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Notation

Notation
Spatial Variables

t time
ζ Longitudinal axis
ξ Transverse axis
z Sagittal axis
Ω Spatial Domain

Port-Hamiltonian Systems
H Total energy or Hamiltonian
u Input vector
y Output vector
x State vector
X State space
e Efforts variables
f Flow variables

e∂ Boundary effort port variables
f∂ Boundary flow port variables

Mathematical Operations
> Transpose of a vector or matrix
Tr Trace of a matrix

u1 · u2 dot product, u>1 u2
u1u2 Diadic product, also called external product, u1u2 = u1u

>
2 = u1 ⊗ u2

u1 × u2 cross product
σ1 : σ2 scalar product between 2 tensors, Tr(σ>1 σ2)
u · σ dotted product of a tensor with a tensor. The i-th component of u · σ

is
∑
j ujσji and the i-th component of σ · u is

∑
j σijuj

|v| Absolute value
‖u‖ l2-norm:

√
u · u

‖u‖X Weighted l2-norm:
√
u · [Xu] with X > 0

Differential Operators1,2

ẋ Total time derivative, dx
dt

∂x Partial derivative, ∂
∂x , x ∈ {t, ζ, ξ, z,x}

δx Variational derivative, δ
δx

div Divergence of a vector, div u := ∇ · u, return a scalar
div Divergence of a tensor, div σ := ∇ · σ, return a vector

grad Gradient of a scalar, grad f := ∇f , return a vector
Grad Gradient of a vector, Grad u := ∇u, return a tensor

curl Curl or rotational, curl u := ∇× u, return a vector

1 Nabla operator: ∇ =
[
∂ζ ∂ξ ∂z

]>.
2 Operators single notation returns a scalar, as for example div ; operators with bold notation returns a

column vector, as for example div ,grad and curl ; and operators with bold notation and capital first letter
return a tensor, as for example Grad .
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Notation

Structure
µ, λ Lamé coefficients of the structure material
ρs Density of the structure material

r, h, L Internal radius, thickness and length of a flexible tube
`s Length of structure sections
ns Number of structure sections
mj j-th mass of the MSD approximation
πsj Momentum of the j-th mass
vsj Velocity of mass j
qsj Position of mass j
q0
sj Position of mass j at instant t = 0
qj Displacement of mass j, qj = qsj − q0

sj

kj , kcj , k
col
j Coefficients of j-th lateral, coupling and collision springs

ηj , η
col
j Non-linear parameter of j-th lateral and collision springs
dj Coefficient of the j-th damper
ζj Dimensionless dissipation factor of j-th damper

πs, qs Sets of structure momenta and displacements
Ksj Kinetic energy associated with mass j
Psj Potential energy associated with spring j

Fluid
ρ Density
v Velocity field

v, v Velocities on ζ and ξ axis
τ Newtonian viscosity tensor

µ, κ Kinematic and dilatational viscosities
p Static pressure
pd Dynamic pressure
P Total pressure, P = p+ pd

Pi, Po Total pressures on inlet and outlet boundaries
Q,Qm Volumetric and mass flow
βS ,m Bulk modulus and mass of nodes

Aj , Acj Cross-sectional area and fluid-structure contact area of j-th fluid section
πζj Longitudinal momentum of the j-th fluid section

Kf ,Pf Kinetic and internal energies of the fluid
u, s, h Specific (per unit mass) internal energy, entropy and enthalpy

T Temperature
fT , fs Heat and entropy fluxes

ρ0 Reference density
p0, h0 pressure and enthalpy at ρ0
p̂, ĥ Relative pressure and specific enthalpy, p̂ = p− p0, ĥ = h − h0
ū Available specific internal energy

Abbreviations
PHS port-Hamiltonian system
FSI Fluid-structure interactions
BC Boundary conditions
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Chapter 1
Introduction

1.1 Motivation

Fluid-structure interaction (FSI) is a sub-discipline in science and engineering, focused on
the description of the interactions between fluids and mechanical structures [1]. FSI raises
challenges associated with the fluid and structural mechanics subproblems, as well as with
their coupling. FSI can be characterized as a class of problems for which exists a mutual
dependence between the fluid and the structural mechanical domains. The flow behavior is
driven by the shape of the structure and its motion, and the motion and deformation of the
structure is driven by the fluid forces acting on the contact surface, also called coupling surface
[1, 2].

FSI can be found in problems in engineering, science and medicine, such as performance
analysis of power generation with wind turbines [3, 4] and aerodynamics of aircrafts [5], mod-
eling of insect flight [6, 7], interactions between water waves and floating objects [8], in the
analysis of blood flow [9, 10, 11, 12] with several applications, ranging from analyzing the
blood flow in an cerebral aneurysm, to study the pressure wave propagation in an artery, as
shown in Figures 1.1a and 1.1b, respectively ; human voice production [13, 14, 15, 16] as the
analysis of the intraglottal airflow during the vocal folds vibration cycle, as shown in Figure
1.1c, and in sound generation of musical instruments [17].

FSI can be described by a set of differential equations and boundary conditions which belong
to the fluid and structure domains. The structure domain is governed by motion equations,
obtained by an Euler-Lagrange formulation. The fluid domain is usually described using the
Navier-Stokes equations. When modeling the coupling between the fluid and structure domains
the following three conditions have to be satisfied [19]:

• A geometric condition, i.e., the domains can not overlap.

• A kinematic condition, i.e., the velocities of the fluid and the structure at the coupling
surface are the same, and finally,

• A dynamic condition that prescribes a balance of normal stresses at the boundary in
terms of actio et reactio.

From a numerical point of view, FSI problems are very challenging to handle, as they are de-
scribed by nonlinear partial differential equations (PDEs) defined on moving boundaries. They
require an appropriate grid for the mechanical and fluid domains, a clear delineation of fluid-

1



Chapter 1. Introduction

(a) Blood flow in a cerebral aneurysm [18]. Left: flow velocity contours and stream lines. Middle: Shear
stress in the arterial wall. Right: flow pressure contours.

(b) FSI in blood flow. Arterial pressure wave
propagation [12].

(c) Comparison of the intraglottal airflow in the vocal
folds using different meshes [14].

Figure 1.1 – Examples of FSI systems in engineering, biology and biomedical sciences.
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1.1. Motivation

structure interface, an appropriate estimation of the nonlinear dynamics, and the numerical
stability of the discretization methods. In the literature, different approaches have been pro-
posed to tackle these problems. For example, to guarantee the numerical stability of the fluid-
structure time discretization, algorithms as the nonlinear generalized-α time integration scheme
[20], Leap Frog-Implicit Euler time discretization scheme and First order Backward Difference-
Implicit Euler scheme [21] are used. In [22] an axisymmetric Navier-Stokes Prandtl (RNS-P)
system is used to simplify the analysis of the fluid-structure dynamics applying finite volume
“multiring” space-time discretization algorithm. Other well-known algorithms that prevent
numerical instabilities in the computation of the fluid-structure dynamics are the streamline-
upwind/Petrov–Galerkin (SUPG) [23, 19] and the pressure-stabilizing/Petrov–Galerkin (PSPG)
methods [1, 19].

On the other hand, regarding the problem of moving boundaries in the fluid domain, there
are approaches such as space-time methods [24, 1] and the well-known arbitrary Lagrangian-
Eurelian (ALE) schemes [25, 26, 19]. In these methods, also called interface-tracking techniques,
adaptive mesh (or moving-mesh) and remeshing algorithms are used. In these algorithms, the
mesh moves to accommodate to the shape changes in the spatial domain occupied by the
fluid, and as the mesh moves, sometimes it is necessary to remesh, i.e., to generate a partial
or complete new set of elements or new set of nodes and elements,as shown in Figure 1.2, to
improve the accuracy of the computational solution [27].

Adaptive mesh Remeshing

Figure 1.2 – Adaptive mesh and remeshing of the fluid domain in interface-tracking techniques [28].

In problems where contact between structural surfaces is involved and bringing the flow
through the gap to zero is relevant, as for example in the description of the airflow in the
glottis, the adaptive mesh methods would be more difficult to use [27]. As commented in [14],
during phases with narrow gap or contact between structural surfaces, extremely distorted
cells with a zero or even negative volume impair the numerical simulation and lead to a break-
off in the worst case. In this sense, several approaches have been proposed in the literature.
In [14] an overset mesh around the structure is used. Wherever the overset and background
meshes overlap, the occluded cells of the background mesh become disabled and the overset
cells become enabled and to avoid elements with zero or negative volume, at least four cells
remain between the structural surfaces during the closure, allowing a minimum gap with a

3



Chapter 1. Introduction

small and negligible flow leakage. In [29], when the distance between the structural surfaces
is less than a threshold value, the mesh at the corresponding zone is not further modified and
the flow velocity is set to zero, and in [30, 31] a remesh strategy is used at each time instant.

Figure 1.3 – Longitudinal fluid flow interacting with a mechanical structure with transverse motion.

In this thesis we consider the FSI between a longitudinal fluid flow and a mechanical
structure with transverse motion, as shown in Figure 1.3. Even if this problem is simpli-
fied regarding the 3D fluid-structure interactions, it has interesting applications in different
research areas, as for example the study of hemo-dynamic in veins and arteries [32, 11] and
the human phono-respiratory system [14, 16], among others. In the classical analysis of this
problem, discretizing the PDE’s that describe the fluid and structure behavior, the applica-
tion of several computational algorithms is necessary to guarantee the appropriate coupling of
physical domains, the stability and the accuracy of the numerical results, as discussed above.
As a first approximation, we consider some symmetrical assumptions, as shown in Chapters
2, 3 and 4, in the behavior of the fluid and structure, to obtain finite-dimensional models of
both subsystems with an appropriate description of the fluid-structure dynamics. This allows
us to avoid the use of mesh algorithms as in classical discretization of infinite-dimensional for-
mulations. The use of finite-dimensional models in FSI problems is common in applications
such as the vocal-folds vibrating cycle, where the layered tissue-epithelium, lamina propria and
vocalis muscle exhibit two dominant eigenfrequencies whose behavior can be described through
simplified mass-spring-damper models [33]. Moreover, we use the port-Hamiltonian frame-
work in the modeling and coupling of both finite-dimensional subsystem. The advantage of
this framework is that it focuses on the energy flux description between the system elements,
proving stability and passivity properties to the model, allowing to define fluid-structure power
transfer through a power-preserving interconnection. The aim of this approach is to obtain
an appropriate description of the FSI problem described in Figure 1.3, reducing the model
complexity of the classical numerical models. Finally, to advance in the numerical formula-
tion of the FSI problem, we present general infinite-dimensional port-Hamiltonian models for
Newtonian compressible fluids under isentropic and non-isentropic assumptions.

In the next section, we present the basic concepts of port-Hamiltonian systems, considering
the finite-dimensional and the infinite-dimensional formulations, and also the irreversible port-
Hamiltonian systems used in non-isentropic thermodynamics problems. In this sense, a bold
notation is used to define vectors, ∂x = ∂

∂x and δx = δ
δx are used to denote partial and variational

derivatives, respectively, and ẋ = dx
dt

denotes the time derivative of x.
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1.2. Background on port-Hamiltonian systems (PHS)

1.2 Background on port-Hamiltonian systems (PHS)

As mentioned above, port-Hamiltonian formulations define a modeling framework that fo-
cuses on the energy flux. This framework has been initially introduced in [34, 35, 36] for
finite-dimensional systems and in [37, 38, 39, 40] for infinite-dimensional systems. In this
framework, the system dynamics is described in terms of driving forces expressed through
derivatives (partial and variational derivatives for finite-dimensional and infinite-dimensional
systems, respectively) of the total energy stored by the system, i.e., a non-negative function H
with respect to energy variables, i.e., the state vector x. Similarly, the input u and output y
are power-conjugated, describing the power supplied through the system ports. A feature of
the finite-dimensional PHS is given by the inequality Ḣ ≤ u>y, i.e., the rate of of change of the
system stored energy is bounded by the instantaneous power supplied through the ports. This
feature combined with non-negativity characteristic of H, guarantees passivity and stability
properties which are useful for control purposes [41]. As shown in [42, 43], these properties can
be extended to infinite-dimensional PHS. Additionally, energy-based control methods, such as
energy-shaping, damping injection and IDA-PBC, are based on PHS models [42, 41]. Other
advantage is that PHS are associated with a Dirac structure (see [44] for details), allowing the
use of differential geometry tools to work without considering coordinates, which is suitable for
the discretization of infinite-dimensional formulations. In order to exploit these advantages,
the port-Hamiltonian framework has been used to describe dynamic systems in several appli-
cation areas, such as the sound generation in musical instruments [45, 46, 47], the human voice
production [48, 49], plasma dynamics [50] and mechanical systems [51, 52, 53], among others.

From the FSI point of view, the principal advantage of using PHS is the use of the energy as
lingua franca between different physical domains, allowing the coupling of two systems through
a power-preserving interconnection. This implies that fluid and structure models are described
using the same tool and can be coupled by the power transfer between the sub-systems, as
shown in [54, 55, 56].

1.2.1 Finite-dimensional port-Hamiltonian systems

Finite-dimensional PHS are described using a set of ODEs. According to [44, 42], the general
finite-dimensional PHS formulation, called input-state-output port-Hamiltonian system with
feed-through term, is defined as follows.

Definition 1.1. [44, 42] Consider the state space X of a dynamic system, and the non-negative
function H : X → R defining the stored energy. An input-state-output port-Hamiltonian system
with feed-through term is described by the following dynamic equations:

ẋ = [J(x)−R(x)] ∂xH + [G(x)− P (x)] u (1.1a)
y = [G(x) + P (x)]> ∂xH + [M(x) + S(x)] u (1.1b)

where x ∈ X is the state vector, u and y are the input and output vectors, respectively,
J(x) = −J>(x), M(x) = −M>(x), and matrices R(x), P (x) and S(x) satisfy[

R(x) P (x)
P>(x) S(x)

]
≥ 0 (1.2)

5



Chapter 1. Introduction

such that, the power balance satisfies the following relationship:

Ḣ = u>y−
[
∂xH

u

]> [
R(x) P (x)
P>(x) S(x)

] [
∂xH

u

]
≤ u>y (1.3)

where u>y denotes the power supplied to the system.

Remark 1.1. Notice that in (1.1) the matrices are function of the state. This implies that (1.1)
describes a non-linear system (see [41] for details). In the case of linear systems all matrices in
(1.1) are constant, i.e., the PHS framework encompasses both, linear and non-linear systems.

Given the non-negative condition (1.2), S(x) = 0 implies that P (x) = 0. Then, in this case
the input-state-output port-Hamiltonian system with feed-through term (1.1) can be expressed
as:

ẋ = [J(x)−R(x)] ∂xH +G(x)u (1.4a)
y = G>(x)∂xH +M(x)u (1.4b)

satisfying

Ḣ = u>y− [∂xH]>R(x)∂xH ≤ u>y (1.5)

Similarly, ifM(x) = 0 the ODEs (1.4) are simply called input-state-output port-Hamiltonian
system. Moreover, PHS are associated to a geometric structure named Dirac structure. In this
respect, according to [44, p. 48] the skew-symmetric matrix J(x) = −J>(x) must satisfy an
integrability condition associated with the Jacobi identity, i.e., for every E ,F ,G : X → R, then

{E , {F ,G}}+ {F , {G, E}}+ {G, {E ,F}} = 0 (1.6)

where {F ,G} = [∂xF ]> J(x)∂xG is the Poisson bracket on X . If the integrability condition (1.6)
is not satisfied, then, the structure generated by (1.1)-(1.3) is called pseudo-Dirac structure,
and the system described in Definition 1.1 is considered as a pseudo port-Hamiltonian system
(see [44, 42] for details). Notice that, in the linear case the skew-symmetric matrix J =
−J> is constant and satisfies directly the Jacobi identity, i.e., all linear PHS generate a Dirac
structure.

1.2.1.a Interconnection of port-Hamiltonian systems
An advantage of PHS is the use of the energy as lingua franca. This allows the coupling

of two subsystems defined on different physical domains through a power-preserving intercon-
nection. In this sense, according to [44] two types of power-preserving interconnections are
commonly used in the PHS framework: the interconnection by ports and the interconnection
by energy.

To explain these interconnection methods, consider two PHS in the from:

ẋj = [Jj −Rj] ∂xjHj +Gjuj (1.7a)
yj = G>j ∂xjHj (1.7b)

6



1.2. Background on port-Hamiltonian systems (PHS)

with j ∈ {1, 2}.
The interconnection by ports is used when the ports of the two systems are compatible,

i.e., the power transfer between the systems is given by ū>1 ȳ1 = −ū>2 ȳ2, where ūj ⊆ uj and
ȳj ⊆ yj, such that {ūj, ȳj} define the connection ports of the system j. Then, the two systems
can be coupled using the following interconnection rule:

[
ū1
ū2

]
= C

[
ȳ1
ȳ2

]
(1.8)

where C = −C> is the coupling matrix. To illustrate this method, let us consider a mass-
spring system, as shown in Figure 1.4a. The potential energy stored by the spring is given

k

Fk

vk

m
vm

F1

F2

(a) Mass-spring system

m

mg

Fe q

R

L(q)

+ V −

I

ϕ

(b) Levitated ball

Figure 1.4 – Illustrative examples of power-preserving interconnections. a) Mass-spring system uses
interconnection by ports b) levitated ball uses interconnection by energy.

by Hk = 1
2kq

2 where k and q are the spring coefficient and elongation, respectively, and
Fk = ∂qHk = kq is the restoring force associated with q. Then, the PHS model for this spring
is given by:

q̇︸︷︷︸
ẋ1

= 0∂qHk + vk︸︷︷︸
u1

Fk︸︷︷︸
y1

= ∂qHk

7



Chapter 1. Introduction

Similarly, the kinetic energy stored by the mass is given by Hm = 1
2p

2/m where p = mvm
and vm = ∂pHk = p/m denote the mass momentum and velocity, respectively. Then, the PHS
formulation of the mass dynamics is expressed as:

ṗ︸︷︷︸
ẋ2

= 0∂pHm +
[
−1 1

] [F1
F2

]
︸ ︷︷ ︸

u2[
−vm
vm

]
︸ ︷︷ ︸

y2

=
[
−1
1

]
∂pHm

Notice that the power transfer between the mass and the spring is given by vkFk = vmF1.
Then, defining the connection ports {ū1, ȳ1} = {vk, Fk} and {ū2, ȳ2} = {F1,−vm}, mass and
spring can be coupled using the interconnection:

[
ū1
ū2

]
= C

[
ȳ1
ȳ2

]
=⇒

[
vk
F1

]
=
[
0 −1
1 0

] [
Fk
−vm

]

leading to the following mass-spring PHS model:
[
q̇
ṗ

]
=
[

0 1
−1 0

] [
∂qH
∂pH

]
+
[
0
1

]
F2

vm =
[
0 1

] [∂qH
∂pH

]

where H = Hk +Hm.
Regarding the interconnection by energy, it is used when the ports are not compatibles and

the energy of one or both systems are linked such that the coupling is only possible considering
a combination of the two energies. Consider for example a magnetically levitated iron ball
system, as shown in Figure 1.4b. In this case, the potential and kinetic energy stored by the
ball is given by Hb = mgq + 1

2p
2/m where m, q and p are the mass, position and momentum

of the ball, respectively, and g is the gravity acceleration, such that Fg = ∂qHb = mg is the
gravitational force acting on the ball and vb = ∂pHa = p/m is the corresponding displacement
velocity. Then, considering that the momentum balance is given by ṗ = −Fg +Fe, where Fe is
the force induced by the electromagnetic field, and q̇ = vb, the PHS model of the ball is given
by:

[
q̇
ṗ

]
︸︷︷︸
ẋ1

=
[

0 1
−1 0

] [
∂qHb

∂pHb

]
+
[
0
1

]
Fe︸︷︷︸
u1

vb︸︷︷︸
y1

=
[
0 1

] [∂qHb

∂pHb

]
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1.2. Background on port-Hamiltonian systems (PHS)

On the other hand, the energy stored by the electric circuit is given by He = 1
2ϕ

2/L(q)
where ϕ is the magnetic flux-linkage of the inductor, L(q) is the corresponding inductance, and
I = ∂ϕHe denotes the circuit current. Then, the corresponding PHS model is expressed as:

ϕ̇︸︷︷︸
ẋ2

= −R∂ϕHe + V︸︷︷︸
u2

I︸︷︷︸
y2

= ∂ϕHe

where R is the resistance and V denotes the source voltage. In this case, the ports {u1,y1}
and {u2,y2} are not compatible, hence an interconnection by ports is not possible. However,
given the dependence of the inductance L on the ball position q, the force induced by the
electromagnetic field on the ball can be expressed as Fe = −∂qHe =

(
ϕ
L(q)

)2
∂qL(q), i.e., the

coupling of the electric and the mechanical systems is obtained by combining the energy of the
two systems, H = Hb +He, such that Fg − Fe = ∂qH. Thus, the coupled system is described
as:  q̇ṗ

ϕ̇

 =

 0 1 0
−1 0 0
0 0 −R


∂qH∂pH
∂ϕH

+

0
0
1

V

I =
[
0 0 1

] ∂qH∂pH
∂ϕH


This example illustrates how two systems can be interconnected by energy. In the case of

FSI problem, the mechanical and the fluid subsystems are described using finite-dimensional
PHS models that have ports associated with the velocities and the forces on the contact surface
between the two subsystem. This implies a compatibility to make an interconnection by ports.
However, notice that the fluid domain varies according to the structure motion. This implies
that the fluid energy is linked to the state variables of the structure model, and, as a conse-
quence, additional driving forces appear when both system are coupled. To solve this problem,
in [57], for example, an additional state variable is included in the fluid model to describe the
changes in the fluid domain. In this thesis, we propose a power-preserving interconnection that
combine the properties of the interconnection by ports and by energy, as shown in Chapters 3
and 4, guarantying that the kinematic and dynamic conditions, described in Section 1.1, are
satisfied.

1.2.2 Infinite-dimensional port-Hamiltonian systems

When the PHS are defined on infinite dimensional domains Ω with boundary ∂Ω, the
state variables depends on time t and on the spatial variable ζ, i.e., x = x(ζ, t) ∈ L2(Ω,Rn).
Similarly, the total energy is defined as a functional in Ω, i.e., H = H(x) ∈ F, where F denotes
the space of smooth functionals of the form:

F(x) =
∫

Ω
f(x)dΩ (1.9)

9



Chapter 1. Introduction

with f(x) as a smooth function that defines the density of F in Ω, and satisfies δxF = ∂xf(x),
where δxF = δF

δx denotes the variational derivative of the functional F , that is defined as the
unique function that satisfy:

F(x + εδx) = F(x) + ε
∫

Ω
δxFδxdΩ +O(ε2) (1.10)

for every ε ∈ R and smooth real function δx(ζ), ζ ∈ Ω, such that their derivatives satisfy
δ(j)x(ζ)|∂Ω = 0, j = 0, . . . , n [58, 42].

In infinite-dimensional PHS the driving forces are given by the variational derivative of the
total energy functional, δxH, and the dynamics are described using a Hamiltonian differential
operator acting on δxH. A Hamiltonian operator is defined as follows.

Definition 1.2. [58] A linear operator J is called Hamiltonian if it satisfies the following
conditions for every (F ,G, E) ∈ F:

a.- Skew-symmetry:

{F ,G}J = −{G,F}J (1.11)

b.- Jacobi identity: {
F , {G, E}J

}
J

+
{
G, {E ,F}J

}
J

+
{
E , {F ,G}J

}
J

= 0 (1.12)

where {F ,G}J =
∫

Ω (δxF)> J δxGdΩ, with boundary conditions equal to 0, denotes a Poisson
bracket on infinite-dimensional domains.

In [39] a parametrization of the boundary flow and effort variables is given in order to define
a Dirac structure for 1D linear systems and then to define a PHS described by PDEs in the
form ∂tx = J δxH, where δxH = Lx, with L = L> ≥ 0 ∈ Rn×n, and J is a Hamiltonian
operator of order n, in a domain Ω := {ζ ∈ [a, b] ⊂ R}, defined as:

J e =
n∑
j=0

Pj∂
j
ζe, ζ ∈ [a, b] (1.13)

with Pj = (−1)j+1P>j . The parameterization of the boundary flow and effort port variables, f∂
and e∂ respectively, is given in terms of matrices P1, P2, . . . , Pn and the system efforts δxH at
the boundary. These boundary port variables are used to define the system inputs and outputs,

u(t) and y(t) respectively, using full rank matrices Wb and Wc such that
[
Wb

Wc

]
is invertible and

WbΣW>
b ≥ 0 (1.14)

where Σ =
[
0 I
I 0

]
. This parametrization of the boundary flow and effort port variables and the

system inputs and outputs, guarantee the existence of solutions and the exponential stability
of linear systems, i.e., the PHS is well-posed [39, 43].
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1.2. Background on port-Hamiltonian systems (PHS)

In this Thesis only differential operators of order 1 are used, i.e., in the case of 1D linear
systems the Hamiltonian operators is defined as:

J e = P1∂ζe + P0e, ζ ∈ [a, b] (1.15)

where P1 = P>1 and P0 = −P>0 .

Definition 1.3. [39] Let H ∈ F be the total energy of a linear 1D dynamical system with state
variables x = [x1 · · · xn]>. Then, the impedance passive port-Hamiltonian formulation is given
by:

∂tx = J δxH (1.16a)

u(t) = Wb

[
f∂
e∂

]
(1.16b)

y(t) = Wc

[
f∂
e∂

]
(1.16c)

where
[
Wb

Wc

]
invertible, such that

WcΣW>
c = WbΣW>

b = 0 and WbΣW>
c = I (1.17)

satisfying the balance equation

Ḣ = f>∂ e∂ = y>u (1.18)

with the boundary port variables (f∂, e∂) defined as
[

f∂
e∂

]
= Rext

[
δxH|b
δxH|a

]
(1.19)

where Rext = 1√
2

[
P1 −P1
I I

]
is invertible and satisfies R>extΣRext =

[
P1 0
0 −P1

]
.

Notice that the previous definition provides a basic PHS formulation for non-dissipative
system with differential operators of order 1. For a general formulation with 1D operators
of order n see [39]. The case of dissipative systems is considered in [40], extending the port-
Hamiltonian approach for PDEs of the from:

∂tx = J δxH− G∗SGδxH (1.20)

where the term G∗SGδxH describes the dissipative elements of the system, with G∗ = −G>1 ∂ζ +
G>0 as the formal adjoint of the 1D operator G = G1∂ζ + G0 and S is a coercive operator on
L2(Ω,Rn), i.e., there exist a c > 0 such that 〈Sx,x〉L2 ≥ c 〈x,x〉L2 .

11
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Definition 1.4. [40] Let H ∈ F be the total energy of a dynamic system with state variables
x = [x1, · · · . xn]>. Denoting by fR = GδxH and eR = SfR the flows and efforts associated
with the system power dissipation. Then, the associated dissipative port-Hamiltonian system is
given by: [

∂tx
fR

]
=
[
J −G∗
G 0

] [
δxH
eR

]
(1.21a)

u(t) = Wc

[
f∂
e∂

]
(1.21b)

y(t) = Wb

[
f∂
e∂

]
(1.21c)

where
[
Wc

Wb

]
invertible, such that

WcΣW>
c = WbΣW>

b = 0 and WbΣW>
c = I (1.22)

satisfying the balance equation

Ḣ ≤ y>u (1.23)

with the boundary port variables (f∂, e∂) defined as

[
f∂
e∂

]
= Rext


δxH|b
eR|b
δxH|a
eR|a

 (1.24)

where Rext = 1√
2

[
P̃1 −P̃1
I I

]
is invertible and satisfies R>extΣRext =

[
P̃1 0
0 −P̃1

]
with P̃1 =[

P1 G>1
G1 0

]
.

The port-Hamiltonian formulations (1.3) and (1.21) can also be extended to multi-dimensional
systems, as shown [59, 60, 61] for 2D models of the wave equation and thin plates, and [62] for
3D isentropic compressible fluids with irrotational flows, among others.

It is important to notice that in the above port-Hamiltonian formulations the Hamiltonian
operators are independent of the state variables and generate a Dirac structure, see [39, 40] for
details. However, in the general nonlinear case, according to [58] a Hamiltonian operator can
depend on the state. In this sense, [57, 63] prove that a particular skew-symmetric operator
J (x) of the form J e = 1

2

[
P (x)>∂ζe + ∂ζ (P (x)e)

]
can also generate a Dirac structure.

On the other hand, it is necessary to highlight that the dissipative port-Hamiltonian for-
mulations described in subsections 1.2.1 and 1.2.2 are useful to describe irreversible physical
systems where the thermal domain is irrelevant and can be neglected. In problems where
the thermodynamic of the system is relevant, as for example exothermic and endothermic
chemical reactions, heat exchangers and transport of superheated steam, among others, other
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approaches as GENERIC [64] and pseudo port-Hamiltonian formulations are used [65, 66]. In
the next section we introduce the irreversible port-Hamiltonian formulation, that is, a pseudo
port-Hamiltonian approach focused on the appropriate description of the entropy S (second
law of thermodynamic) to model the thermal domain.

1.2.3 Irreversible port-Hamiltonian systems

An irreversible port-Hamiltonian system is an energy-based formulation focused in the de-
scription of irreversible process, proposed initially in [67, 68]. Unlike the dissipative port-
Hamiltonian system, where the irreversible phenomena is described through energy dissipative
elements, neglecting the thermal effects, in the irreversible port-Hamiltonian approach the ther-
mal domain is described using the entropy as a state variable, including in the port-Hamiltonian
structure an element defined by the Poisson brackets that is useful to describe the second law
of Thermodynamics in the dynamic equations (see [67, 68] for details).

