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Title, abstract and key words (in English and French)

Title: Contributions to the relative trace formula of Guo-Jacquet

Abstract: We establish global and local trace formulae for infinitesimal symmetric spaces of Guo-
Jacquet. We also prove several local results concerning the comparison of regular semi-simple terms which
are noninvariant weighted orbital integrals. This thesis contains five chapters. In Chapter 1, we recall
the motivations and state our main reults. Our work is inspired by a conjecture of Guo-Jacquet, which is
an example in the relative Langlands programme, and analytic problems appearing in the relative trace
formula approach. In Chapter 2, we establish an infinitesimal variant of Guo-Jacquet trace formula for
the case of (GL2n,D, GLn,D×GLn,D). It is a kind of Poisson summation formula obtained by an analogue
of Arthur’s truncation. We describe regular semi-simple terms as explicit weighted orbital integrals. In
Chapter 3, we estabilish a similar formula and have a similar description of regular semi-simple terms
for the case of a central simple algebra containing a quadratic extension. Moreover, we state and prove
the weighted fundamental lemma thanks to Labesse’s work on the base change for GLn. In Chapter 4,
we establish an infinitesimal invariant local trace formula of Guo-Jacquet over a p-adic field by following
works of Waldspurger and Arthur. During the proof, we also obtain an infinitesimal noninvariant local
trace formula, Howe’s finiteness for weighted orbital integrals and the representability of the Fourier
transform of weighted orbital integrals. In Chapter 5, with the results in previous chapters, we adopt
Waldspurger’s strategy on the endoscopic transfer to prove some relations between Fourier transforms
of invariant local weighted orbital integrals.

Key words: Guo-Jacquet trace formula, Arthur’s truncation, weighted fundamental lemma, local
trace formula, noninvariant transfer

Titre : Contributions à la formule des traces relative de Jacquet-Guo

Résumé : On établit des formules des traces globale et locale pour les espaces symétriques in-
finitésimaux de Jacquet-Guo. On prouve également quelques résultats locaux concernant la comparaison
de termes semi-simples réguliers qui sont des intégrales orbitales pondérées non invariantes. Cette thèse
contient cinq chapitres. Dans le chapitre 1, on rappelle les motivations et énonce nos principaux résultats.
Notre travail s’inspire d’une conjecture de Jacquet-Guo, qui est un exemple dans le programme de Lang-
lands relatif, et des problèmes analytiques apparaissant dans l’approche par la formule des traces relative.
Dans le chapitre 2, on établit une variante infinitésimale de la formule des traces de Jacquet-Guo pour
le cas de (GL2n,D, GLn,D × GLn,D). Elle est une sorte de formule sommatoire de Poisson obtenue par
un analogue de la troncature d’Arthur. On décrit les termes semi-simples réguliers comme des intégrales
orbitales pondérées explicites. Dans le chapitre 3, on établit une formule similaire et a une description
similaire des termes semi-simples réguliers pour le cas d’une algèbre centrale simple contenant une ex-
tension quadratique. De plus, on énonce et prouve le lemme fondamental pondéré grâce aux travaux de
Labesse sur le changement de base pour GLn. Dans le chapitre 4, on établit une formule des traces locale
invariante infinitésimale de Jacquet-Guo sur un corps p-adique en suivant les travaux de Waldspurger et
Arthur. Au cours de la démonstration, on obtient également une formule des traces locale non invari-
ante infinitésimale, la finitude de Howe pour les intégrales orbitales pondérées et la représentabilité de
la transformée de Fourier des intégrales orbitales pondérées. Dans le chapitre 5, avec les résultats des
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chapitres précédents, on adopte la stratégie de Waldspurger sur le transfert endoscopique pour prouver
certaines relations entre transformées de Fourier des intégrales orbitales pondérées locales invariantes.

Mots-clefs : formule des traces de Jacquet-Guo, troncature d’Arthur, lemme fondamental pondéré,
formule des traces locale, transfert non invariant
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Introduction en français

Ce projet de thèse s’inspire d’une conjecture de Jacquet-Guo [23] qui généralise le théorème connu
de Waldspurger [50] reliant les périodes toriques aux valeurs centrales des fonctions L automorphes
pour GL2 en dimensions supérieures. C’est l’un des premiers exemples intéressants du programme de
Langlands relatif initié par Jacquet et ses collaborateurs et systématiquement proposé par Sakellaridis-
Venkatesh [46]. Un outil efficace pour attaquer ce genre de problèmes est la formule des traces relative
introduite par Jacquet [29] pour réprouver le résultat de Waldspurger. Les objectifs de cette thèse sous
la direction de Pierre-Henri Chaudouard incluent le développement de variantes infinitésimales des for-
mules des traces de Jacquet-Guo globale et locale et l’établissement des résultats locaux de comparaison
nécessaires pour une étude plus approfondie de cette conjecture. On espère que certaines méthodes ici
seront également utiles dans d’autres formules des traces relatives.

1. La conjecture de Jacquet-Guo et l’approche de la formule des traces relative

Rappelons brièvement la conjecture de Jacquet-Guo proposée dans [23]. Soient E/F une extension
quadratique de corps de nombres et η le caractère quadratique attaché de A×/F×, où A est l’anneau des
adèles de F . Soient G := GL2n et H := GLn ×GLn son sous-groupe. Tous les groupes considérés sont
définis sur F . Soit π une représentation automorphe cuspidale de G(A) avec un caractère central trivial.
On dit que π est H-distinguée si les deux formes linéaires (appelées “périodes”) sur son espace

PH : φ 7→
∫
H(F )Z(A)\H(A)

φ(h)dh

et

PH,η : φ 7→
∫
H(F )Z(A)\H(A)

φ(h)η(det(h))dh

sont non nulles, où Z est le centre de G. Cette propriété est directement liée à la non-annulation de
certaines valeurs centrales de fontions L grâce au travail de Friedberg-Jacquet [22]. On doit également
considérer une autre paire de groupes. Notons X(E) l’ensemble des classes d’isomorphismes d’algèbres
de quaternions D/F contenant E. Pour tout D ∈ X(E), on note G′ = GLn,D le groupe algébrique défini
sur F dont le groupe de points sur F est GLn(D). Soit H ′ = ResE/FGLn,E son sous-groupe. Soit π′

une représentation automorphe cuspidale de G′(A) avec un caractère central trivial. On dit que π′ est
H ′-distinguée si la forme linéaire sur son espace

PH′ : φ 7→
∫
H′(F )Z(A)\H′(A)

φ(h)dh

est non nulle, où le centre de G′ s’identifie à Z. Une direction de la conjecture de Jacquet-Guo dit
que si π′ est H ′-distinguée et correspond par la correspondance de Jacquet-Langlands à π, alors π est
H-distinguée. On s’attend également à une réciproque au moins pour n impair. Pour n = 1, celles-ci
étaient connues par Waldspurger [50] et réprouvées par Jacquet [29] via la formule des traces relative.

Maintenant, on décrit formellement l’approche par la formule des traces relative suivant Jacquet
[29] à cette conjecture. Soit fG une fonction lisse sur G(A) à support compact. En tant qu’analogue
de la formule des traces d’Arthur-Selberg, la formule des traces relative pour le cas de (G,H) indique
grossièrement qu’il existe deux façons d’écrire l’intégrale (vue comme une distribution)

(1.0.1)

∫
H(F )\H(A)∩G(A)1

∫
H(F )\H(A)∩G(A)1

KfG(x, y)η(det(x))dxdy,

où G(A)1 est le sous-ensemble des éléments dans G(A) dont les déterminants sont de valeur absolue 1
et KfG(x, y) :=

∑
γ∈G(F ) fG(x−1γy). Le côté géométrique devrait être une somme d’intégrales orbitales

relatives tandis que le côté spectral devrait être une expansion de périodes. On pourrait de même
imaginer une autre formule pour le cas de (G′, H ′). Alors la comparaison des périodes sur les différents
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groupes prédite par la conjecture de Jacquet-Guo est réduite à la comparaison d’intégrales orbitales
relatives, pour laquelle on a plus d’outils tels que le lemme fondamental de Guo [23] et le transfert lisse
de Zhang [58].

Cette approche a été adoptée par Feigon-Martin-Whitehouse [21] pour obtenir des résultats partiels.
Cependant, on a négligé la difficulté analytique dans la discussion ci-dessus. C’est-à-dire qu’une ob-
struction de l’approche par la formule des traces relative à la conjecture de Jacquet-Guo est le problème
suivant.

Problème 1.1. L’intégrale double (1.0.1) et ses développements ne sont pas convergents.

Ce problème explique certaines conditions locales restrictives dans les principaux résultats de [21]
basés sur une simple formule des traces relative. Si l’on espère supprimer ces restrictions apparemment
artificielles et obtenir des informations sur toutes les représentations cuspidales, ce problème ne peut être
ignoré. Par conséquent, il est nécessaire d’établir des formules des traces relatives valides et générales
pour les cas (G,H) et (G′, H ′) plutôt que des formules formelles ou simples. Ensuite, on doit comparer
les nouveaux termes apparaissant dans ces formules en dehors des intégrales orbitales relatives ordinaires.

Un tel problème existait également dans la formule des traces d’Arthur-Selberg classique et Arthur
a introduit un processus de troncature dans [3] et [4] pour le résoudre. Dans le cadre relatif, Jacquet-
Lapid-Rogawski nous a fourni le premier exemple de la “troncature mixte” dans [30], dont l’idée grossière
est de définir une troncature compatible avec les différents groupes concernés. Ces travaux et d’autres
donnent de bons exemples pour notre étude du problème 1.1.

On se concentrera sur une variante infinitésimale du problème 1.1 et la comparaison de nouveaux
termes impliqués dans cette thèse. Cela signifie que l’on va travailler sur l’espace tangent d’un espace
symétrique (appelé espace symétrique infinitésimal). Cela serait intéressant pour au moins deux raisons.
D’une part, il est proche du côté géométrique de la formule des traces relative originale et nous suggère
une façon d’aborder le problème original, mais le côté spectral de la formule des traces relative est
remplacé par la transformée de Fourier du côté géométrique où l’analyse harmonique est plus simple.
D’autre part, une variante infinitésimale des formules des traces de Jacquet-Guo est également utile dans
la comparaison de formules des traces relatives entre deux cas ; par exemple, sa version simple a été
utilisée par Zhang [58] pour montrer le transfert lisse.

2. Principaux résultats

2.1. Une variante infinitésimale des formules des traces de Jacquet-Guo. On résout
d’abord une variante infinitésimale du problème 1.1 dans le chapitre 2 et le chapitre 3. C’est le principal
résultat global de cette thèse.

2.1.1. Le cas de (G,H). On remarque que le cadre du chapitre 2 est un peu plus général pour
inclure le cas de [57], mais on se concentrera sur la paire (G,H) définie ci-dessus dans l’introduction.
Notons S l’espace symétrique G/H. La double intégrale (1.0.1) peut être formellement écrite comme
une intégrale seule ∫

H(F )\H(A)∩G(A)1

KfS (x)η(det(x))dx,

où fS(x) :=
∫
H(A)∩G(A)1 fG(xy)dy définit une fonction lisse sur S(A) à support compact et KfS (x) :=∑

γ∈S(F ) fS(x−1γx). Si l’on remplace S par l’espace tangent s ' gln ⊕ gln en l’élément neutre, alors le

problème 1.1 apparâıt comme la divergence de l’intégrale

(2.1.1)

∫
H(F )\H(A)∩G(A)1

kf (x)η(det(x))dx,

où f est une fonction de Bruhat-Schwartz sur s(A) et kf (x) :=
∑
γ∈s(F ) f(x−1γx).

On remplace kf (x) par une expression explicite kTf (x) définie dans §4 du chapitre 2 pour rendre

(2.1.1) absolument convergente, où T ∈ R2n est un paramètre de troncature. Cette définition essentielle
combine des idées de [28] [61] [17] pour la décomposition de H(A) et [40] pour la décomposition de
s(A). Afin de décrire le développement géométrique, on définit une relation d’équivalence sur s(F ) :
deux éléments dans s(F ) sont équivalents si et seulement s’ils se trouvent dans la même fibre du quotient
catégorique s//H. Notons O l’ensemble des classes d’équivalence. Pour tout o ∈ O, on définit de même
kTf,o(x) en remplaçant s(F ) par o. Le principal résultat du chapitre 2 est le théorème suivant qui donne

le développement géométrique de (2.1.1) avec kf (x) remplacé par kTf (x).
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Théorème 2.1 (voir le théorème 4.11 du chapitre 2). Pour tout T appartenant à un cône convenable
dans R2n, ∑

o∈O

∫
H(F )\H(A)∩G(A)1

kTf,o(x)η(det(x))dx

est absolument convergente.

Notons JTo (η, f) l’intégrale (2.1.1) avec kf (x) remplacé par kTf,o(x). On montre que c’est un polynôme-

exponentielle en T (voir le corollaire 5.6 du chapitre 2). Notons Jo(η, f) son terme constant. Dans le

cadre infinitésimal, le développement géométrique de la transformée de Fourier de f (notée f̂) joue le
rôle du côté spectral original (cf. [13]). Alors la variante infinitésimale de la formule des traces de
Jacquet-Guo pour le cas de (G,H) ci-dessous est déduite de la formule sommatoire de Poisson.

Théorème 2.2 (voir le théorème 7.1 du chapitre 2). Pour toute fonction de Bruhat-Schwartz f sur
s(A), on a l’égalité ∑

o∈O
Jo(η, f) =

∑
o∈O

Jo(η, f̂).

De plus, pour la plupart des classes o (c’est-à-dire les classes semi-simples régulières), on peut écrire
Jo(η, f) comme une intégrale orbitale pondérée explicite ; en particulier, pour les classes elliptiques
o, on voit que Jo(η, f) n’est rien d’autre que l’intégrale orbitale ordinaire. On dit qu’un sous-groupe

parabolique semi-standard de G est ω-stable s’il contient ω :=

(
0 1n
1n 0

)
.

Théorème 2.3 (voir le théorème 9.2 du chapitre 2). Soient o ∈ O une classe semi-simple régulière,
P1 un sous-groupe parabolique relativement standard ω-stable de G et X1 ∈ o un élément elliptique relatif
à P1 (défini dans la section 9.2 du chapitre 2). Pour toute fonction de Bruhat-Schwartz f sur s(A), on
a

Jo(η, f) = vol([HX1 ]) ·
∫
HX1

(A)\H(A)

f(x−1X1x)vP1(x)η(det(x))dx,

où HX1
est le centralisateur de X1 dans H, vol([HX1

]) est son volume associé et vP1
(x) est le volume

d’un enveloppe convexe.

Le poids vP1
(x) est exactement la restriction à H(A) du poids d’Arthur dans [3] pour G(A). Il est

remarquable que notre intégrale orbitale pondérée a le même poids que celui de la formule des traces
tordue (voir [39, p. 131]) pour l’espace tordu (GLn ×GLn) o σ, où σ(x, y) := (y, x).

2.1.2. Le cas de (G′, H ′). On étudie encore un cadre plus général dans le chapitre 3 que la paire
(G′, H ′) ci-dessus. En fait, on considère une algèbre centrale simple g′ sur F contenant E et le centralisa-
teur h′ de E dans g′. On définit G′ et H ′ comme les groupes d’éléments inversibles respectivement dans
g′ et h′. Ce cas plus général s’inspire de la conjecture locale de Prasad et Takloo-Bighash [44, Conjecture
1] et est nécessaire pour compléter la réciproque de la conjecture de Jacquet-Guo pour n pair.

Quitte à conjuguer (G′, H ′) par G′(F ), la paire symétrique est réduite à l’un des deux cas ci-dessous
(voir la proposition 3.7 du chapitre 3). Ces deux cas peuvent être traités de la même manière.

Cas I: (G′, H ′) ' (GLn,D,ResE/FGLn
2 ,D⊗FE), où D est une algèbre à division centrale sur F

contenant E, et D′ := CentD(E) est le centralisateur de E dans D.
Cas II: (G′, H ′) ' (GLn,D,ResE/FGLn

2 ,D⊗FE) , où D est une algèbre à division centrale sur F telle
qu’il n’y a pas de plongement E → D en tant que F -algèbres.

Remarquons que (G′, H ′) est identique à (G,H) après le changement de base à une clôture algébrique
de F contenant E. On a des définitions et des résultats similaires pour le cas de (G′, H ′) comme suit.
Notons H ′(A)1 le sous-ensemble des éléments dans H ′(A) dont les normes réduites sont de valeur absolue
1. On note O′ l’ensemble des classes d’équivalence sur s′(F ) définies par le quotient catégorique s′//H ′.
Soient f ′ une fonction de Bruhat-Schwartz sur s′(A) et o ∈ O′. Pour un paramètre de troncature T ∈ Rn
et x ∈ H ′(x), on définit un noyau tronqué kTf ′,o(x) dans §4 du chapitre 3.

Théorème 2.4 (voir le théorème 4.2 du chapitre 3). Pour tout T appartenant à un cône convenable
dans Rn, ∑

o∈O′

∫
H′(F )\H′(A)1

kTf ′,o(x)dx

est absolument convergente.

11



Pour toute o ∈ O′, on note JTo (f ′) l’intégrale correspondante dans la dernière somme. On prouve
que c’est un polynôme en T (voir le corollaire 5.3 du chapitre 3). On note Jo(f ′) son terme constant.

Notons f̂ ′ la transformée de Fourier de f ′. Voici la variante infinitésimale de la formule des traces de
Jacquet-Guo pour le cas de (G′, H ′).

Théorème 2.5 (voir le théorème 7.1 du chapitre 3). Pour toute fonction de Bruhat-Schwartz f ′ sur
s′(A), on a l’égalité ∑

o∈O′
Jo(f ′) =

∑
o∈O′

Jo(f̂ ′).

Comme précédemment, on peut écrire les termes semi-simples réguliers comme des intégrales or-
bitales pondérées explicites avec les mêmes poids que ceux d’Arthur dans [3]. Pour (G′, H ′) = (GLn,D,
ResE/FGLn,E), on obtient les mêmes poids apparaissant dans la formule des traces tordue (voir [39, p.
131]) pour l’espace tordu (ResE/FGLn,E) o σ′, où σ′ est la conjugaison galoisienne non triviale.

Théorème 2.6 (voir le théorème 9.2 du chapitre 3). Soient o ∈ O′ une classe semi-simple régulière,
P ′1 un sous-groupe parabolique standard de H ′ et Y1 ∈ o un élément elliptique par rapport à P ′1 (défini
dans la section 9 du chapitre 3). Pour toute fonction de Bruhat-Schwartz f ′ sur s′(A), on a

Jo(f ′) = vol([H ′Y1
]) ·
∫
H′Y1

(A)\H′(A)

f ′(Ad(x−1)(Y1))vP ′1(x)dx,

où H ′Y1
est le centralisateur de Y1 dans H ′, vol([H ′Y1

]) est le volume associé à H ′Y1
et vP ′1(x) est le volume

d’un envelope convexe.

Effectivement, ce cas est encore plus simple que celui de (G,H) ; par exemple, JTo (f ′) est un polynôme
pur en T au lieu d’un polynôme-exponentielle. Une des raisons de cette simplicité est que le tore central
F -déployé maximal de H ′ est le même que celui de G′. De plus, il existe une bijection entre l’ensemble des
sous-groupes paraboliques semi-standards de H ′ et l’ensemble des sous-groupes paraboliques relativement
standards de G′. Cependant, il y a quelques problèmes de rationalité supplémentaires dans ce cas.

2.2. Quelques résultats locaux pour la comparaison de termes semi-simples réguliers.
Les termes Jo(η, f) and Jo(f ′) ci-dessus associés aux classes semi-simples régulières mais non elliptiques
o ∈ O et o ∈ O′ respectivement, qui sont des intégrales orbitales pondérées globales, sont les premiers
nouveaux termes que l’on doit étudier et comparer pour les applications des formules des traces de
Jacquet-Guo. La principale difficulté pour étudier ces distributions globales par rapport à celles de [60]
ou [61] est que on est confronté à des distributions non invariantes sous la conjugaison de H(A) ou
H ′(A). C’est proche de la situation de la formule des traces d’Arthur-Selberg classique. Alors que la
procédure standard mais assez difficile est de rendre notre formule des traces invariante comme Arthur
l’a fait dans [6] et [7], une autre manière proposée par Labesse dans [37] est de comparer directement
les distributions non invariantes. On suivra cette dernière approche. Les intégrales orbitales pondérées
locales correspondantes sont les principaux objets de §10 du chapitre 3, le chapitre 4 et le chapitre 5.

Soit E/F une extension quadratique de corps locaux non-archimédiens de caractéristique zéro. Soit
η le caractère quadratique de F/NE× attaché à E/F , où NE× désigne la norme de E×. On définit des
paires symétriques comme dans le cas global. Notons srs l’ensemble des éléments semi-simples réguliers
dans s. On note C∞c (s(F )) (resp. C∞c (s′(F ))) l’espace des fonctions localement constantes à support
compact sur s(F ) (resp. s′(F )). Soit M un sous-groupe de Levi ω-stable de G, c’est-à-dire qu’il est un
facteur de Levi d’un sous-groupe parabolique ω-stable. Soit X ∈ (m∩srs)(F ). Pour toute f ∈ C∞c (s(F )),
on définit l’intégrale orbitale pondérée locale

JGM (η,X, f) := |Ds(X)|1/2F

∫
HX(F )\H(F )

f(Ad(x−1)(X))η(det(x))vGM (x)dx,

où |Ds(X)|F est le discriminant de Weyl et vGM (x) est la fonction de poids locale correspondante. De

même, soit M ′ un sous-groupe de Levi de H ′ et Y ∈ (m̃′ ∩ s′rs)(F ), où M̃ ′ est le sous-groupe de Levi de

G′ tel que M̃ ′ ∩H ′ = M ′. Pour toute f ′ ∈ C∞c (s′(F )), on définit l’intégrale orbitale pondérée locale

JH
′

M ′(Y, f
′) := |Ds′(Y )|1/2F

∫
H′Y (F )\H′(F )

f ′(Ad(x−1)(Y ))vH
′

M ′(x)dx,

où |Ds′(Y )|F est le discriminant de Weyl et vH
′

M ′(x) est la fonction de poids locale correspondante.
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Il y a une application injective M ′ 7→M de l’ensemble des sous-groupes de Levi de H ′ dans l’ensemble
des sous-groupes de Levi ω-stables de G. On supposera que G et G′ ont la même dimension n2. Comme
s//H ' An ' s′//H ′, si X ∈ srs(F ) et Y ∈ s′rs(F ) ont la même image dans An, on dit qu’ils ont
des orbites associées. Plus généralement, fixons une paire de sous-groupes de Levi associés M et M ′

respectivement de G et H ′. On a la notion d’orbites M -associées définies par blocs pour X ∈ (m∩srs)(F )

et Y ∈ (m̃′ ∩ s′rs)(F ).
2.2.1. Le lemme fondamental pondéré. On obtient le premier résultat sur la comparaison non

invariante des formules des traces de Jacquet-Guo dans §10 du chapitre 3. Dans la comparaison des côtés
géométriques des formules des traces de Jacquet-Guo, un cas important est appelé le lemme fondamental.
Il dit en gros que en presque toute place non ramifiée, certaines fonctions basiques sur G(F ) et G′(F )
devraient avoir des intégrales orbitales relatives locales associées sur des orbites associées. Guo [23] l’a
prouvé pour les unités d’algèbres sphériques de Hecke à l’aide du lemme fondamental de changement
de base pour les algèbres de Hecke sphériques complètes pour GLn connu par Kottwitz [36, lemme 8.8]
et Arthur-Clozel [10, théorème 4.5 du chapitre 1]. Une version infinitésimale [58, lemme 5.18] a été
utilisée par Zhang pour prouver le transfert lisse des intégrales orbitales ordinaires pour les formules des
traces de Jacquet-Guo en suivant la même philosophie du travail de Waldspurger [52] sur le transfert
endoscopique.

Inspiré de [37, définition III.3.2], on définit dans §10 du chapitre 3 la notion de paires “fortement
associées” de fonctions localement constantes à support compact sur s(F ) et s′(F ). En gros, deux
fonctions sont fortement associées si elles ont des intégrales orbitales pondérées associées sur des orbites
associées. En presque toute place non ramifiée, (G′, H ′) est isomorphe à (GL2n,ResE/FGLn,E) et s′(F ) '
gln(E). Notons OF (resp. OE) l’anneau des entiers de F (resp. E). Soit f0 et f ′0 les fonctions
caractéristiques respectivement de s(OF ) ' (gln⊕gln)(OF ) et s′(OF ) ' gln(OE). Parce que l’on obtient
les mêmes poids pour les cas de Jacquet-Guo que ceux des formules des traces tordues, on peut réduire
la version pondérée de [58, lemme 5.18] ci-dessous au travail de Labesse [37] sur le changement de base
pour GLn. On montre qu’en presque toute place non ramifiée v, f0 et f ′0 sont fortement associées.

Théorème 2.7 (voir le théorème 10.9 du chapitre 3 pour un énoncé précis et général). Soient M et
M ′ une paire de sous-groupes de Levi associés respectivement de G et H ′. On a

(1) si X ∈ (m ∩ srs)(F ) et Y ∈ (m̃′ ∩ s′rs)(F ) ont des orbites M -associées, alors

κ(X)JGM (η,X, f0) = JH
′

M ′(Y, f
′
0),

où κ(X) est un facteur de transfert;

(2) si X =

(
0 A
B 0

)
∈ (m ∩ srs)(F ) satisfait det(AB) /∈ NE×, alors

JGM (η,X, f0) = 0.

2.2.2. Une formule des traces locale infinitésimale. Notre prochain objectif est de prouver le
transfert non invariant des intégrales orbitales pondérées en utilisant le lemme fondamental pondéré suiv-
ant la stratégie de [14] et [15] sur le changement de base stable. Pour y parvenir, on doit préparer quelques
résultats sur l’analyse harmonique locale comme dans [51]. On prouve une variante infinitésimale des
formules des traces locales invariantes pour le cas de Jacquet-Guo dans le chapitre 4 suivant [51] et [8].

On se concentre ici sur le cas de (G,H) pour l’illustration. On définit l’intégrale orbitale pondérée
locale (H, η)-invariante IGM (η,X, f) par le processus standard d’Arthur à partir de l’intégrale orbitale
pondérée locale non invariante ci-dessus JGM (η,X, f). Pour f, f ′ ∈ C∞c (s(F )), on définit (voir §3.2 du
chapitre 4 pour les notations)

IG(η, f, f ′) :=
∑

M∈LG,ω(M0)

|WMn
0 ||WGLn

0 |−1(−1)dim(AM/AG)
∑

c∈Tell(m∩s)

|W (MH , c)|−1

∫
creg(F )

IGM (η,X, f̂)IGG (η,X, f ′)dX.

Le principal résultat du chapitre 4 est la formule des traces locale invariante suivante.

Théorème 2.8 (voir le théorème 9.1 du chapitre 4). On a l’égalité

IG(η, f, f ′) = IG(η, f ′, f).

Elle est déduite d’une formule des traces locale non invariante (voir le théorème 5.3 du chapitre
4), qui est essentiellement une conséquence de la formule de Plancherel combinée avec un processus de
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troncature. Certains autres résultats locaux, y compris la finitude de Howe pour les intégrales orbitales
pondérées et la représentabilité de la transformée de Fourier des intégrales orbitales pondérées, sont
obtenus lors de la démonstration.

Proposition 2.9 (voir le corollaire 6.6 du chapitre 4). Soient r un sous-groupe compact ouvert de
s(F ), M un sous-groupe de Levi ω-stable de G et σ ⊆ (m ∩ srs)(F ). Notons C∞c (s(F )/r) le sous-espace
de C∞c (s(F )) constitué par les fonctions invariantes par translation de r. Supposons qu’il existe un sous-
ensemble compact σ0 ⊆ (m ∩ s)(F ) tel que σ ⊆ Ad((M ∩H)(F ))(σ0). Alors il existe un sous-ensemble
fini {Xi : i ∈ I} ⊆ σ et un sous-ensemble fini {fi : i ∈ I} ⊆ C∞c (s(F )/r) tels que pour tout X ∈ σ et
toute f ∈ C∞c (s(F )/r), on a l’égalité

JGM (η,X, f) =
∑
i∈I

JGM (η,Xi, f)JGM (η,X, fi).

Proposition 2.10 (voir la proposition 7.2 du chapitre 4). Soient M un sous-groupe de Levi ω-stable

de G et X ∈ (m ∩ srs)(F ). Alors il existe une fonction localement constante ĵGM (η,X, ·) sur srs(F ) telle
que

∀f ∈ C∞c (s(F )), JGM (η,X, f̂) =

∫
s(F )

f(Y )ĵGM (η,X, Y )|Ds(Y )|−1/2
F dY.

On obtient également une propriété d’annulation à “l’infini” analogue à [14, proposition 2.2].

Proposition 2.11 (voir la proposition 10.1 du chapitre 4). Soit M 6= G un sous-groupe de Levi
ω-stable de G. Soient X ∈ (m ∩ srs)(F ) et Y ∈ srs(F ). Alors il existe N ∈ N tel que si λ ∈ F× satisfait
vF (λ) < −N , on a

îGM (η, λX, Y ) = 0,

où îGM (η,X, ·) est l’analogue (H, η)-invariant de ĵGM (η,X, ·).

Ce sont des résultats d’intérêt indépendant. Des analogues de tous les résultats ci-dessus sont obtenus
pour le cas de (G′, H ′).

2.2.3. Certaines identités entre transformées de Fourier des intégrales orbitales pondérées.
Comme mentionné ci-dessus, la prochaine étape de notre recherche est de comparer les termes semi-
simples réguliers dans les côtés géométriques des formules des traces de Jacquet-Guo comme dans [14]
et [15]. Cela devrait servir d’exemple de comparaison non invariante dans le contexte relatif. On ob-
tient des relations entre transformées de Fourier des intégrales orbitales pondérées dans le chapitre 5 qui
généralisent certains principaux résultats de [58] et sont des analogues pour les formules des traces de
Jacquet-Guo de [14].

Soient M un sous-groupe de Levi ω-stable de G et X ∈ (m ∩ srs)(F ). Notons ĴGM (η,X, ·) (resp.

ÎGM (η,X, ·)) la transformée de Fourier de la distribution JGM (η,X, ·) (resp. IGM (η,X, ·)). Soit ĵGM (η,X, ·)
(resp. îGM (η,X, ·)) la fonction localement constante sur srs(F ) représentant ĴGM (η,X, ·) (resp. ÎGM (η,X, ·)).
Pour un sous-groupe de Levi M ′ de H ′ et Y ∈ (m̃′∩s′rs)(F ), on obtient de même les fonctions localement

constantes ĵH
′

M ′(Y, ·) et îH
′

M ′(Y, ·) sur s′rs(F ).

Les fonctions ĵGM (η,X, ·) sont décomposées comme leurs analogues invariants îGM (η,X, ·) et les fonc-

tions de poids vGM . La décomposition des fonctions ĵH
′

M ′(Y, ·) est similaire. Afin d’obtenir des relations

entre ĵGM (η,X, ·) et ĵH
′

M ′(Y, ·), qui fait partie de la comparaison non invariante, on se concentrera sur les

relations entre îGM (η,X, ·) et îH
′

M ′(Y, ·) dans le chapitre 5.
Fixons une paire de sous-groupes de Levi associés M ′ et M respectivement de H ′ et G. Pour

X =

(
0 A
B 0

)
∈ srs(F ), on note η(X) := η(det(AB)). Notre principal résultat dans le chapitre 5 est le

suivant.

Théorème 2.12 (voir le corollaire 5.6 et la proposition 5.9 du chapitre 5). 1) Supposons que X ∈
(m ∩ srs)(F ) et Y ∈ (m̃′ ∩ s′rs)(F ) ont des orbites M -associées. Supposons que U ∈ srs(F ) et V ∈ s′rs(F )
ont des orbites associées. Alors on a l’égalité

γψ(h(F ))−1κ(X)κ(U )̂iGM (η,X,U) = γψ(h′(F ))−1îH
′

M ′(Y, V ),

où γψ(h(F )) et γψ(h′(F )) sont des constantes de Weil (voir la section 2.2 du chapitre 5).
2) Soient X ∈ (m ∩ srs)(F ) et U ∈ srs(F ). Si η(X) 6= η(U), alors

îGM (η,X,U) = 0.
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Comme dans [58], on utilise la méthode globale de Waldspurger sur le transfert endoscopique
[52] pour montrer 1) et une méthode locale pour montrer 2). Pour montrer 1), on définit une no-
tion d’intégrales orbitales pondérées associées (voir la définition 5.2 du chapitre 5) et prouve que cette
propriété commute sous certaines restrictions avec la transformée de Fourier (voir le théorème 5.3 du
chapitre 5) . Sa preuve peut être considérée comme une application de presque tous les résultats des

chapitres précédents. Ensuite, on peut extraire les relations entre îGM (η,X, ·) et îH
′

M ′(Y, ·) à l’aide du
lemme de Labesse [37, lemme 1.7.1]. Ces étapes sont proches de celles de [14]. Cependant, alors que
le lemme fondamental pondéré pour les formes intérieures est tautologique dans loc. cit., la condition
d’annulation du lemme fondamental pondéré est ici plus subtile. On utilise la cohomologie galoisienne
abélianisée (voir [38]) pour résoudre quelques difficultés techniques (voir §4.3-4.4 et la preuve de la
proposition 11.2 du chapitre 5).
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CHAPTER 1

Introduction

This PhD project is inspired by a conjecture of Guo-Jacquet [23] which generalises Waldspurger’s
well-known theorem [50] relating toric periods to central values of automorphic L-functions for GL2 to
higher ranks. It is one of the first interesting examples in the relative Langlands programme initiated by
Jacquet and his collaborators and systematically proposed by Sakellaridis-Venkatesh [46]. An effective
tool for attacking such kind of problems is the relative trace formula which was first introduced by Jacquet
[29] to reprove Waldspurger’s result. The aims of this thesis under the supervision of Pierre-Henri
Chaudouard include developing infinitesimal variants of global and local Guo-Jacquet trace formulae
and establishing necessary local results of comparison for further study of this conjecture. We expect
that some methods here would also be useful in other relative trace formulae.

1. Guo-Jacquet conjecture and the relative trace formula approach

Let us briefly recall the Guo-Jacquet conjecture proposed in [23]. Let E/F be a quadratic extension
of number fields and η the quadratic character of A×/F× attached to it, where A denotes the ring of
adèles of F . Let G := GL2n and let H := GLn × GLn be its subgroup. All the groups considered are
defined over F . Let π be a cuspidal automorphic representation of G(A) with trivial central character.
We say that π is H-distinguished if the two linear forms (called “periods”) on it

PH : φ 7→
∫
H(F )Z(A)\H(A)

φ(h)dh

and

PH,η : φ 7→
∫
H(F )Z(A)\H(A)

φ(h)η(det(h))dh

are both non-zero, where Z denotes the centre of G. This property is directly related to the non-
vanishing of some central L-values by Friedberg-Jacquet’s work [22]. We also need to consider another
pair of groups. Denote by X(E) the set of isomorphic classes of quaternion algebras D/F in which E
embeds. For any D ∈ X(E), let G′ = GLn,D be the algebraic group defined over F whose F -points are
GLn(D) and let H ′ = ResE/FGLn,E be its subgroup. Let π′ be a cuspidal automorphic representation
of G′(A) with trivial central character. We say that π′ is H ′-distinguished if the linear form on it

PH′ : φ 7→
∫
H′(F )Z(A)\H′(A)

φ(h)dh

is not zero, where we identify the centre of G′ with Z. One direction of the Guo-Jacquet conjecture says
that if π′ is H ′-distinguished and π is deduced from π′ by the Jacquet-Langlands correspondence, then
π is H-distinguished. One may also expect a converse at least when n is odd. For n = 1, these were
known by Waldspurger [50] and reproved by Jacquet [29] via relative trace formulae.

Now we formally describe the relative trace formula approach following Jacquet [29] to this conjec-
ture. Let fG be a smooth function on G(A) with compact support. As an analogue of Arthur-Selberg’s
trace formula, the relative trace formula for the case of (G,H) roughly says that there are two ways to
write the integral (viewed as a distribution)

(1.0.1)

∫
H(F )\H(A)∩G(A)1

∫
H(F )\H(A)∩G(A)1

KfG(x, y)η(det(x))dxdy,

where G(A)1 denotes the subset of elements in G(A) whose determinants are of absolute value 1 and
KfG(x, y) :=

∑
γ∈G(F ) fG(x−1γy). The geometric side is expected to be a sum of relative orbital integrals

while the spectral side should be an expansion of periods. Similarly, one could imagine another formula
for the case of (G′, H ′). Then the comparison of periods of different pairs of groups predicted by the
Guo-Jacquet conjecture is reduced to the comparison of relative orbital integrals, for which we have more
tools such as Guo’s fundamental lemma [23] and Zhang’s smooth transfer [58].
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This approach has been adopted by Feigon-Martin-Whitehouse [21] to obtain some partial results.
However, we have neglected analytic difficulty in the above discussion. That is to say, an obstruction of
the relative trace formula approach to Guo-Jacquet conjecture is the following problem.

Problem 1.1. The double integral (1.0.1) is not convergent and neither are two ways of its expan-
sions.

The above problem accounts for some restrictive local conditions in the main results of [21] based
on a simple relative trace formula. If one hopes to remove these seemingly artificial restriction and
obtain information about all cuspidal representations, this problem can not be ignored. Therefore, it is
necessary to establish valid and general relative trace formulae for the cases of (G,H) and (G′, H ′) rather
than formal or simple ones. Then we are supposed to compare new terms appearing in these formulae
apart from ordinary relative orbital integrals.

Such a problem also existed in the classical Arthur-Selberg trace formula and Arthur introduced a
truncation process in [3] and [4] to solve it. In the relative setting, Jacquet-Lapid-Rogawski povided
us with the first example of the so-called “mixed truncation” in [30], whose rough idea is defining a
truncation compatible with different groups concerned. These work and others set good examples for
our study of Problem 1.1.

We shall focus on an infinitesimal variant of Problem 1.1 and the comparison of new terms involved in
this thesis. It means that we shall work on the tangent space of a symmetric space (called an infinitesimal
symmetric space). This would be of interest for at least two reasons. For one thing, it is close to the
geometric side of the original relative trace formula and suggests us a way to tackle the original problem,
but the spectral side of the relative trace formula is replaced by the Fourier transform of the geometric
side where the harmonic analysis is simpler. For another, an infinitesimal variant of Guo-Jacquet trace
formulae is also useful in the comparison of relative trace formulae between two cases; for example, its
simple version has been used by Zhang [58] to prove the smooth transfer.

2. Main results

2.1. An infinitesimal variant of Guo-Jacquet trace formulae. We first solve an infinitesimal
variant of Problem 1.1 in Chapter 2 and Chapter 3. It is the main global result in this thesis.

2.1.1. The case of (G,H). We remark that the setting in Chapter 2 is a bit more general to include
the case in [57], but we shall focus on the pair (G,H) defined above in the introduction. Denote by S
the symmetric space G/H. Notice that the double integral (1.0.1) can be formally written as a single
integral ∫

H(F )\H(A)∩G(A)1

KfS (x)η(det(x))dx,

where fS(x) :=
∫
H(A)∩G(A)1 fG(xy)dy defines a smooth function on S(A) with compact support and

KfS (x) :=
∑
γ∈S(F ) fS(x−1γx). If one replaces S with the tangent space s ' gln ⊕ gln at the neutral

element, then Problem 1.1 appears as the divergence of the integral

(2.1.1)

∫
H(F )\H(A)∩G(A)1

kf (x)η(det(x))dx,

where f is a Bruhat-Schwartz function on s(A) and kf (x) :=
∑
γ∈s(F ) f(x−1γx).

We replace kf (x) with some explicit kTf (x) defined in §4 in Chapter 2 to make (2.1.1) absolutely con-

vergent, where T ∈ R2n is a truncation parameter. This key definition combines ideas from [28][61][17]
for the decomposition of H(A) and [40] for the decomposition of s(A). To describe the geometric ex-
pansion, we define a relation of equivalence on s(F ): two element in s(F ) are equivalent if and only if
they lie in the same fibre of the categorical quotient s//H. Denote by O the set of classes of equivalence.
For all o ∈ O, we define kTf,o(x) similarly by replacing s(F ) with o. The main result of Chapter 2 is the

following theorem which gives the geometric expansion of (2.1.1) with kf (x) replaced by kTf (x).

Theorem 2.1 (see Theorem 4.11 in Chapter 2). For T in a suitable cone in R2n,∑
o∈O

∫
H(F )\H(A)∩G(A)1

kTf,o(x)η(det(x))dx

is absolutely convergent.
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Denote by JTo (η, f) the integral (2.1.1) with kf (x) replaced by kTf,o(x). We prove that it is an

exponential polynomial in T (see Corollary 5.6 in Chapter 2). Denote by Jo(η, f) its constant term. In

the infinitesimal setting, the geometric expansion of the Fourier transform of f (denoted by f̂) plays the
role of the original spectral side (cf. [13]). Then the infinitesimal variant of Guo-Jacquet trace formula
for the case of (G,H) below is deduced from the Poisson summation formula.

Theorem 2.2 (see Theorem 7.1 in Chapter 2). For all Bruhat-Schwartz function f on s(A), we have
the equality ∑

o∈O
Jo(η, f) =

∑
o∈O

Jo(η, f̂).

Additionally, for most (namely regular semi-simple) o, we can write Jo(η, f) as an explicit weighted
orbital integral; in particular, for elliptic o, we see that Jo(η, f) is nothing but the ordinary orbital

integral. We say a semi-standard parabolic subgroup of G is ω-stable if it contains ω :=

(
0 1n
1n 0

)
.

Theorem 2.3 (see Theorem 9.2 in Chapter 2). Let o ∈ O be a regular semi-simple class, P1 an
ω-stable relatively standard parabolic subgroup of G and X1 ∈ o an elliptic element relative to P1 (defined
in Section 9.2 in Chapter 2). For a Bruhat-Schwartz function f on s(A), we have

Jo(η, f) = vol([HX1
]) ·
∫
HX1

(A)\H(A)

f(x−1X1x)vP1
(x)η(det(x))dx,

where HX1 denotes the centraliser of X1 in H, vol([HX1 ]) is its associated volume and vP1(x) is the
volume of some convex hull.

The weight vP1
(x) is exactly the restriction to H(A) of Arthur’s weight in [3] for G(A). It is

interesting that our weighted orbital integral shares the same weight as in the twisted trace formula (see
[39, p. 131]) for the twisted space (GLn ×GLn) o σ, where σ(x, y) := (y, x).

2.1.2. The case of (G′, H ′). Again we study a more general setting in Chapter 3 than the pair
(G′, H ′) above. Actually we deal with a central simple algebra g′ over F containing E and the centraliser
h′ of E in g′. We define G′ and H ′ as the groups of invertible elements in g′ and h′ respectively. This more
general case is suggested by the related local conjecture of Prasad and Takloo-Bighash [44, Conjecture
1] and is necessary for completing the converse direction of Guo-Jacquet conjecture for n even.

Up to conjugation by G′(F ), the symmetric pair (G′, H ′) is reduced to one of the two cases below
(see Proposition 3.7 in Chapter 3). These two cases can be treated similarly.

Case I: (G′, H ′) ' (GLn,D,ResE/FGLn,D′), where D is a central division algebra over F containing
E, and D′ := CentD(E) is the centraliser of E in D.

Case II: (G′, H ′) ' (GLn,D,ResE/FGLn
2 ,D⊗FE), where D is a central division algebra over F such

that there is no embedding E → D as F -algebras.
Notice that (G′, H ′) is the same as (G,H) after the base change to an algebraic closure of F containing

E. We have similar construction and results for the case of (G′, H ′) as follows. Denote by H ′(A)1 the
subset of elements in H ′(A) whose reduced norms are of absolute value 1. Denote by O′ the set of classes
of equivalence on s′(F ) defined by the categorical quotient s′//H ′. Let f ′ be a Bruhat-Schwartz function
on s′(A) and o ∈ O′. For a truncation parameter T ∈ Rn and x ∈ H ′(x), we define some truncated
kernel kTf ′,o(x) in §4 in Chapter 3.

Theorem 2.4 (see Theorem 4.2 in Chapter 3). For T in a suitable cone in Rn,∑
o∈O′

∫
H′(F )\H′(A)1

kTf ′,o(x)dx

is absolutely convergent.

For o ∈ O′, denote by JTo (f ′) the summand of the last sum. We prove that it is a polynomial in T

(see Corollary 5.3 in Chapter 3). Denote by Jo(f ′) its constant term. Denote by f̂ ′ the Fourier transform
of f ′. Here is the infinitesimal variant of Guo-Jacquet trace formula for the case of (G′, H ′).

Theorem 2.5 (see Theorem 7.1 in Chapter 3). For all Bruhat-Schwartz function f ′ on s′(A), we
have the equality ∑

o∈O′
Jo(f ′) =

∑
o∈O′

Jo(f̂ ′).
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As before, we can write the regular semi-simple terms as explicit weighted orbital integrals with the
same weights as Arthur’s in [3]. For (G′, H ′) = (GLn,D,ResE/FGLn,E), we obtain the same weights
appearing in the twisted trace formula (see [39, p. 131]) for the twisted space (ResE/FGLn,E) o σ′,
where σ′ is the nontrivial Galois conjugation.

Theorem 2.6 (see Theorem 9.2 in Chapter 3). Let o ∈ O′ be a regular semi-simple class, P ′1 a
standard parabolic subgroup of H ′ and Y1 ∈ o an elliptic element with respect to P ′1 (defined in Section 9
in Chapter 3). For all Bruhat-Schwartz function f ′ on s′(A), we have

Jo(f ′) = vol([H ′Y1
]) ·
∫
H′Y1

(A)\H′(A)

f ′(Ad(x−1)(Y1))vP ′1(x)dx,

where H ′Y1
denotes the centraliser of Y1 in H ′, vol([H ′Y1

]) is the volume associated to H ′Y1
and vP ′1(x) is

the volume of some convex hull.

In fact, this case is even simpler than that of (G,H) in some sense; for example, JTo (f ′) is a pure
polynomial in T instead of an exponential polynomial. One reason for the simplicity is that the maximal
F -split torus in the centre of H ′ is the same as that of G′. Moreover, there is a bijection between the
set of semi-standard parabolic subgroups of H ′ and the set of so-called relatively standard parabolic
subgroups of G′. However, there are some additional rationality issues in this case.

2.2. Some local results for comparison of regular semi-simple terms. The terms Jo(η, f)
and Jo(f ′) above associated to regular semi-simple but not elliptic classes o ∈ O and o ∈ O′ respectively,
which are global weighted orbital integrals, are the first new terms that we need to study and compare
for the application of Guo-Jacquet trace formulae. The main difficulty to study these global distributions
compared to those in [60] or [61] is that we are facing noninvariant distributions under the conjugation
of H(A) or H ′(A). This is close to the situation of the classical Arthur-Selberg trace formula. While the
standard but quite difficult procedure is to make our trace formula invariant as Arthur did in [6] and [7],
a different way suggested by Labesse in [37] is to compare directly noninvariant distributions. We shall
follow the latter approach. Their corresponding local weighted orbital integrals are the main objects in
§10 in Chapter 3, Chapter 4 and Chapter 5.

Let E/F be a quadratic extension of non-archimedean local fields of characteristic zero. Let η be
the quadratic character of F/NE× attached to E/F , where NE× denotes the norm of E×. We define
symmetric pairs as in the global case. Denote by srs the set of regular semi-simple elements in s. Denote
by C∞c (s(F )) (resp. C∞c (s′(F ))) the space of locally constant and compactly supported functions on s(F )
(resp. s′(F )). Let M be an ω-stable Levi subgroup of G, i.e., it is a Levi factor of some ω-stable parabolic
subgroup. Let X ∈ (m ∩ srs)(F ). For f ∈ C∞c (s(F )), we define the local weighted orbital integral

JGM (η,X, f) := |Ds(X)|1/2F

∫
HX(F )\H(F )

f(Ad(x−1)(X))η(det(x))vGM (x)dx,

where |Ds(X)|F is the Weyl discriminant and vGM (x) is the corresponding local weight function. Similarly,

let M ′ be a Levi subgroup of H ′ and Y ∈ (m̃′ ∩ s′rs)(F ), where M̃ ′ is the Levi subgroup of G′ such that

M̃ ′ ∩H ′ = M ′. For f ′ ∈ C∞c (s′(F )), we define the local weighted orbital integral

JH
′

M ′(Y, f
′) := |Ds′(Y )|1/2F

∫
H′Y (F )\H′(F )

f ′(Ad(x−1)(Y ))vH
′

M ′(x)dx,

where |Ds′(Y )|F is the Weyl discriminant and vH
′

M ′(x) is the corresponding local weight function.
There is an injection M ′ 7→ M from the set of Levi subgroups of H ′ into the set of ω-stable Levi

subgroups of G. We shall suppose that G and G′ have the same dimension n2. Since s//H ' An '
s′//H ′, if X ∈ srs(F ) and Y ∈ s′rs(F ) have the same image in An, we say that they have matching orbits.
More generally, fix a pair of matching Levi subgroups M and M ′ of G and H ′ respectively. We have the

notion of M -matching orbits defined by blocks for X ∈ (m ∩ srs)(F ) and Y ∈ (m̃′ ∩ s′rs)(F ).
2.2.1. The weighted fundamental lemma. We provide the first evidence of noninvariant com-

parison of Guo-Jacquet trace formulae in §10 in Chapter 3. In the comparison of geometric sides of
Guo-Jacquet trace formulae, an important case is the so-called fundamental lemma. It roughly says that
at almost all unramified places, some basic functions on G(F ) and G′(F ) should have associated local
relative orbital integrals on matching orbits. Guo [23] proved it for the units of spherical Hecke algebras
with the help of the base change fundamental lemma for the full spherical Hecke algebras for GLn known
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by Kottwitz [36, Lemma 8.8] and Arthur-Clozel [10, Theorem 4.5 in Chapter 1]. An infinitesimal ver-
sion [58, Lemma 5.18] was used by Zhang to prove the smooth transfer of ordinary orbital integrals for
Guo-Jacquet trace formulae following the same philosophy of Waldspurger’s work [52] on the endoscopic
transfer.

Inspired by [37, Definition III.3.2], we define in §10 in Chapter 3 the notion of “strongly associated”
pairs of locally constant and compactly supported functions on s(F ) and s′(F ). Roughly speaking, two
functions are strongly associated if they have associated weighted orbital integrals on matching orbits.
For almost all unramified places, (G′, H ′) is isomorphic to (GL2n,ResE/FGLn,E) and s′(F ) ' gln(E).
Denote by OF (resp. OE) the ring of integers in F (resp. E). Let f0 and f ′0 be the characteristc functions
on s(OF ) ' (gln ⊕ gln)(OF ) and s′(OF ) ' gln(OE) respectively. Because we get the same weights for
the cases of Guo-Jacquet as those in twisted trace formulae, we are able to reduce the following weighted
version of [58, Lemma 5.18] to Labesse’s work [37] on the base change for GLn. We show that for almost
all unramified places v, f0 and f ′0 are strongly associated.

Theorem 2.7 (see Theorem 10.9 in Chapter 3 for a precise and general statement). Let M and M ′

be a pair of matching Levi subgroups of G and H ′ respectively. We have

(1) if X ∈ (m ∩ srs)(F ) and Y ∈ (m̃′ ∩ s′rs)(F ) have M -matching orbits, then

κ(X)JGM (η,X, f0) = JH
′

M ′(Y, f
′
0),

where κ(X) is a transfer factor;

(2) if X =

(
0 A
B 0

)
∈ (m ∩ srs)(F ) satisfies det(AB) /∈ NE×, then

JGM (η,X, f0) = 0.

2.2.2. An infinitesimal local trace formula. Our next goal is to prove the noninvariant transfer
of weighted orbital integrals using the weighted fundamental lemma following the strategy of [14] and
[15] on the stable base change. To achieve this, we need to prepare some results of local harmonic
analysis as in [51]. We prove an infinitesimal variant of invariant local trace formulae for the case of
Guo-Jacquet in Chapter 4 following [51] and [8].

We focus on the case of (G,H) here for illustration. We define the (H, η)-invariant local weighted
orbital integral IGM (η,X, f) by Arthur’s standard process from the above noninvariant local weighted
orbital integral JGM (η,X, f). For f, f ′ ∈ C∞c (s(F )), we define (see §3.2 in Chapter 4 for notations)

IG(η, f, f ′) :=
∑

M∈LG,ω(M0)

|WMn
0 ||WGLn

0 |−1(−1)dim(AM/AG)
∑

c∈Tell(m∩s)

|W (MH , c)|−1

∫
creg(F )

IGM (η,X, f̂)IGG (η,X, f ′)dX.

The main result in Chapter 4 is the following invariant local trace formula.

Theorem 2.8 (see Theorem 9.1 in Chapter 4). We have the equality

IG(η, f, f ′) = IG(η, f ′, f).

It is deduced from a noninvariant local trace formula (see Theorem 5.3 in Chapter 4), which is
essentially a consequence of the Plancherel formula combined with a truncation process. Some other
local results including Howe’s finiteness for weighted orbital integrals and representability of the Fourier
transform of weighted orbital integrals are given during the proof.

Proposition 2.9 (see Corollary 6.6 in Chapter 4). Let r be an open compact subgroup of s(F ), M be
an ω-stable Levi subgroup of G and σ ⊆ (m ∩ srs)(F ). Denote by C∞c (s(F )/r) the subspace of C∞c (s(F ))
consisting of the functions invariant by translation of r. Suppose that there exists a compact subset
σ0 ⊆ (m ∩ s)(F ) such that σ ⊆ Ad((M ∩H)(F ))(σ0). Then there exists a finite subset {Xi : i ∈ I} ⊆ σ
and a finite subset {fi : i ∈ I} ⊆ C∞c (s(F )/r) such that for all X ∈ σ and all f ∈ C∞c (s(F )/r), we have
the equality

JGM (η,X, f) =
∑
i∈I

JGM (η,Xi, f)JGM (η,X, fi).

Proposition 2.10 (see Proposition 7.2 in Chapter 4). Let M be an ω-stable Levi subgroup of G and

X ∈ (m ∩ srs)(F ). Then there exists a locally constant function ĵGM (η,X, ·) on srs(F ) such that

∀f ∈ C∞c (s(F )), JGM (η,X, f̂) =

∫
s(F )

f(Y )ĵGM (η,X, Y )|Ds(Y )|−1/2
F dY.
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We also obtain a vanishing property at “infinity” analogous to [14, Proposition 2.2].

Proposition 2.11 (see Proposition 10.1 in Chapter 4). Let M 6= G be an ω-stable Levi subgroup
of G. Let X ∈ (m ∩ srs)(F ) and Y ∈ srs(F ). Then there exists N ∈ N such that if λ ∈ F× satisfies
vF (λ) < −N , we have

îGM (η, λX, Y ) = 0,

where îGM (η,X, ·) is the (H, η)-invariant analogue of ĵGM (η,X, ·).

These results are of independent interest. Analogues of all the results above are obtained for the
case of (G′, H ′).

2.2.3. Certain identities between Fourier transforms of weighted orbital integrals. As
mentioned above, the next step of our research is to compare regular semi-simple terms in the geometric
sides of Guo-Jaquect trace formulae as in [14] and [15]. This should serve as an example of noninvariant
comparison in the relative context. We obtain some relations between Fourier transforms of weighted
orbital integrals in Chapter 5 which generalise some of the main results in [58] and are analogues for
Guo-Jacquet trace formulae of [14].

Let M be an ω-stable Levi subgroup of G and X ∈ (m ∩ srs)(F ). Denote by ĴGM (η,X, ·) (resp.

ÎGM (η,X, ·)) the Fourier transform of the distribution JGM (η,X, ·) (resp. IGM (η,X, ·)). Let ĵGM (η,X, ·)
(resp. îGM (η,X, ·)) be the locally constant function on srs(F ) representing ĴGM (η,X, ·) (resp. ÎGM (η,X, ·)).
For a Levi subgroup M ′ of H ′ and Y ∈ (m̃′ ∩ s′rs)(F ), we similarly obtain locally constant functions

ĵH
′

M ′(Y, ·) and îH
′

M ′(Y, ·) on s′rs(F ).

The functions ĵGM (η,X, ·) is decomposed as their invariant analogues îGM (η,X, ·) and weight functions

vGM . The decomposition for the functions ĵH
′

M ′(Y, ·) is similar. In order to obtain relations between

ĵGM (η,X, ·) and ĵH
′

M ′(Y, ·), which is part of the noninvariant comparison, we shall focus on the relations

between îGM (η,X, ·) and îH
′

M ′(Y, ·) in Chapter 5.

Fix a pair of matching Levi subgroups M ′ and M of H ′ and G respectively. For X =

(
0 A
B 0

)
∈

srs(F ), we denote η(X) := η(det(AB)). Our main result in Chapter 5 is as follows.

Theorem 2.12 (see Corollary 5.6 and Proposition 5.9 in Chapter 5). 1) Let X ∈ (m ∩ srs)(F ) and

Y ∈ (m̃′ ∩ s′rs)(F ) have M -matching orbits. Let U ∈ srs(F ) and V ∈ s′rs(F ) have matching orbits. Then
we have the equality

γψ(h(F ))−1κ(X)κ(U )̂iGM (η,X,U) = γψ(h′(F ))−1îH
′

M ′(Y, V ),

where γψ(h(F )) and γψ(h′(F )) are Weil constants (see Section 2.2 in Chapter 5).
2) Let X ∈ (m ∩ srs)(F ) and U ∈ srs(F ). If η(X) 6= η(U), then

îGM (η,X,U) = 0.

As in [58], we use Waldspurger’s global method on the endoscopic transfer [52] to show 1) and a
local method to show 2). To show 1), we define a notion of matching weighted orbital integrals (see
Definition 5.2 in Chapter 5) and prove that this property commutes with Fourier transform under some
restriction (see Theorem 5.3 in Chapter 5). Its proof can be viewed as an application of almost all

results in previous chapters. Then we may extract the relations between îGM (η,X, ·) and îH
′

M ′(Y, ·) with
the help of Labesse’s lemma [37, Lemma 1.7.1]. These steps are close to those in [14]. However, while
the weighted fundamental lemma for inner forms is tautological in loc. cit., the vanishing condition of
the weighted fundamental lemma here is more subtle. We use abelian Galois cohomology (see [38]) to
deal with some technical difficulties (see §4.3-4.4 and the proof of Proposition 11.2 in Chapter 5).
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CHAPTER 2

An infinitesimal variant of Guo-Jacquet trace formula: the case
of (GL2n,D, GLn,D ×GLn,D)

We establish an infinitesimal variant of Guo-Jacquet trace formula for the case of (GL2n,D, GLn,D×
GLn,D). It is a kind of Poisson summation formula obtained by an analogue of Arthur’s truncation
process. It consists in the equality of the sums of two types of distributions which are non-equivariant in
general: one type is associated to rational points in the categorical quotient, while the other type is the
Fourier transform of the first type. For regular semi-simple points in the categorical quotient, we obtain
weighted orbital integrals.

1. Introduction

The Guo-Jacquet conjecture proposed in [23] is a possible generalisation in higher dimensions of
Waldspurger’s well-known theorem on central values of automorphic L-functions for GL2. We briefly
recall it as follows. Let E/F be a quadratic extension of number fields and η the quadratic character of
A×/F× attached to it, where A denotes the ring of adèles of F . Consider the group G = GL2n and its
subgroup H = GLn×GLn defined over F . Let π be a cuspidal automorphic representation of G(A) with
trivial central character. We say that π is H-distinguished if the two linear forms (called “periods”) on
it

PH : φ 7→
∫
H(F )Z(A)\H(A)

φ(h)dh

and

PH,η : φ 7→
∫
H(F )Z(A)\H(A)

φ(h)η(det(h))dh

are both non-zero, where Z denotes the centre of G. This property is directly connected with the non-
vanishing of some central L-values (see Friedberg-Jacquet’s work [22]). We also need to deal with another
pair of groups. Let X(E) denote the set of isomorphic classes of quaternion algebras D/F in which E
embeds. For any D ∈ X(E), let GD = GLn,D be the algebraic group defined over F whose F -points are
GLn(D) and HD = ResE/FGLn,E be its subgroup. Let πD be a cuspidal automorphic representation of
GD(A) with trivial central character. We say that πD is HD-distinguished if the linear form on it

PHD : φ 7→
∫
HD(F )Z(A)\HD(A)

φ(h)dh,

is not zero, where we identify the centre of GD with Z. One part of the Guo-Jacquet conjecture says that
if πD is HD-distinguished and π is deduced from πD by the Jacquet-Langlands correspondence, then π
is H-distinguished. We can also expect a converse at least when n is odd. For n = 1, these were known
by Waldspurger [50] and reproved by Jacquet [29].

Now we formally describe the approach of relative trace formulae following Jacquet [29]. This was
adopted by Feigon-Martin-Whitehouse [21] to obtain some partial results. Let fG be a smooth function
on G(A) with compact support. As an analogue of Arthur-Selberg trace formula, the relative trace
formula for the case (G,H) roughly says that there are two ways to write the integral (viewed as a
distribution) ∫

H(F )\H(A)∩G(A)1

∫
H(F )\H(A)∩G(A)1

KfG(x, y)η(det(x))dxdy,

where G(A)1 denotes the elements in G(A) with absolute-value-1 determinant and KfG(x, y) =
∑
γ∈G(F )

fG(x−1γy). The geometric side is expected to be a sum of relative (weighted) orbital integrals while
the spectral side should be an expansion of periods. Similarly there is also another formula for the
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case of (GD, HD). Then the comparison of periods of different pairs of groups predicted by the Guo-
Jacquet conjecture is reduced to the comparison of relative (weighted) orbital integrals, for which there
are already some works such as Guo’s fundamental lemma [23] and Zhang’s transfer [58].

However, we have neglected analytic difficulty in the above discussion. That is to say, the double
integral above is not convergent and neither are two ways of its expansions. This is the reason why some
restrictive local conditions are needed in the main results of [21] though they seem kind of artificial.
The aim of this article is to solve this kind of problem at the level of Lie algebras for the case of (G,H).
Denote by S the symmetric space G/H. Notice that such double integral can be formally written as a
single integral ∫

H(F )\H(A)∩G(A)1

KfS (x)η(det(x))dx,

where fS(x) =
∫
H(A)∩G(A)1 f

G(xy)dy defines a smooth function on S(A) with compact support and

KfS (x) =
∑
γ∈S(F ) f

S(x−1γx). Replacing S by its tangent space s ' gln ⊕ gln at the neutral element,

we are faced with the divergence of the integral∫
H(F )\H(A)∩G(A)1

kf (x)η(det(x))dx,

where f is a Bruhat-Schwartz function on s(A) and kf (x) =
∑
γ∈s(F ) f(x−1γx).

Our main results can be described as follows.
First of all, as in [3], we replace kf (x) with some explicit kTf (x) (see its definition in (4.0.1) and

(4.2.1)) to make the last integral absolutely convergent, where T ∈ R2n is a truncation parameter.
Moreover, there is a relation of equivalence on s(F ) defined by the categorical quotient s//H; we denote
by O the set of classes of equivalence. For each class o ∈ O, we define kTf,o(x) and its integral similarly

by replacing s(F ) with o. Then we have

kTf (x) =
∑
o∈O

kTf,o(x),

and prove the following theorem which gives the geometric expansion of∫
H(F )\H(A)∩G(A)1

kTf (x)η(det(x))dx.

Theorem 1.1 (see Theorem 4.11). For T in a suitable cone in R2n,∑
o∈O

∫
H(F )\H(A)∩G(A)1

kTf,o(x)η(det(x))dx

is absolutely convergent.

Moreover, we see that each summand in the geometric expansion is a sum of products of polynomials
and exponential functions in T . In fact, most (namely regular semi-simple) terms are simply polynomial
distributions.

Theorem 1.2 (see Corollary 5.6). For T in a suitable cone in R2n and each o ∈ O,

JTo (η, f) :=

∫
H(F )\H(A)∩G(A)1

kTf,o(x)η(det(x))dx

is an exponential polynomial in T . In particular, if o is regular semisimple, it is a polynomial in T .

This property allows us to take the constant term Jo(η, f) of JTo (η, f) to eliminate the truncation
parameter. In the infinitesimal setting, the geometric expansion of the Fourier transform of f plays
the role of the original spectral side (cf. [13]). Our infinitesimal variant of Guo-Jacquet trace formula
equating the geometric developments of f and its Fourier transform (defined by (3.5.2) and denoted by

f̂) is the following, which essentially comes from the Poisson summation formula.

Theorem 1.3 (see Theorem 7.1). For a Bruhat-Schwartz function f on s(A), we have the equality∑
o∈O

Jo(η, f) =
∑
o∈O

Jo(η, f̂).
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Such a formula should be of interest for at least two reasons. For one thing, it is close to but easier
than its analogue for the symmetric space. For another, a simplified version of this formula (see [58,
Theorem 8.4 and p. 1875]) has been used in Zhang’s proof of the smooth transfer.

Unfortunately, the distributions Jo(η, ·) on s(A) that we obtained are non-equivariant under the
conjugation of H(A) ∩G(A)1 in general, which is close to the situation in [3] and different from that in
[61]. In fact, we have the following formula of non-equivariance.

Proposition 1.4 (see Corollary 6.2). For a Bruhat-Schwartz function f on s(A) and y ∈ H(A) ∩
G(A)1, we denote fy(x) := f(yxy−1). Then

Jo(η, fy) = η(det(y))
∑
Q

JQo (η, fηQ,y),

where the sum on Q runs over all ω-stable relatively standard parabolic subgroups of G (defined in Section

5.2). Here JQo (η, ·) is an analogue of Jo(η, ·) with G replaced by Q, and fηQ,y is defined by (6.0.1) with
s = 0.

Nevertheless, we can write regular semi-simple terms as explicit weighted orbital integrals whose
weights are the restriction to H(A) of Arthur’s in [3] for G(A).

Theorem 1.5 (see Theorem 9.2). Let o ∈ O be a regular semi-simple class, P1 an ω-stable relatively
standard parabolic subgroup of G and X1 ∈ o an elliptic element relative to P1 (defined in Section 9.2).
For a Bruhat-Schwartz function f on s(A), we have

Jo(η, f) = vol([HX1
]) ·
∫
HX1

(A)\H(A)

f(x−1X1x)vP1
(x)η(det(x))dx,

where HX1
denotes the centraliser of X1 in H, vol([HX1

]) is its associated volume and vP1
(x) is the

volume of some convex hull.

This paper is organised in the following way. Section 2 and 3 are devoted to standard notation
in Arthur’s work on trace formulae and characterisation of O in the specific symmetric pair that we
consider respectively. We define the truncated kernel kTf,o(x) and prove its integrability in Section 4.

This key definition is partly inspired by [28] [61] [17] (for the decomposition of groups) and [40] (for
the decomposition of linear spaces) apart from Arthur’s pioneering work [3] and its Lie algebra variant
[13]. Section 5 is about the quantitive behaviour of the distributions that we got with respect to the
truncation parameter T . In Section 6, we study their variance under the conjugation of H(A) ∩G(A)1.
In Section 7, the infinitesimal Guo-Jacquet trace formula for the case of (GL2n, GLn × GLn) is given.
Section 8 and 9 aim to express the regular semi-simple distribution as weighted orbital integrals.

Here are two final remarks. Firstly, actually we study the more general symmetric pair (GLp+q,D,
GLp,D × GLq,D) instead of (GL2n, GLn × GLn) and add an extra term |Nrd(x1)|sA to the integrand in
most of this article. Not only do we prefer more general results (including the case considered in [57] for
instance) or possible applications (cf. [41] for the study of the first derivative of L-functions), but the
study of the case where p = q and s = 0 also yields consideration on a more general setting. A simple
reason for this comes from the structure of the intersection of H and semi-standard Levi subgroups of
G. Secondly, there are some similarities between our case and the twisted trace formula (cf. [39]) for
(GLn×GLn)o σ where σ exchanges two copies of GLn. In fact, we obtain the same weights for regular
semi-simple orbits. However, we shall see that more parabolic subgroups will be needed to define the
truncation here. We shall return to its discussion at the end of this paper.
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Henri Chaudouard for introducing me to this problem and valuable suggestions during my preparation
of this work. Part of this paper was revised during my visit to the Institute for Mathematical Sciences
at the National University of Singapore and I would like to thank their hospitality. This work was
supported by grants from Région Ile-de-France.

2. Notation

2.1. Roots and weights. Let F be a number field and G a reductive group defined over F . Denote
by ZG the centre of G. Fix a minimal Levi F -subgroup M0 of G. All the following groups are assumed
to be defined over F without further mention. We call a parabolic subgroup P of G semi-standard if
M0 ⊆ P . For any semi-standard parabolic subgroup P of G, we usually write MP for the Levi factor
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containing M0 and NP the unipotent radical. Denote by AP the maximal F -split torus in the centre of
MP . Let X(MP )F be the group of characters of MP defined over F . Then define

aP := HomZ(X(MP )F ,R)

and its dual space

a∗P := X(MP )F ⊗Z R,
which are both R-linear spaces of dimention dim(AP ). Notice that the restriction X(MP )F ↪→ X(AP )F
induces an isomorphism

a∗P ' X(AP )F ⊗Z R.
Suppose that P1 ⊆ P2 are a pair of semi-standard parabolic subgroups of G. The restriction

X(MP2
)F ↪→ X(MP1

)F induces a∗P2
↪→ a∗P1

and its dual map aP1
� aP2

. Denote by aP2

P1
the kernel

of the latter map aP1 � aP2 . The restriction X(AP1)F � X(AP2)F induces a∗P1
� a∗P2

and its dual map
aP2 ↪→ aP1 . The latter map aP2 ↪→ aP1 provides a section of the previous map aP1 � aP2 . Thus we have
decompositions

aP1 = aP2 ⊕ aP2

P1

and

a∗P1
= a∗P2

⊕ (aP2

P1
)∗.

When P1 is a minimal semi-standard parabolic subgroup, since aP1 (resp. AP1) and aP2

P1
are independent

of the choice of P1, we write them as a0 (resp. A0) and aP2
0 respectively.

For a pair of semi-standard parabolic subgroups P1 ⊆ P2 of G, write ∆P2

P1
for the set of simple roots

for the action of AP1
on NP2

P1
:= NP1

∩MP2
. Notice that ∆P2

P1
is a basis of (aP2

P1
)∗. Let

(∆̂P2

P1
)∨ := {$∨α : α ∈ ∆P2

P1
}

be the basis of aP2

P1
dual to ∆P2

P1
. If B is a minimal semi-standard parabolic subgroup contained in P1,

one has the coroot β∨ associated to any β ∈ ∆P2

B . For every α ∈ ∆P2

P1
, let α∨ be the projection of β∨ to

aP2

P1
, where β ∈ ∆P2

B whose restriction to aP2

P1
is α. Such α∨ is independent of the choice of B. Define

(∆P2

P1
)∨ := {α∨ : α ∈ ∆P2

P1
},

which is a basis of aP2

P1
. Denote by

∆̂P2

P1
:= {$α : α ∈ ∆P2

P1
}

the basis of (aP2

P1
)∗ dual to (∆P2

P1
)∨.

For a semi-standard parabolic subgroup P of G, set

a+
P := {T ∈ aP : α(T ) > 0, α ∈ ∆G

P }.

For P1 ⊆ P2 as above, define τP2

P1
and τ̂P2

P1
as the characteristic functions of

{T ∈ a0 : α(T ) > 0, α ∈ ∆P2

P1
}

and

{T ∈ a0 : $(T ) > 0, $ ∈ ∆̂P2

P1
}

respectively.

2.2. The functions HP and FP . Let A be the ring of adèles of F and | · |A the product of
normalised local absolute values on the group of idèles A∗. Fix a maximal compact subgroup K of G(A)
that is admissible relative to M0 in the sense of [5, p. 9]. In this paper, we choose the standard maximal
compact subgroup for inner forms of GLn (see [54, p. 191 and 199] for example). More concretely,
suppose that G(F ) = GLn(D), where D is a central division algebra over F . For every place v of F ,
fix an isomorphism D ⊗F Fv ' glrv (Dv), where Dv is a central division algebra over Fv. Under this
isomorphism, the completion at v of G(F ) is Gv ' GLnv (Dv), where nv = nrv. For v a finite place of
F , let Kv ' GLnv (ODv ), where ODv is the ring of integers of Dv; for v an infinite place of F , we choose
Kv to be the orthogonal group, unitary group and compact symplectic group (see [25, Chapter 1.2.8]
for example) for Gv ' GLnv (R), GLnv (C) and GLnv (H) respectively; let K :=

∏
vKv. Suppose that P

is a semi-standard parabolic subgroup of G. If m ∈MP (A), define HP (m) ∈ aP by

〈HP (m), χ〉 = log(|χ(m)|A), χ ∈ X(MP )F .
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Write MP (A)1 for the kernel of HP and A∞P for the neutral component for the topology of R-manifolds
of the group of R-points of the maximal Q-split torus in ResF/QAP . Then any element x ∈ G(A) can be

written as x = nmak, where n ∈ NP (A), m ∈MP (A)1, a ∈ A∞P and k ∈ K. We can define a continuous
map HP : G(A) → aP by setting HP (x) := HP (a) with respect to this decomposition. Notice that HP

induces an isomorphism from A∞P to aP . If P ⊆ Q are a pair of semi-standard parabolic subgroups,
write

AQ,∞P := A∞P ∩MQ(A)1.

Then HP also induces an isomorphism from AQ,∞P to aQP .
Denote by ΩG the Weyl group of (G,A0). In the cases to be considered in this paper, for every

s ∈ ΩG, we can always choose one representative ωs ∈ G(F ) ∩K such that ωs normalises A0. In fact,
we are dealing with the case of G = GLn or its inner forms, thus we can choose ΩG to be the group of
permutation matrices. For an F -subgroup H of G and s ∈ ΩG, we usually write sH := ωsHω

−1
s . Let P1

and P2 be a pair of semi-standard parabolic subgroups of G. Denote by ΩG(aP1
, aP2

) the set (perhaps
empty) of distinct isomorphisms from aP1 to aP2 obtained by restriction of elements in ΩG. Denote
by ΩG(aP1 ;P2) the subset (perhaps empty) of double classes in ΩMP2 \ΩG/ΩMP1 of elements s ∈ ΩG

such that s(aP1
) ⊇ aP2

. Suppose additionally that P1 and P2 contain a common minimal semi-standard
parabolic subgroup P0 of G. We can talk about positive roots with respect to P0. By [39, Lemme 1.3.6],
all s ∈ ΩG(aP1

, aP2
) admits a unique representative (still denoted by s) in ΩG such that s−1α > 0 for all

α ∈ ∆P2

P0
. By [39, Lemme 1.3.7], all s ∈ ΩG(aP1

;P2) admits a unique representative (still denoted by s)

in ΩG such that s−1α > 0 for all α ∈ ∆P2

P0
.

From the reduction theory (see [3, p. 941]), we know that there exists a real number t0 < 0 and a
compact subset ωB ⊆ NB(A)M0(A)1 for each minimal semi-standard parabolic subgroup B of G such
that for any semi-standard parabolic subgroup P of G containing B, we have

G(A) = P (F )SP
B(ωB , t0).

Here the Siegel set SP
B(ωB , t0) is defined by

SP
B(ωB , t0) := ωBA

∞
B (P, t0)K,

where

A∞B (P, t0) := {a ∈ A∞B : α(HB(a)) > t0, α ∈ ∆P
B}.

We shall fix such t0 and ωB . Additionally, we are authorised to assume that ωsB = ωsωBω
−1
s for s ∈ ΩG.

Moreover, we require that (MP (A) ∩ ωB ,MP (A) ∩K,B ∩MP , t0) will play the role of (ωB ,K,B, t0) for
any semi-standard parabolic subgroup P of G containing B.

Let B ⊆ P and t0 be as above. For T ∈ a0, define the truncated Siegel set

SP
B(ωB , t0, T ) := ωBA

∞
B (P, t0, T )K,

where

A∞B (P, t0, T ) := {a ∈ A∞B (P, t0) : $(HB(a)− T ) ≤ 0, $ ∈ ∆̂P
B}.

Denote by FPB (·, T ) the characteristic function of the projection of SP
B(ωB , t0, T ) to P (F )\G(A).

2.3. Bruhat-Schwartz functions and Haar measures. Write g for the Lie algebra of G. For
an F -linear subspace s of g, denote by S(s(A)) the Bruhat-Schwartz space of s(A), namely the C-linear
space of functions on s(A) generated by f∞ ⊗ χ∞, where f∞ is a Schwartz function on s(F ⊗Q R) and
χ∞ is the characteristic function of an open compact subgroup of s(A∞), where we denote by A∞ the
ring of finite adèles of F .

Let P be a semi-standard parabolic subgroup of G. For every connected subgroup V of NP
(resp. every subspace h of g), choose the unique Haar measure on V (A) (resp. on h(A)) such that
vol(V (F )\V (A)) = 1 (resp. vol(h(F )\h(A)) = 1). We also take the Haar measure on K such that
vol(K) = 1.

Fix a Euclidean norm ‖ · ‖ on a0 invariant by the group ΩG and Haar measures on all subspaces of
a0 compatible with this norm. If P ⊆ Q are a pair of semi-standard parabolic subgroups, we obtain the

Haar measures on A∞P and AQ,∞P via the isomorphism HP .
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Denote by ρP ∈ (aGP )∗ the half of the sum of weights (with multiplicities) for the action of AP on nP .
We choose compatible Haar measures on G(A) and its subgroups by requiring that for any f ∈ L1(G(A)),∫

G(A)

f(x)dx =

∫
NP (A)

∫
MP (A)

∫
K

f(nmk)e−2ρP (HP (m))dndmdk

=

∫
NP (A)

∫
MP (A)1

∫
A∞P

∫
K

f(nmak)e−2ρP (HP (a))dndmdadk.

3. The symmetric pair

Let F be a number field and D a central division algebra over F . Let d be the degree of D,
i.e., dimF (D) = d2. Denote by GLn,D the reductive group over F whose F -points are GLn(D). For
x ∈ GLn(D), we write Nrd(x) for its reduced norm, Trd(x) for its reduced trace and Prdx for its reduced
characteristic polynomial. For x ∈ GLp(D) × GLq(D), denote by x1 (resp. x2) its projection to the
first (resp. second) component. Until further notice, we shall work in a more general setting than that
of Guo-Jacquet for later use, i.e., we shall study the case of (GLp+q,D, GLp,D × GLq,D) and add an
additional term |Nrd(x1)|sA in the integral of the modified kernel.

3.1. Groups and linear spaces. Let G := GLp+q,D and H := GLp,D × GLq,D its subgroup by

diagonal embedding. Define an involution θ on G by θ(g) = εgε−1, where ε =

(
1p 0
0 −1q

)
. Thus

H = Gθ, where Gθ denotes the θ-invariant subgroup of G.
Define an anti-involution ι on G by ι(g) = θ(g−1). Denote by Gι the ι-invariant subvariety of G.

There is a symmetrization map

s : G→ Gι, s(g) := gι(g),

by which one can regard the symmetric space S := G/H as a subvariety of Gι. We see that H ×H acts
on G by left and right translation and that H acts on Gι by conjugation.

Let g := Lie(G) and h := Lie(H). Denote by dθ the differential of θ. Thus h = {X ∈ g : (dθ)(X) =
X}. Let s be the tangent space of S at the neutral element. We shall always view s as a subspace of g.

Then s = {X ∈ g : (dθ)(X) = −X} and s(F ) =

{(
0 A
B 0

)
: A ∈ Matp×q(D), B ∈ Matq×p(D)

}
'

Matp×q(D) ⊕ Matq×p(D). There is an H(F )-action on s(F ) by conjugation, i.e., (h1, h2) · (A,B) =

(h1Ah
−1
2 , h2Ah

−1
1 ).

3.2. Semi-simple elements. We say that an element X ∈ s is semi-simple if the orbit H · X is
Zariski closed in s. By a regular element X ∈ s, we mean that the stabiliser HX has minimal dimension.

Proposition 3.1. An element X of s(F ) is semi-simple if and only if it is H(F )-conjugate to an
element of the form

X(A) :=


0 0 1m 0
0 0 0 0
A 0 0 0
0 0 0 0


with A ∈ GLm(D) being semi-simple in the usual sense. More precisely, the set of H(F )-conjugacy
classes of semi-simple elements of s(F ) is bijective to the set of pairs (m, {A}) where 0 ≤ m ≤ min{p, q}
is an integer and {A} is a semi-simple conjugacy class in GLm(D). Moreover, X(A) is regular semi-
simple if and only if m = min{p, q} and A is regular semi-simple in GLmin{p,q}(D) in the usual sense.

Proof. The case D = F is [31, Proposition 2.1 and Lemma 2.1] while the case p = q is [57,
Proposition 5.2]. This proposition is nothing but a slightly more general one combining both cases,
whose proofs are similar and still work here. �

Proposition 3.2. If p ≤ q, an element

(
0 A
B 0

)
∈ s is regular semi-simple if and only if PrdAB

is separable and PrdAB(0) 6= 0. If p > q, an element

(
0 A
B 0

)
∈ s is regular semi-simple if and only if

PrdBA is separable and PrdBA(0) 6= 0.
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Proof. We only consider the case p ≤ q since the other case can be deduced by symmetry. We may
study the proposition over an algebraic closure F of F .

Suppose that PrdAB is separable and PrdAB(0) 6= 0. Let

(
0 A
B 0

)
= Xs + Xn be the Jordan

decomposition in g, where Xs is semi-simple, Xn is nilpotent and XsXn = XnXs. By the uniqueness of
the Jordan decomposition, we see that Xs, Xn ∈ s. From Proposition 3.1, up to conjugation by H, we

may suppose that Xs =

 0 1dp 0
C 0 0
0 0 0

, where C ∈ GLdp(F ) is semi-simple. Since XsXn = XnXs,

simple computation (cf. [31, Lemma 2.1]) shows that Xn =

 0 D 0
DC 0 0

0 0 0

, where D ∈ gldp(F ) and

DC = CD. But Xn is nilpotent, which forces D to be zero because C is invertible. Then Xn = 0 and(
0 A
B 0

)
= Xs. We deduce that PrdC is separable and that PrdC(0) 6= 0. By linear algebra, C is regular

semi-simple in GLdp(F ). Hence,

(
0 A
B 0

)
is regular semi-simple by Proposition 3.1.

The other direction is a direct consequence of Proposition 3.1. �

3.3. Invariants. Denote by c the affine space Admin{p,q}. Define a morphism π : s→ c by mapping(
0 A
B 0

)
∈ s to the coefficients of the reduced characteristic polynomial of AB. It is constant on

H-orbits. Denote by crs the subset of (ci)0≤i≤dmin{p,q}−1 ∈ c such that the polynomial

P (λ) := λdmin{p,q} +

dmin{p,q}−1∑
i=0

ciλ
i

is separable and c0 6= 0. It is a principal Zariski open subset of c. Denote by c× the subset of
(ci)0≤i≤dmin{p,q}−1 ∈ c such that c0 6= 0. Then crs ⊆ c×.

Proposition 3.3. The pair (c, π) defines a categorical quotient of s by H over F .

Proof. It suffices to consider the case p ≤ q since the case p > q can be obtained by symmetry.
We first extend the base field to an algebraic closure F of F . Then HF ' GLdp,F × GLdq,F and

sF ' Matdp×dq,F ⊕Matdq×dp,F . For (ci)0≤i≤dp−1 ∈ cF , denote by A((ci)0≤i≤dp−1) ∈ GLpd its companion
matrix

A((ci)0≤i≤dp−1) :=



0 0 · · · 0 −c0
1 0 · · · 0 −c1

0 1
. . .

... −c2
...

. . .
. . . 0

...
0 · · · 0 1 −cdp−1

 .

