Derezinski and Warmuth, 2017; Derezinski et al., 2018), under the name of dual volume
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sampling1. Selecting rows in linear regression is akin to experimental design, and
applies to cases where all features are to be used, but only a few labels can be observed
due to budget constraints. We emphasize that the two problems are related, but they are
not simple transpositions of each other. In particular, the excess risk for the regularized
dual volume sampling of Derezinski and Warmuth, 2018 scales as O(1/k) using all d
features and k observations, while the excess risk in the results of Section 3.4.2 rather
scales as O(1/N) using k features and N observations.

3.3 the proposed algorithm

In this section, we introduce our sub-sampling algorithm based on a projection DPP.
We refer to Chapter 2 for the definition of DPPs and k-DPPs. In particular, recall
that volume sampling, as defined in Section 3.2, is an example of a k-DPP. Its kernel
is the covariance matrix of the data L = XᵀX. In general, L is not an orthogonal
projection matrix, so that volume sampling is not a DPP. In particular, draws from
volume sampling have fixed cardinality, and thus cannot be written as a sum of non
trivial Bernoulli random variables. However, following (2.65) in Proposition 2.2, volume
sampling can be seen as a mixture of projection DPPs indexed by T ⊆ [d], |T| = k, with
marginal kernels KT = V:,TVᵀ

:,T and mixture weights µT ∝ ∏i∈T σ2
i . The component

with the highest weight thus corresponds to the k largest singular values, that is, the
projection DPP with marginal kernel

K := VkVᵀ
k . (3.33)

This chapter is about column subset selection using precisely this DPP. Alternately,
we could motivate the study of this DPP by remarking that its marginals P(i ⊆ Y) are
the k-leverage scores introduced in Section 3.2. Since K is symmetric, this DPP can be
seen as a repulsive generalization of leverage score sampling.

3.3.1 The geometric intuition

The k-leverage scores can be given a geometric interpretation, the generalization of
which serves as a first motivation for our work.

For i ∈ [d], let ei be the i-th canonical basis vector of Rd. Let further θi be the
angle between ei and the subspace Pk = Span(Vk), and denote by ΠPk ei the orthogonal
projection of ei onto the subspace Pk. Then, by the fact that

〈ei, ΠPk ei〉 = 〈ΠPk ei, ΠPk ei〉 = ‖ΠPk ei‖2, (3.34)

we have

cos2(θi) :=
〈ei, ΠPk ei〉2
‖ei‖2‖ΠPk ei‖2 = 〈ei, ΠPk ei〉 = 〈ei,

k

∑
j=1

Vi,jV:,j〉 =
k

∑
j=1

V2
i,j = `k

i . (3.35)

A large k-leverage score `k
i thus indicates that ei is almost aligned with Pk. Selecting

columns with large k-leverage scores as in (Drineas et al., 2007) can thus be interpreted
1 Derezinski and Warmuth, 2017 actually talk of volume sampling. To avoid confusion, we rather stick

to volume sampling describing the column subset selection algorithm in (Deshpande et al., 2006) and
discussed in Section 3.2.
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as replacing the principal eigenspace Pk by a subspace that must contain k of the original
coordinate axes. Intuitively, a closer subspace to the original Pk would be obtained by
selecting columns jointly rather than independently, considering the angle with Pk of
the subspace spanned by these columns. More precisely, consider S ⊂ [d], |S| = k, and
denote PS = Span(ej, j ∈ S). A natural definition of the cosine between Pk and PS is
in term of the so-called principal angles (θi(PS,Pk))i∈[k] that define the relative position
of the two subspaces (Golub and Van Loan, 1996, Section 6.4.4); see Figure 3.2 for an
illustration and Appendix 3.A for the rigorous definition. In particular, Proposition 3.8
in Appendix 3.A yields

cos2(Pk,PS) := ∏
i∈[k]

cos2 θi(Pk,PS) = Det(VS,[k])
2. (3.36)

This chapter is precisely about sampling k columns proportionally to (3.36).
In Appendix 3.C, we contribute a different interpretation of k-leverage scores, which

relates them to the length-square distribution of Section 3.2.

θ2(PS,Pk)

Pk = Span Vk

PS = Span(ej)j∈S

Figure 3.2 – An illustration of the largest principal angle θ2(PS,Pk) in the case d = 3 and k = 2.

3.3.2 Numerical simulation of the projection DPP and volume sampling

The difference between volume sampling and the DPP with kernel K is also manifested
by the sampling procedure. Indeed, as we have mentioned, volume sampling is a
mixture of projection DPPs corresponding to the kernels KT. Therefore, given the
matrix V , volume sampling requires to sample the set of eigenvectors T; while the
projection DPP of kernel K does not need this intermediate step. The difference is
depicted in Figure 3.3.

As we have seen in Chapter 2, sampling from a projection DPP is possible through
the HKPV algorithm. We refer to (Tremblay, Barthelmé, and Amblard, 2018), (Launay,
Galerne, and Desolneux, 2020b) and the documentation of the DPPy toolbox2 (Gautier,
Bardenet, and Valko, 2019) for other efficient variants of this algorithm.

3.4 main results

In this section, we prove bounds for EDPP ‖X −Πν
SX‖2

ν under the projection DPP of
marginal kernel K = VkVᵀ

k presented in Section 3.3. Throughout, we compare our

2 http://github.com/guilgautier/DPPy

http://github.com/guilgautier/DPPy
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X

=

U Σ Vᵀ

(a) SVD of X

Vᵀ =

Step 1 (VS)

Step 1 (DPP)

Step 2

Step 2

Step 3

Step 3

(b) Sampling k columns according to VS and our DPP

Figure 3.3 – A graphical depiction of the sampling algorithms for volume sampling (VS) and
the DPP with marginal kernel VkVᵀ

k . (a) Both algorithms start with an SVD. (b) In Step 1, VS
randomly selects k rows of Vᵀ, while our DPP always picks the first k rows. Step 2 is the same
for both algorithms: jointly sample k columns of the subsampled Vᵀ, proportionally to their
squared volume. Finally, Step 3 is simply the extraction of the corresponding columns of X.

bounds to the state-of-the-art bounds of volume sampling obtained by Deshpande et al.,
2006; see Theorem 3.4 and Section 3.2. For clarity, we defer the proofs of our results
from this section to Section 3.7.

3.4.1 Multiplicative bounds in spectral and Frobenius norm

Let S be a random subset of k columns of X chosen with probability:

PDPP(S) = Det(VS,[k])
2. (3.37)

First, without any further assumption, we have the following result.

Proposition 3.5. Under the projection DPP of marginal kernel VkVᵀ
k , it holds that

EDPP ‖X −Πν
SX‖2

ν ≤ k(d + 1− k)‖X −ΠkX‖2
ν, ν ∈ {2, Fr}. (3.38)

For the spectral norm, the bound is practically the same as that of volume sampling
(3.23). However, our bound for the Frobenius norm is worse than (3.22) by a factor
(d− k). In the rest of this section, we sharpen our bounds by taking into account the
sparsity level of the k-leverage scores and the decay of singular values.

In terms of sparsity, we first replace the dimension d in (3.38) by the number p ∈ [d]
of non zero k-leverage scores

p =
∣∣∣{i ∈ [d], Vi,[k] 6= 0}

∣∣∣ . (3.39)
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To quantify the decay of the singular values, we define the flatness parameter

β = σ2
k+1

(
1

d− k ∑
j≥k+1

σ2
j

)−1

. (3.40)

In words, β ∈ [1, d− k] measures the flatness of the spectrum of X below the cut-off
at k + 1. Indeed, (3.40) is the ratio of the largest term in a mean to that mean. The
closer β is to 1, the more similar the terms in the sum in the denominator of (3.40) to
their maximum value σ2

k+1. At the extreme, β = d− k when σ2
k+1 > 0 while σ2

j = 0,
∀j ≥ k + 2. Finally, we also note that β is (d− k) times the inverse of the numerical
rank (Rudelson and Vershynin, 2007) of the residual matrix X −ΠkX.

Proposition 3.6. Under the projection DPP of marginal kernel VkVᵀ
k , it holds that

EDPP ‖X −Π2
SX‖2

2 ≤ (1 + k(p− k))‖X −ΠkX‖2
2 (3.41)

and
EDPP ‖X −ΠFr

S X‖2
Fr ≤

(
1 + β

p− k
d− k

k
)
‖X −ΠkX‖2

Fr. (3.42)

The bound in (3.41) compares favourably with volume sampling (3.23) since the
dimension d has been replaced by the sparsity level p. For β close to 1, the bound in
(3.42) is better than the bound (3.22) of volume sampling since (p− k)/(d− k) ≤ 1.
Again, the sparser the k-leverage scores, the smaller the bounds. Finally, if needed,
bounds in high probability easily follow from Proposition 3.6 using Markov’s inequality.

Now, one could argue that, in practice, sparsity is never exact: it can well be that
p = d while there still are a lot of small k-leverage scores. We will demonstrate in
Section 3.5 that the DPP still performs better than volume sampling in this setting,
which Proposition 3.6 doesn’t reflect. We introduce two ideas to further tighten the
bounds of Proposition 3.6. First, we define an effective sparsity level in the vein of
(Papailiopoulos et al., 2014), see Section 3.2. Second, we condition the DPP on a
favourable event with controlled probability.

Theorem 3.7. Let π be a permutation of [d] such that leverage scores are reordered

`k
π1
≥ `k

π2
≥ ... ≥ `k

πd
. (3.43)

For δ ∈ [d], let Tδ = [πδ, . . . , πd]. Let θ ≥ 1 and

peff(θ) = min

{
q ∈ [d] | ∑

i≤q
`k

πi
≥ k− 1 +

1
θ

}
. (3.44)

Finally, let Aθ be the event {S ∩ Tpeff(θ) = ∅}. Then, the probability of Aθ is lower bounded

PDPP (Aθ) ≥
1
θ

, (3.45)

and conditionally on Aθ ,

EDPP
[
‖X −Π2

SX‖2
2
∣∣Aθ

]
≤ (1 + (peff(θ)− k + 1)(k− 1 + θ))‖X −ΠkX‖2

2 (3.46)

and

EDPP

[
‖X −ΠFr

S X‖2
Fr
∣∣Aθ

]
≤
(

1 + β
(peff(θ) + 1− k)

d− k
(k− 1 + θ)

)
‖X −ΠkX‖2

Fr.

(3.47)
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In Theorem 3.7, the effective sparsity level peff(θ) replaces the sparsity level p of
Proposition 3.6. The key is to condition on S not containing any index corresponding
to a column with too small a k-leverage score, that is, the event Aθ . In practice,
this is achieved by rejection sampling: we repeatedly and independently sample
S ∼ DPP(K) until S ∩ Tpeff(θ) = ∅. The caveat of any rejection sampling procedure is
a potentially large number of samples required before acceptance. But in the present
case, Equation (3.45) guarantees that the expectation of that number of samples is less
than θ. The free parameter θ thus interestingly controls both the “energy” threshold
in (3.44), and the complexity of the rejection sampling. The approximation bounds
suggest picking θ close to 1, which implies a compromise with the value of peff(θ) that
should not be too large either. We have empirically observed that the performance of
the DPP is relatively insensitive to the choice of θ.

In order to compare with some of the previous results in Section 3.2, we quickly
derive from Theorem 3.7 a bound in probability. We do so for the Frobenius norm, and
the proof is similar for the spectral norm. Let λ > 0. It holds that

PDPP

(
‖X −Π2

SX‖Fr ≤ λ‖X −ΠkX‖Fr
∣∣Aθ

)
(3.48)

≥ 1−

(
1 + β

(peff(θ)+1−k)
d−k (k− 1 + θ)

)
λ2 , (3.49)

where the last inequality follows from Theorem 3.7 and Markov’s inequality. Now, for

λ ≥

√
5
(

1 + β
(peff(θ) + 1− k)

d− k
(k− 1 + θ)

)
,

it holds that

PDPP

(
‖X −ΠFr

S X‖Fr ≤ λ‖X −ΠkX‖Fr|Aθ

)
≥ 0.8. (3.50)

Compare this bound with the result (3.26) of Boutsidis et al., 2009 for the double phase
algorithm, namely

PDPh

(
‖X −ΠFr

S X‖Fr ≤ (1 + 8
√

2k(c− k) + 1)‖X −ΠkX‖Fr

)
≥ 0.8 , c = Θ(k log k).

(3.51)
In particular, (peff(θ)− k + 1)/(d− k) ≤ 1 ≤ c− k, so that if

β(peff(θ)− k + 1)/(d− k) ≤ c− k, (3.52)

then √
5
(

1 + β
(peff(θ)− k + 1)

d− k
(k− 1 + θ)

)
≤ 1 + 8

√
2k(c− k) + 1. (3.53)

and the DPP with rejection of Theorem 3.7 has a smaller bound than the double phase
algorithm. The key condition (3.52) can be expected to hold quite widely as both the
decay of the singular values and the leverage scores contribute to make the left-hand
side small. In particular, even when β equals its upper bound d− k, it is enough to
have peff(θ) = Θ(k).
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We can prove a similar bound in probability for the spectral norm, but comparing
to double phase becomes trickier, because of the Frobenius norm that appears in the
bound (3.27) for double phase.

Finally, we note that using Bayes’ theorem, Theorem 3.7 also yields bounds in
probability for the projection DPP algorithm used without rejection. For instance, let
λ > 0. It holds that

PDPP

(
{‖X −Π2

SX‖Fr ≤ λ‖X −ΠkX‖Fr}
)

(3.54)

≥ PDPP

({
‖X −Π2

SX‖Fr ≤ λ‖X −ΠkX‖Fr
}
∩Aθ

)
(3.55)

≥ 1
θ

1−

(
1 + β

(peff(θ)+1−k)
d−k (k− 1 + θ)

)
λ2

 . (3.56)

Such bounds are more flexible than those of double phase, in the sense that we can vary
the parameters θ and λ independently, while the bounds of the double phase algorithm
are constrained by c ≥ 1600c2

0k log(800c2
0k).

3.4.2 Bounds for the excess risk in sketched linear regression

In Section 3.2, we surveyed bounds on the excess risk of ordinary least squares estima-
tors that relied on a subsample of the columns of X. Importantly, the generic bound
(3.30) of Mor-Yosef and Avron, 2019 has a bias term that depends on the maximum
squared tangent of the principal angles between Span(S) and Span(Vk). When |S| = k,
this quantity is hard to control without making strong assumptions on the matrix Vk.
But it turns out that, in expectation under the same DPP as in Section 3.4.1, this bias
term drastically simplifies.

Proposition 3.7. We use the notation of Section 3.2. Under the projection DPP with marginal
kernel VkVᵀ

k , it holds that

EDPP
[
E(wS)

]
≤
(
1 + k(p− k)

)‖w∗‖2σ2
k+1

N
+

vk
N

. (3.57)

The sparsity level p appears again in the bound (3.57): The sparser the k-leverage
scores distribution, the smaller the bias term. The bound (3.57) only features an
additional (1 + k(p− k)) factor in the bias term, compared to the bound obtained by
Mor-Yosef and Avron, 2019 for PCR, see Proposition 3.4. Loosely speaking, this factor
is to be seen as the price we accept to pay in order to get more interpretable features
than principal components in the linear regression problem. Finally, a natural question
is to investigate the choice of k to minimize the bound in (3.57), but this is out of the
scope of this paper.

As in Theorem 3.7, for practical purposes, it can be desirable to bypass the need for
the exact sparsity level p in Proposition 3.7. We give a bound that replaces p with the
effective sparsity level peff(θ) introduced in (3.44).
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Algorithm Pre-processing Memory One sample complexity
Our algorithm O(min(Nd2, N2d)) O(dk) O(dk2)

Volume sampling O(min(Nd2, N2d)) O(dr) O(dk2)

Double phase O(min(Nd2, N2d)) O(dk) O(ck2 log2(k))

Table 3.2 – Complexity of the three CSSP algorithms.

Theorem 3.8. Using the notation of Section 3.2 for linear regression, and of Theorem 3.7 for
leverage scores and their indices, it holds that

EDPP
[
E(ŵS)

∣∣Aθ

]
≤
[
1 +

(
k− 1 + θ

)(
peff(θ)− k + 1

)]‖w∗‖2σ2
k+1

N
+

vk
N

. (3.58)

In practice, the same rejection sampling routine as in Theorem 3.7 can be used to
sample conditionally on Aθ . Finally, to the best of our knowledge, bounding the excess
risk in linear regression has not been investigated under volume sampling.

In summary, we have obtained two sets of results. We have proven a set of mul-
tiplicative bounds in spectral and Frobenius norm for EDPP ‖X −Πν

SX‖2
ν, ν ∈ {2, Fr},

under the projection DPP of marginal kernel K = VkVᵀ
k , see Propositions 3.5 & 3.6

and Theorem 3.7. As far as the linear regression problem is concerned, we have
proven bounds for the excess risk in sketched linear regression, see Proposition 3.7 and
Theorem 3.8.

3.4.3 Complexity analysis

We compare in this section the time and space complexity of our projection DPP,
volume sampling and double phase. All three algorithms require the computation
of the right eigenvectors of the matrix X as a pre-processing, which can be achieved
in O(min(Nd2, dN2)) operations. Our algorithm requires to keep the first k right
eigenvectors Vk, which means O(dk) memory cost; every sample costs O(dk2) time
using the implementation of Tremblay et al., 2018. In comparison, volume sampling
requires to keep all the right eigenvectors with non vanishing singular values of X: the
memory cost is O(rd), where r is the rank of X. Indeed, every sample from VS requires
to run 2 steps: 1) sampling the set T of singular values using Algorithm 7 in (Kulesza
and Taskar, 2012), which runs in O(rk) = O(dk2) operations, followed by 2) sampling
from a projection DPP of marginal kernel V:,TVᵀ

:,T, this time in O(dk2). Similarly, for
the double phase algorithm, given the singular decomposition of X, the complexity
of one sample is dominated by the second phase, which runs in O(ck2 log2(k)). The
discussion is summarized in Table 3.2.

Volume sampling and projection DPP have comparable time complexities and a
slightly lower memory requirement for the DPP. Double phase shares the same pre-
processing and space complexity, but the time complexity of obtaining one sample is
harder to compare. Remembering the condition on c = 1600c2

0k log(800c2
0k) for double

phase (from Theorem 3.6), the bound on the time complexity can be relatively large,
although only cubic in k.
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3.5 numerical experiments

In this section, we empirically compare our algorithm, the projection DPP with kernel
K = VkVᵀ

k , to the state of the art in column subset selection. In Section 3.5.1, the
projection DPP with kernel K = VkVᵀ

k and volume sampling are compared on toy
datasets. In Section 3.5.2, several column subset selection algorithms are compared
to the projection DPP on four real datasets from genomics and text processing. In
particular, the numerical simulations demonstrate the favourable influence of the
sparsity of the k-leverage scores on the performance of our algorithm both on toy
datasets and real datasets. Finally, we packaged all CSS algorithms in this section in a
publicly available Python toolbox3.

3.5.1 Toy datasets

This section is devoted to comparing the expected approximation error E‖X −ΠFr
S X‖2

Fr
for the projection DPP and volume sampling. We focus on the Frobenius norm to avoid
effects due to different choices of the projection Πν

S, see (3.4).
In order to be able to evaluate the expected errors exactly, we generate matrices

of low dimension (d = 20) so that the subsets of [d] can be exhaustively enumerated.
Furthermore, to investigate the role of leverage scores and singular values on the
performance of CSS algorithms, we need to generate datasets X with prescribed spectra
and k-leverage scores.

Generating toy datasets

Recall that the SVD of X ∈ RN×d reads X = UΣVᵀ, where Σ is a diagonal matrix and
U and V are orthogonal matrices. To sample a matrix X, we first let U correspond to
the first r columns of an N × N sample from the Haar measure on ON(R). Then, Σ

is chosen among a few deterministic diagonal matrices that illustrate various spectral
properties. Sampling the matrix V is trickier if k-leverage scores are to be prescribed.
The first k columns of V are constrained as follows: the number of non vanishing
rows of Vk is equal to p and the norms of the nonvanishing rows are prescribed by a
vector `. We thus propose an algorithm that takes as input a leverage scores profile
` and a spectrum σ2, and outputs a corresponding random orthogonal matrix Vk;
see Appendix 3.D. This algorithm is a randomization4 of the algorithm proposed by
Fickus, Mixon, Poteet, and Strawn, 2013. Finally, the matrix Vk ∈ Rd×k is completed by
applying the Gram-Schmidt procedure to d− k additional i.i.d. unit Gaussian vectors,
resulting in a matrix V ∈ Rd×d. Figure 3.4 summarizes the algorithm we use to generate
matrices X with a k-leverage scores profile `, spectrum Σ, and a sparsity level p.

Volume sampling vs projection DPP

This section sums up the results of numerical simulations on toy datasets. The number
of observations is fixed to N = 100, the dimension to d = 20, and the number of

3 http://github.com/AyoubBelhadji/CSSPy
4 http://github.com/AyoubBelhadji/FrameBuilder

http://github.com/AyoubBelhadji/CSSPy
http://github.com/AyoubBelhadji/FrameBuilder
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MatrixGenerator

(
` ∈ Rd

+, Σ ∈ Rd×d, p ∈ [k + 1 : d])

1 Sample U from the Haar measure ON(R).

2 Generate a matrix Vk with the k-leverage-scores profile `.

3 Extend the matrix Vk to an orthogonal matrix V .

4 return X ←− UΣVᵀ

Figure 3.4 – The pseudocode of the algorithm generating a matrix X with prescribed profile of
k-leverage scores.

selected columns to k ∈ {3, 5}. Singular values are chosen from the following profiles:
a spectrum with a cutoff called the projection spectrum,

Σk=3,proj = 100
3

∑
i=1

eie
ᵀ
i + 0.1

20

∑
i=4

eie
ᵀ
i ,

Σk=5,proj = 100
5

∑
i=1

eie
ᵀ
i + 0.1

20

∑
i=6

eie
ᵀ
i .

a smooth spectrum

Σk=3,smooth = 100e1eᵀ1 + 10e2eᵀ2 + e3eᵀ3 + 0.1
20

∑
i=4

eie
ᵀ
i ,

Σk=5,smooth = 10000e1eᵀ1 + 1000e2eᵀ2 + 100e3eᵀ3 + 10e4eᵀ4 + e5eᵀ5 + 0.1
20

∑
i=6

eie
ᵀ
i ,

and a flat spectrum with all singular values equal to 1

Σidentity =
20

∑
i=1

eie
ᵀ
i .

Note that all profiles satisfy β = 1; see (3.40). We discuss the case β > 1 at the end
of the section. In each experiment, for each spectrum, we sample 200 independent
leverage score profiles that satisfy the sparsity constraints p =

∣∣∣{i ∈ [d], Vi,[k] 6= 0}
∣∣∣

from a Dirichlet distribution of dimension p with concentration parameter 1 and equal
means. For each leverage score profile, we sample a matrix X from the algorithm in
Figure 3.4.

Figure 3.5 compares, on the one hand, the theoretical bounds in Theorem 3.4 for
volume sampling and Proposition 3.6 for the projection DPP, to the numerical evaluation
of the expected error for sampled toy datasets on the other hand. The x-axis indicates
various sparsity levels p. The unit on the y-axis is the error of PCA. There are 400

crosses on each subplot: each of the 200 matrices appears once for both algorithms. The
200 matrices are spread evenly across the values of p.

Used as a reference, the VS bounds are proportional to (k + 1) and independent of p.
In fact, by Theorem 3.5, the expected value of the Frobenius norm of the approximation
error only depends on the spectrum of the matrix X; in particular, it does not involve



3.5 numerical experiments 63

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
p

1.0

1.5

2.0

2.5

3.0

3.5

4.0

||X
Fr S

X|
|2 Fr

||X
kX

||2 Fr

VS Bound
VS
DPP Bound
DPP

(a) Σ3,proj, k = 3

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
p

1

2

3

4

5

6

||X
Fr S

X|
|2 Fr

||X
kX

||2 Fr

VS Bound
VS
DPP Bound
DPP

(d) Σ5,proj, k = 5
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(b) Σ3,smooth, k = 3
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(e) Σ5,smooth, k = 5
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(c) Σidentity, k = 3
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(f) Σidentity, k = 5

Figure 3.5 – Realizations and bounds for E‖X −ΠFr
S X‖2

Fr as a function of the sparsity level p.
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Figure 3.6 – Realizations and bounds for E‖X −ΠFr
S X‖2

Fr as a function of the effective sparsity
level peff(2).

the matrix V . These bounds appear to be tight for projection spectra, and looser for
smooth spectra.

For the projection DPP, the bound 1 + k p−k
d−k is linear in p, and can thus be much

lower than the bound of VS. The numerical evaluations of the error also suggest that
this DPP bound is tight for a projection spectrum and looser in the smooth case. We
emphasize that, in both cases, the bound is representative of the actual behaviour of
the algorithm. The bottom row of Figure 3.5 displays the same results for identity
spectra, again for k = 3 and k = 5. This setting is extremely nonsparse and represents
an arbitrarily bad scenario where even PCA would not make much practical sense.
Then both VS and DPP sampling perform the same as PCA: all crosses superimpose at
y = 1. In this particular case, our linear bound in p is not representative of the actual
behaviour of the error. This observation can be explained for volume sampling using
Theorem 3.5, which states that the expected squared error under VS is Schur-concave,
and is thus minimized for flat spectra. We have no similar result for the projection DPP.

Figure 3.6 provides a similar comparison for the two smooth spectra Σ3,smooth
and Σ5,smooth, but this time using the effective sparsity level peff(θ) introduced in
Theorem 3.7. Qualitatively, we have observed the results to be robust to the choice of θ:
we use θ = 2. The 200 sampled matrices are now unevenly spread across the x-axis,
since we do not control peff(θ). Note finally that the DPP here is conditioned on the
event {S ∩ Tpeff(θ) = ∅}, and sampled using an additional rejection sampling routine as
detailed below Theorem 3.7.

For the DPP, the bound is again linear on the effective sparsity level peff(2), and can
again be much lower than the VS bound. The behaviours of both VS and the projection
DPP are similar to the exact sparsity setting of Figure 3.5: the DPP has uniformly better
bounds and actual errors, and the bound reflects the actual behaviour, relatively loosely
when peff(2) is large.

Figure 3.7 compares the theoretical bound in Theorem 3.7 for the avoiding proba-
bility P(S ∩ Tpeff(θ) = ∅) with 200 realizations, as a function of θ. More precisely, we
drew 200 matrices X, and then for each X, we computed exactly – by enumeration –
the value P(S ∩ Tpeff(θ) = ∅) for all values of θ. The only randomness is thus in the
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Figure 3.7 – Realizations and bounds for the avoiding probability P(S ∩ Tpeff(θ)
= ∅) in

Theorem 3.7 as a function of θ.

sampling of X, not the evaluation of the probability. Again, the results suggest that
the bound is relatively tight.

Finally, we examine relaxing β = 1. We have observed our results to be robust with
respect to β. At the extreme, in Figure 3.8, we compare the errors for two additional
spectra Σ̂3,proj and Σ̂3,smooth such that β is close to its maximum value d− k = 17:

Σ̂k=3,proj = 100
3

∑
i=1

eie
ᵀ
i + 0.1e4 eᵀ4 + 10−4

20

∑
i=5

ei eᵀi ,

and

Σ̂k=3,smooth = 100e1eᵀ1 + 10e2eᵀ2 + e3eᵀ3 + 0.1e4 eᵀ4 + 10−4
20

∑
i=5

ei eᵀi .

While the bound for such a large β would be almost vertical and does not reflect
anymore the actual behaviour of the algorithm, we observe that the algorithm still
performs comparably to the setting where β = 1, although with more variance, and
that the bound with β = 1 (in red) still represents the behaviour of the algorithm. This
is a hint that there is room for improvement in our bounds in the large β regime. The
search for a new bound that would be independent of β is nontrivial and a subject of
future work.

3.5.2 Real datasets

Dataset Application domain N × d References
Colon genomics 62× 2000 (Alon et al., 1999)

Leukemia genomics 72× 7129 (Golub et al., 1999)
Basehock text processing 1993× 4862 (Li et al., 2017b)
Relathe text processing 1427× 4322 (Li et al., 2017b)

Table 3.3 – Datasets used in the experimental section.
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Figure 3.8 – Realizations and bounds for E‖X −ΠFr
S X‖2

Fr as a function of the sparsity level p in
the case β > 1.

The datasets described in Table 3.3 are illustrative of two extreme situations re-
garding the sparsity of the k-leverage scores. For instance, the dataset Basehock has a
very sparse profile of k-leverage scores, while the dataset Colon has a quasi-uniform
distribution of k-leverage scores, see Figures 3.9a & 3.9b. This section compares the
empirical performances of several column subset selection algorithms on these datasets.

We consider the following algorithms presented in Section 3.2: 1) the projection
DPP with marginal kernel K = VkVᵀ

k , 2) volume sampling, 3) deterministically picking
the largest k-leverage scores, 4) pivoted QR as in (Golub, 1965), although the only
known bounds for this algorithm are for the spectral norm, and 5) double phase, with
c manually tuned to optimize the performance, usually around c ≈ 10k.

The rest of Figure 3.9 sums up the empirical results of these algorithms on the Colon
and Basehock datasets. Figures 3.9c & 4.15b illustrate the results of the five algorithms
in the following setting. An ensemble of 50 subsets are sampled using each algorithm.
We give the corresponding boxplots for the Frobenius errors, on Colon and Basehock
respectively. Deterministic methods (largest leverage scores and pivoted QR) perform
well compared with other algorithms on the Basehock dataset; in contrast, they display
very bad performance on the Colon dataset.

Focusing now on the three random sampling methods, we first make sure that the
observed differences in Frobenius error are statistically significant at level α = 0.05.
To that end, we report in Table 3.4 the p-values of the three pairwise Mann-Whitney
tests between the three algorithms. More precisely, let FX denote the CDF of the
Frobenius errors for algorithm X ∈ {DPh, DPP, VS}. We test H0:“FX = FY” against
the so-called one-sided alternative H1 that X is better than Y, in the sense that if you
independently run algorithms X and Y, it is more likely that the Frobenius error of
X is the smaller of the two. Now, we want to jointly test whether all three pairs
of algorithms within {DPh, DPP, VS} perform differently, so we use a Bonferroni
correction (Wasserman, 2013). Looking at Table 3.4 for dataset Colon, all three p-values
are smaller than α/3 = 0.05/3, so that we simultaneously reject that FDPh = FDPP,
FDPh = FVS and FDPP = FVS, and we declare the differences among algorithms to be
statistically significant. The same can be said for dataset Basehock. In particular, we
observe that the increase in performance using the projection DPP compared to volume
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sampling is more important for the Basehock dataset than for the Colon dataset: this
improvement can be explained by the sparsity of the k-leverage scores as predicted by
our approximation bounds. The double phase algorithm has the best results on both
datasets. However its theoretical guarantees cannot predict such an improvement, as
noted in Section 3.2. The performance of the projection DPP is comparable to double
phase and makes it a close second, with a slightly larger gap on the Colon dataset.
We emphasize that our approximation bounds are sharp compared to numerical
observations.

Figures 4.15c & 4.15d show results obtained using a classical boosting technique for
randomized algorithms. We repeat 20 times the following procedure: sample 50 subsets
(Si)i∈[50] and take the subset Smin that minimizes the approximation error among the
elements of the batch (Si)i∈[50]. Displayed boxplots are for these 20 best results. The
same comparisons apply as without boosting, with p-values given in Table 3.5.

Figure 3.10 calls again for similar comments, comparing this time the datasets
Relathe (with concentrated profile of k-leverage scores) and Leukemia (with almost
uniform profile of k-leverage scores). This time, the same test as for Colon vs. Basehock
in Table 3.4 further reveals that we cannot reject the hypothesis that FDPh = FDPP on
Relathe. In other words, there is no hint that the performance of the double phase is
different from that of DPP on that particular dataset (at level α = 0.05). The same is
true for the boosted version of the algorithms; see Table 3.5.

Dataset \ X vs. Y DPP vs. VS DPh vs. VS DPh vs. DPP
Colon 6.10−6 9.10−18 2.10−16

Leukemia 5.10−5 4.10−13 2.10−5

Basehock 10−17 10−17 3.10−5

Relathe 9.10−18 10−17 0.15

Table 3.4 – p-values for Mann–Whitney U-test comparisons.

Dataset \ X vs. Y DPP vs. VS DPh vs. VS DPh vs. DPP
Colon 4.10−8 10−4 4.10−8

Leukemia 3.10−6 3.10−8 3.10−6

Basehock 3.10−8 3.10−8 7.10−7

Relathe 3.10−8 3.10−8 0.053

Table 3.5 – p-values for Mann–Whitney U-test comparisons, for the boosted algorithms.

3.5.3 Regression with column subset selection

This section compares the empirical performance of several column subset selection
algorithms for regression tasks on the datasets in Table 3.3. We compare column subset
selection algorithms on synthetic regression vectors.

We consider the following algorithms: 1) the projection DPP with marginal kernel
K = VkVᵀ

k , 2) volume sampling, 3) double phase with c = 10k and 4) principal
component regression (PCR).
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(a) k-leverage scores profile and cumulative profile
for the dataset Basehock (k=10).
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S X‖Fr on a batch of 50

samples for the five algorithms on the dataset
Basehock (k=10).
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(d) Boxplots of ‖X −ΠFr
S X‖Fr on a batch of 50

samples for the five algorithms on the dataset Colon
(k=10).
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(e) Boxplots of ‖X −ΠFr
S X‖Fr on a batch of 50

samples for the boosting of randomized algorithms
on the dataset Basehock (k=10).
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(f) Boxplots of ‖X −ΠFr
S X‖Fr on a batch of 50

samples for the boosting of randomized algorithms
on the dataset Colon (k=10).

Figure 3.9 – Comparison of several column subset selection algorithms for two datasets with
different leverage score profiles: Basehock and Colon.
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(a) k-leverage scores profile and cumulative profile
for the dataset Relathe (k=10).
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(b) k-leverage scores profile and cumulative profile
for the dataset Leukemia (k=10).
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samples for the five algorithms on the dataset
Relathe (k=10).
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(d) Boxplots of ‖X −ΠFr
S X‖Fr on a batch of 50

samples for the five algorithms on the dataset
Leukemia (k=10).
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samples for the boosting of randomized algorithms
on the dataset Relathe (k=10).
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Figure 3.10 – Comparison of several column subset selection algorithms for two datasets with
different leverage score profiles: Relathe and Leukemia.
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To investigate the effect of the alignment of y with the principal subspaces of X,
we use two different label vectors y. More precisely, we define a principal subpsace of
dimension k0 = 20 and define two directions

y1 ∝
1
k0

∑
i∈[k0]

U:,i, (3.59)

and
y2 ∝

1
d− k0

∑
i∈[k0+1:d]

U:,i. (3.60)

that are respectively aligned with or orthogonal to the principal subspace of dimension
k0. We take y1 and y2 to be normed vectors, and we note that y1 ∈ Span(U:,i)i∈[k0], while
y2 ∈ Span(U:,i)i∈[k0+1:d]. Adapted PCR with k = k0 is expected to perform perfectly
well for y1 and badly for y2.

Figure 3.11 illustrates the results of the four algorithms in the following setting. An
ensemble of 50 subsets are sampled from each randomized algorithm. We give the
corresponding approximation errors ‖yi − XŵS‖2, on Colon and Basehock respectively,
for every value of k ∈ {10, 15, 20, 25, 30}.

First, we observe that the relative performance of the column selection algorithms
compared to PCR depends on the regressed vector yi. As expected, for y1, PCR has the
best approximation error. In particular, the approximation error for PCR is 0 for k ≥ k0,
while, for the column subset selection algorithms, the approximation error decreases
with k without vanishing. On the other hand, PCR has the worst error for y2.

Now, comparing column subset selection algorithms, we observe that the relative
performances depend on yi and the leverage score profile. Double phase and the
projection DPP perform similarly in all cases. Volume sampling displays minimal error
for y2 but has the worst performance for y1. Similarly to previous observations, the
differences between VS and the rest are amplified on the dataset with concentrated
leverage score profile (Basehock).

3.5.4 Conclusion

The performance of our projection DPP algorithm has been compared to state-of-the-art
column subset selection algorithms. We emphasize that the theoretical performance of
the proposed approach takes advantage from the sparsity of the k-leverage scores, as in
Proposition 3.6, or their fast decrease, as in Proposition 3.7. The actual behaviour of the
algorithm is in very good agreement with our theoretical bounds when the spectrum
is flat above k (i.e., β is close to 1). In contrast, state-of-the-art algorithms like volume
sampling come with both looser bounds and worse performance; double phase displays
great performance but has overly pessimistic theoretical bounds. When β is large, our
bounds become pessimistic even though the behaviour of the DPP selection remains
very competitive for low-rank approximation.

3.6 discussion

We have proposed, analysed, and empirically investigated a new randomized column
subset selection (CSS) algorithm. The crux of our algorithm is a discrete determinantal
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(b) The value of ‖y1 − XŵS‖2 as a function of k on a
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and PCR on the dataset Colon.

Figure 3.11 – Comparison of several column subset selection algorithms for the datasets
Basehock and Colon on a regression task.



72 column subset selection using projection dpps

point process (DPP) that selects a diverse set of k columns of a matrix X. This DPP is
tailored to CSS through its parametrization by the marginal kernel K = VkVᵀ

k , where
Vk are the first k right singular vectors of the matrix X. This specific kernel is related
to volume sampling, the state-of-the-art for CSS guarantees in Frobenius and spectral
norm.

We have identified generic conditions on the matrix X under which our algorithm
has bounds that improve on volume sampling. In particular, our bounds highlight the
importance of the sparsity and the decay of the k-leverage scores on the approximation
performance of our algorithm. We have further numerically illustrated this relation to
the sparsity and decay of the k-leverage scores using toy and real datasets. In these
experiments, our algorithm performs comparably well to the so-called double phase
algorithm, which is the empirical state-of-the-art for CSS despite more conservative
theoretical guarantees than volume sampling. Thus, our DPP sampling inherits both
favourable theoretical bounds and increased empirical performance under sparsity or
fast decay of the k-leverage scores. Both are common features of real datasets.

As detected in the experimental section, our bounds are sharp except in the large β

regime. Surprisingly, the actual behaviour of the algorithm remains very close to the
case β = 1, which further speaks in favour for the DPP approach. This is a hint that
our bounds can probably be refined to more sharply account for large βs.

Although generally studied as an independent task, in practice CSS is often a
prelude to a learning algorithm. We have considered linear regression and we have
given a bound on the excess risk of a regression performed on the selected columns
only. In particular, the sparsity and decay of the k-leverage scores are again involved:
the more localized the k-leverage scores, the smaller the excess risk bounds. Such an
analysis of the excess risk in regression further highlights the interest of the DPP: it
would be difficult to conduct for either volume sampling or double phase. Future work
in this direction includes investigating the importance of the sparsity of the k-leverage
scores on the performance of other learning algorithms such as spectral clustering or
support vector machines. Moreover, our theoretical analysis may found an application
in the field of graph signal reconstruction (Tremblay et al., 2017; Puy et al., 2018).

In terms of computational cost, our algorithms scale with the cost of finding the k
first right singular vectors, which is currently the main bottleneck. In line with (Drineas
et al., 2012) and (Boutsidis et al., 2011), where the authors estimate the k-leverage scores
using random projections, we plan to investigate the impact of random projections to
estimate the full matrix K on the approximation guarantees of our algorithms (Magen
and Zouzias, 2008).



P R O O F S

3.7 proofs

3.7.1 Technical lemmas

We start with two useful lemmas borrowed from the literature.

Lemma 3.1 (Lemma 3.1, Boutsidis et al., 2011). Let S ⊂ [d], then

‖X −Πν
S,kX‖2

ν ≤ ‖E(I − PS)‖2
ν, ν ∈ {2, Fr}, (3.61)

where E = X −ΠkX and PS = S(Vᵀ
k S)−1Vᵀ

k . Furthermore,

‖X −Πν
S,kX‖2

ν ≤
1

σ2
k (VS,[k])

‖X −ΠkX‖2
ν, ν ∈ {2, Fr}. (3.62)

The following lemma was first proven by Deshpande et al., 2006, and later rephrased
in (Deshpande and Rademacher, 2010).

Lemma 3.2 (Lemma 11, Deshpande and Rademacher, 2010). Let V ∈ Rk×d, r = rk(V)

and ` ∈ [1 : r]. Then

∑
S⊂[d],|S|=`

e`(Σ(V:,S)
2) = e`(Σ(V)2) (3.63)

where e` is the `-th elementary symmetric polynomial on r variables, see Section 3.1.

Elementary symmetric polynomials play an important role in the proof of Propo-
sition 3.7, in particular their interplay with the Schur order; see Appendix 3.B for
definitions.

Lemma 3.3. Let φ, ψ : R∗
k

+ → R∗+ be defined by

φ : σ 7→ ek−1(σ)

ek(σ)
(3.64)

and
ψ : σ 7→ ek(σ). (3.65)

Then both functions are symmetric, φ is Schur-convex, and ψ is Schur-concave.

of Lemma 3.3. Let i, j ∈ [k], i 6= j. Let σi, σj ∈ R∗+, it holds

(σi − σj)(∂iφ(σ)− ∂jφ(σ)) = (σi − σj)(−
1
σ2

i
+

1
σ2

j
)

=
(σi − σj)

2(σi + σj)

σ2
i σ2

j
≥ 0,
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so that φ is Schur-convex by Proposition 3.11. Similarly,

(σi − σj)(∂iψ(σ)− ∂jψ(σ)) = (σi − σj)(∏
` 6=i

σ` −∏
` 6=j

σ`)

= −(σi − σj)
2 ∏
` 6=i,j

σ` ≥ 0,

so that ψ is Schur-concave by Proposition 3.11.

Elementary symmetric polynomials also interact nicely with “marginalizing” sums.

Lemma 3.4. Let V be a real k× d matrix and let r = rk(V). Denote by p the number of non
zero columns of V . Then for all k ≤ r + 1,

∑
S⊂[d],|S|=k

Volk(V:,S)
2>0

∑
T⊂S
|T|=k−1

ek−1(Σ(V:,T)
2) ≤ (p− k + 1)ek−1(Σ(V)2). (3.66)

A fortiori,

∑
S⊂[d],|S|=k

Volk(V:,S)
2>0

∑
T⊂S
|T|=k−1

ek−1(Σ(V:,T)
2) ≤ (d− k + 1)ek−1(Σ(V)2). (3.67)

of Lemma 3.4. For T ⊂ [d], |T| = k− 1,

Ω1(T) = {S ⊂ [d] : |S| = k, T ⊂ S, ∀i ∈ S, V:,i 6= 0}
Ω2(T) =

{
S ⊂ [d] : |S| = k, T ⊂ S, Volk(V:,S)

2 > 0
}

.