To describe the thermodynamics we consider first the Gibbs equation:

dU = −pdV + TdS +
∑
i

νidNi (1.25)

that describes the local variations of the internal energy U as a function of the intensive
variables p, T and νi, respectively pressure, absolute temperature and chemical potential of
i-th chemical specie; and the variations of the extensive variables V , S and Ni, respectively the
volume, entropy and number of moles of the i-th chemical specie. Equation (1.25) defines the
thermodynamic equilibrium of a system where −pdV +∑

i νidNi and TdS describe the energy
contributions by "work" and "heat", respectively, i.e., the Gibbs equation represents a geometric
structure in the space of thermodynamic variables, building the thermodynamic framework
[69] and it naturally leads to Legendre transformations between thermodynamic potentials,
depending on which variables are chosen as the independent ones, (see [69, Appendix A.4] for
details).

The finite-dimensional irreversible PHS are defined as follows.

Definition 1.5. [67] Let x ∈ Rn be the state vector of an irreversible system with total internal
energy U = U(x) and entropy S. An irreversible port-Hamiltonian system is defined as

ẋ = R(x, ∂xU)J∂xU +W (x, ∂xU) + g(x, ∂xU)u (1.26)

where u ∈ Rm is the input vector, J ∈ Rn×n is a constant skew-symmetric matrix, the input
matrix g(x, ∂xU) and vector field W (x, ∂xU) are smooth functions that define the input map
associated with the ports of the system, and R(x,U) is the product between the positive function
γ = γ(x, ∂xU) > 0 and the Poisson bracket {S,U} = [∂xS]> J∂xU , i.e., R(x, ∂xU) = γ{S,U}.

Given that R(x, ∂xU) depends on ∂xU , the linearity of any Poisson structure associated
with the matrix R(x, ∂xU)J is broken. Furthermore, the terms W (x, ∂xU) and g(x, ∂xU) may
also depends on the states variables and ∂xU .
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To analyze the thermodynamic properties of Definition 1.5 consider that the rate of change
of the internal energy is given by U̇ = [∂xU ]> ẋ. Then, substituting the irreversible PHS
formulation (1.26) we obtain

U̇ = R(x, ∂xU) [∂xU ]> J∂xU + [∂xU ]> [W (x, ∂xU) + g(x, ∂xU)u]
= [∂xU ]> [W (x, ∂xU) + g(x, ∂xU)u] (1.27)

Similarly, the rate of change of the entropy is given by

Ṡ = R(x, ∂xU) [∂xS]> J∂xU + [∂xS]> [W (x, ∂xU) + g(x, ∂xU)u]
= γ{S,U}2 + [∂xS]> [W (x, ∂xU) + g(x, ∂xU)u] (1.28)

i.e., if there is not exchange with the environment (the system is isolated), W (x, ∂xU) +
g(x, ∂xU)u = 0, the internal energy is a conserved quantity, U̇ = 0, satisfying the first law
of thermodynamics, and the entropy balance (1.28) is non-negative and equal to the inter-
nal entropy production, σint = γ{S,U}2 ≥ 0, satisfying the second law of Thermodynam-
ics. This implies that the irreversible PHS formulation described in Definition 1.5 provides a
proper framework to describe finite-dimensional irreversible systems with a thermal domain
(see [67, 68] for details).

The extension of this framework to 1D infinite-dimensional systems has been proposed
initially in [70] for diffusion processes and extended in [71] for a general formulation of 1D
irreversible PHS on infinite-dimensional domains. In this sense, the internal energy and entropy
are considered as functionals on the space Ω := {ζ ∈ [a, b] ⊂ R}, i.e.,

U =
∫

Ω
u(x)dΩ and S =

∫
Ω
sdΩ (1.29)

where u(x) and s denote the internal energy and entropy per unit length, respectively, and the
state is given by x = [x1 · · · xn−1 s]>. Furthermore, considering an incompressible medium
with constant volume, the Gibbs equation can be expressed as du = Tds +∑

i νidci where ci is
the number of moles per unit length of the i-th specie, satisfying that

δxS = ∂xs =


0
...
0
1

 , and δsU = ∂su = T, ζ ∈ [a, b] (1.30)

Similarly, the following operator is defined as

{F , E}∗J = [δxF ]> J δxE (1.31)

for every (F , E) ∈ F, where J is a skew-symmetric operator. The irreversible port-Hamiltonian
system can be defined as follows on a 1D infinite dimensional space.
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Definition 1.6. [71] Consider the real functions Rij = γij{S,U}∗Jij where γij = γij(x, δxU) ≥ 0
is a nonlinear positive scalar function and Jij = Pij∂

i
ζ, with Pij = (−1)i+1P>ij , is a Hamiltonian

operator. An infinite dimensional irreversible port-Hamiltonian system is defined by the PDE

∂tx =
n∑
j=1

R1jJ1jδxU +
n∑
j=1

R0jJ0jδxU + ∂ζ [R1δsU ] , ζ ∈ [a, b], (1.32)

with boundary inputs and outputs given by

u(t) =
[
[R1δsU ] |b
[R1δsU ] |a

]
and y(t) =

[
δxU|b
−δxU|a

]
, (1.33)

respectively, where R1 = [R11 · · · R1n]> satisfies

n∑
j=1

R1jJ1jδxU =


0
...
0

R>1 ∂ζ [δxU ]

 (1.34)

such that

U̇ = u>y and Ṡ =
∫ b

a
σintdζ + (R1nδsU)|ba (1.35)

where σint is a non-negative function that describes the internal entropy production.

Notice that according to (1.35) the rate of change of the total internal energy stored by the
system (1.32) is given by the power supplied through the boundary ports. Similarly, if (1.32)
is a closed system, i.e., u = 0, ∀t, then U̇ = 0 and Ṡ ≥ 0, satisfying the first and second law of
thermodynamics, respectively.

1.3 Thesis organization and contributions

To describe the FSI in a longitudinal domain, in Chapters 2-4 we propose a finite-dimensional
model of the structure and the fluid subsystems based on the port-Hamiltonian framework. This
allows us to avoid the use of moving-mesh and remeshing algorithms and stabilization meth-
ods, like SUPG or PSPG, and provides an appropriate power-transfer fluid-structure coupling,
simplifying the FSI model. In Chapter 5, we propose an energy-based infinite-dimensional
modeling for isentropic and non-isentropic Newtonian fluids.

In Chapter 2 two examples, a flexible tube and the vocal folds, are used to illustrate the
structure mass-spring-damper formulation. The flexible tube example describes the method-
ology to obtain a scalable PHS-based mass-spring-damper model, assuming an axi-symmetric
behavior of the tube motion. In the case of the vocal folds, a PHS formulation of the well-
known body-cover model [72] is proposed, without the use of auxiliary variables to describe
the tissue deformation during the vocal fold collisions, reducing the number of state variables,
in comparison with others PHS-based models [73, 74].
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Chapter 1. Introduction

In Chapter 3, a scalable PHS model of incompressible isentropic fluids is developed, intro-
ducing the use of an instrumental element, called node, that allows, from a port-Hamiltonian
point of view, an appropriate coupling of the incompressible fluid sections. Additionally, a
power-preserving interconnection that combines the properties of the interconnection by ports
and by energy, is proposed for fluid-structure coupling.

Chapter 4 shows the development of a scalable PHS model of compressible isentropic fluids.
Considering an irrotational flow and other constrains that allows to reduce the fluid analysis to
a 1D model. Similarly, a switched power-preserving fluid-structure interconnection is proposed,
focused in allowing a structure elastic collision, useful to describe systems as the vocal folds.

Finally, in Chapter 5 several energy-based infinite dimensional formulations are proposed
for non-reactive compressible fluids. General pseudo and dissipative port-Hamiltonian models
are developed for the non-isentropic and isentropic Newtonian compressible fluids, respectively,
including the operator considerations to preserve the model structure in 1D and 2D fluids cases.
Additionally, the thermodynamic properties of the internal energy per unit mass and the use
of an availability function in the total energy description in previous models is also discussed.
Similarly, an irreversible PHS formulation is proposed for 1D non-reactive fluids.

1.4 Associated publications

As a result of the work presented in this thesis, the following papers have been published:

• Mora, L. A., Yuz, J. I., Ramírez, H., & Le Gorrec, Y. (2018). A port-Hamiltonian Fluid-
Structure Interaction Model for the Vocal folds. IFAC-PapersOnLine, 51(3), 62-67. 6th
IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC
2018.
https://doi.org/10.1016/j.ifacol.2018.06.016

• Mora, L. A., Ramírez, H., Yuz, J. I., & Le Gorrec, Y. (2019). A Scalable port-Hamiltonian
Model for Incompressible Fluids in Irregular Geometries. IFAC-PaperOnline, 52 (2) 102-
107. 3rd IFAC Workshop on Control of Systems Governed by Partial Differential Equa-
tions CPDE 2019, page 102-107.
https://doi.org/10.1016/j.ifacol.2019.08.018

• Mora, L. A., Le Gorrec, Y., Matignon D., Ramírez, H. & Yuz, J (2020). About dissipa-
tive and pseudo Port-Hamiltonian Formulations of irreversible Newtonian Compressible
Flows. 21st IFAC World Congress in Berlin, Germany.

• Mora, L.A., Le Gorrec, Y., Ramírez, H., & Yuz, J. (2020) Fluid-Structure Port-Hamiltonian
Model for Incompressible Flows in Tubes with Time Varying Geometries. Mathematical
and Computer Modelling of Dynamical Systems, 26, 409–433.

• Mora, L.A., Ramírez, H., Yuz, J.I., Le Gorrec, Y., & Zañartu, M. (2020) Energy-based
fluid–structure model of the vocal folds. IMA Journal of Mathematical Control and In-
formation, DOI: 10.1093/imamci/dnaa031.
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Chapter 2
Mechanical description of the structure

In this thesis we consider FSI systems where the mechanical structure motion is transverse
with respect to the fluid flow, as shown in Figure 2.1a. From a material point of view, this
flexible structure, according to its material nature, is commonly described by hyper-elastic or
elastic models.

Longitudinal
fluid

Structure with transverse motion

(a) FSI system

Longitudinal
fluid

MSD approximation of the structure transverse motion

(b) Structure MSD approximation

Figure 2.1 – Mechanical description of the structure motion

In the literature, different formulations to model elastic and hyper-elastic material can be
found, such as the Mooney-Rivlin, Neo-Hookean and polynomical models [75], and the well
know Saint Venant-Kirchhoff model (SVK) and its linearized form [76]. Similarly, to describe
the dissipation associated with the conversion of kinetic energy into heat by the material motion,
different approaches have been proposed, as for example the standard linear solid, Maxwell
and Burgers formulations [77] and the Kelvin-Voigt approach [78]. These models require of
numerical schemes for their simulation and to obtain a detailed description of the material
motion, such as spatial discretization schemes, like finite-elements or finite-volumes methods,
coupling algorithms for the interaction with fluids [76], and appropriate time discretization to
guarantee the numerical stability of the simulation [79, 10, 12].

In this chapter we focus on two case studies for structures that have transverse motion to
a fluid flow: flexible tubes and vocal folds.
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Chapter 2. Mechanical description of the structure

Contribution

To reduce the complexity in modeling of elastic or hyper-elastic materials, we propose
the use of interconnected mass-spring-damper (MSD) systems to describe the transverse
motion of the structure, as shown in Figure 2.1b. These models are described using the
port-Hamiltonian framework. For the flexible tube case we propose a scalable MSD model
and for the vocal folds case we propose an alternative port-Hamiltonian formulation of
the body-cover model [72], that reduces the number of state variables, in comparison
with other energy-based models in the literature [73].

2.1 Flexible tube model

In this section we consider a cylindrical and flexible tube with inner radius r, length L and
thickness h, as shown in Figure 2.2. According to [10], flexible tubes have special relevance
in biological applications, such as the interaction between the elastic arteries and the blood
flow [22] or the phono-respiratory system [80], among others. This class of structures has
been studied using multi-layer [10] and single-layer [12] materials approaches. The interaction
between this class of flexible tubes and some internal fluid flows has been a relevant benchmark
to test the accuracy of numerical methods suitable for the simulation of FSI problems, such as
partitioned [10, 9, 81, 82, 83] and monolithic [12, 18, 84] finite-element schemes, and mesh-free
finite pointset methods [85]. To simplify the analysis and to obtain a MSD formulation, we
consider the following assumptions:

Assumption 2.1. To describe the flexible vessel as a mass-spring damper system we make the
following assumptions:

• The material is isotropic.

• The motion of tube walls is only radial.

• The motion is axisymmetric.

0 ζj

`s
`s `s

L

axial axis ζ

ra
d
ia
l
a
x
is

ξ

r

h

r + qj

Figure 2.2 – Cylindrical flexible tube description.
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2.1. Flexible tube model
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Figure 2.3 – Cross-sectional view of the flexible tube and the forces acting at a point by an axisymmetric
circumferential strain. The expansion velocity v is axisymmetric.

2.1.1 Mass-spring-damper model

In order to derive a MSD formulation of the system shown in Figure 2.1b, we divide the
flexible tube in ns sections of length `s = L/ns, as shown in Figure 2.2, i.e., we divide the axial
axis in ns parts and we analyze the radial motion of the structure at x ∈ {ζ1, · · · , ζns} where
ζj = (j − 1/2)`s is the axial coordinate of the j-th tube section. The mass of each section is
given by:

mj = 2πρsrh`s (2.1)

where ρs is the material density. Denoting by qj the average radial displacement of j-th section
and by πsj = mjvsj the corresponding momentum, the motion of the j-th section is given by:

q̇j = vsj (2.2a)
π̇sj =

∑
F (2.2b)

where vsj is the average expansion velocity and∑F denotes the sum of forces acting on section
j. The equivalent springs and dampers in each section are deduced from the restoring forces
exercised by the material. In the case of springs, these forces are given by the circumferential
and shear strains of the tube.

Figure 2.3 shows a cross-sectional view of the j-th tube section at ζ = ζj. From Assumption
2.1, the velocity of the structure circumference is uniform, then, the tube expansion is axisym-
metric and the forces associated with circumferential strains acting on an arbitrary point of
section j induce an inward radial force when the tube expands. This inward force can be char-
acterized by a radial spring, as shown on the right hand side of Figure 2.3. Assuming a linear
behavior of this radial spring, the inward force Fj is given by:

Fj = −kjqj (2.3)

where kj is the corresponding spring coefficient.
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Chapter 2. Mechanical description of the structure

Similarly, the force associated with the shear strain between two adjacent section is modeled
through a coupling spring.

Fcj = −kcj (qj − qj+1) (2.4)

where kcj is the coefficient of the coupling spring.
Coefficients kj and kcj are obtained from the material properties and are given by [86]:

kj = β1λ
`sh

πr
(2.5)

kcj = β2µ
πrh

`s
(2.6)

where λ and µ are the Lamé coefficients, and β1 and β2 are dimensionless factors.
On the other hand, the dissipation induced by the motion of the section is described by a

damper, whose force is given by:

Fdj = −djvsj (2.7)

where dj ≥ 0 is the damper coefficient. In this work we consider a Kelvin-Voigt model [77],
i.e., the force Fdj corresponds to one damper in parallel with the j-th radial spring, as shown
in Figure 2.1b. From a material point view, the parameters associated with the dissipative
terms of the stress tensor can be parametrized as the product between the Lame’s parameters
(responsible of the elasticity) and time terms responsible of the viscosity [87, eq. (8)]. In this
sense, we define the damper coefficients as dj = kjηj where ηj is a time parameter associated
with the viscosity. For simplicity, it is convenient to express ηj as a function of the mass and the
spring coefficient of the j-th section, and a dimensionless damping factor λs, i.e., ηj = λs

√
mj
kj
,

obtaining the simple formula [72, 88],

dj = λs
√
mjkj (2.8)

Considering the restoring forces associated with the strain and dissipation in each tube
section, (2.3), (2.4) and (2.7), the sum of forces acting on the j-th section is given by ∑F =
Fj + Fcj − Fcj−1 + Fdj + Fej, where Fej denotes the external forces. Then, the governing
equations of the j-th tube section can be expressed as:

q̇j = vsj (2.9a)
π̇sj = Fj + Fcj − Fcj−1 + Fdj + Fej (2.9b)

Notice that in the tube sections 1 and ns a coupling springs with an exterior point is
not defined, as shown in Figure 2.1b. This implies that the restoring forces Fc0 and Fcns are
neglected in the corresponding momentum balance of the first and last sections of the tube.

20



2.1. Flexible tube model

2.1.2 Port-Hamiltonian Formulation

To obtain a port-Hamiltonian model of the system, we first describe the total energy stored
in the flexible tube. In this respect, the total kinetic energy is derived from the sum of the
kinetic energy in each section, i.e.,

Ks =
ns∑
j=1

1
2
π2
sj

mj

(2.10)

Similarly, the total potential energy is obtained by the sum of the radial and coupling
springs potential energies. The potential energy of the flexible tube is then given by:

Ps =
ns∑
j=1

1
2kjq

2
j︸ ︷︷ ︸

Radial Springs

+
ns−1∑
j=1

1
2kcj (qj − qj+1)2

︸ ︷︷ ︸
Coupling Springs

(2.11)

The total energy, of the mechanical system that describes the flexible tube motion is given
by:

Hs(πs, qs) = Ks + Ps (2.12)

where qs = [q1 · · · qns ]> and πs = [πs1 · · · πsns ]> denote the sets of displacements and
momenta of the ns tube sections, respectively.

The efforts variables associated to each tube section are given by the partial derivative of
Hs with respect to the corresponding state variables, i.e., for the j-th tube section we obtain:

∂qjHs = kjqj + kcj (qj − qj+1)− kcj−1 (qj−1 − qj) = −Fj − Fcj + Fcj−1 (2.13)

∂πsjHs = πsj
mj

= vsj (2.14)

Then, the governing equations in an arbitrary section j are given by:

q̇j = ∂πsjHs (2.15a)
π̇sj = −∂qjHs − dj∂πsjHs + Fej (2.15b)

Proposition 2.1. Consider qs = [q1 · · · qns ]> and πs = [πs1 · · · πsns ]> the sets of displace-
ments and momenta of the ns tube sections, respectively. Then, the dynamics of the flexible
tube can be expressed as the following port-Hamiltonian system:

ẋs = [Js −Rs] ∂xsHs +Gsus (2.16a)
ys = G>s ∂xsHs (2.16b)

where xs = [q>s π>s ]> is the state vector, us = [Fe1 · · · Fens ]> and ys = [vs1 · · · vsns ]> are the
sets of external forces and velocities of the flexible tube sections, respectively, and

∂xsHs =
[
∂qsHs

∂πsHs

]
, Js =

[
0 I
−I 0

]
, Rs =

[
0 0
0 R1

]
, and Gs =

[
0
I

]
(2.17)
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Chapter 2. Mechanical description of the structure

with

R1 =


d1 0 · · · 0
0 . . . . . . ...
... . . . . . . 0
0 · · · 0 dns

 ≥ 0 (2.18)

satisfying the balance

Ḣ = − [∂πsHs]>R1∂πsHs + u>s ys ≤ u>s ys (2.19)

Proof. Considering ns sections, from (2.15) the displacements and momenta dynamics can be
expressed as:

q̇s = ∂πsHs

π̇s − ∂qsHs −R1Hs + us

where us = [Fe1 · · · Fens ]> and R1 is given by (2.18). Defining the skew-symmetric matrix

Js =
[

0 I
−I 0

]
, the matrix Rs =

[
0 0
0 R1

]
≥ 0 and the input matrix as Gs =

[
0
I

]
, then, the

dynamics of the ns sections of a flexible tube can be expressed as the port-Hamiltonian system
(2.16). Finally, the relationship (2.19) can be easily derived substituting (2.16) in the energy
balance Ḣs = [∂xsHs]> ẋs.

2.2 Vocal folds model

Another example of FSI system is the vocal folds model. The vocal folds structure is
composed by several layers of tissue, as shown on the left hand side of Figure 2.4. The most
superficial is the epithelium layer that protects the delicate tissue of the vocal folds. The next
layer is the lamina propria. It is composed by elastic and collagen fibers that make up the
vocal ligament. The deep layer of vocal folds is a muscular layer composed by the vocalis and
muscularis parts of the Thyoarytenoid muscle, that makes up the bulk of the vocal fold [89].
The interactions of the vocal folds with the intragottal airflow induce a vibrating cycle that

Epithelium

Lamina propia

Thyrovocalis
ThyromuscularisThyroarytenoid

muscle

Figure 2.4 – Tissue layers of the structure of vocal folds. Dotted line: Midasagittal plane of the glottis.
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2.2. Vocal folds model

∆1 ∆2

∆3

m1 m2

m3

Figure 2.5 – Simplification of the vocal folds mechanics using the body-cover model. ∆j ’s represents the tissue
deformations during the vocal folds vibration cycle.

includes: the vocal folds collision, with the associated fluid domain closure and the restoring
forces associated with tissue deformations during the collisions. This kind of phenomena do
not appear in the tube example considered in the previous section.

In the literature, continuum mechanics models have been used to describe the physical be-
havior of the vocal folds sections, i.e., the epithelium lamina, the lamina propria and the vocalis
muscle [90]. In [91, 31] a linear stress-strain (elastic material) model is considered to describe
the tissue of each vocal folds section. A non-linear approach for the stress-strain (hyper-elastic
material) has been proposed in [92, 93, 13]. Viscoelastic models are also used in [29, 94].
However, the vibrations of the vocal folds commonly exhibit two dominant eigenfrequencies
whose behavior can be described through simplified MSD models [33]. Similarly, given that
the velocity of the vocal folds motion is much less than the intraglottal airflow velocity, it is
common to reduce the analysis of the airflow to a 1D fluid [72, 95, 96]. This allows us to study
the vocal folds vibration cycle as a FSI problem between a longitudinal fluid and a structure
with transverse motion. As a consequence, in this thesis we consider a symmetrical behavior
of the vocal folds using the well-know body-cover model (BCM) proposed in [72] to describe
its mechanical motion.

2.2.1 Body-cover model

From a mechanical point of view, the BCM is a simplified description of the vocal folds
behavior, as shown in Figure 2.5. Cover masses, m1 and m2, describe the motion of the
epithelial layer and lamina propria layer of the vocal folds and the body mass m3 describes the
motion of the thyrovocalis muscle that is effective in the vibration (see [72] for details). In the
formulation of the BCM the deformation of the tissue subject to the transverse stress-strain is
modeled as a hyper-elastic material. This implies that the transverse stress-strain is described
through non-linear springs between the cover masses and the body mass and between the body
mass and the glottal wall. The elongations of these non-linear springs are denoted by ∆1, ∆2
and ∆3, as shown in Figure 2.5, whose associated restoring forces are given by [72]:

Fj = −
(
kj∆j + kjηj∆3

j

)
, j ∈ {1, 2, 3} (2.20)

where kj and ηj are the linear and nonlinear coefficients of the corresponding springs. The
shear stress-strain in the epithelial layer is described through a linear coupling spring, with
coefficient kc1. The force associated with this spring is given by:

Fcj = −kc1∆12 (2.21)
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Chapter 2. Mechanical description of the structure

∆col
1

∆1 ∆2

∆3

Tissue compression

m1

m2

m3

∆col
1

Figure 2.6 – Vocal folds collision description using the body-cover model. Left: tissue compression during the
collision. Right: overlap of the cover mass to describe the collision.

where ∆12 describes the elongation of the coupling spring.
On the other hand, the energy dissipation due to the tissue viscosity is described through

linear dampers between the cover and body masses and between the body mass and the glottal
wall. The coefficients of these dampers are defined as dj = λsj

√
mjkj where λsj is a dimension-

less loss factor. Then, the forces associated with these dampers are given by:

Fdj = −dj∆̇j, j ∈ {1, 2, 3} (2.22)

where ∆̇j denotes the time derivative of ∆j.
When the vocal folds collide, an additional mechanical stress-strain appears as a conse-

quence of the tissue motion inertia. This strain is due to the tissue compression around the
collision area, as shown in Figure 2.6 (left), making an additional restoring force on the vocal
folds to appear. Typically, in lumped-parameter models of the vocal-folds the masses are as-
sumed to be perfectly rigid. Then, to describe the collision, an overlap of the cover masses,
∆col
j j ∈ {1, 2}, is allowed [97], as shown in Figure 2.6 (right). During the overlap, additional

restoring forces are added to the dynamics of the cover masses. These restoring forces are mod-
eled through non-linear collision springs that are activate only when the vocal folds collide. The
restoring force associated with this collision springs is given by:

F col
j = −

(
kcolj ∆col

j + kcolj ηcolj
(
∆col
j

)3
)
, j ∈ {1, 2} (2.23)

where kcolj and ηcolj are the linear and nonlinear coefficients, and ∆col
j denotes the overlap of the

j-th cover mass. Then, denoting by πsj the momentum of mass mj, the dynamics of the BCM
can be expressed as:

π̇s1 = F1 + Fc1 + Fd1 + F col
1 + Fe1 (2.24)

π̇s2 = F2 − Fc1 + Fd2 + F col
2 + Fe2 (2.25)

π̇s3 = F3 + Fd3 − (F1 + F2 + Fd1 + Fd2) (2.26)

where Fej denotes the external force applied in the j-th cover mass.
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2.2. Vocal folds model
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Figure 2.7 – Body-cover model of vocal folds showing a Hemi-larynx representation for symmetrical vocal
folds oscillations. Left: 3-dimensional view, displaying the mass positions. Right: bottom view, displaying the

contact surfaces.

2.2.2 Port-Hamiltonian formulation

Port-Hamiltonian formulations of the BCM have been proposed in [73, 74]. These formula-
tions use auxiliary variables to describe the overlap of cover masses during the collision. The
dynamics of these auxiliary variables and the associated spring forces are enabled by switches
that are activated when the corresponding cover mass collides and disabled otherwise. How-
ever, these formulations present some significant drawbacks. For example, some of the states
and auxiliary variables need to be appropriately initialized to 0 after each collision to avoid
numerical errors. In this thesis we propose an alternative formulation without the use of aux-
iliary variables. Considering a symmetric behavior of the vocal folds, only the mechanical part
of a hemi-larynx is modeled, as shown in Figure 2.7, where S1 and S2 denote the contact sur-
faces of cover masses with the intra-glottal airflow. The surfaces have length `s and depth ls.
We denote by qsj the position of the mass mj from midsagittal plane and qj = qsj − q0

sj the
corresponding displacement, where q0

sj is the equilibrium point at the reference pressure p0 in
the glottis. The spring elongations are ∆1 = q1 − q3, ∆2 = q2 − q3, ∆3 = q3 and ∆c1 = q1 − q2.
To describe the collision of the vocal folds, we define the elongation of the collision springs as
∆col
j = sjqsj = sj

(
qj + q0

sj

)
, j ∈ {1, 2}, where sj is a switch variable defined as:

sj =

1, qsj ≤ 0
0, qsj > 0

, j ∈ {1, 2} (2.27)

Additionally, when a collision occurs, the loss factor of the dampers interconnected between
the cover masses and the body mass increase. We define these loss factors as λsj = λ0

sj + sjλ
col
sj ,

j ∈ {1, 2}.
To obtain the port-Hamiltonian formulation of the overall system we first describe the total

energy stored in the BCM. The kinetic energy stored by the mass mj is given by:

Ksj = 1
2
π2
sj

mj

(2.28)
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sj = 1 sj = 0

qj + q0sj

Pcol
sj

(a) Stored energy on collision spring

sj = 1 sj = 0

qj + q0sj

F col
j

(b) Retoring force applied on mass mj

Figure 2.8 – Stored potential energy of collision spring (left) and the corresponding applied force over mass
mj . Normalized behavior, kcj = 1 and ηcj = 1, for j ∈ {1, 2}.

and ∂πsjKsj = πsj
mj

= q̇j gives the mass velocity. Additionally, from the expression of the
restoring forces of the springs connecting the cover masses with the body mass, we obtain that
the stored potential energy is given by:

Psj = 1
2kj (qj − q3)2 + 1

4kjηj (qj − q3)4 , j ∈ {1, 2} (2.29)

where ∂qjPsj = −Fj and ∂q3Psj = Fj. Similarly, the stored potential energies of the spring
connecting the body mass with the glottal wall and the cover masses coupling spring are
expressed as:

Ps3 = 1
2k3q

2
3 + 1

4k3η3q
4
3 (2.30)

Ps4 = 1
2kc1 (q1 − q2)2 (2.31)

respectively, where ∂q3Ps3 = −F3, ∂q1Ps4 = −Fc1 and ∂q2Ps4 = Fc1.
In the case of collision, the stored energy in the additional springs is given by:

Pcol
sj = 1

2k
col
j sj

(
qj + q0

sj

)2
+ 1

4k
col
j ηcolj sj

(
qj + q0

sj

)4
, j ∈ {1, 2} (2.32)

where ∂qjPcol
sj = −F col

j . Note that the stored potential energy contained in the collision springs
depends on the discontinuous variables, sj. However, Pcol

sj is smooth and the restoring force
F col
j is continuous, as shown in Figure 2.8.
The total energy of the BCM is given by:

Hs =
∑
j

Ksj︸ ︷︷ ︸
Kin. ener. in masses

+
∑
j

Psj︸ ︷︷ ︸
Pot. ener. in springs

+
∑
j

Pcol
sj︸ ︷︷ ︸

Pot. ener. in col. springs

(2.33)

Proposition 2.2. Consider the total energy defined in (2.33). The port-Hamiltonian model of
the BCM is of the form:

ẋs = [Js −Rs] ∂xsHs +Gsus (2.34a)
ys = G>s ∂xsHs (2.34b)
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2.3. Conclusion

where xs = [q1 q2 q3 πs1 πs2 πs3]> is the state vector, us = [Fe1 Fe2]> is the input vector given
by the external forces applied on the cover masses, ys = [q̇1 q̇2]> is the output vector given by

the cover mass velocities, Js =
[

0 I
−I 0

]
where I and 0 are 3 × 3 identity and zero matrices,

respectively, Rs =
[
0 0
0 R2

]
and Gs =

[
03×2
G1

]
with

R2 =

 d1 0 −d1
0 d2 −d2
−d1 −d2 d1 + d2 + d3

 and G1 =

1 0
0 1
0 0

 (2.35)

Proof. Consider the total energy of the BCM in (2.33). Defining the state vector as xs =
[q1 q2 q3 πs1 πs2 πs3]>, then, the BCM efforts are given by:

∂q1Hs = −F1 − F12 − Fc1 ∂πs1Hs = q̇1

∂q2Hs = −F2 + F12 − Fc2 ∂πs2Hs = q̇2

∂q3Hs = F1 + F2 − F3 ∂πs3Hs = q̇3

On the other hand, note that ∆̇1 = q̇1− q̇3, ∆̇2 = q̇2− q̇3 and ∆̇3 = q̇3. The forces associated
with the dampers can be expressed as Fd1 = −d1 (∂πs1Hs − ∂πs3Hs), Fd2 = −d2 (∂πs2Hs − ∂πs3Hs)
and Fd3 = −d3∂πs3Hs, and the dynamics on the momentum can be rewritten as:

π̇s1 = −∂q1Hs − d1 (∂πs1Hs − ∂πs3Hs) + Fe1

π̇s2 = −∂q2Hs − d2 (∂πs2Hs − ∂πs3Hs) + Fe2

π̇s1 = −∂q3Hs + d1 (∂πs1Hs − ∂πs3Hs) + d2 (∂πs2Hs − ∂πs3Hs)− d3∂πs3Hs

Then, considering the matrix R2 defined in (2.35) and G1 =
[
1 0 0
0 1 0

]>
, we can describe

the BCM as the port-Hamiltonian system (2.34) where Js =
[

0 I
−I 0

]
, Rs =

[
0 0
0 R2

]
and

Gs =
[

0
G1

]
.

