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Abstract

This PhD thesis is in the field of smart homes, and more specifically in the energy consumption
optimization process for a home having an ambient energy source harvesting and storage system.
The objective is to propose services to handle the household energy consumption and to promote
self-consumption. To do so, relevant data must be first collected (current, active and reactive
power consumption, temperature and so on). In this PhD, data have been first sensed using an
intrusive load approach. Despite our efforts to build our own data base, we decided to use an
online available dataset for the rest of this study. Different supervised machine learning algorithms
have been evaluated from this dataset to identify home appliances with accuracy. Obtained results
showed that only active and reactive power can be used for that purpose. To further optimize the
accuracy, we proposed to use a moving average function for reducing the random variations in
the observations. A non-intrusive load approach has been finally adopted to rather determine the
global household active energy consumption. Using an online existing dataset, a machine learning
algorithm based on Long Short-Term Memory (LSTM) has then been proposed to predict, over
different time scale, the global household consumed energy. Long Short-Term Memory was also
used to predict, for different weather profiles, the power that can be harvested from solar cells.
Those predictions of consumed and harvested energy have been finally exploited by a Home
Energy Management policy optimizing self-consumption. Simulation results show that the size
of the solar cells as well as the battery impacts the self-consumption rate and must be therefore
meticulously chosen.

Keywords : Smart Home, Renewable Energy, Internet of Thing, Deep Learning, Home Energy
Management System, Load energy forecasting,
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Résumé

Cette thèse s’inscrit dans le domaine des maisons intelligentes, plus précisément dans
l’optimisation énergétique et l’utilisation d’un système de récupération et stockage de l’énergie
ambiante. L’objectif est de proposer, après collecte d’un ensemble d’informations pertinentes
(courant, puissance active et réactive, température, etc.), des services liés à la gestion de la
consommation électrique domestique et favorisant l’autoconsommation. Dans cette thèse, la
collecte des données a tout d’abord été basée sur une approche intrusive. A défaut de pouvoir
construire notre propre base de données, nous avons utilisé une base de données disponible en
ligne. Différents algorithmes d’apprentissage supervisés ont été évalués à partir de ces données
afin de reconnaître un appareil électrique. Nos résultats ont montré que les puissances active et
réactive seules suffisent à identifier de manière précise un appareil électrique. Afin d’améliorer
l’identification des différents appareils, une technique basée sur une moyenne glissante a été utilisée
pour le pré-traitement des données. Dans cette thèse, une approche non-intrusive consistant
à mesurer la consommation électrique d’une habitation de manière globale, a finalement été
privilégiée. A partir de cette mesure globale, des prédictions de l’énergie globale consommée à
partir d’algorithmes d’apprentissage automatique (LSTM) a été proposée. L’algorithme LSTM
(Long Short-Term Memory) a également été utilisé afin de prédire la puissance récupérée par des
cellules photovoltaïques, ceci pour différents profils d’ensoleillement. Ces prédictions de l’énergie
consommée et récupérée sont finalement exploitées par un algorithme de gestion de l’énergie
favorisant l’autoconsommation.

Mots clés : Maison intelligentes, Energie Renouvelable, Objets connectés, Deep Learning,
Gestion énergétique, prédiction de la charge electrique
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Chapitre 1
Introduction
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1.1 Context et Objectives

Most of the energy produced in the world comes from fossil fuels (oil, gas and coal) and accounts
for more than 80% of the world’s total primary energy production as shown in figure 1.1. However,
the world’s energy reserves are not inexhaustible (at the current rate of consumption, oil will run
out in 54 years, gas in 63 years and coal in 112 years) and contribute largely to global warming
due to the greenhouse gases emitted by these fossils. Indeed, according to data published by the
International Energy Agency, world energy demand could increase by 45% by the year 2030, in
particular due to demographic development and the industrialization of countries such as China
and India, which alone have more than 2 billion inhabitants.
Electricity consumption is expected to grow twice as fast as average energy consumption. In order
to reduce this dependence on fossil fuel-based energy, which is largely responsible for greenhouse
gas emissions, several initiatives have been put in place in this context around the world. These
initiatives aim at stimulating energy efficiency, limiting the construction and use of the least
efficient coal-fired power plants, reducing methane emissions in the upstream oil and gas sectors,
and reforming fossil fuel subsidies. These measures will support the development of renewable
energy.
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1.1 Context et Objectives

Figure 1.1 – Primary energy world consumption (a), Share of globaly primary energy consumption
by fuel (b) [industry, 2019]

Figure 1.2 – Average installed cost for solar photovoltaics worldwide from 2010 to 2019 (in U.S.
dollars per kilowatt) [Statista, 2020]
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Figure 1.3 – Global solar manufacturing capacity vs. module price, 2010-2020E [Sun, 2019]

Today, these renewable energies are gradually becoming energies in their own right, competing
with fossil fuels in terms of cost and production performance. They are clean and inexhaustible, and
therefore capable of covering our energy needs in the long term. Among these renewable energies,
solar energy offers high potential. Moreover, it is currently undergoing a strong development in
the world. This development can be explained, by government measures aimed at reducing the
use of fossil fuels and, on the other hand, by the impressive drop in the price of the solar module
and the cost of installing solar panels, which have fallen by more than 90% [Sun, 2019] and 70%
[Statista, 2020] respectively, as shown in figures 1.2 and 1.3. Despite rising energy consumption,
global carbon emissions related to energy consumption have increased by 0.5% in 2019 compared
to an average of 1.1% per year over the last decade. This slight increase is partly due to improved
energy efficiency as well as better penetration of new technologies. These new technologies such
as connected objects can bring significant potentials in the energy sector. Connected objects are
already part of our everyday life and will grow strongly in the coming years. As can be seen in
figure 1.4, a market study published by IDATE in 2015 predicts an increase from 42 to 155 billion
connected objects worldwide by 2025 [Ropert, 2016]. These objects can meet multiple needs and
provide a variety of services. As a result, they address a wide variety of application areas, such as
e-health, agriculture, the environment, the automotive industry, smart cities and smart homes.

In this thesis, we are interested in the field of Smart Homes. As shown in figure 1.5, a smart
home can be defined as a residence equipped with connected objects integrating communication and
information systems to measure, monitor and automatically control energy consumption through
an Internet connection using typically a mobile device. Using this new type of technology, smart
home can also improve the safety and comfort of the occupants. smart homes are increasingly

3



1.2 Contributions and thesis structure

equipped with renewable energy systems such as solar panels (as in the case of this thesis) connected
to grid to maximize self consumption and energy saving. For energy efficient buildings, the challenge
is to set up these objects not only to monitor energy consumption, but also to manage energy
(load shedding, adjusting heating curves, etc.) either directly or through the involvement of the
occupants. The aim of this thesis is to propose solutions to facilitate the integration, deployment
and interoperability of connected objects linked by a wireless network within a house and also
to design a Power Management which favors self consumption. This Power Management will take
decisions according to predictions of the consumed and harvested energy. Obviously, a key principle
of smart home is to collect relevant information and then to propose services, such as those related
to energy control and management.

Figure 1.4 – World Internet of Things market, 2013 - 2025 [Ropert, 2016]

Indeed, according to [Florian, 2019], the residential sector is one of the main consumers of
energy and accounted for 35 percent of total French energy consumption in 2018. Moreover, recent
studies have shown that a continuous feedback (e.g. through a real-time visualization) coupled
with an automated management system for domestic equipment could allow an energy reduction
of 15 to 30% [B. Neenan, 2009], [Darby, 2006]. A data collection infrastructure related to energy
consumption is therefore a necessary basic element of such a management system.

1.2 Contributions and thesis structure

Contributions

In this thesis, 4 main contributions are proposed in the context of smart home :
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— Study on the impact of the number and type of features for home appliance identifications
(chapter 3)

— A data preparation technique to optimize classifiers (chapter 3)
— Prediction of overall power consumption using Deep Learning methods (LSTM) (chapter 4)
— Power Management policies for smart home equipped with a photovoltaïc-based energy

harvesting system (PV system), with and without a battery (chapter 5)

Figure 1.5 – Home Energy Management system

Thesis structure

This thesis is structured in six main chapters. Following this introductory chapter, Chapter
2 sets the context of the research topic by presenting the basics of the work carried out in the
energy management of a house. It also examines the different data collection architectures for
energy consumption. Challenges in achieving energy savings through the monitoring and control of
energy consumption will be discussed. The second part of this chapter describes various Machine
Learning and Deep Learning techniques commonly used in smart homes. Finally, this chapter
proposes a section related to renewable energy, with a focus on solar panels modeling.

Chapter 3 presents our methodology for recognizing electrical appliances based on their
consumption profiles called electrical signatures. In the framework of this thesis, a wireless
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data collection environment based on an intrusive approach is presented. Despite our efforts
to build our own database, a free online database ACSF1 was rather used in this thesis for
our experiments. Different Machine Learning techniques such as Multilayer Neural Perceptron
(MLP) and Random Forest were implemented and compared with K-NN, a discriminative and
non-parametric approach. Variations in the recognition rate were analyzed by adjusting the
system parameters. In addition, the impact on the numbers and the type of electrical signature
were analyzed and evaluated.

Chapter 4 presents the short- and medium-term global energy consumption prediction model
based on the recurrent LSTM algorithm. A comparative study based on an ARIMA linear model
and a LSTM non-linear approach was carried out. This study is based on an online available
dataset collected in a household near Paris during 4 years (IHEPCD dataset). A new approach
for managing missing values in the dataset was proposed and compared with other existing
techniques. The results obtained using these two approaches as well as the technique for managing
missing data are analysed. Finally, the prediction model trained on the IHEPCD database was
evaluated and validated on another dataset containing measures collected in a house located near
to Nice in the south of France.

Chapter 5 presents the complete system integrating an energy harvesting system (solar
panels), a storage device and a data collection environment based on a mixed approach. In order
to favour household self-consumption, two power management algorithms taking as input the
actual and predicted value of the global energy consumption as well as the energy produced by
solar panels are proposed. The first Power Management policy considers that the household is not
equipped with a battery, while the second one does. To evaluate the efficiency of our approach
with different harvested energy profiles, two different locations are considered in our study (Nice
and Paris). The number of solar panels as well as the battery sizing was also evaluated in this thesis.

This thesis ends with a general conclusion of our research work, detailing in particular the
various achieved objectives and the prospects they open up.
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2.1 Energy Management in Smart Home

2.1.1 What is energy management system in smart home

In general, the energy management system can be defined as a system that allows efficiently
managing energy both for the consumers (smart home in our case) and for the suppliers (grid) by
shifting the demand to off-peak energy prices. This can help to conserve fossil fuel resources and
reduce energy consumption. In the case of a smart home, the energy management system allows
to communicate, monitor and remotely activate home appliances in order to not only imporve
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the quality of life and comfort, but also to optimize the self-consumption, thus reducing the
energy bill. According to [Leitão et al., 2020] Smart homes are a ubiquitous branch of computing
that includes the integration of connected objects in homes for safety, comfort, healthcare and
energy efficiency [Alam et al., 2012] [Zafari et al., 2016]. These connected objects are part of the
ongoing technologies in power grids, driving the deployment of smart sensors and other advanced
measurement devices that enable communication, monitoring and remote operation of household
appliances. Smart homes offer a better quality of life and greater efficiency by taking advantage
of remote monitoring and contextual self-adaptation mechanisms to identify occupants’ needs and
preferences and coordinate the operation of appliances. Wired and wireless networks of sensors
and actuators are deployed in smart homes, with sensor data collected and stored on a local or
remote central platform depending on the application context. This platform is also in charge
of processing the acquired information, enabling the optimized management and operation of
household appliances, in the interest of the comfort and energy efficiency of the occupants.

2.1.2 Energy Monitoring approach in smart home

In the literature, we often find two types of approach to monitor the power consumption of
household appliances : the Non Intrusive (NILM ) or Intrusive (ILM ) approach as shown in
figure 2.1.

Figure 2.1 – Approach used on smart home for monitoring appliances [Nguyn, 2015]

The Non Intrusive approach [Hart, 1992] consists in analyzing the transient and stable signature
appearing when appliances are switched on or off. This approach requires a single sensor with a
high sampling rate placed at the point of entry to a house. It is used to identify each device
connected to the network based on the overall consumption. According to [Nguyn, 2015] and as
illustrated on the figure 2.1, the process of identifying a device is done in 5 steps :
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— Data acquisition : The NIALM system collects values from current and voltage sensors
at a defined sampling rate.

— Preprocessing : This is an important step to filter out electrical noise and to extract
electrical characteristics such as total active power, reactive power and apparent power.
It may contain some advanced tasks such as calculating the phase of the electrical signal,
harmonics data and power factor. The more electrical characteristics are extracted, the more
accurate the step-by-step classification.

— Event Detection works on detecting aggregate current or power changes to define an event
to turn a device on or off in the power grid. This step also extracts transition signatures
after a detected event.

— Classification groups the events after the event detection step and matches the on/off
events to classify the devices.

— Estimation is the final process to summarize the total power consumption and power
consumption ratios for each device.

Note that measurements are made on multiple independent devices to determine the
contribution of each device. As a result, the cost of a high-frequency analyzer, which is used
to detect transient periods, was found to be a disadvantage. Although the identification results are
promising, some researchers have focused on using an analyzer with a sampling frequency of up
to 15 kHz to reduce the cost. In spite of its ease of installation and setup of its data acquisition
system, the Non Intrusive approach has the disadvantage of having inaccuracy defects (related to
the accumulation of power consumption of the various devices that generate interference on the
network). The Intrusive ILM approach [Antonio.Ridi et al., 2014], on the other hand, consists in
analyzing in the short and medium term (from a few seconds to a few minutes) the evolution of
the power consumption of one or several devices that are either used or inactive. It is an intrusive
process since the smart meter (connected plug) is placed on a device that is being measured. This
approach also has several advantages over a Non Intrusive approach. The information collected is
more accurate and the electrical signatures are numerous thanks to the multiple sensors used in
this approach, making the identification process easier and more flexible. Moreover, an intrusive
approach allows appliances to be remotely control by the user.

2.1.2.1 Energy Monitoring system based on intrusive approaches (ILM)

Energy monitoring systems can influence residents behaviour by informing them through a
graphical interface of the real-time home energy usage. If the breakdown energy usage of each
home appliances and consumer electronics is displayed on a wall pad, a computer, or a television,
residents are aware of their power consumption and can therefore make an effort to reduce their
energy. Over the last years, web-based monitoring and control systems were proposed by energy
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suppliers (such as ENEDIS in France) to enable users to see home energy data and control home
devices remotely through the Internet.

2.1.2.2 Energy Monitoring system based on non intrusive approaches (NILM)

The training phase of an automatic recognition system often requires several series of measures
to take into account the behaviour of electrical power consumption of the charges. These
measurement phases reveal several degrees of intrusion. First, they require an intrusion of a
specialist into the residence to place measuring devices on each appliance to collect the different
signatures. Following the first step of state change detection, the second step consists in identifying
the loads using the signatures of the devices stored in a database. These signatures can be
obtained using different techniques such as genetic algorithms [Nguyn, 2015], integer programming
methods [Suzuki et al., 2008], or probabilistic Hidden Markov Models [Nambi et al., 2013]. The
NIALM methods can be classified into two categories :

— those using an automated learning phase (AS-NIALM : Automatic Setup)
— those using a manual learning phase (MS-NIALM : Manual Setup)
Manual learning : Manual NIALM methods are more accurate than automatic NIALM

methods thanks to the collection of signatures of the devices present in the installation. However,
this semi-intrusion can be seen as annoying for the customer subscriber and unattractive for the
distributor or supplier of electrical energy. In the case of MS-NIALM methods, a library of device
signatures is built, from intrusive measurements on the installation. The time tracking of the devices
requires a certain duration of the intrusion. During this period, the signatures of the devices are
observed (active power, reactive power, RMS current value, etc.) and manually qualified as a
heating, lighting, washing etc. signature. - during commissioning and decommissioning.

Automatic learning : In the case of AS-NIALM methods, the signatures of the devices
improving over time and are based on information collected a priori in laboratories as well as
questionnaires collected in habitats. These libraries actually identify each electrical device and its
consumption, and have encouraged a move towards identifying the uses of these devices, or even
the habits of use or consumption of the latter by customers. MS-NIALM methods are a tool in the
development of AS-NIALM methods. They have probably been used to analyze situations where
AS-NALM methods failed. Given their much less intrusive nature, AS-NIALM methods should
then dominate in most applications by building their own signature library observed during the
state change steps.

2.1.3 Appliance control (ON / OFF)

The loads in a smart home can be classified into two categories : non-controllable and
controllable loads. The controllable loads are defined as the loads that can be controlled (shifted in
time for example) without noticing impacts on consumers’ life styles. The controllable appliances
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are more and more proposed by suppliers and already include air-conditioner (AC), water heater
(WH), clothes dryer (CD), and dishwasher (DW). The non controllable laods contain loads that are
either very important or likely to impact consumers’ life style when shifted. It includes refrigerator,
cooking and lighting loads.

2.2 Machine learning techniques

2.2.1 General presentation

Supervised machine learning is one of the most commonly used and successful type of machine
learning. In this section, we introduce some popular supervised learning algorithms used in this
work. Supervised learning is used to predict a certain output from a given input, and we have
examples of input/output pairs. We build a machine learning model from these input/output
pairs, which comprise the training set. The objective is to make accurate predictions for new, never
before seen data. Supervised learning often requires human effort to build the training set, but
afterward automates and often speeds up laborious or infeasible task. There are two major types of
supervised machine learning problems, called classifcation and regression. In classification, the goal
is to predict a class label, which is a choice from a predefined list of possibilities. Classification is
sometimes separated into binary classification, which is the special case of distinguishing between
exactly two classes, and multiclass classification, which is classification between more than two
classes. For regression tasks, the goal is to predict a real number. Predicting energy consumed for
weeks in a house given habitant’s education, age, and where they live is an example of a regression
task. When predicting income, the predicted value is an amount, and can be any number in a given
range. Another example of a regression task is predicting the yield of a corn farm given attributes
such as previous yields, weather, and number of employees working on the farm. The yield again
can be an arbitrary number. In the following sections, the different Machine Learning techniques
used in this thesis are introduced.

2.2.2 K-NN

The K nearest neighboring algorithm (K-NN) is a non-parametric supervised learning algorithm
that is intuitive and easy to implement. This algorithm is often called "lazy learning" or memory-
based because it is based only on training data. It can be used for both classification and regression.
Its principle consists in calculating the distance between a new data to be classified and the
referenced data that form the training database. The unseen data is classified by a vote to the
plurality of its neighbors with data being assigned to the most common class among its k nearest
neighbors. There are different types of distance calculation : Euclidean, Manhattan, Minkowski or
Chebyshev distance. An example of classification by K-NN is shown in the figure 2.2.
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Figure 2.2 – Example of a 3NN classification

In this figure, the first class is represented by triangles and the second by stars. The new object
to be classified is in the form of a small heart. Using a 3NN classifier (k=3), we find 2 nearest
neighbors of the new object belonging to the triangles class against one of the stars class. The
classifier then considers that this new object belongs to the triangles class.

