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v Identités de type Rogers-Ramanujan: preuves bijectives et approche à la théorie de Lie

Mots clefs: Théorie des partitions d'entiers, identités de type Rogers-Ramanujan, Théorie des représentation des algèbres de Lie affine

Résumé

Cette thèse relève de la théorie des partitions d'entiers, à l'intersection de la combinatoire et de la théorie de nombres. En particulier, nous étudions les identités de type Rogers-Ramanujan sous le spectre de la méthode des mots pondérés. Une révision de cette méthode nous permet d'introduire de nouveaux objets combinatoires au delà de la notion classique de partitions d'entiers: partitions colorées généralisées. À l'aide de ces nouveaux éléments, nous établissons de nouvelles identités de type Rogers-Ramanujan via deux approches différentes. La première approche consiste en une preuve combinatoire, essentiellement bijective, des identités étudiées. Cette approche nous a ainsi permis d'établir des identités généralisant plusieurs identités importantes de la théorie: l'identité de Schur et l'identité Göllnitz, l'identité de Glaisher généralisant l'identité d'Euler, les identités de Siladić, de Primc et de Capparelli issues de la théorie des représentations de algèbres de Lie affines.

La deuxième approche fait appel à la théorie des cristaux parfaits, issue de la théorie des représentations des algèbres de Lie affines. Nous interprétons ainsi le caractère des représentations standards comme des identités de partitions d'entiers colorées généralisées. En particulier, cette approche permet d'établir des formules assez simplifiées du caractère pour toutes les représentations standards de niveau 1 des types affines A
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Abstract

The topic of this thesis belongs to the theory of integer partitions, at the intersection of combinatorics and number theory. In particular, we study Rogers-Ramanujan type identities in the framework of the method of weighted words. This method revisited allows us to introduce new combinatorial objects beyond the classical notion of integer partitions: the generalized colored partitions. Using these combinatorial objects, we establish new Rogers-Ramanujan identities via two different approaches.

The first approach consists of a combinatorial proof, essentially bijective, of the studied identities. This approach allowed us to establish some identities generalizing many important identities of the theory of integer partitions: Schur's identity and Göllnitz' identity, Glaisher's identity generalizing Euler's identity, the identities of Siladić, of Primc and of Capparelli coming from the representation theory of affine Lie algebras.

The second approach uses the theory of perfect crystals, coming from the representation theory of affine Lie algebras. We view the characters of standard representations as some identities on the generalized colored partitions. In particular, this approach allows us to establish simple formulas for the characters of all the level one standard representations of type A
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State of the art 1.1 Integer Partitions

By all accounts, the history of integer partitions started in 1674 with a letter of Leibniz to Bernoulli, in which he asked for the number of ways to decompose a positive integer into a sum of smaller positive integers. To uniquely identify such sums of integers, we sort the terms in a non-increasing order.

Definition 1.1.1. A partition of a positive integer n is then defined as a non-increasing sequence of positive integers, called the parts of the partition, whose sum is equal to n.

The problem raised by Leibniz is then equivalent to the following: for a fixed positive integer n, what is the exact cardinality p(n) of the set P (n) of partitions of n? Example 1.1.2. For example, here we give the list of the partitions of n ≤ 5.

n p(n) P (n) 1 1 (1) 2 2 
(2), (

(3), [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], (

(4), [START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF][START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF], [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], (

(5), [START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], [START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF], [START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF][START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], [START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] While these combinatorial objects are simple to visualize, the study of integer partitions remained difficult for Leibniz and his contemporaries. The actual significant study started with the works of Euler in (Euler, 1741(Euler, -43, 1751;;Euler, 1748).

To compute p(n) the number of partitions of a positive integer n, Euler formally introduced one of the most useful tools of the combinatorial theory: generating functions. Definition 1.1.3. Let A be a countable family of combinatorial objects, and let (a k ) be a countable family of functions from A to Z, called statistics of the objects. Suppose that for each π ∈ A, all but finitely many of the a k (π) are equal to 0. The generating function of A with respect to the statistics (a k ) k is then the series in Z ≥0 [[x k , x -1 k ]] defined by

GF A,(a k ) ((x k )) = ∑ π∈A ∏ k x a k (π) k • (1.1.1)
Using this definition, the method presented by Euler is the following.

Let us formally define an integer partition λ as a finite non-increasing sequence of positive integers (λ 1 , . . . , λ s ). The positive integers λ 1 , . . . , λ s are referred to as the parts of the partitions λ. By convention, the empty sequence is set to be the empty partition ∅. We now define the following statistics.

1. The size of λ, denoted |λ|, is the sum

λ 1 + • • • + λ s .
2. The length of λ, denoted (λ), is the number of parts of λ, namely the value s.

3. For each k ∈ Z >0 , n k (λ) denotes the number of occurrences of k in λ, i.e n k (λ) = {i ∈ {1, . . . , s} :

λ i = k}.
We take by convention |∅| = (∅) = n k (∅) = 0. A partition of n is then an integer partition having size n. We remark that the empty partition is the only partition having size 0. We also note that the partition λ is uniquely determined by the statistics (n k ) k>0 , and we obtain the following relations:

(λ) = ∑ k>0 n k (λ) , |λ| = ∑ k>0 kn k (λ) •
The latter relations are indeed well-defined, as the partition λ is a finite sequence, and then all but finitely many of the terms of sequence (n k (λ)) k>0 are equal to 0. Let us now compute the generating function according to the occurrences (n k ) k>0 . Since the number of occurrences determined the partitions, We then have the equality

∑ λ ∞ ∏ k=1 x n k (λ) k = ∞ ∏ k=1 ∞ ∑ m k =0 x m k k = ∞ ∏ k=1 1 1 -x k • (1.1.2)
Using a change of variables x k → xq k for all positive integer k, we are able to compute the generating function with respect to the size and the length of the partitions:

∑ λ x (λ) q |λ| = ∞ ∏ k=1 1 1 -xq k •
In particular, the number p(n) Leibniz was looking for is the coefficient of n in the above series with x = 1, namely

∞ ∑ n=0 p(n)q n = ∞ ∏ k=1 1 1 -q k • (1.1.3)
With the same reasoning, Euler succeeded in computing the generating function of partitions into distinct parts. This condition is equivalent to saying that n k (λ) ∈ {0, 1} for all k > 0. By setting D(n), d(n) to be respectively the set and the number of such partitions of n, with the convention that ∅ ∈ D(0) (so that d(0) = 1)), we then obtain

∞ ∑ n=0 d(n)q n = ∞ ∏ k=1 (1 + q k ) • (1.1.4)
Using the same method on the set of partitions into odd parts, i.e n 2k (λ) = 0 for all k > 0, and setting O(n), o(n) to be the set and the number of such partitions of n, with the convention that ∅ ∈ O(0) (so that o(0) = 1)), we obtain the corresponding generating function

∞ ∑ n=0 o(n)q n = ∞ ∏ k=1 1 1 -q 2k-1 • (1.1.5)
By observing that

∞ ∏ k=1 (1 + q k ) = ∞ ∏ k=1 (1 -q 2k ) 1 -q k = ∞ ∏ k=1 1 1 -q 2k-1 ,
Euler stated the first relation that links different sets of partitions, known as the Euler distinct-odd identity.

Theorem 1.1.4 (Euler). For any non-negative integer n, the set of partitions of n into distinct parts and the set of partitions of n into odd parts are equinumerous.

Example 1.1.5. For example, here we give the list of the partitions of D(n) and O(n) for n ≤ 5.

n D(n)

O(n) 1 [START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] (1) 2 [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] (1, 1) 3 [START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF], [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] (3), (1, 1, 1) 4 (4), [START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] (3, 1), (1, 1, 1, 1) 5 [START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF], [START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], [START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] (5), [START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], [START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] We end this section by presenting a graphical representation of integer partitions, namely the Ferrers diagram, as well as a key transformation on integer partitions, the conjugacy. Definition 1.1.6. Let λ = (λ 1 , . . . , λ s ) be a integer partition. The Ferrers diagram of the partition λ is the subset of the plane R 2 defined by {(i, j) : 0 < i < s , 0 < j < λ i } .

The conjugate of the partition λ is the partition λ = (λ 1 , . . . , λ r ), where r = λ 1 , and for all j ∈ {1, . . . , r}, λ j = |{i ∈ {1, . . . , s} : λ i ≥ j}| , where |set| is the cardinality of the set set. (9,9,7,[START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] (18, 7, 10, 5, 3, 2, 2, 2, 1) (18,7,10,[START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF][START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] By sorting the final sequence, the corresponding image is then (18,10,7,[START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF]. Reciprocally, by applying the inverse bijection on (18,10,7,[START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], we have (18,10,7,[START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] (9, 9, [START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF]7,[START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF][START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] (9, 9, [START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF]7,[START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] and by sorting the parts, we obtain as image the original partition into odd parts (9,9,7,[START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF].

One can observe that the order in which we sum the parts does not matter, and the final image only depends on the binary decomposition of the numbers of occurrences n 2k-1 (λ) for k > 0. In the example above with λ = (9, 9, 7, [START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], we respectively have (n 1 (λ), n 3 (λ), n 5 (λ), n 7 (λ), n 9 (λ)) = (7, [START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] 

= (4 + 2 + 1, 1, 2 + 1, 1, 2)
and then the image is obtained after sorting the sequence [START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF][START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF]10,[START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF]7,18) .

(4 × 1, 2 × 1, 1 × 1, 1 × 3, 2 × 5, 1 × 5, 1 × 7, 2 × 9) =
The well-definedness of the inverse bijection relies on the fact that any positive integer can be uniquely written as a product of a odd number and a power of 2. At the end of the process, the part (2k -1) × 2 n will then result in 2 n parts equal to 2k -1.

Glaisher observed that the above machinery behind the bijection only depends on the binary decomposition. Then, using a similar approach in base m for any positive m > 1, he stated the first broad result beyond the Euler identity. Definition 1.2.4. Let m be a positive integer. We define an m-flat partition to be a partition where the differences between two consecutive parts, as well the smallest part, are less than m, and an m-regular partition to be a partition with parts not divisible by m.

The generalization of Euler's identity given by Glaisher, and which makes the connection between m-flat and m-regular partitions, is stated in the following theorem. Theorem 1.2.5 (Glaisher). For a fixed positive integer n, the following sets of partitions are equinumerous:

1. the m-regular partitions of n, 2. the partitions of n with fewer than m occurrences for each positive integer, 3. the m-flat partitions of n.

In terms of q-series, they can be stated

∏ n≥1 (1 + q n + q 2n + • • • + q n(m-1) ) = (q m ; q m ) ∞ (q; q) ∞ = ∏ n≥1 m n 1 (1 -q n ) • (1.2.1)
The conjugacy allows us to link the m-flat partitions to the partitions with fewer than m occurrences for each integer. The Glaisher bijection analogous to the one given for Euler's distinct-odd identity, that links the m-regular partitions and the partitions with fewer than m occurrences for each integer, is the following: for any m-regular partition, as long as a part appears m times, we sum then up to the part which is the m times the repeated part.

The bijective proof of the Euler identity, given by Sylvester [START_REF] Sylvester | A constructive theory of partitions, arranged in three acts, an interact, and an exodion[END_REF], is more subtle and will be presented in Chapter 5. It was a open problem to find a suitable generalization of Sylvester's bijection for the Glaisher identity. This problem was solved, a century after the paper of Sylvester, by Stockhofe in his Ph.D thesis [START_REF] Stockhofe | Bijektive Abbildungen auf der Menge der Partitionen einer naturlichen Zahl[END_REF]. In the 90's, seminal works of Bessenrodt [START_REF] Bessenrodt | A bijection for Lebesgue's partition identity in the spirit of Sylvester[END_REF], and Pak and Postinkov [START_REF] Pak | A generalization of Sylvester's Identity[END_REF], related the Sylvester algorithm to the alternating sign sum of integer partitions. They then gave new refinements of the Euler identity.

In this thesis, we especially focus on a broad refinement of Glaisher's identity given by Keith and Xiong [START_REF] Keith | Euler's partition theorem for all moduli and new companions to Rogers-Ramanujan-Andrews-Gordon identities[END_REF]. Theorem 1.2.6 (Keith-Xiong). Let m ≥ 2, u 1 , . . . , u m-1 , n be non-negative integers. Then, the number of m-flat partitions of n with u i parts congruent to i mod m is equal to the number of m-regular partitions of n into u i parts congruent to i mod m.

Their proof used a variant of the Sylvester-style bijection given by Stockhofe. In Chapter 5, we adapt this bijection to give a result beyond their refinement.

Rogers-Ramanujan type identities

The most famous partition identities are probably the Rogers-Ramanujan identities [START_REF] Rogers | Proof of certain identities in combinatory analysis[END_REF]. They can be stated as follows.

Theorem 1.2.7 (Rogers 1894, Ramanujan 1913). Let i = 0 or 1. Then ∑ n≥0 q n 2 +(1-i)n (q; q) n = 1 (q 2-i ; q 5 ) ∞ (q 3+i ; q 5 ) ∞ .

(1.2.2)

By interpreting both sides of (1.2.2) as generating functions for partitions, MacMahon [START_REF] Macmahon | Combinatory Analysis[END_REF] gave the following combinatorial version of the identities. This very interpretation was independently given by Schur.

Theorem 1.2.8 (Rogers-Ramanujan identities, partition version). Let a = 0 or 1. For every natural number n, the number of partitions of n such that the difference between two consecutive parts is at least 2 and the part 1 appears at most 1a times is equal to the number of partitions of n into parts congruent to ±(1 + a) mod 5.

In this spirit, we define the notion of Rogers-Ramanujan type identity. Definition 1.2.9. A partition identity of the Rogers-Ramanujan type is a theorem stating that for all n, the number of partitions of n satisfying some difference conditions equals the number of partitions of n satisfying some congruence conditions. Dozens of proofs of these identities have been given, using different techniques, see for example (Andrews, 1984b;Bressoud, 1983;[START_REF] Watson | A new proof of the Rogers-Ramanujan identities[END_REF]. Especially, in [START_REF] Garsia | A Rogers-Ramanujan bijection[END_REF], Garsia and Milne gave the first bijective proof for these identities, laying the foundations of the involution principle. One can also observe that the Glaisher identity is of Rogers-Ramanujan type.

Following in the track of the Rogers-Ramanujan identities, Schur gave in [START_REF] Schur | Zur additiven Zahlentheorie[END_REF] one of the most important identities in the theory of partitions, probably the most studied after the Rogers-Ramanujan identities.

Theorem 1.2.10 [START_REF] Schur | Zur additiven Zahlentheorie[END_REF]. For any positive integer n, the number of partitions of n into distinct parts congruent to ±1 mod 3 is equal to the number of partitions of n where parts differ by at least three and multiples of three differ by at least six.

There have been a number of proofs of Schur's result over the years, including a q-difference equation proof of Andrews [START_REF] Andrews | A new generalization of Schur's second partition theorem[END_REF]) and a simple bijective proof of Bressoud [START_REF] Bressoud | A combinatorial proof of Schur's 1926 partition theorem[END_REF].

Another important identity is Göllnitz' theorem Göllnitz, 1967. Theorem 1.2.11 [START_REF] Göllnitz | Partitionen mit Differenzenbedingungen[END_REF]. For any positive integer n, the number of partitions of n into distinct parts congruent to 2, 4, 5 mod 6 is equal to the number of partitions of n into parts different from 1 and 3, and where parts differ by at least six with equality only if parts are congruent to 2, 4, 5 mod 6. Like Schur's theorem, Göllnitz' identity can be proved using q-difference equations (Andrews, 1969b) and elegant Bressoud-style bijections [START_REF] Padmavathamma | Combinatorial proof of the Göllnitz theorem on partitions[END_REF][START_REF] Zhao | A bijective proof of the Alladi-Andrews-Gordon partition theorem[END_REF].

The Rogers-Ramanujan type identities have a rich history, and the study of such identities allowed mathematicians to develop several key methods for the theory of integer partitions. In this thesis we investigate two such methods: a combinatorial method, the weighted words, and a Lie-theoretic method, the (KMN) 2 character formula.

Weighted words

The weighted words were introduced by Alladi and Gordon to understand the combinatorial machinery behind the Schur identity. They consist in associating to the part of a classical partition some colors. In this section we present major works using weighted words.

From the Alladi-Gordon identity to the Alladi-Andrews-Berkovich identity

Seminal work of Alladi, Andrews, and Gordon in the 90's showed how the theorems of Schur and Göllnitz emerge from more general results on colored partitions [START_REF] Alladi | Generalizations of Schur's partition theorem[END_REF][START_REF] Alladi | Refinements and Generalizations of Capparelli's Conjecture on Partitions[END_REF].

In the case of Schur's theorem, we consider parts in three colors {a, b, ab} and order them as follows:

1 ab < 1 a < 1 b < 2 ab < 2 a < 2 b < 3 ab < • • • • (1.3.1)
We then consider the partitions with colored parts different from 1 ab and satisfying the minimal difference conditions in the table

λ i \ λ i+1 ab b b ab 2 2 2 a 1 1 2 b 1 1 1 • (1.3.2)
Here, the part λ i with color in the row and the part λ i+1 with color in the column differ by at least the corresponding entry in the table . An example of such a partition is (7 ab , 5 b , 4 a , 3 ab , 1 b ). The Alladi-Gordon refinement of Schur's partition theorem [START_REF] Alladi | Generalizations of Schur's partition theorem[END_REF] is stated as follows:

Theorem 1.3.1. Let u, v, n be non-negative integers. Denote by A(u, v, n) the number of partitions of n into u distinct parts with color a and v distinct parts with color b, and denote by B(u, v, n) the number of partitions of n satisfying the conditions above, with u parts with color a or ab, and v parts with color b or ab. We then have A(u, v, n) = B(u, v, n) and the identity

∑ u,v,n≥0 B(u, v, n)a u b v q n = ∑ u,v,n≥0
A(u, v, n)a u b v q n = (-aq; q) ∞ (-bq; q) ∞ • (1.3.3) Note that a transformation implies Schur's theorem : dilation : q → q 3 translations : a, b → q -2 , q -1 • (1.3.4) In fact, the minimal difference conditions given in (1.3.2) give after these transformations the minimal differences in Schur's theorem. Moreover, finding such refinements and non-dilated versions of partition identities can be helpful to find bijective proofs of them.

In the case of Göllnitz' theorem, we consider parts that occur in six colors {a, b, c, ab, ab, bc} with the order .3.5) and the partitions with colored parts different from 1 ab , 1 ac , 1 bc and satisfying the minimal difference conditions in

1 ab < 1 ac < 1 a < 1 bc < 1 b < 1 c < 2 ab < 2 ac < 2 a < 2 bc < 2 b < 2 c < 3 ab < • • • , ( 1 
λ i \ λ i+1 ab ac a bc b c ab 2 2 2 2 2 2 ac 1 2 2 2 2 2 a 1 1 1 2 2 2 bc 1 1 1 2 2 2 b 1 1 1 1 1 2 c 1 1 1 1 1 1
The Alladi-Andrews-Gordon refinement of Göllnitz's partition theorem can be stated as follows:

Theorem 1.3.2. Let u, v, w, n be non-negative integers. Denote by A(u, v, w, n) the number of partitions of n into u distinct parts with color a, v distinct parts with color b and w distinct parts with color c, and denote by B(u, v, w, n) the number of partitions of n satisfying the conditions above, with u parts with color a, ab or ac, v parts with color b, ab or bc and w parts with color c, ac or bc. We then have A(u, v, w, n) = B(u, v, w, n) and the identity ∑ u,v,w,n≥0 B(u, v, w, n)a u b v c w q n = ∑ u,v,w,n≥0

A(u, v, w, n)a u b v c w q n = (-aq; q) ∞ (-bq; q) ∞ (-cq; q) ∞ • (1.3.7) Note that a transformation implies Göllnitz' theorem : dilation : q → q 6 translations : a, b, c → q -4 , q -2 , q -1 • (1.3.8) Observe that while Schur's theorem is not a direct corollary of Göllnitz' theorem, Theorem 1.3.1 is implied by Theorem 1.3.2 by setting c = 0. Therefore Göllnitz' theorem may be viewed as a level higher than Schur's theorem, since it requires three primary colors instead of two.

Following the work of Alladi, Andrews, and Gordon, it was an open problem to find a partition identity beyond Göllnitz' theorem, in the sense that it would arise from four primary colors. This was famously solved by [START_REF] Alladi | An new four parameter q-series identity and its partitions implications[END_REF]. To describe their result, we consider parts that occur in eleven colors {a, b, c, d, ab, ab, ad, bc, bd, cd, abcd} and ordered as follows:

1 abcd < 1 ab < 1 ac < 1 ad < 1 a < 1 bc < 1 bd < 1 b < 1 cd < 1 c < 1 d < 2 abcd < • • • • (1.3.9)
Let us consider the partitions with the length of the secondary parts greater than one and satisfying the minimal difference conditions in λ i \ λ i+1 ab ac ad a bc bd b cd c d ab 2 2 2 2 2 2 2 2 2 2 ac 1 2 2 2 2 2 2 2 2 2 ad 1 1 2 2 2 2 2 2 2 2 a 1 1 1 1 2 2 2 2 2 2 bc 1 1 1 1 2 2 2 2 2 2 bd 1 1 1 1 1 2 2 2 2 2 b 1 1 1 1 1 1 1 2 2 2 cd 1 1 1 1 1 1 1 2 2 2 c 1 1 1 1 1 1 1 1 1 2 d 1 1 1 1 1 1 1 1 1 1 , (1.3.10) and such that parts with color abcd differ by at least 4, and the smallest part with color abcd is at least equal to 4 + 2τχ(1 a is a part), where τ is the number of primary and secondary parts in the partition.

The theorem is then stated as follows.

Theorem 1.3.3. Let u, v, w, t, n be non-negative integers. Denote by A(u, v, w, t, n) the number of partitions of n into u distinct parts with color a, v distinct parts with color b, w distinct parts with color c and t distinct parts with color d, and denote by B(u, v, w, t, n) the number of partitions of n satisfying the conditions above, with u parts with color a, ab, ac, ad or abcd, v parts with color b, ab, bc, bd or abcd, w parts with color c, ac, bc, cd or abcd and t parts with color d, ad, bd, cd or abcd. We then have A(u, v, w, t, n) = B(u, v, w, t, n) and the identity ∑ u,v,w,t,n≥0 B(u, v, w, t, n)a u b v c w d t q n = (-aq; q) ∞ (-bq; q) ∞ (-cq; q) ∞ (-dq; q) ∞ • (1.3.11) Note that the result of Alladi-Andrews-Berkovich uses four primary colors, the full set of secondary colors, along with one quaternary color abcd. When d = 0, we recover Theorem 1.3.2. Their main tool was a difficult q-series identity: ∑ i,j,k,l-constraints q T τ +T AB +T AC +T AD +T CB +T BD +T CD -BC-BD-CD+4T Q-1 +3Q+2Qτ (q) A (q) B (q) C (q) D (q) AB (q) AC (q) AD (q) BC (q) BD (q) CD (q) Q •{(1q A ) + q A+BC+BD+Q (1q B ) + q A+BC+BD+Q+B+CD } = ∑ i,j,k,l-constraints q T i +T j +T k +T l (q) i (q) j (q) k (q) l (1.3.12) where A, B, C, D, AB, AC, AD, BC, BD, CD, Q are variables which count the number of parts with respectively color a, b, c, d, ab, ab, ad, bc, bd, cd, abcd,

           i = A + AB + AC + AD + Q j = B + AB + BC + BD + Q k = C + AC + BC + CD + Q l = D + AD + BD + CD + Q τ = A + B + C + D + AB + AC + AD + BC + BD + CD + Q , T n = n(n+1)
2 is the n th triangular number and (q) n = (q; q) n . While this identity is difficult to prove, it is relatively straightforward to show that it is equivalent to the statement in Theorem 1.3.3. One of the contribution of this thesis consists in using a bijective approach to show, not only the Alladi-Andrews-Gordon theorem, but a more general result beyond Göllnitz' theorem for an arbitrary number of primary colors.

On Siladić's partition theorem

Another rich source of Rogers-Ramanujan type identities is the representation theory of Lie algebras. This has its origins in work of [START_REF] Lepowsky | The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities[END_REF], who proved the Rogers-Ramanujan identities by using representations of the affine Lie algebra sl(2, C) ∼ . Subsequently, Capparelli [START_REF] Capparelli | On some representations of twisted affine Lie algebras and combinatorial identities[END_REF], [START_REF] Meurman | Annihilating ideals of standard modules of sl(2, C) ∼ and combinatorial identities[END_REF] and others examined related standard modules and affine Lie algebras and found many new Rogers-Ramanujan type identities. We present some of these identities in the next section.

Here, we shall be concerned by one such identity given by Siladić [START_REF] Siladić | Twisted sl(3, C) ∼ -modules and combinatorial identities[END_REF] in his study of representations of the twisted affine Lie algebra A

(2) 2 .

Theorem 1.3.4 (Siladić). The number of partitions λ 1 + • • • + λ s of an integer n into distinct odd parts is equal to the number of partitions of n, into parts different from 2, such that λ iλ i+1 ≥ 5 and λ iλ i+1 = 5 ⇒ λ i + λ i+1 ≡ ±3 mod 16 , λ iλ i+1 = 6 ⇒ λ i + λ i+1 ≡ 0, ±4, 8 mod 16 , λ iλ i+1 = 7 ⇒ λ i + λ i+1 ≡ ±1, ±5, ±7 mod 16 , λ iλ i+1 = 8 ⇒ λ i + λ i+1 ≡ 0, ±2, ±6, 8 mod 16 • Rephrased, we obtain the following equivalent formulation.

Theorem 1.3.5 (Siladić, rephrased by Dousse). The number of partitions λ 1 + • • • + λ s of an integer n into distinct odd parts is equal to the number of partitions of n into parts different from 2 such that λ iλ i+1 ≥ 5 and [START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF]6, 7 mod 8 , λ iλ i+1 = 8 ⇒ λ i ≡ 0, 1, 3, 4, 5, 7 mod 8 • For example, for n = 16, the partitions into distinct odd parts are 15 + 1, 13 + 3, 11 + 5, 9 + 7 and 7 + 5 + 3 + 1 , while the partitions of the second kind are 15 + 1, 13 + 3, 11 + 5, 16 and 12 + 4 • Siladić's theorem has recently been refined by Dousse (Dousse, 2017b) via weighted words. Her framework is as follows: we consider parts colored by two primary colors a, b and three secondary colors a 2 , b 2 , ab, with the colored parts ordered as follows:

λ i -λ i+1 = 5 ⇒ λ i ≡ 1, 4 mod 8 , λ i -λ i+1 = 6 ⇒ λ i ≡ 1, 3, 5, 7 mod 8 , λ i -λ i+1 = 7 ⇒ λ i ≡ ±0,
1 ab < 1 a < 1 b 2 < 1 b < 2 ab < 2 a < 3 a 2 < 2 b < 3 ab < 3 a < 3 b 2 < 3 b < • • • • (1.3.13)
Note that only odd parts can be colored by a 2 , b 2 . The transformations q → q 4 , a → aq -3 , b → bq -1 , (1.3.14) leads to the natural order

0 ab < 1 a < 2 b 2 < 3 b < 4 ab < 5 a < 6 a 2 < 7 b < 8 ab < 9 a < 10 b 2 < 11 b < • • • • (1.3.15)
We then impose the minimal differences according the following table

λ i \ λ i+1 a 2
odd a odd a even b 2 odd b odd b even ab odd ab even a 2 odd

•

(1.3.17)

One can check that these minimal differences define a partial strict order on the set of parts colored by primary and secondary colors. With this coloring, Dousse refined the Siladić theorem as follows:

Theorem 1.3.6 (Dousse). Let (u, v, n) ∈ N 3 . Denote by D(u, v, n) the set of all the partitions of n, such that no part is equal to 1 ab , 1 a 2 or 1 b 2 , with the difference between two consecutive parts following the minimal conditions in (1.3.16), and with u equal to the number of parts with color a or ab plus twice the number of parts colored by a 2 , and v equal to the number of parts with color b or ab plus twice the number of parts colored by b 2 . Denote by C(u, v, n) the set of all the partitions of n with u distinct parts colored by a and v distinct parts colored by b. We

then have D(u, v, n) = C(u, v, n).
In terms of q-series, we have the equation

∑ u,v,n≥0 D(u, v, n)a u b v q n = ∑ u,v,n≥0 C(u, v, n)a u b v q n = (-aq; q) ∞ (-bq; q) ∞ • (1.3.18)
Dilating (1.3.16) by (1.3.14) gives exactly the minimal difference conditions in Siladić's theorem and (1.3.18) becomes the generating function for partitions into distinct odd parts, so that Theorem 1.3.5 is a corollary of Theorem 1.3.6.

In this thesis, we bijectively prove a broad generalization of the refinement of Siladić 's theorem for an arbitrary number of primary colors.

Partition identities and Representation theory of affine Lie algebras

In the representation theory of Lie algebras, the character is a statistic of representations whose expression can be seen as a generating function in terms of simple roots. The starting point of our discussion is the Weyl-Kac character formula [START_REF] Kac | Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula[END_REF]Kac, 1990), whose principal specialization gives an expression of the character as an infinite q-product. This provides good candidates for Rogers-Ramanujan type identities, whose expressions consist of a equality between a sum (partitions satisfying some difference conditions) and a product (partitions satisfying some congruence conditions). Seminal works of representation theorists allowed to develop techniques to build the sum-side for the character. In this section, we discuss two such tools: the vertex operator theory and the theory perfect crystals.

Lie-theoretic proof of the Rogers-Ramanujan identities

First, Lepowsky and Milne (Lepowsky and Milne, 1978a;Lepowsky and Milne, 1978b) noticed that the product side of the Rogers-Ramanujan identities (1.2.2) multiplied by the "fudge factor" 1/(q; q 2 ) ∞ is equal to the principal specialisation of the Weyl-Kac character formula for level 3 standard modules of the affine Lie algebra A

(1)

1 . Then, [START_REF] Lepowsky | The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities[END_REF]Lepowsky and Wilson, 1985) gave an interpretation of the sum side by constructing a basis of these standard modules using vertex operators. Very roughly, they proceed as follows. They start with a spanning set of the module V, indexed by monomials of the form Z

f 1 1 . . . Z f s s for s, f 1 , . . . , f s ∈ N.
Then by the theory of vertex operators, there are some relations between these monomials, which allows them to reduce the spanning set by removing the monomials containing Z 2 j and Z j Z j+1 . The last step is then to prove that this reduced family of monomials is actually free, and therefore a basis of the representation. The connection to Theorem 1.2.7 is then done by noting that monomials Z f 1 1 . . . Z f s s which do not contain Z 2 j or Z j Z j+1 for any j are in bijection with partitions which do not contain twice the part j or both the part j and j + 1 for any j, i.e. partitions with difference at least 2 between consecutive parts.

The theory of vertex operator algebras developed by Lepowsky and Wilson turned out to be very influential: for example, it was used by Frenkel, Lepowsky, and Meurman to construct a natural representation of the Monster finite simple group [START_REF] Frenkel | Vertex Operator Algebras and the Monster[END_REF], and was key in the work of Borcherds on vertex algebras and his resolution of the Conway-Norton monstrous moonshine conjecture [START_REF] Borcherds | Monstrous moonshine and monstrous Lie superalgebras[END_REF].

Capparelli's identity

Following Lepowsky and Wilson's discovery, several other representation theorists studied other Lie algebras or representations at other levels, and discovered new interesting and intricate partition identities, that were previously unknown to the combinatorics community, see for example [START_REF] Capparelli | On some representations of twisted affine Lie algebras and combinatorial identities[END_REF][START_REF] Meurman | Annihilating ideals of standard modules of sl(2, C) ∼ and combinatorial identities[END_REF]Meurman and Primc, 1999;Meurman and Primc, 2001;[START_REF] Nandi | Partition Identities Arising from Standard A (2) 2 -modules of Level 4[END_REF][START_REF] Primc | Vertex operator construction of standard modules for A (1) n[END_REF][START_REF] Primc | Combinatorial bases of basic modules for affine Lie algebras C (1) n[END_REF][START_REF] Siladić | Twisted sl(3, C) ∼ -modules and combinatorial identities[END_REF], After Lepowsky and Wilson's work, Capparelli (Capparelli, 1993) was the first to conjecture a new identity, by studying the level 3 standard modules of the twisted affine Lie algebra A

(2) 2 . It was first proved combinatorially by Andrews in (Andrews, 1992), then refined by [START_REF] Alladi | Refinements and Generalizations of Capparelli's Conjecture on Partitions[END_REF] using the method of weighted words, and finally proved by Capparelli (Capparelli, 1996) and Tamba and Xie [START_REF] Tamba | Level three standard modules for A (2) 2 and combinatorial identities[END_REF] via representation theoretic techniques. Later, Meurman and Primc (Meurman and Primc, 1999) showed that Capparelli's identity can also be obtained by studying the (1, 2)-specialisation of the character formula for the level 1 modules of A

(1)

1 . Capparelli's original identity can be stated as follows. Theorem 1.4.1 (Capparelli's identity (Andrews 1992)). Let C(n) denote the number of partitions of n into parts > 1 such that parts differ by at least 2, and at least 4 unless consecutive parts add up to a multiple of 3. Let D(n) denote the number of partitions of n into distinct parts not congruent to ±1 mod 6. Then for every positive integer n, C(n) = D(n).

In this thesis, we will mostly be interested in the weighted words version of Theorem 1.4.1. We now describe Alladi, Andrews, and Gordon's refinement of Capparelli's identity (slightly reformulated by Dousse in (Dousse, 2020)).

Consider partitions into natural numbers in three colours, a, c, and d (the absence of the color b will be made clear in a few paragraphs, when we will mention the connection with Primc's identity), with the order

1 a < 1 c < 1 d < 2 a < 2 c < 2 d < • • • , (1.4.1)
satisfying the difference conditions in the matrix

C 2 =   a c d a 2 2 2 c 1 1 2 d 0 1 2   • (1.4.2)
The non-dilated version of Capparelli's identity can be stated as follows.

Theorem 1.4.2 [START_REF] Alladi | Refinements and Generalizations of Capparelli's Conjecture on Partitions[END_REF]. Let C 2 (n; i, j) denote the number of partitions of n into colored parts satisfying the difference conditions in matrix C 2 , having i parts colored a and j parts colored d. We have

∑ n,i,j≥0
C(n; i, j)a i d j q n = (-q) ∞ (-aq; q 2 ) ∞ (-dq; q 2 ) ∞ .

Performing the dilations q → q 3 , a → aq -1 , d → dq, which correspond to the following transformations on the parts of the partitions

k a → (3k -1) a , k b → 3k, k d → (3k + 1) d ,
we obtain a refinement of Capparelli's original identity. Other dilations can lead to infinitely many other (but related) partition identities.

Primc's identities

Another way to obtain Rogers-Ramanujan type partition identities using representation theory is the theory of perfect crystals of affine Lie algebras. Much more detail on crystals is given in Chapter 8, but the rough idea is the following. The generating function for partitions with congruence conditions, which is always an infinite product, is still obtained via a specialisation of the Weyl-Kac character formula. The equality with the generating function for partitions with difference conditions is established through the crystal base character formula of Kang, Kashiwara, Misra, Miwa, Nakashima, and Nakayashiki (Kang et al., 1992c). This formula expresses, under certain specialisations, the character as the generating function for partitions satisfying difference conditions given by energy matrices of perfect crystals.

The identity which we study in this section, due to Primc (Primc, 1999), was obtained that way by studying crystal bases of A

(1)

1 . The energy matrix of the perfect crystal coming from the tensor product of the vector representation and its dual is given by

P 2 =     a b c d a 2 1 2 2 b 1 0 1 1 c 0 1 0 2 d 0 1 0 2     .
(1.4.3) Let P(n; i, j, k, ) denote the number of partitions of n into four colors a, b, c, d, with i (resp. j, k, ) parts colored a (resp. b, c, d), satisfying the difference conditions of the matrix P 2 . Then the crystal base character formula and the Weyl-Kac character formula imply that under the dilations .4.4) the generating function for these colored partitions becomes 1/(q; q) ∞ .

k a → 2k -1, k b → 2k, k c → 2k, k d → 2k + 1, ( 1 
Theorem 1.4.3 (Primc 1999). We have ∑ n,i,j,k, P(n; i, j, k, )q 2n-i+ = 1 (q; q) ∞ .

By taking the same approach for the affine Lie algebra A

2 , Primc also gave the following energy matrix (where the naming of the colors comes from our generalization): .4.5) Theorem 1.4.4 (Primc 1999). Under the dilations .4.6) the generating function for 9-colored partitions satisfying the difference conditions of (1.4.5) becomes 1/(q; q) ∞ .

P 3 =               a 2 b 0 a 2 b 1 a 1 b 0 a 0 b 0 a 2 b 2 a 1 b 1 a 0 b 1 a 1 b 2 a 0 b 2 a 2 b 0 2 2 2 1 2 2 2 2 2 a 2 b 1 1 2 1 1 2 1 2 2 2 a 1 b 0 1 1 2 1 1 2 2 2 2 a 0 b 0 1 1 1 0 1 1 1 1 1 a 2 b 2 0 0 1 1 0 1 1 2 2 a 1 b 1 0 1 0 1 1 0 2 1 2 a 0 b 1 0 1 0 1 1 0 2 1 2 a 1 b 2 0 0 1 1 0 1 1 2 2 a 0 b 2 0 0 0 1 0 0 1 1 2               . ( 1 
k a 2 b 0 → 3k -2, k a 2 b 1 → 3k -1, k a 1 b 0 → 3k -1, k a 0 b 0 → 3k, k a 1 b 1 → 3k, k a 2 b 2 → 3k, k a 0 b 1 → 3k + 1, k a 1 b 2 → 3k + 1, k a 0 b 2 → 3k + 2, ( 1 
When seeing these two theorems of Primc, one might find it surprising that the generating function for partitions with such intricate difference conditions simply becomes 1/(q; q) ∞ , the generating function for unrestricted partitions. However recently, Dousse and Lovejoy [START_REF] Dousse | On a Rogers-Ramanujan type identity from crystal base theory[END_REF] gave a weighted words version of Theorem 1.4.3.

Theorem 1.4.5 [START_REF] Dousse | On a Rogers-Ramanujan type identity from crystal base theory[END_REF], non-dilated version of Primc's identity). Let P(n; i, j, k, ) be defined as above. We have

∑ n,i,j,k, P(n; i, j, k, )q n a i c k d = (-aq; q 2 ) ∞ (-dq; q 2 ) ∞ (q; q) ∞ (cq; q 2 ) ∞ .
Performing the dilations of (1.4.4) indeed transforms the infinite product above into 1/(q; q) ∞ . But the theorem above shows that keeping track of all colors except b leads to a much more intricate infinite product as well, and that the extremely simple expression 1/(q; q) ∞ appears only because of the particular dilation that Primc considered. Later, Dousse (Dousse, 2020) even gave an expression for the generating function for P(n; i, j, k, ) keeping track of all the colors, but it can be written as an infinite product only if we do not keep track of the color b.

Thus it is interesting from a combinatorial point of view to see whether a similar phenomenon happens with Theorem 1.4.4 as well. To do so, we would like to compute the generating function for colored partitions satisfying the difference conditions (1.4.5), at the non-dilated level, keeping track of as many colors as possible. In a joint-work with Dousse (Dousse and Konan, 2019a;Dousse and Konan, 2019b), not only do we succeed in doing this, but we embed both of Primc's theorems into an infinite family of identities about partitions satisfying difference conditions given by n 2 × n 2 matrices.

Apart from the fact that they can be obtained from the same Lie algebra

A (1)
1 , Capparelli's and Primc's identities didn't seem related from the representation theoretic point of view, as they were obtained in completely different ways, and Capparelli's identity did not seem related to perfect crystals. However, recently, Dousse (Dousse, 2020) gave a bijection between colored partitions satisfying the difference conditions (1.4.3) and pairs of partitions (λ, µ), where λ is a colored partition satisfying the difference conditions (1.4.2), and µ is a partition colored b. This bijection preserves the total weight, the number of parts, the size of the parts, and the number of parts colored a and d. Therefore, combinatorially, these two identities are very closely related. We generalized this bijection to our new generalization of Primc's identity and obtain two families of partition identities with difference conditions given by (n 2 -1) × (n 2 -1) matrices, which generalize Capparelli's identity.

In this thesis, we present a broad result beyond the generalizations of both Capparelli's and Primc's identities for more general families of colored partitions.

Character formula as series with positive coefficients

Finding an explicit expression of the character as a series with positive coefficients is an important problem. While the principal specialisation of the Weyl-Kac character formula is a product of q-series with obvious positive coefficients, the original formula expresses the character as a product with a factor which has negative coefficient according to the parity of the elements of the Weyl group. In [START_REF] Kac | Infinite-dimensional Lie algebras, theta functions and modular forms[END_REF], using modular forms and string functions, Kac and Peterson gave a formula for e -Λ ch(L(Λ)) for all the irreducible highest weight level 1 modules Λ of all classical types as a series in Z[[e -α 0 , e -α 1 , • • • , e -α n-1 ]] with obviously positive coefficients. This built on earlier work of Kac [START_REF] Kac | Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula[END_REF], in which he proved the particular case where

M = L(Λ 0 ) in A (1) n , D (1) 
n , and

E (1) n .
In [START_REF] Bartlett | Hall-Littlewood polynomials and characters of affine Lie algebras[END_REF], Bartlett and Warnaar used Hall-Littlewood polynomials to give explicitly positive formulas for the characters of certain highest weight modules of the affine Lie algebras C

(1)

n , A (2) 
2n , and D [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] n+1 , which also led to generalisations for the Macdonald identities in types B

(1)

n , C (1) n , A (2) 2n-1 , A (2) 
2n , and D

(2) n+1 . However their approach failed to give a formula for the case A

(1) n . Using Macdonald-Koornwinder theory, Rains and Warnaar ("Bounded Littlewood identities") later found additional character formulas for these types, together with new Rogers-Ramanujan type identities. In [START_REF] Griffin | A framework of Rogers-Ramanujan identities and their arithmetic properties[END_REF], Griffin, Ono, and Warnaar obtained a limiting Rogers-Ramanujan type identity for the principal specialisation of the character of some particular weights (m

-k)Λ 0 + kΛ 1 in A (1)
n . On the other hand, Meurman and Primc Meurman and Primc, 1999 treated the case of all levels of A (1)

1 via vertex operator algebras.

In the paper dealing with the Lie-theoretic interpretation of the generalization of Capparelli's and Primc's identities (Dousse and Konan, 2019b), we introduced a tool which allowed us to compute the precise formulas of all the level one standard modules of type A [START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] n . In this thesis, we present the generalization of this tool, which allows us to compute the character of level one standard module for other types

A (2) 2n , D (2) n+1 , A (2) 2n-1 , B (1) 
n , D

n .

Chapter 2

Contribution of the thesis

Here we present an exhaustive list of the works that comprise this thesis. We start with a new notion of weighted words, the foundation of all the remaining results. We present all these results as generalizations, which, from our viewpoint, are easier to prove when they are well-formalized. In addition, for each generalization, we give explicit results as particular cases of the generalization.

Weighted words revisited

We present in this section our weighted words in a more general and formal way than the original method given by Alladi and Gordon. The purpose of this exposition is to set the major tools that will enable us to generalize the identities presented in Chapter 1.

Generalized colored partitions

Let C be a set of colors, and let Z C = {k c : k ∈ Z, c ∈ C} be the set of colored integers. First, we relax the condition that parts of colored partitions have to be in non-increasing order. Definition 2.1.1. Let be a binary relation defined on Z C . A generalized colored partition with relation is a finite sequence (π 1 , . . . , π s ) of colored integers, where for all i ∈ {1, . . . , s -1}, π i π i+1 .

In the following, c(π i ) ∈ C denotes the color of the part π i . The quantity |π|

= π 1 + • • • + π s is the size of π, and C(π) = c(π 1 ) • • • c(π s ) is its color sequence.
Remark 2.1.2. The binary relation is not necessarily an order. When is a strict order, we can easily check that every finite set of colored parts defines a classical colored partition, by ordering the parts. In the same way, for an order, the generalized colored partitions are finite multi-sets of colored integers. Definition 2.1.3. An energy on C is a function from C 2 to Z. Note that when C = {c 1 , . . . , c n } is a finite color set, the data given by is equivalent to a matrix M = ( (c i , c j )) n i,j=1 , called energy matrix. The binary relation on Z C , associated to an energy , is defined by

k c l d ⇐⇒ k -l ≥ (c, d) •
We then call the relation the minimal difference condition given by energy , and denote by P the set of generalized colored partitions with relation .

An energy is said to be minimal if it has value in {0, 1}. For such an energy, we refer respectively to and O instead of and P . 

M 1 = 1 1 0 1 and M 2 =   2 2 2 1 1 2 1 1 1   ,
The corresponding energy matrix is given by

M =         c 1 c 2 • • • c n-1 c n c 1 0 1 • • • 1 1 c 2 0 0 . . . 1 1 . . . . . . . . . . . . . . . . . . c n-1 0 0 • • • 0 1 c n 0 0 • • • 0 0         • 2.
For the minimal energy (c i , c j ) = χ(i ≤ j), we can set an order c 1 < • • • < c n on C and the energy relation is the strict lexicographic order on Z C :

• • • (k + 1) c 1 k c n k c n-1 • • • k c 2 k c 1 • • • •
The corresponding energy matrix is given by 

M =        c 1 c 2 • • • c n-1 c n c 1 1 1 • • • 1 1 c 2 0 1 • • • 1 1 . . . . . . . . . . . . . . . . . . c n-1 0 0 . . . 1 1 c n 0 0 • • • 0 1        • Example 2.1.7. Let C = {c 1 , • • • , c n }
. (c i , c j ) = χ(i < j) , 2. (c i , c j ) = 0 , (c i , c j ) = 1 , 3. (c i , c j ) = χ(i ≥ j) •
The relation is then an order on Z C , where over-lined colored particles can occur at most once in any ordered chain:

• • • (k + 1) c n k c n k c n k c n-1 • • • k c 2 k c 1 k c 1 k c 1 k c 2 • • • k c n-1 k c n • • • •
The latter inequalities give some generalized colored partitions that can be identified as overpartitions [START_REF] Corteel | Overpartitions[END_REF]. The corresponding energy matrix is given by

M =           c n • • • c 1 c 1 • • • c n c n 1 • • • 1 1 • • • 1 . . . . . . . . . . . . . . . 1 . . . c 1 0 • • • 1 1 • • • 1 c 1 0 • • • 0 0 • • • 1 • • • . . . 0 . . . . . . . . . . . . c n 0 • • • 0 0 • • • 0          

•

Note that Examples 2.1.6 respectively correspond to the restriction to {c 1 , . . . , c n } in the first case, and the restriction to {c n , . . . , c 1 }, with c i ≡ c n+1-i in the second case. The well-ordered sequences of particles with the same potential have the form

• • • k a k b k a k b • • • •

Degree of the coloring

We now define the notion of degree of the coloring.

Definition 2.1.9. For a fixed set of colors C, referred to as primary colors, we define the set of secondary colors by C 2 = {cc : c, c ∈ C}, and we note that the secondary colors are non-commutative products of two primary colors, i.e cc = c c for c = c ∈ C. We extend this definition to degree d for any d ≥ 1.

The set C d of colors with degree d is the set of all the non-commutative products of d primary colors. We then have C 1 = C, and we use the term "secondary" for degree 2. We finally set for any integer d ≥ 1

C d = d k=1 C k (2.1.1)
the set of colors of degree at most d, and

C = k≥1 C k (2.1.2)
the set of all the colors without restriction of the degree. The weighted words method is said to be at degree d if it only involves colors with degree at most d, i.e if the set of colors is a subset of C d .

Remark 2.1.10. Note that whatever the degree of the weighted words, the color sequence of a non-empty generalized colored partition can always be seen as a finite non-commutative product of primary colors. In the following, we then consider that the color sequence belongs to C . Conversely, any color in C can be seen as the color sequence of a partition equal to a sequence of parts with the corresponding sequence of primary colors.

The first two theorems of this thesis will then have the following formulations.

Theorem 2.1.11. Let C 1 be a set of primary colors. Then, for some suitable energies 1 on C 1 and 2 on C 1 C 2 , there exists a bijection between a certain subset of P 1 and a certain subset of P 2 .

Grounded partitions

As in the subsequent example 2.1.5, all the colored partitions of the theorems of Chapter 1 satisfy some restrictions on the minimal part size. Contrary to these colored partitions, for a given energy on C, the generalized colored partitions of P do not have any restriction on last part size. To deal with that problem, we introduce the notion of ground partitions. Let us choose a particular color c g in C. We then define the notion of grounded partitions as follows.

Definition 2.1.12. A grounded partition with ground c g and relation is a non-empty generalized colored partition π = (π 0 , . . . , π s ) with relation , such that π s = 0 c g , and when s > 0, π s-1 = 0 c g . Let P c g denote the set of such partitions.

In the following, we explicitly write π = (π 0 , . . . , π s-1 , 0 c g ). The trivial partition in P c g is then (0 c g ).

Example 2.1.13. For example, the set of classical partitions is in bijection with the set P c of the grounded partitions, with ground c g = c and relation

, where C = {c} and the energy satisfies (c, c) = 0. The bijection is given by (π 1 , . . . , π s ) → ((π 1 ) c , . . . , (π s ) c , 0 c ),

where the empty partition ∅ corresponds to the grounded partition (0 c ).

In the following, most of the chosen grounds c g will satisfy the condition 0 c g 0 c g . The condition "π s-1 = 0 c g " is then to avoid repeated part 0 c g at the end of the generalized colored partitions. However, in general, especially when the conditions on the minimal part sizes are rather difficult to express in terms of the colors in C and an energy that defines the relation, we add a "fictitious" color c ∞ as the ending color. In that case, we extend the energy to C ∪ {c ∞ } in such a way that (c(π s-1 ), c ∞ ) is the minimal part size for any color c. Remark 2.1.14. Note that in the case where the ground is an existing color c g in C, we can still replace it by a fictitious color c ∞ satisfying (c, c g ) = (c, c ∞ ) and (c g , c) = (c ∞ , c) for all c = c g , and (c g , c ∞ ) = max{ (c g , c g ), 1}.

Regularity

Let us now generalize the notion of regularity defined for the m-regular partitions. 

k c i l c j ⇐⇒ k ≥ l and k -l ≡ i -j mod m ,
so that, in any regular partition, the size of parts with color c i is necessarily congruent to i modulo m. We then associate to any m-regular partition λ = (λ 1 , . . . , λ s ) the regular partition π = (π 0 , . . . , π s-1 , 0 c 0 ) such that, for all k ∈ {0, . . . , s -1},

π k = λ k+1 and c(π k ) = c [λ k+1 ] m , where [λ k+1 ] m = λ k+1 mod m.
In the following, unless otherwise stated, we generally choose c = c g .

Definition 2.1.17. In the case we add a fictitious color c ∞ to define the minimal conditions on part sizes, we then consider the generalized colored partitions c ∞ -regular with ground c ∞ and the extended relation . We denote the set of such partitions P c ∞ .

Flatness

We now extend the notion of flatness defined for the m-flat partitions to the grounded partitions.

Definition 2.1.18. A flat partition with ground c g and energy is a grounded partition with ground c g and relation defined by

k c l d ⇐⇒ k -l = (c, d) •
We call the relation the flat difference condition defined by the energy .

These partitions are determined by their color sequence as well as the energy . This comes from the fact that for such a partition π = (π 0 , . . . , π s-1 , 0 c g ), the computation of the size of π k gives the following relation:

π k = s-1 ∑ l=k (c(π l ), c(π l+1 )) • Remark 2.1.19.
In the case where (c g , c g ) = 0, the condition π s-1 = 0 c g on the grounded partitions implies that c(π s-1 ) = c g for any flat partition with ground c g and energy . 

(c i , c j ) = i -j if i ≥ j m + i -j if i < j •
With these definitions, for any flat partition, its parts with color c i necessarily have a size congruent to i modulo m. We also observe that has values in {0, . . . , m -1}. We then associate to any m-flat partition λ = (λ 1 , . . . , λ s ) the flat partition π = (π 0 , . . . , π s-1 , 0 c 0 ) such that, for all k ∈ {0, . . . , s -1},

π k = λ k+1 and c(π k ) = c [λ k+1 ] m .
Considering the set of colors and the energy given in Example 2.1.20,by Theorem 1.2.6, there exists a bijection between the corresponding flat partitions with ground c 0 and energy and the c 0 -regular partitions with ground c 0 and minimal difference condition defined by , such that the parts with color c i have sizes congruent to i mod m. The latter c 0 -regular partitions are those described in Example 2.1.16. Furthermore, the bijection occurs between the partitions of both kinds with a fixed total size and numbers of occurrences of the colors different from the ground c 0 .

In this thesis, we give three theorems having the same formulation.

Theorem 2.1.21 (Duality between flatness and regularity). Let C be a set of colors and let c g ∈ C be the ground. Then, for some suitable energies and , there exists a bijection between a certain set of flat partitions with ground c g and energy and a certain set of c-regular partitions with ground c g and with the minimal difference condition defined by energy .

The duality between flat and regular partitions naturally arises from representation theory via vertex operators and crystal theory. The first theory permits to describe a basis of standard modules as a set of partitions that satisfy minimal difference conditions [START_REF] Meurman | Annihilating ideals of standard modules of sl(2, C) ∼ and combinatorial identities[END_REF], while the (KMN) 2 character formula builds a basis of standard modules as a set of partitions satisfying flat difference conditions (see Chapter 8).

Multi-grounded partitions

One of the theorems that we present in this thesis, with the form of Theorem 2.1.21, will allow us to compute the character of certain standard modules using the perfect crystals and the (KMN) 2 character formula. However, in general, the partitions that we define for a perfect crystal have conditions on minimal parts which depend not only on one but several colors. To deal with these conditions, we define, in the spirit of the grounded partitions, the notion of the multi-grounded partitions. Definition 2.1.22. Let C be a set of colors, Z C the set of colored integers, and a binary relation defined on Z C . Suppose that there exist some colors c g 0 , . . . , c g t-1 in C and unique colored integers u

(0) c g 0 , . . . , u (t-1) c g t-1 such that u (0) + • • • + u (t-1) = 0 , (2.1.3) u (0) c g 0 u (1) c g 1 . . . u (t-1) c g t-1 u (0) c g 0 • (2.1.4)
Then, the multi-grounded partitions with grounds c g 0 , . . . , c g t-1 and relation are the generalized col-

ored partitions π = (π 0 , • • • , π s-1 , u (0) c g 0 , . . . , u (t-1) c g t-1 ) with relation and such that (π s-t , • • • , π s-1 ) = (u (0) c g 0 , . . . , u (t-1) c g t-1
) in terms of colored integers. 

M =   2 2 2 0 0 2 -2 0 2   •
If we choose (g 0 , g 1 ) = (1, 3), and we then have the unique pair (u (0) , u (1) ) = (1, -1). Therefore, the generalized colored partitions

(3 c 3 , 3 c 2 , 3 c 1 , -1 c 3 , 1 c 1 , -1 c 3 ), (1 c 3 , 3 c 1 , 1 c 3 , 3 c 1 , -1 c 3 , 1 c 1 , -1 c 3 )
are multi-grounded with grounds c 3 , c 1 and energy , while the generalized colored partition

(1 c 1 , -1 c 3 , 1 c 1 , -1 c 3 )
is not.

In Definition 2.1.22, we note that for fixed grounds c g 0 , . . . , c g t-1 and colored integers u

(0) c g 0 , . . . , u (t-1) c g t-1
, the condition (2.1.4) implies the definition of multi-grounded partitions for any cyclic permutation of 0, . . . , t -1, with the ground sequences having the form c g i , . . . , c g t-1 , c g 0 , . . . , c g i-1 . This has a direct connection with the notion of ground state path defined for the perfect crystals. In particular, using the (KMN) 2 character formula, we compute the character of standard modules as generating function of certain multi-grounded partitions.

Generalized colored Frobenius partitions

Following Andrews (Andrews, 1984a), a generalized Frobenius partition is a two-rowed array

λ 1 λ 2 • • • λ s µ 1 µ 2 • • • µ s ,
where s is a non-negative integer and λ :=

λ 1 + λ 2 + • • • + λ s and µ := µ 1 + µ 2 + • • • + µ s are two
partitions into s non-negative parts. The Frobenius partitions are then the special cases where λ and µ consist of distinct parts. Frobenius partitions of length s and size m = s + ∑ s i=1 λ i + ∑ s i=1 µ i are in bijection with the partitions of m whose Durfee square (the largest square fitting in the top-left corner of the Ferrers board of the partition) is of side s. A formal expression of the Durfee square's length side for a classical partition π = (π 1 , . . . , π t ) is max{i ∈ {1, . . . , t} : π i ≥ i} .

Example 2.1.24. We give an example for the Ferrers diagram corresponding to the partitions (10,9,6,[START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] The bijection through the Durfee square implies the following combinatorial identity: .1.5) The generating function for the number F(m) of Frobenius partitions of m is given by

∑ s≥0 q s 2 (q; q) 2 s = 1 (q; q) ∞ . ( 2 
∑ m≥0 F(m)q m = [x 0 ](-xq; q) ∞ (-x -1 ; q) ∞ .
Indeed, the product (-xq; q) ∞ generates the partition λ together with the boxes on the diagonal where the power of x counts the number of parts, (-x -1 ; q) ∞ generates the partition µ where the power of x -1 counts the number of parts, and taking the coefficient of x 0 in the above ensures that λ and µ have the same number of parts. Using Jacobi's triple product identity (see, e.g., Andrews, 1984b), .1.6) we see that the generating function for Frobenius partitions equals 1/(q; q) ∞ , the generating function for partitions.

(-xq; q) ∞ (-x -1 ; q) ∞ (q; q) ∞ = ∑ k∈Z x k q k(k+1) 2 , ( 2 
We now extend the notion of generalized Frobenius partitions to the framework of weighted words. Let C be a set of colors, and As we defined before for the generalized colored partitions, we set c(π i ) ∈ C to be the color of the part π i . By setting π i = (λ i , µ i ), the quantity |π i | = λ i + µ i is called the size of the part π. We then define the size |π| of π to be the sum 

Z 2 C = {(z, z ) c : z, z ∈ Z , c ∈
|π 1 | + • • • + |π s |, and C(π) = c(π 1 ) • • • c(π s ) is its color sequence.
(k, l) c (k , l ) c ⇐⇒ k ≥ k and l ≥ l •
The map

((λ 1 , µ 1 ) c , • • • , (λ s , µ s ) c ) → λ 1 -1 • • • λ s -1 µ 1 • • • µ s
implies a bijection between the generalized colored Frobenius partitions, whose last part (λ s , µ s ) c is well related to [START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF]0) c in terms of , and the generalized Frobenius partitions. Moreover, this bijection preserves the size of the generalized Frobenius partitions.

In the following, we consider the relation 1 , 2 defined by two energies 1 and 2 on C as follows:

(k, l) c 1 , 2 (k , l ) c ⇐⇒ k -k ≥ 1 (c, c ) and l -l ≥ 2 (c, c ) • (2.1.7)
We then define the set F 1 , 2 of generalized colored Frobenius partition with relation 1 , 2 . This definition yields to a natural correspondence between F 1 , 2 and the subset of P 1 × P 2 of pairs (λ, µ) of generalized colored partitions having the same number of parts.

We finally extend the notion of ground to the generalized colored Frobenius partitions. Definition 2.1.27. A grounded Frobenius partition with ground c g and relation is a non-empty generalized colored Frobenius partition π = (π 0 , . . . , π s ) with relation , such that π s = (0, 0) c g , and when s > 0, π s-1 = (0, 0) c g .

In the same way, one can extend the notion of flatness and regularity to the generalized colored Frobenius Partitions, as well as the addition of a fictitious color at the end of the color sequence.

In this thesis, we will present a generalization of the identity (2.1.5) which has the following formulation.

Theorem 2.1.28. Let C be a set of colors. Then, for some suitable energies and 1 , 2 , there exists a bijection between a certain set of generalized colored partitions in P and a certain set of generalized colored Frobenius partitions in F 1 , 2 .

The correspondence between the classical partitions and the Frobenius partitions is the case where C = {c}, (c, c) = 0 with a positive size for the last part, and 1 (c, c) = 2 (c, c) = 1 with a positive size for the last pair of integer.

Rogers-Ramanujan type identities via bijective approaches

Throughout history, most of the Rogers-Ramanujan type identities were primarily discovered via the computation of q-series. Then, a combinatorial interpretation of these identities led to a equality between the cardinalities of the corresponding partition sets. A subsequent problem then consisted in building a suitable bijection to link these sets of partitions. However, in general, this still remains a difficult problem to deal with. For example, the Rogers-Ramanujan identities were prove bijectively by [START_REF] Garsia | A Rogers-Ramanujan bijection[END_REF] via the involution principle, and their bijection does not establish a direct correspondence between the partitions of the sets involved. A bijective proof without a signreversing involution is yet to be found for these identities.

In this thesis we present several identities established via bijections. We start from the identities presented in Chapter 1, formalize via our weighted words the corresponding partitions and then outline the general rules followed by these partitions. These formal rules not only allow us to build an adequate bijection for the original identities, but also allow us to discover identities which generalize them. This process succeeded for the four following identities: Göllnitz' identity, Siladić's identity, Glaisher's identity and Capparelli's identity. A fifth result on a generalization of the duality between partitions and Frobenius partitions is given is this section, but contrary to the four other generalizations, the proof is partially bijective, and the last part of the proof rests on the computation of the generation functions.

Beyond Göllnitz theorem: a generalization of Bressoud's algorithm

In a pair of papers (Konan, 2019a;Konan, 2019b), we gave a result beyond the Göllnitz theorem for an arbitrary number of primary colors.