Remark 2.1. Note that the port-Hamiltonian formulation of the BCM in Proposition 2.2 does
not use auxiliary variables, reducing the number of states in comparison with the formulation
in [73, 74]. Instead, the proposed model use switch variables, sj, in the definition of the stored
potential energy associated with the collision springs. Even though the stored potential energies
are a function of discontinuous variables, they are smooth, as shown in Figure 2.8a, i.e., the
total energy of the BCM is a smooth function of the states variables. The restoring forces of
the collision springs are a continuous function of the mass positions that vanishes when the
cover masses are not colliding, as shown in Figure 2.8b. This implies that the continuity of the
dynamic equations is preserved. Similar switching principles have been regularly used, outside
the port-Hamiltonian framework, in lumped-parameter model of the vocal folds, see e.g. [95, 98].
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Chapter 2. Mechanical description of the structure

2.3 Conclusion

In this chapter mass-spring-damper systems have been considered to describe the transverse
motion of longitudinal structures using a PHS formulation. In this respect, two examples have
been used: a single layer flexible tube and the vocal folds. In the first case, considering an
axisymmetric behavior, the flexible tube is divided in to ns sections of length `s, as shown
in Figure 2.2. Section 2.1.1 describes the procedure to obtain the MSD coefficients from the
physical parameters of the tube, such as the Lamé coefficients, material density and thickness.
This MSD model is used to obtain a scalable PHS formulation considering a linear behavior of
the springs, as shown in Section 2.1.2. The scalability of the finite-dimensional model proposed,
allows us to adjust the space resolution in the longitudinal domain, increasing or decreasing the
number of sections ns, for the description of the structure transverse motion. This is equivalent
to vary the number of elements of the mesh in discretized infinite-dimensional formulations.
However, the proposed model does not require the meshing and stabilization algorithms used
in infinite-dimensional approaches.

In the vocal folds example, the well-known BCM proposed in [72] is used to describe the
vocal folds motion. Considering symmetrical behavior, a PHS formulation of a Hemi-larynx
vocal folds model is proposed in Section 2.2.2. In [73, 74] the PHS formulation of the BCM uses
auxiliary state variables to describe the tissue compression during the collisions. The model
described in Section 2.2.2 provides an alternative PHS formulation that allows to reduce the
dimension of the state vector. In this respect, we include in this representation two switching
functions in the definition of the energy (2.33) to describe the energy stored by the collision
springs used in the BCM. This allows us to include the extra forces applied to the cover masses
during the collision without the use of auxiliary variables as proposed in [73, 74]. Additionally, it
is important to notice that even if (2.33) depends on discontinuous variables (collision switches),
the total energy and the forces acting on masses are continuous, as shown in Figure 2.8.

The port-Hamiltonian models proposed in this Chapter will be used to obtain a finite-
dimensional FSI system, according to the fluid models developed in next Chapters.
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Chapter 3
Finite-dimensional port-Hamiltonian FSI model

with incompressible fluids

In the previous Chapter, a finite-dimensional PHS model based on a MSD formulation is
proposed to describe the transverse motion of a longitudinal structure. For a FSI description
an appropriated model of the fluids that interacts with the structure is necessary. In this
Chapter we focus on the description of a longitudinal incompressible fluid based on a finite-
dimensional PHS formulation that allows us an appropriated coupling with the structure.

From a practical point view, a fluid is considered incompressible when the density variations
can be neglected. According to [99] a criteria to analyze when the density variations are small
enough to be neglected is using the Mach number M (ratio between the fluid velocity and the
speed of sound in the media). In this sense, an incompressibility assumption for the fluid is
adequate if the Mach number satisfies M ≤ 0.3 [99].

In the literature, the interaction between an incompressible fluid and a structure is a prob-
lem widely studied. Several computational approaches have been proposed to obtain an ap-
propriated fluid description and its coupling with the structure using different spatial and time
discretization methods, see for example [10, 12, 19, 21] and [22] among others. A special
problem related with the numerical description of incompressible fluids is the definition of the
pressure in the fluid domain. A possible way to construct an equation for the pressure is using
the Poisson equation, where the Laplacian of the pressure is described through the velocity field
of the fluid. However, in computational methods, as the finite-elements techniques, it is neces-
sary the use of algorithms, such as the pressure-pressure coupling algorithms, to guarantee the
numerical stability of the simulations. Examples of these pressure-pressure coupling algorithms
are backward approximation pressure correction schemes [100] and pseudo-compressible algo-
rithms, such as the PSPG method [23]. However, from a port-Hamiltonian point of view, these
methods are not useful to obtain a power-preserving interconnection between the discretized
momentum sections.

Contribution

In this chapter, we present a scalable port-Hamiltonian model for longitudinal incom-
pressible fluids and the interconnection with a structure with transverse motion. We
introduce the use of instrumental elements, called nodes, that allow us to obtain a
power-preserving pressure-pressure coupling for the ODE’s obtained from the spatial
discretization of the momentum equation.
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Chapter 3. Finite-Dimensional PH-FSI model Incomp. Fluids

3.1 Fluid description

In this thesis the fluid dynamics is described by the well-know continuity and motion equa-
tions [101], in their incompressible form and neglecting the gravitational effects, leading to:

div v = 0 (3.1)
ρ∂tv + ρv ·Grad v + grad p = µdiv (Grad v) (3.2)

where ρ, v, p and µ are the density, velocity field, pressure and viscosity of the fluid flow,
respectively, and the operators div , grad , div , Grad and ∂t are detailed in the Notation
Section at the beginning of this thesis.

Notice that (3.1) is, from a mathematical point of view, the approximation of the more
general mass balance ∂tρ + div ρv = 0, where we assume negligible variations of the density,
i.e., ∆ρ≪ ρ. We use the Mach number M , the ratio between the fluid velocity and the speed
of sound c in the media (M = ‖v‖/c), to consider when this incompressibility assumption is
adequate. In this Chapter we study flows with M ≤ 0.3 [99].

In different studies on incompressible flows it is common to relax the condition in (3.1)
to use pseudo-compressible algorithms to define appropriate pressure-pressure couplings in the
space discretization of (3.2), such as the Pressure Stabilization Petrov-Galerkin method, where
−div v+ε∆p = 0, the penalty method, where −div v−εp = 0, and the artificial compressibility
method, where −div v − ε∂tp = 0, and where ε is some parameter which has to be chosen
appropriately [23]. Similarly, in this chapter we relax the incompressible hypothesis to describe
the pressure in different zones of the fluid domain, allowing us to define an appropriate coupling,
from a port-Hamiltonian point of view, between the incompressible fluid sections.

3.1.1 Finite-dimensional modeling of the fluid

In what follows we consider nf sections of the fluid with uniform cross-sectional area where
the flow is incompressible, as shown in Figure 3.1.a, and infinitesimal compressible sections, that
will be referred to as nodes, to describe the pressure in the coupling zone between two adjacent
incompressible sections, as shown in Figure 3.1.b. The use of nodes to couple incompressible
sections has been applied in [102] for tubes with fixed irregular geometries.

nf1

(a) Spatial discretization

nf1

nodes nodes

(b) Nodes

Figure 3.1 – Spatial discretization of the fluid domain. a) Division of the fluid domain in nf sections with
uniform cross-sectional area. b) Definition of nodes between adjacent incompressible fluid sections.

From an energy point of view, incompressible sections are kinetic energy storage elements,
describing the fluid motion through the momentum balance:

ρ0∂tv = −ρ0v ·Grad v− grad p+ µdiv [Grad v] (3.3)
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3.1. Fluid description

subject to div v = 0, where ρ0 is the reference density of the fluid and v = [v v]> with v and v

as the longitudinal and transverse velocities of the fluid, respectively.
We define the fluid behavior in nodes using the following assumption.

Assumption 3.1. The volume of a node is small enough, such that the density distribution is
uniform, and the changes in density are only caused by changes in the volume [103, Sec. 5.1,
p.78]. This implies that the mass in each node is constant, i.e., the following relationship is
satisfied

ρjV̄j = m (3.4)

where ρj and V̄j are the density and volume of the j-th node, and m is the total mass in the
node.

Then, the nodes store potential energy and are used to describe the pressure distribution in
the fluid. Their dynamics are governed by the changes of the fluid density. Then, the governing
equation in a node is given by:

∂tρ+ div ρv = 0 (3.5)

The loss of kinetic energy of a fluid is given by different phenomena [101], such as viscosity
friction with the walls, turbulences and irregularities in the geometry. Thus, we first discuss
the energy dissipation in the fluid, in order to describe a scalable model from the models of nf
incompressible sections and nodes.

3.1.2 Macroscopic power dissipation in the flow

As shown in [101], the dissipation in a Newtonian fluid is associated with the divergence
of the viscosity tensor τ = −µ

(
Grad v + [Grad v]>

)
+
(

2
3µ− κ

)
(div v) I. Note that the

term µdiv [Grad v] in (3.3) is the incompressible simplification of −div τ . Then, from a
macroscopic point of view, the power dissipated in a volume Vj is given by:

Eλj = −
∫
Vj

(v · div τ ) dVj ≥ 0 (3.6)

According to [101], the dissipated power Eλj in volume Vj must have the general form:

Eλj = 1
2λjρjv

3
jAj ≥ 0 (3.7)

where ρ
j
, vj and Aj are the characteristic density, velocity and area of the fluid domain in

volume Vj. The dimensionless term λj can be expressed as λj = λfj + λgj , where λfj , the
friction loss factor, is a function of the Reynolds number, viscous losses, and λgj is a loss factor
associated with additional resistances determined by the geometry of the fluid domain, such as
sudden changes in the cross-sectional area (see [101, Section 7.5] for details). Then, (3.7) can
be rewritten as

Eλj = ρ
j
vj

(1
2λjAj|vj|vj

)
≥ 0 (3.8)
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j-th fluid section

`f

2¯̀
j−1 2¯̀

j

`j

Incompressible

section j

(Vj , Aj)

Incompressible

section j − 1

(Vj−1, Aj−1)

Incompressible

section j + 1

(Vj+1, Aj+1)

vcj
vc(j−1) vc(j+1)

Node j − 1 Node j

ξ

ζ

ρ0∂tv = −ρ0v ·Grad v − grad p+ µdiv [Grad v]

∂tρ = −divρv

Figure 3.2 – Coupling incompressible fluid sections using nodes with compressible behavior.

where |vj| denotes the absolute value of vj, and the term 1
2λjAj|vj|vj describes the rate of

velocity drop in volume Vj due to energy losses. This term is equivalent to dissipative terms
used in others works. For example, in [104] the dissipation term, in an infinite-dimensional
form, of 1D flow in a rough pipeline is described by 1

2λ
f |v|v/D where D is the pipe diameter

and λf is obtained from the Haaland equation [101]. Integrating this term in a pipe section
with volume Vj, we obtain

∫
Vj

1
2Dλ

f |v|vdV = 1
2λ

f
jAj|vj|vj. This result is equivalent to the rate

of velocity drop derived from (3.8), neglecting the geometrical losses.
The λfj formula depends on the assumptions considered for the fluid. For example, the

Haaland equation used in [104] is valid only for rough pipelines. However, other equations,
such as the Blasius and Prandtl formulas, can be used according to the fluid conditions (see
[101, Chapter 6] for details). Regarding λgj , given the spatial discretization described above,
we focus on the losses associated with sudden expansions and contractions, i.e.,

λgj =


0.5
(

1− Aj+1
Aj

)
, sudden contraction, Aj+1 ≤ Aj

(
1− Aj

Aj+1

)2

, sudden expansion, Aj+1 ≥ Aj

(3.9)

where Aj is the cross-sectional area of the incompressible fluid section j.

3.1.3 Fluid dynamics of the incompressible sections and nodes

If we consider the j-th section of the fluid of length `f = L/nf , where L is the length of the
fluid domain, and uniform cross-sectional area Aj, the upper boundary moves in the transverse
direction with velocity vcj. Figure 3.2 shows that this section is divided in one incompressible
section and the adjacent nodes. As consequence of Assumption 3.1, a change of density in a
node implies a change of the corresponding volume, which generates a variation in the volume
of adjacent incompressible sections.
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3.1. Fluid description

The first effect of the moving longitudinal boundaries, is that the volume of the j-th in-
compressible section is a function of the density of adjacent nodes. Considering a node length
of 2¯̀

j, as shown in Figure 3.2, the node volume is given by V̄j = ¯̀
j (Aj + Aj+1). Thus, the

volume Vj of section j is described by a reference value V ∗j = Aj`f minus the corresponding
part of the adjacent nodes, see Figure 3.2, i.e.,

Vj = V ∗j − Aj(¯̀
j + ¯̀

j−1) = V ∗j −
m

ρj
αj −

m

ρj−1
(1− αj−1) (3.10)

where αj = Aj/(Aj + Aj+1) is a dimensionless factor. As we will see in the next subsection,
the description of Vj in (3.10) will help us to describe the dynamic pressure in each node.

The second effect of these moving boundaries is that part of the fluid moves in the transverse
direction, induced by the boundary velocity vcj. This implies that the longitudinal flow in the
section is affected by the upper wall movement. As a consequence, from (3.1), we obtain the
following relationship:

Q1j −Q2j − Acjvcj = 0 (3.11)

where Acj is the contact area of the fluid section with the moving boundary, Q1j and Q2j are
the inlet and outlet flows in the j-th section, respectively. Thus, denoting by vj the average
longitudinal flow velocity in section j, to satisfy (3.11), we define the inlet and outlet flows as:

Q1j = Ajvj + 1
2Acjvcj (3.12)

Q2j = Ajvj −
1
2Acjvcj (3.13)

where Ajvj is the average longitudinal flow and Acjvcj is the transverse flow in the contact
surface of the moving boundary. Note that (3.12) and (3.13) are equal when the upper boundary
does not move, vcj = 0.

The third effect of the moving boundaries is that the geometry of the tube is time varying,
inducing a rotation of the flow in each section. This rotation generates energy dissipation
by viscous friction, that can be modeled (from a macroscopic point of view) in terms of the
characteristic velocity of the fluid, as shown in Section 3.1.2. To simplify the model, we consider
a two-dimensional flow and the following assumption

Assumption 3.2. Denote by v the transverse component of the fluid velocity and by qj the
position of the moving wall in the j-th incompressible section. The gradient of v is uniform
in each incompressible fluid section and is given by ∂ξv = vcj/qj and ∂ζv = 0 where ξ and ζ
denote the variables of transversal and longitudinal axes, respectively.

Note that, from Assumption 3.2, the transversal velocity in a section j is given by v =
vcjξ/qj. As a consequence, the corresponding mean transversal momentum satisfies the fol-
lowing algebraic relationship with the boundary velocity πξi =

∫
ρ0vdVj = ρ0Vjvcj/2. This

algebraic constraint implies that the dynamics of the transversal momentum in each incom-
pressible section is given by a linear combination of the ODEs associated with the mechanical
model, described in Chapter 2, and the ODEs that describes the density behavior in the nodes.

Thus, to obtain a minimal realization we consider the following proposition to describe the
flow in one incompressible section.
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Proposition 3.1. In a fluid section of volume Vj and uniform gradient of transversal velocity,
the flow is described by the longitudinal flow momentum dynamics:

π̇ζj = −φζj − Acjρ0vjvcj + Aj(P1j − P2j) (3.14)

where the term Acjρ0vjvcj represents the effect of the moving boundary in the longitudinal flow,
φζj describes the dissipation associated with the viscous tensor, P1j and P2j are the total pres-
sures at the inlet and outlet boundaries of the fluid section, respectively, and πζj = ρ0Vjvj
denotes the longitudinal momentum in volume Vj with vj as the corresponding average longitu-
dinal velocity.

Proof. As mentioned above, the corresponding transversal momentum has an algebraic rela-
tionship with the boundary velocity, i.e., the boundary velocity defines the transversal behavior
of the fluid. Thus, it is only necessary to know the longitudinal flow momentum to describe
the fluid in one section. From (3.3) we obtain that:

ρ0∂tv + ρ0v∂ξv + ∂ζ

(1
2ρ0v

2 + p
)

= µ
(
∂2
ζv + ∂2

ξv
)

(3.15)

where v is the longitudinal velocity of the fluid and the term ρ0v∂ξv is associated with the
conversion of longitudinal flow into transversal flow and vice versa, induced by the velocity of
the boundary. Integrating in the section volume the first 2 terms of (3.15) and applying the
Leibniz integral rule, we obtain∫

ρ0∂tv + ρ0v∂ξvdVj = d

dt

(∫
ρ0vdVj

)
−
∫
ρ0vvcjdScj +

∫
ρ0v∂ξvdVj

Defining the average longitudinal velocity as vj = 1
Vj

∫
vdVj and the corresponding momen-

tum as πζj = ρ0Vjvj, we have that π̇ζj = d
dt

(
∫
ρ0vdVj). Then, considering the relationship

v∂ξv = ∂ξ (vv) − v∂ξv, the incompressibility constraint div v = 0 and the Gauss divergence
theorem, the previous equation can be rewritten as∫

ρ0∂tv + ρ0v∂ξvdVj =π̇ζj −
∫
ρ0vvcjdScj +

∫
∂ξρ0vvdVj −

∫
ρ0v∂ξvdVj

=π̇ζj −
∫
ρ0vvcjdScj +

∫
ρ0vvcjdScj +

∫
ρ0v∂ζvdVj

=π̇ζj + 1
2ρ0

∫
∂ζv

2dVj = π̇ζj + Aj
ρ0

2

(Q2j

Aj

)2

−
(
Q1j

Aj

)2


Substituting (3.12) and (3.13), we obtain the following relationship∫
ρ0∂tv + ρ0v∂ξvdVj =π̇ζj + Acjρ0vjvcj (3.16)

where the term Acjρ0vjvcj describes the effect of the upper moving wall on the longitudinal
flow in the j-th incompressible section.

Integrating the remaining term of the left hand side of (3.15) and considering a uniform
velocity in the inlet and outlet cross-sectional surfaces of Vj, we obtain:∫

∂ζ

(
ρ0

2 v
2 + p

)
dVj = −Aj (P1j − P2j) (3.17)

34



3.1. Fluid description

where P1j and P2j are the inlet and outlet total pressures, respectively.
The integral of the viscous term µ (∂2

zv + ∂2
wv) is given by:∫

µ
(
∂2
ζv + ∂2

ξv
)
dVj = −φζj (3.18)

where φζj represents the force associated with the viscous dissipation. Finally, combining
(3.16), (3.17) and (3.18), and solving for π̇ζj we obtain (3.14).

Defining πζ = [πζ1 · · · πζnf ]> as the set of longitudinal momenta, the fluid dynamics in the
nf incompressible fluid sections can be expressed as:

π̇ζ = ϑπP1 − ϑπP2 − ϕπvc − Φ (3.19)

where P1 = [P11 · · · P1nf ]> and P2 = [P21 · · · P2nf ]> are the sets of inlet and outlet total
pressures, respectively, of the incompressible sections; vc = [vc1 · · · vcnf ]> is the set of boundary
velocities associated with the structure motion, and

ϑπ =


A1 0 · · · 0
0 . . . . . . ...
... . . . . . . 0
0 · · · 0 Anf

 ϕπ = ρ0


Ac1v1 0 · · · 0

0 . . . . . . ...
... . . . . . . 0
0 · · · 0 Acnfvnf

 Φ =


φζ1
...

φζnf



We now focus on the fluid dynamics in each node. As explained in Assumption 3.1, the
density in each node is assumed to be uniform. Then, from (3.5) the density dynamics of the
j-th node is derived in Proposition 3.2.

Proposition 3.2. Let ρj be the density of the node j. The rate of change of ρj is given by:

ρ̇j =
ρ2
j

m

(
Qρ

1j −Q
ρ
2j

)
− Anj

ρ2
j

m

(
vcj + vc(j+1)

)
(3.20)

where Qρ
1j and Qρ

2j are the inlet and outlet flows of the node, respectively, vcj and vc(j+1) are
the velocities of adjacent moving boundaries associted with the motion of the structure, Anj is
the corresponding contact area, and m is the fluid mass of the node.

Proof. Let V̄j be the volume of the j-th node enclosed by a surface S̄j, and let the velocity of
any surface element be vS̄. Consider that the part of S̄j in contact with the structure has an
area of 2Anj, with Anj = ¯̀

jl, where l denotes the depth of the node. Then, integrating (3.5)
in volume V̄j, applying the Leibniz integral rule we obtain:

0 =
∫
∂tρdV̄j +

∫
div (ρv) dV̄j

= d

dt

(∫
ρjdV̄j

)
−
∫
ρj (vS̄ · n) dS̄j +

∫
ρj (∂ζv + ∂ξv) dV̄j

where n is the outward unitary vector to S̄j. Given that ρj is uniform in V̄j we obtain that∫
ρjdV̄j = ρj

∫
dV̄j = ρjV̄j. Similarly, notice that the rate of change of the node volume is

given by ˙̄Vj =
∫

(vS̄ · n) dS̄j, and that
∫
∂ζvdV̄j = Qρ

2j − Q
ρ
1j, where Q

ρ
1j and Q

ρ
1j are the inlet
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and outlet flows of the node, and
∫
∂ξvdV̄j = Anj

(
vcj + vc(j+1)

)
, where vcj and vc(j+1) are

the structure velocities in the contact surface and Anj is the contact area with each moving
boundary associated with the structure motion. Then, the previous equation can be rewritten
as

0 = d

dt

(
ρjV̄j

)
− ρj ˙̄Vj + ρj

(
Qρ

2j −Q
ρ
1j

)
+ Anjρj

(
vcj + vc(j+1)

)
= V̄j ρ̇j + ρj

(
Qρ

2j −Q
ρ
1j

)
+ Anjρj

(
vcj + vc(j+1)

)
(3.21)

Rewriting (3.21) we obtain that the rate of change of the node density ρj is given by:

ρ̇j = ρj

V̄j

(
Qρ

1j −Q
ρ
2j

)
− Anj

ρj

V̄j

(
vcj + vc(j+1)

)
(3.22)

Finally, using the relationship (3.4) we obtain (3.20).

Defining ρ = [ρ1 · · · ρnf−1]> as the set of node densities, the fluid dynamics in the nf − 1
nodes can be expressed as:

ρ̇ = ϑρQρ
1 − ϑρQ

ρ
2 − ϕρvc (3.23)

where Qρ
1 = [Q11 · · · Q1(nf−1)]> and Qρ

2 = [Q21 · · · Q2(nf−1)]> are the sets of inlet and outlet
volumetric flows of the nodes, respectively, and matrices ϑρ and ϕρ are given by

ϑρ = 1
m


ρ2

1 0 · · · 0
0 . . . . . . ...
... . . . . . . 0
0 · · · 0 ρ2

nf−1

 and ϕρ = 1
m


An1ρ

2
1 An1ρ

2
1 0 · · · 0

0 . . . . . . . . . ...
... . . . . . . . . . 0
0 · · · 0 An(nf−1)ρ

2
nf−1 An(nf−1)ρ

2
nf−1


respectively. This density variation implies a change in the pressure in the nodes, which, in
turn, has an associated energy. In this sense, we denote by pρj = pj − p0 the variation of the
static pressure in the j-th node, where p0 is the pressure at reference density ρ0 and pj is the
absolute static pressure in the node. Thus, from the definition of the bulk modulus, βS, [105]
we obtain:

pρj = βS ln
(
ρj
ρ0

)
(3.24)

This implies that the density variation allows us to describe the static pressure between 2
adjacent incompressible sections, that can be coupled using a power-preserving interconnection,
as shown in the next section.

3.2 Port-Hamiltonian formulation of the FSI model

To obtain a port-Hamiltonian formulation of the overall system we first define the stored
energy in the fluid. For the incompressible fluid sections, the stored energy is the kinetic
energy given by 1

2ρ0Vjv
2
j for the j-th fluid section. Considering the momentum of fluid sections,
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3.2. Port-Hamiltonian formulation of the FSI model

πζj = ρ0Vjvj, the total kinetic energy of the fluid can be expressed as:

Kf =
nf∑
j=1

1
2ρ0Vjv

2
j =

nf∑
j=1

1
2
π2
ζj

ρ0Vj
(3.25)

where ∂πζjKf = πζj
ρ0Vj

= vj. To describe the energy associated with the nodes we consider the
fluid as an isentropic process. Then, from the Gibbs equation the variation of the internal
energy of the fluid in the node, Uj, is given by its work, dUj = −pρjdV̄j. Using (3.4), the
differential of the internal energy can be rewritten as

dUj = pρj
m

ρ2
j

dρj (3.26)

Substituting (3.24) in (3.26) and solving for Uj,the internal energy in node j is then given

by the following non-negative function Uj = mβS
ρj − ρ0 (1 + ln(ρj/ρ0))

ρjρ0
. Thus, for the nf − 1

nodes, the total energy is

Uf =
nf−1∑
j=1

mβS
ρj − ρ0 (1 + ln(ρj/ρ0))

ρjρ0
(3.27)

and ∂ρjUf = m
ρ2
j
pρj .

As mentioned in Section 3.1.2, the changes in the geometry of the fluid domain induce
a rotation of the flow that generates energy dissipation by viscous friction. From a port-
Hamiltonian point of view, the power dissipated in the j-th incompressible fluid section is
given by ∂πζjKfφζj. Comparing this result with (3.8) and defining the characteristic density,
velocity and area as ρ0, vj and Aj, respectively, the force associated with the dissipations in
the j-th incompressible fluid section can be expressed as

φζj = 1
2λjρ0Aj|vj|vj = 1

2
λj
`j
|πζj|∂πζjKf (3.28)

Similarly, note that the inlet and outlet flows can be rewritten as:

Q1j = Aj∂πζjKf + Acj
2 vcj (3.29)

Q2j = Aj∂πζjKf −
Acj
2 vcj (3.30)

Then, the dynamics of the fluid in the j-th incompressible fluid section can be expressed as
the following port-Hamiltonian formulation:

π̇ζj = −1
2
λj
`j
|πζj|∂πζjKf + [Aj − Aj −

Acj
Vj
πζj]

P1j
P2j
vcj

 (3.31a)

 Q1j
−Q2j
−F ∗j

 =


Aj
−Aj
−Acj

Vj
πζj

 ∂πζjKf +

 0 0 Acj
2

0 0 Acj
2

−Acj
2 −Acj

2 0


P1j
P2j
vcj

 (3.31b)
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node j
(V̄j , ρj)

Anjp
ρ
1j

vcj Anjp
ρ
2j

vc(j+1)

Qρ1j

pρ1j Qρ2j

−pρ2j−Q2j

P2j

Incompressible section j

(Vj , πζj)

F ∗
j vcj

Q1j

P1j

Q1(j+1)

P1(j+1) Incompressible section j + 1
(Vj+1, πζ(j+1))

−Q2(j+1)

P2(j+1)

F ∗
j+1

vc(j+1)

Inlet Inlet Inlet
port port port

Outlet Outlet Outlet
port port port

Ports for the interconnection with the structure

Figure 3.3 – Inputs/outputs diagram of the node j and the adjacent incompressible sections.