2.2.3 Random Forests

Random forest is basically made up of a large number of decision trees that function as a set
as illustrated by figure 2.3. Each tree is slightly different from the others. The idea behind random
forests is to do an acceptable job of prediction for each tree, but will likely be overfitted on some
of the data. If you build many trees, all of which work well and overfit in different ways, you can
reduce the amount of overfitting by averaging their results.
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Figure 2.3 – Visualization of a random forest model making a prediction [Yiu, 2019]

To implement this strategy (reduction of overfitting), we will have to build a fairly large number
of decision trees. Each tree should do an acceptable job of predicting the target and should also
be distinct from other trees. Random forests get their name from the injection of randomness into
the construction of the tree to ensure that each tree is different. There are two ways to randomize
trees in a random forest : by selecting the data points used to build a tree and by selecting the
features in each split test. To make a prediction using the random forest, the algorithm first makes
a prediction for each tree in the forest. For the regression, we can average these results to get our
final prediction. For classification, a “soft voting” strategy is used. This means that each algorithm
performs a "soft" prediction, providing a probability for each possible output tag. The probabilities
predicted by all trees are averaged and the class with the highest probability is predicted as can
be seen in figure 2.3
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2.2.4 Artificial Neural Network

2.2.4.1 Introduction

One of the main tasks of an energy management system in a household is the prediction and
classification of electrical signatures. This task can be performed using various tools such as smart
plugs as well as real-time visualization tools. When an anomaly occurs on a household appliance
(e.g. an unexpected over-consumption or a power outage), the information changes and users must
then identify their anomalies according to the type of architecture (IALM or NIALM) installed in
the house. As it has been demonstrated [Zufferey et al., 2012] [Antonio.Ridi et al., 2014], artificial
neural networks are well adapted tools to help users to better manage their energy consumption
and also detecting anomalies (i.e. by closely monitoring an appliance that consumes so much energy
compared to normal use) in the case of a smart home. An artificial neural network (ANN) can be
defined as a set of small computing units linked together by communication links. The information
conveyed by these connections is digital and can be coded in different ways. Each unit, which may
have a small local memory capacity, performs a calculation based on the data of its connections
and local data. Some neural networks model biological neural networks, others do not. Historically,
the main objective of neural network research has been to increase our knowledge of the brain
mechanism through the development of artificial systems capable of reproducing complex (even
intelligent) calculations, similar to those performed by the human brain. Most neural networks use
data-based learning rules to adjust connection weights. In other words, neural networks are usually
developed from examples. They then have some ability to generalize data not present in the learning
base. The neural network technique is therefore, in principle, a regression method, similar to linear
or multilinear regression methods. Once the parameters (weights) have been adjusted, the neural
network is a non-linear statistical model. The advantage of neural networks over conventional
regression methods (i.e. linear regression, logistic regression) is that they generally require a larger
number of adjustable parameters to obtain a non-linear model of a given precision.
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Figure 2.4 – Model of a formal neuron

2.2.4.2 Architectural description of a formal neuron

Architecturally, a neural network can be seen as a set of elementary units (formal neurons)
interconnected to form a system with one or more inputs and one or more outputs. These neurons
receive informations produced by other nodes through the input connections. The weights assigned
to the inputs of a neuron are stored in a matrix w, where the value wij represents the weight of the
input connection xi of the neuron j. To this sum is added the threshold value bj which represents the
output of a "bias". This represents the biased post-synaptic potential pj described by equation 2.1.
The neuron can be modeled by two operators as shown in figure 2.4 .

— A summation operator that develops a "post-synaptic potential" pj equal to the weighted
sum of the cell inputs :

pj =
N∑

i=1
wijxi + bj (2.1)

with wij represents the weight, bj the biais and and xi the input.
— A decision operator that calculates the state of the neuron’s output xj according to its

potential pj which can then be transmitted to other neurons. This operator is called
"activation function".

xj = f(pj) (2.2)

The calculation of the neuron state is obtained by calculating the post-synaptic potential and
then applying the decision operator (activation function) to it.

Among the commonly used activation functions, we can mention :
— Linear function

xj = f(pj) = k.pj, ∀k ∈ R (2.3)
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Figure 2.5 – Linear function

— Sigmoid or logistic function

xj = f(pj) = 1
1 + exp(−pj)

(2.4)

Figure 2.6 – Sigmoid function

— ReLU function
xj = f(pj) = max(0, pj) (2.5)

— Hyperbolic tangent
xj = f(pj) = exp(pj)− exp(−(pj))

exp(pj) + exp(−(pj))
(2.6)

— Softmax function
xj = f(pj) = exp(pj)∑

m=1 K exp(−pm) , j = 1, ..., K (2.7)

The sigmoid function which provides an output between 0 and 1 is mostly used as an
activation function to perform a binary classification. The first formal neuron appeared in the
1940s [McCulloch and Pitts, 1943]. Since that, several types of neural networks with different
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Figure 2.7 – ReLU function

Figure 2.8 – Hyperbolic tangent function

properties were developed. Two types of networks can be distinguished : those whose connection
graph has at least one cycle and those for which this is not the case. The first types of networks
are called recurrent when the second are called acyclic (or feed-forward). Among the acyclic
networks, we find perceptron [Rosenblatt, 1957], convolutional [Lecun et al., 1998], Radial Basis
Function [Broomhead and Lowe, 1988] or Kohonen maps [Kohonen, 1982].

2.2.4.3 MultiLayer Perceptron

In 1957, F.Rosenblatt was inspired by the work on formal neurons [McCulloch and Pitts, 1943]
and on the Hebb rule introduced in [Hebb, 2002] to develop the perceptron model but also
the method which allows this model to learn [Rosenblatt, 1957]. Although this model has
only one layer it already allows solving simple tasks of geometrical symbol classification. It is
however impossible with the method formulated by F. Rosenblatt to train a system having
several layers which turns out a few years later very restrictive. As a result, M. Minsky and
S. Papert demonstrated in 1969 by a rigorous analysis that the perceptron is unable to learn
functions if they are not linearly separable. They went a step further by demonstrating that
it is necessary to have at least one additional layer of neurons in order to solve the problem.
But there were at that time no way to train a multi-layered perceptron. It took more than ten
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years for researchers to implement the learning method that allows adjusting the parameters
of a multi-layer perceptron. Indeed it was P. Werbos who first proposed the idea of using
the error gradient retro-propagation technique developed in the 1960s for the ANNs learning.
During his thesis, which he defended in 1974 [Werbos, 1974], he analysed the relevance of this
method but, given the lack of interest of the scientific community for ANNs following the
publication of M. minsky and S. Papert, he did not publish any results on the subject until
1982 [Werbos, 1970]. It was finally in the mid-1980s that the method was re-discovered by several
research teams [Parker, 1985] [LeCun, 1985] [Rumelhart et al., 1986] and finally popularized. In
1986, D. Rumelhart, G. Hinton and R. Williams showed in [Rumelhart and McClelland, 1987] that
using error gradient backpropagation applied to a multi-layer perceptron, it was finally possible to
overcome the limitations of the perceptron that had been raised by M. Minsky and S. Williams.
Papert in 1969. In particular, the multi-layer perceptron can handle complex non-linear problems
and can approximate, with a single hidden layer and a sufficient number of neurons, any continuous
non-linear function over a compact space with arbitrary precision [Hornik et al., 1989]. The
multilayer perceptron is thus called a universal function approximator. The multilayer perceptron
is part of the layered acyclic neural networks. Their neurons and their connections form an acyclic
oriented graph in which information flows in one direction only (i.e. from input to output). The
first layer is called the input layer, the intermediate layer(s) is called the hidden layer and the last
layer is called the output layer. The figure 2.9 gives a representation of a multilayer perceptron
with two hidden layers.

Figure 2.9 – A multilayer perceptron with two hidden layers
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The activations of the input layer receive the information provided by the input vectors of each
instance. This layer therefore does not have any input connections from other nodes. However, it is
completely connected to the first hidden layer. In an MLP containing N hidden layers, each of the
(N-1) hidden layers is completely connected to the upper one. The N th hidden layer is completely
connected to the output layer. The activation of the neurons in the output layer represents the
values of the MLP output vector. The neurons of these intermediate layers as well as those of the
output layer apply two treatments : a linear combination of their inputs (whose weights are network
parameters), followed by a non-linear function (i.e the activation function). Multilayer Perceptrons
are generally used for supervised classification problems but less frequently for processing time
series data. This implies the existence of a set of input-output pairs linked by a certain relationship,
which the network will "learn" by adjusting its parameters. The learning is performed with the
gradient back-propagation algorithm. These networks have nevertheless some disadvantages. In
fact, the learning phase can be a few minutes to several hours long depending on the complexity
of the problem. In addition, there is no formal methodology for the design and construction of this
type of network. The choices of network hyperparameters need some experience to get the desired
performance.

Gradient Backpropagation algorithm

According to [Bouaziz, 2017], the learning phase is called when the connection weights adapt to
the prediction errors found in each classification of a new instance. The Gradient retropropagation
(backpropagation) [Rumelhart and McClelland, 1987] is the most commonly used method for
adjusting these weights. Its principle can be summarized in three basic steps :

— Routing information through the network
— Retropagating error and gradient calculation
— Adjust the parameters using the approximate gradient rule

The retropropagation algorithm is a method that calculates the error gradient for each neuron in
the network from the last layer to the first hidden layer. The purpose of this algorithm is to adjust
the connection weights to minimize a cost function, for instance the mean square error represented
by the equation 2.8.

E = 1
2

N∑
i=1

(Yi − Ŷi)2 (2.8)

This error represents the difference between the expected output Yi and the output estimated by
the network Ŷi corresponding to a given input vector N. N represents the size of output vectors.
Despite its unavoidable role in optimization problems, backpropagation algorithm has limitations
inherent in the gradient technique because of the risk of being trapped in a local minimum. It is
enough that the gradients or their derivatives are zero for the network to be blocked in a local
minimum. Additionally, there is a risk of the slow convergence especially when dealing with large
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networks (i.e. when the number of connection weights to be determined is important). Considering
that the error E is a function of the weights w, a local minimum is aimed by changing the weights
in the opposite direction of gradient multiplied by the learning rate λ :

∆wi,j = −λ ∂E

∂wi,j

(2.9)

In order to accelerate the convergence of back-propagation taking into account previous updates
of the weights, a modified version of equation 2.9 has been introduced in [Plaut et al., 1986] by
adding a second term called momentum :

∆wi,j(m) = −λ ∂E

∂wi,j

(m) + α.∆wi,j(m− 1) (2.10)

where α is a weighting coefficient between 0 and 1, m being the number of iterations.

Let us take an example of a MLP network of P neurons containing D layers. Layer q (2 ≤ q
≤ D) contains Mq neurons to which a bias vector bq and a weight matrix wq is assigned. In this
matrix, an element wq

ij represents the weight of the connection from the neuron i (1 ≤ i ≤ Mq−1)
of layer (q-1) to the neuron j (1 ≤ j ≤ Mq) of layer q. For each new instance, a learning pass is
performed in 3 steps :

— Forward propagation : The input vector has been copied into the x1
i activations of the first

layer. Then, for each of K layers, leaving the first layer hidden and going up to output layer,
the biased potential pq

i and activation xq
i of neuron i are calculated.

— Backward Propagation : Calculate the derivative ∆id of error E for activation xd
i of the

output layer neuron i :

∆d
i = (Yi − xd

i )∂f(pd
i )

∂pd
i

(2.11)

Then, going down from the last hidden layer h = d−1 to the first h = 2, calculate the term
∆ic for each neuron :

∆h
i =

Uh+1∑
j=1

∆jh+1wh+1
i,j

∂f(pd
i )

∂pd
i

(2.12)

— Adaptation of the parameters. Update the bias and weights of nodes j for each layer q :

b́q
j = bq

j + λ∆q
i (2.13)

ẃq
i,j = wq

i,j + λ∆q
ix

q
j (2.14)
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The learning phase is much more expensive than the inference phase. The latter simply consists
in propagating forward, as in step 1 of the learning algorithm, the data of each new instance in
order to obtain the inference result.

2.2.4.4 Recurent neural network

In recent years there has been a resurgence in the use of recurring neural networks for temporal
series processing, especially in predictive tasks. Unlike the MLP previously seen, a network of
recurrent neurons is a network whose connection graph contains at least one cycle. The architecture
of this type of network is intended to manipulate sequences of input vectors. They have a memory
of what has been calculated in the past , thus making them particularly suitable for processing
sequences. In theory, networks of recurring neurons can keep in memory the information seen in
an arbitrarily large sequence but in practice lose their effectiveness on very long-term dynamics. It
is in this sense that recent work has seen the emergence of recurrent neural network architectures
with "gate" mechanisms that allow a considerable improvement in the memory capacities of
models. Indeed, with cumulative calculations over the long term, the error obtained with the
backpropagation of the gradient decreases or, less frequently, increases exponentially with respect
to the time scale. These two problems are called "vanishing gradient" and "gradient exploding"
respectively [Kolen and Kremer, 2001]. We also note that this type of problem also existed in
deep non-looped architectures. The dissipation or explosion of the gradient worsens in this case
depending on the number of layers. One of the most effective solutions to overcome this problem
of calculating the gradient is manifested in an extension of the concept of RNNs, namely, the
Long Short-Term Memory (LSTM) architecture [Hochreiter and Schmidhuber, 1997] which will
be detailed in chapter 4.
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2.3 Energy Harvesting Technology

2.3.1 Introduction

A local energy production system integrated into a house allows an additional energy source
to be added to the system. In a connected site (the house is connected to the electrical grid), local
energy sources can replace some (or all) of the energy from the grid. An additional energy source
such as a generator can help to ensure security of energy supply when the main energy source is
unavailable. Several renewable energy sources are detailled in the next sections.

2.3.1.1 Wind power generation

Wind is one of nature’s renewable energy resources and can become an environmentally friendly
and capable source of energy. The integration of wind systems in house is more difficult than
photovoltaics because of its requirement of regularity on the speed of the wind. Large wind turbines
are designed to "turn on" when the wind speed reaches 15km/h and to "turn off" when the wind
speed is very high, so that the wind does not damage them. When determining whether the wind
energy at a site is sufficient to run a wind energy system smoothly, it is very important to consider
the average annual wind speed and the number of days that the wind speed is above the switch-on
speed. In addition, to achieve the condition of stable wind speed, the installation should generally
be about 100 meters away from obstacles of the same height and 10 meters higher than nearby.
The weak point of solar and wind energy is their intermittent nature and their dependence on
the weather elements. This makes it difficult to use them without an additional energy source and
storage system, unless an energy management system is used such as the one proposed in chapter 5
are used.

2.3.1.2 Power generation by a generator set

A generator set is a self-contained device capable of producing electricity. Most generators
consist of an internal combustion engine that drives an alternator. Generating sets are either used
in isolated areas or in certain buildings to compensate for possible power cuts. In the second case,
they are often used in parallel with a battery power supply or a power source inverter system.
They generally operate from fossil fuel energy.

2.3.1.3 Production of electrical energy from solar energy

Photovoltaic solar cells are semiconductors capable of directly converting light into electricity.
This conversion, called photovoltaic effect, is done without moving parts, without pressurized
fluids, without pollution or waste generation. Due to the lack of sufficient energy production at
the level of a cell, several cells are associated in series and/or in parallel to form modules in
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order to provide the external receiver with adequate voltage and power. It is worth to note that
the serial association of the cells increases the resulting voltage while the parallel association
increases the resulting current [energie+, 2010]. The integration of photovoltaics is quite easy
either on a sloping roof covered with discontinuous elements, or on a flat roof or a roof covered
with a seal, or on an insulated wall or not, or on a balcony facade or a balustrade. The output
current, and hence the power, is usually proportional to the surface of the installed module. An
inverter converts the direct current produced by the photovoltaic panels into alternating current
compatible with the power distribution network. The output of the inverter is square waves, which
are filtered and transformed into sine wave shapes of alternating current. Any waveform, when
analyzed, is essentially the superposition of many forms of sine waves known as harmonics. The
first harmonic represents a pure sine waveform. Additional higher frequency waveforms, when
superimposed on the base waveform, add or subtract amplitude from the base sine waveform.
The combination of the basic waveform and the higher harmonics produces a distorted waveform
that looks like a distorted sine wave. The output of converted direct current, derived from solar
energy, is seen as a superposition of many odd and even harmonic numbers. To achieve a relatively
clean sine wave output, most inverters use electronic circuitry to filter out a large number of
harmonics. Filter circuits are made up of inductive circuits and capacitors specially designed to
block certain unwanted harmonics. In general, DC-AC inverters are complex electronic power
conversion equipment designed to convert direct current into single-phase or three-phase power
that mimics regular electrical services provided by utilities. Most inverters, in addition to PV
module input power, accept auxiliary input power to form a back-up generator, which is used to
provide current when the battery voltage is lowered to a minimum level. A special type of inverter,
called the grid-connected type, incorporates a synchronization circuit that allows the production
of sine waveforms in harmony with the electrical utility grid. The electricity generated can be
used by the building’s energy services or exported to the grid, in whole or in part. The European
HIP HIP project [Cohen-Aknne, 2014] conducted an experiment on the integration of photovoltaic
systems in buildings in seven European countries. This project demonstrates the feasibility and
profitability of photovoltaic systems. The integration of photovoltaic systems in buildings in the
current context benefits from an investment and installation subsidy as well as a feed-in tariff for
the energy produced. In the following, we will focus on the type of solar energy in more details,
its operation and the different types of installations most commonly used.

2.3.2 Grid-Connected Photovoltaic System

2.3.2.1 Introduction

Photovoltaic modules or panels are made up of semi-conductors that convert sunlight directly
into electricity. These modules are a source of electrical energy that is safe, reliable, maintenance
free and non-polluting. The majority of solar modules on the market today come with warranties
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of more than 20 years, and they will work well beyond that period. Millions of systems have been
installed around the world, with different powers ranging from a fraction of a watt to several
megawatts. For many applications, solar power systems are not only cost effective, but they can
also be the cheapest option. In this chapter, we will start by briefly recalling the generality of the
photovoltaic system as well as the different types of Grid connected photovoltaic system used in
houses.

2.3.2.2 The photovoltaic effect

In Greek, the word photovoltaic means light, it is composed of two parts : "photos" (light) and
Volta which is the surname of the Italian physicist (Allessandro Volta) who invented the electric
battery in 1800 and gave his name to the unit of measurement of electrical voltage, the volt. When
a semiconductor material is exposed to sunlight, as shown in figure 2.10, the atoms exposed to
the radiation are "bombarded" by the photons constituting the light ; under the action of this
bombardment, the electrons of the upper electronic layers (called valence shell electrons) tend to
be "torn off". If the electron returns to its initial state, the stirring of the electron causes a heating
of the material. The kinetic energy of the photon is transformed into thermal energy.

Figure 2.10 – Photovoltaic effect [B. Afework, 2018]
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However, in photovoltaic cells, some electrons do not return to their initial state. The torn-off
electrons create a low DC voltage. Part of the kinetic energy of the photons is therefore directly
transformed into electrical energy : this is the photovoltaic effect. The photovoltaic effect is the
direct conversion of the energy of solar radiation into electrical energy by means of cells generally
based on silicon. In order to obtain sufficient power, the cells are connected to each other and
form the solar module. The photovoltaic effect, i.e. the production of electricity directly from light,
was first observed in 1839 by the French physicist Edmond Becquerel. However, it was not until
the 1950s that researchers at Bell Laboratories in the USA succeeded in manufacturing the first
photovoltaic cell, the main component of a photovoltaic system.

2.3.2.3 Different types of solar cells

There are different types of photovoltaic solar cells, each type of cell has its own efficiency and
cost. However, regardless of their type, their efficiency remains quite low : from 5 to 22% of the
energy they receive [Sendy, 2020]. There are three main types of solar cells :

a) Monocrystalline silicon PV panels

These are made using cells sliced from a single cylindrical crystal of silicon. This is the
most efficient photovoltaic technology, typically converting from 17% to 22% of the sun’s energy
into electricity. The manufacturing process requires to produce monocrystalline silicon, which is
complicated, resulting in slightly higher costs than other technologies.

b) Polycrystalline silicon Photovoltaic panels

Also sometimes known as multicrystalline cells, polycrystalline silicon cells are made from
cells cut from an ingot of melted and recrystallised silicon. The ingots are then saw-cut into
very thin wafers and assembled into complete cells. They are generally cheaper to produce than
monocrystalline cells, due to the simpler manufacturing process, but they tend to be slightly less
efficient, with average efficiencies of around 12%.

c) Thick-film silicon Photovoltaic panels

This is a variant on multicrystalline technology where the silicon is deposited in a continuous
process onto a base material giving a fine grained, sparkling appearance. Like all crystalline PV,
it is normally encapsulated in a transparent insulating polymer with a tempered glass cover and
then bound into a metal framed module.
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Figure 2.11 – Monocrystalline silicon Photovoltaic panels

d) Amorphous silicon Photovoltaic panels

Amorphous silicon cells are made by depositing silicon in a thin homogenous layer onto a
substrate rather than creating a rigid crystal structure. As amorphous silicon absorbs light more
effectively than crystalline silicon, the cells can be thinner - hence its alternative name of ’thin film’
PV. Amorphous silicon can be deposited on a wide range of substrates, both rigid and flexible,
which makes it ideal for curved surfaces or bonding directly onto roofing materials. This technology
is, however, less efficient than crystalline silicon, with typical efficiencies of around 6%, but it tends
to be easier and cheaper to produce. If roof space is not restricted, an amorphous product can be a
good option. However, if the maximum output per square meter is required, design should choose
a crystalline technology.
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Figure 2.12 – Polycrystalline silicon Photovoltaic panels

e) Other thin film Photovoltaic panels

A number of other materials such as cadmium telluride (CdTe) and copper indium diselenide
(CIS) are now being used for PV modules. The attraction of these technologies is that they can be
manufactured by relatively inexpensive industrial processes, certainly in comparison to crystalline
silicon technologies, yet they typically offer higher module efficiencies than amorphous silicon.
Most offer a slightly lower efficiency : CIS is typically 10-13% efficient and CdTe around 8 or 9%.
A disadvantage is the use of highly toxic metals such as Cadmium and the need for both carefully
controlled manufacturing and end-of-life disposal ; it is worth to note that a typical CdTe module
contains only 0.1% Cadmium, which is reported to be lower than is found in a single AA-sized
NiCad battery.
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Figure 2.13 – Amorphius silicon solar panel

2.3.2.4 Types of Photovoltaic system

Photovoltaic power systems are generally classified based on their functional and operational
requirements and how the PV system is connected to other energy sources and electrical loads. It
can be classified into grid-connected and stand-alone systems. These photovoltaic systems provide a
basic service of DC and AC current supply, may operate in interconnection with or independently
of the grid. These systems may also be connected to other energy sources and energy storage
systems.

