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Title, abstract and key words (in English and French)

Title: Contributions to the relative trace formula of Guo-Jacquet

Abstract: We establish global and local trace formulae for infinitesimal symmetric spaces of Guo-
Jacquet. We also prove several local results concerning the comparison of regular semi-simple terms which
are noninvariant weighted orbital integrals. This thesis contains five chapters. In Chapter 1, we recall
the motivations and state our main reults. Our work is inspired by a conjecture of Guo-Jacquet, which is
an example in the relative Langlands programme, and analytic problems appearing in the relative trace
formula approach. In Chapter 2, we establish an infinitesimal variant of Guo-Jacquet trace formula for
the case of (GLay,p, GLy,p X GLy, p). It is a kind of Poisson summation formula obtained by an analogue
of Arthur’s truncation. We describe regular semi-simple terms as explicit weighted orbital integrals. In
Chapter 3, we estabilish a similar formula and have a similar description of regular semi-simple terms
for the case of a central simple algebra containing a quadratic extension. Moreover, we state and prove
the weighted fundamental lemma thanks to Labesse’s work on the base change for GL,. In Chapter 4,
we establish an infinitesimal invariant local trace formula of Guo-Jacquet over a p-adic field by following
works of Waldspurger and Arthur. During the proof, we also obtain an infinitesimal noninvariant local
trace formula, Howe’s finiteness for weighted orbital integrals and the representability of the Fourier
transform of weighted orbital integrals. In Chapter 5, with the results in previous chapters, we adopt
Waldspurger’s strategy on the endoscopic transfer to prove some relations between Fourier transforms
of invariant local weighted orbital integrals.

Key words: Guo-Jacquet trace formula, Arthur’s truncation, weighted fundamental lemma, local
trace formula, noninvariant transfer

Titre : Contributions a la formule des traces relative de Jacquet-Guo

Résumé : On établit des formules des traces globale et locale pour les espaces symétriques in-
finitésimaux de Jacquet-Guo. On prouve également quelques résultats locaux concernant la comparaison
de termes semi-simples réguliers qui sont des intégrales orbitales pondérées non invariantes. Cette these
contient cing chapitres. Dans le chapitre 1, on rappelle les motivations et énonce nos principaux résultats.
Notre travail s’inspire d'une conjecture de Jacquet-Guo, qui est un exemple dans le programme de Lang-
lands relatif, et des problemes analytiques apparaissant dans ’approche par la formule des traces relative.
Dans le chapitre 2, on établit une variante infinitésimale de la formule des traces de Jacquet-Guo pour
le cas de (GLay,p, GLy,p X GLy p). Elle est une sorte de formule sommatoire de Poisson obtenue par
un analogue de la troncature d’Arthur. On décrit les termes semi-simples réguliers comme des intégrales
orbitales pondérées explicites. Dans le chapitre 3, on établit une formule similaire et a une description
similaire des termes semi-simples réguliers pour le cas d’une algebre centrale simple contenant une ex-
tension quadratique. De plus, on énonce et prouve le lemme fondamental pondéré grace aux travaux de
Labesse sur le changement de base pour GL,,. Dans le chapitre 4, on établit une formule des traces locale
invariante infinitésimale de Jacquet-Guo sur un corps p-adique en suivant les travaux de Waldspurger et
Arthur. Au cours de la démonstration, on obtient également une formule des traces locale non invari-
ante infinitésimale, la finitude de Howe pour les intégrales orbitales pondérées et la représentabilité de
la transformée de Fourier des intégrales orbitales pondérées. Dans le chapitre 5, avec les résultats des



chapitres précédents, on adopte la stratégie de Waldspurger sur le transfert endoscopique pour prouver
certaines relations entre transformées de Fourier des intégrales orbitales pondérées locales invariantes.

Mots-clefs : formule des traces de Jacquet-Guo, troncature d’Arthur, lemme fondamental pondéré,
formule des traces locale, transfert non invariant
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Introduction en francais

Ce projet de these s’inspire d’une conjecture de Jacquet-Guo [23] qui généralise le théoréme connu
de Waldspurger [50] reliant les périodes toriques aux valeurs centrales des fonctions L automorphes
pour GLs en dimensions supérieures. C’est 'un des premiers exemples intéressants du programme de
Langlands relatif initié par Jacquet et ses collaborateurs et systématiquement proposé par Sakellaridis-
Venkatesh [46]. Un outil efficace pour attaquer ce genre de problémes est la formule des traces relative
introduite par Jacquet [29] pour réprouver le résultat de Waldspurger. Les objectifs de cette these sous
la direction de Pierre-Henri Chaudouard incluent le développement de variantes infinitésimales des for-
mules des traces de Jacquet-Guo globale et locale et 1’établissement des résultats locaux de comparaison
nécessaires pour une étude plus approfondie de cette conjecture. On espere que certaines méthodes ici
seront également utiles dans d’autres formules des traces relatives.

1. La conjecture de Jacquet-Guo et ’approche de la formule des traces relative

Rappelons brievement la conjecture de Jacquet-Guo proposée dans [23]. Soient E/F une extension
quadratique de corps de nombres et 7 le caractére quadratique attaché de A*/F* ol A est anneau des
adeles de F. Soient G := GLsg, et H := GL, x GL, son sous-groupe. Tous les groupes considérés sont
définis sur F'. Soit m une représentation automorphe cuspidale de G(A) avec un caractere central trivial.
On dit que 7 est H-distinguée si les deux formes linéaires (appelées “périodes”) sur son espace

Py ¢ / é(h)dh
H(F)Z(A)\H(A)

et
Phy: ¢ ¢(h)n(det(h))dh
H(F)Z(A)\H(A)
sont non nulles, ou Z est le centre de G. Cette propriété est directement liée a la non-annulation de
certaines valeurs centrales de fontions L grace au travail de Friedberg-Jacquet [22]. On doit également

considérer une autre paire de groupes. Notons X (F) I'ensemble des classes d’isomorphismes d’algebres
de quaternions D/F contenant E. Pour tout D € X (E), on note G’ = GL,, p le groupe algébrique défini
sur F' dont le groupe de points sur F' est GL,(D). Soit H' = Resg;pG Ly, g son sous-groupe. Soit 7’
une représentation automorphe cuspidale de G'(A) avec un caracteére central trivial. On dit que 7’ est
H'-distinguée si la forme linéaire sur son espace

P ¢ — ¢(h)dh
H/(F)Z(A)\H'(4)

est non nulle, ol le centre de G’ s’identifie & Z. Une direction de la conjecture de Jacquet-Guo dit
que si ' est H'-distinguée et correspond par la correspondance de Jacquet-Langlands & 7, alors 7 est
H-distinguée. On s’attend également & une réciproque au moins pour n impair. Pour n = 1, celles-ci
étaient connues par Waldspurger [50] et réprouvées par Jacquet [29] via la formule des traces relative.

Maintenant, on décrit formellement I’approche par la formule des traces relative suivant Jacquet
[29] & cette conjecture. Soit fg une fonction lisse sur G(A) & support compact. En tant qu’analogue
de la formule des traces d’Arthur-Selberg, la formule des traces relative pour le cas de (G, H) indique
grossierement qu’il existe deux fagons d’écrire l'intégrale (vue comme une distribution)

(1.0.1) Ky, (z, y)n(det(x))dzdy,

/H(F)\H(A)ﬂG(A)l /H(F)\H(A)mG(A)l
ot G(A)! est le sous-ensemble des éléments dans G(A) dont les déterminants sont de valeur absolue 1
et Ky, (z,y) := Z,YGG(F) fo(z7tyy). Le coté géométrique devrait étre une somme d’intégrales orbitales
relatives tandis que le coté spectral devrait étre une expansion de périodes. On pourrait de méme
imaginer une autre formule pour le cas de (G, H'). Alors la comparaison des périodes sur les différents
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groupes prédite par la conjecture de Jacquet-Guo est réduite a la comparaison d’intégrales orbitales

relatives, pour laquelle on a plus d’outils tels que le lemme fondamental de Guo [23] et le transfert lisse
de Zhang [58].
Cette approche a été adoptée par Feigon-Martin-Whitehouse [21] pour obtenir des résultats partiels.

Cependant, on a négligé la difficulté analytique dans la discussion ci-dessus. C’est-a-dire qu’'une ob-
struction de 'approche par la formule des traces relative a la conjecture de Jacquet-Guo est le probleme
suivant.

PROBLEME 1.1. L’ntégrale double (1.0.1) et ses développements ne sont pas convergents.

Ce probléme explique certaines conditions locales restrictives dans les principaux résultats de [21]
basés sur une simple formule des traces relative. Si ’on espére supprimer ces restrictions apparemment
artificielles et obtenir des informations sur toutes les représentations cuspidales, ce probleme ne peut étre
ignoré. Par conséquent, il est nécessaire d’établir des formules des traces relatives valides et générales
pour les cas (G, H) et (G', H') plutdt que des formules formelles ou simples. Ensuite, on doit comparer
les nouveaux termes apparaissant dans ces formules en dehors des intégrales orbitales relatives ordinaires.

Un tel probleme existait également dans la formule des traces d’Arthur-Selberg classique et Arthur
a introduit un processus de troncature dans [3] et [4] pour le résoudre. Dans le cadre relatif, Jacquet-
Lapid-Rogawski nous a fourni le premier exemple de la “troncature mixte” dans [30], dont 'idée grossiére
est de définir une troncature compatible avec les différents groupes concernés. Ces travaux et d’autres
donnent de bons exemples pour notre étude du probleme 1.1.

On se concentrera sur une variante infinitésimale du probleme 1.1 et la comparaison de nouveaux
termes impliqués dans cette these. Cela signifie que 'on va travailler sur I’espace tangent d’un espace
symétrique (appelé espace symétrique infinitésimal). Cela serait intéressant pour au moins deux raisons.
D’une part, il est proche du coté géométrique de la formule des traces relative originale et nous suggere
une fagon d’aborder le probleme original, mais le co6té spectral de la formule des traces relative est
remplacé par la transformée de Fourier du coté géométrique ou ’analyse harmonique est plus simple.
D’autre part, une variante infinitésimale des formules des traces de Jacquet-Guo est également utile dans
la comparaison de formules des traces relatives entre deux cas ; par exemple, sa version simple a été
utilisée par Zhang [58] pour montrer le transfert lisse.

2. Principaux résultats

2.1. Une variante infinitésimale des formules des traces de Jacquet-Guo. On résout
d’abord une variante infinitésimale du probleme 1.1 dans le chapitre 2 et le chapitre 3. C’est le principal
résultat global de cette these.

2.1.1. Le cas de (G, H). On remarque que le cadre du chapitre 2 est un peu plus général pour
inclure le cas de [57], mais on se concentrera sur la paire (G, H) définie ci-dessus dans l'introduction.
Notons S l’espace symétrique G/H. La double intégrale (1.0.1) peut étre formellement écrite comme
une intégrale seule

/ Ky, (#)n(det(x))de,
H(F)\H(A)NG(A)!
ou fs(x) := fH(A)ﬂG(A)l fa(zy)dy définit une fonction lisse sur S(A) & support compact et Ky, (x) 1=
Z'yGS(F) fs(z~tyx). Sil'on remplace S par I'espace tangent s ~ gl,, @ gl,, en 1’élément neutre, alors le
probléme 1.1 apparait comme la divergence de 'intégrale

(2.1.1) k¢(z)n(det(z))de,

/H(F)\H(A)ﬁG(A)l
ol f est une fonction de Bruhat-Schwartz sur s(A) et kf(z) := 3 co(p) flz=tyz).

On remplace ky(x) par une expression explicite k?(:v) définie dans §4 du chapitre 2 pour rendre
(2.1.1) absolument convergente, ott 7' € R?" est un parametre de troncature. Cette définition essentielle
combine des idées de [28] [61] [17] pour la décomposition de H(A) et [40] pour la décomposition de
s5(A). Afin de décrire le développement géométrique, on définit une relation d’équivalence sur s(F) :
deux éléments dans s(F') sont équivalents si et seulement s'ils se trouvent dans la méme fibre du quotient
catégorique s//H. Notons O 'ensemble des classes d’équivalence. Pour tout o € O, on définit de méme
k? ,(x) en remplacant s(F') par o. Le principal résultat du chapitre 2 est le théoreme suivant qui donne
le développement géométrique de (2.1.1) avec kf(z) remplacé par k7 ().

10



THEOREME 2.1 (voir le théoréme 4.11 du chapitre 2). Pour tout T appartenant a un céne convenable
dans R?™,

/ KT, (o)n(det(z))do
oco Y HF)\H(A)NG(A)!

est absolument convergente.

Notons JI'(n, f) Iintégrale (2.1.1) avec k(x) remplacé par k‘T)U (). On montre que c’est un polynéme-
exponentielle en T' (voir le corollaire 5.6 du chapitre 2). Notons J,(n, f) son terme constant. Dans le
cadre infinitésimal, le développement géométrique de la transformée de Fourier de f (notée f) joue le
role du coté spectral original (cf. [13]). Alors la variante infinitésimale de la formule des traces de
Jacquet-Guo pour le cas de (G, H) ci-dessous est déduite de la formule sommatoire de Poisson.

THEOREME 2.2 (voir le théoréme 7.1 du chapitre 2). Pour toute fonction de Bruhat-Schwartz f sur

5(A), on a l’égalité
Z Jo(n, f) = Z Jo(nvf)'

00 0O

De plus, pour la plupart des classes o (c’est-a-dire les classes semi-simples réguliéres), on peut écrire
Jo(n, f) comme une intégrale orbitale pondérée explicite ; en particulier, pour les classes elliptiques
0, on voit que J,(n, f) n’est rien d’autre que U'intégrale orbitale ordinaire. On dit qu'un sous-groupe

parabolique semi-standard de G est w-stable s’il contient w := <10 161 >
n

THEOREME 2.3 (voir le théoréme 9.2 du chapitre 2). Soient 0 € O une classe semi-simple réguliére,
Py un sous-groupe parabolique relativement standard w-stable de G et X1 € o un élément elliptique relatif
a Py (défini dans la section 9.2 du chapitre 2). Pour toute fonction de Bruhat-Schwartz f sur s(A), on
a

To(n, ) = vl ) - [ Fla™ Koo, ()n(det(x))d,
Hx, (A)\H(A)

ot Hx, est le centralisateur de X1 dans H, vol([Hx,]) est son volume associé et vp, (z) est le volume
d’un enveloppe conveze.

Le poids vp, (z) est exactement la restriction & H(A) du poids d’Arthur dans [3] pour G(A). Il est
remarquable que notre intégrale orbitale pondérée a le méme poids que celui de la formule des traces
tordue (voir [39, p. 131]) pour 'espace tordu (GL,, x GL,) x o, ou o(z,y) := (y, ).

2.1.2. Le cas de (G',H'). On étudie encore un cadre plus général dans le chapitre 3 que la paire
(G, H') ci-dessus. En fait, on considere une algebre centrale simple g’ sur F' contenant E et le centralisa-
teur §’ de E dans g’. On définit G’ et H' comme les groupes d’éléments inversibles respectivement dans
g’ et h’. Ce cas plus général s’inspire de la conjecture locale de Prasad et Takloo-Bighash [44, Conjecture
1] et est nécessaire pour compléter la réciproque de la conjecture de Jacquet-Guo pour n pair.

Quitte & conjuguer (G', H') par G'(F), la paire symétrique est réduite a 'un des deux cas ci-dessous
(voir la proposition 3.7 du chapitre 3). Ces deux cas peuvent étre traités de la méme maniere.

Cas I: (G',H') ~ (GLyp,Resg/prGLz pgrE), ot D est une algebre a division centrale sur F'
contenant E, et D’ := Centp(F) est le centralisateur de E dans D.

Cas II: (G',H') =~ (GL,,,p,ResgrGLz pgpr) , ou D est une algebre a division centrale sur F' telle
qu’il n’y a pas de plongement £ — D en tant que F-algebres.

Remarquons que (G', H') est identique & (G, H) apres le changement de base & une cloture algébrique
de F contenant E. On a des définitions et des résultats similaires pour le cas de (G, H') comme suit.
Notons H'(A)! le sous-ensemble des éléments dans H’(A) dont les normes réduites sont de valeur absolue
1. On note O’ ’ensemble des classes d’équivalence sur s'(F') définies par le quotient catégorique s'//H’.
Soient f’ une fonction de Bruhat-Schwartz sur s'(A) et 0 € O’. Pour un parametre de troncature T € R™
et € H'(z), on définit un noyau tronqué k?,a(z) dans §4 du chapitre 3.

THEOREME 2.4 (voir le théoréme 4.2 du chapitre 3). Pour tout T' appartenant ¢ un céne convenable

dans R"™,
Z/ k?o(x)dx
ocor / H'(F)\H' (A)!

est absolument convergente.
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Pour toute o € O, on note JI'(f') Iintégrale correspondante dans la derniére somme. On prouve
que c’est un polynéme en T (voir le corollaire 5.3 du chapitre 3). On note J,(f’) son terme constant.
Notons f/ la transformée de Fourier de f’. Voici la variante infinitésimale de la formule des traces de
Jacquet-Guo pour le cas de (G, H').

THEOREME 2.5 (voir le théoréme 7.1 du chapitre 3). Pour toute fonction de Bruhat-Schwartz f' sur

s'(A), on a légalité
Z Jo(f) = Z JO(f/)-

0O’ 0cO’

Comme précédemment, on peut écrire les termes semi-simples réguliers comme des intégrales or-
bitales pondérées explicites avec les mémes poids que ceux d’Arthur dans [3]. Pour (G, H') = (GLy, p,
Resg/pGLn, g), on obtient les mémes poids apparaissant dans la formule des traces tordue (voir [39, p.
131]) pour 'espace tordu (Resg;pG Ly, r) x o', ot 0’ est la conjugaison galoisienne non triviale.

THEOREME 2.6 (voir le théoréme 9.2 du chapitre 3). Soient o € O' une classe semi-simple réguliére,
P| un sous-groupe parabolique standard de H' et Y1 € o un élément elliptique par rapport & P| (défini
dans la section 9 du chapitre 3). Pour toute fonction de Bruhat-Schwartz f' sur s'(A), on a

T ) = vol([H3.)) - (A1) (V) o)
Hy, (A\H'(A)

ot Hy, est le centralisateur de Yy dans H', vol([Hy,]) est le volume associé¢ a Hy, et vp;(x) est le volume

d’un envelope conveze.

Effectivement, ce cas est encore plus simple que celui de (G, H) ; par exemple, JI (f) est un polynome
pur en T au lieu d’un polynéme-exponentielle. Une des raisons de cette simplicité est que le tore central
F-déployé maximal de H' est le méme que celui de G’. De plus, il existe une bijection entre ’ensemble des
sous-groupes paraboliques semi-standards de H' et ’ensemble des sous-groupes paraboliques relativement
standards de G’. Cependant, il y a quelques problemes de rationalité supplémentaires dans ce cas.

2.2. Quelques résultats locaux pour la comparaison de termes semi-simples réguliers.
Les termes J,(n, f) and J,(f’) ci-dessus associés aux classes semi-simples régulieres mais non elliptiques
o€ O etoe O respectivement, qui sont des intégrales orbitales pondérées globales, sont les premiers
nouveaux termes que l'on doit étudier et comparer pour les applications des formules des traces de
Jacquet-Guo. La principale difficulté pour étudier ces distributions globales par rapport a celles de [60)]
ou [61] est que on est confronté & des distributions non invariantes sous la conjugaison de H(A) ou
H'(A). Clest proche de la situation de la formule des traces d’Arthur-Selberg classique. Alors que la
procédure standard mais assez difficile est de rendre notre formule des traces invariante comme Arthur
la fait dans [6] et [7], une autre maniére proposée par Labesse dans [37] est de comparer directement
les distributions non invariantes. On suivra cette derniere approche. Les intégrales orbitales pondérées
locales correspondantes sont les principaux objets de §10 du chapitre 3, le chapitre 4 et le chapitre 5.

Soit E/F une extension quadratique de corps locaux non-archimédiens de caractéristique zéro. Soit
71 le caractere quadratique de F/NE* attaché & E/F, ou NE* désigne la norme de E*. On définit des
paires symétriques comme dans le cas global. Notons 5.4 ’ensemble des éléments semi-simples réguliers
dans s. On note C°(s(F)) (resp. C°(s'(F'))) Vespace des fonctions localement constantes & support
compact sur s(F) (resp. s'(F)). Soit M un sous-groupe de Levi w-stable de G, c’est-a-dire qu’il est un
facteur de Levi d’un sous-groupe parabolique w-stable. Soit X € (mNs.s)(F). Pour toute f € C°(s(F)),
on définit I'intégrale orbitale pondérée locale

TS0, X, f) == |D*(X)|/2 /H . FAd(z™1)(X))n(det(x))v§ (x)da,

ot |D*(X)|F est le discriminant de Weyl et v{;(x) est la fonction de poids locale correspondante. De
méme, soit M’ un sous-groupe de Levi de H' et Y € (m/ N sl )(F), ol M’ est le sous-groupe de Levi de
G’ tel que M’ N H' = M'. Pour toute f' € C°(s'(F)), on définit I'intégrale orbitale pondérée locale

JHY, ) = D (V)[* F(Ad(z™ YY)l (z)de,

/HQ/(F N\H'(F)
ol [D¥(Y)|r est le discriminant de Weyl et v, (z) est la fonction de poids locale correspondante.
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Il y a une application injective M’ — M de I’ensemble des sous-groupes de Levi de H' dans ’ensemble
des sous-groupes de Levi w-stables de G. On supposera que G et G’ ont la méme dimension n?. Comme
s//H ~ A" ~ s'//H', si X € 55(F) et Y € s/ (F) ont la méme image dans A", on dit qu’ils ont
des orbites associées. Plus généralement, fixons une paire de sous-groupes de Levi associés M et M’
respectivement de G et H'. On a la notion d’orbites M-associées définies par blocs pour X € (mNsy)(F)
et Y € (m' Nsl)(F).

2.2.1. Le lemme fondamental pondéré. On obtient le premier résultat sur la comparaison non
invariante des formules des traces de Jacquet-Guo dans §10 du chapitre 3. Dans la comparaison des cotés
géométriques des formules des traces de Jacquet-Guo, un cas important est appelé le lemme fondamental.
Il dit en gros que en presque toute place non ramifiée, certaines fonctions basiques sur G(F') et G'(F)
devraient avoir des intégrales orbitales relatives locales associées sur des orbites associées. Guo [23] 'a
prouvé pour les unités d’algebres sphériques de Hecke a 'aide du lemme fondamental de changement
de base pour les algebres de Hecke sphériques complétes pour GL,, connu par Kottwitz [36, lemme 8.8]
et Arthur-Clozel [10, théoréme 4.5 du chapitre 1]. Une version infinitésimale [58, lemme 5.18] a été
utilisée par Zhang pour prouver le transfert lisse des intégrales orbitales ordinaires pour les formules des
traces de Jacquet-Guo en suivant la méme philosophie du travail de Waldspurger [52] sur le transfert
endoscopique.

Inspiré de [37, définition II1.3.2], on définit dans §10 du chapitre 3 la notion de paires “fortement
associées” de fonctions localement constantes & support compact sur s(F) et §'(F). En gros, deux
fonctions sont fortement associées si elles ont des intégrales orbitales pondérées associées sur des orbites
associées. En presque toute place non ramifiée, (G', H') est isomorphe & (G Loy, Resp/ pG Ly ) et 8" (F) ~
gl,(E). Notons O (resp. Opg) lanneau des entiers de F (resp. FE). Soit fo et f} les fonctions
caractéristiques respectivement de s(Op) ~ (gl, D gl,,)(OF) et ' (Op) ~ g, (Og). Parce que l'on obtient
les mémes poids pour les cas de Jacquet-Guo que ceux des formules des traces tordues, on peut réduire
la version pondérée de [58, lemme 5.18] ci-dessous au travail de Labesse [37] sur le changement de base
pour GL,,. On montre qu’en presque toute place non ramifiée v, fy et f} sont fortement associées.

THEOREME 2.7 (voir le théoréme 10.9 du chapitre 3 pour un énoncé précis et général). Soient M et
M’ une paire de sous-groupes de Levi associés respectivement de G et H'. On a

(1) si X € (mNs)(F) etY € (51\7 N s )(F) ont des orbites M-associées, alors
R(X)T5 (0. X, fo) = THAY. fo),

ot k(X) est un facteur de transfert;

(2) si X = <g 61> € (mNsy)(F) satisfait det(AB) ¢ NE*, alors

J](\/;[(n7Xaf0) =0.

2.2.2. Une formule des traces locale infinitésimale. Notre prochain objectif est de prouver le
transfert non invariant des intégrales orbitales pondérées en utilisant le lemme fondamental pondéré suiv-
ant la stratégie de [14] et [15] sur le changement de base stable. Pour y parvenir, on doit préparer quelques
résultats sur I'analyse harmonique locale comme dans [51]. On prouve une variante infinitésimale des
formules des traces locales invariantes pour le cas de Jacquet-Guo dans le chapitre 4 suivant [51] et [8].

On se concentre ici sur le cas de (G, H) pour l'illustration. On définit I'intégrale orbitale pondérée
locale (H,n)-invariante I§;(n, X, f) par le processus standard d’Arthur & partir de l'intégrale orbitale
pondérée locale non invariante ci-dessus J$ (1, X, f). Pour f, f’ € C°(s(F)), on définit (voir §3.2 du
chapitre 4 pour les notations)

90, ) = Y W[ wEe T (= Ae) N W (M ) /
Me£Gw (M) ¢€ T (mNs) treg ()
IS (n, X, HI§(n, X, f')dX.

Le principal résultat du chapitre 4 est la formule des traces locale invariante suivante.

THEOREME 2.8 (voir le théoréme 9.1 du chapitre 4). On a [’égalité
IG(nafa f/) = IG(nvflvf)'

Elle est déduite d’une formule des traces locale non invariante (voir le théoréme 5.3 du chapitre
4), qui est essentiellement une conséquence de la formule de Plancherel combinée avec un processus de
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troncature. Certains autres résultats locaux, y compris la finitude de Howe pour les intégrales orbitales
pondérées et la représentabilité de la transformée de Fourier des intégrales orbitales pondérées, sont
obtenus lors de la démonstration.

PROPOSITION 2.9 (voir le corollaire 6.6 du chapitre 4). Soient r un sous-groupe compact ouvert de
5(F), M un sous-groupe de Levi w-stable de G et o0 C (m N sy5)(F). Notons C°(s(F)/r) le sous-espace
de C°(s(F)) constitué par les fonctions invariantes par translation de r. Supposons qu’il existe un sous-
ensemble compact o9 C (mNs)(F) tel que 0 C Ad((M N H)(F))(og). Alors il existe un sous-ensemble
fini {X; :i € I} C o et un sous-ensemble fini {f; : i € I} C CX(s(F)/r) tels que pour tout X € o et
toute f € C(s(F)/r), on a l’égalité

T X, £) = 5 (0, Xa, )T (0, X, f).
il
PROPOSITION 2.10 (voir la proposition 7.2 du chapitre 4). Soient M un sous-groupe de Levi w-stable
de G et X € (mNsy)(F). Alors il existe une fonction localement constante j$;(n, X, ) sur s,5(F) telle
que

UF € CE NI X P = [ T X ¥l a:

On obtient également une propriété d’annulation & “I'infini” analogue & [14, proposition 2.2].

PROPOSITION 2.11 (voir la proposition 10.1 du chapitre 4). Soit M # G un sous-groupe de Levi
w-stable de G. Soient X € (mNsy)(F) et Y € s55(F). Alors il exviste N € N tel que si A € F* satisfait
vp(A) < =N, on a

i (0, AX,Y) =0,
o i§;(n, X, -) est Uanalogue (H,n)-invariant de 5§ (n, X, -).

Ce sont des résultats d’intérét indépendant. Des analogues de tous les résultats ci-dessus sont obtenus
pour le cas de (G', H').

2.2.3. Certaines identités entre transformées de Fourier des intégrales orbitales pondérées.
Comme mentionné ci-dessus, la prochaine étape de notre recherche est de comparer les termes semi-
simples réguliers dans les cOtés géométriques des formules des traces de Jacquet-Guo comme dans [14]
et [15]. Cela devrait servir d’exemple de comparaison non invariante dans le contexte relatif. On ob-
tient des relations entre transformées de Fourier des intégrales orbitales pondérées dans le chapitre 5 qui
généralisent certains principaux résultats de [58] et sont des analogues pour les formules des traces de
Jacquet-Guo de [14].

Soient M un sous-groupe de Levi w-stable de G et X € (m N sy)(F). Notons JG (1, X,-) (resp.
IS (n, X, ")) la transformée de Fourier de la distribution JG (n, X,-) (resp. IS (n, X,-)). Soit 75 (n, X, -)
(resp. 1§, (n, X, -)) la fonction localement constante sur s,(F) représentant JG (1, X, -) (resp. 1§, (n, X, -)).
Pour un sous-groupe de Levi M’ de H' et Y € (E{’OEQS)(F ), on obtient de méme les fonctions localement
constantes 71, (Y, -) et 23, (Y, -) sur s/ (F).

Les fonctions 7§ (7, X, -) sont décomposées comme leurs analogues invariants 1§, (1, X, -) et les fonc-
tions de poids vjc\z. La décomposition des fonctions jﬁ’, (Y,) est similaire. Afin d’obtenir des relations
entre 51\(51 (n,X,-) et jﬁl/(Y, -), qui fait partie de la comparaison non invariante, on se concentrera sur les
relations entre %%(77, X,-) et %{\{/I/, (Y, -) dans le chapitre 5.

Fixons une paire de sous-groupes de Levi associés M’ et M respectivement de H' et G. Pour

X = (g é) € s,5(F), on note n(X) := n(det(AB)). Notre principal résultat dans le chapitre 5 est le

suivant.

THEOREME 2.12 (voir le corollaire 5.6 et la proposition 5.9 du chapitre 5). 1) Supposons que X €

(MmN ) (F) et Y € (w' Nsl)(F) ont des orbites M-associées. Supposons que U € su5(F) et V € sl (F)
ont des orbites associées. Alors on a l’égalité

7 (0(F) ™ R(X) (Uil (0. X,U) = 3 (0 (F)) "1 (V. V),
ot Yy (h(F)) et vy (h' (F)) sont des constantes de Weil (voir la section 2.2 du chapitre 5).
2) Soient X € (mNsys)(F) et U € 5,5(F). Sin(X) #n(U), alors

i (n, X, U) =0.
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Comme dans [58], on utilise la méthode globale de Waldspurger sur le transfert endoscopique
[52] pour montrer 1) et une méthode locale pour montrer 2). Pour montrer 1), on définit une no-
tion d’intégrales orbitales pondérées associées (voir la définition 5.2 du chapitre 5) et prouve que cette
propriété commute sous certaines restrictions avec la transformée de Fourier (voir le théoréme 5.3 du
chapitre 5) . Sa preuve peut étre considérée comme une application de presque tous les résultats des
chapitres précédents. Ensuite, on peut extraire les relations entre i§,(n, X,-) et 2, (Y;-) & Paide du
lemme de Labesse [37, lemme 1.7.1]. Ces étapes sont proches de celles de [14]. Cependant, alors que
le lemme fondamental pondéré pour les formes intérieures est tautologique dans loc. cit., la condition
d’annulation du lemme fondamental pondéré est ici plus subtile. On utilise la cohomologie galoisienne
abélianisée (voir [38]) pour résoudre quelques difficultés techniques (voir §4.3-4.4 et la preuve de la
proposition 11.2 du chapitre 5).
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CHAPTER 1

Introduction

This PhD project is inspired by a conjecture of Guo-Jacquet [23] which generalises Waldspurger’s
well-known theorem [50] relating toric periods to central values of automorphic L-functions for GLs to
higher ranks. It is one of the first interesting examples in the relative Langlands programme initiated by
Jacquet and his collaborators and systematically proposed by Sakellaridis-Venkatesh [46]. An effective
tool for attacking such kind of problems is the relative trace formula which was first introduced by Jacquet
[29] to reprove Waldspurger’s result. The aims of this thesis under the supervision of Pierre-Henri
Chaudouard include developing infinitesimal variants of global and local Guo-Jacquet trace formulae
and establishing necessary local results of comparison for further study of this conjecture. We expect
that some methods here would also be useful in other relative trace formulae.

1. Guo-Jacquet conjecture and the relative trace formula approach

Let us briefly recall the Guo-Jacquet conjecture proposed in [23]. Let E/F be a quadratic extension
of number fields and 7 the quadratic character of A*/F* attached to it, where A denotes the ring of
adeles of F'. Let G := GLo, and let H := GL,, X GL,, be its subgroup. All the groups considered are
defined over F. Let 7 be a cuspidal automorphic representation of G(A) with trivial central character.
We say that 7 is H-distinguished if the two linear forms (called “periods”) on it

Pu ¢ — / o(h)dh
H(F)Z(A)\H(A)

Popy: ¢ / o(h)n(det(h))dh
H(F)Z(A)\H(A)

are both non-zero, where Z denotes the centre of G. This property is directly related to the non-
vanishing of some central L-values by Friedberg-Jacquet’s work [22]. We also need to consider another
pair of groups. Denote by X (FE) the set of isomorphic classes of quaternion algebras D/F in which F
embeds. For any D € X(E), let G’ = GL, p be the algebraic group defined over F’ whose F-points are
GL,(D) and let H' = Resg,pG Ly g be its subgroup. Let 7’ be a cuspidal automorphic representation
of G'(A) with trivial central character. We say that n’ is H’-distinguished if the linear form on it

and

Pur : ¢ — ¢(h)dh
H/(F)Z(M\H' (&)
is not zero, where we identify the centre of G’ with Z. One direction of the Guo-Jacquet conjecture says
that if 7’ is H'-distinguished and 7 is deduced from 7’ by the Jacquet-Langlands correspondence, then
7w is H-distinguished. One may also expect a converse at least when n is odd. For n = 1, these were
known by Waldspurger [50] and reproved by Jacquet [29] via relative trace formulae.

Now we formally describe the relative trace formula approach following Jacquet [29] to this conjec-
ture. Let fo be a smooth function on G(A) with compact support. As an analogue of Arthur-Selberg’s
trace formula, the relative trace formula for the case of (G, H) roughly says that there are two ways to
write the integral (viewed as a distribution)

(1.0.1) Ky, (x, y)n(det(x))dzdy,

/H(F)\H(A)ﬁG(A)l /H(F)\H(A)ﬁG(A)l
where G(A)! denotes the subset of elements in G(A) whose determinants are of absolute value 1 and
Ki.(z,y) == Z'yeG(F) fa(z71vyy). The geometric side is expected to be a sum of relative orbital integrals
while the spectral side should be an expansion of periods. Similarly, one could imagine another formula
for the case of (G’, H'). Then the comparison of periods of different pairs of groups predicted by the
Guo-Jacquet conjecture is reduced to the comparison of relative orbital integrals, for which we have more
tools such as Guo’s fundamental lemma [23] and Zhang’s smooth transfer [58].
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This approach has been adopted by Feigon-Martin-Whitehouse [21] to obtain some partial results.
However, we have neglected analytic difficulty in the above discussion. That is to say, an obstruction of
the relative trace formula approach to Guo-Jacquet conjecture is the following problem.

PROBLEM 1.1. The double integral (1.0.1) is not convergent and neither are two ways of its expan-
s0ms.

The above problem accounts for some restrictive local conditions in the main results of [21] based
on a simple relative trace formula. If one hopes to remove these seemingly artificial restriction and
obtain information about all cuspidal representations, this problem can not be ignored. Therefore, it is
necessary to establish valid and general relative trace formulae for the cases of (G, H) and (G’, H') rather
than formal or simple ones. Then we are supposed to compare new terms appearing in these formulae
apart from ordinary relative orbital integrals.

Such a problem also existed in the classical Arthur-Selberg trace formula and Arthur introduced a
truncation process in [3] and [4] to solve it. In the relative setting, Jacquet-Lapid-Rogawski povided
us with the first example of the so-called “mixed truncation” in [30], whose rough idea is defining a
truncation compatible with different groups concerned. These work and others set good examples for
our study of Problem 1.1.

We shall focus on an infinitesimal variant of Problem 1.1 and the comparison of new terms involved in
this thesis. It means that we shall work on the tangent space of a symmetric space (called an infinitesimal
symmetric space). This would be of interest for at least two reasons. For one thing, it is close to the
geometric side of the original relative trace formula and suggests us a way to tackle the original problem,
but the spectral side of the relative trace formula is replaced by the Fourier transform of the geometric
side where the harmonic analysis is simpler. For another, an infinitesimal variant of Guo-Jacquet trace
formulae is also useful in the comparison of relative trace formulae between two cases; for example, its
simple version has been used by Zhang [58] to prove the smooth transfer.

2. Main results

2.1. An infinitesimal variant of Guo-Jacquet trace formulae. We first solve an infinitesimal
variant of Problem 1.1 in Chapter 2 and Chapter 3. It is the main global result in this thesis.

2.1.1. The case of (G, H). We remark that the setting in Chapter 2 is a bit more general to include
the case in [57], but we shall focus on the pair (G, H) defined above in the introduction. Denote by S
the symmetric space G/H. Notice that the double integral (1.0.1) can be formally written as a single
integral

/ Ky (a)n(det(x))de,
H(F)\H(A)NG(A)!

where fg(z) = fH(A)ﬂG(A)l fa(zy)dy defines a smooth function on S(A) with compact support and
Ky (z) = ZWQS(F) fs(z7tyx). If one replaces S with the tangent space s ~ gl,, @ gl,, at the neutral
element, then Problem 1.1 appears as the divergence of the integral

(2.1.1) k¢ (z)n(det(x))de,

/H(F)\H(A)ﬁG(A)l
where f is a Bruhat-Schwartz function on s(A) and k() := >_. c;(p) fla=tyz).

We replace ky(x) with some explicit k? (z) defined in §4 in Chapter 2 to make (2.1.1) absolutely con-
vergent, where T € R?" is a truncation parameter. This key definition combines ideas from [28][61][17]
for the decomposition of H(A) and [40] for the decomposition of s§(A). To describe the geometric ex-
pansion, we define a relation of equivalence on s(F'): two element in s(F') are equivalent if and only if
they lie in the same fibre of the categorical quotient s//H. Denote by O the set of classes of equivalence.
For all 0 € O, we define kz? , () similarly by replacing s(F') with o. The main result of Chapter 2 is the

following theorem which gives the geometric expansion of (2.1.1) with ky(z) replaced by k};(x)

THEOREM 2.1 (see Theorem 4.11 in Chapter 2). For T in a suitable cone in R*",

/ KT (o)n(det(z))do
oco Y HF)\H(A)NG(A)!

is absolutely convergent.
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Denote by JI'(n, f) the integral (2.1.1) with k¢(x) replaced by k}ro(w) We prove that it is an
exponential polynomial in T (see Corollary 5.6 in Chapter 2). Denote by J,(n, f) its constant term. In
the infinitesimal setting, the geometric expansion of the Fourier transform of f (denoted by f ) plays the
role of the original spectral side (cf. [13]). Then the infinitesimal variant of Guo-Jacquet trace formula
for the case of (G, H) below is deduced from the Poisson summation formula.

THEOREM 2.2 (see Theorem 7.1 in Chapter 2). For all Bruhat-Schwartz function f on s(A), we have

the equality
Z Jo(nvf) = Z Jo(nvf)'

00 0O

Additionally, for most (namely regular semi-simple) o, we can write J,(7, f) as an explicit weighted
orbital integral; in particular, for elliptic o, we see that J,(n, f) is nothing but the ordinary orbital
integral. We say a semi-standard parabolic subgroup of G is w-stable if it contains w := (10 10" )

THEOREM 2.3 (see Theorem 9.2 in Chapter 2). Let 0 € O be a regular semi-simple class, P; an
w-stable relatively standard parabolic subgroup of G and X1 € o an elliptic element relative to Py (defined
in Section 9.2 in Chapter 2). For a Bruhat-Schwartz function f on s(A), we have

To(n, ) = vol(x,)) - [ F& Xy w)op, (2)n(det(z))da,
Hx | (M\H(A)

where Hx, denotes the centraliser of Xy in H, vol([Hx,]) is its associated volume and vp,(x) is the
volume of some convex hull.

The weight vp, (z) is exactly the restriction to H(A) of Arthur’s weight in [3] for G(A). It is
interesting that our weighted orbital integral shares the same weight as in the twisted trace formula (see
[39, p. 131)) for the twisted space (GL,, x GL,) x o, where o(z,y) := (y, z).

2.1.2. The case of (G',H'). Again we study a more general setting in Chapter 3 than the pair
(G, H') above. Actually we deal with a central simple algebra g’ over F' containing E and the centraliser
b’ of E in g’. We define G’ and H’ as the groups of invertible elements in g’ and b’ respectively. This more
general case is suggested by the related local conjecture of Prasad and Takloo-Bighash [44, Conjecture
1] and is necessary for completing the converse direction of Guo-Jacquet conjecture for n even.

Up to conjugation by G'(F), the symmetric pair (G’, H') is reduced to one of the two cases below
(see Proposition 3.7 in Chapter 3). These two cases can be treated similarly.

Case I (G', H') ~ (GLn,p,Resg rG Ly, pr), where D is a central division algebra over I containing
E, and D’ := Centp(F) is the centraliser of E in D.

Case II: (G', H') ~ (GLyn,p,Resg/rGL2 pg,E), where D is a central division algebra over F' such
that there is no embedding ¥ — D as F-algebras.

Notice that (G, H') is the same as (G, H) after the base change to an algebraic closure of F' containing
E. We have similar construction and results for the case of (G’, H') as follows. Denote by H'(A)! the
subset of elements in H'(A) whose reduced norms are of absolute value 1. Denote by O’ the set of classes
of equivalence on §'(F') defined by the categorical quotient s'//H’. Let f’ be a Bruhat-Schwartz function
on §'(A) and o € O'. For a truncation parameter I’ € R™ and x € H'(z), we define some truncated
kernel k?o(m) in §4 in Chapter 3.

THEOREM 2.4 (see Theorem 4.2 in Chapter 3). For T in a suitable cone in R™,

Z / k?o(x)d:r
ocor J H'(F)\H' (&)!

is absolutely convergent.
For 0 € O, denote by JI(f’) the summand of the last sum. We prove that it is a polynomial in T

(see Corollary 5.3 in Chapter 3). Denote by J,(f) its constant term. Denote by f’ the Fourier transform
of f’. Here is the infinitesimal variant of Guo-Jacquet trace formula for the case of (G', H').

THEOREM 2.5 (see Theorem 7.1 in Chapter 3). For all Bruhat-Schwartz function f' on s'(A), we

have the equality
DT =D Tl

0O’ 0O’
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As before, we can write the regular semi-simple terms as explicit weighted orbital integrals with the
same weights as Arthur’s in [3]. For (G',H') = (GLyn,p,Resg;pGLy k), we obtain the same weights
appearing in the twisted trace formula (see [39, p. 131]) for the twisted space (Resp/pGLn E) X 0,
where ¢’ is the nontrivial Galois conjugation.

THEOREM 2.6 (see Theorem 9.2 in Chapter 3). Let 0 € O’ be a regular semi-simple class, P| a
standard parabolic subgroup of H' and Yy € o an elliptic element with respect to P| (defined in Section 9
in Chapter 3). For all Bruhat-Schwartz function f' on §'(A), we have

T ) = vol([H.)) - F(Ad ) ) oy (),
Hy (A)\H'(A)

where Hy, denotes the centraliser of Y1 in H', vol([Hy, ]) is the volume associated to Hy, and vp;(x) is

the volume of some convex hull.

In fact, this case is even simpler than that of (G, H) in some sense; for example, JI'(f’) is a pure
polynomial in 7" instead of an exponential polynomial. One reason for the simplicity is that the maximal
F-split torus in the centre of H' is the same as that of G'. Moreover, there is a bijection between the
set of semi-standard parabolic subgroups of H' and the set of so-called relatively standard parabolic
subgroups of G'. However, there are some additional rationality issues in this case.

2.2. Some local results for comparison of regular semi-simple terms. The terms J, (7, f)
and J,(f') above associated to regular semi-simple but not elliptic classes 0 € O and 0 € O’ respectively,
which are global weighted orbital integrals, are the first new terms that we need to study and compare
for the application of Guo-Jacquet trace formulae. The main difficulty to study these global distributions
compared to those in [60] or [61] is that we are facing noninvariant distributions under the conjugation
of H(A) or H'(A). This is close to the situation of the classical Arthur-Selberg trace formula. While the
standard but quite difficult procedure is to make our trace formula invariant as Arthur did in [6] and [7],
a different way suggested by Labesse in [37] is to compare directly noninvariant distributions. We shall
follow the latter approach. Their corresponding local weighted orbital integrals are the main objects in
§10 in Chapter 3, Chapter 4 and Chapter 5.

Let E/F be a quadratic extension of non-archimedean local fields of characteristic zero. Let n be
the quadratic character of F/NE* attached to E/F, where NE* denotes the norm of E*. We define
symmetric pairs as in the global case. Denote by s,4 the set of regular semi-simple elements in s. Denote
by C°(s(F')) (resp. C°(s'(F))) the space of locally constant and compactly supported functions on s(F')
(resp. §'(F)). Let M be an w-stable Levi subgroup of G, i.e., it is a Levi factor of some w-stable parabolic
subgroup. Let X € (mNsy)(F). For f € C(s(F)), we define the local weighted orbital integral

5 (0. X, f) = [D*(X)] / F(Ad(x)(X0)n(det(x))of (x)de,
Hx (F)\H(F)

where |D?(X)|r is the Weyl discriminant and v$; (z) is the corresponding local weight function. Similarly,
let M’ be a Levi subgroup of H and Y € (wm/ Nsl,)(F), where M’ is the Levi subgroup of G’ such that
M'NH' =M. For f' € C(s'(F)), we define the local weighted orbital integral

f/(Ad(z™)(Y))viy (z)de,

T, 1) = [D¥ (V)] 42 /
H{ (F)\H'(F)

where |[D* (Y)|F is the Weyl discriminant and v, (z) is the corresponding local weight function.

There is an injection M’ — M from the set of Levi subgroups of H’ into the set of w-stable Levi
subgroups of G. We shall suppose that G and G’ have the same dimension n?. Since s//H ~ A" ~
s'//H' if X € §,5(F) and Y € s/ (F) have the same image in A", we say that they have matching orbits.
More generally, fix a pair of matching Levi subgroups M and M’ of G and H' respectively. We have the
notion of M-matching orbits defined by blocks for X € (mNs,)(F) and Y € (w/ Nsl,)(F).

2.2.1. The weighted fundamental lemma. We provide the first evidence of noninvariant com-
parison of Guo-Jacquet trace formulae in §10 in Chapter 3. In the comparison of geometric sides of
Guo-Jacquet trace formulae, an important case is the so-called fundamental lemma. It roughly says that
at almost all unramified places, some basic functions on G(F) and G'(F) should have associated local
relative orbital integrals on matching orbits. Guo [23] proved it for the units of spherical Hecke algebras
with the help of the base change fundamental lemma for the full spherical Hecke algebras for GL,, known
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by Kottwitz [36, Lemma 8.8] and Arthur-Clozel [10, Theorem 4.5 in Chapter 1]. An infinitesimal ver-

sion [58, Lemma 5.18] was used by Zhang to prove the smooth transfer of ordinary orbital integrals for
Guo-Jacquet trace formulae following the same philosophy of Waldspurger’s work [52] on the endoscopic
transfer.

Inspired by [37, Definition I11.3.2], we define in §10 in Chapter 3 the notion of “strongly associated”
pairs of locally constant and compactly supported functions on s(F) and s'(F). Roughly speaking, two
functions are strongly associated if they have associated weighted orbital integrals on matching orbits.
For almost all unramified places, (G', H') is isomorphic to (GLan, Resg/pG Ly ) and s'(F) ~ gl,(E).
Denote by OF (resp. Og) the ring of integers in F' (resp. E). Let fo and f] be the characteristc functions
on 5(Op) ~ (gl, ® gl,)(OF) and s'(OF) ~ gl,,(OF) respectively. Because we get the same weights for
the cases of Guo-Jacquet as those in twisted trace formulae, we are able to reduce the following weighted
version of [58, Lemma 5.18] to Labesse’s work [37] on the base change for GL,,. We show that for almost
all unramified places v, fo and f{ are strongly associated.

THEOREM 2.7 (see Theorem 10.9 in Chapter 3 for a precise and general statement). Let M and M’
be a pair of matching Levi subgroups of G and H' respectively. We have

(1) if X € (mNs)(F) and Y € (w' N sl )(F) have M-matching orbits, then

R(X)J5 1, X fo) = JEE(Y. £5),
where k(X) is a transfer factor;

(2) if X = (g 61) € (mNsy)(F) satisfies det(AB) ¢ NE*, then

JI\C/:I(naXafO) =0.

2.2.2. An infinitesimal local trace formula. Our next goal is to prove the noninvariant transfer
of weighted orbital integrals using the weighted fundamental lemma following the strategy of [14] and
[15] on the stable base change. To achieve this, we need to prepare some results of local harmonic
analysis as in [51]. We prove an infinitesimal variant of invariant local trace formulae for the case of
Guo-Jacquet in Chapter 4 following [51] and [8].

We focus on the case of (G, H) here for illustration. We define the (H,n)-invariant local weighted
orbital integral If/[ (n, X, f) by Arthur’s standard process from the above noninvariant local weighted
orbital integral J$;(n, X, f). For f, f' € C°(s(F)), we define (see §3.2 in Chapter 4 for notations)

90 ) = Y W[ wEe T (= Ae) N W (M ) /
Me£Gw (M) ¢€ T (mNs) treg (1)
IS (n, X, HI§ (n, X, f')dX.

The main result in Chapter 4 is the following invariant local trace formula.

THEOREM 2.8 (see Theorem 9.1 in Chapter 4). We have the equality
IG(nva f/) = IG(nvflvf)'

It is deduced from a noninvariant local trace formula (see Theorem 5.3 in Chapter 4), which is
essentially a consequence of the Plancherel formula combined with a truncation process. Some other
local results including Howe’s finiteness for weighted orbital integrals and representability of the Fourier
transform of weighted orbital integrals are given during the proof.

PROPOSITION 2.9 (see Corollary 6.6 in Chapter 4). Let r be an open compact subgroup of s(F'), M be
an w-stable Levi subgroup of G and o C (m N sy)(F). Denote by C°(s(F)/r) the subspace of C°(s(F))
consisting of the functions invariant by translation of r. Suppose that there exists a compact subset
o0 C (mNs)(F) such that 0 C AA(M N H)(F))(0o). Then there exists a finite subset {X; :i € [} Co
and a finite subset {f; : i € I} C C°(s(F)/r) such that for all X € o and all f € C°(s(F)/r), we have
the equality

JJ\C}(anv = ZJA%(U’Xiaf)JAC}(nﬂXa i)
icl

PROPOSITION 2.10 (see Proposition 7.2 in Chapter 4). Let M be an w-stable Levi subgroup of G and
X € (mNsy)(F). Then there exists a locally constant function j$;(n, X,-) on s,5(F) such that

Vf e Cx(s(F)), J5(n. X, f) = /(F) FOY)iG(n, X, Y)| D3 (V)| *dY.
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We also obtain a vanishing property at “infinity” analogous to [14, Proposition 2.2].

PROPOSITION 2.11 (see Proposition 10.1 in Chapter 4). Let M # G be an w-stable Levi subgroup
of G. Let X € (mNs)(F) and Y € s5(F). Then there exists N € N such that if A € F* satisfies
vp(A) < =N, we have

i (n,AX,Y) =0,
where 15, (n, X, -) is the (H,n)-invariant analogue of j$;(n, X, ).

These results are of independent interest. Analogues of all the results above are obtained for the
case of (G', H').

2.2.3. Certain identities between Fourier transforms of weighted orbital integrals. As
mentioned above, the next step of our research is to compare regular semi-simple terms in the geometric
sides of Guo-Jaquect trace formulae as in [14] and [15]. This should serve as an example of noninvariant
comparison in the relative context. We obtain some relations between Fourier transforms of weighted
orbital integrals in Chapter 5 which generalise some of the main results in [58] and are analogues for
Guo-Jacquet trace formulae of [14].

Let M be an w-stable Levi subgroup of G and X € (m N s,4)(F). Denote by JS(n, X,-) (resp.
IS (n,X,-)) the Fourier transform of the distribution J$(n, X,-) (resp. I (n, X,-)). Let 75 (n, X, ")
(resp. i§;(n, X, -)) be the locally constant function on s,.(F) representing Jé (0, X, ) (resp. fIGW(n, X, ).
For a Levi subgroup M’ of H' and Y € (m/ N sl )(F), we similarly obtain locally constant functions
FI(Y, ) and 35, (Y, ) on sly(F).

The functions 51\(31 (n, X, ) is decomposed as their invariant analogues ’2‘1\3/[ (n, X, ) and weight functions
v§;. The decomposition for the functions jﬁl,(Y,) is similar. In order to obtain relations between
316\14 (n,X,-) and jﬁl, (Y} ), which is part of the noninvariant comparison, we shall focus on the relations

between 1§, (1, X, -) and 3, (Y, ) in Chapter 5

Fix a pair of matching Levi subgroups M’ and M of H’ and G respectively. For X = <g 13) €

5p5(F), we denote n(X) := n(det(AB)). Our main result in Chapter 5 is as follows.

THEOREM 2.12 (see Corollary 5.6 and Proposition 5.9 in Chapter 5). 1) Let X € (mNsy)(F) and
Y € (m' Nsl,)(F) have M-matching orbits. Let U € s,5(F) and V € s, (F) have matching orbits. Then
we have the equality

Yo (0(F)) ™ k(X R(U)if (0, X, U) = 7 (b (F)) i3 (Y, V),
where vy (h(F)) and vy (h'(F)) are Weil constants (see Section 2.2 in Chapter 5).
2) Let X € (mNs)(F) and U € s,5(F). If n(X) # n(U), then

i§(n, X,U) = 0.

As in [58], we use Waldspurger’s global method on the endoscopic transfer [52] to show 1) and a
local method to show 2). To show 1), we define a notion of matching weighted orbital integrals (see
Definition 5.2 in Chapter 5) and prove that this property commutes with Fourier transform under some
restriction (see Theorem 5.3 in Chapter 5). Its proof can be viewed as an application of almost all
results in previous chapters. Then we may extract the relations between 1§, (n, X, ) and 2, (Y, ) with
the help of Labesse’s lemma [37, Lemma 1.7.1]. These steps are close to those in [14]. However, while
the weighted fundamental lemma for inner forms is tautological in loc. cit., the vanishing condition of
the weighted fundamental lemma here is more subtle. We use abelian Galois cohomology (see [38]) to
deal with some technical difficulties (see §4.3-4.4 and the proof of Proposition 11.2 in Chapter 5).
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CHAPTER 2

An infinitesimal variant of Guo-Jacquet trace formula: the case
of (GL2n7D, GLn,D X GLn,D)

We establish an infinitesimal variant of Guo-Jacquet trace formula for the case of (GLay, p, GLy, p X
GL, p). It is a kind of Poisson summation formula obtained by an analogue of Arthur’s truncation
process. It consists in the equality of the sums of two types of distributions which are non-equivariant in
general: one type is associated to rational points in the categorical quotient, while the other type is the
Fourier transform of the first type. For regular semi-simple points in the categorical quotient, we obtain
weighted orbital integrals.

1. Introduction

The Guo-Jacquet conjecture proposed in [23] is a possible generalisation in higher dimensions of
Waldspurger’s well-known theorem on central values of automorphic L-functions for GLy. We briefly
recall it as follows. Let E/F be a quadratic extension of number fields and n the quadratic character of
A* /F* attached to it, where A denotes the ring of adeles of F'. Consider the group G = G Ly, and its
subgroup H = GL,, X GL,, defined over F. Let m be a cuspidal automorphic representation of G(A) with
trivial central character. We say that 7 is H-distinguished if the two linear forms (called “periods”) on
it

Pu ¢ o(h)dh
H(F)Z(A)\H (A)
and
Phg ¢ ¢(h)n(det(h))dh
H(F)Z(A)\H(A)

are both non-zero, where Z denotes the centre of G. This property is directly connected with the non-
vanishing of some central L-values (see Friedberg-Jacquet’s work [22]). We also need to deal with another
pair of groups. Let X (F) denote the set of isomorphic classes of quaternion algebras D/F in which F
embeds. For any D € X(E), let Gp = GL,, p be the algebraic group defined over F' whose F-points are
GLn(D) and Hp = Resp;pGLy g be its subgroup. Let mp be a cuspidal automorphic representation of
Gp(A) with trivial central character. We say that 7p is Hp-distinguished if the linear form on it

PHD : (b = ¢(h)dh,
Hp(F)Z(A)\Hp(4)
is not zero, where we identify the centre of Gp with Z. One part of the Guo-Jacquet conjecture says that
if mp is Hp-distinguished and 7 is deduced from 7p by the Jacquet-Langlands correspondence, then m
is H-distinguished. We can also expect a converse at least when n is odd. For n = 1, these were known
by Waldspurger [50] and reproved by Jacquet [29].

Now we formally describe the approach of relative trace formulae following Jacquet [29]. This was
adopted by Feigon-Martin-Whitehouse [21] to obtain some partial results. Let f¢ be a smooth function
on G(A) with compact support. As an analogue of Arthur-Selberg trace formula, the relative trace
formula for the case (G, H) roughly says that there are two ways to write the integral (viewed as a
distribution)

/ / K yo (. y)n(det(x))dady,
H(F)\H(A)NG(A)L JH(F)\H (8)NG(A)*
where G(A)! denotes the elements in G(A) with absolute-value-1 determinant and Ky (z,y) = > ~EG(F)

f¢ (@ 1yy). The geometric side is expected to be a sum of relative (weighted) orbital integrals while
the spectral side should be an expansion of periods. Similarly there is also another formula for the
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case of (Gp,Hp). Then the comparison of periods of different pairs of groups predicted by the Guo-
Jacquet conjecture is reduced to the comparison of relative (weighted) orbital integrals, for which there
are already some works such as Guo’s fundamental lemma [23] and Zhang’s transfer [58].

However, we have neglected analytic difficulty in the above discussion. That is to say, the double
integral above is not convergent and neither are two ways of its expansions. This is the reason why some
restrictive local conditions are needed in the main results of [21] though they seem kind of artificial.
The aim of this article is to solve this kind of problem at the level of Lie algebras for the case of (G, H).
Denote by S the symmetric space G/H. Notice that such double integral can be formally written as a
single integral

/ Kys(x)n(det(z))dx,
H(F)\H(A)NG(A)!

where f°(z) = fH(A)mG(A)l fY(xy)dy defines a smooth function on S(A) with compact support and

Kys(x) = Z,yes(F) %z~ vz). Replacing S by its tangent space s ~ gl,, @ gl,, at the neutral element,
we are faced with the divergence of the integral

/ by (@n(det(a))da,
H(F)\H(A)NG(A)L
where f is a Bruhat-Schwartz function on s(A) and ky(z) =3 ci(F) flx=tyz).

Our main results can be described as follows.

First of all, as in [3], we replace ks(x) with some explicit k?(m) (see its definition in (4.0.1) and
(4.2.1)) to make the last integral absolutely convergent, where T € R?" is a truncation parameter.
Moreover, there is a relation of equivalence on s(F) defined by the categorical quotient s//H; we denote
by O the set of classes of equivalence. For each class 0 € O, we define k}ro(x) and its integral similarly
by replacing s(F') with o. Then we have

kf () = kf (@),
0O
and prove the following theorem which gives the geometric expansion of
/ k?(w)n(det(x))dm.
H(F)\H(A)NG(A)!
THEOREM 1.1 (see Theorem 4.11). For T in a suitable cone in R?",

/ KT, (o)n(det(z))do
H(F)\H(A)NG(A)T

0O
is absolutely convergent.

Moreover, we see that each summand in the geometric expansion is a sum of products of polynomials
and exponential functions in 7. In fact, most (namely regular semi-simple) terms are simply polynomial
distributions.

THEOREM 1.2 (see Corollary 5.6). For T in a suitable cone in R®*" and each o € O,

e ¥ o )n(det(a))da
H(F)\H(A)NG(A)!
is an exponential polynomial in T. In particular, if 0 is regular semisimple, it is a polynomial in T.

This property allows us to take the constant term J,(n, f) of JX(n, f) to eliminate the truncation

parameter. In the infinitesimal setting, the geometric expansion of the Fourier transform of f plays

the role of the original spectral side (cf. [13]). Our infinitesimal variant of Guo-Jacquet trace formula
equating the geometric developments of f and its Fourier transform (defined by (3.5.2) and denoted by

f) is the following, which essentially comes from the Poisson summation formula.

THEOREM 1.3 (see Theorem 7.1). For a Bruhat-Schwartz function f on s(A), we have the equality
S oL )= To(n, f).
IS@ 0O
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Such a formula should be of interest for at least two reasons. For one thing, it is close to but easier
than its analogue for the symmetric space. For another, a simplified version of this formula (see [58,
Theorem 8.4 and p. 1875]) has been used in Zhang’s proof of the smooth transfer.

Unfortunately, the distributions J,(n,-) on s(A) that we obtained are non-equivariant under the
conjugation of H(A) N G(A)! in general, which is close to the situation in [3] and different from that in
[61]. In fact, we have the following formula of non-equivariance.

PROPOSITION 1.4 (see Corollary 6.2). For a Bruhat-Schwartz function f on s(A) and y € H(A) N
G(A), we denote f¥(z) := f(yzy~1). Then

To(n, £¥) = n(det(y) > T2 (. 15,),
Q

where the sum on Q runs over all w-stable relatively standard parabolic subgroups of G (defined in Section
5.2). Here J(,Q(n7 -) is an analogue of Jo(n,-) with G replaced by Q, and fgy is defined by (6.0.1) with
s=0.

Nevertheless, we can write regular semi-simple terms as explicit weighted orbital integrals whose
weights are the restriction to H(A) of Arthur’s in [3] for G(A).

THEOREM 1.5 (see Theorem 9.2). Let o € O be a regular semi-simple class, Py an w-stable relatively
standard parabolic subgroup of G and X1 € o an elliptic element relative to Py (defined in Section 9.2).
For a Bruhat-Schwartz function f on s(A), we have

T, 1) = o) - [ Fa Xz up, (2)n(det(2))d,
Hxy (8)\H (A)

where Hyx, denotes the centraliser of X1 in H, vol([Hx,]) is its associated volume and vp,(x) is the

volume of some convex hull.

This paper is organised in the following way. Section 2 and 3 are devoted to standard notation
in Arthur’s work on trace formulae and characterisation of O in the specific symmetric pair that we
consider respectively. We define the truncated kernel k‘? ,(z) and prove its integrability in Section 4.
This key definition is partly inspired by [28] [61] [17] (for the decomposition of groups) and [40] (for
the decomposition of linear spaces) apart from Arthur’s pioneering work [3] and its Lie algebra variant
[13]. Section 5 is about the quantitive behaviour of the distributions that we got with respect to the
truncation parameter T'. In Section 6, we study their variance under the conjugation of H(A) N G(A)L.
In Section 7, the infinitesimal Guo-Jacquet trace formula for the case of (GLa,, GL, x GL,) is given.
Section 8 and 9 aim to express the regular semi-simple distribution as weighted orbital integrals.

Here are two final remarks. Firstly, actually we study the more general symmetric pair (GLp44.p,
GLpp x GLy p) instead of (GLay,GL, x GLy) and add an extra term |[Nrd(z;)|3 to the integrand in
most of this article. Not only do we prefer more general results (including the case considered in [57] for
instance) or possible applications (cf. [41] for the study of the first derivative of L-functions), but the
study of the case where p = ¢ and s = 0 also yields consideration on a more general setting. A simple
reason for this comes from the structure of the intersection of H and semi-standard Levi subgroups of
G. Secondly, there are some similarities between our case and the twisted trace formula (cf. [39]) for
(GL,, x GL,) x 0 where o exchanges two copies of GL,,. In fact, we obtain the same weights for regular
semi-simple orbits. However, we shall see that more parabolic subgroups will be needed to define the
truncation here. We shall return to its discussion at the end of this paper.

Acknowledgement. I would like to express my great appreciation to my PhD advisor Professor Pierre-
Henri Chaudouard for introducing me to this problem and valuable suggestions during my preparation
of this work. Part of this paper was revised during my visit to the Institute for Mathematical Sciences
at the National University of Singapore and I would like to thank their hospitality. This work was
supported by grants from Région Ile-de-France.

2. Notation

2.1. Roots and weights. Let F' be a number field and G a reductive group defined over F'. Denote
by Za the centre of G. Fix a minimal Levi F-subgroup My of G. All the following groups are assumed
to be defined over F without further mention. We call a parabolic subgroup P of G semi-standard if
My C P. For any semi-standard parabolic subgroup P of G, we usually write Mp for the Levi factor
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containing M, and Np the unipotent radical. Denote by Ap the maximal F-split torus in the centre of
Mp. Let X(Mp)F be the group of characters of Mp defined over F. Then define

ap = I‘IOIIlZ(AX(]\JP)F7 R)

and its dual space

ap = X(Mp)r @z R,
which are both R-linear spaces of dimention dim(Ap). Notice that the restriction X (Mp)r — X(Ap)F
induces an isomorphism

ap ~ X(Ap)r @z R.

Suppose that P, C P, are a pair of semi-standard parabolic subgroups of G. The restriction
X(Mp,)r = X(Mp,)r induces ap, — ap and its dual map ap, — ap,. Denote by agf the kernel
of the latter map ap, — ap,. The restriction X (Ap,)r - X(Ap,)r induces ap, — ap, and its dual map
ap, — ap,. The latter map ap, < ap, provides a section of the previous map ap, - ap,. Thus we have
decompositions

ap, =ap, ® a?f
and
ap =ap, ® (aﬁf)*.
When P; is a minimal semi-standard parabolic subgroup, since ap, (resp. Ap,) and a% are independent
of the choice of P;, we write them as ag (resp. Ag) and ag 2 respectively.

For a pair of semi-standard parabolic subgroups P; C P» of G, write A% for the set of simple roots

for the action of Ap, on ijf := Np, N Mp,. Notice that A% is a basis of (a%’)*. Let

AR)Y i={w:a e AR}

be the basis of a% dual to Alﬁf. If B is a minimal semi-standard parabolic subgroup contained in Py,
one has the coroot 3 associated to any 8 € A?. For every o € A%’, let o be the projection of 3V to
a%, where 3 € A? whose restriction to a% is . Such oV is independent of the choice of B. Define

(Agf)v ={a":a¢€ A%},
which is a basis of a%. Denote by
NP> . . P
Ap ={wa:a €A}
the basis of (a%)* dual to (Agf)v.
For a semi-standard parabolic subgroup P of G, set
ap :={T cap:a(l)>0,ac AZ}.
For P, C P, as above, define 7'512 and 7/:512 as the characteristic functions of
. P
{Teap:aT) >0, € AR’}

and
{T€a:w(T)>0,we A%}

respectively.

2.2. The functions Hp and F?. Let A be the ring of adeles of F' and |- |4 the product of
normalised local absolute values on the group of ideéles A*. Fix a maximal compact subgroup K of G(A)
that is admissible relative to My in the sense of [5, p. 9]. In this paper, we choose the standard maximal
compact subgroup for inner forms of GL, (see [54, p. 191 and 199] for example). More concretely,
suppose that G(F) = GL, (D), where D is a central division algebra over F. For every place v of F,
fix an isomorphism D ®p F, ~ gl. (D,), where D, is a central division algebra over F,. Under this
isomorphism, the completion at v of G(F) is G, ~ GL,, (D,), where n, = nr,. For v a finite place of
F,let K, ~ GL,, (Op,), where Op, is the ring of integers of D,; for v an infinite place of F, we choose
K, to be the orthogonal group, unitary group and compact symplectic group (see [25, Chapter 1.2.8]
for example) for G, ~ GL,,(R), GL,, (C) and GL,,, (H) respectively; let K := ][], K,. Suppose that P
is a semi-standard parabolic subgroup of G. If m € Mp(A), define Hp(m) € ap by

(Hp(m),x) = log(|x(m)]s), x € X(Mp)F.
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Write Mp(A)! for the kernel of Hp and A% for the neutral component for the topology of R-manifolds
of the group of R-points of the maximal Q-split torus in Resp,gAp. Then any element z € G(A) can be
written as © = nmak, where n € Np(A), m € Mp(A)', a € A¥ and k € K. We can define a continuous
map Hp : G(A) — ap by setting Hp(x) := Hp(a) with respect to this decomposition. Notice that Hp
induces an isomorphism from A% to ap. If P C (@) are a pair of semi-standard parabolic subgroups,
write

AL = A% N Mg (A)*.

Then Hp also induces an isomorphism from AIQD’OO to ag.

Denote by Q¢ the Weyl group of (G, Ag). In the cases to be considered in this paper, for every
s € QY we can always choose one representative wy, € G(F) N K such that w, normalises Ag. In fact,
we are dealing with the case of G = G, or its inner forms, thus we can choose Q¢ to be the group of
permutation matrices. For an F-subgroup H of G and s € Q¢ we usually write sH := w,Hw ' Let Py
and P, be a pair of semi-standard parabolic subgroups of G. Denote by Q%(ap,,ap,) the set (perhaps
empty) of distinct isomorphisms from ap, to ap, obtained by restriction of elements in Q¢. Denote
by Q% (ap,; Py) the subset (perhaps empty) of double classes in QMP:\QE/QMP1 of elements s € Q¢
such that s(ap,) 2 ap,. Suppose additionally that P; and P, contain a common minimal semi-standard
parabolic subgroup P of G. We can talk about positive roots with respect to Py. By [39, Lemme 1.3.6],
all s € Q%(ap,,ap,) admits a unique representative (still denoted by s) in Q¢ such that s~!a > 0 for all
a € Agﬁ. By [39, Lemme 1.3.7], all s € Q%(ap,; P») admits a unique representative (still denoted by s)
in Q¢ such that s~'a > 0 for all a € Agﬁ.