Similarly, the dynamics of the fluid in j-th node are modeled by the following port-Hamiltonian
formulation:

ρ̇j = 0∂ρjUf +
[
ρ2

m
− ρ2

m
− Anj

ρ2

m
− Anj

ρ2

m

] 
Qρ

1j
Qρ

2j
vcj

vc(j+1)

 (3.32a)


p1j
−p2j
−Anjp1j
−Anjp2j

 =


ρ2

m

−ρ2

m

−Anj ρ
2

m

−Anj ρ
2

m

 ∂ρjUf (3.32b)

Figure 3.3 shows a diagram with the ports of the PHS model of node j and the adjacent
incompressible sections. Notice that inputs of the inlet and outlet ports of node j, namely Qρ

1j
and Qρ

2j respectively, are compatible with the output of the outlet port in the incompressible
section j and the output of the inlet port in the incompressible section j + 1, Q2j and Q1(j+1)
respectively. The static pressures in the outputs of the inlet and outlet ports in the node,
namely pρ1j and pρ2j respectively, are only one part of the total pressures in the inputs of the
adjacent incompressible section, namely P2j and P1(j+1). This implies that an interconnection
by ports, as described in Section 1.2.1.a, can not be done. However, given the relationship
between the volume of the incompressible sections and the density of the nodes described in
(3.10), we can made a power-preserving interconnection between the fluid sections, as will
be shown in Section 3.2.1. Additionally, notice that the PHS formulation of the nodes and
the incompressible sections provides a set of inputs and outputs that are useful for the fluid-
structure interconnection, as will be shown in Section 3.3.

In the case of nf sections, the term Φ in (3.19), can be rewritten as Φ = R3∂πζKf . Then,
the governing equations can be expressed as:

π̇ζ = −R3∂πζKf + [ϑπ − ϑπ − ϕπ]

P1
P2
vc

 (3.33a)

 Q1
−Q2
−F∗

 =

 ϑ>π
−ϑ>π
−ϕ>π

 ∂πζKf +

 0 0 Mπ

0 0 Mπ

−M>
π −M>

π 0


P1
P2
vc

 (3.33b)
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3.2. Port-Hamiltonian formulation of the FSI model

where Q1 = [Q11 · · · Q1nf ]> and Q2 = [Q21 · · · Q2nf ]> are the sets of inlet and outlet flows
in the incompressible sections, respectively, F∗ = [F ∗1 · · · F ∗nf ]

> is a set of forces at the contact
surfaces with the moving structure, and matrices R3 ≥ 0 and Mπ are defined as

R3 = 1
2


λ1|πζ1|/`1 0 · · · 0

0 . . . . . . ...
... . . . . . . 0
0 · · · 0 λnf |πζnf |/`nf

 Mπ = 1
2


Ac1 0 · · · 0
0 . . . . . . ...
... . . . . . . 0
0 · · · 0 Acnf

 (3.34)

The dynamics of the nf−1 nodes in (3.23) can be written as the following port-Hamiltonian
system

ρ̇ = 0∂ρUf +
[
ϑρ −ϑρ −ϕρ

] Qρ
1

Qρ
2

vc

 (3.35a)

 pρ1
−pρ2
−Fρ

 =

 ϑ>ρ
−ϑ>ρ
−ϕ>ρ

 ∂ρUf (3.35b)

where pρ1 = [pρ11 · · · p
ρ
1(nf−1)]> and pρ2 = [pρ21 · · · p

ρ
2(nf−1)]> are the sets of pressures in the inlet

and outlet node boundaries, respectively, and Fρ = [F ρ
1 · · · F ρ

nf
]> denotes the forces at the

contact surfaces between each section with uniform cross-sectional area and the corresponding
node. Matrices ϑρ and ϕρ are defined in Section 3.1.3. Note that from the uniform density
assumption in the nodes we have pρ1j = pρ2j = pρj . Additionally, the forces F ρ

j are defined as
F ρ
j = An(j−1)p

ρ
j−1 + Anjp

ρ
j , ∀j ∈ [2, nf − 1], with F ρ

1 = An1p
ρ
1 and F ρ

nf
= An(nf−1)p

ρ
nf−1.

3.2.1 Power-preserving interconnection of incompressible fluid sec-
tions and nodes

Note that the outputs {Q1,Q2} of the incompressible section model are compatible with the
inputs {Qρ

1,Q
ρ
2} of the node model. Similarly, the inputs {P1,P2} are compatible with outputs

{pρ1,p
ρ
2}. However, {pρ1,pρ2} are static pressures and {P1,P2} are total pressures. Thus, we

describe the flow dynamics as shown in the following proposition.

Proposition 3.3. Let Pρ
1 = pρ1 + pρd and Pρ

2 = pρ2 + pρd be the total pressure sets at the inlet
and outlet boundaries of the nodes where pρd is the set of dynamic pressures in the nodes, and
{Pi, Qi} and {Po, Qo} the pairs of total pressure and flow at the inlet and outlet boundaries of
the fluid domain, respectively. There exist matrices C1, C2, C1∗ and C2∗, defined as

C1 =
[
0(nf−1)×1 I

]
, C2 =

[
I 0(nf−1)×1

]
, C1∗ =

[
1 01×(nf−1)

]
and

C2∗ =
[
01×(nf−1) 1

]
(3.36)

39



Chapter 3. Finite-Dimensional PH-FSI model Incomp. Fluids

such that [
C1
C1∗

]
Q1 =

[
Qρ

2
Qi

]
,

[
C2
C2∗

]
Q2 =

[
Qρ

1
Qo

]
,

[
C1
C1∗

]> [pρ2 + pρd
Pi

]
= P1, and

[
C2
C2∗

]> [pρ1 + pρd
Po

]
= P2.

Then, the fluid sections can be interconnected using the following power-preserving rule:

Qρ
1

Qρ
2

P1
P2
−Qi

Qo


=



0 0 0 −C2 0 0
0 0 C1 0 0 0
0 −C>1 0 0 C>1∗ 0
C>2 0 0 0 0 C>2∗
0 0 −C1∗ 0 0 0
0 0 0 −C2∗ 0 0


︸ ︷︷ ︸

If



pρ1 + pρd
−pρ2 − pρd

Q1
−Q2
Pi
Po


(3.37)

where If is the skew-symmetric interconnection matrix of the fluid sections.

Proof. Note that Qi = Q11 and Qρ
2(j−1) = Q1j,∀j ∈ {2, . . . , nf}. Similarly, Qo = Q2nf and

Qρ
1j = Q2j,∀j ∈ [1, nf − 1]. Then, defining the matrices C1, C2, C1∗ and C2∗ as (3.36) and

denoting by u> = [Qρ
1
> Qρ

2
> P>1 P>2 − Qj Qo] the input of incompressible fluid section and

nodes and by y> = [(pρ1 + pρd)
> − (pρ2 + pρd)

> Q>1 − Q>2 Pi Po] the corresponding power
conjugated outputs. Then, the total power exchange in the fluid is given by u>y. From the
interconnection rule (3.37) we have u = Ify, and given the skew-symmetrical property of If
we obtain u>y = 0, i.e., (3.37) describes a power-preserving interconnection.

To apply the power-preserving interconnection described above, we need to define the dy-
namic pressure in the nodes. In this case we describe the dynamic pressure in node j as
the weighted average of the dynamic pressure in adjacent incompressible fluid sections, i.e.,
pdj = ρ0

2 v
2
jαj + ρ0

2 v
2
j+1(1− αj), and pρd = [pd1 · · · pdnf ]

>.
On the other hand, from (3.10), the kinetic energy of the fluid is a function of the node

densities, such that,

∂ρjKf = ρ0

2 v
2
j∂ρjVj + ρ0

2 v
2
j+1∂ρjVj+1 = m

ρ2
j

pdj (3.38)

This implies that the dynamic pressure in each node can be expressed as:

pρd = ϑ>ρ ∂ρKf (3.39)

Then, defining the total energy of the fluid as:

Hf = Kf + Uf (3.40)

the fluid dynamics (3.33) and (3.35) can be formulated as in Proposition 3.4.
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3.2. Port-Hamiltonian formulation of the FSI model

Proposition 3.4. Let the state variables of the fluid be x>f = [π>ζ ρ>]. Using the interconnec-
tion rule (3.37), the fluid dynamics can be described as the following port-Hamiltonian system
with feed-through term:

ẋf = (Jf −Rf ) ∂xfHf +Gfuf (3.41a)
yf = G>f ∂xfHf +Mfuf (3.41b)

where Hf denotes the total energy, uf =
[
Pi Po vc

>
]>

and yf =
[
Qi −Qo F∗c>

]>
describe the

inputs and outputs in the fluid boundaries, respectively, with vc and F∗c the sets of velocities and
forces at the contact surface with the mechanical structure. Matrices Jf = −J>f , Rf = R>f ≥ 0,
Gf and Mf = −M>

f are given by:

Jf =
[

0 ψ
−ψ> 0

]
Rf =

[
R3 0
0 0

]
Gf =

[
ϑ −ϕπ
0 −ϕ

]
Mf =

[
0 ψM
−ψ>M 0

]
(3.42)

where ϑ = ϑπ
[
C>1∗ −C>2∗

]
maps the boundary pressures in the corresponding fluid sections,

ϕ = ϕρ+ϑρ (C2 + C1)Mπ maps the upper boundary velocities in the nodes, ψ = ϑπ(C>1 −C>2 )ϑ>ρ
describes the energy flux between the state variables and ψM =

[
C>1∗ C>2∗

]>
Mπ defines the feed-

through terms.

Proof. Consider the interconnection rule (3.37) and the expression of the dynamic pressure
(3.39). Systems (3.33) and (3.35) can be rewritten as:

π̇ζ = −R3∂πζKf + ϑπ
(
C>1 − C>2

)
ϑ>ρ (∂ρKf + ∂ρUf ) + ϑπC

>
1∗Pi − ϑπC>2∗Po − ϕπvc

ρ̇ = −ϑρ (C1 − C2)ϑ>π ∂πxKf − (ϕρ + ϑρ (C1 + C2)Mπ) vc

Using the total energy (3.40), we obtain the following port-Hamiltonian system:[
π̇ζ
ρ̇

]
=
[
−R3 ψ
−ψ> 0

] [
∂πζHf

∂ρHf

]
+
[
ϑ −ϕπ
0 −ϕ

] [
up
vc

]
[

yQ
−F∗c

]
=
[
ϑ> 0
−ϕ>π −ϕ>

] [
∂πζHf

∂ρHf

]
+
[

0 ψM
−ψ>M 0

] [
up
vc

]

where up =
[
Pi Po

]>
, yQ =

[
Qi −Qo

]>
describe the power-conjugated input and output,

respectively, at the inlet and outlet boundaries of the fluid domain, and F∗c contains the set
of forces on the contact surface with the structure. The internal matrices are given by ϑ =
ϑπ
[
C>1∗ −C>2∗

]
, ϕ = ϕρ + ϑρ (C2 + C1)Mπ, ψ = ϑπ(C>1 − C>2 )ϑ>ρ and ψM =

[
C>1∗ C>2∗

]>
Mπ.

Finally, defining the port-Hamiltonian matrices as in (3.42), we obtain the system (3.41).

We notice that F∗c = Fc + F̂ where Fc is the effective force applied on the contact surface
between the fluid and the structure, and F̂ is a set of extra forces associated with the variation
of volume of each fluid section induced by the motion of the structure. These extra forces are
defined as F̂ = ∂qfHf where qf = [qf1 · · · qfnf ]> is the set of heights of each fluid sections of
uniform cross-sectional area.
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In works such as [57], the extra force F̂ is compensated including a state variable to model
the changes in the cross-sectional area, that is equivalent to include qf as a state variable.
However, with this approach, the number of states increases and the resulting fluid-structure
interaction system has a non-minimal realization. In the next section we propose an alternative
way to compensate F̂.

3.3 Fluid-structure power-preserving interconnec-
tion

Figure 3.4 – Finite-dimensional formulation of the fluid-structure system. MSD-based description of the
structure motion. Fluid dynamics description based on nodes (red) and incompressible fluid sections.

In this section we describe the power-preserving interconnection between the fluid model
(3.41) and the structure. We consider a MSD formulation of the structure motion, as shown
in Figure 3.4, whose port-Hamiltonian model is given by:

[
q̇s
π̇s

]
=
[

0 I
−I −R

] [
∂qsHs

∂πsHs

]
+
[
0
I

]
Fs (3.43a)

vs =
[
0 I

] [∂qsHs

∂πsHs

]
(3.43b)

where qs, vs and πs denote the sets of displacement, velocity and momentum of the ns masses
describing the transversal structure motion, Fs denotes the external forces acting on the masses
and Hs is the total stored energy. Considering that moving boundary of the fluid domain is
given by the structure motion described in (3.43), there exists an nf × ns matrix C such that
Cvs = vc and C>Fc = Fs. This matrix C is composed only with 0 and 1, and is defined
according to the link between the masses and the corresponding fluid sections with uniform
cross-sectional areas. For example, consider the fluid-structure system in Figure 3.4, where the
length `f of the fluid section with uniform cross-sectional areas is equal to the length `s of the
masses that describe the transversal structure motion. In this case the matrix C is equal to
the identity matrix. Figure 3.5 shows another example where `s = 2`f (nf 6= ns). In this case
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3.3. Fluid-structure power-preserving interconnection

Figure 3.5 – Finite-dimensional formulation of the fluid-structure system with nf 6= ns.

the matrix C is defined as:

C =



1 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 . . . ... ...
0 1 0 . . . ... ...
... ... ... . . . ... ...
0 0 0 · · · 0 1
0 0 0 · · · 0 1



Remark 3.1. In the previous examples, we considered that the length of the fluid domain
and the length of the structure domain in motion are equal, as shown in Figures 3.4 and 3.5.
However, in some problems the motion of the structure is constrained to one part of the structure
domain. An example of this class of problems is the vocal folds, where finite-dimensional models,
as the BCM, describe the motion only in the folds area that collides. In these cases, matrix C
is defined according to the fluid sections under the moving structure area with motion, as will
be shown in Section 4.4.

Defining Fs = C>Fc + ue where ue denotes external forces, the fluid and structure models
can be coupled using the following power-preserving interconnection rule vc

Fs

−ye

 =

 0 C 0
−C> 0 I

0 −I 0


−Fc

vs
ue

 (3.44)

Considering the relationship qf = q0 + Cqs, where q0 = [q01 · · · q0nf ]> denotes the set of
initial height of incompressible sections, we obtain the expression C>F̂ = C>∂qfHf = ∂qsHf .
Then, the FSI system can be modeled as follows.

Proposition 3.5. Let the port-Hamiltonian models of the structure and the incompressible flow
be described as in (3.43) and (3.41), respectively. Then, the PHS that describes the FSI between
these two sub-systems is given by:

ẋfs = (Jfs −Rfs) ∂xfsHfs +Gfsufs (3.45)
yfs = G>fs∂xfsHfs (3.46)
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where x>fs = [q>s π>s π>ζ ρ>], u>fs = [Pi Po u>e ], y>fs = [Qi − Qo y>e ] and Hfs = Hf + Hs

denote the state vector, input, output and total stored energy of the FSI system, respectively,
and matrices Jfs = −J>fs, Rfs = R>fs ≥ 0 and Gfs are defined as:

Jfs =


0 I 0 0
−I 0 [ϕπC]> [ϕC]>
0 −ϕπC 0 ψ
0 −ϕC −ψ> 0

 , Rfs =


0 0 0 0
0 R 0 0
0 0 R3 0
0 0 0 0

 , Gfs =


0 0

C>ψ>M I
ϑ 0
0 0

 (3.47)

Proof. Consider the fluid and structure models (3.43) and (3.41), respectively. Using the inter-
connection rule (3.44) and expressing the effective force applied by the fluid on the structure
as Fc = F∗c − ∂qfHf , the dynamics of the structure and fluid can be rewritten as:

q̇s = ∂πsHs

π̇s = −∂qsHs −R∂πsHs + C>
(
F∗c − ∂qfHf

)
+ ue

π̇ζ = −R3∂πζHf + ψ∂ρHf + ϑup − ϕπCvs
ρ̇ = −ψ>∂πζHf − ϕCvs

where vs = ∂πsHs and F∗c = ϕ>π ∂πζHf + ϕ>∂ρHf + ψ>Mup. Considering C>∂qfHf = ∂qsHf the
fluid-structure system can be expressed as:

q̇s
π̇s
π̇ζ
ρ̇

 =


0 I 0 0
−I −R C>ϕ>π C>ϕ>

0 −ϕπC −R3 ψ
0 −ϕC −ψ> 0



∂qsHfs

∂πsHfs

∂πζHfs

∂ρHfs

+


0 0

C>ψ>M I
ϑ 0
0 0


[
up
ue

]

[
yQ
ye

]
=
[
0 ψMC ϑ> 0
0 I 0 0

] 
∂qsHfs

∂πsHfs

∂πζHfs

∂ρHfs


Finally, defining the matrices Jsf , Rfs and Gfs as shown in (3.47) we obtain the fluid-

structure interaction model described in (3.46).

3.4 Example: Pressure wave propagation in a flex-
ible tube

The pressure wave propagation in a flexible tube is a common benchmark for numerical
algorithms applied to fluid-structure interaction analysis [10, 12, 9]. We consider a flexible tube
with axisymmetric behavior and we approximate the tube structure and the fluid dynamics
using the models described in Propositions 2.1 and 3.4, respectively. The structure parameters
are approximated using formula (2.1), (2.5), (2.6) and (2.8). Defining ns = nf = N we obtain

`s = `f = L/N q0i = r,∀j
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Table 3.1 – Material parameters of the structure and the fluid.

Reference Subsystem Parameters
[10] Structure µ = 5.75× 104Pa, λ = 17× 104Pa, h = 0.001m, r = 0.005m

L = 0.06m, ρs = 1.1× 103Kg/m3

Fluid ρ0 = 1× 103 Kg/m3 , βS = 2.15× 109Pa
[12] Structure µ = 11.538× 104Pa, λ = 17.308× 104Pa, h = 0.001m, r = 0.005m

L = 0.05m, ρs = 1.2× 103Kg/m3

Fluid ρ0 = 1× 103 Kg/m3 , βS = 2.15× 109Pa

Table 3.2 – Parameters of the fluid-structure model [12].

Sections Subsystem Parameters
N = 51 Structure kj = 73.9483N/m, kcj = 2.7× 10−2N/m, dj = 2.09× 10−2Ns/m

mj = 3.7× 10−5Kg, `s = 9.8× 10−4m
Fluid `f = 9.8× 10−4m, m = 7.7× 10−8Kg

N = 71 Structure kj = 51.9883N/m, kcj = 3.86× 10−2N/m, dj = 1.48× 10−2Ns/m
mj = 2.65× 10−5Kg, `s = 7.04× 10−4m

Fluid `f = 7.04× 10−4m, m = 5.53× 10−8Kg

where L and r are the length and the internal radius of the tube, respectively. The fluid
cross-sectional area is given by Aj = πq2

fj. The areas of the contact surface in incompressible
sections and nodes are defined as Acj = 2πqfj`j and Anj = 2πqfj ¯̀j, respectively. Similarly, the
mass of nodes is given by m = ρ0πr2`f10−3. As a consequence of `s = `f the coupling matrix
between the fluid and the structure is given by C = I. Then, the matrices of the fluid-structure
port-Hamiltonian model described in Proposition 3.5 are given by:

Jfs =


0 I 0 0
−I 0 ϕ>π ϕ>

0 −ϕπ 0 ψ
0 −ϕ −ψ> 0

 , Rfs =


0 0 0 0
0 R1 0 0
0 0 R3 0
0 0 0 0

 , Gfs =


0 0
ψ>M I
ϑ 0
0 0


In this example, we neglect the viscous losses, considering only (3.9) to define the geometrical

fluid loss factor λj. For thw simulation we use the parameters proposed in [12, Section 5.1],
summarized in Table 3.1. We divide the structure into two different numbers of sections,
N = 51 and N = 71. We use β1 = 6.7, β2 = 1.5× 10−5, and ζ = 0.4. The parameter values are
summarized in Table 3.2. Using the same input conditions as described in [12], i.e., Po = 0 Pa,
and

Pi =

1.333× 103 Pa, 0 ≤ t ≤ 3× 10−3s
0 Pa, otherwise

with a sample time of 4× 10−5s, we obtain the pressure wave propagation shown in Figure 3.6,
where the structure displacements have been scaled 10 times for the sake of clarity. Note that
the speed propagation and attenuation of pressure waves are in correspondence with the results
in [12, Figure 2]. However, a difference from the results in [12] is the static pressure undershoot
behind the pressure pulse propagation and a negative displacement of the tube walls (dashed
boxes in Figure 3.6). Note that both, the distance between this undershoot and the pressure
pulse, increase as the pulse propagates through the tube. This behavior is consistent with the
results reported in [9, Figure 6], where a 3D model of the flexible tube is studied. Regarding
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(c) t = 8 ms

Figure 3.6 – Static pressure (Pa) distribution, pρ1, along the tube and scaled structure displacements for
different time instants and two different numbers of sections. Dashed boxes: static pressure undershoot and

negative displacement of the walls.

Table 3.3 – Parameters of the fluid-structure model using the material specifications of [10].

Sections Subsystem Parameters
N = 71 Structure kj = 100.604N/m, kcj = 90.85× 10−2N/m, dj = 4.34× 10−2Ns/m

mj = 2.92× 10−5Kg, `s = 8.45× 10−4m
Fluid `f = 8.45× 10−4m, m = 6.63× 10−8Kg

the negative displacement, consider the displacement at the half length of the structure shown
in Figure 3.7. This displacement shows the same pattern as the radial displacement reported
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Figure 3.7 – Displacement of the wall in the half-length point of the structure (Displacements q26 and q36 for
N = 51 and N = 71, respectively).

in [12, Figure 3.b]. Then, the main difference with respect to the results reported in [12] is
the displacement at both ends of the tube. This is due to the fact that in [12] the tube is
fixed at both ends, restricting the motion of the tube. In this thesis we do not implement this
restriction, allowing greater displacements at the left hand side of the tube, as shown in Figure
3.6a.

Now, we consider the parameters used in. [10], also shown in Table 3.1. The parameters
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Figure 3.8 – Simulation results for flexible tube using the material parameter of [10]. (a) Static pressure
distribution, pρ1, along the tube. (b) Wall displacement distribution, q, along the tube.

are obtained using N = 71, β1 = 1.1, β2 = 8.5 × 10−5 and ζ = 0.8 (see Table 3.3 for details).
The outlet and inlet pressures are defined as Po = 0 Pa and

Pi =

666.5
(
1− cos

(
6.28t
0.003

))
Pa, 0 ≤ t ≤ 0.003s

0 Pa, otherwise

respectively.
Figure 3.8 shows the pressure distribution and structure displacement for 3 different time

instants. The pressure distributions shown in Figure 3.8.a at time instants 4× 10−3s, 8× 10−3s
and 12×10−3s are in correspondence with the results reported in [79, Figure 8] and [10, Figure
8] at h = 0.01. Similarly, the shape of the wall displacements shown in Figure 3.8.b are
consistent with the results reported for the fluid-structure interface displacement in [79, Figure
9] and [10, Figure 7] at h = 0.01. However, a difference between our results and those shown
in [79, 10] is given by the negative displacement at the left-end side of the tube in the first
instants of the simulation. As explaining previously, this difference is due to the fact that at
the ends of the tube a free motion of the wall is allowed.

3.5 Conclusion

In this chapter a scalable finite-dimensional PHS formulation for incompressible fluids has
been proposed. An instrumental element, called node, is introduced to allow an appropriate
coupling of incompressible fluid sections. This node is also useful to describe the pressure in
the inlet and outlet boundaries of the incompressible sections. Similarly, a power-preserving
interconnection that combines the properties of PHS interconnections by ports and energy, is
proposed in Section 3.3. This interconnection allows us to couple the fluid and the structure
models with an appropriate characterization of the fluid-structure power transfer.

In order to assess this PHS model for incompressible fluids, the pressure pulse propagation
in a flexible tube is considered as a benchmark. The results obtained with this model are in
correspondence with those reported in [9, 79, 10, 12] using specialized FSI algorithms.
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Finally, notice that given the definition of nodes, considering a constant mass m, a pressure
variations imply variations in the node volume. This volume variation implies that, when
the height of two adjacent fluid sections decreases, the length ¯̀

j of the node between the
corresponding incompressible sections tends to increase. This node formulation represents a
drawback when applications with structure collisions are considered. For example, in the vocal
folds vibrating cycle, when the structure collides, the assumption that node volume is small
enough with respect to the volume of adjacent incompressible sections, does not hold.

In the next chapter, we consider a more realistic formulation of the fluid dynamics consid-
ering compressibility.
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Chapter 4
Finite-dimensional port-Hamiltonian FSI model

for compressible fluids

The interaction between a compressible fluid and a structure is a problem studied in several
research areas, such as the piston problem in mechanics [106, 107], or the bioengineering study
of the human phono-respiratory system [31, 14, 15, 16].

Similarly to what has been done in Chapter 3, we propose a scalable finite-dimensional
model in a longitudinal domain for a compressible fluid and its coupling with a structure with
transverse motion. As case of study, we consider the fluid-structure interaction in a vocal
folds system expressing the FSI between the intraglottal airflow and the vocal folds. Note that
during the vibrating cycle of the vocal folds, these collide, leading to singularity in the airflow
model.

Contribution

We propose a port-Hamiltonian finite-dimensional model of compressible airflow cou-
pled with a structure using a switched power-preserving interconnection strategy.
This switched interconnection method allows to represent the elastic collision and en-
able/disable the dynamics of the closed fluid sections during the structure collision.

4.1 Fluid description

In this section we consider an isentropic and compressible fluid with an irrotational flow,
described by the following equations [101]:

∂tρ = −div (ρv) (4.1a)

∂tv = −grad
(1

2 |v|
2
)
− 1
ρ

grad p− 1
ρ

div τ (4.1b)

where τ denotes the Newtonian viscosity tensor, i.e.,

τ = −µ
(
Grad v + [Grad v]>

)
+
(2

3µ− κ
)

(div v) I (4.2)

The static pressure of the fluid is defined from the ideal gas law, i.e.,

p = nR̄uT

V
(4.3)
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where V , n and T are the volume, number of moles and temperature (in Kelvin degrees) of the
gas, respectively, and R̄u is the universal gas constant.

Using the molar weight M̄ , the airflow pressure can be rewritten as

p = nM̄

V

R̄uT

M̄
= ρ (∂ρp)T (4.4)

where ρ = M̄n/V and (∂ρp)T = R̄uT/M̄ is the isothermal compressibility. Moreover, isother-
mal compressibility is related to the isentropic compressibility by the thermodynamic relation
(∂ρp)s = γ (∂ρp)T , where γ is the specific heat ratio of the gas, γ = 1.4 for the air, and
(∂ρp)s = c2 with c the speed of sound [108, Ch. 8]. The static pressure is given by:

p = (∂ρp)s
ρ

γ
= c2

γ
ρ (4.5)

From a thermodynamic point of view, the isentropic fluid can be described using the Gibbs
equation:

du = −pd1
ρ

(4.6)

where u denotes the specific (per unit mass) internal energy. Using the specific enthalpy
definition

h = u + p/ρ (4.7)

the term 1
ρ
grad p in (4.1b) can be rewritten as

1
ρ

grad p = grad h (4.8)

4.1.1 Finite-dimensional modeling

Similarly to the finite-dimensional modeling for incompressible fluids described in Chapter
3, we divide the fluid domain in nf sections with uniform cross-sectional area and length
`f . Considering that the structure motion is only transversal to the flow, we consider a two-
dimensional fluid describing the longitudinal and transverse component of the velocity field.
Since we assume an irrotational flow, we can reduce the number of state variables using the
following assumption.

Assumption 4.1. Denote by v and v the transverse and longitudinal components of the fluid
velocity. The gradient of v is given by ∂ξv = vc/q and ∂ζv = 0 in each section with uniform
cross-sectional area, where ζ and ξ denote the longitudinal and transverse axes, vc and q are
the velocity and height of the structure wall, respectively, and vc � v.

As a consequence of Assumption 4.1, in each section with uniform cross-sectional area we
have v = vcξ/q. This implies an algebraic constraint between v and the structure dynamics.
Thus, to complete the flow description, the state variable that is chosen is the longitudinal
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4.1. Fluid description

velocity v. Additionally, as vc � v we can use the following approximation |v|2 ≈ v2. With
these considerations we reduce the velocity analysis to the longitudinal component, whose
momentum equation can be described by:

∂tv = −∂ζ
(1

2v
2 + h

)
− µ̂

ρ
∂ζ (∂ζv) (4.9)

where µ̂ = 4
3µ+ κ.

To describe the velocity and density of the fluid, we divide the spatial domain in nf sections
for each variable, as shown in Figures 4.1a and 4.1b. We denote by ρj the average density in
volume V̄j between longitudinal points ζ̃j−1 and ζ̃j, with ζ̃j = ζ̃0 + j`f . The average velocity in
volume Vj between longitudinal points ζj−1 and ζj, with ζj = ζ̃0 + (j + 1

2)`f is denoted by vj.
Then, the fluid dynamics are described using a 1D staggered mesh, as shown in Figure 4.1c,
where the boundary conditions are given by the momentum density in the inlet boundary, ρv|ζ̃0

,
and the energy plus enthalpy in the outlet boundary, (1

2v
2 + h)|ζnf . This mesh is equivalent

to the mesh proposed in [59] for one-dimensional discretization of infinite dimensional port-
Hamiltonian systems.

vc1
vc2 vc(nf−1)

vcnf

ρ1 ρ2 ρnf−1 ρnf

ζ̃0 ζ̃1 ζ̃2 ζ̃nf−2 ζ̃nf−1 ζ̃nf

Vnf

2

(a) Density sections

v1 v2 vnf−1 vnf

vc1
vc2 vc(nf−1)

vcnf

ζ0 ζ1 ζ2 ζnf−2 ζnf−1 ζnf

V0

2

ζ

ξ

(b) Velocity sections

× × × ×
ρ1 ρ2 ρnf−1 ρnf

ρv|ζ̃0
(
1
2v + h

)∣∣
ζnf

v1 v2 vnf−1 vnf

`f `f/2

(c) Equivalent 1D staggered mesh

Figure 4.1 – Spatial discretization of fluid variables for the finite-dimensional model. (a) Description of the
density. (b): Velocity description. (c): Equivalent one-dimensional mesh.