Grid-connected or utility-interactive PV systems

The main component of grid connected PV systems is an inverter which converts DC power
produced by the PV array into AC power in accordance with the voltage and power quality
requirements of the power grid. A bi-directional interface is provided between the inverter output
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Figure 2.14 – Thin film silicon solar panel

and the power grid, usually at a distribution panel or a field service entrance. This allows the AC
power produced by the PV system to supply the site’s electrical loads or to inject the surplus into
the grid when the output of the photovoltaic system is greater than the demand of the site’s load.
Figure 2.15 shows the general block diagram of the grid-connected photovoltaic system. In grid-
connected systems, the switching of the alternating current from the standby generator and inverter
to the service bus or the connected load is carried out by internal or external automatic transfer
switches. An important component of a network-connected system is net metering. Standard service
meters are electromechanical meters that record energy consumption according to the speed of the
rotating disc. Rotating discs operate according to an electro-physical principle called eddy current.
Digital electricity meters use digital electronic technology that records power measurement by
solid-state current and voltage sensing devices that convert analog measured values into binary
values that are displayed on the meter using a liquid crystal display (LCD). Inverters are the
main difference between a grid-connected system and a stand-alone system. Inverters must have
line frequency synchronization capability to supply excess power to the grid. Net meters have the
ability to record the power consumed or produced in a proprietary summation format. The power
record is the net amount of power consumed - the total used power minus the amount of power
that is produced by the solar cogeneration system. Net Meters are supplied and installed by utility
companies that provide grid connection service systems. Net-metering PV solar power plants are
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Figure 2.15 – Grid-connected solar PV system

subject to specific contractual agreements and are subsidized by state and municipal government
agencies.

Stand-Alone Solar PV System

. Stand-alone PV systems or direct-coupled PV systems are designed and dimensioned to supply
electrical loads with direct and/or alternating current. They are called direct-coupled systems
because the DC output of a photovoltaic module or array is directly connected to a DC load.
Direct-coupled systems do not have electrical energy storage (batteries), so charging only works
during sunny hours. The MPPT (Maximum Power Point Tracker) is used between the generator
and the load to help making a better use of the maximum available power from the generator and
to adapt the impedance of the electrical load to the maximum power of the PV generator.

Figure 2.16 – Stand-alone PV system without battery storage

Figure 2.16 shows the general block diagram of the stand-alone PV system. A typical example
of a direct-coupled solar photovoltaic system is in agricultural applications, where the solar
photovoltaic module can be directly connected to operate the pump. Depending on the capacity of
the pump, the module can be connected in series or parallel. In this type of application, a lightning
arrester must be connected between the positive and negative power supply to provide protection
against lightning surges. Batteries are used for energy storage in many stand-alone PV systems.
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Figure 2.17 – Stand-alone PV system with battery storage

Figure 2.17 shows the block diagram of a typical stand-alone PV system supplying DC and
AC loads with a battery storage option. The configuration of the PV solar array, a DC load
with battery backup, is essentially the same as that without battery, except that there are some
additional components that are necessary to ensure stable battery charging. The PV panels are
connected in series to achieve the desired increase in DC voltage, e. g. 12, 24 or 48 V. The charge
regulator regulates the current output and prevents the voltage level from exceeding the maximum
value for charging the batteries. The output of the charge regulator is connected to the battery
bank by means of a double DC cut-off switch. In addition, a cut-off switch can be provided, when
it is switched off for safety reasons, to disconnect the load and the photovoltaic panels at the same
time. During sunny hours, the load is supplied with direct current while simultaneously charging
the battery. The charge controller will ensure that the continuous output power of the photovoltaic
panels is sufficient to support the connected load in order to be able to size the required battery
size. Battery sizing depends on a number of factors, such as the duration of uninterrupted power
supply to the load when there is less or no solar radiation. The battery bank produces a 20-
30% loss of power due to heat when in operation, which must also be taken into consideration.
When designing a solar photovoltaic system with battery backup, the designer must determine the
appropriate location for battery supports and room ventilation.

PV-Hybrid Systems

Hybrid systems generally refer to the combination of two input sources, for example a solar
panel system integrated with a diesel generator, wind turbines, biomass or any other renewable
or non-renewable energy source. Solar panel systems typically use a bank of batteries to store
the energy produced by the panels for later use, when needed. There may still be exceptional
periods of bad weather when an alternate source is needed to guarantee electricity production.
Hybrid photovoltaic systems combine a solar panel module with other energy sources, usually a
diesel generator, but sometimes also another renewable energy source such as a wind turbine. The
photovoltaic generator is generally sized to meet the basic demand, the alternative source of supply
being used only if it is essential. Hybrid systems can also be a wise approach in situations where
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occasional peaks in demand are significantly higher than base demand. It makes little sense to size
a system so that it can fully meet demand with PV if, for example, normal load is only 10% of peak
demand. Likewise, a diesel generator set sized to meet peak demand would operate at inefficient
part load most of the time. In such a situation, a PV-diesel hybrid would be a good compromise.
Figure 2.18 shows the block diagram of a photovoltaic hybrid system.

Stand-Alone Hybrid AC Solar Power System with Generator and Battery Backup

Figure 2.18 – Photovoltaic hybrid system

A stand-alone solar photovoltaic hybrid configuration is essentially identical to a DC solar
power system. In this case, alternating current inverters are used to convert direct current into
alternating current. When the inverter is connected to the power grid, it can act effectively as
a source of AC power generation. Grid inverters used in grid-connected solar energy systems are
strictly regulated by the utility agencies that provide net metering. Some inverters incorporate an
internal AC transfer switch that is capable of accepting an output from an AC backup generator.
In this type of design, inverters include special electronics that transfer energy from the generator
to the load.

2.3.3 Battery Bank for PV system

In general, a “battery” is a combination of several electrochemical cells in series-parallel. There
are two types of cells : primary and secondary cell. A cell is said to be primary when it is non-
rechargeable. It is filled with a variety of chemicals which react irreversibly, which means that when
the chemical reaction is exhausted, the battery is dead. Primary cells can be connected in series to
obtain a specific voltage and should never be connected in parallel as there is the possibility that
one cell will try to charge the other. A secondary cell is said to be rechargeable and commonly
referred to as an accumulator. Secondary cells can be used in series, in parallel, or in a combination
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of the two to achieve the required voltage and capacity. The only limitation is that each cell has the
same voltage, capacity and chemical composition. Rechargeable batteries are the only ones used in
homes with a solar panel system. Solar batteries are accumulators that store the electrical energy
that solar panels produce. The charges can be electrochemical or electrostatic. The charge current
stored in this way can be restored when connected to a receiver. There are several types of solar
batteries on the market. Among these batteries we can cite lead acid batteries, lithium batteries,
and salt water batteries. Increasingly, residential storage systems are made up of lead-acid or
lithium-ion batteries.

Lead acid solar batteries

For decades, lead acid batteries have been regarded as the only residential energy storage
solution. Among these lead-acid batteries, we distinguish two types :

— Flooded lead acid batteries
— Sealed lead acid batteries

The difference of these types of batteries is the number of maintenance for proper operation.
Flooded lead-acid batteries require at least maintenance every 1 to 3 months to ensure proper
operation, while sealed lead-acid batteries require no maintenance. These lead acid batteries are
the most solar batteries that give the cheapest option. Despite its lower cost, they are much larger
and heavier than other batteries (Lithium-ion) which will require more space per KWh of storage
than other types of batteries. Their Depth of Discharge DoDs (a DOD is defined as the percentage
of capacity that has been withdrawn from a battery compared to the total fully charged capacity)
are getting lower and lower, usually around 50%. To maintain a home’s energy deficit, they need
to be recharged more frequently. They have a lifespan of 5 to 10 years.

Lithium-ion solar battery

As for lithium-ion batteries, they are a new type of energy storage technology. Currently, they
have become popular among residential customers because of the benefits they provide. They
are lighter than lead acid batteries so they take up less space for the same capacity (KWh) and
have a lifespan of more than 10 years. This long lifespan is largely due to the fact that lithium
batteries have a higher DoD. For this, the depletion of lithium-ion batteries is slower than lead acid
batteries. Lithium-ion solar batteries have an average DoD of 90% or more. The only limitation
of these batteries is that they can catch fire if there is an overload (thermal escape) or improper
handling. Currently, these lithium batteries are equipped with advanced monitoring software to
prevent catching fire.
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2.4 Conclusion

This chapter introduced the concept of smart home in all its complexity, particularly that linked
to the different technologies used. Machine learning techniques have been then presented, with a
specific focus on methods used in this work. Finally, we discussed the benefits of using renewable
energy for smart homes. We presented the different types of photovoltaic based systems as well
as the typical technologies used to harvest and store ambient energy. In the following chapter,
we describe our methodology for collecting data using a wireless infrastructure to determine the
relevant information needed in a home and the impact of this information in the case of appliance
recognition (section 3.4).
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Chapitre 3
Electrical Signatures and Analysis of smart home
appliances
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3.1 Introduction

While the electricity prices, greenhouse gas emissions and global average temperature are
increasing, citizens are looking for solutions to reduce their environmental impacts. From this
perspective, a considerable progress could be made in the management of the various and
numerous domestic appliances. According to [Florian, 2019], residentials are one of the main
consumers of energy and accounted for example in 35% of the total French energy consumption in
2016. Smart Home could be a possible solution for home energy saving. Appliance identification
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plays an important role in smart home as it can provide optimized and automatic energy efficient
solutions.

Every day, smart meters (such as Linky in France) or smart plugs monitoring devices are
installed in houses. However, existing systems are expensive and usually complicated to
implement and use. Recent studies have demonstrated that a continuous information feedback
and fine-tuned automated management of home equipment’s could allow an energy bill
reduction from 15% to 30% [Neenan, 2009][Darby, 2006]. More and more mobile or web-based
energy monitoring systems are proposed to provide pertinent information to the end users
[M. Weiss and Roediger, 2009][D. Guinard and Trifa, 2009]. However, to be more adaptive and
effective, they must integrate an automatic recognition of running appliances. Such identification
can be made using automatic learning algorithms applied to the devices power consumption
[Ridi Antonio and Jean, 2013][Ridi et al., 2014]. To do so, end users have to install monitoring
systems on each appliance and manually label the associated appliances. Finally, users can
visualize the energy consumption per appliance category and may perform optimization by
activating or programming control rules. This recognition system can also present other utilities
such as defects detection, localization of the appliances in offices or hospital for instance.

Every day, new smart plugs or smart meters appear on the market. The table 3.1 lists
four of these plugs. For collecting information, an architecture based on smart plugs is required.
Sensing information is then sent to a gateway and can be visualized on a dashboard (figure 3.1).

It is worth to note that these smart meters provide a variable number of electrical signatures
(from 1 to 6) of different types (e.g. real power and reactive power). In this chapter, we propose to
study an infrastructure to collect features which will be used to evaluate the impact of the number
and the type of features used for appliance identification. Most of the appliances exhibit power
features close to zero. This behavior corresponds to stretches of time where the appliances are not
used, typically in stand-by or in off state. To take into account this kind of behavior, we propose
a technique based on data smoothing to classify distinct appliances included in the dataset.
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Manufacturer Name Description References

EnOcean
Alliance NodOn

It is a smart socket using the EnOcean
protocol. The role of this plug is to measure

the instantaneous power (w) and the
cumulative energy (Wh). However, it is
remotely controlled by an EnOcean

compatible home automation system or via
other controllers using EnOcean such as
Soft Remote or the NodOn wall switch [NodOn, 2020]

Fibaro Fibaro wall plug

It is a smart socket that allows you to
control lighting or any other appliances via
Z-wave controls. It is equipped with a visual
indicator that shows the consumption where
green indicates low consumption and red a

very high consumption [Fibaro, 2020]

Belkin Wemo
Insight

Wi-Fi
Smart
Plug

It can monitor energy consumption from
your phone or tablet. This Smart Plug
provides real-time reports on how much
energy your appliances are consuming. It

uses a smart socket using the WI-FI
protocol [Belkin, 2020]

Zigbee Alliance
Smart

Plug Mini

The wireless Smart Plug Mini with power
metering feature is an intelligent, sharp and
sophisticated, remotely controlled adapter.
This smart plug can be applied wherever

you want to control electrical devices, while
monitoring the power consumption in a
convenient and maintenance-free way [Alliance, 2020]

Table 3.1 – Some smart plugs available on the market
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Figure 3.1 – Architecture to collect data with WEMO insights

3.2 Related work

Over the last few years, energy consumption analysis and appliance recognition received a
growing attention from researchers. We can distinguish two main approaches according to the
sampling rate of the energy measurements : high frequency and low frequency. High frequency
measurement, also called Non-Intrusive Load Monitoring (NILM) [Hart, 1992], is based on the
analysis of the transient signatures appearing when appliances are switched on or off. This
approach, requiring a sensor with an expensive high sampling frequency placed at the house
electricity’s entry point, presents the problem of the sensibility to the noise from other appliances.
On the other hand, a low frequency type of approach, called Intrusive Load Monitoring (ILM)
[Antonio.Ridi et al., 2014], is based on the analysis of the short to medium term evolution of
the electricity consumption, from few seconds to few minutes. Sensors used in this approach are
in the home living space, typically close to monitored appliances and consequently to people
using them. A NILM type of approach presents several advantages and drawbacks compared to
ILM. NILM is based on a single sensor. The sensing system installation is therefore easier and
data acquisition is quite trivial. However, appliance recognition using a NILM kind of approach
generally suffers from inaccuracies due to the inherent problem of summation of consumption
signals from different appliances. On the other hand, ILM type of approach is based on multiple
sensors deployed in the house. Despite sensors are generally cheaper than for NILM, the overall
cost increases linearly with the number of sensors. ILM also presents several advantages over
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NILM. One of them is that more details in consumption signatures are available, thus facilitating
the appliance identification. Typically, low power appliances or appliances in stand-by cannot
be detected with NILM [A. Marchiori and Earle, 2011], while it is feasible with ILM. Yet, it
is well-known that stand-by power was one of the largest source of domestic consumption
[L. Harrington and Ellis, 2008], representing up to 26% of the total energy consumption in 2001
[Ross and Meier, 2001]. Since that time, constructors have made efforts to reduce the stand-by
power of appliances, and we can therefore expect that the related energy consumption has been
significantly reduced. Another drawback of NILM is the difficulty to detect appliances with multiple
functioning states such as a dishwasher, or exhibiting continuously variable energy use such as an
electric stove [A. Marchiori and Earle, 2011]. Finally, it is also not possible to remotely control an
appliance (switch on or off) in the living space using NILM.

In this chapter, our aim is to propose a system which can automatically recognize
home appliances. To do so, a dataset merging the power consumption profiles from different
individual appliances needs to be constructed. In fact, we used the existing ACS-F1 dataset
[Ridi Antonio and Jean, 2013] that contains electrical load consumption signatures of 100
appliances uniformly spread among 10 classes and acquired at a 10−1 Hz frequency. Each
appliance is recorded on two acquisition sessions of one hour. In this dataset, samples have
been collected at a low frequency using smart-outlet for electric signal analysis. Actually, few
results have been reported on appliance identification task. A main reason for that is the lack
of available public data and the difficulty to obtain a sufficient number of samples required for
the analysis. The ACS-F1 dataset has been chosen in this work because it offers several features
for a significant number of devices. Moreover, several studies have been carried on this dataset
[Ridi Antonio and Jean, 2013] [Gisler et al., 2013], [Zufferey et al., 2012], which is not yet the case
for the more recent version ACS-F2.
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3.3 Energy monitoring

3.3.1 Definition

In this work, we propose to investigate a mixed approach combining intrusive and non intrusive
approaches presented in section 2.1.2. To leverage advantages from both methods, we propose to
use an intrusive approach for controllable appliances (i.e appliances that can be switch ON/OFF,
shift it on peak off), and a non intrusive one to collect the global power consumption which will
be used in the following chapters in order to predict the overall consumption (as it will be shown
in chapter 4), as well as in chapter 5 in decision making by a power management policy.

