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“...1 delight in weaknesses, in insults, in hardships, in persecutions, in difficulties. For when I am weak, then I am

strong.”
A wise man.

“Mon plus grand succeés est d’avoir connu beaucoup d’échecs
Un homme sage.






Identités de type Rogers-Ramanujan: preuves bijectives et approche a la théorie de
Lie
Mots clefs: Théorie des partitions d’entiers, identités de type Rogers-Ramanujan, Théorie des
représentation des algébres de Lie affine

Résumé

Cette these releve de la théorie des partitions d’entiers, a I'intersection de la combinatoire et de la théorie
de nombres. En particulier, nous étudions les identités de type Rogers-Ramanujan sous le spectre de la
méthode des mots pondérés. Une révision de cette méthode nous permet d’introduire de nouveaux ob-
jets combinatoires au dela de la notion classique de partitions d’entiers: partitions colorées généralisées.
A Tl'aide de ces nouveaux éléments, nous établissons de nouvelles identités de type Rogers-Ramanujan
via deux approches différentes.

La premiere approche consiste en une preuve combinatoire, essentiellement bijective, des identités
étudiées. Cette approche nous a ainsi permis d’établir des identités généralisant plusieurs identités
importantes de la théorie: l'identité de Schur et l'identité Gollnitz, I'identité de Glaisher généralisant
I'identité d’Euler, les identités de Siladi¢, de Primc et de Capparelli issues de la théorie des représenta-
tions de algebres de Lie affines.

La deuxiéme approche fait appel a la théorie des cristaux parfaits, issue de la théorie des représentations
des algebres de Lie affines. Nous interprétons ainsi le caractére des représentations standards comme
des identités de partitions d’entiers colorées généralisées. En particulier, cette approche permet d’établir
des formules assez simplifiées du caractere pour toutes les représentations standards de niveau 1 des

(1) 4@ p@ AQ) gD pl)

types affines A, *;, Ay, Dy, Ay
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Rogers-Ramanujan type identities: bijective proofs and Lie-theoretic approach

Keywords: Integer partition theory, Rogers-Ramanujan type identity, Representation theory of affine
Lie algebra

Abstract

The topic of this thesis belongs to the theory of integer partitions, at the intersection of combinatorics
and number theory. In particular, we study Rogers-Ramanujan type identities in the framework of the
method of weighted words. This method revisited allows us to introduce new combinatorial objects
beyond the classical notion of integer partitions: the generalized colored partitions. Using these combi-
natorial objects, we establish new Rogers-Ramanujan identities via two different approaches.

The first approach consists of a combinatorial proof, essentially bijective, of the studied identities. This
approach allowed us to establish some identities generalizing many important identities of the theory of
integer partitions: Schur’s identity and Gollnitz” identity, Glaisher’s identity generalizing Euler’s iden-
tity, the identities of Siladi¢, of Primc and of Capparelli coming from the representation theory of affine
Lie algebras.

The second approach uses the theory of perfect crystals, coming from the representation theory of affine
Lie algebras. We view the characters of standard representations as some identities on the generalized

colored partitions. In particular, this approach allows us to establish simple formulas for the characters

1) 4@ p@ 4@ ) )

of all the level one standard representations of type A, *,, A, ', D,/;, A" 4,
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Chapter 1

State of the art

1.1 Integer Partitions

By all accounts, the history of integer partitions started in 1674 with a letter of Leibniz to Bernoulli, in
which he asked for the number of ways to decompose a positive integer into a sum of smaller positive
integers. To uniquely identify such sums of integers, we sort the terms in a non-increasing order.

Definition 1.1.1. A partition of a positive integer n is then defined as a non-increasing sequence of
positive integers, called the parts of the partition, whose sum is equal to 7.

The problem raised by Leibniz is then equivalent to the following: for a fixed positive integer 1, what
is the exact cardinality p(n) of the set P (n) of partitions of n?

Example 1.1.2. For example, here we give the list of the partitions of n < 5.

[n [ pn) [P(n)

1] 1 | (1)

21 2 | (2),1)

37 3 103),210),11L1)

i 5 [(@),31),022),21,1),11L11)

51 7 [(5,&1),(32),31,1),221),21,1,1),1,1,1,1,1,1,1)

While these combinatorial objects are simple to visualize, the study of integer partitions remained
difficult for Leibniz and his contemporaries. The actual significant study started with the works of Euler
in (Euler, 1741-43, 1751; Euler, 1748).

To compute p(n) the number of partitions of a positive integer 1, Euler formally introduced one of
the most useful tools of the combinatorial theory: generating functions.

Definition 1.1.3. Let A be a countable family of combinatorial objects, and let (a;) be a countable family
of functions from A to Z, called statistics of the objects. Suppose that for each 7 € A, all but finitely
many of the a;(7r) are equal to 0. The generating function of A with respect to the statistics (ay ) is then
the series in Z>[[x, x;l]] defined by

GF o (() = 1o T (1.1.1)
neA k
Using this definition, the method presented by Euler is the following.

Let us formally define an integer partition A as a finite non-increasing sequence of positive integers
(A1, ..., As). The positive integers Ay, ..., As are referred to as the parts of the partitions A. By conven-
tion, the empty sequence is set to be the empty partition @. We now define the following statistics.

1. The size of A, denoted |A|, is the sum Ay + - - - + Ag.
2. The length of A, denoted ¢(A), is the number of parts of A, namely the value s.

3. For each k € Z~, nx(A) denotes the number of occurrences of kin A, i.e ng(A) = {i € {1,...,s}:
Aj = k}.

We take by convention |@| = ¢(@) = ni(®) = 0. A partition of n is then an integer partition having size
n. We remark that the empty partition is the only partition having size 0. We also note that the partition
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A is uniquely determined by the statistics (1), and we obtain the following relations:

0A) =) nk(A),

k>0

Al =) kni(A)

k>0

The latter relations are indeed well-defined, as the partition A is a finite sequence, and then all but finitely
many of the terms of sequence (1;(A) )k~ are equal to 0. Let us now compute the generating function
according to the occurrences (1 )g~o. Since the number of occurrences determined the partitions, We
then have the equality

;I}_[lkazl_[<2x )=;—[11_xk' (1.12)

k=1 my 0

Using a change of variables x; — xg¥ for all positive integer k, we are able to compute the generating
function with respect to the size and the length of the partitions:

L Wg =15

k=1

1
— xqF

In particular, the number p(n) Leibniz was looking for is the coefficient of n in the above series with
x = 1, namely

X_jozﬂ(n)q” =115 _1 (1.1.3)

k=1

With the same reasoning, Euler succeeded in computing the generating function of partitions into
distinct parts. This condition is equivalent to saying that n;(A) € {0,1} for all k > 0. By setting
D(n),d(n) to be respectively the set and the number of such partitions of n, with the convention that
@ € D(0) (so that d(0) = 1)), we then obtain

i{)d(n)q" - ﬁ(l - 114)
n= =1

Using the same method on the set of partitions into odd parts, i.e ny¢(A) = 0 for all k > 0, and setting
O(n),o(n) to be the set and the number of such partitions of 1, with the convention that @ € O(0) (so
that 0(0) = 1)), we obtain the corresponding generating function

[o 0] o0 1

n=0 k=1+ 1
By observing that
= = (o) =
1+ =TT =TT
]!;[1 I£Il 1— qk k1;11 1— qZk 1

Euler stated the first relation that links different sets of partitions, known as the Euler distinct-odd
identity.

Theorem 1.1.4 (Euler). For any non-negative integer n, the set of partitions of n into distinct parts and the set
of partitions of n into odd parts are equinumerous.

Example 1.1.5. For example, here we give the list of the partitions of D(n) and O(n) for n < 5.

| n | D(n) | O(n) |
1] (1) (1)
21(2) (1,1)
31(),(21) (3),(1,1,1)
4] (4),1) (31),(1,1,1,1)
510),(41),3,2) | (5),311),11L1,1,1,1,1)

We end this section by presenting a graphical representation of integer partitions, namely the Ferrers
diagram, as well as a key transformation on integer partitions, the conjugacy.
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Definition 1.1.6. Let A = (Aq,...,A;) be a integer partition. The Ferrers diagram of the partition A is the
subset of the plane R? defined by

{(@j):0<i<s, 0<j<Ap}.
The conjugate of the partition A is the partition A’ = (A},...,A}), wherer = Ay, and forallj € {1,...,r},
A} =|{ie{l,...,s}: A >},

where |set| is the cardinality of the set set.

.

FIGURE 1.1: Ferrers diagram of (5,3,1,1) and its conjugate (4,2,2,1,1)

The area of the Ferrers diagram of A is exactly |A|, and the conjugacy is an involution of the set of
integer partitions that preserves the size of the partitions, and maps the length of the partitions to the
first (greatest) part of their image.

1.2 Partition identities

In the spirit of Euler’s distinct-odd identity, we define the general notion of partition identity.

Definition 1.2.1. A partition identity is a combinatorial identity that links two or several sets of integer
partitions.

We now introduce an important tool for the computation of partition generating functions.

Definition 1.2.2. The g-Pochhammer symbol is defined by (x;9)m = TTj" (1 — xq¥) for any integer m €
Z >0 U {00} and any complex numbers x, g such that |g| < 1. More generally, we define for any complex
numbers xq,...,Xs the expression (x1,...,%s;q)m = (X1;9)m - (Xs;q)m. A g-series is a series whose
coefficients can be expressed in terms of the symbols (x1, ..., Xs; ) m-

Using this notation, the generation function given in (1.1.3) is 1/(4; 9)« and the Euler distinct-odd
identity becomes (—q;4)e = 1/(4;4*)co- In this section, we focus on two such identities, the Glaisher
identity and the Rogers-Ramanujan identities.

1.2.1 Glaisher’s identity

While the Euler identity is not difficult to prove by computing the generating function of both sets of
partitions, finding a bijection that links these sets is not a trivial task. In (Glaisher, 1883; Sylvester, 1973),
Glaisher and Sylvester gave two different bijections.

In (Glaisher, 1883), Glaisher bijectively proved the first broad generalization of the Euler identity.
Here we present the machinery of Glaisher’s bijection.

Let us take a partition into odd parts. Then, as long as two parts are equal, sum them up to obtain a
new part corresponding to their double. Since the partition has a finite number of parts, the algorithm
then necessarily ends, and this when all the parts in the sequence are distinct.

The inverse bijection then consists in starting from a partition into distinct parts and splitting, as long
as it is possible, any even part into two parts both equal to its half. The process then ends when all the
parts are odd, and this because of the fact that any positive integer has a maximal divisor which a power
of 2.

Example 1.2.3. Apply this algorithm on the partition (9,9,7,5,5,5,3,1,1,1,1,1,1), and we obtain
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(9,9,7,5,5,5,3,1,1,1,1,1,1,1)

(18,7,10,5,3,2,2,2,1)

(18,7,10,5,3,4,2,1)

By sorting the final sequence, the corresponding image is then (18,10,7,5,4,3,2,1). Reciprocally, by applying
the inverse bijection on (18,10,7,5,4,3,2,1), we have

(18,10,7,5,4,3,2,1)
(9,9,5,5,7,5,2,2,3,1,1,1)
(9/9/5/5/ 7/5/ 1/ 1/ 1’ 1’3’ 1’ 1’1)

and by sorting the parts, we obtain as image the original partition into odd parts (9,9,7,5,5,5,3,1,1,1,1,1,1).

One can observe that the order in which we sum the parts does not matter, and the final image only
depends on the binary decomposition of the numbers of occurrences ny_1(A) for k > 0. In the example
above with A = (9,9,7,5,5,5,3,1,1,1,1,1, 1), we respectively have

(n1(A),n3(A), ns5(A),n7(A),ng(A)) = (7,1,3,1,2) = (4+2+1,1,2+1,1,2)
and then the image is obtained after sorting the sequence
(4%x1,2x1,1x1,1x3,2%x51x%x51x7,2x9)=(42,1,3,10,5,7,18).

The well-definedness of the inverse bijection relies on the fact that any positive integer can be uniquely
written as a product of a odd number and a power of 2. At the end of the process, the part (2k — 1) x 2"
will then result in 2" parts equal to 2k — 1.

Glaisher observed that the above machinery behind the bijection only depends on the binary decom-
position. Then, using a similar approach in base m for any positive m > 1, he stated the first broad result
beyond the Euler identity.

Definition 1.2.4. Let m be a positive integer. We define an m-flat partition to be a partition where the
differences between two consecutive parts, as well the smallest part, are less than m, and an m-regular
partition to be a partition with parts not divisible by m.

The generalization of Euler’s identity given by Glaisher, and which makes the connection between
m-flat and m-regular partitions, is stated in the following theorem.

Theorem 1.2.5 (Glaisher). For a fixed positive integer n, the following sets of partitions are equinumerous:
1. the m-reqular partitions of n,
2. the partitions of n with fewer than m occurrences for each positive integer,
3. the m-flat partitions of n.

In terms of q-series, they can be stated

Moo 7L (1.2.1)

144" 4+ g2 ... 4 gnim=1) :(q;
s o i)

q
a1 (@0
min

IV
—_

The conjugacy allows us to link the m-flat partitions to the partitions with fewer than m occurrences
for each integer. The Glaisher bijection analogous to the one given for Euler’s distinct-odd identity, that
links the m-regular partitions and the partitions with fewer than m occurrences for each integer, is the
following: for any m-regular partition, as long as a part appears m times, we sum then up to the part
which is the m times the repeated part.
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The bijective proof of the Euler identity, given by Sylvester (Sylvester, 1973), is more subtle and will
be presented in Chapter 5. It was a open problem to find a suitable generalization of Sylvester’s bijection
for the Glaisher identity. This problem was solved, a century after the paper of Sylvester, by Stockhofe
in his Ph.D thesis (Stockhofe, 1982). In the 90’s, seminal works of Bessenrodt (Bessenrodt, 1994), and Pak
and Postinkov (Pak and Postnikov, 1998), related the Sylvester algorithm to the alternating sign sum of
integer partitions. They then gave new refinements of the Euler identity.

In this thesis, we especially focus on a broad refinement of Glaisher’s identity given by Keith and
Xiong (Keith and Xiong, 2019).

Theorem 1.2.6 (Keith-Xiong). Let m > 2, uy, ..., uy,_1,n be non-negative integers. Then, the number of m-flat
partitions of n with u; parts congruent to i mod m is equal to the number of m-reqular partitions of n into u;
parts congruent to i mod m.

Their proof used a variant of the Sylvester-style bijection given by Stockhofe. In Chapter 5, we adapt
this bijection to give a result beyond their refinement.

1.2.2 Rogers-Ramanujan type identities

The most famous partition identities are probably the Rogers-Ramanujan identities (Rogers and Ra-
manujan, 1919). They can be stated as follows.

Theorem 1.2.7 (Rogers 1894, Ramanujan 1913). Let i = 0 or 1. Then

qn2+(17i)n 1
- . . (1.2.2)
S0 @an (P58 (P15 4%

By interpreting both sides of (1.2.2) as generating functions for partitions, MacMahon (MacMahon,
1916) gave the following combinatorial version of the identities. This very interpretation was indepen-
dently given by Schur.

Theorem 1.2.8 (Rogers-Ramanujan identities, partition version). Let a = 0 or 1. For every natural number
n, the number of partitions of n such that the difference between two consecutive parts is at least 2 and the part 1
appears at most 1 — a times is equal to the number of partitions of n into parts congruent to (14 a) mod 5.

In this spirit, we define the notion of Rogers-Ramanujan type identity.

Definition 1.2.9. A partition identity of the Rogers-Ramanujan type is a theorem stating that for all n,
the number of partitions of n satisfying some difference conditions equals the number of partitions of n
satisfying some congruence conditions.

Dozens of proofs of these identities have been given, using different techniques, see for example
(Andrews, 1984b; Bressoud, 1983; Watson, 1929). Especially, in (Garsia and Milne, 1981), Garsia and
Milne gave the first bijective proof for these identities, laying the foundations of the involution principle.
One can also observe that the Glaisher identity is of Rogers-Ramanujan type.

Following in the track of the Rogers-Ramanujan identities, Schur gave in (Schur, 1926) one of the
most important identities in the theory of partitions, probably the most studied after the Rogers-Ramanujan
identities.

Theorem 1.2.10 (Schur 1926). For any positive integer n, the number of partitions of n into distinct parts
congruent to £1 mod 3 is equal to the number of partitions of n where parts differ by at least three and multiples
of three differ by at least six.

There have been a number of proofs of Schur’s result over the years, including a g-difference equa-
tion proof of Andrews (Andrews, 1968) and a simple bijective proof of Bressoud (Bressoud, 1980).

Another important identity is Gollnitz” theorem Gollnitz, 1967.

Theorem 1.2.11 (Gollnitz 1967). For any positive integer n, the number of partitions of n into distinct parts
congruent to 2,4,5 mod 6 is equal to the number of partitions of n into parts different from 1 and 3, and where
parts differ by at least six with equality only if parts are congruent to 2,4,5 mod 6.

Like Schur’s theorem, Gollnitz’ identity can be proved using g-difference equations (Andrews, 1969b)
and elegant Bressoud-style bijections (Padmavathamma and Sudarshan, 2004; Zhao, 2015).



8 Chapter 1. State of the art

The Rogers-Ramanujan type identities have a rich history, and the study of such identities allowed
mathematicians to develop several key methods for the theory of integer partitions. In this thesis we in-
vestigate two such methods: a combinatorial method, the weighted words, and a Lie-theoretic method,
the (KMN)? character formula.

1.3 Weighted words

The weighted words were introduced by Alladi and Gordon to understand the combinatorial machinery
behind the Schur identity. They consist in associating to the part of a classical partition some colors. In
this section we present major works using weighted words.

1.3.1 From the Alladi-Gordon identity to the Alladi-Andrews-Berkovich identity

Seminal work of Alladi, Andrews, and Gordon in the 90’s showed how the theorems of Schur and Goll-
nitz emerge from more general results on colored partitions (Alladi and Gordon, 1993; Alladi, Andrews,
and Gordon, 1995).

In the case of Schur’s theorem, we consider parts in three colors {4, b, ab} and order them as follows:
1op <1, <1y <2, <2, <2, <3pp < -vv (1.3.1)

We then consider the partitions with colored parts different from 1,, and satisfying the minimal differ-
ence conditions in the table

A\ lab b b

ab |2 22

. 1 112l (1.3.2)
b 1 11

Here, the part A; with color in the row and the part A;;1 with color in the column differ by at least
the corresponding entry in the table. An example of such a partition is (7,5, 55,44, 345, 15). The Alladi-
Gordon refinement of Schur’s partition theorem (Alladi and Gordon, 1993) is stated as follows:

Theorem 1.3.1. Let u,v, n be non-negative integers. Denote by A(u,v,n) the number of partitions of n into u
distinct parts with color a and v distinct parts with color b, and denote by B(u, v, n) the number of partitions of
n satisfying the conditions above, with u parts with color a or ab, and v parts with color b or ab. We then have
A(u,v,n) = B(u,v,n) and the identity

Y. B(u,o,n)a"b’q" = Y A(u,0,n)a"b’q" = (—aq;q)e(—bq; 9) o - (1.3.3)

u,on>0 u,on>0

Note that a transformation implies Schur’s theorem :

{ dilation : g — 4 (13.4)

translations: a,b q‘z,q‘l

In fact, the minimal difference conditions given in (1.3.2) give after these transformations the minimal
differences in Schur’s theorem. Moreover, finding such refinements and non-dilated versions of parti-
tion identities can be helpful to find bijective proofs of them.

In the case of Gollnitz’ theorem, we consider parts that occur in six colors {a, b, ¢, ab, ab, bc} with the
order
Top < Loe <1y <1 <1y <10 <2 <200 <27 <20 <25 <2< 3 <o, (1.3.5)

and the partitions with colored parts different from 1,5, 1,4, 15, and satisfying the minimal difference
conditions in

AN\ Tab ac albe b
ab 2 2 212 2|2
ac 1 2 212 2|2
a 1 1 1]2 22 (1.3.6)
be 1 1 112 2|2
b 1 1 1|1 12
c 1 1 1|11 1(1
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The Alladi-Andrews-Gordon refinement of Gollnitz’s partition theorem can be stated as follows:

Theorem 1.3.2. Let u, v, w, n be non-negative integers. Denote by A(u,v, w,n) the number of partitions of n
into u distinct parts with color a, v distinct parts with color b and w distinct parts with color c, and denote by
B(u,v, w,n) the number of partitions of n satisfying the conditions above, with u parts with color a,ab or ac, v
parts with color b, ab or bc and w parts with color ¢, ac or be. We then have A(u, v, w,n) = B(u,v,w, n) and the
identity

B(u,v,w,n)a"b’c“q" = Y A(u,0,w,1)a"b°c"q" = (—aq;q)eo(—bq; 7)oo(—Cq; 7)oo -

u,0,w,n>0 u,v,w,n>0
(1.3.7)
Note that a transformation implies Gollnitz’ theorem :
dilation : qg q6
. . 1.3.
{ translations: a,b,c +— q_4, q_z, q_l (1.3.8)

Observe that while Schur’s theorem is not a direct corollary of Gollnitz” theorem, Theorem 1.3.1 is im-
plied by Theorem 1.3.2 by setting ¢ = 0. Therefore Gollnitz’ theorem may be viewed as a level higher
than Schur’s theorem, since it requires three primary colors instead of two.

Following the work of Alladi, Andrews, and Gordon, it was an open problem to find a partition
identity beyond Gollnitz’ theorem, in the sense that it would arise from four primary colors. This was
famously solved by Alladi, Andrews, and Berkovich (Alladi, Andrews, and Berkovich, 2003). To de-
scribe their result, we consider parts that occur in eleven colors {a,b,c,d, ab,ab, ad, bc,bd, cd, abcd} and
ordered as follows:

Loved < lap < lae <100 <1 <1pe <1y <1 <1y <1 <1y < 2pp0g < -0+ (1.3.9)

Let us consider the partitions with the length of the secondary parts greater than one and satisfying the
minimal difference conditions in

N
u
<
[
S
U
Q
QU

A\ abac
ab
ac
ad
a
be
bd
b
cd
c
d

N
N

(1.3.10)

e e el e e e
e e el el e Ll ®)
= R = === NN
R RR, R PR, NNDNDNS
== === NN NN
===, NN DNDNDN
=== NDNNNDNDNDDNDS
== NN DNNDDNDDNDN
== NN NDNDNDDNDNDNO
RN DNNDNDNDNDNDND DN

and such that parts with color abcd differ by at least 4, and the smallest part with color abcd is at least
equal to 4 + 27 — x(1, is a part), where 7 is the number of primary and secondary parts in the partition.
The theorem is then stated as follows.

Theorem 1.3.3. Let u, v, w, t, n be non-negative integers. Denote by A(u, v, w, t,n) the number of partitions of
n into u distinct parts with color a, v distinct parts with color b, w distinct parts with color ¢ and t distinct parts
with color d, and denote by B(u, v, w, t, n) the number of partitions of n satisfying the conditions above, with u
parts with color a,ab, ac, ad or abcd, v parts with color b, ab, bc, bd or abed, w parts with color ¢, ac, be, cd or abed
and t parts with color d, ad, bd, cd or abcd. We then have A(u,v,w,t,n) = B(u,v,w,t,n) and the identity

Y. B(u,o,wt,n)a"b’c?d'q" = (—aq;q)eo(—bq;q)co(—cq; 7)o (—dg; 7)o (1.3.11)

u,0,w,t,n>0

Note that the result of Alladi-Andrews-Berkovich uses four primary colors, the full set of secondary
colors, along with one quaternary color abcd. When d = 0, we recover Theorem 1.3.2. Their main tool
was a difficult g-series identity:

Z qTT+TAB+TAC+TAD+TCB+TBD+TCD73C73D7CD+4TQ,]+3Q+2QT
i 1—constraints (1) A(@)B(0)c(9)D(9) a8 (9) ac(9) 4D (9) Bc (9) 8D (9)cn(9) @
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{(1 _ qA) + qA+BC+BD+Q(1 _ qB) + qA+BC+BD+Q+B+CD}
Ti+Tj+Tk+T1

- T 1.3.12
i,j,k,lﬂ?f)v‘-nlstmints (q)l(q)](q)k(‘nl ( )

where A,B,C,D, AB, AC, AD, BC,BD,CD, Q are variables which count the number of parts with re-
spectively color a,b,c,d, ab, ab, ad, bc, bd, cd, abcd,

i=A+AB+ AC+AD+Q

j=B+AB+BC+BD+Q

k=C+AC+BC+CD+Q ,
|=D+AD+BD+CD+Q
T=A+B+C+D+AB+AC+AD+BC+BD+CD+Q

Tw = ”("; U is the nth triangular number and (7), = (¢;q)». While this identity is difficult to prove, it is

relatively straightforward to show that it is equivalent to the statement in Theorem 1.3.3.

One of the contribution of this thesis consists in using a bijective approach to show, not only the
Alladi-Andrews-Gordon theorem, but a more general result beyond Gollnitz” theorem for an arbitrary
number of primary colors.

1.3.2 On Siladié¢’s partition theorem

Another rich source of Rogers-Ramanujan type identities is the representation theory of Lie algebras.
This has its origins in work of Lepowsky and Wilson (Lepowsky and Wilson, 1984), who proved the
Rogers-Ramanujan identities by using representations of the affine Lie algebra s[(2, C)™~. Subsequently,
Capparelli (Capparelli, 1993), Meurman and Primc (Meurman and Primc, 1987) and others examined re-
lated standard modules and affine Lie algebras and found many new Rogers-Ramanujan type identities.
We present some of these identities in the next section.

Here, we shall be concerned by one such identity given by Siladi¢ (Siladi¢, 2017) in his study of

representations of the twisted affine Lie algebra Aéz).

Theorem 1.3.4 (Siladi¢). The number of partitions A1 + - - - + As of an integer n into distinct odd parts is equal
to the number of partitions of n, into parts different from 2, such that A; — A1 > 5 and

Ai—Aip1=5= A+ A1 =+£3 mod 16,
Ai—Aip1=6= A+ 14,1 =0,£4,8 mod 16,
Ai—Aig1=7= Aj+ A ==41,45,+7 mod 16,
Ai—Aig1=8= A;+A;,1=0,4£2,46,8 mod 16 -

Rephrased, we obtain the following equivalent formulation.

Theorem 1.3.5 (Siladi¢, rephrased by Dousse). The number of partitions Ay + - - - + As of an integer n into
distinct odd parts is equal to the number of partitions of n into parts different from 2 such that A; — Aj;q > 5 and

Ai—Aig1=5=A;=1,4 mod8,
Ai—Aip1=6= A;=1,35"7 mod8§,
Ai—Aip1=7= A =20,1,3,4,6,7 mod 8,
Ai—Aip1=8= 1;,=0,1,3,4,5,7 mod 8§ -

For example, for n = 16, the partitions into distinct odd parts are
15+1,134+3,11+5,9+7and 7 +5+3 +1,
while the partitions of the second kind are
15+1,13+3,11+5,16 and 12 -4 -

Siladi¢’s theorem has recently been refined by Dousse (Dousse, 2017b) via weighted words. Her frame-
work is as follows: we consider parts colored by two primary colors a,b and three secondary colors
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a2, b2, ab, with the colored parts ordered as follows:

Top <1p <Tpp <1 <25 <2, <30 <25 <3 <3 <32 <3< v v (1.3.13)
Note that only odd parts can be colored by a2, b?. The transformations
g—q*,a—aqg3,b—bg !, (1.3.14)
leads to the natural order
Op <1 <22 <3p <4y <57 <620 <7y <8y <9 <102 <11y < -+ - (1.3.15)

We then impose the minimal differences according the following table

A \/\Hl ﬁgdd Aodd  Aeven bgdd bodd  beven aboga  abeven
a2, | 4 4 3 4 4 3 4 3
Aodd 2 2 3 2 2 3 2 1
Aeven 3 3 2 3 3 2 3 2
vy, | 2 2 3 4 4 3 2 3 | (1.3.16)
bodd 2 2 1 2 2 3 2 1
beven 1 1 2 3 3 2 1 2
abyg4 2 2 3 4 4 3 2 3
abeven 3 3 2 3 3 2 3 2
which can be reduced to the table :
)\i\/\iJrl agdd a bgdd b abodd abeven
a2, | 4 3 4 3 4 3
a 2 2 2 2 2 1
Py | 2 2 4 3 2 3 (1.3.17)
b 1 1 2 2 1 1
abodd 2 2 4 3 2 3
abeyen 3 2 3 2 3 2

One can check that these minimal differences define a partial strict order on the set of parts colored by
primary and secondary colors. With this coloring, Dousse refined the Siladi¢ theorem as follows:

Theorem 1.3.6 (Dousse). Let (u,v,n) € IN3. Denote by D (u, v, n) the set of all the partitions of n, such that no
part is equal to 145,12 or 1y, with the difference between two consecutive parts following the minimal conditions
in (1.3.16), and with u equal to the number of parts with color a or ab plus twice the number of parts colored by
a?, and v equal to the number of parts with color b or ab plus twice the number of parts colored by b®. Denote by
C(u,v,n) the set of all the partitions of n with u distinct parts colored by a and v distinct parts colored by b. We
then have $D(u,v,n) = #C(u, v, n).

In terms of g-series, we have the equation

2 $D(u,v,n)a"b’q" = 2 4C(u,v,n)a"b’q" = (—ag;9)eo(—bg; 9) o - (1.3.18)

u,o,n>0 u,o,n>0

Dilating (1.3.16) by (1.3.14) gives exactly the minimal difference conditions in Siladi¢’s theorem and
(1.3.18) becomes the generating function for partitions into distinct odd parts, so that Theorem 1.3.5is a
corollary of Theorem 1.3.6.

In this thesis, we bijectively prove a broad generalization of the refinement of Siladi¢ ’s theorem for

an arbitrary number of primary colors.

1.4 Partition identities and Representation theory of affine Lie alge-
bras

In the representation theory of Lie algebras, the character is a statistic of representations whose expres-
sion can be seen as a generating function in terms of simple roots. The starting point of our discussion is
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the Weyl-Kac character formula (Kac, 1978; Kac, 1990), whose principal specialization gives an expres-
sion of the character as an infinite g-product. This provides good candidates for Rogers-Ramanujan type
identities, whose expressions consist of a equality between a sum (partitions satisfying some difference
conditions) and a product (partitions satisfying some congruence conditions). Seminal works of repre-
sentation theorists allowed to develop techniques to build the sum-side for the character. In this section,
we discuss two such tools: the vertex operator theory and the theory perfect crystals.

1.4.1 Lie-theoretic proof of the Rogers-Ramanujan identities

First, Lepowsky and Milne (Lepowsky and Milne, 1978a; Lepowsky and Milne, 1978b) noticed that the
product side of the Rogers-Ramanujan identities (1.2.2) multiplied by the “fudge factor” 1/(q;§*)e is
equal to the principal specialisation of the Weyl-Kac character formula for level 3 standard modules of
the affine Lie algebra Agl). Then, Lepowsky and Wilson (Lepowsky and Wilson, 1984; Lepowsky and
Wilson, 1985) gave an interpretation of the sum side by constructing a basis of these standard modules
using vertex operators. Very roughly, they proceed as follows. They start with a spanning set of the

module V, indexed by monomials of the form Z{l . Z{S fors, f1,...,fs € IN. Then by the theory of
vertex operators, there are some relations between these monomials, which allows them to reduce the
spanning set by removing the monomials containing Z]2 and Z;Z;, 1. The last step is then to prove
that this reduced family of monomials is actually free, and therefore a basis of the representation. The
connection to Theorem 1.2.7 is then done by noting that monomials Z{l e Z{S which do not contain Z?

or Z;Z;1 for any j are in bijection with partitions which do not contain twice the part j or both the part
jand j+ 1 for any j, i.e. partitions with difference at least 2 between consecutive parts.

The theory of vertex operator algebras developed by Lepowsky and Wilson turned out to be very
influential: for example, it was used by Frenkel, Lepowsky, and Meurman to construct a natural repre-
sentation of the Monster finite simple group (Frenkel, Lepowsky, and Meurman, 1988), and was key in
the work of Borcherds on vertex algebras and his resolution of the Conway-Norton monstrous moon-
shine conjecture (Borcherds, 1992).

1.4.2 Capparelli’s identity

Following Lepowsky and Wilson’s discovery, several other representation theorists studied other Lie
algebras or representations at other levels, and discovered new interesting and intricate partition identi-
ties, that were previously unknown to the combinatorics community, see for example (Capparelli, 1993;
Meurman and Primc, 1987; Meurman and Primc, 1999; Meurman and Primc, 2001; Nandi, 2014; Primc,
1994; Primc and Siki¢, 2016; Siladi¢, 2017),

After Lepowsky and Wilson’s work, Capparelli (Capparelli, 1993) was the first to conjecture a new

identity, by studying the level 3 standard modules of the twisted affine Lie algebra Aéz). It was first
proved combinatorially by Andrews in (Andrews, 1992), then refined by Alladi, Andrews and Gordon
in (Alladi, Andrews, and Gordon, 1995) using the method of weighted words, and finally proved by
Capparelli (Capparelli, 1996) and Tamba and Xie (Tamba and Xie, 1995) via representation theoretic
techniques. Later, Meurman and Primc (Meurman and Primc, 1999) showed that Capparelli’s identity
can also be obtained by studying the (1, 2)-specialisation of the character formula for the level 1 modules

of Agl). Capparelli’s original identity can be stated as follows.

Theorem 1.4.1 (Capparelli’s identity (Andrews 1992)). Let C(n) denote the number of partitions of n into
parts > 1 such that parts differ by at least 2, and at least 4 unless consecutive parts add up to a multiple of 3.
Let D(n) denote the number of partitions of n into distinct parts not congruent to £1 mod 6. Then for every
positive integer n, C(n) = D(n).

In this thesis, we will mostly be interested in the weighted words version of Theorem 1.4.1. We now
describe Alladi, Andrews, and Gordon’s refinement of Capparelli’s identity (slightly reformulated by
Dousse in (Dousse, 2020)).

Consider partitions into natural numbers in three colours, 4, ¢, and d (the absence of the color b will
be made clear in a few paragraphs, when we will mention the connection with Primc’s identity), with
the order

1, <1 <1 <2, <2 <2< -+, (1.4.1)
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) : (1.4.2)

The non-dilated version of Capparelli’s identity can be stated as follows.

satisfying the difference conditions in the matrix

— = N O
NN DN

Theorem 1.4.2 (Alladi~Andrews—-Gordon 1995). Let Cy(n;1i,j) denote the number of partitions of n into
colored parts satisfying the difference conditions in matrix Cyp, having i parts colored a and j parts colored d. We

have .
Y Cmi, )a'dq" = (—q)eo(—a4; %) oo (— ;7% co-

n,i,j>0

Performing the dilations
g—q°, a—agt, d—dg,

which correspond to the following transformations on the parts of the partitions
ks — (3]( — 1)a, kb — 3k, kd — (3k+ 1)d/

we obtain a refinement of Capparelli’s original identity. Other dilations can lead to infinitely many other
(but related) partition identities.

1.4.3 Primc’s identities

Another way to obtain Rogers-Ramanujan type partition identities using representation theory is the
theory of perfect crystals of affine Lie algebras. Much more detail on crystals is given in Chapter 8,
but the rough idea is the following. The generating function for partitions with congruence condi-
tions, which is always an infinite product, is still obtained via a specialisation of the Weyl-Kac character
formula. The equality with the generating function for partitions with difference conditions is estab-
lished through the crystal base character formula of Kang, Kashiwara, Misra, Miwa, Nakashima, and
Nakayashiki (Kang et al., 1992c). This formula expresses, under certain specialisations, the character
as the generating function for partitions satisfying difference conditions given by energy matrices of
perfect crystals.

The identity which we study in this section, due to Primc (Primc, 1999), was obtained that way by
(1)

studying crystal bases of A; . The energy matrix of the perfect crystal coming from the tensor product
of the vector representation and its dual is given by

P, = (1.4.3)

QO S

OO R, N
—__0 =, o
OO =N O
NN~ N

Let P(n;1,j,k, ¢) denote the number of partitions of # into four colors a, b, ¢, d, with i (resp. j, k, £) parts
colored a (resp. b, ¢, d), satisfying the difference conditions of the matrix P,. Then the crystal base char-
acter formula and the Weyl-Kac character formula imply that under the dilations

ko —2k—1, ky, —2k, ke— 2k, ki;—2k+1, (1.4.4)
the generating function for these colored partitions becomes 1/(; q)co-

Theorem 1.4.3 (Primc 1999). We have

' 1
Y P(mijk O = ——.
1,k 0 (7:9) 0
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By taking the same approach for the affine Lie algebra Aél), Primc also gave the following energy

matrix (where the naming of the colors comes from our generalization):

azby asby a1by agby axby arby aghy arby aghs
aby 2 2 2 1 2 2 2 2 2
abq 1 2 1 1 2 1 2 2 2
a1 b 1 1 2 1 1 2 2 2 2
agbg 1 1 1 0 1 1 1 1 1
P; = ayby 0 0 1 1 0 1 1 2 2 (1.4.5)
a1bq 0 1 0 1 1 0 2 1 2
agbq 0 1 0 1 1 0 2 1 2
a1by 0 0 1 1 0 1 1 2 2
agbsy 0 0 0 1 0 0 1 1 2
Theorem 1.4.4 (Primc 1999). Under the dilations
kﬂzbo — 3k —2, kﬂ2b1 —3k—1, kﬂlbo —3k—1,
kﬂobo — 3k, kﬂlbl — 3k, kﬂzbz — 3k, (1.4.6)
Kagp, — 3k +1, kap, — 3k +1, Kagp, — 3k +2,

the generating function for 9-colored partitions satisfying the difference conditions of (1.4.5) becomes 1/(q; q)co-

When seeing these two theorems of Primc, one might find it surprising that the generating function
for partitions with such intricate difference conditions simply becomes 1/(g; 9), the generating func-
tion for unrestricted partitions. However recently, Dousse and Lovejoy (Dousse and Lovejoy, 2018) gave
a weighted words version of Theorem 1.4.3.

Theorem 1.4.5 (Dousse-Lovejoy 2018, non-dilated version of Primc’s identity). Let P(n; 1, j, k, ) be defined
as above. We have 5 )
Z P(n;i,j,k,f)q”aickdz _ (_aq;q )m(_dq}q )00'
1,5k, (7:9)e0(cq; 9%) 0

Performing the dilations of (1.4.4) indeed transforms the infinite product above into 1/(g; 4). But
the theorem above shows that keeping track of all colors except b leads to a much more intricate infi-
nite product as well, and that the extremely simple expression 1/(q;9)~ appears only because of the
particular dilation that Primc considered. Later, Dousse (Dousse, 2020) even gave an expression for the
generating function for P(#;1,],k, ¢) keeping track of all the colors, but it can be written as an infinite
product only if we do not keep track of the color b.

Thus it is interesting from a combinatorial point of view to see whether a similar phenomenon hap-
pens with Theorem 1.4.4 as well. To do so, we would like to compute the generating function for colored
partitions satisfying the difference conditions (1.4.5), at the non-dilated level, keeping track of as many
colors as possible. In a joint-work with Dousse (Dousse and Konan, 2019a; Dousse and Konan, 2019b),
not only do we succeed in doing this, but we embed both of Primc’s theorems into an infinite family of
identities about partitions satisfying difference conditions given by n? x n? matrices.

Apart from the fact that they can be obtained from the same Lie algebra Agl), Capparelli’s and
Primc’s identities didn’t seem related from the representation theoretic point of view, as they were
obtained in completely different ways, and Capparelli’s identity did not seem related to perfect crys-
tals. However, recently, Dousse (Dousse, 2020) gave a bijection between colored partitions satisfying the
difference conditions (1.4.3) and pairs of partitions (A, 1), where A is a colored partition satisfying the
difference conditions (1.4.2), and y is a partition colored b. This bijection preserves the total weight, the
number of parts, the size of the parts, and the number of parts colored a and d. Therefore, combinatori-
ally, these two identities are very closely related. We generalized this bijection to our new generalization
of Primc’s identity and obtain two families of partition identities with difference conditions given by
(n?> —1) x (n? — 1) matrices, which generalize Capparelli’s identity.

In this thesis, we present a broad result beyond the generalizations of both Capparelli’s and Primc’s
identities for more general families of colored partitions.



1.4. Partition identities and Representation theory of affine Lie algebras 15

1.4.4 Character formula as series with positive coefficients

Finding an explicit expression of the character as a series with positive coefficients is an important prob-
lem. While the principal specialisation of the Weyl-Kac character formula is a product of g-series with
obvious positive coefficients, the original formula expresses the character as a product with a factor
which has negative coefficient according to the parity of the elements of the Weyl group. In (Kac
and Peterson, 1984), using modular forms and string functions, Kac and Peterson gave a formula for
e~ Ach(L(A)) for all the irreducible highest weight level 1 modules A of all classical types as a series in
Z[le="0,e ™,... ¢ %-1]] with obviously positive coefficients. This built on earlier work of Kac (Kac,

1978), in which he proved the particular case where M = L(A) in A,(ql), D,(Zl), and E;,l).

In (Bartlett and Warnaar, 2015), Bartlett and Warnaar used Hall-Littlewood polynomials to give ex-
plicitly positive formulas for the characters of certain highest weight modules of the affine Lie alge-

bras C,(ql), Aéi), and Dr(i)l, which also led to generalisations for the Macdonald identities in types Bg),

C,Sl), Agi)_l, Aé‘:‘z), and D}(ﬁl. However their approach failed to give a formula for the case A,Sl). Us-
ing Macdonald-Koornwinder theory, Rains and Warnaar (“Bounded Littlewood identities”) later found
additional character formulas for these types, together with new Rogers-Ramanujan type identities.
In (Griffin, Ono, and Warnaar, 2016), Griffin, Ono, and Warnaar obtained a limiting Rogers-Ramanujan

type identity for the principal specialisation of the character of some particular weights (m —k)Ag + kA;
in Afll). On the other hand, Meurman and Primc Meurman and Primc, 1999 treated the case of all levels
of Agl) via vertex operator algebras.

In the paper dealing with the Lie-theoretic interpretation of the generalization of Capparelli’s and

Primc’s identities (Dousse and Konan, 2019b), we introduced a tool which allowed us to compute the

precise formulas of all the level one standard modules of type A,(ql). In this thesis, we present the gener-

alization of this tool, which allows us to compute the character of level one standard module for other

types Aéi), Dfﬁzl, Aéf}_l, Y, DV
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Chapter 2

Contribution of the thesis

Here we present an exhaustive list of the works that comprise this thesis. We start with a new notion
of weighted words, the foundation of all the remaining results. We present all these results as general-
izations, which, from our viewpoint, are easier to prove when they are well-formalized. In addition, for
each generalization, we give explicit results as particular cases of the generalization.

2.1 Weighted words revisited

We present in this section our weighted words in a more general and formal way than the original
method given by Alladi and Gordon. The purpose of this exposition is to set the major tools that will
enable us to generalize the identities presented in Chapter 1.

2.1.1 Generalized colored partitions

Let C be a set of colors, and let Z¢ = {k. : k € Z,c € C} be the set of colored integers. First, we relax the
condition that parts of colored partitions have to be in non-increasing order.

Definition 2.1.1. Let > be a binary relation defined on Z.. A generalized colored partition with relation
> is a finite sequence (711, ..., 7s) of colored integers, where foralli € {1,...,s — 1}, 71; > ;1.

In the following, c(7;) € C denotes the color of the part 77;. The quantity |7z| = 711 + - - - 4 775 is the
size of 71, and C(71) = c(77) - - - ¢(715) is its color sequence.

Remark 2.1.2. The binary relation is not necessarily an order. When >> is a strict order, we can easily check that
every finite set of colored parts defines a classical colored partition, by ordering the parts. In the same way, for an
order, the generalized colored partitions are finite multi-sets of colored integers.

Definition 2.1.3. An energy € on C is a function from C? to Z. Note that when C = {c1,...,cn} is a finite
color set, the data given by € is equivalent to a matrix Me = (e(c;,¢j))};_y, called energy matrix. The

binary relation >, on Z, associated to an energy ¢, is defined by

ke>clj<—=k—1>¢€(cd)-
We then call the relation >, the minimal difference condition given by energy €, and denote by P, the set
of generalized colored partitions with relation ..

An energy € is said to be minimal if it has value in {0, 1}. For such an energy, we refer respectively to
= and O, instead of >, and Pe.

Example 2.1.4. For the set of classical integer partitions m = (my,. .., 7Ts), where parts satisfy mqy > --- >
1ts > 0, the empty partition is such that s = 0. This set is in bijection with the set of generalized colored partitions
of Pe with C = {c} and the minimal energy € satisfying €(c,c) = 0, and such that the last part size is at least
equal to 1. The bijection is given by

(7‘[1,...,7‘[5) — ((7T1)c,.--, (7‘[5)5) :

Example 2.1.5. The weighted words used by Alladi-Gordon in Theorem 1.3.1 consist of two color sets C; = {a, b}
and Cy = {ab,a, b}, the energies €1 and €, represented by the energy matrices

11 2 2 2
M, = (0 1) and M, = |1 1 2],
1 11
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and the sets of colored partitions counted by A(u,v,n) and B(u,v,n) correspond to some subsets of generalized
colored partitions of Pe, and Pe, with some restrictions on the minimal part sizes.

Examples 2.1.6. Let C = {cy,...,cn} bea set of colors.

1. For the minimal energy €(c;,c;) = x(i < j), where x(prop) equals 1 if the proposition prop is true and 0
otherwise, we can set an order ¢; < --- < ¢, on C and the energy relation > becomes the lexicographic
order on Z:

come (K 1)e, meke, meke, meke, | =eke, e e ke, mekey me key mekey e -

The corresponding energy matrix is given by

€1 C -+ Cp-1 Cpn
o 0 1 1 1
e 0 0 1 1
M, = R . :
ch—1 | 0O 0O --- 0 1
Cn o 0 --- 0 0
2. For the minimal energy €(c;,c;) = x(i < j), we can set an order c; < --- < ¢y on C and the energy

relation . is the strict lexicographic order on Z¢:
}e (k+1)C1 >gkcn }e kcn71 }e >€kC2 }e kcl >e e

The corresponding energy matrix is given by

1 Ch—1 ©Cn
c1 1 1 1 1
1) 0 1 1 1
Me - ’
i1l 0 O - 1 1
Cn o 0 --- 0 1

Example 2.1.7. Let C' = {c1, -+ ,cn} be a set of colors. If we set C' ={c:ceC}tandC=CUC wecan
then define € on C, forany i,j € {1,--- ,n}, by the following:

1. e(ci,cj) = x(i <j),

2. G(Ci,E]'> = O, G(Ei,C]') = 1,

3. G(Ei,fj) = X(i > ]) .
The relation > is then an order on Z¢, where over-lined colored particles can occur at most once in any ordered
chain:

e (k+ 1)?,1 ~e kcn ~e kcn e kc,,,l ettt e kcz ~e kcl e kcl e kE1 e kE2 e 'kE,,,l e kEn e

The latter inequalities give some generalized colored partitions that can be identified as overpartitions (Corteel and
Lovejoy, 2004). The corresponding energy matrix is given by

Cn P Cl Cl .. Cn

G (1 - 1 1 --- 1

. . o
o 11 1
Me= 1o 0 0 1
: o* : . :

¢ \O -« 0 0 --- 0

Note that Examples 2.1.6 respectively correspond to the restriction to {cy, ...,y } in the first case, and the restric-
tion to {¢Cy,...,C1}, with ¢; = c,41_; in the second case.
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Example 2.1.8. Let us consider C = {a, b}, and the minimal energy € given by the following energy matrix:

a b
a1 0
Me =, (o 1 ) '
The well-ordered sequences of particles with the same potential have the form

e ka >‘ekb>'eka>ekh>e""

Degree of the coloring
We now define the notion of degree of the coloring.

Definition 2.1.9. For a fixed set of colors C, referred to as primary colors, we define the set of secondary
colors by C; = {cc’ cc,cl eC }, and we note that the secondary colors are non-commutative products
of two primary colors, i.e cc’ # cc for ¢ # ¢’ € C. We extend this definition to degree d for any d > 1.
The set C; of colors with degree d is the set of all the non-commutative products of 4 primary colors. We
then have C; = C, and we use the term "secondary" for degree 2. We finally set for any integer d > 1

d
Cra=|]C (2.1.1)
k=1
the set of colors of degree at most d, and
€)=1]c¢c (2.1.2)
k>1

the set of all the colors without restriction of the degree. The weighted words method is said to be at
degree d if it only involves colors with degree at most d, i.e if the set of colors is a subset of (C).

Remark 2.1.10. Note that whatever the degree of the weighted words, the color sequence of a non-empty general-
ized colored partition can always be seen as a finite non-commutative product of primary colors. In the following,
we then consider that the color sequence belongs to (C). Conversely, any color in (C) can be seen as the color
sequence of a partition equal to a sequence of parts with the corresponding sequence of primary colots.

The first two theorems of this thesis will then have the following formulations.

Theorem 2.1.11. Let Cy be a set of primary colors. Then, for some suitable energies €1 on Cy and €3 on C1 U Cy,
there exists a bijection between a certain subset of Pe, and a certain subset of Pe,.

Grounded partitions

As in the subsequent example 2.1.5, all the colored partitions of the theorems of Chapter 1 satisfy some
restrictions on the minimal part size. Contrary to these colored partitions, for a given energy € on C,
the generalized colored partitions of Pe do not have any restriction on last part size. To deal with that
problem, we introduce the notion of ground partitions. Let us choose a particular color cg in C. We then
define the notion of grounded partitions as follows.

Definition 2.1.12. A grounded partition with ground c¢ and relation > is a non-empty generalized col-
ored partition T = (7, ..., 7Ts) with relation >, such that 77y = Oc,, and when s > 0, 751 =+ Oc,. Let
P, denote the set of such partitions.

In the following, we explicitly write = = (7, ..., 7Ts_1, Oc, ). The trivial partition in PC>Q> is then (ch).

Example 2.1.13. For example, the set of classical partitions is in bijection with the set P. of the grounded parti-
tions, with ground cq = c and relation >, where C = {c} and the energy € satisfies €(c,c) = 0. The bijection
is given by

(rt1,...,70) — ((711)e, - -+, (75) e, Oc),

where the empty partition @ corresponds to the grounded partition (0;).
In the following, most of the chosen grounds c; will satisfy the condition Oc, > 0c,. The condition

“1s-1 # Oc,” is then to avoid repeated part O, at the end of the generalized colored partitions. However,
in general, especially when the conditions on the minimal part sizes are rather difficult to express in



20 Chapter 2. Contribution of the thesis

terms of the colors in C and an energy € that defines the relation, we add a “fictitious” color ¢« as the
ending color. In that case, we extend the energy € to C U {c« } in such a way that €(c(715_1), co) is the
minimal part size for any color c.

Remark 2.1.14. Note that in the case where the ground is an existing color cq in C, we can still replace it by
a fictitious color co satisfying €(c,cg) = €(c,coo) and €(cqg,c) = €(ceo,C) for all ¢ # cg, and €(cq,Co0) =
max{e(cg, cg), 1}.

Regularity

Let us now generalize the notion of regularity defined for the m-regular partitions.

Definition 2.1.15 (Regularity in c). Let cbea colorin C. A c-regular partition with ground ¢, and relation
> is a grounded partition 7 = (7, ..., 7T5—1,0c, ) With ground cg and relation >>, such that c(7;) # ¢
forallk € {0,...,s —1}.

Example 2.1.16. Examples of such partitions are the m-regular partitions. It suffices to consider the set of colors
C={co,...,Cu—1}, ¢ = cg = co and define the relation > by
kci>>lcj<:>kzl and k—I1=i—j modm,

so that, in any reqular partition, the size of parts with color c; is necessarily congruent to i modulo m. We then
associate to any m-regular partition A = (Aq, ..., As) the reqular partition w = (71, ..., Ts_1,0¢,) such that,
forallk € {0,...,s — 1},

e = A1 and - (7)) = €,

where [Agi1]m = Agr1 mod m.
In the following, unless otherwise stated, we generally choose ¢ = c,.

Definition 2.1.17. In the case we add a fictitious color ¢« to define the minimal conditions on part
sizes, we then consider the generalized colored partitions c-regular with ground c. and the extended
relation >>.. We denote the set of such partitions P¢>.

Flatness
We now extend the notion of flatness defined for the m-flat partitions to the grounded partitions.

Definition 2.1.18. A flat partition with ground c¢ and energy € is a grounded partition with ground ¢,
and relation > defined by
ke»elj <= k—1=c¢(cd)-

We call the relation >, the flat difference condition defined by the energy e.

These partitions are determined by their color sequence as well as the energy €. This comes from
the fact that for such a partition 7 = (my, ..., 7'(5_1,ch), the computation of the size of 7t} gives the
following relation:

©®
|
—_

e =) _ele(m),c(mqr)) -
fr

Remark 2.1.19. In the case where €(cg, cg) = 0, the condition 7151 # Oc, on the grounded partitions implies
that c(rts_1) # cg for any flat partition with ground cg and energy e.

Example 2.1.20. A good example of flat partitions are the m-flat partitions. It suffices to consider the set of colors
C ={co,...,cu_1}, cg = co and define the energy € by

i iz
E(C”C])_{m—iri—jifi<j

With these definitions, for any flat partition, its parts with color c; necessarily have a size congruent to i modulo m.
We also observe that € has values in {0,...,m — 1}. We then associate to any m-flat partition A = (A, ..., As)
the flat partition 7t = (71, ..., s_1,0¢,) such that, forall k € {0,...,s —1},

T = A1 and () = ClAk1]m -
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Considering the set of colors and the energy € given in Example 2.1.20, by Theorem 1.2.6, there exists
a bijection between the corresponding flat partitions with ground ¢y and energy € and the cp-regular
partitions with ground ¢y and minimal difference condition defined by ¢, such that the parts with color
c¢; have sizes congruent to i mod m. The latter cp-regular partitions are those described in Example
2.1.16. Furthermore, the bijection occurs between the partitions of both kinds with a fixed total size and
numbers of occurrences of the colors different from the ground co.

In this thesis, we give three theorems having the same formulation.

Theorem 2.1.21 (Duality between flatness and regularity). Let C be a set of colors and let cg € C be the
ground. Then, for some suitable energies €' and e, there exists a bijection between a certain set of flat partitions
with ground cq and energy € and a certain set of c-regular partitions with ground cq and with the minimal
difference condition defined by energy €’.

The duality between flat and regular partitions naturally arises from representation theory via vertex
operators and crystal theory. The first theory permits to describe a basis of standard modules as a set
of partitions that satisfy minimal difference conditions (Meurman and Primc, 1987), while the (KMN)?
character formula builds a basis of standard modules as a set of partitions satisfying flat difference
conditions (see Chapter 8).

Multi-grounded partitions

One of the theorems that we present in this thesis, with the form of Theorem 2.1.21, will allow us to
compute the character of certain standard modules using the perfect crystals and the (KMN)? character
formula. However, in general, the partitions that we define for a perfect crystal have conditions on
minimal parts which depend not only on one but several colors. To deal with these conditions, we
define, in the spirit of the grounded partitions, the notion of the multi-grounded partitions.

Definition 2.1.22. Let C be a set of colors, Z the set of colored integers, and > a binary relation defined

on Z. Suppose that there exist some colors cg, ..., ¢, ; in C and unique colored integers ug:g Sy ugz:)

such that

u(o) + .4 u(tfl) =0, (2.1.3)
(0) (1) (t-1) (0)
Uggy > Ugyr > oo > ey * 2> Uey (2.1.4)

Then, the multi-grounded partitions with grounds cg, ..., ¢, ; and relation >> are the generalized col-
ored partitions 7w = (7, - -, ns,l,uggg, ..., ug:)) with relation > and such that (75—, -+, 7s_1) #
( (0) (t=1)

Ucgis- -+ s ey, ) in terms of colored integers.

Example 2.1.23. Let us consider the set of color C = {c1, ¢z, c3}, and the energy matrix

2 2 2
Me={( 0 0 2
-2 0 2

If we choose (g0,1) = (1,3), and we then have the unique pair (u®),uV)) = (1, —1). Therefore, the generalized
colored partitions
(3C3/ 3C2/ 361/ _163/ 1C1/ _163 )/ (1(33/ 3C1/ 1C3/ 361/ _103/ 161/ _1(33)

are multi-grounded with grounds c3, c1 and energy €, while the generalized colored partition

(1(31/ _1(33/ 1C1/ _1C3)

is not.

(0) (t=1)

In Definition 2.1.22, we note that for fixed grounds cq, ..., cg, ; and colored integers u. o7 teg,
the condition (2.1.4) implies the definition of multi-grounded partitions for any cyclic permutation of
0,...,t =1, with the ground sequences having the form cg,,...,cq,_;,Cg, .-, Cq;_,- This has a direct
connection with the notion of ground state path defined for the perfect crystals. In particular, using the
(KMN)? character formula, we compute the character of standard modules as generating function of
certain multi-grounded partitions.
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2.1.2 Generalized colored Frobenius partitions

Following Andrews (Andrews, 1984a), a generalized Frobenius partition is a two-rowed array

( Al Ay e )\S>

U1 ﬂ?. e ]/l s 4

where s is a non-negative integer and A := Ay + Ay +--- + Asand p = pq + o + - - - + ys are two
partitions into s non-negative parts. The Frobenius partitions are then the special cases where A and
p consist of distinct parts. Frobenius partitions of length s and size m = s+ Y} ; A; + Y ; y; are in
bijection with the partitions of m whose Durfee square (the largest square fitting in the top-left corner of

the Ferrers board of the partition) is of side s. A formal expression of the Durfee square’s length side for
a classical partition 77 = (71q,...,71) is

max{i € {1,...,t} : m; > i}.

Example 2.1.24. We give an example for the Ferrers diagram corresponding to the partitions (10,9,6,4,3,2)

FIGURE 2.1: s = 4,A = (9,7,3,0) and 1 = (5,4,2,0).

The bijection through the Durfee square implies the following combinatorial identity:

7 - — 2.15
sgf) (@2)? (T2 (2.1.5)

The generating function for the number F(m) of Frobenius partitions of m is given by

Y F(m)g" = [2°)(—xq; )oo(—x'; 9)co-

m>0

Indeed, the product (—xq; g)« generates the partition A together with the boxes on the diagonal where
the power of x counts the number of parts, (—x~!;q)e generates the partition u where the power of x~
counts the number of parts, and taking the coefficient of x” in the above ensures that A and p have the
same number of parts. Using Jacobi’s triple product identity (see, e.g., Andrews, 1984b),

_ k(k+1)
(=2 9)eo(—x Do (@ 7)0 = Y g 2, (2.1.6)
keZ

we see that the generating function for Frobenius partitions equals 1/(; ), the generating function
for partitions.

We now extend the notion of generalized Frobenius partitions to the framework of weighted words.
Let C be a set of colors, and
7% ={(z,7)c:27 €Z,ceC}

be the set of colored pair of integers.

Definition 2.1.25. Let >> be a binary relation defined on Z3. A generalized colored partition with relation
> is a finite sequence (711, . .., 75) of colored integers, where foralli € {1,...,s — 1}, 71; > ;1.

As we defined before for the generalized colored partitions, we set c¢(7;) € C to be the color of the
part 71;. By setting 71; = (A, y;), the quantity |7;| = A; + y; is called the size of the part 77. We then
define the size || of 7 to be the sum |7r1| + - - - + |715], and C(7r) = ¢(711) - - - ¢(775) is its color sequence.
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Example 2.1.26. Let us set C = {c}, and let us consider the relation > on Z?2 defined by
(k,D)e> (K, I")e = k>Kandl >1"-

The map

A—1 - Ag—1
(()Lllyl)C/"'/()LS/VS)C)H( 1;11 S‘us )

implies a bijection between the generalized colored Frobenius partitions, whose last part (As, us). is well related to
(1,0). in terms of >, and the generalized Frobenius partitions. Moreover, this bijection preserves the size of the
generalized Frobenius partitions.

In the following, we consider the relation >, ¢, defined by two energies €; and €, on C as follows:

k—k >e1(c,c') and

2.1.7
I-1">ec,c) @17)

(k,l)c >>€1,€2 (k’,l,)cl < {

We then define the set F¢, ¢, of generalized colored Frobenius partition with relation >, ¢,. This def-
inition yields to a natural correspondence between F¢, ¢, and the subset of Pe, x P, of pairs (A, ) of
generalized colored partitions having the same number of parts.

We finally extend the notion of ground to the generalized colored Frobenius partitions.

Definition 2.1.27. A grounded Frobenius partition with ground cg and relation > is a non-empty gener-
alized colored Frobenius partition 7t = (7, ..., 7ts) with relation >, such that 7t; = (0, O)Cg, and when

§> 0,751 # (0,0),.

In the same way, one can extend the notion of flatness and regularity to the generalized colored
Frobenius Partitions, as well as the addition of a fictitious color at the end of the color sequence.

In this thesis, we will present a generalization of the identity (2.1.5) which has the following formu-
lation.

Theorem 2.1.28. Let C be a set of colors. Then, for some suitable energies € and €1, €2, there exists a bijection
between a certain set of generalized colored partitions in Pe and a certain set of generalized colored Frobenius
partitions in Fe, e,.

The correspondence between the classical partitions and the Frobenius partitions is the case where
C = {c}, e(c,c) = 0 with a positive size for the last part, and €1(c,c) = €x(c,c) = 1 with a positive size
for the last pair of integer.

2.2 Rogers-Ramanujan type identities via bijective approaches

Throughout history, most of the Rogers-Ramanujan type identities were primarily discovered via the
computation of g-series. Then, a combinatorial interpretation of these identities led to a equality between
the cardinalities of the corresponding partition sets. A subsequent problem then consisted in building
a suitable bijection to link these sets of partitions. However, in general, this still remains a difficult
problem to deal with. For example, the Rogers-Ramanujan identities were prove bijectively by Garsia
and Milne (Garsia and Milne, 1981) via the involution principle, and their bijection does not establish
a direct correspondence between the partitions of the sets involved. A bijective proof without a sign-
reversing involution is yet to be found for these identities.

In this thesis we present several identities established via bijections. We start from the identities pre-
sented in Chapter 1, formalize via our weighted words the corresponding partitions and then outline
the general rules followed by these partitions. These formal rules not only allow us to build an adequate
bijection for the original identities, but also allow us to discover identities which generalize them. This
process succeeded for the four following identities: Gollnitz” identity, Siladi¢’s identity, Glaisher’s iden-
tity and Capparelli’s identity. A fifth result on a generalization of the duality between partitions and
Frobenius partitions is given is this section, but contrary to the four other generalizations, the proof is
partially bijective, and the last part of the proof rests on the computation of the generation functions.