Note that Ω2(T) ⊂ Ω1(T) so that

∑
S⊂[d],|S|=k

Volk(V:,S)
2>0

∑
T⊂S
|T|=k−1

ek−1(Σ(V:,T)
2) = ∑

T⊂[d]
|T|=k−1

∑
S∈Ω2(T)

ek−1(Σ(V:,T)
2)

≤ ∑
T⊂[d]
|T|=k−1

∑
S∈Ω1(T)

ek−1(Σ(V:,T)
2).

The set Ω1(T) has at most (p− k + 1) elements so that

∑
T⊂[d]
|T|=k−1

∑
S∈Ω1(T)

ek−1(Σ(V:,T)
2) ≤ (p− k + 1) ∑

T⊂[d]
|T|=k−1

ek−1(Σ(V:,T)
2). (3.68)

Lemma 3.2 for ` = k− 1 further yields

(p− k + 1) ∑
T⊂[d]
|T|=k−1

ek−1(Σ(V:,T)
2) ≤ (p− k + 1) ek−1(Σ(V)2). (3.69)
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3.7.2 Proof of Proposition 3.5

First, Lemma 3.1 yields

∑
S⊂[d],|S|=k

Det(VS,[k])
2‖X −Πν

SX‖2
ν ≤ ∑

S⊂[d],|S|=k

1
σ2

k (VS,[k])
Det(VS,[k])

2 ‖X −ΠkX‖2
ν

= ‖X −ΠkX‖2
ν ∑

S⊂[d],|S|=k

k−1

∏
`=1

σ2
` (VS,[k]), (3.70)

where the last equality follows from

Det(VS,[k])
2 =

k

∏
`=1

σ2
` (VS,[k]). (3.71)

By definition of the polynomial ek−1, it further holds

k−1

∏
`=1

σ2
` (VS,[k]) ≤ ek−1(Σ(VS,[k])

2), (3.72)

so that (3.70) leads to

∑
S⊂[d],|S|=k

Det(VS,[k])
2‖X −Πν

SX‖2
ν ≤ ‖X −ΠkX‖2

ν ∑
S⊂[d],|S|=k

ek−1(Σ(VS,[k])
2). (3.73)

Now, Lemma 3.2 applied to the matrix Vᵀ
S,[k] gives

ek−1(Σ(VS,[k])
2) = ∑

T⊂S,|T|=k−1
ek−1(Σ(VT,[k])

2), (3.74)

Therefore, Lemma 3.4 yields

∑
S⊂[d],|S|=k

ek−1(Σ(VS,[k])
2) ≤ (d− k + 1) ∑

T⊂[d],|T|=k−1
ek−1(Σ(VT,[k])

2). (3.75)

Using Lemma 3.2 and the fact that Vk is orthogonal, we finally write

∑
T⊂[d],|T|=k−1

ek−1(Σ(VT,[k])
2) = ek−1(Σ(Vk)

2) = k. (3.76)

Plugging (3.76) into (3.75), and then into (3.73) concludes the proof of Proposition 3.5.

3.7.3 Proof of Proposition 3.6

We first prove the Frobenius norm bound, which requires more work. The spectral
bound is easier and uses a subset of the arguments for the Frobenius norm.

Frobenius norm bound

Recall that E = X −ΠkX. We start with Lemma 3.1:

‖X −ΠFr
S X‖2

Fr ≤ ‖E(I − PS)‖2
Fr

= ‖E‖2
Fr + Tr(EᵀEPSPᵀ

S )− 2 Tr(Pᵀ
S EᵀE).

(3.77)
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Since EᵀE = Vk⊥Σ2
k⊥Vᵀ

k⊥ and PS = S(Vᵀ
k S)−1Vᵀ

k ,

Tr(Pᵀ
S EᵀE) = Tr

(
Vk ((V

ᵀ
k S)ᵀ)−1SᵀVk⊥Σk⊥Vᵀ

k⊥

)
= Tr

(
Vᵀ

k⊥Vk ((V
ᵀ
k S)ᵀ)−1SᵀVk⊥Σk⊥

)
= 0,

(3.78)

where the last equality follows from Vᵀ
k⊥Vk = 0. Therefore, (3.77) becomes

‖X −ΠFr
S X‖2

Fr ≤ ‖E‖2
Fr + Tr(EᵀEPS Pᵀ

S ). (3.79)

Taking expectations,

EDPP ‖X −ΠFr
S X‖2

Fr ≤ ‖E‖2
Fr + ∑

S⊂[d],|S|=k
Det(VS,[k])

2 Tr(EᵀEPS Pᵀ
S ). (3.80)

Proposition 3.8 expresses Det(VS,[k])
2 as a function of the principal angles (θi(S))

between Span(Vk) and Span(S), namely

Det(VS,[k])
2 = ∏

i∈[k]
cos2(θi(S)). (3.81)

The remainder of the proof is in two steps. First, we bound the second factor in the
sum in the right-hand side of (3.80) with a similar geometric expression. This allows
trigonometric manipulations. Second, we work our way back to elementary symmetric
polynomials of spectra, and we conclude after some simple algebra.

First, for S ⊂ [d], |S| = k, let

ZS = Vᵀ
k⊥S(Vᵀ

k S)−1 = Vᵀ
k⊥PS Vk.

It allows us to write

Tr(EᵀEPS Pᵀ
S ) = Tr(Vk⊥Σ2

k⊥Vᵀ
k⊥PS Pᵀ

S ) = Tr(Σ2
k⊥ZSVk Vᵀ

k Zᵀ
S). (3.82)

However, for real symmetric matrices A and B with the same size, a simple diagonal-
ization argument yields

Tr(AB) ≤ ‖A‖2 Tr(B), (3.83)

so that

Tr(EᵀEPS Pᵀ
S ) = Tr(Σ2

k⊥ZSVk Vᵀ
k Zᵀ

S)

= Tr(Zᵀ
SΣ2

k⊥ZSVk Vᵀ
k )

≤ Tr(Zᵀ
SΣ2

k⊥ZS)‖Vk Vᵀ
k ‖2

≤ Tr(Zᵀ
SΣ2

k⊥ZS)

≤ ‖Σ2
k⊥‖2 Tr(ZSZᵀ

S)

≤ σ2
k+1 Tr(ZSZᵀ

S). (3.84)

In Appendix 3.A, we characterize Tr(ZSZᵀ
S) using principal angles, see (3.135). This

reads
Tr(ZSZᵀ

S) = ∑
j∈[k]

tan2(θj(S)). (3.85)



3.7 proofs 77

Combining (3.80), (3.84), (3.81), and (3.85), we obtain the following intermediate bound

EDPP ‖X −ΠFr
S X‖2

Fr ≤ ‖E‖2
Fr + σ2

k+1 ∑
S⊂[d],|S|=k

[
∏
i∈[k]

cos2(θi(S))

] ∑
j∈[k]

tan2(θj(S))

 .

(3.86)
Distributing the sum and using trigonometric identities, the general term of the sum in
(3.86) becomes[

∏
i∈[k]

cos2(θi(S))

] ∑
j∈[k]

tan2(θj(S))

 = ∑
i∈[k]

(1− cos2(θi(S))) ∏
j∈[k],j 6=i

cos2(θj(S))

= ∑
i∈[k]

∏
j∈[k],j 6=i

cos2(θj(S))− ∑
i∈[k]

∏
j∈[k]

cos2(θj(S)).

(3.87)

The (cos(θj(S)))j∈[k] are the singular values of the matrix VS,[k] so that

∑
i∈[k]

∏
j∈[k],j 6=i

cos2(θj(S)) = ek−1(Σ(VS,[k])
2), (3.88)

and

∏
j∈[k]

cos2(θj(S)) = ek(Σ(VS,[k])
2). (3.89)

Back to (3.87), one gets[
∏
i∈[k]

cos2(θi(S))

] ∑
j∈[k]

tan2(θj(S))

 = ek−1(Σ(VS,[k])
2)− ∑

i∈[k]
ek(Σ(VS,[k])

2)

= ek−1(Σ(VS,[k])
2)− kek(Σ(VS,[k])

2). (3.90)

Thus, plugging (3.90) back into the intermediate bound (3.86), it comes

EDPP ‖X −ΠFr
S X‖2

Fr

≤ ‖E‖2
Fr + σ2

k+1

 ∑
S⊂[d]
|S|=k

ek−1(Σ(VS,[k])
2)− k ∑

S⊂[d]
|S|=k

ek(Σ(VS,[k])
2)

 .

(3.91)

Using Lemma 3.2 twice, it comes

EDPP ‖X −ΠFr
S X‖2

Fr

≤ ‖E‖2
Fr + σ2

k+1

 ∑
S⊂[d]
|S|=k

∑
T⊂S
|T|=k−1

ek−1(Σ(VT,[k])
2)− kek(Σ(V:,[k])

2)

 . (3.92)
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Lemmas 3.4 and the identities ek−1(Σ(V:,[k])
2) = k and ek(Σ(V:,[k])

2) = 1 allow us to
conclude

EDPP ‖X −ΠFr
S X‖2

Fr ≤ ‖E‖2
Fr + σ2

k+1

[
(p− k + 1)ek−1(Σ(V:,[k])

2)− k
]

(3.93)

= ‖E‖2
Fr + σ2

k+1(p− k)k. (3.94)

By definition of β (3.40), we have proven (3.42), i.e.,

EDPP ‖X −ΠFr
S X‖2

Fr ≤ ‖E‖2
Fr

(
1 + β

p− k
d− k

k
)

.

Spectral norm bound

The bound in spectral norm is easier to derive. We start with Lemma 3.1:

‖X −Π2
SX‖2

2 ≤ ‖E(I − PS)‖2
2

≤ ‖E‖2
2 + ‖EPS‖2

2

≤ ‖E‖2
2 + ‖E‖2

2‖V
ᵀ
k⊥S(Vᵀ

k S)−1Vᵀ
k ‖

2
2

≤ ‖E‖2
2(1 + ‖ZS‖2

2),

(3.95)

where the notation is the same as in Section 3.7.3. Now

‖ZS‖2
2 ≤ ‖ZS‖2

Fr = ∑
i∈[k]

tan2(θi(S)), (3.96)

thus by (3.95), (3.96) and (3.81)

EDPP ‖X −Π2
SX‖2

2 = ∑
S⊂[d],|S|=k

Det(VS,[k])
2‖X −ΠSX‖2

2 (3.97)

≤ ‖E‖2
2

1 + ∑
S⊂[d],|S|=k

Det(VS,[k])
2>0

k

∏
i=1

cos2(θi(S)) ∑
i∈[k]

tan2(θi(S))

 . (3.98)

By (3.87), it comes

EDPP ‖X −Π2
SX‖2

2 ≤ ‖E‖2
2

1 + ∑
S⊂[d],|S|=k

Det(VS,[k])
2>0

ek−1(Σ(VS,[k])
2)− kek(Σ(VS,[k])

2)


≤ ‖E‖2

2

(
1 + (p− k + 1) ek−1(Σ(V:,[k])

2)− kek(Σ(V:,[k])
2)
)

= (1 + (p− k) k )‖E‖2
2.

where we again used the double sum trick of (3.92) and Lemma 3.4.
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3.7.4 Proof of Theorem 3.7

We start with a lemma on evaluations of elementary symmetric polynomials on specific
sequences.

Lemma 3.5. Let λ ∈]0, 1]k such that
λ1 ≥ · · · ≥ λk,

Λ =
k
∑

i=1
λi ≥ k− 1 + 1

θ .
(3.99)

Then, with the functions φ, ψ introduced in Lemma 3.3, ψ(λ) ≥ 1
θ

,

φ(λ) ≤ k− 1 + θ.
(3.100)

Proof. Let λ̂ = (1, ..., 1, Λ− k + 1) ∈ R∗
k

+ . Then

λ1 ≤ λ̂1

λ1 + λ2 ≤ λ̂1 + λ̂2

...
k−1
∑

i=1
λi ≤

k−1
∑

i=1
λ̂i

k
∑

i=1
λi =

k
∑

i=1
λ̂i

(3.101)

so that, according to Definition 3.4,

λ ≺S λ̂. (3.102)

Lemma 3.3 ensures the Schur-convexity of φ and the Schur-concavity of ψ, so that

φ(λ) ≤ φ(λ̂) = k− 1 +
1

Λ− k + 1
≤ k− 1 + θ,

and
ψ(λ) ≥ ψ(λ̂) = Λ− k + 1 ≥ 1

θ
.

Frobenius norm bound

Let K = VkVᵀ
k , and π be a permutation of [d] that reorders the leverage scores decreas-

ingly,
`k

π1
≥ `k

π2
≥ ... ≥ `k

πd
. (3.103)

By construction, Tpeff = [πpeff , ..., πd] thus collects the indices of the smallest lever-
age scores. Finally, denoting by Π = (δi,πj)(i,j)∈[d]×[d] the matricial representation of
permutation π, we let

Kπ = ΠKΠᵀ = ((Kπi ,πj))1≤i,j≤d.
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The goal of the proof is to bound

EDPP

[
‖X −ΠFr

S X‖2
Fr|S ∩ Tpeff = ∅

]
=

∑ Det(VS,[k])
2‖X −ΠFr

S X‖2
Fr

∑ Det(VS,[k])2 , (3.104)

where both sums run over subsets S ⊂ [d] such that |S| = k and S ∩ Tpeff(θ) = ∅. For
simplicity, let us write

Zk,peff(θ) = ∑
S⊂[d],|S|=k

S∩Tpeff(θ)
=∅

Det(VS,[k])
2, (3.105)

Yk,peff(θ) = ∑
S⊂[d],|S|=k

S∩Tpeff(θ)
=∅

Det(VS,[k])
2 Tr(ZSZᵀ

S). (3.106)

Following steps (3.80) to (3.84) of the previous proof, one obtains

EDPP

[
‖X −ΠFr

S X‖2
Fr | S ∩ Tpeff = ∅

]
≤ ‖X −ΠkX‖2

Fr + σ2
k+1

Yk,peff(θ)

Zk,peff(θ)
. (3.107)

By definition (3.40) of the flatness parameter β,

σ2
k+1 = β

1
d− k ∑

j≥k+1
σ2

j = β
1

d− k
‖X −ΠkX‖2

Fr. (3.108)

Then, it remains to upper bound the ratio Yk,peff(θ)/Zk,peff(θ) in (3.107), which is the
important part of the proof. We first evaluate Zk,peff(θ) and then bound Yk,peff(θ).

The matrix ΠVk ∈ Rd×k has its rows ordered by decreasing leverage scores. Let
Ṽ π

peff(θ)
∈ Rpeff(θ)×k be the submatrix corresponding to the first peff(θ) rows of ΠVk. Let

also

V̂ π
peff(θ)

=

(
Ṽπ,peff(θ)

0d−peff(θ),k

)
be padded with zeros. Then

Kπ
peff(θ)

=

[
Ṽπ,peff(θ)Ṽ

ᵀ
π,peff(θ)

0
0 0

]
= V̂ π

peff(θ)
(V̂ π

peff(θ)
)ᵀ ∈ Rd×d. (3.109)

The nonzero block of Kπ
peff(θ)

is a submatrix of Kπ, and rk Kπ = rk K = k. Hence Kπ
peff(θ)

has at most k nonzero eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 = λk+1 = · · · = λd. (3.110)

Therefore,
ek(Λ(Kπ

peff(θ)
)) = ∑

T⊂[d]
|T|=k

∏
j∈T

λj = ∏
i∈[k]

λi. (3.111)

Note moreover that

∀` ∈ [k], e`(Σ(V̂π,peff(θ))
2) = e`(Λ(Kπ

peff(θ)
)). (3.112)
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By construction,

Zk,peff(θ) = ∑
S⊂[d],|S|=k

S∩Tpeff(θ)
=∅

Det(VS,[k])
2 = ∑

S⊂[d],|S|=k

Det
[(

V̂ π
peff(θ)

)
S,:

]2

(3.113)

Then, Lemma 3.2 yields

Zk,peff(θ) = ek(Σ(V̂π,peff(θ))
2) = ek(Λ(Kπ

peff(θ)
)) = ∏

i∈[k]
λi. (3.114)

Now we bound Yk,peff(θ). We use again principal angles and trigonometric identities.
Using (3.85) and (3.90) above, it holds

Yk,peff(θ) = ∑
S⊂[d],|S|=k

S∩Tpeff(θ)
=∅

Det(VS,[k])
2 Tr(ZSZᵀ

S)

= ∑
S⊂[d],|S|=k

S∩Tpeff(θ)
=∅

∏
i∈[k]

cos2(θi(S)) ∑
j∈[k]

tan2(θj(S))

= ∑
S⊂[d],|S|=k

S∩Tpeff(θ)
=∅

ek−1

(
Σ(VS,[k])

2
)
− k ek

(
Σ(VS,[k]

)2
(3.115)

= ∑
S⊂[d],|S|=k

ek−1

(
Σ
([

V̂ π
peff(θ)

]
S,:

)2
)
− k ek

(
Σ
([

V̂ π
peff(θ)

]
S,:

)2
)

(3.116)

By Lemma 3.4 applied to the matrix V̂π,peff(θ) combined to (3.113), we get

Yk,peff(θ) ≤ (peff(θ)− k + 1)ek−1(Σ(V̂ π
peff(θ)

)2)− k ek(Σ(V̂ π
peff(θ)

)2)

≤ (peff(θ)− k + 1)ek−1(Λ(Kπ
peff(θ)

))− k ek(Λ(Kπ
peff(θ)

))

≤
(
(peff(θ)− k + 1)φ(λ̃)− k

)
Zk,peff(θ). (3.117)

where λ̃ = (1, . . . , 1, Tr(Kπ
peff(θ)

)− k + 1) ∈ Rk, see Lemma 3.5. Now, as in the proof of
Lemma 3.5,

φ(λ̃) = k− 1 +
1

Tr(Kπ
peff(θ)

)− k + 1
≤ k− 1 + θ

by (3.44). Thus (3.117) yields

Yk,peff(θ)

Zk,peff(θ)
≤ (peff(θ)− k + 1)(k− 1 + θ)− k ≤ (peff(θ)− k + 1)(k− 1 + θ). (3.118)

Finally, plugging (3.118) and (3.108) in (3.107) concludes the proof of (3.47).
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Spectral norm bound

We proceed as for the Frobenius norm, using the notation of Section 3.7.3. Lemma 3.1,
Equations (3.115) and (3.118) yield

EDPP

[
‖X −Π2

SX‖2
2 | S ∩ Tpeff = ∅

]
= Z−1

k,peff(θ) ∑
S⊂[d],|S|=k

S∩Tpeff(θ)
=∅

Det(VS,[k])
2‖X −Π2

SX‖2
2,

≤ Z−1
k,peff(θ)

‖X −ΠkX‖2
2


1 + ∑

S⊂[d],|S|=k
S∩Tpeff(θ)

=∅,

Det(VS,[k])
2>0

k−1

∏
`=1

σ2
` (VS,[k])− kek(Σ(VS,[k])

2)



≤ Z−1
k,peff(θ)

‖X −ΠkX‖2
2


1 + ∑

S⊂[d],|S|=k
S∩Tpeff(θ)

=∅

Det(VS,[k])
2>0

ek−1(Σ(VS,[k])
2)− kek(Σ(VS,[k])

2)


≤
(

Yk,peff(θ)

Zk,peff(θ)
+ 1

)
‖X −ΠkX‖2

2

≤ (1 + (peff(θ)− k + 1)(k− 1 + θ)) ‖X −ΠkX‖2
2,

which is the claimed spectral bound.

Bounding the probability of rejection

Recall from Lemma 3.5 that

λ̂ =
(

1 . . . 1 ∑k
i=1 λi − k + 1

)
∈ R∗

k

+ .

Still with the notation of Section 3.7.3, (3.113) yields

P(S ∩ Tpeff(θ) = ∅) = ∑
S⊂[d],|S|=k

S∩Tpeff(θ)
=∅

Det(VS,[k])
2

= ek(Kπ
peff(θ)

) (3.119)

= ∏
i∈[k]

λi

≥ ψ(λ̂), (3.120)

because the normalization constant ∑
S⊂[d],|S|=k

Det(VS,[k])
2 is equal to 1. Lemma 3.5

concludes the proof since

ψ(λ̂) ≥ 1
θ

. (3.121)
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3.7.5 Proof of Proposition 3.8

First, Proposition 3.3 gives

E(wS) ≤
(1 + max

i∈[k]
tan2 θi(S))‖w∗‖2σ2

k+1

N
+

k
N

ν. (3.122)

Now (3.135) further gives

max
i∈[k]

tan2 θi(S) ≤ ∑
i∈[k]

tan2 θi(S) = Tr(ZSZᵀ
S). (3.123)

The proof now follows the same lines as for the approximation bounds. First, following
the lines of Section 3.7.3, we straightforwardly bound

EDPP ∑
i∈[k]

tan2(θi(S)) = ∑
S⊂[d],|S|=k

∏
i∈[k]

cos2(θi(S)) ∑
j∈[k]

tan2(θj(S)) (3.124)

and obtain (3.57). In a similar vein, the same lines as in Section 3.7.4 allow bounding

EDPP

[
∑

i∈[k]
tan2(θi(S)) | S ∩ Tpeff = ∅

]
= ∑

S⊂[d],|S|=k
S∩Tpeff(θ)

=∅

∏
i∈[k]

cos2(θi(S)) ∑
j∈[k]

tan2(θj(S).

(3.125)
and yield (3.58).



A P P E N D I X

In Section 3.A we recall the definition of principal angles between subspaces along
with some results that we use in the proofs of our theoretical results. In Section 3.B,
we recall some notions of majorization and Schur-convexity necessary for the proofs.
In Section 3.C, we give another possible interpretation of the k-leverage scores. In
Section 3.D, we describe an algorithm that generates orthogonal matrices with a
prescribed diagonal. This algorithm was used in Section 3.5 to construct matrices X
with realistic right eigenvectors.

3.a principal angles and the cosine sine decomposition

3.a.1 Principal angles

This section surveys the notion of principal angles between subspaces, see (Golub and
Van Loan, 1996, Section 6.4.3) for details.

Definition 3.3. Let P ,Q be two subspaces in Rd. Let p = dimP and q = dimQ and assume
that q ≤ p. To define the vector of principal angles θ ∈ [0, π/2]q between P and Q, let

cos(θ1) = max
{

xTy
‖x‖‖y‖ ; x ∈ P , y ∈ Q

}
(3.126)

be the cosine of the smallest angle between a vector of P and a vector of Q, and let (x1, y1) ∈
P ×Q be a pair of vectors realizing the maximum. For i ∈ [2, q], define successively

cos(θi) = max
{

xTy
‖x‖‖y‖ ; x ∈ P , y ∈ Q; x ⊥ xj, y ⊥ yj , ∀j ∈ [1 : i− 1]

}
(3.127)

and denote (xi, yi) ∈ P ×Q such that cos(θi) = xᵀi yi .

Note that although the so-called principal vectors (xi, yi)i∈[q] are not uniquely
defined by (3.126) and (3.127), the principal angles θ are uniquely defined, see (Björck
and Golub, 1973). The following result confirms this, while also providing a way to
compute θ.

Proposition 3.8 (Björck and Golub, 1973, Ben-Israel, 1992). Let P and Q and θ be as in
Definition 3.3. Let P ∈ Rd×p, Q ∈ Rd×q be two orthogonal matrices, whose columns are
orthonormal bases of P and Q, respectively. Then

∀i ∈ [q], cos(θi) = σi(QᵀP). (3.128)

In particular
Vol2

q(Q
ᵀP) = ∏

i∈[q]
cos2(θi). (3.129)

An important case for our work arises when q = k, Q = V ∈ Rd×k, and P = S ∈
Rd×k is a sampling matrix. The left-hand side of (3.129) then equals Det(V:,S)

2.
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3.a.2 The Cosine Sine decomposition

The Cosine Sine (CS) decomposition is useful for the study of the relative position
of two subspaces. It generalizes the notion of cosine, sine and tangent to subspaces.
The tangent of principal angles between subspaces were first mentioned in (Zhu and
Knyazev, 2013).

Proposition 3.9 (Golub and Van Loan, 1996). Let q, d ∈ N and Q =

[
Q1

Q2

]
be a d× q

orthogonal matrix, where Q1 ∈ Rq×q and Q2 ∈ R(d−q)×q. Assume that Q1 is non singular,
then there exist orthogonal matrices Y ∈ Rd×q and

W =

[
W1 0
0 W2

]
∈ Rd×d, (3.130)

and a matrix

Σ =

 C
S

0q′,q

 ∈ Rd×q, (3.131)

where q′ = max(0, d− 2q), such that

Q = WΣYT, (3.132)

where W1 ∈ Rq×q and W2 ∈ Rd−q×d−q, and C,S ∈ Rq×q are diagonal matrices satisfying the
identity C2 + S2 = Iq. In particular, each block Qi factorizes as

Q1 =W1 C YT

Q2 =W2

[
S

0q′,q

]
YT.

(3.133)

The CS decomposition is defined for every orthogonal matrix. An important case
is when Q is the product of an orthogonal matrix V ∈ Rd×d and a sampling matrix
S ∈ Rd×k, that is Q = VᵀS.

Corollary 3.1. Let V ∈ Rd×d be an orthogonal matrix and S ∈ Rd×k be a sampling matrix.
Let

Q = VᵀS =

[
Vᵀ

k S
Vᵀ

k⊥S

]
(3.134)

be a d× k orthogonal matrix, with Det(Vᵀ
k S)2 > 0. Let further ZS = Vᵀ

k⊥S(Vᵀ
k S)−1. Then

Tr(ZSZᵀ
S) = ∑

i∈[k]
tan2(θi(S)), (3.135)

where the (θi(S))i∈[k] are the principal angles between Span(Vk) and Span(S).

Proof. Proposition 3.9 applied to the matrix Q = VᵀS with Q1 = Vᵀ
k S and Q2 = Vᵀ

k⊥S
yields

Q1 =W1 C YT (3.136)

Q2 =W2

[
S

0q′,q

]
YT. (3.137)
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Thus, the diagonal matrix C contains the singular values of the matrix Vᵀ
k S, which

are cosines of the principal angles (θi(S))i∈[k] between Span(Vk) and Span(S), see
Proposition 3.8. The identity C2 + S2 = Ik and the fact that θi(S) ∈ [0, π

2 ] imply that the
(diagonal) elements of S are equal to the sines of the principal angles between Span(Vk)

and Span(S). Let T = S C−1 ∈ Rk×k be the diagonal matrix containing the tangents of
the principal angles (θi(S))i∈[k] on its diagonal. Using (3.136) and (3.137), it comes

ZS = Vᵀ
k⊥S(Vᵀ

k S)−1 = W2

[
S

0q′,q

]
YᵀY C−1 Wᵀ

1

= W2

[
S

0q′,q

]
C−1 Wᵀ

1 = W2

[
S C−1

0q′,q

]
Wᵀ

1 . (3.138)

Then,

Tr(ZSZᵀ
S) = Tr(W2

[
T 2 0q,q′

0q′,q 0q′,q′

]
Wᵀ

2 ) = ∑
i∈[k]

tan2(θi(S)). (3.139)

3.b majorization and schur convexity

This section recalls some definitions and results from the theory of majorization and
the notions of Schur-convexity and Schur-concavity. We refer to (Marshall et al., 2011)
for further details. In this section, a subset D ⊂ Rd is a symmetric domain if D is stable
under coordinate permutations. Furthermore, a function f defined on a symmetric
domain D is called symmetric if it is stable under coordinate permutations.

Definition 3.4. Let p, q ∈ Rd
+. p is said to majorize q according to Schur order and we note

q ≺S p if 

qi1 ≤ pj1
qi1 + qi2 ≤ pj1 + pj2
...
d−1
∑

k=1
qik ≤

d−1
∑

k=1
pjk

d
∑

k=1
qik =

d
∑

k=1
pjk

(3.140)

where p, q are reordered so that pid ≤ ... ≤ pi1 and qjd ≤ ... ≤ qj1 .

The majorization order has an algebraic characterization using doubly stochastic
matrices first proven by Hardy, Littlewood, and Polya in 1929.

Proposition 3.10 (Theorem B.2. Marshall et al., 2011). The vector p majorizes the vector q
if and only if there exists a d× d doubly stochastic matrix Π such that q = pΠ.

Example 3.1. Let p = (3, 0, 0) and q = (1, 1, 1). We check easily that p majorizes q. Note
that we can ’redistribute’ p over q as follows: q = 1

3 Jp, where J is a 3× 3 matrix of ones. The
matrix Π = 1

3 J is a doubly stochastic matrix.

Schur order compares two vectors using multiple inequalities. To avoid such
cumbersome calculations, a scalar metric of inequality in a vector is desired. This is
possible using the notion of Schur-convex/concave function.
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Definition 3.5. Let f be a function on a symmetric domain D ⊂ Rd
+.

f is said to be Schur convex if

∀p, q ∈ Rd
+, q ≺S p =⇒ f (q) ≤ f (p). (3.141)

f is said to be Schur concave if

∀p, q ∈ Rd
+, q ≺S p =⇒ f (q) ≥ f (p). (3.142)

Proposition 3.11 (Theorem A.3, Marshall et al., 2011). Let f be a symmetric function defined
on Rd

+, let D be a permutation-symmetric domain in Rd
+ and suppose that

∀xi, xj ∈ R+, (xi − xj)(
∂ f
∂xi
− ∂ f

∂xj
) > 0 (3.143)

then
∀p, q ∈ D, q ≺S p =⇒ f (q) ≤ f (p), (3.144)

and f is Schur convex.

We get a similar result for Schur concavity by switching the orders in the previous
proposition.

3.c another interpretation of the k-leverage scores

For i ∈ [d], the SVD of X yields

X:,i =
r

∑
`=1

Vi,` f`, (3.145)

where f` = σ`U:,`, ` ∈ [r], are orthogonal. Thus

Xᵀ
:,i f j = Vi,j‖ f j‖2 = Vi,jσ

2
j . (3.146)

Then
Vi,j

‖X:,i‖
=

Xᵀ
:,i f j

σj‖X:,i‖‖ f j‖
=:

cos ηi,j

σj
, (3.147)

where ηi,j ∈ [0, π/2] is the angle formed by X:,i and f j. Finally, (3.146) also yields

`k
i = ‖X:,i‖2

k

∑
j=1

cos2 ηi,j

σ2
j

. (3.148)

Compared to the length-square distribution in Section 3.2, k-leverage scores thus favour
columns that are aligned with the principal features. The weight 1/σ2

j corrects the
fact that features associated with large singular values are typically aligned with more
columns. One could also imagine more arbitrary weights wj/σ2

j in lieu of 1/σ2
j , or,

equivalently, modified k-leverage scores

`k
i (w) =

k

∑
j=1

wjV2
i,j.
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However, the projection DPP with marginal kernel K = VkVᵀ
k that we study in this

paper is invariant to such reweightings. Indeed, let Y be a random subset of [d]
following the distribution of the k-DPP of kernel Kw = VkDiag(w[k])V

ᵀ
k such that for

all i ∈ [k], wi 6= 0. For any S ⊂ [d] of cardinality k,

P(Y = S) ∝ Det
[
VS,[k] Diag(w[k])Vᵀ

[k],S

]
= Det(VS,[k])

2 ∏
j∈[k]

w2
j ∝ Det(VS,[k])

2. (3.149)

Such a scaling is thus not a free parameter in K.

3.d generating orthogonal matrices with prescribed leverage scores

In this section, we describe an algorithm that samples a random orthonormal matrix
with a prescribed profile of k-leverage scores. This algorithm was used to generate
the matrices F = Vᵀ

k ∈ Rk×d for the toy datasets of Section 3.5. The orthogonality
constraint can be expressed as a condition on the spectrum of the matrix K = VkVᵀ

k ,
namely Sp(K) ⊂ {0, 1}. On the other hand, the constraint on the k-leverage scores can
be expressed as a condition on the diagonal of K. Thus, the problem of generating an
orthogonal matrix with a given profile of k-leverage scores boils down to enforcing
conditions on the spectrum and the diagonal of a symmetric matrix K.

3.d.1 Definitions and statement of the problem

We denote by ( fi)i∈[d] the columns of the matrix F. For n ∈N, we write 0n the vector
containing zeros living in Rn. We say that the vector u ∈ Rn interlaces on v ∈ Rn and
we denote

u v v

if un ≤ vn and ∀i ∈ [1 : n− 1], vi+1 ≤ ui ≤ vi.

. . . vi+2 ui+1 vi+1 ui vi ui−1 vi−1
. . .

Figure 3.D1 – Illustration of the interlacing of u on v.

Definition 3.6. Let k, d ∈ N, with k ≤ d. Let F ∈ Rk×d be a full rank matrix5. Within this
section, we denote σ2 = (σ2

1 , σ2
2 , . . . , σ2

k ) the squares of the nonvanishing singular values of the
matrix F, and ` = (`1 = ‖ f1‖2, `2 = ‖ f2‖2, . . . , `d = ‖ fd‖2) are the squared norms of the
columns of F, which we assume to be ordered decreasingly:

`1 ≥ `2 ≥ · · · ≥ `d.

When the rows of F are orthonormal, we can think of ` as a vector of leverage scores.

We are interested in the problem of constructing a matrix F with orthonormal rows
given its leverage scores.

5 A frame, using the definitions of (Fickus et al., 2011) and (Fickus et al., 2013).
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Problem 1. Let k, d ∈ N, with k ≤ d, and let ` ∈ Rd
+ such that

d
∑

i=1
`i = k. Build a matrix

F ∈ Rk×d such that

Sp(FᵀF) = [Ik, 0d−k], (3.150)

and

Diag(FᵀF) = `. (3.151)

We actually consider here the generalization of Problem 2 to an arbitrary spectrum.

Problem 2. Let k, d ∈ N, with k ≤ d, and let ` ∈ Rd
+ such that

d
∑

i=1
`i =

k
∑

i=1
σ2

i . Build a

matrix F ∈ Rk×d such that

Sp(FᵀF) = [σ2, 0d−k] =: σ̂2 (3.152)

and

Diag(FᵀF) = `. (3.153)

Denote by

M(`,σ) = {M ∈ Rd×d symmetric
/

Diag(M) = `, Sp(M) = σ̂2}. (3.154)

The non-emptiness ofM(`,σ) is determined by a majorization condition between ` and
σ̂, see Appendix 3.B for definitions. More precisely, we have the following theorem.

Theorem 3.9 (Schur-Horn). Let k, d ∈N, with k ≤ d, and let ` ∈ Rd
+. We have

M(`,σ) 6= ∅⇔ ` ≺S σ̂. (3.155)

The proof by Horn, 1954 of the reciprocal in Theorem 3.9 is non constructive. In the
next section, we survey algorithms that output an element ofM(`,σ).

3.d.2 Related work

Several articles (Raskutti and Mahoney, 2016, Ma et al., 2015) in the randomized linear
algebra community propose the use of non Gaussian random matrices to generate
matrices with a fast decreasing profile of leverage scores (so-called heavy hitters) without
controlling the exact profile of the leverage scores.

Dhillon et al., 2005 showed how to generate matrices from M(`,σ) using Givens
rotations; see the algorithm in Figure 3.D2. The idea of the algorithm is to start with a
frame with the exact spectrum and repeatedly apply orthogonal matrices (Lines 4 and
6 of Figure 3.D2) that preserve the spectrum while changing the leverage scores of only
two columns, setting one of their leverage scores to the desired value. The orthogonal
matrices are the so-called Givens rotations.
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Definition 3.7. Let θ ∈ [0, 2π[ and i, j ∈ [d]. The Givens rotation Gi,j(θ) ∈ Rd×d is defined
by

Gi,j(θ) =



1
. . .

1
cos(θ) − sin(θ)

1
. . .

1
sin(θ) cos(θ)

1
. . .

1



. (3.156)

GivensAlgorithm

(
`, σ)

1 F ←−
[

Diag(σ) 0
]
∈ Rk×d

2 while ∃i, j, k ∈ [d], i < k < j : ‖ fi‖2 < `i, ‖ fk‖2 = `k, ‖ f j‖2 > `j

3 if `i − ‖ fi‖2 ≤ ‖ f j‖2 − `j

4 F ← Gi,j(θ)F, where ‖(Gi,j(θ)F)i‖2 = `i.

5 else

6 F ← Gi,j(θ)F, where ‖(Gi,j(θ)F)j‖2 = `j,

7 return F ∈ Rk×d.

Figure 3.D2 – The pseudocode of the algorithm proposed by Dhillon et al., 2005 for generating
a matrix given its leverage scores and spectrum by successively applying Givens rotations.

Figure 3.D3 shows the output of the algorithm in Figure 3.D2, for the input (`, σ) =

(`, 1k) for three different values of `. The main drawbacks of this algorithm are first
that it is deterministic, so that it outputs a unique matrix F for a given input (`, σ), and
second that the output is a highly structured matrix, as observed on Figure 3.D3.

We propose an algorithm that outputs random, more “generic” matrices belonging
toM(`,σ). This algorithm is based on a parametrization ofM(`,σ) using the collection
of spectra of all minors of F ∈ M(`,σ). This parametrization was introduced by Fickus
et al., 2013, and we recall it in Section 3.D.3. For now, let us simply look at Figure 3.D4,
which displays a few outputs of our algorithm for the same input as in Figure 3.D3a.
We now obtain different matrices for the same input (`, σ), and these matrices are less
structured than the output of Algorithm 3.D2, as required.

3.d.3 The restricted Gelfand-Tsetlin polytope

Definition 3.8. Recall that ( fi)i∈[d] are the columns of the matrix F ∈ Rk×d. For r ∈ [d], we
further define

Fr = F:,[r] ∈ Rk×r, (3.157)
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Cr = ∑
i∈[r]

fi f ᵀi ∈ Rk×k, (3.158)

Gr = Fᵀ
r Fr ∈ Rr×r. (3.159)

Furthermore, we note for r ∈ [d],

(λr,i)i∈[k] = Λ(Cr), (3.160)

(λ̃r,i)i∈[r] = Λ(Gr). (3.161)

The (λr,i)i∈[k], r ∈ [d], are called the outer eigensteps of F, and we group them in the matrix

Λout(F) = (λr,i)i∈[k],r∈[d] ∈ Rk×d.

Similarly, the (λ̃r,i)i∈[r] are called inner eigensteps of F: for r ∈ [d], (λr,i)i∈[k] and (λ̃r,i)i∈[r]
share the same nonzeros elements.
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Figure 3.D3 – The output of the algorithm in Figure 3.D2 for k = 2, d = 10, σ = (1, 1), and
three different values of ` that each add to k. Each red dot has coordinates a column of F. The
blue circles have for radii the prescribed (

√
`i).

Example 3.2. For k = 2, d = 4, consider the full-rank matrix

F =

[
1 0 −1 0
0 1 0 −1

]
, (3.162)

Then

Λout(F) =
[

1 1 2 2
0 1 1 2

]
. (3.163)

Proposition 3.12. The outer eigensteps satisfy the following constraints:

∀i ∈ [k], λ0,i = 0

∀i ∈ [k], λd,i = σ2
i

∀r ∈ [d], (λr,:) v (λr+1,:)

∀r ∈ [d], ∑
i∈[d]

λr,i = ∑
i∈[r]

`i

. (3.164)
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Figure 3.D4 – The output of our algorithm for k = 2, d = 10, an input σ = (1, 1), and ` as in
Figure 3.D3a. Each red dot has coordinates a column of F. The blue circles have for radii the
prescribed (

√
`i).

`1 = λ1,1 λ2,1 λ3,1 . . . λd−1,1 λd,1 = σ1
+ + + . . . + +

0 = λ1,2 λ2,2 λ3,2 . . . λd−1,2 λd,2 = σ2
+ + + . . . + +

0 = λ1,3 λ2,3 λ3,3 . . . λd−1,3 λd,3 = σ3...
...

...
...

...
...

0 = λ1,k λ2,k λ3,k . . . λd−1,k λd,k = σk

`1 ∑
i≤2

`i ∑
i≤3

`i ∑
i≤d−1

`i ∑
i≤d

`i

Figure 3.D5 – The interlacing relationships (3.164) satisfied by the outer eigensteps of a frame.
Thick triangles are used in place of ≤ for improved readability.

In other words, the outer eigensteps are constrained to live in a polytope. We define
the restricted Gelfand-Tsetlin polytope GT(k,d)(σ, `) to be the subset of Rk×d defined by
the equations (3.164). A more graphical summary of the interlacing and sum constraints
is given in Figure 3.D5. The restricted GT polytope6 allows a parametrization ofM(`,σ)
by the following reconstruction result.

Theorem 3.10 (Theorem 3, Fickus et al., 2011). Every matrix F ∈ M(`,σ) can be constructed
as follows:

• pick a valid sequence of outer eigensteps noted Λout ∈ GT(k,d)(σ, `),

• pick f1 ∈ Rk such that
‖ f1‖2 = `1, (3.165)

6 Note the difference with the Gelfand-Tsetlin polytope in the random matrix literature (Baryshnikov, 2001),
where only the spectrum is constrained, not the diagonal.
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• for r ∈ [d], consider the polynomial pr(x) = ∏
i∈[d]

(x − λr,i), and for each r ∈ [d− 1],

choose fr+1 ∈ Rk such that

∀λ ∈ {λr,i}i∈[d], ‖Pr,λ fr+1‖2 = − lim
x→λ

(x− λ)
pr+1(λ)

pr(λ)
, (3.166)

where Pr,λ denotes the orthogonal projection onto the eigenspace Ker(λIk − FrFT
r ).

Conversely, any matrix F constructed by this process is inM(`,σ).

Fickus et al., 2011 propose an algorithm to construct a vector fr satisfying Equation
(3.166). Finally, an algorithm for the construction of a valid sequence of eigensteps
Λout ∈ GT(k,d)(σ, `) was proposed in (Fickus et al., 2013). This yields the following
constructive result.

Theorem 3.11 (Theorem 4.1, Fickus et al., 2013). Every matrix F ∈ M(σ, `) can be
constructed as follows:

• Set ∀i ∈ [k], λ̃d,i = σ2
i ,

• For r ∈ {d− 1, . . . , 1}, construct {λ̃r,:} as follows. For each i ∈ {k, . . . , 1}, pick

λ̃r−1,i ∈ [Bi,r(`, σ), Ai,r(`, σ)],

where

Ai,r(`, σ) = max

{
λ̃r+1,i+1,

k

∑
t=i

λ̃r+1,t −
k

∑
t=i+1

λ̃r,t − `r+1

}

Bi,r(`, σ) = min

{
λ̃r+1,i, min

z=1,...,i

{
r

∑
t=z

`t −
i

∑
t=z+1

λ̃r+1,t −
k

∑
t=i+1

λ̃r,t

}}
.