Refinement and bijective proof of Theorem 1.3.3

In paper one (Konan, 2019a), we showed an equivalent version of Theorem 1.3.3. We supposed that the parts occur in only primary colors a, b, c, d and secondary colors ab, ac, ad, bc, bd, cd, and are ordered as in (1.3.9) by omitting quaternary parts:

1 ab < 1 ac < 1 ad < 1 a < 1 bc < 1 bd < 1 b < 1 cd < 1 c < 1 d < 2 ab < • • • • (2.2.1)
We then considered the partitions with the size of the secondary parts greater than one and satisfying the minimal difference conditions in λ i \ λ i+1 ab ac ad a bc bd b cd c d ab 2 2 2 2 2 2 2 2 2 2 ac 1 2 2 2 2 2 2 2 2 

2 ad 1 1 2 2 1 2 2 2 2 2 a 1 1 1 1 2 2 2 2 2 2 bc 1 1 1 1 2 2 2 2 2 2 bd 1 1 1 1 1 2 2 2 2 2 b 1 1 1 1 1 1 1 2 2 2 cd 0 1 1 1 1 1 1 2 2 2 c 1 1 1 1 1 1 1 1 1 2 d 1 1 1 1 1 1 1 1 1 1 , (2.2.2)
and which avoid the forbidden patterns

((k + 2) cd , (k + 2) ab , k c ), ((k + 2) cd , (k + 2) ab , k d ), ((k + 2) ad , (k + 1) bc , k a ) , (2.2.3) 
except the pattern (3 ad , 2 bc , 1 a ) which is allowed. We then obtained the following theorem:

Theorem 2.2.1. Let u, v, w, t, n be non-negative integers. Denote by A(u, v, w, t, n) the number of partitions of n into u distinct parts with color a, v distinct parts with color b, w distinct parts with color c and t distinct parts with color d, and denote by B(u, v, w, t, n) the number of partitions of n satisfying the conditions above, with u parts with color a, ab, ac or ad, v parts with color b, ab, bc or bd, w parts with color c, ac, bc or cd and t parts with color d, ad, bd or cd. We then have A(u, v, w, t, n) = B(u, v, w, t, n), and the corresponding q-series identity is given by ∑ u,v,w,t,n∈N B(u, v, w, t, n)a u b v c w d t q n = (-aq; q) ∞ (-bq; q) ∞ (-cq; q) ∞ (-dq; q) ∞ • (2.2.4)

The proof of Theorem 2.2.1 consisted of a bijection established between the two sets of partitions. We also used a second bijection to show that Theorem 2.2.1 is equivalent to Theorem 1.3.3. By specializing the variables in Theorem 2.2.1, one can deduce many partition identities. For example, by considering the following transformation in (2.2.4) dilation :

q → q 12 translations : a, b, c, d → q -8 , q -4 , q -2 , q -1 , (2.2.5)

we obtain a corollary of Theorem 2.2.1.

Corollary 2.2.2. For any positive integer n, the number of partitions of n into distinct parts congruent to -2 3 , -2 2 , -2 1 , -2 0 mod 12 is equal to the number of partitions of n into parts not congruent to 1, 5 mod 12 and different from 2, 3, 6, 7, 9, such that the difference between two consecutive parts is greater than 12 up to the following exceptions:

• λ i -λ i+1 = 9 =⇒ λ i ≡ ±3 mod 12 and λ i -λ i+2 ≥ 24, • λ i -λ i+1 = 12 =⇒ λ i ≡ -2 3 , -2 2 , -2 1 , -2 0 mod 12,
except that the pattern (27,18,[START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF] is allowed.

Example 2.2.3. For example, with n = 49, the partitions of the first kind are (35,10,[START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF], (34,11,[START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF], (28,11,10), (23,22,[START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF], (23,16,10), (22,16,11) and (16,11,10,8,[START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF] and the partitions of the second kind are (35,14), (34,15), (33,16), (45,[START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF], (39, 10), (38,11) and (27,18,[START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF] •

Generalization to an arbitrary number of primary colors

We now give a general result beyond Göllnitz' theorem, by proving a generalization of Theorem 2.2.1 for an arbitrary finite set of primary colors. Let C = {a 1 , . . . , a n } be an ordered set of primary colors, with a 1 < • • • < a n and let us set C = {a i a j : 1 ≤ i < j ≤ n}. Note that C = C 2 as we do not have color a i a j for i ≥ j.

We can naturally extend the order from C to C C with

a 1 a 2 < • • • < a 1 a n < a 1 < a 2 a 3 < • • • < a 2 a n < a 2 < • • • < a i-1 (2.2.6) < a i a i+1 < • • • < a i a n < a i < • • • < a n-1 a n < a n-1 < a n • We also set SP = {(a k a l , a i a j ) ∈ C 2 : i < j < k < l or k < i < j < l} (2.2.7)
to be the set of the special pairs of secondary colors. Note that the pairs of SP use four different primary colors.

Definition 2.2.4. The lexicographic order on the set of colored parts is defined by the following relation:

k p l q ⇐⇒ k -l ≥ χ(p ≤ q) . (2.2.8)
Explicitly, this relation implies an order on colored parts

1 a 1 a 2 ≺ • • • ≺ 1 a n ≺ 2 a 1 a 2 ≺ • • • ≺ 2 a n ≺ 3 a 1 a 2 ≺ • • • • (2.2.9)
We remark that the relation on Z C C is implied by the energy defined by .2.10) where we consider the order on the colors set in (2.2.6).

(c, c ) = χ(c ≤ c ) , ( 2 
Definition 2.2.5. Let P be the set of the positive parts with primary color, and let S be the set of the parts with secondary color in C and size greater than one. We then define two relations and on P S as follows : .2.11) and

k p l q ⇐⇒ k p (l + 1) q if p or q ∈ C k p (l + 1) q if p and q ∈ C , ( 2 
k p l q ⇐⇒    k p (l + 1) q if p or q ∈ C k p (l + 1) q if (p, q) ∈ C 2 \ SP k p l q if (p, q) ∈ SP • (2.2.12)
We observe that the relation is the minimal difference condition with respect to the energy 2 defined by and the relation is related to the energy 1 defined by .2.14) Note that k p l q implies k p l q . We can easily check that in the case n = 4 and C = {a < b < c < d}, the energies 2 and 1 correspond respectively to the minimal differences λ iλ i+1 in (1.3.10) and (2.2.2). We also remark that these differences constitute an exhaustive list of all the minimal differences for our relations, since at most four primary colors occur in any pair of colors in C C . Definition 2.2.6. A secondary color is just a product of two primary colors. For any type of partition λ, its size |λ| is the sum of its part sizes.

2 (c, c ) = 1 + χ(c ≤ c ) -χ(c = c ∈ C) -χ((c, c ) ∈ SP ) . ( 2 
1. We denote by O the set of generalized colored partitions with parts in P and relation by . We recall that c(λ i ) in C is the color of λ i , and the color sequence is

C(λ) = c(λ 1 ) • • • c(λ t )
, here viewed as a commutative product of primary colors in C.

2. We denote by E the set of generalized colored partitions with parts in P S and relation defined in (2.2.12). We then have the colors c(ν i ) ∈ C C depending on whether ν i is in P or S, and we view the color sequence C(ν) = c(ν 1 ) • • • c(ν t ) as a commutative product of colors in C.

3. We finally denote by E 2 the subset of partitions of E with relation .

We can now state the first theorem that stand for the basement of our result beyond Göllnitz' theorem.

Theorem 2.2.7. Let m be a non-negative integer and C a commutative product of primary colors in C. Denote by U(C, m) the number of partitions λ in O with (C(λ), |λ|) = (C, m), and denote by V(C, m) the number of partitions ν in E with (C(ν), |ν|) = (C, m). We then have the following inequality :

U(C, m) ≤ V(C, m) • (2.2.15)
The previous theorem implies that O can be associated to a set E 1 such that E 1 ⊂ E . We define this set E 1 using two technical tools : the different-distance and the bridge. The definition of the differentdistance is stated here, while the definition of the bridge, which is more intricate, will be given in 3.

Definition 2.2.8. Let λ = (λ 1 , • • • , λ s ) be a sequence, where the elements λ i belong to a set of colored numbers ordered by a relation , and let d be a positive number. For any i, j ∈ {1, . . . , s}, we say that λ i is d-different-distant from λ j if we have the following relation:

λ i λ j + d(j -i) • (2.2.16) Note that the relation "being d-different-distant from" is transitive, as λ i is d-different-distant from λ j and λ j is d-different-distant from λ k implies that λ i is d-different-distant from λ k .
A good example of a partition having such a property is a partition ν

= (ν 1 , • • • , ν s ) ∈ E 2 .
In fact, by (2.2.11), we recursively obtain for any i ≤ j ∈ {1, . . . , s} that ν i is 1-different-distant from ν j . This is not true in general when ν ∈ E , as by (2.2.11) and (2.2.12), a part ν i not well-ordered with ν i+1 in terms of is also not 1-different-distant from ν i+1 .

The generalization of Theorem 2.2.1 can be stated as follows.

Theorem 2.2.9. Let E 1 be the set of partitions ν = (ν 1 , . . . , ν s ) ∈ E such that, for all i ∈ {1, . . . , s -1} with

ν i-1 ν i ν i+1 ,
(2.2.17)

the part ν i is 1-different-distant from its bridge. Then, for any non-negative integer m and any commutative product of primary colors C in C, by setting U(C, m) as before in Theorem 2.2.7, and by setting W(C, m) to be the number of partitions ν in E 1 with (C(ν), |ν|) = (C, m), we then have that U(C, m) = W(C, m) and the identity

∑ m,u 1 ,...,u n ≥0 W( n ∏ i=1 a u i i , m) n ∏ i=1 a u i i q m = ∑ m,u 1 ,...,u n ≥0 U( n ∏ i=1 a u i i , m) n ∏ i=1 a u i i q m = (-a 1 q; q) ∞ • • • (-a n q; q) ∞ • (2.2.18)
Another identity, discovered by Corteel and Lovejoy, 2006, relates the same set of partitions, with primary colored parts, to a set of partitions with parts having some colors as products of at most n different primary colors, giving 2 n -1 colors in total.

Note that by definition, a partition in E 2 never satisfies (2.2.17), so that the definition of E 1 still holds for this partition. We thus have E 2 ⊂ E 1 ⊂ E . We also remark that SP is empty for C with fewer than four primary colors, so that in that case, E 2 = E . Therefore, Theorem 2.2.9 implies the Alladi-Andrews-Gordon refinement of Göllnitz' identity. For n ≥ 4, the set E 1 can be seen as a subset of E that avoids some patterns. When n = 4, we show that the forbidden patterns are the ones described in Theorem 2.2.1. For n > 4, the enumeration of forbidden patterns becomes more intricate. Chapter 3 is dedicated to the discussion on the result beyond Göllnitz' theorem.

Beyond Siladić's theorem: weighted words in the framework of statistical mechanics

In papers (Konan, 2020a;Konan, 2020b), we gave a result beyond the Dousse refinement of Siladić's theorem for an arbitrary number of primary colors. In this section, we view the weighted words in the framework of statistical mechanics.

Integer partitions in statistical mechanics

The connection between integer partitions and physics was first pointed out by [START_REF] Bohr | The Unreasonable Effectiveness of Number Theory[END_REF]. In the same year, Van Lier and Uhlenbeck noted links between the problem of counting microstates of the systems obeying Bose or Fermi statistics and some problems related to integer partitions [START_REF] Lier | On the statistical calculation of the density of the energy levels of the nuclei[END_REF].

Since then, a current approach in statistical mechanics consists in considering a partition of a given integer into parts with certain restrictions as a sharing of a fixed amount of energy among the different possible states of an assembly. This approach can be found in the seminal works of Auluck and Kothari [START_REF] Auluck | Statistical mechanics and the partitions of numbers[END_REF], Temperley [START_REF] Temperley | Statistical mechanics and the partition of numbers. I. The transition of liquid helium[END_REF] and Nanda [START_REF] Nanda | Partition theory and thermodynamics of multidimensional oscillator assemblies[END_REF].

We now refer to the colors as states, and the sizes of parts as potentials. The main goal will consist in using a new variant of Bressoud's algorithm as a process in which we operate energy transfers according the states involved in the generalized colored partition. Recall that the allowable differences between the potentials of consecutive particles in Siladić's identity are defined by a certain energy. By taking a larger family of allowable energies, we generate an infinite family of identities generalizing the Siladić theorem for a arbitrary number of primary states.

Let C be a set of states, countable or not, and let P = Z C be the corresponding set of particles. We recall that the energetic particle k c is identified by its potential k and its state c. In the remainder of this section, such a particle is called a primary particle. We consider a relation on Z C related to a minimal energy, and we recall that O is the set of generalized colored partitions with relation . Here, we recall that

k p l q =⇒ k -l ≥ (p, q) • (2.2.19)
The sequence of colors in now referred to as the State of the partition.

Suitable secondary particles and generalization of Dousse's refinement

We recall that a secondary state is the product of two primary states. The key idea is to build secondary particles starting from the primary particles. The following definition permits a suitable construction for these secondary particles.

Definition 2.2.10. We define the secondary particles as sums of two consecutive primary particles in terms of . We denote by S = Z × C 2 the set of secondary particles, in such a way that the particle .2.20) has potential 2k + (c, c ) and state cc . In fact, (k + (c, c ), c) is exactly the primary particle of state c with smallest potential, which is well-related to (k, c ) in terms of . We then set the functions γ and µ on S, defined by .2.21) to be respectively the upper and lower halves of (k, c, c ). In the following, we identify a secondary particle as (k, c, c ) or (2k + (c, c )) cc .

(k, c, c ) = (k + (c, c ), c) + (k, c ) (2 
γ(k, c, c ) = (k + (c, c ), c) and µ(k, c, c ) = (k, c ) , ( 2 
Example 2.2.11. Let us take C = {a, a} in Example 2.1.7. We then have a a a 1 1 a 0 0 and we obtain with Definition 2.2.10 and (2.2.35) the following secondary particles:

         (k, a, a) = 2k a 2 , (k, a, a) = 2k aa ≡ 2k a 2 , (k, a, a) = 2k + 1 aa ≡ 2k + 1 a 2 , (k, a, a) = 2k + 1 a 2 ≡ 2k + 1 a 2 •
We now build a relation on the set P S of primary and secondary particles. Definition 2.2.12. We define the relation on P S as follows:

1. Two primary particles of P are well-ordered by if and only if they are well-ordered but not consecutive in terms of :

(k, c) (k , c ) ⇐⇒ k -k > (c, c ) • (2.2.22)
2. A primary particle of P is well-ordered with a secondary particle of S if and only if their potentials' difference is at least equal to the energy of transfer from the first to the last primary states:

(k, c) (k , c , c ) ⇐⇒ k -(2k + (c , c )) ≥ (c, c ) + (c , c ) • (2.2.23) 3.
A secondary particle of S is well-ordered with a primary particle of P if and only if their potentials' difference is greater than the transfer energy (from first to last state):

(k, c, c ) (k , c ) ⇐⇒ (2k + (c, c )) -k > (c, c ) + (c , c ) • (2.2.24)
4. Two secondary particles of S are well-ordered by if and only if the lower half of the first one is greater than the upper half of the second in terms of :

(k, c, c ) (k , c , c ) ⇐⇒ µ(k, c, c ) γ(k , c , c ) • (2.2.25)
This is equivalent to saying that the potentials' difference kk is at least equal to the energy of transfer (c , c ) + (c , c ).

One can check that for C = {a < b} and the minimal energy described in Example 2.1.7, the relations in the latter definition exactly give the minimal difference conditions presented in (2.2.34).

Remark 2.2.13. We notice that

(k, c) (k , c ) and (k, c) (k , c ) ⇐⇒ k -k = (c, c ) • (2.2.26)
Such pair of primary particles is called a troublesome pair.

Definition 2.2.14. We define O (respectively E ) to be the set of all generalized colored partitions with particles in P (respectively P S) and relation (respectively ).

For ρ ∈ {0, 1}, we consider the following sets:

• P ρ + = Z ≥ρ × C and S ρ + = Z ≥ρ × C 2 = {(k, c, c ) ∈ S : k ≥ ρ}, • P ρ -= Z ≤ρ × C and S ρ -= {(k, c, c ) ∈ S : k + (c, c ) ≤ ρ}.
We then denote by O ρ + (respectively O ρ -) the subset of O of generalized colored partitions with particles in P ρ + (respectively P ρ -), and by E ρ + (respectively E ρ -) the subset of E of generalized colored partitions with particles in P ρ + S ρ + (respectively P ρ -S ρ -).

Since the secondary states are products of two primary states, the States of partitions in O and E are then seen as a finite non-commutative product of primary states in C.

We now state the main result of this part. Theorem 2.2.15. For any integer n and any State C as a finite non-commutative product of states in C, there exists a bijection between {λ ∈ O : (C(λ), |λ|) = (C, n)} and {ν ∈ E : (C(ν), |ν|) = (C, n)}. In particular, for ρ ∈ {0, 1}, we have the identities

|{ν ∈ E ρ + : (C(ν), |ν|) = (C, n)}| = |{λ ∈ O ρ + : (C(λ), |λ|) = (C, n)}| , (2.2.27) |{ν ∈ E ρ -: (C(ν), |ν|) = (C, n)}| = |{λ ∈ O ρ -: (C(λ), |λ|) = (C, n)}| • (2.2.28)
One can observe that, for any integer n and any State C with at least two primary states, the sets {λ ∈ O : (C(λ), |λ|) = (C, n)} and {ν ∈ E : (C(ν), |ν|) = (C, n)} are infinite. However, as soon as we give an upper or a lower bound on the particles' potentials, the corresponding subsets are finite. (C(λ), |λ|) = (baba, 10)} = ∅ and the corresponding partitions for ρ + are given in the following table: 

O 0 + O 1 + E 0 + E 1 + (9 b , 1 a , 0 b , 0 a ) (9 b , 1 a , 0 ba ) (8 b , 2 a , 0 b , 0 a ) (8 b , 2 a , 0 ba ) (7 b , 3 a , 0 b , 0 a ) (7 b , 3 a , 0 ba ) (7 b , 2 a , 1 b , 0 a ) (7 b , 3 ab , 0 a ) (6 b , 4 a , 0 b , 0 a ) (6 b , 4 a , 0 ba ) (6 b , 3 a , 1 b , 0 a ) (6 b , 3 a , 1 b , 0 a ) (6 b , 2 a , 1 b , 1 a ) (6 b , 2 a , 1 b , 1 a ) (6 b , 3 ab , 1 a ) (6 b , 3 ab , 1 a ) (5 b , 4 a , 1 b , 0 a ) (9 ba , 1 b , 0 a ) (5 b , 3 a , 2 b , 0 a ) (7 ba , 3 b , 0 a ) (5 b , 3 a , 1 b , 1 a ) (5 b , 3 a , 1 b , 1 a ) (5 b , 3 a , 2 ba ) (5 b , 3 a , 2 ba ) (4 b , 3 a , 2 b , 1 a ) (4 b , 3 a , 2 b , 1 a ) (7 ba , 2 b , 1 a ) (7 ba , 2 b ,
O 1 - O 0 - E 1 - E 0 - (1 b , 0 a , -1 b , -8 a ) (1 b , -1 ab , -8 a ) (1 b , 0 a , -2 b , -7 a ) (1 ba , -2 b , -7 a ) (1 b , 0 a , -3 b , -6 a ) (1 ba , -3 b , -6 a ) (1 b , -1 a , -2 b , -6 a ) (1 b , -3 ab , -8 a ) (1 b , 0 a , -4 b , -5 a ) (1 ba , -4 b , -5 a ) (1 b , -1 a , -3 b , -5 a ) (1 b , -1 a , -3 b , -5 a ) (0 b , -1 a , -2 b , -5 a ) (0 b , -1 a , -2 b , -5 a ) (0 b , -3 ab , -5 a ) (0 b , -3 ab , -5 a ) (1 b , -1 a , -4 b , -4 a ) (1 b , -1 a , -8 ba ) (1 b , -2 a , -3 b , -4 a ) (1 b , -3 a , -6 ba ) (0 b , -1 a , -3 b , -4 a ) (0 b , -1 a , -3 b , -4 a ) (-1 b , -3 a , -4 ba ) (-1 b , -3 a , -4 ba ) (0 b , -2 a , -3 b , -3 a ) (0 b , -2 a , -3 b , -3 a ) (0 b , -2 a , -6 ba ) (0 b , -2 a , -6 ba )
We obtain the following corollary of Theorem 2.2.15.

Corollary 2.2.17. For any set C of primary states and any minimal energy on C 2 , we have

∑ n≥0 C∈<C> |{ν ∈ E ρ + : (C(ν), |ν|) = (C, n)}|Cq n = ∑ n≥0 C∈<C> |{λ ∈ O ρ + : (C(λ), |λ|) = (C, n)}|Cq n = ∏ m≥ρ F C ( ; q m ) (2.2.29)
where < C > is the non-commutative group generated by the primary states of C, and F C ( , x) is a series in the commutative algebra Z[[C, x]], and C is the commutative product corresponding to C in Z[ [C, x]]. In particular, we have the following explicit expressions for F C ( , x):

1. For C = {c 1 , . . . , c n }, we have

(c i , c j ) F C ( , x) 0 1 1 -(c 1 + • • • + c n )x 1 1 + (c 1 + • • • + c n )x χ(i = j) 1 + n ∑ i=1 c i x 1 -c i x χ(i < j) n ∏ i=1 1 1 -c i x χ(i ≤ j) n ∏ i=1 (1 + c i x) (2.2.30)
2. For C = {c 1 , . . . , c n } and as described in Example 2.1.7,

F C ( , x) = n ∏ i=1 1 + c i x 1 -c i x • (2.2.31)
3. For C = {a, b} and as described in Example 2.1.8,

F C ( , x) = (1 + ax)(1 + bx) (1 -abx 2 ) • (2.2.32)

Application to overpartitions

We now give an example that will generalize Siladić's theorem to overpartitions. Recall that an overpartition is a partition where we can over-line at most one occurrence of each positive integer [START_REF] Corteel | Overpartitions[END_REF]. It has been a recurrent problem in partition theory to extend some partition identities to overpartitions [START_REF] Dousse | On generalizations of partition theorems of Schur and Andrews to overpartitions[END_REF]Dousse, 2017a;Lovejoy, 2003;[START_REF] Corteel | Overpartitions[END_REF].

Consider the set of colors C = {b < a < a < b} and the relation defined by the minimal difference conditions in the following energy matrix

D :=     b a a b b 1 1 1 1 a 0 1 1 1 a 0 0 0 1 b 0 0 0 0     • (2.2.33)
These differences correspond to the energy of Example 2.1.7 for (c 1 , c 2 ) = (a, b). They imply that a partition in O can have any number of primary particles with a fixed potential and a non over-lined state, while there is at most one primary particle with a fixed potential and an over-lined state. The partitions of O are then identified as the generalized overpartitions whose definition is given by the following. Definition 2.2.18. Let us fix a set of states C. A generalized overpartition is a generalized partition where we are allowed to over-line at most one particle with a fixed potential and state.

Example 2.2.19. The generalized partition (1 a , 1 a , 1 b , 0 b , 0 b , 0 a , 0 a , 0 a , 0 b , -1 b , -1 a ) belongs to O, and corresponds to the generalized overpartition (1 a , 1 a , 1 b , 0 b , 0 b , 0 a , 0 a , 0 a , 0 b , -1 b , -1 a ).

We then call the partitions in O the colored overpartitions, and this means that we can have any number of particles with a fixed potential and state, with at most one such particle over-lined. We observe that once a particle is over-lined, by the difference conditions in D, it no longer has the same order with respect to the other particles. For example, we have 1 b 1 a but 1 b ≺ 1 a . This is different from the usual convention, but the way we defined these relative orders plays a major role in the definition of the corresponding secondary particles.

The relation then corresponds the minimal difference conditions in the following table

D := b a a b b 2 ba ba bb ab a 2 aa ab ab aa a 2 ab bb ba ba b 2 b 2 2 2 2 2 2 2 2 1 2 2 2 1 1 1 2 1 1 1 1 a 1 2 2 2 1 1 1 1 1 2 2 2 1 1 1 2 1 1 1 1 a 1 1 1 2 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 b 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0 bb 3 3 3 3 4 4 4 4 3 4 4 4 3 3 3 4 3 3 3 3 ba 2 3 3 3 2 2 2 2 3 4 4 4 3 3 3 4 3 3 3 3 ba 2 2 2 3 2 2 2 2 1 2 2 2 1 1 1 2 3 3 3 3 bb 2 2 2 2 2 2 2 2 1 2 2 2 1 1 1 2 1 1 1 1 ab 1 1 1 1 3 3 3 3 2 3 3 3 2 2 2 3 2 2 2 2 a 2 2 3 3 3 2 2 2 2 3 4 4 4 3 3 3 4 3 3 3 3 aa 2 2 2 3 2 2 2 2 1 2 2 2 1 1 1 2 3 3 3 3 ab 2 2 2 2 2 2 2 2 1 2 2 2 1 1 1 2 1 1 1 1 ab 1 1 1 1 3 3 3 3 2 3 3 3 2 2 2 3 2 2 2 2 aa 1 2 2 2 1 1 1 1 2 3 3 3 2 2 2 3 2 2 2 2 a 2 1 1 1 2 1 1 1 1 0 1 1 1 0 0 0 1 2 2 2 2 ab 2 2 2 2 2 2 2 2 1 2 2 2 1 1 1 2 1 1 1 1 bb 1 1 1 1 3 3 3 3 2 3 3 3 2 2 2 3 2 2 2 2 ba 1 2 2 2 1 1 1 1 2 3 3 3 2 2 2 3 2 2 2 2 ba 1 1 1 2 1 1 1 1 0 1 1 1 0 0 0 1 2 2 2 2 b 2 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0 • (2.2.34)
By definition, the secondary particles with state cc then have a potential with the same parity as the entry of D corresponding to the row c and the column c . Therefore, we have the following correspondence for secondary states: where c parity refers to a particle with state c and potential with the same parity as the index. Here again, the generalized partitions in E can be identified as some generalized overpartitions for the set of colors {a, b, a 

     b a
∑ n,u,v,w≥0 B(n; u, v, w)a u b v c w d u+v-w q n = ∑ n,u,v,w≥0
A(n; u, v, w)a u b v c w d u+v-w q n = (-acq; q) ∞ (-bcq; q) ∞ (adq; q) ∞ (bdq; q) ∞ •

(2.2.36)

In the previous corollary, if we restrict the partitions in O to those with only over-lined particles, i.e u + v = w, and by applying the transformations (q, a, b, c, d) → (q 4 , q -1 , q -3 , 1, 0), we recover the identity given by Siladić and corresponding to Theorem 1.3.4. On the other hand, by restricting the partitions in O to those with only non over-lined particles, i.e w = 0, and by applying the transformations (q, a, b, c, d) → (q 4 , q -3 , q -1 , 0, 1), we obtain the following analogue of Siladić's theorem. Theorem 2.2.21. The number of partitions λ 1 + • • • + λ s of an integer n into odd parts is equal to the number of partitions of n such that

λ i -λ i+1 = 0 ⇒ λ i + λ i+1 ≡ ±4 mod 16 , λ i -λ i+1 = 1 ⇒ λ i + λ i+1 ≡ ±3 mod 16 , λ i -λ i+1 = 2 ⇒ λ i + λ i+1 ≡ ±2, ±6 mod 16 , λ i -λ i+1 = 3 ⇒ λ i + λ i+1 ≡ ±1, ±5, ±7 mod 16 • Example 2.2.22.
For n = 10, the partitions of n into odd parts are (9, 1), (7, 3), (7, 1, 1, 1), [START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF], [START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], [START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], [START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], [START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF] , 1, 1, 1, 1) (3, 1, 1, 1, 1, 1, 1, 1) and(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) and the partitions of given by Theorem 2.2.21 are (10), (9, 1), (8, 2), (7, 3), (7, 2, 1), (6,[START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF] , (6, 2, 2), (5, 2, 2, 1), (4, 2, 2, 2) and(2, 2, 2, 2, 2) • Remark 2.2.23. For Siladić's theorem, since we have b < a, we carry out the transformation (a, b) → (q -1 , q -3 ) to keep the order, while for its analogue, we have a < b and we then apply (a, b) → (q -3 , q -1 ).

The proof of Theorem 2.2.15 will be given in Chapter 4.

Beyond Glaisher's theorem: a duality between flat and regular partitions

In paper (Konan, 2020c), we gave a result beyond the refinement of Keith-Xiong, that links our general definition of flat partitions and regular partitions given in terms of weighted words. Here again, we see the weighted words in the framework of statistical mechanics.

Weighted words at degree one

Let C be a set of primary states, and let be a minimal energy. We set F ,c g 1 to be the set of primary flat partitions, which are the flat partitions with ground c g and energy . Recall that the energy defines a relation as follows,

k c k c ⇐⇒ k -k = (c, c )• (2.2.37)
Let us also recall the energy relation defined by .2.38) and let R

k c k c ⇐⇒ k -k ≥ (c, c ) , ( 2 
,c g 1 be the set of primary c g -regular partitions, which are the c g -regular partitions with ground c g and relation .

Assuming that c g = 1, one can see, for both flat or regular partitions, the state sequence as a product of states in C \ {c g }. Let us set C = C \ {c g }. Depending on certain properties of , we can build a bijection between R ,c g 1 and F

,c g 1 which preserves both the Energy and the State of partitions.

Theorem 2.2.24 (degree one). Let us assume that (c g , c g ) = 0, and that for all c, c = 0,

(c , c g ) = (c, c g ) = 1 -(c g , c) • (2.

2.39)

There then exists a bijection Ω between F ,c g 1 and R

,c g 1 which preserves the total energy and the sequence of states different from c g . This theorem is a generalization of Theorem 1.2.6. To see that Theorem 2.2.24 implies Theorem 1.2.6, we take the set C = {c 0 , . . . , c m-1 }, and set c g = c 0 . Theorem 1.2.6 then corresponds to the energy (c i , c j ) = χ(i < j), followed by the transformation (q, c 0 , c 1 , . . . , c m-1 ) → (q m , 1, q, . . . , q m-1 ) •

The latter operation means that the particle is k c i is transformed into the part mk + i, and the relations in (2.2.37) and (2.2.38) induced by then become

mk + i mk + i ⇐⇒ (mk + i) -(mk + i ) = i -i if i ≥ i m + i -i if i < i , mk + i mk + i ⇐⇒ (mk + i) -(mk + i ) ≥ i -i if i ≥ i m + i -i if i < i •
Note that the last part corresponds to 0 for both flat and regular partitions after this transformation. We then retrieve the flat partitions of Example 2.1.20 and the regular partitions in Example 2.1.16, except that we implicitly assimilate the congruence modulo m of the part size to the unique corresponding state in C.

Similarly, Theorem 1.2.6 is also implied by Theorem 2.2.24 with the energy (c i , c j ) = χ(i > j) followed by the transformation (q, c 0 , c 1 , . . . , c m-1 ) → (q m , 1, q -1 , . . . , q 1-m ), in which case the particle k c i is assimilated to the part kmi.

In the same way, we obtain the analogue of Glaisher, stated in Corollary 2.2.25, by considering the same set of states C = {c 0 , . . . , c m-1 }, the ground c g = c 0 , the transformation (q, c 0 , c 1 , . . . , c m-1 ) → (q m , 1, q, . . . , q m-1 ), but a slightly different energy defined by

(c i , c j ) =      χ(i < j) if i = j 0 if i = j = 0 1 if i = j = 0 • Note that the restriction of to C \ {c 0 } = C then gives (c i , c j ) = χ(i ≤ j).
Here we give a corollary of Theorem 2.2.24 as the following analogue of Glaisher's theorem for mregular partitions into distinct parts. (16), (14, 2), (13, 2, 1), (11, 5), (11, 4, 1), (10, 5, 1), (10, 4, 2), (8, 7, 1), (8, 5, 2, 1), and(7, 5, 4) andthe 4-flat partitions of 16 of the second kind are (8, 5, 2, 1), (7, 5, 3, 1), (7, 4, 3, 2), (6, 5, 4, 1), (6, 5, 3, 2), (6, 4, 3, 2, 1), (5, 4, 3, 3, 1), (5, 3, 3, 3, 2), (4, 3, 3, 3, 2, 1), and(3, 3, 3, 3, 3, 1) • Another consequence of Theorem 2.2.24 consists in easing the computation of characters of the representations of some affine Lie algebras.

Weighted words at degree two

The second result, Theorem 2.2.31 below, concerns weighted words at degree two, and energies satisfying = up to some exceptions. This second theorem uses Theorem 2.2.24 and Theorem 2.2.15. In the particular case of representations of affine Lie algebras we study here, Theorem 2.2.31 allows us to connect the difference conditions of Theorem 2.2.15 and the energy function of the square, in terms of tensor product, of the vector representation. Let us now assume that satisfies the conditions of Theorem 2.2.24 and consider the set of secondary particles S defined in Definition 2.2.10. We set δ g to be the common value of (c g , c) for all c ∈ C . Definition 2.2.27. We define F ,c g 2 to be the set of secondary flat partitions, which are the flat partitions into secondary particles in S, with ground c 2 g and energy 2 defined by

2 (cc , dd ) = (c, c ) + 2 (c , d) + (d, d ) • (2.2.40)
Remark 2.2.28. The definition of 2 is equivalent to defining a relation 2 on secondary particles which satisfies the following:

(2k + (c, c )) cc 2 (2l + (d, d )) dd ⇐⇒ (2k + (c, c )) -(2l + (d, d )) = (c, c ) + 2 (c , d) + (d, d ) • ⇐⇒ k -(l + (d, d )) = (c , d) ⇐⇒ µ((2k + (c, c )) cc ) γ((2l + (d, d )) dd ) • (2.2.41) Definition 2.2.29. We set R ,c g 2
to be the set of secondary regular partitions, which are the regular partitions into secondary particles in S, with ground c 2 g and the energy defined by .2.43) and the additional exceptions when δ g = 1:

2 (cc , dd ) = 2 (cc , dd ) + 2δ (cc , dd ) , (2.2.42) where δ (cc , dd ) = 0 apart from δ (cc g , c g d ) = (c, d ) for all c, d ∈ C , ( 2 
δ (cc , dd ) = -1 if c = c g , c , d, d ∈ C and (c , d) = 1 c = c g , c, d, d ∈ C and (c, d) = 0 (2.2.44) δ (cc , dd ) = 1 if d = c g , c , d ∈ C and (c , d) = 0 d = c g , c, c , d ∈ C and (c , d ) = 1 • (2.2.45)
Remark 2.2.30. Note that the energy 2 defines a binary relation on secondary particles of S as follows,

(2k + (c, c )) cc (2l + (d, d )) dd ⇐⇒ k -l -(c , d) -(d, d ) ≥ δ (cc , dd ) • (2.2.46)
Since in the regular partitions we never have a state b 2 except for the last part 0 b 2 , one can consider these partitions as partitions into particles with state in {a 2 , ab, ba}, satisfying the minimal difference condition in

M 2 =   a 2 ab ba a 2 4 4 3 ab 2 2 3 ba 3 3 2  
and such that the minimal potentials for the particle with state a 2 , ab and ba are respectively 3, 1 and 2. By applying the transformation (q, a, b) → (q 3 , q -2 , 1), we obtain the following corollary of Theorem 2.2.31.

Corollary 2.2.32. Let n be a non-negative integer. Let A(n) be the number of partitions of n into distinct parts congruent to 1, 4, 5 modulo 6 such that two consecutive parts differ by at least 6 with equality only if they are not congruent to 5. Let B(n) be the number of 13-flat partitions into parts congruent to 0, 1, 4, 5 modulo 6, the smallest part less than 6, and such that:

• two consecutive parts congruent to 1, 4, 5 modulo 6 differ by at least 6 with equality only if they are not congruent to 5 mod 6, with the exception that that they differ by 3 if the greater is congruent to 1 and the smaller to 4 modulo 6,

• two consecutive parts, with at least one divisible by 6, differ by less than 6, except that they differ by 7 when the larger part is divisible by 6 and the smaller part is congruent to 5 modulo 6.

We then have that A(n) = B(n), and the corresponding identity is (16,10,[START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF], (16,7,6,[START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], (13,12,[START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF], (13,10,6,[START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF], (13,7,6,[START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] and (11,6,6,6,[START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] •

∑ n≥0 B(n)q n = ∑ n≥0 A(n)q n = (-q; q 3 ) ∞ • (2.2.
We then have A(30) = B(30) = 7.

Beyond the Durfee square: a duality between colored partitions and colored Frobenius partitions

In this section we present a result generalizing the identity that links partitions to Frobenius partitions. For a particular case, we retrieve the generalization of Primc's identities given in (Dousse and Konan, 2019a). Chapter 6 is dedicated to the proof of the duality theorem.

Color reduction and duality

Let C be a set of colors, and C free C bound a set-partition of C. We called C free the set of free colors, and C bound the set of bound colors. Let a and b be two functions from C bound to C free . We now define the first notion needed for the duality theorem. A sequence of colors c 1 , . . . , c s is said to be reduced if red a,b (c 1 , . . . , c s ) = c 1 , . . . , c s , which is equivalent to saying that the sequence of colors c 1 , . . . , c s does not have the forbidden patterns defined above.

Given a sequence c 1 , . . . , c s of colors taken from C, the reduced color sequence red a,b (c 1 , . . . , c s ) is then obtained after applying the following operations:

• if there is some i such that c i ∈ C free and c i+1 = c i , then remove c i+1 from the color sequence,

• if there is some i such that c i ∈ C bound and c i+1 = b(c i ), then remove c i+1 from the color sequence,

• if there is some i such that c i ∈ C bound and c i = a(c i+1 ), then remove c i from the color sequence.

The reduction operation only removes free colors and the order in which removals are done does not have any influence on the final result. 

= j ∈ N, a(a i b j ) = a i b i and b(a i b j ) = a j b j • The reduction of a 1 b 1 , a 1 b 2 , a 2 b 2 , a 3 b 3 , a 3 b 1 , a 1 b 3 , a 3 b 3 , a 3 b 3 , a 3 b 2 , a 1 b 1 is a 1 b 2 , a 3 b 1 , a 1 b 3 , a 3 b 2 , a 1 b 1 . Definition 2.2.36. Let π = (π 1 , • • • , π s ) be a generalized colored (Frobenius) partition such that c(π 1 ) = c 1 , . . . , c(π s ) = c s ∈ C.
The kernel of π with respect to the function a and b, denoted by ker a,b (π), is the reduced color sequence red a,b (c 1 , . . . , c s ).

Definition 2.2.37. In the following, we consider a fictitious color c ∞ , and an energy defined on C {c ∞ } satisfying the following,

1. for any c, c ∈ C free {c ∞ }, (c, c ) = χ(c = c ) , (2.2.48) 2. for any c ∈ C bound , (a(c), c) + (c, b(c)) = 1 , (2.2.49) and for any c ∈ (C free {c ∞ }) \ {a(c)}, (c , c) ∈ { (a(c), c), (a(c), c) + 1} , (2.2.50) and for any c ∈ (C free {c ∞ }) \ {b(c)}, (c, c ) ∈ { (c, b(c)), (c, b(c)) + 1} , (2.2.51) 3. for any c, c ∈ C bound , (c, c ) = (c, a(c )) + (b(c), c ) -χ(b(c) = a(c )) • (2.2.52)
Such an energy is said to be well-defined according to the reduction with respect to a and b.

Let us now consider weighted words on C {c ∞ }, and denote by P c ∞ the set of generalized colored partitions c ∞ -regular with ground c ∞ and relation as defined in Definition 2.1.3. It is then equivalent to consider weighted words on C and the generalized colored partitions in P with restricted to C, and such that the minimal size for the last part with color c is (c, c ∞ ).

Example 2.2.38. For the set of colors as in Example 2.2.35, as well as the free and bound colors, and function a and b, one can check that the energy defined by

(a i b j , a k b l ) = χ(i ≥ k) -χ(i = j = k) + χ(j ≤ l) -χ(j = k = l) , (c ∞ , a i b j ) = 1 and (a i b j , c ∞ ) = 1
is well-defined according to the reduction with respect to a and b.

Let us now consider two energies 1 and 2 on C {c ∞ } such that

1 (c, c ) + 2 (c, c ) =          2 if c = c ∈ C free {c ∞ } (c, c ) + 1 if c ∈ C bound and c = a(c ) (c, c ) + 1 if c ∈ C bound and c = b(c) (c, c ) otherwise .
(2.2.53)

Denote by F c ∞ 1 , 2 the set of generalized colored Frobenius partitions c ∞ -regular with ground c ∞ and relation 1 , 2 as defined in (2.1.7).

We are now ready to state the duality theorem. Unlike most classical Rogers-Ramanujan type identities, we relate the generalized colored partitions to the generalized colored Frobenius partitions. Theorem 2.2.39. Let be an energy well-defined according to the reduction with respect to a and b, and 1 , 2 defined as in (2.2.53). There exists a bijection between P c ∞ and F c ∞ 1 , 2 which preserves the size and the kernel of the generalized colored partitions and Frobenius partitions.

We retrieve the correspondence between the classical partitions and Frobenius partitions by setting

C = C free = {c}, 1 (c, c ∞ ) = 1 and 2 (c, c ∞ ) = 0.

Generalized n 2 -colored Primc's partitions and n 2 -colored Frobenius partitions

Here, we consider the set of colors defined in Example 2.2.35. Recall that C = {a i b j : i, j ∈ N}. The free colors are the elements of the set C free = {a i b i : i ∈ N}, and the bound colors are the elements of the set C bound = {a i b k : i = k, i, k ∈ N}. We now define the difference conditions, which generalize those of matrices (1.4.3) and (1.4.5) in the two identities of Primc. Definition 2.2.40. For all i, k, i , k ∈ N, we define the minimal difference ∆ between a part colored a i b k and a part colored a i b k in the following way:

∆(a i b k , a i b k ) = χ(i ≥ i ) -χ(i = k = i ) + χ(k ≤ k ) -χ(k = i = k ), ( 2 

.2.54)

For non-negative integers < n, we define P ,n to be the set of grounded partitions λ = (λ 1 , • • • , λ s , 0 a b ) with ground a b and relation ∆ . To simplify some calculations throughout the thesis, we adopt the following convention: if c 1 , . . . , c s , is the color sequence of the partition λ 1 , • • • , λ s , we remove the last color a b and add fictitious colors c 0 = c s+1 = c ∞ to both extremities of the color sequence. The difference conditions are, for all i, k ∈ N,

∆(c ∞ , a i b k ) = 1 and ∆(a i b k , c ∞ ) = χ(i ≥ ) + χ(j < ) •
In particular, when = 0, we have ∆(a i b k , c ∞ ) = 1 for all i, j ∈ N. The difference conditions defining P 0,n generalized Primc's difference conditions matrices P 2 and P 3 in (1.4.3) and (1.4.5) 

= a 1 b 0 , b = a 0 b 0 , c = a 1 b 1 , d = a 0 b 1 , as shown in Table (2.2.55), then P 0,2 is exactly the set of partitions with difference conditions (1.4.3) of Primc's 4-colored theorem. b i \ a i 0 1 0 b a 1 d c (2.2.55) For example, ∆(a, b) = ∆(a 1 b 0 , a 0 b 0 ) = χ(1 ≥ 0) -χ(1 = 0 = 0) + χ(0 ≤ 0) -χ(0 = 0 = 0) = 1 -0 + 1 -1 = 1.
This is exactly the entry in row a and column b in (1.4.3).

Example 2.2.42. The set P 0,3 is exactly the set of partitions with difference conditions (1.4.5) of Primc's 9-colored theorem. For example,

∆(a 2 b 0 , a 2 b 1 ) = χ(2 ≥ 2) -χ(2 = 0 = 2) + χ(0 ≤ 1) -χ(0 = 2 = 1) = 1 -0 + 1 -0 = 2.
This is exactly the entry in row a 2 b 0 and column a 2 b 1 in (1.4.5).

Recall the functions a and b defined from C bound to C free by

a(a i b j ) = a i b i and b(a i b j ) = a j b j • By setting ∆(c ∞ , c ∞ ) = 0,
one can check that ∆ is an energy well-defined according to the reduction with respect to a and b, and the set P ,n then corresponds to the set P c ∞ ∆ . Let us now set energies ∆ 1 and ∆ 2 on C {c ∞ } as follows: (2.2.56) This allows us to define the set F c ∞ 1 , 2 the set of generalized colored Frobenius partitions c ∞ -regular with ground c ∞ and relation 1 , 2 . This set is in bijection with the set of the pairs of generalized colored partitions in (λ, µ) having the same numbers of parts, for any λ being a finite subsequence of

         ∆ 1 (a i b j , a k b l ) = χ(i ≥ k) , ∆ 1 (c ∞ , a i b j ) = 1 , ∆ 1 (a i b j , c ∞ ) = χ(i ≥ ) , ∆ 1 (c ∞ , c ∞ ) = 0 and          ∆ 2 (a i b j , a k b l ) = χ(j ≤ k) , ∆ 2 (c ∞ , a i b j ) = 1 , ∆ 2 (a i b j , c ∞ ) = χ(j < ) , ∆ 2 (c ∞ , c ∞ ) = 0 .
• • • > 2 a n-1 > 1 a 0 > • • • > 1 a n-1 > 0 a 0 > • • • > 0 a -2 > 0 a -1
and any µ being a finite subsequence of

• • • > 2 a 0 > 1 a n > • • • > 1 a 0 > 0 a n-1 > • • • > 0 a +1 > 0 b •
We denote by F ,n the latter set of pairs of generalized colored partitions. This allows us to find simple and elegant formulations for the generating functions. Following the same reasoning as for classical Frobenius partitions, the generating function for the number .2.58) This refines the following expression due to Andrews (Andrews, 1984a, (5.14)):

F ,n (m; u 0 , . . . , u n-1 ; v 0 , . . . , v n-1 ) of n 2 -colored Frobenius partitions of m where for i ∈ {0, . . . , n -1}, the symbol a i (resp. b i ) appears u i (resp. v i ) times, is ∑ m,u 0 ,...,u n-1 ,v 0 ,...,v n-1 ≥0 F n (m; u 0 , . . . , u n-1 ; v 0 , . . . , v n-1 )q m a u 0 0 • • • a u n-1 n-1 b v 1 1 • • • b v n-1 n-1 (2.2.57) = [x 0 ] n-1 ∏ i=0 (-xa i q χ(i≥ ) ; q) ∞ (-x -1 b i q χ(i< ) ; q) ∞ . ( 2 
CΦ n (q) = [x 0 ](-xq; q) n ∞ (-x -1 ; q) n ∞ ,
for the case = 0, and where the colors were not taken into account in the generating function. Note that the generating function (2.2.57) only depends on the condition "all parts are distinct" in λ and µ.

In (Andrews, 1984a, (4.8)), Andrews defined a generalization of Frobenius partitions where λ and µ are partitions into distinct parts chosen from {k j : k ∈ N, 1 ≤ j ≤ n}, where k j = k j if and only if k = k and j = j . Their generating function CΦ n (q) has been widely studied from the point of view of modular forms and congruences, see for example [START_REF] Chan | Modular forms and k-colored generalized Frobenius partitions[END_REF][START_REF] Lovejoy | Ramanujan type congruences for three-colored Frobenius partitions[END_REF][START_REF] Sellers | New congruences for generalized Frobenius partitions with 2 or 3 colors[END_REF].

The n 2 -colored Frobenius partitions are very natural objects to consider when studying our generalizations of Primc's identity. In fact, one can check that the energies defined in (2.2.56) satisfy the conditions in (2.2.53) with = ∆, 1 = ∆ 1 and 2 = ∆ 2 . Indeed, by Theorem 2.2.39 and the fact that the reduced color sequence conserves the bound colors, it suffices to consider in our enumeration only the bound colors. Moreover, when we set for all i, b i = a -1 i , then all free colors vanish and we have an elegant expression for our generating functions as the constant term in an infinite product.

Theorem 2.2.43 (Generalisation of Primc's identity). Let < n be non-negative integers.

Let P ,n (m; u 0 , . . . , u n-1 ; v 0 , . . . , v n-1 ) be the number of generalized colored partitions in P ,n with size m, where for i ∈ {0, . . . , n -1}, the symbol a i (resp. b i ) appears u i (resp. v i ) times in their bound colors.

Let F ,n (m; u 0 , . . . , u m-1 ; v 0 , . . . , v m-1 ) be the number of n 2 -colored Frobenius partitions F ,n with size m, in where for i ∈ {0, . . . , n -1}, the symbol a i (resp. b i ) appears u i (resp. v i ) times in their bound colors. Then

P ,n (m; u 0 , . . . , u n-1 ; v 0 , . . . , v n-1 ) = F ,n (m; u 0 , . . . , u n-1 ; v 0 , . . . , v n-1 ) , and we have ∑ m,u 0 ,...,u n-1 ,v 0 ,...,v n-1 ≥0 P ,n (m; u 0 , . . . , u n-1 ; v 0 , . . . , v n-1 )q m a u 0 -v 0 0 • • • a u n-1 -v n-1 n-1 = ∑ m,u 0 ,...,u n-1 ,v 0 ,...,v n-1 ≥0 F ,n (m; u 0 , . . . , u n-1 ; v 0 , . . . , v n-1 )q m a u 0 -v 0 0 • • • a u n-1 -v n-1 n-1 = [x 0 ] n-1 ∏ i=0 (-xa i q χ(i≥ ) ; q) ∞ (-x -1 a -1 i q χ(i< ) ; q) ∞ .
Let us set

G P n (q; b 0 , • • • , b n-1 ) = [x 0 ] n-1 ∏ i=0 (-xb -1 i q; q) ∞ (-x -1 b i ; q) ∞ •
We then obtain that

G P n (q; qb 0 , • • • , q -1 b , b , • • • , b n-1 ) = [x 0 ] n-1 ∏ i=0 (-xb -1 i q χ(i≥ ) ; q) ∞ (-x -1 b i q χ(i< ) ; q) ∞ • (2.2.59)
From this theorem, it is easy to deduce a corollary, corresponding to the principal specialization, which generalizes both of Primc's original identities. By performing the dilations q → q n , and for all i ∈ {0, . . . , n -1}, a i → q -i , the generating function above becomes [x 0 ](-xq 1-; q) ∞ (-x -1 q ; q) ∞ , which is also equal to 1/(q; q) ∞ .

Corollary 2.2.44 (Principal specialization).

Let n be a positive integer. We have

∑ m,u 0 ,...,u n-1 ,v 0 ,...,v n-1 ≥0 P ,n (m; u 0 , . . . , u n-1 ; v 0 , . . . , v n-1 )q nm-∑ n-1 i=0 i(v i -u i ) = 1 (q; q) ∞ .
Moreover, by using Jacobi's triple product repeatedly, we are able to give an expression of the generating function for colored Frobenius partitions as a sum of infinite products, which gives yet another expression for the generating function for P 0,n . Theorem 2.2.45. Let n be a positive integer. Then

∑ m,u 0 ,...,u n-1 ,v 0 ,...,v n-1 ≥0 P 0,n (m; u 0 , . . . , u n-1 ; v 0 , . . . , v n-1 )q m a u 0 -v 0 0 • • • a u n-1 -v n-1 n-1 = 1 (q; q) n ∞ ∑ s 1 ,...,s n-1 ∈Z s n =0 a -s 1 0 n-1 ∏ i=1 a s i -s i+1 i q s i (s i -s i+1 ) (2.2.60) = 1 (q; q) ∞   n-1 ∏ i=1 q i(i+1) ; q i(i+1) ∞ (q; q) ∞   ∑ r 1 ,...,r n-1 : 0≤r j ≤j-1 r n =0 n-1 ∏ i=1 a r i -r i+1 i q r i (r i -r i+1 ) × - i-1 ∏ =0 a i a -1 q i(i+1) 2 +(i+1)r i -ir i+1 ; q i(i+1) ∞ (2.2.61) × - i-1 ∏ =0 a a -1 i q i(i+1) 2 -(i+1)r i +ir i+1 ; q i(i+1) ∞ .
The formula (2.2.61) gives an expression for Andrews' function CΦ n (q) as a sum of infinite products, which makes it is easy to express this function as a sum of modular forms. An expression for CΦ n (q) as a sum of infinite products was already given by Andrews (Andrews, 1984a) (without the colors) in the cases n = 1, 2, 3. This is the first time that the case of general k is treated and that a refinement with color variables is introduced.

Beyond Capparelli's theorem: regularity over Primc's theorem

This section is dedicated to the exposition of the main result that generalizes the Capparelli theorem. We start by presenting the formal tools as well as the formal result beyond Capparelli, and then discuss in the second part an explicit generalization of Capparelli's theorem by using the generalization of Primc's theorem. The proof of the main theorem is postponed till Chapter 7.

Another duality theorem between flat and regular partitions

Let C be a set of colors, and let C sup C free C inf be a set-partition of C. Consider now an energy on C 2 with values in {0, 1, 2}. Definition 2.2.46. The energy is said to be well-defined according to the decomposition C sup C free C inf if it satisfies the following.

For all

c, c ∈ C inf , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 1 and (c , c ) = 0 • (2.2.68)
Example 2.2.47. Let us consider C = {a i b j : i, j ∈ N}, and set

C sup = {a i b j : i < j ∈ N} , C free = {a i b j : i ∈ N} , C inf = {a i b j : i > j ∈ N} •
Then, the energy ∆ defined in (2.2.54) is well-defined according to the above decomposition.

Definition 2.2.48. Let δ be a function from C sup C inf to C free , and let γ be a function from the set

{(c, c ) ∈ C sup × C inf : (c, c ) = 0} {(c, c ) ∈ C 2 sup : (c, c ) ∈ {0, 1}} {(c, c ) ∈ C 2 inf : (c, c ) ∈ {0, 1}} (2. 
2.69) to C free . We say that δ is well-defined according to if

• for all c ∈ C sup , we have (c, δ(c)) = 0, and

• for all c ∈ C inf , we have (δ(c), c) = 0.
Similarly, we say that γ is well-defined according to if

• for all (c, c ) ∈ C sup × C inf such that (c, c ) = 0, we have (c, γ(c, c )) = (γ(c, c ), c ) = 0, • for all (c, c ) ∈ C 2 sup such that (c, c ) ∈ {0, 1}, we have (c, γ(c, c )) = 0 and (γ(c, c ), c ) = 1, • for all (c, c ) ∈ C 2 inf such that (c, c ) ∈ {0, 1}, we have (c, γ(c, c )) = 1 and (γ(c, c ), c ) = 0.
For any energy well-defined according to the decomposition C sup C free C inf , the conditions (2.2.63) and (2.2.64) imply the existence of some function δ well-defined according to , and by (2.2.66), (2.2.67) and (2.2.68), there exists some function γ well-defined according to .

We finally add a fictitious color c ∞ , and extend the energy such that

(C free , c ∞ ) = {1} , (2.2.70) (C sup , c ∞ ) ⊂ {1, 2} , (2.2.71) (C inf , c ∞ ) ⊂ {0, 1} • (2.2.72)
Recall that P c ∞ is the set of c ∞ -regular partitions with ground c ∞ and relation . We now define a subset of P c ∞ of partitions avoiding forbidden pattern according to δ and γ. Definition 2.2.49. We denote by c 0 δ,γ P c ∞ the set of generalized colored partitions of P c ∞ , c 0 -regular, and which avoid the following forbidden patterns:

1. for all c ∈ C free \ {c 0 }, the pattern p c , p c (2.2.73) 2. for all (c, c ) ∈ C sup × C inf such that (c, c ) = 0, the pattern p c , p γ(c,c ) , p c (2.2.74) 3. for all (c, c ) ∈ C 2 sup such that (c, c ) ∈ {0, 1}, the pattern p c , p γ(c,c ) , (p -1) c (2.2.75) 4. for all (c, c ) ∈ C 2 inf such that (c, c ) ∈ {0, 1}, the pattern (p + 1) c , p γ(c,c ) , p c (2.2.76) 5. for all c ∈ C sup , (a) for all c ∈ (C free \ {c 0 }) C inf {c ∞ }, the pattern p c , p δ(c) , (p -1) c (2.2.77) (b) for all c ∈ (C \ {c 0 }) {c ∞ }
, and for all positive integers u ≥ 2, the pattern

p c , p δ(c) , (p -u) c (2.2.78) 6. for all c ∈ C inf ,
(a) at the head of the partition, the pattern

p δ(c ) , p c (2.2.79) (b) for all c ∈ (C free \ {c 0 }) C sup , the pattern (p + 1) c , p δ(c ) , p c (2.2.80) (c
) for all c ∈ C \ {c 0 }, and for all positive integers u ≥ 2, the pattern 

(p + u) c , p δ(c ) , p c (2 
c 1 , p f , p (2) c 2
with the allowed pattern p

(1)

c 1 , p (2) 
c 2 and f a unique free color depending on c 1 , c 2 , δ and γ. Also, we remark that either c 1 or c 2 is not a free color. We extend the above notation to the forbidden pattern (2.2.79), by setting p (1) = ∞. We will show in Chapter 7 that the above cases form the exhausted list of all the insertions, between two consecutive parts p

(1) c 1 , p (2) 
c 2 , of a part p f with a color f ∈ C free and with the same size as one of the two parts.

We are now ready to state the main theorem of this section. Theorem 2.2.51. Assume that there exists a color c 0 in C free such that for all c = c 0 , (c 0 , c) = (c, c 0 ) = 1. Then, for the functions δ and γ defined above, there exist a bijection Φ between P c ∞ and the product set c 0 δ,γ P c ∞ × P, where P is the set of classical integer partitions. Furthermore, for Φ(λ) = (µ, ν), we have that |λ| = |µ| + |ν|, the number of parts of π is equal to the number of parts of µ plus the number of parts of ν, and the color sequence of λ, restricted to the colors in C sup C inf , is the same as the color sequence of µ restricted to the colors in C sup C inf .

Duality between Capparelli's identity and Primc's identity

Since its discovery, Capparelli's identity has been one of the most studied partition identities in the literature, see for example [START_REF] Bringmann | False theta functions and companions to Capparelli's identities[END_REF][START_REF] Berkovich | A new companion to Capparelli's identities[END_REF]Berkovich and Uncu, 2019;Dousse and Lovejoy, 2019;[START_REF] Fu | A unifying combinatorial approach to refined little Göllnitz and Capparelli's companion identities[END_REF][START_REF] Kanade | Staircases to analytic sum-sides for many new integer partition identities of Rogers-Ramanujan type[END_REF][START_REF] Kursungoz | Andrews-Gordon Type Series for Capparelli's and Göllnitz-Gordon Identities[END_REF][START_REF] Sills | On series expansions of Capparelli's infinite product[END_REF] for articles from the combinatorial point of view. While the other most important partition identities, such as the Rogers-Ramanujan identities [START_REF] Rogers | Proof of certain identities in combinatory analysis[END_REF]) and Schur's theorem [START_REF] Schur | Zur additiven Zahlentheorie[END_REF] have been successfully embedded in large families of identities, such as the Andrews-Gordon identities for Rogers-Ramanujan (Andrews, 1974;[START_REF] Gordon | Some continued fractions of the Rogers-Ramanujan type[END_REF] and Andrews' theorems for Schur's theorem (Andrews, 1969a;[START_REF] Andrews | A new generalization of Schur's second partition theorem[END_REF], finding such a broad generalization of Capparelli's identity was still an open problem. Here, we solve this problem by giving two different families of identities which generalize Capparelli.

In the previous section, we gave difference conditions which generalize those of Primc's identities (1.4.3) and (1.4.5). In this section, we define two other families of difference conditions which generalise those of Capparelli's identity (1.4.2). For these two generalizations, we refer to the set C = {a i b j : i, j ∈ N} and the energy ∆ as defined in (2.2.54). Let us start with the first energy. Definition 2.2.52. Let us define the energy ∆ 1 on C = {a i b j : i, j ∈ N} in the following way:

∆ 1 (a k b k , a k b k ) = 1 for all k ∈ N * , ∆ 1 (a k b k , a k b ) = 1 for all < k, ∆ 1 (a b k , a k b k ) = 1 for all < k, ∆ 1 (a i b k , a i b k ) = ∆(a i b k , a i b k ) in all the other cases.
(2.2.82) Remark 2.2.53. By (2.2.54), in all the cases where ∆ 1 = ∆, we have ∆ 1 = 1 and ∆ = 0.

For any non-negative integers < n, we restrict the set of colors to {a i b j : i, j ≤ n -1}, and we define a fictitious color c ∞ and extend ∆ 1 with the following:

∆ 1 (c ∞ , c ∞ ) = 0, ∆ 1 (c ∞ , a i a j ) = 1, ∆ 1 (a i a j , c ∞ ) = χ(i ≥ ) + χ(j < ) •
Recall that these definitions are the same as the case where we set c ∞ instead of a b for the generalized Primc's partitions of P ,n . We now define C ,n to be the set of a 0 b 0 -regular and c ∞ -regular partitions with ground c ∞ and relation ∆ 1 , and which avoid the following forbidden patterns:

• for all n -1 ≥ k ≥ k > l > l ≥ 0, the forbidden pattern (p + 1) a k b l , p a l+1 b l+1 , p a k b l , (2.2.83) • for all 0 ≤ k < k < l ≤ l ≤ n -1, the forbidden pattern (p + 1) a k b l , (p + 1) a k+1 b k+1 , p a k b l • (2.2.84)
The difference conditions implied by the energy ∆ 1 generalize those of Capparelli's identity stated in (1.4.2).

Example 2.2.54. If we define a, c, d (omitting b = a 0 b 0 ) as previously in Table (2.2.55), then C 2 is exactly the set of partitions with difference conditions (1.4.2) of Capparelli's identity. For example,

∆ 1 (c, a) = δ(a 1 b 1 , a 1 b 0 ) = 1.
Example 2.2.55. The set C 3 is the set of partitions with difference conditions shown in the following matrix:

C 3 =             a 2 b 0 a 2 b 1 a 1 b 0 a 2 b 2 a 1 b 1 a 0 b 1 a 1 b 2 a 0 b 2 a 2 b 0 2 2 2 2 2 2 2 2 a 2 b 1 1 2 1 2 1 2 2 2 a 1 b 0 1 1 2 1 2 2 2 2 a 2 b 2 1 1 1 1 1 1 2 2 a 1 b 1 0 1 1 1 1 2 1 2 a 0 b 1 0 1 0 1 1 2 1 2 a 1 b 2 0 0 1 1 1 1 2 2 a 0 b 2 0 0 0 1 0 1 1 2             . ( 2 

.2.85)

Let us now turn to the second energy.

Definition 2.2.56. Let us define the energy ∆ 2 on C = {a i b j : i, j ∈ N} in the following way:

∆ 2 (a k b k , a k b k ) = 1 for all k ∈ N * , ∆ 2 (a k b k , a b k-1 ) = 1 for all ≥ k ≥ 1, ∆ 2 (a k-1 b , a k b k ) = 1 for all ≥ k ≥ 1, ∆ 2 (a i b k , a i b k ) = ∆(a i b k , a i b k
) in all the other cases.

(2.2.86)

For any non-negative integers < n, we restrict the set of colors to {a i b j : i, j ≤ n -1}, and we define a fictitious color c ∞ and extend ∆ 1 with the following:

∆ 2 (c ∞ , c ∞ ) = 0, ∆ 2 (c ∞ , a i a j ) = 1, ∆ 2 (a i a j , c ∞ ) = χ(i ≥ ) + χ(j < ) •
We now define C ,n to be the set of a 0 b 0 -regular and c ∞ -regular partitions with ground c ∞ and relation ∆ 2 , which avoid the following forbidden patterns:

• for all n -1 ≥ k > k > l ≥ l ≥ 0, the forbidden pattern

(p + 1) a k b l , p a k b k , p a k b l , (2.2.87) • for all 0 ≤ k ≤ k < l < l ≤ n -1, the forbidden pattern (p + 1) a k b l , (p + 1) a l b l , p a k b l • (2.2.88)
The difference conditions implied by ∆ 2 also generalize those of Capparelli's identity (1.4.2), as well as those of another partition identity mentioned in Primc's paper (Primc, 1999). (Primc, 1999).