Define a morphism cF → sF by mapping (ci)0≤i≤dp−1 to 0 1dp 0
A((ci)0≤i≤dp−1) 0 0

0 0 0

 .

This is a section of π, so π is surjective. By Propositions 3.2 and 3.1, the fibre of any point in the
non-empty open subset cF,rs ⊆ cF contains exactly one closed orbit. We may use Igusa’s criterion (see

[43, Theorem 4.13] and Remark 3.4 below) to show that the pair (cF , π) defines a categorical quotient
of sF by HF .

The morphism π : s → c defined over F factors through the categorical quotient Spec(F [s]H) of s
by H over F . This induces a dual morphism F [c]→ F [s]H of F -algebras. We have shown that after the
base change to F , it is an isomorphism of F -algebras. By Galois descent, we deduce that the morphism
F [c]→ F [s]H is an isomorphism of F -algebras, i.e., the pair (c, π) defines a categorical quotient of s by
H over F . �

Remark 3.4. We notice that cF can be of dimension 1 (when D = F and min{p, q} = 1) in the proof
of Proposition 3.3 above, so the first condition in [43, Theorem 4.13] may not be satisfied. However, as
is evident from the proof of Igusa’s criterion, this condition can be replaced with the surjectivity of π.
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The categorical quotient (c, π) defines a relation of equivalence on s(F ), where two elements are in
the same class if and only if they have the same image under π. We denote by O the set of equivalent
classes for this relation. By Proposition 3.1, two semi-simple elements of s(F ) belong to the same class
of O if and only if they are conjugate by H(F ). Denote by Ors the subset of O with images in crs. By
Proposition 3.2, each class in Ors is a regular semi-simple H(F )-orbit in s(F ). Denote by O× the subset
of O with images in c×. Then Ors ⊆ O×.

3.4. Relatively standard parabolic subgroups. Fix P̃0 a minimal parabolic subgroup of H

defined over F and M0 a Levi factor of P̃0 defined over F . Then M0 is also a Levi subgroup of G defined
over F . For a semi-standard parabolic subgroup P of G (namely M0 ⊆ P ), we say that P is “relatively

standard” if P̃0 ⊆ P , i.e., P ∩H is a standard parabolic subgroup of H (namely P̃0 ⊆ P ∩H). We shall
suppose that ωP̃0

⊆ ωB for all relatively standard minimal parabolic subgroup B of G. Denote by K the

standard maximal compact subgroup of G(A) and by KH := H(A)∩K the maximal compact subgroup
of H(A). Up to conjugation by G(F ), we may assume that M0 is the subgroup of diagonal matrices in

G and that P̃0 is the product of groups of upper triangular matrices.
We can describe the embedding H ↪→ G via D-bimodules. Let V := 〈e1, · · ·, ep〉D (resp. W :=

〈f1, · · ·, fq〉D) be the free D-bimodule generated by the basis {e1, · · ·, ep} (resp. {f1, · · ·, fq}). Set GL(V )
to be the group of F -linear automorphisms on V, which acts on V on the left. Denote by GL(V )D the
subgroup of GL(V ) which respects the right D-module structure on V . Put G := GL(V ⊕W )D and
H := GL(V )D ×GL(W )D. Then M0 is the stabiliser in G (or in H) of the D-lines 〈ei〉D, 1 ≤ i ≤ p and

〈fi〉D, 1 ≤ i ≤ q. Suppose that P̃0 is the direct product of the stabiliser in GL(V )D of the flag

0 ( 〈e1〉D ( 〈e1, e2〉D ( · · · ( 〈e1, · · ·, ep〉D =: V

and the stabiliser in GL(W )D of the flag

0 ( 〈f1〉D ( 〈f1, f2〉D ( · · · ( 〈f1, · · ·, fq〉D =: W.

A relative standard parabolic subgroup P of G can be interpretated as the stabiliser in G of the flag

0 ( 〈e1, · · ·, ep1
, f1, · · ·, fq1〉D ( 〈e1, · · ·, ep1

, f1, · · ·, fq1 , ep1+1, · · ·, ep1+p2
, fq1+1, · · ·, fq1+q2〉D

( · · · ( 〈e1, · · ·, ep1 , f1, · · ·, fq1 , · · ·, ep−pl+1, · · ·, ep, fq−ql+1, · · ·, fq〉D =: V ⊕W,

where
l∑
i=1

pi = p,
l∑
i=1

qi = q and we allow pi or qi to be zero. In particular, we have

MP ' GLp1+q1,D × · · · ×GLpl+ql,D
and

MPH ' GLp1,D × · · · ×GLpl,D ×GLq1,D × · · · ×GLql,D.

Proposition 3.5. Let P be a relative standard parabolic subgroup of G. For all X ∈ (mP ∩ s)(F )
and U ∈ (nP ∩ s)(F ), we have

π(X) = π(X + U).

Proof. It is a consequence of [40, Lemma 2.1]. We can also give a direct proof as follows. Let F
be an algebraic closure of F . For A ∈ Matdp×dq(F ) and B ∈ Matdq×dp(F ), we see that

det

(
λId(p+q) −

(
0 A
B 0

))
= λd(q−p) det(λ2Idp −AB).

Then for any X ∈ s(F ), π(X) is determined by the coefficients of the reduced characteristic polynomial
of X regarded as an element of g(F ). The proposition follows from the easy fact: for X ∈ mP (F ) and
U ∈ nP (F ), the reduced characteristic polynomial of X + U is equal to that of X. �

Corollary 3.6. Let P be a relative standard parabolic subgroup of G and o ∈ O. For all subsets
S1 ⊆ (mP ∩ s)(F ) and S2 ⊆ (nP ∩ s)(F ), we have o ∩ (S1 ⊕ S2) = (o ∩ S1)⊕ S2.

3.5. Fourier transform. Fix a nontrivial unitary character Ψ of A/F . Let 〈·, ·〉 be the non-
degenerate H(A)-invariant bilinear form on s(A) defined by

(3.5.1) ∀X1, X2 ∈ s(A), 〈X1, X2〉 := Trd(X1X2).

For f ∈ S(s(A)), its Fourier transform f̂ ∈ S(s(A)) is defined by

(3.5.2) ∀X̂ ∈ s(A), f̂(X̂) :=

∫
s(A)

f(X)Ψ(〈X, X̂〉)dX.
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4. Integrability of the modified kernel

Fix a minimal semi-standard parabolic subgroup P0 of G. For any semi-standard parabolic subgroup
P of G and T ∈ a0, denote by TP the projection of sT in aP , where s is any element in ΩG such that
sP0 ⊆ P . Notice that this definition is independent of the choice of s. For a semi-standard parabolic
subgroup P of G, x ∈ H(A) and T ∈ a0, define

FP (x, T ) := FPsP0
(x, TsP0

),

where s is any element in ΩG such that sP0 ⊆ P . Note that this definition is independent of the choice of
s since we choose all ωs ∈ G(F )∩K. In fact, for any minimal semi-standard parabolic subgroup B ⊆ P ,
F sPsB (x, T ) = FPB (ω−1

s x, s−1T ) and FPB (·, T ) is left MP (F )-invariant.
Let f ∈ S(s(A)), P be a relatively standard parabolic subgroup of G and o ∈ O. Write PH := P ∩H.

For x ∈MPH (F )NPH (A)\H(A), define

kf,P,o(x) :=
∑

X∈mP (F )∩o

∫
(nP∩s)(A)

f(x−1(X + U)x)dU,

and for x ∈ H(F )\H(A), define

(4.0.1) kTf,o(x) :=
∑

{P :P̃0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH(F )\H(F )

τ̂GP (HP (δx)− TP ) · kf,P,o(δx).

From [3, Lemma 5.1], we know that the sum over δ ∈ PH(F )\H(F ) is finite.

4.1. Reduction theory. There is a T+ ∈ a+
P0

such that [3, Lemma 6.4] holds for T ∈ T+ + a+
P0

.
We shall fix such a T+ and say that such T is sufficiently regular.

Lemma 4.1. For all relatively standard parabolic subgroup Q of G, sufficiently regular T and x ∈
H(A), we have ∑

{P :P̃0⊆P⊆Q}

∑
δ∈PH(F )\QH(F )

FP (δx, T )τQP (HP (δx)− TP ) = 1.

This is an analogue of [61, Proposition 2.3] whose proof relies on [28, (2.5) in p. 674] (cf. Lemma
4.8 below). It is essentially a restricted form to H from [3, Lemma 6.4] for G. We can give a proof close
to the steps in an early version of [61], which reflects that a main complexity of the truncation here
arises from the fact that none of the Siegel sets of H is contained in any Siegel set of G, as mentioned
in [28]. However, we shall adopt alternatively the point of view in [17] to give a more conceptual proof
here, which might be useful in other relative trace formulae as well.

First we introduce a variant (see [17, §1.5]) of some concepts and results in [17, §2] without repro-
ducing proofs. We say that a semi-standard parabolic subgroup Q of G is standard if P0 ⊆ Q. For

P ⊆ Q a pair of standard parabolic subgroups of G, denote by ρQP the half of the sum of weights (with

multiplicities) for the action of AP on nP ∩mQ. We denote by a+
P0

the closure of a+
P0

in a0.

Definition 4.2. For g ∈ G(A), Q a standard parabolic subgroup of G and T ∈ a+
P0

, we define the
degree of T -instability of g with respect to Q by the following formula

degQi,T (g) := max
(P,δ)
〈ρQP , HP (δg)− T 〉

where (P, δ) runs over the pairs of a standard parabolic subgroup P ⊆ Q and an element δ ∈ P (F )\Q(F ).

From [3, Lemma 5.1], we know that the supremum of 〈ρQP , HP (δg)−T 〉 in the definition is finite and
attainable.

Lemma 4.3 (cf. [17, Lemme 2.2.1]). Let g ∈ G(A), Q be a standard parabolic subgroup of G and

T ∈ a+
P0

. The following two conditions are equivalent:

(1) degQi,T (g) ≤ 0;

(2) for all parabolic subgroup P ⊆ Q, all δ ∈ P (F )\Q(F ) and all $ ∈ ∆̂Q
P , we have 〈$,HP (δg)−T 〉 ≤

0.

Definition 4.4. Let g ∈ G(A) and T ∈ a+
P0

. We say that a pair (P, δ) of a standard parabolic
subgroup P ⊆ G and an element δ ∈ P (F )\G(F ) is T -canonical for g if it satisfies the following two
conditions:
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(1) 〈ρGP , HP (δg)− T 〉 = degGi,T (g);

(2) for any parabolic subgroup Q ⊇ P such that 〈ρGQ, HQ(δg)− T 〉 = degGi,T (g), we have Q = P .

Lemma 4.5 (cf. [17, Lemme 2.3.2]). Let g ∈ G(A) and T ∈ a+
P0

. Then (P, δ) is a T -canonical pair
for g if and only if it satisfies the following two conditions:

(1) degPi,T (δg) ≤ 0;

(2) for any α ∈ ∆G
P , we have 〈α,HP (δg)− T 〉 > 0.

Proposition 4.6 (cf. [17, Proposition 2.4.1]). Let g ∈ G(A) and T ∈ a+
P0

. Then there exists a
unique T -canonical pair for g.

Let T ∈ a0 and Q be a standard parabolic subgroup of G. Define F̃Q(·, T ) as the characteristic

function of g ∈ G(A) such that degQi,T (g) ≤ 0.

Proposition 4.7 (cf. [17, Proposition 2.5.1]). For g ∈ G(A), Q a standard parabolic subgroup of G

and T ∈ a+
P0

, we have

(1) ∑
{P :P0⊆P⊆Q}

∑
δ∈P (F )\Q(F )

F̃P (δg, T )τQP (HP (δg)− TP ) = 1;

(2)

F̃Q(g, T ) =
∑

{P :P0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈P (F )\Q(F )

τ̂QP (HP (δg)− TP ).

Since we have similar formulae for FQ(·, T ) for sufficiently regular T (see [3, Lemma 6.4]), we know

that F̃Q(·, T ) = FQP0
(·, T ) for such T . Now we can return to the proof of Lemma 4.1.

Proof of Lemma 4.1. It is noticeable that the identity is reduced to its analogues for semi-
standard Levi factors of Q, which is a product of GLpi+qi,D whose intersection with H is GLpi,D×GLqi,D.
By induction on the rank of G, it suffices to prove the identity for Q = G.

For a standard parabolic subgroup P of G, fix a set of representatives ΩP,G in {s ∈ ΩG|P̃0 ⊆ s−1P}
for the relation s1 ∼ s2 if and only if s2s

−1
1 ∈ ΩMP . We can rewrite the equality in the lemma as∑

{P :P0⊆P}

∑
s∈ΩP,G

∑
δ∈(s−1P )H(F )\H(F )

FPP0
(ωsδx, TP0

)τGP (HP (ωsδx)− TP ) = 1.

In fact, this follows from

F s
−1P (δx, T ) = F s

−1P
s−1P0

(δx, Ts−1P0
) = FPP0

(ωsδx, TP0
)

and
τGs−1P (Hs−1P (δx)− Ts−1P ) = τGP (HP (ωsδx)− TP ).

Combining the double sums over s and δ, we claim that the equality above is equivalent to∑
{P :P0⊆P}

∑
δ∈P (F )\P (F )ΩGH(F )

FPP0
(δx, TP0

)τGP (HP (δx)− TP ) = 1.

In fact, for any s ∈ ΩP,G, consider the map

(s−1P )H(F )\H(F )→ P (F )\P (F )ΩGH(F ), δ 7→ ωsδ.

Firstly, it is well-defined: if δ1 = ω−1
s pωsδ2 with p ∈ P (F ), then ωsδ1 = pωsδ2. Secondly, it is injective: if

ωsδ1 = pωsδ2 with p ∈ P (F ), then δ1 = ω−1
s pωsδ2 with ω−1

s pωs = δ1δ
−1
2 ∈ (s−1P )H(F ). Thirdly, for s1 6=

s2 in ΩP,G, we have ωs1δ1 6= pωs2δ2 with p ∈ P (F ): otherwise, s−1
1 P = (δ2δ

−1
1 )−1(s−1

2 P )(δ2δ
−1
1 ) with

δ2δ
−1
1 ∈ H(F ), so (s−1

1 P )H = (δ2δ
−1
1 )−1(s−1

2 P )H(δ2δ
−1
1 ), and then δ2δ

−1
1 ∈ (s−1

1 P )H(F ) = (s−1
2 P )H(F )

for both of (s−1
1 P )H and (s−1

2 P )H are standard parabolic subgroups of H, which implies s−1
1 P = s−1

2 P
contradicting s1 6= s2. Fourthly, any s̃ ∈ ΩG appears in the image of the map for some s ∈ ΩP,G:

since (s̃−1P )H is a semi-standard parabolic subgroup of H, there exists an s0 ∈ ΩH such that P̃0 ⊆
s−1

0 ((s̃−1P )H) = (s−1
0 (s̃−1P ))H = ((s̃s0)−1P )H , i.e., s̃s0 ∈ ΩP,G. To sum up, we finish the argument of

the claim.
It suffices to prove an analogue of the last equality by replacing FPP0

with F̃P for T ∈ a+
P0

, as they

are identical for sufficiently regular T . That is to say, for x ∈ H(A) = Gθ(A), if (P, δ) is the unique
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T -canonical pair for x, we need to prove that δ ∈ P (F )\P (F )ΩGH(F ). Recall that θ(g) = εgε−1 for

g ∈ G(A), where ε =

(
1p 0
0 −1q

)
. Since ε ∈ M0(F ) ∩K, from Lemma 4.5, we deduce that (P, δ) is

the unique T -canonical pair for g ∈ G(A) if and only if (P, θ(δ)) is the unique T -canonical pair for θ(g).
In particular, if (P, δ) is the unique T -canonical pair for x ∈ H(A), we have δ = θ(δ). Denote by δ0 a
representative of δ ∈ P (F )\G(F ). Then δ0εδ

−1
0 ∈ P (F ).

Suppose that δ0εδ
−1
0 = mu, where m ∈MP (F ) and u ∈ NP (F ). Both of mu and m are semi-simple

in G(F ) (in the classical sense) for (mu)2 = m2 = 1. Applying [3, Lemma 2.1] to the characteristic
function of the singleton {u}, one obtains that mu is NP (F )-conjugate to mu′ for some u′ ∈ NP (F )
such that mu′ = u′m. Since both of mu′ and m are semi-simple in G(F ), by the uniqueness of Jordan
decomposition, we have u′ = 1, i.e., δ0εδ

−1
0 is NP (F )-conjugate to m. By linear algebra, m is MP (F )-

conjugate to a diagonal matrix with entries {±1} with expected multiplicities p and q respectively. In
sum, δ0εδ

−1
0 is P (F )-conjugate to ωsεω

−1
s for some s ∈ ΩG. Suppose that p0 ∈ P (F ) satisfies δ0εδ

−1
0 =

p0(ωsεω
−1
s )p−1

0 . Then ω−1
s p−1

0 δ0 ∈ Gθ(F ) = H(F ), i.e., δ = P (F )δ0 ∈ P (F )\P (F )ΩGH(F ). �

Lemma 4.8. Let P be a relatively standard parabolic subgroup of G. For any a ∈ A∞
P̃0

(PH , t0), there

exists a relatively standard minimal parabolic subgroup B ⊆ P such that a ∈ A∞B (P, t0).

Proof. This is an analogue of [28, (2.5) in p. 674]. By induction on dim(AP ), it suffices to prove
this assertion for P = G.

Let a ∈ A∞
P̃0

(H, t0). Then a = diag(a1, · · ·, ap+q), where ai
ai+1

> et0 for 1 ≤ i ≤ p − 1 and p + 1 ≤
i ≤ p + q − 1. In the definition of Siegel sets, we suppose that t0 < 0, so 0 < et0 < 1. Note that
A∞P0

(G, t0) = {diag(b1, · · ·, bp+q)| bibi+1
> et0 ,∀1 ≤ i ≤ p+ q − 1}. Thus we need to show that there exists

a permutation s ∈ ΩG such that s · a = diag(as−1(1), · · ·, as−1(p+q)) satisfies the following two conditions:

(1) s(i) < s(i+ 1) for 1 ≤ i ≤ p− 1 and p+ 1 ≤ i ≤ p+ q − 1;

(2)
as−1(i)

as−1(i+1)
> et0 for 1 ≤ i ≤ p+ q − 1.

Firstly, we show that one can move ap+1 to its left hand side in (a1, · · ·, ap+q) such that both the first
p + 1 elements and the last q − 1 ones in the new sequence are in “good” order (which means that the
quotient of any consecutive pairs is > et0), while keeping the original relative orders among (a1, · · ·, ap)
and among (ap+1, · · ·, ap+q). If

ap
ap+1

> et0 , we are already done (one can take s = 1). In general, write

i1 := max

{
0,max

{
1 ≤ i ≤ p

∣∣∣∣ ai
ap+1

> et0
}}

.

When 1 ≤ i1 ≤ p − 1, since et0 < 1,
ai1+1

ap+1
≤ et0 implies

ap+1

ai1+1
≥ e−t0 > 1; there is an s ∈ ΩG such that

s · a = diag(a1, · · ·, ai1 , ap+1, ai1+1, · · ·, ap, ap+2, · · ·, ap+q). When i1 = 0, which implies ap+1 > a1, there
is an s ∈ ΩG such that s · a = diag(ap+1, a1, · · ·, ap, ap+2, · · ·, ap+q).

Secondly, we consider moving ap+2 as before. One should check that ap+2 will not exceed the new
place of ap+1, which results from the fact that

ap+1

ap+2
> et0 . Thus one can move ap+1 and ap+2 to their

left hand side in (a1, · · ·, ap+q) such that both the first p + 2 elements and the last q − 2 ones in the
new sequence are in ”good” order, while still keeping the original relative orders among (a1, · · ·, ap) and
among (ap+1, · · ·, ap+q).

We can finish the argument of our claim by induction on q. �

Proposition 4.9. Let B be a minimal semi-standard parabolic subgroup of G. Let P be a parabolic
subgroup of G containing B. Suppose that T is sufficiently regular. If m ∈ ωB ∩MP (A), a ∈ A∞B (P, t0)
and k ∈ K ∩MP (A) satisfy FPB (mak, TB) = 1, then a ∈ A∞B (P, t0, TB).

Proof. It results from Lemma 4.3, since F̃PB (·, T ) = FPB (·, T ) for sufficiently regular T . Here we

write F̃PB (·, T ) for F̃P (·, T ) when B plays the role of P0. �

For a relatively standard parabolic subgroup P of G, denote by P(P̃0, P ) the set of relatively standard

minimal parabolic subgroups of G contained in P . For B ∈ P(P̃0, P ), write

AG,∞B (P, t0) := A∞B (P, t0) ∩G(A)1

and

∀T ∈ a0, A
G,∞
B (P, t0, T ) := A∞B (P, t0, T ) ∩G(A)1.
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Corollary 4.10. Let P be a relatively standard parabolic subgroup of G. For sufficiently regular T ,
the following subset of MPH (A) ∩G(A)1⋃

B∈P(P̃0,P )

(ωP̃0
∩MPH (A)) · (A∞

P̃0
(PH , t0) ∩AG,∞B (P, t0, TB)) · (KH ∩MPH (A))

projects surjectively on {m ∈MPH (F )\MPH (A) ∩G(A)1|FP (m,T ) = 1}.

Proof. This is an analogue of [61, Corollaire 2.5]. By Lemma 4.8, the following subset of MPH (A)∩
G(A)1 ⋃

B∈P(P̃0,P )

(ωP̃0
∩MPH (A)) · (A∞

P̃0
(PH , t0) ∩AG,∞B (P, t0)) · (KH ∩MPH (A))

projects surjectively on MPH (F )\MPH (A)∩G(A)1. Recall that ωP̃0
⊆ ωB for all B ∈ P(P̃0, P ) and that

KH ⊆ K by our choices (see Section 3.4). Therefore, the statement to be proved follows from Proposition
4.9. �

4.2. Integrability.

Theorem 4.11. For all sufficiently regular T and all s ∈ R,∑
o∈O

∫
H(F )\H(A)∩G(A)1

|kTf,o(x)||Nrd(x1)|sAdx <∞,

where we write x = (x1, x2) ∈ GLp,D(A)×GLq,D(A).

Proof. Let P1 ⊆ P2 be a pair of relatively standard parabolic subgroups of G. Following [3, §6],
for T1 ∈ aP1

, we define the characteristic function

σP2

P1
(T1) :=

∑
{Q:P2⊆Q}

(−1)dim(AP2
/AQ)τQP1

(T1)τ̂GQ (T1),

and recall that for P ⊇ P1 a relatively standard parabolic subgroup of G,

τPP1
(T1)τ̂GP (T1) =

∑
{P2:P⊆P2}

σP2

P1
(T1).

Denote P1,H := P1 ∩H. For x ∈ P1,H(F )\H(A), we put

χTP1,P2
(x) := FP1(x, T )σP2

P1
(HP1

(x)− TP1
),

and
kP1,P2,o(x) :=

∑
{P :P1⊆P⊆P2}

(−1)dim(AP /AG)kf,P,o(x).

Using Lemma 4.1 and the left invariance of HP and kf,P,o by PH(F ), we have

kTf,o(x) =
∑

{P1,P2:P̃0⊆P1⊆P2}

∑
δ∈P1,H(F )\H(F )

χTP1,P2
(δx)kP1,P2,o(δx).

Thus ∑
o∈O

∫
H(F )\H(A)∩G(A)1

|kTf,o(x)||Nrd(x1)|sAdx

≤
∑
o∈O

∑
{P1,P2:P̃0⊆P1⊆P2}

∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)|kP1,P2,o(x)||Nrd(x1)|sAdx.

It suffices to prove that for any pair of relatively standard parabolic subgroups P1 ⊆ P2 of G,∑
o∈O

∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)|kP1,P2,o(x)||Nrd(x1)|sAdx <∞.

If P1 = P2 6= G, by [3, Lemma 6.1], we have σP2

P1
= 0 and then χTP1,P2

= 0, so the integration is zero. If

P1 = P2 = G, by Corollary 4.10, every x ∈ H(F )\H(A)∩G(A)1 with FG(x, T ) = 1 has a representative
in the compact subset ⋃

B∈P(P̃0,G)

ωP̃0
·AG,∞B (G, t0, TB) ·KH ,
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so the integral is bounded by an integral of a continuous function over a compact subset and thus
convergent. Therefore, we reduce ourselves to proving the following proposition. �

Proposition 4.12. Let f ∈ S(s(A)), s ∈ R and P1 ( P2 be two relatively standard parabolic
subgroups of G. Fix any two positive real numbers ε0 and N . Then there exists a constant C such that∑

o∈O

∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)|kP1,P2,o(x)||Nrd(x1)|sAdx ≤ Ce−N‖T‖

for all sufficiently regular T satisfying α(T ) ≥ ε0 ‖ T ‖ for any α ∈ ∆G
P0

.

For x ∈ H(F )\H(A), define

kf,G(x) :=
∑
o∈O

kf,G,o(x) =
∑

X∈s(F )

f(x−1Xx)

and

(4.2.1) kTf (x) :=
∑
o∈O

kTf,o(x).

Corollary 4.13. Let f ∈ S(s(A)) and s ∈ R. Fix any two positive real numbers ε0 and N . Then
there exists a constant C such that∫

H(F )\H(A)∩G(A)1

|kTf (x)− FG(x, T )kf,G(x)||Nrd(x1)|sAdx ≤ Ce−N‖T‖

for all sufficiently regular T satisfying α(T ) ≥ ε0 ‖ T ‖ for any α ∈ ∆G
P0

.

Proof of Proposition 4.12. Let P be a relatively standard parabolic subgroup of G such that
P1 ⊆ P ⊆ P2. For any X ∈ mP (F ) ∩ o, there exists a unique relatively standard parabolic subgroup R

of G such that P1 ⊆ R ⊆ P and X ∈ (mP (F ) ∩ r(F ) ∩ o)−

( ⋃
P1⊆Q(R

mP (F ) ∩ q(F ) ∩ o

)
. Write

m̃RP1
:= mR −

 ⋃
{Q:P1⊆Q(R}

mR ∩ q


and

nPR := nR ∩mP .

By Corollary 3.6, we have

(mP (F ) ∩ r(F ) ∩ o)−

 ⋃
P1⊆Q(R

mP (F ) ∩ q(F ) ∩ o

 = (m̃RP1
(F ) ∩ o)⊕ ((nPR ∩ s)(F )).

Hence

kf,P,o(x) =
∑

X∈mP (F )∩o

∫
nP∩s(A)

f(x−1(X + U)x)dU

=
∑

{R:P1⊆R⊆P}

∑
ξ∈m̃RP1

(F )∩o

∑
X∈(nPR∩s)(F )

∫
(nP∩s)(A)

f(x−1(ξ +X + U)x)dU.

Denote by P the parabolic subgroup of G opposite to P and write

nPR := nR ∩mP .

Note that the restriction of 〈·, ·〉 (defined in (3.5.1)) to ((nPR∩s)(A))×((nPR∩s)(A)) is also non-degenerate.
For any ξ ∈ (mR ∩ s)(A), applying the Poisson summation formula to the Bruhat-Schwartz function∫

(nP∩s)(A)
f(x−1(ξ + ·+ U)x)dU , we get∑

X∈(nPR∩s)(F )

∫
(nP∩s)(A)

f(x−1(ξ +X + U)x)dU =
∑

X̂∈(nPR∩s)(F )

Φx,Rξ (X̂),
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where the partial Fourier transform Φx,Rξ of
∫

(nP∩s)(A)
f(x−1(ξ + ·+ U)x)dU is defined by

∀X̂ ∈ (nPR ∩ s)(A),Φx,Rξ (X̂) :=

∫
(nPR∩s)(A)

(∫
(nP∩s)(A)

f(x−1(ξ +X + U)x)dU

)
Ψ(〈X, X̂〉)dX.

Since 〈U, X̂〉 = 0 for U ∈ (nP ∩ s)(A) and X̂ ∈ (nPR ∩ s)(A), as well as nR = nP ⊕ nPR, we have

∀X̂ ∈ (nPR ∩ s)(A),Φx,Rξ (X̂) =

∫
(nR∩s)(A)

f(x−1(ξ + U)x)Ψ(〈U, X̂〉)dU,

whose expression is actually independent of P .
To sum up,

kf,P,o(x) =
∑

{R:P1⊆R⊆P}

∑
ξ∈m̃RP1

(F )∩o

∑
X̂∈(nPR∩s)(F )

Φx,Rξ (X̂).

Hence

kP1,P2,o(x) =
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)kf,P,o(x)

=
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)

 ∑
{R:P1⊆R⊆P}

∑
ξ∈m̃RP1

(F )∩o

∑
X̂∈(nPR∩s)(F )

Φx,Rξ (X̂)


=

∑
{R:P1⊆R⊆P2}

∑
ξ∈m̃RP1

(F )∩o

 ∑
{P :R⊆P⊆P2}

(−1)dim(AP /AG)
∑

X̂∈(nPR∩s)(F )

Φx,Rξ (X̂)


For a relatively standard parabolic subgroup P3 of G containing R, we write

(nP3

R )′ := nP3

R −

 ⋃
{Q:R⊆Q(P3}

nQR

 .

Then ∑
X̂∈(nPR∩s)(F )

Φx,Rξ (X̂) =
∑

{P3:R⊆P3⊆P}

∑
X̂∈((n

P3
R )′∩s)(F )

Φx,Rξ (X̂).

We have ∑
{P :R⊆P⊆P2}

(−1)dim(AP /AG)
∑

X̂∈(nPR∩s)(F )

Φx,Rξ (X̂)

=
∑

{P :R⊆P⊆P2}

(−1)dim(AP /AG)
∑

{P3:R⊆P3⊆P}

∑
X̂∈((n

P3
R )′∩s)(F )

Φx,Rξ (X̂)

=(−1)dim(AP2
/AG)

∑
{P3:R⊆P3⊆P2}

∑
X̂∈((n

P3
R )′∩s)(F )

Φx,Rξ (X̂)
∑

{P :P3⊆P⊆P2}

(−1)dim(AP /AP2
).

From [3, Proposition 1.1], we know that∑
{P :P3⊆P⊆P2}

(−1)dim(AP /AP2
) =

{
1, if P3 = P2;
0, otherwise.

We obtain∑
{P :R⊆P⊆P2}

(−1)dim(AP /AG)
∑

X̂∈(nPR∩s)(F )

Φx,Rξ (X̂) = (−1)dim(AP2
/AG)

∑
X̂∈((n

P2
R )′∩s)(F )

Φx,Rξ (X̂).

Thus

kP1,P2,o(x) = (−1)dim(AP2
/AG)

∑
{R:P1⊆R⊆P2}

∑
ξ∈m̃RP1

(F )∩o

∑
X̂∈((n

P2
R )′∩s)(F )

Φx,Rξ (X̂).
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Now∑
o∈O

∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)|kP1,P2,o(x)||Nrd(x1)|sAdx

≤
∑
o∈O

∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)

 ∑
{R:P1⊆R⊆P2}

∑
ξ∈m̃RP1

(F )∩o

∑
X̂∈((n

P2
R )′∩s)(F )

|Φx,Rξ (X̂)|

 |Nrd(x1)|sAdx

=
∑

{R:P1⊆R⊆P2}

∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)

∑
ξ∈(m̃RP1

∩s)(F )

∑
X̂∈((n

P2
R )′∩s)(F )

|Φx,Rξ (X̂)||Nrd(x1)|sAdx.

We reduce ourselves to bounding

(4.2.2)

∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)

∑
ξ∈(m̃RP1

∩s)(F )

∑
X̂∈((n

P2
R )′∩s)(F )

|Φx,Rξ (X̂)||Nrd(x1)|sAdx

for any fixed relatively standard parabolic subgroup R of G such that P1 ⊆ R ⊆ P2.
By the Iwasawa decomposition and our choice of measures, we have∫

P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)

∑
ξ∈(m̃RP1

∩s)(F )

∑
X̂∈((n

P2
R )′∩s)(F )

|Φx,Rξ (X̂)||Nrd(x1)|sAdx

=

∫
KH

∫
MP1,H

(F )\MP1,H
(A)∩G(A)1

∫
NP1,H

(F )\NP1,H
(A)

FP1(m1, T )σP2

P1
(HP1

(m1)− TP1
)

·
∑

ξ∈(m̃RP1
∩s)(F )

∑
X̂∈((n

P2
R )′∩s)(F )

|Φn1m1k,R
ξ (X̂)|e−2ρP1,H

(HP1,H
(m1))|Nrd(m1,1)|sAdn1dm1dk,

where we write m1 = (m1,1,m1,2) ∈ GLp,D(A)×GLq,D(A).
By Corollary 4.10, the following subset of MP1.H

(A) ∩G(A)1⋃
B∈P(P̃0,P1)

(ωP̃0
∩MP1,H

(A)) · (A∞
P̃0

(P1,H , t0) ∩AG,∞B (P1, t0, TB)) · (KH ∩MP1,H
(A))

projects surjectively on {m1 ∈MP1,H
(F )\MP1,H

(A) ∩G(A)1|FP1(m1, T ) = 1}. Hence∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)

∑
ξ∈(m̃RP1

∩s)(F )

∑
X̂∈((n

P2
R )′∩s)(F )

|Φx,Rξ (X̂)||Nrd(x1)|sAdx

≤c1
∑

B∈P(P̃0,P1)

∫
KH

∫
[cpt⊆MP̃0

(A)1]

∫
AG,∞B (P1,t0,TB)

∫
[cpt⊆N

P2,H

P̃0
(A)]

∫
[cpt⊆NP2,H

(A)]

σP2

P1
(HP1

(a)− TP1
)

·
∑

ξ∈(m̃RP1
∩s)(F )

∑
X̂∈((n

P2
R )′∩s)(F )

|Φn2namk,R
ξ (X̂)|e−2ρP̃0

(HB(a))|Nrd(a1)|sAdn2dndadmdk,

where c1 = vol(KH ∩MP1,H
(A)) is a constant independent of T , and all the compact subsets in the

integrals are independent of T . (We use the notation [cpt ⊆ ∗] for denoting a compact subset in ∗. )

Lemma 4.14. Let x ∈ H(A), ξ ∈ (mR∩s)(A) and X̂ ∈ (nR∩s)(A). Let R ⊆ P2 be a pair of relatively
standard parabolic subgroups of G. For n2 ∈ NP2,H

(A), we have

Φn2x,R
ξ (X̂) = Φx,Rξ (X̂).

Proof of Lemma 4.14. Let U2 := n−1
2 ξn2 − ξ. Then

Φn2x,R
ξ (X̂) =

∫
(nR∩s)(A)

f(x−1n−1
2 (ξ + U)n2x)Ψ(〈U, X̂〉)dU

=

∫
(nR∩s)(A)

f(x−1(ξ + U2 + n−1
2 Un2)x)Ψ(〈U, X̂〉)dU.

Since both U2 and n−1
2 Un2 − U belong to (nP2

∩ s)(A), we have

〈U2 + n−1
2 Un2 − U, X̂〉 = 0,
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so

Φn2x,R
ξ (X̂) =

∫
(nR∩s)(A)

f(x−1(ξ + U2 + n−1
2 Un2)x)Ψ(〈U2 + n−1

2 Un2, X̂〉)dU.

Because the change of variables U2 + n−1
2 Un2 7→ U does not change the Haar measure, we obtain

Φn2x,R
ξ (X̂) = Φx,Rξ (X̂).

�

Using Lemma 4.14, we get

Φn2namk,R
ξ (X̂) = Φnamk,Rξ (X̂) = Φaa

−1namk,R
ξ (X̂).

By change of variables a−1Ua 7→ U , using the fact that

〈U, X̂〉 = 〈a−1Ua, a−1X̂a〉,
we have

Φn2namk,R
ξ (X̂) = e2ρR,+(HB(a))Φa

−1namk,R
a−1ξa (a−1X̂a),

where we denote by ρR,+ the half of the sum of weights (with multiplicities) for the action of A0 on

nR∩s. From the reduction theory (see [3, p. 944]), we know that for a satisfying σP2

P1
(HP1(a)−TP1) 6= 0,

a−1na belongs to a compact subset independent of T . In sum,∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)

∑
ξ∈(m̃RP1

∩s)(F )

∑
X̂∈((n

P2
R )′∩s)(F )

|Φx,Rξ (X̂)||Nrd(x1)|sAdx

≤c2
∑

B∈P(P̃0,P1)

sup
y∈Γ

∫
AG,∞B (P1,t0,TB)

e
(2ρR,+−2ρP̃0

)(HB(a))
σP2

P1
(HP1(a)− TP1)

·
∑

ξ∈(m̃RP1
∩s)(F )

∑
X̂∈((n

P2
R )′∩s)(F )

|Φy,Ra−1ξa(a−1X̂a)||Nrd(a1)|sAda,

where c2 is a constant independent of T , and Γ is a compact subset independent of T .
Denote by OF the ring of integers of F . Fix an F -basis for each weight space for the action of A0

on s(F ). Then we are authorised to talk about OF -points of such a weight space. Since the function
f ∈ S(s(A)) is compactly supported on finite places, there exists a positive integer N1 independent

of T such that the sums over ξ ∈ (m̃RP1
∩ s)(F ) and X̂ ∈ ((nP2

R )′ ∩ s)(F ) can be restricted to lattices
1
N1

(m̃RP1
∩ s)(OF ) and 1

N1
((nP2

R )′ ∩ s)(OF ) respectively. In fact, N1 can be made explicit as in [13, §1.9]
by replacing mR and nR in loc. cit. with mR ∩ s and nR ∩ s respectively.

Fix a Euclidean norm ‖ · ‖ on the R-linear space s(F ⊗Q R). Consider a sufficiently large integer
k > 0 to be described precisely at the end of the proof. There exists an integer m ≥ 0, a real number
kα ≥ 0 for each α ∈ ∆P2

B , and a real number c3 > 0 satisfying the following conditions (cf. [13, (4.10) in
p. 372]):

(1) if R = P2, m = 0;

(2) for all α ∈ ∆P2

B −∆R
B , kα ≥ k;

(3) for all a ∈ A∞B ,

(4.2.3)
∑

X̂∈ 1
N1

((n
P2
R )′∩s)(OF )

‖a−1X̂a‖−m ≤ c3
∏

α∈∆
P2
B

e−kαα(HB(a)).

We can choose a multi-index
−→
i whose sum of components is m. We extend the differential operator ∂

−→
i

on s(F ⊗ R) to s(A) by defining ∂
−→
i (f∞ ⊗ χ∞) := (∂

−→
i f∞)⊗ χ∞ (see Section 2.3). Write

Φx,R,
−→
i

ξ (X̂) :=

∫
(nR∩s)(A)

(∂
−→
i f)(x−1(ξ + U)x)Ψ(〈U, X̂〉)dU.

Invoking integration by parts, for X̂ 6= 0, we get

|Φy,Ra−1ξa(a−1X̂a)| = c4(y)‖a−1X̂a‖−m|Φy,R,
−→
i

a−1ξa (a−1X̂a)|,

where c4(y) is a continuous function of y.
Denote by Φ(AB ,mR∩s) the set of weights of AB in mR∩s. For any µ ∈ Φ(AB ,mR∩s), let mµ be the

corresponding weight space. From [53, §41], we know that there exists a function φµ ∈ S(mµ(A)) for each
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µ ∈ Φ(AB ,mR∩s) and a function φnR∩s ∈ S((nR∩s)(A)) such that for all ξ+U ∈ (mR∩s)(A)⊕(nR∩s)(A)
and y ∈ Γ,

|(∂
−→
i f)(y−1(ξ + U)y)| ≤

 ∏
µ∈Φ(AB ,mR∩s)

φµ(ξµ)

φnR∩s(U),

where ξµ denotes the projection of ξ to mµ(A).
Now ∑

ξ∈(m̃RP1
∩s)(F )

∑
X̂∈((n

P2
R )′∩s)(F )

|Φy,Ra−1ξa(a−1X̂a)|

=
∑

ξ∈ 1
N1

(m̃RP1
∩s)(OF )

∑
X̂∈ 1

N1
((n

P2
R )′∩s)(OF )

|Φy,Ra−1ξa(a−1X̂a)|

=
∑

ξ∈ 1
N1

(m̃RP1
∩s)(OF )

∑
X̂∈ 1

N1
((n

P2
R )′∩s)(OF )

c4(y)‖a−1X̂a‖−m|Φy,R,
−→
i

a−1ξa (a−1X̂a)|

≤c5
∑

ξ∈ 1
N1

(m̃RP1
∩s)(OF )

 ∏
µ∈Φ(AB ,mR∩s)

φµ(µ(a)−1ξµ)

 · ∑
X̂∈ 1

N1
((n

P2
R )′∩s)(OF )

‖a−1X̂a‖−m

≤c5c3
∑

ξ∈ 1
N1

(m̃RP1
∩s)(OF )

 ∏
µ∈Φ(AB ,mR∩s)

φµ(µ(a)−1ξµ)

 · ∏
α∈∆

P2
B

e−kαα(HB(a)),

where c5 := sup
y∈Γ

c4(y)
∫

(nR∩s)(A)
φnR∩s(U)dU , and we have used (4.2.3) in the last inequality. Thus∫

P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)

∑
ξ∈(m̃RP1

∩s)(F )

∑
X̂∈((n

P2
R )′∩s)(F )

|Φx,Rξ (X̂)||Nrd(x1)|sAdx

≤c2c5c3
∑

B∈P(P̃0,P1)

∫
AG,∞B (P1,t0,TB)

e
(2ρR,+−2ρP̃0

)(HB(a))
σP2

P1
(HP1(a)− TP1)

·
∑

ξ∈ 1
N1

(m̃RP1
∩s)(OF )

 ∏
µ∈Φ(AB ,mR∩s)

φµ(µ(a)−1ξµ)

 · ∏
α∈∆

P2
B

e−kαα(HB(a))|Nrd(a1)|sAda.

From [13, p. 375], we know that for all a ∈ AG,∞B (P1, t0, TB) satisfying σP2

P1
(HP1

(a)− TP1
) 6= 0 and

α ∈ ∆P2

B , we have α(HB(a)) > t0. Denote by ΣmR∩s
B the positive weights of mR ∩ s under the action of

AB . Consider the subsets S of ΣmR∩s
B with the following property: for all α ∈ ∆R

B −∆P1

B , there exists
µ ∈ S such that its α-coordinate is > 0. Then

∑
ξ∈ 1

N1
m̃RP1
∩s(OF )

 ∏
µ∈Φ(AB ,mR∩s)

φµ(µ(a)−1ξµ)



≤
∑
S

∏
µ∈S

 ∑
ξ−∈ 1

N1
m−µ(OF )−{0}

φ−µ(µ(a)ξ−)



 ∏
µ∈Σ

mR∩s
B

 ∑
ξ+∈ 1

N1
mµ(OF )

φµ(µ(a−1)ξ+)




·

 ∑
ξ0∈ 1

N1
m0(OF )

φ0(ξ0)

 .
As in [13, p. 373], for the first and third factors, we also have

∏
µ∈S

 ∑
ξ−∈ 1

N1
m−µ(OF )−{0}

φ−µ(µ(a)ξ−)

 ≤ c6 ∏
α∈∆R

B−∆
P1
B

e−kα(HB(a))
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and ∑
ξ0∈ 1

N1
m0(OF )

φ0(ξ0) ≤ c7,

where c6 and c7 are constants independent of T and a. One may note that our bound for the second
factor is slightly different from [13, (4.14) in p. 373]. Actually we get

∏
µ∈Σ

mR∩s
B

 ∑
ξ+∈ 1

N1
mµ(OF )

φµ(µ(a−1)ξ+)

 ≤ c8e(2ρB,+−2ρR,+)(HB(a)),

where c8 is a constant independent of T . However, we claim that this discrepancy will be unimportant
when we follow the rest of the proof of [13, p. 375], as mentioned in [61, end of Theorem 3.7]. In fact,
it suffices to add a factor

e
(2ρB,+−2ρP̃0

)(HB(a))|Nrd(a1)|sA = e
(2ρB,+−2ρP̃0

)(HB(a))

(
|Nrd(a1)|1/pA

|Nrd(a2)|1/qA

) pq
p+q s

in the form of
∏

α∈∆G
B

ecαα(HB(a)) to [13, (4.17) in p. 375], where cα are constant coefficients. This factor

only results in an extra factor ec9‖T‖+c10t to the integral in [13, (4.18) in p. 375], where c9 and c10 are
constant coefficients (here we have used [3, Corollary 6.2]). Since we can choose sufficiently large k, it
does not matter. Hence we complete the argument of our claim and conclude. �

5. Exponential polynomial distributions

Let T be sufficiently regular, o ∈ O and η be the quadratic character of A×/F× attached to a
quadratic field extension E/F . For f ∈ S(s(A)) and s ∈ C, define

(5.0.1) JG,To (η, s, f) :=

∫
H(F )\H(A)∩G(A)1

kTf,o(x)η(Nrd(x))|Nrd(x1)|sAdx

and

JG,T (η, s, f) :=

∫
H(F )\H(A)∩G(A)1

kTf (x)η(Nrd(x))|Nrd(x1)|sAdx,

where kTf,o(x) and kTf (x) are defined by (4.0.1) and (4.2.1) respectively, and we write x = (x1, x2) ∈
GLp,D(A)×GLq,D(A). From Theorem 4.11, we know that JG,To (η, s, ·) and JG,T (η, s, ·) are well-defined
distributions on S(s(A)) and that

JG,T (η, s, f) =
∑
o∈O

JG,To (η, s, f),

which is an analogue of the geometric side of Arthur’s trace formula.

5.1. A generalised case in the product form. Let Q be a relatively standard parabolic subgroup
of G. Then

MQ ' GLp1+q1,D × · · · ×GLpl+ql,D
and

MQH ' GLp1,D × · · · ×GLpl,D ×GLq1,D × · · · ×GLql,D,

where
l∑
i=1

pi = p,
l∑
i=1

qi = q and we allow pi or qi to be zero. The tangent space of MQ/MQH at the

neutral element is

mQ ∩ s '
⊕

{1≤i≤l|piqi 6=0}

(
0 Matpi×qi,D

Matqi×pi,D 0

)
.

The conjugate action of MQH (F ) on (mQ ∩ s)(F ) can be described as follows:

(1) if piqi 6= 0,

(
GLpi(D)

GLqi(D)

)
acts on

(
0 Matpi×qi(D)

Matqi×pi(D) 0

)
by conjugation;

(2) if piqi = 0,

(
GLpi(D)

GLqi(D)

)
acts on 0 (viewed as a 0-dimensional vector space) trivially.
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We may generalise integrability in last section to the product setting here whose proof is similar.
Define a relation of equivalence on (mQ ∩ s)(F ) which is similar to that on s(F ) on each component.

We denote by OmQ∩s the set of equivalent classes for this relation. For o ∈ O, the intersection o∩mQ(F )
is a finite (perhaps empty) union of classes o1, · · ·, ot ∈ OmQ∩s. Fix the minimal parabolic subgroup

P̃ ′0 := P̃0 ∩MQH = P̃0 ∩MQ of MQH and its Levi factor M0. We say that a parabolic subgroup P ′

of MQ is semi-standard (resp. relatively standard) if M0 ⊆ P ′ (resp. P̃ ′0 ⊆ P ′). Notice that there
exists a bijection from the set of semi-standard (resp. relatively standard) parabolic subgroups of G
contained in Q to the set of semi-standard (resp. relatively standard) parabolic subgroups of MQ given
by P 7→ P ∩MQ, whose inverse is given by P ′ 7→ P ′NQ.

Choose ςQ ∈ ΩG (not unique) such that ςQP0 ⊆ Q. Fix the minimal semi-standard parabolic
subgroup P ′0 := (ςQP0) ∩MQ of MQ depending on the choice of ςQ. For any semi-standard parabolic
subgroup P ′ of MQ and T ∈ a0, denote by TP ′ the projection of sT in aP ′ , where s ∈ ΩMQ such that
sP ′0 ⊆ P ′. For s ∈ ΩMQ and a semi-standard parabolic subgroup P ⊆ Q of G, we see that sP ′0 ⊆ P ∩MQ

if and only if sςQP0 ⊆ P . Then (ςQT )P∩MQ
= TP which is independent of the choice of ςQ. This is

also the reason why we introduce ςQ. If T ∈ a+
P0

is sufficiently regular with respect to P0 ⊆ G, then

ςQT ∈ a+
P ′0

is sufficiently regular with respect to P ′0 ⊆MQ.

Let f ′ ∈ S((mQ∩s)(A)), P ′ be a relatively standard parabolic subgroup of MQ and 1 ≤ j ≤ t. Write
P ′H := P ′ ∩MQH = P ′ ∩H. For x ∈MP ′H

(F )NP ′H (A)\MQH (A), define

(5.1.1) k
MQ

f ′,P ′,oj
(x) :=

∑
X∈mP ′ (F )∩oj

∫
(nP ′∩s)(A)

f ′(x−1(X + U)x)dU.

For T ∈ a0 and x ∈MQH (F )\MQH (A), define

kQ,Tf ′,oj
(x) :=

∑
{P ′:P̃ ′0⊆P ′}

(−1)dim(AP ′/AMQ )
∑

δ∈P ′H(F )\MQH
(F )

τ̂
MQ

P ′ (HP ′(δx)− TP ′) · k
MQ

f ′,P ′,oj
(δx).

For sufficiently regular T ∈ a+
P0

and {si}1≤i≤l ∈ Cl, define

JQ,Toj (η, {si}, f ′) :=

∫
MQH

(F )\MQH
(A)∩MQ(A)1

k
Q,ςQT
f ′,oj

(x)η(Nrd(x))
∏

1≤i≤l

|Nrd(xi,1)|siA dx,

where we write x = (x1, ..., xl) ∈ GLp1+q1,D(A)× · · ·×GLpl+ql,D(A) and xi = (xi,1, xi,2) ∈ GLpi,D(A)×
GLqi,D(A). As explained above, k

Q,ςQT
f ′,oj

and JQ,Toj are independent of the choice of ςQ. Then we have

well-defined distributions JQ,Toj (η, {si}, ·) on S((mQ ∩ s)(A)). It only depends on the projection of ςQT

to aQςQP0
and does not depend on TQ. Now we define

(5.1.2) JQ,To :=

t∑
j=1

JQ,Toj

and

JQ,T :=
∑
o∈O

JQ,To .

For f ∈ S(s(A)), define fηQ ∈ S((mQ ∩ s)(A)) by

(5.1.3) ∀X ∈ (mQ ∩ s)(A), fηQ(X) :=

∫
KH

∫
(nQ∩s)(A)

f(k−1(X + V )k)η(Nrd(k))dV dk.

5.2. ω-stable parabolic subgroups. In our case, we can embed G into g in the standard way.
For any linear subspace v of g, we denote by v× the intersection of v and G in g. Assume that p = q. Let

us denote n := p = q. Then s×(F ) is the union of classes in O×. Let ω :=

(
0 1n
1n 0

)
∈ G(F ). By the

notation in Section 3.4, ω is the element in G exchanging ei and fi for all 1 ≤ i ≤ n. Then ωP̃0ω
−1 = P̃0.

We say that a semi-standard parabolic subgroup Q of G is “ω-stable” if ωQω−1 = Q. By Chevalley’s
theorem, this condition is equivalent to ω ∈ Q. For a relatively standard parabolic subgroup Q of G, we
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see that Q is ω-stable if and only if pi = qi for any 1 ≤ i ≤ l; an illustrating example for l = 2 looks like

Q =


∗ ∗ ∗ ∗
0 ∗ 0 ∗
∗ ∗ ∗ ∗
0 ∗ 0 ∗


×

.

Notice that there is a bijection Pn 7→
(
pn pn
pn pn

)×
from the set of standard parabolic subgroups in

GLn,D (namely containing the group of upper triangular matrices) to the set of ω-stable relatively
standard parabolic subgroups in G. For Q ⊆ R a pair of relatively standard parabolic subgroups of G,
one sees that “Q is ω-stable” implies “R is ω-stable”, but “R is ω-stable” does not imply “Q is ω-stable”.
For any relative standard parabolic subgroup Q of G, define

Q
ω-st

:=
⋂

{R:Q⊆R,ωRω−1=R}

R,

which is the minimal ω-stable parabolic subgroup of G containing Q.
Denote by ρQ,+ the half of the sum of weights (with multiplicities) for the action of A0 on nQ ∩ s.

We see that ρQ,+ = ρQ− ρQH and that for Q ⊆ R a pair of relatively standard parabolic subgroup of G,
the restriction of (2ρQ,+ − 2ρQH )

∣∣
aQ

to aR equals (2ρR,+ − 2ρRH )
∣∣
aR

.

Proposition 5.1. Assume that p = q = n. Let o ∈ O. The following three conditions are equivalent:

(1) o ∈ O×;

(2) for all relatively standard parabolic subgroup Q of G, if o ∩ q(F ) 6= ∅, then Q is ω-stable;

(3) for all relatively standard parabolic subgroup Q of G, if o ∩mQ(F ) 6= ∅, then Q is ω-stable.

Proof. The direction (2)⇒(3) is trivial. We actually have (2)⇔(3) from Proposition 3.5.
Next, we prove the direction (1)⇒(2). We assume that o ∈ O× and that o ∩ q(F ) 6= ∅ for some

relatively standard parabolic subgroup Q of G. If Q is not ω-stable, let k be the minimal integer such
that 1 ≤ k ≤ l − 1 and that ∑

1≤i≤k

pi −
∑

1≤i≤k

qi 6= 0.

Without loss of generality, we may assume that∑
1≤i≤k

pi −
∑

1≤i≤k

qi < 0.

Let

(
0 A
B 0

)
∈ o ∩ q(F ). Then A ∈ gln(D) is in the form of

(
∗ ∗
0 ∗

)
, where the size of the zero matrix

in the lower left corner is at least

( ∑
k+1≤i≤l

pi

)
×
(

1 +
∑

k+1≤i≤l
pi

)
. Therefore, A is not invertible, which

contradicts with o ∈ O×. This establishes (1)⇒(2).
Finally, we prove the direction (3)⇒(1). We assume (3). Suppose that o /∈ O×. Let P (λ) :=

PrdAB(λ), where

(
0 A
B 0

)
is any element in o. By [56, Proposition 5], P (λ) = λdR(λ), where R(λ) =

PrdC(λ) for some C ∈ GLn−1(D). Let Q be the relative standard parabolic subgroup of G containing

elements of the form

(
∗ ∗
0 ∗

)×
, where the size of the zero matrix in the lower left corner is 1× (n− 1).

Then


0 0 1n−1 0
0 0 0 0
C 0 0 0
0 0 0 0

 ∈ o ∩mQ(F ), which contradicts with (3). This shows (3)⇒(1). �

Lemma 5.2. Assume that p = q = n. Let Q be a relatively standard parabolic subgroup of G. For all

$∨ ∈ ∆̂∨Q, we have (2ρQ,+ − 2ρQH )($∨) ≥ 0. Moreover, 2ρQ,+ − 2ρQH viewed as an element of (aGQ)∗

is zero if and only if Q is ω-stable.

Proof. We use the notation in Section 3.4. Put e∗i ∈ a∗0 (resp. f∗i ∈ a∗0) to be the character of the
action of A0 on ei (resp. fi). Write e∨i ∈ a0 (resp. f∨i ∈ a0) to be the dual basis, i.e., e∗i (e

∨
j ) = δij
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(resp. f∗i (f∨j ) = δij) for 1 ≤ i, j ≤ n. A basis of aQ is given by h∨i := e∨p1+···+pi−1+1 + · · ·+ e∨p1+···+pi +

f∨q1+···+qi−1+1 + · · ·+ f∨q1+···+qi for 1 ≤ i ≤ l. Write h∗i ∈ (aQ)∗ to be the dual basis. Denote

$∨k :=

l∑
i=k+1

(pi + qi)

2n
(h∨1 + · · ·+ h∨k )−

k∑
i=1

(pi + qi)

2n
(h∨k+1 + · · ·+ h∨l ).

Recall that

(∆̂G
Q)∨ = {$∨k |1 ≤ k ≤ l − 1}

is a basis of aGQ. We can also see that

2ρQ,+
∣∣
aQ

= dimF (D)
∑

1≤i<j≤l

(piqj + qipj)(h
∗
i − h∗j )

and that

2ρQH
∣∣
aQ

= dimF (D)
∑

1≤i<j≤l

(pipj + qiqj)(h
∗
i − h∗j ),

so

(2ρQ,+ − 2ρQH )
∣∣
aQ

= dimF (D)
∑

1≤i<j≤l

(pi − qi)(qj − pj)(h∗i − h∗j ).

Since
l∑
i=1

pi =
l∑
i=1

qi = n, we have

(h∗i − h∗j )($∨k ) =

{
0, if k + 1 ≤ i < j ≤ l or 1 ≤ i < j ≤ k;

1, if 1 ≤ i ≤ k and k + 1 ≤ j ≤ l.

Then

(2ρQ,+ − 2ρQH )($∨k ) = dimF (D)
∑

1≤i≤k
k+1≤j≤l

(pi − qi)(qj − pj)

= dimF (D)

 ∑
1≤i≤k

pi −
∑

1≤i≤k

qi

 ∑
k+1≤j≤l

qj −
∑

k+1≤j≤l

pj


= dimF (D)

 ∑
1≤i≤k

pi −
∑

1≤i≤k

qi

2

≥ 0.

It is clear that (2ρQ,+ − 2ρQH )($∨k ) = 0 for all 1 ≤ k ≤ l − 1 if and only if pi = qi for all 1 ≤ i ≤ l. �

5.3. Exponential polynomials. Let T1, T2 ∈ a0. Following [5, §2], define the function ΓP (T1, T2)
inductively on dim(AP /AG) by setting

τ̂GP (T1 − T2) =
∑

{Q:P⊆Q}

(−1)dim(AQ/AG)τ̂QP (T1)ΓQ(T1, T2)

for any relatively standard parabolic subgroup P of G. This definition can be explicitly given by [5, (2.1)
in p. 13] and only depends on the projections of T1, T2 onto aGP . For T = (t1, ..., tp+q) ∈ a0, we denote
Σ1(T ) := t1 + ... + tp. If we use the notation in Section 3.4 and put e∗i ∈ a∗0 (resp. f∗i ∈ a∗0) to be the
character of the action of A0 on ei (resp. fi), it is equivalent to say that Σ1 =

∑
1≤i≤p e

∗
i . For T2 ∈ aQ

and s ∈ C, write

(5.3.1) pQ,s(T2) :=

∫
aGQ

e(2ρQ,+−2ρQH+sΣ1)(T1)ΓQ(T1, T2)dT1.

When p = q = n, s = 0 and Q is ω-stable, it is reduced to

pQ,0(T2) =

∫
aGQ

ΓQ(T1, T2)dT1

by Lemma 5.2.
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For Q ⊆ R a pair of relatively standard parabolic subgroups of G, denote by Z(∆̂R
Q)∨ the lattice

generated by (∆̂R
Q)∨ in aRQ and by Z(∆G

R)∨ the lattice generated by (∆G
R)∨ in aGR. Following [5, §2], for

λ ∈ a∗Q,C := a∗Q ⊗R C, define

θ̂RQ(λ) := vol(aRQ
/
Z(∆̂R

Q)∨)−1
∏

$∨∈(∆̂R
Q)∨

λ($∨)

and

θGR(λ) := vol(aGR
/
Z(∆G

R)∨)−1
∏

α∨∈(∆G
R)∨

λ(α∨).

Proposition 5.3. Let Q be a relatively standard parabolic subgroup of G, T2 ∈ aQ and s ∈ C. The
function T1 7→ ΓQ(T1, T2) is compactly supported on aGQ. Moreover, the function T2 7→ pQ,s(T2) is an

exponential polynomial in T2; more precisely, there exists a polynomial pQ,R,s (not necessarily unique)
on aGR of degree ≤ dim(AQ/AG) for each relatively standard parabolic subgroup R containing Q such that

pQ,s(T2) =
∑

{R:Q⊆R}

e(2ρR,+−2ρRH+sΣ1)(TG2,R)pQ,R,s(T
G
2,R),

where we write TG2,R for the projection of T2 ∈ aQ in aGR via the decomposition aQ = aRQ⊕aGR⊕aG. When

p = q = n and s = 0, the purely polynomial term of pQ,0(T2) is given by∑
{R:Q⊆R,ωRω−1=R}

pQ,R,0(TG2,R),

which is a homogeneous polynomial in T2 of degree dim(A
Q
ω-st/AG); in particular, if Q is ω-stable, then

pQ,0(T2) is a homogeneous polynomial in T2 of degree dim(AQ/AG).

Proof. The first statement is [5, Lemmas 2.1]. First let us prove the second one.
From [5, Lemma 2.2], we know that the integral∫

aGQ

eλ(T1)ΓQ(T1, T2)dT1

is an entire function in λ ∈ a∗Q,C, and its value is given by∑
{R:Q⊆R}

(−1)dim(AQ/AR)eλ(TG2,R)θ̂RQ(λ)−1θGR(λ)−1

when the latter expression makes sense.

Fix ε ∈ a∗Q,C such that θ̂RQ(ε) 6= 0 and θGR(ε) 6= 0 for all relatively standard parabolic subgroups R

containing Q. Then for t ∈ R× whose absolute value is small enough, we also have θ̂RQ(2ρQ,+ − 2ρQH +

sΣ1 + tε) 6= 0 and θGR(2ρQ,+ − 2ρQH + sΣ1 + tε) 6= 0 for all relatively standard parabolic subgroups R
containing Q. Let λ = 2ρQ,+ − 2ρQH + sΣ1 + tε in the formula above, and we obtain

pQ(T2) = lim
t 7→0

∑
{R:Q⊆R}

(−1)dim(AQ/AR)e(2ρQ,+−2ρQH+sΣ1+tε)(TG2,R)θ̂RQ(2ρQ,+ − 2ρQH + sΣ1 + tε)−1

· θGR(2ρQ,+ − 2ρQH + sΣ1 + tε)−1.

Since the restriction of 2ρQ,+ − 2ρQH + sΣ1 to aR equals 2ρR,+ − 2ρRH + sΣ1, we get

e(2ρQ,+−2ρQH+sΣ1)(TG2,R) = e(2ρR,+−2ρRH+sΣ1)(TG2,R).

We can put pQ,R,s(T
G
2,R) to be the constant term of the Laurent series development around t = 0 of

t 7→ (−1)dim(AQ/AR)e(tε)(TG2,R)θ̂RQ(2ρQ,+ − 2ρQH + sΣ1 + tε)−1θGR(2ρQ,+ − 2ρQH + sΣ1 + tε)−1.

Then pQ,R,s(T
G
2,R) is a polynomial in TG2,R of degree ≤ dim(AQ/AG). Hence we prove the existence in

the second statement.
Now let p = q = n and s = 0. From Lemma 5.2, we know that the purely polynomial term of pQ,0

is given by ∑
{R:Q⊆R,ωRω−1=R}

pQ,R,0(TG2,R).
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Next we compute the degree of pQ,R,0 that we chose above for each ω-stable parabolic subgroup R
containing Q. Denote

N1 := ]{$∨ ∈ (∆̂R
Q)∨ : (2ρQ,+ − 2ρQH )($∨) = 0}

and

N2 := ]{α∨ ∈ (∆G
R)∨ : (2ρQ,+ − 2ρQH )(α∨) = 0},

where ] means the cardinality of a finite set. Then

deg(pQ,R,0) = N1 +N2.

Recall that both of (∆̂G
R)∨ and (∆G

R)∨ are bases of aGR. Since R is relatively standard and ω-stable, by
Lemma 5.2, we have

N2 = dim(AR/AG).

Keep the notation as in the proof of Lemma 5.2 for Q. Since R is relatively standard and ω-stable, by
Lemma 5.2, we may suppose that R is the stabiliser in G of the flag

0 ( 〈e1, ···, er1 , f1, ···, fr1〉D ( 〈e1, ···, er1+r2 , f1, ···, fr1+r2〉D ( ... ( 〈e1, ···, er1+···+rl′ , f1, ···, fr1+···+rl′ 〉D.
The fact that Q ⊆ R tells us that both of the partitions (p1, · · ·, pl) and (q1, · · ·, ql) are refinements of
the partition (r1, · · ·, rl′) of n, and that every ri is divided into the same number of segments in these
two refinements. Then

(∆̂R
Q)∨ =

{
projection of $∨k ∈ (∆̂G

Q)∨ to aRQ

∣∣∣∣1 ≤ k ≤ l − 1,

k∑
i=1

(pi + qi) 6=
j∑
i=1

2ri∀1 ≤ j ≤ l′ − 1

}

=

{
projection of $∨k ∈ (∆̂G

Q)∨ to aRQ

∣∣∣∣1 ≤ k ≤ l − 1,@1 ≤ j ≤ l′ − 1s.t.

k∑
i=1

pi =

k∑
i=1

qi =

j∑
i=1

ri

}
.

Because the restriction of 2ρQ,+ − 2ρQH to aR equals 2ρR,+ − 2ρRH and R is relatively standard and
ω-stable, by Lemma 5.2, we do not need the projection, i.e.,

(2ρQ,+ − 2ρQH )
(

projection of $∨k ∈ (∆̂G
Q)∨ to aRQ

)
= (2ρQ,+ − 2ρQH )

(
$∨k ∈ (∆̂G

Q)∨
)
.

From the proof of Lemma 5.2, for any 1 ≤ k ≤ l, we have (2ρQ,+ − 2ρQH )($∨k ) = 0 if and only if
k∑
i=1

pi =
k∑
i=1

qi. We can also see that Q
ω-st

is the ω-stable parabolic subgroup R containing Q with

maximal l′ := dim(AR). To sum up, we have

N1 = dim(A
Q
ω-st/AR).

Hence for each ω-stable parabolic subgroup R containing Q,

deg(pQ,R,0) = N1 +N2 = dim(A
Q
ω-st/AR) + dim(AR/AG) = dim(A

Q
ω-st/AG).

The assertion about the particular case where Q is ω-stable is [5, Lemma 2.2] combined with Lemma
5.2; it can also be read from the results above that we have proved. �

5.4. Quantitive behaviour in T . For a relatively standard parabolic subgroup Q of G, let

{sQi }1≤i≤l ∈ Zl be the explicit constants determined by

(5.4.1) ∀x ∈MQH (A) ∩MQ(A)1,
∏

1≤i≤l

|Nrd(xi,1)|s
Q
i

A = e(2ρQ,+−2ρQH )(HQH (x)),

where we write x = (x1, ..., xl) ∈ GLp1+q1,D(A)× · · ·×GLpl+ql,D(A) and xi = (xi,1, xi,2) ∈ GLpi,D(A)×
GLqi,D(A). If piqi = 0 for some 1 ≤ i ≤ l, we shall take |Nrd(xi,1)|s

Q
i

A = 1 and sQi = 0 by convention.
Then such constants are unique.

Proposition 5.4. Let Q be a relatively standard parabolic subgroup of G. If piqi 6= 0 for some
1 ≤ i ≤ l, then

sQi = 2d

(∑
k<i

(pk − qk) +
∑
k>i

(qk − pk)

)
.

When p = q = n, if Q is ω-stable, then sQi = 0 for all 1 ≤ i ≤ l.

Proof. Assume that piqi 6= 0 for some 1 ≤ i ≤ l. Let x ∈MQH (A). We have
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(1) the contribution of xi,1 to e2ρQ,+(HQH (x)) is the d
( ∑
k>i

qk −
∑
k<i

qk

)
-th power of |Nrd(xi,1)|A;

(2) the contribution of xi,1 to e2ρQH (HQH (x)) is the d
( ∑
k>i

pk −
∑
k<i

pk

)
-th power of |Nrd(xi,1)|A;

(3) the contribution of xi,2 to e2ρQ,+(HQH (x)) is the d
( ∑
k>i

pk −
∑
k<i

pk

)
-th power of |Nrd(xi,2)|A;

(4) the contribution of xi,2 to e2ρQH (HQH (x)) is the d
( ∑
k>i

qk −
∑
k<i

qk

)
-th power of |Nrd(xi,2)|A.

In sum, the contribution of xi to e(2ρQ,+−2ρQH )(HQH (x)) is the product of the d
( ∑
k<i

(pk−qk)+
∑
k>i

(qk−pk)
)

-

th power of |Nrd(xi,1)|A and the d
( ∑
k<i

(qk − pk) +
∑
k>i

(pk − qk)
)

-th power of |Nrd(xi,2)|A.

Now let x ∈ MQH (A) ∩ MQ(A)1. Then |Nrd(xi,1)Nrd(xi,2)|A = |Nrd(xi)|A = 1. Therefore, the

contribution of xi to e(2ρQ,+−2ρQH )(HQH (x)) is the 2d
( ∑
k<i

(pk−qk)+
∑
k>i

(qk−pk)
)

-th power of |Nrd(xi,1)|A.

We have proved the first statement.
The second statement is nothing but a special case of the first one, since we have pk = qk for 1 ≤ k ≤ l

in this case. �

Theorem 5.5. Let T ′ be sufficiently regular, o ∈ O and f ∈ S(s(A)). Then for all sufficiently regular
T and s ∈ C, we have

JG,To (η, s, f) =
∑

{Q:P̃0⊆Q}

pQ,s(TQ − T ′Q)e(2ρQ,+−2ρQH+sΣ1)((T ′)GQ)JQ,T
′

o (η, {sQi + s}, fηQ),

where we write (T ′)GQ for the projection of T ′Q ∈ aQ in aGQ via the decomposition aQ = aGQ ⊕ aG, the

distributions JG,To and JQ,T
′

o are defined by the formulae (5.0.1) and (5.1.2) respectively, and fηQ and

pQ,s are defined by the formulae (5.1.3) and (5.3.1) respectively.

Corollary 5.6. Let o ∈ O, f ∈ S(s(A)) and s ∈ C. Then JG,To (η, s, f) and JG,T (η, s, f) are
exponential polynomials in T for sufficiently regular T , so we can extend them to all T ∈ a0. When
p = q = n and s = 0, their purely polynomial terms have degree ≤ n− 1; in particular, if o ∈ O× (e.g.,

o ∈ Ors), JG,To (η, 0, f) is a polynomial in T of degree ≤ n− 1 for sufficiently regular T .

Proof of Corollary 5.6. It results from Theorem 5.5, Propositions 5.3 and 5.1. �

Remark 5.7. We may extend our result to the product form in Section 5.1 by similar argument. Let
Q be a relatively standard parabolic subgroup of G. Let o ∈ O, f ′ ∈ S((mQ ∩ s)(A)) and {si}1≤i≤l ∈ Cl.
For sufficiently regular T ∈ a+

P0
, JQ,To (η, {si}, f ′) and JQ,T (η, {si}, f ′) are exponential polynomials in T

independent of TQ, so we can extend them to all T ∈ a0.

Proof of Theorem 5.5. Let P be a relatively standard parabolic subgroup ofG, δ ∈ PH(F )\H(F )
and x ∈ H(A)∩G(A)1. Substituting T1 = HP (δx)−T ′P and T2 = TP −T ′P in the definition of ΓP (T1, T2),
we get

τ̂GP (HP (δx)− TP ) =
∑

{Q:P⊆Q}

(−1)dim(AQ/AG)τ̂QP (HP (δx)− T ′P )ΓQ(HP (δx)− T ′P , TP − T ′P ).

Then

JG,To (η, s, f) =

∫
H(F )\H(A)∩G(A)1

 ∑
{P :P̃0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH(F )\H(F )

τ̂GP (HP (δx)− TP ) · kf,P,o(δx)


· η(Nrd(x))|Nrd(x1)|sAdx

=

∫
H(F )\H(A)∩G(A)1

∑
{P :P̃0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH(F )\H(F ) ∑
{Q:P⊆Q}

(−1)dim(AQ/AG)τ̂QP (HP (δx)− T ′P )ΓQ(HP (δx)− T ′P , TP − T ′P )

 kf,P,o(δx)

· η(Nrd(x))|Nrd(x1)|sAdx.
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Exchanging the order of two sums over P and Q, and decomposing the sum over PH(F )\H(F ) into two
sums over PH(F )\QH(F ) and QH(F )\H(F ), we have

JG,To (η, s, f) =
∑

{Q:P̃0⊆Q}

∫
H(F )\H(A)∩G(A)1

∑
{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈PH(F )\QH(F )

∑
δ′∈QH(F )\H(F )

τ̂QP (HP (δδ′x)− T ′P )ΓQ(HP (δδ′x)− T ′P , TP − T ′P )kf,P,o(δδ′x)η(Nrd(x))|Nrd(x1)|sAdx.

Combining the integral over H(F )\H(A)∩G(A)1 and the sum over QH(F )\H(F ) into the integral over
QH(F )\H(A) ∩G(A)1, and using the fact that

PH(F )\QH(F ) ' (PH(F ) ∩MQH (F ))\MQH (F ),

we obtain

JG,To (η, s, f) =
∑

{Q:P̃0⊆Q}

∫
QH(F )\H(A)∩G(A)1

∑
{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(PH(F )∩MQH
(F ))\MQH

(F )

τ̂QP (HP (δx)− T ′P )ΓQ(HP (δx)− T ′P , TP − T ′P )kf,P,o(δx)η(Nrd(x))|Nrd(x1)|sAdx.

By the Iwasawa decomposition and our choice of measures, we have

JG,To (η, s, f) =
∑

{Q:P̃0⊆Q}

∫
KH

∫
MQH

(F )\MQH
(A)∩MQ(A)1

∫
AG,∞Q

∫
NQH (F )\NQH (A)

∑
{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)

∑
δ∈(PH(F )∩MQH

(F ))\MQH
(F )

τ̂QP (HP (δnamk)− T ′P )ΓQ(HP (δnamk)− T ′P , TP − T ′P )

· kf,P,o(δnamk)η(Nrd(mk))|Nrd(a1m1)|sAe−2ρQH (HQH (am))dndadmdk.

Notice that

τ̂QP (HP (δnamk)− T ′P ) = τ̂QP (HP (δm) +HP (a)− T ′P ) = τ̂QP (HP (δm)− T ′P ),

and that

ΓQ(HP (δnamk)− T ′P , TP − T ′P ) = ΓQ(HQ(δnamk)− T ′Q, TQ − T ′Q) = ΓQ(HQ(a)− T ′Q, TQ − T ′Q).

In addition, by change of variables, we see that

kf,P,o(δnamk) =
∑

X∈mP (F )∩o

∫
(nP∩s)(A)

f((δnamk)−1(X + U)δnamk)dU

=
∑

X∈mP (F )∩o

∫
(nP∩s)(A)

f((δa−1namk)−1(X + a−1Ua)δa−1namk)dU

=
∑

X∈mP (F )∩o

∫
(nP∩s)(A)

f((δa−1namk)−1(X + U)δa−1namk)e2ρQ,+(HQ(a))dU

= e2ρQ,+(HQ(a))kf,P,o(δa−1namk).

Since δa−1naδ−1 ∈ NQH (A) ⊆ NPH (A) and kf,P,o is left invariant by NPH (A), we deduce that

kf,P,o(δnamk) = e2ρQ,+(HQ(a))kf,P,o(δmk).

In sum, the integrand in JG,To (η, s, f) is independent of n ∈ NQH (F )\NQH (A). We can choose the Haar
measure such that vol(NQH (F )\NQH (A)) = 1. Then

JG,To (η, s, f) =
∑

{Q:P̃0⊆Q}

(∫
AG,∞Q

|Nrd(a1)|sAe(2ρQ,+−2ρQH )(HQ(a))ΓQ(HQ(a)− T ′Q, TQ − T ′Q)da

)
∫
MQH

(F )\MQH
(A)∩MQ(A)1

∑
{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(PH(F )∩MQH
(F ))\MQH

(F )

τ̂QP (HP (δm)− T ′P )

(∫
KH

kf,P,o(δmk)η(Nrd(k))dk

)
η(Nrd(m))|Nrd(m1)|sAe−2ρQH (HQH (m))dm.
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By the definition of the Haar measure on AG,∞Q , we have∫
AG,∞Q

|Nrd(a1)|sAe(2ρQ,+−2ρQH )(HQ(a))ΓQ(HQ(a)− T ′Q, TQ − T ′Q)da

:=

∫
aGQ

e(2ρQ,+−2ρQH+sΣ1)(T1)ΓQ(T1 − T ′Q, TQ − T ′Q)dT1

=e(2ρQ,+−2ρQH+sΣ1)((T ′)GQ)

∫
aGQ

e(2ρQ,+−2ρQH+sΣ1)(T1)ΓQ(T1, TQ − T ′Q)dT1

=e(2ρQ,+−2ρQH+sΣ1)((T ′)GQ)pQ,s(TQ − T ′Q).

Since nP = nQP ⊕ nQ, by change of variables, we see that

kf,P,o(δmk) =
∑

X∈mP (F )∩o

∫
(nQP∩s)(A)

dU

∫
(nQ∩s)(A)

f((δmk)−1(X + U + V )δmk)dV

= e2ρQ,+(HQH (m))
∑

X∈mP (F )∩o

∫
(nQP∩s)(A)

dU

∫
(nQ∩s)(A)

f(k−1((δm)−1(X + U)δm+ V )k)dV,

so we can write∫
KH

kf,P,o(δmk)η(Nrd(k))dk = e2ρQ,+(HQH (m))
∑

X∈mP (F )∩o

∫
(nQP∩s)(A)

fηQ((δm)−1(X + U)δm)dU

= e2ρQ,+(HQH (m))
t∑

j=1

k
MQ

fηQ,P∩MQ,oj
(δm)

by (5.1.1). Now we can draw our conclusion by noting that

JQ,T
′

o (η, {sQi + s}, fηQ) =

t∑
j=1

∫
MQH

(F )\MQH
(A)∩MQ(A)1

∑
{P :P̃0⊆P⊆Q}

(−1)dim(AP∩MQ/AMQ )

∑
δ∈((P∩MQ)(F )∩MQH

(F ))\MQH
(F )

τ̂
MQ

P∩MQ
(HP∩MQ

(δm)− (ςQT
′)P∩MQ

)

· kMQ

fηQ,P∩MQ,oj
(δm)η(Nrd(m))|Nrd(m1)|sAe(2ρQ,+−2ρQH )(HQH (m))dm

=

∫
MQH

(F )\MQH
(A)∩MQ(A)1

∑
{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(PH(F )∩MQH
(F ))\MQH

(F )

τ̂QP (HP (δm)− T ′P )

 t∑
j=1

k
MQ

fηQ,P∩MQ,oj
(δm)

 η(Nrd(m))|Nrd(m1)|sA

· e(2ρQ,+−2ρQH )(HQH (m))dm.

�

5.5. Independence of constant terms. Let JGo (η, s, f) and JG(η, s, f) be the constant terms of

JG,To (η, s, f) and JG,T (η, s, f) respectively. We fix a common minimal Levi subgroup M0 of H and G.
Firstly, the distributions JGo (η, s, f) and JG(η, s, f) are independent of the choice of the relatively

standard minimal parabolic subgroup P0 of G at the very beginning of last section. In fact, let P ′0 be
another relatively standard minimal parabolic subgroup of G and σ ∈ ΩG such that P ′0 = σP0. Denote

by JG,TP ′0,o
(η, s, f) and JGP ′0,o

(η, s, f) the distributions obtained starting from P ′0. Then if T ∈ aP ′0 , we have

JG,TP ′0,o
(η, s, f) = JG,σ

−1T
o (η, s, f), so JGP ′0,o

(η, s, f) = JGo (η, s, f).

Secondly, the distributions JGo (η, s, f) and JG(η, s, f) are independent of the choice of the minimal

parabolic subgroup P̃0 of H. In fact, let P̃ ′0 be another minimal parabolic subgroup of H and σ ∈ ΩH

such that P̃ ′0 = σ−1P̃0. Put P ′0 := σ−1P0. Denote by JG,T
P̃ ′0,o

(η, s, f) and JG
P̃ ′0,o

(η, s, f) the distributions

obtained starting from P̃ ′0 and P ′0. We can apply the argument of [13, Proposition 4.6] after some minor

modifications here to prove that JG,To (η, s, f) = JG,σ
−1T

P̃ ′0,o
(η, s, f), so JGo (η, s, f) = JG

P̃ ′0,o
(η, s, f).
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6. Non-equivariance

Let Q be a relatively standard parabolic subgroup of G, s ∈ R and y ∈ H(A) ∩ G(A)1. For
f ∈ S(s(A)), define fηQ,s,y ∈ S((mQ ∩ s)(A)) by

(6.0.1) ∀X ∈ (mQ ∩ s)(A), fηQ,s,y(X) :=

∫
KH

∫
(nQ∩s)(A)

f(k−1(X +V )k)η(Nrd(k))pQ,s(−HQ(ky))dV dk,

where pQ,s is defined by the formula (5.3.1).

Proposition 6.1. For f ∈ S(s(A)) and y ∈ H(A) ∩ G(A)1, we denote fy(x) := f(yxy−1). Then
for all sufficiently regular T , o ∈ O and s ∈ R, we have

JG,To (η, s, fy) = η(Nrd(y))|Nrd(y1)|sA
∑

{Q:P̃0⊆Q}

e(2ρQ,+−2ρQH+sΣ1)(TGQ )JQ,To (η, {sQi + s}, fηQ,s,y),

where JG,To and JQ,To are defined by the formulae (5.0.1) and (5.1.2) respectively, {sQi }1≤i≤l ∈ Zl are
the explicit constants determined by (5.4.1), and we write TGQ for the projection of TQ ∈ aQ in aGQ via

the decomposition aQ = aGQ ⊕ aG.

For o ∈ O and f ∈ S(s(A)) (resp. f ′ ∈ S((mQ ∩ s)(A))), thanks to Corollary 5.6 (resp. Remark 5.7),

we may take the constant term JGo (η, s, f) of JG,To (η, s, f) (resp. JQo (η, {si}, f ′) of JQ,To (η, {si}, f ′)) for
s ∈ C (resp. {si}1≤i≤l ∈ Cl). When s = 0 (resp. si = 0 for all 1 ≤ i ≤ l), denote JGo (η, f) := JGo (η, 0, f)

(resp. JQo (η, f ′) := JQo (η, {0}, f ′)).

Corollary 6.2. Assume that p = q = n. Let f ∈ S(s(A)), y ∈ H(A) ∩G(A)1 and o ∈ O. We have

JGo (η, fy) = η(Nrd(y))
∑

{Q:P̃0⊆Q,ωQω−1=Q}

JQo (η, fηQ,0,y).

Proof of Corollary 6.2. We apply Proposition 6.1 to the case s = 0 and consider the constant

terms of both sides. Because JQ,To is independent of TQ, by Lemma 5.2, only ω-stable Q contribute to
the purely polynomial term. Then we apply Proposition 5.4 to the case p = q = n to conclude. �

Proof of Proposition 6.1. By definition,

JG,To (η, s, fy) =

∫
H(F )\H(A)∩G(A)1

 ∑
{P :P̃0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH(F )\H(F )

τ̂GP (HP (δx)− TP ) · kfy,P,o(δx)


· η(Nrd(x))|Nrd(x1)|sAdx,

where

kfy,P,o(δx) =
∑

X∈mP (F )∩o

∫
(nP∩s)(A)

f(y(δx)−1(X + U)δxy−1)dU = kf,P,o(δxy−1).

By change of variables, we have

JG,To (η, s, fy) =

∫
H(F )\H(A)∩G(A)1

 ∑
{P :P̃0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH(F )\H(F )

τ̂GP (HP (δxy)− TP ) · kf,P,o(δx)


· η(Nrd(xy))|Nrd(x1y1)|sAdx.

For x ∈ H(A) and P a relatively standard parabolic subgroup of G, let kP (x) be an element in KH

such that xkP (x)−1 ∈ PH(A). Then

τ̂GP (HP (δxy)− TP ) = τ̂GP (HP (δx)− TP +HP (kP (δx)y)).

