
HAL Id: tel-03223942
https://theses.hal.science/tel-03223942

Submitted on 11 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gestion des répliques en fonction de la proximité dans
les plateformes géo-distribuées de fog computing

Ali Jawad Fahs

To cite this version:
Ali Jawad Fahs. Gestion des répliques en fonction de la proximité dans les plateformes géo-distribuées
de fog computing. Other [cs.OH]. Université de Rennes, 2020. English. �NNT : 2020REN1S076�.
�tel-03223942�

https://theses.hal.science/tel-03223942
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par « Ali Jawad FAHS »

« Proximity-Aware Replicas Management
in Geo-Distributed Fog Computing Platforms »

Thèse présentée et soutenue à « Rennes », le « 16 décembre 2020»
Unité de recherche :
Thèse No :

Rapporteurs avant soutenance :

Ivona Brandic Professeure, Vienna University of Technology
Etienne Rivière Professeur, Université catholique de Louvain

Composition du Jury :
Président :
Examinateurs : Ivona Brandic Professeure, Vienna University of Technology

Etienne Rivière Professeur, Université catholique de Louvain
Erik Elmroth Professeur, Umeå University
David Bromberg Professeur, Université de Rennes 1
Shadi Ibrahim Chargé de recherches, Inria

Dir. de thèse : Guillaume Pierre Professeur, Université de Rennes 1

“ Acheive your dreams, but remember when you visit
home taking out the garbage is one of your duties. ”

Jawad Fahs, My Father

ACKNOWLEDGEMENTS

Je tiens à remercier
I would like to thank. my parents..
J’adresse également toute ma reconnaissance à
....

5

RÉSUMÉ

Le Cloud Computing offre aux fournisseurs d’applications des ressources de calcul
abordables et évolutives, du stockage et des services réseau. Traditionnellement, une
platforme de Cloud Computing consiste en un ensemble de quelques data centers
hébergeant un grand nombre de serveurs puissants, ces derniers étant reliés par des
réseaux dédiés. Cette architecture centralisée garantit une faible latence et une bande
passante élevée entre chaque noeud installé dans un data center.

Cependant, dans une telle organisation, l’utilisateur final doit soumettre ses
requêtes par le biais d’une connexion internet longue distance pour atteindre les
ressources applicatives dans le cloud. Par conséquent, la requête de l’utilisateur peut
être impactée par une latence réseau plus élevée et une bande passante limitée. De
nombreuses applications peuvent tolérer une latence élevée et fonctionner
correctement dans ces conditions. Cependant, de nouvelles applications réclamant
des latences très faibles imposent que leurs requêtes soit traitées dans un temps très
court. Ce type de requêtes doit nécéssairement être traité localement plutôt qu’à
distance dans le cloud.

Les limitations du cloud computing ont favorisé la création de plates-formes de Fog
Computing pour faire le lien entre le cloud et l’utilisateur final. Le Fog répond à ce
problème par l’ajout de ressources localisées à proximité des utilisateurs finaux. Ces
ressources sont limitées en capacité, mais elles permettent de fournir aux applications
sensibles à la latence de courts chemins réseau entre les utilisateurs et les ressources fog.
Dans le même temps, les data centers dans le cloud peuvent offrir une vaste réserve de
ressources pour les applications réclamant de grandes puissances de calcul.

Localiser toutes les ressources du Fog au même endroit est souvent insuffisant pour
garantir à tous les utilisateurs connectés un accès rapide aux ressources. Par conséquent,
le Fog Computing est conçu de manière géo-distribuée où les noeuds de calcul sont
éparpillés dans la zone de couverture. Il en va de même pour les instances applicatives,
où l’accès à une instance d’application en bordure de réseau peut réduire la latence
perçue par l’utilisateur. Ainsi, les applications situées dans une plate-forme Fog sont

7

organisées comme un ensemble de répliques fonctionnellement équivalentes et placées
de façon à satisfaire au mieux les demandes des utilisateurs.

Sachant que le principal objectif du Fog computing est de garantir une faible latence
d’accès, il est indispensable de pouvoir maîtriser la proximité entre les utilisateurs et
les répliques des applications. Créer un moteur d’orchestration capable de gérer cette
proximité requiert l’exploitation de données relatives à la proximité entre les noeuds.
Cela impose également de concevoir des algorithmes à tous les niveaux de gestion des
ressources où une décision doit être prise concernant la latence entre l’utilisateur et la
ressource.

Nous pouvons résumer les niveaux de gestion de ressources en l’exploitation de
proximité lors du routage de requêtes, le placement et replacement de répliques
d’application, et le contrôle dynamique du nombre des répliques.

La première étape consiste à router les requêtes de l’utilisateur vers l’une des
répliques de l’application. Le routage avec connaissance de proximité, dans ce cas,
doit router les requêtes vers des répliques proches tout en maintenant un équilibre de
charge parmi celles-ci.

Cependant, pour respecter les contraintes de latence définies par les applications, il
faut quedes répliques suffisamment proches existent. En conséquence, le placement des
répliques doit être également basé sur l’emplacement des utilisateurs. Le caractère non-
stationnaire des charges du Fog Computing nécessite en outre de résoudre le problème
du placement de répliques de manière dynamique.

Lorsque l’application fait face à une charge de requêtes variable, les ressources de
l’application peuvent également se retrouver en surcharge. Dans ce cas, l’application
doit s’adapter pour offrir à tous les utilisateurs une qualité de service satisfaisante.
Outre la nécessité d’un routage et d’un placement avec connaissance de proximité,
cela nécessite une mise à l’échelle automatique avec également connaissance de la
proximité. La mise à l’échelle automatique doit être capable de détecter les surcharges
et les emplacements d’où proviennent cette charge de sorte que les nouvelles
répliques soient placées à proximité des nouvelles sources de trafic.

Cette thèse propose un ensemble complet d’algorithmes qui constituent une plate-
forme de Fog Computing avec tous les outils de gestion de la proximité nécessaires. Nos
contributions visent chaque niveau de la gestion de ressources discutée jusqu’ici. En
guise de preuve de concept, ces travaux ont été implémentés au dessus de Kubernetes,
et ont été évalués sur une plate forme expérimentale réelle.

8

Première contribution : Proximity-Aware Routing

La première contribution appelée “Proxy-mity” est un système de routage avec
prise en compte de proximité pour les plates-formes de Fog Computing. Il s’intègre de
manière transparente à Kubernetes, et fournit un mécanisme de contrôle simple qui
permet aux administrateurs système pour choisir le meilleur compromis entre la
latence utilisateur et l’équilibre de charge entre les répliques. Les résultats des
expérimentations montrent que Proxy-mity peut réduire la latence moyenne entre les
utilisateurs et les répliques jusqu’à 90%, tout en permettant aux administrateurs
système de contrôler le déséquilibre de la charge de leurs systèmes.

Deuxième contribution : Tail-Latency-Aware Fog Application Replica Placement

Router toutes les requêtes utilisateur vers une réplique proche de cet utilisateur est
possible seulement dans le cas où une réplique proche existe effectivement. Cela
nécessite de la plate-forme de Fog Computing qu’elle positionne les répliques sur des
ressources disponibles en fonction de leur proximité des sources de trafic.

Pour traiter ce problème de placement de répliques, nous proposons “Hona,” un
ordonnanceur tenant compte de la latence intégré au moteur d’orchestration de
Kubernetes. Hona maintient une vue à grain fin des volumes de trafic générés à
différents emplacements des utilisateur. Cet algorithme utilise une heuristique pour
identifier les meilleurs placements des répliques. Il met également à jour ces
placements dynamiquement en fonction des évolutions du trafic généré par les
utilisateurs. Les résultats de nos évaluations montrent que Hona identifie
efficacement un placement des instances, ce qui réduit de manière significative les
derniers percentiles de la latence. Dans le même temps, cet algorithme conserve une
complexité de calcul basse et maintient un équilibre de charge raisonnable entre les
répliques.

Troisième Contribution : Tail-Latency-Aware Fog Application Replicas Autoscaler

Tout nombre fixe de répliques peut faire face à une saturation des ressources dans
le cas d’une forte augmentation de la charge. Inversement, lorsque la charge baisse
cela peut engendrer un gaspillage de resources inutilisées. Par conséquent, le nombre
de répliques doit être contrôlé dynamiquement pour assurer des performances
satisfaisantes à un prix raisonnable.

9

Nous proposons “Voila,” un algorithme de mise à l’échelle intégré au moteur
d’orchestration de Kubernetes. Voilà utilise Proxi-mity pour router les requêtes et
Hona pour surveiller le volume de trafic ainsi que leurs provenances. Il utilise une
heuristique pour prendre les décision de placement des réplications et choisir le
nombre de répliques. Nos évaluations basées sur un cluster de 22 noeuds ainsi que
des données réelles de trafic montrent que Voilà assure que 98% des requêtes sont
routées vers une réplique proche et non surchargée. Cette solution montre également
de bons résultats en passant à l’échelle sur des sytèmes de taille plus importante.

10

ABSTRACT

Cloud computing offers application providers scalable and affordable computing,
storage, and networking resources. A cloud computing platform typically consists of a
small number of data centers that host a huge number of powerful servers connected
using dedicated network links. This centralized architecture ensures a low-latency and
high-bandwidth connectivity between the co-located nodes.

However, in this organization, end users must submit their requests over
long-distance Internet links to reach the application resources hosted in the cloud. As
a result, the end-users requests may suffer from high network latency and limited
bandwidth. Many applications tolerate high latency and operate well within these
conditions. On the other hand, a family of emerging latency-sensitive applications
requires their requests to be returned within tight latency bounds. Such requests must
be processed locally rather than in a remote cloud.

The drawbacks introduced by cloud computing have motivated the creation of fog
computing platforms to bridge the gap between the cloud and its end users. The fog is
an extension of cloud data centers with additional resources located in the end-users
vicinity. These resources are limited in capacity, but they provide latency-sensitive
applications low user-to-resource network latency. Meanwhile, the cloud data centers
offer a vast resource pool that can serve compute-intensive applications.

Placing all the fog resources in a single location is often insufficient to provide all
the connected users with nearby resources. Consequently, fog computing is designed
as a geo-distributed platform where the computing nodes are scattered across the
coverage area. The same can be said for the application instances, as providing a
single application instance at the edge of the network may as well result in high
user-perceived latency. As a result, the applications in a fog platform are typically
organized as a set of functionally-identical replicas placed in well-chosen locations.

Since delivering low latency is one of the main objectives of fog computing,
proximity-awareness is an essential feature that must be implemented in fog
computing platforms. The creation of a proximity-aware fog orchestration engine
requires one to exploit information about the inter-node proximity, and to design

11

algorithms in the different levels of resource management that make decisions based
on user-to-resource latency.

We can summarize the proximity-aware resource management levels as request
routing, application replicas placement and re-placement, and autoscaling of the size
of the replica set.

The first step is routing the requests from the end users to one of the application
replicas. Proximity-aware routing, in this case, should route requests toward nearby
replicas while maintaining an acceptable load balance between them.

However, respecting the latency bounds defined by the applications requires the
existence of replicas reachable by the users within those bounds. As a result, placing
the replicas should also be done based on the location of the users. The non-stationary
nature of fog computing workloads requires one to solve the placement problem in a
dynamic fashion.

When the application is facing a surge in load, the application’s resources may
become overloaded. In this case, the application should scale to offer all the users an
excellent quality of experience. This requires not only a proximity-aware request
routing and replicas placement, but also a proximity-aware autoscaler. The autoscaler
should be capable of detecting the surge in load and the location from which this load
is emitted such that new replicas are placed next to the new sources of traffic.

This thesis proposes a complete set of algorithms that provide fog computing
platforms with the necessary proximity-awareness. Our contributions target every
level in the discussed resource management levels. The contributions are
implemented on top of Kubernetes as a proof of concept and evaluated using a
realistic testbed.

First contribution: Proximity-Aware Request Routing

The first contribution is Proxy-mity, a proximity-aware traffic routing system for
distributed fog computing platforms. It seamlessly integrates with Kubernetes, and
provides very simple control mechanisms to allow system administrators to address
the necessary trade-off between reducing the user-to-replica latencies and balancing
the load across replicas. The evaluation shows that Proxy-mity can reduce the average
user-to-replica latency by as much as 90% while allowing the system administrators to
control the level of load imbalance in their system.

12

Second contribution: Tail-Latency-Aware Fog Application Replica Placement

Routing every user request to a nearby replica is possible only in case a nearby
replica exists. This requires the fog platform to place replicas in available resources
according to their proximity from the sources of traffic.

To address the replica placement problem, we propose Hona, a latency-aware
scheduler integrated into the Kubernetes orchestration system. Hona maintains a
fine-grained view of the volumes of traffic generated from different user locations. It
then uses simple yet highly-effective heuristics to identify suitable replica placements
and to dynamically update these placements upon any evolution of user-generated
traffic. Our evaluations show that Hona efficiently identifies instance placements
which significantly reduce the tail latency. At the same time, it keeps its own
computation complexity low and maintains reasonable load balancing between the
replicas.

Third contribution: Tail-Latency-Aware Fog Application Replicas Autoscaler

Any fixed number of replicas may reach over-saturation in the case of a load surge.
Conversely, it may also waste valuable resources when the load drops. Therefore, the
size of a replica set should be controlled dynamically to ensure optimal performance at
a reasonable cost.

We propose Voilà, a tail-latency-aware autoscaler integrated into the Kubernetes
orchestration system. Voilà uses Proxy-mity to route requests and Hona periodic
checks to monitor the traffic volumes and their locations. It then implements
heuristics to make decisions on the replicas placement and size of the replica set. The
evaluations based on a 22-nodes cluster and a real traffic trace show that Voilà
guarantees 98% of the requests are routed toward a nearby and non-overloaded
replica. The system also scales well to much larger system sizes.

13

TABLE OF CONTENTS

1 Introduction 23
1.1 Contributions . 28
1.2 Published papers . 31
1.3 Organization of the thesis . 32

2 Background 35
2.1 Cloud computing . 35

2.1.1 Cloud architecture . 35
2.1.2 Cloud limitations and the emergence of fog computing 37

2.2 Fog computing . 38
2.2.1 Fog applications . 40
2.2.2 Fog architecture . 41
2.2.3 Challenges of fog computing . 43

2.3 Kubernetes . 44
2.3.1 Why Kubernetes? . 45
2.3.2 Application model . 46
2.3.3 Pod scheduling . 48
2.3.4 Resource discovery . 48

2.4 Network Proximity . 49
2.4.1 Latency estimation and Vivaldi coordinates 52
2.4.2 Optimizing the mean or the tail latency 54
2.4.3 Non-stationary traffic properties 55

2.5 A complete fog computing architecture 56
2.5.1 Network model . 56
2.5.2 Replicated service-oriented applications in Kubernetes 58

3 State of the art 61
3.1 Workload routing . 63

3.1.1 Task offloading . 63

15

TABLE OF CONTENTS

3.1.2 Request routing . 64
3.2 Placement and re-placement . 66
3.3 Autoscaling . 68
3.4 Conclusion . 69

4 Proximity-aware request routing 71
4.1 Introduction . 72
4.2 System design . 73

4.2.1 Architecture . 73
4.2.2 Measuring proximity . 75
4.2.3 Weight calculation . 75
4.2.4 Updated routes injection . 77

4.3 Evaluation . 80
4.3.1 Experimental setup . 80
4.3.2 Performance overhead . 81
4.3.3 Service access latency . 82
4.3.4 Load distribution . 85
4.3.5 Load (im)balance in the presence of multiple senders 86

4.4 Conclusion . 88

5 Tail-latency-aware placement/re-placement 89
5.1 Introduction . 90
5.2 System design . 91

5.2.1 System model . 92
5.2.2 System monitoring . 93
5.2.3 Initial replica placement . 94
5.2.4 Replica re-placement . 97
5.2.5 Implementation . 99

5.3 Evaluation . 100
5.3.1 Initial replica placement . 101
5.3.2 Replica re-placement . 104
5.3.3 Computational complexity . 108

5.4 Conclusion . 109

16

TABLE OF CONTENTS

6 Tail-latency-aware autoscaling 111
6.1 Introduction . 112
6.2 System Design . 113

6.2.1 System model and monitoring . 113
6.2.2 Replica placement quality evaluation 115
6.2.3 Initial replica placement . 117
6.2.4 Replacement and autoscaling . 118

6.3 Evaluation . 123
6.3.1 Experimental setup . 123
6.3.2 Hona performance compared to Voilà 124
6.3.3 Autoscaling behavior . 125
6.3.4 Scaling up before saturation violations take place 126
6.3.5 Sensitivity analysis . 127
6.3.6 Scalability . 129

6.4 Conclusion . 130

7 Conclusion 131

Conclusion 131
7.1 Summary . 131
7.2 Future directions . 133

7.2.1 Extending the fog with spare nodes 133
7.2.2 Fog federations . 134
7.2.3 Fog node heterogeneity . 135
7.2.4 Fog resource management for microservices 136

7.3 Closing statement . 137

Bibliography 139

17

LIST OF FIGURES

1.1 Our contributions in the abstract layers of resource management. 30

2.1 A map of Google cloud data centers. 36
2.2 Cloud computing architecture. 37
2.3 Fog computing architecture. 38
2.4 Organization of a Kubernetes service. “Service X” forwards requests

towards three pods located in three different nodes, whereas “Service
Y” serves only one pod. 46

2.5 Gateway node and serving nodes. 48
2.6 Kubernetes’ scheduling process. 49
2.7 A visual reference of a deployed application and the different layers of

resource management. 51
2.8 Accuracy of Vivaldi latency predictions for a newly joined node in a 12-

node cluster. 52
2.9 Optimizing the mean or the tail latency. 54
2.10 Load variation according to time and space. 55
2.11 Routing a request from the end user to the application replica. 57
2.12 The application model in our scope. 58

3.1 Offloading in fog computing. 63
3.2 State of the art. 70

4.1 Architectures of kube-proxy and Proxy-mity. 74
4.2 Iptables chains and load balancing. 78
4.3 Load balancing rules in iptables. 79
4.4 Experimental testbed organization. 81
4.5 CPU and memory usage for Proxy-mity. 83
4.6 Average service access latency. 84
4.7 Load distribution as a function of α and f(l). 86

18

LIST OF FIGURES

4.8 Overall system load imbalance as a function of α and the number of
senders. 87

5.1 Execution of a node re-placement operation. 100
5.2 Hona’s architecture. 101
5.3 Selected European cities and some examples of network latencies

between them. 102
5.4 Initial replica placement analysis (testbed, n = 21). 103
5.5 Individual test cases analysis (testbed, n = 21). 104
5.6 Initial replica placement with various system sizes (simulator, r = n/10). 105
5.7 Replica re-placement analysis (testbed, n = 21). 107
5.8 Complexity of the H2 heuristic (simulator). 108

6.1 Voilà system architecture . 115
6.2 A photo of the testbed. 123
6.3 Time needed to compute the objective function for both Hona and Voilà

as a function of the number of nodes. 125
6.4 Autoscaling over a 28-hour workload trace (testbed experiment). 126
6.5 Triggering scale-up early (testbed experiment). 127
6.6 Sensitivity analysis (simulator). 128
6.7 Scalability (simulator). 129

19

LIST OF TABLES

3.1 Literature classification for application placement algorithms. 66

4.1 Inter-node network latencies (in ms). 82
4.2 Proxy-mity evaluation parameters. 83

6.1 Voilà system model’s variables. 114
6.2 Testbed evaluation parameters. 126

20

LIST OF ABBREVIATIONS

AI Artificial Intelligence

AR Augmented Reality

DNAT Destination Network Address Translation

DNS Domain Name System

F-RAN Fog Radio Access Network

IoT Internet of Things

ISP Internet Service Providers

K8s Kubernetes

MCC Mobile Cloud Computing

MEC Mobile Edge Computing

OSI Open Systems Interconnection

QoE Quality-of-experience

QoS Quality of Service

RAN Radio Access Network

SOA Service-Oriented Architecture

VANET Vehicular Ad hoc NETworks

VM Virtual Machine

VR Virtual Reality

WAN Wide Area Network

21

Chapter 1

INTRODUCTION

Cloud computing provides on-demand computing, storage, and networking
resources that liberate the application developers from maintaining traditional IT
servers, and also guarantees them access to resilient, scalable, affordable, and secure
resources. A cloud computing infrastructure typically includes a limited number of
data centers. Each data center is composed of a large number of co-located computing
nodes connected to each other using high-bandwidth/low-latency network links [1].

Cloud applications are designed to exploit the cloud nodes which are their first
building block. Through virtualization, an application is hosted on one or more cloud
nodes where compute, storage, and network resources are granted. The application is
then exposed using an ingress that is configured to provide the application an
externally-reachable address. This allows end users located outside the data center to
communicate with the cloud application resources using the ingress address. As a
result, end users are invited to transmit their load over long-distance Internet links to
be processed in one of the cloud data centers.

This centralized paradigm however induces two drawbacks. First, the end-user
requests often incur high network latency to reach a data center, estimated as 20-40ms
over wired networks, and up to 150ms over 4G mobile networks [2]. Such latency is
acceptable for many applications, but a family of emerging latency-sensitive
applications such as virtual reality and autonomous vehicles require the end-to-end
communication and processing latency to be kept within 10-20ms [3, 4]. In
consequence, these applications’ requests cannot be processed in the cloud and must
instead get handled locally to avoid the high cost of network latency introduced by
remote clouds.

A second limitation of centralized clouds stems from the rise of Internet of Things
(IoT) technologies. IoT applications generate their input data at the edge of the
network, and far from the data centers. The volume of data they produce is steadily
increasing, and it is projected that by 2025, 75 % of all enterprise data will be generated

23

Introduction

far from the data centers [5]. Transferring these data to the cloud before processing
them would place a significant stress on the Internet Service Providers (ISPs) links. An
obvious alternative consists of processing the data where they are produced, and of
sending only the compute-intensive tasks towards the cloud.

These limitations of traditional cloud platforms have motivated the creation of fog
computing to bridge the gap between the cloud and the end users. Fog computing
extends the cloud with additional compute, network, and storage resources located at
the edge of the network. When compared to cloud resources, the edge resources can
range from moderate to small in terms of computing power, but they serve an
essential role in reducing the user-to-resource network latency.

The difference between cloud and fog architectures is not limited to the size of the
resource pool. It also extends to the geographical distribution of nodes and the
network topology between them. A cloud computing infrastructure is organized as a
small number of extremely powerful data centers. For instance, Google’s
infrastructure is composed of 20 data centers that are connected via dedicated
links [6]. In contrast, fog computing aims at delivering ultra-low latency with its end
users not only by placing nodes at the edge of the network, but also by distributing
them across the coverage area (a campus, a city, or possibly even a region or a whole
country). The fog nodes are connected to each other and to the Internet using a
variety of networking protocols such as WiFi, 4G, and Ethernet. The fog resources are
then reachable using access points where the end users connect and transmit load.

One of the fundamental advantages of fog computing is delivering low
user-to-resource network latency. However, the distribution of the nodes places them
next to the end users, but necessarily far away from each other. This combination of
distributed nodes, unconventional network topology, limited resources, and dynamic
workload creates a set of challenges that must be tackled for this concept to see the
light of day.

Moving from cloud computing where all the physical nodes are functionally
equivalent to fog computing where nodes are heterogeneous in terms of their
proximity to the end users, requires one to implement mechanisms to detect this
proximity and to manage resources accordingly. Proximity-awareness is one of the
main features that differentiate the fog from other on-demand resource platforms, and
creating proximity-aware mechanisms enables the fog to deliver on its promises.

24

Introduction

Creating a proximity-aware fog platform is, therefore, a hot research topic. An
application hosted on a fog platform that lacks proximity awareness may not profit
from the availability of ultra-low latency resources and by consequence may result in
a degraded Quality-of-experience (QoE). This can be caused by the absence of
proximity awareness at different levels of the resource management that range from
request routing, application instances placement, and to the size of the reserved
application resource pool.

An end user or a group of end users transmitting load using the same access point
are considered a single source of traffic. The network latency between the sources of
traffic and the chosen application resource varies according to the network link
established between the access point and the fog computing node that holds the
resource. As a result, locating one application instance at the network edge does not
necessarily provide a low-latency access to all of its end users. In consequence, fog
applications are compelled to deploy multiple functionally-equivalent service replicas
in nodes that are adjacent to the sources of traffic. In this case, the purpose of
replication is not only fulfilling availability and processing capacity constraints, but
also providing nearby replicas to all the sources of traffic dispersed across the
coverage area.

This thesis specifically addresses the needs of latency-sensitive service-oriented
applications. This type of application is organized as a set of replicated services
responsible for processing/handling a single type of task. Every request issued toward
one of the services should result in the same outcome regardless of the choice of
replica to process it. The only difference in this case lies in the network latency
between the access point where the end user is connected, and the fog node where the
selected replica is hosted. Service-oriented applications are often elastic in order to
facilitate horizontal scalability [7]. In this thesis, we consider data consistency
between the application replicas as a responsibility handled by the application
provider, and transparent to the fog computing platform itself. We also make the
hypothesis that application replication process requests without issuing queries to
other services.

Choosing the best set of fog nodes where an application should deploy its replicas
requires one to chose a set of replica placements that minimize the network latencies
between end-user devices and their closest application replica. To deliver outstanding
QoE to the end users it is important that every single request gets processed within

25

Introduction

tight latency bounds. We, therefore, follow best practice from commercial content
delivery networks [8] and aim to minimize the tail request latency rather than its mean,
for example, defined as the fraction of requests incurring a latency greater than some
threshold.

Non-stationary load affects applications hosted on various platforms [9]. However,
in geo-distributed fog platforms, this non-stationarity incurs both along the time and
the space dimensions. Unlike online applications where the workload is an
aggregation of all the incoming requests from an unbounded user population, fog
applications have to handle requests according to their origin and their proximity to
the available replicas. The geo-distributed nature of the fog combined with end-users
mobility creates load variations not only as a function of time but also as a function of
the access point locations where end users are connected. As a result, the replica set
size must depend on the workload volume and the locations from which this
workload is transmitted.

Fog computing, like cloud computing, enables a clean separation of concerns.
Developers focus on implementing and improving their applications, while the
infrastructure automates the deployment and management of these applications.
Establishing this separation was made possible mainly by virtualization and
orchestration. In virtualization, the application is encapsulated with all its
dependencies in a virtual instance that facilitates the deployment of the application
regardless of the target environment. For fog platforms, containers and specifically
Docker containers [10] are widely used as the de facto virtualization technology since
they offer a lightweight implementation, quick boot-up, and they can run on very
limited machines. Kubernetes [11], Docker Swarm [12], Apache Mesos [13] are
container orchestration engines that automate the deployment and management of
the containers. Kubernetes (K8s) is considered as the most used container orchestration
engines for fog computing [14]. Portability, flexibility, and lightness are among the
K8s features that make it a potential fog orchestration engine. Yet, Kubernetes was
designed with cluster and cloud environments in mind. It, therefore, lacks some key
features to make it fully suitable in fog environments. For these reasons, we chose to
extend K8s with the fog-specific features it still misses. However we can argue that
our algorithms may be easily adapted to integrate into other container orchestration
engines.

26

Introduction

A fog computing infrastructure requires information about the inter-nodes
proximity and their proximity to the end users. We identify three levels of resource
management where this proximity must be exploited to deliver low user-to-resource
latency:

Request routing: the network latency between an access point and the
application replicas varies according to the network link between the access
point and the node that hosts the replica. Proximity awareness is then essential
to distinguish nearby replicas from far-away ones. Using proximity estimations
as input, the orchestration engine must route each request to a nearby replica
rather than one of the far-away ones, in a way that does not distort the load
balance between the replicas.
Replica placement/re-placement: proximity-aware routing can ensure low
latency only if nearby replicas exist. An access point which is receiving load
without having any nearby replicas where it can route traffic signals a
proximity-unaware replica placement. The main challenge in proximity-aware
replica placement lies in detecting the sources of traffic and finding a placement
that offers each one of them at least one nearby replica. Since the number of
possible replica placements is very large, a heuristic should be implemented to
effectively find a satisfactory solution. A placement is considered a solution if it
can provide a low tail user-to-replica latency. Moreover, any static placement
may provide the promised Quality of Service (QoS) for only a short period of
time before the workload characteristics change. As a result, the placement
should be updated dynamically to cope with the workload variations.
Autoscaling: The number of replicas which should be deployed cannot remain
constant for extended periods of time. First, a surge in traffic may overload the
replicas and may lead to performance degradation. Second, the day/night
patterns in workload distribution show a drop in traffic during nighttime which
may lead to a waste of valuable resources. This is suboptimal in any
multi-tenancy platform, and especially in fog platforms where the edge
resources can be very limited. As a result, the number of replicas and their
placement should change following the workload volume and the locations from
which this non-stationary load is transmitted. Autoscaling ensures that none of
the replicas are overloaded and that the placement and scale are capable of
delivering a low tail latency.

27

Introduction

In this thesis, we propose three contributions to transform a cloud orchestration into a
proximity-aware one, qualified to handle the emerging requirements imposed by the
fog applications. The contributions introduce proximity awareness at every level of the
discussed resource management levels.

1.1 Contributions

1. Proxy-mity: Proximity-Aware Traffic Routing
A geo-distributed system such as a fog computing platform must necessarily
choose a suitable trade-off between resource proximity and load-balancing.
Systems like Mesos [13], Docker Swarm [12] and Kubernetes [11] implement
location-unaware traffic redirection policies which deliver excellent
load-balancing between application replicas, but very suboptimal
user-to-resource network latencies. At the same time, any system which would
route every request to the closest replica would face severe load imbalance
between replicas if some users create more load than the others [15].