2.2.1 Beyond Gollnitz theorem: a generalization of Bressoud’s algorithm

In a pair of papers (Konan, 2019a; Konan, 2019b), we gave a result beyond the Gollnitz theorem for an
arbitrary number of primary colors.



24 Chapter 2. Contribution of the thesis

Refinement and bijective proof of Theorem 1.3.3

In paper one (Konan, 2019a), we showed an equivalent version of Theorem 1.3.3. We supposed that the
parts occur in only primary colors 4, b, ¢, d and secondary colors ab, ac, ad, bc, bd, cd, and are ordered as
in (1.3.9) by omitting quaternary parts:

Top <lae <1y <1p<lpe <1pg <1y <1y <1 <1y <2 <o (2.2.1)

We then considered the partitions with the size of the secondary parts greater than one and satisfying
the minimal difference conditions in

N
U
=~
)
<
QU
Q
QU

A\ T abac
ab
ac
ad
a
be
bd
b
cd
c
d

N

(2.2.2)
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== R =R == NN DN

== O = = == = =N
e e Y e il e i )
= R R, R, NNNR, NN
=== = N NN DNDNN
== NN RNDNNDDNRN
== NN DNRNNNDDNNO

and which avoid the forbidden patterns

((k + 2>Cd/ (k + z)ﬂb/ kc)/ ((k + Z)Cd/ (k + z)ub/ kd)/ ((k + z)ad/ (k + 1)bw ka), (2.2.3)
except the pattern (3,4, 2y, 1,) which is allowed. We then obtained the following theorem:

Theorem 2.2.1. Let u, v, w, t, n be non-negative integers. Denote by A(u,v, w, t, n) the number of partitions of
n into u distinct parts with color a, v distinct parts with color b, w distinct parts with color ¢ and t distinct parts
with color d, and denote by B(u, v, w, t,n) the number of partitions of n satisfying the conditions above, with u
parts with color a, ab, ac or ad, v parts with color b, ab, bc or bd, w parts with color c, ac, be or cd and t parts with
color d, ad, bd or cd. We then have A(u,v,w,t,n) = B(u,v,w,t,n), and the corresponding q-series identity is
given by

Y. B(uowtn)a"b’c?d'q" = (—ag;q)eo(—bq;9)eo(—cq; 7)oo(—4; 9)oo (22.4)

u,v,w,t,ne€N

The proof of Theorem 2.2.1 consisted of a bijection established between the two sets of partitions. We
also used a second bijection to show that Theorem 2.2.1 is equivalent to Theorem 1.3.3.

By specializing the variables in Theorem 2.2.1, one can deduce many partition identities. For exam-
ple, by considering the following transformation in (2.2.4)

{ dilation : g — q*2 (2.2.5)

translations: a,b,c,d — ¢ 8974497297}
we obtain a corollary of Theorem 2.2.1.

Corollary 2.2.2. For any positive integer n, the number of partitions of n into distinct parts congruent to
23,22, 21 20 mod 12 is equal to the number of partitions of n into parts not congruent to 1,5 mod 12
and different from 2,3,6,7,9, such that the difference between two consecutive parts is greater than 12 up to the
following exceptions:

* Ai— A1 =9=A; ==£3 mod 12and A\; — Aj;, > 24,
o \i— A =12=A; = -23-22,-21, 20 mod 12,
except that the pattern (27,18,4) is allowed.
Example 2.2.3. For example, with n = 49, the partitions of the first kind are
(35,10,4),(34,11,4),(28,11,10), (23,22,4),

(23,16,10), (22,16,11) and (16,11,10,8,4)
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and the partitions of the second kind are

(35,14), (34,15), (33,16), (45,4), (39,10), (38,11) and (27,18,4) -

Generalization to an arbitrary number of primary colors

We now give a general result beyond Gollnitz’ theorem, by proving a generalization of Theorem 2.2.1
for an arbitrary finite set of primary colors. Let C = {ay,...,a,} be an ordered set of primary colors,
withay < -+ < a, and let us set Cy, = {aia]- :1 <i < j < mn}. Notethat Cx # C, as we do not have
color a;a; fori > j.

We can naturally extend the order from C to C LI Cy with
apay < ---<aay < ap < apaz < - < aply < ap < --- < aj_q (2.2.6)
<aidip << gy < a; < <dyqay < ay_1 < day:

We also set
SPyw = {(mgay,q8;) €C%:i<j<k<lork<i<j<I} (2.2.7)

to be the set of the special pairs of secondary colors. Note that the pairs of SP 5 use four different primary
colors.

Definition 2.2.4. The lexicographic order > on the set of colored parts is defined by the following rela-
tion:
kp = lg=k—-1>x(p<q). (2.2.8)

Explicitly, this relation implies an order on colored parts
Toya, < -+ < 1ay, <2400, <+ <24, <3ayay <+ - (2.2.9)
We remark that the relation > on Z¢ ¢, is implied by the energy € defined by
elc,d)=x(c <), (2.2.10)
where we consider the order on the colors set in (2.2.6).

Definition 2.2.5. Let P be the set of the positive parts with primary color, and let S be the set of the
parts with secondary color in Cy and size greater than one. We then define two relations > and > on
P US as follows :

ky = (1+1), if porgeC
P q
kptlq — { kp = (1+1); if pandgeCy ~’ (2.2.11)
and
ky=(1+1); if porgeC
kp>1lg<=< ky=(1+1), if (pgq) €CE\SPx - (2.2.12)
ky =1, if (p,q) € SPx

We observe that the relation > is the minimal difference condition with respect to the energy e,
defined by
ec,d)=1+x(c<d)—x(c= €0), (2.2.13)

and the relation > is related to the energy €; defined by
e, d)=1+x(c<)—x(c=c€C)—x((c,c) € SPy). (2.2.14)

Note that k;, > ; implies k, > I,. We can easily check that in the case n = 4and C = {a < b < c < d},
the energies €; and e; correspond respectively to the minimal differences A; — A; 1 in (1.3.10) and (2.2.2).
We also remark that these differences constitute an exhaustive list of all the minimal differences for our
relations, since at most four primary colors occur in any pair of colors in C LI C.

Definition 2.2.6. A secondary color is just a product of two primary colors. For any type of partition A,
its size |A| is the sum of its part sizes.

1. We denote by O the set of generalized colored partitions with parts in P and relation by >~. We
recall that ¢(A;) in C is the color of A;, and the color sequence is C(A) = c(Aq) - - - c(A¢), here viewed
as a commutative product of primary colors in C.
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2. We denote by £ the set of generalized colored partitions with parts in P U S and relation >> defined
in (2.2.12). We then have the colors c(v;) € C LICy depending on whether v; is in P or S, and we
view the color sequence C(v) = ¢(v1) - - - ¢(v¢) as a commutative product of colors in C.

3. We finally denote by &, the subset of partitions of £ with relation .

We can now state the first theorem that stand for the basement of our result beyond Gollnitz’ theo-
rem.

Theorem 2.2.7. Let m be a non-negative integer and C a commutative product of primary colors in C. Denote
by U(C,m) the number of partitions A in O with (C(A), |A|) = (C,m), and denote by V(C,m) the number of
partitions v in € with (C(v), [v|) = (C, m). We then have the following inequality :

u(c,m) < v(C,m)- (2.2.15)

The previous theorem implies that O can be associated to a set & such that & C £. We define this
set £ using two technical tools : the different-distance and the bridge. The definition of the different-
distance is stated here, while the definition of the bridge, which is more intricate, will be given in 3.

Definition 2.2.8. Let A = (Aq,-- -, As) be a sequence, where the elements A; belong to a set of colored
numbers ordered by a relation -, and let d be a positive number. For any i,j € {1,...,s}, we say that A;
is d-different-distant from A; if we have the following relation:

A= Ap+d(j—1i)- (2.2.16)

Note that the relation "being d-different-distant from" is transitive, as A; is d-different-distant from /\]-
and A, is d-different-distant from A implies that A; is d-different-distant from Ay.

A good example of a partition having such a property is a partition v = (v, - -+ ,v5) € &. In fact, by
(2.2.11), we recursively obtain for any i < j € {1,...,s} that v; is 1-different-distant from vj. This is not
true in general when v € &, as by (2.2.11) and (2.2.12), a part v; not well-ordered with v; 1 in terms of >
is also not 1-different-distant from v; ;.

The generalization of Theorem 2.2.1 can be stated as follows.

Theorem 2.2.9. Let &; be the set of partitions v = (vy,...,vs) € € such that, foralli € {1,...,s — 1} with
Vi 1>V Blig1, (2.2.17)

the part v; is 1-different-distant from its bridge. Then, for any non-negative integer m and any commutative
product of primary colors C in C, by setting U(C, m) as before in Theorem 2.2.7, and by setting W(C, m) to be the
number of partitions v in & with (C(v), |v|) = (C, m), we then have that U(C,m) = W(C, m) and the identity

n

n n n
Y w(Ia"m]ITafq"= Y ula"m]laq" = (-ag9)c- - (—ang;q) -
i=1 i=1

muq,...,uy >0 i=1 muq,...,uy >0 i=1
(2.2.18)

Another identity, discovered by Corteel and Lovejoy, 2006, relates the same set of partitions, with
primary colored parts, to a set of partitions with parts having some colors as products of at most n
different primary colors, giving 2" — 1 colors in total.

Note that by definition, a partition in &, never satisfies (2.2.17), so that the definition of &; still holds
for this partition. We thus have & C & C £. We also remark that SP,, is empty for C with fewer than
four primary colors, so that in that case, &, = £. Therefore, Theorem 2.2.9 implies the Alladi-Andrews-
Gordon refinement of Gollnitz” identity. For n > 4, the set £ can be seen as a subset of £ that avoids
some patterns. When n = 4, we show that the forbidden patterns are the ones described in Theorem
2.2.1. For n > 4, the enumeration of forbidden patterns becomes more intricate. Chapter 3 is dedicated
to the discussion on the result beyond Gollnitz” theorem.

2.2.2 Beyond Siladi¢’s theorem: weighted words in the framework of statistical
mechanics

In papers (Konan, 2020a; Konan, 2020b), we gave a result beyond the Dousse refinement of Siladi¢’s
theorem for an arbitrary number of primary colors. In this section, we view the weighted words in the
framework of statistical mechanics.
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Integer partitions in statistical mechanics

The connection between integer partitions and physics was first pointed out by Bohr and Kalckar (Bohr
and Kalckar, 1937). In the same year, Van Lier and Uhlenbeck noted links between the problem of
counting microstates of the systems obeying Bose or Fermi statistics and some problems related to inte-
ger partitions (Lier and Uhlenbeck, 1937).

Since then, a current approach in statistical mechanics consists in considering a partition of a given
integer into parts with certain restrictions as a sharing of a fixed amount of energy among the different
possible states of an assembly. This approach can be found in the seminal works of Auluck and Kothari
(Auluck and Kothari, 1946), Temperley (Temperley, 1949) and Nanda (Nanda, 1951).

We now refer to the colors as states, and the sizes of parts as potentials. The main goal will consist in
using a new variant of Bressoud’s algorithm as a process in which we operate energy transfers according
the states involved in the generalized colored partition. Recall that the allowable differences between
the potentials of consecutive particles in Siladi¢’s identity are defined by a certain energy. By taking a
larger family of allowable energies, we generate an infinite family of identities generalizing the Siladié
theorem for a arbitrary number of primary states.

Let C be a set of states, countable or not, and let P = Z; be the corresponding set of particles. We
recall that the energetic particle k. is identified by its potential k and its state c. In the remainder of this
section, such a particle is called a primary particle. We consider a relation >, on Z related to a minimal
energy, and we recall that O, is the set of generalized colored partitions with relation ~.. Here, we recall
that

kp=clg=k—1>¢€(p,q)- (2.2.19)

The sequence of colors in now referred to as the State of the partition.

Suitable secondary particles and generalization of Dousse’s refinement

We recall that a secondary state is the product of two primary states. The key idea is to build secondary
particles starting from the primary particles. The following definition permits a suitable construction
for these secondary particles.

Definition 2.2.10. We define the secondary particles as sums of two consecutive primary particles in terms
of =. We denote by S = Z x C? the set of secondary particles, in such a way that the particle

(k,c,c') = (k+e(c,c),c) + (k) (2.2.20)

has potential 2k + €(c, ¢’) and state c¢c’. In fact, (k + €(c, '), c) is exactly the primary particle of state ¢
with smallest potential, which is well-related to (k, ¢’) in terms of .. We then set the functions 7y and y
on S, defined by

v(k,c,c') = (k+e€(c,c'),c)and u(k,c,c') = (k, ), (2.2.21)

to be respectively the upper and lower halves of (k, ¢, ¢’). In the following, we identify a secondary particle
as (k,c,c’) or (2k+€(c,c’))cer-

Example 2.2.11. Let us take C = {a,a} in Example 2.1.7. We then have
a a
a1l 1
a\0 0

and we obtain with Definition 2.2.10 and (2.2.35) the following secondary particles:

We now build a relation on the set 7 U S of primary and secondary particles.

Definition 2.2.12. We define the relation >, on P LI S as follows:
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1. Two primary particles of P are well-ordered by > if and only if they are well-ordered but not
consecutive in terms of >:

(k,c) >c (K,c") = k—K >¢e(c,d)- (2.2.22)

2. A primary particle of P is well-ordered with a secondary particle of S if and only if their potentials’
difference is at least equal to the energy of transfer from the first to the last primary states:

(k,c) > (K,c, ") = k— (2K +e(, ")) > e(c,) +e(c, ) (2.2.23)

3. A secondary particle of S is well-ordered with a primary particle of P if and only if their potentials’
difference is greater than the transfer energy (from first to last state):

(k,c,c") >e (K,") <= 2k +e(c, ) — k' > e(c, ) +e(c, ") (2.2.24)

4. Two secondary particles of S are well-ordered by >, if and only if the lower half of the first one
is greater than the upper half of the second in terms of >:

(k,c,c") > (K,",") = u(k,c,c') e y(K, ", ") (2.2.25)

This is equivalent to saying that the potentials’ difference k — k’ is at least equal to the energy of
transfer e(c/, c”) +e(c”, ).

One can check that for ¢’ = {a < b} and the minimal energy e described in Example 2.1.7, the
relations in the latter definition exactly give the minimal difference conditions presented in (2.2.34).

Remark 2.2.13. We notice that
(k,c) =c (K,c)and (k,c) Be (K,) =k -k =¢€(c,)- (2.2.26)
Such pair of primary particles is called a troublesome pair.

Definition 2.2.14. We define O, (respectively &) to be the set of all generalized colored partitions with
particles in P (respectively P LI S) and relation -, (respectively >).

For p € {0,1}, we consider the following sets:
o PPt =ZspxCand 8P+ =Z>, x C? = {(k,c,c') € S: k> p},
PP~ =Z<yxCand SP~ = {(k,c,c') € S: k+e(c,c) <p}.
We then denote by OFF (respectively OF ") the subset of O, of generalized colored partitions with par-

ticles in PP+ (respectively P?-), and by £+ (respectively EP7) the subset of & of generalized colored
partitions with particles in PP+ LI SP+ (respectively PP~ L SF-).

Since the secondary states are products of two primary states, the States of partitions in O, and &
are then seen as a finite non-commutative product of primary states in C.

We now state the main result of this part.

Theorem 2.2.15. For any integer n and any State C as a finite non-commutative product of states in C, there
exists a bijection between {A € O¢ : (C(A),|A]) = (C,n)}and {v € E : (C(v), |v|) = (C,n)}. In particular,
for p € {0,1}, we have the identities

H{v e & (Cv),|v]) = (C,n)}| = |{A € OFF : (C(A),|A]) = (C,n)}, (2.2.27)
{vee& - (Cw),Iv]) = (Cm)} = {Ar € O : (C(A), |A]) = (C,m)}|- (22.28)
One can observe that, for any integer n and any State C with at least two primary states, the sets

{A € O¢: (C(A),|A]) = (C,n)}and {v € & : (C(v), |v|) = (C,n)} are infinite. However, as soon as we
give an upper or a lower bound on the particles’ potentials, the corresponding subsets are finite.

Example 2.2.16. Let us consider C' = {a < b} in Example 2.1.7 and the corresponding minimal energy. We
then have for n = 10 and C = baba the relation {A € O : (C(A),|A|) = (baba,10)} = {A € & :



2.2. Rogers-Ramanujan type identities via bijective approaches 29

(C(A), |A]) = (baba,10)} = @ and the corresponding partitions for o~ are given in the following table:

OO+ O;+ gg+ 5€1+

(9[;/ 1u/ Ob/ Oﬂ) (95/ 15/ Obu)

(85,27, 0, 0,) (85,2, 030

(7hr 311/ Ob/ 011) (7E/ 37/ Obll)

(75,22, 1p,04) (75, 325, 00)

(65,47, 03, 0q) (65,47, 03a)

(6b,3a, 1, 00) (63,32, 11, 0a)

( 2z,1p,1 ) (6E/ 27,1, 1&) (65/ 3ab, 1ﬂ) (6 , b, 1 )
(Sb’ 4z, 1b’ 0”) (9Eﬁ/ 1b/ Oa)

(Sh/ 3a 2br 011) (755, 3h,0u)

(5537, 1p,1a) | (55,32 1p,1a) | (53,32 20a) | (55,37 2pa)
(4b,3a,2b, ) (45, 37, 2p, 1,1) (755,2;], 1,1) (755,2b, 1,1)

We have for n = —8 and C = baba the relation {\ € O% : (C(A),|A|) = (baba,—8)} = {A € & :
(C(A),|A|) = (baba, —8)} = @ and the corresponding partitions for p_ are given in the following table:

Of oY & &

(1b/ 0{1/ 1b/ 811) (1b/ 1ﬁb/ 811)

(1h/ Oar br 7711) (1b§/ 721)1 711)

(117/ Oa/ 3b/ 6&) (1E§/ _Sbr _6ﬂ)
(1 1 —2p,—64) (15, —3ap, —84)

( 4br 5a) (lbﬁ/ —4yp, _5a)
(lh/ 3b/ ) (1E1 _1ﬁ/ _3b/ 511)
EOb, Zb, g (05, =1z, =2, —54) EOE, —3a, —5,13 (05, —3ap, —5a)
1 —4;, —4 17, —15, —8
% a % ar ba

(1b/ 2!,1/ 3b/ a) (151 _3ﬁ/ _6ba)
(Ob/ 3b/ H) (OE/ _]-E/ _3b/ _411) (_15/ _3E/ _4bu) (_15/ _35/ _4bu)
(Obr 3b/ ) (OE/ —2z, _3h/ _3[1) (OEr —2z, _6ba) (051 —2z, _61711)

We obtain the following corollary of Theorem 2.2.15.

Corollary 2.2.17. For any set C of primary states and any minimal energy € on C2, we have

Y, Hve& :(Cv),v)=(Cn}Cq"= Y, H{re O :(C(A),IAl) = (Cn)}|Cq" = H Fe(e;q™)
(2.2.29)

where < C > is the non-commutative group generated by the primary states of C, and F¢ (€, x) is a series in the
commutative algebra Z[[C, x||, and C is the commutative product corresponding to C in Z[[C, x|]. In particular,
we have the following explicit expressions for Fo (€, x):

1. ForC = {cy,...,cn}, we have

| elcici) | Fe(e, x) ‘
0 1
1—(c1+--+ca)x
1 14+ (c1+---+cn)x
n
., 1
MiAD | Tl (2.2.30)
.. n 1
x(i <) 11 ox
n
x(i<j) [T +cx)
i=1
2. ForC' ={cy,...,cn} and € as described in Example 2.1.7,
n1ac
Fe(e,x) =[] +ox. (2.2.31)

i1 1—cix
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3. For C = {a,b} and € as described in Example 2.1.8,

(1+ax)(1+bx)

Fe(e,x) = (1 — abx?)

(2.2.32)

Application to overpartitions

We now give an example that will generalize Siladi¢’s theorem to overpartitions. Recall that an overpar-
tition is a partition where we can over-line at most one occurrence of each positive integer (Corteel and
Lovejoy, 2004). It has been a recurrent problem in partition theory to extend some partition identities to
overpartitions (Dousse, 2014; Dousse, 2017a; Lovejoy, 2003; Lovejoy, 2004).

Consider the set of colors C = {b < @ < a < b} and the relation . defined by the minimal difference
conditions in the following energy matrix

b a ab
b1 1 11
alo 1 1 1
D= Zo 0o 1 (2.2.33)
b\0 0 0 O

These differences correspond to the energy of Example 2.1.7 for (c1,c2) = (a,b). They imply that a par-
tition in O, can have any number of primary particles with a fixed potential and a non over-lined state,
while there is at most one primary particle with a fixed potential and an over-lined state. The partitions
of O, are then identified as the generalized overpartitions whose definition is given by the following.

Definition 2.2.18. Let us fix a set of states C. A generalized overpartition is a generalized partition where
we are allowed to over-line at most one particle with a fixed potential and state.

Example 2.2.19. The generalized partition (14,1z,15,0p,0p, 04,04, 07,05, —1;, —15) belongs to O, and corre-
sponds to the generalized overpartition (14,14, 15,0p,0p,04,04,04,0p, —1p, —14).

We then call the partitions in O, the colored overpartitions, and this means that we can have any
number of particles with a fixed potential and state, with at most one such particle over-lined. We
observe that once a particle is over-lined, by the difference conditions in D, it no longer has the same
order with respect to the other particles. For example, we have 1, > 1, but 1p < 1,. This is different from
the usual convention, but the way we defined these relative orders plays a major role in the definition
of the corresponding secondary particles.

The relation > then corresponds the minimal difference conditions in the following table

N

<
<
Q
<
S
<
S
S
<
Q)
)
l
S
Q|
S
2
<
2
Q
B
N
a
IS
SN
S
ST
N
ISy
S
S3
[

SRS
TS g s o

bb
, ab
D = 72
aa
ab
ab
aa
2
ab
bb
ba
ba
b2

(2.2.34)

== R RN R R RN RN QR == NS
R R NRREINRFRPE NP QRN W RRFE~P2,DNNR
R R NNRRINNFRE NP ORLRINNDND QW RR=R,NDNR
EFNNDNRFREINNRNFRINOWWRINWWWRIFRENNDDNS

=== QIR P QNN QINDNDN R PRRPRPDN
=== WIN R = WINNRNDN WQOINNDN RER PPN
R PR WQINR R, WQINDNDN QNDNDN RRPRPR,RPR,N
R PR WQINR R QWQINDNDNDN QINDNDN R RPRPR,RP,N
O ONNRFRONNRFRRFRWNRFRRWWRWOOO R
== QO WIN R WWINRNE QNN R RE,EP,DNDN
=R W WINRFE WWINNE QNN B BREP,PR,NODN
=R W WNRFP WWNRNE WINNN R REPL,NDDN
O ONDNRFRONNRFRRFRWNRFRRWWRW OO R
O ONNRFRONNRFRRFRWNRFRRFRWR OO -
O ONNRFRONNRFRRFRWNRFERFRWR OO
=R W WINRF, WWNRNE WQINN R REPEPL,NDN
O NRNNFEFNNNRFEWWNE WWWRWORR=—-
O NNNFEFRNDNNRFEWWNEWWWRWO—=—=
O NNNFPRNDNNRFRWWNEPWWWRW O
O NNNFPRNDNNRFRWWNEWWRW O

By definition, the secondary particles with state cc’ then have a potential with the same parity as the en-
try of D corresponding to the row ¢ and the column ¢’. Therefore, we have the following correspondence
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for secondary states:
b a a b
i baoz  ba by
odd Aodd Aodd odd
72 N
abeven ﬂgdd Aoqd abogq

-7 =2 2
abeven Aeven Aeven abog4

Q[ 2 T

, (2.2.35)

2
b \ beven Dacven baeven bg‘uen

where ¢4, refers to a particle with state ¢ and potential with the same parity as the index. Here
again, the generalized partitions in & can be identified as some generalized overpartitions for the set of
colors {a,b,a?,ab,ba,b*}. We now state the corresponding corollary of Theorem 2.2.15. To simplify the
formulation of the corollary, we assume that the symbols 4, b and c commute in the generating functions.

Corollary 2.2.20. Let u, v, w and n be non-negative integers. Let us denote by A(n;u,v, w) the number of colored
overpartitions of size n with positive potentials and colors in {a, b}, with u particles with color a, v particles with
color b and w over-lined particles. Let us denote by B(n;u,v,w) the number of colored overpartitions of size n
with colors in {a,b,a?,ab, ba, b*}, with positive potential for the primary particles and potential greater than one
for the secondary particles, satisfying the minimal difference conditions given D', with u occurrences of the symbol
a, v occurrences of the symbol b, and such that w equals the number of over-lined particles plus twice the number of
even particles with color ab and odd particles with color a2, ba or b?. We then have A(m;u,0,w) = B(n;u,v,w)
and the identity

- - —¢q;9)oo(—bCG; )0

B(n;u,v,w)a"b’c?d" v Vg" = A(n;u,0,w)a"b?c?d" gt = ( .

ﬂ,M,UZ,WZO I n,u,guz() 1 (ﬂdq,‘ Q)oo (bdq/ 5])00
(2.2.36)

In the previous corollary, if we restrict the partitions in Oc to those with only over-lined particles,
i.e u +v = w, and by applying the transformations (g,a,b,c,d) — (q4,q’1,q’3, 1,0), we recover the
identity given by Siladi¢ and corresponding to Theorem 1.3.4.

On the other hand, by restricting the partitions in O, to those with only non over-lined particles, i.e
w = 0, and by applying the transformations (g,4,b,c,d) — (4%, 472,471,0,1), we obtain the following
analogue of Siladi¢’s theorem.

Theorem 2.2.21. The number of partitions A1 + - - - + As of an integer n into odd parts is equal to the number of
partitions of n such that

Ai—Aip1=0= A+ A1 =+4 mod 16,
Ai—Aigr=1= A+ A1 =+3 mod 16,
Ai—Aip1=2= Aj+Ajp1 =+£2,46 mod 16,
Ai—Aiy1=3= A+ A1 ==£1,454+7 mod 16 -

Example 2.2.22. For n = 10, the partitions of n into odd parts are
9,1),(7,3),(71,1,1),(5,5),(53,1,1),(51,1,1,1,1),(3,3,3,1),(3,3,1,1,1,1)
(3,1,1,1,1,1,1,1) and (1,1,1,1,1,1,1,1,1,1)
and the partitions of given by Theorem 2.2.21 are
(10),(9,1),(8,2),(7,3),(7,2,1),(6,4),(6,2,2),(5,2,2,1),(4,2,2,2) and (2,2,2,2,2) -

Remark 2.2.23. For Siladi¢’s theorem, since we have b < @, we carry out the transformation (a,b) — (q71,q73)
to keep the order, while for its analogue, we have a < b and we then apply (a,b) — (g73,471).

The proof of Theorem 2.2.15 will be given in Chapter 4.

2.2.3 Beyond Glaisher’s theorem: a duality between flat and regular partitions

In paper (Konan, 2020c), we gave a result beyond the refinement of Keith-Xiong, that links our general
definition of flat partitions and regular partitions given in terms of weighted words. Here again, we see
the weighted words in the framework of statistical mechanics.
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Weighted words at degree one

Let C be a set of primary states, and let € be a minimal energy. We set ]:16 “$ to be the set of primary flat
partitions, which are the flat partitions with ground c; and energy €. Recall that the energy € defines a
relation >, as follows,

ke ekl <= k—k =e(c, ') (2.2.37)

Let us also recall the energy relation -, defined by
ke =e ks <= k—k >¢€(c,), (2.2.38)

and let Ri’cg be the set of primary ce-regular partitions, which are the c¢-regular partitions with ground
cg and relation .

Assuming that ¢, = 1, one can see, for both flat or regular partitions, the state sequence as a product
of states in C \ {cg}. Letusset C’ = C\ {cg}. Depending on certain properties of €, we can build a
bijection between Ri'cg and .7-"16 ¢ which preserves both the Energy and the State of partitions.

Theorem 2.2.24 (degree one). Let us assume that e(cg, cg) =0, and that for all c, ' #0,
e(d',cq) = €(c,cq) =1—€(cq,0) - (2.2.39)

There then exists a bijection ) between ]-"f S and Ri’cg which preserves the total energy and the sequence of states
different from cq.

This theorem is a generalization of Theorem 1.2.6. To see that Theorem 2.2.24 implies Theorem 1.2.6,
we take the set C = {co,...,Cu—1}, and set c; = co. Theorem 1.2.6 then corresponds to the energy
e(ci,cj) = x(i < j), followed by the transformation

(4,01, sCm1) = (", 1,4, 4" 1) -

The latter operation means that the particle is k, is transformed into the part mk + i, and the relations in
(2.2.37) and (2.2.38) induced by € then become

e
mk+i>emk’+i’<:>(mk+i)—(mk’+i’)={l PRt
m+i—iifi<i
i
mk i e mk' + i <= (mk+1i) — (mk' +i') > {l PRl=t
m+i—iif i<i

Note that the last part corresponds to 0 for both flat and regular partitions after this transformation. We
then retrieve the flat partitions of Example 2.1.20 and the regular partitions in Example 2.1.16, except
that we implicitly assimilate the congruence modulo m of the part size to the unique corresponding state
inC.

Similarly, Theorem 1.2.6 is also implied by Theorem 2.2.24 with the energy e(c;,¢;) = x(i > j)

followed by the transformation (g, co,c1,...,cm—1) — (4™, 1, q’l, ey, qlfm), in which case the particle
k., is assimilated to the part km — i.

In the same way, we obtain the analogue of Glaisher, stated in Corollary 2.2.25, by considering the
same set of states C = {co,...,cu—1}, the ground c; = ¢y, the transformation (g,co,c1,...,cpn-1)
(g™,1,q,...,4™ 1), but a slightly different energy e defined by

X< ) if i £
eci,cj)) =10if i=j=0
1if i=#0
Note that the restriction of € to C \ {cp} = C’ then gives e(c;, ¢;) = x(i < j).

Here we give a corollary of Theorem 2.2.24 as the following analogue of Glaisher’s theorem for m-
regular partitions into distinct parts.

Corollary 2.2.25. Let m and n be positive integers. Then, the number of m-reqular partitions of n into distinct
parts is equal to the number of (m + 1)-flat partitions of n, such that
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o the smallest part is less than m,

* two consecutive parts divisible by m are necessarily equal,

* two consecutive parts not divisible by m and with the same congruence modulo m are necessarily distinct.
Example 2.2.26. Here we take m = 3 and n = 16, and the 3-regular partition of 16 into distinct parts are

(16),(14,2),(13,2,1),(11,5),(11,4,1),(10,5,1),(10,4,2),(8,7,1),(8,5,2,1), and (7,5,4)
and the 4-flat partitions of 16 of the second kind are
(8,52,1),(7,53,1),(7,4,3,2),(6,5,4,1),(6,5,3,2),(6,4,3,2,1),(5,4,3,3,1),(5,3,3,3,2), (4,3,3,3,2,1),
and (3,3,3,3,3,1) -

Another consequence of Theorem 2.2.24 consists in easing the computation of characters of the rep-

resentations of some affine Lie algebras.

Weighted words at degree two

The second result, Theorem 2.2.31 below, concerns weighted words at degree two, and energies satis-
fying € = €’ up to some exceptions. This second theorem uses Theorem 2.2.24 and Theorem 2.2.15. In
the particular case of representations of affine Lie algebras we study here, Theorem 2.2.31 allows us to
connect the difference conditions of Theorem 2.2.15 and the energy function of the square, in terms of
tensor product, of the vector representation. Let us now assume that € satisfies the conditions of Theo-
rem 2.2.24 and consider the set of secondary particles S defined in Definition 2.2.10. We set ¢ to be the
common value of €(cg, ¢) forall c € C’.

Definition 2.2.27. We define ]-'25 “$ to be the set of secondary flat partitions, which are the flat partitions
into secondary particles in S, with ground c§ and energy e, defined by

e2(cc’,dd") = e(c,c’) +2e(c,d) +e(d,d)- (2.2.40)

Remark 2.2.28. The definition of €, is equivalent to defining a relation >, on secondary particles which satisfies
the following:

(2k+€(c, ")) e, (21 +€(d,d')) g < (2k+e(c,c')) — (21 +€e(d,d")) = e(c, ') +2e(c’,d) +e(d,d') -
k- (I+e(dd)) =e(c,d)
o (2K (6, ))ee) e N(2 + (@) (2241)

Definition 2.2.29. We set R;'Cg to be the set of secondary regular partitions, which are the regular parti-
tions into secondary particles in S, with ground c§ and the energy €’ defined by

eh(cc’,dd") = ey(cc’,dd’) +26¢(cc’,dd’), (2.2.42)
where 6¢(cc’,dd’) = 0 apart from
6¢(ceq,cod’) = €(c,d’) forall c,d eC’, (2.2.43)

and the additional exceptions when ¢ = 1:

— / ! / ! _
5(cc dd') = =1 if T C'd'd, < C, and e(c'd)__ ! (2.2.44)
' =cg c,dd €C and €(c,d) =0
! ! !/ / —
5 (cc,dd') =1 if Z =g deC and e(c,d) =0 (2.2.45)
=cq, c,c,d €C and e(c,d") =1

Remark 2.2.30. Note that the energy € defines a binary relation > on secondary particles of S as follows,

(2k +e(c,c))eer > 2+ €(d,d")) gy = k—1—¢€(c,d) —e(d,d) > 5(cc’,dd") - (2.2.46)



34 Chapter 2. Contribution of the thesis

The level above Theorem 2.2.24 can be stated as follows.

Theorem 2.2.31 (degree two). Assuming that c; = 1, there exists a bijection between RS and F,' which
preserves the total energy and the sequence of states different from cg.

Let us give a example of such an identity. Consider the set C = {a,b}, c; = b and the energy matrix

a b
a1 1
Me_b(o 0)'

We then obtain the energy matrix for €

a 4 4 3 3
_abl 2 2 1 1
Me = 4, 3 3 2 2|’
»\1 1 0 0
and the energy matrix for €}
a2 ab ba b2
> (4 4 3 3
_ab|l 2 2 3 1
My=1al3 3 2 2
»\1 1 0 0

Since in the regular partitions we never have a state b?> except for the last part 0, one can consider
these partitions as partitions into particles with state in {a?, ab, ba}, satisfying the minimal difference

condition in
2 ab ba

a
a2 (4 4 3
Mg=abl2 2 3
ba \3 3 2

and such that the minimal potentials for the particle with state a%,ab and ba are respectively 3,1 and
2. By applying the transformation (g,4,b) — (g°,472,1), we obtain the following corollary of Theorem
2.2.31.

Corollary 2.2.32. Let n be a non-negative integer. Let A(n) be the number of partitions of n into distinct parts
congruent to 1,4,5 modulo 6 such that two consecutive parts differ by at least 6 with equality only if they are
not congruent to 5. Let B(n) be the number of 13-flat partitions into parts congruent to 0,1,4,5 modulo 6, the
smallest part less than 6, and such that:

* two consecutive parts congruent to 1,4,5 modulo 6 differ by at least 6 with equality only if they are not
congruent to 5 mod 6, with the exception that that they differ by 3 if the greater is congruent to 1 and the
smaller to 4 modulo 6,

* two consecutive parts, with at least one divisible by 6, differ by less than 6, except that they differ by 7 when
the larger part is divisible by 6 and the smaller part is congruent to 5 modulo 6.

We then have that A(n) = B(n), and the corresponding identity is

Y B(n)q" =Y An)q" = (—4;4°) o - (2.247)

n>0 n>0
Example 2.2.33. As examples, the partitions of 30 of the first kind are
(29,1),(25,5),(23,7),(22,7,1),(19,11),(19,10,1) and (16,10,4),
and the partitions of 30 of the second kind are
(18,11,1), (16,10,4), (16,7,6,1),(13,12,5),(13,10,6,1),(13,7,6,1) and (11,6,6,6,1) -

We then have A(30) = B(30) =7.
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2.2.4 Beyond the Durfee square: a duality between colored partitions and colored
Frobenius partitions

In this section we present a result generalizing the identity that links partitions to Frobenius partitions.
For a particular case, we retrieve the generalization of Primc’s identities given in (Dousse and Konan,
2019a). Chapter 6 is dedicated to the proof of the duality theorem.

Color reduction and duality

Let C be a set of colors, and Cpee U Cpound @ set-partition of C. We called Cyee the set of free colors, and
Chound the set of bound colors. Let a and b be two functions from Cpoyng t0 Ciree- We now define the first
notion needed for the duality theorem.

Definition 2.2.34. Let cy,...,cs be a finite sequence of colors in C. We then define the reduced color
sequence of cy,...,cs with respect to a and b, as the unique maximal subsequence red, ;(cy,...,cs) of
c1,--.,Cs which satisfies the following:

1. all the colors in Cpoyng are preserved,
2. for all ¢ € Cgee, we do not have the pattern ¢, ¢,
3. for all ¢ € Cpound, We do not have the patterns a(c), c or ¢, b(c).

A sequence of colors ¢y, . . ., cs is said to be reduced if red, ;(c1,...,¢s) = c1,...,cs, which is equivalent to
saying that the sequence of colors ¢y, .. ., cs does not have the forbidden patterns defined above.

Given a sequence ¢y, ...,cs of colors taken from C, the reduced color sequence red,;(cy,...,Cs) is
then obtained after applying the following operations:

e if there is some i such that ¢; € Cgee and c¢;1 = ¢;, then remove c; 1 from the color sequence,
e if there is some i such that ¢; € Cpoung and c; 11 = b(c;), then remove c; 1 from the color sequence,
e if there is some i such that ¢; € Cpoung and ¢; = a(c; 1), then remove ¢; from the color sequence.

The reduction operation only removes free colors and the order in which removals are done does not
have any influence on the final result.

Example 2.2.35. Let us consider the set of colors C = {a;b; : i,j € IN} for two sequences of symbols (an)n>0
and (bn)n>o. Let us set Cppe = {a;b; 1 i € N} and the function a and b such that for all i # j € N,

b

lZ(lZﬂ?j) = {Ill'bi and b(lllb/) = {Ilj -

The reduction of
aiby, a1by, axby, azbz, azby, aibs, asbs, asbs, azby, a1by

a1by, azby, a1bz, asby, a1 by.

Definition 2.2.36. Let 77 = (719, - - - , 715) be a generalized colored (Frobenius) partition such that ¢(711) =
c1,...,¢(ms) = cs € C. The kernel of 7 with respect to the function a and b, denoted by ker, ;(7), is the
reduced color sequence red, (¢, ..., Cs)-

Definition 2.2.37. In the following, we consider a fictitious color c«, and an energy € defined on C Ll {c }
satisfying the following,

1. forany ¢, ¢’ € Cpree L {C0},

e(c,d) = x(c#¢), (2.2.48)
2. for any ¢ € Cphound,
€(a(c),c)+e(c,b(c) =1, (2.2.49)
and for any ¢’ € (Chee U {eo}) \ {(0)},
e(c',c) € {e(a(c),c),e(alc),c) +1}, (2.2.50)

and for any ¢’ € (Cree U {c0}) \ {6(c)},

e(c,c") € {e(c,b(c)),elc,b(c)) + 1}, (2.2.51)
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3. forany ¢, ¢’ € Cpound,
e(c,c") =e(c,alc")) +e(b(c), ) — x(b(c) #a(c))- (2.2.52)

Such an energy e is said to be well-defined according to the reduction with respect to a and b.

Let us now consider weighted words on C Ll {c }, and denote by P¢> the set of generalized colored
partitions ce-regular with ground c., and relation >, as defined in Definition 2.1.3. It is then equivalent
to consider weighted words on C and the generalized colored partitions in P with € restricted to C, and
such that the minimal size for the last part with color ¢ is €(c, ceo).

Example 2.2.38. For the set of colors as in Example 2.2.35, as well as the free and bound colors, and function a
and b, one can check that the energy € defined by

e(aibjarb)) = x(i 2 k) =x(i=j =k +x(G <) =x(i=k=1),
€(coo,aibj) =1 and e(abj,ce) =1
is well-defined according to the reduction with respect to a and b.
Let us now consider two energies €1 and €; on C U {c« } such that
2 if c =¢ € Cee U {0}
€(c,d)+1 if ¢’ € Cpoung and ¢ = a(c’)

€(c, ')+ 1 if ¢ € Choung and ¢’ = b(c)
€(c,c’) otherwise .

e1(c,c) +exc,d) = (2.2.53)

Denote by F¢%, the set of generalized colored Frobenius partitions ceo-regular with ground co and
relation >>¢, ¢, as defined in (2.1.7).

We are now ready to state the duality theorem. Unlike most classical Rogers-Ramanujan type iden-
tities, we relate the generalized colored partitions to the generalized colored Frobenius partitions.

Theorem 2.2.39. Let € be an energy well-defined according to the reduction with respect to a and b, and €1, €,
defined as in (2.2.53). There exists a bijection between Pe™ and F¢e, which preserves the size and the kernel of
the generalized colored partitions and Frobenius partitions.

We retrieve the correspondence between the classical partitions and Frobenius partitions by setting
C = Cpree = {c}, €1(c,ce0) = 1 and €3(c, c0) = 0.

Generalized n2-colored Primc’s partitions and 1>-colored Frobenius partitions

Here, we consider the set of colors defined in Example 2.2.35. Recall that C = {a;b; : i,j € IN}. The free
colors are the elements of the set Cree = {4;b; : i € IN}, and the bound colors are the elements of the set
Coound = {aibx : i # k,i,k € IN}. We now define the difference conditions, which generalize those of
matrices (1.4.3) and (1.4.5) in the two identities of Primc.

Definition 2.2.40. For all i,k,i,k’ € IN, we define the minimal difference A between a part colored a;by
and a part colored a; by in the following way:

A abg,apbp) = x(i>i")—x(i=k=1)+xk<K)—-xk=i=k), (2.2.54)

For non-negative integers £ < n, we define Py, to be the set of grounded partitions A = (Aq,- -+, As,04,)
with ground a,by and relation >>,. To simplify some calculations throughout the thesis, we adopt the
following convention: if ¢y, ..., ¢, is the color sequence of the partition Ay, - - -, A5, we remove the last
color ayb, and add fictitious colors ¢y = cs11 = € t0 both extremities of the color sequence. The differ-
ence conditions are, for all i,k € IN,

A(ceo,aibr) =1 and  A(ajby,ceo) = x(i > 0) +x(j < £)-

In particular, when ¢ = 0, we have A(a;by, c) = 1 for all i,j € IN. The difference conditions defining
Po,n generalized Primc’s difference conditions matrices P, and Ps in (1.4.3) and (1.4.5), as we shall see in
the next two examples.
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Example 2.2.41. If we set a = a1bg,b = agbg,c = a1b1,d = apby, as shown in Table (2.2.55), then Py is
exactly the set of partitions with difference conditions (1.4.3) of Primc’s 4-colored theorem.

p\" 10 1
0 b a (2.2.55)
1 d ¢

For example,

A(ﬂ, b) = A(albo,aobo)
=x(120)—x(1=0=0)+x(0<0)—x(0=0=0)
=1-0+1-1
=1.

This is exactly the entry in row a and column b in (1.4.3).

Example 2.2.42. The set Py 3 is exactly the set of partitions with difference conditions (1.4.5) of Primc’s 9-colored
theorem. For example,

A(azbo,a2b1) = x(222) —x(2=0=2)+x(0<1) —x(0=2=1)

—1-041-0
=2

This is exactly the entry in row aybg and column ayby in (1.4.5).

Recall the functions a and b defined from Cpoyng t0 Cree by

a(a;bj) = a;b; and b(a;b;) = ab; -

Ihg]
By setting A(ceo, Coo) = 0, one can check that A is an energy well-defined according to the reduction with
respect to a and b, and the set P, ,, then corresponds to the set 732"". Let us now set energies A; and A,
on C U {c} as follows:

Ay (a;bj, axby) = x(i > k), A (a; ],akbl) x(j<k),
Aq (coo,a bj) =1, Ar(co,aibj) =1,

and 2.2.56
Aq (a b],coo) = X(z > 1), Ay (a; b],coo) = )((] </, ( )

This allows us to define the set F¢%, the set of generalized colored Frobenius partitions ceo-regular with
ground ce and relation ¢, ¢,. This set is in bijection with the set of the pairs of generalized colored
partitions in (A, #) having the same numbers of parts, for any A being a finite subsequence of

>25 >y > > 1, > 040 >0 >0, , >0,
and any yu being a finite subsequence of
> 20 > 1gy >0 > 1gy > 0q, > o0 > 04y, > 0p, -
We denote by Fy , the latter set of pairs of generalized colored partitions.

This allows us to find simple and elegant formulations for the generating functions. Following the
same reasoning as for classical Frobenius partitions, the generating function for the number
Fyn(m;ug, ..., uy—1;00,...,05-1) Of n2-colored Frobenius partitions of m where for i € {0,...,n —1},
the symbol a; (resp. b;) appears u; (resp. v;) times, is

Z Fu(m;ug, ..., uy—1;00,...,05-1)9"ap° - --aZ” fbvl --bZ”:ll (2.2.57)
m,UQ,...,Uy—1,00,-,0y—1>0
n—1 )
2] [T (=xaig =0 )oo (=271 0:X <" ) . (2.2.58)
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This refines the following expression due to Andrews (Andrews, 1984a, (5.14)):

CP,(q) = [X°](—xq; ) (—x 5 9)%,

for the case ¢ = 0, and where the colors were not taken into account in the generating function. Note
that the generating function (2.2.57) only depends on the condition “all parts are distinct” in A and p.
In (Andrews, 1984a, (4.8)), Andrews defined a generalization of Frobenius partitions where A and y are
partitions into distinct parts chosen from {k; : k € N,1 < j < n}, where k; = k;., if and only if k = k’ and
j = j'. Their generating function C®,(q) has been widely studied from the point of view of modular
forms and congruences, see for example (Chan, Wang, and Yang, 2019; Lovejoy, 2000; Sellers, 1994).

The n?-colored Frobenius partitions are very natural objects to consider when studying our gen-
eralizations of Primc’s identity. In fact, one can check that the energies defined in (2.2.56) satisfy the
conditions in (2.2.53) with € = A,e; = Aq and € = A;. Indeed, by Theorem 2.2.39 and the fact that
the reduced color sequence conserves the bound colors, it suffices to consider in our enumeration only
the bound colors. Moreover, when we set for all i, b; = ai_l, then all free colors vanish and we have an
elegant expression for our generating functions as the constant term in an infinite product.

Theorem 2.2.43 (Generalisation of Primc’s identity). Let £ < n be non-negative integers.

Let Py, (m;ug, ..., uy_1;00,...,0y—1) be the number of generalized colored partitions in Py ,, with size m,
where for i € {0,...,n — 1}, the symbol a; (resp. b;) appears u; (resp. v;) times in their bound colors.

Let Fy,, (m;uq, ..., ty—1;00,...,0u—1) be the number of n2-colored Frobenius partitions F, with size m,
in where for i € {0,...,n — 1}, the symbol a; (resp. b;) appears u; (resp. v;) times in their bound colors. Then

pf,n(m; 1/[0,. . -/un—l;UO/~ . ‘/vn—l) = Ff,l’l(ml uOI‘ . '/ut’l—l;UO/‘ . '/U}’l—l)/

and we have
) Py (m;ug, ... ty—1;00, .-, 0y—1)q"ap? 0 a,
muQ,...,uy_1,90,---,05-1>0
— ) Fy(m;ug, ... uy—1;00, ..., 0p_1)q"ag’ - --a "t
M,UQ Uy —1,00,0+-,05—1 >0
n—1 )
= [ TT(—xaig="; g)eo (—xa; 1g2 =Y )
i=0
Let us set
n—1
Gh(g:bo, -, O TT(=xb; g 9)eo(—x 1015 9) o0
i=0
We then obtain that
p i 1 x(i>t 1 (i<t
Gr(4:qbo, -+ ,q" by, by, - by1) = [ TT (=20 'Y= g) oo (—x 0" <D g)ee - (2259
i=0

From this theorem, it is easy to deduce a corollary, corresponding to the principal specialization, which
generahzes both of Primc’s original identities. By performing the dilations qg — q", and foralli €
{0,...,n =1}, a; — g%, the generating function above becomes [x°](—xq" ;7)o (—x714%; 7)o, Which
is also equal to1/(q; q)oo

Corollary 2.2.44 (Principal specialization). Let n be a positive integer. We have

_ 1
2 Pf,n(m;uOI' --/unflr'UO/u-/Unfl)qnm Z’ =0 (vl i ) = ﬁ
M,UQ ey —1,00,-- 0120 q:9) 0

Moreover, by using Jacobi’s triple product repeatedly, we are able to give an expression of the gen-
erating function for colored Frobenius partitions as a sum of infinite products, which gives yet another
expression for the generating function for Py ,.

Theorem 2.2.45. Let n be a positive integer. Then

. . m Ug—7g Upy_1—0p—1
Pyn(m;ug, ..., uy—1;00,...,0p—1)q"ay’ °---a," 7 "

MUQ,ee Uy —1,00,++-0p—120
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1 _ n—1 e
- L Z ay 51 Ha?l 51+1q5i(5i*51’+1) (2.2.60)
(7:9)% $1yeesSp_1EZ i=1
Sp=
1 (gili+D), 4ili+D) 1
_ 1 ’i—[ (q q )oo Z T alfi—fi+1qri(ri—rf+1)
(q’ q)oo i=1 (q’ q)oo 1 n—1" i=1
0<r;<j-1
=0

lil i(i . . e
% (_ (H uiaél> q (;1)+(1+1)rizr,'+];qz(z+l)> (2.2.61)
(=0 00

—1 L
() 1\ D (i L i(i41)
X [Taea; " ) g g .
(=0 o

The formula (2.2.61) gives an expression for Andrews’ function C®,(g) as a sum of infinite products,
which makes it is easy to express this function as a sum of modular forms. An expression for C®,(q) as
a sum of infinite products was already given by Andrews (Andrews, 1984a) (without the colors) in the
cases n = 1,2,3. This is the first time that the case of general k is treated and that a refinement with color
variables is introduced.

2.2.5 Beyond Capparelli’s theorem: regularity over Primc’s theorem

This section is dedicated to the exposition of the main result that generalizes the Capparelli theorem. We
start by presenting the formal tools as well as the formal result beyond Capparelli, and then discuss in
the second part an explicit generalization of Capparelli’s theorem by using the generalization of Primc’s
theorem. The proof of the main theorem is postponed till Chapter 7.

Another duality theorem between flat and regular partitions

Let C be a set of colors, and let Csyp LI Cgree LI Cing be a set-partition of C. Consider now an energy € on C?
with values in {0,1,2}.

Definition 2.2.46. The energy e is said to be well-defined according to the decomposition Csup LI Cree Ll Cing
if it satisfies the following.

1. Forall ¢, ¢’ € Cpee, we have
e(c,d)=x(c#)- (2.2.62)

2. Forall (¢,c’) € Csup X Cfree, we have
e(c,c') € {0,1} and e(c,c) € {1,2}, (2.2.63)
and in particular, for all ¢ € Csyp, there exists ¢’ € Cee such that e(c,c’) = 0.
3. Forall (c,c’) € Cgree X Cing, we have
e(c,c') € {0,1} and e(c,c) € {1,2}, (2.2.64)
and in particular, for all ¢’ € Cyy, there exists ¢ € Cpee such that e(c,¢’) = 0.
4. Forall (¢,c’") € Csup X Cinf, we have
e(c,d) €{0,1} and e(c,c) € {1,2} (2.2.65)
and in particular, if €(c,¢’) = 0, there then exists ¢’ € Cge such that

e(c,d’)=0 and €(c’,c')=0- (2.2.66)
5. Forallc,c’ € Coup, if €(c,c’) € {0,1}, there then exists ¢ € Cpyee such that

e(c,d’)=0 and e(c’,')=1- (2.2.67)
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6. Forallc, ¢ € Ciyy, if €(c, ') € {0,1}, there then exists ¢” € Cgee such that
e(c,d’)=1 and e(c”,cd)=0- (2.2.68)
Example 2.2.47. Let us consider C = {a;b; : i,j € N}, and set
Csupz {aibj:i<j€]N},
Cfree = {ﬂl‘b]' (i€ N},
Cinf: {tlib]' 1 >j€N}'
Then, the energy A defined in (2.2.54) is well-defined according to the above decomposition.

Definition 2.2.48. Let J be a function from Csup U Cinf to Cpree, and let -y be a function from the set

{(c,c") € Coup X Cing : €(c, ') =0} U {(c, ') € Cszup se(e,c) €{0,1}}u{(c,c’) € C2;: e(c,c') € {0,1}}
(2.2.69)
to Crree. We say that 6 is well-defined according to € if

e forallc € Csup, we have e(c,6(c)) = 0, and
e forall ¢ € Ciyg, we have €(d(c),c) = 0.
Similarly, we say that 7 is well-defined according to € if
e forall (c,c’) € Csup x Cins such that e(c,c’) = 0, we have e(c, v(c,c’)) = e(y(c, ), ') =0,
* forall (¢c,c') € C3,p such that e(c,¢’) € {0,1}, we have (¢, 7(¢,¢')) = 0and e(y(c,¢),¢') =1,
o forall (c,c') € C?;such thate(c,c’) € {0,1}, we have e(c,v(c,c’)) = 1and e(y(c,c),¢’) = 0.

For any energy well-defined according to the decomposition Csup L Cgree L Cing, the conditions (2.2.63)
and (2.2.64) imply the existence of some function J well-defined according to €, and by (2.2.66), (2.2.67)
and (2.2.68), there exists some function y well-defined according to €.

We finally add a fictitious color c«, and extend the energy e such that

€(Ctrees COO) = {1} ’ (2.2.70)

(
€(Csup, o) C {1,2}, (2.2.71)
€(Cint, ce0) C {0,1} - (2.2.72)

Recall that Pc™ is the set of co-regular partitions with ground c« and relation .. We now define a
subset of P¢* of partitions avoiding forbidden pattern according to § and .

Definition 2.2.49. We denote by 207735‘” the set of generalized colored partitions of P¢>, ¢o-regular, and
which avoid the following forbidden patterns:

1. forall ¢ € Cpee \ {0}, the pattern
Pes Pe (2.2.73)

2. forall (¢,c’) € Csup x Cing such that e(c,¢’) = 0, the pattern
Pes Poec')s Pe (2.2.74)
3. forall (c,c’) € Cszup such that e(c, ') € {0,1}, the pattern
Pes Pry(eeyr (P —1)er (2.2.75)
4. forall (¢c,c’) € C2; such thate(c,¢’) € {0,1}, the pattern
(P + D, Poy(e,er)s Pe (2.2.76)

5. forall ¢ € Csup,



2.2. Rogers-Ramanujan type identities via bijective approaches 41

(@) forall ¢ € (Cgree \ {c0}) U Cing Ll {¢o }, the pattern

Pes Pse), (P — e (2.2.77)
(b) forallc’ € (C\{co}) L {cwo}, and for all positive integers u > 2, the pattern

Pes Py, (P — ) (2.2.78)

6. forall ¢’ € Ciy,

(a) at the head of the partition, the pattern
Ps(cr)s Pe (2.2.79)
(b) forallc € (Ciree \ {c0}) U Csup, the pattern
(P + Ve, Po(ery Per (2.2.80)
(c) forallc € C\ {cp}, and for all positive integers u > 2, the pattern
(P +t)e, Po(ery, Per (2.2.81)
Remark 2.2.50. One can observe that the forbidden patterns, apart from (2.2.73) and (2.2.79), have the form

1 2
pgl)’pf/ PEZ)

with the allowed pattern pg), pg) and f a unique free color depending on c1,cp,d and y. Also, we remark that
either c1 or ¢y is not a free color. We extend the above notation to the forbidden pattern (2.2.79), by setting
pM) = co. We will show in Chapter 7 that the above cases form the exhausted list of all the insertions, between

1 2

two consecutive parts p¢,’, pey’, of a part p g with a color f € Cpe and with the same size as one of the two parts.
We are now ready to state the main theorem of this section.

Theorem 2.2.51. Assume that there exists a color ¢y in Cpy, such that for all ¢ # co, €(co,c) = €(c,co) =

1. Then, for the functions & and <y defined above, there exist a bijection ® between P¢* and the product set
307775“ x P, where P is the set of classical integer partitions. Furthermore, for ®(A) = (u,v), we have that

|A| = || + |v|, the number of parts of 7t is equal to the number of parts of u plus the number of parts of v, and
the color sequence of A, restricted to the colors in Csup U Ciyy, is the same as the color sequence of y restricted to the
colors in Csyp LI Cl-nf.

Duality between Capparelli’s identity and Primc’s identity

Since its discovery, Capparelli’s identity has been one of the most studied partition identities in the
literature, see for example (Bringmann and Mahlburg, 2015; Berkovich and Uncu, 2015; Berkovich and
Uncu, 2019; Dousse and Lovejoy, 2019; Fu and Zeng, 2018; Kanade and Russell, 2018; Kursungoz, 2018;
Sills, 2004) for articles from the combinatorial point of view. While the other most important partition
identities, such as the Rogers-Ramanujan identities (Rogers and Ramanujan, 1919) and Schur’s theorem
(Schur, 1926) have been successfully embedded in large families of identities, such as the Andrews-
Gordon identities for Rogers-Ramanujan (Andrews, 1974; Gordon, 1965) and Andrews’ theorems for
Schur’s theorem (Andrews, 1969a; Andrews, 1968), finding such a broad generalization of Capparelli’s
identity was still an open problem. Here, we solve this problem by giving two different families of
identities which generalize Capparelli.

In the previous section, we gave difference conditions which generalize those of Primc’s identities
(1.4.3) and (1.4.5). In this section, we define two other families of difference conditions which generalise
those of Capparelli’s identity (1.4.2). For these two generalizations, we refer to the set C = {a;b; : i,j €
IN} and the energy A as defined in (2.2.54). Let us start with the first energy.
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Definition 2.2.52. Let us define the energy A; on C = {a;b; : i,j € N} in the following way:

A1 (agby, acb;) = 1 for all k € IN¥,
Aq(agby, agby) = 1forall ¢ < k,
Aq(aghy,axby) = 1forall £ <k,
Ay (aiby, apby) =

(2.2.82)
A(ajby, apby) in all the other cases.

Remark 2.2.53. By (2.2.54), in all the cases where Ay # A, we have Ay = 1and A = 0.

For any non-negative integers ¢ < n, we restrict the set of colors to {aibj i, < n—1},and we define
a fictitious color ¢ and extend A; with the following:

A] (Coo, Coo) = 0/
A (coo, aiaj) =1,
A(aiaj,co0) = x (i > £) + x(j < £) -

Recall that these definitions are the same as the case where we set c«, instead of a,b, for the generalized
Primc’s partitions of Py ,,. We now define C; ,, to be the set of agbp-regular and c-regular partitions with
ground ce and relation >4, and which avoid the following forbidden patterns:

e foralln—1>k>k'>1>1 >0, the forbidden pattern
(P + Vagbys Papabysrs Pagby - (2.2.83)

e forall0 <k <k <I<1I"<mn—1,the forbidden pattern
(P + Doy (P + Doy 1yrs Payy - (2.2.84)

The difference conditions implied by the energy A; generalize those of Capparelli’s identity stated in
(1.4.2).

Example 2.2.54. If we define a, c,d (omitting b = agby) as previously in Table (2.2.55), then C; is exactly the set
of partitions with difference conditions (1.4.2) of Capparelli’s identity. For example,

A1(c,a) = 8(arby, mbg) =1
Example 2.2.55. The set C3 is the set of partitions with difference conditions shown in the following matrix:

agby axby  arby axby  ayby agby ayby aghs

aby [ 2 2 2 2 2 2 2 2
apby | 1 2 1 2 1 2 2 2
aiby | 1 1 2 1 2 2 2 2
_mby | 1 1 1 1 1 1 2 2
G = mby | 0 1 1 1 1 2 1 2 (2.2.85)
apb1 | O 1 0 1 1 2 1 2
aby | O 0 1 1 1 1 2 2
apby \ 0 0 0 1 0 1 1 2
Let us now turn to the second energy.
Definition 2.2.56. Let us define the energy Ay on C = {a;b; : i,j € N} in the following way:
AY) (akbkr akbk 1 for all k € N¥,
Ao (agby, aph lforall¢ >k >1,
2( kY, %0Y—1 (2.2.86)

) =

) =

Ag(ak_lbg,akbk) lforalld >k >1,
AQ (ﬂibk, ai/bk/)

(a;bg, ap by ) in all the other cases.

For any non-negative integers ¢ < n, we restrict the set of colors to {aib]- 1, <n— 1}, and we define
a fictitious color ¢, and extend A; with the following;:

Ay (Coo/ Coo) =0,
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Mo (cos, aiaj) =1,
May(aiaj, ce0) = x(i > £) +x(j <L)

We now define C; ,, to be the set of aypby-regular and c-regular partitions with ground c« and relation
> a,, which avoid the following forbidden patterns:

e foralln—1>k >k>1'>12>0,the forbidden pattern
(P + Vagys Paybyr Payby - (22.87)

e forall0 <k <k <! <l<n-—1,the forbidden pattern
(P + Dagy (P + Vagpys Payby - (2.2.88)

The difference conditions implied by A, also generalize those of Capparelli’s identity (1.4.2), as well as
those of another partition identity mentioned in Primc’s paper (Primc, 1999).

Example 2.2.57. Defining the colors a,c,d as before in Table (2.2.55), C} is again exactly the set of partitions
with difference conditions of Capparelli’s identity.

Example 2.2.58. The set C} is the set of partitions with difference conditions shown in the following matrix,
which appeared in Primc’s paper (Primc, 1999).

azbo Ilzbl lllb() a2b2 lllbl aobl a1b2 a0b2

arby [ 2 2 2 2 2 2 2 2
ab | 1 2 1 2 1 2 2 2
mby | 1 1 2 1 2 2 2 2
,  amby| 0 1 1 1 1 1 2 2
G = aby | 1 1 1 1 1 2 1 2 (2.2.89)
agby | 0 1 0 1 1 2 1 2
aby | 0 0 1 1 1 1 2 2
agb, \ 0 0 0 0 1 1 1 2

It was proved by Meurman and Primc in (Meurman and Primc, 2001), using basic Aél) modules, that after

performing the dilations (1.4.6), the generating function for these partitions becomes (q; %)= (9% 9°) ="

Recently in (Dousse, 2020), Dousse built a bijection between Primc’s partitions P, and pairs (A, i)
where A € C; is a Capparelli partition and y is a classical partition. This bijection only modifies some free
colors, so it preserves the size, the number of parts, the size of the parts, and the number of appearances
of colors a and d. In this way, she showed that Capparelli’s identity is very closely related to Primc’s
identity and can be deduced from it, even though until then, these two identities seemed unrelated from
a representation theoretic point of view. The proof of Theorem 2.2.51 uses a broad generalization of the
Dousse bijection. Here we give a generalization of the Dousse result.