Substituting T1 = HP (δx)− TP and T2 = −HP (kP (δx)y) in the definition of ΓP (T1, T2), we get

τ̂GP (HP (δxy)− TP ) =
∑

{Q:P⊆Q}

(−1)dim(AQ/AG)τ̂QP (HP (δx)− TP )ΓQ(HP (δx)− TP ,−HP (kP (δx)y)).
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Thus

JG,To (η, s, fy) =

∫
H(F )\H(A)∩G(A)1

∑
{P :P̃0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH(F )\H(F ) ∑
{Q:P⊆Q}

(−1)dim(AQ/AG)τ̂QP (HP (δx)− TP )ΓQ(HP (δx)− TP ,−HP (kP (δx)y))


· kf,P,o(δx)η(Nrd(xy))|Nrd(x1y1)|sAdx,

Exchanging the order of two sums over P and Q, and decomposing the sum over PH(F )\H(F ) into two
sums over PH(F )\QH(F ) and QH(F )\H(F ), we obtain

JG,To (η, s, fy) =
∑

{Q:P̃0⊆Q}

∫
H(F )\H(A)∩G(A)1

∑
{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈PH(F )\QH(F )

∑
δ′∈QH(F )\H(F )

τ̂QP (HP (δδ′x)− TP )ΓQ(HP (δδ′x)− TP ,−HP (kP (δδ′x)y))kf,P,o(δδ′x)η(Nrd(xy))

· |Nrd(x1y1)|sAdx.

Combining the integral over H(F )\H(A)∩G(A)1 and the sum over QH(F )\H(F ) into the integral over
QH(F )\H(A) ∩G(A)1, and using the fact that

PH(F )\QH(F ) ' (PH(F ) ∩MQH (F ))\MQH (F ),

we have

JG,To (η, s, fy) =
∑

{Q:P̃0⊆Q}

∫
QH(F )\H(A)∩G(A)1

∑
{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(PH(F )∩MQH
(F ))\MQH

(F )

τ̂QP (HP (δx)− TP )ΓQ(HP (δx)− TP ,−HP (kP (δx)y))kf,P,o(δx)η(Nrd(xy))|Nrd(x1y1)|sAdx.

By the Iwasawa decomposition and our choice of measures, we get

JG,To (η, s, fy) =
∑

{Q:P̃0⊆Q}

∫
KH

∫
MQH

(F )\MQH
(A)∩MQ(A)1

∫
AG,∞Q

∫
NQH (F )\NQH (A)

∑
{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)

∑
δ∈(PH(F )∩MQH

(F ))\MQH
(F )

τ̂QP (HP (δnamk)− TP )ΓQ(HP (δnamk)− TP ,−HP (kP (δnamk)y))

· kf,P,o(δnamk)η(Nrd(mky))|Nrd(a1m1y1)|sAe−2ρQH (HQH (am))dndadmdk.

As in the proof of Theorem 5.5, we see that

τ̂QP (HP (δnamk)− TP ) = τ̂QP (HP (δm)− TP ),

and that

kf,P,o(δnamk) = e2ρQ,+(HQ(a))kf,P,o(δmk).

In addition,

ΓQ(HP (δnamk)− TP ,−HP (kP (δnamk)y)) = ΓQ(HQ(δnamk)− TQ,−HQ(kP (δnamk)y))

= ΓQ(HQ(a)− TQ,−HQ(kQ(δnamk)y))

= ΓQ(HQ(a)− TQ,−HQ(ky)).

To sum up, the integrand in JG,To (η, s, fy) is independent of n ∈ NQH (F )\NQH (A). We can choose the
Haar measure such that vol(NQH (F )\NQH (A)) = 1. Then

JG,To (η, s, fy) =
∑

{Q:P̃0⊆Q}

∫
KH

∫
MQH

(F )\MQH
(A)∩MQ(A)1

∫
AG,∞Q

∑
{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)

∑
δ∈(PH(F )∩MQH

(F ))\MQH
(F )

τ̂QP (HP (δm)− TP )ΓQ(HQ(a)− TQ,−HQ(ky))

· e2ρQ,+(HQ(a))kf,P,o(δmk)η(Nrd(mky))|Nrd(a1m1y1)|sAe−2ρQH (HQH (am))dadmdk.
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First, let us compute the integral on AG,∞Q , which is∫
AG,∞Q

|Nrd(a1)|sAe(2ρQ,+−2ρQH )(HQ(a))ΓQ(HQ(a)− TQ,−HQ(ky))da

:=

∫
aGQ

e(2ρQ,+−2ρQH+sΣ1)(T1)ΓQ(T1 − TQ,−HQ(ky))dT1

=e(2ρQ,+−2ρQH+sΣ1)(TGQ )

∫
aGQ

e(2ρQ,+−2ρQH+sΣ1)(T1)ΓQ(T1,−HQ(ky))dT1

=e(2ρQ,+−2ρQH+sΣ1)(TGQ )pQ,s(−HQ(ky)).

Next, we consider the integral on KH , which is∫
KH

kf,P,o(δmk)η(Nrd(k))pQ,s(−HQ(ky))dk.

As in the proof of Theorem 5.5, we see that

kf,P,o(δmk) = e2ρQ,+(HQH (m))
∑

X∈mP (F )∩o

∫
(nQP∩s)(A)

dU

∫
(nQ∩s)(A)

f(k−1((δm)−1(X + U)δm+ V )k)dV,

so we can write ∫
KH

kf,P,o(δmk)η(Nrd(k))pQ,s(−HQ(ky))dk

=e2ρQ,+(HQH (m))
∑

X∈mP (F )∩o

∫
(nQP∩s)(A)

fηQ,s,y((δm)−1(X + U)δm)dU

=e2ρQ,+(HQH (m))
t∑

j=1

k
MQ

fηQ,s,y,P∩MQ,oj
(δm)

by (5.1.1). Hence

JG,To (η, s, fy) =η(Nrd(y))|Nrd(y1)|sA
∑

{Q:P̃0⊆Q}

e(2ρQ,+−2ρQH+sΣ1)(TGQ )

∫
MQH

(F )\MQH
(A)∩MQ(A)1∑

{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(PH(F )∩MQH
(F ))\MQH

(F )

τ̂QP (HP (δm)− TP )

 t∑
j=1

k
MQ

fηQ,s,y,P∩MQ,oj
(δm)

 η(Nrd(m))|Nrd(m1)|sAe(2ρQ,+−2ρQH )(HQH (m))dm.

As in the proof of Theorem 5.5, we notice that

JQ,To (η, {sQi + s}, fηQ,s,y) =

∫
MQH

(F )\MQH
(A)∩MQ(A)1

∑
{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(PH(F )∩MQH
(F ))\MQH

(F )

τ̂QP (HP (δm)− TP )

 t∑
j=1

k
MQ

fηQ,s,y,P∩MQ,oj
(δm)

 η(Nrd(m))|Nrd(m1)|sA

· e(2ρQ,+−2ρQH )(HQH (m))dm.

Then we finish the proof. �

7. An infinitesimal trace formula for Matp×q,D ⊕Matq×p,D//GLp,D ×GLq,D
Theorem 7.1. For f ∈ S(s(A)) and s ∈ R,∑

o∈O
JGo (η, s, f) =

∑
o∈O

JGo (η, s, f̂),

where f̂ is the Fourier transform of f defined by (3.5.2), and JGo (η, s, ·) denotes the constant term of

JG,To (η, s, ·).
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Proof. From the Poisson summation formula, we know that for any x ∈ H(A),∑
X∈s(F )

f(x−1Xx) =
∑

X∈s(F )

f̂(x−1Xx),

i.e.,

kf,G(x) = kf̂ ,G(x).

Using Corollary 4.13, for all sufficiently regular T satisfying α(T ) ≥ ε0 ‖ T ‖ for any α ∈ ∆P0
, we

have ∣∣∣∣∣JG,T (η, s, f)−
∫
H(F )\H(A)∩G(A)1

FG(x, T )kf,G(x)η(Nrd(x))|Nrd(x1)|sAdx

∣∣∣∣∣ ≤ C1e
−N‖T‖

and ∣∣∣∣∣JG,T (η, s, f̂)−
∫
H(F )\H(A)∩G(A)1

FG(x, T )kf̂ ,G(x)η(Nrd(x))|Nrd(x1)|sAdx

∣∣∣∣∣ ≤ C2e
−N‖T‖.

Thus

|JG,T (η, s, f)− JG,T (η, s, f̂)| ≤ (C1 + C2)e−N‖T‖.

By Corollary 5.6, we know that both of JG,T (η, s, f) and JG,T (η, s, f̂) are exponential polynomials
in T . Because we can choose N to be large enough, we deduce that

JG,T (η, s, f) = JG,T (η, s, f̂).

Since

JG,T (η, s, f) =
∑
o∈O

JG,To (η, s, f)

and

JG,T (η, s, f̂) =
∑
o∈O

JG,To (η, s, f̂),

we obtain ∑
o∈O

JG,To (η, s, f) =
∑
o∈O

JG,To (η, s, f̂).

We may conclude by taking the constant terms of both sides. �

8. The second modified kernel

In this section and the next, we shall focus on the case where p = q = n in order to get better
description for distributions associated to regular semi-simple orbits. We shall change our notation by
denoting G := GL2n,D and H := GLn,D ×GLn,D without further mention.

Let f ∈ S(s(A)), P be a relatively standard parabolic subgroup of G and o ∈ Ors (see Section 3.3).
For x ∈ PH(F )\H(A), define

jf,P,o(x) :=
∑

X∈mP (F )∩o

∑
n∈NPH (F )

f((nx)−1Xnx).

Let T ∈ a0. For x ∈ H(F )\H(A), define

jTf,o(x) :=
∑

{P :P̃0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH(F )\H(F )

τ̂GP (HP (δx)− TP ) · jf,P,o(δx).

From [3, Lemma 5.1], we know that the sum over δ ∈ PH(F )\H(F ) is finite. Recall that since o ∈ Ors ⊆
O×, if mP (F ) ∩ o 6= ∅, then P is ω-stable by Proposition 5.1. Thus the above definitions only involve
the relatively standard parabolic subgroups that are ω-stable.

Lemma 8.1. Let P be a relatively standard parabolic subgroup of G and o ∈ Ors. For X ∈ mP (F )∩o,
the map

NPH → nP ∩ s, n 7→ n−1Xn−X
is an F -isomorphism of algebraic varieties and preserves the Haar measures on A-points.
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Proof. Since P is relatively standard and ω-stable, we can suppose

P =

(
pn,D pn,D
pn,D pn,D

)×
,

where

Pn,D =


GLn1,D Matn1×n2,D · · · Matn1×nl,D

GLn2,D · · · Matn2×nl,D
. . .

...
GLnl,D

 .

Then we have

mP ∩ s =

(
mPn,D

mPn,D

)
, NPH =

(
NPn,D

NPn,D

)
, nP ∩ s =

(
nPn,D

nPn,D

)
.

Let

X =



A1

. . .

Al
B1

. . .

Bl


∈ mP (F ) ∩ o,

where Ai, Bi ∈ GLni(D) for 1 ≤ i ≤ l, and

n =



1 C12 · · · C1l

1 · · · C2l

. . .
...
1

1 D12 · · · D1l

1 · · · D2l

. . .
...
1


∈ NPH ,

where Cij , Dij ∈ Matni×nj ,D for 1 ≤ i < j ≤ l. Then

Xn−nX =



0 A1D12 − C12A2 · · · A1D1l − C1lAl
0 · · · A2D2l − C2lAl

. . .
...
0

0 B1C12 −D12B2 · · · B1C1l −D1lBl
0 · · · B2C2l −D2lBl

. . .
...
0


∈ nP∩s.

We claim that the morphism of F -affine spaces

Matni×nj ,D ⊕Matni×nj ,D → Matni×nj ,D ⊕Matni×nj ,D

(Cij , Dij) 7→ (AiDij − CijAj , BiCij −DijBj)

induces an F -linear isomorphism on F -points. In fact, since it gives an F -linear map between finite
dimensional linear spaces of the same dimension, we only need to prove that this map is injective under
base change to an algebraic closure of F . Then without loss of generality, it suffices to consider the
case where D = F . If AiDij − CijAj = BiCij −DijBj = 0, then CijAjBj = AiDijBj = AiBiCij and
DijBjAj = BiCijAj = BiAiDij . Since X is regular semi-simple, AiBi and AjBj (resp. BiAi and BjAj)
have no common eigenvalue. By the classical theory of Sylvester equation, we know that Cij = Dij = 0
and conclude.

From this claim, we know that the map

NPH → nP ∩ s, n 7→ Xn− nX
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is an F -isomorphism of algebraic varieties and preserves the Haar measures on A-points. Notice that
n−1Xn − X = n−1(Xn − nX). It is not hard to check that here n−1 functions as some translation
AiDij − CijAj 7→ AiDij − CijAj + (a polynomial of Ci′j′and Di′j′ , i

′ > i, j′ ≤ j or i′ ≥ i, j′ < j), so an
analogous assertion still holds for the map n 7→ n−1Xn−X. �

Theorem 8.2. For all sufficiently regular T , all s ∈ R and o ∈ Ors,∫
H(F )\H(A)∩G(A)1

|jTf,o(x)||Nrd(x1)|sAdx <∞,

where we write x = (x1, x2) ∈ GLn,D(A)×GLn,D(A). Moreover, for s ∈ C,

JG,To (η, s, f) =

∫
H(F )\H(A)∩G(A)1

jTf,o(x)η(Nrd(x))|Nrd(x1)|sAdx.

Proof. As in the proof of Theorem 4.11, using the left invariance of jf,P,o by PH(F ), we reduce
ourselves to proving ∫

P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)|jP1,P2,o(x)||Nrd(x1)|sAdx <∞,

where P1 ( P2 are a pair of relatively standard parabolic subgroups of G and for x ∈ P1,H(F )\H(A),
we put

jP1,P2,o(x) :=
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)jf,P,o(x).

In addition,

jf,P,o(x) =
∑

{R:P1⊆R⊆P}

∑
ξ∈m̃RP1

(F )∩o

∑
X∈(nPR∩s)(F )

∑
n∈NPH (F )

f((nx)−1(ξ +X)nx).

Applying Lemma 8.1, we get

jf,P,o(x) =
∑

{R:P1⊆R⊆P}

∑
ξ∈m̃RP1

(F )∩o

∑
X∈(nPR∩s)(F )

∑
u∈(nP∩s)(F )

f(x−1(ξ +X + u)x)

=
∑

{R:P1⊆R⊆P}

∑
ξ∈m̃RP1

(F )∩o

∑
X∈(nR∩s)(F )

f(x−1(ξ +X)x).

Hence

jP1,P2,o(x) =
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)

 ∑
{R:P1⊆R⊆P}

∑
ξ∈m̃RP1

(F )∩o

∑
X∈(nR∩s)(F )

f(x−1(ξ +X)x)


=

∑
{R:P1⊆R⊆P2}

∑
ξ∈m̃RP1

(F )∩o

 ∑
{P :R⊆P⊆P2}

(−1)dim(AP /AG)

 ∑
X∈(nR∩s)(F )

f(x−1(ξ +X)x).

By [3, Proposition 1.1], we have

jP1,P2,o(x) = (−1)dim(AP2
/AG)

∑
ξ∈m̃P2

P1
(F )∩o

∑
X∈(nP2

∩s)(F )

f(x−1(ξ +X)x).

Applying Lemma 8.1 again, we obtain

jP1,P2,o(x) = (−1)dim(AP2
/AG)

∑
ξ∈m̃P2

P1
(F )∩o

∑
n2∈NP2,H

(F )

f((n2x)−1ξn2x),

where we denote P2,H := P2 ∩H.
Decomposing the integral over x ∈ P1,H(F )\H(A)∩G(A)1 into double integrals n1 ∈ NP1,H

(F )\NP1,H
(A)

and y ∈ MP1,H
(F )NP1,H

(A)\H(A) ∩ G(A)1, and using the fact that χTP1,P2
(x) is left invariant under
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NP1,H
(A), we have

∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)|jP1,P2,o(x)||Nrd(x1)|sAdx

=

∫
MP1,H

(F )NP1,H
(A)\H(A)∩G(A)1

∫
NP1,H

(F )\NP1,H
(A)

χTP1,P2
(n1y)

·

∣∣∣∣∣∣∣
∑

ξ∈m̃P2
P1

(F )∩o

∑
n2∈NP2,H

(F )

f((n2n1y)−1ξn2n1y)

∣∣∣∣∣∣∣ |Nrd(y1)|sAdn1dy

≤
∫
MP1,H

(F )NP1,H
(A)\H(A)∩G(A)1

χTP1,P2
(y)

∑
ξ∈m̃P2

P1
(F )∩o∫

NP1,H
(F )\NP1,H

(A)

∑
n2∈NP2,H

(F )

|f((n2n1y)−1ξn2n1y)|dn1

 |Nrd(y1)|sAdy.

Since P1,H ⊆ P2,H and vol(NP2,H
(F )\NP2,H

(A)) = 1, we see that

∫
NP1,H

(F )\NP1,H
(A)

∑
n2∈NP2,H

(F )

|f((n2n1y)−1ξn2n1y)|dn1

=

∫
NP1,H

(F )\NP1,H
(A)

∫
NP2,H

(F )\NP2,H
(A)

∑
n2∈NP2,H

(F )

|f((n2nn1y)−1ξn2nn1y)|dndn1

=

∫
NP1,H

(F )\NP1,H
(A)

∫
NP2,H

(A)

|f((nn1y)−1ξnn1y)|dndn1

=

∫
NP1,H

(F )\NP1,H
(A)

∫
(nP2

∩s)(A)

|f((n1y)−1(ξ + U)n1y)|dUdn1,

where we have applied Lemma 8.1 in the last equality. Therefore

∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)|jP1,P2,o(x)||Nrd(x1)|sAdx

≤
∫
MP1,H

(F )NP1,H
(A)\H(A)∩G(A)1

χTP1,P2
(y)

∑
ξ∈m̃P2

P1
(F )∩o(∫

NP1,H
(F )\NP1,H

(A)

∫
(nP2

∩s)(A)

|f((n1y)−1(ξ + U)n1y)|dUdn1

)
|Nrd(y1)|sAdy

=

∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)

∑
ξ∈m̃P2

P1
(F )∩o

(∫
(nP2

∩s)(A)

|f(x−1(ξ + U)x)|dU

)
|Nrd(x1)|sAdx,

whose convergence results from that of the formula (4.2.2) when R = P2.
Now we begin to prove the second statement. From the first statement, now we have the right to

write ∫
H(F )\H(A)∩G(A)1

jTf,o(x)η(Nrd(x))|Nrd(x1)|sAdx

=
∑

{P1,P2:P̃0⊆P1⊆P2}

∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)jP1,P2,o(x)η(Nrd(x))|Nrd(x1)|sAdx,
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where

jP1,P2,o(x) =
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)jf,P,o(x)

=
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)

 ∑
X∈mP (F )∩o

∑
n∈NPH (F )

f((nx)−1Xnx)

 .

Decompose the integral over x ∈ P1,H(F )\H(A)∩G(A)1 into double integrals over n1 ∈ NP1,H
(F )\NP1,H

(A)

and y ∈ MP1,H
(F )NP1,H

(A)\H(A) ∩ G(A)1. Since NP1,H
(F )\NP1,H

(A) is compact, by Lemma 8.1 and
[53, §41], ∑

X∈mP (F )∩o

∑
n∈NPH (F )

|f((nn1y)−1Xnn1y)| =
∑

X∈mP (F )∩o

∑
u∈(nP∩s)(F )

|f((n1y)−1(X + u)n1y)|

is bounded on n1 ∈ NP1,H
(F )\NP1,H

(A). Then using the fact that χTP1,P2
(x) is left invariant under

NP1,H
(A), we have∫

H(F )\H(A)∩G(A)1

jTf,o(x)η(Nrd(x))|Nrd(x1)|sAdx

=
∑

{P1,P2:P̃0⊆P1⊆P2}

∫
MP1,H

(F )NP1,H
(A)\H(A)∩G(A)1

χTP1,P2
(y)

∑
{P :P1⊆P⊆P2}

(−1)dim(AP /AG)

∑
X∈mP (F )∩o

∫
NP1,H

(F )\NP1,H
(A)

∑
n∈NPH (F )

f((nn1y)−1Xnn1y)dn1

 η(Nrd(y))|Nrd(y1)|sAdy.

Since P1,H ⊆ PH and vol(NPH (F )\NPH (A)) = 1, we see that∫
NP1,H

(F )\NP1,H
(A)

∑
n∈NPH (F )

f((nn1y)−1Xnn1y)dn1

=

∫
NP1,H

(F )\NP1,H
(A)

∫
NPH (F )\NPH (A)

∑
n∈NPH (F )

f((nn2n1y)−1Xnn2n1y)dn2dn1

=

∫
NP1,H

(F )\NP1,H
(A)

∫
NPH (A)

f((nn1y)−1Xnn1y)dndn1

=

∫
NP1,H

(F )\NP1,H
(A)

∫
(nP∩s)(A)

f((n1y)−1(X + U)n1y)dUdn1,

where we have applied Lemma 8.1 in the last equality. Therefore∫
H(F )\H(A)∩G(A)1

jTf,o(x)η(Nrd(x))|Nrd(x1)|sAdx

=
∑

{P1,P2:P̃0⊆P1⊆P2}

∫
MP1,H

(F )NP1,H
(A)\H(A)∩G(A)1

χTP1,P2
(y)

∑
{P :P1⊆P⊆P2}

(−1)dim(AP /AG)

∑
X∈mP (F )∩o

(∫
NP1,H

(F )\NP1,H
(A)

∫
(nP∩s)(A)

f((n1y)−1(X + U)n1y)dUdn1

)
η(Nrd(y))|Nrd(y1)|sAdy

=
∑

{P1,P2:P̃0⊆P1⊆P2}

∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)

∑
{P :P1⊆P⊆P2}

(−1)dim(AP /AG)

·

 ∑
X∈mP (F )∩o

∫
(nP∩s)(A)

f(x−1(X + U)x)dU

 η(Nrd(x))|Nrd(x1)|sAdx

=
∑

{P1,P2:P̃0⊆P1⊆P2}

∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)kP1,P2,o(x)η(Nrd(x))|Nrd(x1)|sAdx.
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From Theorem 4.11, we are authorised to write

JG,To (η, s, f) =

∫
H(F )\H(A)∩G(A)1

kTf,o(x)η(Nrd(x))|Nrd(x1)|sAdx

=
∑

{P1,P2:P̃0⊆P1⊆P2}

∫
P1,H(F )\H(A)∩G(A)1

χTP1,P2
(x)kP1,P2,o(x)η(Nrd(x))|Nrd(x1)|sAdx,

which completes the proof. �

9. Weighted orbital integrals

As in the last section, we shall assume that p = q = n in the following discussion. Moreover, we
shall suppose that s = 0 in the orbital integral for convenience, since |Nrd(x1)|sA is not invariant under
the translation by A∞G . Recall that for o ∈ O and f ∈ S(s(A)), we denote by JGo (η, f) the constant term

of JG,To (η, 0, f).

9.1. Weyl groups. From Section 5.5, we may choose P0 to be the stabiliser in G of the flag

0 ( 〈e1〉D ( 〈e1, f1〉D ( 〈e1, f1, e2〉D ( 〈e1, f1, e2, f2〉D ( · · · ( 〈e1, f1 · ··, en, fn〉D = V ⊕W
by the notation in Section 3.4. Then all ω-stable relatively standard parabolic subgroups of G contain
P0. Denote by P0 the stabiliser in G of the flag

0 ( 〈e1, f1〉D ( 〈e1, f1, e2, f2〉D ( · · · ( 〈e1, f1 · ··, en, fn〉D = V ⊕W.
It is the minimal ω-stable relatively standard parabolic subgroup of G. A parabolic subgroup P of G
is relatively standard and ω-stable if and only if P0 ⊆ P . Let P0,n be the group of upper triangular

matrices in GLn,D. We can talk about positive roots for G,H and GLn,D with respect to P0, P̃0 and
P0,n respectively.

Lemma 9.1. Let P1 =

(
p1,n p1,n

p1,n p1,n

)×
and P2 =

(
p2,n p2,n

p2,n p2,n

)×
be a pair of ω-stable relatively

standard parabolic subgroups of G, where P1,n and P2,n are standard parabolic subgroups of GLn,D.

1) The map sn 7→ s =

(
sn

sn

)
induces a bijection from

a) the set of representatives sn of ΩGLn,D (aP1,n , aP2,n) in ΩGLn,D such that s−1
n α > 0 for all α ∈

∆
P2,n

P0,n

to

b) the set of representatives s of ΩG(aP1 , aP2) in ΩG such that s−1α > 0 for all α ∈ ∆P2

P0
.

2) The map sn 7→ s =

(
sn

sn

)
induces a bijection from

a) the set of representatives sn of ΩGLn,D (aP1,n
;P2,n) in ΩGLn,D such that sn(aP1,n

) ⊇ aP2,n
and

s−1
n α > 0 for all α ∈ ∆

P2,n

P0,n

to

b) the set of representatives s of ΩG(aP1
;P2) in ΩG such that s(aP1

) ⊇ aP2
and s−1α > 0 for all

α ∈ ∆P2

P0
.

Proof. Suppose that P1,n and P2,n correspond to the partitions (n1, · · ·, nl) and (n′1, · · ·, n′l′) respec-
tively of n. Then P1 and P2 correspond to the partitions (2n1, · · ·, 2nl) and (2n′1, · · ·, 2n′l′) respectively
of 2n. For an integer m > 0, denote by Sm the symmetric group of degree m.

1) From [9, p. 33], the set ΩGLn,D (aP1,n
, aP2,n

) is empty unless l = l′, in which case

(9.1.1) ΩGLn,D (aP1,n
, aP2,n

) ' {sn ∈ Sl : n′i = nsn(i), 1 ≤ i ≤ l}.

Similarly, the set ΩG(aP1
, aP2

) is empty unless l = l′, in which case

(9.1.2) ΩG(aP1
, aP2

) ' {s ∈ Sl : 2n′i = 2ns(i), 1 ≤ i ≤ l}.
The map in the lemma is induced by the obvious bijection between the right hand sides of (9.1.1) and
(9.1.2).

2) From [9, p. 59], the set a) is identified with the set of sn ∈ Sl ⊆ Sn such that (nsn(1), · · ·, nsn(l))

is finer than (n′1, · · ·, n′l′), and such that s−1
n (i) < s−1

n (i+ 1) for any 1 ≤ i ≤ n− 1 that is not of the form
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n′1 + · · ·+n′k for some 1 ≤ k ≤ l′. Similarly, the set b) is identified with the set of s ∈ Sl ⊆ S2n such that
(2ns(1), · · ·, 2ns(l)) is finer than (2n′1, · · ·, 2n′l′), and such that s−1(i) < s−1(i+ 1) for any 1 ≤ i ≤ 2n− 1
that is not of the form 2n′1 + · · · + 2n′k for some 1 ≤ k ≤ l′. The map in the lemma is induced by the
obvious bijection between these two sets. �

For P1 and P2 a pair of ω-stable relatively standard parabolic subgroups of G, denote by ΩH(aP1
, aP2

)
the set (perhaps empty) of distinct isomorphisms from aP1 to aP2 obtained by restriction of elements
in ΩH . It is a subset of ΩG(aP1 , aP2) a priori. However, since the image of the map in Lemma 9.1.1)
is contained in ΩH , we actually have ΩH(aP1

, aP2
) = ΩG(aP1

, aP2
) (cf. [39, Lemme 2.8.1]). Denote by

ΩH(aP1
;P2) the set of s ∈

⋃
aQ

ΩH(aP1
, aQ) such that s(aP1

) ⊇ aP2
and s−1α > 0 for each α ∈ ∆P2∩H

QH
,

where the union takes over all aQ associated to some ω-stable relatively standard parabolic subgroup Q
of G. Then ΩH(aP1

;P2) = ΩG(aP1
;P2) by Lemma 9.1.2).

9.2. Regular semi-simple terms. Let o ∈ Ors (see Section 3.3). It is possible to choose an
element X1 ∈ o and a relatively standard parabolic subgroup P1 of G such that X1 ∈ mP1(F ) (thus P1

is ω-stable by Proposition 5.1) but X1 can not be H(F )-conjugate to an element in the Lie algebra of
any relatively standard parabolic subgroup R ( P1. We call such X1 an elliptic element in (mP1

∩ s)(F ).

Let P1 =

(
p1,n p1,n

p1,n p1,n

)×
be an ω-stable relatively standard parabolic subgroup of G, where P1,n is

a standard parabolic subgroup of GLn,D. Let X1 =

(
0 A1

B1 0

)
∈ (mP1

∩ s)(F ) be a regular semi-simple

element in s. Then X1 is elliptic in (mP1
∩ s)(F ) if and only if A1B1 is elliptic in mP1,n

(F ) in the usual
sense, i.e., PrdA1B1

is irreducible (see [56, Proposition 5] for example). Let HX1
be the centraliser of X1

in H. Then X1 is elliptic in (mP1
∩ s)(F ) if and only if the maximal F -split torus in HX1

is AP1
.

Theorem 9.2. Let o ∈ Ors, P1 be a relatively standard parabolic subgroup of G and X1 ∈ o be an
elliptic element in (mP1 ∩ s)(F ). For f ∈ S(s(A)), we have

JGo (η, f) = vol(A∞P1
HX1

(F )\HX1
(A)) ·

∫
HX1

(A)\H(A)

f(x−1X1x)vP1
(x)η(Nrd(x))dx,

where vP1
(x) is left-invariant under HX1

(A) and equals the volume of the projection onto aGP1
of the convex

hull of {−HQ(x)}, where Q takes over all semi-standard parabolic subgroups of G with MQ = MP1
.

Proof. Consider a relatively standard parabolic subgroup P of G and X ∈ mP (F ) ∩ o (thus P is
ω-stable by Proposition 5.1). There exists an ω-stable relatively standard parabolic subgroup P2 ⊆ P

and X2 ∈ (mP2
∩ s)(F ) in the form of

(
1

∗

)
such that X2 is conjugate to X via an element in MPH (F )

and the maximal F -split torus in HX2
is AP2

. Then any element in H(F ) which conjugates X1 and X2

will conjugate AP1
and AP2

. It follows that there exists s ∈ ΩH(aP1
, aP2

) and m ∈MPH (F ) such that

X = mωsX1ω
−1
s m−1.

Suppose that P3 ⊆ P is another relatively standard parabolic subgroup, s′ ∈ ΩH(aP1
, aP3

) and m′ ∈
MPH (F ) such that

X = m′ωs′X1ω
−1
s′ m

′−1
.

Then there is ζ ∈ HX(F ) such that

m′ωs′ = ζmωs.

Since HX ⊆MPH , we see that

ωs′ = ξωs

for some ξ ∈ MPH (F ). In sum, for any given P a relatively standard parabolic subgroup of G and
X ∈ mP (F )∩o, there is a unique s ∈ ΩH(aP1 ;P ) such that X = mωsX1ω

−1
s m−1 for some m ∈MPH (F ).
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For x ∈ PH(F )\H(A), we obtain

jf,P,o(x) =
∑

X∈mP (F )∩o

∑
n∈NPH (F )

f((nx)−1Xnx)

=
∑

s∈ΩH(aP1
;P )

∑
m∈M

PH,ωsX1ω
−1
s

(F )
∖
MPH

(F )

∑
n∈NPH (F )

f((mnx)−1ωsX1ω
−1
s mnx)

=
∑

s∈ΩH(aP1
;P )

∑
m∈M

PH,ωsX1ω
−1
s

(F )
∖
PH(F )

f((mx)−1ωsX1ω
−1
s mx),

where MPH ,ωsX1ω
−1
s

denotes the centraliser of ωsX1ω
−1
s in MPH . For T ∈ a0 and x ∈ H(F )\H(A), we

have

jTf,o(x) =
∑

{P :P0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH(F )\H(F )

τ̂GP (HP (δx)− TP ) · jf,P,o(δx)

=
∑

{P :P0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH(F )\H(F )

τ̂GP (HP (δx)− TP )

·

 ∑
s∈ΩH(aP1

;P )

∑
m∈M

PH,ωsX1ω
−1
s

(F )
∖
PH(F )

f((mδx)−1ωsX1ω
−1
s mδx)


=

∑
{P :P0⊆P}

(−1)dim(AP /AG)
∑

s∈ΩH(aP1
;P )

∑
δ∈M

PH,ωsX1ω
−1
s

(F )
∖
H(F )

τ̂GP (HP (δx)− TP )

· f((δx)−1ωsX1ω
−1
s δx).

Notice that the centraliser of ωsX1ω
−1
s in H is actually contained in MPH . We deduce that

jTf,o(x) =
∑

{P :P0⊆P}

(−1)dim(AP /AG)
∑

s∈ΩH(aP1
;P )

∑
δ∈H

ωsX1ω
−1
s

(F )
∖
H(F )

τ̂GP (HP (δx)− TP ) · f((δx)−1ωsX1ω
−1
s δx)

=
∑

{P :P0⊆P}

(−1)dim(AP /AG)
∑

s∈ΩH(aP1
;P )

∑
δ∈HX1

(F )\H(F )

τ̂GP (HP (ωsδx)− TP ) · f((δx)−1X1δx).

For y ∈ H(A), write

χT (y) :=
∑

{P :P0⊆P}

(−1)dim(AP /AG)
∑

s∈ΩH(aP1
;P )

τ̂GP (HP (ωsy)− TP ).

Then

jTf,o(x) =
∑

δ∈HX1
(F )\H(F )

f((δx)−1X1δx) · χT (δx).

For sufficiently regular T , using Theorem 8.2 and the fact that jTf,o(x)η(Nrd(x)) is left invariant by
A∞G , we have

JG,To (η, 0, f) =

∫
H(F )\H(A)∩G(A)1

jTf,o(x)η(Nrd(x))dx

=

∫
A∞G H(F )\H(A)

 ∑
δ∈HX1

(F )\H(F )

f((δx)−1X1δx) · χT (δx)

 η(Nrd(x))dx.

Hence,

(9.2.1) JG,To (η, 0, f) = vol(A∞P1
HX1(F )\HX1(A)) ·

∫
HX1

(A)\H(A)

f(x−1X1x)vP1(x, T )η(Nrd(x))dx.

where

vP1(x, T ) :=

∫
A∞G \A∞P1

χT (ax)da.
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Here we have cheated by assuming that vP1
(x, T ) is well-defined and left-invariant under HX1

(A) in the
last equality, which is explained below along with its geometric interpretation.

Let Q be a parabolic subgroup of G containing P0. Since P0 ⊆ P1, by the charaterisation in [9, p.
59], ΩG(aP1

;Q) is empty unless P0 ⊆ Q, in which case we have ΩG(aP1
;Q) = ΩH(aP1

;Q) by Lemma
9.1.2). Therefore, we have

χT (y) =
∑

{Q:P0⊆Q}

(−1)dim(AQ/AG)
∑

s∈ΩG(aP1
;Q)

τ̂GQ (HQ(ωsy)− TQ).

Compared to [3, p. 951], vP1
(x, T ) is nothing but the restriction to H(A) of Arthur’s weight for G(A).

It showed in [2, Corollary 3.3] that the integral over a can be taken over a compact subset. From [2,
Corollary 3.5], vP1

(x, T ) equals the volume of the projection onto aGP1
of the convex hull of {TQ−HQ(x)},

where Q takes over all semi-standard parabolic subgroups of G with MQ = MP1
. For y ∈ HX1

(A) ⊆
MP1∩H(A), the convex hull associated to vP1

(yx, T ) is a translation of that associated to vP1
(x, T ), so

they have the same volume, i.e., vP1
(yx, T ) = vP1

(x, T ). By taking constant terms of both sides of
(9.2.1), we obtain the theorem. �

Remark 9.3. As mentioned in the proof of Theorem 9.2, the weights we get for regular semi-simple
orbits are the restriction to H(A) of Arthur’s weights (see [3, p. 951]) for G(A). They are also the
same as those (see [39, p. 131]) appearing in the twisted trace formula for (GLn,D ×GLn,D)o σ, where
σ acts on GLn,D × GLn,D by σ(x, y) := (y, x). For Pn a standard parabolic subgroup of GLn,D and

P =

(
pn pn
pn pn

)×
an ω-stable relatively standard parabolic subgroup of G, we may identify aP with the

σ-invariant subspace of aPn×Pn . The ω-stable relatively standard parabolic subgroups of G here play the
role of the σ-stable standard parabolic subgroups of GLn,D ×GLn,D, which correspond to the standard
parabolic subsets of (GLn,D × GLn,D) o σ in the sense of [39, §2.7]. However, we need more (namely
relatively standard) parabolic subgroups in our truncation to deal with o /∈ O×.
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CHAPTER 3

An infinitesimal variant of Guo-Jacquet trace formula: the case
of a central simple algebra containing a quadratic extension

We establish an infinitesimal variant of Guo-Jacquet trace formula for the case of a central simple
algebra over a number field F containing a quadratic field extension E/F . It is an equality between a
sum of geometric distributions on the tangent space of some symmetric space and its Fourier transform.
To prove this, we need to define an analogue of Arthur’s truncation and then use the Poisson summation
formula. We describe the terms attached to regular semi-simple orbits as explicit weighted orbital
integrals. To compare them to those for another case studied in our previous work, we state and prove
the weighted fundamental lemma at the infinitesimal level by using Labesse’s work on the base change
for GLn.

1. Introduction

Guo and Jacquet have proposed a conjecture [23] in order to generalise Waldspurger’s famous result
[50], which relates toric periods and central values of automorphic L-functions for GL2, to higher ranks.
The approach of relative trace formulae makes it possible to reduce the conjectural comparison of periods
(related to the spectral side) to the comparison of (weighted) orbital integrals (related to the geometric
side) on different symmetric spaces. This approach was first adopted by Jacquet [29] to reprove Wald-
spurger’s theorem. For higher ranks, Feigon-Martin-Whitehouse [21] obtained some partial results using
a simple form of relative trace formulae. For the comparison of local orbital integrals, Guo reduced the
fundamental lemma [23] to that of the base change for GLn and Zhang proved the smooth transfer [58]
by global methods.

However, an obstruction in the approach is the divergence of sums of integrals in both sides of relative
trace formulae. Such a problem has already existed in the classical Arthur-Selberg trace formula and
Arthur introduced a truncation process [3][4] to tackle it (see also [13] for its Lie algebra variant). We
start working at the infinitesimal level (namely the tangent space of a symmetric space) for a couple of
reasons. Firstly, our truncation for the tangent space is expected to be adapted to a truncation for the
symmetric space. Secondly, infinitesimal trace formulae should be useful for the proof of results on the
transfer (see Zhang’s work [58] on the ordinary orbital integrals).

Guo-Jacquet trace formulae concern two symmetric pairs. The first one is (G′, H ′), whereG′ := GL2n

and H ′ := GLn × GLn are reductive groups over a number field F and H ′ embeds diagonally in G′.
Let s′ ' gln ⊕ gln be the tangent space at the neutral element of the symmetric space G′/H ′. We have
established an infinitesimal trace formula in Chapter 2 for the action of H ′ on s′ by conjugation. The
second one denoted by (G,H) is the main object in this paper. Before introducing it, we remark that
we shall work in a more general setting than the original one. The reason is that the converse direction
of Guo-Jacquet conjecture was originally proposed only for n odd. In our searching for an analogue for
n even, the related local conjecture of Prasad and Takloo-Bighash [44, Conjecture 1] suggests that we
should consider more inner forms of G′. Some recent progress on this local conjecture has been made by
Xue [55] with the help of a simple form of global relative trace formulae.

Let E/F be a quadratic extension of number fields. Suppose that E = F (α), where α ∈ E and
α2 ∈ F . Let g be a central simple algebra over F containing E. Write h to be the centralizer of α in g.
Denote by G and H the groups of invertible elements in g and h respectively. Both of them are viewed
as reductive groups over F . Let s := {X ∈ g : Ad(α)(X) = −X}, where Ad denotes the adjoint action
of G on g. It is the tangent space at the neutral element of the symmetric space G/H. The main global
result in this paper is an infinitesimal trace formula for the action of H on s by conjugation.

Denote by A the ring of adèles of F and by H(A)1 the subset of elements in H(A) with absolute-
value-1 reduced norm. We define a relation of equivalence on s(F ): two elements of s(F ) are equivalent
if and only if they lie in the same fibre of the categorical quotient s//H. Denote by O the set of classes

61



of equivalence. Let f be a Bruhat-Schwartz function on s(A). For each o ∈ O and x ∈ H(F )\H(A),
define

kf,o(x) :=
∑
Y ∈o

f(Ad(x−1)(Y )).

As mentioned, we are facing the problem that∑
o∈O

∫
H(F )\H(A)1

kf,o(x)dx

is divergent. We define the truncation kTf,o(x) (see (4.0.1)) which is an analogue of Arthur’s truncation

in [3], where T is a truncation parameter in some cone T+ + a+
P0

of the coroot space of H, such that the
following theorem holds.

Theorem 1.1 (see Theorem 4.2). For all T ∈ T+ + a+
P0

,∑
o∈O

∫
H(F )\H(A)1

kTf,o(x)dx

is absolutely convergent.

We also know the behaviour of each term (viewed as a distribution) with respect to the truncation
parameter. It is even simpler than that in the case of (G′, H ′) (cf. Theorem 1.2 in Chapter 2).

Theorem 1.2 (see Corollary 5.3). For all T ∈ T+ + a+
P0

and o ∈ O,

JTo (f) :=

∫
H(F )\H(A)1

kTf,o(x)dx

is a polynomial in T .

Now we can take the constant term of each term to eliminate the truncation parameter T . Denote
by Jo(f) the constant term of JTo (f). These distributions are not invariant by H(A)1 (see Proposition
6.1), but we can write the regular semi-simple terms as explicit weighted orbital integrals with the same
weights as Arthur’s in [3].

Theorem 1.3 (see Theorem 9.2). Let o ∈ O be a class associated to regular semi-simple orbits, P1

a standard parabolic subgroup of H and Y1 ∈ o an elliptic element with respect to P1 (see the precise
definition in Section 9). Denote by HY1 the centralizer of Y1 in H. We have

Jo(f) = vol([HY1
]) ·
∫
HY1

(A)\H(A)

f(Ad(x−1)(Y1))vP1
(x)dx,

where vol([HY1
]) is the volume associated to HY1

and vP1
(x) is the volume of some convex hull.

Thanks to the truncation, we solve the divergence issue in the following infinitesimal trace formula.
It is a consequence of the Poisson summation formula.

Theorem 1.4 (see Theorem 7.1). We have the equality∑
o∈O

Jo(f) =
∑
o∈O

Jo(f̂),

where f̂ (see (3.3.1)) is the Fourier transform of f .

Notice that the symmetric pairs (G,H) and (G′, H ′) are the same after the base change to an algebraic
closure of F containing E. In fact, the truncation and most proofs of the global results above are simpler
than those in Chapter 2 in some sense. The simplicity results from the equality H(A)1 = H(A)∩G(A)1

here, where G(A)1 denotes the subset of elements in G(A) with absolute-value-1 reduced norm. Moreover,
there is a bijection between the set of standard parabolic subgroups in H and the set of semi-standard
parabolic subgroups in G whose intersection with H is a standard parabolic subgroup in H. One may
consult Section 3.4 for more details. However, there are still some rationality issues. We shall give
sufficient details and self-contained proofs here for completeness.

At the end of this paper, we hope to provide some new evidence of noninvariant comparison of Guo-
Jacquet trace formulae. We shall turn to the local setting with F denoting a local field. In the comparison
of geometric sides, an important case is the so-called fundamental lemma. It roughly says that some basic
functions for two symmetric pairs should have associated local orbital integrals on matching orbits at
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almost all unramified places. Guo [23] proved it for the units of spherical Hecke algebras for Guo-Jacquet
trace formulae with the help of the base change fundamental lemma for the full spherical Hecke algebras
for GLn known by Kottwitz [36, Lemma 8.8] and Arthur-Clozel [10, Theorem 4.5 in Chapter 1]. An
infinitesimal version [58, Lemma 5.18] was used by Zhang to prove the smooth transfer for Guo-Jacquet
trace formulae following the same philosophy of Waldspurger’s work [52] on the endoscopic transfer. We
would like to generalise [58, Lemma 5.18] in the weighted context.

For almost all unramified places, (G,H) is isomorphic to (GL2n,ResE/FGLn,E) and s(F ) ' gln(E).
Denote by OF (resp. OE) the ring of integers in F (resp. E). For f and f ′ a pair of locally constant and
compactly supported complex functions on s(F ) and s′(F ) respectively, we define the notion of being
“strongly associated” (see the precise definition in Definition 10.4) inspired by [37, Definition III.3.2].
Roughly speaking, f and f ′ are said to be strongly associated if their local weighted orbital integrals
are equal at matching orbits. Let f0 and f ′0 be the characteristic functions of s(OF ) ' gln(OE) and
s′(OF ) ' (gln⊕gln)(OF ) respectively. Because the weighted orbital integrals that we got share the same
weights with those in twisted trace formulae (see Remark 9.3 and Remark 9.3 in Chapter 2), we are able
to show the following result by using Labesse’s work on the base change weighted fundamental lemma
for the full spherical Hecke algebras for GLn.

Theorem 1.5 (see Theorem 8.1). For almost all unramified places, f0 and f ′0 are strongly associated.

Acknowledgement. I would like to thank my PhD advisor Pierre-Henri Chaudouard for suggesting
considering a more general case than Guo-Jacquet’s original one. I have also benefited a lot from his
comments on an earlier draft of this article. This work was supported by grants from Région Ile-de-
France.

2. Notation

We shall use F to denote a number field in this article except for the last section where F denotes
a non-archimedean local field of characteristic 0.

2.1. Roots and weights. Let F be a number field or a non-archimedean local field of characteristic
0. Suppose that H is a reductive group defined over F . Fix a minimal Levi F -subgroup M0 of H. All
the following groups are assumed to be defined over F without further mention. We call a parabolic
subgroup or a Levi subgroup of H semi-standard if it contains M0. Fix a minimal semi-standard parabolic
subgroup P0 of H. We call a parabolic subgroup P of H standard if P0 ⊆ P . For any semi-standard
parabolic subgroup P of H, we usually write MP for the Levi factor containing M0 and NP the unipotent
radical. Denote by AP the maximal F -split torus in the centre of MP . Let X(MP )F be the group of
characters of MP defined over F . Then define

aP := HomZ(X(MP )F ,R)

and its dual space

a∗P := X(MP )F ⊗Z R,
which are both R-linear spaces of dimention dim(AP ). Notice that the restriction X(MP )F ↪→ X(AP )F
induces an isomorphism

a∗P ' X(AP )F ⊗Z R.
Suppose that P1 ⊆ P2 are a pair of standard parabolic subgroups of H. The restriction X(MP2

)F ↪→
X(MP1

)F induces a∗P2
↪→ a∗P1

and its dual map aP1
� aP2

. Denote by aP2

P1
the kernel of the latter map

aP1
� aP2

. The restriction X(AP1
)F � X(AP2

)F induces a∗P1
� a∗P2

and its dual map aP2
↪→ aP1

. The
latter map aP2 ↪→ aP1 provides a section of the previous map aP1 � aP2 . Thus we have decompositions

aP1
= aP2

⊕ aP2

P1

and

a∗P1
= a∗P2

⊕ (aP2

P1
)∗.

When P1 = P0, we write aP1 , AP1 and aP2

P1
as a0, A0 and aP2

0 respectively.

For a pair of standard parabolic subgroups P1 ⊆ P2 of H, write ∆P2

P1
for the set of simple roots for

the action of AP1
on NP2

P1
:= NP1

∩MP2
. Notice that ∆P2

P1
is a basis of (aP2

P1
)∗. Let

(∆̂P2

P1
)∨ := {$∨α : α ∈ ∆P2

P1
}
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be the basis of aP2

P1
dual to ∆P2

P1
. One has the coroot β∨ associated to any β ∈ ∆P2

P0
. For every α ∈ ∆P2

P1
,

let α∨ be the projection of β∨ to aP2

P1
, where β ∈ ∆P2

P0
whose restriction to aP2

P1
is α. Define

(∆P2

P1
)∨ := {α∨ : α ∈ ∆P2

P1
},

which is a basis of aP2

P1
. Denote by

∆̂P2

P1
:= {$α : α ∈ ∆P2

P1
}

the basis of (aP2

P1
)∗ dual to (∆P2

P1
)∨.

For a standard parabolic subgroup P of H, set

a+
P := {T ∈ aP : α(T ) > 0, α ∈ ∆H

P }.

For P1 ⊆ P2 as above, define τP2

P1
and τ̂P2

P1
as the characteristic functions of

{T ∈ a0 : α(T ) > 0, α ∈ ∆P2

P1
}

and
{T ∈ a0 : $(T ) > 0, $ ∈ ∆̂P2

P1
}

respectively.

2.2. The functions HP and FP . Let F be a number field. Let A be the ring of adèles of F and let
| · |A be the product of normalised local absolute values on the group of idèles A∗. Fix a maximal compact
subgroup K of H(A) that is admissible relative to M0 in the sense of [5, p. 9]. In this paper, we choose
the standard maximal compact subgroup when G(F ) = GLn(D), where D is a central division algebra
over a finite field extension E of F . That is to say, K :=

∏
vKv where at every non-archimedean place

v of E, Kv is the group of automorphism of some lattice (see [54, p. 191]) and at every archimedean
place, Kv is the unitary group with respect to some hermitian form (see [54, p. 199]). Suppose that P
is a standard parabolic subgroup of H. Let HP be the homomorphism MP (A)→ aP given by

∀m ∈MP (A), 〈HP (m), χ〉 = log(|χ(m)|A), χ ∈ X(MP )F .

Write MP (A)1 for the kernel of HP and A∞P for the neutral component for the topology of R-manifolds
of the group of R-points of the maximal Q-split torus in ResF/QAP . Then any element x ∈ H(A) can be

written as x = nmak, where n ∈ NP (A), m ∈MP (A)1, a ∈ A∞P and k ∈ K. We can define a continuous
map HP : H(A) → aP by setting HP (x) := HP (a) with respect to this decomposition. Notice that HP

induces an isomorphism from A∞P to aP . If P ⊆ Q are a pair of semi-standard parabolic subgroups,
write

AQ,∞P := A∞P ∩MQ(A)1.

Then HP also induces an isomorphism from AQ,∞P to aQP .
Denote by ΩH the Weyl group of (H,A0). In the cases to be considered in this paper, for every

s ∈ ΩH , we can always choose one representative ωs ∈ H(F ) ∩ K such that ωs normalises A0. In
fact, we are dealing with the restriction of scalars of inner forms of GLn, thus we can choose ΩH to be
permutation matrices.

From the reduction theory (see [3, p. 941]), we know that there exists a real number t0 < 0 and a
compact subset ωP0 ⊆ NP0(A)M0(A)1 such that for any standard parabolic subgroup P of H, we have

H(A) = P (F )SP
P0

(ωP0 , t0).

Here the Siegel set SP
P0

(ωP0 , t0) is defined by

SP
P0

(ωP0
, t0) := ωP0

A∞P0
(P, t0)K,

where
A∞P0

(P, t0) := {a ∈ A∞P0
: α(HP0(a)) > t0, α ∈ ∆P

P0
}.

We shall fix such t0 and ωP0 . Moreover, we require that (MP (A) ∩ ωP0 ,MP (A) ∩ K,P0 ∩MP , t0) will
play the role of (ωP0 ,K, P0, t0) for any standard parabolic subgroup P of H.

Let t0 be as above. For T ∈ a0, define the truncated Siegel set

SP
P0

(ωP0
, t0, T ) := ωP0

A∞P0
(P, t0, T )K,

where
A∞P0

(P, t0, T ) := {a ∈ A∞P0
(P, t0) : $(HP0(a)− T ) ≤ 0, $ ∈ ∆̂P

P0
}.

Denote by FPP0
(·, T ) the characteristic function of the projection of SP

P0
(ωP0 , t0, T ) to P (F )\H(A).
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2.3. Bruhat-Schwartz functions and Haar measures. Let F be a number field. Write h for
the Lie algebra of H. For an F -linear subspace s of h, denote by S(s(A)) the Bruhat-Schwartz space of
s(A), namely the C-linear space of functions on s(A) generated by f∞ ⊗ χ∞, where f∞ is a Schwartz
function on s(F ⊗Q R) and χ∞ is the characteristic function of an open compact subgroup of s(A∞),
where A∞ denotes the ring of finite adèles of F .

Let P be a standard parabolic subgroup of H. For every connected subgroup V of NP (resp. every
subspace v of h), choose the unique Haar measure on V (A) (resp. on v(A)) such that vol(V (F )\V (A)) = 1
(resp. vol(v(F )\v(A)) = 1). We also take the Haar measure on K such that vol(K) = 1.

Fix a Euclidean norm ‖ · ‖ on a0 invariant by the group ΩH and Haar measures on subspaces of a0

compatible with this norm. If P ⊆ Q are a pair of standard parabolic subgroups, we obtain the Haar

measures on A∞P and AQ,∞P via the isomorphism HP .
Denote by ρP ∈ (aHP )∗ the half of the sum of weights (with multiplicities) for the action of AP

on nP . We choose compatible Haar measures on H(A) and its subgroups by requiring that for any
f ∈ L1(H(A)), ∫

H(A)

f(x)dx =

∫
NP (A)

∫
MP (A)

∫
K

f(nmk)e−2ρP (HP (m))dndmdk

=

∫
NP (A)

∫
MP (A)1

∫
A∞P

∫
K

f(nmak)e−2ρP (HP (a))dndmdadk.

3. The symmetric pair

3.1. Groups and linear spaces. Let F be a number field and E a quadratic extension of F .
Let g be a central simple algebra over F with a fixed embedding E → g as F -algebras. Denote by
h := Centg(E) the centralizer of E in g. Then by the the double centralizer theorem (see [42, Theorem
3.1 in Chapter IV] for example), h(F ) is a central simple algebra over E. Write G := g× and H := h×

for the group of invertible elements. They are considered as algebraic groups over F with Lie algebra g
and h respectively.

Let α ∈ E such that α2 ∈ F and that E = F (α). Denote by Ad the adjoint action of G on g.
Define an involution θ on g by θ(X) := Ad(α)(X). Then H = Gθ, where Gθ denotes the θ-invariant
subgroup of G. Thus S := G/H is a symmetric space. Define an anti-involution on G by ι(g) := θ(g−1).
Denote by Gι the ι-invariant subvariety of G. Then there is a symmetrization map s : G → Gι defined
by s(g) := gι(g).

Lemma 3.1. The symmetrization map s induces a bijection S(F ) ' Gι(F ).

Remark 3.2. For the special case (G,H) = (GLn,D,ResE/FGLn,E), where D is a quaternion algebra
over F containing E, this result is included in [24, p. 282].

Proof of Lemma 3.1. Since H1(F,H) = 1, we have S(F ) = G(F )/H(F ). For g ∈ G(F ), let
s0(g) := s(g)α = Ad(g)(α). Let G0 := Gια = {g ∈ G : g2 = α2}. It suffices to prove that the map
s0 : G(F ) → G0(F ) is surjective. Let g ∈ G0(F ). Its minimal polynomial in g(F ) is λ2 − α2, which is
irreducible over F . Therefore, its reduced characteristic polynomial in g(F ) must be (λ2 − α2)m, where
dimF (g(F )) = (2m)2. We deduce that all elements in G0(F ) are conjugate by G(F ) (see [56, Theorem
9] for example). Since α ∈ G0(F ), we draw our conclusion. �

One may consider the left and right translation of H × H on G and the conjugation of H on S.
Denote by s the tangent space of S at the neutral element. We shall always view s as a subspace in g.
Then s = {X ∈ g : θ(X) = −X} and H acts on s by conjugation.

3.2. Semi-simple elements. We say that an element Y of s is semi-simple if the orbit Ad(H)(Y )
is Zariski closed in s. By a regular element Y of s, we mean that the centralizer HY of Y in H has
minimal dimension.

Proposition 3.3. The map Y 7→ Y 2 from s(F ) to h(F ) induces an injection from the set of H(F )-
conjugacy classes of semi-simple elements in s(F ) to the set of conjugacy classes of semi-simple elements
in h(F ).

Remark 3.4. In the special case (G,H) = (GLn,D,ResE/FGLn,E), where D is a quaternion algebra
over F containing E, this map plays the role of the norm map (see [10, §1 in Chapter 1]).
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Proof of Proposition 3.3. Let χg,F (X) be the reduced characteristic polynomial of X ∈ g(F )
and χh,E(X∗) the reduced characteristic polynomial of X∗ ∈ h(F ) (viewed as a central simple algebra
over E). After the base change to an algebraic closure of F containing E, the embedding h ⊆ g is identical

to the diagonal embedding h′ := glm ⊕ glm ⊆ g′ := gl2m and s ⊆ g becomes s′ :=

{(
0 A
B 0

)
: A,B ∈

glm

}
⊆ g′, where m denotes the degree of h(F ) (viewed as a central simple algebra over E). Let H ′ be

the group of invertible elements in h′, which is viewed as an algebraic group GLm ×GLm over F . Since

det

(
λI2m −

(
0 A
B 0

))
= det(λ2Im −AB),

we see that for Y ∈ s(F ) ⊆ g(F ),

χg,F (Y )(λ) = χh,E(Y 2)(λ2),

which implies that χh,E(Y 2) is actually defined over F .
It is known that the semi-simple conjugacy classes in h(F ) are uniquely determined by χh,E (see

[56, Theorem 9] for example). Thus it suffices to prove that the semi-simple H(F )-conjugacy classes
in s(F ) are uniquely determined by χg,F . From [31, Proposition 2.1], we know that the semi-simple
H-conjugacy classes in s(F ) are uniquely determined by χg,F . Therefore, we reduce ourselves to proving
that each semi-simple H-conjugacy class in s(F ) contains a unique H(F )-conjugacy class.

For a semi-simple element Y ∈ s(F ), the H(F )-orbits in Ad(H)(Y ) are parametrized by

ker[H1(F,HY )→ H1(F,H)] = H1(F,HY ),

where HY is the centralizer of Y in H. By [47, Exercice 2 in p. 160], we obtain

H1(F,HY ) = 1,

which completes our proof. �

3.3. Invariants. Denote by c the affine space Am, where m denotes the degree of h(F ) (viewed as
a central simple algebra over E). Define a morphism π : s→ c which is contant on H-orbits by mapping
Y ∈ s to the coefficients of the reduced polynomial of Y ∈ g. In fact, we see that the coefficients in
odd degrees vanish for Y ∈ s from the proof of Proposition 3.3. On F -points, alternatively, π is given
by mapping Y ∈ s(F ) to the coefficients of the reduced polynomial of Y 2 ∈ h(F ) (viewed as a central
simple algebra over E).

Proposition 3.5. The pair (c, π) defines a categorical quotient of s by H over F .

Proof. By the proof of Proposition 3.3 in Chapter 2, after the base change to an algebraic closure
F of F containing E, the pair (cF , πF ) defines a categorical quotient of sF by HF . That is to say, we have

an isomorphism of F -algebras F [c] ' F [s]H dual to πF . But this isomorphism is obtained from the base
change of a morphism of F -algebras F [c]→ F [s]H dual to π. By Galois descent, the latter morphism is
necessarily an isomorphism of F -algebras. Then the pair (c, π) defines a categorical quotient of s by H
over F . �

Remark 3.6. The morphism π is surjective as a morphism of algebraic varieties (see the proof of
Proposition 3.3 in Chapter 2) but not surjective on the level of F -points.

We define a relation of equivalence on s(F ) using the categorical quotient (c, π), where two elements
are in the same class if and only if they have the same image under π. We denote by O the set of
equivalent classes for this relation. From the proof of Proposition 3.3, we see that two semi-simple
elements of s(F ) belong to the same class of O if and only if they are conjugate by H(F ). Denote by
Ors the subset of O formed by Y ∈ s(F ) such that χh,E(Y 2) is separable and χh,E(Y 2)(0) 6= 0, where
χh,E denotes the reduced polynomial of an element in h(F ) (viewed as a central simple algebra over E).
By Proposition 3.2 in Chapter 2 and the base change to an algebraic closure of F containing E, we see
that each class in Ors is a regular semi-simple H(F )-orbit in s(F ).
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3.4. Explicit description of H ↪→ G. First of all, we would like to describe the symmetric pair
(G,H) in a more explicit way. By the Noether-Skolem theorem (see [42, Theorem 2.10 of Chapter IV]
for example), the embedding E → g(F ) is unique up to conjugation by an element of G(F ). From the
Wedderburn-Artin theorem, we know that G is isomorphic to GLn,D, which denotes the reductive group
over F whose F -points are GLn(D), for some central division algebra D over F . We recall that n is
called the capacity of g(F ) and we denote it by capa(g(F )). Let d be the degree of D, i.e., dimF (D) = d2.
Since there is an embedding E → g(F ) as F -algebras, we know that nd is even.

Proposition 3.7. Up to conjugation by G(F ), the embedding H ↪→ G is reduced to one of the two
cases below.

Case I: if there is an embedding E → D as F -algebras, then the embedding H ↪→ G is isomorphic
to ResE/FGLn,D′ ↪→ GLn,D up to conjugation by G(F ). Here D′ := CentD(E) denotes the centralizer
of E in D and is a central division algebra over E.

Case II: if there is no embedding E → D as F -algebras, then the embedding H ↪→ G is isomorphic
to ResE/FGLn

2 ,D⊗FE ↪→ GLn,D up to conjugation by G(F ). Here D ⊗F E is a central division algebra
over E.

Proof. Case I: there is an embedding E → D as F -algebras. This case is a direct consequence of
the Noether-Skolem theorem. By the double centralizer theorem, we know that D′ is a central division
algebra over E.

Case II: there is no embedding E → D as F -algebras. By [48, Theorem 1.1.2], when nd is even,
there is an embedding E → g(F ) as F -algebras if and only if n·capa(D⊗FE) is even, where capa(D⊗FE)
denotes the capacity of the central simple algebra D⊗F E over E (see [42, Proposition 2.15 in Chapter
IV] for example). Additionally, from [48, Theorem 1.1.3], we show that capa(D ⊗F E) ≤ [E : F ] = 2.
In this case, there are two possibilities.

(1) d is even. By [48, Theorem 1.1.2], capa(D⊗F E) is odd, so capa(D⊗F E) = 1. Since n·capa(D⊗F E)
is even, we know that n is even.

(2) d is odd. Since nd is even, we see that n is even. Besides, from [48, Theorem 1.1.3], we also deduce
that capa(D ⊗F E) = 1.

In sum, we have shown that n is even and that D⊗F E is a central division algebra over E. The tensor
of gln

2 ,D
and a fixed embedding ResE/F gl1,E → gl2 gives the indicated way to embed h to g. By the

Noether-Skolem theorem, such an embedding is unique up to conjugation by G(F ). �

Next, we describe the correspondence of some parabolic subgroups in H and G in both cases.
Case I: (G,H) = (GLn,D,ResE/FGLn,D′), whereD′ := CentD(E). We denote byM0 ' (ResE/FGm,D′)n

the subgroup of diagonal elements in H, which is a minimal Levi F -subgroup of H, and by M0̃ ' (Gm,D)n

the subgroup of diagonal elements in G, which is a minimal Levi F -subgroup of G. We also fix P0 the
subgroup of upper triangular elements in H, which is a minimal parabolic F -subgroup of H. There is

a bijection P 7→ P̃ between the set of standard parabolic subgroups P (namely P0 ⊆ P ) in H and the

set of semi-standard parabolic subgroups P̃ (namely M0̃ ⊆ P̃ ) in G which contain P0. In this case, the

latter is exactly the set of standard parabolic subgroups (namely containing P̃0 the subgroup of upper

triangular elements in G) of G. We shall always write P̃ for the image of P under this bijection. Notice

that P = P̃ ∩H and that we can identify AP with AP̃ .

Case II: (G,H) = (GLn,D,ResE/FGLn
2 ,D⊗FE). We denote by M0 ' (ResE/FGm,D⊗FE)

n
2 the

subgroup of diagonal elements in H, which is a minimal Levi F -subgroup of H, and by M0̃ ' (Gm,D)n

the subgroup of diagonal elements in G, which is a minimal Levi F -subgroup of G. We also fix P0 the
subgroup of upper triangular elements in H, which is a minimal parabolic F -subgroup of H. There is

a bijection P 7→ P̃ between the set of standard parabolic subgroups P (namely P0 ⊆ P ) in H and the

set of semi-standard parabolic subgroups P̃ (namely M0̃ ⊆ P̃ ) in G which contain P0. In this case, the
latter is a subset of the set of standard parabolic subgroups (namely containing the subgroup of upper

triangular elements in G) of G. We shall always write P̃ for the image of P under this bijection. Notice

that P = P̃ ∩H and that we can identify AP with AP̃ .

Proposition 3.8. Let P be a standard parabolic subgroup of H. For all Y ∈ (mP̃ ∩ s)(F ) and
U ∈ (nP̃ ∩ s)(F ), we have

π(Y ) = π(Y + U).

67



Proof. It is obvious, since the reduced characteristic polynomial of Y + U ∈ g is equal to that of
Y ∈ g. �

Corollary 3.9. Let P be a standard parabolic subgroup of H and o ∈ O. For all subsets S1 ⊆
(mP̃ ∩ s)(F ) and S2 ⊆ (nP̃ ∩ s)(F ), we have o ∩ (S1 ⊕ S2) = (o ∩ S1)⊕ S2.

Let P be a standard parabolic subgroup of H. We denote by Φ(A0,mP̃ ∩ s) (resp. Φ(A0, nP̃ ∩ s))
the set of weights of A0 in mP̃ ∩ s (resp. nP̃ ∩ s). We also denote by Φ(A0,mP ) (resp. Φ(A0, nP )) the
set of weights of A0 in mP (resp. nP ).

Proposition 3.10. For any standard parabolic subgroup P of H, we have

Φ(A0,mP̃ ∩ s) = Φ(A0,mP )

and

Φ(A0, nP̃ ∩ s) = Φ(A0, nP ).

Moreover, each weight of A0 has the same multiplicity in mP̃ ∩ s (resp. nP̃ ∩ s) and mP (resp. nP ).

Proof. It is obvious for both of Case I and Case II described above. �

For P a standard parabolic subgroup of H, let ρP,s (resp. ρP ) denote the half of the sum of weights
(with multiplicities) of A0 in nP̃ ∩ s (resp. nP ).

Corollary 3.11. For any standard parabolic subgroup P of H, we have

ρP,s = ρP .

At the end of this subsection, we point out a non-canonical F -linear isomorphism between h and s
which will be useful for some technical problems. We have chosen an element α ∈ E in Section 3.1. Let
τ ∈ D× in Case I (resp. τ ∈ GL2(D) in Case II) be an element such that Ad(α)(τ) = −τ .

Proposition 3.12. There is a non-canonical isomorphism induced by multiplication by τ between h
and s as free D′-modules (resp. D ⊗F E-modules), i.e.,

s = hτ = τh.

Moreover, for any standard parabolic subgroup P of H, we have

mP̃ ∩ s = mP τ = τmP

and

nP̃ ∩ s = nP τ = τnP .

Proof. It is obvious for both of Case I and Case II described above. �

3.5. Fourier transform. Fix a nontrivial unitary character Ψ of A/F . Let 〈·, ·〉 be the H(A)-
invariant bilinear form on s(A) defined by

(3.5.1) ∀Y1, Y2 ∈ s(A), 〈Y1, Y2〉 := Trdg,F (Y1Y2),

where Trdg,F (Y1Y2) denotes the reduced trace of Y1Y2 ∈ g(A). It is non-degenerate, which can be seen

after the base change to an algebraic closure of F . For f ∈ S(s(A)), its Fourier transform f̂ is defined by

(3.5.2) ∀Ŷ ∈ s(A), f̂(Ŷ ) :=

∫
s(A)

f(Y )Ψ(〈Y, Ŷ 〉)dY.

4. Integrability of the modified kernel

Let f ∈ S(s(A)), P be a standard parabolic subgroup of H and o ∈ O. For x ∈MP (F )NP (A)\H(A),
define

kf,P,o(x) :=
∑

Y ∈mP̃ (F )∩o

∫
(nP̃∩s)(A)

f(Ad(x−1)(Y + U))dU.

For T ∈ a0 and x ∈ H(F )\H(A), define

(4.0.1) kTf,o(x) :=
∑

{P :P0⊆P}

(−1)dim(AP /AH)
∑

δ∈P (F )\H(F )

τ̂HP (HP (δx)− T ) · kf,P,o(δx).

By [3, Lemma 5.1], we know that the sum over δ ∈ P (F )\H(F ) is finite.
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Lemma 4.1. There is a T+ ∈ a+
P0

such that for all standard parabolic subgroup P of H, T ∈ T+ +a+
P0

and x ∈ H(A), we have ∑
{P1:P0⊆P1⊆P}

∑
δ1∈P1(F )\P (F )

FP1(δ1x, T )τPP1
(HP1(δ1x)− T ) = 1.

Proof. This is [3, Lemma 6.4]. �

We shall fix such a T+.

Theorem 4.2. For all T ∈ T+ + a+
P0

,∑
o∈O

∫
H(F )\H(A)1

|kTf,o(x)|dx <∞.

Proof. Let P1 ⊆ P2 be a pair of standard parabolic subgroups of H. As in [3, §6], for T1 ∈ aP1 ,
define the characteristic function

σP2

P1
(T1) :=

∑
{Q:P2⊆Q}

(−1)dim(AP2
/AQ)τQP1

(T1)τ̂HQ (T1).

Recall that for P ⊇ P1 a standard parabolic subgroup of H, we have

τPP1
(T1)τ̂HP (T1) =

∑
{P2:P⊆P2}

σP2

P1
(T1).

For x ∈ P1(F )\H(A), we write

χTP1,P2
(x) := FP1(x, T )σP2

P1
(HP1

(x)− T )

and

kP1,P2,o(x) :=
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AH)kf,P,o(x).

By Lemma 4.1 and the left invariance of HP and kf,P,o by P (F ), we obtain

kTf,o(x) =
∑

{P1,P2:P0⊆P1⊆P2}

∑
δ∈P1(F )\H(F )

χTP1,P2
(δx)kP1,P2,o(δx).

Thus ∑
o∈O

∫
H(F )\H(A)1

|kTf,o(x)|dx ≤
∑
o∈O

∑
{P1,P2:P0⊆P1⊆P2}

∫
P1(F )\H(A)1

χTP1,P2
(x)|kP1,P2,o(x)|dx.

Then we only need to show that for any pair of standard parabolic subgroups P1 ⊆ P2 of H,∑
o∈O

∫
P1(F )\H(A)1

χTP1,P2
(x)|kP1,P2,o(x)|dx <∞.

If P1 = P2 6= H, by [3, Lemma 6.1], we have σP2

P1
= 0 and then χTP1,P2

= 0, so the integration vanishes.

If P1 = P2 = H, since FH(·, T ) is a characteristic function with compact support in H(F )\H(A)1, the
integration is convergent. Hence, we reduce ourselves to proving the following proposition. �

Proposition 4.3. Let f ∈ S(s(A)) and P1 ( P2 be a pair of standard parabolic subgroups of H.
Suppose that ε0 and N are two arbitrary but fixed positive real numbers. Then there exists a constant C
such that ∑

o∈O

∫
P1(F )\H(A)1

χTP1,P2
(x)|kP1,P2,o(x)|dx ≤ Ce−N‖T‖

for all T ∈ T+ + a+
P0

satisfying α(T ) ≥ ε0 ‖ T ‖ for any α ∈ ∆H
P0

.

For x ∈ H(F )\H(A), define

kf,H(x) :=
∑
o∈O

kf,H,o(x) =
∑

Y ∈s(F )

f(Ad(x−1)(Y ))

and

(4.0.2) kTf (x) :=
∑
o∈O

kTf,o(x).
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Corollary 4.4. Let f ∈ S(s(A)). For two arbitrary but fixed positive real number ε0 and N , there
exists a constant C such that∫

H(F )\H(A)1

|kTf (x)− FH(x, T )kf,H(x)|dx ≤ Ce−N‖T‖

for all T ∈ T+ + a+
P0

satisfying α(T ) ≥ ε0 ‖ T ‖ for any α ∈ ∆H
P0

.

Proof of Proposition 4.3. Let P be any standard parabolic subgroup of H such that P1 ⊆ P ⊆
P2. For any Y ∈ mP̃ (F )∩o, there is a unique standard parabolic subgroup R of H such that P1 ⊆ R ⊆ P

and Y ∈ (mP̃ (F ) ∩ r̃(F ) ∩ o)−

( ⋃
P1⊆Q(R

mP̃ (F ) ∩ q̃(F ) ∩ o

)
. We denote

m̃R̃
P̃1

:= mR̃ −

 ⋃
{Q:P1⊆Q(R}

mR̃ ∩ q̃


and

nP̃
R̃

:= nR̃ ∩mP̃ .

From Corollary 3.9, we get

(mP̃ (F ) ∩ r̃(F ) ∩ o)−

 ⋃
P1⊆Q(R

mP̃ (F ) ∩ q̃(F ) ∩ o

 = (m̃R̃
P̃1

(F ) ∩ o)⊕ ((nP̃
R̃
∩ s)(F )).

Thus

kf,P,o(x) =
∑

Y ∈mP̃ (F )∩o

∫
(nP̃∩s)(A)

f(Ad(x−1)(Y + U))dU

=
∑

{R:P1⊆R⊆P}

∑
ξ∈m̃R̃

P̃1
(F )∩o

∑
Y ∈(nP̃

R̃
∩s)(F )

∫
(nP̃∩s)(A)

f(Ad(x−1)(ξ + Y + U))dU.

We write P̃ for the parabolic subgroup of G opposite to P̃ and

nP̃
R̃

:= n
R̃
∩mP̃ .

Notice that the restriction of 〈·, ·〉 (see (3.5.1)) to ((nP̃
R̃
∩ s)(A)) × ((nP̃

R̃
∩ s)(A)) is also non-degenerate.

For any ξ ∈ (mR̃ ∩ s)(A), applying the Poisson summation formula to the Bruhat-Schwartz function∫
(nP̃∩s)(A)

f(Ad(x−1)(ξ + ·+ U))dU , we have∑
Y ∈(nP̃

R̃
∩s)(F )

∫
(nP̃∩s)(A)

f(Ad(x−1)(ξ + Y + U))dU =
∑

Ŷ ∈(nP̃
R̃
∩s)(F )

Φx,Rξ (Ŷ ),

where the partial Fourier transform Φx,Rξ of
∫

(nP̃∩s)(A)
f(Ad(x−1)(ξ + ·+ U))dU is defined by

∀Ŷ ∈ (nP̃
R̃
∩ s)(A),Φx,Rξ (Ŷ ) :=

∫
(nP̃
R̃
∩s)(A)

(∫
(nP̃∩s)(A)

f(Ad(x−1)(ξ + Y + U))dU

)
Ψ(〈Y, Ŷ 〉)dY.

Since 〈U, Ŷ 〉 = 0 for U ∈ (nP̃ ∩ s)(A) and Ŷ ∈ (nP̃
R̃
∩ s)(A), as well as nR̃ = nP̃ ⊕ nP̃

R̃
, we have

∀Ŷ ∈ (nP̃
R̃
∩ s)(A),Φx,Rξ (Ŷ ) =

∫
(nR̃∩s)(A)

f(Ad(x−1)(ξ + U))Ψ(〈U, Ŷ 〉)dU,

which is actually independent of P .
In sum,

kf,P,o(x) =
∑

{R:P1⊆R⊆P}

∑
ξ∈m̃R̃

P̃1
(F )∩o

∑
Ŷ ∈(nP̃

R̃
∩s)(F )

Φx,Rξ (Ŷ ).
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Then we have

kP1,P2,o(x) =
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AH)kf,P,o(x)

=
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AH)

 ∑
{R:P1⊆R⊆P}

∑
ξ∈m̃R̃

P̃1
(F )∩o

∑
Ŷ ∈(nP̃

R̃
∩s)(F )

Φx,Rξ (Ŷ )


=

∑
{R:P1⊆R⊆P2}

∑
ξ∈m̃R̃

P̃1
(F )∩o

 ∑
{P :R⊆P⊆P2}

(−1)dim(AP /AH)
∑

Ŷ ∈(nP̃
R̃
∩s)(F )

Φx,Rξ (Ŷ )

 .

For P3 a standard parabolic subgroup of H containing R, denote

(nP̃3

R̃
)′ := nP̃3

R̃
−

 ⋃
{Q:R⊆Q(P3}

nQ̃
R̃

 .

We write ∑
{P :R⊆P⊆P2}

(−1)dim(AP /AH)
∑

Ŷ ∈(nP̃
R̃
∩s)(F )

Φx,Rξ (Ŷ )

=
∑

{P :R⊆P⊆P2}

(−1)dim(AP /AH)
∑

{P3:R⊆P3⊆P}

∑
Ŷ ∈((n

P̃3
R̃

)′∩s)(F )

Φx,Rξ (Ŷ )

=(−1)dim(AP2
/AH)

∑
{P3:R⊆P3⊆P2}

 ∑
{P :P3⊆P⊆P2}

(−1)dim(AP /AP2
)

 ∑
Ŷ ∈((n

P̃3
R̃

)′∩s)(F )

Φx,Rξ (Ŷ )

=(−1)dim(AP2
/AH)

∑
Ŷ ∈((n

P̃2
R̃

)′∩s)(F )

Φx,Rξ (Ŷ ),

where we have used [3, Proposition 1.1] in the last equality. Then

kP1,P2,o(x) = (−1)dim(AP2
/AH)

∑
{R:P1⊆R⊆P2}

∑
ξ∈m̃R̃

P̃1
(F )∩o

∑
Ŷ ∈((n

P̃2
R̃

)′∩s)(F )

Φx,Rξ (Ŷ ).

Now we get∑
o∈O

∫
P1(F )\H(A)1

χTP1,P2
(x)|kP1,P2,o(x)|dx

≤
∑
o∈O

∫
P1(F )\H(A)1

χTP1,P2
(x)

 ∑
{R:P1⊆R⊆P2}

∑
ξ∈m̃R̃

P̃1
(F )∩o

∑
Ŷ ∈((n

P̃2
R̃

)′∩s)(F )

|Φx,Rξ (Ŷ )|

 dx

=
∑

{R:P1⊆R⊆P2}

∫
P1(F )\H(A)1

χTP1,P2
(x)

∑
ξ∈(m̃R̃

P̃1
∩s)(F )

∑
Ŷ ∈((n

P̃2
R̃

)′∩s)(F )

|Φx,Rξ (Ŷ )|dx.

Thus it suffices to bound

(4.0.3)

∫
P1(F )\H(A)1

χTP1,P2
(x)

∑
ξ∈(m̃R̃

P̃1
∩s)(F )

∑
Ŷ ∈((n

P̃2
R̃

)′∩s)(F )

|Φx,Rξ (Ŷ )|dx

for any fixed standard parabolic subgroup R of H such that P1 ⊆ R ⊆ P2.
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Denote AH,∞P1
:= A∞P1

∩H(A)1. By Iwasawa decomposition and our choice of measures, we have∫
P1(F )\H(A)1

χTP1,P2
(x)

∑
ξ∈(m̃R̃

P̃1
∩s)(F )

∑
Ŷ ∈((n

P̃2
R̃

)′∩s)(F )

|Φx,Rξ (Ŷ )|dx

=

∫
K

∫
AH,∞P1

∫
MP1

(F )\MP1
(A)1

∫
NP1

(F )\NP1
(A)

FP1(m1, T )σP2

P1
(HP1

(a1)− T )

·
∑

ξ∈(m̃R̃
P̃1
∩s)(F )

∑
Ŷ ∈((n

P̃2
R̃

)′∩s)(F )

|Φn1m1a1k,R
ξ (Ŷ )|e−2ρP1

(HP0
(a1))dn1dm1da1dk.

Because only those m1 satisfying FP1(m1, T ) 6= 0 contribute to the integration, we can restrict the

integration over those having representatives in (NP0
(A)MP0

(A)1AP1,∞
P0

(t0, T )K) ∩ MP1
(A)1, where

AP1,∞
P0

(t0, T ) := A∞P0
(P1, t0, T ) ∩MP1

(A)1. Then∫
P1(F )\H(A)1

χTP1,P2
(x)

∑
ξ∈(m̃R̃

P̃1
∩s)(F )

∑
Ŷ ∈((n

P̃2
R̃

)′∩s)(F )

|Φx,Rξ (Ŷ )|dx

≤c1
∫
K

∫
[cpt⊆MP0

(A)1]

∫
A
P1,∞
P0

(t0,T )

∫
AH,∞P1

∫
[cpt⊆NP2

P0
(A)]

∫
[cpt⊆NP2

(A)]

σP2

P1
(HP1

(a1)− T )

·
∑

ξ∈(m̃R̃
P̃1
∩s)(F )

∑
Ŷ ∈((n

P̃2
R̃

)′∩s)(F )

|Φn2na1amk,R
ξ (Ŷ )|e−2ρP0

(HP0
(a1a))dn2dnda1dadmdk,

where c1 := vol(K ∩MP1
(A)1) is a constant independent of T . Here we use the notation [cpt ⊆ ∗] for

denoting a compact subset in ∗ independent of T .
We claim that for n2 ∈ NP2(A),

Φn2x,R
ξ (Ŷ ) = Φx,Rξ (Ŷ ).

In fact, let U2 := Ad(n−1
2 )(ξ)− ξ. Then

Φn2x,R
ξ (Ŷ ) =

∫
(nR̃∩s)(A)

f(Ad(n2x)−1(ξ + U))Ψ(〈U, Ŷ 〉)dU

=

∫
(nR̃∩s)(A)

f(Ad(x−1)(ξ + U2 + Ad(n−1
2 )(U)))Ψ(〈U, Ŷ 〉)dU.

As both of U2 and Ad(n−1
2 )(U)− U belong to (n

P̃2
∩ s)(A), we get

〈U2 + Ad(n−1
2 )(U)− U, Ŷ 〉 = 0.

Hence

Φn2x,R
ξ (Ŷ ) =

∫
(nR̃∩s)(A)

f(Ad(x−1)(ξ + U2 + Ad(n−1
2 )(U)))Ψ(〈U2 + Ad(n−1

2 )(U), Ŷ 〉)dU.

Since the change of variables U2 + Ad(n−1
2 )(U) 7→ U does not change the Haar measure, we proved our

claim.
By this claim, we have

Φn2na1amk,R
ξ (Ŷ ) = Φna1amk,R

ξ (Ŷ ) = Φ
(a1a)(a1a)−1n(a1a)mk,R
ξ (Ŷ ).

Applying change of variables Ad(a1a)−1(U) 7→ U and the fact that

〈U, Ŷ 〉 = 〈Ad(a1a)−1(U),Ad(a1a)−1(Ŷ )〉,

we deduce that

Φn2na1amk,R
ξ (Ŷ ) = e2ρR,s(HP0

(a1a))Φ
(a1a)−1n(a1a)mk,R
Ad(a1a)−1(ξ) (Ad(a1a)−1(Ŷ )).