C 3 =             a 2 b 0 a 2 b 1 a 1 b 0 a 2 b 2 a 1 b 1 a 0 b 1 a 1 b 2 a 0 b 2 a 2 b 0 2 2 2 2 2 2 2 2 a 2 b 1 1 2 1 2 1 2 2 2 a 1 b 0 1 1 2 1 2 2 2 2 a 2 b 2 0 1 1 1 1 1 2 2 a 1 b 1 1 1 1 1 1 2 1 2 a 0 b 1 0 1 0 1 1 2 1 2 a 1 b 2 0 0 1 1 1 1 2 2 a 0 b 2 0 0 0 0 1 1 1 2             . ( 2 

.2.89)

It was proved by Meurman and Primc in (Meurman and Primc, 2001), using basic A

(1)

2 modules, that after performing the dilations (1.4.6), the generating function for these partitions becomes (q; q 3 ) -1 ∞ (q 2 ; q 3 ) -1 ∞ .

Recently in (Dousse, 2020), Dousse built a bijection between Primc's partitions P 2 and pairs (λ, µ) where λ ∈ C 2 is a Capparelli partition and µ is a classical partition. This bijection only modifies some free colors, so it preserves the size, the number of parts, the size of the parts, and the number of appearances of colors a and d. In this way, she showed that Capparelli's identity is very closely related to Primc's identity and can be deduced from it, even though until then, these two identities seemed unrelated from a representation theoretic point of view. The proof of Theorem 2.2.51 uses a broad generalization of the Dousse bijection. Here we give a generalization of the Dousse result. Theorem 2.2.59. For any non-negative integers < n, let CC ,n (resp. CC ,n ) denote partition pairs (λ, µ), where λ ∈ C ,n (resp. C ,n ) and µ is a classical partition. There is a bijection between:

• colored partitions in P ,n ,

• colored partition pairs in CC ,n ,

• colored partition pairs in CC ,n , This bijection preserves the total size, the number of parts, the size of the parts, and the color subsequence of bound colors.

The result stated in (Dousse and Konan, 2019a) is the particular case where = 0. We note that both Capparelli's identity and Meurman and Primc's identity with difference conditions (2.2.89) did not have any apparent connection to the theory of perfect crystals. The bijection between P 0,2 and CC 0,2 in (Dousse, 2020) gave an unexpected connection with Primc's identity and the theory of perfect crystals. The present theorem shows that Meurman and Primc's identity with difference conditions (2.2.89) can actually be deduced from Primc's Theorem 1.4.4. More generally, through the bijection with the P ,n 's, we related both families of generalisations of Capparelli's identity to the theory of perfect crystals.

Rogers-Ramanujan type identities via representations of affine Lie algebras

We will define all the necessary notions from crystal base theory in Chapter 8. For now, let us define a few notations which will allow us to state our main theorems.

Let n be a non-negative integer, and consider the Cartan datum (A, Π, Π ∨ , P, P ∨ ) for a generalized Cartan matrix A of affine type and rank n. Here Π is the set of the simple roots α i (i ∈ {0, . . . , n}), and we denote by P = ZΛ 0 ⊕ • • • ⊕ ZΛ n the lattice of the classical weights, where the elements Λ ( ∈ {0, . . . , n}) are the fundamental weights. We denote by δ the null root. L(Λ) denotes the irreducible module of highest weight Λ, also called the standard module.

In this section, we present the connection between the theory of perfect crystals and our notion of weighted words. In particular, we compute via our method explicit formulas for the character of level one standard module for several classical affine types.

Perfect crystals and multi-grounded partitions

Let B be a perfect crystal of level , and let Λ ∈ P+ be a level dominant classical weight such that the corresponding ground state path is p Λ = (g k ) k≥0 . The finiteness of the set P implies the periodicity of the sequence (g i ) i≥0 (see (8.1.10)). We then set t to the smallest non-negative integer k such that g k = g 0 . Let H be an energy function on B ⊗ B. Since B ⊗ B is connected, H is then unique up to a constant. We then define the function

H Λ on B ⊗ B satisfying H Λ (b ⊗ b ) = H(b ⊗ b ) - 1 t t-1 ∑ k=0 H(g k+1 ⊗ g k ) . (2.3.1)
Note that for any energy function H, we always have

t-1 ∑ k=0 (k + 1)H Λ (g k+1 ⊗ g k ) = t-1 ∑ k=0 (k + 1)H(g k+1 ⊗ g k ) - t + 1 2 t-1 ∑ k=0 H(g k+1 ⊗ g k ) ∈ 1 2 Z •
The above number is an integer when t is odd, and is equal to 0 when t = 1. We can then choose a suitable divisor D of 2 χ(t even) t such that DH Λ (B ⊗ B) ⊂ Z and 1 t ∑ t-1 k=0 (k + 1)DH Λ (g k+1 ⊗ g k ) ∈ Z. For the particular case t = 1, we can choose D = 1. Let us now consider the set of colors C B with indices in B, and let us define the relation on

Z C B by k c b k c b ⇐⇒ k -l = DH Λ (b ⊗ b) • (2.3.2)
We also define the relation on

Z C B by k c b k c b ⇐⇒ k -l ≥ DH Λ (b ⊗ b) • (2.3.3)
By taking

u (k) = - 1 t t-1 ∑ l=0 (l + 1)DH Λ (g l+1 ⊗ g l ) + t-1 ∑ l=k DH Λ (g l+1 ⊗ g l ) , (2.3.4)
the colors c g 0 , . . . , c g t-1 and the colored integers u

(0) c g 0 , . . . , u (t-1) c g t-1
satisfy the conditions in Definition 2.1.22 for both relations and . We can then define the multi-grounded partition with grounds c g 0 , . . . , c g t-1 and relation . We denote by P c g 0

•••c g t-1
the set of all such partitions. We also define the set P c g 0 •••c g t-1 of the multi-grounded partitions with grounds g 0 , . . . , g t-1 and the relation defined in (2.3.3). In particular for any positive integer d, we denote by

d P c g 0 •••c g t-1
the set of the partitions

π = (π 0 , • • • , π s-1 , u (0) c g 0 , . . . , u (t-1) c g t-1 ) of P c g 0 •••c g t-1 with c(π k ) = c p k for all k ∈ {0, . . . , s -1}, such that π k -π k+1 -DH Λ (g k+1 ⊗ g k ) ∈ dZ ≥0 , (2.3.5)
where we set π s to be u

(0) c g 0 . We finally set d t P c g 0 •••c g t-1
to be the set of partitions of d P c g 0 •••c g t-1 with a number of parts divisible by t. The main theorem that connects the perfect crystals and the multigrounded partitions is the following. Theorem 2.3.1. Setting q = e -δ/d 0 D and c b = e wtb for all b ∈ B, we have c g 0 • • • c g t-1 = 1, and the character of the irreducible highest weight U q ( g)-module L(Λ) is given by the following expressions:

∑ µ∈ t P cg 0 •••cg t-1 C(π)q |π| = e -Λ ch(L(Λ)), (2.3.6) ∑ π∈ d t P cg 0 •••cg t-1 C(π)q |π| = e -Λ ch(L(Λ)) (q d ; q d ) ∞ . (2.3.7)
In Chapter 8, we present the crystal base theory and the proof of Theorem 2.3.1

Level one standard modules of A

(1)

n-1 : a Lie-theoretic interpretation of Primc's theorem

We present in this section the main results of (Dousse and Konan, 2019b) which make the connection between the generalization of Primc's identity and the representations of the affine type

A (1) n-1 .
Let n be a positive integer, and consider the Cartan datum for the generalized Cartan matrix of affine type A

(1) n-1 . We denote by P = ZΛ 0 ⊕ • • • ⊕ ZΛ n-1 the lattice of the classical weights, where the elements Λ ( ∈ {0, . . . , n -1}) are the fundamental weights. The set of all the level 1 classical weights is given by P+

1 = {Λ : ∈ {0, • • • , n -1}}.
The null root is denoted by δ, and the simple roots by

α i , i ∈ {0, • • • , n -1}. Let B = {v i : i ∈ {0, • • • , n -1}} be the crystal of the vector representation of A (1) n-1 and let B ∨ = {v ∨ i : i ∈ {0, • • • , n -1}} be its dual.
For all v i ∈ B, we denote by wtv i ∈ P the classical weight of v i . We finally set B to be the tensor product B ⊗ B ∨ .

Given that (1.4.3) and (1.4.5) are energy matrices for perfect crystals coming from the tensor product of the vector representation and its dual in A

(1)

1 and A (1)
2 , respectively, it is natural to wonder whether our generalized difference conditions ∆ define in (2.2.54) are also energy functions for certain perfect crystals. We answer this question in the affirmative by showing the following. Theorem 2.3.2. Let n be a positive integer, and let B denote the crystal of the vector representation of A

(1) n-1 . The crystal B = B ⊗ B ∨ is a perfect crystal of level 1. Furthermore, the energy function on B ⊗ B such that H((v 0 ⊗ v ∨ 0 ) ⊗ (v 0 ⊗ v ∨ 0 )) = 0 satisfies for all k, , k , ∈ {0, . . . , n -1}, H((v ⊗ v ∨ k ) ⊗ (v ⊗ v ∨ k )) = ∆(a k b ; a k b ), (2.3.8)
where ∆ is the minimal difference for Primc generalized partitions defined in (2.2.54).

Primc showed Theorem 2.3.2 in the cases n = 2 and n = 3. The theorem is still true when n = 1, in which case the crystal B has a single vertex and a loop 0, and the corresponding partitions are simply the classical partitions.

In [START_REF] Benkart | Level 1 Perfect Crystals and Path Realizations of Basic Representations at q = 0[END_REF], Benkart, Frenkel, Kang, and Lee gave another formulation of the energy function of certain level 1 perfect crystals of classical types, including the A (1) n-1 -crystal studied in Theorem 2.3.2. However, they did not give a closed expression valid for all k, , k , ∈ {0, . . . , n -1} as we have done in Theorem 2.3.2 and (2.2.54). They used the fact that, when removing the 0-arrows from the crystal graph on Figure 9.4, the energy function H is constant on each connected component, and gave a table with the value of H for a representative of each connected component. The value of H for the other vertices can then be obtained by determining to which connected component they belong. Both their and our energy functions satisfy

H((v 0 ⊗ v ∨ 0 ) ⊗ (v 0 ⊗ v ∨ 0 
)) = 0, so they must be the same, even though their expressions differ. In this sense, Theorem 2.3.2 gives a simpler, more explicit and unified formula for the A (1) n-1 energy function in [START_REF] Benkart | Level 1 Perfect Crystals and Path Realizations of Basic Representations at q = 0[END_REF]. Our proof of Theorem 2.3.2 in Chapter 9 relies on explicitly building paths in the crystal graph. We only treat the case n ≥ 3, as n = 1 and n = 2 give crystals with a slightly different shape, and we already know that the theorem is true in these cases.

Theorem 2.3.2 gives a simple explicit expression for the energy function. Using the (KMN) 2 crystal base character formula of (Kang et al., 1992a), it allows us to relate the generating function G P n (q; b 0 , • • • , b n-1 ) of generalized Primc partitions with the character of the irreducible highest weight module L(Λ 0 ). This result gives an evaluation of the character of the irreducible highest weight module for the particular weight Λ 0 , but we can extend our techniques to retrieve the characters for the other level 1 weights of P+ 1 .

Theorem 2.3.3. Let n be a positive integer, and let Λ 0 , . . . , Λ n-1 be the fundamental weights of A [START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] n-1 . By setting e wtv i = b i and e -δ = q, we have the following identities for any ∈ {0, . . . , n -1}:

G P n (q; b 0 q, • • • , b -1 q, b , . . . , b n-1 ) = e -Λ ch(L(Λ )) (q; q) ∞ , G C n (q; b 0 q, • • • , b -1 q, b , . . . , b n-1 ) = G C n (q; b 0 q, • • • , b -1 q, b , . . . , b n-1 ) = e -Λ ch(L(Λ )).
Unlike previous connections between character formulas and partition generating functions, where a specific specialization (often the principal specialization) was needed, here we give a non-dilated character formula. Theorem 2.3.4. Let n be a positive integer, and let Λ 0 , . . . , Λ n-1 be the fundamental weights of A

(1)

n-1 . For all ∈ {0, . . . , n -1}, we have e -Λ ch(L(Λ )) = 1 (e -δ ; e -δ ) n-1 ∞ ∑ s 1 ,...,s n-1 ∈Z s 0 =s n =0 e -s δ n-1 ∏ i=1 e s i α i e s i (s i+1 -s i )δ (2.3.9) =   n-1 ∏ i=1 e -i(i+1)δ ; e -i(i+1)δ ∞ (e -δ ; e -δ ) ∞   ∑ r 1 ,...,r n-1 : 0≤r j ≤j-1 r n =0 e -r l δ n-1 ∏ i=1 e r i α i e r i (r i+1 -r i )δ
× -e

(ir i+1 -(i+1)r i -i(i+1) 2 -χ(i≥l>0))δ+∑ i j=1 jα j ; e -i(i+1)δ ∞ (2.3.10)
× -e

((i+1)r i -ir i+1 -i(i+1) 2 + χ(i≥l>0))δ-∑ i j=1 jα j ; e -i(i+1)δ ∞ , where δ = α 0 + • • • + α n-1 is the null root.
The character formula (2.3.9) is, up to a change of variables, a reformulation of the Kac-Peterson character formula for the type A

n-1 given in (Kac and Peterson, 1984, p. 217). Thus, our partition identity Theorem 2.2.45 combined with theorem 2.3.1, makes the connection between the KMN 2 crystal base character formula and the Kac-Peterson character formula.

The principal specialization (Kac, 1990, Chapter 10) for the affine type

A (1)
n-1 consists in transforming the generators with e -α i → q for all i ∈ {1, . . . , n -1}.

In that case, we have a natural transformation b i := q i b 0 and a dilated version of the character formula can be deduced from Theorems 2.2.43 and 2.3.4.

Corollary 2.3.5. Let n be a positive integer, and let Λ 0 , . . . , Λ n-1 be the fundamental weights of A

n-1 . For all ∈ {0, • • • , n -1}, the principal specialization of e -Λ ch(L(Λ )), denoted by F 1 (e -Λ ch(L(Λ ))), is the generating function of the classical integer partitions with no parts divisible by n :

F 1 (e -Λ ch(L(Λ ))) = (q n ; q n ) × G P n (q n ; q n b 0 , • • • , q n+ -1 b 0 , q , • • • , q n-1 b 0 ) = (q n ; q n ) × [x 0 ] -1 ∏ i=0 (-q -i b -1 0 x; q n ) ∞ (-q n+i b 0 x -1 ; q n ) ∞ × n-1 ∏ i= (-q n-i b -1 0 x; q n ) ∞ (-q i b 0 x -1 ; q n ) ∞ = (q n ; q n ) × [x 0 ](-q 1-b -1 0 x; q) ∞ (q b 0 x -1 ; q) ∞ = (q n ; q n ) (q; q) ∞ .
In this particular case, we recover the principal specialization of the Weyl-Kac character formula (Kac, 1990).

Level one standard modules of

A (2) 2n , D (2) n+1 , A (2) 2n-1 , B (1) n , D (1) n
We compute the following characters ch(L(Λ)).

Theorem 2.3.6. Let n ≥ 2, and let Λ 0 , . . . , Λ n be the fundamental weights and let α 0 , . . . , α n be the simple roots of A

(2) (2.3.11)

2n . We have in Z[[e -α 0 , e -α 1 , • • • , e -α n ]] that e -Λ 0 ch(L(Λ 0 )) = n ∏ u=1 (-e -δ -1 2 α n -∑ n-1 i=u α i , -e -δ + 1 2 α n +∑ n-1 i=u α i ; e -2δ ) ∞ ,
where 2δ = δ = 2α 0 + • • • + 2α n-1 + α n is the null root.
Theorem 2.3.7. Let n ≥ 2, and let Λ 0 , . . . , Λ n be the fundamental weights and let α 0 , . . . , α n be the simple roots of D

(2) (2.3.13)

n+1 . We have in Z[[e -α 0 , e -α 1 , • • • , e -α n ]] that e -Λ 0 ch(L(Λ 0 )) = 1 (e -δ ; e -2δ ) ∞ • n ∏ u=1 (-e -δ-∑ n i=u α i , -e -δ+∑ n i=u α i ; e -2δ ) ∞ , (2.3.12) e -Λ n ch(L(Λ n )) = 1 (e -δ ; e -2δ ) ∞ • n ∏ u=1 (-e -∑ n i=u α i , -e -2δ+∑ n i=u α i ; e -2δ ) ∞ ,
where δ = α 0 + • • • + α n is the null root.
Theorem 2.3.8. Let n ≥ 3, and let Λ 0 , . . . , Λ n be the fundamental weights and let α 0 , . . . , α n be the simple roots of A

(2) (2.3.15)

2n-1 . We have in Z[[e -α 0 , e -α 1 , • • • , e -α n ]] that e -Λ 0 ch(L(Λ 0 )) = (e -δ ; e -2δ ) 2 • n ∏ u=1 (-e -δ 2 -αn 2 -∑ n-1 i=u α i , -e -δ 2 + αn 2 +∑ n-1 i=u α i ; e -δ ) ∞ + n ∏ u=1 (e -δ 2 -αn 2 -∑ n-1 i=u α i , e -δ 2 + αn 2 +∑ n-1 i=u α i ; e -δ ) ∞ , (2.3.14) e -Λ 1 ch(L(Λ 1 )) = (e -δ ; e -2δ ) 2 • n ∏ u=1 (-e -1-2χ(u=1) 2 δ-αn 2 -∑ n-1 i=u α i , -e -1+2χ(u=1) 2 δ+ αn 2 +∑ n-1 i=u α i ; e -δ ) ∞ + n ∏ u=1 (e -1-2χ(u=1) 2 δ-αn 2 -∑ n-1 i=u α i , e -1+2χ(u=1) 2 δ+ αn 2 +∑ n-1 i=u α i ; e -δ ) ∞ ,
where δ = α 0 + α 1 + 2α 2 • • • + 2α n-1 + α n is the null root.
Theorem 2.3.9. Let n ≥ 3, and let Λ 0 , . . . , Λ n be the fundamental weights and let α 0 , . . . , α n be the simple roots of B

(1)

n . We have in Z[[e -α 0 , e -α 1 , • • • , e -α n ]] that e -Λ n ch(L(Λ n )) = 1 (e -δ ; e -2δ ) ∞ • n ∏ u=1 (-e -∑ n i=u α i , -e -δ+∑ n i=u α i ; e -δ ) ∞ (2.3.16) e -Λ 0 ch(L(Λ 0 )) = (-e -δ 2 ; e -δ ) 2 • n ∏ u=1 (-e -δ 2 -∑ n i=u α i , -e -δ 2 +∑ n i=u α i ; e -δ ) ∞ + (e -δ 2 ; e -δ ) 2 • n ∏ u=1 (e -δ 2 -∑ n i=u α i , e -δ 2 +∑ n i=u α i ; e -δ ) ∞ , (2.3.17) e -Λ 1 ch(L(Λ 1 )) = (-e -δ 2 ; e -δ ) 2 • n ∏ u=1 (-e -1-2χ(u=1) 2 δ-∑ n i=u α i , -e -1+2χ(u=1) 2 δ+∑ n i=u α i ; e -δ ) ∞ + (e -δ 2 ; e -δ ) 2 • n ∏ u=1 (e -1-2χ(u=1) 2 δ-∑ n i=u α i , e -1+2χ(u=1) 2 δ+∑ n i=u α i ; e -δ ) ∞ , (2.3.18) where δ = α 0 + α 1 + 2α 2 • • • + 2α n is the null root.
Theorem 2.3.10. Let n ≥ 4, and let Λ 0 , . . . , Λ n be the fundamental weights and let α 0 , . . . , α n be the simple roots of D

(1)

n . We have in Z[[e -α 0 , e -α 1 , • • • , e -α n ]] that e -Λ 0 ch(L(Λ 0 )) = 1 2 n ∏ u=1 (-e -δ 2 - αn -α n-1 2 -∑ n-1 i=u α i , -e -δ 2 + αn -α n-1 2 +∑ n-1 i=u α i ; e -δ ) ∞ + 1 2 n ∏ u=1 (e -δ 2 - αn -α n-1 2 -∑ n-1 i=u α i , e -δ 2 + αn -α n-1 2 +∑ n i=u α i ; e -δ ) ∞ , (2.3.19) e -Λ 1 ch(L(Λ 1 )) = 1 2 n ∏ u=1 (-e -1-2χ(u=1) 2 δ- αn -α n-1 2 -∑ n-1 i=u α i , -e -1+2χ(u=1) 2 δ+ αn -α n-1 2 +∑ n-1 i=u α i ; e -δ ) ∞ + 1 2 n ∏ u=1 (e -1-2χ(u=1) 2 δ- αn -α n-1 2 -∑ n-1 i=u α i , e -1+2χ(u=1) 2 δ+ αn -α n-1 2 +∑ n-1 i=u α i ; e -δ ) ∞ , (2.3.20) e -Λ n-1 ch(L(Λ n-1 )) = 1 2 n ∏ u=1 (-e -χ(u=n)δ-αn -α n-1 2 -∑ n-1 i=u α i , -e -χ(u =n)δ+ αn -α n-1 2 +∑ n-1 i=u α i ; e -δ ) ∞ + 1 2 n ∏ u=1 (e -χ(u=n)δ-αn -α n-1 2 -∑ n-1 i=u α i , e -χ(u =n)δ+ αn -α n-1 2 +∑ n i=u α i ; e -δ ) ∞ , (2.3.21) e -Λ n ch(L(Λ n )) = 1 2 n ∏ u=1 (-e -αn -α n-1 2 -∑ n-1 i=u α i , -e -δ+ αn -α n-1 2 +∑ n-1 i=u α i ; e -δ ) ∞ + 1 2 n ∏ u=1 (e -αn -α n-1 2 -∑ n-1 i=u α i , e -δ+ αn -α n-1 2 +∑ n i=u α i ; e -δ ) ∞ , (2.3.22 
)

where δ = α 0 + α 1 + 2α 2 • • • + 2α n-2 + α n-1 + α n is the null root.
An analogous computation for the type C

n is part of a work in progress.

Chapter 3

Beyond Göllnitz' theorem

In this chapter, we discuss the results beyond Göllnitz' theorem presented in Section 2.2.1.

In Section 3.1, we will present some tools that will be useful for the proof of Theorem 2.2.7 and Theorem 2.2.9. After that, in Section 3.2, we will give two mappings Φ and Ψ for Theorem 2.2.7 that preserve the size and the color product of partitions. Then, in Section 3.3, we will prove Theorem 2.2.7 by showing that Φ(O) ⊂ E and Ψ • Φ |O = Id |O . In Section 3.4, we will set E 1 = Φ(O), describe the notion of bridge, and prove Theorem 2.2.9. In Section 3.5, we explain how to generate the forbidden patterns of Theorem 2.2.9, and we especially retrieve in the case of four primary colors the three forbidden patterns as enumerated in Theorem 2.2.1, and we prove that, for more than four primary colors, there is an infinite set of forbidden patterns. In Section 3.6, we give the bijective proof of Theorem 1.3.3. Finally, in Section 3.7, we relate the mapping Ψ to Motzkin paths and oriented rooted forests, giving new perspectives for the study of the forbidden patterns.

We postpone the proof of the technical lemmas and propositions to Appendix A.1.

Preliminaries

The setup

Let us first analyze the secondary parts in S. For any 1 ≤ i < j ≤ n, and any positive integer k, we have

(2k) a i a j = k a j + k a i (3.1.1) (2k + 1) a i a j = (k + 1) a i + k a j •
Recall that the sum of two colored parts consists of the part whose size and color are respectively the sum of the sizes and the product (here, commutative) of the colors of the added parts. In fact, any secondary part in S with color a i a j can be uniquely written as the sum of two consecutive parts in P with colors a i and a j in terms of .

Definition 3.1.1. For any 1 ≤ i < j ≤ n, we define the functions α and β on S by

α : 2k a i a j → k a j (2k + 1) a i a j → (k + 1) a i and β : 2k a i a j → k a i (2k + 1) a i a j → k a j , (3.1.2)
respectively named upper and lower halves.

One can check that for any k a i a j ∈ S,

α((k + 1) a i a j ) = β(k a i a j ) + 1 and β((k + 1) a i a j ) = α(k a i a j ) • (3.1.3)
In the previous sum, adding an integer to a part only changes its size but does not change its color. We can then deduce by induction that for any m ≥ 0,

α((k + m) a i a j ) α(k a i a j ) + m and β((k + m) a i a j ) β(k a i a j ) + m • (3.1.4) Remark 3.1.2.
In fact, we have 

α((k + 2m) a i a j ) = α(k a i a j ) + m and β((k + 2m) a i a j ) = β(k a i a j ) + m • (3.1.
λ i λ i+1 and λ i λ i+1 ⇐⇒ λ i+1 + 1 λ i λ i+1 • (3.1.6)
An equivalent reformulation consists in saying that λ i and λ i+1 are two primary parts with distinct colors, consecutive in terms of . Then, by (3.1.2), λ i + λ i+1 can be seen as the unique secondary part with respectively λ i and λ i+1 as its upper and lower halves.

Technical lemmas

We will state some important lemmas for the proof of Theorem 2.2.7 and Theorem 2.2.9. The proofs can be found in Appendices A.1.1, A.1.2 and A.1.3.

Lemma 3.1.4 (Ordering primary and secondary parts). For any (l p , k q ) ∈ P × S, we have the following equivalences: 

l p k q ⇐⇒ (k + 1) q (l -1) p , (3.1.7) l p α(k q ) ⇐⇒ β((k + 1) q ) (l -
∈ C , ∆(p, q) = min{k -l : β(k p ) α(l q )} • (3.1.9)
Moreover, if the secondary parts k p , l q are such that β(k p ) β(l q ), then

(k + 1) p l q • (3.1.10) Furthermore, if k -l ≥ ∆(p, q), we then have either β(k p ) α(l q ) or α(l q ) + 1 α((k -1) p ) β((k -1) p ) β(l q ) • (3.1.11)
In the case of equality kl = ∆(p, q), we necessarily have .1.12) and in the other case, we necessarily have that β(k p ) α(l q ). Lemma 3.1.6 (1-different-distance on E 2 ). Let us consider a partition ν = (ν 1 , . . . , ν t ) ∈ E 2 . Then, for any

β(l q ) + 1 β(k p ) , ( 3 
1 ≤ i < j ≤ t, we have ν i ν j + j -i -1 • (3.1.13)

Bressoud's algorithm

Here we adapt the algorithm given by Bressoud in his bijective proof of Schur's partition theorem [START_REF] Bressoud | A combinatorial proof of Schur's 1926 partition theorem[END_REF]. The mappings are easy to describe and execute, but their justifications are more subtle and are given in the next section.

Machine

Φ: from O to E
Let us consider the following machine Φ:

Step 1: For a sequence λ = λ 1 , . . . , λ t , take the smallest i < t such that λ i , λ i+1 ∈ P and λ i λ i+1 but λ i λ i+1 , if it exists, and replace

λ i λ i + λ i+1 as a part in S λ j ← λ j+1 for all i < j < t (3.2.1)
and move to Step 2. We call such a pair of parts a troublesome pair. We observe that λ loses two parts in P and gains one part in S. The new sequence is λ = λ 1 , . . . , λ t-1 . Otherwise, exit from the machine.

Step 2: For λ = λ 1 , . . . , λ t , take the smallest i < t such that (λ i , λ i+1 ) ∈ P × S and λ i λ i+1 if it exists, and replace

(λ i , λ i+1 ) (λ i+1 + 1, λ i -1) ∈ S × P (3.2.2)
and redo Step 2. We say that the parts λ i , λ i+1 are crossed. Otherwise, move to Step 1.

Let Φ(λ) be the resulting sequence after putting any λ = (λ 1 , . . . , λ t ) ∈ O in Φ. This transformation preserves the size and the commutative product of primary colors of partitions.

Example 3.2.1. For C = {a < b < c < d}, let us apply this machine on the partition (5 b , 3 d , 2 a , 1 d , 1 c , 1 b , 1 a ):

5 b 3 d 2 a 1 d 1 c 1 b 1 a 5 b 3 d 3 ad 1 c 1 b 1 a 5 b 4 ad 2 d 1 c 1 b 1 a 5 b 4 ad 2 d 2 bc 1 a 5 b 4 ad 3 bc 1 d 1 a 5 b 4 ad 3 bc 2 ad • (3.2.3)
This example shows that Φ(O) ⊆ E 2 .

Machine Ψ: on E

Let us consider the following machine Ψ:

Step 1: For a sequence ν = ν 1 , . . . , ν t , take the greatest i ≤ t such that

ν i ∈ S if it exists. If ν i+1 ∈ P and β(ν i ) ν i+1 , then replace (ν i , ν i+1 ) (ν i+1 + 1, ν i -1) ∈ P × S (3.2.4)
and redo Step 1. We say that the parts ν i , ν i+1 are crossed. Otherwise, move to Step 2. If there are no more parts in S, exit from the machine.

Step 2: For ν = ν 1 , . . . , ν t , take the the greatest i ≤ t such that ν i ∈ S. By Step 1, it satisfies β(ν i ) ν i+1 . Then replace ν j+1 ← ν j for all t ≥ j > i (ν i ) ⇒ (α(ν i ), β(ν i )) as a pair of parts in P , (3.2.5) and move to Step 1. We say that the part ν i splits. We observe that ν gains two parts in P and loses one part in S. The new sequence is ν = ν 1 , . . . , ν t+1 .

Let Ψ(ν) be the resulting sequence after putting any ν = (ν 1 , . . . , ν t ) ∈ E in Ψ. This transformation preserves the size and the product of primary colors of partitions.

Examples 3.2.2. For example, we choose C = {a < b < c < d < e < f } and we apply the machine Ψ respectively on (4 ae , 3 cd , 3 ab ), (4 a , 3 ae , 2 cd , 1 b ) and (4 e , 3 e f , 3 cd , 3 ab , 1 f ), and we obtain

4 ae 3 cd 2 a + 1 b ⇒ 4 ae 2 c + 1 d 2 a 1 b 4 ae 3 a 1 d + 1 c 1 b ⇒ 2 e + 2 a 3 a 1 d 1 c 1 b 4 a 2 a + 1 e 1 d 1 c 1 b ⇒ 4 a 2 a 1 e 1 d 1 c 1 b , 4 a 3 ae 1 d + 1 c 1 b ⇒ 4 a 2 a + 1 e 1 d 1 c 1 b ⇒ 4 a 2 a 1 e 1 d 1 c 1 b , 4 e 3 e f 3 cd 2 a + 1 b 1 f 4 e 3 e f 3 cd 2 f 1 b + 1 a ⇒ 4 e 3 e f 2 c + 1 d 2 f 1 b 1 a 4 e 3 e f 3 f 1 d + 1 c 1 b 1 a ⇒ 4 e 2 e + 1 f 3 f 1 d 1 c 1 b 1 a 4 e 4 f 1 f + 1 e 1 d 1 c 1 b 1 a ⇒ 4 e 4 f 1 f 1 e 1 d 1 c 1 b 1 a

•

With these examples, we can see that Ψ is not injective on E and Ψ(E ) ⊆ O.

Proof of Theorem 2.2.7

In this section, we prove Theorem 2.2.7 by showing the following theorem.

Theorem 3.3.1. The transformation Φ describes an injection from O into E such that Ψ • Φ |O = Id |O .
Theorem 3.3.1 follows from the next three propositions whose proofs can be found in Appendices A.1.8, A.1.9 and A.1.10.

In the following for any sequence U = u 1 , . . . , u t , we set g(U ) = u 1 and s(U ) = u t respectively the first and the last terms of U . Proposition 3.3.2. Let us consider any λ = (λ 1 , . . . , λ t ) ∈ O. Then, in the process Φ on λ, before the u th application of Step 1, there exists a triplet of partitions (δ u , γ u , µ u ) ∈ E × (E ∩ O) × O such that the sequence obtained is δ u , γ u , µ u . Moreover, the triplet (δ u , γ u , µ u ) satisfies the following conditions:

1. The u th application of Step 1 occurs in the pairs (s(γ u ), g(µ u )), 2. s(δ u ) is the (u -1) th secondary part of δ u and satisfies s(δ u ) g(γ u ),

3. µ u+1 is the tail of the partition µ u and has at least one less part than µ u , 4. δ u is the head of δ u+1 .

Note that the first triplet for u = 1 has the form (∅, γ 1 , µ 1 ) with (γ 1 , µ 1 ) ∈ (E ∩ O) × O and (s(γ u ), g(µ u )) the first troublesome pair of λ. The fact that Φ(O) ⊂ E follows from Proposition 3.3.2 since µ u strictly decreases in terms of number of parts and the process stops as soon as µ u = ∅. In fact, if µ u = ∅, then g(µ u ) exists and we can still apply Step 1 on the pair (s(γ u ), g(µ u )). The last triplet then has the form (δ S+1 , γ S+1 , ∅) with (δ S+1 , γ S+1 ) ∈ E × (E ∩ O), s(δ S+1 ) the S th and last secondary part of Φ(λ) and s(δ S+1 )

g(γ S+1 ) if γ S+1 = ∅.
Example 3.3.3. We again take the example λ = (5 b , 3 d , 2 a , 1 d , 1 c , 1 b , 1 a ) given in (3.2.3). We summarize the triplets of Proposition 3.3.2 in the following table:

u δ u γ u µ u 1 ∅ 5 b , 3 d , 2 a 1 d , 1 c , 1 b , 1 a 2 5 b , 4 ad 2 d , 1 c 1 b , 1 a 3 5 b , 4 ad , 3 bc 1 d 1 a 4 5 b , 4 ad , 3 bc , 2 ad ∅ ∅ • Proposition 3.3.4.
Let us consider any ν = ν 1 , . . . , ν t ∈ E . Then, in the process Ψ on ν, after the (v -1) th application of Step 2, there exists a triplet of partitions (δ v , γ v , µ v ) with δ v ∈ E and γ v , µ v some sequences of primary parts, such that the sequence obtained is δ v , γ v , µ v . Moreover, the triplet (δ u , γ u , µ u ) satisfies the following conditions:

1. (s(γ v ), g(µ v
)) is the troublesome pair resulting from the (v -1) th splitting in Step 2, 2. s(δ v ) ∈ S so that the next iterations of Step 1 after the (v -1) th Step 2 occur on this part, 3. µ v is the tail of the sequence µ v+1 and has at least one less part than µ v+1 , 4. δ v+1 is the head of δ v .

The process stops as soon as δ v = ∅, which means that we have split every secondary part of ν. If we set S to be the number of secondary parts of ν, the last triplet then has the form (∅, γ S+1 , µ S+1 ) with (s(γ S+1 ), g(µ S+1 )) being a troublesome pair of primary parts. Also, we remark that the first triplet for v = 1 is such that (δ 1 , γ 1 , ∅) with δ 1 equal to the head of ν up to the last secondary part, and with γ 1 equal to the tail of ν after this last part, so that (δ

1 , γ 1 ) ∈ E × (E ∩ O) with s(δ 1 ) g(γ 1 ) if γ 1 = ∅.
Example 3.3.5. We take the example ν = Φ(λ) = 5 b , 4 ad , 3 bc , 2 ad in (3.2.3). We summarize the triplets of Proposition 3.3.4 in the following table: 3.4 Description of E 1 = Φ(O) and proof of Theorem 2.2.9

v δ v γ v µ v 1 5 b , 4 ad , 3 bc , 2 ad ∅ ∅ 2 5 b , 4 ad , 3 bc 1 d 1 a 3 5 b , 4 ad 2 d , 1 c 1 b , 1 a 4 ∅ 5 b , 3 d , 2 a 1 d , 1 c , 1 b , 1 a • We now show that Ψ • Φ |O = Id |O
In this section, we set E 1 = Φ(O), and we give an explicit definition of the bridge for a partition ν ∈ E in order to fit with the condition given in Theorem 2.2.9. Note that, by setting E 1 = Φ(O), the mapping Φ then describes a bijection between O and E 1 , and Ψ = Φ -1 , so that the identity (2.2.18) holds and this implies Theorem 2.2.9.

Enumeration of parts

Let us consider a partition ν = (ν 1 , . . . , ν p+s ) with p primary parts and s secondary parts. We can thus consider the p + 2s primary parts that occur in ν by counting both the upper and lower halves of the secondary parts. We then set ν = (ν 1 , . . . , ν p+2s ) (3.4.1) with J, I and I + 1 defined to be respectively the sets of indices of the primary parts, the upper and lower halves of secondary parts. The secondary parts of ν are indeed the parts ν i + ν i+1 for i ∈ I. We can then retrieve the corresponding indices for the parts ν k with

ν j = ν j-|I∩[1,j)| for all j ∈ J , ν i + ν i+1 = ν i-|I∩[1,i)| for all i ∈ I •
For ease of notation, we set

I = {i 1 < • • • < i s } and J = {j 1 < • • • < j p }.
We then consider the index set of the troublesome secondary parts as defined in (2.2.16),

T S(ν) = {i ∈ I : ν -(i) ν i + ν i+1 ν i+2 + ν i+3 } , (3.4.2)
where ν

-(i) = ν i-|I∩[1,i]|
is the (primary or secondary) part to the left of ν i + ν i+1 . We recall that, by (2.2.11) and (2.2.12), we do not have ν i + ν i+1 ν i+2 + ν i+3 only if the pair of consecutive secondary parts has a pair of colors in SP . We will then define, in the first part of this section, for any i ∈ I, the Bridge Br ν (i) ≥ i as an index in I ∪ J, and the bridge as the part ν Br ν (i) corresponding to this index. This definition will fit with the definition of E 1 given in Theorem 2.2.9, that we can explicitly state in the following theorem. (1) ν ∈ E 1 = Φ(O), [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] For any i ∈ I such that Br ν (i) > i, we have

ν -(i) ν Br ν (i) + Br ν (i) -i 2 ν i + ν i+1 ,
(3) (Necessary and sufficient checks) For all i ∈ T S(ν) such that Br ν (i) > i, we have

ν i + ν i+1 ν Br ν (i) + Br ν (i) -i 2 • (3.4.3)
Recall that if ν ∈ E 2 , then T S(ν) = ∅ so that (3) is true. We thus recover the fact that E 2 ⊂ E 1 .

In the remainder of this section, we will first give an explicit definition of the bridge, describe its properties and show how to easily compute it. Then, we prove Theorem 3.4.2 by proceeding as follows. We first prove that (1) implies [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF]. After that, we show that (2) implies [START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF]. Finally, we give a proof of the equivalence between [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] and (3).

Definition and properties of the Bridge

For any i ∈ I, let us consider j = min(i, p + 2s] ∩ J, if it exists, which is the index of the greatest primary part to the right of the secondary part ν i + ν i+1 . Otherwise, there is no primary part to its right, and we set j = p + 2s + 1. Note that ji is twice the number of secondary parts (ν i + ν i+1 included) between ν i + ν i+1 and ν j , even if we set ν p+2s+1 = 0 a n . In all cases, we can set j = min(i, p + 2s + 1] ∩ (J ∪ {p + 2s + 1}). Definition 3.4.3. We define the Bridge Br ν (i) to be as follows :

• If j satisfies ν i +1 ν j + j -i 2 -1 (3.4.4)
for all i ∈ [i, j) ∩ I, we set Br ν (i) = j. Note that for j = p + 2s + 1, the relation (3.4.4) is never satisfied for the last secondary part, since its upper and lower halves have size greater than 0.

• Otherwise, we define

S i = {u ∈ (i, j) ∩ I : ν i +1 ν u + u -i 2 -1 ∀i ∈ [i, u) ∩ I}. (3.4.5) If S i = ∅, we then set Br ν (i) = max S i • (3.4.6)
Otherwise, we set Br ν (i) = i.

Here, we observe that Br ν (i) ≥ i, and for Br ν (i) > i, we have the relation

ν i +1 ν Br ν (i) + Br ν (i) -i 2 -1 (3.4.7)
for all i ∈ [i, Br ν (i)) ∩ I. Also note that the function Br ν is local, as it only depends on the maximal sequence of secondary parts and not on the entire partition ν. 

ν i +1 is not 1-distant-different from ν Br ν (i) -1.
The definition of bridge as stated above has the sole purpose to make our results simpler to prove.

Hint for the computation of the Bridge

It may seem difficult to compute, but the calculation of the bridge is indeed quite simple as it can be done recursively. In fact, the first hint for the computational method is given by the following lemma, whose proof is postponed to Appendix A.1.4. Lemma 3.4.5. The function Br ν is non-decreasing on I, and for any i such that Br ν (i) ∈ I, we have Br ν (Br ν (i)) = Br ν (i) . Lemma 3.4.5 allows us to state that for any i ∈ I, Br ν (i) is either the index of the greatest primary part to the right of ν i + ν i+1 , or the smallest fixed point (by Br ν ) to its right. This fact leads to the following proposition, which gives us the second and final hint for the computation of Br ν . Proposition 3.4.6 (Crossing rules for Ψ). By applying Ψ on ν = (ν 1 , . . . , ν p+2s ), we have that the secondary part ν i + ν i+1 :

• does not cross any primary part if and only if Br ν (i) = i,

• otherwise, for i u = i < Br ν (i), it first crosses the primary part that comes from ν Br ν (i) :

g(γ s+1-u ) = ν Br ν (i u ) + Br ν (i u ) -i u 2 -1 • (3.4.8)
The proof is given in Appendix A. 1.11. The relevance of this proposition consists in saying that, during Ψ, the fixed points are the indices of the secondary parts which split directly with no application of Step 1, and if a fixed point i = Br ν (i) is found, then the next fixed point to its left is the index of the smallest secondary part which is not crossed by the upper half ν i during iterations of Step 1. Note that, by definition, the bridges are exactly the parts ν i for the fixed points i, along with the primary parts ν j after the tail of a sequence of secondary parts. The key idea to compute the bridge is then to retrieve the fixed points by performing iterations of Step 1 with the bridges ν j and ν i .

Method to compute the Bridge

The function Br ν being local, we then consider a maximal sequence of secondary parts, with the ending primary part to its right. The reasoning will be the same when we do not have a primary part at the tail of the sequence. Without loss of generality, we can restrict the partition ν to such sequence: ν = (ν 1 , . . . , ν 2s+1 ) with

ν 1 + ν 2 ν 3 + ν 4 • • • ν 2s-1 + ν 2s ν 2s+1 •
For simplicity, we show the computation on the following example. We take the set of primary colors Recall that to perform Step 1 of Ψ, we always compare a primary part to the lower half of a secondary part. We then proceed as follows:

C = {a < b < c < d < e < f }
1. We start with the sequence

(β 1 , β 2 , • • • , β s , α s+1 ) = (ν 2 , ν 4 , • • • , ν 2s , ν 2s+1 )
consisting of the lower halves and the primary part. Our example gives the sequence

(10 e , 10 a , 9 c , 8 d , 7 a , 5 d

β u ,u=1,...,6 , 6 c α 7 ) •
The first fixed point (starting from the right) corresponds to the first β u which is 1-different-distant from α s+1 -1 in the order . We then have i 1 = 2u 1 -1 if such u 1 exists. If there is no such u 1 , it means that j is the Bridge of all i ∈ 2{1, . . . , s} -1. With our example, we just have to compare the two sequences

(10 e , 10 a , 9 c , 8 d , 7 a , 5 d )

(11 c , 10 c , 9 c , 8 c , 7 c , 6 c )
starting from the right, and we identify the first fixed point, i 1 = 2u 1 -1 = 7, corresponding to the underlined lower half.

2. We redo the same process for the sequence

(β 1 , β 2 , • • • , β u 1 -1 , α u 1 ) = (ν 2 , ν 4 , • • • , ν i 1 -1 , ν i 1 ) ,
where β u are the lower halves of the (u 1 -1) first secondary parts, and α u 1 is the upper half the u th 1 secondary part, which corresponds to the first Bridge. Our example gives the sequence (10 e , 10 a , 9 c β 1,2,3 , 8 e ) and the sequence comparison (10 e , 10 a , 9 c ) (10 e , 9 e , 8 e )

and the second fixed point is

i 2 = 2u 2 -1 = 5.
3. Following the same process, we apply the comparisons for the sequence

(β 1 , β 2 , • • • , β u k -1 , α u k ) = (ν 2 , ν 4 , • • • , ν i k -1 , ν i k ) ,
in order to retrieve the (k + 1) th fixed point. Here again, we have

i k = 2u k -1. If there is no β u which is 1-different-distant from α u k -1 in
the order , we stop the process, as i k is the last fixed point and becomes the Bridge of the remaining i < i k . In our example the last fixed point is indeed i 2 , since we have the sequence (10 e , 10 a

β 1,2
, 10 b ) and the sequence comparison

(10 e , 10 a ) (11 b , 10 b )•

Note that applying this computation requires in fact s comparisons, starting from the right to the left, to retrieve all of the fixed points, but computing the precise bridge for an i will require as many comparisons as the number of secondary parts to its right. For our example, we summarize the computation of the Bridge with the following table. For the case where the sequence ν = (ν 1 , . . . , ν 2s ) does not end by a primary part, the first splitting occurs at the right most secondary part, and we set the first fixed point i 1 = 2u 1 -1 = 2s -1. We then start the process at step [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] and the remainder of the computation of the bridges is the same.

Proof of Theorem 3.4.2

Proof that (1) implies [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] We suppose that i = i s+1-v for some v ∈ [1, s]. Then by the Proposition 3.4.6 and Proposition 3.3.4,

ν i + ν i+1 = s(δ v ) and g(γ v ) = ν Br ν (i) + Br ν (i)-i 2 -1.
After crossing, the primary part becomes ν Br ν (i) +

Br ν (i)-i 2
and the secondary part becomes ν i + ν i+1 -1. But, by Proposition 3.3.6, the crossing is the reverse crossing of Step 2 in process Φ, so that we have

ν Br ν (i) + Br ν (i) -i 2 ν i + ν i+1 -1 ⇐⇒ ν Br ν (i) + Br ν (i) -i 2 ν i + ν i+1 •
Also, note that the sequence

δ v \ {ν i + ν i+1 } , ν Br ν (i) + Br ν (i) -i 2
is indeed the head of the sequence δ v+1 , γ v+1 , which is a partition in E by Proposition 3.3.6. In fact, this pair of sequences corresponds to the same pair in Proposition 3.3.2 for u = sv, and is a pair in E × (E ∩ O) satisfying s(δ u ) g(γ u ). We then deduce that the part ν -(i) to the left ν i + ν i+1 is well-ordered with ν Br ν (i) + Br ν (i)-i 2 in terms of , so that

ν -(i) ν Br ν (i) + Br ν (i) -i 2 •
With this, we have proved that (1) implies [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] in Theorem 3.4.2.

Proof that [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] implies [START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] We prove that [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] implies [START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] with the following proposition whose proof is given in Appendix A.1.12.

Proposition 3.4.7. If ν satisfies condition [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] in Theorem 3.4.2, then in Proposition 3.3.4, the triplet (δ v , γ v , µ v ) satisfies the following properties:

1. (γ v , µ v ) ∈ (E ∩ O) × O, 2. s(δ v ) g(γ v
).

If we apply

Step 1 once and some iterations of Step 2 of the process Φ on the sequence δ v+1 , γ v+1 , µ v+1 , we obtain the sequence δ v , γ v , µ v .

Proposition 3.4.7 says that, for any ν ∈ E that satisfies (2) of Theorem 3.4.2, we have that

Ψ(ν) ∈ O, since the last sequence δ S+1 , γ S+1 , µ S+1 is such that δ S+1 = ∅ and (s(γ v ), g(µ v )) is a troublesome pair so that s(γ v ) g(µ v
). The fact that all the crossings and the splitting of Ψ are invertible by Φ means that the process Ψ on ν is invertible by Φ, and we then have

E 1 Φ(Ψ(ν)) = ν.
Proof of the equivalence between [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] and [START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF] In this part, we will show that it is sufficient to satisfy the condition (2) only on T S(ν). In fact, condition (2) of Theorem 3.4.2 implies that (3.4.3) is true on T S(ν), so that (2) implies [START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF]. To prove that (3) implies (2), we will use the following lemmas (for the proof, see Appendices A. 1.5 and A.1.6). Lemma 3.4.8. For consecutive secondary parts

ν i + ν i+1 • • • ν i + ν i +1 such that ν i + ν i+1 • • • ν i + ν i +1 ,
the following holds:

ν i + ν i +1 + i -i 2 ν i + ν i+1 • (3.4.10)
Lemma 3.4.9. For consecutive secondary parts

ν i + ν i+1 • • • ν i + ν i +1
such that the size differences between consecutive parts are minimal, the following holds: if Br ν (i ) > i , then Br ν (i) = Br ν (i ).

Proof that (3) implies [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF]. Let us consider a maximal sequence of consecutive secondary parts

ν i + ν i+1 • • • ν i + ν i +1 with ν i + ν i+1 • • • ν i + ν i +1 •
We then have that the leftmost and rightmost parts are well-ordered in terms of with the parts to the left and to the right of the sequence, and we have the inequality

• • • ν i + ν i+1 • • • ν i + ν i +1 • • • (3.4.11)
In particular, i ∈ T S(ν). 

(i) = Br ν (u ) > u for all u ∈ [i, u] ∩ I.
If we assume that

ν i + ν i+1 ν Br ν (i) + Br ν (i) -i 2 ,
by (3.4.10), we then have for all u ∈ [i, u] ∩ I

ν u + ν u +1 ν Br ν (u ) + Br ν (u ) -u 2 ⇐⇒ ν Br ν (u ) + Br ν (u ) -u 2 ν u + ν u +1 •
In addition, by (2.2.12), we obtain, for all u ∈ (i, u] ∩ I, that u -2 ∈ [i, u) ∩ I. We thus have Br ν (u -2) = Br ν (u ), and

ν u -2 + ν u -1 ν Br ν (u -2) + Br ν (u -2) -u + 2 2 ⇐⇒ ν u -2 + ν u -1 ν Br ν (u ) + Br ν (u ) -u 2 ,
so that the condition (2) is also satisfied. Note that condition [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] is also satisfied in i, since we have by definition (2.2.11)

ν -(i) ν i + ν i+1 ν Br ν (i) + Br ν (i) -i 2 =⇒ ν -(i) ν Br ν (i) + Br ν (i) -i 2 ν i + ν i+1 =⇒ ν -(i) ν Br ν (i) + Br ν (i) -i 2 ν i + ν i+1 •
It thus follows that the condition (2) is satisfied for any element of I in a sequence of the form (3.4.11). Now let us take i ∈ I such that i is not in a sequence of the form (3.4.11). This is equivalent to saying that ν i + ν i+1 is well-ordered to its left and to its right in terms of , so that

• • • ν i + ν i+1 • • • • We can then see by (2.2.11) that, for Br ν (i) > i, ν -(i) ν i + ν i+1 ν Br ν (i) + Br ν (i) -i 2 =⇒ ν -(i) ν Br ν (i) + Br ν (i) -i 2 ν i + ν i+1 =⇒ ν -(i) ν Br ν (i) + Br ν (i) -i 2 ν i + ν i+1 •
This means that we only need to prove that ν i + ν i+1 ν Br ν (i) + Br ν (i)-i 2 in order to satisfy the condition (2).

• Suppose first that there exists i ∈ T S(ν) such that i ∈ (i, Br ν (i)). We then have by Lemma 3.4.5 that Br ν (i ) = Br ν (i). By taking i to be the minimum of all such elements, we obtain the sequence

ν i + ν i+1 • • • ν i + ν i +1
so that, by (2.2.11) and the fact that the parts between these two are in S, we obtain

ν i + ν i+1 ν i + ν i +1 + i -i 2 •
Since i satisfies condition (3), we then have

ν i + ν i +1 ν Br ν (i ) + Br ν (i ) -i 2 ,
and thus,

ν i + ν i+1 ν Br ν (i) + Br ν (i) -i 2 •
• If (i, Br ν (i)) ∩ T S(ν) = ∅, we then have the sequence

ν i + ν i+1 • • • ν Br ν (i)-2 + ν Br ν (i)-1 ν Br ν (i)
if Br ν (i) ∈ J, and otherwise,

ν i + ν i+1 • • • ν Br ν (i)-2 + ν Br ν (i)-1 ν Br ν (i) + ν Br ν (i)+1 •
By (2.2.11), in the first case, we directly have

ν i + ν i+1 ν Br ν (i) + Br ν (i) -i 2 ,
while in the second case, we obtain

ν i + ν i+1 ν Br ν (i) + ν Br ν (i)+1 + Br ν (i) -i 2 •
But, in terms of part sizes for the second case, we have by definition (2.2.9) that

ν i + ν i+1 -ν Br ν (i) + Br ν (i) -i 2 ≥ ν Br ν (i)+1 ≥ 1 ,
so that, again by (2.2.9),

ν i + ν i+1 ν Br ν (i) + Br ν (i) -i 2 •

Forbidden patterns of E 1

In this section, we study the forbidden patterns that a partition in E has to avoid to be in E 1 .

By the definition of bridge and Theorem 3.4.2, we can see that the invertibility of Ψ by Φ is a local problem. In fact, for any secondary part in a partition ν ∈ E, the invertibility only depends on the sequence starting from this part up to either the greatest primary part to its right if it exists, or the last part of ν if there is no primary part to its right. Furthermore, by condition (3) of Theorem 3.4.2, we only have to consider the sequences whose head is a sequence which is not well-ordered by . Then, it suffices to restrict the forbidden patterns to those such that the first part does not satisfy (3.4.3): (3.5.1) such that Br ν (1) = 2s + 1 and ν 2s+1 + s ν 1 + ν 2 .

ν = ν 1 + ν 2 ν 3 + ν 4 • • • ν 2s+1 or ν 2s+1 + ν 2s+2 ,
Remark 3.5.1. It is sufficient to consider the last part to be a primary part. In fact, a sequence that ends by a secondary part can be viewed as the same sequence with this last part replaced by its upper half, as by (2.2.8) and (2.2.12),

ν 2s-1 + ν 2s ν 2s+1 + ν 2s+2 =⇒ ν 2s-1 + ν 2s ν 2s+1 + ν 2s+2 =⇒ ν 2s-1 + ν 2s ν 2s+1 + 1 =⇒ ν 2s-1 + ν 2s ν 2s+1 •
Note that, if a pattern ν is forbidden, then any pattern η whose head or tail is ν is also forbidden. This is obvious when the tail of η is ν since the troublesome crossing will not change. When ν is the head of η, we have that Br η (1) = Br η (Br ν (1)) and we use the same reasoning as in the proof of Lemma 3.1.6 given in Appendix A.1.3 to show that

ν Br ν (1) + Br ν (1) -1 2 ν 1 + ν 2 =⇒ η Br η (1) + Br η (1) -1 2 η 1 + η 2 •
Therefore, the optimal forbidden patterns are the ones that are allowed after removing either the first part or the last part. Furthermore, these forbidden patterns satisfy the fact that the Bridge of the first part is the position of the last part, so that all along the transformation Ψ, every secondary part is crossed by the last part if it is a primary part, or by its upper half. The optimization also implies that all these crossings are invertible by Φ, except the last one which occurs with the first part of the pattern.

In the next subsections, we first give some particular properties of the optimal forbidden patterns, and after that, we aim at retrieving the optimal forbidden patterns for four primary colors. Finally, we enumerate the optimal forbidden patterns, with some restrictions, for five primary colors, showing that there is an infinitude of optimal forbidden patterns for more than four primary colors.

Properties of optimal forbidden patterns

We first define a tool that will lead to a better understanding of the optimal forbidden patterns. Definition 3.5.2. We say that two secondary colors p and q are primary equivalent if and only if their orders according to the primary colors are the same, which means that p = a i a u and q = a i a v for some u, v ∈ (i, n]. If p and q are primarily equivalent, we write k p ≡ k q and write the corresponding equivalence class of primarily equivalent colored parts by k p . This matters in the sense that for any primary color c, we have the equivalence between k p ≡ k q and

k p l c ⇐⇒ k q l c • (3.5.2)
We can then write k p l c . For two secondary colors p and q, we say that k p h q if and only if we can find a primary part l c such that k p l c h q . This is equivalent to saying that k > h or k = h and (p, q) = (a i a u , a j a v ) with i > j.

Let us now consider an optimal forbidden pattern

ν = ν 1 + ν 2 ν 3 + ν 4 • • • ν 2s+1 (3.5.3)
where the secondary parts are ν 2i-1 + ν 2i and the last part ν 2s+1 is a primary part. In the remainder of the section, we consider the different-distance with respect to the order . We thus have the following properties:

1. For all i ∈ [1, s], we have Br ν (2i -1) = 2s + 1.

The part

ν 2s+1 is 1-different-distant from ν 1 + ν 2 : ν 2s+1 + s ν 1 + ν 2 • (3.5.4)
3. The fact that the pattern .5.5) and by transitivity, this implies that ν 2i-1

ν 3 + ν 4 • • • ν 2s-1 + ν 2s ν 2s+1 is allowed implies by Theorem 3.4.2, for all i ∈ [2, s], that ν 2i-1 + ν 2i is 1-different-distant from ν 2s+1 , ν 2i-1 + ν 2i ν 2s+1 + s + 1 -i , ( 3 
+ ν 2i is 1-different-distant from ν 1 + ν 2 -i + 1, ν 2i-1 + ν 2i ν 1 + ν 2 -i + 1 • (3.5.6)
4. We obtain the following inequality

ν 3 + ν 4 + 1 ν 2s+1 + s ν 1 + ν 2 • (3.5.7)
5. If we replace the primary part ν 2s+1 by another ν 2s+1 satisfying ν 1 + ν 2 ν 2s+1 + s, we then obtain the following allowed pattern

ν = ν 1 + ν 2 ν 3 + ν 4 • • • ν 2s-1 + ν 2s ν 2s+1 • Remark 3.5.3. By (3.5.1), a pattern ν 1 + ν 2 • • • ν 2s-1 + ν 2s ν 2s+1 + ν 2s+2
only consisting of secondary parts is optimal and forbidden if and only if

ν 1 + ν 2 • • • ν 2s-1 + ν 2s ν 2s+1
is an optimal forbidden pattern. Note that in this case, (3.5.6) is also satisfied for i = s + 1.

We now define a special kind of pattern, that we call a shortcut.

Definition 3.5.4. A pattern

ν 1 + ν 2 • • • ν 2s+1 + ν 2s+2 is said to be a shortcut if ν 2s+1 + ν 2s+2 ν 1 + ν 2 -s + 1• (3.5.8)
One can check that a shortcut has at least three secondary parts, and that the relation (3.5.8) is stronger than (3.5.6). The following property makes the enumeration of optimal forbidden patterns which contain shortcuts quite difficult (see Appendix A.1.13 for the proof). Proposition 3.5.5. We can always build a forbidden pattern starting from any allowed pattern and iterating of a shortcut (iterate here means use consecutively the same pattern several times).

By considering the optimal forbidden pattern

ν = ν 1 + ν 2 ν 3 + ν 4 • • • ν 2s+1
which does not contain any shortcut, we then have by (3.5.4), (3.5.5) and (3.5.8) the following relation for all i ∈ {1, . . . , s -1}:

ν 1 + ν 2 -i + 1 ν 2i+1 + ν 2i+2 ν 2s+1 + s -i ν 1 + ν 2 -i • (3.5.9)
The latter implies the following properties:

1. By definition of the head and (2.2.12), ν 1 + ν 2 and ν 3 + ν 4 are consecutive for .

2. For all i ∈ {2, . . . , s -1}, two consecutive parts ν 2i-1 + ν 2i and ν 2i+1 + ν 2i+2 are either consecutive in terms of (or equivalently not well-ordered by ), or consecutive in terms of . In fact, by (3.5.9), we necessarily have

ν 2i+1 + ν 2i+2 + 2 ν 2i-1 + ν 2i =⇒ ν 2i-1 + ν 2i ν 2i+1 + ν 2i+2 + 2 •
3. By (3.5.9), we have

ν 2s+1 + 2 ν 1 + ν 2 -s + 2 ν 2s-1 + ν 2s ν 2s+1 + 1 ,
so that, by (2.2.11), ν 2s-1 + ν 2s and ν 2s+1 are consecutive for .

We see that the optimal forbidden patterns with no shortcut have their parts either consecutive in the order or in the order . Let us then consider the following moves:

• The arrow p→q means that (p, q) is a special pair and it represents a pattern of the form

(k + χ(p ≤ q)) p , k q •
• The two-headed arrow p q represents a move from a part with color p to the greatest secondary part with color q smaller than the first part in terms of . In fact, it indeed represents the pattern

k + 1 + χ(p ≤ q)) p , k q •
Therefore, the optimal forbidden patterns with no shortcut have the form Since an optimal forbidden pattern is allowed after removing the last part, we will consider the following form 3.5.11) If we refer to an optimal pattern into another one (see Proposition 3.5.10), then it means that we only use the allowed pattern obtained after removing the last part.

c 1 • • • • • c m , k (3 
c 1 • • • • • c m-1 | • c m , k ( 

Optimal forbidden patterns of E 1 for four primary colors

For four primary colors a < b < c < d, recall (2.2.6), the total order on primary and secondary colors

ab < ac < ad < a < bc < bd < b < cd < c < d (3.5.12)
and the set of special pairs SP = {(ad, bc), (cd, ab)}. We can see that the main nodes are the secondary colors, and we remark that a move p q is indeed between p and the color q of the greatest secondary part smaller, in terms of , than a part with color p. Thus, any move p q with another secondary color q will be greater than the move p q represented in the first diagram. As we notice on the second diagram, proceeding clockwise, we need more than one loop for a move p q, while a move p→q requires less than one loop. Since a forbidden pattern must necessarily begin with a sequence of secondary parts not well-ordered by , we then have as the head of the pattern either cd → ab or ad → bc.

• Suppose that the pattern begins by cd → ab. By (3.5.7), if it ends with a primary part k c s , by setting

ν 1 + ν 2 = h cd we then have h ab + 1 k c s + s h cd so that c m ∈ {c, d}.
Another interpretation is that, in the diagram, the color c m is in the clockwise arc (ab, cd), and it leads to the same result. Suppose now that s ≥ 3, which means that the third part is secondary. Since the next move can be at least ab cd, we then obtain that

h cd -2 ν 5 + ν 6 =⇒ h cd -2 ν 5 + ν 6 •
This contradicts (3.5.6). Therefore, s = and a quick check according to the parity of k shows that is always the case for k ≥ 1.

• The same reasoning occurs when the pattern begins by ad → bc. We obtain the pattern ad → bc a which corresponds to (k + 2) ad , (k + 1) bc , k a . We then look for k such that

β((k + 1) bc ) k a
and a quick check according to the parity of k shows that is always the case for k ≥ 2.

Note that we cannot have a optimal forbidden pattern consisting of three secondary parts, since whatever the head is, the third secondary part does not respect the relation (3.5.6).

Theorem 3.5.7 and Proposition 3.5.5 imply that, for four primary colors, we do not have any shortcut. This is not the case for more than four primary colors, as we now see in the next subsection.