3.3.2 A wireless infrastructure to collect data for energy management
in a smart home

3.3.2.1 Types of sensors and protocols in SMART Home

At the beginning of this thesis, we first proposed an intrusive data collection infrastructure
based on the wemo sockets as shown in figure 3.1. This infrastructure is designed to monitor
energy consumption and remote control of domestic equipment’s via the actuators included in these
sockets. Wemo sockets use WI-FI as a communication protocol and only measure the instantaneous
power (active power). Today, many plugs can be found on the market carrying a diversity of
communication protocols as it can be seen in table 3.2. Electrical signatures measured by these
plugs are diverse :

— Active power
— Reactive power
— Voltage
— Current
— Power factor
— Frequency

The challenge for a monitoring infrastructure is to offer a low expensive solution that largely takes
into account this diversity of communication protocols illustrated in table 3.2. In this thesis, we
propose a low cost system shown on figure 3.2 and capable of handling connected sockets based
on different protocols (Zwave, RFXcom, EnOcean, etc.) and several sensors. This infrastructure
allows a remote control of the connected sockets as well.
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Table 3.2 – Comparison among the different protocols
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3.3.3 Choice of a Home Automation System

Figure 3.2 – Wireless infrastructure diagram

Figure 3.3 – Low-cost wireless infrastructure based on Domoticz, Grafana, InfluxDB and a
Raspberry pi3
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For collecting information in a household, an architecture based on smart sensors (or smart
plugs) must be deployed. Through a wireless communication, sensing information are sent to a
gateway connected to home automation system and can then be stored in a database. All data
stored can then be visualized on a dashboard as shown in figure 3.2. As illustrated on figure 3.3,
we developed an architecture to collect data in a household using different smart plugs such as
Fibaro Plug [Fibaro, 2020], Coco plug [Chacon, 2018] and Multisensor6 [MultiSensor6, 2018]. This
architecture is built around a Raspberry Pi3 computer [Pi, 2018] and an existing home automation
system (HAS) called Domoticz [Domoticz, 2018]. This web front-end is interesting since various
sensor devices (temperature, humidity, current, power instantaneous and so on) can be monitored
and configured very easily. It is quite easy to install a home automation software such as Domoticz
on a Raspberry pi since the development team has already prepared a ready-made image. Domoticz
is able to communicate with a multi-protocol sensor network since it supports several radio
technologies. To visualize stored data on a dashboard, we used an open source analytics and
monitoring system called Grafana [Grafana, 2018]. Grafana is a powerful tool for the visualization
of time series in real time supporting several databases such as graphite, influxdb and so on.
In this work, we create dashboards from InfluxDB (a powerful tool to store sensed data from
a home automation software) metrics collected by several sensors’ devices. These metrics can
be grouped together with mathematical expressions to form personalized graphs and dashboards
more interactive and dynamic. They can also be grouped according to the metadata attached to
each metric using dashboard variables of Grafana. This sensing prototype, though functional, has
not been deployed and used to construct a dataset for different reasons. First, installing such a
system includes electrical risks and requires some authorizations from both the home owner and
the electrical supplier (ENEDIS in France). Moreover, having access to electrical wires may be
difficult (it is not possible), leading sometimes to a difficult task to add a smart plug to each
appliance.
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Table 3.3 – Existing dataset of load consumption energy [Monacchi et al., 2014]
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3.4 Impact of electrical signatures on Appliances identifi-
cations

3.4.1 Data description

Building a reliable database using an intrusive approach for device recognition is a complex
task as it is necessary to collect metrics for different types of devices of different models over
several days weeks or even months. As we could not build our own database, we used a freely
available database. The table 3.3 presents an overview of existing available datasets of load
consumption energy. As it can be seen, these databases come from different locations and have
variable features and durations (from one hour to years). Moreover, a variable sampling rate can
also be used to sense information. Depending on the type of approach (high or low frequency),
the sampling rate varies from 120−1Hz to 16 kHz. Finally, we can see that the number of sensors
(or devices) as well as the type of appliances are also a variable parameter for these datasets. In
this work, ACS-F1 (Appliance Consumption Signature Fribourg1) [Gisler et al., 2013] has been
chosen as database of electric consumption signatures acquired from domestic appliances. It offers
several features for a significant number of devices. Moreover, many results are available from this
dataset [Ridi Antonio and Jean, 2013], [Gisler et al., 2013], [Zufferey et al., 2012]. This database
was provided by a group of researchers on pattern recognition. It contains a total of 100 appliances
of different brands and/or models as shown in table 3.4

Appliances categories(class) Instances Session
Coffee machines 10 2

Computers stations (with monitors) 10 2
Fridges and freezers 10 2

Hi-Fi systems (with CD players) 10 2
Lamps (compact fluorescent) 10 2

Laptops (via chargers) 10 2
Microwave ovens 10 2

Mobile phones (via chargers) 10 2
Printers 10 2

Televisions (LCD or LED) 10 2
Totals 100 200

Table 3.4 – APPLIANCE PRESENT IN DATASET

3.4.2 Data preprocessing with moving average

The electric sensors provide a sequence of observation O = { O1 ... ... ... ON } with ON a vector
of component corresponding to the measurements done with a 10 seconds period. A sequence of
observation is composed of 6 measures : the Active Power (P in W), the Reactive Power (Q),
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No Feature selected
Feature Set 1, F1 P (Active Power), Q (Reactive Power)
Feature Set 2, F2 Irms (current), Vrms (Voltage), Φ (Phase)
Feature Set 3, F3 P, Q, Irms, Φ
Feature Set 4, F4 P, Q, Irms, Φ, Vrms, Frequency

Table 3.5 – FEATURE USED ON RECOGNITION PATTERN

the current (Irms in Amps) and voltage (Vrms in Volts) Root Mean Square, the electric frequency
(Hz) and the phase (φ). Some values included in ACS-F1 are dependent to other values according
to equation 3.1 and 3.2. Our main objective is to determine the features (measures) to select for
appliance recognition.

P = Vrms × Irms × cosφ (3.1)

Q = Vrms × Irms × sinφ (3.2)

Selecting the right features independent of the algorithm plays an important role in the
performance of any classifier. An algorithm cannot find good features or create good features
by itself. In this regard, four different types of feature sets shown in table 3.5 have been used
to compare their performance. For the first feature set 1 (F1), only real power (P) and reactive
power (Q) measures are considered. In F2, measurements include current root mean square (Irms),
voltage root mean square (Vrms) and the phase (Φ). The feature set F3 gathers 4 measures : real
power (P), reactive power (Q), current root mean square (Irms) and the phase (Φ). Finally, in F4
all the 6 measures are used by the classification algorithms. It is worth noting that the algorithm
complexity increases with the number of features. Moreover, the selection of inappropriate features
can result into complex decision boundary for classifiers, thus impacting the performance of the
algorithm as shown in figure 3.9. The F4 features set has been used in this work to compare our
results with dynamical coefficient data preparation described in annex A. A moving average is
applied on these measures as a data preparation technique to create a smoothed version of the
original dataset. Smoothing is useful as it reduces the random variation in the observations and
better exposes the structure of the underlying causal processes. The moving average function is
applied on each feature and class, and then a matrix is returned. It is worth to note that the size
of the observation window also has an impact on the recognition accuracy. Our experiments show
that a 33-sample sliding window (corresponding to 5 minutes and 30 sec, i.e. 33 × 10 secs) with
an overlapping window over 32 samples allows obtaining the best accuracy. As usual for machine
learning algorithms, the overall gathered data from the merging moving average matrix of each
class is split into two disjoint sets, one for the training and another one for the testing phase.
According to [Ridi Antonio and Jean, 2013], those sets are randomly selected with a ratio of 53%
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and 47% respectively. The larger data set is used for training the classifier models, while the rest
is used for testing the models.

3.4.2.1 Feature scaling

The different features of load consumption data as well as features from training and test sets
are on different scales. For example, real power values in the dataset range from 0 to 1500 Watts,
whereas the range is far less for current measurements (approximately from 0 to 7 Amps). However,
if one feature has considerably a wider range than other features, the optimization function (for
example a gradient descent) used for classification will be governed by that feature and makes
the classifier unable to correctly learn from other features. Furthermore, the training phase will
take much longer to converge according to the optimization objective. Feature scaling is therefore
required to set all the features on the same scale, thus equally contributing to the classification
algorithm. In our approach, a standardization method for feature scaling has been implemented,
so that each feature has a zero mean and a unit variance. The general expression for feature scaling
is defined as follows :

X ′ = µ+M

σ
(3.3)

where X ′ is the new feature vector after scaling, M is the vector of moving average of each
electrical signature, µ and σ are the feature vector mean value and variance, respectively.

3.4.3 Classification methods

Different types of classification algorithms have been implemented using electricity consumption
data. In this study, the classification is performed using a supervised machine learning technique.
Labeled data are therefore required to learn and recognize the patterns. In our case, labeled
electricity consumption data with the ground truth acts as training data. Three classification
algorithms used for pattern recognition and shown in table 3.6 have been evaluated in this work.
The classification module from Python scikit-Learn has been used for all classification algorithms.

3.4.3.1 K-NN

The k-nearest neighbors algorithm (K-NN) is a conventional non-parametric neighbor-based
classifier commonly used in data mining techniques. Neighbors-based classification is a type of
instance-based learning or nongeneralizing learning : it does not attempt to construct a general
internal model, but simply stores instances of the training data. Classification based on K-NN
is computed from a simple majority vote of the nearest neighbors for each object : an object
having the most representatives within the nearest neighbors of the object is assigned to the
data class. Scikit-Learn has two different nearest neighbor’s classifiers : KNeighborsClassifier
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and RadiusNeighborsClassifier. KNeighborsClassifier implements learning based on the k nearest
neighbors of each query point, where k is an integer value specified by the user. On the other
hand, RadiusNeighborsClassifier implements learning based on the number of neighbors within
a fixed radius r of each training point, where r is a floating-point value specified by the user.
The KNeighborsClassifier is the classification algorithm used in our recognition experiments. The
optimal choice of the K value is highly data-dependent. In general, a larger k makes the classification
boundaries less distinct [Ridi et al., 2014]. In this work, and as shown in the figure 3.4, we have
used k = 1 as it provides the best accuracy.

Figure 3.4 – Accuracy Vs. K parameter for K-NN on F4 feature set

3.4.3.2 Random-Forest

Random Forests (RFs) are ensemble classifiers used for classification and regression analysis
on appliance identification data. RF works by creating various decision trees in the training phase
and outputs class labels having the majority vote. RF exhibits high classification accuracy and can
handle outliers and noise in the data.
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3.4.3.3 Multilayer Perceptron

A multilayer perceptron classifier (MLP) has also been implemented. The multilayer perceptron
consists in a system of simple interconnected neurons. This system is a model representing a
nonlinear mapping between an input and an output vector. The nodes are connected by weights
and output signals. The outputs signals are a function of the sum of the weighted inputs to the
node modified by a simple nonlinear transfer or activation function. A multilayer perceptron may
have one or more hidden layers and finally an output layer.

Classifiers Hyperparameters Abbreviation

K-nearest neighbors
K=1, Euclidean distance,

weights=uniform K-NN

Random Forest
n estimators = 100,
criterion=’entropy’ RF

Multilayer Perceptron

4 hidden layers (300 neurons per
layer) epoch=500, learning rate

(alpha)=0.0001 MLP

Table 3.6 – Classification algorithms

Figure 3.5 – Accuracy per Class for K-NN on F1 features set
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Figure 3.6 – Accuracy per Class for K-NN on F2 features set

3.4.4 Appliances Recognition Experiments

The objective of this study is to evaluate the effectiveness of machine learning techniques for
appliances recognition and the impact of electrical signatures in the identification of household
devices. As the complexity of the algorithm increases with the number of features, the selection
of inappropriate features can lead to complex decision limits for the classifiers, thus affecting
performance. First, a comparison based on the performance of the classifiers was carried out.
Accuracy results obtained for the three classifiers on the F4 features set are shown on the
table 3.7. As can be seen, the K-NN provides the best performance with a 89.1% accuracy. The

Data preparation technique Classifier Accuracy
Without Moving Average K-NN 89.1%

Random Forest 86%
Multilayer perceptron 74%

With Moving Average K-NN 99.1%
Random Forest 99%

Multilayer perceptron 98.8%

Table 3.7 – Obtained accuracy for different classification algorithms with features set F4
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Figure 3.7 – Accuracy per Class for K-NN on F3 features set

RF and MLP provide an accuracy of 86%, and 74% respectively. We can also observed in table 3.7
that the moving average technique provides a clear improvement for all classifiers. RF provides
86% to 99% accuracy, while MLP has 74% to 98% accuracy without and with a moving average
technique respectively. The dynamical coefficient data preparation technique described in annex A
[Ridi Antonio and Jean, 2013], [Gisler et al., 2013] has also been evaluated for the K-NN classifier.
The table 3.8 presents accuracy results obtained with different data preparation techniques when
a K-NN classifier is performed using 10 classes (and 10 devices by class) and the F4 features set.
The moving average function provides better performance than the dynamic coefficient based
method. It is worth noting that this method provides two additional characteristics, the delta and
delta-delta coefficients. In consequence, for each electrical signature the original dataset is changes
to a feature space equal to 18, while the moving average function keeps the same dimension (D =
6) and reduces a little bit the number of samples.

The KNN classifier was then chosen to study the impact of electrical signatures in the
recognition of household devices. In our study, F1, F2, F3 features set and F4 were used for that
purpose. The figures 3.5, 3.6, 3.7 and 3.8 provide accuracy results obtained using K-NN, with
or without moving average data preparation technique, for the different features set. As it can be
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Figure 3.8 – Accuracy per Class for K-NN on F4 features set

Figure 3.9 – Average Accuracy for different features set
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seen, the number and type of electrical signatures impact the identification accuracy of household
appliances. Considering the average accuracy obtained for different features set, we also observe
on the figure 3.9 that the use of the moving average technique improves the precision from 68 %
to 96.7 % for F1, from 88.8 % to 92.9 % for F2, from 86 % to 99 % for F3 and from 89.1 % to 99.1
% for F4. All feature sets containing power characteristics exhibit significant improvement when
moving average is applied. The reason for this is that the moving average function removes the near
zero values in the powerful entities (P and Q) from the dataset. Once the moving average has been
applied, the real power and reactive power characteristics involved in F1, F3 and F4 do not overlap
and are distinct. According to [Gregory Shakhnarovich and Indyk, 2006], K-NN works very well
when different classes do not overlap in feature space. The overlapping nature of features in F2
likely explains the reduced performance of K-NN. To conclude, we can also say that applying a
moving average function on input data provides an optimized accuracy for all the features set. The
figure 3.9 shows that F1 provides a very good accuracy whereas it requires less electrical signatures
(as only P and Q are used). This is interesting since, using less electrical signatures allows reducing
the computing time and energy consumed during the learning and inference phases.

Features set Data preparation technique Accuracy
F4 Without Moving Average 89.1%

Dynamical coefficient 90%
Moving Average 99.1%

Table 3.8 – Different data preparation techniques used for appliance identification using ACS-F1
dataset and the K-NN classifier

3.5 Conclusion

In this chapter, we presented a study on the impact of the number and the type of features
for home appliance identification. We also proposed to apply a moving average technique as
data preparation to optimize classifiers. A comparison was performed with another technique
using dynamic coefficients. The ACS-F1 database, freely available to the scientific community
for the experiment reproductibility and algorithm comparison, was used. Using this dataset, we
provided recognition results using machine learning algorithms based on K-NN, Random forest and
Multilayer perceptron classifiers. At best, we obtained a recognition rate of 89.1% and 99.1% using
k-NN without and with moving average respectively. We also showed that using only a reduced
number of features, in our case only 2 power features (Active and Reactive power) is enough to
recognize an appliance in household with high accuracy. Appliances identification is a complex
task that remains difficult to generalize given the evolution of these appliances. A mixed approach
combining the overall energy consumption as well as some key appliances measurements seems a
good compromise. The global energy consumption can be used to build a dataset to predict the
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energy consumed (chapter 4) and thus make decisions to optimize self consumption (chapter 5).
The plugs installed on some key and controllable appliances would in other hand allow a manual or
even an automatic control of these appliances. In the next chapter, we propose deep neural networks
methods to predict the overall energy consumption of a household from a database collected using
a non-intrusive approach.
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Chapitre 4
Short and Medium load forecast in smart Home
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4.1 Introduction

In order to improve household energy efficiency, it is essential to have a system able to predict
with accuracy its future energy consumption. Predictions are indeed useful to determine the
adequate sizing of solar panels and battery for improving the self-consumption, thus reducing
power flow in the grid. Predictions can also be used by power management policies as it will be
shown in the chapter 5. However, energy load forecast are more and more based on algorithms
requiring large scale energy consumption data.

Every day, new smart plugs appear on the market. These smart plugs have made energy
consumption data available [Manic et al., 2016], making data statistical modeling possible
[Jetcheva et al., 2014]. According to the prediction period, three different classes of energy load
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forecasting can be considered : (1) Short-term-load when prediction varies from 1 hour to 1-
week, (2) Medium-term load forecasting ranging from 1 week to 1 year, and finally (3) Long-term
load when the model makes predictions longer than 1 year [Vahid Mansouri, 2014]. Whatever the
category, energy load prediction has been shown to be a complex matter. Moreover, load prediction
at individual household level has shown to be even more difficult than global load forecasting
[Mocanu et al., 2016]. In this chapter, the aim is to compare the performance of two approaches, a
linear ARIMA (AutoRegressive Integrated Moving Average) and a non-linear LSTM (Long Short-
Term Memory) predictors for energy load forecast on short and medium term using the IHEPCD
(Individual Household Electrical Power Consumption Dataset) dataset [G. Hebrail, 2012]. In
[Thokala et al., 2018, Marinescu et al., 2013], the authors predicted the energy load in short
interval without preprocessing the original dataset. However, a dataset usually contains some
missing values due to system or network connection failures. The lack of this information may
drastically reduce the accuracy of the prediction model. In this chapter, we therefore investigate
the impact of different data preprocessing techniques to fill missing values. Prediction is then done
using either a deep learning algorithm (LSTM) or a stochastic process (ARIMA). Both approaches
are explored for performing energy load forecasting and tested on a dataset containing electricity
consumption data. Our prediction was first only based on active power data collected within a
household during a period of 47 months and a time resolution of one minute. To validate our
training model, another data set collected in an office located in a different area and with a 5-
second resolution is used.

4.2 Related works

Over the last few years, energy load forecasts have received an increasing attention from
researchers. A lot of studies have used forecasting models based on time series dataset such as
electrical power consumption. In [Saab et al., 2001], the authors studied a load forecasting model
based on a one step ahead forecast for monthly electric energy consumption in Lebanon. Two
approaches, ARIMA and AR (1), are used with a high pass filter. The best accuracy is obtained
using AR (1) high pass filter. In [Zhu et al., 2012], the authors studied the issue of the sustained
growth of household energy consumption in China from 1980 to 2009. ARIMA and BVAR were
used as forecasting models and showed that both methodologies are appropriate to predict the
sustained growth of HEC (Household Energy Consumption) trends.

Recently, new algorithms based on deep learning have been proposed to cope with the challenges
related to the load forecasting models. Despite deep learning is quite a new approach to address
energy load prediction problems, this kind of methods has gained popularity among private
companies as well as academics over the last few years [Hochreiter and Schmidhuber, 1997].
In [Jetcheva et al., 2014], ANNs(Artificial Neural Networks) ensembles were used to perform
energy load forecasting. In [Roldán-Blay et al., 2013] [Sulaiman et al., 2016], the authors have

57



4.3 Energy load prediction methodology

explored in details ANNs for short, medium and long term periods of load forecasting.
In [Ghelardoni et al., 2013], SVM (Support Vector Machines) coupled with empirical mode
decomposition were used to perform long term energy load forecasting. In [Fiot and Dinuzzo, 2018],
the authors proposed kernel based multi-task learning approaches to predict electricity demand.
In [(Kanevce) Dedinec et al., 2016], DBN (Deep Belief Networks) were used to perform short
term electricity load forecasting on a Macedonian hourly electricity consumption dataset. In
[Thokala et al., 2018, Marinescu et al., 2013], the authors predicted electrical consumption using
a forecasting model based on LSTM. However, their predictions were performed without any
preprocessing of the raw data, thus including some missing values in the LSTM forecasting model
[Kim et al., 2018]. In [Kingma and Ba, 2014][Siami-Namini and Namin, 2018], authors provided a
comparison between ARIMA and LSTM for sales forecasting in retail, as well as for financial market
price prediction. Their experiments showed that LSTM provides a better accuracy than ARIMA.
In [Chujai et al., 2013], the authors studied the most suitable forecasting period for electrical
load. Two stochastic approaches, ARMA (Auto-Regression Moving Average) and ARIMA, using
a preprocessing technique based on the previous value to fill missing samples were compared.
Their results demonstrated that daily and weekly forecasting period were the most suitable for
ARMA, while monthly and quarterly periods were better for ARIMA. As energy load exhibits
both linear and non-linear patterns, we propose a system which can predict a day ahead power
consumption based on LSTM and ARIMA models. The choice of these models was motivated by
the following reasons. LSTM is able to identify structures and patterns of data such as non-linearity
and complexity in time series. On the other hand, ARIMA is known to perform well on linear time
series data and stationary data. Finally, we propose a new technique to fill missing values from
the original dataset called Same Time a Day Ago or Next (STDAN).

4.3 Energy load prediction methodology

In this section, short- and medium-term predictions will be considered. To do so, LSTM and
ARIMA have been configured so that their outputs are able to predict one (which corresponds to
the daily power consumption) or several values at the same time (for example 7 values (days) to
represent the daily power consumption during one week). The main objective is to compare the
performance of linear and non-linear models (ARIMA and LSTM respectively) for energy load
forecasting. The proposed flow for load forecasting is shown in figure 4.1. This figure is a simplified
schematic representation of the machine learning process. This process is composed of 3 main
phases : Data preparation consists in pre-processing the data to be used by the learning machine
models. It gathers different blocks such as data preprocessing, features extraction and dataset
splitting. The learning phase generates a prediction model based on the training data. The testing
phase consists in evaluating the generated model on the test data using different metrics.
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The main issues addressed in this work are two-fold : which algorithm has the best prediction
accuracy for time series data ? Which data preprocessing technique to fill missing values is better
for energy load forecasting ?