Recall that ρR,s = ρR by Corollary 3.11. From the reduction theory (see [3, p. 944]), for a1 satisfying

σP2

P1
(HP1

(a1)− T ) 6= 0, we know that Ad(a1a)−1(n) belongs to a compact subset independent of T . To
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sum up, ∫
P1(F )\H(A)1

χTP1,P2
(x)

∑
ξ∈(m̃R̃

P̃1
∩s)(F )

∑
Ŷ ∈((n

P̃2
R̃

)′∩s)(F )

|Φx,Rξ (Ŷ )|dx

≤c2 sup
y∈Γ

∫
A
P1,∞
P0

(t0,T )

∫
AH,∞P1

e(2ρR−2ρP0
)(HP0

(a1a))σP2

P1
(HP1

(a1)− T )

·
∑

ξ∈(m̃R̃
P̃1
∩s)(F )

∑
Ŷ ∈((n

P̃2
R̃

)′∩s)(F )

|Φy,RAd(a1a)−1(ξ)(Ad(a1a)−1(Ŷ ))|da1da,

where c2 is a constant independent of T , and Γ is a compact subset independent of T .
Let OF denote the ring of integers of F . We fix an F -basis for each weight space for the action of

A0 on s(F ). Then OF -points of such a weight space make sense. Since the f ∈ S(s(A)) is compactly
supported on finite places, there exists a positive integer N1 independent of T such that the sums

over ξ ∈ (m̃R̃
P̃1
∩ s)(F ) and Ŷ ∈ ((nP̃2

R̃
)′ ∩ s)(F ) can be restricted to lattices 1

N1
(m̃R̃

P̃1
∩ s)(OF ) and

1
N1

((nP̃2

R̃
)′ ∩ s)(OF ) respectively, which can be explicit as in [13, §1.9] (we need to replace mR and nR in

loc. cit. by mR̃ ∩ s and nR̃ ∩ s respectively).
Fix a Euclidean norm ‖ · ‖ on the R-linear space s(F ⊗Q R). Consider a sufficiently large positive

integer k to be precise. Thanks to Proposition 3.10, as in [13, (4.10) in p. 372], there exists an integer

m ≥ 0, a real number kα ≥ 0 for each α ∈ ∆P2

P0
, and a real number c3 > 0 satisfying the following

conditions:

(1) if R = P2, m = 0;

(2) for all α ∈ ∆P2

P0
−∆R

P0
, kα ≥ k;

(3) for all a ∈ A∞P0
,

(4.0.4)
∑

Ŷ ∈ 1
N1

((n
P̃2
R̃

)′∩s)(OF )

‖Ad(a−1)(Ŷ )‖−m ≤ c3
∏

α∈∆
P2
P0

e−kαα(HP0
(a)).

We fix such data.
For a multi-index

−→
i , denote by ∂

−→
i the corresponding differential operator on s(F ⊗ R). It can be

extended to s(A) by ∂
−→
i (f∞ ⊗ χ∞) := (∂

−→
i f∞)⊗ χ∞, where we use the notation in Section 2.3. Choose

a multi-index
−→
i whose sum of components is m. Denote

Φx,R,
−→
i

ξ (Ŷ ) :=

∫
(nR̃∩s)(A)

(∂
−→
i f)(Ad(x−1)(ξ + U))Ψ(〈U, Ŷ 〉)dU.

Using integration by parts, for Ŷ 6= 0, we get

|Φy,RAd(a1a)−1(ξ)(Ad(a1a)−1(Ŷ ))| = c4(y)‖Ad(a1a)−1(Ŷ )‖−m|Φy,R,
−→
i

Ad(a1a)−1(ξ)(Ad(a1a)−1(Ŷ ))|,

where c4(y) is a continuous function of y.
For µ ∈ Φ(A0,mR̃ ∩ s) (refer to Section 3.4 for the notation), denote by (mR̃ ∩ s)µ the corresponding

weight space. From [53, §41], there exists a function φµ ∈ S((mR̃ ∩ s)µ(A)) for each µ ∈ Φ(A0,mR̃ ∩ s)
and a function φnR̃∩s ∈ S((nR̃ ∩ s)(A)) such that for all ξ + U ∈ (mR̃ ∩ s)(A)⊕ (nR̃ ∩ s)(A) and y ∈ Γ,

|(∂
−→
i f)(Ad(y−1)(ξ + U))| ≤

 ∏
µ∈Φ(A0,mR̃∩s)

φµ(ξµ)

φnR̃∩s(U),

where ξµ denotes the projection to (mR̃ ∩ s)µ(A) of ξ.

73



In sum, we deduce that∑
ξ∈(m̃R̃

P̃1
∩s)(F )

∑
Ŷ ∈((n

P̃2
R̃

)′∩s)(F )

|Φy,RAd(a1a)−1(ξ)(Ad(a1a)−1(Ŷ ))|

=
∑

ξ∈ 1
N1

(m̃R̃
P̃1
∩s)(OF )

∑
Ŷ ∈ 1

N1
((n

P̃2
R̃

)′∩s)(OF )

|Φy,RAd(a1a)−1(ξ)(Ad(a1a)−1(Ŷ ))|

=
∑

ξ∈ 1
N1

(m̃R̃
P̃1
∩s)(OF )

∑
Ŷ ∈ 1

N1
((n

P̃2
R̃

)′∩s)(OF )

c4(y)‖Ad(a1a)−1(Ŷ )‖−m|Φy,R,
−→
i

Ad(a1a)−1(ξ)(Ad(a1a)−1(Ŷ ))|

≤c5
∑

ξ∈ 1
N1

(m̃R̃
P̃1
∩s)(OF )

 ∏
µ∈Φ(A0,mR̃∩s)

φµ(µ(a1a)−1ξµ)

 · ∑
Ŷ ∈ 1

N1
((n

P̃2
R̃

)′∩s)(OF )

‖Ad(a1a)−1(Ŷ )‖−m

≤c5c3
∑

ξ∈ 1
N1

(m̃R̃
P̃1
∩s)(OF )

 ∏
µ∈Φ(A0,mR̃∩s)

φµ(µ(a1a)−1ξµ)

 · ∏
α∈∆

P2
P0

e−kαα(HP0
(a1a)),

where c5 := sup
y∈Γ

c4(y)
∫

(nR̃∩s)(A)
φnR̃∩s(U)dU ; in the last inequality, we have used (4.0.4). Thus

∫
P1(F )\H(A)1

χTP1,P2
(x)

∑
ξ∈(m̃R̃

P̃1
∩s)(F )

∑
Ŷ ∈((n

P̃2
R̃

)′∩s)(F )

|Φx,Rξ (Ŷ )|dx

≤c2c5c3
∫
A
P1,∞
P0

(t0,T )

∫
AH,∞P1

e(2ρR−2ρP0
)(HP0

(a1a))σP2

P1
(HP1

(a1)− T )

·
∑

ξ∈ 1
N1

(m̃R̃
P̃1
∩s)(OF )

 ∏
µ∈Φ(A0,mR̃∩s)

φµ(µ(a1a)−1ξµ)

 · ∏
α∈∆

P2
P0

e−kαα(HP0
(a1a))da1da.

From [13, p. 375], when σP2

P1
(HP1

(a1)− T ) 6= 0, we have α(HP0
(a1a)) > t0 for all α ∈ ∆P2

P0
. Denote

by Σ
mR̃∩s
P0

the positive weights of mR̃ ∩ s under the action of A0. Consider the subsets S of Σ
mR̃∩s
P0

with

the following property: for all α ∈ ∆R
P0
−∆P1

P0
, there exists µ ∈ S such that its α-coordinate is > 0. Then

∑
ξ∈ 1

N1
(m̃R̃

P̃1
∩s)(OF )

 ∏
µ∈Φ(A0,mR̃∩s)

φµ(µ(a1a)−1ξµ)



≤
∑
S

∏
µ∈S

 ∑
ξ−∈ 1

N1
m−µ(OF )−{0}

φ−µ(µ(a1a)ξ−)



 ∏
µ∈Σ

m
R̃
∩s

P0

 ∑
ξ+∈ 1

N1
mµ(OF )

φµ(µ(a1a)−1ξ+)




·

 ∑
ξ0∈ 1

N1
m0(OF )

φ0(ξ0)

 .
Denote by ΣmR

P0
the positive weights of mR under the action of A0. From Proposition 3.10, we know that

Σ
mR̃∩s
P0

= ΣmR
P0

and that each weight has the same multiplicity in mR̃ ∩ s and mR. From now on, we are
in exactly the same situation as in [13, p. 373] and able to borrow the rest of its proof to conclude. �

5. Polynomial distributions

Let T ∈ T+ + a+
P0

and o ∈ O. For f ∈ S(s(A)), define

(5.0.1) JH,To (f) :=

∫
H(F )\H(A)1

kTf,o(x)dx
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and

(5.0.2) JH,T (f) :=

∫
H(F )\H(A)1

kTf (x)dx,

where kTf,o(x) and kTf (x) are defined by (4.0.1) and (4.0.2) respectively. From Theorem 4.2, we know

that JH,To and JH,T are well-defined distributions on S(s(A)). We also have

JH,T (f) =
∑
o∈O

JH,To (f),

which is an analogue of the geometric side of Arthur’s trace formula. In this section, we shall prove

that JH,To (f) and JH,T (f) can be extended to polynomials in T ∈ aP0
(see Corollary 5.3 below), whose

constant terms will be denoted by JHo (f) and JH(f) respectively.
Let us begin with a generalisation of our results in last section. Let Q be a standard parabolic

subgroup of H. Recall the two cases studied in Section 3.4. In Case I, we have

MQ ' ResE/FGLn1,D′ × · · · × ResE/FGLnl,D′

and
MQ̃ ' GLn1,D × · · · ×GLnl,D,

where
l∑
i=1

ni = n. In Case II, we have

MQ ' ResE/FGLn1
2 ,D⊗FE

× · · · × ResE/FGLnl
2 ,D⊗FE

and
MQ̃ ' GLn1,D × · · · ×GLnl,D,

where ni is even for all 1 ≤ i ≤ l and
l∑
i=1

ni = n. In either case of the two, the tangent space of MQ̃/MQ

is mQ̃∩s, on which MQ acts by conjugation. We remark that our results in last section can be generalised

to the product setting here, whose proofs are similar and will be omitted. Define a relation of equivalence
on (mQ̃ ∩ s)(F ) which is similar to that on s(F ) on each component. We denote by OmQ̃∩s the set of

equivalent classes for this relation. For o ∈ O, the intersection o∩mQ̃(F ) is a finite (perhaps empty) union

of classes o1, · · ·, ot ∈ OmQ̃∩s. Notice that there exists a bijection between the set of standard parabolic
subgroups P of H contained in Q and the set of standard parabolic subgroups P ∗ of MQ (namely
P0∩MQ ⊆ P ∗) given by P 7→ P ∩MQ, whose inverse is given by P ∗ 7→ P ∗NQ. Let f∗ ∈ S((mQ̃∩ s)(A)),

P ∗ be a standard parabolic subgroup of MQ and 1 ≤ j ≤ t. For x ∈MP∗(F )NP∗(A)\MQ(A), define

(5.0.3) k
MQ

f∗,P∗,oj
(x) :=

∑
Y ∈m

P̃∗ (F )∩oj

∫
(n
P̃∗∩s)(A)

f∗(Ad(x−1)(Y + U))dU.

For T ∈ a0 and x ∈MQ(F )\MQ(A), define

k
MQ,T
f∗,oj

(x) :=
∑

{P∗:P0∩MQ⊆P∗}

(−1)dim(AP∗/AMQ )
∑

δ∈P∗(F )\MQ(F )

τ̂
MQ

P∗ (HP∗(δx)− T ) · kMQ

f∗,P∗,oj
(δx).

For T ∈ T+ + a+
P0

, define

J
MQ,T
oj (f∗) :=

∫
MQ(F )\MQ(A)1

k
MQ,T
f∗,oj

(x)dx.

Then we obtain a well-defined distribution J
MQ,T
oj on S((mQ̃ ∩ s)(A)). Now we define

(5.0.4) J
MQ,T
o :=

t∑
j=1

J
MQ,T
oj

and

(5.0.5) JMQ,T :=
∑
o∈O

J
MQ,T
o .

For f ∈ S(s(A)), define fQ ∈ S((mQ̃ ∩ s)(A)) by

(5.0.6) ∀Y ∈ (mQ̃ ∩ s)(A), fQ(Y ) :=

∫
K

∫
(nQ̃∩s)(A)

f(Ad(k−1)(Y + V ))dV dk.
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Let T1, T2 ∈ aP0
. As in [5, §2], we define the function ΓP (T1, T2) inductively on dim(AP /AH) by

setting

(5.0.7) τ̂HP (T1 − T2) =
∑

{Q:P⊆Q}

(−1)dim(AQ/AH)τ̂QP (T1)ΓQ(T1, T2)

for any standard parabolic subgroup P of H. This definition can be explicitly given by [5, (2.1) in p.
13] and only depends on the projections of T1, T2 onto aHP .

Lemma 5.1. Let T2 ∈ aP0
and Q be a standard parabolic subgroup of H. The function T1 7→

ΓQ(T1, T2) is compactly supported on aHQ . Moreover, the function T2 7→
∫
aHQ

ΓQ(T1, T2)dT1 is a homoge-

neous polynomial in T2 of degree dim(AQ/AH).

Proof. This is [5, Lemmas 2.1 and 2.2]. �

Theorem 5.2. Let T ′ ∈ T+ + a+
P0

, o ∈ O and f ∈ S(s(A)). Then for all T ∈ T+ + a+
P0

,

JH,To (f) =
∑

{Q:P0⊆Q}

J
MQ,T

′

o (fQ)

∫
aHQ

ΓQ(T1, T − T ′)dT1,

where JH,To , J
MQ,T

′

o and fQ are defined by the formulae (5.0.1), (5.0.4) and (5.0.6) respectively.

Corollary 5.3. Let o ∈ O and f ∈ S(s(A)). Then JH,To (f) and JH,T (f) (defined by (5.0.2)) are
polynomials in T of degree ≤ n− 1 for T ∈ T+ + a+

P0
. Thus we can extend them to all T ∈ aP0

.

Remark 5.4. We fix M0 and M0̃ which are minimal Levi subgroups of H and G respectively.

The distributions JHo (f) and JH(f) (defined as constant terms of JH,To (f) and JH,T (f) respectively) are
independent of the choice of the minimal parabolic subgroup P0 ⊇M0 of H. In fact, the argument of [13,
Proposition 4.6] after some minor modifications applies here because elements in ΩH have representatives
in H(F ) ∩K in our cases.

Proof of Theorem 5.2. Let P be any standard parabolic subgroup of H, δ ∈ P (F )\H(F ) and
x ∈ H(A)1. By substituting T1 = HP (δx)− T ′ and T2 = T − T ′ in (5.0.7), we have

τ̂HP (HP (δx)− T ) =
∑

{Q:P⊆Q}

(−1)dim(AQ/AH)τ̂QP (HP (δx)− T ′)ΓQ(HP (δx)− T ′, T − T ′).

Then

JH,To (f) =

∫
H(F )\H(A)1

 ∑
{P :P0⊆P}

(−1)dim(AP /AH)
∑

δ∈P (F )\H(F )

τ̂HP (HP (δx)− T ) · kf,P,o(δx)

 dx

=

∫
H(F )\H(A)1

∑
{P :P0⊆P}

(−1)dim(AP /AH)
∑

δ∈P (F )\H(F ) ∑
{Q:P⊆Q}

(−1)dim(AQ/AH)τ̂QP (HP (δx)− T ′)ΓQ(HP (δx)− T ′, T − T ′)

 kf,P,o(δx)dx.

By exchanging the order of two sums over P and Q and decomposing the sum over P (F )\H(F ) into two
sums over P (F )\Q(F ) and Q(F )\H(F ), we obtain

JH,To (f) =
∑

{Q:P0⊆Q}

∫
H(F )\H(A)1

∑
{P :P0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈P (F )\Q(F )

∑
δ′∈Q(F )\H(F )

τ̂QP (HP (δδ′x)− T ′)ΓQ(HP (δδ′x)− T ′, T − T ′)kf,P,o(δδ′x)dx.

Combining the integral overH(F )\H(A)1 and the sum overQ(F )\H(F ) into the integral overQ(F )\H(A)1,
and noticing that

P (F )\Q(F ) ' (P (F ) ∩MQ(F ))\MQ(F ),

we have

JH,To (f) =
∑

{Q:P0⊆Q}

∫
Q(F )\H(A)1

∑
{P :P0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(P (F )∩MQ(F ))\MQ(F )

τ̂QP (HP (δx)− T ′)ΓQ(HP (δx)− T ′, T − T ′)kf,P,o(δx)dx.
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By the Iwasawa decomposition and our choice of measures, we get

JH,To (f) =
∑

{Q:P0⊆Q}

∫
K

∫
MQ(F )\MQ(A)1

∫
AH,∞Q

∫
NQ(F )\NQ(A)

∑
{P :P0⊆P⊆Q}

(−1)dim(AP /AQ)

∑
δ∈(P (F )∩MQ(F ))\MQ(F )

τ̂QP (HP (δnamk)− T ′)ΓQ(HP (δnamk)− T ′, T − T ′)

· kf,P,o(δnamk)e−2ρQ(HP0
(a))dndadmdk.

We notice that

τ̂QP (HP (δnamk)− T ′) = τ̂QP (HP (δm) +HP (a)− T ′) = τ̂QP (HP (δm)− T ′)

and that

ΓQ(HP (δnamk)− T ′, T − T ′) = ΓQ(HQ(δnamk)− T ′, T − T ′) = ΓQ(HQ(a)− T ′, T − T ′).

Additionally, using AQ = AQ̃ and change of variables, we see that

kf,P,o(δnamk) =
∑

Y ∈mP̃ (F )∩o

∫
(nP̃∩s)(A)

f(Ad(δnamk)−1(Y + U))dU

=
∑

Y ∈mP̃ (F )∩o

∫
(nP̃∩s)(A)

f(Ad(δa−1namk)−1(Y + a−1Ua))dU

=
∑

Y ∈mP̃ (F )∩o

∫
(nP̃∩s)(A)

f(Ad(δa−1namk)−1(Y + U))e2ρQ,s(HP0
(a))dU

= e2ρQ,s(HP0
(a))kf,P,o(δa−1namk),

where ρQ,s is defined in Section 3.4. Since δa−1naδ−1 ∈ NQ(A) ⊆ NP (A) and kf,P,o is left invariant by
NP (A), we deduce that

kf,P,o(δnamk) = e2ρQ,s(HP0
(a))kf,P,o(δmk).

To sum up, the integrand in JH,To (f) is independent of n ∈ NQ(F )\NQ(A). Recall that we choose

the Haar measure such that vol(NQ(F )\NQ(A)) = 1. By Corollary 3.11, the factors e−2ρQ(HP0
(a)) and

e2ρQ,s(HP0
(a)) cancel, and then

JH,To (f) =
∑

{Q:P0⊆Q}

(∫
AH,∞Q

ΓQ(HQ(a)− T ′, T − T ′)da

)∫
MQ(F )\MQ(A)1

∑
{P :P0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(P (F )∩MQ(F ))\MQ(F )

τ̂QP (HP (δm)− T ′)
(∫

K

kf,P,o(δmk)dk

)
dm.

From the definition of the Haar measure on AH,∞Q , we have∫
AH,∞Q

ΓQ(HQ(a)− T ′, T − T ′)da :=

∫
aHQ

ΓQ(T1 − T ′, T − T ′)dT1

=

∫
aHQ

ΓQ(T1, T − T ′)dT1.

Since nP̃ = nQ̃
P̃
⊕ nQ̃, by change of variables, we deduce that

kf,P,o(δmk) =
∑

Y ∈mP̃ (F )∩o

∫
(nQ̃
P̃
∩s)(A)

dU

∫
(nQ̃∩s)(A)

f(Ad(δmk)−1(Y + U + V ))dV

=
∑

Y ∈mP̃ (F )∩o

∫
(nQ̃
P̃
∩s)(A)

dU

∫
(nQ̃∩s)(A)

f(Ad(k−1)(Ad(δm)−1(Y + U) + V ))dV,

where we need to verify that the change of variables V 7→ Ad(δm)(V ) does not change the Haar measure.
This can be shown by Proposition 3.12 in two steps: firstly, nQ̃ ∩ s = nQτ shows that V 7→ V ′ := (δm)V
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does not change any Haar measure; secondly, nQ̃ ∩ s = τnQ shows that V ′ 7→ V ′(δm)−1 does not change

any Haar measure. Then we can write∫
K

kf,P,o(δmk)dk =
∑

Y ∈mP̃ (F )∩o

∫
(nQ̃
P̃
∩s)(A)

fQ(Ad(δm)−1(Y + U))dU

=

t∑
j=1

k
MQ

fQ,P∩MQ,oj
(δm)

by (5.0.3). Now we can conclude by noting that

J
MQ,T

′

o (fQ) =

t∑
j=1

∫
MQ(F )\MQ(A)1

∑
{P :P0⊆P⊆Q}

(−1)dim(AP∩MQ/AMQ )
∑

δ∈(P (F )∩MQ(F ))\MQ(F )

τ̂
MQ

P∩MQ
(HP∩MQ

(δm)− T ′)kMQ

fQ,P∩MQ,oj
(δm)dm

=

∫
MQ(F )\MQ(A)1

∑
{P :P0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(P (F )∩MQ(F ))\MQ(F )

τ̂QP (HP (δm)− T ′)

 t∑
j=1

k
MQ

fQ,P∩MQ,oj
(δm)

 dm.

�

6. Noninvariance

Let Q be a standard parabolic subgroup of H and y ∈ H(A)1. For f ∈ S(s(A)), define fQ,y ∈
S((mQ̃ ∩ s)(A)) by

(6.0.1) ∀Y ∈ (mQ̃ ∩ s)(A), fQ,y(Y ) :=

∫
K

∫
(nQ̃∩s)(A)

f(Ad(k−1)(Y + V ))pQ(−HQ(ky))dV dk,

where for T ∈ aP0
, we write

pQ(T ) :=

∫
aHQ

ΓQ(T1, T )dT1.

We can also extend our results in last section to the product setting by the same argument. Let o ∈ O
and f∗ ∈ S((mQ̃ ∩ s)(A)). For T ∈ T+ + a+

P0
, J

MQ,T
o (f∗) and JMQ,T (f∗) (defined by (5.0.4) and (5.0.5)

respectively) are polynomials in T . Then we can extend them to all T ∈ aP0
. Denote by J

MQ
o (f∗) the

constant term of J
MQ,T
o (f∗).

Proposition 6.1. For f ∈ S(s(A)) and y ∈ H(A)1, we denote fy(x) := f(Ad(y)(x)). For o ∈ O,
we have

JHo (fy) =
∑

{Q:P0⊆Q}

J
MQ
o (fQ,y).

Proof. Let T ∈ T+ + a+
P0

. By definition,

JH,To (fy) =

∫
H(F )\H(A)1

 ∑
{P :P0⊆P}

(−1)dim(AP /AH)
∑

δ∈P (F )\H(F )

τ̂HP (HP (δx)− T ) · kfy,P,o(δx)

 dx,

where

kfy,P,o(δx) =
∑

Y ∈mP̃ (F )∩o

∫
(nP̃∩s)(A)

f(Ad(y)Ad(δx)−1(Y + U))dU = kf,P,o(δxy−1).

Invoking change of variables, we get

JH,To (fy) =

∫
H(F )\H(A)1

 ∑
{P :P0⊆P}

(−1)dim(AP /AH)
∑

δ∈P (F )\H(F )

τ̂HP (HP (δxy)− T ) · kf,P,o(δx)

 dx.
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For x ∈ H(A) and P a standard parabolic subgroup of H, let kP (x) be an element in K satisfying
xkP (x)−1 ∈ P (A). Then

τ̂HP (HP (δxy)− T ) = τ̂HP (HP (δx)− T +HP (kP (δx)y)).

By substituting T1 = HP (δx)− T and T2 = −HP (kP (δx)y) in (5.0.7), we get

τ̂HP (HP (δxy)− T ) =
∑

{Q:P⊆Q}

(−1)dim(AQ/AH)τ̂QP (HP (δx)− T )ΓQ(HP (δx)− T,−HP (kP (δx)y)).

Then

JH,To (fy) =

∫
H(F )\H(A)1

∑
{P :P0⊆P}

(−1)dim(AP /AH)
∑

δ∈P (F )\H(F ) ∑
{Q:P⊆Q}

(−1)dim(AQ/AH)τ̂QP (HP (δx)− T )ΓQ(HP (δx)− T,−HP (kP (δx)y))

 · kf,P,o(δx)dx,

By exchanging the order of two sums over P and Q, and decomposing the sum over P (F )\H(F ) into
two sums over P (F )\Q(F ) and Q(F )\H(F ), we deduce that

JH,To (fy) =
∑

{Q:P0⊆Q}

∫
H(F )\H(A)1

∑
{P :P0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈P (F )\Q(F )

∑
δ′∈Q(F )\H(F )

τ̂QP (HP (δδ′x)− T )ΓQ(HP (δδ′x)− T,−HP (kP (δδ′x)y))kf,P,o(δδ′x)dx.

By combining the integral over H(F )\H(A)1 and the sum over Q(F )\H(F ) into the integral over
Q(F )\H(A)1 and using the fact that

P (F )\Q(F ) ' (P (F ) ∩MQ(F ))\MQ(F ),

we have

JH,To (fy) =
∑

{Q:P0⊆Q}

∫
Q(F )\H(A)1

∑
{P :P0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(P (F )∩MQ(F ))\MQ(F )

τ̂QP (HP (δx)− T )ΓQ(HP (δx)− T,−HP (kP (δx)y))kf,P,o(δx)dx.

By the Iwasawa decomposition and our choice of measures, we get

JH,To (fy) =
∑

{Q:P0⊆Q}

∫
K

∫
MQ(F )\MQ(A)1

∫
AH,∞Q

∫
NQ(F )\NQ(A)

∑
{P :P0⊆P⊆Q}

(−1)dim(AP /AQ)

∑
δ∈(P (F )∩MQ(F ))\MQ(F )

τ̂QP (HP (δnamk)− T )ΓQ(HP (δnamk)− T,−HP (kP (δnamk)y))

· kf,P,o(δnamk)e−2ρQ(HP0
(a))dndadmdk.

As in the proof of Theorem 5.2, we see that

τ̂QP (HP (δnamk)− T ) = τ̂QP (HP (δm)− T ),

and that

kf,P,o(δnamk) = e2ρQ(HP0
(a))kf,P,o(δmk).

Additionally,

ΓQ(HP (δnamk)− T,−HP (kP (δnamk)y)) = ΓQ(HQ(δnamk)− T,−HQ(kP (δnamk)y))

= ΓQ(HQ(a)− T,−HQ(kQ(δnamk)y))

= ΓQ(HQ(a)− T,−HQ(ky)).

In sum, the integrand in JH,To (fy) is independent of n ∈ NQ(F )\NQ(A). Recall that we choose the Haar
measure such that vol(NQ(F )\NQ(A)) = 1. Then

JH,To (fy) =
∑

{Q:P0⊆Q}

∫
K

∫
MQ(F )\MQ(A)1

∫
AH,∞Q

∑
{P :P0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(P (F )∩MQ(F ))\MQ(F )

τ̂QP (HP (δm)− T )ΓQ(HQ(a)− T,−HQ(ky))kf,P,o(δmk)dadmdk.
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First, let us consider the integral on AH,∞Q , which is∫
AH,∞Q

ΓQ(HQ(a)− T,−HQ(ky))da :=

∫
aHQ

ΓQ(T1 − T,−HQ(ky))dT1

=

∫
aHQ

ΓQ(T1,−HQ(ky))dT1

=pQ(−HQ(ky)).

Next, we compute the integral on K, which is∫
K

kf,P,o(δmk)pQ(−HQ(ky))dk.

As in the proof of Theorem 5.2, we see that

kf,P,o(δmk) =
∑

Y ∈mP̃ (F )∩o

∫
(nQ̃
P̃
∩s)(A)

dU

∫
(nQ̃∩s)(A)

f(Ad(k−1)(Ad(δm)−1(Y + U) + V ))dV,

so we can write∫
K

kf,P,o(δmk)pQ(−HQ(ky))dk =
∑

Y ∈mP̃ (F )∩o

∫
(nQ̃
P̃
∩s)(A)

fQ,y(Ad(δm)−1(Y + U))dU

=

t∑
j=1

k
MQ

fQ,y,P∩MQ,oj
(δm)

by (5.0.3). Therefore, we obtain

JH,To (fy) =
∑

{Q:P0⊆Q}

∫
MQ(F )\MQ(A)1

∑
{P :P0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(P (F )∩MQ(F ))\MQ(F )

τ̂QP (HP (δm)− T )

 t∑
j=1

k
MQ

fQ,y,P∩MQ,oj
(δm)

 dm.

As in the proof of Theorem 5.2, we notice that

J
MQ,T
o (fQ,y) =

∫
MQ(F )\MQ(A)1

∑
{P :P0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(P (F )∩MQ(F ))\MQ(F )

τ̂QP (HP (δm)− T )

 t∑
j=1

k
MQ

fQ,y,P∩MQ,oj
(δm)

 dm.

Thus we deduce that

JH,To (fy) =
∑

{Q:P0⊆Q}

J
MQ,T
o (fQ,y).

We may conclude by taking the constant terms of both sides. �

7. An infinitesimal trace formula for s//H

Recall that for f ∈ S(s(A)), we have defined its Fourier transform f̂ ∈ S(s(A)) by (3.3.1) and

denoted the constant term of JH,To (f) by JHo (f).

Theorem 7.1. For f ∈ S(s(A)), we have the equality,∑
o∈O

JHo (f) =
∑
o∈O

JHo (f̂).

Proof. Applying the Poisson summation formula, for any x ∈ H(A), we have∑
Y ∈s(F )

f(Ad(x−1)(Y )) =
∑

Y ∈s(F )

f̂(Ad(x−1)(Y )),

i.e.,

kf,H(x) = kf̂ ,H(x).
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By Corollary 4.4, for all T ∈ T+ + a+
P0

satisfying α(T ) ≥ ε0 ‖ T ‖ for any α ∈ ∆P0
, we get

|JH,T (f)−
∫
H(F )\H(A)1

FH(x, T )kf,H(x)dx| ≤ C1e
−N‖T‖

and

|JH,T (f̂)−
∫
H(F )\H(A)1

FH(x, T )kf̂ ,H(x)dx| ≤ C2e
−N‖T‖.

Hence
|JH,T (f)− JH,T (f̂)| ≤ (C1 + C2)e−N‖T‖.

By Corollary 5.3, we know that both of JH,T (f) and JH,T (f̂) are polynomials in T , so we deduce
that

JH,T (f) = JH,T (f̂).

From
JH,T (f) =

∑
o∈O

JH,To (f)

and
JH,T (f̂) =

∑
o∈O

JH,To (f̂),

we obtain ∑
o∈O

JH,To (f) =
∑
o∈O

JH,To (f̂).

We can draw the conclusion by taking the constant terms of both sides. �

8. The second modified kernel

Let f ∈ S(s(A)), P be a standard parabolic subgroup of H and o ∈ Ors (see Section 3.3). For
x ∈ P (F )\H(A), define

jf,P,o(x) :=
∑

Y ∈mP̃ (F )∩o

∑
n∈NP (F )

f(Ad(nx)−1(Y )).

For T ∈ a0 and x ∈ H(F )\H(A), define

jTf,o(x) :=
∑

{P :P0⊆P}

(−1)dim(AP /AH)
∑

δ∈P (F )\H(F )

τ̂HP (HP (δx)− T ) · jf,P,o(δx).

By [3, Lemma 5.1], we know that the sum over δ ∈ P (F )\H(F ) is finite.

Lemma 8.1. Let P be a standard parabolic subgroup of H and o ∈ Ors. For Y ∈ mP̃ (F )∩o, the map

NP → nP̃ ∩ s, n 7→ Ad(n−1)(Y )− Y
is an F -isomorphism of algebraic varieties and preserves the Haar measures on A-points.

Proof. Recall that there are two cases considered in Section 3.4. First let us focus on Case I. In
this case, we can suppose

P =


ResE/FGLn1,D′ ResE/FMatn1×n2,D′ · · · ResE/FMatn1×nl,D′

ResE/FGLn2,D′ · · · ResE/FMatn2×nl,D′

. . .
...

ResE/FGLnl,D′

 .

Then

P̃ =


GLn1,D Matn1×n2,D · · · Matn1×nl,D

GLn2,D · · · Matn2×nl,D
. . .

...
GLnl,D

 .

We have chosen an element τ ∈ D× in Section 3.4. Recall also Proposition 3.12.
Let

Y =

 Y1

. . .

Yl

 ∈ mP̃ (F ) ∩ o,
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where Yi ∈ GLni(D′)τ for 1 ≤ i ≤ l, and

n =


1 n12 · · · n1l

1 · · · n2l

. . .
...
1

 ∈ NP ,
where nij ∈ ResE/FMatni×nj ,D′ for 1 ≤ i < j ≤ l. Then

Y n− nY =


0 Y1n12 − n12Y2 · · · Y1n1l − n1lYl

0 · · · Y2n2l − n2lYl
. . .

...
0

 ∈ nP̃ ∩ s.

Now we claim that the morphism of F -affine spaces

ResE/FMatni×nj ,D′ → (ResE/FMatni×nj ,D′)τ

nij 7→ Yinij − nijYj

induces an F -linear isomorphism on F -points. In fact, since it gives an F -linear map between finite
dimensional linear spaces of the same dimension, we only need to prove that this map is injective. If
Yinij − nijYj = 0, then Y 2

i nij = YinijYj = nijY
2
j . We view this as an equation of matrices with entries

in D′ or its base change to an algebraic closure of E. Since Y is regular semi-simple, Y 2 is regular semi-
simple in h(F ) (viewed as a central simple algebra over E), so Y 2

i and Y 2
j have no common eigenvalue.

By the classical theory of Sylvester equation, we know that nij = 0 and conclude.
Using this claim, we see that the map

NP → nP̃ ∩ s, n 7→ Y n− nY

is an F -isomorphism of algebraic varieties and preserves the Haar measure on A-points. Notice that
Ad(n−1)(Y ) − Y = n−1(Y n − nY ). It is easy to see that here n−1 functions as some translation
Yinij −nijYj 7→ Yinij −nijYj +

∑
k>j

(a polynomial of ni′j′ , i
′ > i, j′ ≤ j or i′ ≥ i, j′ < j) · (Yknkj −nkjYj),

so an analogous assertion still holds for the map n 7→ Ad(n−1)(Y )− Y .
Next let us turn to Case II whose proof is close to the first one. In this case, we may suppose

P =


ResE/FGLn1

2 ,D⊗FE
ResE/FMatn1

2 ×
n2
2 ,D⊗FE

· · · ResE/FMatn1
2 ×

nl
2 ,D⊗FE

ResE/FGLn2
2 ,D⊗FE

· · · ResE/FMatn2
2 ×

nl
2 ,D⊗FE

. . .
...

ResE/FGLnl
2 ,D⊗FE

 .

Then

P̃ =


GLn1,D Matn1×n2,D · · · Matn1×nl,D

GLn2,D · · · Matn2×nl,D
. . .

...
GLnl,D

 .

We have chosen an element τ ∈ GL2(D) in Section 3.4. Recall again Proposition 3.12.
Let

Y =

 Y1

. . .

Yl

 ∈ mP̃ (F ) ∩ o,

where Yi ∈ GLni
2

(D ⊗F E)τ for 1 ≤ i ≤ l, and

n =


1 n12 · · · n1l

1 · · · n2l

. . .
...
1

 ∈ NP ,
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where nij ∈ ResE/FMatni
2 ×

nj
2 ,D⊗FE

for 1 ≤ i < j ≤ l. Then

Y n− nY =


0 Y1n12 − n12Y2 · · · Y1n1l − n1lYl

0 · · · Y2n2l − n2lYl
. . .

...
0

 ∈ nP̃ ∩ s.

As in the proof of the first case, we show that the morphism of F -affine spaces

ResE/FMatni
2 ×

nj
2 ,D⊗FE

→ (ResE/FMatni
2 ×

nj
2 ,D⊗FE

)τ

nij 7→ Yinij − nijYj
induces an F -linear isomorphism on F -points. This implies that the map

NP → nP̃ ∩ s, n 7→ Y n− nY
is an F -isomorphism of algebraic varieties and preserves the Haar measure on A-points. By an argument
similar to that in the first case, we deduce that an analogous assertion is still true for the map n 7→
Ad(n−1)(Y )− Y . �

Theorem 8.2. For all T ∈ T+ + a+
P0

and o ∈ Ors, we have∫
H(F )\H(A)1

|jTf,o(x)|dx <∞

and

JH,To (f) =

∫
H(F )\H(A)1

jTf,o(x)dx.

Proof. As in the proof of Theorem 4.2, by the left invariance of jf,P,o by P (F ), we reduce the first
statement to ∫

P1(F )\H(A)1

χTP1,P2
(x)|jP1,P2,o(x)|dx <∞,

where P1 ( P2 are a pair of standard parabolic subgroups of H and for x ∈ P1(F )\H(A), we put

jP1,P2,o(x) :=
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AH)jf,P,o(x).

Additionally,

jf,P,o(x) =
∑

{R:P1⊆R⊆P}

∑
ξ∈m̃R̃

P̃1
(F )∩o

∑
Y ∈(nP̃

R̃
∩s)(F )

∑
n∈NP (F )

f(Ad(nx)−1(ξ + Y )).

From Lemma 8.1, we have

jf,P,o(x) =
∑

{R:P1⊆R⊆P}

∑
ξ∈m̃R̃

P̃1
(F )∩o

∑
Y ∈(nP̃

R̃
∩s)(F )

∑
u∈(nP̃∩s)(F )

f(Ad(x−1)(ξ + Y + u))

=
∑

{R:P1⊆R⊆P}

∑
ξ∈m̃R̃

P̃1
(F )∩o

∑
Y ∈(nR̃∩s)(F )

f(Ad(x−1)(ξ + Y )).

Hence

jP1,P2,o(x) =
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AH)

 ∑
{R:P1⊆R⊆P}

∑
ξ∈m̃R̃

P̃1
(F )∩o

∑
Y ∈(nR̃∩s)(F )

f(Ad(x−1)(ξ + Y ))


=

∑
{R:P1⊆R⊆P2}

∑
ξ∈m̃R̃

P̃1
(F )∩o

 ∑
{P :R⊆P⊆P2}

(−1)dim(AP /AH)

 ∑
Y ∈(nR̃∩s)(F )

f(Ad(x−1)(ξ + Y )).

Using [3, Proposition 1.1], we get

jP1,P2,o(x) = (−1)dim(AP2
/AH)

∑
ξ∈m̃P̃2

P̃1
(F )∩o

∑
Y ∈(n

P̃2
∩s)(F )

f(Ad(x−1)(ξ + Y )).
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Applying Lemma 8.1 again, we obtain

jP1,P2,o(x) = (−1)dim(AP2
/AH)

∑
ξ∈m̃P̃2

P̃1
(F )∩o

∑
n2∈NP2

(F )

f(Ad(n2x)−1(ξ)).

Now we decompose the integral over x ∈ P1(F )\H(A)1 into double integrals n1 ∈ NP1
(F )\NP1

(A)
and y ∈MP1(F )NP1(A)\H(A)1 and use the fact that χTP1,P2

(x) is left invariant under NP1(A). We have∫
P1(F )\H(A)1

χTP1,P2
(x)|jP1,P2,o(x)|dx

=

∫
MP1

(F )NP1
(A)\H(A)1

∫
NP1

(F )\NP1
(A)

χTP1,P2
(n1y)

∣∣∣∣∣∣∣∣
∑

ξ∈m̃P̃2

P̃1
(F )∩o

∑
n2∈NP2

(F )

f(Ad(n2n1y)−1(ξ))

∣∣∣∣∣∣∣∣ dn1dy

≤
∫
MP1

(F )NP1
(A)\H(A)1

χTP1,P2
(y)

∑
ξ∈m̃P̃2

P̃1
(F )∩o

∫
NP1

(F )\NP1
(A)

∑
n2∈NP2

(F )

|f(Ad(n2n1y)−1(ξ))|dn1

 dy.

Since P1 ⊆ P2 and vol(NP2(F )\NP2(A)) = 1, we see that∫
NP1

(F )\NP1
(A)

∑
n2∈NP2

(F )

|f(Ad(n2n1y)−1(ξ))|dn1

=

∫
NP1

(F )\NP1
(A)

∫
NP2

(F )\NP2
(A)

∑
n2∈NP2

(F )

|f(Ad(n2nn1y)−1(ξ))|dndn1

=

∫
NP1

(F )\NP1
(A)

∫
NP2

(A)

|f(Ad(nn1y)−1(ξ))|dndn1

=

∫
NP1

(F )\NP1
(A)

∫
(n
P̃2
∩s)(A)

|f(Ad(n1y)−1(ξ + U))|dUdn1,

where we have applied Lemma 8.1 in the last equality. Hence∫
P1(F )\H(A)1

χTP1,P2
(x)|jP1,P2,o(x)|dx

≤
∫
MP1

(F )NP1
(A)\H(A)1

χTP1,P2
(y)

∑
ξ∈m̃P̃2

P̃1
(F )∩o

(∫
NP1

(F )\NP1
(A)

∫
(n
P̃2
∩s)(A)

|f(Ad(n1y)−1(ξ + U))|dUdn1

)
dy

=

∫
P1(F )\H(A)1

χTP1,P2
(x)

∑
ξ∈m̃P̃2

P̃1
(F )∩o

∫
(n
P̃2
∩s)(A)

|f(Ad(x−1)(ξ + U))|dUdx,

whose convergence comes from that of the formula (4.0.3) when R = P2.
Next we begin to prove the second statement. From the first statement, now we are authorised to

write ∫
H(F )\H(A)1

jTf,o(x)dx =
∑

{P1,P2:P0⊆P1⊆P2}

∫
P1(F )\H(A)1

χTP1,P2
(x)jP1,P2,o(x)dx,

where

jP1,P2,o(x) =
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AH)jf,P,o(x)

=
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AH)

 ∑
Y ∈mP̃ (F )∩o

∑
n∈NP (F )

f(Ad(nx)−1(Y ))

 .

Decompose the integral over x ∈ P1(F )\H(A)1 into double integrals over n1 ∈ NP1(F )\NP1(A) and
y ∈MP1(F )NP1(A)\H(A)1. Since NP1(F )\NP1(A) is compact, from Lemma 8.1 and [53, §41], we know
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that ∑
Y ∈mP̃ (F )∩o

∑
n∈NP (F )

|f(Ad(nn1y)−1(Y ))| =
∑

Y ∈mP̃ (F )∩o

∑
u∈(nP̃∩s)(F )

|f(Ad(n1y)−1(Y + u))|

is bounded on n1 ∈ NP1
(F )\NP1

(A). Then using the fact that χTP1,P2
(x) is left invariant under NP1

(A),
we have∫

H(F )\H(A)1

jTf,o(x)dx =
∑

{P1,P2:P0⊆P1⊆P2}

∫
MP1

(F )NP1
(A)\H(A)1

χTP1,P2
(y)

∑
{P :P1⊆P⊆P2}

(−1)dim(AP /AH)

∑
Y ∈mP̃ (F )∩o

∫
NP1

(F )\NP1
(A)

∑
n∈NP (F )

f(Ad(nn1y)−1(Y ))dn1

 dy.

Since P1 ⊆ P and vol(NP (F )\NP (A)) = 1, we see that∫
NP1

(F )\NP1
(A)

∑
n∈NP (F )

f(Ad(nn1y)−1(Y ))dn1

=

∫
NP1

(F )\NP1
(A)

∫
NP (F )\NP (A)

∑
n∈NP (F )

f(Ad(nn2n1y)−1(Y ))dn2dn1

=

∫
NP1

(F )\NP1
(A)

∫
NP (A)

f(Ad(nn1y)−1(Y ))dndn1

=

∫
NP1

(F )\NP1
(A)

∫
(nP̃∩s)(A)

f(Ad(n1y)−1(Y + U))dUdn1,

where we have applied Lemma 8.1 in the last equality. Therefore, we have∫
H(F )\H(A)1

jTf,o(x)dx =
∑

{P1,P2:P0⊆P1⊆P2}

∫
MP1

(F )NP1
(A)\H(A)1

χTP1,P2
(y)

∑
{P :P1⊆P⊆P2}

(−1)dim(AP /AH)

∑
Y ∈mP̃ (F )∩o

(∫
NP1

(F )\NP1
(A)

∫
(nP̃∩s)(A)

f(Ad(n1y)−1(Y + U))dUdn1

)
dy

=
∑

{P1,P2:P0⊆P1⊆P2}

∫
P1(F )\H(A)1

χTP1,P2
(x)

∑
{P :P1⊆P⊆P2}

(−1)dim(AP /AH)

·

 ∑
Y ∈mP̃ (F )∩o

∫
(nP̃∩s)(A)

f(Ad(x−1)(Y + U))dU

 dx

=
∑

{P1,P2:P0⊆P1⊆P2}

∫
P1(F )\H′(A)1

χTP1,P2
(x)kP1,P2,o(x)dx.

Thanks to Theorem 4.2, we are able to write

JH,To (f) =

∫
H(F )\H(A)1

kTf,o(x)dx =
∑

{P1,P2:P0⊆P1⊆P2}

∫
P1(F )\H(A)1

χTP1,P2
(x)kP1,P2,o(x)dx,

which completes our proof. �

9. Weighted orbital integrals

Let o ∈ Ors (see Section 3.3). There is an element Y1 ∈ o and a standard parabolic subgroup P1 of

H such that Y1 ∈ m
P̃1

(F ) but Y1 can not be MP1
(F )-conjugate to an element in R̃ (or equivalently in

MR̃ by Proposition 3.3) for any standard parabolic subgroup R ( P1. We call such Y1 an elliptic element

in (m
P̃1
∩ s)(F ). For P1 and P2 a pair of standard parabolic subgroups of H, denote by ΩH(aP1 , aP2) the

set (perhaps empty) of distinct isomorphisms from aP1 to aP2 obtained by restriction of elements in ΩH .

Lemma 9.1. Let P be a standard parabolic subgroup of H. Let Y ∈ (mP̃ ∩ s)(F ) be a regular semi-
simple element in s. Then Y is an elliptic element in (mP̃ ∩ s)(F ) if and only if the maximal F -split
torus in HY is AP .

85



Proof. It is evident that HY ⊆ HY 2 . From Y ∈ (mP̃ ∩ s)(F ), one knows that AP ⊆ HY . Since Y

is regular semi-simple in s, one deduces that Y 2 ∈ mP (F ) is regular semi-simple in h(F ) (viewed as a
central simple algebra over E). Thus HY 2 ⊆MP .

On the one hand, suppose that Y is an elliptic element in (mP̃ ∩s)(F ). If the maximal F -split torus in
HY is notAP , then there exists a F -split torusA∗ such thatAP ( A∗ ⊆ HY . ForA∗ ⊆ HY ⊆ HY 2 ⊆MP ,
the centralizer CentMP

(A∗) of A∗ in MP is a Levi subgroup of MP . There exists m ∈MP (F ) such that
Ad(m)(CentMP

(A∗)) = MR∗ for some standard parabolic subgroup R∗ of MP . Then Ad(m)(A∗) ⊆ AR∗
and the centralizer of Ad(m)(A∗) in MP is MR∗ . Let R be the unique standard parabolic subgroup
of H such that R ⊆ P and that R ∩ MP = R∗. Then AR = AR∗ and MR = MR∗ . Since τ (see
Section 3.4) commutes with A0, by Proposition 3.12, the centralizer of Ad(m)(A∗) in mP̃ ∩ s is mR̃ ∩ s.
From A∗ ⊆ HY , one obtains Ad(m)(A∗) ⊆ HAd(m)(Y ). Since Ad(m)(Y ) ∈ (mP̃ ∩ s)(F ), we deduce
that Ad(m)(Y ) ∈ (mR̃ ∩ s)(F ). Because AP ( A∗ and Ad(m)(A∗) ⊆ AR, we have AP ( AR and thus
R ( P . That is to say, Y is not an elliptic element in (mP̃ ∩ s)(F ). It is a contradiction. This proves
one direction.

On the other hand, suppose that the maximal F -split torus in HY is AP . If Y is not an elliptic
element in (mP̃ ∩ s)(F ), there exists m ∈MP (F ) such that Ad(m)(Y ) ∈ (mR̃ ∩ s)(F ) for some standard

parabolic subgroup R ( P . Then AR ⊆ HAd(m)(Y ), i.e., Ad(m−1)(AR) ⊆ HY . For R ( P , one sees that

AP ( Ad(m−1)(AR). That is to say, Ad(m−1)(AR) is a strictly larger split torus than AP in HY . It
contradicts our hypothesis. This proves the other direction. �

Theorem 9.2. Let o ∈ Ors, P1 be a standard parabolic subgroup of H and Y1 ∈ o be an elliptic
element in (m

P̃1
∩ s)(F ). For f ∈ S(s(A)), we have

JHo (f) = vol(A∞P1
HY1

(F )\HY1
(A)) ·

∫
HY1

(A)\H(A)

f(Ad(x−1)(Y1))vP1
(x)dx,

where vP1(x) is left-invariant under HY1(A) and is equal to the volume of the projection onto aHP1
of the

convex hull of {−HQ(x)}, where Q takes over all semi-standard parabolic subgroups of H with MQ = MP1
.

Remark 9.3. The weights that we obtain for regular semi-simple orbits are the same as Arthur’s
in [3, p. 951]. These weights are also the same as those (see [39, p. 131]) appearing in the twisted
trace formula for H o σ, where σ acts on H by Ad(τ) (see Section 3.4 for the choice of τ). Notice that
the action σ stabilises P0 and M0. All standard parabolic subgroups P of H are σ-stable and σ fixes
aP = aP̃ .

Proof of Theorem 9.2. Let P be any standard parabolic subgroup of H and Y ∈ mP̃ (F ) ∩ o.
There exists a standard parabolic subgroup P2 ⊆ P and Y2 an elliptic element in (m

P̃2
∩ s)(F ) such

that Y2 is MP (F )-conjugate to Y . By Lemma 9.1, the maximal F -split torus in HY2
is AP2

. Any
element in H(F ) which conjugates Y1 and Y2 will conjugate AP1 and AP2 . It follows that there exists
s ∈ ΩH(aP1 , aP2) and m ∈MP (F ) such that

Y = Ad(mωs)(Y1).

Suppose that P3 ⊆ P is another standard parabolic subgroup, s′ ∈ ΩH(aP1
, aP3

) and m′ ∈MP (F ) such
that

Y = Ad(m′ωs′)(Y1).

Then there is ζ ∈ HY (F ) such that

m′ωs′ = ζmωs.

From HY ⊆MP , we see that

ωs′ = ξωs

for some ξ ∈ MP (F ). Denote by ΩH(aP1
;P ) the set of s ∈

⋃
aP2

ΩH(aP1
, aP2

) satisfying aP ⊆ saP1

and s−1α > 0 for each α ∈ ∆P
P2

. In sum, for any given P a standard parabolic subgroup of H and

Y ∈ mP̃ (F ) ∩ o, there is a unique s ∈ ΩH(aP1 ;P ) such that Y = Ad(mωs)(Y1) for some m ∈MP (F ).
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For x ∈ P (F )\H(A), we have

jf,P,o(x) =
∑

Y ∈mP̃ (F )∩o

∑
n∈NP (F )

f(Ad(nx)−1(Y ))

=
∑

s∈ΩH(aP1
;P )

∑
m∈MP,Ad(ωs)(Y1)(F )

∖
MP (F )

∑
n∈NP (F )

f(Ad(mnx)−1Ad(ωs)(Y1))

=
∑

s∈ΩH(aP1
;P )

∑
m∈MP,Ad(ωs)(Y1)(F )

∖
P (F )

f(Ad(mx)−1Ad(ωs)(Y1)),

where MP,Ad(ωs)(Y1) denotes the centralizer of Ad(ωs)(Y1) in MP . Then for T ∈ a0 and x ∈ H(F )\H(A),
we deduce that

jTf,o(x) =
∑

{P :P0⊆P}

(−1)dim(AP /AH)
∑

δ∈P (F )\H(F )

τ̂HP (HP (δx)− T ) · jf,P,o(δx)

=
∑

{P :P0⊆P}

(−1)dim(AP /AH)
∑

δ∈P (F )\H(F )

τ̂HP (HP (δx)− T )

·

 ∑
s∈ΩH(aP1

;P )

∑
m∈MP,Ad(ωs)(Y1)(F )

∖
P (F )

f(Ad(mδx)−1Ad(ωs)(Y1))


=

∑
{P :P0⊆P}

(−1)dim(AP /AH)
∑

s∈ΩH(aP1
;P )

∑
δ∈MP,Ad(ωs)(Y1)(F )

∖
H(F )

τ̂HP (HP (δx)− T )

· f(Ad(δx)−1Ad(ωs)(Y1)).

Notice that the centralizer of Ad(ωs)(Y1) in H is actually contained in MP , so

jTf,o(x) =
∑

{P :P0⊆P}

(−1)dim(AP /AH)
∑

s∈ΩH(aP1
;P )

∑
δ∈H

ωsY1ω
−1
s

(F )
∖
H(F )

τ̂HP (HP (δx)− T ) · f(Ad(δx)−1Ad(ωs)(Y1))

=
∑

{P :P0⊆P}

(−1)dim(AP /AH)
∑

s∈ΩH(aP1
;P )

∑
δ∈HY1

(F )\H(F )

τ̂HP (HP (ωsδx)− T ) · f(Ad(δx)−1(Y1)).

For y ∈ H(A), we write

χT (y) :=
∑

{P :P0⊆P}

(−1)dim(AP /AH)
∑

s∈ΩH(aP1
;P )

τ̂HP (HP (ωsy)− T ).

Then

jTf,o(x) =
∑

δ∈HY1
(F )\H(F )

f(Ad(δx)−1(Y1)) · χT (δx).

For T ∈ T+ + a+
P0

, applying Theorem 8.2 and the fact that jTf,o(x) is left invariant by A∞H , we have

JH,To (f) =

∫
H(F )\H(A)1

jTf,o(x)dx

=

∫
A∞HH(F )\H(A)

 ∑
δ∈HY1

(F )\H(F )

f(Ad(δx)−1(Y1)) · χT (δx)

 dx.

Then we obtain

(9.0.1) JH,To (f) = vol(A∞P1
HY1

(F )\HY1
(A)) ·

∫
HY1

(A)\H(A)

f(Ad(x−1)(Y1))vP1
(x, T )dx,

where

vP1(x, T ) :=

∫
A∞H \A∞P1

χT (ax)da.

Here we have used the fact that vP1(x, T ) is well-defined and left-invariant under HY1(A) ⊆ MP (A).
Moreover, vP1

(x, T ) is equal to the volume of the projection onto aHP1
of the convex hull of {TQ−HQ(x)},

where TQ denotes the projection of sT in aQ for any s ∈ ΩH satisfying sP0 ⊆ Q, and Q takes over all
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semi-standard parabolic subgroups of H with MQ = MP1
. These properties follow from [3, p. 951]. We

have also assumed the finiteness of vol(A∞P1
HY1

(F )\HY1
(A)), which results from Lemma 9.1.

In the end, we may conclude by taking contant terms of both sides of (9.0.1). �

10. The weighted fundamental lemma

In this section, we turn to the local setting and change the notation by letting F be a non-archimedean
local field of characteristic 0.

10.1. (H,M)-families associated to local weighted orbital integrals. Suppose that H is a
reductive group defined over F . Fix a maximal compact subgroup K of H(F ) which is admissible relative
to M0 in the sense of [5, p. 9]. Again we choose the standard one for an inner of GLn. For a parabolic
subgroup P of H and x ∈ H(F ), we have H(F ) = P (F )K by Iwasawa decomposition and define HP (x)
as in Section 2.2 by replacing | · |A with the normalised absolute value | · |F on F . Suppose that M
is a Levi subgroup of H containing M0. Let P(M) be the set of parabolic subgroups of H with Levi
component M . According to [5, p. 40-41],

vP (λ, x) := e−λ(HP (x)),∀λ ∈ ia∗M , P ∈ P(M),

is an (H,M)-family in the sense of [5, p. 36]. Let P ∈ P(M) and Q be a parabolic subgroup of H
containing P . Define

θQP (λ) := vol(aQP /Z(∆Q
P )∨)−1

∏
α∨∈(∆Q

P )∨

λ(α∨),

where Z(∆Q
P )∨ denotes the lattice in aQP generated by (∆Q

P )∨. Then we obtain a function

vQM (x) := lim
λ→0

∑
{P∈P(M):P⊆Q}

vP (λ, x)θQP (λ)−1,∀x ∈ H(F ).

10.2. Matching of orbits. Assume that F has odd residue characteristic and that E is an un-
ramified quadratic extension over F . Let G := GL2n and H := ResE/FGLn,E be the centralizer of

E× in G. Let H ′ := GLn × GLn be the subgroup of G by diagonal embedding. Denote by OF the
ring of integers of F . All of G, H and H ′ are regarded as group schemes over OF . Let s (resp. s′)
be the tangent space at the neutral element of G/H (resp. G/H ′), which is viewed as a subspace
of g. Here we can and shall identify s(F ) ' h(F ), on which H(F ) acts by twisted conjugation, i.e.,

h · Y = hY h
−1

, where h denotes the nontrivial Galois conjugate of h ∈ h(F ). In fact, we can write con-

cretely G(F ) '
{(

A B
B A

)
: A,B ∈ GLn(E)

}
, H(F ) '

{(
A

A

)
: A ∈ GLn(E)

}
and s(F ) '{(

0 B
B 0

)
: B ∈ gln(E)

}
, and choose τ =

(
0 1n
1n 0

)
in this form. Additionally, if we write G(F )

in the usual form of invertible 2n× 2n-matrices over F and H ′(F ) =

{(
A

B

)
: A,B ∈ GLn(F )

}
,

then s′(F ) =

{(
0 A
B 0

)
: A,B ∈ gln(F )

}
' gln(F ) ⊕ gln(F ). We see that H ′(F ) acts on s′(F ) by

conjugation, i.e., (x1, x2) · (A,B) = (x1Ax
−1
2 , x2Bx

−1
1 ).

Recall [10, Lemma 1.1 of Chapter 1] that the norm map Y 7→ Y Y induces an injection from the
set of twisted conjugacy classes in GLn(E) to the set of conjugacy classes in GLn(F ), whose image is
denoted by N(GLn(E)); in particular, we write NE× for N(GL1(E)). We have the notions of regular
semisimple elements in s(F ) and s′(F ) (whose sets are denoted by srs(F ) and s′rs(F ) respectively) as
before, which are explicitly described as follows.

Proposition 10.1. 1) An element Y of s(F ) is regular semi-simple if and only if Y Y belongs to
GLn(E) and is regular semi-simple. The map Y 7→ Y Y from s(F ) to GLn(E) induces an injection
from the set of H(F )-conjugacy classes of regular semi-simple elements in s(F ) into the set of regular
semi-simple conjugacy classes in GLn(F ).

2) An element X of s′(F ) is regular semi-simple if and only if it is H ′(F )-conjugate to an element
of the form

X(A) :=

(
0 1n
A 0

)
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with A ∈ GLn(F ) being regular semi-simple. The map

(
0 A
B 0

)
7→ AB from s′(F ) to GLn(F ) induces

a bijection between the set of H ′(F )-conjugacy classes of regular semi-simple elements in s′(F ) and the
set of regular semi-simple conjugacy classes in GLn(F ).

Proof. 1) is contained in [24, Lemma 2.1], while 2) is proved in [31, Proposition 2.1 and Lemma
2.1]. �

To sum up, the composition of the map in 1) and the inverse of the map in 2) above induces an
injection from the set of H(F )-orbits in srs(F ) into the set of H ′(F )-orbits in s′rs(F ). We shall say
that Y ∈ srs(F ) and X ∈ s′rs(F ) have matching orbits if their orbits are matched under this injection.
Alternatively, this can be canonically characterized by an identification of categorical quotients s//H '
s′//H ′ (see Proposition 3.5 and Proposition 3.3 in Chapter 2). With our identification s(F ) ' h(F ), we

see that Y ∈ srs(F ) and X =

(
0 A
B 0

)
∈ s′rs(F ) have matching orbits if and only if the characteristic

polynomial of Y Y ∈ GLn(E) equals that of AB ∈ GLn(F ).

10.3. Matching of Levi subgroups involved. We recall some terminology in §3.4 and §5.2 in
Chapter 2. The subgroup of diagonal matrices in G is a common minimal Levi subgroup of G and H ′.
We also fix a minimal semi-standard parabolic subgroup of H ′ to be the group of products of upper
triangular matrices. We say that a semi-standard parabolic subgroup of G is “relatively standard” if

its intersection with H ′ is a standard parabolic subgroup of H ′. Let ω :=

(
0 1n
1n 0

)
. We say that a

semi-standard parabolic subgroup P of G is “ω-stable” if Ad(ω)(P ) = P . Recall that if the Lie algebra
of a relatively standard parabolic subgroup P of G has non-empty intersection with s′rs, then P must be
ω-stable (see Proposition 5.1 in Chapter 2).

We shall say that a semi-standard Levi subgroup M ′ of G is “ω-stable” if M ′ = MP ′ for some ω-stable
parabolic subgroup P ′ of G. We should remark that this condition is stronger than Ad(ω)(M ′) = M ′:
for example, the minimal Levi subgroup of diagonal matrices in G is not considered to be ω-stable in our
sense. Here ω-stable Levi subgroups of G play the role of semi-standard Levi subsets of (GLn×GLn)oσ′
in the sense of [37, §I.1], where σ′ exchanges two copies of GLn. For any linear subspace v of g, we denote
by v× the intersection of v and G in g. Notice that there is a bijection between the set of semi-standard
Levi subgroups of GLn and the set of semi-standard Levi subgroups of H (resp. the set of ω-stable

Levi subgroups of G) induced by Mn 7→ M = ResE/FMn,E (resp. Mn 7→ M ′ =

(
mn mn
mn mn

)×
); here

mn denotes the Lie algebra of Mn. We shall use the notations Mn,M,M ′ to denote the corresponding
semi-standard or ω-stable Levi subgroups of different groups under these bijections after fixing one of
the three. We also have bijections among semi-standard or ω-stable parabolic subgroups (denoted by
Qn, Q,Q

′) of different groups containing these Levi subgroups.
Let M ′ be an ω-stable Levi subgroup of G. We shall say that Y ∈ m(F ) ∩ srs(F ) and X ∈

m′(F ) ∩ s′rs(F ) have M ′-matching orbits if in each pair of blocks of m and m′, their components have
matching orbits.

10.4. Transfer factor. Let η be the quadratic character of F×/NE× attached to the quadratic

field extension E/F . For X =

(
0 A
B 0

)
∈ s′rs(F ), define a transfer factor (see [58, Definition 5.8])

κ(X) := η(det(A)),

which satisfies κ(Ad(x−1)(X)) = η(det(x))κ(X) for any x ∈ H ′(F ).

10.5. Transfer of weighted orbital integrals. Fix the Haar measures on H(F ) and H ′(F ) such
that vol(H(OF )) = vol(H ′(OF )) = 1. For a locally compact and totally disconnected space X, denote
by C∞c (X) the C-linear space of locally constant and compactly supported functions on X.

Definition 10.2. 1) Let M be a semi-standard Levi subgroup of H and Q a parabolic subgroup of
H containing M . For Y ∈ m(F ) ∩ srs(F ) and f ∈ C∞c (s(F )), we define the weighted orbital integral of
f at Y by

JQM (Y, f) :=

∫
HY (F )\H(F )

f(Ad(x−1)(Y ))vQM (x)dx.
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2) Let M ′ be an ω-stable Levi subgroup of G and Q′ a parabolic subgroup of G containing M ′ (thus
Q′ is ω-stable). For X ∈ m′(F )∩ s′rs(F ) and f ′ ∈ C∞c (s′(F )), we define the weighted η-orbital integral of
f ′ at X by

Jη,Q
′

M ′ (X, f ′) :=

∫
H′X(F )\H′(F )

f ′(Ad(x−1)(X))η(det(x))vQ
′

M ′(x)dx.

Remark 10.3. 1) vQM is a local analogue of the weight that we got in Theorem 9.2. By Remark 9.3,

it is the same as v
(ResE/FQn,E)oσ
(ResE/FMn,E)oσ in [37, §I.3], where σ is the nontrivial Galois conjugation.

2) vQ
′

M ′ is a local analogue of the weight that we got in Theorem 9.2 in Chapter 2. By Remark 9.3 in

Chapter 2, it is the same as v
(Qn×Qn)oσ′
(Mn×Mn)oσ′ in [37, §I.3], where σ′ exchanges two copies.

If Y ∈ srs(F ) and X ∈ s′rs(F ) have matching orbits, their centralizers HY and H ′X are canonically
isomorphic. We shall fix compatible Haar measures on them.

Definition 10.4. For f ∈ C∞c (s(F )) and f ′ ∈ C∞c (s′(F )), we say that f and f ′ are strongly associated
if for all ω-stable Levi subgroup M ′ of G and all parabolic subgroup Q′ of G containing M ′ (thus Q′ is
ω-stable), we have

(1) if Y ∈ m(F ) ∩ srs(F ) and X ∈ m′(F ) ∩ s′rs(F ) have M ′-matching orbits, then

κ(X)Jη,Q
′

M ′ (X, f ′) = JQM (Y, f);

(2) if X =

(
0 A
B 0

)
∈ m′(F ) ∩ s′rs(F ) satisfies ξ(AB) /∈ NE× for some ξ ∈ X(MQn)F , then

Jη,Q
′

M ′ (X, f ′) = 0.

We remark that this definition is inspired by [37, Definition III.3.2] on the base change for GLn.
The following result (cf. [37, Remark III.3.2.(i)]) shows that to check the vanishing statement (2) in the
above definition, it suffices to check it for all ω-stable Levi subgroup M ′ of G such that X is an elliptic
element in m′(F ) ∩ s′rs(F ) (i.e. AM ′ is the maximal F -split torus in H ′X).

Proposition 10.5. Let f ′ ∈ C∞c (s′(F )). The following two conditions are equivalent:

1) for all ω-stable Levi subgroup M ′ of G and all parabolic subgroup Q′ of G containing M ′, if

X =

(
0 A
B 0

)
∈ m′(F ) ∩ s′rs(F ) satisfies ξ(AB) /∈ NE× for some ξ ∈ X(MQn)F , then

Jη,Q
′

M ′ (X, f ′) = 0;

2) for all ω-stable Levi subgroup M ′ of G and all parabolic subgroup Q′ of G containing M ′, if

X =

(
0 A
B 0

)
is an elliptic element in m′(F ) ∩ s′rs(F ) and satisfies ξ(AB) /∈ NE× for some

ξ ∈ X(MQn)F , then

Jη,Q
′

M ′ (X, f ′) = 0.

Proof. The direction 1)⇒2) is trivial. Now we assume 2) and prove 1).

Let X =

(
0 A
B 0

)
∈ m′(F ) ∩ s′rs(F ) satisfy ξ(AB) /∈ NE× for some ξ ∈ X(MQn)F . There is

an ω-stable Levi subgroup M ′∗ of G contained in M ′ and an element y ∈ M ′(F ) ∩ H ′(F ) such that
X∗ := Ad(y)(X) is an elliptic element in m′∗(F ) ∩ s′rs(F ). We have

(10.5.1) Jη,Q
′

M ′ (X∗, f
′) = η(det(y))Jη,Q

′

M ′ (X, f ′).

Suppose that X∗ =

(
0 A∗
B∗ 0

)
. Then ξ(A∗B∗) /∈ NE× for the above ξ ∈ X(MQn)F .

By the descent formula for (G,M ′)-families (see [37, Lemma I.1.2]), we have

vQ
′

M ′ =
∑

L′∈LQ′ (M ′∗)

dQ
′

M ′∗
(M ′, L′)v

Q′
L′

M ′∗
,

where L Q′(M ′∗) denotes the set of Levi subgroups of G contained in Q′ and containing M ′∗ (thus L′

is ω-stable), Q′L′ is some parabolic subgroup of G with Levi factor L′ (thus Q′L′ is ω-stable), and

90



dQ
′

M ′∗
(M ′, L′) ∈ R≥0 is defined in [6, p. 356]. Thus

(10.5.2) Jη,Q
′

M ′ (X∗, f
′) =

∑
L′∈LQ′ (M ′∗)

dQ
′

M ′∗
(M ′, L′)J

η,Q′
L′

M ′∗
(X∗, f

′).

For all L′ ∈ L Q′(M ′∗), let ξL ∈ X(Ln)F be the image of ξ under the restriction X(MQn)F ↪→ X(Ln)F .
Then ξL(A∗B∗) /∈ NE×. By our assumption 2), we have

J
η,Q′

L′
M ′∗

(X∗, f
′) = 0.

Then by (10.5.1) and (10.5.2), we obtain

Jη,Q
′

M ′ (X, f ′) = η(det(y))−1Jη,Q
′

M ′ (X∗, f
′) = 0,

which shows 1). �

The proposition below (cf. [37, Lemma III.3.3]) shows that strongly associated functions are smooth
transfers of each other in the sense of [58, Definition 5.10.(ii)].

Proposition 10.6. If f ′ ∈ C∞c (s′(F )) satisfies the conditions in Proposition 10.5, then for X ∈
s′rs(F ) with no matching orbit in srs(F ), we have

Jη,G
′

G′ (X, f ′) = 0.

To prove this proposition, we recall two basic facts.

Lemma 10.7. Suppose that
l∑

j=1

nj = n. Let A = (A1, ..., Al) ∈ GLn1
(F ) × · · · × GLnl(F ) be a

regular semi-simple element in GLn(F ). Then A ∈ N(GLn(E)) if and only if Aj ∈ N(GLnj (E)) for all
1 ≤ j ≤ l.

Proof. This is known, but we include its proof here for completeness (cf. [36, Lemma 8.8]). For A ∈
N(GLn(E)), there exists B ∈ GLn(E) such that A = BB. Since A ∈ GLn(F ), we have BB = BB, which
implies that AB = BA. But A is regular semi-simple in GLn(E). Thus B ∈ GLn1

(E)×···×GLnl(E). We
write B = (B1, ..., Bl) with Bj ∈ GLnj (E) for all 1 ≤ j ≤ l. Then we obtain Aj = BjBj ∈ N(GLnj (E))
for all 1 ≤ j ≤ l. This shows one direction. The other direction is trivial. �

Lemma 10.8. Let A ∈ GLn(F ) be an elliptic regular element. Then A ∈ N(GLn(E)) if and only if
det(A) ∈ NE×.

Proof. This is a special case of [10, Lemma 1.4 in Chapter 1]. �

Proof of Proposition 10.6. Up to conjugation by H(F ), it suffices to consider X =

(
0 1n
A 0

)
with A an elliptic regular element in Mn(F ) for some semi-standard Levi subgroup Mn of GLn. Then
by Lemmas 10.7 and 10.8, X has no matching orbit in srs(F ) if and only if ξ(A) /∈ NE× for some
ξ ∈ X(Mn)F . Let Q′ be a parabolic subgroup of G with Levi factor M ′. We have

Jη,G
′

G′ (X, f ′) = Jη,Q
′

M ′ (X, f ′).

But Jη,Q
′

M ′ (X, f ′) vanishes for f ′ ∈ C∞c (s′(F )) satisfying the conditions in Proposition 10.5. Then we
finish the proof. �

10.6. The weighted fundamental lemma. Let f0 ∈ C∞c (s(F )) (resp. f ′0 ∈ C∞c (s′(F ))) be the
characteristic function of s(OF ) ' gln(OE) (resp. of s′(OF ) ' (gln ⊕ gln)(OF )).

Theorem 10.9. The functions f0 and f ′0 are strongly associated.

The rest of the section is devoted to the proof of this theorem with the help of (split and unramified)
base changes for GLn. Suppose that M ′ is an ω-stable Levi subgroup of G and that Q′ is a parabolic

subgroup of G containing M ′ (thus Q′ is ω-stable). For x = (xi,j) ∈ gln(E), let |x| := maxi,j |xi,jxi,j |1/2F .
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10.6.1. Split base change. Let A ∈ GLn(F ) be regular semi-simple and denote v := |det(A)|F . We
shall define Φv ∈ C∞c (GLn(F ) ×GLn(F )) and Ψv ∈ C∞c (GLn(F )) as in the proof of [58, Lemma 5.18].
Let Φv be the characteristic function of the subset of (x1, x2) ∈ GLn(F ) × GLn(F ) satisfying |x1| ≤ 1,
|x2| ≤ 1 and |det(x1x2)|F = v. Let Ψv be the function on GLn(F ) defined by

Ψv(g) :=

∫
GLn(F )

Φv(x2, x
−1
2 g)η(det(x2))dx2.

We also define Θv(x1, x2) := Φv(x1, x2)η(det(x1)) ∈ C∞c (GLn(F )×GLn(F )).
We shall consider the action σ′ on GLn × GLn which exchanges two copies. Denote by (GLn ×

GLn)(1n,A),σ′ the twisted (by σ′) centralizer of GLn ×GLn at (1n, A) and by GLn(F )A the centralizer
of GLn(F ) at A. Recall the (split) base change homomorphism (see [10, §5 of Chapter 1] for example)

bcF×F/F : H(GLn(F )×GLn(F ), GLn(OF )×GLn(OF ))→ H(GLn(F ), GLn(OF ))

defined by the convolution product, where H(GLn(F )×GLn(F ), GLn(OF )×GLn(OF )) and H(GLn(F ),
GLn(OF )) denote the corresponding spherical Hecke algebras. Notice that Φv,Θv ∈ H(GLn(F ) ×
GLn(F ), GLn(OF )×GLn(OF )) and that Ψv ∈ H(GLn(F ), GLn(OF )).

Lemma 10.10. We have

Ψv = bcF×F/F (Θv).

Proof. Let ψn := bcF×F/F (Θv). Via the Satake isomorphism, it suffices to prove that ψn and Ψv

have the same orbital integrals at any regular element in the diagonal torus An(F ) of GLn(F ). Let
a ∈ An(F ) be a regular element in GLn(F ). From [10, §5 in Chapter 1], we know that the orbital
integral of ψn at a is equal to the twisted (by σ′) orbital integral of Θv at (1n, a). By change of variables
(cf. the proof of [58, Lemma 5.18]), the latter is∫

(GLn×GLn)(1n,a),σ′ (F )\GLn(F )×GLn(F )

Φv(x
−1
1 x2, x

−1
2 ax1)η(det(x−1

1 x2))dx1dx2

=

∫
(GLn(F )a\GLn(F ))×GLn(F )

Φv(x2, x
−1
2 x−1

1 ax1)η(det(x2))dx2dx1

=

∫
GLn(F )a\GLn(F )

Ψv(Ad(x−1
1 )(a))dx1,

which is the orbital integral of Ψv at a. This completes the proof. �

Suppose additionally that A belongs to the Levi subgroup Mn(F ). The twisted (by σ′) weighted
orbital integral of Θv ∈ C∞c (GLn(F )×GLn(F )) at (1n, A) is defined by

J
(Qn×Qn)oσ′
(Mn×Mn)oσ′((1n, A),Θv) :=

∫
(GLn×GLn)(1,A),σ′ (F )\GLn(F )×GLn(F )

Θv(x
−1(1n, A)σ′(x))v

(Qn×Qn)oσ′
(Mn×Mn)oσ′(x)dx.

The weighted orbital integral of Ψv ∈ C∞c (GLn(F )) at A is defined by

JQnMn
(A,Ψv) :=

∫
GLn(F )A\GLn(F )

Ψv(Ad(x−1)(A))vQnMn
(x)dx.

Corollary 10.11. For A ∈Mn(F ) which is regular semi-simple in GLn(F ), we have

J
(Qn×Qn)oσ′
(Mn×Mn)oσ′((1n, A),Θv) = JQnMn

(A,Ψv).

Proof. It results from Lemma 10.10 and [37, Theorem IV.5.2] for the (split) base change F ×
F/F . �

Let X =

(
0 1n
A 0

)
∈ m′(F ) ∩ s′rs(F ). Then κ(X) = 1. By Remark 10.3.1), since η(det(x1x2)) =

η(det(x−1
1 x2)) for (x1, x2) ∈ GLn(F )×GLn(F ), we see that

(10.6.1) κ(X)Jη,Q
′

M ′ (X, f ′0) = J
(Qn×Qn)oσ′
(Mn×Mn)oσ′((1n, A),Θv).
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10.6.2. Unramified base change. Let B ∈ GLn(E) be such that BB is regular semi-simple and denote
w := |det(BB)|F . We shall define Ξw ∈ C∞c (GLn(E)) as in the proof of [58, Lemma 5.18]. Let Ξw be
the characteristic function of the subset of x ∈ GLn(E) satisfying |x| ≤ 1 and |det(xx)|F = w.

We shall consider the nontrivial Galois conjugation σ on ResE/FGLn,E . Denote by GLn(E)B,σ the
twisted (by σ) centralizer of GLn(E) at B. Recall the (unramified) base change homomorphism (see
[10, §4.2 of Chapter 1] for example)

bcE/F : H(GLn(E), GLn(OE))→ H(GLn(F ), GLn(OF ))

described via the Satake transform by f(z) 7→ f(z2), where H(GLn(E), GLn(OE)) denotes the corre-
sponding spherical Hecke algebra. Note that Ξw ∈ H(GLn(E), GLn(OE)).

Lemma 10.12. We have

Ψw = bcE/F (Ξw).

Proof. This is essentially included in [23, Corollary 3.7]. Via the Satake isomorphism, it suffices
to prove that bcE/F (Ξw) and Ψv have the same orbital integrals at any regular element in the diagonal
torus An(F ) of GLn(F ). From [10, Theorem 4.5 in Chapter 1], we reduce ourselves to comparing the
twisted (by σ) orbital integral of Ξw at β ∈ An(E) such that ββ belongs to An(F ) and is regular with
the orbital integral of Ψv at regular elements in An(F ). The former is computed in [23, the first case in
p. 139], while the latter is computed in [23, the first case in p. 137]. �

Suppose additionally that B belongs to the Levi subgroup Mn(E). The twisted (by σ) weighted
orbital integral of Ξw ∈ C∞c (GLn(E)) at B is defined by

J
(ResE/FQn,E)oσ
(ResE/FMn,E)oσ(B,Ξw) :=

∫
GLn(E)B,σ\GLn(E)

Ξw(x−1Bσ(x))v
(ResE/FQn,E)oσ
(ResE/FMn,E)oσ(x)dx.

Corollary 10.13. For B ∈Mn(E) such that A = BB belongs to Mn(F ) and is regular semi-simple
in GLn(F ), we have

J
(ResE/FQn,E)oσ
(ResE/FMn,E)oσ(B,Ξw) = JQnMn

(A,Ψv).

Proof. It results from Lemma 10.12 and [37, Theorem IV.5.2] for the (unramified) base change
E/F . �

Let Y = B ∈ m(F ) ∩ srs(F ). By Remark 10.3.2), we have

(10.6.2) JQM (Y, f0) = J
(ResE/FQn,E)oσ
(ResE/FMn,E)oσ(B,Ξw).

10.6.3. A reduction formula. We fix Haar measures on MQ′(F ) ∩H ′(F ) and NQ′(F ) ∩H ′(F ) such

that vol(MQ′(F ) ∩ H ′(OF )) = vol(NQ′(F ) ∩ H ′(OF )) = 1. Then for fH
′ ∈ C∞c (H ′(F )), we have (see

[12, §4.1]) ∫
H′(F )

fH
′
(x)dx =

∫
MQ′ (F )∩H′(F )

∫
NQ′ (F )∩H′(F )

∫
H′(OF )

fH
′
(mnk)dkdndm.

We choose the Haar measure on nQ′(F )∩h′(F ) compatible with that on NQ′(F )∩H ′(F ) under the expo-

nential map. We choose the same Haar measure on four copies of nQn(F ) in nQ′(F ) =

(
nQn(F ) nQn(F )
nQn(F ) nQn(F

)
.

Then vol(nQ′(F ) ∩ s′(OF )) = 1.

Let X ∈ m′(F ) ∩ s′rs(F ). We may define a distribution J
η,MQ′

M ′ (X, ·) on C∞c (mQ′(F ) ∩ s′(F )) as in

Definition 10.2.2). It appears as a product of distributions in the form of Jη,G
′

M ′ (X, ·) in lower ranks. As
in [58, §3.2], we define the Weyl discriminant factor by

|DmQ′∩s
′
(X)|F := |det(ad(X)|mQ′/mQ′,X )|1/2F > 0,

where mQ′,X denotes the centralizer of X in mQ′ . For f ′ ∈ C∞c (s′(F )) which is invariant under
Ad(H ′(OF )), we define its constant term f ′Q′ ∈ C∞c (mQ′(F ) ∩ s′(F )) by

f ′Q′(Z) :=

∫
nQ′ (F )∩s′(F )

f(Z + U)dU,∀Z ∈ mQ′(F ) ∩ s′(F ).

Let f
MQ′

0 ∈ C∞c (mQ′(F )∩ s′(F )) be the characteristic function of mQ′(F )∩ s′(OF ). Then (f ′0)Q′ = f
MQ′

0 .
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Proposition 10.14. Let X ∈ m′(F ) ∩ s′rs(F ). For all f ′ ∈ C∞c (s′(F )) which is invariant under
Ad(H ′(OF )), we have

Jη,Q
′

M ′ (X, f ′) = |Ds′(X)|−1/2
F |DmQ′∩s

′
(X)|1/2F J

η,MQ′

M ′ (X, f ′Q′).

Proof. We apply the change of variables x = mnk to x ∈ H ′(F ), where m ∈ MQ′(F ) ∩ H ′(F ),

n ∈ NQ′(F ) ∩ H ′(F ) and k ∈ H ′(OF ). Notice that vQ
′

M ′(x) = v
MQ′

M ′ (m). Since E/F is an unramified
extension, the restriction of η(det(·)) on H ′(OF ) is trivial. Recall that vol(H ′(OF )) = 1 and that
H ′X ⊆M ′ ∩H ′ for X ∈ m′(F ) ∩ s′rs(F ). We deduce that

Jη,Q
′

M ′ (X, f ′) =

∫
H′X(F )\MQ′ (F )∩H′(F )

∫
NQ′ (F )∩H′(F )

f ′(Ad(mn)−1(X))η(det(m))v
MQ′

M ′ (m)dndm.

By Lemma 8.1 in Chapter 2, for Z := Ad(m−1)(X) ∈ mQ′(F ) ∩ s′rs(F ), the map

NQ′(F ) ∩H ′(F )→ nQ′(F ) ∩ s′(F ), n 7→ Ad(n−1)(Z)− Z

is an isomorphism of F -analytic varieties. From the proof of [58, Proposition 6.3.(ii)], its Jacobian is

c(X) := |Ds′(X)|1/2F |D
mQ′∩s

′
(X)|−1/2

F > 0.

Then

Jη,Q
′

M ′ (X, f ′) =c(X)−1

∫
H′X(F )\MQ′ (F )∩H′(F )

∫
nQ′ (F )∩s′(F )

f ′(Ad(m−1)(X) + U)η(det(m))v
MQ′

M ′ (m)dUdm

=c(X)−1

∫
H′X(F )\MQ′ (F )∩H′(F )

f ′Q(Ad(m−1)(X))η(det(m))v
MQ′

M ′ (m)dm

=c(X)−1J
η,MQ′

M ′ (X, f ′Q′).

�

10.6.4. End of the proof.

Lemma 10.15. For v /∈ |NE×|F , we have

Ψv = 0.

Proof. This is essentially included the proof of [23, Proposition 3.7 and Corollary 3.7]. In fact, our
assertion is equivalent to [23, the first line in p. 138] since E/F is unramified. But we shall also give a
direct proof as follows.

Let g ∈ GLn(F ). By the change of variables x2 = gx−1, we obtain

Ψv(g) =

∫
GLn(F )

Φv(x2, x
−1
2 g)η(det(x2))dx2 = η(det(g))

∫
GLn(F )

Φv(gx
−1, x)η(det(x))dx.

For all x1, x2 ∈ GLn(F ), we notice that

Φv(x1, x2) = Φv(x
t
2, x

t
1),

where the transpose of x ∈ GLn(F ) is denoted by xt. Therefore, we have∫
GLn(F )

Φv(gx
−1, x)η(det(x))dx =

∫
GLn(F )

Φv(x
t, (xt)−1gt)η(det(x))dx.

By the change of variables xt 7→ x, we see that the last integral is equal to Ψv(g
t). Thus

Ψv(g) = η(det(g))Ψv(g
t).

Because Ψv ∈ H(GLn(F ), GLn(OF )), by Cartan decomposition, we have

Ψv(g
t) = Ψv(g).

Then

(10.6.3) Ψv(g) = η(det(g))Ψv(g).