Optimal forbidden patterns of E 1 for more than four primary colors

We can restrict the study to five colors, as the set of colored partitions generated by five primary colors is embedded in any set of colored partitions generated by more than four primary colors. We then consider the set of primary colors C = {a < b < c < d < e}. The corresponding diagram with the primary equivalence classes for the secondary colors gives 

(k + 3) ae , (k + 2) cd , (k + 2) ab , k de , k bc •
We notice that this pattern is a shortcut. As we saw in Proposition 3.5.5, the enumeration of the forbidden patterns then becomes intricate. We give the following lemma to restrict our study to some particular patterns without shortcut.

Lemma 3.5.8. For five primary colors, the patterns of secondary parts without the moves → cd → do not contain any shortcut.

The proof of the lemma is given in Appendix A.1.7. The patterns without shortcut listed by the previous lemma are not exhaustive. In fact, we can have a pattern with moves → cd → without shortcut, as we give in the following example.

Example 3.5.9. The pattern ae → cd → ab , k is not a shortcut and is even allowed for k = 3.

The following theorem gives an exhaustive list of optimal forbidden patterns without moves → cd →. The notation g 1 , . . . , g t denotes the multiplicative group generated by g 1 , . . . , g t , and the notation (pattern) means that the move pattern is optional. Theorem 3.5.10. The optimal forbidden patterns with no move → p → are the following: 

head : ad → bc ad → bc| a , k ≥ 2 (3.5.15) head : be → cd be → cd| b , k ≥ 2 (3.
ν = ν 1 + ν 2 ν 3 + ν 4 • • • ν 2s+1
with no shortcut have the form described in (3.5.11):

c 1 • • • • • c s | • c s+1 , k •
The part ν 2i-1 + ν 2i has the secondary color c i for all i ∈ [1, s], and the primary part ν 2s+1 has the color c s+1 .

Rule 1 : For all i ∈ [2, s], c s+1 belongs to the clockwise arc (c i , c 1 ). In fact, by (3.5.9), we have that

ν 2s+1 + s -i + 2 ν 1 + ν 2 -i + 2 ν 2i-1 + ν 2i ν 2s+1 + s -i + 1 ,
so that by starting a clockwise loop in the diagram from c i , we respectively meet c s+1 , c 1 and c i .

Rule 2 : If we have a move c i c i+1 , then c i+1 strictly belongs to the clockwise arc (c i , c s+1 ). In fact, we have by the primary equivalence definition and (3.5.9) that

ν 2s+1 + s + 2 -i ν 2i-1 + ν 2i ν 2s+1 + s + 1 -i ν 2i+1 + ν 2i+2 ν 2s+1 + s -i and the move c i c i+1 implies that ν 2i-1 + ν 2i ν 2i+1 + ν 2i+2 ⇐⇒ ν 2i-1 + ν 2i -1 ν 2i+1 + ν 2i+2 •
We thus obtain the following inequality

ν 2s+1 + s + 1 -i ν 2i-1 + ν 2i -1 ν 2i+1 + ν 2i+2 ν 2s+1 + s -i •
With these two rules, we can retrieve all the optimal forddiden patterns. In our construction, we will see that our moves are indeed mimimal with respect to . This means that, in the case where (c i , c i+1 ) ∈ SP , we necessarily make the move c i → c i+1 . By Lemma 3.4.9, with the minimality of the consecutive size differences, once the part ν 2s+1 crosses the parts ν 2s-1 + ν 2s , it then crosses all the parts up to ν 1 + ν 2 . Therefore, the choice of the size k is such that the part k c s+1 crosses the last secondary part (k

+ 1 + χ(c s ≤ c s+1 )) c s . We thus have k c s+1 β((k + 1 + χ(c s ≤ c s+1 )) c s ) • (3.5.40)
We then proceed as follows.

1. We select a head c 1 → c 2 , and c s+1 a primary color in the clockwise arc (c 2 , c 1 ). Let us begin with those with the shortest arc.

2. The next move must necessarily be of the form c 2 c 3 .

(a) With Rule 2, the patterns (3.5.15), (3.5.16),(3.5.17) and (3.5.19) follow immediately. In fact, in these cases, the only primary colors in the arc (c 1 , c 2 ) directly follow c 2 in the clockwise sense before all the secondary colors. (c) In the case (3.5.18) and (3.5.20), there is only one secondary color in the arc which occurs before the chosen primary color, and we can see that from this color we only have moves of the form . The only possibility if we choose c 3 to be this secondary color will be then to directly reach the primary color at c 4 . We can also decide to choose c 3 as the primary color. We recall that

c 1 → c 2 ( c 3 )| c 4
means that the choice of the secondary color in between c 2 and the primary color c 4 is optional.

- For all these cases, one can check that it is not possible to build from them some forbidden pattern with only secondary parts.

3. The remaining case is where c 3 is in the arc (c 2 , c s+1 ) and such that we can have a move c 3 → c 4 .

We then use the following property of our optimal forbidden pattern due to (3.5.9): when we do m moves from the first color to another secondary color, in the diagram, we do around the first color fewer than m but at least m -1 primary loops. This means that, by taking the allowed pattern resulting from the removal of the last part in an optimal forbidden pattern beginning by c 3 → c 4 , we will always satisfy (3.5.9). For this reason, we begin with c 1 → c 2 = ae → cd and c s+1 = a. If c 3 = be, then we can iterate the pattern (3.5.16) (which is be → cd) as many times as we want. By doing this, we do as many loops as the number of moves, which is twice the number of iterations. However, once we terminate this iteration, we can only move to a by optionally passing by be, bd, bc through . In fact, anytime we reach cd, we cannot make a move cd →, so that by the second rule, we need to move back to either be, bd, bc or a using . We then obtain the patterns (3.5.22) and (3.5.23). Note that for these patterns, we stay in the arc (cd, a), and the passage from ae = c 1 to c s requires more than s -1 primary loops, so that the pattern ae • • • c s ae requires s + 1 primary loops. We also observe that apart from c 1 = ae and c s+1 , all colors c i belong to {cd, be, bd, bc}, so that their upper halves can never be a primary part with color a and we do not have any optimal forbidden patterns with only secondary parts coming from a forbidden pattern of that form. We use the same reasoning to show that the only moves that can leave the arc (bc, a) are (3.5.15), (3.5.19), (3.5.20) and (3.5.23). For (3.5.15) (the move ad → bc), in order to make as many loops as the number of moves, we can optionally add a move ae before reaching ad. This is why we can compose a pattern using the patterns (3.5.19), (3.5.20) and (3.5.23) and ae (3.5.15), and we obtain (3.5.25). In this composition, we can remark that we do not make a move cd →. In fact, the only way to reach cd is to do a move (3.5.23), but in this move cd can only be reached after the move ae → cd, so that we cannot do cd →. Once we move out of this composition, we can only reach the primary color d, e by optionally passing by the primary equivalent class a., which consists of the secondary colors ae, ad, ac, ab. In addition, these moves have the form . We then obtain (3.5.26), (3.5.27) and (3.5.28). Note that for these patterns, the secondary colors stay in the arc (cd, d), and the passage from de = c 1 to c s requires more than s -1 primary loops, so that the pattern de • • • c s de requires s + 1 primary loops. To obtain the forbidden patterns with only secondary colors, we just need to choose those which correspond to the forbidden patterns ending by a primary color and such that the upper half of the last part corresponds to the primary color and is at least equal than the lower half of the previous secondary part. We then have the patterns (3.5.29), (3.5.30) and (3.5.31).

(c) For c 1 → c 2 = cd, ce → bc and c s+1 = c. We use the same reasoning to show that the only moves that can leave the arc (ab, c) are (3.5.26), (3.5.18), (3.5.17). As before, in the composition of these moves, we remark that we do not make a move cd → and the secondary colors stay in the clockwise arc (cd, c). Once we do not make these moves, we can only go to c by optionally passing by de through . For these patterns, the passage from de = c 1 to c s requires more than s -1 primary loops, so that the pattern cd, ce • • • c s ce, cd requires s + 1 primary loops. We obtain the optimal forbidden patterns consisting of only secondary parts, always by choosing those corresponding to optimal forbidden patterns ending primary colors and such that the upper half of the last part corresponds to the primary color and is at least equal to the lower half of the previous secondary part.

To conclude, we see that for more than four colors, there exist some shortcuts. However, even for five colors, the set of optimal forbidden patterns without shorcut is infinite, as a consequence of Theorem 3.5.10, since some patterns use as many iterations of others. The enumeration of the forbidden patterns then becomes intricate for more than four primary colors.

Bijective proof of Theorem 1.3.3

In this section, we will describe a bijection for proving Theorem 1.3.3. For brevity, we refer to the partitions in Theorem 1.3.3 as quaternary partitions. We first observe the following major fact. Looking at the forbidden patterns in Theorem 3.5.7, one can check by (2.2.6) that if we have in ν, the pattern k cd , k ab , l p we then necessarily have (k -2) cd l p , and if we have the pattern (k + 1) ad , k bc , l p = 3 ad , 2 bc , 1 a , we then necessarily have (k -1) ad l p . In all cases, if we have in a partition of E 1 a pattern

M, m, l p with (M, m) ∈ {(k cd , k ab ), ((k + 1) ad , k bc )} such that M, m, l p = 3 ad , 2 bc , 1 a , then M -2 l p • (3.6.1)

From E 1 to quaternary partitions

We consider the patterns ((k + 1) ad , k bc ), (k cd , k ab ) and sum them as follows :

(k + 1) ad + k bc = (2k + 1) abcd k cd + k ab = 2k abcd • (3.6.2)
Let us now take a partition ν in E 1 . We then identify all the patterns (M i , m i ) ∈ {((k + 1) ad , k bc ), (k cd , k ab )} and assume that ν = (ν 1 , . . . , ν x , M 1 , m 1 , ν x+1 , . . . , ν y , M 2 , m 2 , ν y+1 , . . . , M t , m t , . . . , ν s ) •

As long as we have a pattern ν j , M i , m i , we cross the parts by replacing them using

ν j , M i , m i -→ M i + 1, m i + 1, ν j -2 • (3.6.3)
At the end of the process, we obtain a final sequence

N 1 , n 1 , N 2 , n 2 , . . . , N t , n t , ν 1 , . . . , ν s •
Finally, the associated pair of partitions is set to be (K 1 , . . . , K t ), ν = (ν 1 , . . . , ν t ), where K i = N i + n i according to (3.6.2). We remark that, for each quaternary part K i obtained by summing of the original pattern M i , m i , we add twice the number of the remaining primary and secondary parts in ν to the left of the pattern that gave K i , while we subtract from these parts two times the number of quaternary parts obtained by patterns that occur to their right. We now proceed to show that the image of this mapping is indeed a quaternary partition. The inverse mapping will be presented in the next subsection.

1. Quaternary parts are well-ordered. Let us consider two consecutive patterns (M j , m j ) = (k p , l q )

and (M j+1 , m j+1 ) = (k p , l q ). Since ν is well-ordered by , we have by (2.2.12) and (2.2.11) that

l q l 1 p 1 • • • l i p i k p • (3.6.4)
By (2.2.11), we then have that l q k p + i + 1 so that lk ≥ i + 1 + χ(q ≤ p ). Since by (2.2.12), kl = χ(p ≤ q) and kl = χ(p ≤ q ), we then have that

k + l -(k + l ) = χ(p ≤ q) + χ(p ≤ q ) + 2(l -k ) ≥ χ(p ≤ q) + χ(p ≤ q ) + 2χ(q ≤ p ) + 2i + 2
and we obtain that

χ(cd ≤ ab)+χ(cd ≤ ab) + 2χ(ab ≤ cd) = 2 χ(cd ≤ ab)+χ(ad ≤ bc) + 2χ(ab ≤ ad) = 3 χ(ad ≤ bc)+χ(cd ≤ ab) + 2χ(bc ≤ cd) = 3 χ(ad ≤ bc)+χ(ad ≤ bc) + 2χ(bc ≤ ad) = 2 , so that k + l -(k + l ) ≥ 4 + 2i.
We will then have, after adding twice the remaining primary and secondary elements to their left, that the difference between two consecutive quaternary parts will be at least 4.

2.

The partition ν is in E 2 . Let us consider two consecutive elements ν x = k p , ν x+1 = l q . We then have for consecutive patterns M u , m u in between k p and l q that

k p M i m i • • • M j m j l q • (3.6.5)
Then, in the case that (M j , m j , l p ) = (3 ad , 2 bc , 1 a ), we necessarily have by (3.6.1) that M u M u+1 + 2, M j l q + 2, and by (2.2.12), we have that k p M i + 1, and then

k p 1 + 2(j -i + 1) + l q =⇒ k p 2(j -i + 1) + l q • (3.6.6)
For the case (M j , m j , l p ) = (3 ad , 2 bc , 1 a ), we obtain by (3.6.1) that k p -2(ji + 1) + 1 3 ad (3.6.7) and this means that k p -2(ji + 1) + 1 3 a so that k p -2(ji + 1) 2 a 1 a .

In any case, k p 2(ji + 1) + l p , and this implies that after the subtraction of twice the number of the quaternary parts obtained to their right, these parts will be well-ordered by .

3. The minimal quaternary part is well-bounded. Let us first suppose that the tail of ν consists only of patterns M u , m u . We then have that

ν s M i m i • • • M t m t
and, then by (3.6.1), ν s -2(ti + 1) + 1 M t 2 cd , so that ν s = ν s -2(ti + 1) 1 cd 1 a . This means that 1 a / ∈ ν . We also obtain that K t = M t + m t + 2s ≥ 2s + 4.

Now suppose that the tail of ν has the form

l q ν u • • • ν s , (3.6.8)
with M t , m t = k p , l q . By (2.2.11), we obtain that l q ν s + su + 1.

• If ν s = 1 a , we then have

k + l = χ(p ≤ q) + 2l ≥ χ(p ≤ q) + 2(s -u + 2 + χ(q ≤ a)) = 2(s -u + 1) + 2 + χ(p ≤ q) + 2χ(q ≤ a)) ,
and with (p, q) ∈ {(ad, bc), (cd, ab)} we have

χ(ad ≤ bc) + 2χ(bc ≤ a)) = 1 χ(cd ≤ ab) + 2χ(ab ≤ a)) = 2 so that k + l ≥ 2(s -u + 1) + 3.
Then after the addition of 2(u -1) for the remaining primary and secondary parts of ν to the left of the pattern (M t , m t ), we obtain that the smallest quaternary part is at least 2s + 3. Note that ν s = ν s = 1 a .

• When ν s = h r = 1 a , we obtain that

k + l ≥ χ(p ≤ q) + 2(s -u + 1 + h + χ(q ≤ r)) = 2(s -u + 1) + 2h + χ(p ≤ q) + 2χ(q ≤ r)) , so that if h ≥ 2, then k + l ≥ 2(s -u + 1) + 4.
If not, h = 1, and since there is no secondary part of length 1, we necessary have that r ≥ b, so that χ(q ≤ r) = 1 whenever q ∈ {ab, bc}.

We thus obtain k + l ≥ 2(su + 1) + 4. We then conclude that for ν s = 1 a , the smallest quaternary part is at least 2s + 4.

In any case, we have that the smallest quaternary part is at least 2s + 4χ(1 a ∈ ν ).

From quaternary partitions to E 1

Recall by (3.6.2) that K abcd splits as follows :

(k + 1) ad + k bc = (2k + 1) abcd k cd + k ab = 2k abcd •
Let us consider partitions (K 1 , . . . , K t ) and ν = (ν 1 , . . . , ν s ) ∈ E 2 , with quaternary part K u such that K t ≥ 4 + 2sχ(1 a ∈ ν) and K u -K u+1 ≥ 4. We also set K u = (k u , l u ), the decomposition according to (3.6.2). We then proceed as follows by beginning with K t and ν 1 ,

Step 1: If we do not encounter K u+1 = (k u+1 , l u+1 ) and ν i = 1 a and ν i + 2 k u -1, then replace

ν i -→ ν i + 2 (k u , l u ) -→ (k u -1, l u -1)
and move to i + 1 and redo Step 1. Otherwise, move to Step 2.

Step 2 If we encounter K u+1 = k u+1 l u+1 , then split (k u , l u ) into k u l u . If not, it means that we have met ν i such that ν i + 2 k u -1. Then we split k u l u . Since we have ν i + 2 k u -1, which is equivalent by (2.2.11) to k u ν i + 2, by (3.6.1), this is exactly the condition to avoid the forbidden patterns, with k u l u ν i . We can now move to Step 1 with u -1 and i = 1.

With the example [(22 

•

It is easy to check that when two quaternary parts meet in Step 2, we will always have l u k u+1 , since this is exactly the condition for the minimal difference K u -K u+1 ≥ 4 and they crossed the same number of ν i . We can also check that even if the minimal part crossed ν 1 , . . . , ν s = 1 a , we will still have at the end K t ≥ 4 and for ν s = 1 a , K t ≥ 5. We see with (3.6.2) that the length of m t is at least equal to 2, and for the case ν s = 1 a , m t is a least equal to 2 bc 1 a . The partition obtained is then in E 1 .

Bressoud's algorithm, Motzkin paths and oriented rooted forests

In this section, we relate the partitions in E to oriented rooted forests, and give a new potential approach to deal with the enumeration of the forbidden patterns.

Let us take a partition ν ∈ E and write it as

ν = (ν 1 , • • • , ν p+2s ) , (3.7.1) 
where as before, p is the number of primary parts and s is the number of secondary parts. We recall that the set J is the set of indices that correspond to the primary parts, and I corresponds to the upper halves, so that I + 1 is associated to the lower halves.

We observe that the sequence λ = Ψ(ν) has also p + 2s primary parts. We then have λ = λ 1 , . . . , λ p+s . For any x ∈ [1, p + 2s], we set θ x to be the index in λ of the primary part that comes from ν x .

Example 3.7.1. As an example, we apply Φ to the partition λ = (12 a , 7 b , 6 d , 6 c , 5 a , 4 d , 4 c , 4 b , 4 a , 3 c , 1 d , 1 c , 1 b , 1 a ) and take ν = Φ(λ): The most important results of this part are the following (proofs in Appendices A. 1.14 and A.1.15).

12 a 7 b 6 d 6 c 5 a 4 d 4 c 4 b 4 a 3 c 1 d 1 c 1 b 1 a 12 a 13 bd 6 c 5 a 4 d 4 c 4 b 4 a 3 c 1 d 1 c 1 b 1 a 14 bd 11 a 6 c 5 a 4 d 4 c 4 b 4 a 3 c 1 d 1 c 1 
Proposition 3.7.2 (Motzkin path behavior of the final positions). For any (i, i , j, j ) ∈ I 2 × J 2 , we have the following relations:

If i < i , then either θ i < θ i+1 < θ i < θ i +1 or θ i < θ i < θ i+1 < θ i +1 • (3.7.5) If j < j , then θ j < θ j • (3.7.6) i + 1 ≤ θ i+1 and θ j ≤ j • (3.7.7) Either θ j < θ i or θ i+1 < θ j • (3.7.8)
Proposition 3.7.3 (Bridge according to the final positions). For any i ∈ I, we have the following:

• If there exists i < j ∈ J such that θ j < θ i , then

Br ν (i) = min{j ∈ J : j > i and θ j < θ i } • (3.7.9)

• Otherwise, Br ν (i) = max{i ∈ I : i ≥ i and θ i ≤ θ i } • (3.7.10) Remark 3.7.4. We indeed have by Proposition 3.7.2 for all i ∈ I that

θ i+1 -(i + 1) = |{u ∈ I J : u > i and θ u < θ i }| ,
and Proposition 3.7.3 gives the following equivalence:

Br ν (i) = i ⇐⇒ θ i+1 = i + 1 • Let us set I = {i 1 < • • • < i s } and J + = J {0, p + 2s + 1} = {j 0 < j 1 < • • • < j p < j p+1
} and (θ 0 , θ p+2s+1 ) = (0, p + 2s + 1). Then, by (3.7.6) and (3.7.8) of Proposition 3.7.2, for any consecutive j, j ∈ J + , there exists a unique V ⊂ {1, . . . , s} such that

{θ j + 1, . . . , θ j -1} = {θ x : x ∈ {i v , i v + 1 : v ∈ V}} •
This means that the final positions between those of consecutive primary parts consist of those of the upper and lower halves of some secondary parts. By (3.7.5), we can check that those secondary parts are consecutive, and V is indeed an interval. Since the positions θ i+1 form an increasing sequence, we then have a unique decomposition

{1, . . . , s} = V 0 V 1 • • • V p
where the V y are consecutive intervals.

We refer the reader to the book of R. Stanley [START_REF] Stanley | Enumerative Combinatorics: Cambridge Studies in Advanced Mathematics[END_REF] for the definition of the combinatorial terms we use in the following. In each interval, the positions behave like a Dyck path. In fact, the positions θ i of the upper halves occur as the moves [START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF] and the positions θ i+1 of the lower halves as the moves (1, -1). We also draw the positions θ j of the primary parts as the moves (1, 0), and we obtain what is called a Motzkin path (also see [START_REF] Donaghey | Motzkin numbers[END_REF]. With the bijection between Dyck paths of length 2l and the oriented rooted trees with l egdes, one can then see the initial positions as an oriented rooted forest with exactly p + 1 trees and s edges.

Example 3.7.5. We take the corresponding representations for the example (3.7.2). We then have that (i 1 , i 2 , i 3 , i 4 , i 5 , i 6 ) = [START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF][START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF]6,8,11,13), (j 0 , j 1 , j 2 , j 3 ) = (0, 3, 10, 15) and 0, . . . , 15 = θ j 0 ,

θ j 1 , θ i 1 , θ i 1 +1 , θ i 4 , θ i 2 , θ i 2 +1 , θ i 3 , θ i 3 +1 , θ i 4 +1 , θ j 2 , θ i 5 , θ i 5 +1 , θ i 6 , θ i 6 +1 , θ j 3
and the representations correspond to the following diagrams:

Motzkin path representation j 0 j 1 j 2 j 3 i 1 i 4 i 2 i 3 i 5 i 6 Forest representation j 0 j 1 j 2 j 3 i 1 i 2 i 5 i 4 i 3 i 6
Note that while we still keep track of the primary parts as the horizontal moves in Motzkin paths, they vanish in oriented rooted forests. However, we can manage to record all information of the partition ν in the oriented rooted forest by weighting the edges with the corresponding secondary part, while recording each primary part on the root to its right. The optimal forbidden pattern ending by a primary part will then be represented by a weighted oriented rooted tree.

Let us now consider the edges of the roots. In terms of Motzkin paths, they exactly correspond to the meeting points with the horizontal axis. For the final positions, they correspond to the elements i ∈ I that satisfy θ i+1 < θ i for all i > i. By Proposition 3.7.3, in the case where the Bridge is not a element of J, it then corresponds to some root's edge. This means that the study of optimal forbidden patterns not ending by a primary part can be reduced to the study of planted trees weighted by the secondary parts. The planted trees are indeed in bijection with the oriented trees with one fewer edge, and the problem then becomes the same as the previous case.

To conclude, we see that we can reduce the study of the optimal forbidden patterns to the study of weighted oriented rooted trees, and this give a new perspective to investigate the precise enumeration of these patterns.

Chapter 4

Beyond Siladić's theorem

In this chapter, we discuss the result beyond Siladić's theorem.

We first present in Section 4.1 the main operator for our bijection, which acts as an energy transfer on the particles. Then, in Section 4.2, we explicitly give the bijective maps for Theorem 2.2.15, whose well-definedness is proved in Section 4.3. Finally, in Section 4.4, we conclude with some remarks related to the theory of perfect crystals.

Energy transfer

In this section, we define an operator on the pairs of particles of different degree (primary and secondary), presented as an energy transfer. This operator is a variant of the crossing operator used in Chapter 3 for the generalization of Göllnitz' theorem.

The proof of the technical lemmas and propositions are postponed to Appendix A.2. Definition 4.1.1. We define a mapping Λ on P × S S × P by the following:

P × S -→ S × P (k, c), (k , c , c ) -→ (k + (c , c ), c, c ), (k -(c, c ) -(c , c ), c ) , (4.1.1) 
S × P -→ P × S (k, c, c ), (k , c ) -→ (k + (c, c ) + (c , c ), c), (k -(c , c ), c , c ) • (4.1.2)
What does Λ do to the particles? Let us consider the following diagrams according to the occurrences of primary states:

P × S -→ S × P : c c c + (c , c ) + (c, c ) -(c, c ) -(c , c ) S × P -→ P × S : c c c -(c , c ) -(c, c ) + (c, c ) + (c , c )
These diagrams encode the transfer of energies that occurs during the application of Λ. For example, one can understand the process on the first diagram as follows:

1. The lower half (k , c ) moves from state c to c and gains the minimal energy (c , c ):

c ←-c k + (c , c ) ←-k • 2.
The upper half (k + (c , c ), c ) moves from state c to c and gains the minimal energy (c, c ):

c ←-c k + (c, c ) + (c , c ) ←-k + (c , c ) •
3. The primary particle (k, c) moves from state c to state c , through state c , and loses the energy of transfer (c, c ) + (c , c ):

c -→ c -→ c k -→ k -(c, c ) -→ k -(c, c ) -(c , c ) •
The second diagram follows exactly the same transfer of energies. We can then see Λ as a energy transfer that conserves the sequence of states but switches particles with the minimal loss or gain of energies. One can check that the operator Λ is an involution, i.e. Λ 2 = Id.

In the following, if we apply Λ to a pair of particles (x, y) in P × S S × P, we say that we cross the particles x and y.

Example 4.1.2. We take C = {a < b} in Example 2.1.7. We then have that Λ(3 ab , -10 a ) = (-9 a , 2 ba ). The energy transfer that occurs can be summarized by the following diagram

2 a + 1 b -10 a 1 b + 1 a -9 a -1
-0

+1

The main proposition that follows from the definition of Λ is the following.

Proposition 4.1.3. For any (p, s) ∈ P × S, let (s , p ) = Λ(p, s). We then have the following:

p s ⇐⇒ s p , (4.1.3) p γ(s) ⇐⇒ µ(s ) p • (4.1.4)
The proof is given in Appendix A.2.4. The relation (4.1.3) means that the operator Λ allows us to order, in terms of , two particles of different degree which are not well-related. This property stands as the key result that will allow us to construct the mapping Φ from O to E . On the other hand, the relation (4.1.4), more subtle to explain, will play a major role in the inverse Ψ of Φ.

Bijective maps for Theorem 2.2.15

We present in this section the bijective proof of Theorem 2.2.15. This bijection rests on the energy transfer defined in the previous section.

From O to E

We now present the map Φ from O to E . Let us take any λ ∈ O . We set λ = (λ 1 , . . . , λ s ) with λ k λ k+1 for any k ∈ {1, . . . , s -1}. We illustrate this map on an example with C = {a < b} and as described in Example 2.1.7: λ = (11 b , 5 b , 5 a , 5 a , 4 a , 2 a , 1 b , 1 a , 0 a , 0 b , -1 b , -2 b ) •

Step 1: First identify the consecutive disjoint troublesome pairs of particles (λ k , λ k+1 such that λ k λ k+1 ), by beginning by those with the smallest potentials (from the right to the left). Then, sum up these troublesome pairs (λ k , λ k+1 ) to have the secondary particles corresponding to λ k + λ k+1 , without changing the order of the particles. We then obtain a new sequence of particles (where particles are not necessarily well-related in terms of ) λ = (λ 1 , . . . , λ t ), with particles λ k in O and E . With our example, we have the troublesome pairs λ = (11 b , 5 b , 5 a , 5 a , 4 a , 2 a , 1 b , 1 a , 0 a , 0 b , -1 b , -2 b )

and we obtain λ = (11 b , 5 b , 10 a 2 , 4 a , 3 ab , 1 aa , -1 bb , -2 b ) •

Step 2: As long as there is a pair (λ k , λ k+1 ) ∈ (P × S) (S × P ) such that λ k λ k+1 , cross the particles in the pair with the operator Λ:

(λ k , λ k+1 ) -→ Λ(λ k , λ k+1 ) •
The order in which we operate the crossings is not specified here. Let us then apply this process on our example according to whether we choose the particles with the greatest or the smallest potentials for each application of Λ. We then have the following diagrams: One can observe with our example that the final result is the same in both choices. This is indeed the case in general, whatever the choice of the applications of Λ.

We claim that Step 2 always ends, and that the final result λ is unique and belongs to E (two consecutive particles are always well-related by ). We then set Φ(λ) to be the final partition λ obtained at the end of Step 2. Our example gives Φ(11 b , 5 b , 5 a , 5 a , 4 a , 2 a , 1 b , 1 a , 0 a , 0 b , -1 b , -2 b ) = (11 b , 10 ba , 6 aa , 4 a , 2 b , 1 aa , -1 b , -2 b 2 ) •

From E to O

Here we present the inverse map Ψ of Φ. Let us take any ν = (ν 1 , . . . , ν t ) ∈ E . We illustrate Ψ on the example ν = (11 b , 10 ba , 6 aa , 4 a , 2 b , 1 aa , -1 b , -2 b 2 ), the final result obtained before for the map Φ.

Step 1: As long as there is a pair (ν k , ν k+1 ) ∈ P × S such that ν k γ(ν k+1 ) or (ν k , ν k+1 ) ∈ S × P such that µ(ν k ) ν k+1 , cross the particles in the pair with Λ:

(ν k , ν k+1 ) -→ Λ(ν k , ν k+1 ) •
Here again, the order in which the applications of Λ occur is not specified. We proceed, as before, according to whether we choose the smallest or the greatest potentials. We observe that the process by choosing the smallest potentials is the exact reverse process of Step 2 of Φ by selecting the greatest potentials. The same occurs between the choice of the greatest potentials, that gives the reverse process of Step 2 of Φ by choosing the smallest potentials. We again have the same final result at the end of Step 1 for both choices. Let us set ν = (ν 1 , . . . , ν t ) as the final sequence.

Step 2: Split all the secondary particles ν k of ν into their upper and lower halves:

ν k -→ γ(ν k ), µ(ν k ) •
We then obtain ν . With our example, we have that ν = (11 b , 5 b , 5 a , 5 a , 4 a , 2 a , 1 b , 1 a , 0 a , 0 b , -1 b , -2 b ) •

We claim that Step 1 always ends in a unique result, whatever the choice of the applications of Λ, and that the final result ν after Step 2 belongs to O (the primary particles are well-related in terms of ). We finally set Ψ(ν) = ν . Our example gives Ψ(11 b , 10 ba , 6 aa , 4 a , 2 b , 1 aa , -1 b , -2 b 2 ) = (11 b , 5 b , 5 a , 5 a , 4 a , 2 a , 1 b , 1 a , 0 a , 0 b , -1 b , -2 b ) •

Proof of Theorem 2.2.15

In this section, we prove that the maps Φ and Ψ given in Section 4.2 are well-defined and Φ -1 = Ψ.

Well-definedness of Φ

Let us take any λ = (λ 1 , . . . , λ s ) ∈ O , and set λ k = (l k , c k ) ∈ P for all k ∈ {1, . . . , s}. Here we take the example from Section 4.2.1,

λ = (11 b , 5 b , 5 a , 5 a , 4 a , 2 a , 1 b , 1 a , 0 a , 0 b , -1 b , -2 b ) •
We then have s = 12 and the following table: In the following, we first define some functions related to the partition λ, that will be useful for the second part which concerns the proof of the well-definedness of Φ. We explicitly compute all the functions defined in the following for our example.

The setup

We first define the function ∆ on {1, . . . , s} 2 as follows,

∆ : (k, k ) → s-1 ∑ u=k (c u , c u+1 ) - s-1 ∑ u=k (c u , c u+1 ) • (4.3.2)
We remark that, for any k ≤ k ,

0 ≤ ∆(k, k ) ≤ k -k , ∆(k, k ) = -∆(k , k) , (4.3.3)
and for all k ∈ {1, . . . , s -1}, we have by (4.3.2) that

l k -l k+1 ≥ (c k , c k+1 ) = ∆(k, k + 1) •
Moreover, the function ∆ satisfies Chasles' relation:

∆(k, k ) + ∆(k , k ) = ∆(k, k )
for all k, k , k ∈ {1, . . . , s}. We then identify ∆(k, k ) as the formal energy of transfer from the primary state c k to the primary state c k . Using (4.3.1), we obtain the following table in our example k 1 2 3 4 5 6 7 8 9 10 11 ∆(k, k + 1) 1 0 0 0 1 1 0 1 0 1 0

• (4.3.4)
We now formalize the choice of troublesome pairs of primary particles in Step 1. In order to select the pairs with smallest potentials, from the right to the left, we proceed as follows:

• i 1 is the greatest k ∈ {1, . . . , s -1} such that l kl k+1 = ∆(k, k + 1),

• if i t-1 is selected, then, whenever it is still possible, i t is the greatest k ∈ {1, . . . , i t-1 -2} such that l kl k+1 = ∆(k, k + 1).

We then set I = {i t } and J = {1, . . . , s} \ (I (I + 1)). In our example, we have by ( 4 1. I , I + 1, J form a set-partition of {1, . . . , s},

2. for all i ∈ I , l il i+1 = ∆(i, i + 1),

3. for all j ∈ {2, . . . , s} ∩ J , l j-1l j > ∆(j -1, j).

We now define the function α on {1, . . . , s} 2 to be such that

α : (k, k ) → |(k, k ] ∩ J| if k ≤ k -α(k , k) if k > k , (4.3.5)
we then have that α satisfies Chasles' relation. One can also observe that α(k, k) = 0 for all k ∈ {1, . . . , s}. Therefore, using Remark 4.3.1, we obtain for all k ≤ k ∈ {1, . . . , s} that

l k -l k ≥ α(k, k ) + ∆(k, k ) • (4.3.6)
We finally define the function β on {1, . . . , s} 2 by

β : (k, k ) → |[k, k ) ∩ J| if k ≤ k -β(k , k) if k > k , (4.3.7)
and we have that β satisfies Chasles' relation. Our example gives the table k 1 2 3 4 5 6 7 8 9 10 11 α(k, k + 1) 1 0 0 1 0 0 0 0 0 1 0 β(k, k + 1) 1 1 0 0 1 0 0 0 0 0 0

• (4.3.8)
Using this table, Chasles' relation then allows us to compute all the values for α and β. For example,

α(2, 4) = α(2, 3) + α(3, 4) = 0 and β(4, 2) = β(4, 3) + β(3, 2) = -0 -1 = -1 •
To conclude, we observe that, at the end of Step 1, the particles in S are λ i + λ i+1 for i ∈ I. The set I then corresponds to the index set of the upper halves, the set I + 1 to the index set of the lower halves, and J represents the index set of the particles λ j that stay in P.

Proof of the well-definedness of Φ During

Step 2, the positions of particles change by the actions of Λ. Here we see the secondary particles in S as the corresponding pair of two consecutive particles in P. We can then consider the permutation σ of {1, . . . , s} which determines the new positions of these primary particles, and σ satisfies the following properties:

• σ(i + 1) = σ(i) + 1 for all i ∈ I, since we move the upper and lower halves together,

• σ is increasing on I and J, since Λ never crosses the particles of the same degree.

We can now state the main results that will ensure the well-definedness of the map Φ.

I and I + 1 are respectively the index sets of upper and lower halves of the particles in S. In the case of our example I = {2, 4, 8, 11} and J = {1, 6, 7, 10} • Also set ν k = (l k , c k ) for all k ∈ {1, . . . , s} , and define the function ∆ on {1, . . . , s} 2 in a similar manner as in (4.3.2). Finally define the function η on {1, . . . , s} 2 to be as

η : (k, k ) → |(k, k ] ∩ J| if k ≤ k -η(k , k) if k > k • (4.3.12)
Note that η satisfies Chasles' relation. In our example, we obtain the following table: 

-1 -1 -1 ∆(k, k + 1) 1 0 0 0 1 1 0 1 0 1 0 η(k, k + 1) 0 0 0 0 1 1 0 0 1 0 0 • (4.3.13)
We now give in the following lemma the relations that link the particles' potentials. The proof is given in Appendix A.2.3.

Lemma 4.3.7. Let us set l k = l k if k ∈ J 2l k if k ∈ I (I + 1)
•

Then for all k ≤ k ∈ {1, . . . , s}, we have

l k -l k ≥ η(k, k ) + ∆(k, k ) • (4.3.14)
In particular, for all i ≤ i ∈ I (I + 1), we have

l i -l i ≥ ∆(i, i ) • (4.3.15)

Proof of the well-definedness of Ψ

We can now focus on the position σ of the particles during Step 1 of Ψ. Note that Lemma 4.3.5 still holds here, as well as the fact that σ(i + 1) = σ(i) + 1 for all i ∈ I and σ is increasing on I (I + 1) and J.

We now give the analogues of Proposition 4.3.2,Proposition 4.3.3 and Proposition 4.3.10 that ensure the well-definedness of Ψ. The proof of the following propositions are given in Appendices A. 2.8,A.2.6 and A.2.7. Proposition 4.3.8 (Final position). Let ψ be a function on J × I defined by :

ψ : (j, i) -→ l j -l i -∆(j, i) • (4.3.16)
Then, the final position σ of Ψ after Step 1 is such that, for all (j, i) ∈ J × I, (4.3.17) and

σ(j) < σ(i) ⇐⇒ ψ(j, i) ≥ 0 ,
Step 1 comes to an end after exactly |{(j, i) ∈ J × I : j > i and ψ(j, i) ≥ 0 , or j < i and ψ(j, i) < 0}| (4.3.18) applications of Λ. 

Ψ(E ρ ± ) ⊂ O ρ ± .
In our example, the following table for Ψ is obtained:

j \ i 2 4 8 11 1 5 7 7 7 6 0 2 2 2 7 -1 1 1 1 10 -3 -1 -1 -1
• By Proposition 4.3.8, there are four crossings that occur in the pairs (j, i) in {(6, 2), (6, 4), (7,[START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF], (10, 11)}.

Remark 4.3.11. One can check that the sets σ(I), σ(I) + 1 and σ(J) form the unique set-partition of {1, . . . , s} such that 1. For all i ∈ σ(I), ν iν i+1 = ∆(i, i + 1), 2. for any j ∈ σ(J) ∩ {2, . . . , s}, ν j-1 ν j .

Reciprocity between Φ and Ψ

The relation

Ψ • Φ = Id O
For any λ = (λ 1 , . . . , λ s ) ∈ O , we choose unique sets I, J such that 1. I, I + 1, J form a set-partition of {1, . . . , s},

2. for all i ∈ I, l il i+1 = ∆(i, i + 1),

3. for all j ∈ {2, . . . , s} ∩ J, l j-1l j > ∆(j -1, j).

Let σ be the final position after application ofΦ. Since by Lemma 4.3.5

λ σ(k) -λ σ(k ) -∆(σ(k), σ(k )) = l k -l k -∆(k, k ) ,
by considering the function ψ in Proposition 4.3.8, we obtain, for all (j, i) ∈ J × I, that

j < i ⇐⇒ ψ(σ(j), σ(i)) = l j -l i -∆(j, i) ≥ α(j, i) = |(j, i] ∩ J| ≥ 0 and j > i ⇐⇒ ψ(σ(j), σ(i)) = l j -l i -∆(j, i) ≤ -α(i, j) = -|(i, j] ∩ J| ≤ -1 ,
so that I, J are exactly the final positions of σ(I), σ(J) after applying Ψ. Thus Ψ(Φ(λ)) = λ.

The relation

Φ • Ψ = Id E
Let us now take any ν ∈ E , and let σ be the final position after Ψ, and Ψ(ν) = ν = (ν 1 , . . . , ν s ) with the enumeration of primary particles. We saw Remark 4.3.11 that, σ(I), σ(I) + 1 and σ(J) form the unique set-partition of {1, . . . , s}, such that

• for all σ(i) ∈ σ(I), ν σ(i) -ν σ(i)+1 = ∆(σ(i), σ(i) + 1),
• for all σ(j) ∈ σ(J) ∩ {2, . . . , s}, ν σ(j)-1 ν σ(j) .

The sets σ(I) and σ(J) then are the unique sets obtained after Step 1 in the process of Φ on ν . Let us recall β.

For k ≤ k β(k, k ) = |[k, k ) ∩ σ(J)| and β(k, k ) = -β(k , k) •
Then, since σ is increasing on J and I (I + 1), for any (j, i) ∈ J × I,

β(σ(j), σ(i)) = |[1, σ(i)) ∩ σ(J)| -|[1, σ(j)) ∩ σ(J)| = σ(i) -1 -|[1, σ(i)) ∩ σ(I (I + 1))| -|[1, j) ∩ J| = σ(i) -1 -|[1, i) ∩ (I (I + 1))| -|[1, j) ∩ J| = σ(i) -i + |[1, i) ∩ J| -|[1, j) ∩ J| •
We then obtain in Proposition 4.3.2, by the fact that l i = l i+1 + ∆(i, i + 1),

φ(σ(j), σ(i)) = (l j + ∆(σ(j), j) -2(l i+1 + ∆(σ(i + 1), i + 1)) -∆(σ(j), σ(i + 1)) -∆(σ(i + 1) -β(σ(j), σ(i)), σ(i + 1)) = l j -2l i+1 -∆(j, i + 1) -∆(i + 1 -|[1, i) ∩ J| + |[1, j) ∩ J|, i + 1) = l j -2l i -∆(j, i) -∆(i + 1 -|[1, i) ∩ J| + |[1, j) ∩ J|, i)•
By (4.3.3) and (4.3.14), we obtain

j < i ⇐⇒ φ(σ(j), σ(i)) ≥ η(j, i) -∆(i -|(j, i) ∩ J|, i) ≥ |(j, i] ∩ J| -|(j, i) ∩ J| = 0 and j > i ⇐⇒ φ(σ(j), σ(i)) ≤ -η(i + 1, j) -∆(i + 1 + |[i + 1, j) ∩ J|, i + 1) ≤ -|(i + 1, j] ∩ J| + |[i + 1, j) ∩ J| = -1 •
The final positions for σ(I), σ(J) after applying Φ on ν are then exactly I, J. Thus Φ(Ψ(ν)) = ν.

Closing remarks

We end this paper with three remarks.

First, we consider another relation on P S, which is the same as for (2.2.22) and (2.2.25), but slightly different for other comparisons :

(k, c) (k , c , c ) ⇐⇒ k -(2k + (c , c )) > (c, c ) + (c , c ) (4.4.1) (k , c, c ) (k , c ) ⇐⇒ (2k + (c, c )) -k ≥ (c, c ) + (c , c ) • (4.4.2)
One can easily check that, for * (c , c) = (c, c ):

(k, c) (k , c ) ⇐⇒ (-k , c ) * (-k, c) , (k, c) (k , c , c ) ⇐⇒ (-k - * (c , c ), c , c ) * (-k, c) , (k, c, c ) (k , c ) ⇐⇒ (-k , c ) * (-k - * (c , c), c , c) , (k, c, c ) (k , c , c ) ⇐⇒ (-k - * (c , c ), c , c ) * (-k - * (c , c), c , c).
If we define E to be the set of all generalized colored partitions with particles in P S and with relation , we obtain the following corollary of Theorem 1.1. While the relation differs from , they both give similar difference conditions. A good example of the similarity between these relations is the fact that we can retrieve Siladić's theorem by taking C = {a < b}, (i, j) = χ(i ≤ j) with non-negative primary part size, followed by the transformation (q, a, b) → (q 4 , q, q 3 ), in Corollary 4.4.1.

Second, we point out that another major result, the Euler distinct-odd identity, can be retrieved from Corollary 2.2.20. Let us consider the restriction of C to the singleton {a}. The corresponding difference condition gives the matrix a a 0 and the corresponding generalized partitions in Corollary 2.2.20 are the classical partitions where all the parts have state a. The restriction of D to the states a, a 2 gives the matrix a a 2 a 1 0 a 2 1 0

•

One can view the corresponding partitions in E as the generalized partitions into distinct positive particles with state a, along with some particles with states a 2 having positive even potentials. In other words, we have a pair of partitions, the first partition into distinct positive particles with state a, and the second into particles with positive even potential and state a 2 .

We then redo the process with the following rules. At step k, we apply the transformation (q, a) → (q 2 k-1 , a 2 k-1 ) to the identity given by the step 1. This leads to the following identity: the number of partitions of n into particles with state a 2 k-1 and potential divisible by 2 k-1 is equal to the number of partitions of n into distinct particles with state a 2 k-1 and potential divisible by 2 k-1 , and particles with state a 2 k and potential divisible by 2 k . By considering the initial step 1, and iterating the steps k, we then have the following identity: the number of partitions of n into positive particles with state a is equal to the number of partitions of n into distinct particles, with the particles with states a 2 k (k ∈ Z ≥0 ) having a potential divisible by 2 k . We finally recover the Euler distinct-odd identity by applying the transformation (q, a) → (q 2 , q -1 ).

Finally, we remark that the maps given in Section 4.2.1 and Section 4.2.2 differ from the variant of Bressoud's algorithm in (Konan, 2020a) for the generalization of Siladić's theorem. In Step 1 of Φ, instead of choosing the troublesome pairs of primary particles from the right to the left, we started in (Konan, 2020a) from the left to the right by first choosing the greatest potentials. This choice could have been made here. The major observation by proceeding this way is that the map Φ remains the same. This comes from the fact that the choice of troublesome pairs only depends on the maximal sub-sequences of λ of the form λ k , . . . , λ k , which satisfy l il i+1 = ∆(i, i + 1) for all i ∈ {k, . . . , k }, with notation as in Section 4.3.1. For such a sub-sequence with an even length, whatever the choice made, we always take the primary particles pairwise. When the length is odd, our choice implies that we take the particles pairwise from the right to the left so that there still remains a primary particle to the left of the sequence. By crossing this primary particle with the secondary particles obtained after summing the pairs in the sequence, by Lemma 4.3.5, we exactly obtain the pairs resulting from the choice of the troublesome pairs starting from the left to the right, and the primary particle then becomes the rightmost particle of the sequence.

This observation unveils a strong property that links the generalized partitions of O and E , both kinds of partitions seen as sequences of primary particles: their major attribute are the maximal sequences of consecutive primary particles. In the next chapter, we will see how this attribute allows us to define the particles of degree k for a positive k ≥ 3, and how this definition is closely related to the notion of crystal and energy function in the quantum mechanics.

Chapter 5

Beyond Glaisher's theorem

In this chapter, bijective proofs of the results beyond Glaisher's theorem are presented.

Bijective proof of Theorem 2.2.24

In this section we construct a bijection Ω 1 between the set F ,c g 1 and R

,c g 1 of Theorem 2.2.24. In the following, we illustrate Ω 1 with the set of states C = {a, b, c}, the ground c, and the energy defined by the energy matrix

M =   a b c a 1 0 1 b 0 0 1 c 0 0 0   •

The setup

Let δ g be the common value of (c g , c) for c = c g given by (2.2.39). Note that for any c = c g , for any

k, l ∈ Z k c l c g ⇐⇒ k -l ≤ (c, c g ) -1 ⇐⇒ l -k ≥ 1 -(c, c g ) ⇐⇒ l -k ≥ (c g , c)
⇐⇒ l c g k c (5.1.1)

( 5.1.2) so that the particles with state c g can be always related in terms of with the particles with state different from c g .

Here we can see the classical integer partitions as the non-increasing sequences of non-negative integers, with all but a finite number of parts equal to 0.

Let us recall the conjugate of classical partitions. The partitions ν = (ν i ) ∞ i=0 and ν = (ν i ) ∞ i=0 are conjugate if and only if their part sizes satisfy

ν i = |{ν j ≥ i + 1}| (5.1.3)
The transformation ν → ν is an involution, and we then have

ν i = |{ν j ≥ i + 1}|. The set R ,c g 1
We identify a partition π = (π 0 , . . . , π s-1 , 0 c g ) of R

,c g 1 as the unique pair of partitions

(µ, ν) = [(µ 0 , . . . , µ s-1 , 0 c 0 ), (ν 0 , . . . , ν s-1 )] , such that C(π) = C(µ) = c 0 • • • c s-1 c g ,
and for all k ∈ {1, . . . , s -1}, we have c k = c g ,

µ k = s-1 ∑ l=k (c k , c k+1 ) c k and ν k = π k - s-1 ∑ l=k (c k , c k+1 ) • The partition µ is then the unique element in F ,c g 1 ∩ R ,c g 1 satisfying C(π) = C(µ) = c 0 • • • c s-1 c g ,
and ν is the residual partition with s parts, possibly ending with some parts equal to 0. The partition ν then corresponds to a unique classical partition, with at most s parts. 

R ,c g 1 (C) = {π ∈ R ,c g 1 : C(π) = Cc g } ≈ {µ} × {(ν 0 , • • • , ν s-1 ) ∈ Z ≥0 : ν 0 ≥ • • • ≥ ν s-1 } • (5.1.4)
The set R ,c g 1 (C) is then isomorphic to the set of classical partitions with at most s positive parts. We now consider the set of the descents

D = {k : {1, . . . , s} : (c k-1 , c k ) = 0} = {k 0 < • • • < k |D|-1 } and D = {1, . . . , s -1} \ D • (5.1.5)
Note that, since (c s-1 , c g ) = 1δ g , we recursively have for all k ∈ {1, . . . , s -1} that For a fixed non-negative n, we construct Ω in such a way that the partitions π in R

µ k = s-1 ∑ l=k (c l , c l+1 ) = 1 -δ g + |{k + 1, • • • , s -1} ∩ D| ≤ s -k -δ g • ( 5 
,c g 1 satisfying (|π|, C(π)) = (n, Cc g ) correspond to the partitions π in F ,c g 1 which satisfy (n, C) = (|π|, C(π) |c g =1 ).
This means that the sequence of states different from c g is equal to C.

The set F ,c g 1 We now consider the set F ,c g 1 (C) of flat partitions π in F ,c g 1 such that C(π) |c 0 =1 = C. For such a partition π, there exists a unique set S = {u 0 < • • • < u s-1 } ⊂ Z ≥0 such that π = (π 0 , • • • , π u s-1 , 0 c 0 ) , c(π u k ) = c k ∀ k ∈ {0, . . . , s -1} , c π k = c g ∀ k ∈ {0, . . . , u s-1 } \ S • (5.1.7)
In fact, we cannot have c(π u s-1 ) = c g , otherwise π u s-1 = (c g , c g ) = 0, so that π u s-1 = 0 c g , which contradicts the definition of grounded partitions. Let us set

s = u s-1 + 1 -s W = {0 ≤ v < |D| : u k v -u k v -1 > 1} = {v 0 < • • • < v |W|-1 } , (5.1.8) D W = {k v : v ∈ W} , D W = D \ D W •
If there are particles with state c g between u k and u k+1 (which means that k + 1 / ∈ D), their potentials' differences gives

(c k , c g ) + 0 + • • • + 0 parts inserted-1 + (c g , c k+1 ) = (c k , c g ) + (c g , c k+1 ) = 1 -δ g + δ g = 1 which differs from (c k , c k+1 ) if and only if k + 1 ∈ D. Then π u k = µ k + |{k + 1, • • • , s -1} ∩ D W | ,
so that by (5.1.6). Since π u s-1 = 1δ g , we obtain recursively that for all k ∈ {0, . . . , s -2},

π u k = 1 -δ g + |{k + 1, . . . , s -1} ∩ (D D W )| • (5.1.9)
Note that by (5.1.9), for all u k-1 < u < u k , we necessarily have that k ∈ D D W , and then

π u = δ g + π u k = |{k, . . . , s -1} ∩ (D D W )| • We now construct the bijection between F ,c g 1 (C) and R ,c g 1 (C).

The map

Ω from F ,c g 1 (C) to R ,c g 1 (C).
For any partition π ∈ F ,c g 1 (C) described above, let ν be the classical partition whose parts are the following:

1. for k / ∈ D, the u ku k-1 -1 particles between u k-1 and u k with potential

π u = |{k, . . . , s -1} ∩ (D D W )| ,
with the convention u -1 = -1.

2. For k ∈ D W , we take u ku k-1 -2 particles between u k-1 and u k with potential

π u = |{k, . . . , s -1} ∩ (D D W )| ,
and one particle (called the weighted particle) with potential

π u + k = |{k, . . . , s -1} ∩ (D D W )| + k • (5.1.10)
We then set Ω(π) = (µ, ν) where ν is the conjugate of ν .

Example 5.1.2. For example, we illustrate these transformations with C = aabbaaababb and [START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF][START_REF]For all (c, c ) ∈ C sup × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} (2.2.65) and in particular, if (c, c ) = 0, there then exists[END_REF]7,8,9, 10} and D = {0, 1, 5, 6}. Here k 0 1 2 3 4 5 6 7 8 9 10 u k 0 1 2 6 7 9 10 13 14 15 16

π = (6 a , 5 a , 5 b , 4 c , 4 c , 4 c , 4 b , 4 a , 3 c , 3 a , 2 a , 1 c , 1 c , 1 b , 1 a , 1 b , 1 b , 0 c ) • Recall that µ = (4 a , 3 a , 3 b , 3 b , 3 a , 2 a , 1 a , 1 b , 1 a , 1 b , 1 b , 0 c ), D = {2,
and thus D W = {3, 7}. We thus obtain that ν is the classical partition with parts 3, 4, 4, 7 and 1, 8. We thus have ν = (8, 7, 4, 4, 3, 1) and the conjugation then gives the following partition with 11 parts ν = (6, 5, 5, 4, 2, 2, 2, 1, 0, 0, 0) • By adding the parts of ν to the corresponding particles of µ, we finally obtain

Ω(6 a , 5 a , 5 b , 4 c , 4 c , 4 c , 4 b , 4 a , 3 c , 3 a , 2 a , 1 c , 1 c , 1 b , 1 a , 1 b , 1 b , 0 c ) = (10 a , 8 a , 8 b , 7 b , 5 a , 4 a , 3 a , 2 b , 1 a , 1 b , 1 b , 0 c ) •
We first note that the total energy is conserved by these transformations, since

s-1 ∑ k=0 |{k + 1, • • • , s -1} ∩ D W | = {(k, l) : l ∈ {k + 1, • • • , s -1} : l ∈ D W } = ∑ l∈D W {0 ≤ k < l} = ∑ l∈D W l and thus u s-1 ∑ u=0 π u = s-1 ∑ k=0 π u k + ∑ k 1<u k -u k-1 (u k -u k-1 -1)π u k -1 = ∑ u/ ∈S π u + s-1 ∑ k=0 µ k + ∑ l∈D W l = |µ| + ∑ l∈D W l + π u l -1 + (u l -u l-1 -2)π u l -1 + ∑ l / ∈D (u l -u l-1 -1)π u l -1 •
The unweighted particles are those which are not weighted. We then remark that for all k ∈ {1, . . . , s -

1}, |{k, . . . , s -1} ∩ (D D W )| + k = |D D W | + |{0, . . . , k -1} ∩ D W | = π u 0 + δ g + |{0, . . . , k -1} ∩ D W |
so that the weighted particles all have potentials greater than or equal to the potentials of the unweighted particles. We also notice that unweighted particles coming from different k are distinct, since the potentials' difference gives

|{k, . . . , s -1} ∩ (D D W )| -|{k + 1, . . . , s -1} ∩ (D D W )| = χ(k ∈ D D W )
and this is exactly the condition required to insert a particle in ν . Also when we take two consecutive weighted particles in k v j < k v j+1 ∈ D W , we obtain the difference of potential

k v i -k v i+1 + |{k v i , . . . , k v i+1 -1} ∩ (D D W )| = -|{k v i , . . . , k v i+1 -1} ∩ D W |
so that the weighted particles appear in a non-decreasing order according to the indices i in {0, |W| -1}.

We then obtain ν = (ν 0 , • • • , ν s -1 ), where for all i ∈ {0, . . . , |W| -1}

ν |W|-1-i = |{k v i , s -1} ∩ (D D W )| + k v i = s -|D W ∩ {k v i , . . . , s -1}| = s -|{v i ≤ p < |D| : p / ∈ W}| by (5.1.8) = s + |W| -|D| + v i -i ≤ s ,
and the rest of the particles consists of

u k -u k-1 -1 -χ(k ∈ D W ) particles for k ∈ D D W , each of them with potential |{k, s -1} ∩ (D D W )| ≥ 1 •
Note that ν viewed as a classical partition has s parts, all with size at most equal to s, and by (5.1.3), the partition ν then has at most s positive parts and satisfies ν 0 = s . Our map from F ,c g

1 (C) to R ,c g 1 (C) is then well-defined.
We conclude by observing the following equality: for all i ∈ {0, . . . , |W| -1} we have

ν |W|-1-i -|W| + i = s -|D| + v i = |{0, . . . , k v i -1}| + |{k v i , s -1} ∩ D|

Inversion of the maps

Using (5.1.11) and (5.1.12), we straightforward to observe by the definition of Ω -1 that Ω -1 • Ω = Id F ,cg 1 (C) . On the other hand, the fact that Ω • Ω -1 = Id R ,cg 1 (C) comes from the correspondence between D W and D V . In fact, this correspondence is deduced from the equivalence between the definition of W and the above definition of D V . We also observe that the only particles whose potential changes from one set of partitions to another are those related to the set D W and D V . We finally conclude by observing the reciprocity between the definition of the weighted particles related to D W given in (5.1.10), and the definition of the particles related to D V given by the formula (5.1.16).

Remark 5.1.4. The maps described here give a more refined property that the bijection between the sets F ,c g 1 (C) and R ,c g 1 (C), as for a fixed State C product of s states different from c g , it leads to the correspondence between the partitions ν with at most s parts such that the greatest part has size s and the flat partitions having s additional particles with states c g different from 0 c g .

Bijective proof of Theorem 2.2.31

In this section, we prove the following. Theorem 5.2.1. For a fixed State C as product of colors different from c g and a fixed non-negative integer n, the following sets of generalized partitions are equinumerous:

1. F ,c g 2 (C, n) = {π ∈ F ,c g 2 : C(π) |c g =1 = C, |π| = n}, 2. F ,c g 1 (C, n) = {π ∈ F ,c g 1 : C(π) |c g =1 = C, |π| = n}, 3. R ,c g 1 (C, n) = {π ∈ R ,c g 1 : C(π) |c g =1 = C, |π| = n}, 4. R ,c g 2 (C, n) = {π ∈ R ,c g 2 : C(π) |c g =1 = C, |π| = n}.
In the previous section, we have shown in the proof of Theorem 2.2.24 that |F ,c g

1 (C, n)| = |R ,c g 1 (C, n)|.
In the following, we first show that there is a bijection between F ,c g 2 (C, n) and F ,c g 1 (C, n), and after that we describe a bijection between R ,c g 1 (C, n) and R ,c g 2 (C, n).

Bijection between F

,c g 2 (C, n) and F ,c g

(C, n)

Here recall that, by Definition 2.2.27, the partitions of F ,c g 2 have the form (π 0 , . . . , π s-1 , 0 c 2 g ), such that for all k ∈ {0, . . . , s -1}, π k ∈ S, and by setting c(π k ) = c 2k c 2k+1 ∈ C 2 , we have by (2.2.41) that

µ(π k ) γ(π k+1 ) • (5.2.1)
We also observe that c 2s-2 c 2s-1 = c 2 g , otherwise the above equation gives that π s-1 -0 c 2 g = 4 (c g , c g ) = 0, and then π s-1 = 0 c 2 g , which contradicts the definition of grounded partitions. Furthermore, note that

µ(π s-1 ) = 0 c g if and only if c 2s-1 = c g . Consider the map F from F ,c g 2 to F ,c g 1 defined by (π 0 , . . . , π s-1 , 0 c 2 g ) →      (γ(π 0 ), µ(π 0 ), γ(π 1 ), µ(π 1 ), . . . , γ(π s-2 ), µ(π s-2 ), γ(π s-1 ), 0 c g ) if c 2s-1 = c g (γ(π 0 ), µ(π 0 ), γ(π 1 ), µ(π 1 ), . . . , γ(π s-2 ), µ(π s-2 ), γ(π s-1 ), µ(π s-1 ), 0 c g ) if c 2s-1 = c g • (5.2.
2) It is easy to check that both the total energy and the sequence of primary states are preserved. To show that F (π 0 , . . . , π s-1 , 0 c 2 g ) ∈ F ,c g 1 , we proceed according to whether c 2s-1 = c g or c 2s-1 = c g . Note that by definition of the secondary particles, for all k ∈ {0, . . . , s -1},

γ(π k ) -µ(π k ) = (c 2k , c 2k+1 ) ⇐⇒ γ(π k ) µ(π k ) •
• If c 2s-1 = c g , then the above equation and (5.2.1) give that F (π 0 , . . . , π s-1 , 0 c 2 g ) is well-defined up to µ(π s-1 ), and with the fact that c 2s-2 = c g and µ(π s-1 ) = 0 c g , we obtain that F (π 0 , . . . , π s-1 , 0 c 2 g ) ∈ F

,c g 1 . • If c 2s-1 = c g , then the above equation and (5.2.1) give that F (π 0 , . . . , π s-1 , 0 c 2 g ) is well-defined up to µ(π s-1 ), with the fact that c 2s-1 = c g and µ(π s-1 ) = (c 2s-1 , c g ), we obtain that F (π 0 , . . . ,

π s-1 , 0 c 2 g ) ∈ F ,c g 1 .
The inverse map F -1 is even easier to build. We simply proceed as follows:

(π 0 , . . . ,

π s-1 , 0 c g ) →        (π 0 + π 1 , . . . , π s-1 + 0 c g , 0 c 2 g ) if s ≡ 1 mod 2 (π 0 + π 1 , . . . , π s-2 + π s-1 , 0 c 2 g ) if s ≡ 0 mod 2 • (5.2.3)
The primary particles being consecutive in terms of , the map F -1 is well-defined, and one can check that the first case of F -1 is the inverse of the first case of F , so as the second case of F -1 is the inverse of the second case of F .

Bijection between R

,c g

1 (C, n) and R ,c g 2 (C, n)
Let us recall that C = C \ {c g }, and set C = {cc : c, c ∈ C }. We now set ρ = 1δ g the common value of (c, c g ) for all c ∈ C . Here we refer to O and E as the sets corresponding to the set C in Chapter 4.

We now show the following proposition.

Theorem 5.2.2. For a fixed State C as product of states in C and a fixed non-negative integer n, the following sets of generalized partitions are equinumerous: , n).

1. R ,c g 1 (C, n) = {π ∈ F ,c g 2 : C(π) |c g =1 = C, |π| = n}, 2. O ρ + (C, n) = {π ∈ O ρ + : C(π) = C, |π| = n}, 3. E ρ + (C, n) = {π ∈ E ρ + : C(π) = C, |π| = n}, 4. R ,c g 2 (C, n) = {π ∈ R ,c g 2 : C(π) |c g =1 = C, |π| = n}.
Bijection between R ,c g 1 (C, n) and O ρ + (C, n)
This is straightforward by considering the following map from R

,c g 1 (C, n) to O ρ + (C, n): (π 0 , . . . , π s-1 , 0 c g ) → (π 0 , . . . , π s-1 ) • (5.2.4)
In fact, we have that c(π k ) ∈ C for all k ∈ {0, . . . , s -1}, and by (2.2.38), that

π k -π k+1 ≥ (c(π k ), c(π k+1 )) , so that π s-1 ≥ (c(π k+1 ), c g ) = 1 -δ g = ρ.
By Definition 2.1.3 and Definition 2.2.14, we then have that the partition (π 0 , . . . , π s-1

) belongs to O ρ + (C, n).
The inverse map is obtained by adding a 0 c g to the right to a partition in O ρ + (C, n), and the above relations imply that the resulting partition indeed belongs to R ,c g 1 (C, n).

