1 Nabla operator:

2 Operators single notation returns a scalar, as for example div ; operators with bold notation returns a column vector, as for example div , grad and curl ; and operators with bold notation and capital first letter return a tensor, as for example Grad .

iii Notation Structure µ, λ Lamé coefficients of the structure material ρ s Density of the structure material r, h, L Internal radius, thickness and length of a flexible tube s Length of structure sections n s Number of structure sections m j j-th mass of the MSD approximation π sj Momentum of the j-th mass v sj Velocity of mass j q sj Position of mass j q
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Mathematical Operations

Transpose of a vector or matrix T r Trace of a matrix u 1 • u 2 dot product, u 1 u 2 u 1 u 2 Diadic product, also called external product, u 1 u 2 = u 1 u 2 = u 1 ⊗ u 2 u 1 × u 2 cross product σ 1 : σ 2 scalar product between 2 tensors, T r(σ 1 σ 2 ) u • σ dotted product of a tensor with a tensor. The i-th component of u • σ is j u j σ ji and the i-th component of σ • u is j σ ij u j |v| Absolute value u l 2 -norm: √ u • u u X Weighted l 2 -norm: u • [Xu] with X > 0 Differential Operators 1,2 ẋ Total time derivative, dx dt ∂ x Partial derivative, ∂ ∂x , x ∈ {t, ζ, ξ, z, x} δ x Variational derivative, δ δx div Divergence of a vector, div u := ∇ • u, return a scalar div Divergence of a tensor, div σ := ∇ • σ, return a vector grad Gradient of a scalar, grad f := ∇f , return a vector Grad Gradient of a vector, Grad u := ∇u, return a tensor curl Curl or rotational, curl u := ∇ × u, return a vector Chapter 1 Introduction

Motivation

Fluid-structure interaction (FSI) is a sub-discipline in science and engineering, focused on the description of the interactions between fluids and mechanical structures [1]. FSI raises challenges associated with the fluid and structural mechanics subproblems, as well as with their coupling. FSI can be characterized as a class of problems for which exists a mutual dependence between the fluid and the structural mechanical domains. The flow behavior is driven by the shape of the structure and its motion, and the motion and deformation of the structure is driven by the fluid forces acting on the contact surface, also called coupling surface [1,2].

FSI can be found in problems in engineering, science and medicine, such as performance analysis of power generation with wind turbines [3,4] and aerodynamics of aircrafts [5], modeling of insect flight [START_REF] Truong | A mass-spring fluid-structure interaction solver: Application to flexible revolving wings[END_REF][START_REF] Nakata | A fluid-structure interaction model of insect flight with flexible wings[END_REF], interactions between water waves and floating objects [START_REF] Vergara-Hermosilla | Well-Posedness and input-output stability for a system modelling rigid structures floating in a viscous fluid[END_REF], in the analysis of blood flow [START_REF] Degroote | Performance of partitioned procedures in fluid-structure interaction[END_REF][START_REF] Bukač | A partitioned scheme for fluid-composite structure interaction problems[END_REF][START_REF] He | A hemodynamic model with a seepage condition and fluid-structure interactions for blood flow in arteries with symmetric stenosis[END_REF][START_REF] Lozovskiy | Analysis and assessment of a monolithic FSI finite element method[END_REF] with several applications, ranging from analyzing the blood flow in an cerebral aneurysm, to study the pressure wave propagation in an artery, as shown in Figures 1.1a and 1.1b, respectively ; human voice production [START_REF] Thomson | Aerodynamic transfer of energy to the vocal folds[END_REF][START_REF] Sadeghi | Towards a Clinically Applicable Computational Larynx Model[END_REF][START_REF] Schickhofer | Compressible flow simulations of voiced speech using rigid vocal tract geometries acquired by MRI[END_REF][START_REF] Schickhofer | Analysis of the aerodynamic sound of speech through static vocal tract models of various glottal shapes[END_REF] as the analysis of the intraglottal airflow during the vocal folds vibration cycle, as shown in Figure 1.1c, and in sound generation of musical instruments [START_REF] Da Silva | Numerical simulations of fluidstructure interactions in single-reed mouthpieces[END_REF].

FSI can be described by a set of differential equations and boundary conditions which belong to the fluid and structure domains. The structure domain is governed by motion equations, obtained by an Euler-Lagrange formulation. The fluid domain is usually described using the Navier-Stokes equations. When modeling the coupling between the fluid and structure domains the following three conditions have to be satisfied [START_REF] Richter | Fluid-structure Interactions: Models, Analysis and Finite Elements[END_REF]:

• A geometric condition, i.e., the domains can not overlap.

• A kinematic condition, i.e., the velocities of the fluid and the structure at the coupling surface are the same, and finally,

• A dynamic condition that prescribes a balance of normal stresses at the boundary in terms of actio et reactio.

From a numerical point of view, FSI problems are very challenging to handle, as they are described by nonlinear partial differential equations (PDEs) defined on moving boundaries. They require an appropriate grid for the mechanical and fluid domains, a clear delineation of fluid-(a) Blood flow in a cerebral aneurysm [START_REF] Eken | A parallel monolithic approach for fluid-structure interaction in a cerebral aneurysm[END_REF]. Left: flow velocity contours and stream lines. Middle: Shear stress in the arterial wall. Right: flow pressure contours.

(b) FSI in blood flow. Arterial pressure wave propagation [START_REF] Lozovskiy | Analysis and assessment of a monolithic FSI finite element method[END_REF].

(c) Comparison of the intraglottal airflow in the vocal folds using different meshes [START_REF] Sadeghi | Towards a Clinically Applicable Computational Larynx Model[END_REF]. 1.1. Motivation structure interface, an appropriate estimation of the nonlinear dynamics, and the numerical stability of the discretization methods. In the literature, different approaches have been proposed to tackle these problems. For example, to guarantee the numerical stability of the fluidstructure time discretization, algorithms as the nonlinear generalized-α time integration scheme [START_REF] Wong | Numerical Stability of Partitioned Approach in Fluid-Structure Interaction for a Deformable Thin-Walled Vessel[END_REF], Leap Frog-Implicit Euler time discretization scheme and First order Backward Difference-Implicit Euler scheme [START_REF] Causin | Added-mass effect in the design of partitioned algorithms for fluid-structure problems[END_REF] are used. In [START_REF] Ghigo | A 2D nonlinear multiring model for blood flow in large elastic arteries[END_REF] an axisymmetric Navier-Stokes Prandtl (RNS-P) system is used to simplify the analysis of the fluid-structure dynamics applying finite volume "multiring" space-time discretization algorithm. Other well-known algorithms that prevent numerical instabilities in the computation of the fluid-structure dynamics are the streamlineupwind/Petrov-Galerkin (SUPG) [START_REF] John | Finite Element Methods for Incompressible Flow Problems, ser[END_REF][START_REF] Richter | Fluid-structure Interactions: Models, Analysis and Finite Elements[END_REF] and the pressure-stabilizing/Petrov-Galerkin (PSPG) methods [1,[START_REF] Richter | Fluid-structure Interactions: Models, Analysis and Finite Elements[END_REF].

On the other hand, regarding the problem of moving boundaries in the fluid domain, there are approaches such as space-time methods [START_REF] Tezduyar | Modelling of fluid-structure interactions with the space-time finite elements: Solution techniques[END_REF]1] and the well-known arbitrary Lagrangian-Eurelian (ALE) schemes [START_REF] Donea | Arbitrary Lagrangian-Eulerian Methods[END_REF][START_REF] Souli | Arbitrary Lagrangian-Eulerian and Fluid -Structure Interaction[END_REF][START_REF] Richter | Fluid-structure Interactions: Models, Analysis and Finite Elements[END_REF]. In these methods, also called interface-tracking techniques, adaptive mesh (or moving-mesh) and remeshing algorithms are used. In these algorithms, the mesh moves to accommodate to the shape changes in the spatial domain occupied by the fluid, and as the mesh moves, sometimes it is necessary to remesh, i.e., to generate a partial or complete new set of elements or new set of nodes and elements,as shown in Figure 1.2, to improve the accuracy of the computational solution [START_REF] Bazilevs | Challenges and Directions in Computational Fluid-Structure Interaction[END_REF].

Adaptive mesh Remeshing

.2 -Adaptive mesh and remeshing of the fluid domain in interface-tracking techniques [28].

In problems where contact between structural surfaces is involved and bringing the flow through the gap to zero is relevant, as for example in the description of the airflow in the glottis, the adaptive mesh methods would be more difficult to use [START_REF] Bazilevs | Challenges and Directions in Computational Fluid-Structure Interaction[END_REF]. As commented in [START_REF] Sadeghi | Towards a Clinically Applicable Computational Larynx Model[END_REF], during phases with narrow gap or contact between structural surfaces, extremely distorted cells with a zero or even negative volume impair the numerical simulation and lead to a breakoff in the worst case. In this sense, several approaches have been proposed in the literature. In [START_REF] Sadeghi | Towards a Clinically Applicable Computational Larynx Model[END_REF] an overset mesh around the structure is used. Wherever the overset and background meshes overlap, the occluded cells of the background mesh become disabled and the overset cells become enabled and to avoid elements with zero or negative volume, at least four cells remain between the structural surfaces during the closure, allowing a minimum gap with a small and negligible flow leakage. In [START_REF] Švancara | FE Modelling of the Fluid-Structure-Acoustic Interaction for the Vocal Folds Self-Oscillation[END_REF], when the distance between the structural surfaces is less than a threshold value, the mesh at the corresponding zone is not further modified and the flow velocity is set to zero, and in [START_REF] Bhattacharya | Validation of a flow-structure-interaction computation model of phonation[END_REF][START_REF] Jiang | Computational Modeling of Fluid-Structure-Acoustics Interaction during Voice Production[END_REF] a remesh strategy is used at each time instant. In this thesis we consider the FSI between a longitudinal fluid flow and a mechanical structure with transverse motion, as shown in Figure 1.3. Even if this problem is simplified regarding the 3D fluid-structure interactions, it has interesting applications in different research areas, as for example the study of hemo-dynamic in veins and arteries [START_REF] Yeh | Hemodynamic assessments of the ascending thoracic aortic aneurysm using fluid-structure interaction approach[END_REF][START_REF] He | A hemodynamic model with a seepage condition and fluid-structure interactions for blood flow in arteries with symmetric stenosis[END_REF] and the human phono-respiratory system [START_REF] Sadeghi | Towards a Clinically Applicable Computational Larynx Model[END_REF][START_REF] Schickhofer | Analysis of the aerodynamic sound of speech through static vocal tract models of various glottal shapes[END_REF], among others. In the classical analysis of this problem, discretizing the PDE's that describe the fluid and structure behavior, the application of several computational algorithms is necessary to guarantee the appropriate coupling of physical domains, the stability and the accuracy of the numerical results, as discussed above. As a first approximation, we consider some symmetrical assumptions, as shown in Chapters 2, 3 and 4, in the behavior of the fluid and structure, to obtain finite-dimensional models of both subsystems with an appropriate description of the fluid-structure dynamics. This allows us to avoid the use of mesh algorithms as in classical discretization of infinite-dimensional formulations. The use of finite-dimensional models in FSI problems is common in applications such as the vocal-folds vibrating cycle, where the layered tissue-epithelium, lamina propria and vocalis muscle exhibit two dominant eigenfrequencies whose behavior can be described through simplified mass-spring-damper models [START_REF] Sváček | Finite element approximation of flow induced vibrations of human vocal folds model: Effects of inflow boundary conditions and the length of subglottal and supraglottal channel on phonation onset[END_REF]. Moreover, we use the port-Hamiltonian framework in the modeling and coupling of both finite-dimensional subsystem. The advantage of this framework is that it focuses on the energy flux description between the system elements, proving stability and passivity properties to the model, allowing to define fluid-structure power transfer through a power-preserving interconnection. The aim of this approach is to obtain an appropriate description of the FSI problem described in Figure 1.3, reducing the model complexity of the classical numerical models. Finally, to advance in the numerical formulation of the FSI problem, we present general infinite-dimensional port-Hamiltonian models for Newtonian compressible fluids under isentropic and non-isentropic assumptions.

In the next section, we present the basic concepts of port-Hamiltonian systems, considering the finite-dimensional and the infinite-dimensional formulations, and also the irreversible port-Hamiltonian systems used in non-isentropic thermodynamics problems. In this sense, a bold notation is used to define vectors, ∂ x = ∂ ∂x and δ x = δ δx are used to denote partial and variational derivatives, respectively, and ẋ = dx dt denotes the time derivative of x.

Background on port-Hamiltonian systems (PHS)

As mentioned above, port-Hamiltonian formulations define a modeling framework that focuses on the energy flux. This framework has been initially introduced in [START_REF] Maschke | Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties[END_REF][START_REF]A Hamiltonian approach to stabilization of nonholonomic mechanical systems[END_REF][START_REF] Van Der Schaft | On the Hamiltonian formulation of nonholonomic mechanical systems[END_REF] for finite-dimensional systems and in [START_REF]Hamiltonian formulation of distributed-parameter systems with boundary energy flow[END_REF][START_REF] Macchelli | Port Hamiltonian Systems. A unified approach for modeling and control finite and infinite dimensional physical systems[END_REF][START_REF] Le Gorrec | Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators[END_REF][START_REF] Villegas | Boundary control for a class of dissipative differential operators including diffusion systems[END_REF] for infinite-dimensional systems. In this framework, the system dynamics is described in terms of driving forces expressed through derivatives (partial and variational derivatives for finite-dimensional and infinite-dimensional systems, respectively) of the total energy stored by the system, i.e., a non-negative function H with respect to energy variables, i.e., the state vector x. Similarly, the input u and output y are power-conjugated, describing the power supplied through the system ports. A feature of the finite-dimensional PHS is given by the inequality Ḣ ≤ u y, i.e., the rate of of change of the system stored energy is bounded by the instantaneous power supplied through the ports. This feature combined with non-negativity characteristic of H, guarantees passivity and stability properties which are useful for control purposes [START_REF] Van Der Schaft | L2-Gain and Passivity Techniques in Nonlinear Control[END_REF]. As shown in [START_REF] Duindam | Modeling and Control of Complex Physical Systems[END_REF][START_REF] Jacob | Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces[END_REF], these properties can be extended to infinite-dimensional PHS. Additionally, energy-based control methods, such as energy-shaping, damping injection and IDA-PBC, are based on PHS models [START_REF] Duindam | Modeling and Control of Complex Physical Systems[END_REF][START_REF] Van Der Schaft | L2-Gain and Passivity Techniques in Nonlinear Control[END_REF]. Other advantage is that PHS are associated with a Dirac structure (see [START_REF] Van Der Schaft | Port-Hamiltonian Systems Theory: An Introductory Overview[END_REF] for details), allowing the use of differential geometry tools to work without considering coordinates, which is suitable for the discretization of infinite-dimensional formulations. In order to exploit these advantages, the port-Hamiltonian framework has been used to describe dynamic systems in several application areas, such as the sound generation in musical instruments [START_REF] Falaize | Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano[END_REF][START_REF] Lopes | A power-balanced model of a valve exciter including shocks and based on a conservative jet for brass instruments : Simulations and comparison with standard models[END_REF][START_REF]Energy Balanced Model of a Jet Interacting With a Brass Player's Lip[END_REF], the human voice production [START_REF] Hélie | Self-oscillations of a Vocal Apparatus: A Port-Hamiltonian Formulation[END_REF][START_REF] Wetzel | Power balanced time-varying lumped parameter model of a vocal tract: Modelling and simulation[END_REF], plasma dynamics [START_REF] Vu | Port-Hamiltonian formulation for systems of conservation laws: application to plasma dynamics in Tokamak reactors[END_REF] and mechanical systems [START_REF] Aoues | Modeling and control of a rotating flexible spacecraft: A port-hamiltonian approach[END_REF][START_REF] Angerer | Port-Hamiltonian based control for human-robot team interaction[END_REF][START_REF] Lequeurre | The piston problem in a port-Hamiltonian formalism[END_REF], among others.

From the FSI point of view, the principal advantage of using PHS is the use of the energy as lingua franca between different physical domains, allowing the coupling of two systems through a power-preserving interconnection. This implies that fluid and structure models are described using the same tool and can be coupled by the power transfer between the sub-systems, as shown in [START_REF] Cardoso-Ribeiro | Modeling of a Fluidstructure coupled system using port-Hamiltonian formulation[END_REF][START_REF]A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system[END_REF][START_REF]Port-Hamiltonian model of two-dimensional shallow water equations in moving containers[END_REF].

Finite-dimensional port-Hamiltonian systems

Finite-dimensional PHS are described using a set of ODEs. According to [START_REF] Van Der Schaft | Port-Hamiltonian Systems Theory: An Introductory Overview[END_REF][START_REF] Duindam | Modeling and Control of Complex Physical Systems[END_REF], the general finite-dimensional PHS formulation, called input-state-output port-Hamiltonian system with feed-through term, is defined as follows.

Definition 1.1. [START_REF] Van Der Schaft | Port-Hamiltonian Systems Theory: An Introductory Overview[END_REF][START_REF] Duindam | Modeling and Control of Complex Physical Systems[END_REF] Consider the state space X of a dynamic system, and the non-negative function H : X → R defining the stored energy. An input-state-output port-Hamiltonian system with feed-through term is described by the following dynamic equations:

ẋ = [J(x) -R(x)] ∂ x H + [G(x) -P (x)] u (1.1a) y = [G(x) + P (x)] ∂ x H + [M (x) + S(x)] u (1.1b)
where x ∈ X is the state vector, u and y are the input and output vectors, respectively, J(x) = -J (x), M (x) = -M (x), and matrices R(x), P (x) and S(x) satisfy R(x) P (x) P (x) S(x) ≥ 0 (1.2) such that, the power balance satisfies the following relationship:

Ḣ = u y - ∂ x H u R(x) P (x) P (x) S(x) ∂ x H u ≤ u y (1.3)
where u y denotes the power supplied to the system.

Remark 1.1. Notice that in (1.1) the matrices are function of the state. This implies that (1.1) describes a non-linear system (see [START_REF] Van Der Schaft | L2-Gain and Passivity Techniques in Nonlinear Control[END_REF] for details). In the case of linear systems all matrices in (1.1) are constant, i.e., the PHS framework encompasses both, linear and non-linear systems.

Given the non-negative condition (1.2), S(x) = 0 implies that P (x) = 0. Then, in this case the input-state-output port-Hamiltonian system with feed-through term (1.1) can be expressed as:

ẋ = [J(x) -R(x)] ∂ x H + G(x)u (1.4a) y = G (x)∂ x H + M (x)u (1.4b) satisfying Ḣ = u y -[∂ x H] R(x)∂ x H ≤ u y (1.5) 
Similarly, if M (x) = 0 the ODEs (1.4) are simply called input-state-output port-Hamiltonian system. Moreover, PHS are associated to a geometric structure named Dirac structure. In this respect, according to [44, p. 48] the skew-symmetric matrix J(x) = -J (x) must satisfy an integrability condition associated with the Jacobi identity, i.e., for every E, F, G : X → R, then {E, {F, G}} + {F, {G, E}} + {G, {E, F}} = 0 (1.6) where {F, G} = [∂ x F] J(x)∂ x G is the Poisson bracket on X . If the integrability condition (1.6) is not satisfied, then, the structure generated by (1.1)-(1.3) is called pseudo-Dirac structure, and the system described in Definition 1.1 is considered as a pseudo port-Hamiltonian system (see [START_REF] Van Der Schaft | Port-Hamiltonian Systems Theory: An Introductory Overview[END_REF][START_REF] Duindam | Modeling and Control of Complex Physical Systems[END_REF] for details). Notice that, in the linear case the skew-symmetric matrix J = -J is constant and satisfies directly the Jacobi identity, i.e., all linear PHS generate a Dirac structure.

1.2.1.a Interconnection of port-Hamiltonian systems

An advantage of PHS is the use of the energy as lingua franca. This allows the coupling of two subsystems defined on different physical domains through a power-preserving interconnection. In this sense, according to [START_REF] Van Der Schaft | Port-Hamiltonian Systems Theory: An Introductory Overview[END_REF] two types of power-preserving interconnections are commonly used in the PHS framework: the interconnection by ports and the interconnection by energy.

To explain these interconnection methods, consider two PHS in the from: ẋj = [J j -R j ] ∂ x j H j + G j u j (1.7a)

y j = G j ∂ x j H j (1.7b) with j ∈ {1, 2}.
The interconnection by ports is used when the ports of the two systems are compatible, i.e., the power transfer between the systems is given by ū 1 ȳ1 = -ū 2 ȳ2 , where ūj ⊆ u j and ȳj ⊆ y j , such that {ū j , ȳj } define the connection ports of the system j. Then, the two systems can be coupled using the following interconnection rule:

ū1 ū2 = C ȳ1 ȳ2 (1.8)
where C = -C is the coupling matrix. To illustrate this method, let us consider a massspring system, as shown in Figure 1.4a. The potential energy stored by the spring is given by H k = 1 2 kq 2 where k and q are the spring coefficient and elongation, respectively, and

k F k v k m v m F 1 F 2 (a) Mass-spring system m mg F e q R L(q) + V - I ϕ (b) Levitated ball
F k = ∂ q H k
= kq is the restoring force associated with q. Then, the PHS model for this spring is given by:

q ẋ1 = 0∂ q H k + v k u 1 F k y 1 = ∂ q H k
Similarly, the kinetic energy stored by the mass is given by H m = 1 2 p 2 /m where p = mv m and v m = ∂ p H k = p/m denote the mass momentum and velocity, respectively. Then, the PHS formulation of the mass dynamics is expressed as:

ṗ ẋ2 = 0∂ p H m + -1 1 F 1 F 2 u 2 -v m v m y 2 = -1 1 ∂ p H m
Notice that the power transfer between the mass and the spring is given by

v k F k = v m F 1 . Then, defining the connection ports {ū 1 , ȳ1 } = {v k , F k } and {ū 2 , ȳ2 } = {F 1 , -v m },
mass and spring can be coupled using the interconnection:

ū1 ū2 = C ȳ1 ȳ2 =⇒ v k F 1 = 0 -1 1 0 F k -v m
leading to the following mass-spring PHS model:

q ṗ = 0 1 -1 0 ∂ q H ∂ p H + 0 1 F 2 v m = 0 1 ∂ q H ∂ p H
where

H = H k + H m .
Regarding the interconnection by energy, it is used when the ports are not compatibles and the energy of one or both systems are linked such that the coupling is only possible considering a combination of the two energies. Consider for example a magnetically levitated iron ball system, as shown in Figure 1.4b. In this case, the potential and kinetic energy stored by the ball is given by H b = mgq + 1 2 p 2 /m where m, q and p are the mass, position and momentum of the ball, respectively, and g is the gravity acceleration, such that F g = ∂ q H b = mg is the gravitational force acting on the ball and v b = ∂ p H a = p/m is the corresponding displacement velocity. Then, considering that the momentum balance is given by ṗ = -F g + F e , where F e is the force induced by the electromagnetic field, and q = v b , the PHS model of the ball is given by:

q ṗ ẋ1 = 0 1 -1 0 ∂ q H b ∂ p H b + 0 1 F e u 1 v b y 1 = 0 1 ∂ q H b ∂ p H b 8 1.2. Background on port-Hamiltonian systems (PHS)
On the other hand, the energy stored by the electric circuit is given by H e = 1 2 ϕ 2 /L(q) where ϕ is the magnetic flux-linkage of the inductor, L(q) is the corresponding inductance, and I = ∂ ϕ H e denotes the circuit current. Then, the corresponding PHS model is expressed as:

φ ẋ2 = -R∂ ϕ H e + V u 2 I y 2 = ∂ ϕ H e
where R is the resistance and V denotes the source voltage. In this case, the ports {u 1 , y 1 } and {u 2 , y 2 } are not compatible, hence an interconnection by ports is not possible. However, given the dependence of the inductance L on the ball position q, the force induced by the electromagnetic field on the ball can be expressed as F e = -∂ q H e = ϕ L(q) 2 ∂ q L(q), i.e., the coupling of the electric and the mechanical systems is obtained by combining the energy of the two systems, H = H b + H e , such that F g -F e = ∂ q H. Thus, the coupled system is described as:

   q ṗ φ   =    0 1 0 -1 0 0 0 0 -R       ∂ q H ∂ p H ∂ ϕ H    +    0 0 1    V I = 0 0 1    ∂ q H ∂ p H ∂ ϕ H   
This example illustrates how two systems can be interconnected by energy. In the case of FSI problem, the mechanical and the fluid subsystems are described using finite-dimensional PHS models that have ports associated with the velocities and the forces on the contact surface between the two subsystem. This implies a compatibility to make an interconnection by ports. However, notice that the fluid domain varies according to the structure motion. This implies that the fluid energy is linked to the state variables of the structure model, and, as a consequence, additional driving forces appear when both system are coupled. To solve this problem, in [START_REF] Bansal | Port-Hamiltonian modelling of fluid dynamics models with variable cross-section[END_REF], for example, an additional state variable is included in the fluid model to describe the changes in the fluid domain. In this thesis, we propose a power-preserving interconnection that combine the properties of the interconnection by ports and by energy, as shown in Chapters 3 and 4, guarantying that the kinematic and dynamic conditions, described in Section 1.1, are satisfied.

Infinite-dimensional port-Hamiltonian systems

When the PHS are defined on infinite dimensional domains Ω with boundary ∂Ω, the state variables depends on time t and on the spatial variable ζ, i.e., x = x(ζ, t) ∈ L 2 (Ω, R n ). Similarly, the total energy is defined as a functional in Ω, i.e., H = H(x) ∈ F, where F denotes the space of smooth functionals of the form:

F(x) = Ω f (x)dΩ (1.9)
with f (x) as a smooth function that defines the density of F in Ω, and satisfies δ x F = ∂ x f (x), where δ x F = δF δx denotes the variational derivative of the functional F, that is defined as the unique function that satisfy:

F(x + εδx) = F(x) + ε Ω δ x FδxdΩ + O(ε 2 ) (1.10)
for every ε ∈ R and smooth real function δx(ζ), ζ ∈ Ω, such that their derivatives satisfy δ (j) x(ζ)| ∂Ω = 0, j = 0, . . . , n [START_REF] Olver | Applications of Lie Groups to Differential Equations[END_REF][START_REF] Duindam | Modeling and Control of Complex Physical Systems[END_REF].

In infinite-dimensional PHS the driving forces are given by the variational derivative of the total energy functional, δ x H, and the dynamics are described using a Hamiltonian differential operator acting on δ x H. A Hamiltonian operator is defined as follows.

Definition 1.2. [START_REF] Olver | Applications of Lie Groups to Differential Equations[END_REF] A linear operator J is called Hamiltonian if it satisfies the following conditions for every (F, G, E) ∈ F: a.-Skew-symmetry:

{F, G} J = -{G, F} J (1.11)
b.-Jacobi identity:

F, {G, E} J J + G, {E, F} J J + E, {F, G} J J = 0 (1.12)
where {F, G} J = Ω (δ x F) J δ x GdΩ, with boundary conditions equal to 0, denotes a Poisson bracket on infinite-dimensional domains.

In [START_REF] Le Gorrec | Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators[END_REF] a parametrization of the boundary flow and effort variables is given in order to define a Dirac structure for 1D linear systems and then to define a PHS described by PDEs in the form ∂ t x = J δ x H, where δ x H = Lx, with L = L ≥ 0 ∈ R n×n , and J is a Hamiltonian operator of order n, in a domain Ω := {ζ ∈ [a, b] ⊂ R}, defined as: [START_REF] Thomson | Aerodynamic transfer of energy to the vocal folds[END_REF] with P j = (-1) j+1 P j . The parameterization of the boundary flow and effort port variables, f ∂ and e ∂ respectively, is given in terms of matrices P 1 , P 2 , . . . , P n and the system efforts δ x H at the boundary. These boundary port variables are used to define the system inputs and outputs, u(t) and y(t) respectively, using full rank matrices W b and W c such that

J e = n j=0 P j ∂ j ζ e, ζ ∈ [a, b] (1.
W b W c
is invertible and

W b ΣW b ≥ 0 (1.14)
where Σ = 0 I I 0 . This parametrization of the boundary flow and effort port variables and the system inputs and outputs, guarantee the existence of solutions and the exponential stability of linear systems, i.e., the PHS is well-posed [START_REF] Le Gorrec | Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators[END_REF][START_REF] Jacob | Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces[END_REF]. In this Thesis only differential operators of order 1 are used, i.e., in the case of 1D linear systems the Hamiltonian operators is defined as:

J e = P 1 ∂ ζ e + P 0 e, ζ ∈ [a, b]
(1.15)

where P 1 = P 1 and P 0 = -P 0 .