From the reduction theory (see [3, p. 941]), we know that there exists a real number ¢; < 0 and a
compact subset wp C Np(A)My(A)! for each minimal semi-standard parabolic subgroup B of G such
that for any semi-standard parabolic subgroup P of G containing B, we have

G(A) = P(F)&5(wp, to).
Here the Siegel set G (wp, o) is defined by
&E(wp, to) == wpAF (P, 1)K,

where
A% (Pitg) := {a € A : a(Hp(a)) > tg,a € ALY,

We shall fix such 5 and wp. Additionally, we are authorised to assume that wsp = wswpw; ! for s € QF.
Moreover, we require that (Mp(A) Nwp, Mp(A) N K, BN Mp,ty) will play the role of (wg, K, B, tg) for
any semi-standard parabolic subgroup P of G containing B.

Let B C P and tg be as above. For T' € ag, define the truncated Siegel set

SE(wp,to, T) == wpAS (P, to, T)K,

where
A% (P, to,T) :={a € AR (P,to) : w(Hp(a) — T) < 0, € AB}.
Denote by FZ(-,T) the characteristic function of the projection of &5 (wp,to, T) to P(F)\G(A).

2.3. Bruhat-Schwartz functions and Haar measures. Write g for the Lie algebra of G. For
an F-linear subspace s of g, denote by S(s(A)) the Bruhat-Schwartz space of s§(A), namely the C-linear
space of functions on s(A) generated by fo ® x°°, where f is a Schwartz function on s(F ®g R) and
X is the characteristic function of an open compact subgroup of s(A°), where we denote by A> the
ring of finite adeles of F.

Let P be a semi-standard parabolic subgroup of G. For every connected subgroup V of Np
(resp. every subspace b of g), choose the unique Haar measure on V(A) (resp. on h(A)) such that
vol(V(F)\V(A)) = 1 (resp. vol(h(F)\h(A)) = 1). We also take the Haar measure on K such that
vol(K) = 1.

Fix a Euclidean norm || - || on aq invariant by the group Q¢ and Haar measures on all subspaces of
ap compatible with this norm. If P C @ are a pair of semi-standard parabolic subgroups, we obtain the
Haar measures on A% and A%"X’ via the isomorphism Hp.
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Denote by pp € (a%)* the half of the sum of weights (with multiplicities) for the action of Ap on np.
We choose compatible Haar measures on G(A) and its subgroups by requiring that for any f € L*(G(A)),

f(z)dx = / / / f(nmk)e=20r He () qn dimdj
G(A) Nea) Japa) S

:/ / / /f(nmak)e_QpP(HP(“))dndmdadk.
Np) ey Jag Sk

3. The symmetric pair

Let F' be a number field and D a central division algebra over F. Let d be the degree of D,
i.e., dimp(D) = d?. Denote by GL, p the reductive group over F' whose F-points are GL, (D). For
x € GL, (D), we write Nrd(z) for its reduced norm, Trd(x) for its reduced trace and Prd, for its reduced
characteristic polynomial. For z € GL,(D) x GLy(D), denote by x1 (resp. x2) its projection to the
first (resp. second) component. Until further notice, we shall work in a more general setting than that
of Guo-Jacquet for later use, i.e., we shall study the case of (GLytq,p,GLyp x GLy p) and add an
additional term |Nrd(z1)|3 in the integral of the modified kernel.

3.1. Groups and linear spaces. Let G := GL,4p and H := GL, p x GLy p its subgroup by

diagonal embedding. Define an involution § on G by 0(g) = ege~!, where ¢ = ( 16’ 01 > Thus
g
H = GY, where G? denotes the #-invariant subgroup of G.
Define an anti-involution ¢ on G by ¢(g) = #(g~!). Denote by G* the -invariant subvariety of G.

There is a symmetrization map
5:G = G 5(9) = gu(g),

by which one can regard the symmetric space S := G/H as a subvariety of G*. We see that H x H acts
on G by left and right translation and that H acts on G* by conjugation.

Let g := Lie(G) and b := Lie(H). Denote by df the differential of §. Thus h = {X € g: (df)(X) =
X}. Let s be the tangent space of S at the neutral element. We shall always view s as a subspace of g.
Then s = {X € g: (d§)(X) = —X} and s(F) = { < g 61 ) : A € Mat,«,(D),B € Mathp(D)} ~
Matpxq(D) @ Matgxp(D). There is an H(F)-action on s(F) by conjugation, i.e., (hi,h2) - (4,B) =
(hiAhy ' ho ARTY).

3.2. Semi-simple elements. We say that an element X € s is semi-simple if the orbit H - X is
Zariski closed in s. By a regular element X € s, we mean that the stabiliser Hx has minimal dimension.

PROPOSITION 3.1. An element X of s(F) is semi-simple if and only if it is H(F')-conjugate to an
element of the form

—_

0

0
0 0 0 O
with A € GL,,(D) being semi-simple in the usual sense. More precisely, the set of H(F)-conjugacy
classes of semi-simple elements of s(F) is bijective to the set of pairs (m,{A}) where 0 < m < min{p, ¢}

is an integer and {A} is a semi-simple conjugacy class in GL,, (D). Moreover, X(A) is reqular semi-
simple if and only if m = min{p, ¢} and A is reqular semi-simple in GLyingp o1 (D) in the usual sense.

PROOF. The case D = F is [31, Proposition 2.1 and Lemma 2.1] while the case p = ¢ is [57,
Proposition 5.2]. This proposition is nothing but a slightly more general one combining both cases,
whose proofs are similar and still work here. O

ProroSITION 3.2. If p < q, an element <O

B 0) € s is reqular semi-simple if and only if Prd,p

is separable and Prdap(0) # 0. If p > q, an element (O

B O) € s is reqular semi-simple if and only if
Prdga is separable and Prdpg4(0) # 0.
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PrRoOOF. We only consider the case p < ¢ since the other case can be deduced by symmetry. We may
study the proposition over an algebraic closure F of F.
0 A
B 0
decomposition in g, where X is semi-simple, X, is nilpotent and X, X,, = X,, Xs. By the uniqueness of
the Jordan decomposition, we see that X, X, € s. From Proposition 3.1, up to conjugation by H, we

Suppose that Prdsp is separable and Prdap(0) # 0. Let = X, + X, be the Jordan

0 1g, O
may suppose that Xy = C 0 0 |, where C € GLgy(F) is semi-simple. Since XX, = X, X,
0 0 O
0 D 0
simple computation (cf. [31, Lemma 2.1]) shows that X,, = [ DC 0 0 |, where D € gly,(F) and
0 0 0

DC = CD. But X, is nilpotent, which forces D to be zero because C' is invertible. Then X, = 0 and

(g 3) = X,. We deduce that Prd¢ is separable and that Prds(0) # 0. By linear algebra, C' is regular

semi-simple in GLg,(F). Hence, (g 0) is regular semi-simple by Proposition 3.1.
The other direction is a direct consequence of Proposition 3.1. ]
3.3. Invariants. Denote by ¢ the affine space A4™in{r.¢} Define a morphism 7 : § — ¢ by mapping

(g 61) € s to the coefficients of the reduced characteristic polynomial of AB. It is constant on

H-orbits. Denote by ¢, the subset of (¢;)o<i<dmin{p,q}—1 € ¢ such that the polynomial

dmin{p,q}—1
P()\) — )\dmin{p,q} + Z Cz)\L
i=0

is separable and ¢y # 0. It is a principal Zariski open subset of ¢. Denote by ¢* the subset of
(Ci)OSiSdmin{p,q}—l € ¢ such that ¢ }é 0. Then ¢,.; C ¢*.

PROPOSITION 3.3. The pair (¢, 7) defines a categorical quotient of s by H over F.

PROOF. It suffices to consider the case p < g since the case p > ¢ can be obtained by symmetry.

We first extend the base field to an algebraic closure F' of F. Then Hgz ~ GL,, 7 X GL;, 7 and
S5 Matdpxdq,F@Matdqxde' For (¢;)o<i<dp—1 € ¢, denote by A((¢;)o<i<ap—1) € GLypq its companion
matrix

o 0 --- 0 —Co
1 0 te 0 —C1
A((Ci)ogigdp,ﬂ = 0 1 —C2
S 0 :
0 -« 0 1 —cgpr
Define a morphism ¢ — sz by mapping (¢;)o<i<dp—1 to
0 lyy O
A((ci)o<i<ap-1) 0 0
0 0 0

This is a section of 7, so 7 is surjective. By Propositions 3.2 and 3.1, the fibre of any point in the
non-empty open subset ¢z, C ¢z contains exactly one closed orbit. We may use Igusa’s criterion (see
[43, Theorem 4.13] and Remark 3.4 below) to show that the pair (c¢z,m) defines a categorical quotient
of St by HF

The morphism 7 : 5 — ¢ defined over F factors through the categorical quotient Spec(F[s]*) of s
by H over F. This induces a dual morphism F[c] — F|[s]¥ of F-algebras. We have shown that after the
base change to F, it is an isomorphism of F-algebras. By Galois descent, we deduce that the morphism
F[c] — F[s]" is an isomorphism of F-algebras, i.e., the pair (¢, ) defines a categorical quotient of s by
H over F. ]

REMARK 3.4. We notice that ¢z can be of dimension 1 (when D = F and min{p, ¢} = 1) in the proof
of Proposition 3.3 above, so the first condition in [43, Theorem 4.13] may not be satisfied. However, as
is evident from the proof of Igusa’s criterion, this condition can be replaced with the surjectivity of .
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The categorical quotient (¢, 7) defines a relation of equivalence on s(F'), where two elements are in
the same class if and only if they have the same image under 7. We denote by O the set of equivalent
classes for this relation. By Proposition 3.1, two semi-simple elements of s(F') belong to the same class
of O if and only if they are conjugate by H(F'). Denote by O,.s the subset of O with images in ¢,.s. By
Proposition 3.2, each class in O, is a regular semi-simple H(F')-orbit in §(F'). Denote by O* the subset
of O with images in ¢*. Then O,; C O*.

3.4. Relatively standard parabolic subgroups. Fix ﬁo a minimal parabolic subgroup of H
defined over F' and Mj a Levi factor of ]50 defined over F. Then M, is also a Levi subgroup of G defined
over F'. For a semi-standard parabolic subgroup P of G (namely My C P), we say that P is “relatively
standard” if 150 C P, ie., PN H is a standard parabolic subgroup of H (namely 150 C PN H). We shall
suppose that w B, S wn for all relatively standard minimal parabolic subgroup B of G. Denote by K the
standard maximal compact subgroup of G(A) and by Ky := H(A) N K the maximal compact subgroup
of H(A). Up to conjugation by G(F'), we may assume that My is the subgroup of diagonal matrices in
G and that ]50 is the product of groups of upper triangular matrices.

We can describe the embedding H < G via D-bimodules. Let V := (e1,- - -,ep)p (resp. W :=
(f1,--+, fq)p) be the free D-bimodule generated by the basis {e1,--,e,} (vesp. {f1,--, fq}). Set GL(V)
to be the group of F-linear automorphisms on V, which acts on V on the left. Denote by GL(V)p the
subgroup of GL(V') which respects the right D-module structure on V. Put G := GL(V & W)p and
H :=GL(V)p x GL(W)p. Then My is the stabiliser in G (or in H) of the D-lines (¢;)p,1 < i < p and
(fi)p,1 <1i < q. Suppose that P, is the direct product of the stabiliser in GL(V)p of the flag

0C (e1)p G (e1,e2)p S+ C(er,  ep)p =V
and the stabiliser in GL(W)p of the flag
0C (fi)p G (f1,f2)p S-S (f1, -~ fo)p="W.
A relative standard parabolic subgroup P of G can be interpretated as the stabiliser in G of the flag
0C (er, eps frs s far)D S €1y €prs F1s s Fars €prids = s Epripns Fardts ™ s farban) D

g— Tt -g <617' . '7ep17f17' . 'afqla' “Cp—pi+1y 'aepﬂfQ*q1+17' . '7fq>D = V@W

l l
where > p; =p, > ¢; = q and we allow p; or g; to be zero. In particular, we have
i=1 i=1

Mp = GLp, g0 X - X GLp+q,D
and
MpH ~ GLPl,D X oo X GLpl,D X Gqu’D X X GLqL,D-

PROPOSITION 3.5. Let P be a relative standard parabolic subgroup of G. For all X € (mp Ns)(F)
and U € (np Ns)(F), we have
(X)) =n(X+7TU).

PRrROOF. It is a consequence of [40, Lemma 2.1]. We can also give a direct proof as follows. Let F

be an algebraic closure of F. For A € Matgyxqq(F) and B € Matggxap(EF'), we see that

det (Afd(p+q) —~ (g é)) = \UT7P) det(\2I,, — AB).

Then for any X € s(F), m(X) is determined by the coefficients of the reduced characteristic polynomial
of X regarded as an element of g(F'). The proposition follows from the easy fact: for X € mp(F') and
U € np(F), the reduced characteristic polynomial of X + U is equal to that of X. O

COROLLARY 3.6. Let P be a relative standard parabolic subgroup of G and o € O. For all subsets
S1 C(mpNs)(F) and Sy C (np Ns)(F), we have 6 N (S ® S2) = (0N Sy) D 5.

3.5. Fourier transform. Fix a nontrivial unitary character ¥ of A/F. Let (-,-) be the non-
degenerate H(A)-invariant bilinear form on s(A) defined by

(3.5.1) VX1, X5 € 5(A), <X1,X2> = ’Iﬁrd(Xng)

For f € S(s(A)), its Fourier transform f € S(s(A)) is defined by

(3.5.2) VX € s(A), f(X) = FX)U((X, X))dX.
s(A)
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4. Integrability of the modified kernel

Fix a minimal semi-standard parabolic subgroup P, of G. For any semi-standard parabolic subgroup
P of G and T € ag, denote by Tp the projection of sT" in ap, where s is any element in Q¢ such that
sPy C P. Notice that this definition is independent of the choice of s. For a semi-standard parabolic
subgroup P of G, x € H(A) and T € ay, define

FP(LE,T) FsPo(x’TSPO)ﬂ

where s is any element in Q¢ such that sPy C P. Note that this definition is independent of the choice of
s since we choose all ws € G(F)NK. In fact, for any minimal semi-standard parabolic subgroup B C P,
F3E(2,T) = FE(w;l2,s71T) and FE(-,T) is left Mp(F)-invariant.

Let f € S(s(A)), P be a relatively standard parabolic subgroup of G and 0 € O. Write Py := PNH.
For x € Mp, (F)Np, (A)\H(A), define

kfpo(x) = Z / . )(A) flz =YX +U)x)dU,

Xemp(F)No
and for z € H(F)\H(A), define

(4.0.1) Ko@) = S (—1)@marAe) S 56 (Hp(5r) — Tp) - ky,pa(63).

{P:Py,CP} d€PH(F)\H(F)
From [3, Lemma 5.1], we know that the sum over § € Py (F)\H (F) is finite.

4.1. Reduction theory. There is a T € a;o such that [3, Lemma 6.4] holds for T € T} + aj;o.
We shall fix such a Ty and say that such T is sufficiently regular.

LEMMA 4.1. For all relatively standard parabolic subgroup Q of G, sufficiently regular T and x €
H(A), we have

> > FP(6x, T)r2(Hp(6x) — Tp) = 1.

{P:P,CPCQ}0€Pu(F)\Qu(F)

This is an analogue of [61, Proposition 2.3] whose proof relies on [28, (2.5) in p. 674] (cf. Lemma
4.8 below). It is essentially a restricted form to H from [3, Lemma 6.4] for G. We can give a proof close
to the steps in an early version of [61], which reflects that a main complexity of the truncation here
arises from the fact that none of the Siegel sets of H is contained in any Siegel set of G, as mentioned
in [28]. However, we shall adopt alternatively the point of view in [17] to give a more conceptual proof
here, which might be useful in other relative trace formulae as well.

First we introduce a variant (see [17, §1.5]) of some concepts and results in [17, §2] without repro-
ducing proofs. We say that a semi-standard parabolic subgroup @ of G is standard if Py C Q. For

P C @ a pair of standard parabolic subgroups of GG, denote by pii the half of the sum of weights (with

multiplicities) for the action of Ap on np Nmg. We denote by alto the closure of aJISO in ap.

DEFINITION 4.2. For g € G(A), Q a standard parabolic subgroup of G and T € a, we define the
degree of T-instability of g with respect to @ by the following formula

degg’r(g) == 1(1}1%>)<<p2, Hp(bg) - T)
where (P,0) runs over the pairs of a standard parabolic subgroup P C Q and an element 6 € P(F)\Q(F).

From [3, Lemma 5.1], we know that the supremum of (pg, Hp(dg) —T) in the definition is finite and
attainable.

LEMMA 4.3 (cf. [17, Lemme 2.2.1]). Let g € G(A), @ be a standard parabolic subgroup of G and
T e aTSO. The following two conditions are equivalent:
(1) deg(g) < 0;
(2) for all parabolic subgroup P C @, alld € P(F)\Q(F) and allw € Eg, we have (w, Hp(0g)—-T) <
0.

DEFINITION 4.4. Let g € G(A) and T € a. We say that a pair (P,6) of a standard parabolic
subgroup P C G and an element 6 € P(F)\G(F) is T-canonical for g if it satisfies the following two
conditions:
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(1) (pB, Hp(3g) — T) = degir(9);
(2) for any parabolic subgroup Q 2 P such that (pg, Hq(ég)—T) = deginT(g), we have Q = P.

LEMMA 4.5 (cf. [17, Lemme 2.3.2]). Let g € G(A) and T € a. Then (P,9d) is a T-canonical pair
for g if and only if it satisfies the following two conditions:

(1) degi’r(3g) <0;

(2) for any a € AG, we have (o, Hp(6g) — T) > 0.

PROPOSITION 4.6 (cf. [17, Proposition 2.4.1]). Let g € G(A) and T € aTSO. Then there exists a
unique T'-canonical pair for g.

Let T € ap and @ be a standard parabolic subgroup of G. Define F Q(.,T) as the characteristic
function of g € G(A) such that dcng(g) <0.

PROPOSITION 4.7 (cf. [17, Proposition 2.5.1]). For g € G(A), Q a standard parabolic subgroup of G
and T € aTEO, we have
(1)
> Y. FP(6g,T)rg(Hp(dg) — Tp) = 1;
{P:PoCPCQ} € P(F\Q(F)
(2)

FQg,T) = Z (—1)dimiAr/aa) Z 72 (Hp(3g) — Tp).
{P:P,CPCQ} SEP(F\Q(F)

Since we have similar formulae for F@(-,T) for sufficiently regular T' (see [3, Lemma 6.4]), we know
that FQ(-,T) = Fgo(-, T) for such T. Now we can return to the proof of Lemma 4.1.

PRrROOF OF LEMMA 4.1. It is noticeable that the identity is reduced to its analogues for semi-
standard Levi factors of @, which is a product of GL,, 4, p whose intersection with H is GL,, pxGLg, p.
By induction on the rank of G, it suffices to prove the identity for Q = G.

For a standard parabolic subgroup P of G, fix a set of representatives Qp g in {s € QG|130 Cs P}
for the relation s; ~ sy if and only if sas57 L e QMP We can rewrite the equality in the lemma as

>y > Ff (wsbx, Tp, )78 (Hp(wsdx) — Tp) = 1.
{P:P,CP} s€Qp g 5e(s— 1 P) g (F)\H(F)
In fact, this follows from
—1 —1
F* P (0x,T) = Fi o f, (02, Ts-1p,) = Fh (wsbz, Tp,)
and
7 p(Hy-1p(6x) = Ty1p) = 75 (Hp (wsbz) — Tp).
Combining the double sums over s and J, we claim that the equality above is equivalent to
> Ff (8, Tp, )78 (Hp(62) — Tp) = 1.
{P:P,CP} §eP(F)\P(F)QC H(F)
In fact, for any s € Qp g, consider the map
(s7'P)g(F)\H(F) — P(F)\P(F)QYH(F),d > ws.

Firstly, it is well-defined: if §; = w; 'pwds with p € P(F), then wsd; = pwsda. Secondly, it is injective: if
ws01 = pwsde with p € P(F), then 61 = w; 1pw,ds with w; lpw, = 51(52_1 € (s71P)y(F). Thirdly, for s; #
sy in Qpg, we have wy,8; # pws,do with p € P(F): otherwise, s7 P = (6267 1)~ (s5 ' P) (6267 ') with
52071 € H(F), s0 (s7'P)r = (0267 1) (5 ' P) (0267 "), and then 628, € (s7'P)(F) = (s5 ' P)u(F)
for both of (s7*P)y and (s; ' P)y are standard parabolic subgroups of H, which implies s;'P = s, ' P
contradicting s; # s». Fourthly, any § € Q¢ appears in the image of the map for some s € Qpg:
since (37'P)y is a semi-standard parabolic subgroup of H, there exists an sy € Q such that Py C
s (G7IP)g) = (s '(37'P)) g = ((350) ' P)m, i-e., 350 € Qp . To sum up, we finish the argument of
the claim. _ L

It suffices to prove an analogue of the last equality by replacing F };0 with F'F for T € aJ}SO, as they

are identical for sufficiently regular 7. That is to say, for z € H(A) = G?(A), if (P,d) is the unique
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T-canonical pair for z, we need to prove that § € P(F)\P(F)Q¢H(F). Recall that 0(g) = ege™! for
10” —Olq . Since € € My(F) N K, from Lemma 4.5, we deduce that (P,0) is
the unique T-canonical pair for g € G(A) if and only if (P, 6(d)) is the unique T-canonical pair for (g).
In particular, if (P, ) is the unique T-canonical pair for x € H(A), we have § = 0(5). Denote by dy a
representative of § € P(F)\G(F). Then dped, ' € P(F).

Suppose that dpedy ! = mu, where m € Mp(F) and u € Np(F). Both of mu and m are semi-simple
in G(F) (in the classical sense) for (mu)? = m? = 1. Applying [3, Lemma 2.1] to the characteristic
function of the singleton {u}, one obtains that mu is Np(F')-conjugate to mu' for some v’ € Np(F)
such that mu’ = w'm. Since both of mu’ and m are semi-simple in G(F), by the uniqueness of Jordan
decomposition, we have v’ = 1, i.e., 60660_1 is Np(F)-conjugate to m. By linear algebra, m is Mp(F)-
conjugate to a diagonal matrix with entries {£1} with expected multiplicities p and ¢ respectively. In
sum, dpedy  is P(F)-conjugate to weew; ! for some s € QF. Suppose that py € P(F) satisfies dpedy ' =
po(wsew; Npg . Then w;'pytdy € GY(F) = H(F), i.e., § = P(F)dy € P(F)\P(F)QCH(F). O

g € G(A), where € =

LEMMA 4.8. Let P be a relatively standard parabolic subgroup of G. For any a € AolgO (Py,to), there
0
exists a relatively standard minimal parabolic subgroup B C P such that a € AR (P, t).

PRrROOF. This is an analogue of [28, (2.5) in p. 674]. By induction on dim(Ap), it suffices to prove
this assertion for P = G.
Let a € A% (H,to). Then a = diag(ai, - -, ap1q), where ﬁ >eltforl<i<p—landp+1<
0 i+1

i < p+q— 1. In the definition of Siegel sets, we suppose that tg < 0, so 0 < e’* < 1. Note that
AR (G, to) = {diag(b, - - S bprg) |32 o > e V1 <i<p+q—1}. Thus we need to show that there exists

a permutation s € Q¢ such that s-a = diag(as-1(1)," -+, @5-1(p+q)) satisfies the following two conditions:
(1) s(i) <s(i+1)for1<i<p—landp+1<i<p+g-—1;
(2) =20 s elofor 1<i<p+gq— L.

As—1(i+41)
Firstly, we show that one can move ap41 to its left hand side in (a1, - - -, ap44) such that both the first
p+ 1 elements and the last ¢ — 1 ones in the new sequence are in “good” order (which means that the
quotient of any consecutive pairs is > e'0), while keeping the original relative orders among (a1, - - -, a,)

and among (Gp+1,- - Gptq). If > e'o, we are already done (one can take s = 1). In general, write

i > eto}} .
Gp41

When 1 < i; < p—1, since efo < 1, 23l < ¢to implies ;”—Tl > et > 1: there is an s € Q¢ such that
1

a+1

1= max{O,maX{l <i1<p

7 oapta
s-a=diag(ar, -, Gy, Qpt1; Qiy41, " * 5 p, Gpt2, - - Aptq). When i1 = 0, which implies a,41 > a1, there
is an s € Q¢ such that s-a = diag(apt1, a1, 5 Qpy pt2, -« * Gptq)-

Secondly, we consider moving a,o2 as before. One should check that a,;2 will not exceed the new
place of a,41, which results from the fact that a"“ > e'. Thus one can move a,41 and a,yo to their

left hand side in (aq,- - -, ap4q) such that both the first p + 2 elements and the last ¢ — 2 ones in the

new sequence are in ”good” order, while still keeping the original relative orders among (a1, - - -, a,) and
AIONg (ap41,- -, Gpig).
We can finish the argument of our claim by induction on gq. O

PROPOSITION 4.9. Let B be a minimal semi-standard parabolic subgroup of G. Let P be a parabolic
subgroup of G containing B. Suppose that T is sufficiently regular. If m € wg N Mp(A),a € AF (P, to)
and k € K N Mp(A) satisfy FL (mak,Tg) =1, then a € AX(P,to,T5).

PROOF. It results from Lemma 4.3, since ﬁg(-,T) = FE(.,T) for sufficiently regular 7. Here we
write FE(-,T) for FP(-,T) when B plays the role of Py. O
For a relatively standard parabolic subgroup P of GG, denote by P(]BO, P) the set of relatively standard
minimal parabolic subgroups of G contained in P. For B € P(Py, P), write
AG(Ptg) i= A% (P, to) N G(A)

and
VT € ag, AS (P, ty, T) := A% (P, to, T) N G(A)".
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COROLLARY 4.10. Let P be a relatively standard parabolic subgroup of G. For sufficiently regular T,

the following subset of Mp, (A) N G(A)?
U g N Mp,(8)) - (A (Pu,to) N AG>(P,to, Ti)) - (Ku 1 Mp,, (4))
BeP(Py,P)

projects surjectively on {m € Mp, (F)\Mp, (A) N G(A)|FF(m,T) = 1}.

PRrROOF. This is an analogue of [61, Corollaire 2.5]. By Lemma 4.8, the following subset of Mp,, (A)N
G(a)!

U (wp, N Mpy(A) - (AF (Prto) N AT (Poto)) - (K N Mpy (A))
BEP(Py,P)

projects surjectively on Mp, (F)\Mp, (A)NG(A)!. Recall that wp, € wp forall B € P(Py, P) and that

Ky C K by our choices (see Section 3.4). Therefore, the statement to be proved follows from Proposition
4.9. O

4.2. Integrability.

THEOREM 4.11. For all sufficiently reqular T and all s € R,

|k?’a(ac)||Nrd(x1)|;§dx < 00,

oo /H(F>\H(A>nG(A>1

where we write x = (z1,x2) € GLp p(A) X GLg p(A).
PROOF. Let P; C P, be a pair of relatively standard parabolic subgroups of G. Following [3, §6],
for Th € ap,, we define the characteristic function
o ()= Y (-1)WmAn/Ae)r2(1)76(Ty),
{Q:P2CQ}
and recall that for P O P; a relatively standard parabolic subgroup of G,
Th(T)FE (M) = Y of(Ty).
{PZ:PQP2}
Denote Py g := Py N H. For z € P, y(F)\H(A), we put

Xgl,Pz (x) = Fpl (Q?,T)O'gf (HP1 ($> - TP1)a
and |
kPl’Pz,O(x) = Z (_1)dlm(AP/AG)kf,p’o(w).

{P:P,CPCP,)}
Using Lemma 4.1 and the left invariance of Hp and k¢ p, by Pu(F), we have

k}ﬂ,a(‘r) = Z Z Xgl,Pg (6x)kP1,P2,0<6x)'

{Py,Py:PyCP,CP,} 0P, mH(F)\H(F)

Thus
/ |k} o ()| INvd (1) |3 da
oco VHENH(A)NG(A)!
<2 2 Xy p, () kp, Py o(2)]|Nrd(21) 5 d.
/PlvH(F)\H(A)ﬂG(A)l Pl»PQ( )| 1 20( )|| ( 1)‘&

0€O (P, Pp: Py CPLC P2}
It suffices to prove that for any pair of relatively standard parabolic subgroups P, C P» of G,

Xb,.p, (@)py Pyo ()| INrd(21) [3dz < oo,

= /Pl.H<F>\H<A>nG<A)1

If P, = P, # G, by [3, Lemma 6.1], we have olljf = 0 and then xgl’PQ = 0, so the integration is zero. If
P, = P, = G, by Corollary 4.10, every € H(F)\H(A)NG(A)" with F%(z,T) = 1 has a representative
in the compact subset
U  wp, - AG®(G 0, Ts) - Kn,
BeP(Py,G)
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so the integral is bounded by an integral of a continuous function over a compact subset and thus
convergent. Therefore, we reduce ourselves to proving the following proposition. O

PROPOSITION 4.12. Let f € S(s(A)), s € R and P, C Py be two relatively standard parabolic
subgroups of G. Fix any two positive real numbers €y and N. Then there exists a constant C such that

Xby .2y (@), Py 0 ()| [Nrd(z1)[fda < Ce NI

= /Pl,H(F>\H(A>nG<A>1

for all sufficiently reqular T satisfying a(T) > eo || T || for any o € Ago
For x € H(F)\H(A), define
kpa(@) = kpaol®)= > fla'Xx)
0O Xes(F)
and
(4.2.1) Kf(z) =k}, ()
ocO

COROLLARY 4.13. Let f € S(s(A)) and s € R. Fiz any two positive real numbers ¢y and N. Then
there exists a constant C such that

/ kT (x) — FO(2,T)ky.c(2)||[Nrd(z1)[fdz < Ce N7
H(F)\H(A)NG(A)!

for all sufficiently regular T satisfying a(T) > €o | T || for any o € Ago

PROOF OF PROPOSITION 4.12. Let P be a relatively standard parabolic subgroup of G such that
P, C P C P, For any X € mp(F) N o, there exists a unique relatively standard parabolic subgroup R

of G such that P CRC P and X € (mp(F)Nt(F)No) — ( U mp(F)Nnq(F)N 0). Write
PICQCR

ﬁ‘lfﬁl =mpg — U mrNq
{Q:P1CQCR}
and
ng =npMNmp.
By Corollary 3.6, we have
mp(F)Ne(F)no)— [ |J mp(F)na(F)ne| = @E (F)No)e ((ngNs)(F)).

PICQCR

Hence
ro) = 32 [ S0
npNs(A)

XGmP

- Z >y [ et X vman

{R:PL\CRCP} ¢emB (F)No X€(nhNs)(F)

Denote by P the parabolic subgroup of G' opposite to P and write
ﬁg =ng Nmp.

Note that the restriction of (-,-) (defined in (3.5.1)) to ((nENs)(A)) x (W5 Ns)(A)) is also non-degenerate.
For any £ € (mgr Ns)(A), applying the Poisson summation formula to the Bruhat-Schwartz function

f(npﬂs)(A) fl@™ (4 -+ U)x)dU, we get

[ e X v = ST aptR),

XE(n Ns)(F) Xe@bns)(F)
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where the partial Fourier transform q)g’R of f(npm)(A) f(z= Y&+ -+ U)x)dU is defined by

VX € (@ Ns)(A), 0L () = / / Fa €+ X + U)a)dU | W((X, X))dX.
(nEns)(A) (npns)(A)
Since (U, X) =0 for U € (np Ns)(A) and X € (Ah Ns)(A), as well as ng = np @ nk, we have

VX € (@ Ns)(A), 017 (X) = /( L fE e, X))du,

whose expression is actually independent of P.

To sum up,
kppolz)= > > > epf(X).
{R:PLCRCP} cem (F)No Xe(whNs)(F)
Hence
kpopo(e)= Y (m)IARAOE b (2)

{P:P1CPCP;}

_ Z (71)dim(Ap/Ac;) Z Z Z (I)?R()?)

{P:PL\CPCP,} {R:PICRCP} cemf (F)No Xe(Rhns)(F)
= > X D D DL eY
{R:PICRC P} ¢emB (F)no \{P:RCPCP:} Xe@Ens)(F)

For a relatively standard parabolic subgroup P; of G containing R, we write

wyew- (U W
{Q:RCQCPs}
Then
o, R\ z,R/ v
> ew- Y Y wm
Xe@Ens)(F) {P3:RCP3CP} Re((Wh3)/ns)(F)
We have
Z (_1)din’1(Ap/AG) Z (I)?R(X)
{P:RCPCP,} Xe@hns)(F)
SP IR CICCRCEIND DR VRNt
{P:RCPCP;} {P3:RCPsCP} R e((w3)ns)(F)
:(71)dim(AP2/AG) Z Z (I)ER()?) Z (71)dim(Ap/Ap2).
{P3:R§P3§P2})’fe((ﬁ;:i)/mﬁ)(p) {P:PsCPCPs}

From [3, Proposition 1.1], we know that
S (mndmAe/an) < L if Py = Py;
0, otherwise.
{P:P;CPCP>}
We obtain
Z (_1)dim(AP/AG) Z (I)?R(X\v) _ (_1)dim(Ap2/Ag) Z (I)E’R()?)-
{P:RCPCPy) Xe(@hne)(F) Xe((@?)ns)(F)

Thus
kpy pyo(e) = (—1)8m(An/4e) §° 3 > X

{R:P1CRCP,} Eeﬁ,’il (F)No )?e((ﬁ?)/ms)(p)
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Now

/ X£17P2 (x)|kP1,P2,o(5L')||Nrd(.’£1)‘;§dx
oco ’ PLu(F)\H(A)NG(A)!

< / RORCI DS ) S @) | INvd() [ de
oco Y Pru(F)\H(A)NG(A) {R:PLCRCP} e (F)No Xe((wh2)/ns)(F)

- / RIANOIEDS S @ R)INd(w)
{R:PLCRC Py} ¥ P (F)\H(ANG(A) ge(my Ns)(F) Xe((whz)ns)(F)

We reduce ourselves to bounding

(4.2:2) NUNCOEEDY S [@rR(X)Nd () [ de

/P L (ENHENGR)T SE(R, Ns)(F) Re((w12)/ns)(F)

for any fixed relatively standard parabolic subgroup R of G such that P, C R C P5.
By the Iwasawa decomposition and our choice of measures, we have

Xbop(T) Y > ePR(X)|Ned(@) [ d

/" L (FNHBING(A) EE(RE, N9)(F) Re((m52) ) (F)

/ / / FP (my, T)o B2 (Hp, (m1) — Tp,)
Ky ]\/[p1 H F)\J\/fplyH(A)ﬁG(A)l I\/vp1 H(F)\NPI H(A)

> @R () e =20 rn Foa s (™) \Nvd (my 1) [ dis dima d,
ge(mE ns)(F)Xe(( 12)/Ns)(F)

where we write mq = (m1,1,m1,2) € GLy, p(A) X GL, p(A).
By Corollary 4.10, the following subset of Mp, ,, (A) N G(A)*

U (UJISO n MPI,H(A)) : (Aoﬁz(Pl,H7t0) N A(B;7OO(P1’t0’TB)) . (KH N MPl,H(A))
BeP(Po,Py)
projects surjectively on {m; € Mp, ,,(F)\Mp, ,(A) N G(A)|F" (my,T) = 1}. Hence

Xbp(2) Y > ¢ (X)|INrd (1)} dz

ge(MmB Ns)(F) Re((Wh2)/ns)(F)

<ol Iy / / / oL (Hp, (a) ~ Tr,)
Z Ky JleptCMp (8)1] JAG ™ (Py,to, Ti) [cpthgs’H(A)] [cPtCNp, (M) h ' '

Be”P(Po,Pl)

Ll,H(F)\H(A)mG(A)l

> > |y h (K)om0 2 ) |Nrd (a4 )[§ dnadndadmdk,
ge(@mB Ns)(F) Re((@h2)/Ns)(F)

where ¢; = vol(Ky N Mp, ,,(A)) is a constant independent of T', and all the compact subsets in the
integrals are independent of T. (We use the notation [cpt C *] for denoting a compact subset in *. )

LEMMA 4.14. Let x € H(A),£ € (mpNs)(A) and X € (RgNs)(A). Let R C Py be a pair of relatively
standard parabolic subgroups of G. For ny € Np, ,(A), we have

" (X)) = P (X).

PROOF OF LEMMA 4.14. Let Uy := n; *éng — £. Then

o) = [ e O w (S
(nrNs)(A)

- / F@ (€ + Uy + 3 Una)a) U((U, ))dU.
(nrNs)(A)

Since both Uy and ny 'Uny — U belong to (np, Ns)(A), we have
(Uy 4+ny'Ung — U, X) =0,
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SO
o (%) = / F@ (€ + Us + ng "Una)2)U((Us + ng Una, X))dU,
(nrNs)(A)

Because the change of variables Uz + ng 'Ung — U does not change the Haar measure, we obtain

o2 (X)) = 0P (X)),

Using Lemma 4.14, we get
nonamk, R/ 3 namk,R /3 aa"*namk,R ;3
P, (X):<I>E (X):<I>£ (X).
By change of variables a~'Ua — U, using the fact that
U, X) = (a"'Ua, a_l)?a>,
we have

(I)anamk,R()?) _ 62PR,+(HB(a))q)g:igsmk’R(afl)?a),

where we denote by pr + the half of the sum of weights (with multiplicities) for the action of Ay on
nrpNs. From the reduction theory (see [3, p. 944]), we know that for a satisfying agf (Hp,(a)—Tp,) # 0,
a"!na belongs to a compact subset independent of 7. In sum,

Xbop(T) Y > @PR(X)|Ned(ay) | de

ge(@mB Ns)(F) Re((@h2)/Ns)(F)
<er Y Sup/c 6(2’)1:"*_2”150)(}13(&))01512 (Hp, (a) = Tp,)
BeP(ﬁo Pl) yer ABYOC(Pl’tO’TB)

> 3 @Y1, (a™ " Xa)||Nxd(ay) |3 da,

ge(@mB Ns)(F) Re(([h2)/ Ns)(F)

/PI,H<F)\H(A)0G<A>1

where ¢o is a constant independent of T, and I is a compact subset independent of T

Denote by Op the ring of integers of F. Fix an F-basis for each weight space for the action of Ay
on s(F). Then we are authorised to talk about Op-points of such a weight space. Since the function
f € S(s(A)) is compactly supported on finite places, there exists a positive integer N; independent
of T such that the sums over £ € (my N s)(F) and X e ((M}2) Ns)(F) can be restricted to lattices
N%(&g Ns)(Op) and N%((ﬁ?)’ Ns)(Op) respectively. In fact, N1 can be made explicit as in [13, §1.9]
by replacing mp and ng in loc. cit. with mg N's and ng N s respectively.

Fix a Euclidean norm || - || on the R-linear space s§(F ®qg R). Consider a sufficiently large integer
k > 0 to be described precisely at the end of the proof. There exists an integer m > 0, a real number
ko > 0 for each o € AL2 and a real number ¢3 > 0 satisfying the following conditions (cf. [13, (4.10) in
p. 372)):

(1) if R= Py, m = 0;

(2) for all « € AL — ARk, > k;

(3) for all a € A%,

(4.2.3) > la= Xal| ™™ < e5 J] e FectHo@),
Xeg (2)'ns)(Or) acal

We can choose a multi-index ¢ whose sum of components is m. We extend the differential operator 0 *

on §(F ®@R) to s(A) by defining a7 (foo @ X®) = (0 foo) ® x> (see Section 2.3). Write
- - -
SRR = [ @7 D e+ DU D)
(nrNs)(A)

Invoking integration by parts, for X # 0, we get

@40 (a7 Ra)| = ea(y) ! Ral @25 (0 Ka)
a=1¢éa 4\Y a=1¢a )
where ¢4(y) is a continuous function of y.
Denote by ®(Ap, mgNs) the set of weights of Ap in mpNs. For any u € ®(Ap, mgNs), let m, be the

corresponding weight space. From [53, §41], we know that there exists a function ¢, € S(m,(A)) for each
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€ ®(Ap, mpNs) and a function ¢y ,ns € S((ngNs)(A)) such that for all {+U € (mpNs)(A)D(ngNs)(A)
and y €T,

07 A€+ V)| < T 6u(6) | dnans®),

nEP(Ap,mrNs)

where £, denotes the projection of £ to m,(A).

Now
> S jert, (a7 Xa)

ge(MmB Ns)(F) Xe((mh?)/ns)(F)

- 3 3 201 (™ Xa)|

g€y (M N5)(OF) Xe g ((72)'Ns) (Or)

—13, |—-m 1.R,_1'> 13
= > > ca(y)la™ Xa|| 7" @Y 5, (a7 Xa)

g€ xy (ME Ns)(OF) Xeq ((W2)'Ns)(Or)

TS I @ s |- ) la=* Kal ™

geq-(ME Ns)(Op) \HEP(Ap,mRNs) Xeq (A2)'Ns)(OF)
<cscs Z H Gu(p(a) 1) | - H e tan o),
E€x; (ME Ns)(OF) \HEP(Ap,mRNs) N

where ¢5 := sup c4(y) f(ans)(A) npns(U)dU, and we have used (4.2.3) in the last inequality. Thus
yer

Xbp(@) ) > |28 (X)|INvd (1) [} da

ge(MmB N8)(F) Re((mh2)/ns)(F)

/Pl,H<F>\H<A>mG<A>1

<eyeses Z o e(QPR,+—2PﬁO)(HB(a))UIij (Hp, (a) — Tp,)
Bep(By.py) " A5 (Pt Ts)
> [[ @] [ eteet=@Ned(a)|ida.
E€xy (MB Ns)(OF) \HEP(Ap,mrNs) N

From [13, p. 375], we know that for all a € Ag’m(Pl,to,TB) satisfying J%‘ (Hp,(a) — Tp,) # 0 and
o€ A?, we have a(Hpg(a)) > tg. Denote by Zng the positive weights of mgr N's under the action of

Ap. Consider the subsets S of 57" with the following property: for all o € AR — Ag}, there exists
w € S such that its a-coordinate is > 0. Then

Z H Qbu(ﬂ(a)ilgu)

¢eqymp Ns(OF) \HEP(Ap,mrNSs)

szsj 11 > ¢-n(n(a)é-) II Yo SulplaMEy)

res \g-exrm_u(Or)—{0} pesp R\ gregrmu(Or)

> (&)

£0€ mymo(OF)

As in [13, p. 373], for the first and third factors, we also have

11 > dop(p(a)es) | <eo ] e FetHnl)

HES \ & exrm_.(OF)—{0} aeAR_Al
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and

> (&) < e,

Eoéﬁlmo(op)

where ¢g and c¢7 are constants independent of T and a. One may note that our bound for the second
factor is slightly different from [13, (4.14) in p. 373]. Actually we get

H Z ¢M(M(a—1)£+) S086(29B~+_29R,+)(HB(‘1))7
peSER™ \ €€ qrmu(OF)

where cg is a constant independent of 7. However, we claim that this discrepancy will be unimportant
when we follow the rest of the proof of [13, p. 375], as mentioned in [61, end of Theorem 3.7]. In fact,
it suffices to add a factor

2p5,+—205,)(Hp(a)) |Nrd(

ar)ly =e

prq
1 pta’
el (208,+=2pp,)(Hp(a)) <|Nrd(a1)|A/p> ’

INrd(as)[}/*

in the form of [] ec®(H5(@) to [13, (4.17) in p. 375], where ¢, are constant coefficients. This factor
a€AG

only results in an extra factor e®@I7l+¢10t to the integral in [13, (4.18) in p. 375], where ¢y and ¢ are

constant coefficients (here we have used [3, Corollary 6.2]). Since we can choose sufficiently large k, it

does not matter. Hence we complete the argument of our claim and conclude. (I

5. Exponential polynomial distributions

Let T be sufficiently regular, o € O and n be the quadratic character of A*/F* attached to a
quadratic field extension E/F. For f € S(s(A)) and s € C, define

(5.0.1) JET (s, f) = / KT () (Ned(2))|Ned(z, ) de
H(F)\H(A)NG(A)!
and
G, T . T s
JET (5, f) = KT (o) (Ned(z))|Ned(21) 3 da,
H(F)\H(A)NG(A)!

where k7 () and k} (z) are defined by (4.0.1) and (4.2.1) respectively, and we write z = (1, 2) €

GLp p(A) x GLg, p(A). From Theorem 4.11, we know that J& T (n,s,-) and JET (n, s,-) are well-defined
distributions on S(s(A)) and that

T s, f) =Y IG5 (05, ).
00
which is an analogue of the geometric side of Arthur’s trace formula.
5.1. A generalised case in the product form. Let @ be a relatively standard parabolic subgroup

of G. Then
Mq ~GLp,q,,0 X -+ X GLp 14,

and
MQH ~ GLpl,D X e X GL;DL,D X Gqu,D X+ X GthD,

! 1
where > p; = p, Y. ¢; = q and we allow p; or ¢; to be zero. The tangent space of Mg/Mg,, at the

i=1 i=1
neutral element is
0 Matpixqi,p
mens~ @ (MtD )
{1<i<i|piqi#0} ’

The conjugate action of Mq,, (F) on (mg Ns)(F) can be described as follows:
3 1 GLPz (D) 0 Matpi Xqi (D) : AT
(1) if p;g; # 0, ( GL, (D) acts on Maty, xp, (D) 0 by conjugation;

if p;q; =0, ¢ acts on 0 (viewed as a 0-dimensional vector space) trivially.
2) if 0 GLp (D) ) 0 d 0-d 1 11

GLy, (D
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We may generalise integrability in last section to the product setting here whose proof is similar.

Define a relation of equivalence on (mg Ns)(F) which is similar to that on s(F') on each component.
We denote by O™e* the set of equivalent classes for this relation. For o € O, the intersection o Nmg(F)
is a finite (perhaps empty) union of classes oy,- - -, 0, € O™2™%. Fix the minimal parabolic subgroup
ﬁé = Py N Mg, = PN Mg of Mg, and its Levi factor My. We say that a parabolic subgroup P’
of My is semi-standard (resp. relatively standard) if My C P’ (resp. P}, C P’). Notice that there
exists a bijection from the set of semi-standard (resp. relatively standard) parabolic subgroups of G
contained in @ to the set of semi-standard (resp. relatively standard) parabolic subgroups of Mg given
by P — PN Mg, whose inverse is given by P’ — P'Ng.

Choose ¢g € Q¢ (not unique) such that soFPy € Q. Fix the minimal semi-standard parabolic
subgroup P} := (soFPy) N Mg of Mg depending on the choice of ¢g. For any semi-standard parabolic
subgroup P’ of Mg and T € ag, denote by T the projection of sT in aps, where s € QM@ such that
sP} C P'. For s € QM and a semi-standard parabolic subgroup P C Q of G, we see that s, C PN Mg
if and only if sqgPy € P. Then (sQT)pnn, = TP which is independent of the choice of ¢g. This is
also the reason why we introduce ¢p. If T' € aJ]SO is sufficiently regular with respect to Py C G, then
soT € aa is sufficiently regular with respect to Pj C M.

Let f' € S((mgNs)(A)), P’ be a relatively standard parabolic subgroup of Mg and 1 < j <¢. Write
P}I =P'n Mg, = P'NH. Forz € MP}I(F)NP}I(A)\MQH(A% define

M, _
(5.1.1) kg%, (@)= > / Y (X + U)z)dU.
Xemp, (F)N (nprNs)(
For T € ap and x € Mg, (F)\Mg, (A), define
im(Ap/ M
K (@)= Y (m1tmtie/Aig) > o (Hp (62) = Tpr) - kipy o, (02).
{P":PjCP'} SePy (F)\Mqy (F)
For sufficiently regular T' € a;o and {s;h<i<i € C!, define
sT S
JOT( (i} ) o= / k25T (@n(Ned() T INvd ()3 de,
Mqy (F)\Mgq  (A)NMqg(A)? ' 1<i<l

where we write = (21,...,2;) € GLp, 44, 0(A) X -+ X GLp,1¢,,p(A) and x; = (2,1, 2:2) € GLp, p(A) x
GL,, p(A). As explained above, k;?,fij and JO%’T are independent of the choice of ¢g. Then we have

well-defined distributions J;;j’T(n, {si},*) on S((mg Ns)(A)). It only depends on the projection of ¢oT'
Q

to ag, p, and does not depend on T. Now we define
¢
(5.1.2) JET =3 Je"
j=1
and

T T
JoT .= Z JUQ’ .
0cO

For f € S(s(A)), define f¢) € S((mg Ns)(A)) by

(513) VX € (mgNs)(A), f3(X) = /K / oy T V)RS vk

5.2. w-stable parabolic subgroups. In our case, we can embed G into g in the standard way.
For any linear subspace v of g, we denote by v* the intersection of v and G in g. Assume that p = q. Let

us denote n := p = ¢. Then s*(F) is the union of classes in O*. Let w := (10 léb) € G(F). By the
notation in Section 3.4, w is the element in G exchanging e; and f; for all 1 <14 < n Then wPow = PO.
We say that a semi-standard parabolic subgroup @ of G is “w-stable” if wQuw ™' = Q. By Chevalley’s

theorem, this condition is equivalent to w € Q. For a relatively standard parabolic subgroup @ of G, we
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see that @ is w-stable if and only if p; = ¢; for any 1 < i < [; an illustrating example for [ = 2 looks like

X

Q=

S x O %
* ¥ X %
O x O ¥
* K K X

X
Notice that there is a bijection P, <g" E") from the set of standard parabolic subgroups in
n n

GL, p (namely containing the group of upper triangular matrices) to the set of w-stable relatively
standard parabolic subgroups in G. For Q C R a pair of relatively standard parabolic subgroups of G,
one sees that “Q) is w-stable” implies “R is w-stable”, but “R is w-stable” does not imply “Q is w-stable”.
For any relative standard parabolic subgroup @ of G, define

Qw st — ﬂ R7
{R:QCR,wRw~'=R}
which is the minimal w-stable parabolic subgroup of G containing Q.
Denote by pg,+ the half of the sum of weights (with multiplicities) for the action of Ay on ng Ns.
We see that pg + = pg — pg, and that for @) C R a pair of relatively standard parabolic subgroup of G,
the restriction of (2p¢,+ — 2pq, )| , toar equals (2pp 4 — 2pRH)‘aR.

a

PROPOSITION 5.1. Assume thatp = q=mn. Leto € O. The following three conditions are equivalent:
(1) o € O%;

(2) for all relatively standard parabolic subgroup Q of G, if o N q(F) # 0, then Q is w-stable;

(3) for all relatively standard parabolic subgroup Q of G, if o Nmg(F) # 0, then Q is w-stable.

PRrROOF. The direction (2)=(3) is trivial. We actually have (2)<(3) from Proposition 3.5.
Next, we prove the direction (1)=-(2). We assume that 0 € O* and that o N q(F) # () for some
relatively standard parabolic subgroup @ of G. If @ is not w-stable, let k£ be the minimal integer such

that 1 < k <[ —1 and that
> pi— > a#0.

1<i<k 1<i<k
Without loss of generality, we may assume that

Z Pi — Z ¢ <0.

1<i<k 1<i<k

*

Let <0 A> € 0Nq(F). Then A € gl,(D) is in the form of <0

* . .
B 0 *>, where the size of the zero matrix

in the lower left corner is at least ( > pi) X (1 + > pi>. Therefore, A is not invertible, which
k+1<i<l k+1<i<l
contradicts with o € O*. This establishes (1)=-(2).
Finally, we prove the direction (3)=-(1). We assume (3). Suppose that o ¢ O*. Let P(\) :=
Prdag (), where (g 81) is any element in 0. By [56, Proposition 5], P(\) = AR()\), where R()\) =
Prde(N) for some C € GL,_1(D). Let Q be the relative standard parabolic subgroup of G containing

X
elements of the form <3 I) , where the size of the zero matrix in the lower left corner is 1 x (n — 1).

0 0 1,, O
0 0 0 0 . . . .

Then c o o o |€onme (F), which contradicts with (3). This shows (3)=-(1). O
0 0 0 0

LEMMA 5.2. Assume that p=q =n. Let Q be a relatively standard parabolic subgroup of G. For all
w" € Ay, we have (2pq. 4 — 2pqy)(w”) = 0. Moreover, 2pq, y — 2pq,, viewed as an element of (ag)*
is zero if and only if Q is w-stable.

PROOF. We use the notation in Section 3.4. Put e} € afj (resp. f € a) to be the character of the

action of Ag on e; (resp. f;). Write e/ € ag (resp. f;’ € ap) to be the dual basis, i.e., ef(ef) = di;
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+

(vesp. f7(f}') = dij) for 1 <, j <. A basis of ag is given by by := ey .4, 11+ + e,

gittgiat1 T Ly, for 1< <1 Write b} € (ag)* to be the dual basis. Denote

l

k
_;k: 1(Pz‘+(h) > (pi + ai)
w) = L(hf+~~+h¥)71217

on on (higr + -+ 1)

Recall that
AV ={m1<k<i-1}

is a basis of ag. We can also see that

2pQ’+|aQ = dimp(D) Z (pig; + @ip;)(hi — hj)

1<i<j<l
and that
20Qu|o, = dimp(D) Y (pipy + qig) (b} = 13),
1<i<j<l
SO

(2pq.+ — 2PQH)|uQ =dimp(D) > (pi— ai)(q; —pj)(h] — h}).
1<i<j<l

! 1
Since > p; = > ¢; = n, we have

=1 =1
N . 0, fk+1<i<j<lorl<i<j<k;
(h; _hj)(wl\c/): . . .
1, fl<i<kandk+1<j<I.
Then
(2pq.+ — 2pQ,)(@)) = dimp(D) > (pi — a:)(¢; — p))
1<i<k
k+1<5<l

=dimp(D) | 3 opi= Y w] | X wm- D

1<i<k 1<i<k k+1<j<i k+1<j<i
2

=dimp(D) | > pi— Y, @] >0.

1<i<k 1<i<k

It is clear that (2pg,+ — 2pg,)(w)) =0forall 1 <k <l—1lifand onlyif p, =¢; forall 1 <i<(. O

5.3. Exponential polynomials. Let 71,75 € ay. Following [5, §2], define the function I'p (T}, T2)

inductively on dim(Ap/Ag) by setting
T —Ty) = Y (—1)imAe/A02R (1) (T, T2)
{Q:PCQ}

for any relatively standard parabolic subgroup P of G. This definition can be explicitly given by [5, (2.1)
in p. 13] and only depends on the projections of T1, Ty onto a§. For T = (t1,...,t,14) € o, we denote
21(T) :=t1 + ... + tp. If we use the notation in Section 3.4 and put e € aj (resp. f € af) to be the
character of the action of Ag on e; (resp. f;), it is equivalent to say that X1 = Zlgigp ef. For Ty € ag
and s € C, write

(5.3.1) pg,s(T2) == /G €(2PQ,+*2ﬂQH+SZl)(T1)FQ(ThT2)dT1_
ea)
When p =g =n,s =0 and @ is w-stable, it is reduced to
poslTs) = [ TolTi T2
a3
by Lemma 5.2.
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For Q C R a pair of relatively standard parabolic subgroups of G, denote by Z(ﬁg)v the lattice

generated by (ﬁg)v in af and by Z(A§)Y the lattice generated by (AG)Y in af. Following [5, §2], for
A € ag) ¢ = a;, @r C, define

05(\) = vol(ad /Z(AEH) ™ ] A=)
@V e(AB)V

and

05(N) == vol(aG/Z(AH) T  MeY).

ave(Ag)V

PROPOSITION 5.3. Let @ be a relatively standard parabolic subgroup of G, Ty € ag and s € C. The
function Th — Tq(Th,T») is compactly supported on ag. Moreover, the function To — pg <(T2) is an
exponential polynomial in To; more precisely, there exists a polynomial pg r,s (not necessarily unique)
on a§§ of degree < dim(Ag/Ag) for each relatively standard parabolic subgroup R containing Q such that

p0.s(T2) = Z 6(2/?1%,+—2;01%1,-i-sXh)(Tzc,;R)pQ’RS(T2GR)7
{R:QCR}
where we write TchR for the projection of Ty € ag in a§ via the decomposition ag = ag ®afdag. When
p=gq=n and s =0, the purely polynomial term of pgo(T2) is given by

> po.ro(T5'R),
{R:QCR,wRw~'=R}
which is a homogeneous polynomial in Ty of degree dim(Aaw—st/AG),' in particular, if Q is w-stable, then

pQ,0(T2) is a homogeneous polynomial in Ts of degree dim(Ag/Ag).

PRrROOF. The first statement is [5, Lemmas 2.1]. First let us prove the second one.
From [5, Lemma 2.2], we know that the integral

/ GA(TI)FQ (Tl, T2)dT1
ClG

Q
Is an entire function in A € ag, ¢, and its value is given by

D O e [V c{ eV
{R:QCR}
when the latter expression makes sense.

Fix € € aj ¢ such that 05(e) # 0 and 0 (e) # 0 for all relatively standard parabolic subgroups R
containing ). Then for ¢t € R* whose absolute value is small enough, we also have 95(2pQ7+ —2p0u +
s +te) # 0 and 05 (2pq .+ — 2pgy + sX1 + te) # 0 for all relatively standard parabolic subgroups R
containing Q). Let A = 2pg + — 2pg,, + 531 + te in the formula above, and we obtain

po(T3) :}}_I)I(l) Z (_l)dim(AQ/AR)e(szer*QPQH +SZI+t6)(T§R)§S(2PQ,+ — 200, + 51 + ta)fl

{R:QCR}
05(20,+ — 2pqy + 551 +te) 7"
Since the restriction of 2pg + — 2pg,, + sX1 to ar equals 2pr + — 2pR,, + $31, we get

(200 +=2pQ +sE1)(T5'R) _ ,(2pR+—20Ry +551)(T5 )
We can put pg, R,s(Tzc,;R) to be the constant term of the Laurent series development around ¢ = 0 of
f s (_1)dim(AQ/AR)e(tE)(TSR)é\S(QpQ7+ — 20, + 551 + tE)_leg(QpQ’+ — 200, + 551 + tf—:)_l.

Then pg,r,s (TfR) is a polynomial in TZCfR of degree < dim(Ag/A¢). Hence we prove the existence in
the second statement.
Now let p = ¢ =n and s = 0. From Lemma 5.2, we know that the purely polynomial term of pg o
is given by
> pQ.ro(T5g).
{R:QCR,wRw~'=R}
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Next we compute the degree of pg ro that we chose above for each w-stable parabolic subgroup R
containing ). Denote

Ny = t{w" € (AG)" : (20q,+ — 2pQu)(@") = 0}
and
=t{a € (AF)": (20q.+ —2pqu) (") = 0},
where f means the cardinality of a finite set. Then
deg(pQ,R,o) = N1 + NQ.

Recall that both of (ﬁg)v and (A%)Y are bases of a%. Since R is relatively standard and w-stable, by
Lemma 5.2, we have

Ng = dim(AR/Ag)
Keep the notation as in the proof of Lemma 5.2 for (). Since R is relatively standard and w-stable, by
Lemma 5.2, we may suppose that R is the stabiliser in G of the flag

0 g— <61a 6y, f17 . fm) <61’ s Critra f17 T fT1+T2>D g— g— <617 Gyt fla ) fr1+---+7‘z/>D
The fact that @ C R tells us that both of the partitions (p1,- - -, p;) and (q1,- - -, q) are refinements of
the partition (rq,- -+, r) of n, and that every r; is divided into the same number of segments in these

two refinements. Then

(ﬁg)v = {projection of w) € (ﬁg)v to ag
i=1 i=1

k J
1Skgl—l,Z(pi+qi)7é22riV1gjgl’—l}

- {projection of w) € (ﬁg)v to a

k k J
g1SkSl—l,ﬂlSjgl’—ls.t.Zpi:Zqi:Zri}.

i=1 i=1 i=1
Because the restriction of 2pg + — 2pg,, to ag equals 2pr + — 2pg,, and R is relatively standard and
w-stable, by Lemma 5.2, we do not need the projection, i.e.,

(200.+ — 20qu) (projection of T € (A§)” to aff) = (200.+ — 2pq.) (=) € (AF)") .
From the proof of Lemma 5.2, for any 1 < k < I, we have (2pg .+ — 2pg, )(w)) = 0 if and only if
Z pi = Z q;- We can also see that @‘Ht is the w-stable parabolic subgroup R containing @ with
maxunal l’ = dim(Ag). To sum up, we have
Ny = dim(Aaw—st/AR).
Hence for each w-stable parabolic subgroup R containing @,
deg(pq,r,0) = N1 + N2 = dim(Age-« /AR) + dim(Ar/Ag) = dim(Age-/Ag).

The assertion about the particular case where @ is w-stable is [5, Lemma 2.2] combined with Lemma
5.2; it can also be read from the results above that we have proved. O

5.4. Quantitive behaviour in 7. For a relatively standard parabolic subgroup @ of G, let
{8?}15i51 € 7! be the explicit constants determined by

(5.4.1) Vo € Mg, (A) N Mg (A " = e(ra+—200n)(Hay (@)

1<i<i
where we write = (21,...,2;) € GLp,44,,p(A) X -+ X GLp,1¢,,p(A) and x; = (z;1,%;2) € GLp, p(A) X

Q
GLg . p(A). If pig; = 0 for some 1 < i < [, we shall take |[Nrd(z;1)|y =1 and 5¢ = 0 by convention.
Then such constants are unique.

PROPOSITION 5.4. Let @ be a relatively standard parabolic subgroup of G. If p;q; # 0 for some

1<i <, then
= ( pe—ar) + Y _(ak —pk)> :
k<i

k>i
When p = q =n, if Q is w-stable, thens =0 forall<i<l.

PROOF. Assume that p;q; # 0 for some 1 < ¢ <[. Let x € Mg, (A). We have
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(1) the contribution of z; ; to %’ +(Hey (7)) g the d( qr — qk)—th power of |[Nrd(z; 1)|a;
k>i k<i
(2) the contribution of x; ;1 to e2ren (Hoy (¥)) ig the d( D — k) -th power of |Nrd(z;1)]a;
k>1 k<i
(3) the contribution of 2; 5 to e?°@+Hax (*)) is the d( Dk — pk) -th power of |Nrd(z;2)|a;
k>1 k<t
(4) the contribution of x; 2 to e2ren (Hoy (¥)) ig the d( g — Y, qk)—th power of |Nrd(z;2)|a.
k>i k<i
In sum, the contribution of z; to e(27@.+=2rex)(Hay (%)) is the product of the d( S (pe—aqr)+ > (g —pk)>—
k<i E>i
th power of [Nrd(z; 1)|a and the d( S(qe —pr) + D (pk — qk))—th power of |[Nrd(z;2)|a.

k<i k>i

Now let z € Mg, (A) N Mg(A)'. Then |Nrd(z; 1)Nrd(z;2)[a = |Nrd(z;)|a = 1. Therefore, the

contribution of z; to e(?Pe.+=2rex) (o (2)) i5 the Qd( Spe—qe)+ > (qk —pk))-th power of |[Nrd(x;1)|a.
k<i k>i
We have proved the first statement.

The second statement is nothing but a special case of the first one, since we have p, = ¢ for 1 < k <1
in this case. (]

THEOREM 5.5. Let T' be sufficiently reqular, 0 € O and f € S(s(A)). Then for all sufficiently reqular

T and s € C, we have
_ s NG ’
JE s, )= D pos(To = Th)ePrar—2reutsmWTNQ) T (n {52 + s}, £1),
{Q:PCQ}

where we write (T’)g for the projection of T, € aq in ag via the decomposition ag = ag @ ag, the
distributions J&T and JOQ’TI are defined by the formulae (5.0.1) and (5.1.2) respectively, and fgz and
pQ,s are defined by the formulae (5.1.8) and (5.3.1) respectively.

COROLLARY 5.6. Let 0 € O, f € S(s(A)) and s € C. Then J& T (n,s, f) and JST (n,s, f) are
exponential polynomials in T for sufficiently reqular T', so we can extend them to all T € ag. When
p=q=mn and s = 0, their purely polynomial terms have degree < n — 1; in particular, if o € O* (e.g.,
0 € O,), JET (1,0, ) is a polynomial in T of degree < n — 1 for sufficiently reqular T.

PROOF OF COROLLARY 5.6. It results from Theorem 5.5, Propositions 5.3 and 5.1. O

REMARK 5.7. We may extend our result to the product form in Section 5.1 by similar argument. Let
Q be a relatively standard parabolic subgroup of G. Let 0 € O, f’ € S((mgNs)(A)) and {s;}1<;<; € Cl.

For sufficiently regular T' € aJISO, J(?’T(n, {s;}, f") and J9T(n, {s;}, f') are exponential polynomials in T
independent of T, so we can extend them to all T" € ag.

PROOF OF THEOREM 5.5. Let P be arelatively standard parabolic subgroup of G, 6 € Py (F)\H(F)
and x € H(A)NG(A)'. Substituting Ty = Hp(dz) —T}p and To = Tp —Tp in the definition of I'p (77, T3),
we get

TE(Hp(6z) = Tp) = Y (1)UL (Hp(S2) — Tp)To(Hp(0x) — Tp, Tp — Tp).
{Q:PCQ}
Then

JET(n,s, f) = / > (-pdmAriAe) N S (Hp(bx) — Tp) - kf.p.o(0x)
H(F)\H(A)NG(A)!

{P:P,CP} Py (F)\H(F)
-n(Nrd(z))|Nrd(z1) |3 dx

Z (_1)dim(Ap/AG) Z

/H(F)\H(A)nG(A)l

Y (F)ImAMFE (Hp(52) — Tp)To(Hp(82) — Tp, Tp — Tp) | ky.po(d2)
{Q:PcQ}
n(Nrd(z))|Nrd(z1)|idz.
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Exchanging the order of two sums over P and @, and decomposing the sum over Py (F)\H(F) into two
sums over Py (F)\Qu(F) and Qy(F)\H(F), we have

JET (0,5, f) = / —1ydmar/Ae)
° 2 H(F)\H(A)NG(A)! 2 2

{Q:PoCQ} {P:P,CPCQ} S€Pu (F)\Qu (F) 8" €Qu (F)O\H (F)
7L (Hp(66'z) — Tp)Lo(Hp(68'x) — Th, Tp — Tp)ks.p.o (66" x)n(Nrd(x))|Nrd(z,)[5 d.

Combining the integral over H(F)\H(A) N G(A)! and the sum over Qg (F)\H(F) into the integral over
Qu(F)\H(A)NG(A)!, and using the fact that

P (F\Qu(F) =~ (Pu(F) N Mg, (F))\Mg, (F),
we obtain
IS5, )= 3 / 1 T (c1ydmar/de) 3
(Q:Pycqy ? @uUENHMNGAI b 5 by §€(Pu(F)NMq ; (F)\Mq ; (F)
7C(Hp(0x) — Tp)To(Hp(6x) — Tp, Tp — Tp )k p.o(62)n(Nrd(z))[Nrd(z ) |3 dz.
By the Iwasawa decomposition and our choice of measures, we have
IS s, )= ) / / / / Y (~pydmiar/ae)
(0 BrCQ) Ku J Mg, (F)\Mgq, (A)NMg(A)! AG > JNgy (F)\Ng (A) (P:B,CPCQ}

7¢(Hp(dnamk) — Tp)To(Hp(dnamk) — Tp, Tp — Tp)
5€(PH(F)0MQH(F))\MQH(F)

- k¢ p.o(Onamk)n(Nrd(mk))|Nrd(aym, )|§ e~ 202 Hau (@™ dndadmdk.
Notice that
7 (Hp(dnamk) — Tp) =72 (Hp(dm) + Hp(a) — Tp) = 72 (Hp(dm) — Tp),
and that
Lo(Hp(0namk) — Tp, Tp — Tp) = Lq(Hg(dnamk) — T, Tg — T)) = Lq(Hg(a) — T, T — Tp)-
In addition, by change of variables, we see that

k¢ po(dnamk) = / f((Snamk) ™Y (X 4 U)dnamk)dU
XEmp(F)ﬁo (npns)(

/ f((sa" 'namk) (X 4+ a~'Ua)da™ 'namk)dU
Xemp(F)No (npns)(A)

/ F((6a 'namk) " (X + U)da~ ‘namk)e?0e+He (@) qur
(npns)(

XGmP(F)ﬁa

= erQ*Jr(HQ(a))kf,p,a(éa_ namk).
Since da~'nad~! € Ng,, (A) C Np, (A) and k¢ p, is left invariant by Np, (A), we deduce that
kf po(Onamk) = 2P+ Ho(@) g b (5mk).

In sum, the integrand in J&7 (), s, f) is independent of n € Noy (F)\Ng, (A). We can choose the Haar
measure such that vol(Ng, (F)\Ng, (A)) = 1. Then

IS s )= Y ( [ Ird(an) el 2nm e ng (Ho () ~ T4, To - T@)da)

{Q:PCQ}
Z (_1)dim(Ap/AQ) Z

/MQH (F)\Mqy (A)NMq (A)* (P:P,CPCQ} S€(Pa(F)NMq (F)\Mq (F)

9 n(m) = T5) ([ ko k(N (1) ) Nvm) N 27 5 i,
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By the definition of the Haar measure on Ag’oo, we have

/Ao,x [Nrd(ay) e =20am)HalDT g (Hy (a) - Th, T — Th)da

_ /G e+ =200 +BINT o (Ty — T, Ty — Th)dT)
4Q
—e(20Q.+—20q 4 +s21)(T)G)
CLG
Q
=e(2P =20y +sENTNS)po (T — T,).