Theorem 2.2.59. For any non-negative integers { < n, let CCy,, (resp. CCQ,n) denote partition pairs (A, i),
where A € Cy,, (resp. C; , ) and p is a classical partition. There is a bijection between:

* colored partitions in Py ,,
* colored partition pairs in CCy,,
* colored partition pairs in CCj ,,

This bijection preserves the total size, the number of parts, the size of the parts, and the color subsequence of bound
colors.

The result stated in (Dousse and Konan, 2019a) is the particular case where { = 0. We note that
both Capparelli’s identity and Meurman and Primc’s identity with difference conditions (2.2.89) did not
have any apparent connection to the theory of perfect crystals. The bijection between P, and CCy in
(Dousse, 2020) gave an unexpected connection with Primc’s identity and the theory of perfect crystals.
The present theorem shows that Meurman and Primc’s identity with difference conditions (2.2.89) can
actually be deduced from Primc’s Theorem 1.4.4. More generally, through the bijection with the Py ,’s,
we related both families of generalisations of Capparelli’s identity to the theory of perfect crystals.
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2.3 Rogers-Ramanujan type identities via representations of affine
Lie algebras

We will define all the necessary notions from crystal base theory in Chapter 8. For now, let us define a
few notations which will allow us to state our main theorems.

Let n be a non-negative integer, and consider the Cartan datum (A, 1T, I1V,P,PV) for a generalized
Cartan matrix A of affine type and rank n. Here IT is the set of the simple roots «;(i € {0,...,n}),
and we denote by P = ZAg & - - - © ZA, the lattice of the classical weights, where the elements A,
(¢ € {0,...,n}) are the fundamental weights. We denote by J the null root. L(A) denotes the irreducible
module of highest weight A, also called the standard module.

In this section, we present the connection between the theory of perfect crystals and our notion of
weighted words. In particular, we compute via our method explicit formulas for the character of level
one standard module for several classical affine types.

2.3.1 Perfect crystals and multi-grounded partitions

Let B be a perfect crystal of level /, and let A € P, be a level ¢ dominant classical weight such that the
corresponding ground state path is pp = (gx)k>0- The finiteness of the set Py implies the periodicity of
the sequence (g;)i>o (see (8.1.10)). We then set f to the smallest non-negative integer k such that g, = go.
Let H be an energy function on B ® B. Since B ® B is connected, H is then unique up to a constant. We
then define the function Hy on B ® B satisfying

t 1

Hp(b®b') =H@Ob V) - Z H(gr11 ® k) - (23.1)
k 0
Note that for any energy function H, we always have
t—1 t—1 t1 t—1 1
Y (k+ 1)HA(gks1 ®8k) = ) (k+ D H (k1 @ 8x) — —— ) H(8kr1 @ 8k) € 5Z-
k=0 k=0 k=0

The above number is an integer when ¢ is odd, and is equal to 0 when t = 1. We can then choose a
suitable divisor D of 2X(*¢ven)¢ such that DHA(B® B) C Z and + Y\ _} (k+ 1)DHA (k41 ® ) € Z. For
the particular case t = 1, we can choose D = 1. Let us now consider the set of colors Cg with indices in
B, and let us define the relation > on Zc, by

ke, > k’ <= k—1=DHp\(' ®b)- (2.3.2)
We also define the relation > on Z¢, by

ke, > k’cb, <= k—1>DHx(b'®Db)- (2.3.3)
By taking

— t—
Z (I+1)DHA(g141 ® 1) + ZDHA 8111®81), (2.3.4)

Y‘F‘H

(0) (t=1)

the colors cg, ..., cq,_, and the colored integers Ucgis -+ rtey, satisfy the conditions in Definition 2.1.22

for both relations > and >>. We can then define the multi-grounded partition with grounds cq, ..., cg, ,
and relation >. We denote by Pfi oo the set of all such partitions. We also define the set ’Pc>g>0 cgy_y
of the multi-grounded partitions with grounds gy, ...,g:—1 and the relation >> defined in (2.3.3). In
particular for any positive integer d, we denote by dP(i?o . the set of the partitions

(0) (t=1)

T = (770/ T /nsflrucgor- . .’ucgt—l )

of Pc>g>o‘“ch with ¢(my) = cp, forallk € {0,...,s — 1}, such that

Tk — Tk1 — DHA(Sk41 @ k) € dZ>0, (2.3.5)
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where we set 715 to be uggg. We finally set fPE;] g, , tO be the set of partitions of dPE;] cg with
a number of parts divisible by t. The main theorem that connects the perfect crystals and the multi-

grounded partitions is the following.

Theorem 2.3.1. Setting q = e~°/%P and ¢, = e"® for all b € B, we have Cgo* " Cg,_q = 1, and the character
of the irreducible highest weight Uy (g)-module L(A) is given by the following expressions:

Y. C(n)g™ =eAch(L(A)), (2.3.6)
—A
C | — M' 237
e 'Zpizowcgt1 (n)q (qd; qd)oo ( )

In Chapter 8, we present the crystal base theory and the proof of Theorem 2.3.1

1,

2.3.2 Level one standard modules of A, ;:

theorem

a Lie-theoretic interpretation of Primc’s

We present in this section the main results of (Dousse and Konan, 2019b) which make the connection

between the generalization of Primc’s identity and the representations of the affine type A;(il_)l.

Let 1 be a positive integer, and consider the Cartan datum for the generalized Cartan matrix of

affine type Ailljl. We denote by P = ZAo & - - - @ ZA,,_1 the lattice of the classical weights, where the
elements Ay (¢ € {0,...,n —1}) are the fundamental weights. The set of all the level 1 classical weights
is given by P, = {A; : £ € {0,---,n—1}}. The null root is denoted by &, and the simple roots by
wj, i€ {0,---,n—1}.Let B = {v; :i € {0,---,n—1}} be the crystal of the vector representation of

A(l_)1 and let BY = {v/ : i € {0,---,n —1}} be its dual. For all v; € B, we denote by wtv; € P the

n

classical weight of v;. We finally set B to be the tensor product B ® BY.

Given that (1.4.3) and (1.4.5) are energy matrices for perfect crystals coming from the tensor product

of the vector representation and its dual in Agl) and Agl), respectively, it is natural to wonder whether
our generalized difference conditions A define in (2.2.54) are also energy functions for certain perfect
crystals. We answer this question in the affirmative by showing the following.

Theorem 2.3.2. Let n be a positive integer, and let 1B denote the crystal of the vector representation of Ailljl.

The crystal B = B ® B is a perfect crystal of level 1. Furthermore, the energy function on B ® B such that
H((vg ®vy) @ (vg ® vy)) = 0 satisfies for all k, £, k', 0" € {0,...,n —1},

H((vp ® U]\{//) ® (v @ U]\{/)) = A(agby; apbyp), (2.3.8)
where A is the minimal difference for Primc generalized partitions defined in (2.2.54).

Primc showed Theorem 2.3.2 in the cases n = 2 and n = 3. The theorem is still true whenn = 1, in
which case the crystal B has a single vertex and a loop 0, and the corresponding partitions are simply
the classical partitions.

In (Benkart et al., 2006), Benkart, Frenkel, Kang, and Lee gave another formulation of the energy
function of certain level 1 perfect crystals of classical types, including the A;(L)l-crystal studied in Theo-
rem 2.3.2. However, they did not give a closed expression valid for all k, ¢, k', ¢/ € {0,...,n — 1} as we
have done in Theorem 2.3.2 and (2.2.54). They used the fact that, when removing the 0-arrows from the
crystal graph on Figure 9.4, the energy function H is constant on each connected component, and gave
a table with the value of H for a representative of each connected component. The value of H for the
other vertices can then be obtained by determining to which connected component they belong. Both
their and our energy functions satisfy H((vy ® v§) ® (vo ® v§)) = 0, so they must be the same, even
though their expressions differ. In this sense, Theorem 2.3.2 gives a simpler, more explicit and unified
(1)

formula for the A,

energy function in (Benkart et al., 2006).

Our proof of Theorem 2.3.2 in Chapter 9 relies on explicitly building paths in the crystal graph. We
only treat the case n > 3,asn = 1 and n = 2 give crystals with a slightly different shape, and we already
know that the theorem is true in these cases.
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Theorem 2.3.2 gives a simple explicit expression for the energy function. Using the (KMN)? crystal
base character formula of (Kang et al., 1992a), it allows us to relate the generating function Gﬁ (:b0,- - ,by_1)
of generalized Primc partitions with the character of the irreducible highest weight module L(Ay). This
result gives an evaluation of the character of the irreducible highest weight module for the particular
weight Ay, but we can extend our techniques to retrieve the characters for the other level 1 weights of
5+
P
Theorem 2.3.3. Let n be a positive integer, and let Ay, . .., \,,_1 be the fundamental weights of A;(11—)1' By setting
eV®i = b; and e=% = g, we have the following identities for any ¢ € {0,...,n —1}:

e Mch(L(Ar))

(4;q) 0
G,(Zj(q, boq, cee ,bg_lq, by, .. ‘/bn—l) = GS/ (q, boq, s ,bg_lq, by, .. .,bn_1) = E_Afch(L(Ag)).

7

G;I:(ﬂl/ boq/ o /bé—lq/ bf/ .. '/bnfl) =

Unlike previous connections between character formulas and partition generating functions, where
a specific specialization (often the principal specialization) was needed, here we give a non-dilated
character formula.

Theorem 2.3.4. Let n be a positive integer, and let Ay, ..., A,_1 be the fundamental weights of qul_)l. For all
¢ €{0,...,n—1}, we have

e~ Mch(L(Ag))

n—1
- ﬁ Z o500 H 5% pSi(Si41—5)0 (2.3.9)
(37 ;€ )oo $1,0esSy_1€Z i=1
50=5,=0
w1 (efi(z#l)&,. e#(iﬂ)&) 1
=(I1 5., = Y, e [Tt
i=1 (e ;€ )00 Tyt n—1: i=1
0<r;<j—1
j
rn=>0
it - i e iia1\8
% <_e(lrl+]—(l+1)rz_2_€X(121>0))5+Z;1]a];e_l(l+l)o> (2310)
(o)
y <_e((i+l)ri—iri+1_i(i;1) +gx(i21>o))5—z;1jaj,ei(i+1)a>
7 7
(e}

where § = ay + - - - + a1 is the null root.

The character formula (2.3.9) is, up to a change of variables, a reformulation of the Kac-Peterson
character formula for the type Alejl given in (Kac and Peterson, 1984, p. 217). Thus, our partition
identity Theorem 2.2.45 combined with theorem 2.3.1, makes the connection between the KMN? crystal

base character formula and the Kac-Peterson character formula.

(1)

4_1 consists in transforming

The principal specialization (Kac, 1990, Chapter 10) for the affine type A
the generators with

e %—g forallie{l,...,n—1}.

In that case, we have a natural transformation b; := qibo and a dilated version of the character formula
can be deduced from Theorems 2.2.43 and 2.3.4.

Corollary 2.3.5. Let n be a positive integer, and let Ao, ..., Ay_1 be the fundamental weights of Aglljl. For
all ¢ € {0, ,n — 1}, the principal specialization of e="tch(L(Ay)), denoted by Fq (e~ "tch(L(Ay))), is the
generating function of the classical integer partitions with no parts divisible by n :

Fy (e~ ch(L(Ar))) = (4"4") % Gy (9";q"bo, 4" bo,q", 4" o)

-1 ) )
= (q"4") < ['] ( (=370 " x:0")oo (=" b0x 754" oo
i=0
n— . .
x JT(=9"7"05" 0" oo (=002 ;0" o
i=/

i

= (9"9") x [x"](—q" b5 1% 9) o0 (4°Dox 13 7)o



2.3. Rogers-Ramanujan type identities via representations of affine Lie algebras 47

T (7 9)w

In this particular case, we recover the principal specialization of the Weyl-Kac character formula
(Kac, 1990).

A® B0 )

2.3.3 Level one standard modules of Agn), D(z) 5—1s

n+1’
We compute the following characters ch(L(A)).

Theorem 2.3.6. Let n > 2, and let Ay, . .., Ay, be the fundamental weights and let wy, . . ., ay, be the simple roots
ofAéi). We have in Z[[e~*0,e~"1,- .. e~ %]] that

n
e Mch(L(Ag)) = [ (—e ¥ 28T i, g0+ 30ty iy =20y (2.3.11)
u=1

where 26’ = 6 =29+ -+ - + 20,1 + &y, is the null root.

Theorem 2.3.7. Letn > 2,and let Ay, . .., Ay be the fundamental weights and let w, . . ., «, be the simple roots
ofDn+1 We have in Z[[e=*0,e~"1, ... ,e~"]| that

1 n n S n
—A _ . _ *5*21':,‘ i *0+Z,-:,, i —20
e Mch(L(Ag)) = e D)s ul:[l( e 4, —e Miem ), (2.3.12)
— 1 L —_yn . — n P
e Mch(L(A,)) = m.nl(_e Tt g 20+l i, =20 (2.3.13)
4 u=

where 6 = wg + - - - + ay, is the null root.

Theorem 2.3.8. Let n > 3, and let Ay, . .., Ay, be the fundamental weights and let wy, . . ., ay, be the simple roots
OfAé,ZB,l- We have in Z[[e=*0, e, ... e~ %]] that

—0.,—20 n .
eMeh(L(A)) = EE ) (T (—e i ¥ Thlo, ot 00,

u=1
n 6 ap n—1 . an nl 5
T DG > =L A S Y )oo), (2.3.14)
u=1
—6.,-20 n _ _ _
eiAlCh(L(Al)) — w . H(_efl 2X§”71)57%"*Z?;} ‘Xi’ e 1+2)(2(u71)5+a%+2?;{1 “i;e75)w
u=1

1-2 1 ¢ - 1+2, 1
+ H B e e e ST
(2.3.15)

where 6 = wg + aq + 20y - - - 4+ 20,1 + @y is the null root.

Theorem 2.3.9. Let n > 3, and let Ay, . .., Ay, be the fundamental weights and let wy, . . ., ay, be the simple roots
ofB,(ll). We have in Z[[e=*0,e=%1,. .. ,e~%]] that

_ 1 L Sy 4
e Meh(L(An)) = =gz - [ [ (—e B, —e T hmtied) (2.3.16)
(e e )°° u=1
(—67%'6_5) n 5 o ]
e~ Meh(L(Ag)) = = T (e & Thas, —e HEL e
u=1
(E_%’€7(5> n J n s n 5
+ - 7, H(gfifzi:u “i, e7§+2i:u “Qei )001 (2317)
2 u=1
7é' = n u U= n
eiAlch(L(A )) _ (_e ;,6 ) ) (_e %o Y, /_67%(1)5+Zi:ua,-;675)00

(67% 8—5) n 1-2x(u=1) 5 n ; 14+2x(u=1) 5 n 5
+ L T 7 kit e Othiutied),,  (23.18)
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where 6 = wy + aq + 2y - - - + 2ay, is the null root.

Theorem 2.3.10. Let n > 4, and let Ay, ..., A\, be the fundamental weights and let wy, ..., a, be the simple
roots of D). We have in Zle ™, e, ... e~ ]| that

12 PR R T I I R s I
e_AOCh(L(Ao)) = EH(—e_f_f Zi=u lel—e 2t 2 +Zi=u D";e 5)00
u=1
Y S 1 B R SN TS B L SN
+ EH(E 2 2 i=u % g7 2 2 i=u%is e )oo’ (2.3.19)
u=1
-A T 2 S B WD B U | S 10 WP DU
e 1Ch(L(A1)):§H(—e 2 2 i—n % e 2 2 i=u 5070 o
u=1
12 1-2x(u=1 an—a, 1 14+2x(u=1 an—ay, 1
n 5 H(e—#“%—ﬂlu ai’e_#@r%ﬂjﬂ "‘f;e_‘s)oo,
u=1
(2.3.20)
n an—a, 1 -y, 1 R
e eh(L(Ay-1)) = 5 [ [(—e Mmoo EE el B e )
u=1
n -, _ o,
+ %H(e—x(u:rlﬁ—%—i?:,} 0 o X(uFmot =" AT 0 0=0) (2.3.21)
u=1
- 145 B R O Y.V B S D
e Meh(L(An)) = 5 T[(—e "2 T, oot e o)
u=1
12 _M_Zﬂfla. _5+M+Zn a0 =6
+ ST 2 Tt et TR e, (2.3.22)
u=1

where § = xg+ o + 205 -+ - + 20,9 + &1 + &y, 1S the null root.

(1)

An analogous computation for the type C,,’ is part of a work in progress.
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Chapter 3

Beyond Gollnitz’ theorem

In this chapter, we discuss the results beyond Gollnitz” theorem presented in Section 2.2.1.

In Section 3.1, we will present some tools that will be useful for the proof of Theorem 2.2.7 and
Theorem 2.2.9. After that, in Section 3.2, we will give two mappings ® and ¥ for Theorem 2.2.7 that
preserve the size and the color product of partitions. Then, in Section 3.3, we will prove Theorem 2.2.7 by
showing that ®(O0) C € and ¥ o @) = Id|¢. In Section 3.4, we will set & = ®(O), describe the notion
of bridge, and prove Theorem 2.2.9. In Section 3.5, we explain how to generate the forbidden patterns of
Theorem 2.2.9, and we especially retrieve in the case of four primary colors the three forbidden patterns
as enumerated in Theorem 2.2.1, and we prove that, for more than four primary colors, there is an
infinite set of forbidden patterns. In Section 3.6, we give the bijective proof of Theorem 1.3.3. Finally, in
Section 3.7, we relate the mapping Y to Motzkin paths and oriented rooted forests, giving new perspectives
for the study of the forbidden patterns.

We postpone the proof of the technical lemmas and propositions to Appendix A.1.

3.1 Preliminaries

3.1.1 The setup
Let us first analyze the secondary parts in S. For any 1 < i < j < n, and any positive integer k, we have
(2k)aza; = ka; + ko, (3.1.1)
(2k + 1)“;‘11]‘ = (k+1)q + kﬂj )
Recall that the sum of two colored parts consists of the part whose size and color are respectively the
sum of the sizes and the product (here, commutative) of the colors of the added parts. In fact, any

secondary part in § with color 4;a; can be uniquely written as the sum of two consecutive parts in P
with colors 4; and 4; in terms of .

Definition 3.1.1. For any 1 <i < j < n, we define the functions « and  on S by

 2Zkaa; = kg | 2ka; ke,
Ly G, ™ P, Do @12
respectively named upper and lower halves.
One can check that for any ku,.u,. €S,
a((k+1)aa) = Blkaa;) +1 and  B((k+1)aa;) = a(kaa,) - (3.1.3)

In the previous sum, adding an integer to a part only changes its size but does not change its color. We
can then deduce by induction that for any m > 0,

“((k+ m)ﬂiﬂj) j ‘X(kﬂiﬂj) +m and ﬁ((k + m)ﬂiﬂj) j :B(kﬂiﬂ,') +m- (3~1~4)
Remark 3.1.2. In fact, we have

a((k+2m)aa,) = a(kae) +m and  B((k+2m)aa;) = B(kaa;) +m- (3.1.5)

]
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Remark 3.1.3. Let us consider a partition A in O. By definition (2.2.6), it does not belong to &€ if and only if it
has two consecutive parts Aj, Ajq such that A; % Aj1. We then have by (2.2.12) that

Ai = A1 and A; B Aivi = A1 +1>=A > A4 (3.1.6)

An equivalent reformulation consists in saying that A; and A; 1 are two primary parts with distinct colors,
consecutive in terms of >. Then, by (3.1.2), A; + A;41 can be seen as the unique secondary part with respectively
Ajand A1 as its upper and lower halves.

3.1.2 Technical lemmas

We will state some important lemmas for the proof of Theorem 2.2.7 and Theorem 2.2.9. The proofs can
be found in Appendices A.1.1, A.1.2 and A.1.3.

Lemma 3.1.4 (Ordering primary and secondary parts). For any (I, k;) € P x S, we have the following
equivalences:

Iy B kg = (k+ 1)q > (I— 1),7, (3.1.7)
lP > “(kq) = B((k+ 1)q) # (- 1);7‘ (3.1.8)

Lemma 3.1.5 (Ordering secondary parts). Let us consider the table A in (2.2.2). Then, for any secondary
colors p,q € Cy,
A(p,q) = min{k —1: B(kp) = a(ly)} - (3.1.9)
Moreover, if the secondary parts ky, l; are such that B(k,) = B(1;), then
(k+1)p>1;- (3.1.10)
Furthermore, ifk — 1 > A(p, q), we then have either B(ky) = «(l;) or
a(ly) +1> a((k—=1)p) = B((k—=1),) = B(ly) - (3.1.11)
In the case of equality k — 1 = A(p, q), we necessarily have

Bly) +1 = B(kp), (3.1.12)
and in the other case, we necessarily have that B(ky) = a(ly).

Lemma 3.1.6 (1-different-distance on &). Let us consider a partition v = (vy,...,vt) € &. Then, for any
1 <i<j <t wehave
l/il>1/j+].*l'*1~ (3.1.13)

3.2 Bressoud’s algorithm

Here we adapt the algorithm given by Bressoud in his bijective proof of Schur’s partition theorem (Bres-
soud, 1980). The mappings are easy to describe and execute, but their justifications are more subtle and
are given in the next section.

3.2.1 Machine ®: from O to £
Let us consider the following machine ®:

Step 1: For a sequence A = Aq,..., A4, take the smallest i < t such that A;,A;;; € P and A; > Ajq but
Ai ® Ajpq, if it exists, and replace

Ai —= Aj+ A1 asapartin$S (32.1)
A= A forall i<j<t -
and move to Step 2. We call such a pair of parts a troublesome pair. We observe that A loses two
parts in P and gains one part in S. The new sequence is A = Aq,...,A;_1. Otherwise, exit from
the machine.
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Step 2: For A = Aq,..., A4, take the smallest i < f such that (A, A;,1) € P x S and A; B A1 if it exists,
and replace
A A1) A+ LA -1)eSxP (3.2.2)

and redo Step 2. We say that the parts A;, A;;1 are crossed. Otherwise, move to Step 1.

Let ®(A) be the resulting sequence after putting any A = (A,...,A;) € O in ®. This transformation
preserves the size and the commutative product of primary colors of partitions.

Example 3.2.1. For C = {a < b < ¢ < d}, let us apply this machine on the partition (5,,34,24,14,1¢,14,14):

5p
3 Db % 5, 5,
D) 34 44q 1 4 5
= 3ad 2d ad ad 4ad
L — e oo 20 % 3 R (3.2.3)
1. ¢ ¥ 2pc 14 be
1 Ly E 1 1, 204
b 14 1, a -
1,

This example shows that ®(O) L &,.

3.2.2 Machine ¥Y:on &
Let us consider the following machine ¥:

Step 1: For a sequence v = vy,...,V;, take the greatest i < t such that v; € § if it exists. If v;;1 € P and
B(v;i) # vis1, then replace

(1/1', Vi—i—l) %> (Vi+1 +1,v; — 1) ePxS (3.2.4)

and redo Step 1. We say that the parts v;, v, are crossed. Otherwise, move to Step 2. If there are
no more parts in S, exit from the machine.

Step 2: For v = vy,...,14, take the the greatest i < t such that v; € S. By Step 1, it satisfies B(v;) > V1.
Then replace
Vis1 Y forall t>j>i

(vi) = (a(v;),B(vi)) asapairof partsin P, (3.2.5)

and move to Step 1. We say that the part v; splits. We observe that v gains two parts in P and loses
one part in S. The new sequenceis v = vy,..., V4.

Let ¥(v) be the resulting sequence after putting any v = (vq,...,1;) € € in ¥. This transformation
preserves the size and the product of primary colors of partitions.

Examples 3.2.2. For example, we choose C = {a < b < ¢ < d < e < f} and we apply the machine ¥
respectively on (4ae, 3cd, 3ab), (4a, 3aes 2cd, 1v) and (4e, 3ef, 3ca, 3ap, 1), and we obtain

2%+ 2, 1, I
4{18 4H€ 211
4ae 2 + 1 3 311 25[ + 18 1
3 = 4 e ‘ = 1y 1y =
Zg 1d + 1C ].d
20+ 1p ) . 1, 1, !
b b 1b 1b 1(3
b
4
4 4a 2a
Buc 2+l 1.
1
1g+1c = 1d = s 7
1b 1C 1C
b
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4,
4:3 4g
4, 4, 4ef 4ef 20 + 1f 4f ;L;
e e
gef % zd = Zflag, 3 = ?f % 1fljL . = L
211 2 2 la +1c 1t 1t L
a 1 b f 1, 1, c c 1,
f 1, + 1 Ly Ly
1, 1, 111 1, 1b
1,

With these examples, we can see that ¥ is not injective on € and ¥ () € O.

3.3 Proof of Theorem 2.2.7

In this section, we prove Theorem 2.2.7 by showing the following theorem.
Theorem 3.3.1. The transformation @ describes an injection from O into & such that ¥ o @ = Id)o.

Theorem 3.3.1 follows from the next three propositions whose proofs can be found in Appendices
A.1.8,A19 and A.1.10.

In the following for any sequence U = uy,...,u;, we set g(U) = uj and s(U) = u; respectively the
first and the last terms of /.

Proposition 3.3.2. Let us consider any A = (A1,...,As) € O. Then, in the process ® on A, before the u'™
application of Step 1, there exists a triplet of partitions (6", v, u*) € € x (€ N O) x O such that the sequence
obtained is 8", ", u". Moreover, the triplet (6", y", u*) satisfies the following conditions:

1. The u'" application of Step 1 occurs in the pairs (s(v"), g(u")),

2. s(8") is the (u — 1)™ secondary part of 8" and satisfies s(6") > g(7*),
3. ut*lis the tail of the partition u* and has at least one less part than u*,
4. 8" is the head of 5**1.

Note that the first triplet for # = 1 has the form (@,9!, ') with (¢}, u!) € (ENO) x O and
(s(v*),g(u")) the first troublesome pair of A. The fact that ®(O) C & follows from Proposition 3.3.2
since u" strictly decreases in terms of number of parts and the process stops as soon as u" = @. In fact,
if u* # @, then g(u") exists and we can still apply Step 1 on the pair (s § ). The last triplet then
has the form (6°F1,45+1, @) with (65%1,95F1) € £ x (€N O), s(5°1) the St and last secondary part of
®(A) and 5(65F1) > g(45H) if o511 £ @.

Example 3.3.3. We again take the example A = (54,34,24,14,1c,1p,14) given in (3.2.3). We summarize the
triplets of Proposition 3.3.2 in the following table:

u 5” ,)/M ‘uu

1 ) 5b/ 3d;2a 1d1 1C/ 1b/ 111
2 5b/ 4ad 2d/ 1 1h/ 1,

3 54,444, 3bc 14 1,

4 1 54,444, 30c: 204 @ @

Proposition 3.3.4. Let us consider any v = vy,...,v; € E. Then, in the process Y on v, after the (v — 1)
application of Step 2, there exists a triplet of partitions (6%, ", u®) with 6° € & and +°, u’ some sequences
of primary parts, such that the sequence obtained is 6°, ", u’. Moreover, the triplet (6", ", u") satisfies the
following conditions:

1. (s(7y°),g(u?)) is the troublesome pair resulting from the (v — 1) splitting in Step 2,
2. 5(6%) € S so that the next iterations of Step 1 after the (v — 1) Step 2 occur on this part,
3. u? is the tail of the sequence u*1 and has at least one less part than u*+1,

4. 5%V is the head of 5°.
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The process stops as soon as 6° = &, which means that we have split every secondary part of v. If
we set S to be the number of secondary parts of v, the last triplet then has the form (@, v° 1, u5*1) with
(s(7°*1), g(u5*1)) being a troublesome pair of primary parts. Also, we remark that the first triplet for
v = 11is such that (6!,7!,@) with §! equal to the head of v up to the last secondary part, and with !
equal to the tail of v after this last part, so that (61,9!) € £ x (€ N O) withs(6') > g(71) ify' # @.

Example 3.3.5. We take the example v.= ®(A) = 5p,4,4,3pc, 244 in (3.2.3). We summarize the triplets of
Proposition 3.3.4 in the following table:

) 5(] ,)/"U yv

1| 5p,44d,3pcs 2ad % %)

2| 5p,44d,3pc 1y 1,

3 Sb/ 4ﬂd zd/ 1C 1b/ 1a

4 0 5p,34,2 14,1c, 15,14

We now show that ¥ o & = Id| using the following proposition.

Proposition 3.3.6. Forany A € O, if we set v = ®(A) and S to be the number of secondary parts of v, then for
any v € [1,S + 1], the triplet of Proposition 3.3.4 is equal to the triplet of Proposition 3.3.2 for u = S +2 — v.

3.4 Description of & = ®(0O) and proof of Theorem 2.2.9

In this section, we set &1 = ®(O), and we give an explicit definition of the bridge for a partition v € £
in order to fit with the condition given in Theorem 2.2.9. Note that, by setting & = ®(O), the mapping
® then describes a bijection between O and &1, and ¥ = @1, so that the identity (2.2.18) holds and this
implies Theorem 2.2.9.

3.4.1 Enumeration of parts

Let us consider a partition v = (vy,...,v, ;) with p primary parts and s secondary parts. We can thus
consider the p 4 2s primary parts that occur in v by counting both the upper and lower halves of the
secondary parts. We then set

v=(Vi,...,Vpi2s) (3.4.1)

with J, I and I + 1 defined to be respectively the sets of indices of the primary parts, the upper and lower
halves of secondary parts. The secondary parts of v are indeed the parts v; + v; ;1 for i € I. We can then
retrieve the corresponding indices for the parts v; with

vj = V]/‘—\Im[l,j)| forallje ],
Vi + Vi = Vz{f\m[l,i)\ forallicI-

For ease of notation, we set I = {i; < --- <is} and ] = {ji < --- < j,}. We then consider the index set
of the troublesome secondary parts as defined in (2.2.16),

TSw)={iel:v (i)> vi+vis1f Viga +Vigs}, (3.4.2)

where v (i) = V1{—|Iﬂ[1,i]|
(2.2.11) and (2.2.12), we do not have v; + v;1 > Vjp + Vi3 only if the pair of consecutive secondary

parts has a pair of colors in SP.

is the (primary or secondary) part to the left of v; + v;;1. We recall that, by

Example 3.4.1. We take v = (1444, 114, 1044, ¢, 8ac, 3¢, 2cd, 2ap) € € with (p,s) = (2,6). Our enumeration
gives
V= (7d1 7d111ﬂ/ 5d/ 511/ 5b/ 4C/ 46/441/ 3C/ 15[/ 1C/ 1b/ 1H)
—— (N —— N
J={3,10}, I=1{1,46811,13}, I+1={2579,1214},
and TS(v) = {4,11}.

We will then define, in the first part of this section, for any i € I, the Bridge Br, (i) > i as an index
in U], and the bridge as the part vg, (; corresponding to this index. This definition will fit with the
definition of & given in Theorem 2.2.9, that we can explicitly state in the following theorem.
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Theorem 3.4.2 (Explicit definition of &). The following are equivalent:
(1) ve & =2(0),
(2) Foranyi € I such that Br, (i) > i, we have

yy Br, (i) —i
v (i) > VBrV(i)'i_% F vit i,

(3) (Necessary and sufficient checks) For all i € T S(v) such that Br, (i) > i, we have

Br,(i) —i

5 (3.4.3)

Vi +Vig1 = Vg, () T

Recall that if v € &, then TS(v) = @ so that (3) is true. We thus recover the fact that & C &;.

In the remainder of this section, we will first give an explicit definition of the bridge, describe its
properties and show how to easily compute it. Then, we prove Theorem 3.4.2 by proceeding as follows.
We first prove that (1) implies (2). After that, we show that (2) implies (1). Finally, we give a proof of
the equivalence between (2) and (3).

3.4.2 Definition and properties of the Bridge

For any i € I, let us consider j = min(i, p + 2s] N ], if it exists, which is the index of the greatest primary
part to the right of the secondary part v; + v; 1. Otherwise, there is no primary part to its right, and we
set j = p+ 25+ 1. Note that j — i is twice the number of secondary parts (v; + v;11 included) between
Vi + vi11 and vj, even if we set v 2511 = Op,. In all cases, we can set j = min(i, p +2s + 1] N (JU {p +
25 +1}).

Definition 3.4.3. We define the Bridge Br, (i) to be as follows :
¢ If j satisfies

A

L 1 (3.4.4)

j—
Vi1 ¥ v+ 5
forall i € [i,j) NI, we set Br, (i) = j. Note that for j = p + 2s + 1, the relation (3.4.4) is never

satisfied for the last secondary part, since its upper and lower halves have size greater than 0.

e Otherwise, we define

u—1

Si={ue(@j)nl:vpg ¥ vut —1 Vi€ iu)nI}. (3.4.5)

If S; # @, we then set
Br, (i) = maxS; - (3.4.6)

Otherwise, we set Br, (i) = i.

Here, we observe that Br, (i) > i, and for Br, (i) > i, we have the relation

Br, (i) — 7

51 (3.4.7)

Vi1 ¥ VB, (i) T+

for all i/ € [i,Br,(i)) N I. Also note that the function Br, is local, as it only depends on the maximal
sequence of secondary parts and not on the entire partition v.

Remark 3.4.4. The value M indeed corresponds to the difference between the index of the secondary part
1/1(,7‘ In[)] and the index of the primary or secondary part v]’m(i)i‘ In[1Bry (7)) 5 that the relation (3.4.7) can be

formulated as follows: the lower half vy qis not 1-distant-different from vy, ;y — 1.

The definition of bridge as stated above has the sole purpose to make our results simpler to prove.

Hint for the computation of the Bridge

It may seem difficult to compute, but the calculation of the bridge is indeed quite simple as it can be
done recursively. In fact, the first hint for the computational method is given by the following lemma,
whose proof is postponed to Appendix A.1.4.
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Lemma 3.4.5. The function Br, is non-decreasing on I, and for any i such that Br, (i) € I, we have
Br,(Br, (i) = Bry(i).

Lemma 3.4.5 allows us to state that for any i € I, Br, (i) is either the index of the greatest primary part
to the right of v; 4+ v;44, or the smallest fixed point (by Br,) to its right. This fact leads to the following
proposition, which gives us the second and final hint for the computation of Br,.

Proposition 3.4.6 (Crossing rules for ¥). By applying ¥ on v = (v,...,Vpy2s), we have that the secondary
part v; + viyq:

* does not cross any primary part if and only if Br, (i) = i,

* otherwise, for iy =i < Bry(i), it first crosses the primary part that comes from vg, (;:

B (i)
S oy % 1. (3.4.8)

8y
The proof is given in Appendix A.1.11. The relevance of this proposition consists in saying that,
during V¥, the fixed points are the indices of the secondary parts which split directly with no application
of Step 1, and if a fixed point i = Br, (i) is found, then the next fixed point to its left is the index of the
smallest secondary part which is not crossed by the upper half v; during iterations of Step 1.
Note that, by definition, the bridges are exactly the parts v; for the fixed points 7, along with the primary
parts v; after the tail of a sequence of secondary parts. The key idea to compute the bridge is then to
retrieve the fixed points by performing iterations of Step 1 with the bridges v; and v;.

Method to compute the Bridge

The function Br, being local, we then consider a maximal sequence of secondary parts, with the ending
primary part to its right. The reasoning will be the same when we do not have a primary part at the
tail of the sequence. Without loss of generality, we can restrict the partition v to such sequence: v =
(1/1, ooy V25+1) with

V1+1vy S>U3+vgp > - > Vg +Vps > Vpsyq

For simplicity, we show the computation on the following example. We take the set of primary colors
C={a<b<c<d<e< f}and the partition

V= (Zoefr 2044, 19bc1 16d€r 14afr 1144, 6c) ’
or rewritten with our enumeration

v = (104,10, 104,10, , 10,9, 8¢,84, 74,70, 64,54, 6c )-
——r N N~ ) N~

i=1 i=3 i=5 i=7 i=9 i=11 j=13

Recall that to perform Step 1 of ¥, we always compare a primary part to the lower half of a secondary
part. We then proceed as follows:

1. We start with the sequence
(,81/ ﬁZ/ e /ﬁS/ “s+1) == (VZr V4, -+, Vs, U25+1)

consisting of the lower halves and the primary part. Our example gives the sequence

(1OEr 1011/9(3/8dl 7{1/5d1 6C ) :
~—
Buu=1,...,6 ay

The first fixed point (starting from the right) corresponds to the first §,, which is 1-different-distant
from ag 1 — 1 in the order >. We then have i; = 2uq — 1 if such uq exists. If there is no such uq, it
means that j is the Bridge of all i € 2{1,...,s} — 1. With our example, we just have to compare the
two sequences

(106/ 1011/ 9(3/ 87dr 711/ Sd)
(11C/ 10(3/ 9C/ 86/ 7C/ 6C>
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starting from the right, and we identify the first fixed point, iy = 2u; — 1 = 7, corresponding to
the underlined lower half.

2. We redo the same process for the sequence

(,Bll ,BZr e r,Bulflr “ul) = (1/2,1/4, e rvil—lrvil)/

where B, are the lower halves of the (17 — 1) first secondary parts, and «,, is the upper half
the uﬁh secondary part, which corresponds to the first Bridge. Our example gives the sequence
(10,,104,9, 8,) and the sequence comparison

w—/

B1,23

(10¢,104,9¢)
(1061 9(3/ 86)

and the second fixed pointisip = 2up; —1 = 5.

3. Following the same process, we apply the comparisons for the sequence
(181/ ﬁZI Tty ,Bukfl/ “uk) == (sz V4, /Vikflrvik) ’

in order to retrieve the (k + 1) fixed point. Here again, we have iy = 2u; — 1. If there is no g,
which is 1-different-distant from a;,, — 1 in the order -, we stop the process, as i is the last fixed
point and becomes the Bridge of the remaining i < 7. In our example the last fixed point is indeed
ip, since we have the sequence (10,,10,,10;) and the sequence comparison

B1.2

(10,,10,)
(11b/ 10b) :

Note that applying this computation requires in fact s comparisons, starting from the right to the left, to
retrieve all of the fixed points, but computing the precise bridge for an i will require as many compar-
isons as the number of secondary parts to its right. For our example, we summarize the computation of
the Bridge with the following table.

i |1]3]5]7]9 |11

Br,(i) [5|5|5|7 |13 [13| (3.4.9)

By condition (3) of Theorem 3.4.2, to see if v € &1, we only need to check the secondary part 20,¢,
whose bridge corresponds to 10,, and we have 20,7 > 10, + 2. We then have v € £;. One can check that

11/(1/) = (12h/ 11&/ 9f/ 96/ 9d1 9(,‘/ 8(2/ 8dr 8Cr 711/ 6f/ 5dr 511) ’
and that ®(¥(v)) = v.

For the case where the sequence v = (v, ..., ) does not end by a primary part, the first splitting
occurs at the right most secondary part, and we set the first fixed point i = 2u; — 1 = 25 — 1. We then
start the process at step (2) and the remainder of the computation of the bridges is the same.

3.4.3 Proof of Theorem 3.4.2
Proof that (1) implies (2)

We suppose that i = igy1_, for some v € [1,s]. Then by the Proposition 3.4.6 and Proposition 3.3.4,

Vi +vip1 = 5(6%) and g(7°) = vy, (i) + % — 1. After crossing, the primary part becomes vg,, ;) +

% and the secondary part becomes v; + v;;1 — 1. But, by Proposition 3.3.6, the crossing is the
reverse crossing of Step 2 in process P, so that we have
Br, (i) — i Br, (i) —1i
VBr, (i) T+ % P Vit vipn — 1 <= v ) + % ¥ Vit Vigr
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Also, note that the sequence

Br, (i) —i

SNA{vit+vignt . vyt >

is indeed the head of the sequence §°*!,7“*!, which is a partition in £ by Proposition 3.3.6. In fact,

this pair of sequences corresponds to the same pair in Proposition 3.3.2 for # = s — v, and is a pair

in £ x (€N O) satisfying s(6") > g(y"*). We then deduce that the part v~ (i) to the left v; + v; 1 is

Br, (i)

well-ordered with vg, ;) + Tﬂ in terms of >>, so that

p Bry (i) —i
v (i) > Vg () % :
With this, we have proved that (1) implies (2) in Theorem 3.4.2.

Proof that (2) implies (1)
We prove that (2) implies (1) with the following proposition whose proof is given in Appendix A.1.12.

Proposition 3.4.7. If v satisfies condition (2) in Theorem 3.4.2, then in Proposition 3.3.4, the triplet (6%, v°, u°)
satisfies the following properties:

1. (7%, u%) e (ENO) %O,
2. 5(6%) > g(7").

3. Ifwe apply Step 1 once and some iterations of Step 2 of the process ® on the sequence 61, 4%+, u®+1, we
obtain the sequence 6%, %, u®.

Proposition 3.4.7 says that, for any v € £ that satisfies (2) of Theorem 3.4.2, we have that ¥(v) € O,
since the last sequence 6°*1,95%1, 1°F1 is such that 67! = @ and (s(7?), g(4?)) is a troublesome pair
so that s(yY) > g(u”). The fact that all the crossings and the splitting of ¥ are invertible by ® means
that the process ¥ on v is invertible by ®, and we then have & > ®(¥(v)) = v.

Proof of the equivalence between (2) and (3)

In this part, we will show that it is sufficient to satisfy the condition (2) only on 7S (v). In fact, condition
(2) of Theorem 3.4.2 implies that (3.4.3) is true on 7S(v), so that (2) implies (3). To prove that (3)
implies (2), we will use the following lemmas (for the proof, see Appendices A.1.5 and A.1.6).

Lemma 3.4.8. For consecutive secondary parts v; +viyq > -+ > vy + vy 1 such that
Vit Vigrfo B Vi Vi,

the following holds:

i'—i
Vi + Vi + 5 = Vi+ Vg (3.4.10)

Lemma 3.4.9. For consecutive secondary parts v; + viyq > -+ > Vp + vy, such that the size differences
between consecutive parts are minimal, the following holds: if Br, (i") > i’, then Br, (i) = Br, (i').

Proof that (3) implies (2). Let us consider a maximal sequence of consecutive secondary parts v; + v 1 >
e > Uy Vi with
Vit Vigr B BV Vi

We then have that the leftmost and rightmost parts are well-ordered in terms of > with the parts to the
left and to the right of the sequence, and we have the inequality

"'DI/i—Q—Vi_;'_lﬁ ---)ﬁl/i/—f—l/i/_;'_lb--- (3.4.11)
In particular, i € 7S(v). Now, let us consider the set
{ueli,i]NI:Bry(u) >u}-

If it is empty, then any u € [i,i'] NI is a fixed-point of Br,. Otherwise, by Lemma 3.4.9, it has the form
[i,u] N I and Br, is the identity on (u,i'] N I. Furthermore, Br, (i) = Br,(u') > u’ forallu’ € [i,u] N I.
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If we assume that

Br, (i) —i
Vi +Vit1 = VBy, (i) T % ,
by (3.4.10), we then have for all u’ € [i,u] NI
Br, (1) —u/ Br, (u') —u’

u
Vi + Vg = VBr, (u') + < VBr, (i) + oV Vg

2 2

In addition, by (2.2.12), we obtain, for all u’ € (i,u] NI, that u’ — 2 € [i,u) N I. We thus have Br, (1/ —
2) = Br,(u'), and

Br, (v —2)—u' +2 Br,(u') — '
V< 2> < Vyo+tvy_ 1> VBry(u’) + % ,

Vyr—p +Vy_q = VBr, (/' —2)

so that the condition (2) is also satisfied. Note that condition (2) is also satisfied in 7, since we have by
definition (2.2.11)

. Br,(i) —i . Br,(i) —i
v (1) > i+ Vig1 = Vg, () + % = v (i) > vy, i) + % # Vit v
. Br,(i) —i
= v (i) > gy, (j) + % F Vit vigr -

It thus follows that the condition (2) is satisfied for any element of I in a sequence of the form (3.4.11).

Now let us take i € I such that i is not in a sequence of the form (3.4.11). This is equivalent to saying
that v; + v; 11 is well-ordered to its left and to its right in terms of >, so that

We can then see by (2.2.11) that, for Br, (i) > i,

iy Br, (i) —i . Br,(i) —i
v () >+ - VBy, (i) T % = v~ (i) > Vg, (i) T % v+ Vi
iy Br,(i) —i
= v (i) > vpy, () + V(Zi) ¥ Vi Vigr-

This means that we only need to prove that v; + viy1 > v, ;) + % in order to satisfy the condition

(2)-
e Suppose first that there exists i’ € TS (v) such that i’ € (i, Br,(i)). We then have by Lemma 3.4.5
that Bry (') = Bry (7). By taking i’ to be the minimum of all such elements, we obtain the sequence

Vit Vigi b DUy + Vg

so that, by (2.2.11) and the fact that the parts between these two are in S, we obtain

g
U —1
Vit Vigr = Vp + Vg + ——

2
Since i’ satisfies condition (3), we then have
Br,(i') — 1
Vir TV = VB (i) T 5~
and thus,
Br, (i) —i
Vit Vigl = VB () T ——5 -

e If (i, Br,(i)) N TS(v) = @, we then have the sequence
Vi +Vig1 > D VBy (7)—2 T VBry (i)—1 > VB, (i)
if Bry (i) € J, and otherwise,

Vi +Vig1 B B Vgy (i)—2 T VBr, (i)—1 > VBr, (i) T VBr, (i)+1"
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By (2.2.11), in the first case, we directly have

Br, (i) — i
Vi +Vit1 > VBy, (i) T 5

while in the second case, we obtain

Br, (i) —i
Vi T Vig1 = VB (i) T VBry ()1 T 5 -

But, in terms of part sizes for the second case, we have by definition (2.2.9) that

Br, (i) —i
Vit Vig1 — <Vsrv<z‘> + (2>> = UBry(i)+1 = 1,
so that, again by (2.2.9),
Bry(i) —i
Vi + Vig1 = Vg, (i) + % ' O

3.5 Forbidden patterns of &;
In this section, we study the forbidden patterns that a partition in £ has to avoid to be in &;.

By the definition of bridge and Theorem 3.4.2, we can see that the invertibility of ¥ by & is a local
problem. In fact, for any secondary part in a partition v € &, the invertibility only depends on the
sequence starting from this part up to either the greatest primary part to its right if it exists, or the last
part of v if there is no primary part to its right. Furthermore, by condition (3) of Theorem 3.4.2, we
only have to consider the sequences whose head is a sequence which is not well-ordered by . Then, it
suffices to restrict the forbidden patterns to those such that the first part does not satisfy (3.4.3):

V=Vt fuztrs > e 3> Upgpq OF Vpgiq + Vs, (3.5.1)

such that Br, (1) = 2s + 1 and vps 11 + 5 > v1 + 5.

Remark 3.5.1. It is sufficient to consider the last part to be a primary part. In fact, a sequence that ends by a
secondary part can be viewed as the same sequence with this last part replaced by its upper half, as by (2.2.8) and
(2.2.12),

Vos—1 + Vo 2> Vpsy1 + Vog42 == Vos—1 + Vg > Vg1 + Vosy2
= Vps_1 + Vs = Vpsq1 +1
= Vps—1 + Vos > Vo541

Note that, if a pattern v is forbidden, then any pattern 17 whose head or tail is v is also forbidden.
This is obvious when the tail of # is v since the troublesome crossing will not change. When v is the
head of 77, we have that Br; (1) = Br; (Br, (1)) and we use the same reasoning as in the proof of Lemma
3.1.6 given in Appendix A.1.3 to show that

Br,(1) — 1 Br,(1) — 1
VBt 5 Ut =i, t— 5

=11+

Therefore, the optimal forbidden patterns are the ones that are allowed after removing either the first part
or the last part. Furthermore, these forbidden patterns satisfy the fact that the Bridge of the first part
is the position of the last part, so that all along the transformation ¥, every secondary part is crossed
by the last part if it is a primary part, or by its upper half. The optimization also implies that all these
crossings are invertible by ®, except the last one which occurs with the first part of the pattern.

In the next subsections, we first give some particular properties of the optimal forbidden patterns,
and after that, we aim at retrieving the optimal forbidden patterns for four primary colors. Finally, we
enumerate the optimal forbidden patterns, with some restrictions, for five primary colors, showing that
there is an infinitude of optimal forbidden patterns for more than four primary colors.
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3.5.1 Properties of optimal forbidden patterns
We first define a tool that will lead to a better understanding of the optimal forbidden patterns.

Definition 3.5.2. We say that two secondary colors p and q are primary equivalent if and only if their
orders according to the primary colors are the same, which means that p = a;a, and q = a;a, for
some u,v € (i,n]. If p and g are primarily equivalent, we write k, = k; and write the corresponding

equivalence class of primarily equivalent colored parts by k,. This matters in the sense that for any
primary color ¢, we have the equivalence between k, = k; and

kp >' lC s kq >' lc N (3.5.2)

We can then write k, > I.. For two secondary colors p and g, we say that k, > & if and only if we
can find a primary part I. such that k, > L. = h,. This is equivalent to saying that k > h or k =  and
(p,q) = (ajau, aja,) withi > j.

Let us now consider an optimal forbidden pattern
V=141 Buztug > > Upgy (3.5.3)

where the secondary parts are ;1 + 15; and the last part v, is a primary part. In the remainder of
the section, we consider the different-distance with respect to the order ~. We thus have the following
properties:

1. Foralli € [1,s], we have Br, (2i —1) =25 + 1.

2. The part vps41 is 1-different-distant from 11 + vy:

Vpsp1+S>=v1+12- (3.5.4)

3. The fact that the pattern v3 +v4 > - - - > vp5_1 + V25 > V541 is allowed implies by Theorem 3.4.2,
foralli € [2,s], that v5; 1 + vy; is 1-different-distant from vy4,1,

Vi1 +Voi = Vosp1 +s+1—1, (3.5.5)
and by transitivity, this implies that v5; 1 + vy; is 1-different-distant from vy + v, —i +1,

Voj 1 +Vpi = v+ —i+1- (3.5.6)

4. We obtain the following inequality

v3+vg+1>=vosp1+s>=vy+1o- (3.5.7)

5. If we replace the primary part vy, 1 by another v5__ ; satisfying vy 4 v5 = v, 4 + s, we then obtain
the following allowed pattern

V=v+mnp z+vg>- > +V25>>V£s+1'

Remark 3.5.3. By (3.5.1), apattern vy +vy > - -+ >> Vps_1 + Vg > Vpsi1 + Vas+2 0nly consisting of secondary
parts is optimal and forbidden if and only if vi + vy > -+ > Vps_1 + Vos > Vpsy1 is an optimal forbidden
pattern. Note that in this case, (3.5.6) is also satisfied for i = s + 1.

We now define a special kind of pattern, that we call a shortcut.

Definition 3.5.4. A pattern vy + v, > -+ > V441 + Vps42 is said to be a shortcut if
Vosy1 +Vosyo = V1 + 12 —s+1- (3.5.8)

One can check that a shortcut has at least three secondary parts, and that the relation (3.5.8) is
stronger than (3.5.6). The following property makes the enumeration of optimal forbidden patterns
which contain shortcuts quite difficult (see Appendix A.1.13 for the proof).

Proposition 3.5.5. We can always build a forbidden pattern starting from any allowed pattern and iterating of a
shortcut (iterate here means use consecutively the same pattern several times).
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By considering the optimal forbidden pattern v = v; + vy § v3+vq4 > --- > vps41 which does
not contain any shortcut, we then have by (3.5.4), (3.5.5) and (3.5.8) the following relation for all i €
{1,...,s—1}

vi+vy—i+1>=vp1+Vojip > Vosp1+5—i>=vi+1vp—i- (3.5.9)

The latter implies the following properties:

1. By definition of the head and (2.2.12), v; + v, and v3 + v4 are consecutive for >.

2. Foralli € {2,...,s — 1}, two consecutive parts vp;_1 + vo; and vp; 11 + V5,17 are either consecutive
in terms of >~ (or equivalently not well-ordered by ), or consecutive in terms of . In fact, by
(3.5.9), we necessarily have

Voip1 + Voipp +2 = Upi_1 + Vo == Vi1 + Vo £ Vojp1 +V2ipp +2-

3. By (3.5.9), we have

Vast1+2 > V1 + Vo —S+2 7 Vo5 1 + Vs > Vos11 +1,
so that, by (2.2.11), vp5_1 + 5 and 1,1 are consecutive for >.

We see that the optimal forbidden patterns with no shortcut have their parts either consecutive in
the order > or in the order . Let us then consider the following moves:

e The arrow p—¢ means that (p,q) is a special pair and it represents a pattern of the form
(k+x(p <a))pkq-

* The two-headed arrow p—g represents a move from a part with color p to the greatest secondary
part with color g smaller than the first part in terms of . In fact, it indeed represents the pattern

k+1+x(p <q))p kg

Therefore, the optimal forbidden patterns with no shortcut have the form
cio---ocy , k (3.5.10)

where ¢y, ..., ¢y are some colors, o is either — or —, and k is the size of the smallest part, so that the last
partis k,,.

Example 3.5.6. For C = {a <b < c < d}, the pattern
ad —-bc—cd—-b , 5

will represent the pattern 9,4, 8y, 604, 5p-

Since an optimal forbidden pattern is allowed after removing the last part, we will consider the
following form
cpo--ocy 1|loem , k (3.5.11)

If we refer to an optimal pattern into another one (see Proposition 3.5.10), then it means that we only use
the allowed pattern obtained after removing the last part.
3.5.2 Optimal forbidden patterns of &; for four primary colors

For four primary colors a < b < ¢ < d, recall (2.2.6), the total order on primary and secondary colors
ab<ac<ad<a<bc<bd<b<cd<c<d (3.5.12)

and the set of special pairs SP« = {(ad, bc), (cd,ab)}.

Theorem 3.5.7. The optimal forbidden patterns are the following:

cd —abl »cd , k>1 (3.5.13)

ad — be| — a , k>2 - (3.5.14)
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Proof. Let us consider the following diagram:

] actual moves with examples
general diagram cd—ab and ab—cd

We can see that the main nodes are the secondary colors, and we remark that a move p—g is indeed
between p and the color g of the greatest secondary part smaller, in terms of >, than a part with color p.
Thus, any move p—q’ with another secondary color g’ will be greater than the move p—q represented in
the first diagram. As we notice on the second diagram, proceeding clockwise, we need more than one
loop for a move p—»q, while a move p—q requires less than one loop.

Since a forbidden pattern must necessarily begin with a sequence of secondary parts not well-ordered
by >, we then have as the head of the pattern either cd — ab or ad — bc.

* Suppose that the pattern begins by cd — ab. By (3.5.7), if it ends with a primary part k., by setting
vy + vy = hyy we then have
hop +1 > ke, +5 > hey

so that ¢, € {c,d}. Another interpretation is that, in the diagram, the color ¢y, is in the clockwise
arc (ab, cd), and it leads to the same result. Suppose now that s > 3, which means that the third
part is secondary. Since the next move can be at least ab — cd, we then obtain that

hcd—2iV5+V6:>hcd—ZEM'

This contradicts (3.5.6). Therefore, s = 2 and, by (3.5.7), we obtain the pattern cd — ab — ¢, d.
It actually corresponds to the pattern (k + 2).4, (k + 2)4, k4. Here k. ; means k. or k;. Since we
must necessarily have that

B((k+2)ap) # kea

and a quick check according to the parity of k shows that is always the case for k > 1.

* The same reasoning occurs when the pattern begins by ad — bc. We obtain the pattern ad — bc —
a which corresponds to (k + 2) 44, (k + 1), ka. We then look for k such that

.B((k + l)bc) ?é kq

and a quick check according to the parity of k shows that is always the case for k > 2.

Note that we cannot have a optimal forbidden pattern consisting of three secondary parts, since what-
ever the head is, the third secondary part does not respect the relation (3.5.6). O

Theorem 3.5.7 and Proposition 3.5.5 imply that, for four primary colors, we do not have any shortcut.
This is not the case for more than four primary colors, as we now see in the next subsection.

3.5.3 Optimal forbidden patterns of £; for more than four primary colors

We can restrict the study to five colors, as the set of colored partitions generated by five primary colors
is embedded in any set of colored partitions generated by more than four primary colors. We then
consider the set of primary colors C = {a < b < ¢ < d < e}. The corresponding diagram with the
primary equivalence classes for the secondary colors gives
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Let us first discuss the behaviour of the patterns with moves — p —. We can see in the diagram that
this happens only if p = cd. Consider now the pattern

ae —cd — ab —»de —bc , k
which actually represents the pattern
(k + 3)1261 (k + Z)Cd/ (k + z)abr Kae, kpe -

We notice that this pattern is a shortcut. As we saw in Proposition 3.5.5, the enumeration of the forbidden
patterns then becomes intricate. We give the following lemma to restrict our study to some particular
patterns without shortcut.

Lemma 3.5.8. For five primary colors, the patterns of secondary parts without the moves — cd — do not contain
any shortcut.

The proof of the lemma is given in Appendix A.1.7. The patterns without shortcut listed by the
previous lemma are not exhaustive. In fact, we can have a pattern with moves — cd — without shortcut,
as we give in the following example.

Example 3.5.9. The pattern ae — cd — ab, k is not a shortcut and is even allowed for k # 3.

The following theorem gives an exhaustive list of optimal forbidden patterns without moves —
cd —. The notation (g1, . .., g:) denotes the multiplicative group generated by g1, ..., g, and the notation
(pattern) means that the move pattern is optional.

Theorem 3.5.10. The optimal forbidden patterns with no move — p — are the following:

head : ad — bc

ad — be| —>a , k>2 (3.5.15)
head : be — cd

be »cd| —0D , k>2 (35.16)
head : de — ab

de —»ab| —»de , k>1 (35.17)
head : de — ac
de — ac(— ab)| —d,e , k>1 (3.5.18)
head : ae — bc
ae — bc| —a , k>2 (35.19)
head : ae — bd
ae — bd(— bc)| —a , k>2 (3.5.20)
head : ae — cd
ae —cd| —0D , k>2 (3521)
ae — cd(pattern)] —a , k>2 (3522)



66 Chapter 3. Beyond Gollnitz’ theorem

where pattern € (— (3.5.16))
(3.5.22)(— be)(— bd)(— bc)| —a , k>2 (3.5.23)
head : de — bc
de > bc|] —a , k>2 (3524)
de — bc (pattern)] —e , k>1 (3.5.25)
where pattern € (— (3.5.23), — (3.5.20), = (3.5.19), (= ae) —» (3.5.15))
(3.5.25)(— ae)(—» ad)(—» ac)(— ab)| —e , k>1 (3.5.26)
(3526) —»d , k=2 (3527
(3526)| —»d , 1 (3.5.28)
with (3.5.26) not ending by ae, be
(3.5.25) —» (35.22)] —»be,bd , 2 (3.5.29)
(3.5.25) - (3.5.23)] —ae , 2 (3.5.30)
(3530) —ad , 2 (3.5.31)
with (3.5.30) not ending by be
head : cd,ce — ab
cd,ce -»ab| —de , k>1 (35.32)
cd,ce — ab(pattern)] —c¢ (3.5.33)
where pattern € (— (3.5.17), — (3.5.18), —» (3.5.26))
(35.33) »de] —c¢ , k>2 (3534)
(3533) —»c o, 1 (3.5.35)
with (3.5.33) ending by ac, ab, bc

(3.5.33) —» (3.5.29) —» be| —cd , 3 (3.5.36)
(35.33) — (3.530) —» ae| —cd , 3 (3.5.37)
(3.5.33) — (3.5.25)(—» ae) — ad| —»ac , 2 (3.5.38)
(35.33) = (35.25)| —»ac , 2 (3.5.39)

with (3.5.25) ending by bc
Proof of Theorem 3.5.10. We recall that the optimal forddiden patterns
V=uv1+1y Bzt > > Uoei
with no shortcut have the form described in (3.5.11):
cpo---ocslocgyr , k

The part v5;_1 + 1;; has the secondary color ¢; for all i € [1,s], and the primary part v,5,1 has the color
Cs+1-

Rule 1: Foralli € [2,5], ¢;11 belongs to the clockwise arc (Cj, 7). In fact, by (3.5.9), we have that
Vpsg1 +S—i+2 =11+ —i4+2 > vy |+ > Vpsp1+5—i+1,
so that by starting a clockwise loop in the diagram from ¢;, we respectively meet ¢, 1,¢7 and ¢;.

Rule 2: If we have a move ¢; — ¢; 1, then ¢;, strictly belongs to the clockwise arc (¢;, ¢s11). In fact, we
have by the primary equivalence definition and (3.5.9) that

Vpsg1+S+2 =iy 1 +Vp = Vasy1+5+1—i > iy + g2 > Vosp1+8—1
and the move c; — c; 1 implies that
Voi—1 + Vpi > Voi1 + Voipp <= Voj—1 + Voi =1 > Voi1 +12i40 -
We thus obtain the following inequality

Vosg1 +S+1 =i i1+ Vo — 1> voip1 + V240 > Vasi1 +5— i



3.5. Forbidden patterns of &; 67

With these two rules, we can retrieve all the optimal forddiden patterns. In our construction, we will see
that our moves are indeed mimimal with respect to >>. This means that, in the case where (c;,¢j11) €
SP«, we necessarily make the move ¢; — ¢; ;1. By Lemma 3.4.9, with the minimality of the consecutive
size differences, once the part v551 crosses the parts vp5_1 + vy, it then crosses all the parts up to v + v5.
Therefore, the choice of the size k is such that the part k., crosses the last secondary part (k+1+ x(cs <
Cs11))c.- We thus have

Keoyy = Bl(k+1+ x(cs < c1))e) (3.5.40)

We then proceed as follows.

1. We select a head ¢; — ¢, and cs41 a primary color in the clockwise arc (cy, c1). Let us begin with
those with the shortest arc.