In this contribution, we propose Proxy-mity, a proximity-aware request routing
plugin for Kubernetes. Proxy-mity exposes a single easy-to-understand
configuration parameter α which enables system administrators to express their
desired trade-off between load-balancing and proximity. It integrates seamlessly
within Kubernetes and introduces very low overhead.

In our evaluations, Proxy-mity reduces the end-to-end request latencies by up to
90% while allowing the system administrators to control the level of load
imbalance in their system.

2. Hona: Tail-Latency-Aware Fog Application Replica Placement
Proxy-mity can ensure low user-to-resource latency only if nearby replicas are
available. Therefore, proximity awareness should also be considered when
placing application replicas in the vicinity of the end users. However, choosing
which specific resources from a large-scale fog computing infrastructure should
be allocated to place the application instances remains a difficult problem.

We propose Hona, a tail-latency-aware application replica scheduler which
integrates within the Kubernetes container orchestration system. Hona makes

28

Introduction

use of Kubernetes to monitor the system resource availability [11], Vivaldi
coordinates to estimate the network latency between nodes [16] and Proxy-mity
to monitor the traffic sources and to route end-user traffic to nearby instances. It
uses a variety of heuristics to efficiently explore the space of possible instance
placement decisions and select a suitable one upon the initial replica placement.
Finally, it constantly monitors the performance of the current placement and
automatically takes corrective re-placement actions when the characteristics of
the end-user traffic change. The Hona re-placement algorithm is able to maintain
the tail latency under a certain threshold while inducing minimal changes to the
placement.

Our evaluations based on a 22-node testbed show that the multiobjective
heuristics used by Hona identify placements with a tail latency very close to the
theoretic optimal placement, but in a fraction of the computation time, while
preserving an acceptable load distribution between application instances. The
re-placement algorithm efficiently maintains a very low tail latency despite
drastic changes in the request workload or the execution environment. We
further demonstrate the scalability of our algorithms with simulations up to
500 nodes.

3. Voilà: Tail-Latency-Aware Fog Application Replicas Autoscaler
Hona dynamically updates the placement of a fixed-size replica set to achieve
low tail latency. Yet, a surge in traffic may overload the replicas and lead to a
degraded QoE; similarly, a drop in traffic may lead to a waste of valuable
resources. Therefore, fog applications must carefully adjust their deployments so
that they satisfy their QoS objectives while reducing their resource usage as
much as possible. On the other hand, any user-produced workload may largely
vary over time [17], which motivates the need for using an auto-scaler to
dynamically adjust the number and locations of a fog application’s replicas.

We propose Voilà, a tail-latency-aware fog application replica autoscaler for
Kubernetes. Voilà continuously monitors the request workload produced by all
potential traffic sources in the system, and uses efficient algorithms to determine
the number and location of replicas that are necessary to maintain the
application’s QoS within its expected bounds despite potentially large variations
in the request workload characteristics.

29

Introduction

Rasberry Pi TestbedBare metal

Kubernetes etcd / Serf
Resource
Discovery

Proxy-mityRouting

Hona Periodic ChecksMonitoring

Hona Placement
Placement/
Re-placement

Autoscaling

Voilà Placement

Voilà Autoscaling

Hona Stack Voilà Stack

Figure 1.1 – Our contributions in the abstract layers of resource management.

Our evaluations based on a 22-node cluster and a real traffic trace show that Voilà
guarantees 98% of the requests are routed toward a nearby and non-overloaded
replica. The system also scales well to much larger system sizes.

Figure 1.1 shows the resource management layers used in the second and third
contributions. We refer to the monitoring system as Hona periodic checks. This
system extracts the cluster and workload characteristics every period of time, then
makes them accessible to the upper layers. Both Hona and Voilà use Proxy-mity for
routing requests and Hona periodic checks to collect cluster and traffic info. However,
Hona makes decisions on placements of a fixed-size replica set while Voilà has the
capabilities to scale the replica set according to the state of the application workload.
Note that Voilà makes use of Hona periodic checks but replaces Hona’s replica
placement with its own algorithms.

The aggregation of Proxy-mity, Hona periodic checks, and Voilà constitute a
coherent set of plugins that work on top of Kubernetes. These plugins introduce
proximity awareness at different levels of resource management and can arguably
turn Kubernetes into a mature proximity-aware fog platform. We used
Kubernetes-based implementations as a proof of concept. But, in principle, the same
algorithms may also be implemented in other orchestration engines.

30

Introduction

1.2 Published papers

The following papers have been published as part of this thesis:
1. “Proximity-Aware Traffic Routing in Distributed Fog Computing Platforms”, Ali J.

Fahs and Guillaume Pierre, 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID 2019), Larnaca, Cyprus. [18]

2. “Tail-Latency-Aware Fog Application Replica Placement”, Ali J. Fahs and Guillaume
Pierre, 18th International Conference on Service Oriented Computing (ICSOC
2020), Dubai, UAE. [19]

3. “Voilà: Tail-Latency-Aware Fog Application Replicas Autoscaler”, Ali J. Fahs,
Guillaume Pierre, and Erik Elmroth, 28th IEEE International Symposium on the
Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS 2020), Nice, France. [20]

31

Introduction

1.3 Organization of the thesis

This thesis is organized in 6 chapters:
Chapter 2 presents a theoretical and practical overview of fog computing

platforms and the systems used to achieve the thesis’ objectives. In this chapter we
discuss cloud computing and the emergence of fog computing, its architecture,
challenges, and use cases. Then we present a practical overview of the Kubernetes
architecture and highlight the need of network proximity for addressing application
requirements. Finally, we describe the complete fog computing architecture which
constitutes the foundation of this thesis.

Chapter 3 describes the current state of the art according to the different levels of
resource management: workload routing, placement and re-placement, and finally
autoscaling. At the end of this chapter we position our contributions with respect the
current state of the art.

In Chapter 4, we present Proxy-mity, a proximity-aware traffic routing system for
distributed fog computing platforms. It seamlessly integrates in Kubernetes, and
provides very simple control mechanisms to allow system administrators to address
the necessary trade-off between reducing the user-to-replica latencies and balancing
the load equally across replicas. The evaluation shows that Proxy-mity can reduce the
average user-to-replica latencies by as much as 90% while allowing the system
administrators to control the level of load imbalance in their system.

In Chapter 5, we propose Hona, a latency-aware scheduler integrated in the
Kubernetes orchestration system. Hona maintains a fine-grained view about the
volumes of traffic generated from different user locations. It then uses simple yet
highly-effective heuristics to identify suitable replica placements, and to dynamically
update these placements upon any evolution of user-generated traffic. Our
evaluations show that Hona efficiently identifies instance placements which reduce
the tail request latency. At the same time, it keeps computation complexity low and
maintains reasonable load balancing between the replicas.

In Chapter 6, we propose Voilà, a tail-latency-aware auto-scaler integrated in the
Kubernetes orchestration system. Voilà uses Proxy-mity to route requests and Hona
periodic checks to monitor the traffic volumes and their locations. It then implements
heuristics to make decisions on the replicas placement and size of the replica set. The
evaluations based on a 22-nodes cluster and a real traffic trace shows that Voilà

32

Introduction

guarantees 98% of the requests are routed toward a nearby and non-overloaded
replica. The system also scales well to much larger system sizes.

Finally, Chapter 7 presents the conclusions of the thesis and discusses directions for
future work.

33

Chapter 2

BACKGROUND

In this chapter, we present a theoretical and practical overview of fog platforms
and the systems used to achieve the thesis objectives. First, we discuss cloud
computing and how it did not fully satisfy new application requirements. We then
detail fog computing, its architecture, challenges, and use cases. Third, we present a
practical overview of Kubernetes architecture, and its different abstraction layers. The
fourth section highlights the need of network proximity for addressing application
requirements. Finally, we present a complete fog computing architecture which
constitutes the foundation of this thesis.

2.1 Cloud computing

Cloud computing drove a shift in the IT industry from traditional in-house servers
toward cloud-based services. In 2019, Flexera surveyed 786 technical professionals
across a broad cross-section of organizations and found that 94% of respondents use
the cloud one way or another [21]. This can be attributed to a lower cost to obtain
resources, avoiding the maintenance efforts of an in-house server, the scalable
approach clouds present such that an application provider can easily increase or
decrease the utilized resources, and finally minimizing the aftermath of server failures
as the application can be easily spawned over a different server in the same cloud
provider.

2.1.1 Cloud architecture

Cloud servers are typically powerful nodes co-located in huge data centers that are
based in different locations across the globe. Figure 2.1 shows a map of the 20 data
centers of Google [6]. Each of these data centers can hold hundreds of exabytes in

35

Chapter 2 – Background

Location of a Google data center

Figure 2.1 – A map of Google cloud data centers.

disk space. The total number of servers in all the data centers owned by Google was
estimated in 2016 as 2.5 million servers [22].

The location and the size of the data centers follows an economical model that
decreases the cost of operation by concentrating a big number of nodes, and by
targeting locations with lower electricity price [23]. The nodes inside the data centers
are connected via low-latency/high-bandwidth links that handle the ever-rising
internal traffic. Nowadays fiber optics technology is making its way to data centers to
meet this demand [24]. Thus, the inter-node latency within data centers can be
considered negligible.

However, this centralized architecture (illustrated in Figure 2.2) constrains end
users to communicate with the application services over long-distance Internet links.
For a wide range of applications, communicating over the backhaul network does not
affect the user-perceived QoE. For example, storage and web hosting applications can
offer decent performance when deployed on a cloud platform since they can tolerate
relatively long network latencies. In contrast, a new emerging class of latency-sensitive
applications require the response time to be lower than a strict threshold, and will
perform poorly under such conditions.

36

2.1. Cloud computing

B
a
ck
h
au
l

N
et
w
o
rk

Cloud
Data Center

Latency
4
0-150 ms

Figure 2.2 – Cloud computing architecture.

2.1.2 Cloud limitations and the emergence of fog computing

The upsurge in the fields of Artificial Intelligence (AI), autonomous vehicles, and
most prominently IoT have changed the nature of end users. Rather than having
people behind devices transmitting requests to the cloud, it is estimated that by 2025
55% of all the data will be generated by 21.5 billion IoT devices [25] (approximately
63% of all the connected devices [26]). The shift of end users’ nature was combined
with an emergence of new set of IoT applications and other applications like stream
processing and Virtual Reality (VR). Such applications are demanding in terms of
latency and bandwidth.

This growth in the number of connected devices and the introduction of a new
requirements have created new challenges for the cloud architecture:

• Network round trip time: the round-trip time needed for an end user to access
a cloud application is estimated as 40ms for a wired connection and as high as
150ms for a 4G connection [2]. Meanwhile, applications like VR and gaming can
only tolerate end-to-end response times (including network and computatuion
delays) of 20msmaximum [3]. Such low latency cannot be supported even by 5G
where the user-to-Internet latency is reported as 30− 40ms [27, 28].

• Bandwidth: The majority of IoT devices use very little bandwidth, however the
massive number of IoT connected devices can easily congest network links,
specifically those of the Wide Area Network (WAN) [29]. Since the number of
devices is ever increasing, and the technologies that use them is advancing it is
evident that the WAN bandwidth should increase to accommodate them. Yet,

37

Chapter 2 – Background

Ba
c
kh
a
ul

Ne
tw
o
r
k

Cloud
layer

Ac
ce
s
s

Ne
t
wo
r
k

End Users
layer

Edge
layer

L
a
t
ency

1
-
1
0 ms

L
a
t
en
cy

40
-
1
50
 ms

Figure 2.3 – Fog computing architecture.

the improvements in the field of network technology are slow compared to the
growth of Internet traffic produced by the IoT devices.

We can conclude that the drawbacks of cloud platforms are derived from the network
topology, where all the requests have to traverse long and possibly congested routes to
reach the services. In order to address the issues of network latency and bandwidth,
there is a need for a new computing paradigm that provides resources in the vicinity
of the end users, while preserving the advantage of unlimited cloud resources. Fog
computing is not meant to replace the cloud but rather to extend it with additional
resources located closer to the end-user devices [23].

2.2 Fog computing

Fog computing aims to bridge the gap between the cloud and the connected
devices, providing the end users with resources accessible within their near-range
communication links (see Figure 2.3). This approach guarantees a low
user-to-resource latency derived from the fact that the application can be placed in a
near-range resource. In addition, the bandwidth in the fog layer is managed by the fog
platform and does not suffer an ISP bandwidth limitation.

However, the precise definition and standardization of fog computing technologies
remains a hot research topic. In the research community slightly different definitions
have been proposed [30–34]. These definitions share common characteristics and

38

2.2. Fog computing

diverge mainly on the definition of the fog nodes. We can say that most of the
researchers in fog computing will agree on the following statements:

• Fog computing provides compute, network, and storage resources.
• A part of the resources is located at the edge, within network low latency from

the end users.
• The fog nodes are not co-located in a single place but rather geographically

distributed over the coverage area.
• A fog computing platform is composed of resources located at the edge as well as

resources located in traditional cloud data centers.
In contrast, different researchers have proposed different types of fog nodes [34]. The
most common are:

• Cellular base stations: commonly referred to as Fog Radio Access Network (F-
RAN) nodes. This architecture takes advantage of the overlapping between the
fog and the Radio Access Network (RAN) at the extreme edge. The fog nodes in
this case are relatively powerful and well connected. Yet, such approach has a
dependency on the telecommunication companies which own the cellular base
stations [35, 36].

• Network elements: specifically WiFi access points and routers. Similar to the
cellular base stations, the access points are distributed at the extreme edge.
Adding some resources to these network elements would make them very
convenient fog nodes but with less resources due to space limitations [37–39].

• Intermediate compute nodes: such as small to medium size servers distributed
on the edge without dependencies on other devices. This approach provides a
tunable resource pool that is relatively capable, but we argue the ease of placing
and connecting such nodes in safe places over the geographical area [29, 40].

• Points of presence (PoPs): some researchers found the convenience of using
very small devices like single board computers, since they are cheap, do not
require a lot of energy, and can be placed practically anywhere. A platform using
such nodes would require large number of them to provide a decent resource
pool [41–43].

In our work, we have chosen to base our efforts on PoPs since they are accessible, and
are commonly used to prototype a distributed fog system. At the same time, an

39

Chapter 2 – Background

implementation running on top of such nodes proves the lightness and the feasibility
of the system. In other words, if this implementation can run on the limited resources
of the PoPs, then in principle it should also work on more capable nodes.

2.2.1 Fog applications

The number of applications that intend to exploit fog computing platforms is
growing. Fog applications are driven by innovative design that requires additional
platform characteristics which can only be delivered if the application instances were
deployed close to the source of traffic [4]. An application implemented in the edge
layer will not only benefit from low latency and bandwidth optimization but also will
take advantage of content caching at a finer granularity. Fog computing offers cost
cutting when implementing a private fog is cheaper than a pay-as-you-go cloud
model. IoT devices can reduce their energy consumption since they have to wait less
to receive their responses. A set of promising use cases for fog computing can then be
categorized by the following categories:

• IoT applications: fog computing was conceptualized with IoT applications in
mind. It can deliver all the requirements of IoT including mobility support,
geo-distribution, and location awareness. As a result, many IoT applications
intend to run on fog platforms [44–50].

• Entertainment applications: this category includes gaming and
virtual/augmented reality applications where a high latency can severely affect
the QoE. Many fog applications require low latencies, although the definition of
"low" varies a lot. Some applications require a low latency in terms of seconds
(e.g. IoT), while other applications require latencies in terms of milliseconds. We
categorize the applications that requires latency in terms of milliseconds as
latency-sensitive applications. The interesting factor of such applications that they
need bounds on their response time where they define a threshold latency. If a
request response time exceed this threshold the QoE gets impacted [47, 51–53].

• Stream processing applications: a stream processing application is a collection
of operators, all of which process streams of data. Applications like video
broadcasting and surveillance are stream processing applications and they have
a dependency on the network bandwidth. The bandwidth optimizations offered
by the fog presents an attraction for such applications [54–58].

40

2.2. Fog computing

• Others: such as autonomous vehicle [59–61], data storage [62, 63], wearable
technology [51], and smart grids [64].

In the design of fog computing platforms, nodes are close to the end users but
necessarily far from each other. Unlike cloud where the nodes are connected using
high-bandwidth/low-latency network links, fog computing nodes are typically far
away from each other. An application deployed in the fog layer must therefore
provide several replicas to keep a low latency between each end user and at least one
of the application replicas.

This was evident in the survey [4] that shows most of the surveyed applications
are deployed using software distribution to provide a nearby instance for all the
connected devices. This is enabled using software replication where several
application replicas are spawned in different nodes in the fog layer. Other trends were
also detected among the surveyed applications for IoT and stream processing
applications that are based on widely-distributed user-base. Such applications require
a congruent software distribution of the fog nodes and application replicas.

Many fog applications are organized following a Service-Oriented Architecture
(SOA), which involves the deployment of services as units of logic that runs in a
network. As a result each service is responsible for processing a single task, and the
user device contacts these services to get the desired response. The attractive aspect of
this architecture lies in the independence of the service’s replicas, which separates the
concerns between the service’s internal design and the client making use of this
service.

This thesis specifically focuses on implementing a proximity-aware fog computing
orchestration engine for replicated service-oriented applications. We target
latency-sensitive applications which define a certain latency threshold and run on top
of request/reply services.

2.2.2 Fog architecture

Aspreviously discussed, fog computing extends the cloudwith additional resources
located in the immediate vicinity of the end users. The architecture of a fog platform
(shown in Figure 2.3) therefore adds an intermediary layer between the cloud nodes
and the end users. This layer is often referred to as the edge layer. The aggregation of
edge and cloud layers allows the system to process latency-sensitive end-users requests

41

Chapter 2 – Background

on a nearby node. At the same time this paradigm does not prohibit developer from
utilizing the unlimited cloud resources for non-sensitive tasks.

We define the fog as an aggregation of three main layers:

1. End-user layer: This layer consists of the end-user devices such as IoT sensors
and actuators, mobile phones, wearable devices, and autonomous vehicles.
These devices are the origin of the requests that will later be processed in the
fog. The end-user devices are connected to the fog layer through network links
using a variety of mechanisms such as Domain Name System (DNS) redirection
and software-defined networking (we discuss the organization of this access
network in Section 2.5.1).

2. Edge layer: This layer is composed of the fog nodes. It is connected to the end
users using access network and to the cloud using backhaul network. It is
composed of limited resources that are distinguished by their low latency from
the end users. As previously mentioned, we consider the fog nodes as points of
presence that can be as small as single-board computers. The PoPs are
distributed across a potentially large coverage area like a city center or a
university campus. Each end-user device connects to one of the PoPs in order to
reach the desired application. In other words the PoPs are the gateways where
the end users connect and submit their requests. The PoPs are connected to each
other using a “backhaul” network which also gives them an Internet access for
relaying requests toward the cloud.

3. Cloud layer: This layer consists of the traditional cloud where one or more
powerful data centers are connected to each other and to the rest of the Internet.
The cloud layer accommodates extensive compute and storage resources that are
capable of supporting compute-intensive applications.

The differences between the edge layer and the cloud layer can be summarized by:

• User-to-resource latency: The fog nodes communicatewith the end users devices
using access networks such as LAN, WiFi, and the last mile of the LTE networks.
This maintains a low user-to-fog latency compared to a high user-to-cloud latency
where the requests traverse long-distance Internet links.

• Architecture: Themain difference here is the distribution of the nodes in the edge
layer, compared to co-located nodes in the cloud data centers.

42

2.2. Fog computing

• Resource capacity: The cloud resources can be considered unlimited, compared
to moderate compute and storage capacities provided by the edge.

However these differences do not deprive the application providers from taking
advantages of both layers. The fog layer targets the latency-sensitive tasks and offers
them nearby compute resources, while the cloud layer may handle storage and
compute-intensive tasks.

2.2.3 Challenges of fog computing

Fog computing remains a new concept and no current platform can claim to solve
the wide range of issues it creates. Reaching the point where fog computing attains the
desired results requires one to address a number of challenges:

• Orchestration engine: to implement a fog computing orchestration engine a
number of features have to be supported. Some of these features are already
present in cloud computing, the likes of availability, scalability and fault
tolerance. However the distribution of fog nodes and the limitation in resources
make supporting these features more difficult. On the other hand, a healthy
operation of the fog, and more specifically the edge layer requires features that
support node heterogeneity, light deployment, and proximity-awareness. We
discuss this challenge further in Section 2.3.

• Proximity-awareness: a key feature for a fully-functional fog is the ability to
estimate and integrate the inter-node latencies in the platform design. A set of
technical issues have to be addressed to first implement such measurement
without inducing a network overhead, and to utilize the measurements in
different abstraction layers in the resource management. we discuss this
challenge further in Section 2.4.

• Privacy and security concerns: privacy and security should be addressed in
every layer of the fog. The concerns are often focused on the gateways and the
access control, and their vulnerability to attacks like man-in-the-middle and IP
spoofing. Other security and privacy concerns in authentication, and data
protection have been identified [65, 66]. Preserving a secure platform for the
users’ data and privacy remains a priority and any platform that will be
available commercially must abide by high security standards.

43

Chapter 2 – Background

• Edge layer scalability: the edge layer is widely distributed in a way that provides
every end user with a nearby node. This architecture brings many advantages but
it can be a challenging in terms of scale. In the scenarios of a fog platform like
that of a city center, the nodes will be scattered allover the city. Providing all the
nodes with the means of communication and power can be very challenging, and
designing a scalable platform to control them is still not solved.

This thesis focuses on implementing proximity-awareness in fog computing
orchestration engine. In other words, we focus on the first and second challenges.
Proximity awareness is a key feature for latency-sensitive applications. As a result,
implementing the tools to exploit user-to-resource latency is a requisite for designing
a fully functional fog orchestration engine.

2.3 Kubernetes

Orchestration is the process of managing different applications which coexist in the
same platform. The management of these applications ensures their QoS requirements
by providing the proper resources, whether it is a computing resource measured by the
number of cores andmemory usage, a storage resourcemeasured by the disk space, or a
network resource measured by the assigned bandwidth. The duties of an orchestrator
include the treatment of the workloads and creating the routes for these workloads,
health checks on the applications state, and handling application provider requests to
change the state of the deployment. Orchestration is also referred to as automation since
all the orchestrator’s tasks are done in an automated fashion.

A number of mature orchestration engines are available for cloud computing,
including Kubernetes [11], Docker Swarm [12], Mesos [13], and OpenStack [67].
These engines have stood the test of time and have proven that they are efficient and
reliable in the context of a cluster or a data center. In contrast, fog computing is still in
its early stages, and it does not yet have a dedicated orchestration engine that can
support its specific requirements. In this section we will discuss the motivation behind
choosing Kubernetes as the basis of our efforts, then we continue by explaining how
Kubernetes operates.

44

2.3. Kubernetes

2.3.1 Why Kubernetes?

In the state of the art there exist twomain directions to design future fog computing
orchestration engines. The first is starting from scratch and creating an engine that is
specific for fog computing [68]. In the second direction, researchers are remodeling one
of the cloud orchestration engines to support fog computing [69–71]. Since our work is
targeting proximity-awareness and the set of mechanisms to support it rather than the
engineering task of creating a new orchestrator, we took the second direction where we
implemented proximity-awareness on top of Kubernetes as a proof-of-concept.Wemay
argue that a future dedicated fog orchestrator will eventually outperform a remodeled
one, however the journey for such orchestrator to reach production is a long one.

Kubernetes is an open-source container orchestration platform which automates
the deployment, scaling and management of containerized applications on large-scale
computing infrastructures [11]. It is one of the most popular container orchestration
engines [72]. The Cloud Native Computing Foundation has found in a survey of
respondents from different business sectors that 78 % of the respondents are using
Kubernetes in production [73]. Moreover, Kubernetes is getting recognized as the new
standard of computing. Many industries were able to use Kubernetes at the edge,
proving its flexibility [74]. This drove new efforts for creating extended versions of
Kubernetes specifically targeting the needs of edge/fog computing [75, 76].

A Kubernetes cluster consists of a master node which is responsible for
scheduling, deploying and monitoring the applications, and a number of worker
nodes which actually run the application’s replicas and constitute the system’s
computing, network and storage resources.

We can differentiate Kubernetes from its contenders by its flexible implementation.
Kubernetes is designed as a set of plug-ins which work together to maintain the
system state using feedback control loops. As well, Kubernetes as a software does not
provide application-level services, such as middlewares, databases, caches, nor cluster
storage systems. This approach makes Kubernetes very lightweight. The developer
can then implement the application-level services as plug-ins. This makes Kubernetes
very attractive for fog computing, since application providers may select what tools
they want to be included, rather than having a monolithic platform that can do
everything.

Another factor that motivated the use of Kubernetes for our case scenario was the
ease of modifying the system just by adding plug-ins, which makes it easier for the

45

Chapter 2 – Background

A
p
i
s
e
r
v
e
r

End User

Master Node

Scheduler

S
V
C
	
X

K
u
b
e
l
e
t

P
r
o
x
y

Pod	X

Pod	X

Pod	X

Worker Node

Worker Node

Worker Node

Pod	Y	

S
V
C
	
Y

S
V
C
	
X

S
V
C
	
Y

S
V
C
	
X

S
V
C
	
Y

End User

Deployment
Controller

Replication
Controller

etcd

K
u
b
e
l
e
t

P
r
o
x
y

K
u
b
e
l
e
t

P
r
o
x
y

Figure 2.4 – Organization of a Kubernetes service. “Service X” forwards requests
towards three pods located in three different nodes, whereas “Service Y” serves only
one pod.

developer to update the system during runtime, rather than getting a new source code
with the modification and then compiling and implementing everything. Several
other researchers made the same choice of basing experimental fog platforms on
Kubernetes [69–71, 77].

2.3.2 Application model

Kubernetes deploys every application instance in a Pod, which is a tight group of
logically-related containers running in a single worker node. The containers which
belong to the same pod expose a single private IP address to the rest of the
Kubernetes system, and they can communicate with one another using an isolated
private network.

Pods are usually not managed directly by the developers. Rather, application
developers are expected to create a Deployment Controller which is in charge of the
creation and management of a set of identical pods providing the expected
functionality. A Deployment Controller can dynamically add and remove pods
to/from the set, for example to adjust the processing capacity according to workload
variations or to deal with end-user mobility. Maintaining data consistency between

46

2.3. Kubernetes

pods is under the responsibility of the application developers. Kubernetes does not
provide any support for implementing this data consistency.

Pods can be created and destroyed dynamically. This leads to a problem where an
end user who wants to communicate with the pods must keep track of the IP
addresses of the current running pods. In Kubernetes, a Service is an abstraction which
defines a logical set of Pods and a policy by which incoming requests are routed to
them. As illustrated in Figure 2.4, a set of identical pods can be made publicly
accessible to external end users by creating a Service which exposes a single stable IP
address and acts as a front end for the entire set of pods.

Although a Kubernetes service is conceptually a single component, it is
implemented in a highly distributed manner. When a worker node receives a request
for an application’s service IP address, the request is further routed internally to the
Kubernetes cluster using kernel-level DNAT (Destination Network Address
Translation) which chooses one of the service pods’ private IP address as a
destination. When the application comprises more than one pod, Kubernetes
load-balances requests equally between all available pods. Unlike the most common
load balancers for cluster computing which run in layer 7 of the OSI model, the
Kubernetes services route packets using iptables in layer 3.

Internal request routing is implemented by a daemon process called kube-proxy
which runs in every Kubernetes node. When the Kubernetes master node detects a
change in the set of pods belonging to a service, it sends a request to all kube-proxy
daemons to update their local IP routing tables (see Figure 2.4). Such changes may be
caused by an explicit action from the system such as starting or stopping a pod, or by
a variety of failure scenarios.

The kube-proxy daemons are in charge of updating the kernel-level routing
configuration using iptables or IPVS. For each service’s IP address, kube-proxy creates
rules which load-balance incoming connections among the service pods’ private IP
addresses. As shown in Figure 2.5, network traffic is addressed toward a Serving node
which contains the actual Serving pod that will process the incoming request.

In the standard Kubernetes implementation, every incoming connection has an
equal probability to be processed by each of the service pods. This load-balancing
strategy is very sensible in a cluster-based environment where all service pods are
equivalent in terms of their functional and non-functional properties. However, it
clearly does not fit our requirement of proximity-based routing in the context of a fog

47

Chapter 2 – Background

P
O
D

X

End User

S
e
r
v
i
c
e

X

Gateway Node

P
O
D

X

P
O
D

X

request X

Ro
ut
e
No
t
Se
le
ct
ed

Route Selected

Route Not Selected

request X

 Available
nodes for
 request X

Serving Node

Serving Pod

Figure 2.5 – Gateway node and serving nodes.

computing platform. one objective of our work is therefore to re-design the internal
network routing in Kubernetes such that every gateway node creates specific local
routes that favorize nearby pods. In a broadly geo-distributed system such as a fog
computing platform this will significantly decrease the mean and standard deviation
of network latencies experienced by the end users, thereby providing them with a
better and more predictable user experience.

2.3.3 Pod scheduling

When a new pod or group of pods is created, the Kubernetes scheduler is in
charge of deciding which worker nodes will be in charge of executing them. Figure 2.6
illustrates the two phases of the scheduling process. The scheduler first builds a list of
nodes which are capable of executing the new pod (e.g., because they have sufficient
available resources to accommodate the new pod). Second, it ranks the “feasible”
schedules according to some policy, chooses the schedule with the greatest score, and
stores this decision in an object store. In every worker node, a Kubelet daemon
periodically checks this object store and deploys any pod assigned to it which was not
created yet.