Definition 1.3. [START_REF] Le Gorrec | Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators[END_REF] Let H ∈ F be the total energy of a linear 1D dynamical system with state variables

x = [x 1 • • • x n ] .
Then, the impedance passive port-Hamiltonian formulation is given by:

∂ t x = J δ x H (1.16a) u(t) = W b f ∂ e ∂ (1.16b) y(t) = W c f ∂ e ∂ (1.16c) where W b W c invertible, such that W c ΣW c = W b ΣW b = 0 and W b ΣW c = I (1.17)
satisfying the balance equation

Ḣ = f ∂ e ∂ = y u (1.18)
with the boundary port variables (f ∂ , e ∂ ) defined as

f ∂ e ∂ = R ext δ x H| b δ x H| a (1.19)
where

R ext = 1 √ 2 P 1 -P 1 I I is invertible and satisfies R ext ΣR ext = P 1 0 0 -P 1 .
Notice that the previous definition provides a basic PHS formulation for non-dissipative system with differential operators of order 1. For a general formulation with 1D operators of order n see [START_REF] Le Gorrec | Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators[END_REF]. The case of dissipative systems is considered in [START_REF] Villegas | Boundary control for a class of dissipative differential operators including diffusion systems[END_REF], extending the port-Hamiltonian approach for PDEs of the from:

∂ t x = J δ x H -G * SGδ x H (1.20)
where the term G * SGδ x H describes the dissipative elements of the system, with

G * = -G 1 ∂ ζ + G 0 as the formal adjoint of the 1D operator G = G 1 ∂ ζ + G 0 and S is a coercive operator on L 2 (Ω, R n ), i.e., there exist a c > 0 such that Sx, x L 2 ≥ c x, x L 2 .
Definition 1.4. [START_REF] Villegas | Boundary control for a class of dissipative differential operators including diffusion systems[END_REF] Let H ∈ F be the total energy of a dynamic system with state variables

x = [x 1 , • • • . x n ]
. Denoting by f R = Gδ x H and e R = Sf R the flows and efforts associated with the system power dissipation. Then, the associated dissipative port-Hamiltonian system is given by:

∂ t x f R = J -G * G 0 δ x H e R (1.21a) u(t) = W c f ∂ e ∂ (1.21b) y(t) = W b f ∂ e ∂ (1.21c) where W c W b invertible, such that W c ΣW c = W b ΣW b = 0 and W b ΣW c = I (1.22)
satisfying the balance equation

Ḣ ≤ y u (1.23)
with the boundary port variables (f ∂ , e ∂ ) defined as

f ∂ e ∂ = R ext      δ x H| b e R | b δ x H| a e R | a      (1.24)
where

R ext = 1 √ 2 P1 -P1 I I is invertible and satisfies R ext ΣR ext = P1 0 0 -P1 with P1 = P 1 G 1 G 1 0 .
The port-Hamiltonian formulations (1.3) and (1.21) can also be extended to multi-dimensional systems, as shown [START_REF] Trenchant | Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct[END_REF][START_REF] Brugnoli | Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates[END_REF][START_REF]Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates[END_REF] for 2D models of the wave equation and thin plates, and [START_REF] Matignon | A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems[END_REF] for 3D isentropic compressible fluids with irrotational flows, among others.

It is important to notice that in the above port-Hamiltonian formulations the Hamiltonian operators are independent of the state variables and generate a Dirac structure, see [START_REF] Le Gorrec | Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators[END_REF][START_REF] Villegas | Boundary control for a class of dissipative differential operators including diffusion systems[END_REF] for details. However, in the general nonlinear case, according to [START_REF] Olver | Applications of Lie Groups to Differential Equations[END_REF] a Hamiltonian operator can depend on the state. In this sense, [START_REF] Bansal | Port-Hamiltonian modelling of fluid dynamics models with variable cross-section[END_REF][START_REF] Bansal | Port-Hamiltonian Formulation of Two-phase Flow Models[END_REF] prove that a particular skew-symmetric operator J (x) of the form J e = 1 2 P (x) ∂ ζ e + ∂ ζ (P (x)e) can also generate a Dirac structure. On the other hand, it is necessary to highlight that the dissipative port-Hamiltonian formulations described in subsections 1.2.1 and 1.2.2 are useful to describe irreversible physical systems where the thermal domain is irrelevant and can be neglected. In problems where the thermodynamic of the system is relevant, as for example exothermic and endothermic chemical reactions, heat exchangers and transport of superheated steam, among others, other approaches as GENERIC [START_REF] Grmela | Dynamics and thermodynamics of complex fluids. I. Development of a general formalism[END_REF] and pseudo port-Hamiltonian formulations are used [START_REF] Altmann | A port-Hamiltonian formulation of the Navier-Stokes equations for reactive flows[END_REF][START_REF] Mora | About dissipative and pseudo Port-Hamiltonian Formulations of irreversible Newtonian Compressible Flows[END_REF]. In the next section we introduce the irreversible port-Hamiltonian formulation, that is, a pseudo port-Hamiltonian approach focused on the appropriate description of the entropy S (second law of thermodynamic) to model the thermal domain.

Irreversible port-Hamiltonian systems

An irreversible port-Hamiltonian system is an energy-based formulation focused in the description of irreversible process, proposed initially in [START_REF] Ramírez | Control of irreversible thermodynamic processes using port-Hamiltonian systems defined on pseudo-Poisson and contact structures[END_REF][START_REF] Ramirez | Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR[END_REF]. Unlike the dissipative port-Hamiltonian system, where the irreversible phenomena is described through energy dissipative elements, neglecting the thermal effects, in the irreversible port-Hamiltonian approach the thermal domain is described using the entropy as a state variable, including in the port-Hamiltonian structure an element defined by the Poisson brackets that is useful to describe the second law of Thermodynamics in the dynamic equations (see [START_REF] Ramírez | Control of irreversible thermodynamic processes using port-Hamiltonian systems defined on pseudo-Poisson and contact structures[END_REF][START_REF] Ramirez | Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR[END_REF] for details).

To describe the thermodynamics we consider first the Gibbs equation:

dU = -pdV + T dS + i ν i dN i (1.25)
that describes the local variations of the internal energy U as a function of the intensive variables p, T and ν i , respectively pressure, absolute temperature and chemical potential of i-th chemical specie; and the variations of the extensive variables V , S and N i , respectively the volume, entropy and number of moles of the i-th chemical specie. Equation (1.25) defines the thermodynamic equilibrium of a system where -pdV + i ν i dN i and T dS describe the energy contributions by "work" and "heat", respectively, i.e., the Gibbs equation represents a geometric structure in the space of thermodynamic variables, building the thermodynamic framework [START_REF] Öttinger | Beyond Equilibrium Thermodynamics[END_REF] and it naturally leads to Legendre transformations between thermodynamic potentials, depending on which variables are chosen as the independent ones, (see [START_REF] Öttinger | Beyond Equilibrium Thermodynamics[END_REF]Appendix A.4] for details). The finite-dimensional irreversible PHS are defined as follows.

Definition 1.5. [START_REF] Ramírez | Control of irreversible thermodynamic processes using port-Hamiltonian systems defined on pseudo-Poisson and contact structures[END_REF] Let x ∈ R n be the state vector of an irreversible system with total internal energy U = U(x) and entropy S. An irreversible port-Hamiltonian system is defined as

ẋ = R(x, ∂ x U)J∂ x U + W (x, ∂ x U) + g(x, ∂ x U)u (1.26)
where u ∈ R m is the input vector, J ∈ R n×n is a constant skew-symmetric matrix, the input matrix g(x, ∂ x U) and vector field W (x, ∂ x U) are smooth functions that define the input map associated with the ports of the system, and R(x, U) is the product between the positive function

γ = γ(x, ∂ x U) > 0 and the Poisson bracket {S, U} = [∂ x S] J∂ x U, i.e., R(x, ∂ x U) = γ{S, U}.
Given that R(x, ∂ x U) depends on ∂ x U, the linearity of any Poisson structure associated with the matrix R(x, ∂ x U)J is broken. Furthermore, the terms W (x, ∂ x U) and g(x, ∂ x U) may also depends on the states variables and ∂ x U.

To analyze the thermodynamic properties of Definition 1.5 consider that the rate of change of the internal energy is given by U = [∂ x U] ẋ. Then, substituting the irreversible PHS formulation (1.26) we obtain

U = R(x, ∂ x U) [∂ x U] J∂ x U + [∂ x U] [W (x, ∂ x U) + g(x, ∂ x U)u] = [∂ x U] [W (x, ∂ x U) + g(x, ∂ x U)u] (1.27)
Similarly, the rate of change of the entropy is given by

Ṡ = R(x, ∂ x U) [∂ x S] J∂ x U + [∂ x S] [W (x, ∂ x U) + g(x, ∂ x U)u] = γ{S, U} 2 + [∂ x S] [W (x, ∂ x U) + g(x, ∂ x U)u] (1.28) 
i.e., if there is not exchange with the environment (the system is isolated), W (x, ∂ x U) + g(x, ∂ x U)u = 0, the internal energy is a conserved quantity, U = 0, satisfying the first law of thermodynamics, and the entropy balance (1.28) is non-negative and equal to the internal entropy production, σ int = γ{S, U} 2 ≥ 0, satisfying the second law of Thermodynamics. This implies that the irreversible PHS formulation described in Definition 1.5 provides a proper framework to describe finite-dimensional irreversible systems with a thermal domain (see [START_REF] Ramírez | Control of irreversible thermodynamic processes using port-Hamiltonian systems defined on pseudo-Poisson and contact structures[END_REF][START_REF] Ramirez | Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR[END_REF] for details).

The extension of this framework to 1D infinite-dimensional systems has been proposed initially in [START_REF] Ramirez | An irreversible port-Hamiltonian formulation of distributed diffusion processes[END_REF] for diffusion processes and extended in [START_REF] Ramirez | Irreversible port-Hamiltonian systems on infinite dimensional spaces[END_REF] for a general formulation of 1D irreversible PHS on infinite-dimensional domains. In this sense, the internal energy and entropy are considered as functionals on the space Ω := {ζ ∈ where u(x) and s denote the internal energy and entropy per unit length, respectively, and the state is given by x

= [x 1 • • • x n-1 s]
. Furthermore, considering an incompressible medium with constant volume, the Gibbs equation can be expressed as du = T ds + i ν i dc i where c i is the number of moles per unit length of the i-th specie, satisfying that

δ x S = ∂ x s =       0 . . . 0 1      
, and

δ s U = ∂ s u = T, ζ ∈ [a, b] (1.30)
Similarly, the following operator is defined as

{F, E} * J = [δ x F] J δ x E (1.31)
for every (F, E) ∈ F, where J is a skew-symmetric operator. The irreversible port-Hamiltonian system can be defined as follows on a 1D infinite dimensional space.

Thesis organization and contributions

Definition 1.6. [START_REF] Ramirez | Irreversible port-Hamiltonian systems on infinite dimensional spaces[END_REF] Consider the real functions

R ij = γ ij {S, U} * J ij where γ ij = γ ij (x, δ x U) ≥ 0 is a nonlinear positive scalar function and J ij = P ij ∂ i ζ , with P ij = (-1) i+1 P ij ,

is a Hamiltonian operator. An infinite dimensional irreversible port-Hamiltonian system is defined by the PDE

∂ t x = n j=1 R 1j J 1j δ x U + n j=1 R 0j J 0j δ x U + ∂ ζ [R 1 δ s U] , ζ ∈ [a, b],
(1.32)

with boundary inputs and outputs given by

u(t) = [R 1 δ s U] | b [R 1 δ s U] | a and y(t) = δ x U| b -δ x U| a , (1.33)
respectively, where

R 1 = [R 11 • • • R 1n ] satisfies n j=1 R 1j J 1j δ x U =       0 . . . 0 R 1 ∂ ζ [δ x U]       (1.34) such that U = u y and Ṡ = b a σ int dζ + (R 1n δ s U)| b a (1.35)
where σ int is a non-negative function that describes the internal entropy production.

Notice that according to (1.35) the rate of change of the total internal energy stored by the system (1.32) is given by the power supplied through the boundary ports. Similarly, if (1.32) is a closed system, i.e., u = 0, ∀t, then U = 0 and Ṡ ≥ 0, satisfying the first and second law of thermodynamics, respectively.

Thesis organization and contributions

To describe the FSI in a longitudinal domain, in Chapters 2-4 we propose a finite-dimensional model of the structure and the fluid subsystems based on the port-Hamiltonian framework. This allows us to avoid the use of moving-mesh and remeshing algorithms and stabilization methods, like SUPG or PSPG, and provides an appropriate power-transfer fluid-structure coupling, simplifying the FSI model. In Chapter 5, we propose an energy-based infinite-dimensional modeling for isentropic and non-isentropic Newtonian fluids.

In Chapter 2 two examples, a flexible tube and the vocal folds, are used to illustrate the structure mass-spring-damper formulation. The flexible tube example describes the methodology to obtain a scalable PHS-based mass-spring-damper model, assuming an axi-symmetric behavior of the tube motion. In the case of the vocal folds, a PHS formulation of the wellknown body-cover model [START_REF] Story | Voice simulation with a body-cover model of the vocal folds[END_REF] is proposed, without the use of auxiliary variables to describe the tissue deformation during the vocal fold collisions, reducing the number of state variables, in comparison with others PHS-based models [START_REF] Encina | Vocal fold modeling through the port-Hamiltonian systems approach[END_REF][START_REF] Mora | A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds[END_REF].

In Chapter 3, a scalable PHS model of incompressible isentropic fluids is developed, introducing the use of an instrumental element, called node, that allows, from a port-Hamiltonian point of view, an appropriate coupling of the incompressible fluid sections. Additionally, a power-preserving interconnection that combines the properties of the interconnection by ports and by energy, is proposed for fluid-structure coupling.

Chapter 4 shows the development of a scalable PHS model of compressible isentropic fluids. Considering an irrotational flow and other constrains that allows to reduce the fluid analysis to a 1D model. Similarly, a switched power-preserving fluid-structure interconnection is proposed, focused in allowing a structure elastic collision, useful to describe systems as the vocal folds.

Finally, in Chapter 5 several energy-based infinite dimensional formulations are proposed for non-reactive compressible fluids. General pseudo and dissipative port-Hamiltonian models are developed for the non-isentropic and isentropic Newtonian compressible fluids, respectively, including the operator considerations to preserve the model structure in 1D and 2D fluids cases. Additionally, the thermodynamic properties of the internal energy per unit mass and the use of an availability function in the total energy description in previous models is also discussed. Similarly, an irreversible PHS formulation is proposed for 1D non-reactive fluids.

Associated publications

As a result of the work presented in this thesis, the following papers have been published: In the literature, different formulations to model elastic and hyper-elastic material can be found, such as the Mooney-Rivlin, Neo-Hookean and polynomical models [START_REF] Ogden | Non-Linear Elastic Deformations[END_REF], and the well know Saint Venant-Kirchhoff model (SVK) and its linearized form [START_REF]Fluid-Structure Interaction and Biomedical Applications[END_REF]. Similarly, to describe the dissipation associated with the conversion of kinetic energy into heat by the material motion, different approaches have been proposed, as for example the standard linear solid, Maxwell and Burgers formulations [START_REF] Lakes | Viscoelastic Solids, ser[END_REF] and the Kelvin-Voigt approach [START_REF] Rakotomanana | Eléments de dynamique des solides et structures déformables[END_REF]. These models require of numerical schemes for their simulation and to obtain a detailed description of the material motion, such as spatial discretization schemes, like finite-elements or finite-volumes methods, coupling algorithms for the interaction with fluids [START_REF]Fluid-Structure Interaction and Biomedical Applications[END_REF], and appropriate time discretization to guarantee the numerical stability of the simulation [START_REF] Bukač | A modular, operatorsplitting scheme for fluid-structure interaction problems with thick structures[END_REF][START_REF] Bukač | A partitioned scheme for fluid-composite structure interaction problems[END_REF][START_REF] Lozovskiy | Analysis and assessment of a monolithic FSI finite element method[END_REF].

In this chapter we focus on two case studies for structures that have transverse motion to a fluid flow: flexible tubes and vocal folds.

Contribution

To reduce the complexity in modeling of elastic or hyper-elastic materials, we propose the use of interconnected mass-spring-damper (MSD) systems to describe the transverse motion of the structure, as shown in Figure 2.1b. These models are described using the port-Hamiltonian framework. For the flexible tube case we propose a scalable MSD model and for the vocal folds case we propose an alternative port-Hamiltonian formulation of the body-cover model [START_REF] Story | Voice simulation with a body-cover model of the vocal folds[END_REF], that reduces the number of state variables, in comparison with other energy-based models in the literature [START_REF] Encina | Vocal fold modeling through the port-Hamiltonian systems approach[END_REF].

Flexible tube model

In this section we consider a cylindrical and flexible tube with inner radius r, length L and thickness h, as shown in Figure 2.2. According to [START_REF] Bukač | A partitioned scheme for fluid-composite structure interaction problems[END_REF], flexible tubes have special relevance in biological applications, such as the interaction between the elastic arteries and the blood flow [START_REF] Ghigo | A 2D nonlinear multiring model for blood flow in large elastic arteries[END_REF] or the phono-respiratory system [START_REF] Chouly | Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid-structure interaction[END_REF], among others. This class of structures has been studied using multi-layer [START_REF] Bukač | A partitioned scheme for fluid-composite structure interaction problems[END_REF] and single-layer [START_REF] Lozovskiy | Analysis and assessment of a monolithic FSI finite element method[END_REF] materials approaches. The interaction between this class of flexible tubes and some internal fluid flows has been a relevant benchmark to test the accuracy of numerical methods suitable for the simulation of FSI problems, such as partitioned [START_REF] Bukač | A partitioned scheme for fluid-composite structure interaction problems[END_REF][START_REF] Degroote | Performance of partitioned procedures in fluid-structure interaction[END_REF][START_REF] Wang | A Higher-Order Discontinuous Galerkin/Arbitrary Lagrangian Eulerian Partitioned Approach to Solving Fluid-Structure Interaction Problems with Incompressible, Viscous Fluids and Elastic Structures[END_REF][START_REF] Spenke | A multi-vector interface quasi-Newton method with linear complexity for partitioned fluid-structure interaction[END_REF][START_REF] Ha | Investigation on the effect of density ratio on the convergence behavior of partitioned method for fluid-structure interaction simulation[END_REF] and monolithic [START_REF] Lozovskiy | Analysis and assessment of a monolithic FSI finite element method[END_REF][START_REF] Eken | A parallel monolithic approach for fluid-structure interaction in a cerebral aneurysm[END_REF][START_REF] Ha | A comparative study between partitioned and monolithic methods for the problems with 3D fluid-structure interaction of blood vessels[END_REF] finite-element schemes, and mesh-free finite pointset methods [START_REF] Kuhnert | Fluid structure interaction (FSI) in the meshfree finite pointset method (FPM): Theory and applications[END_REF]. To simplify the analysis and to obtain a MSD formulation, we consider the following assumptions: Assumption 2.1. To describe the flexible vessel as a mass-spring damper system we make the following assumptions:

• The material is isotropic.

• The motion of tube walls is only radial.

• The motion is axisymmetric. 

j v s j v s j v s j v s j F s,j F s,j-1 F j v s j v s j v s j v s j F j Figure 2.
3 -Cross-sectional view of the flexible tube and the forces acting at a point by an axisymmetric circumferential strain. The expansion velocity v is axisymmetric.

Mass-spring-damper model

In order to derive a MSD formulation of the system shown in Figure 2.1b, we divide the flexible tube in n s sections of length s = L/n s , as shown in Figure 2.2, i.e., we divide the axial axis in n s parts and we analyze the radial motion of the structure at x ∈ {ζ 1 , • • • , ζ ns } where ζ j = (j -1/2) s is the axial coordinate of the j-th tube section. The mass of each section is given by:

m j = 2πρ s rh s (2.1)
where ρ s is the material density. Denoting by q j the average radial displacement of j-th section and by π sj = m j v sj the corresponding momentum, the motion of the j-th section is given by:

qj = v sj (2.2a) πsj = F (2.2b)
where v sj is the average expansion velocity and F denotes the sum of forces acting on section j. The equivalent springs and dampers in each section are deduced from the restoring forces exercised by the material. In the case of springs, these forces are given by the circumferential and shear strains of the tube. Figure 2.3 shows a cross-sectional view of the j-th tube section at ζ = ζ j . From Assumption 2.1, the velocity of the structure circumference is uniform, then, the tube expansion is axisymmetric and the forces associated with circumferential strains acting on an arbitrary point of section j induce an inward radial force when the tube expands. This inward force can be characterized by a radial spring, as shown on the right hand side of Figure 2.3. Assuming a linear behavior of this radial spring, the inward force F j is given by:

F j = -k j q j (2.3)
where k j is the corresponding spring coefficient.

Similarly, the force associated with the shear strain between two adjacent section is modeled through a coupling spring.

F cj = -k cj (q j -q j+1 ) (2.4)
where k cj is the coefficient of the coupling spring.

Coefficients k j and k cj are obtained from the material properties and are given by [START_REF] Mora | Fluid-Structure Port-Hamiltonian Model for Incompressible Flows in Tubes with Time Varying Geometries[END_REF]:

k j = β 1 λ s h πr (2.5)
k cj = β 2 µ πrh s (2.6)
where λ and µ are the Lamé coefficients, and β 1 and β 2 are dimensionless factors.

On the other hand, the dissipation induced by the motion of the section is described by a damper, whose force is given by:

F dj = -d j v sj (2.7)
where d j ≥ 0 is the damper coefficient. In this work we consider a Kelvin-Voigt model [START_REF] Lakes | Viscoelastic Solids, ser[END_REF], i.e., the force F dj corresponds to one damper in parallel with the j-th radial spring, as shown in Figure 2.1b. From a material point view, the parameters associated with the dissipative terms of the stress tensor can be parametrized as the product between the Lame's parameters (responsible of the elasticity) and time terms responsible of the viscosity [87, eq. ( 8)]. In this sense, we define the damper coefficients as d j = k j η j where η j is a time parameter associated with the viscosity. For simplicity, it is convenient to express η j as a function of the mass and the spring coefficient of the j-th section, and a dimensionless damping factor λ s , i.e., η j = λ s m j k j , obtaining the simple formula [START_REF] Story | Voice simulation with a body-cover model of the vocal folds[END_REF][START_REF] Ishizaka | Synthesis of Voiced Sounds From a Two-Mass Model of the Vocal Cords[END_REF],

d j = λ s m j k j (2.8)
Considering the restoring forces associated with the strain and dissipation in each tube section, (2.3), (2.4) and (2.7), the sum of forces acting on the j-th section is given by F = F j + F cj -F cj-1 + F dj + F ej , where F ej denotes the external forces. Then, the governing equations of the j-th tube section can be expressed as:

qj = v sj (2.9a) πsj = F j + F cj -F cj-1 + F dj + F ej (2.9b)
Notice that in the tube sections 1 and n s a coupling springs with an exterior point is not defined, as shown in Figure 2.1b. This implies that the restoring forces F c0 and F cns are neglected in the corresponding momentum balance of the first and last sections of the tube.

Port-Hamiltonian Formulation

To obtain a port-Hamiltonian model of the system, we first describe the total energy stored in the flexible tube. In this respect, the total kinetic energy is derived from the sum of the kinetic energy in each section, i.e.,

K s = ns j=1 1 2 π 2 sj m j (2.10)
Similarly, the total potential energy is obtained by the sum of the radial and coupling springs potential energies. The potential energy of the flexible tube is then given by:

P s = ns j=1 1 2 k j q 2 j Radial Springs + ns-1 j=1 1 2 k cj (q j -q j+1 ) 2
Coupling Springs

(2.11)

The total energy, of the mechanical system that describes the flexible tube motion is given by:

H s (π s , q s ) = K s + P s (2.12)
where

q s = [q 1 • • • q ns ] and π s = [π s1 • • • π sns ]
denote the sets of displacements and momenta of the n s tube sections, respectively. The efforts variables associated to each tube section are given by the partial derivative of H s with respect to the corresponding state variables, i.e., for the j-th tube section we obtain:

∂ q j H s = k j q j + k cj (q j -q j+1 ) -k cj-1 (q j-1 -q j ) = -F j -F cj + F cj-1
(2.13)

∂ π sj H s = π sj m j = v sj (2.14)
Then, the governing equations in an arbitrary section j are given by:

qj = ∂ π sj H s (2.15a) πsj = -∂ q j H s -d j ∂ π sj H s + F ej (2.15b) Proposition 2.1. Consider q s = [q 1 • • • q ns ] and π s = [π s1 • • • π sns ]
the sets of displacements and momenta of the n s tube sections, respectively. Then, the dynamics of the flexible tube can be expressed as the following port-Hamiltonian system:

ẋs = [J s -R s ] ∂ xs H s + G s u s (2.16a
)

y s = G s ∂ xs H s (2.16b)
where

x s = [q s π s ] is the state vector, u s = [F e1 • • • F ens ] and y s = [v s1 • • • v sns ]
are the sets of external forces and velocities of the flexible tube sections, respectively, and

∂ xs H s = ∂ q s H s ∂ πs H s , J s = 0 I -I 0 , R s = 0 0 0 R 1 , and G s = 0 I (2.17) with R 1 =        d 1 0 • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 • • • 0 d ns        ≥ 0 (2.18)
satisfying the balance

Ḣ = -[∂ πs H s ] R 1 ∂ πs H s + u s y s ≤ u s y s (2.19)
Proof. Considering n s sections, from (2.15) the displacements and momenta dynamics can be expressed as:

qs = ∂ πs H s πs -∂ q s H s -R 1 H s + u s where u s = [F e1 • • • F ens ]
and R 1 is given by (2.18). Defining the skew-symmetric matrix 

J s = 0 I -I 0 , the matrix R s = 0 0 0 R 1 ≥

Vocal folds model

Another example of FSI system is the vocal folds model. The vocal folds structure is composed by several layers of tissue, as shown on the left hand side of Figure 2.4. The most superficial is the epithelium layer that protects the delicate tissue of the vocal folds. The next layer is the lamina propria. It is composed by elastic and collagen fibers that make up the vocal ligament. The deep layer of vocal folds is a muscular layer composed by the vocalis and muscularis parts of the Thyoarytenoid muscle, that makes up the bulk of the vocal fold [START_REF] Seikel | Anatomy and physiology for speech, language, and hearing[END_REF]. includes: the vocal folds collision, with the associated fluid domain closure and the restoring forces associated with tissue deformations during the collisions. This kind of phenomena do not appear in the tube example considered in the previous section.

The interactions of the vocal folds with the intragottal airflow induce a vibrating cycle that

In the literature, continuum mechanics models have been used to describe the physical behavior of the vocal folds sections, i.e., the epithelium lamina, the lamina propria and the vocalis muscle [START_REF] Miri | Mechanical characterization of vocal fold tissue: A review study[END_REF]. In [START_REF] Alipour | A finite-element model of vocal-fold vibration[END_REF][START_REF] Jiang | Computational Modeling of Fluid-Structure-Acoustics Interaction during Voice Production[END_REF] a linear stress-strain (elastic material) model is considered to describe the tissue of each vocal folds section. A non-linear approach for the stress-strain (hyper-elastic material) has been proposed in [START_REF] Kelleher | The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: A case study[END_REF][START_REF] Shurtz | Influence of numerical model decisions on the flowinduced vibration of a computational vocal fold model[END_REF][START_REF] Thomson | Aerodynamic transfer of energy to the vocal folds[END_REF]. Viscoelastic models are also used in [START_REF] Švancara | FE Modelling of the Fluid-Structure-Acoustic Interaction for the Vocal Folds Self-Oscillation[END_REF][START_REF] Zheng | Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model[END_REF]. However, the vibrations of the vocal folds commonly exhibit two dominant eigenfrequencies whose behavior can be described through simplified MSD models [START_REF] Sváček | Finite element approximation of flow induced vibrations of human vocal folds model: Effects of inflow boundary conditions and the length of subglottal and supraglottal channel on phonation onset[END_REF]. Similarly, given that the velocity of the vocal folds motion is much less than the intraglottal airflow velocity, it is common to reduce the analysis of the airflow to a 1D fluid [START_REF] Story | Voice simulation with a body-cover model of the vocal folds[END_REF][START_REF] Steinecke | Bifurcations in an asymmetric vocal-fold model[END_REF][START_REF] Lucero | Smoothness of an equation for the glottal flow rate versus the glottal area[END_REF]. This allows us to study the vocal folds vibration cycle as a FSI problem between a longitudinal fluid and a structure with transverse motion. As a consequence, in this thesis we consider a symmetrical behavior of the vocal folds using the well-know body-cover model (BCM) proposed in [START_REF] Story | Voice simulation with a body-cover model of the vocal folds[END_REF] to describe its mechanical motion.

Body-cover model

From a mechanical point of view, the BCM is a simplified description of the vocal folds behavior, as shown in Figure 2.5. Cover masses, m 1 and m 2 , describe the motion of the epithelial layer and lamina propria layer of the vocal folds and the body mass m 3 describes the motion of the thyrovocalis muscle that is effective in the vibration (see [START_REF] Story | Voice simulation with a body-cover model of the vocal folds[END_REF] for details). In the formulation of the BCM the deformation of the tissue subject to the transverse stress-strain is modeled as a hyper-elastic material. This implies that the transverse stress-strain is described through non-linear springs between the cover masses and the body mass and between the body mass and the glottal wall. The elongations of these non-linear springs are denoted by ∆ 1 , ∆ 2 and ∆ 3 , as shown in Figure 2.5, whose associated restoring forces are given by [START_REF] Story | Voice simulation with a body-cover model of the vocal folds[END_REF]:

F j = -k j ∆ j + k j η j ∆ 3 j , j ∈ {1, 2, 3} (2.20) 
where k j and η j are the linear and nonlinear coefficients of the corresponding springs. The shear stress-strain in the epithelial layer is described through a linear coupling spring, with coefficient k c1 . The force associated with this spring is given by: where ∆ 12 describes the elongation of the coupling spring.

F cj = -k c1 ∆ 12 (2.21) ∆ col 1 ∆ 1 ∆ 2 ∆ 3 Tissue compression m 1 m 2 m 3 ∆ col 1
On the other hand, the energy dissipation due to the tissue viscosity is described through linear dampers between the cover and body masses and between the body mass and the glottal wall. The coefficients of these dampers are defined as d j = λ sj m j k j where λ sj is a dimensionless loss factor. Then, the forces associated with these dampers are given by:

F dj = -d j ∆j , j ∈ {1, 2, 3} (2.22) 
where ∆j denotes the time derivative of ∆ j .