2. The next move must necessarily be of the form ¢, — c3.

(a) With Rule 2, the patterns (3.5.15),(3.5.16),(3.5.17) and (3.5.19) follow immediately. In fact, in
these cases, the only primary colors in the arc (¢1, ¢z) directly follow ¢; in the clockwise sense

before all the secondary colors.
)
@
3
(e¥ @)
®°

CRC

(b) We also obtain the patterns (3.5.21),(3.5.24), and (3.5.32) since the chosen primary color is
directly after cy.

(c) In the case (3.5.18) and (3.5.20), there is only one secondary color in the arc which occurs
before the chosen primary color, and we can see that from this color we only have moves of
the form —. The only possibility if we choose c3 to be this secondary color will be then to
directly reach the primary color at ¢;. We can also decide to choose c3 as the primary color.
We recall that

1 — Cz(—» C3)| —» C4

means that the choice of the secondary color in between c¢; and the primary color cy4 is op-
tional.

For all these cases, one can check that it is not possible to build from them some forbidden pattern
with only secondary parts.

3. The remaining case is where c3 is in the arc (cp, cs+1) and such that we can have a move c3 — ¢4.
We then use the following property of our optimal forbidden pattern due to (3.5.9): when we do m
moves from the first color to another secondary color, in the diagram, we do around the first color fewer than
m but at least m — 1 primary loops. This means that, by taking the allowed pattern resulting from
the removal of the last part in an optimal forbidden pattern beginning by c3 — c4, we will always
satisfy (3.5.9). For this reason, we begin with c; — ¢ = ae — cd and ¢, = a.
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(a)

(b)

(0

Forc; — ¢ =ae - cdand ¢s1 = a.

If c3 # cs41 = a, by both rules, we have that c3 € {be,bd, bc}. As soon as c3 # be, we obtain
by the second rule that the pattern is

ae —cd — bc| »a or ae— cd— bd(— bc)| —»a-

If c3 = be, then we can iterate the pattern (3.5.16) (which is be — cd) as many times as we
want. By doing this, we do as many loops as the number of moves, which is twice the number
of iterations. However, once we terminate this iteration, we can only move to a by optionally
passing by be, bd, bc through —. In fact, anytime we reach cd, we cannot make a move cd —,
so that by the second rule, we need to move back to either be, bd, bc or a using —. We then
obtain the patterns (3.5.22) and (3.5.23). Note that for these patterns, we stay in the arc (cd, a),
and the passage from ae = c; to cs requires more than s — 1 primary loops, so that the pattern

ae---cg —» ae

requires s + 1 primary loops. We also observe that apart from ¢; = ae and ¢, 1, all colors ¢;
belong to {cd, be, bd, bc}, so that their upper halves can never be a primary part with color a
and we do not have any optimal forbidden patterns with only secondary parts coming from
a forbidden pattern of that form.

Forcy — ¢p =de — bcand cg1 1 = d, e.

We use the same reasoning to show that the only moves that can leave the arc (bc,a) are
(3.5.15), (3.5.19),(3.5.20) and (3.5.23). For (3.5.15) (the move ad — bc), in order to make as
many loops as the number of moves, we can optionally add a move — ae — before reaching
ad. This is why we can compose a pattern using the patterns (3.5.19),(3.5.20) and (3.5.23) and
ae — (3.5.15), and we obtain (3.5.25). In this composition, we can remark that we do not make
a move cd —. In fact, the only way to reach cd is to do a move (3.5.23), but in this move cd
can only be reached after the move ae — cd, so that we cannot do cd —.

Once we move out of this composition, we can only reach the primary color 4, e by optionally
passing by the primary equivalent class a., which consists of the secondary colors ae, ad, ac, ab.
In addition, these moves have the form —. We then obtain (3.5.26), (3.5.27) and (3.5.28). Note
that for these patterns, the secondary colors stay in the arc (cd,d), and the passage from
de = c1 to ¢; requires more than s — 1 primary loops, so that the pattern

de---cg — de

requires s + 1 primary loops. To obtain the forbidden patterns with only secondary colors, we
just need to choose those which correspond to the forbidden patterns ending by a primary
color and such that the upper half of the last part corresponds to the primary color and is
at least equal than the lower half of the previous secondary part. We then have the patterns
(3.5.29),(3.5.30) and (3.5.31).

Forcy — ¢; = cd,ce — bcand cg11 = c.
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We use the same reasoning to show that the only moves that can leave the arc (ab,c) are
(3.5.26), (3.5.18),(3.5.17). As before, in the composition of these moves, we remark that we do
not make a move cd — and the secondary colors stay in the clockwise arc (cd, ¢). Once we do
not make these moves, we can only go to ¢ by optionally passing by de through —. For these
patterns, the passage from de = c¢; to cs requires more than s — 1 primary loops, so that the
pattern

cd,ce---cs —» ce,cd

requires s 4 1 primary loops. We obtain the optimal forbidden patterns consisting of only sec-
ondary parts, always by choosing those corresponding to optimal forbidden patterns ending
primary colors and such that the upper half of the last part corresponds to the primary color
and is at least equal to the lower half of the previous secondary part.

O

To conclude, we see that for more than four colors, there exist some shortcuts. However, even for five
colors, the set of optimal forbidden patterns without shorcut is infinite, as a consequence of Theorem
3.5.10, since some patterns use as many iterations of others. The enumeration of the forbidden patterns
then becomes intricate for more than four primary colors.

3.6 Bijective proof of Theorem 1.3.3

In this section, we will describe a bijection for proving Theorem 1.3.3. For brevity, we refer to the par-
titions in Theorem 1.3.3 as quaternary partitions. We first observe the following major fact. Looking at
the forbidden patterns in Theorem 3.5.7, one can check by (2.2.6) that if we have in v, the pattern

ke, kap, 1y

we then necessarily have (k —2).; = I, and if we have the pattern

(k+1)aq, ke, Iy # 34, 2c, 1a,
we then necessarily have (k — 1),y = I,. In all cases, if we have in a partition of £; a pattern

M,m, lp
with (M, m) € {(keg, kap), (k4 1)aq, kpc) } such that M, m, 1, # 3,4, 2pc, 14, then
M—-2x1,. (3.6.1)

3.6.1 From &; to quaternary partitions

We consider the patterns ((k + 1),4, kpc), (kcq, kap) and sum them as follows :

(k + 1)ad + kbc = (Zk + 1)ubcd
kcd + kab = Zkabcd . (3.6.2)

Let us now take a partition v in &. We then identify all the patterns (M', m') € {((k-+1)u4,kpe), (ke kap)
and assume that

1,1 2 .2 bt
V= (V... Ve, MY, m Uy, e, vy, MS,m Vyit, -, M, m Jeee Vs)®
As long as we have a pattern v;, M!, m', we cross the parts by replacing them using

vi, Ml,m' — MY+ 1,m' +1,v; — 2 (3.6.3)
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At the end of the process, we obtain a final sequence

Nl N2, n?,.. . Nl v, . vl
Finally, the associated pair of partitions is set to be (K!,...,K!),v/ = (v4,...,v}), where K = N+ !
according to (3.6.2).
We remark that, for each quaternary part K’ obtained by summing of the original pattern M, m!, we add
twice the number of the remaining primary and secondary parts in v to the left of the pattern that gave
K', while we subtract from these parts two times the number of quaternary parts obtained by patterns
that occur to their right.

Example 3.6.1. With the example 11:,10.4,10,5,64, 54, 3ad, 26c, 1a,

11,
10,4 11, 114,11, 114,11, 114,11, 114,11,
104 104,104 9c 9 9c 64, Sbc
64 64 64 64 Sads 4 7
Sab ~ Sab ~ Sab T a3 ~ 4y ~ 44
3ad 31111/ 2bc 3ﬂd/ zbc 3ub 3ab 3ub
2pc 1, 1, 1, 1, 1,
1,

we obtain [(22peq, apea), (7e,4a, 3ap, 1a)]-

We now proceed to show that the image of this mapping is indeed a quaternary partition. The
inverse mapping will be presented in the next subsection.

1. Quaternary parts are well-ordered. Let us consider two consecutive patterns (M/, m/) = (ky, 1)
and (M/H1, mi*1) = (k;/, l;/). Since v is well-ordered by >>, we have by (2.2.12) and (2.2.11) that

lgoly >-enl, > ky - (3.6.4)

By (2.2.11), we then have that [; >~ k;/ +i+1sothat! —k > i+ 14 x(q < p’). Since by (2.2.12),
k—1=x(p<g)and k' —1I' = x(p’ <q’), we then have that
k+1—(K+1)=x(p<aq)+x(p' <q')+2(-K)
>x(p<q)+x(p' <d)+2x(@q<p) +2i+2

and we obtain that

x(cd < ab)+x(cd < ab)+2x(ab <cd) =2
x(cd < ab)+x(ad < bc)+2x(ab <ad)=3
x(ad < bc)+x(cd <ab)+2x(bc <cd)=3
x(ad < bc)+x(ad < bc)+2x(bc < ad) =2,

sothatk+1— (k' +1") > 4 + 2i. We will then have, after adding twice the remaining primary and
secondary elements to their left, that the difference between two consecutive quaternary parts will
be at least 4.

2. The partition v/ is in &,. Let us consider two consecutive elements v, = kp,vyy1 = l;. We then
have for consecutive patterns M", m" in between k, and I, that

kpo M m' > > MU> mi - (3.6.5)

Then, in the case that (M/, m/, 1)) # (34,2, 1a), we necessarily have by (3.6.1) that M* = M"*1 +
2, Mi - l; +2,and by (2.2.12), we have that k, >~ M +1, and then

ky = 14+2(—i+1)+ 1, = kyp2(i—i+1)+1,- (3.6.6)
For the case (M/, m/, lp) = (344, 2pc, 12), We obtain by (3.6.1) that
kp—2(j—i+1)+1> 3y (3.6.7)

and this means that k, —2(j —i+1) +1 = 3, so thatk, —2(j —i+1) = 2,>1,.
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In any case, k, >2(j — i+ 1) +[,, and this implies that after the subtraction of twice the number of
the quaternary parts obtained to their right, these parts will be well-ordered by b.

3. The minimal quaternary part is well-bounded. Let us first suppose that the tail of v consists only
of patterns M", m". We then have that

vsb M > mi> o> ME s mt

and, then by (3.6.1), vs —2(t —i+1)+1 = M! = 2,4, sothat v, = v —2(t —i+1) = 14 > 1,.
This means that 1, ¢ v/. We also obtain that K! = M! + m! +2s > 25 + 4.

Now suppose that the tail of v has the form
lgpvy > >ug, (3.6.8)

with M!, m" = ky,1,. By (2.2.11), we obtain that [; > vs +s —u + 1.
e If vs = 1,, we then have
k+l=x(p<q)+2

>x(p<q)+2(s—u+2+x(q<a))
=2(s—u+1)+2+x(p < q)+2x(q <a)),

and with (p,q) € {(ad, bc), (cd,ab)} we have

x(ad <bc)+2x(bc <a))=1
x(cd <ab)+2x(ab <a))=2

so thatk+1 > 2(s — u + 1) + 3. Then after the addition of 2(u — 1) for the remaining primary
and secondary parts of v to the left of the pattern (M!, m'), we obtain that the smallest qua-
ternary part is at least 2s + 3. Note that v, = vs = 1,.

e When v; = h, # 1,, we obtain that
k+1>2x(p<q)+2(s—u+1+h+x(qg<r))
=2(s—u+1)+2h+x(p<q)+2x(g<71)),

so thatif h > 2, thenk+1 > 2(s —u+1) + 4. If not, h = 1, and since there is no secondary
part of length 1, we necessary have that r > b, so that x(q < r) = 1 whenever g € {ab, bc}.
We thus obtain k +1 > 2(s — u + 1) + 4. We then conclude that for vs # 1,, the smallest
quaternary part is at least 2s + 4.

In any case, we have that the smallest quaternary part is at least 2s +4 — x(1, € v/).

3.6.2 From quaternary partitions to &
Recall by (3.6.2) that K4 splits as follows :

(k + 1)1101 + kbc = (Zk + 1)ubcd
kcd + kab = 2knhcd '

Let us consider partitions (K',...,K") and v = (vq,...,v5) € &, with quaternary part K* such that
K' > 4+2s—x(1, € v) and K* — K¥*! > 4. We also set K* = (k*,1*), the decomposition according to
(3.6.2). We then proceed as follows by beginning with K and vy,

Step 1: If we do not encounter K**1 = (k*+1,1*+1) and v; # 1, and v; + 2> k* — 1, then replace

Vi v+ 2
(K", 1"y — (K" —1,1" = 1)

and move to i + 1 and redo Step 1. Otherwise, move to Step 2.
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Step 2 If we encounter K#*1 = k**1 > [4+1 then split (k¥,I*) into k¥ >> I*. If not, it means that we have
met v; such that v; +2 £ k" — 1. Then we split k* >> [*. Since we have v; +2 /5 k* — 1, which is

equivalent by (2.2.11) to k* > v; + 2, by (3.6.1), this is exactly the condition to avoid the forbidden
patterns, with k* > [* > v;.

We can now move to Step 1 withu — 1 and i = 1.

With the example [(zzabcd/ 11ubcd)1 (7C/ 44,3ap, 1a)]r we obtain

11,
14,11, 11eg, 11, 14,11, 11eg, 11, 11”9' Hap 10 Hio 10¢4
6adr 5l7c 9c 9c 9c 6’: Cdé ab 1Oab
7e o Oadr b — 64 — 64 — 5:; — 5:;, o b
4 4 444, 3pc Sab 3 3 Sab
Sab 3ﬂb Sab 3ﬂd! 2bc 2ﬂd Zﬂd Sad
1{1 1u 1{1 1u 1[:; 1b: Zlbc
a

It is easy to check that when two quaternary parts meet in Step 2, we will always have [* > k“*1, since
this is exactly the condition for the minimal difference K* — K**1 > 4 and they crossed the same number
of v;. We can also check that even if the minimal part crossed vy, ..., vs # 1,, we will still have at the end
K! > 4 and for vs = 1,, K' > 5. We see with (3.6.2) that the length of m' is at least equal to 2, and for the
case Vs = 1,, m! is a least equal to 2. >> 1,. The partition obtained is then in &;.

3.7 Bressoud’s algorithm, Motzkin paths and oriented rooted forests

In this section, we relate the partitions in £ to oriented rooted forests, and give a new potential approach
to deal with the enumeration of the forbidden patterns.

Let us take a partition v € £ and write it as

V= (Vlr e /Vp+25) ’ (371)

where as before, p is the number of primary parts and s is the number of secondary parts. We recall that
the set ] is the set of indices that correspond to the primary parts, and I corresponds to the upper halves,
so that I + 1 is associated to the lower halves.

We observe that the sequence A = ¥ (v) has also p + 2s primary parts. We then have A = A,

oo A, .
7 p+S
For any X € [1, p + 25}, we set BX to be the index inA Of the primary part that comes from Vx.

Example 3.7.1. As an example, we apply ® to the partition A = (124,7p,64, 6¢, 54,44, 4c, 4p, 40, 3¢, 14, 1c, 1p, 1a)
and take v = ®(A):

12,
12 14

43 13 ’ 11bd 14y 14y 14 14
64 bd ¢ 11, 11, bd . 144
e 6C 6C 1 1g 1151 14bd
6c 6. 10ad 11,
5 5ﬂ SJ 9 5 1011d 1Oad 10 11[1

“ 4y 44 ad ¢ 5 Ipe ad 10,
4q 4 4 & & 8 4 Ohe 9
4, ¢ c 4b 4b bc Fc 8,c be
4 — 4b G- 4;, — 4 9 1 — 4, [ 47[, — 3 — 8ac —
4b 4, 4, 3” 3” 3c 3¢ 15 3¢
5 3 3 1, 1, La Lg Td Zed

c 1 1 4 d 1 1 = 1

d d c c 1b

14 1 1 Tp
1 1C 1C 1 1 1b ]'b 1 1l

c 1 1 b b 1 1 a
1 b b 1 1 a a

b 1 1 a a

a a
1,
(3.7.2)

We retrieve the partition v of Example 3.4.1. By considering the occurrences of the primary parts, we obtain the
following diagram:
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Ay : 12, 7p 6 3c 24 2c 2y 24

d ?c ?a 4id %c 4ib 4Ja
11,

Vyx ! 74 7y 11, 54 54 5y 4, 4, 4, 3¢ 24 2c 2y 2,
We recall that

(p,s)=(2,6), J={310}, I={1,46,811,13}, I+1=1{25791214}

and we have
x [1]2]3[4[5]|6|7[8]9]10]11 1213 |14 ]| (37.3)
0x 2315|6784 ]9|10|11|12 13|14 o
We also compute Bry, for v = ®(A) and we obtain
i 1141681113
Br,(i) |38 [8[8|11[13| (374)

The most important results of this part are the following (proofs in Appendices A.1.14 and A.1.15).

Proposition 3.7.2 (Motzkin path behavior of the final positions). For any (i,i’,j,j') € 1> x J?, we have
the following relations:

Ifi < i, theneither 0; < 0;,1 <0y <0y g or 0y <0; <0iyq <0y q- (3.7.5)
Ifj <, then 0; <0 - (3.7.6)
i+1<6;41 and 0;<j- (3.7.7)
Either 0; <0; or 0;11 <0;- (3.7.8)

Proposition 3.7.3 (Bridge according to the final positions). Forany i € I, we have the following:
* Ifthereexistsi < j € | such that 6; < 0;, then

Bry(i) =min{j € J:j>iand 6; < 6;} - (3.7.9)

e Otherwise,
Br,(i) =max{i' € [ :i' > iand 6, < 6;}- (3.7.10)

Remark 3.7.4. We indeed have by Proposition 3.7.2 for all i € I that
Oi1—(+1)={uell]:u>iandf, <6;}|,
and Proposition 3.7.3 gives the following equivalence:
Br,(i)=i < 6;,1=i+1-

Letusset I = {iy < --- < is}and J© = JU{O,p+2s+1} = {jo < j1 < -+ < jp < jps1}
and (6o, 0p12s41) = (0, p + 25 + 1). Then, by (3.7.6) and (3.7.8) of Proposition 3.7.2, for any consecutive
j,j’ € ], there exists a unique V C {1,...,s} such that

10;+1,...,0p =1} = {0 :x € {in,iv +1:0€ V}}-

This means that the final positions between those of consecutive primary parts consist of those of the
upper and lower halves of some secondary parts. By (3.7.5), we can check that those secondary parts
are consecutive, and V is indeed an interval. Since the positions 6;,1 form an increasing sequence, we
then have a unique decomposition

{1,...,S}ZV0|_|V1|_J~~~LIVP

where the Vy are consecutive intervals.
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We refer the reader to the book of R. Stanley (Stanley, 1997) for the definition of the combinatorial
terms we use in the following. In each interval, the positions behave like a Dyck path. In fact, the
positions 6; of the upper halves occur as the moves (1,1) and the positions 6; 1 of the lower halves as
the moves (1, —1). We also draw the positions 6; of the primary parts as the moves (1,0), and we obtain
what is called a Motzkin path (also see Donaghey and Shapiro, 1977). With the bijection between Dyck
paths of length 2I and the oriented rooted trees with I egdes, one can then see the initial positions as an
oriented rooted forest with exactly p 4 1 trees and s edges.

Example 3.7.5. We take the corresponding representations for the example (3.7.2). We then have that

(i],iZ, i?)r i4/ i5r 16) - (1/4/ 6/ 8/11/ 13)/ (j01j11j21j3) - (Or3r 10r 15)

and
0,...,15=10;,,0;,6i,,0i,11,6i,,65,, 01,41, 03, 01541, 05,11, 0}, 05, 0 11, 05, i 11, 0

Jor Y1’ jar

and the representations correspond to the following diagrams:

Motzkin path representation Forest representation

Note that while we still keep track of the primary parts as the horizontal moves in Motzkin paths,
they vanish in oriented rooted forests. However, we can manage to record all information of the partition
v in the oriented rooted forest by weighting the edges with the corresponding secondary part, while
recording each primary part on the root to its right. The optimal forbidden pattern ending by a primary
part will then be represented by a weighted oriented rooted tree.

Let us now consider the edges of the roots. In terms of Motzkin paths, they exactly correspond to the
meeting points with the horizontal axis. For the final positions, they correspond to the elements i € I
that satisfy ;1 < 6 for all i’ > i. By Proposition 3.7.3, in the case where the Bridge is not a element of
J, it then corresponds to some root’s edge. This means that the study of optimal forbidden patterns not
ending by a primary part can be reduced to the study of planted trees weighted by the secondary parts.
The planted trees are indeed in bijection with the oriented trees with one fewer edge, and the problem
then becomes the same as the previous case.

To conclude, we see that we can reduce the study of the optimal forbidden patterns to the study of
weighted oriented rooted trees, and this give a new perspective to investigate the precise enumeration
of these patterns.
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Chapter 4

Beyond Siladi¢’s theorem

In this chapter, we discuss the result beyond Siladi¢’s theorem.

We first present in Section 4.1 the main operator for our bijection, which acts as an energy transfer
on the particles. Then, in Section 4.2, we explicitly give the bijective maps for Theorem 2.2.15, whose
well-definedness is proved in Section 4.3. Finally, in Section 4.4, we conclude with some remarks related
to the theory of perfect crystals.

4.1 Energy transfer

In this section, we define an operator on the pairs of particles of different degree (primary and sec-
ondary), presented as an energy transfer. This operator is a variant of the crossing operator used in
Chapter 3 for the generalization of Gollnitz’ theorem.

The proof of the technical lemmas and propositions are postponed to Appendix A.2.

Definition 4.1.1. We define a mapping A on P x SU S x P by the following;:

Prn ool 4.1.1)
(k,c), (K,c, ") — (K+e(d,"),cd), (k—e(cc)—e(d,d)d) "’ 1.
SxP — PxS

(k, c, C/), (k/, C”) —_ (k’ + E(C, C/) + G(C/, C”),C), (k _ €(C/,C”>,C/,C”) : (4.1.2)

What does A do to the particles? Let us consider the following diagrams according to the occurrences
of primary states:

—e(c, ) —e(d, ")

TN

PxS—SxP: c 1ol c”’
+e(c, ) +e(cd, ")

+e(e, ) +e(d, ")

—

SXP—PxS: c C/ c”

—e(c, ') —e(d, ")

These diagrams encode the transfer of energies that occurs during the application of A. For example,
one can understand the process on the first diagram as follows:

1. The lower half (K, c"") moves from state ¢’ to ¢’ and gains the minimal energy (¢, ¢”):

C/ C"

K+e(d,d) +— K

2. The upper half (k' + e(c, "), ") moves from state ¢’ to ¢ and gains the minimal energy €(c, ¢’):

c +— ¢

K +e(c,d)+e(cd,c") +— K4e(,d)
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3. The primary particle (k, c) moves from state ¢ to state ¢’, through state ¢/, and loses the energy of
transfer e(c, c’) +e(c, ¢"):
c — ol —
k — k—e(c,d) — k—e(cd)—e(d, ")
The second diagram follows exactly the same transfer of energies. We can then see A as a energy transfer
that conserves the sequence of states but switches particles with the minimal loss or gain of energies.
One can check that the operator A is an involution, i.e. A = Id.

In the following, if we apply A to a pair of particles (x,y) in P x SUS x P, we say that we cross the
particles x and y.

Example 4.1.2. We take C' = {a < b} in Example 2.1.7. We then have that A (3,5, —10z) = (=94, 2pz). The
energy transfer that occurs can be summarized by the following diagram

The main proposition that follows from the definition of A is the following.

Proposition 4.1.3. Forany (p,s) € P x S, let (s',p") = A(p,s). We then have the following:
pFes<s > p, (4.1.3)

p e v(s) = u(s) > p- (4.1.4)

The proof is given in Appendix A.2.4. The relation (4.1.3) means that the operator A allows us to
order, in terms of >, two particles of different degree which are not well-related. This property stands
as the key result that will allow us to construct the mapping ® from O, to £.. On the other hand, the
relation (4.1.4), more subtle to explain, will play a major role in the inverse ¥ of ®.

4.2 Bijective maps for Theorem 2.2.15

We present in this section the bijective proof of Theorem 2.2.15. This bijection rests on the energy transfer
defined in the previous section.

421 From O to &
We now present the map @ from Oc to &,.

Let us take any A € O.. We set A = (Aq,...,As) with Ay ¢ Ajyq forany k € {1,...,5s —1}. We
illustrate this map on an example with C' = {a < b} and € as described in Example 2.1.7:

A= (115/ 5h/ 5{1/511/4E/ 211/ 1h/ 15/ OH/ OE! _1b/ _217) :

Step 1: First identify the consecutive disjoint troublesome pairs of particles (Ay, Agyq such that Ay %
Ak+1), by beginning by those with the smallest potentials (from the right to the left). Then, sum
up these troublesome pairs (Ag, Ay 1) to have the secondary particles corresponding to Ay + Ag 1,
without changing the order of the particles. We then obtain a new sequence of particles (where
particles are not necessarily well-related in terms of >>¢) A’ = (A},..., A}), with particles A} in O
and &. With our example, we have the troublesome pairs

/\ = (1151 5[7/ 551\//5-51 45/ 2a/ IE/ 15/ Oz/ OE/ _1b/ _2b)

and we obtain
A = (115, 5p, 10,2, 47, 3ap , laa , — 1y, -2;)
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Step 2: Aslong as there is a pair (A, Aj, ;) € (P x S) U(S x P) such that Aj %¢ Ay 4, cross the particles
in the pair with the operator A:

(A A1) — A )

The order in which we operate the crossings is not specified here. Let us then apply this process
on our example according to whether we choose the particles with the greatest or the smallest
potentials for each application of A. We then have the following diagrams:

choice of the greastest potentials choice of the smallest potentials
11; 5, 10, 47 3 laa —lp -2 1; 5, 102 45 34 lm —lp -2
11 10y, 5a 4;  3Bp  la iy -2 11; 5, 10 47 Bup la —1; —24
11; 104 54 saaxzb e —lg —2 ;5 10p 55 2, lu -l —2
5 10 6@ 40 25 Tl —lg -2 ;10,0 50 5w 2 1w —lp 2
Wy 10 6 4 2% la 15 —2p 1 10, 60 4o 2 1l —15 —2

One can observe with our example that the final result is the same in both choices. This is indeed
the case in general, whatever the choice of the applications of A.

We claim that Step 2 always ends, and that the final result A” is unique and belongs to & (two consec-
utive particles are always well-related by >>.). We then set ®(A) to be the final partition A" obtained at
the end of Step 2. Our example gives

¢(1]-EI 5b/ 5!1/ 5ar4ﬁ/ Zﬂ/ 1b/ 151 Oﬂr OE/ _1b/ _zb) = (115/ 1Ob11/ 6aﬁ; 4a; 2b/ 1ﬁur _15/ _zbz) :

4.2.2 From &, to O,

Here we present the inverse map ¥ of ®@. Let us take any v = (vq,...,1t) € E. We illustrate ¥ on the
example v = (115, 1044, 642,44, 2p, Va0, — 15, =22 ), the final result obtained before for the map ®.

Step 1: As long as there is a pair (4, vk, 1) € P X S such that vx #e 7(Vkyq) or (g, vkp1) € S X P such
that p(vk) P e Vry1, cross the particles in the pair with A:

(Vks Vig1) — A(Vk, Viyr) -

Here again, the order in which the applications of A occur is not specified. We proceed, as before,
according to whether we choose the smallest or the greatest potentials.

choice of the smallest potentials choice of the greatest potentials
113 10y, 6 44 2, g, —ly =2 115 10p, 6a 4 2% 1w 1y -2
gy 104 6wz 40 2o la —ly =2 11; 10, 5, 5. 2 lam 1l 2
117 105, 5 ><5W 2, la gy -2 11; 5 102 5 2 lm -1 -2
11; 10y, 5, 4 3 la 1y -2 11; 5, 10z 47 3w 1l —13 —2
I 5 102 47 3 la —lp -2 11; 5, 102 4 3w la -l —2

We observe that the process by choosing the smallest potentials is the exact reverse process of Step
2 of ® by selecting the greatest potentials. The same occurs between the choice of the greatest
potentials, that gives the reverse process of Step 2 of ® by choosing the smallest potentials. We
again have the same final result at the end of Step 1 for both choices. Let us set v = (1/{, .., 1/{) as
the final sequence.
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Step 2: Split all the secondary particles v of v/ into their upper and lower halves:
v — (), m(vp) -
We then obtain v”. With our example, we have that

V” - (115/ 5b/ 5a/ 5&/4ﬁ/ 211/ ]-b/ 1E/ Oﬂ/OE/ _1b/ _zb) :

We claim that Step 1 always ends in a unique result, whatever the choice of the applications of A, and
that the final result v after Step 2 belongs to O (the primary particles are well-related in terms of ).
We finally set ¥ (v) = v/ . Our example gives

T(l]-yr 10ba/ 611&/ 4&/ 2b/ 1Ea/ _]-E/ _2b2) = (1157 5b/ 511/ 5{1/ 45/ zﬂ/ ]-h/ 1ﬁr Oﬂ/ OE/ _1b/ _2b) :

4.3 Proof of Theorem 2.2.15

In this section, we prove that the maps ® and ¥ given in Section 4.2 are well-defined and ®~! = ¥.

4.3.1 Well-definedness of ®

Let us take any A = (Ay,...,As) € O, and set Ay = (Iy,cx) € P forallk € {1,...,s}. Here we take the
example from Section 4.2.1,

A= (115/ 5bl 5[1/ 5!1/ 4ﬁr 211/ 1br 15/ Oa/ OE! 71b/ 72h) :

We then have s = 12 and the following table:

k|1 2 3 45 6 7 8 9 10 11 12
c|b b a aaabaa b b b |- (4.3.1)
I, |11 55542110 0 -1 -2

In the following, we first define some functions related to the partition A, that will be useful for the sec-
ond part which concerns the proof of the well-definedness of ®. We explicitly compute all the functions
defined in the following for our example.

The setup

We first define the function A on {1,...,s}? as follows,

s—1 s—1
Az (k)= Y elcucus) — Y elcu cut) - (4.3.2)
u=k u=~k'
We remark that, for any k < k/,
0<AK)<K —k , AkK)=—AK,k), (4.3.3)

and forallk € {1,...,5s — 1}, we have by (4.3.2) that
le = lky1 > €(cp k1) = Ak k+1) -
Moreover, the function A satisfies Chasles’ relation:
Ak, K+ AK K" = Ak, k")

for all k,k',k"” € {1,...,s}. We then identify A(k, k') as the formal energy of transfer from the primary
state ¢y to the primary state c;. Using (4.3.1), we obtain the following table in our example

k
Ak k+1)

10 11 |
1 0

1 4 5 6 8 9
1 011 1 0 (434)

2 3 7
00 0
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We now formalize the choice of troublesome pairs of primary particles in Step 1. In order to select
the pairs with smallest potentials, from the right to the left, we proceed as follows:

e iy is the greatestk € {1,...,s — 1} such that [y — [, ;1 = A(k,k+1),

e if i; 1 is selected, then, whenever it is still possible, i; is the greatest k € {1,...,i;_1 — 2} such that
Iy — Ik = Ak k+1).

WethensetI = {i;}and ] = {1,...,s} \ (IU(I+1)). In our example, we have by (4.3.1) and (4.3.4) that
i1=10,iy=8,i3=6,i; =3,

and then
I=1{3,6,810} and J={1,2,512}-

Remark 4.3.1. The sets I and | are the unique sets satisfying the following relations:
1. I',I' +1,] form a set-partition of {1,...,s},
2. forallie I, 1; — l;;1 = A(1,i + 1),
3. forallj€{2,...,s}N ], Li_1 —1; > A(j —1,j).
We now define the function & on {1,...,s}? to be such that

o (kKN if k<K
w: (k,k)H{ N k) i kS K (4.3.5)

we then have that « satisfies Chasles’ relation. One can also observe that a(k, k) = 0 forallk € {1,...,s}.
Therefore, using Remark 4.3.1, we obtain for allk < k" € {1,...,s} that

Lo — Iy > a(k, k') + Ak, k) - (4.3.6)
We finally define the function B on {1,...,s}? by

o kK)YAJ| if k<K
RSB @37)

and we have that p satisfies Chasles’ relation. Our example gives the table

k 1 234567 8 9 10 11
a(kk+1)|1 0 0 1 00000 1 0] (4.3.8)
Blkk+1)|1 1 0 0 1 0 0 0 0 0 0

Using this table, Chasles’ relation then allows us to compute all the values for « and . For example,
x(2,4) =a(2,3) +a(3,4) =0 and p(4,2)=p43)+p3,2)=—-0-1=-1-

To conclude, we observe that, at the end of Step 1, the particles in S are A; + A; 1 fori € I. The set I
then corresponds to the index set of the upper halves, the set I + 1 to the index set of the lower halves,
and ] represents the index set of the particles A; that stay in P.

Proof of the well-definedness of ¢

During Step 2, the positions of particles change by the actions of A. Here we see the secondary particles
in S as the corresponding pair of two consecutive particles in 7. We can then consider the permutation ¢
of {1,...,s} which determines the new positions of these primary particles, and ¢ satisfies the following
properties:

e 0(i+1) =0c(i) +1foralli € I, since we move the upper and lower halves together,
* ¢ isincreasing on I and J, since A never crosses the particles of the same degree.

We can now state the main results that will ensure the well-definedness of the map ®.
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Proposition 4.3.2 (Final positions). Let ¢ be the function on | x I defined by
¢: (i) = =2l —AGi+1) = AG+1-B(,i),i+1)- (4.3.9)
Then the final position o after Step 2 is such that for any (j,i) € [ x I,
o(j) <o(i) <= ¢(j,i) >0- (4.3.10)
Furthermore, Step 2 comes to an end after exactly
{(,i)e]xI:j>iand¢(j,i) >0, orj<iand ¢(j,i) < 0} (4.3.11)
applications of A.

The above proposition ensures that the process Step 2 always ends. Using (4.3.1), (4.3.4) and (4.3.8),
we obtain with our example the following table corresponding to ¢:

N3 6 8 10
1[0 4 5 6
2|5 -1 1 2
5/-6 -1 0 1
12[-8 -2 -1 0

By the proposition, we have exactly four crossings which occur in the pairs (j, i) in {(2,3), (2,6), (5,6), (12,10) },
and this corresponds to the illustration of Step 2 in Section 4.2.1.

The well-belonging of the final partition is given by the next two propositions.
Proposition 4.3.3. The partition obtained after Step 2 belongs to E.
Proposition 4.3.4. Forany p € {0,1}, we have ®(OL*) C EL*.

The proofs of the above propositions can be found in Appendices A.2.5, A.2.9 and A.2.10. Here we
state two lemmas that will be useful for these proofs.

Lemma 4.3.5. If a primary particle (I, cy) originally at position k moves to position o(k), then it becomes
energetic particle (I, + A(o(k), k), cok))-

Lemma 4.3.6. The function ¢ is non-increasing on | and non-decreasing on 1.

For the proofs the lemmas, see Appendices A.2.1 and A.2.2.

Lemma 4.3.5 plays a central role in the understanding of the operator A. Rephrased, it can be stated
as follows: a primary particle that moves from a state ¢, to a state c; gains the formal energy of transfer
from ¢y to cp. By (4.3.3), this energy is non-negative if k < k’, and non-positive if k > k'.

4.3.2 Well-definedness of ¥

Let us consider v € & withv = (v4,...,v;). We rename the indices by enumerating all primary particles
that occur in v. This means that we count the secondary particles as a pair of consecutive primary
particles. We take the example in Section 4.2.2

v = (115, 10ha, 6uﬁr4u12h/ 15,1, —15, —sz) P
and the rewriting gives
V= (115/ 5b/ 5ﬂ/ 311/ 35/ 4%/ 2b/ lﬁ/ 0[1/ _1E/ _]-b/ _]-b) :
N —— ————

As we did before for the process ®, we first give some functions related to v, and then prove the well-
definedness of ¥. We explicitly compute the value of these functions for our example.

The setup

We consider v = (vq,...,v}) written according to the primary particles that occur in v. There then exist
unique sets I, ] such that {1,...,s} = JUIU (I + 1), where ] is the index set of the particles in P, and
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I'and I + 1 are respectively the index sets of upper and lower halves of the particles in S. In the case of
our example
1=1{2,4811} and ]={1,6,7,10}-

Also set
v = (Iy,c) forallk € {1,...,s},

and define the function A on {1,...,s}?

on{1,...,s}? tobeas

in a similar manner as in (4.3.2). Finally define the function #

o (kKN if k<K
7 (k,k)»—){ SaER i kK (4.3.12)

Note that 7 satisfies Chasles’ relation. In our example, we obtain the following table:

k 1 23 45 6 7 8 9 10 11 12

Cx b baaaabaa b b b

I, 1 55334210 -1 -1 1| 4.3.13)
Alk,k+1)|1 0 0 01 1 0 1 0 1 0
gkk+1)| 0 00011001 0 0

We now give in the following lemma the relations that link the particles’” potentials. The proof is given
in Appendix A.2.3.

Lemma 4.3.7. Let us set
l/ _ lk lf k € ]
KT 2 if keTu(I+1)
Then forall k < k' € {1,...,s}, we have
L= > n(kK) + Ak K) - (4.3.14)
In particular, forall i <i' € TU (I 4 1), we have

=1y > AG, i) - (4.3.15)

Proof of the well-definedness of ¥

We can now focus on the position o of the particles during Step 1 of ¥. Note that Lemma 4.3.5 still holds
here, as well as the fact that o(i +1) = o(i) + 1 foralli € I and ¢ is increasing on I LI (I + 1) and .

We now give the analogues of Proposition 4.3.2, Proposition 4.3.3 and Proposition 4.3.10 that ensure
the well-definedness of ¥. The proof of the following propositions are given in Appendices A.2.8, A.2.6
and A.2.7.

Proposition 4.3.8 (Final position). Let ¢ be a function on | x I defined by :
¥ (i) > =1 — A, ) - (4.3.16)
Then, the final position o of ¥ after Step 1 is such that, for all (j,i) € ] x I,
o(j) <o(i) = (i) >0, (4.3.17)
and Step 1 comes to an end after exactly
{(G,i) e xI:j>iand ¢(j,i) >0, orj <iand y(j,i) < 0} (4.3.18)
applications of A.

Proposition 4.3.9. The resulting partition after Step 2 belongs to O.
Proposition 4.3.10. For any p € {0,1}, we have ¥ (E£*) C OF*.
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In our example, the following table for ¥ is obtained:

N2 4 8 1
1[5 7 7 7
6|0 2 2 2
71-1 1 1 1
10]-3 -1 -1 -1

By Proposition 4.3.8, there are four crossings that occur in the pairs (j,7) in {(6,2), (6,4), (7,4), (10,11)}.

Remark 4.3.11. One can check that the sets o(I),0(I) + 1 and o(]) form the unique set-partition of {1,...,s}
such that
1. Foralli € o(I), v{' —v{; = A(i,i+1),

2. forany j € o(J)N{2,... s}, vily >e vy

4.3.3 Reciprocity between ® and ¥
The relation ¥ o ® = Idp_
Forany A = (Aq,...,As) € O, we choose unique sets I, | such that

1. I,1+1,] form a set-partition of {1,...,s},

2. forallie I l; —l; 1 =A(i,i+1),

3. forallj€{2,...,s}N], i1 — 1 > A(j = 1,)).
Let o be the final position after application of®. Since by Lemma 4.3.5

/\g(k) - /\(/7/'(](’) —AN(o(k),o(K)) =l — Iy — Ak, K,

by considering the function ¢ in Proposition 4.3.8, we obtain, for all (j,i) € J x I, that

j<i<e=ye(j),oli)) =1 —1Li— A0
> a(j,i)
=GNl
>0

and

j> i = (o), o) =1~ — AG,)

< —a(i,f)
=—|@j1n]|
S *1r

so that I, | are exactly the final positions of (I),c(]) after applying ¥. Thus ¥(P(1)) = A.

The relation ®o ¥ = Idg,

Let us now take any v € &, and let ¢ be the final position after ¥, and ¥ (v) = v = (v{,...,v}) with the
enumeration of primary particles. We saw Remark 4.3.11 that, o(I),c(I) + 1 and ¢(]) form the unique
set-partition of {1,...,s}, such that

o forallo(i) € o(I), vy = Vg = Alo(D), 0 () +1),

e forallo(j) e o(J)N{2,...,s}, v”(

1!
o(j)-1 € Vo))

The sets o(I) and ¢(]) then are the unique sets obtained after Step 1 in the process of ® on v”. Let us
recall . For k <k’
Bk K') = |[kk') No(])| and B(k,K') = —B(K' k) -
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Then, since ¢ is increasing on [ and I U (I + 1), for any (j,i) € ] x I,

Blo(j), (@) = [[L,o(@) ne(D] = |1,e() o))

o(i) =1—=|[[Le@)nedn I +1)| =1 j)N]|
=o() —1-|L)nUr+1))-I1,7)N]|
o(@) —i+[[L)nJ =L j)n][-

We then obtain in Proposition 4.3.2, by the fact that ; = I; 1 + A(i,i + 1),
¢(o(j),o(@)) = I+ A0 (), ) = 2(lixa + Ao (i+1),i+1)) = A(o(j), (i + 1))

—A(o(i+1) = plo(j),0(i),o(i+1))
=1 =2l = AGi+1) = A+ [[L) O] +[[Lj)N]]i+1)

=i =2 = AG i) = AG+ 1= [[L) O]+ 1[1,7) N6

By (4.3.3) and (4.3.14), we obtain

() = A= 1G, ) N

j<ie= (), o) =1
=[G AN =[G n]l
=0

and

j>ie= o)) <—n(i+1j)—AG+1+[[i+1,j)N]]i+1)
< —|E+170]+][i+17)N]|
-1

The final positions for o (I),o(]) after applying ® on v are then exactly I, J. Thus ®(¥(v)) = v.

4.4 Closing remarks
We end this paper with three remarks.

First, we consider another relation >>¢ on P U S, which is the same as >, for (2.2.22) and (2.2.25),
but slightly different for other comparisons :

(k,c) > (K',c, ") <= k— (2" +e(c, ")) > e(c,c') +e(c, ") (4.4.1)

(K, c,c') > (K',") <= (2k' + e(c, ")) =K' > e(c, ) +e(d, ") - (4.4.2)

One can easily check that, for e* (¢, ¢) = €(c,¢'):

(k,c) >€ (K,d) <= (=K,) > (—k, c)
(k,c) > (K,d, ") = (=K —€*(",),", ) > (—k,c),
(k,c,c) > (K,") <= (=K,") > (—k—e (c,c),c ),
(k,c, C/) € (k/, o C///) —s (—k/ s (C”/, C//),C”/, CH) Ser (—k—€* (C/,C),C/, ).

If we define &, to be the set of all generalized colored partitions with particles in P LI § and with relation
>€, we obtain the following corollary of Theorem 1.1.

Corollary 4.4.1. For any integer n and any finite non-commutative product C of colors in C, there exists a
bijection between {A € O¢ : (C(A),|A]) = (C,n)}and {v e & : (C(v), |v]) = (C,n)}.

While the relation > differs from >, they both give similar difference conditions. A good example
of the similarity between these relations is the fact that we can retrieve Siladi¢’s theorem by taking
C = {a < b}, e(i,j) = x(i < j) with non-negative primary part size, followed by the transformation
(g,a,b) — (g*,q,4°), in Corollary 4.4.1.

Second, we point out that another major result, the Euler distinct-odd identity, can be retrieved from
Corollary 2.2.20. Let us consider the restriction of C to the singleton {a}. The corresponding difference
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condition gives the matrix
a

a (0)
and the corresponding generalized partitions in Corollary 2.2.20 are the classical partitions where all the
parts have state a. The restriction of D’ to the states a, a® gives the matrix

a a?
a (1 0}
a2 \1 0
One can view the corresponding partitions in £ as the generalized partitions into distinct positive par-
ticles with state a, along with some particles with states a> having positive even potentials. In other

words, we have a pair of partitions, the first partition into distinct positive particles with state 4, and the
second into particles with positive even potential and state a>.

We then redo the process with the following rules. At step k, we apply the transformation (g,a) —
k-1 k—1
(4> e )

,a to the identity given by the step 1. This leads to the following identity: the number of

artitions of n into particles with state 2 ' and potential divisible by 2¢~1 is equal to the number of
p p p y q

partitions of n into distinct particles with state a2 and potential divisible by 2~1, and particles with
state a2 and potential divisible by 2*.

By considering the initial step 1, and iterating the steps k, we then have the following identity: the
number of partitions of n into positive particles with state a is equal to the number of partitions of n

into distinct particles, with the particles with states a2 (k € Z>0) having a potential divisible by 2F. We
finally recover the Euler distinct-odd identity by applying the transformation (g,a) — (2,47 1).

Finally, we remark that the maps given in Section 4.2.1 and Section 4.2.2 differ from the variant
of Bressoud’s algorithm in (Konan, 2020a) for the generalization of Siladi¢’s theorem. In Step 1 of P,
instead of choosing the troublesome pairs of primary particles from the right to the left, we started in
(Konan, 2020a) from the left to the right by first choosing the greatest potentials. This choice could have
been made here. The major observation by proceeding this way is that the map ® remains the same. This
comes from the fact that the choice of troublesome pairs only depends on the maximal sub-sequences
of A of the form Ay, ..., Ay, which satisfy I; — ;11 = A(i,i + 1) for alli € {k, ..., k'}, with notation as in
Section 4.3.1. For such a sub-sequence with an even length, whatever the choice made, we always take
the primary particles pairwise. When the length is odd, our choice implies that we take the particles
pairwise from the right to the left so that there still remains a primary particle to the left of the sequence.
By crossing this primary particle with the secondary particles obtained after summing the pairs in the
sequence, by Lemma 4.3.5, we exactly obtain the pairs resulting from the choice of the troublesome pairs
starting from the left to the right, and the primary particle then becomes the rightmost particle of the
sequence.

This observation unveils a strong property that links the generalized partitions of O, and &, both
kinds of partitions seen as sequences of primary particles: their major attribute are the maximal se-
quences of consecutive primary particles. In the next chapter, we will see how this attribute allows us
to define the particles of degree k for a positive k > 3, and how this definition is closely related to the
notion of crystal and energy function in the quantum mechanics.
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Chapter 5

Beyond Glaisher’s theorem

In this chapter, bijective proofs of the results beyond Glaisher’s theorem are presented.

5.1 Bijective proof of Theorem 2.2.24

In this section we construct a bijection €); between the set ]—'1€ ¢ and Ri’cg of Theorem 2.2.24. In the
following, we illustrate (); with the set of states C = {4, b, c}, the ground ¢, and the energy € defined by
the energy matrix

oo o

O = = A
SN———

5.1.1 The setup

Let ¢ be the common value of €(cq, c) for ¢ # ¢ given by (2.2.39). Note that for any ¢ # ¢, for any
k1leZ

ke Feley &= k—1< e(c,cg) —1
= 1-k>1-€(ccq)
> 1—k>e(cgc)
= le, e ke (5.1.1)
(5.1.2)

so that the particles with state cg can be always related in terms of > with the particles with state different from
Co.
8

Here we can see the classical integer partitions as the non-increasing sequences of non-negative
integers, with all but a finite number of parts equal to 0.

Let us recall the conjugate of classical partitions. The partitions v = (v;)°, and v/ = (V) are
conjugate if and only if their part sizes satisfy

vi =H{vj >i+1}| (5.1.3)

The transformation v + v’ is an involution, and we then have v; = [{v; > i +1}|.

The set Ri'cg

We identify a partition 7t = (1, ..., 75 1,0, ) of Ri'cg as the unique pair of partitions

(,ulv) - [(PIOI"’/HS—llOCO)/ (VOI' "/VS—l)]/
such that C(71) = C(pu) = co---cs_1cg, and forallk € {1,...,5s — 1}, we have ¢ # cg,

s—1
i = (2 €(Ck,Ck+1)>

I=k
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and
s—1

v =1 — Y €(Cr k) -
I=k

The partition # is then the unique element in F;" N 'R} satisfying C(71) = C(u) = co- 51 cg, and
v is the residual partition with s parts, possibly ending with some parts equal to 0. The partition v then
corresponds to a unique classical partition, with at most s parts.

Example 5.1.1. The partition
7t = (104,84, 84, 74, 54, 44,34, 25, 14, 1, 15, 0¢)
is identified with the pair (u,v) with
1= (44,34,35, 30,34, 24,12, 15,14, 13, 15,0,

and
v =(6,5,5,4,2,2,2,1,0,0,0) -

Let us now fix C = ¢¢ - - - ¢5_1. The partition y in the pair then becomes fixed. By considering the set
of regular partitions in Ri’cg with State Ccg, we have the bijection

€,Cq €,cg

R(C) ={meR* :C(m) = Ceg} = {u} x {(vo, - ,vs-1) EZ>0:v9 2> Zvs1}-  (5.14)

The set Ri'cg (C) is then isomorphic to the set of classical partitions with at most s positive parts.
We now consider the set of the descents
D={k:{1,...,s} :€(cx_1,¢,) =0} = {ko<--- <kpp_1} and D={1,...,s=1}\D- (515)
Note that, since €(c;_1,cg) = 1 — dg, we recursively have for all k € {1,...,5 — 1} that
s—1 —
=Y elc,cp1) =1—6g+ [{k+1,---,s—1}ND| <s—k—6- (5.1.6)
I=k
We obtain with Example 5.1.1 that C = aabbaaababb, s = 11, D = {2,3,4,7,8,9,10} and D = {0,1,5,6}.
For a fixed non-negative n, we construct () in such a way that the partitions 7 in Ri'cg satisfying

(||, C(m)) = (n,Ccq) correspond to the partitions 77 in .Fle'cg which satisfy (n,C) = (|7, C(n)‘cgzl).
This means that the sequence of states different from cg is equal to C.

€,Cq

The set 7

We now consider the set ff’cg (C) of flat partitions 7t in ff’cg such that C(7)|,—; = C. For such a
partition 71, there exists a unique set S = {up < -+ < us_1} C Z>( such that

T = (7TO/ e 17-[145,]/060) ’
c(my) = c Vke{0,...,s—-1}, (5.1.7)
pp, = ¢¢ Yke{0,...,us_1}\S-

In fact, we cannot have c(7t,,_,) = cg, otherwise 71, = €(cg,cg) = 0, so that 7, | = 0c,, which
contradicts the definition of grounded partitions. Let us set
s =u,_1+1-s
W= {0 <v< |D| DU, — Ug,—1 > 1} = {U() <0 < U\W\fl}/ (5.1.8)
Dy ={ky:v € W},
Dy =D\ Dy -
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If there are particles with state c; between uy and u;1 (Which means that k +1 ¢ D), their potentials’
differences gives

€(ckcg) + 04 - +0 +e(eg crr1) = €(cx cg) + €(cg, 1)
fparts inserted—1
=1

which differs from e(cy, ¢, 1) if and only if k +1 € D. Then
Ty, =+ {k+1,---,s =1} N Dy,
so that by (5.1.6). Since 71, = 1 — ¢, we obtain recursively that for all k € {0,...,s =2},
Ty, =1—=0¢+[{k+1,...,s =1} N (DU Dy)|- (5.1.9)
Note that by (5.1.9), for all u;_; < u < uy, we necessarily have that k € D LI Dyy, and then
my = bg + 1y, = [{k,...,s =1} N (DU Dy)| -

We now construct the bijection between ]-'16 “$(C) and Ri'cg (O).

5.1.2 The map Q) from ]-“f’cg(C) to Ri'cg(C).

For any partition m € ]-'16 g (C) described above, let 1/ be the classical partition whose parts are the
following:

1. for k ¢ D, the uy — uy_1 — 1 particles between uj_; and uj with potential
= |{k,...,s =1} N (DU Dyw)|,
with the convention u_; = —1.
2. For k € Dy, we take uy — up_1 — 2 particles between uj_; and uj with potential
= |{k,...,s—1} N (DU Dyw)|,
and one particle (called the weighted particle) with potential

mu+k=1{k,...,s—=1}N(DUDw)| +k- (5.1.10)
We then set (1) = (u, v) where v is the conjugate of v/.
Example 5.1.2. For example, we illustrate these transformations with C = aabbaaababb and

T = (6ﬂr 5u/ Sbr 4c/ 4c/ 4c/ 4b/ 4u/ 3c; 3a/ za/ 1c/ 1c/ 1b/ 1a/ 1b/ 1b/ Oc) .

Recall that 1t = (44,34,3p, 36,34, 200 1a, 1, 10, 1, 15,00), D = {2,3,4,7,8,9,10} and D = {0,1,5,6}. Here

k|10 1 345 6 7 8 9 10
up |0 1 6 7 9 10 13 14 15 16

2
2

and thus Dy = {3,7}. We thus obtain that v' is the classical partition with parts 3,4,4,7 and 1,8. We thus have
v = (8,7,4,4,3,1) and the conjugation then gives the following partition with 11 parts

v=(6,55,4,2,2,2,1,0,0,0) -
By adding the parts of v to the corresponding particles of u, we finally obtain

0(612/ 511r 5h/ 4(3/ 4Cr 4C1 4b/ 4&/ 36/ 3{1/ 20/ 1Cr 1C1 1br 1&/ 1br 1b/ OC) = (10a1 85!/ 8b/ 7br 511/ 4{11 3a/ Zb/ 1ar 1b/ 1br OC) .
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We first note that the total energy is conserved by these transformations, since

s—1
Y Hk+1,---,s=1}NDw| =8{(k1): 1€ {k+1,---,s—1}:]1 € Dy}
k=0

=) #{o<k<i}
ZGDW
= Z 1
lEDW
and thus
Us_1 s—1
2 Ttu = Z Tl + Z (uk — Ug-1— 1)7'[11;{71
u=0 k=0 k
1<uk7uk,1
s—1
SHILE e o
u¢sS k=0 leDyy
= |u| + Z L4701 4 (g — up—q — 2)715;, 1
ZEDW
+ Y (=g = 1)1y,
1¢D

The unweighted particles are those which are not weighted. We then remark that forallk € {1,...,s —
1},
{k,...,s =1} N (DUDw)|+k = [DUDw|+ [{0,...,k—1} N Dy
= Ty + ¢ + [{0,..., k — 1} N Dy
so that the weighted particles all have potentials greater than or equal to the potentials of the unweighted

particles. We also notice that unweighted particles coming from different k are distinct, since the poten-
tials” difference gives

{k,...,s =1} N(DUDw)| — {k+1,...,s —1}N(DUDy)| = x(k € DU Dy)

and this is exactly the condition required to insert a particle in v/. Also when we take two consecutive

weighted particles in kvj < kvj .1 € Dy, we obtain the difference of potential

Koy — Kooy + [ {Kopy -+ kory — 1} N (DUDw)| = —|{ko,, - ko,., — 1} N Dy

so that the weighted particles appear in a non-decreasing order according to the indices i in {0, |[W| —1}.
We then obtain v/ = (v, -+ ,v/,_;), where foralli € {0,...,|W|—1}

7Vl 1

Vi _1i = | {ko, s =1} N (DU Dyw)| + ky,
=s— |DyNi{ky,...,s — 1}
=s—|{vi<p<|D|:p¢ W} by(5.18)
=s+[W|—|D[+v;—i
<s,

and the rest of the particles consists of uy — uy_1 — 1 — x(k € Dy) particles for k € D U Dy, each of
them with potential B
[{k,;s =1} N(DUDw)|[ > 1

Note that v/ viewed as a classical partition has s’ parts, all with size at most equal to s, and by (5.1.3), the

partition v then has at most s positive parts and satisfies vy = s’. Our map from .7-'16 “$(C) to Ri'cg (C)is
then well-defined.

We conclude by observing the following equality: for alli € {0,...,|W| —1} we have
V\IW\—1—1' —[W|+i=s—|D[+uv;
={0,..., ko, — 1}| + [{ko,, s — 1} N D]
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= B¢ + ik, + ko, (5.1.11)
and forallu € {|W|,...,s' =1},

vy — =1 < vy — W[ =1 <8+ po- (5.1.12)

5.1.3 The map Q' from R (C) to F; *(C)

Let consider a partition 7t in Ry *(C), and the corresponding pair (¢, v). The partition v then corre-
sponds to a classical partition with at most s positive parts. The partitions v’ then has vy positive parts,
whose sizes are at most equal to s. Let us set s’ = vy and write v/ = (v}, - ,v/,_;). We then apply the
following transformations:

1. Foreachk € {1,...,s — 1}, change the part y into y;, with the relations

/ — —
C(/Vk) = c(pk) = cx / / . .
we=me+H{0<u<s 6+ p+k<v,—u—1}

2. Foreachu € {0,...,s" — 1}, change the part v}, into v/ with the relations

c(vy/) =cg : (5.1.14)
v =v, —{0<k<s:d0+mu+k<v,—u—1}

The final partition ~1(7) is obtained by inserting the particles v}/ into the sequence of particles i},
according >, and adding the ground 0., . The partition Q~!(7) then has s + s’ particles different from
0c, and by double counting, it follows that QY ()| = |u| + |v| = |7

Example 5.1.3. For example, we illustrate these transformations with C = aabbaaababb and
T = (10,1, 8u, 8[7, 7b/ 511/ 4ur 341/ Zb/ 1&!/ 1b/ 1b/ OC) ’

corresponding to
# - (411/ 311/ 3b/ 3b/ 3(1/ 211/ 111/ 1b/ 1[1/ 1b/ 1b/ OC) 7

and
v =(6,5,5,4,2,2,2,1,0,0,0) -

By conjugation,
v =(8,7,4,4,3,1)

Recall that ¢ = 0. Using the following tables
k 012345678 9 10 u 01 23 4 5
ue+k|4 45 6 7 7 7 8 9 10 11 v,—u—1[7 5 1 0 -2 -5/

it follows that
,u/ - (6a/5a/5b/4h/4ur3a/2ur 1b/ 1&1/ 1[7/ 1b/0C) 7 U// - (1C/4C14C14Cl 3C/ 1C)
and the insertion then gives

Qil(n) - (6al511/5b/4C/4C/4C/4b/411/ 30/3u12a1 1C/ ]-C/ 1b/ 1ﬂ/ 1b/ 1h/ OC) :

Let us now show that 7t € ]-'16 8 First note that
d¢+ps1+s—1=s,

and since v, < s forall u € {0,...,s" — 1}, it follows that ngl = ps—1 = 1 — é4. Moreover, for all the
kedo,...,s—1},

(0g +px+k) = (Og + 1 +hk—1) =1+ pp — g1
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=1—e(ck_1,c¢) €{0,1}-

This means that the sequence (Jg + i + k),sc;%) is non-decreasing, and with the difference between con-
secutive terms at most equal to 1, with equality if and only if k € D.

On the other hand, foru € {1,...,s — 1}, we have forallu € {0,...,s' — 1} that

v —u—(v,—u—1)=1+v, ;—v,>1-

/ . .
The sequence (v], — u — 1)2;& is then decreasing.

Let us now set
Dy ={k€{1,...,s}:py = ui # te1 — i}~
Since €(cx_1,¢) € {0,1}, the set Dy then contains all the k € {1,--- ,s — 1} such that

0<|0<u<s :6g+pu1+k—1<v,—u—1<0+mu+k} <1—elcr_1,c),
so that we necessarily have Dy C D. For such k, there exists a unique u such that
Sg+tk—1+k—1<v,—u—1<6¢+pu+k- (5.1.15)

In fact, the sequence (v}, — u — 1)2/;3 being decreasing, and the interval [0g + pg_1 +k —1,0¢ + px + k),
which is a singleton for k € Dy, contains at at most one element of the latter sequence. Also,

HO<I<s:04+m+I1<v,—u—-1}=1{0,....k—1} =k
Ho<v<s:0g+m1+k—1<v,—v—-1}=[{0,...,u}| =u+1-

Therefore,
v, =v +k, (5.1.16)
Wi =tk +u

Moy = M+ u+1,
and by (5.1.1) and (5.1.15), we necessarily have
Mi—1 e Vi >e i+ (5.1.17)

The particle v, is then inserted between y;_; and y;. Note that this insertion occurs once for all 1 such
that B
|D| = dg + po <v, —u-1,
so that
|DV| = |{0§k<535g+ﬂogv;—u—l}|-

Then, for all u > |Dy|, we have
vy —u—1<dg+ o,

so that v;, = v},. In particular, we have
Vipy| = IDvl =1 <dg+ po <= vlp,| < 8 +po+[Dv| =05+ - (5.1.18)

We remark that for all k € D \ Dy, since p_; — pt;, = pg—1 — pix = 0, the parts p;_,, ;. have the same
size, and then the same relation with all particles with state Cg- This means that, after inserting of the
particles v} into 3/, there is no particle between the parts yi;_; and y}. Note that, for all k € D LI Dy,
i1 — M = 1, so that we can insert any number of particles with state ¢, and potential d; + i}, and
since €(cq, cg) = 0, these particle with the same potential and state ¢, are well-related by >..

These facts, together with (5.1.17) and (5.1.18), imply that 7t belongs to ]-"1€ 2,

We conclude by observing that, by (5.1.17), Dy can be also defined as the unique subset of D with
satisfies the following: k € D belongs to Dy if and only if there exists u € {0, - - ,s’} such that y;_, >

vl > ;4;(.
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5.1.4 Inversion of the maps
Using (5.1.11) and (5.1.12), we straightforward to observe by the definition of QO lthat O 1o =
I d <45 () On the other hand, the fact that Qo Q™1 =] d 48 (C) comes from the correspondence between

DW and Dy. In fact, this correspondence is deduced from the equivalence between the definition of W
and the above definition of Dy. We also observe that the only particles whose potential changes from
one set of partitions to another are those related to the set Dyy and Dy. We finally conclude by observing
the reciprocity between the definition of the weighted particles related to Dy given in (5.1.10), and the
definition of the particles related to Dy given by the formula (5.1.16).

Remark 5.1.4. The maps described here give a more refined property that the bijection between the sets .7-"16 “5(C)

and Ri'cg (C), as for a fixed State C product of s states different from cg, it leads to the correspondence between the
partitions v with at most s parts such that the greatest part has size s' and the flat partitions having s' additional
particles with states cq different from Oc, .

5.2 Bijective proof of Theorem 2.2.31

In this section, we prove the following.

Theorem 5.2.1. For a fixed State C as product of colors different from cq and a fixed non-negative integer n, the
following sets of generalized partitions are equinumerous:

1 Fy ¥ (Cn) = {m € Fy* : C(m) ), = C, || = n},
2. Fy¥(Con) = {m € F{"¥ : (1) qm1 = C, |71 = n},
3. Ry¥(Cn) = {m € RY™ : C(10) o1 = C, | =},
4. R7¥(Con) = {m € Ry® : C(m)¢y—1 = C, || = n}.
In the previous section, we have shown in the proof of TheoremZ 2.24 that | F}’ s (C ( n)| = |R€ “s(c,n)).