Figure 4.1 – Machine Learning process

4.3.1 Data set and Data preprocessing

For collecting information in household, an architecture based on smart sensors (or smart plugs)
is required. Through a wireless communication, sensing information are sent to a gateway and can
be then visualized on a dashboard. As it is illustrated on figure 3.3, we developed an architecture
to collect data in a household using different smart plugs such as Fibaro Plug [Fibaro, 2020], Coco
plug [Chacon, 2018], Energy meter gen5 [Gen5, 2018] and Multisensor6 [MultiSensor6, 2018]. This
architecture is built around a Raspberry Pi3 computer [Pi, 2018] and a home automation system
called Domoticz [Domoticz, 2018]. This web front-end is interesting since various sensor devices
can be monitored and configured very easily. To visualize sensed data on a dashboard, we used
an open source analytics and monitoring system called Grafana [Grafana, 2018]. This sensing
prototype should have been deployed in a house located in the south of France (Nice), to get
power measurements for different appliances as well as for the overall consumption. Unfortunately,
the time required to get measures was too limited to construct a relevant dataset and apply our
forecasting models. We therefore decided to use IHEPCD a freely available dataset of electric
power consumption [G. Hebrail, 2012]. This dataset is the result of acquisitions performed within
a French household between December 2006 and November 2010 (47 months), using a one minute
sampling rate. The dataset contains therefore 2,075,259 measures of a household’s electrical energy
consumption.
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Figure 4.2 – Curves of each features in the IHEPCD

As illustrated in figure 4.2, this data set contains the following 7 household attributes (each
attribute having a timestamp) :

— Global active power (kW) ;
— Global reactive power(kW) ;
— Global current (A) ;
— Energy sub-metering 1 (Wh) ;
— Energy sub-metering 2 (Wh) ;
— Energy sub-metering 3 (Wh) ;

Power, voltage and current measures are averaged over one minute. Energies sub-metering’s have
been used in this house to detect groups of appliances that consume more energy than others.

Figure 4.3 – Curves of global active power for each years in the IHEPCD
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Figure 4.4 – Curves of global active power for week of january the IHEPCD

Figure 4.5 – Histograms of global active power of the IHEPCD

As mentioned in [G. Hebrail, 2012], all appliances in this household are considered to be
supplied by the electrical network. In this dataset, appliances include a dishwasher, an oven,
a microwave (hot plates are not electric but gas power), a washing machine, a tumble dryer,
a refrigerator, a light, a water heater and an air conditioner. Some forecasting studies have
been already performed in the past using this dataset. In [Amarasinghe et al., 2017], the authors
compared CNN, ANN, SVM and LSTMmodels using power consumptions samples with one minute
sampling rate.
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Figure 4.6 – Histograms of global active power of the IHEPCD for each years

Figure 4.7 – Algorithm proposal STDAN

Their experiments showed that LSTM provides a better accuracy than others. It is worth
noticing that, we first only consider active power as feature set. As it is illustrated in the
figure 4.5, the active power distribution appears to be bimodal, i. e. it appears to have two groups
of observation means. We can further explore this behaviour by looking at the distribution of
active energy consumption over the four years of data (figure 4.6). As we can see on figure 4.6, the
distribution of active energy consumption over these years seems very similar. The distribution
is indeed bimodal, with a peak around 0.5 KW and possibly another around 1.5 KW. There is
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a long tail in the distribution towards higher kilowatt values which can correspond to a strong
electrical activity of the occupants (use of electrical appliances which consume more). For this we
can take a closer look at the power consumption at the daily level during a week for the month of
January. As can be seen in figure 4.4, the high consumption is mainly around 6-7 a.m. and 5-10
p.m. (probably working days), which may indicate the presence of occupants in the house. But we
also notice some time slots in the middle of the day when consumption drops. These slots should
corresponds to hours of the day when occupants are at work. In this figure, we also see that the
electricity consumption on January 13 and 14 differs from the other days, and should correspond
to the weekend. These kind of information can be useful in developing a predictive model.
Unfortunately, as it can be seen in the figure 4.3, this dataset contains around 1.25% missing
values (indicated with red rectangles and represented with a ’ ?’ Character in the input CSV file)
and is therefore not usable as this for a prediction model. The lack of these information, (or simply
replacing missing values by zeros), may indeed reduce the predictive efficiency of the forecasting
model as shown on figure 4.11. To cope with this issue, we investigated three techniques to replace
missing values using 1) the previous sample, 2) the mean calculated over all the samples, or 3) the
sample at the same time a day ago or next as illustrated by figure 4.8. Both previous and mean
values are already implemented in panda’s python library. The proposed STDAN (Same Time a
Day Ago or Next) algorithm, dedicated for time series data is depicted on figure 4.7. As shown,
STDAN consists in detecting a NaN (not a number) and then replacing it by the value at the
same time a day ago, or the next day at the same time. When the returned value is still NaN,
this mechanism is repeated iteratively until it finds a finite value as described in figure 4.7. To
assess the benefit of this algorithm, we randomly generated 5% to 90% missing values from the
original dataset. As we are interested in predicting a daily total power consumption, we aggregate
the minute-by-minute dataset into daily observations by using 4.1.

Pdaily =
N=24×60∑

i=1
Pi (4.1)

Where Pdaily presents the daily total power consumed, Pi the instantaneous power consumed
every minute and N the number of samples per day. We got therefore a new dataset with 1442
samples. Before applying the prediction models, let us have a look to the electrical activity patterns
in the daily load profiles. In figure 4.9, all daily load profiles corresponding to 1442 days were plotted
together. As we can see, two behaviors of high and low power consumption can be visualized.
These behaviors correspond to the darker regions (where more curves are concentrated). The high
consumption behavior is mostly found during early hours (5-7 a.m.) and in the evening (5-9 p.m.),
while the hours when occupants are not at home (8 a.m. - 5 p.m.) on working days or are on
vacations show a decrease in consumption. In the next section, we describe the different load
forecasting models used in this work. The benefit of the STDAN algorithm will be demonstrated
in the section 4.5.
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Figure 4.8 – Representation of data after filling missing values based on different data
preprocessing

Figure 4.9 – Representations of all the daily load profiles in IHEPCD
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4.4 Choice of energy load forecasting model

4.4.1 Linear model (ARIMA)

ARIMA is a time series prediction model initially proposed by Box and Jenkins [Box, 1979] to
address the limitations related to auto-regressive moving average (ARMA). ARMA is only used
for so-called stationary time series. A time series is stationary if the mean and variance are almost
constant over the time. ARIMA is a generalization of the ARMA model to which a differencing
process to make time series stationary is added. This differencing process is based on the difference
between consecutive observations. An ARIMA model captures the following key elements :

— AR : Autoregression. It is a regression model that exploits the dependencies between an
observation and a number of lagged observations (p).

— I : Integrated. This parameter is used to make the time series stationary. To do so, the
differences of observations are measured at different times (d).

— MA : Moving Average. It is an approach able to consider the dependency between observed
samples and the residual error terms when a moving average model is used with a number
of lagged observations (q).

An AR model can be written as a linear regression given by [Kingma and Ba, 2014] :

Xt = b+
p∑

i=1
φixt−i + εt (4.2)

Where xt is the stationary variable at time t, b is a constant, and φi are auto-correlation
coefficients to be estimated from lags 1 to p. Finally, εt are the residuals.

An MA model of order q, i.e MA(q), can be written in the form :

Xt = µ+
q∑

i=1
θiεt−i (4.3)

Where µ is the expected of xt (usually assumed to be equal to zero ), and θi coefficients to be
estimated (with θ0 = 1) . We assume that εt is a Gaussian white noise series with mean zero and
variance σ2

ε. The ARIMA model of order (p,d,q) can be obtained by combining AR et MA models.

Xt = c+
p∑

i=1
φixt−i + εt +

q∑
i=1

θiεt−i (4.4)

In order to explore different combinations of parameters p (from 0 to 10), d (from 0 to 2)
and q (from 0 to 5), we used a grid search method (an exhaustive search algorithm with a sub
-set specified manually for hyperparameter optimization). For each combination of parameters,
we evaluate the ARIMA model on a dataset subdivided into training set for the learning phase
and the test set to validate the ARIMA model using the mean squared error as metric. The first
3 years of the dataset were considered as the training set while the last year (i.e. 2010) as the test
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set. Upon exiting each combination, one should keep track of the lowest observed error score and
the configuration that caused it. From this grid search method, the parameters having the lowest
mean squared error score were identified as : p = 1, d = 0, and q = 2. Results obtained with this
configuration are shown on figure 4.11.

4.4.2 Non-Linear Model (LSTM)

LSTM models are considered as a solution to overcome the problem of time series prediction
due to their capacity of remembering patterns for short and long-term periods of time
[Hochreiter and Schmidhuber, 1997]. A recurrent LSTM network is composed of different memory
blocks called cells. A LSTM model can modify, remove or add information as it crosses different
layers as shown in figure 4.10. Information flows through a mechanism known as cell states which
allows memorizing or forgetting things in a selective way. At a particular cell state, the information
has three different dependencies, called respectively the previous cell state ct−1, the previous hidden
state ht−1, and the input at the current time step xt. Three gates called forget, input and output,
are responsible of saving informations and manipulations of a cell. To optimize the performance
of the LSTM network, a forget gate (ft) defined in Eq. 4.5 decides which information needs to be
thrown away using a sigmoid layer by looking at ht−1 and xt, and outputs a number between zero
and one for each number in the cell state ct−1. A value of 1 means “completely keep this”, while a
0 indicates “completely get rid of this”.

ft = σ(Wf .[ht−1, xt] + bf ) (4.5)

The memory gate c̃t chooses which new information needs to be stored in the cell state. First, a
sigmoid layer called the “input gate layer” chooses which values will be updated. Then, a tanh layer
creates a vector of new candidate values, c̃t, that could be added to the state. Then, it combines
these two to create ct an update of the state.

it = σ(Wi.[ht−1, xt] + bi) (4.6)

c̃t = tanh(Wc.[ht−1, xt] + bc) (4.7)

ct = ft ∗ ct−1 + it ∗ c̃t (4.8)

The output gate Ot decides what will be yield out of each cell. The obtained values are based on
the cell state along with the filtered and newly added data. Then, the cell state is filtered through
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tanh (to get the values between −1 and 1) and multiply it by the output of the sigmoid gate, so
that only the chosen parts are sent to the output layer.

Ot = σ(Wo.[ht−1, xt] + bo) (4.9)

ht = Ot ∗ tanh(ct) (4.10)

Where Wf , Wc, Wi, and Wo represent rectangular weight matrices, bf , bi, bc and bo are bias
vectors and σ is the logistic sigmoid.

Figure 4.10 – The internal structure of an LSTM

A standard LSTM has been designed for forecasting household energy consumption. The
network structure consists of 2 LSTM hidden layers with 50 memory units, one fully (dense)
connected layer of 25 neurons with a linear activation function and an output layer that makes a
single value prediction. The choice of the network structure has been performed following a trial
and error approach. The network also uses the Mean Squared Error as a loss function and the
ADAM [Kingma and Ba, 2014] algorithm as an optimizer. Networks were fitted with 70 epochs
and a batch size of 16.

67



4.5 Results and discussion

4.4.3 Performance metrics

To evaluate the performance of LSTM and ARIMA models, two different evaluation metrics
were used : Root Mean Square Error (RMSE) and Mean Absolute Percentage Errors (MAPE) .
RMSE and MAPE are defined as follows :

RMSE =

√√√√√ 1
N

N∑
j=1

(yj − ŷj)2 (4.11)

MAPE = 100%
N

N∑
j=1
| yj − ŷj

yj

| (4.12)

Where N is the total number of observations, yj is the actual value ; and ŷj is the predicted value.
The RMSE metric is used to measure, over a forecasting period, the global error between the actual
energy consumed and the corresponding energy estimated by forecasting models. It is a quadratic
scoring rule that also measures the average magnitude of the error. According to [Swamidass, 2000],
the Mean Absolute Percentage Error (MAPE) is the mean or average of the absolute percentage
errors of the forecast. The error is defined as the actual or observed value minus the forecast value.
The percentage errors are summed regardless of sign to calculate MAPE. This measure is easy to
understand because it provides the error in terms of percentages. In addition, because absolute
percentage errors are used, the problem of positive and negative errors cancelling each other out is
avoided. As a result, MAPE has managerial appeal and is a commonly used measure in forecasting.
The smaller the MAPE, the better the forecast.

4.5 Results and discussion

4.5.1 LSTM and ARIMA prediction models comparison

To analyze the performance of ARIMA and LSTM models, experiments have been conducted
using the IHEPCD dataset [G. Hebrail, 2012]. The data initially sampled every minute are
grouped to obtain daily total power consumption and then split into two groups. The first group is
considered as the training set : it contains data from 2006-12-16 to 2009-12-31 and represents 78%
of the dataset. The second group is used for test and contains data from 2010-01-01 to 2010-11-26,
representing 22% of the dataset. ARIMA and LSTM models were implemented using the python
ecosystem. Statsmodel library was used to fit the ARIMA model by calling the ARIMA function
along with the p, d and q parameters. Then fit and predict functions were called to train the
model and make predictions respectively. SciPy environment with Keras deep learning library
using the TensorFlow backend was used for the LSTM model.
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Our objective is to perform a one-day ahead forecast of the consumed energy using ARIMA
and LSTM models. The RMSE and MAPE metrics are used to evaluate both models using
the three preprocessing techniques presented in section 4.3.1. As shown on figure 4.11, LSTM
provides a significant improvement in accuracy (RMSE) compared to ARIMA model whatever the
preprocessing technique. When STDAN is used as a preprocessing technique, the RMSE decreases
from 7.844 to 3.991 kWh when LSTM is used. For LSTM and ARIMA models, better performance
are obtained when data are preprocessed using our STDAN approach. To further evaluate STDAN,
5% to 90% missing values were randomly generated and then inserted into the test set. As it can be
seen in figure 4.12, and as expected, the daily average error increases with the number of missing
values for both preprocessing techniques. However, STDAN provides overall a better accuracy than
the mean preprocessing technique.

Figure 4.11 – Comparison of LSTM and ARIMA prediction models for different preprocessing
techniques

Using the STDAN preprocessing technique, we then tested short (7 days) and medium (14 to 31
days) term load forecasting with the LSTM model. Obtained results are shown in figure 4.13. As it
can be seen, LSTM performs better with short load term forecasting than with medium term when
using STDAN. This can be explained by the k-step ahead out samples forecasts which accumulate
the error terms, thus resulting in lower accuracy in medium-term forecasting performance. Overall,
we can conclude that LSTM performs better than ARIMA for energy load forecasting. Results
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Figure 4.12 – Evaluation of STDAN and Mean techniques accuracy for different missing values
percentage

also demonstrate that the STDAN preprocessing technique allows reducing the prediction error
compared to existing techniques (previous and mean).

Figure 4.14 – Validation of new data set

4.5.2 LSTM prediction model validation on a new dataset

In order to validate the proposed LSTM prediction model trained on the IHEPCD dataset,
where samples were collected in an area close to Paris, we also performed experiments using another
dataset collected from a building close to Nice in the south of France. This new dataset contains only
active power measurements with a 5-second sampling rate. To get daily observations, samples are
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Figure 4.13 – LSTM for short and medium term load forecasting

aggregated using the Eq. (1) with N=17280 (i.e. 12*60*24). As this new dataset contained missing
values as well, all of them were replaced using our STDAN approach. As it can be observed in
figure 4.15, both datasets present different energy consumption behaviours. It seems therefore that
activities of both datasets are different. In Paris (i.e IHEPCD dataset), data have been collected
in a place of residence and the energy consumption fluctuates over time. On the other hand, data
collected close to nice have much less fluctuations and seem thus not to be a place of residence.

The figure 4.14 presents results obtained using LSTM prediction model for both dataset over
322 days. As it can be seen, the prediction error slightly increases with the new dataset. However,
this increase remains acceptable and therefore validate our LSTM prediction model.

4.6 Conclusion

In this chapter, we first presented different techniques to replace missing values. Then, we
evaluated the accuracy of ARIMA and LSTM, as representative models when forecasting time
series data. Both models were implemented and trained on a set of residential power consumption
data. The results showed that LSTM provides better performance than ARIMA whatever the
preprocessing technique. To validate the effectiveness of the LSTM model, predictions were
conducted using a new data test from a building located far away from the one used during the
learning phase. Using this new dataset, the prediction error is around 20%, which can be considered
as acceptable for a power management to take decision or for sizing an energy harvesting system.
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Figure 4.15 – Electric Power consumer for an office located at Nice and IHEPCD
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Chapitre 5
Coupling the grid and an energy harvesting
system for smart home self-consumption
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5.1 Introduction

Renewable energy technologies could play an important role in addressing societal challenges
such as resource depletion and climate change. Among renewable resources such as wind, thermal,
solar, it is proven that photovoltaic energy has a major potential for electricity production.
However, two major obstacles have limited the widespread use of photovoltaics : first, their
production depends on the level of sunshine during the day (local weather conditions) and secondly,
they also exhibit strong fluctuations during the year. Initially, the main objective of photovoltaic
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systems was to feed the generated output into the electricity grid, which was remunerated by feed-
in tariffs. In France, the purchase price of photovoltaic cells (PV) varies according to the type of
installation and its power [Gabriele, 2020]. However, during the 2nd quarter of 2020, the feed-in
tariff for surplus PV has been set at 10 cents per kWh for a solar installation less than or equal to 9
kWp and is then relatively low compared to the price of electricity. It is indeed 0.06 euro per kWh
injected by an installation with a power between 9.1 kWp and 100 kWp. As a result, it becomes
more interesting to use the electricity produced by the solar panels on site at household level than
to inject it into the grid. Nevertheless, in a household the simultaneity of electricity generated by
the PV and consumed by the load remains limited. In [Cagigal et al., 2011], the authors proposed
to shift the consumption of controllable loads to periods of energy surplus in order to increase
self-consumption. Another way to increase self-consumption consists in combining the PV system
with a battery. With such a system, the surplus energy can be stored and used later to reduce the
energy drawn from the grid, thus increasing self-sufficiency. In this chapter, we will study through
simulations and using prediction models presented in previous chapters, the energy efficiency of
such a system illustrated in figure 5.1. To do so, two power management strategies based on
predictions of the consumed and the harvested energy, will be in charge to select either the grid or
the PV system as energy source for the household. The impact of the amount of harvested energy
will also be evaluated through two different household localization.

Figure 5.1 – House model for Grid-connected PV System

5.2 Related works

Many approaches and techniques have been used for the control and management of hybrid
renewable systems and electrical storage systems. In [Hongbo et al., 2016], the authors developed
an optimization model in a residence equipped with a hybrid system (using PV, fuel cell and
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battery). By guaranteeing reliable operation of the system, the proposed model made it possible to
determine the optimal operating strategies with the objective of minimizing the annual operating
cost or annual CO2 emissions. In [Sharma et al., 2016], a mathematical model for the optimal
energy management of a residential building has been proposed. Their study determines the
optimal decisions in real time taking into account models with realistic parameters and customer
preferences. The results obtained showed that the proposed model can reduce the cost and
energy consumption of customers by approximately 17% and 8%, respectively. However, these
studies do not take into account the operation and real characteristics of the various devices
(production, storage and conversion of energy) and their impact on losses. In [Song et al., 2011], a
residential 10 kWh lithium-polymer battery energy storage system was implemented and simulated.
A control algorithm has been proposed for the energy storage of batteries connected to the
grid with photovoltaic production. However, their objective was to charge the battery overnight
with energy coming from the grid and not to maximize self-consumption from local production.
In [Ren et al., 2016], the impact of PV battery systems on peak demand and energy consumption
is assessed in two existing studies and nine potential electricity tariffs, considering old and new
homes. The study showed a potential for reducing peak demand by up to 50%, through the
installation of 5.5 kW photovoltaic panels and 16 kWh batteries. With the adoption of PV battery
systems, the biggest bill savings have been achieved at the household level with the critical peak
tariff of retail energy pricing and grid capacity load. The main objective of this work was to
ensure that consumption peaks were capped and to increase profitability and not to maximize self-
consumption. In [Luthander et al., 2016], the self-consumption of residential photovoltaic energy
in a community of several single-family houses was evaluated taking into account the reduction
of photovoltaic energy and energy storage by individual or shared batteries. The results indicate
that the self-consumption ratio increases when using shared storage instead of individual storage.
In [Ranaweera and Midtgård, 2016] an energy management for a PV system coupled with battery
energy storage is proposed. Such a system maximizes daily economic benefits while reducing energy
injection into the grid to alleviate surge problems caused by reverse energy flow. The main objective
of this work was to provide services to the electricity network and to ensure the quality of energy.
In [Santos et al., 2014], an assessment of the impact of grid energy balancing obtained with or
without energy storage is presented. A storage management strategy is proposed which coordinates
the surplus photovoltaic production with the surplus demand over a daily period, and reduces their
maximum peaks. However, the economic evaluation of these studies focuses on the perspective of
network and not on the user.