When the vocal folds collide, an additional mechanical stress-strain appears as a consequence of the tissue motion inertia. This strain is due to the tissue compression around the collision area, as shown in Figure 2.6 (left), making an additional restoring force on the vocal folds to appear. Typically, in lumped-parameter models of the vocal-folds the masses are assumed to be perfectly rigid. Then, to describe the collision, an overlap of the cover masses, ∆ col j j ∈ {1, 2}, is allowed [START_REF] Erath | A review of lumped-element models of voiced speech[END_REF], as shown in Figure 2.6 (right). During the overlap, additional restoring forces are added to the dynamics of the cover masses. These restoring forces are modeled through non-linear collision springs that are activate only when the vocal folds collide. The restoring force associated with this collision springs is given by:

F col j = -k col j ∆ col j + k col j η col j ∆ col j 3 , j ∈ {1, 2} (2.23) 
where k col j and η col j are the linear and nonlinear coefficients, and ∆ col j denotes the overlap of the j-th cover mass. Then, denoting by π sj the momentum of mass m j , the dynamics of the BCM can be expressed as:

πs1 = F 1 + F c1 + F d1 + F col 1 + F e1 (2.24) πs2 = F 2 -F c1 + F d2 + F col 2 + F e2 (2.25) πs3 = F 3 + F d3 -(F 1 + F 2 + F d1 + F d2 ) (2.26)
where F ej denotes the external force applied in the j-th cover mass.
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Port-Hamiltonian formulation

Port-Hamiltonian formulations of the BCM have been proposed in [START_REF] Encina | Vocal fold modeling through the port-Hamiltonian systems approach[END_REF][START_REF] Mora | A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds[END_REF]. These formulations use auxiliary variables to describe the overlap of cover masses during the collision. The dynamics of these auxiliary variables and the associated spring forces are enabled by switches that are activated when the corresponding cover mass collides and disabled otherwise. However, these formulations present some significant drawbacks. For example, some of the states and auxiliary variables need to be appropriately initialized to 0 after each collision to avoid numerical errors. In this thesis we propose an alternative formulation without the use of auxiliary variables. Considering a symmetric behavior of the vocal folds, only the mechanical part of a hemi-larynx is modeled, as shown in Figure 2.7, where S 1 and S 2 denote the contact surfaces of cover masses with the intra-glottal airflow. The surfaces have length s and depth l s . We denote by q sj the position of the mass m j from midsagittal plane and q j = q sj -q 0 sj the corresponding displacement, where q 0 sj is the equilibrium point at the reference pressure p 0 in the glottis. The spring elongations are ∆ 1 = q 1 -q 3 , ∆ 2 = q 2 -q 3 , ∆ 3 = q 3 and ∆ c1 = q 1 -q 2 . To describe the collision of the vocal folds, we define the elongation of the collision springs as ∆ col j = s j q sj = s j q j + q 0 sj , j ∈ {1, 2}, where s j is a switch variable defined as:

s j =    1, q sj ≤ 0 0, q sj > 0 , j ∈ {1, 2} (2.27) 
Additionally, when a collision occurs, the loss factor of the dampers interconnected between the cover masses and the body mass increase. We define these loss factors as

λ sj = λ 0 sj + s j λ col sj , j ∈ {1, 2}.
To obtain the port-Hamiltonian formulation of the overall system we first describe the total energy stored in the BCM. The kinetic energy stored by the mass m j is given by:

K sj = 1 2 π 2 sj m j (2.

28)

s j = 1 s j = 0 q j + q 0 sj P col sj (a) Stored energy on collision spring s j = 1 s j = 0

q j + q 0 sj F col j (b)
Retoring force applied on mass m j and ∂ π sj K sj = π sj m j = qj gives the mass velocity. Additionally, from the expression of the restoring forces of the springs connecting the cover masses with the body mass, we obtain that the stored potential energy is given by:

P sj = 1 2 k j (q j -q 3 ) 2 + 1 4 k j η j (q j -q 3 ) 4 , j ∈ {1, 2} (2.29) 
where ∂ q j P sj = -F j and ∂ q 3 P sj = F j . Similarly, the stored potential energies of the spring connecting the body mass with the glottal wall and the cover masses coupling spring are expressed as:

P s3 = 1 2 k 3 q 2 3 + 1 4 k 3 η 3 q 4 3
(2.30)

P s4 = 1 2 k c1 (q 1 -q 2 ) 2 (2.31)
respectively, where ∂ q 3 P s3 = -F 3 , ∂ q 1 P s4 = -F c1 and ∂ q 2 P s4 = F c1 .

In the case of collision, the stored energy in the additional springs is given by:

P col sj = 1 2 k col j s j q j + q 0 sj 2 + 1 4 k col j η col j s j q j + q 0 sj 4 , j ∈ {1, 2} (2.32) 
where ∂ q j P col sj = -F col j . Note that the stored potential energy contained in the collision springs depends on the discontinuous variables, s j . However, P col sj is smooth and the restoring force F col j is continuous, as shown in Figure 2.8. The total energy of the BCM is given by: 

H s = j K sj Kin.
ẋs = [J s -R s ] ∂ xs H s + G s u s (2.34a
)

y s = G s ∂ xs H s (2.34b)
where x s = [q 1 q 2 q 3 π s1 π s2 π s3 ] is the state vector, u s = [F e1 F e2 ] is the input vector given by the external forces applied on the cover masses, y s = [ q1 q2 ] is the output vector given by the cover mass velocities, J s = 0 I -I 0 where I and 0 are 3 × 3 identity and zero matrices,

respectively, R s = 0 0 0 R 2 and G s = 0 3×2 G 1 with R 2 =    d 1 0 -d 1 0 d 2 -d 2 -d 1 -d 2 d 1 + d 2 + d 3    and G 1 =    1 0 0 1 0 0    (2.35)
Proof. Consider the total energy of the BCM in (2.33). Defining the state vector as x s = [q 1 q 2 q 3 π s1 π s2 π s3 ] , then, the BCM efforts are given by:

∂ q 1 H s = -F 1 -F 12 -F c1 ∂ π s1 H s = q1 ∂ q 2 H s = -F 2 + F 12 -F c2 ∂ π s2 H s = q2 ∂ q 3 H s = F 1 + F 2 -F 3 ∂ π s3 H s = q3
On the other hand, note that ∆1 = q1 -q3 , ∆2 = q2 -q3 and ∆3 = q3 . The forces associated with the dampers can be expressed as

F d1 = -d 1 (∂ π s1 H s -∂ π s3 H s ), F d2 = -d 2 (∂ π s2 H s -∂ π s3 H s ) and F d3 = -d 3 ∂ π s3 H s ,
and the dynamics on the momentum can be rewritten as:

πs1 = -∂ q 1 H s -d 1 (∂ π s1 H s -∂ π s3 H s ) + F e1 πs2 = -∂ q 2 H s -d 2 (∂ π s2 H s -∂ π s3 H s ) + F e2 πs1 = -∂ q 3 H s + d 1 (∂ π s1 H s -∂ π s3 H s ) + d 2 (∂ π s2 H s -∂ π s3 H s ) -d 3 ∂ π s3 H s
Then, considering the matrix R 2 defined in (2.35) and G 1 = 1 0 0 0 1 0 , we can describe the BCM as the port-Hamiltonian system (2.34) where [START_REF] Encina | Vocal fold modeling through the port-Hamiltonian systems approach[END_REF][START_REF] Mora | A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds[END_REF]. Instead, the proposed model use switch variables, s j , in the definition of the stored potential energy associated with the collision springs. Even though the stored potential energies are a function of discontinuous variables, they are smooth, as shown in Figure 2.8a, i.e., the total energy of the BCM is a smooth function of the states variables. The restoring forces of the collision springs are a continuous function of the mass positions that vanishes when the cover masses are not colliding, as shown in Figure 2.8b. This implies that the continuity of the dynamic equations is preserved. Similar switching principles have been regularly used, outside the port-Hamiltonian framework, in lumped-parameter model of the vocal folds, see e.g. [START_REF] Steinecke | Bifurcations in an asymmetric vocal-fold model[END_REF][START_REF] Lous | A Symmetrical Two-Mass Vocal-Fold Model Coupled to Vocal Tract and Trachea, with Application to Prosthesis Design[END_REF].

J s = 0 I -I 0 , R s = 0 0 0 R 2 and G s = 0 G 1 .

Remark 2.1. Note that the port-Hamiltonian formulation of the BCM in Proposition 2.2 does not use auxiliary variables, reducing the number of states in comparison with the formulation in

Conclusion

In this chapter mass-spring-damper systems have been considered to describe the transverse motion of longitudinal structures using a PHS formulation. In this respect, two examples have been used: a single layer flexible tube and the vocal folds. In the first case, considering an axisymmetric behavior, the flexible tube is divided in to n s sections of length s , as shown in Figure 2.2. Section 2.1.1 describes the procedure to obtain the MSD coefficients from the physical parameters of the tube, such as the Lamé coefficients, material density and thickness. This MSD model is used to obtain a scalable PHS formulation considering a linear behavior of the springs, as shown in Section 2.1.2. The scalability of the finite-dimensional model proposed, allows us to adjust the space resolution in the longitudinal domain, increasing or decreasing the number of sections n s , for the description of the structure transverse motion. This is equivalent to vary the number of elements of the mesh in discretized infinite-dimensional formulations. However, the proposed model does not require the meshing and stabilization algorithms used in infinite-dimensional approaches.

In the vocal folds example, the well-known BCM proposed in [START_REF] Story | Voice simulation with a body-cover model of the vocal folds[END_REF] is used to describe the vocal folds motion. Considering symmetrical behavior, a PHS formulation of a Hemi-larynx vocal folds model is proposed in Section 2.2.2. In [START_REF] Encina | Vocal fold modeling through the port-Hamiltonian systems approach[END_REF][START_REF] Mora | A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds[END_REF] the PHS formulation of the BCM uses auxiliary state variables to describe the tissue compression during the collisions. The model described in Section 2.2.2 provides an alternative PHS formulation that allows to reduce the dimension of the state vector. In this respect, we include in this representation two switching functions in the definition of the energy (2.33) to describe the energy stored by the collision springs used in the BCM. This allows us to include the extra forces applied to the cover masses during the collision without the use of auxiliary variables as proposed in [START_REF] Encina | Vocal fold modeling through the port-Hamiltonian systems approach[END_REF][START_REF] Mora | A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds[END_REF]. Additionally, it is important to notice that even if (2.33) depends on discontinuous variables (collision switches), the total energy and the forces acting on masses are continuous, as shown in Figure 2.8.

The port-Hamiltonian models proposed in this Chapter will be used to obtain a finitedimensional FSI system, according to the fluid models developed in next Chapters.

Chapter 3

Finite-dimensional port-Hamiltonian FSI model with incompressible fluids

In the previous Chapter, a finite-dimensional PHS model based on a MSD formulation is proposed to describe the transverse motion of a longitudinal structure. For a FSI description an appropriated model of the fluids that interacts with the structure is necessary. In this Chapter we focus on the description of a longitudinal incompressible fluid based on a finitedimensional PHS formulation that allows us an appropriated coupling with the structure. From a practical point view, a fluid is considered incompressible when the density variations can be neglected. According to [START_REF] Gresho | Incompressible Flow and the Finite Element Method[END_REF] a criteria to analyze when the density variations are small enough to be neglected is using the Mach number M (ratio between the fluid velocity and the speed of sound in the media). In this sense, an incompressibility assumption for the fluid is adequate if the Mach number satisfies M ≤ 0.3 [START_REF] Gresho | Incompressible Flow and the Finite Element Method[END_REF].

In the literature, the interaction between an incompressible fluid and a structure is a problem widely studied. Several computational approaches have been proposed to obtain an appropriated fluid description and its coupling with the structure using different spatial and time discretization methods, see for example [START_REF] Bukač | A partitioned scheme for fluid-composite structure interaction problems[END_REF][START_REF] Lozovskiy | Analysis and assessment of a monolithic FSI finite element method[END_REF][START_REF] Richter | Fluid-structure Interactions: Models, Analysis and Finite Elements[END_REF][START_REF] Causin | Added-mass effect in the design of partitioned algorithms for fluid-structure problems[END_REF] and [START_REF] Ghigo | A 2D nonlinear multiring model for blood flow in large elastic arteries[END_REF] among others. A special problem related with the numerical description of incompressible fluids is the definition of the pressure in the fluid domain. A possible way to construct an equation for the pressure is using the Poisson equation, where the Laplacian of the pressure is described through the velocity field of the fluid. However, in computational methods, as the finite-elements techniques, it is necessary the use of algorithms, such as the pressure-pressure coupling algorithms, to guarantee the numerical stability of the simulations. Examples of these pressure-pressure coupling algorithms are backward approximation pressure correction schemes [START_REF] Papadakis | Coupling 3D and 1D fluid-structure-interaction models for wave propagation in flexible vessels using a finite volume pressure-correction scheme[END_REF] and pseudo-compressible algorithms, such as the PSPG method [START_REF] John | Finite Element Methods for Incompressible Flow Problems, ser[END_REF]. However, from a port-Hamiltonian point of view, these methods are not useful to obtain a power-preserving interconnection between the discretized momentum sections.

Contribution

In this chapter, we present a scalable port-Hamiltonian model for longitudinal incompressible fluids and the interconnection with a structure with transverse motion. We introduce the use of instrumental elements, called nodes, that allow us to obtain a power-preserving pressure-pressure coupling for the ODE's obtained from the spatial discretization of the momentum equation.

Fluid description

In this thesis the fluid dynamics is described by the well-know continuity and motion equations [START_REF] Bird | Introductory transport phenomena[END_REF], in their incompressible form and neglecting the gravitational effects, leading to:

div v = 0 (3.1) ρ∂ t v + ρv • Grad v + grad p = µdiv (Grad v) (3.2)
where ρ, v, p and µ are the density, velocity field, pressure and viscosity of the fluid flow, respectively, and the operators div , grad , div , Grad and ∂ t are detailed in the Notation Section at the beginning of this thesis.

Notice that (3.1) is, from a mathematical point of view, the approximation of the more general mass balance ∂ t ρ + div ρv = 0, where we assume negligible variations of the density, i.e., ∆ρ ≪ ρ. We use the Mach number M , the ratio between the fluid velocity and the speed of sound c in the media (M = v /c), to consider when this incompressibility assumption is adequate. In this Chapter we study flows with M ≤ 0.3 [START_REF] Gresho | Incompressible Flow and the Finite Element Method[END_REF].

In different studies on incompressible flows it is common to relax the condition in (3.1) to use pseudo-compressible algorithms to define appropriate pressure-pressure couplings in the space discretization of (3.2), such as the Pressure Stabilization Petrov-Galerkin method, where -div v+ε∆p = 0, the penalty method, where -div v-εp = 0, and the artificial compressibility method, where -div v -ε∂ t p = 0, and where ε is some parameter which has to be chosen appropriately [START_REF] John | Finite Element Methods for Incompressible Flow Problems, ser[END_REF]. Similarly, in this chapter we relax the incompressible hypothesis to describe the pressure in different zones of the fluid domain, allowing us to define an appropriate coupling, from a port-Hamiltonian point of view, between the incompressible fluid sections.

Finite-dimensional modeling of the fluid

In what follows we consider n f sections of the fluid with uniform cross-sectional area where the flow is incompressible, as shown in Figure 3.1.a, and infinitesimal compressible sections, that will be referred to as nodes, to describe the pressure in the coupling zone between two adjacent incompressible sections, as shown in Figure 3.1.b. The use of nodes to couple incompressible sections has been applied in [START_REF] Mora | A Scalable port-Hamiltonian Model for Incompressible Fluids in Irregular Geometries[END_REF] for tubes with fixed irregular geometries. From an energy point of view, incompressible sections are kinetic energy storage elements, describing the fluid motion through the momentum balance:

ρ 0 ∂ t v = -ρ 0 v • Grad v -grad p + µdiv [Grad v] (3.3) 
subject to div v = 0, where ρ 0 is the reference density of the fluid and v = [v v] with v and v as the longitudinal and transverse velocities of the fluid, respectively. We define the fluid behavior in nodes using the following assumption.

Assumption 3.1. The volume of a node is small enough, such that the density distribution is uniform, and the changes in density are only caused by changes in the volume [START_REF] Panton | Incompressible Flow[END_REF]Sec. 5.1,p.78]. This implies that the mass in each node is constant, i.e., the following relationship is satisfied

ρ j Vj = m (3.4)
where ρ j and Vj are the density and volume of the j-th node, and m is the total mass in the node.

Then, the nodes store potential energy and are used to describe the pressure distribution in the fluid. Their dynamics are governed by the changes of the fluid density. Then, the governing equation in a node is given by:

∂ t ρ + div ρv = 0 (3.5)
The loss of kinetic energy of a fluid is given by different phenomena [START_REF] Bird | Introductory transport phenomena[END_REF], such as viscosity friction with the walls, turbulences and irregularities in the geometry. Thus, we first discuss the energy dissipation in the fluid, in order to describe a scalable model from the models of n f incompressible sections and nodes.

Macroscopic power dissipation in the flow

As shown in [START_REF] Bird | Introductory transport phenomena[END_REF], the dissipation in a Newtonian fluid is associated with the divergence of the viscosity tensor τ = -µ Grad v

+ [Grad v] + 2 3 µ -κ (div v) I. Note that the term µdiv [Grad v] in (3.
3) is the incompressible simplification of -div τ . Then, from a macroscopic point of view, the power dissipated in a volume V j is given by:

E λ j = - V j (v • div τ ) dV j ≥ 0 (3.6)
According to [START_REF] Bird | Introductory transport phenomena[END_REF], the dissipated power E λ j in volume V j must have the general form:

E λ j = 1 2 λ j ρ j v 3 j A j ≥ 0 (3.7)
where ρ j , v j and A j are the characteristic density, velocity and area of the fluid domain in volume V j . The dimensionless term λ j can be expressed as λ j = λ f j + λ g j , where λ f j , the friction loss factor, is a function of the Reynolds number, viscous losses, and λ g j is a loss factor associated with additional resistances determined by the geometry of the fluid domain, such as sudden changes in the cross-sectional area (see [101, Section 7.5] for details). Then, (3.7) can be rewritten as where |v j | denotes the absolute value of v j , and the term 1 2 λ j A j |v j |v j describes the rate of velocity drop in volume V j due to energy losses. This term is equivalent to dissipative terms used in others works. For example, in [START_REF] Kotyczka | Discretized models for networks of distributed parameter port-Hamiltonian systems[END_REF] the dissipation term, in an infinite-dimensional form, of 1D flow in a rough pipeline is described by 1 2 λ f |v|v/D where D is the pipe diameter and λ f is obtained from the Haaland equation [START_REF] Bird | Introductory transport phenomena[END_REF]. Integrating this term in a pipe section with volume V j , we obtain

E λ j = ρ j v j 1 2 λ j A j |v j |v j ≥ 0 (3.8) j-th fluid section f 2 ¯ j-1 2 ¯ j j Incompressible section j (V j , A j ) Incompressible section j -1 (V j-1 , A j-1 ) Incompressible section j + 1 (V j+1 , A j+1 ) v cj v c(j-1) v c(j+1) Node j -1 Node j ξ ζ ρ0∂tv = -ρ0v • Grad v -grad p + µdiv [Grad v] ∂tρ = -divρv
V j 1 2D λ f |v|vdV = 1 2 λ f j A j |v j |v j .
This result is equivalent to the rate of velocity drop derived from (3.8), neglecting the geometrical losses.

The λ f j formula depends on the assumptions considered for the fluid. For example, the Haaland equation used in [START_REF] Kotyczka | Discretized models for networks of distributed parameter port-Hamiltonian systems[END_REF] is valid only for rough pipelines. However, other equations, such as the Blasius and Prandtl formulas, can be used according to the fluid conditions (see [START_REF] Bird | Introductory transport phenomena[END_REF]Chapter 6] for details). Regarding λ g j , given the spatial discretization described above, we focus on the losses associated with sudden expansions and contractions, i.e.,

λ g j =              0.5 1 - A j+1 A j , sudden contraction, A j+1 ≤ A j 1 - A j A j+1 2 , sudden expansion, A j+1 ≥ A j (3.9)
where A j is the cross-sectional area of the incompressible fluid section j.

Fluid dynamics of the incompressible sections and nodes

If we consider the j-th section of the fluid of length f = L/n f , where L is the length of the fluid domain, and uniform cross-sectional area A j , the upper boundary moves in the transverse direction with velocity v cj . Figure 3.2 shows that this section is divided in one incompressible section and the adjacent nodes. As consequence of Assumption 3.1, a change of density in a node implies a change of the corresponding volume, which generates a variation in the volume of adjacent incompressible sections.

The first effect of the moving longitudinal boundaries, is that the volume of the j-th incompressible section is a function of the density of adjacent nodes. Considering a node length of 2 ¯ j , as shown in Figure 3.2, the node volume is given by Vj = ¯ j (A j + A j+1 ). Thus, the volume V j of section j is described by a reference value V * j = A j f minus the corresponding part of the adjacent nodes, see Figure 3.2, i.e.,

V j = V * j -A j ( ¯ j + ¯ j-1 ) = V * j - m ρ j α j - m ρ j-1 (1 -α j-1 ) (3.10)
where α j = A j /(A j + A j+1 ) is a dimensionless factor. As we will see in the next subsection, the description of V j in (3.10) will help us to describe the dynamic pressure in each node.

The second effect of these moving boundaries is that part of the fluid moves in the transverse direction, induced by the boundary velocity v cj . This implies that the longitudinal flow in the section is affected by the upper wall movement. As a consequence, from (3.1), we obtain the following relationship:

Q 1j -Q 2j -A cj v cj = 0 (3.11)
where A cj is the contact area of the fluid section with the moving boundary, Q 1j and Q 2j are the inlet and outlet flows in the j-th section, respectively. Thus, denoting by v j the average longitudinal flow velocity in section j, to satisfy (3.11), we define the inlet and outlet flows as:

Q 1j = A j v j + 1 2 A cj v cj (3.12) Q 2j = A j v j - 1 2 A cj v cj (3.13)
where A j v j is the average longitudinal flow and A cj v cj is the transverse flow in the contact surface of the moving boundary. Note that (3.12) and (3.13) are equal when the upper boundary does not move, v cj = 0. The third effect of the moving boundaries is that the geometry of the tube is time varying, inducing a rotation of the flow in each section. This rotation generates energy dissipation by viscous friction, that can be modeled (from a macroscopic point of view) in terms of the characteristic velocity of the fluid, as shown in Section 3.1.2. To simplify the model, we consider a two-dimensional flow and the following assumption Assumption 3.2. Denote by v the transverse component of the fluid velocity and by q j the position of the moving wall in the j-th incompressible section. The gradient of v is uniform in each incompressible fluid section and is given by ∂ ξ v = v cj /q j and ∂ ζ v = 0 where ξ and ζ denote the variables of transversal and longitudinal axes, respectively.

Note that, from Assumption 3.2, the transversal velocity in a section j is given by v = v cj ξ/q j . As a consequence, the corresponding mean transversal momentum satisfies the following algebraic relationship with the boundary velocity π ξi = ρ 0 vdV j = ρ 0 V j v cj /2. This algebraic constraint implies that the dynamics of the transversal momentum in each incompressible section is given by a linear combination of the ODEs associated with the mechanical model, described in Chapter 2, and the ODEs that describes the density behavior in the nodes.

Thus, to obtain a minimal realization we consider the following proposition to describe the flow in one incompressible section. Proposition 3.1. In a fluid section of volume V j and uniform gradient of transversal velocity, the flow is described by the longitudinal flow momentum dynamics:

πζj = -φ ζj -A cj ρ 0 v j v cj + A j (P 1j -P 2j ) (3.14)
where the term A cj ρ 0 v j v cj represents the effect of the moving boundary in the longitudinal flow, φ ζj describes the dissipation associated with the viscous tensor, P 1j and P 2j are the total pressures at the inlet and outlet boundaries of the fluid section, respectively, and π ζj = ρ 0 V j v j denotes the longitudinal momentum in volume V j with v j as the corresponding average longitudinal velocity.

Proof. As mentioned above, the corresponding transversal momentum has an algebraic relationship with the boundary velocity, i.e., the boundary velocity defines the transversal behavior of the fluid. Thus, it is only necessary to know the longitudinal flow momentum to describe the fluid in one section. From (3.3) we obtain that:

ρ 0 ∂ t v + ρ 0 v∂ ξ v + ∂ ζ 1 2 ρ 0 v 2 + p = µ ∂ 2 ζ v + ∂ 2 ξ v (3.15)
where v is the longitudinal velocity of the fluid and the term ρ 0 v∂ ξ v is associated with the conversion of longitudinal flow into transversal flow and vice versa, induced by the velocity of the boundary. Integrating in the section volume the first 2 terms of (3.15) and applying the Leibniz integral rule, we obtain

ρ 0 ∂ t v + ρ 0 v∂ ξ vdV j = d dt ρ 0 vdV j -ρ 0 vv cj dS cj + ρ 0 v∂ ξ vdV j
Defining the average longitudinal velocity as v j = 1

V j vdV j and the corresponding momentum as π ζj = ρ 0 V j v j , we have that πζj = d dt ( ρ 0 vdV j ). Then, considering the relationship v∂ ξ v = ∂ ξ (vv) -v∂ ξ v, the incompressibility constraint div v = 0 and the Gauss divergence theorem, the previous equation can be rewritten as

ρ 0 ∂ t v + ρ 0 v∂ ξ vdV j = πζj -ρ 0 vv cj dS cj + ∂ ξ ρ 0 vvdV j -ρ 0 v∂ ξ vdV j = πζj -ρ 0 vv cj dS cj + ρ 0 vv cj dS cj + ρ 0 v∂ ζ vdV j = πζj + 1 2 ρ 0 ∂ ζ v 2 dV j = πζj + A j ρ 0 2   Q 2j A j 2 - Q 1j A j 2  
Substituting (3.12) and (3.13), we obtain the following relationship

ρ 0 ∂ t v + ρ 0 v∂ ξ vdV j = πζj + A cj ρ 0 v j v cj (3.16)
where the term A cj ρ 0 v j v cj describes the effect of the upper moving wall on the longitudinal flow in the j-th incompressible section.

Integrating the remaining term of the left hand side of (3.15) and considering a uniform velocity in the inlet and outlet cross-sectional surfaces of V j , we obtain:

∂ ζ ρ 0 2 v 2 + p dV j = -A j (P 1j -P 2j ) (3.17)
where P 1j and P 2j are the inlet and outlet total pressures, respectively. The integral of the viscous term µ (∂ 2 z v + ∂ 2 w v) is given by:

µ ∂ 2 ζ v + ∂ 2 ξ v dV j = -φ ζj (3.18)
where φ ζj represents the force associated with the viscous dissipation. Finally, combining (3.16), (3.17) and (3.18), and solving for πζj we obtain (3.14).

Defining

π ζ = [π ζ1 • • • π ζn f ]
as the set of longitudinal momenta, the fluid dynamics in the n f incompressible fluid sections can be expressed as:

πζ = ϑ π P 1 -ϑ π P 2 -ϕ π v c -Φ (3.19)
where 

P 1 = [P
v c = [v c1 • • • v cn f ]
is the set of boundary velocities associated with the structure motion, and

ϑ π =        A 1 0 • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 • • • 0 A n f        ϕ π = ρ 0        A c1 v 1 0 • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 • • • 0 A cn f v n f        Φ =     φ ζ1 . . . φ ζn f    
We now focus on the fluid dynamics in each node. As explained in Assumption 3.1, the density in each node is assumed to be uniform. Then, from (3.5) the density dynamics of the j-th node is derived in Proposition 3.2. Proposition 3.2. Let ρ j be the density of the node j. The rate of change of ρ j is given by:

ρj = ρ 2 j m Q ρ 1j -Q ρ 2j -A nj ρ 2 j m v cj + v c(j+1) (3.20)
where Q ρ 1j and Q ρ 2j are the inlet and outlet flows of the node, respectively, v cj and v c(j+1) are the velocities of adjacent moving boundaries associted with the motion of the structure, A nj is the corresponding contact area, and m is the fluid mass of the node.

Proof. Let Vj be the volume of the j-th node enclosed by a surface Sj , and let the velocity of any surface element be v S . Consider that the part of Sj in contact with the structure has an area of 2A nj , with A nj = ¯ j l, where l denotes the depth of the node. Then, integrating (3.5) in volume Vj , applying the Leibniz integral rule we obtain:

0 = ∂ t ρd Vj + div (ρv) d Vj = d dt ρ j d Vj -ρ j (v S • n) d Sj + ρ j (∂ ζ v + ∂ ξ v) d Vj
where n is the outward unitary vector to Sj . Given that ρ j is uniform in Vj we obtain that ρ j d Vj = ρ j d Vj = ρ j Vj . Similarly, notice that the rate of change of the node volume is given by Vj = (v S • n) d Sj , and that

∂ ζ vd Vj = Q ρ 2j -Q ρ 1j
, where Q ρ 1j and Q ρ 1j are the inlet and outlet flows of the node, and

∂ ξ vd Vj = A nj v cj + v c(j+1)
, where v cj and v c(j+1) are the structure velocities in the contact surface and A nj is the contact area with each moving boundary associated with the structure motion. Then, the previous equation can be rewritten as

0 = d dt ρ j Vj -ρ j Vj + ρ j Q ρ 2j -Q ρ 1j + A nj ρ j v cj + v c(j+1) = Vj ρj + ρ j Q ρ 2j -Q ρ 1j + A nj ρ j v cj + v c(j+1) (3.21)
Rewriting (3.21) we obtain that the rate of change of the node density ρ j is given by:

ρj = ρ j Vj Q ρ 1j -Q ρ 2j -A nj ρ j Vj v cj + v c(j+1) (3.22)
Finally, using the relationship (3.4) we obtain (3.20).