4.1.2 Dynamics of fluid sections

Note that for an arbitrary section j with average velocity vj the cross-sectional area Aj is
uniform and the volume is given by Vj = Aj`f . The contact surface Sj with the mechanical
structure has a velocity vcj and area Acj, as shown in Figure 4.2a. For a density section
j, the volume is given by the combination of the half of adjacent velocity sections, V̄j =
(Vj−1 + Vj) /2 = `f (Aj + Aj−1)/2. Similarly, the area of the contact surface is a combination
of the areas of adjacent velocity sections, with the corresponding contact velocities, as shown
in Figure 4.2b. Then, the dynamics of the fluid sections can be expressed as in the following
proposition.
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vj , Vj , Aj

ζj−1 ζj

ζ

ξ

vcj

Sj , Acj

(a) j-th velocity section
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ζ
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vc(j−1)

vcjAc(j−1)

Acj

(b) j-th density section

Figure 4.2 – Arbitrary j-th sections of the fluid domain. (a) Velocity section. (b) Density section. Acj and vcj
are the area and velocity of the contact surface Sj in the velocity section with volume Vj , vj is the

corresponding average velocity and ρj is the average density of the section con volume V̄j .

Proposition 4.1. Consider the division of the fluid domain described in Figure 4.1. For the
j-th section of density and velocity, the fluid dynamics is described by the following ODEs:

ρ̇j = 1
V̄j

(
Qm
j−1 −Qm

j − ρj
Ac(j−1)

2 vc(j−1) − ρj
Acj
2 vcj

)
(4.10)

v̇j = 1
`f

(1
2 ṽ

2
j + hj −

(1
2 ṽ

2
j+1 + hj+1

))
− Φj (4.11)

where ρj and vj are the average density and velocity of the corresponding fluid section, Qm
j =

Ajρv|ζ̃j is the mass flow at ζ̃j, 1
2 ṽ

2
j = 1

2v
2|ζj−1 and hj = h|ζj−1 are the kinetic energy per unit

mass and specific enthalpy at ζj−1 and Φj is the average velocity drop due to energy losses in
the j-th velocity section.

Proof. Consider a uniform density distribution in the volume V̄j, and integrate the continuity
equation using the Leibniz integral rule and Gauss divergence theorem [101] to get the following
relations:

∫
V̄j
∂tρdV̄j = −

∫
V̄j

div (ρv) dV̄j

V̄j ρ̇j = Qm
j−1 −Qm

j − ρj
Ac(j−1)

2 vc(j−1) − ρj
Acj
2 vcj

ρ̇j = 1
V̄j

(
Qm
j−1 −Qm

j − ρj
Ac(j−1)

2 vc(j−1) − ρj
Acj
2 vcj

)
(4.12)

where Qm
j = Aj (ρv) |ζ̃j denotes the mass flow at ζ = ζ̃j, i.e., Qm

j−1 and Qm
j are the mass

flow at the inlet and outlet boundaries of j-th density section, {Acj, vcj} and {Ac(j−1), vc(j−1)}
are the area and velocity pairs of the adjacent contact surfaces, as shown in Figure 4.2, and
ρj = 1

V̄j

∫
V̄j
ρdV̄j is the average density in volume V̄j.
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Similarly, applying the same procedure to the motion equation (4.9), we obtain:
∫
Vj
∂tvdVj = −

∫
Vj
∂x

(1
2v

2 + h

)
+ µ̂

ρ
∂x (∂xv) dVj

Vj v̇j = Aj

(1
2v

2 + h

)∣∣∣∣
xj−1

− Aj
(1

2v
2 + h

)∣∣∣∣
xj

−
∫
Vj

µ̂

ρ
∂x (∂xv) dVj

v̇j = 1
`f

(1
2 ṽ

2
j + hj −

(1
2 ṽ

2
j+1 + hj+1

))
− Φj (4.13)

where 1
2 ṽ

2
j = 1

2v
2|ζj−1 and hj = h|ζj−1 , {1

2 ṽ
2
j , hj} and {1

2 ṽ
2
j+1, hj+1} are the kinetic energy per

unit mass and specific enthalpy at the inlet and outlet boundaries of the j-th velocity section,
respectively. Φj = 1

Vj

∫
Vj

µ̂
ρ
∂x (∂xv) dVj is the average velocity drop due to energy losses in Vj,

and vj = 1
Vj

∫
Vj
vdVj is the average longitudinal velocity in the volume Vj.

Note that according to the fluid domain discretization, the longitudinal velocity is defined
at points ζ̃j, ∀j ∈ {1, . . . , nf}. The kinetic energy per unit mass at point xj is described as a
weighted average of adjacent velocities, i.e., 1

2v
2|ζj = 1

2

(
v|ζ̃j−1

)2
(1 − αj) + 1

2

(
v|ζ̃j

)2
αj, where

αj = Aj/(Aj + Aj−1). Then, 1
2 ṽ

2
j is defined as:

1
2 ṽ

2
j = 1

2v
2
j−1(1− αj) + 1

2v
2
jαj (4.14)

4.2 Port-Hamiltonian formulation

A scalable PHS formulation of the compressible fluid is presented in this section, starting
from the definition of the total energy of the fluid.

4.2.1 Total energy of the fluid

As mentioned in the previous chapters, to obtain a port-Hamiltonian formulation, we need
to describe the total energy of the system. For the discretized model described above, the
kinetic energy in the j-th section with volume Vj associated with the longitudinal velocity is
given by:

Kfj =
∫
Vj

1
2ρv

2dVj = Vj

(
1
Vj

∫
Vj

1
2ρv

2dVj

)
(4.15)

where the term 1
Vj

∫
Vj

1
2ρv

2dVj is the average kinetic energy density in volume Vj = Aj`f . Denot-
ing by ρ̃j the average density on Vj, the average kinetic energy density can be approximated as
1
2 ρ̃jv

2
j . Note that ρ̃j = ρ|x̃j is given by the average of adjacent densities, i.e., ρ̃j = (ρj + ρj+1) /2.

Thus, Kfj can be expressed as:

Kfj = 1
4Aj`f (ρj + ρj+1) v2

j (4.16)
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In the case of the left hand side half volume V0/2, shown in Figure 4.1.(b), the kinetic
energy is given by:

Kf0 = 1
4Ai`fρ1v

2
i (4.17)

where Ai and vi denote the cross-sectional area and longitudinal velocity at the inlet boundary
of the fluid domain. Similarly, in section nf the average density is defined as ρ̃nf = (ρnf +ρo)/2,
where ρo denotes the density at the outlet boundary of the fluid domain, i.e.,

Kfnf = 1
4Anf `f

(
ρnf + ρo

)
v2
nf

(4.18)

On the other hand, to describe the stored energy in each section we define the specific
internal energy of the fluid u. Considering small variations on the fluid temperature, the speed
of sound c can be considered as being constant. Then, from (4.5) and (4.6) we obtain:

u(ρ) = c2

γ
ln(ρ) + Cu (4.19)

where Cu is a constant.
However, with this definition of u, the non-negativity property of the total energy depends

of the appropriate choice of Cu. In this sense we consider an available internal energy ū ≥ 0 to
describe the internal energy variations. We define the relative pressure of the fluid as:

p̂ = p− p0 = c2

γ
(ρ− ρ0) (4.20)

where p0 is the pressure at reference density ρ0. The available internal energy ū is obtained
such that it satisfies ∂ρū = p̂/ρ2 and ĥ = ū + p̂/ρ, where ĥ = h − h0 is the relative enthalpy
per unit mass and h0 is the specific enthalpy at ρ0. Then, ū is defined as:

ū = c2

γ

(
ln
(
ρ

ρ0

)
+ ρ0

ρ
− 1

)
(4.21)

and the relative enthalpy is given by:

ĥ = c2

γ
ln
(
ρ

ρ0

)
= ∂ρ (ρū) (4.22)

The available internal energy in a density section with volume V̄j is given by

Ūfj =
∫
V̄j
ρū(ρ)dV̄j (4.23)

where ū is defined in (4.21). Denoting by ρj the average density in V̄j = (Vj−1 + Vj) /2, the
average density of the available internal energy in the j-th density section can be approximated
by ρjūj where ūj = ū(ρ)|ρj . Then, Ūfj can be expressed as:

Ūfj = 1
2 (Vj−1 + Vj) ρjūj (4.24)

The total energy stored in the fluid is given by:

Hf =
nf∑
j=0
Kfj︸ ︷︷ ︸
Kf

+
nf∑
j=1
Ūfj︸ ︷︷ ︸
Ūf

(4.25)
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4.2.2 Scalable finite-dimensional model

From the total energy (4.25), the co-energy variables associated with the j-th velocity and
density are given by:

∂vjHf = 1
2Aj`f (ρj + ρj+1) vj = `fQ

m
j (4.26)

∂ρjHf = 1
4Vj−1v

2
j−1 + 1

4Vjv
2
j + 1

2 (Vj−1 + Vj) ĥj = V̄j

(1
2v

2
j−1(1− αj) + 1

2v
2
jαj + ĥj

)
= V̄j

(1
2 ṽ

2
j + ĥj

)
(4.27)

where 1
2 ṽ

2
1 = 1

2v
2
i (1− α1) + 1

2v
2
1α1 with α1 = A1/(A1 + Ai).

Replacing (4.26) in the density dynamics (4.10) we obtain:

ρ̇j = 1
`f V̄j

(
∂vj−1Hf − ∂vjHf

)
− ρj

2
(
Ac(j−1)vc(j−1) + Acjvcj

)
(4.28)

Similarly, considering that hj − hj+1 = ĥj − ĥj+1 and using (4.27), the velocity dynamics
(4.11) can be formulated as:

v̇j = 1
`f V̄j

∂ρjHf −
1

`f V̄j+1
∂ρj+1Hf − Φj (4.29)

In the cases of first density and last velocity sections, the dynamics are given by:

ρ̇1 = 1
V̄1
Qm
i −

1
`f V̄1

∂v1Hf −
ρ1

2 Ac1vc1 (4.30)

v̇nf = 1
`f V̄nf

∂ρjHf −
1
`f

(1
2 ṽ

2
o + ĥo

)
− Φnf (4.31)

where the subscripts i and o denote the variables at inlet and outlet boundaries of the fluid
domain, i.e., Qm

i = Ai(ρv)|x̃0 and 1
2 ṽ

2
o + ĥo =

(
1
2v

2 + ĥ
)
|xnf . The term 1

2 ṽ
2
o is evaluated by

1
2 ṽ

2
o = 1

2v
2
nf

(1−αo)+ 1
2 (v+

o )2
αo with αo = A+

o /(A+
o +Anf ), where v+

o and A+
o denote the average

velocity and area external to the fluid domain. In case that the outlet boundary is open to the
atmosphere, αo = 1 and 1

2 ṽ
2
o = 1

2 (v+
o )2. Similarly, ĥo = ĥ(ρ)|ρo where ρo is the fluid density at

the outlet boundary.
On the other hand, the power dissipated in an arbitrary velocity section j is given by

Eλj = ∂vjHfΦj. From (3.8) we obtain:

Φj = dfj∂vjHf (4.32)

where

dfj = λj|vj|
(ρj + ρj+1) `fVj

≥ 0 (4.33)
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Then, the dynamics in the fluid domain can be written as:

v̇ = −R4∂vHf + ϕ∂ρHf − gv
(1

2 ṽ
2
o + ĥo

)
(4.34)

ρ̇ = −ϕ>∂vHf + gρQ
m
i − ϑvc (4.35)

where v = [v1 · · · vnf ]> and ρ = [ρ1 · · · ρnf ]> are the sets of velocities and densities in the
fluid sections, respectively. Matrices R4 = R>4 ≥ 0, ϕ, gv, gρ and ϑ are given by:

R4 =


df1 0 · · · 0
0 . . . . . . ...
... . . . . . . 0
0 · · · 0 dfnf

 , ϕ = 1
`f



1
V̄1
− 1
V̄2

0 · · · 0
0 1

V̄2
− 1
V̄3

. . . ...
... . . . . . . . . . 0
... . . . . . . 1

V̄nf−1
− 1
V̄nf

0 · · · · · · 0 1
V̄nf


, gv =


0
...
0
1
`f



gρ =


1
V̄1
0
...
0

 and ϑ = 1
2



ρ1Ac1
V̄1

0 · · · · · · 0
ρ2Ac1
V̄2

ρ2Ac2
V̄2

. . . . . . ...
0 . . . . . . . . . ...
... . . . ρnf−1Ac(nf−2)

V̄nf−1

ρnf−1Ac(nf−1)

V̄nf−1
0

0 · · · · · ·
ρnfAc(nf−1)

V̄nf

ρnfAcnf
V̄nf


(4.36)

Proposition 4.2. Consider an isentropic and compressible fluid with an irrotational flow.
Using the discretization scheme described in Section 4.1.1, the sets of velocities and densities
in the fluid sections are given by v = [v1 · · · vnf ]> and ρ = [ρ1 · · · ρnf ]>, respectively. Then,
the fluid dynamics can be characterized using the following port-Hamiltonian system:

ẋf = (Jf −Rf ) ∂xfHf +Gfuf (4.37a)
yf = G>f ∂xfHf +Mfuf (4.37b)

where x>f = [v> ρ>] is the state vector, uf = [Qm
i (1

2 ṽ
2
o+ĥo) vc

>]> and yf = [(1
2 ṽ

2
i +ĥi) −Qm

o −
(F∗c)

>]> denote the inputs and outputs, respectively, and matrices Jf = −J>f , Rf = R>f ≥ 0
and Gf are given by:

Jf =
[

0 ϕ
−ϕ> 0

]
, Rf =

[
R4 0
0 0

]
,

Gf =
[

0 −gv 0
gρ 0 ϑ

]
Mf =

0 0 0
0 0 ψ
0 −ψ> 0

 (4.38)

with ψ = [0 · · · 0 ρoAcnf
2 ].
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Proof. Note that the power conjugated outputs associated with the inputs Qm
i and 1

2 ṽ
2
o + ĥo

are given by 1
2 ṽ

2
i + ĥi and Qm

o , respectively. The output at the inlet boundary is approximated
using the kinetic energy per unit mass plus relative specific enthalpy of the first density section.
Similarly, we define the outlet output as the average mass flow in the velocity section nf minus
the mass flow displaced due to the structure motion in the right hand side half volume Vnf/2.
i.e.,

1
2 ṽ

2
i + ĥi = 1

2 ṽ
2
1 + ĥ1 = 1

V̄1
∂ρ1Hf (4.39)

Qm
o = Qm

nf
− ρ0

Acnf
2 vcnf = 1

`f
∂vnfHf − ρ0

Acnf
2 vcnf (4.40)

Then, the fluid dynamics (4.34)-(4.35) can be rewritten as

[
v̇
ρ̇

]
=
[
−R4 ϕ
−ϕ> 0

] [
∂vHf

∂ρHf

]
+
[

0 gv 0
gρ 0 −ϑ

]  Qm
i

1
2 ṽ

2
o + ĥo
vc

 (4.41)


1
2 ṽ

2
i + ĥi
−Qm

o

−F∗c

 =

 0 g>ρ
−g>v 0

0 −ϑ>

 [∂vHf

∂ρHf

]
+

0 0 0
0 0 ψ
0 −ψ> 0


 Qm

i
1
2 ṽ

2
o + ĥo
vc

 (4.42)

where ψ = [0 · · · 0 ρoAcnf
2 ].

Finally, defining matrices Jf , Rf , Gf and Mf as in (4.38), we obtain the port-Hamiltonian
model (4.37).

Note that, similarly to the fluid model described in Chapter 3, the output forces F∗c = Fc+F̂
are not the effective forces acting on the fluid-structure contact. The forces F̂ are associated
with the volume variation in each section with uniform cross-sectional area. Note that this
variation of volume is associated with the changes of height in each section, i.e., F̂ = ∂qfHf .
Then, the set of effective forces acting on the contact surface is given by:

Fc = F∗c − F̂ = ϑ>∂ρHf + ψ>
(1

2 ṽ
2
o + ĥo

)
− ∂qfHf (4.43)

For the j-th velocity section the extra force and the output force are given by F̂j = ∂qfjHf =
Acj
4 (ρj + ρj+1) v2

j + Acj
2 (ρjūj + ρj+1ūj+) and F ∗cj = Acj

2 (p̂j + p̂j+1) + Acj
4

(
ρj ṽ

2
j + ρj+1ṽ

2
j+1

)
+

Acj
2 (ρjūj + ρj+1ūj+). Then, the effective force applied on the contact surface of section j is

defined as:

Fcj = Acj
4
(
ρj ṽ

2
j + ρj+1ṽ

2
j+1 − (ρj + ρj+1) v2

j

)
+ Acj

2 (p̂j + p̂j+1) (4.44)

In the next section, we will see that these extra forces are compensated through a power-
preserving interconnection.
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4.3 Fluid-Structure power-preserving interconnec-
tion

From Assumption 4.1 we obtain two conditions for the transverse velocity in each fluid
section with uniform cross-sectional area, vj|ξ=qfj = vcj and vj|ξ=0 = 0, and as a consequence
vcj→0 when qfj → 0. This behavior is undesirable in applications such as glottis modeling,
where the vocal folds collide at speed greater than 0, i.e, vcj 6= 0 when the collision occur during
the vocal folds vibrating cycle. To obtain this behavior, we consider the approach proposed in
[74], using switching variables to enable or disable the power transfer between the fluid and the
structure. We consider a threshold value ε, such that, the fluid dynamics in Vj and its effect on
the mechanical structure are disabled when qfj < ε. As a consequence, we define a switching
matrix Sε = STε as:

Sε =


sε1 · · · 0
... . . . ...
0 · · · sεnf

 (4.45)

where

sεj =

1, qfj > ε

0, qfj ≤ ε
(4.46)

The power transfer between the fluid and the structure systems is given by uTs ys = vc
TFc.

We define a matrix C, with elements 0 and 1, as shown in Section 3.3, that maps the output
and input vectors of the mechanical model of the vocal folds to the corresponding velocities and
forces of the fluid model, i.e., SεCys = vc and CTSTε Fc = us. The following power preserving
interconnection rule to couple the fluid and structure models is used:[

vc
us

]
=
[

0 SεC
−C>S>ε 0

] [
−Fc

ys

]
(4.47)

In this rule, matrix C defines the interconnections between the fluid and the mechanical
sub-systems, and matrix Sε enables or disables the fluid-structure power transfer according to
the switching variables sεj,∀j ∈ {1, . . . , nf}.

Consider the general mass-spring-damper model (3.43) to describe the structure motion
with total stored energy Hs. Including Sε in the fluid equations to enable and disable the
dynamics in each fluid section according to sεj and using the interconnection (4.47), we can
write the fluid-structure dynamics as:

q̇s = −∂πsHs (4.48a)
π̇s = −∂qsHs −R∂πsHs + C>S>ε Fc (4.48b)

v̇ = −SεR4∂vHf + Sεϕ∂ρHf − Sεgv
(1

2 ṽ
2
o + ĥo

)
(4.48c)

ρ̇ = −ϕ>S>ε ∂vHf + gρQ
m
i − ϑSεCys (4.48d)
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Note that the term gρQ
m
i is not switched. This is given by the fact that the inlet mass flow

enters through the left hand side half volume V0/2 and this section have a motionless wall (see
Figure 4.1).

From a computational point of view, when the dynamics of a velocity section or a density
section are disabled by the switch variables, the corresponding velocity or density state variable
is set to 0 or ρ0, respectively. This strategy is equivalent to the method proposed in [29] for
a finite-element model of the glottis.

Proposition 4.3. Consider the fluid-structure system (4.48). Denoting by Hfs = Hf +Hs the
total stored energy, this system can be expressed as the following port-Hamiltonian system:

ẋfs = (Jfs −Rfs)∂xfsHfs +Gfsufs (4.49a)
yfs = G>fs∂xfsHfs (4.49b)

where x>fs = [q>s π>s v> ρ>] is the state vector, ufs = [Qm
i

(
1
2 ṽ

2
o + ĥo

)
]> and yfs = [

(
1
2 ṽ

2
i + ĥi

)
−

Qm
o ]> are the inputs and outputs, respectively, at the inlet and outlet fluid boundaries, with the

matrices Jfs = −J>fs, Rfs = R>fs ≥ 0 and Gfs given by:

Jfs =


0 I 0 0
−I 0 0 (ϑSεC)>
0 0 0 Sεϕ

0 ϑSεC 0− (Sεϕ)>

 , Rfs =


0 0 0 0
0 R 0 0
0 0 SεR4 0
0 0 0 0

 and

Gfs =


0 0
0 (ψSεC)>
0 −Sεgv
gρ 0

 (4.50)

Proof. Considering ys = ∂πsHs and (4.43), the fluid-structure dynamics (4.48) can be rewritten
as:

q̇s = ∂πsHs

π̇s = −∂qsHs −R∂πsHs + C>S>ε ϑ
>∂ρHf + C>S>ε ψ

>
(1

2 ṽ
2
o + ĥo

)
− C>S>ε ∂qfHf

v̇ = −SεR4∂vHf + Sεϕ∂ρHf − Sεgv
(1

2 ṽ
2
o + ĥo

)
ρ̇ = −ϕ>S>ε ∂vHf + gρQ

m
i − ϑSεC∂πsHs

The variation of fluid section heights induced by the motion of the structure is given by
the following relationship qf = q0 + Cqs where q0 is the set of velocity section heights at
the equilibrium point at reference pressure p0, and C maps the displacement of the structure
masses to the variation of fluid section heights. This relationship leads to:

∂qsHf = C>S>ε ∂qfHf (4.52)
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where Sε is used to enable and disable the corresponding fluid dynamics when the section heights
cross the threshold value ε. Then, defining Hfs = Hf +Hs the fluid-structure dynamics can
be expressed as:


q̇s
π̇s
v̇
ρ̇

 =


0 I 0 0
−I −R 0 (ϑSεC)>
0 0 −SεR4 Sεϕ

0 −ϑSεC − (Sεϕ)> 0



∂qsHfs
∂πsHfs
∂vHfs
∂ρHfs

+


0 0
0 (ψSεC)>
0 −Sεgv
gρ 0


[

Qmi
1
2 ṽ

2
o + ĥo

]

[
1
2 ṽ

2
i + ĥi
−Qmo

]
=
[
0 0 0 g>ρ
0 ψSεC − (Sεgv)> 0

] 
∂qsHfs
∂πsHfs
∂vHfs
∂ρHfs


Finally, defining the matrices Jfs, Rfs and Gfs as in (4.50), we obtain the fluid-structure

port-Hamiltonian formulation (4.49).

4.4 Example: Airflow in the glottis.

Figure 4.3 – Vibrating cycle induced by FSI between the intraglottal airflow and the vocal folds.

We consider the vibrating cycle induced by the fluid-structure interaction between the
intraglottal airflow and the vocal folds [109], as shown in Figure 4.3. We use the well-know
body-cover model [72] to describe the vocal folds motion. The port-Hamiltonian formulation
of this system has been presented in Section 2.2. Assuming a symmetrical behavior of the
vocal folds, we only consider a hemi-larynx. The state variables of the structure model are
qs = [q1 q2 q3]> and πs = [πs1 πs2 πs3]>, and the structure parameters are given in Table 4.1.

Applying the proposed discrete modeling of the fluid, we divide the fluid domain in nf = 38
sections with uniform cross-sectional area and length `f = 1.5× 10−3m. The glottal tract can
be modeled as shown in Figure 4.4, with 14 sections in the subglottal part, 12 sections in the
supraglottal part of the glottis, and 6 sections under each cover mass. The heights of each
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Table 4.1 – Simulation parameters

Parameters of BCM [72]
m1 = 1× 10−5Kg m2 = 1× 10−5Kg m3 = 5× 10−5Kg ζj = 0.4, j ∈ {1, 2, 3}
ζcolj = 0.4, j ∈ {1, 2} ζcol3 = 0 k1 = 5N/m k2 = 3.5N/m
k3 = 100N/m kc1 = 15N/m kc2 = 10.5N/m k12 = 2N/m
ηj = 106m−2 i ∈ {1, 2, 3} ηcj = 5× 106m−2 i ∈ {1, 2} q0

s1 = 1.8× 10−4m q0
s2 = 1.79× 10−4m

q0
s3 = 3× 10−3m

Fluid parameters at 36◦C
ρ0 = 1.142Kg/m γ = 1.4 c = 352 m/s ε = 1.8× 10−5m
L = 1× 10−2m ` = 2.5× 10−4m n = 38

m1 m2

m3

14 6 6 12

Figure 4.4 – Approximation of the glottal tract using the discretization method proposed, considering fluid
sections with uniform cross-sectional areas. Dotted line represents the midsagital plane. Circles denote the

number of velocity section in each glottis part.

section are initialized as follows:

qj0 =



2.5× 10−2m, 1 ≤ j ≤ 3
[2.5− 0.2(j − 3)]× 10−2m, 4 ≤ j ≤ 14
1.8× 10−4m, 15 ≤ j ≤ 20
1.79× 10−4m, 21 ≤ j ≤ 26
2.5× 10−2m, 27 ≤ j ≤ 38

(4.53)

To describe the viscous dissipation of the fluid we define the friction loss factor as:

λfj = 16
Re

(4.54)

where Re = qfj |vj |
µ

ρj+ρj+1
2 is the Reynolds number in each velocity section of the glottis [91].

Considering a motionless wall in the subglottal and supraglottal sections, and that only masses
m1 and m2 are in contact with the fluid, we define the interconnection matrix C as:

C =


014×1 014×1 014×1
16×1 06×1 06×1
06×1 16×1 06×1
012×1 012×1 012×1

 (4.55)

where 16×1 =
[
1 1 1 1 1 1

]>
. Note that, given the definition of qj0 and C we obtain

that sε1 = · · · = sε14 = 1, sε27 = · · · = sε38 = 1, sε15 = · · · = sε20 and sε21 = · · · = sε26
for all simulation time, i.e., from a computational point of view, only 2 switches are relevant.
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Figure 4.5 – Displacement of the masses of the vocal folds mechanical structure, qsj = qj + q0
sj . Solid line is

the body mass displacement (m3 in Figure 4.4), dashed and dash-dotted lines are the displacements of upper
and lower cover masses, respectively (m2 and m1 in Figure 4.4, respectively).
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Figure 4.6 – Overlapping of cover masses during the vocal folds collisions. Solid line: deformation for the
upper mass (m2 in Figure 4.4). Dash-dot-dotted line: deformation for the lower mass (m1 in Figure 4.4).

Simulations are performed in Matlab using the solver ODE23tb with an event location function
to update the switch variables. To evaluate the results we use as reference the body-cover
(BC95) model [72] and the port-Hamiltonian fluid-structure model (PH18) proposed in [74].

The movement of each mass for BC95, PH18 and the proposed model is shown in Figure 4.5.
It can be noticed that in the proposed model the masses exhibit oscillations with a fundamental
frequency of 129.1 Hz, in contrast with the 127.5 Hz and 139.9 Hz of the BC95 and PH18
models, respectively. The fluid-structure model PH18 presents a displacement almost parallel
for the contact masses of the vocal folds, lower mass displacement q1 (dash-dot-dotted) and
upper mass displacement q2 (dashed line), respectively), increasing the oscillation amplitude of
q2. In contrast, for the proposed model the movement of the contact masses shows a difference
in amplitude and phase between the oscillations of q1 and q2, in correspondence with the wave
propagation through the vocal folds structure, obtaining similar oscillations with the BC95
model.

In lumped parameter models of the vocal folds, a collision occurs when the contact masses
cross the corresponding collision planes. In this thesis, given the hemi-larynx assumption, the
collision plane for the contact masses is the midsagittal plane. The deformation of the vocal
folds given by the elastic collision is proportional to the overlapping, ∆cj, j ∈ {1, 2}, of the
cover masses, as shown in Figure 4.6. Note that the magnitude of the tissue deformation for
the PH18 model is around 2 times the one for the BC95 model. The tissue deformation in the
upper section of the vocal folds (solid line) is greater than the deformation in the lower section
(dash-dot-dotted line) for the PH18 model, i.e., the impact stress is minor in the lower section
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Figure 4.7 – Output Flow in one vibrating cycle.

of the vocal folds. On the contrary, in the proposed model the tissue deformation and impact
stress is more important in the lower section of the vocal folds. This behavior is similar to one
obtained with other lumped-parameter models [88, 95] and is consistent with the finite-element
study presented in [110].

To compare the behavior of the airflow for the different models, we analyze the output flows
in Figure 4.7. In general, the maximum flow in the vibration cycle occurs when the maximum
opening of the glottal tract is achieved. For the PH18 model case this happens in the first
quarter of the cycle, whereas for the BC95 and our model, the maximum flow occurs in the
middle of the cycle. However, the output flow of the proposed model shows a soft increase in
the glottis opening with a fast decline when the vocal fold is closing. This shape of the output
flow is consistent with the results reported in [93, Figure 7].

Figure 4.8 shows the pressure distribution in the fluid for 3 time instants of the vibration
cycle: 2 instants with a convergent shape of the vocal folds and 1 instant with a divergent
shape. The pressure distributions obtained are consistent with the results of the DNN flow
model proposed in [111, Figures 11-19].