In this thesis, power management algorithms are proposed in order to maximize self-
consumption as well as the optimization of the blackout error rate. Our contribution consists
in integrating a power management system in a residence equipped with a Grid connected PV
system. The proposed algorithms take decisions periodically, every slot of time, Decisions are

75



5.3 Grid-connected PV system

based on predictions and metrics are updated according to measures performed over the last time
slot.

5.3 Grid-connected PV system

5.3.1 Electric generation profile

The household’s energy production profile is simulated from an open source tool developed
by Sam Borgeson available on GitHub [Borgeson, 2018]. The author has implemented a more
simplified tool that provides a pythonic wrapper around the NREL’s (National Renewable
Energy Laboratory) SAM (System Advisor Model) distributed energy system simulation engine
[NREL, 2020]. SAM is a simulation system for distributed energy projects, with the ability to
configure, simulate PV systems and other renewable systems. It takes several input parameters
such as PV size, module type, weather year (TMY3 (Typical meteorological year) files) of the
desired location as well as other parameters such as azimuth and tilt angles. Due to the lack of
information on the energy load profile of the household and to simplify our analysis, we consider a
fixed azimuth and tilt angle for both locations (Nice and Paris). The rest of the parameters have
been configured with default values shown in table 5.1. In practice, we know that the azimuth
and the tilt angles can change from one household to another. The azimuth angle may change
depending on the orientation of the roof and the tilt angle according to the shading. The optimal
tilt angle ranges from 32 to 38 [HULD Thomas, 2008]. The generated DC power based on the
input parameters provided in table 5.1 will be considered in the rest of this chapter. According
to [Dobos, 2014], the "standard" option of module type represents typical poly-crystalline or
mono-crystalline silicon modules with efficiency in the range of 14-17%. The "premium" option
is suitable for modeling high efficiency mono-crystalline silicon modules (18-20%) that have
anti-reflective coatings and lower temperature coefficients. The "thin-film" option assumes low
efficiency (11%) and a significantly lower temperature coefficient, which is representative of most
thin-film modules installed since 2013.
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(a) PC

(b) PH in Nice

(c) PH in Paris

Figure 5.2 – Energy production PH in Nice and Paris (for 8kwp PV system) VS. annual profile
of energy load (PC)
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(a) PC

(b) PH in Nice

(c) PH in Paris

Figure 5.3 – Zoom of energy production PH in Nice and Paris (8kwp) vs. energy load profile PC

in winter condition (i.e. in December)
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(a) PC

(b) PH in Nice

(c) PH in Paris

Figure 5.4 – Zoom of energy production PH in Nice and Paris (8kwp) vs. energy load profile PC

in summer condition (i.e. in JUly)

5.3.2 Electric load profile

For electric load profile, the IHEPCD [G. Hebrail, 2012] dataset available from a French
household recorded during December 2006 to November 2010 is used. The power consumption
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Parameters Units Default Value

System size Kwp (DC) 8

Module type

Standard,
Premium, Thin

film Premium

System losses % 14

Array type

Fixed open
rack, Fixed roof
mount, 1-Axis Fixed open rack

Tilt angle degrees 35

Azimuth angle degrees 180

Inverter efficiency % 96

Table 5.1 – Input parameters

data for the year 2009 has been chosen as the reference year for domestic energy in our model.
This year contains indeed very few missing data. It is important to note that missing values
have been replaced using our STDAN approach presented in chapter 4. Time resolution has been
changed to 1 hour to be aligned with energy profile produced by PV system. In figures 5.2, 5.3
and 5.4, the electrical load PC is juxtaposed with the produced energy PH . In these figures, the
annual electricity production of the system is equal to the annual power consumption PC of the
household. It appears that there is a strong disparity between the electricity produced from solar
panels and the electricity consumed during periods of strong sunlight. In the next section, two
power management algorithms are proposed for a grid-connected PV system with or without a
storage system.

5.3.3 Power management (PM) policies for Grid connected PV System

5.3.3.1 Global overview of the PM

The aim of this work is to propose a power management algorithm maximizing self-consumption
for a Grid connected PV system. The figure 5.5 shows a functional overview of our power manager.
As it can be seen, the harvested energy PH(n) and consumed energy PC(n) are measured during
the time slot n using an energy monitoring system such as the prototype proposed in chapter 3. A
measurements dataset is used by the LSTM model to predict the harvested P̂H(n) and consumed
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energy P̂C(n) on the next time slot. Once the predictions are made, the power management takes
a decision to switch to the Grid or the PV. If a battery is used, the decision is taken according to
the state of charge of the battery at time t (i.e. at the end of time slot n).

Figure 5.5 – Global overview of the PM

5.3.3.2 A slotted-based PM algorithm

The proposed PM algorithm is activated and take decisions periodically. This period is equal
to a predefined time slot duration. In this work, each time slot n is equal to one hour. It means
that the PM uses predictions to take a decision for the next time slot (i.e. next hour). This time
slotted-based PM principle is illustrated on the figure 5.6.
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Figure 5.6 – Description of power management algorithm with or without batteries

Let us assume that time is equal to t (i.e. 10h00). In order to take a decision for the following
time slot (slot n i.e. between 10h00 and 11h00), the PM use predictions of the amount of energy
that should be consumed (P̂C(n)) and harvested (P̂H(n)) during that period n. In case a battery
is used, the PM also takes into account the state of charge (SoC) of the battery at this time t
(SoC(t)). One hour later at t+1, the PM has to check whether it took a good or a bad decision (PV
or Grid) one hour before. To do so, the PM uses real measured values of the consumed (PC(n)) and
harvested energy (PH(n)) during the last time slot n (between 10h00 and 11h00). These measures
allow the PM to update the different parameters such as the self-consumption rate or the number
of blackouts (these parameters will be defined in the section 5.3.3.4). In case a battery is used,
the SoC of the battery is updated (i.e. SoC(t+ 1)). This process is repeated every time slot. For
instance, at time t+1, P̂H(n+ 1) and P̂C(n+ 1) predictions (and SoC(t+ 1) if a battery is used)
are used by the PM to take decision for the next slot n+1.

5.3.3.3 Battery state of charge evolution

As shown on the figure 5.6, the PM policy needs to update the state of charge of the battery
at every start of a time slot (i.e. at SoC(t), SoC(t+ 1), SoC(t+ 2), ....). the SoC is then used by
the PM to take decision for the considered time slot (i.e. SoC(t) for time slot n).
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Figure 5.7 – Battery Management Strategy

As shown on the figure 5.7, during a time slot the battery can be either charged or discharged,
depending on the real values of PC(n) and PH(n). The SoC must be updated accordingly for each
time slot.

Let us assume that slot n is over and the SoC (t+1) must be updated. Two cases can occur :

— Case 1 : When PC(n) ≥ PH(n), battery has been discharged
The new state of charge of the battery is defined as follows :

SoC(t+ 1) = max(SoC(t)−∆SoC, SoCmin) (5.1)

where ∆SoC is calculated as follows :

∆SoC = min(PC(n)− PH(n), SoCmax − SoCmin) (5.2)
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The ∆SoC represents the variation of the State of charge between time t and t+1 (i.e.
during time slot n). It is worth to note that in case of discharge, the state of charge can
obviously not be lower than the minimum capacity of the battery, i.e. SoCmin.

— Case 2 : When PC(n) ≤ PH(n), battery has been charged
In that case, the new state of charge of the battery is defined as follows :

SoC(t+ 1) = min(SoC(t) + ∆SoC, SoCmax) (5.3)

where ∆SoC is calculated as follow :

∆SoC = min(PH(n)− PC(n), SoCmax − SoCmin) (5.4)

In case of charge, the state of charge can obviously not be higher than the max capacity
SoCmax. The variation of the state of charge (∆SoC) can therefore not be higher than the
SoCmax - SoCmmin. When PC(n) ≤PH(n), the surplus of energy, defined as the amount of
harvested energy that can be fed to the grid, has to be updated as well. This occurs only
when more energy is harvested (PH(n)) than consumed (PC(n)) during a time slot. In such
a case, our PM policy gives priority to the battery charge. However, when the battery is
fully charged, the remaining harvested energy is then considered as surplus energy and is
defined as follows :

Surplus+ = max(SoC(t) + PH(n)− PC(n)− SoCmax, 0). (5.5)

5.3.3.4 Variables used by the PM policy

Total monthly consumption

The Total monthly energy consumption is calculated as follows :

Totalmonthlyconsumption =
N=24×31∑

i=1
EL(i) (5.6)

where EL represents energy consumed during one hour.

Total PV production

The total photovoltaic production is the global energy produced during a month depending on
the predefined configuration. It is calculated as follows :

TotalPV production =
N=24×31∑

i=1
EH(i) (5.7)
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where EH represents the energy harvested during one hour.

Total surplus energy fed to the grid

The total surplus energy fed to the grid is defined as the total surplus energy that has been
injected to the grid.

Total energy bought from the grid

This is the total energy purchased from the grid for the household when the PV system does
not provide enough energy.

Self-consumption

The self-consumption can be defined according to two cases :
— Case 1 : When an energy storage system is not used

Direct self-consumption consists in using part of the electricity produced on site to supply
the electrical load and injecting the surplus production into the Grid.

— Case 2 : When an energy storage system is used
Total self-consumption consists in using all the energy produced as well as the energy stored
in the battery to supply the electric load.

Self-consumption rate

The self-consumption rate (SCR) is one of the evaluation criteria for a grid-connected PV
system. The SCR can be defined according to two cases :

— Case 1 : When an energy storage system is not used
This is the ratio between the self-consumption energy used to fed the load divided by the
overall production (Total PV production). The self-consumption energy used in this case
is the one defined above without battery.

— Case 2 : When an energy storage system is used
This is the ratio between the self-consumption energy used to fed the load divided by the
overall energy production (Total PV production). The self-consumption energy used in this
case is the one defined with battery.

SCR =
∑

P V Decision=1 Self-Consumption
Total PV production (5.8)
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Self-sufficiency rate (SSR)

The self-sufficiency rate is similarly defined as the self-consumption rate. The difference is
that the self-consumption is divided by the total monthly energy consumption of the household’s
electrical load.

SSR =
∑

P V Decision=1 Self Consumption
Total Energy Load PC

(5.9)

Good Decision PH

The Good Decision PH Good Decision PH is defined as the total number of good decisions
taken by the Power Management to switch to the PV system.

Bad Decision PH

The Bad Decision PH Bad Decision PH is defined as the total number of Bad decisions taken
by the Power Management to switch to the PV system.

Good Decision Grid

The Good Decision Grid Good Decision Grid is defined as the total number of good decisions
taken by the Power Management to switch to the grid.

Bad Decision Grid

The Good Decision Grid Bad Decision Grid is defined as the total number of bad decisions
taken by the Power Management to switch to the grid.

Blackout error rate (BER)

The blackout error rate is defined as the ratio between the number of time the power
management algorithm fails on PV decision (Bad Decision PH) divided by the total number of
time the PV system (Bad Decision PH + Good Decision PH) is used. It is calculated from the
following equation :

BER = BadDecisionPH

BadDecisionPH +GoodDecisionPH

(5.10)

5.3.3.5 Power management algorithm without battery

The algorithm 1 is the Power Management policy that we propose when the household is not
equipped with a battery. The aim of this policy is to take decisions (switch to the grid or to the
PV) at the beginning of each time slot based on predictions of consumed and harvested energy
(P̂C(n) and P̂H(n) respectively). As shown, at the end of each time slot, the Power Management
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checks if the decision taken at the beginning of the time slot was correct or not.
In case PV was chosen, the PM checks if the consumed energy PC(n) was actually less than the
harvested energy PH(n). If it is not the case, PC(n) > PH(n), then it means that a bad decision
PV was taken, and therefore the bad decision PH counter is incremented. In that case, the number
of blackout is also incremented and the self consumption is equal to the overall harvested energy
PH(n) (as all the harvested energy has been consumed by the load).

When PC(n) is less than PH(n), i.e. the decision was good, the counter of good decision PH
is incremented. In that case, the self-consumption is incremented by the overall consumed energy
during this time slot PC(n), while the remaining energy (PH(n) - PC(n)) is considered as the
surplus. If the Grid was chosen, there is obviously no risk of blackout. But, this decision could
be a bad decision when the actual harvested energy is higher than the consumed energy (PC(n)
< PH(n)). In such a case, the bad decision Grid is incremented. Otherwise, the counter of good
decision grid is incremented and the surplus is incremented by all the energy harvested during this
time slot. Then, a new decision must be taken for the next time slot. This process is repeated for
each time slot.

5.3.3.6 Power management algorithm with battery

The algorithm 2 is the Power Management policy that we propose when a battery is
used. The aim of this policy is to take decisions (switch to grid or to the PV) based on
predictions of consumed and harvested energy (P̂C(n) and P̂H(n) respectively) and as well as the
state of charge of the battery at time t (SoC(t)). As shown, at the end of each time slot, the
Power Management checks if the decision taken at the beginning of the time slot was correct or not.

In case PV was chosen (PV decision = 1), the PM checks if the consumed energy PC(n) was
actually less than PH(n) + SoC(t). If it is not the case, meaning that PC(n) > PH(n) + SoC(t),
then a bad decision PV was taken, and therefore the bad decision PH counter is incremented.
In that case, the number of blackout is also incremented and the self consumption is equal to
the overall harvested energy plus the state of charge of the battery (PH(n) + SoC(t)). As all
the harvested energy has been consumed, the new state of charge of the battery SoC(t + 1) is
updated to SoCmin.

When PC(n) is lower than PH(n) + SoC(t), i.e. the decision was good, the counter of good
decision PH is incremented. In that case, the battery is either discharged (when PC(n) > PH(n))
or charged according to real measures of PC(n) and PH(n) as well as the state of the charge
SoC(t). In case the harvested energy is higher than the consumed energy, the remaining energy
is considered as a surplus as described by the equation 5.5. In case of good decision PH, the
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Algorithm 1 Power management algorithm without a battery
1: if P̂H(n) > P̂C(n) then
2: PV decision← 1
3: else
4: PV decision← 0
5: end if
6: for t : 1 to len(Nsteps) do
7: if PV Decision = 1 then
8: if PC(n) > PH(n) then
9: Blackout← Blackout+ 1
10: Bad Decision PH← Bad Decision PH + 1
11: Selfconsumption+ = PH(n)
12: else
13: Selfconsumption+ = PC(n)
14: Surplus+ = PH(n)− PC(n)
15: Good decision PH← Good Decision PH + 1
16: end if
17: else
18: if PC(n) < PH(n) then
19: Bad decision Grid← Bad Decision Grid + 1
20: else
21: Good decision Grid← Good decision Grid + 1
22: Surplus+ = PH(n)
23: end if
24: end if
25: if P̂H(n+ t) > P̂C(n+ t) then
26: PV decision← 1
27: else
28: PV decision← 0
29: end if
30: end for=0
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self-consumption is incremented by the overall consumed energy PC(n).

If the Grid was chosen (i.e. PV decision = 0), there is obviously no risk of blackout. But, this
decision could be a bad decision if the actual harvested energy added to the state of charge of the
battery is higher than the consumed energy (PC(n) < PH(n) + SoC(t)). Otherwise, the counter of
good decision grid is incremented and the new state of the charge SoC(t+ 1) is updated according
to the equation 5.11 :

SoC(t+ 1) = min(PH(n) + SoC(t), SoCmax) (5.11)

In that case, the surplus is also incremented by all the remaining harvested minus the maximum
capacity of the battery (SoCmax).

surplus+ = max(SoC(t) + PH(n)− SoCmax, 0) (5.12)

Then, a new decision is taken for the next time slot. This process is repeated for each time slot.
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Algorithm 2 Power management algorithm with a battery
1: if P̂H(n) + SoC(t)− SoCmin > P̂C(n) then
2: PV decision← 1
3: else
4: PV decision← 0
5: end if
6: for t : 1 to len(Nsteps) do
7: if PV Decision = 1 then
8: if PC(n) > PH(n) + SoC(t) then
9: Blackout← Blackout+ 1
10: Bad decision PV← Bad decision PV + 1
11: Selfconsumption(t)+ = PH(n) + SoC(t)
12: SoC(t+ 1) = SoCmin

13: else
14: if PC(n) > PH(n) then
15: ∆SoC ← min(PC(n)− PH(n), SoCmax − SoCmin)
16: SoC(t+ 1)← max(SoC(t)−∆SoC, SoCmin)
17: else
18: ∆SoC ← min(PH(n)− PC(n), SoCmax − SoCmin)
19: SoC(t+ 1)← min(SoC(t) + ∆SoC, SoCmax)
20: Surplus+ = max(SoC(t) + PH(n)− PC(n)− SoCmax, 0)
21: end if
22: Selfconsumption+ = PC(n)
23: Good decision PV← Good Decision PV + 1
24: end if
25: else
26: if PC(n) < PH(n) + SoC(t) then
27: Bad decision Grid← Bad Decision Grid + 1
28: else
29: Good decision Grid← Good decision Grid + 1
30: end if
31: Surplus+ = max(SoC(t) + PH(n)− SoCmax, 0)
32: SoC(t+ 1)← min(PH(n) + SoC(t), SoCmax)
33: end if
34: if P̂H(n+ 1) + SoC(t+ 1)− SoCmin > P̂C(n+ t) then
35: PV decision← 1
36: else
37: PV decision← 0
38: end if
39: end for=0
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Configurations PV size Battery size
Period of the

year Geolocalisation
Config. 1 2kwp 20kwh Winter Nice
Config. 2 4kwp 20kwh Winter Nice
Config. 3 8kwp 20kwh Winter Nice
Config. 4 2kwp 20kwh Summer Nice
Config. 5 4kwp 20kwh Summer Nice
Config. 6 8kwp 20kwh Summer Nice
Config. 7 2kwp 20kwh Winter Paris
Config. 8 4kwp 20kwh Winter Paris
Config. 9 8kwp 20kwh Winter Paris
Config. 10 2kwp 20kwh Summer Paris
Config. 11 4kwp 20kwh Summer Paris
Config. 12 8kwp 20kwh Summer Paris
Config. 13 2kwp 10kwh Winter Nice
Config. 14 4kwp 10kwh Winter Nice
Config. 15 8kwp 10kwh Winter Nice
Config. 16 2kwp 10kwh Summer Nice
Config. 17 4kwp 10kwh Summer Nice
Config. 18 8kwp 10kwh Summer Nice
Config. 19 2kwp 10kwh Winter Paris
Config. 20 4kwp 10kwh Winter Paris
Config. 21 8kwp 10kwh Winter Paris
Config. 22 2kwp 10kwh Summer Paris
Config. 23 4kwp 10kwh Summer Paris
Config. 24 8kwp 10kwh Summer Paris
Config. 25 2kwp 5kwh Winter Nice
Config. 26 4kwp 5kwh Winter Nice
Config. 27 8kwp 5kwh Winter Nice
Config. 28 2kwp 5kwh Summer Nice
Config. 29 4kwp 5kwh Summer Nice
Config. 30 8kwp 5kwh Summer Nice
Config. 31 2kwp 5kwh Winter Paris
Config. 32 4kwp 5kwh Winter Paris
Config. 33 8kwp 5kwh Winter Paris
Config. 34 2kwp 5kwh Summer Paris
Config. 35 4kwp 5kwh Summer Paris
Config. 36 8kwp 5kwh Summer Paris

Table 5.2 – Configurations used in this study
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5.4 Results and Discussion

5.4.1 Simulation setup

In order to evaluate the efficiency of the proposed power management policy and to quantify
the evaluation criteria mentioned above, simulations for different configurations listed in table 5.2
have been performed. The following parameters are varied in those configurations :

— PV size : the size of solar panels from 2 to 8 kWp ;
— Battery size : the battery capacity is either equal to 5, 10 or 20 kWh ;
— Period of the year : winter and summer conditions are considered for the harvested energy

(PH)
— Geolocalisation : two different areas (Nice and Paris) are considered for the harvested

energy ;
All the simulations are carried out over a period of 1 month, representing therefore 743 time

slots and as many decisions to be taken by the Power Manager. In the next section, we present the
results obtained for a house located either in Nice or Paris. For each locality, we simulate either
winter (December) or summer (July) conditions. Then, for each weather conditions, the power
management algorithm is evaluated using or not a battery, and considering different PV sizes. We
assume that PC(n) does not change for investigating the impact of PV sizing and batteries on
energy efficiency.