Suppose that v /∈ |NE×|F . We see from the definition that Ψv(g) = 0 unless |det(g)|F = v, in which
case we have det(g) /∈ NE× since E/F is unramified. Thus η(det(g)) = −1 in this case, which implies
that Ψv(g) = 0 by (10.6.3). �
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Proof of Theorem 8.1. For (1) in Definition 10.4, it suffices to consider X =

(
0 1n
A 0

)
and

Y = B, where B ∈ Mn(E) is such that A = BB belongs to Mn(F ) and is regular semi-simple in
GLn(F ). By Corollaries 10.11 and 10.13, we obtain

(10.6.4) J
(Qn×Qn)oσ′
(Mn×Mn)oσ′((1n, A),Θv) = J

(ResE/FQn,E)oσ
(ResE/FMn,E)oσ(B,Ξw).

Combining the formulas (10.6.1), (10.6.2) and (10.6.4), we obtain

κ(X)Jη,Q
′

M ′ (X, f ′0) = JQM (Y, f0).

For (2) in Definition 10.4, it suffices to consider X =

(
0 1n
A 0

)
with A ∈Mn(F ) being regular semi-

simple in GLn(F ) such that ξ(A) /∈ NE× for some ξ ∈ X(MQn)F . We still have Corollary 10.11. For
the case Q′ = G, we conclude by Lemma 10.15. We now consider a general Q′. Applying the reduction
formula (Proposition 10.14) to f ′0, we may write

(10.6.5) Jη,Q
′

M ′ (X, f ′0) = |Ds′(X)|−1/2
F |DmQ′∩s

′
(X)|1/2F J

η,MQ′

M ′ (X, f
MQ′

0 ).

Suppose that
MQ′ ' GL2n1 × · · · ×GL2nl

and that
M ′ 'M ′1 × · · · ×M ′l ,

where
l∑
i=1

ni = n and M ′i is an ω-stable Levi subgroup of GL2ni for 1 ≤ i ≤ l. We have

f
MQ′

0 = f ′0,1 ⊗ · · · ⊗ f ′0,l
and

X = (X1, · · ·, Xl),

where f ′0,i (resp. Xi) is an analogue of f ′0 (resp. X) when n is replaced by ni for 1 ≤ i ≤ l. Then

J
η,MQ′

M ′ (X, f
MQ′

0 ) =

l∏
i=1

J
η,GL2ni

M ′i
(Xi, f

′
0,i).

Our condition on A and the special case Q′ = G above tell us that at least one factor J
η,GL2ni

M ′i
(Xi, f

′
0,i)

in the above product vanishes. Thus Jη,Q
′

M ′ (X, f ′0) = 0 by (10.6.5). �
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CHAPTER 4

A local trace formula for p-adic infinitesimal symmetric spaces:
the case of Guo-Jacquet

We establish an invariant local trace formula for the tangent space of some symmetric spaces over a
non-archimedean local field of characteristic zero. These symmetric spaces are studied in Guo-Jacquet
trace formulae and our methods are inspired by works of Waldspurger and Arthur. Some other results
are given during the proof including a noninvariant local trace formula, Howe’s finiteness for weighted
orbital integrals and the representability of the Fourier transform of weighted orbital integrals. These
local results are prepared for the comparison of regular semi-simple terms, which are weighted orbital
integrals, of an infinitesimal variant of Guo-Jacquet trace formulae.

1. Introduction

The Guo-Jacquet trace formula [23] is a promising tool to generalise Waldspurger’s result [50] on
the relation between toric periods and central values of automorphic L-functions for GL2 to higher ranks.
It is inspired by Jacquet’s new proof [29] of Waldspurger’s theorem. Although such a formula has not
been established in full generality, its simple form was used by Feigon-Martin-Whitehouse [21] to obtain
some evidence for the conjecture of Guo-Jacquet. For applications, one needs to compare geometric sides
of Guo-Jacquet trace formulae for different symmetric pairs. Some local results on the comparison of
relative orbital integrals include Guo’s fundamental lemma [23] and Zhang’s smooth transfer [58].

In order to study the Guo-Jacquet trace formula and its comparison, one may begin with an infini-
tesimal variant. That is to say, we replace a symmetric space by its tangent space (called an infinitesimal
symmetric space). Such a variant should share some similarities with the geometric side of Guo-Jacquet
trace formula. It is simpler than the original formula because spectral objects are replaced by the
Fourier transform of geometric objects (cf. [51] and [13]). Moreover, by the method of descent dating
back to Harish-Chandra’s works, the comparison at the infinitesimal level should imply the comparison
of geometric sides of original formulae (see [58] on the transfer of orbital integrals).

An infinitesimal variant of Guo-Jacquet trace formulae has been established in Chapter 2 and Chapter
3 via an analogue of Arthur’s truncation process in [3] (see also [13] for its Lie algebra variant). We
actually consider more general cases suggested by [57] and [44]. Most (namely regular semi-simple)
terms appearing in these formulae can be written as explicit weighted orbital integrals on infinitesimal
symmetric spaces over a number field (see Theorem 9.2 in Chapter 2 and Theorem 9.2 in Chapter 3).
They are noninvariant analogues of ordinary orbital integrals (which can be compared locally thanks
to [23] and [58]) and should be the next objects to be compared. As the first evidence, the weighted
fundamental lemma has been proved in Theorem 10.9 in Chapter 3 thanks to Labesse’s work [37] on the
base change for GLn.

The same philosophy of Waldspurger’s work [52] on the endoscopic transfer has been followed by
Zhang [58] to prove the transfer of local orbital integrals on infinitesimal symmetric spaces of Guo-
Jacquet. A simple form of the local trace formula [58, Lemma 6.5], Howe’s finiteness for orbital integrals
[45, Theorem 6.1] and representability of the Fourier transform of orbital integrals [58, Theorem 6.1]
apart from the fundamental lemma [58, Lemma 5.18] at the infinitesimal level have been used in Zhang’s
proof. It is expected that such a strategy should be extended to the weighted context. In fact, some
successful attempts have been made in [14] and [15] on the stable base change. We would like to follow
these ideas in the comparison of local weighted orbital integrals on infinitesimal symmetric spaces of
Guo-Jacquet. However, further study in noninvariant local harmonic analysis on infinitesimal symmetric
spaces is needed to achieve our goal. This paper aims to prepare some essential ingredients such as a
noninvariant local trace formula, Howe’s finiteness for weighted orbital integrals, representability of the
Fourier transform of weighted orbital integrals and an invariant local trace formula. Our methods are
mainly inspired by the works of Waldspurger’s [51] and Arthur’s [8].
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Let E/F be a quadratic field extension of non-archimedean local fields of characteristic zero. Denote
by D a central division algebra over F and by GLn,D the reductive group over F whose F -points are
GLn(D). We study two generalised cases of Guo-Jacquet trace formulae. The first case is (G,H),
where G := GL2n,D and H := GLn,D × GLn,D denotes its diagonal subgroup by diagonal embedding.
Denote by s the tangent space of the symmetric space G/H at the neutral element, on which H acts by
conjugation. The second case is (G′, H ′), where G′ is the group of invertible elements in a central simple
algebra g′ over F containing E, and H ′ is the centraliser of E× in G′. Denote by s′ the corresponding
infinitesimal symmetric space. Notice that (G,H) and (G′, H ′) are the same symmetric pair after a base
change to an algebraic closure of F containing E. In the rest of the introduction and this paper, we shall
focus on results in the first case and provide complete proofs. The second case is similar in statements
and proofs, so we shall only state main results, point out additional ingredients and sketch necessary
steps for later use.

To explain the main theorems of this paper, we first introduce some notations. Denote by η the
quadratic character of F×/NE× attached to E/F , where NE× denotes the norm of E×. Let M be
an ω-stable Levi subgroup of G (see Section 3.2). Let Q be a parabolic subgroup of G containing M .
Suppose that X ∈ (m ∩ srs)(F ), where m is the Lie algebra of M and srs denotes the subset of regular
semi-simple elements in s (see Section 3.1). This paper is organised in the following way.

In Section 2, we fix some notations of local harmonic analysis and recall some facts of Arthur’s
(G,M)-families, most of which can be found in [51, §I-II].

In Section 3, we prepare some properties of infinitesimal symmetric spaces. Some of them are stated
for a general symmetric pair and most of them are relative avatars of classical works of Harish-Chandra
[26]. Preliminaries on symmetric pairs can be found in [45] and [1].

In Section 4, we define local weighted orbital integrals JQM (η,X, ·) by (4.1.1) for the action of H on
s and study their properties. They are distributions on s(F ) and local analogues of the global weighted
orbital integrals obtained in Theorem 9.2 in Chapter 2.

In Section 5, we establish the noninvariant local trace formula which results from the Plancherel
formula and an analogue of Arthur’s truncation process in [8]. Let C∞c (s(F )) be the space of locally
constant, compactly supported, complex-valued functions on s(F ). For f ∈ C∞c (s(F )), we define its

Fourier transform f̂ by (3.2.1). For f, f ′ ∈ C∞c (s(F )), we define JG(η, f, f ′) by (5.1.2).

Theorem 1.1 (see Theorem 5.3). For all f, f ′ ∈ C∞c (s(F )), we have the equality

JG(η, f, f̂ ′) = JG(η, f̂ , f ′).

We can not deduce it via the exponential map as in [51, §V] for lack of a local trace formula for
symmetric spaces. One needs to return to the proof of [8] instead.

In Section 6, we show Howe’s finiteness for weighted orbital integrals on s(F ) (see Proposition 6.1).
The proof originates from Howe’s seminal work [27] which is extended to weighted orbital integrals on
Lie algebras by [51]. We modify the argument in [51, §IV] to make it apply to our case.

In Section 7, we show that the distribution on s(F ) defined by f 7→ JGM (η,X, f̂) is represented by
a locally integrable function on s(F ) (see Proposition 7.2). Its proof is similar to that in [51, §V] and
makes use of the noninvariant trace formula and Howe’s finiteness for weighted orbital integrals.

In Section 8, we modify weighted orbital integrals to obtain invariant distributions IGM (η,X, ·) on
s(F ) by (8.1.1) and (8.1.7). The method is close to Arthur’s standard one, but it is simpler here since
there is no spectral object involved, which is also a feature of [51].

In Section 9, we establish the invariant local trace formula which is deduced from the noninvariant
one. For f, f ′ ∈ C∞c (s(F )), we define IG(η, f, f ′) by (9.1.1).

Theorem 1.2 (see Theorem 9.1). For all f, f ′ ∈ C∞c (s(F )), we have the equality

IG(η, f, f ′) = IG(η, f ′, f).

For its proof, we mainly consult [51, §VII].
In Section 10, we prove a vanishing property at “infinity” of the function on s(F ) representing the

Fourier transform of IGM (η,X, ·) with M 6= G (see Proposition 10.1). It is an analogue of [14] and serves
as a complement of the limit formula in [58, §7.1].

In the end, we remark that although we concentrate on the case of Guo-Jacquet here, many results
in this paper might be extended to other symmetric pairs, which can be seen from their proofs.
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2. Notation and preliminaries

2.1. Fields. Let F be a non-archimedean local field of characteristic zero. Denote by | · |F (resp.
vF (·)) the normalised absolute value (resp. the valuation) on F and by OF the ring of integers of F . Fix
a uniformiser $ of OF . Let q be the cardinality of the residue field of OF .

2.2. Groups and the map HP . Let G be a reductive group defined over F . All algebraic groups
and algebraic varieties are assumed to be defined over F in this article. Fix a Levi subgroup M0 of a
minimal parabolic subgroup of G.

Denote by AG the maximal F -split torus in the centre of G. Define

aG := HomZ(X(G)F ,R),

where X(G)F is the group of F -rational characters of G. Define the homomorphism HG : G(F ) → aG
by

〈HG(x), χ〉 = log(|χ(x)|F )

for all x ∈ G(F ) and χ ∈ X(G)F . Set aG,F := HG(G(F )), which is a lattice in aG.
Fix a maximal compact subgroup K = KG of G(F ) which is admissible relative to M0 in the sense of

[5, p. 9]. In this paper, when G(F ) = GLn(D) with D being a central division algebra over F , we choose
the standard maximal compact subgroup K = GLn(OD) with OD being the ring of integers of D (see
[54, p. 191] for example). Set WG

0 := NormG(F )(M0)/M0(F ) to be the Weyl group of (G,M0), where

NormG(F )(M0) denotes the normaliser of M0 in G(F ). It is known that any element in WG
0 admits a

representative in K.
By a Levi subgroup of G, we mean a group M containing M0 which is the Levi component of some

parabolic subgroup of G. For such a group M , set KM := M(F ) ∩K. Then the triplet (M,KM ,M0)
satisfies the same hypotheses as (G,K,M0). Denote by FG(M), PG(M) and L G(M) the set of
parabolic subgroups of G containing M , parabolic subgroups of G with Levi factor M and Levi subgroups
of G containing M respectively.

For P ∈ FG(M0), let MP be the Levi component containing M0 and NP the unipotent radical.
Denote AP := AMP

and aP := aMP
whose dual R-linear space is denoted by a∗P . Define a map HP :

G(F )→ aMP
by

HP (mnk) = HMP
(m)

for all m ∈MP (F ), n ∈ NP (F ) and k ∈ K. Let P ∈PG(MP ) be the parabolic subgroup opposite to P .
For P ⊆ Q a pair of parabolic subgroups in FG(M0), the restriction X(MQ)F ↪→ X(MP )F induces

a pair of dual maps aP � aQ and a∗Q ↪→ a∗P . Let aQP be the kernel of the former map aP � aQ. Set ∆Q
P

to be the set of simple roots for the action of AP on P ∩MQ. Denote by (∆Q
P )∨ the set of “coroots” as

in [9, p. 26]. Then (∆Q
P )∨ is a basis of the R-linear space aQP .

2.3. Heights. We fix a height function ‖ · ‖ : G(F ) → R as in [8, §4]. It satisfies the following
properties:

(1) ‖x‖ ≥ 1,∀x ∈ G(F );
(2) ‖xy‖ ≤ ‖x‖‖y‖,∀x, y ∈ G(F );
(3) there exists c > 0 and N ∈ N such that ‖x−1‖ ≤ c‖x‖N ,∀x ∈ G(F ).
If P ∈ FG(M0), for any x ∈ G(F ), we can choose mP (x) ∈MP (F ), nP (x) ∈ NP (F ) and kP (x) ∈ K

such that x = mP (x)nP (x)kP (x). Then
(4) there exists c > 0 and N ∈ N such that ‖mP (x)‖+ ‖nP (x)‖ ≤ c‖x‖N .
We also fix a Euclidean norm (still denoted by ‖ · ‖) on the R-linear space aM0

which is invariant
under the action of WG

0 on aM0 . Then
(5) there exist c1, c2 > 0 such that

c1(1 + log ‖y‖) ≤ 1 + ‖HM0(y)‖ ≤ c2(1 + log ‖y‖),∀y ∈M0(F ).

In addition, we require that ‖ · ‖ is a norm on G(F ) in the sense of [35, §18.2]. This is possible. For
example, for G = GLn, by writing (g, g−1) = (gij , hij)1≤i,j≤n, one may define ‖g‖ := sup

i,j
{|gij |F , |hij |F }

for g ∈ G(F ). Since {gij , hij}1≤i,j≤n is a set of generators for the ring of regular functions of G (viewed
as an affine variety over F ), this defines a norm in the sense of [35, §18.2] on GLn(F ). For general G,
one can choose an closed embedding G → GLn over F and define the norm on G(F ) by the pull-back
of the norm on GLn(F ). By [35, Proposition 18.1.(2)], this defines a norm in the sense of [35, §18.2] on
G(F ).
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2.4. Functions and distributions. Let g := Lie(G). More generally, we shall use a minuscule
Fraktur letter to denote the Lie algebra of its corresponding algebraic group. Denote by Ad the adjoint
action of G on itself or g. The adjoint action of g on itself is denoted by ad.

For a locally compact and totally disconnected topological space X (e.g. G(F ) or g(F )), denote
by C∞c (X) the space of locally constant, compactly supported, complex-valued functions on X. For
f ∈ C∞c (X), denote by Supp(f) its support. Denote by C∞c (X)∗ the space of distributions on X, i.e., the
linear dual of C∞c (X).

Suppose that G(F ) acts on such an X. Then G(F ) acts on C∞c (X) (or more generally the space of
complex functions on X) by

g · f(x) := f(g−1 · x),∀g ∈ G(F ), f ∈ C∞c (X), x ∈ X.

Moreover, G(F ) acts on C∞c (X)∗ by

g · d(f) := d(g−1 · f),∀g ∈ G(F ), d ∈ C∞c (X)∗, f ∈ C∞c (X).

Let η : G(F )→ C× be a locally constant character. We say a function f ∈ C∞c (X) (resp. a distribution
d ∈ C∞c (X)∗) is η-invariant if g · f = η(g)f (resp. g · d = η(g)d) for all g ∈ G(F ). For trivial η, we simply
say that such a function (resp. distribution) is invariant.

2.5. Haar measures. Fix the Haar measure on K such that vol(K) = 1. Following [51, §I.4], for
all P ∈ FG(M0), we fix a Haar measure on NP (F ) such that∫

NP (F )

exp(2ρP (HP (n)))dn = 1,

where ρP is the half of the sum of roots (with multiplicity) associated to the parabolic subgroup P
opposite to P . From [8, p. 12], for all M ∈ L G(M0), there are compatible Haar measures on G(F ) and
M(F ) such that for all P ∈PG(M) and f ∈ C∞c (G(F )), we have∫

G(F )

f(x)dx =

∫
M(F )×NP (F )×K

f(mnk)dkdndm.

We shall fix such measures.
For a F -split torus T , we choose the Haar measure on T (F ) such that the maximal compact subgroup

of T (F ) is of volume 1. For a general torus T , we choose the Haar measure on T such that the induced
measure on T (F )/AT (F ) satisfies vol(T (F )/AT (F )) = 1.

Notice that if M0 is a torus, we have associated to it two measures. However, it will be clear which
one should be used according to the context.

Fix open neighbourhoods Vg of 0 in g and VG of 1 in G such that the exponential map induces a
homeomorphism between them. Choose the unique Haar measure on g such that the exponential map
Vg → VG preserves the measures. Similarly, we obtain Haar measures on Lie algebras of subgroups of G.

From the fixed Euclidean norm ‖ · ‖ on aM0 , we deduce measures on aM0 and its subspaces.

2.6. (G,M)-families. Following [5, p. 15], we define

θQP (λ) := vol(aQP /Z(∆Q
P )∨)−1

∏
α∨∈(∆Q

P )∨

λ(α∨),∀λ ∈ ia∗P ,

where Z(∆Q
P )∨ denotes the lattice in aQP generated by (∆Q

P )∨.
Suppose that M ∈ L G(M0) and that Q ∈ FG(M). Let (cP )P∈PG(M) be a (G,M)-family in the

sense of [5, p. 36]. By [5, Lemma 6.2], we can define

cQM := lim
λ→0

∑
{P∈PG(M):P⊆Q}

cP (λ)θQP (λ)−1.

We sometimes write cM := cGM if Q = G.
An important example is following. According to [5, p. 40-41], for x ∈ G(F ),

vP (λ, x) := e−λ(HP (x)),∀λ ∈ ia∗M , P ∈PG(M),

is a (G,M)-family (denoted by (vP (x))P∈PG(M)). Then we obtain a function

vQM (x) := lim
λ→0

∑
{P∈PG(M):P⊆Q}

vP (λ, x)θQP (λ)−1,∀x ∈ G(F ).
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For a smooth function cP (λ) on ia∗P , we can associate to it a smooth function c′P (λ) on ia∗P as in
[5, (6.3) in §6]. Denote by c′P the value of c′P (λ) at λ = 0. Let (cP )P∈PG(M) and (dP )P∈PG(M) be
two (G,M)-families, we define their product ((cd)P )P∈PG(M) in the obvious way and have the following
product formula (see [5, Lemma 6.3])

(2.6.1) (cd)M =
∑

Q∈FG(M)

c′Qd
Q
M .

2.7. The maps dGM and s. Suppose that M ∈ L G(M0). As in [6, p. 356], we define a map

dGM : L G(M)×L G(M)→ R≥0

such that for all (L1, L2) ∈ L G(M)×L G(M),
(1) dGM (G,M) = dGM (M,G) = 1;
(2) dGM (L1, L2) = dGM (L2, L1);

(3) dGM (L1, L2) 6= 0 if and only if aGM = aL1

M ⊕ aL2

M .
Following [51, §II.4], we also choose a map (not unique)

s : L G(M)×L G(M)→ FG(M)×FG(M)

such that for all (L1, L2) ∈ L G(M)×L G(M),
(4) s(L1, L2) ∈PG(L1)×PG(L2);
(5) if s(L1, L2) = (Q1, Q2), then s(L2, L1) = (Q2, Q1);
(6) (splitting formula) if (cP )P∈PG(M) and (dP )P∈PG(M) are (G,M)-families, we have the equality

(cd)M =
∑

L1,L2∈LG(M)

dGM (L1, L2)cQ1

M cQ2

M ,

where (Q1, Q2) := s(L1, L2);
(7) (descent formula) if (cP )P∈PG(M) is a (G,M)-family and L ∈ L G(M), we have the equality

cL =
∑

L′∈LG(M)

dGM (L,L′)cQ
′

M ,

where Q′ denotes the second component of s(L,L′).

3. Symmetric pairs

3.1. General cases. Following [1, Definition 7.1.1], by a symmetric pair, we mean a triple (G,H, θ)
where H ⊆ G are a pair of reductive groups, and θ is an involution on G such that H is the subgroup of
fixed points of θ.

Suppose that (G,H, θ) is a symmetric pair. Let g := Lie(G) and h := Lie(H). Write dθ for the
differential of θ. Then h = {X ∈ g : (dθ)(X) = X}. Let s be the tangent space at the neutral element
of the symmetric space S := G/H. We shall always view s as a subspace of g. Then s = {X ∈ g :
(dθ)(X) = −X} and H acts on s by restriction of the adjoint action.

We say an element X ∈ s is semi-simple if the orbit Ad(H)(X) is Zariski closed in s. From [45,
Fact A, p. 108-109], we know that X ∈ s(F ) is semi-simple if and only if Ad(H(F ))(X) is closed in
s(F ) in the analytic topology. By a regular element X ∈ s, we mean that the centraliser HX of X in H
has minimal dimension. Denote by srs the principal Zariski open subset (see [45, end of p. 107]) of s
consisting of regular semi-simple elements in s.

By a Cartan subspace of s, we mean a maximal abelian subspace for the Lie bracket c ⊆ s defined
over F consisting of semi-simple elements. For such c, denote by creg the subset of regular elements in c.
Denote by Tc the centraliser of c in H, which is a torus. Set tc := Lie(Tc).

Following [58, p. 1828], for X ∈ creg(F ), where c is a Cartan subspace of s, we define the Weyl
discriminant factor

(3.1.1) |Ds(X)|F := |det(ad(X)|h/tc⊕s/c)|
1/2
F .

For a Cartan subspace c ⊆ s, set W (H, c) := NormH(F )(c)/Tc(F ) to be its Weyl group, where
NormH(F )(c) denotes the normaliser of c in H(F ). Fix a set T (s) of representatives for H(F )-conjugacy
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classes of Cartan subspaces in s, which is a finite set by [45, p. 105]. Then we have the Weyl integration
formula (see [45, p. 106])

(3.1.2)

∫
s(F )

f(X)dX =
∑

c∈T (s)

|W (H, c)|−1

∫
creg(F )

|Ds(X)|F
∫
Tc(F )\H(F )

f(Ad(x−1)(X))dxdX

for all f ∈ C∞c (s(F )). Recall that the adjoint action induces a local isomorphism β : (Tc(F )\H(F )) ×
creg(F )→ srs(F ) of F -analytic manifolds, whose image is open in srs(F ). Here we should use compatible
Haar measures on s(F ) and creg(F ), i.e., we require that β should preserve the measures. For particular
cases to be considered, we shall fix Haar measures on s(F ) in the following sections. Notice that we shall
not use the Haar measure on creg(F ) obtained via the exponential map.

The lemma below makes the definition of Fourier transform on s(F ) possible.

Lemma 3.1. Let (G,H, θ) be a symmetric pair. Then there exists a G-invariant θ-invariant non-
degenerate symmetric bilinear form 〈·, ·〉 on g. In particular, g = h⊕ s is an orthogonal direct sum with
respect to 〈·, ·〉, and the restriction of 〈·, ·〉 to h or s is non-degenerate.

Proof. This is [1, Lemma 7.1.9]. �

The following lemma is a special case of [59, Lemma 3.10], which is an analogue of Harish-Chandra’s
compactness lemma [26, Lemma 25].

Lemma 3.2. Let σs be a compact subset of s(F ). Suppose that c is a Cartan subspace of s. Let σc
be a compact subset of creg(F ). Then

{x ∈ Tc(F )\H(F ) : Ad(x−1)(σc) ∩ σs 6= ∅}
is relatively compact in Tc(F )\H(F ).

Proof. Choose an arbitrary X ∈ σc(F ). We have HX = Tc. Let Ns
Ad(H)(X),X be the normal space

(see [1, Notation 2.3.3]) to Ad(H)(X) in s at the point X. Let sX be the centraliser of X in s. By [1,
Proposition 7.2.1], since X ∈ s is semi-simple, one has Ns

Ad(H)(X),X ' sX as HX -spaces. Note that since

X ∈ creg, creg ⊆ sX is an étale Luna slice at X in the sense of [1, Theorem A.2.3]. Thus we can apply
[59, Lemma 3.10]. �

The next lemma is an analogue of [26, Lemma 28].

Lemma 3.3. Let σ ⊆ s(F ) be a compact subset. Let c be a Cartan subspace of s. Then c(F ) ∩
Cl(Ad(H(F ))(σ)) is relatively compact in c(F ), where Cl denotes the closure of a subset in s(F ).

Proof. This is [58, Lemma 6.12], whose proof relying on the Chevalley restriction theorem for
symmetric spaces [49, Theorem 7 in §4.4] applies to an arbitrary symmetric pair. �

The following lemma is an analogue of [51, Lemme III.4].

Lemma 3.4. Let σ ⊆ s(F ) be a compact subset. Let c be a Cartan subspace of s and Tc the centraliser
of c in H. Then there exists cσ > 0 such that for all x ∈ H(F ) and X ∈ creg(F ) satisfying Ad(x−1)(X) ∈
σ, we have

inf
τ∈Tc(F )

log ‖τx‖ ≤ cσ sup{1,− log |Ds(X)|F }.

Proof. Let ‖ · ‖Tc\H be any norm on (Tc\H)(F ) in the sense of [35, §18.2]. Applying the argument
of [35, Lemma 20.3] to the finite morphism

β : (Tc\H)× creg → srs

of affine algebraic varieties defined by β(x,X) := Ad(x−1)(X), we show the inequality

log ‖x‖Tc\H ≤ cσ sup{1,− log |Ds(X)|F }.
By [35, Proposition 18.3], the quotient H → Tc\H has the norm descent property in the sense of [35,
§18.6]. That is to say, the restriction of ‖ · ‖Tc\H to Tc(F )\H(F ) is equivalent to the abstract norm
infτ∈Tc(F ) ‖τ · ‖ on Tc(F )\H(F ). �

The lemma below is an analogue of [26, Lemma 44].

Lemma 3.5. There exists ε > 0 such that the function |Ds(X)|−εF is locally integrable on c(F ) for
any Cartan subspace c of s.
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Proof. See [59, Lemma 4.3]. �

Corollary 3.6. For any r ≥ 0, the function sup{1,− log |Ds(X)|F }r is locally integrable on c(F )
for any Cartan subspace c of s.

Proof. We have the elementary fact (cf. the proof of [35, Corollary 20.2]): for ε > 0 and r ≥ 0,
there exist c > 0 such that

sup{1, log y}r ≤ cyε + 1,∀y > 0.

Then it suffices to apply Lemma 3.5. �

We say an element X ∈ s(F ) is nilpotent if 0 ∈ Cl(Ad(H(F ))(X)), where Cl denotes the closure of
a subset in s(F ). From [1, Lemmas 2.3.12 and 7.3.8], we know that X ∈ s(F ) is nilpotent if and only if
it is a nilpotent element in g. Denote by N s the set of nilpotent elements in s(F ), which is a cone. The
following lemma is an analogue of Jacobson-Morozov theorem.

Lemma 3.7. Let (G,H, θ) be a symmetric pair and X ∈ N s. Then there exists a group homomor-
phism ϕ : SL2(F )→ G(F ) such that

dϕ

(
0 1
0 0

)
= X, dϕ

(
0 0
1 0

)
∈ s(F ) and ϕ

(
t

t−1

)
∈ H(F ),∀t ∈ F×.

Proof. This is [1, Lemma 7.1.11]. �

Let X ∈ srs(F ). The orbital integral of X is the distribution IX on s(F ) defined by

(3.1.3) ∀f ∈ C∞c (s(F )), IX(f) := |Ds(X)|1/2F

∫
HX(F )\H(F )

f(Ad(x−1)(X))dx.

The next lemma is an analogue of Harish-Chandra’s submersion principle [26, Theorem 11].

Lemma 3.8. Let I : srs(F )→ C be a function. The following conditions are equivalent:
(1) I is locally constant, invariant by the adjoint action of H(F ) and of support included in Ad(H(F ))(σ)

with σ ⊆ srs(F ) a compact subset;
(2) there exists f ∈ C∞c (srs(F )) such that

∀X ∈ srs(F ), I(X) = IX(f).

Proof. For c ∈ T (s), apply the argument of [16, Lemme 6.1] to the morphism

Φc : (Tc(F )\H(F ))× creg(F )→ srs(F )

defined by Φc(x,X) := Ad(x−1)(X). Then glue the results for all c ∈ T (s) together. �

3.2. The case of (G,H). Let D be a central division algebra over F . Denote by GLn,D the
reductive group over F whose F -points are GLn(D). Let G := GL2n,D and H := GLn,D × GLn,D
denotes its subgroup by diagonal embedding. Then H is the subgroup of fixed points of the involution

Ad(ε) on G, where ε :=

(
1n

−1n

)
. Here we can embed G into g in the standard way. For a linear

subspace v ⊆ g, we write v× := v ∩G. Recall that srs ⊆ s× in our case.

Lemma 3.9. Let P be a parabolic subgroup of G. Then P ∩H is a parabolic subgroup of H if and
only if ε ∈ P . Moreover, if ε belongs to a Levi factor M of P , then M ∩H is a Levi factor of P ∩H.

Proof. One may consider all the groups over an algebraic closure of F . We first suppose that P ∩H
is a parabolic subgroup of H. Then ε ∈ Cent(H) ⊆ P ∩ H, where Cent(H) denotes the centre of H.
This establishes one direction.

We now suppose that ε ∈ P . Denote by N the unipotent radical of P and let M be a Levi factor
of P . By the argument in the last paragraph of the proof of Lemma 4.1 in Chapter 2, we show that ε
is N -conjugate to an element in M with the help of [3, Lemma 2.1] (actually we need its variant over a
local field for the characteristic function of a singleton here, whose proof is similar). Then replacing M
by its N -conjugate if necessary, we may assume that ε ∈M .

Let G = GL(V ) for a vector space V = ⊕1≤i≤rVi. Suppose that

P = {g ∈ G : g(V1 ⊕ ...⊕ Vi) ⊆ V1 ⊕ ...⊕ Vi,∀1 ≤ i ≤ r}
and that

M = {g ∈ G : g(Vi) ⊆ Vi,∀1 ≤ i ≤ r}.
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Since ε ∈M , we have ε(Vi) ⊆ Vi for all 1 ≤ i ≤ r. Let V +
i (resp. V −i ) be the +1(resp. −1)-eigenspace of

Vi under the action of ε. For ε2 = 1, we have Vi = V +
i ⊕V

−
i . Let V + := ⊕1≤i≤rV

+
i and V − := ⊕1≤i≤rV

−
i .

Then

H = {g ∈ G : g(V +) ⊆ V +, g(V −) ⊆ V −}.
Hence,

P ∩H = {g ∈ G : g(V +
1 ⊕ ...⊕ V

+
i ) ⊆ V +

1 ⊕ ...⊕ V
+
i , g(V −1 ⊕ ...⊕ V

−
i ) ⊆ V −1 ⊕ ...⊕ V

−
i ,∀1 ≤ i ≤ r}.

It means exactly that P ∩H is a parabolic subgroup of H and proves the other direction. Morover,

M ∩H = {g ∈ G : g(V +
i ) ⊆ V +

i , g(V −i ) ⊆ V −i ,∀1 ≤ i ≤ r}.

That is to say, M ∩H is a Levi factor of P ∩H. �

Let M0 be the group of diagonal matrices in G. Set ω :=

(
0 1n
1n 0

)
. For P ∈ FG(M0), we say

that P is “ω-stable” if ω ∈ P . Denote by FG,ω(M0) the subset of ω-stable parabolic subgroups in
FG(M0). For M ∈ L G(M0), we say that M is “ω-stable” if M = MP for some P ∈ FG,ω(M0). This
condition is stronger than Ad(ω)(M) = M ; for example, M0 is not considered to be ω-stable in our
sense. Denote by L G,ω(M0) the subset of ω-stable Levi subgroups in L G(M0). Let An be the group of
diagonal matrices in GLn. Recall that there is a bijection between L GLn(An) and L G,ω(M0) induced

by Mn 7→ M =

(
mn,D mn,D
mn,D mn,D

)×
. We shall always use the notation Mn to denote the preimage of M

under this bijection. Notice that if M ∈ L G,ω(M0) and Q ∈ FG(M), then Q ∈ FG,ω(M0).
Suppose that M ∈ L G,ω(M0). We say an element X ∈ (m ∩ srs)(F ) is M -elliptic if AM is the

maximal F -split torus in HX . Denote by (m ∩ srs)(F )ell the set of M -elliptic elements in (m ∩ srs)(F ).
Write MH := M ∩H. Denote by Γell((m∩ srs)(F )) the set of MH(F )-conjugacy classes in (m∩ srs)(F )ell.
We say a Cartan subspace c ⊆ m∩s is M -elliptic if ATc

= AM . Since (MH ,m∩s) appears as the product
of some copies of the form (H, s) in lower dimensions, we define W (MH , c) and T (m ∩ s) as in Section
3.1. Denote by Tell(m ∩ s) the subset of M -elliptic Cartan subspaces in T (m ∩ s).

Lemma 3.10. Let M ∈ L G,ω(M0) and {X} ∈ Γell((m ∩ srs)(F )).
1) Let M ′ ∈ L G,ω(M0) and {X ′} ∈ Γell((m

′ ∩ srs)(F )) be such that X ′ is H(F )-conjugate to X.
Then there exists

w ∈
{(

ωn
ωn

)
: ωn ∈W

GLn,D
0

}
,

where W
GLn,D
0 denotes the Weyl group of (GLn,D, An,D), such that

(Ad(w)(M), {Ad(w)(X)}) = (M ′, {X ′}).

2) The cardinality of

{(M ′, {X ′}) : M ′ ∈ L G,ω(M0), {X ′} ∈ Γell((m
′ ∩ srs)(F )), X ′ is H(F )-conjugate to X}

is

|WGLn
0 ||WMn

0 |−1,

where WGLn
0 (resp. WMn

0 ) denotes the Weyl group of (GLn, An) (resp. (Mn, An)).

Proof. 1) Let x ∈ H(F ) be such that Ad(x)(X) = X ′. Then Ad(x)(HX) = HX′ . Since X ∈ (m ∩
srs)(F )ell and X ′ ∈ (m′∩srs)(F )ell, we have Ad(x)(AM ) = AM ′ and thus Ad(x)(M) = M ′. As x ∈ H(F ),
we have Ad(x)(MH) = M ′H . We see that Ad(x)(AM0

) ⊆M ′H is a maximal F -split torus, so there exists

m′ ∈ M ′H(F ) such that Ad(m′
−1
x)(AM0) = AM0 . That is to say, w′ := m′

−1
x ∈ NormH(F )(AM0) =

NormH(F )(M0), where NormH(F )(AM0
) denotes the normaliser of AM0

inH(F ). Now Ad(x)(AM ) = AM ′

implies that Ad(w′)(AM ) = AM ′ . Because M,M ′ ∈ L G,ω(M0), it is shown in §9.1 in Chapter 2

that any isomorphism AM → AM ′ induced by WH
0 can be given by

{(
ωn

ωn

)
: ωn ∈W

GLn,D
0

}
.

Hence, there exists w ∈
{(

ωn
ωn

)
: ωn ∈W

GLn,D
0

}
such that w−1w′ ∈ CentWH

0
(AM ) = WMH

0 , where

CentWH
0

(AM ) denotes the centraliser of AM in WH
0 . We can check that such a w satisfies the condition

in the lemma.
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2) By 1), the group

{(
ωn

ωn

)
: ωn ∈W

GLn,D
0

}
acts transitively on this set. Let

w ∈
{(

ωn
ωn

)
: ωn ∈W

GLn,D
0

}
be such that

(Ad(w)(M), {Ad(w)(X)}) = (M, {X}).
Then w ∈MH(F ). Thus the condition on w is equivalent to

w ∈
{(

ωn
ωn

)
: ωn ∈W

Mn,D

0

}
,

where W
Mn,D

0 denotes the Weyl group of (Mn,D, An,D). We see that the cardinality of the set in the

lemma is |WGLn,D
0 ||WMn,D

0 |−1 or |WGLn
0 ||WMn

0 |−1. �

Proposition 3.11. For f ∈ C∞c (s(F )), we have the equality∫
s(F )

f(X)dX =
∑

M∈LG,ω(M0)

|WMn
0 ||WGLn

0 |−1
∑

c∈Tell(m∩s)

|W (MH , c)|−1

∫
creg(F )

|Ds(X)|F
∫
AM (F )\H(F )

f(Ad(x−1)(X))dxdX.

Proof. Recall that any H(F )-conjugacy class in srs(F ) is the image of a class {X} ∈ Γell((m ∩
srs)(F )) for some M ∈ L G,ω(M0) in our case. By Lemma 3.10, the Weyl integration formula (3.1.2) can
be written as the above equality (cf. [8, p. 16-17] and [51, (3) in §I.3]). �

Recall that there is a bijection between FGLn(An) and FG,ω(M0) induced by Pn 7→ P =

(
pn,D pn,D
pn,D pn,D

)×
.

We shall always use the notation Pn to denote the preimage of P under this bijection. Following [58, p.
1846], we shall fix the Haar measures on some subspaces of s(F ) as follows. Let P ∈ FG,ω(M0). Then

we have mP =

(
mn,D mn,D
mn,D mn,D

)
and nP =

(
nn,D nn,D
nn,D nn,D

)
, where we denote Mn := MPn and Nn := NPn .

We have fixed the Haar measures on mn(D) and nn(D) in Section 2.5. We shall choose the same Haar
measure for any of the four copies in mP (F ) or nP (F ) under these identifications. In particular, we
obtain the Haar measures on (mP ∩ s)(F ) and (nP ∩ s)(F ).

Lemma 3.12. Let Q ∈ FG,ω(M0). For Y ∈ (mQ ∩ srs)(F ), the map

NQH (F )→ (nQ ∩ s)(F ), n 7→ Ad(n−1)(Y )− Y

is an isomorphism of F -analytic manifolds whose Jacobian is |Ds(Y )|1/2F |DmQ∩s(Y )|−1/2
F .

Proof. See Lemma 8.1 in Chapter 2 for the isomorphism and the proof of [58, Proposition 6.3.(ii)]
for the Jacobian. �

Fix a continuous and nontrivial unitary character Ψ : F → C×. Let 〈·, ·〉 be the non-degenerate
symmetric bilinear form on g(F ) defined by

〈X,Y 〉 := Trd(XY ),∀X,Y ∈ g(F ),

where Trd denotes the reduced trace on g(F ). It is invariant by the adjoint action of G(F ) and Ad(ε).

For f ∈ C∞c (s(F )), define its normalised Fourier transform f̂ ∈ C∞c (s(F )) by

(3.2.1) ∀X ∈ s(F ), f̂(X) := cΨ(s(F ))

∫
s(F )

f(Y )Ψ(〈X,Y 〉)dY,

where cΨ(s(F )) is the unique constant such that
ˆ̂
f(X) = f(−X) for all f ∈ C∞c (s(F )) and all X ∈ s(F ).

For any M ∈ L G,ω(M0), the restriction of 〈·, ·〉 on m∩ s is non-degenerate. Then we can define similarly
the normalised Fourier transform of f ∈ C∞c ((m ∩ s)(F )).

Suppose that P ∈ FG,ω(M0). Let η be the quadratic character of F× attached to a quadratic
extension E/F . Denote by Nrd the reduced norm on G(F ). For f ∈ C∞c (s(F )), we define a function
(parabolic descent) fηP ∈ C∞c ((mP ∩ s)(F )) by

(3.2.2) fηP (Z) :=

∫
KH×(nP∩s)(F )

f(Ad(k−1)(Z + U))η(Nrd(k))dUdk
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for all Z ∈ (mP ∩ s)(F ). We show that (f̂)ηP = (fηP )ˆ, so we shall denote it by f̂ηP without confusion. In
fact, the integral on (nP ∩ s)(F ) and the Fourier transform commute by our choices of Haar measures
(see [51, §I.7]); the commutativity of the integral on KH and the Fourier transform results from the
H(F )-invariance of 〈·, ·〉.

The following result is an analogue of [26, Theorem 13].

Proposition 3.13. Let f ∈ C∞c (s(F )). Then

sup
X∈srs(F )

|Ds(X)|1/2F

∫
HX(F )\H(F )

|f(Ad(x−1)(X))|dx < +∞.

Proof. It is proved in [58, Theorem 6.11] (see also [57, p. 77]) that for any fixed Cartan subspace
c of s,

sup
X∈creg(F )

|Ds(X)|1/2F

∫
HX(F )\H(F )

|f(Ad(x−1)(X))|dx < +∞.

Since T (s) is a finite set and the orbital integral is constant on any H(F )-orbit, we obtain a uniform
bound for all X ∈ srs(F ). �

The lemma below is an analogue of [26, Theorem 15].

Lemma 3.14. There exists ε > 0 such that the function |Ds(X)|−
1
2−ε

F is locally integrable on s(F ).

Proof. Choose ε > 0 verifying the condition of Lemma 3.5. Let f ∈ C∞c (s(F )) with f ≥ 0. By the
Weyl integration formula (3.1.2), we have∫
s(F )

|Ds(X)|−
1
2−ε

F f(X)dX =
∑

c∈T (s)

|W (H, c)|−1

∫
creg(F )

|Ds(X)|
1
2−ε
F

∫
ATc (F )\H(F )

f(Ad(x−1)(X))dxdX.

The convergence of the right hand side results from Proposition 3.13 and Lemmas 3.3 and 3.5. �

Corollary 3.15. For any r ≥ 0, the function |Ds(X)|−
1
2

F sup{1,− log |Ds(X)|F }r is locally inte-
grable on s(F ).

Proof. It is the same as the proof of Corollary 3.6. �

3.3. The case of (G′, H ′). Let E be a quadratic extension of F . Let g′ be a central simple algebra
over F with a fixed embedding of F -algebras E ↪→ g′. Let h′ := Centg′(E) be the centraliser of E in
g′. By the the double centraliser theorem (see [42, Theorem 3.1 in Chapter IV] for example), h′(F ) is a

central simple algebra over E. Denote by G′ := g′
×

(resp. H ′ := h′
×

) the group of invertible elements
in g′ (resp. h′), which is considered as an algebraic group over F with Lie algebra g′ (resp. h′). Let
α ∈ E\F such that α2 ∈ F . Then E = F (α) and H ′ is the subgroup of fixed points of the involution
Ad(α) on G′. Denote by s′ the corresponding tangent space of G′/H ′. For a linear subspace v′ ⊆ g′, we

write v′
×

:= v′∩G′. Then we see that s′rs ⊆ s′
×

via a base change to an algebraic closure of F containing
E.

Lemma 3.16 (cf. Lemma 3.9). Let P̃ ′ be a parabolic subgroup of G′. Then P̃ ′ ∩ H ′ is a parabolic

subgroup of H ′ if and only if α ∈ P̃ ′. Moreover, if α belongs to a Levi factor M̃ ′ of P̃ ′, then M̃ ′ ∩H ′ is

a Levi factor of P̃ ′ ∩H ′.

By the Wedderburn-Artin theorem, G′ is isomorphic to GLn,D for some positive integer n and some
central division algebra D over F . Since E embeds into g′(F ), we see that ndeg(D) is even, where
deg(D) denotes the degree of D. From the Noether-Skolem theorem (see [42, Theorem 2.10 of Chapter
IV] for example), up to conjugation by G′(F ), the emdedding H ′ ↪→ G′ is reduced to one of the two
cases below (see [18, §2.1 and §3.1] and §3.4 in Chapter 3).

Case I: if deg(D) is even, then (G′, H ′) = (GLn,D,ResE/FGLn,D′), where D′ := CentD(E) denoting

the centraliser of E in D is a central division algebra over E of degree deg(D)
2 . Let M ′0 ' (ResE/FGm,D′)n

(resp. M ′
0̃
' (Gm,D)n) be the subgroup of diagonal elements in H ′ (resp. G′). Recall that there is a

bijection M ′ 7→ M̃ ′ between LH′(M ′0) and L G′(M ′
0̃
). We shall always write M̃ ′ for the image of M ′

under this bijection. Notice that M ′ = M̃ ′ ∩H ′ and that we can identify AM ′ with A
M̃ ′

.
Case II: if deg(D) is odd, then (G′, H ′) = (GLn,D,ResE/FGLn

2 ,D⊗FE), where D ⊗F E is a central

division algebra over E of degree deg(D). Let M ′0 ' (ResE/FGm,D⊗FE)
n
2 (resp. M ′

0̃
' (Gm,D)n) be
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the subgroup of diagonal elements in H ′ (resp. G′). Denote by L G′(M ′
0̃
,M ′0) the subset of elements in

L G′(M ′
0̃
) containingM ′0. Recall that there is a bijectionM ′ 7→ M̃ ′ between LH′(M ′0) and L G′(M ′

0̃
,M ′0).

We shall always write M̃ ′ for the image of M ′ under this bijection. Notice that M ′ = M̃ ′ ∩H ′ and that
we can identify AM ′ with A

M̃ ′
.

Suppose that M ′ ∈ LH′(M ′0). We say an element Y ∈ (m̃′ ∩ s′rs)(F ) is M ′-elliptic if AM ′ is the

maximal F -split torus in H ′Y . Denote by (m̃′ ∩ s′rs)(F )ell the set of M ′-elliptic elements in (m̃′ ∩ s′rs)(F ).

Denote by Γell((m̃′ ∩ s′rs)(F )) the set of M ′(F )-conjugacy classes in (m̃′ ∩ s′rs)(F )ell. We say a Cartan

subspace c′ ⊆ m̃′ ∩ s′ is M ′-elliptic if ATc′ = AM ′ . Since (M ′, m̃′ ∩ s′) appears as the product of some

copies of the form (H ′, s′) in lower dimensions, we define W (M ′, c′) and T (m̃′ ∩ s′) as in Section 3.1.

Denote by Tell(m̃′ ∩ s′) the subset of M ′-elliptic Cartan subspaces in T (m̃′ ∩ s′).

Lemma 3.17 (cf. Lemma 3.10). Let M ′ ∈ LH′(M ′0) and {Y ′} ∈ Γell((m̃′ ∩ s′rs)(F )).

1) Let M ∈ LH′(M ′0) and {Y } ∈ Γell((m̃ ∩ s′rs)(F )) be such that Y is H ′(F )-conjugate to Y ′. Then

there exists w ∈WH′

0 such that

(Ad(w)(M ′), {Ad(w)(Y ′)}) = (M, {Y }).

2) The cardinality of

{(M, {Y }) : M ∈ LH′(M ′0), {Y } ∈ Γell((m̃ ∩ s′rs)(F )), Y is H ′(F )-conjugate to Y ′}

is

|WH′

0 ||WM ′

0 |−1.

Proposition 3.18. For f ′ ∈ C∞c (s′(F )), we have the equality∫
s′(F )

f ′(Y )dY =
∑

M ′∈LH′ (M ′0)

|WM ′

0 ||WH′

0 |−1
∑

c′∈Tell(m̃′∩s′)

|W (M ′, c′)|−1

∫
c′reg(F )

|Ds′(Y )|F
∫
AM′ (F )\H′(F )

f ′(Ad(x−1)(Y ))dxdY.

Proof. Recall that any H ′(F )-conjugacy class in s′rs(F ) is the image of a class {Y } ∈ Γell((m̃′ ∩
s′rs)(F )) for some M ′ ∈ LH′(M ′0) in our case. By Lemma 3.17, the Weyl integration formula (3.1.2) can
be written as the above equality (cf. [8, p. 16-17] and [51, (3) in §I.3]). �

Recall there is a bijection P ′ 7→ P̃ ′ between FH′(M ′0) and FG′(M̃ ′0) in both of Case I and Case

II. We shall always write P̃ ′ for the image of P ′ under this bijection. Let τ ∈ D× in Case I (resp.

τ ∈ GL2(D) in Case II) be an element such that Ad(α)(τ) = −τ . Let P ′ ∈ FH′(M ′0). Then we have
m
P̃ ′
∩ s′ = mP ′τ = τmP ′ and n

P̃ ′
∩ s′ = nP ′τ = τnP ′ by Proposition 3.12 in Chapter 3. We have fixed

the Haar measures on mP ′(F ) and nP ′(F ) in Section 2.5. We shall choose the same Haar measures on
(m

P̃ ′
∩ s′)(F ) and (n

P̃ ′
∩ s′)(F ) using above identifications induced by τ . Such Haar measures depend

on the choice of τ .

Lemma 3.19. Let Q′ ∈ FH′(M ′0). For X ∈ (m
Q̃′
∩ s′rs)(F ), the map

NQ′(F )→ (n
Q̃′
∩ s′)(F ), n 7→ Ad(n−1)(X)−X

is an isomorphism of F -analytic manifolds whose Jacobian is |Ds′(X)|1/2F |D
m
Q̃′
∩s′

(X)|−1/2
F .

Proof. See Lemma 8.1 in Chapter 3 for the isomorphism. The computation of its Jacobian is close
to the proof of [58, Proposition 6.3.(ii)]. �

Fix a continuous and nontrivial unitary character Ψ : F → C×. Let 〈·, ·〉 be the symmetric bilinear
form on g′(F ) defined by

〈Y,X〉 := Trd(Y X),∀Y,X ∈ g′(F ),

where Trd denotes the reduced trace on g′(F ). It is non-degenerate, which can be seen after the base
change to an algebraic closure of F . It is also invariant by the adjoint action of G′(F ) and Ad(α). For

f ′ ∈ C∞c (s′(F )), define its normalised Fourier transform f̂ ′ ∈ C∞c (s′(F )) by

(3.3.1) ∀Y ∈ s′(F ), f̂ ′(Y ) := cΨ(s′(F ))

∫
s′(F )

f ′(X)Ψ(〈Y,X〉)dX,
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where cΨ(s′(F )) is the unique constant such that
ˆ̂
f ′(Y ) = f ′(−Y ) for all f ′ ∈ C∞c (s′(F )) and all

Y ∈ s′(F ). For any M ′ ∈ LH′(M ′0), the restriction of 〈·, ·〉 on m̃′ ∩ s′ is non-degenerate. Then we can

define similarly the normalised Fourier transform of f ′ ∈ C∞c ((m̃′ ∩ s′)(F )).

Suppose that P ′ ∈ FH′(M ′0). For f ′ ∈ C∞c (s′(F )), we define a function (parabolic descent) f ′P ′ ∈
C∞c ((m

P̃ ′
∩ s′)(F )) by

(3.3.2) f ′P ′(Z) :=

∫
KH′×(n

P̃ ′
∩s′)(F )

f ′(Ad(k−1)(Z + U))dUdk

for all Z ∈ (m
P̃ ′
∩ s′)(F ). By our choices of Haar measures (see [51, §I.7]) and the H ′(F )-invariance of

〈·, ·〉, we show that (f̂ ′)P ′ = (f ′P ′)
ˆ, which will be denoted by f̂ ′P ′ without confusion.

Proposition 3.20. Let f ′ ∈ C∞c (s′(F )). Then

sup
Y ∈s′rs(F )

|Ds′(Y )|1/2F

∫
H′Y (F )\H′(F )

|f ′(Ad(x−1)(Y ))|dx < +∞.

Corollary 3.21 (cf. Corollary 3.15). For any r ≥ 0, the function |Ds′(Y )|−
1
2

F sup{1,− log |Ds′(Y )|F }r
is locally integrable on s′(F ).

The rest of this section is devoted to the proof of Proposition 3.20. We shall follow the main steps
in [58, §6.3], which is similar to the proof of [26, Theorem 13], and only point out some additional
ingredients. Let n is the F -rank of G′. Denote G′n := G′, H ′n := H ′ and s′n := s′. Recall that the F -rank
of H ′n is n in Case I (resp. n

2 in Case II). We shall use induction on n. For n = 1 in Case I (resp.
n = 2 in Case II), the proposition is evident since H ′Y (F )\H ′(F ) is compact in our case.

The following description of semi-simple elements and descendants (see [1, Definition 7.2.2]) is a
generalisation of [24, Lemma 2.1] (see also [58, Proposition 4.7]).

Proposition 3.22. 1) An element Y of s′(F ) is semi-simple if and only if it is H ′(F )-conjugate to
an element of the form

Y (B) :=

(
B 0
0 0

)
,

with B ∈ s′m
×

(F ) being semi-simple with respect to the H ′m-action. More precisely, the set of H ′(F )-
conjugacy classes of semi-simple elements in s′(F ) is bijective to the set of pairs (m, {B}) where 0 ≤
m ≤ n is an integer in Case I (resp. an even number in Case II) and {B} is a semi-simple H ′m(F )-

conjugacy class in s′m
×

(F ). Moreover, Y (B) is regular semi-simple if and only if m = n and B is regular

semi-simple in s′
×

(F ).
2) Let Y = Y (B) ∈ s′(F ) be semi-simple. Then the descendant (H ′Y , s

′
Y ) (as a representation) is

isomorphic to
(H ′m,B , s

′
m,B)× (H ′n−m, s

′
n−m),

where H ′m.B (resp. s′m,B) denotes the centraliser of B in H ′m (resp. s′m).

Proof. 1) By the base change to an algebraic closure of F containing E, we see from [31, Proposition
2.1] that an element Y ∈ s′(F ) which is H ′(F )-conjugate to Y (B) in the proposition is semi-simple. Now
we suppose that Y ∈ s′(F ) is semi-simple. Since Y 2 ∈ h′(F ), up to H ′(F ) conjugation, we may suppose

that Y 2 =

(
A 0
0 0

)
with A ∈ h′m

×
(F ) being semi-simple in the usual sense. From

(
A 0
0 0

)
Y =

Y

(
A 0
0 0

)
, we deduce that Y =

(
B 0
0 C

)
for some B ∈ s′m(F ) such that AB = BA and some C ∈

s′n−m(F ). As Y 2 =

(
A 0
0 0

)
, we have B ∈ s′m

×
(F ). Because Y is semi-simple, it is shown in [31, p. 71]

that Y and Y 2 have the same rank over an algebraic closure of F containing E. Then C = 0. We can
also see from [31, Proposition 2.1] that B is semi-simple with respect to the H ′m-action after the base
change. We have established the first statement.

For the second statement, it suffices to notice that two such elements Y (B1) with B1 ∈ s′m1

×
(F )

and Y (B2) with B2 ∈ s′m2

×
(F ) in the proposition are H ′(F )-conjugate if and only if m1 = m2 (denoted

by m) and B1 and B2 are H ′m(F )-conjugate.
The third statement follows from the base change or 2).
2) It can be shown by direct calculation. �
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Fix a Cartan subspace c′ of s′. The lemma below is an analogue of [26, Lemma 29].

Lemma 3.23. Let f ′ ∈ C∞c (s′(F )−N s′). Then

sup
Y ∈c′reg(F )

|Ds′(Y )|1/2F

∫
H′Y (F )\H′(F )

|f ′(Ad(x−1)(Y ))|dx < +∞.

Proof. We may apply the argument of [58, Lemma 6.14] relying on Lemma 3.3 and [59, Proposition
3.11], which is an analogue of Harish-Chandra’s semi-simple descent for orbital integrals [35, Lemma
16.1]. By Proposition 3.22.2), it suffices to prove the boundedness of orbital integrals for

(H ′m,B , s
′
m,B)× (H ′n−m, s

′
n−m)

with B ∈ s′m
×

(F ) being semi-simple with respect to the H ′m-action and 0 < m ≤ n. Since there exists an
H ′m,B-equivariant linear isomorphism s′m,B → h′m,B induced by Z 7→ ZB, the first factor (H ′m,B , s

′
m,B) is

covered by Harish-Chandra’s work [26, Theorem 13] on classical orbital integrals on Lie algebras. Then
we conclude by applying the induction hypothesis to the second factor (H ′n−m, s

′
n−m). �

Consider X0 ∈ N s′ . By the Jacobson-Morozov theorem for symmetric spaces (Lemma 3.7), there
exists a group homomorphism ϕ : SL2(F )→ G′(F ) such that

X0 = dϕ

(
0 1
0 0

)
, Y0 := dϕ

(
0 0
1 0

)
∈ s′(F ) and d := dϕ

(
1 0
0 −1

)
∈ h′(F ).

Write r′ := dim s′Y0
and m′ := 1

2Tr(ad(−d)|s′Y0
), where s′Y0

denotes the centraliser of Y0 in s′.

Lemma 3.24. We have
1) r′ ≥ 1

2

√
dim g′;

2) r′ +m′ > 1
4 dim g′ + 1

4

√
dim g′.

Proof. It suffices to check these relations after a base change to an algebraic closure of F containing
E. Then the lemma is exactly [58, Proposition 4.4]. �

Let s′bdd be the set of X ∈ s′(F ) such that there exists an open neighbourhood σ′ of X in s′(F )
satisfying

sup
Y ∈c′reg(F )

|Ds′(Y )|1/2F

∫
H′Y (F )\H′(F )

|f ′(Ad(x−1)(Y ))|dx < +∞

for all f ′ ∈ C∞c (s′(F )) with Supp(f ′) ⊆ σ′. The next lemma is an analogue of [26, Lemma 38].

Lemma 3.25. We have N s′ − {0} ⊆ s′bdd.

Proof. We may apply the argument of [58, Lemma 6.16] thanks to Lemma 3.24. �

Proof of Proposition 3.20. We may use the argument in [26, §VI.7] to show that 0 ∈ s′bdd.
Then the proposition follows from Lemmas 3.23 and 3.25. �

4. Weighted orbital integrals

4.1. The case of (G,H). Let E/F be a quadratic field extension and η the quadratic character
of F×/NE× attached to it, where NE× denotes the norm of E×. For x ∈ H(F ), which is viewed as
an element in G(F ), we denote by Nrd(x) its reduced norm. Suppose that M ∈ L G,ω(M0) and that
Q ∈ FG(M). For all f ∈ C∞c (s(F )) and X ∈ (m ∩ srs)(F ), we define the weighted orbital integral

(4.1.1) JQM (η,X, f) := |Ds(X)|1/2F

∫
HX(F )\H(F )

f(Ad(x−1)(X))η(Nrd(x))vQM (x)dx.

Since vQM (x) is left-invariant by M(F ) and we have HX ⊆ MH for X ∈ m ∩ srs, we see that vQM (x) is
left-invariant by HX(F ). This integral is absolutely convergent since the orbit Ad(H(F ))(X) is closed
in s(F ), which ensures that the integrand is a compactly supported (and locally constant) function on
the homogeneous space.

Notice that for x ∈ MH(F ), we have JQM (η,Ad(x−1)(X), f) = η(Nrd(x))JQM (η,X, f). Sometimes it

is convenient to introduce a transfer factor as in [58, Definition 5.7]: for X =

(
0 A
B 0

)
∈ srs(F ), define

(4.1.2) κ(X) := η(Nrd(A)),
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where Nrd(A) denotes the reduced norm ofA ∈ GLn(D). Then we have κ(Ad(x−1)(X)) = η(Nrd(x))κ(X),

and thus the function κ(·)JQM (η, ·, f) is constant on Ad(MH(F ))(X).
Though we mainly consider M ∈ L G,ω(M0), it is unharmful to extend our definition by (4.1.1) to

all Levi subgroups of the form M = Ad(w)(L), where L ∈ L G,ω(M0) and w ∈WH
0 .

One may also extend in the obvious way the definition (4.1.1) of weighted orbital integrals to the
symmetric pair (M,MH ,Ad(ε)), where M ∈ L G,ω(M0), since it appears as the product of some copies
of the form (G,H,Ad(ε)) in lower dimensions.

Proposition 4.1. Suppose that M ∈ L G,ω(M0) and that Q ∈ FG(M).

1) For X ∈ (m ∩ srs)(F ) fixed, the support of the distribution JQM (η,X, ·) is contained in the closed
orbit Ad(H(F ))(X).

2) For f ∈ C∞c (s(F )) fixed, the function JQM (η, ·, f) is locally constant on (m∩srs)(F ). If c ⊆ m∩s is
a Cartan subspace, the restriction of this function to creg(F ) vanishes outside a compact subset of c(F ).

3) If w ∈ NormH(F )(M0), x ∈MH(F ) and k ∈ KH , we have the equality

JGAd(w)(M)(η,Ad(wx)(X),Ad(k)(f)) = η(Nrd(wxk))JGM (η,X, f)

for all X ∈ (m ∩ srs)(F ) and f ∈ C∞c (s(F )).
4) For X ∈ (m ∩ srs)(F ) and f ∈ C∞c (s(F )), we have the equality

JQM (η,X, f) = J
MQ

M (η,X, fηQ),

where fηQ ∈ C∞c ((mQ ∩ s)(F )) is defined by (3.2.2).

5) (Descent formula) If L ∈ L G,ω(M0), L ⊆M and X ∈ (l ∩ srs)(F ), we have

JGM (η,X, f) =
∑

L′∈LG(L)

dGL (M,L′)JL
′

L (η,X, fηQ′)

for all f ∈ C∞c (s(F )), where Q′ denotes the second component of s(M,L′) (see Section 2.7).
6) (Non-equivariance) For X ∈ (m ∩ srs)(F ), y ∈ H(F ) and f ∈ C∞c (s(F )), we have the equality

JGM (η,X,Ad(y−1)(f)) = η(Nrd(y))
∑

Q∈FG(M)

J
MQ

M (η,X, fηQ,y),

where fηQ,y ∈ C∞c ((mQ ∩ s)(F )) is defined by

(4.1.3) fηQ,y(Z) :=

∫
KH×(nQ∩s)(F )

f(Ad(k−1)(Z + U))η(Nrd(k))v′Q(ky)dUdk, ∀Z ∈ (mQ ∩ s)(F ).

Proof. 1) This is obvious from the definition.
2) Let Y ∈ (m∩ srs)(F ). Let c be the centraliser of Y in s. Then c ⊆ m∩ s is a Cartan subspace and

Y ∈ creg(F ). Since Ad(MH(F ))(creg(F )) is an open subset of (m ∩ srs)(F ) (see [45, p. 105]), in order
to prove the first statement, it suffices to find a neighbourhood U of Y in creg(F ) on which the function

κ(·)JQM (η, ·, f) is constant. We shall follow the proof of [35, Theorem 17.11]. Consider the function φ on
creg(F )×(Tc(F )\H(F )) defined by φ(X,x) := (κf)(Ad(x−1)(X)). Then φ is locally constant but usually
not compactly supported. However, now choosing a compact neighbourhood σc of Y in creg(F ), we see
from Harish-Chandra’s compactness lemma for symmetric spaces (Lemma 3.2) applied to σs := Supp(f)
that the restriction of φ to σc× (Tc(F )\H(F )) is compactly supported. By [35, Lemma 2.1], there exists
an open neighbourhood U of Y in σc such that φ(X,x) = φ(Y, x) for all X ∈ U and x ∈ Tc(F )\H(F ).

It follows that the function κ(·)JQM (η, ·, f) is constant on U .
The second statement is a corollary of Lemma 3.3.
3) The effect of Ad(w) is a consequence of our choice of Haar measures. The effect of Ad(x) results

from the left-invariance of vGM (x) by MH(F ). The effect of Ad(k) comes from the right-invariance of
vGM (x) by KH . One should keep in mind the effect of η(Nrd(x)) in every step.

4) Write QH := Q ∩ H ∈ FH(M0). One sees that MQH = MQ ∩ H and that NQH = NQ ∩ H.
Applying the change of variables x = mnk with m ∈ MQH (F ), n ∈ NQH (F ) and k ∈ KH in (4.1.1),

since vQM (x) = v
MQ

M (m), we have

JQM (η,X, f) = |Ds(X)|1/2F

∫
(MQH,X

(F )\MQH
(F ))×NQH (F )×KH

f(Ad(mnk)−1(X))η(Nrd(mk))v
MQ

M (m)dkdndm.
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Applying Lemma 3.12 to Y = Ad(m−1)(X), we deduce

JQM (η,X, f) =|DmQ∩s(X)|1/2F

∫
(MQH,X

(F )\MQH
(F ))×KH×(nQ∩s)(F )

f(Ad(k−1)(Ad(m−1)(X) + U))

η(Nrd(mk))v
MQ

M (m)dUdkdm

=|DmQ∩s(X)|1/2F

∫
MQH,X

(F )\MQH
(F )

fηQ(Ad(m−1)(X))η(Nrd(m))v
MQ

M (m)dm

=J
MQ

M (η,X, fηQ).

5) It follows from (7) in Section 2.7 and 4).
6) By the change of variables, we see that

JGM (η,X,Ad(y−1)(f)) = |Ds(X)|1/2F

∫
HX(F )\H(F )

f(Ad(x−1)(X))η(Nrd(xy))vM (xy)dx.

For x ∈ H(F ) and Q ∈ FG,ω(M0), let kQ(x) be an element in KH such that xkQ(x)−1 ∈ QH(F ). It
follows from the product formula (2.6.1) that (see the proof of [5, Lemma 8.2])

vM (xy) =
∑

Q∈FG(M)

vQM (x)v′Q(kQ(x)y).

As in 4), we write

JGM (η,X,Ad(y−1)(f)) =η(Nrd(y))
∑

Q∈FG(M)

|Ds(X)|1/2F

∫
HX(F )\H(F )

f(Ad(x−1)(X))η(Nrd(x))vQM (x)

v′Q(kQ(x)y)dx

=η(Nrd(y))
∑

Q∈FG(M)

|Ds(X)|1/2F

∫
(MQH,X

(F )\MQH
(F ))×NQH (F )×KH

f(Ad(mnk)−1(X))η(Nrd(mk))v
MQ

M (m)v′Q(ky)dkdndm.

Applying again Lemma 3.12 to Y = Ad(m−1)(X), we obtain

JGM (η,X,Ad(y−1)(f)) =η(Nrd(y))
∑

Q∈FG(M)

|DmQ∩s(X)|1/2F

∫
(MQH,X

(F )\MQH
(F ))×KH×(nQ∩s)(F )

f(Ad(k−1)(Ad(m−1)(X) + U))η(Nrd(mk))v
MQ

M (m)v′Q(ky)dUdkdm

=η(Nrd(y))
∑

Q∈FG(M)

|DmQ∩s(X)|1/2F

∫
MQH,X

(F )\MQH
(F )

fηQ,y(Ad(m−1)(X))

η(Nrd(m))v
MQ

M (m)dm

=η(Nrd(y))
∑

Q∈FG(M)

J
MQ

M (η,X, fηQ,y).

�

Lemma 4.2. Suppose that M ∈ L G,ω(M0) and that Q ∈ FG(M). Let σ ⊆ s(F ) be a compact subset.
There exists c > 0 and N ∈ N such that if x ∈ H(F ) and X ∈ (m∩ srs)(F ) satisfy Ad(x−1)(X) ∈ σ, then

|vQM (x)| ≤ c sup{1,− log |Ds(X)|F }N .

Proof. It is shown in the proof of [51, Lemme III.5] that there exists c1 > 0 and N ∈ N such that
for all x ∈ G(F ),

|vQM (x)| ≤ c1(1 + log ‖x‖)N .
Suppose that x ∈ H(F ) and X ∈ (m∩ srs)(F ) satisfy Ad(x−1)(X) ∈ σ. If we replace x by yx and X

by Ad(y)(X), where y ∈MH(F ), the two sides in the inequality to be proved remain unchanged. Since
T (m ∩ s) is a finite set, we may fix a Cartan subspace c ⊆ m ∩ s and suppose that X ∈ creg(F ). Let
τ ∈ Tc(F ) be such that

‖τx‖ = inf
τ ′∈Tc(F )

‖τ ′x‖.
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Then

|vQM (x)| = |vQM (τx)| ≤ c1(1 + log ‖τx‖)N = c1(1 + inf
τ ′∈Tc(F )

log ‖τ ′x‖)N .

Now it suffices to apply Lemma 3.4. �

Corollary 4.3. Suppose that M ∈ L G,ω(M0) and that Q ∈ FG(M). Let f ∈ C∞c (s(F )). There
exists c > 0 and N ∈ N such that for all X ∈ (m ∩ srs)(F ), we have

|JMQ

M (η,X, fηQ)| ≤ c sup{1,− log |Ds(X)|F }N .

Proof. By Proposition 4.1.4) and Lemma 4.2 applied to σ = Supp(f), we see that

|JMQ

M (η,X, fηQ)| ≤|Ds(X)|1/2F

∫
HX(F )\H(F )

|f(Ad(x−1)(X))vQM (x)|dx

≤c sup{1,− log |Ds(X)|F }N |Ds(X)|1/2F

∫
HX(F )\H(F )

|f(Ad(x−1)(X))|dx.

Now we draw our conclusion by Proposition 3.13. �

4.2. The case of (G′, H ′). Suppose that M ′ ∈ LH′(M ′0) and that Q′ ∈ FH′(M ′). For all f ′ ∈
C∞c (s′(F )) and Y ∈ (m̃′ ∩ s′rs)(F ), we define the weighted orbital integral

(4.2.1) JQ
′

M ′(Y, f
′) := |Ds′(Y )|1/2F

∫
H′Y (F )\H′(F )

f ′(Ad(x−1)(Y ))vQ
′

M ′(x)dx.

By the base change to an algebraic closure of F containing E, we see that H ′Y ⊆ H ′Y 2 ⊆ M ′ for

Y ∈ m̃′∩s′rs. Then vQ
′

M ′(x) is left-invariant byH ′Y (F ). This integral is absolutely convergent since the orbit

Ad(H ′(F ))(Y ) is closed in s′(F ). Notice that for x ∈M ′(F ), we have JQ
′

M ′(Ad(x−1)(Y ), f ′) = JQ
′

M ′(Y, f
′),

i.e., the function JQ
′

M ′(·, f ′) is constant on Ad(M ′(F ))(Y ). One may extend in the obvious way the

definition (4.2.1) to the symmetric pair (M̃ ′,M ′,Ad(α)), where M ′ ∈ LH′(M ′0), since it appears as the
product of some copies of the form (G′, H ′,Ad(α)) in lower dimensions.

Proposition 4.4. Suppose that M ′ ∈ LH′(M ′0) and that Q′ ∈ FH′(M ′).

1) For Y ∈ (m̃′ ∩ s′rs)(F ) fixed, the support of the distribution JQ
′

M ′(Y, ·) is contained in the closed
orbit Ad(H ′(F ))(Y ).

2) For f ′ ∈ C∞c (s′(F )) fixed, the function JQ
′

M ′(·, f ′) is locally constant on (m̃′∩s′rs)(F ). If c′ ⊆ m̃′∩s′
is a Cartan subspace, the restriction of this function to c′reg(F ) vanishes outside a compact subset of c′(F ).

3) If w ∈ NormH′(F )(M
′
0), x ∈M ′(F ) and k ∈ KH′ , we have the equality

JH
′

Ad(w)(M ′)(Ad(wx)(Y ),Ad(k)(f ′)) = JH
′

M ′(Y, f
′)

for all Y ∈ (m̃′ ∩ s′rs)(F ) and f ′ ∈ C∞c (s′(F )).

4) For Y ∈ (m̃′ ∩ s′rs)(F ) and f ′ ∈ C∞c (s′(F )), we have the equality

JQ
′

M ′(Y, f
′) = J

MQ′

M ′ (Y, f ′Q′),

where f ′Q′ ∈ C∞c ((m
Q̃′
∩ s′)(F )) is defined by (3.3.2).

5) (Descent formula) If L′ ∈ LH′(M ′0), L′ ⊆M ′ and Y ∈ (l̃′ ∩ s′rs)(F ), we have

JH
′

M ′(Y, f
′) =

∑
L∈LH′ (L′)

dH
′

L′ (M
′, L)JLL′(Y, f

′
Q)

for all f ′ ∈ C∞c (s′(F )), where Q denotes the second component of s(M ′, L) (see Section 2.7).

6) (Noninvariance) For Y ∈ (m̃′ ∩ s′rs)(F ), y ∈ H ′(F ) and f ′ ∈ C∞c (s′(F )), we have the equality

JH
′

M ′(Y,Ad(y−1)(f ′)) =
∑

Q′∈FH′ (M ′)

J
MQ′

M ′ (Y, f ′Q′,y),

where f ′Q′,y ∈ C∞c ((m
Q̃′
∩ s′)(F )) is defined by

(4.2.2) f ′Q′,y(Z) :=

∫
KH′×(n

Q̃′
∩s′)(F )

f ′(Ad(k−1)(Z + U))v′Q′(ky)dUdk, ∀Z ∈ (m
Q̃′
∩ s′)(F ).
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Proof. It is almost the same as the proof of Proposition 4.1, except that one needs to use Lemma
3.19 to show 4) and 6). �

Lemma 4.5 (cf. Lemma 4.2). Suppose that M ′ ∈ LH′(M ′0) and that Q′ ∈ FH′(M ′). Let σ′ ⊆ s′(F )

be a compact subset. There exists c > 0 and N ∈ N such that if x ∈ H ′(F ) and Y ∈ (m̃′ ∩ s′rs)(F ) satisfy
Ad(x−1)(Y ) ∈ σ′, then

|vQ
′

M ′(x)| ≤ c sup{1,− log |Ds′(Y )|F }N .

Corollary 4.6. Suppose that M ′ ∈ LH′(M ′0) and that Q′ ∈ FH′(M ′). Let f ′ ∈ C∞c (s′(F )). There

exists c > 0 and N ∈ N such that for all Y ∈ (m̃′ ∩ s′rs)(F ), we have

|JMQ′

M ′ (Y, f ′Q′)| ≤ c sup{1,− log |Ds′(Y )|F }N .

Proof. We may apply the argument of Corollary 4.3 with the help of Proposition 4.4.4), Lemma
4.5 and Proposition 3.20. �

5. The noninvariant trace formula

5.1. The case of (G,H). Suppose that M ∈ L G,ω(M0). For x, y ∈ G(F ), we define a (G,M)-
family (vP (x, y))P∈PG(M) as in [8, (12.1) in §12] by

vP (λ, x, y) := e−λ(HP (y)−HP (x)),∀λ ∈ ia∗M , P ∈PG(M),

where P ∈ PG(M) is the parabolic subgroup opposite to P . Let E/F be a quadratic field extension
and η the quadratic character of F×/NE× attached to it. For f, f ′ ∈ C∞c (s(F )) and X ∈ (m∩ srs)(F )ell,
we define
(5.1.1)

JGM (η,X, f, f ′) := |Ds(X)|F
∫

(AM (F )\H(F ))2

f(Ad(x−1)(X))f ′(Ad(y−1)(X))η(Nrd(x−1y))vM (x, y)dxdy.

Proposition 5.1. Suppose that M ∈ L G,ω(M0) and that f, f ′ ∈ C∞c (s(F )).
1) The integral (5.1.1) is absolutely convergent.
2) The function JGM (η, ·, f, f ′) is locally constant on (m ∩ srs)(F )ell.
3) If c ⊆ m∩ s is an M -elliptic Cartan subspace, the restriction of JGM (η, ·, f, f ′) to creg(F ) vanishes

outside a compact subset of c(F ).
4) If w ∈ NormH(F )(M0), x ∈MH(F ) and k, k′ ∈ KH , we have the equality

JGAd(w)(M)(η,Ad(wx)(X),Ad(k)(f),Ad(k′)(f ′)) = η(Nrd(kk′))JGM (η,X, f, f ′)

for all X ∈ (m ∩ srs)(F )ell.
5) There exists c > 0 and N ∈ N such that for all X ∈ (m ∩ srs)(F )ell, we have

|JGM (η,X, f, f ′)| ≤ c sup{1,− log |Ds(X)|F }N .

6) For all X ∈ (m ∩ srs)(F )ell, we have

JGM (η,X, f, f ′) =
∑

L1,L2∈LG(M)

dGM (L1, L2)JL1

M (η,X, fη
Q1

)JL2

M (η,X, f ′
η
Q2

),

where (Q1, Q2) := s(L1, L2) (see Section 2.7).

Proof. The statements 1)-4) can be proved in the same way as the proof of analogous properties
for (4.1.1) in Section 4. Notice that the η(Nrd(·))-invariant effects coming from x and y may sometimes
cancel.

For x ∈ G(F ), we define a (G,M)-family (vP (x))P∈PG(M) by

vP (λ, x) := eλ(HP (x)),∀λ ∈ ia∗M , P ∈PG(M).

Then vP (x, y) = vP (x)vP (y) as the product of (G,M)-families. Notice that for all Q ∈ PG(M) and
x ∈ G(F ), we have

vQM (x) = vQM (x).

The statement 6) is a consequence of the splitting formula of (G,M)-families ((6) in Section 2.7)
and Proposition 4.1.4). It together with Corollary 4.3 implies the statement 5). �
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For f, f ′ ∈ C∞c (s(F )), we define

JG(η, f, f ′) :=
∑

M∈LG,ω(M0)

|WMn
0 ||WGLn

0 |−1(−1)dim(AM/AG)
∑

c∈Tell(m∩s)

|W (MH , c)|−1

∫
creg(F )

JGM (η,X, f, f ′)dX.

(5.1.2)

This expression is absolutely convergent by Proposition 5.1.5) and Corollary 3.6.

Remark 5.2. We have the equality

JG(η, f, f ′) = JG(η, f ′, f).

It results from the fact that for all M ∈ L G,ω(M0) and all x, y ∈ G(F ), we have vM (x, y) = vM (y, x).

Again, one may extend in the obvious way the definitions (5.1.1) and (5.1.2) to the symmetric pair
(M,MH ,Ad(ε)), where M ∈ L G,ω(M0), since it appears as the product of some copies of the form
(G,H,Ad(ε)) in lower dimensions.

Theorem 5.3 (Noninvariant trace formula). For all f, f ′ ∈ C∞c (s(F )), we have the equality

JG(η, f, f̂ ′) = JG(η, f̂ , f ′).

The rest of this section is devoted to the proof of Theorem 5.3.
Fix P0 ∈PG(M0). Denote

a+
P0

:= {T ∈ aM0
: α(T ) ≥ 0,∀α ∈ ∆G

P0
}.

For T ∈ a+
P0

, write

d(T ) := inf
α∈∆G

P0

α(T ),

which is invariant under the translation by aG. Set R0 := (aM0,F + aG)/aG, which is a lattice in

aM0/aG. For T ∈ R0 ∩ (a+
P0
/aG), we define a function u(·, T ) on AG(F )\G(F ) as in [8, p. 21], which is

the characteristic function of certain compact subset. To be precise, let CM0
(T ) be the convex hull in

aM0
/aG of

{TB : B ∈PG(M0)},

where TB denotes the unique WG
0 -translate of T which lies in a+

B . Then u(x, T ) is defined as the
characteristic function of the set of points

x = k1mk2,m ∈ AG(F )\M0(F ), k1, k2 ∈ KG,

in AG(F )\G(F ) such that HM0
(m) lies in CM0

(T ).
Let f, f ′ ∈ C∞c (s(F )). For x ∈ H(F ), we define

k(x, f, f ′) :=

∫
s(F )

f(X)f ′(Ad(x−1)(X))dX.

For T ∈ R0 ∩ (a+
P0
/aG), we define

KT (η, f, f ′) :=

∫
AG(F )\H(F )

k(x, f, f ′)η(Nrd(x))u(x, T )dx.

Since AG(F )\H(F ) is a closed subgroup of AG(F )\G(F ), the restriction of u(x, T ) to AG(F )\H(F ) is
also compactly supported, and the above integral is absolutely convergent.

By the Weyl integration formula (Proposition 3.11), we obtain the geometric expansion

KT (η, f, f ′) =
∑

M∈LG,ω(M0)

|WMn
0 ||WGLn

0 |−1
∑

c∈Tell(m∩s)

|W (MH , c)|−1

∫
creg(F )

KT (η,X, f, f ′)dX,

where

KT (η,X, f, f ′) :=|Ds(X)|F
∫
AG(F )\H(F )

∫
AM (F )\H(F )

f(Ad(x−1)(X))f ′(Ad(xy)−1(X))η(Nrd(y))

u(y, T )dxdy.
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By the change of variables xy 7→ y, we can write
(5.1.3)

KT (η,X, f, f ′) = |Ds(X)|F
∫

(AM (F )\H(F ))2

f(Ad(x−1)(X))f ′(Ad(y−1)(X))η(Nrd(x−1y))uM (x, y, T )dxdy,

where

uM (x, y, T ) :=

∫
AG(F )\AM (F )

u(x−1ay, T )da

is defined as in [8, p. 21].

For x, y ∈ G(F ) and T ∈ R0∩ (a+
P0
/aG), we define the second weight function vM (x, y, T ) as in [8, p.

30], which is left-invariant under the multiplication of AM (F ) on x or y. To be precise, let λ ∈ a∗M ⊗R C
be a point whose real part λR ∈ a∗M is in general position. For P ∈PG(M), set

∆λ
P := {α ∈ ∆G

P : λR(α∨) < 0},

where α∨ is the “coroot” associated to α ∈ ∆G
P (see [9, p. 26]). Denote by ϕλP the characteristic function

of the set of T ′ ∈ aM such that $α(T ′) > 0 for each α ∈ ∆λ
P and that $α(T ′) ≤ 0 for each α ∈ ∆G

P −∆λ
P ,

where {$α : α ∈ ∆G
P } is the basis of (aGP )∗ which is dual to {α∨ : α ∈ ∆G

P }. Let

YP (x, y, T ) := TP +HP (x)−HP (y),∀P ∈PG(M).

The set YM (x, y, T ) = {YP (x, y, T ) : P ∈PG(M)} is a (G,M)-orthogonal set in the sense of [8, p. 19].
Define

σM (T ′,YM (x, y, T )) :=
∑

P∈PG(M)

(−1)|∆
λ
P |ϕλP (T ′ − YP (x, y, T )),∀T ′ ∈ aM/aG.

The function σM (·,YM (x, y, T )) is known to be compactly supported (see [8, p. 22]). Then vM (x, y, T )
is defined as the integral

vM (x, y, T ) :=

∫
AG(F )\AM (F )

σM (HM (a),YM (x, y, T ))da.

Now, we define the corresponding weighted orbital integral
(5.1.4)

JT (η,X, f, f ′) := |Ds(X)|F
∫

(AM (F )\H(F ))2

f(Ad(x−1)(X))f ′(Ad(y−1)(X))η(Nrd(x−1y))vM (x, y, T )dxdy.

Let c ⊆ m ∩ s be an M -elliptic Cartan subspace. For ε > 0 and T ∈ aM0,F ∩ a+
P0

with large ‖T‖,
consider the domain near the singular set

c(ε, T ) := {X ∈ creg(F ) : |Ds(X)| ≤ e−ε‖T‖}.

Lemma 5.4. Fix an arbitary constant ε0 > 0. Fix a constant ε′ > 0 satisfying the condition of
Lemma 3.5. Let c ⊆ m ∩ s be an M -elliptic Cartan subspace. Given ε > 0, there exists c > 0 such that

for any T ∈ aM0,F ∩ a+
P0

with ‖T‖ ≥ ε0,∫
c(ε,T )

(|KT (η,X, f, f ′)|+ |JT (η,X, f, f ′)|)dX ≤ ce−
ε′ε‖T‖

2 .