Defining ρ = [ρ 1 • • • ρ n f -1 ]
as the set of node densities, the fluid dynamics in the n f -1 nodes can be expressed as:

ρ = ϑ ρ Q ρ 1 -ϑ ρ Q ρ 2 -ϕ ρ v c (3.23)
where

Q ρ 1 = [Q 11 • • • Q 1(n f -1) ] and Q ρ 2 = [Q 21 • • • Q 2(n f -1)
] are the sets of inlet and outlet volumetric flows of the nodes, respectively, and matrices ϑ ρ and ϕ ρ are given by

ϑ ρ = 1 m        ρ 2 1 0 • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 • • • 0 ρ 2 n f -1        and ϕ ρ = 1 m        A n1 ρ 2 1 A n1 ρ 2 1 0 • • • 0 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 • • • 0 A n(n f -1) ρ 2 n f -1 A n(n f -1) ρ 2 n f -1       
respectively. This density variation implies a change in the pressure in the nodes, which, in turn, has an associated energy. In this sense, we denote by p ρ j = p j -p 0 the variation of the static pressure in the j-th node, where p 0 is the pressure at reference density ρ 0 and p j is the absolute static pressure in the node. Thus, from the definition of the bulk modulus, β S , [START_REF] Murdock | Fundamental Fluid Mechanics for the Practicing Engineer[END_REF] we obtain:

p ρ j = β S ln ρ j ρ 0 (3.24)
This implies that the density variation allows us to describe the static pressure between 2 adjacent incompressible sections, that can be coupled using a power-preserving interconnection, as shown in the next section.

Port-Hamiltonian formulation of the FSI model

To obtain a port-Hamiltonian formulation of the overall system we first define the stored energy in the fluid. For the incompressible fluid sections, the stored energy is the kinetic energy given by 1 2 ρ 0 V j v 2 j for the j-th fluid section. Considering the momentum of fluid sections, π ζj = ρ 0 V j v j , the total kinetic energy of the fluid can be expressed as:

K f = n f j=1 1 2 ρ 0 V j v 2 j = n f j=1 1 2 π 2 ζj ρ 0 V j (3.25)
where

∂ π ζj K f = π ζj ρ 0 V j = v j .
To describe the energy associated with the nodes we consider the fluid as an isentropic process. Then, from the Gibbs equation the variation of the internal energy of the fluid in the node, U j , is given by its work, dU j = -p ρ j d Vj . Using (3.4), the differential of the internal energy can be rewritten as

dU j = p ρ j m ρ 2 j dρ j (3.26)
Substituting (3.24) in (3.26) and solving for U j ,the internal energy in node j is then given by the following non-negative function U j = mβ S ρ j -ρ 0 (1 + ln(ρ j /ρ 0 )) ρ j ρ 0 . Thus, for the n f -1 nodes, the total energy is

U f = n f -1 j=1 mβ S ρ j -ρ 0 (1 + ln(ρ j /ρ 0 )) ρ j ρ 0 (3.27)
and

∂ ρ j U f = m ρ 2 j p ρ j .
As mentioned in Section 3.1.2, the changes in the geometry of the fluid domain induce a rotation of the flow that generates energy dissipation by viscous friction. From a port-Hamiltonian point of view, the power dissipated in the j-th incompressible fluid section is given by ∂ π ζj K f φ ζj . Comparing this result with (3.8) and defining the characteristic density, velocity and area as ρ 0 , v j and A j , respectively, the force associated with the dissipations in the j-th incompressible fluid section can be expressed as

φ ζj = 1 2 λ j ρ 0 A j |v j |v j = 1 2 λ j j |π ζj |∂ π ζj K f (3.28)
Similarly, note that the inlet and outlet flows can be rewritten as:

Q 1j = A j ∂ π ζj K f + A cj 2 v cj (3.29) Q 2j = A j ∂ π ζj K f - A cj 2 v cj (3.30)
Then, the dynamics of the fluid in the j-th incompressible fluid section can be expressed as the following port-Hamiltonian formulation:

πζj = - 1 2 λ j j |π ζj |∂ π ζj K f + [A j -A j - A cj V j π ζj ]    P 1j P 2j v cj    (3.31a)    Q 1j -Q 2j -F * j    =     A j -A j -A cj V j π ζj     ∂ π ζj K f +     0 0 A cj 2 0 0 A cj 2 -A cj 2 -A cj 2 0        P 1j P 2j v cj    (3.31b) node j ( Vj , ρ j ) Anjp ρ 1j vcj Anjp ρ 2j v c(j+1) Q ρ 1j p ρ 1j Q ρ 2j -p ρ 2j -Q2j P2j Incompressible section j (Vj, πζj) F * j vcj Q1j P1j Q 1(j+1) P 1(j+1) Incompressible section j + 1 (Vj+1, π ζ(j+1) ) -Q 2(j+1) P 2(j+1) F * j+1 v c(j+1) Inlet Inlet Inlet port port port Outlet Outlet Outlet port port port
Ports for the interconnection with the structure Similarly, the dynamics of the fluid in j-th node are modeled by the following port-Hamiltonian formulation:

ρj = 0∂ ρ j U f + ρ 2 m - ρ 2 m -A nj ρ 2 m -A nj ρ 2 m      Q ρ 1j Q ρ 2j v cj v c(j+1)      (3.32a)      p 1j -p 2j -A nj p 1j -A nj p 2j      =       ρ 2 m -ρ 2 m -A nj ρ 2 m -A nj ρ 2 m       ∂ ρ j U f (3.32b)
Figure 3.3 shows a diagram with the ports of the PHS model of node j and the adjacent incompressible sections. Notice that inputs of the inlet and outlet ports of node j, namely Q ρ 1j and Q ρ 2j respectively, are compatible with the output of the outlet port in the incompressible section j and the output of the inlet port in the incompressible section j + 1, Q 2j and Q 1(j+1) respectively. The static pressures in the outputs of the inlet and outlet ports in the node, namely p ρ 1j and p ρ 2j respectively, are only one part of the total pressures in the inputs of the adjacent incompressible section, namely P 2j and P 1(j+1) . This implies that an interconnection by ports, as described in Section 1.2.1.a, can not be done. However, given the relationship between the volume of the incompressible sections and the density of the nodes described in (3.10), we can made a power-preserving interconnection between the fluid sections, as will be shown in Section 3.2.1. Additionally, notice that the PHS formulation of the nodes and the incompressible sections provides a set of inputs and outputs that are useful for the fluidstructure interconnection, as will be shown in Section 3.3.

In the case of n f sections, the term Φ in (3.19), can be rewritten as

Φ = R 3 ∂ π ζ K f .
Then, the governing equations can be expressed as:

πζ = -R 3 ∂ π ζ K f + [ϑ π -ϑ π -ϕ π ]    P 1 P 2 v c    (3.33a)    Q 1 -Q 2 -F *    =    ϑ π -ϑ π -ϕ π    ∂ π ζ K f +    0 0 M π 0 0 M π -M π -M π 0       P 1 P 2 v c    (3.33b)
where

Q 1 = [Q 11 • • • Q 1n f ] and Q 2 = [Q 21 • • • Q 2n f ]
are the sets of inlet and outlet flows in the incompressible sections, respectively,

F * = [F * 1 • • • F * n f
] is a set of forces at the contact surfaces with the moving structure, and matrices R 3 ≥ 0 and M π are defined as

R 3 = 1 2        λ 1 |π ζ1 |/ 1 0 • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 • • • 0 λ n f |π ζn f |/ n f        M π = 1 2        A c1 0 • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 • • • 0 A cn f        (3.34)
The dynamics of the n f -1 nodes in (3.23) can be written as the following port-Hamiltonian system

ρ = 0∂ ρ U f + ϑ ρ -ϑ ρ -ϕ ρ    Q ρ 1 Q ρ 2 v c    (3.35a)    p ρ 1 -p ρ 2 -F ρ    =    ϑ ρ -ϑ ρ -ϕ ρ    ∂ ρ U f (3.35b)
where 1) ] are the sets of pressures in the inlet and outlet node boundaries, respectively, and

p ρ 1 = [p ρ 11 • • • p ρ 1(n f -1) ] and p ρ 2 = [p ρ 21 • • • p ρ 2(n f -
F ρ = [F ρ 1 • • • F ρ n f ]
denotes the forces at the contact surfaces between each section with uniform cross-sectional area and the corresponding node. Matrices ϑ ρ and ϕ ρ are defined in Section 3.1.3. Note that from the uniform density assumption in the nodes we have p ρ 1j = p ρ 2j = p ρ j . Additionally, the forces F ρ j are defined as

F ρ j = A n(j-1) p ρ j-1 + A nj p ρ j , ∀j ∈ [2, n f -1], with F ρ 1 = A n1 p ρ 1 and F ρ n f = A n(n f -1) p ρ n f -1 .

Power-preserving interconnection of incompressible fluid sections and nodes

Note that the outputs {Q 

C 1 = 0 (n f -1)×1 I , C 2 = I 0 (n f -1)×1 , C 1 * = 1 0 1×(n f -1) and C 2 * = 0 1×(n f -1) 1 (3.36) such that C 1 C 1 * Q 1 = Q ρ 2 Q i , C 2 C 2 * Q 2 = Q ρ 1 Q o , C 1 C 1 * p ρ 2 + p ρ d P i = P 1 ,
and

C 2 C 2 * p ρ 1 + p ρ d P o = P 2 .
Then, the fluid sections can be interconnected using the following power-preserving rule:

          Q ρ 1 Q ρ 2 P 1 P 2 -Q i Q o           =           0 0 0 -C 2 0 0 0 0 C 1 0 0 0 0 -C 1 0 0 C 1 * 0 C 2 0 0 0 0 C 2 * 0 0 -C 1 * 0 0 0 0 0 0 -C 2 * 0 0           I f           p ρ 1 + p ρ d -p ρ 2 -p ρ d Q 1 -Q 2 P i P o           (3.37)
where I f is the skew-symmetric interconnection matrix of the fluid sections.

Proof. Note that 

Q i = Q 11 and Q ρ 2(j-1) = Q 1j , ∀j ∈ {2, . . . , n f }. Similarly, Q o = Q 2n f and Q ρ 1j = Q 2j , ∀j ∈ [1, n f -1]. Then, defining the matrices C 1 , C 2 , C 1 * and C 2 * as (3.36) and denoting by u = [Q ρ 1 Q ρ 2 P 1 P 2 -Q j Q o ]
+ p ρ d ) -(p ρ 2 + p ρ d ) Q 1 -Q 2 P i P o ]
the corresponding power conjugated outputs. Then, the total power exchange in the fluid is given by u y. From the interconnection rule (3.37) we have u = I f y, and given the skew-symmetrical property of I f we obtain u y = 0, i.e., (3.37) describes a power-preserving interconnection.

To apply the power-preserving interconnection described above, we need to define the dynamic pressure in the nodes. In this case we describe the dynamic pressure in node j as the weighted average of the dynamic pressure in adjacent incompressible fluid sections, i.e.,

p d j = ρ 0 2 v 2 j α j + ρ 0 2 v 2 j+1 (1 -α j ), and p ρ d = [p d 1 • • • p d n f ] .
On the other hand, from (3.10), the kinetic energy of the fluid is a function of the node densities, such that,

∂ ρ j K f = ρ 0 2 v 2 j ∂ ρ j V j + ρ 0 2 v 2 j+1 ∂ ρ j V j+1 = m ρ 2 j p d j (3.38)
This implies that the dynamic pressure in each node can be expressed as:

p ρ d = ϑ ρ ∂ ρ K f (3.39)
Then, defining the total energy of the fluid as: Using the interconnection rule (3.37), the fluid dynamics can be described as the following port-Hamiltonian system with feed-through term:

H f = K f + U f (3.
ẋf = (J f -R f ) ∂ x f H f + G f u f (3.41a) y f = G f ∂ x f H f + M f u f (3.41b)
where H f denotes the total energy,

u f = P i P o v c and y f = Q i -Q o F * c
describe the inputs and outputs in the fluid boundaries, respectively, with v c and F * c the sets of velocities and forces at the contact surface with the mechanical structure. Matrices

J f = -J f , R f = R f ≥ 0, G f and M f = -M f
are given by: 

J f = 0 ψ -ψ 0 R f = R 3 0 0 0 G f = ϑ -ϕ π 0 -ϕ M f = 0 ψ M -ψ M 0 (3.
πζ = -R 3 ∂ π ζ K f + ϑ π C 1 -C 2 ϑ ρ (∂ ρ K f + ∂ ρ U f ) + ϑ π C 1 * P i -ϑ π C 2 * P o -ϕ π v c ρ = -ϑ ρ (C 1 -C 2 ) ϑ π ∂ πx K f -(ϕ ρ + ϑ ρ (C 1 + C 2 ) M π ) v c
Using the total energy (3.40), we obtain the following port-Hamiltonian system:

πζ ρ = -R 3 ψ -ψ 0 ∂ π ζ H f ∂ ρ H f + ϑ -ϕ π 0 -ϕ u p v c y Q -F * c = ϑ 0 -ϕ π -ϕ ∂ π ζ H f ∂ ρ H f + 0 ψ M -ψ M 0 u p v c where u p = P i P o , y Q = Q i -Q o describe
the power-conjugated input and output, respectively, at the inlet and outlet boundaries of the fluid domain, and F * c contains the set of forces on the contact surface with the structure. The internal matrices are given by ϑ

= ϑ π C 1 * -C 2 * , ϕ = ϕ ρ + ϑ ρ (C 2 + C 1 ) M π , ψ = ϑ π (C 1 -C 2 )ϑ ρ and ψ M = C 1 * C 2 * M π .
Finally, defining the port-Hamiltonian matrices as in (3.42), we obtain the system (3.41).

We notice that F * c = F c + F where F c is the effective force applied on the contact surface between the fluid and the structure, and F is a set of extra forces associated with the variation of volume of each fluid section induced by the motion of the structure. These extra forces are defined as F = ∂ q f H f where q f = [q f 1 • • • q f n f ] is the set of heights of each fluid sections of uniform cross-sectional area.

In works such as [START_REF] Bansal | Port-Hamiltonian modelling of fluid dynamics models with variable cross-section[END_REF], the extra force F is compensated including a state variable to model the changes in the cross-sectional area, that is equivalent to include q f as a state variable. However, with this approach, the number of states increases and the resulting fluid-structure interaction system has a non-minimal realization. In the next section we propose an alternative way to compensate F. In this section we describe the power-preserving interconnection between the fluid model (3.41) and the structure. We consider a MSD formulation of the structure motion, as shown in Figure 3.4, whose port-Hamiltonian model is given by:

Fluid-structure power-preserving interconnection

qs πs = 0 I -I -R ∂ q s H s ∂ πs H s + 0 I F s (3.43a) v s = 0 I ∂ q s H s ∂ πs H s (3.43b)
where q s , v s and π s denote the sets of displacement, velocity and momentum of the n s masses describing the transversal structure motion, F s denotes the external forces acting on the masses and H s is the total stored energy. Considering that moving boundary of the fluid domain is given by the structure motion described in (3.43), there exists an n f × n s matrix C such that Cv s = v c and C F c = F s . This matrix C is composed only with 0 and 1, and is defined according to the link between the masses and the corresponding fluid sections with uniform cross-sectional areas. For example, consider the fluid-structure system in Figure 3.4, where the length f of the fluid section with uniform cross-sectional areas is equal to the length s of the masses that describe the transversal structure motion. In this case the matrix C is equal to the identity matrix. Figure 3.5 shows another example where s = 2 f (n f = n s ). In this case the matrix C is defined as: However, in some problems the motion of the structure is constrained to one part of the structure domain. An example of this class of problems is the vocal folds, where finite-dimensional models, as the BCM, describe the motion only in the folds area that collides. In these cases, matrix C is defined according to the fluid sections under the moving structure area with motion, as will be shown in Section 4.4.

C =                1 0 0 • • • 0 0 1 0 0 • • • 0 0 0 1 0 . . . . . . . . . 0 
0 0 0 • • • 0 1 0 0 0 • • • 0 1                Remark 
Defining F s = C F c + u e where u e denotes external forces, the fluid and structure models can be coupled using the following power-preserving interconnection rule

   v c F s -y e    =    0 C 0 -C 0 I 0 -I 0       -F c v s u e    (3.44) 
Considering the relationship q f = q 0 + Cq s , where q 0 = [q 01 • • • q 0n f ] denotes the set of initial height of incompressible sections, we obtain the expression

C F = C ∂ q f H f = ∂ q s H f .
Then, the FSI system can be modeled as follows.

Proposition 3.5. Let the port-Hamiltonian models of the structure and the incompressible flow be described as in (3.43) and (3.41), respectively. Then, the PHS that describes the FSI between these two sub-systems is given by:

ẋfs = (J f s -R f s ) ∂ x f s H f s + G f s u f s (3.45) y f s = G f s ∂ x f s H f s (3.46) where x f s = [q s π s π ζ ρ ], u f s = [P i P o u e ], y f s = [Q i -Q o y e
] and H f s = H f + H s denote the state vector, input, output and total stored energy of the FSI system, respectively, and matrices J f s = -J f s , R f s = R f s ≥ 0 and G f s are defined as:

J f s =      0 I 0 0 -I 0 [ϕ π C] [ϕC] 0 -ϕ π C 0 ψ 0 -ϕC -ψ 0      , R f s =      0 0 0 0 0 R 0 0 0 0 R 3 0 0 0 0 0      , G f s =      0 0 C ψ M I ϑ 0 0 0      (3.47)
Proof. Consider the fluid and structure models (3.43) and (3.41), respectively. Using the interconnection rule (3.44) and expressing the effective force applied by the fluid on the structure as F c = F * c -∂ q f H f , the dynamics of the structure and fluid can be rewritten as:

qs = ∂ πs H s πs = -∂ q s H s -R∂ πs H s + C F * c -∂ q f H f + u e πζ = -R 3 ∂ π ζ H f + ψ∂ ρ H f + ϑu p -ϕ π Cv s ρ = -ψ ∂ π ζ H f -ϕCv s where v s = ∂ πs H s and F * c = ϕ π ∂ π ζ H f + ϕ ∂ ρ H f + ψ M u p . Considering C ∂ q f H f = ∂ q s H
f the fluid-structure system can be expressed as:

     qs πs πζ ρ      =      0 I 0 0 -I -R C ϕ π C ϕ 0 -ϕ π C -R 3 ψ 0 -ϕC -ψ 0           ∂ q s H f s ∂ πs H f s ∂ π ζ H f s ∂ ρ H f s      +      0 0 C ψ M I ϑ 0 0 0      u p u e y Q y e = 0 ψ M C ϑ 0 0 I 0 0      ∂ q s H f s ∂ πs H f s ∂ π ζ H f s ∂ ρ H f s     
Finally, defining the matrices J sf , R f s and G f s as shown in (3.47) we obtain the fluidstructure interaction model described in (3.46).

Example: Pressure wave propagation in a flexible tube

The pressure wave propagation in a flexible tube is a common benchmark for numerical algorithms applied to fluid-structure interaction analysis [START_REF] Bukač | A partitioned scheme for fluid-composite structure interaction problems[END_REF][START_REF] Lozovskiy | Analysis and assessment of a monolithic FSI finite element method[END_REF][START_REF] Degroote | Performance of partitioned procedures in fluid-structure interaction[END_REF]. We consider a flexible tube with axisymmetric behavior and we approximate the tube structure and the fluid dynamics using the models described in Propositions 2.1 and 3.4, respectively. The structure parameters are approximated using formula (2.1), (2.5), (2.6) and (2.8). Defining n s = n f = N we obtain where L and r are the length and the internal radius of the tube, respectively. The fluid cross-sectional area is given by A j = πq 2 f j . The areas of the contact surface in incompressible sections and nodes are defined as A cj = 2πq f j j and A nj = 2πq f j ¯ j , respectively. Similarly, the mass of nodes is given by m = ρ 0 πr 2 f 10 -3 . As a consequence of s = f the coupling matrix between the fluid and the structure is given by C = I. Then, the matrices of the fluid-structure port-Hamiltonian model described in Proposition 3.5 are given by:

s = f = L/N q 0i = r, ∀j
J f s =      0 I 0 0 -I 0 ϕ π ϕ 0 -ϕ π 0 ψ 0 -ϕ -ψ 0      , R f s =      0 0 0 0 0 R 1 0 0 0 0 R 3 0 0 0 0 0      , G f s =      0 0 ψ M I ϑ 0 0 0     
In this example, we neglect the viscous losses, considering only (3.9) to define the geometrical fluid loss factor λ j . For thw simulation we use the parameters proposed in [12, Section 5.1], summarized in Table 3.1. We divide the structure into two different numbers of sections, N = 51 and N = 71. We use β 1 = 6.7, β 2 = 1.5 × 10 -5 , and ζ = 0.4. The parameter values are summarized in Table 3.2. Using the same input conditions as described in [START_REF] Lozovskiy | Analysis and assessment of a monolithic FSI finite element method[END_REF], i.e., P o = 0 Pa, and

P i =    1.333 × 10 3 Pa, 0 ≤ t ≤ 3 × 10 -3 s 0 Pa, otherwise
with a sample time of 4 × 10 -5 s, we obtain the pressure wave propagation shown in Figure 3.6, where the structure displacements have been scaled 10 times for the sake of clarity. Note that the speed propagation and attenuation of pressure waves are in correspondence with the results in [12, Figure 2]. However, a difference from the results in [START_REF] Lozovskiy | Analysis and assessment of a monolithic FSI finite element method[END_REF] is the static pressure undershoot behind the pressure pulse propagation and a negative displacement of the tube walls (dashed boxes in Figure 3.6). Note that both, the distance between this undershoot and the pressure pulse, increase as the pulse propagates through the tube. This behavior is consistent with the results reported in [9, Figure 6], where a 3D model of the flexible tube is studied. Regarding in [12, Figure 3.b]. Then, the main difference with respect to the results reported in [START_REF] Lozovskiy | Analysis and assessment of a monolithic FSI finite element method[END_REF] is the displacement at both ends of the tube. This is due to the fact that in [START_REF] Lozovskiy | Analysis and assessment of a monolithic FSI finite element method[END_REF] the tube is fixed at both ends, restricting the motion of the tube. In this thesis we do not implement this restriction, allowing greater displacements at the left hand side of the tube, as shown in Figure 3.6a. Now, we consider the parameters used in. [START_REF] Bukač | A partitioned scheme for fluid-composite structure interaction problems[END_REF], also shown in Table 3.1. The parameters 3.3 for details). The outlet and inlet pressures are defined as P o = 0 Pa and

P i =    666.5 1 -cos 6.28t 0.003
Pa, 0 ≤ t ≤ 0.003s 0 Pa, otherwise respectively. Figure 3.8 shows the pressure distribution and structure displacement for 3 different time instants. The pressure distributions shown in Figure 3.8.a at time instants 4 × 10 -3 s, 8 × 10 -3 s and 12 × 10 -3 s are in correspondence with the results reported in [79, Figure 8] and [10, Figure 8] at h = 0.01. Similarly, the shape of the wall displacements shown in Figure 3.8.b are consistent with the results reported for the fluid-structure interface displacement in [79, Figure 9] and [10, Figure 7] at h = 0.01. However, a difference between our results and those shown in [START_REF] Bukač | A modular, operatorsplitting scheme for fluid-structure interaction problems with thick structures[END_REF][START_REF] Bukač | A partitioned scheme for fluid-composite structure interaction problems[END_REF] is given by the negative displacement at the left-end side of the tube in the first instants of the simulation. As explaining previously, this difference is due to the fact that at the ends of the tube a free motion of the wall is allowed.

Conclusion

In this chapter a scalable finite-dimensional PHS formulation for incompressible fluids has been proposed. An instrumental element, called node, is introduced to allow an appropriate coupling of incompressible fluid sections. This node is also useful to describe the pressure in the inlet and outlet boundaries of the incompressible sections. Similarly, a power-preserving interconnection that combines the properties of PHS interconnections by ports and energy, is proposed in Section 3.3. This interconnection allows us to couple the fluid and the structure models with an appropriate characterization of the fluid-structure power transfer.

In order to assess this PHS model for incompressible fluids, the pressure pulse propagation in a flexible tube is considered as a benchmark. The results obtained with this model are in correspondence with those reported in [START_REF] Degroote | Performance of partitioned procedures in fluid-structure interaction[END_REF][START_REF] Bukač | A modular, operatorsplitting scheme for fluid-structure interaction problems with thick structures[END_REF][START_REF] Bukač | A partitioned scheme for fluid-composite structure interaction problems[END_REF][START_REF] Lozovskiy | Analysis and assessment of a monolithic FSI finite element method[END_REF] using specialized FSI algorithms.

Finally, notice that given the definition of nodes, considering a constant mass m, a pressure variations imply variations in the node volume. This volume variation implies that, when the height of two adjacent fluid sections decreases, the length ¯ j of the node between the corresponding incompressible sections tends to increase. This node formulation represents a drawback when applications with structure collisions are considered. For example, in the vocal folds vibrating cycle, when the structure collides, the assumption that node volume is small enough with respect to the volume of adjacent incompressible sections, does not hold.

In the next chapter, we consider a more realistic formulation of the fluid dynamics considering compressibility.

Chapter 4

Finite-dimensional port-Hamiltonian FSI model for compressible fluids

The interaction between a compressible fluid and a structure is a problem studied in several research areas, such as the piston problem in mechanics [START_REF] Sinha | Solution of Unsteady Fluid Dynamic and Energy Equations for High-Speed Oscillating Compressible Flows and Blast Wave Propagations[END_REF][START_REF] Treton | Modelling the 1D piston problem as interconnected port-Hamiltonian systems[END_REF], or the bioengineering study of the human phono-respiratory system [START_REF] Jiang | Computational Modeling of Fluid-Structure-Acoustics Interaction during Voice Production[END_REF][START_REF] Sadeghi | Towards a Clinically Applicable Computational Larynx Model[END_REF][START_REF] Schickhofer | Compressible flow simulations of voiced speech using rigid vocal tract geometries acquired by MRI[END_REF][START_REF] Schickhofer | Analysis of the aerodynamic sound of speech through static vocal tract models of various glottal shapes[END_REF].

Similarly to what has been done in Chapter 3, we propose a scalable finite-dimensional model in a longitudinal domain for a compressible fluid and its coupling with a structure with transverse motion. As case of study, we consider the fluid-structure interaction in a vocal folds system expressing the FSI between the intraglottal airflow and the vocal folds. Note that during the vibrating cycle of the vocal folds, these collide, leading to singularity in the airflow model.

Contribution

We propose a port-Hamiltonian finite-dimensional model of compressible airflow coupled with a structure using a switched power-preserving interconnection strategy. This switched interconnection method allows to represent the elastic collision and enable/disable the dynamics of the closed fluid sections during the structure collision.

Fluid description

In this section we consider an isentropic and compressible fluid with an irrotational flow, described by the following equations [START_REF] Bird | Introductory transport phenomena[END_REF]:

∂ t ρ = -div (ρv) (4.1a) ∂ t v = -grad 1 2 |v| 2 - 1 ρ grad p - 1 ρ div τ (4.1b)
where τ denotes the Newtonian viscosity tensor, i.e.,

τ = -µ Grad v + [Grad v] + 2 3 µ -κ (div v) I (4.2)
The static pressure of the fluid is defined from the ideal gas law, i.e.,

p = n Ru T V (4.3)
where V , n and T are the volume, number of moles and temperature (in Kelvin degrees) of the gas, respectively, and Ru is the universal gas constant. Using the molar weight M , the airflow pressure can be rewritten as

p = n M V Ru T M = ρ (∂ ρ p) T (4.4)
where ρ = M n/V and (∂ ρ p) T = Ru T / M is the isothermal compressibility. Moreover, isothermal compressibility is related to the isentropic compressibility by the thermodynamic relation (∂ ρ p) s = γ (∂ ρ p) T , where γ is the specific heat ratio of the gas, γ = 1.4 for the air, and (∂ ρ p) s = c 2 with c the speed of sound [START_REF] Landau | ser. Course of Theorietcal Physics[END_REF]Ch. 8]. The static pressure is given by:

p = (∂ ρ p) s ρ γ = c 2 γ ρ (4.5)
From a thermodynamic point of view, the isentropic fluid can be described using the Gibbs equation:

du = -pd 1 ρ (4.6)
where u denotes the specific (per unit mass) internal energy. Using the specific enthalpy definition

h = u + p/ρ (4.7)
the term 1 ρ grad p in (4.1b) can be rewritten as 1 ρ grad p = grad h (4.8)

Finite-dimensional modeling

Similarly to the finite-dimensional modeling for incompressible fluids described in Chapter 3, we divide the fluid domain in n f sections with uniform cross-sectional area and length f . Considering that the structure motion is only transversal to the flow, we consider a twodimensional fluid describing the longitudinal and transverse component of the velocity field. Since we assume an irrotational flow, we can reduce the number of state variables using the following assumption. As a consequence of Assumption 4.1, in each section with uniform cross-sectional area we have v = v c ξ/q. This implies an algebraic constraint between v and the structure dynamics. Thus, to complete the flow description, the state variable that is chosen is the longitudinal velocity v. Additionally, as v c v we can use the following approximation |v| 2 ≈ v 2 . With these considerations we reduce the velocity analysis to the longitudinal component, whose momentum equation can be described by:

∂ t v = -∂ ζ 1 2 v 2 + h - μ ρ ∂ ζ (∂ ζ v) (4.9)
where μ = 4 3 µ + κ. To describe the velocity and density of the fluid, we divide the spatial domain in n f sections for each variable, as shown in Figures 4.1a and 4.1b. We denote by ρ j the average density in volume Vj between longitudinal points ζj-1 and ζj , with ζj = ζ0 + j f . The average velocity in volume V j between longitudinal points ζ j-1 and ζ j , with ζ j = ζ0 + (j + 1 2 ) f is denoted by v j . Then, the fluid dynamics are described using a 1D staggered mesh, as shown in Figure 4.1c, where the boundary conditions are given by the momentum density in the inlet boundary, ρv| ζ0 , and the energy plus enthalpy in the outlet boundary, ( 12 v 2 + h)| ζn f . This mesh is equivalent to the mesh proposed in [START_REF] Trenchant | Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct[END_REF] for one-dimensional discretization of infinite dimensional port-Hamiltonian systems. 

v c1 v c2 v c(n f -1) v cn f ρ 1 ρ 2 ρ n f -1 ρ n f ζ0 ζ1 ζ2 ζn f -2 ζn f -1 ζn f V n f 2 (a) Density sections v 1 v 2 v n f -1 v n f v c1 v c2 v c(n f -1) v cn f ζ 0 ζ 1 ζ 2 ζ n f -2 ζ n f -1 ζ n f V 0 2 ζ ξ (b) Velocity sections × × × × ρ 1 ρ 2 ρ n f -1 ρ n f ρv| ζ0 1 2 v + h ζ n f v 1 v 2 v n f -1 v n f f f /2 (c) Equivalent 1D staggered mesh

Dynamics of fluid sections

Note that for an arbitrary section j with average velocity v j the cross-sectional area A j is uniform and the volume is given by V j = A j f . The contact surface S j with the mechanical structure has a velocity v cj and area A cj , as shown in Figure 4.2a. For a density section j, the volume is given by the combination of the half of adjacent velocity sections, Vj = (V j-1 + V j ) /2 = f (A j + A j-1 )/2. Similarly, the area of the contact surface is a combination of the areas of adjacent velocity sections, with the corresponding contact velocities, as shown in Figure 4.2b. Then, the dynamics of the fluid sections can be expressed as in the following proposition.

v j , V j , A j ζ j-1 ζ j ζ ξ v cj S j , A cj (a) j-th velocity section ρ j , Vj ζj-1 ζj ζ ξ v c(j-1) v cj A c(j-1)
A cj (b) j-th density section are the area and velocity of the contact surface S j in the velocity section with volume V j , v j is the corresponding average velocity and ρ j is the average density of the section con volume Vj .