2.3.4 Resource discovery

Kubernetes uses etcd to store the state of the cluster which is defined as a
distributed, reliable key-value store for the most critical data of a distributed
system [78]. It presents a reliable way to store data that needs to be accessed in a
distributed system. Any application can use etcd to save and update its data as

48

2.4. Network Proximity

Create Pods Schedule Pods Deploy Pods

Request a
Deployment Deployement

Controller

Pod Objects
Created Kubernetes

Scheduler

Pods
Assigned

Running
PodsKubelet

S4

S1 S2

S3 S4

S5 S6

S7 S8

S1

S3 S4

S8

S4

S8

S1

S3

Score: 8

Score: 7

Score: 4

Score: 3

All Schedules Feasible Schedules Ranked Schedules

Final
Solution

Filter Score

&
Rank

Assign

Figure 2.6 – Kubernetes’ scheduling process.

key-value pairs. The key-value store preserves the previous versions of a key-value
pair when its value is superseded with new data.

In Kubernetes, etcd is deployed as a pod or a set of pods. The state of the cluster
includes the current system configuration, the status of the nodes and pods, and the
specification of the deployments. As a result, etcd is the main tool Kubernetes uses for
resource discovery.

Kubernetes was designed to manage computing resources in cluster-based or
cloud-based environments. As a consequence, it considers all worker nodes as
functionally equivalent since it have no notion of node proximity to the end users. For
Kubernetes to become suitable for fog computing scenarios, we aim in this work to
modify its application and scheduling models to make them fog-aware.

2.4 Network Proximity

In the edge layer of fog computing platforms, nodes are located close to the end
users but necessarily far from each other. This distribution requires one to accurately
estimate the network latency between the nodes. Such measurement is essential for
healthy operation of the fog platform.

Figure 2.7 depicts an application deployed in the edge layer. Each circle represents
a fog node located over the map of France, which represents the coverage area. For the

49

Chapter 2 – Background

sake of simplicity, we consider in this example that the inter-node network latency is
proportional to the geographical distance in the map. A subset of the nodes hold a
replica of the application, these nodes are identified by the blue color. A user
connected to the edge layer gets connected to one of the nodes using the access
network. Requests submitted by the user are then further routed toward an
application replica by the Kubernetes services.

As discussed in Section 2.2.1, latency-sensitive applications must process their
requests within a certain deadline otherwise the users will suffer from a degraded
QoE. This condition cannot be achieved without an accurate estimation of the network
latency and proper detection of the sources of load.

In a replicated service-oriented application, the measurements of the inter-node
latencies can be essential over three different levels of resource management:

• Level 1: Routing
Any node in the edge layer may receive and relay requests toward the application
replicas. As a result, the node should make the decision of which replica should
handle which request. In Kubernetes, the simple approach of equally balancing
the load over the different replicaswould lead to suboptimal performance in terms
of latency. A node should therefore have themeans to distinguish between nearby
nodes and far away ones, such that a request should have a higher probability in
getting routed to a replica hosted in a nearby node. We address this challenge in
Chapter 4.

• Level 2: Placement
Routing a request to a nearby replica requires two conditions: the first is
proximity-aware routing, and second is the availability of a replica hosted in a
nearby node. In consequence, placing an application replica in such
geo-distributed layer should depend on the location of the sources of traffic, and
their proximity to the applications replica such that a latency-sensitive
application can meet its latency threshold. Since the load received by a fog
platform may vary over time, a change in the sources of traffic and/or inter-node
latencies may change during the operation. The placement problem then has to
be treated dynamically, and a re-placement should occur once a change in the
load and platform characteristics is detected. Two different proximity-aware
placement solutions are detailed in Chapters 5 and 6.

50

2.4. Network Proximity

Source of Traffic

A fog node without
application replica

A fog node with an
application replica

Routing of the
traffic

1-Routing 2-Placement 3-Autoscaling

Figure 2.7 – A visual reference of a deployed application and the different layers of
resource management.

• Level 3: Autoscaling
The resources in the edge layer are both precious and limited. The number of
deployed replicas per applications must therefore be optimized to avoid over
provisioning while at the same time to provide a nearby unsaturated replica for
all the end users. As a result autoscaling should not only depend on the size of
the current load but also on the location from where this load was transmitted,
and the application latency threshold. Similar to the placement challenge,
autoscaling should be done in a dynamic matter to take the location and the

51

Chapter 2 – Background

0

20

40

60

80

100

120

140

160

180

200

220

0 10 20 30 40 50

Time (seconds)

A
ve

ra
g
e
 la

te
n
cy

 e
rr

o
r

[%
]

Figure 2.8 –Accuracy of Vivaldi latency predictions for a newly joined node in a 12-node
cluster.

intensity of load into account before changing the size of the placement. We
present an autoscaling algorithm in Chapter 6.

From these three challenges we can conclude that a replicated service-oriented
application implemented in fog computing requires information regarding the
proximity between the fog nodes. This information serves the purpose of meeting the
network latency threshold required by the applications. At the same time, the
dynamicity of the load requires the resource management to be dynamic as well. To
achieve proximity-aware routing, placing, and autoscaling in the fog platform we
therefore have to provide an accurate estimation of the inter-nodes latency (discussed
in Section 2.4.1), process the end-user requests within a certain threshold (discussed
in Section 2.4.2), and take into account the load variation (discussed in Section 2.4.3).

2.4.1 Latency estimation and Vivaldi coordinates

Data center networks often follow very complex topologies to provide cloud users
with many interesting properties such as excellent bisection bandwidth and resilience
toward a wide range of possible disruptions. They often have excellent performance
which means that the inter-node latencies within a data-center are usually low enough
to be ignored in practice. Nodes in a data center may be located far from the end users,
but they are very close from each other. This is the reason why orchestration systems

52

2.4. Network Proximity

such as Kubernetes, which were designed for data center environments, do not make
any attempt at routing end user requests to nearby nodes.

However, in fog computing environments, resources are physically distributed
across some geographical area in order to provide compute, storage and networking
resources in the immediate vicinity of the end users.

There are many ways to represent proximity. For example, the broad availability of
inexpensive GPS receivers makes it easy to measure the geographical distance between
nodes.However, geographical distance is known to be a poor predictor for route lengths
or network latencies in large-scale network infrastructures [79]. We therefore prefer
directly relying on network latency as the measure of proximity.

To avoid the overhead of periodically measuring n2 pairwise latencies between n

nodes, our work relies on Vivaldi coordinates for modeling the latencies between
nodes [16]. Vivaldi is a distributed, lightweight algorithm to accurately predict the
latency between hosts without contacting them. Using Vivaldi, a node in the cluster
can easily compute the latency with all the nodes by communicating with only a few
of them.

We specifically use Serf, a mature open-source tool which maintains cluster
membership, detects failures, and offers a robust implementation of Vivaldi
coordinates [80]. Serf is based on a gossiping protocol where each node periodically
contacts a set of randomly-selected other nodes, measures latencies to them, and
adjusts their Vivaldi coordinates accordingly. Latency between any pair of nodes is
modeled as the Euclidean distance between their respective Vivaldi coordinates. The
end result is a lightweight and robust system which can produce accurate predictions
of inter-node latencies.

Figure 2.8 depicts the accuracy of latency predictions produced by Serf.
Immediately after a fresh node joins a 12-node cluster, its latency predictions are
highly inaccurate. However, the system converges very quickly. Roughly 20 seconds
after startup, the prediction error consistently remains below 20%, and stabilizes in
the order of 10%. In a fog computing system where latencies between nodes are
expected to belong to a wide range of values, this level of prediction accuracy is
largely sufficient to distinguish a nearby node from a further away one.

53

Chapter 2 – Background

Figure 2.9 – Optimizing the mean or the tail latency.

2.4.2 Optimizing the mean or the tail latency

Fog computing platforms were created for scenarios where the network distance
between the user devices and the application instances must be minimized. For
instance, virtual reality applications usually require a response times under 20ms.
Such applications “need to consistently meet stringent latency and reliability constraints.
Lag spikes and dropouts need to be kept to a minimum, or users will feel detached [3].”
Aiming to minimize the mean latency between the user devices and their closest
replica does not allow one to provide such extremely demanding type of guarantees.

To illustrate the difference between placements which optimize the mean or the
tail latency, we explore 50 randomly-chosen placements of 4 replicas within a
22-nodes testbed (further described in Chapter 5). We then select the two placements
which respectively minimize the mean (“Mean”) and the number of requests with
device-to-closest-replica latencies greater than a threshold L = 28ms (“Tail”).
Figure 2.9 compares the cumulative distribution functions of the obtained latencies
delivered by the two placements. Mean delivers very good latencies overall, and it can
process many more requests under 20ms compared to Tail. However, when zooming
at the end of the distribution, we see that roughly 5% of requests incur a latency
greater than 28ms, and up to 32ms. The users who incur such latencies are
disadvantaged compared to the others, and are likely to suffer from a bad user
experience.

54

2.4. Network Proximity

12pm 4pm

6-7pm

11pm

C
om

m
ercial

Residential
N

igthlife
O

verall

0 4 8 12 16 20 24

0
10
20
30

0
5

10
15
20

0

10

20

40
80

120

Hours during a day

N
um

be
r o

f R
eq

ue
st

s

Figure 2.10 – Load variation according to time and space.

On the other hand, with the same number of replicas, Tail guarantees that 100% of
requests incur latencies under 27ms. Although the mean latency delivered by this
placement is slightly greater than that of the Mean placement, this configuration is
likely to provide a much more consistent experience to all the application’s users.

In this thesis, we therefore aim to find replica placements which minimize the tail
device-to-closest-replica latency, while maintaining acceptable load balancing between
the replicas.

2.4.3 Non-stationary traffic properties

Any online application which processes incoming requests from an unbounded
user population notoriously experiences significant workload variations across
time [17]. This also applies to fog applications. However, geo-distributed systems
such as fog computing platforms must not only handle variations of the aggregate
workload produced by their entire user population, but also variations in the location
from which the users generate their traffic.

To highlight the non-stationarity in time and in space experienced in the fog, we
analyze a geo-distributed request workload derived from telecommunication traffic
traces from the Trentino region in Italy, and emulated proportionally to the number of
Internet requests per user found in the trace [81].

55

Chapter 2 – Background

Figure 2.10 shows the aggregated requests of users in 10 different areas of the city
of Trento, and highlights the traffic produced by three of them. Overall we see a
typical day/night pattern where most of the workload is produced between 9 am and
11 pm. However, different zones observe workload peaks at different times of the day.
Commercial districts with shopping malls and offices peak at 12 pm and 4 pm,
whereas residential areas peak at 7 pm and nightlife neighborhoods peak at 11 pm.

For a replicated service-oriented fog application, this means that application
replicas should not only be created in the morning and removed in the evening to
follow the aggregated traffic intensity. Also during the day, to maintain proximity
between the users and the application, replicas must be created/deleted/relocated
from one neighborhood to another.

2.5 A complete fog computing architecture

In this section we summarize the conditions and assumptions we took to define the
scope of this work. First we dive deep in the network model suggested for the edge
layer. Then we present the components of an application running on top of Kubernetes
and their characteristics.

2.5.1 Network model

A fog computing network is responsible for carrying packets from the end user to
the application’s resources. This includes resources both located at the edge layer and
at the cloud data centers. As explained in Section 2.2.1, we target latency-sensitive
applications. For these applications all the resources will be located at the edge. As a
result, we focus in our network model on the routes from the end users toward the
edge layer application resources.

The journey of a packet in fog computing starts at the end users layer, where a user
submits a request in the form of a network packet toward the application’s replicas. As
explained in Section 2.2.2, an end user device can be an IoT device, a mobile phone, a
wearable technology, or an autonomous vehicle. Our work is agnostic to the nature of
end users an it rather focuses on the applications they are communicating with.

After the request is transmitted it will pass through multiple routing levels
presented in Figure 2.11:

56

2.5. A complete fog computing architecture

Kubernetes
Cluster

Access Network
Application
Service

Iptables Application
Replica

DNAT

Figure 2.11 – Routing a request from the end user to the application replica.

• First step: access network.
A variety of mechanisms such as DNS redirection and software-defined
networking must be first used to route the request to any node belonging to the
Kubernetes system. This means in particular that every node in Kubernetes
(which may or may not contain a pod of the concerned application) can actually
act as a Gateway node between the end users and the Kubernetes system.

When using Kubernetes as a fog computing platform, we assume that the fog
platform is somehow able to route end user traffic to a nearby gateway node. In
our implementation every fog compute node also acts as a WiFi hotspot to which
end user’s devices may connect to access the system. This organization naturally
routes every request to a Kubernetes node in a single wireless network hop.
Other implementations may rely on a wide variety of technologies such as LTE
and Software-defined networking (SDN) to provide the same functionality. Note
that every fog computing platform must necessarily implement such a
mechanism, otherwise it would not be able to provide any form of network
proximity between the end users and the fog resources serving them.

• Second step: Iptables routing.
In Kubernetes, a packet directed toward an application holds the application
service IP as its destination. The packet passes through the chains of Iptables,
where it will be forwarded to the application-specific chain which represent a
Kubernetes application service.

• Third step: internal request routing to one of the application’s replicas.
The packet is further routed internally to the Kubernetes cluster using DNAT
which chooses one of the service pods’ private IP address as a destination. When
the application comprises more than one pod, the Kubernetes service is
responsible for selecting one of the replicas to handle the incoming packet (see
Figure 2.5).

57

Chapter 2 – Background

Pod VR

De
pl

oy
me

nt
Co

nt
ro

ll
er

Sc
he

du
le

r

Ku
be

le
t

Worker
Node 1

Pod VR

Ku
be

le
t

Worker
Node i

Pod VR
Ku

be
le

t

Worker
Node n

Master

SV
C

VR

Ap
is

er
ve

r
Worker
Node X Request

Reply

Application Resources

Figure 2.12 – The application model in our scope.

2.5.2 Replicated service-oriented applications in Kubernetes

As explained previously, an application in Kubernetes runs as a deployment
consisting of a set of pods. In our case we consider that all the application’s pods are
functionally identical and represent the application’s resources. Each pod in the
deployment is a service replica which can receive a request, execute the appropriate
function and respond with an answer. We assume that the application replicas process
the entire request with no additional calls to other services.

Although the time needed to process the request is application-specific, in this
work we decided to ignore this part of the end-to-end request latency. We rather try to
minimize the network round trip time, and consider the execution time of the request
as out of our scope.

We target latency-sensitive applications like VR, AR, and gaming. Latency-sensitive
applications have threshold that need to be respected, otherwise a violation in latency
can lead to a degraded QoE. Elasticity is another feature that we consider in our work,
such that the application replicas either have their own means of reaching consistency,
or they are elastic and are not affected by inconsistent replicas. In general, we consider
the matter of replica’s consistency maintenance out of our scope.

The resources of a replicated service-oriented applications have to be handled in a
different manner when implemented in fog computing. Rather than focusing only on
the number and size of the resources, in a geo-distributed fog the location of the
resources can as well affect the performance of such applications. Resource
management in the edge layer should also be influenced by the threshold of

58

2.5. A complete fog computing architecture

latency-sensitive application. The deployment of the replicas should guarantee a
round-trip latency lower than the application’s threshold.

As a result, the ultimate objective of this thesis is creating algorithms that can
provide such demanding requirements. Respecting such threshold requires one to
first enable a proximity aware routing, which we have done by implementing
Proxy-mity presented in Chapter 4. However, routing alone is not sufficient to
guarantee all users’ request will be returned within the latency threshold. We
thereafter implemented placements algorithms, Hona in Chapter 5 and Voilà in
Chapter 6 that creates a dynamic placement based on the location of the sources of
traffic. To amount for the changing load size and the non-stationary load we as well
implemented an autoscaling algorithm in Voilà.

59

Chapter 3

STATE OF THE ART

In a fog computing platform, edge-layer resources are limited in numbers and in
computing capacity while remaining essential for a wide array of applications. This
has made resource management in fog computing and specifically in the edge layer a
hot research topic. Numerous resource management mechanisms have therefore been
proposed to address various aspects of fog computing resource management [82, 83].

Different authors have chosen different approaches to target a multitude of
resource scheduling challenges in the fog. The many combinations of system model,
application model, virtualization technique, type of requests, and optimization
objective have produced different strategies for resource management in fog
computing:

• System model: numerous platforms like MEC [84–87], F-RAN [35, 36, 88, 89],
and Multi-tier [43] computing can be considered one way or another as a form
of fog computing. However, each one of these platform features a unique set of
requirements to be delivered through resource management. For example, MEC
resource management focuses on the layer where the users tasks are executed.
F-RAN resource management in the other hand divides the incoming requests
according to the cellular base station where the end users are connected.

• Application model: as explained in Section 2.2.1, various classes of applications
are intended to make use of the fog platforms. However, different types of
applications require different resource management mechanisms [4, 90]. Most
notably, stream processing and latency-sensitive applications’ resource
management should be carried away as application-centric, since the objective is
to guarantee the application’s QoS. In contrast, resource management for less
demanding applications is typically handled as platform-centric where the
objective is to improve the platform performance in terms of energy
consumption and/or resource provisioning.

61

Chapter 3 – State of the art

• Virtualization techniques: Much like cloud platforms, fog platforms’ edge-layer
rely on virtualization techniques to support multi-tenancy and increase resource
utilization. For resource-efficiency reasons, most fog computing platforms rely on
lightweight container technologies rather than virtual machines [41], enabling
one to envisage fog computing platformsmaking use of edge resources as limited
as Raspberry Pis [85, 91, 92]. The choice of virtualization techniquemay influence
the scheduling algorithms. For example, the time needed for a Virtual Machine
(VM) to boot up should be taken into account in the scheduling algorithm. In
contrast, containers boot up is much quicker. Although containers deployment on
modest machines may be painfully slow, a variety of techniques have been proven
to significantly speed up this operation [93]. In such cases, the deployment time
of containers can be considered relatively negligible compared to that of VMs.

• Type of requests: the type of expected workload influences the choice of
resource management techniques. In the literature, some researchers consider an
application request as an encapsulated task which must execute in the edge layer
without previously reserved resources. In other cases, like in our approach, we
consider the request as a set of parameters that will be executed in an already
deployed application resource. This distinction drives two very different sets of
requirements for the resource management.

• Optimization objective: different authors follow different objectives for the
resource management [4, 33, 82]. The objective depends mainly on the type of
target application and the proposed system model. Resource management
objective can be: latency minimization [94–96], energy optimization [97–99],
resource utilization [100], network usage [70], etc.

As discussed in Section 2.4, we consider three levels of resource management.
Although the literature targets different aspects and objectives of resource
management in fog computing, we can still categorize the contributions according to
these levels. The first level deals with assigning user requests and tasks to applications
resources. We define service placement and re-placement as the second level of
resource management. Finally, the third level concerns the autoscaling of the
provisioned resources. We discuss these three levels in turn.

62

3.1. Workload routing

Task X

User's Device

Local
Execution

Sc
he
du
le
r

Gateway
 Execution

Gateway Node

Offload To

the Edge layer

Horizontal

Offload

Vertical

Offload

Another
Edge Node

Cloud
Node

Figure 3.1 – Offloading in fog computing.

3.1 Workload routing

Workload routing controls the flow of the users’ workload toward the fog
resources. Two directions in workload routing can be distinguished. The first one
considers the users’ requests as encapsulated tasks that will provision a resource,
execute, and then release the resource. Another direction considers the applications as
a set of replicated service-oriented server processes that receives operation parameters
via user’s request and then return the output of the operation. In this case the
resources are provisioned prior to receiving the users’ requests. Throughout this
section we will refer to the workload as a set of service-oriented requests. When the
applications work by provisioning and releasing a resource it will be refereed to as a
set of tasks that may be offloaded to the fog.

3.1.1 Task offloading

Offloading is the process of relocating a task from one node to another. Offloading
techniques are designed to optimize resource utilization in terms of cost, energy
consumption, or response time. This concept is popular in Mobile Cloud Computing
(MCC), where the application decides whether to execute on the user device or to be
offloaded to a cloud data center [98]. With the introduction of Mobile Edge Computing
(MEC), this concept gained a similar traction, however with an access to two different
types of resources, the edge resources and the cloud data centers [87].

Figure 3.1 showcases a typical offloading scenario where an end user device can
either process the task locally, otherwise the task will be offloaded to the fog platform.

63

Chapter 3 – State of the art

In the fog platform also a gateway node can decide to process the task locally or offload
it horizontally to another edge node, or vertically to a cloud node.

Among the many papers that proposed an offloading technique, a number of them
have worked on reducing application response time.Mukherjee et al. reduce the overall
task completion latency by solving a quadratically constraint quadratic programming
optimization problem [94]. Vu et al. offload services in fog radio access networks to
optimize the energy consumption and offload latency [89]. Yousefpour et al. propose
a delay-minimizing offloading policy for fog nodes to reduce service delay for the IoT
nodes [101]. Sun et al. propose the ETCORA algorithm to solve the energy and time cost
minimization problem for IoT-fog-cloud architecture [99]. Basic et al. propose a fuzzy
handoff control to avoid tasks being offloaded horizontally between edge nodes. The
algorithm takes the application response time as an indicator whether to move the task
to another node [102].

Although these works optimize tasks execution latency, most of the presented
articles are designed for IoT applications and the deadlines associated with such
applications. Also in the majority of the presented work, the edge layer’s network
latencies are either not considered [94, 99] or defined as a constant between all the
nodes [89, 101].

In contrast, our work targets latency-sensitive applications with latency thresholds
as low as 20ms. A design based on transmitting a task and waiting for the resource to
be ready before the execution is not appropriate for such applications. Also, choosing
some tasks to be processed in the backend cloud does not allow one to reduce the tail
execution latency. In this thesis, we thus aim at processing all the requests in the fog
layer, without offloading to a backend cloud.

3.1.2 Request routing

A replicated service-oriented application hosted in the cloud often uses a proxy to
balance incoming requests over the available replicas. In fog computing however, the
responsibilities of the proxy are not limited to load balancing between a set of
functionally equivalent replicas, but rather extend to routing the requests toward the
nearest available replica. In the literature, a number of routing techniques have been
suggested to optimize latency, energy consumption, and backhaul network traffic
while maintaining a balanced load [103, 104].

64

3.1. Workload routing

In the field of Vehicular Ad hoc NETworks (VANETs), a moving vehicle requires a
dynamic update of the nearby resources to establish routes between the vehicle and
an edge node. Lu et al. propose the IGR routing scheme [105]. Based on the street map
and the position of vehicles, IGR selects the routing path according to the packet error
rate of each link and vehicle density of each street. SFIR takes advantage of SDN and
fog computing technologies to improve data forwarding in vehicle-to-vehicle
communication [106]. Kadhim et al. presented an energy-efficient multicast routing
protocol based on SDN and fog computing [97]. This protocol exploits a mathematical
model to select the optimal multicast path with minimum energy and take into
account deadline and bandwidth constraints. Yet, routing in VANETs is designed with
mobility in mind and aims at providing a reliable link to the destination resources. In
contrast, our approach focuses on delivering a low user-to-resource latency by
exploiting the inter-nodes latencies.

PiCasso is a container orchestration platform that specifically targets edge clouds
with a focus on lightness and platform automation [68]. The developers of PiCasso
intend to develop a service proxy that will redirect user’s requests to the closest node.
However, no technical detail is provided in the paper.

Puthal et al. propose a secure and sustainable load balancing technique which aims
to distribute the load to the less-loaded edge data centers [107]. Similarly, Beraldi et al.
propose a cooperative load balancing technique to distribute the load over different
edge data centers to reduce the blocking probability and the task overall time [108].
Although these algorithms improve the application’s performance by preventing over
saturation, these techniques do not aim to reduce the network latency between the end
user and the fog node serving them. Also, they were evaluated using simulations only,
with no actual system implementation.

Kapsalis et al. propose a fog-aware publish-subscribe system which aims to deliver
messages to the best possible node according to a combination of network latency,
resource utilization and battery state [109]. To our best knowledge this is the only
proposed fog system which aims, similarly to our work, at implementing a trade-off
between proximity and fair load balancing. However, this approach was implemented
and evaluated only in simulation. It is unclear how network latencies, resource
utilization and battery states would be measured in a real implementation nor how
messages would be routed to their destination without being dispatched by a single
central broker node.

65

Chapter 3 – State of the art

Table 3.1 – Literature classification for application placement algorithms.
Type Ref. Dyn. Rep. Obj. Eval. Type Ref. Dyn. Rep. Obj. Eval.

D
at
a

[113] 7 7 NU Sim

Se
rv
ic
e
O
ri
en

te
d

[121] 7 7 RT,RU Sim
[114] 7 7 RT Sim [122] 7 3 DT Testbed
[115] 7 7 RT Sim [123] 7 7 PX,DT Sim
[116] 3 3 RT Sim [124] 7 7 PX Sim
[117] 3 3 RT Sim [125] 7 7 PX,RU Sim

V
M

[118] 7 7 NU Sim [126] 3 7 PX,DT Testbed
[119] 7 3 NU Sim [127] 3 3 PX,RU Testbed
[120] 3 3 NU Sim Hona 3 3 PX,LB Testbed+Sim

Voilà 3 3 PX,ST Testbed+Sim

We present Proxy-mity, our solution for requests routing in fog platforms.
Proxy-mity estimates the inter-node latencies using Vivaldi coordinates then
automates the pod selection process by implementing a trade-off between proximity
and fair load balancing. The request routing take place in the IP layer using
kernel-level iptables, which ensures fast redirection.

3.2 Placement and re-placement

As mentioned previously, in fog platform users’ requests are routed toward
already deployed application instances. The request can be a database query, a set of
parameters to be executed on a service, or a request for image/video processing.
Unlike the encapsulated tasks for which the resources are reserved and released,
requests are routed toward a set of unique application instances that can handle the
request. This approach requires one to place the application instances in nodes that
improve the overall performance of the application. The performance optimization is
tied to the choice of nearby nodes that have enough resources to support the
application’s instance.

The instances placement problem has been extensively studied since the creation
of the first geo-distributed environments such as content delivery networks [110–112],
and a very large number of papers have been published on this topic.

Table 3.1 presents the most relevant recent publications on replica placement in fog
and edge computing systems [113–127]. The papers are classified along multiple
dimensions:

66

3.2. Placement and re-placement

Type describes what is being placed. Data placement focuses on decreasing the
download delay of cached items by placing specific cache in a specific
location [114–117]. In contrast, VM placement typically aims to reduce network
usage [118–120], while service placement optimizes mostly network proximity and
resource utilization [123–127].

Dynamicity (Dyn) is important in systems which may experience considerable
workload variations over time. Many papers focus on the initial placement problem
only, without attempting to update these placements when the workload changes.

Replication (Rep) indicates whether the proposed systems aim at placing a single
object instance, or a set of replicas.

Objective (Obj) represents the metric(s) that the placement algorithms aim to
optimize: Response Time (RT) represents the overall response latency including
network and processing latency; Network Usage (NU) is the volume of backhaul
traffic; Resource Utilization (RU) is the effective use of the available resources;
Deployment Time (DT) is the time needed for the algorithm to find and deploy a
solution; Availability (AV) is the probability that a system is operational at a given
time; Proximity (PX) is the latency between end-user and the closest application
instance; Load Balancing (LB) is the distribution of the load over application’s
replicas; and Saturation (ST) is the performance degradation induced by overloaded
replicas.

Evaluation (Eval) of placement algorithms is often done using simulators such as
CloudSim [128] and iFogsim [129] to evaluate their solutions. However, some
authors also use actual implementations and evaluate them in a real environment or
a testbed.
Few papers in Table 3.1 propose dynamic placement algorithms for replica sets. Yu

et al. study the placement of replicated VMs in order to minimize the backhaul network
traffic [120]. The algorithm considers the proximity of end users to the fog nodes, but
does not take the proximity between distributed fog nodes into account.

Aral et al. [116] and Shao et al. [117] propose dynamic replica placement
algorithms for data services in edge computing. Similarly, Li et al. [127] present a
replica placement algorithm to enhance data availability. All these papers use the
mean latency as their metric for response time evaluation. However, as discussed in
Section 2.4.2, optimizing the mean latency does not necessarily imply an improvement
in the human-perceived quality of service as it does not give guarantees on individual

67

Chapter 3 – State of the art

request response time [130]. These papers [116, 117, 127] also do not consider the
impact of load distribution over the replicas on the application performance. Finally,
only [127] has implemented and tested its proposed algorithms in a real testbed.

In contrast, to our best knowledge, our contributions Hona and Voilà present the
first dynamic replica placement algorithms which aim to maintain the tail latency
within pre-defined bounds. Hona (presented in Chapter 5) finds a solution based on
tail latency and load balancing to ensure a fair distribution of the load over a fixed size
replicaset [19]. Voilà (presented in Chapter 5) on the other hand has the capability to
scale the replicaset’s size according to the tail latency and the pods’ saturation [20].
Hona and Voilà solve the dynamic placement problem based on the network routes as
well as the distribution of traffic, and have been implemented in a mature container
orchestration system.

3.3 Autoscaling

Fog computing applications are expected to face workload variations throughout
the day. Such variations can take the form of variations as function of time–for
example, the typical day/night patterns– as well as variation in terms of the sources of
traffic induced by the non-stationary nature of the end users. As a result, an
autoscaling scheme must be implemented to scale the application resources to adapt
for the perceived changes in the workload.

Although autoscaling has been extensively studied over the previous decades, its
application in the context of fog computing platforms remains nascent. This can be
attributed to the prevalent spread of vertical offloading as an alternative for
autoscaling [82]. If an application is facing saturation in the provisioned computing
resources, then the straightforward solution would be offloading a part of the requests
to the cloud. Although such approach is valid for certain types of applications, this
approach does not offer a feasible solution for latency-sensitive applications, for all the
reasons mentioned in Section 3.1.1.

Nevertheless, the literature includes a wide range of autoscaling techniques in
similar platforms. Autoscalers designed for general-purpose Kubernetes clusters aim
at providing a seamless service for the application users [131–133]. Geo-distributed
computing environments autoscalers aim at selecting the nearest available
resource [134, 135]. Furthermore, countless autoscaling algorithms for cloud

68

3.4. Conclusion

computing which have various objectives like cost reduction, performance
optimization, etc. [136].