Proof. It is shown in [8, (4.8) in p. 31] that there exist c1, d1 > 0 such that for all x, y ∈ G(F ) and

T ∈ aM0,F ∩ a+
P0

with ‖T‖ ≥ ε0,

uM (x, y, T ) ≤ c1(‖T‖+ log ‖x‖+ log ‖y‖)d1 .

For any a1, a2 ∈ AM (F ), we deduce that

uM (x, y, T ) = uM (a1x, a2y, T ) ≤ c1(‖T‖+ log ‖a1x‖+ log ‖a2y‖)d1 .

Since Tc(F )/AM (F ) is compact, there exists c2 > 0 such that

uM (x, y, T ) ≤ c2(‖T‖+ inf
τ1∈Tc(F )

log ‖τ1x‖+ inf
τ2∈Tc(F )

log ‖τ2y‖)d1 .

Now let x, y ∈ H(F ) and X ∈ c(ε, T ), and assume that

f(Ad(x−1)(X))f ′(Ad(y−1)(X)) 6= 0.
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Let σ ⊆ s(F ) be a compact subset containing Supp(f)∪ Supp(f ′). From Lemma 3.4, there exists cσ > 0
such that

inf
τ1∈Tc(F )

log ‖τ1x‖, inf
τ2∈Tc(F )

log ‖τ2y‖ ≤ cσ sup{1,− log |Ds(X)|F }.

Therefore, there exists c′σ > 0 such that

(5.1.5) uM (x, y, T ) ≤ c′σ(‖T‖ − log |Ds(X)|F )d1 .

By Proposition 3.13, there exists c3 > 0 such that

(5.1.6) |Ds(X)|1/2F

∫
AM (F )\H(F )

|f(x−1Xx)|dx ≤ c3

and

(5.1.7) |Ds(X)|1/2F

∫
AM (F )\H(F )

|f ′(y−1Xy)|dy ≤ c3

for all X ∈ creg(F ).
Putting the estimates (5.1.5), (5.1.6) and (5.1.7) into the definition (5.1.3) of KT (η,X, f, f ′), we

obtain the inequality

|KT (η,X, f, f ′)| ≤ c′σc23(‖T‖ − log |Ds(X)|F )d1 .

By Lemma 3.5, for any subset B of creg(F ) which is relatively compact in c(F ), there exists cB > 0
such that ∫

B

|Ds(X)|−ε
′

F dX ≤ cB .

We deduce that for m ∈ Z,

(5.1.8) vol(B ∩ {X ∈ creg(F ) : |Ds(X)|F = q−
m
2 }) ≤ cBq−

ε′m
2 .

We claim that for any B as above, there exists c′B > 0 such that∫
B∩c(ε,T )

(‖T‖ − log |Ds(X)|F )d1dX ≤ c′Be−
ε′ε‖T‖

2 .

This is an analogue of the exercise in [8, p. 32] and we include here a proof for completeness. For
X ∈ c(ε, T ), we have

‖T‖ ≤ −1

ε
log |Ds(X)|F .

Therefore, ∫
B∩c(ε,T )

(‖T‖ − log |Ds(X)|F )d1dX ≤
(

1 +
1

ε

)d1
∫
B∩c(ε,T )

(− log |Ds(X)|F )d1dX.

Since

B ∩ c(ε, T ) =
∐

m≥ 2ε‖T‖
log q

(B ∩ {X ∈ creg(F ) : |Ds(X)|F = q−
m
2 }),

we have∫
B∩c(ε,T )

(− log |Ds(X)|F )d1dX =
∑

m≥ 2ε‖T‖
log q

(
m log q

2

)d1

vol(B ∩ {X ∈ creg(F ) : |Ds(X)|F = q−
m
2 }).

Applying (5.1.8), we obtain∫
B∩c(ε,T )

(− log |Ds(X)|F )d1dX ≤
∑

m≥ 2ε‖T‖
log q

(
m log q

2

)d1

cBq
− ε′m2 .

Now we can confirm our claim by noting the basic fact: for d > 0 and a > 1, there exists cd,a > 0 such
that ∑

m≥x

md

am
≤ cd,aa−

x
2 ,∀x ≥ 0.

Taking

B = {X ∈ creg(F ) : KT (η,X, f, f ′) 6= 0},
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we see that ∫
c(ε,T )

|KT (η,X, f, f ′)|dX ≤ c′σc23c′Be−
ε′ε‖T‖

2 .

This is half of the lemma.
It is proved in [8, p. 32] that there exist c4, d2 > 0 such that for all x, y ∈ G(F ) and T ∈ aM0,F ∩ a+

P0

with ‖T‖ ≥ ε0,

vM (x, y, T ) ≤ c4(‖T‖+ log ‖x‖+ log ‖y‖)d2 .

By the same argument as before, we obtain∫
c(ε,T )

|JT (η,X, f, f ′)|dX ≤ c5e−
ε′ε‖T‖

2

for some c5 > 0. This establishes the other half of the lemma. �

Lemma 5.5. Suppose that δ > 0. Then there exist c, ε1, ε2 > 0 such that

|uM (x, y, T )− vM (x, y, T )| ≤ ce−ε1‖T‖

for all T ∈ aM0,F ∩ a+
P0

with d(T ) ≥ δ‖T‖, and all x, y ∈ {x ∈ G(F ) : ‖x‖ ≤ eε2‖T‖}.

Proof. This is Arthur’s main geometric lemma [8, Lemma 4.4]. �

Lemma 5.6. Suppose that δ > 0. Let c ⊆ m ∩ s be an M -elliptic Cartan subspace. Then there exist
c, ε > 0 such that ∫

creg(F )

|KT (η,X, f, f ′)− JT (η,X, f, f ′)|dX ≤ ce−ε‖T‖

for all T ∈ aM0,F ∩ a+
P0

with sufficiently large ‖T‖ and d(T ) ≥ δ‖T‖.

Proof. Fix ε2 > 0 to be the constant given by Lemma 5.5. Let x, y ∈ H(F ) and X ∈ creg(F ) −
c( ε22 , T ), and assume that

f(Ad(x−1)(X))f ′(Ad(y−1)(X)) 6= 0.

Let σ ⊆ s(F ) be a compact subset containing Supp(f)∪ Supp(f ′). From Lemma 3.4, there exists cσ > 0
such that

inf
τ1∈Tc(F )

‖τ1x‖, inf
τ2∈Tc(F )

‖τ2y‖ ≤ cσ sup{1, |Ds(X)|−1
F }.

Since X ∈ creg(F )− c( ε22 , T ), we have

sup{1, |Ds(X)|−1
F } ≤ sup{1, e

ε2‖T‖
2 } = e

ε2‖T‖
2 .

Then, multiplying x and y by elements in Tc(F ) if necessary, and taking ‖T‖ ≥ 2 log cσ
ε2

, we can assume
that

‖x‖, ‖y‖ ≤ eε2‖T‖.
It follows from Lemma 5.5 that

|uM (x, y, T )− vM (x, y, T )| ≤ ce−ε1‖T‖.

By the definitions (see (5.1.3) and (5.1.4)) of KT (η,X, f, f ′) and JT (η,X, f, f ′), we obtain that∫
creg(F )−c( ε22 ,T )

|KT (η,X, f, f ′)− JT (η,X, f, f ′)|dX ≤ c1e−ε1‖T‖,

where

c1 := c

∫
creg(F )

|Ds(X)|F
∫

(AM (F )\H(F ))2

|f(Ad(x−1)(X))f ′(Ad(y−1)(X))|dxdydX

is finite by Proposition 3.13 and Lemma 3.3.
One can draw the conclusion by combining this with Lemma 5.4. �

Define

JT (η, f, f ′) :=
∑

M∈LG,ω(M0)

|WMn
0 ||WGLn

0 |−1
∑

c∈Tell(m∩s)

|W (MH , c)|−1

∫
creg(F )

JT (η,X, f, f ′)dX,

where JT (η,X, f, f ′) is defined by (5.1.4).
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Proposition 5.7. Suppose that δ > 0. Then there exist c, ε > 0 such that

|KT (η, f, f ′)− JT (η, f, f ′)| ≤ ce−ε‖T‖

for all T ∈ aM0,F ∩ a+
P0

with sufficiently large ‖T‖ and d(T ) ≥ δ‖T‖.

Proof. Apply Lemma 5.6. �

It is proved in [8, (6.5) in p. 46] that vM (x, y, T ) is an exponential polynomial in T ∈ R0∩ (a+
P0
/aG).

Denote by ṽM (x, y) the constant term of vM (x, y, T ) as in [8, (6.6) in p. 46]. Then for f, f ′ ∈ C∞c (s(F ))

and X ∈ (m ∩ srs)(F )ell, J
T (η,X, f, f ′) is also an exponential polynomial in T ∈ R0 ∩ (a+

P0
/aG) whose

constant term is given by
(5.1.9)

J̃M (η,X, f, f ′) := |Ds(X)|F
∫

(AM (F )\H(F ))2

f(Ad(x−1)(X))f ′(Ad(y−1)(X))η(Nrd(x−1y))ṽM (x, y)dxdy.

Thus for f, f ′ ∈ C∞c (s(F )), JT (η, f, f ′) is still an exponential polynomial in T ∈ R0 ∩ (a+
P0
/aG) whose

constant term is given by

(5.1.10) J̃(η, f, f ′) :=
∑

M∈LG,ω(M0)

|WMn
0 ||WGLn

0 |−1
∑

c∈Tell(m∩s)

|W (MH , c)|−1

∫
creg(F )

J̃M (η,X, f, f ′)dX.

Corollary 5.8. For f, f ′ ∈ C∞c (s(F )), we have the equality

J̃(η, f, f̂ ′) = J̃(η, f̂ , f ′).

Proof. By the Plancherel formula, for x ∈ H(F ), we have

k(x, f, f̂ ′) = k(x, f̂ , f ′).

Then for all T ∈ R0 ∩ (a+
P0
/aG),

KT (η, f, f̂ ′) = KT (η, f̂ , f ′).

Finally, apply Proposition 5.7 to conclude. �

Lemma 5.9. For all Q ∈ FG,ω(M0), there exists a constant c′Q such that for all f, f ′ ∈ C∞c (s(F )),
we have the equality

J̃(η, f, f ′) =
∑

Q∈FG,ω(M0)

|WMQn
0 ||WGLn

0 |−1(−1)dim(AQ/AG)JMQ(η, fη
Q
, f ′

η
Q)c′Q,

where JMQ(η, fη
Q
, f ′

η
Q) is defined by (5.1.2).

Proof. Suppose that M ∈ L G,ω(M0). It is shown in [8, p. 92] that

ṽM (x, y) = (−1)dim(AM/AG)
∑

Q∈FG(M)

vQM (x, y)c′Q,

where c′Q is a constant for each Q ∈ FG,ω(M0).

Now substitude this in the definition (5.1.9) of J̃M (η,X, f, f ′). Note that

vQM (m1n1k1,m2n2k2) = v
MQ

M (m1,m2)

for m1 ∈MQH
(F ), n1 ∈ NQH (F ),m2 ∈MQH (F ), n2 ∈ NQH (F ), k1, k2 ∈ KH . By the same argument as

the proof of Proposition 4.1.4), one shows that

|Ds(X)|F
∫

(AM (F )\H(F ))2

f(Ad(x−1)(X))f ′(Ad(y−1)(X))η(Nrd(x−1y))vQM (x, y)dxdy = J
MQ

M (η,X, fη
Q
, f ′

η
Q),

where J
MQ

M (η,X, fη
Q
, f ′

η
Q) is defined by (5.1.1). Therefore, we have

J̃M (η,X, f, f ′) = (−1)dim(AM/AG)
∑

Q∈FG(M)

J
MQ

M (η,X, fη
Q
, f ′

η
Q)c′Q.

Then the lemma follows from the definition (5.1.10) of J̃(η, f, f ′). �

Proof of Theorem 5.3. Using Lemma 5.9 and Corollary 5.8, we can prove the theorem by in-
duction on the dimension of G. �
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5.2. The case of (G′, H ′). Suppose that M ′ ∈ LH′(M ′0). For x, y ∈ H ′(F ), we define an (H ′,M ′)-
family (vP ′(x, y))P ′∈PH′ (M ′) by

vP ′(λ, x, y) := e−λ(HP ′ (y)−H
P ′ (x)),∀λ ∈ ia∗M ′ , P ′ ∈PH′(M ′),

where P ′ ∈ PH′(M ′) is the parabolic subgroup opposite to P ′. For f, f ′ ∈ C∞c (s′(F )) and Y ∈
(m̃′ ∩ s′rs)(F )ell, we define

(5.2.1) JH
′

M ′(Y, f, f
′) := |Ds′(Y )|F

∫
(AM′ (F )\H′(F ))2

f(Ad(x−1)(Y ))f ′(Ad(y−1)(Y ))vM ′(x, y)dxdy.

Proposition 5.10. Suppose that M ′ ∈ LH′(M ′0) and that f, f ′ ∈ C∞c (s′(F )).
1) The integral (5.2.1) is absolutely convergent.

2) The function JH
′

M ′(·, f, f ′) is locally constant on (m̃′ ∩ s′rs)(F )ell.

3) If c′ ⊆ m̃′∩ s′ is an M ′-elliptic Cartan subspace, the restriction of JH
′

M ′(·, f, f ′) to c′reg(F ) vanishes
outside a compact subset of c′(F ).

4) If w ∈ NormH′(F )(M
′
0), x ∈M ′(F ) and k, k′ ∈ KH′ , we have the equality

JH
′

Ad(w)(M ′)(Ad(wx)(Y ),Ad(k)(f),Ad(k′)(f ′)) = JH
′

M ′(Y, f, f
′)

for all Y ∈ (m̃′ ∩ s′rs)(F )ell.

5) There exists c > 0 and N ∈ N such that for all Y ∈ (m̃′ ∩ s′rs)(F )ell, we have

|JH
′

M ′(Y, f, f
′)| ≤ c sup{1,− log |Ds′(Y )|F }N .

6) For all Y ∈ (m̃′ ∩ s′rs)(F )ell, we have

JH
′

M ′(Y, f, f
′) =

∑
L′1,L

′
2∈LH′ (M ′)

dH
′

M ′(L
′
1, L
′
2)J

L′1
M ′(Y, fQ′1

)J
L′2
M ′(Y, f

′
Q′2

),

where (Q′1, Q
′
2) := s(L′1, L

′
2) (see Section 2.7).

Proof. It is almost the same as the proof of Proposition 5.1, except that one needs to use Proposition
4.4.4) and Corollary 4.6 to show 6) and 5). �

For f, f ′ ∈ C∞c (s′(F )), we define

JH
′
(f, f ′) :=

∑
M ′∈LH′ (M ′0)

|WH′

0 ||WM ′

0 |−1(−1)dim(AM′/AH′ )
∑

c′∈Tell(m̃′∩s′)

|W (M ′, c′)|−1

∫
c′reg(F )

JH
′

M ′(Y, f, f
′)dY.

(5.2.2)

This expression is absolutely convergent by Proposition 5.10.5) and Corollary 3.6. One may extend

in the obvious way the definitions (5.2.1) and (5.2.2) to the symmetric pair (M̃ ′,M ′,Ad(α)), where

M ′ ∈ LH′(M ′0).

Remark 5.11. We have the equality

JH
′
(f, f ′) = JH

′
(f ′, f).

It results from the fact that for all M ′ ∈ LH′(M ′0) and all x, y ∈ H ′(F ), we have vM ′(x, y) = vM ′(y, x).

Theorem 5.12 (Noninvariant trace formula). For all f, f ′ ∈ C∞c (s′(F )), we have the equality

JH
′
(f, f̂ ′) = JH

′
(f̂ , f ′).

Proof. We may simply copy the proof of Theorem 5.3 here with obvious modifications. Especially,
one needs to use Proposition 3.20 to show analogues of Lemmas 5.4 and 5.6 for the case of (G′, H ′). �
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6. Howe’s finiteness for weighted orbital integrals

6.1. The case of (G,H). For an open compact subgroup r of s(F ), denote by C∞c (s(F )/r) the
subspace of C∞c (s(F )) consisting of the functions invariant by translation of r. Let isr

∗ : C∞c (s(F ))∗ →
C∞c (s(F )/r)∗ be the dual map of the natural injection C∞c (s(F )/r) ↪→ C∞c (s(F )).

For any set σ, denote by C[σ] the C-linear space of maps from σ to C with finite support. For
M ∈ L G,ω(M0) and σ ⊆ (m ∩ srs)(F ), we define the linear map

δGM : C[σ]→ C∞c (s(F ))∗,

(zX)X∈σ 7→
∑
X∈σ

zXJ
G
M (η,X, ·),

where zX ∈ C is the coordinate at X ∈ σ.
Once again, one may extend in the obvious way the definitions of isr

∗ and δGM to the symmetric
pair (M,MH ,Ad(ε)), where M ∈ L G,ω(M0), since it appears as the product of some copies of the form
(G,H,Ad(ε)) in lower dimensions.

Proposition 6.1 (Howe’s finiteness). Let r be an open compact subgroup of s(F ), M ∈ L G,ω(M0)
and σ ⊆ (m ∩ srs)(F ). Suppose that there exists a compact subset σ0 ⊆ (m ∩ s)(F ) such that σ ⊆
Ad(MH(F ))(σ0). Then the image of the linear map

isr
∗ ◦ δGM : C[σ]→ C∞c (s(F )/r)∗

is of finite dimension.

Remark 6.2. For M = G, Proposition 6.1 is essentially included in a more general result [45,
Theorem 6.1] in the context of θ-groups (in the sense of [49, p. 467]).

The rest of this section is devoted to the proof of Proposition 6.1. We shall follow the main steps
in [51, §IV.2-6]. We may and shall suppose that σ is relatively compact in (m ∩ s)(F ). The proposition
will be proved by induction on the dimension of G.

Recall that we have chosen the standard maximal compact subgroup K = GL2n(OD) of G(F ) =
GL2n(D). Let k = g(OF ) := gl2n(OD), which is an OF -lattice in g(F ) = gl2n(D) and is stable under
the adjoint action of K. Since H ∈ L G(M0), we have set KH = K ∩H(F ) = GLn(OD) × GLn(OD).
Let h(OF ) := k ∩ h(F ) and s(OF ) := k ∩ s(F ). Then we see that k = h(OF ) ⊕ s(OF ) and that
s(OF ) is stable under the adjoint action of KH . For all P ∈ FG(M0), we fix aP ∈ AP (F ) such that
|α(aP )|F < 1,∀α ∈ ∆G

P .
Recall that we denote by N s the set of nilpotent elements in s(F ) and fix a uniformiser $ of OF .

Let X ∈ N s ∩ (k −$k). By the Jacobson-Morozov theorem for symmetric spaces (Lemma 3.7), there
exists a group homomorphism ϕ : SL2(F )→ G(F ) such that

dϕ

(
0 1
0 0

)
= X and aϕ := ϕ

(
$

$−1

)
∈ H(F ).

We define the parabolic subgroup PX of G as in [51, §IV.3]. More concretely, set

g[i] := {Y ∈ g : Ad(aϕ)(Y ) = $iY,∀i ∈ Z}
and

pX :=
⊕
i≥0

g[i];

then let

(6.1.1) PX := {x ∈ G : Ad(x)(pX) = pX}.
Note that PX is independent of the choice of ϕ by [11, Proposition 5.7.1]. Since aϕ commutes with ε, one
has ε ∈ PX . By Lemma 3.9, PX ∩H is a parabolic subgroup of H. Then there exists an element x ∈ KH

such that P ′ := Ad(x)(PX) ∈ FG(M0). We shall fix such an x. Let aX := Ad(x−1)(aP ′) ∈ H(F ). Note
that aX depends on the choice of x, but this is unimportant. By [51, (3) in §IV.3], we have

(6.1.2) Ad(aX)(X) ∈ ($k) ∩ s(F ) = $s(OF ).

Lemma 6.3. There exists an integer h ∈ N such that for all Y ∈ $hs(OF ), all integer l ≥ h and all
Z ∈ Ad(aX)−1($ls(OF )), there exists γ ∈ KH with η(Nrd(γ)) = 1 such that

Ad(γ)(X + Y + Z) ∈ X + Y +$ls(OF ).
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Proof. We may choose h following the proof of [51, Lemme IV.3]. The point is that we require
γ ∈ H(F ) and η(Nrd(γ)) = 1 here.

Set

nX :=
⊕
i≥1

g[i].

Since aϕ commutes with ε, one has g[i] = (g[i] ∩ h)⊕ (g[i] ∩ s).
By the intersection of s(OF ) with [51, (4) in §IV.3], we have

(6.1.3) Ad(aX)−1(s(OF )) ⊆ s(OF ) + Ad(aX)−1(s(OF )) ∩ nX .

Let c, c′, c′′, h ∈ N be as in the proof of [51, Lemme IV.3], except that we require additionally
exp($lk) ⊆ {x ∈ K : η(Nrd(x)) = 1},∀l ≥ c′. Then

(6.1.4) nX ∩Ad(aX)−1(s(OF )) ⊆ ad(X)($−ch(OF )).

Let Y, l and Z be as in the statement. Thanks to (6.1.3), we can write Z = Z1 + Z2, where
Z1 ∈ $ls(OF ) and Z2 ∈ Ad(aX)−1($ls(OF )) ∩ nX . Because of (6.1.4), we can choose Z ′ ∈ $l−ch(OF )

such that Z2 = ad(X)(Z ′). Since Z ′ ∈ $c′s(OF ) from the hypothesis l ≥ h ≥ c + c′, we can define
γ := exp(Z ′) as in the proof of [51, Lemme IV.3]. Then we have γ ∈ KH and η(Nrd(γ)) = 1. Such a γ
verifies [51, Lemme IV.3] and thus our statement. �

For X ∈ N s ∩ (k −$k), we shall fix an integer hX such that
(1) hX verifies the condition of Lemma 6.3;
(2) hX ≥ 1;

(3) Ad(aX)($hX s(OF )) ⊆ $s(OF ).
Denote by NG the set of nilpotent elements in g(F ). Let Pg(F ) (resp. Ps(F )) be the projective space

associated to g(F ) (resp. s(F )) and π : g(F )− {0} → Pg(F ) the natural projection. Since π(NG − {0})
is compact and N s − {0} is a closed subset of NG − {0}, we know that π(N s − {0}) is compact. One
also sees that

π(N s ∩ (k −$k)) = π(N s − {0}).
We can and shall choose a finite set N0 ⊆ N s ∩ (k −$k) such that⋃

X∈N0

π(X +$hX s(OF ))

is an open neighbourhood of π(N s − {0}) ⊆ Ps(F ).

Lemma 6.4. There exists an integer c ∈ N such that for all d ∈ δGM (C[σ]) and all f ∈ C∞c (s(F ))
satisfying d(f) 6= 0, we have

Supp(f) ∩ [$−cs(OF ) ∪
⋃

X∈N0

F×(X +$hX s(OF ))] 6= ∅.

Proof. Recall that σ is assumed to be relatively compact in (m ∩ s)(F ). Fix an open compact
neighbourhood σ′ of σ in s(F ). Fix P0 ∈PH(M0) and set

A+
P0

:= {a ∈ AM0
(F ) : |α(a)|F ≥ 1,∀α ∈ ∆H

P0
}.

Similarly, for all B ∈PG(M0), set

A+
B := {a ∈ AM0(F ) : |α(a)|F ≥ 1,∀α ∈ ∆G

B}.
We see from the argument of Lemma 4.8 in Chapter 2 that

A+
P0
⊆

⋃
{B∈PG(M0):P0⊆B}

A+
B .

By the Cartan decomposition, there exists a compact subset Γ ⊆ H(F ) such that H(F ) = KHA
+
P0

Γ.
Fix such a Γ. Then

H(F ) ⊆
⋃

{B∈PG(M0):P0⊆B}

KHA
+
BΓ.

Fix c′ ∈ N such that Ad(Γ)(σ′) ⊆ $−c
′
s(OF ). Since Ad(A+

B)(s(OF )) ⊆ s(OF ) + (nB ∩ s)(F ) and
(nB ∩ s)(F ) ⊆ N s, we obtain

Ad(H(F ))(σ′) ⊆ $−c
′
s(OF ) +N s.
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Choose an integer c such that
c ≥ c′ + sup

X∈N0

hX .

Let d and f be as in the statement. It is evident that

Supp(f) ∩Ad(H(F ))(σ′) 6= ∅.

Suppose that X1 ∈ $−c
′
s(OF ), X2 ∈ N s satisfy X1 + X2 ∈ Supp(f). If X2 ∈ $−cs(OF ), we are done.

If not, let X ∈ N0 be such that π(X2) ∈ π(X + $hX s(OF )). Then there exists λ ∈ F× such that

X2 ∈ λ(X + $hX s(OF )). Since X2 /∈ $−cs(OF ), we have vF (λ) < −c and thus vF (λ) + hX < −c′.
Therefore, X1 ∈ λ$hX s(OF ) and then X1 + X2 ∈ λ(X + $hX s(OF )) ⊆ F×(X + $hX s(OF )). This is
exactly what we want to prove. �

We shall fix an integer c verifying the condition in Lemma 6.4. We shall also fix another integer h
such that

(6.1.5) h ≥ sup
X∈N0

hX .

Denote
C := {f ∈ C∞c (s(F )/$hs(OF )) : Supp(f) ⊆ $−cs(OF )},

which is a C-linear space of finite dimension. For all L ∈ L G(M), L 6= G, let r(L) := $h(l ∩ s)(OF ).

Lemma 6.5. Let z = (zX)X∈σ ∈ C[σ]. Suppose that

1) il∩sr(L)

∗ ◦ δLM (z) = 0 for all L ∈ L G(M), L 6= G;

2) δGM (z)(C) = 0.
Then is$hs(OF )

∗ ◦ δGM (z) = 0.

Proof. Write d := δGM (z). It suffices to prove by induction on the integer e ≥ c the assertion
(A)e: for all f ∈ C∞c (s(F )/$hs(OF )) with Supp(f) ⊆ $−es(OF ), we have d(f) = 0.
If e = c, this is true by the hypothesis 2). Fix an e > c and suppose that (A)e−1 is true. For all

open compact subset s ⊆ g(F ), denote by 1s its characteristic function. It suffices to prove that for all
Y ∈ $−es(OF )−$−e+1s(OF ), we have d(1Y+$hs(OF )) = 0.

Suppose that Y ∈ $−es(OF )−$−e+1s(OF ). The hypothesis e > c implies$−cs(OF ) ⊆ $−e+1s(OF )
and thus Y /∈ $−cs(OF ). Suppose on the contary that d(1Y+$hs(OF )) 6= 0. By Lemma 6.4, there ex-

ists X ∈ N0 and λ ∈ F× such that (Y + $hs(OF )) ∩ λ(X + $hX s(OF )) 6= ∅. Fix such X and λ.
Since vF (Y ) = −e and vF (X) = 0, we have vF (λ) = −e. As h ≥ hX ≥ hX − e (see (6.1.5)), we obtain

$hs(OF ) ⊆ λ$hX s(OF ) and then Y ∈ λ(X+$hX s(OF )). Let Y ′ ∈ $hX s(OF ) such that Y = λ(X+Y ′).
Let Z ∈ Ad(aX)−1($hs(OF )). Since h + e ≥ hX , we can apply Lemma 6.3 to X,Y ′, λ−1Z and

l := h+ e. Then there exists γ ∈ KH with η(Nrd(γ)) = 1 such that

Ad(γ)(X + Y ′ + λ−1Z) ∈ X + Y ′ +$h+es(OF ).

From vF (λ) = −e, we deduce that

Ad(γ)(λ(X + Y ′) + Z) ∈ λ(X + Y ′) +$hs(OF ),

i.e.,
Ad(γ)(Y + Z) ∈ Y +$hs(OF ).

Since γ ∈ KH , this is equivalent to

Ad(γ)(Y + Z +$hs(OF )) = Y +$hs(OF )

or
Ad(γ)(1Y+Z+$hs(OF )) = 1Y+$hs(OF ).

By Proposition 4.1.3), we obtain

d(1Y+Z+$hs(OF )) = η(Nrd(γ))d(1Y+$hs(OF )).

Because η(Nrd(γ)) = 1, we have

d(1Y+Z+$hs(OF )) = d(1Y+$hs(OF )).

Now, by the sum over Z ∈
(
Ad(aX)−1($hs(OF )) +$hs(OF )

)
/$hs(OF ) (a finite set), we get

(6.1.6) d(1Y+$hs(OF )) = [k′ : s(OF )]−1d(1Y+$hk′),
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where

(6.1.7) k′ := Ad(aX)−1(s(OF )) + s(OF ).

By Proposition 4.1.6), we have the equality

d
(
Ad(aX)(1Y+$hk′)− η(Nrd(aX))1Y+$hk′

)
= η(Nrd(aX))

∑
Q∈FG(M),Q 6=G

δ
MQ

M (z)
(

(1Y+$hk′)
η
Q,(aX)−1

)
.

From (4.1.3), it is clear that (1Y+$hk′)
η
Q,(aX)−1 is invariant by translation of r(MQ). By the hypothesis

1), we have δ
MQ

M (z)
(

(1Y+$hk′)
η
Q,(aX)−1

)
= 0 for all Q ∈ FG(M), Q 6= G, so

(6.1.8) η(Nrd(aX))d(1Y+$hk′) = d
(
Ad(aX)(1Y+$hk′)

)
.

We see easily that
Ad(aX)(1Y+$hk′) = 1s,

where

(6.1.9) s := Ad(aX)(Y ) +$hAd(aX)(k′).

Recall Y = λ(X + Y ′) above. As X ∈ N0, by (6.1.2), we have Ad(aX)(X) ∈ $s(OF ). Since

Y ′ ∈ $hX s(OF ), by the hypothesis (3) on hX , we have Ad(aX)(Y ′) ∈ $s(OF ). For vF (λ) = −e, we
obtain

(6.1.10) Ad(aX)(Y ) ∈ $−e+1s(OF ).

We see from (6.1.7) that

Ad(aX)(k′) = s(OF ) + Ad(aX)(s(OF )).

By (6.1.5) and the hypothesis (3) on hX , we have $hAd(aX)(s(OF )) ⊆ $hXAd(aX)(s(OF )) ⊆ $s(OF ).
Then by (6.1.5) and the hypothesis (2) on hX , we have

(6.1.11) $hAd(aX)(k′) = $hs(OF ) +$hAd(aX)(s(OF )) ⊆ $hX s(OF ) +$s(OF ) = $s(OF ).

From (6.1.9), (6.1.10) and (6.1.11), we see that

Supp(1s) ⊆ $−e+1s(OF ).

Since s(OF ) ⊆ Ad(aX)(k′), we know that 1s is invariant by translation of $hs(OF ). Using the induction
hypothesis (A)e−1, we have

d(1s) = 0.

Thanks to (6.1.6) and (6.1.8), we obtain

d(1Y+$hs(OF )) = 0.

This proves (A)e and thus the lemma. �

Proof of Proposition 6.1. We use induction on the dimension of G. Suppose that for all L ∈
L G(M), L 6= G, and all open compact subgroup rL of (l ∩ s)(F ), the image of the linear map

il∩srL

∗ ◦ δLM : C[σ]→ C∞c ((l ∩ s)(F )/rL)∗

is of finite dimension. This is actually a product form of the proposition in lower dimensions. Now we
would like to prove the proposition. The argument below is also valid for the case G = M .

Enlarge h in (6.1.5) if necessary such that r ⊇ $hs(OF ). We shall prove that the image of is$hs(OF )
∗◦

δGM is of finite dimension. Admit this for the moment. Since isr
∗ factorises by is$hs(OF )

∗, the image of

isr
∗ ◦ δGM is also of finite dimension. Then we finish the proof.

Let K1 be the kernel of the linear map⊕
L∈LG(M),L 6=G

il∩sr(L)

∗ ◦ δLM : C[σ]→
⊕

L∈LG(M),L6=G

C∞c ((l ∩ s)(F )/r(L))∗,

whose image is of finite dimension by our induction hypothesis applied to rL := r(L) for all L ∈
L G(M), L 6= G. Hence, to prove that is$hs(OF )

∗ ◦ δGM (C[σ]) is of finite dimension, it suffices to prove

that is$hs(OF )
∗ ◦ δGM (K1) is of finite dimension.

Consider the composition of the linear maps

d1 := is$hs(OF )
∗ ◦ δGM

∣∣
K1

: K1 → C∞c (s(F )/$hs(OF ))∗
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and

Res : C∞c (s(F )/$hs(OF ))∗ → C∗.

The latter map is the natural restriction. Lemma 6.5 says that

ker(Res ◦ d1) = ker(d1),

which is denoted by K2. Then

d1(K1) ' K1/K2 ' Res ◦ d1(K1) ⊆ C∗.

Since C is of finite dimension, we see that d1(K1) is of finite dimension. �

Corollary 6.6. Let r be an open compact subgroup of s(F ), M ∈ L G,ω(M0) and σ ⊆ (m∩ srs)(F ).
Suppose that there exists a compact subset σ0 ⊆ (m ∩ s)(F ) such that σ ⊆ Ad(MH(F ))(σ0). Then there
exists a finite subset {Xi : i ∈ I} ⊆ σ and a finite subset {fi : i ∈ I} ⊆ C∞c (s(F )/r) such that for all
X ∈ σ and all f ∈ C∞c (s(F )/r), we have the equality

JGM (η,X, f) =
∑
i∈I

JGM (η,Xi, f)JGM (η,X, fi).

Proof. By Proposition 6.1, there exists a finite subset {Xi : i ∈ I} ⊆ σ such that {isr
∗◦δGM (Xi) : i ∈

I} is a basis of isr
∗ ◦ δGM (C[σ]). By linear algebra, there exists a finite subset {fi : i ∈ I} ⊆ C∞c (s(F )/r)

such that isr
∗ ◦ δGM (Xi)(fj) = δij ,∀i, j ∈ I, where δij denotes the Kronecker delta function. Choose such

{Xi : i ∈ I} and {fi : i ∈ I}.
Then, for all X ∈ σ, there exists λi,∀i ∈ I such that

JGM (η,X, ·) =
∑
i∈I

λiJ
G
M (η,Xi, ·) ∈ C∞c (s(F )/r)∗.

Hence, for all i ∈ I,

JGM (η,X, fi) =
∑
j∈I

λjJ
G
M (η,Xj , fi) =

∑
j∈I

λjδji = λi.

We have finished the proof. �

6.2. The case of (G′, H ′). For an open compact subgroup r′ of s′(F ), denote by C∞c (s′(F )/r′) the

subspace of C∞c (s′(F )) consisting of the functions invariant by translation of r′. Let is
′

r′
∗

: C∞c (s′(F ))∗ →
C∞c (s′(F )/r′)∗ be the dual map of the natural injection C∞c (s′(F )/r′) ↪→ C∞c (s′(F )).

For any set σ′, denote by C[σ′] the C-linear space with a basis σ′. For M ′ ∈ LH′(M ′0) and σ′ ⊆
(m̃′ ∩ s′rs)(F ), we define the linear map

δH
′

M ′ : C[σ′]→ C∞c (s′(F ))∗,

(zY )Y ∈σ′ 7→
∑
Y ∈σ′

zY J
H′

M ′(Y, ·),

where zY ∈ C is the coordinate at Y ∈ σ′.
One may extend in the obvious way the definitions of is

′

r′
∗

and δH
′

M ′ to the symmetric pair (M̃ ′,M ′,Ad(α)),

where M ′ ∈ LH′(M ′0).

Proposition 6.7 (Howe’s finiteness). Let r′ be an open compact subgroup of s′(F ), M ′ ∈ LH′(M ′0)

and σ′ ⊆ (m̃′ ∩ s′rs)(F ). Suppose that there exists a compact subset σ′0 ⊆ (m̃′ ∩ s′)(F ) such that σ′ ⊆
Ad(M ′(F ))(σ′0). Then the image of the linear map

is
′

r′
∗
◦ δH

′

M ′ : C[σ′]→ C∞c (s′(F )/r′)∗

is of finite dimension.

The rest of this section is devoted to the proof of Proposition 6.7. It is similar to the proof of Proposi-
tion 6.1 and we only point out some additional argument. Recall that we have chosen the standard maxi-
mal compact subgroup KH′ = GLn(OD′) of H ′(F ) = GLn(D′) in Case I (resp. KH′ = GLn

2
(OD⊗FE) of

H ′(F ) = GLn
2

(D⊗F E) in Case II). Snice Ad(τ)(D′) = D′ in Case I (resp. Ad(τ)(D⊗F E) = D⊗F E
in Case II), we deduce that Ad(τ)(OD′) = OD′ in Case I (resp. Ad(τ)(OD⊗FE) = OD⊗FE in Case
II). Thus Ad(τ)(KH′) = KH′ . Let h′(OF ) := gln(OD′) in Case I (resp. h′(OF ) := gln

2
(OD⊗FE) in

Case II). Let s′(OF ) := h′(OF )τ = τh′(OF ) be an OF -lattice in s′(F ) (see Section 3.3 for the choice of
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τ). Let k′ := h′(OF ) ⊕ s′(OF ), whose decomposition is stable under the adjoint action of KH′ because

Ad(τ)(KH′) = KH′ . For all P ′ ∈ FH′(M ′0), we fix aP ′ ∈ AP ′(F ) such that |α(aP ′)|F < 1,∀α ∈ ∆H′

P ′ .

Starting from X ∈ N s′∩(s′(OF )−$s′(OF )), we obtain a group homomorphism ϕ : SL2(F )→ G′(F )

by the Jacobson-Morozov theorem for symmetric spaces (Lemma 3.7). Denote aϕ := ϕ

(
$

$−1

)
∈

H ′(F ). Define PX as in (6.1.1), which contains the centraliser CentG′(a
ϕ) of aϕ in G′ as a Levi factor.

Since aϕ commutes with α, by Lemma 3.16, PX ∩H ′ is a parabolic subgroup of H ′, which contains the
centraliser CentH′(a

ϕ) of aϕ in H ′ as a Levi factor. We want to show that there exists x ∈ KH′ such

that Ad(x)(PX ∩H ′) ∈ FH′(M ′0) and that Ad(x)(PX) ∈ FG′(M ′
0̃
).

Lemma 6.8. For Y ∈ N s′ , there exists x ∈ H ′(F ) such that Ad(x)(Y ) is in the Jordan normal form,
i.e., diagonal block matrices with entries in D′τ in Case I (resp. (D⊗F E)τ in Case II) whose blocks
are of the form 

0 τ
. . .

. . .

. . . τ
0

 .

Proof. It can be proved in the same way as [24, Lemmas 2.2 and 2.3] by linear algebra over a
division ring. �

Thanks to Lemma 6.8, we can construct explicitly the above morphism ϕ (see [19, p. 184]). If X

is in the Jordan normal form, by loc. cit., we may choose aϕ ∈ AL′(F ) for some L′ ∈ LH′(M ′0) such

that CentH′(a
ϕ) = L′ and that CentG′(a

ϕ) = L̃′. For a general X as above, by Lemma 6.8, there exists

y ∈ H ′(F ) such that Ad(y)(aϕ) ∈ AL′(F ) for some L′ ∈ LH′(M ′0) satisfying CentH′(Ad(y)(aϕ)) = L′

and CentG′(Ad(y)(aϕ)) = L̃′. Let x ∈ KH′ be such that x−1y ∈ (PX ∩H ′)(F ). Then Ad(x)(PX ∩H ′) =

Ad(y)(PX ∩H ′) contains L′ as a Levi factor and Ad(x)(PX) = Ad(y)(PX) contains L̃′ as a Levi factor.
Furthermore, since Ad(x)(PX) ∩H ′ = Ad(x)(PX ∩H ′), we see that Ad(x)(PX ∩H ′) and Ad(x)(PX)

are associated under the bijection P ′ 7→ P̃ ′ between FH′(M ′0) and FG′(M ′
0̃
).

Fix x ∈ KH′ as above and denote P ′ := Ad(x)(PX ∩H ′) ∈ FH′(M ′0). Then P̃ ′ = Ad(x)(PX). Put
aX := Ad(x−1)(aP ′) ∈ H ′(F ). By the argument of [51, (3) in §IV.3], we show that

(6.2.1) Ad(aX)(X) ∈ $s′(OF ).

Proof of Proposition 6.7. We may apply the argument of Proposition 6.7 with obvious modi-
fications. Especially, one needs to use Proposition 4.4 and (6.2.1) to show an analogue of Lemma 6.5
for the case of (G′, H ′). Additionally, to prove an analogue of Lemma 6.3 for this case, one may resort
to the argument rather than the consequence of some steps in the proof of [51, Lemme IV.3] since our
definition of k′ is different from g′(OF ) := gln(OD). However, there is no essential difficulty with our
preparation above and we omit details here. �

Corollary 6.9 (cf. Corollary 6.6). Let r′ be an open compact subgroup of s′(F ), M ′ ∈ LH′(M ′0)

and σ′ ⊆ (m̃′ ∩ s′rs)(F ). Suppose that there exists a compact subset σ′0 ⊆ (m̃′ ∩ s′)(F ) such that σ′ ⊆
Ad(M ′(F ))(σ′0). Then there exists a finite subset {Yi : i ∈ I} ⊆ σ′ and a finite subset {fi : i ∈ I} ⊆
C∞c (s′(F )/r′) such that for all Y ∈ σ′ and all f ′ ∈ C∞c (s′(F )/r′), we have the equality

JH
′

M ′(Y, f
′) =

∑
i∈I

JH
′

M ′(Yi, f
′)JH

′

M ′(Y, f
′
i).

7. Representability of the Fourier transform of weighted orbital integrals

7.1. The case of (G,H). Following [51, §V.6], we denote by E s the space of functions e : srs(F )→
C such that

(1) e is locally constant;
(2) for all open compact subset r of s(F ), there exists c > 0 and N ∈ N such that for all X ∈ r∩srs(F ),

one has the inequality

|e(X)| ≤ c sup{1,− log |Ds(X)|F }N .
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If e ∈ E s, the function X 7→ |Ds(X)|−1/2
F e(X) is locally integrable on s(F ) thanks to Corollary 3.15.

It defines then a distribution on s(F ):

(7.1.1) ∀f ∈ C∞c (s(F )), f 7→
∫
s(F )

f(X)e(X)|Ds(X)|−1/2
F dX.

Denote by Ds the space of distributions obtained in this way. The map E s → Ds defined above is an
isomorphism. For d ∈ Ds, we shall always denote by ed its preimage in E s.

Notice that the notion E s can be defined for any symmetric pair, and that the definition Ds can at
least be extended to the symmetric pair (M,MH ,Ad(ε)), where M ∈ L G,ω(M0), since it appears as the
product of some copies of the form (G,H,Ad(ε)) in lower dimensions.

If d ∈ Ds is η(Nrd(·))-invariant with respect to the adjoint action of H(F ), then so is ed ∈ E s and
by the Weyl integration formula (Proposition 3.11), we have the equality

(7.1.2) d(f) =
∑

M∈LG,ω(M0)

|WMn
0 ||WGLn

0 |−1
∑

c∈Tell(m∩s)

|W (MH , c)|−1

∫
creg(F )

JGG (η,X, f)ed(X)dX

for all f ∈ C∞c (s(F )), where JGG (η,X, f) is defined by (4.1.1).

Remark 7.1 (Glueing). Let d ∈ C∞c (s(F ))∗ and (ri)i∈I be a family of open compact subsets of s(F )
such that

⋃
i∈I

ri = s(F ). Suppose that for all i ∈ I, there exists di ∈ Ds such that d(f) = di(f) for all

f ∈ C∞c (s(F )) with Supp(f) ⊆ ri. Then d ∈ Ds. Refer to [51, Remarque V.6] for the details.

Let M ∈ L G,ω(M0) and X ∈ (m ∩ srs)(F ). Denote by ĴGM (η,X, ·) the distribution on s(F ) defined
by

ĴGM (η,X, f) := JGM (η,X, f̂)

for all f ∈ C∞c (s(F )), where the right hand side is defined by (4.1.1). We also have a similar definition
for the symmetric pair (M,MH ,Ad(ε)), where M ∈ L G,ω(M0). The main result of this section is the
following.

Proposition 7.2 (Representability). Let M ∈ L G,ω(M0) and X ∈ (m ∩ srs)(F ). Then the distri-

bution ĴGM (η,X, ·) ∈ Ds.

Remark 7.3. For M = G, Proposition 7.2 is essentially [58, Theorem 6.1.(i)] (see also [57, Theorem
6.2]).

The rest of this section is devoted to the proof of Proposition 7.2. We shall follow the main steps in
[51, §V.7-10].

Let c be a Cartan subspace of s. Recall that Tc denotes the centraliser of c in H. Suppose that
e0 : (Tc(F )\H(F ))× creg(F )→ C is a function such that

(1) e0 is locally constant;
(2) for all open compact subset r of s(F ), there exists c > 0 and N ∈ N such that for all x ∈

Tc(F )\H(F ) and X ∈ creg(F ) satisfying Ad(x−1)(X) ∈ r, one has the inequality

e0(x,X) ≤ c sup{1,− log |Ds(X)|F }N .

Following [51, §V.7], for f ∈ C∞c (s(F )), we define

(7.1.3) d0(f) :=

∫
creg(F )

|Ds(X)|1/2F

∫
Tc(F )\H(F )

f(Ad(x−1)(X))e0(x,X)dxdX.

Lemma 7.4. Let c be a Cartan subspace of s. Suppose that e0 satisfies the above hypotheses. Then
the integral (7.1.3) is absolutely convergent. Moreover, the distribution d0 ∈ Ds.

Proof. We define a function e′ : srs(F )→ C by

(7.1.4) e′(X) :=
∑

{x∈Tc(F )\H(F ):Ad(x)(X)∈c(F )}

e0(x,Ad(x)(X))

for all X ∈ srs(F ). If X /∈ Ad(H(F ))(creg(F )), then e′(X) = 0. If X ∈ Ad(H(F ))(creg(F )), then
the sum in (7.1.4) is actually over the finite set W (H, c)y, where y ∈ H(F ) is any element such that
Ad(y)(X) ∈ c(F ). Hence, e′ is well-defined.
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Additionally, one may check that e′ ∈ E s from the hypotheses on e0. Let d′ ∈ Ds be the distribution
associated to e′ by (7.1.1). For all f ∈ C∞c (s(F )), by the Weyl integration formula (3.1.2), we have

(7.1.5) d′(f) = |W (H, c)|−1

∫
creg(F )

|Ds(X)|1/2F

∫
Tc(F )\H(F )

f(Ad(x−1)(X))e′(Ad(x−1)(X))dxdX.

Since

e′(Ad(x−1)(X)) =
∑

w∈W (H,c)

e0(wx,Ad(w)(X))

for all x ∈ Tc(F )\H(F ) and all X ∈ creg(F ), we deduce that

d′(f) = |W (H, c)|−1
∑

w∈W (H,c)

∫
creg(F )

|Ds(X)|1/2F

∫
Tc(F )\H(F )

f(Ad(x−1)(X))e0(wx,Ad(w)(X))dxdX.

Applying the change of variables X 7→ Ad(w−1)(X) and x 7→ w−1x, which does not modify the Haar
measures, we obtain

d′(f) = d0(f)

for all f ∈ C∞c (s(F )). That is to say, d0 = d′ ∈ Ds.
Note that in the argument above, we have used the convergence of an analogue of (7.1.5) with e0

and f replaced by their absolute values. It also results in the absolute convergence of (7.1.3). �

Corollary 7.5 (Parabolic induction). Let M ∈ L G,ω(M0), P ∈PG(M) and d ∈ Dm∩s. Then the
distribution on s(F ) defined by ∀f ∈ C∞c (s(F )), f 7→ d(fηP ) belongs to Ds, where fηP is defined by (3.2.2).

Proof. Applying the Weyl integration formula (3.1.2) to d(fηP ), we see that it suffices to fix a
Cartan subspace c ⊆ m ∩ s and prove that the distribution on s(F ) defined by
(7.1.6)

∀f ∈ C∞c (s(F )), f 7→
∫
creg(F )

|Dm∩s(X)|1/2F

∫
Tc(F )\MH(F )

fηP (Ad(x−1)(X))ed(Ad(x−1)(X))dxdX

belongs to Ds. Recall that ed ∈ E m∩s is associated to d by (7.1.1).
Define a function e1 : H(F )× creg(F )→ C by

(7.1.7) e1(x,X) := η(Nrd(x))

∫
MH(F )∩K

ed(Ad(mP (x)k)−1(X))η(Nrd(mP (x)k))dk

for all x ∈ H(F ) and all X ∈ creg(F ), where mP (x) ∈ MH(F ) is any element such that mP (x)−1x ∈
NPH (F )KH . Since PH(F )∩K = (MH(F )∩K)(NPH (F )∩K) (see [5, Property (iii), p. 9] for example),
the integral (7.1.7) is independent of the choice of mP (x). The function e1 is left Tc(F )-invariant on the
first variable, so it induces a function (still denoted by e1) : Tc(F )\H(F )× creg(F )→ C.

We shall check that e1 verifies the hypotheses of Lemma 7.4. Firstly, e1 is locally constant because
ed is locally constant and e1 is right KH -invariant on the first variable. Secondly, suppose that r is
an open compact subset of s(F ). We fix an open compact subset rM ⊆ (m ∩ s)(F ) such that if X ∈
(m∩s)(F ), U ∈ (nP ∩s)(F ), k ∈ KH satisfy Ad(k)(X+U) ∈ r, then X ∈ rM ; this is possible for it suffices
to let rM contain the projection of Ad(KH)(r) to (m ∩ s)(F ). Replacing rM with Ad(MH(F ) ∩K)(rM )
if necessary, we may additionally assume that

(7.1.8) Ad(MH(F ) ∩K)(rM ) = rM .

Since ed ∈ E m∩s, there exists c > 0 and N ∈ N such that

|ed(X)| ≤ c sup{1,− log |Dm∩s(X)|F }N

for all X ∈ rM ∩ srs(F ). One sees from (3.1.1) that for all X ∈ (m ∩ srs)(F ),

|Ds(X)|F |Dm∩s(X)|−1
F = |det(ad(X)|g/m)|1/2F .

Hence, |Ds(X)|F |Dm∩s(X)|−1
F is bounded for X ∈ rM ∩ srs(F ). We deduce that there exists c′ > 0 such

that

(7.1.9) |ed(X)| ≤ c′ sup{1,− log |Ds(X)|F }N

for all X ∈ rM ∩ srs(F ). Now, suppose that x ∈ Tc(F )\H(F ) and X ∈ creg(F ) satisfy Ad(x−1)(X) ∈ r.
Write x = mnk with m ∈MH(F ), n ∈ NPH (F ) and k ∈ KH . Then

Ad(x−1)(X) = Ad(k−1)(Ad(m−1)(X) + U),

127



where U := Ad(n−1m−1)(X)−Ad(m−1)(X) ∈ (nP ∩s)(F ). Thus Ad(m−1)(X) ∈ rM by our assumption
on rM . Thanks to (7.1.8) and (7.1.9), we obtain

|e1(x,X)| ≤ c′ sup{1,− log |Ds(X)|F }N .

To sum up, e1 verifies the hypotheses of Lemma 7.4.
Applying Lemma 7.4 to c and e1, we know that the distribution d1 on s(F ) defined by

∀f ∈ C∞c (s(F )), d1(f) :=

∫
creg(F )

|Ds(X)|1/2F

∫
Tc(F )\H(F )

f(Ad(x−1)(X))e1(x,X)dxdX

belongs to Ds. Note that e1(mnk,X) = η(Nrd(k))e1(m,X) for m ∈ MH(F ), n ∈ NPH (F ), k ∈ KH . By
the same argument as the proof of Proposition 4.1.4), one shows that

d1(f) =

∫
creg(F )

|Dm∩s(X)|1/2F

∫
Tc(F )\MH(F )

fηP (Ad(m−1)(X))e1(m,X)dmdX

=

∫
creg(F )

|Dm∩s(X)|1/2F

∫
Tc(F )\MH(F )

fηP (Ad(m−1)(X))

∫
MH(F )∩K

ed(Ad(mk)−1(X))η(Nrd(k))

dkdmdX.

Note that for k ∈MH(F )∩K, we have Ad(k−1)fηP = η(Nrd(k))fηP . By the change of variables mk 7→ m,
one can eliminate the integral over MH(F ) ∩K and see that d1 is the same as (7.1.6). �

Let M ∈ L G,ω(M0) and d ∈ Dm∩s. Suppose that d is η(Nrd(·))-invariant with respect to the adjoint

action of MH(F ). Following [51, §V.9], we define a distribution IndG,wM (d) on s(F ) by
(7.1.10)

IndG,wM (d)(f) :=
∑

{L∈LG,ω(M0):L⊆M}

|WLn
0 ||W

Mn
0 |−1

∑
c∈Tell(l∩s)

|W (LH , c)|−1

∫
creg(F )

JGM (η,X, f)ed(X)dX

for all f ∈ C∞c (s(F )), where JGM (η,X, f) is defined by (4.1.1). In particular, if M = G and d ∈ Ds is

η(Nrd(·))-invariant with respect to the adjoint action of H(F ), we have IndG,wG (d) = d by (7.1.2).

Corollary 7.6. Let M ∈ L G,ω(M0) and d ∈ Dm∩s. Suppose that d is η(Nrd(·))-invariant with
respect to the adjoint action of MH(F ). Then the integral (7.1.10) is absolutely convergent. Moreover,

the distribution IndG,wM (d) ∈ Ds.

Remark 7.7. This corollary is unnecessary for the proof of Proposition 7.2 but useful in Section 8.1.

Proof of Corollary 7.6. It suffices to fix a Cartan subspace c ⊆ m ∩ s and prove the same
assertion for the distribution on s(F ) defined by

(7.1.11) ∀f ∈ C∞c (s(F )), f 7→
∫
creg(F )

JGM (η,X, f)ed(X)dX.

Define a function e2 : (Tc(F )\H(F ))× creg(F )→ C by

(7.1.12) e2(x,X) := η(Nrd(x))vGM (x)ed(X)

for all x ∈ Tc(F )\H(F ) and all X ∈ creg(F ). It is locally constant. Note that ed(Ad(m−1)(X)) =
η(Nrd(m))ed(X) for x ∈ MH(F ) and X ∈ (m ∩ srs)(F ) by our assumption on d. Thus we may use the
same argument as in the proof of Corollary 7.5 to show the inequality

|ed(X)| = |ed(Ad(m−1)(X))| ≤ c′ sup{1,− log |Ds(X)|F }N .

Thanks to Lemma 4.2, one has a similar bound for vGM (x). In sum, e2 verifies the hypotheses of Lemma
7.4.

Applying Lemma 7.4 to c and e2, we know that the integral

∀f ∈ C∞c (s(F )), f 7→
∫
creg(F )

|Ds(X)|1/2F

∫
Tc(F )\H(F )

f(Ad(x−1)(X))e2(x,X)dxdX

is absolutely convergent and defines a distribution in Ds. This distribution is the same as (7.1.11). �
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Remark 7.8. Instead of the hypothesis ed ∈ E m∩s, an analogue of Corollary 7.6 holds if one assumes
that d is defined via (7.1.1) by a function ed : (m ∩ srs)(F ) → C locally constant, η(Nrd(·))-invariant
with respect to the adjoint action of MH(F ), and such that for all open compact subset r of (m∩ s)(F ),
there exists c > 0 and N ∈ N such that for all X ∈ r ∩ srs(F ), one has the inequality

|ed(X)| ≤ c sup{1,− log |Ds(X)|F }N .

The proof is the same, except that we need not use the boundedness of |Ds(X)|F |Dm∩s(X)|−1
F for

X ∈ rM ∩ srs(F ) (see the proof of Corollary 7.5).

Lemma 7.9. Let M ∈ L G,ω(M0) and c ⊆ m ∩ s be an M -elliptic Cartan subspace.
1) Let M ′ ∈ L G,ω(M0), c′ ∈ Tell(m

′∩s) and x ∈ H(F ) be such that Ad(x)(c) = c′. Then there exists
m′ ∈M ′H(F ) and w ∈ NormH(F )(M0) such that x = m′w.

2) The cardinality of

{(M ′, c′) : M ′ ∈ L G,ω(M0), c′ ∈ Tell(m
′ ∩ s), c′ is H(F )-conjugate to c}

is

|WGLn
0 ||WMn

0 |−1|W (MH , c)||W (H, c)|−1.

Proof. 1) Since c ⊆ m ∩ s (resp. c′ ⊆ m′ ∩ s) is M -elliptic (resp. M ′-elliptic), we have ATc
= AM

(resp. ATc′ = AM ′). From Ad(x)(c) = c′, we obtain Ad(x)(ATc
) = ATc′ , Ad(x)(AM ) = AM ′ and

Ad(x)(M) = M ′, which implies that Ad(x)(MH) = M ′H . Then 1) can be shown by the same argument
as in the proof of Lemma 3.10.1).

2) We can and shall identify an M -elliptic (resp. M ′-elliptic) Cartan subspace in m∩ s (resp. m′∩ s)
with its MH(F )(resp. M ′H(F ))-conjugacy class. Then Tell(m

′ ∩ s) is identified to the set of M ′H(F )-
conjugacy classes of M ′-elliptic Cantan subspaces in m′ ∩ s. As in the proof of Lemma 3.10.1), we also

see that the group WH,ω
0 :=

{(
ωn

ωn

)
: ωn ∈W

GLn,D
0

}
acts transitively on the set of pairs in 2).

Firstly, let us count M ′ appearing in the pairs (cf. [35, p. 426]).

Since M ∈ L G,ω(M0), for w ∈ WH,ω
0 , we see that w =

(
ωn

ωn

)
∈ NormWH,ω

0
(M) if and only if

ωn ∈ Norm
W
GLn,D
0

(Mn,D), where NormWH,ω
0

(M) (resp. Norm
W
GLn,D
0

(Mn,D)) denotes the normaliser of

M (resp. Mn,D) in WH,ω
0 (resp. W

GLn,D
0 ). Hence, the number of M ′ is

|WGLn,D
0 ||Norm

W
GLn,D
0

(Mn,D)|−1.

Secondly, for such an M ′ fixed, we count c′ such that (M ′, c′) belongs to the set of pairs in 2) (cf.
[35, Lemma 7.1]).

For x ∈ H(F ), we claim that Ad(x)(c′) ⊆ m′∩ s if and only if x ∈ NormH(F )(M
′), which denotes the

normaliser of M ′ in H(F ). On the one hand, suppose that Ad(x)(c′) ⊆ m′ ∩ s. Then AM ′ ⊆ CentH(m′ ∩
s) ⊆ Ad(x)(Tc′), where CentH(m′ ∩ s) denotes the centraliser of m′ ∩ s in H. Since Ad(x)(AM ′) =
Ad(x)(ATc′ ) is the maximal F -split torus in Ad(x)(Tc′), we have AM ′ ⊆ Ad(x)(AM ′). By comparison
of dimensions, we deduce that Ad(x)(AM ′) = AM ′ , so x ∈ NormH(F )(M

′). On the other hand, suppose
that x ∈ NormH(F )(M

′). Since x ∈ H(F ), we have Ad(x)(m′ ∩ s) = (m′ ∩ s). But c′ ⊆ m′ ∩ s, so we
obtain Ad(x)(c′) ⊆ m′ ∩ s. In sum, we have proved our claim.

From this claim, the number of c′ is

|M ′H(F )\NormH(F )(M
′)/NormH(F )(c

′)|.

Since M ′H(F ) is a normal subgroup of NormH(F )(M
′), we know that the number of the double cosets is

equal to

|NormH(F )(M
′)/M ′H(F )||NormH(F )(c

′)/(NormH(F )(c
′) ∩M ′H(F ))|−1

=|NormH(F )(M
′)/M ′H(F )||NormH(F )(c

′)/NormM ′H(F )(c
′)|−1.

For x ∈ NormH(F )(M
′), we have Ad(x)(AM ′) = AM ′ . Because M ′ ∈ L G,ω(M0), there exists w ∈WH,ω

0

such that w−1x ∈ CentH(F )(AM ′) = M ′H(F ), where CentH(F )(AM ′) denotes the centraliser of AM ′ in
H(F ). Since x ∈ NormH(F )(M

′), we have w ∈ NormWH,ω
0

(M ′). That is to say,

NormH(F )(M
′) = NormWH,ω

0
(M ′)M ′H(F ).
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Therefore,

|NormH(F )(M
′)/M ′H(F )| =|NormWH,ω

0
(M ′)||(NormWH,ω

0
(M ′) ∩M ′H(F ))|−1

=|Norm
W
GLn,D
0

(M ′n,D)||(WH,ω
0 ∩M ′H(F ))|−1

=|Norm
W
GLn,D
0

(M ′n,D)||WM ′n,D
0 |−1.

Since M ′ and M are WH,ω
0 -conjugate, M ′n,D and Mn,D are W

GLn,D
0 -conjugate. Hence,

|NormH(F )(M
′)/M ′H(F )| = |Norm

W
GLn,D
0

(Mn,D)||WMn,D

0 |−1.

We also have

|NormH(F )(c
′)/NormM ′H(F )(c

′)| =|NormH(F )(c
′)/Tc′(F )||NormM ′H(F )(c

′)/Tc′(F )|−1

=|W (H, c′)||W (M ′H , c
′)|−1.

Since (M ′, c′) and (M, c) are WH,ω
0 -conjugate, we obtain

|NormH(F )(c
′)/NormM ′H(F )(c

′)| = |W (H, c)||W (MH , c)|−1.

To sum up, the number of c′ is

|Norm
W
GLn,D
0

(Mn,D)||WMn,D

0 |−1|W (MH , c)||W (H, c)|−1.

Finally, combining the numbers of M ′ and c′, we obtain the number of pairs (M ′, c′) in 2). �

Proof of Proposition 7.2. First of all, suppose that X ∈ (m∩ srs)(F )ell. Let c be the centraliser
of X in s. Then c ⊆ m ∩ s is an M -elliptic Cartan subspace and X ∈ creg(F ). Fix an open compact
subgroup r ⊆ s(F ) and set r∗ := {Y ∈ s(F ) : ∀Z ∈ r,Ψ(〈Y, Z〉) = 1}, which is also an open compact
subgroup of s(F ). For all L ∈ L G(M), fix an open compact subgroup rL ⊆ (l ∩ s)(F ) such that if
Q ∈ PG(L) and if f ∈ C∞c (s(F )) satisfies Supp(f) ⊆ r, then Supp(fηQ) ⊆ rL, where fηQ is defined by

(3.2.2). Define r∗L in the same way as r∗.
There exists a neighbourhood σ of X in creg(F ) such that for all L ∈ L G(M) and all f ∈

C∞c ((l ∩ s)(F )/r∗L), the function JLM (η, ·, f) is constant on σ. In fact, for L and f fixed, this results
from Proposition 4.1.2) (actually its product form is needed). It suffices to apply Howe’s finiteness
(the product form of Corollary 6.6) to each symmetric pair (L,LH ,Ad(ε)) and an arbitrary compact
neighbourhood of X in creg(F ), and then take the intersection of a finite number of neighbourhoods
involved.

We shall fix a σ satisfying the above condition and such that if two elements of σ are H(F )-conjugate
(or equivalently W (H, c)-conjugate), then they are the same. The latter condition is achievable since
the W (H, c)-conjugates of an element in creg(F ) form a finite subset, which is discrete. Consider the
local isomorphism β : (Tc(F )\H(F ))× creg(F )→ srs(F ) of F -analytic manifolds induced by the adjoint
action. Its restriction to (Tc(F )\H(F ))× σ is injective. Choose a neighbourhood ε of 1 in Tc(F )\H(F )
such that η(Nrd(ε)) = 1. The set β(ε, σ) is a neighbourhood of X in s(F ). Fix a function f ′ ∈ C∞c (s(F ))
such that Supp(f ′) ⊆ β(ε, σ), f ′ ≥ 0 and f ′(X) 6= 0.

Let f ∈ C∞c (s(F )) with Supp(f) ⊆ r. We shall calculate JG(η, f̂ , f ′), which is defined by (5.1.2).
Consider M ′ ∈ L G,ω(M0) and c′ ∈ Tell(m

′ ∩ s). If c′ and c are not H(F )-conjugate, by our

choice of f ′, the function JGM ′(η, ·, f̂ , f ′) vanishes on c′reg(F ). Now suppose that c′ and c are H(F )-
conjugate. Let x ∈ H(F ) be such that Ad(x)(c) = c′. By Lemma 7.9.1), there exists m′ ∈ M ′H(F ) and
w ∈ NormH(F )(M0) such that x = m′w. By Proposition 5.1.4), for X ′ ∈ c′reg(F ), we have

JGM ′(η,X
′, f̂ , f ′) = JGM ′(η,Ad(m′

−1
)(X ′), f̂ , f ′)

= JGAd(w)(M)(η,Ad(wx−1)(X ′), f̂ , f ′)

= JGM (η,Ad(x−1)(X ′), f̂ , f ′).

From our choices of Haar measures, we obtain∫
c′reg(F )

JGM ′(η,X
′, f̂ , f ′) =

∫
creg(F )

JGM (η, Y, f̂ , f ′)dY.

By Lemma 7.9.2), the number of pairs (M ′, c′) with c′ being H(F )-conjugate to c is

|WGLn
0 ||WMn

0 |−1|W (MH , c)||W (H, c)|−1.
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We deduce that

JG(η, f̂ , f ′) = (−1)dim(AM/AG)|W (H, c)|−1

∫
creg(F )

JGM (η, Y, f̂ , f ′)dY.

It follows from our choice of f ′ that the support of the restriction to creg(F ) of the function JGM (η, ·, f̂ , f ′)
is contained in

∐
w∈W (H,c)

Ad(w)(σ). Then

∫
creg(F )

JGM (η, Y, f̂ , f ′)dY =
∑

w∈W (H,c)

∫
creg(F )

JGM (η, Y, f̂ , f ′)1Ad(w)(σ)(Y )dY,

where 1Ad(w)(σ) denotes the characteristic function of Ad(w)(σ). By the change of variables Y 7→
Ad(w)(Y ), which does not modify the Haar measure, we have∫

creg(F )

JGM (η, Y, f̂ , f ′)1Ad(w)(σ)(Y )dY =

∫
σ

JGM (η,Ad(w)(Y ), f̂ , f ′)dY.

Since w ∈W (H, c), we have shown above that

JGM (η,Ad(w)(Y ), f̂ , f ′) = JGM (η, Y, f̂ , f ′),

which is independent of w. Therefore,

JG(η, f̂ , f ′) = (−1)dim(AM/AG)

∫
σ

JGM (η, Y, f̂ , f ′)dY.

Let Y ∈ σ. Applying the splitting formula for JGM (η, Y, f̂ , f ′) (Proposition 5.1.6)), we have

JGM (η, Y, f̂ , f ′) =
∑

L1,L2∈LG(M)

dGM (L1, L2)JL1

M (η, Y, f̂η
Q1

)JL2

M (η, Y, f ′
η
Q2

).

For all Q ∈ FG(M), since Supp(fηQ) ⊆ rMQ
, f̂ηQ is invariant by translation of r∗MQ

. In particular, f̂η
Q1

is invariant by r∗L1
. Then by our assumption on σ, JL1

M (η, ·, f̂η
Q1

) is constant on σ and thus equal to

JL1

M (η,X, f̂η
Q1

). Therefore,

JG(η, f̂ , f ′) =
∑

L1,L2∈LG(M)

c(L1, L2)JL1

M (η,X, f̂η
Q1

),

where

c(L1, L2) := dGM (L1, L2)(−1)dim(AM/AG)

∫
σ

JL2

M (η, Y, f ′
η
Q2

)dY.

We claim that c(G,M) 6= 0. In fact, from (1) and (4) in Section 2.7, we have

c(G,M) = (−1)dim(AM/AG)

∫
σ

JMM (η, Y, f ′
η
Q2

)dY,

where MQ2
= M . By Proposition 4.1.4), we have

JMM (η, Y, f ′
η
Q2

) = JQ2

M (η, Y, f ′).

Since vQ2

M = 1, we obtain

JQ2

M (η, Y, f ′) = JGG (η, Y, f ′).

Hence,

c(G,M) = (−1)dim(AM/AG)

∫
σ

|Ds(Y )|1/2F

∫
HY (F )\H(F )

f ′(Ad(x−1)(Y ))η(Nrd(x))dxdY.

If Ad(x−1)(Y ) ∈ Supp(f ′) ⊆ β(ε, σ), since the restriction of β to (HY (F )\H(F )) × σ is injective, we
have x ∈ ε and then η(Nrd(x)) = 1. Since f ′ ≥ 0 and f ′(X) 6= 0, we deduce our claim. Now, because of
(3) in Section 2.7, we have

(7.1.13) ĴGM (η,X, f) = JG(η, f̂ , f ′)−
∑

L1,L2∈LG(M),L1 6=G

c(L1, L2)c(G,M)−1ĴL1

M (η,X, fη
Q1

)

for all f ∈ C∞c (s(F )) with Supp(f) ⊆ r.
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By induction on the dimension of G and parabolic induction (Corollary 7.5), one can suppose that

for all L1 ∈ L G(M), L1 6= G, the distribution on s(F ) defined by ∀f ∈ C∞c (s(F )), f 7→ ĴL1

M (η,X, fη
Q1

)

belongs to Ds. This is actually a product form of the induction hypothesis in lower dimensions.

We claim that the distribution on s(F ) defined by ∀f ∈ C∞c (s(F )), f 7→ JG(η, f̂ , f ′) belongs to Ds

(cf. [51, (3) in §V.10]). In fact, thanks to the noninvariant trace formula (Theorem 5.3), one can replace

JG(η, f̂ , f ′) with JG(η, f, f̂ ′). By its definition (5.1.2), it suffices to fix M ′ ∈ L G,ω(M0), c′ ∈ Tell(m
′ ∩ s)

and prove that the distribution on s(F ) defined by

∀f ∈ C∞c (s(F )), f 7→
∫
c′reg(F )

JGM ′(η, Y, f, f̂
′)dY

belongs to Ds. By the splitting formula (Proposition 5.1.6)), it suffices to fix L′1, L
′
2 ∈ L G(M ′) and

prove that the distribution on s(F ) defined by

∀f ∈ C∞c (s(F )), f 7→
∫
c′reg(F )

J
L′1
M ′(η, Y, f

η

Q′1
)J
L′2
M ′(η, Y, f̂

′η
Q′2

)dY,

where (Q′1, Q
′
2) := s(L′1, L

′
2), belongs to Ds. By Proposition 4.1.4) and the definition (4.1.1), we have

J
L′1
M ′(η, Y, f

η

Q′1
) = J

Q′1
M ′(η, Y, f) = |Ds(Y )|1/2F

∫
HY (F )\H(F )

f(Ad(x−1)(Y ))η(Nrd(x))v
Q′1
M ′(x)dx.

Then ∫
c′reg(F )

J
L′1
M ′(η, Y, f

η

Q′1
)J
L′2
M ′(η, Y, f̂

′η
Q′2

)dY

=

∫
c′reg(F )

|Ds(Y )|1/2F

∫
Tc′ (F )\H(F )

f(Ad(x−1)(Y ))η(Nrd(x))v
Q′1
M ′(x)J

L′2
M ′(η, Y, f̂

′η
Q′2

)dxdY.

Define a function e3 : (Tc′(F )\H(F ))× c′reg(F )→ C by

e3(x, Y ) := η(Nrd(x))v
Q′1
M ′(x)J

L′2
M ′(η, Y, f̂

′η
Q′2

).

It is locally constant by the product form of Proposition 4.1.2). Using Lemma 4.2 to dominate v
Q′1
M ′(x)

and Corollary 4.3 to dominate J
L′2
M ′(η, Y, f̂

′η
Q′2

), we check that e3 verifies the hypotheses of Lemma 7.4,

which implies our claim.
Now (7.1.13) shows that the distribution ĴGM (η,X, ·) conincides with some element in Ds for all

f ∈ C∞c (s(F )) with Supp(f) ⊆ r. By glueing (Remark 7.1), the distribution ĴGM (η,X, ·) ∈ Ds.
Finally, consider a general X ∈ (m∩srs)(F ). There exists x ∈MH(F ) such that Y := Ad(x−1)(X) ∈

(l ∩ s)(F )ell for some L ∈ L G,ω(M0), L ⊆ M . Then ĴGM (η,X, ·) = η(Nrd(x))ĴGM (η, Y, ·). Applying
the descent formula (Proposition 4.1.5)), the product form of the elliptic case that we have just proved
(applied to Y ∈ (l ∩ s)(F )ell) and parabolic induction (Corollary 7.5), we deduce that the distribution

ĴGM (η, Y, ·) ∈ Ds. Thus the distribution ĴGM (η,X, ·) ∈ Ds. �

7.2. The case of (G′, H ′). We define E s′ in the same way as the previous case. For e ∈ E s′ , thanks
to Corollary 3.21, it defines a distribution on s′(F ):

(7.2.1) ∀f ′ ∈ C∞c (s′(F )), f ′ 7→
∫
s′(F )

f ′(Y )e(Y )|Ds′(Y )|−1/2
F dY.

Denote by Ds′ the space of distributions obtained in this way. For d ∈ Ds′ , we shall always denote by
ed ∈ E s′ its preimage under the isomorphism E s′ → Ds′ defined above. One may extend these definitions

to the symmetric pair (M̃ ′,M ′,Ad(α)), where M ′ ∈ LH′(M ′0). If d ∈ Ds′ is invariant with respect to

the adjoint action of H ′(F ), then so is ed ∈ E s′ and by the Weyl integration formula (Proposition 3.18),
we have the equality

(7.2.2) d(f ′) =
∑

M ′∈LH′ (M ′0)

|WM ′

0 ||WH′

0 |−1
∑

c′∈Tell(m̃′∩s′)

|W (M ′, c′)|−1

∫
c′reg(F )

JH
′

H′ (Y, f
′)ed(Y )dY

for all f ′ ∈ C∞c (s′(F )), where JH
′

H′ (Y, f
′) is defined by (4.2.1).

Let M ′ ∈ LH′(M ′0) and Y ∈ (m̃′ ∩ s′rs)(F ). Denote by ĴH
′

M ′(Y, ·) the distribution on s′(F ) defined by

ĴH
′

M ′(Y, f
′) := JH

′

M ′(Y, f̂
′)
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for all f ′ ∈ C∞c (s′(F )), where the right hand side is defined by (4.2.1). One also has a similar definition

for the symmetric pair (M̃ ′,M ′,Ad(α)), where M ′ ∈ LH′(M ′0).

Proposition 7.10 (Representability). Let M ′ ∈ LH′(M ′0) and Y ∈ (m̃′ ∩ s′rs)(F ). Then the distri-

bution ĴH
′

M ′(Y, ·) ∈ Ds′ .

The rest of this section is devoted to the proof of Proposition 7.10. Although it is similar to the
proof of Proposition 7.2, we shall sketch some steps for later use.

Let c′ be a Cartan subspace of s′. Recall that Tc′ denotes the centraliser of c′ in H ′. Suppose that
e0 : (Tc′(F )\H ′(F ))× c′reg(F )→ C is a function such that

(1) e0 is locally constant;
(2) for all open compact subset r′ of s′(F ), there exists c > 0 and N ∈ N such that for all x ∈

Tc′(F )\H ′(F ) and Y ∈ c′reg(F ) satisfying Ad(x−1)(Y ) ∈ r′, one has the inequality

e0(x, Y ) ≤ c sup{1,− log |Ds′(Y )|F }N .
For f ′ ∈ C∞c (s′(F )), we define

(7.2.3) d0(f ′) :=

∫
c′reg(F )

|Ds′(Y )|1/2F

∫
Tc′ (F )\H′(F )

f ′(Ad(x−1)(Y ))e0(x, Y )dxdY.

Lemma 7.11 (cf. Lemma 7.4). Let c′ be a Cartan subspace of s′. Suppose that e0 satisfies the above

hypotheses. Then the integral (7.2.3) is absolutely convergent. Moreover, the distribution d0 ∈ Ds′ .

Corollary 7.12 (Parabolic induction). Let M ′ ∈ LH′(M ′0), P ′ ∈PH′(M ′) and d ∈ D m̃′∩s′ . Then

the distribution on s′(F ) defined by ∀f ′ ∈ C∞c (s′(F )), f ′ 7→ d(f ′P ′) belongs to Ds′ , where f ′P ′ is defined
by (3.3.2).

Proof. We may apply the argument of Corollary 7.5 with the aid of Lemma 3.19. �

Let M ′ ∈ LH′(M ′0) and d ∈ D m̃′∩s′ . Suppose that d is invariant with respect to the adjoint action

of M ′(F ). We define a distribution IndH
′,w

M ′ (d) on s′(F ) by
(7.2.4)

IndH
′,w

M ′ (d)(f ′) :=
∑

{L′∈LH′ (M ′0):L′⊆M ′}

|WL′

0 ||WM ′

0 |−1
∑

c′∈Tell(l̃′∩s′)

|W (L′, c′)|−1

∫
c′reg(F )

JH
′

M ′(Y, f
′)ed(Y )dY

for all f ′ ∈ C∞c (s′(F )), where JH
′

M ′(Y, f
′) is defined by (4.2.1). In particular, if M ′ = H ′ and d ∈ Ds′ is

invariant with respect to the adjoint action of H ′(F ), we have IndH
′,w

H′ (d) = d by (7.2.2).

Corollary 7.13. Let M ′ ∈ LH′(M ′0) and d ∈ D m̃′∩s′ . Suppose that d is invariant with respect to
the adjoint action of M ′(F ). Then the integral (7.2.4) is absolutely convergent. Moreover, the distribution

IndH
′,w

M ′ (d) ∈ Ds′ .

Remark 7.14. This corollary is unnecessary for the proof of Proposition 7.10 but useful in Section
8.2.

Proof of Corollary 7.13. We may apply the argument of Corollary 7.6 thanks to Lemmas 4.5
and 7.11. �

Lemma 7.15 (cf. Lemma 7.9). Let M ′ ∈ LH′(M ′0) and c′ ⊆ m̃′ ∩ s′ be an M ′-elliptic Cartan
subspace.

1) Let M ∈ LH′(M ′0), c ∈ Tell(m̃ ∩ s′) and x ∈ H ′(F ) be such that Ad(x)(c′) = c. Then there exists
m ∈M(F ) and w ∈ NormH′(F )(M

′
0) such that x = mw.

2) The cardinality of

{(M, c) : M ∈ LH′(M ′0), c ∈ Tell(m̃ ∩ s′), c is H ′(F )-conjugate to c′}
is

|WH′

0 ||WM ′

0 |−1|W (M ′, c′)||W (H ′, c′)|−1.

Proof of Proposition 7.10. We may apply the argument of Proposition 7.2 with obvious mod-
ifications. One needs almost all results that we have prepared in this and previous sections, notably
Howe’s finiteness (Corollary 6.9) and the noninvariant trace formula (Theorem 5.12). �
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8. Invariant weighted orbital integrals

8.1. The case of (G,H). Let M ∈ L G,ω(M0) and X ∈ (m∩srs)(F ). We shall define a distribution

ÎGM (η,X, ·) ∈ Ds which is η(Nrd(·))-invariant with respect to the adjoint action of H(F ) by induction

on dim(G). Suppose that we have defined a distribution ÎLM (η,X, ·) ∈ D l∩s which is η(Nrd(·))-invariant
with respect to the adjoint action of LH(F ) for all L ∈ L G(M), L 6= G. This is actually a product form

of the induction hypothesis in lower dimensions. Denote by ÎL,G,wM (η,X, ·) its image under IndG,wL (see
(7.1.10)). As in [51, (1) in §VI.1], for f ∈ C∞c (s(F )), we set

(8.1.1) ÎGM (η,X, f) := ĴGM (η,X, f)−
∑

L∈LG(M),L 6=G

ÎL,G,wM (η,X, f).

Proposition 8.1. The distribution ÎGM (η,X, ·) ∈ Ds and is η(Nrd(·))-invariant with respect to the
adjoint action of H(F ).

Proof. The first statement results from the representability of ĴGM (η,X, ·) (Proposition 7.2), the
induction hypothesis and Corollary 7.6. Now let us consider the second one.

Let f ∈ C∞c (s(F )) and y ∈ H(F ). By the H(F )-invariance of 〈·, ·〉, we see that (Ad(y−1)(f))ˆ =

Ad(y−1)(f̂). Applying Proposition 4.1.6), we have

ĴGM (η,X,Ad(y−1)(f)) = JGM (η,X,Ad(y−1)(f̂)) = η(Nrd(y))
∑

Q∈FG(M)

J
MQ

M (η,X, (f̂)ηQ,y).

For all Q ∈ FG(M), we show that

(f̂)ηQ,y = (fηQ,y)ˆ

by the same argument of an analogous property of (3.2.2). Then

(8.1.2) ĴGM (η,X,Ad(y−1)(f)) = η(Nrd(y))
∑

Q∈FG(M)

Ĵ
MQ

M (η,X, fηQ,y).

Let L ∈ L G(M), L 6= G. Applying Proposition 4.1.6) again to JGL (η, Y,Ad(y−1)(f)) in the integrand

of the definition (7.1.10) of IndG,wL , we obtain

(8.1.3) ÎL,G,wM (η,X,Ad(y−1)(f)) = η(Nrd(y))
∑

Q∈FG(L)

Î
L,MQ,w
M (η,X, fηQ,y),

where Î
L,MQ,w
M (η,X, ·) ∈ DmQ∩s denotes the image of ÎLM (η,X, ·) under Ind

MQ,w
L , which is defined by a

product form of (7.1.10).
From (8.1.1), (8.1.2) and (8.1.3), we deduce that

ÎGM (η,X,Ad(y−1)(f)) =ĴGM (η,X,Ad(y−1)(f))−
∑

L∈LG(M),L 6=G

ÎL,G,wM (η,X,Ad(y−1)(f))

=η(Nrd(y))
∑

Q∈FG(M)

ĴMQ

M (η,X, fηQ,y)−
∑

L∈LMQ (M),L 6=G

Î
L,MQ,w
M (η,X, fηQ,y)

 .

Consider Q 6= G first. By the induction hypothesis, Î
MQ

M (η,X, ·) ∈ DmQ∩s is η(Nrd(·))-invariant with

respect to the adjoint action of MQH (F ), so Î
MQ,MQ,w
M (η,X, ·) = Î

MQ

M (η,X, ·). By the definition of

Î
MQ

M (η,X, ·) (a product form of (8.1.1)), the term in brackets is zero. Thus it remains the term for
Q = G. Note that fηG,y = fηG. By Proposition 4.1.4) applied to Q = G, we see that the term in brackets

is exactly ÎGM (η,X, f) defined by (8.1.1). Therefore, we show that

ÎGM (η,X,Ad(y−1)(f)) = η(Nrd(y))ÎGM (η,X, f),

which is the second statement. �

Let M ∈ L G,ω(M0) and X ∈ (m ∩ srs)(F ). Denote by îGM (η,X, ·) (resp. ĵGM (η,X, ·)) the element of

E s associated to ÎGM (η,X, ·) (resp. ĴGM (η,X, ·)) ∈ Ds by (7.1.1). That is to say, for all f ∈ C∞c (s(F )),

ÎGM (η,X, f) =

∫
s(F )

f(Y )̂iGM (η,X, Y )|Ds(Y )|−1/2
F dY
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and

ĴGM (η,X, f) =

∫
s(F )

f(Y )ĵGM (η,X, Y )|Ds(Y )|−1/2
F dY.

We also have a similar definition for the symmetric pair (M,MH ,Ad(ε)), where M ∈ L G,ω(M0).

Lemma 8.2. Let M ∈ L G,ω(M0) and X ∈ (m∩ srs)(F ). Let L ∈ L G,ω(M0) and Y ∈ (l∩ srs)(F )ell.

Then îGM (η,X, Y ) = ĵGM (η,X, Y ).