In the following, we first show that there is a bijection between .7-'2 #(C,n) and .7-'1 #(C,n), and after that
we describe a bijection between Ri'cg (C,n) and R5®(C, n).

5.2.1 Bijection between .F;'Cg(C, n) and ]-f’cg (C,n)

Here recall that, by Definition 2.2.27, the partitions of F, ¢ have the form (o, -, 7s-1,0 z) such that
forallk € {0,...,s — 1}, 1y € S, and by setting c(713) = corcors1 € C?, we have by (2.2.41) that

u(me) >e v (7trr) - (5.2.1)

We also observe that cos 0051 # C , otherwise the above equation gives that 7r;_; — 0 2= = 4e(cg, cq) =
0, and then 77,1 = 0, 2 which Contradlcts the definition of grounded partitions. Furthermore, note that

#(7ts—1) = Oc, if and only if cos 1 = cq.
Consider the map F from F, * to ;" defined by

(v(m0), (o), y(mm1), w(mma), ..., ¥ (7s—2), w(7s—2), ¥ (7ts-1), Oc, ) if co5-1=cg
(7‘[0, cees ns,l,Océ) —
(v(mo), (o), v (m1), w(rmr), - -, ¥ (s—2), (ms—2), ¥ (ms—1), #(7s—1),0c,) if cos-1 # ¢4
(5.2.2)
It is easy to check that both the total energy and the sequence of primary states are preserved. To show

that F(m, ..., 7Ts—1,05§) € ]-"f'cg, we proceed according to whether cps_1 = ¢g or cps_1 # cq. Note that
by definition of the secondary particles, for all k € {0,...,s — 1},

V(i) — (i) = e(cor, Cokr1) = v () >e (i) -
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* If cps_1 = cg, then the above equation and (5.2.1) give that F(r, ..., 7s_1, 0C§ ) is well-defined up
to p(7t5-1), and with the fact that cps_» # cg and p(75-1) = Oc,, we obtain that (7o, . .., 751, ch,) €
Fs.

* If cps_1 # cg, then the above equation and (5.2.1) give that F(m, ..., 7Ts_1, 0%% ) is well-defined up
to pu(71s_1), with the fact that cps_1 # cg and p(71s_1) = €(c25—1,Cg), we obtain that F (o, ..., ms_1, ch) €

€,Cq

1
The inverse map JF ! is even easier to build. We simply proceed as follows:

(7'[0—0—711,...,715,1—1-0%,06(%) if s=1 mod?2
(70, T5—1,0¢,) > : (5.2.3)
(7'(0—1—7r1,...,7'cs,2+7ts,1,0C%) if s=0 mod?2

The primary particles being consecutive in terms of ¢, the map F ! is well-defined, and one can check
that the first case of F~! is the inverse of the first case of F, so as the second case of F~! is the inverse
of the second case of F.

5.2.2 Bijection between Ri'cg (C,n) and R;'Cg (C,n)

Let us recall that C’ = C \ {cg}, and set C{, = {cc’ : ¢,c’ € C'}. We now set p = 1 — J; the common value
of €(c, cg) for all ¢ € C'. Here we refer to O, and £ as the sets corresponding to the set C’ in Chapter 4.
We now show the following proposition.

Theorem 5.2.2. For a fixed State C as product of states in C' and a fixed non-negative integer n, the following
sets of generalized partitions are equinumerous:
€,cq

1. RY¥(Cn) = {me Fs: C(70)eu1 = C, || = n},
2. OLY(C,n) = {m e O : C(nr) =C, || =n},
3. &P+ (Con) ={m e &l :C(n) =C,|n| =n},
4. RY¥(Cn) = {m € Ry™ : C(1) o1 = C, || = m}.

By Theorem 2.2.15, we already have that |O2* (C,n)| = |£°+(C,n)|. We show in the remainder of
this section that Ri'cg (C,n) and Of* (C,n) are in bijection, as are £°+(C,n) and R;’Cg (C,n).

Bijection between Ri’cg (C,n) and O (C,n)
This is straightforward by considering the following map from ’R,i'cg (C,n) to O (C,n):

(o, -, ”S—l'OCx) — (7o, ..., TTs_1) - (5.2.4)
In fact, we have that ¢(7;) € C’ forallk € {0,...,s — 1}, and by (2.2.38), that

T — g1 = €(c(mi), o(Thi1))

so that 71,1 > e(c(7ty41),¢g) = 1 — &g = p. By Definition 2.1.3 and Definition 2.2.14, we then have that
the partition (1, . .., 7s_1) belongs to OY* (C,n).

The inverse map is obtained by adding a O, to the right to a partition in O£ (C,n), and the above
relations imply that the resulting partition indeed belongs to Ri'cg (C,n).

Bijection between £+ (C, 1) and R;’Cg (C,n)

It may seem intricate to construct a bijection between these two sets, as a partition in the first set can have
primary particles while a partition in the second set cannot. The regularity in c§ allows us to overcome
this obstacle. For simplicity, we write S(C), S(C') and P(C’) respectively the sets of the secondary
particles with states as a product of two primary states in C, the secondary particles with states as a
product of two primary states in C’ and the primary particles with state in C’. We observe that we have
a natural embedding S(C’) — S(C).
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By definition, for any ¢ € C’, the potential of the secondary particle with state ccg has the same
parity as €(c, cg) = p, while the potential of the secondary particle with color c¢c has the same parity as
€(cg,c) =1 — p. The embedding P(C’) < S(C) can then be described as follows:

ke s kch %szp mod 2
kcgc if k=1—p mod?2

Therefore, we obtain a natural bijection R between P(C") US(C’) and S(C) \ {(2Z) C%} with the relations
S(C) 32k + €(6, ) )er > (2K + (e, ) (525)

kccg if k=p mod?2

) (5.2.6)
kcgc if k=1-—p mod2

P(C') ke {

Note that the inverse R~! is also the identity on S(C’), and for a particle with state CCg OF cgC, We
associate the particle in P(C’) with the same potential and state c.

The map R can now be extended to the partitions in £+ with
R: (7'[0, ceey 7'[5,1) — (R(Tfo), e ,R(Tfsfl),OCz’) , (527)

resulting in the following proposition.

Proposition 5.2.3. The map R defines a bijection between E°+(C, n) and R;’Cg (C,n).

Recall that >, in Definition 2.2.10 is the relation that relates the particles of a partition in £+, and
the relation >>¢ defined in (2.2.46) relates the particles of a partition in R;’Cg .

Note that the map R from P(C")LUS(C') to S(C) \ {(2Z2) 2 } conserves the potential and the sequence

of states different from cg, so that extended to £F+, it also preserves the total energy and the sequence of
states different from c,. The proof of Proposition 5.2.3 is straightforward using the two next lemmas.

Lemma 5.2.4. Let ¢ € C' UC!, and ¢ = c(ms_1). Then the minimal potential of ts_1 € PP+ LI SP+ is the
minimal potential of R(7ts_1) satisfying R(ms—1) > Oz2-

Lemma 5.2.5. For all particles ky,1, € P(C") US(C’), we have the following :

Lemma 5.2.4 gives the equivalence of the minimal potential condition for the last particle, while
Lemma 5.2.5 states that the difference conditions are equivalent for both sets of partitions, and we di-
rectly obtain Proposition 5.2.3.

Proof of Lemma 5.2.4. We reason on whether ¢ € C, or ¢ € C' and 71,_1 has a potential with the same
parityaspor1—p.

e If c € C/,, write ¢ = ¢ycy. Then,

Ms—1 € S <= u(ms_1) > p by Definition 2.2.14
= u(ms—1) > €(c1,¢q)
— R(ﬂ.’s,l) = 7Ts_1 >° ch : (2.2.46)

e IfceC' and 1,1 =p mod 2,

Mg € PP <= ms_1>p and m=p mod?2 by Definition 2.2.14
= 1 €270+ p
= c(u(R(ms-1))) =cg and p(R(ms—1)) >0 (1.2.2)

> u(R(ms-1)) = €(cg, cq)
— R(ms_1) > ch : (2.2.46)
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e IfceCand g 1 =1—p mod 2,

M1 €PFr <= m_1>p and m=1+p mod?2 by Definition 2.2.14
= 51 €2Z>0+1+p
= U(R(75-1)) 2 p and  c(p(R(ms—1))) =c (1.2.2)
= u(R(me1) > elercg)
= R(m1) >0,z (2.2.46)

To conclude, one can observe that we always have the equivalence
Ts_1 € PP+ USSP <— R(ﬂs_l) >€ ch’

and this conclude the proof of the lemma. O
Proof of Lemma 5.2.5. Let us first state an obvious fact: for all integer a, b, we have the following,
1. if b € {—1,0,1}, then
2a>b<=a>xb=1), (5.2.9)

2. ifb e {-2,—1,0}, then
20>b=a>—x(b=-2)- (5.2.10)
As before, we reason on whether particles k, and [; are primary or secondary.
o Ifk, € S, write ky, = (2u + €(co, ¢1))cyer -

- Ifl; € S, write [; = (20 + €(c2,¢3)) cpes-

kp>cly <= u—v—e(ci,c2) —€(ca,c3) >0 (2.2.25)

- IfgeC’and! =p mod 2, write [; = (20 +€(qg,cg))4. Then,

kp > ly <= (2u +e€(co,c1)) — (20 +€(q,¢q)) > 1+ €(co, c1) +€(c1,9) (2.2.24)
= 2(u— v —e(g,c) —(c1,q)) = elcg q) —e(er,q)
= u—v—e(q,c) — e(c1,9) = elcg,q)(1 - e(cr,q)) (529)
< R(kp) > R(ly) - (2.2.45)

-IfgeC and! =1—-p mod 2, write l; = (20 + €(cg,q))q-

kp > ly <= (2u+e€(co,c1)) — (20 +€(cg,q)) > 1+ €(co, c1) +€(c1,9) (2.2.24)
2 - v —efer,cg) — elegi ) 2 eler,q) +eleg, ) — 1
= 20— —e(cr,c) — elegi)) = eler,q) — e(q,cg)
= u—v—e(cy,cq) —€(cg;q) > €(c1,q)e(cq, q) (5.2.9)
= R(kp) > R(ly) - (2.2.45) -

e IfpeC’andk =p mod 2, write k, = (2u +€(p,cq))p
- Ifl; € S, write [; = (20 + €(c2,¢3) ) cyc5- Then

kp>cly <= (Qu+e(p,cg)) — (2v+€(ca,c3)) > €(p,c2) +€(ca, c3) (2.2.23)
= 2(u—v—e(cg c2) —€(c,c3)) > €e(p,c2) —e(p,cg) —2€(cg, c2)
< 2(u—v—e(cg,c2) —€(ca,c3)) > (e(p,c2) —1) —€(cqg, p)
= u—v—e(cg,c2) —€(c2,c3)) > —(1—€(p,c2))e(cg, p) (5.2.10)
< R(kp) > R(ly) - (2.2.44)

>
>

- IfgeC’ and! =p mod 2, write [; = (20 +€(g,cg) ). Then

kp >ely <= Qu+e(p,cg)) — (2v+e(q,cq)) > 1+€(p,q) (2.2.22)
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> 2(u—v—e(cgq) —e(qcg)) = e(pg) -1
= u—v—e(cg,q)—e€(gcg) >0 (5.2.9)
< R(kp) > R(ly) - (2.2.46)

—IfgeC' andI=1—p mod 2, write I, = (2v + €(c,, . Then
q © q g 9))q

kp >elg <= (Qu+e(p,cg)) — (20 +e(cg,q) > 1+€(p,q) (2.2.22)
= 2(u—v—e(cgcq) —€(cg,q)) > €(p,q) +ecg, p) —€lcg,q)
= 2(u—v—e(cq,cq) —€(cg,q)) > €(p, )
-0 e(cgcg) — elcg q) = e(p) (529)
<= R(kp) > R(ly) - (2.2.43)

e IfpcC'andk=1—-p mod 2, write k, = (2u +€(cg, p))p-
- Ifl; € S, write I; = (20 + €(c2,¢3))cyc;- Then

kp>cly <= (2u+e(cq,p)) — (2v+e(ca,c3)) > €(p,c2) +€(c2,c3) (2.2.23)
= 2(u—v—e(p,c2) — elc ) = —e(pscz) — (g, )
= u—v—e(pc2) —e€(cc3) > —€(p,c2)e(cg, p) (5.2.10)
< R(kp) > R(ly) - (2.2.44)

- IfgeC and! =p mod 2, write [; = (2v +€(g,cg))4. Then

kp >cly <= Qu+e(cg,p)) — (2v+e(q,cq)) >1+e(p,q) (2.2.22)
= 2u—v—e(pq) —eq,cg)) > e(cg,q) —e(p.q)
<= u—v—e(p,q)—eq,cg) > elcg,q)(1—€(p,q)) (5.29)
<= R(kp) > R(ly) - (2.2.45)

-IfgeC andl =1—-p mod 2, write l; = (20 + €(cq,q))4- Then

kp >ely <= (Qu+e(cg, p)) — (2v+e(cg,q)) > 1+€(p,q) (2.2.22)
21— —e(p,cg) —eleg, ) = e(pg) — 1
= u—-v—e(pcg) —€(cg,q) >0 (5.2.9)
< R(kp) > R(ly) - (2.2.46)

5.3 Beyond Glaisher’s theorem at degree k > 3

We begin this section by defining a particle of degree k.

Definition 5.3.1. Let C be a set of primary states. For any k € Z1, define the set of states of degree k as
the set of the products of k primary states:

Ck:{Cl--'Cklcl,...,CkEC}'

For an energy € and the corresponding flat relation >, defined on the set of primary particles, define the
set PX = Z x CF of particles of degree k as the sum of k primary particles well-related by >:

k k—1 k—1
(P/ €L ck) = Z (P + Z €(co, Cv+1)> = <kp + Z ue(cy, C14+1)> ) (5.3.1)
Cu 1o Ck

v=u u=1

We set the function 71, ..., 7, on P¥ such that

k=1
Yi(per--ck) = (P + ) el Ci+1)> : (5.3.2)

u=i
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Then
k
(poei--c) =Y vilper--cr), (5.3.3)
i
1i(p,c1-ck) >er2(prcr-ck) >e- - >evi(pocr--cx) - (5.3.4)

We can then naturally define a flat relation >* on P* as follows:

k—1
(P/C1 o 'Ck) >k (q/dl o dk) = p—q= e(ck/dl) + Z e(duldu-i-l)
u=1

= Y(p,er-ck) >e (g, dy---dy) - (5.3.5)

The latter is equivalent to saying that the smallest primary particle of (p, ¢y - - - ¢x) is greater than the
greatest primary particle of (q,d; - - - di) in terms of >.

One can check that the relation > is indeed the flat relation linked to the energy ¥ defined on C* x C*

by
— k—1

oy cpdy - Z e(cu, curr) +ne(e, dr) + ) (k— w)e(du, dyra) - (5.3.6)

u=1

In fact, by using (5.3. 1) and (5.3.5), the difference of potentials of the particles (p, ¢ - - - ¢x) and (g, dq - - - dy)
is exactly equal to €*(cy - - - ¢, dy - - - dy).

This extension of the flatness to degree k has a strong connection with crystal base theory via the
following proposition.

Proposition 5.3.2. Let B be a crystal and suppose that there exists an energy function H on B & B. Then, the
function H* on BE* @ Bk defined by

2k—1
@ Qb @b @+ @by — Y min{i, 2k — i} H(b; @ bj1) (5.3.7)
i=1

is also an energy function on BE* @ Bk,

Proof. Since the tensor product is associative, foralli € {0,--- ,n} and forall j € {1,...,2k}, that

< _ ¢i(bji_1 ®bj) =bj_1 ®¢é(b;)
G R Qb)) =R - RE(D:)RQ - by = { ] ] ]
i(b1 2%) = by i(b)) 2%k {5i(bj®bj+1) — (b)) @ by

We thus obtain by (8.1.7) that, for j < k, (the following still holds for j = 1)

HY (b1 @ @by)) — H' (b1 @ @ by) = (j— 1) (H(bj—1 @ &(b;)) — H(bj—1 ®b))) +
j (H(&(bj) @ bj_1) — H(b; ® bj41))
=—(—Dx(i=0)+jx(i=0)
=x(i=0)-

On the other hand by (8.1.7), for j > k(the following still holds for j = 2k)

H @ @ @by)) — H (b ® - - @ by) = (2k—j+1) (H(bj_1 @ &(bj)) — H(bj_1 ® b})) +
(Zk—j)( (&i(bj) @ bj—1) — H(bj @ bj11))
—(2k = j+1)x(i = 0) + (2k — j)x(i = 0)
=—x(=0)- O
The tensor product of level ¢ perfect crystals being a level ¢ perfect crystal as well (Kang et al., 1992c),
we then obtain that B¥* is a perfect crystal if 3 is.

We note that the energy function of the perfect crystal B studied in Chapter 7 can be obtained by
carrying out a transformation, which preserves the ground, on a certain minimal energy satisfying the
condition in Theorem 2.2.24 and such that J¢ = 0. Therefore, we can define both secondary flat and
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regular partitions corresponding to this energy function. In particular, since the corresponding minimal
energy satisfies 6, = 0, the energies related to these flat and regular partitions are almost equal by
(2.2.41) and (2.2.46). By Proposition 5.2.3, this means that the partitions, corresponding to those in £+
after applying the transformation on the minimal energy, satisfy some difference condition equal to the
difference implied by the corresponding energy function of B2. In particular, one can view the case

Aéi) as a result that links the generalization of the Siladi¢ theorem for 2n primary colors to the unique
level one standard module L(Ag). This fits with the original work of Siladi¢ (Siladi¢, 2017), where he
(2)

stated his identity after describing a basis of the unique level one standard module of A;” through
vertex operators. A suitable subsequent work is then to build the vertex operators, for the level one

(2)

standard module of A, (n > 2), which will allow us to describe a basis corresponding to the difference
conditions given by the generalization of Siladi¢’s theorem.

We now define the degree k flat partitions.

Definition 5.3.3. The set ]—",f’cg , of degree k flat partitions, is defined as the set of the flat partitions into
degree k particles in P¥, with ground c(’é and energy e* defined in (5.3.6).

In particular, when €(cg, cg) = 0, the bijection of Section 5.2.1 can be generalized.

Proposition 5.3.4. For any k > 1, there is a bijection F} between ]—f’cg and ]—"16 “S that preserves the total energy
and the sequence of states different from cq of the flat partitions.

Proof. For any flat partition 77 = (7o, ..., 751,04 ) in _7:;,63’ we associate the partition Fy(7r) defined by
8
the sequence

(r1(m0), -+, vk (7m0), 1 (1), o (1), ooy 1 (Ts—2), o Yk (7Ts5—2), 11 (725 -1), - - '/’Yi(nsfl)/OCLq) ’

where i = max{j € {1,...,k} : 7j(7s-1) # Oc,}. The existence of such index i is ensured by the fact
that t;_1 #0 k- It suffices to assume by contradiction that for all j € {1,...,k} we have 7;(7s_1) = Oc,.

Since €(cq, cg) — 0, we then have Oc, >eOc,, and by (5.3.3),
k k
ch #F 1 = gr)’j(ns—l) = gocg = ch'
= 1=

To prove that Fi(7r) belongs to ]-"f ‘s we use (5.3.4) along with (5.3.5) to see that Fy(7r) is well related
up to 7;(7s-1), and to show that 7;(7t5_1) >e Oc,, we distinguish two cases.

e Ifi <k, then 7;41(7s-1) = Oc,, so that (5.3.4) follows.

e Ifi =k, then by (5.3.5) 7k (7s_1) >e 11 (Oc{g)' and we are done.

Next we describe the inverse map " 1 For any 7t = (7, ..., Ts_1, Oco ), we write the decomposition
s = km — s’ with the unique non-negative integers m, s’ such thats’ € {0,...,k — 1}. We then set

Fl(m) = (mo+ -+ 4 My, T+ 4 Tk, e+ + Tonk—k—1s () + - - + o1 48" X Ocg, Ogt) -

Here we see by (5.3.3), (5.3.4) and (5.3.5), this sequence is well-defined up to the particle T(m—1)k + -+
751 +5" X Oc,. Note that since 7751 # O,, we necessarily have that 77, 1y, + -+ + 751 +5" X 0c, #
0 k- We distinguish two cases.

o Ifs’ > 0, since 71,1 >¢ Oc, > Oc,, then by (5.3.3), Tkt + o1 + s’ x 0, is in Pk, and by
(5.35), oty + -+ o1+ X 0, >F 0y

e If s = 0, then by (5.3.3), 1)k T+ M1 is in Pk, and since 715_1 >¢ Oc/ by (5.3.5), Tm-1)k +
cee g K ch.

The inversion comes from the correspondence between the case s’ = 0 for F~ Land i = k for F;. O
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Proposition 5.3.4 implies the following correspondences

ercg Theorem 2.2.24 ercg

degree one : F S e— TR

I Konan, 2020b ]

Theorem 2.2.31 €,C
de ree two : FG,Cg R "8 | Bressoud’s algorithm at degree k?
2 2

Proposition 5.3.4

€,Cq Theorem 2.1.21 €,q

degree k : Fo e R/
~

Definition?

A major subsequent work would be to find a suitable energy to define regular partitions for degree k
which would allow us to state an analogue of Theorem 2.1.21 at degree k. This problem appears to be
closely related to the problem of finding a generalization to weighted words at degree k of the result
stated in Theorem 2.2.15.
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Chapter 6

Beyond the Durfee square

This chapter is dedicated to the proof of Theorem 2.2.39 and organized as followed. In Section 6.1, we
give a precise characterization of the set of partitions in P¢* with a fixed kernel as in Definition 2.2.36,
compute their generating function, and state the main theorem, Theorem 6.1.28. After that, in Section
6.2, assuming Theorem 6.1.28 is true, we carry out the same steps and compute the generating function
for the generalized colored Frobenius partitions in ]—"éf‘,’ez with the same fixed kernel, and prove Theorem
2.2.39. Then, in Section 6.3, we prove Theorem 6.1.28. Finally, in Section 6.4, we prove the identity given
in Theorem 2.2.45 for the n2-colored Frobenius partitions.

6.1 Reduced color sequences and minimal partitions
During this section, we illustrate different results on Example 2.2.35. In that case, we have

C = {Lll'bj : i,j € N},
Ciree = {{libi (1€ ]N},
Chound = {aibj i #j €N},
a:aibj — a;b;,

b: llib]‘ — a]b]

6.1.1 Minimal partitions

The original method of weighted words of Alladi and Gordon (Alladi and Gordon, 1993; Alladi, An-
drews, and Gordon, 1995) relies on the idea, which can be tracked back to Schur and MacMahon that
any partition with m parts satisfying difference conditions can be obtained from the minimal partition
satisfying difference conditions and adding a partition with at most m parts to it. For example, all
Rogers-Ramanujan partitions into m parts, satisfying difference at least 2 between consecutive parts,
can be obtained by starting with the minimal partition (2m — 1) + (2m —3) + --- + 3 + 1, and adding
some partition into at most m parts to it.

Here, to compute the generating function for generalized colored partitions in Pc*, we also use
minimal partitions. But while Alladi, Andrews, and Gordon computed minimal partitions with a certain
number of parts, here we compute minimal partitions with a certain kernel.

Definition 6.1.1. Let c,...,cs be a sequence of colors taken from C. The minimal partition in Pe® as-
sociated to ¢y, ...,¢s is the colored partition A = (Aq,- -, As, 0., ) with minimal size such that for all
ie{1,...,s}, ¢c(A;) = c;. We denote this partition by mine(cy, .. ., ¢s). The size of ming(cq, . .., ¢5) is then
equal to

S
|mine(cq, ..., c5)| = Z ke(ck, cky1),
k=1

where ¢ 11 = Coo-

Example 6.1.2. Considering the energy € from matrix Ps in (1.4.5), the minimal partition with color sequence
a1bo, agby, a2ba, a1by, a1by, agby, arba, agby in Py 3 is

mine(ﬂlbOr aObOI a2b2/ albll albl/ aOblz aleI “ObZ) = 8H1b0 + 7ﬂgb0 + 6a2b2 + 5&1]171 + 5ﬂ1b1 + 3a0b1 + 2a1b2 + Oﬂobz‘

It has size 52.
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6.1.2 Combinatorial description of reduced color sequences

We want to study the partitions in P¢* with a given kernel. To do so, we need to understand combi-
natorially the set of color sequences having a certain reduction. Recall that a sequence of colors in C is
reduced if and only if it does not contains the patterns

c-cC forall ce Cfree ’
c-b(c) forall ¢ € Cpound -
a(c)-c  forall ¢ € Chound

The above definition of reduced color sequences along with Definition 2.2.34 immediately yield the
following proposition.

Proposition 6.1.3. Let S be a reduced color sequence. Any color sequence C such that red, ,(C) = S can be
obtained by performing a certain number of insertions of the following types in S:

1. if there is a free color c in S, insert the same color ¢ arbitrarily many times to its right,
2. if there is a bound color ¢ in S, insert the free color a(c) arbitrarily many times to its left,
3. if there is a bound color ¢ in S, insert the free color b(c) arbitrarily many times to its right.

Example 6.1.4.
S = ayby, azby, azby, agbs, azbs.

The sequence
C = a1by,a1by,a1by, axby, azbs, azbs, asbz, azby, axby, asbo, asbs, azby

is obtained from S by inserting a,by twice to the left of a1by (insertion (2)), aby once to the right of a1 b, (insertion
(3)), azbs three times to the left of azby (insertion (2)), and axby once to the right of apby (insertion (1)).

Remark 6.1.5. The way one obtains C from S via the insertions above is not unique (even up to the order in which
we perform the insertions). Indeed, it could be that in S = ¢y, ..., cs, the color that can be inserted to the right of
some c; is the same as the one that can be inserted to the left of cj, 1. For example ayby, azby, azbz can be obtained
from a1by, aybs either by inserting apby to the right of a1by (insertion (3)) or to the left of aybs (insertion (2)).

To understand reduced color sequences and insertions combinatorially, and make sure that we count
our partitions in an unique way, we need some definitions.

Definition 6.1.6. A primary pair is a pair (c,¢’) of bound colors such that in the insertion rules of Propo-
sition 6.1.3, the free color that can be inserted to the right of c is the same as the one that can be inserted
to the left of ¢’. This is equivalent to saying that (c, ¢) is such that b(c) = a(c’).

We will be interested in maximal sequences of primary pairs in S.

Definition 6.1.7. Let S = cy,...,¢s be a reduced color sequence. The maximal primary subsequences of S
are subsequences ¢;, ¢j 1, . .., ¢j of S such that

e forallk € {i,...,j—1}, (ck, k1) is a primary pair,
* (ci—1,¢;) and (cj,cj11) are not primary pairs.

We denote by ¢(S) the number of maximal primary subsequences of S, and by Sy, ..., S(s) these maximal
primary subsequences.

Example 6.1.8. Let
S = a1by, axb3,asby, a1bg, azbo, azby, azbz, azb,.

Here t(S) = 3 and the maximal primary subsequences of S are, from left to right,

S1:=a1by, azbs,
Sy = ayby,
53 = {13b2, llzbl.

Let us now define secondary pairs of colors, inside which two different colors can be inserted.

Definition 6.1.9. A secondary pair is a pair (c, c’) of colors satisfying one of the following assertions:
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1. The colors ¢ and ¢’ are both bound, and the free color that can be inserted to the right of ¢ is
different from the one that can be inserted to the left of ¢’. These are the pairs of bound colors are
such that b(c) # a(c).

2. The color c is free, ¢’ is bound, and the color that can be inserted to the left of ¢’ is different from c.
These are the pairs such that ¢ # a(c’).

3. The color ¢ is bound, ¢’ is free, and the color which can be inserted to the right of ¢ is different from
¢’. These are the pairs such that b(c) # ¢’

Remark 6.1.10. In the above, the colors ¢ or ¢’ can be equal to ¢, considered here as a free color. This allows
us to avoid treating the case of insertions at one of the ends of the color sequence C = cy, ..., cs separately, with
the convention that ¢y = cs11 = Ceo. Indeed, by our convention, inserting a(cy) to the left of c; is the same as
inserting a(cy) inside the pair (co,c1) = (oo, ¢1). This is included in Case (2). Similarly, inserting b(cs) to the
right of cs is the same as inserting b(c;) inside the pair (cs, cs+1) = (s, €oo), Which is included in Case (3).

With the definitions and propositions above, we can now uniquely determine the places where in-
sertions can occur in a reduced color sequence.

LetS =cy,...,cs be areduced color sequence of length s. Then S can be written uniquely in the form

S=T$1T>Ss... T;S; Tz,

where Sq,...,S; are the maximal primary subsequences of S, and T7, ..., T;;1 are (possibly empty) se-
quences of consecutively distinct free colors.

Forallu € {1,...,t}, letiy, 1 (resp. ip,) be the index of the first (resp. last) color of S,,, i.e.
Su = Ci2u—1’ PN ’Ci2u‘

We have iy, _1 < ip,, with equality when S, is a singleton. By the definition of maximal primary subse-
quences, for all u, the pairs (c;,, ,—1,¢i,, ,) and (cj,, Ci,,+1) are secondary pairs. We can now state the
following.

Proposition 6.1.11. Using the notation above, the insertions of free colors in S can occur exactly in the following
s + t places (possibly multiple times in the same place):

e totheright of c;, foralli € {1,...,s},
* totheleftof c;,, ,, forallu € {1,...,t}.

Let f1,..., fs+¢ be the s + t free colors that can be inserted in S (in order). Let 1y, ..., ns4+ be non-
negative integers. We denote by S(n71, ..., nsy+) the color sequence obtained from S by inserting n; times
the color b; in S, for all i. Using this notation, we finally have the uniqueness of the insertions.

Proposition 6.1.12. For each color sequence C such that red(C) = S, there exist a unique (s + t)-tuple of
non-negative integers (ny, ..., Ns4¢) such that C = S(ny, ..., nsyt).

Example 6.1.13. In Example 6.1.4, we haves =5, = 3,
S1 =mby, Sy =azby, Sz =asbs,azb,

T1 = @, T2 = @, T3 = 112192, T4 = @,

and
C=5(2,1,3,0,1,0,0,0).

6.1.3 Influence of the insertions on the minimal partition

Recall the well-definedness according to the reduction as stated in (2.2.48), (2.2.49), (2.2.50), (2.2.51) and
(2.2.52). An energy € well-defined according to reduction with respect to a and b if

1. forany ¢, ¢’ € Cpree U {C0},
elc,c) =xlc#¢),
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2. for any ¢ € Cpound,
e(a(c),c) +e(c,b(c)) =1,
and for any ¢’ € (Cgree L {cso}) \ {a(c)},
e(c',c) € {e(a(c), c),e(alc),c) +1},
and for any e (Cfree U {COO}) \ {b(C)},

e(c,c’) € {e(c,b(c)),e(c,b(c)) +1},

a

3. forany ¢, ¢’ € Cpound,
e(c,c') =e(c,a(c")) +e(b(c), ') — x(blc) #a(c))-

Example 6.1.14. With our example of color set and a and b, and an non-negative integer 1, the energy €, is defined
by

er(a; b]/“kbl) Xizk)—x(i=j=K+x(G<h)-x(j=k=1)

€(coo,aibj) =1

er(ai b]/COO) =x(i =0 +x(j <0

€7(Co0,C0) =0
is well-defined according to the reduction with respect to a and b. In fact, we have

1. foranyi,j € N,

2. foranyi #j €N,

eo(aibi, a;b;) +eg(abj, a;b;) = x(i < j) + x(i > j)
= 1,

and forany k #i € IN,

er(arby, aib;) = x(k > 1) + x(k < j)
e {x(i <j),x(i<j)+1},
€r(co,aibj) = 1
e {xi<j)xli<j)+1},
and forany k # j € IN,

e(aiby, axby) = x(i > k) + x(j < k)
€ {x(i>j)eli>j+1},

er(aib, coo) = x(i > £) + x(j < £)
€ {x(>j)x(>j)+1},

3. foranyi # jk #1 €N,

(”lb]/akbl) = X(Z 2 ) +X(j < l)
=2k +x(G<k)+((G<D+x(G>k)—(x(j<k)+x(j>k)
= €y(a;bj, axby) + €(ajbj, axby) — x(j # k) -
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We now study how insertions inside a color sequence affect the corresponding minimal partition. If S is
a reduced color sequence, we want to see how the insertion of some free color in S affects the minimal
partition, or equivalently the minimal differences between successive parts.

Let us start with an observation. Because for all free colors ¢, €(c, ¢) = 0, inserting a free color ¢ once
or multiple times inside a given pair has exactly the same effect on the rest of the minimal partition.
Therefore we only need to study the case where we insert a single free color inside a primary or sec-
ondary pair. First, let us see what happens to the minimal differences if we insert a free color inside a
primary pair.

Proposition 6.1.15. Let C = ¢y, ..., ¢s be a color sequence, and let ming (C) = (A, -+, As,Oc ) be the corre-
sponding minimal partition. Inserting a free color ¢’ = b(c;) = b(c;y1) inside a primary pair (c;, ¢;41) doesn’t
disrupt the minimal differences. The minimal partition after insertion will be ming(cy, ..., ¢;, ¢/, Civ1,...,Cs) =
(/\1, cee ,)\Z‘, )\,,/\H_l, ce ,/\5,,0500), with A = /\H_l + G(C/, Ci+l)-

This follows immediately from (2.2.52), as we have b(c;) = a(c; 1) and then

e(ci,cit1) = e(ci,a(cirr)) +e(blci), civ1) -

We now turn to insertions inside secondary pairs. In certain cases, it will disrupt the minimal differences.

We first study the case where we insert a free color to the left of ¢’ in a secondary pair (c,¢’). This
means that ¢’ is necessarily bound, and either c is a free color (possibly equal to c«) different from a(c’),
or ¢ is also bound with b(c) # a(c’).

1. When c is free, we then have that

e(c,a(c)) +e(a(c), ) —elc,d) =1+¢€(a(c),c) —elc,c) by (2.2.48)
€ {0,1} by (2.2.50)

2. When c is bound, we have

e(c,a(c)) +e(a(c),c") —elc,c') = x(b(c) #a(c)) +e(a(c), ) —e(bc),c) by (2.2.52)
e {0,1}

by what precedes. In both cases, we always have e(c,a(c’)) + e(a(c’),c’) —e(c,¢’) € {0,1}.

Definition 6.1.16. When the above is 0 (resp. 1), we call (¢, ') a type O (resp. type 1) left pair for €, and the
corresponding insertion a type 0 (resp. type 1) left insertion for €.

Remark 6.1.17. The type of the left pair (c,c’) for ¢ bound is the same as the type of (b(c),c’).

Similarly, we study the case where we insert a free color to the right of ¢ in a secondary pair (c, ). This
happens when ¢ is a bound color and either ¢’ is free (possibly equals to c«) such that b(c) # ¢/, or ¢’ is
bound such that b(c) # a(c’), and this essentially works in the same way as left insertions.

1. When (¢’ is free, we then have that

e(c,b(c)) +e(blc), ) —elc,c') =e(c,b(c)) +1—e(c,c) by (2.2.48)
€ {0,1} by (2.2.51)

2. When c is bound, we have

e(c,b(c)) +e(b(c), ') —elc, ) =elc,b(c)) + x(b(c) # a(c')) —elc,alc)) by (2.2.52)
e {0,1}

by what precedes. In both cases, we always have (¢, b(c)) + €(b(c),c") — e(c,¢’) € {0,1}. As before, we
define type 0 and type 1.

Definition 6.1.18. When the difference above is 0 (resp. 1), we call (¢, ") a type 0 (resp. type 1) right pair
for €, and the corresponding insertion a type 0 (resp. type 1) right insertion for €.

Remark 6.1.19. The type of the right pair (c,c’) for ¢’ bound is the same as the type of (c,a(c’)).
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We now understand the effect that an insertion inside a secondary pair has on the minimal partition,
depending on the type of this insertion.

Proposition 6.1.20 (Type O insertion). Let C = cj, . .., cs be a color sequence, and let mine (C) = (Aq, ..., As, O, )
be the corresponding minimal partition. For any i € {0,...,s}, the type O insertion of a free color ¢’ inside a
secondary pair (c;,c; 1) doesn’t disrupt the minimal differences. The minimal partition after insertion will be
mine(cl, ..o, Cy C/, Citl,--- ,CS) = ()\1, A ,/\i, )L/, )\i+1/ A ,/\S, Ocoo), with A = /\1’+1 + €(C/, Ci+1)'

Example 6.1.21. The minimal partition with color sequence

C = ayby, a1by, apby, a1by, aybq

mlne(c) = 5ﬂ2h2 + 4{11b0 + 2a0b2 + 2!1][70 =+ 1ﬂ2b1'

We insert a1by inside (agby, a1by). The minimal partition with color sequence

!
C' = azby, a1by, agba, a1by, a1by, azby

mlne(cl) = 5ﬂ2b2 + 4ﬂ1b0 + zdgbz + zﬂlbl + Zﬂlho + 1ﬂ2h1'

The part 2,,p, was inserted, but all the other parts stay the same.

Proposition 6.1.22 (Type 1 insertion). Let C = ¢y, . .., ¢s be a color sequence, and let mine (C) = (Aq,...,As,,0cy)
be the corresponding minimal partition. For any i € {0,...,s}, the type 1 insertion of a free color ¢’ inside a sec-
ondary pair (c;,c;11) adds 1 to the minimal difference between c; and c; 1. This forces us to add 1 to each part

to the left of the newly inserted part in the minimal partition, which becomes ming(cy, ..., ¢;, ¢/, civ1,...,Cs) =

(/\1 +1,..., A+ 1,/\/, /\i-i-lr R ,AS,OCOO), with A = Al‘-‘rl + G(C/, Ci+1).

Example 6.1.23. In the color sequence C of the previous example, we insert ayb, inside (agby, a1bg). The minimal
partition with color sequence
C" = agby, arbo, agbz, azba, a1bo, azby

mine(cn) = 6ﬂzb2 + 5a1b0 + 3[lgb2 + 3ﬂ2b2 + 2111[70 + 1H2h1'
All the parts to the left of the newly inserted part are increased by one compared to min,(C).
So far we have only studied the case of a single insertion (either left or right) inside a secondary pair.

We still need to understand what happens to the minimal differences if, inside a secondary pair (c,c’)
for ¢, ¢’ are bound colors such that b(c) # a(c’), when we insert both free colors b(c) and a(c’).

Lemma 6.1.24 (Left and right insertion). Let (c,c’), with ¢, ¢’ bound colors such that b(c) # a(c’). We have

e(c,bl(c)) + e(b(c),a(c")) +e(a(d), ') — e(c, )
0 if both the right and left insertions inside (c,c’) are of type O,
= ¢ 1 if exactly one of the insertions inside (c,c") is of type 1,
2 if both the right and left insertions inside (c,c’) are of type 1.

The proof can be found in Appendix A.3.1. Thus performing both a left and right insertion inside
a secondary pair is the same as performing the two insertions separately. We conclude this section by
summarizing the influence of all the possible insertions on the minimal partition.

Proposition 6.1.25 (Summary of the different types of insertion). Let C = cy, ..., cs be a color sequence, and
let ming(C) = (Aq, -+, As,Ocy, ) e the corresponding minimal partition. When we insert a free color ¢’ inside a
pair (¢;, ¢iy1), the minimal partition transforms as follows:

e if ¢; is a free color and ¢’ = c;, the minimal partition becomes (A1, -+ ,Ai, Aj, Aiv1, -+, As,,0cy) (ie. the
part A; repeats, and the rest of the partition remains unchanged);

e if (ci,ciy1) is a primary pair, the minimal partition becomes (A1, ,Aj, A, Aig1, -+, As,,Oc), with
A= Aipr +e(d cir);

* if (¢c;, civ1) is a secondary pair and the insertion of ¢ is of type 0, the minimal partition becomes
(Alr Tty /\i/ /\// )\H»l/ ttty /\S/ ’ Ocoo)r with /\/ = /\i+l + e(clr Ci+1);
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* if (¢j, civ1) is a secondary pair and the insertion of ¢ is of type 1, the minimal partition becomes
AM+1, A+ LA A, As,,00,), with A = A +€(c, civq) (ie. we add 1 to all the parts to
the left of the newly inserted part A').

We call the first two types of insertions above neutral insertions.

6.1.4 Generating function for partitions with a given kernel

Our goal is to count partitions of P¢® with a given kernel. The results from the previous section will
help us do so.

Let S = cy,...,cs be a reduced color sequence of length s, having t maximal primary subsequences.
Let f1,..., fs+t be the free colors that can be inserted in S. In the following, we denote by N (resp. Ty,
T1) the set of indices i such that the insertion of f; is neutral (resp. of type 0, of type 1). We have N L
TouTi ={1,...,s+ t}. Moreover, the secondary pairs in S are exactly (c;,, ,—1,¢i,, ;) and (ci,,,Cip,+1),
foru e {1,...,t}, where S, = Ciyy 17+ Cip,- SO We can write

t t
To= L] 75" =T
u=1

u=1

where 7" (resp. 7") is the set of indices j such that f; can be inserted inside (Cigy 1—1sCip, 1) OF (Cigs Ciy+1)
and is of type 0 (resp. 1). Forallu € {1,...,t}, we have |[T)*| =2 — |T{"|.

We want to study the minimal partition of the color sequence S(1y, ..., ns;¢). Denote by Sj' (resp.
S1) the indices j of 77" (resp. 71) such that n; > 0. We start with the following lemma whose proof is
given in Appendix A.3.2.

Lemma 6.1.26. Forallj € {1,...,s+t}, ifn; > 0, i.e. the color f; is actually inserted, then the corresponding
part A(f;) in the minimal partition of S(ny, ..., ns1+) is equal to

Afi)=#{j,.... s +HtFNNUToUS)). (6.1.1)

We can now give a formula for the weight of the minimal partition with color sequence S(n, ..., f54t).
We start with the minimal partition min,(S) with color sequence S. It has weight |min.(S)|. Then we
insert the parts corresponding to colors of type 1. Let j € S;. By Proposition 6.1.25, inserting f; adds 1
to all the parts of min,(S) which are to the left of A(f;). So this adds P(j) to the total weight. Moreover,
by Lemma 6.1.26, the part A(f;) is of size #({j,...,s +t} N (N UToUS)), and we insert it n; times.
Summing over all j € & gives the first sum. Finally, the insertion of parts corresponding to colors f;
with j € AU 7y yields the following proposition.

Proposition 6.1.27. With the notation above, the size of the minimal partition with color sequence S(ny, ..., Ns1¢)
is

|mine(S(ny, ..., n54+))| = |ming(S)|
+ Y (PG +njx#({j,...,s+t} N (NUToUS)))
S 6.1.2)
+ Y nix#{j,...s+tINNUTHUSY)),
JENUTY

where P(j) is the number of colors of S that are to the left of f;.

Starting from Proposition 6.1.27, we will show a key theorem, which will be very useful to establish
the connection with generalized colored Frobenius partitions. Recall that the g-binomial coefficient is
defined as follows:

H @
klg (@ a)k(q9)n—k
and we assume that [Z]q =0ifk <Oork>n.

Theorem 6.1.28. Let n be a positive integer and m a non-negative integer. Let S = c1, ..., cs be a reduced color
sequence of length s, having t maximal primary subsequences. The generating function for minimal partitions in
Pee with kernel S, having s + m parts (apart from Oc,), is the following:

-1
{S o ) } . (6.13)

. . t
q\mmg(C)\ _ q\mme(S)Hm Z qu(sft)gu/t(q; |761|/‘ .., |76t|)
U=l q

Ccolor sequence of length s+m 0

such that red, ;, (C)=S
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where goo =1, and foru < v,

%
uo(@x, . x)= Y gt T VI,
91/~~~/9v€{0,1}2 k=1
01+---+6,=u

By observing that all partitions of Pc= with a given color sequence C of length s + m can be obtained
in a unique way by adding a partition with at most s + m parts to the minimal partition min(C), The-
orem 6.1.28 is actually equivalent to the following generating function for all partitions of P¢> with a
given kernel.

Proposition 6.1.29. Let n be a positive integer and m a non-negative integer. Let S = c1,...,cs be a reduced
color sequence of length s, having t maximal primary subsequences. The generating function for partitions in P&
with kernel S, having s + m parts, is the following:

|m1ng( )+m ¢ +m—1
Al st g (g | T .| F ] . (6.1.4)
AE;?O: (A P qu gut(@|To |- 50| q
L(A)=s+m
ker, ,(A)=S

The proof of Theorem 6.1.28 from Proposition 6.1.27, quite technical, is postponed to Section 6.3. Its
reading is not necessary to understand the connection between P¢* and fgffez, which we will study in
the next section.

6.2 Generalized colored Frobenius partitions

In this section, we compute the generating function for generalized colored Frobenius in F¢, with
a given kernel and show that it is the same as the generating function (6.1.4) for generalized colored
partitions in P& with the same kernel.

6.2.1 The difference conditions corresponding to minimal colored Frobenius par-
titions

We start by observing that minimal generalized colored Frobenius in F¢%, are in bijection with minimal

. e 2
generalized colored partitions in P, .

Definition 6.2.1. Let cy,...,cs be a sequence of colors taken from C. The minimal colored Frobenius parti-
tion in ]-'gf‘jez associated to cy, . .., ¢s is the generalized colored Frobenius partition

= ((A, 1), ,(As, ps),(0,0)c, ) with minimal size such that for alli € {1,...,s}, c(A;, ;) = c;. We
denote this partition by ming, ¢, (c1, ..., ¢s). This is equivalent to saying that

()\1’. o ’/\S/OCOO) = miné‘l (Clr- . '/CS)

and
(u1,- -, Ms,0c) = ming, (cq,...,Cs) -
The size of mine, ¢, (c1, ..., ¢s) is then equal to

S

|mine, e,(c1,...,Cs) Z €1(ck, cxt1) +€2(Crs Cki1))
k=
= |m 1nel+ez(c1, s Cs)]

Recall that

2 if c =" € Chee U {Co}

€(c,d)+1 if ¢’ € Cpoung and ¢ = a(c’)

e(c,c’)+1 if ¢ € Cpoung and ¢’ = b(c)

€(c,c’) otherwise .

e1(c,c) +exc,d) =

Using the fact that reduced color sequences do not contain any pair (c, Iod ) of the three first above cases,
we then have the following proposition.
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Proposition 6.2.2. Let S be a reduced color sequence. Then
ming(S) = ming, +¢,(S).

When C is a colored sequence which is not reduced, we do not have min.(C) = ming, 4¢,(C) in
general. So to compute the generating function for the generalized colored Frobenius partitions, we
define one last difference condition

€, 2:2—61 — €7,

which shares many properties with €. The proof of the following proposition can be found in Appendix
A3.11.

Proposition 6.2.3. The energy €’ is well-defined according to the reduction with respect to a and b. Furthermore,
the type of insertion in a secondary pair for €' is 0 if and only if the type of insertion in a secondary pair for € is 1.

In other words, using the notation at the beginning of Section 6.1.4, given a reduced color sequence
S=cy,...,csand fi, ..., fo1+ the free colors that can be inserted in S, N (resp. Ty, 71) is exactly the set
of indices 7 such that the insertion of f; is neutral (resp. of type 1, of type 0) for €’.

6.2.2 The generating function for the generalized colored Frobenius partitions in
Fee, with a given kernel

Now that we understand the orders €7 + €; and €’, we will use them to compute the generating function
for generalized colored Frobenius partitions in F¢%, with a given kernel.

Before doing this, we need a technical lemma about the function g, , defined in Theorem 6.1.28,
which will appear again in this section (proof in Appendix A.3.3).

Lemma 6.2.4. Let g be the function defined in Theorem 6.1.28. Then

—u(2v+u—1)

Quo(@ 52— x1,...,2—x) =4 Suo (%1, -+, X0).

We now give the generating function for minimal generalized colored partitions in and a

given kernel (see proof in Appendix A.3.12).

E +€2

Proposition 6.2.5. Let n be a positive integer and m a non-negative integer. Let S = cy, . .., ¢s be a reduced color
sequence of length s, having t maximal primary subsequences. Using the notation of Section 6.1.4, the generating
function for minimal partitions in

P€1+€2
with kernel S, having s 4+ m parts, is given by:
t
i s+m—1

Z q\mlnel+e2( )l _q\mme( )| +m(s+m+1) 2 1(t+m) gut ‘1/|76 | /|76t|>[ . } .
Ccolor sequence u=0 q
of length s+m

such that red, ;,(C)=S
6.2.1)

By Definition 6.2.1, the generating function in (6.2.1) is also the generating function for minimal gen-
eralized colored Frobenius partitions in ¢, with kernel S. Finally, using the fact that any generalized
colored Frobenius partitions with color sequence C of length s + m (apart from c) can be obtained in a
unique way by adding a partition into at most s 4- m parts to A and another partition into at most s + m
parts to ¢ in the minimal colored Frobenius partition, we obtain the following key expression for the
generating function.

Proposition 6.2.6. Let n be a positive integer and m a non-negative integer. Let S = cy,. . ., ¢s be a reduced color
sequence of length s, having t maximal primary subsequences. Using the notation of Section 6.1.4, the generating
function for n?-colored Frobenius partitions with kernel S, having length s + m, is the following:

| mine(S)|+m(s+m+1) ¢ s+m—1
L o=t N sl T [ e22)
FEFES.,: 4 9)s+m u= q
L(F)=s+m

ker(F)=S
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6.2.3 Proof of Theorem 2.2.39

Proposition 6.1.29 gives the generating function for colored partitions of Pc* with kernel S, and Proposi-
tion 6.2.6 gives the generating function for colored Frobenius partitions of ¢, with the same kernel S.
In this section, we show that these two generating functions are actually equal and then obtain Theorem
2.2.39. But before doing so, we need a lemma about g-binomial coefficients. For the proof, see Appendix
A34.

Lemma 6.2.7. Let s be a positive integer and m, u two non-negative integers. Then

Z q(m/—u)(s—i-m’) {m _ u]
@G Dstm =0 (@D sem "

m —u
We are now ready to prove Theorem 2.2.39.

By Proposition 6.1.29,

| mine(S)|+m ¢t B
‘/\‘ — qi u(S—t) . 1 ; S + m
g = 7" gu(4; T ,-..,|T|)[
)\G;sc‘”: m>0 (4 @)s+m ugo u 0 0 nu |,
ker(A)=S

d min, u(s— m s+m—1
= Y qImine g (g T, TS L { }'
q

u=0 =0 (@ @)stm | m—u

and by Proposition 6.2.6,

| ming (S)|4+m(s+m+1) ¢ stm—1

y 4= %t L g gt T T

FEFES,: m>0 ‘7/’7)s+m u=0 q
ker(F)=S

m—u)(s+m)+m s+m—1
S,

t _ (
_ Z q|mm€(S)\+u(s—t)gu,t(q; |761| |7~t Z q
u=0 m>0 (q/ q)s+m

Thus, to prove the theorem, it is sufficient to show that for u € {0,...,t},

m>0 (q’ q)s-‘rm m—u q m>0 (q, q)s+m m—u g (ot
By Lemma 6.2.7,
L ferm=1) g ) e
(@ @)sm | m—u q  m'>0 (T D s4m M —u gL m—u |,
q(m/_u)(s-‘rm/) |:S + ml o 1:| |:S +m— 1:|
_m’ZO (q;q)s+m’ m —u q s+m' —1 q
Thus
q”‘[erml] _ q(’”'“‘”f’*’”')*’”{wm’l} [s+m1]
=0 (@ Q)sem L m—u qa m>0m'>0 (@ Dsmr m—u | |s+m —1],

q(m’fu)(s+m’)+m’ |:S 4+ — 1:|
q

£ m—m' S+m_1]
m'>0 (4 D)s+m m' —u Z 1 L +m —1 1/].

m>0
The last thing to show is that

qum[s—l—m—l] _ 1
s+m' —1], (G q)stm

m>0

which is true by separating the partitions into at most s + m’ parts counted by 0 according to the

1
9 s-4m!
length m — m’ of their largest part.
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6.3 Proof of Theorem 6.1.28

In this section, we give a proof of Theorem 6.1.28. Let S = cy,...,¢s be a reduced colour sequence of
length s, having t maximal primary subsequences. We use the same notation as in Section 6.1.4. In
addition, we define forall u € {1,...,t}, jo,_1 (resp. jo,) to be the index of the free colour which can be
inserted to the left (resp. right) of S;,. Thus we have 7" = {joy—1,jou} N To and T = {jou—1,jou} N T1.

For brevity, from now we denote on the set of all integers between i and j by [i; j]. Our starting point
is the equality

Gsm(q) == Z c/' mine (C)| _ Z q|min€(5(n1,...,ns+t))\, 6.3.1)
Ccolour sequence of length s-+m My lst:
such that red(C)=5 it A s p=m

which simply follows from the definition of reduced color sequences. Proposition 6.1.27 gives us an
expression for |mine(S(ny, ..., ns1¢))|, which we will use to derive Theorem 6.1.28. Let us start with a
lemma which evaluates a sum appearing in the formula for |mine(S(ny, ..., n51¢))].

Lemma 6.3.1 (Proof in Appendix A.3.5). Let
Ti:= ) (P +#([s+HINNUTUS))),
j€S

where P(j) is the number of colours of S that are to the left of f;. Then

t

t R—
Ti=) <|N+u—1+2(|76”|+|3{’|)> S+ Y M) <j:j eS|,

u=1 jE€SY

where S¥ := T* \ S¥ is the set of indices j of T} such that the free color fj is not inserted.

We can now give a formula for the generating function for minimal partitions mine(S(ny, ..., ns4t)
for a fixed set S;. The desired generating function Gg ,,(g) of (6.3.1) will then be obtained by summing
over all possible sets Sj.

Lemma 6.3.2 (Proof in Appendix A.3.6). Let Sy be fixed. Define

HS/SI (q) = 2 qlmi'nf(s(nlr---rns+t))‘.

1y ,eee Mgt
ny+-+nspp=m,
{j€7-1:7’l]‘>0}251

We have

HS,S1 (q m— |S1|

) — q‘ming(S)‘JrZ]wme‘S]‘ |:m -1+ ‘N| + |76|:| ) (632)
q
Before we compute Gg ,,(7), one more lemma about g-binomial coefficients is needed.
Lemma 6.3.3 (Proof in Appendix A.3.7). Let a and b be non-negative integers. We have
Y gheatl < elatiha) [“ + b} _
AC[Ta-+b] i 1q
|Al=a
We are now ready to sum Hg s, (q) over all possible sets S; to obtain a formula for Gg ,,,(q).
Proposition 6.3.4 (Proof in Appendix A.3.13). Let S be a reduced colour sequence, and m a non-negative

integer. We have

(ST L o [m= 1IN+ [T T
Gsm(q) = 2 q\mme(S)HZu:lku(l/\/Hu 1+ZU:,,(\757J\+kv))qm ke AN } H [|kl |] .
kl,.A.,kti u=1"u q u q

ey <|TH|

u=1

What remains to be done is show that the expression for Gg ,,(7) in Proposition 6.3.4 is actually the
same as (6.1.3). First, let us give yet another lemma about g-binomial coefficients.
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Lemma 6.3.5 (Proof in Appendix A.3.8). Let m, ¥y, ...,¢; be non-negative integers. We have

qm m4ly+-+0—1 m Z lilqérxyfl Xr— X1+ 6 —1

m q 0=x9<x, < <xp=mr=1 Xr = Xr-1 q
In the above, we use the convention that [Bl] =1

We use the lemma above to rewrite a part of the expression in Proposition 6.3.4.

Proposition 6.3.6 (Proof in Appendix A.3.14). We have:

gLk [m AL |75|} _ T (VI (o TFD)
q

t
m— Zu:l ku

{mu —my—1 + |Tg'] = 1} gl {m —m+ N[ =1
my —my_1— ku q m — my q‘

« Y (ﬁ g 75 D

O=mo<my <--<my<m \u=1

Substituting Proposition 6.3.6 in Proposition 6.3.4 leads to

min, f _ " Tu
Gs,m(q) = gimine(S)+m YOI gfon (4= 24+ ) [| k1 q
q

kl,...,kt: u=1 u
kuglfrlu‘

y Y (ﬁ kT

{mu —my—1 + 75" = 1] gl {m —my+ N[ -1
my —my,_q —ky q m — my

O=mo<my <-<mp<m \u=1
Interchanging the order of the two multisums, we obtain:
' t
G, (q) = gimine(S)+m Y [ g2 e T et T D
O=mo<m <--<my<m \ ky,...k: u=1
ke <[ T|
(6.3.3)
y |:7T11/l:| [mu —my_1 + [Ty — 1} qIN\mt {m —mi+ |N|— l] '
ky q my —my_1 — ky g m— my; q
We need one last lemma to complete our proof of Theorem 6.1.28.
Lemma 6.3.7 (Proof in Appendix A.3.9). We have
v ﬁ oo (=2 T ) G T [|7'1”|] {mu —my 1+ [T = 1]
O0=mo<my <---<my ky,...kp: u=1 ku q My — My 1 — ky q
kuS'ﬂ“‘
t
my+t—1
= s T D
v=0 t v q
where gy + was defined in Theorem 6.1.28.
We can now write
t
: m—mt—0—|N|—1 my+t—1
Gaon(@) = 1™ L gor(i T 1) T g |
! vgf) 0§§§m L gL M=0 1y
t / /
- oy [m—mi—v+ N —=1] [mj+v+t—1
:q|mmg(5)|+m ng,t(q;lﬁl\,---/mtl) Z qN|(mt+v)|: W;,m/,v :| [ t » ] ,
v=0 0<my<m—v t q t q

where the second equality follows from the change of variables m} = m; — v. Using Lemma 6.3.5 with
t=2,m=m—ov,{; =v+t and ¢, = | N, this becomes

: ! m+t+|N|—1
Gsn(q) = g™ Y- g Wlgo (g: 175, 1T5]) { o ! v' } :
v=0 q
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Observing that |N'| = s — t concludes the proof of Theorem 6.1.28.

6.4 Proof of Theorem 2.2.45

By Theorem 2.2.39, Theorem 2.2.43 relates the generating function for generalized Primc partitions to
the generating function for colored Frobenius partitions. In this section, we study the particular case
b, = ai_l foralli € {0,...,n}. All the free colors vanish, and the generating function can now be written
as a sum of infinite products.

Let n be a positive integer. By Theorem 2.2.43 with b; = ai_l for all 7, it follows that

- . . m ,up—0g Up—1—Un-1
P, = ) Pou(m;ug, ... ty—1;00, ..., 0q—1)q"ag’ 0 a3
MUQ,. o) Uyy 1,00, 01 >0
i 1 -1
H —X0i;9)eo (=X ;) oo
i=0

Using the Jacobi triple product (2.1.6) in each term of this product, we obtain

Pn ( ﬁ < Z xmla qm W;+1)>

9:9 i=0 \mez

n—1 —1 m;(m;+1)
- 1n L (IJar ) e
(7:9)% Mo, y_1€Z  \i=0

mo+--+my,_1=0

Now replacing mg by —mq; — - - - — m,_1 and using that

mo(mg + 1 ”,m— Lo,

1<i<j<n—1

we get

1
Py =

n—1
Z <H(’1i’10 ) > qZ? 1 m Jr):,1<z<]<n 1m; m] (641)

(@D ez i1

We want to apply the Jacobi triple product again inside the n — 1-parameters sum, in order to obtain
a sum of infinite products. To do so, we carry out a change of variables. We first need the following
lemma whose proof is given in Appendix A.3.10.

Lemma 6.4.1. Let
n—1
2
= Z m; + Z mlm]
i=1 1<i<j<n—1

Let sy = Oand forallie {1,...,n —1},

Then,

n-l n-l ((i +1)s; — isiz1)?
M(n) =) si(si—sit1) ot ol
; o a i—1 2i(i+1)

By Lemma 6.4.1 and (6.4.1), we obtain

1 n-1 n—1
P, = Z H(a.afl)sﬁsiﬂ q):z-zl 5i(5i—sit1)
.\ 0
(q’ q)oo 51,51 1€Z \i=1
5, =0
1 n—1 si—s ( )
_ —51 i Si+1 48;(S;—S;
— a a. i\%i 7241
e DR R B K
(q’ q)oo 51,...,5,1_162 i=1
5, =0

This is (2.2.60). Let us do perform a few more changes of variables to obtain (2.2.61).
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Foralli € {1,...,n—1}, letus write s; = i x d; +r;, with v; € {0,...,i — 1}. This is the euclid-
ian division by i, so this expression is unique, and for rq,...,r,_1 fixed, there is a bijection between
{(s1,...,8,-1) € Z" ' 1 5; = r; mod i} and {(dy,...,d,_1) € Z""'}. Moreover our choice s, = 0
corresponds to d,, = 1, = 0. We obtain

nl /(i i 1 —irigq)?
M(n) = ; < ( ;Ll)(di—di+1)2+ (« +21i)(il+ 1)l+1) +(di —dip)((E+1)r; —iri+1))-

By a last change of variables p; = d; — d, 1, equivalent to d; = Z?:_il pi, {(dy, ..., dy1) € Z" 1} is in
bijection with {(p1, ..., pn_1) € Z" '}. This yields

M(n) = v (i(i+ 1)Pz'2 ((i+Dr —iri)?

2 +1) +Pi((i+1)riiri+1))

n=1 s+
=Y ri(ri—riz)+ ), (l(l_zi—l)pzz+pi((i+1)7i_iri+l)> :

i=1 i=1
Backtracking all these changes of variables, we have foralli € {1,...,n —1},

m; = S;—Sit1 (with s, = 0)
= id;+ rl (i+1)d;j1— Tz+1 (withd, =r, =0)
- Zjn i P]+7’1 (1+1)2n 1+1p] Tit1
= — L pi i = i

Thus, by the above and Lemma 6.4.1, the generating function in (6.4.1) becomes
P Y r (TTaaghyrstree
= a .a* 1 =i+ 1 1
U o

© Ipesln—1 py,..,pp_1€Z 1

0555 = (6.4.2)

2 rilri— i) A2 (G ppi (4 ) ri—irin))

xq

It can be shown by induction on n that

_ _ i pi
1—[ sz ] ,+1 pj — ﬁ <ﬁ aia£_1> ! '
i=1 i=1 \/=0

Therefore reorganizing (6.4.2) leads to

1

Pn = — 71 Tit1 7'1(71771+1)
(4 9)% » (H 7 )

00 T1,p—1
OSI’j S]*l

n=1 pi i(i+1) 2
X Z H ((Hﬂ a, ) q l+l rllrl+1> q 2 Pi

P1/-Pn-1€2Z i=1

(o] 7‘1,...,1'”‘,1 i=1
Ogrjgj—l

n—1
— CF Z (H a:"_r"“q’i(ﬁml))

n—1 i—1 i(i41) - ) pi - pilpit1)
XH Z Haiﬂf g2 +(i41)r—iriq ql(Hl)f

i=1 p1,...pn-1€Z
1

_ Z Hafz Tit1 r, ri—tiy1)
(qIQ)go Tyeen—1 i=

0<r i<j—1

(060 < (nmé>

+(i4+1)r—iriyq. q(z+l)>

[eo)
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i—1 1 i(i+1) —(i41)ri+ir; i(i+1)
y - Ha[ﬂi q 5 i 1+1,~q 7
(=0

[e9)

where over the last equality, we used Jacobi’s triple product identity in each of the sums in the p;’s.
Theorem 2.2.45 is proved.