Bijection between E ρ + (C, n) and R ,c g 2 (C, n) It may seem intricate to construct a bijection between these two sets, as a partition in the first set can have primary particles while a partition in the second set cannot. The regularity in c 2 g allows us to overcome this obstacle. For simplicity, we write S(C), S(C ) and P (C ) respectively the sets of the secondary particles with states as a product of two primary states in C, the secondary particles with states as a product of two primary states in C and the primary particles with state in C . We observe that we have a natural embedding S(C ) → S(C).

• If c ∈ C and π s-1 ≡ 1 -ρ mod 2, π s-1 ∈ P ρ + ⇐⇒ π s-1 ≥ ρ and π ≡ 1 + ρ mod 2 by Definition 2.2.14 ⇐⇒ π s-1 ∈ 2Z ≥0 + 1 + ρ ⇐⇒ µ(R(π s-1 )) ≥ ρ and c(µ(R(π s-1 ))) = c (1.2.2) ⇐⇒ µ(R(π s-1 )) ≥ (c, c g ) ⇐⇒ R(π s-1 ) 0 c 2 g • (2.2.46)
To conclude, one can observe that we always have the equivalence

π s-1 ∈ P ρ + S ρ + ⇐⇒ R(π s-1 ) 0 c 2 g
and this conclude the proof of the lemma.

Proof of Lemma 5.2.5. Let us first state an obvious fact: for all integer a, b, we have the following,

1. if b ∈ {-1, 0, 1}, then 2a ≥ b ⇐⇒ a ≥ χ(b = 1) , (5.2.9) 2. if b ∈ {-2, -1, 0}, then 2a ≥ b ⇐⇒ a ≥ -χ(b = -2) • (5.2.10)
As before, we reason on whether particles k p and l q are primary or secondary.

• If k p ∈ S, write k p = (2u + (c 0 , c 1 )) c 0 c 1 .
-If l q ∈ S, write l q = (2v + (c 2 , c 3 )) c 2 c 3 .

k p l q ⇐⇒ u -v -(c 1 , c 2 ) -(c 2 , c 3 ) ≥ 0 (2.2.25) ⇐⇒ R(k p ) R(l q ) • (2.2.46)
-If q ∈ C and l ≡ ρ mod 2, write l q = (2v + (q, c g )) q . Then,

k p l q ⇐⇒ (2u + (c 0 , c 1 )) -(2v + (q, c g )) ≥ 1 + (c 0 , c 1 ) + (c 1 , q) (2.2.24) ⇐⇒ 2(u -v -(q, c g ) -(c 1 , q)) ≥ (c g , q) -(c 1 , q) ⇐⇒ u -v -(q, c g ) -(c 1 , q) ≥ (c g , q)(1 -(c 1 , q)) (5.2.9) ⇐⇒ R(k p ) R(l q ) • (2.2.45) -If q ∈ C and l ≡ 1 -ρ mod 2, write l q = (2v + (c g , q)) q . k p l q ⇐⇒ (2u + (c 0 , c 1 )) -(2v + (c g , q)) ≥ 1 + (c 0 , c 1 ) + (c 1 , q) (2.2.24) ⇐⇒ 2(u -v -(c 1 , c g ) -(c g ; q)) ≥ (c 1 , q) + (c g , q) -1 ⇐⇒ 2(u -v -(c 1 , c g ) -(c g ; q)) ≥ (c 1 , q) -(q, c g ) ⇐⇒ u -v -(c 1 , c g ) -(c g ; q) ≥ (c 1 , q) (c g , q) (5.2.9) ⇐⇒ R(k p ) R(l q ) • (2.2.45) • • If p ∈ C and k ≡ ρ mod 2, write k p = (2u + (p, c g )) p -If l q ∈ S, write l q = (2v + (c 2 , c 3 )) c 2 c 3 . Then k p l q ⇐⇒ (2u + (p, c g )) -(2v + (c 2 , c 3 )) ≥ (p, c 2 ) + (c 2 , c 3 ) (2.2.23) ⇐⇒ 2(u -v -(c g , c 2 ) -(c 2 , c 3 )) ≥ (p, c 2 ) -(p, c g ) -2 (c g , c 2 ) ⇐⇒ 2(u -v -(c g , c 2 ) -(c 2 , c 3 )) ≥ ( (p, c 2 ) -1) -(c g , p) ⇐⇒ u -v -(c g , c 2 ) -(c 2 , c 3 )) ≥ -(1 -(p, c 2 )) (c g , p) (5.2.10) ⇐⇒ R(k p ) R(l q ) • (2.2.44)
-If q ∈ C and l ≡ ρ mod 2, write l q = (2v + (q, c g )) q . Then

k p l q ⇐⇒ (2u + (p, c g )) -(2v + (q, c g )) ≥ 1 + (p, q) (2.2.22) ⇐⇒ 2(u -v -(c g , q) -(q, c g )) ≥ (p, q) -1 ⇐⇒ u -v -(c g , q) -(q, c g ) ≥ 0 (5.2.9) ⇐⇒ R(k p ) R(l q ) • (2.2.46)
-If q ∈ C and l ≡ 1ρ mod 2, write l q = (2v + (c g , q)) q . Then

k p l q ⇐⇒ (2u + (p, c g )) -(2v + (c g , q)) ≥ 1 + (p, q) (2.2.22) ⇐⇒ 2(u -v -(c g , c g ) -(c g , q)) ≥ (p, q) + (c g , p) -(c g , q) ⇐⇒ 2(u -v -(c g , c g ) -(c g , q)) ≥ (p, q) ⇐⇒ u -v -(c g , c g ) -(c g , q) ≥ (p, q) (5.2.9) ⇐⇒ R(k p ) R(l q ) • (2.2.43) • If p ∈ C and k ≡ 1 -ρ mod 2, write k p = (2u + (c g , p)) p .
-If l q ∈ S, write l q = (2v + (c 2 , c 3 )) c 2 c 3 . Then

k p l q ⇐⇒ (2u + (c g , p)) -(2v + (c 2 , c 3 )) ≥ (p, c 2 ) + (c 2 , c 3 ) (2.2.23) ⇐⇒ 2(u -v -(p, c 2 ) -(c 2 , c 3 )) ≥ -(p, c 2 ) -(c g , p) ⇐⇒ u -v -(p, c 2 ) -(c 2 , c 3 ) ≥ -(p, c 2 ) (c g , p) (5.2.10) ⇐⇒ R(k p ) R(l q ) • (2.2.44)
-If q ∈ C and l ≡ ρ mod 2, write l q = (2v + (q, c g )) q . Then

k p l q ⇐⇒ (2u + (c g , p)) -(2v + (q, c g )) ≥ 1 + (p, q) (2.2.22) ⇐⇒ 2(u -v -(p, q) -(q, c g )) ≥ (c g , q) -(p, q) ⇐⇒ u -v -(p, q) -(q, c g ) ≥ (c g , q)(1 -(p, q)) (5.2.9) ⇐⇒ R(k p ) R(l q ) • (2.2.45)
-If q ∈ C and l ≡ 1ρ mod 2, write l q = (2v + (c g , q)) q . Then

k p l q ⇐⇒ (2u + (c g , p)) -(2v + (c g , q)) ≥ 1 + (p, q) (2.2.22) ⇐⇒ 2(u -v -(p, c g ) -(c g , q)) ≥ (p, q) -1 ⇐⇒ u -v -(p, c g ) -(c g , q) ≥ 0 (5.2.9) ⇐⇒ R(k p ) R(l q ) • (2.2.46)

Beyond Glaisher's theorem at degree k ≥ 3

We begin this section by defining a particle of degree k.

Definition 5.3.1. Let C be a set of primary states. For any k ∈ Z ≥1 , define the set of states of degree k as the set of the products of k primary states:

C k = {c 1 • • • c k : c 1 , . . . , c k ∈ C} •
For an energy and the corresponding flat relation defined on the set of primary particles, define the set P k = Z × C k of particles of degree k as the sum of k primary particles well-related by :

(p, c 1 • • • c k ) = k ∑ u=1 p + k-1 ∑ v=u (c v , c v+1 ) c u = kp + k-1 ∑ u=1 u (c u , c u+1 ) c 1 •••c k • (5.3.1)
We set the function γ 1 , . . . , γ k on P k such that

γ i (p, c 1 • • • c k ) = p + k-1 ∑ u=i (c i , c i+1 ) c i • (5.3.2) Then (p, c 1 • • • c k ) = k ∑ i=1 γ i (p, c 1 • • • c k ) , (5.3.3) γ 1 (p, c 1 • • • c k ) γ 2 (p, c 1 • • • c k ) • • • γ k (p, c 1 • • • c k ) • (5.3.4)
We can then naturally define a flat relation k on P k as follows:

(p, c 1 • • • c k ) k (q, d 1 • • • d k ) ⇐⇒ p -q = (c k , d 1 ) + k-1 ∑ u=1 (d u , d u+1 ) ⇐⇒ γ k (p, c 1 • • • c k ) γ 1 (q, d 1 • • • d k ) • (5.3.5)
The latter is equivalent to saying that the smallest primary particle of (p, c 1 • • • c k ) is greater than the greatest primary particle of (q,

d 1 • • • d k ) in terms of .
One can check that the relation k is indeed the flat relation linked to the energy k defined on

C k × C k by k : (c 1 • • • c k , d 1 • • • d k ) → k-1 ∑ u=1 u (c u , c u+1 ) + n (c k , d 1 ) + k-1 ∑ u=1 (k -u) (d u , d u+1 ) • (5.3.6)
In fact, by using (5.3.1) and (5.3.5), the difference of potentials of the particles (p,

c 1 • • • c k ) and (q, d 1 • • • d k ) is exactly equal to k (c 1 • • • c k , d 1 • • • d k ).
This extension of the flatness to degree k has a strong connection with crystal base theory via the following proposition. 

1 ⊗ • • • ⊗ b k ⊗ b k+1 ⊗ • • • ⊗ b 2k → 2k-1 ∑ i=1 min{i, 2k -i}H(b i ⊗ b i+1 ) (5.3.7)
is also an energy function on B ⊗k ⊗ B ⊗k .

Proof. Since the tensor product is associative, for all i ∈ {0, • • • , n} and for all j ∈ {1, . . . , 2k}, that

ẽi (b 1 ⊗ • • • ⊗ b 2k ) = b 1 ⊗ • • • ⊗ ẽi (b j ) ⊗ • • • b 2k =⇒ ẽi (b j-1 ⊗ b j ) = b j-1 ⊗ ẽi (b j ) ẽi (b j ⊗ b j+1 ) = ẽi (b j ) ⊗ b j+1 •
We thus obtain by (8.1.7) that, for j ≤ k, (the following still holds for j = 1)

H k ( ẽi (b 1 ⊗ • • • ⊗ b 2k )) -H k (b 1 ⊗ • • • ⊗ b 2k ) = (j -1) H(b j-1 ⊗ ẽi (b j )) -H(b j-1 ⊗ b j ) + j H( ẽi (b j ) ⊗ b j-1 ) -H(b j ⊗ b j+1 ) = -(j -1)χ(i = 0) + jχ(i = 0) = χ(i = 0) •
On the other hand by (8.1.7), for j > k(the following still holds for j = 2k)

H k ( ẽi (b 1 ⊗ • • • ⊗ b 2k )) -H k (b 1 ⊗ • • • ⊗ b 2k ) = (2k -j + 1) H(b j-1 ⊗ ẽi (b j )) -H(b j-1 ⊗ b j ) + (2k -j) H( ẽi (b j ) ⊗ b j-1 ) -H(b j ⊗ b j+1 ) = -(2k -j + 1)χ(i = 0) + (2k -j)χ(i = 0) = -χ(i = 0) •
The tensor product of level perfect crystals being a level perfect crystal as well (Kang et al., 1992c), we then obtain that B ⊗k is a perfect crystal if B is.

We note that the energy function of the perfect crystal B studied in Chapter 7 can be obtained by carrying out a transformation, which preserves the ground, on a certain minimal energy satisfying the condition in Theorem 2.2.24 and such that δ g = 0. Therefore, we can define both secondary flat and regular partitions corresponding to this energy function. In particular, since the corresponding minimal energy satisfies δ g = 0, the energies related to these flat and regular partitions are almost equal by (2.2.41) and (2.2.46). By Proposition 5.2.3, this means that the partitions, corresponding to those in E 1 + after applying the transformation on the minimal energy, satisfy some difference condition equal to the difference implied by the corresponding energy function of B 2 . In particular, one can view the case A [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] 2n as a result that links the generalization of the Siladić theorem for 2n primary colors to the unique level one standard module L(Λ 0 ). This fits with the original work of Siladić [START_REF] Siladić | Twisted sl(3, C) ∼ -modules and combinatorial identities[END_REF], where he stated his identity after describing a basis of the unique level one standard module of A (2) 2 through vertex operators. A suitable subsequent work is then to build the vertex operators, for the level one standard module of A [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] 2n (n ≥ 2), which will allow us to describe a basis corresponding to the difference conditions given by the generalization of Siladić's theorem.

We now define the degree k flat partitions. Definition 5.3.3. The set F ,c g k , of degree k flat partitions, is defined as the set of the flat partitions into degree k particles in P k , with ground c k g and energy k defined in (5.3.6).

In particular, when (c g , c g ) = 0, the bijection of Section 5.2.1 can be generalized.

Proposition 5.3.4. For any k ≥ 1, there is a bijection F k between F ,c g k and F

,c g 1 that preserves the total energy and the sequence of states different from c g of the flat partitions.

Proof. For any flat partition π = (π 0 , . . . , π s-1 , 0 c k g ) in F

,c g k , we associate the partition F k (π) defined by the sequence

(γ 1 (π 0 ), . . . , γ k (π 0 ), γ 1 (π 1 ), . . . , γ k (π 1 ), . . . , γ 1 (π s-2 ), . . . , γ k (π s-2 ), γ 1 (π s-1 ), . . . , γ i (π s-1 ), 0 c g ) , where i = max{j ∈ {1, . . . , k} : γ j (π s-1 ) = 0 c g }. The existence of such index i is ensured by the fact that π s-1 = 0 c k g
. It suffices to assume by contradiction that for all j ∈ {1, . . . , k} we have γ j (π s-1 ) = 0 c g . Since (c g , c g ) = 0, we then have 0 c g 0 c g , and by (5.3.3),

0 c k g = π s-1 = k ∑ j=1 γ j (π s-1 ) = k ∑ j=1 0 c g = 0 c k g •
To prove that F k (π) belongs to F ,c g 1 , we use (5.3.4) along with (5.3.5) to see that F k (π) is well related up to γ i (π s-1 ), and to show that γ i (π s-1 ) 0 c g , we distinguish two cases.

• If i < k, then γ i+1 (π s-1 ) = 0 c g , so that (5.3.4) follows.

• If i = k, then by (5.3.5) γ k (π s-1 ) γ 1 (0 c k g ), and we are done.

Next we describe the inverse map F -1 k . For any π = (π 0 , . . . , π s-1 , 0 c 0 ), we write the decomposition s = kms with the unique non-negative integers m, s such that s ∈ {0, . . . , k -1}. We then set

F -1 k (π) = (π 0 + • • • + π k-1 , π k + • • • + π 2k-1 , . . . , π (m-2)k + • • • + π mk-k-1 , π (m-1)k + • • • + π s-1 + s × 0 c g , 0 c k g ) •
Here we see by (5.3.3), (5.3.4) and (5.3.5), this sequence is well-defined up to the particle

π (m-1)k + • • • + π s-1 + s × 0 c g . Note that since π s-1 = 0 c g , we necessarily have that π (m-1)k + • • • + π s-1 + s × 0 c g = 0 c k g
. We distinguish two cases.

• If s > 0, since π s-1 0 c g 0 c g , then by (5.3.3), π (m-1)k + • • • + π s-1 + s × 0 c g is in P k , and by (5.3.5),

π (m-1)k + • • • + π s-1 + s × 0 c g k 0 c k g .
• If s = 0, then by (5.3.3), π (m-1)k + • • • + π s-1 is in P k , and since π s-1 0 c g , by (5.3.5),

π (m-1)k + • • • + π s-1 k 0 c k g .
The inversion comes from the correspondence between the case s = 0 for F -1 k and i = k for F k .

Proposition 5.3.4 implies the following correspondences degree one : degree two : A major subsequent work would be to find a suitable energy to define regular partitions for degree k which would allow us to state an analogue of Theorem 2.1.21 at degree k. This problem appears to be closely related to the problem of finding a generalization to weighted words at degree k of the result stated in Theorem 2.2.15.

degree k : F ,c g 1 F ,c g 2 F ,c g k R ,c g 1 R ,c g 2 R ,c

Chapter 6

Beyond the Durfee square

This chapter is dedicated to the proof of Theorem 2.2.39 and organized as followed. In Section 6.1, we give a precise characterization of the set of partitions in P c ∞ with a fixed kernel as in Definition 2.2.36, compute their generating function, and state the main theorem, Theorem 6.1.28. After that, in Section 6.2, assuming Theorem 6.1.28 is true, we carry out the same steps and compute the generating function for the generalized colored Frobenius partitions in F c ∞ 1 , 2 with the same fixed kernel, and prove Theorem 2.2.39. Then, in Section 6.3, we prove Theorem 6.1.28. Finally, in Section 6.4, we prove the identity given in Theorem 2.2.45 for the n 2 -colored Frobenius partitions.

Reduced color sequences and minimal partitions

During this section, we illustrate different results on Example 2.2.35. In that case, we have

C = {a i b j : i, j ∈ N} , C free = {a i b i : i ∈ N} , C bound = {a i b j : i = j ∈ N} , a : a i b j → a i b i , b : a i b j → a j b j •

Minimal partitions

The original method of weighted words of Alladi and Gordon [START_REF] Alladi | Generalizations of Schur's partition theorem[END_REF][START_REF] Alladi | Refinements and Generalizations of Capparelli's Conjecture on Partitions[END_REF] relies on the idea, which can be tracked back to Schur and MacMahon that any partition with m parts satisfying difference conditions can be obtained from the minimal partition satisfying difference conditions and adding a partition with at most m parts to it. For example, all Rogers-Ramanujan partitions into m parts, satisfying difference at least 2 between consecutive parts, can be obtained by starting with the minimal partition (2m -1) + (2m -3) + • • • + 3 + 1, and adding some partition into at most m parts to it.

Here, to compute the generating function for generalized colored partitions in P c ∞ , we also use minimal partitions. But while Alladi, Andrews, and Gordon computed minimal partitions with a certain number of parts, here we compute minimal partitions with a certain kernel. Definition 6.1.1. Let c 1 , . . . , c s be a sequence of colors taken from C. The minimal partition in P c ∞ associated to c 1 , . . . , c s is the colored partition λ = (λ 1 , • • • , λ s , 0 c ∞ ) with minimal size such that for all i ∈ {1, . . . , s}, c(λ i ) = c i . We denote this partition by min (c 1 , . . . , c s ). The size of min (c 1 , . . . , c s ) is then equal to

|min (c 1 , . . . , c s )| = s ∑ k=1 k (c k , c k+1 ) , where c s+1 = c ∞ .
Example 6.1.2. Considering the energy from matrix P 3 in (1.4.5), the minimal partition with color sequence

a 1 b 0 , a 0 b 0 , a 2 b 2 , a 1 b 1 , a 1 b 1 , a 0 b 1 , a 1 b 2 , a 0 b 2 in P 1,3 is min (a 1 b 0 , a 0 b 0 , a 2 b 2 , a 1 b 1 , a 1 b 1 , a 0 b 1 , a 1 b 2 , a 0 b 2 ) = 8 a 1 b 0 + 7 a 0 b 0 + 6 a 2 b 2 + 5 a 1 b 1 + 5 a 1 b 1 + 3 a 0 b 1 + 2 a 1 b 2 + 0 a 0 b 2 .
It has size 52.

1. The colors c and c are both bound, and the free color that can be inserted to the right of c is different from the one that can be inserted to the left of c . These are the pairs of bound colors are such that b(c) = a(c).

2. The color c is free, c is bound, and the color that can be inserted to the left of c is different from c. These are the pairs such that c = a(c ).

3. The color c is bound, c is free, and the color which can be inserted to the right of c is different from c . These are the pairs such that b(c) = c . Remark 6.1.10. In the above, the colors c or c can be equal to c ∞ , considered here as a free color. This allows us to avoid treating the case of insertions at one of the ends of the color sequence C = c 1 , . . . , c s separately, with the convention that c 0 = c s+1 = c ∞ . Indeed, by our convention, inserting a(c 1 ) to the left of c 1 is the same as inserting a(c 1 ) inside the pair (c 0 , c 1 ) = (c ∞ , c 1 ). This is included in Case [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF]. Similarly, inserting b(c s ) to the right of c s is the same as inserting b(c s ) inside the pair (c s , c s+1 ) = (c s , c ∞ ), which is included in Case [START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF].

With the definitions and propositions above, we can now uniquely determine the places where insertions can occur in a reduced color sequence.

Let S = c 1 , . . . , c s be a reduced color sequence of length s. Then S can be written uniquely in the form

S = T 1 S 1 T 2 S 2 . . . T t S t T t+1 ,
where S 1 , . . . , S t are the maximal primary subsequences of S, and T 1 , . . . , T t+1 are (possibly empty) sequences of consecutively distinct free colors.

For all u ∈ {1, . . . , t}, let i 2u-1 (resp. i 2u ) be the index of the first (resp. last) color of S u , i.e.

S u = c i 2u-1 , . . . , c i 2u .
We have i 2u-1 ≤ i 2u , with equality when S u is a singleton. By the definition of maximal primary subsequences, for all u, the pairs (c i 2u-1 -1 , c i 2u-1 ) and (c i 2u , c i 2u +1 ) are secondary pairs. We can now state the following. Proposition 6.1.11. Using the notation above, the insertions of free colors in S can occur exactly in the following s + t places (possibly multiple times in the same place):

• to the right of c i , for all i ∈ {1, . . . , s},

• to the left of c i 2u-1 , for all u ∈ {1, . . . , t}.

Let f 1 , . . . , f s+t be the s + t free colors that can be inserted in S (in order). Let n 1 , . . . , n s+t be nonnegative integers. We denote by S(n 1 , . . . , n s+t ) the color sequence obtained from S by inserting n i times the color b i in S, for all i. Using this notation, we finally have the uniqueness of the insertions. Proposition 6.1.12. For each color sequence C such that red(C) = S, there exist a unique (s + t)-tuple of non-negative integers (n 1 , . . . , n s+t ) such that C = S(n 1 , . . . , n s+t ).

Example 6.1.13. In Example 6.1.4, we have s = 5, t = 3,

S 1 = a 1 b 2 , S 2 = a 3 b 1 , S 3 = a 4 b 3 , a 3 b 2 T 1 = ∅, T 2 = ∅, T 3 = a 2 b 2 , T 4 = ∅,
and C = S(2, 1, 3, 0, 1, 0, 0, 0).

Influence of the insertions on the minimal partition

Recall the well-definedness according to the reduction as stated in (2.2.48) With our example of color set and a and b, and an non-negative integer l, the energy is defined by

         (a i b j , a k b l ) = χ(i ≥ k) -χ(i = j = k) + χ(j ≤ l) -χ(j = k = l) (c ∞ , a i b j ) = 1 (a i b j , c ∞ ) = χ(i ≥ ) + χ(j < ) (c ∞ , c ∞ ) = 0
is well-defined according to the reduction with respect to a and b. In fact, we have 1. for any i, j ∈ N,

(a i b i , a j b j ) = χ(i > j) + χ(j < i) = χ(i = j) , (c ∞ , a i b i ) = 1 , (a i b i , c ∞ ) = χ(i ≥ ) + χ(i < ) = 1 (c ∞ , c ∞ ) = 0 , 2. for any i = j ∈ N, (a i b i , a i b j ) + (a i b j , a j b j ) = χ(i < j) + χ(i > j) = 1 ,
and for any k = i ∈ N, (a k b k , a i b j ) = χ(k > i) + χ(k ≤ j) ∈ {χ(i < j), χ(i < j) + 1} , (c ∞ , a i b j ) = 1 ∈ {χ(i < j), χ(i < j) + 1} ,
and for any k = j ∈ N, (a i b j , a k b k ) = χ(i ≥ k) + χ(j < k) ∈ {χ(i > j), (i > j) + 1} , (a i b i , c ∞ ) = χ(i ≥ ) + χ(j < ) ∈ {χ(i > j), χ(i > j) + 1} , 3. for any i = j, k = l ∈ N , (a i b j , a k b l ) = χ(i ≥ k) + χ(j ≤ l) = (χ(i ≥ k) + χ(j < k)) + ((j ≤ l) + χ(j > k)) -(χ(j < k) + χ(j > k)) = (a i b j , a k b k ) + (a j b j , a k b l ) -χ(j = k) •
We now study how insertions inside a color sequence affect the corresponding minimal partition. If S is a reduced color sequence, we want to see how the insertion of some free color in S affects the minimal partition, or equivalently the minimal differences between successive parts.

Let us start with an observation. Because for all free colors c, (c, c) = 0, inserting a free color c once or multiple times inside a given pair has exactly the same effect on the rest of the minimal partition. Therefore we only need to study the case where we insert a single free color inside a primary or secondary pair. First, let us see what happens to the minimal differences if we insert a free color inside a primary pair. Proposition 6.1.15. Let C = c 1 , . . . , c s be a color sequence, and let min (C) = (λ 1 , • • • , λ s , 0 c ∞ ) be the corresponding minimal partition. Inserting a free color c = b(c i ) = b(c i+1 ) inside a primary pair (c i , c i+1 ) doesn't disrupt the minimal differences. The minimal partition after insertion will be min (c 1 , . . . ,

c i , c , c i+1 , . . . , c s ) = (λ 1 , • • • , λ i , λ , λ i+1 , • • • , λ s , , 0 c ∞ ), with λ = λ i+1 + (c , c i+1 ).
This follows immediately from (2.2.52), as we have b(c i ) = a(c i+1 ) and then

(c i , c i+1 ) = (c i , a(c i+1 )) + (b(c i ), c i+1 ) .
We now turn to insertions inside secondary pairs. In certain cases, it will disrupt the minimal differences.

We first study the case where we insert a free color to the left of c in a secondary pair (c, c ). This means that c is necessarily bound, and either c is a free color (possibly equal to c ∞ ) different from a(c ), or c is also bound with b(c) = a(c ).

1. When c is free, we then have that

(c, a(c )) + (a(c ), c ) -(c, c ) = 1 + (a(c ), c ) -(c, c ) by (2.2.48) ∈ {0, 1} by (2.2.50) 2. When c is bound, we have (c, a(c )) + (a(c ), c ) -(c, c ) = χ(b(c) = a(c )) + (a(c ), c ) -(b(c), c ) by (2.2.52) ∈ {0, 1}
by what precedes. In both cases, we always have (c, a(c )) + (a(c ), c ) -(c, c ) ∈ {0, 1}. Definition 6.1.16. When the above is 0 (resp. 1), we call (c, c ) a type 0 (resp. type 1) left pair for , and the corresponding insertion a type 0 (resp. type 1) left insertion for . Remark 6.1.17. The type of the left pair (c, c ) for c bound is the same as the type of (b(c), c ).

Similarly, we study the case where we insert a free color to the right of c in a secondary pair (c, c ). This happens when c is a bound color and either c is free (possibly equals to c ∞ ) such that b(c) = c , or c is bound such that b(c) = a(c ), and this essentially works in the same way as left insertions.

1. When c is free, we then have that

(c, b(c)) + (b(c), c ) -(c, c ) = (c, b(c)) + 1 -(c, c ) by (2.2.48) ∈ {0, 1} by (2.2.51) 2. When c is bound, we have (c, b(c)) + (b(c), c ) -(c, c ) = (c, b(c)) + χ(b(c) = a(c )) -(c, a(c )) by (2.2.52) ∈ {0, 1}
by what precedes. In both cases, we always have (c, b(c)) + (b(c), c ) -(c, c ) ∈ {0, 1}. As before, we define type 0 and type 1. Definition 6.1.18. When the difference above is 0 (resp. 1), we call (c, c ) a type 0 (resp. type 1) right pair for , and the corresponding insertion a type 0 (resp. type 1) right insertion for . Remark 6.1.19. The type of the right pair (c, c ) for c bound is the same as the type of (c, a(c )).

• if (c i , c i+1 ) is a secondary pair and the insertion of c is of type 1, the minimal partition becomes

(λ 1 + 1, • • • , λ i + 1, λ , λ i+1 , • • • , λ s , , 0 c ∞ ), with λ = λ i+1 + (c , c i+1 ) (i.e.
we add 1 to all the parts to the left of the newly inserted part λ ).

We call the first two types of insertions above neutral insertions.

Generating function for partitions with a given kernel

Our goal is to count partitions of P c ∞ with a given kernel. The results from the previous section will help us do so.

Let S = c 1 , . . . , c s be a reduced color sequence of length s, having t maximal primary subsequences. Let f 1 , . . . , f s+t be the free colors that can be inserted in S. In the following, we denote by N (resp. T 0 , T 1 ) the set of indices i such that the insertion of f i is neutral (resp. of type 0, of type 1). We have N T 0 T 1 = {1, . . . , s + t}. Moreover, the secondary pairs in S are exactly (c i 2u-1 -1 , c i 2u-1 ) and (c i 2u , c i 2u +1 ), for u ∈ {1, . . . , t}, where S u = c i 2u-1 , . . . , c i 2u . So we can write

T 0 = t u=1 T u 0 , T 1 = t u=1 T u 1 ,
where T u 0 (resp. T u 1 ) is the set of indices j such that f j can be inserted inside

(c i 2u-1 -1 , c i 2u-1 ) or (c i 2u , c i 2u +1
) and is of type 0 (resp. 1). For all u ∈ {1, . . . , t}, we have

|T u 0 | = 2 -|T u 1 |.
We want to study the minimal partition of the color sequence S(n 1 , . . . , n s+t ). Denote by S u 1 (resp. S 1 ) the indices j of T u 1 (resp. T 1 ) such that n j > 0. We start with the following lemma whose proof is given in Appendix A.3.2. Lemma 6.1.26. For all j ∈ {1, . . . , s + t}, if n j > 0, i.e. the color f j is actually inserted, then the corresponding part λ( f j ) in the minimal partition of S(n 1 , . . . , n s+t ) is equal to

λ( f j ) = # ({j, . . . , s + t} ∩ (N T 0 S 1 )) . ( 6.1.1) 
We can now give a formula for the weight of the minimal partition with color sequence S(n 1 , . . . , n s+t ). We start with the minimal partition min (S) with color sequence S. It has weight |min (S)|. Then we insert the parts corresponding to colors of type 1. Let j ∈ S 1 . By Proposition 6.1.25, inserting f j adds 1 to all the parts of min (S) which are to the left of λ( f j ). So this adds P(j) to the total weight. Moreover, by Lemma 6.1.26, the part λ( f j ) is of size # ({j, . . . , s + t} ∩ (N ∪ T 0 ∪ S 1 )), and we insert it n j times. Summing over all j ∈ S 1 gives the first sum. Finally, the insertion of parts corresponding to colors f j with j ∈ N ∪ T 0 yields the following proposition. Proposition 6.1.27. With the notation above, the size of the minimal partition with color sequence S(n 1 , . . . ,

n s+t ) is |min (S(n 1 , . . . , n s+t ))| = |min (S)| + ∑ j∈S 1 P(j) + n j × # ({j, . . . , s + t} ∩ (N T 0 S 1 )) + ∑ j∈N ∪T 0 n j × # ({j, . . . , s + t} ∩ (N T 0 S 1 )) , (6.1.2) 
where P(j) is the number of colors of S that are to the left of f j .

Starting from Proposition 6.1.27, we will show a key theorem, which will be very useful to establish the connection with generalized colored Frobenius partitions. Recall that the q-binomial coefficient is defined as follows: n k q := (q; q) n (q; q) k (q; q) n-k , and we assume that [ n k ] q = 0 if k < 0 or k > n. Theorem 6.1.28. Let n be a positive integer and m a non-negative integer. Let S = c 1 , . . . , c s be a reduced color sequence of length s, having t maximal primary subsequences. The generating function for minimal partitions in P c ∞ with kernel S, having s + m parts (apart from 0 c ∞ ), is the following:

∑ Ccolor sequence of length s+m such that red a,b (C)=S q | min (C)| = q | min (S)|+m t ∑ u=0 q u(s-t) g u,t (q; |T 1 0 |, . . . , |T t 0 |) s + m -1 m -u q , (6.1.3)
where g 0,0 = 1, and for u ≤ v, g u,v (q; x 1 , . . . , x v ) = ∑ θ 1 ,...,θ v ∈{0,1}:

θ 1 +•••+θ v =u q uv+( u 2 ) v ∏ k=1 q (x k -1) ∑ k-1 i=1 θ i .
By observing that all partitions of P c ∞ with a given color sequence C of length s + m can be obtained in a unique way by adding a partition with at most s + m parts to the minimal partition min (C), Theorem 6.1.28 is actually equivalent to the following generating function for all partitions of P c ∞ with a given kernel. Proposition 6.1.29. Let n be a positive integer and m a non-negative integer. Let S = c 1 , . . . , c s be a reduced color sequence of length s, having t maximal primary subsequences. The generating function for partitions in P c ∞ with kernel S, having s + m parts, is the following:

∑ λ∈P c∞ : (λ)=s+m ker a,b (λ)=S q |λ| = q |min (S)|+m (q; q) s+m t ∑ u=0 q u(s-t) g u,t (q; |T 1 0 |, . . . , |T t 0 |) s + m -1 m -u q . (6.1.4)
The proof of Theorem 6.1.28 from Proposition 6.1.27, quite technical, is postponed to Section 6.3. Its reading is not necessary to understand the connection between P c ∞ and F c ∞ 1 , 2 , which we will study in the next section.

Generalized colored Frobenius partitions

In this section, we compute the generating function for generalized colored Frobenius in F c ∞ 1 , 2 with a given kernel and show that it is the same as the generating function (6.1.4) for generalized colored partitions in P c ∞ with the same kernel.

The difference conditions corresponding to minimal colored Frobenius partitions

We start by observing that minimal generalized colored Frobenius in F c ∞ 1 , 2 are in bijection with minimal generalized colored partitions in P c ∞ 1 + 2 . Definition 6.2.1. Let c 1 , . . . , c s be a sequence of colors taken from C. The minimal colored Frobenius partition in F c ∞ 1 , 2 associated to c 1 , . . . , c s is the generalized colored Frobenius partition π = ((λ 1 , µ 1 ), • • • , (λ s , µ s ), (0, 0) c ∞ ) with minimal size such that for all i ∈ {1, . . . , s}, c(λ i , µ i ) = c i . We denote this partition by min 1 , 2 (c 1 , . . . , c s ). This is equivalent to saying that

(λ 1 , • • • , λ s , 0 c ∞ ) = min 1 (c 1 , . . . , c s ) and (µ 1 , • • • , µ s , 0 c ∞ ) = min 2 (c 1 , . . . , c s ) • The size of min 1 , 2 (c 1 , . . . , c s ) is then equal to |min 1 , 2 (c 1 , . . . , c s )| = s ∑ k=1 k( 1 (c k , c k+1 ) + 2 (c k , c k+1 )) = |min 1 + 2 (c 1 , . . . , c s )| Recall that 1 (c, c ) + 2 (c, c ) =          2 if c = c ∈ C free {c ∞ } (c, c ) + 1 if c ∈ C bound and c = a(c ) (c, c ) + 1 if c ∈ C bound and c = b(c) (c, c ) otherwise .
Using the fact that reduced color sequences do not contain any pair (c, c ) of the three first above cases, we then have the following proposition.

Proposition 6.2.5. Let n be a positive integer and m a non-negative integer. Let S = c 1 , . . . , c s be a reduced color sequence of length s, having t maximal primary subsequences. Using the notation of Section 6.1.4, the generating function for minimal partitions in

P c ∞ 1 + 2
with kernel S, having s + m parts, is given by:

∑ Ccolor sequence of length s+m such that red a,b (C)=S q | min 1 + 2 (C)| = q | min (S)|+m(s+m+1) t ∑ u=0 q -u(t+m) g u,t (q; |T 1 0 |, . . . , |T t 0 |) s + m -1 m -u q . (6.2.1)
By Definition 6.2.1, the generating function in (6.2.1) is also the generating function for minimal generalized colored Frobenius partitions in F c ∞ 1 , 2 with kernel S. Finally, using the fact that any generalized colored Frobenius partitions with color sequence C of length s + m (apart from c ∞ ) can be obtained in a unique way by adding a partition into at most s + m parts to λ and another partition into at most s + m parts to µ in the minimal colored Frobenius partition, we obtain the following key expression for the generating function. Proposition 6.2.6. Let n be a positive integer and m a non-negative integer. Let S = c 1 , . . . , c s be a reduced color sequence of length s, having t maximal primary subsequences. Using the notation of Section 6.1.4, the generating function for n 2 -colored Frobenius partitions with kernel S, having length s + m, is the following:

∑ F∈F c∞ 1 , 2 : (F)=s+m ker(F)=S q |F| = q | min (S)|+m(s+m+1) (q; q) 2 s+m t ∑ u=0 q -u(t+m) g u,t (q; |T 1 0 |, . . . , |T t 0 |) s + m -1 m -u q . (6.2.2)

Proof of Theorem 2.2.39

Proposition 6.1.29 gives the generating function for colored partitions of P c ∞ with kernel S, and Proposition 6.2.6 gives the generating function for colored Frobenius partitions of F c ∞ 1 , 2 with the same kernel S. In this section, we show that these two generating functions are actually equal and then obtain Theorem 2.2.39. But before doing so, we need a lemma about q-binomial coefficients. For the proof, see Appendix A.3.4. Lemma 6.2.7. Let s be a positive integer and m, u two non-negative integers. Then

1 (q; q) s+m = ∑ m ≥0 q (m -u)(s+m ) (q; q) s+m m -u m -u q .
We are now ready to prove Theorem 2.2.39.

By Proposition 6.1.29,

∑ λ∈P c∞ : ker(λ)=S q |λ| = ∑ m≥0 q | min (S)|+m (q; q) s+m t ∑ u=0 q u(s-t) g u,t (q; |T 1 0 |, . . . , |T t 0 |) s + m -1 m -u q = t ∑ u=0 q | min (S)|+u(s-t) g u,t (q; |T 1 0 |, . . . , |T t 0 |) ∑ m≥0 q m (q; q) s+m s + m -1 m -u q ,
and by Proposition 6.2.6,

∑ F∈F c∞ 1 , 2 : ker(F)=S q |F| = ∑ m≥0 q | min (S)|+m(s+m+1) (q; q) 2 s+m t ∑ u=0 q -u(t+m) g u,t (q; |T 1 0 |, . . . , |T t 0 |) s + m -1 m -u q = t ∑ u=0 q | min (S)|+u(s-t) g u,t (q; |T 1 0 |, . . . , |T t 0 |) ∑ m≥0 q (m-u)(s+m)+m (q; q) 2 s+m s + m -1 m -u q
Thus, to prove the theorem, it is sufficient to show that for u ∈ {0, . . . , t},

∑ m≥0 q m (q; q) s+m s + m -1 m -u q = ∑ m≥0 q (m-u)(s+m)+m (q; q) 2 s+m s + m -1 m -u q • (6.2.3)
By Lemma 6.2.7,

1 (q; q) s+m s + m -1 m -u q = ∑ m ≥0 q (m -u)(s+m ) (q; q) s+m m -u m -u q s + m -1 m -u q = ∑ m ≥0 q (m -u)(s+m ) (q; q) s+m s + m -1 m -u q s + m -1 s + m -1 q . Thus ∑ m≥0 q m (q; q) s+m s + m -1 m -u q = ∑ m≥0 ∑ m ≥0 q (m -u)(s+m )+m (q; q) s+m s + m -1 m -u q s + m -1 s + m -1 q = ∑ m ≥0 q (m -u)(s+m )+m (q; q) s+m s + m -1 m -u q ∑ m≥0 q m-m s + m -1 s + m -1 q .
The last thing to show is that

∑ m≥0 q m-m s + m -1 s + m -1 q = 1 (q; q) s+m ,
which is true by separating the partitions into at most s + m parts counted by 1 (q;q) s+m according to the length mm of their largest part. Lemma 6.3.5 (Proof in Appendix A.3.8). Let m, 1 , . . . , t be non-negative integers. We have

q m m + 1 + • • • + t -1 m q = q m ∑ 0=x 0 ≤x 1 ≤•••≤x t =m t ∏ r=1 q r x r-1 x r -x r-1 + r -1 x r -x r-1 q .
In the above, we use the convention that [ -1 0 ] = 1. We use the lemma above to rewrite a part of the expression in Proposition 6.3.4. Proposition 6. 3.6 (Proof in Appendix A.3.14). We have:

q m-∑ t u=1 k u m -1 + |N | + |T 0 | m -∑ t u=1 k u q = q m-∑ t u=1 k u (1+|N |+∑ t v=u+1 (k v +|T v 0 |)) × ∑ 0=m 0 ≤m 1 ≤•••≤m t ≤m t ∏ u=1 q (k u +|T u 0 |)m u-1 m u -m u-1 + |T u 0 | -1 m u -m u-1 -k u q q |N |m t m -m t + |N | -1 m -m t q .
Substituting Proposition 6.3.6 in Proposition 6.3.4 leads to

G S,m (q) = q |min (S)|+m ∑ k 1 ,...,k t : k u ≤|T u 1 | t ∏ u=1 q k u (u-2+k u +|T u 0 |) |T u 1 | k u q × ∑ 0=m 0 ≤m 1 ≤•••≤m t ≤m t ∏ u=1 q (k u +|T u 0 |)m u-1 m u -m u-1 + |T u 0 | -1 m u -m u-1 -k u q q |N |m t m -m t + |N | -1 m -m t q .
Interchanging the order of the two multisums, we obtain:

G S,m (q) = q |min (S)|+m ∑ 0=m 0 ≤m 1 ≤•••≤m t ≤m     ∑ k 1 ,...,k t : k u ≤|T u 1 | t ∏ u=1 q k u (u-2+k u +|T u 0 |)+(k u +|T u 0 |)m u-1 × |T u 1 | k u q m u -m u-1 + |T u 0 | -1 m u -m u-1 -k u q     q |N |m t m -m t + |N | -1 m -m t q . (6.3.3)
We need one last lemma to complete our proof of Theorem 6.1.28.

Lemma 6.3.7 (Proof in Appendix A.3.9). We have

∑ 0=m 0 ≤m 1 ≤•••≤m t ∑ k 1 ,...,k t : k u ≤|T u 1 | t ∏ u=1 q k u (u-2+k u +|T u 0 |)+(k u +|T u 0 |)m u-1 |T u 1 | k u q m u -m u-1 + |T u 0 | -1 m u -m u-1 -k u q = t ∑ v=0 g v,t (q; |T 1 0 |, . . . , |T t 0 |) m t + t -1 m t -v q ,
where g v,t was defined in Theorem 6.1.28.

We can now write

G S,m (q) = q |min (S)|+m t ∑ v=0 g v,t (q; |T 1 0 |, . . . , |T t 0 |) ∑ 0≤m t ≤m q |N |m t m -m t + |N | -1 m -m t q m t + t -1 m t -v q = q |min (S)|+m t ∑ v=0 g v,t (q; |T 1 0 |, . . . , |T t 0 |) ∑ 0≤m t ≤m-v q |N |(m t +v) m -m t -v + |N | -1 m -m t -v q m t + v + t -1 m t q ,
where the second equality follows from the change of variables m t = m tv. Using Lemma 6.3.5 with

t = 2, m = m -v, 1 = v + t, and 2 = |N |, this becomes G S,m (q) = q |min (S)|+m t ∑ v=0 q v|N | g v,t (q; |T 1 0 |, . . . , |T t 0 |) m + t + |N | -1 m -v q .
Observing that |N | = st concludes the proof of Theorem 6.1.28.

Proof of Theorem 2.2.45

By Theorem 2.2.39, Theorem 2.2.43 relates the generating function for generalized Primc partitions to the generating function for colored Frobenius partitions. In this section, we study the particular case b i = a -1 i for all i ∈ {0, . . . , n}. All the free colors vanish, and the generating function can now be written as a sum of infinite products.

Let n be a positive integer. By Theorem 2.2.43 with b i = a -1 i for all i, it follows that

P n := ∑ m,u 0 ,...,u n-1 ,v 0 ,...,v n-1 ≥0 P 0,n (m; u 0 , . . . , u n-1 ; v 0 , . . . , v n-1 )q m a u 0 -v 0 0 • • • a u n-1 -v n-1 n-1 = [x 0 ] n-1 ∏ i=0 (-xa i q; q) ∞ (-x -1 a -1 i ; q) ∞ .
Using the Jacobi triple product (2.1.6) in each term of this product, we obtain

P n = 1 (q; q) n ∞ [x 0 ] n-1 ∏ i=0 ∑ m i ∈Z x m i a m i i q m i (m i +1) 2 = 1 (q; q) n ∞ ∑ m 0 ,...,m n-1 ∈Z m 0 +•••+m n-1 =0 n-1 ∏ i=0 a m i i q ∑ n-1 i=0 m i (m i +1) 2 . Now replacing m 0 by -m 1 -• • • -m n-1 and using that m 0 (m 0 + 1) 2 = ∑ n-1 i=1 m 2 i -∑ n-1 i=1 m i 2 + ∑ 1≤i<j≤n-1 m i m j ,
we get

P n = 1 (q; q) n ∞ ∑ m 1 ,...,m n-1 ∈Z n-1 ∏ i=1 (a i a -1 0 ) m i q ∑ n-1 i=1 m 2 i +∑ 1≤i<j≤n-1 m i m j . (6.4.1)
We want to apply the Jacobi triple product again inside the n -1-parameters sum, in order to obtain a sum of infinite products. To do so, we carry out a change of variables. We first need the following lemma whose proof is given in Appendix A.3.10.

Lemma 6.4.1. Let M(n) := n-1 ∑ i=1 m 2 i + ∑ 1≤i<j≤n-1 m i m j .
Let s n = 0 and for all i ∈ {1, . . . , n -1},

s i := n-1 ∑ j=i m j .
Then,

M(n) = n-1 ∑ i=1 s i (s i -s i+1 ) = n-1 ∑ i=1 ((i + 1)s i -is i+1 ) 2 2i(i + 1) .
By Lemma 6.4.1 and (6.4.1), we obtain

P n = 1 (q; q) n ∞ ∑ s 1 ,...,s n-1 ∈Z s n =0 n-1 ∏ i=1 (a i a -1 0 ) s i -s i+1 q ∑ n-1 i=1 s i (s i -s i+1 ) = 1 (q; q) n ∞ ∑ s 1 ,...,s n-1 ∈Z s n =0 a -s 1 0 n-1 ∏ i=1 a s i -s i+1 i q s i (s i -s i+1 ) .
This is (2.2.60). Let us do perform a few more changes of variables to obtain (2.2.61).

For all i ∈ {1, . . . , n -1}, let us write s i = i × d i + r i , with r i ∈ {0, . . . , i -1}. This is the euclidian division by i, so this expression is unique, and for r 1 , . . . , r n-1 fixed, there is a bijection between {(s 1 , . . . , s n-1 ) ∈ Z n-1 : s i ≡ r i mod i} and {(d 1 , . . . , d n-1 ) ∈ Z n-1 }. Moreover our choice s n = 0 corresponds to d n = r n = 0. We obtain

M(n) = n-1 ∑ i=1 i(i + 1) 2 (d i -d i+1 ) 2 + ((i + 1)r i -ir i+1 ) 2 2i(i + 1) + (d i -d i+1 )((i + 1)r i -ir i+1 ) .
By a last change of variables

p i = d i -d i+1 , equivalent to d i = ∑ n-1 j=i p j , {(d 1 , . . . , d n-1 ) ∈ Z n-1 } is in bijection with {(p 1 , . . . , p n-1 ) ∈ Z n-1 }. This yields M(n) = n-1 ∑ i=1 i(i + 1) 2 p 2 i + ((i + 1)r i -ir i+1 ) 2 2i(i + 1) + p i ((i + 1)r i -ir i+1 ) = n-1 ∑ i=1 r i (r i -r i+1 ) + n-1 ∑ i=1 i(i + 1) 2 p 2 i + p i ((i + 1)r i -ir i+1 ) •
Backtracking all these changes of variables, we have for all i ∈ {1, . . . , n -1},

m i = s i -s i+1 (with s n = 0) = id i + r i -(i + 1)d i+1 -r i+1 (with d n = r n = 0) = i ∑ n-1 j=i p j + r i -(i + 1) ∑ n-1 j=i+1 p j -r i+1 = ip i -∑ n-1 j=i+1 p j + r i -r i+1 .
Thus, by the above and Lemma 6.4.1, the generating function in (6.4.1) becomes

P n = 1 (q; q) n ∞ ∑ r 1 ,...,r n-1 0≤r j ≤j-1 ∑ p 1 ,...,p n-1 ∈Z n-1 ∏ i=1 (a i a -1 0 ) ip i -∑ n-1 j=i+1 p j +r i -r i+1 × q ∑ n-1 i=1 r i (r i -r i+1 )+∑ n-1 i=1 i(i+1) 2 p 2 i +p i ((i+1)r i -ir i+1 ) . (6.4.2)
It can be shown by induction on n that

n-1 ∏ i=1 (a i a -1 0 ) ip i -∑ n-1 j=i+1 p j = n-1 ∏ i=1 i-1 ∏ =0 a i a -1 p i .
Therefore reorganizing (6.4.2) leads to

P n = 1 (q; q) n ∞ ∑ r 1 ,...,r n-1 0≤r j ≤j-1 n-1 ∏ i=1 (a i a -1 0 ) r i -r i+1 q r i (r i -r i+1 ) × ∑ p 1 ,...,p n-1 ∈Z n-1 ∏ i=1 i-1 ∏ =0 a i a -1 q (i+1)r i -ir i+1 p i q i(i+1) 2 p 2 i = 1 (q; q) n ∞ ∑ r 1 ,...,r n-1 0≤r j ≤j-1 n-1 ∏ i=1 a r i -r i+1 i q r i (r i -r i+1 ) × n-1 ∏ i=1 ∑ p 1 ,...,p n-1 ∈Z i-1 ∏ =0 a i a -1 q -i(i+1) 2 +(i+1)r i -ir i+1 p i q i(i+1) p i (p i +1) 2 = 1 (q; q) n ∞ ∑ r 1 ,...,r n-1 0≤r j ≤j-1 n-1 ∏ i=1 a r i -r i+1 i q r i (r i -r i+1 ) × q i(i+1) ; q i(i+1) ∞ - i-1 ∏ =0 a i a -1 q i(i+1) 2 +(i+1)r i -ir i+1 ; q i(i+1) ∞ × - i-1 ∏ =0 a a -1 i q i(i+1) 2 -(i+1)r i +ir i+1 ; q i(i+1) ∞ ,
where over the last equality, we used Jacobi's triple product identity in each of the sums in the p i 's. Theorem 2.2.45 is proved. Remark 6.4.2. Andrews (Andrews, 1984a) gave the particular cases n = 1, 2, 3 of this formula, but without keeping track of the colors. Our result is more general, as it keeps track of the colors and is valid for all n.

3. for any color c 1 ∈ C inf such that (c 1 , c 2 ) ∈ {0, 1}, we can insert a part p f between the parts of the pattern (p + 

{(c, c ) ∈ C sup × C inf : (c, c ) = 0} {(c, c ) ∈ C 2 sup : (c, c ) ∈ {0, 1}} {(c, c ) ∈ C 2 inf : (c, c ) ∈ {0, 1}} •
The existence of such a color f is rendered possible by the relations (2.2.66), (2.2.67) and (2.2.68). When the color f only depends on the color of the part with the same size as p f , the existence of such a color f is ensured by (2.2.64) and (2.2.63).

The definition of the functions δ and γ in Definition 2.2.48 then allows us to forbid in c 0 δ,γ P c ∞ a unique insertion in all the corresponding pairs p 

f 2 with f 1 , f 2 in C sup if only if (c 1 , f 1 ) = ( f 2 , c 2 ) = 0.
The choice of the color f 1 only depends on c 1 , as well as the choice of f 2 only depends on c 2 .

Insertion at the extremities

Recall that

(C free , c ∞ ) = {1} , (C sup , c ∞ ) ⊂ {1, 2} , (C inf , c ∞ ) ⊂ {0, 1} •
Then, by Proposition 7.1.1, the only possible tail for a partition in P c ∞ , consisting of parts of size 0, has the form 0 c 1 , . . . , 0 c s , 0 c ∞ with c 1 , . . . , c s ∈ C sup . This means that we cannot insert a part 0 f for any f ∈ C free . We now study the insertion of at 1 f the tail of the partitions.

• When the tail has the form 1 c , 0 c ∞ with c ∈ C sup , for any free color f , one can insert a part 1 f to the right to 1 c as long as (c, f ) = 0.

• When the tail has the form 1 c , 0 c ∞ with c ∈ C inf , for any free color f , the only possible insertion of a part 1 f next to the 1 c occurs its left. The part 1 c then remains the last part before 0 c ∞ .

We finally study the case of insertion at the head of the partition.

• When the first part is p c with c ∈ C sup , for any free color f , the only possible insertion of a part p f next to the p c occurs its right. The part 1 c then remains the first part of the partitions.

• When the first part is p c with c ∈ C inf , for any free color f , for any free color f , one can insert a part p f to the right to p c as long as ( f , c) = 0.

The above insertion properties at the extremities allow us to extend the insertion into the pair p

(1) Let us consider a partition λ ∈ P c ∞ . We want to build Φ(λ) = (µ, ν) ∈ c 0 δ,γ P c ∞ × P. First, note that (c, c 0 ) = (c, c 0 ) = χ(c = c 0 ) for any color c ∈ C. This is equivalent to saying that, in λ, the parts colored by c 0 have a size different from the parts with color different from c 0 . We first consider ν to be the empty partition. We then proceed by transforming some parts p f for free colors f into parts p and insert them into ν as follows.

c 1 , p (2) 
1. We take all the parts of λ with color c 0 and add them to ν, while removing their color c 0 .

Since the parts to the left and to the right of a maximal sequence of the form p c 0 , . . . , p c 0 have respectively a size greater and less than p, this means that their sizes differ by at least 2. The fact that (C, C {c ∞ }) ⊂ {0, 1, 2} implies that, by removing the parts with color c 0 from λ, we obtain a partition λ that is still in P c ∞ . Furthermore, the parts of λ have sizes different from the sizes of the parts of ν.

2. For all the parts p f in λ with f ∈ C free \ {c 0 } which appear more than twice, we transform all the parts p f but one into p and move them to ν.

Since there is still one occurrence for all such parts, we obtain a partition λ that is still in P c ∞ , and has no repeated parts p f with free colors, and no part colored by c 0 . Also, the only parts of λ having the same size as some part of ν are those with the same size as a certain part p f with a free color.

3. For all the parts p f that appear in patterns p

(1)

c 1 , p f , p (2) 
c 2 of λ which are forbidden in c 0 δ,γ P c ∞ , we then transform the parts p f into p and add these parts to ν.

Note that such parts p f may have been repeated in the previous step, and can only appear in forbidden patterns with p = p (1) and c 1 ∈ C sup , or p = p (2) and c 2 ∈ C inf . One can also observe that, by removing p f from such patterns, the patterns p

(1) c 1 , p (2) 
c 2 are always allowed in c 0 δ,γ P c ∞ . At the end of this step, the partition obtained does not have any forbidden pattern or any part with color c 0 , and the part with free color p f cannot be repeated. We then set this partition to be µ.

We then obtain at the end a pair of partitions (µ, ν) ∈ c 0 δ,γ P c ∞ × P. Remark 7.2.1. We remark that the only parts in ν which do not have the same size as the parts in µ are those coming from the parts of λ with color c 0 .

The map Φ -1

We will now describe the inverse map Φ -1 . For any (µ, ν) ∈ c 0 δ,γ P c ∞ × P, we proceed by inserting the parts p of ν in the partition µ as follows.

1. Suppose that there is no part p f with f ∈ C free \ {c 0 }, but there is a part p c with c ∈ C sup C inf . We then proceed as follows.

• 

p c 1 , p γ(c 1 ,c 2 ) , (p -1) c 2 which is forbidden in c 0 δ,γ P c ∞ .
• There now remains the case where all the parts p c are such that c ∈ C sup . We then take the color of the leftmost part, denoted c 2 . We remark that we cannot insert a part p f with a free color in the sequence to the right of p c 1 . Also, the part to its left, if such a part exists, has necessarily a size greater than p, 

c 2 . Moreover, for the above cases, which form a exhaustive list of insertions p f into a pair p (1)

c 1 , p (2) 
c 2 with p = p (1) and c 1 ∈ C sup , or p = p (2) and c 2 ∈ C inf , the choice of the color f to render the obtained pattern p (1)

c 1 , p f , p (2) c 2 forbidden in c 0 δ,γ P c ∞ is unique.
At the end of this process, we obtain a partition µ with some forbidden patterns of c 0 δ,γ P c ∞ , with no repeated part p f with a free color f and no part colored by c 0 . This is then the exact reverse step of the third step of Φ.

2. If there is a part p f in µ with f ∈ C free \ {c 0 }, then transform all the parts p into p f and insert them in µ . We then obtain a partition µ with some forbidden patterns of c 0 δ,γ P c ∞ and repeated parts p f , but no part colored by c 0 . This is the reverse step of the second step of Φ, and allows us to have repeated parts with free color.

3. There now remains the parts p in ν such that there is no in µ with the same size. We transform these parts into p c 0 and insert them into µ . The partition obtained has some forbidden patterns of c 0 δ,γ P c ∞ , repeated parts p f with free color f , and parts colored by c 0 . We then set this partition to be λ. This is the exact reverse step of the first step of Φ.

The partition λ then obtained is a partition of P c ∞ , and we set Φ -1 (µ, ν) = λ.

The inversion between the maps Φ and Φ -1 comes from the fact that the steps in their respective process are inverse and lead exactly to the same subsets of partitions.

Duality between Capparelli's and Primc's identities

Let us consider the set C = {a i b j : i, j ∈ N}, and the set-partition

C sup = {a i b j : i < j ∈ N} , C free = {a i b j : i ∈ N} , C inf = {a i b j : i > j ∈ N} •

Well-definedness according to the decomposition

Recall that for all i, j, k, l ∈ {0, . . . , n -1}, we have the energy ∆ in (2.2.54) defined by

∆(a i b j , a k b l ) = χ(i ≥ k) -χ(i = j = k) + χ(j ≤ l) -χ(j = k = l) •
We then have the following.

By comparing the free colors, for all

i, k ∈ N ∆(a i b i , a k b k ) = χ(i = k) • (7.3.1)
2. For all i, j, k ∈ N with i < j, we have (7.3.3) and the conditions (2.2.63) are satisfied. Furthermore, for all i < j,

∆(a i b j , a k b k ) = 1 -χ(i < k ≤ j) (7.3.2) ∆(a k b k , a i b j ) = 1 + χ(i < k ≤ j) ,
{k ∈ N : ∆(a i b j , a k b k ) = 0} = {k ∈ N : ∆(a k b k , a i b j ) = 2} = {i + 1, . . . , j} = ∅ •
3. For all i, j, k ∈ N with i > j ∈ N, we have

∆(a i b j , a k b k ) = 1 + χ(i ≥ k > j) (7.3.4) ∆(a k b k , a i b j ) = 1 -χ(i ≥ k > j) , (7.3.5)
and the conditions (2.2.64) are satisfied. Furthermore, for all i > j ∈ N,

{k ∈ N : ∆(a i b j , a k b k ) = 2} = {k ∈ N : ∆(a k b k , a i b j ) = 0} = {j + 1, . . . , i} = ∅ • 4.
For all i, j, k, l ∈ N such that i = j and k = l,

∆(a i b j , a k b l ) = χ(i ≥ k) + χ(j ≤ l) • (7.3.6)
In particular, we have the following

∆(a i b j , a k b l ) = 2 ⇐⇒ i ≥ k and i ≤ l ∆(a i b j , a k b l ) = 0 ⇐⇒ i < k and i > l
The above equation implies the following relations.

(a) If i < j and k > l, then (7.3.8) and the conditions (2.2.65) are satisfied. Also, when ∆(a i b j , a k b l ) = 0, we then have that i < k and j > l, so that We then have equivalently

∆(a i b j , a k b l ) = 1 -χ(i < k)χ(j > l) (7.3.7) ∆(a k b l , a i b j ) = 1 + χ(i ≤ k)χ(j ≥ i) ,
∆(a i b j , a k b l ) ∈ {0, 1} ⇐⇒ {u ∈ N : ∆(a i b j , a u b u ) = 0} ∩ {u ∈ N : ∆(a u b u , a k b l ) = 1} = ∅ ,
and the conditions (2.2.67) are satisfied.

(c) If i > j and k > l, then

∆(a i b j , a k b l ) = 2 ⇐⇒ i ≥ k and j ≤ l ⇐⇒ {l + 1, . . . , k} ⊂ {j + 1, . . . , i} ⇐⇒ {l + 1, . . . , k} \ {j + 1, . . . , i} = ∅ ⇐⇒ {u ∈ N : ∆(a i b j , a u b u ) = 1} ∩ {u ∈ N : ∆(a u b u , a k b l ) = 0} = ∅ •
We then have equivalently

∆(a i b j , a k b l ) ∈ {0, 1} ⇐⇒ {u ∈ N : ∆(a i b j , a u b u ) = 1} ∩ {u ∈ N : ∆(a u b u , a k b l ) = 0} = ∅ ,
and the conditions (2.2.68) are satisfied.

Then, by Definition 2.2.46, the energy ∆ is well-defined according to the decomposition C sup C free C inf . We now fix ∈ N, and introduce the fictitious color c ∞ and extend ∆ with the relations

∆(c ∞ , c ∞ ) = 0, ∆(c ∞ , a i a j ) = 1, ∆(a i a j , c ∞ ) = χ(i ≥ ) + χ(j < ) •

Forbidden patterns

By Definition 2.2.48, the functions δ and γ satisfy the following properties:

1. for all a k b l (k = l), δ(a k b l ) ∈ {a i b i : i ∈ {min{k, l} + 1, . . . , max{k, l}} , (7.3.9)

2. For the pairs of bound colors (c 

1 , c 2 ) = (a k 1 b l 1 , a k 2 b l 2 ), • if k 1 < l 1 and k 2 > l 2 such that max{k 1 , l 2 } < min{k 2 , l 1 }, then γ(c 1 , c 2 ) ∈ {a i b i : i ∈ {max{k 1 , l 2 } + 1, . . . , min{k 2 , l 1 }} • (7.3.10) • if k 1 > l 1 and k 2 > l 2 such that we do not have k 1 ≥ k 2 > l 2 ≥ l 1 , then γ(c 1 , c 2 ) ∈ {a i b i : i ∈ {l 2 + 1, . . . , k 2 } \ {l 1 + 1, . . . , k 1 }} , (7.3.11) • if k 1 < l 1 and k 2 < l 2 such that we do not have k 2 ≤ k 1 < l 1 ≤ l 2 , then γ(c 1 , c 2 ) ∈ {a i b i : i ∈ {k 1 + 1, . . . ,
(c 1 , c 2 ) = (a k 1 b l 1 , a k 2 b l 2 ))
• For all integer i > 0, p a i b i p a i b i .