(3.167)

Furthermore, any sequence constructed by this algorithm is a valid sequence of inner eigensteps.

Based on these results we propose an algorithm for the generation of orthogonal
random matrices with a given profile of leverage scores.

3.d.4 Our algorithm

We consider a randomization of the algorithm given in Theorem 3.11. First, we generate
a random sequence of valid inner eigensteps Λin using Algorithm 3.D6. Then we
proceed to the reconstruction a frame that admits Λin as a sequence of eigensteps using
the Algorithm proposed in (Fickus et al., 2011).

Note that Equations (3.165) and (3.166) admit several solutions. For example, for
r ∈ [d], and if fr+1 satisfies (3.166), − fr+1 satisfies this equation too. Fickus et al., 2011

actually prove that the set of solutions of these equations is invariant under a specific
action of the orthogonal group O(ρ(r, k)) where ρ(r, k) ∈ N nontrivially depends
on the eigensteps. In the reconstruction step of our algorithm, we apply a random
orthogonal matrix sampled from the Haar measure on O(d) to the vector f1 and, then,
for every r ∈ [2 : d], we apply an independent random orthogonal matrix Ω to a vector
fr+1, that satisfies (3.166), so that Ω fr+1 still satisfies (3.166).

Figure 3.D4 displays a few samples from our algorithm, which display diversity
and no apparent structure, as required for a generator of toy datasets. The question of
fully characterizing the distribution of the output of our algorithm is an open question.
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RandomEigensteps

(
`, σ)

1 Λout ←− O ∈ Rk×d

2 ∀i ∈ [k], λ̃d,i ←− σi

3 for r ∈ {d− 1, . . . , 1}
4 for i ∈ {k, . . . , 1}
5 Pick λ̃r−1,i ∼ U ([Bi,r(`, σ), Ai,r(`, σ)])

return Λout

Figure 3.D6 – The pseudocode of the generator of random valid eigensteps taking as input
(`, σ).



4
K E R N E L Q UA D R AT U R E U S I N G D P P S

Numerical integration is at the heart of many tasks in applied mathematics, and statis-
tics, like Bayesian inference (Robert and Casella, 2004) or option pricing (Glasserman,
2013). Indeed, all these tasks involve, at some level, the evaluation of an integral∫

X
f (x)dω(x). (4.1)

Integrals that can be written in closed form are the exception; in general the value
of (4.1) is only known through approximations. The problem of approximating an
integral find its roots in an older problem: the evaluation of the perimeter or the
area of a domain bounded by curves. For example, the problem of squaring a circle
occupied minds for centuries. By approximating the volume of a cylindrical granary
by a rectangular one, a first estimation of π ≈ 256/81 ≈ 3.1605 was already known
by Egyptians as it can be witnessed by the Rhind papyrus (Robins and Shute, 1987).
Archimedes achieved a better approximation of the value of π by computing the
perimeter of the regular 96-gons and obtained (Heath, 2003)

3 +
10
71

< π < 3 +
1
7

.

These geometric techniques were further developed after the invention of calculus.
For instance, Newton considered the approximation of the integral of a function f on
some interval [a, b] using some evaluations of f (x1), . . . , f (xN) of f∫ b

a
f (t)dt ≈ ∑

n∈[N]

wn f (xn). (4.2)

In modern words, his approach goes as follows: evaluate f on equally distanced nodes
x1, . . . , xN and consider the interpolating polynomial pN−1

pN−1(t) = ∑
n∈[N]

f (xn)`n,x(t) ∈ RN−1[t], (4.3)

where `n,x are the Lagrange polynomial 1 polynomials (Burden and Faires, 1997)

`n,x(t) =
∏

m∈[N],m 6=n
(t− xm)

∏
m∈[N],m 6=n

(xn − xm)
. (4.4)

Newton then approximates the integral of f by that of pN−1∫ b

a
f (t)dt ≈ ∑

n∈[N]

wn f (xn), (4.5)

1 At that time, Newton considered divided differences interpolation polynomial (Burden and Faires, 1997).
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where the scalars wn, also called the Cotes numbers, have the expression

∀n ∈ [N], wn =
∫ b

a
`n,x(t)dt. (4.6)

The approximation (4.5), called the Newton-Cotes formula, is an early form of a
quadrature: the nodes xn and the weights wn are independent of the function f . In
the case of the Newton-Cotes formula, the explicit values of the weights, for small
values of N, were found by Cotes. This formula coincides with some already known
quadratures such as Trapezoid rule (N = 2), Simpson’s 1/3 rule (N = 3), Simpson’s
3/8 rule (N = 4)... Of course, the use of equidistant nodes is arbitrary, and other
configurations can be used in the interpolation step (4.3). This observation gave birth
to the Gaussian quadrature and the field of numerical integration using the zeros of
orthogonal polynomials. As we shall see, these techniques are not amenable to be
generalized to high-dimensional domains.

Monte Carlo methods offer another approach to numerical integration. This class of
methods, introduced by Metropolis and Ulam, 1949, relies on randomized averaging.
Given a sequence of random variables x1, . . . , xN generated from a density g, it comes

E
1
N ∑

n∈[N]

f (xn) =
∫
X

f (x)g(x)dω(x), (4.7)

and by the Strong Law of Large Numbers, ∑n∈[N] f (xn)/N converges almost surely to∫
X f (x)g(x)dω(x). Moreover, if

∫
X f (x)2dω(x) < +∞, the variance of ∑n∈[N] f (xn)/N

scales asO(1/N), and the estimator satisfies a central limit theorem (Robert and Casella,
2004). Remarkably, this rate of convergence does not depend on the dimension of X (if
X is a d-dimensional manifold). This property gives an advantage, provided that we
know how to sample from the density g, of Monte Carlo methods over deterministic
quadrature rules, that scales poorly for high dimension integration problems.

It would be fair to claim that deterministic quadratures are very efficient for smooth
low dimensional functions, while this smoothness does not improve the Monte Carlo
rate. This observation have fueled a multitude of investigations with a common purpose:
improving upon the Monte Carlo rate for smooth functions on high dimensional
integration problems. Many approaches were proposed in this rich line of research:
Quasi-Monte Carlo methods (Dick and Pillichshammer, 2010), kernel quadrature
methods (Hickernell, 1998) (Smola et al., 2007) (Chen et al., 2010) (Bach, 2017) (Briol
et al., 2019) or determinantal point processes (Bardenet and Hardy, 2020).

We start with a brief review of existing numerical integration approaches in Sec-
tion 4.1, with an emphasis on the connections between these methods and existing
quadratures using DPPs as illustrated in Figure 4.1. In particular, a special attention
will be given to kernel quadrature methods that will be reviewed in Section 4.2.

The contribution of this chapter is the introduction and the theoretical analysis
of a new class of quadratures: optimal kernel quadrature based on projection DPPs
nodes. The main theoretical results are given in Section 4.3. Section 4.4 is devoted for
numerical simulations. The proofs of the theoretical results are detailed in Section 4.6.

The material of this chapter is based on the following article

• A. Belhadji, R. Bardenet, and P. Chainais (2019a). “Kernel quadrature with DPPs”.
In: Advances in Neural Information Processing Systems 32, pp. 12907–12917.
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Figure 4.1 – The connections between the different fields of numerical integration with DPPs.
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4.1 related work

The purpose of this section is to motivate the definition and the theoretical analysis of
a class of quadratures based on projection DPPs. This class of quadratures is naturally
defined within the RKHS framework. The merit of this class of quadratures is its
universality and applicability to a variety of settings. An exhaustive review of existing
results on quadratures is outside the scope of this manuscript; nevertheless, it turns
out that many landmark quadratures are relevant to the contribution of this chapter.
Thus, it is the purpose of this section to highlight these connections.

4.1.1 Gaussian quadrature

As we have seen in the introduction, the Newton-Cotes formula is based on equi-
distanced nodes on [a, b] and it is exact for polynomials of order smaller than N − 1
when N nodes are used. Gauss (Gauss, 1815) observed that equi-distance nodes are
not optimal, in a sense that will be defined later, and shed the light on the question of
designing the quadrature nodes. This observation gave birth to Gaussian quadrature.

The construction

Gauss investigated the maximal order of exactness that could be achieved by a quadra-
ture rule based on a configuration of nodes x = {x1, . . . , xN} and the corresponding
weights w1, . . . , wN . This order is defined by

M(x) = sup
{

M ∈N; ∃w ∈ RN , ∀m ∈ [M],
∫ b

a
tmdt = ∑

n∈[N]

wnxm
n

}
. (4.8)

He proved that for any positive integer N there exists a unique configuration xG,
also called the Gauss nodes, of cardinality N such that M(xG) = 2N − 1. He also
proved that 2N− 1 is the maximal order that could be achieved by any configuration of
cardinality N. His proof (Gauss, 1815) is based on arguments from continued fractions
theory (Khinchin, 1997). Later, Jacobi, 1826 showed, using an alternative proof based
on simple manipulations on polynomials, that M(x) = 2N − 1 if and only if for every
polynomial p of order smaller or equal to N − 1

∫ b

a
p(t)πx(t)dt = 0, (4.9)

where πx is the polynomial

πx(t) = ∏
n∈[N]

(t− xn). (4.10)

In other words, the Gauss nodes are the roots of a polynomial of degree N that satisfy
the condition (4.9) for every polynomial of degree less than N − 1: the polynomial πx

is nothing else but the scaled Legendre polynomial of degree N. This characterization
(4.9) of the Gauss nodes highlighted the importance of the orthogonality between
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polynomials with respect to dt and motivated the extension of Gaussian quadrature to
weighted measures, that is approximating

∫ b

a
f (t)dω(t) ≈ ∑

n∈[N]

wn f (xn). (4.11)

In particular, Christoffel, 1877 generalized the Gauss-Jacobi construction to measures
dω(t) = w(t)dt for arbitrary weight functions ω and his approach is generalizable to
even a broader class of measures (Szegő, 1939). Typically, dω is assumed to have finite
moments of all orders, so that the orthonormal polynomials with respect to dω are well
defined by

∀m ∈N, degPm = m, (4.12)

∀m, m′ ∈N,
∫ b

a
Pm(t)Pm′(t)dω(t) = δm,m′ . (4.13)

Again, the roots x1, . . . , xN of PN achieve the maximal order 2N− 1 and the correspond-
ing weights, called the Christoffel numbers, satisfy the identity (Shohat, 1929) (see also
Theorem 3.4.2 in (Szegő, 1939)):

wn =
1

N−1
∑

m=0
Pm(xn)2

. (4.14)

Observe that in (4.14), every wn depends only on the corresponding node xn.
In practice, the evaluation of the nodes and weights of Gaussian quadrature for

a given measure dω relies on the three-term recurrence coefficients associated to the
polynomials Pm

∀m ∈N, tPm(t) =
√

bm+1Pm+1(t) + amPm(t) +
√

bmPm−1(t), (4.15)

tP0(t) = a0P1(t) +
√

b0P0(t). (4.16)

Indeed, let JN the tridiagonal matrix of order N defined by

JN =


a1

√
b1 0

√
b1

. . . . . .

. . . . . .
√

bN−1

0
√

bN−1 aN

 . (4.17)

The roots of the PN are the eigenvalues of the tridiagonal matrix JN , and for every
eigenvalue x the corresponding eigenvector is the vector

(
P0(x), . . . , PN−1(x)

)ᵀ; see
Theorem 2.13 in (Golub and Meurant, 2009). In other words, the spectral decomposition
of the Jacobi matrix gives the nodes and the weights of the Gaussian quadrature.
The matrix JN is known explicitly for many classic orthogonal polynomials such as
Chebyshev, Legendre, Hermite... Building up this matrices amount to the calculation of
the moments of the measure dω which is a non trivial task for a general measure dω.
We refer to (Golub and Meurant, 2009) for more details on the algorithmic construction
of Gaussian quadrature.



100 kernel quadrature using dpps

4 2 0 2 4
x

0.00

0.05

0.10

0.15

0.20 f5
hn

4 2 0 2 4
x

0.00

0.05

0.10

0.15

0.20 f10
hn

Figure 4.2 – The histogram of the eigenvalues of J̃N based on 50000 realizations compared to the
first intensity function fN of the projection DPP and the eigenvalues of JN , with N ∈ {5, 10}.

DPPs as probabilistic relaxations of Gaussian quadrature

We illustrate the construction of Gaussian quadrature based on the spectral decomposi-
tion of JN in the special case of the Gaussian measure on the real line. The aim of this
illustration is to highlight a connection between Gaussian quadrature and DPPs.

Now, let dω(t) = w(t)dt be the Gaussian measure on R with

w(t) =
1√
2π

e−t2/2. (4.18)

It is well known, that the corresponding orthonormal polynomials are proportional to
the probabilist Hermite polynomials, and the corresponding Jacobi matrix writes

JN =


0
√

1 0
√

1
. . . . . .
. . . . . .

√
N − 1

0
√

N − 1 0

 . (4.19)

Now consider the following random matrix

J̃N =


N (0, 1) χ1 0

χ1
. . . . . .
. . . . . . χ(N−1)

0 χ(N−1) N (0, 1)

 , (4.20)

where N (0, 1) is a random variable that follows the standard normal distribution,
and χn is a random variable that follows the chi distribution with n degrees of freedom.
Observe that

E J̃N = JN . (4.21)

The eigenvalues x1, . . . , xN of J̃N , seen as a vector of Rd, have the following density
with respect to the Lebesgue measure of Rd (Dumitriu and Edelman, 2005)

f (x1, . . . , xN) ∝
N

∏
n=1

e−x2
n/2 ∏

1≤n<n′≤N
|xn − xn′ |2. (4.22)
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In other words, the eigenvalues of J̃N form a DPP of marginal kernel

κ(x, y) =
N−1

∑
n=0

Pn(x)Pn(y), (4.23)

and the dω as a reference measure, where the Pn are the normalized probabilist Hermite
polynomials 2.

Figure 4.2 shows the histogram of the eigenvalues of the matrix J̃N with N ∈ {5, 10}
calculated over 50000 realizations of J̃N compared to the first intensity function of the
projection DPP defined by the kernel κ and the reference measure dω. We observe
that the histogram matches the first intensity function that have local maxima around
the eigenvalues h1, . . . , hN of the matrix JN (the red dots), that are the roots of PN . In
other words, in this case, the projection DPP can be seen as a probabilistic relaxation of
Gaussian quadrature.

This case is far from being anecdotal. Indeed, this probabilistic relaxation is possible
for Gaussian quadrature of other measures (Dumitriu and Edelman, 2002) (Killip and
Nenciu, 2004), and the resulting point process coincides with a projection DPP; see
(Gautier et al., 2020) for details on this topic.

The convergence rates

In general, the integrand f is not a polynomial of low degree so that the quadrature is
not exact. One would expect to give a control of the remainder

Rx,w[ f ] =
∫ b

a
f (t)dt− ∑

n∈[N]

wn f (xn), (4.24)

if the function f is well approximated by low degree polynomials. This is the case of
analytic functions for which |Rx,w| = O(αN) for some α ∈]0, 1[. For functions of limited
degree of smoothness, Taylor series with integral remainder can be used to give an
upper bound on the integration error |Rx,w| that scales as O(N−s) for some s > 1 that
depends on the smoothness of the function f . See Chapter 4 of (Davis and Rabinowitz,
1984) for details on this topic.

Gaussian quadrature in high-dimensional domains

Finally, there were many attempts to extend Gaussian quadrature to high dimensional
domains using common zeros of multidimensional orthogonal polynomials; see (Xu,
1994b) for details on this topic. For example, the construction of a high dimensional
Gaussian quadrature would require to work with block Jacobi matrices instead of
tridiagonal Jacobi matrices (Xu, 1994a). However, this line of research is not developed
yet from an algorithmic point of view.

4.1.2 Quasi-Monte Carlo methods

As we have seen in Section 4.1.1, a high precision approximation of a unidimensional
integral is possible using a deterministic rule such as Gaussian quadrature provided

2 Using row and column operations on the Vandermonde determinant ∏ |xn − xn′ |2, we prove that it is
proportional to Det κ(x1, . . . , xN).
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that the integrand is a polynomial or well approximated by a polynomial. Now, for a
smooth function defined on some high-dimensional domain, one can use the tensor
product of these rules. However, for a given error, the number of required integrand
evaluations grows exponentially with the dimension d. This poor scalability of grids
with respect to the dimension d motivated the emergence of a new class of quadratures
called quasi-Monte Carlo rules: they are based on ”well-spread” low discrepancy
sequences and their weights are uniform wn = 1/N.

Uniform distribution and discrepancy functions

A Quasi-Monte Carlo rule is a quadrature based on a sequence of nodes x = {x1, . . . , xN} ⊂
X , where X = [0, 1]d that writes

1
N ∑

n∈[N]

f (xn), (4.25)

for a given function f defined X . The nodes x1, . . . , xN are assumed to be ”uniformly
distributed” in X .

We start by the definition of uniform distribution of an infinite sequence of nodes.

Definition 4.1. An infinite sequence of elements of [0, 1]d (xn)n∈N∗ is said to be uniformly
distributed modulo one on [0, 1]d, if for any subset ∏

δ∈[d]
[aδ, bδ] ⊂ [0, 1]d we have

lim
N→+∞

∣∣{x1, . . . , xN} ∩∏δ∈[d][aδ, bδ]
∣∣

N
= ∏

δ∈[d]
(bδ − aδ). (4.26)

In other words, every subset ∏δ∈[d][aδ, bδ] gets a ”fair share” of a uniformly dis-
tributed sequence. In particular, such a sequence satisfy

lim
N→+∞

1
N ∑

n∈[N]

f (xn) =
∫
[0,1]d

f (x)dx. (4.27)

for every Riemann integrable function f : X → R; see Theorem 3.3 in (Dick and
Pillichshammer, 2010). An equivalent characterization, yet more practical to use, of
uniformly distributed modulo one sequences is given by the Weyl criterion.

Theorem 4.1. A sequence (xn)n∈N∗ of elements in [0, 1]2 is uniformly distributed modulo one
if and only if

∀h ∈ Zd r {0}, lim
N →+∞

1
N

N

∑
n=1

e2πihᵀ.xn = 0. (4.28)

Now, for a finite number of nodes, one would measure how far is the sequence
from the ”uniformity” of (4.26). These measures of uniformity are called discrepancy
functions.

A discrepancy function of a finite configuration x = {x1, . . . , xN} ⊂ X quantifies
the uniformity of the nodes of x in X . It is defined with respect to a set of test sets
S . A typical choice of S is the set of the Cartesian products [0, u] = ∏δ∈[d][0, uδ] with
u = (u1, . . . , ud) ∈ X . In this case, the local discrepancy is defined for all u ∈ X by

Dx(u) =
1
N ∑

n∈[N]

1[0,u](xn)− ∏
δ∈[d]

uδ. (4.29)
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Figure 4.3 – The local discrepancy of a configuration x depends on the set [0, u].

The term 1
N ∑n∈[N] 1[0,u](xn) in (4.29) counts the fraction of the nodes xn that falls

into [0, u]; while the second term measures the volume of [0, u]: Dx measures the
difference between the relative number of points that belongs to [0, u] and its volume.
A configuration x would be ”well-spread” if the discrepancy function Dx takes small
values on X . For example, the value of the ‖.‖p norm 3 of Dx is a measure of ”well-
spreadness” of x called the Lp-discrepancy of x

∆p(x) =
( ∫

[0,1]d
|Dx(u)|p ⊗δ∈[d] duδ

)1/p

. (4.30)

In particular, the ‖.‖∞ norm of the local discrepancy (4.29) is called the star-discrepancy
and it is denoted ∆∗(x).

Figure 4.3 illustrates the concept of local discrepancy on the domain [0, 1]2: the
two rectangles R1 = [0, 1]× [0, 0.2] and R2 = [0, 0.2]× [0, 1] have the same volume, yet
the corresponding local discrepancies with respect to the design x are not equal as R2
contains more nodes than R1.

The importance of discrepancy in bounding the integration error shows up in
Koksma-Hlawka inequality.

Theorem 4.2 (The Koksma-Hlawka inequality). Consider f ∈ L2([0, 1]d). Then∣∣∣∣ ∫
[0,1]d

f (u)du− 1
N ∑

n∈[N]

f (xn)

∣∣∣∣ ≤ ∆∗(x)‖ f ‖HK, (4.31)

where ‖ f ‖HK is the variation of f in the sense of Hardy-Krause (HK).

In other words, the upper bound in Koksma-Hlawka inequality is the product of
two quantities: the star discrepancy of the configuration x, which does not depend on
f , and the HK variation of the function f , which does not depend on the configuration
x.

Koksma, 1942 proved the inequality for d = 1. In this case, the inequality holds
when f is of bounded variation in [0, 1], and the HK variation coincides with the total
variation

‖ f ‖HK =
∫
[0,1]
| f ′(x)|dx. (4.32)

3 This norm is well defined for p ∈ [1, ∞], Dx ∈ Lp(Rd) because X = [0, 1]d is a compact set of Rd
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Figure 4.4 – The local discrepancy Dx in [0, 1]2 for two designs: in the top panel, the Halton
sequence with N ∈ {9, 25, 144}; in the bottom panel, the uniform grid with N ∈ {9, 25, 144}.

The multi-dimensional version was proved by Hlawka, 1961. When d ≥ 2, the HK
variation has a more complicated expression through the Vitali variation. For the sake
of convenience, we only mention that if f has continuous mixed first partial derivatives,
the HK variation reads

‖ f ‖HK = ∑
S⊂[d],S 6=∅

∫
[0,1]|S|

∣∣∣∣∂|S| f (xS; 1S̄)

⊗s∈S∂xs

∣∣∣∣⊗s∈S dxs. (4.33)

Other variations of the Koksma-Hlawka inequality exist: the star-discrepancy is
replaced by the Lp-discrepancies, and the HK variation is replaced by other variation
functions; see for example Theorem 3.9 in (Dick and Pillichshammer, 2014). In particular,
the L2-discrepancy has a tractable formula (Warnock, 1972). This is to be compared
to the star discrepancy for witch no tractable formula is known: the computation of
the star discrepancy is an NP-hard problem (Gnewuch et al., 2009). We shall give, in
Section 4.2, an interpretation of the L2-discrepancy in the context of kernel quadrature.

The decoupling of the upper bound in the Koksma-Hlawka inequality, and its
variants, allows to focus only on the discrepancy of the design when the function f is
sufficiently regular.

Low discrepancy sequences

From a distance, a uniform grid looks ”uniform” in the hypercube [0, 1]d. Yet, by
considering the star-discrepancy of uniform grids, we reach the counter-intuitive
conclusion that the uniform grids are not convenient for numerical integration. Indeed,
consider the grid xN ⊂ R, where N = nd for some n ∈N∗, defined by

xN =

{(
n1

n
, . . . ,

nd

n

)
, 0 ≤ nδ < n, ∀δ ∈ [d]

}
. (4.34)

Then by Proposition 3.32 in (Dick and Pillichshammer, 2010)

∆∗(xN) = 1− (1− 1/n)d ≥ 1
N1/d . (4.35)
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In other words, in order to get a star-discrepancy lower than some level ε ∈ [0, 1[,
n = Ω(ε1/d) nodes are needed: the star discrepancy of the uniform grid scales poorly
with the dimension. Looking for designs having better scaling, of discrepancy, in high
dimension is a topic of intense research. A very brief review of this line of research is
provided in the following.

Van der Corput sequences are the simplest examples of low discrepancy sequences.
They are defined on [0, 1] and allow the construction of low-discrepancy sequences in
[0, 1]d. The construction of these sequences goes as follow: consider b ≥ 2 an integer,
and take for every n ∈N∗ the b-adic expansion

n = ∑
i∈N

nibi. (4.36)

The b-adic Van der Corput sequence is the sequence (vb,n)n∈N, where for every n ∈N,

vb,n = ∑
i∈N

nib−i. (4.37)

For instance, for b = 2, the first elements of the sequence are 0,
1
2

,
3
4

,
1
8

,
5
8

,
3
8

, . . . .
While, for b = 10, the elements of the sequence goes as follows

1
10

,
2
10

, . . . ,
9
10

,
1

100
,

11
100

, . . . ,
91

100
, . . .

.
Given d Van der Corput sequences associated to integers b1, . . . , bd, one can construct

a sequence defined on [0, 1]d by concatenation:

xn = (vb1,n, . . . , vbd,n), n ∈N∗. (4.38)

These are the Halton sequences (Halton, 1964). Another possible construction is the
Hammersley configuration defined for a fixed value of N:

xn = ((n− 1)/N, vb1,n, . . . , vbd−1,n), n ∈N∗. (4.39)

These cryptic configurations have an interesting property: they are low discrepancy
sequences on [0, 1]d. Indeed, under the assumption that the b1, . . . , bd are pairwise
relatively prime, the star discrepancy of the Halton sequence is O

(
(log N)d/N

)
; while

the star discrepancy of the Hammersley sequence is O
(
(log N)d−1/N

)
: for a sufficiently

regular function, and for a sufficiently large number of nodes (N = Ω(ed)), the rate
of convergence of the Quasi-Monte Carlo quadrature based on these sequences would
be faster compared to the Monte Carlo rate O(N−1/2). Figure 4.4 compares the local
discrepancy of the Halton sequence and the uniform grid for N ∈ {9, 25, 144}: the
Halton sequence have always the smallest star-discrepancy that decreases faster as a
function of N.

Now, if the function f have a higher degree of smoothness s ∈ N∗, i.e. f have
square-integrable partial derivatives ∂u1+···+ud f

∂xu1
1 ...∂x

ud
d

for every (u1, . . . , ud) ∈ {0, . . . , s}d, then

the QMC rule based on Higher-order digital nets converge faster as O(log(N)2sdN−2s)

(Dick and Pillichshammer, 2014)[Theorem 5]. However, the algorithmic construction of
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these sequences is very technical and we refer to (Dick and Pillichshammer, 2010) for
details on these constructions.

As it was mentioned in the introduction of this section, this review is limited to the
fundamental aspects of Quasi-Monte Carlo methods relevant for later discussions, and
many topics have been left out. We refer to (Dick and Pillichshammer, 2014) for more
details on the topic.

4.1.3 DPPs for numerical integration

Several quadratures are based on nodes that follow the distribution of a Determinantal
Point Process. The motivation behind this choice is the strong statistical properties of
these quadratures. We review in this section the results and the techniques used in this
line of research.

The quadrature based on the Circular Unitary Ensemble

We start by the case of the Circular Unitary Ensemble (CUE) presented in Section 2.2.4.
Remember that it corresponds to the set of the eigenvalues of a random matrix chosen
from Haar measure on the unitary group UN . This DPP is defined on the unit complex
circle U = {u ∈ C, |u| = 1} equipped with Lebesgue measure, and the corresponding
kernel

K(x, y) = ∑
n∈[N]

e2πni(x−y). (4.40)

The first theoretical analysis of a quadrature based on the CUE can be tracked
to the work of Diaconis and Shahshahani (Diaconis and Shahshahani, 1994). Indeed,
the following identity satisfied by any unitary matrix M ∈ UN with eigenvalues
eiθ1 , . . . , eiθN ,

∀` ∈N∗,
1
N ∑

n∈[N]

(eiθn)` =
1
N

Tr M`, (4.41)

can be seen as a quadrature formula applied to the functions z 7→ z`: the nodes are
the eiθ1 , . . . , eiθN and the weights are uniform. The authors proved that when M is
chosen from Haar measure on the unitary group UN , Tr M` converges in distribution to√
`/2(X + iY), where X and Y are two independent standard normal random variables.

This convergence is reminiscent of Weyl criterion (4.28) of uniformly distributed modulo
one. In particular, we conclude that the elements of the CUE are very regularly spread
out on the unit disc as N goes to infinity; see Figure 2.2 for an illustration. This line of
work was pursued by Johansson who extended the analysis to trigonometric series.

Theorem 4.3 (Johansson, 1997). Let (eiθn)n∈[N] be the CUE and let g be a real-valued function
on U with

g(eiθ) =
+∞

∑
m=−∞

ĝmeimθ , (4.42)

such that ĝ0 = 0 and ∑m∈N∗ m|ĝm|2 < +∞. Then

1
N ∑

n∈[N]

g(eiθn)
law−−−−→

N→+∞
N (0,

2
N ∑

m∈N∗
m|ĝm|2). (4.43)
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In other words, the quadrature based on CUE nodes converges at the asymptotic
rate O(1/N2) compared to the rate O(1/N) of vanilla Monte Carlo, for every function
g satisfying the condition ∑m∈N∗ m|ĝm|2 < +∞.

Quadratures based on Orthogonal Polynomial Ensembles

Bardenet and Hardy, 2020 proved the first CLT for a DPP based quadrature defined on a
domain of arbitrary dimension. This time, the nodes follow an Orthogonal Polynomial
Ensemble (OPE): the marginal kernel is defined through orthogonal polynomials with
respect to some measure dω that factorizes as

dω(x) = ∏
δ∈[d]

dωδ(xδ), (4.44)

where the measures dωδ, defined on [−1, 1], belong to what is called the Nevai class.

Definition 4.2. Let dω̃ a measure supported on [−1, 1]. dω̃ is said to be of Nevai class if the
recurrence coefficients, defined in (4.15) and (4.16), for the associated orthonormal polynomials
satisfy

lim
m→+∞

am = 1/2, lim
m→+∞

bm = 0. (4.45)

The simplest example of a Nevai class measure is the measure dω̃∗(x) = w̃∗(x)dx
with

w̃∗(x) =
1

π
√

1− x2
. (4.46)

It corresponds to the particular case when am = a∗m = 1
2 and bm = b∗m = 0 for m ∈N∗:

the corresponding orthonormal polynomials are the Chebyshev polynomials of the first
kind, that we denote (Tm)m∈N. In a nutshell, the Nevai class contains measures that
have three-term recurrence coefficients converging to the corresponding coefficients
of dω̃∗. This class contains, at least, all measures that are absolutely continuous with
respect to the Lebesgue measure with strictly positive densities; see Section 1.4 of
(Simon, 2010) for details.

Now, the marginal kernel of an OPE is constructed as follows: for δ ∈ [d], denote
by (Pδ

m)m∈N the orthonormal polynomials with respect to dωδ, and let

KN(x, y) = ∑
n∈[N]

Pu(n)(x)Pu(n)(y), (4.47)

where the un ∈Nd are multi-indices ordered with respect to the graded lexicographic
order, and Pu(n) are multidimensional orthogonal polynomials

Pu(n)(x) = ∏
δ∈[d]

Pδ
u(n)δ

(xδ). (4.48)

The authors studied the quadrature based on OPE, and for every node xn the
corresponding weight wn = 1/KN(xn, xn). Among settings considered in the article,
we recall the following theorem.
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Theorem 4.4 (Theorem 3 in (Bardenet and Hardy, 2020)). Let x be an OPE with respect to
the measure

dω(x) = w(x) ∏
δ∈[d]

dxδ := ∏
δ∈[d]

(1− xδ)
αδ(1 + xδ)

βδ 1[−1,1](xδ)dxδ, (4.49)

where α1, β1, . . . , αd, βd > −1; and denote w∗(x) = ∏δ∈[d] w̃∗(xδ), where w̃∗ is defined in
(4.46). Let f be a real valued function defined on [−1, 1]d that vanishes at the boundary of
[−1, 1]d and it is of class C1 in ]− 1, 1[d. Then

lim
N→+∞

N1+1/d E

(
∑

n∈[N]

f (xn)

KN(xn, xn)
−

∫
[−1,1]d

f (x)dω(x)
)2

= σ2( f ), (4.50)

and √
N1+1/d

(
∑

n∈[N]

f (xn)

KN(xn, xn)
−

∫
[−1,1]d

f (x)dω(x)
)
→ N (0, σ2( f )), (4.51)

where

σ2( f ) =
1
2

+∞

∑
m1,...,md=0

(m1 + · · ·+ md)
f̂ w
w∗

(m1, . . . , md)
2, (4.52)

and
ϕ̂(m1, . . . , md) =

∫
[−1,1]d

ϕ(u1, . . . , ud) ∏
δ∈[d]

Tmδ
(uδ)

1

π
√

1− u2
δ

duδ. (4.53)

In other words, the quadrature based on the OPE with the reference measure dω

converges with an asymptotic rate O(N−1− 1
d ) for functions of class C1. As we can see,

this rate is better than the Monte Carlo rate O(N−1) but the improvement ”shrinks”
as the dimension increases, because of the term 1/d. This rate is also valid for tensor
products of Nevai measures under some technical conditions as it was proved by
the authors. In practice, as we have seen in Section 2.2.5, the numerical sampling of
a general OPE requires the computation of the orthonormal polynomials Pu(n) with
respect to the measure dω; which is possible for the measures (4.49), also called Jacobi
measures.

Moreover, the quadrature, after scaling by the factor
√

N1+1/d, satisfies a CLT with
an asymptotic variance σ2( f ) that depends on the coefficients of the function f w/w∗

on the orthonormal basis defined by Tu(n) = ∏
δ∈[d]

Tu(n)δ
. In particular, when w = w∗,

the asymptotic variance writes

σ2( f ) =
1
2

+∞

∑
m1,...,md=0

(m1 + · · ·+ md) f̂ (m1, . . . , md)
2, (4.54)

can be interpreted as a semi-norm in a Hilbert space that reflects the regularity of the
integrand f . Indeed, the authors proved the inequality [Proposition 1 in (Bardenet and
Hardy, 2020)]

σ2( f ) ≤ 1
2 ∑

δ∈[d]

∫
[−1,1]d

(√
1− x2

δ∂δ f (x1, . . . , xd)

)2

∏
δ∈[d]

dxδ

π
√

1− x2
δ

, (4.55)
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the r.h.s of (4.55) depends on the fluctuations of the function f : σ2( f ) is a measure
of the smoothness of the function f . This connection between the smoothness of the
function f and the statistical properties of a quadrature based on DPP nodes was
confirmed in another setting.

Another CLT using the Dirichlet kernel

In (Coeurjolly, Mazoyer, and Amblard, 2020), the authors proposed to study a quadra-
ture based on a different projection DPP and using uniform weights. The integrand f
was assumed to be square integrable and periodic on the hypercube [0, 1]d. The
repulsion kernel K is constructed as follows. Let N = ∏

δ∈[d]
Nδ ∈ N∗ for some

N1, . . . , Nd ∈N∗, and the projection DPP be defined by

K(x, y) = ∑
m∈MN

e2iπmᵀ(x−y), (4.56)

where
MN = ∏

δ∈[d]
{0, . . . , Nδ − 1}. (4.57)

It can be shown that this is equivalent to define K to be the tensor product of Dirichlet
kernels; and K is called (N, d)-Dirichlet DPP by simplification. The proposed quadra-
ture defines an unbiased estimator of the integral

∫
[0,1]d f (u1, . . . , ud)⊗δ∈[d] duδ with a

variance that depends on the Fourier coefficients of f .

Proposition 4.1. [Proposition 3.1, (Coeurjolly et al., 2020) ] Let x be a random set of [0, 1]d

that follows an (N, d)-Dirichlet DPP, and f ∈ L2([0, 1]d) and periodic. Define

ÎN( f ) =
1
N ∑

n∈[N]

f (xn). (4.58)

Then, ÎN( f ) is an unbiased estimator of
∫
[0,1]d

f (u1, . . . , ud)⊗δ∈[d] duδ, and

V( ÎN( f )) =
1
N ∑

m∈Zd

| f̂m|2 −
1

N2 ∑
m1,m2∈MN

| f̂m1−m2 |2, (4.59)

where
f̂m =

∫
[0,1]d

f (u1, . . . , ud)e−2πimᵀu ⊗δ∈[d] duδ. (4.60)

This result was the first step for the asymptotic analysis of the variance of ÎN( f )
under the assumption that Nδ = Nδ(N), and there exists constants α1, . . . , αd such that

∀δ ∈ [d], lim
N→+∞

Nδ(N)N−1/d = αδ. (4.61)

Define Fs([0, 1]d) to be the subspace of periodic elements of L2([0, 1]d) that satisfy
the condition

∑
m∈Zd

(1 + ‖m‖∞)
2s| f̂m|2 < +∞. (4.62)

Theorem 4.5. Let x and f as in Proposition 4.1. Assume that f ∈ Fs([0, 1]d), then
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• if s ∈ [0, 1/2], then

V( ÎN( f )) = O(N−1− 2s
d ), (4.63)

• If s > 1/2, then

lim
N→+∞

N1+1/d V( ÎN( f )) = σ2( f ) := ∑
m∈Zd

(
d

∑
δ=1

|mδ|
αδ

)| f̂m|2. (4.64)

• Moreover, if s > 1/2 and ‖ f ‖∞ < +∞, then

√
N1+1/d

(
ÎN( f )−

∫
[0,1]d

f (u1, . . . , ud)⊗δ∈[d] duδ

)
→ N (0, σ2( f )). (4.65)

In other words, under the assumption that the integrand f belongs to the functional
subspace Fs([0, 1]d), that can be seen as a Sobolev space, the variance of the estimator

V( ÎN( f )) converges at the rate O(N−1−min(2s,1)
d ); and a CLT holds when s > 1/2 and

the function is essentially bounded. Again, the improvement upon the Monte Carlo
rate worsens with the dimension, and the asymptotic variance involves the constant

σ2( f ) = ∑
m∈Zd

( d

∑
δ=1

|mδ|
αδ

)
| f̂m|2, (4.66)

that is reminiscent of a Sobolev norm.
To sum up, we reviewed three settings where a DPP-based quadrature leads to a

fast asymptotic rate of convergence compared to Monte Carlo. These fast rates are
achieved when the integrand belongs to some functional subspace, a Sobolev space,
and the asymptotic variance involves a constant that can be interpreted as a norm on
the functional subspace.

These observations suggest the possibility to define DPP-based quadratures on
other functional spaces. Indeed, we introduce a class of DPP-based quadratures in
Section 4.3 for functions living in a generic reproducing kernel Hilbert space, that can
be seen as generalizing Sobolev spaces. This new class of quadratures fit within the
kernel framework for quadratures that we recall in the following section.

4.2 the kernel quadrature framework

The analysis of quadrature using kernel methods is convenient and elegant and it is
expressed using functional analysis tools, similarly to DPPs. Added to that, many
results in quasi-Monte Carlo theory have an interpretation within this framework.

The strength of this framework is its flexibility: the integration domain X is assumed
to be a metric space endowed with a Borel measure ω, and we consider approximating
an integral

∫
X f (x)g(x)dω(x), where f , g ∈ L2(dω) and f is continuous, using a

quadrature rule (x, w) ∈ X N ×RN :∫
X

f (x)g(x)dω(x) ≈ ∑
n∈[N]

wn f (xn). (4.67)
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Here L2(dω) is the Hilbert space of square integrable, real-valued functions defined
on X , with the usual inner product denoted by 〈·, ·〉dω, and the associated norm by
‖.‖dω.

We recall in the following some classic results on kernel quadrature. In particular,
in Section 4.2.1, the definition of an RKHS is recalled along with our assumptions;
in Section 4.2.2, Mercer’s theorem and its various extensions; in Section 4.2.3, we
give some examples of kernels widely used in the literature on kernel quadrature; in
Section 4.2.4, the definition of the worst case integration error on an RKHS is recalled;
in Section 4.2.5 we recall the definition of optimal kernel quadrature along with some
of its properties; and in Section 4.2.6 we review the existing methods of node design
for optimal kernel quadrature.

4.2.1 Reproducing Kernel Hilbert Spaces

Let X be a metric space. A function k : X × X → R+ is said to be a kernel over X
if k is symmetric and for any finite set of points in X , the matrix of pairwise kernel
evaluations is positive semi-definite. A reproducing kernel Hilbert space (RKHS)
over X is a Hilbert space F endowed with a kernel k that satisfies the following two
properties Berlinet and Thomas-Agnan, 2011

• the continuity property: for every x ∈ X , the evaluation function f 7→ f (x) is
continuous with respect to the norm of F , that is

∀x ∈ X , ∃Mx > 0, ∀ f ∈ F , | f (x)| ≤ Mx‖ f ‖F ,

• the reproducibility property

∀(x, f ) ∈ X ×F , f (x) = 〈 f , k(x, .)〉F .

We suppose the following assumptions on the measure dω and the kernel k. We make
the following assumption on dω.

Assumption 4.1. ω is a non-degenerate measure, i.e. the support of ω is equal to X .

Assumption 4.2. k is continuous with respect to the product topology of X ×X .

Assumption 4.3. x 7→ k(x, x) is integrable with respect to dω so that F ⊂ L2(dω).

An example: the periodic Sobolev spaces

Let X = [0, 1] equipped with the uniform measure ω, and define for s ∈N∗ the kernel

ks(x, y) = 1 + 2 ∑
m∈N∗

1
m2s cos(2πm(x− y)). (4.68)

The kernel ks can be expressed in closed form using Bernoulli polynomials (Wahba,
1990)

ks(x, y) = 1 +
(−1)s−1(2π)2s

(2s)!
B2s({x− y}). (4.69)
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Figure 4.5 – The evaluation of the kernel translate x 7→ ks(0.3, x) for s ∈ {1, 2, 3}.

The corresponding RKHS F = Ss is the periodic Sobolev space of order s: an element
of Ss is a function f defined on [0, 1], that have the derivative of order s defined in the
sense of distributions such that f (s) ∈ L2(dω), and

∀i ∈ {0, . . . , s− 1}, f (i)(0) = f (i)(1). (4.70)

Figure 4.5 illustrates the graphs of the kernel translates x 7→ ks(0.3, x) for s ∈ {1, 2, 3}.
The elements of Ss are characterized by their Fourier series coefficients (see Example
19, Chapter 7 in (Berlinet and Thomas-Agnan, 2011))

f ∈ Ss ⇐⇒ ∑
m∈N∗

m2s
[( ∫ 2π

0
f (x) cos(2πmx)dx

)2
+
( ∫ 2π

0
f (x) sin(2πmx)dx

)2
]
< +∞.

(4.71)

4.2.2 The Mercer decomposition

As we have seen in the example given in the previous section, periodic Sobolev spaces
are characterized by the Fourier coefficients of their elements. This property is not
specific to periodic Sobolev spaces and it is satisfied by other RKHSs. Indeed, recall
that under the Assumption 4.3, the RKHS F is a subspace of L2(dω), and the Mercer’s
theorem gives a finer description of F as a subspace of L2(dω).

The Mercer’s theorem was first proven when X = [0, 1] and ω is the Lebesgue
measure in (Mercer, 1909). A modern proof of this classic result can be found in (Lax,
2002). An extension to a general compact space X can be found in (Cucker and Zhou,
2007).