Proof. Let L2 ∈ L G(M), L2 6= G, L1 ∈ L G,ω(M0), L1 ⊆ L2 and c ∈ Tell(l1 ∩ s). We define a

distribution dG,wL1,L2,c
(η,X, ·) on s(F ) by

(8.1.4) dG,wL1,L2,c
(η,X, f) :=

∫
creg(F )

JGL2
(η, Z, f )̂iL2

M (η,X,Z)dZ

for all f ∈ C∞c (s(F )). By a product form of Proposition 8.1, the distribution ÎL2

M (η,X, ·) ∈ D l2∩s

and is η(Nrd(·))-invariant with respect to the adjoint action of (L2 ∩H)(F ). We see from the proof of

Corollary 7.6 that the integral (8.1.4) is absolutely convergent and the distribution dG,wL1,L2,c
(η,X, ·) ∈ Ds.

We denote by eG,wL1,L2,c
(η,X, ·) its associated element in E s by (7.1.1). From the definitions (8.1.1) and

(7.1.10), we have

îGM (η,X, ·) =ĵGM (η,X, ·)−
∑

L2∈LG(M),L2 6=G

∑
{L1∈LG,ω(M0):L1⊆L2}

|WL1,n

0 ||WL2,n

0 |−1
∑

c∈Tell(l1∩s)

|W (L1 ∩H, c)|−1eG,wL1,L2,c
(η,X, ·).

To prove the lemma, it suffices to fix such a triple (L2, L1, c) and prove that eG,wL1,L2,c
(η,X, Y ) = 0. But

(7.1.12) and (7.1.4) in the proofs of Corollary 7.6 and Lemma 7.4 respectively allow us to calculate

eG,wL1,L2,c
(η,X, Y ); explicitly, we have

(8.1.5) eG,wL1,L2,c
(η,X, Y ) =

∑
{x∈Tc(F )\H(F ):Ad(x)(Y )∈c(F )}

η(Nrd(x))vGL2
(x)̂iL2

M (η,X,Ad(x)(Y )).

Let x ∈ Tc(F )\H(F ) such that Ad(x)(Y ) ∈ c(F ). As Y ∈ (l ∩ srs)(F )ell and c ∈ Tell(l1 ∩ s), from the
proof of Lemma 3.10.1), there exists l1 ∈ (L1 ∩H)(F ) and w ∈ NormH(F )(M0) such that x = l1w. Since

any element in WH
0 admits a representative in KH , we can suppose that w ∈ KH . Then vGL2

(x) = vGL2
(1)

since L1 ⊆ L2. But vGL2
(1) = 0 for L2 6= G. Thus eG,wL1,L2,c

(η,X, Y ) = 0 by (8.1.5). �

Lemma 8.3. Let M ∈ L G,ω(M0).

1) The function (X,Y ) 7→ îGM (η,X, Y ) is locally constant on (m ∩ srs)(F )× srs(F ).
2) If w ∈ NormH(F )(M0), x ∈MH(F ) and y ∈ H(F ), we have the equality

îGAd(w)(M)(η,Ad(wx)(X),Ad(y)(Y )) = η(Nrd(wxy))̂iGM (η,X, Y )

for all (X,Y ) ∈ (m ∩ srs)(F )× srs(F ).
3) If λ ∈ F×, we have the equality

îGM (η, λX, Y ) = îGM (η,X, λY )

for all (X,Y ) ∈ (m ∩ srs)(F )× srs(F ).
4) Let rM ⊆ (m ∩ s)(F ) and r ⊆ s(F ) be two compact subsets. Then there exists c > 0 and N ∈ N

such that

|̂iGM (η,X, Y )| ≤ c sup{1,− log |Ds(X)|F }N sup{1,− log |Ds(Y )|F }N

for all X ∈ rM ∩ srs and Y ∈ r ∩ srs.
5) Let f ∈ C∞c (s(F )) and rM ⊆ (m ∩ s)(F ) be a compact subset. Then there exists c > 0 and N ∈ N

such that

|ÎGM (η,X, f)| ≤ c sup{1,− log |Ds(X)|F }N

for all X ∈ rM ∩ srs.

Proof. Let rM ⊆ (m ∩ s)(F ) and r ⊆ s(F ) be two open compact subgroups. Set r∗ := {Y ∈ s(F ) :
∀Z ∈ r,Ψ(〈Y,Z〉) = 1}, which is an open compact subgroup of s(F ). Notice that if f ∈ C∞c (s(F )) satisfies

Supp(f) ⊆ r, then f̂ ∈ C∞c (s(F )/r∗). Applying Howe’s finiteness (Corollary 6.6) to r∗ and rM ∩ srs, we
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know that there exists a finite subset {Xi : i ∈ I} ⊆ rM∩srs and a finite subset {fi : i ∈ I} ⊆ C∞c (s(F )/r∗)
such that for all X ∈ rM ∩ srs and all f ∈ C∞c (s(F )) with Supp(f) ⊆ r, we have

JGM (η,X, f̂) =
∑
i∈I

JGM (η,Xi, f̂)JGM (η,X, fi).

We deduce that

(8.1.6) ĵGM (η,X, Y ) =
∑
i∈I

ĵGM (η,Xi, Y )JGM (η,X, fi)

for all X ∈ rM ∩ srs and Y ∈ r ∩ srs.
1) The local constancy of (X,Y ) 7→ ĵGM (η,X, Y ) on (m ∩ srs)(F ) × srs(F ) results from (8.1.6),

Proposition 4.1.2) and ĵGM (η,Xi, ·) ∈ E s for i ∈ I. For L ∈ L G,ω(M0), we deduce from Lemma 8.2 the

local constancy of (X,Y ) 7→ îGM (η,X, Y ) on (m∩srs)(F )×(l∩srs)(F )ell. Let (X,Y ) ∈ (m∩srs)(F )×srs(F ).
Choose L ∈ L G,ω(M0) and Y ′ ∈ (l∩srs)(F )ell such that Y ′ is H(F )-conjugate to Y . Fix a neighbourhood

V1 × V2 of (X,Y ′) in (m ∩ srs)(F ) × (l ∩ srs)(F )ell such that (X,Y ) 7→ κ(Y )̂iGM (η,X, Y ) is constant on

V1 × V2. Thanks to the η(Nrd(·))-invariance of îGM (η,X, ·) with respect to the adjoint action of H(F )

(Proposition 8.1), we know that (X,Y ) 7→ κ(Y )̂iGM (η,X, Y ) is constant on V1 × Ad(H(F ))(V2) which is
a neighbourhood of (X,Y ) in (m ∩ srs)(F ) × srs(F ). Since κ(·) is locally constant on srs(F ), we show

that (X,Y ) 7→ îGM (η,X, Y ) is constant on a neighbourhood of (X,Y ) in (m ∩ srs)(F )× srs(F ).
2) The effect of Ad(y) comes from Propostion 8.1. Then when considering the effects of Ad(w)

and Ad(x), up to H(F )-conjugation, we may and shall suppose that Y ∈ (l ∩ srs)(F )ell for some L ∈
L G,ω(M0). That is to say, it suffices to prove the equality

îGAd(w)(M)(η,Ad(wx)(X), Y ) = η(Nrd(wx))̂iGM (η,X, Y )

for all (X,Y ) ∈ (m ∩ srs)(F ) × (l ∩ srs)(F )ell. By Lemma 8.2, we may replace îGAd(w)(M) and îGM by

ĵGAd(w)(M) and ĵGM respectively in the equality to be proved. Now the equality results from Proposition

4.1.3).
3) Let λ ∈ F×, X ∈ (m ∩ sreg)(F ) and f ∈ C∞c (s(F )). From the definition (3.1.1), we have

|Ds(λX)|F = |λ|(dim(g)−rank(g))/2
F |Ds(X)|F ,

where dim(g) and rank(g) denote the dimension and rank (over an algebraic closure of F ) of g respectively.
Then we have ∫

s(F )

f(Y )ĵGM (η, λX, Y )|Ds(Y )|−1/2
F dY = ĴGM (η, λX, f) = JGM (η, λX, f̂)

=|Ds(λX)|1/2F

∫
HλX(F )\H(F )

f̂(Ad(x−1)(λX))η(Nrd(x))vQM (x)dx

=|λ|(dim(g)−rank(g))/4
F JGM (η,X, f̂(λ·)).

But

f̂(λ·) =cΨ(s(F ))

∫
s(F )

f(Z)Ψ(〈λ·, Z〉)dZ = cΨ(s(F ))

∫
s(F )

f(Z)Ψ(〈·, λZ〉)dZ

=|λ|− dim(s)
F cΨ(s(F ))

∫
s(F )

f(λ−1Z)Ψ(〈·, Z〉)dZ

=|λ|− dim(g)/2
F (f(λ−1·))ˆ.

Thus we have

JGM (η,X, f̂(λ·)) =|λ|− dim(g)/2
F ĴGM (η,X, f(λ−1·)) = |λ|− dim(g)/2

F

∫
s(F )

f(λ−1Y )ĵGM (η,X, Y )|Ds(Y )|−1/2
F dY

=

∫
s(F )

f(Y )ĵGM (η,X, λY )|Ds(λY )|−1/2
F dY

=|λ|(rank(g)−dim(g))/4
F

∫
s(F )

f(Y )ĵGM (η,X, λY )|Ds(Y )|−1/2
F dY.

Therefore, we deduce the equality

ĵGM (η, λX, Y ) = ĵGM (η,X, λY )
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for all λ ∈ F× and all (X,Y ) ∈ (m ∩ srs)(F ) × srs(F ). We obtain a similar equality for îGM thanks

to Lemma 8.2 and the η(Nrd(·))-invariance of îGM (η,X, ·) with respect to the adjoint action of H(F )
(Proposition 8.1).

4) A similar bound for (X,Y ) 7→ ĵGM (η,X, Y ) on (rM ∩ srs)× (r ∩ srs) results from (8.1.6), Corollary

4.3 (together with Proposition 4.1.4)) and ĵGM (η,Xi, ·) ∈ E s for i ∈ I. For L ∈ L G,ω(M0), we deduce

from Lemma 8.2 a similar bound of (X,Y ) 7→ îGM (η,X, Y ) on (rM ∩ srs) × (r ∩ (l ∩ srs)(F )ell). Let

(X,Y ) ∈ (rM ∩ srs) × (r ∩ srs). Thanks to the η(Nrd(·))-invariance of îGM (η,X, ·) with respect to the
adjoint action of H(F ) (Proposition 8.1), if we replace Y by Ad(y)(Y ), where y ∈ H(F ), the two sides
in the inequality to be proved remain unchanged. Since any Cartan subspace in s is H(F )-conjugate
to an element in Tell(l ∩ s) for some L ∈ L G,ω(M0), with the help of Lemma 3.3, it suffices to fix
L ∈ L G,ω(M0), c ∈ Tell(l ∩ s) and rc ⊆ c(F ) a compact subset, prove a similar bound for (X,Y ) ∈
(rM ∩ srs) × (rc ∩ creg), and then obtain a uniform bound for (X,Y ) ∈ (rM ∩ srs) × (r ∩ srs) by the
finiteness of Tell(l ∩ s). But this is what we have established.

5) It is a consequence of 4) applied to r := Supp(f) and Corollary 3.15. �

For M ∈ L G,ω(M0) and X ∈ (m ∩ srs)(F ), we define a distribution IGM (η,X, ·) on s(F ) by

(8.1.7) IGM (η,X, f̂) := ÎGM (η,X, f)

for all f ∈ C∞c (s(F )).

Remark 8.4. For M = G, it is evident that IGG (η,X, f) = JGG (η,X, f) for all X ∈ srs(F ) and
f ∈ C∞c (s(F )).

One may easily extend the definitions (8.1.1) and (8.1.7) to the symmetric pair (M,MH ,Ad(ε)),
where M ∈ L G,ω(M0), since it appears as the product of some copies of the form (G,H,Ad(ε)) in lower
dimensions.

Lemma 8.5. Let M ∈ L G,ω(M0) and X ∈ (m ∩ srs)(F ). The distribution IGM (η,X, ·) on s(F ) is
independent of the choice of the H(F )-invariant non-degenerate symmetric bilinear form 〈·, ·〉 on s(F )
or the continuous nontrivial unitary character Ψ of F .

Proof. Suppose that 〈·, ·〉′ is another bilinear form and that Ψ′ is another character. Denote by

f 7→ f̃ the associated Fourier transform and by ĨGM (η,X, ·) (resp. J̃GM (η,X, ·)) the associated analogue

of ÎGM (η,X, ·) (resp. ĴGM (η,X, ·)). Since
˜̃
f(·) =

ˆ̂
f(·) = f(−·) for all f ∈ C∞c (s(F )), it suffices to prove the

equality

ĨGM (η,X, f̃) = ÎGM (η,X, f̂)

for all f ∈ C∞c (s(F )).
Let τ ′ be the linear automorphism of s(F ) such that

∀Y, Z ∈ s(F ), 〈Y,Z〉′ = 〈τ ′(Y ), Z〉.
Let a ∈ F× such that Ψ′(·) = Ψ(a·). Set τ := aτ ′. Then

f̃(·) =
cΨ′(s(F ))

cΨ(s(F ))
f̂(τ(·))

for all f ∈ C∞c (s(F )). One may check that τ is an H(F )-equivariant linear automorphism of s(F ) thanks
to H(F )-invariance of two bilinear forms. One also deduces that

∀Y,Z ∈ s(F ), 〈τ(Y ), Z〉 = 〈Y, τ(Z)〉
from the symmetry of two bilinear forms. Now for all f ∈ C∞c (s(F )) and all Y ∈ s(F ), we have

f(−Y ) =
˜̃
f(Y ) = cΨ′(s(F ))

∫
s(F )

f̃(Z)Ψ′(〈Y,Z〉′)dZ = cΨ′(s(F ))

∫
s(F )

cΨ′(s(F ))

cΨ(s(F ))
f̂(τ(Z))Ψ(〈τ(Y ), Z〉)dZ

=
cΨ′(s(F ))2

cΨ(s(F ))

∫
s(F )

f̂(τ(Z))Ψ(〈Y, τ(Z)〉)dZ =
cΨ′(s(F ))2

cΨ(s(F ))|dets(F )(τ)|F

∫
s(F )

f̂(Z ′)Ψ(〈Y,Z ′〉)dZ ′

=
cΨ′(s(F ))2

cΨ(s(F ))2|dets(F )(τ)|F
ˆ̂
f(Y ) =

cΨ′(s(F ))2

cΨ(s(F ))2|dets(F )(τ)|F
f(−Y ).

Therefore, we obtain cΨ′ (s(F ))
cΨ(s(F )) = |dets(F )(τ)|1/2F . Then for all f ∈ C∞c (s(F )), we have

f̃(·) = |dets(F )(τ)|1/2F f̂(τ(·)).
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Denote by ĩGM (η,X, ·) (resp. j̃GM (η,X, ·)) the element of E s associated to ĨGM (η,X, ·) (resp. J̃GM (η,X, ·))
∈ Ds by (7.1.1). For f ∈ C∞c (s(F )), we have

ĨGM (η,X, f̃) =

∫
s(F )

f̃(Y )̃iGM (η,X, Y )|Ds(Y )|−1/2
F dY

= |dets(F )(τ)|1/2F

∫
s(F )

f̂(τ(Y ))̃iGM (η,X, Y )|Ds(Y )|−1/2
F dY

= |dets(F )(τ)|−1/2
F

∫
s(F )

f̂(Y )̃iGM (η,X, τ−1(Y ))|Ds(τ−1(Y ))|−1/2
F dY.

We reduce ourselves to proving the equality

(8.1.8) |dets(F )(τ)|−1/2
F ĩGM (η,X, τ−1(Y ))|Ds(τ−1(Y ))|−1/2

F = îGM (η,X, Y )|Ds(Y )|−1/2
F

for all Y ∈ srs(F ). But we have the equality

J̃GM (η,X, f̃) = ĴGM (η,X, f̂)

since both sides equal JGM (η,X, f(−·)), which is defined by (4.1.1). The same computation as above

shows that the equality (8.1.8) is true when one replaces ĩGM and îGM with j̃GM and ĵGM respectively. Recall
that τ is H(F )-equivariant, so HY = Hτ−1(Y ) for Y ∈ srs(F ). As a consequence, for L ∈ L G,ω(M0),

Y ∈ (l∩ srs)(F )ell if and only if τ−1(Y ) ∈ (l∩ srs)(F )ell. One may conclude by Lemma 8.2 together with

the η(Nrd(·))-invariance of îGM (η,X, ·) with respect to the adjoint action of H(F ) (Proposition 8.1). �

8.2. The case of (G′, H ′). Let M ′ ∈ LH′(M ′0) and Y ∈ (m̃′∩s′rs)(F ). We shall define a distribution

ÎH
′

M ′(Y, ·) ∈ Ds′ which is invariant with respect to the adjoint action of H ′(F ) by induction on dim(H ′).

Suppose that we have defined a distribution ÎL
′

M ′(Y, ·) ∈ D l̃′∩s′ which is invariant with respect to the

adjoint action of L′(F ) for all L′ ∈ LH′(M ′), L′ 6= H ′. This is actually a product form of the induction

hypothesis in lower dimensions. Denote by ÎL
′,H′,w

M ′ (Y, ·) its image under IndH
′,w

L′ (see (7.2.4)). For
f ′ ∈ C∞c (s′(F )), we set

(8.2.1) ÎH
′

M ′(Y, f
′) := ĴH

′

M ′(Y, f
′)−

∑
L′∈LH′ (M ′),L′ 6=H′

ÎL
′,H′,w

M ′ (Y, f ′).

Proposition 8.6. The distribution ÎH
′

M ′(Y, ·) ∈ Ds′ and is invariant with respect to the adjoint action
of H ′(F ).

Proof. We may apply the argument of Proposition 8.1 thanks to the representability of ĴH
′

M ′(Y, ·)
(Proposition 7.10), Corollary 7.13 and Proposition 4.4.6). �

Let M ′ ∈ LH′(M ′0) and Y ∈ (m̃′ ∩ s′rs)(F ). Denote by îH
′

M ′(Y, ·) (resp. ĵH
′

M ′(Y, ·)) the element of E s′

associated to ÎH
′

M ′(Y, ·) (resp. ĴH
′

M ′(Y, ·)) ∈ Ds′ by (7.2.1). That is to say, for all f ′ ∈ C∞c (s′(F )),

ÎH
′

M ′(Y, f
′) =

∫
s′(F )

f ′(X )̂iH
′

M ′(Y,X)|Ds′(X)|−1/2
F dX

and

ĴH
′

M ′(Y, f
′) =

∫
s′(F )

f ′(X)ĵH
′

M ′(Y,X)|Ds′(X)|−1/2
F dX.

One has a similar definition for the symmetric pair (M̃ ′,M ′,Ad(α)), where M ′ ∈ LH′(M ′0).

Lemma 8.7. Let M ′ ∈ LH′(M ′0) and Y ∈ (m̃′ ∩ s′rs)(F ). Let L′ ∈ LH′(M ′0) and X ∈ (l̃′ ∩ s′rs)(F )ell.

Then îH
′

M ′(Y,X) = ĵH
′

M ′(Y,X).

Proof. We may apply the argument of Lemma 8.2 by using Proposition 8.6 and consulting the
proofs of Corollary 7.13, Lemmas 7.11 and 3.17.1). �

Lemma 8.8. Let M ′ ∈ LH′(M ′0).

1) The function (Y,X) 7→ îH
′

M ′(Y,X) is locally constant on (m̃′ ∩ s′rs)(F )× s′rs(F ).
2) If w ∈ NormH′(F )(M

′
0), x ∈M ′(F ) and y ∈ H ′(F ), we have the equality

îH
′

Ad(w)(M ′)(Ad(wx)(Y ),Ad(y)(X)) = îH
′

M ′(Y,X)

for all (Y,X) ∈ (m̃′ ∩ s′rs)(F )× s′rs(F ).
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3) If λ ∈ F×, we have the equality

îH
′

M ′(λY,X) = îH
′

M ′(Y, λX)

for all (Y,X) ∈ (m̃′ ∩ s′rs)(F )× s′rs(F ).

4) Let r′M ′ ⊆ (m̃′∩ s′)(F ) and r′ ⊆ s′(F ) be two compact subsets. Then there exists c > 0 and N ∈ N
such that

|̂iH
′

M ′(Y,X)| ≤ c sup{1,− log |Ds′(Y )|F }N sup{1,− log |Ds′(X)|F }N

for all Y ∈ r′M ′ ∩ s′rs and X ∈ r′ ∩ s′rs.

5) Let f ′ ∈ C∞c (s′(F )) and r′M ′ ⊆ (m̃′ ∩ s′)(F ) be a compact subset. Then there exists c > 0 and
N ∈ N such that

|ÎH
′

M ′(Y, f
′)| ≤ c sup{1,− log |Ds′(Y )|F }N

for all Y ∈ r′M ′ ∩ s′rs.

Proof. It is almost the same as the proof of Lemma 8.3, except that one needs to use Howe’s
finiteness (Corollary 6.9), Proposition 8.6 and Lemma 8.7. We also need Proposition 4.4.2) for 1),
Proposition 4.4.3) for 2), Corollary 4.6 for 4) and Corollary 3.21 for 5). �

For M ′ ∈ LH′(M ′0) and Y ∈ (m̃′ ∩ s′rs)(F ), we define a distribution IH
′

M ′(Y, ·) on s′(F ) by

(8.2.2) IH
′

M ′(Y, f̂
′) := ÎH

′

M ′(Y, f
′)

for all f ′ ∈ C∞c (s′(F )). One may easily extend the definitions (8.2.1) and (8.2.2) to the symmetric pair

(M̃ ′,M ′,Ad(α)), where M ′ ∈ LH′(M ′0).

Remark 8.9. For M ′ = H ′, it is evident that IH
′

H′ (Y, f
′) = JH

′

H′ (Y, f
′) for all Y ∈ s′rs(F ) and

f ′ ∈ C∞c (s′(F )).

Lemma 8.10. Let M ′ ∈ LH′(M ′0) and Y ∈ (m̃′ ∩ s′rs)(F ). The distribution IH
′

M ′(Y, ·) on s′(F ) is
independent of the choice of the H ′(F )-invariant non-degenerate symmetric bilinear form 〈·, ·〉 on s′(F )
or the continuous nontrivial unitary character Ψ of F .

Proof. We may apply the argument of Lemma 8.5 thanks to Proposition 8.6 and Lemma 8.7. �

9. The invariant trace formula

9.1. The case of (G,H). For f, f ′ ∈ C∞c (s(F )), we define

IG(η, f, f ′) :=
∑

M∈LG,ω(M0)

|WMn
0 ||WGLn

0 |−1(−1)dim(AM/AG)
∑

c∈Tell(m∩s)

|W (MH , c)|−1

∫
creg(F )

ÎGM (η,X, f)IGG (η,X, f ′)dX.

(9.1.1)

From Proposition 4.1.2), for any c ∈ Tell(m ∩ s), IGG (η, ·, f ′) vanishes outside a compact subset of c(F ),
so one may apply Lemma 8.3.5) to show that this expression is absolutely convergent with the help of
Proposition 3.13 and Corollary 3.6.

Theorem 9.1 (Invariant trace formula). For all f, f ′ ∈ C∞c (s(F )), we have the equality

IG(η, f, f ′) = IG(η, f ′, f).

The rest of this section is devoted to the proof of Theorem 9.1. We shall follow the main steps in
[51, §VII.2-3]. The theorem will be proved by induction on the dimension of G.

Let f ∈ C∞c (srs(F )) and M ∈ L G,ω(M0). By Proposition 4.1.2) and 3), the function κ(·)JGM (η, ·, f) :
(m∩ srs)(F )→ C is locally constant and invariant by the adjoint action of MH(F ), where κ is defined by
(4.1.2). Moreover, the support of its restriction to c(F ) for any c ∈ T (m∩ s) is included in the compact
subset creg(F ) ∩Ad(H(F ))(Supp(f)). From Harish-Chandra’s submersion principle (Lemma 3.8), there
exists f ′ ∈ C∞c ((m ∩ s)rs(F )) such that

κ(X)JGM (η,X, f) = |Dm∩s(X)|1/2F

∫
MH,X(F )\MH(F )

f ′(Ad(x−1)(X))dx

for all X ∈ (m ∩ srs)(F ). Let f ′′ := κf ′ ∈ C∞c ((m ∩ s)rs(F )), where we extend the definition of κ to the
product form. Then we have

(9.1.2) JGM (η,X, f) = JMM (η,X, f ′′),∀X ∈ (m ∩ srs)(F ).

139



We have shown that for f ∈ C∞c (srs(F )) and M ∈ L G,ω(M0), there exists a function f ′′ ∈ C∞c ((m ∩
s)rs(F )) such that (9.1.2) holds. We shall fix such an f ′′ and denote it by φGM (f).

As before, one may extend in the obvious way the definition (9.1.1) and the notation φGM (f) to the
symmetric pair (M,MH ,Ad(ε)), where M ∈ L G,ω(M0), since it appears as the product of some copies
of the form (G,H,Ad(ε)) in lower dimensions.

Lemma 9.2. Let M ∈ L G,ω(M0), X ∈ (m ∩ srs)(F )ell and f, f ′ ∈ C∞c (srs(F )). Then we have the
equality

(9.1.3) JGM (η,X, f̂ , f ′) =
∑

L∈LG(M)

∑
L1,L2∈LG(L)

dGL (L1, L2)ÎLM (η,X, φL1

L (fη
Q1

))ILL (η,X, φL2

L (f ′
η
Q2

)),

where JGM (η,X, f̂ , f ′) is defined by (5.1.1), and (Q1, Q2) := s(L1, L2) (see Section 2.7).

Proof. By definition,

JGM (η,X, f̂ , f ′) = |Ds(X)|1/2F

∫
AM (F )\H(F )

f ′(Ad(y−1)(X))η(Nrd(y))ϕ1(y)dy,

where

ϕ1(y) := |Ds(X)|1/2F

∫
AM (F )\H(F )

f̂(Ad(x−1)(X))η(Nrd(x−1))vM (x, y)dx.

For L ∈ L G(M) and L2 ∈ L G(L), since Q2 ∈PG(L2), by Proposition 4.1.4), we have

(9.1.4) ILL (η,X, φL2

L (f ′
η
Q2

)) = JL2

L (η,X, f ′
η
Q2

) = JQ2

L (η,X, f ′).

Since X ∈ (m ∩ srs)(F )ell, the right hand side of (9.1.3) is

|Ds(X)|1/2F

∫
AM (F )\H(F )

f ′(Ad(y−1)(X))η(Nrd(y))ϕ2(y)dy,

where
ϕ2(y) :=

∑
L∈LG(M)

∑
L1,L2∈LG(L)

dGL (L1, L2)ÎLM (η,X, φL1

L (fη
Q1

))vQ2

L (y).

It suffices to fix y ∈ H(F ) and prove that ϕ1(y) = ϕ2(y).
Let L ∈ L G(M) and

hL :=
∑

L1,L2∈LG(L)

dGL (L1, L2)φL1

L (fη
Q1

)vQ2

L (y).

Then
ϕ2(y) =

∑
L∈LG(M)

ÎLM (η,X, hL).

For Y ∈ (l ∩ srs)(F ), we have

JLL (η, Y, hL) =
∑

L1,L2∈LG(L)

dGL (L1, L2)JLL (η, Y, φL1

L (fη
Q1

))vQ2

L (y).

For L1 ∈ L G(L), as in (9.1.4), we have

JLL (η, Y, φL1

L (fη
Q1

)) = JL1

L (η, Y, fη
Q1

) = JQ1

L (η, Y, f).

Then

JLL (η, Y, hL) = |Ds(Y )|1/2F

∫
HY (F )\H(F )

f(Ad(x−1)(Y ))η(Nrd(x))h(x, y)dx,

where

h(x, y) :=
∑

L1,L2∈LG(L)

dGL (L1, L2)vQ1

L (x)vQ2

L (y).

It is shown in the proof of [51, Lemme VII.2] that

h(x, y) = vL(x, y) =
∑

Q∈FG(L)

v′Q(y)vQL (x).

Thus

JLL (η, Y, hL) =
∑

Q∈FG(L)

v′Q(y)JQL (η, Y, f).
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As in (9.1.4), we have

JQL (η, Y, f) = J
MQ

L (η, Y, fη
Q

) = JLL (η, Y, φ
MQ

L (fη
Q

)).

Let

h′L :=
∑

Q∈FG(L)

v′Q(y)φ
MQ

L (fη
Q

).

Then we obtain

(9.1.5) JLL (η, Y, hL) = JLL (η, Y, h′L)

for all Y ∈ (l ∩ srs)(F ).

By a product form of Proposition 8.1, the distribution d := ÎLM (η,X, ·) ∈ D l∩s and is η(Nrd(·))-
invariant with respect to the adjoint action of LH(F ). By a product form of (7.1.2), we deduce from
(9.1.5) that

ÎLM (η,X, hL) = ÎLM (η,X, h′L).

Therefore,

ϕ2(y) =
∑

L∈LG(M)

ÎLM (η,X, hL) =
∑

L∈LG(M)

ÎLM (η,X, h′L)

=
∑

Q∈FG(M)

v′Q(y)
∑

L∈LMQ (M)

ÎLM (η,X, φ
MQ

L (fη
Q

)).

By (7.1.10) and (7.1.2) (actually their product forms are needed), we have

Î
L,MQ,w
M (η,X, fη

Q
) = Ind

MQ,w
L (d)(fη

Q
)

=
∑

{L′∈LG,ω(M0):L′⊆L}

|WL′n
0 ||W

Ln
0 |−1

∑
c∈Tell(l′∩s)

|W (L′H , c)|−1

∫
creg(F )

J
MQ

L (η, Z, fη
Q

)ed(Z)dZ

=
∑

{L′∈LG,ω(M0):L′⊆L}

|WL′n
0 ||W

Ln
0 |−1

∑
c∈Tell(l′∩s)

|W (L′H , c)|−1

∫
creg(F )

JLL (η, Z, φ
MQ

L (fη
Q

))ed(Z)dZ

=d(φ
MQ

L (fη
Q

)) = ÎLM (η,X, φ
MQ

L (fη
Q

)).

Then by (8.1.1), we get ∑
L∈LMQ (M)

ÎLM (η,X, φ
MQ

L (fη
Q

)) =
∑

L∈LMQ (M)

Î
L,MQ,w
M (η,X, fη

Q
)

=Ĵ
MQ

M (η,X, fη
Q

) = J
MQ

M (η,X, f̂η
Q

) = JQM (η,X, f̂).

Hence,

ϕ2(y) =
∑

Q∈FG(M)

v′Q(y)JQM (η,X, f̂)

=|Ds(X)|1/2F

∫
AM (F )\H(F )

f̂(Ad(x−1)(X))η(Nrd(x))
∑

Q∈FG(M)

v′Q(y)vQM (x)dx.

But ∑
Q∈FG(M)

v′Q(y)vQM (x) = vM (x, y),

which implies that ϕ1(y) = ϕ2(y). �

Proof of Theorem 9.1. We use induction on the dimension of G. Suppose that the equality is
true for L ∈ L G,ω(M0), L 6= G, which is actually a product form in lower dimensions. Now we would
like to prove the equality for G. The argument below is also valid for the case L G,ω(M0) = {G}, i.e.,
n = 1.
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First of all, suppose that f, f ′ ∈ C∞c (srs(F )). Applying Lemma 9.2 to the definition (5.1.2) of

JG(η, f̂ , f ′), we obtain

JG(η, f̂ , f ′) =
∑

M∈LG,ω(M0)

|WMn
0 ||WGLn

0 |−1(−1)dim(AM/AG)
∑

c∈Tell(m∩s)

|W (MH , c)|−1

∫
creg(F )

JGM (η,X, f̂ , f ′)dX

=
∑

M∈LG,ω(M0)

|WMn
0 ||WGLn

0 |−1(−1)dim(AM/AG)
∑

c∈Tell(m∩s)

|W (MH , c)|−1

∫
creg(F )∑

L∈LG(M)

∑
L1,L2∈LG(L)

dGL (L1, L2)ÎLM (η,X, φL1

L (fη
Q1

))ILL (η,X, φL2

L (f ′
η
Q2

))dX

=
∑

L∈LG,ω(M0)

|WLn
0 ||W

GLn
0 |−1(−1)dim(AL/AG)BL(η, f, f ′),

where

BL(η, f, f ′) :=
∑

L1,L2∈LG(L)

dGL (L1, L2)
∑

{M∈LG,ω(M0):M⊆L}

|WMn
0 ||WLn

0 |−1(−1)dim(AM/AL)
∑

c∈Tell(m∩s)

|W (MH , c)|−1

∫
creg(F )

ÎLM (η,X, φL1

L (fη
Q1

))ILL (η,X, φL2

L (f ′
η
Q2

))dX

=
∑

L1,L2∈LG(L)

dGL (L1, L2)IL(η, φL1

L (fη
Q1

), φL2

L (f ′
η
Q2

)).

Here we have used the absolute convergence of the expressions above to exchange the order of sums, and
IL(η, φL1

L (fη
Q1

), φL2

L (f ′
η
Q2

)) is defined by a product form of (9.1.1).

By the noninvariant trace formula (Theorem 5.3) and Remark 5.2, we have the equality JG(η, f̂ , f ′) =

JG(η, f̂ ′, f). Therefore,

(9.1.6)
∑

L∈LG,ω(M0)

|WLn
0 ||W

GLn
0 |−1(−1)dim(AL/AG)(BL(η, f, f ′)−BL(η, f ′, f)) = 0.

Let L ∈ L G,ω(M0), L 6= G. Applying the induction hypothesis, we have

BL(η, f, f ′) =
∑

L1,L2∈LG(L)

dGL (L1, L2)IL(η, φL2

L (f ′
η
Q2

), φL1

L (fη
Q1

)).

By exchanging L1 and L2 and by using (2) and (5) in Section 2.7, we obtain BL(η, f, f ′) = BL(η, f ′, f).
We deduce from (9.1.6) that BG(η, f, f ′) = BG(η, f ′, f). But

BG(η, f, f ′) = IG(η, f, f ′),

which implies IG(η, f, f ′) = IG(η, f ′, f).
Now consider f, f ′ ∈ C∞c (s(F )) in general. Let {Ωi}i≥1 be a sequence of increasing open compact

subsets of srs(F ) such that
∞⋃
i≥1

Ωi = srs(F ). Such a consequence exists. For example, one may take

Ωi := {X ∈ srs(F ) : ‖X‖ ≤ i} for all i ≥ 1, where ‖ · ‖ denotes the abstract norm on srs(F ) defined by
[35, (18.2.1) in §18.2]. From [35, Proposition 18.1.(3)], since ‖ · ‖ is continuous, we deduce that Ωi is

compact for all i ≥ 1. It is obvious that Ωi is open for all i ≥ 1 and that
∞⋃
i≥1

Ωi = srs(F ). For all i ≥ 1,

denote by 1Ωi the characteristic function of Ωi. Let fi := f1Ωi and f ′i := f ′1Ωi .
Let M ∈ L G,ω(M0) and c ∈ Lell(m∩s). For all X ∈ creg(F ), by Lebesgue’s dorminated convergence

theorem, we have lim
i→∞

IGG (η,X, f ′i) = IGG (η,X, f ′). For X ∈ (m ∩ srs)(F ), because ÎGM (η,X, ·) ∈ Ds

(see Proposition 8.1), again by Lebesgue’s dorminated convergence theorem, we have lim
i→∞

ÎGM (η,X, fi) =

ÎGM (η,X, f). Because of Lemma 3.3 applied to Supp(f ′), there exists a compact subset r ⊆ c(F ) such
that for all X ∈ creg(F )− r, IGG (η,X, f ′i) = 0 for all i ≥ 1. By Lemma 8.3.4) applied to r and Supp(f ′),
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there exists c > 0 and N ∈ N such that

|ÎGM (η,X, fi)| =
∫
s(F )

|fi(Y )̂iGM (η,X, Y )||Ds(Y )|−1/2
F dY

≤ c sup{1,− log |Ds(X)|F }N
∫
s(F )

|f(Y )| sup{1,− log |Ds(Y )|F }N |Ds(Y )|−1/2
F dY

for all i ≥ 1 and X ∈ r ∩ creg. For all X ∈ srs(F ), we also have |IGG (η,X, f ′i)| ≤ IX(|f ′|), where
IX is defined by (3.1.3). Combining Corollary 3.15, Corollary 3.6 and Proposition 3.13, we deduce

that {ÎGM (η,X, fi)I
G
G (η,X, f ′i)}i≥1 is bounded by an integrable function on creg(F ). Using Lebesgue’s

dorminated convergence theorem once again, we obtain∫
creg(F )

ÎGM (η,X, f)IGG (η,X, f ′)dX = lim
i→∞

∫
creg(F )

ÎGM (η,X, fi)I
G
G (η,X, f ′i)dX.

Therefore,

IG(η, f, f ′) = lim
i→∞

IG(η, fi, f
′
i).

By exchanging f and f ′ and using the regular semi-simple support case that we have proved, we draw
the conclusion. �

Corollary 9.3. Let M,L ∈ L G,ω(M0), X ∈ (m ∩ srs)(F )ell and Y ∈ (l ∩ srs)(F )ell. Then we have
the equality

(−1)dim(AM/AG)îGM (η,X, Y ) = (−1)dim(AL/AG)îGL (η, Y,X).

Proof. By Lemma 8.3.2), up to MH(F )-conjugation on X and LH(F )-conjugation on Y , we may
and shall suppose that there exists c1 ∈ Tell(m ∩ s) and c2 ∈ Tell(l ∩ s) such that X ∈ c1,reg(F ) and
Y ∈ c2,reg(F ). As in the proof of Proposition 7.2, we can choose an open compact neighbourhood V1 of X
in c1,reg (resp. V2 of Y in c2,reg) such that if two elements in V1 (resp. V2) are H(F )-conjugate, then they
are the same. Let f, f ′ ∈ C∞c (s(F )) with Supp(f) ⊆ Ad(H(F ))(V2) and Supp(f ′) ⊆ Ad(H(F ))(V1). By

an analogous calculation to that of JG(η, f̂ , f ′) in the proof of Proposition 7.2, with the help of Lemma
8.3.2) and Proposition 4.1.3), we show the equalities

IG(η, f, f ′) = (−1)dim(AM/AG)

∫
V1

ÎGM (η,X1, f)IGG (η,X1, f
′)dX1

and

ÎGM (η,X1, f) =

∫
V2

îGM (η,X1, Y2)IGG (η, Y2, f)dY2

for all X1 ∈ V1 by (7.1.2). Then

IG(η, f, f ′) = (−1)dim(AM/AG)

∫
V1×V2

îGM (η,X1, Y2)IGG (η, Y2, f)IGG (η,X1, f
′)dY2dX1.

Similarly, we have

IG(η, f ′, f) = (−1)dim(AL/AG)

∫
V2×V1

îGL (η, Y2, X1)IGG (η,X1, f
′)IGG (η, Y2, f)dX1dY2.

By Harish-Chandra’s submersion principle (Lemma 3.8), when f ′ varies, the function X1 7→ IX1
(f ′) =

κ(X1)IGG (η,X1, κf
′) on V1 runs over all C∞c (V1), so the function IGG (η, ·, f ′) on V1 also runs over all

C∞c (V1). Similarly, when f varies, the function IGG (η, ·, f) on V2 runs over all C∞c (V2). Then from the
invariant trace formula (Theorem 9.1), we deduce that

(−1)dim(AM/AG)îGM (η,X1, Y2) = (−1)dim(AL/AG)îGL (η, Y2, X1)

for all (X1, Y2) ∈ V1 × V2. We conclude by (X,Y ) ∈ V1 × V2. �
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9.2. The case of (G′, H ′). For f, f ′ ∈ C∞c (s′(F )), we define

IH
′
(f, f ′) :=

∑
M ′∈LH′ (M ′0)

|WH′

0 ||WM ′

0 |−1(−1)dim(AM′/AH′ )
∑

c′∈Tell(m̃′∩s′)

|W (M ′, c′)|−1

∫
c′reg(F )

ÎH
′

M ′(Y, f)IH
′

H′ (Y, f
′)dY.

(9.2.1)

From Proposition 4.4.2), for any c′ ∈ Tell(m̃′ ∩ s′), IH
′

H′ (·, f ′) vanishes outside a compact subset of c′(F ),
so one may apply Lemma 8.8.5) to show that this expression is absolutely convergent with the help of
Proposition 3.20 and Corollary 3.6. One may extend in the obious way the definition (9.2.1) to the

symmetric pair (M̃ ′,M ′,Ad(α)), where M ′ ∈ LH′(M ′0).

Theorem 9.4 (Invariant trace formula). For all f, f ′ ∈ C∞c (s′(F )), we have the equality

IH
′
(f, f ′) = IH

′
(f ′, f).

Proof. We may apply the argument of Theorem 9.1 with obvious modifications. It is deduced
from the noninvariant trace formula (Theorem 5.12) and other results that we have prepared in previous
sections. �

Corollary 9.5. Let M ′, L′ ∈ LH′(M ′0), Y ∈ (m̃′ ∩ s′rs)(F )ell and X ∈ (l̃′ ∩ s′rs)(F )ell. Then we
have the equality

(−1)dim(AM′/AH′ )îH
′

M ′(Y,X) = (−1)dim(AL′/AH′ )îH
′

L′ (Y,X).

Proof. We may apply the argument of Corollary 9.3 by using the invariant trace formula (Theorem
9.4) and consulting the proof of Proposition 7.10. �

10. A vanishing property at infinity

10.1. The case of (G,H). The following proposition is an analogue of [14, Proposition 2.2].

Proposition 10.1. Let M ∈ L G,ω(M0),M 6= G. Let X ∈ (m∩ srs)(F ) and Y ∈ srs(F ). Then there
exists N ∈ N such that if λ ∈ F× satisfies vF (λ) < −N , we have

îGM (η, λX, Y ) = 0.

Remark 10.2. A limit formula at infinity for îGG(η, λX, Y ) in the spirit of Laplace transform is given
in [58, Proposition 7.1] (see also [57, Proposition 6.4]), which is an analogue of [51, Proposition VIII.1].

Proof of Proposition 10.1. We shall imitate the proof of [14, Proposition 2.2].
By Lemma 8.3.2), up to H(F )-conjugation on Y , we may and shall suppose that there exists L ∈

L G,ω(M0) and an L-elliptic Cartan subspace c ⊆ l ∩ s such that Y ∈ creg(F ). By Lemma 8.2, we have
the equality

îGM (η, λX, Y ) = ĵGM (η, λX, Y ).

Thus it suffices to prove that there exists N ∈ N such that if λ ∈ F× satisfies vF (λ) < −N , we have

ĵGM (η, λX, Y ) = 0.

Fix an OF -lattice kh (resp. ks) of h(F ) (resp. s(F )). Denote by k̃s the dual OF -lattice of ks in s(F ),
i.e.,

k̃s := {Z ∈ s(F ) : ∀Z ′ ∈ ks,Ψ(〈Z,Z ′〉) = 1}.
Set

c(X) := {X ′ ∈ c(F ) : ∃x ∈ H(F ),Ad(x)(X ′) = X},
which is a finite (perhaps empty) set. For λ ∈ F×, choose hλ ∈ N such that both of the functions

ĵGM (η, λX, ·) and |Ds(·)|F are constant on Y +$hλks.

Let f (resp. f ′) ∈ C∞c (s(F )) be the characteristic function of Y +$hλks (resp. $−hλ k̃s). Then for
Z ∈ s(F ), we see that

f̂(Z) =cΨ(s(F ))

∫
Y+$hλks

Ψ(〈Z,Z ′〉)dZ ′ = cΨ(s(F ))Ψ(〈Z, Y 〉)
∫
$hλks

Ψ(〈Z,Z ′〉)dZ ′

=cΨ(s(F ))vol($hλks)Ψ(〈Z, Y 〉)f ′(Z).
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Now there are two expressions for JGM (η, λX, f̂). One the one hand,
(10.1.1)

JGM (η, λX, f̂) =

∫
s(F )

f(Z)ĵGM (η, λX,Z)|Ds(Z)|−1/2
F dZ = vol($hλks)ĵ

G
M (η, λX, Y )|Ds(Y )|−1/2

F .

On the other hand,

JGM (η, λX, f̂) = |Ds(λX)|1/2F

∫
HλX(F )\H(F )

f̂(Ad(x−1)(λX))η(Nrd(x))vGM (x)dx

=cΨ(s(F ))vol($hλks)|Ds(λX)|1/2F

∫
HX(F )\H(F )

Ψ(〈Ad(x−1)(λX), Y 〉)f ′(Ad(x−1)(λX))η(Nrd(x))vGM (x)dx.

(10.1.2)

Fix an open neighbourhood Vh of 0 in h(F ) which is invariant by the adjoint action of H(F ) such
that a homeomorphic exponential map is defined on Vh. Choose a ∈ N verifying the following conditions:

(1) $akh ⊆ Vh;
(2) Ka := exp($akh) is a subgroup of KH ;
(3) η(Nrd(Ka)) = 1;

(4) the adjoint action of Ka stabilises ks (and thus k̃s).
Fix a set Γ of representatives in H(F ) of double cosets HX(F )\H(F )/Ka. We may and shall suppose

that if x ∈ Γ and y ∈ HX(F )xKa verify Ad(y−1)(X) ∈ c(F ), then Ad(x−1)(X) ∈ c(F ).
The integral in (10.1.2) can be decomposed as∑

x∈Γ

∫
HX(F )\HX(F )xKa

Ψ(〈Ad(y−1)(λX), Y 〉)f ′(Ad(y−1)(λX))η(Nrd(y))vGM (y)dy.

By the conditions (2), (3) and (4) on a respectively, the factors vGM , η and f ′ can be extracted from
the integral. By comparing (10.1.1) and (10.1.2), since 〈·, ·〉 is invariant by the adjoint action of Ka, we
obtain

ĵGM (η, λX, Y ) =cΨ(s(F ))|Ds(λX)Ds(Y )|1/2F

∑
x∈Γ

f ′(Ad(x−1)(λX))η(Nrd(x))vGM (x)

∫
HX(F )\HX(F )xKa

Ψ(〈Ad(y−1)(λX), Y 〉)dy

=cΨ(s(F ))|Ds(λX)Ds(Y )|1/2F vol(Ka)−1
∑
x∈Γ

vol(HX(F )\HX(F )xKa)f ′(Ad(x−1)(λX))

η(Nrd(x))vGM (x)i(x),

(10.1.3)

where

i(x) :=

∫
Ka

Ψ(〈Ad(x−1)(λX),Ad(y)(Y )〉)dy.

For x ∈ Γ, consider the map Ka → F defined by

(10.1.4) ∀y ∈ Ka, y 7→ 〈Ad(x−1)(X),Ad(y)(Y )〉.
Its differential at the point y0 ∈ Ka is the map h(F )→ F defined by

(10.1.5) ∀Z ∈ h(F ), Z 7→ 〈Ad(x−1)(X),Ad(y0)([Z, Y ])〉.
Since 〈·, ·〉 is invariant by the adjoint action of G(F ), we see that

〈Ad(x−1)(X),Ad(y0)([Z, Y ])〉 = 〈[Y,Ad(xy0)−1(X)], Z〉.
Because the restriction of 〈·, ·〉 to h(F ) is non-degenerate, the map (10.1.5) is not surjective if and only if

[Y,Ad(xy0)−1(X)] = 0.

Since Y ∈ creg(F ), this condition is equivalent to

Ad(xy0)−1(X) ∈ c(F ).

From our choice of Γ, as y0 ∈ Ka, it implies that

Ad(x−1)(X) ∈ c(F ).

Let
Γ′ := {x ∈ Γ : Ad(x−1)(X) ∈ c(F )},
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which is a finite (perhaps empty) subset of Γ. Then for x ∈ Γ − Γ′, the map (10.1.4) is a submersion.
Define

Ω :=
⋃

x∈Γ−Γ′

HX(F )xKa,

which is an open and closed subset of H(F ). Fix a basis of the F -linear space s(F ). For Z ∈ s(F ), define
its norm ‖Z‖ ∈ R≥0 as the maximum of normalised absolute values of coefficients of Z with respect to

the fixed basis. For Z ∈ s(F )− {0}, define ν(Z) ∈ Z by ‖Z‖ = |$ν(Z)|F . Let SX be the closure of

S0
X := {$−ν(Ad(y−1)(X))Ad(y−1)(X) : y ∈ Ω}

in the unit sphere Ss := {Z ∈ s(F ) : ‖Z‖ = 1}. Then SX is compact. Recall that we denote by N s the
set of nilpotent elements in s(F ).

Lemma 10.3. We have
SX − S0

X ⊆ N s − {0}.

Proof of Lemma 10.3. Since SX ⊆ Ss, it is obvious that {0} /∈ SX . Let Z ∈ SX . There exists a
sequence {yi} in Ω such that when i→∞,

$−ν(Ad(y−1
i )(X))Ad(y−1

i )(X)→ Z.

We distinguish two cases.
i) Suppose that the sequence {‖Ad(y−1

i )(X)‖} remains bounded. By Harish-Chandra’s compact-
ness lemma for symmetric spaces (Lemma 3.2), the projection of the sequence {yi} to HX(F )\H(F ) is
contained in a compact subset. By taking a subsequence, since the projection of Ω to HX(F )\H(F ) is
closed, we may assume that when i→∞, Ad(y−1

i )(X)→ Ad(y−1)(X) with y ∈ Ω. Thus Z ∈ S0
X in this

case.
ii) Suppose that the sequence {‖Ad(y−1

i )(X)‖} is unbounded. By taking a subsequence, we may

assume that when i → ∞, ‖Ad(y−1
i )(X)‖ → +∞. The eigenvalues of ad(Ad(y−1

i )(X)) are the same as

those of ad(X); here ad(Ad(y−1
i )(X)) and ad(X) are viewed as linear endomorphisms of g. Thus the

eigenvalues of ad($−ν(Ad(y−1
i )(X))Ad(y−1

i )(X)) tend to zero when i→∞. Hence ad(Z) is nilpotent. We
shall prove that Z ∈ N s in this case.

Since g is reductive, one has g = z⊕gder, where z denotes the centre of g and gder denotes the derived
algebra of g, and gder is semisimple. Let Z = Z1 + Z2 with Z1 ∈ z(F ) and Z2 ∈ gder(F ). Since ad(Z) is
nilpotent as a linear endomorphism of g, we deduce that ad(Z2) is nilpotent as a linear endomorphism
of gder. As gder is semisimple, we obtain that Z2 is a nilpotent element in g. Let X = X1 + X2

with X1 ∈ z(F ) and X2 ∈ gder(F ). The projection of $−ν(Ad(y−1
i )(X))Ad(y−1

i )(X) to z(F ) is equal to

$−ν(Ad(y−1
i )(X))X1, which tends to zero when i→∞. Thus Z1 = 0, and Z = Z2 is a nilpotent element

in g. Hence Z ∈ N s. �

For U ∈ N s − {0}, consider the map Ka → F defined by

(10.1.6) ∀y ∈ Ka, y 7→ 〈U,Ad(y)(Y )〉.
Its differential at the point y0 ∈ Ka is the map h(F )→ F defined by

∀Z ∈ h(F ), Z 7→ 〈U,Ad(y0)([Z, Y ])〉 = 〈[Y,Ad(y−1
0 )(U)], Z〉

by the G(F )-invariance of 〈·, ·〉. Since Y ∈ creg(F ) and Ad(y−1
0 )(U) ∈ N s − {0}, we have

[Y,Ad(y−1
0 )(U)] 6= 0.

Then the map (10.1.6) is a submersion by the non-degeneration of 〈·, ·〉 on h(F ).
Using Lemma 10.3 and combining our discussion on the maps (10.1.4) and (10.1.6), we deduce that

there exists an open compact neighbourhood S̃X of SX in Ss such that the map ϕ : Ka× S̃X → F × S̃X
defined by

∀(y, Z) ∈ Ka × S̃X , (y, Z) 7→ (〈Z,Ad(y)(Y )〉, Z)

is a submersion. Since any submersion is open, the image of ϕ (denoted by Im(ϕ)) is an open compact

subset of F × S̃X . Then the map ϕ induces a surjective submersion ϕ′ : Ka × S̃X → Im(ϕ). Applying
Harish-Chandra’s submersion principle [26, Theorem 11] to ϕ′, there exists a function φ ∈ C∞c (Im(ϕ))
such that for all Φ′ ∈ C∞c (Im(ϕ)),∫

Ka×S̃X
Φ′(〈Z,Ad(y)(Y )〉, Z)dZdy =

∫
Im(ϕ)

φ(t, Z)Φ′(t, Z)dZdt.
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Fix such a φ. Denote by C∞(F × S̃X) the space of locally constant, complexed-valued functions on

F × S̃X . For Φ ∈ C∞(F × S̃X), the restriction of Φ to Im(ϕ) belongs to C∞c (Im(ϕ)), so we obtain∫
Ka×S̃X

Φ(〈Z,Ad(y)(Y )〉, Z)dZdy =

∫
F×S̃X

φ(t, Z)Φ(t, Z)dZdt.

By taking Φ(t, Z) := Ψ(µt)β(Z) with µ ∈ F and β ∈ C∞c (S̃X), we deduce that for all Z ∈ S̃X ,∫
Ka

Ψ(µ〈Z,Ad(y)(Y )〉)dy =

∫
F

φ(t, Z)Ψ(µt)dt.

Since Im(φ) is an open compact subset of F × S̃X , we see that φ ∈ C∞c (Im(ϕ)) ⊆ C∞c (F × S̃X) =

C∞c (F )⊗C∞c (S̃X). Suppose that φ =
∑

1≤j≤m
cj ·ξj⊗χj with cj ∈ C, ξj ∈ C∞c (F ) and χj ∈ C∞c (S̃X). Then∫

F

φ(t, Z)Ψ(µt)dt =
∑

1≤j≤m

cj ξ̂j(µ)χj(Z),

where ξ̂j ∈ C∞c (F ) is the Fourier transform of ξj . We see that there exists N0 ∈ N such that for all
µ ∈ F× satisfying vF (µ) < −N0 and all Z ∈ SX , we have∫

Ka

Ψ(µ〈Z,Ad(y)(Y )〉)dy = 0.

Fix such an N0.
Recall that for x ∈ Γ,

i(x) =

∫
Ka

Ψ(µ〈Z,Ad(y)(Y )〉)dy,

where µ := λ$ν(Ad(x−1)(X)) and Z := $−ν(Ad(x−1)(X))Ad(x−1)(X). For x ∈ Γ− Γ′, we have Z ∈ SX , so
i(x) = 0 if

vF (λ) + ν(Ad(x−1)(X)) < −N0.

Set
ν0 := sup

x∈Γ
ν(Ad(x−1)(X)),

which is finite thanks to Harish-Chandra’s compactness lemma for symmetric spaces (Lemma 3.2). Now
let

N := N0 + ν0.

Suppose that vF (λ) < −N . From (10.1.3), to show ĵGM (η, λX, Y ) = 0, it suffices to prove vGM (x) = 0 for
all x ∈ Γ′.

For x ∈ Γ′, we have Ad(x−1)(X) ∈ creg(F ). Then Ad(x−1)(HX) = Tc. Since X ∈ (m ∩ srs)(F ),
we see that Ad(x−1)(AM ) is an F -split torus in Tc. As c ⊆ l ∩ s is L-elliptic, AL is the maximal
F -split torus in Tc. Thus Ad(x−1)(AM ) ⊆ AL. Then AM ⊆ Ad(x)(AL) ⊆ Ad(x)(AM0

). We deduce
that Ad(x)(AM0

) is a maximal F -split torus in MH , so it is MH(F )-conjugate to AM0
. Therefore,

x ∈MH(F )NormH(F )(M0) ⊆MH(F )KH . Consequently, we have vGM (x) = 0 and conclude. �

10.2. The case of (G′, H ′).

Proposition 10.4. Let M ′ ∈ LH′(M ′0),M ′ 6= H ′. Let Y ∈ (m̃′ ∩ s′rs)(F ) and X ∈ s′rs(F ). Then
there exists N ∈ N such that if λ ∈ F× satisfies vF (λ) < −N , we have

îH
′

M ′(λY,X) = 0.

Proof. It is almost the same as the proof of Proposition 10.1, except that one needs to use Lemma
8.8.2) and Lemma 8.7. �
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CHAPTER 5

On certain identities between Fourier transforms of weighted
orbital integrals on infinitesimal symmetric spaces of

Guo-Jacquet

In an infinitesimal variant of Guo-Jacquet trace formulae, the regular semi-simple terms are expressed
as noninvariant weighted orbital integrals on two global infinitesimal symmetric spaces. We prove some
relations between the Fourier transforms of invariant weighted orbital integrals on the corresponding
local infinitesimal symmetric spaces. These relations should be useful in the noninvariant comparison of
the infinitesimal variant of Guo-Jacquet trace formulae.

1. Introduction

Inspired by Jacquet’s new proof [29] of Waldspurger’s well-known result [50] on the central values of
automorphic L-functions for GL2, Guo-Jacquet have suggested comparison of two relative trace formulae
in [23] in order to generalise this theorem to higher ranks. This approach has also been followed by Feigon-
Martin-Whitehouse [21] via a simple trace formula. However, if one wants to remove the restrictive
conditions in [21], some additional terms in the Guo-Jacquet trace formula other than relative orbital
integrals can not be neglected.

Our starting point is an infinitesimal analogue of Guo-Jacquet trace formulae and their comparison.
It means that we first work on the tangent space of a symmetric space (called an infinitesimal symmetric
space). A reason for this is that at the infinitesimal level, the spectral side of the relative trace formula is
replaced by the Fourier transform of the geometric side where the harmonic analysis is simpler. Another
reason is that the comparison of trace formulae for infinitesimal symmetric spaces should imply the
comparison of the original relative trace formulae for symmetric spaces. For example, one may consult
Zhang’s proof of the transfer of relative local orbital integrals [58].

We have established an infinitesimal variant of Guo-Jacquet trace formulae in Chapter 2 and Chapter
3, where the main (namely regular semisimple) terms are explicit weighted orbital integrals. These
distributions should be the first ones to be studied and compared after orbital integrals. However, some
new difficulties arise since these distributions are noninvariant. Instead of making the trace formula
invariant as Arthur did (see [5] and others), we would like to follow Labesse’s proposal [37] of noninvariant
comparison which seems more direct. For example, we have established the weighted fundamental lemma
for infinitesimal Guo-Jacquet trace formulae in Chapter 3 as a noninvariant and infinitesimal avatar of
Guo’s fundamental lemma [23]. The strategy of noninvariant comparison has been also adopted in [14]
and [15] on the stable base change. These works provide some indications to our work.

Let us recall some basic objects in the local setting. Let E/F be a quadratic extension of local fields
of characteristic zero. Let η be the quadratic character of F/NE× attached to E/F , where NE× denotes
the norm of E×. The first symmetric pair is (G,H) = (GL2n, GLn × GLn). Let s ' gln ⊕ gln be the
corresponding infinitesimal symmetric space. Denote by srs the set of regular semi-simple elements in s
(see Section 2.2). Let M be an ω-stable (see Section 2.3) Levi subgroup of G, and X ∈ (m ∩ srs)(F ).
Let f be a locally constant and compactly supported function on s(F ). We define the weighted orbital
integral JGM (η,X, f) by (2.3.2). We have proved in Chapter 4 that its Fourier transform is represented

by a locally constant function ĵGM (η,X, ·) on srs(F ). We have also defined the (H, η)-invariant weighted
orbital integrals IGM (η,X, f) in loc. cit. by Arthur’s standard method, whose Fourier transform is

represented by a locally constant function îGM (η,X, ·) on srs(F ). The second symmetric pair is (G′, H ′),
where G′ is the group of invertible elements in a central simple algebra over F containing E, and H ′ is
the centraliser of E× in G′. It is inspired by the related local conjecture of Prasad and Takloo-Bighash
[44] and more general than Guo-Jacquet’s original setting. Denote by s′ the corresponding infinitesimal
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symmetric space. For a Levi subgroup M ′ of H ′ and Y ∈ (m̃′ ∩ s′rs)(F ) (see Section 2.4), we similarly

obtain local constant functions ĵH
′

M ′(Y, ·) and îH
′

M ′(Y, ·) on srs(F ).

The functions ĵGM (η,X, ·) is decomposed as their invariant analogues îGM (η,X, ·) and weight functions

vGM . The decomposition for the functions ĵH
′

M ′(Y, ·) is similar. In order to obtain relations between

ĵGM (η,X, ·) and ĵH
′

M ′(Y, ·), which is part of the noninvariant comparison of the infinitesimal variant of

Guo-Jacquet trace formulae, we shall focus on the relations between îGM (η,X, ·) and îH
′

M ′(Y, ·) in this
paper.

There is an injection M ′ 7→ M from the set of Levi subgroups of H ′ into the set of ω-stable Levi
subgroups of G (see Section 4). We fix such a matching pair of Levi subgroups. We define the notion

of matching orbits between srs(F ) and s′rs(F ) by Definition 4.1. For X =

(
0 A
B 0

)
∈ srs(F ), we denote

η(X) := η(det(AB)). Our main result is as follows.

Theorem 1.1 (see Corollary 5.6 and Proposition 5.9). 1) Let X ∈ (m∩srs)(F ) and Y ∈ (m̃′∩s′rs)(F )
have M -matching orbits. Let U ∈ srs(F ) and V ∈ s′rs(F ) have matching orbits. Then we have the equality

γψ(h(F ))−1κ(X)κ(U )̂iGM (η,X,U) = γψ(h′(F ))−1îH
′

M ′(Y, V ),

where γψ(h(F )) and γψ(h′(F )) are Weil constants (see Section 2.2).
2) Let X ∈ (m ∩ srs)(F ) and U ∈ srs(F ). If η(X) 6= η(U), then

îGM (η,X,U) = 0.

This theorem generalises some of the main results in [58] to the weighted context. As in loc. cit., we
use Waldspurger’s global method on the endoscopic transfer [52] to show 1) and a local method to show
2). To show 1), we define a notion of matching weighted orbital integrals (see Definition 5.2) and prove
that this property commutes with Fourier transform under some restriction (see Theorem 5.3). Then

we may extract the relations between îGM (η,X, ·) and îH
′

M ′(Y, ·) with the help of Labesse’s lemma [37,
Lemma 1.7.1]. These steps are close to those in [14]. However, there is an important distinction. While
the weighted fundamental lemma for inner forms is tautological in loc. cit., the vanishing condition of
Lemma 8.1 here is more subtle. It makes the comparison of global trace formulae by Waldspurger’s
method, which is a simple case of the noninvariant comparison, even trickier. We translate our definition
of matching orbits into the language of cohomology (see Sections 4.3 and 4.4) and use abelian Galois
cohomology (see [38]) to go through some technical difficulties.

This paper is organised as follows. We introduce some notations and recall some preliminaries in
Section 2. Then we recall Labesse’s lemma in Section 3. We define the notion of matching orbits and
give a cohomological criterion in Section 4. Our main results are stated in Section 5. The rest of the
paper is devoted to the proof Proposition 5.5 by Waldspurger’s global method. We recall limit formulae
of îGM (η,X, ·) and îH

′

M ′(Y, ·), the weighted fundamental lemma and an infinitesimal variant of Guo-Jacquet
trace formulae in Sections 6, 8 and 10 respectively. We explain the construction of test functions and the
globalisation of local data in Sections 7 and 9. These results are prepared for our final proof in Section
11.

2. Notation and preliminaries

2.1. Groups. Let F be a local field of characteristic zero or a number field. Denote by OF the ring
of integers of F . Let E be a quadratic extension of F . If F is a local (resp. global) field, denote by η
the quadratic character of F×/NE× (resp. A×/F×) attached to E/F , where NE× = NE/FE

× denotes

the norm of E× in F× (resp. A = AF denotes the ring of adèles of F ).

Let G be a reductive group over F . Denote by rkF (G) the F -rank of G. Let Ĝ be the Langlands

dual of G which is a complex reductive group. All algebraic groups (except Ĝ) and varieties are assumed
to be defined over F until further notice. Denote by Gad the adjoint group of G, by Gder the derived
subgroup of G and by Gsc the simple connected cover of Gder. Denote by ZG the centre of G and by
CG := G/Gder the cocentre of G. Fix an algebraic closure F of F . Let Γ := Gal(F/F ). For an F -variety
V , we sometimes abuse notation and also write V for V (F ) when there is no confusion.

We use a minuscule Fraktur letter to denote the Lie algebra of its corresponding algebraic group.
For example, we write g := Lie(G). Denote by Ad the adjoint action of G on itself or g. If G acts on an
F -variety V and X ∈ V (F ), denote by GX the centraliser of X in G. If v is an F -subvariety of g, denote
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by vX the centraliser of X ∈ g(F ) in v. If θ is an automorphism on G, denote by Gθ the subgroup of fix
points of G under θ.

Fix a Levi F -factor M0 of a minimal parabolic F -subgroup of G. By a Levi subgroup of G, we mean
a Levi F -factor of some parabolic F -subgroup of G. For a semi-standard (namely containing M0) Levi
subgroup M of G, denote by FG(M), PG(M) and L G(M) the sets of parabolic F -subgroups of G
containing M , parabolic F -subgroups of G with Levi factor M and Levi subgroups of G containing M
respectively. For P ∈ FG(M0), denote by MP the unique Levi factor containing M0 and by NP the
unipotent radical. Let P be the parabolic subgroup opposite to P .

For M ∈ L G(M0), define the Weyl group of (G,M) by

WG(M) := NormG(F )(M)/M(F ).

In particular, we also write WG
0 := WG(M0). For M,L ∈ L G(M0), denote

TranG(M,L) := {w ∈WL
0 \WG

0 : Ad(w)(M) ⊆ L}.

Denote by AG the maximal F -split central torus of G. Let X(G)F be the group of F rational
characters of G. Define the R-linear space

aG := HomZ(X(G)F ,R),

whose dual space is denoted by a∗G. Fix a scalar product on aM0
which is invariant under the action

of WG
0 , from which we deduce Haar measures on all subspaces of aM0

. Denote by aGM the orthogonal
complement of aG in aM .

Let D a central division algebra over F . Denote by deg(D) the degree of D, i.e., dimF (D) = deg(D)2.
Denote by GLn,D the reductive group over F whose F -points are GLn(D). For x ∈ gln(D), we write
Nrd(x),Trd(x) and Prdx for its reduced norm, reduced trace and reduced characteristic polynomial
respectively. If D = F , we also write them as det(x), Tr(x) and χx respectively.

Now suppose that F is a local field of characteristic zero. Denote by | · |F the normalised absolute
value on F . Define a homomorphism HG : G(F )→ aG by

〈HG(x), χ〉 = log(|χ(x)|F )

for all x ∈ G(F ) and χ ∈ X(G)F . Fix a maximal compact subgroup K of G(F ) which is admissible
relative to M0 in the sense of [5, p. 9]. In this paper, we choose the standard maximal compact subgroup
when G(F ) = GLn(D), where D is a central division algebra over a finite field extension of F . That
is to say, if F is non-archimedean, K = GLn(OD) with OD being the ring of integers of D (see [54,
p. 191]), while if F is archimedean, K is the unitary group with respect to some hermitian form (see
[54, p. 199]). We may extend the function HM to a map HP : G(F ) → aMP

using the decomposition
G(F ) = MP (F )NP (F )K.

Fix the Haar measure on K such that vol(K) = 1. For P ∈ FG(M0), fix a Haar measure on NP (F )
such that ∫

NP (F )

exp(2ρP (HP (n)))dn = 1,

where ρP is the half of the sum of roots (with multiplicity) associated to P . For M ∈ L G(M0), there
are compatible Haar measures on G(F ) and M(F ) in the sense of [8, (1.1), p. 12] such that for all
P ∈PG(M) and all continuous and compactly supported function f on G(F ), we have the equality∫

G(F )

f(x)dx =

∫
M(F )×NP (F )×K

f(mnk)dkdndm.

We shall choose such measures.
Let V be an F -linear space of finite dimension. If F is non-archimedean, denote by C∞c (V ) = S(V ) the

space of locally constant, compactly supported and complex-valued functions on V . If F is archimedean,
denote by S(V ) the space of Schwartz functions on V . For f ∈ S(V ), denote by Supp(f) its support.

Fix a continuous and nontrivial unitary character ψ : F → C×. Let 〈·, ·〉 be a non-degenerate
symmetric bilinear form on g(F ) which is invariant under conjugation. Let V be an F -linear subspace of
g(F ), on which the restriction of 〈·, ·〉 is non-degenerate. It is equipped with the unique self-dual Haar

measure with respect to ψ(〈·, ·〉). For f ∈ S(V ), define its Fourier transform f̂ ∈ S(V ) by

∀X ∈ V, f̂(X) :=

∫
V

f(Y )ψ(〈X,Y 〉)dY.
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Let M ∈ L G(M0) and Q ∈ FG(M). By [5, p. 40-41], for x ∈ G(F ),

vP (λ, x) := e−λ(HP (x)),∀λ ∈ ia∗M , P ∈PG(M),

is a (G,M)-family in the sense of [5, p. 36]. Define the weight function

(2.1.1) vQM (x) := lim
λ→0

∑
{P∈PG(M):P⊆Q}

vP (λ, x)θQP (λ)−1,∀x ∈ G(F ).

Let V be an F -linear space of finite dimension equipped with a non-degenerate symmetric bilinear
form q(·, ·) and a Haar measure. Denote by γψ(q) the Weil constant given in [53, Théorème 2].

2.2. Symmetric pairs. Let F be a local field of characteristic zero or a number field. A symmetric
pair in the sense of [1, Definition 7.1.1] is a triple (G,H, θ) where H ⊆ G are a pair of reductive groups,
and θ is an involution of G such that H = Gθ. Let s be the tangent space at the neutral element of the
symmetric space S := G/H. We shall always view s as a subspace of g. Thus

s = {X ∈ g : (dθ)(X) = −X},
on which H acts by the restriction of Ad. By [1, Lemma 7.1.9], there exists a G-invariant θ-invariant
non-degenerate symmetric bilinear form on g.

An element X ∈ s is said to be semi-simple if Ad(H)(X) is Zariski closed in s. If F is a local field of
characteristic zero, X ∈ s(F ) is semi-simple if and only if Ad(H(F ))(X) is closed in s(F ) in the analytic
topology by [45, Fact A, p. 108-109]. We say an element X ∈ s is regular if HX has minimal dimension.
Denote by srs the subset of s consisting of regular semi-simple elements in s.

Now suppose that F is a local field of characteristic zero. A Cartan subspace of s is defined as a
maximal abelian subspace c ⊆ s defined over F consisting of semi-simple elements. Denote by T s the
set of Cartan subspaces of s. Fix a (finite) set of representatives T s

0 for H(F )-conjugacy classes in T s.
Let c ∈ T s. Denote by Tc the centraliser of c in H, which is a torus. Define the Weyl group

W (H, c) := NormH(F )(c)/Tc(F ).

For c1, c2 ∈ T s, denote by W (H, c1, c2) the set of isomorphisms from c1 onto c2 induced by Ad(x) for
some x ∈ H(F ). If c1 = c2, we see that W (H, c1, c1) is nothing but W (H, c1) (viewed as a set).

For c ∈ T s and X ∈ (c ∩ srs)(F ), define the Weyl discriminant factor

|Ds(X)|F := |det(ad(X)|h/tc⊕s/c)|
1/2
F .

Let 〈·, ·〉 be a G-invariant θ-invariant non-degenerate symmetric bilinear form on g. For any F -linear
subspace v of g(F ) such that the restriction of 〈·, ·〉 on v is non-degenerate, denote by γψ(v) the Weil
constant associated to v. Let c ∈ T s. For X,Y ∈ (c∩ srs)(F ), define a bilinear form qX,Y on h(F )/tc(F )
by

qX,Y (Z,Z ′) := 〈[Z,X], [Y,Z ′]〉.
It is non-degenerate and symmetric and we have qX,Y = qY,X . Write

(2.2.1) γψ(X,Y ) := γψ(qX,Y ).

2.3. The case of (G,H). Let F be a local field of characteristic zero or a number field. Let
G := GL2n and denote by H := GLn × GLn its subgroup via diagonal embedding. In fact, H is the

subgroup of fixed points of the involution Ad(ε) on G, where ε :=

(
1n

−1n

)
. We shall embed G into

g in the standard way. For an F -subvariety v of g, we write v× := v ∩ G. Recall that srs ⊆ s× in our
case. Let 〈·, ·〉 be the non-degenerate symmetric bilinear form on g(F ) defined by

(2.3.1) 〈X,Y 〉 := Tr(XY ),∀X,Y ∈ g(F ),

which is invariant by the adjoint action of G(F ) and Ad(ε).

Let M0 be the group of diagonal matrices in G. Set ω :=

(
0 1n
1n 0

)
∈ G(F ). For P ∈ FG(M0),

we say that P is “ω-stable” if ω ∈ P . Denote by FG,ω(M0) the subset in FG(M0) consisting of ω-
stable parabolic subgroups. For M ∈ L G(M0), we say that M is “ω-stable” if M = MP for some
P ∈ FG,ω(M0). Denote by L G,ω(M0) the subset in L G(M0) consisting of ω-stable Levi subgroups.
Let An be the group of diagonal matrices in GLn. Recall that there is a bijection between L GLn(An)

and L G,ω(M0) induced by Mn 7→M =

(
mn mn
mn mn

)×
. We shall always write Mn for the preimage of M
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under this bijection. Notice that if M ∈ L G,ω(M0) and Q ∈ FG(M), then Q ∈ FG,ω(M0). There is

also a bijection between FGLn(An) and FG,ω(M0) induced by Pn 7→ P =

(
pn pn
pn pn

)×
. We shall always

write Pn for the preimage of P under this bijection. For c ∈ T s and L ∈ L G,ω(M0), define

W (H, c, l ∩ s) :=
⊔

c2∈T l∩s
0

W (H, c, c2).

Let M ∈ L G,ω(M0). We say an element X ∈ (m ∩ srs)(F ) is elliptic if AM is the maximal F -split
torus in HX . Denote by (m∩ srs)(F )ell the set of elliptic elements in (m∩ srs)(F ). Write MH := M ∩H.
Denote by Γell((m ∩ srs)(F )) the set of MH(F )-conjugacy classes in (m ∩ srs)(F )ell. For X ∈ srs(F ),
X ∈ srs(F )ell if and only if χX(λ) = p(λ2) for some irreducible polynomial p(λ) ∈ F [λ] of degree n.

Now suppose that F is a local field of characteristic zero. Let P ∈ FG,ω(M0). Then mP =(
mn mn
mn mn

)
and nP =

(
nn nn
nn nn

)
, where we denote Mn := MPn and Nn := NPn . We shall choose

the same Haar measure for any of the four copies in mP (F ) or nP (F ) under these identifications. For
f ∈ S(s(F )), we define a function fηP ∈ S((mP ∩ s)(F )) by

fηP (Z) :=

∫
KH×(nP∩s)(F )

f(Ad(k−1)(Z + U))η(det(k))dUdk

for all Z ∈ (mP ∩ s)(F ). Recall that (f̂)ηP = (fηP )ˆ, and we shall denote it by f̂ηP without confusion.
Let M ∈ L G,ω(M0) and Q ∈ FG(M). For f ∈ C∞c (s(F )) and X ∈ (m∩ srs)(F ), define the weighted

orbital integral

(2.3.2) JQM (η,X, f) := |Ds(X)|1/2F

∫
HX(F )\H(F )

f(Ad(x−1)(X))η(det(x))vQM (x)dx.

For X =

(
0 A
B 0

)
∈ srs(F ), define a transfer factor κ(X) := η(det(A)) (see [58, Definition 5.7]). Then

κ(Ad(x−1)(X)) = η(det(x))κ(X), and the function κ(·)JQM (η, ·, f) is constant on Ad(MH(F ))(X).
Now suppose additionally that F is non-archimedean. Let M ∈ L G,ω(M0) and X ∈ (m ∩ srs)(F ).

In §8.1 in Chapter 4, we deduce from JGM (η,X, ·) an (H, η)-invariant distribution IGM (η,X, ·) on s(F ).

By Propositions 7.2 and 8.1 in Chapter 4, there are unique locally constant functions ĵGM (η,X, ·) and

îGM (η,X, ·) on srs(F ) representing the distributions ĴGM (η,X, ·) and ÎGM (η,X, ·) respectively. That is to
say, for all f ∈ C∞c (s(F )), we have

ĴGM (η,X, f) := JGM (η,X, f̂) =

∫
s(F )

f(U)ĵGM (η,X,U)|Ds(U)|−1/2
F dU

and

ÎGM (η,X, f) := IGM (η,X, f̂) =

∫
s(F )

f(U )̂iGM (η,X,U)|Ds(U)|−1/2
F dU.

2.4. The case of (G′, H ′). Let F be a local field of characteristic zero or a number field. Let E be
a quadratic extension of F . Let g′ be a central simple algebra over F with a fixed embedding E ↪→ g′(F )
as F -algebras. Let h′ := Centg′(E) be the centraliser of E in g′. Then h′(F ) is a central simple algebra

over E by the double centraliser theorem. Denote by G′ := g′
×

(resp. H ′ := h′
×

) the group of invertible
elements in g′ (resp. h′). Let α ∈ E\F be such that α2 ∈ F , so E = F (α). In fact, H ′ is the subgroup
of fixed points of the involution Ad(α) on G′. Denote by s′ the corresponding tangent space of G′/H ′ at

the neutral element. For a linear subspace v′ ⊆ g′, we write v′
×

:= v′ ∩G′. Then s′rs ⊆ s′
×

in our case.
Let 〈·, ·〉 be the non-degenerate symmetric bilinear form on g′(F ) defined by

(2.4.1) 〈X,Y 〉 := Trd(XY ),∀X,Y ∈ g′(F ),

which is invariant by the adjoint action of G′(F ) and Ad(α).
By the Wedderburn-Artin theorem, G′ is isomorphic to GLr,D for some integer r ≥ 1 and some

central division algebra D over F such that r deg(D) is even. By the Noether-Skolem theorem, up to
conjugation by G′(F ), the emdedding H ′ ↪→ G′ is isomorphic to one of the two cases below (see [18,
§2.1 and §3.1] and §3.4 in Chapter 3).

Case I: if there is an embedding E → D as F -algebras, then (G′, H ′) ' (GLr,D,ResE/FGLr,D′),

where D′ := CentD(E) is a central division algebra over E of degree deg(D)
2 . Let M ′0 ' (ResE/FGm,D′)r
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(resp. M ′
0̃
' (Gm,D)r) be the subgroup of diagonal elements in H ′ (resp. G′). Recall that there is a

bijection M ′ 7→ M̃ ′ between LH′(M ′0) and L G′(M ′
0̃
). We shall always denote by M̃ ′ the image of M ′

under this bijection. Notice that M ′ = M̃ ′ ∩H ′ and that we can identify AM ′ with A
M̃ ′

.
Case II: if there is no embedding E → D as F -algebras, then (G′, H ′) ' (GLr,D,ResE/FGL r

2 ,D⊗FE),

where D ⊗F E is a central division algebra over E of degree deg(D). Let M ′0 ' (ResE/FGm,D⊗FE)
r
2

(resp. M ′
0̃
' (Gm,D)r) be the subgroup of diagonal elements in H ′ (resp. G′). Denote by L G′(M ′

0̃
,M ′0)

the subset of elements in L G′(M ′
0̃
) containing M ′0. Recall that there is a bijection M ′ 7→ M̃ ′ between

LH′(M ′0) and L G′(M ′
0̃
,M ′0). We shall always denote by M̃ ′ the image of M ′ under this bijection. Notice

that M ′ = M̃ ′ ∩H ′ and that we can identify AM ′ with A
M̃ ′

.
If rkF (G′) = r, we also write G′r := G′, H ′r := H ′ and s′r := s′. Notice that rkF (H ′r) = r in Case I

(resp. = r
2 ) in Case II. There is also a bijection P ′ 7→ P̃ ′ between FH′(M ′0) and FG′(M̃ ′0) in both of

Case I and Case II. We shall always denote by P̃ ′ the image of P ′ under this bijection. Let τ ∈ D× in
Case I (resp. τ ∈ GL2(D) in Case II) be an element such that Ad(α)(τ) = −τ . Let P ′ ∈ FH′(M ′0).
By Proposition 3.12 in Chapter 3, we have m

P̃ ′
∩ s′ = mP ′τ = τmP ′ and n

P̃ ′
∩ s′ = nP ′τ = τnP ′ . For

c′ ∈ T s′ and L′ ∈ LH′(M ′0), define

W (H ′, c′, l̃′ ∩ s′) :=
⊔

c′2∈T l̃′∩s′
0

W (H ′, c′, c′2).

Let M ′ ∈ LH′(M ′0). We say an element Y ∈ (m̃′ ∩ s′rs)(F ) is elliptic if AM ′ is the maximal F -

split torus in H ′Y . Denote by (m̃′ ∩ s′rs)(F )ell the set of elliptic elements in (m̃′ ∩ s′rs)(F ). Denote by

Γell((m̃′ ∩ s′rs)(F )) the set of M ′(F )-conjugacy classes in (m̃′ ∩ s′rs)(F )ell. For Y ∈ s′rs(F ), Y ∈ s′rs(F )ell

if and only if PrdY (λ) = p(λ2) for some irreducible polynomial p(λ) ∈ F [λ] of degree r deg(D)
2 .

Now suppose that F is a local field of characteristic zero. Let P ′ ∈ FH′(M ′0). We shall choose
the same Haar measures on (m

P̃ ′
∩ s′)(F ) and (n

P̃ ′
∩ s′)(F ) using above identifications induced by τ .

Such Haar measures are independent of the choice of τ . For f ′ ∈ C∞c (s′(F )), we define a function
f ′P ′ ∈ C∞c ((m

P̃ ′
∩ s′)(F )) by

f ′P ′(Z) :=

∫
KH′×(n

P̃ ′
∩s′)(F )

f ′(Ad(k−1)(Z + U))dUdk

for all Z ∈ (m
P̃ ′
∩ s′)(F ). Recall that (f̂ ′)P ′ = (f ′P ′)

ˆ, and we shall denote it by f̂ ′P ′ without confusion.

Let M ′ ∈ LH′(M ′0) and Q′ ∈ FH′(M ′). For f ′ ∈ C∞c (s′(F )) and Y ∈ (m̃′ ∩ s′rs)(F ), define the
weighted orbital integral

JQ
′

M ′(Y, f
′) := |Ds′(Y )|1/2F

∫
H′Y (F )\H′(F )

f ′(Ad(x−1)(Y ))vQ
′

M ′(x)dx.

Now suppose additionally that F is non-archimedean. Let M ′ ∈ LH′(M ′0) and Y ∈ (m̃′ ∩ s′rs)(F ).

In §8.2 in Chapter 4, we deduce from JH
′

M ′(Y, ·) an H ′-invariant distribution IH
′

M ′(Y, ·) on s′(F ). By

Propositions 7.10 and 8.6 in Chapter 4, there are unique locally constant functions ĵH
′

M ′(Y, ·) and îH
′

M ′(Y, ·)
on s′rs(F ) representing the distributions ĴH

′

M ′(Y, ·) and ÎH
′

M ′(Y, ·) respectively. That is to say, for all
f ′ ∈ C∞c (s′(F )), we have

ĴH
′

M ′(Y, f
′) := JH

′

M ′(Y, f̂
′) =

∫
s′(F )

f ′(V )ĵH
′

M ′(Y, V )|Ds′(V )|−1/2
F dV

and

ÎH
′

M ′(Y, f
′) := IH

′

M ′(Y, f̂
′) =

∫
s′(F )

f ′(V )̂iH
′

M ′(Y, V )|Ds′(V )|−1/2
F dV.

3. Labesse’s lemma

Let F be a non-archimedean local field of characteristic zero and E be a quadratic extension of F .
Let η the quadratic character of F×/NE× attached to E/F .