• For all max{k 1 , l 2 } < min{k 2 , l 1 } and f = a i b i with i = γ(c 1 , c 2 ),

p c 1 p f p c 2 .
• For all integers k 1 < l 1 :

-For all integers 2 ≤ u, the pattern (with c 2 possibly equal to c ∞ )

p c 1 p δ(c 1 ) (p -u) c 2 .
-For all integers k 2 ≥ l 2 or for c 2 equal to c ∞ , the pattern

p c 1 , p δ(c 1 ) , (p -1) c 2 .
-For all k 1 < l 1 , k 2 < l 2 such that we do not have k 2 ≤ k 1 < l 1 ≤ l 2 , the pattern

p c 1 , p γ(c 1 ,c 2 ) , (p -1) c 2 .
• For all integers k 2 > l 2 :

-For all integers 2 ≤ u ≤ ∞, the pattern

(p + u) c 1 , p δ(c 2 ) , p c 2 .
Here the part ∞ c 1 means that the pattern p δ(c 2 ) p c 2 is at the head of the partition.

-For all integers k 1 ≤ l 1 , the pattern,

(p + 1) c 1 , p δ(c 2 ) , p c 2 .
-For all integers k 1 > l 1 such that we do not have

k 1 ≥ k 2 > l 2 ≥ l 1 , the pattern (p + 1) c 1 , p γ(c 1 ,c 2 ) , p c 2 .
Then the following corollary of Theorem 2.2.51 holds.

Corollary 7.3.2.

There is a bijection Φ between the set P ,n of generalized Primc partitions and the product set C ,n (δ, γ) × P, where C ,n (δ, γ) is the set of the Capparelli partitions related to δ and γ, and P is the set of the classical partitions.

• if l 1 > l 2 , then γ 2 (c 1 , c 2 ) = a l 1 b l 1 (7.3.26) • if k 2 ≥ l 1 , then γ 2 (c 1 , c 2 ) = a l 1 b l 1 (7.3.27) • if l 2 ≥ l 1 > k 2 > k 1 , then γ 2 (c 1 , c 2 ) = a k 1 +1 b k 1 +1 • (7.3.28)
We then have the corresponding proposition Proposition 7.3.4. We have C ,n (δ 2 , γ 2 ) = C ,n .

The case of Capparelli's and Meurman-Primc's identities

For n = 2, there is only one possibility for the functions δ and γ, having both values in {a 1 b 1 }. Also, the only possible pair in the preimage of γ is (a 0 b 1 , a 1 b 0 ). The Propositions 7. 3.3 and 7.3.4 are equivalent and give the identity of Capparelli.

For n = 3, there are possibilities for δ and γ.

• We have

δ(a 0 b 1 ) = δ(a 1 b 0 ) = a 1 b 1 δ(a 1 b 2 ) = δ(a 2 b 1 ) = a 2 b 2 δ(a 0 b 2 ), δ(a 2 b 0 ) ∈ {a 1 b 1 , a 2 b 2 } • • We have γ(a 0 b 1 , a 1 b 0 ) = γ(a 0 b 1 , a 2 b 0 ) = γ(a 0 b 2 , a 1 b 0 ) = a 1 b 1 γ(a 1 b 2 , a 2 b 1 ) = γ(a 1 b 2 , a 2 b 0 ) = γ(a 0 b 2 , a 2 b 1 ) = a 2 b 2 γ(a 0 b 2 , a 2 b 0 ) ∈ {a 1 b 1 , a 2 b 2 } and γ(a 1 b 0 , a 2 b 0 ) = γ(a 1 b 0 , a 2 b 1 ) = a 2 b 2 γ(a 2 b 1 , a 2 b 0 ) = γ(a 2 b 1 , a 1 b 0 ) = a 1 b 1 γ(a 1 b 2 , a 0 b 1 ) = γ(a 0 b 2 , a 0 b 1 ) = a 2 b 2 γ(a 0 b 1 , a 1 b 2 ) = γ(a 0 b 2 , a 1 b 2 ) = a 1 b 1 •
The functions δ 1 and γ 1 then correspond to the choice

δ(a 0 b 2 ) = δ(a 2 b 0 ) = γ(a 0 b 2 , a 2 b 0 ) = a 1 b 1
and we obtain the forbidden pattern

(p + 1) a 1 b 0 , p a 2 b 2 , p a 2 b 0 and (p + 1) a 0 b 2 (p + 1) a 2 b 2 p a 0 b 1 •
This is the case 8 × 8 given by Meurman-Primc.

The functions δ 2 and γ 2 then correspond to the choice

δ(a 0 b 2 ) = δ(a 2 b 0 ) = γ(a 0 b 2 , a 2 b 0 ) = a 2 b 2
and we obtain the forbidden pattern 

Perfect crystals and multi-grounded partitions

In this chapter, we present the connection between the theory of perfect crystals and the notion of multigrounded partitions.

In Section 8.1, we first introduce the fundamentals of crystal base theory, and present the main tool that allows us to make a connection with the theory of integer partitions, namely the (KMN) 2 character formula. Then, in Section 8.2, we discuss a special case of the connection, related to the grounded partitions. Finally, in Section 8.3, we give the general results that link the perfect crystals to the multigrounded partitions.

Basics on Crystals

In this section, we recall the definitions and basic theorems from crystal base theory which are necessary for our purpose. We refer to the book [START_REF] Hong | Introduction to Quantum Groups and Crystal Bases[END_REF], which we consider to be a good summary of the basic theory of Kac-Moody algebras (Hong and Kang, 2002, Chapter 2), quantum groups (Hong and Kang, 2002, Chapter 3) and crystal bases (Hong and Kang, 2002, Chapters 4, 10). For a more combinatorial approach and more emphasis on the finite dimensional case, we refer the reader to [START_REF] Bump | Crystal Bases: Representations and Combinatorics[END_REF].

Throughout this section, n is a fixed positive integer.

Cartan datum and quantum affine algebras

A square matrix A = a i,j i,j∈N is said to be a generalised Cartan matrix if A has the following proper- ties:

• for all i ∈ N , a i,i = 2,

• for all i = j in N , a i,j ∈ Z ≤0 ,

• a i,j = 0 if and only if a j,i = 0.

Moreover, if there exists a diagonal matrix D with positive integer coefficients such that DA is symmetric, then A is said to be symmetrisable. In addition, if the rank of the matrix A is n -1, then A is said to be of affine type. In this paper, we always assume that this is the case.

Let us consider such a matrix A. Let P ∨ be a free abelian group of rank n + 1 with Z-basis {h 0 , . . . , h n-1 , d} :

P ∨ = Zh 0 ⊕ Zh 1 ⊕ • • • ⊕ Zh n-1 ⊕ Zd.
We call P ∨ the dual weight lattice. The complexification h = C ⊗ Z P ∨ is called the Cartan subalgebra. The linear functions α i and Λ i (i ∈ N ) on h given by

h j , α i := α i (h j ) = a j,i d, α i := α i (d) = δ i,0 h j , Λ i := Λ i (h j ) = δ i,j d, Λ i := Λ i (d) = 0 (i, j ∈ N ) (8.1.1)
are respectively the simple roots and fundamental weights. Let h * be the dual space of h. We denote by Π = {α i | i ∈ N } ⊂ h * the set of simple roots, and define Π ∨ = {h i | i ∈ N } ⊂ h to be the set of simple coroots. We also set P = {λ ∈ h * | λ(P ∨ ) ⊂ Z} to be the weight lattice. It contains the set of dominant integral weights

P + = {λ ∈ P | λ(h i ) ∈ Z ≥0 for all i ∈ N }.
The quintuple (A, Π, Π ∨ , P, P ∨ ) is said to be a Cartan datum for the Cartan matrix A. The affine Kac-Moody Lie algebra g attached to this datum is the Lie algebra with generators e i , f i (i ∈ N ) and h ∈ P ∨ , with the following defining relations (Hong and Kang, 2002, Definition 2.1.3) 5. (ade i ) 1-a i,j e j = (ad f i ) 1-a i,j f j = 0 for i = j, where adx : y → [x, y].

: 1. [h, h ] = 0 for all h, h ∈ P ∨ , 2. [e i , f j ] = δ ij h j , 3. [h, e i ] = α i (h)e i for all h ∈ P ∨ , 4. [h, f i ] = -α i (h) f i for all h ∈ P ∨ ,
We also define the coroot lattice

P∨ = Zh 0 ⊕ Zh 1 ⊕ • • • ⊕ Zh n-1 ,
and its complexification h = C ⊗ Z P∨ . The restriction of the Z-submodule

ZΛ 0 ⊕ ZΛ 1 ⊕ • • • ⊕ ZΛ n-1
of P to P∨ is called the lattice of classical weights and is denoted by P.

Remark 8.1.1. By (8.1.1), for all j = 0, we have

α j = n-1 ∑ i=0 a i,j Λ i ∈ P.
We will denote by α 0 the restriction of α 0 to P.

Let P+ := ∑ n i=0 Z ≥0 Λ i denote the corresponding set of dominant weights. The center Zc = {h ∈ P ∨ : h, α i = 0 for all i ∈ N } of the affine Lie algebra g is one-dimensional and generated by the canonical central element c, where

c = c 0 h 0 + • • • + c n-1 h n-1 .
The space of imaginary roots Zδ = {λ ∈ P : h i , λ = 0 for all i ∈ N } of g is also one-dimensional, generated by the null root δ, where

δ = d 0 α 0 + d 1 α 1 + • • • + d n-1 α n-1 ,
and the vector t (d 0 , d 1 , . . . , d n-1 ) ∈ C n spans the kernel of the Cartan matrix A. The level of a dominant weight λ ∈ P + is given by the expression c, λ := λ(c) = .

For any k ∈ Z and an indeterminate q, let us set

[k] q = q kq -k qq -1 .

We also set [0] q ! = 1 and for k ≥

1, [k] q ! = [k] q [k -1] q • • • [1] q . For m ≥ k ≥ 0, define m k q = [m] q ! [k] q ! [m -k] q ! .
We now have all the definitions necessary to introduce quantum affine Lie algebras.

Definition 8.1.2. (Hong and Kang, 2002, Definition 3.1.1) The quantum affine algebra U q ( g) associated with the Cartan datum (A, Π, Π ∨ , P, P ∨ ) is the associative algebra with unit element over C(q) (where q is an indeterminate) with generators e i , f i (i ∈ N ) and q h (h ∈ P ∨ ), satisfying the defining relations:

(1) q 0 = 1, q h q h = q h+h for h, h ∈ P ∨ ,

(2) q h e i q -h = q α i (h) e i for h ∈ P ∨ , i ∈ N ,

(3)

q h f i q -h = q -α i (h) f i for h ∈ P ∨ , i ∈ N , ( 4 
) e i f j -f j e i = δ i,j K i -K -1 i q i -q -1 i for i, j ∈ N , (5) 
1-a i,j

∑ k=0 1 -a i,j k q i e 1-a i,j -k i e j e k i = 0 for i = j, (6) 
1-a i,j

∑ k=0 1 -a i,j k q i f 1-a i,j -k i f j f k i = 0 for i = j.
Here q i = q s i and K i = q s i h i , where D = diag(s i : i ∈ {0, . . . , n -1}) is a symmetrising matrix of A.

Definition 8.1.3. The quantum affine algebra U q ( g) is the subalgebra of U q ( g) generated by e i , f i , K ±1 i (i ∈ N ).

Contrary to U q ( g), the quantum affine algebra U q ( g) admits some non-trivial finite-dimensional irreducible modules.

Integrable modules, highest weight modules and character formula

We are now ready to define irreducible highest weight modules and characters. Definition 8.1.4. Let g be a Lie algebra with bracket [•, •], and let V be a vector space. Then V is a gmodule if there is a bilinear map g × V → V, denoted by (x, v) → x • v, satisfying for all x, y ∈ g and all v ∈ V:

[x, y] • v = x • (y • v) -y • (x • v).
A subspace W of a g-module V is called a submodule of V if for all x ∈ g, x • W ⊆ W.

A g-module V is said to be irreducible if its only submodules are V and 0. The notion of modules extends naturally from an affine Lie algebra g to its quantum affine algebra U q ( g). Definition 8.1.5. A U q ( g)-module M is said to be integrable if it satisfies the following properties:

(a) M has a weight space decomposition: M = λ∈P M λ , where

M λ = {v ∈ M | q h • v = q λ(h) v for all h ∈ P ∨ };
(b) there are finitely many λ 1 , . . . ,

λ k ∈ P such that wt(M) ⊆ Ω(λ 1 ) ∪ • • • ∪ Ω(λ k ), where wt(M) = {λ ∈ P | M λ = 0} and Ω(λ j ) = {µ ∈ P | µ ∈ λ j + ∑ i∈N Z ≤0 α i };
(c) the elements e i and f i act locally nilpotently on M for all i ∈ N .

We denote by O q int the category of integrable U q ( g)-modules. For all λ ∈ P, a module of highest weight λ is an integrable module such that:

(a) wt(M) ⊆ Ω(λ);

(b) dim M λ = 1; (b) M = U q ( g)M λ .
For all λ ∈ P, up to isomorphism, there exists a unique highest weight module which is irreducible. We denote by L(λ) the irreducible highest weight U q ( g)-module of highest weight λ. Definition 8.1.6. Let M be an integrable module such that dim M λ < ∞ for all λ ∈ wt(M). The character of M is defined by (8.1.2) where the e λ 's are formal basis elements of the group algebra C[h * ], with the multiplication defined by e λ e µ = e λ+µ .

ch(M) = ∑ λ∈wt(M) dim M λ • e λ ,
When M is a highest weight module of highest weight λ, its character satisfies

e -λ ch(M) = ∑ µ∈wt(M) dim M λ • e µ-λ ∈ Z ≥0 [[e -α i , i ∈ N ]].
All these definitions on modules also hold in the case of the g-modules M , where the weight spaces are given by

M λ = {v ∈ M | h • v = λ(h)v for all h ∈ P ∨ }.
Thus, looking at the generators of the weight spaces, for a fixed weight λ ∈ P, the irreducible highest weight g-module can be identified with the irreducible highest weight U q ( g)-module, and we have equality of characters.

Crystal bases

Crystal base theory was developed independently by Kashiwara [START_REF] Kashiwara | Crystalizing the q-analogue of universal enveloping algebras[END_REF] and Lusztig [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF] to study the category O q int of integrable U q ( g)-modules. If M is a module in the category O q int , then for each i ∈ N , a weight vector u ∈ M λ can be written uniquely in the form u = ∑ N k=0 f

(k)

i u k , for some N ≥ 0 and u k ∈ M λ+kα i ∩ ker e i for all k = 0, 1, . . . , N, with f

(k) i = f k i /([k] q i !)
. The Kashiwara operators ẽi and fi , for i ∈ N , are then defined as follows:

ẽi u = N ∑ k=1 f (k-1) i u k , fi u = N ∑ k=0 f (k+1) i u k . (8.1.3)
Crystal bases will be seen as bases at q = 0. To do so, let us define the localisation of C[q] at q = 0 by

A 0 = { f = g/h | g, h ∈ C[q], h(0) = 0}.
Definition 8.1.7. (Hong and Kang, 2002, Definition 4.2.2) Assume that M is a U q ( g)-module in the category O q int . A free A 0 -submodule L of M is a crystal lattice if (i) L generates M as a vector space over C(q);

(ii) L = λ∈P L λ where L λ = M λ ∩ L;

(iii) ẽi L ⊂ L and fi L ⊂ L, for all i ∈ N .

Since the operators ẽi and fi preserve the lattice L, they also define operators on the quotient L/qL. Definition 8.1.8. (Hong and Kang, 2002, Definition 4.2.3) A crystal base for a U q ( g)-module M ∈ O q int is a pair (L, B) such that (1) L is a crystal lattice of M;

(2) B is a C-basis of L/qL ∼ = C ⊗ A 0 L;

(3) B = λ∈P B λ , where B λ = B ∩ (L λ /qL λ ); (4) ẽi B λ ⊂ B λ+α i ∪ {0} and fi B λ ⊂ B λ-α i ∪ {0} for all i ∈ N ; (5) To each module M ∈ O q int , we can associate a corresponding crystal base (L, B). Furthermore, the crystal graph associated to (L, B) can be defined as follows. The set of vertices is B, and the oriented edges are built as follows: The crystal graph can be viewed as combinatorial data of the module M.

For i ∈ N , let us define functions ε i , ϕ i : B → Z as follows:

ε i (b) = max{k ≥ 0 | ẽk i b ∈ B}, ϕ i (b) = max{k ≥ 0 | f k i b ∈ B}.
In other words, ε i (b) is the length of the longest chain of i-arrows ending at b in the crystal graph, and ϕ i (b) is the length of the longest chain of i-arrows starting from b. Furthermore, we have ϕ Let us now introduce the notion of a crystal. 

i (b) -ε i (b) = λ(h i ) for all b ∈ B λ . Thus, by setting wtb = λ, ε(b) = n-1 ∑ i=0 ε i (b)Λ i , and ϕ(b) = n-1 ∑ i=0 ϕ i (b)Λ i , ( 8 
B -→ B ∪ {0} (i ∈ N ), ε i , ϕ i : B -→ Z ∪ {-∞} (i ∈ N ),
satisfying the following properties for all i ∈ N :

1. ϕ i (b) = ε i (b) + h i , wt(b) , 2. wt( ẽi b) = wtb + α i if ẽi b ∈ B, 3. wt( fi b) = wtb -α i if fi b ∈ B, 4. ε i ( ẽi b) = ε i (b) -1 if ẽi b ∈ B, 5. ϕ i ( ẽi b) = ϕ i (b) + 1 if ẽi b ∈ B, 6. ε i ( fi b) = ε i (b) + 1 if fi b ∈ B, 7. ϕ i ( fi b) = ϕ i (b) -1 if fi b ∈ B, 8. fi b = b if and only if b = ẽi b for b, b ∈ B, 9. if ϕ i (b) = -∞ for b ∈ B, then ẽi b = fi b = 0.
In particular, if (L, B) is a crystal base, then B is a crystal.

Let B 1 and B 2 be two crystals. A crystal morphism between B 1 and B 2 is a map

Ψ : B 1 ∪ {0} → B 2 ∪ {0} such that • Ψ(0) = 0; • Ψ commutes with wt, ε i , ϕ i for all i ∈ N ; • for b, b ∈ B 1 such that fi b = b and Ψ(b), Ψ(b ) ∈ B 2 , we have fi Ψ(b) = Ψ(b ), ẽi Ψ(b ) = Ψ(b).
A morphism Ψ is said to be strict if it commutes with ẽi , fi for all i ∈ N . The theory of crystal bases behaves very nicely with respect to the tensor product of O q int -modules, as can be seen in the next theorem.

Theorem 8.1.11. (Hong and Kang, 2002, Theorem 4.4.1) Let M 1 , M 2 ∈ O int , and let (L 1 , B 1 ), (L 2 , B 2 ) be the corresponding crystal bases. We set L

= L 1 ⊗ A 0 L 2 and B = B 1 ⊗ B 2 ≡ B 1 × B 2 . Then (L, B) is a crystal base of M 1 ⊗ C(q) M 2 , with ẽi (b 1 ⊗ b 2 ) = ẽi b 1 ⊗ b 2 if ϕ i (b 1 ) ≥ ε i (b 2 ), b 1 ⊗ ẽi b 2 if ϕ i (b 1 ) < ε i (b 2 ), fi (b 1 ⊗ b 2 ) = fi b 1 ⊗ b 2 if ϕ i (b 1 ) > ε i (b 2 ), b 1 ⊗ fi b 2 if ϕ i (b 1 ) ≤ ε i (b 2 ), (8.1.6) where b 1 ⊗ 0 = 0 ⊗ b 2 = 0 for all b 1 ∈ B 1 and b 2 ∈ B 2 . Furthermore, we have wt(b 1 ⊗ b 2 ) = wtb 1 + wtb 2 , ε i (b 1 ⊗ b 2 ) = max{ε i (b 1 ), ε i (b 1 ) + ε i (b 2 ) -ϕ i (b 1 )}, ϕ i (b 1 ⊗ b 2 ) = max{ϕ i (b 2 ), ϕ i (b 1 ) + ϕ i (b 2 ) -ε i (b 2 )}.
The last but not the least tool we need in this paper is the notion of energy function, defined as follows.

Definition 8.1.12. (Hong and Kang, 2002, Definition 10.2.1) Let M ∈ O q int be a module, and (L, B) be the corresponding crystal base. An energy function on B ⊗ B is a map 

H : B ⊗ B → Z satisfying H ( ẽi (b 1 ⊗ b 2 )) =      H(b 1 ⊗ b 2 ) if i = 0, H(b 1 ⊗ b 2 ) + 1 if i = 0 and ϕ 0 (b 1 ) ≥ ε 0 (b 2 ) H(b 1 ⊗ b 2 ) -1 if i = 0 and ϕ 0 (b 1 ) < ε 0 (b 2 ), ( 8 
H ( ẽi (b 1 ⊗ b 2 )) = H(b 1 ⊗ b 2 ) + χ(i = 0) if ϕ i (b 1 ) ≥ ε i (b 2 ) H(b 1 ⊗ b 2 ) -χ(i = 0) if ϕ i (b 1 ) < ε i (b 2 ), H( fi (b 1 ⊗ b 2 )) = H(b 1 ⊗ b 2 ) -χ(i = 0) if ϕ i (b 1 ) > ε i (b 2 ) H(b 1 ⊗ b 2 ) + χ(i = 0) if ϕ i (b 1 ) ≤ ε i (b 2 ). ( 8 
1 (Hong and Kang, 2002, p. 10.5.2), the tensor product B ⊗ B, and an energy function H on B ⊗ B. 

B : 0 1 B ⊗ B : 0 1 1 1 0 1 0 0 ⊗ ⊗ ⊗ ⊗ 1 1 0 1 0 0 H: ⊗ i j → χ(i ≥ j)

Perfect crystals

The theory of perfect crystals was developed by Kang, Kashiwara, Misra, Miwa, Nakashima, and Nakayashiki (Kang et al., 1992a;Kang et al., 1992b) to study the irreducible highest weight modules over quantum affine algebras. Indeed, perfect crystals provide a construction of the crystal base B(λ) of any irreducible U q ( g)-module L(λ) corresponding to a classical weight λ ∈ P+ . An affine crystal is an crystal associated with an affine Cartan datum (A, Π, Π ∨ , P, P ∨ ) (quantum algebra U q ( g)), while the term classical crystal is used for an abstract crystal associated to the classical Cartan datum (A, Π, Π ∨ , P, P∨ ) (quantum algebra U q ( g) defined in Definition 8.1.3).

All the theorems in this section are due to Kang, Kashiwara, Misra, Miwa, Nakashima, and Nakayashiki, but we give references to the book [START_REF] Hong | Introduction to Quantum Groups and Crystal Bases[END_REF] for the reader's convenience. Let us start by defining perfect crystals. Definition 8.1.13. (Hong and Kang, 2002, Definition 10.5.1) For a positive integer , a finite classical crystal B is said to be a perfect crystal of level for the quantum affine algebra U q ( g) if ( 1) there is a finite-dimensional U q ( g)-module with a crystal base whose crystal graph is isomorphic to B (when the 0-arrows are removed);

(2) B ⊗ B is connected;

(3) there exists a classical weight λ 0 such that wt(B) ⊂ λ 0 + 1 In the remainder of this section, we fix a perfect crystal B.

d 0 ∑ i =0 Z ≤0 α i and |B λ 0 | = 1; (4) for any b ∈ B, we have c, ε(b) = n-1 ∑ i=0 ε i (b)Λ i (c) ≥ ; ( 
The maps λ → ε(b λ ) and λ → ϕ(b λ ) then define two bijections on P+ . As a consequence of the last condition, for any λ ∈ P+ , the vertex operator theory (Hong and Kang, 2002, (10.4.4)) leads to a natural crystal isomorphism

B(λ) ∼ → B(ε(b λ )) ⊗ B (8.1.9) u λ → u ε(b λ ) ⊗ b λ .
Definition 8.1.14. For λ ∈ P+ , the ground state path of weight λ is the tensor product

p λ = g k ) ∞ k=0 = • • • ⊗ g k+1 ⊗ g k ⊗ • • • ⊗ g 1 ⊗ g 0 ,
where the elements g k ∈ B are such that

λ 0 = λ g 0 = b λ λ k+1 = ε(b λ k ) g k+1 = b λ k+1 for all k ≥ 0 • (8.1.10) A tensor product p = (p k ) ∞ k=0 = • • • ⊗ p k+1 ⊗ p k ⊗ • • • ⊗ p 1 ⊗ p 0 of elements p k ∈ B is said to be a λ-path if p k = g k for k large enough.
Iterating the isomorphism (8.1.9), we obtain

B(λ) ∼ → B(λ 1 ) ⊗ B ∼ → B(λ 2 ) ⊗ B ⊗ B ∼ → • • • u λ → u λ 1 ⊗ g 0 → u λ 2 ⊗ g 1 ⊗ g 0 → • • • ,
and this gives a natural bijection, stated in the next theorem.

Theorem 8.1.15. (Hong and Kang, 2002, Theorem 10.6.4) Let λ ∈ P+ . Then there is a crystal isomorphism B(λ) ∼ → P (λ) u λ → p λ between the crystal base B(λ) of L(λ) and the set P (λ) of λ-paths.

We describe the crystal structure of P (λ) as follows (Hong and Kang, 2002, (10.48)). For any p = (p k ) ∞ k=0 ∈ P (λ), let N ≥ 0 be the smallest integer such that p k = g k for all k ≥ N. We then set

wtp = λ N + N-1 ∑ k=0 wtp k , ẽi p = • • • ⊗ g N+1 ⊗ ẽi (g N ⊗ • • • ⊗ p 0 ) , fi p = • • • ⊗ g N+1 ⊗ fi (g N ⊗ • • • ⊗ p 0 ) , ε i (p) = max ε i (p ) -ϕ i (g N ), 0 , ϕ i (p) = ϕ i (p ) + max ϕ i (g N ) -ε i (p ), 0 ,
where p := p N-1 ⊗ • • • ⊗ p 1 ⊗ p 0 , and wt is viewed as the classical weight of an element of B or P (λ).

The explicit expression for the affine weight wtp in P is given in the following theorem, which is known as the (KMN) 2 crystal base character formula, and plays a key role in connecting characters with partition generating functions.

Theorem 8.1.16. (Hong and Kang, 2002, Theorem 10.6.7) Let λ ∈ P+ , let H be an energy function on B ⊗ B, and let p = (p k ) ∞ k=0 ∈ P (λ). Then the weight of p and the character of the irreducible highest weight U q ( g)module L(λ) are given by the following expressions:

wtp = λ + ∞ ∑ k=0 (wtp k -wtg k ) - ∞ ∑ k=0 (k + 1) H(p k+1 ⊗ p k ) -H(g k+1 ⊗ g k ) δ d 0 , = λ + ∞ ∑ k=0 (wtp k -wtg k ) - ∞ ∑ l=k (H(p l+1 ⊗ p l ) -H(g l+1 ⊗ g l )) δ, (8.1.11) ch(L(λ)) = ∑ p∈P (λ)
e wtp . (8.1.12)

Perfect crystals and grounded partitions

Let B be a perfect crystal of level . A specialisation of Theorem 8.1.16 gives the following corollary.

Corollary 8.2.1. Suppose that Λ is such that b Λ = b Λ = g, and set H(g ⊗ g) = 0. Then wtg = 0, g k = g for all k ∈ Z ≥0 , and we have

wtp = λ + ∞ ∑ k=0 wtp k - ∞ ∑ l=k H(p l+1 ⊗ p l ) δ d 0 . (8.2.1)
In the remainder of this section, we make the connection between grounded partitions and crystal base theory. Let us fix a weight Λ ∈ P+ such that b Λ = b Λ = g, and assume that H(g ⊗ g) = 0. Let C B = {c b : b ∈ B} be the set of colours indexed by B. We define the binary relation on

Z C B by k c b k c b if and only if k -k = H(b ⊗ b). (8.2.2)
This relation leads to the following.

Proposition 8.2.2. Let φ be the map between λ-paths and grounded partitions defined as follows:

φ : p → (π 0 , . . . , π s-1 , 0 c g ),
where p = (p k ) k≥0 is a Λ-path in P (Λ), s ≥ 0 is the unique non-negative integer such that p s-1 = g and p k = g for all k ≥ s, and for all k ∈ {1, . . . , s -1}, the part π k has colour c p k and size s-1

∑ l=k H(p k+1 ⊗ p k ).
Then φ is a bijection between P (Λ) and P c g . Furthermore, by taking c b = e wtb , we have for all π ∈ P c g ,

e -Λ+wt(φ -1 (π)) = C(π)e -δ|π| d 0 . (8.2.3)
The bijective proof of the above proposition is given in Appendix A.4.2.

The next proposition allows us to describe the set P c g of grounded partitions for the relation defined by

k c b k c b if and only if k -k ≥ H(b ⊗ b). (8.2.4)
We refer to this relation as the minimal difference conditions. One can view the partitions of P c g as the partitions of P c g such that the differences between consecutive parts are minimal. Note that contrarily to P c g , the set P c g has some partitions π = (π 0 , . . . , π s-1 , 0 c g ) such that c(π s-1 ) = c g . For this reason, the set P c g is not exactly the set of all minimal partitions of P c g , but is related to it.

Proposition 8.2.3. Recall that P c g is the set of grounded partitions where all parts have colour c g . There is a bijection Φ between P c g and P c g × P c g , such that if Φ(π) = (µ, ν), then |π| = |µ| + |ν|, and by setting c g = 1, we have C(π) = C(µ).

A proof of the above proposition can be found in Appendix A.4.3.

We are now able to give a character formula in terms of generating functions for grounded partitions.

Theorem 8.2.4. Setting q = e -δ/d 0 and c b = e wtb for all b ∈ B, we have c g = 1, and the character of the irreducible highest weight U q ( g)-module L(Λ) is given by the following expressions:

∑ π∈P cg C(π)q |π| = e -Λ ch(L(Λ)), ∑ π∈P cg C(π)q |π| = e -Λ ch(L(Λ)) (q; q) ∞ .
Proof. By Proposition 8.2.2 and (8.2.1),

∑ π∈P cg C(π)q |π| = ∑ p∈P (λ)
e -Λ e wtp = e -Λ ch(L(Λ)).

By Corollary 8.2.1, wtg = 0. Thus c g = e 0 = 1, and Proposition 8.2.3 yields

∑ π∈P cg C(π)q |π| = 1 (q; q) ∞ ∑ π∈P cg C(π)q |π| = e -Λ ch(L(Λ)) (q; q) ∞ .
By this theorem, the characters of some irreducible highest weight modules of level can be computed as the generating functions of some grounded partitions, in the very special case where the ground state path of Λ is reduced to a constant sequence. In general, we can always reach this case by considering, for any perfect crystal B, the tensor product of B = B ⊗ B ∨ , where B ∨ is the dual of B. However, it is not always easy to compute an energy function for B ⊗ B knowing an energy function of B ⊗ B. We then use in the next section the notion of multi-grounded partitions, that will allow us to deal with the case where the ground state path is not a constant sequence.

Multi-grounded partitions

Let B be a perfect crystal of level , and let Λ ∈ P+ be a level dominant classical weight such that the corresponding ground state path is p Λ = (g k ) k≥0 . By (8.1.10), since P has a finite cardinality, the sequence (g i ) i≥0 is then periodic. We then set t to be the smallest non-negative integer k such that g k = g 0 . This yields the following:

t-1 ∑ k=0 wt(g k ) = t-1 ∑ k=0 ϕ(g k ) -ε(g k ) = t-1 ∑ k=0 ϕ(g k ) -ϕ(g k+1 ) by (8.1.10) = ϕ(g 0 ) -ϕ(g t ) = 0 • (8.3.1)
Let H be an energy function on B ⊗ B. Since B ⊗ B is connected, H is then unique up to a constant. We then define the function

H Λ on B ⊗ B satisfying H Λ (b ⊗ b ) = H(b ⊗ b ) - 1 t t-1 ∑ k=0 H(g k+1 ⊗ g k ) (8.3.2)
for all b, b ∈ B, which does not depend of the choice of H. We observe that H Λ is the unique function on B ⊗ B which satisfies (8.1.8) the conditions of energy functions and such that

t-1 ∑ k=0 H Λ (g k+1 ⊗ g k ) = 0 • (8.3.3)
However, the function H Λ is not an energy function unless t divides ∑ t-1 k=0 H(g k+1 ⊗ g k ) for any energy function H. Besides, we always have that H Λ (B ⊗ B) ⊂ Z ∈ 1 t Z. In the particular case when t = 1, H Λ is then the unique energy function that satisfies H Λ (g 0 ⊗ g 0 ) = 0.

Let us now take any Λ-path p = (p k ) k≥0 in P (Λ) different from the ground state path p Λ . There then exists a unique positive integer m such that (p (m-1)t , . . . , p mt-1 ) = (g 0 , . . . , g t-1 ) (p m t , . . . , p m t+t-1 ) = (g 0 , . . . , g t- 1)

for all m ≥ m • Lemma 8.3.1. The weight wt(p) of p is given by the following formula:

wt(p) = Λ + mt-1 ∑ k=0 wt(p k ) - δ d 0 - 1 t t-1 ∑ l=0 (l + 1)H Λ (g l+1 ⊗ g l ) + mt-1 ∑ l=k H Λ (p l+1 ⊗ p l ) • (8.3.4)
A proof of the above lemma can be found in Appendix A.4.1. Note that for any energy function H, we always have

t-1 ∑ k=0 (k + 1)H Λ (g k+1 ⊗ g k ) = t-1 ∑ k=0 (k + 1)H(g k+1 ⊗ g k ) - t + 1 2 t-1 ∑ k=0 H(g k+1 ⊗ g k ) ∈ 1 2 Z •
The above number is an integer as soon as t is odd, and is equal to 0 when t = 1. We can then choose a suitable divisor D of 2 χ(t even) t such that DH Λ (B ⊗ B) ⊂ Z and 1 (8.3.6) the colors c g 0 , . . . , c g t-1 and the colored integers u

t ∑ t-1 k=0 (k + 1)DH Λ (g k+1 ⊗ g k ) ∈ Z.
u (k) = - 1 t t-1 ∑ l=0 (l + 1)DH Λ (g l+1 ⊗ g l ) + t-1 ∑ l=k DH Λ (g l+1 ⊗ g l ) ,
(0) c g 0 , . . . , u (t-1) c g t-1
satisfy the condition in Definition 2.1.22. We can then define the multi-grounded partition with grounds c g 0 , . . . , c g t-1 and relation . We denote by P c g 0

•••c g t-1
the set of all such partitions. We then obtain the following proposition, whose proof is given in Appendix A.4.4.

Proposition 8.3.2. Let us define the map φ

from P (Λ) to P c g 0 •••c g t-1 , such that φ(p Λ ) = (u (0) c g 0 , . . . , u (t-1) c g t-1
), and for all p Λ = p ∈ P (Λ) and m defined above,

p → (π 0 , • • • , π mt-1 , u (0) c g 0 , . . . , u (t-1) c g t-1 ) with c(π k ) = c p k and π k = - 1 t t-1 ∑ l=0 (l + 1)DH Λ (g l+1 ⊗ g l ) + mt-1 ∑ l=k DH Λ (p k+1 ⊗ p k ) , for all k ∈ {0, • • • , mt -1}.
Then, φ defines a bijection between P (Λ) and the set t P c g 0 •••c g t-1 of partitions of

P c g 0 •••c g t-1
with the number of parts divisible t. Furthermore, by setting c b = e wt(b) for all b ∈ B, we have for all

π ∈ t P c g 0 •••c g t-1 e -Λ+wt(φ -1 (π)) = C(π)e -δ|π| d 0 D . (8.3.7)
Chapter 9

Level one standard modules of type A

(n) n-1 9.1 Perfect crystal of type A (1) 
n-1 : tensor product of the vector representation and its dual

We now describe the perfect crystal B used in Theorem 2.3.2. Throughout this section, we fix an integer n ≥ 3.

Consider the Cartan datum for the matrix A = (a ij ) i,j∈N where for all i, j ∈ N ,

a ij = 2δ i,j -χ(i -j ≡ ±1 mod n). (9.1.1)
It corresponds to the affine type A

n-1 (Hong and Kang, 2002, p. 10.1.1). We then have the corresponding canonical central element c and null root δ, which are expressed in the following way:

c = h 0 + h 1 + • • • + h n-1 , δ = α 0 + α 1 + • • • + α n-1 . (9.1.2) Any dominant integral weight λ = k 0 Λ 0 + • • • + k n-1 Λ n-1 ∈ P+ has level c, λ = k 0 + • • • + k n-1 .
Thus, the set of classical weights of level 1 is exactly P+ 1 = {Λ i : i ∈ N }, the set of fundamental weights. A perfect crystal of level 1 is given by the crystal graph in Figure 9.1 (Hong and Kang, 2002, p. 11.1.1).

B : 0 1 n -2 n -1 • • • 1 2 n -2 1 n -1 0 FIGURE 9.1: Vector representation B of for type A (1) n-1 (n ≥ 3)
The U q ( g)-module corresponding to this crystal is called the vector representation of A

n-1 . The most important property of this crystal is the order in which the arrows occur. The only purpose of labelling the vertices is to ease the calculations in the remainder of this paper. Noting that this crystal graph is cyclic, we identify N with the group (Z/nZ, +). In this way, the crystal graph of B can be defined locally around each arrow i as shown on Figure 9.2.

B(

i -→) : i -1 i i FIGURE 9.2: Local i-arrows of B (n) n-1
Remark 9.1.1. For the type A

1 , the Cartan matrix A is defined differently and is given by

2 -2 -2 2 .
Nonetheless, the crystal graph of the vector representation behaves in the same way as in the case n ≥ 3.

For all i ∈ N , let v i be the element of B corresponding to the vertex labelled i. The functions of this crystal are given by the following relations:

wtv i = Λ i+1 -Λ i for all i ∈ N , (9.1.3)    fi v i-1 = v i ϕ i v i-1 = 1 fi v j = ϕ i v j = 0 if j = i -1, (9.1.4)    ẽi v i = v i-1 ε i v i = 1 ẽi v j = ε i v j = 0 if j = i.
(9. 1.5) We note that for this crystal, the unique maximal weight λ 0 , as defined in Condition (3) of Definition 8.1.13, is attained in v 0 (i.e. λ 0 = wtv 0 ). For all i ∈ N , we have

wtv 0 -wtv i = i ∑ j=1 wtv j-1 -wtv j = i ∑ j=1 α j by (8.1.5).
The fact that the null root vanishes on h implies that in P,

α 0 = -(α 1 + • • • + α n-1
). We also remark that the crystal B has a unique minimal weight, attained in v n-1 :

wtv i -wtv n-1 = n-1 ∑ j=i+1 wtv j-1 -wtv j = n-1 ∑ j=i+1 α j by (8.1.5).
Let us consider the dual B ∨ of B, which is the crystal obtained from B by reversing the edges in its graph, as shown on Figure 9.3.

B ∨ : 0 1 n -2 n -1 • • • 1 2 n -2 1 n -1 0 FIGURE 9.3: Dual B ∨ of the vector representation for type A (1) n-1 (n ≥ 3)
Let v ∨ denote the element of B ∨ corresponding to v in B. We then have the relations

wtv ∨ = -wtv , fi v ∨ = ( ẽi v) ∨ , ϕ i v ∨ = ε i v , ẽi v ∨ = ( fi v) ∨ and ε i v ∨ = ϕ i v. (9.1.6)
Recall that the duality is an involution, since by the previous equalities, we have

( fi [(v ∨ ) ∨ ], ẽi [(v ∨ ) ∨ ], ϕ i [(v ∨ ) ∨ ], ε i [(v ∨ ) ∨ ]) = ( fi [(v ∨ ) ∨ ], ẽi [(v ∨ ) ∨ ], ϕ i v, ε i v), (9.1.7)
and the map v → (v ∨ ) ∨ is an isomorphism between B and (B ∨ ) ∨ . Thus (B ∨ ) ∨ can be identified with B.

The dual B ∨ is also a perfect crystal of level 1, as its maximal weight is attained in the dual v ∨ n-1 of the minimal vertex v n-1 of B. and its dual, and the tensor rules (8. 1.6) 

on B ⊗ B ∨ become ẽi (v k ⊗ v ∨ l ) = ẽi v k ⊗ v ∨ l if ϕ i (v k ) ≥ ϕ i (v l ) v k ⊗ ẽi v ∨ l if ϕ i (v k ) < ϕ i (v l ) , fi (v k ⊗ v ∨ l ) = fi v k ⊗ v ∨ l if ϕ i (v k ) > ϕ i (v l ) v k ⊗ fi v ∨ l if ϕ i (v k ) ≤ ϕ i (v l )
.

Using (9.1.4) and (9.1.5), we can draw the corresponding crystal graph, given in Figure 9.4.

B ⊗ B

∨ : v 0 ⊗ v ∨ n-1 v 1 ⊗ v ∨ n-1 v n-2 ⊗ v ∨ n-1 v n-1 ⊗ v ∨ n-1 v 0 ⊗ v ∨ n-2 v 1 ⊗ v ∨ n-2 v n-2 ⊗ v ∨ n-2 v n-1 ⊗ v ∨ n-2 v 0 ⊗ v ∨ 2 v 1 ⊗ v ∨ 2 v n-2 ⊗ v ∨ 2 v n-1 ⊗ v ∨ 2 v 0 ⊗ v ∨ 1 v 1 ⊗ v ∨ 1 v n-2 ⊗ v ∨ 1 v n-1 ⊗ v ∨ 1 v 0 ⊗ v ∨ 0 v 1 ⊗ v ∨ 0 v n-2 ⊗ v ∨ 0 v n-1 ⊗ v ∨ 0 v 2 ⊗ v ∨ n-1 v 2 ⊗ v ∨ n-2 v 2 ⊗ v ∨ 2 v 2 ⊗ v ∨ 1 v 2 ⊗ v ∨ 0 n -1 n -1 n -1 n -1 n -1 n -1 n -1 n -1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 FIGURE 9.4: tensor product B ⊗ B ∨ for type A (1) 
n-1 (n ≥ 3)

Again, the crystal graph of B ⊗ B ∨ can be defined locally by giving the vertices adjacent to the edges labelled i, as shown on Figure 9.5.

B ⊗ B ∨ (

i -→) : k / ∈ {i -1, i} v k ⊗ v ∨ i v i-1 ⊗ v ∨ i v i ⊗ v ∨ i v k ⊗ v ∨ i-1 v i ⊗ v ∨ i-1 v i-1 ⊗ v ∨ k v i ⊗ v ∨ k i i i i FIGURE 9.5: Subgraph with i-arrows
We obtain, for all i, the relations

         ϕ i (v i-1 ⊗ v ∨ i ) = ε i (v i ⊗ v ∨ i-1 ) = 2 ϕ i (v i ⊗ v ∨ i-1 ) = ε i (v i-1 ⊗ v ∨ i ) = 0 ϕ i (v i ⊗ v ∨ i ) = ε i (v i ⊗ v ∨ i ) = 1 ϕ i (v i-1 ⊗ v ∨ i-1 ) = ε i (v i-1 ⊗ v ∨ i-1 ) = 0 ,      ϕ i (v k ⊗ v ∨ i ) = ε i (v i ⊗ v ∨ k ) = 1 ϕ i (v i-1 ⊗ v ∨ k ) = ε i (v k ⊗ v ∨ i-1 ) = 1 ϕ i (v k ⊗ v ∨ l ) = ε i (v l ⊗ v ∨ k ) = 0 , ∀ l, k / ∈ {i, i -1}. (9.1.8)
The local configurations for the vertices are given in Figure 9.6.

(n) n-1 k -l / ∈ {±1}: v i-1 ⊗ v ∨ i v i ⊗ v ∨ i v i ⊗ v ∨ i-1 v k ⊗ v ∨ l i i -1 i + 1 i i + 1 i -1 k + 1 k l + 1 l FIGURE 9.6: Local configurations
The values of the functions ε, ϕ defined in (8. 1.4) are

     ϕ(v i-1 ⊗ v ∨ i ) = ε(v i ⊗ v ∨ i-1 ) = 2Λ i ε(v i-1 ⊗ v ∨ i ) = ϕ(v i ⊗ v ∨ i-1 ) = Λ i-1 + Λ i+1 ϕ(v i ⊗ v ∨ i ) = ε(v i ⊗ v ∨ i ) = Λ i , ϕ(v k ⊗ v ∨ l ) = Λ k+1 + Λ l ε(v k ⊗ v ∨ l ) = Λ l+1 + Λ k , (9.1.9)
where kl / ∈ {0, ±1}. For all k, l ∈ N , the weight of .1.11) By (Kang et al., 1992a, Lemma 4.6.2), since B and B ∨ are perfect crystals of level 1, their tensor product B is also a perfect crystal of level 1. We observe that the potential grounds of B are the vertices v i ⊗ v ∨ i , since by (9.1.9), for all i ∈ N , we have that

v k ⊗ v ∨ l is given by wt(v k ⊗ v ∨ l ) = Λ k+1 -Λ k + Λ l -Λ l+1 . (9.1.10) We then observe that c; ε(v k ⊗ v ∨ l ) = 1 + χ(k = l). ( 9 
ε(b Λ i ) = Λ i if and only if b Λ i = v i ⊗ v ∨ i and ϕ(b Λ i ) = Λ i if and only if b Λ i = v i ⊗ v ∨ i .

Proof of the character formulas

In this section, we prove our character formulas given in Theorems 2.3.3,and 2.3.4, under the assumption that Theorem 2.3.2 is true. We will then prove Theorem 2.3.2 in the last two sections.

Proof of Theorem 2.3.3

By definition, the generalized colored partitions in P ,n are the grounded partitions with ground a b with energy ∆. This exactly corresponds to the grounded partitions P c g with ground c g and the color correspondence c v l ⊗v ∨ k ↔ a k b l . Thus their generating functions are the same with the correspondence

e wtv i = b i , since by (9.1.10), e wt(v l ⊗v ∨ k ) = e wt(l)-wt(k) = b -1 k b l .
Using the character formula of Theorem 8.2.4, this gives the desired result.

Proof of Theorem 2.3.4

Finally, we turn to the proof of Theorem 2.3.4, which gives the expression of the character for L(Λ ) as a sum of series with positive coefficients.

By the definition of characters, e -Λ ch(L(Λ )) can be expressed as a power series in e -α i for i ∈ N , or, by a change of variables, as a power series in e -δ and e α i for i = 0. By definition of the crystal graph B, we have fi v i-1 = v i , so that by (8.1.5), we have wtv i-1wtv i = α i for i ∈ {1, . . . , n -1} and wtv n-1wtv 0 = α 0 . The change of variables e wtv i = b i then gives e α i = b i-1 b -1 i for i ∈ {1, . . . , n -1} and then

e α 0 = b n-1 b -1 0 = n-1 ∏ i=1 b i b -1 i-1 = n-1 ∏ i=1 e -α i .
The changes of variables are then natural, since for all i = 0, the weight α i in P is indeed a classical weight in P. In addition, the series G

P n (b 0 q, • • • , b -1 q, b , • • • , b n-1 ) can be expressed in terms of summands of the form n-1 ∏ i=0 b r i i q m with n-1 ∑ i=0 r i = 0,
so that we can always retrieve the exponent of b i-1 b -1 i , for all i ∈ {1, . . . , n -1}, which corresponds to ∑ i-1 j=0 r j . Thus the identification

e -δ ←→ q e α i ←→ b i-1 b -1 i
is unique, and our generalization of Primc's identity allows us to retrieve the non-dilated version of the characters for all the irreducible highest weight modules with classical weight of level 1 for the type A

n-1 .

Looking at Formula (2.2.61), we obtain the following correspondences (recall that r

1 = 0 = r n ) n-1 ∏ i=1 b -r i +r i+1 i = n-1 ∏ i=1 (b i-1 b -1 i ) r i = n-1 ∏ i=1 e r i α i i-1 ∏ j=0 b j b -1 i = i ∏ j=1 (b j-1 b -1 j ) j = e ∑ i j=1 jα j
By carrying out these transformations in (2.2.61), we then obtain by Theorem 2.2.43 that

e -Λ 0 ch(L(Λ 0 )) = 1 (e -δ ; e -δ ) n-1 ∞ ∑ s 1 ,...,s n-1 ∈Z s n =0 n-1 ∏ i=1 e s i α i e s i (s i+1 -s i )δ = 1 (e -δ ; e -δ ) n-1 ∞ ∑ r 1 ,...,r n-1 : 0≤r j ≤j-1 r n =0 n-1 ∏ i=1 e r i α i e r i (r i+1 -r i )δ e -i(i+1)δ ; e -i(i+1)δ ∞ × -e (ir i+1 -(i+1)r i -i(i+1) 2 )δ+∑ i j=1 jα j ; e -i(i+1)δ ∞ × -e ((i+1)r i -ir i+1 -i(i+1) 2 )δ-∑ i j=1 jα j ; e -i(i+1)δ ∞ .
Note that for all ∈ {0, . . . , n -1} and j ∈ {1, . . . , n -1}, the transformation b

j → b j q χ(j< ) is equivalent to b j-1 b -1 j → q χ(j= ) b j-1 b -1 j .
This corresponds to the transformations e α j → e -χ(j= )δ+α j for all j ∈ {1, . . . , n -1}, and Theorem 2.3.4 follows.

Proof of Theorem 2.3.2

We already know that the crystal graph of B ⊗ B is connected, as B is a perfect crystal. However, here we reprove this by constructing the paths in this graph, as these paths will allow us to compute the energy function. First, let us define some tools that will help us simplify the construction of the paths. 

(v 0 ⊗ v ∨ 0 ) ⊗ (v 0 ⊗ v ∨ 0 ) to (v l ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ k ) and show that H[(v l ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ k )] = ∆(a k b l ; a k b l ),
we will distinguish the cases k = l and k = l. But first, let us define a tool which will make our problem easier to solve.

Definition 9.3.2. Identify N with Z/nZ, and consider the natural order on N ,

0 < 1 < • • • < n -2 < n -1.
We also define, for all i, j ∈ N , the intervals int(i, j) := {i + 1, i + 2, . . . , j -1, j}.

Lemma 9.3.3. For all i ∈ N , we have the following:

i < i -1 ⇐⇒ i = 0, int(i, i) = N , I \ int(i, j) = int(i, j) ⇐⇒ i = j, 0 / ∈ int(j, i) ⇐⇒ j < i, 0 ∈ int(i, j) ⇐⇒ j ≤ i.
The aim of this lemma is to rewrite the difference conditions ∆ according to the fact that 0 belongs to some interval or not. By (9.3.4), ∆ can be reformulated as follows:

∆(a k b l ; a k b l ) = χ(0 / ∈ int(k , k)) + χ(0 / ∈ int(l, l )) if l = k χ(0 ∈ int(k, k )) + χ(0 ∈ int(l , l)) if l = k . (9.3.6)
Proof of Lemma 9.3.3. The first equivalence is straightforward, since i > i -1 if and only if i = 0, and 0 < n -1 = -1. The second equality follows from the definition of int, since we go around N . Note that int(i, j) = {i + 1, i + 2, . . . , j -1, j}, while int(j, i) = {j + 1, j + 2, . . . , i -1, i}, and if i = j, these two sets are complementary in N . Moreover, when i = j, we have i ∈ int(j, i) and j ∈ int(i, j), so that both sets never equal ∅ or N . Otherwise, when i = j, they both equal N . This gives the third equivalence.

For the fourth equivalence, the fact that 0 ∈ N gives 0

/ ∈ int(j, i) ⇐⇒ 0 / ∈ {j + 1, i + 2, . . . , j -1, i}, ⇐⇒ i = j and ∅ = {j + 1, j + 2, . . . , i -1, i} ⊆ {1, . . . , n -1} ⇐⇒ j < j + 1 ≤ i.
Finally, for the last equivalence, we note that

χ(j ≤ i) = χ(j < i) + χ(j = i) = χ(j < i)χ(j = i) + χ(j = i) = χ(0 / ∈ int(j, i))χ(i = j) + χ(i = j) = χ(0 ∈ int(i, j))χ(i = j) + χ(i = j)χ(0 ∈ int(i, i)).
This concludes the proof.

Construction of the paths in B ⊗ B

We are now ready to construct the paths in B ⊗ B, and use them to compute the energy function H

[(v l ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ k )
]. We will use the relations in (9.1.8) and the local configurations of the vertices as defined in (9.6). The symmetric of (

v l ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ k ) is (v k ⊗ v ∨ l ) ⊗ (v k ⊗ v ∨ l ), obtained by interchanging k ≡ l, l ≡ k. We distinguish several cases: 1. k = l and l = k, 2. k = l = k = l , 3. k = l and k = l , 4. k = k = l = l (Symmetric: l = k = k = l ), 5. l = k = k = l (Symmetric: k = l = l = k ), 6. k = k , k = l and l = l (a) k + 1, k / ∈ int(l, l ) (Symmetric: l + 1, l / ∈ int(k , k)), (b) k + 1 ∈ int(l, l ) and k / ∈ int(l, l ) (Symmetric: l + 1 ∈ int(k , k) and l / ∈ int(k , k)) (c) k + 1 / ∈ int(l, l ) and k ∈ int(l, l ) (Symmetric: l + 1 / ∈ int(k , k) and l ∈ int(k , k)) (d) k + 1, k ∈ int(l, l ) and l + 1, l ∈ int(k , k).
The case k = l and l = k

We construct a path from

(v k ⊗ v ∨ k ) ⊗ (v k ⊗ v ∨ k ) to (v k ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ l ).
We consider the case k = l, as otherwise the two elements are the same. By (9.1.9), we have

ϕ i (v k ⊗ v ∨ k ) = ε i (v k ⊗ v ∨ k ) = χ(i = k ).
By the tensor rules (8.1.6), we then obtain the path

(v k ⊗ v ∨ k ) ⊗ (v k ⊗ v ∨ k ) k --→ (v k ⊗ v ∨ k ) ⊗ (v k ⊗ v ∨ k -1 ) k -1 --→ • • • l+1 --→ empty if k =l+1 (v k ⊗ v ∨ k ) ⊗ (v k ⊗ v ∨ l )   k +1 (v k ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ l ) l ←-(v k ⊗ v ∨ k ) ⊗ (v l-1 ⊗ v ∨ l ) l-1 ← --• • • k +2 ←--(v k ⊗ v ∨ k ) ⊗ (v k +1 ⊗ v ∨ l ) empty if k +1=l
• This path is only made of forward moves fi , with i ∈ int(l, k ) int(k , l) appearing once, where we change the right side of the tensor products. By (8.1.8), we then have

H[(v k ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ l )] -H[(v k ⊗ v ∨ k ) ⊗ (v k ⊗ v ∨ k )] = χ(0 ∈ int(l, k )) + χ(0 ∈ int(k , l)) = 1. (9.3.7)
By (9.3.3), we have the symmetry

H[(v l ⊗ v ∨ l ) ⊗ (v k ⊗ v ∨ k )] = H[(v k ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ l )].
Here we need to compute H

((v k ⊗ v ∨ k ) ⊗ (v k ⊗ v ∨ k ))
. By interchanging k and l, we obtain a path between

(v k ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ l ) and (v l ⊗ v ∨ l ) ⊗ (v l ⊗ v ∨ l ), and 
H[(v k ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ l )] -H[(v l ⊗ v ∨ l ) ⊗ (v l ⊗ v ∨ l )] = 1.
We have a path from .3.8) Plugging this into (9.3.7) gives, for all k = l,

(v k ⊗ v ∨ k ) ⊗ (v k ⊗ v ∨ k ) to (v l ⊗ v ∨ l ) ⊗ (v l ⊗ v ∨ l ) and H[(v k ⊗ v ∨ k ) ⊗ (v k ⊗ v ∨ k )] = H[(v l ⊗ v ∨ l ) ⊗ (v l ⊗ v ∨ l )]. Recall that by definition, H[(v 0 ⊗ v ∨ 0 ) ⊗ (v 0 ⊗ v ∨ 0 )] = 0. Thus setting k = 0 yields by (9.3.6) that for all l ∈ N , H[(v l ⊗ v ∨ l ) ⊗ (v l ⊗ v ∨ l )] = 0 = 2χ(0 / ∈ int(l, l)) = ∆(a l b l ; a l b l ). ( 9 
H[(v k ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ l )] = 1 = χ(0 ∈ int(l, k )) + χ(0 ∈ int(k , l)) = ∆(a l b l ; a k b k ). (9.3.9) The case l = k = k = l (Symmetric case: k = l = l = k )
We first assume that l + 1 / ∈ int(k , l). Since l = k , it means that int(l , k ) int(k , l) = int(l , l).

Since l + 1 and k do not belong to int(k , l), we have by (9.1.9) that ϕ i (v l ⊗ v ∨ k ) = 0 for all i ∈ int(k , l). This gives the path

(v l +1 ⊗ v ∨ l +1 ) ⊗ (v k +1 ⊗ v ∨ k +1 ) l +1 ← ---(v l ⊗ v ∨ l +1 ) ⊗ (v k +1 ⊗ v ∨ k +1 ) l +2 ←--• • • k ← -- empty if k =l +1 (v l ⊗ v ∨ k ) ⊗ (v k +1 ⊗ v ∨ k +1 )   k +1 (v l ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ k ) l ←-• • • k +2 ← ----(v l ⊗ v ∨ k ) ⊗ (v k +1 ⊗ v ∨ k )
empty if k +1=l

•

We deduce the following formula for the energy function: Let us now assume that l + 1 ∈ int(k , l). Since int(k , l) = ∅ and l = k , we necessarily have that k + 1 = l and int(k , l ) ⊂ int(k , l -1), so that l = l. Note also that, by (9.1.9),

H[(v l ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ k )] = 1 + χ(0 ∈ int(l , k )) + χ(0 ∈ int(k ,
ϕ k (v l ⊗ v ∨ k -1 ) = 0 = ε k (v k -1 ⊗ v ∨ k ),
since k = l + 1, and ϕ i (v l ⊗ v ∨ k ) = 0 for all i ∈ int(l, k ) \ {k }. We then have the path

(v k ⊗ v ∨ k -1 ) ⊗ (v k ⊗ v ∨ k -1 ) k ←- • (v k ⊗ v ∨ k -1 ) ⊗ (v k ⊗ v ∨ k ) k +1 --→ • • • l --→ nonempty since k =l +1 (v l ⊗ v ∨ k -1 ) ⊗ (v k ⊗ v ∨ k )  k (v l ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ k ) l+1 ---→ • • • k -1 ---→ • (v l ⊗ v ∨ k ) ⊗ (v k -1 ⊗ v ∨ k ) k --→ (v l ⊗ v ∨ k -1 ) ⊗ (v k -1 ⊗ v ∨ k ) •
By the previous case (l = k = k = l), we obtain the energy function

H[(v k ⊗ v ∨ k -1 ) ⊗ (v k ⊗ v ∨ k -1 )] = χ(0 ∈ int(k , k )) + χ(0 ∈ int(k -1, k -1)) = 2χ(0 ∈ int(k , k )).
(9.3.10) In the computation of H, by (8.1.8), the moves marked by cancel each other, since it is the same arrow that operates backward consecutively on the right and on the left side of the tensor product. Besides, the moves marked by • give int(l, k ) and operate backward on the right side of the tensor product. As a consequence, The case k = k , k = l and l = l

H[(v l ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ k )] = H[(v k ⊗ v ∨ k -1 ) ⊗ (v k ⊗ v ∨ k -1 )] -χ(0 ∈ int(k , l
The sub-case k + 1, k / ∈ int(l, l ) (Symmetric case : l + 1, l / ∈ int(k , k)) We have l + 1, k / ∈ int(l, l ), so that ϕ i (v l ⊗ v ∨ k ) = 0 for all i ∈ int(l, l ). Besides, k + 1 / ∈ int(l, l ), so that ẽi

(v i ⊗ v ∨ k ) = (v i-1 ⊗ v ∨ k )
. We obtain the path

(v l ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ k ) l ←-• • • l+1 ← ---(v l ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ k ).
and the fact that l ∈ int(k , k) and l = k implies that int(l, k ) = int(l, k) int(k, k ).

Thus the computation of H gives

H[(v l ⊗ v ∨ k ) ⊗ (v l ⊗ v ∨ k )] = 1 -χ(k = l )χ(0 ∈ int(k , l
))χ(0 ∈ int(l, k)) by (8.1.8) and (9.3.9) = 1χ(0 / ∈ int(l , k ))χ(0 ∈ int(l, k)) by Lemma 9.3.3 = χ(0 ∈ int(l , k ))χ(0 ∈ int(l, k)) = χ(0 ∈ int(l , l)) + χ(0 ∈ int(l, k ))χ(0 ∈ int(l, k)) = χ(0 ∈ int(l , l)) + χ(0 ∈ int(k, k )) = ∆(a k b l ; a k b l ) by (9.3.6).

We have checked all the possible choices of k, l, k , l . Our proof of Theorem 2.3.2 is thus complete.