(2P +—2pqy +521)(T1)FQ(T1,TQ _ Tc/g)dTl

Since np = ng @ ng, by change of variables, we see that

kf’P’O((smk) - Z / 9Ns)(A) /(nQﬂs)(A) f(((smk)_l(X U V)(Smk)dv

Xemp(F)No

— ¢2rq.+(Hoy (M) Z / / f(k_l(((sm)_l(X+U)(5m—|—V)kj)dV7
Xemp(F (nEns)(a) (noNs)(A)
SO we can write

ks po(6mk)n(Nrd(k))dk = e*r+Hau(m) 3~ / fE((6m)~H(X + U)dm)dU

Xemp(F)No (nENs)(A)

— e2r.+(Hgy (m)) Zk
j=1

Ky

£5,PAMg.0; (0m)

by (5.1.1). Now we can draw our conclusion by noting that

T ({2 + 1, 13) Z / > (Fytmtirve/dve)
Moy (F)\May ()NMo ()" (b 5 b o
oo (Hpnig (9m) = (@T") prnsg)
SE((PNMQ)(F)NMq  (F)\Mqy (F)

kM (6m)n(Nrd(m))|Nrd(mq )| e2re+=20en) Hay (m) gy,

fg,PﬂMQ,Uj
Z (_1)dim(Ap/AQ)

{PﬁongQ} 5€(PH(F)QMQH(F))\MQH(F)

/MQH (F)\Mq  (A)NMq(A)*

79 (Hp(6m) Zk%QPmMQ o, (0m) | n(Nrd(m))[Nrd(m:)|;

. e(2PQ.+=2pq ) (Hoy (m))dm.
O

5.5. Independence of constant terms. Let J(,s, f) and J%(n, s, f) be the constant terms of
JOG’T(n, s, f) and J9T(n, s, f) respectively. We fix a common minimal Levi subgroup My of H and G.

Firstly, the distributions J&(n, s, f) and J%(n, s, f) are independent of the choice of the relatively
standard minimal parabolic subgroup Py of G at the very beginning of last section. In fact, let P} be
another relatively standard minimal parabolic subgroup of G and o € Q¢ such that P} = o Py. Denote
by JS % (17, s, f) and JG, o(1, 5, f) the distributions obtained starting from Pj. Then if T' € ap;, we have

JGT(n,s £ =087 0,5, 1), 50 TG, (1,5, ) = I (.5, f).

Secondly, the distributions J (1, s, f) and J%(n, s, f) are independent of the choice of the minimal
parabolic subgroup ﬁo of H. In fact, let 130 be another minimal parabolic subgroup of H and o € Q
such that P} = 0~'Py. Put P} := 0~ 'P,. Denote by J~ (n,s,f) and Jgé’o(n,s,f) the distributions

obtained starting from PO and Pj. We can apply the argument of [13, Proposition 4.6] after some minor
-1
modifications here to prove that J&7 (n, s, f) = Jg;”o Tm,s,f),s0 JC(n, s, f) = JE, (.5, f).
0 0
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6. Non-equivariance

Let @ be a relatively standard parabolic subgroup of G, s € R and y € H(A) N G(A)!. For
f € 8(s(A)), define f/ . € S((mg Ns)(A)) by

(604) VX € (mas)(®) 3., := [ [ S0 O VIS .o~ Ho k) aV

where pg s is defined by the formula (5.3.1).

PROPOSITION 6.1. For f € S(s(A)) and y € H(A) N G(A)!, we denote f¥(x) := f(yxy~'). Then
for all sufficiently reqular T, 0 € O and s € R, we have
JET (5, 1) = n(Ned())INrd(yy) [ Y e@ras—2eeu+sS00G) JQT () (52 15} f2 ),
{Q:PCQ}
where J&T and J@T are defined by the formulae (5.0.1) and (5.1.2) respectively, {8?}1955 € 7 are

the explicit constants determined by (5.4.1), and we write TQG for the projection of Tg € ag in ag via
the decomposition ag = ag D aqg.

For o € O and f € S(s(A)) (resp. f' € S((mgNs)(A))), thanks to Corollary 5.6 (resp. Remark 5.7),
we may take the constant term J& (), s, f) of JUG’T(n7 s, f) (resp. J(,Q(n, {s:}, ') of J(,Q’T(n7 {si}, ")) for
s € C (resp. {si}1<i<i € C!). When s =0 (resp. s; = 0 for all 1 < i <), denote J(n, f) :== JE(n,0, f)

(vesp. J& (1, f') = J& (n, {0}, f"))-
COROLLARY 6.2. Assume thatp =q=mn. Let f € S(s(A)),y € H(A)NG(A)! and 0o € O. We have
JE (n, 1) = n(Nrd(y)) > TEM. [ 0.4)-
{Q:PCQ.wQuw—1=Q}

PROOF OF COROLLARY 6.2. We apply Proposition 6.1 to the case s = 0 and consider the constant
terms of both sides. Because JUQ T s independent of Ty, by Lemma 5.2, only w-stable ) contribute to
the purely polynomial term. Then we apply Proposition 5.4 to the case p = ¢ = n to conclude. (I

PROOF OF PROPOSITION 6.1. By definition,

JET (5, f¥) = / > (-pdm@r/Ae) N FE(Hp(6x) — Tp) - kpu.po(67)

HENHWNG@! \ (5% 5€ Py (F)\H(F)
-n(Nrd(2))|Nrd(z1)[3 dz,

where

kpv po(0z) = Z / fy(6z) Y (X + U)dazy 1)dU = kf’p,a(éxy_l).
Xemp(F)No (npNs)(A)

By change of variables, we have

IS (5, fY) = / S (cnEmarAe) NS G (Hp () — Tp) - kypo(0)

HIPNHWNGA)! \ (o 5 5€Pu(F)\H(F)
-n(Nrd(zy))|Nrd(z1y1)|3dz.

For x € H(A) and P a relatively standard parabolic subgroup of G, let kp(z) be an element in Ky
such that zkp(z)~! € Pg(A). Then

78 (Hp(6zy) — Tp) = 75 (Hp(6z) — Tp + Hp(kp(52)y)).
Substituting Ty = Hp(dx) — Tp and Ty, = —Hp(kp(dz)y) in the definition of T'p(T},T3), we get

75 (Hp(bxy) — Tp) = Z (—1)HmA/AGZR (Hp(0x) — Tp)To(Hp(0x) — Tp, —Hp(kp(d2)y)).
{Q:PCQ}
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Thus

JUG’T(’”’ S, fy) =

Z (,Udim(Ap/AG) Z

/H<F>\H<A>mcm>l (PFeP) 5€ Py (F)\H(F)

> (~1)imAe/AOZR (Hp(5x) — Tp)To(Hp(6x) — Tp, —Hp (kp(52)y))
{Q:PCQ}
- kf,po(62)n(Nrd(zy)) Nrd(z11) [ dz,

Exchanging the order of two sums over P and @, and decomposing the sum over Py (F)\H(F') into two
sums over Py (F)\Qu(F) and Qg (F)\H(F), we obtain

D S | D SN CILE D S )3
(@:Pycgy FENHMINGA) b 5 by 5€P (F)\Qu (F) 8 €Qu (F)\H(F)
7¢(Hp(30'x) — Tp)To(Hp(66'x) — Tp, —Hp(kp(86'2)y))k s p.o (66" z)n(Nrd(zy))

- INrd(z1y1)|3dx.

Combining the integral over H(F)\H(A)NG(A)! and the sum over Q (F)\H (F) into the integral over
Qu(F)\H(A)NG(A)!', and using the fact that

Py (F)\Qu(F) ~ (P (F) N Mg, (F))\Mq, (F),
we have
s = Y S (p)tmtar/ae) 3
(0:FrCO} Qu(FM\H(A)NG(A)! (P:P,CPCQ} §€(Py(F)NMq,, (F)\Mg,, (F)
78 (Hp(6z) — Tp)To(Hp(dz) — Tp, —Hp(kp(32)y))ky,p,0 (62)n(Nrd(zy))[Nrd(z 1y ) [f d.

By the Iwasawa decomposition and our choice of measures, we get

IS (s, fY) = / / / / (—1)dim(Ar/Aq)
) Z Ku J Mgy (F)\Mq,, (A)NMg(8)! JAG > J NG, (F)\Nq,, (A) ~Z

{Q:PCQ} {P:PyCPCQ}

> 78 (Hp(6namk) — Tp)Lq(Hp(6namk) — Tp, —Hp (kp(dnamk)y))
S€(Pu(F)NMq y (F))\Mq  (F)

- k¢ p.o(Snamk)n(Nrd(mky))|Nrd(aymyyr ) [i e~ 2Pen Han @m) dndadmdk.
As in the proof of Theorem 5.5, we see that
7¢(Hp(dnamk) — Tp) = 7S (Hp(5m) — Tp),
and that
ktpo(Onamk) = 2P+ Ha(@) g, 1, (5mk).
In addition,
To(Hp(dnamk) — Tp,—Hp(kp(dnamk)y)) = Tg(Hg(dnamk) — T, —Hg(kp(dnamk)y))

=To(Hq(a) = Tq, —Hq(kq(dnamk)y))
=Tq(Ho(a) = T, —Hq(ky)).

To sum up, the integrand in J&7 (1, s, f¥) is independent of n € Ng, (F)\Ng, (A). We can choose the
Haar measure such that vol(Ng, (F)\Ng,(A)) = 1. Then

JGT (n, s, f¥) = / / / _1)dim(Ar/AQ)
o ) Z Ku J Mg, (F)\Mq,, (A)NMq ()t JAG ™ ~Z =)

{Q:PCQ} {P:PyCPCQ}

75 (Hp(dm) — Tp)Lq(Hg(a) — T, —Hg(ky))
6€(PH(F)NVIQH (F)\Mg 4 (F)

PPl g, b (§mk)n(Nrd(mky))|Nrd(aymay, )|3 e 2P Han (@) dadmdk.
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First, let us compute the integral on Ag’oo, which is

/Aqoo INrd(ay) |3 @0+ =200 ()T (Hg (a) — To, ~Ho(ky))da
Q

_ /G e(2Pa+=20an +s¥0)(TOL o (Ty — Ty, —He (ky))dT}
a

Q

:e(2pQ,+—2p@H+821)(TS)/ e(QPQ,+—2PQH+321)(T1)1"Q(T1,—HQ(k’y))dTl
a3
:e(2PQ.+_2PQH+521)(T3)pQYS(_HQ(ky)).

Next, we consider the integral on K, which is

. ky,p,o(0mE)n(Nrd(k))pg,s(—He (ky))dk.

As in the proof of Theorem 5.5, we see that

g po (k) = e20at (Hay (m) Z /

Xemp(F (nPﬁs)(A)

dU/ FEH(Om) M (X + U)dom + V)k)dV,
(n@ns)(4)

SO we can write

. ky.p.o(6mk)n(Nrd(k))pg,s(—Hq(ky))dk

oo (o, (m) 3 / £3,(6m) " (X + U)sm)dU

XEmP(F )No ﬁﬁ)(A)

_ _2pg.+(Hg, (m)) Mg
—e20Q,+(Hgy (m Zkfg, L PAMg0; (6m)
=1

by (5.1.1). Hence

TS 5. 1) =n N @) Ned)ff, Y elraneen oS |
{Q:P,CQ} M@y (F)\Mq  (A)NMq (A)*

> (mdmAr/de) > 75 (Hp(0m) — Tp)

{P:P,CPCQ} d€(Pu(F)NMqy (F)\Mqy (F)
Z%wmmﬁMnmwwwmm&m%wwmwm

As in the proof of Theorem 5.5, we notice that

T, {s? + 54,15, =/ ST (—1)dmar/ae) 3
M@y (F)O\Mgqy (A)NMq(A)! (PRCPCQ S (Pa (YN P\ M ()
7R (Hp(0m) - Z%wmwwmmmwwmm@

. 6(29Q1+72pQH )(HQH (m))dm'

Then we finish the proof. O

7. An infinitesimal trace formula for Mat, ., p ® Matyxp p//GLp.p X GL4 D
THEOREM 7.1. For f € S(s(A)) and s € R,
D IS )= IS s, ),
0O 0€O

where f is the Fourier transform of f defined by (3.5.2), and J&(n,s,-) denotes the constant term of
Je " (n,s,).
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PRrROOF. From the Poisson summation formula, we know that for any = € H(A),
S fexn= Y jaxn),
Xes(F) Xes(F)
ie.,
k‘ﬁg(l‘) = kf’G(x).

Using Corollary 4.13, for all sufficiently regular T satisfying «(T) > € || T || for any o € Ap,, we
have
< Cre~NITI

T (1,8, f) = FC (@, T)kysc(x)n(Nrd(z))[Ned(z,) |7 de

/H<F>\H<A>mc<m1

and

< CQe—NHTH.

T4 (n,s, f) - FC (2, T)kj ¢ (x)n(Nrd(x))[Nrd(e1) |5 dz

/ILI(F)\H(A)HG(A)1
Thus
T (1,5, f) = JET (1,5, )| < (C1 + Co)e NI

By Corollary 5.6, we know that both of J&T (5, s, f) and J&7T (1, s, f) are exponential polynomials
in T. Because we can choose N to be large enough, we deduce that

J4T(n, s, f) = J%T(n,s, f).

Since
T (s, ) =D 5T (05, 1)
0€O
and
TG (s, ) =Y IS (s, ),
0O
we obtain
SIS ) =Y I8 (s, )
0cO 0O
We may conclude by taking the constant terms of both sides. O

8. The second modified kernel

In this section and the next, we shall focus on the case where p = ¢ = n in order to get better
description for distributions associated to regular semi-simple orbits. We shall change our notation by
denoting G := GLay, p and H := GL, p x GL, p without further mention.

Let f € S(s(A)), P be a relatively standard parabolic subgroup of G and o € O, (see Section 3.3).
For x € Py(F)\H(A), define

Jrpe(@) = ) Y f((na)"' Xna).
Xemp(F)Non€Npy (F)
Let T € ag. For v € H(F)\H(A), define
folx):= Y (Fytmiarie) N FE(Hp(62) = Tp) - j1,po(0).

From [3, Lemma 5.1], we know that the sum over § € Py (F)\H(F) is finite. Recall that since 0 € O, C
O, if mp(F)No # 0, then P is w-stable by Proposition 5.1. Thus the above definitions only involve
the relatively standard parabolic subgroups that are w-stable.

LEMMA 8.1. Let P be a relatively standard parabolic subgroup of G and o € O,s. For X € mp(F)No,
the map

Np, = npNs,n— ntXn—X
is an F-isomorphism of algebraic varieties and preserves the Haar measures on A-points.
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PROOF. Since P is relatively standard and w-stable, we can suppose

P = pn,D pn,D
pn,D pn,D

where

GLy, . p Maty, xn, D

GLng,D

Then we have

) X

)
Matnl xny,D
Ma’tT’LQ xny,D

GLy, D

mp, Np, np,
mpNs = wb ) Np, = b N MpNs= P
mp, p Pn.D np, p

Let
Ay
X = B,
B
where A;, B; € GL,,,(D) for 1 <i <], and

1 Cip -+ Oy

1 - Oy

1

n =

where Cij,Dij S Matnanj,D for1 <i< 7 < {. Then

Xn—nX =

0

We claim that the morphism of F-affine spaces

1 Do

0 B1Cia —Di2By -+ BiCy—DubB
0 -+ ByCy — Dy By

A emp(F)No,
Dy | © N
Dy
1

0 A1Dis — Ci24s
0

Matm xXmnj,D SB) Matni xn;,D — Matni xn;,D S) Matnixnj,D

(Cij, Dij) = (AiDij — Ci5A;, BiCij — Dy Bj)
induces an F-linear isomorphism on F-points. In fact, since it gives an F-linear map between finite
dimensional linear spaces of the same dimension, we only need to prove that this map is injective under
base change to an algebraic closure of F. Then without loss of generality, it suffices to consider the
case where D = F. If AZDZ] - CijAj = BZC” - Diij = 0, then CijAij = AZDZ]B] = AZBZC” and
D;;jB;jA; = B;C;;A; = B;A;D;;. Since X is regular semi-simple, A; B; and A;B; (resp. B;A; and B;jA;)
have no common eigenvalue. By the classical theory of Sylvester equation, we know that C;; = D;; =0

and conclude.
From this claim, we know that the map

Np, = npNs,n— Xn—nX
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is an F-isomorphism of algebraic varieties and preserves the Haar measures on A-points. Notice that
n~'Xn — X = n"Y(Xn —nX). It is not hard to check that here n~! functions as some translation
AiDij - CijAj — AiDij — C,‘jAj + (a polynomial of Ci/j/and Di/j/,i/ >iq,7 <jorid >i,7 < j), SO an
analogous assertion still holds for the map n+— n"1Xn — X. O

THEOREM 8.2. For all sufficiently regular T, all s € R and o € O,.,
/ F @) [Nrd(z)| e < oo,
H(F)\H(A)NG(A)!
where we write x = (x1,x2) € GL, p(A) X GL,, p(A). Moreover, for s € C,
I s ) = [ 7o (@In(Nrd(2))[Nrd(zy)  da.
H(F)\H(A)NG(A)!

PROOF. As in the proof of Theorem 4.11, using the left invariance of j; po by Pu(F), we reduce
ourselves to proving

/ 35 ()1, P ()] [Nrd(z1) [ daz < oo,
PLH(F)\H(A)OG(A)l

where P; C P, are a pair of relatively standard parabolic subgroups of G and for x € P, y(F)\H(A),
we put

Jpopel(@) = Y (=) mArAG) (),
{P:PiCPCP>}

In addition,

Jrpol@) = > > > > f(na) €+ X)na).

{R:PICRCP} ¢emf (F)No X€(nfNs)(F) n€Npy (F)

Applying Lemma 8.1, we get

Jrpe@y = ) > > Yt EH X )

{R:PLCRCP} ¢emB (F)No X€(nkNs)(F) u€(npns)(F)

= Z Z Z f@ M+ X)a).

{R:P\CRCP} cemB (F)No X€(npNs)(F)

Hence
Jpipee() = Y (—1)timiAr/Ae) > > S faTH e+ X))
{P:P,CPCP,} {R:PL\CRCP} ¢emft (F)no X€(nrns)(F)
= > > > (-ptmérie Y. fETNE+X)a).
{R:P1§R§P2}€€T7L§1(F)ﬂa {P:RCPCP,} Xe€(nrNs)(F)

By [3, Proposition 1.1], we have
jP17P270('r) = (_1)dim(AP2/AG) Z Z f(x71(£ + X)J})
gemp? (F)no XE(mrpyNs)(F)
Applying Lemma 8.1 again, we obtain
Jppre(w) = (1)mAn/Ae) Y fl(nea)Hnaw),
gemp? (F)No m2€Nry 1 (F)

where we denote P g := P, N H.
Decomposing the integral over z € Py i (F)\H(A)NG(A)" into double integrals ny € Np, , (F)\Np, ,, (A)
and y € Mp, ,(F)Np, ,(A)\H(A) N G(A)', and using the fact that XELPQ (z) is left invariant under
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Np, ;(A), we have

/ X, s (2)]7Py o ()] [Nt (1) 3 da
Py g (F)\H(A)NG(A)?

/ / Xby.p,(M1Y)
Mey 1 (F)Npy o A\HANGA) N, (F)\Np 1 (A)

> > f(nanay) engnay) | [Nrd(yy)[idnady

gem 2 (F)no 2ENP, 5 (F)

Xpoe,W) Y

<),
Mp, g (F)Npy o (A\H(A)NG(A)! feﬁulzf (F)No

/ S f((namay) Enamay)ldny | [Nrd(yn) 3 dy.
Ney g (FD\NPy g (4) n2€Np, 4 (F)

Since Py, g € Pa iy and vol(Np, ,, (F)\Np, ,;(A)) = 1, we see that

Z | £ ((n2n1y) " Enanay)|dny

‘/]VPLH(F)\NPI,H (A) n2€Np, 4 (F)

:/ / Z | £ ((nannyy) " enannyy)|dndn,
Ney g (F)\NPy g (8) S Npy g (F)\Npy g () n2€Np, 4 (F)

:/ / |f((nn1y) " énnyy)|dndn,
NP1,H(F)\NP1,H(A) NP2,H(A)

:/ / |f((ny) " (€ 4+ U)nyy)|dUdn,
NPI,H(F)\NPI,H(A) (npyNs)(A)

where we have applied Lemma 8.1 in the last equality. Therefore

Xb,.p, (€)]7Py Py o (2)|INTd (1) 3 d

Xpop W) >

/MPLH(F)NPLH(A)\H(A)mG(A)l cem 2 (Mo
1

(/ / |F((nay) M (€ + U)nly)|dUdn1> INtd(y;)[5 dy
NP1,H (F)\NPLH(A) (npzﬁs)(A)

Xbyp,(2) D </ |f(x1(€+U)x)ldU> INrd(z1)3dz,
1o\ (nrs019)(4)

_P.
£€mPf (F

»/F’LH(F)\H(A)OG(A)l

<

a /Pl,H<F>\H<A>mG<A>1

whose convergence results from that of the formula (4.2.2) when R = Ps.
Now we begin to prove the second statement. From the first statement, now we have the right to

write

/ F o2 n(Ned(z)) [Nl ()
H(F)\H((A)NG(A)!

= > Xb, P, (@)7Py Py, (x)n(N1d(2))[Nrd(21) | da,

{P1 Py BoCPIC Py} D NH NG (A)!
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where

Jpope() = Y (=1)mArAe) b ()
{P:P,CPCP,)}

Y (@i (5SS () )

{P:P1CPCP2} Xemp(F)Non€Np,, (F)

Decompose the integral over z € Py i (F)\H(A)NG(A)! into double integrals over ny € Np, . (F)\Np, ,, (A)
and y € Mp, ,,(F)Np, ,,(A)\H(A) N G(A)'. Since Np, ,,(F)\Np, ,(A) is compact, by Lemma 8.1 and
[ ) §41]?

> > f(my)  Xnmy)| = Y Yoo 1 my) X+ wymy)]

Xemp(F)NoneNp,, (F) Xemp(F)Noue(npns)(F)

is bounded on n; € Np, ,(F)\Np, ,(A). Then using the fact that XITDMPQ () is left invariant under
Np, ,;(A), we have

/ J o ()n(Ned () |Ned () .
H(F)\H(A)NG(A)!
= Z X£17P2 (y) Z (71)dim(AP/AG)
{P,,Py:PyCP,CP} Mpy g (F)NPy g (A\H(A)NG(A)! {P:P,CPCP;}
> / > f((my) ™ Xnnay)dna | n(Nrd(y))[Ned(y:) [ dy.
Xemp(F)No NPy g (F)\NPy 4 (A) n€Np, (F)

Since Py g C Py and vol(Np, (F)\Np, (A)) = 1, we see that

Z f((nn1y) ™' Xnnyy)dng

A) neNp,, (F)

f
A) neNp,, (F)

:/ / f((nn1y) ™t Xnnyy)dndn,
NPLH(F)\NPLH(A) NPH(A)

= / / F((my) " YX + U)nyy)dUdn,,
NPI,H(F)\NPLH(A) (npNs)(A)

where we have applied Lemma 8.1 in the last equality. Therefore

/J\VPLH(F)\NPLH(

:/ / ((”n2n1y)_1Xnn2n1y)dn2dn1
NPl,H(F)\Npl,H(A) Npy (F)\Npy (

/ 7E () (Nrd(@)) Nrd (1)
H(F)\H(A)NG(A)!

- ¥ @) 3 (cptmarae

{P1,Py:PyCP C Py} Mpy py (F)Npy i (BAH(R)NG(A)T {P:P1CPCP:}

> (/ / f((my) N (X + U)my)dUdm) n(Nrd(y))|Nrd(y1)[3dy
)No Npy g (F)\Npy 1 (8) /(npns)(A)

XGmP(F

= Z / X}igl,PQ (z) Z (—1)dim(4r/Ac)

{P1,P: Py CP1C Py} Pra(IAHANGA)* {P:P,CPCP,}

Z /( o) flz™HX + U)x)dU | n(Nrd(z))|Nrd(zy)|3dx

Xemp(F)No

- Xy (@) o () (N () Nl (1)
(P Py PoC Py C Py} T UV (NG
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From Theorem 4.11, we are authorised to write

I s )= [ K (@) n(Ned(2)) [Ned (2 )| do
H(F)\H(A)NG(A)!
- x|/ b)) (Ned ) [N () .,
(P, PaiBoC P Py L (FIVH(AING(A)
which completes the proof. O

9. Weighted orbital integrals

As in the last section, we shall assume that p = ¢ = n in the following discussion. Moreover, we
shall suppose that s = 0 in the orbital integral for convenience, since |Nrd(z1)|3 is not invariant under
the translation by A%. Recall that for 0 € O and f € S(s(A)), we denote by J& (1, f) the constant term
of J5*" (0,0, f).

9.1. Weyl groups. From Section 5.5, we may choose Py to be the stabiliser in G of the flag
0C (e1)p E (ex, f1)p & (e1, fi,e2)p S (e, f1,e2, fo)p S -+ S (er, fi-en, fu)p=VOW

by the notation in Section 3.4. Then all w-stable relatively standard parabolic subgroups of G contain
Py. Denote by &, the stabiliser in G of the flag
0C (e1, fi)p & (e1, fi,ea, fa)p & - S e, fi-en, fu)p =V S W.

It is the minimal w-stable relatively standard parabolic subgroup of G. A parabolic subgroup P of G
is relatively standard and w-stable if and only if &y C P. Let %, be the group of upper triangular

matrices in GL,, p. We can talk about positive roots for G, H and GL,, p with respect to Py, Py and
P, respectively.

X X
LEMMA 9.1. Let P, = Pin Pin and Py = P2n P2 be a pair of w-stable relatively
pl,n pl,n p2,n p2,n
standard parabolic subgroups of G, where Py ,, and Ps , are standard parabolic subgroups of GLy p.
1) The map s, — s = <s" s ) induces a bijection from
n

a) the set of representatives s, of QFnP(ap,  ap, ) in QGLn2 such that s;'a > 0 for all o €

P
to
b) the set of representatives s of Q% (ap,,ap,) in QF such that s~ a > 0 for all o € Allzi.
2) The map s, — s = <S" s ) induces a bijection from
n
a) the set of representatives s, of QLm0 (ap, i Py) in QEr0 such that sy(ap,,) 2 ap,, and
spta >0 foralae A‘I;ﬁ[’)’,‘n
to

b) the set of representatives s of Q% (ap,; P2) in QF such that s(ap,) 2 ap, and s~ta > 0 for all

a € A;ﬁ.
PROOF. Suppose that P; ,, and P; ,, correspond to the partitions (ni,---,7;) and (ny, -+, n},) respec-
tively of n. Then P; and P» correspond to the partitions (2ni,- - -,2n;) and (2nf, - - -, 2n],) respectively

of 2n. For an integer m > 0, denote by S,, the symmetric group of degree m.
1) From [9, p. 33], the set Q9L»2(ap,  ap,, ) is empty unless I =, in which case

(9.1.1) QFL0 (ap,  ap,.,) = {5n € 111l = g, 1 i < 1},
Similarly, the set Q(ap,,ap,) is empty unless [ = I’, in which case
(9.1.2) Q% ap,,ap,) ~{s €S :2n] =2ny,;,1 <i<lI}.

The map in the lemma is induced by the obvious bijection between the right hand sides of (9.1.1) and
(9.1.2).

2) From [9, p. 59], the set a) is identified with the set of s, € Sy C S, such that (n,, 1), -, ns, 1))
is finer than (nf,---,n},), and such that s;;'(i) < s;,;!(i +1) for any 1 <i < n — 1 that is not of the form
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n} +---+n) for some 1 < k <!’. Similarly, the set b) is identified with the set of s € S; C Ss,, such that
(21401, - - -, 2ng(py) is finer than (2n4,- - -, 2n},), and such that s71(@) < s i(i+1) forany 1 <i<2n—1
that is not of the form 2n) + - - - 4 2nj, for some 1 < k < !’. The map in the lemma is induced by the
obvious bijection between these two sets. O

For P; and P; a pair of w-stable relatively standard parabolic subgroups of G, denote by Q (ap, , ap,)
the set (perhaps empty) of distinct isomorphisms from ap, to ap, obtained by restriction of elements
in QF. Tt is a subset of Q%(ap,,ap,) a priori. However, since the image of the map in Lemma 9.1.1)

is contained in Q| we actually have Q (ap,,ap,) = Q% (ap,,ap,) (cf. [39, Lemme 2.8.1]). Denote by
O (ap; Py) the set of s € |JQ (ap,,ag) such that s(ap,) 2 ap, and s~'a > 0 for each a € APQI?H,
aQ

where the union takes over all ag associated to some w-stable relatively standard parabolic subgroup @
of G. Then Qf (ap,; ;) = Q%(ap,; P») by Lemma 9.1.2).

9.2. Regular semi-simple terms. Let 0 € O, (see Section 3.3). It is possible to choose an
element X; € o and a relatively standard parabolic subgroup P; of G such that X; € mp, (F)) (thus P
is w-stable by Proposition 5.1) but X; can not be H(F')-conjugate to an element in the Lie algebra of
any relatively standard parabolic subgroup R C P;. We call such X; an elliptic element in (mp, Ns)(F).

X
Let P, = (Eln Eln) be an w-stable relatively standard parabolic subgroup of G, where P, ,, is
1,n 1,n
0 A

By 0
element in 5. Then X is elliptic in (mp, Ns)(F) if and only if Ay B, is elliptic in mp, , (F') in the usual
sense, i.e., Prdy, g, is irreducible (see [56, Proposition 5] for example). Let Hx, be the centraliser of X
in H. Then X is elliptic in (mp, Ns)(F) if and only if the maximal F-split torus in Hx, is Ap,.

a standard parabolic subgroup of GL, p. Let X; = € (mp, Ns)(F) be a regular semi-simple

THEOREM 9.2. Let 0 € O,4, P1 be a relatively standard parabolic subgroup of G and X1 € 0 be an
elliptic element in (mp, Ns)(F). For f € S(s(A)), we have

I (1, f) = vol(AF, Hx, (F)\Hx, (A)) / fle™! X1z)vp, (2)n(Nrd(x))dz,
Hax, (8)\H(A)

where vp, () is left-invariant under Hx, (A) and equals the volume of the projection onto a§ of the convex
hull of {—Hg(x)}, where Q) takes over all semi-standard parabolic subgroups of G with Mg = Mp, .

Proor. Counsider a relatively standard parabolic subgroup P of G and X € mp(F) No (thus P is
w-stable by Proposition 5.1). There exists an w-stable relatively standard parabolic subgroup P, C P

and X5 € (mp, Ns)(F) in the form of (* 1 such that X5 is conjugate to X via an element in Mp,, (F)

and the maximal F-split torus in Hy, is Ap,. Then any element in H(F') which conjugates X; and X5
will conjugate Ap, and Ap,. It follows that there exists s € Q¥ (ap,,ap,) and m € Mp, (F) such that

-1, -1
X =mw; Xjw;, m™ .

Suppose that P; C P is another relatively standard parabolic subgroup, s’ € Qf (ap ,ap,) and m’ €
Mp,, (F) such that

X = m’wstlws_,lm’_l.
Then there is ( € Hx (F) such that
mwe = (mws.
Since Hx C Mp,,, we see that
wy = Ews

for some £ € Mp, (F). In sum, for any given P a relatively standard parabolic subgroup of G and
X € mp(F)No, there is a unique s € 0 (ap,; P) such that X = mwsXjw;1m ™! for some m € Mp, (F).
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For z € Py(F)\H(A), we obtain
irpe@ =Y Y f((nz)"' Xna)

Xemp(F)Non€Np, (F)

Z Z Z f((mnz) rw, X w; 'mna)

SEOTOPEPY meM,, syt )\ Moy (1) ENEn ()

= Z f((mz)rw, X w  me),

H .
selarsiP)men, o1 (F)\Pu(F)

where Mp_ , « -1 denotes the centraliser of wsXiw;lin Mp,. For T € ag and z € H(F)\H(A), we
have

Jle()=" Y (=pimAr/de) AT T (Hp(6x) —Tp) - jrp.e(8e)

{P:2,CP} S€ Py (F)\H(F)
= > (cytmeste) ST R (Hp(6x) — Tp)
{P:2,CP} S€ Py (F)\H(F)
Z Z f(mdz) tws X w; 'mox)
SEQH(apl;P)mEMPH,wsxlwb,_l(F)\PH(F)
= ) (Fpmméeie K7 > 78 (Hp(6z) — Tp)
{P:2,CP} SO ar P senr, | (m)\H(F)

f(6r) rwe Xqw; to).

Notice that the centraliser of wsXjw; ! in H is actually contained in Mp,,. We deduce that

Jfel@y="Y_ (-pdmar/iel X" > 75 (Hp(6z) — Tp) - f((02) ' ws X1w; ')
{P:20CP} setlariPsen, o (R\HE)
= Y (-pfm@r/de) R > 7S (Hp(wsbx) — Tp) - f((6x) "' X16z).
{P:22,CP} sE€QH (ap, ;P) S€Hx, (F)\H(F)
For y € H(A), write
xr(y) = Z (‘Udim(AP/AG) Z ?g(HP(wsy)—TP)-
{P:(@OgP} SEQH(U.pl;P)
Then
Jfe@ = Y f((62)"' X162) - x7(62).
S€Hx, (F)\H(F)

For sufficiently regular T, using Theorem 8.2 and the fact that jf o (@)n(Nrd(z)) is left invariant by
AZ, we have

IE0 0.0 = | HFo(on(Nrd(w)dz
H(F)\H(A)NG(A)!

-/ F((62)" X182) - xr(62) | n(Nrd(2))da.
AFHINHA) \ semy | (F)\H(F)
Hence,
(9.21)  JET(n,0, f) = vol(Af, Hx, (F)\Hx, (A))'/ [ X1z)vp, (2, T)n(Nrd(z))dz.
Hx, (A)\H(A)
where

vp, (z,T) := / xr(az)da.
AZ\A

59



Here we have cheated by assuming that vp, (z,T) is well-defined and left-invariant under Hx, (A) in the
last equality, which is explained below along with its geometric interpretation.

Let @ be a parabolic subgroup of G containing Py. Since &, C Py, by the charaterisation in [9, p.
59], QC(ap,; Q) is empty unless &y C Q, in which case we have Q% (ap,; Q) = Q7 (ap,; Q) by Lemma
9.1.2). Therefore, we have

xr(y)= Y (—nimte/te) N FE(Hg(wey) — To)-

{Q:PCQ} s€QY (ap;;Q)
Compared to [3, p. 951], vp, (x,T) is nothing but the restriction to H(A) of Arthur’s weight for G(A).
It showed in [2, Corollary 3.3] that the integral over a can be taken over a compact subset. From [2,

[
Corollary 3.5], vp, (z,T) equals the volume of the projection onto a% of the convex hull of {T — Hg(z)},
where @ takes over all semi-standard parabolic subgroups of G with Mg = Mp,. For y € Hx, (A) C
Mp,nm(A), the convex hull associated to vp, (yx,T) is a translation of that associated to vp, (z,T), so
they have the same volume, i.e., vp (yz,T) = vp, (x,T). By taking constant terms of both sides of
(9.2.1), we obtain the theorem. O

REMARK 9.3. As mentioned in the proof of Theorem 9.2, the weights we get for regular semi-simple
orbits are the restriction to H(A) of Arthur’s weights (see [3, p. 951]) for G(A). They are also the
same as those (see [39, p. 131]) appearing in the twisted trace formula for (GL,, p x GL, p) % o, where
o acts on GL, p x GL, p by o(z,y) := (y,z). For P, a standard parabolic subgroup of GL, p and

X
P= (E" E") an w-stable relatively standard parabolic subgroup of G, we may identify ap with the

o-invariant subspace of ap, « p,. The w-stable relatively standard parabolic subgroups of G here play the
role of the o-stable standard parabolic subgroups of GL,, p X GL, p, which correspond to the standard
parabolic subsets of (GL, p X GL, p) % o in the sense of [39, §2.7]. However, we need more (namely
relatively standard) parabolic subgroups in our truncation to deal with o ¢ O*.
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CHAPTER 3

An infinitesimal variant of Guo-Jacquet trace formula: the case
of a central simple algebra containing a quadratic extension

We establish an infinitesimal variant of Guo-Jacquet trace formula for the case of a central simple
algebra over a number field F' containing a quadratic field extension E/F. It is an equality between a
sum of geometric distributions on the tangent space of some symmetric space and its Fourier transform.
To prove this, we need to define an analogue of Arthur’s truncation and then use the Poisson summation
formula. We describe the terms attached to regular semi-simple orbits as explicit weighted orbital
integrals. To compare them to those for another case studied in our previous work, we state and prove
the weighted fundamental lemma at the infinitesimal level by using Labesse’s work on the base change
for GL,.

1. Introduction

Guo and Jacquet have proposed a conjecture [23] in order to generalise Waldspurger’s famous result
[50], which relates toric periods and central values of automorphic L-functions for G Lz, to higher ranks.
The approach of relative trace formulae makes it possible to reduce the conjectural comparison of periods
(related to the spectral side) to the comparison of (weighted) orbital integrals (related to the geometric
side) on different symmetric spaces. This approach was first adopted by Jacquet [29] to reprove Wald-
spurger’s theorem. For higher ranks, Feigon-Martin-Whitehouse [21] obtained some partial results using
a simple form of relative trace formulae. For the comparison of local orbital integrals, Guo reduced the
fundamental lemma [23] to that of the base change for GL,, and Zhang proved the smooth transfer [58]
by global methods.

However, an obstruction in the approach is the divergence of sums of integrals in both sides of relative
trace formulae. Such a problem has already existed in the classical Arthur-Selberg trace formula and
Arthur introduced a truncation process [3][4] to tackle it (see also [13] for its Lie algebra variant). We
start working at the infinitesimal level (namely the tangent space of a symmetric space) for a couple of
reasons. Firstly, our truncation for the tangent space is expected to be adapted to a truncation for the
symmetric space. Secondly, infinitesimal trace formulae should be useful for the proof of results on the
transfer (see Zhang’s work [58] on the ordinary orbital integrals).

Guo-Jacquet trace formulae concern two symmetric pairs. The first one is (G', H'), where G’ := G L,
and H' := GL, x GL,, are reductive groups over a number field F' and H' embeds diagonally in G’.
Let s’ ~ gl,, @ gl,, be the tangent space at the neutral element of the symmetric space G'/H’'. We have
established an infinitesimal trace formula in Chapter 2 for the action of H' on s’ by conjugation. The
second one denoted by (G, H) is the main object in this paper. Before introducing it, we remark that
we shall work in a more general setting than the original one. The reason is that the converse direction
of Guo-Jacquet conjecture was originally proposed only for n odd. In our searching for an analogue for
n even, the related local conjecture of Prasad and Takloo-Bighash [44, Conjecture 1] suggests that we
should consider more inner forms of G’. Some recent progress on this local conjecture has been made by
Xue [55] with the help of a simple form of global relative trace formulae.

Let E/F be a quadratic extension of number fields. Suppose that E = F(«), where o« € E and
a? € F. Let g be a central simple algebra over F containing E. Write h to be the centralizer of « in g.
Denote by G and H the groups of invertible elements in g and § respectively. Both of them are viewed
as reductive groups over F. Let s := {X € g: Ad(«)(X) = —X}, where Ad denotes the adjoint action
of G on g. Tt is the tangent space at the neutral element of the symmetric space G/H. The main global
result in this paper is an infinitesimal trace formula for the action of H on s by conjugation.

Denote by A the ring of adeles of F' and by H(A)' the subset of elements in H(A) with absolute-
value-1 reduced norm. We define a relation of equivalence on s(F): two elements of §(F)) are equivalent
if and only if they lie in the same fibre of the categorical quotient s//H. Denote by O the set of classes
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of equivalence. Let f be a Bruhat-Schwartz function on s(A). For each 0 € O and z € H(F)\H(A),

define
kro(@) =Y f(Ad(z™")(Y)).
Yeo
As mentioned, we are facing the problem that

Z / kg o(z)de
oco Y H(F)\H (&)

is divergent. We define the truncation k7 () (see (4.0.1)) which is an analogue of Arthur’s truncation

in [3], where T is a truncation parameter in some cone T} + aJISO of the coroot space of H, such that the
following theorem holds.

THEOREM 1.1 (see Theorem 4.2). For all T € Ty +a,

Z/ k?a(x)dx
scoHF\HA) 7

is absolutely convergent.

We also know the behaviour of each term (viewed as a distribution) with respect to the truncation
parameter. It is even simpler than that in the case of (G, H') (cf. Theorem 1.2 in Chapter 2).

THEOREM 1.2 (see Corollary 5.3). For all T € Ty + alﬁo and o € O,

JT(f) = / KT (2)de
H(F)\H(A)!

is a polynomial in T .

Now we can take the constant term of each term to eliminate the truncation parameter 7. Denote
by Jo(f) the constant term of JI'(f). These distributions are not invariant by H(A)! (see Proposition
6.1), but we can write the regular semi-simple terms as explicit weighted orbital integrals with the same
weights as Arthur’s in [3].

THEOREM 1.3 (see Theorem 9.2). Let 0 € O be a class associated to reqular semi-simple orbits, Py
a standard parabolic subgroup of H and Yy € o an elliptic element with respect to Py (see the precise
definition in Section 9). Denote by Hy, the centralizer of Y1 in H. We have

Jo(f) = vol([Hy,)) / (A (Y2) o, (2)de,

Hy; (A)\H (A)
where vol([Hy,]) is the volume associated to Hy, and vp,(x) is the volume of some convex hull.

Thanks to the truncation, we solve the divergence issue in the following infinitesimal trace formula.
It is a consequence of the Poisson summation formula.

THEOREM 1.4 (see Theorem 7.1). We have the equality

IPAGED SPAT)

0cO 0cO

where f (see (3.3.1)) is the Fourier transform of f.

Notice that the symmetric pairs (G, H) and (G’, H') are the same after the base change to an algebraic
closure of F' containing F. In fact, the truncation and most proofs of the global results above are simpler
than those in Chapter 2 in some sense. The simplicity results from the equality H(A)! = H(A)NG(A)*
here, where G(A)! denotes the subset of elements in G(A) with absolute-value-1 reduced norm. Moreover,
there is a bijection between the set of standard parabolic subgroups in H and the set of semi-standard
parabolic subgroups in G whose intersection with H is a standard parabolic subgroup in H. One may
consult Section 3.4 for more details. However, there are still some rationality issues. We shall give
sufficient details and self-contained proofs here for completeness.

At the end of this paper, we hope to provide some new evidence of noninvariant comparison of Guo-
Jacquet trace formulae. We shall turn to the local setting with F' denoting a local field. In the comparison
of geometric sides, an important case is the so-called fundamental lemma. It roughly says that some basic
functions for two symmetric pairs should have associated local orbital integrals on matching orbits at
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almost all unramified places. Guo [23] proved it for the units of spherical Hecke algebras for Guo-Jacquet
trace formulae with the help of the base change fundamental lemma for the full spherical Hecke algebras
for GL,, known by Kottwitz [36, Lemma 8.8] and Arthur-Clozel [10, Theorem 4.5 in Chapter 1]. An

infinitesimal version [58, Lemma 5.18] was used by Zhang to prove the smooth transfer for Guo-Jacquet
trace formulae following the same philosophy of Waldspurger’s work [52] on the endoscopic transfer. We
would like to generalise [58, Lemma 5.18] in the weighted context.

For almost all unramified places, (G, H) is isomorphic to (G L2y, Resg/pG Ly g) and s(F) ~ gl,, (E).
Denote by Op (resp. Og) the ring of integers in F' (resp. E). For f and f’ a pair of locally constant and
compactly supported complex functions on s(F) and s'(F') respectively, we define the notion of being
“strongly associated” (see the precise definition in Definition 10.4) inspired by [37, Definition III.3.2].
Roughly speaking, f and f’ are said to be strongly associated if their local weighted orbital integrals
are equal at matching orbits. Let fo and f be the characteristic functions of s(Op) ~ gl,,(Og) and
s'(OF) ~ (gl, @ gl,) (OF) respectively. Because the weighted orbital integrals that we got share the same
weights with those in twisted trace formulae (see Remark 9.3 and Remark 9.3 in Chapter 2), we are able
to show the following result by using Labesse’s work on the base change weighted fundamental lemma
for the full spherical Hecke algebras for GL,,.

THEOREM 1.5 (see Theorem 8.1). For almost all unramified places, fo and fi are strongly associated.

Acknowledgement. I would like to thank my PhD advisor Pierre-Henri Chaudouard for suggesting
considering a more general case than Guo-Jacquet’s original one. I have also benefited a lot from his
comments on an earlier draft of this article. This work was supported by grants from Région Ile-de-
France.

2. Notation

We shall use F' to denote a number field in this article except for the last section where F' denotes
a non-archimedean local field of characteristic 0.

2.1. Roots and weights. Let I’ be a number field or a non-archimedean local field of characteristic
0. Suppose that H is a reductive group defined over F. Fix a minimal Levi F-subgroup My of H. All
the following groups are assumed to be defined over F' without further mention. We call a parabolic
subgroup or a Levi subgroup of H semi-standard if it contains M. Fix a minimal semi-standard parabolic
subgroup Py of H. We call a parabolic subgroup P of H standard if Fy C P. For any semi-standard
parabolic subgroup P of H, we usually write Mp for the Levi factor containing M, and Np the unipotent
radical. Denote by Ap the maximal F-split torus in the centre of Mp. Let X (Mp)pr be the group of
characters of Mp defined over F'. Then define

ap = Homz(X(Mp)F, R)
and its dual space
a} = X(MP)F Rz R,
which are both R-linear spaces of dimention dim(Ap). Notice that the restriction X (Mp)r — X(Ap)F
induces an isomorphism
Cl}‘g ~ X(AP)F ®z R.

Suppose that P; C Ps are a pair of standard parabolic subgroups of H. The restriction X (Mp,)r <
X(Mp,)F induces ap, — ap and its dual map ap, — ap,. Denote by agf the kernel of the latter map
ap, = ap,. The restriction X (Ap, )r - X(Ap,)r induces ap — ap, and its dual map ap, < ap,. The
latter map ap, < ap, provides a section of the previous map ap, — ap,. Thus we have decompositions

P
ap, =ap, ® apf
and
* % @ Py %
aPl - uPz (aPl) :

P>

When P, = Py, we write ap,, Ap, and ag’f as ag, Ag and a,? respectively.

For a pair of standard parabolic subgroups P, C P, of H, write A% for the set of simple roots for
the action of Ap, on ngf := Np, N Mp,. Notice that Agf is a basis of (a%)*. Let

AR)Y i={wm:a e AR}
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be the basis of af;f dual to A%. One has the coroot 8V associated to any 3 € Aﬁi. For every o € Af,f,
let oV be the projection of 8Y to a%, where 8 € A;ﬁ whose restriction to a% is a.. Define

(A%)V ={a":a¢€ AI;?},

which is a basis of agf. Denote by

~

A% ={wy € AII}I’}

the basis of (agf)* dual to (Agf)v.
For a standard parabolic subgroup P of H, set

apb:={T cap:a(T)>0,ac AL}

For P, C P, as above, define T};f and ?11;12 as the characteristic functions of

{T€ay:a(T) >0,a € A%}

and
. ~p
{Tcay:@w(T)>0,we Ay}

respectively.

2.2. The functions Hp and F¥. Let I be a number field. Let A be the ring of adeles of F' and let
|-|a be the product of normalised local absolute values on the group of ideéles A*. Fix a maximal compact
subgroup K of H(A) that is admissible relative to My in the sense of [5, p. 9]. In this paper, we choose
the standard maximal compact subgroup when G(F) = GL, (D), where D is a central division algebra
over a finite field extension E of F. That is to say, K := [[, K, where at every non-archimedean place
v of E, K, is the group of automorphism of some lattice (see [54, p. 191]) and at every archimedean
place, K, is the unitary group with respect to some hermitian form (see [54, p. 199]). Suppose that P
is a standard parabolic subgroup of H. Let Hp be the homomorphism Mp(A) — ap given by

vm € Mp(A), (Hp(m), x) = log(|x(m)[a), x € X(Mp)p.

Write Mp(A)! for the kernel of Hp and A% for the neutral component for the topology of R-manifolds
of the group of R-points of the maximal Q-split torus in Resg/gAp. Then any element x € H(A) can be
written as z = nmak, where n € Np(A), m € Mp(A)}, a € A® and k € K. We can define a continuous
map Hp : H(A) — ap by setting Hp(z) := Hp(a) with respect to this decomposition. Notice that Hp
induces an isomorphism from A% to ap. If P C @ are a pair of semi-standard parabolic subgroups,
write
AL = A% N Mg(A)'.

Then Hp also induces an isomorphism from Ag’oo to ag.

Denote by QF the Weyl group of (H, Ap). In the cases to be considered in this paper, for every
s € QF ) we can always choose one representative w, € H(F) N K such that ws normalises Ag. In
fact, we are dealing with the restriction of scalars of inner forms of GL,,, thus we can choose Q¥ to be
permutation matrices.

From the reduction theory (see [3, p. 941]), we know that there exists a real number ¢y < 0 and a

compact subset wp, C Np, (A)M(A)! such that for any standard parabolic subgroup P of H, we have
H(A) = P(F)&}, (wpy, to).
Here the Siegel set 63 (wp,, to) is defined by
650 (wpysto) = wp, AR, (P to) K,

where
B (Pto) :={a € AR, : a(Hp,(a)) > ty,a € Agﬂ}.
We shall fix such ¢ty and wp,. Moreover, we require that (Mp(A) Nwp,, Mp(A) N K, Py N Mp,ty) will
play the role of (wp,, K, Py, to) for any standard parabolic subgroup P of H.
Let ¢y be as above. For T' € ag, define the truncated Siegel set

S, (wpy to, T) 1= wp, AR (P, to, T) K,
where
AR (Pto,T) := {a € AZ (P, to) : w(Hp,(a) — T) < 0, € AL }.
Denote by Ff (-, T) the characteristic function of the projection of &4 (wp,,to,T) to P(F)\H(A).
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2.3. Bruhat-Schwartz functions and Haar measures. Let F' be a number field. Write § for
the Lie algebra of H. For an F-linear subspace s of b, denote by S(s(A)) the Bruhat-Schwartz space of
5(A), namely the C-linear space of functions on s(A) generated by fo, ® x°°, where fo, is a Schwartz
function on s(F ®g R) and x*° is the characteristic function of an open compact subgroup of s(A>),
where A> denotes the ring of finite adeles of F'.

Let P be a standard parabolic subgroup of H. For every connected subgroup V of Np (resp. every
subspace v of h), choose the unique Haar measure on V(A) (resp. on v(A)) such that vol(V(F)\V(A)) =1
(resp. vol(v(F)\v(A)) = 1). We also take the Haar measure on K such that vol(K) = 1.

Fix a Euclidean norm || - || on ag invariant by the group 2 and Haar measures on subspaces of ag
compatible with this norm. If P C @) are a pair of standard parabolic subgroups, we obtain the Haar
measures on AY and Ag’oo via the isomorphism Hp.

Denote by pp € (aff)* the half of the sum of weights (with multiplicities) for the action of Ap
on np. We choose compatible Haar measures on H(A) and its subgroups by requiring that for any
f e LY(H(A)),

/ f(z)dz = / / / f(nmk)e=20r He (M) qn dmdk
H(a) Np () Japa) S

:/ / / /f(nmak)efgpp(HP(“))dndmdadk‘.
Npa) JMpa) Jag JK

3. The symmetric pair

3.1. Groups and linear spaces. Let F' be a number field and E a quadratic extension of F'.
Let g be a central simple algebra over F' with a fixed embedding £ — g as F-algebras. Denote by
h := Centy(E) the centralizer of E in g. Then by the the double centralizer theorem (see [42, Theorem
3.1 in Chapter IV] for example), h(F') is a central simple algebra over E. Write G := g* and H := h*
for the group of invertible elements. They are considered as algebraic groups over F' with Lie algebra g
and b respectively.

Let a € E such that a®> € F and that E = F(a). Denote by Ad the adjoint action of G on g.
Define an involution  on g by #(X) := Ad(«)(X). Then H = G?, where GY denotes the f-invariant
subgroup of G. Thus S := G/H is a symmetric space. Define an anti-involution on G by ¢(g) := (g~ !).
Denote by G* the t-invariant subvariety of G. Then there is a symmetrization map s : G — G* defined

by s(g) := g1(9)-
LEMMA 3.1. The symmetrization map s induces a bijection S(F) ~ G*(F).

REMARK 3.2. For the special case (G, H) = (GLy,p,Resgp/pG Ly ), where D is a quaternion algebra
over F' containing F, this result is included in [24, p. 282].

PROOF OF LEMMA 3.1. Since HY(F,H) = 1, we have S(F) = G(F)/H(F). For g € G(F), let
s0(g) == s(g)a = Ad(g)(a). Let Go := G'a = {g € G : g*> = o®}. It suffices to prove that the map
s0 1 G(F) — Go(F) is surjective. Let g € Go(F). Its minimal polynomial in g(F) is A — o2, which is
irreducible over F. Therefore, its reduced characteristic polynomial in g(F) must be (A% — o)™, where
dimp(g(F)) = (2m)?. We deduce that all elements in Go(F) are conjugate by G(F) (see [56, Theorem
9] for example). Since a € Go(F'), we draw our conclusion. O

One may consider the left and right translation of H x H on G and the conjugation of H on S.
Denote by s the tangent space of S at the neutral element. We shall always view s as a subspace in g.
Then s = {X € g:0(X)=—X} and H acts on s by conjugation.

3.2. Semi-simple elements. We say that an element Y of s is semi-simple if the orbit Ad(H)(Y)
is Zariski closed in s. By a regular element Y of s, we mean that the centralizer Hy of Y in H has
minimal dimension.

PROPOSITION 3.3. The map Y + Y2 from s(F) to h(F) induces an injection from the set of H(F)-
conjugacy classes of semi-simple elements in s(F') to the set of conjugacy classes of semi-simple elements

in h(F).

REMARK 3.4. In the special case (G, H) = (GLyn,p,Resg/rG Ly, g), where D is a quaternion algebra
over F' containing E, this map plays the role of the norm map (see [10, §1 in Chapter 1]).
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PROOF OF PROPOSITION 3.3. Let x4 7(X) be the reduced characteristic polynomial of X € g(F)
and xp,g(X*) the reduced characteristic polynomial of X* € h(F) (viewed as a central simple algebra
over F). After the base change to an algebraic closure of F' containing F, the embedding h C g is identical

0 A):A,BG

to the diagonal embedding " := gl,,, ® gl,, C ¢’ := glo,, and s C g becomes s’ := { < B 0

g[m} C ¢/, where m denotes the degree of h(F') (viewed as a central simple algebra over F). Let H' be

the group of invertible elements in b’, which is viewed as an algebraic group GL,,, X GL,, over F. Since

det <A12m - (Jg ‘3)) = det(\?1,, — AB),

we see that for Y € s(F) C g(F),
Xa.F(V)(N) = x5, (Y?)(X),

which implies that xp (Y?) is actually defined over F.

It is known that the semi-simple conjugacy classes in h(F') are uniquely determined by xp.r (see
[56, Theorem 9] for example). Thus it suffices to prove that the semi-simple H(F')-conjugacy classes
in §(F) are uniquely determined by x4 7. From [31, Proposition 2.1], we know that the semi-simple
H-conjugacy classes in s(F') are uniquely determined by xg4 r. Therefore, we reduce ourselves to proving
that each semi-simple H-conjugacy class in s(F') contains a unique H (F)-conjugacy class.

For a semi-simple element Y € s(F'), the H(F)-orbits in Ad(H)(Y') are parametrized by

ker[H'(F, Hy) — H'(F,H)] = H'(F, Hy),
where Hy is the centralizer of Y in H. By [47, Exercice 2 in p. 160], we obtain
Hl (Fa HY) = 17

which completes our proof. O

3.3. Invariants. Denote by ¢ the affine space A™, where m denotes the degree of h(F') (viewed as
a central simple algebra over E). Define a morphism 7 : § — ¢ which is contant on H-orbits by mapping
Y € s to the coefficients of the reduced polynomial of Y € g. In fact, we see that the coefficients in
odd degrees vanish for Y € s from the proof of Proposition 3.3. On F-points, alternatively, m is given
by mapping Y € s(F) to the coefficients of the reduced polynomial of Y2 € h(F) (viewed as a central
simple algebra over E).

PROPOSITION 3.5. The pair (¢, 7) defines a categorical quotient of s by H over F.

PRrROOF. By the proof of Proposition 3.3 in Chapter 2, after the base change to an algebraic closure
F of F containing E, the pair (¢, 77) defines a categorical quotient of s by Hz. That is to say, we have
an isomorphism of F-algebras F[c] ~ F[s]f dual to 7. But this isomorphism is obtained from the base
change of a morphism of F-algebras F[¢] — F[s]? dual to 7. By Galois descent, the latter morphism is
necessarily an isomorphism of F-algebras. Then the pair (¢, 7) defines a categorical quotient of s by H
over F. O

REMARK 3.6. The morphism 7 is surjective as a morphism of algebraic varieties (see the proof of
Proposition 3.3 in Chapter 2) but not surjective on the level of F-points.

We define a relation of equivalence on s(F) using the categorical quotient (¢, 7), where two elements
are in the same class if and only if they have the same image under w. We denote by O the set of
equivalent classes for this relation. From the proof of Proposition 3.3, we see that two semi-simple
elements of s(F') belong to the same class of O if and ouly if they are conjugate by H(F'). Denote by
O, the subset of O formed by Y € s(F) such that xy £(Y?) is separable and xy £(Y?)(0) # 0, where
Xp.5 denotes the reduced polynomial of an element in h(F') (viewed as a central simple algebra over E).
By Proposition 3.2 in Chapter 2 and the base change to an algebraic closure of F' containing F, we see
that each class in O, is a regular semi-simple H (F')-orbit in s(F').
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3.4. Explicit description of H — G. First of all, we would like to describe the symmetric pair
(G, H) in a more explicit way. By the Noether-Skolem theorem (see [42, Theorem 2.10 of Chapter IV]
for example), the embedding F — g(F) is unique up to conjugation by an element of G(F). From the
Wedderburn-Artin theorem, we know that G is isomorphic to GL,, p, which denotes the reductive group
over F' whose F-points are GL, (D), for some central division algebra D over F. We recall that n is
called the capacity of g(F) and we denote it by capa(g(F)). Let d be the degree of D, i.e., dimp(D) = d?.
Since there is an embedding F — g(F') as F-algebras, we know that nd is even.

PROPOSITION 3.7. Up to conjugation by G(F'), the embedding H — G is reduced to one of the two
cases below.

Case I: if there is an embedding E — D as F-algebras, then the embedding H — G is isomorphic
to Resgp/pGLn,pr — GLnp up to conjugation by G(F). Here D' := Centp(FE) denotes the centralizer
of E in D and is a central division algebra over E.

Case II: if there is no embedding E — D as F-algebras, then the embedding H — G is isomorphic
to ResE/FGL%D@FE — GL, p up to conjugation by G(F). Here D @ E is a central division algebra
over E.

PrOOF. Case I: there is an embedding F — D as F-algebras. This case is a direct consequence of
the Noether-Skolem theorem. By the double centralizer theorem, we know that D’ is a central division
algebra over E.

Case II: there is no embedding F — D as F-algebras. By [48, Theorem 1.1.2], when nd is even,
there is an embedding E — g(F) as F-algebras if and only if n-capa(D®p E) is even, where capa(D®p F)
denotes the capacity of the central simple algebra D ® p E over E (see [42, Proposition 2.15 in Chapter
IV] for example). Additionally, from [48, Theorem 1.1.3], we show that capa(D ®p F) < [E : F] = 2.
In this case, there are two possibilities.

(1) diseven. By [48, Theorem 1.1.2], capa(D®p E) is odd, so capa(D®p E) = 1. Since n-capa(D®p E)
is even, we know that n is even.

(2) dis odd. Since nd is even, we see that n is even. Besides, from [48, Theorem 1.1.3], we also deduce
that capa(D ®p E) = 1.

In sum, we have shown that n is even and that D ® ¢ E is a central division algebra over E. The tensor

of glz p and a fixed embedding Resg,rgli, g — gl2 gives the indicated way to embed b to g. By the

Noether-Skolem theorem, such an embedding is unique up to conjugation by G(F). (]

Next, we describe the correspondence of some parabolic subgroups in H and G in both cases.

Casel: (G,H) = (GL,,p,Resg/pGLy pr), where D' := Centp(E). We denote by My ~ (Resg;pGm,pr)
the subgroup of diagonal elements in A, which is a minimal Levi F-subgroup of H, and by Mz ~ (G, p)"
the subgroup of diagonal elements in G, which is a minimal Levi F-subgroup of G. We also fix Py the
subgroup of upper triangular elements in H, which is a minimal parabolic F-subgroup of H. There is
a bijection P +—» P between the set of standard parabolic subgroups P (namely Py C P) in H and the
set of semi-standard parabolic subgroups P (namely Mgz C 15) in G which contain Fy. In this case, the
latter is exactly the set of standard parabolic subgroups (namely containing .’50 the subgroup of upper
triangular elements in G) of G. We shall always write P for the image of P under this bijection. Notice
that P = P N H and that we can identify Ap with Ap.

Case II: (G,H) = (GLy,p,Resg/pGLx pgpp). We denote by My ~ (Resg/pGm,pep5)? the
subgroup of diagonal elements in H, which is a minimal Levi F-subgroup of H, and by Mg ~ (G, p)"
the subgroup of diagonal elements in G, which is a minimal Levi F-subgroup of G. We also fix Py the
subgroup of upper triangular elements in H, which is a minimal parabolic F-subgroup of H. There is
a bijection P +—» P between the set of standard parabolic subgroups P (namely Py C P) in H and the
set of semi-standard parabolic subgroups P (namely Mgz C }3) in G which contain Fy. In this case, the
latter is a subset of the set of standard parabolic subgroups (namely containing the subgroup of upper
triangular elements in G) of G. We shall always write P for the image of P under this bijection. Notice
that P = PN H and that we can identify Ap with Ag.

PROPOSITION 3.8. Let P be a standard parabolic subgroup of H. For all Y € (mpNs)(F) and
Ue(npns)(F), we have

m(Y)=n(Y +U).
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PRrROOF. It is obvious, since the reduced characteristic polynomial of Y + U € g is equal to that of
Y eg. U

COROLLARY 3.9. Let P be a standard parabolic subgroup of H and o € O. For all subsets S C
(mzNs)(F) and Sy C (ns Ns)(F), we have 0N (S; @ S2) = (0N S1) & Ss.

Let P be a standard parabolic subgroup of H. We denote by ®(Ag,mp Ns) (resp. ®(Ag,n3Ns))
the set of weights of Ap in mp N's (resp. ns Ns). We also denote by ®(Ag,mp) (resp. ®(Ag,np)) the
set of weights of Ag in mp (resp. np).

PRrROPOSITION 3.10. For any standard parabolic subgroup P of H, we have
<I>(A0,mf, ﬂﬁ) = (I)(Ao,mp)

and
®(Ag,npNs) = P(Ag,np).
Moreover, each weight of Ao has the same multiplicity in ms N5 (resp. nzMNs) and mp (resp. np).

PROOF. It is obvious for both of Case I and Case II described above. O

For P a standard parabolic subgroup of H, let pp s (resp. pp) denote the half of the sum of weights
(with multiplicities) of Ag in nz N s (resp. np).

COROLLARY 3.11. For any standard parabolic subgroup P of H, we have
pPPs = PP-

At the end of this subsection, we point out a non-canonical F-linear isomorphism between h and s
which will be useful for some technical problems. We have chosen an element « € E in Section 3.1. Let
7 € D* in Case I (resp. 7 € GLy(D) in Case II) be an element such that Ad(a)(7) = —7.

PROPOSITION 3.12. There is a non-canonical isomorphism induced by multiplication by T between b
and s as free D'-modules (resp. D @ E-modules), i.e.,

s=bhr =7h.
Moreover, for any standard parabolic subgroup P of H, we have
mg Ns=mp7T =TMmp

and
ngMNs=np7T=7Tnp.

PRrROOF. It is obvious for both of Case I and Case II described above. O

3.5. Fourier transform. Fix a nontrivial unitary character ¥ of A/F. Let (-,-) be the H(A)-
invariant bilinear form on s(A) defined by

(3.5.1) VY1, Ys € s(A), (Y1,Y2) := Trdg p(Y1Y2),

where Trdg (Y1Y2) denotes the reduced trace of Y1Y5 € g(A). It is non-degenerate, which can be seen
after the base change to an algebraic closure of F'. For f € S(s(A)), its Fourier transform f is defined by

(3.5.2) V¥ e s(A), f(V) = / PR 7))av.

4. Integrability of the modified kernel

Let f € S(s(A)), P be a standard parabolic subgroup of H and 0 € O. For x € Mp(F)Np(A)\H(A),
define

ki po(r) = Z /(mm)(mf(Ad(:v_l)(Y—i—U))dU.

Yemg(F)No
For T € ap and x € H(F)\H(A), define
(4.0.1) Kol = Y (~nfm@e/am N F(Hp(62) = T) - ky.p.o(62).
{P:P,CP} S€EP(F)\H(F)

By [3, Lemma 5.1], we know that the sum over § € P(F)\H(F) is finite.

68



LEMMA 4.1. There is a Ty € a;ﬂ such that for all standard parabolic subgroup P of H, T € T + u;ﬂ
and x € H(A), we have

> > FP(6, T)rf (Hp, (1a) = T) = 1.
{P1:PoCPICP} 61€P (F)\P(F)
PRrROOF. This is [3, Lemma 6.4]. O
We shall fix such a T, .

THEOREM 4.2. For all T € Ty + a7, ,

Z/ KT (a)de < oo,
scoJHENH@A) T

PROOF. Let P; C P, be a pair of standard parabolic subgroups of H. As in [3, §6], for T} € ap,,
define the characteristic function

op ()= Y (~)Im@nAOLg (1)RE (1),
{Q:P2CQ}
Recall that for P O P; a standard parabolic subgroup of H, we have
Th(T)TE(T) = Y o (T
{PQ:PQPQ}
For xz € P,(F)\H(A), we write

Xbr.py (%) := F (2, T)op? (Hp, () — T)
and

kPI,P270(x) = Z (_1)dim(AP/AH)kf7P7U(x)'

{P:P,CPCP,}
By Lemma 4.1 and the left invariance of Hp and ks p, by P(F'), we obtain
kT,a(x) = Z Z Xgl,Pz (6$>kP1,P2,0(5$)'
{Pl,PQZngP1QP2} 5€P1(F)\H(F)
Thus
>/ EREIEED SENED S | Kby £ (), .0 (a) o
oco /T HEFNH M) 0€0 {Py,Py:PyC P C Py} Y PrUDNH(A)!

Then we only need to show that for any pair of standard parabolic subgroups P; C P of H,

2 /P (F)\H(A)! Xpy,ps () Ky sy o ()| da < 00,
ocO 1

If P, = P, # H, by [3, Lemma 6.1], we have O’;f = 0 and then Xg,PQ = 0, so the integration vanishes.
If P, = P, = H, since F¥(-,T) is a characteristic function with compact support in H(F)\H(A), the
integration is convergent. Hence, we reduce ourselves to proving the following proposition. O

PROPOSITION 4.3. Let f € S(s(A)) and Py C P> be a pair of standard parabolic subgroups of H.
Suppose that €y and N are two arbitrary but fixed positive real numbers. Then there exists a constant C
such that

Z / XEl,PQ (‘T)|kP1,P27o($)|d$ < 067N||T||
oc@ Y PL(F)\H(A)!

forall T e Ty + a;ﬂ satisfying o(T) > o || T || for any o € A,
For x € H(F)\H(A), define
kyw(x Zkaa Z FAd(z™H)(Y))
0cO Yes(F)
and
(4.0.2) K (@) =Y k()
0O
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COROLLARY 4.4. Let f € S(s(A)). For two arbitrary but fized positive real number ey and N, there
exists a constant C' such that

/ kf () — F™ (2, T)kys g (z)|de < Ce=NIT|
H(F)\H(A)!

for all T € Ty 4 af; satisfying o(T) > e | T || for any a € AR,

PROOF OF PROPOSITION 4.3. Let P be any standard parabolic subgroup of H such that P, C P C
P,. For any Y € ms(F)No, there is a unique standard parabolic subgroup R of H such that P C R C P

and Y € (mp(F)Ne(F)No) — U msF)nq(F)n o). We denote

PiCQCR

ﬁvl% =mg— U mg ]

{Q:PLCQCR}
and
Ilg =ngnmp.
From Corollary 3.9, we get
mp(F)NEF)no)— | |J mpE)nq(F)no| = (ML (F) N o) @ ((nf Ns)(F)).

Thus

kppo(@)= 3 /(nm(A) FAd(@=Y)(Y + U))dU

Yemg(F)No

= > > > / fAd(z™N)(E+Y +U))dU.

{R:PICRCP} ceml (F)no YE(nEns)(F) (npNs)(A)
1 9
We write P for the parabolic subgroup of G opposite to P and
P B
ng = nfg n mg.

Notice that the restriction of (-,-) (see (3.5.1)) to ((ng Ns)(A)) x ((ﬁ;; Ns)(A)) is also non-degenerate.
For any £ € (mgz N s)(A), applying the Poisson summation formula to the Bruhat-Schwartz function
Sy (A (€ + -+ 1)U, we have

> FAd@ HE+Y +0)NdU = Y oY),

Ye(nEns)(F) (npNs)(4) Ve(wEns)(F)

where the partial Fourier transform <I>g’R of f(nﬁma)(A) f(Ad(z7 1) (€ + -+ U))dU is defined by

WY € (RE N1s)(A), BT (P) = /

AT Y+ U)aU | B Tay.
(nENs)(A) \J (npNs)(A)
Since (U,Y) =0 for U € (nzNs)(A) and Y e (ﬁg Ns)(A), as well as ng =np @ ng we have
Y € (W 9@, o) = [ f(Ad(E+ U)W T,
(ngNs)(A)

which is actually independent of P.
In sum,
z,R />
kg.po(x) = Z Z Z DOY).
{R:P&RQP}geﬁgl,(F)no Ye®Ens)(F)
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Then we have

kp,poo(x)= Y (=D)AL b ()
{P:P,CPCP,}

SR SIRCUECEET] N DI RN DR L

{P:PICPCP} {R:PICRCP} cem (F)no Ve(RENs)(F)
1

_ Z Z Z (71)dim(Ap/AH) Z (I)?R(i})

{R:PLCRC P } 561?1%(F)mo {P:RCPCP;} Ve®Ens)(F)

For P; a standard parabolic subgroup of H containing R, denote

P3\/ .__ =P =Q
i U =
{Q:RCQCPs}
We write
{P:RCPC P} VemEns)(F)
_ Z (_1)dirn(Ap/AH) Z Z q)gJ%(i})
{P:RCPCP,} {Pg:RnggP}?E((ﬁ?‘),ms)(}?)
:(_1)dim(AP2/AH) Z Z (_l)dim(Ap/APQ) q)?R(i})
{P3:RCP3CP,} \{P:P;CPCP,} ?e((ﬁ?)'ma)(F)
S S )

Ve(®2)ns)(F)
where we have used [3, Proposition 1.1] in the last equality. Then

kpy pyo(r) = (~1)8m(Ar/Am) 7 > Y erE),

(RPICRCP) ¢eml(F)no v e(@h2)/ns) (F)

Now we get

>/ Xhp, @)k, o (0)]da
oco Y Pr(F)\H(A)!