Similarly, Figure 4.9 shows the behavior of kinetic and potential energies of the mechanical
part of the vocal folds, Ks and Ps respectively, and the energies of the fluid, Kf and Ūf ,
during one vibrating cycle. Note that for the PH18 model, most of the energy is stored in the
mechanical system. The opposite situation occurs for the BC95 model. The proposed model
presents an intermediate behavior between PH18 and BC95. Note that in the proposed model
the maximum of the potential energy occurs in the maximum opening of mass m1 and not in
the maximum opening of the glottis as it is for the PH18 model. The potential energy decreases
when the glottis is closing and increases slightly again when the glottis is completely closed.
This latter is due to the energy stored during the elastic collision of the vocal folds. Regarding
the fluid energy, it is important to note that the potential energy of the proposed model is
negligible with respect to the kinetic energy. Regarding the fluid-structure energy transfer, it
has been evaluated per cycle, i.e.,

∫
Tcy

u>s ysdt =
∫
Tcy

(
F>vc

)
dt where Tcy is the vibrating cycle

period, obtaining a total of 20.2µJ for the proposed model, in contrast with the 16.78µJ and
11.28µJ for the BC95 and PH18 models.
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4.5. Conclusion

It is well known that the BC95 model describes appropriately the experimental results
on the wave propagation of the real vocal folds motion and the volumetric airflow in the
supraglottal section of the glottal tract. However, given the assumptions on the airflow (static
and uniform flow), the energy transfers between the fluid and the mechanical parts of the
model are not completely described. The effects of the closing of the vocal folds on the output
airflow are neglected. The proposed model solves this drawback, keeping the advantages on
the mechanical motion of the vocal folds. Additionally, the scalability of the proposed model
is a clear advantage over the PH18 model.

4.5 Conclusion

In this chapter a scalable finite-dimensional port-Hamiltonian model for compressible fluids
has been proposed. Similarly, a power-preserving interconnection based on a switching matrix
Sε is proposed for a fluid-structure coupling. This switched interconnection allows to obtain an
appropriate description of structure collisions in systems such as the vocal folds. This switching
matrix Sε is also used to enable and disable the fluid dynamics in the corresponding areas of the
fluid domain when the structure collides, avoiding the singularity problem in the fluid model. As
simulation example we considered the FSI between the vocal folds and the intraglottal airflow.
In this sense the well-known body-cover model is used to describe the structure motion. The
results obtained show that the proposed scalable port-Hamiltonian model is able to replicate
the oscillations and the collisions between the vocal folds. Moreover, the amplitude of masses
movements and the airflow velocity are consistent with previous lumped-parameters models
and real data. Similarly, the energy transfer estimated with the proposed model is greater
than the predicted with other finite-dimensional models of the vocal folds.

In the previous chapters, some scalable finite-dimensional models based on the port-Hamilto-
nian framework have been proposed to describe the FSI in a longitudinal domain. These models
in conjoint with power-preserving methods proposed, provide us of a simplified but appropriate
description of a longitudinal fluid interacting with a structure with transverse motion, as shown
in Sections 3.4 and 4.4. However, for a more detailed description of the fluid dynamics and the
structure motion, it is necessary a more suitable modeling of the FSI system. In this sense, as
a first step in this direction, an infinite-dimensional modeling of the fluid dynamics, based on
the port-Hamiltonian approach, is presented in the next chapter.
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Chapter 5
Infinite-dimensional port-Hamiltonian

Formulation of compressible Fluids

To obtain a more detailed description of a FSI system that the achieved with finite-dimensional
models presented in the previous chapters, it is necessary an infinite-dimensional formulation.
Then, as a first step, in this chapter we present infinite-dimensional models based on the port-
Hamiltonian framework for Newtonian fluids. In this sense, in the following section, we consider
a constant infinite dimensional domain Ω ⊂X ×Y×Z, with spatial variables ζ ∈X, ξ ∈ Y

and z ∈ Z and boundary ∂Ω.
There exist numerous energy-based models of compressible fluids in the literature, ranging

from simple 1D formulations of isentropic fluids [112, 104] to more complex thermodynamic
reactive flows [65], 3D inviscid fluids [37] and irrotational flows [62]. However, these models
are constrained to one fluid class, given the assumptions used in each case.

Contribution

In this chapter general pseudo and a dissipative port-Hamiltonian formulations for 3D
compressible fluids under non-isentropic and isentropic assumptions are presented. The
considerations on the model structures and operators for 2D and 1D fluids are ana-
lyzed. Finally, we propose a model for 1D non-reactive fluids using the irreversible
port-Hamiltonian approach.

In this chapter, we consider the state variables as functions on a spatial domain Ω, i.e., x =
x(ζ, ξ, z, t) ∈ L2 (Ω,Rn). For simplicity of notation, we make the time and space dependences
of the variables implicit, we use a bold notation for vector and tensor functions, and capital
letters for matrices. The reader is invited to refer to the Notation Section at the beginning of
this thesis for details.

In the next sections, general energy-based models of 3D compressible fluids are developed
using the port-Hamiltonian framework, i.e., the fluid dynamics will be described by the following
PDE:

∂tx = J δxH (5.1)

where H denotes the total energy of the fluid and J is a Hamiltonian operator (see Definition
1.2). In the case that J is a skew-symmetric operator that does not satisfy the Jacobi identity,
the system (5.1) is called pseudo port-Hamiltonian formulation. Similarly, in a dissipative
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port-Hamiltonian, the fluid dynamics are expressed as follows:
∂tx = J δxH− G∗SGδxH (5.2)

where G∗ is the adjoint operator of G, and S > 0 (see Section 1.2.2 for details).

5.1 Non-isentropic fluids

In this section, we study the description of non-isentropic Newtonian fluids. We focus in the
description of the thermal domain, specifically, in the second law of Thermodynamics. In this
sense, the entropy (per unit mass) will be considered as a state variable. Entropy variations
imply changes in the temperature that, at the same time, affect the fluid pressure, as shown
by the ideal gas law (4.3). As a consequence, the velocity field of the fluid will be affected by
the entropy. We use the port-Hamiltonian framework to describe these phenomena in the fluid
dynamics. For simplicity, only nonreactive fluids are considered.

5.1.1 Governing equations

For non-isentropic fluids, the governing equations are given by the continuity, motion and
change of internal energy equations [101] associated with the fluid density ρ = ρ(ζ, ξ, z, t) ∈
L2 (Ω,R), velocity field v = v(ζ, ξ, z, t) ∈ L2 (Ω,R3) and internal energy per unit mass u =
u(ζ, ξ, z, t) ∈ L2 (Ω,R), respectively, given by:

∂tρ = −div ρv (5.3a)
ρ∂tv = −ρ (v · grad ) v− grad p− div τ (5.3b)

∂tu = −v · grad u − 1
ρ

div fT −
p

ρ
div v− 1

ρ
τ : grad v (5.3c)

where τ = τ (ζ, ξ, z, t) ∈ L2 (Ω,R3×3) is the Newtonian viscosity tensor (4.2) and fT =
fT (ζ, ξ, z, t) ∈ L2 (Ω,R3×3) is the heat flux defined as:

fT = −Kgrad T (5.4)
where T = T (ζ, ξ, z, t) ∈ L2 (Ω,R) denotes the temperature and K is the thermal conductivity
matrix [69].

We denote by ω = curl v ∈ L2 (Ω,R3) the fluid vorticity that describes the tendency of
the flow to rotate. Note that using the identity (A.1) the term (v · grad ) v in (5.3b), can
be rewritten as (v · grad ) v=grad

(
1
2v · v

)
+ ω × v, where the term ω × v, from the point

of view of energy, describes the power exchange between the velocity field components. This
power exchange due to the fluid rotation can be described using a skew-symmetric matrix called
Gyroscope [66, 113] defined as follows:

Definition 5.1. Let ω =
[
ω1 ω2 ω3

]>
be the vorticity vector of the fluid. We define the

fluid Gyroscope as a skew-symmetric matrix Gω, such that Gωv = ω × v. For 3D fluids, the
Gyroscope is given by:

Gω =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 (5.5)
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On the other hand, we use the specific form of the Gibbs equation to describe the variation
of internal energy due to the variations of the fluid density and the entropy per unit mass,
s = s(ζ, ξ, z, t) ∈ L2 (Ω,R), i.e.,

du = −pd
(

1
ρ

)
+ Tds (5.6)

This implies that the thermodynamic equilibrium is given by:

TDts = Dtu −
p

ρ2Dtρ (5.7)

where the material derivative Dt is defined as Dt = ∂t + (v · grad ) . Considering the
relationship grad p

ρ
= 1

ρ
grad p+ pgrad 1

ρ
and the specific enthalpy definition (4.7), we obtain

that 1
ρ
grad p = grad h − Tgrad s, where the term Tgrad s describes the effect of the

entropy variations (non-isentropic assumption) in the fluid pressure. Using the thermodynamic
equilibrium (5.7) the governing equations of non-isentropic fluids can be expressed as:

∂tρ = −div ρv (5.8a)

∂tv = −grad
(1

2v · v + h

)
−Gωv + Tgrad s− 1

ρ
div τ (5.8b)

∂ts = −v · grad s− τ

ρT
: Grad v− fs

ρT
· grad T − 1

ρ
div fs (5.8c)

where fs = −K
T

grad T is the entropy flux by heat conduction [101].
Note that the irreversible entropy production, i.e., second law of Thermodynamics, is given

by the following non-negative condition [69]:

− 1
ρT
τ : Grad v− fs

ρT
· grad T ≥ 0 (5.9)

where− 1
ρT
τ : Grad v is the rate of entropy production associated with the dissipation of kinetic

energy into heat by viscosity friction, and − fs
ρT
· grad T is the rate of entropy production due

to heat flux.

5.1.2 Pseudo port-Hamiltonian formulation

We denote by x = [ρ v> s]> the set of state variables for a non-isentropic fluid. Considering
that the specific internal energy is a function of the fluid density and the specific entropy, as
stated by the Gibbs equation (5.6), the total energy of the fluid described in (5.8) is given by:

H =
∫

Ω

(1
2ρv · v + ρu (ρ, s)

)
dΩ (5.10)

The fluid efforts are given by the variational derivative of the energy, namely

δxH =

δρHδvH
δsH

 =


1
2v · v + h

ρv
ρT

 (5.11)
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Using (5.11), the fluid dynamics in (5.8) can be related with the energy through the fluid
efforts, i.e.,

∂tρ =− div δvH (5.12a)

∂tv =− grad δρH−
1
ρ
GωδvH + δsH

ρ
grad s− 1

ρ
div

[
τ
δsH
ρ

]
(5.12b)

∂ts =− δvH
ρ
· grad s− τ

ρT
: Grad

δvH
ρ

+ 1
ρT

∥∥∥∥∥grad
δsH
ρ

∥∥∥∥∥
2

K
T

+ 1
ρ

div
[
K

T
grad

δsH
ρ

]
(5.12c)

The operators and the corresponding adjoints that describe the power exchanges between
the fluid component are defined in the following Lemmas.

Lemma 5.1. Denote by Dp the operator defined as Dp(·) = [grad s] ·
ρ
, that describes the effect

of the entropy variation on the pressure gradient. The adjoint operator D∗p in the effort space
of the fluid is given by D∗p(·) = [grad s] · ·

ρ
.

Proof. Consider the inner product

〈δvH,DpδsH〉Ω =
∫

Ω
δvH · DpδsHdΩ =

∫
Ω
δvH · [grad s] δsH

ρ
dΩ

=
∫

Ω

δvH
ρ
· [grad s] δsHdΩ =

∫
Ω

(
[grad s] · δvH

ρ

)
δvHdΩ

Defining D∗p(·) = [grad s] · ·
ρ
we obtain that 〈δvH,DpδsH〉Ω =

〈
D∗pδvH, δsH

〉
Ω
, i.e., D∗p is

the adjoint of Dp.

Lemma 5.2. Let τ be a symmetric second order tensor and Dτ (·) = −1
ρ

div
(
τ

ρT
·
)

an

operator acting on the entropy effort δsH. The formal adjoint operator D∗τ in the effort space
of the fluid is given by D∗τ (·) = τ

ρT
: Grad

·
ρ
, such that

〈δvH,DτδsH〉Ω − 〈D
∗
τδvH, δsH〉Ω = −

∫
∂Ω

[τ · n] · δvH
ρ
∂Ω (5.13)

Proof. Consider the inner product

〈δvH,DτδsH〉Ω =
∫

Ω
δvH · [DτδsH] dΩ

= −
∫

Ω
δvH ·

[
1
ρ

div
[
τ
δsH
ρT

]]
dΩ
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5.1. Non-isentropic fluids

Using the property (A.10) considering σ = τ δsH
ρT

and u = δvH
ρ
, the inner product in the

previous equation can be rewritten as:

〈δvH,DτδsH〉Ω =
∫

Ω
δsH

τ

ρT
: Grad

[
δvH
ρ

]
dΩ−

∫
∂Ω

δvH
ρ
·
[[
τ
δsH
ρT

]
· n
]
∂Ω

=
∫

Ω

([
τ

ρT
: Grad

·
ρ

]
δvH

)
δsHdΩ−

∫
∂Ω

δvH
ρ
·
[[
τ
δsH
ρT

]
· n
]
∂Ω

= 〈D∗τδvH, δsH〉Ω −
∫
∂Ω

δvH
ρ
·
[[
τ
δsH
ρT

]
· n
]
∂Ω

Considering boundary conditions equal to 0, 〈δvH,DτδsH〉Ω = 〈D∗τδvH, δsH〉Ω, i.e., D∗τ is
the formal adjoint of Dτ . Finally, from (5.11), δsH

ρT
= 1, i.e., operators Dτ and D∗τ implicitly

contain the effort associated with the fluid entropy, obtaining the relationship (5.13).
Lemma 5.3. Let DT be a differential operator defined as

DT = QT −RT (5.14)

where QT (·) = 1
ρT

∥∥∥grad ·
ρ

∥∥∥2

ST
describes the entropy production associated with the heat flux,

such that QT δsH ≥ 0,∀δsH; and RT = G∗TSTGT describes the entropy diffusion, where the
operator G∗T (·) = 1

ρ
div (·) is the formal adjoint of GT (·) = −grad ·

ρ
and ST = K/T ≥ 0. Then,

the entropy rate of change due to the heat flux can be expressed as:

− 1
ρT

div fT = DT δsH (5.15)

satisfying

〈δsH,DT δsH〉Ω = −
∫
∂Ω

δsH
ρ

(fs · n) ∂Ω (5.16)

Proof. Note that 1
ρT

div fT = fs
ρT
· grad T + 1

ρ
div fs. Defining ST = K/T we obtain:

− fs
ρT

grad T = 1
ρT

∥∥∥∥∥grad
δsH
ρ

∥∥∥∥∥
2

ST

and − 1
ρ

div fs = 1
ρ

div
[
STgrad

δsH
ρ

]
Given that the divergence is the formal adjoint of minus the gradient, it is easy to verify

that G∗T = 1
ρ
div is the formal adjoint of GT = −grad ·

ρ
. Then, the entropy rate of change due

to the heat flux can be expressed as

− 1
ρT

div fT = (QT −RT ) δsH = DT δsH

The inner product on the left hand side of (5.16) can be expressed as:

〈δsH,DT δsH〉Ω =
∫

Ω

δsH
ρT

∥∥∥∥∥grad
δsH
ρ

∥∥∥∥∥
2

ST

+ δsH
ρ

div
[
STgrad

δsH
ρ

] dΩ

= −
∫

Ω

(
fs · grad

δsH
ρ

+ δsH
ρ

div fs

)
dΩ

= −
∫

Ω
div

[
δsH
ρ

fs

]
dΩ
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Finally, using (A.8) we obtain (5.16).

Notice that the operator DT has been separated in 2 parts, QT and RT , in order to describe
the physical phenomena, entropy production and diffusion, associated with the entropy flux.
Such that, the non-negative condition (5.9) associated with the irreversible entropy production
can be expressed as:

−D∗τδvH +QT δsH ≥ 0 (5.17)

However, as shown in Section 5.4, the temperature in a ideal gas is a function of the
specific entropy and the fluid density, T = T (ρ, s). Then, defining α(x) ∈ L2(Ω,R) and
F (x) ∈ L2(Ω,R3) as α(x) = 1

ρ
and F (x) = K

ρT 2(ρ,s)grad T (ρ, s), respectively, the operator DT
can be rewritten as:

DT δsH = F>(x)grad (α(x)δsH) + α(x)div (F (x)δsH) . (5.18)

This implies that, according Theorem A.6, the operator DT is formally skew-adjoint. Thus,
using Lemmas 5.1-5.3, the governing equations for non-isentropic fluids can be expressed as an
energy-based model, as shown in the next proposition
Proposition 5.1. Consider a non-isentropic Newtonian compressible fluid, whose total energy
is described by (5.10). Then, the governing equations in (5.8) can be expressed as the pseudo
infinite-dimensional port-Hamiltonian system

∂tx = J δxH (5.19)

where x = [ρ v> s]> is the state vector, δxH denotes the effort vector of the fluid, and J is an
formal skew-symmetric operator defined as:

J =

 0 −div 0
−grad 1

ρ
Gω Dp +Dτ

0 −D∗p −D∗τ DT

 (5.20)

satisfying

Ḣ = 〈f∂, e∂〉Ω (5.21)

where 〈f∂, e∂〉Ω denotes the power supplied through the boundary ∂Ω, and the boundary flows f∂
and efforts e∂ are given by

f∂ =

− (ρv · n) |∂Ω
−v|∂Ω

− (fs · n) |∂Ω

 and e∂ =


(

1
2v · v + h

)∣∣∣
∂Ω

(τ · n) |∂Ω
T |∂Ω

 (5.22)

The time derivative of the total entropy of the fluid, S =
∫

Ω ρsdΩ, is

Ṡ =
∫

Ω
σsdΩ ≥ 0 (5.23)

for boundary conditions equal to 0, which is in correspondence with the second law of Thermo-
dynamics.

72



5.1. Non-isentropic fluids

Proof. The governing equations (5.8) can be rewritten as function of the fluid efforts (5.11), as
shown in (5.12). Using the operators defined in Lemmas 5.2 and 5.3 we obtain

∂tρ∂tv
∂ts

 =

 0 −div 0
−grad 1

ρ
Gω Dp +Dτ

0 −D∗p −D∗τ QT −RT


δρHδvH
δsH


where the entropy production is given by the operators D∗τ and QT , as shown in (5.17). From
(5.14) and (5.18) we define J as in (5.20) and the state x = [ρ v> s]>, obtaining the system
(5.19).

The energy balance for this system is given by:

Ḣ = 〈δxH,J δxH〉Ω =
∫

Ω
δxH · J δxHdΩ

=− 〈δρH, div δvH〉Ω − 〈δvH,grad δρH〉Ω + 〈δvH,DτδsH〉Ω − 〈δsH,D
∗
τδvH〉Ω

+ 〈δsH,DT δsH〉Ω −
∫

Ω
δvH ·

1
ρ
GωδvHdΩ

Note that, given the skew-symmetric property of the Gyroscope, we have that δvH ·
1
ρ
GωδvH = 0. Then, using Lemmas 5.2 and 5.3, and Theorem A.2, the energy balance can be

expressed as

Ḣ =
∫
∂Ω
δρH (−δvH · n) + [τ · n] · δvH

ρ
+ δsH

ρ
(fs · n) ∂Ω

Substituting the fluid efforts (5.11), and the boundary flows and efforts in (5.22), we obtain
the energy balance (5.21).

Note that the variational derivate of the total entropy S is given by δxS =
[
s 0 ρ

]>
,

hence

Ṡ =
∫

Ω
δxS∂txdΩ =

∫
Ω
δxSJ δxHdΩ

= −
∫

Ω

(
sdiv δvH + ρD∗pδvH + ρG∗TSTGT δsH

)
dΩ +

∫
Ω
ρ (QT δsH−D∗τδvH) dΩ

=
∫

Ω
σsdΩ−

∫
Ω

(s (div δvH) + δvH · grad s+ div fs) dΩ

where σs = ρ (QT δsH−D∗τδvH) denotes the density of irreversible entropy production. Using
the Theorem A.2 we obtain

Ṡ =
∫

Ω
σsdΩ−

∫
∂Ω

[sδvH + fs] · n∂Ω

Finally, assuming that the system is isolated, i.e.,
∫
∂Ω [sδvH + fs] · n∂Ω = 0, and given the

non-negative condition (5.17), then, the density of irreversible entropy production satisfies the
inequality σs ≥ 0, obtaining (5.23).
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n

s1

s2

v
∂Ω

Tangential plane Γ
v⊥v⊥

v‖

νs2

νs1

Figure 5.1 – Normal vector and tangential plane to the boundary surface ∂Ω

Remark 5.1. Note that the system (5.19) is similar to a Stokes-Dirac structure because of
the skew-symmetry of the operators involved, and the associated power balance (5.20) with the
appropriate boundary efforts and flows. However, since Dτ , D∗τ and DT depend explicitly on
the effort variable δsH = ρT , and not only on the energy variables (ρ,v, s), then, the Jacobi
identity is not satisfied and (5.19)-(5.21) do not define a Dirac structure. as a consequence,
(5.19) is a pseudo port-Hamiltonian system.

An alternative formulation of non-isentropic fluids is obtained considering the flow and effort
associated with the entropy diffusion by heat flux, i.e., fd = GT δsH and ed = ST fd, respectively.
This leads to the following representation:


∂tρ
∂tv
∂ts
fd

 =


0 −div 0 0

−grad 1
ρ
Gω Dτ 0

0 −D∗τ QT −G∗T
0 0 GT 0



δρH
δvH
δsH
ed

 (5.24)

where ed = −fs denotes the entropy flux.
Similarly, an alternative to define the boundary conditions is to consider the normal and

tangential contributions of the viscous tensor. We denote by Γ, the tangential plane to the
boundary surface ∂Ω, as shown in Figure 5.1. Considering the pair of orthogonal unitary
vectors (s1, s2) ∈ Γ, i.e.,

n · s1 = n · s2 = s1 · s2 = 0 (5.25)

the velocity field can be expressed as v = v⊥ + v‖ where v⊥ = (v · n) n denotes the normal
projection and v‖ = −n × [n× v] = (v · s1)s1 + (v · s2)s2, for any (s1, s2) ∈ Γ that satisfies
(5.25), is the tangential projection of v. Then, given that [τ · n] · v = τ : vn and using the
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5.2. Isentropic fluids

normal and tangential formulation of v, the boundary conditions defined on the right hand
side of (5.13) can be rewritten as:

−
∫
∂Ω

[τ · n] · δvH
ρ
∂Ω = −

∫
∂Ω

(νnτn + νs1τs1 + νs2τs2) ∂Ω (5.26)

where
νn = δvH

ρ
· n = v · n

νs1 = δvH
ρ
· s1 = v · s1

νs2 = δvH
ρ
· s2 = v · s2

and
τn = τ : nn
τs1 = τ : s1n
τs2 = τ : s2n

(5.27)

are the normal and tangential contributions of the velocity field, and the viscous tensor, re-
spectively. Thus, the boundary ports variables can be rewritten as:

f∂ =


− (ρv · n) |∂Ω
−νn|∂Ω
−νs1|∂Ω
−νs2|∂Ω

− (fs · n) |∂Ω

 e∂ =



(
1
2v · v + h

)∣∣∣
∂Ω

τn|∂Ω
τs1|∂Ω
τs2|∂Ω
T |∂Ω

 (5.28)

Additionally, another point to highlight is the fact that, under an inviscid assumption, the
term 1

ρ
div

(
τ
ρT
·
)
in the operator Dτ and the term τ

ρT
: Grad ·

ρ
in the operator D∗τ are equal to

0. Then, the non-negative condition (5.17) of entropy production is only due to the heat flux
of the fluid, i.e., σs = QT δsH ≥ 0.

5.2 Isentropic fluids

In this section we consider that the heat production given by the dissipation of kinetic energy
into heat by viscous friction and the temperature diffusion generate small and smooth variations
in the fluid temperature. This implies that the entropy production by these phenomena is
sufficiently small such that the specific entropy s advects with the flow, i.e., ∂ts = −v ·grad s.
If s is initially uniform throughout the fluid, then s will remain constant and the entropy
balance in (5.12) can be neglected. This justifies the use of the isentropic equations for small
disturbances in the fluid variables [114]. Additionally, if the viscous effects in the velocity field
are negligible, the fluid can be considered as a reversible process, as shown in [37]. However,
if it is necessary to consider the viscous friction, the process is irreversible and the divergence
of the viscous tensor can be considered as a dissipative term, as shown in [62] for fluids with
irrotational flow. In this section, we present a general dissipative port-Hamiltonian formulation
for isentropic compressible fluids.

5.2.1 Governing equations

Given the isentropic assumption, the Gibbs equation that describes the changes of the
specific internal energy is reduced to

du = −pd1
ρ

(5.29)
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Similarly, the entropy dynamic in (5.8) is neglected. Then, the governing equations for
isentropic fluids are given by:

∂tρ = −div ρv (5.30a)

∂tv = −grad
(1

2v · v + h

)
−Gωv− 1

ρ
div τ (5.30b)

In this case, the model does not have the power exchange between the velocity field and
the specific entropy, described in (5.19) by the adjoint operators Dτ and D∗τ . The conversion
of kinetic energy into heat by viscous friction is now considered as a power dissipation. In this
sense the term 1

ρ
div τ can be expressed as a dissipative element [40], as shown in the following

lemma.

Lemma 5.4. Consider a viscous Newtonian fluid. Defining the operators Gr(·) = curl ·
ρ
and

Gc(·) = div ·
ρ
, and the corresponding formal adjoints G∗r (·) = 1

ρ
curl (·) and G∗c (·) = −1

ρ
grad (·).

Then, the rate of change of the velocity associated with the viscous tensor, 1
ρ
div τ , can be

expressed as a dissipative port-Hamiltonian term associated with the velocity effort, namely,

1
ρ

div τ = G∗τSτGτ [ρv] (5.31)

where G∗τ =
[
G∗r G∗c

]
, Sτ =

[
µI 0
0 µ̂

]
≥ 0 and Gτ =

[
Gr
Gc

]
, with µ̂ = 4

3µ+ κ.

Proof. Consider the viscosity tensor (4.2). Applying the identities (A.4)-(A.6) we obtain

1
ρ

div τ = 1
ρ

div
[
−µ

[
Grad v + [Grad v]>

]]
+ 1
ρ

div
[(2

3µ− κ
)

(div v) I
]

= 1
ρ

curl [µcurl v]− 1
ρ

grad
((4

3µ+ κ
)

div v
)

Note that G∗r = 1
ρ
curl is the formal adjoint of Gr = curl ·

ρ
, as shown in Theorem A.4, and

G∗c = −1
ρ
grad is the adjoint of Gc = div ·

ρ
. The divergence of the fluid viscosity tensor can be

expressed as the sum of two dissipative terms, namely:

1
ρ

div τ = G∗rµGr [ρv] + G∗c µ̂Gc [ρv] (5.32)

where G∗rµGr [ρv] denotes the energy dissipation by the fluid rotation and G∗c µ̂Gc [ρv] the de-
scribes the energy dissipation by fluid compression. Finally, rearranging terms, we obtain
(5.31)

Applying Lemma 5.4 the governing equations (5.30) can be expressed as:

∂tρ = −div ρv (5.33a)

∂tv = −grad
(1

2v · v + h

)
−Gωv− G∗τSτGτ [ρv] (5.33b)
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Notice that, from the viscous tensor, the fluid energy losses are given by two different
phenomena: the friction between streamlines when the flow rotates and the friction between
fluid particles when the fluid expands or compresses. These losses are zero under irrotational
and incompressible assumptions, respectively. In some applications such as pipelines, the fluid
is modeled as a 1D incompressible flow. In this case, from Lemma 5.4, this system does not
have energy dissipation. However, given the roughness of the internal surface of the pipe, the
fluid has an energy dissipation due to the friction of the flow with the pipe wall. To model
this dissipation source, a term of the form λ

2Dρ|v|v is added ad-hoc to the momentum balance,
where D is the pipe diameter, λ is a loss factor and v is the flow velocity [115, 116].

5.2.2 Dissipative port-Hamiltonian formulation

For isentropic fluids, the specific internal energy depends only of the fluid density, as shown
in (5.29). Then, the total energy is given by:

H =
∫

Ω

(1
2ρv · v + ρu(ρ)

)
dΩ (5.34)

and the fluid efforts are [
δρH
δvH

]
=
[

1
2v · v + h

ρv

]
(5.35)

Proposition 5.2. Consider an isentropic Newtonian fluid with state variables given by x =
[ρ v>]>. The fluid dynamics can be expressed by the following dissipative port-Hamiltonian
system:

∂tx = [J − G∗SG] δxH (5.36)

where the operators J , G∗ and G, and matrix S are

J =
[

0 −div
−grad −1

ρ
Gω

]
, G∗ =

[
0 0
0 G∗τ

]
, G =

[
0 0
0 Gτ

]
and S =

[
0 0
0 Sτ

]
, (5.37)

respectively, and the following relationship holds for the rate of change of the energy:

Ḣ ≤ 〈f∂, e∂〉∂Ω (5.38)

where

f∂ =
[
− (n · δvH)
δvH|∂Ω

]
and e∂ =

[(
δρH + ec

ρ

)
|∂Ω

−n× er|∂Ω

]
(5.39)

are the boundary flows and efforts, with er and ec as the efforts associated with the power
dissipation by fluid rotation and compression, respectively.
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Proof. Considering the fluid efforts (5.35), then (5.33) can be rewritten as:[
∂tρ
∂tv

]
=
[

0 −div
−grad −1

ρ
Gω − G∗τSτGτ

] [
δρH
δvH

]

Defining the state vector as x = [ρ v>]>, operators J , G∗ and G, and matrix S as shown
in (5.37), the dissipative port-Hamiltonian formulation (5.36) is obtained.