(2)

2n , D

n+1 , A

2n-1 , B

n , D

Consider the set of states C = {c 1 , . . . , c n , c 0 , c n , . . . , c 1 , c 0 }. By setting (c u , c v ) = H(v ⊗ u) and H(0 ⊗ 0) = 0, this yields the following energy matrix for : Here we set the ground to be c g = c 0 = 1. The energy matrix in (10.2.2) is obtained by considering the energy matrix of When the sequences begin and end with (2k -1) c 1 , there are an odd number of parts, and by gathering the pairs (2k + 1) c 1 (2k -1) c 1 after the first element (eventually no pairs), we obtain the series c 1 q 2k-1 (1c 1 c 1 q 4k ) •

              c 1 • • • c n c 0 c n • • • c 1 c 0 c 1 2 • • • 2 2 2
c n 0 • • • 2 2 2 • • • 2 1 c 0 0 • • • 0 0 2 • • • 2 1 c n 0 • • • 0 0 2
              c 1 • • • c n c 0 c n • • • c 1 c 0 c 1 1 • • • 1 1 0
c n 0 • • • 1 1 0 • • • 0 0 c 0 0 • • • 0 0 0 • • • 0 0 c n 1 • • • 1 1 1
2. In the same way, when the sequences begin and end with (2k + 1) c 1 , then c 1 q 2k+1 (1c 1 c 1 q 4k ) •

3. When the sequences have an even non zero number of parts, by taking pairwise and considering whether the sequences begin by either (2k -1) c 1 or (2k + 1) c 1 , we obtain 2c 1 c 1 q 4k (1c 1 c 1 q 4k ) •

4. Finally, in absence of both (2k -1) c 1 and (2k + 1) c 1 , the generating function is 1.

Gathering these 4 cases, the generating function of such sequences (possibly empty or having one element) for a fixed positive integer k is

(1 + c 1 q 2k-1 )(1 + c 1 q 2k+1 ) (1c 1 c 1 q 4k ) • (10. 3.4) Note that, for k = 0, only the sequence (1 c 1 , (-1) c 1 , 1 c 1 ) can occur at the tail of the partitions grounded in c 1 , c 1 , but not the sequence ((-1) c 1 , 1 c 1 , (-1) c 1 , 1 c 1 ). We then obtain, without the condition on the even number of parts, that the generation function is

(1 + c 1 q) • (-c 1 q 3 , -c 1 q, -c 2 q, -c 2 q, . . . , -c n q, -c n q; q 2 ) (c 1 c 1 q 4 ; q 4 ) = (-c 1 q, -c 1 q, . . . , -c n q, -c n q; q 2 ) (c 1 c 1 q 4 ; q 4 ) •

The partitions in 2 2 P c 1 c 1 having an even number of parts, so that ∑ 2 2 P c 1 c 1 C(π)q |π| = (-c 1 q, -c 1 q, . . . , -c n q, -c n q; q 2 ) + (c 1 q, c 1 q, . . . , c n q, c n q; q 2 ) 2(c 1 c 1 q 4 ; q 4 ) • (10. 3.5) We obtain e -Λ 0 ch(L(Λ 0 )) by using (2.3.7) and setting q = e -δ 2 and c b = e wtb .

Character for Λ 1

We follows the same reasoning as before. Recall that the ground state path of Λ 1 is (g k ) ∞ k=0 with g 2k+1 = 1 and g 2k = 1 for all k ≥ 0. Hence, H Λ 1 = H, and by setting D = 2, we have by (2.3.4) that u 0 = 1 and u (1) = -1. Here we consider the set of multi-grounded partitions with ground c 1 , c 1 corresponding to 2 2 P c 1 c 1 . We have almost the set of partitions as in 2 2 P c 1 c 1 , except that the tail is always 1 c 1 , (-1) 1 , and we can have the sequence ((-1) 1 , 1 c 1 , (-1) 1 ) at the tail, but not (1 c 1 , (-1) 1 , 1 c 1 , (-1) 1 ).

The generating function without the parity of the number of parts is given by (1 + c 1 q -1 ) • (-c 1 q 3 , -c 1 q, -c 2 q, -c 2 q, . . . , -c n q, -c n q; q 2 ) (c 1 c 1 q 4 ; q 4 ) = (-c 1 q 3 , -c 1 q -1 , -c 2 q, -c 2 q, . . . , -c n q, -c n q; q 2 ) (c 1 c 1 q 4 ; q 4 ) •

The partitions in 2 2 P c 1 c 1 having an even number of parts leads to the identity ∑ 2 2 P c 1 c 1 C(π)q |π| = (-c 1 q 3 , -c 1 q -1 , -c 2 q, -c 2 q, . . . , -c n q, -c n q; q 2 ) + (c 1 q 3 , c 1 q -1 , c 2 q, c 2 q, . . . , c n q, c n q; q 2 ) 2(c 1 c 1 q 4 ; q 4 ) • (10.3.6) We obtain e -Λ 1 ch(L(Λ 1 )) by using (2.3.7) and setting q = e -δ 2 and c b = e wtb .

(2)

2n , D

n+1 , A

2n-1 , B

n , D 

p Λ 0 = (• • • 1 1 1 1 1) 0 1 2 n -1 n • • • 1 2 n -1 n • • •
                c n • • • c 2 c 1 c 1 c 2 • • • c n c 0 c n 1 • • • 1 1 0 0
c 2 0 • • • 1 1 0 0 • • • 0 0 c 1 0 • • • 0 1 -1 0 • • • 0 0 c 1 1 • • • 1 1 1 1 • • • 1 1 c 2 1 • • • 1 1 0 1
• • • 1 1 0 0 • • • 1 1 c 0 (2) 2n , D (2) n+1 , A (2) 
2n-1 , B

n , D (-q, -c 1 q, -c 1 q, . . . , -c n q, -c n q; q 2 ) + (q, c 1 q, c 1 q, . . . , c n q, c n q; q 2 ) (10. 4.3) and we conclude with Theorem 2.3.1.

Character for Λ 1

We reason as before and by taking c 1 c 1 = c 0 = 1, this yields

∑ π∈ 2 P c 1 c 1 C(π)q |π| = 1 2
(-q, -c 1 q 3 , -c 1 q -1 , -c 2 q, -c 2 q, . . . , -c n q, -c n q; q 2 ) + (q, c 1 q 3 , c 1 q -1 , c 2 q, c 2 q . . . , c n q, c n q; q 2 ) (10. 4.4) resulting in Theorem 2.3.1.

Case of affine type D

(1)

n (n ≥ 4)
The crystal graph of the vector representation B of D

n (n ≥ 4) is the following,

B : b Λ 0 = b Λ 1 = 1 b Λ 1 = b Λ 0 = 1 p Λ 0 = (• • • 1 1 1 1 1) p Λ 1 = (• • • 1 1 1 1 1) b Λn = b Λ n-1 = n b Λ n-1 = b Λn = n p Λ n-1 = (• • • n n n n n) p Λn = (• • • n n n n n) 1 2 n -1 n • • • 1 2 n -1 n • • • 0 0 n n 1 1 2 2 n -2 n -2 n -1 n -1 FIGURE 10
.9: Crystal graph B of the vector representation for type D Let n -1 ≡ -1 and consider C = {c 1 , . . . , c n , c n , . . . , c 1 , c 0 }. Setting H(1 ⊗ 1) = -1 results in the following energy matrix: 

                  c n c -1 • • • c 2 c 1 c 1 c 2 • • • c -1 c n c n 1 1 • • • 1 1 0 0 • • • 0 0 c -1 0 1 • • • 1 1 0 0
c 2 0 0 • • • 1 1 0 0 • • • 0 0 c 1 0 0 • • • 0 1 -1 0 • • • 0 0 c 1 1 1 • • • 1 1 1 1 • • • 1 1 c 2 1 1 • • • 1 1 0 1
• • • 1 1 0 0 • • • 1 1 c n 0 1 • • • 1 1 0 0 • • • 0 1                  

•

Noting that H(1 ⊗ 1) = -H(1 ⊗ 1) = 1 and H(0 ⊗ 0) = H(0 ⊗ 0) = 0 , this gives the partial order We follow the same reasoning as for the case A C(π)q |π| = 1 2(c 1 c 1 q 4 ; q 4 )(c n c n q 2 ; q 4 ) (-c 1 q, -c 1 q, . . . , -c n q, -c n q; q 2 ) + (c 1 q, c 1 q, . . . , c n q, c n q; q 2 ) •

• • • 0 c -1 0 c n 0 c n 0 c -1 • • • 0 c 2 0 c 1 1 c 1 1 c 2 • • • 1 c -1
(2)

2n , D

n+1 , A

2n-1 , B

n , D C(π)q |π| = 1 2 (-c 1 q, -c 1 q, . . . , -c n q, -c n q; q 2 ) + (c 1 q, c 1 q, . . . , c n q, c n q; q 2 ) (10. 5.2) resulting in Theorem 2.3.1.

Character for Λ 1

Here ∑ π∈ 2 P c 1 c 1 C(π)q |π| = 1 2 (-c 1 q 3 , -c 1 q -1 , -c 2 q, -c 2 q, . . . , -c n q, -c n q; q 2 ) + (c 1 q 3 , c 1 q -1 , c 2 q, c 2 q . . . , c n q, c n q; q 2 ) (10.5.3) and Theorem 2.3.1 follows.

Character for Λ n

Since H(0 ⊗ 0) = H(0 ⊗ 0) = 0, H Λ n = H, and u (0) = u (1) = 0 irrespective of the choice of D. In particular, by choosing D = d = 1 and reasoning on the tail of the multi-grounded partitions in 2 P c n c n as for the case of A

(2)

2n-1 , it follows that ∑ π∈ 2 2 P cn c n C(π)q |π| = 1 2(c 1 c 1 q; q 2 )(c n c n q 2 ; q 2 ) (-c 1 q, -c 1 , . . . , -c -1 q, -c -1 , -c n q, -c n ; q)

+ (c 1 q, c 1 , . . . , c -1 q, c -1 , c n q, c n ; q) (10. As before, it follows that ∑ π∈ 2 2 P c n cn C(π)q |π| = 1 2(c 1 c 1 q; q 2 )(c n c n q 2 ; q 2 ) (-c 1 q, -c 1 , . . . , -c -1 q, -c -1 , -c n , -c n q; q)

+ (c 1 q, c 1 , . . . , c -1 q, c -1 , c n , c n q; q) (10.5.5)

and we conclude with (2.3.7).

Part IV

Appendices

Since the statement (A.1.2) also holds for i -1, there exists h such that

ν 1 + ν 2 (h + i -2) cd h cd ν 2i-1 + ν 2i •
We can then remark that h ≥ h + 2, and we conclude that

ν 1 + ν 2 (h + i) cd h cd ν 2i+3 + ν 2i+4 •
We have thus proved the statement (A.1.2) when the head is different from cd → ab.

If the head is equal to cd → ab, we then apply (A.1.2) on the pattern (ν 3 , ν 4 , • • • , ν 2s-1 , ν 2s , ν 2s+1 , ν 2s+2 ), and we obtain that there exists h such that ν 1 + ν 2 ν 2 + ν 3 (h + i -2) cd h cd ν 2i+1 + ν 2i+2 so that ν 1 + ν 2 (h + i -1) cd . In both cases, we always have that ν 1 + ν 2s + 1 ν 2s+1 + ν 2s+2 so that

ν 1 + ν 2 -s + 1 ν 2s+1 + ν 2s+2 •
By definition (3.5.8), (ν 1 , ν 2 , • • • , ν 2s-1 , ν 2s , ν 2s+1 , ν 2s+2 ) cannot be a shortcut. Since a pattern that does not contain the moves → cd → does not have any subpattern that contains these moves, we then obtain our lemma.

A.1.8 Proof of Proposition 3.3.2

Let λ = (λ 1 , . . . , λ t ) be a partition in O. Let us set c 1 , . . . , c t to be the primary colors of the parts λ 1 , . . . , λ t .

First

Step 1 Now consider the first troublesome pair (λ i , λ i+1 ) at Step 1 in Φ. We then set

δ 1 = ∅ γ 1 = λ 1 • • • λ i , µ 1 = λ i+1 • • • λ t •
The first resulting secondary part is λ i + λ i+1 .

First iterations of Step 2

• If there is a part λ i+2 after λ i+1 , we have that

λ i + λ i+1 -λ i+2 = χ(c i < c i+1 ) + 2λ i+1 -λ i+2 by (3.1.6) ≥ χ(c i < c i+1 ) + 2χ(c i+1 ≤ c i+2 ) + λ i+2 by (2.2.8) ≥ 1 + χ(c i ≤ c i+2 ) + χ(c i+1 ≤ c i+2 ) •
Since by (2.2.6), we have that c i > c i+2 and c i+1 > c i+2 implies c i c i+1 > c i+2 , we then have that λ i + λ i+1λ i+2 ≥ 1 + χ(c i c i+1 ≤ c i+2 ), and we conclude that λ i + λ i+1 λ i+2 . This means that if there is no iteration of Step 2 (which happens if i = 1 or λ i+1 λ i + λ i+1 ), then the secondary part is well-ordered with the primary part to its right.

• The primary parts of γ 1 are well-ordered by . By (2.2.12) and (3.1.4), we have that for any j < i, if λ i + λ i+1 crosses λ j after ij iterations of Step 2, we then have by (3.1.7) that

(λ i + λ i+1 + i -j) (λ j -1) • • • λ i-1 -1 •
• We also have by (2.2.12) that

λ i-1 λ i λ i+1 λ i+2 =⇒ λ i-1 -1 λ i λ i+1 λ i+2 =⇒ λ i-1 -1 λ i+2 •
If we can no longer apply Step 2 after ij iterations, we then obtain (even when there is no crossing which means that j = i)

λ 1 • • • λ j-1 (λ i + λ i+1 + i -j) (λ j -1) • • • λ i-1 -1 λ i+2 • • • λ t •
Second Step 1 Now, by applying Step 1 for the second time, we see that the next troublesome pair is either λ i-1 -1, λ i+2 , or λ i+2+x , λ i+3+x for some x ≥ 0.

• If λ i-1 -1 λ i+2 , this means that (λ i-1 -1, λ i+2 ) is a troublesome pair, and Step 1 occurs there. We then set

δ 2 = λ 1 • • • λ j-1 (λ i + λ i+1 + i -j) γ 2 = (λ j -1) • • • λ i-1 -1 µ 2 = λ i+2 • • • λ t •
By (3.1.10), we have that (λ i + λ i+1 + 1) (λ i-1 + λ i+2 -1). Then, even if (λ i-1 + λ i+2 -1) crosses the primary parts (λ j -1)

• • • λ i-2 -1 after ij -1 iterations of Step 2, by (2.2.12), we will still have that

(λ i + λ i+1 + i -j) (λ i-1 + λ i+2 + i -j -2) •
We have before the third application of Step 1 that

δ 3 = λ 1 • • • (λ i + λ i+1 + i -j) λ j -1 • • • λ j -1 -1 (λ i-1 + λ i+2 -2 + i -j ) γ 3 , µ 3 = λ j -2 • • • λ i-2 -2 λ i+3 • • • λ t ,
for some i -1 ≥ j ≥ j. Observe that µ 3 is the tail of the partition λ i+3 • • • λ t .

• If λ i-1 -1 λ i+2 , then the next troublesome pair appears at λ i+2+x , λ i+3+x for some x ≥ 0, and it forms the secondary part λ i+2+x + λ i+3+x . We then set

δ 2 = λ 1 • • • λ j-1 (λ i + λ i+1 + i -j) γ 2 = (λ j -1) • • • λ i-1 -1 λ i+2 • • • λ i+2+x µ 2 = λ i+x+3 • • • λ t •
We also have

λ i λ i+1 λ i+2 • • • λ i+2+x λ i+3+x •
By (2.2.12), we can easily check that λ i λ i+1 λ i+2 λ i+2+x + x λ i+3+x + x so that, by (3.1.9),

(λ i + λ i+1 ) (λ i+2+x + λ i+3+x + 2x) •
This means by (2.2.12) that,

(λ i + λ i+1 ) (λ i+2+x + λ i+3+x + x)
and, as soon as x ≥ 1, by (2.2.11)

(λ i + λ i+1 ) (λ i+2+x + λ i+3+x + x) •
We then obtain that, even if the secondary part λ i+2+x + λ i+3+x crosses, after x + ij iterations of

Step 2, the primary parts 

λ j -1 • • • (λ i-1 -1) λ i+2 • • • λ i+1+x ,
ν (0) = ζ 1 + ζ 2 • • • ζ 2s+1 + ζ 2s+2 η 1 + η 2 • • • η 2t-1 + η 2t η 2t+1 ,
by adding a large constant k to the parts of the sequence ν (0) , we can say η 2t+1 is the bridge in ν of all i ∈ 2{0, . . . , s + t} + 1 •

In fact, by Remark 2.1, we have that the lower halves grow according to k/2, so that for some k large enough, η 2t+1 + k -1 will be 1-distant-different from all the lower halves in the sequence ν in terms of . We finally consider the sequences of the form

ν (u) = ζ 1 + ζ 2 + su • • • ζ 2s+1 + ζ 2s+2 + su ζ 1 + ζ 2 + s(u -1) • • • ζ 2s+1 + ζ 2s+2 + s(u -1) • • • ζ 1 + ζ 2 + s • • • ζ 2s+1 + ζ 2s+2 + s ζ 1 + ζ 2 • • • ζ 2s+1 + ζ 2s+2 η 1 + η 2 • • • η 2t-1 + η 2t η 2t+1 •
The sequence ν is well defined, since ζ is a shorcut, we then have by (2.2.11) and (2.2.12) that

ζ 2s+1 + ζ 2s+2 ζ 1 + ζ 2 + 1 -s =⇒ ζ 2s+1 + ζ 2s+2 ζ 1 + ζ 2 + 1 -s =⇒ ζ 2s+1 + ζ 2s+2 ζ 1 + ζ 2 -s =⇒ ζ 2s+1 + ζ 2s+2 + s ζ 1 + ζ 2 , so that ζ 2s+1 + ζ 2s+2 + su ζ 1 + ζ 2 + s(u -1
) for all u ≥ 1. We also have that η 2t+1 is the bridge of all the indices of the secondary parts in ν (u) . In fact, we have by (3.1.4) that

β(ζ 2s+1 + ζ 2s+2 + s) s + β(ζ 2s+1 + ζ 2s+2 ) s + t + η 2t+1 ≺ s + t + 1 + η 2t+1 ,
and we obtain in the same way, that for all i ∈ {0, . . . , s -1} β(ζ 2i+1 + ζ 2i+2 + s) ≺ si + s + t + 1 + η 2t+1 , so that η 2t+1 is the bridge of all the indices (in the corresponding set I) of the parts in ν (1) . Using (3.1.4) recursively on u, we proved that η 2t+1 is indeed the bridge of all indices of the secondary parts in the sequence ν (u) .

To conclude, we see that there are (u + 1)(s + 1) + t secondary parts in ν (u) (the head included) between ζ 1 + ζ 2 + su and η 2t+1 , and we then have

η 2t+1 + (u + 1)(s + 1) + t -(ζ 1 + ζ 2 + su) = η 2t+1 -(ζ 1 + ζ 2 ) + t + u + s + 1 •
There then exists some u 0 such that, η 2t+1 + (u 0 + 1)(s + 1) + t (ζ 1 + ζ 2 + su 0 ) , so that condition [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] in Theorem 3.4.2 is not true. The sequence ν (u 0 ) is then a forbidden pattern, and this concludes the proof.

A.1.14 Proof of Proposition 3.7.2

Let us take ν = (ν 1 , • • • , ν p+2s ), with I = {i 1 < • • • < i s } and J = {j 1 < • • • < j p }.

We observe that, in Proposition 3.3.4, the sequence (δ v , γ v , µ v ) becomes the sequence (δ v+1 , γ v+1 , µ v+1 ) after applying Step 1 once to the secondary part s(δ v ), and some iterations of Step 2 by crossing the secondary part with some primary parts of γ v . This means that once we obtain the sequence µ v , it is no longer affected by the process Ψ.

• Since we never cross two primary parts in the process, once we have the splitting s(γ v ), g(µ v ), their relative position in the remainder of the process Ψ is unchanged. We then obtain that the and this contradicts (3.7.5). Furthermore, this leads to the following relation

x 1 = max{x 1 , . . . , x v } = max x∈I {x ≥ i u , θ x ≤ θ i u } •
In any case, by Proposition 3.4.6, we have that x 1 = Br ν (i). In fact, x 1 is the index of the first crossed part.

A.2.5 Proof of Proposition 4.3.2

Let σ be the final position.

• Let us suppose that there exists (j, i) ∈ J × I such that σ(j) < σ(i) and φ(j, i) < 0. By Lemma 4.3.6 we have that φ(j , i ) < 0 for all j < j ∈ J, i < i ∈ I. Also since σ is increasing on J and I, and σ(J) + 1 \ σ(J) ⊂ σ(I), we necessarily have some j < j ∈ J, i < i ∈ I such that σ(j ) + 1 = σ(i ).

We then obtain by Lemma 4.3.5 the following difference of potentials: D = λ σ(j ) -(λ σ(j )+1 + λ σ(j )+2 ) -∆(σ(j ), σ(j ) + 2)

= l j + ∆(σ(j ), j ) -[2(l i +1 + ∆(σ(i + 1), i + 1)) + ∆(σ(i ), σ(i + 1))]

-∆(σ(j ), σ(i + 1)) = l j -2l i +1 -∆(j , i + 1) -∆(σ(i ), i + 1) •

We now compute σ(i ). Since σ is increasing on I (I + 1) and on J, we have that

σ(i ) -1 = σ(j ) = |[1, j ] ∩ J| + |[1, i ) ∩ (I (I + 1))| = 1 + β(j ) + i -1 -β(i ) = i -β(j, i ) •
Finally, we obtain by definition that D = φ(j , i ) < 0. Since the potential difference is negative, by (2.2.23), we have that λ σ(j ) λ σ(j )+1 + λ P(j )+2 and σ is no longer the final position.

• Let us now suppose that there exists (j, i) ∈ J × I such that σ(j) > σ(i) and φ(j, i) ≥ 0. By Lemma 4.3.6, we have that φ(j , i ) ≥ 0 for all j > j ∈ J, i > i ∈ I. Also since σ is increasing on J and I, and σ(J) -1 \ σ(J) ⊂ σ(I) + 1, we necessarily have some j > j ∈ J, i > i ∈ I such that σ(j ) -1 = σ(i ) + 1. We then obtain by Lemma 4.3.5 the following difference of potentials: D = (λ σ(j )-2 + λ σ(j )-1 )λ σ(j ) -∆(σ(j ) -2, σ(j )) = [2(l i +1 + ∆(σ(i + 1), i + 1)) + ∆(σ(i ), σ(i + 1))]l j -∆(σ(j ), j ) -∆(σ(i ), σ(j ))

= 2l i +1l j -∆(i + 1, j ) -∆(i + 1, σ(i + 1)) •

We now conpute σ(i + 1) Since σ is increasing on I (I + 1) and on J,

σ(i + 1) + 1 = σ(j ) = |[1, j ] ∩ J| + |[1, i + 1] ∩ (I (I + 1))| = 1 + |[1, j ) ∩ J| + 2 + |[1, i ) ∩ (I (I + 1))| = 2 + β(j ) + i -β(i ) = 2 + i -β(j, i ) •
Finally, we obtain by definition that D = -φ(j , i ) ≤ 0. Since the potential difference is nonpositive, by (2.2.24), we have that λ σ(j )-2 + λ σ(j )-1 λ σ(j ) and σ is no longer the final position.

To conclude, for σ being the last position, the first part of the reasoning gives that σ(j) < σ(i) =⇒ φ(j, i) ≥ 0 and the second part gives that σ(j) < σ(i) ⇐= φ(j, i) ≥ 0, so that we obtain the equivalence σ(j) < σ(i) ⇐⇒ φ(j, i) ≥ 0 •

One can see in the previous reasoning that for any (j, i) ∈ J × I, whatever the choice of Step 2, once they meet for some position σ (particles have consecutive positions), we then have that the corresponding difference D between the potential of the particle to the left and the potential of the particle to the right does not depend on σ :

• if σ (j) + 1 = σ (i), then D = φ(j, i),

• if σ (j) -1 = σ (i + 1), then D = -φ(j, i).

By (2.2.24) and (2.2.23), this means that once the particles coming from i and j cross by Λ in Step 2, they cannot cross back. Also, by the fact that the position function σ is increasing on J and I (I + 1), the crossings only occur, once, for j < i such that φ(j, i) < 0 or j > i such that φ(j, i) ≤ 0, and this gives (4.3.11).

A.2.6 Proof of Proposition 4.3.3 By (4.1.3) of Proposition 4.1.3, we obtain, by crossing two particles with different degrees which are not well-related in terms of , that the resulting particles become well-related in terms of .

Step 2 then consists in ordering consecutive particles with different degrees, as the process stops as soon as this is the case.

Let us show that two consecutive primary particles are well related in terms of . Since σ is increasing on J, we then have, by Chasles' relation, that for any j < j ∈ J (l j + ∆(σ(j), j)) -(l j + ∆(σ(j ), j )) = l jl j -∆(j, j ) + ∆(σ(j), σ(j )) , •

In particular, if σ(j ) = σ(j) + 1, we then obtain by (4.3.6) and the defintion of α that (l j + ∆(σ(j), j)) -(l j + ∆(σ(j ), j )) ≥ α(j, j ) + ∆(σ(j), σ(j )) = |(j, j ] ∩ J| + (c σ(j) , c σ(j ) )

≥ 1 + (c σ(j) , c σ(j ) ) •
This means, by (2.2.22), that two consecutive primary particles are always well-ordered in terms of in the final result.

Finally, with the same reasoning as before, since σ is increasing on I (I + 1), we have for i < i ∈ I such that σ(i) + 2 = σ(i ) that (l i+1 + ∆(σ(i + 1), i)) -(l i + ∆(σ(i ), i )) ≥ α(i + 1, i ) + ∆(σ(i + 1), σ(i )) = |(i + 1, i ] ∩ J| + (c σ(j) , c σ(j ) )

≥ (c σ(j) , c σ(j ) ) , so that by (2.2.19), we have λ σ(i+1) λ σ(i ) . We then obtain, by (2.2.25), that two consecutive secondary particles are always well-ordered in terms of in the final result.

A.2.7 Proof of Proposition 4.3.4

It suffices to show that all primary particles stay in the interval corresponding to ρ ± . By using (4.3.3), (4.3.6), and Lemma 4.3.5, we obtain for any k ∈ {1, . . . , s} that

l k + ∆(σ(k), k) ≤ l 1 -α(1, k) -∆(1, σ(k)) ≤ l 1 and l k + ∆(σ(k), k) ≥ l s + α(k, s) + ∆(σ(k), s) ≥ l s •
Therefore, the potentials of the primary particles in the final partition stay in [l s , l 1 ]. 

A.2.8 Proof of Proposition 4.3.8

By using Lemma 4.3.7, one can easily show that ψ is decreasing according to J (using (4.3.14)) and nondecreasing according to I (using (4.3.15)). Let σ be the final position Step 1 of Ψ.

• Let us suppose that there exists (j, i) ∈ J × I such that σ(j) < σ(i) but ψ(j, i) < 0. Since σ is increasing on J and I, and σ(J) + 1 \ σ(J) ⊂ σ(I), there exist (j , i ) ∈ J × I such that j < j , i < i and σ(j ) + 1 = σ(i ). We also have that ψ(j , i ) ≤ ψ(j , i) ≤ ψ(j, i) < 0 • We then obtain that ν = (ν 1 , . . . , ν s ) is well-ordered by so that it belongs to O .

A.2.10 Proof of Proposition 4.3.10

For ρ ∈ {0, 1}, it suffices to show that ν σ(k) ≥ ρ in the case ρ + and ν σ(k) ≤ ρ in the case ρ -.

• If ν ∈ E ρ + , then, by Lemma 4.3.7, this implies that l s ≥ ρ. For the last j ∈ J, it is easy to see by (4.3.14) that ν σ(j) = l j + ∆(σ(j), j) ≥ l s + η(j, s) + ∆(σ(j), s) ≥ ρ • For the last i + 1 ∈ I + 1, we have by (4.3.14) that 2ν σ(i+1) = 2(l i+1 + ∆(σ(i + 1), i + 1))

≥ l s + η(i + 1, s) + ∆(i + 1, s) + 2∆(σ(i + 1), i + 1) but we have by definition and (4.3.3) that η(i + 1, s) = si -1 ≥ ∆(i + 1, s), so that 2ν σ(i+1) ≥ l s + 2∆(σ(i + 1), s)

≥ l s =⇒ ν σ(i+1) ≥ 1 2 ρ •
Since ρ ∈ {0, 1} and ν σ(i+1) ∈ Z, we necessarily have that ν σ(i+1) ≥ ρ. Then for any k ∈ {1, . . . , s}, ν σ(k) ≥ ρ.

• For ν ∈ E ρ -, we have the following.

-If 1 ∈ I, since σ is increasing on I I + 1, we obtain by (4.3.15) that for all i ∈ I (I + 1),

ν σ(i) = l i + ∆(σ(i), i) ≤ l 1 -∆(1, σ(i)) ≤ l 1 ≤ ρ •
For the first j ∈ J, we have by (4.3.14) that ν σ(j) = l j + ∆(σ(j), j)

≤ 2l 1 -η(1, j) -∆(1, σ(j)) ≤ 2l 1 -η(1, j) ≤ 2ρ -1 •
Since ρ ∈ {0, 1}, we then have that ν σ(k) ≤ ρ for all k ∈ {1, . . . , s}.

-If 1 ∈ J, we can easily see as before that by (4.3.14), ν σ(j) ≤ ρ for all j ∈ J. Now let us consider the first i ∈ I. We have by (4.3.14) that 2ν σ(i) = 2(l i + ∆(σ(i), i))

Let us now prove the second equality. We have

n-1 ∑ i=1 ((i + 1)s i -is i+1 ) 2 2i(i + 1) = n-1 ∑ i=1 i + 1 2i s 2 i -s i s i+1 + i 2(i + 1) s 2 i+1 = - n-1 ∑ i=1 s i s i+1 + s 2 1 + n-1 ∑ i=2 i + 1 2i s 2 i + i -1 2i s 2 i = n-1 ∑ i=1 s i (s i -s i+1 ),
where the second equality followed from the change of variable i → i -1 in the last sum.

A.3.11 Proof of Proposition 6.2.3

We first prove that the relations in Definition 2.2.37 are satisfied by . We have the following. In both case, relation (2.2.52) is satisfied by .
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 214215 For the set of classical integer partitions π = (π 1 , . . . , π s ), where parts satisfy π 1 ≥ • • • ≥ π s > 0, the empty partition is such that s = 0. This set is in bijection with the set of generalized colored partitions of P with C = {c} and the minimal energy satisfying (c, c) = 0, and such that the last part size is at least equal to 1. The bijection is given by (π 1 , . . . , π s ) → ((π 1 ) c , . . . , (π s ) c ) • The weighted words used by Alladi-Gordon in Theorem 1.3.1 consist of two color sets C 1 = {a, b} and C 2 = {ab, a, b}, the energies 1 and 2 represented by the energy matrices

  be a set of colors. If we set C = {c : c ∈ C } and C = C C we can then define on C, for any i, j ∈ {1, • • • , n}, by the following: 1

Example 2 . 1 . 8 .

 218 Let us consider C = {a, b}, and the minimal energy given by the following energy matrix:

Definition 2 . 1 .

 21 15 (Regularity in c). Let c be a color in C. A c-regular partition with ground c g and relation is a grounded partition π = (π 0 , . . . , π s-1 , 0 c g ) with ground c g and relation , such that c(π k ) = c for all k ∈ {0, . . . , s -1}. Example 2.1.16. Examples of such partitions are the m-regular partitions. It suffices to consider the set of colors C = {c 0 , . . . , c m-1 }, c = c g = c 0 and define the relation by

Example 2 . 1 .

 21 20. A good example of flat partitions are the m-flat partitions. It suffices to consider the set of colors C = {c 0 , . . . , c m-1 }, c g = c 0 and define the energy by

Example 2 . 1 . 23 .

 2123 Let us consider the set of color C = {c 1 , c 2 , c 3 }, and the energy matrix

FIGURE 2 . 1 :

 21 FIGURE 2.1: s = 4, λ = (9, 7, 3, 0) and µ = (5, 4, 2, 0).

Example 2 . 1 . 26 .

 2126 Let us set C = {c}, and let us consider the relation on Z 2 c defined by

Example 2 . 2 .

 22 16. Let us consider C = {a < b} in Example 2.1.7 and the corresponding minimal energy. We then have for n = 10 and C = baba the relation {λ ∈ O 1 -: (C(λ), |λ|) = (baba, 10)} = {λ ∈ E 1 -:

  1 a ) • We have for n = -8 and C = baba the relation {λ ∈ O 0 + : (C(λ), |λ|) = (baba, -8)} = {λ ∈ E 0 + : (C(λ), |λ|) = (baba, -8)} = ∅ and the corresponding partitions for ρ -are given in the following table:

Corollary 2 . 2 .

 22 25.Let m and n be positive integers. Then, the number of m-regular partitions of n into distinct parts is equal to the number of (m + 1)-flat partitions of n, such that • the smallest part is less than m,• two consecutive parts divisible by m are necessarily equal,• two consecutive parts not divisible by m and with the same congruence modulo m are necessarily distinct.Example 2.2.26. Here we take m = 3 and n = 16, and the 3-regular partition of 16 into distinct parts are

Definition 2 . 2 . 34 .

 2234 Let c 1 , . . . , c s be a finite sequence of colors in C. We then define the reduced color sequence of c 1 , . . . , c s with respect to a and b, as the unique maximal subsequence red a,b (c 1 , . . . , c s ) of c 1 , . . . , c s which satisfies the following: 1. all the colors in C bound are preserved, 2. for all c ∈ C free , we do not have the pattern c, c , 3. for all c ∈ C bound , we do not have the patterns a(c), c or c, b(c).

Example 2 . 2 . 35 .

 2235 Let us consider the set of colors C = {a i b j : i, j ∈ N} for two sequences of symbols (a n ) n≥0 and (b n ) n≥0 . Let us set C free = {a i b i : i ∈ N} and the function a and b such that for all i

  using the following proposition. Proposition 3.3.6. For any λ ∈ O, if we set ν = Φ(λ) and S to be the number of secondary parts of ν, then for any v ∈ [1, S + 1], the triplet of Proposition 3.3.4 is equal to the triplet of Proposition 3.3.2 for u = S + 2v.

Example 3 . 4 . 1 .

 341 We take ν = (14 bd , 11 a , 10 ad , 9 bc , 8 ac , 3 c , 2 cd , 2 ab ) ∈ E with (p, s) = (2, 6). Our enumeration gives ν = (7 d , 7 d , 11 a , 5 d , 5 a , 5 b , 4 c , 4 c , 4 a , 3 c , 1 d , 1 c , 1 b , 1 a ) J = {3, 10}, I = {1, 4, 6, 8, 11, 13}, I + 1 = {2, 5, 7, 9, 12, 14} , and T S(ν) = {4, 11}.

Theorem 3 . 4 . 2 (

 342 Explicit definition of E 1 ). The following are equivalent:

Remark 3 . 4 . 4 .

 344 The valueBr ν (i)-i 2indeed corresponds to the difference between the index of the secondary part ν i -|I∩[1;i )| and the index of the primary or secondary part ν Br ν (i)-|I∩[1;Br ν (i))| , so that the relation(3.4.7) can be formulated as follows: the lower half

,

  and the partition ν = (20 e f , 20 ad , 19 bc , 16 de , 14 a f , 11 ad , 6 c ) , or rewritten with our enumeration ν = (10 f , 10 e i=1

  condition (3) of Theorem 3.4.2, to see if ν ∈ E 1 , we only need to check the secondary part 20 e f , whose bridge corresponds to 10 b , and we have 20 e f 10 b + 2. We then have ν ∈ E 1 . One can check that Ψ(ν) = (12 b , 11 a , 9 f , 9 e , 9 d , 9 c , 8 e , 8 d , 8 c , 7 a , 6 f , 5 d , 5 a ) , and that Φ(Ψ(ν)) = ν.

  .5.10) where c 1 , . . . , c m are some colors, • is either → or , and k is the size of the smallest part, so that the last part is k c m . Example 3.5.6. For C = {a < b < c < d} , the pattern ad → bc cd b , 5 will represent the pattern 9 ad , 8 bc , 6 cd , 5 b .

Theorem 3 . 5 . 7 .

 357 The optimal forbidden patterns are the following:cd → ab| c, d , k ≥ 1 (3.5.13) ad → bc| a , k ≥ 2 • (3.5.14)Proof. Let us consider the following diagram:

  2 and, by (3.5.7), we obtain the pattern cd → ab c, d. It actually corresponds to the pattern (k + 2) cd , (k + 2) ab , k c,d . Here k c,d means k c or k d . Since we must necessarily have that β((k + 2) ab ) k c,d

  Let us first discuss the behaviour of the patterns with moves → p →. We can see in the diagram that this happens only if p = cd. Consider now the pattern ae → cd → ab de → bc , k which actually represents the pattern

  with(3.5.25) ending by bc Proof of Theorem 3.5.10. We recall that the optimal forddiden patterns

  We also obtain the patterns(3.5.21),(3.5.24), and (3.5.32) since the chosen primary color is directly after c 2 .

(a) For c 1 → c 2 =

 12 ae → cd and c s+1 = a.If c 3 = c s+1 = a, by both rules, we have that c 3 ∈ {be, bd, bc}. As soon as c 3 = be, we obtain by the second rule that the pattern is ae → cd bc| a or ae → cd bd( bc)| a •

(b) For c 1 → c 2 =

 12 de → bc and c s+1 = d, e.

1 =Remark 4 . 3 . 1 .

 1431 10 , i 2 = 8 , i 3 = 6 , i 4 = 3 ,and then I = {3, 6, 8, 10} and J = {1, 2, 5, 12} • The sets I and J are the unique sets satisfying the following relations:

Proposition 4 . 3 . 9 .

 439 The resulting partition after Step 2 belongs to O . Proposition 4.3.10. For any ρ ∈ {0, 1}, we have

Corollary 4 . 4 . 1 .

 441 For any integer n and any finite non-commutative product C of colors in C, there exists a bijection between {λ ∈ O : (C(λ), |λ|) = (C, n)} and {ν ∈ E : (C(ν), |ν|) = (C, n)}.

Example 5 . 1 . 1 .

 511 The partition π = (10 a , 8 a , 8 b , 7 b , 5 a , 4 a , 3 a , 2 b , 1 a , 1 b , 1 b , 0 c )is identified with the pair (µ, ν) with µ = (4 a , 3 a , 3 b , 3 b , 3 a , 2 a , 1 a , 1 b , 1 a , 1 b , 1 b , 0 c ) and ν = (6, 5, 5, 4, 2, 2, 2, 1, 0, 0, 0) • Let us now fix C = c 0 • • • c s-1 .The partition µ in the pair then becomes fixed. By considering the set of regular partitions in R ,c g 1 with State Cc g , we have the bijection

  .1.6) We obtain with Example 5.1.1 that C = aabbaaababb, s = 11, D = {2, 3, 4, 7, 8, 9, 10} and D = {0, 1, 5, 6}.

Proposition 5 . 3 . 2 .

 532 Let B be a crystal and suppose that there exists an energy function H on B ⊗ B. Then, the function H k on B ⊗k ⊗ B ⊗k defined by b

  2.52). An energy well-defined according to reduction with respect to a and b if1. for any c, c ∈ C free {c ∞ }, (c, c ) = χ(c = c ) ,2. for any c ∈ C bound , (a(c), c) + (c, b(c)) = 1 , and for any c ∈ (C free {c ∞ }) \ {a(c)}, (c , c) ∈ { (a(c), c), (a(c), c) + 1} , and for any c ∈ (C free {c ∞ }) \ {b(c)}, (c, c ) ∈ { (c, b(c)), (c, b(c)) + 1} , 3. for any c, c ∈ C bound , (c, c ) = (c, a(c )) + (b(c), c )χ(b(c) = a(c )) • Example 6.1.14.

5 .

 5 For any (c 1 , c 2 ) ∈ C sup × C inf , we can insert in the pair (p + 1) c 1 , p c 2 two parts (p + 1) f 1 and p

  insertion of p f in the pair p c 1 , 0 c ∞ with c 1 ∈ c ∈ C sup and p ≥ 1, 2. the insertion of p f in the pair ∞ c 1 , p c 2 with c 2 ∈ c ∈ C inf and u ≥ 1, which means that p c 2 is at the head of the partitions. 7.2 Bijective proof of Theorem 2.2.51 7.2.1 The map Φ

  If there exists a pair of colors (c 1 , c 2 ) ∈ C sup × C inf such that the pattern p c 1 , p c 2 is in µ, we then necessarily have that (c 1 , c 2 ) = 0, and γ(c 1 , c 2 ) is defined. By Proposition 7.1.1, the existence of such a pair is unique in the maximal sequence of parts with size p. Then set f = γ(c 1 , c 2 ), transform the part p into p f and we insert p f between p c 1 and p c 2 , to obtain the patternp c 1 , p γ(c 1 ,c 2 ) , p c 2 which is forbidden in c 0 δ,γ P c ∞ .Note that this is the only suitable insertion in the maximal sequence of parts with size p.(a) We cannot insert a part p f with a free color in the sequence to the left of p c 1 , as it consists of parts with color in C sup , and the second insertion rule forbids such insertion. (b) Similarly, we cannot insert a part p f with a free color in the sequence to the right of p c 2 , as it consists of parts with color in C inf , and the third insertion rule forbids such insertion.(c) Finally, inserting a part p f into the pair p c 1 , p c 2 for any free colorf = γ(c 1 , c 2 ) such that (c 1 , f ) = ( f , c 2 ) = 0 isuseless and troublesome, as the pattern p c 1 , p f , p c 2 is allowed in c 0 δ,γ P c ∞ , and this insertion renders the map Φ -1 not injective. • If all the parts p c have colors in C sup , we denote by c 1 the color of the rightmost part. With the same reasoning as above, we cannot insert a part p f with a free color in the sequence to the left of p c 1 . Remark that the part to its right has necessarily a size less than p. (a) If the part to the right of p c 1 has size less than p -1, then transform p into p δ(c 1 ) , and insert p δ(c 1 ) to the right of p c 1 , to obtain for an integer 2 ≤ u the pattern p c 1 , p δ(c 1 ) , (pu) c 2 which is forbidden in c 0 δ,γ P c ∞ . (b) If the part to the right of p c 1 has size p -1 and a color c 1 ∈ (C free \ {c 0 }) C inf {c ∞ }, then transform p into p δ(c 1 ) , and we insert p δ(c 1 ) to the right of p c 2 , to obtain the pattern p c 1 , p δ(c 1 ) , (p -1) c 2 which is forbidden in c 0 δ,γ P c ∞ . (c) If the part to the right of p c 1 has size than p -1 and a color c 2 ∈ C sup , we necessarily have that (c 1 , c 2 ) ∈ {0, 1}. In that case, define γ(c 1 , c 2 ), and then transform p into p γ(c 1 ,c 2 ) , and insert p γ(c 1 ,c 2 ) to the right of p c 1 , to we obtain the pattern

( a )

 a If there is no part to the left of p c 2 , then transform the part p into p δ(c 2 ) and insert p δ(c 2 ) to the left of p c 2 , to obtain the patternp δ(c 2 ) , p c 2 which is forbidden in c 0 δ,γ P c ∞ . (b)If the part to the left of p c 2 has a size greater than p + 1, then transform the part p into p δ(c 2 ) and insert p δ(c 2 ) to the left of p c 2 , to obtain for some integer 2 ≤ u the pattern(p + u) c 1 , p δ(c 2 ) , p c 2 which is forbidden in c 0 δ,γ P c ∞ . (c)If the part to the left of p c 2 has size p + 1 and a color c 1 ∈ (C free \ {c 0 }) C sup , then transform the part p into p δ(c 2 ) and insert p δ(c 2 ) to the left of p c 2 , to obtain the pattern (p + 1) c 1 , p δ(c 2 ) , p c 2 which is forbidden in c 0 δ,γ P c ∞ . (d) If the part to the left of p c 2 has size p + 1 and a color c 1 ∈ C inf , we necessarily have that (c 1 , c 2 ) ∈ {0, 1}. Then transform the part p into p γ(c 1 ,c 2 ) and insert p γ(c 1 ,c 2 ) to the left of p c 2 , to obtain the pattern (p + 1) c 1 , p γ(c 1 ,c 2 ) , p c 2 which is forbidden in c 0δ,γ P c ∞ . The order in which we insert the parts p f does not matter, as the only case where the color of the inserted part depends on both colors c 1 and c 2 are the only insertion for which the value of p is unique for the pair p

  {u ∈ N : ∆(a i b j , a u b u ) = 0} ∩ {u ∈ N : ∆(a u b u , a k b l ) = 0} = {i + 1, . . . , j} ∩ {l + 1, . . . , k} = {max{i, l} + 1, . . . , min{k, j}} = ∅ ,and the conditions (2.2.66) are satisfied. (b) If i < j and k < l then ∆(a i b j , a k b l ) = 2 ⇐⇒ i ≥ k and j ≤ l ⇐⇒ {i + 1, . . . , j} ⊂ {k + 1, . . . , l} ⇐⇒ {i + 1, . . . , j} \ {k + 1, . . . , l} = ∅ ⇐⇒ {u ∈ N : ∆(a i b j , a u b u ) = 0} ∩ {u ∈ N : ∆(a u b u , a k b l ) = 1} = ∅ •

(p + 1 )

 1 a 2 b 1 , p a 1 b 1 , p a 2 b 0 and (p + 1) a 0 b 2 (p + 1) a 1 b 1 p a 1 b 2 •

  fi b = b if and only if b = ẽi b , for b, b ∈ B and i ∈ N .

  b i -→ b if and only if fi b = b (or equivalently ẽi b = b). Remark 8.1.9. When fi b = 0 (resp. ẽi b = 0), then there is no edge labelled i coming out of b (resp. arriving in b).

  .1.4) we then have wtb = ϕ(b)ε(b) for all b ∈ B λ , where wtb is the projection of wtb on P. Also, by the definition of the weight vectors u k in the Kashiwara operators (8.1.3), we have for all b ∈ B such that ẽi b = 0, wt ẽi bwtb = α i .(8.1.5) 

  .1.7) for all i ∈ N and b 1 , b 2 with ẽ(b 1 ⊗ b 2 ) = 0. By definition, in the crystal graph of B ⊗ B, the value of H(b 1 ⊗ b 2 ), when it exists, determines all the values H(b 1 ⊗ b 2 ) for vertices b 1 ⊗ b 2 in the same connected component as b 1 ⊗ b 2 . Note that the conditions (8.1.7) are equivalent to the following:

  Figure 8.1 gives the crystal graph B of the vector representation of A

Figure

  Figure 8.1.

  5) for each λ ∈ P+ := {µ ∈ P+ | c, µ = }, there exist unique vectors b λ and b λ in B such that ε(b λ ) = λ and ϕ(b λ ) = λ.

  For the particular case t = 1, we can choose D = 1. Let us consider the set of color C B with indices in B, and let us define the relation on Z C B by k c b k c b ⇐⇒ kl = DH Λ (b ⊗ b)

9. 1 .

 1 Perfect crystal of type A(1) n-1 : tensor product of the vector representation and its dual By Theorem 8.1.11, B ⊗ B ∨ is a crystal for the tensor product of the vector representation of A

9. 3 . 1

 31 Symmetry in the crystal graph of B ⊗ B First, we observe a symmetry in the crystal graph of B ⊗ B. Proposition 9.3.1. Let B be a crystal, let B ∨ be the dual of B, and let us set B = B ⊗ B ∨ . Denote by σ ∨ the element in B ∨ corresponding to σ ∈ B. Then for any σ 1 , σ 2 , σ 3 , σ 4 , τ 1 , τ 2 , τ 3 , τ 4 ∈ B, we have the following

  l)) by (8.1.8) and (9.3.9)= χ(0 ∈ int(k , k )) + χ(0 ∈ int(l , l)) by Lemma 9.3.3 = ∆(a k b l ; a k b l )by (9.3.6).

  ))χ(0 ∈ int(l, k )) by (8.1.8) = 2χ(0 ∈ int(k , k ))χ(0 ∈ int(k , l ))χ(0 ∈ int(l, k )) by (9.3.10) = χ(0 ∈ int(k , k )) + χ(0 ∈ int(k , l))χ(0 ∈ int(k , l )) = χ(0 ∈ int(k , k )) + χ(0 ∈ int(l , l))by Lemma 9.3.3 = ∆(a k b l ; a k b l ) by (9.3.6).

1 : 1

 11 FIGURE 10.7: Crystal graph B of the vector representation for type B (1) n (n ≥ 3)

  By taking c 1 c 1 = c 0 = 1, we then obtain∑ π∈ 2 P c 1 c 1 C(π)q |π| = 1 2

δ 1 :

 1 FIGURE 10.10: Crystal graph of B ⊗ B for type D (1) n (n ≥ 4)

  the same choices for D, d. Here, we also have the consider alternating sequences of the form• • • (2k + 1) c n (2k + 1) c n (2k + 1) c n • • • •This yields the generating function ∑ π∈ 2 2 P c 1 c 1

n

  By taking c1 c 1 = c n c n = 1, this yields ∑ π∈ 2 P c 1 c 1

5 . 4 )

 54 and Theorem 2.3.1, with the convention c b = e wtb which gives c 1 c 1 = c n c n = 1, together with (2.3.7), result in the expected generating function. 10.5.4 Character for Λ n-1

1 .

 1 for any c, c ∈ C free {c ∞ }, (c, c) = 2 -( 1 + 2 )(c, c) = 0 and for c = c (c, c ) = 2 -( 1 + 2 )(c, c ) = 2 -1 = 1 .Then, relation(2.2.48) is satisfied by .2. For anyc ∈ C bound , (a(c), c) + (c, b(c)) = 4 -( 1 + 2 )(a(c), c) -( 1 + 2 )(c, b(c)) = 4 -(1 + (a(c), c)) -(1 + (c, b(c))) = 2 -( (a(c), c) + (c, b(c))) = 1 and relation (2.2.49) is satisfied. For any c ∈ (C free {c ∞ }) \ {a(c)}, (c , c) = 2 -( 1 + 2 )(c , c) = 2 -(c , c)By (2.2.50), we obtain(c , c) ∈ { (a(c), c), (a(c), c) + 1} ⇐⇒ (c , c) ∈ {2 -(a(c), c), 1 -(a(c), c)}and since (a(c), c) = 1 -(a(c), c) =, we then have that satisfies relation(2.2.50). By the same reasoning, we show that satisfies relation (2.2.51).3. For any c, c ∈ C bound with b(c) = a(c ), we have(c, c ) = 2 -( 1 + 2 )(c, c ) = 2 -(c, c ) = 2 -( (c, a(c )) + (b(c), c )) by (2.2.52) = (1 -( (c, b(c))) + (1 -(a(c ), c )) = (c, b(c)) + (a(c ), c ) . For any c, c ∈ C bound with b(c) = a(c ), we have (c, c ) = 2 -( 1 + 2 )(c, c ) = 2 -(c, c ) = 3 -( (c,a(c )) + (b(c), c )) by (2.2.52) = (2 -( (c, a(c ))) + (2 -(b(c), c )) -1 = (c, b(c)) + (a(c ), c ) -1 .
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Definition 2.1.25. Let

  C} be the set of colored pair of integers. be a binary relation defined on Z 2 C . A generalized colored partition with relation is a finite sequence (π 1 , . . . , π s ) of colored integers, where for all i ∈ {1, . . . , s -1}, π i π i+1 .

  2 , ab, ba, b 2 }. We now state the corresponding corollary of Theorem 2.2.15. To simplify the formulation of the corollary, we assume that the symbols a, b and c commute in the generating functions.

	Corollary 2.2.20. Let u, v, w and n be non-negative integers. Let us denote by A(n; u, v, w) the number of colored
	overpartitions of size n with positive potentials and colors in {a, b}, with u particles with color a, v particles with
	color b and w over-lined particles. Let us denote by B(n; u, v, w) the number of colored overpartitions of size n
	with colors in {a, b, a 2 , ab, ba, b 2 }, with positive potential for the primary particles and potential greater than one
	for the secondary particles, satisfying the minimal difference conditions given D , with u occurrences of the symbol
	a, v occurrences of the symbol b, and such that w equals the number of over-lined particles plus twice the number of
	even particles with color ab and odd particles with color a 2 , ba or b 2 . We then have A(n; u, v, w) = B(n; u, v, w)
	and the identity

  , as we shall see in the next two examples.

	Example 2.2.41. If we set a

  Example 2.2.57. Defining the colors a, c, d as before in Table (2.2.55), C 2 is again exactly the set of partitions with difference conditions of Capparelli's identity.

Example 2.2.58. The set C 3 is the set of partitions with difference conditions shown in the following matrix, which appeared in Primc's paper

  By definition (2.2.6), it does not belong to E if and only if it has two consecutive parts λ i , λ i+1 such that λ i λ i+1 . We then have by (2.2.12) that

5) Remark 3.1.3. Let us consider a partition λ in O.

  With the example 11 c , 10 cd , 10 ab , 6 d , 5 ab , 3 ad , 2 bc , 1 a ,

	Example 3.6.1. 11 c										
	10 cd		11 c		11 cd , 11 ab		11 cd , 11 ab		11 cd , 11 ab		11 cd , 11 ab
	10 ab		10 cd , 10 ab		9 c		9 c		9 c		6 ad , 5 bc
	6 d 5 ab	→	6 d 5 ab	→	6 d 5 ab	→	6 d 4 ad , 3 bc	→	5 ad , 4 bc 4 d	→	7 c 4 d
	3 ad		3 ad , 2 bc		3 ad , 2 bc		3 ab		3 ab		3 ab
	2 bc		1 a		1 a		1 a		1 a		1 a
	1 a										

• we obtain [(22 abcd , 11 abcd ), (7 c , 4 d , 3 ab , 1 a )].

  abcd , 11 abcd ), (7 c , 4 d , 3 ab , 1 a )], we obtain

	11 cd , 11 ab 6 ad , 5 bc 7 c 4 d 3 ab 1 a	→	11 cd , 11 ab 9 c 5 ad , 4 bc 4 d 3 ab 1 a	→	11 cd , 11 ab 9 c 6 d 4 ad , 3 bc 3 ab 1 a	→	11 cd , 11 ab 9 c 6 d 5 ab 3 ad , 2 bc 1 a	→	11 cd , 11 ab 9 c 6 d 5 ab 3 ad 2 bc 1 a	→	11 c 10 cd , 10 ab 6 d 5 ab 3 ad 2 bc 1 a	→	11 c 10 cd 10 ab 6 d 5 ab 3 ad 2 bc 1 a

  1) c 1 , p c 2 to obtain (p + 1) c 1 , p f , p c 2 if and only if (c 1 , f ) = 1 and ( f , c 2 ) = 0.The color f of the possible inserted part depends on both colors c 1 and c 2 only if (c 1 , c 2 ) belongs to

  l 1 } \ {k 2 + 1, . . . , l 2 }} • For all non-negative integers < n, the set C ,n (δ, γ) of the Capparelli partitions related to δ and γ is the set of generalized Primc partitions of P ,n , with no parts colored by a 0 b 0 , and which avoid the following forbidden patterns (we here set

	(7.3.12)
	Definition 7.3.1.

  Definition 8.1.10.(Hong and Kang, 2002, Definition 4.5.1) Let A = (a i,j ) 0≤i,j≤n-1 be a Cartan matrix with associated Cartan datum (A, Π, Π ∨ , P, P ∨ ). A crystal associated with (A, Π, Π ∨ , P, P ∨ ) is a set B

	together with maps
	wt : B -→ P,
	ẽi , fi :

13 Proof of Proposition 3.5.5

  we still have(λ i + λ i+1 + ij) (λ i+2+x + λ i+3+x + x + ij) • Let us take a shortcut ζ = ζ 1 + ζ 2 • • • ζ 2s+1 + ζ 2s+2 ,and an allowed patternη = η 1 + η 2 • • • η 2t-1 + η 2t η 2t+1 such that Br η (1) = 2t + 1.Without loss of generality, by adding a constant k to the part ν 2i-1 + ν 2i , we can suppose that ζ 2s+1 + ζ 2s+2 η 1 + η 2 . If we consider the sequence

A.1.

  If λ k ∈ O ρ ± for all ± for all (j, i) ∈ J × I.

	k ∈ {1, . . . , s}, then λ	σ(k) ∈ O	ρ ± and then λ	σ(j) ∈ O	ρ ± and λ	σ(i) + λ	σ(i+1) ∈ E

ρ

  • If (k, k ) ∈ I + 1 × J, then since Step 1 ended, we necessarily haveν σ(k) ν σ(k ) • • If (k, k ) ∈ I + 1 × I,we then have by (4.3.15) that

		ν σ(k) -ν σ(k ) ≥ 0
	so that by (2.2.19), ν σ(k)	ν σ(k ) .

(c, c ) = 1 + χ(c ≤ c )χ(c = c ∈ C) ,(2.2.13) 

2n-1 (n ≥ 3)

Remerciements

Part II

Rogers-Ramanujan type identities via bijections

Proposition 4.3.2 (Final positions). Let φ be the function on J × I defined by φ : (j, i) → l j -2l i+1 -∆(j, i + 1) -∆(i + 1β(j, i), i + 1) • (4.3.9)

Then the final position σ after Step 2 is such that for any (j, i) ∈ J × I, σ(j) < σ(i) ⇐⇒ φ(j, i) ≥ 0 • (4.3.10) Furthermore, Step 2 comes to an end after exactly |{(j, i) ∈ J × I : j > i and φ(j, i) ≥ 0 , or j < i and φ(j, i) < 0}| (4.3.11) applications of Λ.

The above proposition ensures that the process Step 2 always ends. Using (4.3.1), (4.3.4) and (4.3.8), we obtain with our example the following table corresponding to φ:

• By the proposition, we have exactly four crossings which occur in the pairs (j, i) in { [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF][START_REF]For all (c, c ) ∈ C free × C inf , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.64) and in particular[END_REF], [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF]6), [START_REF]For all c, c ∈ C sup , if (c, c ) ∈ {0, 1}, there then exists c ∈ C free such that (c, c ) = 0 and ([END_REF]6), (12, 10)}, and this corresponds to the illustration of Step 2 in Section 4.2.1.

The well-belonging of the final partition is given by the next two propositions. 

The proofs of the above propositions can be found in Appendices A.2.5, A.2.9 and A.2.10. Here we state two lemmas that will be useful for these proofs. Lemma 4.3.5. If a primary particle (l k , c k ) originally at position k moves to position σ(k), then it becomes energetic particle (l k + ∆(σ(k), k), c σ(k) ).

Lemma 4.3.6. The function φ is non-increasing on J and non-decreasing on I.

For the proofs the lemmas, see Appendices A.2.1 and A.2.2. Lemma 4.3.5 plays a central role in the understanding of the operator Λ. Rephrased, it can be stated as follows: a primary particle that moves from a state c k to a state c k gains the formal energy of transfer from c k to c k . By (4.3.3), this energy is non-negative if k ≤ k , and non-positive if k ≥ k .

Well-definedness of Ψ

Let us consider ν ∈ E with ν = (ν 1 , . . . , ν t ). We rename the indices by enumerating all primary particles that occur in ν. This means that we count the secondary particles as a pair of consecutive primary particles. We take the example in Section 4.2.2 ν = (11 b , 10 ba , 6 aa , 4 a , 2 b , 1 aa , -1 b , -2 b 2 ) , and the rewriting gives ν = (11 b , 5 b , 5 a , 3 a , 3 a , 4 a , 2 b , 1 a , 0 a , -1 b , -1 b , -1 b ) •

As we did before for the process Φ, we first give some functions related to ν, and then prove the welldefinedness of Ψ. We explicitly compute the value of these functions for our example.

The setup

We consider ν = (ν 1 , . . . , ν s ) written according to the primary particles that occur in ν. There then exist unique sets I, J such that {1, . . . , s} = J I (I + 1), where J is the index set of the particles in P, and (5.1.11) and for all u ∈ {|W|, . . . , s -1},

(5.1.12)

The map

Let consider a partition π in R ,c g 1 (C), and the corresponding pair (µ, ν). The partition ν then corresponds to a classical partition with at most s positive parts. The partitions ν then has ν 0 positive parts, whose sizes are at most equal to s. Let us set s = ν 0 and write ν = (ν 0 , • • • , ν s -1 ). We then apply the following transformations:

1. For each k ∈ {1, . . . , s -1}, change the part µ k into µ k with the relations

For each u ∈ {0, . . . , s -1}, change the part ν u into ν u with the relations

The final partition Ω -1 (π) is obtained by inserting the particles ν u into the sequence of particles µ k according , and adding the ground 0 c g . The partition Ω -1 (π) then has s + s particles different from 0 c g and by double counting, it follows that |Ω -1 (π)| = |µ| + |ν| = |π|.

Example 5.1.3. For example, we illustrate these transformations with C = aabbaaababb and π = (10 a , 8 a , 8 b , 7 b , 5 a , 4 a , 3 a , 2 b , 1 a , 1 b , 1 b , 0 c ) , corresponding to µ = (4 a , 3 a , 3 b , 3 b , 3 a , 2 a , 1 a , 1 b , 1 a , 1 b , 1 b , 0 c ) , and ν = (6, 5, 5, 4, 2, 2, 2, 1, 0, 0, 0) • By conjugation, ν = (8, 7, 4, 4, 3, 1) Recall that δ g = 0. Using the following tables k 0 1 2 3 4 5 6 7 8 9 10 µ k + k 4 4 5 6 7 7 7 8 9 10 11 u 0 1 2 3 4 5 ν uu - 12, it follows that µ = (6 a , 5 a , 5 b , 4 b , 4 a , 3 a , 2 a , 1 b , 1 a , 1 b , 1 b , 0 c ) , ν = (1 c , 4 c , 4 c , 4 c , 3 c , 1 c )

and the insertion then gives Ω -1 (π) = (6 a , 5 a , 5 b , 4 c , 4 c , 4 c , 4 b , 4 a , 3 c , 3 a , 2 a , 1 c , 1 c , 1 b , 1 a , 1 b , 1 b , 0 c ) •

Let us now show that π ∈ F ,c g 1 . First note that

and since ν u ≤ s for all u ∈ {0, . . . , s -1}, it follows that µ s-1 = µ s-1 = 1δ g . Moreover, for all the k ∈ {0, . . . , s -1},

This means that the sequence (δ g + µ k + k) s-1 k=0 is non-decreasing, and with the difference between consecutive terms at most equal to 1, with equality if and only if k ∈ D.

On the other hand, for u ∈ {1, . . . , s -1}, we have for all u ∈ {0, . . . , s -1} that

The sequence (ν uu -1) s -1 u=0 is then decreasing. Let us now set D V = {k ∈ {1, . . . , s} :

so that we necessarily have D V ⊂ D. For such k, there exists a unique u such that

In fact, the sequence (ν uu -1) s -1 u=0 being decreasing, and the interval [δ g + µ k-1 + k -1, δ g + µ k + k), which is a singleton for k ∈ D V , contains at at most one element of the latter sequence. Also, |{0 ≤ l < s : (5.1.16)

and by (5.1.1) and (5.1.15), we necessarily have

The particle ν u is then inserted between µ k-1 and µ k . Note that this insertion occurs once for all u such that

Then, for all u ≥ |D V |, we have ν uu -1 < δ g + µ 0 , so that ν u = ν u . In particular, we have

We remark that for all k ∈ D \ D V , since µ k-1µ k = µ k-1µ k = 0, the parts µ k-1 , µ k have the same size, and then the same relation with all particles with state c g . This means that, after inserting of the particles ν u into µ , there is no particle between the parts µ k-1 and µ k . Note that, for all k ∈ D D V , µ k-1µ k = 1, so that we can insert any number of particles with state c g and potential δ g + µ k , and since (c g , c g ) = 0, these particle with the same potential and state c g are well-related by .

These facts, together with (5.1.17) and (5.1.18), imply that π belongs to F ,c g 1 .

We conclude by observing that, by (5.1.17), D V can be also defined as the unique subset of D with satisfies the following: k ∈ D belongs to D V if and only if there exists u ∈ {0, • • • , s } such that µ k-1 ν u µ k .