Proposition 4.1. Consider the division of the fluid domain described in Figure 4.1. For the j-th section of density and velocity, the fluid dynamics is described by the following ODEs:

ρj = 1 Vj Q m j-1 -Q m j -ρ j A c(j-1) 2 v c(j-1) -ρ j A cj 2 v cj (4.10) vj = 1 f 1 2 ṽ2 j + h j - 1 2 ṽ2 j+1 + h j+1 -Φ j (4.11)
where ρ j and v j are the average density and velocity of the corresponding fluid section, Q m j = A j ρv| ζj is the mass flow at ζj , 1 2 ṽ2 j = 1 2 v 2 | ζ j-1 and h j = h| ζ j-1 are the kinetic energy per unit mass and specific enthalpy at ζ j-1 and Φ j is the average velocity drop due to energy losses in the j-th velocity section.

Proof. Consider a uniform density distribution in the volume Vj , and integrate the continuity equation using the Leibniz integral rule and Gauss divergence theorem [START_REF] Bird | Introductory transport phenomena[END_REF] to get the following relations:

Vj ∂ t ρd Vj = - Vj div (ρv) d Vj Vj ρj = Q m j-1 -Q m j -ρ j A c(j-1) 2 v c(j-1) -ρ j A cj 2 v cj ρj = 1 Vj Q m j-1 -Q m j -ρ j A c(j-1) 2 v c(j-1) -ρ j A cj 2 v cj (4.12)
where Q m j = A j (ρv) | ζj denotes the mass flow at ζ = ζj , i.e., Q m j-1 and Q m j are the mass flow at the inlet and outlet boundaries of j-th density section, {A cj , v cj } and {A c(j-1) , v c(j-1) } are the area and velocity pairs of the adjacent contact surfaces, as shown in Figure 4.2, and ρ j = 1 Vj Vj ρd Vj is the average density in volume Vj .

Similarly, applying the same procedure to the motion equation (4.9), we obtain:

V j ∂ t vdV j = - V j ∂ x 1 2 v 2 + h + μ ρ ∂ x (∂ x v) dV j V j vj = A j 1 2 v 2 + h x j-1 -A j 1 2 v 2 + h x j - V j μ ρ ∂ x (∂ x v) dV j vj = 1 f 1 2 ṽ2 j + h j - 1 2 ṽ2 j+1 + h j+1 -Φ j (4.13)
where

1 2 ṽ2 j = 1 2 v 2 | ζ j-1 and h j = h| ζ j-1 , { 1 2 ṽ2 j ,
hj} and { 1 2 ṽ2 j+1 , h j+1 } are the kinetic energy per unit mass and specific enthalpy at the inlet and outlet boundaries of the j-th velocity section, respectively. Φ j = 1

V j V j μ ρ ∂ x (∂ x v)
dV j is the average velocity drop due to energy losses in V j , and v j = 1

V j V j vdV j is the average longitudinal velocity in the volume V j .

Note that according to the fluid domain discretization, the longitudinal velocity is defined at points ζj , ∀j ∈ {1, . . . , n f }. The kinetic energy per unit mass at point x j is described as a weighted average of adjacent velocities, i.e., 1 2

v 2 | ζ j = 1 2 v| ζj-1 2 (1 -α j ) + 1 2 v| ζj 2
α j , where α j = A j /(A j + A j-1 ). Then, 1 2 ṽ2 j is defined as:

1 2 ṽ2 j = 1 2 v 2 j-1 (1 -α j ) + 1 2 v 2 j α j (4.14)

Port-Hamiltonian formulation

A scalable PHS formulation of the compressible fluid is presented in this section, starting from the definition of the total energy of the fluid.

Total energy of the fluid

As mentioned in the previous chapters, to obtain a port-Hamiltonian formulation, we need to describe the total energy of the system. For the discretized model described above, the kinetic energy in the j-th section with volume V j associated with the longitudinal velocity is given by:

K f j = V j 1 2 ρv 2 dV j = V j 1 V j V j 1 2 ρv 2 dV j (4.15)
where the term 1

V j V j 1
2 ρv 2 dV j is the average kinetic energy density in volume V j = A j f . Denoting by ρj the average density on V j , the average kinetic energy density can be approximated as 1 2 ρj v 2 j . Note that ρj = ρ| xj is given by the average of adjacent densities, i.e., ρj = (ρ j + ρ j+1 ) /2. Thus, K f j can be expressed as:

K f j = 1 4 A j f (ρ j + ρ j+1 ) v 2 j (4.16)
In the case of the left hand side half volume V 0 /2, shown in Figure 4.1.(b), the kinetic energy is given by:

K f 0 = 1 4 A i f ρ 1 v 2 i (4.17)
where A i and v i denote the cross-sectional area and longitudinal velocity at the inlet boundary of the fluid domain. Similarly, in section n f the average density is defined as ρn f = (ρ n f + ρ o )/2, where ρ o denotes the density at the outlet boundary of the fluid domain, i.e.,

K f n f = 1 4 A n f f ρ n f + ρ o v 2 n f (4.18)
On the other hand, to describe the stored energy in each section we define the specific internal energy of the fluid u. Considering small variations on the fluid temperature, the speed of sound c can be considered as being constant. Then, from (4.5) and (4.6) we obtain:

u(ρ) = c 2 γ ln(ρ) + C u (4.19)
where C u is a constant. However, with this definition of u, the non-negativity property of the total energy depends of the appropriate choice of C u . In this sense we consider an available internal energy ū ≥ 0 to describe the internal energy variations. We define the relative pressure of the fluid as:

p = p -p 0 = c 2 γ (ρ -ρ 0 ) (4.20)
where p 0 is the pressure at reference density ρ 0 . The available internal energy ū is obtained such that it satisfies ∂ ρ ū = p/ρ 2 and ĥ = ū + p/ρ, where ĥ = hh 0 is the relative enthalpy per unit mass and h 0 is the specific enthalpy at ρ 0 . Then, ū is defined as:

ū = c 2 γ ln ρ ρ 0 + ρ 0 ρ -1 (4.21)
and the relative enthalpy is given by: ĥ

= c 2 γ ln ρ ρ 0 = ∂ ρ (ρū) (4.22)
The available internal energy in a density section with volume Vj is given by

Ūfj = Vj ρū(ρ)d Vj (4. 23 
)
where ū is defined in (4.21). Denoting by ρ j the average density in Vj = (V j-1 + V j ) /2, the average density of the available internal energy in the j-th density section can be approximated by ρ j ūj where ūj = ū(ρ)| ρ j . Then, Ūfj can be expressed as:

Ūfj = 1 2 (V j-1 + V j ) ρ j ūj (4.24)
The total energy stored in the fluid is given by:

H f = n f j=0 K f j K f + n f j=1 Ūfj Ūf (4.25)

Scalable finite-dimensional model

From the total energy (4.25), the co-energy variables associated with the j-th velocity and density are given by:

∂ v j H f = 1 2 A j f (ρ j + ρ j+1 ) v j = f Q m j (4.26) ∂ ρ j H f = 1 4 V j-1 v 2 j-1 + 1 4 V j v 2 j + 1 2 (V j-1 + V j ) ĥj = Vj 1 2 v 2 j-1 (1 -α j ) + 1 2 v 2 j α j + ĥj = Vj 1 2 ṽ2 j + ĥj (4.27)
where

1 2 ṽ2 1 = 1 2 v 2 i (1 -α 1 ) + 1 2 v 2 1 α 1 with α 1 = A 1 /(A 1 + A i ).
Replacing (4.26) in the density dynamics (4.10) we obtain:

ρj = 1 f Vj ∂ v j-1 H f -∂ v j H f - ρ j 2 A c(j-1) v c(j-1) + A cj v cj (4.28)
Similarly, considering that h j -h j+1 = ĥj -ĥj+1 and using (4.27), the velocity dynamics (4.11) can be formulated as:

vj = 1 f Vj ∂ ρ j H f - 1 f Vj+1 ∂ ρ j+1 H f -Φ j (4.29)
In the cases of first density and last velocity sections, the dynamics are given by:

ρ1 = 1 V1 Q m i - 1 f V1 ∂ v 1 H f - ρ 1 2 A c1 v c1 (4.30) vn f = 1 f Vn f ∂ ρ j H f - 1 f 1 2 ṽ2 o + ĥo -Φ n f (4.31)
where the subscripts i and o denote the variables at inlet and outlet boundaries of the fluid domain, i.e.,

Q m i = A i (ρv)| x0 and 1 2 ṽ2 o + ĥo = 1 2 v 2 + ĥ | xn f . The term 1 2 ṽ2
o is evaluated by

1 2 ṽ2 o = 1 2 v 2 n f (1 -α o ) + 1 2 (v + o ) 2 α o with α o = A + o /(A + o + A n f )
, where v + o and A + o denote the average velocity and area external to the fluid domain. In case that the outlet boundary is open to the atmosphere, α o = 1 and

1 2 ṽ2 o = 1 2 (v + o ) 2 .
Similarly, ĥo = ĥ(ρ)| ρo where ρ o is the fluid density at the outlet boundary.

On the other hand, the power dissipated in an arbitrary velocity section j is given by E λ j = ∂ v j H f Φ j . From (3.8) we obtain:

Φ j = d f j ∂ v j H f (4.32)
where

d f j = λ j |v j | (ρ j + ρ j+1 ) f V j ≥ 0 (4.33)
Then, the dynamics in the fluid domain can be written as:

v = -R 4 ∂ v H f + ϕ∂ ρ H f -g v 1 2 ṽ2 o + ĥo (4.34) ρ = -ϕ ∂ v H f + g ρ Q m i -ϑv c (4.35) where v = [v 1 • • • v n f ] and ρ = [ρ 1 • • • ρ n f ]
are the sets of velocities and densities in the fluid sections, respectively. Matrices R 4 = R 4 ≥ 0, ϕ, g v , g ρ and ϑ are given by: 

R 4 =        d f 1 0 • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 • • • 0 d f n f        , ϕ = 1 f             1 V1 -1 V2 0 • • • 0 0 1 V2 -1 V3 . . . . . . . . . . . . . . . . . . 0 . . . . . . . . . 1 Vn f -1 -1 Vn f 0 • • • • • • 0 1 Vn f             , g v =        0 . . . 0 1 f        g ρ =       1 V1 0 . . . 0       and ϑ = 1 2              ρ 1 A c1 V1 0 • • • • • • 0 ρ 2 A c1 V2 ρ 2 A c2 V2 . . . . . . . . . 0 . . . . . . . . . . . . . . . . . . ρ n f -1 A c(n f -2) Vn f -1 ρ n f -1 A c(n f -1) Vn f -1 0 0 • • • • • • ρn f A c(n f -1) Vn f ρn f Acn f Vn f              (4.
v = [v 1 • • • v n f ] and ρ = [ρ 1 • • • ρ n f ]
, respectively. Then, the fluid dynamics can be characterized using the following port-Hamiltonian system:

ẋf = (J f -R f ) ∂ x f H f + G f u f (4.37a) y f = G f ∂ x f H f + M f u f (4.37b)
where

x f = [v ρ ] is the state vector, u f = [Q m i ( 1 2 ṽ2 o + ĥo ) v c ] and y f = [( 1 2 ṽ2 i + ĥi ) -Q m o - (F * c )
] denote the inputs and outputs, respectively, and matrices

J f = -J f , R f = R f ≥ 0 and G f
are given by:

J f = 0 ϕ -ϕ 0 , R f = R 4 0 0 0 , G f = 0 -g v 0 g ρ 0 ϑ M f =    0 0 0 0 0 ψ 0 -ψ 0    (4.38) with ψ = [0 • • • 0 ρoAcn f 2 ].
Proof. Note that the power conjugated outputs associated with the inputs Q m i and 1 2 ṽ2 o + ĥo are given by 1 2 ṽ2

i + ĥi and Q m o , respectively. The output at the inlet boundary is approximated using the kinetic energy per unit mass plus relative specific enthalpy of the first density section. Similarly, we define the outlet output as the average mass flow in the velocity section n f minus the mass flow displaced due to the structure motion in the right hand side half volume V n f /2. i.e.,

1 2 ṽ2 i + ĥi = 1 2 ṽ2 1 + ĥ1 = 1 V1 ∂ ρ 1 H f (4.39) Q m o = Q m n f -ρ 0 A cn f 2 v cn f = 1 f ∂ vn f H f -ρ 0 A cn f 2 v cn f (4.40)
Then, the fluid dynamics (4.34)-(4.35) can be rewritten as

v ρ = -R 4 ϕ -ϕ 0 ∂ v H f ∂ ρ H f + 0 g v 0 g ρ 0 -ϑ    Q m i 1 2 ṽ2 o + ĥo v c    (4.41)    1 2 ṽ2 i + ĥi -Q m o -F * c    =    0 g ρ -g v 0 0 -ϑ    ∂ v H f ∂ ρ H f +    0 0 0 0 0 ψ 0 -ψ 0       Q m i 1 2 ṽ2 o + ĥo v c    (4.42) where ψ = [0 • • • 0 ρoAcn f 2
]. Finally, defining matrices J f , R f , G f and M f as in (4.38), we obtain the port-Hamiltonian model (4.37).

Note that, similarly to the fluid model described in Chapter 3, the output forces F * c = F c + F are not the effective forces acting on the fluid-structure contact. The forces F are associated with the volume variation in each section with uniform cross-sectional area. Note that this variation of volume is associated with the changes of height in each section, i.e., F = ∂ q f H f . Then, the set of effective forces acting on the contact surface is given by:

F c = F * c -F = ϑ ∂ ρ H f + ψ 1 2 ṽ2 o + ĥo -∂ q f H f (4.43)
For the j-th velocity section the extra force and the output force are given by Fj

= ∂ q f j H f = A cj 4 (ρ j + ρ j+1 ) v 2 j + A cj 2 (ρ j ūj + ρ j+1 ūj+ ) and F * cj = A cj 2 (p j + pj+1 ) + A cj 4 ρ j ṽ2 j + ρ j+1 ṽ2 j+1 + A cj
2 (ρ j ūj + ρ j+1 ūj+ ). Then, the effective force applied on the contact surface of section j is defined as:

F cj = A cj 4 ρ j ṽ2 j + ρ j+1 ṽ2 j+1 -(ρ j + ρ j+1 ) v 2 j + A cj 2 (p j + pj+1 ) (4.44)
In the next section, we will see that these extra forces are compensated through a powerpreserving interconnection.

Fluid-Structure power-preserving interconnection

From Assumption 4.1 we obtain two conditions for the transverse velocity in each fluid section with uniform cross-sectional area, v j | ξ=q f j = v cj and v j | ξ=0 = 0, and as a consequence v cj →0 when q f j → 0. This behavior is undesirable in applications such as glottis modeling, where the vocal folds collide at speed greater than 0, i.e, v cj = 0 when the collision occur during the vocal folds vibrating cycle. To obtain this behavior, we consider the approach proposed in [START_REF] Mora | A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds[END_REF], using switching variables to enable or disable the power transfer between the fluid and the structure. We consider a threshold value , such that, the fluid dynamics in V j and its effect on the mechanical structure are disabled when q f j < . As a consequence, we define a switching matrix S = S T as:

S =     s 1 • • • 0 . . . . . . . . . 0 • • • s n f     (4.45)
where

s j =    1, q f j > 0, q f j ≤ (4.46)
The power transfer between the fluid and the structure systems is given by u T s y s = v c T F c . We define a matrix C, with elements 0 and 1, as shown in Section 3.3, that maps the output and input vectors of the mechanical model of the vocal folds to the corresponding velocities and forces of the fluid model, i.e., S Cy s = v c and C T S T F c = u s . The following power preserving interconnection rule to couple the fluid and structure models is used:

v c u s = 0 S C -C S 0 -F c y s (4.47)
In this rule, matrix C defines the interconnections between the fluid and the mechanical sub-systems, and matrix S enables or disables the fluid-structure power transfer according to the switching variables s j , ∀j ∈ {1, . . . , n f }.

Consider the general mass-spring-damper model (3.43) to describe the structure motion with total stored energy H s . Including S in the fluid equations to enable and disable the dynamics in each fluid section according to s j and using the interconnection (4.47), we can write the fluid-structure dynamics as:

qs = -∂ πs H s (4.48a) πs = -∂ q s H s -R∂ πs H s + C S F c (4.48b) v = -S R 4 ∂ v H f + S ϕ∂ ρ H f -S g v 1 2 ṽ2 o + ĥo (4.48c) ρ = -ϕ S ∂ v H f + g ρ Q m i -ϑS Cy s (4.48d)
Note that the term g ρ Q m i is not switched. This is given by the fact that the inlet mass flow enters through the left hand side half volume V 0 /2 and this section have a motionless wall (see Figure 4.1).

From a computational point of view, when the dynamics of a velocity section or a density section are disabled by the switch variables, the corresponding velocity or density state variable is set to 0 or ρ 0 , respectively. This strategy is equivalent to the method proposed in [START_REF] Švancara | FE Modelling of the Fluid-Structure-Acoustic Interaction for the Vocal Folds Self-Oscillation[END_REF] for a finite-element model of the glottis. Proposition 4.3. Consider the fluid-structure system (4.48). Denoting by H f s = H f + H s the total stored energy, this system can be expressed as the following port-Hamiltonian system:

ẋfs = (J f s -R f s )∂ x f s H f s + G f s u f s (4.49a) y f s = G f s ∂ x f s H f s (4.49b
)

where x f s = [q s π s v ρ ] is the state vector, u f s = [Q m i 1 2 ṽ2 o + ĥo ] and y f s = [ 1 2 ṽ2 i + ĥi - Q m o ]
are the inputs and outputs, respectively, at the inlet and outlet fluid boundaries, with the matrices J f s = -J f s , R f s = R f s ≥ 0 and G f s given by:

J f s =       0 I 0 0 -I 0 0 (ϑS C) 0 0 0 S ϕ 0 ϑS C 0 -(S ϕ)       , R f s =      0 0 0 0 0 R 0 0 0 0 S R 4 0 0 0 0 0      and 
G f s =       0 0 0 (ψS C) 0 -S g v g ρ 0       (4.50)
Proof. Considering y s = ∂ πs H s and (4.43), the fluid-structure dynamics (4.48) can be rewritten as:

qs = ∂ πs H s πs = -∂ q s H s -R∂ πs H s + C S ϑ ∂ ρ H f + C S ψ 1 2 ṽ2 o + ĥo -C S ∂ q f H f v = -S R 4 ∂ v H f + S ϕ∂ ρ H f -S g v 1 2 ṽ2 o + ĥo ρ = -ϕ S ∂ v H f + g ρ Q m i -ϑS C∂ πs H s
The variation of fluid section heights induced by the motion of the structure is given by the following relationship q f = q 0 + Cq s where q 0 is the set of velocity section heights at the equilibrium point at reference pressure p 0 , and C maps the displacement of the structure masses to the variation of fluid section heights. This relationship leads to:

∂ q s H f = C S ∂ q f H f (4.52)
where S is used to enable and disable the corresponding fluid dynamics when the section heights cross the threshold value . Then, defining H f s = H f + H s the fluid-structure dynamics can be expressed as:

     qs πs v ρ      =      0 I 0 0 -I -R 0 (ϑS C) 0 0 -S R 4 S ϕ 0 -ϑS C -(S ϕ) 0           ∂ q s H f s ∂ πs H f s ∂ v H f s ∂ ρ H f s      +      0 0 0 (ψS C) 0 -S g v g ρ 0      Q m i 1 2 ṽ2 o + ĥo 1 2 ṽ2 i + ĥi -Q m o = 0 0 0 g ρ 0 ψS C -(S g v ) 0      ∂ q s H f s ∂ πs H f s ∂ v H f s ∂ ρ H f s     
Finally, defining the matrices J f s , R f s and G f s as in (4.50), we obtain the fluid-structure port-Hamiltonian formulation (4.49). We consider the vibrating cycle induced by the fluid-structure interaction between the intraglottal airflow and the vocal folds [START_REF] Mora | Energy-based fluid-structure model of the vocal folds[END_REF], as shown in Figure 4.3. We use the well-know body-cover model [START_REF] Story | Voice simulation with a body-cover model of the vocal folds[END_REF] to describe the vocal folds motion. The port-Hamiltonian formulation of this system has been presented in Section 2.2. Assuming a symmetrical behavior of the vocal folds, we only consider a hemi-larynx. The state variables of the structure model are q s = [q 1 q 2 q 3 ] and π s = [π s1 π s2 π s3 ] , and the structure parameters are given in Table 4.1.

Applying the proposed discrete modeling of the fluid, we divide the fluid domain in n f = 38 sections with uniform cross-sectional area and length f = 1.5 × 10 -3 m. The glottal tract can be modeled as shown in Figure 4.4, with 14 sections in the subglottal part, 12 sections in the supraglottal part of the glottis, and 6 sections under each cover mass. The heights of each section are initialized as follows:

m 1 = 1 × 10 -5 Kg m 2 = 1 × 10 -5 Kg m 3 = 5 × 10 -5 Kg ζ j = 0.4, j ∈ {1, 2, 3} ζ col j = 0.4, j ∈ {1, 2} ζ col 3 = 0 k 1 = 5N/m k 2 = 3.5N/m k 3 = 100N/m k c1 = 15N/m k c2 = 10.5N/m k 12 = 2N/m η j = 10 6 m -2 i ∈ {1, 2, 3} η cj = 5 × 10 6 m -2 i ∈ {1, 2} q 0 s1 = 1.8 × 10 -4 m q 0 s2 = 1.79 × 10 -4 m q 0 s3 = 3 × 10 -3 m Fluid parameters at 36 • C ρ 0 = 1.142Kg/m γ = 1.4 c = 352 m/s = 1.8 × 10 -5 m L = 1 × 10 -2 m = 2.5 × 10 -4 m n = 38
q j0 =                  2.5 × 10 -2 m, 1 ≤ j ≤ 3 [2.5 -0.2(j -3)] × 10 -2 m, 4 ≤ j ≤ 14 1.8 × 10 -4 m, 15 ≤ j ≤ 20 1.79 × 10 -4 m, 21 ≤ j ≤ 26 2.5 × 10 -2 m, 27 ≤ j ≤ 38 (4.53)
To describe the viscous dissipation of the fluid we define the friction loss factor as:

λ f j = 16 Re (4.54)
where Re =

q f j |v j | µ ρ j +ρ j+1 2
is the Reynolds number in each velocity section of the glottis [START_REF] Alipour | A finite-element model of vocal-fold vibration[END_REF]. Considering a motionless wall in the subglottal and supraglottal sections, and that only masses m 1 and m 2 are in contact with the fluid, we define the interconnection matrix C as:

C =      0 14×1 0 14×1 0 14×1 1 6×1 0 6×1 0 6×1 0 6×1 1 6×1 0 6×1 0 12×1 0 12×1 0 12×1      (4.55)
where 1 6×1 = 1 1 1 1 1 1 . Note that, given the definition of q j0 and C we obtain that Proposed Model q s1 q s2 q s3

s 1 = • • • = s 14 = 1, s 27 = • • • = s 38 = 1, s 15 = • • • = s
Figure 4.5 -Displacement of the masses of the vocal folds mechanical structure, q sj = q j + q 0 sj . Solid line is the body mass displacement (m 3 in Figure 4.4), dashed and dash-dotted lines are the displacements of upper and lower cover masses, respectively (m 2 and m 1 in Figure 4.4, respectively). Proposed Model Simulations are performed in Matlab using the solver ODE23tb with an event location function to update the switch variables. To evaluate the results we use as reference the body-cover (BC95) model [START_REF] Story | Voice simulation with a body-cover model of the vocal folds[END_REF] and the port-Hamiltonian fluid-structure model (PH18) proposed in [START_REF] Mora | A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds[END_REF].

∆ c1 ∆ c2
The movement of each mass for BC95, PH18 and the proposed model is shown in Figure 4.5. It can be noticed that in the proposed model the masses exhibit oscillations with a fundamental frequency of 129.1 Hz, in contrast with the 127.5 Hz and 139.9 Hz of the BC95 and PH18 models, respectively. The fluid-structure model PH18 presents a displacement almost parallel for the contact masses of the vocal folds, lower mass displacement q 1 (dash-dot-dotted) and upper mass displacement q 2 (dashed line), respectively), increasing the oscillation amplitude of q 2 . In contrast, for the proposed model the movement of the contact masses shows a difference in amplitude and phase between the oscillations of q 1 and q 2 , in correspondence with the wave propagation through the vocal folds structure, obtaining similar oscillations with the BC95 model.

In lumped parameter models of the vocal folds, a collision occurs when the contact masses cross the corresponding collision planes. In this thesis, given the hemi-larynx assumption, the collision plane for the contact masses is the midsagittal plane. The deformation of the vocal folds given by the elastic collision is proportional to the overlapping, ∆ cj , j ∈ {1, 2}, of the cover masses, as shown in Figure 4.6. Note that the magnitude of the tissue deformation for the PH18 model is around 2 times the one for the BC95 model. The tissue deformation in the upper section of the vocal folds (solid line) is greater than the deformation in the lower section (dash-dot-dotted line) for the PH18 model, i.e., the impact stress is minor in the lower section of the vocal folds. On the contrary, in the proposed model the tissue deformation and impact stress is more important in the lower section of the vocal folds. This behavior is similar to one obtained with other lumped-parameter models [START_REF] Ishizaka | Synthesis of Voiced Sounds From a Two-Mass Model of the Vocal Cords[END_REF][START_REF] Steinecke | Bifurcations in an asymmetric vocal-fold model[END_REF] and is consistent with the finite-element study presented in [110].

To compare the behavior of the airflow for the different models, we analyze the output flows in Figure 4.7. In general, the maximum flow in the vibration cycle occurs when the maximum opening of the glottal tract is achieved. For the PH18 model case this happens in the first quarter of the cycle, whereas for the BC95 and our model, the maximum flow occurs in the middle of the cycle. However, the output flow of the proposed model shows a soft increase in the glottis opening with a fast decline when the vocal fold is closing. This shape of the output flow is consistent with the results reported in [93, Figure 7]. Figure 4.8 shows the pressure distribution in the fluid for 3 time instants of the vibration cycle: 2 instants with a convergent shape of the vocal folds and 1 instant with a divergent shape. The pressure distributions obtained are consistent with the results of the DNN flow model proposed in [START_REF] Zhang | A Deep Neural Network Based Glottal Flow Model for Predicting Fluid-Structure Interactions during Voice Production[END_REF].

Similarly, Figure 4.9 shows the behavior of kinetic and potential energies of the mechanical part of the vocal folds, K s and P s respectively, and the energies of the fluid, K f and Ūf , during one vibrating cycle. Note that for the PH18 model, most of the energy is stored in the mechanical system. The opposite situation occurs for the BC95 model. The proposed model presents an intermediate behavior between PH18 and BC95. Note that in the proposed model the maximum of the potential energy occurs in the maximum opening of mass m 1 and not in the maximum opening of the glottis as it is for the PH18 model. The potential energy decreases when the glottis is closing and increases slightly again when the glottis is completely closed. This latter is due to the energy stored during the elastic collision of the vocal folds. Regarding the fluid energy, it is important to note that the potential energy of the proposed model is negligible with respect to the kinetic energy. Regarding the fluid-structure energy transfer, it has been evaluated per cycle, i.e., Tcy u s y s dt = Tcy F v c dt where T cy is the vibrating cycle period, obtaining a total of 20.2µJ for the proposed model, in contrast with the 16.78µJ and 11.28µJ for the BC95 and PH18 models. It is well known that the BC95 model describes appropriately the experimental results on the wave propagation of the real vocal folds motion and the volumetric airflow in the supraglottal section of the glottal tract. However, given the assumptions on the airflow (static and uniform flow), the energy transfers between the fluid and the mechanical parts of the model are not completely described. The effects of the closing of the vocal folds on the output airflow are neglected. The proposed model solves this drawback, keeping the advantages on the mechanical motion of the vocal folds. Additionally, the scalability of the proposed model is a clear advantage over the PH18 model.