5.4.2 Household located in south of France (Nice)

Winter condition (December)

Tables 5.3, 5.4 and 5.5 are simulation results obtained for Nice in winter condition (December).
As shown, the harvested energy (total PV production) in December is lower than the total monthly
consumption. As the harvested energy is low, the self-consumption energy is low as well, even more
when the battery is not used (because not enough energy is produced to cover the energy load
PC). This remaining energy produced will be considered as a surplus and injected into the grid.
In case the battery is used, we notice a significant increase of the self-consumption energy. As the
harvested energy PH is stored in the battery, it can be used (during a time slot) when there is
enough energy to cover the energy load PC . This is the reason why zero energy is injected into the
grid as shown in tables 5.3, 5.4 and 5.5.

92



5.4 Results and Discussion

Table 5.3 – Results obtained for config.1

System capacity 2 Kw
Without Batteries With Batteries

Total monthly consumption 1015.132 kwh 1015.132 kwh
Total PV production 89.665 89.665
Self Consumption 5.505 kwh 89.44 kwh

Total fed to the grid 84.159 kwh 0 kwh
Total bought from the grid 1009.627 kwh 925.69 kwh

Self consumption rate 6.1399% 99.752%
Self sufficiency rate 0.542% 8.81%
Good Décision PH 9 89
Bad Décision PH 3 22

Good Décision Grid 719 599
Bad Décision Grid 12 33
Blackout error rate 25% 19.81%

Area (m2) 10 10

Table 5.4 – Results obtained for config.2

System capacity 4 Kw
Without Batteries With Batteries

Total monthly consumption 1015.132 kwh 1015.132 kwh
Total PV production 179.330 kwh 179.330 kwh
Self Consumption 43.685 kwh 178.756 kwh

Total fed to the grid 135.645 kwh 0 kwh
Total bought from the grid 971.447 kwh 836.376 kwh

Self consumption rate 24.360% 99.68%
Self sufficiency rate 4.303% 17.609%
Good Décision PH 41 157
Bad Décision PH 11 21

Good Décision Grid 673 532
Bad Décision Grid 18 33
Blackout error rate 21.1% 11.7%

Area (m2) 20 20
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(a)

(b)

Figure 5.8 – Energy flows of a residential in Nice : Grid-PV Connected without (a) and with
battery system for one day of December (b) (PV system size 2 kWp, battery size 20 kWh, annual
load demand 9 MWh

The strategy implemented in our power manager is to use the grid when the harvested energy
PH is low compared to the energy load PC during a time slot. In the case the battery is not used,
and as expected, the power manager decides to use the grid (719 against 599, 673 against 532, 622
against 435 respectively on the grid and PV as can be seen in tables 5.3, 5.4 and 5.5 respectively).
In consequence,there is a strong demand for energy bought from the grid to cover the energy load
PC . We can also observe that, when the battery is used, the self-sufficiency rate doubles every
time the PV size is doubled when the battery is used. On the other hand, the self-consumption
rate tends to saturate with the increase of the PV size. The defined strategy indeed consists in
recharging the battery rather than selling the surplus energy produced by the PV system when
the battery is not fulfilled.

94



5.4 Results and Discussion

(a)

(b)

Figure 5.9 – Energy flows of a residential in Nice : Grid-PV Connected without (a) and with
battery system for one day of December (b) (PV system size 4 kWp, battery size 20 kWh, annual
load demand 9 MWh
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(a)

(b)

Figure 5.10 – Energy flows of a residential in Nice : Grid-PV Connected without (a) and with
battery system for one day of December (b) (PV system size 8 kWp, battery size 20 kWh, annual
load demand 9 MWh

In order to analyze the decisions taken by our power manager in tables 5.3, 5.4 and 5.5, we
present three figures (figures 5.8, 5.9 and 5.10) showing the evolution of the different parameters in
a single day in December and illustrating the decisions taken by the power manager for each time
slot. As can be seen in figure 5.8a, the predicted energy P̂H(n) remains lower than the predicted
energy P̂C(n) throughout the day. For that reason, the power manager never takes the decision to
switch to PV (PH decision remains at level 0). When a battery is used (figure 5.8b), we can see
that the power management switches to PV on some time slots during the day (for example from
11 to 12 in the morning and 1 p.m to 5 p.m). During these time slots, the harvested energy and the
energy stored in the battery seem to be enough to cover the consumed energy. However, among
these 5 time slots where the power manager switched to the PV, the decision taken at 4pm was
incorrect. As can be seen in figure 5.8b, during this time slot (from 4pm to 5pm), the predicted
consumed energy P̂C(n) is lower than the predicted harvested energy added to the energy stored

96



5.4 Results and Discussion

Table 5.5 – Results obtained for config.3

System capacity 8 Kw
Without Batteries With Batteries

Total monthly consumption 1015.132 kwh 1015.132 kwh
Total PV production 358.660 kwh 358.660 kwh
Self Consumption 125.221 kwh 358.321 kwh

Total fed to the grid 233.439 kwh 0 kwh
Total bought from the grid 889.911 kwh 656.8164 kwh

Self consumption rate 34.913% 99.905%
Self sufficiency rate 12.3355% 35.2979%
Good Décision PH 97 251
Bad Décision PH 14 27

Good Décision Grid 622 435
Bad Décision Grid 10 30
Blackout error rate 12.6% 9.7%

Area (m2) 40 40

in the battery (P̂H(n) + SoC(t)). Predictions were therefore too optimistic for this time slot, as
the real energy PC is actually greater than the PH(n) + SoC(t). In consequence, a bad decision is
raised.

In Figures 5.9 and 5.10, the amount of harvested energy increases with the PV size. In
consequence, bad decision PH does not occur throughout the day, meaning that all decisions
taken by the power manager are correct. We can observe that, despite the number of PH decision
increases with the PV size, the blackout error rate decreases. When the battery is used, the blackout
error rate is even more decreased compared to the case a battery is not used. This impact of the
battery on the blackout error rate will be discussed in the next section.

After varying the size of PV for a battery capacity of 20kWh, we then reduced the battery
size from 20kWh to 10kWh. Tables 5.6, 5.7 and 5.8 show the results obtained in this case. As can
be seen, the results of tables 5.6 and 5.7 are the same as those of tables 5.3 and 5.4. Indeed, as
the simulations take place in winter conditions with low sunshine (in December), the battery size
has only an impact when the PV sizes are larger as the case of table 5.8. When the PV size is
increased, the energy that can be stored in the battery (and used later) increases as well. For small
PV sizes, it is not possible to saturate the battery capacity, and explains that the same results are
obtained in tables 5.3, 5.4, 5.6 and 5.7, as well as the variation observed with table 5.8 compared
to table 5.5.

Summer condition (July)

To simulate summer conditions, so less energy consumed and a lot of harvested energy, the
energy manager was evaluated for the month of July. Tables 5.9, 5.10 and 5.11 are the simulation
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Table 5.6 – Results obtained for config.13

System capacity 2 Kw
Without Batteries With Batteries

Total monthly consumption 1015.132 kwh 1015.132 kwh
Total PV production 89.665 kwh 89.665 kwh
Self Consumption 5.505 kwh 89.44 kwh

Total fed to the grid 84.159 kwh 0 kwh
Total bought from the grid 1009.627 kwh 925.69 kwh

Self consumption rate 6.1399% 99.752%
Self sufficiency rate 0.542% 8.81%
Good Décision PH 9 89
Bad Décision PH 3 22

Good Décision Grid 719 599
Bad Décision Grid 12 33
Blackout error rate 25% 19.81%

Area (m2) 10 10

Table 5.7 – Results obtained for config.14

System capacity 4 Kw
Without Batteries With Batteries

Total monthly consumption 1015.132 kwh 1015.132 kwh
Total PV production 179.330 kwh 179.330 kwh
Self Consumption 43.685 kwh 178.756 kwh

Total fed to the grid 135.645 kwh 0 kwh
Total bought from the grid 971.447 kwh 836.376 kwh

Self consumption rate 24.360% 99.68%
Self sufficiency rate 4.303% 17.609%
Good Décision PH 41 157
Bad Décision PH 11 21

Good Décision Grid 673 532
Bad Décision Grid 18 33
Blackout error rate 21.15% 11.79%

Area (m2) 20 20

results obtained in summer (July) for a household located in Nice. As can be seen, for a PV
size of 4 or 8 kWp, the harvested energy (total PV production) is greater than the total monthly
consumption. As the harvested energy is important, the self-consumed energy is also much more
significant even though the battery is not used because the PV system produces enough energy to
cover the energy load. The remaining harvested energy is considered as a surplus and is fed into
the grid.

When the battery is used, the self-consumption increases significantly because the harvested
energy can be stored in the battery, so that it can be used when there is enough energy to cover the
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Table 5.8 – Results obtained for config.15

System capacity 8 Kw
Without Batteries With Batteries

Total monthly consumption 1015.132 kwh 1015.132 kwh
Total PV production 358.660 kwh 358.660 kwh
Self Consumption 125.221 kwh 336.18384 kwh

Total fed to the grid 233.439 kwh 22.1377 kwh
Total bought from the grid 889.911 kwh 678.9541 kwh

Self consumption rate 34.913% 93.73307%
Self sufficiency rate 12.3355% 33.1172%
Good Décision PH 97 239
Bad Décision PH 14 22

Good Décision Grid 622 453
Bad Décision Grid 10 29
Blackout error rate 12.6% 9.7%

Area (m2) 40 40

Table 5.9 – Results obtained for config.4

System capacity 2 Kw
Without Batteries With Batteries

Total monthly consumption 459.952 kwh 459.952 kwh
Total PV production 330.199 kwh 330.199 kwh
Self Consumption 111.306 kwh 329.803 kwh

Total fed to the grid 218.892 kwh 0 kwh
Total bought from the grid 348.645 kwh 130.1486 kwh

Self consumption rate 33.708% 99.88%
Self sufficiency rate 24.199% 71.7038%
Good Décision PH 185 552
Bad Décision PH 30 14

Good Décision Grid 470 131
Bad Décision Grid 58 46
Blackout error rate 13.9% 2.5%

Area (m2) 10 10

energy load. This is the reason why zero energy is fed into the grid for a PV size of 2kWp (table 5.9).
We also note a decrease in energy demand bought from the grid for both cases (with or without
battery) compared to the results obtained in December (tables 5.3, 5.4 and 5.5). As there is a
strong energy production during the month of July, the power manager frequently switches to PV.
The results obtained in tables 5.9, 5.10 and 5.11 also show an increase in the self-sufficiency rate
compared to December (tables 5.3, 5.4 and 5.5). The self-sufficiency rate SSR tends to saturate
when the PV size increases. This information can be used to determine if the system is over-sized.
On the other hand, the self-consumption rate SCR tends to decrease when the PV size increases
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(tables 5.9, 5.10 and 5.11). Despite the harvested energy increases significantly with the PV size,
the self-consumed energy decreases compared to the energy produced.

Table 5.10 – Results obtained for config.5

System capacity 4 Kw
Without Batteries With Batteries

Total monthly consumption 459.952 kwh 459.952 kwh
Total PV production 660.399 kwh 660.399 kwh
Self Consumption 185.912 kwh 450.339 kwh

Total fed to the grid 474.4865 kwh 201.421 kwh
Total bought from the grid 274.039 kwh 9.612 kwh

Self consumption rate 28.151% 68.192%
Self sufficiency rate 40.420% 97.910%
Good Décision PH 301 729
Bad Décision PH 17 1

Good Décision Grid 399 12
Bad Décision Grid 26 1
Blackout error rate 5.3% 0.137%

Area (m2) 20 20

Table 5.11 – Results obtained for config.6

System capacity 8 Kw
Without Batteries With Batteries

Total monthly consumption 459.952 kwh 459.952 kwh
Total PV production 1320.7986 kwh 1320.7986 kwh
Self Consumption 230.773 kwh 452.033 kwh

Total fed to the grid 1090.024 kwh 858.790 kwh
Total bought from the grid 229.1783 kwh 7.919 kwh

Self consumption rate 17.47% 34.224%
Self sufficiency rate 50.173% 98.278%
Good Décision PH 355 732
Bad Décision PH 13 1

Good Décision Grid 350 10
Bad Décision Grid 25 0
Blackout error rate 3.5% 0.136%

Area (m2) 40 40
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(a)

(b)

Figure 5.11 – Energy flows of a residential : Grid-PV Connected without (a) and with battery
system for one day of July (b) (PV system size 2 kWp, battery size 20 kWh, annual load demand
9 MWh
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(a)

(b)

Figure 5.12 – Energy flows of a residential : Grid-PV Connected without (a) and with battery
system for one day of July (b) (PV system size 4 kWp, battery size 20 kWh, annual load demand
9 MWh
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(a)

(b)

Figure 5.13 – Energy flows of a residential : Grid-PV Connected without (a) and with battery
system for one day of July (b) (PV system size 8 kWp, battery size 20 kWh, annual load demand
9 MWh

In order to analyze the decisions taken by the power manager in tables 5.9, 5.10 and 5.11,
figures 5.11, 5.12 and 5.13 show the results obtained on a single day in July. As can be seen in
figure 5.11a, the power management has switched 5 times to PV with a Bad decision PH at the
slot time from 4 p.m to 5 p.m. As noticed in section 5.3.3, the power manager takes the decision
to switch to PV because the predicted harvested energy P̂H(n) was greater than the predicted
consumed energy P̂C(n) at time t. When the battery is used, the power manager switches 10 times
on the PV without any Bad Decision throughout the day. This shows that using a battery improves
the decision-making of the power manager. We also notice that the battery SoC reached during
July is much more higher when compared to the month of December (figures 5.8, 5.9 and 5.10). In
Figures 5.12 and 5.13 we can even observe that the battery reaches its maximum capacity (i.e. its
saturation level). This battery saturation can be explained by the fact that the household profile
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used in this study exhibits a decrease in energy demand during the month of july. This is likely
because the occupants are on vacation during that period.

Table 5.12 – Results obtained for config.16

System capacity 2 Kw
Without Batteries With Batteries

Total monthly consumption 459.952 kwh 459.952 kwh
Total PV production 330.199 kwh 330.199 kwh
Self Consumption 111.306 kwh 322.83977 kwh

Total fed to the grid 218.892 kwh 6.94037 kwh
Total bought from the grid 348.645 kwh 137.1123 kwh

Self consumption rate 33.708% 97.7710%
Self sufficiency rate 24.199% 70.1898%
Good Décision PH 185 543
Bad Décision PH 30 15

Good Décision Grid 470 140
Bad Décision Grid 58 45
Blackout error rate 13.9% 2.68%

Area (m2) 10 10

Table 5.13 – Results obtained for config.17

System capacity 4 Kw
Without Batteries With Batteries

Total monthly consumption 459.952 kwh 459.952 kwh
Total PV production 660.399 kwh 660.399 kwh
Self Consumption 185.912 kwh 406.7182 kwh

Total fed to the grid 474.4865 kwh 252.7231 kwh
Total bought from the grid 274.039 kwh 53.2338 kwh

Self consumption rate 28.151% 61.5867%
Self sufficiency rate 40.420% 88.42621%
Good Décision PH 301 662
Bad Décision PH 17 6

Good Décision Grid 399 48
Bad Décision Grid 26 27
Blackout error rate 5.3% 0.89%

Area (m2) 20 20

Tables 5.12, 5.13 and 5.14 show the results obtained when the battery capacity is reduced from
20kWh to 10kWh. As can be seen, the results slightly differ from those obtained in tables 5.9, 5.10
and 5.11. As the simulations take place during a month of strong sunshine (July), it is expected that
the performance will decrease with a 10kWh battery as can be seen in the tables 5.12, 5.13 and 5.14.
If the battery is reduced, the battery saturation level is reached more quickly and the energy fed
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5.4 Results and Discussion

Table 5.14 – Results obtained for config.18

System capacity 8 Kw
Without Batteries With Batteries

Total monthly consumption 459.952 kwh 459.952 kwh
Total PV production 1320.7986 kwh 1320.7986 kwh
Self Consumption 230.773 kwh 427.5020 kwh

Total fed to the grid 1090.024 kwh 891.001 kwh
Total bought from the grid 229.1783 kwh 32.4501 kwh

Self consumption rate 17.47% 32.3669%
Self sufficiency rate 50.173% 92.9448%
Good Décision PH 355 694
Bad Décision PH 13 3

Good Décision Grid 350 35
Bad Décision Grid 25 11
Blackout error rate 3.5% 0.43%

Area (m2) 40 40

into the grid increases. In the meantime, the energy bought from the grid is also increased when
the battery size is reduced by 2 (from 20kWh to 10kWh).

5.4.3 Household located in North of France (Paris)

Winter condition (December)

Tables 5.15, 5.16 and 5.17 are the simulation results obtained for a household located in Paris
during winter conditions (December). As can be seen, the harvested energy (total PV production)
in December is less than the total monthly consumption. This is due to the weather conditions
used in the simulation (December). As the harvested energy is low compared to Nice for the month
of December, the self-consumed energy is also much lower when the battery is not used. We can
observe a slight increase in this self-consumed energy when the battery is used. This is due to the
fact that the harvested energy is stored in the battery when the power management switches to
the Grid. This stored energy will then be used when there is enough energy to cover the energy
load, which justifies zero energy injected into the grid as shown in tables 5.15, 5.16 and 5.17.

We can also observe that the self-sufficiency rate doubles every time the PV size is doubled
when the battery is used. On the other hand, the self-consumption rate tends to saturate when
the PV size increases. Th reason is that the defined strategy consists in recharging the battery
rather than selling the surplus energy produced by the PV system when the battery is not full.

In order to analyze the decisions taken by the power manager in tables 5.15, 5.16 and 5.17,
figures 5.14, 5.15 and 5.16 show the results obtained during a single day in December. As can be
seen in figure 5.14a, the predicted harvested energy P̂H remains lower than the predicted consumed
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5.4 Results and Discussion

Table 5.15 – Results obtained for config.7

System capacity 2 Kw
Without Batteries With Batteries

Total monthly consumption 1015.132 kwh 1015.132 kwh
Total PV production 37.868 kwh 37.868 kwh
Self Consumption 0.576 kwh 36.654 kwh

Total fed to the grid 37.291 kwh 0 kwh
Total bought from the grid 1014.556 kwh 978.47 kwh

Self consumption rate 1.521% 96.79%
Self sufficiency rate 0.0567% 3.610%
Good Décision PH 2 48
Bad Décision PH 0 13

Good Décision Grid 740 644
Bad Décision Grid 1 38
Blackout error rate 0% 21.3%

Area (m2) 10 10

Table 5.16 – Results obtained for config.8

System capacity 4 Kw
Without Batteries With Batteries

Total monthly consumption 1015.132 kwh 1015.132 kwh
Total PV production 75.736 kwh 75.736 kwh
Self Consumption 2.763 kwh 75.228 kwh

Total fed to the grid 72.972 kwh 0 kwh
Total bought from the grid 1012.369 kwh 939.904 kwh

Self consumption rate 3.649% 99.32%
Self sufficiency rate 0.272% 7.410%
Good Décision PH 5 71
Bad Décision PH 1 22

Good Décision Grid 731 616
Bad Décision Grid 6 34
Blackout error rate 16.6% 23.6%

Area (m2) 20 20

energy P̂C throughout the day. For this reason, the power manager does not take the decision to
switch to PV. PH decision in figure 5.14a remains therefore at level 0. If the battery is used
(figure 5.14b), we can see that the power manager switches to PV for three time slots during the
day (from 12h to 13h and 14h to 16h). These decisions are correct since there is no Bad Decision
PH. In figure 5.15b, a Bad Decision PH has been taken by the power manager at 4p.m.