By definition, for any c ∈ C , the potential of the secondary particle with state cc g has the same parity as (c, c g ) = ρ, while the potential of the secondary particle with color c g c has the same parity as (c g , c) = 1ρ. The embedding P (C ) → S(C) can then be described as follows:

Therefore, we obtain a natural bijection R between P (C ) S(C ) and S(C) \ {(2Z) c 2 g } with the relations S(C ) (2k + (c, c )) cc → (2k + (c, c )) cc (5.2.5)

Note that the inverse R -1 is also the identity on S(C ), and for a particle with state cc g or c g c, we associate the particle in P (C ) with the same potential and state c.

The map R can now be extended to the partitions in E ρ + with R : (π 0 , . . . , π s-1 ) → (R(π 0 ), . . . , R(π s-1 ), 0 c 2 g ) , (5.2.7) resulting in the following proposition.

Proposition 5.2.3. The map R defines a bijection between E ρ + (C, n) and R ,c g 2 (C, n). Recall that in Definition 2.2.10 is the relation that relates the particles of a partition in E ρ + , and the relation defined in (2.2.46) relates the particles of a partition in R ,c g 2 . Note that the map R from P (C ) S(C ) to S(C) \ {(2Z) c 2 g } conserves the potential and the sequence of states different from c g , so that extended to E ρ + , it also preserves the total energy and the sequence of states different from c g . The proof of Proposition 5.2.3 is straightforward using the two next lemmas. Lemma 5.2.4. Let c ∈ C C and c = c(π s-1 ). Then the minimal potential of π s-1 ∈ P ρ + S ρ + is the minimal potential of R(π s-1 ) satisfying R(π s-1 ) 0 c 2 g .

Lemma 5.2.5. For all particles k p , l q ∈ P (C ) S(C ), we have the following : k p l q ⇐⇒ R(k p ) R(l q ) • (5.2.8) Lemma 5.2.4 gives the equivalence of the minimal potential condition for the last particle, while Lemma 5.2.5 states that the difference conditions are equivalent for both sets of partitions, and we directly obtain Proposition 5.2.3.

Proof of Lemma 5.2.4. We reason on whether c ∈ C , or c ∈ C and π s-1 has a potential with the same parity as ρ or 1ρ.

Combinatorial description of reduced color sequences

We want to study the partitions in P c ∞ with a given kernel. To do so, we need to understand combinatorially the set of color sequences having a certain reduction. Recall that a sequence of colors in C is reduced if and only if it does not contains the patterns

The above definition of reduced color sequences along with Definition 2.2.34 immediately yield the following proposition.

Proposition 6.1.3. Let S be a reduced color sequence. Any color sequence C such that red a,b (C) = S can be obtained by performing a certain number of insertions of the following types in S:

1. if there is a free color c in S, insert the same color c arbitrarily many times to its right, 2. if there is a bound color c in S, insert the free color a(c) arbitrarily many times to its left, 3. if there is a bound color c in S, insert the free color b(c) arbitrarily many times to its right.

The sequence Remark 6.1.5. The way one obtains C from S via the insertions above is not unique (even up to the order in which we perform the insertions). Indeed, it could be that in S = c 1 , . . . , c s , the color that can be inserted to the right of some c j is the same as the one that can be inserted to the left of c j+1 . For example a To understand reduced color sequences and insertions combinatorially, and make sure that we count our partitions in an unique way, we need some definitions. Definition 6.1.6. A primary pair is a pair (c, c ) of bound colors such that in the insertion rules of Proposition 6.1.3, the free color that can be inserted to the right of c is the same as the one that can be inserted to the left of c . This is equivalent to saying that (c, c ) is such that b(c) = a(c ).

We will be interested in maximal sequences of primary pairs in S. Definition 6.1.7. Let S = c 1 , . . . , c s be a reduced color sequence. The maximal primary subsequences of S are subsequences c i , c i+1 , . . . , c j of S such that • for all k ∈ {i, . . . , j -1}, (c k , c k+1 ) is a primary pair,

• (c i-1 , c i ) and (c j , c j+1 ) are not primary pairs. We denote by t(S) the number of maximal primary subsequences of S, and by S 1 , . . . , S t(S) these maximal primary subsequences.

Here t(S) = 3 and the maximal primary subsequences of S are, from left to right,

Let us now define secondary pairs of colors, inside which two different colors can be inserted.

Definition 6.1.9. A secondary pair is a pair (c, c ) of colors satisfying one of the following assertions:

We now understand the effect that an insertion inside a secondary pair has on the minimal partition, depending on the type of this insertion.

Proposition 6.1.20 (Type 0 insertion). Let C = c 1 , . . . , c s be a color sequence, and let min (C) = (λ 1 , . . . , λ s , 0 c ∞ ) be the corresponding minimal partition. For any i ∈ {0, . . . , s}, the type 0 insertion of a free color c inside a secondary pair (c i , c i+1 ) doesn't disrupt the minimal differences. The minimal partition after insertion will be min (c 1 , . . . , c i , c , c i+1 , . . . , c s ) = (λ 1 , . . . , λ i , λ , λ i+1 , . . . , λ s , 0 c ∞ ), with λ = λ i+1 + (c , c i+1 ).

Example 6.1.21. The minimal partition with color sequence

We insert a 1 b 1 inside (a 0 b 2 , a 1 b 0 ). The minimal partition with color sequence

The part 2 a 1 b 1 was inserted, but all the other parts stay the same.

Proposition 6.1.22 (Type 1 insertion). Let C = c 1 , . . . , c s be a color sequence, and let min (C) = (λ 1 , . . . , λ s , , 0 c ∞ ) be the corresponding minimal partition. For any i ∈ {0, . . . , s}, the type 1 insertion of a free color c inside a secondary pair (c i , c i+1 ) adds 1 to the minimal difference between c i and c i+1 . This forces us to add 1 to each part to the left of the newly inserted part in the minimal partition, which becomes min (c 1 , . . . ,

Example 6.1.23. In the color sequence C of the previous example, we insert a

All the parts to the left of the newly inserted part are increased by one compared to min (C).

So far we have only studied the case of a single insertion (either left or right) inside a secondary pair. We still need to understand what happens to the minimal differences if, inside a secondary pair (c, c ) for c, c are bound colors such that b(c) = a(c ), when we insert both free colors b(c) and a(c ). The proof can be found in Appendix A.3.1. Thus performing both a left and right insertion inside a secondary pair is the same as performing the two insertions separately. We conclude this section by summarizing the influence of all the possible insertions on the minimal partition. Proposition 6.1.25 (Summary of the different types of insertion). Let C = c 1 , . . . , c s be a color sequence, and let min (C) = (λ 1 , • • • , λ s , 0 c ∞ ) be the corresponding minimal partition. When we insert a free color c inside a pair (c i , c i+1 ), the minimal partition transforms as follows:

• if c i is a free color and c = c i , the minimal partition becomes (λ

part λ i repeats, and the rest of the partition remains unchanged);

• if (c i , c i+1 ) is a primary pair, the minimal partition becomes (λ

) is a secondary pair and the insertion of c is of type 0, the minimal partition becomes

Let S be a reduced color sequence. Then min (S) = min 1 + 2 (S).

When C is a colored sequence which is not reduced, we do not have min (C) = min 1 + 2 (C) in general. So to compute the generating function for the generalized colored Frobenius partitions, we define one last difference condition

which shares many properties with . The proof of the following proposition can be found in Appendix A.3.11.

Proposition 6.2.3. The energy is well-defined according to the reduction with respect to a and b. Furthermore, the type of insertion in a secondary pair for is 0 if and only if the type of insertion in a secondary pair for is 1.

In other words, using the notation at the beginning of Section 6.1.4, given a reduced color sequence S = c 1 , . . . , c s and f 1 , . . . , f s+t the free colors that can be inserted in S, N (resp. T 0 , T 1 ) is exactly the set of indices i such that the insertion of f i is neutral (resp. of type 1, of type 0) for .

The generating function for the generalized colored Frobenius partitions in

F c ∞ 1 , 2 with a given kernel

Now that we understand the orders 1 + 2 and , we will use them to compute the generating function for generalized colored Frobenius partitions in F c ∞ 1 , 2 with a given kernel. Before doing this, we need a technical lemma about the function g u,v defined in Theorem 6.1.28, which will appear again in this section (proof in Appendix A. 3.3). Lemma 6.2.4. Let g u,v be the function defined in Theorem 6.1.28. Then g u,v (q -1 ; 2x 1 , . . . , 2x v ) = q -u(2v+u-1) g u,v (q; x 1 , . . . , x v ).

We now give the generating function for minimal generalized colored partitions in P c ∞ 1 + 2 and a given kernel (see proof in Appendix A.3.12).

Proof of Theorem 6.1.28

In this section, we give a proof of Theorem 6.1.28. Let S = c 1 , . . . , c s be a reduced colour sequence of length s, having t maximal primary subsequences. We use the same notation as in Section 6.1.4. In addition, we define for all u ∈ {1, . . . , t}, j 2u-1 (resp. j 2u ) to be the index of the free colour which can be inserted to the left (resp. right) of S u . Thus we have T u 0 = {j 2u-1 , j 2u } ∩ T 0 and T u 1 = {j 2u-1 , j 2u } ∩ T 1 . For brevity, from now we denote on the set of all integers between i and j by i; j . Our starting point is the equality (6.3.1) which simply follows from the definition of reduced color sequences. Proposition 6. .3.5). Let

where P(j) is the number of colours of S that are to the left of f j . Then

where S u 1 := T u 1 \ S u 1 is the set of indices j of T u 1 such that the free color f j is not inserted.

We can now give a formula for the generating function for minimal partitions min (S(n 1 , . . . , n s+t ) for a fixed set S 1 . The desired generating function G S,m (q) of (6.3.1) will then be obtained by summing over all possible sets S 1 . Lemma 6.3.2 (Proof in Appendix A. 3.6). Let S 1 be fixed. Define H S,S 1 (q) := ∑ n 1 ,...,n s+t :

We have

Before we compute G S,m (q), one more lemma about q-binomial coefficients is needed.

Lemma 6.3.3 (Proof in Appendix A.3.7). Let a and b be non-negative integers. We have

We are now ready to sum H S,S 1 (q) over all possible sets S 1 to obtain a formula for G S,m (q). Proposition 6. 3.4 (Proof in Appendix A.3.13). Let S be a reduced colour sequence, and m a non-negative integer. We have

What remains to be done is show that the expression for G S,m (q) in Proposition 6.3.4 is actually the same as (6.1.3). First, let us give yet another lemma about q-binomial coefficients.

Chapter 7 Beyond Capparelli's theorem: a regularity over Primc's theorem

In this chapter, we discuss another duality between flatness and regularity which is presented in Theorem 2.2.51. The chapter is organized as follows. In Section 7.1, the necessary tools for our bijective proof of Theorem 2.2.51 are given. Then, in Section 7.2, we describe our bijection and prove its welldefinedness. Finally, in Section 7.3, it is proved that Theorem 2.2.51 implies Theorem 2.2.59.

The setup

Before proving Theorem 2.2.51, we first need to understand the properties of the energy with values in {0, 1, 2} as described in Definition 2.2.46.

Insertion of parts with free colors

Let us consider the partial order defined on C with 

with the convention that {c a , . . . ,

The above proposition then implies the following insertion rules:

1. if there is a part p f with f ∈ C free , then for any f ∈ C free , insert a part p f next to the part p f if and only if f = f , 2. if there is a part p c with c ∈ C sup , then for any f ∈ C free , since the part p f cannot be inserted to its left, then insert p f to its right if and only if (c, f ) = 0, 3. if there is a part p c with c ∈ C inf , then for any f ∈ C free , since the part p f cannot be inserted to its right, then insert p f to its left if and only if ( f , c) = 0.

Insertion in a pair of parts

We now study the case when a part p f with a color f ∈ C free is inserted between two consecutive parts

c 2 , and has the same size as one of the two parts, i.e p ∈ {p (1) , p (2) }. Observe that when a part p f with the same size as a part with a free color is inserted, this necessarily means that f equals this free color. In the following, we then study the case when the insertion is such that the color of the part with the same size as the inserted part belongs to C sup C inf .

By the two last insertion rules, we only need to investigate the insertions of the type p = p (1) and c 1 ∈ C sup , and the insertions of the type p = p (2) and c 2 ∈ C inf .

We start with the case where the two parts have the same size, which gives a pattern of the form p c 1 , p c 2 . By the insertion rules, such a insertion is not possible when both colors c 1 and c 2 are either in C sup or in C inf . Also, as soon as one of the color belongs to C free , the first insertion rule implies that only a part p f with f equal to this free color can be inserted. The following lemma deals with the last case.

Lemma 7.1.2. For any pair (c 1 , c 2 ) ∈ C sup × C inf such that (c 1 , c 2 ) = 0, we can insert a part p f with f ∈ C free between the parts of the pattern p c 1 , p c 2 to obtain

We now study the case where p (1) = p (2) . This necessarily means that p (1) > p (2) . We first start with the insertion of p f to the right of p c 1 with c 1 ∈ C sup .

Lemma 7.1.3. For any colors (c 1 , f ) ∈ C sup × C free and , we have the following:

1. for any color c 2 in C {c ∞ }, and any integer u ≥ 2, we can insert a part p f between the parts of the pattern p c We now define the suitable functions δ and γ to retrieve the sets C ,n and C ,n .

Functions δ 1 and γ 1 for C ,n

We define δ 1 and γ 1 as follows: for k = l, (7.3.13) and for (c

We then have the corresponding proposition

Functions δ 2 and γ 2 for C ,n

We define δ 2 and γ 2 as follows: for k = l,

We now define another set of multi-grounded partitions. Let be the relation of Z C B defined by

Here again, for

the colors c g 0 , . . . , c g t-1 and the colored integers u

satisfy the condition in Definition 2.1.22.

In fact, the choice of the integers u (0) , . . . , u (t-1) is unique, as they must satisfy both conditions

) and that

We then define the set

of the multi-grounded partitions with grounds g 0 , . . . , g t-1 and the relation defined in (2.3.3). In particular for any positive integer d, we denote by (8.3.9) where we set π s to be u

to be the set of partitions of

with the number of parts divisible by t. We then obtain the following proposition.

Proposition 8.3.3. Let d P be the set of classical partitions where all parts are divisible by d. There is a bijection

The proof of the above proposition is given in Appendix A.4.5. This proposition, along with Theorem 8. 1.16,yields Theorem 2.3.1. We remark that we can choose D = 1 when t = 1, and Theorem 8.2.4 is then implied by Theorem 2.3.1. The use of a parameter d allows us to have a finer equality, and appears especially practical when DH Λ (B ⊗ B) ∈ dZ, in which case the parts of our partitions have the same congruence modulo d.
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1) and an energy function H on

Furthermore, there exists a path between (σ

. Moreover, in the case where

The relevance of this proposition lies in the fact that if we find a path from

as well, by reversing the edges and taking the symmetric of the vertices in the path. By (9.3.3), this gives the following symmetry on the energy function:

Besides, by (2.2.54), we have

and then

Thus, to prove Theorem 2.3.2 in Section 9.3.3, we will distinguish several cases according to some relations between k, k , l, l , and by interchanging k ≡ l and k ≡ l, the symmetry will then imply the remaining cases.

Proof of Proposition 9. 3.1. First,let us recall (9.1.6). For all v ∈ B and i ∈ N , we have:

so that wtv ∨ = -wtv.

The tensor rules on B are given by:

Consider the involution η defined by

The tensor rules on B give, for all i ∈ N ,

By (8.1.8), we obtain, for all σ 1 , σ 2 , σ 3 , σ 4 ∈ B ,

By symmetry of the action of η, we deduce

We also obtain that

In the other case we have

and

and we obtain (9.3.1) and (9.3.2).

Let us now define the involution

. By (9.3.1), we see that ẽi

where fi = ẽi and ẽi = fi . Therefore, for b, b ∈ B ⊗ B, we have

so that there is a path between two vertices if and only if there is a path between their images by ζ. By (9.3.2), we also observe that

Choosing any b such that b = ζ(b ) gives (9.3.3).
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. By (9.1.9), we know that

). We obtain the path

empty if l=k+1

•

In the upper part of the path, we moved forward (by some fi ) by modifying the right side of the tensor product with arrows in int(l, k) appearing once. Then, in the lower part of the path, we moved forward by modifying the left side of the tensor product with arrows in int(k, l) appearing once. Using that k = l, the energy function satisfies:

The case k = l and k = l

The vertices

\ {l}, and we have the path

and the energy function is given by

This was the last case where k = l. Also, we have already studied a special case where k = l, which was the case l = k = l = k. We now study the other cases where k = l.

Thus the energy function satisfies

Chapter 9. Level one standard modules of type

By Case 7.4 and the symmetric of Case 7.5, we have (9.3.11) and the energy function becomes

The sub-case k + 1 ∈ int(l, l ) and k / ∈ int(l, l ) (Symmetric case: l + 1 ∈ int(k , k) and l / ∈ int(k , k)) This case is very similar to the previous one. We use the following path:

Note that the moves marked by • cancel each other, and the moves marked by give int(l, l ), so that the calculation is the same as in the previous case.

The sub-case

As before, the moves marked by • cancel each other, and the moves give int(l, l ). We move with the fi 's by changing the left side of the tensor product, and we get

The sub-case k + 1, k ∈ int(l, l ) and l + 1, l ∈ int(k , k) Note that this case overlaps with the case k = l = k = l that we already checked in the first part. Omitting that case, we can assume by symmetry that k = l. We obtain the path

Chapter 10

Level one standard modules of

) n

In this chapter, we compute the character formula corresponding to the following level one weights:

• Λ 0 and Λ n for the affine type D

(2)

Case of affine type

The crystal B of the vector representation of A [START_REF]For all (c, c ) ∈ C sup × C free , we have (c, c ) ∈ {0, 1} and (c , c) ∈ {1, 2} , (2.2.63) and in particular[END_REF] 2n (n ≥ 2) is given by the crystal graph below

with wt(0) = 0 and for all u ∈ {1, . . . , n},

Here, we have δ = α n + 2 ∑ n-1 i=0 α i . We thus obtain the following crystal graph for B ⊗ B

Chapter 10. Level one standard modules of A

(2)

n+1 , A

2n-1 , B

n , D (2)

We then consider the set of states C = {c 1 , . . . , c n , c n , . . . , c 1 , c 0 }, c g = c 0 , and by setting (c u , c v ) = H(v ⊗ u) and H(0 ⊗ 0) = 0, we obtain the following energy matrix for :

•

This energy matrix can be obtain by taking the energy matrix of defined by

followed by the transformation

This means that, for c = c 0 , the particle k c for the energy is identified as the particle (2k -1) c for the energy , and since we do not modify the ground c 0 , the particle k c 0 for is identified as (2k) c 0 for , so that the last particle still remains 0 c 0 .

By setting c 0 = 1, we can apply Theorem 2.2.24 to the flat partitions with ground c 0 and with energy to obtain the generation function

In fact, by the definition of the energy , one can view the partitions of R ,c g 1 as the finite sub-sequences, ending with 0 c 0 , of the infinite sequence

2), the flat partitions with ground c g and energy are generated by the function (-c 1 q, -c 1 q, . . . , -c n q, -c n q; q 2 ) ∞ • Using Theorem 8.2.4 and (10.1.1), we obtain the formula for the character for Λ 0 given in Theorem 2.3.6.

Case of affine type D

(2)

Another way to retrieve Theorem 2.3.6 is to consider in Theorem 2.3.1 the set 2 1 P c 0 , with D = 1. This set consists of the partitions grounded in c 0 , and which are finite subsequences of

with possible repeated parts 2k c 0 for k > 0. It suffices to observe that, by definition of 2 1 P c 0 , the size difference between the two consecutive parts with colors c b and c b has the same parity as

This implies that all the parts with colors c 1 , c 1 , . . . , c n , c n have the same parity, different from the parity of the parts with color c 0 . Since the ground have size 0 and color c 0 , we obtain the sequence above.

By setting c 0 = 1, we then obtain

Case of affine type D

(2)

The crystal graph of the vector representation B of D

(1) (2)

followed by the transformation (q, c 0 , c 1 , c 1 , . . . , c n , c n ) → (q 2 , c 0 q -1 , c 1 q -1 , c 1 q -1 , . . . , c n q -1 , c n q -1 ) • (10.2.3)

By applying Theorem 2.2.24 to the corresponding flat partitions with ground c 0 and energy , this leads to the generation function

(-c 1 q, -c 1 q, . . . , -c n q, -c n q; q) ∞ (c 0 q; q) •

In fact, by the definition of the energy , one can view the partitions of R ,c g 1 as the finite sub-sequences, ending with 0 c 0 , of the infinite sequence

with the particles k c 0 possibly repeated. Using (10.2.3), we then have that the flat partitions with ground c 0 and energy are generated by the function (-c 1 q, -c 1 q, . . . , -c n q, -c n q; q 2 ) ∞ (c 0 q; q 2 ) • By Theorem 8.2.4, (10.2.1) and the fact that c 0 = 1 with the convention of Theorem 8.2.4, we finally obtain the formula for the character in Theorem 2.3.7 corresponding to Λ 0 . As for the case A 

, followed by the transformation

Here the particle k c 0 for is transformed into (2k -1) c 0 for , and the particle k c i into (2k -2) c i . Since c 0 and c i are not modified, the particle k c then becomes (2k) c for any c ∈ {c 0 , c i : i ∈ {1, . . . , n}}.

Applying Theorem 2.2.24 to the flat partitions with ground c 0 and energy , this leads to the generating function

(-c 1 q, -c 1 q, . . . , -c n q, -c n q; q) ∞ (c 0 q; q) •

In fact, by the definition of the energy , one can view the partitions of R ,c g 1 as the finite sub-sequences, ending with 0 c 0 , of the infinite sequence

with the particles k c 0 possibly repeated. Using (10.2.4), the flat partitions with ground c 0 and energy are generated by the function (-c 1 q 2 , -c 1 , . . . , -c n q 2 , -c n ; q 2 ) ∞ (c 0 q; q 2 ) • By Theorem 8.2.4, (10.2.1) and the fact that c 0 = 1 with the convention of Theorem 8.2.4, the formula for the character in Theorem 2.3.7 corresponding to Λ n holds. This character formula can also be obtained by (2.3.7) with t = D = 1 and d = 2 and ground c 0 .

Case of affine type A

(1)

The crystal graph of the vector representation B of A

2n-1 (n ≥ 3) is the following,

.5: Crystal graph B of the vector representation for type A

(2)

and for all u ∈ {1, . . . , n},
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2n , D

n+1 , A

2n-1 , B

n , D

Here,

We thus have the following crystal graph for B ⊗ B : 0-arrow : 1-arrow : n-arrow : paths of i-arrows, for consecutive i = 0, 1, n (2)

We then consider C = {c 1 , . . . , c n , c n , . . . , c 1 }, and by setting H(1 ⊗ 1) = -1, we obtain the following energy matrix:

We now refer to the notation of Section 8.3. Recall that the ground state path of Λ 0 is p Λ 0 = (g k ) ∞ k=0 with g 2k = 1 and g 2k+1 = 1 for all k ≥ 0. Here, t = 2 and our convention for the energy function gives

Then, by (2.3.1), it follows that H Λ 0 = H. This yields the equality H Λ (g 1 ⊗ g 0 ) + 2H(g 2 ⊗ g 1 ) = -1, and we can then choose D = 2. We finally obtain by (2.3.4) that u 0 = -1 and u (1) = 1. Using Theorem 2.3.1, this yields the character formula via the generating function of the set 2 2 P c 1 c 1 .

We observe that, by the choice D = d = 2 and the fact that u (0) = -1, the partitions of 2 2 P c 1 c 1 have parts with odd sizes, as the differences between consecutive parts are even and the grounds' sizes are odd (we always have the tail ((-1) c 1 , 1 c 1 )). Besides, computing the generating function of partitions in 2 2 P c 1 c 1 is not difficult. It suffices to remark that is a partial order on the set of colored odd integers, with (-1)

We also remark that, since H(b ⊗ b) = 1 for all b ∈ B, any part cannot appear twice, expect in sequences of the form

To compute the generating function of such sequences for a fixed k, we distinguish 4 cases:

, followed by the transformation

Here the particle k c i for is transformed into (k -1) c i for . The other particles k c remain unchanged. By setting the ground c g = c 0 = 1, we can apply Theorem 2.2.24 to the flat partitions generated by . This results in the generation function

(-c 1 q, -c 1 q, . . . , -c n q, -c n q; q) ∞ (c 1 c 1 q 2 ; q 2 ) ∞ •

In fact, by the definition of the energy , one can view the partitions of R ,c g 1 as the finite sub-sequences, ending with 0 c 0 , of the infinite sequence

with the additional condition that we have possibly alternating sub-sequences of the form

By reasoning on the parity of the length and the first element, the generating function of such alternating sequences for a fixed potential k, possibly empty or reduced to one element, is equal to

2), we then have that the flat partitions with ground c g and energy are generated by the function (-c 1 q, -c 1 , . . . , -c n q, -c n ; q) ∞ (c 1 c 1 q; q 2 ) ∞ •

Using Theorem 8.2.4 and (10.4.1), we obtain the formula for the character corresponding to Λ n in Theorem 2.3.9.

Character for Λ 0

We proceed exactly as we did for the type A

(1)

2n-1 (n ≥ 3), all the combinatorial elements are defined in the same way. Here, we only add the color c 0 , the part colored by c 0 being odd, and with the fact that the the part (2k + 1) c 0 can appear several times, and wt0 = 0, we obtain ∑ π∈ 2 2 P c 1 c 1 C(π)q |π| = 1 2(c 1 c 1 q 4 ; q 4 ) (-c 1 q, -c 1 q, . . . , -c n q, -c n q; q 2 ) (c 0 q; q 2 ) + (c 1 q, c 1 q, . . . , c n q, c n q; q 2 ) (-c 0 q; q 2 ) • Appendix A

Proofs of technical lemmas and propositions

A To prove (3.1.7), we observe that, for any (l p , k q ) ∈ P × S, by (2.2.12), l p k q ⇐⇒ l p (k + 1) q , and

To prove (3.1.8), we first remark that, by (3.1.3), α(k q ) = β((k + 1) q ). We then obtain by (2.2.12) that

A.1.2 Proof of Lemma 3.1.5

Let us consider min{kl : β(k p ) α(l q )}. An abstract way to show (3.1.9) is to use the explicit formula

with q = a x a y and p = a r a s . Recall that x < y and r < s. In fact, by considering (2.2.6) and the lexicographic order , one can check that the minimal difference between the secondary colors p and q for the relation is

so that, by (2.2.12), the minimal difference between the secondary colors p and q for the relation is given by

Now, we reason first according to the parity of k. For k = 2u, we have by (3.1.2) that α(k p ) = u a s and β k p = u a r . In order to minimize kl, α(l q ) and β(l q ) have to be the greatest primary parts with color a x and a y smaller than u a r in terms of , so that, by (2.2.8), they must necessarily be the parts (uχ(r ≤ x)) a x and (uχ(r ≤ y)) a y . We then obtain the difference

With the same reasoning for k = 2u + 1, since α(k p ) = (u + 1) a r and β(k p ) = u a s , we then reach the difference

Since the mimimum is reached either for k even or k odd, we then have that min{kl :

We finally consider the case l = 2v, so that α(l q ) = v a y and β(l q ) = v a x , and to minimize kl, α(k p ) and β(k p ) have to be the smallest primary parts with color a r and a s greater than v a y in terms of , so that they must necessarily be the parts (v + χ(r ≤ y)) a r and (v + χ(s ≤ y)) a s . We obtain the difference χ(r ≤ y) + χ(s ≤ y) and then the inequality min{kl :

, we then have (3.1.9).

To prove (3.1.10), we have by (3.1.3) that α((l -1) q ) = β(l q ). Since β(k p ) β(l q ) = α((l -1) q ), this then implies by (3.1.9) that k p (l -1) q , and this is equivalent to (k + 1) p l q .

Let us now suppose that kl ≥ ∆(p, q). We just saw that this minimum value was reached at k or k -1. Then if we do not have β(k p ) α(l q ), we necessarily have β((k -1) p ) α((l -1) q ) = β(l q ) by (3.1.3). Moreover, by (2.2.12), we have

so that we obtain (3.1.11). Suppose now that we have kl = ∆(p, q). If β(k p ) α(l q ) then we necessarily have

In fact, we saw that the minimal difference is obtained when the primary parts α(l q ) and β(l q ) are the closest possible to β(k p ) with the primary colors of q. If β(k p ) α(l q ), since we have β(l q ) + 1 α(l q ), we also have β(l q ) + 1 α(l q ) β(k p ) •

In both cases, the relation (3.1.12) holds. If we have that kl -1 ≥ ∆(p, q), then we necessarily have by (3.1.3) that β(k q ) β(l + 1) q = α(l q ) •

A.1.3 Proof of Lemma 3.1.6

For any ν = (ν 1 , . . . , ν t ) ∈ E 2 and any i ∈ [1, t -2], we have

with a strict inequality as soon as we have ν i or ν j in S, and we thus obtain (3.1.13).

A.1.4 Proof of Lemma 3.4.5

By definition, for all i ∈ I, Br ν (i) ∈ ([i, j) ∩ I) ∪ {j}, for j = min(i, p + 2s + 1] ∩ J. This means that, for any

Let us now consider the function Br ν on [i, j) ∩ I. It is obvious that, for all i ∈ [i, j) ∩ I, we have j = min(i , p + 2s + 1] ∩ J.

• If we have Br ν (i) = j, then by (3.4.4)

for all u ∈ [i, j) ∩ I, and since [i , j) ⊂ [i, j), we also obtain that Br ν (i ) = j.

• Finally, if Br ν (i) ∈ (i, j) ∩ I, then we have either j > i ≥ Br ν (i), or i ≤ i < Br ν (i). In the first case, we obtain Br ν (i ) ≥ i ≥ Br ν (i) •

In the second case, we observe that, by (3.4.5) and (3.4.6),

and in particular for all u ∈ [i , Br ν (i)) ∩ I. Thus, if Br ν (i ) = j, we necessarily have by (3.4.6) that Br ν (i ) ≥ Br ν (i).

In any case, we have that Br ν (i ) ≥ Br ν (i).

Let us now suppose that Br ν (i)

Otherwise, let us assume that Br ν (Br ν (i)) > Br ν (i).

• If Br ν (Br ν (i)) = j, this means that

for all u ∈ [Br ν (i), j) ∩ I. Since ν Br ν (i) and ν Br ν (i)+1 have different primary colors and are consecu- tive with respect to , we then obtain that ν Br ν (i)+1 + 1 ν Br ν (i) , so that

We also have by (3.4.5) and (3.4.6) that

We then conclude by (3.4.4) that Br ν (i) = j, which contradicts the fact that Br ν (i) / ∈ J.

• For Br ν (Br ν (i)) > Br ν (i), we reason exactly in the same way, by replacing j by Br ν (Br ν (i)), and we obtain by (3.4.6) that Br ν (i) ≥ Br ν (Br ν (i)) > Br ν (i).

To conclude, we necessarily have that Br ν (Br ν (i)) = Br ν (i) for Br ν (i) ∈ I.

A.1.5 Proof of Lemma 3.4.8

By (2.2.11), (2.2.12) and the fact that all the pairs in SP have distinct secondary colors, we have that for any u ∈

so that we obtain (3.4.10) recursively.

A.1.6 Proof of Lemma 3.4.9

By (3.1.12) of Lemma 3.1.5, we have for any u ∈ [i, i ) ∩ I that

so that we recursively have

), if we suppose that Br ν (i ) > i , we then have

and we obtain that 

A.1.7 Proof of Lemma 3.5.8

We can notice that for any pair (k p , l q ) of secondary parts different from a pattern cd → ab and that satisfies k p l q , we can always find an integer h such

This is obvious when (p, q) / ∈ SP . In fact, k p l q ⇐⇒ k p (l + 1) q l q and we can find a unique h cd satisfying (l + 1) q h cd l q . Note that if q = cd, we then have at least two possible integers h = l, l + 1. Suppose now that (p, q) ∈ SP . Recall that here, we set

We then have two kinds of pairs.

• First, we have the pairs (a i a j , a k a l ) with 5 ≥ j > i > l > k ≥ 1, so that i ≥ 3 and l ≤ 3. Thus, a i a j ≥ cd, while a k a l ≤ bc < cd. If a i a j = cd, we have that a i a j > cd, and then k a i a j k cd k a k a l and the property (A.1.1) is true for (k p , l q ) = (k a i a j , k a k a l ).

• The second kind of pair is of the form (a i a j , a k a l ) with 5 ≥ j > l > k > i ≥ 1, so that l ≤ 4 and i ≤ 2. Thus, a i a j ≤ be < cd, while a k a l ≤ cd. We have that a i a j > cd, and then (l + 1) a i a j l cd l a k a l and the property (A.1.1) is true for (k p , l q ) = ((l + 1) a i a j , l a k a l ).

Let us now consider a pattern of secondary parts (ν

we recursively show on 1 ≤ i ≤ s that there exists h such that

In fact, by (A.1.1), the previous statement holds for i = 1. Suppose now it holds by induction up to i. If ν 2i+1 + ν 2i+2 , ν 2i+3 + ν 2i+4 = cd → ab, then by (A.1.1), we have h such that

We thus have h > h , and by choosing h , we obtain

However, as soon as x ≥ 1, we directly have

We thus obtain before the third application of Step 1 that,

for some i + x ≥ j ≥ j. Observe that µ 3 is the tail of the partition λ i+x+3 • • • λ t . Moreover, we have the following inequalities

Observe that the partition to the left of λ i+x+4 is well-ordered by , so that µ 3 is the tail of the partition

In both cases, the conditions in the proposition are satisfied. In fact, the partition δ 2 belongs to E and is the head of the partition δ 3 that also belongs to E , and the fourth statement is true. By comparing µ 1 , µ 2 (and µ 3 ), the third statement is true since µ 2 is a strict tail of µ 1 . The two first statements directly come from the way we established the sequences, and the fact that s(δ u ) g(γ u ) is true for u = 2, 3.

By induction, we only apply

Step 1 once to the troublesome pair (s(γ u ), g(µ u )) in the partition ∅, γ u , µ u ∈ O and then some iterations of Step 2. We then obtain some sequence δ u , γ u , µ u with the same form as (δ 2 , γ 2 , µ 2 ), and we set the triplet (δ u+1 , γ u+1 , µ u+1 ) = ((δ u , δ u ), γ u , µ u ). Note that the sequence δ u , δ u is indeed a partition in E by considering the process from the (u -1) th Step 1. Then, the sequence (δ u , γ u , µ u ) becomes the sequence (δ u+1 , γ u+1 , µ u+1 ) after applying Step 1 once to the troublesome pair (s(γ u ), g(µ u )), and some iterations of Step 2 by crossing the secondary part s(γ u ) + g(µ u ) with some primary parts of γ u \ {s(γ u )}. Proposition 3.3.2 follows naturally.

A.1.9 Proof of Proposition 3.3.4

Let us consider E ν = (ν 1 , . . . , ν t ). If we suppose that the secondary parts of ν are ν i 1 , . . . , ν i S for i 1 < • • • < i S , we can then set for all v ∈ [1, S]

and δ S+1 = ∅. By setting i = i S , we also have that

• If ν i crosses all the primary parts up to ν t after iterating Step 1, we have that

But, we also have that

. . , ν t are all primary parts. We thus have by Lemma 3.1.6 that

so that, if ν it + i has size 1, then ν t has also size 1 and a color smaller than the color of ν i . But by (3.1.1) and (2.2.6), we necessarily have that β(ν it + i + 1) has size 1 and a color greater than the color of ν i . We then obtain by (2.2.9) that

and we do not cross ν it + i + 1 and ν t , which is aburd by assumption. This means that in any case after crossing, we still have that the secondary part size is greater than 1, so that after splitting, its upper and lower halves stay in P.

• if ν i crosses all the primary parts up to ν j after iterating Step 1 and stops before ν j+1 , we then set

The statements of Proposition 3.3.4 are then satisfied.

• Suppose now that (δ v , γ v , µ v ) satisfies the conditions in Proposition 3.3.4. Note that s(γ v ), g(µ v ) are respectively the upper and the lower halves after the splitting of the secondary part coming from ν i S+2-v . We also have by ( 2.2.12) that

since the parts between these secondary parts are primary parts. By Lemma 3.1.5, even if these secondary parts meet after crossing the primary parts, the splitting of the part coming from ν i S+1-v will then occur either before the upper half or between the upper and the lower halves obtained after the splitting of ν i S+2-v . Thus the splitting of s(δ v ) = ν i S+1-v occurs before g(µ v ). By taking s(γ v+1 ), g(µ v+1 ) as the upper and the lower halves of the split secondary part coming from ν i S+2-v , we thus obtain a sequence (δ v+1 , γ v+1 , µ v+1 ) such that µ v is the strict tail of µ v+1 . Note that these sequences also satisfy the other statements. We saw in the proof of Proposition 3.3.2 in Appendix 3.3.2 that for any u ≥ 1, the sequence (δ u , γ u , µ u ) becomes the sequence (δ u+1 , γ u+1 , µ u+1 ) after applying Step 1 once to the troublesome pair (s(γ u ), g(µ u )), and some iterations of Step 2 by crossing the secondary part s(γ u ) + g(µ u ) with some primary parts of γ u \ {s(γ u )}. Without loss of generality, let us set

and suppose that the secondary parts π i + π i+1 crossed the primary parts Lemma 3.1.6 and (3.1.4), we have that Lemma 3.1.4, this is equivalent to saying that

If the iteration of Step 2 ceases before π k-1 , we then have that

But the inequality (A. 1.3) holds for all k ≤ j ≤ i -1, so that by applying Ψ on (δ u+1 , γ u+1 , µ u+1 ), the secondary part s(δ u+1 ) = π i + π i+1 + ik will recursively cross by Step 1 the parts π j -1. The iteration of Step 1 stops before the part π i+2 since

and we split by Step 2 the secondary part π i + π i+1 into π i and π i+1 . We then retrieve the sequence (δ u , γ u , µ u ).

To conclude, we observe that if Φ(λ) ∈ E has S secondary parts, then the last sequence in the process Φ is (δ S+1 , γ S+1 , µ S+1 ) with µ S+1 = ∅, δ S+1 the partition Φ(λ) up to the S th secondary part and γ S+1 the tail to the right of this last secondary part. But this triplet is equal to the triplet (δ v , γ v , µ v ) of Proposition 3.3.4 for v = 1. We then recursively obtain the result of Proposition 3.3.6 in the decreasing order according to u.

A.1.11 Proof of Proposition 3.4.6

Let us take any i

Since in the process of Ψ, the primary parts never cross, and the secondary parts can only move forward before splitting, the part ν j will not be affected by Ψ operating on any secondary part to its right.

• Suppose that Br ν (i) = j. By definition (3.4.4), this means that

for all i ∈ [i, j) ∩ I, so that, by the crossing condition of Step 2 of Ψ, ν j + j-i 2 -1 will recursively be the first primary part that crosses all the secondary parts

all the fixed points by Br ν in [i, j). By Lemma 3.4.5, have that

We then have during the process of Ψ that ν j crosses all the secondary parts up to ν i t +2 + ν i t +3 , but does not cross ν i t + ν i t +1 . Thus, ν i t + ν i t +1 directly splits into ν i t and ν i t +1 , and by (3.4.5) and the crossing condition of Step 1 , ν i t crosses all the secondary parts up to ν i t-1 + ν i t-1 +1 , which is not crossed. The process then continues and we reach ν i 1 + ν i 1 +1 which directly splits into ν i 1 and ν i 1 +1 . If i = i 1 , we have the first statement of Proposition 3.4.6. Otherwise, ν i 1 crosses all the secondary parts up to ν i + ν i+1 . We then obtain for for i

and the part ν i u + ν i u +1 first crosses the primary part g(γ s+1-u ).

A.1.12 Proof of Proposition 3.4.7

Let us take ν = (ν 1 , • • • , ν p+2s ), and

and γ 1 is the tail to the right of this part. We then have that

).

• If we have that Br ν (i u ) > i u , by Proposition 3.4.6, we necessarily have that

But with the condition (2), we have by (2.2.12) and (3.1.7) that

we then obtain that the partition s(δ s+1-u ), γ s+1-u belongs to E 2 , so that, by Lemma 3.1.6 and (3.1.7) of Lemma 3.1.4, all the crossings in Step 1 of Ψ are reversible by Step 2 of Φ. We set

) crosses all the primary parts up to π j , we then have by (3.1.8) of Lemma 3.1.4

Furthermore, always by condition (2), we have that

so that δ s+2-u , γ s+2-u ∈ E and we obtain that γ s+2-u ∈ E ∩ O and s(δ s+2-u ) g(γ s+2-u ). Moreover, if µ s+1-u ∈ O and j < r, we then have that (π r , g(µ s+1-u )) is the troublesome pair coming from the splitting of ν i u+1 + ν i u+1 +1 and satisfies π r g(µ s+1-u ), so that µ s+2-u ∈ O. If µ s+1-u ∈ O and j = r, this means that the splitting of ν i u + ν i u +1 occurs in between those of ν i u+1 + ν i u+1 +1 and the lower halves are still well-ordered in terms of , so that µ s+2-u ∈ O. In any case, if µ s+1-u ∈ O (with the previous assumption that γ s+1-u ∈ E ∩ O), then µ s+2-u ∈ O.

• If we have that Br ν (i u ) = i u , then by Proposition 3.4.6, the splitting occurs directly and we have

≥ 2 (by (2.2.11) and the fact that ν i u +1 ≥ 1) , so that, by (2.2.9) and ( 2

, this means by (2.2.12) that we have the case of a pair of secondary parts with colors in SP , and which are consecutive for . Then the pair (ν -(i s ), ν i u + ν i u +1 ) has the form (k cd , k ab ) or ((k + 1) ad , k bc ) for some primary colors a < b < c < d. We check the different cases according to the parity of k :

In any case, we always have that ν i u is well-ordered with the part to its left in terms of , so that δ s+2-u , γ s+2-u ∈ E , and then γ s+2-u ∈ E ∩ O and s(δ s+2-u ) g(γ s+2-u ).

Note that the process Ψ is reversible by Φ since the crossings are reversible andso is the splitting. We then obtain Proposition 3.4.7 recursively on u in decreasing order.

upper and the lower halves' positions satisfy θ i s-v+2 < θ i s-v+2 +1 .

• The passage from the secondary part s(δ v ) to its splitting to become s(γ v+1 ), g(µ v+1 ) implies that the position of the lower part increases during the crossings, and then is fixed after the splitting. We thus obtain that θ i s+1-v +1 is the position of the g(µ v+1 ). With the fact that the sequence g(µ v ) is the strict tail of g(µ v+1 ), we reach the inequality θ i s-v+2 +1 > θ i s+1-v +1 ≥ i s+1-v + 1. This gives the first inequality of (3.7.7).

• If the splitting of s(δ v ) occurs before g(γ v ), it means that g(γ v ) belongs to µ v+1 , and the position of the corresponding upper half is fixed in the rest of the process. We then have that

• Otherwise, the splitting of s(δ v ) occurs between g(γ v ) and g(µ v ), and the relative position of the corresponding upper halves will not change until the end of the process. We thus have that

, and this leads (recursively on v) to the proof of (3.7.5).

• Recall that we never cross two primary parts in the process, and this naturally leads to θ j v < θ j v+1 , for j v < j v+1 and we have (3.7.6). Moreover, the primary parts can only move backward, since they can only cross some secondary parts to their left. We then obtain the second inequality of (3.7.7) θ j v ≤ j v . .

• Since the crossing only occurs between the secondary and primary parts, if the secondary part corresponding to i does not cross in the primary part corresponding to j, then we have that θ i+1 < θ j , and if they crossed, then both the upper and the lower halves move together, and in the remainder of the process, their relative positions stay unchanged, so that θ j < θ i , and we obtain (3.7.8).

A.2 Beyond Siladić's theorem A.2.1 Proof of Lemma 4.3.5

We prove it recursively on successive applications of Λ. The energy transfer Λ conserves the State of the partition, so that the sequence of states is fixed. On the other hand, the particles gain or lose exactly the minimal energy needed for the transfer, and by definition, this is exactly what ∆ evaluates. As an example, if we do the transformation Λ, at position k, on a pair of particles in P × S, we obtain initial positions

•

Here we recall that l k+1l k+2 = ∆(k + 1, k + 2). The same calculation occurs when we consider the application of Λ on a pair in S × P.

A.2.2 Proof of Lemma 4.3.6

We first prove that φ is non-increasing according to J, and then that φ is non-decreasing according to I.

• For any j < j ∈ J and i ∈ I, we have by Chasles' relation and ( 4

so that by (4.3.3) again, we obtain that φ(j, i)φ(j , i) ≥ α(j, j )β(j, j ). Since j, j ∈ J, we have that α(j, j ) = |(j, j ]

Therefore, we always have for any j < j ∈ J and i ∈ I that φ(j, i)φ(j , i) ≥ 0.

• For any j ∈ J and i < i ∈ I, we have by Chasles' relation and (4.3.6)

Since we have by (4.3.3) 

we then obtain that φ(j, i )φ(j, i) ≥ 0.

A.2.3 Proof of Lemma 4.3.7

Since the functions η and ∆ satisfy Chasles' relation, in order to show (4.3.14), it suffices to prove that for all k ∈ {1, . . . , s -1},

To show (4.3.15), we only need to prove the relation for two consecutive i, i ∈ I I + 1. This is obvious for i ∈ I, since the following index is i + 1 ∈ I + 1, and l il i+1 = ∆(i, i + 1). Now let us take i ∈ I + 1.

The next i (if it exists) must necessarily be in I, and by (4.3.14), we obtain by the definition of η and (4.3.3) that

). We also observe that µ(s ) = γ(s). We then have the following equivalences:

By evaluating the potential difference at σ(j ), we obtain that

, we can apply Λ, so that σ is no longer the final position.

• Let us now assume that there exists (j, i) ∈ J × I such that σ(j) > σ(i) but ψ(j, i) ≥ 0. Since σ is increasing on J and I (I + 1), and σ(J) -1 \ σ(J) ⊂ σ(I + 1), there exist (j , i )

We also have that

By evaluating the potential difference at σ(j ), we obtain

, we can apply Λ, so that σ is no longer the final position.

To conclude, we observe that the first part gives that σ(j) < σ(i) =⇒ ψ(j, i) ≥ 0 and the second part σ(j) < σ(i) ⇐= ψ(j, i) ≥ 0, so that we obtain the first result in Proposition 4.3.8.

We obtain (4.3.18) with the same reasoning as in the proof of Proposition 4.3.8,by observing that the difference of potential when two particles meet does not depend on the choice in which we apply Λ, and once particles cross by Λ, they cannot cross back.

A.2.9 Proof of Proposition 4.3.9

Since for all k, k ∈ {1, . . . , s}, we obtain by Lemma 4.3.5 that

we have then by (4.3.14

Step 1 ended, we necessarily have

By using (4.3.3), we obtain that

so that, since ρ ∈ {0, 1} and ν σ(i) ∈ Z, we then always have ν σ(i) ≤ ρ.

A. We proceed via backward induction on j.

• If j = s + t, λ( f s+t ) is the last part of the minimal partition and therefore has size 1. Equation (6.1.1) is correct, as s + t ∈ N T 0 S 1 .

• Now assume that (6.1.1) holds for f j+1 , and prove it for f j . Let k and be such that f j = a k b k and f j+1 = a b . We always have k = .

1. For now, let us assume that n j+1 > 0, i.e. that f j+1 was actually inserted in the color sequence.

-If j ∈ N or j is a left secondary insertion, then the subsequence between f j and f j+1 in S(n 1 , . . . , n s+t ) is f j , a k b , f j+1 or f j , a b , f j+1 . In the first case, we have

In the second case, we have also

By the induction hypothesis, we have λ( f j ) = 1 + # ({j + 1, . . . , s + t} ∩ (N T 0 S 1 )) = # ({j, . . . , s + t} ∩ (N T 0 S 1 )) , because j ∈ N T 0 S 1 . -If j is a right secondary insertion, then f j appears directly before f j+1 in S(n 1 , . . . , n s+t ).

Thus we have

and we can deduce (6.1.1) in the exact same way as before.

2. Now we treat the case where f j+1 was not inserted in the color sequence. By Proposition 6.1.25, if j + 1 ∈ N T 0 , it does not change anything to the other parts in the minimal partition , so λ( f j ) stays the same as in case [START_REF]For all c, c ∈ C free , we have (c, c ) = χ(c = c )[END_REF]. If j + 1 ∈ T 1 and b j+1 was not inserted, then by Proposition 6.1.25, the part λ( f j ) decreases by one compared to the previous case. But in this case, # ({j, . . . , s + t} ∩ (N T 0 S 1 )) also decreases by one compared to case (1), so Equation (6.1.1) is still correct.

A.3.3 Proof of Lemma 6.2.4

When u = v = 0, this is trivially true. Otherwise, we have by definition:

∑ θ 1 ,...,θ v ∈{0,1}: 1) g u,v (q; x 1 , . . . , x v ).

A.3.4 Proof of Lemma 6.2.7

Let us consider a partition into parts at most s + m, generated by 1 (q;q) s+m .

x -y = u + s • a rectangle of size (mu) × (s + m ) on the bottom-left of the intersection, generated by q (m -u)(s+m ) ,

• a partition into parts at most s + m on top on the rectangle, generated by 1 (q;q) s+m ,

• a partition with at most mu parts, each of size at most mm , generated by [ m-u m -u ] q .

Summing over all possible values of m gives the desired result.

A.3.5 Proof of Lemma 6.3.1

First, writing S 1 = t u=1 S u 1 , we have

Now, noticing that for j ∈ S u 1 , P(j) = ju, we can write

We first note that

We also rewrite jj 2u-1 as

Finally, we have

Combining the three observations above, (A.3.1) becomes

does not depend on j, and that #( j 2u-1 ; j -1 ∩ S u 1 ) = #{j < j : j ∈ S u 1 } yields the desired formula.

A.3.6 Proof of Lemma 6.3.2

By Proposition 6.1.27 and Lemma 6.3.1, we have

Thus by the changes of variables

and noticing that |min (S)| and Σ 1 do not depend on the n j 's, we obtain

q ∑ j∈N T 0 S 1 n j #( j;s+t ∩(N T 0 S 1 )) (A. The generating function for such partitions is given by q

, which yields the desired formula (6.3.2) for H S,S 1 (q).

A.3.7 Proof of Lemma 6.3.3

Partitions whose Ferrers diagram fits inside a a × b box, generated by [ a+b a ] q , are in bijection with walks on the plane going from (0, 0) to (b, a), having b right steps and a up steps. The partition can be seen on top of the path, as shown in If A ⊆ 1; a + b , |A| = a is the set of up steps, then for each position j ∈ A, the part of the partition corresponding to this up step has its size equal to the number of right steps that have been done before, i.e. #{j < j : j ∈ 1; a + b \ A}.

A.3.8 Proof of Lemma 6.3.5

The left-hand side is the generating function for partitions fitting inside a m × ( 1 + • • • + t ) box, such that the largest part is equal to m. Take the Ferrers board of such a partition, and draw it is the plane as shown on Figure A.4 (where the partition is above the path).

x y For all i ∈ {1, . . . , t}, let x i be the size of the ∑ t k=i+1 k + 1-th part (with x i = 0 if there are less than

For all i ∈ {1, . . . , t}, let y i := ∑ i k=1 k . For fixed 0 ≤ x 1 ≤ • • • ≤ x t = m, these partitions are generated by t ∏ r=1 q r x r-1 × q x r -x r-1 x rx r-1 + r -1

x rx r-1 q , where q r x r-1 generates the rectangle between the y-axis, the lines y = y r and y = y r-1 , and the line x = x r-1 , and the second term generates partitions fitting inside a (x rx r-1 ) × r box, such that the largest part is equal to x rx r-1 . The above is equal to

and summing over all possible values for x 1 , . . . , x t-1 gives the desired result.

A.3.9 Proof of Lemma 6.3.7

Let us define G 0 (q; m) = χ(m = 0), and for v ≥ 1,

So that the function in Lemma 6.3.7 is .3.3) Recall from Andrews, 1984b, p. 37, (3.3.10) that

a a q b ca q q a (b-c+a ) . (A.3.4) By (A.3.4) with a = 2x 1 , b = m + x 1 -1, and c = m, we have

Now assume that it is true for v -1 ≥ 1 and prove it for v. We have

where we used the induction hypothesis in the last equality. Rearranging the order of summation leads to

Using Lemma 6.3.

, and the change of variable x 1 = m v-1u, this yields:

By the q-analogue of Pascal's triangle, this becomes

So, separating the case where v = 0 from the case where v = 1, we have 1) .

After simplification, this is exactly (A.3.5).

A.3.10 Proof of Lemma 6.4.1

The first equality follows directly from the definition of the s i 's.

We now consider the left insertion of a(c ) in a secondary pair (c, c ) with a bound color c . Without loss of generality, since for a bound color c, the type of the insertion of a(c ) in the pair (b(c), c ) is the same as in the pair (c, c ), we can assume that c is a free color (then different from a(c )). The type of insertion is then given by the value of (c, a(c )) + (a(c ), c ) -(c, c ). We then have

The type of insertion is then exchanged, as a type 0 with becomes a type 1 with and reversely, a type 0 with becomes a type 0 with . We use the same reasoning for the right insertion and we obtain the same reversibility of the types.

A.3.12 Proof of Proposition 6.2.5

Let C = c 1 , . . . , c s+m be a color sequence whose reduction is S. The weight of the corresponding minimal partition in .3.6) where the second equality follows from the definition of . On the other hand, by Proposition 6. 

Combining this with (A.3.6), we get that the generating function for minimal partitions in P

By Lemma 6.2.4 and the fact that for all k ∈ {1, .

where we used (A.3.7) in the last equality. This completes the proof.

A.3.13 Proof of Proposition 6.3.4

By Lemma 6.3.2, we have:

By Lemma 6.3.1, this becomes

Exchanging the final sum and product, and then using Lemma 6. 

By the changes of variables x u = m u -∑ u v=1 k v , we obtain

We deduce the final formula by using that

A.4 Perfect crystal and multi-grounded partitions A.4.1 Proof of Lemma 8.3.1

We have the following formula for any positive integer m, mt-1

Therefore, but computing the weight wt(p) given by (8.1.11), we obtain

A.4.2 Proof of Proposition 8.2.2

It is easy to see that φ(p) belongs to P c g , since by (8.2.2) we have π k π k+1 for k ∈ {1, . . . , s -1}, and p s-1 = g implies that π s-1 = 0 c g . Note that the ground state path • • • ⊗ g ⊗ ⊗g ⊗ g is associated to (0 c g ).

Let us now give the inverse bijection. Start with π ∈ (π 0 , . . . , π s-1 , 0 c g ) ∈ P c g , different from (0 c g ), with colour sequence c p 0 • • • c p s-1 c g . Recall that π s = 0 c g . We set φ -1 (π) = (p k ) k≥0 , where p k = g for all k ≥ s and p k = p k for all k ∈ {1, . . . , s -1}.

• We first show that p s-1 = g. Assume for the purpose of contradiction that p s-1 = g. By (8.2.2), we know that π s-1 0 c g if and only if π s-1 -0 c g = H(p s ⊗ p s-1 ) = H(g ⊗ g) = 0, i.e. if and only if π s-1 = 0 c g . This contradicts the fact that π s-1 = 0 c g .

• By (8.2.2), we also have, for all k ∈ {1, . . . , s -1}, π kπ k+1 = H(p k+1 ⊗ p k ). Therefore

With what precedes, we have φ(φ -1 (π)) = π and φ -1 (φ(p)) = p. We obtain (8. We set Φ(0 c g ) = ((0 c g ), (0 c g )).

Let us now consider any π = (π 0 , . . . , π s-1 , 0 c g ) ∈ P c g , different from (0 c g ), with colour sequence c p 0 • • • c p s-1 c g , and build Φ(π) = (µ, ν). Recall that π s-1 = π s = 0 c g . Let us set p = (p k ) k≥0 , with p k = g for all k ≥ s and p k = p k for all k ∈ {1, . . . , s -1}, and set r = max{k ∈ {0, . . . , s} : p k-1 = g}.

Since p k = g for all k ≥ r, with the convention c g = 1, we obtain that C(π) = c p 0 • • • c p s-1 = c p 0 • • • c p r-1 . Note that r = 0 if and only if all the parts of π have colour c g . We set µ = (µ 0 , . . . , µ r-1 , 0 c g ) = φ(p). By Proposition 8.2.2, for all k ∈ {0, . . . , r -1}, the part µ k is coloured by c p k and has size r-1 ∑ l=k H(p l+1 ⊗ p l ).

Let us now build ν = (ν 0 , . . . , ν t-1 , 0 c g ) ∈ P c g , where c(ν k ) = c g and ν k > 0 for all k ∈ {0, • • • , t -1}. We distinguish two different cases.

• If r < s, then we set t = s and ν = (ν 0 , . . . , ν s-1 , 0 c g ), where

for k ∈ {r, . . . , s -1}.

By (8.2.4), the sequence (ν k ) r-1 k=0 is non-increasing. Moreover the fact that H(g ⊗ g) = 0 and π s-1 = 0 c g implies that ν s-1 > 0, and (ν k ) s-1 k=r is a non-increasing sequence of positive integers. Finally, let us check that ν r-1 ≥ ν r . We have

≥ H(p r ⊗ p r-1 ) -H(p r ⊗ p r-1 ) by (8.2.4) ≥ 0.

Thus (ν k ) s-1 k=0 is indeed a non-increasing sequence of positive integers. • By definition, r ≤ s, so the only other possible case is r = s. As before, (π kµ k ) s k=0 is a nonincreasing sequence of non-negative integers, now with π sµ s = 0 -0 = 0. We then set t = min{k ∈ {0, . . . , s} : π k = µ k }, and ν k = π kµ k for all k ∈ {0, . . . , t -1}.

Observe that for Φ(π) = (µ, ν), with π = (π 0 , . . . , π s-1 , 0 c g ), µ = (µ 0 , . . . , µ r-1 , 0 c g ) and ν = (ν 0 , . . . , ν t-1 , 0 c g ), we always have s = max{r, t}, and by adding s -min{r, t} parts 0 c g at the end of the shorter partition, we have π k = µ k + ν k and c(π k ) = c(µ k ) for all k ∈ {0, . . . , s -1}.

The map Φ -1 from P c g × P c g to P c g simply consists in adding the parts of µ = (µ 0 , . . . , µ r-1 , 0 c g ) ∈ P c g to those of ν = (ν 0 , • • • , ν t-1 , 0 c g ) ∈ P c g to obtain a grounded partition π ∈ P c g in the following way:

• if t ≤ r, then π k has size µ k + ν k and colour c(µ k ), where we set ν k = 0 for all k ∈ {t, • • • , r -1}, and we obtain the partition π = (π 0 , • • • , π r-1 , 0 c g ),

• if t > r, the first r parts are defined as in the case t ≤ r, and the remaining parts are π k = ν k for all k ∈ {r, . . . , t -1} with colour c g , and we obtain the partition π = (π 0 , • • • , π t-1 , 0 c g ).

A.4.4 Proof of Proposition 8.3.2

Here, we use the same reasoning as in the proof of Proposition 8.2.2. It is easy to check that π belongs to t P c g 0 •••c g t-1

. In fact, π has (m + 1)t parts, π k π k+1 for all k ∈ {0, mt -2}, and by observing that u (0) = -1 t ∑ t-1 l=0 (k + 1)DH Λ (g k+1 ⊗ g k ) we obtain that π mt-1 = - . We set φ -1 (π) = (p k ) k≥0 , where p m t+i = g i for all m ≥ m and i ∈ {0, . . . , t -1}, and p k = p k for all k ∈ {0, . . . , mt -1}.

• We first show that (p mt-m , . . . , p mt-1 ) = (g 0 , . . . , g t-1 ). Assume for the purpose of contradiction that (p mt-m , . . . , p mt-1 ) = (g 0 , . . . , g t-1 ). 

) in terms of colored integers.

• By (2.3.2), we also have, for all k ∈ {0, . . . , mt -1}, π kπ k+1 = DH Λ (p k+1 ⊗ p k ). Therefore

With what precedes, we have φ(φ -1 (π)) = π and φ -1 (φ(p)) = p. We obtain (8. 

A.4.5 Proof of Proposition 8.3.3

The main trick here consists in considering a classical partition as a partition with always a number of parts divisible by t. It suffices to add the minimal number of parts equal to 0 at the end the partition to have a total number of parts divisible by t. Then, a partition π ∈ d P different from ∅ can be uniquely written in a non-increasing sequence of non-negative multiples of d with π = (dπ 0 , • • • , dπ st-1 ), with π (s-1)t > 0.

We set Φ d (u (0) c g 0 , . . . , u (t-1) c g t-1 ) = ((u (0) c g 0 , . . . , u (t-1) c g t-1 ), ∅). Let us consider any π = (π 0 , . . . , π ts-1 , u (0) c g 0 , . . . , u (t-1)

, different from (u (0) c g 0 , . . . , u (t-1)

), with color sequence c p 0 • • • c p ts-1 c g 0 • • • c g t-1 . We now build Φ d (π) = (µ, ν). Let us set p = (p k ) k≥0 , with p s t+i = g i for all s ≥ s and i ∈ {0, . . . , t -1}, and p k = p k for all k ∈ {0, . . . , st -1}, and set m = max{k ∈ {0, . . . , s} : (p (k-1)t , . . . , p kt-1 ) = (g 0 , • • • , g t-1 )}. We then have C(π) = C(µ).

Let us now build ν = (ν 0 , . . . , ν rt-1 ) in d P, where we write ν in a number divisible by t of parts divisible by d. We distinguish two different cases.

1. If m < s, then we set r = s and ν = (ν 0 , . . . , ν st-1 ), where ν k = π kµ k for k ∈ {0, . . . , mt -1},

for k ∈ {m, . . . , s -1} and i ∈ {0, . . . , t -1} •

We then for all k ∈ {0, . . . , mt -2}

and

We also have for all k ∈ {m, . . . , s -1} and all i ∈ {0, . . . , t -1} that

and , for all k ∈ {m + 1, s -1} ν kt-1ν kt = π kt-1π ktu (t-1) + u (0) = π kt-1π kt -DH Λ (p kt ⊗ p kt-1 ) ∈ dZ ≥0 •

We finally observe that ν st-1 = π st-1u (t-1) = π st-1u (0) + u (0)u (t-1)

= π st-1u (0) -DH Λ (p kt ⊗ p kt-1 ) ∈ dZ ≥0 •

The sequence (ν k ) st-1 k=0 is then a non-increasing sequence of multiples of d. Moreover, π (s-1)t > u (0) , otherwise by the inqualities above, we obtain that (π (s-1)t , . . . , π st-1 ) = (u (0) c g 0 , . . . , u (t-1) c g t-1 ).

We then have that ν (s-1)t = π (s-1)t > 0.