Few papers propose auto-scaling systems designed for fog computing platforms.
Zheng et al. propose to vary the number of pods according to the load, but does not
address the question of pod placement nor efficient routing between the end users and
their closest pod [77].

On the other hand, ENORM aims to reduce latency between users and computing
devices, and the network traffic to the cloud [137]. However, it chooses the resources
regardless of their location, and essentially considers every fog node as equivalent to
one another. ORCH proposes to dynamically add compute nodes in the system to
resolve workload surges [96]. In contrast, we consider the set of worker nodes as a
constant and aim to place the right number of replicas in the right set of nodes.

To our best knowledge, Voilà is the only dynamic fog resource manager which
considers at the same time auto-scaling to adjust the necessary number of application
replicas across any significant variation of the request workload,
placement/replacement to choose where these replicas should execute, and routing of
end-user request to nearby replicas [20]. It aims at optimizing the tail request latency
rather than its mean while avoiding replica overloads. Voilà’s autoscaling and
placement algorithms, and their evaluations, are presented in Chapter 6.

3.4 Conclusion

Figure 3.2 places our contributions in a visual representation of the discussed state
of the art. Each of our contributions targeted a problem and provided a lightweight
solution that was implemented on top of Kubernetes. Our contributions were
evaluated both using a realistic testbed to validate the feasibility, and simulation to
validate the scalability. The figure highlights our contributions that focused on
latency-aware resource management. Each of the contribution include a solution for
specific resource management challenges. In contrast, the accumulation of our three
contributions presents a complete solution for all three levels of resource
management. Our contributions were implemented on top of Kubernetes, although
one may argue that the same algorithms can be easily adapted for any other
orchestration engine.

69

Resource Management

Latency AwareEnergy
Optimization [97–99] Resource Utilization

Routing

Task
Offloading
[89, 94, 99,
101, 102]

Request
Routing

publish-
subscribe [109]
Proxy-
mity 4 [18]

Placement

Data
placement
[114–117]

Service
Oriented
[123–127]

DRA [126]

RP-FNSG [127]

Hona 5[19]

Voilà 6[20]

Autoscaling

ENORM [137]

ORCH [96]

Voilà 6[20]

4Discussed in Chapter 4
5Discussed in Chapter 5
6Discussed in Chapter 6

Figure 3.2 – State of the art.

Chapter 4

PROXIMITY-AWARE REQUEST ROUTING

In this chapter, we present Proxy-mity, a proximity-aware traffic routing system for
distributed fog computing platforms. It seamlessly integrates in Kubernetes, and provides very
simple control mechanisms to allow system administrators to address the necessary trade-off
between reducing the user-to-replica latencies and balancing the load equally across replicas.
The evaluation shows that Proxy-mity can reduce average user-to-replica latencies by as much
as 90% while allowing the system administrators to control the level of load imbalance in their
system.

71

Chapter 4 – Proximity-aware request routing

4.1 Introduction

A large range of emerging fog computing applications such as augmented reality
and autonomous driving systems need to serve numerous users or devices at the
same time. To maintain proximity, these applications deploy multiple instances in
relevant locations and provide a homogeneous interface to their users through the use
of classical data partitioning and/or (partial) replication techniques. In this model,
from a functional point of view any interaction with the application may be addressed
to any instance of the application, but performance-wise it is highly desirable that
interactions are addressed to nearby nodes.

A geo-distributed system such as a fog computing platforms must necessarily
choose a suitable trade-off between resource proximity and load-balancing. A system
which would always route every request to the closest instance may face severe load
imbalance between instances if some users create more load than others [15]. On the
other hand, systems like Mesos [13], Docker Swarm [12] and Kubernetes [11]
implement location-unaware traffic redirection policies which deliver excellent
load-balancing between application instances but very suboptimal user-to-resource
network latencies.

In this chapter, we propose Proxy-mity, a proximity-aware request routing plugin
for Kubernetes. We chose Kubernetes as our base system because it matches many
requirements for becoming an excellent fog computing platform: it can exploit even
very limited machines thanks to its usage of lightweight containers rather than VMs,
while remaining highly scalable and robust in highly dynamic and unstable
computing infrastructures. Our approach can however be adapted to integrate in
other container orchestration systems.

Proxy-mity exposes a single easy-to-understand configuration parameter α which
enables system administrators to express their desired trade-off between
load-balancing and proximity (defined as a low user-to-instance network latency). It
integrates seamlessly within Kubernetes and introduces very low overhead. In our
evaluations, it can reduce the end-to-end request latencies by up to 90% while
allowing the system administrators to control the level of load imbalance in their
system.

This chapter is organized as follows. In Section 4.2, we showcase the design of
Proxy-mity, how proximity is measured using Vivaldi coordinates, how the trade-off

72

4.2. System design

between proximity and load balance is implemented, and how the algorithm was
implemented in the iptables routes. Section 4.3 evaluates the performance of
Proxy-mity using a realistic testbed and simulations. Finally, in Section 4.4 we
conclude.

4.2 System design

Proxy-mity 1 is a plug-in designed to integrate in a Kubernetes system and
implement proximity-aware traffic routing. It however has very few dependencies
with Kubernetes and may arguably be adapted to work in different platforms.

Similarly to the standard kube-proxy Kubernetes component, Proxy-mity is
deployed in every worker node of the system. It continuously monitors network
latencies with the other worker nodes using Serf [80], a lightweight implementation
of Vivaldi coordinates [16]. When a Proxy-mity daemon detects a change in the set of
pods belonging to any service, it recomputes a new set of traffic routing rules (with
their weights determining the probability that a request follows each route) according
to preferences expressed by the system administrator, and injects them in the local
Linux kernel using iptables.

In the next sections we respectively discuss the overall system architecture, the
representation and measurement of proximity between nodes, the calculation of
weights to be associated with each route, and the injection of new routes in the local
Linux kernel.

4.2.1 Architecture

Kubernetes is designed as a set of control loops. It therefore continuously monitors
itself, and takes corrective actions when the state it observes deviates from the
specification of the desired system state. This organization makes it highly dynamic
and robust against a wide range of situations. The master node maintains a view of
the current system state which can be queried by other components.

As shown in Figure 4.1a, in unmodified Kubernetes a kube-proxy daemon is
started in every worker node to maintain its local iptables routes. When a change is
detected in the set of pods belonging to a service (caused by a pod start or stop

1. https://github.com/alijawadfahs/FOG-aware

73

https://github.com/alijawadfahs/FOG-aware

Chapter 4 – Proximity-aware request routing

Master

Kube-Proxy

Node 1

Kube-Proxy

Node i

Kube-Proxy

 Iptables ApiServer Gateway Node Serving NodeMaster Node

Pod i

Pod 1

Pod N

W1 = 1/N

Wi = 1/N

WN = 1/N

W1 = 1/N

Wi = 1/N

WN = 1/N

W1 = 1/N

Wi = 1/N

WN = 1/N

Iptables
Weights

Iptables
Weights

Iptables
Weights

Pod i

Pod 1

Pod N

Pod i

Pod 1

Pod N

Node K

(a) kube-proxy architecture.

Master

Node 1

Pod i

Pod 1

Pod N

W1 = F(X1,p1)

Node i

Node K

 Iptables ApiServer Gateway Node Serving NodeMaster Node

Pod i

Pod 1

Pod N

Pod i

Pod 1

Pod N

Wi = F(X1,pi)

WN = F(X1,pN)

W1 = F(Xi,p1)

Wi = F(Xi,pi)

WN = F(Xi,pN)

W1 = F(XK,p1)

Wi = F(XK,pi)

WN = F(XK,pN)

Kube-Proxy Proxy-mity

Kube-Proxy Proxy-mity

Kube-Proxy Proxy-mity

(b) Proxy-mity architecture.

Figure 4.1 – Architectures of kube-proxy and Proxy-mity.

operation or by any kind of failure), all kube-proxy daemons re-inject new routes in
their local iptables system. All kube-proxy daemons inject the same set of rules which
ensures that every pod from the application receives an equal 1/N share of the load
(where N is the number of pods of the application). This ensures excellent load
balancing between the pods. However, in a fog computing scenario where nodes are
broadly geo-distributed, it actually routes significant amounts of end user requests to
pods located far away from them. This results in unacceptably high mean network
latencies, and also in very high standard deviations.

The architecture of Proxy-mity, presented in Figure 4.1b, is very similar to that of
kube-proxy. It receives the same notifications as kube-proxy upon a change in the set

74

4.2. System design

of pods belonging to a service. However, each kube-proxy daemon computes a
specific set of weights to be attached to each route according to the measured network
latencies. Different worker nodes therefore compute different sets of rules, and the
weights attached to different routes in each gateway node are explicitly biased to send
more load to nearby nodes.

These sets of rules are recomputed and re-injected every time a modification is
detected in the set of pods which constitute an application, and also periodically to
account for possible variations in the measured network latencies between nodes.

4.2.2 Measuring proximity

As mentioned in Section 2.4.1, to avoid the overhead of periodically measuring N2

pairwise latencies between N nodes, Proxy-mity relies on Vivaldi coordinates [16] for
modeling the latencies between nodes. Vivaldi is a distributed, lightweight algorithm to
accurately predict the latency between hosts without contacting them. Using Vivaldi, a
node in the cluster can easily compute the latency with all the nodes by communicating
with a few of them.

We specifically use Serf [80], a mature open-source tool which maintains cluster
membership, detects failures, and offers a robust implementation of Vivaldi
coordinates. Serf is based on a gossiping protocol where each node periodically
contacts a set of randomly-selected other nodes, measures latencies to them, and
adjusts their Vivaldi coordinates accordingly. Latency between any pair of nodes is
modeled as the Euclidean distance between their respective Vivaldi coordinates. The
end result is a lightweight and robust system which can produce accurate predictions
of inter-node latencies.

4.2.3 Weight calculation

In Kubernetes, a set of identical pods is called a Deployment. A Kubernetes service
associates a single IP address to such a set of pods to which incoming requests are
distributed.

Consider a deployment Φ composed of N functionally identical pods:

Φ = {ϕ1, ϕ2, ..., ϕN}

75

Chapter 4 – Proximity-aware request routing

where each ϕ represent one pod in this deployment.
A Kubernetes service essentially implements a map function which determines the

probability that an incoming connection gets routed to each of these pods. Kubernetes’
kube-proxy component implements a very simple mapping function:

F (ϕi) = 1/N ∀ϕi ∈ Φ

We can however generalize this formula to any function F which respects:

F : Φ −→ [0, 1] |
N∑
i=1

F (ϕi) = 1

As previously discussed, a request routing system for fog computing
environments must necessarily implement a trade-off between proximity and load
balancing. A system which optimizes based on proximity only risks severe load
imbalances between pods in case different numbers of requests are generated in
different geographical areas of the system. On the other hand, balancing the load
equally among pods will result in larger means and standard deviations of the
latencies between the users and the pods serving them.

We address this challenge by proposing two mapping functions P (which aims for
proximity regardless of load balancing) andL (which aims at load balancing regardless
of proximity). These two functions can be combined in a single function Fα:

Fα(ϕ) = α.P (ϕ) + (1− α).L(ϕ) (4.1)

Here α ∈ [0, 1] is a parameter chosen by the system administrator which represents
the desired trade-off between pure load-balancing (when α = 0) and pure proximity-
based routing (when α = 1).

Function L, which aims to balance the load, is the same as the original Kubernetes
one:

L(ϕi) = 1/N ∀ϕi ∈ Φ

Function P , which aims at maximizing proximity, takes into account the estimated
network latencies between the local node and all the possible serving nodes in the
system. These latencies are represented by the set L = {l1, l2, ..., lN} where li

76

4.2. System design

represents the network latency to the physical node which holds pod ϕi. In fact, any
function where nodes with lower latencies are given greater weight than further away
nodes may act as the proximity-maximizing decay function:

P (ϕi) = fβ(li)∑N
j=1 fβ(lj)

(4.2)

where fβ(li) is a weight determined from the estimated latency to every node. We use
the secondary parameter β to determine how aggressive the proximity-oriented
function should be to favorize nearby nodes.

We propose three possible decay functions to determine the weights fβ(l):

f inverse
β (l) = 1

βl
(4.3)

f power
β (l) = 1

lβ
(4.4)

f exponential
β (l) = e−βl (4.5)

As we will discuss in Section 4.3, different decay functions have different levels of
aggressiveness in selecting nearby pods.

The final weight function Fα,β(ϕ) is therefore:

Fα,β(ϕi) = (1− α). 1
N

+ α.
fβ(li)∑N
j=1 fβ(lj)

∀ϕi ∈ Φ (4.6)

A special case in the computation of weights relates to fact that the node which
computes new weights may also hold a pod of the concerned application. In this case,
the latency attached to the localhost interface may be as low as 0.3ms. When applying
formulas 4.3, 4.4 or 4.5 this results in giving the localhost route an extremely high
probability compared to the other pods of the application. To avoid this effect, we
artificially increase the localhost latencies in the weight calculation by a parameter
localrtt that is set to be slightly lower than the lowest inter-node latencies observed in
the deployed system.

4.2.4 Updated routes injection

Once every node in Proxy-mity has computed the fraction of requests it should route
to every other node, the last step is to inject the corresponding routes in the Linux kernel

77

Chapter 4 – Proximity-aware request routing

PREROUTING

ROUTING
DESCION

Network

FORWARD

ROUTING
DESCION

POSTROUTINGNetwork

INPUT

OUTPUT

Local
Node

Packet going to service X from the local node

DNATed packets

Load Balancing Chain

DNAT POD 1

DNAT POD 2

DNAT POD i

DNAT POD N

Service X
Packet going to service X From end user

Figure 4.2 – Iptables chains and load balancing.

firewall in the form of iptables rules. iptables defines chains of rules for the treatment
of packets where every chain is associated with a different kind of packet processing.
Packets are processed by sequentially traversing the rules in their chains.

As illustrated in Figure 4.2, iptables rules are organized in five chains. Incoming
packets first traverse the PREROUTING chain, then they get split between two chains.
The packets whose destination IP address is locally available are sent to the INPUT
chain for immediate delivery. Other packets traverse the FORWARD chain which
decides where they should be sent next. On the other hand, the packets issued from
the local node traverse the OUTPUT chain. Finally, all outgoing packets traverse the
POSTROUTING chain before being actually sent to the network. Kubernetes
implements its internal network routing system by defining rules in the
PREROUTING and OUTPUT chains: incoming network packets whose destination
address matches the IP address of a Kubernetes service are redirected using rules in
the PREROUTING towards the load-balancing chain. On the other hand, the
OUTPUT chain redirects the packets sent to the service by the local node itself.

As depicted in Figure 4.3a, every Kubernetes service is actually implemented as a
separate chain which redirects packets to the respective pods using DNAT. To
load-balance incoming requests among the service pods, each iptables rule i defines a
probability Pi for incoming requests to exit the iptables chain and get routed to the
corresponding pod Podi.

78

4.2. System design

Load Balancing Chain

 Rule 1: DNAT to POD 1P(Rule 1)

 Rule 2: DNAT to POD 2P(Rule 2)

 Rule N: DNAT to POD NP(Rule N)Local
Node

End User

PREROUTING

OUTPUT

Network

(a) iptables rule chains for both types of packets.

Rule
1

Rule
2

Rule
3

Rule
N-1

Rule
N

P(Rule 1)=P1 P(Rule 2)=P2 P(Rule 3)=P3 P(Rule N-1)=PN-1 P(Rule N-1)=1

1-P1 1-P2 1-P3 1-PN-2 1-PN-1

POD 1
Selected

POD 2
Selected

POD 3
Selected

POD N-1
Selected

POD N
Selected

Incoming
Packets

(b) Markov chain implementing the load-balancing rules for one Kubernetes service.

Figure 4.3 – Load balancing rules in iptables.

Rules are executed in a predefined sequential order, so the probabilistic
load-balancing system actually implements a Markov chain, as shown in Figure 4.3b.
Every incoming packet sent to the service first undergoes rule 1 with a probability P1

of exiting the chain and of being redirected to Pod1. With probability 1− P1 the packet
continues to the next rule. The same mechanism is used for all rules in the chain,
except the last one which routes all remaining messages to the last pod with
probability 1. Based on the individual probabilities Pi, an incoming packet will
therefore eventually get routed to Podi with probability P (Podi):

P (Podi) =



P1 if i = 1

Pi ×
i−1∏
j=1

(1− Pj) if 1 < i < N

N−1∏
j=1

(1− Pj) if i = N

(4.7)

Injecting a set of weights W = {w1, w2, ..., wN} as computed in Equation 4.6 for a
deployment Φ therefore requires us to compute the probabilities Pi which should be

79

Chapter 4 – Proximity-aware request routing

defined in the iptablesMarkov chain such that the resulting probabilitiesP (Podi)match
the desired weights wi:

Pi =



w1 if i = 1

wi × 1
i−1∏
j=1

(1−Pj)

if 1 < i < N

1 if i = N

(4.8)

Upon every detected modification in the set of pods belonging to a Kubernetes
service, Proxy-mity therefore recomputes the weights wi using Equation 4.6 in every
worker node of the system based on its estimated latencies to the other nodes, and
converts them into iptables rule probabilities using Equation 4.8 before injecting them
in the local Linux kernel. The same process is also applied periodically to account for
possible modifications in the estimated inter-node network latencies.

We evaluate the performance of these newly applied rules in the next section.

4.3 Evaluation

4.3.1 Experimental setup

We evaluate Proxy-mity using an experimental testbed composed of 12 Raspberry
Pi 3 B+ single-board computers (Rpi’s), as depicted in Figure 4.4. Despite their
obvious hardware limitations, Raspberry PIs offer excellent performance/cost/energy
ratios and are well-suited to fog computing scenarios where the devices’ physical size
and energy consumption are important enablers for actual deployment [138, 139].

All RPi’s are installedwithHypriotOS 1.9.0 Linux distribution 2, Linux 4.4.50 kernel,
and Kubernetes v1.9.3. In this setup, one machine acts as the Kubernetes master node
while the eleven remaining nodes act as worker nodes. These machines are connected
to each other using a dedicated Gigabit Ethernet switch. Every worker node also acts as
a WiFi hotspot which allows end users and external IoT devices to connect to a nearby
node. Any request addressed by an end-user device to a Kubernetes service therefore
reaches one of the worker nodes in a single WiFi network hop, before being further

2. https://blog.hypriot.com/downloads/

80

https://blog.hypriot.com/downloads/

4.3. Evaluation

Master
Node

B
a
ckh

aul

Net

wor
k

Edge Layer

Internet

N
od
e

2

No
d
e

3

N
o
de

1
1

N
o
de

1
2

End Users

Figure 4.4 – Experimental testbed organization.

routed via thewired network to one of the service’s pods using the iptables rules created
by Proxy-mity.

We create artificial network latencies between every pair of nodes using the Linux
tc command. We use actual measurements of city-to-city network latencies as a
representation of realistic pairwise latencies between geo-distributed nodes. These
pairwise latencies were obtained from the WonderNetwork 3 GeoIP testing solution,
and are presented in Table 4.1. In this configuration, network latencies range from
4ms to 40ms and can arguably represent a typical situation for a geo-distributed fog
computing infrastructure.

4.3.2 Performance overhead

The Proxy-mity load-balancing systemmust carry additional tasks compared to the
standard kube-proxy component of Kubernetes: it must execute Serf on every worker
node (which creates periodic CPU and network activity), recompute weights and inject
updated routes periodically. When the fog computing platform is composed of limited
devices such as Raspberry PIs it is important to keep this performance overhead as low
as possible.

3. https://wondernetwork.com/

81

https://wondernetwork.com/

Chapter 4 – Proximity-aware request routing

Table 4.1 – Inter-node network latencies (in ms).

Am
ste

rd
am

Br
us

se
ls

Co
pe

nh
ag

en

Dü
ss
eld

or
f

Ge
ne

v a

Lo
nd

on

Ly
on

M
ar
se
ill
e

Pa
ris

St
ra
sb
ou

rg

Ed
in
bu

rg
h

Amsterdam 0.3 14 18 12 20 9 24 40 26 13 19
Brussels 14 0.3 16 14 20 10 14 16 8 24 17

Copenhagen 18 16 0.3 15 30 20 25 35 22 27 31
Düsseldorf 12 14 15 0.3 15 15 25 20 10 22 22
Geneva 20 20 30 15 0.3 18 12 10 36 20 28
London 9 10 20 15 18 0.3 14 38 4 21 10
Lyon 24 14 25 25 12 14 0.3 24 10 16 25

Marseille 40 16 35 20 10 38 24 0.3 25 30 27
Paris 26 8 22 10 36 4 10 25 0.3 12 13

Strasbourg 13 24 27 22 20 21 16 30 12 0.3 30
Edinburgh 19 17 31 22 28 10 25 27 13 30 0.3

Figure 4.5 shows the the total node’s CPU and memory usage before and after
starting Proxy-mity on one of the cluster’s nodes. Proxy-mity is configured to check
for changes every 10 seconds (this is the default value in our implementation).

Before Proxy-mity starts at time 15 s, the monitored node is already acting as an
(idle) Kubernetes worker node. It uses on average 3% of CPU and 187MB of memory.
After Proxy-mity is started thememory usage grows by only 3MB and the average CPU
usage grows by ≈ 2-4%. We conclude that the performance overhead, although not
totally negligible, remains sufficiently low not to disturb the good behavior of worker
nodes in their operations.

This low performance overhead also indicates that the introduction of Proxy-mity
will not significantly affect the scalability or fault-tolerance properties of Kubernetes.
Besides the introduction of the very lightweight, scalable and robust Serf system, Proxy-
mity does not require a re-organization of Kubernetes processes, and simply creates
iptables rules with different weights at every node.

4.3.3 Service access latency

We first evaluate the effectiveness of Proxy-mity in distributing load according to a
given proximity/load-balancing trade-off α and decay function fβ(l). We deploy Proxy-
mity with a Kubernetes service which contains a small Web server that simply returns

82

4.3. Evaluation

P
ro

x
y
-m

it
y
 S

ta
rt

e
d

C
y
c
le

 1

C
y
c
le

 2

C
y
c
le

 3

C
y
c
le

 4

C
y
c
le

 5

C
y
c
le

 6

C
y
c
le

 7

C
P

U
 U

sa
g
e
 [%

]
M

e
m

o
ry U

sa
g
e
 [M

B
]

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

5

10

15

187

188

189

190

Time (Seconds)

Figure 4.5 – CPU and memory usage for Proxy-mity.

Table 4.2 – Proxy-mity evaluation parameters.

α {0.1, . . . , 1}
β {0.2, 0.5, 1, 1.5, 2}

fβ(l) {1/βl, 1/lβ, exp(−βl)}

localrtt 3ms
Number of pods (|Φ|) {5, 11}

Transmitted requests/experiment 1000

the IP address of the serving pod to every client. The execution time of the service
function itself is extremely short, so any end-to-end latency measured at the client side
accurately represents the network latency that was experienced by every request.

In every experiment in this section, we issue 1000 HTTP requests originating from
a single node of the system (the London node), and observe the distribution of
latencies experienced by these requests. The requests address a Kubernetes service
which is deployed either across 11 pods (one in every worker node of the system), or
only 5 pods (with none of these pods running in the London node). Having all traffic
originating from a single node can be seen as a worst-case scenario for load-balancing
among pods, and therefore allows us to closely observe the behavior of Proxy-mity.
The parameters for this experiment are summarized in Table 4.2.

83

Chapter 4 – Proximity-aware request routing

(a) Deployment with 11 pods located in all the nodes.

β=0.2 β=0.5 β=1 β=1.5 β=2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0

4

8

12

16

Alpha (α)

A
ve

ra
g
e
 R

T
T

 L
a
te

n
cy

 [
m

s]

Function:
1

βl

1

lβ
e

−βl

(b) Deployment with 5 pods (none of them in the London gateway node).
β=0.2 β=0.5 β=1 β=1.5 β=2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

8

12

16

Alpha (α)A
ve

ra
g
e
 R

T
T

 L
a
te

n
cy

 [
m

s]

Figure 4.6 – Average service access latency.

Figure 4.6 shows the average measured end-to-end latency for various values of α,
choices of decay function, and values of β: Figure 4.5a shows the results with a
deployment of 11 pods, and Figure 4.5b shows the results with a deployment of 5
pods.

Effect of parameter α In all presented figures, we observe that configurations where
α = 0 experience high average latencies. This is due to the fact that requests are
distributed equally among all the pods, so a significant fraction of requests gets routed
over long-latency routes. This is the default Kubernetes behavior.

When α increases, requests experience much lower latencies, which indicates that
the closest pods receive more load than the others. For example, in the case of {|Φ| =
11, β = 0.5, fβ(l) = exp(−βl)}, the overall average request latency is 15.7ms for α = 0
but only 1.09ms for α = 1 (a 92% reduction of latency).

84

4.3. Evaluation

The parameter α therefore effectively allows the system administrator to control
the latency/load-balancing trade-off: low values of α produce equal load balancing
whereas high values of α favorize proximity.

Effect of parameter β and the choice of decay function All evaluated decay
functions achieve similar results where greater values of α produce lower average
service latencies. However, they differ in their level of aggressiveness. Unsurprisingly,
the exponential function exp(−βl) produces the fastest decay whereas the other two
functions produce slower decay. The exponential function may therefore be used in
scenarios where we want to strongly skew the request routing system toward
proximity, whereas the other two functions may be used for implementing less
skewed load distribution.

Interestingly, the choice of parameter β does not significantly influence the end
results, except for the fβ(l) = 1

lβ
decay function. This is due to the fact that the shape of

the chosen decay function matters more than its own parameter. In future
experiments we therefore fix β to a single “medium” value per decay function.

4.3.4 Load distribution

We now focus more closely on the statistical distribution of request latencies. We
execute the same experiment as in the previous section over a deployment of 11 pods,
and measure the number of requests which get routed to each pod (sorted by their
latency to the gateway node).

The experiment results are presented in Figure 4.7. Each bar in the figure indicates
the number of requests processed by a pod with the associated latency to the gateway
node. We can see when α = 0 that all the pods receive roughly the same number of
requests regardless of their distance to the gateway node. The load per pod fluctuates
slightly because the routing system is probabilistic and therefore experiences some
amount of noise.

As the value of α increases, more packets get routed toward the pods with a lower
latency. Finally, with α = 1 the load is balanced only based on the proximity function,
which leads to extreme skew between nodes (in particular in the case of
f(l) = exp(−l/2), where a single pod receives more than 90% of the total load).

The obvious possible drawback in the extreme case of α = 1 is that a single pod
which processes most of the incoming traffic might become overloaded as a result of

85

Chapter 4 – Proximity-aware request routing

1/l 1/l^2 exp(-l/2)
α

=
0

α
=

0
.2

α
=

0
.5

α
=

0
.8

α
=

1
0

.3 0
4

0
9

1
0

1
0

.1 1
4

1
5

1
8

2
0

2
1

3
8

0
.3 0
4

0
9

1
0

1
0

.1 1
4

1
5

1
8

2
0

2
1

3
8

0
.3 0
4

0
9

1
0

1
0

.1 1
4

1
5

1
8

2
0

2
1

3
8

0

25

50

75

100

0

50

100

150

200

250

0

100

200

300

400

500

0

200

400

600

800

0

250

500

750

Latency From The Gateway to The Serving Node

N
u
m

b
e
r

o
f
R

e
c
e
iv

e
d
 P

a
c
ke

ts

Figure 4.7 – Load distribution as a function of α and f(l).

the load imbalance. Remember however that we are producing incoming traffic at a
single node only. In a setup where traffic is being generated in multiple locations, we
would observe much less load imbalance between the pods, as we discuss next.

4.3.5 Load (im)balance in the presence of multiple senders

A fog computing platform has very few reasons to deploy pods in regions where no
user is accessing the considered service. Evaluationswhere all the traffic originates from
a single sender therefore represent a worst-case scenario in terms of the load imbalance

86

4.3. Evaluation

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0
Alpha (α)

S
ta

n
d
a
rd

 D
e
vi

a
ti
o
n
 o

f
L
o
a
d
 P

e
r

P
o
d
 [

%
]

Number of senders: 1 2 3 4 5 6 7 8 9 10 11

Figure 4.8 –Overall system load imbalance as a function ofα and the number of senders.

it creates. A more realistic scenario where traffic originates from multiple senders in
various regions of the systemwould arguably experience amuch lower load imbalance.

To study this effect, we simulated a system where a randomly-chosen subset of the
worker nodes act as traffic senders.All senders issue the samenumber of requests,while
the other nodes do not send any request at all. Using Equation 4.6with f(l) = exp(−l/2)
(where β = 0.5) we can compute the weights that each sender node would assign to
each of the pods, based on the inter-node latencies from Table 4.1. In the presence of
multiple senders, each pod serves a large number of requests originating from nearby
senders, and lower numbers of requests originating from senders located further away.
We can therefore add these numbers together to compute the total load that each of the
pods is expected to receive.

Figure 4.8 depicts the standard deviation among the predicted loads per pod, in a
scenario where every node holds a pod of the service and a random subset of k nodes
act as traffic senders.

We observe two interesting phenomena. The first one relates to the fact that a greater
number of senders naturally creates a better-balanced system. Using one sender among
11 nodes, with α = 1, the standard deviation among predicted pods’ loads is as high
as 25% of the mean load among pods. When moving to two randomly-chosen senders,
this standard deviation drops to 17% of the mean. The same trend continues until the

87

Chapter 4 – Proximity-aware request routing

scenario where all nodes act as senders: here the standard deviation drops to a mere
1% of themean. This indicates that, although α = 1 requires Proxy-mity to aggressively
favorize proximity and low end-to-end request latencies, geographical distribution of
the traffic sources naturally helps to balance the load among pods. The more uniform
the distribution of traffic sources is, the better-balanced the resulting system will be
(without sacrificing the objective of proximity and low service latencies).