Remark 6.4.2. Andrews (Andrews, 1984a) gave the particular cases n = 1,2,3 of this formula, but without
keeping track of the colors. Our result is more general, as it keeps track of the colors and is valid for all n.
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Chapter 7

Beyond Capparelli’s theorem: a
regularity over Primc’s theorem

In this chapter, we discuss another duality between flatness and regularity which is presented in The-
orem 2.2.51. The chapter is organized as follows. In Section 7.1, the necessary tools for our bijective
proof of Theorem 2.2.51 are given. Then, in Section 7.2, we describe our bijection and prove its well-
definedness. Finally, in Section 7.3, it is proved that Theorem 2.2.51 implies Theorem 2.2.59.

7.1 The setup

Before proving Theorem 2.2.51, we first need to understand the properties of the energy e with values
in {0,1,2} as described in Definition 2.2.46.

7.1.1 Insertion of parts with free colors

Let us consider the partial order defined on C with
Csup > C‘free > Cinf ’

This means that ¢; > ¢, > c3 for any (c1,¢2,¢3) € Csup X Cpree X Cins. The relations in (2.2.63), (2.2.64)
and (2.2.65) can be summarized in a single relation: for any c; and ¢ not belonging to the same set of
colors,

€(c1,c2) € {x(c1 <c2),x(e1 <ea) +1}- (7.1.1)

One can deduce from the above relation the following property: in P&, for ¢; and ¢, not belonging to
the same set of colors, the pattern

pcl’pCZ

is allowed if only if €(c1, c2) = 0, and this implies that ¢c; > c;. Another key property of € is the relation
(2.2.62). This means that for any ¢y, c3 in Cgee, the pattern

Peyr Pey

is allowed if and only if c; = c,. These properties on the allowed patterns having parts with the same
size imply the following proposition.

Proposition 7.1.1. Let C = ¢y - - - ¢5 be a sequence of colors such that forall i € {1,...,5s — 1}, €(c;, ¢i41) = 0.
Then, there exist unique integers 1 < u < v < s+ 1such that

{Clr . -/Cufl} C Csup/
Cll — e — C071 = Cfree/ (712)

{cv,...,cs} C Cinf
with the convention that {c,,...,cp} = @ ifa > b.
The above proposition then implies the following insertion rules:

L. if there is a part ps with f € Ciree, then for any f’ € Ce, insert a part py next to the part py if and
only if f = f/,
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2. if there is a part pc with ¢ € Ceup, then for any f € Cpree, since the part py cannot be inserted to its
left, then insert py to its right if and only if €(c, f) = 0,

3. if there is a part p. with ¢ € Ciy, then for any f € Cpree, since the part py cannot be inserted to its
right, then insert py to its left if and only if €(f,c) = 0.

7.1.2 Insertion in a pair of parts

We now study the case when a part py with a color f € Cpee is inserted between two consecutive parts

pg), pg), and has the same size as one of the two parts, i.e p € { pW), p@1}. Observe that when a part

ps with the same size as a part with a free color is inserted, this necessarily means that f equals this free
color. In the following, we then study the case when the insertion is such that the color of the part with
the same size as the inserted part belongs to Csup U Cing-

By the two last insertion rules, we only need to investigate the insertions of the type p = p(!) and
c1 € Csup, and the insertions of the type p = p?) and ¢; € Cing.

We start with the case where the two parts have the same size, which gives a pattern of the form
Pcys Pey- By the insertion rules, such a insertion is not possible when both colors c; and c; are either in
Csup or in Cins. Also, as soon as one of the color belongs to Cyree, the first insertion rule implies that only
a part ps with f equal to this free color can be inserted. The following lemma deals with the last case.

Lemma 7.1.2. For any pair (c1,¢2) € Coup X Ciyy such that €(cy, c2) = 0, we can insert a part pg with f € Cpe
between the parts of the pattern p,, pc, to obtain

Pe1s PfrPey

ifand only if e(cq, f) = €(f,c2) = 0.

We now study the case where p(1) # p(2). This necessarily means that p(!) > p(2). We first start with
the insertion of py to the right of p; with ¢1 € Csyp.

Lemma 7.1.3. For any colors (c1, f) € Csup X Cpe and , we have the following:

1. forany color ¢y in C U {ceo }, and any integer u > 2, we can insert a part p ¢ between the parts of the pattern
pCll (P - u)CZ to Obtﬂin
P Pps (p = )ey

ifand only if e(cy, f) =0,

2. for any color ¢a € Cye U Ciyp, we can insert a part py between the parts of the pattern pe,, (p — 1)c, to
obtain

e P (p =1y
ifand only if e(cq, f) =0,

3. for any color ca € Csup such that €(c1,c2) € {0,1}, we can insert a part p ¢ between the parts of the pattern
Pey, (p — 1), to obtain
P Pfr (P = ey

ifand only if e(cq, f) = 0and e(f,cp) = 1.
The second case concerns the insertion of py to the left of p., with ¢, € Csup-
Lemma 7.1.4. For any color (cz, f) € Ciup X Cfree, we have the following:

1. for any color ¢y in C, and any integer u > 2, we can insert a part py between the parts of the pattern
(p+ t)ey, Pe, to obtain
(p + u)Clr Pf/ pcz

ifand only if e(cq, f) =0,

2. for any color c1 € Csup U Cpr, we can insert a part py between the parts of the pattern (p +1)¢,, pe, to
obtain

(P +Der, Pr Pes
ifand only if e(f,c2) =0,
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3. for any color c1 € Ciyy such that €(cy,c2) € {0, 1}, we can insert a part p ¢ between the parts of the pattern
(p+1)¢, pe, to obtain
(p + 1)C1/ Pf, Pcy

ifand only if €(cy, f) = 1and e(f,cp) = 0.

The color f of the possible inserted part depends on both colors ¢; and c; only if (¢1, ¢2) belongs to

{(c,c") € Coup X Cing : €(c,¢') = 0} U{(c,c) € Coyp 1 €(c,c) € {0,1}} L {(c,¢') € Chg s €(c,c') € {0,1}}-

1

The existence of such a color f is rendered possible by the relations (2.2.66), (2.2.67) and (2.2.68). When
the color f only depends on the color of the part with the same size as py, the existence of such a color
f is ensured by (2.2.64) and (2.2.63).

The definition of the functions ¢ and <y in Definition 2.2.48 then allows us to forbid in (CSOV £ a unique
1 )

insertion in all the corresponding pairs p,”, p¢,” of consecutive parts.

Remark 7.1.5. For any (c1,¢2) € Csup X Ciyp, we can insert in the pair (p + 1)¢,, pc, two parts (p + 1), and
pf, with f1, f2 in Csup if only if €(c1, f1) = €(f2,c2) = 0. The choice of the color f1 only depends on cq, as well
as the choice of f, only depends on c;.

7.1.3 Insertion at the extremities

Recall that
e(cfree/ COO) = {1}/
€(Coup, C0) C {1,2},
€(Cinf, €oo) C {0,1} -

Then, by Proposition 7.1.1, the only possible tail for a partition in P¢>, consisting of parts of size 0, has
the form
0C1r e /OCS/OCOO

with ¢q,...,¢s € Coup. This means that we cannot insert a part O¢ for any f € Cgee. We now study the
insertion of at 1¢ the tail of the partitions.

* When the tail has the form 1., 0, with ¢ € Csyp, for any free color f, one can insert a part 1 fto the
right to 1, as long as e(c, f) = 0.

* When the tail has the form 1, 0., with ¢ € Cy,s, for any free color f, the only possible insertion of
a part 17 next to the 1. occurs its left. The part 1. then remains the last part before Oc,,.

We finally study the case of insertion at the head of the partition.

* When the first part is p. with ¢ € Csup, for any free color f, the only possible insertion of a part p¢
next to the p. occurs its right. The part 1. then remains the first part of the partitions.

* When the first part is p. with ¢ € Cj,g, for any free color f, for any free color f, one can insert a part
pr to the right to p. as long as e(f, c) = 0.

m 2

The above insertion properties at the extremities allow us to extend the insertion into the pair p;,’, p¢,
for the following cases,

1. the insertion of p rin the pair p.,, 0., withc; € c € Csyp and p > 1,

2. the insertion of p £in the pair oo, po, with ¢z € ¢ € Cips and u > 1, which means that p., is at the
head of the partitions.

7.2 Bijective proof of Theorem 2.2.51

721 The map &

Let us consider a partition A € Pc*. We want to build ®(A) = (p,v) € (6507735” x P. First, note that
€(c,c0) = €(c,co) = x(c # co) for any color ¢ € C. This is equivalent to saying that, in A, the parts
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colored by cp have a size different from the parts with color different from cq. We first consider v to be
the empty partition. We then proceed by transforming some parts py for free colors f into parts p and
insert them into v as follows.

1. We take all the parts of A with color ¢y and add them to v, while removing their color co.

Since the parts to the left and to the right of a maximal sequence of the form

pCOI' . -;Pco

have respectively a size greater and less than p, this means that their sizes differ by at least 2. The
fact that €(C,C U {c}) C {0,1,2} implies that, by removing the parts with color ¢ from A, we
obtain a partition A’ that is still in P¢*. Furthermore, the parts of A’ have sizes different from the
sizes of the parts of v.

2. For all the parts py in A’ with f € Cree \ {co} Which appear more than twice, we transform all the
parts ps but one into p and move them to v.

Since there is still one occurrence for all such parts, we obtain a partition A” that is still in P¢>,
and has no repeated parts ps with free colors, and no part colored by cy. Also, the only parts of A"
having the same size as some part of v are those with the same size as a certain part p with a free
color.

3. For all the parts py that appear in patterns pg), ps pg) of A" which are forbidden in 507 >, we

then transform the parts py into p and add these parts to v.

Note that such parts p; may have been repeated in the previous step, and can only appear in
forbidden patterns with p = p(!) and ¢; € Csup, Or p = p® and ¢, € Cins. One can also observe
that, by removing py from such patterns, the patterns pg}), pg) are always allowed in 2?7772"". At
the end of this step, the partition obtained does not have any forbidden pattern or any part with
color ¢p, and the part with free color p; cannot be repeated. We then set this partition to be p.

We then obtain at the end a pair of partitions (i, v) € 2?7 e X P.

Remark 7.2.1. We remark that the only parts in v which do not have the same size as the parts in y are those
coming from the parts of A with color c.

7.2.2 The map ®!

We will now describe the inverse map ®~!. For any (u,v) € SOV’PS’" x P, we proceed by inserting the
parts p of v in the partition y as follows.

1. Suppose that there is no part py with f € Cpee \ {co}, but there is a part p. with ¢ € Csyp LI Cing. We
then proceed as follows.

e If there exists a pair of colors (c1,¢;) € Csup X Cinf such that the pattern p.,, p., isin y, we then
necessarily have that e(cq,c2) = 0, and y(cq, ¢2) is defined. By Proposition 7.1.1, the existence
of such a pair is unique in the maximal sequence of parts with size p. Then set f = (cy,¢2),
transform the part p into p; and we insert py between p., and pc,, to obtain the pattern

Peir Py(cr,e2)7 Pez
which is forbidden in Z?WPE"".

Note that this is the only suitable insertion in the maximal sequence of parts with size p.
(a) We cannot insert a part p with a free color in the sequence to the left of p.,, as it consists
of parts with color in Csyp, and the second insertion rule forbids such insertion.

(b) Similarly, we cannot insert a part p with a free color in the sequence to the right of p.,,
as it consists of parts with color in Cy,¢, and the third insertion rule forbids such insertion.
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(c) Finally, inserting a part py into the pair pc,, pc, for any free color f # (c1,c2) such that
€(c1, f) = €(f, c2) = 0is useless and troublesome, as the pattern

Perr PfrPes

is allowed in ;07775‘”, and this insertion renders the map ®~! not injective.

e If all the parts p. have colors in Csup, we denote by ¢; the color of the rightmost part. With
the same reasoning as above, we cannot insert a part py with a free color in the sequence to
the left of p.,. Remark that the part to its right has necessarily a size less than p.

(a) If the part to the right of p., has size less than p — 1, then transform p into ps ), and
insert py.,) to the right of pc,, to obtain for an integer 2 < u the pattern

Pers Po(ey)r (P — 1)

which is forbidden in 2?7735‘”.

(b) If the part to the right of p., has size p — 1 and a color ¢; € (Cgree \ {c0}) LI Cing L {ceo },
then transform p into ps,), and we insert p; ., to the right of p,, to obtain the pattern

Pe1rPo(cy) (P—1De,

which is forbidden in ;07 Fa

(c) If the part to the right of p,, has size than p — 1 and a color ¢, € Csyp, we necessarily have
that €(c1,¢c2) € {0,1}. In that case, define (c1,¢2), and then transform p into p.(

Cl/CZ)’
and insert p,(c, ,) to the right of pc,, to we obtain the pattern

Perr Py(ci,e0)7 (P - 1)C2
which is forbidden in 207775"‘).

* There now remains the case where all the parts p. are such that ¢ € Csuyp. We then take the
color of the leftmost part, denoted c;. We remark that we cannot insert a part p; with a free
color in the sequence to the right of p.,. Also, the part to its left, if such a part exists, has
necessarily a size greater than p,

(a) If there is no part to the left of pc,, then transform the part p into py.,) and insert ps,)
to the left of p.,, to obtain the pattern

P(S(Cz)’ Pey

which is forbidden in 207735"".

(b) If the part to the left of p., has a size greater than p + 1, then transform the part p into
Ps(c,) and insert ps ., to the left of pc,, to obtain for some integer 2 < u the pattern

(P+u)eys Ps(cy)r Pes

which is forbidden in ;07735“’.

(c) If the part to the left of p., has size p 41 and a color ¢; € (Cfree \ {c0}) LI Csup, then
transform the part p into p;(.,) and insert ps.,) to the left of p.,, to obtain the pattern

(P + Ve Po(ey) Pes

which is forbidden in §°,Y7>§°°.

(d) If the part to the left of p., has size p + 1 and a color c; € Cj,, we necessarily have that
€(c1,¢c2) € {0,1}. Then transform the part p into p,(, .,y and insert p,, .,y to the left of
Pe,, to obtain the pattern

(P + Dy Poerea) Per
which is forbidden in ;07735“’.

The order in which we insert the parts p; does not matter, as the only case where the color of
the inserted part depends on both colors ¢y and c; are the only insertion for which the value of
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p is unique for the pair pg ), pg). Moreover, for the above cases, which form a exhaustive list of

insertions py into a pair pg), pg) with p = p(M and ¢; € Csup,Or p = p?) and ¢; € Ciyy, the choice

of the color f to render the obtained pattern pE} ), P, pg) forbidden in 2?7735“’ is unique.

At the end of this process, we obtain a partition y’ with some forbidden patterns of 5507775"", with
no repeated part py with a free color f and no part colored by cg. This is then the exact reverse
step of the third step of ®.

2. If there is a part py in ¢’ with f € Cree \ {0}, then transform all the parts p into p¢ and insert them
in y/. We then obtain a partition y”” with some forbidden patterns of (CS% ¢ and repeated parts py,
but no part colored by cy.

This is the reverse step of the second step of ®, and allows us to have repeated parts with free
color.

3. There now remains the parts p in v such that there is no in " with the same size. We transform
these parts into p¢, and insert them into y”. The partition obtained has some forbidden patterns
of 2?7735”, repeated parts p; with free color f, and parts colored by co. We then set this partition to
be A.

This is the exact reverse step of the first step of ®.

The partition A then obtained is a partition of P¢>, and we set ®~1(y,v) = A.

The inversion between the maps ® and ®~! comes from the fact that the steps in their respective
process are inverse and lead exactly to the same subsets of partitions.

7.3 Duality between Capparelli’s and Primc’s identities
Let us consider the set C = {a;b; : i,j € N}, and the set-partition
Coup = {a;bj :i < j € N},

Ciree = {aibj 11 € ]N} ,
Cinf:{aibj:i>jE]N}~

7.3.1 Well-definedness according to the decomposition
Recall that for all i, j,k,I € {0,...,n — 1}, we have the energy A in (2.2.54) defined by

We then have the following.

1. By comparing the free colors, for all i, k € IN
A(abi, axbx) = x(i # k) - (7.3.1)
2. Foralli,j, k € N withi < j, we have

A(lll‘bj, akbk) =1- )((i <k < ]) (7.3.2)
A(&lkbk, Llibj) =1 +X(i <k< ]) , (7.3.3)

and the conditions (2.2.63) are satisfied. Furthermore, for all i < j,
{keN: A(aibj,llkbk) =0} ={keN: A(akbk,aibj) =2} ={i+1,...,j} #0-
3. Foralli,j, k € N withi > j € N, we have

A(a,»bj, akbk) =1 —I—X(i >k > ]) (7.3.4)
A(aby, a;b;) =1—x(i >k > j), (7.3.5)
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and the conditions (2.2.64) are satisfied. Furthermore, foralli > j € N,

{k eN: A(a,-bj,akbk) = 2} = {k eN: A(akbk,aibj) :O} = {j+1,...,i} #QO-

4. Foralli,j,k,1 € Nsuchthati # jand k # I,
A(aibj,axby) = x(i > k) +x(j <1)-
In particular, we have the following
A(a,-bj,akbl) =2<=i>k and i<I

A({Ilib]‘,

agb)) =0<= i<k and i>1
The above equation implies the following relations.
(@) Ifi <jand k > [, then
Aa;bj, axb) =1 — x(i <k)x(j > 1)
A(agby, a;ibj) =1+ x(i <k)x(j > i),

(7.3.6)

(7.3.7)
(7.3.8)

and the conditions (2.2.65) are satisfied. Also, when A(a;bj, axb;) = 0, we then have that i < k

and j >/, so that

{u € N : Aajbj, ayby) =0} N{u € N : Alayby, arby) =0y ={i+1,...,73n{l+1,...,k}
= {max{i, 1} +1,...,min{k,j}}

# D,
and the conditions (2.2.66) are satisfied.
(b) Ifi < jand k < I then
A(aib]-,akbl) =2<«—=i>k and ] <l

— {i+1,...,j} C{k+1,...,1}
—{i+1,...ji\{k+1,...,1} =0

<= {u € N: A(a;bj,ayby) = 0} N{u € N : Aayby,ab) =1} = -

We then have equivalently

A(a,'bj,akbl) S {0,1} <— {u € N : A(ﬂ,‘bj,aubu) = 0} N {u €N : A(aubu,akbl) = 1} 75 @,

and the conditions (2.2.67) are satisfied.
(c) Ifi > jand k > I, then

A(ﬂib]',akbl):2<:>i2k and ]Sl

— {l+1,....k} Cc{j+1,...,i}
= {I+1,... k\{j+1,...,i} =0

<= {u € N:A(a;bj,ayby) =1} N {u € N : A(ayby, axb)) =0} = D-

We then have equivalently

A(aibj, arby) € {0,1} <= {u € N : A(a;bj, ayby) =1} N {u € N : A(ayby, arb;) = 0} # @,

and the conditions (2.2.68) are satisfied.

Then, by Definition 2.2.46, the energy A is well-defined according to the decomposition Csup LI Cgree Ll Cing-

We now fix £ € IN, and introduce the fictitious color ¢« and extend A with the relations

A(Coo,Co0) =0,
A(ceo, aia7) = 1,
A(ajaj,co0) = x(i > £) +x(j < £) -
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7.3.2 Forbidden patterns
By Definition 2.2.48, the functions J and - satisfy the following properties:

1. forall agb;(k # 1),
d(arby) € {a;b; :i € {min{k,1} +1,..., max{k,I}}, (7.3.9)

2. For the pairs of bound colors (c1,c2) = (ax, by, ax,by,),
e if ky < Iy and ky > I, such that max{kq, I} < min{k,, 1}, then
v(cy,c2) € {a;ib; 1 i € {max{ky, I} +1,..., min{ky, 1 }}- (7.3.10)
e if k; > I; and kp > I, such that we do not have k1 > k, > I, >[4, then
ylene) € {abicie {h+1,... k3 \{h+1....k}}, (7.3.11)
e if k1 <l and ky < I such that we do not have ky, < k1 < 1 < I, then
yler ) € {ab i {ki+1,.. 03\ {ko+1,..., b} 1} (7.3.12)

Definition 7.3.1. For all non-negative integers / < n, the setC;, (9, y) of the Capparelli partitions related
to d and 7 is the set of generalized Primc partitions of Py ,, with no parts colored by apby, and which
avoid the following forbidden patterns (we here set (c1,¢2) = (ax, by, ax,by,))

* For all integeri > 0,
Pa;b;Pa;b; -

e For all max{ky,l} < min{ky, I1} and f = a;b; with i = y(cy, c2),
PeiPfPe; -

¢ For all integers k1 < Iy:

— For all integers 2 < u, the pattern (with c; possibly equal to c)
PerPo(er)(P = ey -
— For all integers ko > I, or for ¢; equal to ¢, the pattern
Pers Po(er)r (P — ey -
— Forall k; < Ij, ky < I such that we do not have k; < k; < I} < Iy, the pattern
Pers Po(er,en)r (P — Dey -
 For all integers ky > Ip:
— For all integers 2 < u < oo, the pattern
(P +t)ers Po(ey)r Per -

Here the part co.; means that the pattern p;.,)pc, is at the head of the partition.
— For all integers k; < I3, the pattern,

(P+ Ve, Ps(ey) Pes -

— For all integers k; > I; such that we do not have ky > kp > [, > I3, the pattern

(p + 1)C1' Py(c1,e0)7 Pea -

Then the following corollary of Theorem 2.2.51 holds.

Corollary 7.3.2. There is a bijection ® between the set Py ,, of generalized Primc partitions and the product set
Cin(6,7) x P, where Cy,,(8,) is the set of the Capparelli partitions related to § and vy, and P is the set of the
classical partitions.
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7.3.3 Proof of Theorem 2.2.59

We now define the suitable functions ¢ and v to retrieve the sets C;, and C} .

Functions ¢; and 7 for C; ,

We define 61 and ; as follows: for k # I,
O (agby) = a;b; with i =1+ min{k,1}, (7.3.13)
and for (c1,c2) = (ax, by, ax,by, ),
1. if max{ky, I} < min{ky, 1}, we set
v1(c1,c2) = a;b; with i =1+ max{ky, b}, (7.3.14)
2. if k; > I; and ky > I, such that we donot have k; > k, > I, > 1, then

e if [, < I, then

71(c1,62) = A, 1by, 41 (7.3.15)
o if 12 Z kl/ then
71(c1,2) = A, 41by, 41 (7.3.16)
e ifkp > k1 > 1 > 14, then
71(c1,€2) = ag, by, , (7.3.17)

3. if k; < I; and ky < I, such that we do not have [, > I; > ky < k», then

e if ky > kq, then

Y1(c1,€2) = g 41bx, 1 (7.3.18)
e if k; > I, then
Y1(c1,€2) = g 41br 11 (7.3.19)
e ifly > 1 > ki > kp, then
’)/1(C1,C2) = Llll b11 : (7.3.20)

We then have the corresponding proposition

Proposition 7.3.3. We have Cy,,(61,71) = Cj ..

Functions 4, and 7, for C;,

We define 6, and 1, as follows: for k # I,
O (agby) = a;b; with i = max{k, 1}, (7.3.21)
and for (c1,c2) = (ax, by, ax,by, ),
1. if max{ky, o} < min{ky, [1}, we set
v2(c1,¢2) = a;b; with i =min{ky, 1}, (7.3.22)
2. if k; > I; and ky > I; such that we donot have k; > k, > I, > 1, then

e if ky > kq, then

Y2(c1,¢2) = ag, by, (7.3.23)
o if ll > kz, then
Y2(c1,¢2) = ax,by, (7.3.24)
e ifky > ko > 11 > I, then
Y2(c1,¢2) = ap,1by, 11, (7.3.25)

3. if k; < Ij and k, < I, such that we do not have I, > I; > ki > k», then
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e if [y > I, then

Y2(c1,c2) = ay by, (7.3.26)
e if ko > 11, then
Y2(c1,¢2) = ay, by, (7.3.27)
o ifly > 11 > ky > kq, then
’)/2(C1,62) = akl+1bk1+1 . (7.3.28)

We then have the corresponding proposition

Proposition 7.3.4. We have C; ,(02,72) = Cy -

7.3.4 The case of Capparelli’'s and Meurman-Primc’s identities

For n = 2, there is only one possibility for the functions § and v, having both values in {a;b;}. Also,
the only possible pair in the preimage of -y is (b1, a1bp). The Propositions 7.3.3 and 7.3.4 are equivalent
and give the identity of Capparelli.

For n = 3, there are possibilities for § and .

e We have
d(aghy) = 6(arby) = ar1by
5((11b2) = 5(a2b1) = a2b2
(5(610172),(5(012170) S {albl,azbz} .
e We have
¥ (aghy,a1bo) = y(aohy, azbo) = y(aobs, a1by) = a1by
Y(a1by, azby) = y(a1by, azbg) = y(agbo, azby) = axby
Y (aoby, azbg) € {a1by, azbs}
and

Y (arbo, azbo) = y(arbg, azb1) = azbs
Y (a2by, a2by) = y(azby, a1bg) = arby

Y(a1by, agby) = y(aoba, agh1) = azby
v(aob1, a1b2) = y(agbz, a1b2) = a1by -
The functions J; and 3 then correspond to the choice
6(agbz) = 6(azbo) = y(agby, azby) = a1by
and we obtain the forbidden pattern

(p + 1)ulb0’ pazbz’ pllzb() and (p + 1)ﬂ0b2 (p + 1)a2b2pugb1 :

This is the case 8 x 8 given by Meurman-Primc.

The functions d, and 7, then correspond to the choice
d(agba) = d(azbo) = y(aoby, azbo) = azby

and we obtain the forbidden pattern

(p + 1)uzb1/ pulblr pllzbg and (P + 1)u0b2 (p + 1)111b1 pulbz :
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Part 111

Rogers-Ramanujan type identities via
representations of affine Lie algebras
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Chapter 8

Perfect crystals and multi-grounded
partitions

In this chapter, we present the connection between the theory of perfect crystals and the notion of multi-
grounded partitions.

In Section 8.1, we first introduce the fundamentals of crystal base theory, and present the main tool
that allows us to make a connection with the theory of integer partitions, namely the (KMN)? character
formula. Then, in Section 8.2, we discuss a special case of the connection, related to the grounded
partitions. Finally, in Section 8.3, we give the general results that link the perfect crystals to the multi-
grounded partitions.

8.1 Basics on Crystals

In this section, we recall the definitions and basic theorems from crystal base theory which are necessary
for our purpose. We refer to the book (Hong and Kang, 2002), which we consider to be a good summary
of the basic theory of Kac-Moody algebras (Hong and Kang, 2002, Chapter 2), quantum groups (Hong
and Kang, 2002, Chapter 3) and crystal bases (Hong and Kang, 2002, Chapters 4, 10). For a more combi-
natorial approach and more emphasis on the finite dimensional case, we refer the reader to (Bump and
Schilling, 2017).

Throughout this section, 7 is a fixed positive integer.

8.1.1 Cartan datum and quantum affine algebras

A square matrix A = (al-,j) - is said to be a generalised Cartan matrix if A has the following proper-

ije
ties:

o forallie N,a;; =2,
e foralli #jin N, a;; € Z<,
* a;j=0ifand onlyifa;; = 0.

Moreover, if there exists a diagonal matrix D with positive integer coefficients such that DA is symmet-
ric, then A is said to be symmetrisable. In addition, if the rank of the matrix A is n — 1, then A is said to
be of affine type. In this paper, we always assume that this is the case.
Let us consider such a matrix A. Let P" be a free abelian group of rank n + 1 with Z-basis {hy, ..., h,_1,d} :

PV =Zhg®Z @& Zh, 1 & Zd.

We call PV the dual weight lattice. The complexification h = C @z PV is called the Cartan subalgebra. The
linear functions a; and A; (i € N) on b given by

(hj,a;) := ai(h;) = aj,; (d, ;) := aj(d) = ;o N
<h], Al> = Al(h]) = 5i,j <d1Al> = Al(d) =0 (Z,] € N)
are respectively the simple roots and fundamental weights. Let h* be the dual space of . We denote by

IT={a; | i € N} C h* the set of simple roots, and define ITV = {h; | i € N'} C b to be the set of simple
coroots. We also set

(8.1.1)

P={reb*|A(PY)CZ}
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to be the weight lattice. It contains the set of dominant integral weights
Pt ={A e P|A(h;) € Z>gforalli € N'}.

The quintuple (A,TIT, I1V,P,PY) is said to be a Cartan datum for the Cartan matrix A. The affine Kac-
Moody Lie algebra § attached to this datum is the Lie algebra with generators ¢;, f; (i € N) and h € PV,
with the following defining relations (Hong and Kang, 2002, Definition 2.1.3):

1. [h W] =0forallh,h € PV,

2. [ei, fil = dijhj,
3. [h,e]] = wj(h)e; forallh € PV,
4. [h, fi] = —ai(h)f; forallh € PV,

5. (adei)lfal?fej = (adfi)lfa’?ff]’ =0fori#j,

where adx : y — [x,y].
We also define the coroot lattice

=Zhy®ZM & - & Zhy_,
and its complexification h = C @z PV. The restriction of the Z-submodule
ZNgDZNAN D - DLZN, 1

of P to PV is called the lattice of classical weights and is denoted by P.
Remark 8.1.1. By (8.1.1), for all j # 0, we have
n—1 B
Kj = Z {Ill',]'Al' SR
i=0
We will denote by ® the restriction of ag to P.

Let PT:=Y" Z>oA; denote the corresponding set of dominant weights.

The center
Zc={heP':(ha)=0foralli € N'}

of the affine Lie algebra g is one-dimensional and generated by the canonical central element c, where
c=cohp+ -+ cp_1hy_1.
The space of imaginary roots
Z5={AeP:(h,A)=0foralli € N'}
of g is also one-dimensional, generated by the null root 6, where
O =dong +diar + - +dy_qw,_1,
and the vector (do,dy, ...,d,_1) € C" spans the kernel of the Cartan matrix A. The level ¢ of a dominant

weight A € PT is given by the expression (c,A) := A(c) = £.
For any k € Z and an indeterminate g, let us set

We also set [0];! = 1 and for k > 1, [k];! = [k|q[k —1];-- - [1]5. For m > k > 0, define

(%), mar

We now have all the definitions necessary to introduce quantum affine Lie algebras.
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Definition 8.1.2. (Hong and Kang, 2002, Definition 3.1.1) The quantum affine algebra Uy,(g) associated
with the Cartan datum (A, I1,IT1Y, P, PV) is the associative algebra with unit element over C(g) (where
q is an indeterminate) with generators ¢;, f; (i € N) and ¢" (h € PV), satisfying the defining relations:

() ¢° =1, g"q" = """ forh, W € PV,

@) q'eiqg" = q%Me; forh e PV,ie N,

®) g"fig " =g~ W f; forhe P, ieN,
Kt

W efy = fes = by o forijeN,

1 i
1—a;;

(5) Z < 111] > e}*ﬂj,j*keje? =0 fOI‘ i # j/
qi

1-a;;

©) Z< ”11> £ =0 fori #]
ql

Here g; = ¢% and K; = g%, where D = diag(s; : i € {0,...,n — 1}) is a symmetrising matrix of A.

Definition 8.1.3. The quantum affine algebra U (g) is the subalgebra of U, (g) generated by e;, fi Kl (i e
N).

Contrary to Uy(g), the quantum affine algebra U (g) admits some non-trivial finite-dimensional
irreducible modules.

8.1.2 Integrable modules, highest weight modules and character formula

We are now ready to define irreducible highest weight modules and characters.

Definition 8.1.4. Let g be a Lie algebra with bracket [-, -], and let V be a vector space. Then V is a g-
module if there is a bilinear map g x V — V, denoted by (x,v) — x - v, satisfying for all x,y € g and all
veV:

yl-o=x-(y-0v) -y (x-0)

A subspace W of a g-module V is called a submodule of V if forallx € g, x- W C W.
A g-module V is said to be irreducible if its only submodules are V and 0.
The notion of modules extends naturally from an affine Lie algebra § to its quantum affine algebra

Uy (8)-
Definition 8.1.5. A U, (g)-module M is said to be integrable if it satisfies the following properties:

(a) M has a weight space decomposition: M = @,.p M,, where M, = {v € M | g" - v = ¢*"v for
allh € PV};

(b) there are finitely many A4,..., Ay € P such that wt(M) C Q(A1) U--- U Q(Ag), where wt(M) =
{A €P| M, #0}and QA )—{]JEPH/IE)\ + Yien Z<oti};

(c) the elements ¢; and f; act locally nilpotently on M for alli € N.
We denote by Oiqnt the category of integrable U, (g)-modules.
For all A € P, a module of highest weight A is an integrable module such that:
() wt(M) € Q(A);
(b) dimM, =1;
(b) M = Uy (8) M.

For all A € P, up to isomorphism, there exists a unique highest weight module which is irreducible. We
denote by L(A) the irreducible highest weight U, (g)-module of highest weight A.



130 Chapter 8. Perfect crystals and multi-grounded partitions

Definition 8.1.6. Let M be an integrable module such that dim M) < co for all A € wt(M). The character
of M is defined by
ch(M)= Y dimM, e, (8.1.2)
Aewt(M)

where the ¢!’s are formal basis elements of the group algebra C[h*], with the multiplication defined by
Aol — oA+
etelt = et TH,

When M is a highest weight module of highest weight A, its character satisfies

eMch(M)= Y dimM, e € Zso[le,ieN].
newt(M)

All these definitions on modules also hold in the case of the g-modules M’, where the weight spaces
are given by M) = {v € M’ | h-v = A(h)v for all h € PV}. Thus, looking at the generators of the
weight spaces, for a fixed weight A € P, the irreducible highest weight g-module can be identified with the
irreducible highest weight U,(g)-module, and we have equality of characters.

8.1.3 Crystal bases

Crystal base theory was developed independently by Kashiwara (Kashiwara, 1990) and Lusztig (Lusztig,

1990) to study the category O?nt of integrable U, (g)-modules. If M is a module in the category O?nt’

then for each i € N, a weight vector u € M, can be written uniquely in the form u = Y fi(k)uk, for

some N > 0 aHNd Up € Mgy Nkere; forall k = 0,1,..., N, with fl.(k) = f¥/([kly,"). The Kashiwara
operators & and f;, for i € N, are then defined as follows:

N
fi(k_l)uk, fu=1Y fz'(k+1)uk- (8.1.3)
1 k=0

™=z

éiu =
k

Crystal bases will be seen as bases at ¢ = 0. To do so, let us define the localisation of C[q] at 4 = 0 by
Ao =A{f=g/h|gheClql h(0) #0}.
Definition 8.1.7. (Hong and Kang, 2002, Definition 4.2.2) Assume that M is a U,(g)-module in the
category O?nt' A free Ap-submodule £ of M is a crystal lattice if

(i) £ generates M as a vector space over C(q);
(if) L =@,cp Ly where L) =MyNL;
(iii) &;£ C £ and f;L C L, foralli € N.
Since the operators ¢; and f; preserve the lattice £, they also define operators on the quotient £/qL.

Definition 8.1.8. (Hong and Kang, 2002, Definition 4.2.3) A crystal base for a U,(g)-module M € O?nt is
a pair (£, B) such that

(1) Lis acrystal lattice of M;

(2) BisaC-basisof L/qL=C®p, L;

(3) B = UjcpBy, where By = BN (Ly/qL));

(4) &B) C Byyo, U{0} and fiB)y C By_,, U{0} foralli € N;

(5) fib="1" ifand only if b = ¢, for b,b’ € B and i € N.

To each module M € O;’nt’ we can associate a corresponding crystal base (£, B). Furthermore, the

crystal graph associated to (£, B) can be defined as follows. The set of vertices is B3, and the oriented
edges are built as follows:

b5V ifandonlyif fib=1b (orequivalently &b’ = b).

Remark 8.1.9. When f;b = 0 (resp. &b = 0), then there is no edge labelled i coming out of b (resp. arriving in
b).

The crystal graph can be viewed as combinatorial data of the module M.
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For i € NV, let us define functions ¢;, ¢; : B — Z as follows:
¢;(b) = max{k > 0| &’b € B},
@i(b) = max{k > 0| fkb € B}.

In other words, ¢;(b) is the length of the longest chain of i-arrows ending at b in the crystal graph, and
@i (b) is the length of the longest chain of i-arrows starting from b. Furthermore, we have ¢;(b) —¢;(b) =
A(h;) for all b € B,. Thus, by setting wtb = A

n—1
E(b) = Z Si(b)/\,‘, and go(b) = Z (Pi(b)Ai/ (8.1.4)
i i=0

we then have wtb = ¢(b) — ¢(b) for all b € B,, where wtb is the projection of wtb on P. Also, by the
definition of the weight vectors u in the Kashiwara operators (8.1.3), we have for all b € B such that
éb #£0,

wté;b — wtb = w;. (8.1.5)

Let us now introduce the notion of a crystal.

Definition 8.1.10. (Hong and Kang, 2002, Definition 4.5.1) Let A = (ai,j>0§i,j§n—l be a Cartan matrix
with associated Cartan datum (A,I1,11V,P,PV). A crystal associated with (A,ILI1V,P,PV) is a set B
together with maps

wt: B— P,
& fo: B —s BU{0} (ieN),
81',(;),':8—>ZU{—00} (iEN),

satisfying the following properties for all i € N:

L ¢i(b) = &(b) + (hi, wt(D)),
wt(éb) = wtb+«; if &b € B,

2.

3. wt(fib) = wtb — a; if fib € B,

4. g;(éb) =¢i(b) —1ifé;b € B,

5. ¢i(&ib) = @i(b) +1if ;b € B,

6. ei(fib) = ¢;(b) + 1if fib € B,

7. ¢i(fib) = ¢i(b) — 1if fib € B,

8. fib ="b'if and only if b = &b’ for b, b’ € B,

9. if ¢;(b) = —oo for b € B, then &b = f;b = 0.

In particular, if (£, B) is a crystal base, then B is a crystal.

Let By and B, be two crystals. A crystal morphism between By and By is a map ¥ : By U {0} —
By U {0} such that

e ¥(0) =0;

e ¥ commutes with wt, ¢;, ¢; for alli € \;

e for b, b’ € By such that f;b = b’ and ¥ (b), ¥ (V') € B, we have f;¥(b) = ¥ (V'), &Y (V') = ¥(b).
A morphism ¥ is said to be strict if it commutes with ¢;, f; for alli € N.

The theory of crystal bases behaves very nicely with respect to the tensor product of O?nt—modules,
as can be seen in the next theorem.
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Theorem 8.1.11. (Hong and Kang, 2002, Theorem 4.4.1) Let My, My € Ojpny, and let (L1, B1), (L2, By) be the
corresponding crystal bases. We set L = L1 @p, Lo and B = By ® By = By x By. Then (L, B) is a crystal
base of My @c 5y Mo, with

~ by @by if @;(b1) > &;(b2),
e @by) =< " 7 .
OB b saby if gilbr) < eilba) 516
) by @by if @i(by) > e:(by), o
filbroby) = (1502 10t = i)

by ® fiby if @i(b1) < ¢gi(by),

where by © 0 = 0® by = 0 forall by € By and by € B,. Furthermore, we have

wt(by ® by) = wtby + wtby,
ei(by ® by) = max{e;(b1),e;(b1) +¢&i(b2) — @i(b1)},
@i(b1 @ by) = max{g;(b2), i(b1) + @i(b2) —€i(b2) }-

The last but not the least tool we need in this paper is the notion of energy function, defined as
follows.

Definition 8.1.12. (Hong and Kang, 2002, Definition 10.2.1) Let M € O?nt be a module, and (£, B) be
the corresponding crystal base. An energy function on B ®@ Bisamap H : B® B — Z satisfying

H(b; ® by) if i #0,
H (E,’(bl & bz)) = H(b] &® bz) +1 if i=0and QDO(bl) > So(bz) (8.1.7)
H(b1®b2)—1 if i=0and gl)o(bl) <£0(b2),

foralli € N and by, b, with &(b; ® bp) # 0.

By definition, in the crystal graph of B ® B, the value of H(b; ® b;), when it exists, determines all
the values H(b] ® b)) for vertices b] ® b} in the same connected component as by ® by. Note that the
conditions (8.1.7) are equivalent to the following:

) | H(bi®by) + x(i = 0) if @;(b1) > €;(b2)
H(&(b1@by)) = H(b ®by) — x(i = 0) if @i(br) < gi(ba), (819)
. _JHm®b) —x(i=0)  if gi(br) > ei(ba) N
H(fl(bl & bZ)) - H(bl ® bZ) +X(i — O) if q)z(bl) < ei(bZ)'

Figure 8.1 gives the crystal graph B of the vector representation of Agl) (Hong and Kang, 2002,
p. 10.5.2), the tensor product B ® B, and an energy function H on B ® B.

Figure 8.1.
B: @—1)
~—
BoB: [0]e[0]——[1]=[0] H: [[ed] — x(i>))
0] 1
@M —— 5

8.1.4 Perfect crystals

The theory of perfect crystals was developed by Kang, Kashiwara, Misra, Miwa, Nakashima, and
Nakayashiki (Kang et al., 1992a; Kang et al., 1992b) to study the irreducible highest weight modules over
quantum affine algebras. Indeed, perfect crystals provide a construction of the crystal base B(A) of any
irreducible U, (§)-module L(A) corresponding to a classical weight A € P*. An affine crystal is an crys-
tal associated with an affine Cartan datum (A,IL, 11V, P, PY) (quantum algebra Uy (§)), while the term
classical crystal is used for an abstract crystal associated to the classical Cartan datum (A, 1], I1V,DP,PV)
(quantum algebra Uc’i (g) defined in Definition 8.1.3).
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All the theorems in this section are due to Kang, Kashiwara, Misra, Miwa, Nakashima, and Nakayashiki,
but we give references to the book (Hong and Kang, 2002) for the reader’s convenience. Let us start by
defining perfect crystals.

Definition 8.1.13. (Hong and Kang, 2002, Definition 10.5.1) For a positive integer ¢, a finite classical
crystal B is said to be a perfect crystal of level £ for the quantum affine algebra U, (g) if

(1) there is a finite-dimensional Uy (g)-module with a crystal base whose crystal graph is isomorphic
to B (when the 0-arrows are removed);

(2) B® B is connected;

(3) there exists a classical weight Ag such that

1
wt(B) C Ao+ Y Z<ow; and |By|=1;
do 75
(4) forany b € B, we have

Ge®) = 3 ei)Ae) > &
i=0

(5) for each A € P := {u € PT | (c,u) = (}, there exist unique vectors b* and b, in B such that
e(b*) = Aand ¢(by) = A.

In the remainder of this section, we fix a perfect crystal 5.

The maps A — ¢(by) and A — @(b") then define two bijections on P,

As a consequence of the last condition, for any A € P,", the vertex operator theory (Hong and Kang,
2002, (10.4.4)) leads to a natural crystal isomorphism

B(A) = B(e(by)) @B (8.1.9)
uy — ug(b/\) ®b/\

Definition 8.1.14. For A € P\, the ground state path of weight A is the tensor product

A= (80 = O OKD - Qg1 go,
where the elements g € B are such that

Ao = A g0="ba

8.1.10
A1 = €(bAk) 8k+1 = b,\kH forall k>0- ( )

A tensor product p = (pr)ig = - @ P41 @ Pk @ - - - @ p1 @ po of elements py € B is said to be a A-path
if py = g for k large enough.

Iterating the isomorphism (8.1.9), we obtain
B(A\) 5 BM)eB S BAoh)eBeB &
Uy = Uy ®g Uy VEIVWE e,
and this gives a natural bijection, stated in the next theorem.
Theorem 8.1.15. (Hong and Kang, 2002, Theorem 10.6.4) Let A € P; . Then there is a crystal isomorphism
B(A) S P(A)
Up = Pa
between the crystal base B(A) of L(A) and the set P(A) of A-paths.

We describe the crystal structure of P(A) as follows (Hong and Kang, 2002, (10.48)). For any p =
(Pr)i € P(A),let N > 0 be the smallest integer such that py = g for all k > N. We then set

N-1
wtp = Ay + 2 wtpg,
k=0
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éip = "'®gN+1®5i(gN®~'®Po),
fir = - @gn1@fi(gn® - @ po),
ei(p) = max (&(p') — ¢i(gn),0),
i(p) = @i(p') + max (¢i(gn) —ei(p),0),
where p’ := py_1 ® - - ® p1 ® po, and wt is viewed as the classical weight of an element of 5 or P(A).

The explicit expression for the affine weight wtp in P is given in the following theorem, which is
known as the (KMN)? crystal base character formula, and plays a key role in connecting characters with
partition generating functions.

Theorem 8.1.16. (Hong and Kang, 2002, Theorem 10.6.7) Let A € Pj , let H be an energy function on B ® B,
and let p = (pr)sy € P(A). Then the weight of p and the character of the irreducible highest weight Uy, (g)-
module L(A) are given by the following expressions:

wip = A+ i (Wtpy — wigy) — <i(k+l)(H(Pk+1 ® pr) — H(gk1 ®8k))> d%

k=0 k=0
= A+ ) (Wip, —wigy) — (Z(H(Pm ® p1) — H(g141 ®gl))> 5, (8.1.11)
k=0 1=k
ch(L(A) = Y WP (8.1.12)
peP(M)

8.2 Perfect crystals and grounded partitions

Let B be a perfect crystal of level /. A specialisation of Theorem 8.1.16 gives the following corollary.

Corollary 8.2.1. Suppose that A is such that by = b™ = g, and set H(g ® g) = 0. Then wtg = 0, g = g for
all k € Z>q, and we have

[ee] _ [ee] 5
wtp = A+ ) Wip — (Z H(piy1® pz)) o (8.2.1)
k=0 I=k 0

In the remainder of this section, we make the connection between grounded partitions and crystal
base theory. Let us fix a weight A € P/ such that by = b® = g, and assume that H(g ® §) = 0. Let
Cp = {cp : b € B} be the set of colours indexed by B. We define the binary relation > on Z, by

ke, > k:f;/ ifand only if k — k' = H(V' ® b). (8.2.2)
This relation leads to the following.

Proposition 8.2.2. Let ¢ be the map between A-paths and grounded partitions defined as follows:
(P: p= (7T0/-~-/7T571/0Cg)/

where p = (px)k>o0 is a A-path in P(A), s > 0 is the unique non-negative integer such that ps_y # g and
px = g forallk > s, and forall k € {1,...,s — 1}, the part 7y has colour c,, and size

s—1

Y H(pis1 © pr).-
=k

Then ¢ is a bijection between P(A) and P¢;. Furthermore, by taking c, = e we have for all 7t € P

3|

e AW () _ C(m)e . (8.2.3)

The bijective proof of the above proposition is given in Appendix A.4.2.

The next proposition allows us to describe the set Pfj of grounded partitions for the relation >>
defined by
ke, > ki, ifand only if k — k' > H(V' @ b). (8.2.4)
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We refer to this relation as the minimal difference conditions. One can view the partitions of PC? as the
partitions of 79%? such that the differences between consecutive parts are minimal. Note that contrarily
to PC> , the set P>> has some partitions 77 = (1o, ..., 7s-1,0c,) such that c(7;_1) = cg. For this reason,
the set 73> is not exactly the set of all minimal partltlons of PC>> , but is related to it.

Proposition 8.2.3. Recall that P, is the set of grounded partitions where all parts have colour cg. There is a
bijection ® between Pc>g> and PC'>g X Py, such that if &(7t) = (u,v), then || = [p| + |v|, and by setting cg =1,
we have C(1t) = C(p).

A proof of the above proposition can be found in Appendix A.4.3.

We are now able to give a character formula in terms of generating functions for grounded partitions.

Theorem 8.2.4. Setting g = e /% and ¢, = e"% for all b € B, we have cg = 1, and the character of the
irreducible highest weight U, (g)-module L(A) is given by the following expressions:

Y C(m)gl™ = e Ach(L(A)),

HGPCZ
x| _ e Ach(L(A))
HEZ% C(m)q T

Proof. By Proposition 8.2.2 and (8.2.1),

Y. Cm)q™ =Y e he™™ =eAch(L(A)).

nePg, peP(A)

By Corollary 8.2.1, wtg = 0. Thus ¢ = e’ = 1, and Proposition 8.2.3 yields

Y Cln q|7r|_( Y Clm)q = e~ch(L(A) |

nePey i9)eo nePy 95 9)e0

By this theorem, the characters of some irreducible highest weight modules of level ¢ can be com-
puted as the generating functions of some grounded partitions, in the very special case where the ground
state path of A is reduced to a constant sequence. In general, we can always reach this case by consider-
ing, for any perfect crystal B, the tensor product of B = B ® B, where B" is the dual of B. However, it
is not always easy to compute an energy function for B ® B knowing an energy function of B ® B. We
then use in the next section the notion of multi-grounded partitions, that will allow us to deal with the
case where the ground state path is not a constant sequence.

8.3 Multi-grounded partitions

Let BB be a perfect crystal of level /, and let A € P, be a level ¢ dominant classical weight such that
the corresponding ground state path is py = (gx)k>0. By (8.1.10), since Py has a finite cardinality, the
sequence (g;)i>o is then periodic. We then set t to be the smallest non-negative integer k such that
gk = &o- This yields the following;:

t—1 t—1
Y owi(gr) = Y o(g) —e(gx)
k=0 k=0

-1
= kZ @(8k) — ¢(8k+1) by (8.1.10)
=0

= ¢(80) — 9(8t)
=0 : (8.3.1)

Let H be an energy function on B ® B. Since B ® B is connected, H is then unique up to a constant. We
then define the function Hy on B ® B satisfying

t 1

Ha(b®b') =H(b V) - - Z H(gr11 @ k) (83.2)
i
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forall b, b’ € B, which does not depend of the choice of H. We observe that H, is the unique function
on B ® B which satisfies (8.1.8) the conditions of energy functions and such that

t-1
Y Ha(Sk1®8) =0- (8.3.3)
k=0

However, the function Hy is not an energy function unless t divides th{;%) H(gx11 ® gx) for any energy

function H. Besides, we always have that Hy (B ® B) C Z € 1Z. In the particular case when t = 1, Hp
is then the unique energy function that satisfies Hx (g0 ® go) = 0.

Let us now take any A-path p = (py)x>0 in P(A) different from the ground state path p,. There then
exists a unique positive integer m such that

(p(m—l)t/' s Pmt-1) = (80, -+, 8-1)
(Paitts - s Prattat—1) 7 (S0, -+, 8t-1) forall m' >m-

Lemma 8.3.1. The weight wt(p) of p is given by the following formula:

L mt—1 ) 1 t— mt—1
wt(p) = A+ Z wt(px) — d (t Y (I +1)HA(g+1®8) + Y, Ha(pra® Pz)) : (8.3.4)
i=0 =k

A proof of the above lemma can be found in Appendix A.4.1. Note that for any energy function H,
we always have

t—1 t—1

T 1
Y (k+1)Ha(8k+1®@8k) = Y (k+1)H(gk+1 ® &) — — Y H(gk+1®8k) € 32
P par k=0

The above number is an integer as soon as f is odd, and is equal to 0 when t = 1. We can then choose a
suitable divisor D of 2 evem) ¢ such that DHA (B ® B) C Z and Yi_o(k+1)DHA(8k+1 ® &) € Z. For
the particular case t = 1, we can choose D = 1.

Let us consider the set of color Cx with indices in 53, and let us define the relation > on Z¢, by
ke, > kéb, <= k—1=DH\(b'®@Db)- (8.3.5)
By taking
ulh) = % i [+ 1)DHA (8141 © 81) + tZ DHA (8141 ©81), (8.3.6)

223 Jeens ug:) satisfy the condition in Definition 2.1.22.

We can then define the multi-grounded partition with grounds cg, ..., ce, , and relation >. We denote

by 79; 0t the set of all such partitions. We then obtain the following proposition, whose proof is

given in Appendix A.4.4.

the colors cg, ..., ¢, | and the colored integers u

Proposition 8.3.2. Let us define the map ¢ from P(A) to P;O”'Cgt—l , such that ¢p(pp) = (u((:gg, ceey ug:) ), and
forallpp # p € P(A) and m defined above,

(0) (f*1)>

p — (77:0/ Tttty nmtflz uCgO/ .o /MCgti1

with c(7) = cp, and

1 — mt—1
—7 Z (1+1)DHA (8141 @ 81) + Y, DHA(pisa ® pi),
1=0 1=k
forallk € {0,---,mt —1}. Then, ¢ defines a bijection between P(A) and the set t77> of partitions of
C'>go"'cqt with the number of parts divisible t. Furthermore, by setting c, = ") for all b E B we have for all
T Péo"fgffl

o]

e AW () — C(m)e P, (8.3.7)
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We now define another set of multi-grounded partitions. Let > be the relation of Z¢,, defined by
ke, > k'cb/ < k—1>DHp(V'®Db)- (8.3.8)

Here again, for

t—1 t—1

Y (I+1)DHA(g141®g1) + Y DHA(8141© &),
=0 1=k

(0) (t=1)

the colors cg, ..., cq, ; and the colored integers Ucgis- -+ tey, satisfy the condition in Definition 2.1.22.

O

| =

In fact, the choice of the integers u(O), ceey u(t=1) g unique, as they must satisfy both conditions

0 — u(o) — u(l) + u(l) — u(z) + e _|_ u(tfz) — u(til) _|_ u(til) — u(o)

> DHA(g1®80) + DHA(g2 ® §1) + -+ -+ DHA(8t—1 ® §t—2) + DHA (8t ® §+—1)
=0

and
0 — u(o) + P + u(til)
— M(O) — u(l) _|_ 2(1/[(1) — u(z)) _|_ e _I_ t(u(t_l) — u(O)) _|_ tu(o) .

This implies that u®) — u(*+1) = DH, (¢4 ® gi) forall k € {0,...,t — 1} (with the convention u(?) =
(1Y and that

e
u® — 3, 2 (I+1)DHA (8141 ® 81) -

We then define the set Pc>g>0 gy of the multi-grounded partitions with grounds gy, ...,g:—1 and the

relation >> defined in (2.3.3). In particular for any positive integer d, we denote by d73c>g>0 gy the set of
the partitions 77 = (7, - - -, 7T 1,u£gg u((;; 1)) of PE;,_,CS,H with ¢(7tx) = cp, forallk € {0,...,s -1},

such that
Tl — Ty — DHA(gk-H ®gk) €dZ>y, (8.3.9)

where we set 775 to be uggg. We finally set ‘ZPE; g, , 1O be the set of partitions of de;J g with the

number of parts divisible by t. We then obtain the following proposition.

Proposition 8.3.3. Let 4P be the set of classical partitions where all parts are divisible by d. There is a bijection
D, between ?735;,,,%7] and t’Pfgo...ch x 4P, such that if ® () = (u,v), then |7t| = |u| + |v|, and by setting

Cgy " Cqy = 1, we have C(7r) = C(p).

The proof of the above proposition is given in Appendix A.4.5. This proposition, along with Theorem
8.1.16, yields Theorem 2.3.1.

We remark that we can choose D = 1 when t = 1, and Theorem 8.2.4 is then implied by Theorem
2.3.1. The use of a parameter d allows us to have a finer equality, and appears especially practical when
DH\ (B ® B) € dZ, in which case the parts of our partitions have the same congruence modulo d.
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Chapter 9

Level one standard modules of type
A(n)

n—1

9.1 Perfect crystal of type A,glzlz tensor product of the vector repre-

sentation and its dual

We now describe the perfect crystal B used in Theorem 2.3.2. Throughout this section, we fix an integer
n > 3.
Consider the Cartan datum for the matrix A = (a;;); je ;s where for alli,j € N,

a;; =26 — x(i—j==+1 mod n). (9.1.1)

It corresponds to the affine type A;(11—)1 (Hong and Kang, 2002, p. 10.1.1). We then have the corresponding
canonical central element ¢ and null root §, which are expressed in the following way:

c=hy+h+--+h,_q,
=oag+wa1+ - +a,q.

9.12)
Any dominant integral weight A = kgAg + - - - + k,_1A,_1 € P has level
(e, Ay =ko+ - +ky_1.

Thus, the set of classical weights of level 1is exactly P;” = {A,; : i € N}, the set of fundamental weights.
A perfect crystal of level 1 is given by the crystal graph in Figure 9.1 (Hong and Kang, 2002, p. 11.1.1).

oo i e

FIGURE 9.1: Vector representation B of for type A;lll (n>3)
The Uy (g)-module corresponding to this crystal is called the vector representation of A,Slzl. The most
important property of this crystal is the order in which the arrows occur. The only purpose of labelling
the vertices is to ease the calculations in the remainder of this paper. Noting that this crystal graph is
cyclic, we identify N with the group (Z/nZ,+). In this way, the crystal graph of B can be defined
locally around each arrow i as shown on Figure 9.2.

B(L): = ]——[]

FIGURE 9.2: Local i-arrows of B
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Remark 9.1.1. For the type A(l), the Cartan matrix A is defined differently and is given by

2 -2
-2 2
Nonetheless, the crystal graph of the vector representation behaves in the same way as in the case n > 3.

For alli € N, let v; be the element of B corresponding to the vertex labelled i. The functions of this
crystal are given by the following relations:

Wz}i =ANjjy1 — A foralli € N, (9.1.3)
fioin = v
v =1 (9.1.4)
fiv]- = @ivj = 0 if j#Fi-1,
ejv; = Vi1
éﬂ]j = giv; = 0 if j#i.

We note that for this crystal, the unique maximal weight Ay, as defined in Condition (3) of Definition
8.1.13, is attained in vy (i.e. Ag = wtovg). For alli € N/, we have

i
wtog — wto; = vaj—l — wto;
j=1

i
=) & by(8.15).
j=1

The fact that the null root vanishes on h implies that in P, ) = — (a1 + - - - + &,_1). We also remark that
the crystal B has a unique minimal weight, attained in v,,_1 :

n—1

ﬁvi — ﬁvn_1 = Z ﬁv]-,l — ij
j=i+1
n—1

= ) & by(815).
j=i+1

Let us consider the dual BY of B, which is the crystal obtained from B by reversing the edges in its
graph, as shown on Figure 9.3.

oo e

0

FIGURE 9.3: Dual BY of the vector representation for type AEll_)l (n>3)

Let v denote the element of BY corresponding to v in B. We then have the relations
wto' = —wto, fio¥ = (&)Y, @' =¢gv, &v' = (fiv)" and g0’ = 0. (9.1.6)
Recall that the duality is an involution, since by the previous equalities, we have
Fil@") ") al@") ] @il (") ] &l(@")"]) = (fil(@") ], &l(2") "], v, ei0), (9.1.7)
and the map v — (v")" is an isomorphism between B and (B")". Thus (B")" can be identified with 5.

The dual BY is also a perfect crystal of level 1, as its maximal weight is attained in the dual v_; of
the minimal vertex v,,_1 of B.
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o)

By Theorem 8.1.11, B® BY is a crystal for the tensor product of the vector representation of A ",

and its dual, and the tensor rules (8.1.6) on B ® BY become

5. AR I > 0
E(op@o)) = K @ivlv ) #i(0k) 2 9i(vr) ,
v @ &) if @i(vr) < @i(vy)
y fioe @) i gi(v) > @i(v))
(v @0)) = = . .
filtoe®oy) {vk ® fio) if @i(or) < @i(o))

Using (9.1.4) and (9.1.5), we can draw the corresponding crystal graph, given in Figure 9.4.

Vi 1 \VJ V n—1 V
BeBY: vw®u, —— 010, T U2 QU —— Uy, 1 QU 4

n—ll rz—ll
v 2 v v v
vn_;\—, [ ®vn_2\———> Un2®0, 5 Un-1®0; 5

0 1

0 0

o

®¢-= === - -

1%

Y n—1
vy 1+ 12 Q0 Up—p QU +—— Uy Q0

®
2 0 2 Zl
} n—1 ®

Vol __
Ulélzwl Uy & U4 > U2 X0 [ Un-1

=<

V
Uq

/ 1 / 0 1 / 1
n—1
100y >0y l---»>0, 00 v, 100

0

FIGURE 9.4: tensor product B ® BY for type Afll_)l (n>3)

Again, the crystal graph of B® B" can be defined locally by giving the vertices adjacent to the edges
labelled 7, as shown on Figure 9.5.

BoB/(b):  wed  wasd—luod
i i
N L 4
k¢ {i—1,i} e @0 4 Ui ®U;

Vi1 ® Z)I\C/—l> 0; ® ZJ]\C/

FIGURE 9.5: Subgraph with i-arrows

We obtain, for all i, the relations

Pi(vis1® 0 ) = &i(vi1®v ;) =0 (9.1.8)

¢i(vr®@0)) =¢gi(v;@0v)) =1
¢i(vii1 ®v)) =ei(ve@v ) =1 VI1,k¢{ii—1}.
pi(re®v)) =¢gi(v,@v)) =0

The local configurations for the vertices are given in Figure 9.6.
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z+1l

l+1l =L,y @) — s @0

k—1¢ {£1}: —k 5y oy KL, i

)

FIGURE 9.6: Local configurations

The values of the functions ¢, ¢ defined in (8.1.4) are

P(vi_1®v)) =e(v; @0 ) =
evi1 @) = (v ) =
P(v;@v)) =¢(v;Q0)’) = A,-

—1 +A1+1 ,

(9.1.9)
P ®0)) = A1 + Ay
e(vp ® Ulv) = Ajp1 + A
where k — I ¢ {0,£1}. Forallk, I € N, the weight of v ® v’ is given by
WHor ® 1)) = Ay — Ax+ Ap— Apy 1 (9.1.10)
We then observe that
(Ge(vp@v))) =1+ x(k £1). (9.1.11)

By (Kang et al.,, 1992a, Lemma 4.6.2), since B and BY are perfect crystals of level 1, their tensor
product B is also a perfect crystal of level 1. We observe that the potential grounds of BB are the vertices
v; ® v/, since by (9.1.9), for all i € \/, we have that

e(b™) = A;if and only if b = v; ® v and @(ba,) = Ajifand only if by, = v; ® v/ .