Conclusion

In this chapter a scalable finite-dimensional port-Hamiltonian model for compressible fluids has been proposed. Similarly, a power-preserving interconnection based on a switching matrix S is proposed for a fluid-structure coupling. This switched interconnection allows to obtain an appropriate description of structure collisions in systems such as the vocal folds. This switching matrix S is also used to enable and disable the fluid dynamics in the corresponding areas of the fluid domain when the structure collides, avoiding the singularity problem in the fluid model. As simulation example we considered the FSI between the vocal folds and the intraglottal airflow. In this sense the well-known body-cover model is used to describe the structure motion. The results obtained show that the proposed scalable port-Hamiltonian model is able to replicate the oscillations and the collisions between the vocal folds. Moreover, the amplitude of masses movements and the airflow velocity are consistent with previous lumped-parameters models and real data. Similarly, the energy transfer estimated with the proposed model is greater than the predicted with other finite-dimensional models of the vocal folds.

In the previous chapters, some scalable finite-dimensional models based on the port-Hamiltonian framework have been proposed to describe the FSI in a longitudinal domain. These models in conjoint with power-preserving methods proposed, provide us of a simplified but appropriate description of a longitudinal fluid interacting with a structure with transverse motion, as shown in Sections 3.4 and 4.4. However, for a more detailed description of the fluid dynamics and the structure motion, it is necessary a more suitable modeling of the FSI system. In this sense, as a first step in this direction, an infinite-dimensional modeling of the fluid dynamics, based on the port-Hamiltonian approach, is presented in the next chapter.

Chapter 5

Infinite-dimensional port-Hamiltonian Formulation of compressible Fluids

To obtain a more detailed description of a FSI system that the achieved with finite-dimensional models presented in the previous chapters, it is necessary an infinite-dimensional formulation.

Then, as a first step, in this chapter we present infinite-dimensional models based on the port-Hamiltonian framework for Newtonian fluids. In this sense, in the following section, we consider a constant infinite dimensional domain Ω ⊂ X × Y × Z, with spatial variables ζ ∈ X, ξ ∈ Y and z ∈ Z and boundary ∂Ω.

There exist numerous energy-based models of compressible fluids in the literature, ranging from simple 1D formulations of isentropic fluids [START_REF] Macchelli | Boundary Energy-Shaping Control of an Ideal Compressible Isentropic Fluid in 1-D[END_REF][START_REF] Kotyczka | Discretized models for networks of distributed parameter port-Hamiltonian systems[END_REF] to more complex thermodynamic reactive flows [START_REF] Altmann | A port-Hamiltonian formulation of the Navier-Stokes equations for reactive flows[END_REF], 3D inviscid fluids [START_REF]Hamiltonian formulation of distributed-parameter systems with boundary energy flow[END_REF] and irrotational flows [START_REF] Matignon | A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems[END_REF]. However, these models are constrained to one fluid class, given the assumptions used in each case.

Contribution

In this chapter general pseudo and a dissipative port-Hamiltonian formulations for 3D compressible fluids under non-isentropic and isentropic assumptions are presented. The considerations on the model structures and operators for 2D and 1D fluids are analyzed. Finally, we propose a model for 1D non-reactive fluids using the irreversible port-Hamiltonian approach.

In this chapter, we consider the state variables as functions on a spatial domain Ω, i.e., x = x(ζ, ξ, z, t) ∈ L 2 (Ω, R n ). For simplicity of notation, we make the time and space dependences of the variables implicit, we use a bold notation for vector and tensor functions, and capital letters for matrices. The reader is invited to refer to the Notation Section at the beginning of this thesis for details.

In the next sections, general energy-based models of 3D compressible fluids are developed using the port-Hamiltonian framework, i.e., the fluid dynamics will be described by the following PDE:

∂ t x = J δ x H (5.1)
where H denotes the total energy of the fluid and J is a Hamiltonian operator (see Definition 1.2). In the case that J is a skew-symmetric operator that does not satisfy the Jacobi identity, the system (5.1) is called pseudo port-Hamiltonian formulation. Similarly, in a dissipative port-Hamiltonian, the fluid dynamics are expressed as follows:

∂ t x = J δ x H -G * SGδ x H (5.2)
where G * is the adjoint operator of G, and S > 0 (see Section 1.2.2 for details).

Non-isentropic fluids

In this section, we study the description of non-isentropic Newtonian fluids. We focus in the description of the thermal domain, specifically, in the second law of Thermodynamics. In this sense, the entropy (per unit mass) will be considered as a state variable. Entropy variations imply changes in the temperature that, at the same time, affect the fluid pressure, as shown by the ideal gas law (4.3). As a consequence, the velocity field of the fluid will be affected by the entropy. We use the port-Hamiltonian framework to describe these phenomena in the fluid dynamics. For simplicity, only nonreactive fluids are considered.

Governing equations

For non-isentropic fluids, the governing equations are given by the continuity, motion and change of internal energy equations [START_REF] Bird | Introductory transport phenomena[END_REF] associated with the fluid density ρ

= ρ(ζ, ξ, z, t) ∈ L 2 (Ω, R), velocity field v = v(ζ, ξ, z, t) ∈ L 2 (Ω, R 3 ) and internal energy per unit mass u = u(ζ, ξ, z, t) ∈ L 2 (Ω, R)
, respectively, given by:

∂ t ρ = -div ρv (5.3a) ρ∂ t v = -ρ (v • grad ) v -grad p -div τ (5.3b) ∂ t u = -v • grad u - 1 ρ div f T - p ρ div v - 1 ρ τ : grad v (5.3c) 
where τ = τ (ζ, ξ, z, t) ∈ L 2 (Ω, R 3×3 ) is the Newtonian viscosity tensor (4.2) and

f T = f T (ζ, ξ, z, t) ∈ L 2 (Ω, R 3×3
) is the heat flux defined as:

f T = -Kgrad T (5.4)
where T = T (ζ, ξ, z, t) ∈ L 2 (Ω, R) denotes the temperature and K is the thermal conductivity matrix [START_REF] Öttinger | Beyond Equilibrium Thermodynamics[END_REF]. We denote by ω = curl v ∈ L 2 (Ω, R 3 ) the fluid vorticity that describes the tendency of the flow to rotate. Note that using the identity (A.1) the term (v • grad ) v in (5.3b), can be rewritten as (v • grad ) v=grad 1 2 v • v + ω × v, where the term ω × v, from the point of view of energy, describes the power exchange between the velocity field components. This power exchange due to the fluid rotation can be described using a skew-symmetric matrix called Gyroscope [START_REF] Mora | About dissipative and pseudo Port-Hamiltonian Formulations of irreversible Newtonian Compressible Flows[END_REF][START_REF] Cardoso-Ribeiro | Port-Hamiltonian modeling and control of a fluid-structure system : Application to sloshing phenomena in a moving container coupled to a flexible structure[END_REF] defined as follows: Definition 5.1. Let ω = ω 1 ω 2 ω 3 be the vorticity vector of the fluid. We define the fluid Gyroscope as a skew-symmetric matrix G ω , such that G ω v = ω × v. For 3D fluids, the Gyroscope is given by:

G ω =    0 -ω 3 ω 2 ω 3 0 -ω 1 -ω 2 ω 1 0    (5.5) 
On the other hand, we use the specific form of the Gibbs equation to describe the variation of internal energy due to the variations of the fluid density and the entropy per unit mass,

s = s(ζ, ξ, z, t) ∈ L 2 (Ω, R), i.e., du = -pd 1 ρ + T ds (5.6)
This implies that the thermodynamic equilibrium is given by:

T D t s = D t u - p ρ 2 D t ρ (5.7)
where the material derivative D t is defined as

D t = ∂ t + (v • grad ) .
Considering the relationship grad p ρ = 1 ρ grad p + pgrad 1 ρ and the specific enthalpy definition (4.7), we obtain that 1 ρ grad p = grad h -T grad s, where the term T grad s describes the effect of the entropy variations (non-isentropic assumption) in the fluid pressure. Using the thermodynamic equilibrium (5.7) the governing equations of non-isentropic fluids can be expressed as:

∂ t ρ = -div ρv (5.8a) ∂ t v = -grad 1 2 v • v + h -G ω v + T grad s - 1 ρ div τ (5.8b) ∂ t s = -v • grad s - τ ρT : Grad v - f s ρT • grad T - 1 ρ div f s ( 5.8c) 
where f s = -K T grad T is the entropy flux by heat conduction [START_REF] Bird | Introductory transport phenomena[END_REF]. Note that the irreversible entropy production, i.e., second law of Thermodynamics, is given by the following non-negative condition [START_REF] Öttinger | Beyond Equilibrium Thermodynamics[END_REF]:

- 1 ρT τ : Grad v - f s ρT • grad T ≥ 0 (5.9)
where -1 ρT τ : Grad v is the rate of entropy production associated with the dissipation of kinetic energy into heat by viscosity friction, andf s ρT • grad T is the rate of entropy production due to heat flux.

Pseudo port-Hamiltonian formulation

We denote by x = [ρ v s] the set of state variables for a non-isentropic fluid. Considering that the specific internal energy is a function of the fluid density and the specific entropy, as stated by the Gibbs equation (5.6), the total energy of the fluid described in (5.8) is given by:

H = Ω 1 2 ρv • v + ρu (ρ, s) dΩ (5.10)
The fluid efforts are given by the variational derivative of the energy, namely

δ x H =    δ ρ H δ v H δ s H    =    1 2 v • v + h ρv ρT    (5.11) 
Using (5.11), the fluid dynamics in (5.8) can be related with the energy through the fluid efforts, i.e.,

∂ t ρ = -div δ v H (5.12a) ∂ t v = -grad δ ρ H - 1 ρ G ω δ v H + δ s H ρ grad s - 1 ρ div τ δ s H ρ (5.12b) ∂ t s = - δ v H ρ • grad s - τ ρT : Grad δ v H ρ + 1 ρT grad δ s H ρ 2 K T + 1 ρ div K T grad δ s H ρ (5.12c)
The operators and the corresponding adjoints that describe the power exchanges between the fluid component are defined in the following Lemmas. 

* p (•) = [grad s] • • ρ .
Proof. Consider the inner product 

δ v H, D p δ s H Ω = Ω δ v H • D p δ s HdΩ = Ω δ v H • [grad s] δ s H ρ dΩ = Ω δ v H ρ • [grad s] δ s HdΩ = Ω [grad s] • δ v H ρ δ v HdΩ Defining D * p (•) = [grad s] • • ρ we obtain that δ v H, D p δ s H Ω = D * p δ v H,
* τ (•) = τ ρT : Grad • ρ , such that δ v H, D τ δ s H Ω -D * τ δ v H, δ s H Ω = - ∂Ω [τ • n] • δ v H ρ ∂Ω (5.13)
Proof. Consider the inner product

δ v H, D τ δ s H Ω = Ω δ v H • [D τ δ s H] dΩ = - Ω δ v H • 1 ρ div τ δ s H ρT dΩ
Using the property (A.10) considering σ = τ δsH ρT and u = δvH ρ , the inner product in the previous equation can be rewritten as:

δ v H, D τ δ s H Ω = Ω δ s H τ ρT : Grad δ v H ρ dΩ - ∂Ω δ v H ρ • τ δ s H ρT • n ∂Ω = Ω τ ρT : Grad • ρ δ v H δ s HdΩ - ∂Ω δ v H ρ • τ δ s H ρT • n ∂Ω = D * τ δ v H, δ s H Ω - ∂Ω δ v H ρ • τ δ s H ρT • n ∂Ω Considering boundary conditions equal to 0, δ v H, D τ δ s H Ω = D * τ δ v H, δ s H Ω , i.e.
, D * τ is the formal adjoint of D τ . Finally, from (5.11), δsH ρT = 1, i.e., operators D τ and D * τ implicitly contain the effort associated with the fluid entropy, obtaining the relationship (5.13).

Lemma 5.3. Let D T be a differential operator defined as

D T = Q T -R T (5.14)
where

Q T (•) = 1 ρT grad • ρ 2 S T
describes the entropy production associated with the heat flux, such that Q T δ s H ≥ 0, ∀δ s H; and R T = G * T S T G T describes the entropy diffusion, where the operator

G * T (•) = 1 ρ div (•) is the formal adjoint of G T (•) = -grad • ρ and S T = K/T ≥ 0.
Then, the entropy rate of change due to the heat flux can be expressed as:

- 1 ρT div f T = D T δ s H (5.15) 
satisfying

δ s H, D T δ s H Ω = - ∂Ω δ s H ρ (f s • n) ∂Ω (5.16) Proof. Note that 1 ρT div f T = f s ρT • grad T + 1 ρ div f s . Defining S T = K/T we obtain: - f s ρT grad T = 1 ρT grad δ s H ρ 2 S T and - 1 ρ div f s = 1 ρ div S T grad δ s H ρ
Given that the divergence is the formal adjoint of minus the gradient, it is easy to verify that G * T = 1 ρ div is the formal adjoint of G T = -grad • ρ . Then, the entropy rate of change due to the heat flux can be expressed as

- 1 ρT div f T = (Q T -R T ) δ s H = D T δ s H
The inner product on the left hand side of (5.16) can be expressed as:

δ s H, D T δ s H Ω = Ω   δ s H ρT grad δ s H ρ 2 S T + δ s H ρ div S T grad δ s H ρ   dΩ = - Ω f s • grad δ s H ρ + δ s H ρ div f s dΩ = - Ω div δ s H ρ f s dΩ
Finally, using (A.8) we obtain (5.16).

Notice that the operator D T has been separated in 2 parts, Q T and R T , in order to describe the physical phenomena, entropy production and diffusion, associated with the entropy flux. Such that, the non-negative condition (5.9) associated with the irreversible entropy production can be expressed as:

-D * τ δ v H + Q T δ s H ≥ 0 (5.17)
However, as shown in Section 5.4, the temperature in a ideal gas is a function of the specific entropy and the fluid density, T = T (ρ, s). Then, defining α(x) ∈ L 2 (Ω, R) and

F (x) ∈ L 2 (Ω, R 3 ) as α(x) = 1
ρ and F (x) = K ρT 2 (ρ,s) grad T (ρ, s), respectively, the operator D T can be rewritten as:

D T δ s H = F (x)grad (α(x)δ s H) + α(x)div (F (x)δ s H) .
(

This implies that, according Theorem A.6, the operator D T is formally skew-adjoint. Thus, using Lemmas 5.1-5.3, the governing equations for non-isentropic fluids can be expressed as an energy-based model, as shown in the next proposition Proposition 5.1. Consider a non-isentropic Newtonian compressible fluid, whose total energy is described by (5.10). Then, the governing equations in (5.8) can be expressed as the pseudo infinite-dimensional port-Hamiltonian system

∂ t x = J δ x H (5.19) 
where x = [ρ v s] is the state vector, δ x H denotes the effort vector of the fluid, and J is an formal skew-symmetric operator defined as:

J =    0 -div 0 -grad 1 ρ G ω D p + D τ 0 -D * p -D * τ D T    (5.20) satisfying Ḣ = f ∂ , e ∂ Ω (5.21) 
where f ∂ , e ∂ Ω denotes the power supplied through the boundary ∂Ω, and the boundary flows f ∂ and efforts e ∂ are given by

f ∂ =    -(ρv • n) | ∂Ω -v| ∂Ω -(f s • n) | ∂Ω    and e ∂ =     1 2 v • v + h ∂Ω (τ • n) | ∂Ω T | ∂Ω     (5.22)
The time derivative of the total entropy of the fluid, S = Ω ρsdΩ, is

Ṡ = Ω σ s dΩ ≥ 0 (5.23)
for boundary conditions equal to 0, which is in correspondence with the second law of Thermodynamics.

Proof. The governing equations (5.8) can be rewritten as function of the fluid efforts (5.11), as shown in (5.12). Using the operators defined in Lemmas 5.2 and 5.3 we obtain

   ∂ t ρ ∂ t v ∂ t s    =    0 -div 0 -grad 1 ρ G ω D p + D τ 0 -D * p -D * τ Q T -R T       δ ρ H δ v H δ s H   
where the entropy production is given by the operators D * τ and Q T , as shown in (5.17). From (5.14) and (5.18) we define J as in (5.20) and the state x = [ρ v s] , obtaining the system (5.19).

The energy balance for this system is given by:

Ḣ = δ x H, J δ x H Ω = Ω δ x H • J δ x HdΩ = -δ ρ H, div δ v H Ω -δ v H, grad δ ρ H Ω + δ v H, D τ δ s H Ω -δ s H, D * τ δ v H Ω + δ s H, D T δ s H Ω - Ω δ v H • 1 ρ G ω δ v HdΩ
Note that, given the skew-symmetric property of the Gyroscope, we have that

δ v H • 1 ρ G ω δ v H = 0.
Then, using Lemmas 5.2 and 5.3, and Theorem A.2, the energy balance can be expressed as

Ḣ = ∂Ω δ ρ H (-δ v H • n) + [τ • n] • δ v H ρ + δ s H ρ (f s • n) ∂Ω
Substituting the fluid efforts (5.11), and the boundary flows and efforts in (5.22), we obtain the energy balance (5.21).

Note that the variational derivate of the total entropy S is given by δ x S = s 0 ρ , hence

Ṡ = Ω δ x S∂ t xdΩ = Ω δ x SJ δ x HdΩ = - Ω sdiv δ v H + ρD * p δ v H + ρG * T S T G T δ s H dΩ + Ω ρ (Q T δ s H -D * τ δ v H) dΩ = Ω σ s dΩ - Ω (s (div δ v H) + δ v H • grad s + div f s ) dΩ where σ s = ρ (Q T δ s H -D * τ δ v H
) denotes the density of irreversible entropy production. Using the Theorem A.2 we obtain

Ṡ = Ω σ s dΩ - ∂Ω [sδ v H + f s ] • n∂Ω
Finally, assuming that the system is isolated, i.e., ∂Ω [sδ v H + f s ] • n∂Ω = 0, and given the non-negative condition (5.17), then, the density of irreversible entropy production satisfies the inequality σ s ≥ 0, obtaining (5.23). 

     ∂ t ρ ∂ t v ∂ t s f d      =       0 -div 0 0 -grad 1 ρ G ω D τ 0 0 -D * τ Q T -G * T 0 0 G T 0            δ ρ H δ v H δ s H e d      (5.24) 
where e d = -f s denotes the entropy flux.

Similarly, an alternative to define the boundary conditions is to consider the normal and tangential contributions of the viscous tensor. We denote by Γ, the tangential plane to the boundary surface ∂Ω, as shown in Figure 5.1. Considering the pair of orthogonal unitary vectors (s 1 , s 2 ) ∈ Γ, i.e.,

n • s 1 = n • s 2 = s 1 • s 2 = 0 (5.25)
the velocity field can be expressed as

v = v ⊥ + v where v ⊥ = (v • n) n denotes the normal projection and v = -n × [n × v] = (v • s 1 )s 1 + (v • s 2 )s 2
, for any (s 1 , s 2 ) ∈ Γ that satisfies (5.25), is the tangential projection of v. Then, given that [τ • n] • v = τ : vn and using the normal and tangential formulation of v, the boundary conditions defined on the right hand side of (5.13) can be rewritten as:

-

∂Ω [τ • n] • δ v H ρ ∂Ω = - ∂Ω (ν n τ n + ν s 1 τ s 1 + ν s 2 τ s 2 ) ∂Ω (5.26)
where

ν n = δvH ρ • n = v • n ν s 1 = δvH ρ • s 1 = v • s 1 ν s 2 = δvH ρ • s 2 = v • s 2 and τ n = τ : nn τ s 1 = τ : s 1 n τ s 2 = τ : s 2 n (5.27)
are the normal and tangential contributions of the velocity field, and the viscous tensor, respectively. Thus, the boundary ports variables can be rewritten as:

f ∂ =         -(ρv • n) | ∂Ω -ν n | ∂Ω -ν s 1 | ∂Ω -ν s 2 | ∂Ω -(f s • n) | ∂Ω         e ∂ =         1 2 v • v + h ∂Ω τ n | ∂Ω τ s 1 | ∂Ω τ s 2 | ∂Ω T | ∂Ω         (5.28)
Additionally, another point to highlight is the fact that, under an inviscid assumption, the term 1 ρ div τ ρT • in the operator D τ and the term τ ρT : Grad • ρ in the operator D * τ are equal to 0. Then, the non-negative condition (5.17) of entropy production is only due to the heat flux of the fluid, i.e., σ s = Q T δ s H ≥ 0.

Isentropic fluids

In this section we consider that the heat production given by the dissipation of kinetic energy into heat by viscous friction and the temperature diffusion generate small and smooth variations in the fluid temperature. This implies that the entropy production by these phenomena is sufficiently small such that the specific entropy s advects with the flow, i.e., ∂ t s = -v • grad s. If s is initially uniform throughout the fluid, then s will remain constant and the entropy balance in (5.12) can be neglected. This justifies the use of the isentropic equations for small disturbances in the fluid variables [START_REF] Leveque | Finite Volume Methods for Hyperbolic Problems[END_REF]. Additionally, if the viscous effects in the velocity field are negligible, the fluid can be considered as a reversible process, as shown in [START_REF]Hamiltonian formulation of distributed-parameter systems with boundary energy flow[END_REF]. However, if it is necessary to consider the viscous friction, the process is irreversible and the divergence of the viscous tensor can be considered as a dissipative term, as shown in [START_REF] Matignon | A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems[END_REF] for fluids with irrotational flow. In this section, we present a general dissipative port-Hamiltonian formulation for isentropic compressible fluids.

Governing equations

Given the isentropic assumption, the Gibbs equation that describes the changes of the specific internal energy is reduced to

du = -pd 1 ρ (5.29)
Similarly, the entropy dynamic in (5.8) is neglected. Then, the governing equations for isentropic fluids are given by: ∂ t ρ = -div ρv (5.30a)

∂ t v = -grad 1 2 v • v + h -G ω v - 1 ρ div τ (5.30b)
In this case, the model does not have the power exchange between the velocity field and the specific entropy, described in (5.19) by the adjoint operators D τ and D * τ . The conversion of kinetic energy into heat by viscous friction is now considered as a power dissipation. In this sense the term 1 ρ div τ can be expressed as a dissipative element [START_REF] Villegas | Boundary control for a class of dissipative differential operators including diffusion systems[END_REF], as shown in the following lemma. 

(•) = 1 ρ curl (•) and G * c (•) = -1 ρ grad (•).
Then, the rate of change of the velocity associated with the viscous tensor, 1 ρ div τ , can be expressed as a dissipative port-Hamiltonian term associated with the velocity effort, namely,

1 ρ div τ = G * τ S τ G τ [ρv] (5.31) 
where

G * τ = G * r G * c , S τ = µI 0 0 μ ≥ 0 and G τ = G r G c , with μ = 4 3 µ + κ.
Proof. Consider the viscosity tensor (4.2). Applying the identities (A.4)-(A.6) we obtain

1 ρ div τ = 1 ρ div -µ Grad v + [Grad v] + 1 ρ div 2 3 µ -κ (div v) I = 1 ρ curl [µcurl v] - 1 ρ grad 4 3 µ + κ div v
Note that G * r = 1 ρ curl is the formal adjoint of G r = curl • ρ , as shown in Theorem A.4, and

G * c = -1 ρ grad is the adjoint of G c = div • ρ .
The divergence of the fluid viscosity tensor can be expressed as the sum of two dissipative terms, namely:

1 ρ div τ = G * r µG r [ρv] + G * c μG c [ρv] (5.32)
where G * r µG r [ρv] denotes the energy dissipation by the fluid rotation and G * c μG c [ρv] the describes the energy dissipation by fluid compression. Finally, rearranging terms, we obtain (5.31) Applying Lemma 5.4 the governing equations (5.30) can be expressed as:

∂ t ρ = -div ρv (5.33a) ∂ t v = -grad 1 2 v • v + h -G ω v -G * τ S τ G τ [ρv] (5.33b)
Notice that, from the viscous tensor, the fluid energy losses are given by two different phenomena: the friction between streamlines when the flow rotates and the friction between fluid particles when the fluid expands or compresses. These losses are zero under irrotational and incompressible assumptions, respectively. In some applications such as pipelines, the fluid is modeled as a 1D incompressible flow. In this case, from Lemma 5.4, this system does not have energy dissipation. However, given the roughness of the internal surface of the pipe, the fluid has an energy dissipation due to the friction of the flow with the pipe wall. To model this dissipation source, a term of the form λ 2D ρ|v|v is added ad-hoc to the momentum balance, where D is the pipe diameter, λ is a loss factor and v is the flow velocity [START_REF] Kowalczuk | Improved model of isothermal and incompressible fluid flow in pipelines versus the Darcy-Weisbach equation and the issue of friction factor[END_REF][START_REF] Hauge | Model Based Pipeline Monitoring with Leak Detection[END_REF].

Dissipative port-Hamiltonian formulation

For isentropic fluids, the specific internal energy depends only of the fluid density, as shown in (5.29). Then, the total energy is given by:

H = Ω 1 2 ρv • v + ρu(ρ) dΩ (5.34)
and the fluid efforts are 

δ ρ H δ v H = 1 2 v • v + h ρv (5.
∂ t x = [J -G * SG] δ x H (5.36)
where the operators J , G * and G, and matrix S are

J = 0 -div -grad -1 ρ G ω , G * = 0 0 0 G * τ , G = 0 0 0 G τ and S = 0 0 0 S τ , ( 5.37) 
respectively, and the following relationship holds for the rate of change of the energy: (5.38) where (5.39) are the boundary flows and efforts, with e r and e c as the efforts associated with the power dissipation by fluid rotation and compression, respectively.

Ḣ ≤ f ∂ , e ∂ ∂Ω
f ∂ = -(n • δ v H) δ v H| ∂Ω and e ∂ = δ ρ H + ec ρ | ∂Ω -n × e r | ∂Ω
Proof. Considering the fluid efforts (5.35), then (5.33) can be rewritten as:

∂ t ρ ∂ t v = 0 -div -grad -1 ρ G ω -G * τ S τ G τ δ ρ H δ v H
Defining the state vector as x = [ρ v ] , operators J , G * and G, and matrix S as shown in (5.37), the dissipative port-Hamiltonian formulation (5.36) is obtained.

We denote by f r = G r δ v H and e r = µf r the flow and effort variables associated with the dissipation of fluid rotation, respectively, and by f c = G c δ v H and e c = μf c the flow and efforts variables associated with the dissipation of fluid compression, respectively. The dissipative port-Hamiltonian system (5.36) can be expressed as the following extended skew-symmetric representation:

     ∂ t ρ ∂ t v f r f c      =       0 -div 0 0 -grad 1 ρ G ω -G * r -G * c 0 G r 0 0 0 G c 0 0       Je      δ ρ H δ v H e r e c      (5.40)
The rate of change of the total energy is given by:

Ḣ = Ω δ x H • ∂ t xdΩ = Ω δ x H • J δ x HdΩ - Ω δ v H • G * r e r dΩ - Ω δ v H • G * c e c dΩ
where

Ω δ x H • J δ x HdΩ = - Ω δ ρ H (div δ v H) + δ v H • [grad δ ρ H] dΩ - Ω δ v H ρ • G ω δ v H dΩ Ω δ v H • G * r e r dΩ = Ω δ v H ρ • [curl e r ] dΩ Ω δ v H • G * c e c = - Ω δ v H ρ • [grad e c ] dΩ
Considering the definition of G r and G c in Lemma 5.4, and applying Theorems A.2 and A.4, Ḣ can be rewritten as

Ḣ = - ∂Ω δ ρ H (δ v H • n) ∂Ω - Ω e c (G c δ v H) dΩ - ∂Ω e c δ v H ρ • n ∂Ω - Ω e r • [G r δ v H] - ∂Ω e r × δ v H ρ • n∂Ω
Using the definition of dissipation efforts and the cross product identity n

• [u 1 × u 2 ] = u 2 • [n × u 1 ], we obtain Ḣ = - Ω f r f c • µI 0 0 μ f r f c dΩ - ∂Ω δ ρ H + e c ρ (δ v H • n) + δ v H ρ • [n × e r ] ∂Ω
On the other hand, using

e ∂ f ∂ = R      δ ρ H| ∂Ω δ v H| ∂Ω e r | ∂Ω e c | ∂Ω      with R =       1 0 0 1 ρ 0 0 -n× 0 0 -n• 0 0 0 1 ρ 0 0      
(5.41)

we obtain the boundary flows and efforts in (5.39). Then, the rate of change of the fluid total energy can be expressed as:

Ḣ = - f r f c , S τ f r f c Ω + f ∂ , e ∂ ∂Ω Finally, given that f r f c , S τ f r f c Ω ≥ 0, the relationship (5.38) is obtained.
Notice that the boundary effort -n × e r | ∂Ω = µω × n| ∂Ω is equivalent to the vorticity boundary condition ω ×n| ∂Ω [START_REF] Ruas | A New Formulation of the Three-dimensional Velocity-Vorticity System in Viscous Incompressible Flow[END_REF][START_REF] Wu | Effective Vorticity-Velocity Formulations for Three-Dimensional Incompressible Viscous Flows[END_REF], using only the tangential part of the classical kinematic condition ω| ∂Ω [START_REF] Olshanskii | Natural vorticity boundary conditions on solid walls[END_REF].

Similarly, equation (5.41) denotes the boundary port variables for the extended skewsymmetric operator J e in (5.40), and it is equivalent to the boundary port variables definition proposed in [START_REF] Villegas | Boundary control for a class of dissipative differential operators including diffusion systems[END_REF] for 1D dissipative systems.

Additionally, under different assumptions, the fluid model proposed in (5.36), corresponds to port-Hamiltonian models of isentropic fluids described in the literature, as shown in the following remarks. Remark 5.2. Consider that the isentropic fluid has an irrotational flow. This implies that operators G r and G * r , and Gyroscope matrix G ω vanish. Then, the port-Hamiltonian formulation in Proposition 5.2, can be expressed as: [START_REF] Matignon | A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems[END_REF]. Remark 5.3. Consider the fluid as isentropic and inviscid. This implies that the operators associated with the viscous tensor vanish. Then, the port-Hamiltonian formulation in Proposition 5.2, can be expressed as: 

   ∂ t ρ ∂ t v f c    =    0 -div 0 -grad 0 -G * c 0 G c 0    Je    δ ρ H δ v H e c    ( 
∂ t ρ ∂ t v = 0 -div -grad -Gω ρ Je δ ρ H δ v H (5.