The second phenomenon concerns the relation between α and the system load
imbalance, measured as the standard deviation between predicted pods’ load. When
α = 0 the predicted load imbalance is obviously 0, as each sender equally distributes
the load it creates between all the pods. When α = 1 the predicted load imbalance is a
function of the distribution of traffic sources. Interestingly, when α takes intermediate
values between 0 and 1, the load imbalance varies linearly between these two
extremes. This means that the criteria for choosing a good value for α can be
explained to system administrators in a precise yet very intuitive manner: “α linearly
controls the system imbalance between 0 when α = 0 and some value when α = 1 which is
determined by the geographical heterogeneity of the traffic senders”.

4.4 Conclusion

Container orchestration engines such as Kubernetes do not take the geographical
location of service pods into account when deciding which replica should handle
which request. This makes them ill-suited to act as general-purpose fog computing
platforms where the proximity between end users and the replica serving them is
essential. We presented Proxy-mity, a proximity-aware traffic routing system for
distributed fog computing platforms. It seamlessly integrates in Kubernetes, and gives
very simple mechanisms to allow system administrators to control the necessary
trade-off between reducing the user-to-replica latencies and balancing the load
equally across replicas. When the pods are geographically distributed close to the
sources of traffic, Proxy-mity drastically reduces the end-to-end service access
latencies without creating major system load imbalances.

The work in this chapter is the first step toward a proximity-aware orchestration
engine. Solving the routing problem is a very important step to solve the placement
and autoscaling problems as we are going to see in the next two chapters.

88

Chapter 5

TAIL-LATENCY-AWARE

PLACEMENT/RE-PLACEMENT

In this chapter, we propose Hona, a latency-aware scheduler integrated in the Kubernetes
orchestration system. Hona maintains a fine-grained view about the volumes of traffic
generated from different user locations. It then uses simple yet highly-effective heuristics to
identify suitable replica placements, and to dynamically update these placements upon any
evolution of user-generated traffic. Our evaluations show that Hona efficiently identifies
instance placements which reduce the tail latency. At the same time, it keeps computation
complexity low and maintains reasonable load balancing between the replicas.

89

Chapter 5 – Tail-latency-aware placement/re-placement

5.1 Introduction

Choosing the best set of fog servers where an application should deploy its
replicas requires one to follow two objectives. First, the chosen placements should
minimize the network latencies between end-user devices and their closest
application replica. To deliver outstanding Quality-of-Experience to the users it is
important that each and every issued request gets processed within tight latency
bounds. We therefore follow best practice from commercial content delivery
networks [8] and aim to minimize the tail latency rather than its mean, for example,
defined as the fraction of requests incurring a latency greater than some threshold.
Second, a good placement should also allow the different replicas to process
reasonably well-balanced workloads. When application providers must pay for
resource usage, they usually cannot afford to maintain replicas with low resource
utilization, even if this may help in reducing the tail device-to-replica latency.

Selecting a set of replica placements within a large-scale fog computing
infrastructure remains a difficult problem. We first need to monitor the usage of the
concerned applications to accurately identify the sources of traffic and their respective
volumes. Then, we must face the computational complexity of the problem of
choosing r nodes out of n such that at least P% of end-user requests can be served in
less than Lms by one of the chosen nodes, and the different application replicas
remain reasonably load-balanced. Replica placements must then be updated when the
characteristics of end-user requests change. Finally, we need to integrate these
algorithms in an actual fog orchestration platform.

We propose Hona 1, a tail-latency-aware application replica scheduler which
integrates within the Kubernetes container orchestration system [11]. Hona uses
Kubernetes to monitor the system resource availability, Vivaldi coordinates to
estimate the network latency between nodes [16] and Proxy-mity to monitor traffic
sources and to route end-user traffic to nearby replicas [18]. Hona uses a variety of
heuristics to efficiently explore the space of possible replica placement decisions and
select a suitable one upon the initial replica placement. Finally, it constantly monitors
the performance of the current placement and automatically takes corrective
re-placement actions when the characteristics of the end-user workload changes.

1. Hona (A
�	
J
�
ë) means “here” in Arabic.

90

5.2. System design

Our evaluations based on a 22-node testbed show that Hona’s heuristics can
identify placements with a tail latency very close to the theoretic optimal placement,
but in a fraction of the computation time. Hona’s placements also deliver an
acceptable load distribution between replicas. The re-placement algorithm efficiently
maintains a very low tail latency despite drastic changes in the request workload or
the execution environment. Finally, we demonstrate the scalability of our algorithms
with simulations of up to 500 nodes.

This chapter is organized as follows. Section 5.2 presents the system model, how
Hona collects its information, and the initial replica and re-placement algorithms. Then,
Section 5.3 evaluates this contribution and Section 5.4 concludes.

5.2 System design

Hona 2 dynamically chooses the placement of fog application replicas in a fog
computing infrastructure to substantially reduce the user-experienced tail latency
(thereafter referred to as Proximity) while keeping replicas load-balanced (thereafter
referred to as minimizing Imbalance).

To realize a concrete implementation of this idea,we address the following questions
in turn:

1. How should we define objective functions to represent the Proximity and Imbalance
of a replica placement decision? (§ 5.2.1);

2. How should we monitor a fog computing infrastructure to precisely identify the
sources of traffic? (§ 5.2.2);

3. How should we explore the space of possible choices to select an initial replica
placement? (§ 5.2.3);

4. How should we update an prior replica placement choice in reaction to changes of
the user-generated traffic patterns? (§ 5.2.4);

5. How can we integrate these different techniques in Kubernetes with minimum
modifications to its source code? (§ 5.2.5).

2. https://gitlab.inria.fr/afahs/hona-code

91

https://gitlab.inria.fr/afahs/hona-code

Chapter 5 – Tail-latency-aware placement/re-placement

5.2.1 System model

We define a fog computing infrastructure as a set of n server nodes
∆ = {δ1, δ2, . . . , δn}, where each δi is an object of class Node which holds information
on the status of the node, its Vivaldi coordinates, and its current request workload.
Similarly, we define a deployed application as a set of r replicas Φ = {ϕ1, ϕ2, . . . , ϕr}
(with r ≤ n). A Replica object ϕi holds information on the status of the replica, its
hosting node, its current request workload and the locations from which this
workload originates.

The replica placement problem can be formulated as the mapping of every replica
ϕi ∈ Φ to a server node δj ∈ ∆ to optimize some pre-defined utility metrics. It can be
solved in principle by exploring the set of all possible placement decisions
Ω = {c1, c2, . . . , ck} where ci ⊂ ∆ and |ci| = r. However, the number k of possible
placements is extremely large even for modest values of r and n, so the usage of a
heuristic is necessary to efficiently identify interesting placement decisions.

We evaluate the quality of a potential replica placement decision according to two
metrics. The Proximity metric P% represents the tail latency experienced by the
application users. Specifically, it measures the percentage of network packets which
reached their assigned replica with a latency lower than the target L. Greater
Proximity values depict a better system. Every replica object ϕi holds two member
variables which respectively estimate the total number of packets received by the
replica (ϕi.req) and the number of received packets with a latency greater than the
target L (ϕi.sreq). Using these variables we can compute the Proximity P%:

P% =

 1−

r∑
i=1

ϕi.sreq

r∑
i=1

ϕi.req

× 100%

Likewise, the Imbalance metric I% represents the quality of load balancing
between the replicas, and therefore the effectiveness of each provisioned replica.
Lower Imbalance values depict a better system. We define Imbalance as the standard
deviation of the workloads of individual replicas for a given application:

I% = σreq
r∑
i=1

ϕi.req

× 100% Where: σreq =
√√√√1
r
×

r∑
i=1

(ϕi.req − µreq)2

92

5.2. System design

Our heuristics aim to optimize an objective function Θ which is a linear
combination of P% and I%. For each case ci ∈ Ω they evaluate the objective function
Θ, and eventually select the evaluated case which maximizes the function:

Θα(ci) = α
ci.P%
Pmax%

+ (1− α)Imin%
ci.I%

The value α represents the desired tradeoff between Proximity and Imbalance, and
Pmax% and Imin% respectively represent the greatest and lowest observed values of P%
and I% in the set of evaluated cases.

In our evaluations we use α = 0.95 to favorize the reduction of tail latency over the
reduction of load imbalance. Note that this function can easily be extended to integrate
other optimization metrics such as financial cost and energy consumption.

5.2.2 System monitoring

To evaluate the P% and I% metrics, Hona relies onmeasured data about the sources
of traffic addressed to different nodes. The initial replica placement problem must be
solved before the application gets deployed, so it cannot rely on information related
to this specific application. Instead, we rely on information from other applications, as
an approximation of the future traffic of the concerned application. In the replica re-
placement problem the application is already deployed so we can rely on the specific
traffic addressed to it.

Evaluating the two metrics requires access to three types of data: (i) cluster
information with the list of nodes in the system, their available resources and the list
of running pods with their hosting node; (ii) latency information between any pair of
nodes in the system; and (iii) network traffic information with the volumes of traffic
exchanged between every gateway node and every replica.

Cluster information is maintained by Kubernetes itself. We can access it with simple
calls to its etcd service.

Latency information is maintained by Serf using an efficient gossiping protocol. We
can obtain an accurate up-to-date estimate of the latency between any pair of worker
nodes with a simple call to the rtt interface of Serf’s agent at the master node.

Traffic information can be obtained from Proxy-mity. In Kubernetes, every Service is
assigned a distinct private IP address which uniquely identifies a single application.
Proxy-mity, in turn, creates in every worker node an IP-layer route between this

93

Chapter 5 – Tail-latency-aware placement/re-placement

service’s IP address and every pod which belongs to this application. Gateway nodes
therefore have access to detailed information regarding the volume of traffic
exchanged with every pod in the system thanks to kernel-level counters. Proxy-mity
makes this information available to Hona’s scheduler via a local call to its local Serf
agent.

5.2.3 Initial replica placement

When deploying an application for the first time, finding the optimal placement
decision for r replicas among nworker nodes requires in principle one to fully explore
the set Ω of all possible placements to identify the placement which optimizes the
objective function P%. However, the space of possible placements is extremely large
even for modest values of r and n:

|Ω| =
(
r

n

)
= n!
r!(n− r)!

For instance, placing 10 replicas in a 100-node system produces a space of
100!

10!(100−10)! = 17, 310, 309, 456, 440 possible solutions. Exploring this space in its entirety
is obviously not feasible. However, it is not strictly necessary for us to identify the
exact optimal placement. In most cases it is largely sufficient to identify an
approximate solution which delivers the expected quality of service to the end users.
We can therefore define heuristics which explore only a small fraction of Ω and select
the best placement out of the explored solutions.

To partially exploreΩ, the first step is to restrict the search to theworker nodeswhich
have sufficient available resources to host a pod. This reduces the set of nodes to ∆′ ⊂ ∆
which contains only the suitable nodes.

We define two heuristics to explore the space of initial replica placements: a random
search heuristic, and a heuristic which exploits Vivaldi’s geometric model of network
latencies.

Random search heuristic: This heuristic is presented in Algorithm 5.1. The
RandomCases function first computes the load distribution per node (LPN) using the
information collected from the nodes. It then initializes the set of evaluated cases with
a first randomly-selected configuration, and iteratively draws additional
randomly-selected configurations until a solution is found or the time quota allocated

94

5.2. System design

Algorithm 5.1: Random-search initial placement heuristic.
Input: ∆, Lat, QoS, Traf, t, r, L
Output: csol

1 Function RandomCases(∆, Lat, QoS, Traf, t, r, L)
2 ∆′ ← GetFeasibleNodes(∆)
3 LPN← CalculateLoadPerNode(Traf)
4 SN← GetRandomSet(∆′,r)
5 ci← CaseStudy(∆, ∆′, SN, Lat, Traf, LPN, L)
6 Cases.append(ci)
7 while Test(ci,QoS,t) != True do
8 ci← CaseStudy(Nodes, Lat, Traf, SN, LPN, L)
9 Cases.append(ci)

10 csol← GetBest(Cases)
11 return csol

to the search expires. The GetBest function then selects the best studied configuration
and the function returns.

In our experience, this heuristic provides good solutions when the Latency
threshold is relatively high as many placements can fulfill this QoS requirement. A
short random search identifies at least one of them with high probability. However, in
more difficult cases with a lower latency threshold, the number of solutions reduces
drastically and this heuristic often fails to find a suitable one. We therefore propose a
second heuristic which uses Vivaldi’s geometric model to drive the search toward
more promising solutions.

Vivaldi-aware heuristic: Vivaldi models network latencies by assigning each node an
8-dimensional coordinate. The latency between two nodes is then approximated by the
Euclidean distance between their coordinates.

Hona introduce an efficient search heuristic which exploits this simple geometric
model. As shown in Algorithm 5.2, the heuristic starts by computing the load
distribution per node before grouping the nodes into small groups according to their
location in the Vivaldi Euclidean space.

The main idea of this heuristics is to identify groups of nearby nodes and to select a
single replica among them to serve the traffic originating fromall of them. The grouping
of nearby nodes is done using the CreateGroups function which randomly selects a first
node and creates a group with all nodes in its neighborhood. The size of each group
is determined by the ND (Nodes Density) variable. This variable is computed as the

95

Chapter 5 – Tail-latency-aware placement/re-placement

Algorithm 5.2: Hona’s initial replica placement heuristic.
Input: ∆, Lat, r, QoS, t, Traf, tech, p, Change, L
Output: csol

1 Function CreateGroups(∆, Lat, r, L, Tech, p)
2 ND← len(∆) / (r ∗ p)
3 Temp← ∆
4 while len(Temp) > 0 do
5 if len(Temp) < ND then
6 Groups.append(group(Temp, ∆, L, Tech))
7 else
8 MainNode← Random.choice(Temp)
9 Nearby← GetNearby(MainNode, Temp)

10 GN← [MainNode] + Nearby
11 Temp.remove(GN)
12 Groups.append(group(GN, ∆, L, Tech))

13 Function group(GN, ∆, L, Tech)
14 group.nodes← GN
15 if Tech == 0 then
16 group.leader← GetLeaderRequests(GN)
17 if Tech == 1 then
18 group.leader← GetLeaderNeighbors(GN, ∆, L)

19 Function HonaCases(∆, Lat, r, QoS, t, Traf, Tech, p, Change, L)
20 Count = 0
21 LPN← CalculateLoadPerNode(Traf)
22 Groups← CreateGroups(∆, Lat, r, L, Tech, p, Traf)
23 Leaders← GetLeaders(Groups)
24 SN← GetRandomSet(Leaders,n)
25 ci← CaseStudy(∆, Lat, Traf, SN, LPN, L)
26 Cases.append(ci)
27 while Test(ci,QoS,t) != True do
28 Count++
29 ci← CaseStudy(∆, Lat, Traff, SN, LPN, L)
30 Cases.append(ci)
31 if Count%Change == 0 then
32 Groups← CreateGroups(∆, Lat, r, L, Tech, p)
33 Leaders← GetLeaders(Groups)
34 SN← GetRandomSet(Leaders,n)
35 csol← GetBest(Cases)
36 return csol

96

5.2. System design

fraction of total number of system nodes to the desired number of replicas, multiplied
by a user-defined variable p. Larger values of p create smaller groups. The algorithm
periodically re-generates new groups and group leaders, until a solution is found or
the deadline is reached.

Once a group has been identified, a single node within the group is chosen as the
group leader which will receive a replica while the others are excluded as potential
replica locations.

We propose two possible criteria for the final selection of the group leader, which
result in two variants of this heuristic:
H1 selects the node which generates the greatest number of end-user requests. This
increases the number of requests that will be processed by their gateway node, with
a gateway-to-replica latency of approximately 0.

H2 selects the node with the greatest number of neighbors. Neighborhood is
established as an enclosure of the nodes with a latency lower than the threshold
latency L. A replica placed in a node with high number of neighbors will offer a
nearby replica for all its neighbors.
Similar to the randomplacement heuristic, this algorithm randomly chooses r group

leaders to produce a replica placement which gets evaluated using function Θ. The
algorithm evaluates as many such placements as possible until a solution is found or
the deadline expires, and terminates by returning the best placement.

5.2.4 Replica re-placement

Online systems often observe significant variations over time of the characteristics
of the traffic they receive [17]. To maintain an efficient replica placement over time, it
is important to detect variations when they occur, and to update the replica placement
accordingly.

Hona periodically recomputes the Proximity and Imbalance metrics with
monitored data collected during the previous cycle. When these metrics deviate too
much from their initial values, it triggers the Replace function which is in charge of
updating the replica placement. To avoid oscillating behavior, and considering that
re-placing a replica incurs a cost, Hona re-places at most one replica per application
and per cycle.

97

Chapter 5 – Tail-latency-aware placement/re-placement

Algorithm 5.3: Hona’s replica re-placement heuristic.
Input: ∆, Φ, QoS, Lat, Reason, Traf
Output: SelectedSolution

1 Function Replace(∆, Φ, QoS, Lat, Reason, Traff)
2 for ∀ϕi ∈ Φ do
3 Slow[ϕi]← CalculatePercentageSlow(Φ, Traf, Lat)
4 ReqPerPod[ϕi]← GetRequestPerPod(Φ, Traf)
5 if Reason=="Proximity" then
6 SortedPods← Sort(Slow)
7 PotentialNodes← SlowSources(Traf,Φ,Lat)
8 if Reason=="Imbalance" then
9 SortedPods← ISort(ReqPerPod)
10 PotentialNodes← NearbyTraffic(Traff,Φ,Lat)
11 for ϕi in SortedPods do
12 for δi in PotentialNodes do
13 SN← Nodes(Φ) - Node(ϕi) + δi
14 ci← CaseStudy(∆, Lat,Traff,SN,LPN,AL)
15 Cases.append(ci)
16 if ci is a solution then
17 solutions.append(ci)
18 found← True
19 if found==True then
20 Return GetBest(solutions)
21 if Solutions==NULL then
22 Return GetBest(Cases)

Algorithm 5.3 presents the re-placement heuristic. It first sorts the application
replicas to identify the least useful ones according to the current conditions, and then
tries to find them a better location out of a filtered set of nodes.

The identification of the least useful replica depends on the nature of the
performance violation. If the Proximity metric has degraded significantly, then the
heuristic will attempt to re-place one of the replicas with the greatest observed tail
latency. On the other hand, if the re-placement is triggered by an increase of the
Imbalance metric, the heuristic will select one of the replicas which process the lowest
amount of load.

Likewise, the set of potential nodes available to host the pod is selected according
to the violation type. If the violation was caused by a lack of proximity, the potential
nodes will consist of the gateway nodes that are suffering from high tail latency. On the

98

5.2. System design

other hand, if the violation was caused by load imbalance, the potential nodes are those
located close to the main sources of traffic.

The replacement function then iterates through the list of least useful replicas, and
tries to find a better node to hold them. It stops as soon as it finds a suitable solution
which improves Θ by at least some pre-defined value. In case no improvement can be
obtained by re-placing one replica, the systemkeeps the current placement unmodified.
A potential solution in this case would be to increase the number of replicas. We leave
this topic for future work.

5.2.5 Implementation

We implemented the replica placement and re-placement algorithms in
Kubernetes by changing the way it schedules application pods on the available
resources. This can be done without changing the scheduler’s implementation by
exploiting the standard NodeSelector functionality which allows entities to define
constraints regarding the placement of pods onto nodes.

Hona assigns labels to server nodes and to application deployments such that the
application’s pods can only be placed by the Kubernetes scheduler on the set of nodes
which was chosen by the replica placement algorithm. Hona adds an anti-affinity rule
which forces the replicas to be located in different nodes, resulting in Kubernetes
necessarily placing replicas in the chosen locations.

When executing node re-placement, Hona must not only identify the node where a
new replica will be started. To avoid creating unnecessary downtimes, it must also
make sure to delete the previous replica only after the new one has been started. This
procedure is illustrated in Figure 5.1. In the initial state, the application has two
replicas running in δ1 and δ2. The replica re-placement process starts when Hona
detects a QoS violation. It then chooses a solution: the pod in Node 2 must be replaced
with another in δ3. The first step is labeling δ3, then requesting the creation of an
additional pod by scaling up the deployment. Once the new pod has been started,
Hona removes the label at δ2, orders the deletion of the pod located at this node, and
scales the deployment down to its initial number of replicas. This changes the replica
location without incurring a temporary down time during which the application
would have one less replica to handle the request workload.

99

Chapter 5 – Tail-latency-aware placement/re-placement

Label

φ1
�1

�2

�3

φ2

φ3

Hona

C
he

ck

φ 2
	D
el
et
ed

�
3	
	L
ab
el
ed

�
2	
		F
lu
sh
ed

Sc
al

e
U

p

Sc
al

e
D

ow
n

Legends

φi Pod i

�i Node i

Execute

Figure 5.1 – Execution of a node re-placement operation.

5.3 Evaluation

We evaluate this work using a combination of experimental measurements and
simulations. The experimental setup consists of 22 RPis model 3B+ single-board
computers acting as fog computing servers. Such machines are frequently used to
prototype fog computing infrastructures [92]. They run the HypriotOS v1.9.0
distribution with Linux kernel 4.14.34, Docker v18.04.0 and Kubernetes v1.9.3. We
implemented Hona on top of Serf v0.8.2.dev and the development version of
Proxy-mity.

As shown in Figure 5.2, Hona is implemented as a daemon running in the
Kubernetes master node. It fetches information from Kubernetes and Serf, and
expresses its placement decisions by attaching labels to the concerned nodes.

In our cluster, one RPi runs the Kubernetes master and the Hona scheduler, while
the remaining RPIs act as worker nodes capable of hosting replicas. Every worker node
is also a WiFi hotspot and a Kubernetes gateway so end users can connect to nearby
worker nodes and send requests to the service.

Similar to the evaluation of Proxy-mity, we emulate realistic network latencies
between the worker nodes using the Linux tc 3 command. We specifically use latency
values measured between European cities 4. In the evaluation of Proxy-mity the

3. https://linux.die.net/man/8/tc
4. https://wondernetwork.com/

100

https://linux.die.net/man/8/tc
https://wondernetwork.com/

5.3. Evaluation

Hona
Check

Kube

Serf Vivaldi

Serf Query

Master �1
API

Worker �2

Cluster

Serialization

Hona
Replace

System Admin

Hona
Schedule

Hona
Label

Hona
Deploy

Kubectl

Proxy Serf

Proxy Serf

Proxy Serf

�n

Proxy Serf

�n-1

Hona
Dep. Files

Hona
Registry

Figure 5.2 – Hona’s architecture.

testbed consisted of 12 nodes where each node emulated one of the cities shown in
Table 4.1. In Hona, the tested was extended to 22 nodes and the cities that are
emulated are depicted in Figure 5.3. Network latencies range from 3ms to 80ms with
an average latency of ≈ 28ms and arguably represent a typical situation for a
geo-distributed fog computing infrastructure.

The application is a web server which simply returns the IP address of the serving
pod. We generate workloads either by equally distributing traffic among all gateway
nodes, or by selecting specific gateways as the only sources of traffic. The threshold
latency is L = 28ms (the median inter-node latency in our system), the trade-off
between Proximity and Imbalance is α = 0.95, and the deadline to find a placement is
10 s.

We perform the scalability analysis using a simulator which randomly creates up
to 500 virtual nodes in the Vivaldi Euclidean space, and use the same heuristics
implementation as in Hona to select replica placements.

5.3.1 Initial replica placement

We first evaluate Hona’s initial placement algorithms and compare them with the
unmodified Kubernetes scheduler and the optimal solution found using a brute-force
approach. In the following graphs, each algorithm is denoted by a letter: O for the
optimal solution found using brute-force search, R for the random heuristic, H1 and
H2 for the first and second versions of Hona heuristic.

101

Chapter 5 – Tail-latency-aware placement/re-placement

Paris

London

24ms

Lyon

Brussels

40ms
Barcelona

17ms

Amsterdam

Copenhagen

10msOslo

Stockholm

Helsinki

70ms

Hambourg

Frankfurt

Milan

Manchester

Basel

Zurich

4ms

Rome

Munich33ms

Madrid

Belfast

Dusseldorf

Marseille

8ms

Figure 5.3 – Selected European cities and some examples of network latencies between
them.

Overall performance (testbed experiments): Figure 5.4 compares the Proximity
and Imbalance of solutions found by the different algorithms for various numbers of
replicas within the 21 worker nodes in the testbed. We run each experiment 100 times,
and evaluate 200 configurations per experiment.

Increasing the number of replicas to be placed makes the search easier, and it
delivers better results. More replicas can better cover the different regions of the
system, and the probability for any node to have a replica nearby increases. Similarly,
increasing the number of replicas makes load balancing easier.

The three Hona heuristics perform well in this case with results very close to the
brute-force optimal in a fraction of the time (for r = 9, O required ≈ 48 minutes
compared to 0.55 seconds for the heuristics). We however notice that in the relatively
difficult case of r = 3 the H2 heuristic outperforms the others according to both
metrics since it was designed to find solutions when the number of replicas is
relatively very small compared to the number of available nodes. This advantage
becomes more evident when testing over a large scale cluster.

102

5.3. Evaluation

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

r=3 r=5 r=7 r=9

99.0 99.5 99.6 99.7 99.8 99.999.8 99.9 100.0 99.90 99.95 100.00

O

R

H1

H2

µP%

Al
go

rit
hm

(a): Proximity delivered by different algorithms (greater values are better).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

r=3 r=5 r=7 r=9

14 16 18 5 10 5 6 7 4 5 6

O

R

H1

H2

µI%

Al
go

rit
hm

(b): Imbalance delivered by different algorithms (lower values are better).

Figure 5.4 – Initial replica placement analysis (testbed, n = 21).

To better understand the differences between the Random and the Hona heuristics,
Figure 5.5 depicts the 5th/25th/50th/75th/95th percentiles of all the tested placements
during the same experiment. In contrast, Figure 5.4 shows only the best solutions found
by every run of the heuristics. We can clearly see the differences between heuristics; the
Random heuristic evaluates placement options across a wide range of quality, whereas
the H1 and H2 heuristics better focus their search on promising placement options.

Effect of system size (simulator evaluations): We now explore Hona’s placement
algorithms in systems up to 300 nodes. Figure 5.6 depicts the results obtained from 1000
runs of every evaluation. We chose the latencies between nodes by randomly selecting
Vivaldi coordinates for every node within a distance of at most 80ms between nodes.
To make the placement problem equally difficult with different system sizes, we also
scaled the number of requested replicas accordingly: r = n/10. The red lines indicate the
target values. We do not plot the brute-force optimal placements which would require
extremely long executions.

In Figures 5.6-a and 5.6-b, we observe greater differences between the three Hona
heuristics with larger system sizes. In particular, the H2 heuristic delivers better
Proximity for large-scale systems. This is due to the fact that it selects group leaders
with respect to the number of neighbors they can serve with low latency.

The H1 and H2 heuristics also outperform the Random heuristic in the number of
cases they need to evaluate before finding a solution which meets the user’s

103

Chapter 5 – Tail-latency-aware placement/re-placement

●● ● ●● ●●●●● ●● ●●● ●●● ●● ●● ●●●●● ●●● ●●● ●●● ● ●●●● ●● ●

●●● ●●●●● ●● ●●●●● ● ●● ●●●●● ●●●●● ●●

●●●

●● ● ●●●●●●●

●●●

●● ●● ●● ●●● ●● ●●● ●● ●● ● ●●●● ●●● ●●●●● ●●●●● ●●● ●●●● ●●●●●●●● ●●●● ●● ●●●●● ●● ●●● ● ●●●● ●● ●●●●●●●●●● ●●●●●●●● ●●●●●●● ●● ●● ●●● ●●●●●● ●●● ● ●●●●● ●●●● ●●●●●●● ●●●●●●●● ●●● ● ●●●● ●●● ●●● ●●●●●●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●● ●

● ●● ●● ●●●●●● ●●●●●● ●●●● ●● ●●●● ● ●●● ●● ●●● ●●● ●● ●●● ● ●●●● ●● ●●●●●●●● ●●●● ●●●● ●●●●●●● ●● ●● ●●● ●●●●●● ●●●●● ●● ●● ●● ●● ●● ●●● ●●●●● ●● ●●●● ●● ●●●●●● ●●●●●●●● ●●● ●●●●● ●●● ●●●●●●●●● ●● ● ●● ●●●● ●●● ●●●● ●●● ●●● ● ●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ● ●● ● ●●● ●●●●

●●●●●●●● ●●●●● ●● ●● ●● ● ●●●● ●●●● ●●●●● ●●●● ●● ●● ●● ●●●●● ●●●● ● ●●●●● ●●●●●● ●●●●●●●●●●●●● ●●● ● ●● ●●●●●● ●●● ● ●●●●● ●● ●●●● ●●● ●● ●● ●● ●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●● ●● ●●●● ●● ●● ●●●

●●● ●●●●● ●●●● ● ●●●●●●●●●●● ●●● ● ●●● ●● ●● ●● ●● ●●●●●●●● ●●●●●● ●● ●● ●●●●● ●● ●● ●●●● ●●● ●●●●●●●● ●●●●● ●● ●●●●●● ●●●●●●● ● ●●●● ●●●●●●● ●● ●● ●●●● ●● ●●●●● ●● ●● ●●●●●●●●●●●●●●●●

r=3 r=5 r=7 r=9

50 100 80 90 100 90 100 90 95 100

R

H1

H2

P%

Al
go

rit
hm

(a): Proximity of all tested cases (greater values are better).

●●● ●●●●

●● ●●● ●●●●●●●●

●●●●●●●●●●●●●●

●● ● ●●● ● ●● ●●●●● ●●●● ●

●● ●● ●●● ●● ●●●● ●●●●●

●●● ●●●● ●●●

●●● ●● ●●● ●●● ● ●●●

●●●●●●● ●

● ●● ● ●●●● ●●● ●●

●● ●● ●●

r=3 r=5 r=7 r=9

20 40 10 20 30 10 20 5 10 15

R

H1

H2

I%

Al
go

rit
hm

(b): Imbalance of all tested cases (lower values are better).