Theorem 4.6. Assume that X is a compact space and ω is a finite Borel measure on X with
full support (non-degenerate measure), and define the integration operator

Σ f (x) =
∫
X

k(x, y) f (y)dω(y). (4.72)
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Then, there exists an orthonormal basis (en)n∈N∗ of L2(dω) consisting of eigenfunctions of
Σ, and the corresponding eigenvalues are non-negative. The eigenfunctions corresponding to
non-vanishing eigenvalues can be taken to be continuous, and the kernel k writes

k(x, y) = ∑
n∈N∗

σnen(x)en(y), (4.73)

where the convergence is absolute and uniform.

The existence of the orthonormal basis (em)m∈N∗ is a consequence of the spectral
theorem applied to the compact operator Σ. The existence of a continuous function in
the dω-class of equivalence of em when σm > 0 is a consequence of

em(.) =
1

σm

∫
X

k(., y)em(y)dω(.). (4.74)

Moreover, by (4.74) we can take em ∈ F and, as a consequence of Theorem 4.6, the
family (eFm =

√
σmem; σm > 0)m∈N∗ is an o.n.b. of F ; see Theorem 4.12 in (Cucker and

Zhou, 2007). In particular
‖eFm‖2

F = σm‖em‖2
F = 1, (4.75)

and for an element f ∈ F

f = ∑
m∈N∗

〈 f , em〉dωem = ∑
m∈N∗
σm>0

〈 f , em〉dω√
σm

eFm , (4.76)

so that for m ∈N∗ such that σm > 0

〈 f , eFm 〉F =
〈 f , em〉dω√

σm
, (4.77)

and

‖ f ‖2
F = ∑

m∈N∗
σm>0

〈 f , em〉2dω

σm
. (4.78)

In other words, the RKHS F is equal to the set 4

{
f ∈ L2(dω), ∑

m∈N∗

〈 f , em〉2dω

σm
< +∞

}
. (4.79)

Let g ∈ Span(em){m∈N∗;σm>0} ⊂ L2(dω). We have

‖g‖2
dω = ∑

m∈N∗
σm>0

〈g, em〉2dω = ∑
m∈N∗
σm>0

(
√

σm〈g, em〉dω)
2

σm
= ∑

m∈N∗
σm>0

〈 f , em〉2dω

σm
= ‖ f ‖2

F , (4.80)

where f = Σ1/2g with Σ1/2 is the operator defined by

4 If there exists m ∈N∗ such that σm = 0 and 〈 f , em〉dω 6= 0, then we write ∑
m∈N∗

〈 f , em〉2dω/σm = +∞ and

f /∈ F .
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Figure 4.6 – The RKHS F is an ellipsoid in L2(dω).

Σ1/2 : L2(dω) −→ L2(dω)

∑
m∈N∗

amem 7−→ ∑
m∈N∗

am
√

σmem.

In other words, Σ1/2 is an isomorphism of Hilbert spaces between Span(em){m∈N∗;σm>0}
and F . In particular, for every f ∈ F , there exists g ∈ L2(dω) such that

f = Σ1/2g, (4.81)

with ‖ f ‖F = ‖g‖dω. By Assumption 4.1, ω is non-degenerate, thus F is dense in
L2(dω) if and only if all the eigenvalues σm are positive. Under this condition, Σ1/2 is
an isomorphism between L2(dω) and F . Finally, note that

Σ1/2Σ1/2 = Σ. (4.82)

In other words, Σ1/2 is the positive self-adjoint square root of Σ.
The RKHS F can be seen as an ellipsoid in L2(dω) as it is illustrated in Figure 4.6:

the principal axis correspond to the directions spanned by the eigenfunctions em.
The compactness assumption in Theorem 4.6 excludes some classic RKHSs defined

on non-compact domains such as the RKHS corresponding to the Gaussian kernel on
Rd equipped with the Gaussian measure. Hence the need to an extension of this result
to non-compact spaces.

In Sun, 2005, the author extended Theorem 4.6 to X = ∪i∈NXi, with the Xis are
compacts and ω(Xi) < ∞. One can also extend Mercer’s theorem under a compact
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embedding assumption (Steinwart and Scovel, 2012): the RKHS F associated to k is said
to be compactly embedded in L2(dω) if the operator

IF : F −→ L2(dω)

f 7−→ f

is compact. This is guaranteed by Assumption 4.3 (Lemma 2.3, (Steinwart and Scovel,
2012)).

Now, under the compact embedding assumption, the pointwise convergence of the
Mercer decomposition to the kernel k is equivalent to the injectivity of the embedding
IF (Theorem 3.1, (Steinwart and Scovel, 2012)). This is guaranteed by Assumption 4.1
(Chapter 4 in (Steinwart and Christmann, 2008)).

These conditions are satisfied by a large class of kernels; particularly the Gaussian
kernel on Rd equipped with the Gaussian measure.

4.2.3 Examples

The periodic Sobolev spaces

The Mercer decomposition of ks with respect to ω is explicitly given by (4.68)

∀x, y ∈ [0, 1], ks(x, y) = 1 + ∑
m∈N∗

( 1
m2s

√
2 cos(2πmx) +

1
m2s

√
2 sin(2πmx)

)
. (4.83)

Indeed, define for n ∈N∗, define eSs
n : [0, 1]→ R by

eSs
n (x) =


1 if n = 1√

2 cos(2πn/2x) if n > 1 and n is even√
2 sin(2π(n− 1)/2x) if n > 1 and n is odd.

The family (eSs
n )n∈N∗ is an o.n.b of L2(dω), and eSs

n is an eigenfunction of the integration
operator Σ associated to the eigenvalue

σSs
n =


1 if n = 1
22s

n2s if n > 1 and n is even
22s

(n−1)2s if n > 1 and n is odd.

The Korobov spaces

For a given d ∈ N∗, let X = [0, 1]d and let ω be the uniform measure on X . The
Korobov space in dimension d of order s is the tensor product of d copies of the
periodic Sobolev space Ss

Kd,s = { f ∈ L2(dω); f = ∏
δ∈[d]

fδ, fδ ∈ Ss}, (4.84)

and the corresponding kernel kd,s writes

∀x, y ∈ [0, 1]d, kd,s(x, y) = ∏
δ∈[d]

ks(xδ, yδ). (4.85)
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An element f ∈ Kd,s have square-integrable partial derivatives

∂u1+···+ud f
∂xu1

1 . . . ∂xud
d
∈ L2(dω), (4.86)

for every (u1, . . . , ud) ∈ {0, . . . , s}d. Therefore,

∀x, y ∈ X , kd,s(x, y) = ∑
u∈(Nr{0})d

∏
δ∈[d]

σSs
uδ

eSs
uδ
(xδ)eSs

uδ
(yδ). (4.87)

We choose an order ≺Kd,s on (Nr {0})d that keeps the eigenvalues of Σ decreasing

u ≺Kd,s v ⇐⇒ ∏
δ∈[d]

σSs
uδ
≤ ∏

δ∈[d]
σSs

vδ
. (4.88)

This order can be implemented as follows. Define for n ∈N∗, let

bnc1 =

{
1 if n = 1
b(n− 1)/2c else

, (4.89)

and observe that σSs
n = bnc−2s

1 . Therefore,

u ≺Kd,s v ⇐⇒
(

∏
i∈[d]

1
1 + buic1

)2s

≤
(

∏
i∈[d]

1
1 + bvic1

)2s

(4.90)

⇐⇒ ∑
i∈[d]

log(1 + bvic1) ≤ ∑
i∈[d]

log(1 + buic1). (4.91)

Let (un)n∈N∗ be the family that contains all the elements of (N r {0})d ordered
according to ≺Kd,s . The n-th eigenpair of Σ is given by

∀x ∈ [0, 1]d, eKd,s
n (x) = ∏

δ∈[d]
eSs

un
δ
(xδ), (4.92)

and
σ
Kd,s
n = ∏

δ∈[d]
σSs

un
δ
. (4.93)

The left of Figure 4.7 illustrates the eigenvalues σN+1 ordered according to the
spectral order ≺Kd,s compared to the rate O((log N)2s(d−1)N−2s) proved in (Bach, 2017):
the eigenvalues σN+1 decreases in plateaus and the size of each plateau corresponds to
the multiplicity of the respective eigenvalues. Moreover, the rate O((log N)2s(d−1)N−2s)

matches the asymptotic behaviour of σN for N → +∞.

The Gaussian spaces

Let X = R equipped with the measure dω(x) = w(x)dx defined by

w(x) =
1√
2π

e−x2/2. (4.94)
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Figure 4.7 – (Left): comparison of σN+1 in the Korobov case according to the spectral order
and (log N)2s(d−1)N−2s for d ∈ {2, 3, 4} and s = 1, (Right): comparison of σN+1 in the Gaussian
case according to the spectral order and βde−δd!1/d N1/d

for d ∈ {2, 3, 4} and γ = 1.
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For γ > 0, consider the kernel

kγ(x, y) = e
− (x−y)2

2γ2 . (4.95)

For notational convenience, we further let

a =
1
4

, b =
1

2γ2 , c =
√

a2 + 2ab, (4.96)

and
A = a + b + c, B = b/A. (4.97)

Now, the Mercer decomposition of kγ reads Rasmussen, 2003

kγ(x, y) = ∑
m∈N∗

σ
Gγ
m eGγ

m (x)eGγ
m (y), (4.98)

where

σ
Gγ
m =

√
2a
A

Bm, eGγ
m (x) =

√ √
c

2m−1m!
e−(c−a)x2

Hm(
√

2cx), (4.99)

and Hm is the m-th physicists’ Hermite polynomial.
The corresponding RKHS is called the Gaussian space and denoted Gγ. By extension,

we define Gd,γ, the Gaussian space of dimension d and parameter γ as the tensor product
of d copies of the Gaussian space Gγ. This RKHS corresponds to the kernel

kγ,d(x, y) = e
− ‖x−y‖2

2γ2 , (4.100)

and the corresponding Mercer decomposition, with respect to the Gaussian measure
on Rd, writes

kd,γ(x, y) = ∑
u∈(Nr{0})d

∏
δ∈[d]

σ
Gγ
uδ

eGγ
uδ
(xδ)e

Gγ
uδ
(yδ). (4.101)

We choose an order ≺Gd,γ on (Nr {0})d that keeps the eigenvalues of Σ decreasing

u ≺Gd,γ v ⇐⇒ ∏
δ∈[d]

σ
Gγ
uδ
≤ ∏

δ∈[d]
σ
Gγ
vδ

. (4.102)

Remember that σ
Gγ
m =

√
2a/ABm, therefore, the order ≺Gd,γ can be implemented as

follows

u ≺Gd,γ v ⇐⇒ ∏
i∈[d]

Bui ≤ ∏
i∈[d]

Bvi ⇐⇒ ∑
i∈[d]

vi ≤ ∑
i∈[d]

ui. (4.103)

Let (un)n∈N∗ be the family that contains all the elements of (N r {0})d ordered
according to ≺Gd,γ . The n-th eigenpair of Σ is given by

eGd,γ
n (x) = ∏

δ∈[d]
eGγ

un
δ
(xδ), (4.104)

and
σ
Gd,γ
n = ∏

δ∈[d]
σ
Gγ

un
δ

. (4.105)

The right of Figure 4.7 illustrates the eigenvalues σN+1 ordered according to the
spectral order ≺Gd,γ compared to the rate O(elog Bd!1/d N1/d

) proved in (Bach, 2017).
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4.2.4 The integration error

When the integrand f belongs to F , the integration error reads (Smola et al., 2007)∣∣∣∣ ∫X f (x)g(x)dω(x)− ∑
j∈[N]

wj f (xj)

∣∣∣∣ = ∣∣∣∣〈 f , µg − ∑
j∈[N]

wjk(xj, .)〉F
∣∣∣∣

≤ ‖ f ‖F
∥∥∥µg − ∑

j∈[N]

wjk(xj, .)
∥∥∥
F

, (4.106)

where
µg =

∫
X

k(x, .)g(x)dω(x) (4.107)

is the so-called mean element (Dick and Pillichshammer, 2014; Muandet et al., 2017) of
the measure gdω or the embedding of g. (4.106) entails that the approximation error of
the embedding µg by the kernel translates ∑n∈[N] wnk(xn, .) in the RKHS norm gives an
upper bound on the integration error of the quadrature (x, w), independently of the
integrand f . It actually is the worst case integration error in the unit ball of F ,

sup
f∈F
‖ f ‖F≤1

∣∣∣∣ ∫X f (x)g(x)dω(x)− ∑
j∈[N]

wj f (xj)

∣∣∣∣ = ‖µg − ∑
n∈[N]

wnk(xn, .)‖F . (4.108)

The characterization (4.108), of the worst case integration error, motivates the use
of a kernel in the evaluation of a quadrature. This idea can be tracked to Hickernell
(Hickernell, 1996; Hickernell, 1998) who introduced reproducing kernels to the QMC
community. Indeed, Hickernell, 1996 derived a tractable formula for the worst-case
integration error of a quasi-Monte Carlo rule (X = [0, 1]d, g is the constant function
that take the value 1 and wn = 1/N)

sup
f∈F
‖ f ‖F≤1

∣∣∣∣ ∫
[0,1]d

f (x)dx− 1
N ∑

n∈[N]

f (xn)

∣∣∣∣2. (4.109)

In particular, he proved that (4.109) is equal to

∫
[0,1]d

∫
[0,1]d

k(x, y)dxdy− 2
N ∑

n∈[N]

∫
[0,1]d

k(xn, y)dy +
1

N2

N

∑
n,n′=1

k(xn, xn′). (4.110)

The generalization of (4.110) can be easily derived using properties of reproducing
kernels:

‖µg − ∑
n∈[N]

wnk(xn, .)‖2
F = ‖µg‖2

F − 2〈µg, ∑
n∈[N]

wnk(xn, .)〉F + ‖ ∑
n∈[N]

wnk(xn, .)‖2
F

(4.111)

= ‖µg‖2
F − 2 ∑

n∈[N]

wnµg(xn) +
N

∑
n,n′=1

wnk(xn, xn′)wn′ (4.112)

= ‖µg‖2
F − 2wᵀµg(x) + wᵀK(x)w, (4.113)

where K(x) = (k(xn, xn′))(n,n′)∈[N]×[N] ∈ RN×N and µg(x) = (µg(xn))n∈[N] ∈ RN .
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Figure 4.8 – µg in the periodic Sobolev space for three different g.

We can check that (4.110) is a consequence of (4.113), by taking X = [0, 1]d, wn =

1/N, g = 1 and dω is the uniform measure on X and observing that

‖µg‖2
F = 〈Σg, Σg〉F (4.114)

= 〈g, Σg〉dω (4.115)

=
∫
X

g(x)
∫
X

k(x, y)g(y)dω(y)dω(x) (4.116)

=
∫
X

∫
X

k(x, y)g(x)g(y)dω(y)dω(x), (4.117)

and that

wᵀµg(x) = ∑
n∈[N]

wnµg(xn) = ∑
n∈[N]

wn

∫
X

g(y)k(xn, y)dω(y). (4.118)

In other words, quasi-Monte Carlo rules fit within the kernel framework of quadra-
tures.

4.2.5 Optimal kernel quadrature

As we have seen in Section 4.2.4, the worst case integration error for a given quadrature
(x, w) writes: ∥∥∥∥µg − ∑

n∈[N]

wnk(xn, .)
∥∥∥∥
F

. (4.119)

Under the assumption that the configuration x ⊂ X is uni-solvent with respect to the
kernel k, i.e. the matrix K(x) = (k(xn, xn′))n,n′∈[N] is non-singular, there exists a unique
vector w ∈ RN that minimizes (4.119). Indeed, the square of (4.119) is quadratic on w
so that the optimization problem

min
w∈RN

∥∥∥∥µg − ∑
n∈[N]

wnk(xn, .)
∥∥∥∥2

F
(4.120)

have a unique solution ŵ(x) = K(x)−1µg(x). The quadrature (x, ŵ(x)) is called the
optimal kernel quadrature in x.

Now, under the assumption that K(x) is non-singular, the dimension of the subspace
T (x) = Span(k(xn, .))n∈[N] is equal to N. Define

Φ : (wj)j∈[N] 7→ ∑
j∈[N]

wjk(xj, .) (4.121)



4.2 the kernel quadrature framework 121

the reconstruction operator5. The optimal approximation of µg by an element of T (x),
with respect to the RKHS norm, is Φŵ, and the optimal approximation error writes

‖µg −Φŵ‖2
F = ‖µg −ΠT (x)µg‖2

F , (4.122)

where ΠT (x) = Φ(Φ∗Φ)−1Φ∗ is the orthogonal projection onto T (x) with Φ∗ the dual6

of Φ. Φŵ is the orthogonal projection of µg on the subspace T (x). Moreover, we can
prove easily that Φŵ interpolates µg on the nodes x1, . . . , xN :

∀n ∈ [N], Φŵ(xn) = µg(xn). (4.123)

We define the interpolation error of µg

‖µg −ΠT (x)µg‖F . (4.124)

As we have seen, under the assumption that the matrix K(x) is non-singular, the
computation of the weights of the optimal kernel quadrature is a relatively simple task.
Yet the task of designing a good configuration x is not trivial as we shall see in the next
section where we review the main results on the literature about design problems for
optimal kernel quadrature.

The Bayesian interpretation of optimal kernel quadrature

The optimal kernel quadrature (x, ŵ) has an interpretation within Bayesian Quadrature
introduced by (Larkin, 1972). This method aims to quantifies the uncertainty of
numerical integration; see (Diaconis, 1988) for a historical review of this method.

This method goes as follows. Consider a fixed set of nodes x = {x1, . . . , xN} and put
a Gaussian process prior on the integrand f with mean 0 and kernel k. The posterior
distribution over f after conditioning on ( f (x1), . . . , f (xN)) is a Gaussian process of
mean mx and kernel kx, where

mx(x) = k(x, x)ᵀK(x)−1 f (x), (4.125)

and
kx(x, x′) = k(x, x′)− k(x, x)ᵀK(x)−1k(x′, x), (4.126)

with k(x, x) = (k(x, xn))n∈[N] ∈ RN . Therefore, the random variable∫
X

f (x)g(x)dω(x), (4.127)

is Gaussian with

E f∼GP(mx,kx)

∫
X

f (x)g(x)dω = µg(x)ᵀK(x)−1 f (x) = ∑
n∈[N]

ŵn f (xn), (4.128)

and
V f∼GP(mx,kx)

∫
X

f (x)g(x)dω = ‖µg − ∑
n∈[N]

ŵnk(xn, .)‖2
F . (4.129)

In other words, the optimal kernel quadrature (x, ŵ) controls both the mean and the
variance of

∫
X f (x)g(x)dω(x). This link was leveraged in (Briol et al., 2019) to establish

rates of posterior contraction of Bayesian quadrature based on rates of convergence of
optimal kernel quadrature.

5 The reconstruction operator Φ depends on the nodes xj, although our notation doesn’t reflect it for
simplicity.

6 For µ ∈ F ,Φ∗µ = (µ(xj))j∈[N]. Φ∗Φ is an operator from RN to RN that can be identified with K(x).
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4.2.6 Designs for optimal kernel quadrature

We review in this section the literature on the design of configurations for optimal
kernel quadrature.

Deterministic configurations

Bojanov, 1981 proved that, for g = 1, the interpolation of µg using the uniform grid
over X = [0, 1] has an error in O(N−2s) if F is the periodic Sobolev space of order s,
and that any set of nodes leads to that rate at least. A similar rate was proved for g not
constant (Novak et al., 2015) even though it is only asymptotically optimal in that case.

As for QMC sequences, the rates are naturally inherited if the uniform weights, of
a QMC rule, are replaced by the respective optimal weights ŵ, as observed by Briol
et al., 2019. In particular, Briol et al., 2019 emphasize that the bound for higher-order
digital nets attains the almost optimal rate in this RKHS. However, this inheritance
argument does not explain the fast O(log(N)2sdN−2s) rates observed empirically for
optimal kernel quadrature based on Halton sequences; see (Oettershagen, 2017) and
Section 4.4.2.

Scattered data approximation (Wendland, 2004) is another field where quantitative
error bounds for optimal kernel quadrature on X ⊂ Rd are investigated; see (Schaback
and Wendland, 2006) for a modern review. In a few words, these bounds typically
depend on quantities such as the fill-in distance ϕ(x) = supy∈X mini∈[N] ‖y− xi‖2, so
that the interpolation error converges to zero as N → ∞ if ϕ(x) goes to zero. Any
node set can be considered, as long as ϕ(x) is small. Using these techniques, Briol
et al., 2019 proved optimal rates for optimal kernel quadrature in RKHS based on
multidimensional Sobolev spaces using some sequences. Note that the application of
these techniques is restricted to compact domains: the fill-in distance is infinite if X is
not compact.

Beside the hypercube, optimal kernel quadrature has been considered on the
hypersphere equipped with the uniform measure (Ehler et al., 2019), or on Rd equipped
with the Gaussian measure (Karvonen and Särkkä, 2019). In these works, the design
construction is adhoc for the space X and g is usually assumed to be constant.

Sequential algorithms

Sequential Bayesian quadrature (Huszár and Duvenaud, 2012) offers another approach
to designing a configuration of nodes x = {x1, . . . , xN} for optimal kernel quadrature:
based on a configuration xt look for x∗ ∈ X such that

‖µg −ΠT (xt∪{x∗})µg‖F = min
x∈X
‖µg −ΠT (xt∪{x})µg‖2

F , (4.130)

and put xt+1 = xt ∪ {x∗}.
Implementing this algorithm corresponds to solving sequentially the non-convex

problems (4.130), with many local minima. In practice, costly approximations must
be employed to run the algorithm (Hinrichs and Oettershagen, 2016; Oettershagen,
2017). We will discuss these implementation issues for similar sequential algorithms in
Chapter 5.
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Ridge leverage score quadrature

The regularization of the problem (4.120) offers an alternative approach for the design
of the configuration x as it was shown in (Bach, 2017). This work highlights the
fundamental role played by the spectral decomposition of the operator Σ in designing
and analyzing kernel quadrature rules. In fact, the author proposed to sample the
nodes (xj) i.i.d. from some proposal distribution q, and then take the vector of weights
w to be the vector wλ that solve the optimization problem

min
w∈RN

∥∥∥µg − ∑
j∈[N]

wj

q(xj)1/2 k(xj, .)
∥∥∥2

F
+ λN‖w‖2

2, (4.131)

for some regularization parameter λ > 0.
Within this analysis, any proposal distribution q, with q > 0, could be used to

sample N i.i.d. nodes that constitutes the design x: this follows from the following
result.

Proposition 4.2 (Proposition 1 in Bach, 2017). Let δ ∈]0, 1], and denote

dmax(q, λ) = sup
x∈X

1
q(x)
〈k(x, .), (Σ + λIL2(dω))

−1k(x, .)〉L2(dω). (4.132)

Assume that N ≥ 5dmax(q, λ) log(16dmax(q, λ)/δ), then

P

(
sup
‖g‖dω≤1

inf
‖w‖2≤ 4

N

∥∥∥µg − ∑
j∈[N]

wj

qλ(xj)1/2 k(xj, .)
∥∥∥2

F
≤ 4λ

)
≥ 1− δ. (4.133)

In other words, Proposition 4.2 gives a uniform control on the approximation error
µg by the subspace spanned by the k(xj, .) for g belonging to the unit ball of L2(dω),
where the (xj) are sampled i.i.d. from q. The required number of nodes is equal to
O(dmax(q, λ) log dmax(q, λ)) for a given approximation error λ. This bound is relevant
if an upper bound of the maximal ridge leverage score dmax(q, λ) is known. This is
possible in some cases; yet in general this quantity is hard to control. Nevertheless, the
author showed that one may use a specific choice of q, namely the ridge leverage score
distribution q∗λ defined as

q∗λ(x) ∝ 〈k(x, .), Σ−1/2(Σ + λIL2(dω))
−1Σ−1/2k(x, .)〉L2(dω) = ∑

m∈N∗

σm

σm + λ
em(x)2.

(4.134)
Indeed, for this specific choice of q

dmax(q∗λ, λ) =
∫
X
〈k(x, .), Σ−1/2(Σ + λIL2(dω))

−1Σ−1/2k(x, .)〉L2(dω)dω(x)

= ∑
m∈N∗

σm

σm + λ

= Tr Σ(Σ + λI)−1, (4.135)

and the quantity
dλ = Tr Σ(Σ + λI)−1, (4.136)

is called the effective degree of freedom. This quantity is more amenable to analysis as it
depends only on λ and on the eigenvalues of Σ. An instantiation of Proposition 4.2
using the ridge leverage score distribution q∗λ yields the following result.
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Proposition 4.3 (Proposition 2 in Bach, 2017). Let δ ∈]0, 1]. Assume that N ≥ 5dλ log(16dλ/δ),
then

P

(
sup
‖g‖dω≤1

inf
‖w‖2≤ 4

N

∥∥∥µg − ∑
j∈[N]

wj

qλ(xj)1/2 k(xj, .)
∥∥∥2

F
≤ 4λ

)
≥ 1− δ. (4.137)

Now, for fixed λ, the approximation error in Proposition 4.3 does not go to zero
when N increases. One theoretical workaround is to make λ = λ(N) decrease with
N. However, the coupling of N and λ through dλ makes it very intricate to derive a
convergence rate from Proposition 4.3. Moreover, the optimal density q∗λ is in general
only available as the limit (4.134), which makes sampling and evaluation difficult.

4.3 projection dpp for optimal kernel quadrature

In this section, we give our first contribution of this chapter (Belhadji et al., 2019a).
We propose to study optimal kernel quadrature based on nodes that follows the
distribution of a projection DPP. We follow in the footsteps of Bach, 2017, as reviewed
in Section 4.2.6, but with two main differences:

• we study the un-regularized optimization problem (4.120),

• we use a projection DPP rather than independent sampling to obtain the nodes.

In a nutshell, we consider nodes (xj)j∈[N] that are drawn from the projection DPP
with reference measure dω and marginal kernel

K(x, y) = ∑
n∈[N]

en(x)en(y), (4.138)

where we recall that (en)n∈N∗ is an o.n.b of L2(dω) that diagonalizes Σ; see Section 4.2.2.
As seen in Chapter 2, this boils down to sample a random configuration x in X N from
the probability distribution

1
N!

Det(K(xi, xj)i,j∈[N]) ∏
i∈[N]

dω(xi). (4.139)

As we shall see, among many possible choices of kernels, the one defined in (4.138)
stands out for several reasons: i) it is intuitive and comes with a theoretical analysis,
ii) it defines a random configuration such that the un-regularized optimization prob-
lem (4.120) admits a unique solution with probability one, iii) it is amenable to exact
sampling in many settings.

We explain more in detail these three reasons in the following and we start by the
first one. This projection DPP defines a uni-solvent configuration x with respect to the
kernel k: the subspace T (x) = Span(k(xn, .))n∈[N] is N-dimensional a.s., or equivalently,
the matrix K(x) is invertible a.s. This is a consequence of the following result.

Proposition 4.4. Assume that the matrix E(x) = (ei(xj))i,j∈[N] is invertible, then K(x) is
invertible.

The proof of Proposition 4.4 is given in Section 4.6.3. Since the pdf (4.139) of the
projection DPP with kernel (4.138) is proportional to Det2 E(x), the following corollary
immediately follows.
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Corollary 4.1. Let x = {x1, . . . , xN} be a projection DPP with reference measure dω and
kernel K defined in (4.138). Then K(x) is a.s. invertible, so that (4.120) has unique solution
ŵ = K(x)−1µg(xj)j∈[N] a.s.

As we have seen in Section 4.2.5, under the assumption that K(x) is non singular
the optimal approximation of µg by an element of T (x), with respect to the RKHS
norm, is Φŵ. The optimal approximation error then writes

‖µg −Φŵ‖2
F = ‖µg −ΠT (x)µg‖2

F , (4.140)

where ΠT (x) = Φ(Φ∗Φ)−1Φ∗ is the orthogonal projection onto T (x) with Φ∗ the dual7

of Φ: Φŵ is the orthogonal projection of µg on the subspace T (x).
Now, the second reason to introduce the projection DPP associated to the the

kernel (4.138) is the possibility of the theoretical analysis of the expected value of

‖µg −ΠT (x)µg‖2
F . (4.141)

We explain this point more in detail after presenting our theoretical guarantees in
the following section. The details of the proofs are given in Section 4.6.

4.3.1 The main results

In the section, we present the theoretical analysis of ‖µg −ΠT (x)µg‖2
F under the projec-

tion DPP (K, dω), where K is defined in (4.138). We start with a result that we obtained
in (Belhadji, Bardenet, and Chainais, 2019a), which quantifies the expected interpolation
error in terms of the spectrum of the integration operator Σ.

Theorem 4.7. Let x = {x1, . . . , xN} be a random set that follows the distribution of the
projection DPP (K, dω). Let g ∈ L2(dω) such that ‖g‖dω ≤ 1. Then,

EDPP ‖µg −ΠT (x)µg‖2
F ≤ 2σN+1 + 2‖g‖2

dω,1

(
NrN +

N

∑
`=2

σ1

`!2

(
NrN

σ1

)`
)

, (4.142)

where ‖g‖dω,1 = ∑
n∈[N]

|〈en, g〉dω| and rN = ∑
m≥N+1

σm. Moreover,

EDPP sup
‖g‖dω≤1

‖µg −ΠT (x)µg‖2
F ≤ 2σN+1 + 2N

(
NrN +

N

∑
`=2

σ1

`!2

(
NrN

σ1

)`
)

. (4.143)

Since the publication of (Belhadji et al., 2019a), we obtained a refinement of Theo-
rem 4.7 that we give in the following.

Theorem 4.8. Let x = {x1, . . . , xN} be a random set that follows the distribution of the
projection DPP (K, dω). Let g ∈ L2(dω) such that ‖g‖dω ≤ 1. Then,

EDPP ‖µg −ΠT (x)µg‖2
F ≤ 2σN+1 + 2‖g‖2

dω,1NrN , (4.144)

where ‖g‖dω,1 = ∑
n∈[N]

|〈en, g〉dω| and rN = ∑
m≥N+1

σm. Moreover,

EDPP sup
‖g‖dω≤1

‖µg −ΠT (x)µg‖2
F ≤ 2σN+1 + 2N2rN . (4.145)

7 For µ ∈ F ,Φ∗µ = (µ(xj))j∈[N]. Φ∗Φ is an operator from RN to RN that can be identified with K(x).
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Let us comment on the upper bounds of Theorem 4.8. The first term in the upper
bounds (4.144) and (4.145) scales as σN+1. As we shall in Section 5.2.3 of Chapter 5,
σN+1 is the lower bound of interpolation in a sense that will be defined. The second
terms in the upper bounds (4.144) and (4.145) stem from our proof technique. Indeed,
the constant ‖g‖dω,1 in (4.144) is the `1 norm of the coefficients of the projection of g
onto Span(en)n∈[N] in L2(dω). For example, for g = en, ‖g‖dω,1 = 1 if n ∈ [N] and
‖g‖dω,1 = 0 if n ≥ N + 1. In the worst case, ‖g‖dω,1 ≤

√
N‖g‖dω ≤

√
N. Thus, we

can obtain a uniform bound for ‖g‖dω ≤ 1 but with a supplementary factor N. Now,
if ∑m∈N∗ |〈g, em〉dω| < +∞ for a particular g ∈ L2(dω), the r.h.s. of (4.144) is O(NrN)

because σN+1 ≤ NrN . Similarly, the upper bound in (4.145) is dominated by O(N2rN).
Both these bounds converge to 0 if the convergence of (σn) to 0 is fast enough. For

example, if σm = m−2s, O(rN) = N1−2s thus O(NrN) = N2−2s and O(N2rN) = N3−2s;
and convergence is guaranteed if s > 1 or if s > 3/2 respectively. Another example
is given by σm = βαm with 0 < α < 1 and β > 0 then NrN = N β

1−α αN+1 = o(1) and
N2rN = N2 β

1−α αN+1 = o(1).
We have assumed that F is dense in L2(dω) but Theorem 4.8 is valid also when F

is finite-dimensional. In this case, denote N0 = dimF . Then, for n > N0, σn = 0 and
rN0 = 0, so that (4.144) implies

‖µg −ΠT (x)µg‖F = 0 a.s. (4.146)

when N = N0.
In comparison with Bach, 2017, we emphasize that the dependence of our bound on

the eigenvalues of the kernel k, via rN , is explicit. This is in contrast with Proposition 4.3
that depends on the eigenvalues of Σ through the degree of freedom dλ so that the
necessary number of samples N diverges when λ→ 0. On the contrary, our quadrature
requires a finite number of points for λ = 0.

Another advantage of DPPs is that they can be sampled exactly. Because of the
orthonormality of (ψn), one can use the HKPV algorithm; see Section 2.2.5. The main
limitation is the availability of good proposals for the successive rejection sampling
routines.

Theorem 4.8 gives a slightly sharper bound than Theorem 4.7, since if NrN = o(1),
then the right-hand side of (4.142) is NrN + o(NrN). The proof of Theorem 4.8 follows
the same steps as the proof of Theorem 4.7. We give the proofs of the two results
simultaneously in the following section and we highlight the difference between the
two in the end of the section.

4.3.2 Bounding the interpolation error under the projection DPP

In this section, we give the skeleton of the proofs of Theorem 4.7 and Theorem 4.8. The
details of the proofs are deferred to Section 4.6.

The starting point of the analysis is the observation that the interpolation error is
the RKHS norm of the residual µg −ΠT (x)µg. Since the subspace T (x) can be arbitrary,
as x spans the set of uni-solvent of X of cardinality N, it is hard to reckon how large
the corresponding residual can be. For this reason, we consider the principal subspace
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θN(T (x), EFN )

EFN = Span(eFj )j∈[N]

T (x) = Span k(xi, .)i∈[N]

Figure 4.9 – Illustration of the largest principal angle between the subspaces T (x) and EFN in
the case of the periodic Sobolev space of order 1.

EFN = Span(eFn )n∈[N] and the corresponding filtering error ‖µg −ΠEFN
µg‖F . The filtering

error is easier to quantify because we can prove easily that

‖µg −ΠEFN
µg‖2

F = ∑
m≥N+1

〈µg, eFm 〉2F = ∑
m≥N+1

σm〈g, em〉2dω. (4.147)

In particular, when ‖g‖dω ≤ 1, ‖µg −ΠEFN
µg‖2

F ≤ σN+1, with equality when g = en+1.
Moreover, if the two subspaces EFN and T (x) are close to each other in some sense,
we expect to have ‖µg −ΠT (x)µg‖2

F close to σN+1 when ‖g‖dω ≤ 1. As a first step, we
have the following lemma that gives an upper bound of ‖µg −ΠT (x)µg‖2

F using the
‖µeFn −ΠT (x)µeFn ‖

2
F .

Lemma 4.1. Assume that ‖g‖dω ≤ 1 then

‖µg −ΠT (x)µg‖2
F ≤ 2

(
σN+1 + ‖g‖2

dω,1 max
n∈[N]

‖µeFn −ΠT (x)µeFn ‖
2
F

)
. (4.148)

The term 2σN+1 converges to 0 when N goes to +∞ and we shall see later that it
scales as a specific lower bound. Now it remains to upper bound the ‖µeFn −ΠT (x)µeFn ‖

2
F

for n ∈ [N] that also have the following expression

‖µeFn −ΠT (x)µeFn ‖
2
F = σn‖eFn −ΠT (x)e

F
n ‖2
F . (4.149)

To upper bound the right-hand side of (4.149), we note that σn‖eFn −ΠT (x)eFn ‖2
F is

the product of two terms: σn is a decreasing function of n while ‖eFn −ΠT (x)eFn ‖2
F is

the interpolation error of the eigenfunction eFn , measured in the ‖.‖F norm. We can
bound the latter interpolation error uniformly in n ∈ [N] using the largest principal
angle between T (x) and EFN = Span(eFn )n∈[N]; see Section 4.6.2 for details on principal
angles between subspaces in Hilbert spaces. In particular, remember that the maximal
principal angle is defined through its cosine

cos2 θN(T (x), EFN ) = inf
u∈T (x),v∈EFN
‖u‖F=1,‖v‖F=1

〈u, v〉F . (4.150)

We can then define successively the N − 1 principal angles θn(T (x), EFN ) ∈
[
0, π

2

]
for

n ∈ [N − 1] between the subspaces EFN and T (x). These angles quantify the relative
position of these two subspaces; see Figure 4.9 for a visual illustration. Now, we have
the following lemma.
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Lemma 4.2. Let x = {x1, . . . , xN} ⊂ X such that Det E(x) 6= 0. Then

max
n∈[N]

‖eFn −ΠT (x)e
F
n ‖2
F ≤

1
cos2 θN(T (x), EFN )

− 1. (4.151)

In particular

max
n∈[N]

‖eFn −ΠT (x)e
F
n ‖2
F ≤ ∏

n∈[N]

1
cos2 θn(T (x), EFN )

− 1, (4.152)

and
max
n∈[N]

‖eFn −ΠT (x)e
F
n ‖2
F ≤ ∑

n∈[N]

1
cos2 θn(T (x), EFN )

− N. (4.153)

To sum up, we have so far bounded the approximation error by the geometric
quantities in the right-hand side of (4.152) and (4.153). The proof of Theorem 4.7 uses
the symmetrization (4.152), while the proof of Theorem 4.8 uses the symmetrization
(4.153).

As we have seen in Chapter 3, projection DPPs shine in taking expectations of such
symmetric geometric quantities in finite dimensional vector spaces. We will show in
the following that this is also true in RKHSs.

Proposition 4.5. Let x = {x1, . . . , xN} ⊂ X such that Det2 E(x) 6= 0. Then,

∏
`∈[N]

1
cos2 θ`

(
EFN , T (x)

) =
Det K(x)

Det2 EF (x)
, (4.154)

and

∑
`∈[N]

1

cos2 θ`

(
EFN , T (x)

) = Tr
(

EF (x)ᵀ
−1

K(x)EF (x)−1
)

. (4.155)

Proposition 4.5 allows to obtain tractable formulas, in terms of the eigenvalues of
the kernel k, of the expectation of the right-hand side of (4.152) and (4.153). This is
achieved in the following two results.

The first one concerns the multiplicative symmetrization.

Proposition 4.6. Let x = {x1, . . . , xN} be a random set that follows the projection DPP
(dω,K). Then,

EDPP ∏
n∈[N]

1

cos2 θn

(
T (x), EFN

) = ∑
T⊂N∗
|T|=N

∏
t∈T

σt

∏
n∈[N]

σn
. (4.156)

The second result concerns the additive symmetrization.

Proposition 4.7. Let x = {x1, . . . , xN} be a random set that follows the projection DPP
(dω,K). Then,

EDPP ∑
`∈[N]

1

cos2 θ`

(
EFN , T (x)

) − N = ∑
v∈[N]

1
σv

∑
w∈N∗r[N]

σw. (4.157)
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The bound of Proposition 4.6, once reported in Lemma 4.2 and Lemma 4.1, already
yields Theorem 4.7 in the special case where the kernel k is ”saturated”: σ1 = · · · = σN .
This seems a very restrictive condition, but Proposition 4.8 below shows that we can
always reduce the analysis to that case. In fact, let the kernel k̃ be defined by

k̃(x, y) = ∑
n∈[N]

σ1en(x)en(y) + ∑
n≥N+1

σnen(x)en(y) = ∑
n∈N∗

σ̃nen(x)en(y), (4.158)

and let F̃ be the corresponding RKHS. Then one has the following inequality.

Proposition 4.8. Let T̃ (x) = Span
(
k̃(xj, .)

)
j∈[N]

and ΠT̃ (x) the orthogonal projection onto

T̃ (x) in (F̃ , 〈., .〉F̃ ). Then,

∀n ∈ [N], σn‖eFn −ΠT (x)e
F
n ‖2
F ≤ σ1‖eF̃n −ΠT̃ (x)e

F̃
n ‖2
F̃ . (4.159)

Simply put, capping the first eigenvalues of k yields a new kernel k̃ that captures
the interaction between the terms σn and ‖eFn −ΠT (x)eFn ‖2

F , so that we only have to
deal with the term ‖eF̃n −ΠT̃ (x)e

F̃
n ‖2
F̃ . Combining Proposition 4.6 with Proposition 4.8

applied to the kernel k̃ yields Theorem 4.7.
The same steps are followed to obtain the Theorem 4.8 using Proposition 4.7. The

additive symmetrization gives a neater upper bound compared to the multiplicative
symmetrization. Nevertheless the proof of Proposition 4.7 is more technical.

4.4 numerical simulations

This section is devoted to numerical simulations that illustrate the main results of
Section 4.3.1.

4.4.1 The periodic Sobolev space

Let Ss the periodic Sobolev space of order s ∈N∗ defined in Section 4.2.3. We consider
a set of three numerical experiments. In the first one, we consider the approximation
of µg when g ≡ 1, that is g ≡ e1

8, using several quadratures; in the second one, we
consider the approximation of µg when g is an arbitrary eigenfunction of Σ using the
optimal kernel quadrature based on the projection DPP; in the third one, we consider
the worst-case interpolation error of the µg when g spans the unit ball of L2(dω).

The reconstruction of the embedding of the first eigenfunction

We take g ≡ e1 so that the embedding µg = e1. We compare the following algorithms:
(i) the quadrature rule DPPKQ we propose in Theorem 4.7 (optimal kernel quadrature
based on the projection DPP (K, dω)), (ii) the quadrature rule DPPUQ based on the
same projection DPP but with uniform weights (wn = 1/N) (Johansson, 1997), (iii)
the kernel quadrature rule (4.131) of Bach, 2017, which we denote LVSQ for leverage
score quadrature, without regularization (λ = 0)9, (iv) sequential Bayesian quadrature

8 We write em rather than eSs
m to make the notation lighter.

9 The optimal proposal q∗λ is not defined, in a strict sense, when λ = 0. However, it is constant for λ > 0; so
we implement LVSQ (λ = 0) using i.i.d. nodes from the uniform distribution of [0, 1].
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Figure 4.10 – Squared approximation error vs. number of nodes N in the case of the periodic
Sobolev space for s = 1 (left) and s = 3 (right).

(SBQ) (Huszár and Duvenaud, 2012) with regularization to avoid numerical instability,
and (v) optimal kernel quadrature on the uniform grid (UGKQ). We take N ∈ [5, 50].
Figure 4.10 shows log-log plots of the square of the worst case quadrature error (4.108)
w.r.t. N, averaged over 50 samples for each point, for s ∈ {1, 3}.

We observe that the approximation errors of all first four quadratures converge to 0
with different rates. Both UGKQ and DPPKQ converge to 0 with a rate of O(N−2s),
which indicates that our O(N2−2s) bound in Theorem 4.7 is not tight in the Sobolev
case. Meanwhile, the rate of DPPUQ is O(N−2) across the three values of s: it does
not adapt to the regularity of the integrands. This corresponds to the CLT proven
by Johansson, 1997. LVSQ without regularization converges to 0 slightly slower than
O(N−2s). SBQ is the only one that seems to plateau for s = 3, although it consistently
has the best performance for low N.