9.2 Proof of the character formulas

In this section, we prove our character formulas given in Theorems 2.3.3, and 2.3.4, under the assump-
tion that Theorem 2.3.2 is true. We will then prove Theorem 2.3.2 in the last two sections.

9.2.1 Proof of Theorem 2.3.3

By definition, the generalized colored partitions in Py, are the grounded partitions with ground asb,
with energy A. This exactly corresponds to the grounded partitions PC>8> with ground ¢, and the color
correspondence Cowoy < aib;. Thus their generating functions are the same with the correspondence
eWti = p;, since by (9.1.10),

oWEOD)) _ WD) WE(K) _ b,

Using the character formula of Theorem 8.2.4, this gives the desired result. O

9.2.2 Proof of Theorem 2.3.4

Finally, we turn to the proof of Theorem 2.3.4, which gives the expression of the character for L(A/) as a
sum of series with positive coefficients.

By the definition of characters, e~*/ch(L(A/)) can be expressed as a power series in e % for i € N/,
or, by a change of variables, as a power series in ¢% and e¢% for i # 0. By definition of the crystal
graph B, we have f;v;_| = v;, so that by (8.1.5), we have wtv; | — wtv; = a; fori € {1,...,n—1} and
wtov,_1 — wtvg = @g. The change of variables e"'i = b; then gives e = bi_lbi_l fori e {1,...,n—1}
and then

n—1 n—1
0 -1 -1 —u;
Eozbn,1b0 :llbibz?l:lle L
i=1 i=1
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The changes of variables are then natural, since for alli # 0, the weight «; in P is indeed a classical weight
in P. In addition, the series GE (bog,--- ,by_19,by,- - - ,by_1) can be expressed in terms of summands of

the form
n—1 n—1
(H b?’> q" with Y r =0,
i=0

i=0

SO that we can always retrieve the exponent of b;_ bi_l, foralli € {1,...,n — 1}, which corresponds to

Y-

= 0 rj. Thus the identification

e 0 q
e «— b;_1b;!

is unique, and our generalization of Primc’s identity allows us to retrieve the non-dilated version of the

characters for all the irreducible highest weight modules with classical weight of level 1 for the type

AWM
n 1

Looking at Formula (2.2.61), we obtain the following correspondences (recall that r; = 0 = r,)

n—1 . n—1

—riTrivl _ r _ i
[To;77"" =TT (it ’]—[ef
i=1 i=1

i—1 i

Hbibi_l = H(b];lbj—l)j — k=11

By carrying out these transformations in (2.2.61), we then obtain by Theorem 2.2.43 that

1
—Ag — Sitt; ,5i(Si41—5;)0
e Mch(L(Ag) = ————— ), He e5i i+
(8—0;6—5)& ! 81,5y 1€Z i=
Sn=

1 o
_ ritj ti(rip1=1i)d [ p=i(i+1)8. p—i(i+1)6
T (=6 ,—0\n—1 2 He e l ( € o0
(e € )00 yeen—1t i=
0<r;<j-1
rn:O

y (_eo‘ml(wl)n’“z” >5+z§-1ja;.ez’<z’+1>é)
o0

i+1)r—irisq — S i
X (_e((l )1 Wiy1 2 ) Zj,]] ];e l(l+1)§ .
[e9)

Note that forall £ € {0,...,n—1}and j € {1,...,n — 1}, the transformation b; qu?((jd) is equivalent

to bj_lbfl — qX(j:é)bj_lbfl. This corresponds to the transformations e — e XU=09%% for all j €
{1,...,n =1}, and Theorem 2.3.4 follows. O

9.3 Proof of Theorem 2.3.2

We already know that the crystal graph of B ® B is connected, as B is a perfect crystal. However, here
we reprove this by constructing the paths in this graph, as these paths will allow us to compute the
energy function. First, let us define some tools that will help us simplify the construction of the paths.

9.3.1 Symmetry in the crystal graph of B ® B

First, we observe a symmetry in the crystal graph of B ® B.

Proposition 9.3.1. Let B be a crystal, let B be the dual of B, and let us set B = B ® BY. Denote by o
the element in B" corresponding to o € B. Then for any 0q,0%,03,04,T1, T2, T3, T4 € B, we have the following
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equivalence in the crystal B ® B :

filnen)e(;ee)])=(1en)?(BeT) <= &l(uer)o(men)) = (uer)® (o),
(9.3.1)
and an energy function H on B ® B satisfies

Hl(n®0) )@ (3@ 0))] —H[fi((n®0)) @ (030 0)))] = H[(04 @ 05) ® (02 @ 0y')]
—Hgi((a®03) @ (m®07))]. (9.32)

Furthermore, there exists a path between (q ® 05/ ) @ (03 @ 0y ) and (11 ® 7)) ® (13 @ 1)) if and only if there
exists a path between (04 ® 0y ) ® (0, ® 07) and (14, @ 7)) ® (1, @ T,'). Moreover, in the case where T, = T
and 13 = Tp, we have
Hl(or @ 07) @ (03 @ 03)] = Hl(oy © 05) @ (02 @ 07')]. 933)
The relevance of this proposition lies in the fact that if we find a path from (v) ® v) ® (vp ®@ v ) to
(op ®vy)) ® (v @ vy ), then we immediately have a path from (vg ® v ) ® (v @ v ) to (v ® V) ) ® (v ®
v)/) as well, by reversing the edges and taking the symmetric of the vertices in the path. By (9.3.3), this
gives the following symmetry on the energy function:

Hl(vp @ o)) @ (v @ 0))] = H[(0x @ 0)) @ (op @ v1)].
Besides, by (2.2.54), we have

Magby;apby) = x(k > K) — x(k=1=K) +x(1 <1) ~ x(1 =K =1

/ _ 1/
xk>k/ +x( <) ?f l—k/ / 93.4)
Xk>K)+x(I<U) if 1#k
and then
A(ﬂkbl; Clk/bl/) = A(al/bk/;albk).
Therefore, if we prove that H[(vy ® v))) ® (v; ® v)/)] = A(agbj; apby), we equivalently have H[(v ®
0)) ® (vp @v))] = Aapby;arby). Thus, to prove Theorem 2.3.2 in Section 9.3.3, we will distinguish
several cases according to some relations between k, k’,1,1’, and by interchanging k = I’ and k' = [, the
symmetry will then imply the remaining cases.

Proof of Proposition 9.3.1. First, let us recall (9.1.6). Forallv € Band i € N/, we have:
(fio e, g0 e0") = ((0)", (fiv)", €0, gp0),
v p—

so that wtv¥ = —wto.
The tensor rules on B are given by:

~‘ \/ . 3 > .
G @) — |50 GB:UZV if ¢i(01) > gi(02)
o ®eéoy) if @i(o1) < @i(02),
= fim@ay if @i(o1) > ¢i(02)
(1 ®0Y) = > .
fila @) a1 ® fioy if @i(01) < @i(),
or equivalently,
= fim@a! i ¢i(02) > ¢i(01)
(o ®0Y) = .
filez @ 1) @ (&ey)Y if @i(0) < @i(or),
3 & @0y if ¢;(02) > @i(01)
lomray)=<{" L1 ]
(@) @ (fien)Y if @i(02) < @i(o1).

Consider the involution # defined by
n: Bu{0} — BU{0}

0 — 0
e — e

The tensor rules on B give, foralli € N,

(moey,nofi) = (fion fion),
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so that
(piom,eion) = (&, i)
By (8.1.8), we obtain, for all o4, 03,03,04 € B,

pi(n00)) > (o)) = fillnor) (o)) =filnor)o(edg)-

By symmetry of the action of , we deduce

9i(1 @ 0)) > ei(3®0)) <= @i(n(os@0y)) < ei((1 @)

= e((ea)ennea))) =npea)@eon(nean)
= g(meag)engned))=nnea)@yo filnedn).
We also obtain that

pi(n@0y) >ei(3®0)) and fi(oy @0y)) #0
— H[(n®0)®(;ed))]-Hfilnon) o (o)) = x(i
= H[j(z @ 0y) @n(or ©0y)] — HIg;(17(o3 @ 0y ) @ (01 @ 05))]

0)
x(i=0).

In the other case we have
9i(01©0)) <eilo300)) = fil(ner) e (ked)) =(eq) filaedg)
= (o)) en)) =10 filos®a)) @ ®0y),
and
pi(r1®0)) <e(z®0)) and fi(oz®0)) #0

— Hl(1©0))@ (o)) -Hfi((n©n)® (ko)) =—x(i=0)
< Hlp(ea))2n(n©d)] - HEm(meag)en(oned)))] =—x(i=0),

and we obtain (9.3.1) and (9.3.2).
Let us now define the involution

g: BeBU{0} — B®BU{0}
0O — 0 .

((1©00))® (@) — (1ea)® (o)
By(9.3.1),weseethatéio§:éofiandfiogz@oéi.Thusforallgl,-~~,gse{El-,fi:iEJ\/},wehave
goglo...ogszﬁo...ogogl

wherej?i: & and &; = f;. Therefore, for b,b' € B ® B, we have
g1o---0gs(b) =b == gro---0g5((b)) = {(V),

so that there is a path between two vertices if and only if there is a path between their images by {. By (9.3.2), we
also observe that

H(b) — H(V') = H(b) — H(gs(b)) + H(gs(b)) — H(gs—108s(b)) +--- + H(ga 0 -~ gs(b)) — H(V')
= H({(b)) — H(gs(C(0))) + H(:(5(b)) — H(gs—1085(D)) +
+H(gz0---g5(C(b)) — H(G(Y'))
= H({(b)) — H(G (V). (9.3.5)

Choosing any b’ such that b’ = {(b') gives (9.3.3). O
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9.3.2 Redefining the minimal differences A
To construct a path from (vy ® vy ) ® (vg @ vy) to (vp ® v})) ® (v; @ v)') and show that

H[(vp @ v)) @ (v, @ v} )] = Aagby; apby),

we will distinguish the cases kK’ = I and k’ # I. But first, let us define a tool which will make our problem
easier to solve.

Definition 9.3.2. Identify N with Z/nZ, and consider the natural order on NV,
0<l<:---<n—-2<n-1.
We also define, for all i, j € N, the intervals
int(i,j):={i+1,i+2,...,j—1,j}
Lemma 9.3.3. Forall i € N, we have the following:
i<i—1 — =0,
int(i, 1) = N,
I\int(i,j) = int(i,j) <= i#],
0 ¢ int(j, 1) = j<i,
0 € int(i, f) —= j<i

The aim of this lemma is to rewrite the difference conditions A according to the fact that 0 belongs to
some interval or not. By (9.3.4), A can be reformulated as follows:

x(0 ¢ int(K k) + x(0 ¢ int(L,I')) if 1=K

x(0 € int(k,K')) + x(0 € int(, 1)) if [#K (9.3.6)

A(ﬂkbl; ”k’bl') = {

Proof of Lemma 9.3.3. The first equivalence is straightforward, since i > i — 1 if and only if i # 0, and
0 < n—1 = —1. The second equality follows from the definition of int, since we go around . Note
that

int(i,j) ={i+1,i+2,...,j—1,j},
while

int(j,i) ={j+1,j+2,...,i—1,i},

and if i # j, these two sets are complementary in N. Moreover, when i # j, we have i € int(j,7) and
j € int(i, ), so that both sets never equal @ or N. Otherwise, when i = j, they both equal AV. This gives
the third equivalence.

For the fourth equivalence, the fact that 0 € N gives

0¢int(j,i) <= 0¢ {j+1,i+2,...,j—1,i},
—iFjandD#{j+1,j+2,...,i—1i} C{1,...,n—1}
= j<jt1<i

Finally, for the last equivalence, we note that

x(j<i)=x(<i)+x(=1i)
=x(j<ix(G#i)+x(G=1)
= x(0 ¢ int(j,i))x(i # j) + x(i = )
= x(0 € int(i, /) x(i # j) + x(i = j)x(0 € int(i,)).
This concludes the proof. O

9.3.3 Construction of the pathsin B® B

We are now ready to construct the paths in B ® B, and use them to compute the energy function H[(v; ®
0))) ® (v; @ v} )]. We will use the relations in (9.1.8) and the local configurations of the vertices as defined
in (9.6). The symmetric of (vy ® v)) ® (v; ® v)) is (vx ® v)) ® (vp ® v}/), obtained by interchanging
k' =1,I" = k. We distinguish several cases:
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1. ¥ =0"and ] =k,

K=1+k=1,

K =landk #/,

k' #k=1=1 (Symmetric: | #k =k' =1'),
I'#K =k # 1 (Symmetric: k #1 =1 # k),
k£K, K #£land] £ 1

(@) k+1,K ¢ int(l,!") (Symmetric: I’ + 1,1 ¢ int(K', k)),

(b) k+1 € int(l,I') and k' ¢ int(l,I") (Symmetric: I’ + 1 € int(k’, k) and | ¢ int(kK’, k))
() k+1¢int(l,l') and k' € int(l,I') (Symmetric: I’ + 1 ¢ int(k/,k) and I € int(k’, k))
(d) k+1,K € int(l,I')and I’ + 1,1 € int(K, k).

AN S

The case k' =1!"and ! =k

We construct a path from (v ® v))) ® (v}, ® v))) to (vp ® v))) ® (v; @ v)'). We consider the case k' # I,
as otherwise the two elements are the same. By (9.1.9), we have

gi(op @ o) = ei(op @ o) = x(i =K).
By the tensor rules (8.1.6), we then obtain the path

K K -1 I+1
(Uk/ X ZJ]\C/,) X (Uk/ ®U}\c/,) — (Z)k/ [ Ul\c/’) & (Uk/ ®Ul\c/’71) —_— —)(Uk/ (4 U]\(//) & (Z}k/ ®U;/)

lk’+1

empty if K'=I+1

1 -1 K +2
(o @vp) @ (0 @) — (op @ o) ® (V1 ®V)) ¢ -+ &= (W @ vy)) @ (vp11 @ V))
empty if K'4+1=/

This path is only made of forward moves f;, with i € int(],k’) Uint(k’,]) appearing once, where we
change the right side of the tensor products. By (8.1.8), we then have

H[(vp ®@v)) @ (0@ 0))] — H(vop @ 0) @ (vp @ 0}0)] = x(0 € int(L,K')) + x(0 € int(K', 1)) = 1. (9.3.7)
By (9.3.3), we have the symmetry
Hl(o @ 0))  (op ® )] = Hl(ow ® 0}) ® (01 @ 0))]

Here we need to compute H((vpy ® v))) @ (vp ® v}))). By interchanging k" and I, we obtain a path be-
tween (v @ v)) ® (v ®v)) and (v; ®v)) ® (v; ® v)), and

Hl(op @ o)) & (019 0))] — Hl(oy @ 0}) @ (01 @0))] = 1.
We have a path from (vp ® v))) ® (vp @ v);) to (v, ®v)) ® (v, ® v)) and
H[(vp ® vp)) ® (vp @ v)] = H[(v, ® v)') ® (0 @ 0)')].

Recall that by definition, H[(v9 ® vy) ® (vo ® v )] = 0. Thus setting k' = 0 yields by (9.3.6) that for all
leN,
Hl(vy®v))® (v ®0))] =0=2x(0 & int(l,1)) = A(a;b;; arby). (9.3.8)

Plugging this into (9.3.7) gives, for all k' # I,

H[(Z)k/ ® U,\(//> [ (Z)l ® U?/)] =1= X(O < int(l,k’)) +X(0 c int(k’,l)) = A(albl; Clk/bk/). (939)
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Thecasek' =1 #k=1

We now construct a path from (v; ® v)) ® (v ® v)) to (v; ® v)) @ (v ® v)). By (9.1.9), we know that
ei(op@v)) = x(i =k)and ¢;(vp ®v)) = 0if i ¢ {I+1,k}. Since k # I, we have for all i € int(k,[) that

(v ®@v)) # (v, ®v),,), and then (v; ® v}’) Lo v/ ;). We obtain the path

k k-1 I+1
(01®0))® (@v) — (RY ) (o) — - —(®v)) ® (v, @ v))

empty if [+1=k
|
k+1 k+2

!
(@)@ (o)) & (eoy,)® (ueo) &2 I (v oo )@ (o))

empty if I=k+1

In the upper part of the path, we moved forward (by some f;) by modifying the right side of the tensor
product with arrows in int(l, k) appearing once. Then, in the lower part of the path, we moved forward
by modifying the left side of the tensor product with arrows in int(k, /) appearing once. Using that k # I,
the energy function satisfies:

H((vy®v))® (0 ®v))] =H[(v;®0)) @ (v ® v,\c/)] x(0 € int(,k)) — x(0 € int(k,1)) by (8.1.8)
=1+ 2x(0 € int(l, k)) — by (9.3.9)
= A(aby; axby) by (9.3.6).

The case k' =l and k # I

The vertices (vy ® v)) @ (v; ® v} ) and (v ® v)) ® (v; ® v)/) are symmetric.

Since k # I, we have thatint(k,[) # int(!, ). By symmetry, we can assume thatint(!’,1) ¢ int(k,!
int(I',1), so that I’ + 1 ¢ int(k,I). In that case, we necessarily have k # 1. Then, ¢;(vy ® v))
e1(v; @) ) and @;(vy ® v)") = 0 foralli € int(k, 1) \ {I}, and we have the path

(0©9))® (1, 00)) +- (01 80)) @ (0 ®0)) £ - L (v @ 0)) ® (v, @ 0))

empty if I=I"
k+1 I+1
(0 ®0)) @ (0 @V)) ¢+ —— (p ®0)) @ (v, ®v) ;)
and the energy function is given by

H[(vy @ v))® (v @0))] = x(I" #1)x(0 € int(l',1)) + x(0 € int(k, 1)) by (8.1.8)
= x(0 ¢ int(1,1")) + x(0 ¢ int(l,k)) by Lemma 9.3.3
A(ﬂkbl,’ albl/) by (9.3.6).

This was the last case where k' = I. Also, we have already studied a special case where k" # I, which
was the case I’ = k' # | = k. We now study the other cases where k’ # I.

The case k' # k = | = I’ (Symmetric case: | #k =k’ =1)
Since I ¢ int(1, k"), we have the path

I+1 1+2 K
(0141 ®vlv+1) ® (v ®le) — (n® UIVH) ® (v @7, )= (1 ® vk/) ® (v ® vlv) .

empty if K'=1+1
Thus the energy function satisfies

H[(vy®v)) @ (v ®v))] =1+ x(0 €int(L k")) by (8.1.8) and (9.3.9)
= x(0 € int(l,1)) + x(0 € int(/,k’)) by Lemma 9.3.3
A(albl,' ak’bl) by (936)
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The case " # k' = k # 1 (Symmetric case: k # 1 = 1" £ k')
We first assume that I’ + 1 ¢ int(k’,1). Since I # k/, it means that
int(I’, k") Uint(k',1) = int(’, 1).

Since I’ + 1 and k" do not belong to int(k’, 1), we have by (9.1.9) that ¢;(vy ® v))) = 0 for all i € int(K’,1).
This gives the path

I'+1 I'+2 K
(vll+1 &® U;{_,'_l) & (Z)kr+1 X U]Y/_H) — (Z)l/ ® vl\{—l—l) ® (Uk/ 1 &® Uk/+1) — - <—(Z)l/ &® Uk/) & (vk’—i-l & U]\c//_,'_l)

lk’ﬂ
kK42

1
(0 @V)) @ (@) ¢— -+ —— (vp @) ® (Vg1 @) -

empty if K'=1'+1

empty if k'4+1=I
We deduce the following formula for the energy function:

H[(vp ® v))) @ (v ®0))] =1+ x(0 € int(I',k')) + x(0 € int(k’,1)) by (8.1.8) and (9.3.9)
= x(0 € int(K', k")) + x(0 € int(!',1)) by Lemma 9.3.3
= A(ﬂk/b],' ak/bl/) by (936)

Let us now assume that I’ +1 € int(k’,1). Since int(k/,1) # @ and I’ # k', we necessarily have that
kK +1 #Iand int(k’,1") C int(k’,] — 1), so that I’ # I. Note also that, by (9.1.9),

(pk/(vl/ X U]Y/_l) =0= et (vk’—l ® U]\(//),
since k' # 1" +1,and ¢;(vy ® v},) = 0 for all i € int(I,k’) \ {k'}. We then have the path

K K I
(Uk/ (9 Ul\c/’fl) (4 (Uk/ (4 Ul\c/’fl) — (Uk/ (4 Ul\c/’71> ® (Z)k/ X ?Jk/) i) —>(Ul’ (29 Uk’ ) (03] (Uk/ (4 Ul\c//)
¢ nonempty since k' #1'+1
[¥
~—
*
I+1 L | K

(op @ vp)) @ (v @ V)

(Ul/ X ?J]\(//) X (vk’—l X Ul\c/’) —>(Ul/ & Ul\c/'fl) X (Uk’—l X U,\(//> :

*

By the previous case (I’ # k' = k # 1), we obtain the energy function

H[(vp ® v 1) ® (op @ v)_1)] = x(0 € int(k", k")) + x(0 € int(k' — 1,k' — 1)) = 2x(0 € int(K',K')).
(9.3.10)
In the computation of H, by (8.1.8), the moves marked by % cancel each other, since it is the same arrow
that operates backward consecutively on the right and on the left side of the tensor product. Besides,
the moves marked by e give int(, k") and operate backward on the right side of the tensor product. As
a consequence,

H((vp @ v)) @ (v; @ v)))] H[(vp @ v))_1) @ (0p @0)5_1)] — x(0 € int(K', ")) — x(0 € int(L,K')) Dby (8.1.8)

=2x(0 € int(K, k")) — x(0 € mt( K,1") —x(0 €int(l,k')) by (9.3.10)

= x(0 € int(K, k")) + x(0 € int(K/, )) x(0 € int(K,1"))

= x(0 € int(K, k")) + x(0 € int(!', 1)) by Lemma 9.3.3
= A(ak/bl; ﬂkrbl/) by (936)

The casek # k', k' #land [ # '

The sub-case k + 1,k" ¢ int(l,!') (Symmetric case : I’ + 1,1 ¢ int(k’,k)) Wehave !’ + 1,k ¢ int(l,I'),
so that ¢;(vy ® v),) = 0 foralli € int(l,I'). Besides, k+ 1 ¢ int(,1'), so that &;(v; ® v)/) = (v;_1 ® v)).
We obtain the path

I 1
(op ® o) @ (0 ® 1)) — -+ 7 (op ® ) @ (0 @),
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By Case 7.4 and the symmetric of Case 7.5, we have

H{(vp ® o)) ® (op @ 0Y)] = x(0 € int(k, k') + x(0 € int(I', '), (9.3.11)

and the energy function becomes

H[(vp @ v))) @ (v @v))] = H[(opy ®v))) @ (vp @ v)] — x(0 € int(1,1)) by (8.1.8)
= x(0 € int(k, k")) + x(0 € int(!',1")) — x(0 € int(1,I')) by (9.3.11)
= x(0 € int(k, k")) + x(0 € int(V', 1)) by Lemma 9.3.3
A(akbl;ak/bl/) by (9.3.6).

The sub-case k + 1 € int(/,I') and K’ ¢ int(/,]’) (Symmetric case: I’ + 1 € int(k’,k) and [ ¢ int(k’,k))
This case is very similar to the previous one. We use the following path:

I k+4-2 k
(0p @0) @ (p @) 4— -+ —— (0 @V} @ (V1 @) = (v ®VY)) @ (V1 @ VY_4)

L]
T

g
*

*

I+1 k k
(0p @v) @ (vp @) — -+ —— (0 V) @ (v @) —(vy @ v})) @ (v @ VY_4)

*
Note that the moves marked by e cancel each other, and the moves marked by « give int(/,1), so that

the calculation is the same as in the previous case.

The sub-case k + 1 ¢ int(I,I') and K’ € int(],]’) (Symmetric case: I’ + 1 ¢ int(k/,k) and I € int(kK’,k))
We have I,k +1 ¢ int(l,1'), so that ¢;(v; ® v) = 0 for all i € int(],1"). Note that k' 4+ 1 € int(I,1"), since
k" € int(I,I") and k" # I'. This gives the path

I+1 K K

(@) ® (@) — - — () ® (0 ®v)) = (ow @vy_1) ® (1 ® V)
* [ ]
lk’ﬂ
N——
*
! / /
(or @ 0}) @ (0 @) +— 2 (v ©0)) @ (0 © 7)) 2 (vps @ VY © (0@ 7))

* L]

As before, the moves marked by e cancel each other, and the moves * give int(,1"). We move with the
fi’s by changing the left side of the tensor product, and we get

H[(vp @ v)) @ (v @v))] =H[(r,®0)) @ (v @v))] — x(0 € int(,1")) by (8.1.8)
= x(0 € int(k, k")) + x(0 € int(1,1)) — x(0 € int(1,I')) by (9.3.11)
= x(0 € int(k, k")) + x(0 € int(V', 1)) by Lemma 9.3.3
A(akbl; ﬂkrbl/) by (9.3.6).

The sub-case k + 1,k' € int(/,!’) and I’ + 1,1 € int(k’,k) Note that this case overlaps with the case
k' = 1" # k = I that we already checked in the first part. Omitting that case, we can assume by
symmetry that k # . We obtain the path

I K k 1
(0 @0)) @ (D @V ) — - ;>(UV®vk/)®(vk®vk) TR (0 @0)) @ (v ®v)) -

empty if kK'=I"

Since k # 1, the fact that | € int(k/,k) implies that int(k’,k) = int(k’,]) U int(], k), and the fact that
k+1 € int(I,I') implies that int(/,!") = int(],k) Uint(k,I'), so that K, I’ + 1 ¢ int(l,k). Also, if k¥’ # I’,
then I’ +1 € inter(k’, k) implies that int(k’, k) = int(k’,1") Uint(!’, k), so that k ¢ int(k’,I'). Since | # I’
and k' # 1, the fact that kK’ € int(/,!’) implies that

int(I',k") = int(!',1) Uint(I, k'),
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and the fact that ! € int(k’, k) and [ # k implies that
int(I, k') = int(l, k) Uint(k,k’).

Thus the computation of H gives

H[(vp @v)) @ (v @0))] =1—x(K #1')x(0 € int(k',1')) — x(0 € int(l, k)) by (8.1.8) and (9.3.9)
=1—x(0¢int(l',k')) — x(0 € int(l, k)) by Lemma 9.3.3
= x(0 € int(l',k")) — x(0 € int(l, k)

ll
) )
= x(0 € int(l',1)) + x(0 € int(I, k")) — x(0 € int(, k))

x(0 € int(l,1)) + x(0 € int(k, k"))

A(ﬂkbl, ak/bl/) by (9.3.6).

We have checked all the possible choices of k, 1, k', I'. Our proof of Theorem 2.3.2 is thus complete.






Chapter 10

Lezxzz)el 0(15: sta1(12c>1ard Ia())du%fs of
AZn / Dn+1’ AZn—l’ By, Dy

In this chapter, we compute the character formula corresponding to the following level one weights:
e A for the affine type Aéi) (n>2),

Ag and A, for the affine type D,(ﬁzl

(n>2),

Ao, A for the affine type AL | (n > 3),

Ao, A1, Ay for the affine type B,(ql) (n>3),

Ao, A1, Ay _1, Ay for the affine type D,(11) (n>4).

10.1 Case of affine type Ag? (n>2)

The crystal B of the vector representation of Aéi) (n > 2) is given by the crystal graph below

5. P = e
pAO:(---OOO) 0 1 2 S oin=1 nfl

FIGURE 10.1: Crystal graph B of the vector representation for type Aéi) (n>2)

with wt(0) = 0and forallu € {1,...,n},

n—1

153

. _ 1
—wt(l) = wtu = S0 + Z ;- (10.1.1)

i=u

Here, we have 6 = a,, + 2 Z?:_Ol ;. We thus obtain the following crystal graph for B ® B
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[0]=[0] el - - = el - - - Esb] —— @] - - - @el] - - -» @20 —> O[]
—> :0-arrow

U Wel] - - - el - - - o] — [EHel] - - - el - - - Es] =[]

—— :n-arrow : : : : : :
— — 5 :paths of i-arrows, for consecutive i # 0,n ; — Mo --= ; R — g - - = [@e] ; —_ 6\2

! ! ! ! ! !

I:] : connected components without 0-arrows \L \L \L L \L \L
0@ — [0 - - - @e 0@ — @em Y@ - - » 00 — [0
0@ — (@5 - - > D@ - - - BeE S @ - - » @58 - - - 00— [0

! ! ! ! ! !
i@ — 0°E - - - EeE 6@ — Eod -- - DE — [@5E

! ! ! ! ! !
e — e[ e - - = (o] — e[ - - - @[] @edl — =
[0]=[0] =0 - - = 0] - - - [ep] — =[] - - - @[] - - - @0 — [2[0]

. )
FIGURE 10.2: Crystal graph of B ® B for type A;,’ (n > 2)

We then consider the set of states C = {c1,...,cn, 5, ..., C3,C0}, ¢g = Co, and by setting € (cu, ) =
H(v®u)and H(0® 0) = 0, we obtain the following energy matrix for €:

Cl PR CT CO
a /2 - 2 1
glo - 2 1
o\l -~ 1 0

This energy matrix can be obtain by taking the energy matrix of € defined by

C1 e CT co
cg ({1 -+ 1 1
cg| 0 1 1
co \ 0 0 0
followed by the transformation
(g,c1,¢9, s CnsCir) = (qz, clq_l,CTq_l,...,cnq_l,cﬁq_l)- (10.1.2)

This means that, for ¢ # cy, the particle k. for the energy € is identified as the particle (2k — 1), for the
energy €', and since we do not modify the ground ¢y, the particle k., for € is identified as (2k), for €/, so
that the last particle still remains O, .

By setting ¢y = 1, we can apply Theorem 2.2.24 to the flat partitions with ground ¢y and with energy
€ to obtain the generation function

Y Cmg™ =Y C(m)g™ = (~c1q,—c5q,. .., —cnd, —cid; 9)eo -

ECg ECg

meEF, mER,

In fact, by the definition of the energy €, one can view the partitions of Ri’cg as the finite sub-sequences,
ending with 0., of the infinite sequence

ct }5 351 >€ ZCT >e t >€ 2(;1 }g 1CT }e >€ 1@71 }g 1(;” }e >€ 1(;1 >€ OCO.
Using (10.1.2), the flat partitions with ground c; and energy €’ are generated by the function

(—c19, —Cq, -, —Cnfl, —Cif; ) oo -

Using Theorem 8.2.4 and (10.1.1), we obtain the formula for the character for Ay given in Theorem 2.3.6.
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Another way to retrieve Theorem 2.3.6 is to consider in Theorem 2.3.1 the set %Pf; ,with D = 1. This
set consists of the partitions grounded in cg, and which are finite subsequences of

e e Dy >e4c0 >‘e3cT et e 3 e 2 e 1CT e e 1cﬁ e L, =e e 1c1 e Ocqy

with possible repeated parts 2k, for k > 0. It suffices to observe that, by definition of %PC>O> , the size
difference between the two consecutive parts with colors c, and ¢; has the same parity as Hy, (V' ® b) =
H(b' ® b). This implies that all the parts with colors c1, ¢i, - - -, Cn, Cr have the same parity, different from
the parity of the parts with color ¢g. Since the ground have size 0 and color ¢y, we obtain the sequence

above.

By setting ¢y = 1, we then obtain

X

21>
nelpfgo gy 4

(=19, =¢34, -, —Cnf, —Ca; 4% )oo

C(rc)q‘”‘ = (% 3%

Using (2.3.7) yields Theorem 2.3.6.

10.2 Case of affine type Dﬁl(n > 2)

The crystal graph of the vector representation B of Dr(zl+)1 (n > 2) is the following,

B: % 1 2 n—2 n_1 n—L "
pa, = (-+-0000) @\
PA, :(6666) 0 1 2 P 1 Bl | v L/

FIGURE 10.3: Crystal graph B of the vector representation for type D7(12421 (n>2)

with wt(0) = wt(0) = Oand forallu € {1,...,n},

n
—wit(nn) = wtu = E ;- (10.2.1)
i=u
n . .
Here, we have § = ) | ; a;. We thus obtain the following crystal graph for B ® B
—> :0-arrow [0]=[0] [Mef] - - = e[ - - - [#e0] —e— @[] - - = @] - - - [e] — [O]2[0]
—> :n-arrow
[O]=[1] el - - - o] - - - [el] —e— [Eei] - - - @] - - - @] [o]e[]
—e—> : chains of two n-arrows : : : : : : :
_ _ v v v v v v v
e :vertexof the form0®-or- @0 [0l — |[Mel e - - = Bl —e— FEel] - - - @k Do) — |0«
| | | | | | |
— — % : paths of i-arrows, for consecutive i # 0,n \L \L \L \L L \L \L
O] — @] - - - [Ee[] o] —e— @[] @el] - - - @] — |[s[z]
I:] : connected components without 0-arrows N SN " I i SN RN
@@f — /f - == [WeE - - - >‘< H [eE - - - é‘é --= @f — @‘f
| | | | | | |
v v v v v v v
eE — [@e@ - - - MeE (e —e— [@ef el - - - e — |leE
| | | | | | |
| | | | | | |
v _ _ v _ v_ v v _ ~ v v _
[OJ=A] — [[@=[A] e - - = [ei] —e— el - - - [@eG] [eil — [O2[]
=[] [OI=0] - == [e0] - - > [el] —e— @] - - - @] - - - [@el]] — [J=[0]]

FIGURE 10.4: Crystal graph of B ® B for type D512+)1 (n>2)
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2n’ “n+17°"2n—1’

Consider the set of states C = {c1,...,Cn,Cg,C,---, €3, C0}. By setting €' (cy,co) = H(v ® u) and
H(0®0) = 0, this yields the following energy matrix for €:

(o] e Cn C6 cig CT Co
/2 - 2 2 2 .. 2 1
) . Co e
! 0 2 2 2 .. 21
x| 0 0 0 2 2 1
CS 0 0 0 2 2 1 (10.2.2)
0* :
{0 - 0 0 0 2 1
o \1 1 1 1 1 0

10.2.1 Character for A

In the following, the ground is set to be c¢ = cop = 1. We obtain the energy matrix in (10.2.2) by
considering the energy matrix for e

(o5 I Cn Cﬁ Cq - CT Co
¢ ({1 -~ 1 1 1 --- 1 1
cn| O 1 1 1 --- 1 1
| 0 0 0 1 11
| O 0 0 1 1 1

0* :

clo - 0 0 0 - 1 1
co\0 --- 0 0 0 --- 0 O

followed by the transformation

(g, cg 1,9, CnyCp) > (qz, caq_l,clq_l,ch_l,. ..,cnq_l,cﬁq_l) . (10.2.3)

By applying Theorem 2.2.24 to the corresponding flat partitions with ground cp and energy e, this leads
to the generation function

2 C(Tf)q\n\ — Z C(n)q‘”‘ _ (—Clq,—CTq,...,—cnq,_cﬁq;q)m.
meRy (cg:9)

€,Cg

TEF,

In fact, by the definition of the energy €, one can view the partitions of Ri’cg as the finite sub-sequences,
ending with 0, of the infinite sequence

e 3y e ZCT e e 2q e 1CT e el e 1c5 e le, me e e e Oy

with the particles k¢ possibly repeated. Using (10.2.3), we then have that the flat partitions with ground
co and energy €’ are generated by the function

(=19, —cqq, -, —Cn, —Ca; 9% )oo
(co7:4%)
By Theorem 8.2.4, (10.2.1) and the fact that c; = 1 with the convention of Theorem 8.2.4, we finally

obtain the formula for the character in Theorem 2.3.7 corresponding to Ag. As for the case Agl) (n>2),
the character formula can be obtained by (2.3.7) witht = D = 1 and d = 2 and ground cy.
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10.2.2 Character for A,

Here we set the ground to be c¢ = c¢j = 1. The energy matrix in (10.2.2) is obtained by considering the
energy matrix of €

cT Cn Cﬁ cg v CT co cg v CT cp (1 Cn C6
aq /1 -+ 1 1 0 -~ 0 0 /1 -~ 1 1 1 -~ 1 1
-] A A B I A A

o ) 1 10 - 0 0 ¢lo - 11 1 .11

G| o 0 0 0 0 0 _ oo 0 0 1 1 1
ar | 1 1 1 1 1 1 = oo 0 0 1 1 1|’
: S S S SR S : N :

g|l1 - 1.1 0 -~ 1 1 w|lo - 00 0 - 1 1
o\1 - 1 1 0 --- 0 0 G\0 -~ 0 0 0 -~ 0 0

followed by the transformation

(4,co,cq, - cm) = (4%, coq ' egq %o eng2) - (10.2.4)
Here the particle k, for € is transformed into (2k — 1), for €, and the particle kfi into (2k — Z)C?. Since
¢y and ¢; are not modified, the particle k. then becomes (2k). for any ¢ € {cy,¢;:i € {1,...,n}}.

Applying Theorem 2.2.24 to the flat partitions with ground c5 and energy ¢, this leads to the gener-
ating function

Clrmyall — Clryalml = (=19, —c1q, - - -, —Cnd, —Calf; §)oo
Zug (7)q Z? (7)q ot )

neF, TER,

In fact, by the definition of the energy €, one can view the partitions of Ri'cg as the finite sub-sequences,
ending with O, of the infinite sequence

>‘e?’cg e zcn e >‘ezcﬁ e 1c,, et e 1c1 e 1c0 e 1CT e e 1cﬁ e 0c51

with the particles k., possibly repeated. Using (10.2.4), the flat partitions with ground cg and energy €’
are generated by the function
(—a1g? —cg, ..., —n?, — 59 oo .
(coq; 4%)
By Theorem 8.2.4, (10.2.1) and the fact that cy = 1 with the convention of Theorem 8.2.4, the formula for

the character in Theorem 2.3.7 corresponding to A, holds. This character formula can also be obtained
by (2.3.7) witht = D = 1 and d = 2 and ground cj.

10.3 Case of affine type Aé})—l( > 3)

The crystal graph of the vector representation B of AP (n > 3) is the following,

2n—1
B: L 2o o LB 1) 2= 1]
bAo:bA1:1 M =py =1 >< n
pay = (---11111)  py, = (---11111) T — —s-[n—1] ¢ [7]

FIGURE 10.5: Crystal graph B of the vector representation for type Aéi)_l (n>3)

and forallu € {1,...,n},
_ o 1 n—1
— wit(1) = wtu = 5%+ Y (10.3.1)

i=u



158 Chapter 10. Level one standard modules of Agi), DT(IZJZI, Aéi)fl, B,(ll), Dﬁ,l)

Here,
n—1
d=wag+w +a,+2 2 w;
i=2
We thus have the following crystal graph for B ® B
—> : O-arrow [Ee@ - - » R2eE — @[ el — 2 - - - [eqE) EEE
1 S I I I [ I
: 1-arrow RSN | /_‘— | D |
— JRNN g . .
@e] ezl —»21s[2] el — @l
—> :n-arrow 1 i S
|
— — » :paths of i-arrows, for consecutive i # 0,1,n b - = [e[@) A=
I:] : connected component of 1 ® T
- el | - - 2sh] — [Oel] @e
| I : connected component of 1 ® 2
_
|:| : connected component of 1@ 1 Eel2] - - = Eel2] [{e[2] —— E=[2]
| ] ] N |
| /—A— N |
v v ><—~‘v\ RN v
@eld - - - el — Do WMo —» el - - - [eE e

FIGURE 10.6: Crystal graph of B ® B for type Agi)_l (n>3)

We then consider C = {cy,...,cn, Cii) - - -, CT}, and by setting H(1 ® T) = —1, we obtain the following
energy matrix:

(o3 GG ¢ Chr -+ Cp
o [ 1 1 1 0 0 --- 0
oo 11 0 0 --- 0
ci| o 0 1 -1 0 0
aql 1 1 1 1 1 1
ol 1 1 1 0 1 1
cn \ 1 1 1 0 0 1

10.3.1 Character for A

We now refer to the notation of Section 8.3. Recall that the ground state path of Agis pa, = (k)5 With
¢2r = Land gy = 1 forall k > 0. Here, t = 2 and our convention for the energy function gives

H(gok12 ® gok41) = —H(g2k41 ® g2k) = 1+ (10.3.2)

Then, by (2.3.1), it follows that Hy, = H. This yields the equality Hx (g1 ® g0) +2H (g2 ® g1) = —1, and
we can then choose D = 2. We finally obtain by (2.3.4) that u® = —1 and u(!) = 1. Using Theorem 2.3.1,
this yields the character formula via the generating function of the set %Pfl?cl.

We observe that, by the choice D = d = 2 and the fact that u©® = —1, the partitions of %P;?C ) have

parts with odd sizes, as the differences between consecutive parts are even and the grounds’ sizes are
odd (we always have the tail ((—1)c;, 1¢,)). Besides, computing the generating function of partitions in

%Pc?cl is not difficult. It suffices to remark that >> is a partial order on the set of colored odd integers,
with

—1)e le
(1)C1 Kl € <K, € € - K 1y K 361 KBy, L oo
Cc1 1

We also remark that, since H(b® b) = 1 for all b € B, any part cannot appear twice, expect in sequences
of the form

L (2= 1) € (2k+ 1) K (2k 1) < K (20— 1) K (2k+ 1) L0 (10.3.3)

To compute the generating function of such sequences for a fixed k, we distinguish 4 cases:
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1. When the sequences begin and end with (2k — 1), there are an odd number of parts, and by
gathering the pairs (2k + 1), < (2k — 1).; after the first element (eventually no pairs), we obtain
the series

cqg?1

(1 — cgerq)

2. In the same way, when the sequences begin and end with (2k + 1).,, then

2k+1
c1g*t

(1 — cqe1q™)

3. When the sequences have an even non zero number of parts, by taking pairwise and considering
whether the sequences begin by either (2k — 1) or (2k + 1),, we obtain

2CT61 q4k
(1 = cgerq)

4. Finally, in absence of both (2k — 1), and (2k + 1),, the generating function is 1.

Gathering these 4 cases, the generating function of such sequences (possibly empty or having one ele-
ment) for a fixed positive integer k is

(1+ g 1) (1+ c1g*1)
(1= cqe19*)

. (10.3.4)

Note that, for k = 0, only the sequence (1¢,, (—1)¢;, 1¢, ) can occur at the tail of the partitions grounded in
¢, €1, but not the sequence ((_1)CT’ ¢, (_1)CT’ 1¢,). We then obtain, without the condition on the even
number of parts, that the generation function is

(1t ) (—c19°, —c19, —c2q, =38, -- -, —Cn, —Ca1;4°) _ (—€19,—C1q,---, —Cud, —Cad;q°)
(cre1q*;q*) (cre1g*;9%)

The partitions in %Pfl?c , having an even number of parts, so that

Z C(T()q'”‘ = (_C1l], —C1q, -+, —Cnf, —Cud; 172) + (Clq, ¢4, - - -,Cnq, Cit]; 112) '
>

10.3.
2ererdi ) (10:3.3)

2
2 PCTCI

We obtain e~"0ch(L(Ag)) by using (2.3.7) and setting g = e~% and cp = eV,

10.3.2 Character for A

We follows the same reasoning as before. Recall that the ground state path of A1 is (gx )5~ , with gory1 =
1and go = 1 forallk > 0. Hence, Hy, = H, and by setting D = 2, we have by (2.3.4) that u’ = 1 and
u) = —1. Here we consider the set of multi-grounded partitions with ground ¢y, cq corresponding to
%PC>1>CT. We have almost the set of partitions as in %’Pflfc |, except that the tail is always 1.,, (_I)Tr and we
can have the sequence ((—1)1, 1¢,, (—1)7) at the tail, but not (1, (1)1, 1c,, (—=1)7)-

The generating function without the parity of the number of parts is given by

(—c19°, —cqq, —c2q, =¢34, -, —cnf, —Ca;9%) _ (—c19°, —¢q ", —c2q, —c54, -, —Cnd, —Ci; q°)

T+cqg b =
(+er™) (cze19;9%) (cie1q*;9%)

The partitions in %P‘?CT having an even number of parts leads to the identity

Y C(m)q = (—ag®, —ciq !, —caq, =54, - ., —cn, —cat; 4°) + (14°, cxq " 2q, 059, - -, Cnd, a1 47)
2(cqerq*4%)

%PC>1>CT
, (10.3.6)
We obtain e=*1ch(L(A1)) by using (2.3.7) and setting g = e~ % and ¢, = e"®.
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10.4 Case of affine type B (n>3)
The crystal graph of the vector representation B of Br(,l) (n > 3) is the following,
B: : 2 A 1] 4= 1],

P, = (-~ 0000) 0

pAli("lTlll) 1 2 n—2 n—1 n—1 Ln/

FIGURE 10.7: Crystal graph B of the vector representation for type BV (n>3)

with wt(0) =0 and forallu € {1,...,n},
o _ n
—WE(T) =wtu = )_ a;- (10.4.1)
i=u

Here § = ag + a1 +2Y_' , ;. We thus obtain the following crystal graph for B ® B

: 0-arrow
: l-arrow

: n-arrow

—
—»
—
— — > : paths of i-arrows, for consecutive i # 0,1, 1
I:] : connected component of 1® T

: connected component of 1 ® 2

|:| : connected component of 1® 1

M

el - - » 2o —> e

[el] —»12Je[0] - - = [Fel] —— [le[]

1
(el - -~ Eefa] — =[]

Eel] - - - Eel]

- - 2] — [ef1]

>‘<

v /_\‘V—

=[] - - = [2]2[0] — [F]e[0]

FIGURE 10.8: Crystal graph of B ® B for type B (n>3)

10.4.1 Character for A,

Here, the only suitable ground to apply Theorem 8.2.4 is ¢5. Consider C = {c1, .., cn,cit .., 1, Cﬁ}' By
setting €’(cy, ¢y) = H(v ® u) and H(0 ® 0) = 0, we obtain the following energy matrix for €’:

o
S

_ -0 O O —_

1*

5]
1

=

q

1

_ o e

1
0

2
0

0*

Cn C6
0 0
0 0
0 0
1 1
1 1
1 1
0 0
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This energy matrix can be obtained by taking the energy matrix of € defined by

Cir ¢ ¢ €1 € -+ Cn Cy
cr [ 1 11 1 1 -~ 1 1
S 0 : S L
&z | O 11 1 1 --- 1 1
c;| O 0 1 0 1 1 1
ci| O 0 0 1 1 1 11,
co| O 0 0 0 1 1 1
. ST L .
Cn ‘e 0 0 O 1 1
cg \ 0 0 0 0 O 0 0
followed by the transformation
(qrcqrerci) = (q,c09 - caqt) - (10.4.2)

Here the particle k.. for € is transformed into (k — 1), for €’. The other particles k. remain unchanged.
By setting the ground ¢, = c5 = 1, we can apply Theorem 2.2.24 to the flat partitions generated by e.
This results in the generation function

2 C(n)q‘ﬂ\ = 2 C(n)q‘”‘ _ (_Clq’_CTq/--w—qu,—cﬁq;q)m.

—q2. 42
ﬂe]:le'cg nERi'Cg (Clclq & )oo

In fact, by the definition of the energy €, one can view the partitions of Ri’cg as the finite sub-sequences,
ending with 006' of the infinite sequence

T e 30g ~e 2c,1 et e Zcﬁ e 1cn et e 162 e 1CT e 1c1 e 1CT e 1c§ et e 1Cﬁ e 0(16/
with the additional condition that we have possibly alternating sub-sequences of the form
>‘ekc1 >‘ech>ekc1 >_€kCT>_E

By reasoning on the parity of the length and the first element, the generating function of such alternating
sequences for a fixed potential k, possibly empty or reduced to one element, is equal to

(1 + c19") (1 + e7q)
1 — cqepq%

Using (10.4.2), we then have that the flat partitions with ground ¢ and energy €’ are generated by the
function
(—c19, —c1, -+, —Cnf, —Cii;q) oo -
(1674 4%) 0
Using Theorem 8.2.4 and (10.4.1), we obtain the formula for the character corresponding to A, in Theo-
rem 2.3.9.

10.4.2 Character for A
(1)

We proceed exactly as we did for the type A, " ;(n > 3), all the combinatorial elements are defined in
the same way. Here, we only add the color ¢, the part colored by ¢ being odd, and with the fact that

the the part (2k + 1)50 can appear several times, and wt0 = 0, we obtain

1 (—c19,—c3q, .-, —cnq, —cq;9%)  (c19,¢74, - - -, cuq, cii; 4°)
C 7T |7T| — 1 + 1 .
L Cmat=3 *) ( (coq; %) (—coq; 4%)
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By taking cicy = ¢o = 1, we then obtain
M= X ((a —eva —can o, —coas 0 . o
Y. Cmq™ =3 (= —cg —c1q, ., —cuf, —cag;q") + (4,19, ¢4, -, cnf, cng;q”) | (1043)

>
e ZPCTcl

and we conclude with Theorem 2.3.1.

10.4.3 Character for A

We reason as before and by taking cic; = ¢o = 1, this yields

1 _ .
Y ™ =2 (g —ag —e™ —coq,—cpa ., ot —cudi @) + (@, 010%, 107 2,609 ud, cuia?)) (10:44)

5 2
e ZPL?]CT

resulting in Theorem 2.3.1.

10.5 Case of affine type DV (n>4)

The crystal graph of the vector representation B of D,(ql) (n > 4) is the following,

B: 1 2 .. o n=2 B n—]\
pho = by, =1 A1 — ba, _1 0 0 n n
pa, = (--- T1117) pa, = (- 11111) 1 7 Gl =14
pAn = b/\,,,l =7 pAn1 = bA,, —0
pA,Pl:(...ﬁnﬁnﬁ) pAn:("'Vlﬁnﬁn)

FIGURE 10.9: Crystal graph B of the vector representation for type Dﬁ,l) (n>4)

and forallu € {1,...,n},

n—1

. _ 1
—wit(l) = wtu = E((X” —0y_1) + i; ;- (10.5.1)
Here,
n—2
S=mo+m +ap 1 +an+2) o
i=2

With the convention n — 1 = —1 this gives the crystal graph



10.5. Case of affine type DY (n>4) 163

—> : O-arrow [Aem —— BoE - - - 2eE] — (12 el —2sE - - - Bela] —— [klef)
|
|

—>» : l-arrow i :
el — 128 - - » B8 [leq,
—> : —l-arrow ot : : |
<y Ty v v
—>> :n-arrow ‘rg —_— x E]]Q’g _ §9\

<

!
!
v

: paths of i-arrows, for consecutive i # 0,1, —1,n

]

: connected component of 1® T

R

: connected component of 1® 2 EER B=ll F - - 2] — el

: connected component of 1 ® 1

o el — Hel2l - - - 2+ @=a
l v . — ]
b7, -1 ;El] — = | ;51 —» [I=*H

mEm) Bl - - = Blef] — [{ef)]  EHel] —— 2ol - - - Bl

[elr] —» [[JeE [@[eE —» [[e@

(=] —» E=[] Blel] —» el

FIGURE 10.10: Crystal graph of B ® B for type Dﬁ,l) (n>4)

Letn —1 = —1 and consider C = {cy,...,cn, ¢z, ..., ¢3¢0} Setting H(1 ® 1) = —1 results in the
following energy matrix:
g C—q -+ &g € €1 C2 -+ C_1 0y

Cx 1 1 11 o O --- 0 O
c—<| 0 1 1 1 0o O --- 0 O
: : Do o*
Cy 0 0 1 1 0 0 0 0
c1 0 0 0O 1 -1 0 0 0
1 1 1 1 1 1 1 1 1
Co 1 1 1 1 0 1 1 1
: 1* :
c_1| 1 1 1 1 0 0 1 1
Cn 0 1 1 1 0 0 0 1

Noting that B B

H1®1l)=-H(1®1) =1
and

this gives the partial order

Ocn

"'<<0c,1<< 0
i

<<()le<<...<<0€§<< <<1c2<<“’<<1c,1<<""

10.5.1 Character for A

We follow the same reasoning as for the case Agl)fl, with the same choices for D, d. Here, we also have
the consider alternating sequences of the form

o> (2k+1)e, > 2k+ 1), > 2k+ 1), - -

This yields the generating function

> Clmg™ =5 :

2 2
—C14,—c¢q, ..., —Cpd, —C74; +(c19,¢3q,...,Cnq, C70; .
nePE (cge1q%; 4*) (cncng®; 9*) (( 14— nd, —end; q°) + (e, e ez )>
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By taking cicy = cnci = 1, this yields

1
Y, Clmq™ =3 ((—c10,~c18, -, —cat, —cadig?) + (c1,¢70, - nd, n; %)) (10.5.2)

>
HGZPcTcl

resulting in Theorem 2.3.1.

10.5.2 Character for A
Here

1 _ .
Y g™ =3 ((—erq® —erq ™Y —cat, —cgn, .., —end, —eniq?) + (c1q® e19~ g, 59 .. cud, cnti?) )
ﬂEz'P?lcT

(10.5.3)
and Theorem 2.3.1 follows.

10.5.3 Character for A,

Since HO®0) = H(0®0) = 0, Hy, = H, and u(® = u(1) = 0 irrespective of the choice of D. In
particular, by choosing D = d = 1 and reasoning on the tail of the multi-grounded partitions in ; Pz,

as for the case of Agl)_l, it follows that

1
C(m)gl™ = —c149,—C7,...,—C_14, —C—, —Cnlq, —Ci;
ne2;>> i 2(c1¢19;9%) (encng?; 9%) <( W 19, =<1 —Cnd, —Cni4)
27 cneyp
+ (Cll% CTI ttts C—lq/ le/ Cqul Cﬁ; 17)) (1054)
witb

and Theorem 2.3.1, with the convention ¢;, = ¢
result in the expected generating function.

which gives cic; = ¢y = 1, together with (2.3.7),

10.5.4 Character for A,
As before, it follows that

1
(c1¢19; 4%) (cnciq?; 4%)

((*Clq/ —C{, v e, —C_1q, —C=7, —Cn, —C; q)

+ (Clq/ CT/- . .,C,lq, Cj, Cn, Cﬁq; q)) (1055)

and we conclude with (2.3.7).
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Appendix A

Proofs of technical lemmas and
propositions

A.1 Beyond Gollnitz’s theorem

A.1.1 Proof of Lemma 3.1.4
To prove (3.1.7), we observe that, for any (I, k;) € P x S, by (2.2.12),
Iy Bkg<=1, % (k+1),,

and

k+1)g>(1-1)p = (k+1); -1,

= (k+1); A 1p-
To prove (3.1.8), we first remark that, by (3.1.3), a(k;) = B((k + 1);). We then obtain by (2.2.12) that
Iy > a(ky) <= (1-1)p = a(ky)

and

A.1.2 Proof of Lemma 3.1.5

Let us consider min{k — I : B(k,) > a(l;)}. An abstract way to show (3.1.9) is to use the explicit formula

Alp,q) =x(r <y)+x(r <x)x(s <y)

with g = ayay and p = a,as. Recall that x < y and r < s. In fact, by considering (2.2.6) and the
lexicographic order -, one can check that the minimal difference between the secondary colors p and g
for the relation i is

T+x(p<g)=1+x(r<x)+x(r=x)x(s<y)-
By definition (2.2.7),
x((p,q) € SPx) = x(r>y) +x(r <x)x(s >y)

so that, by (2.2.12), the minimal difference between the secondary colors p and g for the relation >> is
given by

T+x(r<x)+x(r=x)x(s <y) —x((p.q) € SPx) =x(r <y) +x(r <x)x(s <y)-

Now, we reason first according to the parity of k. For k = 2u, we have by (3.1.2) that a(k,) = u,,
and By, = ug,. In order to minimize k — I, a(l;) and B(I;) have to be the greatest primary parts with
color ay and ay smaller than u,, in terms of -, so that, by (2.2.8), they must necessarily be the parts
(u—x(r <x))a, and (u — x(r < y))a,. We then obtain the difference

x(r<x)+x(r<y):
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With the same reasoning for k = 2u + 1, since a(ky) = (u +1),, and B(kp) = u,,, we then reach the
difference

I+x(s<x)+x(s<y) =2 x(r<y)+x(s<y):
Since the mimimum is reached either for k even or k odd, we then have that

min{k —1: B(kp) = a(ly)} > min{x(r <y) +x(s <y),x(r <x) +x(r <y)}-

We finally consider the case | = 20, so that a(l) = vs, and B(lg) = va,, and to minimize k — I, a(ky)
and B(kp) have to be the smallest primary parts with color 4, and a5 greater than v,, in terms of -, so
that they must necessarily be the parts (v + x(r < y))s, and (v + x(s < y))a,. We obtain the difference
x(r <y)+ x(s <y) and then the inequality

min{k —1: p(ky) = a(ly)} < min{x(r <y) +x(s <y),x(r <x) +x(r <y)}-

Since min{x(r < y) + x(s < y), x(r < x) + x(r <y)} = x(r < y) + x(r < x)x(s < y), we then have
(3.1.9).

To prove (3.1.10), we have by (3.1.3) that a((I — 1)) = B(l5). Since B(k,) = B(l;) = a((I —1),), this then
implies by (3.1.9) that k, > (I — 1),, and this is equivalent to (k4 1), > 1.

Let us now suppose that k —1 > A(p,q). We just saw that this minimum value was reached at k or
k — 1. Then if we do not have B(k,) = a(l;), we necessarily have B((k —1),) = a((I —1);) = B(l) by
(3.1.3). Moreover, by (2.2.12), we have

Bky) # a(ly) <= a(ly) +1 > a((k—1),),
so that we obtain (3.1.11). Suppose now that we have k — I = A(p, q). If B(k,) = «a(l;) then we necessar-

ily have
lkp) = a(ly) = plg) = plkp) —1-

In fact, we saw that the minimal difference is obtained when the primary parts «(l;) and (l;) are the
closest possible to B(k,) with the primary colors of q. If B(k,) # «(ly), since we have B(I;) +1 = a(ly),

we also have
Bllg) +1 - a(ly) = plky) -
In both cases, the relation (3.1.12) holds. If we have thatk — 1 —1 > A(p, q), then we necessarily have by

(3.1.3) that
Blkg) = B(1+1) = a(ly) -

A.1.3 Proof of Lemma 3.1.6

Forany v = (vy,...,1) € & and any i € [1,t — 2], we have
1/1'l>"'l>1/]'-

By (2.2.11), we have
Vizmvigp+1=--- tl/]‘—l—]'—l':>1/i tl/]'-i-]‘—i,

with a strict inequality as soon as we have v; or v; in §, and we thus obtain (3.1.13).

A.14 Proof of Lemma 3.4.5
By definition, for all i € I, Br, (i) € ([i,j) N I) U{j}, for j = min(i, p + 25 + 1] N J. This means that, for
anyI>i' >,

Bry(i,) 2 i, >] 2 Br]/(l) °
Let us now consider the function Br, on [i,j) N I. It is obvious that, for all 7/ € [i,j) N I, we have
j=min(/,p+2s+1]N]J.

e If Br,(i) = i, then
Br,(i') > i >i=Br,(i)-
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e If we have Br, (i) = j, then by (3.4.4)

j—u

-1
2

Vg1 # Vi +

forallu € [i,j) NI, and since [/, j) C [i,]), we also obtain that Br, (i) = j.

e Finally, if Br, (i) € (i,j) NI, then we have either j > i’ > Br, (i), ori < i’ < Br,(i). In the first case,
we obtain
Br,(i') > i’ > Br,(i) -

In the second case, we observe that, by (3.4.5) and (3.4.6),

Br, (i) —u

-1
2

Vut1 I VBr, (i) +

for all u € [i,Br,(i)) N1, and in particular for all u € [i,Br,(i)) N I. Thus, if Br, (') # j, we
necessarily have by (3.4.6) that Br, (i') > Br, ().

In any case, we have that Br, (') > Br, (7).

Let us now suppose that Br, (i) € I. If Br, (i) = i, then Br,(Br,(i)) = i = Br,(i). Otherwise, let us
assume that Br, (Br,(i)) > Br, (i).

e If Br,(Br,(i)) = j, this means that
j j—u

—Uu
Vurt AV — 1 v s — 1 v

forall u € [Bry(i),j) N I. Since vg,, ;) and vgy, (;y4+1 have different primary colors and are consecu-
tive with respect to >, we then obtain that vg,, ;)11 + 1 > vy, (), S0 that

j— Bry(i)

Vj + 2 i VBr,,(i) ’

We also have by (3.4.5) and (3.4.6) that

Br,(i) —u Br,(i) —u
Vig1 ¥ VBr, (i) T % —1 <= vpy, (i) + % —lzvyp
forall u € [i,Br,(i)) NI, so that
j—u —u
V]'-i-]iz _1EV14+1<:>V14+1?LV]‘+]2 -1

We then conclude by (3.4.4) that Br, (i) = j, which contradicts the fact that Br, (i) ¢ J.

e For Br,(Br,(i)) > Br,(i), we reason exactly in the same way, by replacing j by Br, (Br,(i)), and
we obtain by (3.4.6) that Br, (i) > Br, (Br, (7)) > Br,(i).

To conclude, we necessarily have that Br, (Br, (i)) = Br, (i) for Br, (i) € I.

A.1.5 Proof of Lemma 3.4.8

By (2.2.11), (2.2.12) and the fact that all the pairs in SP have distinct secondary colors, we have that
foranyu € [i,i") NI
Vyyo + Vg3 + 1 = vy + Vi1 > Vo + Vg3,

so that we obtain (3.4.10) recursively.

A.1.6 Proof of Lemma 3.4.9
By (3.1.12) of Lemma 3.1.5, we have for any u € [i,i') N I that

Vypz +1=v,4q,
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so that we recursively have

!

r—u

Vg1 + = Vg1

By (3.4.7), if we suppose that Br, (i') > i/, we then have

Br,(i') — 7 Br,(i') — ¢
Viryq ;L VBrV(i’) + % -1« VBr.,(i’) + % -1 >~ Vitgy1,
and we obtain that
Br,(i') — u Br,(i') —u
Vgr, (i") T % — 1= vy <= Vi1 # VBe, (i) T % -1

forall u € [i,i") N I. Since the previous relation is also true for for all u € [i/, Br,(i')) NI, by (3.4.5) and
(3.4.6), we have that Br, (i) < Br,(i). Finally, by Lemma 3.4.5, the fact that Br, is non-decreasing on I
gives that Br, (i") = Br,(i).