Tables 5.18, 5.19 and 5.20 show the results obtained when the battery is set at 10kWh instead
of 20kWh. As can be seen, the results are the same as those of tables 5.14, 5.15 and 5.16. This
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5.4 Results and Discussion

Table 5.17 – Results obtained for config.9

System capacity 8 Kw
Without Batteries With Batteries

Total monthly consumption 1015.132 kwh 1015.132 kwh
Total PV production 149.363 kwh 149.363 kwh
Self Consumption 26.552 kwh 148.513 kwh

Total fed to the grid 122.811 kwh 0 kwh
Total bought from the grid 988.580 kwh 866.619 kwh

Self consumption rate 17.777% 99.431%
Self sufficiency rate 2.6155% 14.6299%
Good Décision PH 23 127
Bad Décision PH 3 20

Good Décision Grid 696 568
Bad Décision Grid 21 28
Blackout error rate 11.5% 13.6%

Area (m2) 40 40

Table 5.18 – Results obtained for config.19

System capacity 2 Kw
Without Batteries With Batteries

Total monthly consumption 1015.132 kwh 1015.132 kwh
Total PV production 37.868 kwh 37.868 kwh
Self Consumption 0.576 kwh 36.654 kwh

Total fed to the grid 37.291 kwh 0 kwh
Total bought from the grid 1014.556 kwh 978.47 kwh

Self consumption rate 1.521% 96.79%
Self sufficiency rate 0.0567% 3.610%
Good Décision PH 2 48
Bad Décision PH 0 13

Good Décision Grid 740 644
Bad Décision Grid 1 38
Blackout error rate 0% 21.3%

Area (m2) 10 10

results indicates that, in these conditions (i.e. during winter in Paris) a battery size of 10kWh is
enough.
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5.4 Results and Discussion

Table 5.19 – Results obtained for config.20

System capacity 4 Kw
Without Batteries With Batteries

Total monthly consumption 1015.132 kwh 1015.132 kwh
Total PV production 75.736 kwh 75.736 kwh
Self Consumption 2.763 kwh 75.228 kwh

Total fed to the grid 72.972 kwh 0 kwh
Total bought from the grid 1012.369 kwh 939.904 kwh

Self consumption rate 3.649% 99.32%
Self sufficiency rate 0.272% 7.410%
Good Décision PH 5 71
Bad Décision PH 1 22

Good Décision Grid 731 616
Bad Décision Grid 6 34
Blackout error rate 16.6% 23.6%

Area (m2) 20 20

Table 5.20 – Results obtained for config.21

System capacity 8 Kw
Without Batteries With Batteries

Total monthly consumption 1015.132 kwh 1015.132 kwh
Total PV production 149.363 kwh 149.363 kwh
Self Consumption 26.552 kwh 148.513 kwh

Total fed to the grid 122.811 kwh 0 kwh
Total bought from the grid 988.580 kwh 866.619 kwh

Self consumption rate 17.777% 99.431%
Self sufficiency rate 2.6155% 14.6299%
Good Décision PH 23 127
Bad Décision PH 3 20

Good Décision Grid 696 568
Bad Décision Grid 21 28
Blackout error rate 11.5% 13.6%

Area (m2) 40 40
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5.4 Results and Discussion

(a)

(b)

Figure 5.14 – Energy flows of a residential in Paris : Grid-PV Connected without (a) and with
battery system for one day of December (b) (PV system size 2 kWp, battery size 20 kWh, annual
load demand 9 MWh
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5.4 Results and Discussion

(a)

(b)

Figure 5.15 – Energy flows of a residential in Paris : Grid-PV Connected without (a) and with
battery system for one day of December (b) (PV system size 4 kWp, battery size 20 kWh, annual
load demand 9 MWh
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5.4 Results and Discussion

(a)

(b)

Figure 5.16 – Energy flows of a residential in Paris : Grid-PV Connected without (a) and with
battery system for one day of December (b) (PV system size 8 kWp, battery size 20 kWh, annual
load demand 9 MWh

Summer condition (July)

To simulate summer conditions (i.e. less energy consumed and a lot of harvested energy), the
power manager has been evaluated during the month of July. Tables 5.21, 5.22 and 5.23 are the
simulation results obtained for Paris in this condition (i.e. in July). As can be seen, the harvested
energy (total PV production) in July is greater than the total monthly consumption when the PV
size is from 4kWp to 8kWp (as in Nice). As the harvested energy is enough, the self-consumed
energy in this case is also much more important even if the battery is not used. In other words,
the energy produced is enough to cover the energy load. This remaining energy produced will be
considered as a surplus and will be fed into the grid.

In the case the battery is used, the self-consumed energy significantly increases because the
energy produced can be stored in the battery, so that it can be used when there is enough energy
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5.4 Results and Discussion

Table 5.21 – Results obtained for config.10

System capacity 2 Kw
Without Batteries With Batteries

Total monthly consumption 459.952 kwh 459.952 kwh
Total PV production 263.148 kwh 263.148 kwh
Self Consumption 80.852 kwh 262.542 kwh

Total fed to the grid 182.295 kwh 0 kwh
Total bought from the grid 379.099 kwh 197.409 kwh

Self consumption rate 30.725% 99.7698%
Self sufficiency rate 17.578% 57.0804%
Good Décision PH 159 469
Bad Décision PH 20 12

Good Décision Grid 509 181
Bad Décision Grid 55 81
Blackout error rate 11.2% 2.5%

Area (m2) 10 10

Table 5.22 – Results obtained for config.11

System capacity 4 Kw
Without Batteries With Batteries

Total monthly consumption 459.952 kwh 459.952 kwh
Total PV production 526.296 kwh 526.296 kwh
Self Consumption 155.458 kwh 417.7983 kwh

Total fed to the grid 370.8382 kwh 100.2057 kwh
Total bought from the grid 304.494 kwh 42.153 kwh

Self consumption rate 29.538% 79.384%
Self sufficiency rate 33.798% 90.835%
Good Décision PH 260 677
Bad Décision PH 23 1

Good Décision Grid 416 44
Bad Décision Grid 44 21
Blackout error rate 8.1% 0.15%

Area (m2) 20 20

to cover the energy load. This explains that zero energy is fed into the grid for a PV size of 2kWp
(table 5.21).

We also note a decrease in energy demand bought from the grid in both cases (with or without
battery) compared to the results obtained in December. This is due to the fact that the weather
conditions favor a high energy production during July. In that case, the power manager frequently
switches to PV. The results obtained in Tables 5.21, 5.22 and 5.23 also show an increase in the
self-sufficiency rate compared to December. On the other hand, the self-sufficiency rate does not
tend to saturate like the case of Nice. This shows that a location exhibiting less sunshine requires
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5.4 Results and Discussion

Table 5.23 – Results obtained for config.12

System capacity 8 Kw
Without Batteries With Batteries

Total monthly consumption 459.952 kwh 459.952 kwh
Total PV production 1071.203 kwh 1071.203 kwh
Self Consumption 216.429 kwh 455.712 kwh

Total fed to the grid 854.7745 kwh 606.211
Total bought from the grid 243.5227 kwh 4.240 kwh

Self consumption rate 20.204% 42.542%
Self sufficiency rate 47.0547% 99.078%
Good Décision PH 342 736
Bad Décision PH 14 0

Good Décision Grid 354 7
Bad Décision Grid 33 0
Blackout error rate 3.9% 0%

Area (m2) 40 40

a larger battery size. The self-consumption rate tends to decrease with the increase of the PV size
(tables 5.21, 5.22 and 5.23. The reason is that the energy produced significantly increases with the
PV size while the self-consumed energy decreases according to the energy produced.

Table 5.24 – Results obtained for config.22

System capacity 2 Kw
Without Batteries With Batteries

Total monthly consumption 459.952 kwh 459.952 kwh
Total PV production 263.148 kwh 263.148 kwh
Self Consumption 80.852 kwh 262.542 kwh

Total fed to the grid 182.295 kwh 0 kwh
Total bought from the grid 379.099 kwh 197.409 kwh

Self consumption rate 30.725% 99.7698%
Self sufficiency rate 17.578% 57.0804%
Good Décision PH 159 469
Bad Décision PH 20 12

Good Décision Grid 509 181
Bad Décision Grid 55 81
Blackout error rate 11.2% 2.5%

Area (m2) 10 10

Tables 5.24, 5.25 and 5.26 show the results obtained when the battery capacity is set to 10kWh.
As can be seen, these results differ from those obtained in tables 5.21, 5.22 and 5.23 when a 20kWh
battery was used. As the simulations take place in July, it is expected that the performance
decreases when a battery of 10kWh is used. Indeed, with a smaller battery the saturation level
is reached more quickly, and will then increase the energy injected into the grid. In addition, the
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Table 5.25 – Results obtained for config.23

System capacity 4 Kw
Without Batteries With Batteries

Total monthly consumption 459.952 kwh 459.952 kwh
Total PV production 526.296 kwh 526.296 kwh
Self Consumption 155.458 kwh 378.8213 kwh

Total fed to the grid 370.8382 kwh 146.0404 kwh
Total bought from the grid 304.494 kwh 81.1307 kwh

Self consumption rate 29.538% 71.97871%
Self sufficiency rate 33.798% 82.36103%
Good Décision PH 260 629
Bad Décision PH 23 10

Good Décision Grid 416 78
Bad Décision Grid 44 26
Blackout error rate 8.1% 1.56%

Area (m2) 20 20

Table 5.26 – Results obtained for config.24

System capacity 8 Kw
Without Batteries With Batteries

Total monthly consumption 459.952 kwh 459.952 kwh
Total PV production 1071.203 kwh 1071.203 kwh
Self Consumption 216.429 kwh 427.04542 kwh

Total fed to the grid 854.7745 kwh 642.5580
Total bought from the grid 243.5227 kwh 32.9067 kwh

Self consumption rate 20.204% 39.8659%
Self sufficiency rate 47.0547% 92.8456%
Good Décision PH 342 689
Bad Décision PH 14 6

Good Décision Grid 354 35
Bad Décision Grid 33 13
Blackout error rate 3.9% 0.86%

Area (m2) 40 40

energy consumed from the grid is also increased when the battery capacity is reduced by 2 (from
20kWh to 10kWh).

5.4.4 Impact of PV and battery size on blackout Error rate

After evaluating the impact of energy harvesting profiles and battery sizes on self-consumption
rate and self-sufficiency, we analyze the behavior of the power management policies on the blackout
error rate defined in equation 5.10. The lower the blackout error rate, the more efficient the PV
system with or without battery.
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5.4 Results and Discussion

Figure 5.17 – Impact of PV and battery size on blackout error rate during summer conditions
(July) in Nice

Figure 5.18 – Impact of PV and battery size on blackout error rate during summer conditions
(July) in Paris

Figures 5.17 and 5.18 show the blackout error rate obtained in simulation by varying the PV
size (2 to 8kwp) and the battery capacity (0 to 20kwh) in summer condition (i.e. July) but for two
different profiles of harvested energy (i.e. in Nice and Paris). As expected, PV systems equipped
with a battery have less blackout than those without battery. Moreover, there are less blackouts
for large PV systems. However, for a household located in Nice, a battery size of 10 kWh with a
4kWp PV system can be considered as well adapted to cover the energy demand, while it is not
the case for a house in Paris as shown in figure 5.18. These results show that how the household’s
localization impacts the sizing of the PV system.
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5.5 Conclusion

5.5 Conclusion

In this chapter, household power management algorithms have been proposed to evaluate the
self-consumption and optimize the blackouts error rate for a grid-connected PV system, with or
without battery. In both cases, the power manager was simulated for two weather conditions
(December and July). Predicted energy production and load profiles have been used to take
decisions every time slot. The impact of PV and battery size has also been studied.

Based on the results obtained, we can conclude that the self-sufficiency rate strongly depends
on the PV size as well as the battery capacity. However, the self-sufficiency rate makes more sense
for PV systems without a storage system as a saturation is observed for PV systems with an energy
storage system.
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Chapitre 6
Conclusion and Perspectives

6.1 Conclusion

In this thesis work, we focused on smart homes energy management leveraging deep machine
learning techniques and energy harvesting. The objective was first to develop an environment for
collecting a set of relevant information (active power, reactive power, current, etc.) to propose
services related to the management of household power consumption. For that purpose, a
bibliographical study on data collection architectures was performed, with a particular attention
to smart plugs using wireless communication protocols. The state-of-the-art reveals that two main
approaches are used for data collection, either intrusive or non-intrusive.

We first proposed and developed a data collection environment based on an intrusive approach.
Constructing a reliable database using this type of approach is however not a trivial task since
it is required to collect measurements for different types of devices from various models over a
long period. As we did not manage to build a relevant database for our purpose, we decided to
use an existing dataset available online (ACSF1). To improve the identification of the different
devices, a pre-processing technique based on a moving average sliding window has been proposed.
Different supervised learning algorithms such as K-NN, Multilayer Perceptron as well as Random
Forests were implemented to identify an electrical device with a recognition rate higher than
95%. We then also studied the impact of electrical signatures on devices identification. We were
able to demonstrate that only a subset of electrical signatures (i.e. active and reactive power)
can be considered to identify with good accuracy an electrical device. In a second phase, a data
collection environment based on a non-intrusive approach was proposed. This method consists in
measuring the overall power consumption of a household rather than each individual appliance.
A non-intrusive approach thus allows visualizing the global electrical consumption of a house.
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6.2 Perspectives

In order to improve the power management of smart home, predictions are needed. Therefore,
predictions of the global energy consumption based on Deep Learning algorithms have been
proposed in chapter 4. In this study, the Long Short Terms Memory (LSTM) Recurrent
Neural Network algorithm has been used and compared with the ARIMA prediction model.
We proposed a new technique to fill missing values from the original dataset called Same
Time a Day Ago or Next (STDAN). Using this preprocessing technique, our models allowed
us to accurately estimate the power consumption in the short and medium terms, from one
day to one month ahead. Predictions in the short and medium terms are useful to optimize
the sizing of the solar panels and the battery as well as to improve the self-consumption. We
believe that a mixed approach, combining intrusive and non-intrusive techniques, represents a
good compromise to manage the overall energy consumption while controlling some key appliances.

The last chapter of this thesis deals with power management algorithms with the aim at
optimizing the self-consumption while reducing the number of blackouts. To do so, the algorithm
switches between the grid and the energy harvesting system every time slot according to the
predictions of the consumed and harvested energy. Two management policies have been proposed,
one for a house without a battery, and another one when the house is equipped with a battery. The
results obtained in simulations show the impact of the number of solar panels and the capacity of
the battery on the self-consumption and the number of blackouts.

6.2 Perspectives

This thesis work opens several perspectives. The proposed power management policies
presented in the chapter 5 focus so far on switching between the grid and the PV system. It could
be also relevant to add the capability for this power manager to control some key appliances, for
instance to switch them ON/OFF or shifting their activation time on advantageous periods. To do
so, machine learning techniques proposed in chapter 3 for the identification of household devices
could be useful. We can indeed imagine using them to automatically recognize a device plugged
into a connected outlet, but also to determine whether this device is controllable or not. If so, the
power consumption of these devices could be taken into account by our power management policy
to increase the self-consumption.

A mixed approach, combining intrusive and non-intrusive monitoring methods, seems
therefore a promising solution to improve the efficiency of power management policies. This
kind of approach allows inhabitants to be informed about their global energy consumption as
well as the energy consumed by some key appliances. It also offers the possibility to shift some
key controllable devices on periods of time with cheaper energy prices or intervals of energy surplus.
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6.2 Perspectives

So far, simulations of our power management policies have been performed only for one month.
This study needs to be extended with longer periods of time. Simulating scenarios of harvested
and consumed energy over a year or even several years could allow better evaluating the long-term
compromise between the self-consumption and the blackout error rate of our power management
policies. Additionally, only a one-hour time slot has been used so far in our prediction models and
power management policies. It would be interesting to evaluate different time slot intervals, both
for the predictions and the decision-making process. A perspective could be to use different time
slots or even dynamically adapt the time slot duration according to the weather conditions for
instance.

Smart homes will be adopted by population if the cost of the harvesting system (including
a battery) is absorbed by energy savings. This study needs therefore to be extended by taking
account the return on investment (ROI) related to such Grid connected PV systems. The ROI is
of course tightly related to the sizing of the harvesting system.

Another perspective of this work would be to use more recent prediction algorithms (for
the consumed and harvested energy) such as the combination of convolutional neural networks
with LSTM (CONV-LSTM) [Shi et al., 2015] or other variations of LSTM (Gated Recurrent
Unit [Cho et al., 2014], Mode Variational LSTM [Baddar and Ro, 2019]), and to compare these
models in terms of performance and complexity.

In this thesis, only one energy load profile has been considered. Our prediction models as
well as the power management policies need therefore to be validated and generalized with more
diverse energy load profiles, considering for instance households of different size, different number
of occupants, but also more geographical localities. Moreover, more parameters such as indoor
and outdoor temperature, humidity or presence sensor could be considered and evaluated for the
prediction models as well as for the decisions taken by the power management policies.

In the chapter 5, only mono-crystalline PV has been considered since this is currently the type
of PV widely installed in homes. However, thermal solar panels also have some advantages as they
are offering a mixed solar panel system. While mono-crystalline panels can generate energy from
the sun to power a house, thermal panels can be used to produce domestic hot water that can be
later used by a cumulus or to heat the house.

Finally, smart home power management policy can also be envisaged within a community
micro-grid. Micro-grid offers indeed several benefits compared to a single distributed energy
harvesting system per inhabitant. A community micro-grid allows indeed dispatching or sharing
the excess of energy produced by solar panels. By sharing the energy storage device (i.e. the
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6.2 Perspectives

battery), the installation cost could also be reduced, thus optimizing the return on investment for
inhabitants. Community micro-grid seems therefore a key point for the adoption of such system
by the population.
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Annexe A
Dynamical coefficient

In [Ridi et al., 2014] [Ridi Antonio and Jean, 2013], the authors proposed a dynamical
coefficient as data preparation for classification task. A dynamical coefficient has been used to
extract information about the signatures dynamic evolution through the computation of velocity
and acceleration coefficients.

Figure A.1 – Computation of the dynamic coefficients for a synthetic signal. A given n-th sample
value is extended through two new values computed on the delta and delta-delta windows

These two parameters are also called respectively delta and delta-delta coefficients. They are
also able to capture information about transitions between the operating modes of the appliances.
They are commonly used in many fields, as in speech recognition [Hennebert, 1998]. The velocity
coefficient is computed as follows :

∆On =
W∑

w=−W

w ×On−w (A.1)

where W is the window length.
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The acceleration coefficients can be computed from the delta coefficients :

∆∆On = ∆On+1 −∆On−1 (A.2)

The dynamic coefficients need a window of time for their computation, as illustrated in
figure A.1.

Figure A.2 – Example of features active power of a Fridge signature in the ACS-F1 database

The window length (W = 2) has been chosen in their study, which corresponing to a window of
50 seconds after some tests. The feature space has been artificially increment by three times and
delta , delta- delta coefficients has also been added to the observations. The individual sample On

is extended as follows : On = {On, ∆On, ∆∆On}. In figure A.2, the columns represent in the order
the original features, the velocity coefficients and the acceleration coefficients. The velocity and
acceleration coefficients are not present in the ACS-F database. However, given their extensive use
in the classification task, they have been computed and added to the this figure.

Moving average

According to [Wikipedia, 2020] In statistics, a moving average (rolling average or running
average) is a calculation to analyze data points by creating a series of averages of different subsets
of the full data set. It is also called a moving mean (MM)[1] or rolling mean and is a type of finite
impulse response filter.

Given a series of numbers and a fixed subset size, the first element of the moving average is
obtained by taking the average of the initial fixed subset of the number series. Then the subset is
modified by "shifting forward" ; that is, excluding the first number of the series and including the
next value in the subset.It is calculated as follows :

MA(k) = 1
T

T−1∑
n=0

Xn+k (A.3)
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Where T and Xn+k represent the observation window size and the sampling number of an
individual signature for each class, respectively in our case.

Figure A.3 – Moving average algorithm

The moving average function presented in figure A.3 was developped and applied on each
feature and class and a matrix is returned. It is worth to note that the size of the observation
window also has an impact on the recognition accuracy. Our experiments show that a 33-sample
sliding window (corresponding to 5 minutes and 30 sec, i.e. 33 × 10 secs) with an overlapping
window over 32 samples allows obtaining the best accuracy. A moving average is commonly used
with time series data to smooth out short-term fluctuations and highlight longer-term trends or
cycles.
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