Considerations for 2D and 1D flows

Cross product and the Curl are 3D mathematical operators, hence their defintions have to be carefully adapted for 2D fluids.

Let us denote by {ζ, ξ} the variables associated with the axes of a 2D velocity field v = [v v] . The vorticity is a scalar defined as ω = -∂ ξ v + ∂ ζ v. For convenience we rewrite ω as:

ω = -div [W v]
(5.44)

where W = 0 -1 1 0 is a rotation matrix.

Then, the Gyroscope G ω is a 2D velocity field given by:

G ω = ωW = 0 -ω ω 0 (5.45)
On the other hand, with respect to the dissipative terms of the viscosity tensor, the operators G r and G * r for 2D fluids are defined as:

G r (•) = -div W • ρ = [-∂ ξ ∂ ζ ] • ρ (5.46) G * r (•) = 1 ρ W grad (•) = 1 ρ ∂ ξ -∂ ζ (•) (5.47) 
Given the operator definitions (5.45)-(5.47), the port-Hamiltonian formulations (5. [START_REF] Richter | Fluid-structure Interactions: Models, Analysis and Finite Elements[END_REF]) and (5.36) can be used to describe non-isentropic and isentropic 2D fluids, respectively.

Regarding the boundary conditions for non-isentropic fluids, notice that the tangential contributions in 2D problems are given by the vector s orthogonal to n. This implies that the boundary conditions (5.26) associated with the heat generation by viscous friction in ∂Ω, can be expressed as:

- ∂Ω v • [τ • n] ∂Ω = - ∂Ω ν n τ n + ν s τ s ∂Ω (5.48)
where 

ν n = v • n, ν s = v •
f ∂ =      -(ρv • n) | ∂Ω -ν n | ∂Ω -ν s | ∂Ω -(f s • n) | ∂Ω      e ∂ =       1 2 v • v + h | ∂Ω τ n | ∂Ω τ s | ∂Ω T | ∂Ω       ( 
   ∂ t ρ ∂ t v ∂ t s    =     0 -∂ ζ 0 -∂ ζ 0 1 ρ ∂ ζ s -1 ρ ∂ ζ τ ρT • 0 -1 ρ ∂ ζ s -τ ρT ∂ ζ 1 ρ • 1 ρT ∂ ζ • ρ 2 k/T + 1 ρ ∂ ζ k T ∂ ζ • ρ        δ ρ H δ v H δ s H    (5.50)
where H = b a 1 2 ρv 2 + ρu(ρ, s) dζ and the boundary port variables are given by the boundary flows and efforts, f ∂ and e ∂ respectively, defined as

f ∂ = -ρv| b ρv| a -v| b v| a -f s | b f s | a and e ∂ = 1 2 v 2 + h b 1 2 v 2 + h a τ | b τ | a T | b T | a , satisfying the balance Ḣ = f ∂ e ∂ .
This fluid model is equivalent to the formulation proposed in [START_REF] Altmann | A port-Hamiltonian formulation of the Navier-Stokes equations for reactive flows[END_REF] for reactive fluids, neglecting the chemical reaction part.

Remark 5.5. Using the 1D considerations previously described, the dissipative port-Hamiltonian formulation in Proposition 5.2 can be reduced to 

   ∂ t ρ ∂ t v f c    =    0 -∂ ζ 0 -∂ ζ 0 -1 ρ ∂ ζ 0 -∂ ζ • ρ 0       δ ρ H δ v H e c    ( 
e ∂ = 1 2 v 2 + h + ec ρ b 1 2 v 2 + h + ec ρ a
, satisfying the balance Ḣ = f ∂ e ∂ . This dissipative formulation is equivalent to the model used in [START_REF] Kotyczka | Discretized models for networks of distributed parameter port-Hamiltonian systems[END_REF] to describe compressible fluids in pipelines, without the gravitational effects. In this sense, notice that the dissipative term -1 ρ ∂ ζ e c is equivalent to the termλ 2D |v|v used in [START_REF] Kotyczka | Discretized models for networks of distributed parameter port-Hamiltonian systems[END_REF], where λ is the friction coefficient, as shown in Section 3.1.2. Moreover, considering an inviscid fluid (i.e., e c = 0) the model (5.51) corresponds to the fluid model used in [START_REF] Macchelli | Boundary Energy-Shaping Control of an Ideal Compressible Isentropic Fluid in 1-D[END_REF] for control proposes.

On thermodynamics and available internal energy of compressible fluids

In previous sections the specific internal energy for non-isentropic and isentropic fluids is defined implicitly. In this section the thermodynamical properties of non-reactive compressible fluids are analyzed. We provide an explicit definition for the specific internal energy and we describe the utility of using available functions to characterize the variations of the total energy of the fluid.

Non-isentropic fluid

We consider the ideal gas law (4.3). Defining the constant r = Ru / M where Ru is the universal gas constant and M the molar weight of the gas, the fluid pressure can then be described as: p = rT ρ (5.52) where r = c p -c v , with c p and c v the specific heat capacity at constant pressure and constant volume, respectively. According to [START_REF] Massoud | Engineering Thermofluids[END_REF][START_REF] Leveque | Numerical Methods for Conservation Laws[END_REF] a good approximation of the specific internal energy is given by

u = c v T = p (γ -1)ρ (5.53)
where γ = c p /c v is the specific heat ratio. On the other hand, according to [114, p.295] for gases where the internal energy is proportional to the temperature, such as (5.53), the specific entropy is given by:

s = c v ln p ρ γ + constant (5.54)
Then, the pressure can be expressed as:

p = Ae s/cv ρ γ (5.55)
where A is a constant. Using this pressure relation, we obtain the following explicit definition for the temperature and the specific internal energy:

T (s, ρ) = A r e s/cv ρ γ-1 (5.56) u(s, ρ) = A γ -1 e s/cv ρ γ-1 = A γ -1 e s/cv 1 ρ -γ+1
(5.57)

These definitions of pressure, temperature and specific internal energy, (5.55)-(5.57), satisfy the Gibbs equation (5.6), i.e.,:

du = ∂ 1 ρ u d 1 ρ + (∂ s u) ds = -Ae s/cv ρ γ d 1 ρ + A c v (γ -1) ρ γ-1 ds = -pd 1 ρ + T ds
Similarly, the following thermodynamic relationships are satisfied:

∂ ρ u = Ae s/cv ρ γ-2 = p ρ 2 (5.58) ∂ ρ (ρu) = γ γ -1 Ae s/cv ρ γ-1 = c p T = h (5.59) ∂ s (ρu) = A c v (γ -1)
e s/cv ρ γ = ρT (5.60)

Hence, (5.57) is an adequate formulation for the specific internal energy used in (5. [START_REF] Richter | Fluid-structure Interactions: Models, Analysis and Finite Elements[END_REF]) for non-isentropic compressible fluids.

Isentropic fluid

Now we consider a fluid under a isentropic assumption, i.e., s = s 0 is constant. In this case, the fluid pressure is defined as [START_REF] Leveque | Finite Volume Methods for Hyperbolic Problems[END_REF]:

p = Āρ γ (5.61)
where Ā = Ae s 0 /cv is a constant. Then, the temperature and the specific internal energy depend only on the fluid density, i.e.,

T (ρ) = Ā r ρ γ-1 (5.62) u(ρ) = Ā γ -1 ρ γ-1 = Ā γ -1 1 ρ -γ+1
(5.63)

Note that (5.63) satisfies the Gibbs equation (5.29), i.e.,

du = ∂ 1 ρ u d 1 ρ = -Āρ γ d 1 ρ = -pd 1 ρ
Another important thermodynamic relationship is given in terms of the speed of sound c and the isentropic compressibility (∂ ρ p) s , i.e.,

c 2 = (∂ ρ p) s = γ Āρ γ-1 = (γ -1) c p T = γ p ρ (5.64)
Then, the pressure, temperature and internal energy can be expressed as follows:

p = c 2 γ ρ, T = c 2 c p (γ -1) and u = c 2 γ (γ -1) , ( 5.65) 
where u satisfies the relationships

∂ ρ (ρu) = h = γ γ-1 Āρ γ-1 = c 2 γ-1 and ∂ ρ u = Āρ γ-2 = c 2 γρ = p ρ 2 .
Thus, the definition (5.63) for the specific internal energy can be used in the dissipative port-Hamiltonian model for isentropic fluids (5.36).

Considerations for small temperature variations.

In this section we consider small variations of the temperature in an isentropic fluid domain. The pressure can be approximated using the speed of sound at a reference temperature, as shown next. Proof. Define the temperature T = T * + ∆T where T * is the reference temperature and the speed of sound c * = (γ -1)c p T * at the reference temperature T * . Then, from (5.64) we obtain:

c 2 = (γ -1)c p (T * + ∆T ) = c 2 * + (γ -1)c p ∆T
The relative error of the pressure is given by:

ε p = |p -p * | p = |c 2 -c 2 * | c 2 = ∆T T
Considering that ∆T ≤ ∆T and T ≥ T 1 we obtain that ε p ≤ ∆T T 1 = ξ.

The pressure approximation described in the previous proposition is suitable for applications with small variations of the temperature, such as for example, the air exhalation in the human phono-respiratory system, where the temperature varies from 310.15 • K(37 • C) in the lungs to 305.15 • K(32 • C) in the vocal tract, leading to a maximum relative variation of ξ = 0.016.

To use the pressure definition (5.66) in the fluid model (5.36), it is necessary to redefine the specific internal energy and enthalpy formulas. Using the Gibbs equation (5.29), we obtain:

u * = c 2 * γ ln(ρ) + C u (5.67) h * = c 2 * γ (ln(ρ) + 1) + C u (5.68)
where C u is a constant, and the following relationships are satisfied ∂ ρ u * = p * ρ 2 and ∂ ρ (ρu * ) = h * . According to (5.30), the fluid dynamics is affected by the use of grad h * in the momentum balance (see Chapter 4). The error in the fluid dynamics is given by

ε h = grad h -grad h * grad h (5.69)
where grad h-grad h * grad h

:=      ∂ ζ h-∂ ζ h * ∂ ζ h ∂ ξ h-∂ ξ h * ∂ ξ h ∂zh-∂zh * ∂zh      .
Then, using the specific enthalpy defined in Section 5.4.2 and (5.68), and considering that γ ≥ 1, the error ε h can be expressed as:

ε h = c 2 ρ grad ρ -c 2 * γρ grad ρ c 2 ρ grad ρ = c 2 * γ -c 2 c 2 I ≤ c 2 * -c 2 c 2 I ≤ ξI (5.70)
This implies that the approximation error in the dynamics is bounded by ξ.

Available specific internal energy

An advantage of the port-Hamiltonian framework is the use of the total energy as a Lyapunov function to evaluate the system's stability [START_REF] Duindam | Modeling and Control of Complex Physical Systems[END_REF][START_REF] Van Der Schaft | Port-Hamiltonian Systems Theory: An Introductory Overview[END_REF]. A desirable feature of the total energy is that H(x 0 ) = 0 and H(x) > 0, ∀x = x 0 where x 0 is a dynamic equilibrium point of the system.

As shown in previous sections the total energy of compressible fluids is given by:

H = Ω 1 2 ρv • v + ρu(x)dΩ (5.71)
where u(x) describes the specific internal energy of the fluid. In the non-isentropic compressible fluid model (5.19) with state variables ρ, v and s, given the specific internal energy (5.57) the total energy H(ρ, v, s) is non-negative and it has a minimum H(0, v, s) = 0 for any {v, s} and H(ρ, 0, -∞) = 0 for any ρ. This implies that H(ρ, v, s) has an infinite number of minimum points, making it difficult to analyze the stability of the system using this function. Another problem is given by the fact that the pair ρ = 0 and s = -∞ does not define a practical dynamic equilibrium point for the fluid. Similarly, for isentropic compressible fluids with specific internal energy (5.63), the total energy H(ρ, v) is non-negative and has a minimum H(0, v) = 0 for any v, i.e., as in the non-isentropic case, the total energy H(ρ, v) has an infinite number of unpractical minima.

To address these problems, as shown in Chapter 4, it is convenient to define the total energy using an availability function, ū(x), that describes the changes of specific internal energy with respect to a reference point x 0 . The framework of the thermodynamic availability function, formalized for the control of thermodynamic systems in [START_REF] Alonso | Process systems, passivity and the second law of thermodynamics[END_REF] and with roots in [START_REF] Keenan | Availability and irreversibility in thermodynamics[END_REF] and [START_REF] Willems | Dissipative dynamical systems part I: General theory[END_REF], has been used to derive Lyapunov conditions for the stability analysis of irreversible thermodynamic systems by many authors [START_REF] Alonso | Stabilization of distributed systems using irreversible thermodynamics[END_REF][START_REF] Hoang | The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors[END_REF][START_REF]Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics[END_REF][START_REF] Ydstie | Passivity based control via the second law[END_REF][START_REF] Ramírez | On the passivity based control of irreversible processes: A port-Hamiltonian approach[END_REF] just to cite a few. This available specific internal energy can be defined as:

ū(x) = u(x) -u(x 0 ) + f u (x) (5.72)
where f u (x) is a function used to guarantee the non-negativity of ū such that f u (x 0 ) = 0. Then, the fluid total energy can be described as:

H(x) = Ω 1 2 ρv • v + ρū(x)dΩ (5.73)
One can notice that this total energy definition is a non-negative function, H(x) ≥ 0 with minimum H(x 0 ) = 0. Now denote by p 0 and h 0 the pressure and the specific enthalpy at x = x 0 , respectively, such that grad p 0 = 0 and grad h 0 = 0. Then, the terms grad p and grad h in (5.30) and (5.33) of isentropic compressible fluids, can be rewritten as grad p = grad p and grad h = grad ĥ, respectively, where p = p-p 0 and ĥ = h -h 0 . This implies that to use the total energy (5.73) in a port-Hamiltonian formulation of isentropic compressible fluids, the available specific internal energy (5.72) must satisfy the following relationship:

dū = -pd 1 ρ (5.74)
Solving (5.74) we obtain that

f u (x) = p 0 1 ρ - 1 ρ 0 (5.75)
and the available specific internal energy for isentropic compressible fluids is given by:

ū(ρ) = Ā γ -1 ρ γ-1 - Ā γ -1 ρ γ-1 0 + p 0 1 ρ - 1 ρ 0 (5.76)
In this case, the total energy H(ρ, v) has a minimum H(ρ 0 , 0) = 0 where ρ 0 is the reference density and the efforts associated with the total energy (5.73) are given by:

δ ρ H δ v H = 1 2 v • v + ∂ ρ (ρū) ρv (5.77)
Notice that grad h = grad ĥ = grad ∂ ρ (ρū). Then, (5.30) can be expressed as the dissipative port-Hamiltonian system proposed in (5.36) where the total energy, internal energy and fluid efforts are given by (5.73), (5.76) and (5.77), establishing stability and passivity properties of the system with respect to the dynamic equilibrium point.

This procedure can also be applied in the case of small temperature variations (see Section (5.4.3)), where the available internal energy and fluid efforts can be expressed as: where T = T -T 0 and T 0 is the temperature at the reference density ρ 0 and reference entropy s 0 . From the solution of (5.79), functions f u and ū are defined as

ū * (ρ) = c 2 * γ ln ρ ρ 0 + p 0 1 ρ - 1 ρ 0 , and δ ρ H δ v H = 1 2 v • v + ∂ ρ (ρū * ) ρv ( 5 
f u = p 0 1 ρ - 1 ρ 0 -T 0 (s -s 0 ) (5.80) ū(ρ, s) = A γ -1 e s/cv ρ γ-1 - A γ -1 e s 0 /cv ρ γ-1 0 + p 0 1 ρ - 1 ρ 0 -T 0 (s -s 0 ) (5.81)
satisfying 1 ρ grad p = 1 ρ grad p = grad ∂ ρ (ρū) -T grad s. Then, using (5.81), the total energy H(ρ, v, s) for non-isentropic fluids, has a minimum H(ρ 0 , 0, s 0 ) = 0 and the efforts are given by: An alternative approach to describe irreversible process, such as the non-isentropic fluids, is given by the irreversible port-Hamiltonian framework.

   δ ρ H δ v H δ s H   =    1 2 v • v + ∂ ρ (ρū) ρv ρ T    ( 

Irreversible port-Hamiltonian formulation of 1D compressible fluids

As already discussed in Section 1.2.3, the irreversible port-Hamiltonian framework is an approach focused on the description of the thermal domain, where the first and second laws of Thermodynamic are included. This approach was initially proposed in [START_REF] Ramírez | Control of irreversible thermodynamic processes using port-Hamiltonian systems defined on pseudo-Poisson and contact structures[END_REF][START_REF] Ramirez | Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR[END_REF] for finitedimensional systems and extended to infinite-dimensional domains in [START_REF] Ramirez | An irreversible port-Hamiltonian formulation of distributed diffusion processes[END_REF][START_REF] Ramirez | Irreversible port-Hamiltonian systems on infinite dimensional spaces[END_REF]. The dynamics of an irreversible system on a 1D domain, Ω := {ζ ∈ [a, b] ⊂ R}, are given by:

∂ t x = n j=1 R 1j J 1j δ x H + R 0j J 0j δ x H + ∂ ζ [R 1 δ s H] , ζ ∈ [a, b] where J ij , i ∈ {1, 2} is an operator of the form J ij = P ij ∂ i ζ with P ij = (-1) i+1 P ij .
The terms R ij , i ∈ {1, 2} are defined as γ ij {S, H} * J ij where γ ij > 0 and {S, H} * J ij denotes a locally defined operators, defined in (1.31), between the total entropy S and the total energy H of the system.

The vector R

1 = [R 11 , . . . , R 1n ] satisfies the relationship n j=1 R 1j J 1j δ x H = 0 R 1 ∂ ζ δ x H (see Section 1.2.

for details).

In the following, we use this approach to develop an irreversible port-Hamiltonian formulation for non-reactive compressible fluids in a 1D domain.

Governing equations of non-reactive thermodynamic compressible fluid

We consider a 1D non-isentropic compressible fluid given by

∂ t ρ = -∂ ζ ρv (5.83a) ∂ t v = -∂ ζ 1 2 v 2 - 1 ρ ∂ ζ p - 1 ρ ∂ ζ τ (5.83b) ∂ t u = -v∂ ζ u - 1 ρ ∂ ζ f T - p ρ ∂ ζ v - τ ρ ∂ ζ v (5.83c)
where ρ denotes the density per unit length, τ = -µ∂ ζ v is the shear stress of the fluid and f T = -k∂ ζ T is the heat flux, with µ and k the fluid viscosity and thermal conductivity, respectively.

In a 1D domain the material derivative is defined as D t = ∂ t + v∂ ζ . Then, using the local equilibrium (5.7) and the Gibbs equation (5.6), as shown in Section 5.1.1, the governing equations can be expressed as:

∂ t ρ = -∂ ζ ρv (5.84a) ∂ t v = -∂ ζ 1 2 v 2 -∂ ζ u + p ρ + T ∂ ζ s - 1 ρ ∂ ζ τ (5.84b) ∂ t s = -v∂ ζ s - 1 ρT ∂ ζ f T - τ ρT ∂ ζ v (5.84c)
where u and p are given by (5.57) and (5.55), respectively. Then, defining the total energy of the fluid as:

H = b a 1 2 ρv 2 + ρu(ρ, s)dζ (5.85)
where

   δ ρ H δ v H δ s H    =    1 2 v 2 + u + p/ρ ρv ρT  
, the fluid dynamics are given by:

   ∂ t ρ ∂ t v ∂ t s    =     0 -∂ ζ 0 -∂ ζ 0 1 ρ ∂ ζ s -1 ρ ∂ ζ τ ρT • 0 -1 ρ ∂ ζ s -τ ρT ∂ ζ 1 ρ • 1 ρT ∂ ζ k∂ ζ 1 ρ •        δ ρ H δ v H δ s H   
(5.86)

Irreversible port-Hamiltonian formulation

To obtain the irreversible port-Hamiltonian formulation of the system (5.86), it is necessary to identify the reversible and irreversible parts, W r and W i , respectively, of the system dynamics, such that ∂ t x = W r + W i . In this particular case, the fluid governing equations (5.86) can be expressed as:

   ∂ t ρ ∂ t v ∂ t s    =    0 -∂ ζ 0 -∂ ζ 0 1 ρ ∂ ζ s 0 -1 ρ ∂ ζ s 0       δ ρ H δ v H δ s H    reversible part Wr +     0 0 0 0 0 -1 ρ ∂ ζ τ ρT • 0 -τ ρT ∂ ζ 1 ρ • 1 ρT ∂ ζ k∂ ζ 1 ρ •        δ ρ H δ v H δ s H    irreversible part W i
Notice that the reversible part can be described by an operator having the form (1.15), i.e., W r = J (x)δ x H (5.87)

where x = [ρ v s] is the state vector of the fluid dynamics and the operator J (x) is given by

J (x) = P 1 ∂ ζ + P 0 (x) (5.88) 
with

P 1 =    0 -1 0 -1 0 0 0 0 0    and P 0 (x) =    0 0 0 0 0 1 ρ ∂ ζ s 0 -1 ρ ∂ ζ s 0   
Regarding the irreversible part W i , it is necessary to introduce the definition of modulated skew-symmetric operator, as follows. Definition 5.2. Let J be a skew-symmetric operator that satisfies the Jacobi identity. Then, a modulated operator J is defined as the formal skew-symmetric operator of the form:

J e = M (x)J [M (x)e]
(5.89)

where M (x) depends on the state variables.

Notice that W i can be expressed as:

W i =    0 -1 ρ ∂ ζ τ σ T + σ τ -1 ρ ∂ ζ f s   
(5.90)

where 

σ τ = -τ ρT ∂ ζ 1 ρ δ v H = µ ρT (∂ ζ v) 2 and σ T = -fs ρT ∂ ζ 1 ρ δ s H = k ρT 2 (∂ ζ T ) 2
R 1τ = µ T ∂ ζ v = - τ T and R 1T = k T 2 ∂ ζ T = - f s T (5.91)
Then, using (5.91), the irreversible part of the governing equations can be rewritten as: with

W i =R 1τ    0 0 0 0 1 ρ 0 0 0 1 ρ       0 0 0 0 0 1 0 1 0    ∂ ζ       0 0 0 0 1 ρ 0 0 0 1 ρ       δ ρ H δ v H δ s H       J1τ δxH + R 1T    0 0 0 0 1 ρ 0 0 0 1 ρ       0 0 0 0 -µT k 0 0 0 1    ∂ ζ       0 0 0 0 1 ρ 0 0 0 1 ρ       δ ρ H δ v H δ s H       J1T δxH - 1 ρ ∂ ζ    0 τ f s    ( 
M (x) =    0 0 0 0 1 ρ 0 0 0 1 ρ    , P 1τ =    0 0 0 0 0 1 0 1 0    , and P 1T =    0 0 0 0 -µT k 0 0 0 1   
Reformulating R 1τ and R 1T according to Definition 1. 

= ∂ ζ v, {S, H} * J1T = ∂ ζ T , γ 1τ = µ T > 0 and γ 1T = k T 2 > 0.
Then, the irreversible part of the fluid dynamics can be expressed as:

W i = R 1τ J1τ δ x H + R 1T J1T δ x H + M (x)∂ ζ M (x) 0 R 1 δ s H (5.96)
where

R 1 = [R 1τ R 1T ] and satisfies R 1τ J1τ δ x H + R 1T J1T δ x H = 0 2×1 [0 R 1 ]M (x)∂ ζ (M (x)δ x H) .
Proposition 5.4. Let H be the total energy defined in (5.85). Using the skew-symmetric operators J , J1τ and J1T , defined in (5.88), (5.93) and (5.94) respectively, the governing equations (5.84) of a non-reactive compressible fluid can be expressed as the following irreversible port-Hamiltonian system

∂ t x = J δ x H + R 1τ J1τ δ x H + R 1T J1T δ x H + M (x)∂ ζ M (x) 0 R 1 δ s H (5.97)
with boundary inputs and outputs given by Notice that if the system is isolated, the energy balance (5.99) is reduced to Ḣ = 0 and the entropy balance (5.100) is reduced to the inequality Ṡ ≥ 0 , i.e., the fluid description in Proposition 5.4 satisfies the first and second laws of Thermodynamics. Remark 5.6. Notice that the structure of the irreversible part of system (5.97) is modulated, in contrast to the irreversible port-Hamiltonian formulation on infinite dimensional spaces given in Definition 1.6 (see Chapter 1 Section 1.2.3 for details). The presence of matrix M (x) in the last term of the right hand side of (5.97), and in operators J1T and J1τ , is due to the state variables of the compressible fluids. In the case of incompressible fluids, this matrix vanish, obtaining a standard irreversible port-Hamiltonian formulation.

u(t) =            1 2 v 2 + h (b) -τ (b) -f s (b) 1 2 v 2 + h (a) -τ (a) -f s (a)            and y(t) =           -(ρv) (b) v(b) T (b) (ρv) (a) -v(a) -T (a)           (5.
To illustrate the previous Remark (5.6),as example we consider a simple 1D shallow-water system described by:

∂ t h = -∂ ζ (hv)
(5.101a)

∂ t (ρ 0 v) = -∂ ζ 1 2 ρ 0 v 2 + ρ 0 gh - 1 2 λ f ρ 0 |v|v (5.101b) ∂ t u = 1 2 λ f ρ 0 h|v|v 2 -∂ ζ f T (5.101c)
where h = h(ζ, t) is the water height, v = v(ζ, t) is the average velocity of the fluids, u = u(ζ, t) denotes the internal energy per unit length, f T is the heat flux, g is the constant of gravity and ρ 0 is the mass per unit area. The last term on the right hand side of (5.101b) describes the dissipation of kinetic energy by viscous friction, where λ f is a dimensionless factor [START_REF] Kotyczka | Discretized models for networks of distributed parameter port-Hamiltonian systems[END_REF].

The term 1 2 λ f ρ 0 h|v|v 2 in (5.101c) denotes the heat production by viscous friction. The term 1 2 λ f ρ 0 |v| is equivalent to the friction coefficients used in [START_REF] Atkinson | Similarities between the quasibubble and the generalized wave continuity equation solutions to the shallow water equations[END_REF] and [START_REF] Vila | 2D Versus 1D Models for Shallow Water Equations[END_REF]. The thermodynamic properties of u are given by the Gibbs equation, du = T ds, where s = s(ζ, t) is the entropy per unit length. The total energy of this system is given by:

H = b a 1 2 ρ 0 hv 2 + 1 2 ρ 0 gh 2 + u(s)dζ
Using the thermodynamic equilibrium ∂ t u = T ∂ t s, the dynamics of s can be expressed as:

∂ t s = 1 2 λ f T ρ 0 h|v|v 2 - 1 T ∂ ζ (κ∂ ζ T )
Defining the state vector as x = [h, ρ 0 v, s] , the fluid efforts are given by δ x H = [ 1 2 ρ 0 v 2 + ρ 0 gh, hv, T ] and the shallow-water equations can be expressed as: > 0 and γ 1 = κ T 2 > 0. Notice that, for the incompressible fluid described by the shallow-water equations, the irreversible part of the system (5.102) is in correspondence with the standard irreversible port-Hamiltonian formulation described in Definition 1.6. That is, the matrix M (x) that appear in the irreversible port-Hamiltonian formulation of compressible fluids, is a consequence of the compressibility assumption.

∂ t x = J δ x H + R 1 J 1 δ x H + R 0 J 0 δ x H + ∂ ζ       0 0 R 1    δ s H    (5.

Conclusion

In this chapter, general port-Hamiltonian formulations for 3D compressible fluids have been presented. For non-isentropic fluids a pseudo port-Hamiltonian model was proposed in Proposition 5.1. This model presents an appropriate description of the thermal domain, satisfying the second law of Thermodynamic, as shown in (5.23). However, operators D τ and D * τ depend explicitly on the entropy effort δ s H = ρT and, as a consequence, the system (5.19) does not define a Dirac structure. In the case of isentropic fluids, the dissipation of kinetic energy by viscous friction is considered as a dissipative term [START_REF] Villegas | Boundary control for a class of dissipative differential operators including diffusion systems[END_REF], obtaining the dissipative port-Hamiltonian model in Proposition 5.2. As shown in Section 5.3, these port-Hamiltonian formulations can also be used for 1D and 2D compressible fluids, making the appropriate considerations in the corresponding operators. Moreover, considering the suitable assumptions, proposed formulations are equivalent to other fluid models in the literature.

Finally, we presented an alternative formulation based on the irreversible port-Hamiltonian framework to describe non-isentropic compressible fluids in 1D. Unlike the pseudo port-Hamiltonian formulation described in Proposition 5.1, this approach allows us to avoid the presence of fluid efforts in the differential operators that describe the dynamics. Additionally, we obtain an appropriate description of the first and second law of Thermodynamic, as shown in Proposition 5.4. However, given the compressibility assumption, a matrix M (x) appears in the irreversible part of the model, obtaining a formulation that differs from the standard form of irreversible port-Hamiltonian systems on infinite dimensional domains, described in Definition (1.6).

Chapter 6 Conclusion

In this thesis a finite-dimensional approach based on the port-Hamiltonian framework to describe the FSI between a longitudinal fluid and a structure with transverse motion has been presented. A finite-dimensional formulation based on a mass-spring-damper description has been proposed in Chapter 2 to characterize the transverse motion of the structure in the longitudinal domain. To describe incompressible fluids, the fluid domain is divided into n f sections of length f with uniform cross-sectional areas, where the fluid dynamics are characterized through the average longitudinal momentum. Additionally, a novel instrumental element, called node, has been proposed in Chapter 3. This node allows us to define the static pressure in an infinitesimal zone between two incompressible sections of the fluid domain, providing an appropriate way, from the port-Hamiltonian point of view, to couple finite-dimensional port-Hamiltonian models of adjacent incompressible sections. In the case of compressible fluids, a description based on a 1D staggered grid has been proposed in Chapter 4. The flow behavior is characterized by the average longitudinal velocity of n f sections with uniform cross-sectional areas and the corresponding n f average densities.