L z,R /x>
<Z/131(F)\H<A)1XP1’P2(x) 2 > > |@ (V)] | dz

0c0 (RPICRCP) eeml (F)no v e(@f2)/ns)(F)

T z,R /5>
= E Xpy,p, (T) E E | (Y)|d.
/Pl(F)\H(A)l : ¢

{R:P CRC P2} €A N9)(F) Ve((@2)ns)(F)

Thus it suffices to bound
(4.0.3) / hp@ Y S e (@)
Py (F)\H(A)* & ~ 5
£e(mz Ne)(F) Ye((m22) Ns)(F)

for any fixed standard parabolic subgroup R of H such that P, C R C Ps.
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Denote Agl’oo = A® NH(A)'. By Iwasawa decomposition and our choice of measures, we have

T z,R
X T <I> dx
Loy Xhon@ S > et

§e(mR Ns)(F) ye((*Pz) Ns)(F)

-/ [..] / FP (my, T)o R (Hp, (a1) - T)
K Agloc Mf"l (F)\Mf’l (A)l NP1 (F)\Npl (A)
> > |y R (Y ) |e=20m (Hro (@) dny dimy day d.

EE(RENs)(F) Pe((@h2)ns)(F)

Because only those m; satisfying F*(my,T) # 0 contribute to the integration, we can restrict the
integration over those having representatives in (Np, (A)Mp, (A)lAIIZ;’OO(tO,T)K) N Mp, (A)!, where
AR (t0,T) i= AF (P1,to, T) N Mp, (A)!. Then

T z,R
/1( J\H(A)! P17P2( ) ‘ ( )‘

EEMEN9)(F) ¥ e((wh2) ns) (F)

< | /... / i oF2 (Hp (01) — T)
K [cpthpo(A)l] Apé' (to,T) J AR ’°° [ecptCNp 2A)] [cptCNp, (A)]

> > |<I>"2"“1‘"”k B () |e=20r0 (Hro(a10) gy dnday dadmdk,

EE(RENS)(F) ¥ e((E2)ns)(F)

where ¢; := vol(K N Mp, (A)') is a constant independent of 7. Here we use the notation [cpt C *] for
denoting a compact subset in * independent of T'.
We claim that for ny € Np,(A),

oY) = opH(Y).
In fact, let Uy := Ad(n;')(€) — & Then

@)= [ pAd(nae) e+ U) (U T

(ngNs)(A)

- /< oy TAAETDE + U+ Ading YO F )L

As both of Uy and Ad(ny')(U) — U belong to (ng, Ns)(A), we get

Uy + Ad(n; H(U) - U,Y) =

Hence

@Q%R(f/):/( i )(A)f(Ad(x—l)(ﬁJrUg+Ad(n;1)(U)))x1/(<U2+Ad(n;1)(U),?>)dU.

Since the change of variables Uy + Ad(ngy (U) + U does not change the Haar measure, we proved our
claim.
By this claim, we have

(I)zgnalamk,R(?) _ (bgalamk,R(}’}) _ (I)éauz)(ala)*ln(ala)mk,R()’}).

Applying change of variables Ad(a;a) ' (U) + U and the fact that
(U,Y) = (Ad(a1a) 1 (U), Ad(a1a) "1 (Y)),
we deduce that

nanaiamk, s aia aia n(aia)mk,R g
oz I(Y) = e2one ) g el (™ R (Ad(a1a) (D).

Recall that pr s = pr by Corollary 3.11. From the reduction theory (see [3, p. 944]), for a; satisfying
Ugf (Hp,(a1) —T) # 0, we know that Ad(a;a)~*(n) belongs to a compact subset independent of T'. To
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sum up,

T z,R
XP,p, (%) |27 (Y)|da
/Pl(F)\H(A)l Z Z

£E(mR Ns)(F) Ve((w P2)’ﬁs)(F)

<y sup / / (202080 (Hro @10) 4 P2 (1 (a1) — T)
yel' JALL= (4o ) J AToo !

> > DY )1 () (Ad(a1a) (V)| dar da,

EE(MEN9)(F) ¥ e((wF2)/ns) (F)

where ¢, is a constant independent of T', and I' is a compact subset independent of 7.

Let Op denote the ring of integers of F. We fix an F-basis for each weight space for the action of
Ap on §(F). Then Op-points of such a weight space make sense. Since the f € S(s(A)) is compactly
supported on finite places, there exists a positive integer N; independent of 7" such that the sums

over £ € (mﬁ Ns)(F) and Y € ((nR ) N s)(F) can be restricted to lattices - (m~ N s)(Op) and

N
Nil((ﬁ%)/ Ns)(OF) respectively, which can be explicit as in [13, §1.9] (we need to replace mp and ng in
loc. cit. by mz N s and ni N s respectively).

Fix a Euclidean norm || - || on the R-linear space s(F ®g R). Consider a sufficiently large positive
integer k to be precise. Thanks to Proposition 3.10, as in [13, (4.10) in p. 372], there exists an integer

m > 0, a real number k, > 0 for each o € A -, and a real number ¢ > 0 satisfying the following
conditions:

(1) if R= P, m = 0;
(2) forall c € Ap2 — AR ko > k;
(3) for all a € A%,

(4.0.4) Z [Ad(aH)(P)||™™ < ¢5 H o—kaa(Hpy(a))

Ve ((722)/ns)(OF) a€AR2

We fix such data. N .
For a multi-index i , denote by 0 ¢ the corresponding differential operator on s(F ® R). It can be

— -
extended to $(A) by 0" (foo ® X°) := (0" foo) ® X°°, where we use the notation in Section 2.3. Choose
a multi-index ¢ whose sum of components is m. Denote

~

oPRT (V) = / (07 N(Ad@™)(E + V)T, T))dU.
(nzNs)(A)

Using integration by parts, for Y # 0, we get

~ ~ rd ~
BUE o (Ad(@a) (V)] = cay)[Ad(ara) T TRLET L o (Ad(aa) T (T))],

where c4(y) is a continuous function of y.

For 1 € ®(Ag, mzNs) (refer to Section 3.4 for the notation), denote by (mzNs), the corresponding
weight space. From [53, §41], there exists a function ¢, € S((mz N's),(A)) for each p € ®(Ag, mzNs)
and a function ¢n_ns € S((ng Ns)(A)) such that for all § + U € (mzNs)(A) @ (ngNs)(A) and y €T,

07 HAdy e+ < | T 6wl | dupns),
HEP(Ag,mzNs)

where ,, denotes the projection to (mzNs),(A) of €.
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In sum, we deduce that

Z Z |CI)Ad(a1a) 1(¢ )(Ad(ala)‘l(f’))l

ge(mns)(F) Ye((’P2) Ns)(F)

- Z Z |(I)Ad(a1a) 1(¢ >(Ad(a1a)‘1(17))|

€€ (REN9)(OF) Ve 2 ((712)/Ns) (Or)

= X >, ca(y)Ad(ara) (D)7 YET L o (Ad(ara) (D))

gy (ME _N3)(OF) Ve (7 P2)’ﬂ5)((9p)

<cs Z I[I  dulul@ma)e) ] - > 1Ad(ara)~H(¥)] 7"

€€~y (ME-Ns)(Or) ne®(Ao,mzNs) ?eﬁ((ﬁ?)/ns)(op)
<cses Z H (bM(U(ala 15# H e e o(Hry ala))
561\7 (m ﬂs)(Op) HEP(Ag,mzNs) O‘EAPU

where c¢5 := sup c4(y) f(n~ﬂs)(A) ¢nzns(U)dU; in the last inequality, we have used (4.0.4). Thus
yerl R

T z,R /x>
X T oY) |dx
[ TACIEDS > et

SR N)(F) Ye(@2)ns) (F)

§026503/ / e(QPR*QPPo)(HPo(ala))O-II;Z (Hp,(a1) = T)
AP (g0 1y S AT !

Z H ¢u(ﬂ(a1a)_1fu) : H e kaalHry(019) 4o da.

g€+ (B Ns)(OF) \HER(Ao,mpzNs) aEAp2
1

From [13, p. 375], when ogf (Hp,(a1) —T) # 0, we have a(Hp,(a1a)) > to for all a € Agf). Denote
by E?fms the positive weights of mz N's under the action of Ag. Consider the subsets S of szﬂs with
the following property: for all a € Al@o — A;l), there exists p € S such that its a-coordinate is > 0. Then

> | | A IO )

g€ xy (ME ﬁs)(OF) pE®(Ag,mzNs)

g}sj 11 > éu(plara)é-) 11 Z Su(p(ara)~'EL)

HES \ é_€gqrm_,(OF)—{0} Hez;{f’.ﬂs €€ qmu(Or)

Z $o(&o)

foeﬁlmo(olf)

Denote by Eg{f the positive weights of mgz under the action of Ayg. From Proposition 3.10, we know that

E?Oﬁm = E“ﬁf and that each weight has the same multiplicity in mz N's and mg. From now on, we are
in exactly the same situation as in [13, p. 373] and able to borrow the rest of its proof to conclude. O

5. Polynomial distributions

Let T € T} + a;SO and 0 € O. For f € S(s(A)), define

(5.0.1) JET(f) = / kf o (x)d
H(F)\H(A)
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and
(5.0.2) JHT(f) = / KT (2)da,
H(F)\H(A)

where k;?o(a:) and k‘?(x) are defined by (4.0.1) and (4.0.2) respectively. From Theorem 4.2, we know
that Jo"" and JHT are well-defined distributions on S(s(A)). We also have

JHT(fy = I ()
00
which is an analogue of the geometric side of Arthur’s trace formula. In this section, we shall prove
that J27(f) and JHT(f) can be extended to polynomials in T' € ap, (see Corollary 5.3 below), whose
constant terms will be denoted by JH (f) and J¥(f) respectively.
Let us begin with a generalisation of our results in last section. Let @ be a standard parabolic
subgroup of H. Recall the two cases studied in Section 3.4. In Case I, we have

Mg ~ Resgp/pGLyp, pr X -+ x Resp/pGLp, pr

and
Mé ~ GLnl,D X X GLm,D,

1
where > n; =n. In Case II, we have
i=1

Mq ~Resg/pGLmy pg.p X - - X Resg/rGLw pe g

and
M~2GLmD><~~><GLmD,

where n; is even for all 1 <4 <[ and Z n; = n. In either case of the two, the tangent space of M /MQ
i=1
is mg5Ns, on which Mg acts by conjugation. We remark that our results in last section can be generalised

to the product setting here, whose proofs are similar and will be omitted. Define a relation of equivalence
on (mg N s)(F) which is similar to that on s(F) on each component. We denote by O™a"* the set of
equivalent classes for this relation. For o € O, the intersection oNmg (F) is a finite (perhaps empty) union
of classes 01, - -,0, € O™2™°. Notice that there exists a bijection between the set of standard parabolic
subgroups P of H contained in ¢ and the set of standard parabolic subgroups P* of Mg (namely
PoN Mg € P*) given by P — PN Mg, whose inverse is given by P* — P*Ng. Let f* € S((mgNs)(A)),
P* be a standard parabolic subgroup of Mg and 1 < j <t. For z € Mp-(F)Np-(A)\Mg(A), define

(5.0.3) Bl @)= / AT s upau

Yemg (F)No;
For T € ap and x € Mg(F)\Mg(A), define
Mg, T im(Apx /A
Kby @i= 30 (T ee) R R (Hpe (00) = T) - ke o, (00)
{P*:P,nMoCP*} s€P*(F)\Mq(F)
For T e T} + a;o, define

kMQ’T(:E)dx.

Mg,T
Jo, T (f7) = £*05

/1\4cz(F)\1\4Q(A)1
Then we obtain a well-defined distribution J%Q’T on S((mz Ns)(A)). Now we define

(5.0.4) Jotet ZJMQ’

and

(5.0.5) JMeT = N e
0ceO

For f € S(s(A)), define fo € S((mgzNs)(A)) b

(5.0.6) VY € (mgNs)(A // . )(A) FA(E™M) (Y + V))dV dk.



Let T1,T5 € ap,. As in [5, §2], we define the function I'p(T1,T%) inductively on dim(Ap/Ag) by
setting
(5.0.7) (M -Ty)= > (-1)ImAe/AmzE(1)To(Th, Ty)

{Q:PCQ}

for any standard parabolic subgroup P of H. This definition can be explicitly given by [5, (2.1) in p.
13] and only depends on the projections of Ty, Ts onto all.

LEMMA 5.1. Let Ty € ap, and @ be a standard parabolic subgroup of H. The function Ty —
Lo(Th,Ty) is compactly supported on ag. Moreover, the function Ty — faH To(Th,T2)dTy is a homoge-

Q

neous polynomial in Ty of degree dim(Ag/Am).

PROOF. This is [5, Lemmas 2.1 and 2.2]. O

THEOREM 5.2. Let T' € Ty +a},, 0 € O and f € S(s(A)). Then for all T € Ty +af,

JET( = Y 1T (fo) / To(Th, T —T')dTy,
{Q:PyCQ} oQ

where JIT Jin’T/ and fq are defined by the formulae (5.0.1), (5.0.4) and (5.0.6) respectively.

COROLLARY 5.3. Let o € O and f € S(s(A)). Then JT(f) and JET(f) (defined by (5.0.2)) are
polynomials in T of degree <n —1 forT € Ty + aJISO. Thus we can extend them to all T € ap,.

REMARK 5.4. We fix My and Mg which are minimal Levi subgroups of H and G respectively.

The distributions JH (f) and JH(f) (defined as constant terms of J&*% (f) and JHT(f) respectively) are
independent of the choice of the minimal parabolic subgroup Py 2 My of H. In fact, the argument of [13,
Proposition 4.6] after some minor modifications applies here because elements in Q7 have representatives
in H(F)N K in our cases.

PROOF OF THEOREM 5.2. Let P be any standard parabolic subgroup of H, § € P(F)\H(F) and
x € H(A)!. By substituting T} = Hp(éx) —T" and To =T — T" in (5.0.7), we have
H(HpOz)-T)= Y (~1)mA/2R(Hp(6z) — T')To(Hp(dx) — T, T —T).
{Q:PCQ}
Then

JH,T f :/ -1 dim(Ap/Am) %:H Hols2) —T) - k 5% e
o) H(F)\H(A)! Z (=1) Z p (Hp(0z) ) - kg,po(dz)

{P:P,CP} SEP(F)\H(F)
:/ Z (—1)dim(Ar/Am) Z
HFNH(M) 1 p.pyCPy SEP(F)\H(F)

> (~) A/ ANER (Hp(x) — T Tq(Hp(x) — T',T = T') | ky.po(0x)da.
{Q:PCQ}

By exchanging the order of two sums over P and @ and decomposing the sum over P(F)\H(F') into two
sums over P(F)\Q(F) and Q(F)\H (F'), we obtain

ORI S | >yt S >
{Q:PocQ} T HENHIA (p.p,cpcqy 5€P(F)\Q(F) 8'€Q(F)\H(F)
7e(Hp(80'z) — T'\To(Hp(66'x) — T, T — T'Vk.p.o (66 x)dx:.

Combining the integral over H(F)\H(A)! and the sum over Q(F)\ H (F) into the integral over Q(F)\H (A)!,
and noticing that

P(F\Q(F) =~ (P(F) N Mq(F))\Mq(F),
we have

= S (it >
{(Q:Poc@y 7 QUNHW! (p.pycPcq) SE(P(F)NMq(F))\Mq(F)
72(Hp(6z) — T To(Hp(6x) — T', T — Tk po(6z)dz.
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By the Iwasawa decomposition and our choice of measures, we get
{Q:Py CQ} MQ(F \MQ(A AH Oo NQ(F)\NQ(A) {P:P,CPCQ}

72 (Hp(6namk) — T'\Tq(Hp(6namk) — T', T —T")
5€(P(F)ﬂMQ(F))\MQ(F)

k¢ p.o(Onamk)e22Hro () dndadmadk.
We notice that
78 (Hp(onamk) — T') = 73 (Hp(dm) + Hp(a) — T') = 72 (Hp(dm) — T")
and that
Lo(Hp(dnamk) —T', T —T") = Tq(Hg(énamk) — T', T —T') =Tg(Hg(a) = T',T - T").

Additionally, using Ag = A~ and change of variables, we see that

k¢ po(dnamk) = Z / f(Ad(dnamk)™ (Y 4+ U))dU
Yems(F)no ? (MpN8)(A)
= Z / f(Ad(6a namk)™ (Y + a'Ua))dU
Yemg(F)No 5Ns)(A)

/ f(Ad(sa™ 'namk) (Y + U))e2ﬂQ,s(HP0(a))dU
Yema(F)no ? (1p09)(4)

- ezﬂQ,s(HPO(a))kﬁPm(5a*1namk)’
where pg s is defined in Section 3.4. Since da~'nad~' € Ng(A) C Np(A) and k¢ p, is left invariant by
Np(A), we deduce that
kg po(Onamk) = e2sHrolD k. b (§mk).
To sum up, the integrand in JZ7(f) is independent of n € Ng(F)\Ng(A). Recall that we choose

the Haar measure such that vol(Ng(F)\Ng(A)) = 1. By Corollary 3.11, the factors e—20Q(Hpy(a)) and
e2rQ.s(Hpo(a)) cancel, and then

JHT () — Tn(H —T'' T —T"d
0 (f) Z </Ag°° Q( Q(a) ’ ) a) /MQ(F)\MQ(A)I

{Q:PoCQ}

(—1)dim(Ar/AQ) 3 29(Hp(dm) — T') ( /K kf,P,a(amk)dk) dm

Se(P(F)NMq(F))\Mq(F)

{P:PyCPCQ}

From the definition of the Haar measure on Ag’oo, we have

/AH N To(Hg(a) — T, T —T)da := /H Lo(Th — T, T —T)dT}
Q aQ

:/ To(Ty,T — T')dTy.
ag

Since ng = ng ®ng, by change of variables, we deduce that

k’f,P,o((Smk‘) = Z / / f(Ad(émk)_l(Y+ U+ V))dv
Yemgs(F)ne ' ("5 2ns)(a) (nzNs)(A)
> / : dU/ FAA(E™)(Ad(Om) " (Y + U) + V))dV,
Yems(F)no  (Mp0s)(4) (ngNs)(A)

where we need to verify that the change of variables V' — Ad(ém)(V') does not change the Haar measure.
This can be shown by Proposition 3.12 in two steps: firstly, n5Ns = ng7 shows that V — V' := (6m)V
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does not change any Haar measure; secondly, ngNs=1ng shows that V’ + V/(6m)~! does not change
any Haar measure. Then we can write

/ka,p,u(amk)dk— > /n o(Ad(6m) (Y + U))dU

YGmP F)No ﬁs)(A)

M,
= Z ka(?Pﬂj\/[Qvoj (5m)
j=1

by (5.0.3). Now we can conclude by noting that

MQT Z/M Z (—1)dim(Arnag (Asg)

QUN\Ma(A)! (p.p,cPcq) SE(P(F)NMq(F))\Mq(F)

~Mq
TPmM (Hprng (0m) — T/)ka PNMgq,0; (6m)dm

:/ Z (_l)dlm(AP/AQ)
Mo (FN\Mo (&) rp.pycPcqy SE(P(F)NMq(F))\ Mg (F)

t
(Hp (6m) — Z fQ POMo.0; (6m) | dm.

6. Noninvariance

Let @ be a standard parabolic subgroup of H and y € H(A)'. For f € S(s(A)), define fg, €
S((mg Ns)(A)) by

(6.0.1) VY € (mgNs)(A), fou(Y //( m)(A) FAA(E™) (Y 4+ V))po(—Hg (ky))dV dk,

where for T' € ap,, we write
pQ(T) = / FQ(Tl,T)dTl.
g

We can also extend our results in last section to the product setting by the same argument. Let 0 € O
and f* € S((mgzNs)(A)). For T € Ty +a},, Jo'@" (f*) and JM@T(f*) (defined by (5.0.4) and (5.0.5)
respectively) are polynomials in 7. Then we can extend them to all T € ap,. Denote by Jéw 2(f*) the
constant term of Jo @7 (f*).

PROPOSITION 6.1. For f € S(s(A)) and y € H(A)!, we denote f¥(z) := f(Ad(y)(z)). Foro € O,
we have

JEM = Y 5% (fou)

{Q:PoCQ}

PROOF. Let T € Ty + af, . By definition,

T (V) = / e S (rpdm@r/an ST A (Hp(8) — T) - kpo,po(82) | dr,

{P:P,CP} deP(F)\H(F)
where
hpopalor) = Y / A(y)Ad(G) " (Y + U))dU = ks po (62~ ).
Yemg(F)No (np ﬁs)(A)

Invoking change of variables, we get

s = | S (I S Hpomy) ~T) el |
HFNHM) \ (p.p,CP} SeP(F)\H(F)
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For x € H(A) and P a standard parabolic subgroup of H, let kp(x) be an element in K satisfying
xkp(x)~! € P(A). Then

7F (Hp(dxy) = T) = 7f (Hp(d2) = T + Hp(kp(62)y)).
By substituting 71 = Hp(dz) — T and Ty = —Hp(kp(dz)y) in (5.0.7), we get
T (Hp(bzy) —T) = Y (~1)"AMA7E(Hp (6x) — T)To(Hp(d2) — T, —Hp(kp(62)y))-

{Q:PCQ}
Then
JET (1) :/ Z (—1)dim(Ar/Am) Z
HIENHA)! ¢p.pycp) SeP(F)\H(F)

> (—n)ImA/AmEE (Hp(6x) — T)C(Hp(07) — T, —Hp(kp(dx)y)) | - ky,po(0x)dz
{Q:PCQ}

By exchanging the order of two sums over P and @, and decomposing the sum over P(F)\H(F) into
two sums over P(F)\Q(F) and Q(F)\H (F), we deduce that

JET(fv) = Z / Z (,1)dim(Ap/AQ) Z Z
{Q:PocQy THUINHA 1p.p cpcq) S€P(F)\Q(F) 6'€Q(F)\H(F)
75 (Hp(08'z) — T\Tq(Hp(66'x) — T, —Hp (kp(55'z)y))ky,po(06'x)dx.

By combining the integral over H(F)\H(A)! and the sum over Q(F)\H(F) into the integral over
Q(F)\H(A)! and using the fact that

P(F\Q(F) ~ (P(F) N Mq(F))\Mq(F),
we have
=y S (nytme/ae >

{Q:Poc@y " CUNHA (p.p CPCq) 5€(P(F)NMq (F)\Mq(F)
78 (Hp(82) = T)Tq(Hp(82) — T, —Hp (kp (52)y))k,p.o(02)dr.

By the Iwasawa decomposition and our choice of measures, we get

=y [ S (it

{Q:Po CQ} Mq(F)\Mqg(A)t JA, NQ(F)\Ne(4) (p.p,cPCQ}

?P (Hp(dnamk) — T)I'q(Hp(dnamk) — T, —Hp(kp(dnamk)y))
se(P(F )ﬂMQ( M\ Mg (F)

k¢ p.o(Onamk)e2P2Hro () dndadmdk.
As in the proof of Theorem 5.2, we see that

7 (Hp(6namk) — T) =7 (Hp(6m) — T),

and that
ks, p.o(Onamk) = e2*@Hro( @, p o (5mk).
Additionally,
Iq(Hp(dnamk) — T, —Hp(kp(dnamk)y)) = Tq(Hg(dnamk) — T, —Hqg(kp(dnamk)y))

=Tq(Hg(a) — T, —Hq(kq(dnamk)y))
=TLq(Hq(a) =T, —Hq(ky)).

In sum, the integrand in JI7(f¥) is independent of n € Ng(F)\Ng(A). Recall that we choose the Haar
measure such that vol(Ng(F)\Ng(A)) = 1. Then

Jf’T(fy) _ Z / / / Z (_1)dim(Ap/AQ) Z
(@ Rocq@) VK I Mo\ Mo ()} JAG™ (p.picpc ) S€(P(F)NMq(F))\Mq(F)

TR 9 (Hp(6m) — TI'q(Hg(a) —T,—Hg(ky))k,po(dmk)dadmdk.
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First, let us consider the integral on Ag’oo, which is
[ TalHote) = T.~Ho(ky))da = [ To(Ty ~ 7.~ Ho(ky))dTi
Ag ag
= /H FQ(Tl, —H@(k‘y))dTl
aQ
=pq(—Hq(ky)).

Next, we compute the integral on K, which is

| b.palombipo (- Ho (k) dk

As in the proof of Theorem 5.2, we see that

kppo(Omk)= Y /n o dU/(n - FAd(E™ Y (Ad(6m) (Y + U) + V))dV,

Yemg(F)No

SO we can write

/K ks.po(0mk)po(—Ho(ky))dk = > / L(Ad(Gm) Y (Y +U))dU

Yems(F)No 05)(A)

- Z fQ.vamMQvoj (6m)
j=1

by (5.0.3). Therefore, we obtain

= Y (/) )>
{Q:PCQ) Y MaFNMa(®) (p.p,CPCq) S€(P(F)NMq(F))\Mq (F)
t
~ M
7¢(Hp(6m) —T) kp® panig.o, (0m) | dm.

Jj=1

As in the proof of Theorem 5.2, we notice that

Mg, T im
Jo @ (foy) = (—1)dimiAr/Aq) >

/JV’Q(F)\MQ(A {P:P,CPCQ} SE(P(F)NMq(F))\Mq(F)

79(Hp(6m) —T) Zk%‘fy’PmMQ’oj(ém) dm.
j=1

Thus we deduce that

TR = 3 1 (fw).
{Q:PCQ}
We may conclude by taking the constant terms of both sides. O

7. An infinitesimal trace formula for s//H

Recall that for f € S(s(A)), we have defined its Fourier transform f € S(s(A)) by (3.3.1) and
denoted the constant term of J& 7 (f) by JH(f).

THEOREM 7.1. For f € S(s(A)), we have the equality,
YLD = 5D
0cO 0cO
PrOOF. Applying the Poisson summation formula, for any x € H (A) we have
Y fAdETHY) = > fAd@E@H(Y)),
Yes(F) Yes(F)
ie.,

kf’H(l') = kﬁH(x)
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By Corollary 4.4, for all T € T'y + aJ}SO satisfying a(T) > €g || T || for any o € Ap,, we get
[T (f) —/ FH (2, Tk g (x)dz| < Cre=NI7I
H(F)\H(A)!

and
|THT(f) —/ FH(x,T)kfﬁH(a;)dx‘ < Cpe=NITI,
H(F)\H(A)

Hence R
[TEEC) =TT < (Cr + Ca)e”MITL
By Corollary 5.3, we know that both of J#T(f) and JH’T(f) are polynomials in 7', so we deduce
that
UL (f) = T ().

From
JT(f) = I ()
0ocO
and . R
Ty = I (),
00
we obtain .
ST =D T,
0O 0O
We can draw the conclusion by taking the constant terms of both sides. O

8. The second modified kernel

Let f € S(s(A)), P be a standard parabolic subgroup of H and o € O, (see Section 3.3). For
x € P(F)\H(A), define

Jrpe(@) = Y Y. f(Ad(nz) (V).
Yemp(F)NoneNp(F)

For T € ap and x € H(F)\H(A), define

Jfo(@) = Y (-ptmAriAm N S (Hp(6w) = T) - jf,po(0n).

{P:PoCP} S€P(F)\H(F)
By [3, Lemma 5.1], we know that the sum over § € P(F)\H(F) is finite.
LEMMA 8.1. Let P be a standard parabolic subgroup of H and o € Op,. ForY € mz(F)No, the map
Np = npns,n—Adn ™ )(Y)-Y

is an F-isomorphism of algebraic varieties and preserves the Haar measures on A-points.

PRrROOF. Recall that there are two cases considered in Section 3.4. First let us focus on Case I. In
this case, we can suppose

ReSE/FGthD/ ReSE/FMCLth(n%D/ ResE/FMatnlxnhD/
RGSE/FGLR%D/ ResE/FMathnl’D/

ReSE/FGLm,D'

Then
GLnl,D Matnl xng,D Matnl xny,D
~ GL’!LQ,D e Mat’n.g xny,D
P = . .
GL,, p

We have chosen an element 7 € D* in Section 3.4. Recall also Proposition 3.12.

Let
Y

Y = emp(F)No,
Y,
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where Y; € GL,,,(D")7 for 1 < i <, and

1 np -+ ny
1 naj

n = . GNP&
1

where n;; € Resg/rMatn, xn; D for 1 <i < j <I. Then

0 Yinig —ni2Ye -+ Ying —nuY]

0 o Yomg — ngY;
Yn—nY = ) . EngNs.

Now we claim that the morphism of F-affine spaces

ResE/FMathnjp/ — (RGSE/FMCLtni an,D’)T

nij = Yingj —ni;Y;

induces an F-linear isomorphism on F-points. In fact, since it gives an F-linear map between finite
dimensional linear spaces of the same dimension, we only need to prove that this map is injective. If
Yini; —ni;Y; = 0, then Y?n;; = Yin;;Y; = ni;Y,?. We view this as an equation of matrices with entries
in D’ or its base change to an algebraic closure of E. Since Y is regular semi-simple, Y2 is regular semi-
simple in h(F) (viewed as a central simple algebra over E), so Y;? and sz have no common eigenvalue.
By the classical theory of Sylvester equation, we know that n;; = 0 and conclude.

Using this claim, we see that the map

Np —ngNs,n—Yn-—nY

is an F-isomorphism of algebraic varieties and preserves the Haar measure on A-points. Notice that
Adn 1) (Y) —=Y = n71(Yn —nY). It is easy to see that here n~! functions as some translation
Yin; —ni;Y; — Yingg —ni;Y;+ > (a polynomial of nyjr, i > 4,5 <jori >i,j <j) Yeng —niY;),
k>j
so an analogous assertion still holds for the map n ~— Ad(n=!)(Y) - Y.
Next let us turn to Case II whose proof is close to the first one. In this case, we may suppose

ResE/FGL%7D®FE ResE/FMatn—;X%,D(@pE ReSE/FMat%x%,D(@FE
- Resp/pGLrz pgpp -+ ResgypMatrg i py,p
ResE/FGL%7D®FE
Then
GLnl,D Matannz,D Matmx"“]_‘)
~ GLnQ,D c MatngXTll,D
P = .
GLy, D

We have chosen an element 7 € GLy(D) in Section 3.4. Recall again Proposition 3.12.
Let

Y,
Y = Emﬁ(F)ﬂo,
Y;
where Y; € GL%(D ®p E)7 for 1 <i <, and
1 ni2 -+ ny
1 e n2l
n= € Np,
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x4 D& pE for 1 <i < j <!l Then
0 Yinig —nieYe -+ Ying —nyuY;
0 -+ Yong —ngyY)

where n;; € Resg/pMat n;
2

engNs.

Yn—nY =
0

As in the proof of the first case, we show that the morphism of F-affine spaces
— (Resp,pMat n; x%,Dt@FE)T

ReSE/FMat%X%7D®FE i
nij = Yingg — niY;

induces an F-linear isomorphism on F-points. This implies that the map
Np =-nsNs,n—Yn-—nY

is an F-isomorphism of algebraic varieties and preserves the Haar measure on A-points. By an argument
similar to that in the first case, we deduce that an analogous assertion is still true for the map n —
O

Ad(n=1)(Y) - Y.
THEOREM 8.2. For all T € T + a;o and o € O,.,, we have

/ 77 (@) ]dz < oo
H(F)\H(A)!

and
s = | ooz,
H(E)\H(4)!

PROOF. As in the proof of Theorem 4.2, by the left invariance of j; p, by P(F), we reduce the first

statement to
/ X (@l o) < 0,
Py (F)\H(A)*

where P; C P» are a pair of standard parabolic subgroups of H and for x € P;(F)\H(A), we put

Jpope(@) = Y (=) A ().
{P:PLCPCP>}

Additionally,
= > 3 S fAd(na)HE +Y).

Jr.pol) =
{RPCREP} cemB (F)no Ye(nEns)(F) n€NP (F)
1

> fAdETY(E+Y +u)

From Lemma 8.1, we have
Jrpe@) = 3, > >
{R:PlgREP}gem%(F)ma Ye(nEns) () wE(rpNs)(F)
= > > Y. fAdEThHE+Y).
{R:PLCRCP} cemB (m)no Y E(n5Ns)(F)
1
Hence
S AAdE T (E+Y))

jPl,Pg,o(x) _ Z (_l)dim(AP/AH) Z Z

{P:PLCPCPs} {R:PLCRCP} Eeﬁi;;w(F)ﬂo Ye(nﬁﬂs)(F)
1
S AAdEE+Y)).

Z Z Z (,1)dim(AP/AH)
Ye(ngns)(F)

{R;PlgRgPZ}geﬁp;(F)m {P:RCPCP,}
1

S fAd@HE+Y)).

Using [3, Proposition 1.1], we get
o YE(n—}gé Ns)(F)

5emf’;:f,(F)m

jP17P270(‘r)
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Applying Lemma 8.1 again, we obtain

Jppro(x) = (L) mARAm N Y. f(Ad(nez)TH(E)).
5@%%(@00 n2€Np, (F)

Now we decompose the integral over z € P;(F)\H(A)! into double integrals n; € Np, (F)\Np, (A)

and y € Mp, (F)Np,(A)\H(A)" and use the fact that xp, p, () is left invariant under Np, (A). We have

/ @i @)l
PL(F)\H (A)!

/ / G| XY Ay €)]| dmdy
Mp, (F)Np (A\H(A)' J Np, (F)\Np, (A) n2€Np, (F)

ceml2(F)no
Py

<

X£17P2 (ZU) Z

cem2(F)no
Py

> 1f(Ad(nanay) 1 (€)ldna | dy.

/Npl NP (A) e Np, (F)

/Mpl (F)Np, (A)\H(A)!

Since P, C P, and vol(Np, (F)\Np,(A)) = 1, we see that

| £(Ad(naniy) =1 (€))]dny

/NP1 (F)\Npl (&) n2eNP2(F)

|£(Ad(nanniy) =t (€))|dndna
n2€Np, (F)

- / / |F(Ad(nray) = (€)) dndny
NP1 (F)\Npl (A) NPQ (A)

-/ [ 1Ay e+ v,
Ney (F)\Np, (8) J (n5;n)(4)

where we have applied Lemma 8.1 in the last equality. Hence

/ X () e (@) da
Py(F)\H(A)!

/]VPl (F)\NPl (A) /]VPQ (F)\NP2 (A)

< / X W) Y ( / / |F(Ad(nay) 1 (€ + U>>|dUdn1> dy
Mp, (F)Np, (A)\H(A)! _7 Np, (F)\Np, (&) J (ng;Ns)(A)
gem2(F)no
= Pop@ Y [f(Ad(z™")(& + U))|dUda
XP1,P, )
Py(F)\H(A)! (np;N8)(A)

cem2(F)no
Py

whose convergence comes from that of the formula (4.0.3) when R = P5.
Next we begin to prove the second statement. From the first statement, now we are authorised to
write

/ Foww= > X (2)i Py o ()
H(F)\H(A)! {P1.Py:PC P C Py} Y P\ (A)!
where
JPopee(@) = Y (=1)imAr/Am) G b ()
{P:P1§P§P2}

= ) (Fydmar/am > Y. f(Ad(nz)TH(Y))
{P:P1CPCP2} Yemp(F)NoneNp(F)

Decompose the integral over € Pi(F)\H(A)! into double integrals over ny € Np, (F)\Np, (A) and
y € Mp, (F)Np,(A)\H(A)!. Since Np, (F)\Np, (A) is compact, from Lemma 8.1 and [53, §41], we know
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that

S @Ay )= Y Y Ay (Y + )

Yemg(F)NoneNp(F) Yemg(F)Nouc(ngns)(F)

is bounded on 1, € Np, (F)\Np, (A). Then using the fact that xp, p,(x) is left invariant under Np, (A),
we have

Jt.0()dr = > / Xpy.p,(Y) > (=1
/H(F)\H(A)l Tre Mp, (F)Np, (A)\H(A)! PP

{P1,P2:PyCP1CP2} {P:PLCPCP>}

Z /N Z f(Ad(nnyy) 1 (Y))dny | dy.

Yemy(F)No Py (F)\Np, (A) neNp(F)

Since P; C P and vol(Np(F)\Np(A)) = 1, we see that

(A S f(Ad(nnyy) " (Y))dny

(F)\Np, (A) n€Np(F)
/NP neENp(F)

/ / F(Ad(nnay)~ (V) dndn:
Np, (F)\Np, (A) JNp(A)

=/ /' F(Ad(nay)~ (Y + U))dUdn,
Ny (F)\Npy (8) J (n51s) (4)

where we have applied Lemma 8.1 in the last equality. Therefore, we have

s _ T _ \dim(Ap/Ag)
71y (w)da = / Xy pa ) (-1)
/H(F)\Hw T 2 Mpy (F)Np, (W\H(a) 2

{Py,P,:PyCP,CP5} {P:P,CPCP}

> (/ / FAd(nay) M (Y + U))dUdm) d
Ny (F)\Npy (4) J (n508) (4)

YEmI;(F)ﬁa

_ T (LIT) (71)dim(Ap/AH)
/Pl P 2

{P1,Ps: POCP1CP2 {P:P,CPCP>}

1

f(Ad(nnoniy) =1 (Y))dnadny

(F)\Np, (A) /IVP(F)\NP(A)

1

/ f(Ad(z")(Y +U))dU | dz
Yems(F)No (npNs)(4)

- X @iy @),
{Py,Pa: PBaC P, C P} ¥ PLIE\H ()

Thanks to Theorem 4.2, we are able to write
s = | KTy (x)d = / Xh, () py o),
H(F)\H(A)! Py (F)\H(A)?

which completes our proof. O

{P1,P2:PyCP1CPp}

9. Weighted orbital integrals

Let 0 € O, (see Section 3.3). There is an element Y7 € o and a standard parabolic subgroup P; of
H such that Y1 € mz (F) but Y7 can not be Mp, (F)-conjugate to an element in R (or equivalently in
Mg by Proposition 3.3) for any standard parabolic subgroup R C P;. We call such Y] an elliptic element
n (mp Ns)(F). For P and P a pair of standard parabolic subgroups of H, denote by Qf (ap,,ap,) the
set (perhaps empty) of distinct isomorphisms from ap, to ap, obtained by restriction of elements in Q.

LEMMA 9.1. Let P be a standard parabolic subgroup of H. LetY € (mzNs)(F) be a regular semi-
simple element in 5. Then'Y is an elliptic element in (mps N s)(F) if and only if the mazimal F-split
torus in Hy is Ap.
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PROOF. It is evident that Hy C Hy=. From Y € (ms Ns)(F), one knows that Ap C Hy. Since YV’
is regular semi-simple in s, one deduces that Y2 € mp(F) is regular semi-simple in h(F) (viewed as a
central simple algebra over E). Thus Hy2 C Mp.

On the one hand, suppose that Y is an elliptic element in (m3Ns)(F'). If the maximal F-split torus in
Hy isnot Ap, then there exists a F-split torus A, such that Ap C A, C Hy. For A, C Hy C Hy2 C Mp,
the centralizer Centps, (A.) of A, in Mp is a Levi subgroup of Mp. There exists m € Mp(F') such that
Ad(m)(Centps, (Ax)) = Mg, for some standard parabolic subgroup R. of Mp. Then Ad(m)(A.) C Ag,
and the centralizer of Ad(m)(A,) in Mp is Mg,. Let R be the unique standard parabolic subgroup
of H such that R C P and that RN Mp = R,. Then Ar = Agr, and Mg = Mg, . Since 7 (see
Section 3.4) commutes with Ag, by Proposition 3.12, the centralizer of Ad(m)(A.) in mpNsis mzNs.
From A, C Hy, one obtains Ad(m)(A.) € Haq(m)(v)- Since Ad(m)(Y) € (mzNs)(F), we deduce
that Ad(m)(Y) € (mz Ns)(F). Because Ap C A, and Ad(m)(A.) C Ag, we have Ap C Ar and thus
R C P. That is to say, Y is not an elliptic element in (mz N s)(F"). It is a contradiction. This proves
one direction.

On the other hand, suppose that the maximal F-split torus in Hy is Ap. If Y is not an elliptic
element in (mp N s)(F), there exists m € Mp(F) such that Ad(m)(Y') € (mgzNs)(F) for some standard
parabolic subgroup R C P. Then Ar C Haq(m)(v), i-¢., Ad(m™1)(Ag) C Hy. For R C P, one sees that
Ap C Ad(m~1)(Ag). That is to say, Ad(m~1)(Ag) is a strictly larger split torus than Ap in Hy. It
contradicts our hypothesis. This proves the other direction. (I

THEOREM 9.2. Let 0 € O,,, P be a standard parabolic subgroup of H and Y1 € o be an elliptic
element in (mp Ns)(F). For f € S(s(A)), we have

J(f) =V01(A?-§HY1(F)\HY1(A))-/ F(Ad(z ™) (Y1))vp, (2)dz,
Hyy (A)\H(A)

where vp, (z) is left-invariant under Hy, (A) and is equal to the volume of the projection onto aff of the
convez hull of {—Hq(z)}, where Q takes over all semi-standard parabolic subgroups of H with Mg = Mp, .

REMARK 9.3. The weights that we obtain for regular semi-simple orbits are the same as Arthur’s
in [3, p. 951]. These weights are also the same as those (see [39, p. 131]) appearing in the twisted
trace formula for H X o, where o acts on H by Ad(7) (see Section 3.4 for the choice of 7). Notice that
the action o stabilises Py and Mj. All standard parabolic subgroups P of H are o-stable and o fixes
ap = aﬁ.

PROOF OF THEOREM 9.2. Let P be any standard parabolic subgroup of H and Y € mz(F) No.
There exists a standard parabolic subgroup P C P and Y> an elliptic element in (mp N s)(F) such
that Y3 is Mp(F)-conjugate to Y. By Lemma 9.1, the maximal F-split torus in Hy, is Ap,. Any
element in H(F) which conjugates Y7 and Y3 will conjugate Ap, and Ap,. It follows that there exists
s € Qf(ap,,ap,) and m € Mp(F) such that

Y = Ad(mws)(Y1).

Suppose that P3 C P is another standard parabolic subgroup, s’ € Q(ap,,ap,) and m’ € Mp(F) such
that

Y = Ad(m'wg ) (Y1).
Then there is { € Hy (F') such that
m'wy = (mws.
From Hy C Mp, we see that
wer = Ews

for some ¢ € Mp(F). Denote by Q (ap; P) the set of s € |J Qf(ap,,ap,) satisfying ap C sap,

ap2
and s 'a > 0 for each a € Ag. In sum, for any given P a standard parabolic subgroup of H and
Y € mp(F) No, there is a unique s € Q(ap,; P) such that Y = Ad(mw,)(Y1) for some m € Mp(F).
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For x € P(F)\H(A), we have
rpel@) = Y Y f(Adna)TH(Y))

YEmﬁ(F)ﬂO nENp(F)

— Z Z Z F(Ad(mnz) " Ad(w,)(Y1))
s€QH (ap,;P) MEMp, Ad(ws)(v) (F)\Mp (F) neNp(F)
> > F(Ad(ma) " Ad(ws) (Y1),

H .
s€Qf (ap,;P) MEMp Ad(ws)(v1) (F)\p(p)

where Mp ad(w,)(v,) denotes the centralizer of Ad(w)(Y1) in Mp. Then for T' € ap and x € H(F)\H(A),
we deduce that

Jfele)= % (=pimAr/am N F(Hp(dx) —T) - js,p.o(0c)

{P:PyCP} SEP(F)\H(F)
= Y (ptm@riam N A (Hp(br) - T)
{P:P,CP} SEP(F)\H(F)
> > f(Ad(méz) ™ Ad(ws) (V1))
s€QH (ap,;P) meMP,Ad(ws)(Yl)(F)\P(F)
= Y (-pdméaram N > 7H(Hp(0z) —T)
{P:P,CP} SET(@P1P) §eMp pagws)vy) (F) \H(F)

- f(Ad(0z) T  Ad(ws) (V1))
Notice that the centralizer of Ad(ws)(Y7) in H is actually contained in Mp, so

fola) =Y (-pdmr/am K7 > 75 (Hp(0x) = T) - f(Ad(d2) ™ Ad(ws) (Y1)
{P:PoCP} s€@leriPlsen | 1(r)\H(F)
= Y (cpydtmGriam R > 75 (Hp(wsox) —T) - f(Ad(d2) " (Y1)
{P:P,CP} S€QH (ap, ;P) S€Hy, (F)\H(F)

For y € H(A), we write

xr(y) = Y (FndmAeim N T (Hp (wey) — 1)
{P:P,CP} s€QH (ap,;P)
Then
Jfo(@) = > F(Ad(d2) "1 (V1)) - xr ().

deHyy (F)\H(F)

For T € Ty + a'lf,o, applying Theorem 8.2 and the fact that ]JT o () is left invariant by A%y, we have

JHT(f) = / J7 (@) dz
H(F)\H(A)

_ / FAA(52) " (V) -y (62) | da
AR HIENH) A sety, (P)\H(F)
Then we obtain
(9.0.1) JIT(f) = vol(A% Hy, (F)\Hy, (A)) / f(Ad(z™N)(Y1))vp, (2, T)d,
Hy, (W\H(A)

where
vp, (x,T) := / xr(az)da.
AF\AE

Here we have used the fact that vp, (z,T) is well-defined and left-invariant under Hy, (A) C Mp(A).
Moreover, vp, (z,T) is equal to the volume of the projection onto agl of the convex hull of {Ty — Hg(z)},
where Ty denotes the projection of sT in ag for any s € QF satisfying sPy C @, and @ takes over all
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semi-standard parabolic subgroups of H with Mg = Mp,. These properties follow from [3, p. 951]. We
have also assumed the finiteness of vol(A® Hy, (F)\Hy, (A)), which results from Lemma 9.1.
In the end, we may conclude by taking contant terms of both sides of (9.0.1). O

10. The weighted fundamental lemma

In this section, we turn to the local setting and change the notation by letting F' be a non-archimedean
local field of characteristic 0.

10.1. (H, M)-families associated to local weighted orbital integrals. Suppose that H is a
reductive group defined over F. Fix a maximal compact subgroup K of H(F') which is admissible relative
to Mp in the sense of [5, p. 9]. Again we choose the standard one for an inner of GL,,. For a parabolic
subgroup P of H and x € H(F'), we have H(F') = P(F)K by Iwasawa decomposition and define Hp(x)
as in Section 2.2 by replacing | - |4 with the normalised absolute value | - | on F. Suppose that M
is a Levi subgroup of H containing My. Let P(M) be the set of parabolic subgroups of H with Levi
component M. According to [5, p. 40-41],

vp(\, z) = e MNHP@) X e iat, P e P(M),

is an (H, M)-family in the sense of [5, p. 36]. Let P € P(M) and Q be a parabolic subgroup of H
containing P. Define

03(\) = vol(aR/Z(A%)) ™[] Aa¥),
ave(Af)v

where Z(A%)Y denotes the lattice in a% generated by (A%)Y. Then we obtain a function

0% (z) := lim Z vp(\, 2)02(N) " Vo € H(F).

A—0
{PeP(M):PCQ}

10.2. Matching of orbits. Assume that F' has odd residue characteristic and that E is an un-
ramified quadratic extension over F. Let G := GLo, and H := Resg / rGLy g be the centralizer of
E* in G. Let H' := GL,, x GL,, be the subgroup of G by diagonal embedding. Denote by Op the
ring of integers of F. All of G, H and H' are regarded as group schemes over Op. Let s (resp. s')
be the tangent space at the neutral element of G/H (resp. G/H'), which is viewed as a subspace
of g. Here we can and shall identify s(F) ~ §(F'), on which H(F) acts by twisted conjugation, i.e.,

h-Y = hYﬁil, where h denotes the nontrivial Galois conjugate of h € h(F). In fact, we can write con-
cretely G(F) ~ { ( % z ) . ABe GL,L(E)}, H(F) ~ { ( A - ) L Ae GL,L(E)} and s(F) ~

{ ( % ? ) " Be g[n(E)}a and choose 7 = (10 10”> in this form. Additionally, if we write G(F)

in the usual form of invertible 2n x 2n-matrices over F' and H'(F) = { < A B ) 1A, Be G'Ln(F)}7

then s'(F) = { ( g 61 ) : A, B € g[n(F)} ~ gl (F) @ gl,,(F). We see that H'(F) acts on s'(F) by

conjugation, i.e., (x1,z2) - (A, B) = (x1Azy ', xoBayt).

Recall [10, Lemma 1.1 of Chapter 1] that the norm map Y + YV induces an injection from the
set of twisted conjugacy classes in GL, (E) to the set of conjugacy classes in GL,,(F'), whose image is
denoted by N(GL,(FE)); in particular, we write NE* for N(GL;(E)). We have the notions of regular
semisimple elements in s(F') and s'(F) (whose sets are denoted by s,s(F) and s/ (F) respectively) as
before, which are explicitly described as follows.

PROPOSITION 10.1. 1) An element Y of s(F) is reqular semi-simple if and only if YY belongs to
GL,(E) and is regular semi-simple. The map Y + YY from s(F) to GL,(E) induces an injection
from the set of H(F')-conjugacy classes of reqular semi-simple elements in s(F') into the set of regular
semi-simple conjugacy classes in GL,(F).

2) An element X of s'(F) is regular semi-simple if and only if it is H'(F)-conjugate to an element
of the form



with A € GL,(F) being regular semi-simple. The map (g 61) — AB from §'(F) to GL,(F) induces

a bijection between the set of H'(F)-conjugacy classes of regular semi-simple elements in s'(F) and the
set of reqular semi-simple conjugacy classes in GL,,(F).

PROOF. 1) is contained in [24, Lemma 2.1], while 2) is proved in [31, Proposition 2.1 and Lemma
2.1]. O

To sum up, the composition of the map in 1) and the inverse of the map in 2) above induces an
injection from the set of H(F)-orbits in s,s(F') into the set of H'(F)-orbits in s/ (F). We shall say
that Y € s,5(F) and X € s/ (F) have matching orbits if their orbits are matched under this injection.
Alternatively, this can be canonically characterized by an identification of categorical quotients s//H ~
s'//H' (see Proposition 3.5 and Proposition 3.3 in Chapter 2). With our identification s(F) ~ h(F'), we

0 A
see that YV € 5,4(F) and X = (B 0
polynomial of YY € GL,(E) equals that of AB € GL,(F).

) € s/ (F) have matching orbits if and only if the characteristic

10.3. Matching of Levi subgroups involved. We recall some terminology in §3.4 and §5.2 in
Chapter 2. The subgroup of diagonal matrices in G is a common minimal Levi subgroup of G and H'.
We also fix a minimal semi-standard parabolic subgroup of H’ to be the group of products of upper

triangular matrices. We say that a semi-standard parabolic subgroup of G is “relatively standard” if

its intersection with H’ is a standard parabolic subgroup of H'. Let w := (10 15) We say that a
n

semi-standard parabolic subgroup P of G is “w-stable” if Ad(w)(P) = P. Recall that if the Lie algebra

of a relatively standard parabolic subgroup P of G has non-empty intersection with s/, then P must be

w-stable (see Proposition 5.1 in Chapter 2).

We shall say that a semi-standard Levi subgroup M’ of G is “w-stable” if M’ = Mp/ for some w-stable
parabolic subgroup P’ of G. We should remark that this condition is stronger than Ad(w)(M’) = M’:
for example, the minimal Levi subgroup of diagonal matrices in G is not considered to be w-stable in our
sense. Here w-stable Levi subgroups of G play the role of semi-standard Levi subsets of (GL,, X GL,) x o’
in the sense of [37, §1.1], where ¢’ exchanges two copies of GL,,. For any linear subspace v of g, we denote
by v* the intersection of v and G in g. Notice that there is a bijection between the set of semi-standard
Levi subgroups of GL,, and the set of semi-standard Levi subgroups of H (resp. the set of w-stable

X
Levi subgroups of G) induced by M, +— M = Resg,pM, g (resp. M, — M' = (2" 2") ); here
n n
m,, denotes the Lie algebra of M,,. We shall use the notations M,,, M, M’ to denote the corresponding
semi-standard or w-stable Levi subgroups of different groups under these bijections after fixing one of
the three. We also have bijections among semi-standard or w-stable parabolic subgroups (denoted by
Qn,Q, Q") of different groups containing these Levi subgroups.

Let M’ be an w-stable Levi subgroup of G. We shall say that ¥ € m(F) N s,5(F) and X €
w'(F) Ns.. (F) have M’-matching orbits if in each pair of blocks of m and m’, their components have
matching orbits.

10.4. Transfer factor. Let n be the quadratic character of F*/NE* attached to the quadratic

field extension E/F. For X = <g 61

> € s, ,(F), define a transfer factor (see [58, Definition 5.8])
K(X) = n(det(A)),

which satisfies k(Ad(z~1)(X)) = n(det(x))x(X) for any x € H'(F).
10.5. Transfer of weighted orbital integrals. Fix the Haar measures on H(F) and H'(F') such

that vol(H(OFr)) = vol(H'(Of)) = 1. For a locally compact and totally disconnected space X, denote
by C2°(X) the C-linear space of locally constant and compactly supported functions on X.

DEFINITION 10.2. 1) Let M be a semi-standard Levi subgroup of H and Q a parabolic subgroup of
H containing M. For'Y € m(F) Ns,s(F) and f € C°(s(F)), we define the weighted orbital integral of
fatY by

TSV, f) -

/ F(Ad(@) (V)0 (2)d.
Hy (F)\H(F)
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2) Let M’ be an w-stable Levi subgroup of G and Q' a parabolic subgroup of G containing M’ (thus
Q' is w-stable). For X € m'(F)Ns. (F) and [ € C(s'(F)), we define the weighted n-orbital integral of
fat X by

TH (X, ) = / F1(Ad()(X))n(det(x) v (z) da.
H (F)\H'(F)

REMARK 10.3. 1) v]% is a local analogue of the weight that we got in Theorem 9.2. By Remark 9.3,

(Resg/pQn,E)X0 . [

it is thi m in
t 1s the same as ’U(ResE/FMn,E)xcf

, §1.3], where o is the nontrivial Galois conjugation.

2) v]?/[/, is a local analogue of the weight that we got in Theorem 9.2 in Chapter 2. By Remark 9.3 in

(QnxQn)xd’

(Mo x M) si0” in [37, §1.3], where o’ exchanges two copies.

Chapter 2, it is the same as v

IfY € 5,.5(F) and X € s, ,(F) have matching orbits, their centralizers Hy and H’ are canonically
isomorphic. We shall fix compatible Haar measures on them.

DEFINITION 10.4. For f € C°(s(F)) and f € C°(s'(F)), we say that f and f’ are strongly associated
if for all w-stable Levi subgroup M' of G and all parabolic subgroup Q' of G containing M’ (thus Q' is
w-stable), we have

(1) if Y e m(F) Ns,s(F) and X € m'(F)Ns, (F) have M'-matching orbits, then
R(X) TGP (X f) = T F);

(2) if X = (g 61) em'(F)Ns. (F) satisfies {(AB) ¢ NE* for some § € X (Mg, )r, then

TR(X, f) = 0.

We remark that this definition is inspired by [37, Definition II1.3.2] on the base change for GL,.
The following result (cf. [37, Remark II1.3.2.(i)]) shows that to check the vanishing statement (2) in the
above definition, it suffices to check it for all w-stable Levi subgroup M’ of G such that X is an elliptic
element in m'(F) N s (F) (i.e. Ay is the maximal F-split torus in HY ).

PROPOSITION 10.5. Let f' € C°(s'(F)). The following two conditions are equivalent:
1) for all w-stable Levi subgroup M’ of G and all parabolic subgroup Q' of G containing M’, if

X = (g 13) e m'(F)Ns. (F) satisfies §(AB) ¢ NE* for some §{ € X(Mg, ), then

THS (X, f) =0

2) for all w-stable Levi subgroup M' of G and all parabolic subgroup Q' of G containing M', if
X = g é) is an elliptic element in w'(F) N s, (F) and satisfies E(AB) ¢ NE* for some

S X(MQH)F; then
T (X, ) =0

PRrROOF. The direction 1)=-2) is trivial. Now we assume 2) and prove 1).
Let X = (g 13) € m'(F) Nsl (F) satisfy £(AB) ¢ NE* for some £ € X (Mg, )r. There is
an w-stable Levi subgroup M, of G contained in M’ and an element y € M'(F) N H'(F) such that

X, := Ad(y)(X) is an elliptic element in '/, (F) Ns) (F). We have

(10.5.1) T (X, 1) = n(det(y) T3 (X, 1),
Suppose that X, = <BE) 1?;) Then {(A.B.) ¢ NE* for the above { € X (Mg, )r.
By the descent formula for (G, M')-families (see [37, Lemma 1.1.2]), we have
o= S g L
L'egQ (M)

where .Z? (M) denotes the set of Levi subgroups of G contained in Q" and containing M/ (thus L’
is w-stable), @), is some parabolic subgroup of G with Levi factor L’ (thus @, is w-stable), and
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d9, (M’ L') € Rsy is defined in [6, p. 356]. Thus

(10.5.2) T X = Y A (ML DT (X, ),
L'ex@ (M)

For all I € £9' (M), let £, € X(L,)r be the image of £ under the restriction X (Mg, )r < X (Ly)r.
Then £1,(A.B.) ¢ NE*. By our assumption 2), we have

TV (X, ) = 0.
Then by (10.5.1) and (10.5.2), we obtain

T (X F') = n(det(y) T (X, £) =0,

which shows 1). O
The proposition below (cf. [37, Lemma I11.3.3]) shows that strongly associated functions are smooth
transfers of each other in the sense of [58, Definition 5.10.(ii)].

PROPOSITION 10.6. If f' € C°(s'(F)) satisfies the conditions in Proposition 10.5, then for X €

' (F) with no matching orbit in s,.s(F), we have

s

S
JEE (X, f) = 0.

To prove this proposition, we recall two basic facts.

!
LEMMA 10.7. Suppose that > n; = n. Let A = (Ay,..., A1) € GL,,(F) X - - - x GL,,(F) be a
j=1
reqular semi-simple element in GL,,(F). Then A € N(GL,(E)) if and only if Aj € N(GL,,(E)) for all
1<j<l

PROOF. This is known, but we include its proof here for completeness (cf. [36, Lemma 8.8]). For A €
N(GL,(E)), there exists B € GL,,(E) such that A = BB. Since A € GL,(F), we have BB = BB, which
implies that AB = BA. But A is regular semi-simple in GL,,(E). Thus B € GL,,,(E)X---xGL,,(E). We
write B = (B, ..., B;) with B; € GL,,(E) for all 1 < j <. Then we obtain A; = B;B; € N(GLy,(FE))
for all 1 < j <. This shows one direction. The other direction is trivial. O

LEMMA 10.8. Let A € GL,(F) be an elliptic reqular element. Then A € N(GL,(E)) if and only if
det(A) e NE*.

ProOF. This is a special case of [10, Lemma 1.4 in Chapter 1]. O

0 1,
A 0
with A an elliptic regular element in M, (F") for some semi-standard Levi subgroup M,, of GL,,. Then
by Lemmas 10.7 and 10.8, X has no matching orbit in s,4(F) if and only if {(A) ¢ NE* for some
£ € X(M,)r. Let Q' be a parabolic subgroup of G with Levi factor M’. We have

PROOF OF PROPOSITION 10.6. Up to conjugation by H(F), it suffices to consider X =

TG X = T (X ),
But J}(/I’Q/ (X, f') vanishes for ' € C*(s'(F)) satisfying the conditions in Proposition 10.5. Then we
finish the proof. O
10.6. The weighted fundamental lemma. Let fo € C°(s(F)) (resp. f} € C°(s'(F))) be the
characteristic function of s(Op) ~ gl,,(Og) (resp. of s'(Of) = (gl, & gl,)(OF)).

THEOREM 10.9. The functions fo and fi are strongly associated.

The rest of the section is devoted to the proof of this theorem with the help of (split and unramified)
base changes for GL,,. Suppose that M’ is an w-stable Levi subgroup of G and that Q’ is a parabolic

subgroup of G containing M’ (thus @’ is w-stable). For x = (z; ;) € gl,,(E), let |z| := max; ; |z; ;75 ; :;/2.
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10.6.1. Split base change. Let A € GL,(F') be regular semi-simple and denote v := |det(A)|p. We
shall define ®, € C°(GL,(F) x GL,(F)) and ¥, € C:°(GL,(F)) as in the proof of [58, Lemma 5.18].
Let ®, be the characteristic function of the subset of (z1,22) € GL,(F) x GL,(F) satisfying |z1] < 1,
|z2| <1 and | det(z122)|r = v. Let ¥, be the function on GL, (F) defined by

W, () = / B, (22,73 g n(det () drs.
GL,(F)

We also define 0, (1, x2) := @, (21, z2)n(det(z1)) € CX(GL,(F) X GL,(F)).

We shall consider the action ¢’ on GL,, x GL, which exchanges two copies. Denote by (GL,, X
GLy)(1,,4),0 the twisted (by ¢’) centralizer of GL,, x GL, at (1,,A) and by GL,(F) the centralizer
of GL,(F) at A. Recall the (split) base change homomorphism (see [10, §5 of Chapter 1] for example)

defined by the convolution product, where H(GL,,(F) X GL,(F),GL,(Op)x GL,(OF)) and H(GL,,(F),
GL,(OF)) denote the corresponding spherical Hecke algebras. Notice that ®,,0, € H(GL,(F) X
GL,(F),GL,(0Of) x GL,(OF)) and that ¥,, € H(GL,(F),GL,(OF)).

LEMMA 10.10. We have
U, =bepyp/r(6y).

PROOF. Let v, := bepyp/p(0,). Via the Satake isomorphism, it suffices to prove that ¢, and ¥,
have the same orbital integrals at any regular element in the diagonal torus A, (F) of GL,(F'). Let
a € A,(F) be a regular element in GL,(F). From [10, §5 in Chapter 1], we know that the orbital
integral of 1, at a is equal to the twisted (by o’) orbital integral of ©, at (1,,a). By change of variables
(cf. the proof of [58, Lemma 5.18)]), the latter is

/ @U(xflasg,xz_laxl)n(det(mflxg))dajldaﬂg
(GLuXGLn) (1, ay.0/ (FO\GLn(F)XGLy (F)

/ <I>1,(:172,zz_lelaxl)n(det(zg))dxgdxl
(GL(F)a\GLn(F))XGLn (F)

Uy (Ad(z1)(a))day,

/GLH(F)E\GLH(F)
which is the orbital integral of ¥, at a. This completes the proof. (I

Suppose additionally that A belongs to the Levi subgroup M, (F). The twisted (by o) weighted
orbital integral of ©, € C°(GL,(F) x GL,(F)) at (1,,, A) is defined by

O, (a7~ (L, A)o” (2) 05 G e () dar.

(Qn Qn) o’ o
Tt ity o (Lns A), ©0) = (Mo x M) 0"

/(GLnxGLn)(l’A)'(,/(F)\GLn(F)xGLn(F)
The weighted orbital integral of ¥, € C°(GL,(F)) at A is defined by
S (A, W,) = / W, (Ad(z ) (A0 (2)da.
GLn(F)A\GLn(F)

COROLLARY 10.11. For A € M, (F) which is regular semi-simple in GL,(F'), we have

J((]QWZiiQMT;)));ag—' ((]‘nv A)u @'u) = JJQ\/[Z (A, \I’v)

PROOF. It results from Lemma 10.10 and [37, Theorem IV.5.2] for the (split) base change F' X
F/F. O

0 1,
Let X = (A 0
n(det(x] 'as)) for (z1,22) € GL,(F) x GL,(F), we see that

) e m'(F)Nsl (F). Then x(X) = 1. By Remark 10.3.1), since n(det(z1z2)) =

(10.6.1) R(X) TP (X ) = TS (1, 4),©,).
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10.6.2. Unramified base change. Let B € GL,(E) be such that BB is regular semi-simple and denote
w := |det(BB)|r. We shall define Z,, € C°(GL,(E)) as in the proof of [58, Lemma 5.18]. Let Z,, be
the characteristic function of the subset of x € GL,,(E) satisfying |z| < 1 and | det(2Z)|r = w.

We shall consider the nontrivial Galois conjugation o on Resg,pG Ly, g. Denote by GL,(E)p, , the
twisted (by o) centralizer of GL,(E) at B. Recall the (unramified) base change homomorphism (see
[10, §4.2 of Chapter 1] for example)

beg 2 H(GLy(E), GL,(Og)) = H(GL,(F),GL,(OF))

described via the Satake transform by f(z) — f(2%), where H(GL,(E),GL,(Og)) denotes the corre-
sponding spherical Hecke algebra. Note that =, € H(GL,(E),GL,(Og)).

LEMMA 10.12. We have

\Ilw = bCE/F(Ew)-

PRrROOF. This is essentially included in [23, Corollary 3.7]. Via the Satake isomorphism, it suffices
to prove that bcp,p(Zw) and ¥, have the same orbital integrals at any regular element in the diagonal
torus A, (F) of GL,(F). From [10, Theorem 4.5 in Chapter 1], we reduce ourselves to comparing the
twisted (by o) orbital integral of Z,, at 8 € A,(FE) such that 85 belongs to A, (F) and is regular with
the orbital integral of ¥, at regular elements in A, (F'). The former is computed in [23, the first case in
p. 139], while the latter is computed in [23, the first case in p. 137]. O

Suppose additionally that B belongs to the Levi subgroup M, (E). The twisted (by o) weighted
orbital integral of =, € C3°(GL,(E)) at B is defined by

(Resg/rQn, E)X0o —_ —_ _1 (Resg/pQn,g)X0o
g " (B,E.) ;:/ (@ Bo(z))o R ’ (2)dz.
(Resg/pMn g)x GLo(E)p.o\GLn () (Resg/pMn )%

COROLLARY 10.13. For B € M,,(E) such that A = BB belongs to M,,(F) and is reqular semi-simple
in GL,(F), we have

(Res Qn,E)X0O -  1Qn
J(Rcslj//:MnZ)xcr(B’ H“’) - JMn (A’ lI/U)

PROOF. It results from Lemma 10.12 and [37, Theorem IV.5.2] for the (unramified) base change
E/F. O
Let Y = B € m(F) Ns,s(F). By Remark 10.3.2), we have

(10.6.2) J]\Q/?[(Y’ f0> _ J(ReSE/FQn,E)NO'(B,Ew).

(ReSE/FMn,E)XO-

10.6.3. A reduction formula. We fix Haar measures on Mg/ (F') N H'(F') and Ng/(F) N H'(F') such
that vol(Mq/ (F) N H'(OF)) = vol(Ng/(F) N H'(Or)) = 1. Then for f#' € C>*(H'(F)), we have (see
[12, §4.1])

/ fH/(m)dx:/ / / FH (mnk)dkdndm.
H'(F) Mg/ (F)NH'(F) J No/ (F)nH'(F) JH'(OF)

We choose the Haar measure on ng/ (F')Nh'(F') compatible with that on N/ (F)NH'(F) under the expo-
)

nential map. We choose the same Haar measure on four copies of ng, (F) in ng/ (F) = <n (F) ng.(F
Qn Qn

Then vol(nQ/(F) n EI(OF)) =1.
Let X € m'(F) Ns,,(F). We may define a distribution JX’{WQ' (X,-) on C®(mg (F)Ns'(F)) as in

Definition 10.2.2). It appears as a product of distributions in the form of JX},Gl (X, ) in lower ranks. As
in [58, §3.2], we define the Weyl discriminant factor by

D™ (X)|p 1= | det(ad(X)mg, jmy, IE- > 0,

where mg x denotes the centralizer of X in mg.. For f' € C°(s'(F)) which is invariant under
Ad(H'(OF)), we define its constant term f¢,, € C2°(mq/(F) Ns'(F)) by

Fol(Z) == / F(Z +U)dUVZ € mg (F) N (F).
ngr (F)Ns/(F)
Mg

Let féVIQ’ € C(mg/ (F)Ns'(F)) be the characteristic function of mg/ (F)Ns' (Op). Then (f))o = fo
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PROPOSITION 10.14. Let X € w/(F) Ns, (F). For all f' € CX(s'(F)) which is invariant under
Ad(H'(OF)), we have
T (X, ) = (D7 ([ 2Dme ™ QO[T (X £,

PrOOF. We apply the change of variables z = mnk to « € H'(F), where m € Mg (F) N H'(F),
n € No/(F)NH'(F) and k € H'(Op). Notice that vfgjl, (x) = vjj\\;[?/ (m). Since E/F is an unramified
extension, the restriction of n(det(-)) on H'(Op) is trivial. Recall that vol(H'(Or)) = 1 and that
H, CM'NH for X e W' (F)Ns, (F). We deduce that

TR f) = / /
HY (F)\Mg: (F)NH'(F) J Noy (F)AH (F)
By Lemma 8.1 in Chapter 2, for Z := Ad(m™!)(X) € mg/(F) N s, (F), the map
No/(F)NH'(F) = ng (F)Ns'(F),n+— Ad(n")(2) - Z

F/(Ad(mn) " (X))n(det(m))vys@ (m)dndm.

is an isomorphism of F-analytic varieties. From the proof of [58, Proposition 6.3.(ii)], its Jacobian is
' 1/2 Ns’ -1/2
o(X) = |D¥ (X)| 2 [Dme ™ (X)|* > 0.
Then

J39 (X, ) =e(X) ! /

H' (F)\Mg, (F)NH'(F)

L ey ¥ 0 5 Ot () G

=c(X)™! Fo(Ad(m™) (X)) (det(m) vy, (m)dm
H' (F)\M g/ (F)NH'(F)

— 7]\4 ’
=c(X) " T (X fh).