For f ∈ C∞c (s(F )), we say that the weighted orbital integrals of f vanish for nontrivial weights if for
all M ∈ L G,ω(M0), Q ∈ FG(M)−PG(M) and X ∈ (m ∩ srs)(F ), we have

JQM (η,X, f) = 0.
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Suppose that f satisfies this condition. By definition (8.1.1) in Chapter 4, for all M ∈ L G,ω(M0) and
X ∈ (m ∩ srs)(F ), we have the equality

JGM (η,X, f̂) = IGM (η,X, f̂).

For f ′ ∈ C∞c (s′(F )), we say that the weighted orbital integrals of f ′ vanish for nontrivial weights if

for all M ′ ∈ LH′(M ′0), Q′ ∈ FH′(M ′)−PH′(M ′) and Y ∈ (m̃′ ∩ s′rs)(F ), we have

JQ
′

M ′(Y, f
′) = 0.

Suppose that f ′ satisfies this condition. By definition (8.2.1) in Chapter 4, for all M ′ ∈ LH′(M ′0) and
Y ∈ (m̃ ∩ s′rs)(F ), we have the equality

JH
′

M ′(Y, f̂
′) = IH

′

M ′(Y, f̂
′).

Lemma 3.1 (see [37, Lemma I.7.1]). 1) Let f ∈ C∞c (s(F )) be such that Supp(f) ⊆ srs(F ). Then
there exists φ ∈ C∞c (s(F )) such that

(a) Supp(φ) ⊆ Ad(H(F ))(Supp(f));
(b) for all X ∈ srs(F ), JGG (η,X, φ) = JGG (η,X, f);
(c) the weighted orbital integrals of f vanish for nontrivial weights.

2) Let f ′ ∈ C∞c (s′(F )) be such that Supp(f ′) ⊆ s′rs(F ). Then there exists φ′ ∈ C∞c (s′(F )) such that

(a) Supp(φ′) ⊆ Ad(H ′(F ))(Supp(f ′));

(b) for all Y ∈ s′rs(F ), JH
′

H′ (Y, φ
′) = JH

′

H′ (Y, f
′);

(c) the weighted orbital integrals of f ′ vanish for nontrivial weights.

4. Matching of orbits

Let F be a local field of characteristic zero or a number field. Let E be a quadratic extension of F .
Assume that dimF (G) = dimF (G′), i.e., 2n = r deg(D).

4.1. Definition by invariants. There is an injection M ′ 7→ M from LH′(M ′0) into L G,ω(M0)
induced by the injection from the set of partitions of r in Case I (resp. r

2 in Case II) into the set of
partitions of n. We shall always denote by M the image of M ′ under this injection.

Denote by An the affine space over F of dimension n. By Proposition 3.3 in Chapter 2, the map
s → An, X 7→ χX defines a categorical quotient s//H over F , where χX denotes the characteristic
polynomial of X ∈ g. By Proposition 3.5 in Chapter 3, the map s′ → An, Y 7→ PrdY defines a
categorical quotient s′//H ′ over F , where PrdY denotes the reduced characteristic polynomial of Y ∈ g′.
Therefore, we can identify s//H ' An ' s′//H ′. By Proposition 3.3 in Chapter 3, it induces an injection
from the set of H ′(F )-orbits in s′rs(F ) into the set of H(F )-orbits in s(F ).

Definition 4.1. Let X ∈ srs(F ) and Y ∈ s′rs(F ). If χX = PrdY , we say that X and Y have
matching orbits and write X ↔ Y . For X ∈ srs(F ), if there is an element Y ∈ s′rs(F ) such that X ↔ Y ,
we also say that X comes from s′rs(F ).

Remark 4.2. Let M ′ ∈ LH′(M ′0) and X ∈ (m ∩ srs)(F ). Then X comes from s′rs(F ) if and only if

there is an element Y ∈ (m̃′ ∩ s′rs)(F ) such that X ↔ Y , in which case we also say that X comes from

(m̃′ ∩ s′rs)(F ).

Now suppose that F is a local field of characteristic zero. For X =

(
0 A
B 0

)
∈ srs(F ), we denote

η(X) := η(det(AB)).

Lemma 4.3. Let X ∈ srs(F )ell. Then the following conditions are equivalent:

(1) X comes from s′rs(F );
(2) η(X) = (−1)r, where r := rkF (G′);
(3) η(X) = e(G′), where e(G′) denotes the Kottwitz sign of G′ in the sense of [33].

Proof. See the proof of [55, Lemma 2.7] for (1)⇔(2). Now we show (2)⇔(3). Let i
2n = i0

deg(D) ∈
Q ∩ [0, 1) be the invariant of g′(F ), where i0 and deg(D) are coprime. Since 2n = r deg(D) is even, by
[33, Corollary (7)], e(G′) = −1 if and only if i is odd. We have i = 2ni0

deg(D) = ri0. If i is odd, then r

is odd. Conversely, if r is odd, then deg(D) is even, so i0 is odd, which implies that i is odd. We have
shown that e(G′) = (−1)r when deg(g′(F )) is even and thus proved (2)⇔(3). �
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Let M ′ ∈ LH′(M ′0). Assume that

(M,MH) ' (GL2n1 , GLn1 ×GLn1)× · · · × (GL2n` , GLn` ×GLn`)

and that

(M̃ ′,M ′) ' (G′r1 , H
′
r1)× · · · × (G′r` , H

′
r`

).

Definition 4.4. Let M ′ ∈ LH′(M ′0), X ∈ (m ∩ srs)(F ) and Y ∈ (m̃′ ∩ s′rs)(F ). If each pair of
factors of X and Y have matching orbits, we say that X and Y have M -matching orbits.

Let M ′ be as above and X =

(
0 A
B 0

)
∈ (m ∩ srs)(F ), where

A := diag(A1, · · · , A`), B := diag(B1, · · · , B`) ∈ gln1(F )⊕ · · · ⊕ gln`(F ).

Denote ηM (X) := (η(det(AiBi)))1≤i≤` ∈ {±1}`. Denote eM ′ := ((−1)ri)1≤i≤` ∈ {±1}`.

Definition 4.5. Let M ′ ∈ LH′(M ′0) and X ∈ (m∩ srs)(F ). If ηM (X) = eM ′ , we say that X comes

potentially from (m̃′ ∩ s′rs)(F ).

Corollary 4.6. Let M ′ ∈ LH′(M ′0). Then we have

(1) if X ∈ (m ∩ srs)(F ) comes from (m̃′ ∩ s′rs)(F ), then X comes potentially from (m̃′ ∩ s′rs)(F );

(2) if X ∈ (m ∩ srs)(F )ell comes potentially from (m̃′ ∩ s′rs)(F ), then X comes from (m̃′ ∩ s′rs)(F ).

4.2. Centralisers. Recall that E = F (α) with α2 ∈ F . Set α0 :=

(
0 α21n
1n 0

)
∈ G(F ). Then

E ' F (α0) ⊆ g(F ). Denote H0 := CentG(α) ' ResE/FGLn,E . Then

h0 =

{(
A α2C
C A

)
: A,C ∈ gln

}
.

Denote by s0 the corresponding tangent space of G/H0 at the neutral element. Then

s0 =

{(
A −α2C
C −A

)
: A,C ∈ gln

}
.

Set ω0 :=

(
1n 0
0 −1n

)
∈ s0(F ). Then ω2

0 = 12n and s0 = h0ω0 = ω0h0. The action Ad(ω0) induces an

involution on H0 and h0.
Recall that g′ is a central simple algebra over F with a fixed embedding E ↪→ g′(F ) as F -algebras.

Let ϕ : g′ → g be an isomorphism over F such that for all σ ∈ Gal(F/F ), we have

ϕ ◦ σ ◦ ϕ−1 ◦ σ−1 = Ad(uσ),

where uσ is a Galois 1-cocycle with values in Gad. Let α′ be the image of α in g′(F ). Then Prdα′ is

defined over F and α′
2−α2 = 0. We deduce that Prdα′(λ) = (λ2−α2)n = χα0(λ) ∈ F [λ]. Because both

of α0 and α′ are semi-simple in the classical sense, there exists x ∈ G such that Ad(x)◦ϕ(α′) = α0. Since
α′ ∈ g′(F ), we have ϕ(α′) = φ ◦ σ(α′) = Ad(uσ) ◦ σ ◦ ϕ(α′). As α0 ∈ G(F ), we obtain Ad(x−1)(α0) =
Ad(uσ) ◦ σ ◦ Ad(x−1)(α0) = Ad(uσ) ◦ Ad(σ(x)−1)(α0). It implies that xuσσ(x)−1 ∈ H0. It turns out
that by changing uσ in its class in H1(F,Gad), we may and shall suppose that ϕ(α′) = α and that uσ is
a Galois 1-cocycle with values in H0/ZG.

Set α1 :=

(
α1n

−α1n

)
∈ G(E). Then H = CentG(α1). Recall that ω =

(
0 1n
1n 0

)
. Thus

s = hω = ωh. The action Ad(ω) induces an involution on H and h.
Let y ∈ G such that

(4.2.1) Ad(y) ◦ ϕ(α′) = α1,

i.e., Ad(y)(α0) = α1. Then the morphism Ad(y) ◦ ϕ induces an isomorphism over F from s′ to s. For
all σ ∈ Gal(F/F ), we have Ad(σ(y)) ◦ σ ◦ ϕ(α′) = σ(α1) = εσα1, where εσ denotes the quadratic
character of Gal(F/F ) associated to E/F . Since σ ◦ ϕ(α′) = Ad(u−1

σ ) ◦ ϕ ◦ σ(α′) = Ad(u−1
σ ) ◦ ϕ(α′) =

Ad(u−1
σ ) ◦Ad(y−1)(α1), we obtain

Ad(yuσσ(y)−1)(α1) = εσα1.
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For all σ ∈ Gal(F/F ), define wσ := 12n if σ ∈ Gal(F/E) and wσ := ω otherwise. Then Ad(wσ)(α1) =
εσα1. We deduce that

(4.2.2) yuσσ(y)−1wσ ∈ H.

The elements y verifying (4.2.1) form an H-torsor of the form Hv where

(4.2.3) v :=

(
1n α1n
1n −α1n

)
∈ G(E).

We easily check that σ(v) = wσv for all σ ∈ Gal(F/F ) and that ωv = vω0.
Let Y ∈ s′(F ) be a semi-simple element. There exists y ∈ Hv and a semi-simple element X ∈ s(F )

such that

Ad(y) ◦ ϕ(Y ) = X.

Then Ad(y) ◦ ϕ induces an isomorphism over F from H ′Y to HX . For all σ ∈ Gal(F/F ), we have
Ad(σ(y)) ◦ σ ◦ ϕ(Y ) = σ(X) = X. Since σ ◦ ϕ(Y ) = Ad(u−1

σ ) ◦ ϕ ◦ σ(Y ) = Ad(u−1
σ ) ◦ ϕ(Y ) =

Ad(u−1
σ ) ◦Ad(y−1)(X), we obtain

yuσσ(y)−1 ∈ GX .
Combined with (4.2.2), we have yuσσ(y)−1 ∈ GX ∩Hwσ. Since wσ normalises H (resp. s), we see that
yuσσ(y)−1 normalises HX (resp. sX).

Lemma 4.7. Let X ∈ srs(F ) and Y ∈ s′rs(F ) be such that X ↔ Y . There exists y ∈ Hv such that
Ad(y) ◦ ϕ(Y ) = X and that Ad(y) ◦ ϕ induces isomorphisms H ′Y → HX and s′Y → sX over F .

Proof. This is a generalisation of [58, Lemma 7.4]. For all σ ∈ Gal(F/F ), we see that (Ad(y)◦ϕ)◦
σ ◦ (Ad(y)◦ϕ)−1 ◦σ−1 = Ad(y)◦ (ϕ◦σ ◦ϕ−1 ◦σ−1)◦ (σ ◦Ad(y−1)◦σ−1) = Ad(yuσσ(y)−1). For X ∈ srs,
we know that X is also regular semi-simple in G in the classical sense. Since yuσσ(y)−1 ∈ GX , the
action Ad(yuσσ(y)−1) on HX (resp. sX) is trivial, which implies that Ad(y) ◦ϕ induces an isomorphism
H ′Y → HX (resp. s′Y → sX) over F . �

4.3. Cohomological criterion. Let X =

(
0 1n
A 0

)
∈ srs(F ). Then GLn,A is a maximal F -torus

in GLn. Denote X0 := Ad(v−1)(X) ∈ s0(E), where v is defined by (4.2.3). Notice that H0,X0
=

Ad(v−1)(HX) = HX ' GLn,A. Let HA := CentH(diag(A,A)) = GLn,A × GLn,A, which is a maximal
F -torus in H. Denote TX := CentH0

(diag(A,A)) = Ad(v−1)(HA). For all closed subvariety V of H
defined over F and stable by ω, we easily check that Ad(v−1)(V ) is a closed subvariety of H0 defined over
F and stable by ω0. Thus TX is a maximal F -torus in H0. Notice that HX = Hω

A and that H0,X0
= Tω0

X .
We see that TX ' ResE/F (GLn,A)E and that the inclusion H0,X0

⊆ TX is isomorphic to the inclusion
GLn,A ⊆ ResE/F (GLn,A)E . For simplicity, we also write T := TX and R := H0,X0

.

Lemma 4.8. There exists a unique Galois 1-cocycle tσ with values in T/R such that for all σ ∈
Gal(F/F ), we have

Ad(tσ) ◦ σ(X0) = X0.

Proof. The uniqueness is obvious by definition. It suffices to consider the existence. The cocycle
condition is also automatic. We only need to check the equality. If σ ∈ Gal(F/E), then σ(X0) = X0,
so it suffices to take tσ = 1. Now suppose that σ /∈ Gal(F/E). Since σ(X0) = Ad(σ(v)−1) ◦ σ(X) =
Ad(v−1w−1

σ )(X), it suffices to find an element tσ ∈ T such that vtσv
−1w−1

σ ∈ GX . In fact, we can take

tσ = Ad(v−1)

(
1

A

)
. �

By the inflation-restriction exact sequence and Hilbert’s Theorem 90, the cohomology groupH1(F, T/R)
is identified with H1(Gal(E/F ), T (E)/R(E)). For all σ ∈ Gal(F/F ) and h′ = Ad(v−1)(h) ∈ T
where h ∈ HA, we see that σ(h′) = Ad(σ(v)−1) ◦ σ(h) = Ad(v−1) ◦ Ad(wσ) ◦ σ(h). Therefore,
we can regard T as the subgroup HA of G equipped with the Galois action Ad(wσ) ◦ σ. Then the
inclusion R(E) ⊆ T (E) is isomorphic to the inclusion HX(E) ⊆ HA(E). Let σ be the nontriv-
ial element in Gal(E/F ). We see that uσ = (B,C) ∈ HA(E)/HX(E) is a 1-cocycle if and only
if uσAd(wσ) ◦ σ(uσ) ∈ HX(E), i.e., BCσ = CBσ. We also see that uσ ∈ HA(E)/HX(E) is a 1-
coboundary if and only if uσ = (B,C)−1Ad(wσ) ◦ σ(B,C) for some (B,C) ∈ HA(E)/HX(E), i.e.,
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uσ = (CσB−1, BσC−1) ∈ HA(E)/HX(E). Then H1(Gal(E/F ), T (E)/R(E)) is the quotient of

{(B,C) ∈ HA(E)/HX(E) : BCσ = CBσ} = {(1, CB−1) ∈ HA(E)/HX(E) : (CB−1)σ = CB−1}
={(1, B) ∈ HA(E)/HX(E) : Bσ = B} = {(1, B) ∈ HA(E)/HX(E) : B ∈ GLn,A(F )}

by

{(CσB−1, BσC−1) ∈ HA(E)/HX(E) : B,C ∈ GLn,A(E)}
={(B−σ, B) ∈ HA(E)/HX(E) : B ∈ GLn,A(E)} = {(1, BBσ) ∈ HA(E)/HX(E) : B ∈ GLn,A(E)}.

That is to say, it is the quotient of GA(F ) by the group of norms of GLn,A(E). Under the identification
of T and HA with the twisted Galois action, the Galois 1-cocycle tσ in Lemma 4.8 corresponds exactly
to the class of A.

Since A is regular semi-simple in GLn(F ) in the classical sense, its characteristic polynomial χA is
separable. Let χA =

∏
i∈I χi be the factorisation of χA into a product of monic irreducible polynomials

over F . We see that

GLn,A '
∏
i∈I

ResFi/FGm,Fi ,

where Fi = F [λ]/(χi(λ)). Denote Ei := Fi ⊗F E. Let I0 be the subset of I consisting of i such that Ei
is a field. We have

H1(F, T/R) =
∏
i∈I

F×i /NEi/Fi(E
×
i ) =

∏
i∈I0

F×i /NEi/Fi(E
×
i ).

If F is a local field of characteristic zero, then H1(F, T/R) = (Z/2Z)I0 .

Lemma 4.9. Let t ∈ H1(F, T/R) be the class of the Galois 1-cocycle tσ in Lemma 4.8. Let u ∈
H1(F,H0/ZG) be the class of the Galois 1-cocycle uσ associated to g′. There exists Y ∈ s′(F ) and
h ∈ H0 such that Ad(h) ◦ ϕ(Y ) = X0 if and only if there exists an element of H1(F, T/ZG) which has
images t ∈ H1(F, T/R) and u ∈ H1(F,H0/ZG) under the natural maps:

H1(F, T/ZG) //

��

H1(F, T/R)

H1(F,H0/ZG)

Remark 4.10. The condition in the above lemma says exactly that X comes from s′rs(F ).

Proof of Lemma 4.9. For all h ∈ H0, let Y ∈ s′ be the unique element such that Ad(h) ◦ϕ(Y ) =
X0. For all σ ∈ Gal(F/F ), we have Ad(σ(h)) ◦ σ ◦ ϕ(Y ) = σ(X0) = Ad(t−1

σ )(X0) and σ ◦ ϕ(Y ) =
Ad(u−1

σ ) ◦ϕ ◦σ(Y ). But Y ∈ s′(F ) if and only if ϕ ◦σ(Y ) = ϕ(Y ) = Ad(h−1)(X0). We have shown that
there exists Y ∈ s′(F ) and h ∈ H0 such that Ad(h) ◦ ϕ(Y ) = X0 if and only if there exists h ∈ H0 such
that

Ad(σ(h)u−1
σ h−1)(X0) = Ad(t−1

σ )(X0)

for all σ ∈ Gal(F/F ). If this equality is satisfied, then huσσ(h)−1 ∈ Rtσ ⊆ T defines a Galois 1-cocycle
with values in T/ZG which has desired images. Conversely, any Galois 1-cocycle with values in T/ZG
having image u is of the form huσσ(h)−1 where h ∈ H0. If it also has image t, it means that by replacing
h with t′h where t′ ∈ T , we may suppose that huσσ(h)−1 ∈ Rtσ. Then the above equality is satisfied for
such an h. �

Recall that Hω0
0 = Hω ' GLn. We shall abuse notation and denote by Rder (resp. Tder) the

preimage of R (resp. T ) in Hω0

0,der = Hω0
0,sc (resp. H0,der = H0,sc). We shall the index “ab” to de-

note the abelianised cohomology defined in [38, §1.6 and 1.8]. Recall that the abelianisation maps
H1(F,Hω0

0 /ZG) → H1
ab(F,Hω0

0 /ZG) and H1(F,H0/ZG) → H1
ab(F,H0/ZG) are surjective (see [38,

Proposition 1.6.7]). If F is a non-archimedean local field of characteristic zero, they are also injec-
tive by Kneser’s theorem (see loc. cit.). We have the following commutative diagram with exact columns
and rows.
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H1(F,R/ZG) //

��

H1(F, T/ZG) //

��

H1(F, T/R) //

��

H2(F,R/ZG)

��
H1

ab(F,Hω0
0 /ZG) //

��

H1
ab(F,H0/ZG) //

��

H1
ab(F,Hω0

0 /ZG → H0/ZG) //

��

H2
ab(F,Hω0

0 /ZG)

H2(F,Rder) // H2(F, Tder) // H2(F, Tder/Rder)

Proposition 4.11. There is a canonical identification

H1
ab(F,Hω0

0 /ZG → H0/ZG) ' H1(F,CH0
/CHω0

0
).

Proof. The group on the left is isomorphic to H1(F, Tder/Rder → T/R). Since [Tder/Rder → T/R] is
injective, it is quasi-isomorphic to [1→ (T/R)/(Tder/Rder)]. But (T/R)/(Tder/Rder) ' (T/Tder)/(R/Rder),
where T/Tder = CH0

and R/Rder = CHω0
0

. �

Corollary 4.12. Suppose that F is a local field of characteristic zero. Then

H1
ab(F,Hω0

0 /ZG → H0/ZG) = Z/2Z.
The morphism

H1(F, T/R) = (Z/2Z)I0 → H1
ab(F,Hω0

0 /ZG → H0/ZG) = Z/2Z
is the sum of components.

Denote by εX the image of t (defined in Lemma 4.8) under the morphism

H1(F, T/R)→ H1
ab(F,Hω0

0 /ZG → H0/ZG).

Corollary 4.13. Suppose that F is a local field of characteristic zero. The map

srs(F )→ H1
ab(F,Hω0

0 /ZG → H0/ZG) = Z/2Z : X =

(
0 A
B 0

)
7→ εX′

where X ′ :=

(
0 1n
AB 0

)
∈ srs(F ) is understood as the map

srs(F )→ {±1} : X 7→ η(X).

Proof. We may reduce ourselves to the case where X ∈ srs(F )ell. In the elliptic case, it results
from [10, Lemmas 1.3 and 1.4] �

Denote by ε′ the image of u (associated to g′) under the morphism

H1(F,H0/ZG) ' H1
ab(F,H0/ZG)→ H1

ab(F,Hω0
0 /ZG → H0/ZG).

Lemma 4.14. If X comes from s′rs(F ), then εX = ε′.

Proof. It results from Lemma 4.9 and the above commutative diagram. �

Proposition 4.15. Suppose that F is a non-archimedean local field of characteristic zero and that
A is elliptic in GLn(F ). Then X comes from s′rs(F ) if and only if εX = ε′.

Proof. By Lemma 4.14, it suffices to prove the reverse direction. Since F is non-archimedean, we
have H2

ab(F,Hω0
0 /ZG) = 0 by [38, Lemme 1.5.1]. Since F is local and the tori R/ZG, Rder and Tder are

F -anisotropic, the groups H2(F,R/ZG), H2(F,Rder), H
2(F, Tder) and H2(F, Tder/Rder) vanish (see loc.

cit.). The above commutative diagram is simplified as follows.

H1(F,R/ZG)
f //

��

H1(F, T/ZG) //

��

H1(F, T/R) //

��

0

H1
ab(F,Hω0

0 /ZG)
g //

��

H1
ab(F,H0/ZG) //

��

H1
ab(F,Hω0

0 /ZG → H0/ZG) //

��

0

0 0 0

159



Choose an arbitary preimage t′ ∈ H1(F, T/ZG) of t. The image of t′ in H1
ab(F,H0/ZG) is of the

form ug(u1) where u1 ∈ H1
ab(F,Hω0

0 /ZG) because both of u and this image map to ε′ = εX ∈
H1

ab(F,Hω0
0 /ZG → H0/ZG) by our assumption. Let t1 ∈ H1(F,R/ZG) be a preimage of u1. Then

t′f(t1)−1 ∈ H1(F, T/ZG) has images t and u. We may conclude by the bijectivity of the abelianisation
map H1(F,H0/ZG)→ H1

ab(F,H0/ZG) and Lemma 4.9. �

Corollary 4.16. Suppose that F is a non-archimedean local field of characteristic zero. The map

H1(F,H0/ZG) ' H1
ab(F,H0/ZG)→ H1

ab(F,Hω0
0 /ZG → H0/ZG) = Z/2Z : u 7→ ε′

is understood as the Kottwitz sign

H1(F,H0/ZG)→ H1(F,Gad)→ {±1}.

Proof. It can be computed directly. However, it is also a consequence of Lemma 4.3, Corollary
4.13 and Proposition 4.15. �

4.4. Levi subgroups. Let M ∈ L G,ω(M0). Denote MH0
:= Ad(v−1)(M)∩H0, where v is defined

by (4.2.3). Then MH0
is a Levi subgroup of H0 defined over F . Let X =

(
0 1n
A 0

)
∈ (m∩srs)(F ). Then

T ⊆MH0
and R ⊆Mω0

H0
. We have an obvious generalisation to the product form of some results in the

previous section.

Proposition 4.17 (cf. Proposition 4.11). There is a canonical identification

H1
ab(F,Mω0

H0
/ZM →MH0

/ZM ) ' H1(F,CMH0
/CMω0

H0

).

Corollary 4.18 (cf. Corollary 4.12). Suppose that F is a local field of characteristic zero. Then

H1
ab(F,Mω0

H0
/ZM →MH0

/ZM ) = (Z/2Z)`,

where ` is the number of blocks of M . The morphism

H1(F, T/R) = (Z/2Z)I0 → H1
ab(F,Mω0

H0
/ZM →MH0

/ZM ) = (Z/2Z)`

is the sum of components in each block of M . If L ∈ L G(M), then the morphism

H1
ab(F,Mω0

H0
/ZM →MH0

/ZM ) = (Z/2Z)` → H1
ab(F,Lω0

H0
/ZL → LH0

/ZL) = (Z/2Z)`
′

is the sum of components in each block of L, where `′ is the number of blocks of L.

Proposition 4.19. Suppose that F is a non-archimedean local field of characteristic zero. The group
H1

ab(F,Mω0

H0
/ZM →MH0

/ZM ) is canonically isomorphic to the Pontryagin dual of the finite group Z
M̂

[2]

of elements z ∈ Z
M̂

such that z2 = 1. If L ∈ L G(M), then the morphism

H1
ab(F,Mω0

H0
/ZM →MH0

/ZM )→ H1
ab(F,Lω0

H0
/ZL → LH0

/ZL)

is the dual of the canonical embedding ZL̂[2] ↪→ Z
M̂

[2].

Proof. By [34, Proposition 6.4] and Proposition 4.17, the group H1
ab(F,Mω0

H0
/ZM →MH0

/ZM ) is

canonically isomorphic to the Pontryagin dual of π0((Z
M̂H0

/Z
M̂
ω0
H0

)Γ). Notice that Z
M̂H0

= Z
M̂
ω0
H0

×Z
M̂
ω0
H0

,

on which the nontrivial element σ ∈ Gal(E/F ) acts by exchanging two components. Via the morphism

(z, z′) 7→ zz′
−1

and the diagonal embedding, we obtain

Z
M̂H0

/Z
M̂
ω0
H0

' Z
M̂
ω0
H0

' Z
M̂
.

These isomorphisms are Γ-equivariant if we define the action of Γ on Z
M̂
ω0
H0

and Z
M̂

by the lift of the

action of Gal(E/F ) with σ(z) = z−1. Then

π0((Z
M̂H0

/Z
M̂
ω0
H0

)Γ) ' Z
M̂

[2].

�

Denote by εMX the image of t (defined in Lemma 4.8) under the morphism

H1(F, T/R)→ H1
ab(F,Mω0

H0
/ZM →MH0

/ZM ).
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Proposition 4.20 (cf. Corollary 4.13). Suppose that F is a local field of characteristic zero. The
map

(m ∩ srs)(F )→ H1
ab(F,Mω0

H0
/ZM →MH0/ZM ) = (Z/2Z)` : X =

(
0 A
B 0

)
7→ εMX′

where X ′ :=

(
0 1n
AB 0

)
∈ (m ∩ srs)(F ) is understood as the map

(m ∩ srs)(F )→ {±1}` : X 7→ ηM (X).

For our purpose in this paper, we shall fix M ′ ∈ LH′(M ′0). It means that we may and shall start
from some M ∈ L G,ω(M0) such that u (associated to g′) belongs to the image of the injective map

H1(F,MH0/ZG)→ H1(F,H0/ZG). Denote by uM ∈ H1(F,MH0/ZG) the preimage of u. Denote by ε′
M

the image of uM under the morphism

H1(F,MH0
/ZG)→ H1(F,MH0

/ZM )→ H1
ab(F,Mω0

H0
/ZM →MH0

/ZM ).

Proposition 4.21 (cf. Corollary 4.16). Suppose that F is a non-archimedean local field of charac-
teristic zero. The map

H1(F,MH0/ZG)→ H1(F,MH0/ZM )→ H1
ab(F,Mω0

H0
/ZM →MH0/ZM ) = (Z/2Z)` : uM 7→ ε′

M

is understood as the map

H1(F,MH0/ZG)→ H1(F,MH0/ZM )→ H1(F,Mad)→ {±1}` : uM 7→ eM ′ .

5. Statement of results

Let F be a non-archimedean local field of characteristic zero and E be a quadratic extension of F .
Fix M ′ ∈ LH′(M ′0). Recall that its image in L G,ω(M0) is denoted by M .

Definition 5.1. Let f ∈ C∞c (s(F )) and f ′ ∈ C∞c (s′(F )). We say that f and f ′ are partially M -
associated if they satisfy the following condition: for all L ∈ L G(M) and all Q ∈ FG(L), if X ∈
(l ∩ srs)(F ) and Y ∈ (l̃′ ∩ s′rs)(F ) have L-matching orbits, then

κ(X)JQL (η,X, f) = JQ
′

L′ (Y, f
′).

Definition 5.2. Let f ∈ C∞c (s(F )) and f ′ ∈ C∞c (s′(F )). We say that f and f ′ are M -associated if
they are partially M -associated and satisfy the additional condition: for all L ∈ L G(M), Q ∈ FG(L)
and X ∈ (l ∩ srs)(F ), we have

JQL (η,X, f) = 0

unless X comes potentially from (m
Q̃′
∩ s′rs)(F ) (see Definition 4.5).

Theorem 5.3. Let f ∈ C∞c (s(F )) and f ′ ∈ C∞c (s′(F )) be partially M -associated and satisfy the
following conditions.

(a) The weighted orbital integrals of f and f ′ vanish for nontrivial weights.
(b) If X ∈ srs(F ) does not come from s′rs(F ), then

JGG (η,X, f) = 0.

Then γψ(h(F ))−1f̂ and γψ(h′(F ))−1f̂ ′ are M -associated.

Proof. Combine Proposition 5.5 and Corollary 5.11 below. �

Remark 5.4. The two conditions in the above theorem imply the additional condition in Definition
5.2. They may be weakened, but they are enough for our purpose.

Recall that we denote by γψ(h(F )) (resp. γψ(h′(F ))) the Weil constants associated to h(F ) (resp.
h′(F )).

Proposition 5.5. Let f ∈ C∞c (s(F )) and f ′ ∈ C∞c (s′(F )) be partially M -associated and satisfy the

two conditions in Theorem 5.3. Then γψ(h(F ))−1f̂ and γψ(h′(F ))−1f̂ ′ are also partially M -associated.

The rest of this paper will be denoted to the proof of Proposition 5.5. Its corollary below may be
more useful for applications.

161



Corollary 5.6. Let X ∈ (m∩srs)(F ) and Y ∈ (m̃′∩s′rs)(F ) have M -matching orbits. Let U ∈ srs(F )
and V ∈ s′rs(F ) be such that U ↔ V . Then we have the equality

γψ(h(F ))−1κ(X)κ(U )̂iGM (η,X,U) = γψ(h′(F ))−1îH
′

M ′(Y, V ).

Proof. By Lemma 4.7, we may and shall fix an isomorphism ϕ : s′V (F ) → sU (F ) such that
ϕ(V ) = U . Recall that W (H, sU ) (resp. W (H ′, s′V )) denotes the Weyl group associated to sU ∈ T s

(resp. s′V ∈ T s′). Choose open compact neighbourhoods ω of U in (sU ∩ srs)(F ) and ω′ of V in
(s′V ∩ s′rs)(F ) which are small enough such that

(i) the sets i(ω) where i ∈W (H, sU ) are mutually disjoint;
(ii) the sets i′(ω′) where i′ ∈W (H ′, s′V ) are mutually disjoint;
(iii) ϕ(ω′) = ω;

(iv) κ(·)̂iGM (η,X, ·) is constant on ω;

(v) îH
′

M ′(Y, ·) is constant on ω′.

Notice that the conditions (iv) and (v) are assured by Lemmas 8.3.1) and 8.8.1) in Chapter 4.
By the condition (i) on ω and Lemma 3.1.1), we can construct a function f ∈ C∞c (s(F )) such that

(i) Supp(f) ⊆ Ad(H(F ))(ω);
(ii) for all Z ∈ ω, κ(Z)JGG (η, Z, f) = 1;
(iii) the weighted orbital integrals of f vanish for nontrivial weights.

By the condition (ii) on ω′ and Lemma 3.1.2), we can construct a function f ′ ∈ C∞c (s′(F )) such that

(i) Supp(f ′) ⊆ Ad(H ′(F ))(ω′);

(ii) for all Z ′ ∈ ω′, JH′H′ (Z ′, f ′) = 1;
(iii) the weighted orbital integrals of f ′ vanish for nontrivial weights.

We see that f and f ′ are partially M -associated and satisfy the two conditions in Theorem 5.3. By
Proposition 5.5, we have the equality

γψ(h(F ))−1κ(X)JGM (η,X, f̂) = γψ(h′(F ))−1JH
′

M ′(Y, f̂
′).

By the condition (iii) on f and the Weyl integration formula (7.1.2) in Chapter 4, we have

JGM (η,X, f̂) = IGM (η,X, f̂) =
∑
c∈T s

0

|W (H, c)|−1

∫
creg(F )

JGG (η, Z, f )̂iGM (η,X,Z)dZ.

By the conditions (i) and (ii) on f and the condition (iv) on ω, the last expression equals∫
ω

JGG (η, Z, f )̂iGM (η,X,Z)dZ = vol(ω)κ(U )̂iGM (η,X,U).

Similarly, with the help of the conditions on f ′, (7.2.2) in Chapter 4 and the condition (iv) on ω, we
obtain

JGM (η,X, f̂) = IGM (η,X, f̂) = vol(ω′)̂iH
′

M ′(Y, V ).

Since vol(ω) = vol(ω′), we deduce the equality in the corollary. �

Recall that ω =

(
0 1n
1n 0

)
. For X ∈ s(F ), denote Xω := Ad(ω)(X). For f ∈ C∞c (s(F )), define

fω(X) := f(Xω) for all X ∈ s(F ).

Lemma 5.7. Let f ∈ C∞c (s(F )) and X ∈ (m ∩ srs)(F ). Then we have

(1) (f̂)ω = (fω)ˆ;
(2) JGM (η,X, fω) = η(X)JGM (η,X, f).

Proof. Similar properties are used in the proof of [58, Lemma 8.3] though our involutions are
slightly different. It suffices to notice additionally that vGM (Ad(w)(x)) = vGM (x) for x ∈ H(F ). �

Lemma 5.8. Let X ∈ (m ∩ srs)(F ) and U ∈ srs(F ). Then we have the equality

îGM (η,X,Uω) = η(X )̂iGM (η,X,U).

Proof. From Lemma 5.7, we deduce that

(5.0.1) ĵGM (η,X,Uω) = η(X)ĵGM (η,X,U).
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There exists x ∈ H(F ), L ∈ L G,ω(M0) and Z ∈ (l ∩ srs)(F )ell such that U = Ad(x)(Z). By Lemmas
8.3.2) and 8.2 in Chapter 4, we have

η(X )̂iGM (η,X,U) = η(det(x))η(X )̂iGM (η,X,Z) = η(det(x))η(X)ĵGM (η,X,Z).

Applying (5.0.1) to X and Z, we have

η(X)ĵGM (η,X,Z) = ĵGM (η,X,Zω).

Since Zω ∈ (l ∩ srs)(F )ell, by Lemma 8.2 in Chapter 4 again, we obtain

ĵGM (η,X,Zω) = îGM (η,X,Zω).

Thus

η(X )̂iGM (η,X,U) = η(det(x))̂iGM (η,X,Zω).

We see that Uω = Ad(ωxω−1)(Zω), where ωxω−1 ∈ H(F ). By Lemma 8.3.2) in Chapter 4 again, we
have

îGM (η,X,Uω) = η(det(ωxω−1))̂iGM (η,X,Zω) = η(det(x))̂iGM (η,X,Zω).

Then the lemma follows. �

Proposition 5.9. Let X ∈ (m ∩ srs)(F ) and U ∈ srs(F ). If η(X) 6= η(U), then

îGM (η,X,U) = 0.

Proof. We see that Uω = Ad(ωU)(U), where ωU ∈ H(F ). By Lemma 8.3.2) in Chapter 4, we have

îGM (η,X,Uω) = η(det(ωU))̂iGM (η,X,U) = η(U )̂iGM (η,X,U).

One may conclude by comparing this equality with Lemma 5.8. �

Remark 5.10. By the same argument, we can generalise the above proposition to the following
form. Let L ∈ L G(M). Let X ∈ (m ∩ srs)(F ) and U ∈ (l ∩ s)rs(F ). If ηL(X) 6= ηL(U), then

îLM (η,X,U) = 0.

Corollary 5.11. Let f ∈ C∞c (s(F )) satisfies the additional condition in Definition 5.2. Then f̂
also satisfies this condition.

Proof. By induction, it suffices to show that for all Q ∈ FG(M) and X ∈ (m ∩ srs)(F ), we have

JQM (η,X, f̂) = 0

unless X comes potentially from (m
Q̃′
∩ s′rs)(F ).

By Proposition 4.1.4) and (8.1.1) in Chapter 4, we obtain

JQM (η,X, f̂) = J
MQ

M (η,X, f̂ηQ) =
∑

L∈LMQ (M)

Î
L,MQ,w
M (η,X, fηQ),

where

Î
L,MQ,w
M (η,X, fηQ) =

∑
{R∈LG,ω(M0):R⊆L}

|WRn
0 ||W

Ln
0 |−1

∑
c∈Tell(r∩s)

|W (RH , c)|−1

∫
creg(F )

J
MQ

L (η, Z, fηQ)̂iLM (η,X,Z)dZ.

By Proposition 4.1.4) in Chapter 4 again, we have

J
MQ

L (η, Z, fηQ) = JQL (η, Z, f).

If JQM (η,X, f̂) 6= 0, then JQL (η, Z, f )̂iLM (η,X,Z) 6= 0 for some Z. Since JQL (η, Z, f) 6= 0, by our assumption

on f , we see that Z comes potentially from (m
Q̃′
∩ s′rs)(F ). Since îLM (η,X,Z) 6= 0, by Remark 5.10, we

have ηL(X) = ηL(Z). As L ⊆ MQ, it implies that ηMQ
(X) = ηMQ

(Z). Thus X also comes potentially
from (m

Q̃′
∩ s′rs)(F ). �
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6. Limit formulae

Let F be a non-archimedean local field of characteristic zero and E be a quadratic extension of F .
Recall that for c ∈ s and X,U ∈ (c ∩ srs)(F ), we define γψ(X,U) by (2.2.1). A similar notation is used
in the case of (G′, H ′).

Let M ∈ L G,ω(M0). For all L ∈ L G(M), X ∈ (m ∩ srs)(F ) and U ∈ (l ∩ srs)(F ), we define

âMM (η,X,U) :=
∑

x∈(MH)U (F )\MH(F ),Ad(x)(X)∈sU (F )

η(Nrd(x))γψ(Ad(x)(X), U)ψ(〈Ad(x)(X), U〉)

if L = M and

âLM (η,X,U) := 0

if L 6= M .

Let M ′ ∈ LH′(M ′0). For all L′ ∈ LH′(M ′), Y ∈ (m̃′ ∩ s′rs)(F ) and V ∈ (l̃′ ∩ s′rs)(F ), we define

âM
′

M ′(Y, V ) :=
∑

x∈M ′V (F )\M ′(F ),Ad(x)(Y )∈s′V (F )

γψ(Ad(x)(Y ), V )ψ(〈Ad(x)(Y ), V 〉)

if L′ = M ′ and

âL
′

M ′(Y, V ) := 0

if L′ 6= M ′.

Proposition 6.1. 1) Let M ∈ L G,ω(M0), L ∈ L G(M), X ∈ (m ∩ srs)(F ) and U ∈ (l ∩ srs)(F ).
Then there exists N ∈ N such that if µ ∈ F× satisfies vF (µ) < −N , we have the equality

îLM (η, µX,U) = âLM (η, µX,U).

2) Let M ′ ∈ LH′(M ′0), L′ ∈ LH′(M ′), Y ∈ (m̃′ ∩ s′rs)(F ) and V ∈ (l̃′ ∩ s′rs)(F ). Then there exists
N ∈ N such that if µ ∈ F× satisfies vF (µ) < −N , we have the equality

îL
′

M ′(µY, V ) = âL
′

M ′(µY, V ).

Proof. This is a generalisation of [58, Proposition 7.1] and Propositions 10.1 and 10.4 in Chapter
4. �

7. Construction of test functions

Let F be a non-archimedean local field of characteristic zero and E be a quadratic extension of F .

Lemma 7.1. Let X,Y, y be as in Lemma 4.7. Let V ∈ (s′Y ∩ s′rs)(F ) and U := Ad(y) ◦ ϕ(V ). Then
we have

(1) 〈X,U〉 = 〈Y, V 〉;
(2) γψ(h(F ))−1γψ(X,U) = γψ(h′(F ))−1γψ(Y, V ).

Proof. This is a generalisation of [58, Lemma 7.5]. �

Fix M ′ ∈ LH′(M ′0). Recall that its image in L G,ω(M0) is denoted by M .

Proposition 7.2. Let X0 ∈ (m ∩ srs)(F ) and Y0 ∈ (m̃′ ∩ s′rs)(F ) be such that X0 ↔ Y0. Then there
exists f ∈ C∞c (s(F )) and f ′ ∈ C∞c (s′(F )) satisfying the following conditions.

(a) If X ∈ Supp(f), there exists Y ∈ (s′Y0
∩ s′rs)(F ) such that X ↔ Y .

(b) If Y ∈ Supp(f ′), then Y is H ′(F )-conjugate to an element in (s′Y0
∩ s′rs)(F ).

(c) The weighted orbital integrals of f and f ′ vanish for nontrivial weights.
(d) The functions f and f ′ are partially G-associated and satisfy the condition: if X ∈ srs(F ) does not

come from s′rs(F ), then

JGG (η,X, f) = 0.

(e) For Q ∈ FG(M)−PG(M),

JQM (η,X0, f̂) = JQ
′

M ′(Y0, f̂ ′) = 0.

(f) We have the equality

γψ(h(F ))−1κ(X0)JGG (η,X0, f̂) = γψ(h′(F ))−1JH
′

H′ (Y0, f̂ ′) 6= 0.
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Proof. This is a generalisation of [58, Proposition 7.6] whose additional ingredients are Lemma 3.1
and Proposition 6.1 (cf. [14, §6]).

Fix an isomorphism ϕ : s′Y0
(F ) → sX0

(F ) such that ϕ(Y0) = X0 as in Lemma 4.7. Choose V0 ∈
(s′Y0
∩ s′rs)(F ) and denote U0 := ϕ(V0) ∈ (sX0 ∩ srs)(F ) such that

(i) for all i ∈W (H, sX0
), i 6= 1, we have 〈i(X0)−X0, U0〉 6= 0;

(ii) for all i′ ∈W (H ′, s′Y0
), i′ 6= 1, we have 〈i′(Y0)− Y0, V0〉 6= 0;

(iii) κ(U0) = κ(X0).

Fix r ∈ N∗ such that

(i) 1 +$rOF ⊆ F×
2
;

(ii) the sets i((1 +$rOF )U0) where i ∈W (H, sX0
) are mutually disjoint;

(iii) the sets i′((1 +$rOF )V0) where i′ ∈W (H ′, s′Y0
) are mutually disjoint.

By Propositions 6.1, there exists N ∈ N such that if µ ∈ F× satisfies vF (µ) < −N , then

(i) for L1, L2 ∈ L G(M) with L1 ⊆ L2, i1 ∈W (L1,H , sX0
, l1 ∩ s) and i2 ∈W (H, sX0

, l2 ∩ s), we have

îL2

L1
(η, i1(X0), i2(µU0)) = âL2

L1
(η, i1(X0), i2(µU0));

(ii) for L′1, L
′
2 ∈ LH′(M ′) with L′1 ⊆ L′2, i′1 ∈W (L′1, s

′
Y0
, l̃′1 ∩ s′) and i′2 ∈W (H ′, s′Y0

, l̃′2 ∩ s′), we have

î
L′2
L′1

(i′1(Y0), i′2(µV0)) = â
L′2
L′1

(i′1(Y0), i′2(µV0)).

Fix such an integer N .
Fix µ ∈ F× with vF (µ) < −N such that

(i) η(µ) = 1;
(ii) for all i ∈W (H, sX0), i 6= 1, the character λ 7→ ψ($rµλ〈i(X0)−X0, U0〉) is nontrivial on OF ;
(iii) for all i′ ∈W (H ′, s′Y0

), i′ 6= 1, the character λ 7→ ψ($rµλ〈i′(Y0)− Y0, V0〉) is nontrivial on OF .

Notice that the conditions (ii) and (iii) are possible because of the conditions (i) and (ii) on U0 and V0.
Set ω′0 := µ(1 + $rOF )V0. Denote by d′ the F -vector space generated by V0. Fix a complement e′

of d′ in s′Y0
(F ). For V ∈ s′Y0

(F ), denote by Vd′ its projection to d′ with respect to the decomposition
s′Y0

(F ) = d′ ⊕ e′.
Set ω0 := µ(1 +$rOF )U0. Denote by d := ϕ(d′) the F -vector space generated by U0. Let e := ϕ(e′)

be the complement of d in sX0
(F ). For U ∈ sX0

(F ), denote by Ud its projection to d with respect to the
decomposition sX0

(F ) = d⊕ e.
Choose open compact neighbourhoods ωe of 0 in e and ωe′ of 0 in e′ which are small enough such

that ω := ω0 ⊕ ωe and ω′ := ω′0 ⊕ ω′e′ satisfy

(i) the sets i(ω) where i ∈W (H, sX0
) are mutually disjoint;

(ii) the sets i′(ω′) where i′ ∈W (H ′, s′Y0
) are mutually disjoint;

(iii) ω ⊆ (sX0
∩ srs)(F ), ω′ ⊆ (s′Y0

∩ s′rs)(F ) and ϕ(ω′) = ω;

(iv) for L1, L2 ∈ L G(M) with L1 ⊆ L2, i1 ∈W (L1,H , sX0 , l1 ∩ s), i2 ∈W (H, sX0 , l2 ∩ s) and U ∈ ω, we
have

îL2

L1
(η, i1(X0), i2(U)) = âL2

L1
(η, i1(X0), i2(U)) = âL2

L1
(η, i1(X0), i2(Ud));

(v) for L′1, L
′
2 ∈ LH′(M ′) with L′1 ⊆ L′2, i′1 ∈ W (L′1, s

′
Y0
, l̃′1 ∩ s′), i′2 ∈ W (H ′, s′Y0

, l̃′2 ∩ s′) and V ∈ ω′,
we have

î
L′2
L′1

(i′1(Y0), i′2(V )) = â
L′2
L′1

(i′1(Y0), i′2(V )) = â
L′2
L′1

(i′1(Y0), i′2(Vd′));

(vi) the function κ is constant on ω.

Notice that the conditions (i) and (ii) follow from the conditions (ii) and (iii) on r. Besides, the conditions
(iv) and (v) are assured by vF (µ) < −N and r ≥ 1. Morover, the condition (vi) results from the condition
(i) on µ and the condition (i) on r. Combined with the condition (iii) on U0, the condition (vi) says that
the restriction of κ to ω equals κ(X0).

Define a function fω on ω by

fω(U) := ψ(−〈X0, Ud〉)
for all U ∈ ω. By the condition (i) on ω and Lemma 3.1.1), we can construct a function f ∈ C∞c (s(F ))
such that

(i) Supp(f) ⊆ Ad(H(F ))(ω);
(ii) for all U ∈ ω, κ(U)JGG (η, U, f) = fω(U);
(iii) the weighted orbital integrals of f vanish for nontrivial weights.
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Define a function f ′ω′ on ω′ by

f ′ω′(V ) := ψ(−〈Y0, Vd′〉)
for all V ∈ ω′. By the condition (ii) on ω′ and Lemma 3.1.2), we can construct a function f ′ ∈ C∞c (s′(F ))
such that

(i) Supp(f ′) ⊆ Ad(H ′(F ))(ω′);

(ii) for all V ∈ ω′, JH′H′ (V, f ′) = f ′ω′(V );
(iii) the weighted orbital integrals of f ′ vanish for nontrivial weights.

We shall check that f and f ′ satisfy the conditions in the proposition. The conditions (a) and
(b) result from the condition (iii) on ω and ω′, the condition (i) on f and the condition (i) on f ′. The
condition (c) is exactly the condition (iii) on f and the condition (iii) on f ′. The condition (d) is deduced
from the condition (iii) on ω and ω′, the conditions (i) and (ii) on f and the conditions (i) and (ii) on f ′.

We now verify the condition (e). By Proposition 4.1.4) in Chapter 4, we write

JQM (η,X0, f̂) = J
MQ

M (η,X0, f̂
η
Q).

For the same reason and the condition (iii) on f , the weighted orbital integrals of fηQ vanish for nontrivial
weights. Then we have

J
MQ

M (η,X0, f̂
η
Q) = I

MQ

M (η,X0, f̂
η
Q).

From the Weyl integration formula (7.1.2) in Chapter 4, we deduce that

I
MQ

M (η,X0, f̂
η
Q) =

∑
c∈T

mQ∩s
0

|W (MQH , c)|−1

∫
creg(F )

J
MQ

MQ
(η, Z, fηQ)̂i

MQ

M (η,X0, Z)dZ.

Using Proposition 4.1.4) Chapter 4 again, we obtain

J
MQ

MQ
(η, Z, fηQ) = JQMQ

(η, Z, f) = JGG (η, Z, f).

Suppose that JGG (η, Z, f) 6= 0. By the condition (i) on f , there exists x ∈ H(F ) such that Ad(x−1)(Z) ∈
ω. For such an x, we have Ad(x)(sX0

) = c. By the condition (iv) on ω, if MQ 6= M , we get

î
MQ

M (η,X0, Z) = 0 and thus

JQM (η,X0, f̂) = 0.

Similarly, if MQ′ 6= M ′, we prove the vanishing of JQ
′

M ′(Y0, f̂ ′) with the help of Proposition 4.4.4) and
(7.2.2) in Chapter 4, the condition (i) on f ′ and the condition (v) on ω′.

The condition (f) is shown as in the last paragraph of the proof of [58, Proposition 7.6] with the
aide of Lemma 7.1. �

8. The weighted fundamental lemma

Let F be a non-archimedean local field of characteristic zero and E be a quadratic extension of F .
Assume that F has odd residue characteristic and that E/F is unramified. Assume that (G′, H ′) '
(GL2n,ResE/FGLn,E). Let

s(OF ) :=

{(
0 A
B 0

)
: A,B ∈ gln(OF )

}
.

We identify s′(F ) ' h′(F ) and let

s′(OF ) := gln(OE).

Denote by f0 ∈ C∞c (s(F )) (resp. f ′0 ∈ C∞c (s′(F ))) the characteristic function of s(OF ) (resp. of s′(OF )).

Lemma 8.1 (see Theorem 10.9 in Chapter 3). For all M ∈ L G,ω(M0) and all Q ∈ FG(M), we have

(a) if X ∈ (m ∩ srs)(F ) and Y ∈ (m̃′ ∩ s′rs)(F ) have M -matching orbits, then

κ(X)JQM (η,X, f0) = JQ
′

M ′(Y, f
′
0);

(b) for X ∈ (m ∩ srs)(F ), we have

JQM (η,X, f0) = 0

unless X comes potentially from (m
Q̃′
∩ s′rs)(F ).
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9. Approximation of local data by global data

Let k′/k be a quadratic extension of number fields and D be a central division algebra over k. For
a place v of k, denote k′v := k′ ⊗k kv and Dv := D⊗k kv.

Proposition 9.1. Let E/F be a quadratic extension of non-archimedean local fields of characteristic
0.

I) Let D be a central division algebra over F containing E. Then there exists a quadratic extension
of number fields k′/k, a central division algebra D over k containing k′, and a finite set S of finite
places of k satisfying the following conditions.
(a) The number field k is totally imaginary.
(b) |S| ≥ 2.
(c) For all v ∈ S, we have kv ' F , k′v ' E and Dv ' D.
(d) For all v /∈ S, kv splits Dv.

II) Let D be a central division algebra over F such that D ⊗F E is a central division algebra over E.
Then there exists a quadratic extension of number fields k′/k, a central division algebra D over
k such that D ⊗k k′ is a central division algebra over k′, and a finite set S of finite places of k
satisfying the following conditions.
(a) The number field k is totally imaginary.
(b) |S| ≥ 2.
(c) For all v ∈ S, we have kv ' F , k′v ' E and Dv ' D.
(d) For all v /∈ S, kv splits Dv.

Proof. By [14, Proposition 9.1], there exists a number field k, a central simple algebra D over k
and a finite set S of finite places of k such that

(i) the number field k is totally imaginary;
(ii) |S| ≥ 2;
(iii) for all v ∈ S, we have kv ' F and Dv ' D;
(iv) for all v /∈ S, kv splits Dv.

From the condition (iii), we know that D is a central division algebra over k. By [20, Theorem 3.1],
there exists a quadratic extension k′ of k such that k′v ' E for all v ∈ S.

I) We shall use [48, Theorem 1.2] to show that there exists an k-embedding of k′ into D. It is clear that
there exists an kv-embedding of k′v into Dv for all place v of k. Let v′ be a place of k′ and v be the
place of k below v′. Denote by cv (resp. dv) the capacity (resp. index) of Dv. Since D is a central
division algebra over F of even degree, we deduce that D is a central division algebra over k of even

degree. Then cvdv is even. Define xv′ :=
cv·gcd([k′

v′ :kv],dv)

2 ∈ Q>0. If v is archimedean or v /∈ S, i.e.,
kv splits Dv, then dv = 1 and cv is even, so xv′ ∈ Z. If v ∈ S, then [k′v′ : kv] = [E : F ] = 2, which
implies that xv′ ∈ Z since cvdv is even. We may use [48, Theorem 1.2] to conclude.

II) Let v ∈ S and v′ be the unique place of k′ over v. Since (D⊗k k′)v′ ' D⊗k kv ⊗kv k′v′ ' D ⊗F E
is a central division algebra over E, we know that D⊗k k′ is a central division algebra over k′.

�

10. An infinitesimal variant of Guo-Jacquet trace formulae

Let k′/k be a quadratic extension of number fields and η the quadratic character of A×/k× attached
to it, where A denotes the ring of adèles of k.

Let G be a reductive group over k. Fix a maximal compact subgroup K of G(A) which is admissible
relative to M0 in the sense of [5, p. 9]. In this paper, we choose the standard maximal compact
subgroup when G(k) = GLn(D), where D is a central division algebra over a finite field extension of k.
That is to say, K :=

∏
vKv where each Kv is the standard maximal compact subgroup of G(kv). For

M ∈ L G(M0), we define the weight function vGM with respect to K as in the local case (2.1.1). We fix
the Haar measure on K such that vol(K) = 1. We fix a Haar measure on G(A) which is compatible
with the Iwasawa decomposition.

Let (G,H, θ) be a symmetric pair defined over k. Denote by S(s(A)) the Bruhat-Schwartz space of
s(A). Let 〈·, ·〉 be aG-invariant θ-invariant non-degenerate symmetric bilinear form on g. Fix a continuous

and nontrivial unitary character Ψ : A/k → C×. For f ∈ s(A), we define its Fourier transform f̂ ∈ s(A)
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by

∀X̂ ∈ s(A), f̂(X̂) :=

∫
s(A)

f(X)Ψ(〈X, X̂〉)dX.

We fix the self-dual on s(A) with respect to the Ψ(〈·, ·〉).
We shall write (G,H) and (G′,H′) for the global symmetric pairs over k with respect to k′ defined

in Sections 2.3 and 2.4 respectively. We still use a minuscule Fraktur letter to denote a global Lie algebra
and write s and s′ for the corresponding global symmetric spaces. We also fix minimal Levi k-subgroups
of these four groups as in the local case and denote them by bold letters.

For φ ∈ S(s(A)), we define

(10.0.1) JG(η, φ) =
∑

o∈Os
rs

JG
o (η, φ),

where Os
rs denotes the set of H(k)-orbits in srs(k), and JG

o (η, φ) is the constant term of (5.0.1) with
s = 0 in Chapter 2. From Theorem 4.11 and Corollary 5.6 in Chapter 2, we know that the right hand
side of (10.0.1) is absolutely convergent. For o ∈ Os

rs, let L ∈ L G,ω(M0) and X ∈ o ∩ (l ∩ srs)(k)ell. By
Theorem 9.2 in Chapter 2, we have

JG
o (η, φ) = vol(A∞L HX(k)\HX(A))

∫
HX(A)\H(A)

φ(Ad(x−1)(X))η(Nrd(x))vGL (x)dx.

We denote

τ(HX) := vol(A∞L HX(k)\HX(A))

for X ∈ (l ∩ srs)(k)ell and define

JG
L (η,X, φ) :=

∫
HX(A)\H(A)

φ(Ad(x−1)(X))η(Nrd(x))vGL (x)dx

for all X ∈ (l ∩ srs)(k). From Lemma 3.10 in Chapter 4, we obtain

(10.0.2) JG(η, φ) =
∑

L∈L G,ω(M0)

|WLn
0 ||W

GLn
0 |−1

∑
X∈Γell((l∩srs)(k))

τ(HX)JG
L (η,X, φ).

Denote by S(s′(A)) the Bruhat-Schwartz space of s′(A). For φ′ ∈ S(s′(A)), we define

(10.0.3) JH′(φ′) =
∑

o∈Os′
rs

JH′

o (φ′),

where Os′

rs denotes the set of H′(k)-orbits in s′rs(k), and JH′

o (φ′) is the constant term of (5.0.1) in Chapter
3. From Theorem 4.2 and Corollary 5.3 in Chapter 3, we know that the right hand side of (10.0.3) is

absolutely convergent. For o ∈ Os′

rs , let L′ ∈ L H′(M′
0) and Y ∈ o ∩ (l̃′ ∩ s′rs)(k)ell. By Theorem 9.2 in

Chapter 3, we have

JH′

o (φ′) = vol(A∞L′H
′
Y (k)\H′Y (A))

∫
H′Y (A)\H′(A)

φ′(Ad(x−1)(Y ))vH
′

L′ (x)dx.

We denote

τ(H′Y ) := vol(A∞L′H
′
Y (k)\H′Y (A))

for Y ∈ (l̃′ ∩ s′rs)(k)ell and define

JH′

L′ (Y, φ′) :=

∫
H′Y (A)\H′(A)

φ′(Ad(x−1)(Y ))vH
′

L′ (x)dx

for all Y ∈ (l̃′ ∩ s′rs)(k). From Lemma 3.16 in Chapter 4, we obtain

(10.0.4) JH′(φ′) =
∑

L′∈L H′ (M′0)

|WL′

0 ||WH′

0 |−1
∑

Y ∈Γell((l̃′∩s′rs)(k))

τ(H′Y )JH′

L′ (Y, φ′).

Proposition 10.1 (see Theorem 7.1 in Chapter 2 and Theorem 7.1 in Chapter 3). 1) Let φ ∈ S(s(A))

be such that Supp(φ) ⊆ srs(kv1) and Supp(φ̂) ⊆ srs(kv2) at some places v1, v2 of k. Then we have the
equality

JG(η, φ) = JG(η, φ̂).
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2) Let φ′ ∈ S(s′(A)) be such that Supp(φ′) ⊆ s′rs(kv1
) and Supp(φ̂′) ⊆ s′rs(kv2

) at some places v1, v2

of k. Then we have the equality

JH′(φ′) = JH′(φ̂′).

11. Proof of Proposition 5.5

Let F be a non-archimedean local field of characteristic zero and E be a quadratic extension of
F . Fix M ′ ∈ LH′(M ′0). Recall that its image in L G,ω(M0) is denoted by M . Let f ∈ C∞c (s(F ))
and f ′ ∈ C∞c (s′(F )) be partially M -associated and satisfy the two conditions in Theorem 5.3. Fix

X0 ∈ (m∩ srs)(F ) and Y0 ∈ (m̃′ ∩ s′rs)(F ) with M -matching orbits. It is obvious from Definition 5.1 that
a pair of partially M -associated functions are also partially L-associated for all L ∈ L G(M). Then by
induction, to prove Proposition 5.5, it suffices to show that for all Q ∈ FG(M), we have the equality

(11.0.1) κ(X0)JQM (η,X0, f̂) = JQ
′

M ′(Y0, f̂ ′).

11.1. Global data. Fix a quadratic extension of number fields k′/k, a central division algebra D
over k, and a finite set S of finite places of k satisfying the conditions in Proposition 9.1. Fix w ∈ S.
Denote by V (resp. V∞, Vf ) the set of places (resp. archimedean places, finite places) of k.

Define the global symmetric pairs (G,H) and (G′,H′) over k with respect to k′ and D as in the local
case. There is a bijection L 7→ L from L G(M0) to L G(M0) such that Lw ' L and we denote by M

the image of M under this bijection. Similarly, there is a bijection L′ 7→ L′ from LH′(M ′0) to L H′(M′
0)

such that L′w ' L′ and we denote by M′ the image of M ′ under this bijection.

11.2. Places. Fix a continuous and nontrivial unitary character Ψ : A/k → C× whose local compo-
nent at w is ψ. Let 〈·, ·〉s (resp. 〈·, ·〉s′) be the H-invariant (resp. H′-invariant) non-degenerate symmetric
bilinear form on s (resp. on s′) defined by (2.3.1) (resp. by (2.4.1)). Then we deduce local data Ψv,
〈·, ·〉sv and 〈·, ·〉s′v for all v ∈ V . Fix a finite set S1 ⊆ V and for v ∈ V − S1 lattices kv ⊆ s(kv) and
k′v ⊆ s′(kv) such that

(i) V∞ t S ⊆ S1;
(ii) if v ∈ V − S1, then

• kv has odd residue characteristic and v is unramified in k′;

• kv =

{(
0 A
B 0

)
: A,B ∈ gln(Okv )

}
;

• k′v = kv if v splits in k′, while k′v = gln(Ok′v ) if v is inert in k′;
• kv (resp. k′v) is self-dual respect to Ψv(〈·, ·〉sv ) (resp. Ψv(〈·, ·〉s′v )).

For v ∈ V − S1, notice that 1̂kv = 1kv (resp. 1̂k′v = 1k′v ), where 1kv (resp. 1k′v ) denotes the characteristic
function of kv (resp. k′v).

11.3. Orbits. For each v ∈ S1−V∞, we fix an open compact non-empty subset Ωv ⊆ (m̃′∩ s′rs)(kv)
such that

(i) if v = w, then Y0 ∈ Ωw ⊆ Ad(M′(kw))((s′Y0
∩ s′rs)(kw)), JQ

′

M ′(·, f̂ ′) is constant on Ωw and

κ(·)JQM (η, ·, f̂) is constant on {X ∈ (m ∩ srs)(kw) : ∃Y ∈ Ωw, X and Y have M -matching orbits};
(ii) if v ∈ S − {w}, then Ωv ⊆ (m̃′ ∩ s′rs)(kv)ell.

Notice that the condition (i) is achievable because of Lemma 4.7, Propositions 4.4.2) and 4.1.2) in Chapter

4 and the constancy of JQ
′

M ′(·, f̂ ′) (resp. κ(·)JQM (η, ·, f̂)) on M′(kw) (resp. MH(kw))-orbits. Besides, the

set (m̃′ ∩ s′rs)(kv)ell in the condition (ii) is not empty (see [55, Lemma 2.7 and p. 14]). Since X0 ↔ Y0,

the condition (i) implies that the restriction of κ(·)JQM (η, ·, f̂) to {X ∈ (m∩ srs)(kw) : ∃Y ∈ Ωw, X ↔ Y }
equals κ(X0)JQM (η,X0, f̂).

By the strong approximation theorem, there exists Y 0 ∈ (m̃′ ∩ s′)(k) such that

(i) for v ∈ S1 − V∞, Y 0 ∈ Ωv;

(ii) for v ∈ V − S1, Y 0 ∈ m̃′(kv) ∩ k′v.

Combined with the condition (ii) on Ωv, the condition (i) implies that Y 0 ∈ (m̃′ ∩ s′rs)(k)ell. Choose an
element X0 ∈ (m ∩ srs)(k)ell such that X0 and Y 0 have M-matching orbits.
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11.4. Choice of functions. For each v ∈ V , we fix functions φv ∈ S(s(kv)) and φ′v ∈ S(s′(kv)) as
follows.

(i) If v = w, let φw = f and φ′w = f ′.
(ii) If v ∈ S1 − V∞ − {w}, then φv and φ′v verify the conditions in Proposition 7.2 with respect to M′

v,
X0 and Y 0.

(iii) If v ∈ V − S1, let φv = 1kv and φ′v = 1k′v .
(iv) If v ∈ V∞, we identify (Hv, sv) and (H′v, s

′
v) by the condition (a) in Proposition 9.1, and choose

φv = φ′v such that

• JGv

Gv
(η,X0, φ̂v) = J

H′v
H′v

(Y 0, φ̂′v) 6= 0;

• if X ∈ s(k) is H(kv)-conjugate to an element in Supp(φ̂v) for all v ∈ V , then X is H(k)-
conjugate to X0;

• if Y ∈ s′(k) is H′(kv)-conjugate to an element in Supp(φ̂′v) for all v ∈ V , then Y is H′(k)-
conjugate to Y 0.

Notice that the condition (ii) is easier to be satisfied if v splits in k′. In fact, we can identify (Hv, sv)
and (H′v, s

′
v) by the condition (d) in Proposition 9.1, and choose φv = φ′v. Additionally, the condition

(iv) is possible (see [58, p. 1874]).
In the rest of the proof of Proposition 5.5, we consider the global functions φ :=

∏
v∈V

φv ∈ S(s(A))

and φ′ :=
∏
v∈V

φ′v ∈ S(s′(A)).

11.5. Comparison of JG(η, φ) and JH′(φ′).

Lemma 11.1 (cf. [14, Lemme 10.1]). For our choice of φ and φ′, we have

JG(η, φ) =
∑

L∈L G(M)

|TranGLn(Mn,Ln)|−1
∑

X∈Γell((l∩srs)(k))

τ(HX)JG
L (η,X, φ)

and

JH′(φ′) =
∑

L′∈L H′ (M′)

|TranH′(M
′,L′)|−1

∑
Y ∈Γell((l̃′∩s′rs)(k))

τ(H′Y )JH′

L′ (Y, φ′).

Proof. For the first formula, we start with (10.0.2). Fix L ∈ L G,ω(M0) and X ∈ Γell((l ∩ srs)(k))
such that JG

L (η,X, φ) 6= 0. By the condition (b) in Proposition 9.1, there exists u ∈ S − {w}. From the
condition imposed on φu (see (a) in Proposition 7.2) and Lemma 4.7, we see that X is H(ku)-conjugate
to an element in (sX0 ∩ srs)(ku). Choose R ∈ L G,ω(M0) such that R ⊆ L and that X is LH(ku)-
conjugate to an element in (r∩ srs)(ku)ell. Then there exists x ∈ H(ku) and Z ∈ (r∩ srs)(ku)ell such that
Z = Ad(x)(X0). But by the condition (ii) on Ωu, we know that X0 ∈ (m ∩ srs)(ku)ell. Thus by Lemma

3.10.1) in Chapter 4, there exists w ∈
{(

ωn
ωn

)
: ωn ∈W

GLn,u
0

}
such that Ad(w)(Mu) = Ru. Since

we may identify W
GLn,u
0 with WGLn

0 , we deduce that TranGLn(Mn,Ln) 6= ∅. That is to say, we may
restrict the sum on L ∈ L G,ω(M0) in (10.0.2) to those conjugate to an element in L G(M) under{(

ωn
ωn

)
: ωn ∈WGLn

0

}
.

We reindex the sum on L ∈ L G(M). On the one hand, the number of elements in L G,ω(M0)

conjugate to L under

{(
ωn

ωn

)
: ωn ∈WGLn

0

}
is

|NormWGLn
0

(Ln)\WGLn
0 |.

On the other hand, the number of elements in L G(M) conjugate to L under

{(
ωn

ωn

)
: ωn ∈WGLn

0

}
is

|WGLn(Ln)|−1|TranGLn(Mn,Ln)|.
Since WGLn(Ln) = NormWGLn

0
(Ln)/WLn

0 (see [35, (7.12.2)]), we obtain

|WLn
0 ||W

GLn
0 |−1 · |NormWGLn

0
(Ln)\WGLn

0 | · |WGLn(Ln)||TranGLn(Mn,Ln)|−1 = |TranGLn(Mn,Ln)|−1.

Then the first formula of the lemma follows.
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The second formula can be proved in a similar way with the help of (10.0.4), the condition (b) in
Proposition 7.2 of φ′u and Lemma 3.16.1) in Chapter 4. The only additional ingredient is the condition

(c) in Proposition 9.1, by which we may identify W
H′u
0 with WH′

0 . �

Recall that we have bijections L H′(M′)→ L G(M) and FH′(M′)→ FG(M). For all L ∈ L G(M),
we also have R-linear isomorphisms between aL′ and aL and, for all v ∈ V , between aL′v and aLv . By
modifying the scalar products on these Euclidean spaces, we may and shall suppose that these bijections
are isometries. Then for all (Rv)v∈V ∈

∏
v∈V

L Gv (Lv), we have the equality

dH
′

L′ ((R
′
v)v∈V ) = dGL ((Rv)v∈V ),

where both sides are Arthur’s coefficients defined in [6, p. 356]. We shall also choose compatible sections

(R′v)v∈V 7→ (QR′v )v∈V ∈
∏
v∈V

PH′v (R′v)

and

(Rv)v∈V 7→ (QRv )v∈V ∈
∏
v∈V

PGv (Rv)

in the sense that for all v ∈ V ,

QR′v = (QRv
)′.

Proposition 11.2. For our choice of φ and φ′, we have the equality

JG(η, φ) = JH′(φ′).

The rest of this section is devoted to the proof of Proposition 11.2.
Let L ∈ L G(M). There is a canonical bijection between TranGLn(Mn,Ln) and TranH′(M

′,L′)

since both of them are understood as permutations. If X ∈ Γell((l ∩ srs)(k)) and Y ∈ Γell((l̃′ ∩ s′rs)(k))
have matching orbits, by Lemma 4.7, there is an isomorphism HX ' H′Y over F . By choosing compatible
Haar measures on them, we have τ(HX) = τ(H′Y ). Since X and Y have matching orbits at each v ∈ V ,

we see that JG
L (η,X, φ) = JH′

L′ (Y, φ′) by our choice of φ and φ′.

Now assume that X does not come from (l̃′ ∩ s′rs)(k) (or equivalently s′rs(k)). By Lemma 11.1, to
show Proposition 11.2, it suffices to show that JG

L (η,X, φ) = 0.
By the splitting formula of (G,M)-families applied to the weight function (see [6, Corollary 7.4]),

we write

JG
L (η,X, φ) =

∑
(Rv)v∈V ∈

∏
v∈V

L Gv (Lv)

dGL ((Rv)v∈V )
∏
v∈V

κv(X)J
QRv

Lv
(η,X, φv).

If JG
L (η,X, φ) 6= 0, we fix (Rv)v∈V ∈

∏
v∈V

L Gv (Lv) such that

dGL ((Rv)v∈V )
∏
v∈V

κv(X)J
QRv

Lv
(η,X, φv) 6= 0.

We choose a representative of X (still denoted by X) in the form of

(
0 1n
A 0

)
∈ (l ∩ srs)ell(k).

Lemma 11.3. For all v ∈ V , we have ηRv
(X) = eR′v .

Proof. It is trivial if v ∈ V splits in k′ (in particular, if v ∈ V∞). For v ∈ V − S1 which does not
split in k′, it results from Lemma 8.1.(b). For v ∈ S1−V∞−{w} which does not split in k′, it is deduced
from Proposition 7.2.(a)(c) and Corollary 4.6.(1). For v = w, it is because f satisfies the additional
condition in Definition 5.2. �

Lemma 11.4. For all v ∈ V , we have ηLv (X) = eL′v .

Proof. Let S2 be the subset of Vf consisting of v which does not split in k′. The assertion is trivial
for v ∈ V − S2. Consider v ∈ S2. By Propositions 4.20 and 4.21, ηLv (X) and eL′v are understood as

εLvX and ε′
Lv respectively. By Proposition 4.19, we view εLvX and ε′

Lv as complex characters of ZL̂[2].
Denote by ζv the character obtained by their quotient.

For all v ∈ S2, by Lemma 11.3, we know that the character ζv is trivial on Z
R̂v

[2]. By the product

formula of Kottwitz signs [33, the last proposition] and the fundamental exact sequence of global class
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field theory for k′/k (see [42, Example 4.4.(a) in Chapter VIII] for example), we also have a global
condition: the product

∏
v∈S2

ζv is trivial on ZL̂[2].

Let v ∈ S2. We need to show that ζv is trivial on ZL̂[2]. We first deduce from dGL ((Rv)v∈V ) 6= 0
that ZL̂ = AvA

v, where Av := Z
R̂v

and Av :=
⋂

v′∈S2−{v}
Z
R̂v′

. By [15, Lemme 4.5], we also have

Av ∩Av = ZĜ since dGL ((Rv)v∈V ) 6= 0.
We claim that ZL̂[2] = Av[2]Av[2]. To see this, let s = ava

v ∈ ZL̂[2], where av ∈ Av and av ∈ Av.
Then a2

v = (av)−2 ∈ ZĜ. Since z 7→ z2 is a surjective endomorphism of ZG̃, there exists y ∈ ZĜ such

that a2
v = (av)−2 = y2. Thus s = y−1av · (yav) with y−1av ∈ Av[2] and yav ∈ Av[2]. We have shown our

claim.
Now, let s = ava

v ∈ ZL̂[2], where av ∈ Av[2] and av ∈ Av[2]. Since the character ζv is trivial
on Z

R̂v
[2], we have ζv(s) = ζv(av)ζv(a

v) = ζv(a
v). By the global condition above, we have ζv(av) =∏

v′∈S2−{v} ζ
−1
v′ (av). But for v′ ∈ S2−{v}, the character ζv′ is trivial on Av[2]. We have proved ζv(s) = 1

for all s ∈ ZL̂[2] and thus the lemma. �

Lemma 11.5. For all v ∈ V , X comes from s′rs(kv).

Proof. It suffices to consider v ∈ V − S1 which does not split in k′. Notice that eL′v = (1, · · · , 1).

We are in a similar situation as the base change for GLn. There exists L0 ∈ L G,ω(M0),L0 ⊆ L
such that X is (Lv ∩Hv)(kv) conjugate to an element Z ∈ (l0 ∩ srs)(kv)ell. If X does not come from
s′rs(kv), by [10, Lemma 1.4 in Chapter 1], there exists ηL0,v

(Z) 6= eL′0,v = (1, · · · , 1). By Lemma 8.1.(b)

and the argument of [37, Lemma III.3.4], we deduce that J
QRv

Lv
(η,X, φv) = 0, which contradicts our

assumption. �

Proposition 11.6. The element X comes from s′rs(k).

Proof. We start with two lemmas.

Lemma 11.7. Let F0 be a field. Let ZC ⊆ A ⊆ B ⊆ C be reductive groups defined over F0, where
ZC denotes the centre of C. Suppose that H1(F0, Aβ) is a singleton for all inner form Aβ of A. Then
the natural map

H1(F0, A/ZC)→ H1(F0, B/ZC)

is injective.

Proof of Lemma 11.7. We begin with the following commutative diagram with exact rows.

0 // ZC // A //

��

A/ZC //

��

0

0 // ZC // B // B/ZC // 0

Then we obtain the following commutative diagram of pointed sets.

H1(F0, A/ZC) //

g

��

H2(F0, ZC)

H1(F0, B/ZC) // H2(F0, ZC)

Since H1(F0, Aβ) is a singleton for all inner form Aβ of A, the map

H1(F0, A/ZC)→ H2(F0, ZC)

is injective by [32, Corollary (28.13)]. As the above diagram is commutative, we deduce that g is
injective. �

Lemma 11.8. Let F0 be a global field. Let ZB ⊆ A ⊆ B be reductive groups defined over F0, where
ZB denotes the centre of B. Suppose that H1(F0, Aβ) is a singleton for all inner form Aβ of A. Then
the map

H1(F0, A/ZB)→ H1(AF0 , A/ZB)

is injective.
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Proof of Lemma 11.8. We use the commutative diagram of pointed sets:

H1(F0, A/ZB)
i //

g

��

H1(AF0 , A/ZB)

��
H1(F0, Bad)

h // H1(AF0 , Bad)

By Lemma 11.7, the map g is injective. By the Hasse principle for Bad, the map h is injective. Since
the diagram is commutative, we deduce that i is injective. �

Return to the proof of Proposition 11.6. We shall use the notation in Section 4.3 but bold letters for
reductive groups defined over k. Let t ∈ H1(k,T/R) be the class associated to X in Lemma 4.8. Let
u ∈ H1(k,H0/ZG) be the class associated to g′. Let t′ ∈ H1(A,T/R) (resp. u′ ∈ H1(A,H0/ZG)) be
the image of t (resp. u). By Lemmas 11.5 and 4.9, there exists v′ ∈ H1(k,T/ZG) with images t′ and u′.

By [38, Proposition 1.6.12], we have the following commutative diagram of pointed sets with exact
rows.

H1(k,T/ZG) //

��

H1(A,T/ZG) //

��

H1(A/k,T/ZG)

g

��
H1(k,H0/ZG)

i // H1(A,H0/ZG) // H1
ab(A/k,H0/ZG)

Let v′′ ∈ H1(A,T/R) (resp. u′′ ∈ H1(A,H0/ZG)) be the image of v′ (resp. u′). Then u′′ = 0.
By a variant of Lemma 11.7 for H1

ab(A/k, ·), the map g is injective. Thus v′′ = 0 and there exists
v ∈ H1(k,T/ZG) with image v′. By Lemma 11.8, the map i is injective. Since the square on the left
above is commutative, the class v maps to u.

We also have the following commutative diagram.

H1(k,T/ZG) //

��

H1(A,T/ZG)

��
H1(k,T/R)

j // H1(A,T/R)

By our discussion in Section 4.3, the map j is given by∏
i∈I0

k×i /Nk′i/ki(k
′
i
×

)→
∏
i∈I0

A×ki/Nk′i/ki(A
×
k′i

),

where ki = k[λ]/(χi(λ)) with χi being an irreducible polynomial over k, and k′i = ki ⊗k k′. It is known
to be injective. Since the diagram is commutative, the class v maps to t.

By Lemma 4.9, we draw our conclusion. �

Proof of Proposition 11.2. The statement of Proposition 11.6 contradicts our assumption, so
we have finished the proof. �

11.6. End of the proof.

Lemma 11.9. For our choice of φ and φ′, we have

JG(η, φ̂) = τ(HX0)JG
M(η,X0, φ̂)

and

JH′(φ̂′) = τ(H′Y 0)JH′

M′(Y
0, φ̂′).

Proof. The first formula results from (10.0.1) for φ̂ and the condition (iv) in Section 11.4, while

the second formula results from (10.0.3) for φ̂′ and the condition (iv) in Section 11.4. �

Proof of Proposition 5.5. Combining Propositions 10.1 and 11.2 and Lemma 11.9, for our
choice of φ and φ′, we have the equality

JG
M(η,X0, φ̂) = JH′

M′(Y
0, φ̂′).
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But by the splitting formula and the conditions (iii) and (iv) on φv and φ′v, the difference of two sides
can be written as ∑

(Lv)v∈V ∈
∏
v∈V

L Gv (Mv)

dGM((Lv)v∈V )
∏

v∈(V−S1)∪V∞

κv(X
0)J

QLv

Mv
(η,X0, φ̂v)

×

[ ∏
v∈S1−V∞

κv(X
0)J

QLv

Mv
(η,X0, φ̂v)−

∏
v∈S1−V∞

J
Q′Lv
M′v

(Y 0, φ̂′v)

]
.

(11.6.1)

By the condition (e) in Proposition 7.2, we may suppose that Lv = Mv for all v ∈ S1 − V∞ − {w}.
Moreover, by the condition (f) in Proposition 7.2, we have

κv(X
0)J

QMv

Mv
(η,X0, φ̂v) = γΨv (h(kv))γΨv (h′(kv))

−1J
Q′Mv

M′v
(Y 0, φ̂′v) 6= 0

for all v ∈ S1 − V∞ − {w}.
Recall the product formula ∏

v∈V
γΨv (h(kv)) =

∏
v∈V

γΨv (h′(kv)) = 1.

For v ∈ (V − S1) ∪ V∞, we have
γΨv (h(kv)) = γΨv (h′(kv)) = 1.

Hence, ∏
v∈S1−V∞−{w}

γΨv (h(kv))γΨv (h′(kv))
−1 = γΨw(h(kw))−1γΨw(h′(kw)).

Then the expression (11.6.1) equals∑
(Lv)v∈V ∈

∏
v∈V

L Gv (Mv)

dGM((Lv)v∈V )
∏

v∈V−{w}

κv(X
0)J

QLv

Mv
(η,X0, φ̂v)

×
[
γΨw(h(kw))−1γΨw(h′(kw))κw(X0)J

QLw

Mw
(η,X0, φ̂w)− JQ′Lw

M′w
(Y 0, φ̂′w)

]
.

(11.6.2)

Since φw and φ′w are partially Mw-associated, by parabolic descent (see Propositions 4.1.4) and

4.4.4) in Chapter 4), we see that φηw,QLw
∈ C∞c ((lw ∩ sw)(kw)) and φ′w,Q′Lw

∈ C∞c ((l̃′w ∩ s′w)(kw)) are

partially Mw-associated. We shall prove (11.0.1) by induction on the dimension of G. Then we may
suppose that for Lw 6= Gw, we have the equality

κw(X0)JLw
Mw

(η,X0, φ̂ηw,QLw
) = γΨw((lw ∩ hw)(kw))γΨw(l′w(kw))−1J

L′w
M′w

(Y 0, φ̂′w,Q′Lw
).

Since the difference between the quadratic form on h(kw) (resp. h′(kw)) and its restriction on (lw∩hw)(kw)
(resp. l′w(kw)) is a split quadratic form, we have γΨw((lw∩hw)(kw)) = γΨw(h(kw)) (resp. γΨw(l′w(kw)) =
γΨw(h′(kw))). By parabolic descent again, we see that

κw(X0)J
QLw

Mw
(η,X0, φ̂w) = γΨw(h(kw))γΨw(h′(kw))−1J

Q′Lw
M′w

(Y 0, φ̂′w).

By the condition (i) on Ωw, it implies (11.0.1) for all QLw 6= Gw (actually for all Qw ∈ L Gw(Mw),Qw 6=
Gw). Then we may suppose that Lw = Gw in (11.6.2). But for all L ∈ L G(M), we have aGL ' aGw

Lw
.

Thus dGM((Lv)v∈V ) = 0 unless Lv = Mv for all v ∈ V − {w}, in which case dGM((Lv)v∈V ) = 1. That is
to say, the sum in (11.6.2) is reduced to only one term. We obtain∏

v∈V−{w}

κv(X
0)J

QMv

Mv
(η,X0, φ̂v)

×
[
γΨw(h(kw))−1γΨw(h′(kw))κw(X0)JGw

Mw
(η,X0, φ̂w)− JG′w

M′w
(Y 0, φ̂′w)

]
= 0.

By the condition (iv) on φv for v ∈ V∞, the condition (f) in Proposition 7.2, the condition (ii) on Y 0

and Lemma 8.1.(a), we know that the product on v ∈ V − {w} does not vanish. Then we conclude by
the condition (i) on Ωw. �
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[61] Micha l Zydor. La variante infinitésimale de la formule des traces de Jacquet-Rallis pour les groupes linéaires. J. Inst.
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