Overall, in the Sobolev case, DPPKQ and UGKQ have the best convergence rate.
UGKQ – known to be optimal in this case (Bojanov, 1981) – has a better constant.

The reconstruction of the embeddings of the other eigenfunctions

We consider g to be an eigenfunction Σ: g ∈ {e5, e10, e14, e15, e16, e17}, so that µg = Σg
is tractable. We observe the interpolation error under the projection DPP (DPPKQ)
for N ∈ [5, 50]. Figure 4.11 shows log-log plots of the square of the interpolation
error (4.124) of the embedding µen w.r.t. N, denoted εn(N), averaged over 50 samples
for each point, for s ∈ {1, 3}.

We observe that for every eN0 , the interpolation error goes through two phases: in
the first phase (N < N0) the interpolation error is practically equal to the initial error
that is ‖µeN0

‖2
F = σN0 ; in the second phase (N ≥ N0) the interpolation error decreases

to 0 at the rate O(N−2s). These observations indicate again that the O(N2−2s) bound
in Theorem 4.7 is not tight. Moreover, we observe that given two eigenfunctions en and
en′ corresponding to the same eigenvalue, the expected interpolation error is practically
the same. This is the case, for instance, of e14 and e15 or e16 and e17.
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Figure 4.11 – Squared interpolation error for the embeddings of the eigenfunctions vs. number
of nodes N in the periodic Sobolev space for s = 1 (left) and s = 3 (right).
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Figure 4.12 – Squared worst-case interpolation error on U error vs. number of nodes N for
s = 1 (left) and s = 3 (right).

The uniform reconstruction of the embeddings of the unit ball

In the previous experiments, we investigated empirically ‖µg − ΠT (x) µg‖2
F for some

functions g in the unit ball of L2(dω). Remember, that the bound (4.145) in Theorem 4.8
deals with the worst case interpolation error defined by

sup
‖g‖dω≤1

‖µg −ΠT (x)µg‖2
F . (4.160)

We investigate this quantity by considering the following surrogate

sup
g∈U
‖µg −ΠT (x)µg‖2

F , (4.161)

where U is a finite subset of the intersection of the unit ball of L2(dω) with the subspace
Span(en)n∈[50]

10. We take |U | = 2000.
Again, we compare the following quadratures defined in the first experiment: (i)

the quadrature rule DPPKQ, (ii) LVSQ with regularization parameter λ ∈ {0, 0.01, 0.1},
and (iii) UGKQ. We take N ∈ [5, 50]. Figure 4.12 show log-log plots of the square of
the worst-case interpolation error on U w.r.t. N, averaged over 50 samples for each
point, for s ∈ {1, 3}.

We observe that the square of the worst case interpolation errors, for the three
quadratures DPPKQ, UGKQ and LVSQ (λ = 0), converges to 0. DPPKQ converges

10 The square of the interpolation error when g ∈ Span(eSs
n )⊥n∈[50] starts from an initial error lower than σ51.
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at the rate O(N−2s) faster than the theoretical rate O(N3−2s) of Theorem 4.8. UGKQ
seems to converge at the rate O(N−2s) with a better constant than DPPKQ. Finally,
LVSQ converges at a rate slower than O(N−2s) when λ = 0; while it plateaus, below
the level λ, when λ ∈ {0.01, 0.1} in accordance with Proposition 4.3.

Among the three ”ridgeless” (λ = 0) algorithms, DPPKQ is the only one to
have guarantees for the worst case interpolation error (4.160) on the unit ball of
L2(dω)although the empirical investigation shows that the rates are pessimistic.

4.4.2 The Korobov spaces

Now, we consider the Korobov space Kd,s defined in Section 4.2.3. We sampled from
the corresponding DPP using the generic sampling algorithm in Hough et al., 2006. The
implementation requires to sample from density x 7→ 1

N K(x, x), which is possible using
the uniform density as a proposal in the successive rejection sampling steps. Indeed,
the analytical expression of K(x, x) involves the squares of cosine and sine functions
that can be upper bounded by constants.

We consider two numerical experiments. In the first one, we consider the approxi-
mation of µg when g ≡ 1 using several quadratures; in the second one, we consider the
approximation of µg when g is an eigenfunction of Σ using DPPKQ, LVSQ (λ = 0) and
UGKQ.

The reconstruction of the embedding of the first eigenfunction

We still take g ≡ 1 so that µg ≡ 1. We compare (i) our DPPKQ, (ii) LVSQ without
regularization (λ = 0)11, (iii) the optimal kernel quadrature based on the uniform
grid UGKQ, (iv) the optimal kernel quadrature SGKQ based on the sparse grid from
(Smolyak, 1963), (v) the optimal kernel quadrature based on the Halton sequence
HaltonKQ (Halton, 1964). We take N ∈ [5, 1000] and s = 1. The results are shown in
Figure 4.13. This time, UGKQ suffers from the dimension with a rate in O(N−2s/d),
while DPPKQ, HaltonKQ and LVSQ (λ = 0) all perform similarly well. They scale
as O((log N)2s(d−1)N−2s), which is a tight upper bound on σN+1, see (Bach, 2017).
SGKQ seems to lag slightly behind with a rate O((log N)2(s+1)(d−1)N−2s) (Holtz, 2008;
Smolyak, 1963).

The reconstruction of the embeddings of the other eigenfunctions

We consider now g to be an eigenfunction Σ, g ∈ {e1, . . . , e8, e11, e12, e21, e22}. We observe
the interpolation errors for the following algorithms (i) our DPPKQ, (ii) LVSQ without
regularization (λ = 0), (iii) the optimal kernel quadrature based on the uniform
grid UGKQ for N ∈ [5, 1000]. Figure 4.14 shows log-log plots of the square of the
interpolation errors of the corresponding embedding w.r.t. N, averaged over 50 samples
(in the case of DPPKQ and LVSQ) for each point, for s ∈ {1, 3}; respectively for the
DPPKQ, LVSQ and UGKQ.

Once again, we observe that under DPPKQ, the empirical expected interpolation
error curves manifest two phases: the plateau of the initial error (N < N0) followed by

11 The optimal proposal q∗λ is not defined, in a strict sense, when λ = 0. However, it is constant for λ > 0; so
we implement LVSQ (λ = 0) using i.i.d. nodes from the uniform distribution of [0, 1]d.
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Figure 4.13 – Squared approximation error vs. number of nodes N in the case of the Korobov
space for s = 1 (left) and s = 3 (right); and for d = 2 (top) and d = 3 (bottom).

the convergence at the rate O(σN+1). Moreover, we observe again that eigenfunctions
with the same eigenvalue have similar curves; and for sufficiently large values of N
all the curves seem to coincide. As for LVSQ, the empirical curves seem to have the
same rates as those of DPPKQ yet with worst constants. Finally, the empirical curves of
UGKQ converges to 0 at the rate O(N−2s/d) and the curves do not seem to coincide for
large values of N.

Once again, the rates predicted by the bounds in Theorem 4.7 are pessimistic
compared to the empirical rates of DPPKQ.

4.4.3 The unidimensional Gaussian kernel

Now, we consider the Gaussian space Gγ defined in Section 4.2.3.
Figure 4.15 compiles the empirical performance of DPPKQ for g ∈ {e1, e5, e10, e15}

compared to the theoretical bound of Theorem 4.7 , crude Monte Carlo with i.i.d.
sampling from the measure ω (MC), optimal kernel quadrature based on i.i.d. samples
from ω (MCKQ), sequential Bayesian Quadrature (SBQ). From random quadrature, we
take the average over 50 samples. We take N ∈ [5, 50] and γ = 1

2 . Note that, this time,
only the y-axis is on the log scale for better display, and that LVSQ is not plotted since
we don’t know how to sample from the continuous ridge leverage score distribution q∗λ.

We observe that, for g = eN0 , the quadratures converge to 0 at different rates after
the plateau of the initial error N ≥ N0. DPPKQ converges as O(σN+1) while the
discussion below Theorem 4.7 let us expect a slightly slower rate O(NσN+1) denoted
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Figure 4.14 – Squared interpolation error for the embeddings of the eigenfunctions vs. number
of nodes N in the Korobov space for s = 1 (left) and s = 3 (right) under DPPKQ (top), LVSQ
(middle) and UGKQ (bottom).
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(a) The case of g = e1.

0 10 20 30 40 50
N

10

8

6

4

2

0

lo
g 1

0(
Sq

ua
re

d 
er

ro
r)

DPPKQ
DPPKQ (UB)
MCKQ
SBQ
MC

N

(b) The case of g = e5.
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(c) The case of g = e10.
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(d) The case of g = e15.

Figure 4.15 – The squared error ‖µg − ∑
n∈[N]

wnk(xn, .)‖2
F vs. the number of nodes N in the

Gaussian space Gγ with γ = 1/2.

DPPKQ (UB) in the figure. MCKQ improves upon Monte Carlo that converges as
O(N−1). Yet, it seems that the larger is the value of N0, the slower is the convergence of
MCKQ to 0 compared to the convergence of DPPKQ that does not depend on the value
of N0. The same observations apply for SBQ, that has the smallest error for small values
of N, yet its convergence slowdowns for large values of N. Moreover, its performance
deteriorates for large values of N0.

We conclude that DPPKQ has the most consistent behaviour among the four
quadratures that we have compared. Moreover, the squared worst integration error
scales as O(σN+1), which is slightly better than the rate predicted by Theorem 4.8.

4.4.4 The multidimensional Gaussian kernel

We consider the case of the multidimensional Gaussian space Gd,γ with d ∈ {2, 3} and
γ = 1. We take g = e1. The results are compiled in Figure 4.16. Once again, the
numerical simulations show that the empirical rate of DPPKQ scales as O(σN+1).
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Figure 4.16 – The squared interpolation error in the Gaussian space Gd,γ with d ∈ {2, 3} and
γ = 1.

4.5 discussion

We have introduced a new class of quadratures: the optimal kernel quadrature based
on nodes that follows the distribution of the projection DPP(K, dω). Moreover, we
gave theoretical guarantees of this class of quadratures. In particular, we proved that
for g ∈ L2(dω) such that ‖g‖dω ≤ 1, the rate of convergence EDPP ‖µg −ΠT (x)µg‖2

F
scales as O(NrN+1), and EDPP sup‖g‖dω≤1 ‖µg −ΠT (x)µg‖2

F scales as O(N2rN+1). The
numerical simulations that we conducted suggest that these rates scale as O(σN+1),
which means that the theoretical guarantees we gave are pessimistic, especially for
RKHSs with finite degree of smoothness like the periodic Sobolev spaces and the
Korobov spaces.

Similarly to the quadratures reviewed in Section 4.1.3, this new class of quadratures
is suitable for functions living in a Hilbert space; however, the two settings are different.
Indeed, the previous results deal with functions living in Sobolev spaces that does not
correspond to some RKHS (s ≤ d/2). This point will be discussed more in details in
Section 6.2.3.

Unlike the CLTs reviewed in Section 4.1.3, our theoretical rates are non-asymptotic.
Moreover, the technique of the proof is new and relies on controlling the largest
principal angle between the subspaces T̃ (x) and E F̃N under the projection DPP. To
achieve this control, we have introduced the symmetrizations (4.152) and (4.153) of
(4.151), that are rather loose majorizations. Our motivation is that the expected value
of each of these symmetric quantities is tractable under the DPP. Compared to the
multiplicative symmetrization, the additive symmetrization gives a neater upper bound
of EDPP 1

/
cos2 θN

(
E F̃N , T̃ (x)

)
without improving the rate of convergence. Getting rid of

these symmetrizations could make the bound much tighter. We discuss this perspective
in Section 6.2.4.

Now, compared to other algorithms and quadratures, DPPKQ seem to give con-
sistent empirical performance: the squared interpolation error scales as O(σN) after
a stagnation at the plateau of the initial error. DPPKQ offers an implementable so-
lution with guarantees in the ridgeless regime (λ = 0), in comparison LVSQ have
guarantees when λ > 0, yet the continuous ridge leverage score distribution is not be
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tractable in general. Moreover, DPPKQ seems to be numerically stable compared to
other algorithms such as SBQ that require some regularization.

Now all that remains to be done is to sharpen the theoretical bounds of DPPKQ. We
can already guess that the successive majorizations are to blame for these non optimal
bounds. We will see in Chapter 5, an alternative distribution under which we can
express E ‖µg −ΠT (x)µg‖2

F in a tractable way without loose majorization. In addition,
this distribution can be approximated using an MCMC algorithm without the need to
the spectral decomposition of the integration operator.
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4.6 proofs

This section contains the detailed proofs of the results appearing in this chapter.
We start by Section 4.6.1 that contains the proof of an adapted result, borrowed

from the literature, on leverage score changes under rank 1 updates. This result will be
used later.

Section 4.6.2 introduces the principal angles between subspaces in Hilbert spaces.
In particular, we prove the existence of these angles along with some of their properties
that will be used to prove Lemma 4.2 and Proposition 4.5.

Section 4.6.3 contains the proof of Proposition 4.4 that we use to ensure that K(x)
is almost surely invertible when x = {x1, . . . , xN} is a projection DPP with reference
measure dω and kernel K.

The rest of Section 4.6 deals with Theorem 4.7, our upper bound on the approx-
imation error of DPP-based kernel quadrature. The proof is rather long, but can be
decomposed in four steps, which we now introduce for ease of reading.

First, in Section 4.6.4, we prove Lemma 4.1 that highlights the importance of the
term maxn∈[N] σn‖ΠT (x)⊥eFn ‖2

F that relates to the approximation error of the space
spanned by (eFn )n∈[N] by the (random) subspace T (x).

Second, we prove Proposition 4.6 which is proven thanks (4.154) in Proposition 4.5
and Proposition 4.11. This is Section 4.6.6.

Third, in Section 4.6.5, we bound the geometric term maxn∈[N] σn‖ΠT (x)⊥eFn ‖2
F for

a fixed configuration x by maxn∈[N] σ1‖ΠT̃ (x)⊥eF̃n ‖2
F̃ . This is done in Proposition 4.8,

which in turn requires two intermediate results, Lemma 4.4 and Proposition 4.10.
Fourth, Theorem 4.7 is obtained in Section 4.6.7, using the results of the previous

steps.
Finally, we prove the refined result of Theorem 4.8 using Proposition 4.7 in Sec-

tion 4.6.8.

4.6.1 A borrowed result: leverage scores changes under rank 1 updates

In this section we prove a lemma inspired from Lemma 5 in Cohen et al., 2015. This
lemma concerns the changes of leverage scores under rank 1 updates.

Let N, M ∈ N∗, M ≥ N. Let A ∈ RN×M be a matrix of full rank. For i ∈ [M],
denote ai the i-th column of the matrix A. The i-th leverage score of the matrix A is
defined by

τi(A) = aᵀ
i (AAᵀ)−1ai, (4.162)

while the cross-leverage score between the i-th column and the j-th column is defined
by

τi,j(A) = aᵀ
i (AAᵀ)−1aj. (4.163)
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It holds (Drineas et al., 2006)

∀i ∈ [M], τi(A) ∈ [0, 1], (4.164)

and we have the following result.

Lemma 4.3. Let N, M ∈N∗, M ≥ N. Let A ∈ RN×M of full rank and ρ ∈ R∗+ and i ∈ [M].
Let W ∈ RM×M a diagonal matrix such that Wi,i =

√
1 + ρ and Wj,j = 1 for j 6= i. Then

τi(AW) =
(1 + ρ)τi(A)

1 + ρτi(A)
≥ τi(A), (4.165)

and

∀j ∈ [M]− {i}, τj(AW) = τj(A)−
ρτi,j(A)2

1 + ρτi(A)
≤ τj(A). (4.166)

The proof of this lemma is similar to Lemma 5 in Cohen et al., 2015. We recall the
proof for completeness.

Proof. (Adapted from Cohen et al., 2015) The Sherman-Morrison formula applied to
AWWᵀAᵀ and the vector

√
ρai yields

(AWWᵀAᵀ)−1 = (AAᵀ + ρaia
ᵀ
i )
−1 (4.167)

= (AAᵀ)−1 −
(AAᵀ)−1ρaia

ᵀ
i (AAᵀ)−1

1 + ρaᵀ
i (AAᵀ)−1ai

. (4.168)

By definition of τi(AW)

τi(AW) =
√

1 + ρaᵀ
i (AWWᵀAᵀ)−1ai

√
1 + ρ (4.169)

= (1 + ρ)aᵀ
i

(
(AAᵀ)−1 −

(AAᵀ)−1ρaia
ᵀ
i (AAᵀ)−1

1 + ρaᵀ
i (AAᵀ)−1ai

)
ai

= (1 + ρ)

(
τi(A)− ρτi(A)2

1 + ρτi(A)

)
= (1 + ρ)

τi(A)

1 + ρτi(A)
.

Now let j ∈ [M]− {i}. By definition of τj(AW)

τj(AW) = aᵀ
j (AWWᵀAᵀ)−1aj (4.170)

= aᵀ
j

(
(AAᵀ)−1 −

(AAᵀ)−1ρaia
ᵀ
i (AAᵀ)−1

1 + ρaᵀ
i (AAᵀ)−1ai

)
aj

= τj(A)−
ρτi,j(A)2

1 + ρτi(A)

≤ τj(A).
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4.6.2 Principal angles in Hilbert spaces

The notion of principal angles between subspaces of a Hilbert spaces can be extended
in many ways. See for example (Deutsch, 1995). We give in the following theorem one
extension of this notion. This extension is restricted to subspaces of finite dimension,
which is more than enough for our proofs.

Theorem 4.9. Let H be a Hilbert space. Let P1 and P2 be two finite-dimensional subspaces of
H with N = dimP1 = dimP2. Denote ΠP1 and ΠP2 the orthogonal projections of H onto
these two subspaces. There exist two orthonormal bases for P1 and P2 denoted (v1

i )i∈[N] and
(v2

i )i∈[N], and a set of angles θi(P1,P2) ∈ [0, π
2 ] such that

cos θN(P1,P2) ≤ · · · ≤ cos θ1(P1,P2), (4.171)

and for i ∈ [1, ..., N]

〈v1
i , v2

i 〉H = cos θi(P1,P2), (4.172)

and
ΠP1 v2

i = cos θi(P1,P2)v1
i , (4.173)

and
ΠP2 v1

i = cos θi(P1,P2)v2
i . (4.174)

In particular

cos θN(P1,P2) = inf
v∈P1,‖v‖H=1

‖ΠP2 v‖H = inf
v∈P2,‖v‖H=1

‖ΠP1 v‖H. (4.175)

Proof. Consider the operator π = ΠP2 ΠP1 . Since P1 and P2 are finite-dimensional
subspaces of H, π is a finite-rank operator. Therefore, using the singular value
decomposition, there exists two orthonormal families (v1

n)n∈[R] and (v2
n)n∈[R] such that

∀x ∈ H, πx = ∑
n∈[R]

σn(π)〈x, v1
n〉Hv2

n, (4.176)

where R is the rank of π, and the (σn(π))n∈[R] is the non-increasing sequence of
positive singular values of π. Let m ∈ [R] then

v2
m =

1
σm(π)

πv1
m =

1
σm(π)

ΠP2 ΠP1 v1
m ∈ P2. (4.177)

Moreover,
∀x ∈ P⊥1 , ∑

n∈[N]

σn(π)〈x, v1
n〉Hv2

n = ΠP2 ΠP1 x = 0, (4.178)

therefore and for every m ∈ [R], v1
m ∈ (P⊥1 )⊥ = P1.

We can complete the family (v1
n)n∈[R] in P1 to an o.n.b. (v1

n)n∈[N], and similarly we
complete the family (v2

n)n∈[R] in P2 to an o.n.b. (v2
n)n∈[N].

We have for m > R,

Π2v1
m = πv1

m = ∑
n∈[R]

σn(π)〈v1
m, v1

n〉Hv2
n = 0, (4.179)
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therefore, v1
m ∈ P⊥2 . In particular,

∀m ∈ {R + 1, . . . , N}, 〈v1
m, v2

m〉H = 0 = cos θm(P1,P2), (4.180)

where we take θm(P1,P2) = π/2 for m ∈ {R + 1, . . . , N}.
Now, π is the product of two orthogonal projections, then the σn(π) are included

in ]0, 1]. We denote for n ∈ [R], θn(P1,P2) ∈ [0, π/2[ such that

cos θn(P1,P2) = σn(π). (4.181)

By definition, (σn(π))n∈[R] is a non-increasing sequence, then (θn(P1,P2))n∈[R] is a
non-decreasing sequence. Therefore, (θn(P1,P2))n∈[N] is a non-decreasing sequence.

Now, by (4.176)

cos θn(P1,P2)v2
n = σn(π)v2

n = πv2
n = ΠP2 ΠP1 v1

n = ΠP2 v1
n, (4.182)

and

cos θn(P1,P2) = 〈v2
n, cos θn(P1,P2)v2

n〉H
= 〈v2

n, ΠP2 v1
n〉H

= 〈ΠP2 v2
n, v1

n〉H
= 〈v2

n, v1
n〉H. (4.183)

By taking the adjoint in (4.176) we get

π∗x = ΠP1 ΠP2 = ∑
n∈[R]

σn(π)〈x, v2
n〉Hv1

n, (4.184)

and we can prove similarly that

∀n ∈ [R], cos θn(P1,P2)v1
n = π∗v1

n = ΠP1 ΠP2 v2
n = ΠP1 v2

n, (4.185)

and
∀n > R, ΠP1 v2

n = 0 = cos θn(P1,P2)v1
n. (4.186)

We give in the following, the consequences of Theorem 4.9. In particular, we prove
Lemma 4.2 and Proposition 4.5 in the sequel .

We start by the following result that shows that the principal angles are somewhat
independent of the choice of orthonormal bases. It can be found in Björck and Golub,
1973; Miao and Ben-Israel, 1992 for the finite dimensional case. We give here the proof
for the general case.

Proposition 4.9. Let (w1
i )i∈[N] be any orthonormal basis of P1 and (w2

i )i∈[N] be any orthonor-
mal basis of P2, and let W = (〈w1

i , w2
j 〉H)1≤i,j≤N and G = WWᵀ. Then the eigenvalues of G

are the cos2 θi(P1,P2).
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Proof of Proposition 4.9

Let (vi
i)i∈[N], i ∈ {1, 2}, be the bases of Theorem 4.9. Let U1 ∈ ON(R) be such that

∀i ∈ [N], w1
i = ∑

j∈[N]

u1
i,jv

1
j . (4.187)

Similarly, there exists a matrix U2 ∈ ON(R) such that

∀i ∈ [N], w2
i = ∑

j∈[N]

u2
i,jv

2
j . (4.188)

This implies that
W = U1VU2ᵀ, (4.189)

where V = (〈v1
i , v2

j 〉H)1≤i,j≤N . Then

G = WWᵀ = U1VVᵀU1ᵀ. (4.190)

Thus the eigenvalues of G are the eigenvalues of VVᵀ. By Theorem 4.9, the diagonal
elements of V are

vi,i = 〈v1
i , v2

i 〉H = cos θi(P1,P2). (4.191)

We finish the proof by showing that the anti-diagonal elements satisfy

vi,j = 〈v1
i , v2

j 〉H = 0. (4.192)

By (4.173),
∀i ∈ [N], ∑

j∈[N]

〈v2
i , v1

j 〉2H = ‖ΠP1 v2
i ‖2
H = cos2 θi(P1,P2). (4.193)

Then

∑
i∈[N]

∑
j∈[N]

〈v2
i , v1

j 〉2H = ∑
i∈[N]

cos2 θi(P1,P2) = ∑
i∈[N]

〈v2
i , v1

i 〉2H. (4.194)

Thus

∑
i,j∈[N]

i 6=j

〈v2
i , v1

i 〉2H = 0. (4.195)

Finally, V is a diagonal matrix and the eigenvalues of G are the cos2 θi(P1,P2).

Proof of Lemma 4.2

Let x = (x1, . . . , xN) ∈ X N such that Det E(x) 6= 0. By Proposition 4.4, K(x) is non
singular. Thus dim T (x) = N.

We have
∀n ∈ [N], ‖eFn −ΠT (x)e

F
n ‖2
F = 1− ‖ΠT (x)e

F
n ‖2
F , (4.196)

so that

max
n∈[N]

‖eFn −ΠT (x)e
F
n ‖2
F = max

n∈[N]

(
1− ‖ΠT (x)e

F
n ‖2
F
)
= 1− min

n∈[N]
‖ΠT (x)e

F
n ‖2
F . (4.197)
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Since {eF1 , . . . , eFN} ⊂ {µ ∈ F , ‖µ‖F = 1}, then

1− min
n∈[N]

‖ΠT (x)e
F
n ‖2
F ≤ 1− inf

µ∈EFN
‖µ‖F=1

‖ΠT (x)µ‖2
F . (4.198)

Therefore, by Theorem 4.9, we have

max
n∈[N]

‖eFn −ΠT (x)e
F
n ‖2
F ≤ 1− inf

µ∈EFN
‖µ‖F=1

‖ΠT (x)µ‖2
F (4.199)

≤ 1− cos2 θN(T (x), EFN ) (4.200)

≤ 1
cos2 θN(T (x), EFN )

− 1, (4.201)

because cos2 θN(T (x), EFN ) ∈]0, 1] and

∀x ∈]0, 1], 1− x ≤ 1
x
− 1. (4.202)

Moreover,

∀n ∈ [N],
1

cos2 θn(T (x), EFN )
≥ 1, (4.203)

and

∀n ∈ [N],
1

cos2 θn(T (x), EFN )
− 1 ≥ 0. (4.204)

We conclude that

max
n∈[N]

‖eFn −ΠT (x)e
F
n ‖2
F ≤ ∏

n∈[N]

1
cos2 θn(T (x), EFN )

− 1, (4.205)

and

max
n∈[N]

‖eFn −ΠT (x)e
F
n ‖2
F ≤ ∑

n∈[N]

( 1
cos2 θn(T (x), EFN )

− 1
)

(4.206)

≤ ∑
n∈[N]

1
cos2 θn(T (x), EFN )

− N. (4.207)

Proof of Proposition 4.5

The condition Det2 E(x) 6= 0 yields by Proposition 4.4 that K(x) is non singular. Thus
dim T (x) = N. Let (ti)i∈[N] be an orthonormal basis of T (x) with respect to 〈., .〉F .
Define

W = (〈eFn , ti〉F )(n,i)∈[N]×[N]. (4.208)

Using Proposition 4.9, and the fact that (eFn )n∈[N] is an orthonormal basis of EFN , the
eigenvalues of the matrix WWᵀ are the cos2 θ`

(
EFN , T (x)

)
. Therefore

∏
`∈[N]

cos2 θ`

(
EFN , T (x)

)
= Det(WWᵀ), (4.209)
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and if WWᵀ is non singular then

∑
`∈[N]

1
cos2 θ`

(
EFN , T (x)

) = Tr(WWᵀ)−1. (4.210)

Now, write for i ∈ [N],
ti = ∑

j∈[N]

ci,jk(xj, .). (4.211)

Thus

〈eFn , ti〉F = ∑
j∈[N]

ci,j〈eFn , k(xj, .)〉F (4.212)

= ∑
j∈[N]

ci,jeFn (xj). (4.213)

Then
W = EF (x)C(x)ᵀ, (4.214)

where
C(x) = (ci,j)1≤i,j≤N . (4.215)

In particular
WWᵀ = EF (x)C(x)ᵀC(x)EF (x)ᵀ, (4.216)

Now, (ti)i∈[N] is an orthonormal basis of T (x), then by (4.211)

δi,i′ = 〈ti, ti′〉F = ∑
j∈[N]

∑
j′∈[N]

ci,jci′,j′k(xj, xj′). (4.217)

Therefore
C(x)K(x)C(x)ᵀ = IN . (4.218)

Thus
WWᵀ = EF (x)K(x)−1EF (x)ᵀ. (4.219)

In particular WW T is non singular. Moreover, we have

∏
`∈[N]

1
cos2 θ`

(
EFN , T (x)

) =
1

Det(WW T)
=

Det K(x)
Det2 EF (x)

, (4.220)

and

∑
`∈[N]

1
cos2 θ`

(
EFN , T (x)

) = Tr
(
WWᵀ)−1

= Tr
(

EF (x)ᵀ
−1

K(x)EF (x)−1
)

. (4.221)

4.6.3 Proof of Proposition 4.4

Proof. Recall the Mercer decomposition of k:

k(x, y) = ∑
m∈N∗

σmem(x)em(y), (4.222)
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where the convergence is point-wise on X ×X . Define for M ∈N∗, M ≥ N the M-th
truncated kernel

kM(x, y) = ∑
m∈[M]

σmem(x)em(y). (4.223)

By (4.222)
∀x, y ∈ X , lim

M→∞
kM(x, y) = k(x, y). (4.224)

Let x = (x1, . . . , xN) ∈ X N such that Det E(x) 6= 0, and define

KM(x) = (kM(xi, xj))i,j∈[N]. (4.225)

By the continuity of the function M ∈ RN×N 7→ Det M and by (4.224)

lim
M→∞

Det KM(x) = Det K(x). (4.226)

Thus to prove that Det K(x) > 0, it is enough to prove that the Det KM(x) is larger than
a positive real number for M large enough. We write

KM(x) = FM(x)ᵀΣMFM(x), (4.227)

with FM(x) = (ei(xj))(i,j)∈[M]×[N] and ΣM is a diagonal matrix containing the first M
eigenvalues (σm). The Cauchy-Binet identity yields

Det KM(x) = ∑
T⊂[M],|T|=N

∏
i∈T

σi Det2(ei(xj))(i,j)∈T×[N] (4.228)

≥ ∏
i∈[N]

σi Det2 E(x) > 0. (4.229)

Therefore,
Det K(x) = lim

M→∞
Det KM(x) ≥ ∏

i∈[N]

σi Det2 E(x) > 0. (4.230)

so that K(x) is invertible.

4.6.4 Proof of Lemma 4.1

Proof. First, we prove that

‖Σ−1/2µg‖2
F = ‖g‖2

dω ≤ 1. (4.231)

Recall that
µg =

∫
X

g(y)k(., y)dω(y) = Σg. (4.232)

Then Σ−1/2µg = Σ−1/2Σg = Σ1/2g ∈ F , so that ‖Σ−1/2µg‖2
F = ‖g‖2

dω ≤ 1. Therefore,
there exists µ̃g ∈ F such that ‖µ̃g‖F ≤ 1 and µg = Σ1/2µ̃g. Moreover, since (eFn )n∈N∗ is
an o.n.b. of F , we have

F = EFN ⊕ Span(eFn )n≥N+1, (4.233)

and we write
µ̃g = µ̃g,N + µ̃g,N⊥ , (4.234)
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with (µ̃g,N , µ̃g,N⊥) ∈ EFN × Span(eFn )n≥N+1. Observe that

‖Σ1/2µ̃g,N⊥‖2
F = ∑

n≥N+1
σn〈µ̃g, eFn 〉2F ≤ σN+1‖µ̃g‖2

F ≤ σN+1. (4.235)

Now, the approximation error writes

‖ΠT (x)⊥µg‖2
F = ‖ΠT (x)⊥Σ1/2µ̃g‖2

F (4.236)

= ‖ΠT (x)⊥Σ1/2(µ̃g,N + µ̃g,N⊥)‖2
F

= ‖ΠT (x)⊥Σ1/2µ̃g,N‖2
F + ‖ΠT (x)⊥Σ1/2µ̃g,N⊥‖2

F (4.237)

+ 2〈ΠT (x)⊥Σ1/2µ̃g,N , ΠT (x)⊥Σ1/2µ̃g,N⊥〉F

≤ 2
(
‖ΠT (x)⊥Σ1/2µ̃g,N‖2

F + ‖ΠT (x)⊥Σ1/2µ̃g,N⊥‖2
F

)
.

The operator ΠT (x)⊥ is an orthogonal projection. Then by (4.235)

‖ΠT (x)⊥Σ1/2µ̃g,N⊥‖2
F ≤ ‖Σ1/2µ̃g,N⊥‖2

F ≤ σN+1. (4.238)

Moreover
∀n ∈ [N], Σ1/2eFn =

√
σneFn . (4.239)

Thus

ΠT (x)⊥Σ1/2µ̃g,N = ΠT (x)⊥ ∑
n∈[N]

√
σn〈µ̃g, eFn 〉F eFn = ∑

n∈[N]

〈µ̃g, eFn 〉F
√

σnΠT (x)⊥eFn .

(4.240)
Then

‖ΠT (x)⊥Σ1/2µ̃g,N‖2
F = ‖ ∑

n∈[N]

〈µ̃g, eFn 〉F
√

σnΠT (x)⊥eFn ‖2
F (4.241)

= ∑
n∈[N]

∑
m∈[N]

〈µ̃g, eFn 〉F 〈µ̃g, eFm 〉F
√

σn
√

σm〈ΠT (x)⊥eFn , ΠT (x)⊥eFm 〉F

≤ ∑
n∈[N]

∑
m∈[N]

〈µ̃g, eFn 〉F 〈µ̃g, eFm 〉F
√

σn
√

σm‖ΠT (x)⊥eFn ‖F‖ΠT (x)⊥eFm‖F

≤
(

∑
n∈[N]

∑
m∈[N]

|〈µ̃g, eFn 〉F | · |〈µ̃g, eFm 〉F |
)

max
n∈[N]

σn‖ΠT (x)⊥eFn ‖2
F

≤
(

∑
n∈[N]

|〈µ̃g, eFn 〉F |
)2

max
n∈[N]

σn‖ΠT (x)⊥eFn ‖2
F . (4.242)

Remarking that ‖g‖dω,1 = ∑
n∈[N]

|〈µ̃g, eFn 〉F | concludes the proof of (4.148) and therefore

Lemma 4.1.

4.6.5 Proof of Proposition 4.8

Proposition 4.8 gives an upper bound to the term max
n∈[N]

σn‖ΠT (x)⊥eFn ‖2
F that appears

in Lemma 4.1. We first prove a technical result, Lemma 4.4, and then combine it with
Proposition 4.10 to finish the proof. We conclude with the proof of Proposition 4.10.
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A preliminary lemma

Let x = (x1, . . . , xN) ∈ X N . Recall that K(x) = (k(xi, xj))1≤i,j≤N and denote similarly
K̃(x) = (k̃(xi, xj))1≤i,j≤N . In the following, we define

∆Fn (x) = eFn (x)ᵀK(x)−1eFn (x) (4.243)

∆F̃n (x) = eF̃n (x)ᵀK̃(x)−1eF̃n (x) (4.244)

Lemma 4.4 below shows that each term of the form ∆Fn (x) measures the squared
norm of the projection of eFn on T (x). The same holds for ∆F̃n (x) and the projection of
eF̃n onto T̃ (x).

Indeed, ‖ΠT (x)⊥eFn ‖2
F = 1− ‖ΠT (x)e

F
n ‖2
F since ‖eFn ‖2

F = 1. Thus it is sufficient to
prove that ‖ΠT (x)eFn ‖2

F = ∆Fn (x).

Lemma 4.4. For n ∈N∗, let eFn (x), eF̃n (x) ∈ RN the vectors of the evaluations of eFn and eF̃n
on the elements of x respectively. Then

‖ΠT (x)⊥eFn ‖2
F = 1− ∆Fn (x), (4.245)

‖ΠT̃N(x)⊥eF̃n ‖2
F̃ = 1− ∆F̃n (x). (4.246)

We give the proof of (4.245); the proof of (4.246) follows the same lines.

Proof. Let us write
ΠT (x)e

F
n = ∑

i∈[N]

cik(xi, .), (4.247)

where the ci are the elements of the vector c = K(x)−1eFn (x). Then

‖ΠT (x)e
F
n ‖2
F = ‖ ∑

i∈[N]

cik(xi, .)‖2
F (4.248)

= cᵀK(x)c

= eFn (x)ᵀK(x)−1K(x)K(x)−1eFn (x)

= eFn (x)ᵀK(x)−1eFn (x)

= ∆Fn (x).

End of the proof of Proposition 4.8

Proof. By Lemma 4.4, the inequality (4.159) in Proposition 4.8 is equivalent to

∀n ∈ [N], σn

(
1− ∆Fn (x)

)
≤ σ1

(
1− ∆F̃n (x)

)
. (4.249)

As an intermediate remark, note that in the special case n = 1, by construction k̃− k is
positive definite kernel on X , therefore

K(x) ≺ K̃(x), (4.250)

where ≺ is the Loewner order, the partial order defined by the convex cone of positive
semi-definite matrices. Thus

K̃(x)−1 ≺ K(x)−1. (4.251)
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Noting that σ̃1 = σ1 and that

eF1 =
√

σ1e1 =
√

σ̃1e1 = eF̃1 . (4.252)

yields (4.249) for n = 1:

1− eF1 (x)ᵀK(x)−1eF1 (x) ≤ 1− eF̃1 (x)ᵀK̃(x)−1eF̃1 (x). (4.253)

For n 6= 1, the proof is much more subtle. Indeed, a naive application of the inequality
(4.251) would lead to the following inequality

1− eF̃n (x)ᵀK(x)−1eF̃n (x) ≤ 1− eF̃n (x)ᵀK̃(x)−1eF̃n (x). (4.254)

Since ∀n ∈N, eF̃n =
√

σ1/σneFn , we get

1− σ1eFn (x)ᵀK(x)−1eFn (x) ≤ 1− σneF̃n (x)ᵀK̃(x)−1eF̃n (x), (4.255)

and hence the unsatisfactory inequality

1− σ1∆Fn (x) ≤ 1− σn∆F̃n (x) (4.256)

We can prove a better inequality by applying a sequence of rank-one updates to
the kernel k to build N intermediate kernels k(`) that lead to N inequalities sharp
enough to prove (4.249) for n 6= 1. Then inequality (4.249) will result as a corollary of
Proposition 4.10 below. To this aim, we define N RKHS F̃`, 1 ≤ ` ≤ N, that interpolate
between F and F̃ . For ` ∈ [N], define the kernel k̃(`) by

k̃(`)(x, y) = ∑
m∈[`]

σ1em(x)em(y) + ∑
m≥`+1

σmem(x)em(y), (4.257)

and let F̃` the RKHS corresponding to the kernel k̃(`). For x ∈ X N , define K̃(`)(x) =
(k̃(`)(xi, xj))1≤i,j≤N . Similar to previous notations, we define as well

∆F̃`
n (x) = eF̃`

n (x)ᵀK̃(`)(x)−1eF̃`
n (x). (4.258)

Now we have the following useful proposition.

Proposition 4.10. For n ∈ [N]r {1}, we have

σn

(
1− ∆F̃n−1

n (x)
)
≤ σ1

(
1− ∆F̃n

n (x)
)

, (4.259)

and
∀ ` ∈ [N]r {1, n}, 1− ∆F̃`−1

n (x) ≤ 1− ∆F̃`
n (x). (4.260)

For ease of reading, we first show that inequality (4.249) and therefore Proposi-
tion 4.8 is easily deduced from this Proposition 4.10 and then give its proof.

Let n ∈ [N] such that n 6= 1. We first remark that F = F̃1 and use (n− 2) times
inequality (4.260) of Proposition 4.10:

σn

(
1− ∆Fn (x)

)
= σn

(
1− ∆F̃1

n (x)
)

(4.261)

≤ σn

(
1− ∆F̃n−1

n (x)
)

.
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Then we use (4.259) that is connected to the rank-one update from the kernel k(n−1) to
k(n) so that

σn

(
1− ∆F̃n−1

n (x)
)
≤ σ1

(
1− ∆F̃n

n (x)
)

. (4.262)

Then we apply (4.260) to the r.h.s. again N − n− 1 times to finally get:

σn

(
1− ∆Fn (x)

)
≤ σ1

(
1− ∆F̃N

n (x)
)

(4.263)

≤ σ1

(
1− ∆F̃n (x)

)
,

since k̃(N) = k̃ and F̃N = F̃ . This concludes the proof of the desired inequality (4.249)
and therefore of Proposition 4.8.

Proof of Proposition 4.10

Proof. (Proposition 4.10) Let n ∈ [N] r {1}, and M ∈ N such that M ≥ N. Let
A` ∈ RN×M defined by

∀(i, m) ∈ [N]× [M], (A`)i,m = eF̃`
m (xi).12 (4.264)

For ` ∈ [N] define
K̃(`)

M (x) = Aᵀ
` A`. (4.265)

Let W` ∈ RM×M the diagonal matrix defined by

W` = diag(1, ..., 1︸ ︷︷ ︸
`−1

,
√

σ1

σ`
, 1..., 1) (4.266)

Then one has the simple relation

A`+1 = A`W`, (4.267)

which prepares the use of Lemma 4.3 in Section 4.6.1. By definition of the n-th leverage
score of the matrix A, see (4.162) in Section 4.6.1,

eF̃`
n (x)ᵀK̃(`)

M (x)−1eF̃`
n (x) = eF̃`

n (x)ᵀ
(

Aᵀ
` A`

)−1 eF̃`
n (x) = τn (A`) . (4.268)

Define similarly ∆F̃`
n,M(x) = eF̃`

n (x)ᵀK̃(`)
M (x)−1eF̃`

n (x). Thanks to (4.165) of Lemma 4.3
and (4.267) and for ` = n

τn

(
An

)
= τn (An−1Wn) =

(1 + ρn)τn

(
An−1

)
1 + ρnτn

(
An−1

) , (4.269)

where ρn =
σ1

σn
− 1. Thus

1− τn

(
An

)
= 1−

(1 + ρn)τn

(
An−1

)
1 + ρnτn

(
An−1

) =
1− τn

(
An−1

)
1 + ρnτn

(
An−1

) . (4.270)

12 The matrix A` depends on x.
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Then

σ1

(
1− τn

(
An

))
= σ1

1− τn

(
An−1

)
1 + ρnτn

(
An−1

) (4.271)

= σn(1 + ρn)
1− τn

(
An−1

)
1 + ρnτn

(
An−1

)
=

1 + ρn

1 + ρnτn

(
An−1

)σn

(
1− τn

(
An−1

))
≥ σn

(
1− τn

(
An−1

))
,

since ρn ≥ 0 and τn

(
An−1

)
∈ [0, 1] thanks to (4.164). This proves that for M ∈N∗ such

that M ≥ N,
σn

(
1− ∆F̃n−1

n,M (x)
)
≤ σ1

(
1− ∆F̃n

n,M(x)
)

. (4.272)

Now,

lim
M→∞

K̃(n+1)
M (x) = K̃(n+1)(x), (4.273)

lim
M→∞

K̃(n)
M (x) = K̃(n)(x). (4.274)

Moreover the application X 7→ X−1 is continuous in GLN(R). This proves the inequal-
ity (4.259) of Proposition 4.10. To prove the inequality (4.260), we start by using (4.166):

∀` ∈ [N]r {1, n}, τn

(
A(`)

)
= τn (A`−1W`) ≤ τn

(
A`−1

)
. (4.275)

which implies that

∀` ∈ [N]r {1, n}, 1− τn

(
A`−1

)
≤ 1− τn

(
A`

)
. (4.276)

Then for M ≥ N,

∀ ` ∈ [N]r {1, n}, 1− ∆F̃`−1
n,M (x) ≤ 1− ∆F̃`

n,M(x). (4.277)

As above, we conclude the proof by considering the limit M→ ∞

∀ ` ∈ [N]r {1, n}, lim
M→∞

K̃(`)
M (x) = K̃(`)(x). (4.278)

This proves inequality (4.260) and concludes the proof of Proposition 4.10.