10.6.4. End of the proof.

LEMMA 10.15. For v ¢ [NE*|p, we have
v, =0.

PRrROOF. This is essentially included the proof of [23, Proposition 3.7 and Corollary 3.7]. In fact, our
assertion is equivalent to [23, the first line in p. 138] since E//F is unramified. But we shall also give a
direct proof as follows.

Let g € GL,(F). By the change of variables x5 = gx~!, we obtain

V()= [ @(eaay gndet(a))dn = nidetls)) [ Dulgr 2)n(det(z)da,
GL,(F) GL,(F)
For all 1,25 € GL,(F), we notice that
q>v($17 56'2) = (I)v(1'§7 xt1)>
where the transpose of € GL, (F) is denoted by z'. Therefore, we have
[ et omet@)do = [ @ (af @) g n(det(a)da.
GLy(F) GL,(F)
By the change of variables a2 — z, we see that the last integral is equal to ¥, (g*). Thus
Ty (g) = n(det(g)) Tu(g")-
Because ¥, € H(GL,(F),GL,(OF)), by Cartan decomposition, we have
Uy(g") = Tu(g).
Then
(10.6.3) Uy (g) = n(det(g)) ¥y (g)-

Suppose that v ¢ |NE*|p. We see from the definition that ¥, (g) = 0 unless |det(g)|r = v, in which
case we have det(g) ¢ NE* since E/F is unramified. Thus 7n(det(g)) = —1 in this case, which implies
that ¥,(g) = 0 by (10.6.3). O
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PROOF OF THEOREM 8.1. For (1) in Definition 10.4, it suffices to consider X = C}l 10"> and

Y = B, where B € M,(E) is such that A = BB belongs to M, (F) and is regular semi-simple in
GL,(F). By Corollaries 10.11 and 10.13, we obtain

n n a’ (RCS Qﬂr, ) o) —
(10.6.4) TS (s A),0,) = Jgueat 50 (B, ).

Combining the formulas (10.6.1), (10.6.2) and (10.6.4), we obtain
A(X) RGP (X, f3) = T (Y, fo).

For (2) in Definition 10.4, it suffices to consider X = (SX 161
simple in GL, (F') such that £(A) ¢ NE* for some £ € X (Mg, )r. We still have Corollary 10.11. For
the case Q' = G, we conclude by Lemma 10.15. We now consider a general Q’. Applying the reduction
formula (Proposition 10.14) to fj, we may write

) with A € M,,(F') being regular semi-

(10.6.5) T? (X £5) = 1D (O 2D 0 (O[T (X o).

Suppose that
MQI ~ GLin X o X GLin
and that
M~ M| x---x M|,

1
where > n; =n and M/ is an w-stable Levi subgroup of GLs,, for 1 <4 <. We have
i=1

fo'¥ = fha® @ L
and
X =X, X)),
where fj; (resp. X;) is an analogue of fj (resp. X)) when n is replaced by n; for 1 <i <[. Then

!
’I’],M ’ Mgy ,GL ng
Ju (X, £y ) :HJ}M (X, £04)-
i=1
Our condition on A and the special case Q' = G above tell us that at least one factor J;/}{C:LGi (Xi, fo0.4)

in the above product vanishes. Thus JJT\’/}Q,(X, 14) =0 by (10.6.5). O
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CHAPTER 4

A local trace formula for p-adic infinitesimal symmetric spaces:
the case of Guo-Jacquet

We establish an invariant local trace formula for the tangent space of some symmetric spaces over a
non-archimedean local field of characteristic zero. These symmetric spaces are studied in Guo-Jacquet
trace formulae and our methods are inspired by works of Waldspurger and Arthur. Some other results
are given during the proof including a noninvariant local trace formula, Howe’s finiteness for weighted
orbital integrals and the representability of the Fourier transform of weighted orbital integrals. These
local results are prepared for the comparison of regular semi-simple terms, which are weighted orbital
integrals, of an infinitesimal variant of Guo-Jacquet trace formulae.

1. Introduction

The Guo-Jacquet trace formula [23] is a promising tool to generalise Waldspurger’s result [50] on
the relation between toric periods and central values of automorphic L-functions for G Lo to higher ranks.
It is inspired by Jacquet’s new proof [29] of Waldspurger’s theorem. Although such a formula has not
been established in full generality, its simple form was used by Feigon-Martin-Whitehouse [21] to obtain
some evidence for the conjecture of Guo-Jacquet. For applications, one needs to compare geometric sides
of Guo-Jacquet trace formulae for different symmetric pairs. Some local results on the comparison of
relative orbital integrals include Guo’s fundamental lemma [23] and Zhang’s smooth transfer [58].

In order to study the Guo-Jacquet trace formula and its comparison, one may begin with an infini-
tesimal variant. That is to say, we replace a symmetric space by its tangent space (called an infinitesimal
symmetric space). Such a variant should share some similarities with the geometric side of Guo-Jacquet
trace formula. It is simpler than the original formula because spectral objects are replaced by the
Fourier transform of geometric objects (cf. [51] and [13]). Moreover, by the method of descent dating
back to Harish-Chandra’s works, the comparison at the infinitesimal level should imply the comparison
of geometric sides of original formulae (see [58] on the transfer of orbital integrals).

An infinitesimal variant of Guo-Jacquet trace formulae has been established in Chapter 2 and Chapter
3 via an analogue of Arthur’s truncation process in [3] (see also [13] for its Lie algebra variant). We
actually consider more general cases suggested by [57] and [44]. Most (namely regular semi-simple)
terms appearing in these formulae can be written as explicit weighted orbital integrals on infinitesimal
symmetric spaces over a number field (see Theorem 9.2 in Chapter 2 and Theorem 9.2 in Chapter 3).
They are noninvariant analogues of ordinary orbital integrals (which can be compared locally thanks
to [23] and [58]) and should be the next objects to be compared. As the first evidence, the weighted
fundamental lemma has been proved in Theorem 10.9 in Chapter 3 thanks to Labesse’s work [37] on the
base change for GL,.

The same philosophy of Waldspurger’s work [52] on the endoscopic transfer has been followed by
Zhang [58] to prove the transfer of local orbital integrals on infinitesimal symmetric spaces of Guo-
Jacquet. A simple form of the local trace formula [58, Lemma 6.5], Howe’s finiteness for orbital integrals
[45, Theorem 6.1] and representability of the Fourier transform of orbital integrals [58, Theorem 6.1]
apart from the fundamental lemma [58, Lemma 5.18] at the infinitesimal level have been used in Zhang’s
proof. It is expected that such a strategy should be extended to the weighted context. In fact, some
successful attempts have been made in [14] and [15] on the stable base change. We would like to follow
these ideas in the comparison of local weighted orbital integrals on infinitesimal symmetric spaces of
Guo-Jacquet. However, further study in noninvariant local harmonic analysis on infinitesimal symmetric
spaces is needed to achieve our goal. This paper aims to prepare some essential ingredients such as a
noninvariant local trace formula, Howe’s finiteness for weighted orbital integrals, representability of the
Fourier transform of weighted orbital integrals and an invariant local trace formula. Our methods are
mainly inspired by the works of Waldspurger’s [51] and Arthur’s [8].
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Let E/F be a quadratic field extension of non-archimedean local fields of characteristic zero. Denote
by D a central division algebra over F' and by GL, p the reductive group over F' whose F-points are
GL,(D). We study two generalised cases of Guo-Jacquet trace formulae. The first case is (G, H),
where G := GLg,,p and H := GL, p X GL, p denotes its diagonal subgroup by diagonal embedding.
Denote by s the tangent space of the symmetric space G/H at the neutral element, on which H acts by
conjugation. The second case is (G', H'), where G’ is the group of invertible elements in a central simple
algebra g’ over F' containing F, and H’ is the centraliser of E* in G’. Denote by s’ the corresponding
infinitesimal symmetric space. Notice that (G, H) and (G’, H') are the same symmetric pair after a base
change to an algebraic closure of F' containing E. In the rest of the introduction and this paper, we shall
focus on results in the first case and provide complete proofs. The second case is similar in statements
and proofs, so we shall only state main results, point out additional ingredients and sketch necessary
steps for later use.

To explain the main theorems of this paper, we first introduce some notations. Denote by 7 the
quadratic character of F*/NE* attached to E/F, where NE* denotes the norm of E*. Let M be
an w-stable Levi subgroup of G (see Section 3.2). Let @ be a parabolic subgroup of G containing M.
Suppose that X € (m N s)(F), where m is the Lie algebra of M and s,s denotes the subset of regular
semi-simple elements in s (see Section 3.1). This paper is organised in the following way.

In Section 2, we fix some notations of local harmonic analysis and recall some facts of Arthur’s
(G, M)-families, most of which can be found in [51, §I-II].

In Section 3, we prepare some properties of infinitesimal symmetric spaces. Some of them are stated
for a general symmetric pair and most of them are relative avatars of classical works of Harish-Chandra
[26]. Preliminaries on symmetric pairs can be found in [45] and [1].

In Section 4, we define local weighted orbital integrals JJ{% (n,X,-) by (4.1.1) for the action of H on
s and study their properties. They are distributions on s(F') and local analogues of the global weighted
orbital integrals obtained in Theorem 9.2 in Chapter 2.

In Section 5, we establish the noninvariant local trace formula which results from the Plancherel
formula and an analogue of Arthur’s truncation process in [8]. Let C°(s(F')) be the space of locally
constant, compactly supported, complex-valued functions on s(F). For f € C*(s(F)), we define its
Fourier transform f by (3.2.1). For f, f' € C°(s(F)), we define JC(n, f, f') by (5.1.2).

THEOREM 1.1 (see Theorem 5.3). For all f, f' € C°(s(F)), we have the equality

TG £, f) =T f. f).

We can not deduce it via the exponential map as in [51, §V] for lack of a local trace formula for
symmetric spaces. One needs to return to the proof of [8] instead.

In Section 6, we show Howe’s finiteness for weighted orbital integrals on s(F") (see Proposition 6.1).
The proof originates from Howe’s seminal work [27] which is extended to weighted orbital integrals on
Lie algebras by [51]. We modify the argument in [51, §IV] to make it apply to our case.

In Section 7, we show that the distribution on s(F) defined by f +— J$ (0, X, f) is represented by
a locally integrable function on s(F) (see Proposition 7.2). Its proof is similar to that in [51, §V] and
makes use of the noninvariant trace formula and Howe’s finiteness for weighted orbital integrals.

In Section 8, we modify weighted orbital integrals to obtain invariant distributions I (n, X,-) on
5(F) by (8.1.1) and (8.1.7). The method is close to Arthur’s standard one, but it is simpler here since
there is no spectral object involved, which is also a feature of [51].

In Section 9, we establish the invariant local trace formula which is deduced from the noninvariant
one. For f, f' € C°(s(F)), we define I%(n, f, f') by (9.1.1).

THEOREM 1.2 (see Theorem 9.1). For all f, f' € C°(s(F)), we have the equality

1%, f, /) =I(n, ', ).

For its proof, we mainly consult [51, §VII].

In Section 10, we prove a vanishing property at “infinity” of the function on s(F’) representing the
Fourier transform of I§;(n, X,-) with M # G (see Proposition 10.1). It is an analogue of [14] and serves
as a complement of the limit formula in [58, §7.1].

In the end, we remark that although we concentrate on the case of Guo-Jacquet here, many results
in this paper might be extended to other symmetric pairs, which can be seen from their proofs.
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2. Notation and preliminaries

2.1. Fields. Let F be a non-archimedean local field of characteristic zero. Denote by |- |r (resp.
vp(+)) the normalised absolute value (resp. the valuation) on F and by Op the ring of integers of F. Fix
a uniformiser w of Op. Let ¢ be the cardinality of the residue field of Op.

2.2. Groups and the map Hp. Let G be a reductive group defined over F. All algebraic groups
and algebraic varieties are assumed to be defined over F' in this article. Fix a Levi subgroup My of a
minimal parabolic subgroup of G.

Denote by Ag the maximal F-split torus in the centre of G. Define

ag = HomZ(X(G)F, R),

where X (G)p is the group of F-rational characters of G. Define the homomorphism Hg : G(F) — ag
by

(Ha(x), x) = log(|x(2)|r)
for all z € G(F) and x € X(G)p. Set ag r := Hg(G(F)), which is a lattice in ag.

Fix a maximal compact subgroup K = K¢ of G(F') which is admissible relative to My in the sense of
[5, p. 9]. In this paper, when G(F') = GL, (D) with D being a central division algebra over F, we choose
the standard maximal compact subgroup K = GL,(Op) with Op being the ring of integers of D (see
[54, p. 191] for example). Set W§* := Normg(r)(Mo)/Mo(F) to be the Weyl group of (G, My), where
Normg gy (M) denotes the normaliser of My in G(F). It is known that any element in W§ admits a
representative in K.

By a Levi subgroup of GG, we mean a group M containing M, which is the Levi component of some
parabolic subgroup of G. For such a group M, set Ky := M(F) N K. Then the triplet (M, Ky, My)
satisfies the same hypotheses as (G, K, My). Denote by F¢ (M), 2% (M) and £%(M) the set of
parabolic subgroups of G containing M, parabolic subgroups of G with Levi factor M and Levi subgroups
of G containing M respectively.

For P € .Z%(My), let Mp be the Levi component containing My and Np the unipotent radical.
Denote Ap := Ay and ap := ap, whose dual R-linear space is denoted by a}. Define a map Hp :
G(F) — OMp by

Hp(mnk) = Hpyp (M)
for all m € Mp(F),n € Np(F) and k € K. Let P € 2%(Mp) be the parabolic subgroup opposite to P.

For P C @ a pair of parabolic subgroups in .# (M), the restriction X (Mg)r < X(Mp)r induces
a pair of dual maps ap — aq and aj, — ap. Let aIQJ be the kernel of the former map ap — ag. Set AjQJ
to be the set of simple roots for the action of Ap on P N Mg. Denote by (Ag)v the set of “coroots” as
in [9, p. 26]. Then (AIQD)V is a basis of the R-linear space ag.

2.3. Heights. We fix a height function || - || : G(F) — R as in [8, §4]. It satisfies the following
properties:

(1) lloll > 1,2 € G(F)

2) llzyll < llzllllyll, Vo,y € G(F);

(3) there exists ¢ > 0 and N € N such that |27 < ¢|z|V, Ve € G(F).

If P ¢ Z%(My), for any x € G(F), we can choose mp(z) € Mp(F),np(x) € Np(F) and kp(z) € K
such that x = mp(x)np(z)kp(z). Then

(4) there exists ¢ > 0 and N € N such that ||mp(z)|| + |np(2)| < c|z||V.

We also fix a Euclidean norm (still denoted by || - ||) on the R-linear space apy, which is invariant
under the action of W’ on apz,. Then

(5) there exist ¢1,ce > 0 such that

ci(1+1loglyll) < 1+ [|[Haz ()l < c2(1 +loglyll), Vy € Mo(F).

In addition, we require that || - || is a norm on G(F') in the sense of [35, §18.2]. This is possible. For
example, for G = GL,,, by writing (g,9™") = (ij, hij)1<i,j<n, one may define ||g|| := sup{|gij|r, |hij|F}
7

for g € G(F). Since {gij, hij }1<i,j<n 1S a set of generators for the ring of regular functions of G (viewed
as an affine variety over F'), this defines a norm in the sense of [35, §18.2] on GL,(F). For general G,
one can choose an closed embedding G — GL,, over F' and define the norm on G(F') by the pull-back
of the norm on GL, (F). By [35, Proposition 18.1.(2)], this defines a norm in the sense of [35, §18.2] on
G(F).
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2.4. Functions and distributions. Let g := Lie(G). More generally, we shall use a minuscule
Fraktur letter to denote the Lie algebra of its corresponding algebraic group. Denote by Ad the adjoint
action of G on itself or g. The adjoint action of g on itself is denoted by ad.

For a locally compact and totally disconnected topological space X (e.g. G(F') or g(F')), denote
by C°(X) the space of locally constant, compactly supported, complex-valued functions on X. For
f €C(X), denote by Supp(f) its support. Denote by C2°(X)* the space of distributions on X, i.e., the
linear dual of C2°(X).

Suppose that G(F) acts on such an X. Then G(F) acts on C°(X) (or more generally the space of
complex functions on X) by

g f(z)=flg~" - x),Yg € G(F), f € CX(X),z € X.
Moreover, G(F) acts on C°(X)* by
g-d(f):=dlg™" - f),¥g € G(F),d € C(X)", f € C(X).
Let n : G(F) — C* be a locally constant character. We say a function f € C°(X) (resp. a distribution

d € C(X)*) is n-invariant if g- f = n(g)f (resp. g-d =n(g)d) for all g € G(F). For trivial n, we simply
say that such a function (resp. distribution) is invariant.

2.5. Haar measures. Fix the Haar measure on K such that vol(K) = 1. Following [51, §I.4], for
all P € #%(My), we fix a Haar measure on Np(F) such that

| explzon(tip(m)yin =1,
Np(F)

where p is the half of the sum of roots (with multiplicity) associated to the parabolic subgroup P
opposite to P. From [8, p. 12], for all M € £ (M), there are compatible Haar measures on G(F) and
M (F) such that for all P € 2%(M) and f € C*(G(F)), we have

/ f(z)dz = / f(mnk)dkdndm.
G(F) M(F)xNp(F)xK

We shall fix such measures.

For a F-split torus T, we choose the Haar measure on T'(F') such that the maximal compact subgroup
of T(F') is of volume 1. For a general torus T, we choose the Haar measure on T such that the induced
measure on T(F)/Ar(F) satisfies vol(T(F)/Ar(F)) = 1.

Notice that if My is a torus, we have associated to it two measures. However, it will be clear which
one should be used according to the context.

Fix open neighbourhoods V; of 0 in g and Vg of 1 in G such that the exponential map induces a
homeomorphism between them. Choose the unique Haar measure on g such that the exponential map
Vg — Vi preserves the measures. Similarly, we obtain Haar measures on Lie algebras of subgroups of G.

From the fixed Euclidean norm || - || on apy,, we deduce measures on ayy, and its subspaces.

2.6. (G, M)-families. Following [5, p. 15], we define
02(N) = vol(aB/Z(AD)) ]  AMaY),VA€iap,

(XVE(A?:,)V
where Z(A%)Y denotes the lattice in a% generated by (A2)V.

Suppose that M € £%(My) and that Q € FE(M). Let (cp)pewe(ary be a (G, M)-family in the
sense of [5, p. 36]. By [5, Lemma 6.2], we can define

Q= lim > cp(NIL(N) L
{Pe2S (M):PCQ}

We sometimes write cps = c§; if Q = G.
An important example is following. According to [5, p. 40-41], for z € G(F),
vp(A,x) = e MHP@) 'y € iay,, P € 2%(M),
is a (G, M)-family (denoted by (vp(x))pemc(ary). Then we obtain a function
09 (z) = lim > vp(\, )02 (N) 7, Ve € G(F).
{PexS(M):PCQ}
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For a smooth function cp(A) on iaj, we can associate to it a smooth function ¢(A) on ia} as in
[5, (6.3) in §6]. Denote by cpp the value of cp(A) at A = 0. Let (cp)pecwcny and (dp)peocary be
two (G, M)-families, we define their product ((cd)p)pe »c(ary in the obvious way and have the following
product formula (see [5, Lemma 6.3])

(2.6.1) (cdr= Y. cpdf
QEFC (M)

2.7. The maps d§; and s. Suppose that M € £%(My). As in [6, p. 356], we define a map
d§p : LC(M) x LC(M) — Rsg

such that for all (L1, Ly) € £L%(M) x L% (M),
(1) d§y (G, M) = d§; (M, G) = 1;
(2) dJ\G4(L17L2) = dI\G/[(L%Ll);
(3) dS; (L1, La) # 0 if and only if a§, = a? @ ak2.
Following [51, §11.4], we also choose a map (not unique)

5: L9(M) x LE(M) — FEM) x FE(M)

such that for all (L1, Ly) € L%(M) x L% (M),
(4) s(Ly, Ly) € 2%(Ly) x 2% (Ly); -
(5) if s(L1, L2) = (Q1,Q2), then s(La, L1) = (Q2, Q1);
(6) (splitting formula) if (cp) pe e vy and (dp) pe wa () are (G, M)-families, we have the equality

(cdr= > dS(L1, La)c ez,
L1,L2€ %G (M)

where (Q1, Q2) := s(L1, Ls);
(7) (descent formula) if (cp) pezear is a (G, M)-family and L € £¢(M), we have the equality

cr = Z df/I(L,L’)c(”]\?/[/,
L'e¥C (M)

where @’ denotes the second component of s(L, L’).

3. Symmetric pairs

3.1. General cases. Following [1, Definition 7.1.1], by a symmetric pair, we mean a triple (G, H, )
where H C G are a pair of reductive groups, and 6 is an involution on G such that H is the subgroup of
fixed points of 6.

Suppose that (G, H,0) is a symmetric pair. Let g := Lie(G) and h := Lie(H). Write df for the
differential of . Then h = {X € g : (df)(X) = X}. Let s be the tangent space at the neutral element
of the symmetric space S := G/H. We shall always view s as a subspace of g. Then s = {X € g :
(df)(X) = —X} and H acts on s by restriction of the adjoint action.

We say an element X € s is semi-simple if the orbit Ad(H)(X) is Zariski closed in s. From [45,
Fact A, p. 108-109], we know that X € s(F) is semi-simple if and only if Ad(H(F))(X) is closed in
5(F) in the analytic topology. By a regular element X € s, we mean that the centraliser Hyx of X in H
has minimal dimension. Denote by s,s the principal Zariski open subset (see [45, end of p. 107]) of s
consisting of regular semi-simple elements in s.

By a Cartan subspace of s, we mean a maximal abelian subspace for the Lie bracket ¢ C s defined
over F' consisting of semi-simple elements. For such ¢, denote by ¢,.; the subset of regular elements in «¢.
Denote by T, the centraliser of ¢ in H, which is a torus. Set t. := Lie(T%).

Following [58, p. 1828], for X € ¢.q(F), where ¢ is a Cartan subspace of s, we define the Weyl
discriminant factor

(3.1.1) D (X)| = | det(ad(X) o /¢ e |1

For a Cartan subspace ¢ C s, set W(H,¢) := Normpgp)(c)/Tc(F) to be its Weyl group, where
Norm g (r)(c) denotes the normaliser of ¢ in H(F). Fix a set .7 (s) of representatives for H (F')-conjugacy
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classes of Cartan subspaces in s, which is a finite set by [45, p. 105]. Then we have the Weyl integration
formula (see [45, p. 106])

(3.1.2) f(X)dX = Y [W(H, o)™ /
s(F) €T (s) Crog (F

for all f € C°(s(F)). Recall that the adjoint action induces a local isomorphism S : (T.(F)\H(F)) x

treg(F') = 5vs(F) of F-analytic manifolds, whose image is open in s,4(F"). Here we should use compatible

Haar measures on §(F) and ¢,eq(F'), i.e., we require that 5 should preserve the measures. For particular

cases to be considered, we shall fix Haar measures on s(F') in the following sections. Notice that we shall

not use the Haar measure on ¢,y (F') obtained via the exponential map.

The lemma below makes the definition of Fourier transform on s(F') possible.

|D*(X)|r / FAd(z™1)(X))dzdX
) T (F)\H(F)

LEMMA 3.1. Let (G, H,0) be a symmetric pair. Then there exists a G-invariant 0-invariant non-
degenerate symmetric bilinear form (-,-) on g. In particular, g = b @ s is an orthogonal direct sum with
respect to (-,-), and the restriction of (-,-) to b or s is non-degenerate.

ProoF. This is [1, Lemma 7.1.9]. O
The following lemma is a special case of [59, Lemma 3.10], which is an analogue of Harish-Chandra’s
compactness lemma [26, Lemma 25].

LEMMA 3.2. Let o5 be a compact subset of s(F'). Suppose that ¢ is a Cartan subspace of s. Let o,
be a compact subset of ¢;eq(F'). Then
{z e T(F)\H(F): Ad(z" Y (o) Nos # 0}
is relatively compact in T.(F)\H(F).

PROOF. Choose an arbitrary X € o¢(F). We have Hx = Tc. Let N34 zy(x) x be the normal space

(see [1, Notation 2.3.3]) to Ad(H)(X) in s at the point X. Let sx be the centraliser of X in s. By [1,
Proposition 7.2.1], since X € s is semi-simple, one has NZd(H)(X),X ~ 5y as Hx-spaces. Note that since

X € Cregs treg C Sx is an étale Luna slice at X in the sense of [1, Theorem A.2.3]. Thus we can apply
[59, Lemma 3.10]. O

The next lemma is an analogue of [26, Lemma 28].

LEMMA 3.3. Let 0 C s(F) be a compact subset. Let ¢ be a Cartan subspace of s. Then ¢(F) N
Cl(AA(H (F))(0)) is relatively compact in ¢(F'), where Cl denotes the closure of a subset in s(F).

Proor. This is [58, Lemma 6.12], whose proof relying on the Chevalley restriction theorem for
symmetric spaces [49, Theorem 7 in §4.4] applies to an arbitrary symmetric pair. ([l
The following lemma is an analogue of [51, Lemme II1.4].

LEMMA 3.4. Let o C s(F) be a compact subset. Let ¢ be a Cartan subspace of s and T, the centraliser
of ¢ in H. Then there exists c; > 0 such that for allz € H(F) and X € ¢yeq(F) satisfying Ad(z~1)(X) €
o, we have

inf 1 < ¢ sup{l, —log|D*(X)|r}.
. og ||rz|| < ¢ sup{ og|D*(X)|r}

PROOF. Let || |l7,\z be any norm on (T:\H)(F') in the sense of [35, §18.2]. Applying the argument
of [35, Lemma 20.3] to the finite morphism

B (TN\H) X treg — Srs
of affine algebraic varieties defined by B(z, X) := Ad(x~1)(X), we show the inequality
log ||z||7.\# < cosup{1, —log |D*(X)|r}.

By [35, Proposition 18.3], the quotient H — T\ H has the norm descent property in the sense of [35,
§18.6]. That is to say, the restriction of || - ||z,\u to Tc(F)\H(F) is equivalent to the abstract norm
infrep gy ||| on To(F)\H(F). O

The lemma below is an analogue of [26, Lemma 44].

LEMMA 3.5. There exists € > 0 such that the function |D*(X)|z° is locally integrable on ¢(F) for
any Cartan subspace ¢ of s.
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PROOF. See [59, Lemma 4.3]. O

COROLLARY 3.6. For any r > 0, the function sup{l, —log |D*(X)|r}" is locally integrable on ¢(F)
for any Cartan subspace ¢ of s.

PROOF. We have the elementary fact (cf. the proof of [35, Corollary 20.2]): for € > 0 and r > 0,
there exist ¢ > 0 such that
sup{1,logy}" < cy® +1,Vy > 0.
Then it suffices to apply Lemma 3.5. O
We say an element X € s(F) is nilpotent if 0 € CI(Ad(H (F'))(X)), where Cl denotes the closure of
a subset in §(F). From [1, Lemmas 2.3.12 and 7.3.8], we know that X € s(F’) is nilpotent if and only if

it is a nilpotent element in g. Denote by N® the set of nilpotent elements in s(F), which is a cone. The
following lemma is an analogue of Jacobson-Morozov theorem.

LEMMA 3.7. Let (G, H,0) be a symmetric pair and X € N*. Then there erists a group homomor-
phism ¢ : SLo(F) — G(F) such that

0 1\ 0 0 ¢ y
d‘P(O O)X’d@(l 0>€5(F) andso( t_1>€H(F),Vt€F.

PRrROOF. This is [1, Lemma 7.1.11]. O
Let X € s,5(F). The orbital integral of X is the distribution Ix on s(F") defined by
(3.1.3) Vf € C(s(P). Ix () = D01 [ FAd(@)(X))de.
Hx (F)\H(F)
The next lemma is an analogue of Harish-Chandra’s submersion principle [26, Theorem 11].

LEMMA 3.8. Let I : s,5(F) — C be a function. The following conditions are equivalent:

(1) I is locally constant, invariant by the adjoint action of H(F') and of support included in Ad(H (F))(o)
with o C s,5(F) a compact subset;

(2) there exists f € C2°(sys(F)) such that

VX € s55(F), [(X) = Ix(f).
PROOF. For ¢ € 7 (s), apply the argument of [16, Lemme 6.1] to the morphism
O : (T(F)\H(F)) X treg(F) — 6s(F)
defined by ®.(z, X) := Ad(z~1)(X). Then glue the results for all ¢ € 7 (s) together. O
3.2. The case of (G,H). Let D be a central division algebra over F. Denote by GL,, p the

reductive group over F' whose F-points are GL, (D). Let G := GLg, p and H := GL, p x GL, p
denotes its subgroup by diagonal embedding. Then H is the subgroup of fixed points of the involution

1 . . .
Ad(e) on G, where € := [ " 1 ) Here we can embed G into g in the standard way. For a linear
—in
subspace v C g, we write v := v N G. Recall that s, C s> in our case.

LEMMA 3.9. Let P be a parabolic subgroup of G. Then PN H is a parabolic subgroup of H if and
only if e € P. Moreover, if € belongs to a Levi factor M of P, then M N H 1is a Levi factor of PN H.

PROOF. One may consider all the groups over an algebraic closure of F'. We first suppose that PN H
is a parabolic subgroup of H. Then € € Cent(H) C P N H, where Cent(H) denotes the centre of H.
This establishes one direction.

We now suppose that ¢ € P. Denote by N the unipotent radical of P and let M be a Levi factor
of P. By the argument in the last paragraph of the proof of Lemma 4.1 in Chapter 2, we show that e
is N-conjugate to an element in M with the help of [3, Lemma 2.1] (actually we need its variant over a
local field for the characteristic function of a singleton here, whose proof is similar). Then replacing M
by its N-conjugate if necessary, we may assume that e € M.

Let G = GL(V) for a vector space V = @1<;<,V;. Suppose that

P={geG:gV1®..aV,)CVid..aV,Vl<i<r}

and that
M={geG:g(V;) CV;,V1<i<r}
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Since € € M, we have e(V;) C V; for all 1 <i <r. Let V; (resp. V,7) be the +1(resp. —1)-eigenspace of
V; under the action of €. For €2 = 1, wehave V; = V.T@V,". Let V* := @1<;<, VT and V™ 1= @14, V.
Then
H={geG:g(V)CVFg(Vv)CV }
Hence,
PNnH={geG:gVie..oVHcVito.oVigVie..eV )TV ®..aV, ,V1<i<r}
It means exactly that P N H is a parabolic subgroup of H and proves the other direction. Morover,
MNH={geG:g(V;") SV g(Vi) SV V1<i<r}
That is to say, M N H is a Levi factor of PN H. O

Let My be the group of diagonal matrices in G. Set w := (10 10"> For P € Y% (M), we say

that P is “w-stable” if w € P. Denote by .Z%“ (M) the subset of w-stable parabolic subgroups in
FY%(My). For M € £%(M,), we say that M is “w-stable” if M = Mp for some P € .F%“(My). This
condition is stronger than Ad(w)(M) = M; for example, My is not considered to be w-stable in our
sense. Denote by 2% % (M) the subset of w-stable Levi subgroups in .Z%(Mj). Let A,, be the group of
diagonal matrices in GL,,. Recall that there is a bijection between .Z%Ln(A,,) and .£%* (M) induced

X
by M, — M = (2"’13 2”’1)) . We shall always use the notation M,, to denote the preimage of M
n,D n,D

under this bijection. Notice that if M € £%“ (M) and Q € FE(M), then Q € F(Mp).

Suppose that M € £%“(M;). We say an element X € (m N s.)(F) is M-elliptic if Ay is the
maximal F-split torus in Hx. Denote by (m N s.5)(F)en the set of M-elliptic elements in (m N s.5)(F).
Write My := M N H. Denote by T'en((mNs,s)(F)) the set of My (F)-conjugacy classes in (mNsys)(F)en.
We say a Cartan subspace ¢ C mNs is M-elliptic if Ay, = Apr. Since (Mpy, mNs) appears as the product
of some copies of the form (H,s) in lower dimensions, we define W (Mpy, ¢) and .7 (m N s) as in Section
3.1. Denote by Zun(mnNs) the subset of M-elliptic Cartan subspaces in .7 (m N s).

LEMMA 3.10. Let M € £%“(My) and {X} € Ten((m N s.)(F)).
1) Let M' € L%« (My) and {X'} € Ten((m' N sy5)(F)) be such that X' is H(F)-conjugate to X.

Then there exists
we{(w” ):wnGWOGL"’D},
Wn

where WOGL"'D denotes the Weyl group of (GLy p,An,p), such that
(Ad(w)(M), {Ad(w)(X)}) = (M',{X"}).
2) The cardinality of
{(M'{X"Y) : M' € L9 (M), {X'} € Ten((m’ Ns.)(F)), X' is H(F)-conjugate to X}
18
W w1
where WEL™ (resp. W) denotes the Weyl group of (GLn, A,) (resp. (M, Ay)).

PROOF. 1) Let x € H(F) be such that Ad(z)(X) = X’. Then Ad(z)(Hx) = Hx. Since X € (mN
5ps) (F)en and X’ € (m/Nsys) (F)en, we have Ad(z)(Apr) = Ay and thus Ad(z)(M) = M'. Asx € H(F),
we have Ad(z)(Mp) = Mj;. We see that Ad(z)(Aa,) € My, is a maximal F-split torus, so there exists
m/ € M}, (F) such that Ad(m/~'2)(Apy,) = Ang,. That is to say, w' = m'~ 'z € Norm g (ry(Ang,) =
Norm g gy (M), where Norm gy (Apg, ) denotes the normaliser of Ay, in H(F). Now Ad(x)(An) = Ane
implies that Ad(w’)(Ax) = Aav. Because M, M' € £%%“(My), it is shown in §9.1 in Chapter 2

that any isomorphism Ay, — Ajp induced by W{ can be given by {(w” w > twy € WOGL”’D}.
n

Hence, there exists w € {(w" " ) fwy € WOGL””D} such that w™lw’ € Centyy i (Anr) = W | where
n

Centyy s (Apr) denotes the centraliser of Ay; in WI. We can check that such a w satisfies the condition
in the lemma.
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2) By 1), the group {(w" " ) fwy € WOGL"'D} acts transitively on this set. Let
n

we{(wn ):wnGWOGL"’D}
W,

(Ad(w)(M), {Ad(w)(X)}) = (M, {X}).
Then w € My (F). Thus the condition on w is equivalent to

we{(w" ):wnEWOM”’D},
Wn,

where Wé\/[ "? denotes the Weyl group of (M,, p, An,p). We see that the cardinality of the set in the
lemma is |W0GL"’D||W(§M"’D\_1 or Wt | |wer| L, =

be such that

PROPOSITION 3.11. For f € C°(s(F)), we have the equality

fax =3 gt w0l |
MeLGw (M) ¢€ Fon(mNs) Creg (F) Ap (F)\H(F)

F(Ad(z™ 1) (X))dzdX.

s(F)

PRrROOF. Recall that any H(F')-conjugacy class in s,s(F) is the image of a class {X} € Ten((m N
5y5)(F)) for some M € L% (My) in our case. By Lemma 3.10, the Weyl integration formula (3.1.2) can

be written as the above equality (cf. [8, p. 16-17] and [51, (3) in §L.3]). O
X
Recall that there is a bijection between . “En (A,,) and .F %« (M) induced by P, + P = <E”’D E”’D>
n,D n,D
We shall always use the notation P, to denote the preimage of P under this bijection. Following [58, p.

1846], we shall fix the Haar measures on some subspaces of 5(F) as follows. Let P € .#%“(M;). Then

m m n n

we have mp = nD P andnp = (P ™D where we denote M,, := Mp and N,, := Np .

) n n n
My, D MpD Np,D Wn,D

We have fixed the Haar measures on m, (D) and n, (D) in Section 2.5. We shall choose the same Haar
measure for any of the four copies in mp(F) or np(F) under these identifications. In particular, we
obtain the Haar measures on (mp Ns)(F) and (np Ns)(F).

LEMMA 3.12. Let Q € F9%(My). ForY € (mg N &) (F), the map
No, (F) = (ng Ns)(F),n— Ad(n " )(Y) - Y
is an isomorphism of F-analytic manifolds whose Jacobian is |DE(Y)\}/2|D‘“Q“5(Y)|;1/2.

PROOF. See Lemma 8.1 in Chapter 2 for the isomorphism and the proof of [58, Proposition 6.3.(ii)]
for the Jacobian. 0

Fix a continuous and nontrivial unitary character ¥ : F — C*. Let (-,-) be the non-degenerate
symmetric bilinear form on g(F') defined by
(X,Y) :=Trd(XY),VX,Y € g(F),
where Trd denotes the reduced trace on g(F'). It is invariant by the adjoint action of G(F') and Ad(e).
For f € C2°(s(F)), define its normalised Fourier transform f € C°(s(F)) by

(3.21) VX € 5(F), F(X) i=cals(F)) [ L R Y a,

where cg (s(F)) is the unique constant such that f(X) = f(—X) for all f € C>°(s(F)) and all X € s(F).
For any M € 2% (M), the restriction of (-,-) on mNs is non-degenerate. Then we can define similarly
the normalised Fourier transform of f € C°((m N s)(F)).

Suppose that P € #%“(My). Let n be the quadratic character of F* attached to a quadratic
extension E/F. Denote by Nrd the reduced norm on G(F). For f € C°(s(F)), we define a function
(parabolic descent) f2 € C°((mp Ns)(F)) by

(3.2.2) (2) ::/K R F(Ad(E™1)(Z 4+ U))n(Nrd(k))dU dk
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for all Z € (mp N s)(F). We show that (f)% = (f/1)", so we shall denote it by f/5 without confusion. In
fact, the integral on (np Ns)(F) and the Fourier transform commute by our choices of Haar measures

(see [51, §L1.7]); the commutativity of the integral on Ky and the Fourier transform results from the
H(F)-invariance of (-, ).
The following result is an analogue of [26, Theorem 13].

PROPOSITION 3.13. Let f € C°(s(F)). Then

sup D)2 /H ey PO < oo
X

XeEss(F)
PROOF. It is proved in [58, Theorem 6.11] (see also [57, p. 77]) that for any fixed Cartan subspace
¢ of s,
swp (DX [ F(Ad(z ) (X)) lde < +oc.
X €Ecreg(F) Hx (F)\H(F)
Since 7 (s) is a finite set and the orbital integral is constant on any H (F')-orbit, we obtain a uniform
bound for all X € s,5(F). O
The lemma below is an analogue of [26, Theorem 15].

_1_
LEMMA 3.14. There exists € > 0 such that the function |D*(X)|n2 ° is locally integrable on s(F).

PRrROOF. Choose € > 0 verifying the condition of Lemma 3.5. Let f € C°(s(F)) with f > 0. By the
Weyl integration formula (3.1.2), we have

/ DO (XX = Y (W, o) / D*(X)| 5 / F(Ad(z)(X))dwdX.
s(F) T ) Cros(F) A, (F)\H(F)

The convergence of the right hand side results from Proposition 3.13 and Lemmas 3.3 and 3.5. O

1
COROLLARY 3.15. For any r > 0, the function |D*(X)|p? sup{l, —log |D*(X)|r}" is locally inte-
grable on s(F).

PrROOF. It is the same as the proof of Corollary 3.6. (]

3.3. The case of (G', H'). Let E be a quadratic extension of F. Let g’ be a central simple algebra
over I with a fixed embedding of F-algebras E — g¢'. Let b’ := Centy (E) be the centraliser of E in
¢’. By the the double centraliser theorem (see [42, Theorem 3.1 in Chapter IV] for example), h’'(F) is a
central simple algebra over E. Denote by G’ := g’ (resp. H' := h’™) the group of invertible elements
in g’ (resp. '), which is considered as an algebraic group over F' with Lie algebra g’ (resp. b’). Let
a € E\F such that o® € F. Then E = F(a) and H' is the subgroup of fixed points of the involution
Ad(a) on G'. Denote by s’ the corresponding tangent space of G'/H’. For a linear subspace v’ C ¢, we

write v’ := v'NG’. Then we see that s/, C '™ via a base change to an algebraic closure of F' containing
E.

LEMMA 3.16 (cf. Lemma 3.9). Let P be a parabolic subgroup of G'. Then P'NH isa parabolic
subgroup of H' if and only if a € P'. Moreover, if a belongs to a Levi factor M' of P, then M'N H' is
a Levi factor of P' N H'.

By the Wedderburn-Artin theorem, G’ is isomorphic to GL,, p for some positive integer n and some
central division algebra D over F. Since E embeds into g'(F), we see that ndeg(D) is even, where
deg(D) denotes the degree of D. From the Noether-Skolem theorem (see [42, Theorem 2.10 of Chapter
IV] for example), up to conjugation by G’(F), the emdedding H' — G’ is reduced to one of the two
cases below (see [18, §2.1 and §3.1] and §3.4 in Chapter 3).

Case I: if deg(D) is even, then (G', H') = (GL,,p,Resg/pG Ly, pr), where D' := Centp(E) denoting
the centraliser of E in D is a central division algebra over F of degree degT(D). Let Mg ~ (Resg/pGn,pr)"
(resp. Mg =~ (Gyn,p)") be the subgroup of diagonal elements in H' (resp. G'). Recall that there is a

bijection M’ +» M’ between LH (M) and fG/(Mé). We shall always write M’ for the image of M’

under this bijection. Notice that M’ = M’ N H' and that we can identify Ay, with Az
Case II: if deg(D) is odd, then (G’, H') = (GLy,p,Resp/rGL2 pg k), where D @p E is a central

division algebra over E of degree deg(D). Let Mj ~ (Resp pGm,perE)? (resp. Mg = (Gp,p)") be
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the subgroup of diagonal elements in H' (resp. G’). Denote by % Gl(Mé, M) the subset of elements in
24 (M) containing M. Recall that there is a bijection M’ — M’ between LH' (M}) and £ (M, Mp).
We shall always write M’ for the image of M’ under this bijection. Notice that M’ = M’ N H’ and that
we can identify Ay, with A,

Suppose that M’ € ZH'(M}). We say an element YV € (W' N sl,)(F) is M'-elliptic if Ay is the
maximal F-split torus in H{,. Denote by (' Ns.,)(F)en the set of M'-elliptic elements in (m’ N s )(F).
Denote by Ten((m’ N s.,)(F)) the set of M’(F)-conjugacy classes in (m’ N ..)(F)en. We say a Cartan
subspace ¢/ C m/ Ns’ is M’-elliptic if Ar, = App. Since (MCBT’ Ns’) appears as the product of some
copies of the form (H’,s') in lower dimensions, we define W (M’,¢') and 7 (m’ Ns') as in Section 3.1.
Denote by Zui(m’ Ns’) the subset of M’-elliptic Cartan subspaces in 7 (m’ Ns').

LEMMA 3.17 (cf. Lemma 3.10). Let M’ € LH'(M}) and {Y'} € Ten((m’ Ns')(F)).
1) Let M € L7 (M}) and {Y} € Ten((m N sl )(F)) be such that Y is H'(F)-conjugate to Y'. Then
there exists w € WOH/ such that

(Ad(w) (M), {Ad(w)(Y")}) = (M, {Y}).
2) The cardinality of
{(M{Y}): M e L7 (M), {Y} € Tan((@Ns.)(F)),Y is H'(F)-conjugate to Y'}
18
Wt e |
PROPOSITION 3.18. For f' € C°(s'(F)), we have the equality

/ Fody =S Y |W<M’,c'>|*1/ |D5’<Y>|F/
s/ (F) g (F) Ay (F)\H'(F)

]\/IIEXH/(MC/)) C,EA%H(ITI‘IVIQE,) reg
f/(Ad(z~1)(Y))dzdY.

PROOF. Recall that any H'(F)-conjugacy class in ¢/ (F) is the image of a class {Y} € Ten((m’ N
s'.)(F)) for some M’ € £ (M}) in our case. By Lemma 3.17, the Weyl integration formula (3.1.2) can

rs

be written as the above equality (cf. [8, p. 16-17] and [51, (3) in §L.3]). O

Recall there is a bijection P’ — P’ between .ZH (M) and ZC (M}) in both of Case I and Case
II. We shall always write P’ for the image of P’ under this bijection. Let 7 € D* in Case I (resp.
7 € GLy(D) in Case II) be an element such that Ad(a)(r) = —7. Let P’ € Z™ (M}). Then we have
mz; N s’ =mpT = Tmp and ns Ns' =npT = Tnp by Proposition 3.12 in Chapter 3. We have fixed
the Haar measures on mp/(F') and np/(F) in Section 2.5. We shall choose the same Haar measures on
(mz; Ns')(F) and (ns; Ns')(F) using above identifications induced by 7. Such Haar measures depend
on the choice of 7.

LEMMA 3.19. Let Q' € FH' (M}). For X € (mg Nsye)(F), the map
Ng/(F) = (ng N&)(F),n = Ad(n™')(X) = X

is an isomorphism of F-analytic manifolds whose Jacobian is |D¥ (X) },/2|Dm5/ﬂ5/ (X)\;l/Q.

PROOF. See Lemma 8.1 in Chapter 3 for the isomorphism. The computation of its Jacobian is close
to the proof of [58, Proposition 6.3.(ii)]. O

Fix a continuous and nontrivial unitary character ¥ : F — C*. Let (-,-) be the symmetric bilinear
form on ¢'(F) defined by
(Y, X) :=Trd(Y X),VY, X € ¢g'(F),
where Trd denotes the reduced trace on g'(F). It is non-degenerate, which can be seen after the base
change to an algebraic closure of F'. It is also invariant by the adjoint action of G'(F) and Ad(«). For
f! € C®(s'(F)), define its normalised Fourier transform f’ € C°(s'(F)) by

(3.3.1) VY €5 (F), f/(Y) i= c(s'(F)) //(F) FXOT(Y, X))dX,
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where cg(s'(F)) is the unique constant such that f’(Y) = f/(=Y) for all f/ € C(s'(F)) and all
Y € s/(F). For any M' € £ (M}), the restriction of (-,-) on m’ Ns is non-degenerate. Then we can
define similarly the normalised Fourier transform of f/ € C2°((m’ N s')(F)).

Suppose that P’ € .ZH (M}). For f' € C°(s'(F)), we define a function (parabolic descent) fp, €
Ce((mp Ne')(F)) by

(3.3.2) fpi(Z) = f(Ad(k~H)(Z + U))dUdk

/I(H/ x(n};,ﬂs’)(F)
for all Z € (m3; Ns')(F). By our choices of Haar measures (see [51, §1.7]) and the H'(F)-invariance of
(-,-), we show that (f')p: = (fp,) ", which will be denoted by f’p, without confusion.

PROPOSITION 3.20. Let f' € C°(s'(F')). Then

sup (0¥ (V)] | £/(Ad(a)(¥))ld < +ox.
Yesi, (F) HYy (F)\H'(F)

COROLLARY 3.21 (cf. Corollary 3.15). For anyr > 0, the function |D5,(Y)|;% sup{1, —log |D* (Y)|p}"
is locally integrable on s'(F).

The rest of this section is devoted to the proof of Proposition 3.20. We shall follow the main steps
in [58, §6.3], which is similar to the proof of [26, Theorem 13], and only point out some additional
ingredients. Let n is the F-rank of G'. Denote G,, := G’, H], := H' and s/, := s’. Recall that the F-rank
of H) is n in Case I (resp. 5 in Case II). We shall use induction on n. For n = 1 in Case I (resp.
n = 2 in Case II), the proposition is evident since Hy (F)\H'(F) is compact in our case.

The following description of semi-simple elements and descendants (see [1, Definition 7.2.2]) is a

generalisation of [24, Lemma 2.1] (see also [58, Proposition 4.7]).

PROPOSITION 3.22. 1) An element Y of §'(F) is semi-simple if and only if it is H'(F)-conjugate to

an element of the form
B 0
vim= (29,

with B € s/ ™ (F) being semi-simple with respect to the H! -action. More precisely, the set of H'(F)-
conjugacy classes of semi-simple elements in s'(F') is bijective to the set of pairs (m,{B}) where 0 <
m < n is an integer in Case I (resp. an even number in Case II) and {B} is a semi-simple H] (F)-
conjugacy class in 5., (F). Moreover, Y (B) is regqular semi-simple if and only if m = n and B is reqular
semi-simple in s' (F).

2) Let Y = Y(B) € §'(F) be semi-simple. Then the descendant (Hi -, s%) (as a representation) is
isomorphic to

(H;n,Bvsgz,B) X (H;zfmﬂﬁiz—m)a

where H), p (resp. s, ) denotes the centraliser of B in H,, (resp. s,,).

PROOF. 1) By the base change to an algebraic closure of F' containing E, we see from [31, Proposition

2.1] that an element Y € s'(F') which is H'(F')-conjugate to Y (B) in the proposition is semi-simple. Now
we suppose that Y € §'(F) is semi-simple. Since Y2 € b/(F), up to H'(F) conjugation, we may suppose

that Y2 = 61 8 with A € b/, (F) being semi-simple in the usual sense. From (61 8) Y =
A0 B 0 ,

Y 0 o) Ve deduce that Y = 0 C for some B € s/ (F) such that AB = BA and some C €

s (F). AsY? = <61 8), we have B € s/, (F). Because Y is semi-simple, it is shown in [31, p. 71]

that Y and Y2 have the same rank over an algebraic closure of F' containing E. Then C' = 0. We can

also see from [31, Proposition 2.1] that B is semi-simple with respect to the HJ -action after the base

change. We have established the first statement.

For the second statement, it suffices to notice that two such elements Y (B;) with By € s, ™ (F)
and Y (B,) with B € s/, ™ (F) in the proposition are H'(F)-conjugate if and only if m; = ms (denoted
by m) and By and Bs are H), (F)-conjugate.

The third statement follows from the base change or 2).

2) It can be shown by direct calculation. O
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Fix a Cartan subspace ¢’ of §’. The lemma below is an analogue of [26, Lemma 29)].

LEMMA 3.23. Let f' € C°(s'(F) — N¥'). Then

sup D (1)} [ (A )ld < +ov.
Y, (F) HY (F)\H'(F)
PROOF. We may apply the argument of [58, Lemma 6.14] relying on Lemma 3.3 and [59, Proposition
3.11], which is an analogue of Harish-Chandra’s semi-simple descent for orbital integrals [35, Lemma

16.1]. By Proposition 3.22.2), it suffices to prove the boundedness of orbital integrals for
( :71,375;71,3) X (H;zfmv'g;mfm)
with B € s/, (F) being semi-simple with respect to the H/ -action and 0 < m < n. Since there exists an

H,, p-equivariant linear isomorphism s;, p — b7, g induced by Z +— Z B, the first factor (H), p,5,, p) is

covered by Harish-Chandra’s work [26, Theorem 13] on classical orbital integrals on Lie algebras. Then
we conclude by applying the induction hypothesis to the second factor (H,,_,.,s. _..)- O

Consider X, € N*'. By the Jacobson-Morozov theorem for symmetric spaces (Lemma 3.7), there
exists a group homomorphism ¢ : SLy(F) — G'(F) such that

Xo =dy <8 é) Yo :i=dy <(1) 8) €' (F) and d :=dp (é 01> en(F).

Write 7/ := dim s}, and m’ := $Tr(ad(—d)|s;, ), where s}, denotes the centraliser of Yj in s'.

|5’y0
LEMMA 3.24. We have
1) > %\/W ;
2)r'+m’ > 2dimg + /dimg’.
PROOF. It suffices to check these relations after a base change to an algebraic closure of F' containing
E. Then the lemma is exactly [58, Proposition 4.4]. O

Let s} 44 be the set of X € &/(F) such that there exists an open neighbourhood ¢’ of X in §'(F)
satisfying

sup  |D¥ (V)|2 / F/(Ad(@)(Y)|dz < +oo
Y€, (F) H{ (F)\H'(F)

for all f € C°(s'(F)) with Supp(f’) C o’. The next lemma is an analogue of [26, Lemma 38].

LEMMA 3.25. We have N* — {0} C s} 44-

PROOF. We may apply the argument of [58, Lemma 6.16] thanks to Lemma 3.24. O
PROOF OF PROPOSITION 3.20. We may use the argument in [26, §VL.7] to show that 0 € s 4.
Then the proposition follows from Lemmas 3.23 and 3.25. O

4. Weighted orbital integrals

4.1. The case of (G,H). Let E/F be a quadratic field extension and n the quadratic character
of F*/NE* attached to it, where NE* denotes the norm of E*. For x € H(F'), which is viewed as
an element in G(F), we denote by Nrd(x) its reduced norm. Suppose that M € L% (M;) and that
Q € FY(M). For all f €C>®(s(F)) and X € (mNs,)(F), we define the weighted orbital integral

1/2

(4.1.1) I8 (0. X, f) == |D*(X)|¥ F(Ad(2) (X))n(Nrd (@) (2)de.

/Hx(F)\H(F)

Since v%(x) is left-invariant by M (F') and we have Hx C My for X € m N s,,, we see that "u]%[ (z) is

left-invariant by Hx (F'). This integral is absolutely convergent since the orbit Ad(H (F'))(X) is closed
in s(F), which ensures that the integrand is a compactly supported (and locally constant) function on
the homogeneous space.

Notice that for z € My (F), we have Jﬁ(n,Ad(w‘l)(X), )= n(Nrd(x))Jﬁ(n,X, f). Sometimes it

0 A) € 5,5(F), define

is convenient to introduce a transfer factor as in [58, Definition 5.7]: for X = B 0

(4.1.2) K(X) :=n(Nrd(A)),
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where Nrd(A) denotes the reduced norm of A € GL,,(D). Then we have r(Ad(z~1)(X)) = n(Nrd(z))x(X),
and thus the function n(~)JJ§%(77, -, ) is constant on Ad(My (F))(X).

Though we mainly consider M € £%% (M), it is unharmful to extend our definition by (4.1.1) to
all Levi subgroups of the form M = Ad(w)(L), where L € £%“ (M) and w € W{.

One may also extend in the obvious way the definition (4.1.1) of weighted orbital integrals to the
symmetric pair (M, Mg, Ad(¢)), where M € L%« (M), since it appears as the product of some copies
of the form (G, H, Ad(e)) in lower dimensions.

PROPOSITION 4.1. Suppose that M € L% (M) and that Q € F¢(M).

1) For X € (mNsy)(F) fixed, the support of the distribution Jﬁ(n, X,+) is contained in the closed
orbit Ad(H(F))(X).

2) For f € C°(s(F)) fized, the function Jﬁ(n, -, ) is locally constant on (mNs.s)(F). If c CmNs is
a Cartan subspace, the restriction of this function to ¢.eg(F') vanishes outside a compact subset of ¢(F).

3) If w € Normp gy (Mo), v € My (F') and k € Ky, we have the equality

() () (1, Ad(wz) (X), Ad(k)(f)) = n(Ned(wak)) I 5 (1, X, f)

for all X € (mNsy)(F) and f € CP(s(F)).
4) For X € (mNs)(F) and f € C(s(F)), we have the equality

TG X, ) = Ty (0, X, £3),

where f§ € C((mq Ns)(F)) is defined by (5.2.2).
5) (Descent formula) If L € %% (My), L C M and X € (INs.)(F), we have

TG X, = > d§(M,L)JE (0. X, )
L'e %SG (L)

for all f € C(s(F)), where Q' denotes the second component of s(M,L') (see Section 2.7).
6) (Non-equivariance) For X € (mNsy)(F), y € H(F) and f € C°(s(F)), we have the equality

TS, X, Ady () =n(Ned(y) > T X £5 ),
QeFCE(M)

where f§ . € C((mg Ns)(F)) is defined by
(413) 3 (2) = / FOAA(R™Y)(Z + U))n(Ned(k))vly (ky)dUdk, VZ € (mq 1 5)(F).
Kux(ngns)(F)

PROOF. 1) This is obvious from the definition.

2) Let Y € (mNsys)(F). Let ¢ be the centraliser of Y in 5. Then ¢ C mNs is a Cartan subspace and
Y € g (F). Since Ad(Mpu(F))(creg(F)) is an open subset of (m N s)(F') (see [45, p. 105]), in order
to prove the first statement, it suffices to find a neighbourhood U of Y in ¢,g(F') on which the function
n(-)Jﬁ(n, -, ) is constant. We shall follow the proof of [35, Theorem 17.11]. Consider the function ¢ on
Creg(F) X (To(F)\H (F)) defined by ¢(X,z) := (kf)(Ad(z~!)(X)). Then ¢ is locally constant but usually
not compactly supported. However, now choosing a compact neighbourhood o of Y in ¢eq(F'), we see
from Harish-Chandra’s compactness lemma for symmetric spaces (Lemma 3.2) applied to o, := Supp(f)
that the restriction of ¢ to o, x (T.(F)\H(F)) is compactly supported. By [35, Lemma 2.1], there exists
an open neighbourhood U of Y in o, such that ¢(X,z) = ¢(Y,z) for all X € U and z € T(F)\H(F).
It follows that the function f{(-).]ﬁ (n,-, f) is constant on U.

The second statement is a corollary of Lemma 3.3.

3) The effect of Ad(w) is a consequence of our choice of Haar measures. The effect of Ad(x) results
from the left-invariance of v§;(z) by My (F). The effect of Ad(k) comes from the right-invariance of
v§;(x) by K. One should keep in mind the effect of n(Nrd(z)) in every step.

4) Write Qg :== QN H € FH(My). One sees that Mg, = Mg N H and that Ng, = No N H.

Applying the change of variables © = mnk with m € Mg, (F), n € Ng,(F) and k € Ky in (4.1.1),

since v (z) = UAAZIQ (m), we have

JE X, f) = D*(X)| F(Ad(mnk) ™ (X))n(Ned(mk) Jvy,? (m)dkdndm.

/(MQH,X(F)\MQH(F))XNQH(F)XKH
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Applying Lemma 3.12 to Y = Ad(m~1)(X), we deduce
I X, 1) =Dmee ) [ FAR)(Ad(m™)(X) + 1))
(M@, x (F)\Mqy (F))XKg X (ngns)(F)
n(Nrd(mk))oy® (m)dU dkdm
—pmare ([ | F (AL (X)) (N ) o} )
Mgy, x (F)\ Mg (F)
=T (0, X, £3).

5) It follows from (7) in Section 2.7 and 4).
6) By the change of variables, we see that

Tir(n, X, Ad(y~)(f) = \Dg(X)liw/z/ F(Ad(z™)(X))n(Nrd(zy))var (zy)da.
Hx (F)\H(F)

For z € H(F) and Q € F%“(Mj), let kg(z) be an element in Ky such that zkg(z)~! € Qu(F). Tt

follows from the product formula (2.6.1) that (see the proof of [5, Lemma 8.2])

vu(ey) = Y o (@)vg(ke(a)y).

QeF (M)
As in 4), we write
Tir(n, X, Ad(y™")(f) =n(Nrd(y)) Y \DS(X)lfv/Q/ f(Ad(z™)(X)n(Nrd(x) v (z)
QG?G(M) Hx (F)\H(F)
vgkq(x)y)dx
—Nedy) Y 0l [
QeFE (M) (M@, x (F)\Mq; (F))XNQu (F)X Ky

f(Ad(mnk)fl(X))n(Nrd(mk))v%Q (m)vg (ky)dkdndm.
Applying again Lemma 3.12 to Y = Ad(m~1)(X), we obtain

Ty X Ad () =nNra) 3 [omes ol [

0e 55 (Ma g x (F)\May (F))x K x(ngns) (F)
FAA(E Y (Ad(m™H)(X) + U))n(Nrd(mk))v]]\éQ (m)vg (ky)dU dkdm
() Y0 ome ol | £, (Ad(m (X))
QeF S (M) M@y, x (F)\Mgqy (F)
n(Nrd(m))vy® (m)dm
=n(Ned(y)) Y T XS5 ,).
QEF (M)

O

LEMMA 4.2. Suppose that M € L% (My) and that Q € FE(M). Let o C s(F) be a compact subset.
There exists ¢ > 0 and N € N such that if v € H(F) and X € (mNsy)(F) satisfy Ad(z71)(X) € o, then

[0 (2)] < esup{1, —log | D*(X)[#}".
PROOF. It is shown in the proof of [51, Lemme IIL.5] that there exists ¢; > 0 and N € N such that
for all x € G(F),
[vir (@)] < ex(1+ log|J[)Y.
Suppose that z € H(F) and X € (mNs)(F) satisfy Ad(z71)(X) € o. If we replace z by yz and X
by Ad(y)(X), where y € My (F), the two sides in the inequality to be proved remain unchanged. Since
J(mNs) is a finite set, we may fix a Cartan subspace ¢ C m N s and suppose that X € c.oq(F). Let

7 € Tc(F) be such that

|rz|| = inf |7z|.
T/ETC(F)
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Then

o ()] = [of (72)| € e2(1 +log )Y = ex(1+_ inf _ log el
Now it suffices to apply Lemma 3.4. O

COROLLARY 4.3. Suppose that M € L% (M) and that Q € FE(M). Let f € C®(s(F)). There
exists ¢ > 0 and N € N such that for all X € (m N sy)(F), we have

M s
[T (0, X, f3)] < esup{1, —log |D*(X)|r}".

PROOF. By Proposition 4.1.4) and Lemma 4.2 applied to o = Supp(f), we see that

[T (0, X, f)] <[D* ()12 /H S f(Ad(z~ 1) (X))o (2)|dz

<csup{L, — log [D°(X)|r} | D* (X)|* / |F(Ad(e™1)(X))|da.
Hx (F)\H(F)
Now we draw our conclusion by Proposition 3.13. ([

4.2. The case of (G',H’). Suppose that M’ € ZH'(M}) and that Q' € .ZH'(M’). For all f' €
Cr(¢'(F)) and Y € (w' Nsl,)(F), we define the weighted orbital integral

(12.1) IRy = D0 [ oy AT ()

By the base change to an algebraic closure of F' containing E, we see that Hy, C Hy, C M’ for
Y e t/nv'ﬂﬁés. Then v%, (x) is left-invariant by Hy (F'). This integral is absolutely convergent since the orbit
Ad(H'(F))(Y) is closed in §'(F"). Notice that for x € M'(F), we have JJ%/(Ad(x’l)(Y), M= Jg/(Y, M,
i.e., the function J]Q\/[/,(',fl) is constant on Ad(M'(F))(Y). One may extend in the obvious way the
definition (4.2.1) to the symmetric pair (M’, M’, Ad(«)), where M’ € LH'(M}), since it appears as the
product of some copies of the form (G', H', Ad(«)) in lower dimensions.

PROPOSITION 4.4. Suppose that M’ € L' (M}) and that Q' € F™ (M').

1) For Y € (w/ Ns.)(F) fized, the support of the distribution JQ/,(Y7 -) is contained in the closed
orbit Ad(H'(F))(Y).

2) For f' € C°(s'(F)) fized, the function JQ/,(o, ') is locally constant on (w/Ns')(F). If ¢ C m/Ns’

is a Cartan subspace, the restriction of this function to ¢.,(F') vanishes outside a compact subset of ¢'(F).

8) If w € Normp (py(Mp), x € M'(F) and k € Ky, we have the equality
TRy (Ad(wa)(Y), Ad(R)(f) = LY. [')
for allY € (m' Nsl)(F) and f' € C°(s'(F)).
4) For'Y € (W Nsl)(F) and f' € C°(s'(F)), we have the equality

Mg
; (}/’f/Q’)7

JLY ) = Ty
where fo, € Cgo((m@ Ns')(F)) is defined by (5.3.2).
5) (Descent formula) If L' € L' (M}), L' C M’ and Y € (U Nsl.)(F), we have
()= 3 (ML LG, f)
Le2H (L")

for all f' € C(s'(F)), where Q denotes the second component of s(M', L) (see Section 2.7).
6) (Noninvariance) For' Y € (m' N, )(F), y € H'(F) and f' € C(s'(F)), we have the equality

T A Y= Y I (Y S,
Q' eFH (M)
where fg, € C°((mg Ns')(F)) is defined by
(4.2.2) for (Z) = / S (A (Z + U))p (ky)dUdk,VZ € (mg Ns')(F).

KH/X(nEﬂﬁs’)(F)
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PROOF. It is almost the same as the proof of Proposition 4.1, except that one needs to use Lemma
3.19 to show 4) and 6). O

LEMMA 4.5 (cf. Lemma 4.2). Suppose that M’ € L' (M) and that Q' € FH' (M'). Let o' C §'(F)
be a compact subset. There exists ¢ > 0 and N € N such that if v € H'(F) and Y € (' Ns,)(F) satisfy
Ad(z71)(Y) € o/, then

[vr ()| < esup{1, ~log | D* (V) |}

COROLLARY 4.6. Suppose that M’ € L' (M}) and that Q' € FH' (M"). Let f € C°(s'(F)). There
exists ¢ > 0 and N € N such that for allY € (m/ N sl )(F), we have
M ! ’
[ Ta” (Y. fo)l < esup{1, —log [D* (Y)|p} 7.

PROOF. We may apply the argument of Corollary 4.3 with the help of Proposition 4.4.4), Lemma
4.5 and Proposition 3.20. O

5. The noninvariant trace formula

5.1. The case of (G, H). Suppose that M € %« (M,). For x,y € G(F), we define a (G, M)-
family (vp(z,y))perpe vy as in [8, (12.1) in §12] by

vp(\x,y) = e MHPW—HE@) ) cjat P e 29(M),

where P € 2%(M ) is the parabolic subgroup opposite to P. Let E/F be a quadratic field extension
and 7 the quadratic character of F*/NE* attached to it. For f, f’ € C°(s(F)) and X € (mNsys)(F)en,
we define

(5.1.1)

Tir (0. X, f, ') = IDE(X)IF/(A ) FAd(@™N) (X)) f(Ad(y ™) (X))n(Nrd(a™"y))ors (@, y)dwdy.

PROPOSITION 5.1. Suppose that M € L% (M) and that f, f' € C°(s(F)).

1) The integral (5.1.1) is absolutely convergent.

2) The function J$(n,-, f, f') is locally constant on (m N 8w )(F)en-

8) If c CmnNs is an M-elliptic Cartan subspace, the restriction of J(n, -, f, f') to creg(F) vanishes
outside a compact subset of ¢(F).

4) If w € Normp(py(Mo), ©* € My (F) and k, k" € Ky, we have the equality

Ty (1, Ad(we) (X), Ad(k)(f), Ad(K') (') = n(Ned(kk')) T3 (0, X, f, f)
for all X € (m N ss)(F)en-

5) There exists ¢ > 0 and N € N such that for all X € (m N sy5)(F)en, we have

T3 (0, X f, f')| < esup{1, —log | D*(X)[r}".
6) For all X € (m N sys)(F)en, we have
T X £ fy = Y d§p(La, La) o (0, X, F3) a7 (0. X, £15),),
L17L2€$G(M)
where (Q1,Q2) := s(L1, L) (see Section 2.7).

PROOF. The statements 1)-4) can be proved in the same way as the proof of analogous properties
for (4.1.1) in Section 4. Notice that the n(Nrd(:))-invariant effects coming from z and y may sometimes
cancel.

For x € G(F), we define a (G, M)-family (vp(v))pe e ) by

Tp(\, z) i= AP WX € jal,, P e 29(M).

Then vp(z,y) = p(z)vp(y) as the product of (G, M)-families. Notice that for all Q € £%(M) and
x € G(F), we have

7 (x) = v (2).
The statement 6) is a consequence of the splitting formula of (G, M)-families ((6) in Section 2.7)
and Proposition 4.1.4). It together with Corollary 4.3 implies the statement 5). O
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For f, f' € C2°(s(F)), we define
JEmf )= Y W W T () mcaAe) R T W (M, )] /
(5-1-2) MeZG (M) c€Ten(mNs) Creg (F)
J5i(n, X, f, f)dX.

This expression is absolutely convergent by Proposition 5.1.5) and Corollary 3.6.

REMARK 5.2. We have the equality

T f. )=, f, f).
It results from the fact that for all M € £%“ (M) and all x,y € G(F), we have vyr(x,y) = var(y, ).

Again, one may extend in the obvious way the definitions (5.1.1) and (5.1.2) to the symmetric pair
(M, My, Ad(e)), where M € %« (M), since it appears as the product of some copies of the form
(G, H,Ad(e)) in lower dimensions.

THEOREM 5.3 (Noninvariant trace formula). For all f, f' € C°(s(F')), we have the equality
T, £, ) = T, £ ).
The rest of this section is devoted to the proof of Theorem 5.3.
Fix Py € 2%(My). Denote
af, = {T € any : a(T) > 0,Ya € AG, .