We denote by fr = GrδvH and er = µfr the flow and effort variables associated with the
dissipation of fluid rotation, respectively, and by fc = GcδvH and ec = µ̂fc the flow and efforts
variables associated with the dissipation of fluid compression, respectively. The dissipative
port-Hamiltonian system (5.36) can be expressed as the following extended skew-symmetric
representation:


∂tρ
∂tv
fr
fc

 =


0 −div 0 0

−grad 1
ρ
Gω −G∗r −G∗c

0 Gr 0 0
0 Gc 0 0


︸ ︷︷ ︸

Je


δρH
δvH
er
ec

 (5.40)

The rate of change of the total energy is given by:

Ḣ =
∫

Ω
δxH · ∂txdΩ =

∫
Ω
δxH · J δxHdΩ−

∫
Ω
δvH · G∗rerdΩ−

∫
Ω
δvH · G∗c ecdΩ

where∫
Ω
δxH · J δxHdΩ = −

∫
Ω

(
δρH (div δvH) + δvH · [grad δρH] dΩ−

∫
Ω

δvH
ρ
·GωδvH

)
dΩ∫

Ω
δvH · G∗rerdΩ =

∫
Ω

δvH
ρ
· [curl er] dΩ∫

Ω
δvH · G∗c ec = −

∫
Ω

δvH
ρ
· [grad ec] dΩ

Considering the definition of Gr and Gc in Lemma 5.4, and applying Theorems A.2 and A.4,
Ḣ can be rewritten as

Ḣ =−
∫
∂Ω
δρH (δvH · n) ∂Ω−

∫
Ω
ec (GcδvH) dΩ−

∫
∂Ω
ec

(
δvH
ρ
· n
)
∂Ω

−
∫

Ω
er · [GrδvH]−

∫
∂Ω

[
er ×

δvH
ρ

]
· n∂Ω

Using the definition of dissipation efforts and the cross product identity n · [u1 × u2] =
u2 · [n× u1], we obtain

Ḣ =−
∫

Ω

[
fr
fc

]
·
[[
µI 0
0 µ̂

] [
fr
fc

]]
dΩ−

∫
∂Ω

((
δρH + ec

ρ

)
(δvH · n) + δvH

ρ
· [n× er]

)
∂Ω
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On the other hand, using

[
e∂
f∂

]
= R


δρH|∂Ω
δvH|∂Ω
er|∂Ω
ec|∂Ω

 with R =


1 0 0 1

ρ

0 0 −n× 0
0 −n· 0 0
0 1

ρ
0 0

 (5.41)

we obtain the boundary flows and efforts in (5.39). Then, the rate of change of the fluid total
energy can be expressed as:

Ḣ = −
〈[

fr
fc

]
, Sτ

[
fr
fc

]〉
Ω

+ 〈f∂, e∂〉∂Ω

Finally, given that
〈[

fr
fc

]
, Sτ

[
fr
fc

]〉
Ω
≥ 0, the relationship (5.38) is obtained.

Notice that the boundary effort −n × er|∂Ω = µω × n|∂Ω is equivalent to the vorticity
boundary condition ω×n|∂Ω [117, 118], using only the tangential part of the classical kinematic
condition ω|∂Ω [119].

Similarly, equation (5.41) denotes the boundary port variables for the extended skew-
symmetric operator Je in (5.40), and it is equivalent to the boundary port variables definition
proposed in [40] for 1D dissipative systems.

Additionally, under different assumptions, the fluid model proposed in (5.36), corresponds
to port-Hamiltonian models of isentropic fluids described in the literature, as shown in the
following remarks.

Remark 5.2. Consider that the isentropic fluid has an irrotational flow. This implies that
operators Gr and G∗r , and Gyroscope matrix Gω vanish. Then, the port-Hamiltonian formulation
in Proposition 5.2, can be expressed as:∂tρ∂tv

fc

 =

 0 −div 0
−grad 0 −G∗c

0 Gc 0


︸ ︷︷ ︸

Je

δρHδvH
ec

 (5.42)

satisfying the balance Ḣ ≤ 〈f∂, e∂〉∂Ω, with boundary ports f∂, e∂ given by f∂ = − (n · δvH) |∂Ω

and e∂ =
(
δρH + ec

ρ

)
|∂Ω, obtaining the fluid model in [62].

Remark 5.3. Consider the fluid as isentropic and inviscid. This implies that the operators as-
sociated with the viscous tensor vanish. Then, the port-Hamiltonian formulation in Proposition
5.2, can be expressed as: [

∂tρ
∂tv

]
=
[

0 −div
−grad −Gω

ρ

]
︸ ︷︷ ︸

Je

[
δρH
δvH

]
(5.43)

satisfying the balance Ḣ = 〈f∂, e∂〉∂Ω, with boundary ports (f∂, e∂) given by f∂ = − (n · δvH) |∂Ω
and e∂ = δρH|∂Ω. This formulation is equivalent to the fluid model in [37].

79



Chapter 5. infinite-dimensional PHS form. comp. Fluids

5.3 Considerations for 2D and 1D flows

Cross product and the Curl are 3D mathematical operators, hence their defintions have to
be carefully adapted for 2D fluids.

Let us denote by {ζ, ξ} the variables associated with the axes of a 2D velocity field v =
[v v]>. The vorticity is a scalar defined as ω = −∂ξv + ∂ζv. For convenience we rewrite ω as:

ω = −div [Wv] (5.44)

where W =
[
0 −1
1 0

]
is a rotation matrix.

Then, the Gyroscope Gω is a 2D velocity field given by:

Gω = ωW =
[

0 −ω
ω 0

]
(5.45)

On the other hand, with respect to the dissipative terms of the viscosity tensor, the operators
Gr and G∗r for 2D fluids are defined as:

Gr(·) = −div
[
W
·
ρ

]
= [−∂ξ ∂ζ ]

·
ρ

(5.46)

G∗r (·) = 1
ρ
W>grad (·) = 1

ρ

[
∂ξ
−∂ζ

]
(·) (5.47)

Given the operator definitions (5.45)-(5.47), the port-Hamiltonian formulations (5.19) and
(5.36) can be used to describe non-isentropic and isentropic 2D fluids, respectively.

Regarding the boundary conditions for non-isentropic fluids, notice that the tangential
contributions in 2D problems are given by the vector s orthogonal to n. This implies that the
boundary conditions (5.26) associated with the heat generation by viscous friction in ∂Ω, can
be expressed as:

−
∫
∂Ω

v · [τ · n] ∂Ω = −
∫
∂Ω
νnτn + νsτs∂Ω (5.48)

where νn = v · n, νs = v · s, τn = τ : nn and τs = τ : sn describe the normal and tangential
velocity and viscous tensor contributions. The boundary port variables of the pseudo port-
Hamiltonian formulation in Proposition 5.1 for a 2D fluid are given by:

f∂ =


− (ρv · n) |∂Ω
−νn|∂Ω
−νs|∂Ω

− (fs · n) |∂Ω

 e∂ =


(

1
2v · v + h

)
|∂Ω

τn|∂Ω
τs|∂Ω
T |∂Ω

 (5.49)

In the case of 1D fluids, all terms associated the vorticity vanish, and div = grad = ∂ζ .
Thus, in a 1D fluid domain Ω = {ζ ∈ [a, b] ⊂ R}, the velocity field, viscous tensor and entropy
flux are given by the scalar functions v = v(ζ), τ = −µ̂∂ζv(ζ) and fs = − k

T (ζ)∂ζT (ζ), respec-
tively, where k is the scalar thermal conduction. Similarly, the outward unitary vector to the
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boundaries is given by n|a = −1 and n|b = 1. With these considerations, the fluid formulations
in Propositions 5.1 and 5.2 can be reduced to 1D models equivalent to port-Hamiltonian-based
fluid formulations found in the literature, as shown in the following Remarks.

Remark 5.4. Using the considerations for differential operator and fluid variables described
above, the pseudo port-Hamiltonian formulation in Proposition 5.1 can be expressed as:

∂tρ∂tv
∂ts

 =


0 −∂ζ 0
−∂ζ 0 1

ρ∂ζs−
1
ρ∂ζ

(
τ
ρT ·
)

0 −1
ρ∂ζs−

τ
ρT ∂ζ

(
1
ρ ·
)

1
ρT ‖∂ζ

·
ρ‖

2
k/T + 1

ρ∂ζ
(
k
T ∂ζ

(
·
ρ

))

δρHδvH
δsH

 (5.50)

where H =
∫ b
a

(
1
2ρv

2 + ρu(ρ, s)
)
dζ and the boundary port variables are given by the boundary

flows and efforts, f∂ and e∂ respectively, defined as f∂ =
[
−ρv|b ρv|a −v|b v|a −fs|b fs|a

]>
and e∂ =

[(
1
2v

2 + h
)∣∣∣
b

(
1
2v

2 + h
)∣∣∣
a
τ |b τ |a T |b T |a

]>
, satisfying the balance Ḣ = f>∂ e∂.

This fluid model is equivalent to the formulation proposed in [65] for reactive fluids, neglecting
the chemical reaction part.

Remark 5.5. Using the 1D considerations previously described, the dissipative port-Hamiltonian
formulation in Proposition 5.2 can be reduced to

∂tρ∂tv
fc

 =

 0 −∂ζ 0
−∂ζ 0 −1

ρ
∂ζ

0 −∂ζ ·ρ 0


δρHδvH
ec

 (5.51)

where ec = µ̂fc, the total energy is defined as H =
∫ b
a

(
1
2ρv

2 + ρu(ρ)
)
dζ and the boundary

port variables are given by the boundary flows f∂ = [−ρv|b ρv|a]> and the boundary efforts
e∂ =

[(
1
2v

2 + h + ec
ρ

)∣∣∣
b

(
1
2v

2 + h + ec
ρ

)∣∣∣
a

]>
, satisfying the balance Ḣ = f>∂ e∂. This dissipative

formulation is equivalent to the model used in [104] to describe compressible fluids in pipelines,
without the gravitational effects. In this sense, notice that the dissipative term −1

ρ
∂ζec is equiv-

alent to the term − λ
2D |v|v used in [104], where λ is the friction coefficient, as shown in Section

3.1.2. Moreover, considering an inviscid fluid (i.e., ec = 0) the model (5.51) corresponds to the
fluid model used in [112] for control proposes.

5.4 On thermodynamics and available internal en-
ergy of compressible fluids

In previous sections the specific internal energy for non-isentropic and isentropic fluids is
defined implicitly. In this section the thermodynamical properties of non-reactive compressible
fluids are analyzed. We provide an explicit definition for the specific internal energy and we
describe the utility of using available functions to characterize the variations of the total energy
of the fluid.
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5.4.1 Non-isentropic fluid

We consider the ideal gas law (4.3). Defining the constant r = R̄u/M̄ where R̄u is the
universal gas constant and M̄ the molar weight of the gas, the fluid pressure can then be
described as:

p = rTρ (5.52)

where r = cp − cv, with cp and cv the specific heat capacity at constant pressure and constant
volume, respectively. According to [120, 121] a good approximation of the specific internal
energy is given by

u = cvT = p

(γ − 1)ρ (5.53)

where γ = cp/cv is the specific heat ratio.
On the other hand, according to [114, p.295] for gases where the internal energy is propor-

tional to the temperature, such as (5.53), the specific entropy is given by:

s = cv ln
(
p

ργ

)
+ constant (5.54)

Then, the pressure can be expressed as:

p = Aes/cvργ (5.55)

where A is a constant. Using this pressure relation, we obtain the following explicit definition
for the temperature and the specific internal energy:

T (s, ρ) = A

r
es/cvργ−1 (5.56)

u(s, ρ) = A

γ − 1e
s/cvργ−1 = A

γ − 1e
s/cv

(
1
ρ

)−γ+1

(5.57)

These definitions of pressure, temperature and specific internal energy, (5.55)-(5.57), satisfy
the Gibbs equation (5.6), i.e.,:

du =
(
∂ 1
ρ
u

)
d

1
ρ

+ (∂su) ds =
(
−Aes/cvργ

)
d

1
ρ

+
(

A

cv (γ − 1)ρ
γ−1

)
ds

= −pd1
ρ

+ Tds

Similarly, the following thermodynamic relationships are satisfied:

∂ρu = Aes/cvργ−2 = p

ρ2 (5.58)

∂ρ(ρu) = γ

γ − 1Ae
s/cvργ−1 = cpT = h (5.59)

∂s(ρu) = A

cv(γ − 1)e
s/cvργ = ρT (5.60)

Hence, (5.57) is an adequate formulation for the specific internal energy used in (5.19) for
non-isentropic compressible fluids.
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5.4.2 Isentropic fluid

Now we consider a fluid under a isentropic assumption, i.e., s = s0 is constant. In this case,
the fluid pressure is defined as[114]:

p = Āργ (5.61)

where Ā = Aes0/cv is a constant. Then, the temperature and the specific internal energy depend
only on the fluid density, i.e.,

T (ρ) = Ā

r
ργ−1 (5.62)

u(ρ) = Ā

γ − 1ρ
γ−1 = Ā

γ − 1

(
1
ρ

)−γ+1

(5.63)

Note that (5.63) satisfies the Gibbs equation (5.29), i.e.,

du =
(
∂ 1
ρ
u

)
d

1
ρ

=
(
−Āργ

)
d

1
ρ

= −pd1
ρ

Another important thermodynamic relationship is given in terms of the speed of sound c
and the isentropic compressibility (∂ρp)s, i.e.,

c2 = (∂ρp)s = γĀργ−1 = (γ − 1) cpT = γ
p

ρ
(5.64)

Then, the pressure, temperature and internal energy can be expressed as follows:

p = c2

γ
ρ, T = c2

cp (γ − 1) and u = c2

γ (γ − 1) , (5.65)

where u satisfies the relationships ∂ρ (ρu) = h = γ
γ−1Āρ

γ−1 = c2

γ−1 and ∂ρu = Āργ−2 = c2

γρ
= p

ρ2 .
Thus, the definition (5.63) for the specific internal energy can be used in the dissipative port-
Hamiltonian model for isentropic fluids (5.36).

5.4.3 Considerations for small temperature variations.

In this section we consider small variations of the temperature in an isentropic fluid domain.
The pressure can be approximated using the speed of sound at a reference temperature, as
shown next.
Proposition 5.3. Consider that the fluid temperature is bounded, i.e., T ∈ [T1, T2], and define
ξ = ∆T/T1 as the maximum relative variation of temperature in the fluid domain, where
∆T = T2 − T1. Denoting by c2

∗ the square of the speed of sound at reference temperature
T ∗ ∈ [T1, T2], the pressure of the fluid can be approximated by:

p∗ = c2
∗
γ
ρ (5.66)

with relative error εp ≤ ξ.
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Proof. Define the temperature T = T ∗ + ∆T where T ∗ is the reference temperature and the
speed of sound c∗ =

√
(γ − 1)cpT ∗ at the reference temperature T ∗. Then, from (5.64) we

obtain:

c2 = (γ − 1)cp (T ∗ + ∆T ) = c2
∗ + (γ − 1)cp∆T

The relative error of the pressure is given by:

εp = |p− p
∗|

p
= |c

2 − c2
∗|

c2 = ∆T
T

Considering that ∆T ≤ ∆T and T ≥ T1 we obtain that εp ≤ ∆T
T1

= ξ.

The pressure approximation described in the previous proposition is suitable for applications
with small variations of the temperature, such as for example, the air exhalation in the human
phono-respiratory system, where the temperature varies from 310.15◦K(37◦C) in the lungs to
305.15◦K(32◦C) in the vocal tract, leading to a maximum relative variation of ξ = 0.016.

To use the pressure definition (5.66) in the fluid model (5.36), it is necessary to redefine the
specific internal energy and enthalpy formulas. Using the Gibbs equation (5.29), we obtain:

u∗ = c2
∗
γ

ln(ρ) + Cu (5.67)

h∗ = c2
∗
γ

(ln(ρ) + 1) + Cu (5.68)

where Cu is a constant, and the following relationships are satisfied ∂ρu∗ = p∗

ρ2 and ∂ρ(ρu∗) = h∗.
According to (5.30), the fluid dynamics is affected by the use of grad h∗ in the momentum

balance (see Chapter 4). The error in the fluid dynamics is given by

εh =
∣∣∣∣∣grad h − grad h∗

grad h

∣∣∣∣∣ (5.69)

where
∣∣∣grad h−grad h∗

grad h

∣∣∣ :=


∣∣∣∂ζh−∂ζh∗

∂ζh

∣∣∣∣∣∣∂ξh−∂ξh∗
∂ξh

∣∣∣∣∣∣∂zh−∂zh∗
∂zh

∣∣∣

.
Then, using the specific enthalpy defined in Section 5.4.2 and (5.68), and considering that

γ ≥ 1, the error εh can be expressed as:

εh =

∣∣∣∣∣∣
c2

ρ
grad ρ− c2

∗
γρ

grad ρ
c2

ρ
grad ρ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
c2
∗
γ
− c2

c2

∣∣∣∣∣∣ I ≤
∣∣∣∣∣c2
∗ − c2

c2

∣∣∣∣∣ I ≤ ξI (5.70)

This implies that the approximation error in the dynamics is bounded by ξ.
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5.4. On thermodynamics of compressible fluids

5.4.4 Available specific internal energy

An advantage of the port-Hamiltonian framework is the use of the total energy as a Lya-
punov function to evaluate the system’s stability [42, 44]. A desirable feature of the total
energy is that H(x0) = 0 and H(x) > 0,∀x 6= x0 where x0 is a dynamic equilibrium point of
the system.

As shown in previous sections the total energy of compressible fluids is given by:

H =
∫

Ω

1
2ρv · v + ρu(x)dΩ (5.71)

where u(x) describes the specific internal energy of the fluid. In the non-isentropic compressible
fluid model (5.19) with state variables ρ, v and s, given the specific internal energy (5.57) the
total energy H(ρ,v, s) is non-negative and it has a minimum H(0,v, s) = 0 for any {v, s} and
H(ρ,0,−∞) = 0 for any ρ. This implies that H(ρ,v, s) has an infinite number of minimum
points, making it difficult to analyze the stability of the system using this function. Another
problem is given by the fact that the pair ρ = 0 and s = −∞ does not define a practical dynamic
equilibrium point for the fluid. Similarly, for isentropic compressible fluids with specific internal
energy (5.63), the total energy H(ρ,v) is non-negative and has a minimum H(0,v) = 0 for
any v, i.e., as in the non-isentropic case, the total energy H(ρ,v) has an infinite number of
unpractical minima.

To address these problems, as shown in Chapter 4, it is convenient to define the total energy
using an availability function, ū(x), that describes the changes of specific internal energy with
respect to a reference point x0. The framework of the thermodynamic availability function,
formalized for the control of thermodynamic systems in [122] and with roots in [123] and
[124], has been used to derive Lyapunov conditions for the stability analysis of irreversible
thermodynamic systems by many authors [125, 126, 127, 128, 129] just to cite a few. This
available specific internal energy can be defined as:

ū(x) = u(x)− u(x0) + fu(x) (5.72)

where fu(x) is a function used to guarantee the non-negativity of ū such that fu(x0) = 0.
Then, the fluid total energy can be described as:

H̄(x) =
∫

Ω

1
2ρv · v + ρū(x)dΩ (5.73)

One can notice that this total energy definition is a non-negative function, H̄(x) ≥ 0 with
minimum H̄(x0) = 0.

Now denote by p0 and h0 the pressure and the specific enthalpy at x = x0, respectively, such
that grad p0 = 0 and grad h0 = 0. Then, the terms grad p and grad h in (5.30) and (5.33)
of isentropic compressible fluids, can be rewritten as grad p = grad p̂ and grad h = grad ĥ,
respectively, where p̂ = p−p0 and ĥ = h−h0. This implies that to use the total energy (5.73) in
a port-Hamiltonian formulation of isentropic compressible fluids, the available specific internal
energy (5.72) must satisfy the following relationship:

dū = −p̂d1
ρ

(5.74)
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Solving (5.74) we obtain that

fu(x) = p0

(
1
ρ
− 1
ρ0

)
(5.75)

and the available specific internal energy for isentropic compressible fluids is given by:

ū(ρ) = Ā

γ − 1ρ
γ−1 − Ā

γ − 1ρ
γ−1
0 + p0

(
1
ρ
− 1
ρ0

)
(5.76)

In this case, the total energy H̄(ρ,v) has a minimum H̄(ρ0,0) = 0 where ρ0 is the reference
density and the efforts associated with the total energy (5.73) are given by:[

δρH̄
δvH̄

]
=
[

1
2v · v + ∂ρ (ρū)

ρv

]
(5.77)

Notice that grad h = grad ĥ = grad ∂ρ (ρū). Then, (5.30) can be expressed as the
dissipative port-Hamiltonian system proposed in (5.36) where the total energy, internal energy
and fluid efforts are given by (5.73), (5.76) and (5.77), establishing stability and passivity
properties of the system with respect to the dynamic equilibrium point.

This procedure can also be applied in the case of small temperature variations (see Section
(5.4.3)), where the available internal energy and fluid efforts can be expressed as:

ū∗(ρ) = c2
∗
γ

ln
(
ρ

ρ0

)
+ p0

(
1
ρ
− 1
ρ0

)
, and

[
δρH̄
δvH̄

]
=
[

1
2v · v + ∂ρ (ρū∗)

ρv

]
(5.78)

respectively, satisfying the relationship grad h∗ = grad ĥ∗ = grad ∂ρ (ρū∗), as shown in
Chapter 4.

On the other hand, for non-isentropic fluids, such as those studied in Section 5.1, the
available specific internal energy must satisfy the relationship

dū = −p̂d1
ρ

+ T̂ ds (5.79)

where T̂ = T − T0 and T0 is the temperature at the reference density ρ0 and reference entropy
s0. From the solution of (5.79), functions fu and ū are defined as

fu = p0

(
1
ρ
− 1
ρ0

)
− T0 (s− s0) (5.80)

ū(ρ, s) = A

γ − 1e
s/cvργ−1 − A

γ − 1e
s0/cvργ−1

0 + p0

(
1
ρ
− 1
ρ0

)
− T0 (s− s0) (5.81)

satisfying 1
ρ
grad p = 1

ρ
grad p̂ = grad ∂ρ (ρū)− T̂grad s. Then, using (5.81), the total energy

H̄(ρ,v, s) for non-isentropic fluids, has a minimum H(ρ0,0, s0) = 0 and the efforts are given
by: δρH̄δvH̄

δsH̄

 =


1
2v · v + ∂ρ(ρū)

ρv
ρT̂

 (5.82)
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However, given that the operator Dτ , of Lemma 5.2, is a function of the effort ρT , we obtain
that DτδsH 6= DτδsH̄. This makes it difficult to use the energy (5.73) and efforts (5.82) in the
energy-based model described in Proposition 5.1. An alternative model formulation is hence
necessary to use the available specific internal energy to describe the dynamics of non-isentropic
compressible fluids.

An alternative approach to describe irreversible process, such as the non-isentropic fluids,
is given by the irreversible port-Hamiltonian framework.

5.5 Irreversible port-Hamiltonian formulation of
1D compressible fluids

As already discussed in Section 1.2.3, the irreversible port-Hamiltonian framework is an
approach focused on the description of the thermal domain, where the first and second laws
of Thermodynamic are included. This approach was initially proposed in [67, 68] for finite-
dimensional systems and extended to infinite-dimensional domains in [70, 71]. The dynamics
of an irreversible system on a 1D domain, Ω := {ζ ∈ [a, b] ⊂ R}, are given by:

∂tx =
n∑
j=1

R1jJ1jδxH +R0jJ0jδxH + ∂ζ [R1δsH] , ζ ∈ [a, b]

where Jij, i ∈ {1, 2} is an operator of the form Jij = Pij∂
i
ζ with Pij = (−1)i+1P>ij . The terms

Rij, i ∈ {1, 2} are defined as γij{S,H}∗Jij where γij > 0 and {S,H}∗Jij denotes a locally defined
operators, defined in (1.31), between the total entropy S and the total energy H of the system.
The vector R1 = [R11, . . . , R1n]> satisfies the relationship ∑n

j=1R1jJ1jδxH =
[
0 R>1 ∂ζδxH

]>
(see Section 1.2.3 for details).

In the following, we use this approach to develop an irreversible port-Hamiltonian formula-
tion for non-reactive compressible fluids in a 1D domain.

5.5.1 Governing equations of non-reactive thermodynamic com-
pressible fluid

We consider a 1D non-isentropic compressible fluid given by

∂tρ = −∂ζρv (5.83a)

∂tv = −∂ζ
(1

2v
2
)
− 1
ρ
∂ζp−

1
ρ
∂ζτ (5.83b)

∂tu = −v∂ζu −
1
ρ
∂ζfT −

p

ρ
∂ζv −

τ

ρ
∂ζv (5.83c)

where ρ denotes the density per unit length, τ = −µ∂ζv is the shear stress of the fluid
and fT = −k∂ζT is the heat flux, with µ and k the fluid viscosity and thermal conductivity,
respectively.
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In a 1D domain the material derivative is defined as Dt = ∂t + v∂ζ . Then, using the
local equilibrium (5.7) and the Gibbs equation (5.6), as shown in Section 5.1.1, the governing
equations can be expressed as:

∂tρ = −∂ζρv (5.84a)

∂tv = −∂ζ
(1

2v
2
)
− ∂ζ

(
u + p

ρ

)
+ T∂ζs−

1
ρ
∂ζτ (5.84b)

∂ts = −v∂ζs−
1
ρT

∂ζfT −
τ

ρT
∂ζv (5.84c)

where u and p are given by (5.57) and (5.55), respectively.
Then, defining the total energy of the fluid as:

H =
∫ b

a

1
2ρv

2 + ρu(ρ, s)dζ (5.85)

where

δρHδvH
δsH

 =


1
2v

2 + u + p/ρ
ρv
ρT

, the fluid dynamics are given by:

∂tρ∂tv
∂ts

 =


0 −∂ζ 0
−∂ζ 0 1

ρ
∂ζs− 1

ρ
∂ζ
(
τ
ρT
·
)

0 −1
ρ
∂ζs− τ

ρT
∂ζ
(

1
ρ
·
)

1
ρT
∂ζ
(
k∂ζ

(
1
ρ
·
))

δρHδvH
δsH

 (5.86)

5.5.2 Irreversible port-Hamiltonian formulation

To obtain the irreversible port-Hamiltonian formulation of the system (5.86), it is necessary
to identify the reversible and irreversible parts, Wr andWi, respectively, of the system dynamics,
such that ∂tx = Wr + Wi. In this particular case, the fluid governing equations (5.86) can be
expressed as:∂tρ∂tv

∂ts

 =

 0 −∂ζ 0
−∂ζ 0 1

ρ
∂ζs

0 −1
ρ
∂ζs 0


δρHδvH
δsH


︸ ︷︷ ︸

reversible part Wr

+


0 0 0
0 0 −1

ρ
∂ζ
(
τ
ρT
·
)

0 − τ
ρT
∂ζ
(

1
ρ
·
)

1
ρT
∂ζ
(
k∂ζ

(
1
ρ
·
))

δρHδvH
δsH


︸ ︷︷ ︸

irreversible part Wi

Notice that the reversible part can be described by an operator having the form (1.15), i.e.,
Wr = J (x)δxH (5.87)

where x = [ρ v s]> is the state vector of the fluid dynamics and the operator J (x) is given by
J (x) = P1∂ζ + P0(x) (5.88)

with

P1 =

 0 −1 0
−1 0 0
0 0 0

 and P0(x) =

0 0 0
0 0 1

ρ
∂ζs

0 −1
ρ
∂ζs 0


Regarding the irreversible part Wi, it is necessary to introduce the definition of modulated

skew-symmetric operator, as follows.
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Definition 5.2. Let J be a skew-symmetric operator that satisfies the Jacobi identity. Then,
a modulated operator J̃ is defined as the formal skew-symmetric operator of the form:

J̃ e = M>(x)J [M(x)e] (5.89)

where M(x) depends on the state variables.

Notice that Wi can be expressed as:

Wi =

 0
−1
ρ
∂ζτ

σT + στ − 1
ρ
∂ζfs

 (5.90)

where στ = − τ
ρT
∂ζ
(

1
ρ
δvH

)
= µ

ρT
(∂ζv)2 and σT = − fs

ρT
∂ζ
(

1
ρ
δsH

)
= k

ρT 2 (∂ζT )2 are the entropy
creation due to viscous friction and heat conduction, respectively. Similarly, −1

ρ
∂ζτ and −1

ρ
∂ζfs

describe diffusion phenomena in the velocity and entropy variables, and fs = − k
T
∂ζT denotes the

specific entropy flux. Defining the entropy creation terms as στ = 1
ρ
R1τ∂ζv and σT = 1

ρ
R1T∂ζT ,

the following relationships are obtained:

R1τ = µ

T
∂ζv = − τ

T
and R1T = k

T 2∂ζT = −fs

T
(5.91)

Then, using (5.91), the irreversible part of the governing equations can be rewritten as:

Wi =R1τ

0 0 0
0 1

ρ
0

0 0 1
ρ


0 0 0

0 0 1
0 1 0

 ∂ζ

0 0 0

0 1
ρ

0
0 0 1

ρ


δρHδvH
δsH




︸ ︷︷ ︸
J̃1τ δxH

+R1T

0 0 0
0 1

ρ
0

0 0 1
ρ


0 0 0

0 −µT
k

0
0 0 1

 ∂ζ

0 0 0

0 1
ρ

0
0 0 1

ρ


δρHδvH
δsH




︸ ︷︷ ︸
J̃1T δxH

− 1
ρ
∂ζ

0
τ
fs

 (5.92)

with modulated operators

J̃1τe = M>(x)P1τ∂ζ [M(x)e] (5.93)
J̃1Te = M>(x)P1T∂ζ [M(x)e] (5.94)

with

M(x) =

0 0 0
0 1

ρ
0

0 0 1
ρ

 , P1τ =

0 0 0
0 0 1
0 1 0

 , and P1T =

0 0 0
0 −µT

k
0

0 0 1


Reformulating R1τ and R1T according to Definition 1.6, i.e., R1τ = γ1τ{S,H}∗J̃1τ

and R1T =
γ1T{S,H}∗J̃1T

, where {S,H}∗J̃1τ
and {S,H}∗J̃1T

are locally defined operators of the form (1.31),
and the total entropy S is defined as:

S =
∫ b

a
ρsdζ (5.95)
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we obtain that {S,H}∗J̃1τ
= ∂ζv, {S,H}∗J̃1T

= ∂ζT , γ1τ = µ
T
> 0 and γ1T = k

T 2 > 0. Then, the
irreversible part of the fluid dynamics can be expressed as:

Wi = R1τ J̃1τδxH +R1T J̃1T δxH +M>(x)∂ζ
(
M(x)

[
0

R1

]
δsH

)
(5.96)

where R1 = [R1τ R1T ]> and satisfies

R1τ J̃1τδxH +R1T J̃1T δxH =
[

02×1
[0 R>1 ]M>(x)∂ζ (M(x)δxH)

]
.