4.6.6 Proof of Proposition 4.6

In this section, x = (x1, . . . , xN) ∈ X N is the realization of the DPP of Theorem 4.7.
Let EF (x) = (eFi (xj))1≤i,j≤N and E(x) = (ei(xj))1≤i,j≤N , and K(x) = (k(xi, xj))1≤i,j≤N .
Moreover, let EFN = Span(eFm )m∈[N] and T (x) = Span (k(xi, .))i∈[N].

We first prove the following proposition.
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Proposition 4.11.

1
N!

∫
X N

Det K(x1, . . . , xN)⊗j∈[N] dω(xj) = ∑
T⊂N∗
|T|=N

∏
t∈T

σt. (4.279)

Proof. Let x = (x1, . . . , xN) ∈ X N . From (4.224)

Det K(x) = lim
M→∞

Det KM(x). (4.280)

Moreover,
Det KM(x) = ∑

T⊂[M],|T|=N
∏
i∈T

σi Det2(ei(xj))(i,j)∈T×[N]. (4.281)

Now, for T ⊂ [M] such that |T| = N, (et)t∈T is an orthonormal family of L2(dω), then
by Hough et al., 2006 Lemma 21:∫

X N
Det2(et(xj))⊗j∈[N] dω(xj) = N!. (4.282)

Thus

1
N!

∫
X N

Det KM(x)⊗j∈[N] dω(xj) =
1

N! ∑
T⊂[M],|T|=N

∏
t∈T

σt

∫
X N

Det2(et(xj))⊗j∈[N] dω(xj)

(4.283)

= ∑
T⊂[M],|T|=N

∏
t∈T

σt.

Now, ∑
n∈N∗

σn < ∞ implies that ∑
T⊂N∗,|T|=N

∏
t∈T

σt < ∞. In fact, for ` ∈ [N] let p` the `-th

symmetric polynomial. By Maclaurin’s inequality (Steele, 2004), and for any vector
ν ∈ RM

+ (
p`(ν)
(M
` )

) 1
`

≤ p1(ν)

M
. (4.284)

Thus

p`(ν) ≤
(M
` )

M`
p1(ν)

` (4.285)

≤ M!
`!(M− `)!M`

p1(ν)
`

≤ M(M− 1) . . . (M− `+ 1)
`!M`

p1(ν)
`

≤ 1
`!

p1(ν)
`.

This inequality is independent of the dimension M thus it can be extended for ν ∈ RN∗
+

with ∑
n∈N∗

νn < ∞. Therefore

∑
T⊂N∗,|T|=N

∏
t∈T

σt ≤
1

N!
( ∑

n∈N∗
σn)

N < ∞. (4.286)
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Furthermore,

∀M ∈N∗, ∀x ∈ X N , 0 ≤ Det KM(x) ≤ Det KM+1,N(x). (4.287)

Then by monotone convergence theorem, x 7→ 1
N!

Det K(x) is mesurable and

∫
X N

1
N!

Det K(x)⊗j∈[N] dω(xj) = lim
M→∞

∫
X N

1
N!

Det KM(x)⊗j∈[N] dω(xj) (4.288)

= lim
M→∞

∑
T⊂[M],|T|=N

∏
t∈T

σt

= ∑
T⊂N∗,|T|=N

∏
t∈T

σt.

End of the proof of Proposition 4.6

Proof. Remember that under the distribution of the projection DPP of kernel K

P (Det E(x) 6= 0) = 1. (4.289)

Then by Proposition 4.5 and the fact that Det2 EF (x) = ∏
n∈[N]

σn Det2 E(x)

∏
`∈[N]

1
cos2 θ`

(
EFN , T (x)

) =
Det K(x)

Det2 EF (x)
=

1
∏

n∈[N]
σn

Det K(x)
Det2 E(x)

. (4.290)

Then, taking the expectation with respect to x resulting from a DPP of kernel K

EDPP ∏
`∈[N]

1
cos2 θ`

(
EFN , T (x)

) =
1

N!

∫
X N

Det2 E(x) ∏
`∈[N]

1
cos2 θ`

(
EFN , T (x)

) ⊗N
i=1 dω(xi)

(4.291)

=
1

N!

∫
X N

Det2 E(x)
1

∏
n∈[N]

σn

Det K(x)
Det2 E(x)

⊗N
i=1 dω(xi)

=
1

∏
n∈[N]

σn

1
N!

∫
X N

Det K(x)⊗N
i=1 dω(xi).

Now, by Lemma 4.11

1
N!

∫
X N

Det K(x)⊗N
i=1 dω(xi) = ∑

T⊂N∗
|T|=N

∏
t∈T

σt. (4.292)

Therefore,

EDPP ∏
`∈[N]

1
cos2 θ`

(
EFN , T (x)

) = ∑
T⊂N∗
|T|=N

∏
t∈T

σt

∏
n∈[N]

σn
. (4.293)
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4.6.7 Proof of Theorem 4.7

Proof. Thanks to Proposition 4.8 and Lemma 4.2 (for F̃ and k̃)

max
n∈[N]

σn‖ΠT (x)⊥eFn ‖2
F ≤ σ1 · max

n∈[N]
‖ΠT̃ (x)⊥eF̃n ‖2

F̃ (4.294)

≤ σ1 ·
(

∏
n∈[N]

1

cos2 θn(T̃ (x), E F̃N )
− 1

)
. (4.295)

Then Proposition 4.6 applied to F̃ with kernel k̃ yields

EDPP ∏
n∈[N]

1

cos2 θn

(
E F̃N , T̃N(x)

) = ∑
T⊂N∗
|T|=N

∏
t∈T

σ̃t

∏
n∈[N]

σ̃n
. (4.296)

Every subset T ⊂ N∗ such that |T| = N can be written as T = V ∪W with V ⊂ [N]

and W ⊂N∗ r [N], and this decomposition is unique. Then

∏
t∈T

σ̃t

∏
n∈[N]

σ̃n
=

∏
v∈V

σ̃v ∏
w∈W

σ̃w

∏
n∈[N]

σ̃n
=

∏
w∈W

σ̃w

∏
n∈[N]rV

σ̃n
. (4.297)

Therefore

∑
T⊂N∗
|T|=N

∏
t∈T

σ̃t

∏
n∈[N]

σ̃n
= ∑

T⊂N∗
|T|=N

T=V∪W

∏
w∈W

σ̃w

∏
n∈[N]rV

σ̃n
(4.298)

= ∑
V⊂[N]

∑
W⊂N∗r[N]
|W|=N−|V|

∏
w∈W

σ̃w

∏
n∈[N]rV

σ̃n

= ∑
0≤`≤N

[
∑

V⊂[N]
|V|=`

∏
n∈[N]rV

1
σ̃n

][
∑

W⊂N∗r[N]
|W|=N−`

∏
w∈W

σ̃w

]

= ∑
0≤`≤N

[
∑

V⊂[N]
|V|=N−`

∏
n∈V

1
σ̃n

][
∑

W⊂N∗r[N]
|W|=N−`

∏
w∈W

σ̃w

]

= ∑
0≤`≤N

pN−`

((
1

σ̃m

)
m∈[N]

)
pN−` ((σ̃m)m≥N+1)

= ∑
0≤`≤N

p`

((
1

σ̃m

)
m∈[N]

)
p` ((σ̃m)m≥N+1) ,

where for ` ∈ [N], p` is the `-th symmetric polynomial with the convention that p0 = 1.



154 kernel quadrature using dpps

Finally, thanks to (4.285) above

∑
T⊂N∗
|T|=N

∏
t∈T

σ̃t

∏
n∈[N]

σ̃n
≤ 1 + ∑

`∈[N]

1
`!2

(
∑

m∈[N]

1
σ̃m

∑
m≥N+1

σ̃m

)`

(4.299)

≤ 1 + ∑
`∈[N]

1
`!2

(
N
σ1

∑
m≥N+1

σm

)`

.

As a consequence, by writing rN = ∑
m≥N+1

σm,

EDPP

[
max
n∈[N]

σn‖ΠT (x)⊥eFn ‖2
F

]
≤ σ1 ·

N

∑
`=1

1
`!2

(
NrN

σ1

)`

(4.300)

which can be plugged in Lemma 4.1 to conclude the proof.

4.6.8 The proof of Theorem 4.8 and Proposition 4.7

The proof of Theorem 4.8 follows the same steps as the proof of Theorem 4.7 with the
exception that we use Proposition 4.7 instead of Proposition 4.6 (for F̃ and k̃).

Proof of Proposition 4.7

Our objective in this section is to give a tractable expression of

EDPP ∑
`∈[N]

1

cos2 θ`

(
EFN , T (x)

) . (4.301)

Let x = (x1, . . . , xN) ∈ X N such that Det2 E(x) > 0, and consider the characteristic
polynomial of the matrix EF (x)ᵀ

−1
K(x)EF (x)−1

χx(t) = Det
(

EF (x)ᵀ
−1

K(x)EF (x)−1 − tIN

)
∈ RN [t]. (4.302)

By Proposition 4.5, the roots of χx(t) are the 1/ cos2 θn
(
T (x), EFN

)
for n ∈ [N].

Now, for any polynomial P ∈ RN [t], denote by an(P) its coefficients

P(t) =
N

∑
n=0

an(P)tn. (4.303)

Then by Vieta’s formula,

aN−1(χx(t)) = (−1)N−1 Tr
(

EF (x)ᵀ
−1

K(x)EF (x)−1
)

. (4.304)

Therefore,

Ik,N = EDPP Tr
(

EF (x)ᵀ
−1

K(x)EF (x)−1
)

= (−1)N−1 EDPP aN−1(χx(t))

= (−1)N−1aN−1(EDPP χx(t)), (4.305)
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where EDPP χx(t) is the expected characteristic polynomial. Therefore, in order to
calculate Ik,N , it is sufficient to calculate EDPP χx(t). Since EDPP χx(t) is a polynomial,
it is completely determined in the interval [−1/2, 1/2] 13.

Now, let t ∈ [−1/2, 1/2]

EDPP χx(t) =
1

N!

∫
X N

Det2 E(x)Det
(

EF (x)ᵀ
−1

K(x)EF (x)−1 − tIN

)
⊗j∈[N] dω(xj)

=
1

N! ∏
n∈[N]

σn

∫
X N

Det2 EF (x)Det
(

EF (x)ᵀ
−1

K(x)EF (x)−1 − tIN

)
⊗j∈[N] dω(xj)

=
1

N! ∏
n∈[N]

σn

∫
X N

Det
(

K(x)− tEF (x)ᵀEF (x)
)
⊗j∈[N] dω(xj). (4.306)

Now, define the kernel kt

kt(x, y) = k(x, y)− t ∑
n∈[N]

σnen(x)en(y). (4.307)

Then
EDPP χx(t) =

1
N! ∏

n∈[N]
σn

∫
X N

Det
(
Kt(x)

)
⊗j∈[N] dω(xj). (4.308)

Since, t ∈ [−1/2, 1/2], kt defines a positive-definite kernel and we can apply
Lemma 4.11

φ(t) = N! ∑
U⊂N∗
|U|=N

∏
u∈U

σu(t), (4.309)

where the σu(t) are the eigenvalues of the integration operator corresponding to the
kernel kt with respect to the measure dω:

σu(t) = σu − 1[N](u)σut. (4.310)

Now, every subset U ⊂ N∗ such that |U| = N can be written as U = V ∪W with
V ⊂ [N] and W ⊂N∗ r [N], and this decomposition is unique. Then

∏
u∈U

σu(t) = ∏
v∈V

σv(t) ∏
w∈W

σw(t). (4.311)

Therefore

∑
U⊂N∗
|U|=N

∏
u∈U

σu(t) = ∑
U⊂N∗
|U|=N

U=V∪W

∏
v∈V

σv(t) ∏
w∈W

σw(t) (4.312)

= ∑
V⊂[N]

∑
W⊂N∗r[N]
|W|=N−|V|

∏
v∈V

σv(t) ∏
w∈W

σw(t)

= ∑
V⊂[N]

∑
W⊂N∗r[N]
|W|=N−|V|

(∏
v∈V

σv)(1− t)|V|( ∏
w∈W

σw)

=
N

∑
`=0

(1− t)` ∑
V⊂[N]
|V|=`

∏
v∈V

σv ∑
W⊂N∗r[N]
|W|=N−|V|

∏
w∈W

σw. (4.313)

13 The reason behind this choice will appear later



156 kernel quadrature using dpps

Finally,

EDPP γx(t) =
1

∏
n∈[N]

σn

N

∑
`=0

(1− t)` ∑
V⊂[N]
|V|=`

∏
v∈V

σv ∑
W⊂N∗r[N]
|W|=N−|V|

∏
w∈W

σw. (4.314)

Remember that for any polynomial P ∈ RN [t],

an−1(P) =
1

(N − 1)!
P(n−1)(0). (4.315)

Now,

EDPP γx(t) =
1

∏
n∈[N]

σn

[
(1− t)N ∑

V⊂[N]
|V|=N

∏
v∈V

σv + (1− t)N−1 ∑
V⊂[N]
|V|=N−1

∏
v∈V

σv ∑
w∈N∗r[N]

σw

]
+ p(t),

(4.316)

where p is a polynomial of degree smaller than N − 2. Therefore

aN−1(EDPP γx(t)) =
(−1)N−1

∏
v∈[N]

σv

N ∏
v∈[N]

σv + ∑
V⊂[N]
|V|=N−1

∏
v∈V

σv ∑
w∈N∗r[N]

σw

 . (4.317)

Finally, we get

EDPP Tr
(

EF (x)ᵀ
−1

K(x)EF (x)−1
)
= (−1)N−1aN−1(EDPP γx(t)) (4.318)

=
1

∏
v∈[N]

σv

N ∏
v∈[N]

σv + ∑
V⊂[N]
|V|=N−1

∏
v∈V

σv ∑
w∈N∗r[N]

σw


= N + ∑

V⊂[N]
|V|=N−1

1
σv

∑
w∈N∗r[N]

σw. (4.319)
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K E R N E L I N T E R P O L AT I O N U S I N G V O L U M E S A M P L I N G

5.1 introduction

In this chapter, we propose and analyze the interpolation based on a random design
drawn from a distribution called continuous volume sampling, which favors designs
x with a large value of Det K(x). After introducing this new distribution, we prove
non-asymptotic guarantees on the interpolation error which depend on the spectrum of
the kernel k. We show here that continuous volume sampling enjoys error bounds that
scale as lower bounds, as well as some additional interpretable geometric properties,
while having a joint density that can be evaluated as soon as one can evaluate the
RKHS kernel k. In particular, this opens the possibility of Markov chain Monte Carlo
samplers (Rezaei and Gharan, 2019). This is to be compared with the projection DPP
introduced in Chapter 4 that requires access to the Mercer decomposition of k.

As we have seen in Chapter 3, volume sampling has been used in matrix subsam-
pling for linear regression and low-rank approximations. Like Chapter 4, this chapter
connects the discrete problem of sub-sampling from a matrix and the continuous
problem of interpolating functions in an RKHS.

The rest of the chapter is organized as follows. Section 5.2 reviews kernel-based
interpolation. In Section 5.3, we define continuous volume sampling and relate it to
projection determinantal point processes. Section 5.4 contains our main results while
Section 5.5 contains sketches of all proofs with pointers to the Section 5.8 for the details
of the proofs. Section 5.6 numerically illustrates our main result. We conclude this
chapter in Section 5.7.

The material of this chapter is based on the following article

• A. Belhadji, R. Bardenet, and P. Chainais (2020b). “Kernel interpolation with
continuous volume sampling”. In: Proceedings of the 37th International Conference
on Machine Learning, pp. 725–735.

notation and assumptions . We keep the same notation as Chapter 4.
For N ∈N*, we will often sum over the sets

Um
N = {U ⊂N*, |U| = N, m /∈ U}, (5.1)

UN = {U ⊂N*, |U| = N}. (5.2)

Finally, define the approximation error

E(µ; x, w) = ‖µ− ∑
i∈[N]

wik(xi, .)‖F , (5.3)
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where [N] = {1, . . . , N}. If Det K(x) > 0, let ŵ = K(x)−1µ(x) and define the interpola-
tion error

E(µ; x) = ‖µ− ∑
i∈[N]

ŵik(xi, .)‖F (5.4)

= ‖µ−ΠT (x)µ‖F . (5.5)

Finally, we keep the assumptions

Assumption 5.1. dω is a non-degenerate measure, i.e. the support of dω is equal to X .

Assumption 5.2. k is continuous with respect to the product topology of X ×X .

Assumption 5.3. x 7→ k(x, x) is integrable with respect to dω so that F ⊂ L2(dω).

5.2 three topics on kernel interpolation

The literature on kernel interpolation is prolific and cannot be covered in details in this
chapter. This section reviews three topics on this field to better situate our contributions.

5.2.1 Kernel interpolation beyond embeddings

Besides the approximation of the embeddings µg discussed in Section 4.2.5, theoretical
guarantees for the kernel interpolation of a general µ ∈ F are sought per se. The
Shannon reconstruction formula for bandlimited signals (Shannon, 1948) is implicitly an
interpolation by the sinc kernel. The RKHS approach for sampling in signal processing
was introduced in (Yao, 1967) for the Hilbert space of bandlimited signals; see also
(Nashed and Walter, 1991) for generalizations. Remarkably, in those RKHSs, every
µ ∈ F is an embedding µg for some g ∈ L2(dω): k is a projection kernel of infinite
rank. In general, for a trace-class kernel, the subspace spanned by the embeddings µg

is strictly included in F . More precisely, every µg satisfies

‖Σ−1/2µg‖F = ‖Σ1/2g‖F = ‖g‖L2(dω) < +∞.

This condition is more restrictive than what is required for a generic µ to belong to
F , i.e., ‖µ‖F < +∞, so that kernel interpolation is more general than optimal kernel
quadrature. Compared to Chapter 4 where we focused on kernel interpolation of the
embeddings µg, we study in this chapter kernel interpolation for any µ ∈ F .

5.2.2 Optimization algorithms

Optimization approaches offer a variety of algorithms for the design of the interpolation
nodes. De Marchi, 2003 and De Marchi et al., 2005 proposed greedily maximizing the
so-called power function

p(x; x) =
[
k(x, x)− kx(x)ᵀK(x)−1kx(x)

]1/2
, (5.6)

where kx(x) = (k(x, xi))i∈[N]. This algorithm leads to an interpolation error that
goes to zero with N for a kernel of class C2 (De Marchi et al., 2005). Later, Santin
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and Haasdonk, 2017 proved better convergence rates for smoother kernels. Again,
these results assume that the domain X is compact. Other greedy algorithms were
proposed in the context of Bayesian quadrature (BQ) such as Sequential BQ (Huszár and
Duvenaud, 2012), or Frank-Wolfe BQ (Briol et al., 2015). These algorithms sequentially
minimize E(µg; x), for a fixed g ∈ L2(dω). The nodes are thus adapted to one particular
µg by construction. In general, each step of these greedy algorithms requires to solve
a non-convex problem with many local minima (Oettershagen, 2017)[Chapter 5]. In
practice, costly approximations must be employed such as local search in a random
grid (Lacoste-Julien et al., 2015).

An alternative approach, that is very related to our contribution and has raised
a lot of recent interest, is to observe that the squared power function (5.6) can be
upper bounded by the inverse of Det K(x) (Schaback, 2005; Tanaka, 2019). Designs
that maximize Det K(x) are called Fekete points; see e.g. (Bos and Maier, 2002; Bos
and De Marchi, 2011). Tanaka, 2019 proposed to approximate Det K(x) using the
Mercer decomposition of k, followed by a rounding of the solution of a D-experimental
design problem, yet without a theoretical analysis of the interpolation error. Karvonen
et al., 2019 proved that for the uni-dimensional Gaussian kernel, the approximate
objective function of (Tanaka, 2019) is actually convex. Moreover, Karvonen et al., 2019

analyze their interpolation error; see also Section 5.4.2. Finally, we emphasize that these
algorithms require the knowledge of a Mercer-type decomposition of k so that they
cannot be implemented for any kernel; moreover, the approximate objective function
may be non-convex in general.

Table 5.1 puts in perspective our work compared to the optimization approaches:
the projection DPP of Chapter 4 is the stochastic version of approximate Fekete points,
continuous volume sampling of this chapter is the stochastic version of Fekete points.

Objective function / Approach Optimization Sampling
Det2 EN(x) Approximate Fekete points Projection DPP

(Karvonen et al., 2019) (Belhadji et al., 2019a)
Det K(x) Fekete points CVS

(Tanaka, 2019) (Belhadji et al., 2020b)

Table 5.1 – The determinantal approaches for the construction of kernel interpolation nodes.

5.2.3 Lower bounds

When investigating upper bounds for kernel interpolation errors, it is useful to remem-
ber existing lower bounds, so as to evaluate the tightness of one’s results. In particular,
N-widths theory (Pinkus, 2012) implies lower bounds for kernel interpolation errors,
which once again show the importance of the spectrum of Σ.

The N-width of S = {µg = Σg, ‖g‖L2(dω) ≤ 1} with respect to the couple
(L2(dω),F ) (Pinkus, 2012, Chapter 1.7) is defined as the square root of

dN(S)2 = inf
Y⊂F

dimY=N

sup
‖g‖dω≤1

inf
y∈Y
‖Σg− y‖2

F .
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In interpolation, we do use a subspace Y ⊂ F spanned by N independent functions
k(xi, .), so that

sup
‖g‖dω≤1

E(Σg; x)2 ≥ dN(S)2. (5.7)

Applying (Pinkus, 2012, Theorem 2.2, Chapter 4) to the adjoint of the embedding
operator IF : F → L2(dω), it comes dN(S)2 = σN+1. One may object that some
QMC sequences seem to breach this lower bound. For example, in the Korobov space
(d = 2, s ≥ 1), σN+1 = O(log(N)2sN−2s) (Bach, 2017), while the interpolation of µg

with g = 1 using a Fibonacci lattice leads to an error in O(log(N)N−2s) = o(σN+1)

(Bilyk et al., 2012)[Theorem 4]. But this is the rate for one particular µg, and it cannot
be achieved uniformly in g.

5.3 volume sampling and dpps

In this section, we introduce the continuous volume sampling (VS) and compare it to
projection DPPs.

5.3.1 Continuous volume sampling

Definition 5.1 (Continuous volume sampling). Let N ∈N∗ and x = {x1, . . . , xN} ⊂ X .
We say that x follows the volume sampling distribution, if (x1, . . . , xN) is a random variable
of X N , the law of which is absolutely continuous with respect to ⊗i∈[N]dω, and the density
writes

fVS(x1, . . . , xN) ∝ Det K(x). (5.8)

Two remarks are in order. First, under Assumption 5.3, the density fVS in (5.8)
indeed integrates to 1. Indeed, Hadamard’s inequality yields

∫
X N

Det K(x)⊗i∈[N] dω(xi) ≤
∫
X N ∏

i∈[N]

k(xi, xi)⊗ dω(xi)

=

(∫
X

k(x, x)dω(x)
)N

< +∞.

Second, the determinant in (5.8) is invariant to permutations, so that continuous
volume sampling can indeed be seen as defining a random set x = {x1, . . . , xN}.

In the following, we denote, for any symmetric and continuous kernel k̃ satisfying
Assumption 5.3,

ZN(k̃) :=
∫
X N

Det K̃(x)⊗ dω(xi). (5.9)

5.3.2 Continuous volume sampling as a mixture of DPPs

In the following result, we show that continuous volume sampling is a mixture of
projection DPPs. This is an extension of Theorem 2.2 to continuous domain.
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Proposition 5.1. For U ⊂N∗ define the projection kernel

KU(x, y) = ∑
u∈U

eu(x)eu(y). (5.10)

For N ∈N∗, we have

fVS(x1, . . . , xN) ∝ ∑
U∈ UN

∏
u∈U

σu Det(KU(xi, xj))(i,j), (5.11)

and the normalization constant is equal to

ZN(k) = N! ∑
U∈UN

∏
u∈U

σu. (5.12)

In other words, fVS is a mixture of the projection DPPs associated to the kernels KU

and the reference measure dω.
The proof of this proposition is given in Section 5.8.2.
The largest weight in the mixture (5.11) corresponds to the projection DPP of kernel

K[N] proposed in Chapter 4. The following lemma gives an upper bound on this
maximal weight using the eigenvalues of Σ.

Proposition 5.2. For N ∈N*, define

δN = ∏
n∈[N]

σn

/
∑

U∈ UN

∏
u∈U

σu. (5.13)

Then for all N ∈N*, δN ≤ σN/rN .

In particular, if the eigenvalues of Σ decreases polynomially, then δN = O(1/N),
so that as N grows, continuous volume sampling is becoming more and more dif-
ferent from the projection DPP of Chapter 4. In contrast, if the eigenvalues decays
exponentially, then δN = O(1).

5.3.3 Numerical simulation

A projection DPP can be sampled exactly using the HKPV algorithm as long as one can
evaluate the corresponding projection kernel; see Section 2.2.5. This suggests using the
mixture in Proposition 5.1 to implement continuous volume sampling. Yet, such an
algorithm requires explicit knowledge of the Mercer decomposition of the kernel or
at least a decomposition onto an orthonormal basis of F as in (Karvonen et al., 2019).
This is a strong requirement that is undesirable in practice.

The fact that the value of Det K(x) only depends on the pointwise evaluation of
k suggests that continuous volume sampling is fully kernelized, in the sense that a
sampling algorithm should be able to bypass the need for a decomposition of the
kernel. One could proceed by rejection sampling. Yet the acceptance ratio would likely
scale poorly with N.

An alternative solution would be to use a variant of the HKPV algorithm to approx-
imate the continuous volume sampling distribution. Indeed we have for x ∈ X N such
that Det K(x) > 0 and k(x1, x1) > 0

Det K(x) = k(x1, x1)×
Det K({x1, x2})

k(x1, x1)
× · · · × Det K(x)

Det K(x r {xN})
= p(x1; ∅)× p(x2; {x1})× · · · × p(xN ; {x1, . . . , xN−1}), (5.14)
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A-HKPV
(
k, dω

)
1 n←− 1

2 µ(x) ∝ p(x; ∅)dω(x) . Initialize the distribution

3 x←− ∅

4 while n ≤ N

5 Pick xn in X from µ . Sample from the distribution

6 x←− x ∪ {xn}
7 n←− n + 1

8 µ(x) ∝ p(x; x)dω(x) . Update the distribution

9 return x

Figure 5.1 – Pseudocode of approximate continuous volume sampling based on a variant of the
HKPV.

where p is the power function defined in (5.6). Algorithm 5.1 proposed in (Rezaei
and Gharan, 2019) uses this decomposition to approximate continuous volume sampling.
The output of the algorithm follows a density f̃VS with respect to ∏n∈[N] dω(xn) that
satisfies (Rezaei and Gharan, 2019)[Lemma 4.4]

∀(x1, . . . , xN) ∈ X N , f̃VS(x1, . . . , xN) ≤ N!2 fVS(x1, . . . , xN). (5.15)

This bound is irrelevant for large values of N. In other words, the approximation of
continuous volume sampling by the Algorithm 5.1 is very loose. Note however that
f̃VS = fVS if k is a projection kernel that defines an integration operator of rank N:
Algorithm 5.1 coincides with Algorithm 2.5 in this case.

A workaround would be to use f̃VS as the density of the initial state of an MCMC
sampler proposed in (Rezaei and Gharan, 2019). This MCMC algorithm is based
on a Gibbs sampler chain: given a state x = {x1, . . . , xN}, remove a node xn chosen
uniformly at random and add a node y with a probability proportional to Det K(x′)
where x′ = {x1, . . . , xn−1, y, xn+1, . . . , xN}.

For this Markov chain, the authors were able to derive bounds for the mixing time:

τP0(η) = min{t| ‖Pt − PVS‖TV ≤ η},

where ‖.‖TV is the total variation distance, Pt is the distribution of the Markov chain after
t steps and PVS is the distribution of the continuous volume sampling. In particular,
they proved that the mixing time scales as O(N5 log(N)). They also proved bounds on
the expected number of rejections, which shows the feasibility of the implementation
of the Gibbs steps. This sequential algorithm can be implemented in fully kernelized
way without the need for the Mercer decomposition of k.

The power function: between optimization and sampling.

As we have seen in Section 5.2.2, the sequential maximization of the power function
was studied in the literature. The numerical implementation of this algorithm relies on
solving the optimization problem

max
x∈X

p(x; x), (5.16)
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for an arbitrary configuration x ⊂ X . Unfortunately, (5.16) is a non-convex problem
with many local maxima; see Figure 5.2 for an illustration on the periodic Sobolev
spaces of orders s ∈ {1, 3, 5}. In practice, (5.16) may be replaced by the surrogate
problem

max
x∈X̃

p(x; x), (5.17)

where X̃ is a large finite subset of X . However, these heuristics do not scale to high-
dimensional domains. An alternative strategy would be to replace the optimization
step (5.16) by the sampling step

x ∼ p(x; x). (5.18)

We can observe that selecting the nodes sequentially using (5.18) is equivalent to
running Algorithm in Figure 5.1. Now, the implementation of (5.18) is possible via
rejection sampling.

Indeed, by observing that

∀x ∈ X , p(x; x) ≤ k(x, x), (5.19)

we may use

x 7→ 1∫
X

k(x, x)dω(x)
k(x, x) (5.20)

as a proposal.
Interestingly, if X ⊂ Rd is bounded and k is translation invariant, then the expected

number of rejections scales as O(1/ ∑+∞
n=N+1 σn), where N is the cardinality of the

configuration x (Rezaei and Gharan, 2019)[Lemma 5.3]. In other words, the complexity 1

of the step (5.18) using the proposal (5.20) increases as N increases. Moreover, for a
fixed value of N, the smoother the kernel, the higher the complexity of the step (5.18).
Figure 5.2 illustrates the sharpness of the bound (5.19) on the periodic Sobolev spaces
of orders s ∈ {1, 2, 3} for N ∈ {0, 1, 2, 3, 4, 5}. We observe that for a fixed value of N,
the smoother the kernel, the larger is the gap between the proposal (the diagonal of the
kernel) and the power function.

These observations suggest that the complexity of the step (5.18) decreases as the
dimension of the domain increases for a given family of kernels. To illustrate this
phenomenon, we consider the case of Korobov spaces Kd,s defined for a fixed value of
s ∈N∗. As we have seen in Section 4.2.3, the larger d, the ”richer” the spectrum of the
integration operator Σ. Therefore, for a fixed value of N, the rejection rate

Rd,s(N) = 1/
+∞

∑
n=N+1

σ
Kd,s
n (5.21)

is decreasing with respect to d. Figure 5.3 illustrates this phenomenon for s ∈ {1, 2}
and d ∈ {2, 3, 4}. We observe that R4,s(N) < R3,s(N) < R2,s(N) for the two values of
s: the larger the dimension d, the smaller the complexity of the step (5.18) using the
proposal (5.20). In other words, the algorithm in Figure 5.1, that is an approximation of
continuous volume sampling, is a viable alternative to the greedy maximization of the
power function in high dimensional domains.

1 The complexity expressed in term of the expected value of the number of rejections.
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Figure 5.2 – The power function p(x; x) in the case of the periodic Sobolev space of orders
s = 1 (left), s = 2 (middle) and s = 3 (right), compared to the diagonal of the kernel
x 7→ ks(x, x) = ks(0, 0) (the dashed line).
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Figure 5.3 – Rd,s(N) as a function of N for s = 1 (left) and s = 2 (right).

As we shall see in Section 5.4, we prove that the squared interpolation error, under
continuous volume sampling, scales as O(σN+1) for the embeddings µg. In other words,
there is a trade-off between the approximation problem (reducing the interpolation
error) and the sampling problem (reducing the complexity of sampling). We leave
investigating alternative samplers that circumvent this trade-off for future work.

5.4 main results

In this section, we give a theoretical analysis of kernel interpolation on nodes that follow
the continuous volume sampling distribution. We state our main result in Section 5.4.1,
an uniform-in-g upper bound of EVS ‖µg −ΠT (x)µg‖2

F . We give an upper bound for a
general µ ∈ F in Section 5.4.2.

5.4.1 The interpolation error for embeddings µg

The main theorem of this chapter decomposes the expected error for an embedding µg

in terms of the expected errors εm(N) for eigenfunctions of the kernel.

Theorem 5.1. Let g = ∑
m∈N*

gmem ∈ L2(dω) that satisfies ‖g‖dω ≤ 1. Then under Assump-

tion 5.3,
EVS ‖µg −ΠT (x)µg‖2

F = ∑
m∈N∗

g2
mεm(N), (5.22)

where

εm(N) = σm

∑
U∈ Um

N

∏
u∈U

σu

∑
U∈ UN

∏
u∈U

σu
. (5.23)

In particular, the sequence (εm(N))m∈N* is non-increasing and

sup
‖g‖dω≤1

EVS ‖µg −ΠT (x)µg‖2
F ≤ sup

m∈N∗
εm(N) = ε1(N). (5.24)

Moreover,
ε1(N) ≤ σN (1 + βN) , (5.25)

where βN = min
M∈[2:N]

[(N −M + 1)σN ]
−1 ∑

m≥M
σm.
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In other words, under continuous volume sampling, ε1(N) is a uniform upper
bound on the expected squared interpolation error of any embedding µg such that
‖g‖dω ≤ 1. We shall see in Section 5.5.1 that εm(N) = EVS ‖µem −ΠT (x) µem‖2

F .
Now, for N0 ∈ N*, a simple counting argument yields, for m ≥ N0, εm(N) ≤ σN0 .

Actually, for m ≥ N0, ‖µem‖2
F ≤ σN0 , independently of the nodes.

Inequality (5.25) is less trivial and makes continuous volume sampling distribution
worth of interest: the upper bound goes to 0 as N → +∞, below the initial error σN0 .
Moreover, the convergence rate is O(σN), matching the lower bound of Section 5.2.3 if
the sequence (βN)N∈N* is bounded. In the following proposition, we prove that it is
the case as soon as the spectrum decreases polynomially (e.g., Sobolev spaces of finite
smoothness) or exponentially (e.g., the Gaussian kernel).

Proposition 5.3. If σm = m−2s with s > 1/2 then

∀N ∈N*, βN ≤
(

1 +
1

2s− 1

)(
1 +

1
2s− 1

)2s−1

. (5.26)

If σm = αm, with α ∈ [0, 1[, then

∀N ∈N*, βN ≤
α

1− α
. (5.27)

In both cases, the proof uses the fact that

βN ≤ [(N −MN + 1)σN ]
−1 ∑

m≥MN

σm, (5.28)

for a well designed sequence MN . For example, if σm = m−2s, we take MN = dN/ce
with c > 1; if σm = αm we take MN = N. We give a detailed proof in Section 5.8.

For a general kernel, if an asymptotic equivalent of σN is known (Widom, 1963;
Widom, 1964; Bach, 2017), it should be possible to give an explicit construction of MN .
Indeed,

βN ≤
σMN

σN
+ [(N −MN + 1)σN ]

−1 ∑
m≥N+1

σm, (5.29)

and MN should be chosen to control both terms in the RHS. Figure 5.4 illustrates the
upper bound of Theorem 5.1 and the constant of Proposition 5.3 in case of the periodic
Sobolev space of order s = 3. We observe that EVS E(µem ; x)2 respects the upper bound:
it starts from the initial error level σm and decreases according to the upper bound for
N ≥ m.

5.4.2 The interpolation error of any element of F

Theorem 5.1 dealt with the interpolation of an embedding µg of some function g ∈
L2(dω). We now give a bound on the interpolation error for any µ ∈ F . We need
the following assumption, which is relatively weak regarding Proposition 5.3 and the
discussion that follows.

Assumption 5.4. There exists B > 0 such that βN ≤ B.
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Figure 5.4 – The value of EVS E(µem ; x)2 for m ∈ {1, 2, 3, 4, 5} for the periodic Sobolev space of
order s = 3, compared to the theoretical upper bound (UB) of Theorem 5.1.

Theorem 5.2. Let µ ∈ F . Assume that ‖Σ−rµ‖2
F , ∑m〈µ, eFm 〉2F/σ2r

m < +∞ for some
r ∈ [0, 1/2]. Then, under Assumption 5.4,

EVS E(µ; x)2 ≤ (2 + B)σ2r
N ‖Σ−rµ‖2

F = O(σ2r
N ).

In other words, the expected interpolation error depends on the smoothness param-
eter r. For r = 1/2, we exactly recover the rate of Theorem 5.1. In contrast, for r < 1/2,
the rate O(σ2r

N ) is slower. For r = 0, our bound is constant with N. The condition
‖Σ−rµ‖F < +∞ is satisfied by the elements of the fractional space

Σr+1/2L2(dω) =
{

Σr+1/2g; g ∈ L(dω)
}

. (5.30)

These subspaces interpolate between the RKHS F (r = 0) and the subspace of the
embeddings ΣL2(dω) (r = 1/2); see Figure 5.5.

Let us comment on this bound in two classical cases. First, consider the uni-
dimensional Sobolev space of order s. Assumption 5.4 is satisfied by Proposition 5.3
and the squared error scales as O(N−4sr). Moreover, for this family of RKHSs, ‖Σ−r.‖F
can be seen as the norm in the Sobolev space of order (2r + 1)s, and we recover a
result in (Schaback and Wendland, 2006)[Theorem 7.8] for quasi-uniform designs. By
using the norm in the RKHS F of rougher functions, we upper bound the interpolation
error of µ belonging to the smoother RKHS Σr F . Second, we emphasize again that
our result is agnostic to the choice of the kernel, as long as Assumption 5.4 holds. In
particular, Theorem 5.2 applies to the Gaussian kernel: the rate is slower O(σ2r

N ) yet
still exponential. Finally, recall that for f ∈ F

| f (x)|2 = |〈 f , k(x, .)〉F |2 ≤ ‖ f ‖2
F k(x, x), (5.31)

so that, bounds on the RKHS norm imply bounds on the uniform norm if the kernel
k is bounded. Therefore, for r ∈ [0, 1/2], our result improves on the rate O(N2σ2r

N ) of
approximate Fekete points (Karvonen et al., 2019).
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L2(dω)

Σ1/2L2(dω)

F

Σ1/2+rL2(dω)

ΣL2(dω)

Figure 5.5 – The subspace ΣL2(dω) is a particular case of the fractional spaces Σ1/2+rL2(dω),
with r ∈ [0, 1/2], that are subspaces of the RKHS F = Σ1/2L2(dω).

5.4.3 Asymptotic unbiasedness of kernel quadrature

As explained in Chapter 4, kernel interpolation is widely used for the design of
quadratures. In that setting, one more advantage of continuous volume sampling is the
consistency of its estimator. This is the purpose of the following result.

Theorem 5.3. Let f ∈ F , and g ∈ L2(dω). Define the bias of the optimal kernel quadrature
based on nodes that follow the continuous volume sampling distribution

BN( f , g) = EVS

(∫
X

f (x)g(x)dω(x)− ∑
i∈N

ŵi f (xi)

)
, (5.32)

then
BN( f , g) = ∑

n∈N*

〈 f , en〉dω〈g, en〉dω

(
1−EVS τFn (x)

)
. (5.33)

Moreover, BN( f , g)→ 0 as N → +∞.

Compared to the upper bound on the integration error given by∣∣∣∣ ∫X f (x)g(x)dω(x)− ∑
n∈[N]

ŵn f (xn)

∣∣∣∣ ≤ ‖ f ‖F‖µg −ΠT (x)µg‖F , (5.34)

the bias term in Theorem 5.3 takes into account the interaction between f and g. For
example, if

∀n ∈N*, 〈 f , en〉dω〈g, en〉dω = 0, (5.35)

the quadrature is unbiased for every N. In particular, when g = en0 , the estimator is
unbiased for every function f ∈ e⊥n0

.
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Using Theorem 5.3 we can draw the parallel with the determinantal representation
(1.26) of the pseudo-inverse of a rectangular matrix. This parallelism is summarized in
Table 5.2.

Discrete Continuous
y µg

X Σ

[N] X
S x

w∗S ∑
n∈[N]

ŵnδxn

w∗ g
ES∼VS w∗S = w∗ lim

N→+∞
Ex∼CVS ∑

n∈[N]
ŵnδxn( f ) =

∫
X f (x)g(x)dω(x)

Table 5.2 – A parallelism between the determinantal representation (1.26) of (Ben-Tal and
Teboulle, 1990) and Theorem 5.3.

It will be interesting to investigate the implications of this (continuous) determinan-
tal representation in the field of numerical methods of linear integral equations (Kress,
1999).

5.5 sketch of the proofs

The proof of Theorem 5.1 decomposes into three steps. First, in Section 5.5.1, we
write E(µg; x)2 as a function of the square of the interpolation errors E(µem ; x)2 of the
embeddings µem . Then, in Section 5.5.2, we give closed formulas for EVS E(µem ; x)2 in
terms of the eigenvalues of Σ. Finally, the inequality (5.25) is proved using an upper
bound on the ratio of symmetric polynomials (Guruswami and Sinop, 2012). The details
are given in Section 5.8.5. Finally, The proofs of Theorem 5.2 and Theorem 5.3 are
straightforward consequences of Theorem 5.1. The details are given in Section 5.8.10

and Section 5.8.11.

5.5.1 Decomposing the interpolation error

Let x ∈ X N such that Det K(x) > 0. For m1, m2 ∈N∗, let the cross-leverage score between
m1 and m2 associated to x be

τFm1,m2
(x) = eFm1

(x)ᵀK(x)−1eFm2
(x). (5.36)

When m1 = m2 = m, we speak of the m-th leverage score2 associated to x, and simply
write τFm (x). By Lemma 5.2, the m-th leverage score is related to the interpolation error
of the m-th eigenfunction eFm . Indeed,

‖eFm −ΠT (x)e
F
m‖2
F = 1− τFm (x) ∈ [0, 1]. (5.37)

2 Our definition is consistent with the leverage scores used in matrix subsampling (Drineas et al.,
2006). Loosely speaking, τFm (x) is the leverage score of the m-th column of the semi-infinite matrix
(eFn (xi))(i,n)∈[N]×N* .
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Similarly, for the cross-leverage score,

〈ΠT (x)e
F
m1

, ΠT (x)e
F
m2
〉F = τFm1,m2

(x) ∈ [−1, 1]. (5.38)

For g ∈ L2(dω), the interpolation error of the embedding µg can be expressed
using the (cross-)leverage scores.