For T e a, write
d(T):= inf o(T),

a€AG
which is invariant under the translation by ag. Set Ry := (aa,,r + 0g)/aq, which is a lattice in
an,/ag. For T € Ry N (aTSO/ag), we define a function u(-,T) on Ag(F)\G(F) as in [8, p. 21], which is
the characteristic function of certain compact subset. To be precise, let Cpy, (T') be the convex hull in
an, /ClG of
{Tg : B e 2°(M)},

where Tp denotes the unique W§-translate of 7' which lies in aj. Then u(z,T) is defined as the
characteristic function of the set of points

xTr = klmkg,m c Ag(F)\Mo(F),kth S Kc;,
in Aq(F)\G(F) such that Hyz,(m) lies in Cpy, (T).
Let f, f' € C°(s(F)). For x € H(F), we define

ke ) = [0S (A0
For T € Ry N (aTSO/ag), we define
KT(n, f,f') = / Kz, £, f)n(Ned(2))u(z, T)dz.
Ag(F)\H(F)

Since Ag(F)\H(F') is a closed subgroup of Ag(F)\G(F), the restriction of u(x,T') to Aqg(F)\H(F) is
also compactly supported, and the above integral is absolutely convergent.
By the Weyl integration formula (Proposition 3.11), we obtain the geometric expansion

K )= Y. Wttt S (WMo / K"(n, X, f, f))dX,

MeZL G« (My) c€ Zen(mnNs) Cres ()

where

K" (n, X, f, ") ::\DE(X)IF/ / F(Ad(@™ (X)) [/ (Ad(zy)~(X))n(Nrd(y))
Ag(F)\H(F) J Ay (F)\H(F)
u(y, T)dzdy.
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By the change of variables xy — y, we can write

(5.1.3)
K'(n, X, f, [') = \Dﬁ(X)|F/ FAd@™ (X)) f(Ad(y™H)(X))n(Ned(z ™ y)Jun (2, y, T)dady,
(A (FO\NH(F))?
where
up (z,y, T) :z/ uw(z ay, T)da
Ac(F)\Am(F)

is defined as in [8, p. 21].

For x,y € G(F)and T € RoN (g/ag), we define the second weight function vy (x,y,T') as in [8, p.
30], which is left-invariant under the multiplication of Aa;(F') on x or y. To be precise, let A € a};, @ C
be a point whose real part Ag € aj, is in general position. For P € PE(M), set

A} :={a e AS : \p(a") < 0},

where a¥ is the “coroot” associated to a € AG (see [9, p. 26]). Denote by ¢ the characteristic function
of the set of T" € ays such that w, (7”) > 0 for each o € A} and that @, (T') < 0 for each a € AG — A},
where {w, : @ € A%} is the basis of (a$)* which is dual to {a" : o € AG}. Let

YP(xayaT) = TP + HP(I) - Hﬁ(y)vvp € ‘@G(M)
The set #y(z,y,T) = {Yp(x,y,T) : P € 2% (M)} is a (G, M)-orthogonal set in the sense of [8, p. 19].
Define

on(T, Do (z,y,T)) = > (~D)IA oM (T~ Yp(2,y, T)), YT € ar/ac.
Pe»G (M)

The function o (-, Zar(z,y,T)) is known to be compactly supported (see [8, p. 22]). Then vys(z,y,T)
is defined as the integral

oo T) = | o (Har(@), @i (9. T))da.
Ac(F)\Anm(F)
Now, we define the corresponding weighted orbital integral
(5.1.4)
T, X, f 1) = ID"‘(X)\F/ FAd@™H (X)) (Ad(y~")(X))n(Ned(z ™ y))onr (2, y, T)dzdy.
(Ap (F)\H(F))?

Let ¢ € mNs be an M-elliptic Cartan subspace. For € > 0 and T" € ap,, 7 N aT.SO with large ||T]|,
consider the domain near the singular set

(6, T) := {X € creg(F) : [D*(X)| < e~cITl,

LEMMA 5.4. Fiz an arbitary constant €9 > 0. Fix a constant € > 0 satisfying the condition of
Lemma 3.5. Let ¢ CmNs be an M-elliptic Cartan subspace. Given € > 0, there exists ¢ > 0 such that

for any T € ap, ﬁa with ||T|| > eo,
ee|T|

/ KT XL O 170X, £ X < e

PRrOOF. It is shown in [8, (4.8) in p. 31] that there exist c¢1,d; > 0 such that for all z,y € G(F') and
T €ap,,rN a}o with |T]| > e,
unt(2,y,T) < ex(|T]| + log ||| +log lyl))™.
For any ay,a2 € Ay (F), we deduce that
unr (2,9, T) = unr(arz, azy, T) < er (| T + log |lasz|| + log [|azy])™.
Since T¢(F)/An (F') is compact, there exists ca > 0 such that

. T) <eo(|T||+ inf lo + inf lo 4y,
un (2,9, T) < eo(|| T o g [zl oo g lI2yll)

c 2 c

Now let z,y € H(F') and X € ¢(¢,T), and assume that
FAd(z™1)(X))f (Ad(y~)(X)) # 0.
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Let o C s(F) be a compact subset containing Supp(f) U Supp(f’). From Lemma 3.4, there exists ¢, > 0
such that
inf log|nzl, inf loglmyl < co sup{1, ~ log|D*(X)| ).
(F) €T (F)

T1 c T2 c
Therefore, there exists ¢, > 0 such that
(5.1.5) unt (2,9, T) < & (||| —log |D*(X)| 7)™
By Proposition 3.13, there exists cs > 0 such that

(5.1.6) |D5(X)|;/2/ f (= Xa)|de < 3
Anm (F)\H (F)

and

(5.17) DOl [ £ Xy <
Anm (F)\H(F)

for all X € cpeq(F).
Putting the estimates (5.1.5), (5.1.6) and (5.1.7) into the definition (5.1.3) of KT (n, X, f, f'), we
obtain the inequality
[KT (0, X, £, )] < coc3(IT]| = log |D* (X))
By Lemma 3.5, for any subset B of ¢;eq(F') which is relatively compact in ¢(F'), there exists cg > 0
such that

/ |D*(X)|35 dX < cp.
We deduce that for m € 7Z, ’
(5.1.8) Vol(B N {X € treg(F) : |D*(X)|p = ¢ %)) < cpg™ %"
We claim that for any B as above, there exists ¢z > 0 such that

‘e 7|

/ (I = log |D*(X)| )" dX < clge™ 2
Bne(e,T)

This is an analogue of the exercise in [8, p. 32] and we include here a proof for completeness. For
X € ¢(e,T), we have

1
IT) < —— log [D*(X) .

Therefore,

dy

1
[ arl-ir@mtacs (142) [ gD ol ax
Bne(e,T) € Bne(e,T)

Since

BreeT)= [[ (BO{X € ae(®): [D(X)lr=q %)),

we have

/ (= log|D*(X)|p)"dX =
BnNe(e,T)

mlosd) " g (x F):|D*(X)lr=q %
S (ML) valB 0 X € ) DXl =)

2¢|IT|l
777/2 log q

Applying (5.1.8), we obtain

dy
mlogq _e'm
> (M) e

>2I7]

/ (—log |D* (X)) dX <
Bne(e,T)

Now we can confirm our claim by noting the basic fact: for d > 0 and a > 1, there exists cq,, > 0 such

that
d

Z m—m < cdﬂa*%,Vx > 0.
m>x a
Taking
B={X € cree(F): K" (n, X, f, ') # 0},
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we see that
’e|| T

[ KT X 5 Pl < e
c(e,T)

This is half of the lemma. _
It is proved in [8, p. 32] that there exist ¢4, ds > 0 such that for all z,y € G(F) and T € apg,. p N a;ﬂ
with ||T|| > eo,
va (2,9, T) < ea(| T +log [l]| + log [ly)*.
By the same argument as before, we obtain

"e| T

/ |JT (0, X, £, f)ldX < esem 2
c(e,T)

for some c¢5 > 0. This establishes the other half of the lemma. O
LEMMA 5.5. Suppose that § > 0. Then there exist c,e1,e9 > 0 such that
lunr (2,9, T) — v (x,y, T)| < ce =17
for all T € angy p N}, with d(T) > 8| T, and all 2,y € {x € G(F) : ||z|| < e==ITI},
PROOF. This is Arthur’s main geometric lemma [8, Lemma 4.4]. O

LEMMA 5.6. Suppose that § > 0. Let ¢ C mNs be an M-elliptic Cartan subspace. Then there exist
c,e > 0 such that

/ (KT (0, X, f, ') = IT(0, X, £, )|dX < ce<IT]
Creg (F)

for allT € ap, . p ﬂaTSO with sufficiently large |T|| and d(T) > 6||T||.

PROOF. Fix €2 > 0 to be the constant given by Lemma 5.5. Let z,y € H(F) and X € ¢yeq(F) —
¢(%,T), and assume that

F(Ad(z~1)(X)) f'(Ad(y~)(X)) # 0.
Let 0 C s(F) be a compact subset containing Supp(f) U Supp(f’). From Lemma 3.4, there exists ¢, > 0
such that

inf ., inf < ¢y sup{l,|D*(X)|=}.
T1€11T1C(F) ||| T2€HT1C(F) 2yl < o sup{1, [D*(X)[z"}

Since X € ¢reg(F') — ¢(%,T'), we have

2Tl 2Tl

sup{1, |D*(X)|z'} <sup{l,e 2 }=e 2 .

Then, multiplying « and y by elements in T (F") if necessary, and taking ||T|| > 21‘;%, we can assume

that
e2(|T|

[zl [lyll <e
It follows from Lemma 5.5 that
lung (2,9, T) — var(,y, T)| < ce T

By the definitions (see (5.1.3) and (5.1.4)) of KT(n, X, f, f') and JT(n, X, f, f'), we obtain that
/freg(F)C(Ez2

e Ly [FA@) (X)) f/(Ad(y ™) (X)) |drdyd X
Creg (F) (Anm (F)\H(F))?

is finite by Proposition 3.13 and Lemma 3.3.

K" (0, X, £, f") = T (0, X, f, f)ldX < ere= =T,
T)

3

where

One can draw the conclusion by combining this with Lemma 5.4. (I

Define

T, £ )= Y Wttt S (W (M, o) / JT(n, X, f, f)dX,
Me¥Gw (M) c€Ten(mNs) Crog (F)

where JT(n, X, f, f') is defined by (5.1.4).
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PROPOSITION 5.7. Suppose that § > 0. Then there exist c,e > 0 such that
KT (0, f, ) = T (0, £ )] < ceeIT)
for allT € ap, F ﬂaT{,O with sufficiently large |T|| and d(T) > §||T.
ProoF. Apply Lemma 5.6. O
It is proved in [8, (6.5) in p. 46] that vps(x,y,T) is an exponential polynomial in 7' € RoN (g/ag).

Denote by ps(w,y) the constant term of vas(x,y,T) as in [8, (6.6) in p. 46]. Then for f, f' € C2°(s(F))

and X € (mNsy)(Fen, JT (1, X, f, f') is also an exponential polynomial in T' € Ry N (a;o/ag) whose
constant term is given by
(5.1.9)

Tu(n X, £, f') = IDE(X)IF/(A iy FAd@@™N) (X)) (Ad(y ™) (X))n(Nrd(a~"y))or (2, y)ddy.

Thus for f, f' € CZ(s(F)), JT(n, f, f') is still an exponential polynomial in T € Ry N (T;O/ag) whose

constant term is given by

(5.1.10) J(n, f, f) = > Wt Y W (M) / Jar (0, X, £, f1)dX.

Me£G«(Mo) ¢€ Ten(mnNs) res (F)

COROLLARY 5.8. For f, f' € C°(s(F)), we have the equality
T, fo ') = T, f, )
PROOF. By the Plancherel formula, for € H(F), we have
Kz, . J) = k(. £, 1").
Then for all T € Ry N (af, /ac),
K"(n, f, f)) = K" (n, f, ).
Finally, apply Proposition 5.7 to conclude. O

LEMMA 5.9. For all Q € F%« (M), there exists a constant cg such that for all f, f' € C°(s(F)),
we have the equality

Jo £y = > W Wk T (—1)dimAe/Ae) pMa iy fn 1Tl
QEF G (My)

where JMe (n,fg, f’%) is defined by (5.1.2).
PROOF. Suppose that M € .Z%«(My). It is shown in [8, p. 92] that

Onr(a,y) = (S1)EEAD ST W (),
QEF (M)
where ¢, is a constant for each @ € FG(My).
Now substitude this in the definition (5.1.9) of Jas(n, X, f, f'). Note that

”UI\Q/I(mlTleh mgnng) = ’UﬁQ (ml, mz)
for my € Mgz (F),n1 € Ng_(F),ma € Mg, (F),n2 € Nq, (F), k1, k2 € K. By the same argument as
the proof of Proposition 4.1.4), one shows that
_ _ _ M
|D5(X)\F/ FA( ) (X)) (Ad(y ™) (X)n(Ned(z ™ y)) o (2, y)dedy = Ty (n, X, f2, ['5),
(Am (F)O\H (F))?
where JAAjQ (n, X, f%, f'%) is defined by (5.1.1). Therefore, we have
T im M,
Ta(n, X, £, f') = (-1 miAe) N TR (0, X £ £ o).
QeFCE (M)
Then the lemma follows from the definition (5.1.10) of J(n, f, f'). O

PROOF OF THEOREM 5.3. Using Lemma 5.9 and Corollary 5.8, we can prove the theorem by in-
duction on the dimension of G. O
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5.2. The case of (G', H'). Suppose that M’ € £ (M}). For x,y € H'(F), we define an (H', M')-
family (vp(2,9)) pre g (arry bY

vpr (A, y) 1= e A W=HEr@) vy e it P e 2P (M),
where P’ € 2H' (M) is the parabolic subgroup opposite to P’. For f,f € C>®(s'(F)) and Y €

(' Ns')(F)e, we define

(5:21) I, 1) = DT (¥)]r /(A ey TALET DO A o)y

PROPOSITION 5.10. Suppose that M’ € L™ (M}) and that f, f’ € C°(s'(F)).

1) The integral (5.2.1) is absolutely convergent.

2) The function JiL, (-, f, f') is locally constant on (m’ N5 ) (Fen-

3) If ¢ Cw'Ns’ is an M’ -elliptic Cartan subspace, the restriction of JE (L £, f) to Creg (F7) vanishes
outside a compact subset of ¢’ (F).

4) If w € Normpg: gy (M), x € M'(F) and k, k" € Ky, we have the equality

TRy ey (Ad(w) (YV), Ad (k) (f), Ad(K) (') = T30 (V. £, f)

for all Y € (w' N8 )(F)en.
5) There exists ¢ > 0 and N € N such that for allY € (w/ N sl )(F)en, we have

[T (Yo 5 )] < esup{1, —log [D¥ (V)| #}".
6) For all Y € (w/ Ns'.)(F)en, we have

, ’ L L
W@ L= 3 AL I (Y ) he (Y, foy),
Ly, LyeLH (M)

where (Q, Q%) := s(L}, LL) (see Section 2.7).

PROOF. It is almost the same as the proof of Proposition 5.1, except that one needs to use Proposition
4.4.4) and Corollary 4.6 to show 6) and 5). O

For f, f' € C°(s'(F)), we define

JH/(f, f/) — Z |WOH,|‘Wé\4,|71(*1)dim(AM//AH/) Z |W(M/,c/)|71/
(5.2.2) M/eH (M) o€ Tun(miNs’) €rog (F)
Ti (Y, S, f)dY.

This expression is absolutely convergent by Proposition 5.10.5) and Corollary 3.6. One may extend
in the obvious way the definitions (5.2.1) and (5.2.2) to the symmetric pair (M’, M’, Ad(«)), where
M e 27 (My).

REMARK 5.11. We have the equality
T = T 5).
It results from the fact that for all M’ € "' (M}) and all z,y € H'(F), we have vy (2,y) = var (y, ).
THEOREM 5.12 (Noninvariant trace formula). For all f, f' € C°(s'(F)), we have the equality
JE(Lfy = T (F 1),

PROOF. We may simply copy the proof of Theorem 5.3 here with obvious modifications. Especially,
one needs to use Proposition 3.20 to show analogues of Lemmas 5.4 and 5.6 for the case of (G', H"). O
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6. Howe’s finiteness for weighted orbital integrals

6.1. The case of (G,H). For an open compact subgroup r of s(F'), denote by C°(s(F')/r) the
subspace of C°(s(F)) consisting of the functions invariant by translation of r. Let i2* : C°(s(F))* —
C(s(F)/r)* be the dual map of the natural injection C°(s(F)/r) < C°(s(F)).

For any set o, denote by C[o] the C-linear space of maps from o to C with finite support. For
M € L% (M) and o C (m N s)(F), we define the linear map

0 : Clo] — C(s(F))",

(2x)xes = Y 2x 5 (0, X, ),
Xeo
where zx € C is the coordinate at X € o.
Once again, one may extend in the obvious way the definitions of i2* and ¢, to the symmetric
pair (M, My, Ad(¢)), where M € Z%“(My), since it appears as the product of some copies of the form
(G, H,Ad(e)) in lower dimensions.

PROPOSITION 6.1 (Howe’s finiteness). Let r be an open compact subgroup of s(F), M € L% (M)
and o C (m N s)(F). Suppose that there exists a compact subset og C (m N s)(F) such that o C
Ad(My(F))(0oo). Then the image of the linear map

8 06§ Clo] — C°(s(F)/r)*

r

is of finite dimension.

REMARK 6.2. For M = G, Proposition 6.1 is essentially included in a more general result [45,
Theorem 6.1] in the context of §-groups (in the sense of [49, p. 467]).

The rest of this section is devoted to the proof of Proposition 6.1. We shall follow the main steps
in [51, §IV.2-6]. We may and shall suppose that o is relatively compact in (m N s)(F'). The proposition
will be proved by induction on the dimension of G.

Recall that we have chosen the standard maximal compact subgroup K = GL2,(Op) of G(F) =
GL2n (D). Let k = g(Op) := gl2,(Op), which is an Op-lattice in g(F) = gla, (D) and is stable under
the adjoint action of K. Since H € £%(M,), we have set Ky = K N H(F) = GL,(Op) x GL,(Op).
Let h(Op) = kN {H(F) and §(Op) := kN s(F). Then we see that £k = hH(Op) @ s(Op) and that
s(OF) is stable under the adjoint action of Kg. For all P € .FY (M), we fix ap € Ap(F) such that
la(ap)|r < 1,Va € AG.

Recall that we denote by N the set of nilpotent elements in $(F) and fix a uniformiser w of Op.
Let X € N* N (k — wk). By the Jacobson-Morozov theorem for symmetric spaces (Lemma 3.7), there
exists a group homomorphism ¢ : SLy(F') — G(F') such that

0 1 w
dcp(o 0)—Xanda“":—gp< w_1>€H(F).

We define the parabolic subgroup PX of G as in [51, §IV.3]. More concretely, set
gli] :={Y € g: Ad(a®)(Y) = @'Y, Vi € Z}

and
p* =P alil;
i>0
then let
(6.1.1) PX = {z e G:Adz)(p™) =p~).
Note that P is independent of the choice of ¢ by [11, Proposition 5.7.1]. Since a® commutes with €, one

has e € PX. By Lemma 3.9, PX N H is a parabolic subgroup of H. Then there exists an element z € Ky
such that P’ := Ad(x)(PX) € #Y%(M,). We shall fix such an x. Let a® := Ad(z~')(ap) € H(F). Note
that a® depends on the choice of x, but this is unimportant. By [51, (3) in §IV.3], we have

(6.1.2) Ad(a®)(X) € (wk) Ns(F) = ws(Op).

LEMMA 6.3. There erists an integer h € N such that for all Y € w"s(OF), all integer | > h and all
7 € Ad(a®)~Y(w's(OF)), there exists v € Ky with n(Nrd(v)) = 1 such that

Ad(V)(X +Y +2) € X +Y +@'s(Op).
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PROOF. We may choose h following the proof of [51, Lemme IV.3]. The point is that we require
~v € H(F) and n(Nrd(y)) =1 here.

Set

n* = P glil.
i>1

Since a¥ commutes with €, one has g[i] = (g[¢] N h) @ (g[i] N s).

By the intersection of s(Op) with [51, (4) in §IV.3], we have
(6.1.3) Ad(a®) "1 (s(OF)) C 5(OF) + Ad(a™) 71 (s(OF)) N 0¥,

Let ¢,d,¢’,;h € N be as in the proof of [51, Lemme IV.3], except that we require additionally
exp(w'k) C {r € K : n(Nrd(z)) = 1},Vl > ¢. Then
(6.1.4) X N Ad(a™) " (s(OF)) C ad(X) (@ °h(OF)).

Let Y,l and Z be as in the statement. Thanks to (6.1.3), we can write Z = Z; + Z, where
71 € w's(OF) and Zy € Ad(a®) "} (w!'s(Or)) Nn¥X. Because of (6.1.4), we can choose Z’ € w!=°h(OF)
such that Z, = ad(X)(Z'). Since Z' € w®s(Op) from the hypothesis | > h > ¢ + ¢, we can define

v :=exp(Z’) as in the proof of [51, Lemme IV.3]. Then we have v € Ky and n(Nrd(y)) = 1. Such a v
verifies [51, Lemme IV.3] and thus our statement. O

For X € N* N (k — wk), we shall fix an integer b such that

(1) b verifies the condition of Lemma 6.3;

(2) X > 1;

(3) Ad(a™)(@"" 5(OF)) C ws(Op).

Denote by N'“ the set of nilpotent elements in g(F'). Let Pg(F) (resp. Ps(F')) be the projective space
associated to g(F) (resp. s(F)) and 7 : g(F) — {0} — Pg(F) the natural projection. Since 7(N¢ — {0})
is compact and A® — {0} is a closed subset of N'¢ — {0}, we know that 7m(N® — {0}) is compact. One
also sees that

7NN (k—wk)) = 7(N* —{0}).
We can and shall choose a finite set Ny € N* N (k — wk) such that
U =X +=""s(0r)
XGN()
is an open neighbourhood of m(N* — {0}) C Ps(F).

LEMMA 6.4. There ezists an integer ¢ € N such that for all d € §§;(Clo]) and all f € CZ(s(F))
satisfying d(f) # 0, we have

Supp(f) N[ws(Op) U | J FX(X + =" s(Op))] # 0.
XeNy

PROOF. Recall that o is assumed to be relatively compact in (m Ns)(F). Fix an open compact
neighbourhood ¢’ of ¢ in s(F). Fix Py € 2 (M) and set

A} i={a € Ay, (F) : |afa)|lp > 1,Va € AR Y.
Similarly, for all B € 2% (M), set
AL ={a € Ay, (F) : |afa)|p > 1,Ya € AG}.
We see from the argument of Lemma 4.8 in Chapter 2 that
Af C U A}
{Be 2% (Mo):P,C B}

By the Cartan decomposition, there exists a compact subset I' C H(F') such that H(F) = KHAFOF.
Fix such a I'. Then
H(F) C U Ky ALT.
{BeG (Mo):PoC B}
Fix ¢ € N such that Ad(T)(¢") € @w “s(OF). Since Ad(AL)(s(Or)) C s(OF) + (np N s)(F) and
(np Ns)(F) C N*, we obtain
Ad(H(F))(0") C @ “s(OF) + N*.
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Choose an integer ¢ such that

c>c + sup h¥.
XeNy

Let d and f be as in the statement. It is evident that

Supp(f) N Ad(H(F))(o") # 0.
Suppose that X; € @ s(Op), Xy € N® satisfy X1 + Xy € Supp(f). If Xy € w °s(Op), we are done.
If not, let X € Ny be such that m(X3) € 7(X + whxs(OF)). Then there exists A € F* such that
Xo € M(X + whxs(OF)). Since X ¢ @ °s(OF), we have vp(\) < —c and thus vp(\) + % < —¢.
Therefore, X1 € A@" 5(Op) and then X; + Xy € A(X 4+ @ §(0p)) € F*(X + @"" 5(O)). This is
exactly what we want to prove. (]

We shall fix an integer ¢ verifying the condition in Lemma 6.4. We shall also fix another integer h
such that

(6.1.5) h> sup h¥.
XeNy

Denote
C = {f € CZ(s(F)/w"s(OF)) : Supp(f) C @ “s(Or)},
which is a C-linear space of finite dimension. For all L € .#%(M),L # G, let 7(L) := @"(INs)(OF).

LEMMA 6.5. Let 3 = (2x)xeo € Clo]. Suppose that
1) 5" 0 05(3) = 0 for all L € £9(M),L # G;
2) 851 (5)(C) = 0.

Then i° )*0516\;/[(3) =0.

whﬁ(OF

PrOOF. Write d := §¥;(3). It suffices to prove by induction on the integer e > ¢ the assertion

(A)e: for all f € C(s(F)/w"s(OF)) with Supp(f) C @ °s(OF), we have d(f) = 0.

If e = ¢, this is true by the hypothesis 2). Fix an e > ¢ and suppose that (A)._1 is true. For all
open compact subset s C g(F'), denote by 1; its characteristic function. It suffices to prove that for all
Y € w %s(Op) —w “T's(Op), we have d(1y; mns0p)) = 0.

Suppose that Y € w=¢s5(Or)—w “*15(Or). The hypothesis e > ¢ implies w °s(OF) C w~*T1s(OF)
and thus Y ¢ @~ “s(Or). Suppose on the contary that d(1lyjone0,)) # 0. By Lemma 6.4, there ex-

ists X € Ny and A € F* such that (Y + @"s(Op)) N A(X + @"" s(Op)) # 0. Fix such X and A.
Since vp(Y) = —e and vp(X) = 0, we have vp(\) = —e. As h > hX > hX — e (see (6.1.5)), we obtain
@"s(Op) C A" 5(Op) and then Y € A(X+w"" s(Op)). Let Y’ € @w"™ s(Op) such that Y = A(X+Y").

Let Z € Ad(a®) Y (w"s(OF)). Since h + e > hX, we can apply Lemma 6.3 to X,Y’ A\7"1Z and
[ :=h + e. Then there exists v € Ky with n(Nrd(y)) = 1 such that

Ad(Y)(X +Y' +2712) e X + Y + " Te5(0p).
From vp(A) = —e, we deduce that

Ad(Y)NX +Y)+ 2Z) e MX +Y) + @"s(OF),
ie.,

Ad()(Y + 2Z) €Y + w"s(OF).
Since v € Kp, this is equivalent to
Ad()(Y + Z + @"s(Op)) =Y + @w"s(Op)

or

Ad(Y) Ay 4 z4whs(0r) = 1y 4ohs(0p)-
By Proposition 4.1.3), we obtain

d(ly 1 z1mms(0r)) = NNTd(7))d(ly 4 ohe(0))-
Because n(Nrd(v)) = 1, we have

d(1Y+Z+wh5(OF)) - d(1Y+wh5(Op))'
Now, by the sum over Z € (Ad(a™) ! (w"s(OF)) + @w"s(OF)) /@"s(OF) (a finite set), we get

(6.1.6) d(Ly ymraop) = K : 5(OF)] ALy yonp),
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where
(6.1.7) E = Ad(a™) " (s(OF)) + 5(OF).
By Proposition 4.1.6), we have the equality
A (Ad(@)(1y wrpr) = nNId(@ DTy o) =nNed(@®) > 26 (vt ) )1 ) -
QEFC(M),Q#G
From (4.1.3), it is clear that (1y+whk/)g,(ax),l is invariant by translation of r(Mg). By the hypothesis

1), we have (5%%5) ((1y+whk/)g7(ax),l) =0foral Q € FYM),Q # G, so

(6.1.8) n(Nrd(a™))d(ly { onpr) = d (Ad(a™) (Ly {onpr)) -
We see easily that

Ad(a™)(Ly yorpr) = L,
where
(6.1.9) 5= Ad(a™)(Y) + w"Ad(a™)(K').

Recall Y = M(X + Y”) above. As X € N, by (6.1.2), we have Ad(a™)(X) € ws(Op). Since
Y’ € wh” s(Op), by the hypothesis (3) on %X, we have Ad(aX)(Y') € ws(OF). For vp(\) = —e, we
obtain
(6.1.10) Ad(a™)(Y) € wTs(OF).
We see from (6.1.7) that
Ad(a™)(K') = s(OF) + Ad(a™)(s(Op)).

By (6.1.5) and the hypothesis (3) on b, we have w"Ad(a™)(s(OF)) C thAd(aX)(s(OF)) C ws(Op).
Then by (6.1.5) and the hypothesis (2) on h*X, we have
(6.1.11) " Ad(a®) (k') = @"s(OF) + @"Ad(a™)(s(OF)) C whxs((’)F) + ws(Of) = ws(OF).
From (6.1.9), (6.1.10) and (6.1.11), we see that

Supp(Ls) C @ “"'s(Op).

Since §(Or) C Ad(a™)(k'), we know that 1, is invariant by translation of @w"s(Or). Using the induction
hypothesis (A)._1, we have

d(1s) =0.
Thanks to (6.1.6) and (6.1.8), we obtain

d(].y_;,_mhs(oF)) = 0
This proves (A), and thus the lemma. O

PROOF OF PROPOSITION 6.1. We use induction on the dimension of G. Suppose that for all L €
LG (M), L # G, and all open compact subgroup 71 of (INs)(F), the image of the linear map

05" 6 6L, Clo] — C((1N8)(F) /rp)*

TL
is of finite dimension. This is actually a product form of the proposition in lower dimensions. Now we
would like to prove the proposition. The argument below is also valid for the case G = M.
Enlarge h in (6.1.5) if necessary such that r O w”s(Op). We shall prove that the image of i;hs(op)* o

6%y is of finite dimension. Admit this for the moment. Since i2* factorises by 2 hrs(op)*’ the image of

i8* 0 8§, is also of finite dimension. Then we finish the proof.
Let Iy be the kernel of the linear map

P i ekl P CcE(Uns)(F)/r(L),
Le¥C (M), L#G Le¥CG(M),L#G

whose image is of finite dimension by our induction hypothesis applied to r; := r(L) for all L €
ZL%(M),L # G. Hence, to prove that i;,LE(OF)* 0 6§, (Cl[o]) is of finite dimension, it suffices to prove

that i;hﬁ(OF)* 00§, (K1) is of finite dimension.
Consider the composition of the linear maps

dvi= g0 @ Ot |, 1K1 = CZ(s(F)/m"5(OF))"
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and
Res : C°(s(F)/w"s(OF))* — C*.
The latter map is the natural restriction. Lemma 6.5 says that
ker(Res o dy) = ker(dy),
which is denoted by KCy. Then
di(Ky) ~ K1/Ke ~Resodi(Ky) C C™.

Since C' is of finite dimension, we see that dy (K1) is of finite dimension. O

COROLLARY 6.6. Let 1 be an open compact subgroup of s(F), M € L% (My) and o C (mNsy)(F).
Suppose that there exists a compact subset o9 C (mNs)(F) such that o C Ad(Mg(F))(oo). Then there
exists a finite subset {X; : i € I} C o and a finite subset {f; : i € I} C C°(s(F)/r) such that for all
X €0 and all f € CX(s(F)/r), we have the equality

i, X, 1) =3 T (0, X, )T (0, X, fo)-
iel
PROOF. By Proposition 6.1, there exists a finite subset {X; : i € I'} C o such that {i2* 05§, (X;) 14 €
I} is a basis of i¢* 0 §§;(C[o]). By linear algebra, there exists a finite subset {f; : i € I} C C°(s(F)/r)
such that i¢* o 6§, (X;)(f;) = 6:5, Vi, j € I, where §;; denotes the Kronecker delta function. Choose such
{X;:iel}and {f;:i€l}.
Then, for all X € o, there exists A\;,Vi € I such that

Tir (0, X,) =Y N5 (0, Xi, ) € C2(s(F)/r)”
iel
Hence, for all ¢ € 1,
Ti 0, X 1) = D XI5 X5, fi) = D Nidii = A
jel jel
We have finished the proof. O

6.2. The case of (G’, H'). For an open compact subgroup r’ of §'(F'), denote by C°(s'(F)/r") the
subspace of C°(s'(F')) consisting of the functions invariant by translation of /. Let zf:* (CR(s(F)* —
C°(s'(F)/r")* be the dual map of the natural injection C°(s'(F)/r’) < C°(s'(F)).

For any set o, denote by Clo’] the C-linear space with a basis o’. For M’ € ZH (M}) and o’ C
(m’ Ns’,)(F), we define the linear map

Shpr  Clo’] = €2 (s'(F))*,

(2v)veor = > 2y Jip(Ys0),
Yeo!
where zy € C is the coordinate at Y € o”.
1% ’ —~
One may extend in the obvious way the definitions of %, and 611, to the symmetric pair (M’, M’, Ad(«)),
where M’ € 21 (M]).

PROPOSITION 6.7 (Howe’s finiteness). Let ' be an open compact subgroup of s'(F), M' € ZH' (M)
and o' C (W' Nsl,)(F). Suppose that there exists a compact subset oy C (w/ Ns')(F) such that o’ C
Ad(M'(F))(0(). Then the image of the linear map

i6, 06 Clo’] = C°(s/(F) /r')*

r!

is of finite dimension.

The rest of this section is devoted to the proof of Proposition 6.7. It is similar to the proof of Proposi-
tion 6.1 and we only point out some additional argument. Recall that we have chosen the standard maxi-
mal compact subgroup Kg' = G L, (Opr) of H'(F) = GL,(D') in Case I (resp. K = GLz(Opg k) of
H'(F)=GL»(D®F E) in Case II). Snice Ad(7)(D’) = D' in Case I (resp. Ad(7)(D®F E) = D@r E
in Case II), we deduce that Ad(7)(Op/) = Opr in Case I (resp. Ad(7)(Opg,£E) = Opg . in Case
IT). Thus Ad(7)(Ka') = Kgr. Let §(Or) := gl,(Op/) in Case I (resp. h'(Or) := glz(Opg,r) in
Case II). Let s'(OF) := b (Op)T = 7H'(OF) be an Op-lattice in s'(F) (see Section 3.3 for the choice of
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7). Let ¥ := b (Op) ® s'(OF), whose decomposition is stable under the adjoint action of K+ because
Ad(7)(Kp/) = K. For all P € FH' (M}), we fix apr € Ap/(F) such that |a(ap/)|r < 1,Va € AL,

Starting from X € N N(s'(Op)—ws' (OF)), we obtain a group homomorphism ¢ : SLy(F) — G'(F)
by the Jacobson-Morozov theorem for symmetric spaces (Lemma 3.7). Denote a? := ¢ “ o1 €
H'(F). Define PX as in (6.1.1), which contains the centraliser Centg(a?) of a¥ in G’ as a Levi factor.
Since a¥ commutes with a, by Lemma 3.16, PX N H' is a parabolic subgroup of H’, which contains the
centraliser Centpg:(a®) of a¥ in H' as a Levi factor. We want to show that there exists © € Kpg+ such
that Ad(z)(PX N H') € Z"' (M) and that Ad(z)(PX) € F (MY).

LEMMA 6.8. ForY € N'¥', there exists x € H'(F) such that Ad(x)(Y) is in the Jordan normal form,
i.e., diagonal block matrices with entries in D't in Case I (resp. (D @ E)7 in Case II) whose blocks
are of the form

0 7
.
0
PROOF. It can be proved in the same way as [24, Lemmas 2.2 and 2.3] by linear algebra over a
division ring. O
Thanks to Lemma 6.8, we can construct explicitly the above morphism ¢ (see [19, p. 184]). If X

is in the Jordan normal form, by loc. cit., we may choose a® € Ap/(F) for some L' € ZH (M}) such
that Centp(a®) = L’ and that Cente(a®) = L'. For a general X as above, by Lemma 6.8, there exists
y € H'(F) such that Ad(y)(a®) € AL/(F) for some L' € L' (M}) satisfying Cent g (Ad(y)(a?)) = L’
and Cente (Ad(y)(a®)) = L'. Let € Ky be such that 2~y € (PX N H')(F). Then Ad(z)(PX NH') =
Ad(y)(PX N H’) contains L’ as a Levi factor and Ad(z)(P¥X) = Ad(y)(PX) contains L’ as a Levi factor.
Furthermore, since Ad(z)(PX)N H' = Ad(x)(PX N H'), we see that Ad(x)(PX N H') and Ad(z)(PX)
are associated under the bijection P’ — P’ between .ZH' (M{) and fGl(Mé).

Fix = € K as above and denote P’ := Ad(z)(PX N H') € Z7' (M}). Then P = Ad(z)(PX). Put
aX := Ad(z71)(ap/) € H'(F). By the argument of [51, (3) in §IV.3], we show that

(6.2.1) Ad(a®)(X) € ws' (OF).

PROOF OF PROPOSITION 6.7. We may apply the argument of Proposition 6.7 with obvious modi-
fications. Especially, one needs to use Proposition 4.4 and (6.2.1) to show an analogue of Lemma 6.5
for the case of (G, H'). Additionally, to prove an analogue of Lemma 6.3 for this case, one may resort

to the argument rather than the consequence of some steps in the proof of [51, Lemme IV.3] since our
definition of £’ is different from ¢'(Op) := gl,,(Op). However, there is no essential difficulty with our
preparation above and we omit details here. O

COROLLARY 6.9 (cf. Corollary 6.6). Let r’ be an open compact subgroup of s'(F), M' € LH (M)

and o’ C (m' Ns')(F). Suppose that there exists a compact subset oy C (m/ N')(F) such that ¢’ C
Ad(M'(F))(o(). Then there exists a finite subset {Y; : i € I} C o' and a finite subset {f; : i € I} C
CX(s'(F)/r") such that for allY € o’ and all f' € C°(s'(F)/r"), we have the equality

T = T )T £,

i€l

7. Representability of the Fourier transform of weighted orbital integrals

7.1. The case of (G, H). Following [51, §V.6], we denote by &* the space of functions e : s,5(F) —
C such that

(1) e is locally constant;

(2) for all open compact subset r of s(F), there exists ¢ > 0 and N € N such that for all X € rNss(F'),
one has the inequality

le(X)] < esup{1, —log| D*(X)|r}".
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If e € &%, the function X — |D5(X)\;1/26(X) is locally integrable on s(F') thanks to Corollary 3.15.
It defines then a distribution on s(F):

(7.1.1) Vf € CX(s(F)), f F(X)e(X)|D*(X)[5/2dX.

s(F)
Denote by Z° the space of distributions obtained in this way. The map &° — Z° defined above is an
isomorphism. For d € 2°, we shall always denote by ey its preimage in &*.

Notice that the notion &° can be defined for any symmetric pair, and that the definition 2° can at
least be extended to the symmetric pair (M, Mg, Ad(¢)), where M € £%« (M), since it appears as the
product of some copies of the form (G, H, Ad(e)) in lower dimensions.

If d € 2° is n(Nrd(-))-invariant with respect to the adjoint action of H(F'), then so is eq € &° and
by the Weyl integration formula (Proposition 3.11), we have the equality

(7.12)  dif)= Y, WEIWwER Tt S (WMo / JE (0, X, flea(X)dX
MeZLGw (M) € T (mNs) creg (F)

for all f € C°(s(F)), where J& (1, X, f) is defined by (4.1.1).

REMARK 7.1 (Glueing). Let d € C°(s(F))* and (r;);cr be a family of open compact subsets of s(F)

such that (J r; = s(F). Suppose that for all ¢ € I, there exists d; € 2° such that d(f) = d;(f) for all
i€l
f e (s(F)) with Supp(f) C r;. Then d € 2°. Refer to [51, Remarque V.6] for the details.

Let M € £%%(Mp) and X € (m N s,)(F). Denote by JG (n, X, -) the distribution on s(F) defined
by
j]\C/;[(anvf) = Jl\gl(anvf)
for all f € C°(s(F)), where the right hand side is defined by (4.1.1). We also have a similar definition

for the symmetric pair (M, My, Ad(e)), where M € £%(My). The main result of this section is the
following.

PROPOSITION 7.2 (Representability). Let M € L% (My) and X € (m N sy)(F). Then the distri-
bution J$(n, X,-) € 2°.

REMARK 7.3. For M = G, Proposition 7.2 is essentially [58, Theorem 6.1.(i)] (see also [57, Theorem
6.2]).

The rest of this section is devoted to the proof of Proposition 7.2. We shall follow the main steps in
(51, §V.7-10).

Let ¢ be a Cartan subspace of s. Recall that T, denotes the centraliser of ¢ in H. Suppose that
eo : (Te(F)\H(F)) X treg(F) = C is a function such that

(1) eg is locally constant;

(2) for all open compact subset r of s(F'), there exists ¢ > 0 and N € N such that for all z €
T(F)\H(F) and X € cyeq(F) satisfying Ad(z71)(X) € r, one has the inequality

eo(z, X) < esup{l, —log|D*(X)|r}".

Following [51, §V.7], for f € C°(s(F)), we define
(7.1.3) win= [ el [ F(Ad(E)(X))eo(, X)drdX.
Creg (F) Te(F)\H(F)

LEMMA 7.4. Let ¢ be a Cartan subspace of s. Suppose that ey satisfies the above hypotheses. Then
the integral (7.1.3) is absolutely convergent. Moreover, the distribution dy € 9°.

PROOF. We define a function e’ : s,4(F) — C by
(7.1.4) e(X) = > eo(z, Ad(z) (X))
{z€T (F)\H (F):Ad(z)(X)ec(F)}

for all X € s(F). If X ¢ Ad(H(F))(treg(F)), then €(X) = 0. If X € Ad(H(F))(creg(F')), then
the sum in (7.1.4) is actually over the finite set W (H, ¢)y, where y € H(F) is any element such that
Ad(y)(X) € ¢«(F). Hence, ¢’ is well-defined.
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Additionally, one may check that ¢/ € &° from the hypotheses on eg. Let d' € 2° be the distribution
associated to e’ by (7.1.1). For all f € C2°(s(F)), by the Weyl integration formula (3.1.2), we have

(715)  d(f) = W(H, | / L I /T o TG0 (A (X)X

Since
¢ (Ad(z7 1) (X)) = Z eo(wz, Ad(w) (X))
weW (H,c)
for all z € T.(F)\H(F) and all X € ¢,eq(F'), we deduce that

d(f) = |W(H, )| D3 (X)[}/? Ad(z7 ) (X))eo(wz, Ad(w)(X))dzdX.
(f) =W (H, o) wewz/(:Hc)/‘re%(F| /%C(F)\H(F)f( (27 )(X))eo (w)(X))

Applying the change of variables X + Ad(w~!)(X) and z + w2, which does not modify the Haar
measures, we obtain

d'(f)=do(f)
for all f € C°(s(F)). That is to say, dy =d' € 2°.
Note that in the argument above, we have used the convergence of an analogue of (7.1.5) with eq
and f replaced by their absolute values. It also results in the absolute convergence of (7.1.3). (]

COROLLARY 7.5 (Parabolic induction). Let M € L% (My), P € 2%(M) and d € ™. Then the
distribution on s(F') defined by Vf € C°(s(F)), f — d(fp) belongs to 2°, where [}, is defined by (3.2.2).

PROOF. Applying the Weyl integration formula (3.1.2) to d(f2), we see that it suffices to fix a
Cartan subspace ¢ C m N s and prove that the distribution on s(F') defined by
(7.1.6)
VfeCX(s(F), [ lem(X)ljw/g/ fp(Ad(z™1)(X))ea(Ad(z ™) (X))dzd X
Crog (F) Te(F)\Mp (F)

belongs to 2°. Recall that eq € &™* is associated to d by (7.1.1).
Define a function eq : H(F') X ¢yeq(F) — C by

(7.1.7) e1(z, X) = n(Nrd(m))/ ea(Ad(mp(2)k) " (X))n(Nrd(mp(2)k))dk
M (F)NK

for all z € H(F) and all X € ¢,o(F), where mp(z) € My (F) is any element such that mp(x) 'z €

Np, (F)Ky. Since Pg(F)NK = (My(F)NK)(Np, (F)NK) (see [5, Property (iii), p. 9] for example),

the integral (7.1.7) is independent of the choice of mp(z). The function e; is left T (F)-invariant on the

first variable, so it induces a function (still denoted by e;1) : Te(F)\H (F) X ¢treg(F) = C.

We shall check that e; verifies the hypotheses of Lemma 7.4. Firstly, e; is locally constant because
eq is locally constant and ey is right Kpy-invariant on the first variable. Secondly, suppose that r is
an open compact subset of s(F). We fix an open compact subset rp; C (m Ns)(F) such that if X €
(mNs)(F),U € (npns)(F), k € Ky satisfy Ad(k)(X +U) € r, then X € rjy; this is possible for it suffices
to let rps contain the projection of Ad(Kg)(r) to (mNs)(F). Replacing ry with Ad(My (F) N K)(ra)
if necessary, we may additionally assume that
(7.1.8) Ad(Myg(F)NK)(ra) =7
Since eq € ™™, there exists ¢ > 0 and N € N such that

lea(X)| < esup{1, —log [D™(X)|r}
for all X € rpr Nsys(F). One sees from (3.1.1) that for all X € (mNs)(F),
_ 1/2
|D*(X) || D™ (X)| 5" = | det(ad (X)[q/m)| .

Hence, |D?*(X)|p|D™"%(X)|" is bounded for X € 7y N sys(F). We deduce that there exists ¢ > 0 such
that

(7.1.9) lea(X)| < ¢ sup{1, —log |D*(X)|¢}V

for all X € rp; Nsy(F). Now, suppose that x € To(F)\H(F) and X € c,eq(F) satisfy Ad(z71)(X) € r.
Write © = mnk with m € My (F),n € Np,(F) and k € K. Then

Ad(z™1)(X) = Ad(k™H)(Ad(m ™) (X) + 1),
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where U := Ad(n"'m™1)(X) — Ad(m~1)(X) € (npNs)(F). Thus Ad(m~1)(X) € rp by our assumption
on rpr. Thanks to (7.1.8) and (7.1.9), we obtain
le1 (@, X)| < ¢ sup{1, —log |D*(X)|r}*.

To sum up, e; verifies the hypotheses of Lemma 7.4.
Applying Lemma 7.4 to ¢ and ey, we know that the distribution d; on s(F’) defined by

Vi € CX(s(F)).d (/) = /

Do [ FAd(E ) (X))ex (a, X)dad X
Creg (F)

Te(F)\H(F)

belongs to 2°. Note that eq(mnk, X) = n(Nrd(k))e1(m, X) for m € Mg (F),n € Np,(F),k € Kg. By
the same argument as the proof of Proposition 4.1.4), one shows that

d(f) = / |Dm0s () [/ / A (X))es (m, X)dmdX
Creg (F) T (F)\Mpg(F)

[ o [ FAALGmC0) [ ea(Ad(m) 0N (1)
Creg (F) T (F)\Mg (F) My (F)NK
dkdmdX.

Note that for k € My (F)NK, we have Ad(k~!) f = n(Nrd(k)) fp. By the change of variables mk — m,
one can eliminate the integral over My (F) N K and see that d; is the same as (7.1.6). O

Let M € £%“(Mp) and d € ™. Suppose that d is 7(Nrd(-))-invariant with respect to the adjoint
action of My (F'). Following [51, §V.9], we define a distribution Indfjw(d) on s(F) by
(7.1.10)

Ind§;" (d)(f) = > LN |W(LHaC)\_1/ Ty (n, X, flea(X)dX
{Le#Gw(Mo):LC M} € T (INs) creg (F)

for all f € C°(s(F)), where J{ (1, X, f) is defined by (4.1.1). In particular, if M = G and d € 2° is
n(Nrd(-))-invariant with respect to the adjoint action of H(F'), we have Indg’w(d) =d by (7.1.2).

COROLLARY 7.6. Let M € £%%(My) and d € 2™, Suppose that d is n(Nrd(-))-invariant with
respect to the adjoint action of My (F). Then the integral (7.1.10) is absolutely convergent. Moreover,
the distribution Ind$;" (d) € 2°.

REMARK 7.7. This corollary is unnecessary for the proof of Proposition 7.2 but useful in Section 8.1.

PROOF OF COROLLARY 7.6. It suffices to fix a Cartan subspace ¢ C m N s and prove the same
assertion for the distribution on s(F") defined by

(7.1.11) VfeCX(s(F)), fr IS, X, flea(X)dX.
Crog (F)
Define a function ey : (T.(F)\H(F')) X ¢;eg(F) — C by
(7.1.12) ea(x, X) == n(Nrd(z))v§ (x)eq(X)

for all z € T(F)\H(F) and all X € cyeq(F). It is locally constant. Note that eq(Ad(m~!)(X)) =
n(Nrd(m))eq(X) for x € My (F) and X € (mNs,)(F) by our assumption on d. Thus we may use the
same argument as in the proof of Corollary 7.5 to show the inequality

lea(X)| = lea(Ad(m™)(X))| < ¢’ sup{1, —log | D*(X)|r}".

Thanks to Lemma 4.2, one has a similar bound for v§; (). In sum, ey verifies the hypotheses of Lemma
7.4.
Applying Lemma 7.4 to ¢ and ey, we know that the integral

VfeCx(s(F)), f— IDS(X)I}V/Q/ FAd(@™h)(X))ea(w, X)dzdX
Crog (F) T (F)\H(F)
is absolutely convergent and defines a distribution in 2°. This distribution is the same as (7.1.11). O
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REMARK 7.8. Instead of the hypothesis e; € £&™™*, an analogue of Corollary 7.6 holds if one assumes
that d is defined via (7.1.1) by a function eq : (m N s)(F) — C locally constant, n(Nrd(:))-invariant
with respect to the adjoint action of My (F'), and such that for all open compact subset r of (mNs)(F),
there exists ¢ > 0 and N € N such that for all X € r Ns,5(F), one has the inequality

lea(X)| < esup{1, —log |D*(X)|r}".
The proof is the same, except that we need not use the boundedness of |D*(X)|p|D™"%(X)|" for
X € ray Nses(F) (see the proof of Corollary 7.5).

LEMMA 7.9. Let M € L% (My) and ¢ CmNs be an M-elliptic Cartan subspace.

1) Let M' € %% (My),¢' € Tan(m'Ns) and x € H(F) be such that Ad(z)(c) = ¢'. Then there exists
m' € My (F) and w € Normy gy (M) such that x = m'w.

2) The cardinality of

{(M',¢): M' € £9%(My),¢ € Tan(m' Ns),¢ is H(F)-conjugate to ¢}
18

(W B [[Wo ™ [HW (M, ) [|W(H, )|

PROOF. 1) Since ¢ CmNs (resp. ¢ Cm’' Ns) is M-elliptic (resp. M’-elliptic), we have Ar, = Ay,
(resp. Ar, = Appr). From Ad(z)(c) = ¢, we obtain Ad(z)(Ar,) = Ar,, Ad(z)(An) = Ay and
Ad(z)(M) = M’, which implies that Ad(z)(Mg) = M};. Then 1) can be shown by the same argument
as in the proof of Lemma 3.10.1).

2) We can and shall identify an M-elliptic (resp. M’-elliptic) Cartan subspace in mNs (resp. m’'Ns)
with its My (F)(resp. Mj;(F'))-conjugacy class. Then Zen(m’ Ns) is identified to the set of My, (F)-
conjugacy classes of M’-elliptic Cantan subspaces in m’ Ns. As in the proof of Lemma 3.10.1), we also

see that the group Wé{’w = { (w" w ) twp € WOGL"”D acts transitively on the set of pairs in 2).
n
Firstly, let us count M’ appearing in the pairs (cf. [35, p. 426]).

Since M € £ (M), for w € W™, we see that w = wn " ) € NormWOH,w(M) if and only if

wn € Norm 6, p (M,,p), where Norm, m.. (M) (resp. Norm  cr, (M,,.p)) denotes the normaliser of
0 0 0
M (resp. M, p) in W, (resp. WOGL”’D). Hence, the number of M’ is

GLn, -
Wy ® |[Norm oz, p (Mn,p)| "
0

Secondly, for such an M’ fixed, we count ¢’ such that (M’,¢’) belongs to the set of pairs in 2) (cf.
[35, Lemma 7.1]).

For x € H(F), we claim that Ad(z)(¢') € m’Ns if and only if 2 € Norm g ry(M’), which denotes the
normaliser of M’ in H(F). On the one hand, suppose that Ad(z)(¢') C m’Ns. Then Ay C Centy(m'N
5) C Ad(z)(T. ), where Centy(m’ Ns) denotes the centraliser of m’ Ns in H. Since Ad(x)(Anr) =
Ad(x)(Ar,,) is the maximal F-split torus in Ad(x)(T.), we have Ay € Ad(z)(Anr). By comparison
of dimensions, we deduce that Ad(x)(An;) = Ay, so x € Normp(py(M'). On the other hand, suppose
that € Normy(p)(M'). Since z € H(F'), we have Ad(z)(m' Ns) = (m' Ns). But ¢ € m'Ns, so we
obtain Ad(x)(¢") € wm' Ns. In sum, we have proved our claim.

From this claim, the number of ¢’ is

‘M}_I(F)\NOI'IHH(F) (M/)/NOI'HIH(F)(C/”.

Since My (F') is a normal subgroup of Normg gy (M’), we know that the number of the double cosets is
equal to

)/ My (F)||[Norm () (¢) / (Normy ) (¢') 0 M (F)[ 7

\NormH(F (M’ 4 (
M’)/Mllq(FN|NOI‘H1H(F)(C/)/NOI‘H1M}{(F)(Cl)|71.

)
:\NormH(F)(

For x € Normp (r)(M’), we have Ad(x)(Arp) = App. Because M’ € L9 (M), there exists w € Wy
such that w™'a € Centy(py(An) = My (F), where Cent g (py(Apr) denotes the centraliser of Ay in
H(F). Since x € Normpp)(M’), we have w € NormWOH,w (M'"). That is to say,

Normy gy (M) = NOI‘IIIW;IM(M/)MI/’{(F)'
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Therefore,

|Normpg py(M') /My (F)| =|Norm e (M")]|(Norm

W e (M) 01 My (F))]

W,
=|Norm, ez, 5 ( n oMW" My (F))|

M/
—INorm .. (M, p)|[Wp ™|

. H . GLn, :
Since M’ and M are W, “-conjugate, M! ,, and M, p are W, ™ -conjugate. Hence,

[Norimgr ) (M')/Mpy (F)] = Novm, ot (M) W5

w,
We also have
[Norm g gy (¢") /Normygs (gy(¢')] =[Normy gy (¢")/Ter (F)|[Normygs (gy(¢")/Te (F)|~*
=|W(H,)||W (M, )|~
Since (M’,¢’) and (M, ¢) are W(fl’w—conjugate, we obtain
[Normp () (¢') /Normagy, (ry ()| = [W (H, ¢)[|W (Mg, )|

To sum up, the number of ¢’ is

INotm, e, 1, (My, p)|[Wo ™" |~ [W (M, <) ||W (H, )| 7.
0
Finally, combining the numbers of M’ and ¢/, we obtain the number of pairs (M’ ¢’) in 2). O

PROOF OF PROPOSITION 7.2. First of all, suppose that X € (mNs.s)(F)en. Let ¢ be the centraliser
of X in 5. Then ¢ C mNs is an M-elliptic Cartan subspace and X € ¢,q(F). Fix an open compact
subgroup r C s(F) and set r* :={Y € s(F) : VZ € r,¥((Y, Z)) = 1}, which is also an open compact
subgroup of s(F). For all L € #%(M), fix an open compact subgroup r, C (I'Ns)(F) such that if
Q € ZY(L) and if f € C°(s(F)) satisfies Supp(f) C r, then Supp(fy) C rr, where f¢ is defined by
(3.2.2). Define r} in the same way as r*.

There exists a neighbourhood o of X in ceq(F) such that for all L € £%(M) and all f €
Cx((INs)(F)/ry), the function Jiy(n,-, f) is constant on o. In fact, for L and f fixed, this results
from Proposition 4.1.2) (actually its product form is needed). It suffices to apply Howe’s finiteness
(the product form of Corollary 6.6) to each symmetric pair (L, Ly, Ad(e)) and an arbitrary compact
neighbourhood of X in ¢.e(F), and then take the intersection of a finite number of neighbourhoods
involved.

We shall fix a o satisfying the above condition and such that if two elements of o are H(F')-conjugate
(or equivalently W (H, ¢)-conjugate), then they are the same. The latter condition is achievable since
the W (H, ¢)-conjugates of an element in ¢.ox(F) form a finite subset, which is discrete. Consider the
local isomorphism f : (Tc(F)\H(F)) X treg(F) — 8ps(F') of F-analytic manifolds induced by the adjoint
action. Its restriction to (T.(F)\H(F)) x o is injective. Choose a neighbourhood ¢ of 1 in T.(F)\H (F)
such that n(Nrd(e)) = 1. The set 8(e, o) is a neighbourhood of X in s(F'). Fix a function f' € C°(s(F))
such that Supp(f’) C B(e,0), f/ > 0 and f/(X) # 0.

Let f € C°(s(F)) with Supp(f) C 7. We shall calculate J(n, f, ), which is defined by (5.1.2).

Consider M' € £%%(My) and ¢ € Zun(m’ Ns). If ¢ and ¢ are not H(F)-conjugate, by our
choice of f/, the function J, (n, o f, f') vanishes on ¢, (F"). Now suppose that ¢’ and ¢ are H(F)-
conjugate. Let x € H(F') be such that Ad(z)(c) = ¢/. By Lemma 7.9.1), there exists m’ € M;(F) and
w € Norm g (py(Mp) such that 2 = m/w. By Proposition 5.1.4), for X’ € ¢/ (F'), we have

reg
IG (X' fo f) = IS (n, Ad(m' ™) (X"), £, ')
= JEd(w)(M)(Th Ad(wx_l)(X/)a fv f/)
= JG (n, Ad(z~1)(X'), f, f').

From our choices of Haar measures, we obtain

[ sgexg = [ Gy
c;eg(F) CFEE(F)
By Lemma 7.9.2), the number of pairs (M’,¢’) with ¢’ being H(F')-conjugate to ¢ is

(W B W [TH W (Mg, ) [|W (H, )|~
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We deduce that
T, f, f') = (=) /A W (H, o)~ / TS5, Y, f, £)dy.
Creg (F)

It follows from our choice of f/ that the support of the restriction to ceq(F) of the function J$ (7, -, f, M

is contained in [  Ad(w)(c). Then
weW (H,c)

[ ggmvday = S [ G e (V)Y
Crog (F) wEW (H,¢) Crog (F)

where 1pq(w)(s) denotes the characteristic function of Ad(w)(c). By the change of variables Y
Ad(w)(Y), which does not modify the Haar measure, we have

/ o Y o (V)Y = / IS (0, Ad(w)(Y), . f')dY.

Since w € W(H, ¢), we have shown above that

JACj[(nvAd(w)(Y)’fa f/) = Jﬂ(if(nvxfa f/)a

which is independent of w. Therefore,
IO, 1) = (1o [ Gy fay.
Let Y € 0. Applying the splitting formula for J§ (n,Y, £, f) (Proposition 5.1.6)), we have

G 7 2 : G L ¢ L
JM(”? Ya f7 fl) = dM(Lla LQ)J]\/[l (na K f%)JMQ (777 Y7 legz)~
Ll,Lzegc(]V[)

For all Q € .#% (M), since Supp( 16) € g, j?g is invariant by translation of r}, . In particular, f%
1

is invariant by 77 . Then by our assumption on o, J f/[l (n, -, ng) is constant on o and thus equal to

1
L,y £n
It (n, X, f@) Therefore,

G YA L n
Jm S = Y oLy, L)yt (0, X, ),
L1, L% (M)

where
o(Ly, Ly) = d$y (L, Ly)(—1)dim(An/46) / TE2 (.Y, ['8,)dY.

[ea

We claim that ¢(G, M) # 0. In fact, from (1) and (4) in Section 2.7, we have

(G, M) = (—1)dim(4/40) / T .Y, 7Y,

o

where Mg, = M. By Proposition 4.1.4), we have

T, Y, f10,) = T2, Y. f).

Since v% =1, we obtain
T Y f)) = JE (.Y, f).

Hence,
oG, M) = (—Ddim(AM/AG)/IDs(Y) }/2/ F1(Ad@™H)(Y))n(Nrd(z))dadY.
o Hy (F)\H(F)

If Ad(z~1)(Y) € Supp(f’) C B(e, ), since the restriction of B to (Hy (F)\H(F)) x o is injective, we
have x € ¢ and then n(Nrd(z)) = 1. Since f/ > 0 and f'(X) # 0, we deduce our claim. Now, because of
(3) in Section 2.7, we have

(7.1_13) jﬂcj[(n’X7 f) — JG(mf’ f’) — Z C(Ll,LQ)C(Ga M)_ljj\LJl (77aXa f%)
Ll,Lzezc(]\/I),LliG

for all f € C°(s(F)) with Supp(f) C r.
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By induction on the dimension of G and parabolic induction (Corollary 7.5), one can suppose that
for all L; € .£%(M), Ly # G, the distribution on s(F) defined by Vf € C2(s(F)), f — Jii (n, X, f%)
belongs to 2°. This is actually a product form of the induction hypothesis in lower dimensions. '

We claim that the distribution on s(F) defined by Vf € C°(s(F)), f — J(n, f, /') belongs to 2°
(cf. [51, (3) in §V.10]). In fact, thanks to the noninvariant trace formula (Theorem 5.3), one can replace
JG(n, f, f) with JG(n, f, f'). By its definition (5.1.2), it suffices to fix M’ € .£%* (M), ¢’ € Tun(w' Ns)
and prove that the distribution on s(F) defined by

VfecX (s fH/ IS (Y, f, f)dY

belongs to 2°. By the splitting formula (Proposition 5.1.6)), it suffices to fix L}, L) € £%(M’') and
prove that the distribution on s(F) defined by

VT EENS s [ Y S Y f i

reg

where (Q}, Q%) := s(L}, L}), belongs to 2°. By Proposition 4.1.4) and the definition (4.1.1), we have

T Y. £ = I Y = Pl FA(E) (1) n(Ned () ifh ()
B Hy (F)\H (F)
Then
[y Y. Fydy
Crog (F)

reg

[ o | FAA() (Y )N (e) o ()T 0., 7 dadY.
¢ og (F) T/(F)\H(F)

’
reg

Define a function es : (T (F)\H(F)) %X ¢..,(F') — C by

reg
ea(a,Y) = n(Ned(2) oSk (0) Tk (0, Y, oy, ).

It is locally constant by the product form of Proposition 4.1.2). Using Lemma 4.2 to dominate vgl,(x)
and Corollary 4.3 to dominate J L;,(n, Y, f’ 2/2), we check that eg verifies the hypotheses of Lemma 7.4,
which implies our claim.

Now (7.1.13) shows that the distribution JS (1, X,-) conincides with some element in 2* for all
f € C(s(F)) with Supp(f) C r. By glueing (Remark 7.1), the distribution JG (1, X,-) € 2°.

Finally, consider a general X € (mNs,s)(F). There exists z € My (F) such that Y := Ad(271)(X) €
(1N 8)(F)ey for some L € £%«(My),L € M. Then J$(n, X,-) = n(Nrd(z))J$(n,Y,-). Applying
the descent formula (Proposition 4.1.5)), the product form of the elliptic case that we have just proved
(applied to Y € (IN5)(F)en) and parabolic induction (Corollary 7.5), we deduce that the distribution
JG(n,Y,-) € 2°. Thus the distribution JG (1, X,-) € 2°. O

7.2. The case of (G', H'). We define &*" in the same way as the previous case. For e € éagl, thanks
to Corollary 3.21, it defines a distribution on &' (F):

(7.2.1) VI e CR(E(F).f | f)eM)DT(Y)[5PdY,
s/ (F)

Denote by 2° the space of distributions obtained in this way. For d € 2° , we shall always denote by
eq € & its preimage under the isomorphism & s" 5 2% defined above. One may extend these definitions
to the symmetric pair (]/\Z’7 M’ Ad(ev)), where M’ € ™' (M}). 1f d € ¢ is invariant with respect to
the adjoint action of H'(F), then so is eq € &% and by the Weyl integration formula (Proposition 3.18),
we have the equality

(722) d(fy= > wlwgt Tt 0w / Jii (Y. [ea(Y)dY
M'eLH (M) ¢/ €T (m'Ns’) Cres (F)
for all f/ € C°(s'(F)), where J&, (Y, f') is defined by (4.2.1).
Let M’ € L5 (M}) and Y € (m' Ns..)(F). Denote by JI(Y,-) the distribution on s'(F) defined by
T (V1) = T (Y. )
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for all f' € C2°(s'(F)), where the right hand side is defined by (4.2.1). One also has a similar definition
for the symmetric pair (M’, M’, Ad(e)), where M’ € L1 (M}).

PROPOSITION 7.10 (Representability). Let M’ € £ (M}) and Y € (' N sl )(F). Then the distri-
bution JI(Y,-) € 2° .

The rest of this section is devoted to the proof of Proposition 7.10. Although it is similar to the
proof of Proposition 7.2, we shall sketch some steps for later use.

Let ¢’ be a Cartan subspace of s’. Recall that T, denotes the centraliser of ¢/ in H’. Suppose that
eo : (T (F)\H'(F)) X ¢;oe(F) = C is a function such that

(1) eg is locally constant;

(2) for all open compact subset r’ of §'(F), there exists ¢ > 0 and N € N such that for all z €
To(F)\H'(F) and Y € ¢, (F) satisfying Ad(z=1)(Y) € ', one has the inequality

reg
eo(z,Y) < csup{l, —log |D5/ )|}V,
For f' € C°(s'(F)), we define

(7.2.3) do(f') = / D% (v)] /2 / F (A=) (Y))eo(x, Y)dzdY.
Clog (F) T (F)\H'(F)

reg

LEMMA 7.11 (cf. Lemma 7.4). Let ¢’ be a Cartan subspace of s'. Suppose that eq satisfies the above
hypotheses. Then the integral (7.2.3) is absolutely convergent. Moreover, the distribution dy € 78

COROLLARY 7.12 (Parabolic induction). Let M’ € £ (M), P’ € 2" (M’) and d € 2™ Then
the distribution on §'(F') defined by Vf' € C°(s'(F)), f' + d(fp,) belongs to 2, where fps is defined
PROOF. We may apply the argument of Corollary 7.5 with the aid of Lemma 3.19. (|

Let M’ € ,,?H,(Mé) and d € ™09 Suppose that d is invariant with respect to the adjoint action
of M'(F). We define a distribution IndAH4,’w (d) on s'(F) by
(7.2.4)
md@) = Y WEWE Y Wt [ ey
{L'egH (M}):L'CM'} '€ T (P’ Cog (F)
for all f' € C°(s/(F)), where JI (Y, f’) is defined by (4.2.1). In particular, if M’ = H' and d € 2° is
invariant with respect to the adjoint action of H'(F'), we have Indg,’w(d) =d by (7.2.2).

COROLLARY 7.13. Let M' € L' (M}) and d € gmns’ Suppose that d is invariant with respect to
the adjoint action of M'(F). Then the integral (7.2.4) is absolutely convergent. Moreover, the distribution

md! " (d) € 2.

REMARK 7.14. This corollary is unnecessary for the proof of Proposition 7.10 but useful in Section
8.2.

PROOF OF COROLLARY 7.13. We may apply the argument of Corollary 7.6 thanks to Lemmas 4.5
and 7.11. 0

LEMMA 7.15 (cf. Lemma 7.9). Let M' € ZH'(M}) and ¢ C w' Ns' be an M’ -elliptic Cartan
subspace.

1) Let M € 7' (M}),c € Tui(mnNs') and x € H'(F) be such that Ad(z)(c') = ¢. Then there exists
m € M(F) and w € Normpg gy (M) such that x = mw.

2) The cardinality of

{(M,¢): M e L™ (M]),c € Tu(mns'),cis H (F)-conjugate to ¢'}
18
(Wt [[Wol |7 HW (M )| |W(H )|~

PROOF OF PROPOSITION 7.10. We may apply the argument of Proposition 7.2 with obvious mod-
ifications. Omne needs almost all results that we have prepared in this and previous sections, notably
Howe’s finiteness (Corollary 6.9) and the noninvariant trace formula (Theorem 5.12). O
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8. Invariant weighted orbital integrals

8.1. The case of (G, H). Let M € %% (My) and X € (mNs,s)(F). We shall define a distribution
IS (9, X,-) € 2° which is n(Nrd(-))-invariant with respect to the adjoint action of H(F) by induction
on dim(G). Suppose that we have defined a distribution 1%, (n, X, -) € 2'7 which is n(Nrd(.))-invariant
with respect to the adjoint action of Ly (F) for all L € .£%(M), L # G. This is actually a product form

of the induction hypothesis in lower dimensions. Denote by fI\L/["G’w(n, X, -) its image under Indf’w (see
(7.1.10)). As in [51, (1) in §VI.1], for f € C(s(F)), we set

(8.1.1) IS0 X. 0 =JGmX. H— > Li%mX. /).
Le%G(M),L#£G

PROPOSITION 8.1. The distribution IS, (n, X,-) € 2° and is n(Nrd(-))-invariant with respect to the
adjoint action of H(F).

PROOF. The first statement results from the representability of J$(n, X,-) (Proposition 7.2), the
induction hypothesis and Corollary 7.6. Now let us consider the second one.

Let f € C°(s(F)) and y € H(F). By the H(F)-invariance of (-,-), we see that (Ad(y~!)(f)) =
Ad(y~Y)(f). Applying Proposition 4.1.6), we have

TS0, X, Ad(y™N) () = G (. X, Ad(y ™) () = n(Ned(y) Y a2, X (DD,)-

QEF (M)
For all Q € #Y(M), we show that
Ny =5,)
by the same argument of an analogous property of (3.2.2). Then
5 - “M
(8.1.2) J5i(n, X, Ad(y™ ) () =n(Nrd(y) D> TnC X, 15,).

QEF (M)
Let L € £Y%(M), L # G. Applying Proposition 4.1.6) again to J¢ (1, Y, Ad(y~!)(f)) in the integrand
of the definition (7.1.10) of Ind$™, we obtain

(8.1.3) I (n, X, Ad(y ™) () = n(Ned(y)) > L™ (0, X, 3.,
Qe7(L)

where IA]@MQ’w(n, X,-) € 9™e" denotes the image of f]\L/[(n, X, -) under Ind]LwQ’w, which is defined by a
product form of (7.1.10).
From (8.1.1), (8.1.2) and (8.1.3), we deduce that

IS X Ady () =I5 X Ad () - Y. L% 0. X, Adly ()
LELG(M),L#£G

M. L, Mg ,w
=n(Nrd(y)) > | Tu X, 13,) - > Ly, X, £3,)
QeFCE (M) Le#MQ(M),L#G
Consider @ # G first. By the induction hypothesis, fAA//[[Q (n,X,-) € 2™me™ is n(Nrd(-))-invariant with
respect to the adjoint action of Mg, (F'), so fA]?Q’MQ’w(n,X,~) = fAAjQ (n,X,-). By the definition of

IA%Q (n,X,-) (a product form of (8.1.1)), the term in brackets is zero. Thus it remains the term for
(@@ = G. Note that fgy = f{. By Proposition 4.1.4) applied to @ = G, we see that the term in brackets

is exactly fﬁ(n, X, f) defined by (8.1.1). Therefore, we show that
15 (n, X, Ad(y™")(f)) = n(Ned(y) I (n, X, f),
which is the second statement. O

Let M € £ (My) and X € (mNsy)(F). Denote by 1§, (n, X, -) (resp. 5§ (n, X,-)) the element of
&% associated to IS, (n, X,-) (resp. J$(n, X,-)) € 2° by (7.1.1). That is to say, for all f € C°(s(F)),

IS, X, f) = . FOY)iS(n, X, Y)| D2 (V)| 2dY
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and

JE(n, X, f) = . FOY)iS (0, X, V)| D> (V)| *dy.