Proposition 5.4. Let H be the total energy defined in (5.85). Using the skew-symmetric
operators J , J̃1τ and J̃1T , defined in (5.88), (5.93) and (5.94) respectively, the governing equa-
tions (5.84) of a non-reactive compressible fluid can be expressed as the following irreversible
port-Hamiltonian system

∂tx = J δxH +R1τ J̃1τδxH +R1T J̃1T δxH +M>(x)∂ζ
(
M(x)

[
0

R1

]
δsH

)
(5.97)

with boundary inputs and outputs given by

u(t) =



(
1
2v

2 + h
)

(b)
−τ(b)
−fs(b)(

1
2v

2 + h
)

(a)
−τ(a)
−fs(a)


and y(t) =



− (ρv) (b)
v(b)
T (b)

(ρv) (a)
−v(a)
−T (a)


(5.98)

where x = [ρ v s]>, J δxH describes the reversible part of the fluid dynamics and R1τ J̃1τδxH+

R1T J̃1T δxH +M>(x)∂ζ
(
M(x)

[
0

R1

]
δsH

)
describes irreversible part, satisfying the balances

Ḣ = u>y (5.99)

Ṡ =
∫ b

a
σsdζ − (sρv + fs) |ba (5.100)

where σs = γ1τ
(
{S,H}∗J̃1τ

)2
+ γ1T

(
{S,H}∗J̃1T

)2
≥ 0.

Proof. Using (5.87) and (5.96) the PDE (5.97) is obtained. On the other hand, the energy

balance is given by Ḣ =
b∫
a
δxH>∂txdζ. Then, using (5.97) the energy balance can be expressed

as:

Ḣ =
∫ b

a
(δxH)> J δxHdζ +

∫ b

a
(δxH)>

[
R1τ J̃1τδxH +R1T J̃1T δxH

]
dζ

+
∫ b

a
(δxH)>

[
M>(x)∂ζ

(
M(x)

[
0

R1

]
δsH

)]
dζ
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From the definition of J in (5.88),
∫ b
a (δxH)> J δxH dζ =

∫ b
a (δxH)> P1∂ζδxH dζ where P1 = 0 −1 0

−1 0 0
0 0 0

. Similarly, the irreversible part of the fluid dynamic satisfies the relationship:

R1τ J̃1τδxH +R1T J̃1T δxH =

 0
0

[0 R>1 ]M>(x)∂ζ [M(x)δxH]


Then, the energy balance can be rewritten as:

Ḣ =
∫ b

a
(δxH)> P1∂ζδxHdζ +

∫ b

a
(δxH)>

 0
0

[0 R>1 ]M>(x)∂ζ [M(x)δxH]

 dζ
+
∫ b

a
(δxH)>

[
M>(x)∂ζ

(
M(x)

[
0

R1

]
δsH

)]
dζ

=−
∫ b

a
∂ζ (δρHδvH) dζ +

∫ b

a
∂ζ

(
[M(x)δxH]>M(x)

[
0

R1

]
δsH

)
dζ

=− (δρHδvH)|ba +
(

1
ρ
δvHR1τ

1
ρ
δsH

)∣∣∣∣∣
b

a

+
(

1
ρ
δsHR1T

1
ρ
δsH

)∣∣∣∣∣
b

a

=−
((1

2v
2 + h

)
ρv
)∣∣∣∣b
a
− (vτ)|ba − (T fs)|ba

Defining the boundary inputs and outputs as shown in (5.98), the relationship (5.99) is
obtained.

Regarding the entropy balance, we have that

Ṡ =
∫ b

a
[δxS]> ∂txdζ

=
∫ b

a

(
[δxS]> J δxH + [δxS]>M>(x)∂ζ

(
M(x)

[
0

R1

]
δsH

))
dζ

+
∫ b

a

R1τ [δxS]> J̃1τδxH︸ ︷︷ ︸
{S,H}∗

J̃1τ

+R1T [δxS]> J̃1T δxH︸ ︷︷ ︸
{S,H}∗

J̃1T

 dζ
where [δxS]> =

[
s 0 ρ

]
. Notice that [δxS]> J δxH = −s∂ζδvH − δvH∂ζs = −∂ζ (sδvH) and

[δxS]>M>(x) =
[
0 0 1

]
. Then, the entropy balance Ṡ is given by

Ṡ =
∫ b

a
σsdζ −

∫ b

a
∂ζ (sδvH + fs) dζ

=
∫ b

a
σsdζ − (sρv + fs) |ba

where σs = γ1τ
(
{S,H}∗J̃1τ

)2
+ γ1T

(
{S,H}∗J̃1T

)2
≥ 0.
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Notice that if the system is isolated, the energy balance (5.99) is reduced to Ḣ = 0 and
the entropy balance (5.100) is reduced to the inequality Ṡ ≥ 0 , i.e., the fluid description in
Proposition 5.4 satisfies the first and second laws of Thermodynamics.

Remark 5.6. Notice that the structure of the irreversible part of system (5.97) is modulated, in
contrast to the irreversible port-Hamiltonian formulation on infinite dimensional spaces given
in Definition 1.6 (see Chapter 1 Section 1.2.3 for details). The presence of matrix M(x) in
the last term of the right hand side of (5.97), and in operators J̃1T and J̃1τ , is due to the state
variables of the compressible fluids. In the case of incompressible fluids, this matrix vanish,
obtaining a standard irreversible port-Hamiltonian formulation.

To illustrate the previous Remark (5.6),as example we consider a simple 1D shallow-water
system described by:

∂th = −∂ζ (hv) (5.101a)

∂t (ρ0v) = −∂ζ
(1

2ρ0v
2 + ρ0gh

)
− 1

2λfρ0|v|v (5.101b)

∂tu = 1
2λfρ0h|v|v2 − ∂ζfT (5.101c)

where h = h(ζ, t) is the water height, v = v(ζ, t) is the average velocity of the fluids, u = u(ζ, t)
denotes the internal energy per unit length, fT is the heat flux, g is the constant of gravity
and ρ0 is the mass per unit area. The last term on the right hand side of (5.101b) describes
the dissipation of kinetic energy by viscous friction, where λf is a dimensionless factor [104].
The term 1

2λfρ0h|v|v2 in (5.101c) denotes the heat production by viscous friction. The term
1
2λfρ0|v| is equivalent to the friction coefficients used in [130] and [131]. The thermodynamic
properties of u are given by the Gibbs equation, du = Tds, where s = s(ζ, t) is the entropy per
unit length. The total energy of this system is given by:

H =
∫ b

a

1
2ρ0hv

2 + 1
2ρ0gh

2 + u(s)dζ

Using the thermodynamic equilibrium ∂tu = T∂ts, the dynamics of s can be expressed as:

∂ts = 1
2
λf
T
ρ0h|v|v2 − 1

T
∂ζ (κ∂ζT )

Defining the state vector as x = [h, ρ0v, s]>, the fluid efforts are given by δxH = [1
2ρ0v

2 +
ρ0gh, hv, T ]> and the shallow-water equations can be expressed as:

∂tx = J δxH +R1J1δxH +R0J0δxH + ∂ζ


 0

0
R1

 δsH
 (5.102)

where J = P∂ζ , J0 = P0 and J1 = P1∂ζ are skew-symmetric operators with

P =

 0 −1 0
−1 0 0
0 0 0

 , P0 =

0 0 0
0 0 −1
0 1 0

 and P1 =

0 0 0
0 0 0
0 0 1


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and R0 = γ0{S,H}∗J0 and R1 = γ1{S,H}∗J1 , where {S,H}
∗
J0 = hv, {S,H}∗J1 = ∂ζT , γ0 =

1
2
λfρ0|v|
Th

> 0 and γ1 = κ
T 2 > 0.

Notice that, for the incompressible fluid described by the shallow-water equations, the
irreversible part of the system (5.102) is in correspondence with the standard irreversible port-
Hamiltonian formulation described in Definition 1.6. That is, the matrix M(x) that appear
in the irreversible port-Hamiltonian formulation of compressible fluids, is a consequence of the
compressibility assumption.

5.6 Conclusion

In this chapter, general port-Hamiltonian formulations for 3D compressible fluids have been
presented. For non-isentropic fluids a pseudo port-Hamiltonian model was proposed in Propo-
sition 5.1. This model presents an appropriate description of the thermal domain, satisfying
the second law of Thermodynamic, as shown in (5.23). However, operators Dτ and D∗τ depend
explicitly on the entropy effort δsH = ρT and, as a consequence, the system (5.19) does not
define a Dirac structure. In the case of isentropic fluids, the dissipation of kinetic energy by vis-
cous friction is considered as a dissipative term [40], obtaining the dissipative port-Hamiltonian
model in Proposition 5.2. As shown in Section 5.3, these port-Hamiltonian formulations can
also be used for 1D and 2D compressible fluids, making the appropriate considerations in the
corresponding operators. Moreover, considering the suitable assumptions, proposed formula-
tions are equivalent to other fluid models in the literature.

Finally, we presented an alternative formulation based on the irreversible port-Hamiltonian
framework to describe non-isentropic compressible fluids in 1D. Unlike the pseudo port-Hamilto-
nian formulation described in Proposition 5.1, this approach allows us to avoid the presence of
fluid efforts in the differential operators that describe the dynamics. Additionally, we obtain an
appropriate description of the first and second law of Thermodynamic, as shown in Proposition
5.4. However, given the compressibility assumption, a matrix M(x) appears in the irreversible
part of the model, obtaining a formulation that differs from the standard form of irreversible
port-Hamiltonian systems on infinite dimensional domains, described in Definition (1.6).
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Chapter 6
Conclusion

In this thesis a finite-dimensional approach based on the port-Hamiltonian framework to de-
scribe the FSI between a longitudinal fluid and a structure with transverse motion has been pre-
sented. A finite-dimensional formulation based on a mass-spring-damper description has been
proposed in Chapter 2 to characterize the transverse motion of the structure in the longitudinal
domain. To describe incompressible fluids, the fluid domain is divided into nf sections of length
`f with uniform cross-sectional areas, where the fluid dynamics are characterized through the
average longitudinal momentum. Additionally, a novel instrumental element, called node, has
been proposed in Chapter 3. This node allows us to define the static pressure in an infinitesimal
zone between two incompressible sections of the fluid domain, providing an appropriate way,
from the port-Hamiltonian point of view, to couple finite-dimensional port-Hamiltonian mod-
els of adjacent incompressible sections. In the case of compressible fluids, a description based
on a 1D staggered grid has been proposed in Chapter 4. The flow behavior is characterized
by the average longitudinal velocity of nf sections with uniform cross-sectional areas and the
corresponding nf average densities.

To connect the fluid and the structure subsystems, a power-preserving interconnection that
combines the features of the interconnection by ports and the interconnetion by energy of PHS,
has been presented in Chapter 3. This interconnection provides a suitable description of the
power-transfer between both subsystems. In cases where the structure collides closing a section
of the fluid domain, a switching interconnection approach has been proposed in Chapter 4. To
this end, we use a switching matrix Sε to enable and disable the fluid-structure interconnection
in the corresponding sections, according to a threshold value. Similarly, this matrix Sε is used
to enable and disable the corresponding fluid dynamics during the collision, allowing us to
avoid the singularities of the fluid model when the fluid domain is closed.

The finite-dimensional approach used in this thesis, allows to reduce the complexity of
the FSI model with respect to the classical computational formulations that requires several
algorithms to guarantee the stability of the numerical results. Moreover, the proposed finite-
dimensional models show an appropriated description of the FSI behavior, as it can be seen in
the numerical simulations. These simulations show results in correspondence with other model
in the literature. Additionally, the scalability of the proposed models allows to set the spatial
resolution, along the longitudinal domain, of the variables of interest. This setting can be
made varying the number of fluid sections nf and structure sections ns. Moreover, as shown in
Section 4.4, the number of fluid sections and the number of structure sections may be different,
allowing greater freedom in the description of the fluid and the structure domains.
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The analysis of the FSI behavior using the models proposed is constrained by the symmetry
hypotheses considered in this thesis, such as an axisymmetric behavior of flexible tubes and
an symmetric movement of the vocal folds in the glottis. Similarly, the structure dynamics are
reduced to the transverse motion only. Similarly, the fluid dynamics analysis is limited to the
longitudinal velocity of the flow. To study phenomena, such as vena contracta and coandra
effects in the glottis during the vibrating cycle of the vocal folds, a more complex model is
required.

In Chapter 5, we presented general formulations based on the port-Hamiltonian framework
for 3D isentropic and non-isentropic compressible fluids. These formulations can also be used
in 1D and 2D fluid problems modifying the differential operators. Similarly, under appropriate
assumptions, the proposed models are equivalent to other formulations in the literature. In
the case of non-isentropic fluids, we have obtained a pseudo port-Hamiltonian formulation.
That is given by the dependency of the differential operators on the fluid efforts associated
with the entropy state variable. This implies that the system described in Proposition 5.1 does
not define a Dirac structure. Additionally, an alternative formulation based on the irreversible
port-Hamiltonian framework is proposed for 1D non-isentropic fluids. The advantage of this
formulation is that it encompasses the first and second principles of termodynamics as a struc-
tural property of the system, which is particularly convinent for stability analysis and passivity
based control design.

Future work

For a practical use of the finite-dimensional models proposed in this thesis, as for example
in the study of pathogenesis of phonotraumatic diseases of the vocal folds, the next step is
the parameter identification from real data. However, the application of system identification
methods, such as maximum likelihood and Bayesian inference, to the models proposed has the
own challenges that need be considered in future projects. Similarly, one advantage of the
finite-dimensional models presented in this thesis, is the simplicity of the PHS framework to
define new inputs for the model, as for example external forces acting on the masses of the
structure model. This is useful for control applications in future works. Other possible research
areas where the proposed model can be useful is in system identification and filtering. Consider
for example the voice production process. During phonation we use myoelectric signals that
change the strain of the Thyroarytenoid muscle in the vocal folds (see Figure 2.4). These
changes can be interpreted in two ways: the first one is to consider that the structure model
has time varying parameters; the second one is to consider these changes as an external force
acting on the masses of the structure model. In the first case we can use system identification
methods to estimate the parameters of the system from real data. In the second case where we
consider external forces acting on the structure model. Recent advances in filtering for systems
subject to unknown inputs, will be used to estimate these forces. This information can be
useful for the design of biomedical implants.

As future work with the infinite-dimensional models proposed in Chapter 5, we consider
the study of techniques such as Arbitrary Lagrangian-Eulerian methods [19, 26] and mesh-
less methods [132], and their compatibility with the port-Hamiltonian framework, to describe
systems with time varying domains. Another research line to be considered in future works
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is the extension of the infinite-dimensional port-Hamiltonian formulations to non-Newtonian
fluids. Regarding the irreversible port-Hamiltonian approach, we consider the extension of
the formulation described in Proposition 5.4 to 3D compressible fluids and the development
of passivity-based control methods suitable for the structure of irreversible port-Hamiltonian
systems on infinite dimensional domains.
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Appendix A
Useful Identities and Theorems

The set of mathematical identities [101, Appendix A] used in this work are described below:

(u · grad )u = grad
(1

2u · u
)

+ [curl u]× u (A.1)

σ : [Grad u] = div [σ · u]− u · div σ (A.2)
div [fu] = [grad f ] · u+ fdiv u (A.3)
div (Grad u) = grad (div u)− curl [curl u] (A.4)
div

(
[Grad u]>

)
= grad (div u) (A.5)

div [(div u) I] = grad (div u) (A.6)
div [u× v] = v · [curl u]− u · [curl v] (A.7)

where f is a scalar, u is a vector and σ is a symmetric second order tensor.

Theorem A.1 (Gauss Divergence Theorem). Let be a domain Ω, enclosed by the boundary
surface ∂Ω, then

∫
Ω

(div u) dΩ =
∫
∂Ω

(u · n) ∂Ω (A.8)

where n denotes the outward unitary vector to the boundary ∂Ω

Proof. See [101, p. 704]

Theorem A.2 (Adjoint of div ). Let be the Hilbert space of the square integrable scalar func-
tions, denoted by H0 = L2(Ω,R), and the Hilbert space of the square integrable vector functions,
denoted by H1 = L2(Ω,Rn). Given the operators div : H1 → H0 and grad : H0 → H1, where
−grad is the formal adjoint of div , then,

∫
Ω
f (div u) dΩ +

∫
Ω

[grad f ] · u dΩ =
∫
∂Ω
f (u · n) ∂Ω (A.9)
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Proof. Denote by 〈f1, f2〉H0
=
∫

Ω f1f2dΩ and 〈u1,u2〉H1
=
∫

Ω u1 · u2dΩ the inner products in
H0 and H1, respectively. Then,

〈f, div u〉H0
+ 〈grad f,u〉H1

=
∫

Ω
f (div u) dΩ +

∫
Ω

[grad f ] · udΩ

=
∫

Ω
f (div u) + [grad f ] · udΩ

(A.3)=
∫

Ω
div [fu] dΩ

(A.8)=
∫
∂Ω
f (u · n) ∂Ω

where for BC equal to 0, the relationship 〈f, div u〉H2
= 〈−grad f,u〉H1

is obtained.

Theorem A.3. [60] Consider the Hilbert space of the square integrable vector functions H1,
and the Hilbert space of square integrable second order tensors H2 := L2(Ω,Rn×n). Given the
operators div : H2 → H1 and Grad : H1 → H2. Then, the formal adjoint of div is −Grad
and for any symmetric tensor σ ∈ H2 and vector u ∈ H1, the following relationship is satisfied

∫
Ω

[div σ] · udΩ +
∫

Ω
σ : [Grad u] dΩ =

∫
∂Ω
u · [σ · n] ∂Ω (A.10)

Proof. Denote by 〈σ1,σ2〉H2
=
∫

Ω σ1 : σ2dΩ inner product in H2, where σ1 : σ2 = Tr(σ>1 σ2).
Considering div σ =

[
div σ1 · · · div σn

]>
where σj =

[
σ1j · · · σnj

]>
is the j-th column of tensor

σ. Then, we obtain:

〈div σ,u〉H1
=
∫

Ω
[div σ] · udΩ =

∫
Ω

∑
j

vjdiv σjdΩ

(A.3)=
∑
j

∫
Ω
−σj · grad uj + div [σjuj] dΩ

=−
∫

Ω
Tr

(
σ>Grad u

)
dΩ +

∑
j

∫
∂Ω
uj (σj · n) ∂Ω

=− 〈σ,Grad u〉H2
+
∫
∂Ω
u ·

[
σ> · n

]
∂Ω

Thus, for BC equal to 0 we obtain 〈div σ,u〉H1
= 〈σ,−Grad u〉H2

, i.e., −Grad is the formal
adjoint of div .

Now, considering that σ is a symmetric tensor in H2, u ·
[
σ> · n

]
= u · [σ · n], obtaining

the relationship (A.10).

Theorem A.4. Let curl ·
ρ
be the adjoint operator of 1

ρ
curl . Then,

∫
Ω
u1 ·

[
curl

u2

ρ

]
dΩ−

∫
Ω

[
1
ρ

curl u1

]
· u2dΩ =

∫
∂Ω

1
ρ

[u2 × u1] · n∂Ω (A.11)
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Proof. Considering the inner product
〈
u1, curl u2

ρ

〉
H1

we obtain
〈
u1, curl

u2

ρ

〉
H1

=
∫

Ω
u1 ·

[
curl

u2

ρ

]
dΩ

(A.7)=
∫

Ω

(
div

[
u2

ρ
× u1

]
+ u2

ρ
· [curl u1]

)
dΩ

(A.8)=
∫

Ω

[
1
ρ

curl u1

]
· u2dΩ +

∫
∂Ω

[
u2

ρ
× u1

]
· n∂Ω

Rewritten previous equation we obtain the relationship (A.11). Similarly, considering boundary
conditions equal to 0,

〈
u1, curl u2

ρ

〉
H1

=
〈

1
ρ
curl u1,u2

〉
H1
, i.e., curl ·

ρ
is the formal adjoint of

1
ρ
curl .

Theorem A.5. Let x ∈ H1 be the state vector of a dynamic system, F (x) ∈ H1 and α(x) ∈ H0
be square integrable vector and scalar functions, respectively, such that, for any f ∈ H0
we obtain that F (x)f ∈ H1 and α(x)f ∈ H0. Define the operator D : H0 → H0 as
Df = α(x)div (F (x)f). Then, the formal adjoint D∗ : H0 → H0 of D is given by D∗f =
−F>(x)grad (α(x)f) : H0 → H0.

Proof. Let fj, j ∈ {1, 2} be a square integrable scalar function. Consider fαj ∈ H0 and fFj ∈ H1
as the scalar and vector functions defined as fαj = α(x)fj and fFj = F (x)fj, respectively. Using
the inner product 〈f1,Df2〉H0

, we obtain that:

〈f1,Df2〉H0
=
∫

Ω
f1α(x)div (F (x)f2) dΩ =

∫
Ω
fα1 div fF2 dΩ

(A.9)= −
∫

Ω
[grad fα1 ] · fF2 dΩ +

∫
∂Ω
fα1
(
fF2 · n

)
∂Ω

=−
∫

Ω
[grad (α(x)f1)] · F (x)f2dΩ +

∫
∂Ω
fα1
(
fF2 · n

)
∂Ω

=−
∫

Ω

[
F>(x)grad (α(x)f1)

]
f2dΩ +

∫
∂Ω
fα1
(
fF2 · n

)
∂Ω (A.12)

Then, considering boundary conditions equal to 0, we obtain the relationship 〈f1,Df2〉H0
=〈

−F>(x)grad (α(x)f1) , f2
〉
H0
, i.e., D∗(·) = −F>(x)grad (α(x)·) is the formal adjoint of

D.

Theorem A.6. Let D̄ : H0 → H0 be an operator defined as D̄f = F>(x)grad (α(x)f) +
α(x)div (F (x)f), such that, for any f ∈ H0 we obtain that F (x)f ∈ H1 and α(x)f ∈ H0.
Then, the D̄ is a formal skew-adjoint operator.

Proof. Let fj, j ∈ {1, 2} be a square integrable scalar function. Consider fαj ∈ H0 and fFj ∈ H1
as the scalar and vector functions defined as fαj = α(x)fj and fFj = F (x)fj, respectively. Then,
inner product

〈
f1, D̄f2

〉
H0

is given by:

〈
f1, D̄f2

〉
H0

=
∫

Ω

(
f1F

>(x)grad (α(x)f2) + f1α(x)div (F (x)f2)
)
dΩ (A.13)
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Using (A.12) the expression (A.13) is rewritten as:〈
f1, D̄f2

〉
H0

=−
∫

Ω

(
f1F

>(x)grad (α(x)f1) + f2α(x)div (F (x)f1)
)
dΩ

+
∫
∂Ω

(
fα1
(
fF2 · n

)
+ fα2

(
fF1 · n

))
∂Ω

=−
〈
D̄f1, f2

〉
H0

+
∫
∂Ω

(
fα1
(
fF2 · n

)
+ fα2

(
fF1 · n

))
∂Ω (A.14)

Finally, considering boundary conditions equal to 0, from (A.14) we have that
〈
f1, D̄f2

〉
H0

=〈
−D̄f1, f2

〉
H0
. This implies that the formal adjoint of D̄ is given by D̄∗ = −D̄, i.e., D̄ is a

formal skew-adjoint operator.
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Título : Modelado puerto-Hamiltoniano de Interaciones Fluido-Estructura en un
Dominio Longitudinal
Palabras clave : Interación fluido-estructura, sistemas puerto-Hamiltonianos, mod-
elado en dimensión finita, fluidos Newtonianos

Resumen : Esta Tesis presenta un
modelado basado en sistemas puerto-
Hamiltonianos de las interacciones fluido-
estructura en un dominio longitudinal.
Primeramente, se presenta un modelado de
dimensión finita basado en una formulación
masa-resorte-amortiguador para describir el
movimiento de la estructura. Segunda-
mente, la dinámica de los fluidos Newtoni-
anos se describe dividiendo el dominio de los
fluidos en nf secciones con área transver-
sal uniforme. Para fluidos incompresibles,
se utiliza un elemento instrumental, lla-
mado nodo, para permitir un acoplamiento
apropiado, desde un punto de vista puerto-
Hamiltoniano, de las secciones del fluido.
Para fluidos compresibles, se utiliza una
malla escalonada para describir la veloci-
dad longitudinal y la densidad en el do-
minio del fluido. Para acoplar los modelos
de dimensión finita del fluido y la estruc-

tura, se usa una interconexión que preserva
la energía y se presenta un enfoque de con-
mutación para los problemas con colisión de
la estructura. Las simulaciones muestran
que los resultados obtenidos con los mode-
los propuestos se corresponden con formu-
laciones más complejas encontradas en la
literatura. Terceramente, la descripción de
sistemas con dominios variables utilizando
el enfoque puerto-Hamiltoniano de dimen-
sión infinita es estudiada. Como paso ini-
cial, se presentan varias formulaciones de di-
mensión infinita para fluidos Newtonianos
compresibles isentrópicos y no isentrópicos
en un dominio 3D constante. Finalmente,
se propone una formulación basada en el
enfoque puerto-Hamiltoniano irreversible de
dimensión infinita para fluidos Newtonianos
compresibles no isentrópicos unidimension-
ales.
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Titre : Modélisation Port-Hamiltonienne De L’interaction Fluide-Structure Dans
Un Domaine Longitudinal
Mots clefs: Interactions fluide-structure, systèmes port-Hamiltoniens, modélisation
à dimension finie, fluides Newtoniens

Résumé : Dans cette thèse on s’intéresse
à la modélisation Hamiltonienne à ports
(PHS) des interactions fluide-structure dans
le domaine longitudinal. Dans un premier
temps, le mouvement de la structure mé-
canique est modélisé en dimension finie à
l’aide d’éléments masse-ressort-amortisseur.
Dans un second temps, la dynamique des
fluides newtoniens est décrite en divisant
le domaine spatial en sous sections uni-
formes. Dans le cas des fluides incom-
pressibles, un élément instrumental, appelé
nœud, est utilisé pour permettre le couplage
approprié entre sections de fluides. Dans
le cas des fluides compressibles un mail-
lage en quinconces est utilisé afin de car-
actériser la vitesse longitudinale et la den-
sité aux différents points du domaine flu-
ide. Les modèles discrétisés du fluide et de
la structure mécanique sont ensuite inter-
connectés de manière conservative de puis-

sance. Une variable de commutation est
utilisée lorsque la structure entre en colli-
sion, obturant de ce fait une section du do-
maine fluide. Les simulations montrent que
les résultats obtenus à partir des modèles
proposés sont en correspondance avec des
formulations plus complexes trouvées dans
la littérature. Finalement la description de
la classe de systèmes considérée avec do-
maine variant dans le temps est explicitée
à l’aide du formalisme Hamitlonien à ports.
Dans un troisième temps, une formulation
Hamiltonienne à ports de dimension infinie
est proposée pour la dynamique des fluides
newtoniens compressibles isentropiques et
non isentropiques en dimension 3. Une pre-
mière formulation thermodynamique basée
sur la formulation Hamiltonienne à ports ir-
réversible est finalement proposée pour les
fluides newtoniens compressibles unidimen-
sionnels.

Title : Port-Hamiltonian Modeling of Fluid-Structure Interactions in a Longitudi-
nal Domain
Keywords : Fluid-structure interactions, port-Hamiltonian systems, finite-
dimensional modeling, Newtonian fluids

Abstract : This Thesis presents modeling
based on port-Hamiltonian systems (PHS)
of the fluid-structure interaction in a longi-
tudinal domain. Firstly, finite-dimensional
modeling based on a mass-spring-damper
formulation is presented to describe the
transverse motion of the structure. Sec-
ondly, the dynamics of Newtonian fluids
are described by dividing the fluid domain
into nf sections with uniform cross-sectional
area. For incompressible fluids, an instru-
mental element, called node, is used to allow
appropriate coupling, from a PHS point of
view, of the fluid sections. For compressible
fluids, a staggered mesh is used to charac-
terize the longitudinal velocity and the den-
sity in nf points of the fluid domain for
each variable. To be able to couple the
finite-dimensional models of the fluid and
the structure, a power-preserving intercon-

nection is used, and a switching approach
is presented to model the cases where the
structure collides closing a section of the
fluid domain, such as in the case of the
vocal folds. The obtained simulation re-
sults show that the proposed models are in
correspondence with more complex formu-
lations found in the literature. Finally, the
description of the considered class of sys-
tems with time-varying domains using the
infinite-dimensional PHS framework is stud-
ied. The thesis also presents some first ap-
proaches of general infinite-dimensional for-
mulations for isentropic and non-isentropic
compressible Newtonian fluids in a con-
stant 3D domain, and a formulation based
on the infinite-dimensional irreversible PHS
approach is proposed for 1D non-isentropic
compressible Newtonian fluids.
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