Lemma 5.1. If Det K(x) > 0, then,

E(µg; x)2 = ∑
m∈N∗

g2
mσn

(
1− τFm (x)

)
− ∑

m1 6=m2∈N∗
gm1 gm2

√
σm1

√
σm2 τFm1,m2

(x). (5.39)

In particular, with probability one, a configuration x sampled from the continuous
volume sampling distribution in Definition 5.1 satisfies (5.39). Furthermore, we shall
see that the expected value of the (cross-) leverage scores has a simple expression.

5.5.2 Explicit formulas for expected leverage scores

Proposition 5.4 expresses expected leverage scores in terms of the spectrum of the
integration operator.

Proposition 5.4. For m ∈ N∗,

EVS τFm (x) =
1

∑
U∈ UN

∏
u∈U

σu
∑

U∈ UN
m∈U

∏
u∈U

σu. (5.40)

Moreover, for m1, m2 ∈N∗ such that m1 6= m2, we have

EVS τFm1,m2
(x) = 0. (5.41)

In Section 5.8.5, we combine Lemma 5.1 with Proposition 5.4. This concludes the
proof of Theorem 5.1 by Beppo Levi’s monotone convergence theorem.

It remains to prove Proposition 5.4. Again, we proceed in two steps. First, our
Proposition 5.5 yields a characterization of EVS τFm (x) and EVS τFm1,m2

(x) in terms of
the spectrum of three perturbed versions of the integration operator Σ. Second, we
give explicit forms of these spectra in Proposition 5.6 below. The idea is to express
EVS τm(x)F as the normalization constant (5.12) of a perturbation of the kernel k. The
same goes for EVS τFm1,m2

(x).
Let t ∈ R+ and Σt, Σ+

t and Σ−t be the integration operators3 on L2(dω), respectively
associated to the kernels

kt(x, y) = k(x, y) + teFm (x)eFm (y), (5.42)

k+t (x, y) = k(x, y) + t
(

eFm1
(x) + eFm2

(x)
) (

eFm1
(y) + eFm2

(y)
)

, (5.43)

k−t (x, y) = k(x, y) + t
(

eFm1
(x)− eFm2

(x)
) (

eFm1
(y)− eFm2

(y)
)

. (5.44)

3 We drop from the notation the dependencies on m, m1 and m2 for simplicity.
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By Assumption 5.3, and by the fact that (em)m∈N* is an orthonormal basis of L2(dω),
all three kernels also have integrable diagonals (see Assumption 5.3). In particular,
they define RKHSs that can be embedded in L2(dω). Moreover, recalling the definition
(5.12) of the normalization constant ZN of continuous volume sampling, the following
quantities are finite

φm(t) =
1

N!
ZN(kt), φ+

m1,m2
(t) =

1
N!

ZN(k+t ), and φ−m1,m2
(t) =

1
N!

ZN(k−t ). (5.45)

Remember that by Proposition 5.1,

φm(t) = N! ∑
U∈ UN

∏
u ∈U

σ̃u(t), (5.46)

where {σ̃u(t), u ∈N*} is the set of eigenvalues4 of Σt. Similar identities are valid for
φ+

m1,m2
(t) and φ−m1,m2

(t) with the eigenvalues of Σ+
t and Σ−t respectively.

Proposition 5.5. The functions φm, φ+
m1,m2

and φ−m1,m2
are right differentiable in zero. Further-

more,

EVS τFm (x) =
1

ZN(k)
∂φm

∂t

∣∣∣∣
t=0+

,

and

EVS τFm1,m2
(x) =

1
4ZN(k)

(
∂φ+

m1,m2

∂t
−

∂φ−m1,m2

∂t

)∣∣∣∣
t=0+

.

The details of the proof are postponed to Section 5.8.8. We complete this proposition
with a description of the spectrum of the operators Σt, Σ+

t and Σ−t using the spectrum
of Σ.

Proposition 5.6. The eigenvalues of Σt write

σ̃u(t) =
{

σu if u 6= m,
(1 + t)σu if u = m.

(5.47)

Moreover, the eigenvalues of Σ+
t and Σ−t satisfy

{σ̃+
u (t), u ∈N*} = {σ̃−u (t), u ∈N*}. (5.48)

The proof is based on the observation that the perturbations in (5.42), (5.43), and
(5.44) only affect a principal subspace of dimension 1 or 2; see Section 5.8.7.

Combining the characterization of EVS τFm (x) and EVS τFm1,m2
(x) given in Proposi-

tion 5.5, and Proposition 5.6, we prove Proposition 5.4; see details in Section 5.8.9.

4 For a given value of t, the eigenvalues σ̃u(t) are not necessarily decreasing in u. We give explicit formulas
for these eigenvalues in Proposition 5.6, and the order satisfied for t = 0 is not necessarily preserved for
t > 0. This does not change anything to the argument since these eigenvalues only appear in quantities
such as φm(t) which are invariant under permutation of the eigenvalues.
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5.6 numerical simulations

5.6.1 Comparing the εm(N) to the σN .

In this section, we illustrate the bound of Theorem 5.1 and the constants of Proposi-
tion 5.3 on more examples. Remember that by Theorem 5.1:

EVS E(µem ; x)2 = εm(N), (5.49)

and

EVS τFm (x) = 1− εm(N)

σm
, (5.50)

where

εm(N) = σm

∑
U∈ Um

N

∏
u∈U

σu

∑
U∈ UN

∏
u∈U

σu
. (5.51)

We compare in the following εm(N) to σN in the two cases treated in Proposition 5.3:
i) the case σm = m−2s for some s > 1/2, ii) the case σm = αm for some α ∈ [0, 1[.

For numerical simulations, we make the following approximation

εm(N) ≈ σm

 ∑
U⊂ [M]
|U|=N

∏
u∈U

σu


−1

∑
U⊂[M]

|U|=N, m/∈U

∏
u∈U

σu, (5.52)

for an M ≥ N sufficiently large. The numerator and denominator of the right hand
side of (5.52) can be calculated efficiently using Vieta’s formulas.

Eigenvalues with polynomial decay

Consider
∀m ∈N∗, σm = m−2s, (5.53)

with s ∈ {1, 2, 3, 4, 5}. Figure 5.6 illustrates the expected value of the m-th leverage
score EVS τFm (x) (left panels) and the expected interpolation error EVS E(µem ; x)2 (right
panels), both as functions of N for different values of m.

We observe that for low values of s, EVS τFm (x) depends smoothly on N. On the
other hand, EVS τFm (x) undergoes a sharp transition at N = m for high values of s: the
reconstruction of the m-th eigenfunction is almost perfect for N slightly larger than m.
Moreover, EVS E(µem ; x)2 respects the upper bound of Theorem 5.1; the constant B of
Proposition 5.3 is small for high values of s and converges to e when s→ +∞.

Eigenvalues with exponential decay

Consider now
∀m ∈N∗, σm = αN , (5.54)

with α ∈ {0.7, 0.5, 0.2}.
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Figure 5.6 – The expected value of the m-th leverage score EVS τFm (x) (left panels) and the
expected interpolation error EVS E(µem ; x)2 (right panels), under the distribution of continuous
volume sampling, for m ∈ {1, 2, 3, 4, 5} and the uni-variate periodic Sobolev kernel. Rows
correspond to increasing values of the smoothness parameter s = 1, 2, 3, 4, 5.
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Figure 5.7 illustrates the expected value of the m-th leverage score EVS τFm (x) (left
panels) and the expected interpolation error EVS E(µem ; x)2 (right panels), both as
functions of N, for different values of m.

We make the same observations on the dependency of EVS τFm (x) on N as in the case
of polynomially decaying spectrum. The rougher the kernel (i.e., the lower the value of
α), the smoother the transition of EVS τFm (x) as a function of N. Moreover, EVS E(µem ; x)2

respects the upper bound of Theorem 5.1; the constant B of Proposition 5.3 is small for
low values of α and converges to 0 when α→ 0.
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Figure 5.7 – The expected value of the m-th leverage score EVS τFm (x) and the expected in-
terpolation error EVS E(µem ; x)2 under the distribution of continuous volume sampling for
m ∈ {1, 2, 3, 4, 5}. Every row corresponds to a uni-dimensional Gaussian space (σm = αm) with
a parameter α ∈ {0.7, 0.5, 0.2}.

5.6.2 An MCMC simulation

To illustrate Theorem 5.1, we In Theorem 5.1, (5.22) decomposes the expected interpola-
tion error of any µg in terms of the interpolation error εm(N) of the µem . Therefore, it is
sufficient to numerically check the values of the εm(N). As an illustration we consider
g ∈ {e1, e5, e7} in (5.22), so that µem = Σem = σmem, with m ∈ {1, 5, 7}. We use the Gibbs
sampler proposed by (Rezaei and Gharan, 2019) to approximate continuous volume
sampling.
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Figure 5.8 – The empirical estimate of EVS E(µem ; x)2 for m ∈ {1, 5, 7} compared to its expression
(5.22) in the case of the periodic Sobolev space. The smoothness is s = 1 (left), s = 2 (right).

We consider various numbers of points N ∈ [2, 20]. Figure 5.8 shows log-log plots
of the theoretical (th) value of EVS ‖µg −ΠT (x)µg‖2

F compared to its empirical (emp)
counterpart, vs. N, for s ∈ {1, 2}. For each N, the estimate is an average over 50

independent samples, each sample resulting from 500 individual Gibbs iterations.
For both values of the smoothness parameter s, we observe a close fit of the estimate

with the actual expected error: the mismatch between the two is due to approximate
sampling.

5.7 discussion

We deal with interpolation in RKHSs using random nodes and optimal weights. This
problem is intimately related to kernel quadrature, though interpolation is more general.
We introduced continuous volume sampling (CVS), a repulsive point process that is
a mixture of DPPs, although not a DPP itself. CVS comes with a set of advantages.
First, interpretable bounds on the interpolation error can be derived under minimalistic
assumptions. Our bounds are close to optimal since they share the same decay rate
as known lower bounds. Moreover, we provide explicit evaluations of the constants
appearing in our bounds for some particular RKHSs (e.g., Sobolev, Gaussian).

Second, while the eigen-decomposition of the integration operator plays an impor-
tant role in the analysis, the definition of the density function of volume sampling
only involves kernel evaluations. In that sense, CVS is a fully kernelized approach.
Unlike previous work on random design, this may permit sampling without knowing
the Mercer decomposition of the kernel (Rezaei and Gharan, 2019), as demonstrated in
Section 5.6.

We highlighted the trade-off between the interpolation problem and the sampling
problem. In particular, approximate continuous volume sampling given by Algo-
rithm 5.1 may replace greedy maximization in high-dimensional domains.

Investigating other efficient samplers and their impact on bounds is deferred to
future work; the current chapter is a theoretical motivation for further methodological
research.
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5.8 proofs

5.8.1 Technical results borrowed from other papers

Thoughout our proof, we use a few technical results from the literature, which we
gather here for ease of reference.

The Jacobi identity

The following proposition is a direct consequence of the rank one-update for determi-
nants.

Proposition 5.7 (Jacobi identity). Let A, B ∈ RN×N . If Det A 6= 0, then

∂t Det(A + tB)|t=0 = Det(A)Tr(A−1B). (5.55)

In particular, we have

∂t Det(A + tB)|t=0+ = Det(A)Tr(A−1B). (5.56)

The Markov brothers’ inequality

The following proposition is known as the Markov brother’s inequality, see e.g. (Shadrin,
2004).

Proposition 5.8 (Markov brothers). Let P be a polynomial of degree smaller than N. Then

max
τ∈[−1,1]

|P′(τ)| ≤ N2 max
τ∈[−1,1]

|P(τ)|. (5.57)

We shall actually use a straightforward corollary.

Corollary 5.1. Let P be a polynomial of degree smaller than N. Then

max
τ∈[0,1]

|P′(τ)| ≤ 2N2 max
τ∈[0,1]

|P(τ)|. (5.58)

Proof. Define the polynomial Q(x) = P((x + 1)/2), so that

Q′(x) =
1
2

P′((x + 1)/2), x ∈ [−1, 1]. (5.59)

In particular,
max

τ∈[0,1]
|P(τ)| = max

τ∈[−1,1]
|Q(τ)|,

so that

max
τ∈[0,1]

|P′(τ)| = max
τ∈[−1,1]

2|Q′(τ)| ≤ 2N2 max
τ∈[−1,1]

|Q(τ)| ≤ 2N2 max
τ∈[0,1]

|P(τ)|. (5.60)
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An inequality on the ratio of symmetric polynomials

Recall that, for d ∈N*, Rd is naturally embedded in the set of sequences RN*
.

Now, let M ∈ N*, and let λ ∈ RN*

+ such that ∑m∈N* λm < +∞. By MacLaurin’s
inequality 5, see e.g. (Steele, 2004, Chapter 12),

∀M ∈N*, ∑
U∈UM

∏
u∈U

λu ≤
1

M!

(
∑

m∈N*

λm

)M

< +∞. (5.61)

In the following, we denote by pM(λ) the elementary symmetric polynomial of order
M on the sequence λ,

pM(λ) = ∑
U∈UM

∏
u∈U

λu. (5.62)

In particular, the following identity relates pM and pM+1.

∀M ≥ 2, ∀m ∈N*, pM(λ) = λm pM−1(λ
{m}) + pM(λ{m}), (5.63)

where we denote, for S ⊂ N*, λS = (λS
m)m∈N* = (λm1{m/∈S})m∈N* . Proposition 5.9

further relates two consecutive elementary polynomials.

Proposition 5.9 (Theorem 3.1 of Guruswami and Sinop, 2012). Let M ∈ N* and L ≥
M + 1. Let λ ∈ RL

+ be a nonincreasing sequence

λ1 ≥ λ2 ≥ · · · ≥ λL. (5.64)

Assume that λL > 0, then

∀M′ ≤ M,
pM+1(λ)

pM(λ)
≤ ∑m≥M′+1 λm

M + 1−M′
. (5.65)

We will actually use an immediate consequence of Proposition 5.9.

Corollary 5.2. Let M ∈N* and λ ∈ RN*

+ be a nonincreasing sequence such that ∑ λm < +∞
and λm > 0 for all m ∈N*. Then (5.65) still holds.

Proof. Define, for L ∈N*,
λL = (λ`)`∈[L] ∈ RL

+. (5.66)

By Proposition 5.9,

∀M′ ≤ M, ∀L ≥ M + 1,
pM+1(λL)

pM(λL)
≤ 1

M + 1−M′
L

∑
m=M′+1

λm (5.67)

≤ 1
M + 1−M′

+∞

∑
m=M′+1

λm. (5.68)

Letting L→ ∞ allows us to conclude.

For the last result, recall the definition of the (cross-)leverage scores τm1,m2 in (5.36).
We slightly adapt a result by Belhadji et al., 2019a .

5 The inequality is usually stated for λ ∈ Rd
+ for some d ∈N*. Taking limits immediatedly yields (5.61).
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Lemma 5.2. Let x ∈ X N satisfy Det K(x) > 0. For m, m1, m2 ∈N* such that m1 6= m2,

τFm (x) = ‖ΠT (x)e
F
m‖2
F = eFm (x)ᵀK(x)−1eFm (x), (5.69)

and

τFm1,m2
(x) = 〈ΠT (x)e

F
m1

, ΠT (x)e
F
m2
〉F = eFm1

(x)ᵀK(x)−1eFm2
(x). (5.70)

In particular,

τFm (x) and |τFm1,m2
(x)| are in [0, 1]. (5.71)

Proof. The proof is straightforward following the same lines as the proof of Lemma 4.4.
The operator ΠT (x) is an orthogonal projection with respect to 〈., .〉F and

‖eFm‖F = ‖eFm1
‖F = ‖eFm2

‖F = 1, (5.72)

so that (5.71) follows from the Cauchy-Schwarz inequality.

5.8.2 Proof of Proposition 5.1

Proposition 5.1 states that continuous volume sampling is a mixture of projection
determinantal point processes. We adapt a result in (Kulesza and Taskar, 2012, Chapter
5) for finite volume sampling to the infinite-dimensional case. The idea of the proof is to
apply the Cauchy-Binet identity to a sequence of kernels of finite rank that approximate
k.

First, recall from Section 5.1 the Mercer decomposition of k,

k(x, y) = lim
M→∞

∑
m∈[M]

σmem(x)em(y) = lim
M→∞

kM(x, y), ∀x, y ∈ X . (5.73)

where kernel kM has rank M.
Now, let x = (x1, . . . , xN) ∈ X N , and define KM(x) = (kM(xi, xj))i,j∈[N]. By continu-

ity of the determinant and by (5.73), it comes

lim
M→∞

Det KM(x) = Det K(x). (5.74)

By construction,

KM(x) = FM(x)ᵀΣMFM(x), (5.75)

where FM(x) = (em(xi))(m,i)∈[M]×[N] and ΣM is a diagonal matrix containing the first M
eigenvalues (σm)m∈[M] on its diagonal. The Cauchy-Binet identity yields

Det KM(x) = ∑
U⊂[M]
|U|=N

Det2(eu(xi))(u,i)∈U×[N] ∏
u∈U

σu. (5.76)
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Let now λu = ∏u∈U σu and EU(x) = (eu(xi))(u,i)∈U×[N], we combine (5.74) and (5.76) to
obtain

Det K(x) = lim
M→∞

∑
U⊂[M]
|U|=N

λu Det2(eu(xi))(u,i)∈U×[N] (5.77)

= ∑
U∈ UN

λu Det2(eu(xi))(u,i)∈U×[N] (5.78)

= ∑
U∈ UN

λu Det (EU(x)ᵀEU(x)) (5.79)

= ∑
U∈ UN

λu Det(KU(xi, xj))i,j∈[N], (5.80)

where KU(x, y) , ∑u∈U eu(x)eu(y). Since KU is a projection kernel, writing the determi-
nant as a sum over permutations easily yields, for all U ∈ UN ,∫

X N
Det(KU(xi, xj))i,j∈[N] ⊗i∈[N] dω(xi) = N!, (5.81)

see e.g. Lemma 21 in (Hough et al., 2006). Finally, the monotone convergence theorem
allows us to conclude∫

X N
Det K(x)⊗i∈[N] dω(xi) = N! ∑

U⊂N*

|U|=N

∏
u∈U

σu. (5.82)

5.8.3 Proof of Proposition 5.2

Proposition 5.2 gives an upper bound on the biggest weight δN in the mixture of
Proposition 5.1. The proof is straightforward, as

rN ∏
`∈[N]

σ` = σN ∑
m≥N+1

σm ∏
`∈[N−1]

σ`

≤ σN ∑
U⊂N*

|U|=N

∏
u∈U

σu. (5.83)

This immediately yields δN ≤ σN/rN .

5.8.4 Proof of Lemma 5.1

Lemma 5.1 decomposes the interpolation error in terms of (cross-)leverage scores. Let
g ∈ L2(dω) satisfy ‖g‖dω ≤ 1. Since ΠT (x) is an orthogonal projection with respect to
〈., .〉F , we have

‖µg −ΠT (x)µg‖2
F = ‖µg‖2

F − ‖ΠT (x)µg‖2
F (5.84)

Now, µg = Σg = ∑
m∈N∗

√
σmgmeFm , so that (5.84) becomes

‖µg −ΠT (x)µg‖2
F = ∑

m∈N∗
σmg2

m −
∥∥∥∥∥ ∑

m∈N*

ΠT (x)
√

σmgmeFm

∥∥∥∥∥
2

F
= ∑

m∈N∗
σmg2

m − ∑
m1,m2

gm1 gm2

√
σm1

√
σm2〈ΠT (x)e

F
m1

, ΠT (x)e
F
m2
〉F .

(5.85)
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Lemma 5.2 allows us to recognize leverage scores in (5.85). Taking out of the second
sum in (5.85) the terms for which m1 = m2 to put them in the first sum concludes the
proof of Lemma 5.1.

5.8.5 Proof of Theorem 5.1

The proof of (5.22) relies on the identity

EVS ‖µg −ΠT (x)µg‖2
F = ∑

m∈N∗
g2

mεm(N), (5.86)

and the fact that (εm(N)) is a non-increasing sequence. We prove these two results in
turn, after what we prove (5.25).

Proof of (5.86)

Let x ∈ X N such that Det K(x) > 0. Lemma 5.1 yields

‖µg −ΠT (x)µg‖2
F = ∑

m∈N∗
g2

mσm

(
1− τFm (x)

)
− ∑

m1,m2∈N∗

m1 6=m2

gm1 gm2

√
σm1

√
σm2 τFm1,m2

(x).

(5.87)
First, we prove that

EVS ∑
m∈N*

g2
mσm

(
1− τFm (x)

)
= ∑

m∈N*

g2
mσm

(
1−EVS τFm (x)

)
. (5.88)

By Lemma 5.2,

∀m ∈N*, g2
mσm

(
1− τFm (x)

)
≥ 0, (5.89)

so that (5.88) follows from the Beppo Levi’s monotone convergence theorem.
Second, it remains to prove that

EVS ∑
m1,m2∈N*

m1 6=m2

gm1 gm2

√
σm1

√
σm2 τFm1,m2

(x) = 0. (5.90)

Again, Lemma 5.2 guarantees that, for m1, m2 ∈N* such that m1 6= m2,

|gm1 gm2

√
σm1

√
σm2 τFm1,m2

(x)| ≤ |gm1 gm2 |
√

σm1

√
σm2 . (5.91)

Since

∑
m1 6=m2∈N*

|gm1 gm2 |
√

σm1

√
σm2 ≤

(
∑

m∈N*

|gm|
√

σm

)2

≤ ∑
m∈N*

g2
m ∑

m∈N*

σm

< +∞, (5.92)

the dominated convergence theorem yields

EVS ∑
m1,m2∈N*

m1 6=m2

gm1 gm2

√
σm1

√
σm2 τFm1,m2

(x) = ∑
m1,m2∈N∗

m1 6=m2

gm1 gm2

√
σm1

√
σm2 EVS τFm1,m2

(x),

but this is equal to zero by Proposition 5.4.
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Proof that (εm(N)) is nonincreasing

Let m ∈N*. By definition,

εm(N) = σm
∑U∈Um

N
∏u∈U σu

∑U∈UN ∏u∈U σu
= σm

pN(σ
{m})

pN(σ)
, (5.93)

where we use a notation introduced in Section 5.8.1. This leads to

εm(N) = σm
σm+1 pN−1(σ

{m,m+1}) + pN(σ
{m,m+1})

pN(σ)
, (5.94)

and, similarly,

εm+1(N) = σm+1
σm pN−1(σ

{m,m+1}) + pN(σ
{m,m+1})

pN(σ)
. (5.95)

Taking the ratio, it comes

εm(N)

εm+1(N)
=

σm

(
σm+1 pN−1

(
σ{m,m+1}

)
+ pN

(
σ{m,m+1}

))
σm+1

(
σm pN−1

(
σ{m,m+1}

)
+ pN

(
σ{m,m+1}

)) (5.96)

=
1 + 1

σm+1

pN

(
σ{m,m+1}

)
pN−1(σ{m,m+1})

1 + 1
σm

pN(σ{m,m+1})
pN−1(σ{m,m+1})

≥ 1, (5.97)

because 1/σm+1 ≥ 1/σm.

Proof of (5.25)

We have ε1(N) = εN(N)ε1(N)/εN(N) ≤ σNε1(N)/εN(N) since a simple counting
argument yields εN(N) ≤ σN . Along the lines of Section 5.8.5,

ε1(N)

εN(N)
=

1 + 1
σN

pN

(
σ{1,N}

)
pN−1(σ{1,N})

1 + 1
σ1

pN(σ{1,N})
pN−1(σ{1,N})

≤ 1 +
1

σN

pN

(
σ{1,N}

)
pN−1

(
σ{1,N}

) . (5.98)

Now, σ{1,N} is a sequence of positive real numbers and the Σ is trace-class. Then, by
Corollary 5.2, for M ∈ [N − 1],

pN

(
σ{1,N}

)
pN−1

(
σ{1,N}

) ≤ 1
N −M ∑

m≥M
σm+2 =

1
N + 1− (M + 1) ∑

m+1≥M+1
σm+2. (5.99)

Taking M′ = M + 1 concludes the proof of (5.25).
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5.8.6 Proof of Proposition 5.3

The case of a polynomially-decreasing spectrum

Assume that σm = m−2s with s > 1/2. Let N ∈ N* and MN = dN/ce ∈ {2, . . . , N},
with c ∈ [1, N[. We have

min
M∈[2:N]

∑m≥M σm+1

(N −M + 1)σN
≤ ∑m≥MN

σm+1

(N −MN + 1)σN
(5.100)

≤
∑m≥dN/ce σm+1

(N − dN/ce+ 1)σN
(5.101)

≤
∑m≥dN/ce σm+1

(N − N/c + 1)σN
(5.102)

≤
∑m≥dN/ce(m + 1)−2s

(N − N/c + 1)N−2s . (5.103)

(5.104)

Now,

∀m ∈N*, (m + 1)−2s ≤
∫ m+1

m
t−2sdt =

1
2s− 1

(m1−2s − (m + 1)1−2s), (5.105)

so that

∑
m≥dN/ce

(m + 1)−2s ≤ 1
2s− 1

dN/ce1−2s. (5.106)

Recall that 2s > 1, so that

1
2s− 1

dN/ce1−2s ≤ 1
2s− 1

(N/c)1−2s, (5.107)

and

min
M∈[2:N]

∑m≥M σm+1

(N −M + 1)σN
≤ 1

2s− 1
(N/c)1−2s

(N − N/c + 1)N−2s (5.108)

≤ c2s

2s− 1
N

(cN − N + c)
. (5.109)

Note that c is a free parameter that belongs to [1, N] 6 that we can optimize in the
upper bound: c2s

2s−1
N

(cN−N+c) . For this purpose, denote

φN(c) =
c2s

2s− 1
N

(cN − N + c)
. (5.110)

For every N ∈N*, φN is differentiable in ]0,+∞[ and

φ
′
N(c) =

N
2s− 1

c2s−1

(cN − N + c)2 ((2s− 1)(N + 1)c− 2sN) , (5.111)

so that φ
′
N vanishes in c∗N = 2s

2s−1
N

N+1 ; it is negative in ]0, c∗N [ and positive in ]c∗N ,+∞[.
We distinguish three cases:

6 The inequality in (5.109) is valid for c = N by continuity.
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If c∗N < 1, N < 2s− 1 and φ
′
N is positive on [1, N] so that φN increases in [1, N] and

we take c = 1 in (5.109):

φN(1) =
N

2s− 1
< 1. (5.112)

If c∗N ∈ [1, N], c∗N is the unique minimizer of φN in [1, N] and we take c = c∗N in
(5.109) so that:

φN(c∗N) =
(

2s
2s− 1

)2s ( N
N + 1

)2s

(5.113)

≤
(

2s
2s− 1

)2s

(5.114)

≤
(

1 +
1

2s− 1

)(
1 +

1
2s− 1

)2s−1

. (5.115)

Finally, if c∗N > N, N < 1
2s−1 , φN is decreasing in [1, N] and we take c = N in (5.109)

so that:

φN(N) =
N2s−1

2s− 1
≤ 1

2s− 1

(
1

2s− 1

)2s−1

(5.116)

≤
(

1 +
1

2s− 1

)(
1 +

1
2s− 1

)2s−1

. (5.117)

In the three cases, βN is upper bounded by
(
1 + 1

2s−1

) (
1 + 1

2s−1

)2s−1
. The artificial

two-factor form of (5.115) and (5.117) is there to make limits clearer. In particular, the
RHS goes to e as s→ ∞.

The case of an exponentially decreasing spectrum

Assume that σm = αm with α ∈ [0, 1[. Let N ∈N*, and MN = N ∈ {2, . . . , N}. We have

min
M∈[2:N]

∑m≥M σm+1

(N −M + 1)σN
≤ ∑m≥MN

σm+1

(N −MN + 1)σN
(5.118)

≤ ∑m≥N σm+1

σN
(5.119)

≤ ∑m≥N αm+1

αN (5.120)

≤ αN+1 ∑m≥0 αm

αN (5.121)

≤ α

1− α
. (5.122)

5.8.7 Proof of Proposition 5.6

We start with deriving the spectrum of the trace-class, self-adjoint operator

Σt = Σ + teFm ⊗ eFm , (5.123)

where eFm ⊗ eFm is defined by

∀g ∈ L2(dω), eFm ⊗ eFm g(·) = eFm (·)
∫
X

g(y)eFm (y)dω(y). (5.124)



184 kernel interpolation using volume sampling

The two operators Σ and eFm ⊗ eFm are co-diagonalizable in the basis (em)m∈N* , thus their
linear combination Σt diagonalizes in this basis too. In other words, for u ∈N*, eu is
an eigenfunction of Σt and

Σteu = Σeu + teFm ⊗ eFm (eu) = (σu + tδu,mσu)eu. (5.125)

Therefore, the set {σu(1 + tδu,m), u ∈ N*} is included in the spectrum of Σt. Since
(em)m∈N* is an orthonormal basis of L2(dω) and correspond to the eigenfunctions of
Σt associated to the elements of {σu(1 + tδu,m), u ∈ N*}, then the spectrum of Σt is
exactly the set {σu(1 + tδu,m), u ∈N*}.7 We now turn to deriving the spectrum of the
trace-class, self-adjoint operator Σ+

t ; the case of Σ−t follows the same lines and will be
omitted for brevity. We will prove that there exists an orthonormal basis ( fm)m∈N* of
L2(dω) such that every fm is an eigenfunction of Σ+

t . If t = 0, Σ+
t = Σ and (em)m∈N* is

already an orthonormal basis of L2(dω). We assume in the following that t > 0.
Consider the operator ∆+

t defined on L2(dω) by

∆+
t g(·) = t

(
eFm1

(·) + eFm2
(·)
) ∫
X

g(y)
(

eFm1
(y) + eFm2

(y)
)

dω(y). (5.126)

We can write Σ+
t = Σ + ∆+

t , but this time, if t > 0, Σ and ∆+
t do not commute. In

particular, they are not co-diagonalizable, and a more detailed analysis is necessary.
First, by construction of ∆+

t ,

∆+
t em = 0, m /∈ {m1, m2},

so that for any m /∈ {m1, m2}, Σ+
t and Σ have em for eigenfunction, with the same

eigenvalue σm. Observe that

L2(dω) = Span(em1 , em2)⊕ Span(em)m/∈{m1,m2}. (5.127)

Therefore, the rest of the proof consists in completing (em)m/∈{m1,m2} into an orthonormal
basis of L2(dω), by finding two orthonormal eigenfunctions of Σ+

t in Span(em1 , em2).
Since we assumed in Section 5.1 that the eigenvalues of Σ are nonzero, we note that
Span(em1 , em2) = Span(eFm1

, eFm2
). Expressing the new eigenfunctions in terms of eFm1

and
eFm2

will turn out to be more convenient.
First, note that

Σ+
t eFm1

(·) = ΣeFm1
(·) + t

∫
X

(
eFm1

(·) + eFm2
(·)
) (

eFm1
(y) + eFm2

(y)
)

eFm1
(y)dω(y) (5.128)

= σm1 eFm1
(·) + tσm1

(
eFm1

(·) + eFm2
(·)
)

(5.129)

= (1 + t)σm1 eFm1
+ tσm1 eFm2

. (5.130)

Similarly,

Σ+
t eFm2

(.) = tσm2 eFm1
+ (1 + t)σm2 eFm2

. (5.131)

7 Σt is self-adjoint, and has no zero eigenvalue by assumption. Thus, any new eigenfunction that is not in
our basis needs to be orthogonal to all basis elements, and is thus zero.
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Now, let v = λ1eFm1
+ λ2eFm2

, so that, by (5.130) and (5.131),

Σ+
t v = λ1

(
(1 + t)σm1 eFm1

+ tσm1 eFm2

)
+ λ2

(
(1 + t)σm2 eFm2

+ tσm2 eFm1

)
=

(
λ1(1 + t)σm1 + λ2tσm2

)
eFm1

+

(
λ2(1 + t)σm2 + λ1tσm1

)
eFm2

, (5.132)

Solving for eigenvalues, we look for µ ∈ R such that Σ+
t v = µv, or equivalently{

(1 + t)σm1 λ1 + tσm2 λ2 = µλ1,
tσm1 λ1 + (1 + t)σm2 λ2 = µλ2.

This is just saying that µ should be an eigenvalue of the matrix(
(1 + t)σm1 tσm2

tσm1 (1 + t)σm2

)
, (5.133)

which yields two solutions,

µ+
1 = (1 + t)

σm1 + σm2

2
+

1
2

√
(1 + t)2(σm1 − σm2)

2 + 4σm1 σm2 t2 , (5.134)

and

µ+
2 = (1 + t)

σm1 + σm2

2
− 1

2

√
(1 + t)2(σm1 − σm2)

2 + 4σm1 σm2 t2 . (5.135)

These solutions are distinct since t > 0, and the corresponding normalized eigenfunc-
tions v+1 and v+2 are orthogonal with respect to 〈., .〉dω since Σ+

t is self-adjoint. Finally,
we define the set of eigenfunctions of Σ+

t by the system (em)m/∈{m1,m2} ∪ (v+1 , v+2 ) that is
an orthonormal basis of L2(dω). Therefore, the spectrum of the compact operator Σ+

t
is exactly the set

{σm, m /∈ {m1, m2}} ∪ {µ+
1 , µ+

2 }. (5.136)

Along the same lines, one can show that the eigenvalues of Σ−t restricted to
Span(eFm1

, eFm2
) satisfy

λ2 − (1 + t)(σm1 + σm2)λ− σm1 σm2 t2 = 0. (5.137)

For t > 0, this equation again admits two distinct solutions

µ̂−1 = (1 + t)
σm1 + σm2

2
+

1
2

√
(1 + t)2(σm1 − σm2)

2 + 4σm1 σm2 t2, (5.138)

and

µ̂−2 = (1 + t)
σm1 + σm2

2
− 1

2

√
(1 + t)2(σm1 − σm2)

2 + 4σm1 σm2 t2. (5.139)

so that the spectrum of Σ−t is exactly the set

{σm, m /∈ {m1, m2}} ∪ {µ−1 , µ−2 } = {σm, m /∈ {m1, m2}} ∪ {µ+
1 , µ+

2 }. (5.140)

In other words, the two operators Σ+
t and Σ−t share the same eigenvalues.
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5.8.8 Proof of Proposition 5.5

The expected value of the m-th leverage score

Let m ∈ N*. On the one hand, recall that τFm (x) = eFm (x)ᵀK(x)−1eFm (x), so that, by
Definition 5.1,

EVS τFm (x) =

(
N! ∑

U∈ UN

∏
u∈U

σu

)−1 ∫
X N

eFm (x)ᵀK(x)−1eFm (x)Det K(x)⊗i∈[N] dω(xi).

(5.141)
We have

Det K(x) eFm (x)ᵀK(x)−1eFm (x) = Det K(x)Tr
(

eFm (x)ᵀK(x)−1eFm (x)
)

= Det K(x)Tr
(

K(x)−1eFm (x)eFm (x)ᵀ
)

= ∂t Det(K(x) + teFm (x)eFm (x)ᵀ)|t=0+ , (5.142)

where the last line follows from the Jacobi identity of Theorem 5.7.
On the other hand, for t > 0 and with the notation of Section 5.5.2, let

Kt(x) := (kt(xi, xj))i,j∈[N] = K(x) + teFm (x)eFm (x)ᵀ. (5.143)

Since ∫
X

kt(x, x)dω(x) =
∫
X

k(x, x)dω(x) + t
∫
X

eFm (x)2dω(x)

= ∑
n∈N*

σn + tσm < ∞, (5.144)

Hadamard’s inequality yields the integrability of ψ(., t) : x 7→ Det Kt(x). Finally,
observe that

φm(t) := ZN(kt) =
∫
X N

ψ(x, t)⊗i∈[N] dω(xi). (5.145)

If we prove that φm is right differentiable in zero, and that we can justify the
interchange of the derivation and the integration operations, we will have equated the
right derivative of φm in zero and (5.141) using (5.142); this will achieve proving the
first equation in Proposition 5.5. To this purpose, we need to prove that t 7→ ψ(x, t) is
right differentiable at zero, it is locally dominated by an integrable function and its
derivative is locally dominated by an integrable function. Now, observe that t 7→ ψ(x, t)
is a polynomial of degree smaller than N, so that it is differentiable, and Corollary 5.1
yields

max
τ∈[0,1]

|∂tψ(x, τ)| ≤ 2N2 max
τ∈[0,1]

|ψ(x, τ)| . (5.146)

In other words, to dominate τ 7→ |∂tψ(x, τ)| uniformly on [0, 1], it is sufficient to
dominate τ 7→ |ψ(x, τ)| uniformly there. Now, let τ ∈ [0, 1], we have

K1(x)− Kτ(x) = K(x) + eFm (x)eFm (x)ᵀ − K(x)− τeFm (x)eFm (x)ᵀ (5.147)

= (1− τ)eFm (x)eFm (x)ᵀ ∈ S+N . (5.148)

Thus
0 � Kτ(x) � K1(x) (5.149)
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in the Loewner order, so that for any τ ∈ [0, 1],

|ψ(x, τ)| = ψ(x, τ) = Det Kτ(x) ≤ Det K1(x) = ψ(x, 1). (5.150)

We conclude by observing that x 7→ ψ(x, 1) is integrable on X N by Proposition 5.1, and
the fact that ∫

X
k1(x, x)dω(x) < +∞. (5.151)

The expected value of cross-leverage scores

Let m1, m2 ∈N* such that m1 6= m2. We have

τFm1,m2
(x) = eFm1

(x)ᵀK(x)−1eFm2
(x)

=
1
4

(
eFm1

(x) + eFm2
(x)
)ᵀ

K(x)−1
(

eFm1
(x) + eFm2

(x)
)ᵀ

− 1
4

(
eFm1

(x)− eFm2
(x)
)ᵀ

K(x)−1
(

eFm1
(x)− eFm2

(x)
)ᵀ

. (5.152)

Thus

EVS τFm1,m2
(x) =

1
4ZN(k)

∫
X N

(
Ψ+(x)−Ψ−(x)

)
⊗i∈[N] dω(xi), (5.153)

where

Ψ+(x) =
(

eFm1
(x) + eFm2

(x)
)ᵀ

K(x)−1
(

eFm1
(x) + eFm2

(x)
)

Det K(x), (5.154)

and

Ψ−(x) =
(

eFm1
(x)− eFm2

(x)
)ᵀ

K(x)−1
(

eFm1
(x)− eFm2

(x)
)

Det K(x). (5.155)

We proceed as in Section 5.8.8 and we use Proposition 5.7 to prove that

Ψ+(x) = ∂t Det
(

K(x) + t
(

eFm1
(x) + eFm2

(x)
) (

eFm1
(x) + eFm2

(x)
)ᵀ)
|t=0+

= ∂t Det
(
K+

t (x)
)
|t=0+ . (5.156)

and

Ψ−(x) = ∂t Det
(

K(x) + t
(

eFm1
(x)− eFm2

(x)
) (

eFm1
(x)− eFm2

(x)
)ᵀ)
|t=0+

= ∂t Det
(
K−t (x)

)
|t=0+ . (5.157)

In order to prove that φ+
m1,m2

and φ−m1,m2
are right differentiable in zero along with

the second equation in Proposition 5.5, one can follow the same steps as in the end
of Section 5.8.8. In particular, the interchange of the derivation and the integration
operations follows from the same arguments, upon noting that both

∫
X k+t (x, x)dω(x)

and
∫
X k−t (x, x)dω(x) are finite.

5.8.9 Proof of Proposition 5.4

The proof is a straightforward computation now that we have Proposition 5.5 and
Proposition 5.6.
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The expected value of the m-th leverage score

Let m ∈N*. We have by Proposition 5.5 and Proposition 5.1,

EVS τFm (x) =
1

N! ∑
U⊂N∗
|U|=N

∏
u∈U

σu

∂φm

∂t
|t=0+ , (5.158)

where

φm(t) =
∫
X N

Det
(

K(x) + teFm (x)eFm (x)ᵀ
)
⊗N

i=1 dω(xi). (5.159)

Now by Proposition 5.6 and Proposition 5.1,

φm(t) = N! ∑
U∈ UN

∏
u∈U

σ̃u(t), (5.160)

where for u ∈N∗, σ̃u(t) = σu + tδm,uσu. Therefore,

φm(t) = N! ∑
U∈ UN
m∈U

∏
u∈U

σ̃u(t) + N! ∑
U∈ UN
m/∈U

∏
u∈U

σ̃u(t) (5.161)

= N! σm(t + 1) ∑
U∈UN−1

m/∈U

∏
u∈U

σu + N! ∑
U∈ UN
m/∈U

∏
u∈U

σu. (5.162)

Thus,
∂φm

∂t
|t=0 = N! σm ∑

U∈UN−1
m/∈U

∏
u∈U

σu, (5.163)

so that (5.158) becomes

EVS τFm (x) =

(
��N! ∑

U∈ UN

∏
u∈U

σu

)−1

��N! σm ∑
U∈UN−1

m/∈U

∏
u∈U

σu, (5.164)

which concludes the proof.

The expected value of cross-leverage scores

Let m1, m2 ∈N* such that m1 6= m2. We have by Proposition 5.5 and Proposition 5.1,

EVS τFm1,m2
(x) =

1
4N! ∑

U∈ UN

∏
u∈U

σu

(
∂φ+

m1,m2

∂t
−

∂φ−m1,m2

∂t

) ∣∣∣∣
t=0+

, (5.165)

where

φ+
m1,m2

(t) =
∫
X N

Det
(

K(x) + t
(

eFm1
(x) + eFm2

(x)
) (

eFm1
(x) + eFm2

(x)
)ᵀ )

⊗N
i=1 dω(xi),

(5.166)
and

φ−m1,m2
(t) =

∫
X N

Det
(

K(x) + t
(

eFm1
(x)− eFm2

(x)
) (

eFm1
(x)− eFm2

(x)
)ᵀ )

⊗N
i=1 dω(xi).

(5.167)
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Now by Proposition 5.6, for t ≥ 0,

φ+
m1,m2

(t) = N! ∑
U∈ UN

∏
u∈U

σ̃+
u (t) = N! ∑

U∈ UN

∏
u∈U

σ̃−u (t) = φ−m1,m2
(t). (5.168)

Plugging this back into (5.165) yields EVS τFm1,m2
(x) = 0.