We also have a similar definition for the symmetric pair (M, Mg, Ad(e)), where M € 2%« (M).

LEMMA 8.2. Let M € L%« (My) and X € (mNsy)(F). Let L € L% (Mp) and Y € (1N 8ys)(F)en-
Then i§(n, X,Y) = 5§ (n, X, Y).

PROOF. Let Ly € L%(M), Ly # G, Ly € L%“(Mp), L1 C Ly and ¢ € (3 N's). We define a
distribution dgf}l%c(n, X,) on s(F) by

(8.1.4) g, (X, f) = / JE (0, Z, )ik (n, X, Z)dZ

Creg (£)

for all f € C°(s(F)). By a product form of Proposition 8.1, the distribution I12(n, X, ) € 2%27¢
and is n(Nrd(+))-invariant with respect to the adjoint action of (Ly N H)(F'). We see from the proof of
Corollary 7.6 that the integral (8.1.4) is absolutely convergent and the distribution dfl’fULM(n, X, ) e .
We denote by eff’”Lz’c(n, X, ) its associated element in & by (7.1.1). From the definitions (8.1.1) and
(7.1.10), we have

. A Lim Lo —

i, X,) =j5 X, = Y > Wo W=7 Y]

LzEgG(M),LQ;éG {Ll GfG’W(M()):Ll QLg} c€Tan(lins)

-1 Guw
|W(L10H7C)| 16L1,L2,c(777X7')'

To prove the lemma, it suffices to fix such a triple (Lo, L1, ¢) and prove that ef{fULw(n, X,Y)=0. But
(7.1.12) and (7.1.4) in the proofs of Corollary 7.6 and Lemma 7.4 respectively allow us to calculate
ef{fULz’c(n, X,Y); explicitly, we have

(8.15)  eEh X,Y)= 3 DN (@), (2)i52 (n, X, Ad(z)(Y)).

(€T (F\H(F):Ad(2)(Y)ec(F)}

Let x € T(F)\H(F) such that Ad(z)(Y) € ¢(F). AsY € (INs)(Fen and ¢ € Zop(l; Ns), from the
proof of Lemma 3.10.1), there exists I; € (L1 N H)(F) and w € Norm(py(Mp) such that = l;w. Since
any element in W admits a representative in Ky, we can suppose that w € K. Then v (z) = v§ (1)

since L1 C Ly. But v (1) =0 for Ly # G. Thus egiq:ULw(n,X, Y) =0 by (8.1.5). O

LEMMA 8.3. Let M € %% (My).
1) The function (X,Y) — i$;(n, X,Y) is locally constant on (m M ss)(F) X s.5(F).
2) If w € Normp py(My), © € My (F) and y € H(F), we have the equality

iR a(wyan (1, Ad(we) (X), Ad(y)(Y) = n(Ned(way))if; (n, X, Y)

for all (X,Y) € (mNs)(F) X s55(F).
3) If A € F*, we have the equality

S0, AX,Y) =i (n, X, AY)

for all (X,Y) € (mNsy)(F) X s55(F).
4) Let rpyy € (mNs)(F) and r C s(F) be two compact subsets. Then there exists ¢ > 0 and N € N
such that

1§ (n, X, Y)| < esup{1, —log |D*(X)|r}" sup{1, —log [ D*(Y)|r}"
forall X € rpyrNses andY € rN s,

5) Let f € C°(s(F)) and ray € (mNs)(F) be a compact subset. Then there exists ¢ >0 and N € N
such that

|15 (n, X, f)] < esup{1, —log [D*(X)|p}"
for all X € rpr Nsyg.

PROOF. Let rpy C (mNs)(F) and r C s(F) be two open compact subgroups. Set r* := {Y € s(F) :
VZ € r,¥({Y, Z)) = 1}, which is an open compact subgroup of s(F'). Notice that if f € C°(s(F)) satisfies
Supp(f) C r, then f € C°(s(F)/r*). Applying Howe’s finiteness (Corollary 6.6) to 7* and rjs N sy, we
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know that there exists a finite subset {X; : i € I'} C raNs,s and a finite subset {f; : i € I} C C°(s(F)/r*)
such that for all X € rjr Nsys and all f € C°(s(F)) with Supp(f) C r, we have

J]Cvr}(anmf) = ZJ]\?[(naXzaf)JJCVY}(naX7fz)

iel
We deduce that
iel

forall X e ryy Nss and Y € r N .

1) The local constancy of (X,Y) 55 (7, X,Y) on (m N s.)(F) x 8,4(F) results from (8.1.6),
Proposition 4.1.2) and j$;(n, X;,-) € &° for i € I. For L € £%* (M), we deduce from Lemma 8.2 the
local constancy of (X, Y) = (1, X, Y) on (mNsys) (F) X (INses) (F)en. Let (X,Y) € (mNsys) (F) x50 (F).
Choose L € .£%%(My) and Y’ € (INs.5)(F)en such that Y is H(F)-conjugate to Y. Fix a neighbourhood
Vi x Vo of (X,Y’) in (m N sy)(F) X ([N 855)(F)en such that (X,Y) — s(Y)i§; (1, X,Y) is constant on
Vi x Va. Thanks to the 5(Nrd(-))-invariance of 1§ (n, X, -) with respect to the adjoint action of H(F)
(Proposition 8.1), we know that (X,Y) — x(Y)i§;(n, X,Y) is constant on Vi x Ad(H(F))(Vz) which is
a neighbourhood of (X,Y) in (m N sy)(F) X s5(F). Since (+) is locally constant on s,5(F), we show
that (X,Y) +— 1§,(n, X,Y) is constant on a neighbourhood of (X,Y) in (m N s )(F) X s,4(F).

2) The effect of Ad(y) comes from Propostion 8.1. Then when considering the effects of Ad(w)
and Ad(z), up to H(F)-conjugation, we may and shall suppose that Y € (I N s5)(F)en for some L €
L% (My). That is to say, it suffices to prove the equality

iRawyan) (0, Ad(we) (X),Y) = n(Nrd(wz))if (1, X, Y)

for all (X,Y) € (mNss)(F) x (1N s5)(F)en. By Lemma 8.2, we may replace %gd(w)(M) and 1§, by
j’g d(w) (M) and 51?4 respectively in the equality to be proved. Now the equality results from Proposition
4.1.3).

3)Let A€ F*, X € (mNseg)(F) and f € C(s(F')). From the definition (3.1.1), we have

dim —rank 2
IDS(AX)|p = [ (@ k@) ps (x|

)

where dim(g) and rank(g) denote the dimension and rank (over an algebraic closure of F') of g respectively.
Then we have

. FX)ISmAX YY)D (V)| 2dY = J§ (0, 0X, f) = 5 (0, AX, f)

=|D*(AX)|;/? / F(Ad@™)AX))n(Ned(@))v () da
Hxx (F)\H(F)

dim —rank 4 7
=[ [ @ k@A 6 ) X F(M)).

But
Fo) =eota(r)) [ 120w 2007 = eute(F) [ s D)z
N e (o(F) [ S 2)u( 2)dz
s(F)

=A@ )
Thus we have

TG (0, X, FA) =A@ FE (), X, f(ATR)) = A @2 / . FOTY)i$(n, X, V)| D2 (V)| /2dY
5

= fM)iSn, X)) |D* (Y| 2dy
s(F)

=|A|Gank(@—dim(@)/4 . FO)jS(n, X, AY) [ DS(Y) |/ 2aY.
s(F

Therefore, we deduce the equality
I3 AX,Y) = j§i(n, X, AY)
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for all A € F* and all (X,Y) € (mNsy)(F) X s5,5(F). We obtain a similar equality for 7§, thanks
to Lemma 8.2 and the 5(Nrd(-))-invariance of 1§, (7, X,-) with respect to the adjoint action of H(F)
(Proposition 8.1).

4) A similar bound for (X,Y) + 7§ (1, X,Y) on (ra Ns.s) X (7N sys) results from (8.1.6), Corollary
4.3 (together with Proposition 4.1.4)) and j§,(n, X;,-) € &° for i € I. For L € L% (M), we deduce
from Lemma 8.2 a similar bound of (X,Y) ~ i§,(n, X,Y) on (7 N ses) X (r 0 (1N 8:5)(F)en). Let
(X,Y) € (ra N ss) X (7N syg). Thanks to the n(Nrd(-))-invariance of i§;(n, X, -) with respect to the
adjoint action of H(F') (Proposition 8.1), if we replace Y by Ad(y)(Y), where y € H(F'), the two sides
in the inequality to be proved remain unchanged. Since any Cartan subspace in s is H(F')-conjugate
to an element in Z(I'Ns) for some L € £%“(Mj), with the help of Lemma 3.3, it suffices to fix
L € Z%“(My),¢c € Za(INs) and 7. C ¢(F) a compact subset, prove a similar bound for (X,Y) €
(rar N Sps) X (7e N €reg), and then obtain a uniform bound for (X,Y) € (rar N sws) X (7 N sys) by the
finiteness of Z1(INs). But this is what we have established.

5) It is a consequence of 4) applied to r := Supp(f) and Corollary 3.15. O

For M € £%%(Mp) and X € (mNs)(F), we define a distribution I$;(n, X, -) on s(F) by

(8.1.7) I3 (n. X, f) = I§i(n. X, f)
for all f € C°(s(F)).

REMARK 8.4. For M = G, it is evident that IS (n, X, f) = JS(n, X, f) for all X € s,(F) and
felx(s(F)).

One may easily extend the definitions (8.1.1) and (8.1.7) to the symmetric pair (M, Mgy, Ad(e)),
where M € %% (M), since it appears as the product of some copies of the form (G, H, Ad(e)) in lower
dimensions.

LEMMA 8.5. Let M € £L%“(My) and X € (mNsy)(F). The distribution I (n, X,-) on s(F) is
independent of the choice of the H(F)-invariant non-degenerate symmetric bilinear form (-,-) on s(F)
or the continuous nontrivial unitary character ¥ of F.

PROOF. Suppose that (-,+)" is another bilinear form and that ¥’ is another character. Denote by
f = f the associated Fourier transform and by I$;(n, X,-) (resp. J$(n, X,-)) the associated analogue
of IS (n, X,-) (resp. JG (0, X,-)). Since f(-) = f(-) = f(—) for all f € C°(s(F)), it suffices to prove the
equality ) B X R
I§(n, X, f) = I§;(n, X, f)
for all f € C°(s(F)).
Let 7' be the linear automorphism of s(F') such that
VY, Z € 5(F), (Y, Z>/ = <T/(Y)7Z>
Let a € F* such that ¥’(-) = ¥(a-). Set 7 := a7’. Then
L cws(F)
= 77 T(-
f = S E fr ()

for all f € C2°(s(F')). One may check that 7 is an H (F)-equivariant linear automorphism of §(F') thanks
to H(F)-invariance of two bilinear forms. One also deduces that
VY, Z €s(F),(t(Y),Z) =(Y,7(Z))
from the symmetry of two bilinear forms. Now for all f € C°(s(F)) and all Y € s(F'), we have
; cu (s(F)) &

f(=Y) = f(Y) = cu(s(F)) . F2)Y' (Y, 2))dZ = co:(s(F)) /5(F) mf(T(Z))‘I’(ﬁ(Y),ZDdZ
cur(s(F))?

B . ) C cws(R)

= e 6(F)) Sy T TENTYTENAL = e et oy (T
C es(E)? ao cw(s(F))?
= G2 detam (e ) T e G(F))2 detam ()]

Therefore, we obtain i“;/(f((g)))) = | detﬁ(F)(T)|;/2. Then for all f € C°(s(F')), we have

F() = deto(m (T2 F(r ().
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Denote by 1§, (1, X, -) (vesp. 7§ (n, X, -)) the element of &* associated to I, (n, X, -) (resp. JG (1, X))
€ 2° by (7.1.1). For f € C°(s(F)), we have

X, ) = / FOVIS, (0, X, Y)| D (v)| 5/ 2dy

— | detagr ()| / F )G, (0, X, V)| D (V)| 2 dy

— | detagry (7[5 / FOiG (i, X, 7 LY )|D* (e (V)| 2.

We reduce ourselves to proving the equality
(818)  |detur)(n)lp i 0. X, m  (Y)ID(r (V)R = i (0. X V) DY) 2
for all Y € s,5(F). But we have the equality

Tir(n, X, f) = J5i(n, X, f)
since both sides equal J§;(n, X, f(—)), which is defined by (4.1. 1) The same computation as above
shows that the equality (8.1.8) is true when one replaces i, ¢ and 1§ i W with i ¢ and j§; respectively. Recall
that 7 is H(F)-equivariant, so Hy = H -1y for Y € s,5(F). As a consequence, for L € £%* (M),

Y € (IN5s)(F)en if and only if 771(Y) € (IN8)(F)en. One may conclude by Lemma 8.2 together with
the 7(Nrd(-))-invariance of 7§, (1, X, -) with respect to the adjoint action of H(F) (Proposition 8.1). [

8.2. The case of (G/, H'). Let M’ € 2" (M})and Y € (m'Ns.,)(F). We shall define a distribution
I,(Y,-) € 2° which is invariant with respect to the adjoint action of H'(F) by induction on dim(H").
Suppose that we have defined a distribution I L//(Y, ) € 2705 which is invariant with respect to the
adjoint action of L/(F) for all L' € £H'(M’), L’ # H'. This is actually a product form of the induction

hypothesis in lower dimensions. Denote by fAL/I/;H,’w(Y, -) its image under Indf,/’w (see (7.2.4)). For
flecCe(s'(F)), we set

(8.2.1) LY ) = Jin (Y ) - 3 Ty, .

L'esH (M"),L'#H'

PROPOSITION 8.6. The distribution fﬁ/, (Y,-) € 2" and is invariant with respect to the adjoint action
of H'(F).

PrOOF. We may apply the argument of Proposition 8.1 thanks to the representability of J I\IfI: Y,)
(Proposition 7.10), Corollary 7.13 and Proposition 4.4.6). O

Let M’ € £H'(M]) and Y € (m/ Ns..)(F). Denote by i, (Y,-) (resp. jI,(Y,-)) the element of &%
associated to I (Y, -) (vesp. JII(V,.)) € 2% by (7.2.1). That is to say, for all f’ € C>°(s'(F)),
B = [ OO0 0l ax
o (F)
and
sy = [ PO 00 o) ax
One has a similar definition for the symmetric pair (M’, M’, Ad(«)), where M’ € LH (M.

LEMMA 8.7. Let M’ € L (M) and Y € (w Nl )(F). Let L' € 27 (M) and X € (V Nl )(F)en.
Then 15, (Y, X) = 71,(Y, X).

PROOF. We may apply the argument of Lemma 8.2 by using Proposition 8.6 and consulting the
proofs of Corollary 7.13, Lemmas 7.11 and 3.17.1). O

LEMMA 8.8. Let M’ € L' (M}).
1) The function (Y, X) — 18, (Y, X) is locally constant on (m/ N sl )(F) x s/ (F).
2) If w € Normp gy (M), x € M'(F) and y € H'(F), we have the equality

Y e (Ad(wz) (Y), Ad(y) (X)) = i, (Y, X)
for all (Y, X) € (W' N &) (F) x s (F).
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3) If X € F*, we have the equality
LY, X) = il (Y, AX)

for all (Y, X) € (m' Ns)(F) x s\ (F).

4) Let iy C (/' Ns’)(F) and r' Cs'(F) be two compact subsets. Then there exists ¢ > 0 and N € N
such that . ) ,

a2 (Y, X)| < esup{1, —log |D* ()|} sup{1, — log | D* (X)|r}"

for allY €7, Nsly and X € 7' Nslg.

5) Let f' € C(¢'(F)) and vy, C (W' Ns')(F) be a compact subset. Then there exists ¢ > 0 and
N € N such that . )

113 (Y. f)] < esup{l, —log |[D* (V)| }

for allY € v}y, Nsig.

PROOF. It is almost the same as the proof of Lemma 8.3, except that one needs to use Howe’s

finiteness (Corollary 6.9), Proposition 8.6 and Lemma 8.7. We also need Proposition 4.4.2) for 1),
Proposition 4.4.3) for 2), Corollary 4.6 for 4) and Corollary 3.21 for 5). O

For M’ € Z7' (M}) and Y € (w' N sl,)(F), we define a distribution IT(Y,-) on & (F) by
(82.2) (Y, f1) = (Y )
for all f/ € C°(s'(F)). One may easily extend the definitions (8.2.1) and (8.2.2) to the symmetric pair
(M’, M, Ad(a)), where M' € 21" (Mj).

REMARK 8.9. For M’ = H', it is evident that I (Y, f') = JH (Y, f') for all Y € s/ (F) and
frecz(s'(F)).

LEMMA 8.10. Let M' € L7 (M}) and Y € (' N s/ )(F). The distribution I (Y,-) on s'(F) is
independent of the choice of the H'(F)-invariant non-degenerate symmetric bilinear form (-,-) on s'(F)
or the continuous nontrivial unitary character ¥ of F.

PROOF. We may apply the argument of Lemma 8.5 thanks to Proposition 8.6 and Lemma 8.7. O

9. The invariant trace formula

9.1. The case of (G,H). For f, f' € C>°(s(F)), we define
90, £, )= Y (Wt (mydima ey |W(MH7C)|71/

(9.1.1) MeZG (M) ¢€ T (mNs) treg (F)
I5 (0, X, HIE(n, X, f)dX.

From Proposition 4.1.2), for any ¢ € Zun(m Ns), IS (n, -, f') vanishes outside a compact subset of ¢(F),
so one may apply Lemma 8.3.5) to show that this expression is absolutely convergent with the help of
Proposition 3.13 and Corollary 3.6.

THEOREM 9.1 (Invariant trace formula). For all f, f' € C°(s(F)), we have the equality
19, f, f) = 19(n, ', ).

The rest of this section is devoted to the proof of Theorem 9.1. We shall follow the main steps in
[51, §VII1.2-3]. The theorem will be proved by induction on the dimension of G.

Let f € C°(5,5(F)) and M € £%“(Mjy). By Proposition 4.1.2) and 3), the function x(-)J$ (0, -, f) :
(mNsy)(F) — Cis locally constant and invariant by the adjoint action of My (F'), where & is defined by
(4.1.2). Moreover, the support of its restriction to ¢(F') for any ¢ € .7 (mNs) is included in the compact
subset ¢reg (F) NAd(H(F'))(Supp(f)). From Harish-Chandra’s submersion principle (Lemma 3.8), there
exists f' € C°((mNs)s(F)) such that

R(X)JSi(n, X, f) = |D™*(X)] /M . f/(Ad(a™)(X))dz

for all X € (mNsy)(F). Let f” :=kf € C®((mNs)s(F)), where we extend the definition of « to the
product form. Then we have

(9.1.2) JS(n, X, f) = JM(n, X, f"),VX € (mNsy)(F).
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We have shown that for f € C°(s.s(F)) and M € L%« (M), there exists a function f” € C°((m N
5)s(F)) such that (9.1.2) holds. We shall fix such an f” and denote it by ¢$;(f).

As before, one may extend in the obvious way the definition (9.1.1) and the notation ¢$,(f) to the
symmetric pair (M, My, Ad(e)), where M € £%«(My), since it appears as the product of some copies
of the form (G, H, Ad(e)) in lower dimensions.

LEMMA 9.2. Let M € L% (My), X € (mNs)(Fen and f, f' € C(s:s(F)). Then we have the
equality

(913)  JHm X, f) = Y Y AP (L L) (0, X, 67 (FENIE (0. X, 672 (f1D,)),
Le¥G(M)L,,Le£C (L)
where J$(n, X, 1, 1) is defined by (5.1.1), and (Q1,Q2) := s(L1, La) (see Section 2.7).

PRrROOF. By definition,

IS X, fo 1) = 1D (X)) F (A=) (X)) n(Nrd(y))e1 (y)dy,

/AM(F)\H(F)
where

e1(y) := D0 / FAd@ETH (X)) n(Ned(@™"))ou (2, y)de.
An (FO\NH(F)
For L € £%(M) and Ly € £ (L), since Q2 € £%(Ls), by Proposition 4.1.4), we have

(9.1.4) IE(n, X, 672 (F8,)) = TE2 (0, X, /D) = T2 (0, X, f).
Since X € (m N &y5)(F)en, the right hand side of (9.1.3) is

D (X)) / F(Ad(yY) (X))n(Nrd(y) o (4)dy.
An (F)\H(F)

where
pay) = Y Y dE(Ly La) (0, X, 67 (F) 0 (9)-
LEXLS (M) L1,L,€£5 (L)
It suffices to fix y € H(F') and prove that ¢1(y) = ¢2(y).
Let L € #%(M) and

hoi= Y df (L La)op (FE v ():
L1,Loe %S (L)

Then

po(y) = Y Iyi(n, X o).
Le6 (M)

For Y € ([N sy)(F), we have

JEY h) = Y df (L, La) JE (0, Y, 67 (fA))0E2 (9).
Ly,Le G (L)

For Ly € £Y(L), as in (9.1.4), we have

TEOLY, 61 (F3)) = T (0, Y. f1) = T2 (.Y, f).

Then
JE(, Y, he) = [DS(Y) [/ / F(Ad(@™H)(Y))n(Ned(z))h(z, y)dz,
Hy (F)\H(F)
where L
h(zy) = > dP(Ly, Lo)vg (2)of* (y).

Li,LeZ£%(L)
It is shown in the proof of [51, Lemme VII.2] that
Way) =vele,y) = D vply)f(@).
QeFE(L)
Thus B
JEmY.ho) = Y voW)JIZm,Y, f).
QeF4(L)
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As in (914)7 we have
TR A) = T Y. £y = TE Y, 01 (£5))

Let
M
W= Y v (1),
QeFE(L)
Then we obtain

for all Y € (INs)(F).
By a product form of Proposition 8.1, the distribution d := I, (n, X,-) € 2" and is n(Nrd(-))-

invariant with respect to the adjoint action of Ly (F). By a product form of (7.1.2), we deduce from
(9.1.5) that

IA]%/[(n’Xv hL) = fz\L4(777X, hlL)

Therefore,

o) = Y. IhX.hp)= Y Ih(n,X.hp)

Le LG (M) Lez% (M)

E M,
= Y vl Y. IHmX 6% ().
QEZF G (M) LezMe (M)

By (7.1.10) and (7.1.2) (actually their product forms are needed), we have

L,Mg,w Mo ,w
I (0, X, £2) = Tnd)@ " (a)(72)

L! — — M,
=Y R Y Wl [ ez e 2)az
{L'e2Gw(Mp):L'CL} <€ Ton(I'Ns) reg(F)
L — — M,
=Y R Y W[ TRzl e 2)az
(L'e.2Gw(Mo):L'CL} c€ T (I'Ns) creg (F)

=d(o7° (£3)) = Ty (0. X.01/° ()
Then by (8.1.1), we get

Yoo I Xer ()= > LM X 1D

LezMa (M) LezMa (M)

=i (0. X, f2) = Tag® (0, X, ) = Ti(n, X, f).

Hence,
pay) = D v IR0 X, f)
QEFC (M)
=|D5(X)|}/2/ FAd@ H(X))n(Nrd(z)) > vp(y)of (a)da.
Ay (F)\H(F) QEFG (M)
But
Z UQ(?/)”J?/[(QU) = vy (z,y),
QEFCE (M)
which implies that ¢1(y) = wa2(y). O

PrOOF OF THEOREM 9.1. We use induction on the dimension of G. Suppose that the equality is
true for L € Z%« (M), L # G, which is actually a product form in lower dimensions. Now we would
like to prove the equality for G. The argument below is also valid for the case £« (My) = {G}, i.e.,
n=1.
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First of all, suppose that f, f" € C(sws(F)). Applying Lemma 9.2 to the definition (5.1.2) of
JC(n, f, f'), we obtain

S ff)= 3 WA WS~ am /A S W (Mg, ) /

MeLGw (M) ¢€ Toni(mNs) crog (F)
IS, X, f, f)dX

D L LT SR SR
Me¥Gw (M) ¢€ Ten(mNs) Crog (F)

Z Z df (L1, La) Iy (n, X, ¢fl(f%))lf(777xa P12 (f'h,)dX
LELG(M) L,L2e S (L)
= S WEIWEE T () ImALAD B (g, £,

Le LG« (M)

where

Bi(n, f.f"):= Y di(Li,Ls) > W (W [~ (1) timAw /A S
L,,L,e¥G (L) {Me¥Gw(My):MCL} € Ten(mnNs)
W0l [ oy M, X0 ) 0 X, 02475, )aX

= Y G L) 61 () 61 (F1))-
L,,L,e¥G (L)

Here we have used the absolute convergence of the expressions above to exchange the order of sums, and
I (n, il(f%), 72(f'3,)) is defined by a product form of (9.1.1).
1

By the noninvariant trace formula (Theorem 5.3) and Remark 5.2, we have the equality JC(n, f, ) =
JE(n, f', f). Therefore,

(9.1-6) Z ‘WOLW||W0GLn|—1(_1)dim(AL/AG)(BL(n’ £, f/) . BL(n,fl7f)) _0
LeZ G« (Mo)
Let L € £%“(My), L # G. Applying the induction hypothesis, we have
Bun f.f) = 3 df(La )M (0,07 (f'G,), 67" ()

Li,L,eZ£%(L)

By exchanging L and Lo and by using (2) and (5) in Section 2.7, we obtain Br(n, f, f') = Br(n, ', f).
We deduce from (9.1.6) that Ba(n, f, f') = Ba(n, f', f). But

Be(n, f.f") = 1°(n, f. 1),

which implies 1%(n, f, f') = 1(n, f', f).
Now consider f, f' € C°(s(F')) in general. Let {£2;};>1 be a sequence of increasing open compact

oo
subsets of s,5(F) such that |J Q; = s,5(F). Such a consequence exists. For example, one may take

i>1
Q; :={X € 55(F) : | X|| <4} for all i > 1, where || - || denotes the abstract norm on s,5(F') defined by
[35, (18.2.1) in §18.2]. From [35, Proposition 18.1.(3)], since || - || is continuous, we deduce that €; is
e}
compact for all ¢ > 1. It is obvious that €; is open for all ¢ > 1 and that |J Q; = s,s(F). For all i > 1,

i>1
denote by lq, the characteristic function of ;. Let f; := flg, and f/ := f'1q,.
Let M € £%%(Mp) and ¢ € Z(mNs). For all X € ¢,0q(F), by Lebesgue’s dorminated convergence
theorem, we have lim IS (n, X, f]) = IS(n, X, f'). For X € (m N sy)(F), because I§(n, X,-) € 9°
1—> 00

(see Proposition 8.1), again by Lebesgue’s dorminated convergence theorem, we have lli>r1010 fﬁ[(n, X, fi) =

fAG/[ (n,X, f). Because of Lemma 3.3 applied to Supp(f’), there exists a compact subset r C ¢(F) such
that for all X € ceq(F) — 1,15 (0, X, f/) = 0 for all i > 1. By Lemma 8.3.4) applied to r and Supp(f’),
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there exists ¢ > 0 and N € N such that

50,550 = [ 1500 X D0 2y

s(

< csup{1, ~log |D(X)[# )Y [ [7(V)]sup{1, ~log [D*(¥)] e} ¥0° (1) [ 20y

s(F)

for all i > 1 and X € r N ceg. For all X € s,5(F), we also have [IS(n, X, f)| < Ix(|f'|), where
Ix is defined by (3.1.3). Combining Corollary 3.15, Corollary 3.6 and Proposition 3.13, we deduce
that {ff/[(n,X, IS (n, X, f1)}i>1 is bounded by an integrable function on ¢,eq(F). Using Lebesgue’s
dorminated convergence theorem once again, we obtain

/ ( )fﬁ(n,X,f)Ig(n,X,f’)dX: lim IS (. X, f)IE (0, X, f))dX.
Creg (F

11— 00 Creg (F)

Therefore,
1%, £, 1) = Jim I%(n, fis f7).

By exchanging f and f’ and using the regular semi-simple support case that we have proved, we draw
the conclusion. 0

COROLLARY 9.3. Let M,L € %% (My), X € (mNsys)(Flen and Y € (IN55)(F)en. Then we have
the equality

(—D) A A (n, X, Y) = (1)UL A9 (), Y, X).

PROOF. By Lemma 8.3.2), up to My (F)-conjugation on X and Ly (F')-conjugation on Y, we may
and shall suppose that there exists ¢; € Jen(mNs) and ca € Feu(I N's) such that X € ¢1 1eq(F) and
Y € careq(F). Asin the proof of Proposition 7.2, we can choose an open compact neighbourhood Vi of X
in ¢ reg (resp. Vo of Y in ¢g 1eg) such that if two elements in V; (resp. V5) are H(F')-conjugate, then they
are the same. Let f, f' € C°(s(F)) with Supp(f) C Ad(H(F))(V2) and Supp(f’) € Ad(H(F))(V41). By
an analogous calculation to that of J& (1, f7 /") in the proof of Proposition 7.2, with the help of Lemma
8.3.2) and Proposition 4.1.3), we show the equalities

IG(na f7 f/) = (_1)dim(AM/AG) ,/V jzﬁ(% X17 f)Ig(n7 le fl)Xm
1

and

16 0, X0, f) = /V (0, X1, V) IS (0, Ya, )Y
2

for all X; € V4 by (7.1.2). Then
IG(Tlv fa f/) = (71)dim(AM/AG) / ;’%(na le YZ)Ig(W7 Y27 f)Ig(nv X17 f/)d}/QXm
V1 ><V2
Similarly, we have
1%(n, f', f) = (*Udim(AL/AG)/ i (n, Yo, X0)IE (0, X1, f)IE (0, Ya, f)dX1dY5.
V2><V1

By Harish-Chandra’s submersion principle (Lemma 3.8), when f’ varies, the function X7 — Ix, (f') =
k(X1)IS (n, X1,kf") on Vi runs over all C°(V;), so the function I§(n,-, f’) on V4 also runs over all
C>°(V1). Similarly, when f varies, the function IS (), f) on Va runs over all C2°(Vz). Then from the
invariant trace formula (Theorem 9.1), we deduce that

(_l)dim(AM/AG)%]\GJ (77’ X17 YQ) = (_1)dim(AL/AG)%€ (77’ }/27 Xl)

for all (X1,Y3) € V4 x V4. We conclude by (X,Y) € Vj x V. O
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9.2. The case of (G',H'). For f, f' € C°(s'(F)), we define

IH/(f, f/) — Z |W0H/||Wd\/[/‘—1(_1)dim(AM//AH/) Z |W(M/7 CI)‘_I/
(9:2.1) Mre2H (My) ' Ton (w7 P") frea(F)

Iy, HIF (Y, f)ay.

From Proposition 4.4.2), for any ¢/ € Zu(m/ Ns'), I (-, f') vanishes outside a compact subset of ¢/(F),
so one may apply Lemma 8.8.5) to show that this expression is absolutely convergent with the help of
Proposition 3.20 and Corollary 3.6. One may extend in the obious way the definition (9.2.1) to the

symmetric pair (M, M’, Ad(a)), where M’ € 21 (My).
THEOREM 9.4 (Invariant trace formula). For all f, f' € C°(s'(F)), we have the equality
() =10 ),

PROOF. We may apply the argument of Theorem 9.1 with obvious modifications. It is deduced
from the noninvariant trace formula (Theorem 5.12) and other results that we have prepared in previous
sections. 0

COROLLARY 9.5. Let M', L' € ' (M}), Y € (W Ns')(F)en and X € (I Ns')(Fen. Then we
have the equality

(_1)dim(AM//AH/)Zg\{4’,(}/’ X) — (_1)dim(AL//AH/),Z-%T,’(Yv7 X)

PrROOF. We may apply the argument of Corollary 9.3 by using the invariant trace formula (Theorem
9.4) and consulting the proof of Proposition 7.10. O

10. A vanishing property at infinity
10.1. The case of (G, H). The following proposition is an analogue of [14, Proposition 2.2].

PROPOSITION 10.1. Let M € L%%(My),M # G. Let X € (mNsy)(F) and Y € 5.4(F). Then there
exists N € N such that if A € F* satisfies vie(A\) < —N, we have

iS5, AX,Y) = 0.

REMARK 10.2. A limit formula at infinity for %g(n, AX,Y) in the spirit of Laplace transform is given
in [58, Proposition 7.1] (see also [57, Proposition 6.4]), which is an analogue of [51, Proposition VIII.1].

PROOF OF PROPOSITION 10.1. We shall imitate the proof of [14, Proposition 2.2].

By Lemma 8.3.2), up to H(F)-conjugation on Y, we may and shall suppose that there exists L €
L% (Mp) and an L-elliptic Cartan subspace ¢ C [Ns such that Y € cyeq(F). By Lemma 8.2, we have
the equality

(0 AX,Y) = 55 (0, AX, Y).
Thus it suffices to prove that there exists N € N such that if A € F'* satisfies vp(\) < —N, we have
I (1, AX,Y) =0.

Fix an Op-lattice ky (resp. ks) of h(F) (resp. s(F)). Denote by ks the dual Op-lattice of ks in s(F),

ie.,
ke :={Z € s(F):VZ' € ke, ¥((Z,2')) = 1}.
Set
o(X):={X"€¢(F):3zx € H(F),Ad(x)(X") = X},

which is a finite (perhaps empty) set. For A € F*, choose hy € N such that both of the functions
35 (n,AX, ) and |D*(-)|r are constant on Y + "> k.

Let f (resp. f') € C>°(s(F)) be the characteristic function of ¥ + @ ks (resp. @ "*k,). Then for
Z € s(F), we see that

(2) =ea(s(F)) [{ ., W22 = (P2 Y) / v((Z, 2'))dZ’

wh’kks

=cy (s(F))vol(w™ ke ) U ((Z,Y)) f'(Z).
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Now there are two expressions for J]CV’}(n, X, f) One the one hand,

(10.1.1)
TG, AX, f) = (F)f(zﬁﬁ(n,AX,Z>|D5<Z>|;”2dZ=vol< @ k)5 (0, AX, )| DA (Y) [,

On the other hand,

(10.1.2)

TS (X, f) = |D3 (X)) / FAd™)(AX))n(Nrd(2))0§) (z)da

Hxx (F)\H(F)
=cy (s(F))vol(w" ks)| D (X))} / V(A (AX), V) F (Ad(@ ™) (AX))n(Nrd(2))o§) (z)da.
Hx (F)\H(F)

Fix an open neighbourhood #; of 0 in h(F') which is invariant by the adjoint action of H(F') such
that a homeomorphic exponential map is defined on #;,. Choose a € N verifying the following conditions:

(1) = why C Tp:
(2) K, := exp(w®ky) is a subgroup of Kp;
(3) (Nrd( o) =1

(4) the adjoint action of K, stabilises ks (and thus ks).

Fix a set T" of representatives in H(F') of double cosets Hx (F)\H(F')/K,. We may and shall suppose
that if x € T and y € Hx (F)xK, verify Ad(y=1)(X) € ¢(F), then Ad(z71)(X) € ¢(F).

The integral in (10.1.2) can be decomposed as

V((Ad(y~H)AX), Y)) f (Ad(y ™) (AX))n(Nrd(y)) v (y)dy.

zel /HX(F)\HX(F)xKa

By the conditions (2), (3) and (4) on a respectively, the factors v§;, 7 and f’ can be extracted from

the integral. By comparing (10.1.1) and (10.1.2), since (-, -) is invariant by the adjoint action of K,, we
obtain

(10.1.3)
AKX, Y) =ea (DD OO DV Y F(Ad ) OX) (N () ) [
z€l Hx (F)\Hx (F)zKq
V((Ad(y~1)(AX),Y))dy
=cy (s(F))|D*(AX)D* (V)| *vol(Ko) ™ Y vol(Hx (F)\Hx (F)zK,) f (Ad(z ™) (AX))
zel’
n(Nrd(x))vf) ()i(z),
where

i(w)i= [ W(AdEOX), Ad)(Y))dy.

a

For x € T, consider the map K, — F' defined by

(10.1.4) Yy € K,y — (Ad(z71)(X), Ad(y)(Y)).
Its differential at the point yo € K, is the map h(F) — F defined by
(10.1.5) VZ € b(F), Z > (Ad(z~1)(X), Ad(yo)([Z, Y])).

Since (-, -) is invariant by the adjoint action of G(F'), we see that
(Ad(z™1)(X), Ad(yo)([Z.Y])) = ([Y: Ad(zyo) (X)), Z).

Because the restriction of (-, -) to h(F) is non-degenerate, the map (10.1.5) is not surjective if and only if

[Y, Ad(ayo) ~' (X)] = 0.
Since Y € ¢eq(F'), this condition is equivalent to

Ad(zyo) M (X) € ¢(F).
From our choice of T', as yy € K, it implies that

Ad(z™1)(X) € ¢(F).
Let
IM:={xcT:Ad(z"")(X) € «(F)},
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which is a finite (perhaps empty) subset of I'. Then for € I' — IV, the map (10.1.4) is a submersion.
Define
0= U Hx(F)zK,,
wer—Tv
which is an open and closed subset of H(F'). Fix a basis of the F-linear space s(F'). For Z € s(F’), define
its norm || Z|| € R>¢ as the maximum of normalised absolute values of coeflicients of Z with respect to
the fixed basis. For Z € s(F) — {0}, define v(Z) € Z by ||Z|| = |@"?)|r. Let Sx be the closure of

§9 1= {w AN AQ(y ) (X) 1y € Q)

in the unit sphere S := {Z € s(F) : || Z]| = 1}. Then Sx is compact. Recall that we denote by N* the
set of nilpotent elements in s(F).

LEMMA 10.3. We have
Sx — S% C N° —{0}.

PrROOF OF LEMMA 10.3. Since Sx C Ss, it is obvious that {0} ¢ Sx. Let Z € Sx. There exists a
sequence {y;} in Q such that when i — oo,

w_y(Ad(yZI)(X))Ad(yfl)(X> -7z

We distinguish two cases.

i) Suppose that the sequence {||Ad(y; ')(X)||} remains bounded. By Harish-Chandra’s compact-
ness lemma for symmetric spaces (Lemma 3.2), the projection of the sequence {y;} to Hx(F)\H(F) is
contained in a compact subset. By taking a subsequence, since the projection of Q to Hx (F)\H(F) is
closed, we may assume that when i — oo, Ad(y; ')(X) — Ad(y~1)(X) with y € Q. Thus Z € S% in this
case.

ii) Suppose that the sequence {||Ad(y; ')(X)|/} is unbounded. By taking a subsequence, we may
assume that when i — oo, [[Ad(y; *)(X)| — 4o00. The eigenvalues of ad(Ad(y; *)(X)) are the same as
those of ad(X); here ad(Ad(y; *)(X)) and ad(X) are viewed as linear endomorphisms of g. Thus the
eigenvalues of ad(w_”(Ad(yfl)(X))Ad(yfl)(X)) tend to zero when i — co. Hence ad(Z) is nilpotent. We
shall prove that Z € N® in this case.

Since g is reductive, one has g = 3@ gqer, Where 3 denotes the centre of g and g4e, denotes the derived
algebra of g, and gqer is semisimple. Let Z = Z1 + Z5 with Z; € 3(F) and Z3 € gge:(F'). Since ad(Z) is
nilpotent as a linear endomorphism of g, we deduce that ad(Z2) is nilpotent as a linear endomorphism
of gder- AsS gder is semisimple, we obtain that Zy is a nilpotent element in g. Let X = X; + X,
with X; € 3(F) and X5 € gaer(F). The projection of A4, NX)Ad(y1)(X) to 3(F) is equal to
w_”(Ad(yfl)(X))Xl, which tends to zero when ¢ — co. Thus Z; = 0, and Z = Z5 is a nilpotent element

in g. Hence Z € N*. O
For U € N* — {0}, consider the map K, — F defined by
(10.1.6) Yy € Kq,y — (U, Ad(y)(Y)).

Its differential at the point yo € K, is the map h(F) — F defined by
VZ € h(F), Z — (U, Ad(yo)([Z.Y])) = (Y, Ad(y, )(U)], Z)
by the G(F)-invariance of (-,-). Since Y € ¢,eq(F) and Ad(yy ') (U) € N — {0}, we have

[Y, Ad(ys ") (U)] # 0.
Then the map (10.1.6) is a submersion by the non-degeneration of (-,-) on h(F).
Using Lemma 10.3 and combining our discussion on the maps (10.1.4) and (10.1.6), we deduce that

there exists an open compact neighbourhood 5’; of Sx in Ss such that the map ¢ : K, x Sx — F X §}
defined by

V(y, Z) € Ko x Sx,(y, Z2) = ((Z,Ad(y)(Y)), 2)
is a submersion. Since any submersion is open, the image of ¢ (denoted by Im(y)) is an open compact
subset of F' x Sx. Then the map ¢ induces a surjective submersion ¢’ : K, x Sx — Im(p). Applying

Harish-Chandra’s submersion principle [26, Theorem 11] to ¢, there exists a function ¢ € C2°(Im(yp))
such that for all ® € C°(Im(yp)),

/ ' ((Z,Ad(y)(Y)), Z)dZdy :/ o(t, 2)®'(t, Z)dZdt.
K Im(¢p)

o XSx
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Fix such a ¢. Denote by C®(F x 5';() the space of locally constant, complexed-valued functions on
F x Sx. For ® € C*(F x Sx), the restriction of ® to Im(y) belongs to C2°(Im(p)), so we obtain

/ ((Z, Ad(y)(Y)), Z)dZdy = / o(t, Z)®(t, Z)dZdt.
KoxSx

F><§;(

By taking ®(t, Z) := W(ut)3(Z) with p € F and 8 € C2°(Sx), we deduce that for all Z € Sy,
| vz adw iy = [ ot 2y
Ka F

Since Im(¢) is an open compact subset of F' x Sy, we see that ¢ € C(Im(p)) C CX(F x 5’;() =
CE(F)®CX(Sx). Suppose that ¢ = Y~ ¢;-§®@x; with ¢; € C,§ € C(F') and x; € C°(Sx). Then

1<j<m

/ Ot Z)U(pt)dt = > e6(m)x;(2),
F 1<j<m
where £; € C°(F) is the Fourier transform of £;. We see that there exists Ny € N such that for all
u € F* satisfying vp(u) < —Np and all Z € Sy, we have

/K (2, Ad(y)(Y)))dy = 0.

Fix such an Nj.
Recall that for z € T,

i) = / ({2, Ad(y) (V)))dy,

where 1 := Aw?Ad@)X) and 7 1= @ (Ad@ETIEXD Ad(271)(X). For 2 € I — I, we have Z € Sx, so
i(z) = 0 if

vp(A) + v(Ad(z 1) (X)) < —No.
Set

vy = Zlélr) v(Ad(z")(X)),

which is finite thanks to Harish-Chandra’s compactness lemma for symmetric spaces (Lemma 3.2). Now
let

N = NO + 1.
Suppose that vp(\) < —N. From (10.1.3), to show 5§, (7, AX,Y") = 0, it suffices to prove v§;(z) = 0 for
all z e IV,

For x € IV, we have Ad(z7)(X) € creg(F). Then Ad(z7!)(Hx) = T;. Since X € (m N sy)(F),
we see that Ad(z71)(Ay) is an F-split torus in T.. As ¢ C [N s is L-elliptic, Ay is the maximal
F-split torus in T.. Thus Ad(z~!)(Ay) € Ar. Then Ay C Ad(z)(AL) € Ad(z)(Ap,). We deduce
that Ad(z)(An,) is a maximal F-split torus in My, so it is My (F)-conjugate to Apg,. Therefore,
x € My (F)Normp ry(My) € Mp(F)Kp. Consequently, we have v{;(z) = 0 and conclude. O

10.2. The case of (G', H').

PROPOSITION 10.4. Let M' € LH (M}),M’' # H'. Let Y € (w' Ns.)(F) and X € s/ (F). Then
there exists N € N such that if A € F'* satisfies vp(\) < —N, we have

(Y, X) = 0.

PROOF. It is almost the same as the proof of Proposition 10.1, except that one needs to use Lemma
8.8.2) and Lemma 8.7. O
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CHAPTER 5

On certain identities between Fourier transforms of weighted
orbital integrals on infinitesimal symmetric spaces of
Guo-Jacquet

In an infinitesimal variant of Guo-Jacquet trace formulae, the regular semi-simple terms are expressed
as noninvariant weighted orbital integrals on two global infinitesimal symmetric spaces. We prove some
relations between the Fourier transforms of invariant weighted orbital integrals on the corresponding
local infinitesimal symmetric spaces. These relations should be useful in the noninvariant comparison of
the infinitesimal variant of Guo-Jacquet trace formulae.

1. Introduction

Inspired by Jacquet’s new proof [29] of Waldspurger’s well-known result [50] on the central values of
automorphic L-functions for G Ly, Guo-Jacquet have suggested comparison of two relative trace formulae
in [23] in order to generalise this theorem to higher ranks. This approach has also been followed by Feigon-
Martin-Whitehouse [21] via a simple trace formula. However, if one wants to remove the restrictive
conditions in [21], some additional terms in the Guo-Jacquet trace formula other than relative orbital
integrals can not be neglected.

Our starting point is an infinitesimal analogue of Guo-Jacquet trace formulae and their comparison.
It means that we first work on the tangent space of a symmetric space (called an infinitesimal symmetric
space). A reason for this is that at the infinitesimal level, the spectral side of the relative trace formula is
replaced by the Fourier transform of the geometric side where the harmonic analysis is simpler. Another
reason is that the comparison of trace formulae for infinitesimal symmetric spaces should imply the
comparison of the original relative trace formulae for symmetric spaces. For example, one may consult
Zhang’s proof of the transfer of relative local orbital integrals [58].

‘We have established an infinitesimal variant of Guo-Jacquet trace formulae in Chapter 2 and Chapter
3, where the main (namely regular semisimple) terms are explicit weighted orbital integrals. These
distributions should be the first ones to be studied and compared after orbital integrals. However, some
new difficulties arise since these distributions are noninvariant. Instead of making the trace formula
invariant as Arthur did (see [5] and others), we would like to follow Labesse’s proposal [37] of noninvariant
comparison which seems more direct. For example, we have established the weighted fundamental lemma
for infinitesimal Guo-Jacquet trace formulae in Chapter 3 as a noninvariant and infinitesimal avatar of
Guo’s fundamental lemma [23]. The strategy of noninvariant comparison has been also adopted in [14]
and [15] on the stable base change. These works provide some indications to our work.

Let us recall some basic objects in the local setting. Let E/F be a quadratic extension of local fields
of characteristic zero. Let n be the quadratic character of F//NE* attached to E/F, where NE* denotes
the norm of E*. The first symmetric pair is (G, H) = (GLay,,GL, X GL,). Let s ~ gl, & gl,, be the
corresponding infinitesimal symmetric space. Denote by s, the set of regular semi-simple elements in s
(see Section 2.2). Let M be an w-stable (see Section 2.3) Levi subgroup of G, and X € (m N sy)(F).
Let f be a locally constant and compactly supported function on s(F'). We define the weighted orbital
integral J(n, X, f) by (2.3.2). We have proved in Chapter 4 that its Fourier transform is represented
by a locally constant function j§; (77, X,-) on s,s(F). We have also defined the (H,n)-invariant weighted
orbital integrals Iﬁ,(n,X ,f) in loc. cit. by Arthur’s standard method, whose Fourier transform is
represented by a locally constant function i]CV;[ (n,X,-) on s,5(F). The second symmetric pair is (G', H'),
where G’ is the group of invertible elements in a central simple algebra over F' containing F, and H' is
the centraliser of E* in G’. It is inspired by the related local conjecture of Prasad and Takloo-Bighash
[44] and more general than Guo-Jacquet’s original setting. Denote by s’ the corresponding infinitesimal
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symmetric space. For a Levi subgroup M’ of H' and Y € (m/ N sl )(F) (see Section 2.4), we similarly
obtain local constant functions & (Y;-) and i3, (Y;-) on sy (F).

The functions 5§ (n, X, -) is decomposed as jcheir invariant analogues i§;(n, X, -) and weight functions
v§;. The decomposition for the functions ji,(Y,-) is similar. In order to obtain relations between
jﬁ (n,X,-) and }A}f[/, (Y,-), which is part of the noninvariant comparison of the infinitesimal variant of
Guo-Jacquet trace formulae, we shall focus on the relations between %]C\’;[(n,X, -) and zf/[’,(Y, -) in this
paper.

There is an injection M’ +— M from the set of Levi subgroups of H' into the set of w-stable Levi
subgroups of G (see Section 4). We fix such a matching pair of Levi subgroups. We define the notion

. . . A
of matching orbits between s,5(F') and s/ (F') by Definition 4.1. For X = (103 0) € 55(F), we denote
n(X) := n(det(AB)). Our main result is as follows.

THEOREM 1.1 (see Corollary 5.6 and Proposition 5.9). 1) Let X € (mNs,s)(F) andY € (tfnv’ Nsl,)(F)
have M -matching orbits. Let U € s,5(F) and V € s.,(F) have matching orbits. Then we have the equality

Yo (B(F)) T R(X)R(U)if) (0, X, U) = (b (F)) i (Y. V),

where vy (h(F)) and vy (§'(F)) are Weil constants (see Section 2.2).
2) Let X € (mNs)(F) and U € s,5(F). If n(X) # n(U), then

iSr(n, X,U) = 0.
This theorem generalises some of the main results in [58] to the weighted context. As in loc. cit., we
use Waldspurger’s global method on the endoscopic transfer [52] to show 1) and a local method to show

2). To show 1), we define a notion of matching weighted orbital integrals (see Definition 5.2) and prove
that this property commutes with Fourier transform under some restriction (see Theorem 5.3). Then
we may extract the relations between 1§, (7, X, -) and 4, (Y, -) with the help of Labesse’s lemma [37,
Lemma 1.7.1]. These steps are close to those in [14]. However, there is an important distinction. While
the weighted fundamental lemma for inner forms is tautological in loc. cit., the vanishing condition of
Lemma 8.1 here is more subtle. It makes the comparison of global trace formulae by Waldspurger’s
method, which is a simple case of the noninvariant comparison, even trickier. We translate our definition
of matching orbits into the language of cohomology (see Sections 4.3 and 4.4) and use abelian Galois
cohomology (see [38]) to go through some technical difficulties.

This paper is organised as follows. We introduce some notations and recall some preliminaries in
Section 2. Then we recall Labesse’s lemma in Section 3. We define the notion of matching orbits and
give a cohomological criterion in Section 4. Our main results are stated in Section 5. The rest of the
paper is devoted to the proof Proposition 5.5 by Waldspurger’s global method. We recall limit formulae
of 1§, (n, X, -) and 28I, (Y, -), the weighted fundamental lemma and an infinitesimal variant of Guo-Jacquet
trace formulae in Sections 6, 8 and 10 respectively. We explain the construction of test functions and the
globalisation of local data in Sections 7 and 9. These results are prepared for our final proof in Section
11.

2. Notation and preliminaries

2.1. Groups. Let F be a local field of characteristic zero or a number field. Denote by O the ring
of integers of F. Let E be a quadratic extension of F. If F is a local (resp. global) field, denote by 7
the quadratic character of [/ /NE* (resp. A*/F*) attached to E/F, where NE* = Np,pE* denotes
the norm of E* in F* (resp. A = Ap denotes the ring of adeles of F).

Let G be a reductive group over F. Denote by rkp(G) the F-rank of G. Let G be the Langlands
dual of G which is a complex reductive group. All algebraic groups (except @) and varieties are assumed
to be defined over F' until further notice. Denote by G,q the adjoint group of G, by Gger the derived
subgroup of G and by Gy the simple connected cover of Gger. Denote by Zg the centre of G and by
Cq := G/Gqer the cocentre of G. Fix an algebraic closure F of F. Let I' := Gal(F/F). For an F-variety
V, we sometimes abuse notation and also write V for V(F) when there is no confusion.

We use a minuscule Fraktur letter to denote the Lie algebra of its corresponding algebraic group.
For example, we write g := Lie(G). Denote by Ad the adjoint action of G on itself or g. If G acts on an
F-variety V and X € V(F), denote by G x the centraliser of X in G. If v is an F-subvariety of g, denote
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by vx the centraliser of X € g(F) in v. If § is an automorphism on G, denote by G? the subgroup of fix
points of G under 6.

Fix a Levi F-factor M of a minimal parabolic F-subgroup of G. By a Levi subgroup of G, we mean
a Levi F-factor of some parabolic F-subgroup of G. For a semi-standard (namely containing M) Levi
subgroup M of G, denote by .#& (M), 2%(M) and £%(M) the sets of parabolic F-subgroups of G
containing M, parabolic F-subgroups of G with Levi factor M and Levi subgroups of G containing M
respectively. For P € % G(Mo), denote by Mp the unique Levi factor containing My and by Np the
unipotent radical. Let P be the parabolic subgroup opposite to P.

For M € £%(My), define the Weyl group of (G, M) by

W (M) := Normg gy (M) /M(F).
In particular, we also write W' := W% (M). For M, L € £%(M,), denote
Trang(M, L) := {w € WE\W§ : Ad(w)(M) C L}.

Denote by Ag the maximal F-split central torus of G. Let X(G)p be the group of F' rational
characters of G. Define the R-linear space

ac := Homz (X (G)r,R),

whose dual space is denoted by af,. Fix a scalar product on apz, which is invariant under the action
of W&, from which we deduce Haar measures on all subspaces of ayz,. Denote by a% the orthogonal
complement of ag in ay;.

Let D a central division algebra over F. Denote by deg(D) the degree of D, i.e., dimp(D) = deg(D)?.
Denote by GL, p the reductive group over F' whose F-points are GL, (D). For x € gl,(D), we write
Nrd(z), Trd(z) and Prd, for its reduced norm, reduced trace and reduced characteristic polynomial
respectively. If D = F, we also write them as det(z), Tr(z) and x, respectively.

Now suppose that F is a local field of characteristic zero. Denote by | - | the normalised absolute
value on F. Define a homomorphism H¢ : G(F) — ag by

(Ha(x), x) = log(Ix(x)|r)

for all z € G(F) and x € X(G)p. Fix a maximal compact subgroup K of G(F') which is admissible
relative to My in the sense of [5, p. 9]. In this paper, we choose the standard maximal compact subgroup
when G(F) = GL,(D), where D is a central division algebra over a finite field extension of F. That
is to say, if F is non-archimedean, K = GL,(Op) with Op being the ring of integers of D (see [54,
p. 191]), while if F' is archimedean, K is the unitary group with respect to some hermitian form (see
[54, p. 199]). We may extend the function Hy; to a map Hp : G(F) — ap, using the decomposition
G(F)= Mp(F)Np(F)K.

Fix the Haar measure on K such that vol(K) = 1. For P € .Z#% (M), fix a Haar measure on Np(F)
such that

| exppptHpn))dn = 1
Np(F)

where pp is the half of the sum of roots (with multiplicity) associated to P. For M € £ (M), there
are compatible Haar measures on G(F) and M (F) in the sense of [8, (1.1), p. 12] such that for all
P € #%(M) and all continuous and compactly supported function f on G(F), we have the equality

/ f(@)dx = / f(mnk)dkdndm.
G(F) M(F)XNp(F)xK

We shall choose such measures.

Let V be an F-linear space of finite dimension. If F' is non-archimedean, denote by C°(V') = S(V') the
space of locally constant, compactly supported and complex-valued functions on V. If F' is archimedean,
denote by S(V') the space of Schwartz functions on V. For f € S(V'), denote by Supp(f) its support.

Fix a continuous and nontrivial unitary character ¢ : F — C*. Let {(-,-) be a non-degenerate
symmetric bilinear form on g(F’) which is invariant under conjugation. Let V' be an F-linear subspace of
g(F), on which the restriction of (-,-) is non-degenerate. It is equipped with the unique self-dual Haar
measure with respect to ¥((-,-)). For f € S(V), define its Fourier transform f € S(V) by

VX €V, f(X) = /V FOOVO((X, Y))dY.



Let M € £%(Mp) and Q € FE(M). By [5, p. 40-41], for x € G(F),
vp(\z) = e ANP@) yx e jay, P e 29 (M),
is a (G, M)-family in the sense of [5, p. 36]. Define the weight function

2.1.1 9 (x) = li @t :
(2.1.1) vy (¥) = lim > vp(\,2)03(\) ',V € G(F)
{Pe2C (M):PCQ}
Let V be an F-linear space of finite dimension equipped with a non-degenerate symmetric bilinear
form ¢(-,-) and a Haar measure. Denote by 7, (g) the Weil constant given in [53, Théoreme 2.

2.2. Symmetric pairs. Let F' be a local field of characteristic zero or a number field. A symmetric
pair in the sense of [1, Definition 7.1.1] is a triple (G, H,#) where H C G are a pair of reductive groups,
and 6 is an involution of G such that H = G?. Let s be the tangent space at the neutral element of the
symmetric space S := G/H. We shall always view s as a subspace of g. Thus

s={Xeg:(do)(X)=—X},

on which H acts by the restriction of Ad. By [1, Lemma 7.1.9], there exists a G-invariant f-invariant
non-degenerate symmetric bilinear form on g.

An element X € s is said to be semi-simple if Ad(H)(X) is Zariski closed in s. If F' is a local field of
characteristic zero, X € s(F’) is semi-simple if and only if Ad(H (F))(X) is closed in s(F') in the analytic
topology by [45, Fact A, p. 108-109]. We say an element X € s is regular if Hx has minimal dimension.
Denote by s,5 the subset of s consisting of regular semi-simple elements in s.

Now suppose that F' is a local field of characteristic zero. A Cartan subspace of s is defined as a
maximal abelian subspace ¢ C s defined over F' consisting of semi-simple elements. Denote by Z° the
set of Cartan subspaces of 5. Fix a (finite) set of representatives .7 for H(F)-conjugacy classes in .7°.
Let ¢ € 7°. Denote by T, the centraliser of ¢ in H, which is a torus. Define the Weyl group

W(H,¢) := Normpg(p)(c)/Tc(F).
For ¢1,¢3 € 7%, denote by W(H, ¢y, ¢3) the set of isomorphisms from ¢; onto ¢y induced by Ad(x) for

some x € H(F). If ¢; = co, we see that W(H, ¢y, ¢1) is nothing but W(H, ¢;) (viewed as a set).
For c € .7° and X € (¢ Nsy)(F), define the Weyl discriminant factor

1D%(X) | = | det(ad(X)]y/c.me/e) 1

Let (-, ) be a G-invariant f-invariant non-degenerate symmetric bilinear form on g. For any F-linear
subspace v of g(F') such that the restriction of (-,-) on v is non-degenerate, denote by v, (v) the Weil
constant associated to v. Let ¢ € 7°. For X,Y € (¢Ns,s)(F), define a bilinear form ¢x y on h(F)/t(F)
by

QX,Y(Zv Z/) = <[Z7 X]a [K Z/]>'

It is non-degenerate and symmetric and we have gx y = qy,x. Write

(2.2.1) Yo (X,Y) =y (gx,v)-

2.3. The case of (G,H). Let F be a local field of characteristic zero or a number field. Let
G := GLy, and denote by H := GL, x GL, its subgroup via diagonal embedding. In fact, H is the

subgroup of fixed points of the involution Ad(¢) on G, where € := (1" 1 ) We shall embed G into

g in the standard way. For an F-subvariety v of g, we write v™ := v N G. Recall that s,3 C §* in our
case. Let (-,-) be the non-degenerate symmetric bilinear form on g(F') defined by

(2.3.1) (X,Y) :=Tr(XY),VX,Y € g(F),

which is invariant by the adjoint action of G(F) and Ad(e).

N 1(;) € G(F). For P € FC(Mp),
we say that P is “w-stable” if w € P. Denote by .#%< (M) the subset in .#% (M) consisting of w-
stable parabolic subgroups. For M € £%(M;), we say that M is “w-stable” if M = Mp for some
P ¢ Z%%(My). Denote by £%“ (M) the subset in .Z% (M) consisting of w-stable Levi subgroups.
Let A, be the group of diagonal matrices in GL,,. Recall that there is a bijection between Z%(A,,)

Let My be the group of diagonal matrices in G. Set w := (

my, my,

and .£%%(My) induced by M,, — M = <
m, m,

X
) . We shall always write M,, for the preimage of M
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under this bijection. Notice that if M € Z%“(My) and Q € F¢ (M), then Q € F“(My). There is

X
also a bijection between .# %L (A,,) and .F % (M,) induced by P, + P = (E" E") . We shall always

write P, for the preimage of P under this bijection. For ¢ € 7% and L € £%“ (M), define

W(H,c,ins):= | | W(Hz¢rc).
Cze%ms

Let M € £%“(My). We say an element X € (m N s,)(F) is elliptic if Ay is the maximal F-split
torus in Hy. Denote by (mNs,s)(F)en the set of elliptic elements in (m N s,s)(F). Write My := M NH.
Denote by Ten((m N sy5)(F)) the set of My (F)-conjugacy classes in (m N sy5)(F)en. For X € s,5(F),
X € 5,5(F)en if and only if xx(A) = p(A\?) for some irreducible polynomial p(\) € F[)\] of degree n.

Now suppose that F is a local field of characteristic zero. Let P € #%“(My). Then mp =
(2” :1") and np = (n" :"), where we denote M, := Mp, and N, := Np . We shall choose
the same Haar measure for any of the four copies in mp(F') or np(F) under these identifications. For
f € S(s(F)), we define a function f2 € S((mp Ns)(EF)) by

AZ) = / FAA(E™)(Z + U))n(det(k))dU dk
Kux(npns)(F)
for all Z € (mp N s)(F). Recall that (f)% = (f}2)", and we shall denote it by f}, without confusion.

Let M € %% (M) and Q € FE(M). For f € C®(s(F)) and X € (mNsy)(F), define the weighted
orbital integral

(23.2) TG, X, f) = |D*(X)[ 2 / FAd(™)(X))n(det(x) w5 (z)da.
Hx (F)\H(F)
For X = (g 61> € s5,5(F), define a transfer factor k(X)) := n(det(A)) (see [58, Definition 5.7]). Then

k(Ad(z71) (X)) = n(det(z))x(X), and the function K(-)Jﬁ[(n, -, f) is constant on Ad(Mpg (F))(X).

Now suppose additionally that F' is non-archimedean. Let M € %« (My) and X € (m N s,5)(F).
In §8.1 in Chapter 4, we deduce from J§(n, X,-) an (H,n)-invariant distribution I§(n, X,-) on s(F).
By Propositions 7.2 and 8.1 in Chapter 4, there are unique locally constant functions 31‘51(77,X ,+) and
15, (n, X, ) on s,5(F) representing the distributions J$(n, X, -) and I$;(n, X, -) respectively. That is to
say, for all f € C°(s(F')), we have

KX 0= a5 X ) = [ 5@ X 00 @) i

and
i X.0) =I5 X f= | )i X010 W) v
5

2.4. The case of (G', H'). Let F be a local field of characteristic zero or a number field. Let E be
a quadratic extension of F. Let g’ be a central simple algebra over F' with a fixed embedding £ — g'(F)
as F-algebras. Let ) := Centy (E) be the centraliser of E in g’. Then §’(F) is a central simple algebra
over E by the double centraliser theorem. Denote by G’ := g’™ (resp. H' := h’™) the group of invertible
elements in g’ (resp. h’). Let @ € E\F be such that a® € F, so E = F(«). In fact, H' is the subgroup
of fixed points of the involution Ad(a) on G’. Denote by s’ the corresponding tangent space of G'/H’ at
the neutral element. For a linear subspace v’ C g’, we write v’ := v/ N G’. Then s/, C 5’ in our case.
Let (-,-) be the non-degenerate symmetric bilinear form on g'(F) defined by

(2.4.1) (X,Y) :=Ted(XY),VX,Y € ¢(F),

which is invariant by the adjoint action of G'(F') and Ad(«).

By the Wedderburn-Artin theorem, G’ is isomorphic to GL, p for some integer » > 1 and some
central division algebra D over F' such that rdeg(D) is even. By the Noether-Skolem theorem, up to
conjugation by G'(F), the emdedding H' — G’ is isomorphic to one of the two cases below (see [18,
§2.1 and §3.1] and §3.4 in Chapter 3).

Case I if there is an embedding £ — D as F-algebras, then (G', H') ~ (GL; p,Resg/prGL; p),

where D' := Centp(E) is a central division algebra over E of degree ngT(D). Let Mg ~ (Resg/rGm,p/)"
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(resp. Mg =~ (Gy,,p)") be the subgroup of diagonal elements in H’ (resp. G’). Recall that there is a
bijection M’ — M’ between £ (M}) and £ (MY). We shall always denote by M’ the image of M’
under this bijection. Notice that M’ = M’ N H' and that we can identify Ay with Ag,.

Case II: if there is no embedding £ — D as F-algebras, then (G, H') ~ (GL, p,Resg;rGLz pgE),
where D @5 E is a central division algebra over E of degree deg(D). Let M} ~ (Resp,rGpm, porE)?
(resp. Mf = (Grm,p)") be the subgroup of diagonal elements in H' (resp. G’). Denote by ,,Z”Gl(M-é7 M)
the subset of elements in .#¢’ (M) containing M. Recall that there is a bijection M’ M’ between
L1 (M) and £ (M, Mg). We shall always denote by M’ the image of M’ under this bijection. Notice

that M’ = M’ N H' and that we can identify Ap; with A,

If tkp(G') = r, we also write G.. := G', H|. := H' and s/. := s'. Notice that rkp(H/) = r in Case I
(resp. = %) in Case II. There is also a bijection P’ P’ between FH' (M) and F (M{) in both of
Case I and Case II. We shall always denote by P’ the image of P’ under this bijection. Let 7 € D* in
Case I (resp. 7 € GLy(D) in Case II) be an element such that Ad(a)(r) = —7. Let P’ € Z7 (M}).
By Proposition 3.12 in Chapter 3, we have mz; Ns’ = mp/7 = Tmps and ny; Ns’ = np7 = Tnps. For

P/
¢ € 7% and L' € ™' (M}), define
WH ¢ Vne) = || W(H, ).
cpegyns’

Let M’ € 2™ (M}). We say an element Y € (w' N s, )(F) is elliptic if Ay is the maximal F-
split torus in H{,. Denote by (W' N sl,)(F)en the set of elliptic elements in (m’ N ¢.,)(F). Denote by
Ten((m’ N sl )(F)) the set of M'(F)-conjugacy classes in (m/ N sl,)(F)en. For Y € 6/ (F), Y € sl (F)en
if and only if Prdy (A\) = p(A?) for some irreducible polynomial p(\) € F[)\] of degree Tde%‘(m.

Now suppose that F is a local field of characteristic zero. Let P’ € .ZH (M}). We shall choose
the same Haar measures on (mp; Ns')(F) and (np; Ns')(F) using above identifications induced by 7.
Such Haar measures are independent of the choice of 7. For f' € C°(s'(F)), we define a function
fpr € C((mp Ns")(F)) by

[pi(2) = / fI(Ad(k™1)(Z + U))dUdk
Kprx(ng;Ns’)(F)

for all Z € (mz; Ns’)(F). Recall that (f)pr = (f}p)", and we shall denote it by f}, without confusion.

Let M' € ZLH (M) and Q' € FH (M'). For f' € C°(s'(F)) and Y € (m’ N s)(F), define the
weighted orbital integral

Iy =108 W [ 1 (A (Y )efiy (2)dar
HY (F)\H'(F)

Now suppose additionally that F' is non-archimedean. Let M’ € £ (M}) and Y € (' N s (F).
In §8.2 in Chapter 4, we deduce from JI(Y,-) an H'-invariant distribution I (Y,-) on s/(F). By
Propositions 7.10 and 8.6 in Chapter 4, there are unique locally constant functions 727, (V; ) and 25, (Y, -)

on s/ (F) representing the distributions JI,(Y,-) and I (Y,-) respectively. That is to say, for all
feCx(s'(F)), we have

T ) = T ) = / ) P W) VIDT (V)5 2av

and
BAOS) = 100 = [ ORI
s/ (F

3. Labesse’s lemma

Let F' be a non-archimedean local field of characteristic zero and E be a quadratic extension of F'.
Let n the quadratic character of F*/NE* attached to E/F.

For f € C°(s(F)), we say that the weighted orbital integrals of f vanish for nontrivial weights if for
all M € Z%%(My),Q € FE(M) — 2%(M) and X € (mNs,s)(F), we have

IS0, X, f) =0.
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Suppose that f satisfies this condition. By definition (8.1.1) in Chapter 4, for all M € Z%«(M,) and
X € (mNsy)(F), we have the equality

Jii(n, X, f) =I5 (0, X, f).
For f' € C(s'(F')), we say that the weighted orbital integrals of f’ vanish for nontrivial weights if
for all M' € L7 (M}), Q' € FT' (M) — 27 (M') and Y € (w’ Ns.,)(F), we have

JE (Y, ) =0.

Suppose that f’ satisfies this condition. By definition (8.2.1) in Chapter 4, for all M’ € XH/(M(’)) and
Y € (mNsl,)(F), we have the equality

JI(Y, 1) = Iy, ).