Figure 5.5 – Individual test cases analysis (testbed, n = 21).

requirements (Figure 5.6-c). We observe that H2 finds solutions much quicker than
the other heuristics.

Finally, Figure 5.6-d shows the number of heuristic executions which reached the
timeout without finding a suitable solution. Here as well, the H2 heuristic
significantly outperforms the others because it targets its search to cases which have a
greater probability of delivering high-quality results.

We conclude that the H2 heuristic delivers better-quality results than the others, in
less time, and with a lower probability of a failed search. In the rest of this chapter we
therefore use this heuristic for the initial replica placements.

5.3.2 Replica re-placement

After the initial deployment of an application, Hona monitors the network traffic it
handles and periodically recomputes its performance metrics P% and I%. When these
metrics deviate too much from their expected values, it tries to re-place replicas within
the system to address the new situation.

We evaluate the behavior of Hona in our 22-nodes testbed with a variety of
scenarios. We define the Proximity target as P% = 99.5% of requests with a latency
under L = 28ms, with a tolerance of 0.5% before triggering re-placement. Similarly,

104

5.3. Evaluation

●

●

●

●

●

●

●

●

●

●

●

●

n=50 n=100 n=200 n=300

98.6 99.0 99.4 99.8 99.76 99.80 99.84 99.88 99.91 99.94 99.92 99.93 99.94

R

H1

H2

µP%

Al
go

rit
hm

(a): Proximity delivered by different algorithms (greater values are better).

●

●

●

●

●

●

●

●

●

●

●

●

n=50 n=100 n=200 n=300

3 4 5 3.2 3.6 4.0 4.4 1.6 2.0 2.4 1.2 1.6 2.0

R

H1

H2

µI%

Al
go

rit
hm

(b): Imbalance delivered by different algorithms (lower values are better).

●

●

●

●

●

●

●

●

●

●

●

●

n=50 n=100 n=200 n=300

100 200 300 100 200 300 400 200 400 600 200 400

R

H1

H2

µ # Cases

Al
go

rit
hm

(c): Number of cases studied by different algorithms (lower values are better).

n=50 n=100 n=200 n=300

0 50 100 150 0 50 100 150 0 200 400 0 100 200

R

H1

H2

Timeouts

Al
go

rit
hm

(d): Number of timeouts of different Algorithms (lower values are better).

Figure 5.6 – Initial replica placement with various system sizes (simulator, r = n/10).

the Imbalance target is I% = 5%, with a tolerance of 1% before re-placement. These
metrics are evaluated at a periodicity of 30 s.

Figure 5.7 depicts increasingly difficult re-placement scenarios. We plot the
Proximity and Imbalance metrics as calculated at the end of every cycle. The red area
depicts the period during which the new situation is introduced, and the vertical red
line(s) represents the time(s) at which the re-placement algorithm actually changes
the placement of replicas. We do not plot the P% and I% metrics in the cycle

105

Chapter 5 – Tail-latency-aware placement/re-placement

immediately after a re-placement: these metrics capture the transient state during
which a new replica is created while another one is deleted, and therefore do not
represent accurate information.

(a) Changing a source of traffic: Figure 5.7-a shows a case where one source of traffic
gets replaced with another one. During the first five cycles, no load is issued to the
studied application so the Imbalance metric remains at I% = 0. Proximity is
calculated according to the background traffic of other applications, which explains its
initial value of 90%. Some load is then generated starting from cycle 6. The two
metrics reach very good values: almost 100% for P%, and about 2% for I%. At cycle 9,
however, we replace one of the main sources of traffic with another one located far
away from any current replica. This event is detected quickly and, at cycle 11, the
system moves the useless replica close to the next source of traffic, which effectively
repairs the Proximity degradation.

(b) Adding a new source of traffic: Figure 5.7-b shows a scenario where a new source
of traffic is added far away from the current set of replicas. This results in a Proximity
violation which is quickly detected by the system. However, in this situation there is
no solution that would bring both metrics within their expected bounds. Since we
favorized Proximity over Imbalance in the objective function Θ, the system moves one
replica close to the new source of traffic, which fixes the Proximity violation at the
expense of a degraded imbalance. The only solution in this case to solve both QoS
violations is scaling up the replica set, as we discuss in Chapter 6

(c) Changing a route latency: Figure 5.7-c shows the case where the load distribution
remains unmodified, but the latency between a gateway node and its closest replica
changes suddenly from 10ms to 50ms. In this case, Serf must first detect the change of
network latencies beforeHona can react and re-place the concerned replica accordingly.
We see in the figure that these two operations take place quickly. One cycle after the
latency change,Hona triggers a re-placement operationwhich brings performance back
to normal.

(d) Complete replacement of the sources of traffic: Figure 5.7-d depicts a dramatic
situation where the entire workload changes at once: in cycle 11 we stop all the
sources of traffic, and replace them with entirely different ones. In this case, the
replica re-placement takes place in two steps. A first re-placement is triggered at cycle
14: this operation improves Proximity but at the expense of an increase in the load

106

5.3. Evaluation

●● ●●Imbalance Proximity

● ● ● ● ● ●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

●
●

● ● ● ●

● ● ● ● ● ● ● ● ● ●

0

5

10

80
85
90
95
100

0 2 4 6 8 10 12 14 16 18 20 22

I%

P%

(a): Changing a source of traffic.

● ● ● ● ● ●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ●
● ● ● ●

● ●
●

● ● ● ● ● ● ●

0

5

10

80
85
90
95
100

0 2 4 6 8 10 12 14 16 18 20 22

I%

P%

(b): Adding a new source of traffic.

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

5

10

80
85
90
95
100

8 10 12 14 16 18 20 22 24 26 28 30

I%

P%

(c): Changing a route latency.

● ● ● ● ● ●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ●0

5

10

80
85
90
95
100

8 10 12 14 16 18 20 22 24 26 28 30

I%

P%

(d): Complete replacement of the sources of traffic.

● ●

● ● ●

● ● ●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

5

10

15

96

98

100

0 2 4 6 8 10 12 14 16 18 20 22 24

I%

P%

(e): Uniform initial placement.

● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●5
15
25
35

60
70
80
90
100

0 2 4 6 8 10 12 14 16 18 20 22 24
Cycle

I%

P%

(f): Random initial placement

Figure 5.7 – Replica re-placement analysis (testbed, n = 21).

107

Chapter 5 – Tail-latency-aware placement/re-placement

●

●

●
●

● ● ● ● ● ●

● ● ●
●

●

●

● ●
●

●

N
um

ber of C
ases

Tim
e [Sec]

50 100 150 200 250 300 350 400 450 500

0

1000

2000

3000

0.0

0.5

1.0

1.5

Number of Nodes

Figure 5.8 – Complexity of the H2 heuristic (simulator).

Imbalance. At cycle 17 a second re-placement is triggered which brings both metrics
back within their expected values.

(e) Starting from a uniform replica placement: Figure 5.7-e shows a difficult situation
created by a sub-optimal initial replica placement. We initially placed replicas with no
information whatsoever about the future workload. In this case replicas get placed
uniformly across the system. The Proximity is not affected thanks to the uniform
distribution of replicas. On the other hand, once actual traffic is produced, an
important Imbalance is detected. The system repairs it (without significantly affecting
Proximity) in three re-placement operations.

(f) Starting from a random replica placement: Figure 5.7-f shows a case where the initial
replica placement was chosen randomly. When traffic starts in cycle 4, both metrics
are far from their expected values. The desired performance is obtained after three re-
placement operations.

Hona addresses a wide variety of QoS violations, and provides effective solutions
to solve them. In our experiments we never observed oscillating behavior in which the
system would not very quickly reach a new stable state.

5.3.3 Computational complexity

Figure 5.8 shows the computation time of the H2 heuristic for placing 10 replicas
with QoS bounds of P% = 99.5%, L = 25ms and I% = 4%. We used a mid-range
machine with a quad-core Intel Core i7-7600U CPU @2.80GHz. The current
implementation is single-threaded, but parallelizing it should in principle be easy as
different placements can be evaluated independently from each other.

108

5.4. Conclusion

The top part of the figure depicts the number of caseswhich can be evaluatedwithin
10 s. Clearly, the complexity of evaluating any single case increases with system size as
the metric evaluation function needs to iterate through a greater number of potential
traffic sources. However, as shown in the bottompart of the figure, even for large system
sizes, the computation time until a satisfactory solution is found remains under 2 s of
computation. This comes from the fact that, with larger system sizes, the number of
acceptable solutions grows as well, and a solution can be found with a lower number
of evaluated cases.

5.4 Conclusion

Replica placement is an important problem in fog computing infrastructures where
one can place computation close to the end-user devices. When many sources can
generate traffic it is often not affordable to deploy an application replica close to every
traffic source individually. One rather needs to limit the number of replicas, and to
choose their location carefully to control the tail latency and the system’s load balance.
Replica placement decisions must also be updated every time a significant change in
the operating conditions degrades the QoS metrics. We have shown that, despite the
huge computational complexity of searching for the optimal solution, simple and
effective heuristics can identify sufficiently good solutions in reasonable time. We have
implemented Hona in Kubernetes, thereby bringing it one step closer to becoming one
of the mainstream, general-purpose platforms for future fog computing scenarios.

109

Chapter 6

TAIL-LATENCY-AWARE AUTOSCALING

In this chapter, we proposeVoilà, a tail-latency-aware auto-scaler integrated in the Kubernetes
orchestration system. Voilà maintains a fine-grained view of the volumes of traffic generated
from different user locations, and uses simple yet highly-effective procedures to maintain suitable
application resources in terms of size and location. The evaluations based on a 22-nodes cluster
and a real traffic trace shows that Voilà guarantees 98% of the requests are routed toward a nearby
and non-overloaded replica. The system also scales well to much larger system sizes.

111

Chapter 6 – Tail-latency-aware autoscaling

6.1 Introduction

The number of service replicas an application should deploy is mainly determined
by two factors. First, the geographical distribution of the endusers requires one to create
enough replicas such that a nearby replica exists for every source of traffic. Second, any
replica necessarily has a limited processing capacity, which may require one to create
additional replicas to serve workloads originating from major sources of traffic.

Fog computing resources are precious in a multi-tenant environment, so fog
applications should carefully adjust their deployments to satisfy their QoS objectives
while reducing their resource usage as much as possible. On the other hand, any
user-produced workload may largely vary over time [17], which motivates the need
for using an auto-scaler to dynamically adjust the number and locations of a fog
application’s replicas.

A fog application replica auto-scaler aims to reach three objectives: (1) network
proximity such that every request may be routed to a nearby replica with a network
round-trip latency lower than some threshold lo; (2) processing capacity
management such that no replica receives more requests than its processing capacity
co; and (3) high resource utilization such that the majority of the provisioned
resources are actually being utilized according to their capacity. Similarly to the
previous chapter, we aim to optimize the tail network latency rather than its mean,
which practically requires minimizing the number of user requests which incur a
network round-trip latency l > lo.

We propose Voilà, a tail-latency-aware fog application replica auto-scaler. Voilà
integrates seamlessly with Kubernetes, the de-facto standard container orchestration
framework in clusters and data centers [72]. Voilà continuously monitors the request
workload produced by all potential traffic sources in the system, and uses efficient
algorithms to determine the number and location of replicas that are necessary to
maintain the application’s QoS within its expected bounds despite potentially large
variations in the request workload characteristics.

Our evaluations based on a 22-nodes cluster and a real traffic trace shows that Voilà
guarantees 98% of the requests are routed toward a nearby and non-overloaded replica.
The system also scales well to much larger system sizes.

This chapter is organized as follows. Section 6.2 first presents the Voilà system, then
Section 6.3 evaluates it. Finally, Section 6.4 concludes.

112

6.2. System Design

6.2 System Design

Voilà 1 dynamically scales and places an application’s replicas in a cluster of
geo-distributed fog nodes to minimize the number of slow requests while maintaining
efficient resource utilization. A request is said to be slow in two cases: (1) it encounters
a network round-trip time between the Kubernetes gateway and the serving pod
greater than the threshold latency lo defined by the application provider; or (ii) it is
addressed to a pod whose current workload is greater than the specified pod capacity
co. System administrators are also requested to define Eo, the maximum acceptable
percentage of slow requests.

To realize a concrete implementation of this idea,we address the following questions
in turn:
(A) What are the variables for evaluating the cluster and application status and how

we obtain them?(§ 6.2.1);
(B) How to evaluate a placement? (§ 6.2.2);
(C) How to place a new application? (§ 6.2.3);
(D) What are the violations and how to act upon them?(§ 6.2.4);
(E) When and how to scale down the replica size?(§ 6.2.4).

6.2.1 System model and monitoring

Table 6.1 summarizes the main variables used to describe Voilà’s model. A fog
computing cluster is defined as a set of n server nodes ∆ = {δ1, δ2, . . . , δn}, where
every δi is an object of class Node which holds the status of the server node and the list
of pods it currently hosts. An application is defined as a set of r replicas
Φ = {ϕ1, ϕ2, . . . , ϕr}, where every ϕi is an object of class Pod which holds the status of
the pod and the identifier of the server node where it is running. All these variables
are maintained by Kubernetes as part of its normal operations. They can be obtained
through simple call to Kubernetes’ etcd service.

The latencymatrixL contains all round-trip latencies between pairs of nodes, where
every lij is the RTT latency between nodes δi and δj as estimated by Serf. We can obtain
an up-to-date estimate of any such RTT latency with a simple call to Serf’s rtt API at
the master node.

1. https://gitlab.inria.fr/afahs/voila_code

113

https://gitlab.inria.fr/afahs/voila_code

Chapter 6 – Tail-latency-aware autoscaling

Table 6.1 – Voilà system model’s variables.
Variable Definition

Cluster Variables
∆ = {δ1, δ2, . . . , δn}, set of all server nodes.
δi ∈ ∆, a server node of index i.
n = |∆|, number of nodes in the cluster.
Φ = {ϕ1, ϕ2, . . . , ϕr}, set of application’s replicas.
ϕj ∈ Φ, an application replica of index j.
r = |Φ|with r 6 n, number of application replicas.
L [lij], symmetric n× nmatrix of inter-node RTT latencies.
lij = lji RTT latency between nodes δi and δj .

Testing Variables
G = {g1, g2, . . . , gn}, set of all end user’s gateways.
gi ∈ G, a gateway located at node δi.

gi.load The number of requests redirected by gateway gi.
ϕj.load The number of requests received by server node ϕj .
P [pij], n× nmatrix of the request route probabilities.
pij Probability of following the route from gi to δj .
T [tij], n× n Test matrix.
tij ∈ [0, 1], labels the routes gi → ϕj as suitable or not.
E The percentage of slow requests per cycle.
ET The overall percentage of slow requests over a full test.
Ω = {ω1, ω2, . . .}, set of all possible placements.
ωi ⊂ ∆ given |ωi| = r, one possible placement solution.

Provider-Defined Variables
lo RTT latency threshold inms.
co Pod capacity threshold in req/pod/s.
Eo E per cycle threshold in %.
τ Cycle duration in s.

Every worker node in a Kubernetes cluster has two different roles. First, it may host
a pod of the application which processes user requests. Second, it may act as a gateway.
End user requests may be sent to any gateway node, which is then in charge of routing
the request to one of the application’s pods. For clarity, we distinguish these two roles
as gateway gi and server node δi.

Kubernetes routes network requests from the gateway nodes to the server nodes
using IP-level routing. This means that we have access to precise kernel-level counters
measuring exactly how many network packets have been routed from which gateway
to which server node, and back. To ensure that gateways route incoming requests to
nearby nodes, Proxy-mity defines a matrix P where every pij represents the
probability a request received by gateway gi should be routed to server node δi,
defined using a monotonically decreasing function of the estimated latency between gi
and each server node where pods may be located (so that requests have high

114

6.2. System Design

Hona Periodic
Checks

Kube

Serf Vivaldi

Serf Query

Master �1
API

Worker �2

Cluster

Serialization

Voilà
Replace/Scale

System Admin

Voilà
Schedule

Hona
Label

Voilà
Deploy

Kubectl

Proxy Serf

Proxy Serf

Proxy Serf

�n

Proxy Serf

�n-1

Hona
Dep. Files

Hona
Registry

Lo
ad

 D
is

pa
tc

he
r

g1

g2

gn-1

gn

Figure 6.1 – Voilà system architecture

probability of being routed to nearby server nodes). Being filled with probabilities,
the matrix P maintains the following properties:

0 ≤ pij ≤ 1 ∀(i, j) ∈ J1, nK2

n∑
j=1

pij = 1 ∀i ∈ J1, nK

The specific values pij are defined by Proxy-mity for all gateways and server nodes,
as if every node actually hosted a pod of the application.

Figure 6.1 shows the system architecture of Voilà. Hona periodic checks is used by
Voilà to collect all the cluster, latency, and traffic information by contacting serf and
Kubernetes etcd. These information are saved in Hona registry and can be accessed by
Voilà when needed.

6.2.2 Replica placement quality evaluation

Weevaluate the quality of anypotential replica placement decision as the percentage
of slow requests among all received requests (E%). Any placement decision consists of
a set of host nodes ωi. Voilà calculates E(ωi) of any potential placement according to the
current load and latency distribution.

To allowVoilà to evaluate a large number of potential placements in reasonable time,
E should be evaluated as efficiently as possible. Voilà defines the probability matrix P

115

Chapter 6 – Tail-latency-aware autoscaling

Procedure 6.1: Probability matrix

P =



δ1 δ2 δ3 · · · δ5
g1 p11 p12 p13 · · · p1n
g2 p21 p22 p23 · · · p2n
g3 p31 p32 p33 · · · p3n
...

gn pn1 pn2 pn3 · · · pnn


Select−−−−→
δ1, δ3



g1 p11 0 p13 · · · 0
g2 p21 0 p23 · · · 0
g3 p31 0 p33 · · · 0
...

gn pn1 0 pn3 · · · 0


Remove−−−−−−→
Idle g’s


g1 p11 0 p13 · · · 0
g2 p21 0 p23 · · · 0
gk pk1 0 pk3 · · · 0
gm pm1 0 pm3 · · · 0



Normalize−−−−−→
by row

P̂ =


δ1 δ3

ĝ1 p̂11 0 p̂13 · · · 0
ĝ2 p̂21 0 p̂23 · · · 0
ĝ3 p̂31 0 p̂33 · · · 0
ĝ4 p̂41 0 p̂43 · · · 0



once per placement cycle, and then exploits it to evaluate the quality of any replica
placement.

Procedure 6.1 illustrates the computation of E(ωi). First, it removes thematrix’s rows
which correspond to idle gateways. It also sets to 0 the columns which correspond to
server nodes which do not host a replica in the evaluated placement. After normalizing
the matrix such that the sum of probabilities per row equals 1, the resulting matrix P̂
contains only the routing probabilities from active gateways to potential replicas.

Using P̂ and the set of active gateways Ĝ, Voilà calculates the number of slow
requests due to high network latency:

Vlo(Ĝ, P̂ , L) =
|Ĝ|∑
i=1

n∑
j=1

p̂ij × ĝi.load× f1(lij)

where f1(lij) =

1 if lij > lo

0 else

Similarly, function Vco counts the requests which would be routed to an overloaded
replica ϕj hosted at δk:

Vco(Φ, P̂) =
r∑
j=1

f2(ϕj) ϕj.load =
|Ĝ|∑
i=1

ĝi.load× p̂ik

where f2(ϕj) =

ϕj.load− co × τ if ϕj.load > co × τ

0 else

The variable E is then computed as the sum of Vlo and Vco divided by the total load:

116

6.2. System Design

Procedure 6.2: Test matrix

L

if lij ≤ lo
tij = 1
−−−−−−→

else
tij = 0

T =



δ1 δ2 δ3 · · · δn
g1 t11 t12 t13 · · · t1n
g2 t21 t22 t23 · · · t2n
g3 t31 t32 t33 · · · t3n
...

gn tn1 tn2 tn3 · · · tnn


Remove−−−−−−→
Idle g’s



δ1 δ2 δ3 · · · δn
g1 t11 t12 t13 · · · t1n
g3 t31 t32 t33 · · · t3n
gi ti1 ti2 ti3 · · · tin
gk tk1 tk2 tk3 · · · tkn
gm tm1 tm2 tm3 · · · tmn


Test−−−−−−−−→

Placement
T̂ =



δ1 δ2 δj
ĝ1 1 0 1
ĝ2 0 1 0
ĝ3 0 0 1
ĝ4 1 0 0
ĝ5 0 0 1



E% = 100%× Slow
Total = 100%× (Vlo + Vco)/

n∑
i=1

gi.load

Selecting a suitable replica placement consists in finding ωi such that E(ωi) ≤ Eo.

6.2.3 Initial replica placement

When a new application is deployed in the fog computing platform, no
information is available yet about its traffic characteristics. Instead, Voilà uses the set
of active gateways from other deployed applications (regardless of their actual
workload) to define an initial set of replica locations.

Finding the optimal placement of r replicas among n worker nodes requires in
principle one to fully explore the set of all possible solutions Ω. However, this set is
extremely large even for a modest value of n and r:

|Ω| =
(
r

n

)
= n!
r!(n− r)!

For example, placing 10 replicas out of 50 server nodes yields a set of 10,272,278,170
possible placements. Exploring them all is obviously infeasible. Instead, we explore
only a small subset of promising placements, and choose the first one which satisfies
that all active gateways have a nearby replica to which they may route incoming
requests.

Procedure 6.2 takes the latency matrix L as an input, and labels all the possible
routes as suitable (with value 1 if lij ≤ lo) or unsuitable (with value 0 otherwise). The
objective of the resulting Test matrix T̂ is to check whether every active gateway is
covered by at least one nearby replica. this condition is determined by the fact that
each row corresponding to an active gateway ĝi has at least one t̂ij = 1.

117

Chapter 6 – Tail-latency-aware autoscaling

Procedure 6.3: Initial replica placement

Ĝ==∅

Select δs with

max
|Ĝ|∑
i=1

tis

False
ω = ω + δs

∀i if tis == 1 :
Ĝ.Remove(gi)

T.Remove_Row(gi)

Active gateways (Ĝ)
Placement(ω = ∅)
Test Matrix (T)

Input

Return ω
Output

True

T.Remove
_Row(Idle)

The algorithm to identify a suitable replica placement is illustrated in
Procedure 6.3. Starting from an empty placement ω, the set of active gateways Ĝ, and
the Test Matrix T , the algorithm starts by removing the idle gateways from T , then
iteratively adds new replicas until all active gateways are covered by at least one
suitable nearby replica. Every new host node δs is chosen with a greedy heuristic as
the one which covers the greatest number of gateways. The loop continues until Ĝ
becomes empty, which indicates that all active gateways are covered. The procedure
finally returns ω.

Note that this initial placement is only a starting point when a new application is
deployed in the platform. It is determined based on latency requirements only.
Depending on the request workload, it may or may not satisfy the processing capacity
requirement as well. Also, user-generated traffic is expected to vary over time, which
mandates the usage of re-placement and autoscaling techniques, as we discuss next.

6.2.4 Replacement and autoscaling

After an application has started, Voilà periodically checks whether the latency and
the processing capacity requirements are still met. In case of violation, it implements
corrective actions to bring the QoS within its desired bounds. Voilà also periodically
checks whether fewer replicas may be sufficient.

118

6.2. System Design

Procedure 6.4: QoS check algorithm

Check
Start

Procedure
1

Calculate
E

E > Eo
No

change
False

Violation
Type

True

Fix
Proximity

Fix
Saturation

Vco ≤ Vlo

Vco > Vlo

New
Placement

New
Placement

Checking for potential violations

Voilà periodically checks whether the QoS constraints are still respected. As shown
in Procedure 6.4, the QoS check algorithm starts by calculating the percentage E of slow
requests in the last cycle for ωo. If E(ωo) > Eo a violation is declared and the violation
type determines which corrective function must be called.

Replica replacement

When a QoS violation is detected, Voilà first tries to fix it by moving a replica from
one server node to another. Procedure 6.5 starts by selecting a number of replicas To-
Be-Replaced (TBR) and a number of server nodes To-Be-Tested (TBT). The TBR and
TBT are chosen according to the nature of the QoS violation:
• In the case of a Proximity violation, TBR is the set of current replicas which
participate the least to the gateways-to-replica proximity metric. An active gateway
which depends on a single nearby replica with latency under lo defines this replica
as “vital.” On the other hand, all non-vital replicas are included in TBR. Similarly,
server nodes are included in TBT if they are located close enough from one gateway
which does not have access to a suitable replica.

T̂ =



δ1 δ2 δ3

ĝ1 1 0 1
ĝ2 1 1 0
ĝ3 0 0 0
ĝ4 0 1 0

 (1) T =



δ1 δ2 δ3 δ4 δ5 δ6

ĝ1 1 0 1 0 0 1
ĝ2 1 1 0 0 1 1
ĝ3 0 0 0 1 0 1
ĝ4 0 1 0 1 0 0

 (2)

119

Chapter 6 – Tail-latency-aware autoscaling

Procedure 6.5: Replica replacement algorithm

Fix
called

Detect
origin Get TBR Get TBT

tests==∅

Call
Scale Up

ω = ωo − δi + δj

Calculate E(ω)
δi, δj ∈
TBR,TBT

Placements.
append(ω)

Return ω
with Min(E)

∀ω
∃E < Eo

True

False

True

False

In (1) we see an example where the test matrix T̂ indicates that gateway ĝ3 does not
have any nearby replica, which is the source of the QoS violation. Gateway ĝ4 has
only one nearby replica at δ2, so δ2 is not included in TBR. TBR finally contains δ1 and
δ3 . In (2) we see the full test matrix T (including server nodes not currently hosting
a replica). TBT then contains δ4 and δ6 as these two server nodes are considered as
close enough from gateway ĝ3.

• In the case of a capacity saturation violation, TBR contains the list of replicas currently
receiving a low workload. TBT is the set of nodes located in close proximity from the
currently overloaded replicas.

Once the sets TBR and TBT have been defined, Procedure 6.5 takes replica
re-placement decisions in the same way for both types of QoS violations. It iteratively
chooses a pair of nodes δi ∈ TBR, δj ∈ TBT, and evaluates E in case node δi was
replaced with δj in the current replica placement ω. If at least one replacement
decision delivers an acceptable QoS with E(ω) < Eo within some pre-defined
computation time, then the procedure returns the best replacement decision it has
found. Otherwise, it considers that replacing replicas is unlikely to address the QoS
violation, so it calls the Scale Up procedure to create an additional replica.

The fix functions limit the space of possible placement by detecting the origin of
the violations and by testing placement modifications that target these origins. Both
functions execute similar strategies to find a corrective replacement explained in
Procedure 6.5, the procedure starts by detecting the origins of the violation, in the case
of proximity violation, the origins are gateways that lack a nearby replica, meanwhile
for saturation they are overloaded pods. In the next step, Voilà limits the search space
to a set of To-Be-Replaced (TBR) and To-Be-Tested (TBT) host nodes, a number of

120

6.2. System Design

Procedure 6.6: Scale up

Scale Up
(ωo,TBT)

E(ωo) < Eo

Return ωo

δi ∈ temp
ω = ωo + δi

Calculate
E(ω)

Tests.
append(ω)

temp =
temp - δitemp!=∅

ωo = ωo + δbest
TBT=TBT - δbest

temp=TBT

False

True

True

False

tests is created by drawing a node from TBR and replacing it with one from TBT. The
Procedure executes a loop to perform all the tests and finally, the best solution will be
returned if it respects Eo, otherwise Voilà declares that the violation can’t be revised
without scaling up the size r and as a result Autoscale() is called.

The difference between the fix functions lies in TBR and TBT, for proximity TBR is
the serving nodes that are considered non-vital. A gateway that depends exclusively
on one host node makes it vital. If this node was removed then we are certain that this
gateway will suffer form low latency. on the other hand, TBT are the non-host nodes
that can provide the origins of the violation with a nearby replica.

For saturation the search space is determined in a different manner, TBR includes
all nodes that are receiving a small volume of load, each node in TBR will be
associated with a set TBT of nodes located near the overloaded pods and that will
ensure no gateway will be deprived of a vital node.

Scaling up

To choose the nodewhere an additional replica should be created, Procedure 6.6 first
defines a set TBT in the sameway as previously. It then iteratively considers every node
from this set and tests whether adding it to ω (without replacing the existing replicas)
would solve the QoS violations. If no single new replica is found to be able to solve the
violation, it tries to add two new replicas, and so on until the violation is solved or all
nodes from TBT have been added.

The replacement approach helps the system maintaining a small number of
replicas before moving toward an autoscaling approach. However, a surge in users’

121

Chapter 6 – Tail-latency-aware autoscaling

Procedure 6.7: Scale Down

Scale Down
(ωnew = ωo)

Return
ωnew

∀δs
Tested?

Get
δs ∈ ωnew

Calculate
E(ωnew − δs)

∀ω
∃E < Eo

ωnew =
ωbest

False

True

False

True

requests and emerging gateways can restrict the system to spanning new replicas.
Voilà handles autoscaling as a continuation of the already studied violation
(Procedure 6.6). The current placement ωo alongside the set of promising nodes TBT
are passed to Autoscale() such as a node δi ∈ TBT is appended to the ωo. When all
the promising placement are tested, the placement of the best value of E is selected as
the best placement and the replica size will increase by 1. However, increasing the size
by 1 is not always sufficient to meet the Eo constraint, the size will keep going up until
the constraint are met.

The replacement and autoscaling algorithms are programmed in a way that
maintain a minimal replica size by effectively exploring the search space. As equally
important, the algorithms induce minimal changes on the placement since such
change incur a high cost.