5.8.10 Proof of Theorem 5.2

A decomposition result for the error

We start with a lemma.

Lemma 5.3. Let µ ∈ F such that ‖µ‖F ≤ 1. Under Assumption 5.4,

EVS E(µ; x)2 ≤ (1 + B) ∑
m∈[N]

σN

σm
〈µ, eFm 〉2F + ∑

m≥N+1
〈µ, eFm 〉2F . (5.169)

Proof. Using the same arguments as in the proof of Lemma 5.1 in Section 5.8.4, it comes
that, for x ∈ X N such that Det K(x) > 0,

‖µ−ΠT (x)µ‖2
F = ∑

m∈N∗
〈µ, eFm 〉2F

(
1− τFm (x)

)
− ∑

m1,m2∈N∗

m1 6=m2

〈µ, eFm1
〉F 〈µ, eFm2

〉FτFm1,m2
(x).

(5.170)
We want to take expectations in both sides of (5.170). For the first term in the RHS, we
prove, using the same arguments as for the proof of Theorem 5.1 in Section 5.8.5, that

EVS ∑
m∈N∗

〈µ, eFm 〉2F
(

1− τFm (x)
)
= ∑

m∈N∗
〈µ, eFm 〉2F

(
1−EVS τFm (x)

)
. (5.171)

For the second term in the RHS of (5.170), we need to justify that

EVS ∑
m1,m2∈N∗

m1 6=m2

〈µ, eFm1
〉F 〈µ, eFm2

〉F τFm1,m2
(x) = ∑

m1,m2∈N∗

m1 6=m2

〈µ, eFm1
〉F 〈µ, eFm2

〉F EVS τFm1,m2
(x)

= 0. (5.172)

This can be done using dominated convergence. Indeed, let M ∈N*. We have

EVS ∑
m1,m2∈[M]

m1 6=m2

〈µ, eFm1
〉F 〈µ, eFm2

〉F τFm1,m2
(x) = ∑

m1,m2∈[M]
m1 6=m2

〈µ, eFm1
〉F 〈µ, eFm2

〉F EVS τFm1,m2
(x)

= 0. (5.173)
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Moreover,∣∣∣∣∣ ∑
m1,m2∈[M]

m1 6=m2

〈µ, eFm1
〉F 〈µ, eFm2

〉F τFm1,m2
(x)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
m1,m2∈[M]

〈µ, eFm1
〉F 〈µ, eFm2

〉F τFm1,m2
(x)− ∑

m∈[M]

〈µ, eFm 〉2F τFm (x)

∣∣∣∣∣
≤
∣∣∣∣∣ ∑
m1,m2∈[M]

〈µ, eFm1
〉F 〈µ, eFm2

〉F τFm1,m2
(x)

∣∣∣∣∣+
∣∣∣∣∣ ∑
m∈[M]

〈µ, eFm 〉2F τFm (x)

∣∣∣∣∣
=

∥∥∥∥∥ΠT (x) ∑
m∈[M]

〈µ, eFm 〉F eFm

∥∥∥∥∥
2

F

+

∣∣∣∣∣ ∑
m∈[M]

〈µ, eFm 〉2F τFm (x)

∣∣∣∣∣
≤
∥∥∥∥∥ ∑

m∈[M]

〈µ, eFm 〉F eFm

∥∥∥∥∥
2

F

+ ∑
m∈[M]

〈µ, eFm 〉2F

= 2‖µ‖2
F < +∞. (5.174)

Combining (5.173) and (5.174), we deduce (5.172) by the dominated convergence theo-
rem.

Finally, we combine (5.171) and (5.172) to get

EVS ‖µ−ΠT (x)µ‖2
F = ∑

m∈N∗
〈µ, eFm 〉2F

(
1−EVS τFm (x)

)
= ∑

n∈[N]

〈µ, eFn 〉2F
(

1−EVS τFn (x)
)
+ ∑

m≥N+1
〈µ, eFm 〉2F

(
1−EVS τFm (x)

)
.

(5.175)

On the one hand,
∀m ≥ N + 1, 1−EVS τFm (x) ≤ 1, (5.176)

and on the other hand, remember that by Theorem 5.1, the sequence εm(N) is non-
increasing, so that

∀n ∈ [N], σn(1−EVS τFn (x)) = EVS ‖µen −ΠT (x)µen‖2
F (5.177)

= εn(N) (5.178)

≤ ε1(N), (5.179)

and by (5.25) in the same theorem one gets

σn(1−EVS τFn (x)) ≤ (1 + βN)σN , (5.180)

so that
(1−EVS τFn (x)) ≤ (1 + βN)

σN

σn
. (5.181)

Assumption 5.4 yields

∀n ∈ [N], 1−EVS τFn (x) ≤ (1 + B)
σN

σn
. (5.182)

This concludes the proof of the lemma.
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The expected value of the interpolation error

If there exists r ∈ [0, 1/2] such that ‖Σ−rµ‖F < +∞, we have

∑
m≥N+1

〈µ, eFm 〉2F = ∑
m≥N+1

σ2r
m
〈µ, eFm 〉2F

σ2r
m

(5.183)

≤ σ2r
N+1 ∑

m≥N+1

〈µ, eFm 〉2F
σ2r

m
(5.184)

≤ σ2r
N+1‖Σ−rµ‖2

F , (5.185)

and

(1 + B) ∑
m∈[N]

σN

σm
〈µ, eFm 〉2F = (1 + B) ∑

m∈[N]

σN

σ1−2r+2r
m

〈µ, eFm 〉2F (5.186)

= (1 + B) ∑
m∈[N]

σN

σ1−2r
m

〈µ, eFm 〉2F
σ2r

m
(5.187)

≤ (1 + B)σ2r
N ∑

m∈[N]

〈µ, eFm 〉2F
σ2r

m
(5.188)

= (1 + B)σ2r
N ‖Σ−rµ‖2

F . (5.189)

By Lemma 5.3, EVS ‖µ−ΠT (x)µ‖2
F converges at the slow rate O(σ2r

N ).
On the other hand, if there exists r > 1/2 such that ‖Σ−rµ‖F < +∞, we have

(1 + B) ∑
m∈[N]

σN

σm
〈µ, eFm 〉2F = (1 + B) ∑

m∈[N]

σN

σ1−2r+2r
m

〈µ, eFm 〉2F (5.190)

≤ (1 + B)σNσ2r−1
1 ∑

m∈[N]

〈µ, eFm 〉2F
σ2r

m
(5.191)

≤ (1 + B)σNσ2r−1
1 ‖Σ−rµ‖2

F , (5.192)

and

∑
m≥N+1

〈µ, eFm 〉2F = ∑
m≥N+1

σ2r
m
〈µ, eFm 〉2F

σ2r
m

(5.193)

≤ σ2r
N+1 ∑

m≥N+1

〈µ, eFm 〉2F
σ2r

m
(5.194)

≤ σ2r
N+1‖Σ−rµ‖2

F . (5.195)

This time, the bound in Lemma 5.3 is dominated by its first term, so that EVS ‖µ − ΠT (x) µ‖2
F

converges at the faster rate O(σN).

5.8.11 Proof of Theorem 5.3

Proof of the bias identity

First, recall that, as f and g belong to L2(dω), we have∫
X

f (x)g(x)dω(x) = ∑
m∈N*

〈 f , em〉dω〈g, em〉dω, (5.196)



192 kernel interpolation using volume sampling

thus, in order to prove the result, it is enough to prove that

EVS ∑
i∈[N]

ŵi f (xi) = ∑
m∈N*

〈 f , em〉dω〈g, em〉dω EVS τFm (x). (5.197)

Let x ∈ X N such that Det K(x) > 0. The optimal kernel quadrature weights satisfy

ŵ = K(x)−1µg(x), (5.198)

so that

∑
i∈N

ŵi f (xi) = ŵᵀ f (x) (5.199)

= µg(x)ᵀK(x)−1 f (x) (5.200)

= ∑
m1,m2∈N*

σm1〈g, em1〉dω〈 f , eFm2
〉F em1(x)ᵀK(x)−1eFm2

(x) (5.201)

= ∑
m1,m2∈N*

√
σm1〈g, em1〉dω〈 f , eFm2

〉F eFm1
(x)ᵀK(x)−1eFm2

(x). (5.202)

We want to use the dominated convergence theorem to take expectations in (5.202). Let
M ∈N*. By Lemma 5.2 and by the fact that ΠT (x) is an 〈., .〉F -orthogonal projection, it
comes∣∣∣∣∣ ∑

m1,m2∈[M]

√
σm1〈g, em1〉dω〈 f , eFm2

〉F eFm1
(x)ᵀK(x)−1eFm2

(x)

∣∣∣∣∣ (5.203)

=

∣∣∣∣∣ ∑
m1,m2∈[M]

√
σm1〈g, em1〉dω〈 f , eFm2

〉F 〈ΠT (x)e
F
m1

, ΠT (x)e
F
m2
〉F

∣∣∣∣∣ (5.204)

=

∣∣∣∣∣∣
〈

ΠT (x) ∑
m1∈[M]

√
σm1〈g, em1〉dωem1 , ΠT (x) ∑

m2∈[M]

〈 f , eFm2
〉F eFm2

〉
F

∣∣∣∣∣∣ (5.205)

≤

∣∣∣∣∣∣
〈

∑
m1∈[M]

√
σm1〈g, em1〉dωem1 , ∑

m2∈[M]

〈 f , eFm2
〉F eFm2

〉
F

∣∣∣∣∣∣ (5.206)

≤
∥∥∥∥∥ ∑

m1∈[M]

√
σm1〈g, em1〉dωem1

∥∥∥∥∥
F

∥∥∥∥∥ ∑
m2∈[M]

〈 f , eFm2
〉F eFm2

∥∥∥∥∥
F

. (5.207)

Now,∥∥∥∥∥ ∑
m1∈[M]

√
σm1〈g, em1〉dωem1

∥∥∥∥∥
F

∥∥∥∥∥ ∑
m2∈[M]

〈 f , eFm2
〉F eFm2

∥∥∥∥∥
F

(5.208)

=

∥∥∥∥∥ ∑
m1∈[M]

〈g, em1〉dωeFm1

∥∥∥∥∥
F

∥∥∥∥∥ ∑
m2∈[M]

〈 f , eFm2
〉F eFm2

∥∥∥∥∥
F

(5.209)

=

∥∥∥∥∥ ∑
m1∈[M]

〈g, em1〉dωem1

∥∥∥∥∥
dω

∥∥∥∥∥ ∑
m2∈[M]

〈 f , eFm2
〉F eFm2

∥∥∥∥∥
F

(5.210)

≤
∥∥∥∥∥ ∑

m1∈N*

〈g, em1〉dωem1

∥∥∥∥∥
dω

∥∥∥∥∥ ∑
m2∈N*

〈 f , eFm2
〉F eFm2

∥∥∥∥∥
F

(5.211)

< +∞, (5.212)
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since ∑m∈N*
√

σm〈g, em〉dωem ∈ F . Dominated convergenve thus yields

EVS ∑
m1,m2∈N*

√
σm1〈g, em1〉dω〈 f , eFm2

〉F eFm1
(x)ᵀK(x)−1eFm2

(x) (5.213)

= ∑
m1,m2∈N*

√
σm1〈g, em1〉dω〈 f , eFm2

〉F EVS eFm1
(x)ᵀK(x)−1eFm2

(x).

(5.214)

Using Proposition 5.4, we continue our derivation as

EVS ∑
m1,m2∈N*

√
σm1〈g, em1〉dω〈 f , eFm2

〉F eFm1
(x)ᵀK(x)−1eFm2

(x) (5.215)

= ∑
m∈N*

√
σm〈g, em〉dω〈 f , eFm 〉F EVS eFm (x)ᵀK(x)−1eFm (x) (5.216)

= ∑
m∈N*

〈g, em〉dω

√
σm〈 f , eFm 〉F EVS τFm (x). (5.217)

Finally, (5.197) is obtained upon noting that

∀m ∈N*, 〈 f , em〉dω =
√

σm〈 f , eFm 〉F . (5.218)

Proof of the asymptotic unbiasedness of the quadrature

The expected value of the bias writes

EVS

(∫
X

f (x)g(x)dω(x)− ∑
i∈[N]

ŵi f (xi)

)
= ∑

m∈N*

〈 f , em〉dω〈g, em〉dω

(
1−EVS τFm (x)

)
.

(5.219)
Now, by Theorem 5.1, for m ∈N*,

EVS ‖µem −ΠT (x)µem‖2
F ≤ ε1(N) ≤ σN(1 + βN) ≤ σN + ∑

n≥N
σn. (5.220)

Thus

0 ≤ 1−EVS τFm (x) = σm
−1 EVS ‖µem −ΠT (x)µem‖2

F ≤ σm
−1σN + ∑

n≥N
σn, (5.221)

so that

lim
N→∞
〈 f , em〉dω〈g, em〉dω

(
1−EVS τFm (x)

)
= 〈 f , em〉dω〈g, em〉dω(1− lim

N→∞
EVS τFm (x)) = 0.

(5.222)

To conclude, it is thus enough to apply the dominated convergence theorem to (5.219).
By Lemma 5.2, τFm (x) ∈ [0, 1], so that 1 − EVS τFm (x) ∈ [0, 1]. In particular, for all
N ∈N*,

|〈 f , em〉dω〈g, em〉dω

(
1−EVS τFm (x)

)
| ≤ |〈 f , em〉dω〈g, em〉dω| (5.223)

≤ 1
2

(
〈 f , em〉2dω + 〈g, em〉2dω

)
, (5.224)

which is the generic term of a convergent series as f , g ∈ L2(dω). This concludes the
proof.





6
C O N C L U S I O N A N D P E R S P E C T I V E S

6.1 conclusion

We started this manuscript by reviewing the existing work in sub-sampling for prob-
lems with a linear structure. These problems appear in many fields such as data
analysis, signal processing, machine learning, or statistics; with applications that in-
clude continuous signal discretization, numerical integration, dimension reduction,
learning on budget, or preconditioning. In particular, we reviewed existing work on
randomized sub-sampling based on first-order information: leverage scores, ridge
leverage scores... A natural question that arose was to investigate sub-sampling using
high-order information such as volumes. In particular, we were questioning whether
DPPs would be beneficial for some sub-sampling problems.

We started by the problem of column subset selection: for a given matrix X ∈ RN×d,
select the set S ⊂ [d] that defines the most representative columns of X. The idea was to
investigate volume sampling through the lens of DPPs, and to challenge its optimality
for this approximation task. Indeed, we observed that volume sampling can be seen
as a mixture of projection DPPs that depends on the spectral decomposition of the
matrix XᵀX. From this observation, we can expect that there may exist a better choice
of DPP rather than this seemingly arbitrary mixture. This motivated the work done
in Chapter 3, where we proposed to study the column subset selection task using the
projection DPP with the largest weight in the mixture of volume sampling. This choice
was motivated by a new geometric interpretation of projection DPPs: they naturally
define a random space that ”hovers” around a reference subspace. We formalized this
idea using the notion of principal angles between subspaces. This new parametrization
enabled the theoretical analysis of the projection DPP as a column sampler and led to
improved theoretical guarantees compared to volume sampling under some conditions
on the matrix X.

The intuitions and techniques acquired in Chapter 3 were used to tackle another
approximation problem that can be informally called the continuous column subset
selection problem. This time the starting point was the work of Bach, 2017 on quadrature
problems for functions living in RKHSs: for a given kernel k defined on some metric
space X , select the most representative set of nodes x = {x1, . . . , xN} which can then
be used for approximating integrals of functions that belong to the RKHS associated
to k. The quadrature proposed by Bach, 2017 relies on independent random sampling
from the continuous ridge leverage score distribution, and the weights are calculated
through a regularized quadratic optimization problem. However, the proposed distri-
bution is intractable in general. As an alternative, we proposed in Chapter 4, to use
optimal kernel quadrature based on nodes that follow the distribution of the projection
DPP associated to the first eigenfunctions of the integration operator. Using again this
new interpretation of a projection DPP (a projection DPP defines a random subspace),
we succeeded in deriving the theoretical bound for optimal kernel quadrature when
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the nodes follow the distribution of this projection DPP. In particular, the rates of
convergence of this class of quadratures depends on the eigenvalues of the integra-
tion operator: the smoother the kernel, the faster the convergence of the quadrature.
However, empirical investigations showed that these theoretical rates were pessimistic.

This observation motivated the work of Chapter 5, where we investigated an
extension of volume sampling to continuous domains. Once again, we used the
accumulated intuitions from Chapter 3 and Chapter 4 to study kernel quadrature
and kernel interpolation under the distribution of continuous volume sampling. In
particular, we proved tractable formulas for the expected value of the interpolation
error when the nodes follow this repulsive distribution. These formulas were useful
to derive sharp upper bounds for kernel quadrature that scale as the existing lower
bounds. Moreover, the continuous volume sampling distribution has the advantage to
be approximated using a fully kernelized MCMC algorithm i.e. an MCMC that can
be implemented using the knowledge of the evaluation of the kernel k but without
requiring the spectral decomposition of the integration operator. This property places
continuous volume sampling as a natural alternative to the intractable continuous ridge
leverage score distribution.

We conclude with a thought on the scientific impact (or the scientific leverage) of
this thesis. One way to measure the impact of an algorithm is to estimate how hard
it is to replace it. From the lengthy bibliographic work, which was conducted across
the chapters of this thesis, we can conclude that the scientific impact of DPPs and their
variants depends on the problem to study. Indeed, we have three settings with three
different levels of impact.

It seems that the impact of DPPs and their variants may be limited for sub-sampling
in discrete sets. Indeed, as it was mentioned in the introduction, DPPs and their variants
replace leverage score sampling in the minimalist sampling regime, i.e. when the sub-
sampling budget is equal to the dimensionality of the problem. This can be useful
for applications such as feature selection where we need to keep the smallest possible
number of columns. However, for other sub-sampling problems, this stringency is not
necessary and DPPs may easily be replaced by leverage scores sampling. In other words,
in discrete sets, sub-sampling using first-order information is sufficient for the majority
of problems and there is no need to use high-order information! Nevertheless, the work
done in Chapter 3 was crucial to develop the necessary techniques and intuitions to
study DPPs in settings where they may have higher impact.

These settings correspond to sub-sampling problems on continuous domains. In-
deed, the projection DPP, we proposed in Chapter 4, is an implementable alternative
to continuous ridge leverage scores distribution. Moreover, when it is is possible to
sample from the latter, like in the periodic Sobolev spaces, the projection DPP has better
empirical performance. In other words, in continuous domains, high-order information
is worthwhile for sub-sampling.

Still, even in this setting we have two different levels of impact that correspond to
two different situations. In the first situation, the RKHS is ”classical” and there exists
some configuration with good approximation guarantees for kernel quadrature or
kernel interpolation. This is the case of the periodic Sobolev space where the uniform
grid is known to achieve the optimal rates. In these cases, we know from the theoretical
and the empirical results that the projection DPP and continuous volume sampling
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would be as competitive as the deterministic sequence but with the supplementary cost
of sampling.

In the second situation, the RKHS is not classical and there is no simpler alternative
algorithm that can compete with the optimality of the projection DPP or continuous
volume sampling. In these cases DPPs and their variants cannot be easily replaced.

6.2 perspectives

6.2.1 Exploring non classical kernels

The empirical investigations in Chapter 4 and Chapter 5 were restricted to classical
RKHSs such as Sobolev spaces and Gaussian spaces. Nevertheless, our theoretical
results are applicable to a broader class of less-known kernels.

In particular, our results are valid for RKHSs defined by localization operators. For
example, the RKHS defined by band-limited functions restricted to a compact interval
of R was the topic of intense research in signal processing (Slepian and Pollak, 1961;
Landau and Pollak, 1961). This RKHS represents band-limited signals measured
in a limited span of time. The introduction of this RKHS was motivated by the
limitation of the Whittaker-Shannon-Kotel’nikov reconstruction theory. The latter
requires to evaluate a band-limited function along the whole real line, which may
be impossible in practice. For this RKHS, we may use the projection DPP associated
to the eigenfunctions of the corresponding integration operator, also known as the
Prolate spheroidal wavefunctions (Xiao et al., 2001). The use of localization operators was
extended to time-frequency analysis in (Daubechies, 1988; Daubechies and Paul, 1988)
and they are connected to Bargmann and Bergman spaces (Seip, 1991).

Interpolation and quadrature on the hyperspheres are another field of application of
our results. Indeed, many kernels are known to diagonalize in the spherical harmonics
basis (Smola et al., 2001); and localization operators may be defined on the sphere
(Miranian, 2004).

Walsh spaces constitute another class of RKHS that may be explored in the future.
These functional spaces were investigated in the QMC community for their connections
with high-order digital nets (Dick, 2008). The corresponding eigenfunctions are Walsh
functions, which are piecewise constant, and the corresponding projection DPP may be
sampled efficiently using the HKPV algorithm as it was illustrated in Example 2.6 of
Section 2.2.5.

RKHSs defined on manifolds (Gao, Kovalsky, and Daubechies, 2019)(Ehler, Gräf,
and Oates, 2019) would be another field of application of our results. In particular,
in these domains, the spectral decomposition of the integration operator is usually
intractable, and we may use continuous volume sampling to construct a set of nodes
with good interpolation properties.

6.2.2 Exploring new approximation tasks

In this thesis, we have dealt with two classes of approximation problems. The first
class gathers problems for which the squared approximation error is tractable under
the determinantal distribution. This is the case of kernel quadrature under continuous
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volume sampling in Chapter 5. This tractability seems to be recurrent in other approx-
imation problems: CSSP using volume sampling, linear regression on budget using
dual volume sampling (Derezinski and Warmuth, 2017), ridge linear regression under
regularized volume sampling(Dereziński and Warmuth, 2017), A-optimal design under
proportional volume sampling (Nikolov et al., 2019)...

The second class gathers problems for which the squared approximation error is
not tractable under the determinantal distribution. This is the case of CSSP under
projection DPP of Chapter 3, or kernel quadrature under projection DPP of Chapter 4.

It seems that this thesis offers the first analysis of an approximation task under a
determinantal distribution, when the error term is not tractable. This opens the door to
study other approximation problems where the tractability is not satisfied. Examples of
such problems include, regularized interpolation as in (Bach, 2017), kernel quadrature
in misspecified settings (Kanagawa et al., 2016), or experimental design problems for
Gaussian process approximations (Wynne et al., 2020).

6.2.3 DPP-based quadratures that achieve the Bakhvalov rate in RKHSs?

One of the main motivations behind the investigations that we conducted in Chapter 4

and Chapter 5 was to connect the previous work on numerical integration using DPPs
(Bardenet and Hardy, 2020) and the work of (Bach, 2017) on kernel quadrature. In
particular, we have elucidated the importance of the spectral decomposition of the
integration operator Σ in the construction of quadratures with fast rates using DPPs.
Still, our analysis does not allow an understanding of one intriguing grey area on this
topic that we believe should be lightened.

Indeed, previous work on DPP-based quadratures deals with functional spaces F
that satisfy

∀ f ∈ F , ∑
m∈N∗

〈 f , em〉2dω

σm
< +∞, (6.1)

where (en)n∈N∗ is an orthonormal basis of L2(dω), and (σm)m∈N∗ is a sequence of
positive numbers satisfying ∑m∈N∗ σm = +∞. However, the rate of convergence of
these quadratures scales as O(N−1σN+1). For example, the asymptotic rate (4.50) in
Theorem 4.4 of Bardenet and Hardy, 2020 scales as O(N−1−1/d) = O(N−1σN+1) with
σm = m−2s/d and s = 1/2.

Compare that to the rate of optimal kernel quadrature that scales as O(σN+1) when
∑n∈N∗ σn < +∞. The previous work on DPPs based quadrature does not fit in the
framework of kernel quadrature. Indeed, the considered functional spaces correspond
to Sobolev spaces of smoothness degree s ≤ d/2, therefore they cannot be represented
by RKHSs; see (Berlinet and Thomas-Agnan, 2011)[Theorem 132].

An interesting line of research would be to investigate a universal random quadra-
ture based on DPPs or their variants, that achieve the rate O(N−1σN+1) in the context
of kernel quadrature. The rate of such a quadrature would fulfil truly the ”faster
than Monte Carlo” promise: the 1/N corresponds to the Monte Carlo rate, and σN+1

corresponds to the smoothness expressed by the functional space F . This corresponds
to the Bakhvalov rate (Bakhvalov, 1959): the rate that could be achieved by a randomized
quadrature for approximating one integral; see (Novak, 2016) and (Oates et al., 2014)
for details. Note that this improvement in the convergence rate does not contradict
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the lower bound in Section 5.2.3. The latter is a lower bound for approximating all the
integrals

∫
X f (x)g(x)dω(x) uniformly on g.

Figure 6.1 illustrates the rate O(N−1σN+1) compared to the optimal kernel quadra-
ture rate O(σN+1) in the case of the Korobov space K2,1: the Bakhvalov rate ”breaks”
the plateau of eigenvalues and makes numerical integration tractable even in high
dimensional domains.
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Figure 6.1 – The spectral rate σN+1 compared to the Bakhvalov rate σN+1/N in the case of the
Korobov space of order s = 1 and d = 2.

6.2.4 A Grassmannian trigonometry problem

We conclude with a technical open question that concerns the control of principal
angles under the distribution of projection DPPs.

As we have seen in Chapter 3 and Chapter 4, the control of the largest principal
angle between subspaces under the distribution of a well-chosen projection DPP lead
to prove a theoretical guarantee for the column subset selection problem and for kernel
quadrature.

However, the analysis we proposed relies on some loose majorizations. For example,
in the case of kernel quadrature we used the symmetrizations

1
cos2 θN(T (x), EFN )

− 1 ≤ ∏
n∈[N]

1
cos2 θn(T (x), EFN )

− 1, (6.2)

or
1

cos2 θN(T (x), EFN )
− 1 ≤ ∑

n∈[N]

1
cos2 θn(T (x), EFN )

− N. (6.3)

The only reason to introduce such symmetrizations was tractability: the expected value
of the r.h.s. of (6.2) and (6.3) are tractable under the distribution of the projection DPP,
while the l.h.s is not. Improving the theoretical rates of optimal kernel quadrature
under the projection DPP would require to avoid such symmetrizations.



200 conclusion and perspectives

One way to do so is treat the cos2 θn(T (x), EFN ) as the eigenvalues of the matrix

EF (x)K(x)−1EF (x)ᵀ, (6.4)

and to use the tools of random matrix theory (Tao, 2012). In particular, investigating the
expectation of the Stieltjes transform of the atomic measure associated to the random
matrix (6.4), defined by

s(z) = EDPP Tr
(
EF (x)K(x)−1EF (x)ᵀ − zIN

)−1, (6.5)

would give a better understanding of the fluctuations of its eigenvalues. For example,
by Proposition 4.7 we have

s(0) = EDPP Tr
(
EF (x)ᵀ

−1
K(x)EF (x)−1) = N + ∑

v∈[N]

1
σv

∑
w∈N∗r[N]

σw. (6.6)

Unfortunately, s(z) has no tractable formula for other values of z. However, we can
study the properties of the expected characteristic polynomial, that we have introduced
in the proof of Proposition 4.7

p(t) = EDPP Det
(
EF (x)ᵀ

−1
K(x)EF (x)−1 − tIN

)
. (6.7)

Indeed, we showed that p has the following expression

p(t) =
1

∏
n∈[N]

σn

N

∑
`=0

(1− t)` ∑
V⊂[N]
|V|=`

∏
v∈V

σv ∑
W⊂N∗r[N]
|W|=N−|V|

∏
w∈W

σw. (6.8)

In particular, this polynomial is equal to (1− t)N when F is a finite dimensional
RKHS of dimension N: the roots of this polynomial are all equal to 1. This may suggests
that in this case

EDPP
1

cos2 θN(T (x), EFN )
= 1. (6.9)

Indeed, this is true regarding our discussion after Theorem 4.8. In general, deriving
sharper bounds for EDPP 1

/
cos2 θN(T (x), EFN ) using the polynomial p may be challeng-

ing but not impossible; see some recent advances in matrix sparsification that led to the
resolution of a long-standing conjecture known as Kadison-Singer (Marcus, Spielman,
and Srivastava, 2015).

After matrix concentration inequalities and the Stieltjes transform, the expected
characteristic polynomial is an alternative way to study the eigenvalues of random
matrices. Moreover it seems that this tool is more adequate to use in our case.





R É S U M É E N F R A N Ç A I S

Le sous-échantillonnage est une tâche récurrente en mathématiques appliquées. Ce
paradigme a des applications en traitement du signal, en apprentissage automatique, en
analyse des données ou bien en statistiques: la discrétisation des signaux analogiques,
le calcul approché des intégrales, la réduction de dimension, la réduction du budget
d’étiquetage des algorithmes d’apprentissage... Alors qu’ils paraissent différents, ces
problèmes peuvent être abordés avec la même stratégie: chercher les éléments les plus
représentatifs d’un ensemble. Un bon sous-ensemble de représentants doit éviter de
contenir des informations redondantes. Pour certains problèmes à structure linéaire,
l’ensemble peut être plongé dans un espace vectoriel et la redondance d’un sous-
ensemble peut se mesurer à l’aide du volume du polytope engendré par ce sous-
ensemble. Il se trouve qu’il existe une famille de modèles probabilistes qui définissent
des sous-ensembles aléatoires avec une propriété de répulsion: d’une façon informelle,
la probabilité d’apparition d’un sous-ensemble est proportionnelle au volume qu’il
engendre dans cet espace vectoriel. Ces modèles sont connus sous le nom des processus
ponctuels déterminantaux et ils ont été étudiés dans plusieurs domaines: les matrices
aléatoires, l’optique quantique, les statistiques spatiales, le traitement des images,
l’apprentissage automatique et récemment l’intégration numérique.

Cette thèse est consacrée à l’étude de la pertinence des DPPs pour certaines tâches
de sous-échantillonnage. Dans un premier temps, nous avons considéré le problème de
sélection d’attributs: pour une matrice qui représente des données exprimées sur un
système d’attributs, on cherche à sélectionner les attributs les plus représentatifs. En
particulier, nous avons étudié l’échantillonnage volumique, un algorithme bien connu
dans la littérature, à travers la théorie des DPPs. Nous avons proposé un algorithme
impliquant un DPP avec de meilleures garanties théoriques et de meilleures perfor-
mances empiriques. Le choix de ce DPP était motivé par une nouvelle interprétation
géométrique que nous avons mise en évidence: un DPP définit naturellement un
sous-espace vectoriel aléatoire qui ”flotte” autour d’un sous-espace de référence.

A l’aide de cette nouvelle interprétation, nous avons réussi à étudier un autre
problème d’approximation: l’approximation d’intégrales de fonctions qui vivent dans
un espace à noyau, aussi appelé le problème de quadrature à noyau.

Pour ce problème, nous avons proposé une nouvelle classe de quadratures: les
quadratures à noyau optimisées et basées sur des nœuds qui suivent la distribution
d’un DPP. La définition de ce DPP est basée sur les fonctions propres de l’opérateur
d’intégration correspondant. Nous avons montré que les taux de convergence de cette
classe de quadratures dépendent des valeurs propres de cet opérateur: plus le noyau
est régulier, meilleure est la convergence de la quadrature. Néanmoins, les expériences
numériques montrent que ces taux de convergence sont pessimistes pour certains
espaces fonctionnels.

Cette observation a motivé l’extension de l’échantillonnage volumique au domaine
continu. Nous avons étudié le problème de quadrature à noyau ainsi que le problème
d’interpolation à noyau pour des nœuds qui suivent cette nouvelle distribution. En
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particulier, nous avons démontré des formules closes de l’espérance de l’erreur sous
cette distribution répulsive. Ces formules ont permis de démontrer l’optimalité de
l’échantillonnage volumique pour cette classe de problèmes d’approximation. De plus,
cette nouvelle distribution peut être approchée par un algorithme MCMC qui peut être
implémenté sans le recours à la décomposition spectrale de l’opérateur d’intégration.

Dans ce qui suit, on présente brièvement le contenu des chapitres de cette thèse
ainsi que les publications associées.

determinantal point processes

Ce chapitre est dédié à donner une définition rigoureuse et universelle des processus
ponctuels déterminantaux. Cette définition peut être utilisée en domaine discret ou
continu. En plus, on a revu quelques propriétés fondamentales des DPPs qui seront
utilisées tout au long de ce manuscrit. Finalement, on a rappelé l’état de l’art de la
simulation numérique des DPPs.

column subset selection using projection dpps

Dans le Chapitre 3, on a proposé et analysé un algorithme de sélection de colonnes,
à base d’un DPP de projection, ayant comme but la factorisation de faible rang des
matrices.

En particulier, on a comparé le DPP de projection, associé aux premiers vecteurs
propres d’une matrice donnée, contre l’échantillonnage volumique, connu en anglais
sous le nom de volume sampling, et on a prouvé que ce DPP peut avoir des meilleures
garanties théoriques ainsi que des meilleures performances empiriques sous l’hypothèse
dite la parcimonie des k-leviers. En plus, on a démontré des garanties théoriques sous
une condition plus réaliste dite la parcimonie relâchée des k-leviers. Cette dernière a été
constatée sur plusieurs jeux de données réelles.

Une contribution importante de ce chapitre est la mise en lumière de l’importance
des angles principaux entre les sous-espaces dans l’étude des DPPs de projection. Plus
précisément, ces paramètres géométriques ont permis d’obtenir des formules closes
d’une borne supérieure de l’espérance de l’erreur d’approximation sous la distribution
du DPP de projection.

Le contenu de ce chapitre est basé sur l’article suivant.

• A. Belhadji, R. Bardenet, and P. Chainais (2020a). “A determinantal point process
for column subset selection”. In: Journal of Machine Learning Research 21.197,
pp. 1–62.

projection dpps for kernel quadrature

Dans le Chapitre 4, on a étudié la quadrature à noyau à base d’un DPP de projection.
Une telle quadrature est une approximation∫

X
f (x)g(x)dω(x) ≈ ∑

i∈[N]

wi f (xi), (6.10)
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avec g est une fonction de carré intégrable et f appartient à un RKHS associé à un
noyau k. En particulier, on s’intéresse à l’erreur d’intégration du pire cas, définit par

sup
‖ f ‖F≤1

∣∣∣ ∫
X

f (x)g(x)dω(x)− ∑
i∈[N]

wi f (xi)
∣∣∣2. (6.11)

Ce terme s’écrit également comme

‖µg − ∑
i∈[N]

wik(xi, .)‖2
F , (6.12)

avec µg =
∫
X k(x, .)g(x)dω(x) le plongement de g dans l’RKHS F .

Les nœuds de la quadrature qu’on a proposée, forment un ensemble aléatoire
x = {x1, . . . , xN} qui suit la distribution d’un DPP de projection qui dépend uniquement
des premières fonctions propres de l’opérateur d’intégration Σ. Alors que le vecteur
des poids w résout le problème d’optimisation

min
w∈RN

‖µg − ∑
i∈[N]

wik(xi, .)‖2
F . (6.13)

La solution de (6.13) s’écrit ŵ = K(x)−1µg(x), et la mixture optimale ∑n∈[N] ŵnk(xn, .)
est la projection de µg sur le sous-espace T (x) = Span(k(xn, .)n∈[N]) qu’on dénote
ΠT (x)µg, et la valeur optimale de (6.13) est appelée l’erreur d’interpolation de µg.

On donne une analyse théorique de cette quadrature et on démontre que le taux de
convergence dépend des valeurs propres (σn)n∈N∗ de l’opérateur d’intégration comme
O(N ∑n≥N+1 σn) avec N est le nombre des nœuds de la quadrature. Les simulations
numériques suggèrent que le taux de convergence est plus rapide et se comporte
comme O(σN).

D’un point de vue technique, on a exploité les intuitions géométriques du Chapitre 3

pour développer l’analyse théorique de ces quadratures. En particulier, on a utilisé les
angles principaux entre les sous-espaces pour borner l’espérance de l’erreur d’interpolation
au carré

EDPP ‖µg −ΠT (x)µg‖2
F , (6.14)

qui n’a pas de formule close connue.
Le contenu de ce chapitre est basé sur l’article suivant.

• A. Belhadji, R. Bardenet, and P. Chainais (2019a). “Kernel quadrature with DPPs”.
In: Advances in Neural Information Processing Systems 32, pp. 12907–12917.

continuous volume sampling for kernel interpolation

Dans Chapitre 5, on continue sur la ligne de recherche initiée dans Chapitre 3 et
Chapitre 4, et on étudie la quadrature à noyau ainsi que l’interpolation à noyau sous la
distribution de l’échantillonnage volumique continu (Continuous Volume Sampling en
anglais).

Contrairement au cas du DPP de projection étudié dans Chapitre 4, on montre
que l’espérance du carré de l’erreur d’interpolation admet une formule close sous la
distribution CVS

ECVS ‖µg −ΠT (x)µg‖2
F = ∑

m∈N∗
〈g, em〉2dωεm(N), (6.15)
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avec

εm(N) = ∑
|T|=N
m/∈T

∏
t∈T

σt

/
∑
|T|=N

∏
t∈T

σt. (6.16)

En plus, on montre que εm(N) = O(σN+1) pour plusieurs RKHSs, et on donne la
garantie de convergence pour l’interpolation des fonctions au-delà du cadre de la
quadrature à noyau. Finalement, on démontre que la quadrature est asymptotiquement
non-biaisé, et on donne une interprétation à ce résultat.

L’avantage derrière cette distribution est qu’elle peut être approximée par un schéma
MCMC qui ne nécessite pas la décomposition spectrale de Σ contrairement au DPP de
projection de Chapitre 4 et la distribution des leviers régularisés de (Bach, 2017).

Le contenu de ce chapitre est basé sur l’article suivant.

• A. Belhadji, R. Bardenet, and P. Chainais (2020b). “Kernel interpolation with
continuous volume sampling”. In: Proceedings of the 37th International Conference
on Machine Learning, pp. 725–735.

conclusion and perspectives

On conclut le manuscrit par une discussion des contributions de la thèse et on soulève
des questions ouvertes concernant les approximations à base de DPPs.
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The symbols with the indication(∗∗) appear in Chapter 3 and they have a different
meaning in Chapter 4 and Chapter 5.

functional analysis

X Metric space
x1, . . . , xN Elements of X (even if X is a high dimensional domain)

x Discrete subset of X : x = {x1, . . . , xN} ⊂ X . It may be seen as an
element of X N . In this case we write x = (x1, . . . , xN).

ω, dω Measure on X . We use the two interchangeably
ω⊗L, dω⊗L Tensor product of the measure ω defined on X L

w(t) Density of an absolutely continuous measure with respect to the
Lebesgue measure: dω(t) = w(t)dt

N (**) Cardinality of x
k (**) Kernel defined on X
K(x) Kernel matrix (k(xi, xi′))(i,i′)∈[N]×[N]

F RKHS associated to k
L2(dω) Set of square-integrable functions with respect to dω (or ω)

L2([0, 1]d) Set of square-integrable functions with respect to the Lebesgue mea-
sure on [0, 1]d.

IH Identity operator of a Hilbert space H
1S Indicator function of the set S
ΠP Orthogonal projection onto the subspace P

‖.‖dω, 〈., .〉dω Norm and bilinear form defined by dω (or ω)
‖.‖F , 〈., .〉F Norm and bilinear form of F

Σ (**) Integration operator associated to k and dω

σm m-th eigenvalue of Σ

em m-th eigenfunction of Σ with ‖em‖dω = 1
eFm Scaled m-th eigenfunction of Σ with ‖eFm‖F = 1
µg Embedding of g equivalently the mean-element of the measure gdω



207

linear algebra

Iδ Identity matrix of dimension δ

ΠP Orthogonal projection onto the subspace P
X Real matrix

X:,S Sub-matrix of X containing the columns S
XS,: Sub-matrix of X containing the rows S
XS,S′ Sub-matrix of X defined by the rows S and the columns S′

U Left eigenvectors of X
Σ (**) Matrix of singular values of X

V Right eigenvectors of X
N (**) Number of the rows of X

d Number of the columns of X
k (**) Spectral cut-off
X+ Moore-Penrose pseudo-inverse of X
‖.‖2 Spectral norm
‖.‖Fr Frobenius norm
0n,m Matrix of zeros in Rn×m
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zu finden.” In: Journal für die reine und angewandte Mathematik 1826.1, pp. 301–308.

Johansson, K. (1997). “On random matrices from the compact classical groups”. In:
Annals of mathematics, pp. 519–545.

Johansson, K. (Oct. 2005). “Random matrices and determinantal processes”. In: ArXiv
Mathematical Physics e-prints.

Kanagawa, M., B. K. Sriperumbudur, and K. Fukumizu (2016). “Convergence guarantees
for kernel-based quadrature rules in misspecified settings”. In: Advances in Neural
Information Processing Systems, pp. 3288–3296.
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Échantillonnage des sous-espaces
à l’aide des processus ponctuels déterminantaux

Les processus ponctuels déterminantaux (DPP) sont des modèles probabilistes im-
pliquant une répulsion entre les points. Ces modèles ont été étudiés dans différents
domaines allant de l’étude des matrices aléatoires à l’optique quantique, en passant
par le traitement d’image, l’apprentissage automatique et plus récemment les quadra-
tures. Dans cette thèse, on étudie l’échantillonnage de sous-espaces à l’aide des DPP. Ce
problème se trouve à l’intersection de trois branches de la théorie de l’approximation :
la sous-sélection dans les ensembles discrets, la quadrature à noyau et l’interpolation
à noyau. On étudie ces questions classiques à travers une nouvelle interprétation des
DPP : un DPP est une façon naturelle de définir un sous-espace aléatoire ayant de
bonnes propriétés. En plus de donner une analyse unifiée de l’intégration et de l’in-
terpolation sous les DPPs, cette nouvelle approche permet de démontrer les garanties
théoriques de plusieurs algorithmes impliquant des DPPs.
Mots-clés : Processus ponctuels déterminantaux, méthodes Monte Carlo, interpola-
tion, quadrature, méthodes à noyau

Subspace sampling using determinantal point processes

Determinantal point processes are probabilistic models of repulsion. These models
were studied in various fields: random matrices, quantum optics, spatial statistics,
image processing, machine learning, and recently numerical integration. In this thesis,
we study subspace sampling using determinantal point processes. This problem takes
place within the intersection of three sub-domains of approximation theory: subset
selection, kernel quadrature, and kernel interpolation. We study these classical topics,
through a new interpretation of these probabilistic models: a determinantal point
process is a natural way to define a random subspace. Besides giving a unified analysis
to numerical integration and interpolation under determinantal point processes, this
new perspective allows to work out the theoretical guarantees of several approximation
algorithms and to prove their optimality in some settings.
Keywords: Determinantal point processes, Monte Carlo methods, interpolation,
quadrature, kernel methods
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