LEMMA 3.1 (see [37, Lemma 1.7.1]). 1) Let f € C*(s(F)) be such that Supp(f) C s,5(F). Then
there exists ¢ € C°(s(F') ) such that
(F

() Supp(¢) € Ad(H(F))(Supp(f));
(b) for all X € s5(F), JE(n, X, ) = JE(n, X, f);
(c) the weighted orbital integrals of f vanish for nontrivial weights.
2) Let f' € C°(s'(F')) be such that Supp(f’) C s.,(F). Then there exists ¢/ € C°(s'(F')) such that
(a) Supp(¢) € Ad(H'(F))(Supp(f));
(b) for allY € s (F), Jff, (Y,¢') = Jii, (Y. [);
(¢) the weighted orbital integrals of f' vanish for nontrivial weights.

4. Matching of orbits

Let F be a local field of characteristic zero or a number field. Let F be a quadratic extension of F'.
Assume that dimy(G) = dimi(G'), i.e., 2n = rdeg(D).

4.1. Definition by invariants. There is an injection M’ — M from .ZH (M}) into £ (My)
induced by the injection from the set of partitions of r in Case I (resp. % in Case II) into the set of
partitions of n. We shall always denote by M the image of M’ under this injection.

Denote by A™ the affine space over F' of dimension n. By Proposition 3.3 in Chapter 2, the map
s — A" X — xx defines a categorical quotient s//H over F, where xx denotes the characteristic
polynomial of X € g. By Proposition 3.5 in Chapter 3, the map s’ — A™,Y — Prdy defines a
categorical quotient s’ //H' over F, where Prdy denotes the reduced characteristic polynomial of Y € g'.
Therefore, we can identify s//H ~ A™ ~s'//H’. By Proposition 3.3 in Chapter 3, it induces an injection
from the set of H'(F)-orbits in s, (F) into the set of H(F)-orbits in s(F).

DEFINITION 4.1. Let X € 5,(F) and Y € sl (F). If xx = Prdy, we say that X and Y have
matching orbits and write X <Y . For X € s,4(F), if there is an elementY € s, (F) such that X <Y,
we also say that X comes from s, (F).

REMARK 4.2. Let M’ € 7' (M}) and X € (mNsy)(F). Then X comes from s/ (F) if and only if
there is an element Y € (m’ N sl )(F') such that X < Y, in which case we also say that X comes from
(m" N si) (F).

0 A

Now suppose that F' is a local field of characteristic zero. For X = ( B 0

n(X) = n(det(AB)).

) € 55(F), we denote

LEMMA 4.3. Let X € s:5(F)en. Then the following conditions are equivalent:
(1) X comes from s, (F);
(2) n(X) = (=1)", where r :=rkp(G’);
(3) n(X) = e(G"), where e(G") denotes the Kottwitz sign of G’ in the sense of [33].

PROOF. See the proof of [55, Lemma 2.7] for (1)<(2). Now we show (2)<»(3). Let o& = ﬁ?m €

QnN[0,1) be the invariant of g’(F), where ig and deg(D) are coprime. Since 2n = r deg(D) is even, by
[33, Corollary (7)], e(G') = —1 if and only if i is odd. We have i = 220 — pjy. If 4 is odd, then r

deg(D)
is odd. Conversely, if r is odd, then deg(D) is even, so iy is odd, which implies that ¢ is odd. We have
shown that e(G’) = (—1)" when deg(g’(F')) is even and thus proved (2)<(3). O
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Let M' € 7' (M}). Assume that
(M, Mp) ~ (GL2n,,GLy, X GLy,) % -+ x (GLay,, GLy, x GLy,)

and that
(M',M") ~ (G

1)

Hy ) x-x (G

T

).
DEFINITION 4.4. Let M’ € 7' (M}), X € (mNsy)(F) and Y € (m Ns.)(F). If each pair of
factors of X and Y have matching orbits, we say that X and 'Y have M-matching orbits.

0 A
B 0

A = diag(Ay, -+, Ag), B :=diag(By, -+ ,By) € glp, (F) @ - -- @ glp, (F).
Denote ’I7M(X) = (n(det(AiBi)))lgigl S {il}e. Denote Eppr o= ((—I)Ti)l_igg S {il}é.

Let M’ be as above and X = ( > € (mNsy)(F), where

DEFINITION 4.5. Let M’ € ™' (M}) and X € (mN ) (F). If nar(X) = errr, we say that X comes
potentially from (m/ Nl )(F).

COROLLARY 4.6. Let M' € "' (M}). Then we have

(1) if X € (mNsy)(F) comes from (m/ Nsl)(F), then X comes potentially from (m/ Nsi)(F);
(2) if X € (mNs)(F)en comes potentially from (w/ Nsl,)(F), then X comes from (m' N s, )(F).

0 o?1,

4.2. Centralisers. Recall that E = F(a) with o? € F. Set ag := (1 0

E ~ F(ag) € g(F). Denote Hy := Centg(a) ~ Resg;pG Ly . Then

A 2
bo:{(c O“AC) :A,Ceg[n}.

Denote by sq the corresponding tangent space of G/Hj at the neutral element. Then

9
soz{@ _O‘AC> :A,C’eg[n}.

> € 50(F). Then w3 = 1, and sp = howo = woho. The action Ad(wp) induces an

) € G(F). Then

1, 0
0 -1,
involution on Hy and hg.

Recall that g’ is a central simple algebra over F' with a fixed embedding E < g/(F') as F-algebras.
Let ¢ : ¢’ — g be an isomorphism over F such that for all ¢ € Gal(F/F), we have

Set wy =

wocgop oo ! =Ad(u,),

where u, is a Galois 1-cocycle with values in G,q. Let o be the image of « in ¢’(F). Then Prd, is
defined over F and o/* — a2 = 0. We deduce that Prdy (A) = (A2 —a?)™ = xa,(A) € F[A]. Because both
of ap and o are semi-simple in the classical sense, there exists © € G such that Ad(z)op(a’) = ap. Since
o' € g'(F), we have p(a’) = poa(a’) = Ad(u,) o o 0 (). As ag € G(F), we obtain Ad(z~1)(ag) =
Ad(uy) 0o 0o Ad(z7 1) (an) = Ad(ue) o Ad(o(z) ') (ap). It implies that zuso(z)~! € Hy. It turns out
that by changing u, in its class in H(F,G,.q), we may and shall suppose that ¢(a’) = o and that u, is
a Galois 1-cocycle with values in Hy/Zg.

Set ay := (aln al > € G(E). Then H = Centg(a1). Recall that w = <10 15) Thus
s = hw = wh. The action Ad(w) induces an involution on H and b.

Let y € G such that

(4.2.1) Ad(y) o p(a’) = ay,

i.e., Ad(y)(ap) = a1. Then the morphism Ad(y) o ¢ induces an isomorphism over F' from s’ to 5. For
all o € Gal(F/F), we have Ad(c(y)) o 0 o p(a’) = o(a1) = e,a1, where ¢, denotes the quadratic
character of Gal(F/F) associated to E/F. Since 0o ¢(a/) = Ad(u;1) o poo(a’) = Ad(uz!) o p(a’) =
Ad(u;1) o Ad(y~1)(aq), we obtain

Ad(yuso(y)~")(a1) = eqan.
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For all o € Gal(F/F), define w, := 1la, if 0 € Gal(F/E) and w, := w otherwise. Then Ad(w,)(a1) =
egs1. We deduce that

(4.2.2) yuyo(y) tw, € H.

The elements y verifying (4.2.1) form an H-torsor of the form Hv where
(1, al,

(4.2.3) vi= <1n a1n> e G(E).

We easily check that o(v) = wev for all ¢ € Gal(F/F) and that wv = vwy.
Let Y € s/(F) be a semi-simple element. There exists y € Hv and a semi-simple element X € s(F')
such that

Ad(y) o p(Y) = X.

Then Ad(y) o ¢ induces an isomorphism over F from Hj to Hx. For all o € Gal(F/F), we have
Ad(o(y)) o o0 p(Y) = o(X) = X. Since 00 ¢(Y) = Ad(u;') o poo(Y) = Ad(u; ") o (V) =
Ad(u; 1) o Ad(y~1)(X), we obtain

yuso(y)~! € Gx.

Combined with (4.2.2), we have yu,0(y)~! € Gx N Hw,. Since w, normalises H (resp. s), we see that
yu,o(y)~! normalises Hx (resp. sx).

LEMMA 4.7. Let X € s,5(F) and Y € s, ,(F) be such that X <> Y. There exists y € Hv such that
Ad(y) o o(Y) = X and that Ad(y) o ¢ induces isomorphisms H{, — Hx and s — sx over F.

PROOF. This is a generalisation of [58, Lemma 7.4]. For all o € Gal(F/F), we see that (Ad(y)o¢)o
oo(Ad(y)op) too ! = Ad(y)o(poooptoo Ho(coAd(y ) oo™!) = Ad(yu,o(y) ). For X € s,
we know that X is also regular semi-simple in G in the classical sense. Since yu,o(y)~' € Gx, the
action Ad(yu,o(y)~') on Hy (resp. sx) is trivial, which implies that Ad(y) o ¢ induces an isomorphism
H{ — Hx (resp. sy — sx) over F. O

0 1,
A 0
in GL,. Denote Xy := Ad(v™1)(X) € s0(E), where v is defined by (4.2.3). Notice that Hp x, =
Ad(v™')(Hx) = Hx ~ GLy 4. Let Hy := Centy(diag(A, A)) = GL, a X GL,, 4, which is a maximal
F-torus in H. Denote T := Centy,(diag(A4, A)) = Ad(v™1)(Ha4). For all closed subvariety V of H
defined over F' and stable by w, we easily check that Ad(v—1)(V) is a closed subvariety of Hy defined over
F and stable by wy. Thus Tx is a maximal F-torus in Hy. Notice that Hx = H% and that Hy x, = T;O.
We see that Tx ~ Resg,p(GLny, 4)e and that the inclusion Hy x, C Tx is isomorphic to the inclusion
GL, 4 C ReSE/F(GLn,A)E. For simplicity, we also write T':= T'x and R := Hp x,.

4.3. Cohomological criterion. Let X = € 6,5(F). Then GL,_ 4 is a maximal F-torus

LEMMA 4.8. There exists a unique Galois 1-cocycle t, with values in T/R such that for all o €
Gal(F/F), we have

Ad(tg) o O'(Xo) = Xo.

PROOF. The uniqueness is obvious by definition. It suffices to consider the existence. The cocycle
condition is also automatic. We only need to check the equality. If o € Gal(F/E), then o(Xo) = Xo,
so it suffices to take t, = 1. Now suppose that o ¢ Gal(F/E). Since o(Xo) = Ad(o(v)™1) o o(X) =
Ad(v1w, 1) (X), it suffices to find an element t, € T such that vt,v tw;! € Gx. In fact, we can take

1

t, = Ad(v™1) ( A). O

By the inflation-restriction exact sequence and Hilbert’s Theorem 90, the cohomology group H!(F,T/R)
is identified with H'(Gal(E/F),T(E)/R(E)). For all ¢ € Gal(F/F) and b/ = Ad(v"')(h) € T
where h € Hy, we see that o(h/) = Ad(c(v)™!) o o(h) = Ad(v~!) o Ad(w,) o o(h). Therefore,
we can regard T as the subgroup H4 of G equipped with the Galois action Ad(wy) o 0. Then the
inclusion R(E) C T(FE) is isomorphic to the inclusion Hx(E) C Ha(E). Let o be the nontriv-
ial element in Gal(E/F). We see that u, = (B,C) € Hu(E)/Hx(E) is a l-cocycle if and only
if usAd(wy) o o(u,) € Hx(E), i.e., BC? = CB°. We also see that u, € Ha(F)/Hx(E) is a 1-
coboundary if and only if u, = (B,C)"'Ad(w,) o o(B,C) for some (B,C) € Ha(E)/Hx(E), i.e.,
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Uy = (C°B~1,B°C~1) € Hxo(E)/Hx(E). Then H'(Gal(E/F),T(E)/R(E)) is the quotient of

{(B,0) € HA(E)/Hx(FE): BC° =CB°} = {(1,CB™') € Ha(F)/Hx(E) : (CB™%)° =CB™'}
={(1,B) € Ha(F)/Hx(E): B = B} = {(1,B) € HA(E)/Hx(E) : B € GL,, A(F)}

by

{(CB™',B7C™") € Ha(E)/Hx(E) : B,C € GLn a(E)}
—{(B™?,B) € Ha(E)/Hx(E) : B € GL, A(E)} = {(1, BB”) € Hs(E)/Hx(E) : B € GL,, 4(E)}.

That is to say, it is the quotient of G4 (F) by the group of norms of GL,, 4(E). Under the identification
of T'and H,4 with the twisted Galois action, the Galois 1-cocycle t, in Lemma 4.8 corresponds exactly
to the class of A.

Since A is regular semi-simple in GL, (F) in the classical sense, its characteristic polynomial x 4 is
separable. Let xa = [[;c; xi be the factorisation of x 4 into a product of monic irreducible polynomials
over F'. We see that

GLpa =~ [[Resp,/pGom,r.,
iel
where F; = F[\]/(xi()\)). Denote E; := F; ® p E. Let Iy be the subset of I consisting of ¢ such that FE;
is a field. We have

Hl(FvT/R) = HFiX/NEVL/Fi(EiX) = H FiX/NEi/Fi(EiX)'
el i€lp

If F' is a local field of characteristic zero, then H*(F,T/R) = (Z/27Z).

LEMMA 4.9. Let t € HY(F,T/R) be the class of the Galois 1-cocycle t, in Lemma 4.8. Let u €
HY(F,Hy/Zg) be the class of the Galois 1-cocycle u, associated to g'. There exists Y € s'(F) and
h € Hy such that Ad(h) o p(Y) = X if and only if there exists an element of H'(F,T/Z¢) which has
images t € HY(F,T/R) and uw € H'(F, Hy/Zq) under the natural maps:

H'(F,T/Zg) — H'(F,T/R)

|

HY(F,Hy/Zc)
REMARK 4.10. The condition in the above lemma says exactly that X comes from s, (F').

PRrROOF OF LEMMA 4.9. For all h € Hy, let Y € s’ be the unique element such that Ad(h) oY) =
Xo. For all 0 € Gal(F/F), we have Ad(c(h)) oo o ¢(Y) = o(Xo) = Ad(t;1)(Xo) and 00 p(Y) =
Ad(uzY)opoo(Y). But Y € ¢(F) if and only if poo(Y) = ¢(Y) = Ad(h™1)(X,). We have shown that
there exists Y € §/(F) and h € Hy such that Ad(h) o o(Y) = X if and only if there exists h € Hy such
that

Ad(e(h)ug 'h™")(Xo) = Ad(t; ") (Xo)

for all 0 € Gal(F/F). If this equality is satisfied, then hu,o(h)~! € Rt, C T defines a Galois 1-cocycle
with values in T/Zs which has desired images. Conversely, any Galois 1-cocycle with values in T'/Z¢
having image u is of the form hu,o(h)~! where h € Hy. If it also has image ¢, it means that by replacing
h with t'h where t' € T, we may suppose that huyo(h)~! € Rt,. Then the above equality is satisfied for
such an h. ]

Recall that Hy° = H“ ~ GL,. We shall abuse notation and denote by Rger (resp. Tger) the
preimage of R (resp. T) in Ha‘i%cr = H(‘)")gc (vesp. Hoder = Hosc). We shall the index “ab” to de-
note the abelianised cohomology defined in [38, §1.6 and 1.8]. Recall that the abelianisation maps
HYF,H{/Zg) — HL(F,H{/Zg) and HY(F,Ho/Zg) — HL(F,Ho/Zg) are surjective (see [38,
Proposition 1.6.7]). If F is a non-archimedean local field of characteristic zero, they are also injec-
tive by Kneser’s theorem (see loc. cit.). We have the following commutative diagram with exact columns

and rows.
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H'(F,R/Z¢) —— H'(F.T/Zc) H'(F,T/R) ————— H*(F, R/Zc)

| | | |

Hoy (F HG® [ Z6) —— Hyp,(F, Ho/Za) — H,, (F HG® /26 — Ho/Za) — H3, (F, Hy? [ Z)

| | |

H2(F7 Rder) Hz(Fa Tder) H2(F, Tder/Rder)

PRrROPOSITION 4.11. There is a canonical identification
Halb(Fv HSJU/ZG — HO/ZG) = Hl(F7 CHO/CHSJD)'

PROOF. The group on the left is isomorphic to H(F, Tye; / Raer — T/ R). Since [Tyer/Raer — T/ R] is
injective, it is quasi-isomorphic to [1 — (T/R)/(Tder/ Raer)]- But (T'/R)/(Taer/ Raer) = (T/Tder)/(R/ Rder),
where T/T4er = Cp, and R/Rger = OH:O. O

COROLLARY 4.12. Suppose that F is a local field of characteristic zero. Then

HLY(F HY |Zg — Ho/Zg) = 7.)27.
The morphism
HY(F,T/R) = (Z/22)" — H,(F, HE" |26 — Ho/Za) = Z/2Z
is the sum of components.
Denote by ex the image of ¢ (defined in Lemma 4.8) under the morphism
HY(F,T/R) — H}(F,Hy°/Zc — Ho/Zc).

COROLLARY 4.13. Suppose that F is a local field of characteristic zero. The map

s1s(F) = Hoyp (F,HG® /Zg — Ho/Za) = L)2Z : X = (g ’3) X

0o 1,

’a_
where X' := (AB 0

) € 5,5(F) is understood as the map

s5s(F) = {£1}: X = n(X).

PROOF. We may reduce ourselves to the case where X € s.5(F)c. In the elliptic case, it results
from [10, Lemmas 1.3 and 1.4] O

Denote by ¢’ the image of u (associated to g’) under the morphism
HY(F,Hy/Z¢) ~ Hy\(F,Ho/Zg) — HL(F,Hy /Z¢ — Ho/Zc).
LEMMA 4.14. If X comes from si,(F), then ex = ¢'.
PRrROOF. It results from Lemma 4.9 and the above commutative diagram. O

PROPOSITION 4.15. Suppose that F' is a non-archimedean local field of characteristic zero and that
A is elliptic in GL,(F). Then X comes from s. (F) if and only if ex = ¢'.

PROOF. By Lemma 4.14, it suffices to prove the reverse direction. Since F' is non-archimedean, we
have H% (F, H{"/Zc) = 0 by [38, Lemme 1.5.1]. Since F is local and the tori R/Zg, Raer and Tyer are
F-anisotropic, the groups H2(F, R/Z¢), H*(F, Rer), H*(F, Tyer) and H?(F, Tger/Rer) vanish (see loc.
cit.). The above commutative diagram is simplified as follows.

HY(F,R/Z¢) HY(F,T)Z¢) HY(F,T/R)

l | |

HY\ (F,HE® ) Zg) ——= H\ (F, Ho/Zg) — HY (F,HS" /Zg — Ho/Zg) — 0

| | |

0 0 0

0
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Choose an arbitary preimage t' € H'(F,T/Z¢) of t. The image of t' in H} (F,Hy/Z¢) is of the

form ug(u1) where uy € HJ (F,H$°/Zg) because both of u and this image map to ¢ = ex €

HY\(F,H{*/Zg — Ho/Zg) by our assumption. Let t; € H'(F,R/Zq) be a preimage of u;. Then

t'f(t1)~! € HY(F,T/Zg) has images t and u. We may conclude by the bijectivity of the abelianisation

map H'(F,Hy/Z¢) — HY (F,Hy/Z¢) and Lemma 4.9. O
COROLLARY 4.16. Suppose that F' is a non-archimedean local field of characteristic zero. The map

HY(F,Hy/Z¢) ~ H5 (F,Ho/Zg) — HY(F,HY |Z — Ho/Zg) = 7)27 : u s €
s understood as the Kottwitz sign

HY(F,Hy/Zg) — H'(F,Gaq) — {£1}.

PROOF. It can be computed directly. However, it is also a consequence of Lemma 4.3, Corollary

4.13 and Proposition 4.15. O
4.4. Levi subgroups. Let M € £%“(M,). Denote Mg, := Ad(v™1)(M) N Hy, where v is defined
by (4.2.3). Then My, is a Levi subgroup of Hy defined over F. Let X = 81 10" € (mNsys)(F). Then

T C My, and R C Mff(’) We have an obvious generalisation to the product form of some results in the
previous section.

PROPOSITION 4.17 (cf. Proposition 4.11). There is a canonical identification
Ho (F, My | Zyg — My, /Zy) ~ H' (F, Cagg, /CM;g ).
COROLLARY 4.18 (cf. Corollary 4.12). Suppose that F is a local field of characteristic zero. Then
H\(F,M$2 [ Zy — My, [ Zy) = (Z/2Z)",
where £ is the number of blocks of M. The morphism
H'(F,T/R) = (Z/2Z)" — Hy,(F. My /Zas = Mpy [/ Zar) = (Z/22)"
is the sum of components in each block of M. If L € % (M), then the morphism
HY(FME? [ Zy — My, /Zag) = (Z)22)" — HY(F, LY /21 — L, /Z1) = (Z/22)"

is the sum of components in each block of L, where {' is the number of blocks of L.

PROPOSITION 4.19. Suppose that F' is a non-archimedean local field of characteristic zero. The group
H (F, M3 /Zv — Mu,/Zar) is canonically isomorphic to the Pontryagin dual of the finite group Z (2]
of elements z € Zz; such that 2> =1. If L € LE(M), then the morphism

Hoy(F, M0 [ Za — My [ Zy) — Hy,(F, LSP ) Z1 — L,/ Z1)
is the dual of the canonical embedding Z7 (2] — Z7[2].
PROOF. By [34, Proposition 6.4] and Proposition 4.17, the group HJ (F, M/ Zv — Mu,/Zwm) is

. . . . . o 1—‘ . . — o .
canonically isomorphic to the Pontryagin dual of 7o ((Z o / ZMZO )"). Notice that Z o ZMfzg X ZM?;% ,

0
on which the nontrivial element o € Gal(E/F) acts by exchanging two components. Via the morphism
(z,2') = 22'~" and the diagonal embedding, we obtain

ZMP?O/Z@) ~ Z@ ~ Z]T/T
These isomorphisms are I'-equivariant if we define the action of I' on Z fve and Zz; by the lift of the
action of Gal(E/F) with o(2) = z=1. Then

Ho
wo((ZM;O/Z@)F) ~ Zyl2).

Denote by ¥ the image of ¢ (defined in Lemma 4.8) under the morphism
H'(F,T/R) = Hy,(F, M} [ Zy — Mu, [ Zar).
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PROPOSITION 4.20 (cf. Corollary 4.13). Suppose that F' is a local field of characteristic zero. The
map

w 0 A
(MmN sps)(F) = Hop (F, M2 [ Zag — Mp, /Zy) = (Z/22)" - X = (B 0) e,

0 1

! . n
where X' := (AB 0

) € (mNsy)(F) is understood as the map

(mNs)(F) = {£1}: X = nu(X).

For our purpose in this paper, we shall fix M’ € .,S”H/(M(’)). It means that we may and shall start
from some M € %% (M,) such that u (associated to g’) belongs to the image of the injective map
HY(F,Mpy,/Z¢) — H'(F, Hy/Zg). Denote by upr € H'(F, My, /Z¢) the preimage of u. Denote by ¢’
the image of u,; under the morphism

HY(F,Mu,/Za) = H'(F,Mpu,/Zy) = Hap(F, Mg /Zar = My, /Zar).

PROPOSITION 4.21 (cf. Corollary 4.16). Suppose that F is a non-archimedean local field of charac-
teristic zero. The map

H'(F,Mpy,/Zg) — H'(F, Mp,/Zwx) = Hy(F, M3 [ Zy — My, [Zy) = (Z/22)" < upg — ™M
is understood as the map

HY(F, My, /Zc) — HYF, My, /Zy) — HY(F, Maq) — {£1}° : upr — enpr.

5. Statement of results

Let F' be a non-archimedean local field of characteristic zero and E be a quadratic extension of F'.
Fix M' € " (M{). Recall that its image in £ (M,) is denoted by M.

DEFINITION 5.1. Let f € C°(s(F)) and f' € CZ(s'(F)). We say that f and f' are partially M-
associated if they satisfy the following condition: for all L € £%(M) and all Q € FC(L), if X €

(INs)(F) and Y € (I' N sl )(F) have L-matching orbits, then
A(X)JE (0, X, £) = JE (V. ).
DEFINITION 5.2. Let f € C°(s(F)) and f' € C°(s'(F)). We say that f and f' are M-associated if

they are partially M-associated and satisfy the additional condition: for all L € £ (M), Q € F%(L)
and X € (INss)(F), we have

TP (0. X, f) =0
unless X comes potentially from (m@v, Nsi)(F) (see Definition 4.5).

THEOREM 5.3. Let f € C*(s(F)) and f' € CX(s'(F)) be partially M-associated and satisfy the
following conditions.

(a) The weighted orbital integrals of f and f' vanish for nontrivial weights.
(b) If X € s,5(F) does not come from s.,(F), then

JEMm, X, f)=0.
Then vy (§(F)) "1 f and vy (b (F)) = f* are M-associated.
PRrROOF. Combine Proposition 5.5 and Corollary 5.11 below. O

REMARK 5.4. The two conditions in the above theorem imply the additional condition in Definition
5.2. They may be weakened, but they are enough for our purpose.

Recall that we denote by v, (h(F')) (resp. vy (h'(F'))) the Weil constants associated to h(F') (resp.
b'(F))-

PROPOSITION 5.5. Let f € C°(s(F)) and f' € C(s'(F)) be partially M-associated and satisfy the
two conditions in Theorem 5.3. Then vy,(h(F))™1f and v,y (F))~1f' are also partially M-associated.

The rest of this paper will be denoted to the proof of Proposition 5.5. Its corollary below may be
more useful for applications.
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COROLLARY 5.6. Let X € (mNsy)(F) and Y € (m'Ns’,)(F) have M-matching orbits. Let U € sy5(F)
and V € sl (F) be such that U <> V. Then we have the equality

Yo (O(F) ™ (XK (n, X,U) = 7 (0 (F)) i (Y, V).

PROOF. By Lemma 4.7, we may and shall fix an isomorphism ¢ : s}, (F) — sy(F) such that
©(V) = U. Recall that W(H,sy) (resp. W(H’,s,)) denotes the Weyl group associated to sy € J°
(resp. s}, € ). Choose open compact neighbourhoods w of U in (sy N $.)(F) and o’ of V in

(s, N sl,)(F) which are small enough such that
(i) the sets i(w) where i € W(H, sy) are mutually disjoint;
(ii) the sets ¢’ (w’) where ' € W(H', s},) are mutually disjoint;
(i) (o) = w
(iv) w(-)i§;(n, X, ) is constant on w;
(v) 28, (Y, ) is constant on w’.

Notice that the conditions (iv) and (v) are assured by Lemmas 8.3.1) and 8.8.1) in Chapter 4.
By the condition (i) on w and Lemma 3.1.1), we can construct a function f € C°(s(F)) such that

(i) Supp(f) € Ad(H(F))(w);
(ii) for all Z € w, k(2)JE (0, Z, f) = 1;
(iii) the weighted orbital integrals of f vanish for nontrivial weights.

By the condition (ii) on w’ and Lemma 3.1.2), we can construct a function f’ € C°(s'(F')) such that

(i) Supp(f’) € Ad(H'(F))(w');
(ii) for all Z' € ', JH,(Z', f') = 1;
(iii) the weighted orbital integrals of f’ vanish for nontrivial weights.

We see that f and f’ are partially M-associated and satisfy the two conditions in Theorem 5.3. By
Proposition 5.5, we have the equality

Yo (0(F) " .(X)T5; (0, X, f) = 7 (0 (F) T30 (Y, ).
By the condition (iii) on f and the Weyl integration formula (7.1.2) in Chapter 4, we have
Ti (. X, f) = Ifi(n. X, f) = > W(H, )| 1/ TG0 Z, Pi§i(n. X, 2)dZ.
€T Creg

By the conditions (i) and (ii) on f and the condition (iv) on w, the last expression equals

/ JS(n, Z, 1)iS;(n, X, Z)dZ = vol(w)k(U)i$; (n, X, U).

Similarly, with the help of the conditions on f’, (7.2.2) in Chapter 4 and the condition (iv) on w, we
obtain

JG (0. X, ) = IS (n, X, f) = vol(w")if, (Y, V).
Since vol(w) = vol(w'), we deduce the equality in the corollary. O

Recall that w = 10 161 . For X € s(F), denote X¥“ := Ad(w)(X). For f € C>(s(F)), define

fYX) = f(X¥) for all X € s(F).
LEMMA 5.7. Let f € C3°(s(F)) and X € (mNsys)(F). Then we have
(1) (f)* = (f*);
(2) J5i(n, X, f) = n(X)J§;(n, X, f).

PROOF. Similar properties are used in the proof of [58, Lemma 8.3] though our involutions are
slightly different. It suffices to notice additionally that v§;(Ad(w)(x)) = v§;(x) for z € H(F). O

LEMMA 5.8. Let X € (mNsys)(F) and U € s,5(F). Then we have the equality
iS5 (n, X, U) = n(X)if (n, X, U).
PRrROOF. From Lemma 5.7, we deduce that
(5.0.1) I8 (0, X, U%) = 0(X)j5 (0. X, U).
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There exists © € H(F), L € £%“(My) and Z € ([N 8.5)(F)en such that U = Ad(x)(Z). By Lemmas
8.3.2) and 8.2 in Chapter 4, we have

n(X)i§i (n, X, U) = n(det(z))n(X )i (n, X, Z) = n(det(z))n(X)j5; (0, X, Z).
Applying (5.0.1) to X and Z, we have
n(X)jsi(n, X, Z) = j§;(n, X, Z).
Since Z“ € (I N sy5)(F)en, by Lemma 8.2 in Chapter 4 again, we obtain
j]\%(an’ Zw) - gfl(naXv Zw)'

Thus
ﬁ(X)%%(Uv X, U) = U(det(x)ﬁ%(??v X, Zw)'

We see that U¥ = Ad(wzw™1)(Z%), where wzw™! € H(F). By Lemma 8.3.2) in Chapter 4 again, we
have

i1 (n, X, U%) = n(det(waw™"))if; (n, X, 2¢) = n(det(x))i§ (n, X, Z).
Then the lemma follows. O
PROPOSITION 5.9. Let X € (mNs)(F) and U € s,5(F). If n(X) # n(U), then
iS5 (n, X,U) = 0.
PROOF. We see that U¥ = Ad(wU)(U), where wU € H(F). By Lemma 8.3.2) in Chapter 4, we have
iS5 (n, X, U%) = n(det(wV))iS (n, X, U) = n(U)ig; (n, X, U).
One may conclude by comparing this equality with Lemma 5.8. O

REMARK 5.10. By the same argument, we can generalise the above proposition to the following
form. Let L € Z%(M). Let X € (mNs.)(F) and U € (IN8)(F). If n1(X) # nz(U), then

ik (n, X, U) =0.

COROLLARY 5.11. Let f € C°(s(F)) satisfies the additional condition in Definition 5.2. Then f
also satisfies this condition.

PrOOF. By induction, it suffices to show that for all Q € Z¢(M) and X € (m N s.)(F), we have
Ty, X, f) =0

unless X comes potentially from (m@ Nsi ) (F).
By Proposition 4.1.4) and (8.1.1) in Chapter 4, we obtain

2 M, 2 ~L Mg,
T X, f) =X, /8 = > L, X 1Y),
Lez™ae (M)
where
AL, Mg,w N - _
5vi N (n’va(g) = Z ‘WOR HWOL | ' Z |W(RH7C)‘ '
{ReZLGw(Mo):RCL} € Ten(rNs)

M, A
[ ez kX 2z
creg (F)
By Proposition 4.1.4) in Chapter 4 again, we have

T, 2, 18) = T2 (0, Z. f).

If Jﬁ(n, X, f) # 0, then JLQ(n, Z, fﬁ@(n, X, Z) # 0 for some Z. Since Jg(n, Z, ) # 0, by our assumption
on f, we see that Z comes potentially from (mg; N sl )(F). Since i%,(n, X, Z) # 0, by Remark 5.10, we
have 1y (X) = nr(Z). As L € Mg, it implies that 1, (X) = 9, (Z). Thus X also comes potentially
from (mz; N sl ) (F). O
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6. Limit formulae

Let F' be a non-archimedean local field of characteristic zero and E be a quadratic extension of F'.
Recall that for ¢ € s and X, U € (¢ N s,5)(F), we define v, (X,U) by (2.2.1). A similar notation is used
in the case of (G', H').

Let M € £%%(My). For all L € £%(M),X € (mNs,)(F) and U € (INs.)(F), we define

any (0, X, U) = > n(Nrd(z))yy (Ad(z)(X), U)p ((Ad(2)(X), U))
@€ (Mu)u (F)\ M (F),Ad(@)(X)€su (F)

if L = M and
ak,(n,X,U):=0
if L# M. N N
Let M’ € £7' (M}). For all L' € 7' (M'),Y € (w' N )(F) and V e (I Ns!)(F), we define
AN (Y, V) = > Yy (Ad(z)(Y), V)Y ((Ad(z)(Y), V)
2EM{, (F)\M'(F),Ad(2)(Y)€s}, (F)
if L' = M’ and
akL (Y, V):=0
if L' 4 M.

PROPOSITION 6.1. 1) Let M € L% (M), L € (M), X € (mNsy)(F) and U € (1N 5.)(F).
Then there exists N € N such that if p € F* satisfies vp(u) < —N, we have the equality
151 (0, nX,U) = a5y (, p X, U).
2) Let M' € L' (M), L' € L™ (M'),Y € (w Ns')(F) and V € (U Ns.)(F). Then there exists
N € N such that if p € F* satisfies vp(u) < —N, we have the equality
i (WY, V) = afy, (uY, V).

PrOOF. This is a generalisation of [58, Proposition 7.1] and Propositions 10.1 and 10.4 in Chapter
4. O

7. Construction of test functions
Let F be a non-archimedean local field of characteristic zero and E be a quadratic extension of F'.

LEMMA 7.1. Let X,Y,y be as in Lemma 4.7. Let V € (8% NsL)(F) and U := Ad(y) o ¢(V). Then
we have
(1) (X, U) = (Y, V);
(2) vy (0(F) 1y (X, U) =75 (0 (F)) 1y (Y, V).

PRrROOF. This is a generalisation of [58, Lemma 7.5]. d
Fix M’ € 7' (M}). Recall that its image in 2% (M) is denoted by M.
PROPOSITION 7.2. Let X € (mNsy)(F) and Yy € (ﬁ:’ Nsl ) (F) be such that Xo <> Yo. Then there
exists f € C(s(F)) and f' € C(s'(F)) satisfying the following conditions.
(a) If X € Supp(f), there exists Y € (sy, Nsy)(F) such that X < Y.
(b) If Y € Supp(f’), then Y is H'(F)-conjugate to an element in (sy, N s )(F).
(c) The weighted orbital integrals of f and f’ vanish for nontrivial weights.

(d) The functions f and f' are partially G-associated and satisfy the condition: if X € s.5(F) does not
come from s (F), then

JE (0. X, f) =0.
(e) For Q € ¢ (M) — 2%(M),
T5i (0. Xo. ) = T (Yo, 1) = 0.
(f) We have the equality
Yo (0(F)) ™ 5(X0)JE (0, Xo, F) = v (0'(F) VT (Yo, ) # 0.

164



PRrROOF. This is a generalisation of [58, Proposition 7.6] whose additional ingredients are Lemma 3.1
and Proposition 6.1 (cf. [14, §6]).
Fix an isomorphism ¢ : sy, (F) — sx,(F') such that ¢(Yy) = Xo as in Lemma 4.7. Choose Vj €
(sy, Nsy)(F) and denote Uy := ¢(Vp) € (sx, N 8rs)(F') such that
(i) for all i € W(H,sx,),i # 1, we have (i(Xo) — Xo, Up) # 0;
(ii) for all ' € W(H', sy, ),i" # 1, we have (i'(Yy) — Yo, Vo) # 0;
(iti) £(Uo) = K(Xo).
Fix r € N* such that
(i) 1+ @ Op C F¥2
(ii) the sets i((1 + w"Op)Uy) where i € W(H,sx,) are mutually disjoint;
(iii) the sets i'((1 + @"OF)Vo) where i' € W(H', sy, ) are mutually disjoint.
By Propositions 6.1, there exists N € N such that if y € F* satisfies vp(u) < —N, then
(1) for Ly,Ly € jG(M) with L1 C Lo, i1 € W(Ll,H75Xou [ 05) and i € I/[/(.[{,,‘.¥)(07 [y 05), we have

i72(n,i1(Xo), ia(ulo)) = a2 (n,i1(Xo), i2(uUi));
(ii) for L}, LYy € £ (M') with L} C Ly, it € W(L}, s, , [ Ns') and i € W(H', s}, , [, N), we have

12 (81 (Yo), i (1V0)) = a7 (i (Yo), i5(nVh)).

Fix such an integer .
Fix p € F* with vp(u) < —N such that
(i) n(p) =1;
(i) for all ¢« € W(H,sx,),% # 1, the character A — 1 (w” uA(i(Xo) — Xo, Up)) is nontrivial on Op;
(iii) for all ¢' € W(H',s’yﬂ), i’ # 1, the character A — ¥ (w"uA{i’(Yy) — Yo, Vo)) is nontrivial on Op.
Notice that the conditions (ii) and (iii) are possible because of the conditions (i) and (ii) on Uy and V.

Set wjy := p(1 + @"OF)Vy. Denote by ?’ the F-vector space generated by V. Fix a complement ¢
of o' in sy (F). For V € sy (F), denote by V; its projection to o' with respect to the decomposition
sy, (F) =0 a¢.

Set wy := u(1+@" OF)Uy. Denote by 0 := p(?’) the F-vector space generated by Uy. Let ¢ := ¢(¢’)
be the complement of 9 in sx, (F'). For U € sx,(F), denote by Uy its projection to d with respect to the
decomposition sx,(F) =0 @ e.

Choose open compact neighbourhoods w, of 0 in ¢ and w, of 0 in ¢’ which are small enough such
that w = wy ® w, and W' = wj) ® w}, satisfy

(i) the sets i(w) where i € W(H,sx,) are mutually disjoint;
(ii) the sets i'(w') where i' € W(H', sy, ) are mutually disjoint;
(i) w C (s, N612) (F), &' C (s}, N )(F) and p(e) = w;
(IV) for Ll,LQ S jG(M) with L C LQ, i1 € W(Ll,HaﬁXoa [ ﬂﬁ),iQ S W(H,SXO, lo 05) and U € w, we
have
2 (1,11 (Xo), in (1)) = 62 (0, 1(Xo), 22(D)) = 422 (1,12 (Xo), 12 (Us));

(v) for L}, L} € DZ”H/(M’) with L} C L}, ¢} € W(L’l,s’quﬂs’),i’Q € W(H’,s’yo,@ﬁs') and V € o/,
we have

12 (1(Y0), (V) = a2 (1 (%), i5(V)) = ap2 (i (Yo), iy (Var));

(vi) the function & is constant on w.
Notice that the conditions (i) and (ii) follow from the conditions (ii) and (iii) on r. Besides, the conditions
(iv) and (v) are assured by vp(u) < —N and r > 1. Morover, the condition (vi) results from the condition
(i) on g and the condition (i) on . Combined with the condition (iii) on Uy, the condition (vi) says that
the restriction of  to w equals k(Xj).

Define a function f,, on w by
fo(U) := 9 (=(Xo, Ua))

for all U € w. By the condition (i) on w and Lemma 3.1.1), we can construct a function f € C°(s(F'))
such that

(i) Supp(f) € Ad(H(F))(w);

(ii) for all U € w, k(U)JE(n, U, f) = f.(U);

(iii) the weighted orbital integrals of f vanish for nontrivial weights.
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Define a function f/, on w’ by
for (V) = (= (Yo, Vo))
for all V € w’. By the condition (ii) on w’ and Lemma 3.1.2), we can construct a function f' € C°(s'(F))
such that

(i) Supp(f’) € Ad(H'(F))(w');
(ii) for all V e ', JE, (V. ') = f..(V);
(iii) the weighted orbital integrals of f’ vanish for nontrivial weights.

We shall check that f and f’ satisfy the conditions in the proposition. The conditions (a) and
(b) result from the condition (iii) on w and «w’, the condition (i) on f and the condition (i) on f’. The
condition (c) is exactly the condition (iii) on f and the condition (iii) on f’. The condition (d) is deduced
from the condition (iii) on w and w’, the conditions (i) and (ii) on f and the conditions (i) and (ii) on f.
We now verify the condition (e). By Proposition 4.1.4) in Chapter 4, we write

JJ\Qd(anOaf) = JI\]\//IIQ (U,Xovfg)

For the same reason and the condition (iii) on f, the weighted orbital integrals of fg vanish for nontrivial
weights. Then we have

M z M z
JMQ (naXvag) = IMQ (naXOafg)
From the Weyl integration formula (7.1.2) in Chapter 4, we deduce that
M ; _ M, AM,
Ly, Xo, [ = > [W(Mgy,c)| ™ / Tnd (1,2, £8)ing® (0, Xo, Z)dZ.

CE%‘“QmS Creg(F

Using Proposition 4.1.4) Chapter 4 again, we obtain
M,
JM;)(?% Zv fcg) = JJ%Q (na Z’ f) = Jg(ﬁ» Zv f)

Suppose that J§ (1, Z, f) # 0. By the condition (i) on f, there exists x € H(F) such that Ad(z~1)(Z) €
w. For such an x, we have Ad(z)(sx,) = ¢. By the condition (iv) on w, if Mg # M, we get
%%Q (n, X0, Z) = 0 and thus

JJ{%(naX(Jvf) =0.

Similarly, if Mg # M’, we prove the vanishing of JQ/, (Yo, f') with the help of Proposition 4.4.4) and
(7.2.2) in Chapter 4, the condition (i) on f’ and the condition (v) on w’.

The condition (f) is shown as in the last paragraph of the proof of [58, Proposition 7.6] with the
aide of Lemma 7.1. (|

8. The weighted fundamental lemma

Let F' be a non-archimedean local field of characteristic zero and E be a quadratic extension of F'.
Assume that F has odd residue characteristic and that E/F is unramified. Assume that (G', H') ~

(GLQn, RGSE/FGLH7E). Let
0 A
S(OF) :{<B 0) A,B€g[n(C’)F)}

We identify s'(F) ~ b'(F) and let
s'(Op) = gl,,(Og).

Denote by fo € C°(s(F)) (resp. f§ € C°(s'(F))) the characteristic function of §(OF) (resp. of §'(OF)).

LEMMA 8.1 (see Theorem 10.9 in Chapter 3). For all M € £%%(My) and all Q € F¢ (M), we have
(a) if X € (MmN &) (F) and Y € (w’ Nsl ) (F) have M -matching orbits, then

R(X) T3, X, fo) = T3 (Y, fo);
(b) for X € (mNsy)(F), we have
Jl\%(an7 fO) =0
unless X comes potentially from (mg; N s1,)(F).
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9. Approximation of local data by global data

Let k' /k be a quadratic extension of number fields and D) be a central division algebra over k. For
a place v of k, denote k], := k' ®j, k, and D, := D ®, k.

PROPOSITION 9.1. Let E/F be a quadratic extension of non-archimedean local fields of characteristic

I) Let D be a central division algebra over F' containing E. Then there exists a quadratic extension
of number fields k' /k, a central division algebra D over k containing k', and a finite set S of finite
places of k satisfying the following conditions.

(a) The number field k is totally imaginary.

(b) 15| > 2.

(c) For allv e S, we have k, ~ F, k!, ~ F and D, ~ D.
(d) For allv ¢ S, k, splits D,.

II) Let D be a central division algebra over F such that D @ E is a central division algebra over E.
Then there exists a quadratic extension of number fields k'/k, a central division algebra D over
k such that D ® k' is a central division algebra over k', and a finite set S of finite places of k
satisfying the following conditions.

(a) The number field k is totally imaginary.

(b) 5] > 2.

(c) Forallv € S, we have k, ~ F, kI, ~ F and D, ~ D.
(d) For allv & S, k, splits D,.

PROOF. By [14, Proposition 9.1], there exists a number field k, a central simple algebra D over k
and a finite set .S of finite places of k such that

(i) the number field k is totally imaginary;
(i) [S] > 2;
(iii) for all v € S, we have k, ~ F and D,, ~ D;
(iv) for all v ¢ S, k, splits D,,.

From the condition (iii), we know that I is a central division algebra over k. By [20, Theorem 3.1],
there exists a quadratic extension k' of k such that k!, ~ E for all v € S.

I) We shall use [48, Theorem 1.2] to show that there exists an k-embedding of &" into D. It is clear that
there exists an k,-embedding of & into D, for all place v of k. Let v’ be a place of ¥’ and v be the
place of k below v'. Denote by ¢, (resp. d,) the capacity (resp. index) of D,. Since D is a central

division algebra over F' of even degree, we deduce that D is a central division algebra over k of even
cy-ged([k! ko], dy)

degree. Then c,d, is even. Define z,/ := “—=—=2"—"-"> € Q. If v is archimedean or v ¢ S, i.e.,
k, splits D,,, then d, = 1 and ¢, is even, so x,» € Z. If v € S, then [k], : k,] = [E : F| = 2, which
implies that z,, € Z since ¢,d, is even. We may use [48, Theorem 1.2] to conclude.

IT) Let v € S and v’ be the unique place of k" over v. Since (D ® k') ~ D Q4 ky Qp, ki, ~ D @p E
is a central division algebra over E, we know that D ®y k' is a central division algebra over k’.

O

10. An infinitesimal variant of Guo-Jacquet trace formulae

Let k' /k be a quadratic extension of number fields and 7 the quadratic character of A*/k* attached
to it, where A denotes the ring of adeles of k.

Let G be a reductive group over k. Fix a maximal compact subgroup K of G(A) which is admissible
relative to My in the sense of [5, p. 9]. In this paper, we choose the standard maximal compact
subgroup when G(k) = GL, (D), where D is a central division algebra over a finite field extension of k.
That is to say, K := [], K, where each K, is the standard maximal compact subgroup of G(k,). For
M € £%(My), we define the weight function v$; with respect to K as in the local case (2.1.1). We fix
the Haar measure on K such that vol(K) = 1. We fix a Haar measure on G(A) which is compatible
with the Iwasawa decomposition.

Let (G,H,0) be a symmetric pair defined over k. Denote by S(s(A)) the Bruhat-Schwartz space of
5(A). Let (-, ) be a G-invariant f-invariant non-degenerate symmetric bilinear form on g. Fix a continuous
and nontrivial unitary character ¥ : A/k — C*. For f € s(A), we define its Fourier transform f € s(A)
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by
X es(h), f(X) = [ FX)W(X, R))dX.
s(A)
We fix the self-dual on s(A) with respect to the U((-,)).
We shall write (G, H) and (G’,H’) for the global symmetric pairs over k with respect to k' defined
in Sections 2.3 and 2.4 respectively. We still use a minuscule Fraktur letter to denote a global Lie algebra
and write s and s’ for the corresponding global symmetric spaces. We also fix minimal Levi k-subgroups

of these four groups as in the local case and denote them by bold letters.
For ¢ € S(s(A)), we define

(10.0.1) TS (n,¢) = > I3, 0),

LIS(ORR

where OZ, denotes the set of H(k)-orbits in s,5(k), and J&(n, ¢) is the constant term of (5.0.1) with
s = 0 in Chapter 2. From Theorem 4.11 and Corollary 5.6 in Chapter 2, we know that the right hand
side of (10.0.1) is absolutely convergent. For 0 € O, let L € %% (Mj) and X € 0N (IN 8y5)(k)en- By
Theorem 9.2 in Chapter 2, we have

I (n,¢) = Vol(A?f’Hx(k)\Hx(A))/ G(Ad(z™) (X)) n(Nrd(z))vg (z)da.
Hx (A)\H(4)
We denote
T(Hx) := vol(AfPHx (k)\Hx (A))
for X € (INss)(k)en and define
IE0X0) = | B(Ad(x")(X))n(Nrd(2)of (a)dr
Hx (A)\H(A)
for all X € (INsys)(k). From Lemma 3.10 in Chapter 4, we obtain

(10.0.2) JEme)= Y, W wEt Tt Y r(Hx)JE (1, X, 9).
Le£G (M) Xelen((INsrs) (k)
Denote by S(s'(A)) the Bruhat-Schwartz space of s'(A). For ¢’ € S(s'(A)), we define
(10.0.3) T (@)=Y T (),

0€0s!

where O, denotes the set of H'(k)-orbits in s/ (k), and JH'(¢') is the constant term of (5.0.1) in Chapter
3. From Theorem 4.2 and Corollary 5.3 in Chapter 3, we know that the right hand side of (10.0.3) is

absolutely convergent. For o € 0%, let L/ € £® (M) and Y € o N (I' N sl )(k)en. By Theorem 9.2 in
Chapter 3, we have

T () = V01(Ai°fH§/(’f)\H§/(A))/ ¢ (Ad(z™)(YV))op (x)da.
HY (A)\H'(A)
We denote
7(Hy) == vol(Af7Hy (k)\Hy (4))
for Y € (' Ns’,)(k)en and define

T (v, ') = / &' (Ad(@ ) (V) (2)da
HY{, (A)\H’(A)

for all Y € (I' N s),)(k). From Lemma 3.16 in Chapter 4, we obtain
(10.0.4) U@ = 3 Wttt I,
L' 2H (M) Y €Ten((FNsf,) (k)

PROPOSITION 10.1 (see Theorem 7.1 in Chapter 2 and Theorem 7.1 in Chapter 3). 1) Let ¢ € S(s(A))

be such that Supp(¢) C sps(ky,) and Supp(¢) C sys(ky,) at some places v1,v2 of k. Then we have the
equality

JG(n,¢) = J%(n, ).
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2) Let ¢’ € S(s'(A)) be such that Supp(¢) C s (kv,) and Supp(¢') C sl (ky,) at some places vy, vy
of k. Then we have the equality

T (¢ = T (§).

11. Proof of Proposition 5.5

Let F' be a non-archimedean local field of characteristic zero and E be a quadratic extension of
F. Fix M" € "' (M}). Recall that its image in .29 (My) is denoted by M. Let f € C=(s(F))
and f' € C(s'(F)) be partially M-associated and satisfy the two conditions in Theorem 5.3. Fix
Xo € (mNs)(F) and Yy € (m/ Nsl,)(F) with M-matching orbits. It is obvious from Definition 5.1 that
a pair of partially M-associated functions are also partially L-associated for all L € #%(M). Then by
induction, to prove Proposition 5.5, it suffices to show that for all Q € .# % (M), we have the equality

(11.0.1) K(X0) TS (1, Xo, ) = JZ, (Yo, ).

11.1. Global data. Fix a quadratic extension of number fields k’/k, a central division algebra D
over k, and a finite set S of finite places of k satisfying the conditions in Proposition 9.1. Fix w € S.
Denote by V (resp. Vi, Vy) the set of places (resp. archimedean places, finite places) of k.

Define the global symmetric pairs (G, H) and (G’, H') over k with respect to k' and D as in the local
case. There is a bijection L + L from .2%(M) to £%(M,) such that L,, ~ L and we denote by M
the image of M under this bijection. Similarly, there is a bijection L' — L’ from £ (M) to £™ (M)
such that L!, ~ L’ and we denote by M’ the image of M’ under this bijection.

11.2. Places. Fix a continuous and nontrivial unitary character ¥ : A/k — C* whose local compo-
nent at w is 1. Let (-, )5 (resp. (-, )& ) be the H-invariant (resp. H'-invariant) non-degenerate symmetric
bilinear form on s (resp. on s’) defined by (2.3.1) (resp. by (2.4.1)). Then we deduce local data ¥,
(-,)s, and (-,-)s; for all v € V. Fix a finite set S; C V and for v € V — S; lattices £, C s(k,) and
¢ C s'(k,) such that

(i) Voo U S C Sy
(ii) if v € V — 54, then
e k, has odd residue characteristic and v is unramified in k’;

0 A
o f, = {(B O) A B Eg[n(okv)};

o ) = ¢, if v splits in &', while €&, = gl,,(O ) if v is inert in £';
o £, (resp. ¥)) is self-dual respect to U, ({-,)s,) (resp. ¥, ((-,)s ).

v

For v € V — Sy, notice that 1/;) = 1, (resp. 1/92 = lg ), where 1¢, (resp. 1p ) denotes the characteristic
function of &, (resp. t).

11.3. Orbits. For each v € S; — V., we fix an open compact non-empty subset €2, C (517 Nsly)(ky)
such that
(i) if v = w, then Y5 € Q, C Ad(M'(ky))((sy, N 5)(kw)), JZ%/(., f7) is constant on €, and
n(-)Jﬁ(n, ., f) is constant on {X € (m N sy)(ky) : IY € Qy, X and Y have M-matching orbits};
(i) if v € S — {w}, then Q, C (W' N s.,)(ky)en-
Notice that the condition (i) is achievable because of Lemma 4.7, Propositions 4.4.2) and 4.1.2) in Chapter
4 and the constancy of Jﬁ,(', f1) (resp. m(-)J](Q/I(n, - f)) on M(ky) (resp. My (ky))-orbits. Besides, the
set (m’ N sl )(ky)en in the condition (ii) is not empty (see [55, Lemma 2.7 and p. 14]). Since X <> Yo,
the condition (i) implies that the restriction of £(-)J% (1, -, f) to {X € (MmN s.e)(ky) : Y € Dy, X & Y}
equals K(Xo)J3; (n, Xo, f). _
By the strong approximation theorem, there exists Y° € (m’ Ns’)(k) such that
(i) for v € 81 — Vao, YO € Qy;
(i) forv eV — 51, Yo e w/(k,) NE..
Combined with the condition (ii) on €2, the condition (i) implies that Y° € (m’ N s).)(k)en. Choose an
element X° € (m M s,)(k)en such that X° and Y° have M-matching orbits.
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11.4. Choice of functions. For each v € V, we fix functions ¢, € S(s(k,)) and ¢, € S(s'(k,)) as
follows.
(i) fv=w,let ¢, = f and ¢}, = f'.
(i) If v € S1 — Vo — {w}, then ¢, and ¢! verify the conditions in Proposition 7.2 with respect to M,
X% and Y.
(111) IfvoeV -5, let ¢, = 1& and (ﬁ; = 1%
(iv) If v € Vu, we identify (H,,s,) and (H,s!) by the condition (a) in Proposition 9.1, and choose
¢y = ¢}, such that
o J& (1, X0,6,) = Ji (Y0, 8,) #0;
e if X € s(k) is H(k,)-conjugate to an element in Supp(¢,) for all v € V, then X is H(k)-
conjugate to X?;
o if Y € &'(k) is H'(k,)-conjugate to an element in Supp(¢)) for all v € V, then Y is H'(k)-
conjugate to Y.
Notice that the condition (ii) is easier to be satisfied if v splits in k’. In fact, we can identify (H,,s,)
and (H.,s!) by the condition (d) in Proposition 9.1, and choose ¢, = ¢, . Additionally, the condition
(iv) is possible (see [58, p. 1874]).
In the rest of the proof of Proposition 5.5, we consider the global functions ¢ := [ ¢, € S(s(A))

veV
and ¢’ := [ ¢, € S(s'(A)).
veV
11.5. Comparison of JG (1, ¢) and JH (¢/).
LEMMA 11.1 (cf. [14, Lemme 10.1]). For our choice of ¢ and ¢', we have
JSmé)= > |Trangr,(My, L) Yoo rHx)IEM. X, 9)
LeZS (M) Xelen((INszs)(k))
and

T = 3 [Tang (ML) 0 r(H)JE (Y, 6).
LegH (M) Y €Tan((PNs.) (k)

PROOF. For the first formula, we start with (10.0.2). Fix L € £%“(Mj) and X € Ten((INs:5)(k))
such that J&(n, X, #) # 0. By the condition (b) in Proposition 9.1, there exists u € S — {w}. From the
condition imposed on ¢, (see (a) in Proposition 7.2) and Lemma 4.7, we see that X is H(k,,)-conjugate
to an element in (sxo N 8y)(ky). Choose R € £%«(My) such that R C L and that X is Ly (ky)-

conjugate to an element in (tNsy)(ky)en. Then there exists 2 € H(k,) and Z € (tNsys)(ky)en such that
Z = Ad(z)(X?). But by the condition (ii) on €, we know that X° € (m M 8,5)(ky)en. Thus by Lemma

3.10.1) in Chapter 4, there exists w € {(W" w > twy € WOG'L"’“} such that Ad(w)(M,) = R,,. Since

we may identify I/VOG'L"”“ with WOGL”, we deduce that Trangr, (M, L,) # 0. That is to say, we may

restrict the sum on L € £%“(Mj) in (10.0.2) to those conjugate to an element in .#%(M) under
(5 ) wen)
Wn,
We reindex the sum on L € Z%(M). On the one hand, the number of elements in .Z%% (M)
conjugate to L under {(w” w ) fwy € WOGL"} is

|NormW0an (Ln)\WOGL" |

On the other hand, the number of elements in .#% (M) conjugate to L under { (w" w”) twp € WOGL” }
is

|WSL(L,)| ™| Trangr, (M, Ly)|-
Since WSL»(L,,) = Normycr., (Ly,)/ W (see [35, (7.12.2)]), we obtain
(W |IWg ™[~ [Normyy,er, (L) \Wg ™" |- [W S (L) || Trangr, (My, L) 7 = |Trangr, (M, Lo )~
Then the first formula of the lemma follows.
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The second formula can be proved in a similar way with the help of (10.0.4), the condition (b) in
Proposition 7.2 of ¢/, and Lemma 3.16.1) in Chapter 4. The only additional ingredient is the condition

(¢) in Proposition 9.1, by which we may identify W0 * with WO . (]

Recall that we have bijections ZH (M) — 2% (M) and .ZH (M') — .ZS(M). For all L € .£S(M),
we also have R-linear isomorphisms between ar, and ay, and, for all v € V, between ar;, and ar,,. By
modifying the scalar products on these Euclidean spaces, we may and shall suppose that these bijections

are isometries. Then for all (R,),ev € [[ £S¥(L,), we have the equality
veV

i (R))vev) = dF (Ro)vev),

where both sides are Arthur’s coefficients defined in [6, p. 356]. We shall also choose compatible sections

(R))uev — (Qry)uev € [[ 2™ (R)

veV
and
(Rv)UEV = (QRU)UEV € H @Gv (Rv)
veV
in the sense that for all v € V,
Qr, = (Qr,)"

PROPOSITION 11.2. For our choice of ¢ and ¢', we have the equality
JS(n,0) = I ().

The rest of this section is devoted to the proof of Proposition 11.2.

Let L € £%(M). There is a canonical bijection between Trangr, (M,,L,) and Trang (M’, L)
since both of them are understood as permutations. If X € Tgy((IN s)(k)) and Y € Ty ((I' N sly)(k))
have matching orbits, by Lemma 4.7, there is an isomorphism Hx ~ Hj, over F. By choosing compatible
Haar measures on them, we have 7(Hx) = 7(HY{ ). Since X and Y have matching orbits at each v € V,
we see that J&(n, X, ¢) = JBI(Y, ¢') by our choice of ¢ and ¢'.

Now assume that X does not come from (I' Ns’,)(k) (or equivalently s/ (k)). By Lemma 11.1, to
show Proposition 11.2, it suffices to show that J&(n, X, ¢) = 0.

By the splitting formula of (G, M)-families applied to the weight function (see [6, Corollary 7.4]),
we write

JE(H,X,Qf?): Z Ry)vev HKU JQR (1, X, ¢0).
(Ry)vevE H ZLGo (L) veV
veV

If J&(n, X, ) # 0, we fix (Ry)pey € [[ £ (L) such that
veV

v 'UEV H Hv JQR“ 777X d)v) 7& 0.
veV

We choose a representative of X (still denoted by X) in the form of (21 1&) € (INsys)en(k).

LEMMA 11.3. For allv € V, we have nr,(X) = ery,.

PROOF. It is trivial if v € V splits in &’ (in particular if v € Vo). For v € V —S; which does not

split in &/, it results from Lemma 8.1.(b). For v € S1 — {w} which does not split in &, it is deduced
from Proposition 7.2.(a)(c) and Corollary 4.6.(1). For v = w, it is because f satisfies the additional
condition in Definition 5.2. O

LEMMA 11.4. For allv € V, we have n,,(X) = err .

PROOF. Let Sy be the subset of V; consisting of v which does not split in &’. The assertion is trivial

for v € V —S;. Consider v € S;. By Propositions 4.20 and 4.21, 77L (X) and er; are understood as

5&“ and &7 respectively. By Proposition 4.19, we view 6; and ¢’

Denote by (, the character obtained by their quotient.
For all v € S, by Lemma 11.3, we know that the character ¢, is trivial on Zg-[2]. By the product

27 L,

as complex characters of Zg[2].

formula of Kottwitz signs [33, the last proposition] and the fundamental exact sequence of global class
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field theory for k'/k (see [42, Example 4.4.(a) in Chapter VIII] for example), we also have a global
condition: the product [[,cg, Cv is trivial on Z3[2].
Let v € S2. We need to show that ¢, is trivial on Zz[2]. We first deduce from dS((Ry)vev) # 0

that Z = A,A", where A, := Zg- and A" := (N Zg. By [15, Lemme 4.5], we also have

v'eSe—{v} v
A, NAY = Zg since df (Ry)vev) # 0.

We claim that Zz[2] = A,[2]A"[2]. To see this, let s = a,a” € Z¢[2], where a, € A, and a” € A".
Then a? = (a¥)~2 € Zg. Since z — 2?2 is a surjective endomorphism of Z&, there exists y € Zg such
that a2 = (a¥)~? = y%. Thus s = y~'a, - (ya®) with y~la, € A,[2] and ya¥ € A[2]. We have shown our
claim.

Now, let s = a,a” € Zgp[2], where a, € A,[2] and a” € AV[2]. Since the character ¢, is trivial
on Zg-[2], we have (y(s) = (v(av)¢u(a”) = (u(a"). By the global condition above, we have (,(a,) =
[les,—qu) ¢, (a¥). But for v’ € Sy —{v}, the character ¢, is trivial on A”[2]. We have proved ¢,(s) = 1
for all s € Zz[2] and thus the lemma. O

LEMMA 11.5. For allv € V, X comes from s (k).

PrOOF. It suffices to consider v € V' — Sy which does not split in &’. Notice that er, = (1,---,1).
We are in a similar situation as the base change for GL,. There exists Ly € .EG"”(MO),LO CL
such that X is (L, N H,)(k,) conjugate to an element Z € (o N sy5)(ky)en. If X does not come from
si5(ky), by [10, Lemma 1.4 in Chapter 1], there exists 1y, ,(Z) # er; = (1,--+,1). By Lemma 8.1.(b)

and the argument of [37, Lemma II1.3.4], we deduce that JI(?UR” (n,X,¢,) = 0, which contradicts our
assumption. O

PROPOSITION 11.6. The element X comes from s, (k).
PRrROOF. We start with two lemmas.

LEMMA 11.7. Let Fy be a field. Let Zc C A C B C C be reductive groups defined over Fy, where
Zc denotes the centre of C. Suppose that H'(Fy, Ag) is a singleton for all inner form Ag of A. Then
the natural map

Hl(F()vA/ZC) - Hl(FO,B/ZC)
18 1njective.

PROOF OF LEMMA 11.7. We begin with the following commutative diagram with exact rows.

0 Zo A A/Zc 0
0 Zo B B/Z¢ 0

Then we obtain the following commutative diagram of pointed sets.

HY(Fy,A)Zc) — H?*(Fy, Z¢)

|

HY(Fy,B/Z¢c) — H*(Fy, Z¢)

Since H'(Fp, Ag) is a singleton for all inner form Ag of A, the map
HY(Fy,A)Zc) — H*(Fy, Zc)
is injective by [32, Corollary (28.13)]. As the above diagram is commutative, we deduce that g is

injective. ]

LEMMA 11.8. Let Fy be a global field. Let Zg C A C B be reductive groups defined over Fy, where
Zp denotes the centre of B. Suppose that H'(Fy, Ag) is a singleton for all inner form Ag of A. Then
the map
HY(Fy,A)Zp) — H (AR, A/Zp)
18 1njective.
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PrROOF OF LEMMA 11.8. We use the commutative diagram of pointed sets:

HY(Fy,A)Zp) —> H'(Ap,,A/Zp)

b

H'(Fy, Baa) HY(AR,, Baq)

By Lemma 11.7, the map ¢ is injective. By the Hasse principle for B,q, the map h is injective. Since
the diagram is commutative, we deduce that ¢ is injective. O

Return to the proof of Proposition 11.6. We shall use the notation in Section 4.3 but bold letters for
reductive groups defined over k. Let t € H'(k, T/R) be the class associated to X in Lemma 4.8. Let
u € HY(k,Hy/Zg) be the class associated to g’. Let t' € H'(A, T/R) (resp. v/ € H*(A,Hy/Zg)) be
the image of t (resp. u). By Lemmas 11.5 and 4.9, there exists v' € H'(k, T/Zg) with images #' and v’

By [38, Proposition 1.6.12], we have the following commutative diagram of pointed sets with exact
TOWS.

H'(k,T/Zg) — H'(A, T/Zg) — H'(A/k,T/Z¢)

| l lg

H'(k,Hy/Zg) —— H (A, Hy/Zg) — HY, (A/k,Ho/Zg)

Let v € HY(A,T/R) (resp. v’ € H'(A,Hy/Zg)) be the image of v/ (resp. «'). Then u” = 0.
By a variant of Lemma 11.7 for HL (A/k,-), the map g is injective. Thus v” = 0 and there exists
v € HY(k,T/Zg) with image v'. By Lemma 11.8, the map i is injective. Since the square on the left
above is commutative, the class v maps to u.

We also have the following commutative diagram.

HY(k,T)Zg) — HY(A, T/Zg)

| i

H'(k, T/R) —’ > H'(A, T/R)
By our discussion in Section 4.3, the map j is given by
LT % /Nk s (R2) = TT AR Nk (A7),
iely icly

where k; = k[A]/(xi()\)) with x; being an irreducible polynomial over k, and k} = k; ®j k’. Tt is known
to be injective. Since the diagram is commutative, the class v maps to t.
By Lemma 4.9, we draw our conclusion. [l

PROOF OF PROPOSITION 11.2. The statement of Proposition 11.6 contradicts our assumption, so
we have finished the proof. O

11.6. End of the proof.
LEMMA 11.9. For our choice of ¢ and ¢', we have
TG (n,4) = T(Hxo)J53 (1, X°, )
and
TH(¢) = r( o) I3 (Y0, ).

PROOF. The first formula results from (10.0.1) for ¢ and the condition (iv) in Section 11.4, while
the second formula results from (10.0.3) for ¢’ and the condition (iv) in Section 11.4. O

PROOF OF PROPOSITION 5.5. Combining Propositions 10.1 and 11.2 and Lemma 11.9, for our
choice of ¢ and ¢’, we have the equality

TS, X0, ¢) = JE, (Y0, 4).
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But by the splitting formula and the conditions (iii) and (iv) on ¢, and ¢/, the difference of two sides
can be written as

Q » A~
> da(Lo)oev) [ (X)L (0, X0, 0)

(Ly)veve [T £LSv (M) ve(V—=51)UVy

(11.6.1) ey
, : Q; ;
<| I mxugm.x%6) - [ s (°.é,)
vES1—Veo vEST— Vo

By the condition (e) in Proposition 7.2, we may suppose that L, = M, for all v € S; — —{w}.

Moreover, by the condition (f) in Proposition 7.2, we have

nv<X0>JﬁMv (0, X°,6) = v, (0(ko)yw, (5 (k)™ Tt (Y0, 6,) # 0

for all v € S; — — {w}.
Recall the product formula

1T ve.(0(k)) = T 7o, (' (k0)) = 1.

veV veV
For v € (V — S1) U Vo, we have

Yo, (h(ko)) = yw, (0 (k) = 1.
Hence,
IT e (0k)ye, (0 (ko) ™" = 7w, (b(kw)) 5, (0 (k).
vES] — Voo —{w}

Then the expression (11.6.1) equals

2 (@)uev)  JT wo(XO)TE (0, X0, )
(11.6.2) (Lu)veve IT £ (M) VeV~ {w}

- \ Q 5
X [0 (00k)) ™ 0, (0 () o (X OV I (0, X, ) = Ty (Y0, 6]
Since ¢, and ¢!, are partially M,-associated, by parabolic descent (see Propositions 4.1.4) and
4.4.4) in Chapter 4), we see that ¢! o, € CZ((lw Nsy)(kyw)) and ¢, Q. € C((U, Nsl,)(ky)) are

partially M, -associated. We shall prove (11.0.1) by induction on the dimension of G. Then we may
suppose that for L., # G, we have the equality

ru(XO) I (0. X0, 67 ) = vw, (o N bw) (k) e, (8 (k)™ IJM’ (Y0 g ).

Since the difference between the quadratic form on h(k,,) (resp. h’(kw)) and its restriction on ([,Nby ) (kyw
(resp. I, (kw)) is a split quadratic form, we have vy, ((ly Nby)(kw)) = yw, (H(kw)) (vesp. v, (I, (kw)) =

v, (0’ (kw))). By parabolic descent again, we see that
, - Q; ;
o (XO)Tap (0, X0, 6) = v, (0 (ko) )y, (0 (ko)) g (Y0, 8-

By the condition (i) on €2, it implies (11.0.1) for all Qr,,, # G, (actually for all Q,, € L% (M,,), Q. #
G,). Then we may suppose that L, = G, in (11.6.2). But for all L € % (M), we have a& ~ aICi:”.
Thus d§;((Ly)vey) = 0 unless L, = M, for all v € V — {w}, in which case d$;((Ly)yev) = 1. That is
to say, the sum in (11.6.2) is reduced to only one term. We obtain

H K:U(XO)‘]I\(?II,:/IU (777X0a¢;'u)
veV—{w}

[ (0 k)™ (0 () (XO) TG (0, X, ) = T (V. )] =

By the condition (iv) on ¢, for v € V,,, the condition (f) in Proposition 7.2, the condition (ii) on Y
and Lemma 8.1.(a), we know that the product on v € V' — {w} does not vanish. Then we conclude by
the condition (i) on £, O
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