Scaling down

Scaling down does not take place upon any QoS violation. Rather, if the system did
not occur any violation for a predefined period of time, it checks whether it may reduce
the number of replicas (and thereby reduce its resource usage) without introducing
violations.

Procedure 6.7 iteratively tries to decrement the number of replicas and to identify
one replica that can be removed without violating the QoS constraint. The algorithm
stops when no more replicas can be removed.

When Voilà decides to change the number or location of replicas, it asks Kubernetes
to create/delete pods accordingly.

122

6.3. Evaluation

Figure 6.2 – A photo of the testbed.

6.3 Evaluation

6.3.1 Experimental setup

We evaluate Voilà with both experimental measurements and simulations. The
experimental setup consists of 22 RPis model 3B+ single-board computers acting as
fog computing servers. They run HypriotOS Linux v1.9.0 with kernel 4.14.34, Docker
v18.04.0 and Kubernetes v1.9.3. We implemented Voilà on top of Serf v0.8.2.dev and
the development version of Proxy-mity.

The RPis are organized with one master node and 21 worker nodes capable of
hosting replicas (see Figure 6.2). Every worker node also acts as a WiFi hotspot and a
Kubernetes gateway so end users can connect to the WiFi network and send requests
to the service.

We emulate a realisticworkload based on a trace of geo-distributed Internet requests
in the province of Trentino in Italy [81]. Every request is tagged with a location at 1 km
granularity of the base station itwas addressed to.We randomly select 22 1km2 cells and
inject the load of each cell in a different testbed gateway. The application is a simpleweb
server which returns the IP address of the serving pod, such that the request processing
time is almost zero.

We emulate realistic inter-node latencies using the Linux tc command. Latency
values are defined as a linear function of the geographical distance between the cells.

123

Chapter 6 – Tail-latency-aware autoscaling

They range from 4ms to 80ms with a median of 26ms, which arguably represents a
typical situation for a fog computing infrastructure.

We also perform scalability analysis using a simulator which simulates up to 500
virtual nodes using the same latencies and workload distributions, as well as the same
algorithm implementations as in Voilà to select replica placements.

6.3.2 Hona performance compared to Voilà

Voilà redefines Hona’s placement algorithmsmainly because the evaluationmetrics
in Hona are slightly different than the metrics in Voilà. Both algorithms try to reduce
the network tail latency by finding a placement that offers nearby replicas to all of the
detected sources of traffic. However, Hona tries to optimize the load imbalance between
the replicas defined as the standard deviation of each replica’s number of requests. This
metric was used since Hona has no notion of replica capacity. As a result, it tries to
minimize the variation between the fixed number of replicas.

On the other hand, Voilà improves on Hona by defining a metric that directly
calculates the replica saturation using the maximum number of requests that can be
handled by a replica during a specific time period. Voilà has the capability of
increasing the number of replicas to avoid saturation, whereas Hona optimizes the
proximity and try to solve the saturation violations using a best-effort approach. This
was evident in Figure 5.7-(b) where Hona fixed the proximity violation but was not
able to scale up the replica set to fix a possible saturation violation.

Another reason for creating new placement algorithms from scratch lies in their
compatibility with the autoscaling algorithms. In Voilà, we considered the autoscaling
approach as a continuation of an already-studied violation in the Voilà’s re-placement.
This, however, would not be possible using Hona’s algorithms.

TheVoilà objective functionwas optimized to be processed using thematrices P̂ and
T̂ which calculate the placement and autoscaling solutions faster by calculating general
P and T matrices and then conducting a case-specific P̂ and T̂ . Also, the non-necessary
nodes and idle gateways are removed from the objective function calculation, which
leads to much faster processing.

We illustrate the speedup obtained by replacing Hona’s algorithms with Voilà’s in
Figure 6.3, where we compared the average and standard deviation of the time
needed to calculate the objective function of Voilà compared to Hona using the

124

6.3. Evaluation

0

10

20

30

100 150 200 250 300
Number of nodes

T
im

e
 f
o
r

o
n
e
 c

a
se

 [
in

 m
s]

Using Voilà algorithms

Using Hona algorithms

Figure 6.3 – Time needed to compute the objective function for both Hona and Voilà as
a function of the number of nodes.

simulator over the same network and cluster conditions. Voilà can clearly evaluate the
objective function much faster than Hona (6 times faster for 300 nodes). The average
time for Hona follows a more aggressive slope as the number of nodes increases.
Similarly, the standard deviation for Hona increases at a faster rate than that of Voilà,
which means that Voilà is more consistent in the objective function calculation.

6.3.3 Autoscaling behavior

We first evaluate Voilà on the testbed based on parameters shown in Table 6.2.
Figure 6.4 shows 28 hours of workload from the Trentino trace, and Voilà’s autoscaling
behavior when confronted to this workload. We sped up the trace so every hour in the
trace is replayed over 2min in the experiment.

When the application is deployed at 12am on the first day, the initial replica
placement algorithm creates two replicas. We however notice that, although the
workload intensity is fairly low, about 5% of requests are being slow, mainly because
of network latency between the gateways and the replicas. At the next cycle Voilà
creates a third replica, which fixes this QoS violation. At 2am another violation occurs,
but a replica replacement is sufficient to solve this issue. Between 7am and 9am we
observe a strong workload increase. Voilà detects a capacity saturation violation and
reacts by bringing the number of replicas to 5 such that the violation is resolved and
the number of slow requests gets back to almost zero.

125

Chapter 6 – Tail-latency-aware autoscaling

2am

6am

12pm

6pm

10pm

2am

Req. Rate
 [in req/s]

D
eploym

ent
 Size [in Pods]

%
 of Slow

 by Type

0 4 8 12 16 20 24 28

0
50

100
150
200

2

3

4

5

0
5

10
15
20
25

Time [# Cycle]

Replacement Vlo violation VCo violation Vlo Vco

Figure 6.4 – Autoscaling over a 28-hour workload trace (testbed experiment).

Table 6.2 – Testbed evaluation parameters.
Variable Value Variable Value

lo 15 ms n 22 nodes
co 50 req/pod/s |Ĝ| 18 nodes
Eo 0.5% Cycle duration τ 120 s

From 10am until 8pm the global load stabilizes close to its daily peak. However,
as discussed in Section 2.4.3 this “stable” workload still observes many changes in the
users’ locations. We observe that Voilà adjusts to these changes by issuing a number of
replica relocation operations. Finally, when traffic decreases in the evening, Voilà scales
the system down to three replicas after observing three cycles with no QoS violations.

We conclude that Voilà effectively controls the number and location of replicas.
Only ET = 2.6% of all requests were categorized as slow: 0.59% because of proximity
violations, and 2.01% because of capacity saturation violations.

6.3.4 Scaling up before saturation violations take place

The main reason for saturation violations is that any replica creation takes a few
dozen seconds before the new replica becomes operational. If Voilà triggers a scale-up
only after observing a saturation violation, then many requests may get penalized in

126

6.3. Evaluation

Total
0%: 2.6%

10%: 1.9%
20%: 1.7%

Average
0%: 48.7%

10%: 43.6%
20%: 39.1%

C
um

ulative %

 of Slow
/Total

System
 U

tilization
 [in %

]

0 4 8 12 16 20 24 28

0

1

2

0

25

50

75

100

Time [# Cycle]

Safety 0% 10% 20%

Figure 6.5 – Triggering scale-up early (testbed experiment).

the mean time. A practical solution to mitigate this effect consists of defining a safety
margin and triggering scale-up operations to handle potential capacity saturation issues
before saturation actually takes place.

Figure 6.5 shows the resource utilization of the busiest pod and the cumulative
fraction of slow requests among the trace with safety margins 0%, 10% and 20% of
actual pod capacity, which respectively trigger adaptation when any pod’s workload
reaches 100%, 90% and 80% capacity. Larger safety margins reduce the number of
capacity saturation violations from ET = 2.6% to ET = 1.7% with safety = 20%.
However, because replicas are created sooner, the resource utilization through the day
reduces slightly, from 48% to 39%. Better QoS comes at a greater cost in terms of
resource usage.

Further reducing the number of violations would require predictive traffic models
capable of anticipating the 9am traffic surge sufficiently early. We leave this topic for
future work.

6.3.5 Sensitivity analysis

We now explore Voilà’s performance by means of simulations in a 200-node system
with 100 active gateways. We set Eo = 1%, and define default parameter values co =
100 req/pod/s, lo = 20ms and safety = 20%.

127

Chapter 6 – Tail-latency-aware autoscaling

c_o [in req/pod/s] l_o [in ms] Safety [in %]
D

e
p

lo
ym

e
n

t
 S

iz
e

 [in
 P

o
d

s]
%

 S
lo

w

 b
y T

yp
e

U
tiliza

tio
n

 [in

 %
]

80 120 160 200 10 20 30 40 0 20 40 60

10

20

30

40

50

0

1

2

3

4

30

40

50

60

Vlo Vco

Figure 6.6 – Sensitivity analysis (simulator).

Figure 6.6 shows the system behavior when varying co, lo and safety. Each test was
repeated 50 times using different load distributions of 28 cycles from the Trentino grid.
Every plot displays the average and the 95%-confidence interval, except the deployment
size plot where the error bars depict the minimum andmaximum sizes reached during
the tests.

Deployment size

When co and lo have low values, Voilà compensates by adding pods. Similarly, larger
safety margins imply that nodes are less utilized, which requires more pods.

Slow Requests

The number of slow requests decreases when we increase the value of co: a smaller
number of high-capacity pods can better absorb traffic intensity variations. Similarly,
increasing the safety margin reduces the saturation violations. Varying lo shows two
effects: first, strict latency requirements with a low value of lo makes latency-aware
placement more difficult, which results in greater numbers of proximity violations.
More surprisingly, larger values of lo result in an increase in saturation violations. The

128

6.3. Evaluation

0

200

400

600

800

100 200 300 400 500
Number of Nodes

Placements
 per Second

Placements
 per Violation

Figure 6.7 – Scalability (simulator).
reason is that when a gateway becomes active, its produced traffic increases over a
short time period. When lo is high, Voilà creates less replicas, so the violation occurs at
a higher load rate which leads to more slow requests.

Resource utilization

When the capacity co of every pod increases, their placement becomes increasingly
dictated by latency considerations. Their average utilization therefore decreases. We
observe a similar effect with low latency thresholds lo where the many replicas that are
created to cover the relevant areas of the network actually receive a modest workload
each. Finally, as previously observed, increasing the safety margin decreases resource
utilization.

Voilà under extreme values of lo

Voilà performs well even with very strict values of lo. For example a requirement of
lo = 10ms is very challenging because in our experiments only 7.5% of the inter-node
latencies are below 10ms. In this case Voilà still maintains ET < 1.7%, yet at the expense
of large number of replicas with low resource utilization.

6.3.6 Scalability

We finally evaluate the execution time for various system sizes. All measurements
are done on a quad-core Intel Core i7-7600U @2.80GHz laptop, co = 100 req/pod/s,
lo = 20ms, Eo = 1%, half of the gateways transmitting load and over 10 runs with 28
cycles for each test.

129

Chapter 6 – Tail-latency-aware autoscaling

Figure 6.7 compares the average number of placement that can be studiedper second
for various system sizes with the average number of placements that must be evaluated
to repair a latency or capacity violation.When the cluster size increases, the time needed
to study any single placement also increases. However, even for a large systemwith 500
nodes, Voilà evaluates ≈ 100 placements per second. Voilà’s algorithms typically need
about 100-150 placement evaluations to repair a violation, regardless of system size.

6.4 Conclusion

Fog computing platforms must carefully control the number and placement of
application replicas to ensure guaranteed proximity between the users and the
replicas serving their requests, while avoiding replica overload and reducing resource
consumption as much as possible. To our best knowledge, Voilà is the only proposed
system which satisfies these three objectives even in challenging situations, and has
been integrated in a popular container orchestration platform.

130

Chapter 7

CONCLUSION

7.1 Summary

Although cloud computing offers a reliable solution for a wide range of
applications, this paradigm presents limitations in fulfilling all the requirements of a
family of emerging applications. Most notably, latency-sensitive applications require
their requests to be returned within tight latency bounds. On the other hand, fog
computing extends the cloud data centers with additional resources located in the
vicinity of the end users. This enables latency-sensitive applications to process their
requests without sending them to the cloud and, as a result, to receive a reply with
very low network latency. Fog computing platforms are an aggregation of three layers:
the end users’ devices located at the edge of the network, the edge layer composed of
fog nodes which offer ultra-low latencies for the end users and, finally, the traditional
data centers.

Providing low user-to-resource latency is one of the fundamental objectives of fog
computing. This is achieved by carefully placing hardware and software resources at
the edge of the network. Starting from a geo-distributed user base, the fog nodes are
geo-distributed as well to grant each user resources in their immediate vicinity.
Similarly, fog applications should place their replicas carefully so each user has access
to a nearby application replica.

This thesis addresses the specific needs of replicated service-oriented applications.
These applicationsmay create functionally-equivalent service replicas that are scattered
across the fog nodes, allowing a consistently low user-to-replica latency.

Optimizing network latency in the edge layer for such application model requires
one to implement proximity-aware mechanisms within a mature container
orchestration engine. One needs to estimate the inter-node latencies between the fog
nodes, route the end-users’ requests to nearby replicas, detect the sources of traffic
and provide them with a nearby replica, update the placement of the replicas when

131

the workload changes and, finally, scale the replica set to guarantee consistent
performance at the lowest possible cost.

We targeted the challenge of proximity-aware resource management for replicated
latency-sensitive service-oriented applications in order to control the tail
user-perceived latency and to account for the workload non-stationarity in both time
and space. This was done over the three levels of resource management: routing,
placing, and autoscaling.

In the first contribution, we proposed Proxy-mity, a proximity-aware request
routing plugin for Kubernetes. Proxy-mity is able to identify the nearby replicas using
Vivaldi coordinates. It can then route requests to nearby replicas. Proxy-mity exposes
a single variable α which allows system administrators to control the trade-off
between proximity and load imbalance between replicas. The evaluations show the
effectiveness of this system in lowering the average user-to-replica latency compared
to the traditional load balancing mechanisms used by major cloud orchestration
engines.

In the second contribution, we presented Hona, a set of algorithms for replica
placement/re-placement. Hona uses Proxy-mity for routing requests and Vivaldi
coordinates for estimating the inter-node latencies. It then implements periodic checks
to detect the volumes and locations of the sources of traffic. Hona uses heuristics to
find a replica placement that is capable of reducing the tail latency while preserving a
good load balance between the replicas. Hona dynamically identifies changes in the
workload characteristics and updates the placement to maintain performance if a QoS
violation is detected. The evaluations show that the Hona heuristics are capable of
finding a placement that respects the defined latency bound, and that the
re-placement algorithm can cope with a wide variety of changes in the workload.

In the third contribution, we designed Voilà, a tail-latency-aware autoscaler. Voilà
relies on Vivaldi coordinates, Proxy-mity, and Hona’s periodic checks. Voilà’s
algorithms dynamically control the number and placement of the replicas to reduce
the tail latency, potential replica saturations, and the placement cost. The evaluations
show that Voilà guarantees 98% of the requests are routed toward a nearby and
non-overloaded replica. The system also scales well to much larger system sizes.

All of the presented contributionswere implemented on top of Kubernetes and have
been tested using a real testbed of RPi nodes. The aggregation of Proxy-mity, Hona’s

132

periodic checks, and Voilà represents a complete proximity-aware solution for amature
cloud orchestration engine.

7.2 Future directions

We presented and evaluated a complete set of algorithms that target
proximity-aware resource management in fog computing platforms. However, this
work allows only a certain type of application and system model defined in
Section 2.5.2. As a result, a sensible direction for future research would be to
investigate similar algorithms for fog computing platforms that differ in terms of
application and/or system model.

7.2.1 Extending the fog with spare nodes

As explained in Section 2.4.3, fog workloads may experience surges as a function
of both time and space. To cope with such variations one needs to implement a robust
autoscaling algorithm like Voilà, capable of scaling the replica set according to the
demand. Yet, some extreme cases may result in the consumption of all the available
resources in the proximity of the surge. Consequently, the end users may suffer from a
degraded quality of service induced by a necessary best-effort approach to offload
their requests to farther fog nodes, or even cloud data centers if no other fog nodes are
available.

A straightforward solution for this problem would consist of increasing the size of
the available resources at the edge layer. As an analogy, cellular networks are usually
provisioned with enough resources to ensure an excellent QoE even under peak traffic
conditions [28]. This leads to a low energy efficiency and resource utilization during
non-peak hours. For cellular companies like Vodafone Germany, this necessary over-
provisioning has resulted in a 6 % annual decrease in revenue during the period of 2000
to 2009, one of the main reasons being the energy cost [140].

An alternative solution would be the capability of leveraging another source for
spare resources [96]. This can be done, for example, by renting nearby resources from
another fog infrastructure provider. In some cases, like fog gaming where the users’
Sega consoles are used as fog nodes [141], the platform can also rent resources from

133

currently inactive users in order to process requests originating from nearby active
users.

This approach defines a trade-off between performance and cost, where additional
resources increase the operational cost butmay help in ensuring a better user-perceived
QoE [142]. In addition to the proximitymetrics that define the QoS for latency-sensitive
applications, another type of platform-based requirement emerges. The new end goal
would be providing the applications’ QoS at the lowest cost.

Creating a proximity-aware resource scheduling system which may dynamically
provision and integrate spare nodes would require mechanisms for defining the set of
available spare nodes, control mechanisms to rent a spare node, and mechanisms to
release them as soon as possible to cut down on costs. This approach might be defined
as the fourth level of resource management that controls the scale of the resource pool.

7.2.2 Fog federations

The introduction of cloud computing concepts moved application developers and
businesses from owning private in-house data centers toward accessing multi-tenant
data centers. This architecture have proven to be successful in terms of cost by enabling
the businesses to increase their resource pool in a couple of clicks.

The emerging fog computing industry is following the same footsteps. A number
of private fog platforms have already been implemented [50, 141]. As the demand for
fog computing technologies is increasing, a new type of fog infrastructure providers
will rise to outsource the demand of ultra-low latency resources in the immediate
proximity of end users [143, 144]. Multiple fog infrastructure providers are
anticipated to appear to serve users located in urban centers or rural areas [143, 145].
In such cases the resources provided by different fog infrastructure providers will be
similar in terms of their user-perceived latency.

Instead of directly competing with each other for the same group of end-users,
multiple small- or medium-sized fog providers may decide to cover non-overlapping
areas. Creating a federation of such fog infrastructure providers would therefore
allow the providers to join forces and increase their profits by enabling users to access
a bigger and more diverse resource pool.

However, there is currently no fog federation framework similar to the ones
implemented in cloud computing [33]. One of the reasons is the absence of resource
sharing models and pricing models for the edge layer resources from different

134

providers. In consequence, resource management in fog federations may become a
promising research topic.

We believe that our work may be extended to consider the nodes’ provider as a
parameter in the process of node selection, whether for routing, placement, or
autoscaling. The objective functions used in both Proxy-mity and Voilà permit one to
easily add new metrics, which allows one to evaluate placements according to
arbitrarily complex requirements.

7.2.3 Fog node heterogeneity

As discussed in Section 2.3, the research community proposes many different
types of fog nodes that vary in their size, location, and network connectivity. This is
combined with a niche for specialized fog nodes that serve specific types of needs.
Most notably, applications making use of AI algorithms have an interest in locating
hardware-accelerated devices such as NVIDIA Jetson TX2 in the edge layer [146]. This
system-on-module is equipped with special hardware designed to process AI tasks
much faster than traditional CPUs and GPUs.

Other examples of specialized fog nodes are gaming consoles and autonomous
vehicles. In gaming, Sega is trying to use its gaming consoles in Japan to form a “fog
gaming” infrastructure [141]. These consoles are fine tuned to handle gaming tasks.
In autonomous vehicles as well, road-side units may be deployed to allow better
communication with the vehicles [147]. These devices should have the capabilities to
handle an end user moving at high speeds.

In these different use cases, we can expect that a future fog platform composed of
regular fog nodes plus specialized nodes must route, place, and autoscale not only
according to the proximity and availability of the fog nodes but also according to the
node specialization. In this case, AI requests for example have to be specifically routed
toward AI fog nodes. AI application replicas should therefore be
placed/replaced/autoscaled specifically in the AI nodes. Similarly to fog federations,
evaluating possible solutions in such system model require new system metrics that
can be added in the system’s objective functions.

135

7.2.4 Fog resource management for microservices

In fog computing platforms, application instances must be distributed over the
coverage area to offer nearby resources to all the end users. These instances can take at
least two forms: functionally-equivalent replicas like the one discussed in this thesis,
or partitioned microservices where different microservices may have different roles.

The main distinction between service replication and partitioning can be
summarized in the way requests behave with each application model. With
replication, a request is routed toward a monolithic instance that is capable of
processing the request and returning the answer. On the other hand, microservice
requests are routed from a front-end usually running on or close to the end user’s
devices toward back-end services located in the edge or the cloud using light
communication protocols like Representational State Transfer (REST) over
HTTP [148, 149]. Moreover, end-users requests may incur complex invocation graphs
involving multiple microservices.

In the literature, most of the work has considered the edge layer as a single entity
where all the edge nodes are capable of delivering low latency [149–151]. An interesting
approach would be taking the resource management of microservices to the next level
where the inter-node latencies are accounted for, rather than considering all the fog
nodes equivalent in terms of their latency to the end users.

Proximity-aware resource management for microservices needs to take another
approach compared to monolithic service replication. Proximity-aware routing in
microservices can be split into two parts: how to route toward the back-end, and how
to route between the different services located in the back-end. Similarly,
proximity-aware placement for microservices does not merely require a mapping
between a set of equivalent instances and suitable nodes, but a set of inter-related
placement problems where the location of each microservice instance can affect the
operation of the whole system. Another interesting research question in this context is
whether it is more suitable to scale horizontally by creating replicas for an overloaded
microservice, or vertically by increasing the amount of resources granted to this
microservice.

136

7.3 Closing statement

This work demonstrates that orchestration systems which were originally designed
for cloud-based and cluster-based environments can be extended to become proximity
aware with no need for major structural changes. It paves the way toward extending
some of the major orchestration systems to become mainstream, general-purpose
platforms for future fog computing scenarios.

137

BIBLIOGRAPHY

[1] Shubhika Taneja and Yang Liang. « Google cloud Networking in-depth: Series
digest ». http://bit.ly/Cloud_networking. 2019.

[2] CLAudit project. Planetary-scale cloud latency auditing platform. http://claudit.
feld.cvut.cz/. 2017.

[3] Mohammed S Elbamby, Cristina Perfecto, Mehdi Bennis, and Klaus Doppler.
« Toward low-Latency and ultra-reliable virtual Reality ». In: IEEE Network 32.2
(2018).

[4] Arif Ahmed, HamidReza Arkian, Davaadorj Battulga, Ali J. Fahs,
Mozhdeh Farhadi, Dimitrios Giouroukis, Adrien Gougeon,
Felipe Oliveira Gutierrez, Guillaume Pierre, Paulo R Souza Jr,
Mulugeta Ayalew Tamiru, and Li Wu. « Fog computing applications:
Taxonomy and requirements ». In: arXiv preprint arXiv:1907.11621 (2019).

[5] Rob van der Meulen. What edge computing means for infrastructure and operations
leaders. Gartner white paper. https://gtnr.it/3euQbFh. 2018.

[6] GuGuss. « Cloud provider locations ». http://bit.ly/Cloud_Locations. 2018.
[7] Zhou Wei, Jiang Dejun, Guillaume Pierre, Chi-Hung Chi, and

Maarten van Steen. « Service-oriented data denormalization for scalable web
applications ». In: Proceedings of the 17th international conference on World Wide
Web (WWW). 2008.

[8] Optimizely. The most misleading measure of response time. White paper. https:
//bit.ly/3boHgnZ. 2013.

[9] Ahmed Ali-Eldin, Oleg Seleznjev, Sara Sjöstedt-de Luna, Johan Tordsson, and
Erik Elmroth. «Measuring cloudworkload burstiness ». In: Proceedings of the 7th
IEEE/ACM International Conference on Utility and Cloud Computing (UCC). 2014.

[10] Docker Inc. Docker: Empowering app development for developers. Docker
Documentation. https://docs.docker.com/. 2013.

[11] The Kubernetes Authors. « Kubernetes ». https://kubernetes.io/. 2019.

139

http://bit.ly/Cloud_networking
http://claudit.feld.cvut.cz/
http://claudit.feld.cvut.cz/
https://gtnr.it/3euQbFh
http://bit.ly/Cloud_Locations
https://bit.ly/3boHgnZ
https://bit.ly/3boHgnZ
https://docs.docker.com/
https://kubernetes.io/

[12] Docker Inc. Swarm mode overview. Docker Documentation.
https://docs.docker.com/engine/swarm/. 2013.

[13] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi,
Anthony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. « Mesos: A
platform for fine-grained resource sharing in the data center ». In: Proceedings
of the Usenix Symposium on Networked Systems Design and Implementations
(NSDI). 2011.

[14] Saiful Hoque, Mathias Santos de Brito, Alexander Willner, Oliver Keil, and
Thomas Magedanz. « Towards container orchestration in fog computing
infrastructures ». In: Proceedings of 41st IEEE Annual Computer Software and
Applications Conference (COMPSAC). 2017.

[15] Qiang Fan andNirwanAnsari. « Towardsworkload balancing in fog computing
empowered IoT ». In: IEEE Transactions on Network Science and Engineering 7.1
(2020).

[16] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. « Vivaldi: A
decentralized network coordinate system ». In: Proceedings of the ACM
SIGCOMM Conference. 2004.

[17] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. « Wikipedia
workload analysis for decentralized hosting ». In: Computer Networks 53.11
(2009).

[18] Ali J. Fahs andGuillaumePierre. « Proximity-aware traffic routing in distributed
fog computing platforms ». In: Proceedings of the ACM/IEEE Cluster, Cloud and
Internet Computing Conference (CCGrid). 2019.

[19] Ali J. Fahs and Guillaume Pierre. « Tail-latency-aware fog application replica
placement ». In: Proceedings of the 18th International Conference on Service Oriented
Computing(ICSOC). 2020.

[20] Ali J. Fahs, Guillaume Pierre, and Erik Elmroth. « Voilà: Tail-latency-aware fog
application replicas autoscaler ». In: Proceedings of the IEEE Symposium on
Modelling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). 2020.

[21] Flexera. « RightScale state of the cloud report 2019 ».
https://bit.ly/RightScaleReport. 2019.

140

https://docs.docker.com/engine/swarm/
https://bit.ly/RightScaleReport

[22] Data Center Knowledge. « Everything you ever wanted to know (and didn’t)
about Google data centers but were afraid to ask ». http : / / bit . ly / Data _
Center_Knowledge. 2017.

[23] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. « Fog
computing and its role in the Internet of Things ». In: Proceedings of the
workshop on Mobile computing. 2012.

[24] Benoit Chevarie. « The importance ofmanaging data center fiber ». Beldenwhite
paper. http://bit.ly/FiberDataCenter. 2020.

[25] Intel. « Intelligent decisions with Intel Internet of Things ». https://intel.ly/
32ybEs2. 2018.

[26] IoT Analytics. « State of the IoT 2018 ». http://bit.ly/State_IoT. 2018.
[27] Verizon. «What is the Latency of 5G? » https://vz.to/2EdT5Sa. 2020.
[28] Ali El Amine. « Radio resource allocation in 5G cellular networks powered by

the smart grid and renewable energies ». PhD thesis. Ecole nationale supérieure
Mines-Télécom Atlantique, 2019.

[29] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. « Big data
and Internet of Things: A roadmap for smart environments ». In: ed. by
Nik Bessis and Ciprian Dobre. Springer, 2014. Chap. Fog Computing: A
Platform for Internet of Things and Analytics.

[30] Alan Sill. « Standards at the edge of the cloud ». In: IEEE Cloud Computing 4.2
(2017).

[31] Subhadeep Sarkar and Sudip Misra. « Theoretical modelling of fog computing:
a green computing paradigm to support IoT applications ». In: Iet Networks 5.2
(2016).

[32] Luis M Vaquero and Luis Rodero-Merino. « Finding your way in the fog:
Towards a comprehensive definition of fog computing ». In: ACM SIGCOMM
Computer Communication Review 44.5 (2014).

[33] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala,
Fatemeh Jalali, Amirreza Niakanlahiji, Jian Kong, and Jason P Jue. « All one
needs to know about fog computing and related edge computing paradigms:
A complete survey ». In: Journal of Systems Architecture 98 (2019).

141

http://bit.ly/Data_Center_Knowledge
http://bit.ly/Data_Center_Knowledge
http://bit.ly/FiberDataCenter
https://intel.ly/32ybEs2
https://intel.ly/32ybEs2
http://bit.ly/State_IoT
https://vz.to/2EdT5Sa

[34] Eva Marín-Tordera, Xavi Masip-Bruin, Jordi García-Almiñana, Admela Jukan,
Guang-Jie Ren, and Jiafeng Zhu. « Do we all really know what a fog node is?
Current trends towards an open definition ». In: Computer Communications 109
(2017).

[35] Mugen Peng, Shi Yan, Kecheng Zhang, and Chonggang Wang.
« Fog-computing-based radio access networks: Issues and challenges ». In:
IEEE Network 30.4 (2016).

[36] Shao-Chou Hung, Hsiang Hsu, Shao-Yu Lien, and Kwang-Cheng Chen.
« Architecture harmonization between cloud radio access networks and fog
networks ». In: IEEE Access 3 (2015).

[37] Vangelis Gazis, Alessandro Leonardi, Kostas Mathioudakis,
Konstantinos Sasloglou, Panayotis Kikiras, and Raghuram Sudhaakar.
« Components of fog computing in an industrial Internet of Things context ».
In: Proceedings of the 12th Annual IEEE International Conference on Sensing,
Communication, and Networking-Workshops (SECONWorkshops). 2015.