To connect the fluid and the structure subsystems, a power-preserving interconnection that combines the features of the interconnection by ports and the interconnetion by energy of PHS, has been presented in Chapter 3. This interconnection provides a suitable description of the power-transfer between both subsystems. In cases where the structure collides closing a section of the fluid domain, a switching interconnection approach has been proposed in Chapter 4. To this end, we use a switching matrix S to enable and disable the fluid-structure interconnection in the corresponding sections, according to a threshold value. Similarly, this matrix S is used to enable and disable the corresponding fluid dynamics during the collision, allowing us to avoid the singularities of the fluid model when the fluid domain is closed.

The finite-dimensional approach used in this thesis, allows to reduce the complexity of the FSI model with respect to the classical computational formulations that requires several algorithms to guarantee the stability of the numerical results. Moreover, the proposed finitedimensional models show an appropriated description of the FSI behavior, as it can be seen in the numerical simulations. These simulations show results in correspondence with other model in the literature. Additionally, the scalability of the proposed models allows to set the spatial resolution, along the longitudinal domain, of the variables of interest. This setting can be made varying the number of fluid sections n f and structure sections n s . Moreover, as shown in Section 4.4, the number of fluid sections and the number of structure sections may be different, allowing greater freedom in the description of the fluid and the structure domains.

The analysis of the FSI behavior using the models proposed is constrained by the symmetry hypotheses considered in this thesis, such as an axisymmetric behavior of flexible tubes and an symmetric movement of the vocal folds in the glottis. Similarly, the structure dynamics are reduced to the transverse motion only. Similarly, the fluid dynamics analysis is limited to the longitudinal velocity of the flow. To study phenomena, such as vena contracta and coandra effects in the glottis during the vibrating cycle of the vocal folds, a more complex model is required.

In Chapter 5, we presented general formulations based on the port-Hamiltonian framework for 3D isentropic and non-isentropic compressible fluids. These formulations can also be used in 1D and 2D fluid problems modifying the differential operators. Similarly, under appropriate assumptions, the proposed models are equivalent to other formulations in the literature. In the case of non-isentropic fluids, we have obtained a pseudo port-Hamiltonian formulation. That is given by the dependency of the differential operators on the fluid efforts associated with the entropy state variable. This implies that the system described in Proposition 5.1 does not define a Dirac structure. Additionally, an alternative formulation based on the irreversible port-Hamiltonian framework is proposed for 1D non-isentropic fluids. The advantage of this formulation is that it encompasses the first and second principles of termodynamics as a structural property of the system, which is particularly convinent for stability analysis and passivity based control design.

Future work

For a practical use of the finite-dimensional models proposed in this thesis, as for example in the study of pathogenesis of phonotraumatic diseases of the vocal folds, the next step is the parameter identification from real data. However, the application of system identification methods, such as maximum likelihood and Bayesian inference, to the models proposed has the own challenges that need be considered in future projects. Similarly, one advantage of the finite-dimensional models presented in this thesis, is the simplicity of the PHS framework to define new inputs for the model, as for example external forces acting on the masses of the structure model. This is useful for control applications in future works. Other possible research areas where the proposed model can be useful is in system identification and filtering. Consider for example the voice production process. During phonation we use myoelectric signals that change the strain of the Thyroarytenoid muscle in the vocal folds (see Figure 2.4). These changes can be interpreted in two ways: the first one is to consider that the structure model has time varying parameters; the second one is to consider these changes as an external force acting on the masses of the structure model. In the first case we can use system identification methods to estimate the parameters of the system from real data. In the second case where we consider external forces acting on the structure model. Recent advances in filtering for systems subject to unknown inputs, will be used to estimate these forces. This information can be useful for the design of biomedical implants.

As future work with the infinite-dimensional models proposed in Chapter 5, we consider the study of techniques such as Arbitrary Lagrangian-Eulerian methods [START_REF] Richter | Fluid-structure Interactions: Models, Analysis and Finite Elements[END_REF][START_REF] Souli | Arbitrary Lagrangian-Eulerian and Fluid -Structure Interaction[END_REF] and meshless methods [START_REF] Katz | Meshless methods for computational fluid dynamics[END_REF], and their compatibility with the port-Hamiltonian framework, to describe systems with time varying domains. Another research line to be considered in future works is the extension of the infinite-dimensional port-Hamiltonian formulations to non-Newtonian fluids. Regarding the irreversible port-Hamiltonian approach, we consider the extension of the formulation described in Proposition 5.4 to 3D compressible fluids and the development of passivity-based control methods suitable for the structure of irreversible port-Hamiltonian systems on infinite dimensional domains. For incompressible fluids, an instrumental element, called node, is used to allow appropriate coupling, from a PHS point of view, of the fluid sections. For compressible fluids, a staggered mesh is used to characterize the longitudinal velocity and the density in n f points of the fluid domain for each variable. To be able to couple the finite-dimensional models of the fluid and the structure, a power-preserving intercon-nection is used, and a switching approach is presented to model the cases where the structure collides closing a section of the fluid domain, such as in the case of the vocal folds. The obtained simulation results show that the proposed models are in correspondence with more complex formulations found in the literature. Finally, the description of the considered class of systems with time-varying domains using the infinite-dimensional PHS framework is studied. The thesis also presents some first approaches of general infinite-dimensional formulations for isentropic and non-isentropic compressible Newtonian fluids in a constant 3D domain, and a formulation based on the infinite-dimensional irreversible PHS approach is proposed for 1D non-isentropic compressible Newtonian fluids. 
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 11 Figure 1.1 -Examples of FSI systems in engineering, biology and biomedical sciences.
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 13 Figure 1.3 -Longitudinal fluid flow interacting with a mechanical structure with transverse motion.
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 14 Figure 1.4 -Illustrative examples of power-preserving interconnections. a) Mass-spring system uses interconnection by ports b) levitated ball uses interconnection by energy.
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 21 Figure 2.1 -Mechanical description of the structure motion
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 22 Figure 2.2 -Cylindrical flexible tube description.
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 24 Figure 2.4 -Tissue layers of the structure of vocal folds. Dotted line: Midasagittal plane of the glottis.
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 325 Figure 2.5 -Simplification of the vocal folds mechanics using the body-cover model. ∆ j 's represents the tissue deformations during the vocal folds vibration cycle.
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 26 Figure 2.6 -Vocal folds collision description using the body-cover model. Left: tissue compression during the collision. Right: overlap of the cover mass to describe the collision.

Figure 2 . 7 -

 27 Figure 2.7 -Body-cover model of vocal folds showing a Hemi-larynx representation for symmetrical vocal folds oscillations. Left: 3-dimensional view, displaying the mass positions. Right: bottom view, displaying the contact surfaces.
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 28 Figure 2.8 -Stored potential energy of collision spring (left) and the corresponding applied force over mass m j . Normalized behavior, k cj = 1 and η cj = 1, for j ∈ {1, 2}.
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 131 Figure 3.1 -Spatial discretization of the fluid domain. a) Division of the fluid domain in n f sections with uniform cross-sectional area. b) Definition of nodes between adjacent incompressible fluid sections.
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 32 Figure 3.2 -Coupling incompressible fluid sections using nodes with compressible behavior.
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 33 Figure 3.3 -Inputs/outputs diagram of the node j and the adjacent incompressible sections.

  the input of incompressible fluid section and nodes and by y = [(p ρ 1

Proposition 3 . 4 .

 34 40) the fluid dynamics (3.33) and (3.35) can be formulated as in Proposition 3.4. Let the state variables of the fluid be x f = [π ζ ρ ].
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 42 where ϑ = ϑ π C 1 * -C 2 * maps the boundary pressures in the corresponding fluid sections, ϕ = ϕ ρ +ϑ ρ (C 2 + C 1 ) M π maps the upper boundary velocities in the nodes, ψ = ϑ π (C 1 -C 2 )ϑ ρ describes the energy flux between the state variables and ψ M = C 1 * C 2 * M π defines the feedthrough terms. Proof. Consider the interconnection rule (3.37) and the expression of the dynamic pressure (3.39). Systems (3.33) and (3.35) can be rewritten as:
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 34 Figure 3.4 -Finite-dimensional formulation of the fluid-structure system. MSD-based description of the structure motion. Fluid dynamics description based on nodes (red) and incompressible fluid sections.
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 35 Figure 3.5 -Finite-dimensional formulation of the fluid-structure system with n f = n s .

3 . 1 .

 31 In the previous examples, we considered that the length of the fluid domain and the length of the structure domain in motion are equal, as shown inFigures 3.4 and 3.5. 

Table 3 . 1 -

 31 Material parameters of the structure and the fluid. Reference Subsystem Parameters [10] Structure µ = 5.75 × 10 4 Pa, λ = 17 × 10 4 Pa, h = 0.001m, r = 0.005m L = 0.06m, ρ s = 1.1 × 10 3 Kg/m 3 Fluid ρ 0 = 1 × 10 3 Kg/m 3 , β S = 2.15 × 10 9 Pa [12] Structure µ = 11.538 × 10 4 Pa, λ = 17.308 × 10 4 Pa, h = 0.001m, r = 0.005m L = 0.05m, ρ s = 1.2 × 10 3 Kg/m 3 Fluid ρ 0 = 1 × 10 3 Kg/m 3 , β S = 2.15 × 10 9 Pa Table 3.2 -Parameters of the fluid-structure model [12]. Sections Subsystem Parameters N = 51 Structure k j = 73.9483N/m, k cj = 2.7 × 10 -2 N/m, d j = 2.09 × 10 -2 Ns/m m j = 3.7 × 10 -5 Kg, s = 9.8 × 10 -4 m Fluid f = 9.8 × 10 -4 m, m = 7.7 × 10 -8 Kg N = 71 Structure k j = 51.9883N/m, k cj = 3.86 × 10 -2 N/m, d j = 1.48 × 10 -2 Ns/m m j = 2.65 × 10 -5 Kg, s = 7.04 × 10 -4 m Fluid f = 7.04 × 10 -4 m, m = 5.53 × 10 -8 Kg
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 7136 Figure 3.6 -Static pressure (Pa) distribution, p ρ 1 , along the tube and scaled structure displacements for different time instants and two different numbers of sections. Dashed boxes: static pressure undershoot and negative displacement of the walls.
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 37 Figure 3.7 -Displacement of the wall in the half-length point of the structure (Displacements q 26 and q 36 for N = 51 and N = 71, respectively).
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 38 Figure 3.8 -Simulation results for flexible tube using the material parameter of [10]. (a) Static pressure distribution, p ρ 1 , along the tube. (b) Wall displacement distribution, q, along the tube.

Assumption 4 . 1 .

 41 Denote by v and v the transverse and longitudinal components of the fluid velocity. The gradient of v is given by ∂ ξ v = v c /q and ∂ ζ v = 0 in each section with uniform cross-sectional area, where ζ and ξ denote the longitudinal and transverse axes, v c and q are the velocity and height of the structure wall, respectively, and v c v.

Figure 4 . 1 -

 41 Figure 4.1 -Spatial discretization of fluid variables for the finite-dimensional model. (a) Description of the density. (b): Velocity description. (c): Equivalent one-dimensional mesh.
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 42 Figure 4.2 -Arbitrary j-th sections of the fluid domain. (a) Velocity section. (b) Density section. A cj and v cjare the area and velocity of the contact surface S j in the velocity section with volume V j , v j is the corresponding average velocity and ρ j is the average density of the section con volume Vj .
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 3642 Proposition Consider an isentropic and compressible fluid with an irrotational flow. Using the discretization scheme described in Section 4.1.1, the sets of velocities and densities in the fluid sections are given by

4. 4

 4 Example: Airflow in the glottis.

Figure 4 . 3 -

 43 Figure 4.3 -Vibrating cycle induced by FSI between the intraglottal airflow and the vocal folds.
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 44 Figure 4.4 -Approximation of the glottal tract using the discretization method proposed, considering fluid sections with uniform cross-sectional areas. Dotted line represents the midsagital plane. Circles denote the number of velocity section in each glottis part.

  [START_REF] Wong | Numerical Stability of Partitioned Approach in Fluid-Structure Interaction for a Deformable Thin-Walled Vessel[END_REF] and s 21 = • • • = s 26 for all simulation time, i.e., from a computational point of view, only 2 switches are relevant.
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 46 Figure 4.6 -Overlapping of cover masses during the vocal folds collisions. Solid line: deformation for the upper mass (m 2 in Figure 4.4). Dash-dot-dotted line: deformation for the lower mass (m 1 in Figure 4.4).
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 47 Figure 4.7 -Output Flow in one vibrating cycle.

Figure 4 . 8 -

 48 Figure 4.8 -Pressure distribution in 3 instants of the vibrating cycle. Upper row: Coronal view of the glottis, where the dots represents the heights of each velocity sections. Bottom row: Pressure distribution in the glottis.

Figure 4 . 9 -

 49 Figure 4.9 -Instantaneous energy in one vibrating cycle. Left: Kinetic energy K s of the mechanical part. Middle: Potential energy P s of the mechanical part. Right: Kinetic energy K f and available internal energy Ūf of the fluid part.

Lemma 5 . 1 .

 51 Denote by D p the operator defined as D p (•) = [grad s] • ρ , that describes the effect of the entropy variation on the pressure gradient. The adjoint operator D * p in the effort space of the fluid is given by D

Lemma 5 . 2 .

 52 δ s H Ω , i.e., D * p is the adjoint of D p . Let τ be a symmetric second order tensor and D τ (•) = -1 ρ div τ ρT • an operator acting on the entropy effort δ s H. The formal adjoint operator D * τ in the effort space of the fluid is given by D

v ν s 2 ν s 1 Figure 5 . 1 -Remark 5 . 1 .

 215151 Figure 5.1 -Normal vector and tangential plane to the boundary surface ∂Ω

Lemma 5 . 4 .

 54 Consider a viscous Newtonian fluid. Defining the operators G r (•) = curl • ρ and G c (•) = div • ρ , and the corresponding formal adjoints G * r
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 3552 Proposition Consider an isentropic Newtonian fluid with state variables given by x = [ρ v ] . The fluid dynamics can be expressed by the following dissipative port-Hamiltonian system:

5 . 42 )

 542 satisfying the balance Ḣ ≤ f ∂ , e ∂ ∂Ω , with boundary ports f ∂ , e ∂ given by f ∂ = -(n • δ v H) | ∂Ω and e ∂ = δ ρ H + ec ρ | ∂Ω , obtaining the fluid model in

43 )

 43 satisfying the balance Ḣ = f ∂ , e ∂ ∂Ω , with boundary ports (f ∂ , e ∂ ) given by f ∂ = -(n • δ v H) | ∂Ωand e ∂ = δ ρ H| ∂Ω . This formulation is equivalent to the fluid model in[START_REF]Hamiltonian formulation of distributed-parameter systems with boundary energy flow[END_REF].

  s, τ n = τ : nn and τ s = τ : sn describe the normal and tangential velocity and viscous tensor contributions. The boundary port variables of the pseudo port-Hamiltonian formulation in Proposition 5.1 for a 2D fluid are given by:

5 . 49 )Remark 5 . 4 .

 54954 In the case of 1D fluids, all terms associated the vorticity vanish, and div = grad = ∂ ζ . Thus, in a 1D fluid domain Ω = {ζ ∈ [a, b] ⊂ R}, the velocity field, viscous tensor and entropy flux are given by the scalar functionsv = v(ζ), τ = -μ∂ ζ v(ζ) and f s = -k T (ζ) ∂ ζ T (ζ), respectively,where k is the scalar thermal conduction. Similarly, the outward unitary vector to the boundaries is given by n| a = -1 and n| b = 1. With these considerations, the fluid formulations in Propositions 5.1 and 5.2 can be reduced to 1D models equivalent to port-Hamiltonian-based fluid formulations found in the literature, as shown in the following Remarks. Using the considerations for differential operator and fluid variables described above, the pseudo port-Hamiltonian formulation in Proposition 5.1 can be expressed as:

5 . 51 ) 1 2 ρv 2 +

 55112 where e c = μf c , the total energy is defined as H = b a ρu(ρ) dζ and the boundary port variables are given by the boundary flows f ∂ = [-ρv| b ρv| a ] and the boundary efforts

Proposition 5 . 3 .

 53 Consider that the fluid temperature is bounded, i.e., T ∈ [T 1 , T 2 ], and define ξ = ∆T /T 1 as the maximum relative variation of temperature in the fluid domain, where ∆T = T 2 -T 1 . Denoting by c 2 * the square of the speed of sound at reference temperature T * ∈ [T 1 , T 2 ], the pressure of the fluid can be approximated by: with relative error ε p ≤ ξ.

. 78 )

 78 respectively, satisfying the relationship grad h * = grad ĥ * = grad ∂ ρ (ρū * ), as shown in Chapter 4.On the other hand, for non-isentropic fluids, such as those studied in Section 5.1, the available specific internal energy must satisfy the relationship dū = -pd 1 ρ + T ds(5.79) 
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 58255 Irreversible port-Hamiltonian formulation of 1D compressible fluids However, given that the operator D τ , of Lemma 5.2, is a function of the effort ρT , we obtain that D τ δ s H = D τ δ s H. This makes it difficult to use the energy (5.73) and efforts (5.82) in the energy-based model described in Proposition 5.1. An alternative model formulation is hence necessary to use the available specific internal energy to describe the dynamics of non-isentropic compressible fluids.

  are the entropy creation due to viscous friction and heat conduction, respectively. Similarly, -1 ρ ∂ ζ τ and -1 ρ ∂ ζ f s describe diffusion phenomena in the velocity and entropy variables, and f s = -k T ∂ ζ T denotes the specific entropy flux. Defining the entropy creation terms as σ τ = 1 ρ R 1τ ∂ ζ v and σ T = 1 ρ R 1T ∂ ζ T , the following relationships are obtained:

5 . 92 )

 592 with modulated operators J1τ e = M (x)P 1τ ∂ ζ [M (x)e] (5.93) J1T e = M (x)P 1T ∂ ζ [M (x)e](5.94)

98 )σ( 5 . 100 ) 2 + 2 ≥ 0 .-R∂ 2 +

 9851002202 where x = [ρ v s] , J δ x H describes the reversible part of the fluid dynamics and R 1τ J1τδ x H + R 1T J1T δ x H + M (x)∂ ζ M (x) 0 R 1 δ s H describes irreversible part, satisfying the balances s dζ -(sρv + f s ) | b awhere σ s = γ 1τ {S, H} * J1τ γ 1T {S, H} * J1T Proof. Using (5.87) and (5.96) the PDE (5.97) is obtained. On the other hand, the energy balance is given by Ḣ = b a δ x H ∂ t xdζ. Then, using (5.97) the energy balance can be expressed as: H) J δ x Hdζ + b a (δ x H) R 1τ J1τ δ x H + R 1T J1T δ x H dζ + b a (δ x H) M (x)∂ ζ M (x) 0 R 1 δ s H dζ From the definition of J in (5.88), b a (δ x H) J δ x H dζ = b a (δ x H) P 1 ∂ ζ δx H dζ where P 1 = Similarly, the irreversible part of the fluid dynamic satisfies the relationship:R 1τ J1τ δ x H + R 1T J1T δ x H = 1 ]M (x)∂ ζ [M (x)δ x H] H) P 1 ∂ ζ δ x Hdζ + 1 ]M (x)∂ ζ [M (x)δ x H] H) M (x)∂ ζ M (x) 0 R 1 δ s H dζ = -b a ∂ ζ (δ ρ Hδ v H) dζ + b a ∂ ζ [M (x)δ x H] M (x) 0 R 1 δ s H dζ = -(δ ρ Hδ v H)| (vτ )| b a -(T f s )| b aDefining the boundary inputs and outputs as shown in (5.98), the relationship (5.99) is obtained.Regarding the entropy balance, we have thatṠ = b a [δ x S] ∂ t xdζ = b a [δ x S] J δ x H + [δ x S] M (x)∂ ζ M (x1τ [δ x S] J1τ δ x H {S,H} * J1τ + R 1T [δ x S] J1T δ x H x S] = s 0 ρ . Notice that [δ x S] J δ x H = -s∂ ζ δ v H -δ v H∂ ζ s = -∂ ζ (sδ v H) and[δ x S] M (x) = 0 0 1 . Then, the entropy balance Ṡ is given by ζ (sδ v H + f s ) dζ = b a σ s dζ -(sρv + f s ) | b a where σ s = γ 1τ {S, H} * J1τ γ 1T {S, H} * J1T 2 ≥ 0.
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 2 [START_REF] Mora | A Scalable port-Hamiltonian Model for Incompressible Fluids in Irregular Geometries[END_REF] where J = P ∂ ζ , J 0 = P 0 and J 1 = P 1 ∂ ζ are skew-symmetric operators withP = R 0 = γ 0 {S, H} * J 0 and R 1 = γ 1 {S, H} * J 1 , where {S, H} * J 0 = hv, {S, H} * J 1 = ∂ ζ T , γ 0 = 1 f ρ 0 |v| T h

Titre:

  Modélisation Port-Hamiltonienne De L'interaction Fluide-Structure Dans Un Domaine Longitudinal Mots clefs: Interactions fluide-structure, systèmes port-Hamiltoniens, modélisation à dimension finie, fluides Newtoniens Résumé : Dans cette thèse on s'intéresse à la modélisation Hamiltonienne à ports (PHS) des interactions fluide-structure dans le domaine longitudinal. Dans un premier temps, le mouvement de la structure mécanique est modélisé en dimension finie à l'aide d'éléments masse-ressort-amortisseur. Dans un second temps, la dynamique des fluides newtoniens est décrite en divisant le domaine spatial en sous sections uniformes. Dans le cas des fluides incompressibles, un élément instrumental, appelé noeud, est utilisé pour permettre le couplage approprié entre sections de fluides. Dans le cas des fluides compressibles un maillage en quinconces est utilisé afin de caractériser la vitesse longitudinale et la densité aux différents points du domaine fluide. Les modèles discrétisés du fluide et de la structure mécanique sont ensuite interconnectés de manière conservative de puis-sance. Une variable de commutation est utilisée lorsque la structure entre en collision, obturant de ce fait une section du domaine fluide. Les simulations montrent que les résultats obtenus à partir des modèles proposés sont en correspondance avec des formulations plus complexes trouvées dans la littérature. Finalement la description de la classe de systèmes considérée avec domaine variant dans le temps est explicitée à l'aide du formalisme Hamitlonien à ports. Dans un troisième temps, une formulation Hamiltonienne à ports de dimension infinie est proposée pour la dynamique des fluides newtoniens compressibles isentropiques et non isentropiques en dimension 3. Une première formulation thermodynamique basée sur la formulation Hamiltonienne à ports irréversible est finalement proposée pour les fluides newtoniens compressibles unidimensionnels. Title : Port-Hamiltonian Modeling of Fluid-Structure Interactions in a Longitudinal Domain Keywords : Fluid-structure interactions, port-Hamiltonian systems, finitedimensional modeling, Newtonian fluids Abstract : This Thesis presents modeling based on port-Hamiltonian systems (PHS) of the fluid-structure interaction in a longitudinal domain. Firstly, finite-dimensional modeling based on a mass-spring-damper formulation is presented to describe the transverse motion of the structure. Secondly, the dynamics of Newtonian fluids are described by dividing the fluid domain into n f sections with uniform cross-sectional area.

  

  ener. in masses Consider the total energy defined in(2.33). The port-Hamiltonian model of the BCM is of the form:

	+	P sj	+	P col sj	(2.33)
	j		j		
	Pot. ener. in springs	Pot. ener. in col. springs	
	Proposition 2.2.				

  [START_REF] He | A hemodynamic model with a seepage condition and fluid-structure interactions for blood flow in arteries with symmetric stenosis[END_REF] 

  • • • P 1n f ] and P 2 = [P 21 • • • P 2n f ] are the sets of inlet and outlet total pressures, respectively, of the incompressible sections;

  1 , Q 2 } of the incompressible section model are compatible with the inputs {Q ρ 1 , Q ρ 2 } of the node model. Similarly, the inputs {P 1 , P 2 } are compatible with outputs {p ρ 1 , p ρ 2 }. However, {p ρ 1 , p ρ 2 } are static pressures and {P 1 , P 2 } are total pressures. Thus, we describe the flow dynamics as shown in the following proposition. be the total pressure sets at the inlet and outlet boundaries of the nodes where p ρ d is the set of dynamic pressures in the nodes, and {P i , Q i } and {P o , Q o } the pairs of total pressure and flow at the inlet and outlet boundaries of the fluid domain, respectively. There exist matrices C 1 , C 2 , C 1 * and C 2 * , defined as

	Proposition 3.3. Let P ρ 1 = p ρ 1 + p ρ d and P ρ 2 = p ρ 2 + p ρ d

Table 4 .

 4 

	1 -Simulation parameters
	Parameters of BCM [72]

  6, i.e., R 1τ = γ 1τ {S, H} *

	we obtain that {S, H} * J1τ		
			J1τ and R 1T =
	γ 1T {S, H} * J1T , where {S, H} * J1τ and {S, H} * J1T are locally defined operators of the form (1.31),
	and the total entropy S is defined as:		
	b		
	S =	ρsdζ	(5.95)
	a		

Appendix A Useful Identities and Theorems

The set of mathematical identities [101, Appendix A] used in this work are described below:

where f is a scalar, u is a vector and σ is a symmetric second order tensor.

Theorem A.1 (Gauss Divergence Theorem). Let be a domain Ω, enclosed by the boundary surface ∂Ω, then

where n denotes the outward unitary vector to the boundary ∂Ω

Proof. See [101, p. 704]

Theorem A.2 (Adjoint of div ). Let be the Hilbert space of the square integrable scalar functions, denoted by H 0 = L 2 (Ω, R), and the Hilbert space of the square integrable vector functions, denoted by

Given the operators div : H 1 → H 0 and grad : H 0 → H 1 , where -grad is the formal adjoint of div , then,

where for BC equal to 0, the relationship f, div u H 2 = -grad f, u H 1 is obtained.

Theorem A.3. [START_REF] Brugnoli | Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates[END_REF] Consider the Hilbert space of the square integrable vector functions H 1 , and the Hilbert space of square integrable second order tensors H 2 := L 2 (Ω, R n×n ). Given the operators div : H 2 → H 1 and Grad :

Then, the formal adjoint of div is -Grad and for any symmetric tensor σ ∈ H 2 and vector u ∈ H 1 , the following relationship is satisfied

Then, we obtain:

Thus, for BC equal to 0 we obtain div σ, u

Rewritten previous equation we obtain the relationship (A.11). Similarly, considering boundary conditions equal to 0,

Theorem A.5. Let x ∈ H 1 be the state vector of a dynamic system, F (x) ∈ H 1 and α(x) ∈ H 0 be square integrable vector and scalar functions, respectively, such that, for any f ∈ H 0 we obtain that F (x)f ∈ H 1 and α(x)f ∈ H 0 . Define the operator D :

Proof. Let f j , j ∈ {1, 2} be a square integrable scalar function. Consider f α j ∈ H 0 and f F j ∈ H 1 as the scalar and vector functions defined as f α j = α(x)f j and f F j = F (x)f j , respectively. Using the inner product f 1 , Df 2 H 0 , we obtain that:

Then, considering boundary conditions equal to 0, we obtain the relationship

Theorem A.6. Let D : H 0 → H 0 be an operator defined as Df = F (x)grad (α(x)f ) + α(x)div (F (x)f ), such that, for any f ∈ H 0 we obtain that F (x)f ∈ H 1 and α(x)f ∈ H 0 . Then, the D is a formal skew-adjoint operator.

Proof. Let f j , j ∈ {1, 2} be a square integrable scalar function. Consider f α j ∈ H 0 and f F j ∈ H 1 as the scalar and vector functions defined as f α j = α(x)f j and f F j = F (x)f j , respectively. Then, inner product f 1 , Df 2 H 0 is given by:

Using (A.12) the expression (A.13) is rewritten as:

Finally, considering boundary conditions equal to 0, from (A.14) we have that

This implies that the formal adjoint of D is given by D * = -D, i.e., D is a formal skew-adjoint operator. Primeramente, se presenta un modelado de dimensión finita basado en una formulación masa-resorte-amortiguador para describir el movimiento de la estructura. Segundamente, la dinámica de los fluidos Newtonianos se describe dividiendo el dominio de los fluidos en n f secciones con área transversal uniforme. Para fluidos incompresibles, se utiliza un elemento instrumental, llamado nodo, para permitir un acoplamiento apropiado, desde un punto de vista puerto-Hamiltoniano, de las secciones del fluido. Para fluidos compresibles, se utiliza una malla escalonada para describir la velocidad longitudinal y la densidad en el dominio del fluido. Para acoplar los modelos de dimensión finita del fluido y la estruc-tura, se usa una interconexión que preserva la energía y se presenta un enfoque de conmutación para los problemas con colisión de la estructura. Las simulaciones muestran que los resultados obtenidos con los modelos propuestos se corresponden con formulaciones más complejas encontradas en la literatura. Terceramente, la descripción de sistemas con dominios variables utilizando el enfoque puerto-Hamiltoniano de dimensión infinita es estudiada. Como paso inicial, se presentan varias formulaciones de dimensión infinita para fluidos Newtonianos compresibles isentrópicos y no isentrópicos en un dominio 3D constante. Finalmente, se propone una formulación basada en el enfoque puerto-Hamiltoniano irreversible de dimensión infinita para fluidos Newtonianos compresibles no isentrópicos unidimensionales.
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