[38] Ibrahim Abdullahi, Suki Arif, and Suhaidi Hassan. « Ubiquitous shift with
information centric network caching using fog computing ». In: Computational
intelligence in information systems. Springer, 2015.

[39] Niko Mäkitalo, Aleksandr Ometov, Joona Kannisto, Sergey Andreev,
Yevgeni Koucheryavy, and Tommi Mikkonen. « Safe, secure executions at the
network edge: coordinating cloud, edge, and fog computing ». In: IEEE
Software 35.1 (2017).

[40] Bo Tang, Zhen Chen, Gerald Hefferman, Tao Wei, Haibo He, and Qing Yang.
« A hierarchical distributed fog computing architecture for big data analysis in
smart cities ». In: Proceedings of the ASE BigData & Social Informatics. 2015.

[41] Claus Pahl, Sven Helmer, Lorenzo Miori, Julian Sanin, and Brian Lee. « A
container-based edge cloud PaaS architecture based on Raspberry Pi clusters ».
In: Proceedings of the FiCloud Workshop. 2016.

[42] Badraddin Alturki, Stephan Reiff-Marganiec, and Charith Perera. « A hybrid
approach for data analytics for Internet of Things ». In: Proceedings of the 7th
International Conference on the Internet of Things. 2017.

142

[43] Jianhua He, Jian Wei, Kai Chen, Zuoyin Tang, Yi Zhou, and Yan Zhang.
« Multitier fog computing with large-scale iot data analytics for smart cities ».
In: IEEE Internet of Things Journal 5.2 (2017).

[44] OpenFog Consortium. Real-time subsurface imaging. http://www.fogguru.eu/
tmp/OpenFog-Use-Cases.zip. 2018.

[45] OpenFog Consortium. Patient monitoring.
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip. 2018.

[46] Cisco.EnablingMaaS through a distributed IoT data fabric, fog computing and network
protocols. White paper. https://bit.ly/3nYkqcM. 2018.

[47] Bruce Thomas, Ben Close, John Donoghue, John Squires, Phillip De Bondi,
Michael Morris, and Wayne Piekarski. « ARQuake: An outdoor/indoor
augmented reality first person application ». In: Proceedings of the International
Symposium on Wearable Computers. 2000.

[48] Pengfei Hu, Sahraoui Dhelim, Huansheng Ning, and Tie Qiu. « Survey on fog
computing: architecture, key technologies, applications and open issues ». In:
Journal of Network and Computer Applications 98 (2017).

[49] Gangyong Jia, Guangjie Han, Aohan Li, and Jiaxin Du. « SSL: Smart street lamp
based on fog computing for smarter cities ». In: IEEE Transactions on Industrial
Informatics. Vol. 14. 11. 2018.

[50] Hamidreza Arkian, Dimitrios Giouroukis, Paulo Souza Junior, and
Guillaume Pierre. « Potable water management with integrated fog computing
and LoRaWAN technologies ». In: IEEE IoT Newsletter (2020).

[51] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai,
and Mahadev Satyanarayanan. « Towards wearable cognitive assistance ». In:
Proceedings of the MobiSys Conference. 2014.

[52] Chao Zhu, Giancarlo Pastor, Yu Xiao, and Antti Ylajaaski. « Vehicular fog
computing for video crowdsourcing: Applications, feasibility, and
challenges ». In: IEEE Communications Magazine. Vol. 56. 10. 2018.

[53] Yuhua Lin and Haiying Shen. « CloudFog: Leveraging fog to extend cloud
gaming for thin-client MMOG with high Quality of Service ». In: IEEE
Transactions on Parallel and Distributed Systems 28.2 (2017).

143

http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
https://bit.ly/3nYkqcM

[54] OpenFog Consortium. Visual security and surveillance scenario (3.2). https://
www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.
pdf. 2017.

[55] OpenFog Consortium. Out of the fog: Use case scenarios (live video broadcasting).
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip. 2018.

[56] Utsav Drolia, Katherine Guo, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan.
« Cachier: Edge-caching for recognition applications ». In: Proceedings of the 37th
IEEE International Conference on Distributed Computing Systems (ICDCS). 2017.

[57] Ge Ma, Zhi Wang, Miao Zhang, Jiahui Ye, Minghua Chen, and Wenwu Zhu.
« Understanding performance of edge content caching for mobile video
streaming ». In: IEEE Journal on Selected Areas in Communications 35.5 (2017).

[58] Hamidreza Arkian, Guillaume Pierre, Johan Tordsson, and Erik Elmroth. « An
experiment-driven performance model of stream processing operators in fog
computing environments ». In: Proceedings of the 35th Annual ACM Symposium
on Applied Computing (SAC). 2020.

[59] OpenFog Consortium. Out of the fog: Use case scenarios (high-scale drone package
delivery). http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip. 2018.

[60] OpenFog Consortium. Autonomous Driving. http://www.fogguru.eu/tmp/
OpenFog-Use-Cases.zip. 2018.

[61] Swarnava Dey and Arijit Mukherjee. « Robotic SLAM: A review from fog
computing and mobile edge computing perspective ». In: Proceedings of the 13th
International Conference on Mobile and Ubiquitous Systems: Computing Networking
and Services (MOBIQUITOUS). 2016.

[62] Hadeal Abdulaziz Al Hamid, Sk Md Mizanur Rahman, M. Shamim Hossain,
Ahmad Almogren, and Atif Alamri. « A security model for preserving the
privacy of medical big data in a healthcare cloud using a fog computing
facility with pairing-based cryptography ». In: IEEE Access 5 (2017).

[63] Pengzhan Hao, Yongshu Bai, Xin Zhang, and Yifan Zhang. « Edgecourier: An
edge-hosted personal service for low-bandwidth document synchronization in
mobile cloud storage services ». In: Proceedings of the 2nd ACM/IEEE Symposium
on Edge Computing. 2017.

144

https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip

[64] Yan-Da Chen, Muhammad Zulfan Azhari, and Jenq-Shiou Leu. « Design and
implementation of a power consumption management system for smart home
over fog-cloud computing ». In: Proceedings of the 3rd International Conference on
Intelligent Green Building and Smart Grid (IGBSG). 2018.

[65] Shanhe Yi, Zhengrui Qin, and Qun Li. « Security and privacy issues of fog
computing: A survey ». In: Proceedings of the International conference on wireless
algorithms, systems, and applications. Springer. 2015.

[66] ArwaAlrawais, AbdulrahmanAlhothaily, ChunqiangHu, and Xiuzhen Cheng.
« Fog computing for the Internet of Things: Security and privacy issues ». In:
IEEE Internet Computing 21.2 (2017).

[67] OpenStack. « The OpenStack project ». https://www.openstack.org/. 2010.
[68] Adisorn Lertsinsrubtavee, Anwaar Ali, Carlos Molina-Jimenez,

Arjuna Sathiaseelan, and Jon Crowcroft. « PiCasso: A lightweight edge
computing platform ». In: Proceedings of the IEEE CloudNet Conference. 2017.

[69] Michael Chima Ogbuachi, Anna Reale, Péter Suskovics, and Benedek Kovács.
« Context-aware Kubernetes scheduler for edge-native applications on 5G ». In:
Journal of Communications Software and Systems 16.1 (2020).

[70] José Santos, Tim Wauters, Bruno Volckaert, and Filip De Turck. « Towards
network-aware resource provisioning in Kubernetes for fog computing
applications ». In: Proceedings of the IEEE Conference on Network Softwarization
(NetSoft). 2019.

[71] CecilWöbker, Andreas Seitz, HaraldMueller, and Bernd Bruegge. « Fogernetes:
Deployment and management of fog computing applications ». In: Proceedings
of the IEEE/IFIP Network Operations and Management Symposium (NOMS). 2018.

[72] Udi Nachmany. Kubernetes: Evolution of an IT revolution.
https://bit.ly/3fX763x. 2018.

[73] Cloud Native Computing Foundation. « 2019 CNCF Survey results are here:
Deployments are growing in size and speed as cloud native adoption becomes
mainstream ». http://bit.ly/CNCFSUR. 2020.

[74] The New Stack. « Kubernetes is the new standard for computing, including the
edge ». https://bit.ly/3lHJ2on. 2020.

145

https://www.openstack.org/
https://bit.ly/3fX763x
http://bit.ly/CNCFSUR
https://bit.ly/3lHJ2on

[75] The K3s authors. « The certified Kubernetes distribution built for IoT and Edge
computing ». https://k3s.io/. 2019.

[76] Hrishikesh Barua. « CNCF approves Kubernetes edge computing platform
KubeEdge as incubating project ». https://bit.ly/3lMziZQ. 2020.

[77] Wei-Sheng Zheng and Li-Hsing Yen. « Auto-scaling in Kubernetes-based fog
computing platform ». In: Proceedings of the International Computer Symposium.
Springer. 2018.

[78] The Linux Foundation. « etcd: A distributed, reliable key-value store for the
most critical data of a distributed system ». https://etcd.io. 2020.

[79] Lakshminarayanan Subramanian, Venkata N Padmanabhan, and
Randy H Katz. « Geographic properties of Internet routing ». In: Proceedings of
the Usenix Annual Technical Conference (ATC). 2002.

[80] HashiCorp. « Serf: Decentralized Cluster Membership, Failure Detection, and
Orchestration ». https://www.serf.io/. 2013.

[81] Gianni Barlacchi, Marco De Nadai, Roberto Larcher, Antonio Casella,
Cristiana Chitic, Giovanni Torrisi, Fabrizio Antonelli, Alessandro Vespignani,
Alex Pentland, and Bruno Lepri. « A multi-source dataset of urban life in the
city of Milan and the Province of Trentino ». In: Scientific data 2.1 (2015).

[82] Klervie Toczé and Simin Nadjm-Tehrani. « A taxonomy for management and
optimization of multiple resources in edge computing ». In: Wireless
Communications and Mobile Computing 2018 (2018).

[83] Mostafa Ghobaei-Arani, Alireza Souri, and Ali A Rahmanian. « Resource
management approaches in fog computing: a comprehensive review ». In:
Journal of Grid Computing (2019).

[84] Vincenzo De Maio and Ivona Brandic. « Multi-objective mobile edge
provisioning in small cell clouds ». In: Proceedings of the ACM/SPEC
International Conference on Performance Engineering (ICPE). 2019.

[85] Alexandre van Kempen, Teodor Crivat, Benjamin Trubert, Debaditya Roy, and
GuillaumePierre. «MEC-ConPaaS: An experimental single-board basedmobile
edge cloud ». In: Proceedings of the 5th IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering (MobileCloud). 2017.

146

https://k3s.io/
https://bit.ly/3lMziZQ
https://etcd.io
https://www.serf.io/

[86] Ye Yu, Xin Li, and Chen Qian. « SDLB: A scalable and dynamic software load
balancer for fog and mobile edge computing ». In: Proceedings of the ACM
Workshop on Mobile Edge Communications. 2017.

[87] Liang Huang, Xu Feng, Luxin Zhang, Liping Qian, and Yuan Wu.
« Multi-server multi-user multi-task computation offloading for mobile edge
computing networks ». In: Sensors 19.6 (2019).

[88] Xiang Wang, Supeng Leng, and Kun Yang. « Social-aware edge caching in fog
radio access networks ». In: IEEE Access 5 (2017).

[89] Duc-Nghia Vu, Nhu-Ngoc Dao, Yongwoon Jang, Woongsoo Na,
Young-Bin Kwon, Hyunchul Kang, Jason J Jung, and Sungrae Cho. « Joint
energy and latency optimization for upstream IoT offloading services in fog
radio access networks ». In: Transactions on Emerging Telecommunications
Technologies 30.4 (2019).

[90] Atakan Aral, Ivona Brandic, Rafael Brundo Uriarte, Rocco De Nicola, and
Vincenzo Scoca. « Addressing application latency requirements through edge
scheduling ». In: Journal of Grid Computing 17.4 (2019).

[91] Fung Po Tso, David R White, Simon Jouet, Jeremy Singer, and
Dimitrios P Pezaros. « The Glasgow Raspberry Pi cloud: A scale model for
cloud computing infrastructures ». In: Proceedings of the 33rd IEEE International
Conference on Distributed Computing Systems Workshops (ICDCS). 2013.

[92] Paolo Bellavista and Alessandro Zanni. « Feasibility of fog computing
deployment based on Docker containerization over RaspberryPi ». In:
Proceedings of the 18th international conference on distributed computing and
networking (ICDCN). 2017.

[93] Arif Ahmed. « Efficient cloud application deployment in distributed fog
infrastructures ». PhD thesis. Université de Rennes 1, 2020.

[94] Mithun Mukherjee, Suman Kumar, Constandinos X Mavromoustakis,
George Mastorakis, Rakesh Matam, Vikas Kumar, and Qi Zhang.
« Latency-driven parallel task data offloading in fog computing networks for
industrial applications ». In: IEEE Transactions on Industrial Informatics (2019).

147

[95] Qiang Li, Jin Lei, Jingran Lin, and Xiaoxiao Wu. « Latency minimization for
multiuser computation offloading in fog-radio access networks ». In: arXiv
preprint arXiv:1907.08759 (2019).

[96] Klervie Toczé and Simin Nadjm-Tehrani. « ORCH: Distributed orchestration
framework using mobile edge devices ». In: Proceedings of the 3rd IEEE
International Conference on Fog and Edge Computing (ICFEC). 2019.

[97] Ahmed Jawad Kadhim and Seyed Amin Hosseini Seno. « Energy-efficient
multicast routing protocol based on SDN and fog computing for vehicular
networks ». In: Ad Hoc Networks 84 (2019).

[98] Sura Khalil Abd, Syed Abdul Rahman Al-Haddad, Fazirulhisyam Hashim,
Azizol BHJ Abdullah, and Salman Yussof. « Energy-aware fault tolerant task
offloading of mobile cloud computing ». In: Proceedings of the 5th IEEE
International Conference on Mobile Cloud Computing, Services, and Engineering
(MobileCloud). 2017.

[99] Huaiying Sun, Huiqun Yu, Guisheng Fan, and Liqiong Chen. « Energy and time
efficient task offloading and resource allocation on the generic IoT-fog-cloud
architecture ». In: Peer-to-Peer Networking and Applications 13.2 (2020).

[100] Lin Gu, Deze Zeng, Song Guo, Ahmed Barnawi, and Yong Xiang. « Cost
efficient resource management in fog computing supported medical
cyber-physical system ». In: IEEE Transactions on Emerging Topics in Computing
5.1 (2015).

[101] Ashkan Yousefpour, Genya Ishigaki, Riti Gour, and Jason P Jue. « On reducing
IoT service delay via fog offloading ». In: IEEE Internet of Things Journal 5.2
(2018).

[102] Fani Basic, Atakan Aral, and Ivona Brandic. « Fuzzy handoff control in edge
offloading ». In: Proceedings of the IEEE International Conference on Fog Computing
(ICFC). 2019.

[103] Feyza YildirimOkay and Suat Ozdemir. « Routing in fog-enabled IoT platforms:
A survey and an SDN-based solution ». In: IEEE Internet of Things Journal 5.6
(2018).

148

[104] Harikrishna Pydi and Ganesh Neelakanta Iyer. « Analytical review and study
on load balancing in edge computing platform ». In: Proceedings of the 4th IEEE
International Conference on Computing Methodologies and Communication
(ICCMC). 2020.

[105] Ting Lu, ShanChang, andWei Li. « Fog computing enabling geographic routing
for urban area vehicular network ». In: Peer-to-Peer Networking and Applications
11.4 (2018).

[106] Naserali Noorani and Seyed Amin Hosseini Seno. « Routing in VANETs based
on intersection using SDN and fog computing ». In: Proceedings of the 8th IEEE
International Conference on Computer and Knowledge Engineering (ICCKE). 2018.

[107] Deepak Puthal, Mohammad S Obaidat, Priyadarsi Nanda, Mukesh Prasad,
Saraju P Mohanty, and Albert Y Zomaya. « Secure and sustainable load
balancing of edge data centers in fog computing ». In: IEEE Communications
Magazine 6.5 (2018).

[108] Roberto Beraldi, Abderrahmen Mtibaa, and Hussein Alnuweiri. « Cooperative
load balancing scheme for edge computing resources ». In: Proceedings of the 2nd
International Conference on Fog and Mobile Edge Computing (FMEC). 2017.

[109] Andreas Kapsalis, Panagiotis Kasnesis, Iakovos S Venieris,
Dimitra I Kaklamani, and Charalampos Z Patrikakis. « A cooperative fog
approach for effective workload balancing ». In: IEEE Cloud Computing 4.2
(2017).

[110] Magnus Karlsson, Christos Karamanolis, and Mallik Mahalingam. A framework
for evaluating replica placement Algorithms. Tech. rep.HPL-2002-219.HPLabs Palo
Alto, 2002.

[111] Jad Darrous, Thomas Lambert, and Shadi Ibrahim. « On the Importance of
Container Image Placement for Service Provisioning in the Edge ». In:
Proceedings of the 28th International Conference on Computer Communication and
Networks (ICCCN). 2019.

[112] Michał Szymaniak, Guillaume Pierre, andMaarten van Steen. « Latency-driven
replica placement ». In: IPSJ Journal 47.8 (2006).

149

[113] Isaac Lera, Carlos Guerrero, and Carlos Juiz. « Comparing centrality indices
for network usage optimization of data placement policies in fog devices ». In:
Proceedings of the 3rd International Conference on Fog and Mobile Edge Computing
(FMEC). 2018.

[114] Juan Liu, Bo Bai, Jun Zhang, and Khaled B Letaief. « Cache placement in
Fog-RANs: From centralized to distributed algorithms ». In: IEEE Transactions
on Wireless Communications 16.11 (2017).

[115] Mohammed IslamNaas, PhilippeRaipin Parvedy, Jalil Boukhobza, andLaurent
Lemarchand. « iFogStor: an IoT data placement strategy for fog infrastructure ».
In: Proceedings of the 1st IEEE International Conference on Fog and Edge Computing
(ICFEC). 2017.

[116] AtakanAral and TolgaOvatman. «Adecentralized replica placement algorithm
for edge computing ». In: IEEE Transactions on Network and Service Management
15.2 (2018).

[117] Yanling Shao, Chunlin Li, and Hengliang Tang. « A data replica placement
strategy for IoT workflows in collaborative edge and cloud environments ». In:
Computer Networks 148 (2019).

[118] Kangkang Li and Jarek Nabrzyski. « Traffic-aware virtual machine placement
in cloudlet mesh with adaptive bandwidth ». In: Proceedings of the IEEE
International Conference on Cloud Computing Technology and Science (CloudCom).
2017.

[119] Lei Zhao, Jiajia Liu, Yongpeng Shi, Wen Sun, and Hongzhi Guo. « Optimal
placement of virtual machines in mobile edge computing ». In: Proceedings of
the IEEE Global Communications Conference (GLOBECOM). 2017.

[120] Ya-Ju Yu, Te-Chuan Chiu, Ai-Chun Pang, Ming-Fan Chen, and Jiajia Liu.
« Virtual machine placement for backhaul traffic minimization in fog radio
access networks ». In: Proceedings of the IEEE International Conference on
Communications (ICC). 2017.

[121] Fatma Ben Jemaa, Guy Pujolle, and Michel Pariente. « QoS-aware VNF
placement optimization in edge-central carrier cloud architecture ». In:
Proceedings of the IEEE Global Communications Conference (GLOBECOM). 2016.

150

[122] Hua-Jun Hong, Pei-Hsuan Tsai, and Cheng-Hsin Hsu. « Dynamic module
deployment in a fog computing platform ». In: Proceedings of the 18th IEEE
Asia-Pacific Network Operations and Management Symposium (APNOMS). 2016.

[123] Alessio Silvestro, Nitinder Mohan, Jussi Kangasharju, Fabian Schneider, and
Xiaoming Fu. « Mute: Multi-tier edge networks ». In: Proceedings of the 5th
Workshop on CrossCloud Infrastructures & Platforms. 2018.

[124] Jinlai Xu, Balaji Palanisamy, Heiko Ludwig, and Qingyang Wang. « Zenith:
Utility-aware resource allocation for edge computing ». In: Proceedings of the
IEEE international conference on edge computing (EDGE). 2017.

[125] Olena Skarlat, Matteo Nardelli, Stefan Schulte, and Schahram Dustdar.
« Towards QoS-aware fog service placement ». In: Proceedings of the 1st IEEE
international conference on Fog and Edge Computing (ICFEC). 2017.

[126] Hengliang Tang, Chunlin Li, Jingpan Bai, JianHang Tang, and Youlong Luo.
« Dynamic resource allocation strategy for latency-critical and
computation-intensive applications in cloud-edge environment ». In: Computer
Communications 134 (2019).

[127] Chunlin Li, YaPing Wang, Hengliang Tang, Yujiao Zhang, Yan Xin, and
Youlong Luo. « Flexible replica placement for enhancing the availability in
edge computing environment ». In: Computer Communications 146 (2019).

[128] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and
Rajkumar Buyya. « CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms ».
In: Software: Practice and Experience 41.1 (2011).

[129] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar Buyya.
« iFogSim: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments ».
In: Software: Practice and Experience 47.9 (2017).

[130] Gil Tene. How NOT to measure latency. https://bit.ly/2uyET1f. 2012.
[131] Gourav Rattihalli, Madhusudhan Govindaraju, Hui Lu, and Devesh Tiwari.

« Exploring potential for non-disruptive vertical auto scaling and resource
estimation in Kubernetes ». In: Proceedings of the 12th IEEE International
Conference on Cloud Computing (CLOUD). 2019.

151

https://bit.ly/2uyET1f

[132] Salman Taherizadeh and Marko Grobelnik. « Key influencing factors of the
Kubernetes auto-scaler for computing-intensive microservice-native
cloud-based applications ». In: Advances in Engineering Software 140 (2020).

[133] Thanh-Tung Nguyen, Yu-Jin Yeom, Taehong Kim, Dae-Heon Park, and
Sehan Kim. « Horizontal pod autoscaling in Kubernetes for elastic container
orchestration ». In: Sensors 20.16 (2020).

[134] Jieming Zhu, Zibin Zheng, Yangfan Zhou, andMichael R Lyu. « Scaling service-
oriented applications into geo-distributed clouds ». In:Proceedings of the 7th IEEE
International Symposium on Service-Oriented System Engineering. 2013.

[135] Chenhao Qu. «Auto-scaling and deployment of web applications in distributed
computing clouds ». PhD thesis. University of Melbourne, 2016.

[136] Emanuel Ferreira Coutinho, Flávio Rubens de Carvalho Sousa,
Paulo Antonio Leal Rego, Danielo Gonçalves Gomes, and
José Neuman de Souza. « Elasticity in cloud computing: a survey ». In: annals
of telecommunications-annales des télécommunications 70.7-8 (2015).

[137] Nan Wang, Blesson Varghese, Michail Matthaiou, and
Dimitrios S Nikolopoulos. « ENORM: A framework for edge node resource
management ». In: IEEE transactions on services computing (2017).

[138] Arif Ahmed and Guillaume Pierre. « Docker container deployment in fog
computing infrastructures ». In: Proceedings of the IEEE International Conference
on Edge Computing (EDGE). 2018.

[139] Wajdi Hajji and Fung Po Tso. « Understanding the performance of low power
Raspberry Pi cloud for big data ». In: Electronics 5.2 (2016).

[140] Albrecht Fehske, Gerhard Fettweis, Jens Malmodin, and Gergely Biczok. « The
global footprint of mobile communications: The ecological and economic
perspective ». In: IEEE communications magazine 49.8 (2011).

[141] KrisHolt. « Segawants to turn Japanese arcades into ’fog gaming’ data centers ».
https://engt.co/3cZfwaw. 2020.

[142] Djawida Dib. « Optimizing PaaS provider profit under service level agreement
constraints ». PhD thesis. Université de Rennes 1, 2014.

152

https://engt.co/3cZfwaw

[143] Cosimo Anglano, Massimo Canonico, Paolo Castagno, Marco Guazzone, and
Matteo Sereno. « A game-theoretic approach to coalition formation in fog
provider federations ». In: Proceedings of the 3rd IEEE International Conference on
Fog and Mobile Edge Computing (FMEC). 2018.

[144] Schneider Electric. « Customer insight: Future-proofing your colocation
business ». https://bit.ly/3cZg7ZO. 2017.

[145] Joe Weinman. « The economics of the hybrid multicloud fog ». In: IEEE Cloud
Computing 4.1 (2017).

[146] Florin Manaila. « Moving AI from the data center to edge or fog Computing ».
https://ibm.co/36C4PcK. 2020.

[147] Cunqian Yu, Bin Lin, Ping Guo, Wei Zhang, Sen Li, and Rongxi He.
« Deployment and dimensioning of fog computing-based Internet of Vehicle
infrastructure for autonomous driving ». In: IEEE Internet of Things Journal 6.1
(2018).

[148] Genc Tato, Marin Bertier, Etienne Rivière, and Cédric Tedeschi. « ShareLatex on
the edge: Evaluation of the hybrid core/edge deployment of a microservices-
based application ». In: Proceedings of the 3rd Workshop on Middleware for Edge
Clouds & Cloudlets. 2018.

[149] Genc Tato, Marin Bertier, Etienne Rivière, and Cédric Tedeschi. « Split and
migrate: Resource-driven placement and discovery of microservices at the
edge ». In: Proceedings of the Conference On Principles Of Distributed Systems
(OPODIS). 2019.

[150] Ion-Dorinel Filip, Florin Pop, Cristina Serbanescu, and Chang Choi.
« Microservices scheduling model over heterogeneous cloud-edge
environments as support for IoT applications ». In: IEEE Internet of Things
Journal 5.4 (2018).

[151] Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya.
« Microservices-based IoT application placement within heterogeneous and
resource constrained fog computing environments ». In: Proceedings of the 12th
IEEE/ACM International Conference on Utility and Cloud Computing (UCC). 2019.

153

https://bit.ly/3cZg7ZO
https://ibm.co/36C4PcK

Titre : Gestion des Répliques avec Prise en Compte de la Proximité dans les Plates-Formes
Géo-Distribuées de Fog Computing.

Mot clés : Fog computing, Gestion de la proximité, Gestion des ressources, Kubernetes.

Résumé : L’architecture géo-distribuée de
fog computing fournit aux utilisateurs des
ressources accessibles avec une faible
latence. Cependant, exploiter pleinement
cette architecture nécessite une distribution
similaire de l’application par l’utilisation de
techniques de réplication. Par conséquent,
la gestion de ces répliques doit intégrer
des algorithmes prenant en compte la
proximité aux différents niveaux de gestion
des ressources du système.

Dans cette thèse, nous avons abordé
ce problème à travers trois contributions.

Premièrement, nous avons conçu un système
de routage des requêtes entre les utilisateurs
et les ressource prenant en compte la
proximité. Deuxièmement, nous avons
proposé des algorithmes dynamiques pour le
placement des répliques prenant en compte
les derniers percentiles de la latence. Enfin,
nous avons développé un système de mise à
l’échelle automatique qui ajustent le nombre
des répliques de l’application en fonction
de la charge subie par les applications fog
computing.

Title: Proximity-Aware Replicas Management in Geo-Distributed Fog Computing Platforms.

Keywords: Fog computing, Proximity-awareness, Resource management, Kubernetes.

Abstract: Geo-distributed fog computing
architectures provide users with resources
reachable within low latency. However, fully
exploiting the fog architecture requires a
similar distribution of the application by
the means of replication. As a result,
fog application replica management should
implement proximity-aware algorithms
to handle different levels of resource
management.

In this thesis, we addressed this
problem over three contributions. First, we
designed a proximity-aware user-to-replica
routing mechanism. Second, we proposed
dynamic tail-latency-aware replica placement
algorithms. Finally, we developed autoscaling
algorithms to dynamically scale the application
resources according to the non-stationary
workload experienced by fog platforms.

	Introduction
	Contributions
	Published papers
	Organization of the thesis

	Background
	Cloud computing
	Cloud architecture
	Cloud limitations and the emergence of fog computing

	Fog computing
	Fog applications
	Fog architecture
	Challenges of fog computing

	Kubernetes
	Why Kubernetes?
	Application model
	Pod scheduling
	Resource discovery

	Network Proximity
	Latency estimation and Vivaldi coordinates
	Optimizing the mean or the tail latency
	Non-stationary traffic properties

	A complete fog computing architecture
	Network model
	Replicated service-oriented applications in Kubernetes

	State of the art
	Workload routing
	Task offloading
	Request routing

	Placement and re-placement
	Autoscaling
	Conclusion

	Proximity-aware request routing
	Introduction
	System design
	Architecture
	Measuring proximity
	Weight calculation
	Updated routes injection

	Evaluation
	Experimental setup
	Performance overhead
	Service access latency
	Load distribution
	Load (im)balance in the presence of multiple senders

	Conclusion

	Tail-latency-aware placement/re-placement
	Introduction
	System design
	System model
	System monitoring
	Initial replica placement
	Replica re-placement
	Implementation

	Evaluation
	Initial replica placement
	Replica re-placement
	Computational complexity

	Conclusion

	Tail-latency-aware autoscaling
	Introduction
	System Design
	System model and monitoring
	Replica placement quality evaluation
	Initial replica placement
	Replacement and autoscaling

	Evaluation
	Experimental setup
	Hona performance compared to Voilà
	Autoscaling behavior
	Scaling up before saturation violations take place
	Sensitivity analysis
	Scalability

	Conclusion

	Conclusion
	Conclusion
	Summary
	Future directions
	Extending the fog with spare nodes
	Fog federations
	Fog node heterogeneity
	Fog resource management for microservices

	Closing statement

	Bibliography