A.1.7 Proof of Lemma 3.5.8

We can notice that for any pair (kp,l;) of secondary parts different from a pattern cd — ab and that
satisfies k, > I;, we can always find an integer /& such

kp = heg = 1 - (A.1.1)
This is obvious when (p,q) ¢ SPx. In fact,
kp>ly<=ky = (I+1); =1,

and we can find a unique k4 satisfying (I +1); = he; = ;. Note that if g = cd, we then have at
least two possible integers h = 1,1 + 1. Suppose now that (p,q) € SPx. Recall that here, we set
{a1 <y < a3 <ay <as}={a<b<c<d<e}. Wethenhave two kinds of pairs.

e First, we have the pairs (aia]-,akal) with5 > j>1i>1>k > 1,sothati > 3 and ! < 3. Thus,
a;aj > cd, while apa; < be < cd. If aa; # cd, we have that aiaj > cd, and then

klll'(l]‘ - kcd -~ kakal
and the property (A.1.1) is true for (kp,l;) = (ka,-a]-, kaa,)-

* The second kind of pair is of the form (aia]-, agay) with5 > j > 1>k >i>1,sothat! < 4 and
i < 2. Thus, aiaj < be < cd, while aza; < cd. We have that ajaj > cd, and then

(l + 1)ﬂillj > lcd t lﬂkﬂl
and the property (A.1.1) is true for (kp, lg) = ((I + 1)a;a;, laga, )-

Let us now consider a pattern of secondary parts (vq, V2, -, Vas—1, Vas, Vas+1, Vas+2) With no moves —
cd —.

If vy +v5,v3 + v4 # cd — ab, we recursively show on 1 < i < s that there exists /1 such that
vi+va = (h+i—1)cg = heg = Voig1 + Vaiga- (A1.2)

In fact, by (A.1.1), the previous statement holds for i = 1. Suppose now it holds by induction up to i. If
Voit1 + Vaito, Vairs + Vairg 7 cd — ab, then by (A.1.1), we have I’ such that

hea = Vair1 +Vaiva = hig = Vains + Voita-
We thus have I > I, and by choosing I/, we obtain
vi vy = (B 4 1)eq = heg = Vaigs + Vaia -

If voj 11 + Vaiyo, Voit3 + Vojra = cd — ab, we then necessarily have that vp; 1 + v5; > v5; 11 + V2i 42 not to
have the moves — cd —. Therefore, by setting I,y = vo; 11 + V212, we have that vy; 1 +vo; = (h+1)¢4.
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Since the statement (A.1.2) also holds for i — 1, there exists 4’ such that
vty (W +i—2)g = hly = 1o 1410
We can then remark that /' > h + 2, and we conclude that
vi+ vy = (h+i)ed = heg = Vais + Vaita-

We have thus proved the statement (A.1.2) when the head is different from cd — ab.

If the head is equal to cd — ab, we then apply (A.1.2) on the pattern (v3, vg, - - -, Vas—1, V2s, Vas+1, V2s+2),
and we obtain that there exists h such that

V1 +Vy =1y +V3 > (h+i*2)cd = Neg = V2it1 + V2i42

sothatvy + v, = (h+1i—1).. Inboth cases, we always have that v; + v, —s+1 > o541 + V2542 so that

vi+vy — s+ 1= v +Vasyo-

By definition (3.5.8), (v1,va, -+, Vas—1,V2s, Vas+1, V2s+2) cannot be a shortcut. Since a pattern that does
not contain the moves — c¢d — does not have any subpattern that contains these moves, we then obtain
our lemma.

A.1.8 Proof of Proposition 3.3.2

LetA = (Ay,...,A¢) beapartitionin O. Letussetcy, ..., ¢; to be the primary colors of the parts Ay, ..., A.

First Step1 Now consider the first troublesome pair (A;, A;11) at Step 1 in ®. We then set

=0
')/1:)\1>>...>>)\l./
‘lil:Ai+l>_".>_)\t'

The first resulting secondary partis A; + A;;1.

First iterations of Step 2

o If thereis a part A, after A;; 1, we have that
Ai + A1 = Ao = x(ei <cip1) + 201 — Ao by (3.1.6)
> x(ei <ciyr) +2x(civ1 < ciy2) +Aig2 by (2.2.8)
> 14 x(ci < civa) + x(cit1 < cita)

Since by (2.2.6), we have that ¢; > ¢;;, and ¢;41 > ¢4 implies cjciq > c¢j4o, we then have that
Ai+ A1 — Ao > 1+ x(cicir < ¢iy2), and we conclude that A; + A; 11 > A; 5. This means that
if there is no iteration of Step 2 (which happensif i = 1 or A;;1 > A; + A;11), then the secondary
part is well-ordered with the primary part to its right.

e The primary parts of ! are well-ordered by >>. By (2.2.12) and (3.1.4), we have that for any j < i,
if Aj + A1 crosses A; after i — j iterations of Step 2, we then have by (3.1.7) that
A+ A +i—j)> (/\]'—1) > > A -1
* We also have by (2.2.12) that

Aica D> A= A1 = Ajjo = A1 — 1 = A = Ajpr > Ao
— Aic1— 1> Ay
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If we can no longer apply Step 2 after i — j iterations, we then obtain (even when there is no crossing
which means that j = i)

)\1>>"'>>/\]'_1>>(/\i+}\i+1+i—j)>>(/\j—1)>>"'>>}\i_1—1>/\i+2>"'>-/\t'

Second Step1 Now, by applying Step 1 for the second time, we see that the next troublesome pair is
either A;_1 —1,A;1p,0r Ajipiy, Ajr3yy fOr some x > 0.

If Aj_1 —1 % Ajip, this means that (A;_1 — 1,A;;7) is a troublesome pair, and Step 1 occurs there.
We then set

52 =A1 > >>)\j,1 > A+ A +i—j)

YP=N-1)> >\ -1

Wr=Aigg o= Ar
By (3110), we have that (Al + )Li+1 + 1) > ()\,‘_1 + /\i+2 - 1) Then, even if (/\1'_1 + Ai+2 — 1)
crosses the primary parts (A; —1) > --- > A; 5 — L after i — j — 1 iterations of Step 2, by (2.2.12),
we will still have that

AitAdip+i—j)> Aia+Aip+i-j-2)
We have before the third application of Step 1 that
F=M> > N+ApnFi—)>A—-1> > 11> A1+ A —2+i—])

’)/3,]13:)\j/—2>>"'>>)\i,2—2>>)\1'+3>— cee = Ay,
for some i — 1 > j' > j. Observe that 3 is the tail of the partition A; 3 = -+ = At

If A;_1 — 1> Aj», then the next troublesome pair appears at A; 51y, Aiy31y for some x > 0, and
it forms the secondary part A; oy + Ajj34x. We then set

52:/\1>>"'>>)\];1>>(/\,'+)\i+1+i—j)
P=A-1)> >N 1-1>NAn> >N,
P2 = Aigxqz = o = Ar

We also have
Ai = Aig1 = Ao > - > Aoy = Aigagae

By (2.2.12), we can easily check that
Ai = Aig1 = Aiga = Aigopx +X = Aiggix +X

so that, by (3.1.9),
(Ai+Aig1) > (Migagx + Aigarx +2%) -

This means by (2.2.12) that,

(Ai + Aiv1) > (Migoix + Aigar +X)
and, as soon as x > 1, by (2.2.11)

(Ai + Aig1) B (Aigosx + Aigair +X) -

We then obtain that, even if the secondary part A; ;5 + Aj 34y crosses, after x 4- i — j iterations of
Step 2, the primary parts

N=13> Ao —1) > Ao > > A,

we still have
(Ai+ A +i—j) > (Mg A tx+i—j)



A.1. Beyond Goéllnitz’s theorem 173

However, as soon as x > 1, we directly have
(Ai+ A1 +i =) > (Aigoyx + Aigagyx Fx+i—) -
We thus obtain before the third application of Step 1 that,

F=M> >N+ Aip+i—j) > > o +Apage Fx+i—f)

73/;‘13:"'}/\i+4+x>"'>/\t1

for some i+ x > j/ > j. Observe that y3 is the tail of the partition A;; 43 > -+ > As. Moreover,
we have the following inequalities

- /\j/_l —1> (/\i+2+x+/\i+3+x+x+i—j’) >>/\]/ —2forx—1 Z]/ >],

= Aii1 = 1> (Aigaix + Aigaix +x) > Ao — Lor j' =,

- )\]‘/+1 > ()\j+2+x+)\[+3+x+x+i—j’) >>)\]'/+2—1f01‘x+l‘ Z]/ Z l+1
Observe that the partition to the left of A; |4 is well-ordered by >, so that 1 is the tail of the
partition Aj g > - = Ap

In both cases, the conditions in the proposition are satisfied. In fact, the partition 6% belongs to € and is
the head of the partition 6 that also belongs to &£, and the fourth statement is true. By comparing u?!, ji?
(and %), the third statement is true since ? is a strict tail of !. The two first statements directly come
from the way we established the sequences, and the fact that s(6%) > ¢(7") is true for u = 2,3.

By induction, we only apply Step 1 once to the troublesome pair (s(7*),g(¢")) in the partition
@, 7", u* € O and then some iterations of Step 2. We then obtain some sequence 6", ", " with
the same form as (62,72, 4?), and we set the triplet (%1, #*+1, yutl) = ((5%,6™), 4™, u'*). Note that
the sequence 6", 6™ is indeed a partition in £ by considering the process from the (1 — 1) Step 1.
Then, the sequence (5%, 7", u*) becomes the sequence (6**!,¢**1, u#*1) after applying Step 1 once to
the troublesome pair (s(y*), g(#")), and some iterations of Step 2 by crossing the secondary parts(y") +
g (") with some primary parts of 7" \ {s(7*)}. Proposition 3.3.2 follows naturally.

A.1.9 Proof of Proposition 3.3.4

Let us consider £ > v = (vy,...,v;). If we suppose that the secondary parts of v are v;,...,v;, for
i1 < -+ < ig, we can then set for all v € [1, S]

F=n> >,
and 0°*1 = @. By setting i = is, we also have that
(51:1/1>>-~>>1/1-

'yl:vi+1>>~-->>1/t
p=o-

¢ If v; crosses all the primary parts up to v; after iterating Step 1, we have that
ﬁ(vi—t+i+1) ;L Vg -

But, we also have that
Ui DU

since Vj41, ...,V are all primary parts. We thus have by Lemma 3.1.6 that
vi—t+i=- v,

so that, if v; — t 4- i has size 1, then v; has also size 1 and a color smaller than the color of v;. But by
(3.1.1) and (2.2.6), we necessarily have that f(v; — t +i+ 1) has size 1 and a color greater than the
color of v;. We then obtain by (2.2.9) that

[S(vi—t—i-i—i-l) >vi—t+i>vt,
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and we do not cross v; — t + i + 1 and v;, which is aburd by assumption. This means that in any
case after crossing, we still have that the secondary part size is greater than 1, so that after splitting,
its upper and lower halves stay in P.

* if v; crosses all the primary parts up to v; after iterating Step 1 and stops before v;, 1, we then set

52=V1>>--->>1/i5,1
7= Vi 141+ Vis— 1, Vigy1 + 1,0, v+ La(vig +is — )
W = B(vig +is — ), Vi1, Ve

The statements of Proposition 3.3.4 are then satisfied.

* Suppose now that (6%, Y, u¥) satisfies the conditions in Proposition 3.3.4. Note that s(y"),g(#")
are respectively the upper and the lower halves after the splitting of the secondary part coming
from v;; , . We also have by (2.2.12) that

Vigiq_y 2 Vigpy_y > 00 D Vigy o, > Vg, = Vigy , tisiio —ista0 T 1> Vg,

since the parts between these secondary parts are primary parts. By Lemma 3.1.5, even if these
secondary parts meet after crossing the primary parts, the splitting of the part coming from v;, ,
will then occur either before the upper half or between the upper and the lower halves obtained
after the splitting of v, . Thus the splitting of s(°) occurs before g(u”). By taking

= Visi1,
s(7"™1),g(u”"1) as the upper and the lower halves of the split secondary part coming from v, _,

we thus obtain a sequence (6°*1,9?*1, 1?41 such that p? is the strict tail of u“*!. Note that these
sequences also satisfy the other statements.

A.1.10 Proof of Proposition 3.3.6

Note that Step 1 of ® is reversible by the splitting in Step 2 of ¥. Let us now show that iterations of Step
2 of @ are also reversible by iterations of Step 1in Y.

We saw in the proof of Proposition 3.3.2 in Appendix 3.3.2 that for any u > 1, the sequence (6%, y*, u*)
becomes the sequence (5**1, 1#*1, 4 +1) after applying Step 1 once to the troublesome pair (s(7*), g(u*)),
and some iterations of Step 2 by crossing the secondary part s(y"*) + g(u*) with some primary parts of
7"\ {s(7v")}. Without loss of generality, let us set

’)/u:n'l>>...>>7-[i
=T - - T

and suppose that the secondary parts 7; + 71,41 crossed the primary parts 77; > --- > 7;_1. Since
e ENO C &, by Lemma 3.1.6 and (3.1.4), we have that

> miti—j -1z a(m+ g +i—j—1)-
Using (3.1.8) of Lemma 3.1.4, this is equivalent to saying that
a(7; + i +i—j) F =1 (A.1.3)
If the iteration of Step 2 ceases before 71y, we then have that

M=m > > i+ +i—k
"}//u,]/l/u:ﬂj*1>>"'>>ni7171 = Tliyp =+ = Ty
so that (8T, ol yutly = ((§%,5"™),4™, u'). But the inequality (A.1.3) holds forallk < j <i—1,s0

that by applying ¥ on (%1, 94 *1, #*1), the secondary part s(6* 1) = 71; + 71; 11 +i — k will recursively
cross by Step 1 the parts 77; — 1. The iteration of Step 1 stops before the part 77; 5 since

Mo < i1 = BT + iy1)
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and we split by Step 2 the secondary part 7; 4 77,11 into 71; and 7t; 1. We then retrieve the sequence
(0%, 7", p)-

To conclude, we observe that if ®(A) € & has S secondary parts, then the last sequence in the pro-
cess @ is (0571, 45H1, 1SH1) with pS+1 = @, 651 the partition ®(A) up to the S secondary part and
v5*1 the tail to the right of this last secondary part. But this triplet is equal to the triplet (67, v, u°) of
Proposition 3.3.4 for v = 1. We then recursively obtain the result of Proposition 3.3.6 in the decreasing
order according to u.

A.1.11 Proof of Proposition 3.4.6

Letustakeanyi € I = {ij < --- <is}, letus consider j = min(i, p + 2s + 1] N J. Since in the process of
Y, the primary parts never cross, and the secondary parts can only move forward before splitting, the
part v; will not be affected by ¥ operating on any secondary part to its right.

* Suppose that Br, (i) = j. By definition (3.4.4), this means that

!

j— 1
1/1'/+1>LV]'+]T—1

forall i’ € [i,j) N, so that, by the crossing condition of Step 2 of ¥, v; + % — 1 will recursively
be the first primary part that crosses all the secondary parts vy + vy, up to v; + v;1. Thus, for
i=iy,

S = vy + v, g =y IS -1

* Suppose that Br, (i) < j. Let us set Br, (i) = ij and let ij < --- < i} < j be all the fixed points by
Br, in [i,j). By Lemma 3.4.5, have that

Br,([i,n]) = {i}, Br(({ 1, i]) ={ic} andfor (i,j) #D, Br((i])) = {j}:

We then have during the process of ¥ that v; crosses all the secondary parts up to vy + vy, 3, but
does not cross Vi + Vig 41 Thus, Vi + Vi directly splits into v and Vir g1, and by (3.4.5) and the
crossing condition of Step 1, vy crosses all the secondary parts up to Vi Vi 11 which is not
crossed.

The process then continues and we reach Vir +Vir 41 which directly splits into Vit and Vit 41 Ifi =i,
we have the first statement of Proposition 3.4.6. Otherwise, Vit Crosses all the secondary parts up
to v; + v 1. We then obtain for for i = i,

i —1
@Y = v, v, g8 =+

—-1-
2

In any case, if i = Bry (i), then v; + v;,1 directly splits, otherwise, we have that for i = i,

s+1—u> Brv(iu) — iy -1

g(r)/ = VBr,,(iu) + 2

and the part v; + v;, 11 first crosses the primary part g(75*17%).

A.1.12 Proof of Proposition 3.4.7

Let us take v = (vq,- -+ ,Vpys), and I = {iy < --- < is}. Note that the triplet (6%, y!, u!) is such that
;41 =@, 6! is the partition v up to v;, +v; 41 and 7! is the tail to the right of this part. We then have that
vt € (EN0) x Oand vy, +vi 41 =5(8") > g(7!).

e If we have that Br, (i, ) > i,, by Proposition 3.4.6, we necessarily have that

s+1-y Bry(iy) —iu 1.

gy = VB, (i) T >
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But with the condition (2), we have by (2.2.12) and (3.1.7) that

Br, (iy)

—1i Br,(iy,) — i
VBr, (i) T fu # Vi, Vi1 <= Vi, + Vi, 41 > Vg (i) T+ Bro(f) ~fu

Ly
1.
2

If yH1=% € £N O C &, we then obtain that the partition s(5517*), 451 =% belongs to &,, so that,
by Lemma 3.1.6 and (3.1.7) of Lemma 3.1.4, all the crossings in Step 1 of ¥ are reversible by Step
2 of ®. We set

,)/erlfu =m> >,

and if v;, +v;, 11 = s(6°T17¥) crosses all the primary parts up to 77;, we then have by (3.1.8) of
Lemma 3.1.4

5s+27u’,),s+27u _ 5s+17u \Viu +vi41 M+ 1> > 7T +1> “(Viu + Vi, 41 _])
PR = B(vi, + Vi1 — ) = T e = T sy
Furthermore, always by condition (2), we have that

Brv (lu) - iu

(TN v, + i 1) = v (i) > V() + 5

=m+1

so that §°T27#,95+274 ¢ £ and we obtain that 7**27% € £N O and s(5°T274) > ¢(¢5+274).
Moreover, if ps11-, € O and j < r, we then have that (7, g(#s+1-y)) is the troublesome pair
coming from the splitting of v; | +v; ,, 1 and satisfies 7, > g(psy1-4), so that pst2n e 0.
If 5414 € O and j = r, this means that the splitting of v;, + v;, 11 occurs in between those of
Vi ., *Vi,,,+1 and the lower halves are still well-ordered in terms of -, so that pt27% ¢ O.Inany

case, if pis 11, € O (with the previous assumption that 4¥*1=% € £ N O), then p*+2~* € O.

e If we have that Br, (i, ) = i, then by Proposition 3.4.6, the splitting occurs directly and we have

Vi1 = g(° 1Y)
Then we have that

2— 2— 1—-
5s+ 14,,)/5+ U __ 5s+ u\Viu‘i‘Viqul B

s+2—u __ s+1—u ,,s+1—u
]’l - 1/1'144’1/’)/ 7 ]’l :

u

s+1—u s+1—u s+2—u i

so that, if y and u are in O, since s(7*17%) = ¢(u*+17*), we then have that u s

also in O. Note that s(6* 174\ v;, +v;,+1) = v~ (iu)-
- If v~ (iy) > v, + vj, 41, then we obtain that

v (Zu) - 1/iu =V (lu) - (viu + Viu"‘l) + Viu+1
>2 (by (2.2.11) and the fact that v;, 41 > 1),

so that, by (2.2.9) and (2.2.11), v~ (is) > v;, .

- In the case that v~ (is) # v;, + Vi, 11, this means by (2.2.12) that we have the case of a pair
of secondary parts with colors in SP, and which are consecutive for >. Then the pair
(v~ (is), vi, + vi,+1) has the form (k.4, kgp) or ((k 4+ 1)44, kp) for some primary colors a < b <
¢ < d. We check the different cases according to the parity of k :

(2K)ea >k, 2k+1) g > (k+1)s k+1)gg > ke (2k42)pq > (k+1),-
We then conclude that v (is) > v;,.
In any case, we always have that v; is well-ordered with the part to its left in terms of >>, so that

5274 5H271 ¢ £ and then 451274 € £N O and s(5°F274) > g(45H274).

Note that the process ¥ is reversible by ® since the crossings are reversible andso is the splitting. We
then obtain Proposition 3.4.7 recursively on u in decreasing order.
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A.1.13 Proof of Proposition 3.5.5

Let us take a shortcut { = {1 + {2 > -+ > (o541 + C2s+2, and an allowed patterny =11 + 12 > - >
H2t—1 + M2t > 12e41 such that Bry, (1) = 2t + 1. Without loss of generality, by adding a constant k to the
part vp;_1 + vp;, we can suppose that {ps11 + {2542 > 171 + 172. If we consider the sequence

VO =0 40> > D1+ Qs S 1> > o1 + 2 > ori,

0)

by adding a large constant k to the parts of the sequence v(?), we can say 77,1 is the bridge in v of all

ie2{0,...,s+t}+1-

In fact, by Remark 2.1, we have that the lower halves grow according to k/2, so that for some k large
enough, #y¢11 + k — 1 will be 1-distant-different from all the lower halves in the sequence v in terms of
>=. We finally consider the sequences of the form

v =Gkl bsu> > Den F Qs Hsu > G+ ks —1) > > Doy + Doz +5(u = 1) >
>0+ 0+ > > D1 Hlosi2 5S>+ 0> > (e + Qo520 >
M1 +12 2> - 2> o1 + M2t 2> Mgyl

The sequence v is well defined, since { is a shorcut, we then have by (2.2.11) and (2.2.12) that

Cost1+Qosi2 = Q1+ 00+ 1—8= Qos11+Q2si2 =01+ 02+1—3
= (o541 +Qosy2 > Q1+ 02—
= (o1 + Qosy2+5> 01+ 0o,

so that (o541 + (o542 +su' > {1+ {2 +s(u’ — 1) for all u’ > 1. We also have that 7541 is the bridge of
all the indices of the secondary parts in v(*). In fact, we have by (3.1.4) that

B(Cos+1+ Cosi2+5) = s+ B(Qas+1 + Cos12) 2 s+t+mpy1 <s+t+14+ 1241,

and we obtain in the same way, that for alli € {0,...,s — 1}
B(Goiv1+ Coiva+5) <s—i+s+t+1+n211,

so that 775,41 is the bridge of all the indices (in the corresponding set I) of the parts in v, Using (3.1.4)
recursively on u, we proved that #y1 is indeed the bridge of all indices of the secondary parts in the
sequence v(*),

To conclude, we see that there are (1 + 1)(s + 1) + ¢ secondary parts in v(#) (the head included)
between {1 + {2 + su and %11, and we then have

Mot +(u+1)(s+1)+t— (G + G +su) =nyy1 — (1+82) +t+u+s+1-
There then exists some u( such that,
M1+ (o +1)(s+ 1)+t (1 + G2 +sug),

so that condition (2) in Theorem 3.4.2 is not true. The sequence v(*0) is then a forbidden pattern, and
this concludes the proof.

A.1.14 Proof of Proposition 3.7.2

Letustake v = (v1, - ,Vpy2s), withI = {iy < --- <is}and ] = {j; < --- < jp}.

We observe that, in Proposition 3.3.4, the sequence (67,7, u¥) becomes the sequence (6771,¢7F1, o +1)
after applying Step 1 once to the secondary part s(6?), and some iterations of Step 2 by crossing the

secondary part with some primary parts of y°. This means that once we obtain the sequence y?, it is no
longer affected by the process Y.

e Since we never cross two primary parts in the process, once we have the splitting s(y?), g(4¥),
their relative position in the remainder of the process ¥ is unchanged. We then obtain that the
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upper and the lower halves’ positions satisfy 6; ., <0; ., 1.

The passage from the secondary part s(67) to its splitting to become s(7*1), g(u?+1) implies that
the position of the lower part increases during the crossings, and then is fixed after the splitting.
We thus obtain that 6; , 1 is the position of the g(u**1!). With the fact that the sequence g(u”) is
the strict tail of g(#“*1), we reach the inequality 0 yiat1>0i,, 41 = isy1-o + 1. This gives the
first inequality of (3.7.7).

If the splitting of s(6°) occurs before g(7?), it means that g(7%) belongs to u°*!, and the po-

sition of the corresponding upper half is fixed in the rest of the process. We then have that
0 oo > 0i.,, ,+1- Otherwise, the splitting of s(6”) occurs between g(7”) and g(u”), and the
relative position of the corresponding upper halves will not change until the end of the process.
We thus have that 6, ,, 1 > 0 > 0 and this leads (recursively on v) to the proof of
(3.7.5).

Is 41— ist1-p —v427

Recall that we never cross two primary parts in the process, and this naturally leads to 0;, <¥6; .,
for j, < jy,41 and we have (3.7.6). Moreover, the primary parts can only move backward, since
they can only cross some secondary parts to their left. We then obtain the second inequality of
(3.7.7) 0}, < jo-

Since the crossing only occurs between the secondary and primary parts, if the secondary part cor-
responding to i does not cross in the primary part corresponding to j, then we have that 6,1 < 6;,
and if they crossed, then both the upper and the lower halves move together, and in the remainder
of the process, their relative positions stay unchanged, so that 6; < 6;, and we obtain (3.7.8).

A.1.15 Proof of Proposition 3.7.3

We saw in the previous proof that, since the positions of the lower halves are increasing, for any i, € I,
the crossings can occur with primary parts coming from some indices ] or in I. We then look for x € JUI

such that x > i, and 6, < 0

. Letus thenset {x1,...,x} ={x € JUI:x >, ,0; <86 }such that

Iy

9x1<"'<9xv'

Note thatif {x € JUI:x > iy, ,0, < 6; } = @, then the splitting occurs directly and

Brv(iu) =iy = maIX{x > iy, 0y < Giu} :
xXe

Recall thatif {x € JUI:x >1i,,,0¢ < 0; } # ©, we then have

O, <0;, <O;,41 and xq,...,x5 > iy -

e If {x1,..., x5} N ] # @, then we necessarily have that x; € J. In fact, suppose that x; € I and

x1 < x € {xy,...,x}N]J. Since x; > iy, by (3.7.5), we have 6; 1 < 0,1 and then

le < Gx < 9 < 9i1,+1 < le_;’_l 7

L

and this contradicts (3.7.8). Furthermore, by (3.7.6), we have that

X1 =min{xy,...,x,}NJ = mi?{x > iy, 0 <6 }-
xXe

e Otherwise, we have {x1,...,x,} N ] = @. In that case, {xq,...,x,} C I. We then have that

X1 > -+ > Xp. Infact, forany x < x’ € {x1,...,x,}, by (3.7.5), we have
9i1¢+1 < 0X+l < gx/+1 ’
and if we suppose that 8, < 8,/, we then obtain the inequality

O <0y < eiu < 91'”+1 <Ori1 < 9x’+l ’
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and this contradicts (3.7.5). Furthermore, this leads to the following relation

x1 = max{xy,..., X} = rnalx{x >0y, 0 < 0, }-
xe

In any case, by Proposition 3.4.6, we have that x; = Br,(i). In fact, x; is the index of the first crossed
part.
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A.2 Beyond Siladi¢’s theorem

A.2.1 Proof of Lemma 4.3.5

We prove it recursively on successive applications of A. The energy transfer A conserves the State of
the partition, so that the sequence of states is fixed. On the other hand, the particles gain or lose exactly
the minimal energy needed for the transfer, and by definition, this is exactly what A evaluates. As an
example, if we do the transformation A, at position k, on a pair of particles in P X S, we obtain

| initial positions || j \ i+1 \ i+2 \
positions before A k k+1 k+2
states before A Ck Ckt1 Cki2
potentials before A I [ Lo
positions after A k+2 k k+1
states after A Ck+2 Ck Chr1
potentials after A || A(k+2,k) + [ [ A(kk+1)+ L [AKk+1Lk+2)+] ,

Here we recall that [, —I; , = A(k+ 1,k +2). The same calculation occurs when we consider the
application of A ona pairin § x P.

A.2.2 Proof of Lemma 4.3.6
We first prove that ¢ is non-increasing according to J, and then that ¢ is non-decreasing according to I.
e Foranyj < j € Jandi € I, we have by Chasles’ relation and (4.3.6) that
¢G, 1) =o' i) =1 =1y = AGLJ) = Ai+1=B(1),i+1-B(,1))
> a(j,j") = Ai+1=p(i,1),i+1-p(, 1))

But Chasles’ relation and (4.3.3) give that
i+1—=B(j,i) = (i+1-B(j,i)) = B(.j') 2 0,

so that by (4.3.3) again, we obtain that ¢(j,i) — ¢(j’,i) > «(j,j’) — B(j,j'). Since j,j’ € ], we have
that
a(i, i) = 1G0T =1+1G7) Il =1l NIl =BG ) -

Therefore, we always have for any j < j' € Jand i € I that ¢(j, i) — ¢(j’,i) > 0.

e Foranyj € Jandi < i € I, we have by Chasles’ relation and (4.3.6)

¢, 1) =G i) = 2(ligs — lpy1) —AG+ 1,7 +1) + A +1 - B(j,1),i+1)
+AG{" + 1,7 +1-8(,i))
=2(Liy1 — Ly — A+ 1,7 +1))
+A>G+1-B3,i),i+1-B(,i))
>2u(i+ 1,7 +1)+A>G+1—B(,i),7 +1—-B(,i))

Since we have by (4.3.3) that
' +1-B(,i') = (i+1-B(j,i) =i —i—B(i,i)

= [, )N(ITu(I+1))
>0,

we then obtain that ¢(j,i') — ¢(j,i) > 0.

A.2.3 Proof of Lemma 4.3.7

Since the functions # and A satisfy Chasles’ relation, in order to show (4.3.14), it suffices to prove that for
allke {1,...,s—1},
Le—liq = Bk k+1) +A(kk+1) -
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Ifkel, thenk+1€I+1and

> Ak, k+1)
= Blkk+1)+ Ak k+1)-

Ifkel+1andk+1 € I, thenby (2.2.25), (Ix, cx_1,¢k) > (lks2, Ckr1, Cki2) is equivalent to

e — liyq = 20(kk+1)
>k k+1)+ Ak, k+1) -

Ifkel+1andk+1 € ], thenby (2.2.24), (It, ck_1,cx) > (lki1, Ckr1) is equivalent to

L=l > 1+ Ak k+1)
=n(kk+1)+ Ak k+1)-

Ifk e Jand k+1 € I, then by (2.2.23), (Ix, k) > (lx12, Ck i1, Ck12) is equivalent to

o=l > Al k+1)
=n(kk+1)+A(k,k+1)-

Ifk,k+1 € ], thenby (2.2.22), (It, cx) > (Iy+1,cks1) is equivalent to

b=l >1+Akk+1)
=k k+1)+Akk+1)-

To show (4.3.15), we only need to prove the relation for two consecutive 7,i’ € I LI T + 1. This is obvious
for i € I, since the following indexisi+1€ I+1,and l; —I;;1 = A(i,i + 1). Now let us takei € [ + 1.
The next i’ (if it exists) must necessarily be in I, and by (4.3.14), we obtain by the definition of 7 and
(4.3.3) that
2 = Iy) =1} = I,

> (i, i) + A1, i)

=i —i—14+A(@,1)

>2A(i,i') —1

- li — li’ > A(l,l/) —

N =

- li — li/ > A(i, i/) .

A.2.4 Proof of Proposition 4.1.3

Let us set p = (k,c) and s = (k',c/,c"). We then obtain that s’ = (k' +e(c’,¢”),c,c’) and p’ = (k—
e(c,c’) —e(c,c”),c"). We also observe that ji(s’) = 7y(s). We then have the following equivalences:

pEes = k— (2K +e(d,")) <elc,d)+e(d, ) by (2.2.23)
— 2(K' +e(d, ") +elc, )] — (k—e(c, ) —e(d, ")) >ele, ) +e(d, "),

= > p by (2.2.24) -

p#Fev(s) = k— (K +eld, ")) <elcd) by (2.2.19)

= k—kK <1+e(d)+e(d, ),
> (K +e(d,")) = (k—elc,c)—e(d,c") >1+¢€(d, ")
= u(s') > p/ by (2.2.22) -
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A.2.5 Proof of Proposition 4.3.2
Let o be the final position.

e Let us suppose that there exists (j,7) € | x I such that o(j) < o (i) and ¢(j,i) < 0. By Lemma 4.3.6
we have that ¢(j/,i') < 0forallj < j € J, i’ <i € I. Also since ¢ is increasing on | and I, and
o(J)+1\o(J) C o(I), we necessarily have some j < j’ € J, i’ <i € I'suchthato(j') +1 = o(i’).
We then obtain by Lemma 4.3.5 the following difference of potentials:

D= /\(lr(j’) - </\¢/7(j’)+1 + A(/T(]'/)-"-Z) = A(e(f"),o(j') +2)
=Ly +A0(f),]") = 2(Tigq + Ao +1),i" +1)) + Ao (i), 0 (i +1))]

— A (), o’ +1))
=1y =2l = A, i +1) = Ao (i), +1) -

We now compute ¢ (i’). Since ¢ is increasing on I LI (I + 1) and on ], we have that

o(i') —1=0c(j")
=L7TOJI+ L) n(IU(I+1))|
=1+8()+i"—1-B()
=i’ —B(ji)-

Finally, we obtain by definition that D = ¢(j',i") < 0. Since the potential difference is negative, by
(2.2.23), we have that /\’ )ée o ()41 + /\P( /)42 and ¢ is no longer the final position.

 Let us now suppose that there exists (j,i) € J x I such that o(j) > o (i) and ¢(j,i) > 0. By Lemma
4.3.6, we have that ¢(j/,i’) > Oforallj > j/ € J, i > i € I. Also since ¢ is increasing on | and
I,and o(]) =1\ o(J) C o(I) + 1, we necessarily have some j > j € J, i’ > i € I such that
o(j') =1 = o(i") + 1. We then obtain by Lemma 4.3.5 the following difference of potentials:

D = (M) + Mygyy—1) — Aoy — A() — 2,0(7))
[<uH+Awo+nz+4»+A<<>dﬂ+nnquAwu»w
— A(i), o))

=2l =1y = A +1,7) = A + 1,00 +1))-
We now conpute o (i’ 4 1) Since ¢ is increasing on I LI (I + 1) and on ],
o +1)+1=0(")
=, /1n]|+ L7 +1]n(TuI+1))
=1+[[L/)NJ[+2+]|[Li) N (IU(I+1))]
=24 () 1~ B0
=241 = B(j. i)

Finally, we obtain by definition that D = —¢(j’,i') < 0 Since the potential difference is non-
positive, by (2.2.24), we have that A (h-2T /\:T ()1 Be A and o is no longer the final position.

To conclude, for o being the last position, the first part of the reasoning gives that o(j) < o(i) =
¢(j,i) > 0 and the second part gives that (j) < o (i) <= ¢(j, i) > 0, so that we obtain the equivalence

o(j) <ol(i) = ¢(j,i) 2 0-

One can see in the previous reasoning that for any (j,i) € J x I, whatever the choice of Step 2, once
they meet for some position ¢’ (particles have consecutive positions), we then have that the correspond-
ing difference D between the potential of the particle to the left and the potential of the particle to the
right does not depend on ¢”:

e ifo’(j) +1=10'(i), then D = ¢(j, i),
o ifd/(j)—1=0'(i+1),then D = —¢(j, ).
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By (2.2.24) and (2.2.23), this means that once the particles coming from i and j cross by A in Step 2, they
cannot cross back. Also, by the fact that the position function ¢’ is increasing on J and I U (I + 1), the
crossings only occur, once, for j < i such that ¢(j,i) < 0 or j > i such that ¢(j,i) < 0, and this gives
(4.3.11).

A.2.6 Proof of Proposition 4.3.3

By (4.1.3) of Proposition 4.1.3, we obtain, by crossing two particles with different degrees which are not
well-related in terms of >>, that the resulting particles become well-related in terms of >>. Step 2 then
consists in ordering consecutive particles with different degrees, as the process stops as soon as this is
the case.

Let us show that two consecutive primary particles are well related in terms of .. Since ¢ is in-
creasing on J, we then have, by Chasles’ relation, that forany j < j € |

U+ A@(),1) = U+ A (), 1) =1 =1 = AGL ) + Ale (), o (i) -
In particular, if o(j') = o(j) + 1, we then obtain by (4.3.6) and the defintion of « that
U+ A0(), 1) = G+ Al (), 1)) = a(if) + Al (i), o (')
= (71N I+ €(co(jy o))
= 1+ eleoy of))-

This means, by (2.2.22), that two consecutive primary particles are always well-ordered in terms of >
in the final result.
Finally, with the same reasoning as before, since ¢ is increasing on I LI (I + 1), we have fori < i’ € I
such that o (i) +2 = o(i') that
(liy1 +A(0(i+1),1) — Ly + Ao (i'),i) > a(i+1,i") + A(e(i+1),0("))
|(i +1, i,] n ]| + e(ca(j)r CU(j/))

€(Co(j)s Co(r))

v

so that by (2.2.19), we have )\:T (i+1) e )\:T ()" We then obtain, by (2.2.25), that two consecutive secondary
particles are always well-ordered in terms of >, in the final result.

A.2.7 Proof of Proposition 4.3.4

It suffices to show that all primary particles stay in the interval corresponding to p+. By using (4.3.3),
(4.3.6), and Lemma 4.3.5, we obtain for any k € {1,...,s} that

e + Ao (k), k) < Iy —a(1,k) — A1, (k) < L

and
I+ A(o(k), k) > 1s+a(k,s) + A(o(k),s) > 15

Therefore, the potentials of the primary particles in the final partition stay in [Is, I1]. If Ay € OE* for all

ke {l,... s} then Al ;) € O and then A[ ;, € OZ and AL, + Ay ;) € €€ forall (ji) € ] x I.

A.2.8 Proof of Proposition 4.3.8

By using Lemma 4.3.7, one can easily show that ¢ is decreasing according to | (using (4.3.14)) and non-
decreasing according to I (using (4.3.15)). Let o be the final position Step 1 of ¥.

* Let us suppose that there exists (j,i) € | x I such that o(j) < o(i) but ¥(j,i) < 0. Since o is
increasing on J and I, and o(]) + 1\ o(J) C o(I), there exist (j/,i') € ] x I such thatj < j/,i’ <
and o(j') + 1 = o(i’). We also have that

o, i) < (i) < (j,i) <0-
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By evaluating the potential difference at o(j'), we obtain that

D = 1/:7/(]',) — V(/T/(]'/)+1 - A(U(j/)/ U(j/) + 1)
= (lj +A0(), 1)) — (I + A0 (), ) — Ao (f), o(i"))
=1y — 1y — A, 1)
=9(j,1) <0-

This means by (2.2.19) that 1/” ) Fe v/ . Since 'y(vg(i,) + v”(i,ﬂ)) = 1/"7’(],,)“, we can apply A,
so that ¢ is no longer the flnal pos1t10n

* Let us now assume that there exists (j,i) € | x I such that o(j) > o(i) but lp( j, 1)
increasingon Jand IU (I +1),and o(J) — 1\ o(]) C (I + 1), there exist (j/,i’) €
j>j, i >iando(j) =1 =0(i' +1) = o(i') + 1. We also have that

p(j, i) Z (i) 2 ¢(,i) 2 0

By evaluating the potential difference at o(j’), we obtain

D= Vg(]'f)_1 - Vg(]'f) —A(e(j) = Lo(f")
= (lr + A+ 1), 7+ 1)) = (I + Ae(f'), /) = Ale (i + 1), (/)
= li/+1 - l]/ - A(ll + 1,j/>
=Iy =1y =A@, j') <0-

> (. Since 0 is
J x I such that

This means by (2.2.22) that 1/” L PV ” . Since p(v” o )—i-v”(l +1)) ="

Vo o(j)—1, We can apply A,

so that ¢ is no longer the fmal posmon

To conclude, we observe that the first part gives that o(j) < o(i) = ¥(j,i) > 0 and the second part
o(j) < o(i) <= ¢(j,i) > 0, so that we obtain the first result in Proposition 4.3.8.

We obtain (4.3.18) with the same reasoning as in the proof of Proposition 4.3.8, by observing that the
difference of potential when two particles meet does not depend on the choice in which we apply A,
and once particles cross by A, they cannot cross back.

A.2.9 Proof of Proposition 4.3.9
Since for all k, k" € {1,...,s}, we obtain by Lemma 4.3.5 that
Vo) ~ Vorrry = Ao (k), o (K)) = Iy — Iy — Ak, k') -
Let us now consider any k, k" such that o(k) + 1 = o(k’).
e If (k, k') € J?, we have then by (4.3.14) that
Vo) — Yoy = 1K K)

=|(kK]N]|
>1,

so that by (2.2.22), v ( ) me, (k’)

e If (k, k') € ] x I, then since Step 1 ended, we necessarily have
V(lfl(k) e l/llfl(k/) :

o If (k,k') € I x I +1, then we have
1

Vo) ~ Vo) =0
so that by (2.2.19), v ( ) me v, ( -
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o If (k,k') € I +1 x ], then since Step 1 ended, we necessarily have

1! !
Va(k) € Va(i)

o If (k,k') € I +1 x I, we then have by (4.3.15) that

thfl(k) — V(;/(k/) 2 0

so that by (2.2.19), vl’r’(k) e v(’f’(k,).

We then obtain that v’ = (v{,...,1)") is well-ordered by ¢ so that it belongs to O.

A.2.10 Proof of Proposition 4.3.10

For p € {0,1}, it suffices to show that V(;/(k) > p in the case p1 and v{’f’(k) < pinthecasep_.

e Ifv € £, then, by Lemma 4.3.7, this implies that I, > p. For the last j € J, it is easy to see by
(4.3.14) that

Vo) =L+ A (), /)
> 1 41(j,s) + A0 (f),s) > p-

For thelasti +1 € I 41, we have by (4.3.14) that

Wiqy = 2(lip1 + Ao (i +1),i+1))
> +n(Gi+1s)+A>G+1,s)+2A(c(i+1),i+1)

but we have by definition and (4.3.3) that #(i+1,s) =s—i—1> A(i+1,s), so that

20y 2 1+ 20(0(i+1),5)

Since p € {0,1} and v”/

(i+1) € Z, we necessarily have that v/ > p. Then forany k € {1,...,s},
/!
Vo) = P-

o(i+1)
e Forv e 5€P ~, we have the following.

- If1 € I, since 0 is increasing on I LI I + 1, we obtain by (4.3.15) that foralli € I LI (I +1),
Vo) = li + Ao (i), 1)

<l —A(1,0(i))

<h<p-

For the first j € |, we have by (4.3.14) that

Vo) = 1j+ 8@ (). )
<20—-1-

Since p € {0,1}, we then have that v(’T’(k) <pforallk € {1,...,s}.

- If 1 € ], we can easily see as before that by (4.3.14), vl’r’(j) < pforallj € J. Now let us consider
the first i € I. We have by (4.3.14) that

20y = 2(li+ Ao (i), 1))
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<2(; + A(1,1))
<L — (L) + A1)
=1l —i+24+A(1,i)-

By using (4.3.3), we obtain that

so that, since p € {0,1} and 1/(’7’( iy €Z,we then always have v/ i) S P
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A.3 Beyond the Durfee square

A.3.1 Proof of Lemma 6.1.24

This immediately comes from Remark 6.1.17, Remark 6.1.19, and the fact that we have by (2.2.48) and
(2.2.52)

A.3.2 Proof of Lemma 6.1.26
We proceed via backward induction on j.

o If j = s+, A(fs4+) is the last part of the minimal partition and therefore has size 1. Equation
(6.1.1) is correct,as s +t € N U Ty U Sy.

* Now assume that (6.1.1) holds for f;,1, and prove it for f;. Let k and ¢ be such that f; = a;b; and
fj+1 = agby. We always have k # £.
1. For now, let us assume that n; 1 > 0, i.e. that f; 1 was actually inserted in the color sequence.

- If j € N or j is a left secondary insertion, then the subsequence between f; and f; 1 in
S(ny,...,Nsyt) is f]-, llkbg,f]'+1 or f]-,agbg,fjﬂ. In the first case, we have

A(fj) = Blakby, axbe) + Alagby, agbe) + A(fj41)
=1+ A(fj+1),

In the second case, we have also

A(fj) = Blaxby, agbe) + A(agby, agbe) + A(fj11)
=1+ A(fir1),

By the induction hypothesis, we have

Mfi) =14+#{j+1,....s +t} NN UTHLUS))
=#({j,....s+t}NNUTHUSY)),

because j € N L Ty U Sy.

- If j is a right secondary insertion, then f; appears directly before f; 1 in S(ny,...,ns1+t).
Thus we have

A(fj) = Afj, fi+1) + Afj)
=1+ A(fi+1),

and we can deduce (6.1.1) in the exact same way as before.

2. Now we treat the case where f; ;1 was not inserted in the color sequence. By Proposition
6.1.25,if j+1 € N U7y, it does not change anything to the other parts in the minimal partition
, 50 A(f;) stays the same as in case (1).
If j+1 € 71 and bj,1 was not inserted, then by Proposition 6.1.25, the part A(f;) decreases
by one compared to the previous case. But in this case, # ({j,...,s +t} N (N U T U Sy)) also
decreases by one compared to case (1), so Equation (6.1.1) is still correct.

A.3.3 Proof of Lemma 6.2.4
When u = v = 0, this is trivially true. Otherwise, we have by definition:
u 0 k—1p.
Suo(g 2 —x1,...,2—x) = Z q*(”“(z)) H q*(zkafl)zfﬂ 0;

01,...0,€{0,1}: k=1
01+ +0p=u
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_ q*u(20+1/l*l) Z uv+ Hq —1)

91,“.,91,6{0,1}
01+ + 0=t

u(20+u71)gu’v(q; xq,..., xv)'

:q7

A.3.4 Proof of Lemma 6.2.7

Let us consider a partition into parts at most s + m, generated by ﬁ.
M)s+m
YA
r—y=u+s
m —u
0 .
s+m’ m—m'
s+m

FIGURE A.1: Durfee-like decomposition

Draw its Ferrers diagram on the plane as shown in Figure A.1, and draw the line of equation x —y =
u + s. This line intersects the boundary of the Ferrers board in a point with coordinates (s + m’, m’ —
u) for some integer m’ € {u,...,m}. (we take the convention that the x-axis always belongs to the
boundary of the Ferrers board). It defines three zones in the Ferrers diagram:

e arectangle of size (m’ —u) x (s + m’) on the bottom-left of the intersection, generated by g™ ~#)(s+m"),
* a partition into parts at most s + m’ on top on the rectangle, generated by W
s+m/

e a partition with at most m’ — u parts, each of size at most m — m’, generated by [ﬂiﬂq.
Summing over all possible values of m’ gives the desired result.
A.3.5 Proof of Lemma 6.3.1

t
First, writing §; = || Sf, we have
u=1
t
Ti=3 ), (PG +#([is+HNNUTUS))).
u=1;es!
Now, noticing that for j € S, P(j) = j — u, we can write
t
Zl = Z 2 (]‘zu,1 —u —‘r—] — ]'zu,1 +# ([[j,‘S -+ t]] N (NU 76 L Sl))) . (A31)

u=1jesSy
We first note that

Jou—1 —u=1—u+jyq1—1

=1 Mt 0N+ #([j —T10 (TOUTE) because s+ 1] = A LT LT
=1—u+#([Ljou—1—1]NN) + by definition of jp, 1

=#([1 jou—1 — 1 NN) +u—1
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We also rewrite j — jp;, 1 as
j = jou—1 = #(lj2u—1;7 = 1N T") + #([2u—1;7 = 1N SY) + #([2u—1;7 = LN SY) + #([j2u—1;j — LN N).
Finally, we have
#([;s +INNUToUS)) = #([;s + ] NN) +#([; jaul N (T USY)) + #([2u + Lis + ] N (To LU S1))
= #(li;s + 1 ON) +#([7j2u] N (To" U ST)) +y;2l+l (175" +1S1]) -
Combining the three observations above, (A.3.1) becomes
t

t
n=Y % <|N|+u1+ )» (|’76”|+|Si’|)+#([[izu—1;f1]]“5i‘)>-

u=1jeSy

Noticing that ||+ u — 14+ Y, (|7¢| + |S?|) does not depend on j, and that #([[ja,—1;j — 1] N S¥) =
#{j’ <j:j € SI} yields the desired formula.

A.3.6 Proof of Lemma 6.3.2
By Proposition 6.1.27 and Lemma 6.3.1, we have

Hss (q) = Y q|mine(5)|+21+2jesl(”/—1)#([[iis+fﬂﬂ(NU76U51))+):jeNuT[] ni#([is+INNVUToUS))
- N1, Mgt
N+ +nspp=m,
{]’671111]'>0}281
Thus by the changes of variables
0 — leiijNLl%
T nj—1ifj €S

and noticing that [mine(S)| and £; do not depend on the 1;’s, we obtain

HS,81 (q) = q\mine(S)HZl Z queNmauSl ”;#([Uis'*‘t]]ﬂ(/\/u%usl)) (A3.2)
(”})]‘eNuTUuSl :
Ljni=m—|8y]

Moreover, we can interpret the sum above as the generating function for partitions into exactly m — |Sy |

parts, each part being at most || + || + |S1|. Indeed, for all j € V"L 7o L Sy, 1} can be interpreted as
the number of parts of size # ([j;s + ] N (N U To U S1)) (see Figure A.2 below).

N[+ |To| + |S1]

>

#{j,..., s+t NNUToUS)

o

o

FIGURE A.2: Decomposition of the Ferrers board.
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The generating function for such partitions is given by ¢"~ ISl [m‘lrj[fglf'%'} , which yields the de-
q
sired formula (6.3.2) for Hs s, (q)-

A.3.7 Proof of Lemma 6.3.3

a+b
a
on the plane going from (0,0) to (b, a), having b right steps and a up steps. The partition can be seen on

top of the path, as shown in Figure A.3.

Partitions whose Ferrers diagram fits inside a a x b box, generated by [ }q, are in bijection with walks

Y
A

9=number of right steps below

)
% Ll

FIGURE A.3: A partition as a path.

If A C [1;a+b], |A| = ais the set of up steps, then for each position j € A, the part of the partition
corresponding to this up step has its size equal to the number of right steps that have been done before,
ie. #{j/ <j:je[La+0b]\ A}

A.3.8 Proof of Lemma 6.3.5

The left-hand side is the generating function for partitions fitting inside a m x ({1 + - - - 4+ ¢;) box, such
that the largest part is equal to m. Take the Ferrers board of such a partition, and draw it is the plane as
shown on Figure A .4 (where the partition is above the path).

Yt

» T

|
T
|
|
|
T
|
|
|
T
| |
2 L A Tt—1 Ty =M

FIGURE A.4: Decomposition of the Ferrers board.

Foralli € {1,...,t}, let x; be the size of the Z,t(:iH l + 1-th part (with x; = 0 if there are less than
g+ -+l —y; + 1 parts).
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Foralli € {1,...,t}, lety; = Zf{:l l. For fixed 0 < x; < --- < x4 = m, these partitions are
generated by

t
H qE,x,_l X g1 {xr — X1+ — 1] )
q

r=1 Xr — Xr—1

where /%1 generates the rectangle between the y-axis, the lines y = y, and y = y,_1, and the line
x = x,_1, and the second term generates partitions fitting inside a (x, — x,_1) X ¢, box, such that the
largest part is equal to x, — x,_1. The above is equal to

q" ﬁ qZ,x,,l |:xr —Xp1+ b — 1:| )
= q

r=1 Xr — Xr—1
and summing over all possible values for xy, ..., x;_1 gives the desired result.
A.3.9 Proof of Lemma 6.3.7
Let us define Gy(g;m) = x(m = 0), and forv > 1,

Gv(q;x1,. . .,xv;m) =

Z 2 ﬁ qku(ll—2+ku+xu)+(ku+xu)mu71 |:2 - xu:| |:mu —My—1 + Xu — 1
O=mo<my<--<mp=m  kq,..ky: u=1 ku q My — My —1 — ku q
ku€0,2—x4]
So that the function in Lemma 6.3.7 is G¢(g; | 73!, . . ., | T |; me).
We show by induction on v that
0 m+v—1
Golq;x1, .., xp;m) = 2 gu,v(q;xl,...,xv){ } . (A.3.3)
= m—u |,
Recall from Andrews, 1984b, p. 37, (3.3.10) that
a+b a b 1yl
[ c ] =) Ll] L _ a,] gt e, (A3.4)
q a’>0 q q
By (A34)witha =2 —xy,b =m+x; — 1, and ¢ = m, we have
m-+1
Gi(q;x1;m) = { ]
g

=[], ol

= g0,1(q; x1) {Z] +81,1(9;x1) {mri 1] )

q q

So (A.3.3) is true for v = 1. Now assume that it is true for v — 1 > 1 and prove it for v. We have

Go(g;x1,. .., X0;m) =

Y 13[ ziu g (=2t )+ (uxumy {2 - xu} [mu g+ Xy — 1}
k], q

0= <y <o <ty=m u=1 \ky=0 my — my,_1 — ky

m v—1 [2—x
— e (=22 )+ (kg )y 2=y | My —myq + Xy — 1:|
(.5 T(E londll q

g =0 \O=mig <y -y 1 =1 \ky=0 My — 1y — Ky
2—x
« ZU qu(072+kv+xz,)+(kv+xv)mv,1 2—xo| (m—1y_1+x,—1
— ky m—my 1 —ky
ky=0 q q

m 2—x

Yk (024 k ] 2—x m—my 1+ x,—1
= Z Gvfl(q} X1,++7Xp—1, mvfl) 2 qk"(y 2+ko+xp)+ (ko+x0) My 1 |: ' U:| |: 77] 7Uk :|
y_1=0 ky=0 v q m—my_q1 v q
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mv_1—|—v—2
Z Zguv 1 q,xl, . ,xv_l)
q

my_1=0u= My—1 —u

2—xy
% Z ko (v—2+ky+xy)+ (ko +x0) My 1 2—xy m—iy_1+xy —1

d m—my_1—k ’
ko=0 4 q v—1 v q

where we used the induction hypothesis in the last equality. Rearranging the order of summation leads
to

v—1 27 2
) _xv
Go(q;x1, .-, Xom) =} 0" Guo-1(g5%1, .., Xo-1) Z greo 2+u+kl+x”)[ K }
u=0 ky=0 v o dq

% Z gkt xa) 1 =) [m;,nmtv ] [mTv_l +iz,k— 1] '
v—1 q m—1y—q v g

my_1=! =0

Using Lemma 6.3.5 witht =2, m =m —u —ky, {1 = v—1+4u, and ¢, = k, + x, and the change of
variable x; = m,_1 — u, this yields:

v—1 2—Xp
. . _ . kyp(v—2 k — Xy
Go(gi X1, Xym) = Y "o 1 (@ X1, .., Xp—1) Y, gre@-2Fut ”*X”)[ ‘ }
=0 kp=0 volq

m+0+xv_2
X .
m—u—ky q

Using (A.3.4) again witha =2 — x,, b =m+ v+ x, —2,c = m — u, and a’ = ky, we obtain

m-—1u

v—1
m—+v
Go(qix1, ..., xo;m) =Y ﬂl”xvgu,vdq;xl,...,xvl){ } :
u=0 q

By the g-analogue of Pascal’s triangle, this becomes

Go(g;x1,. .., xp;m)

= v—1
m+v—1 o mto—1
= Z quxvg”rvfl(q; X1r-ves xvfl) |: :| + Z quxv gu,vfl(q} X1,e04y XUfl)
u=0 m—u q =0 m-M—lq
v—1
- - m+v—1
=L (quxvg”'”—l(q" X1 Xpoa) AU g (g, .,xv_l)) { } (A.3.5)
u=0 m—u |,
Recall that
gu,v(q; X1,y xz;) = Z uv+ H q(xk 1)y
€1,.-.€0€{0,1}:
€1+tep=u

So, separating the case where €, = 0 from the case where €, = 1, we have

v—1
gu/v(q; xl/ .. ,xv) — Z quv""(g) (H q(xk_l) Z Zz 1 6,) q(xli—l)u

61,...,€v_]€{0,1}2 k=1
€1+ t+ey_1=1u

+ Z uv+ <H (xx—1) Z f ]161> q(xv—l)(u—l)'
€1,---,€p 16{01}

€1+ +ey_1=u—1

After simplification, this is exactly (A.3.5).

A.3.10 Proof of Lemma 6.4.1

The first equality follows directly from the definition of the s;’s.
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Let us now prove the second equality. We have

~. N
Hl‘ |
—_ —_

((i+1)s; —isip1)? i <z+
2i(i+1) ~
n—1

P2
—SiSit1 + 20 +1)si+1)

+1 i—1
sisi1 + s + Z( sF+—; s?)
1

3

|
LI
Il

si(5i — Sit1),
1

where the second equality followed from the change of variable i — i — 1 in the last sum.

A.3.11 Proof of Proposition 6.2.3

We first prove that the relations in Definition 2.2.37 are satisfied by €’. We have the following.

1. forany ¢, ¢’ € Cpree U {¢s0 },
€ (c,c)=2—(e1+€)(c,c) =0

and for ¢ # ¢’
€(c,d)=2—(e1+e)(c,c)=2-1=1.

Then, relation (2.2.48) is satisfied by €’.

2. For any ¢ € Cpound,

€'(a(c),c) +€'(c,b(c))

(e1 4+ €2)(a(c

4- )(a(c),¢) = (e1 +€2) (e, b(c))
4—(1+e(ale)c)
2—
1

) — (1 +e(cb(c)))
(¢, b(c)))

(e(a(e),c) +e

and relation (2.2.49) is satisfied. For any ¢’ € (Cree Ll {coo}) \ {a(c)},
€'(c,c) =2~ (e1+e)(c',c) =2—¢(c,c)
By (2.2.50), we obtain
e(c’,c) € {e(alc),c),ealc),c) +1} == €'(c,c) € {2 —e(a(c),c), 1 —e(a(c),c)}

and since €(a(c),c¢) = 1 —e(a(c),c) =, we then have that €’ satisfies relation (2.2.50). By the same
reasoning, we show that €’ satisfies relation (2.2.51).

3. Forany ¢, ¢’ € Cpoung With b(c) = a(c’), we have

€(c,d)=2—(e1+¢&)(c,c)

=2—¢(c, )
=2 (e(c,a(c") +e(b(c ),C')) by (2.2.52)
= (1= (e(e,b(c)))

=¢€'(c,b(c)) +efa(c), ).
For any ¢, ¢’ € Cpoung With b(c) # a(c’), we have
€(c,d)=2—(e1+e)(c,c)
=2—¢(c,c)
=3 — (e(c,a(c")) +€(b(c),c")) by (2.2.52)
= (2 (e(c,a(c))) + (2 —e(b(c),c')) =1
=¢€'(c,b(c)) +e(a(c),c)—1.

In both case, relation (2.2.52) is satisfied by €’.
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We now consider the left insertion of a(c’) in a secondary pair (c, ¢’) with a bound color ¢’. Without loss
of generality, since for a bound color ¢, the type of the insertion of a(¢’) in the pair (b(c),c’) is the same
as in the pair (¢, ¢’), we can assume that c is a free color (then different from a(c’)). The type of insertion
is then given by the value of €/(c, a(c’)) + €' (a(c’),c’) — €'(c, ¢’). We then have

e(c,a(c)) +¢€'(alc'), ) — € (c,c') = 1+ (1 e(a(c),¢)) — (2 e(c,c'))
= 1- (1 +ea(d), ) - ele,))
=1 (e(c,a(c')) + ela(c'), &) — e(c,c')).

The type of insertion is then exchanged, as a type 0 with € becomes a type 1 with €’ and reversely, a type
0 with € becomes a type 0 with e. We use the same reasoning for the right insertion and we obtain the
same reversibility of the types.

A.3.12 Proof of Proposition 6.2.5

Let C = cy,...,cs4m be a color sequence whose reduction is S. The weight of the corresponding minimal

partition in 776 e, 18

s+m
Iming, 4¢,(C)| = Y i(e1 +€2)(ci,cizr) = (s +m)(s+m+1) — |ming (C)], (A.3.6)
i=1

where the second equality follows from the definition of €’. On the other hand, by Proposition 6.2.3 and
(A.3.6), we have
|ming (S)| = |mine, 4¢,(S)| =s(s +1) — |ming/(S)|. (A.3.7)

Given that, by Proposition 6.2.3, € and €’ have exactly the same insertion properties up to exchanging
the type 0 and 1 insertions, Proposition 6.1.29 immediately gives us that

m —

. . t
glming (€ — gl S 37 g g (i T )|

Ccolor sequence of length s+m u=0
such that red(C)=S

s+m—1}
uolq

Combining this with (A.3.6), we get that the generating function for minimal partitions in P<® e, 18
G:= Z q\min€1+52(C)|
Ccolor sequence
of length s+m

such that red(C)=S$

. t
_ q(s+m)(s+m+1)f\mme/(S)\fm Z qfu(sft)gu,t(qfl; |7-11|, ., lﬂtD |:

S+ m— 1]
u=0 u g1

m —

By Lemma 6.2.4 and the fact that for allk € {1,...t}, || = 2 — |T{|, the above becomes

G = q(s+m)(s+n1+1) | min, (S)|—m Z ‘7 u(s+t+u—1) u,t(ﬂ} |761|/‘ .., |76t|)|:

s+m1}
u=0 u g1

m —
Now using the fact that

s+m—1 _ o —(stu—1)(m—u) s+m—1
m—u qfl_q m—u q'

we obtain

G Jmi oy [stm=1
q(s+m)(s+m+1) | min,/ (S)|—ms Z g ((Hmt) gut @17, Ot|) [5 ) ]
q

_ gl mine(S)[emls 1) Y uleem) g (oo ,mﬂ)[

u=0

s—l—m—l}
m—u ],

where we used (A.3.7) in the last equality. This completes the proof.
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A.3.13 Proof of Proposition 6.3.4

By Lemma 6.3.2, we have:

min, m— m—1+|N|+|Tq
GS,m(q) = 2 Z HS,SI (q) = Z 2 q‘ e(S) [+ +m—[S| |: m_l |Sl| | 0|:| )
q

kl,...,kti 81: kl,...,ktl 51:
ku<|T| Yu,SECT ku<|T| Vu,SECTY
and |S¥|=k, and |S¥|=ky

By Lemma 6.3.1, this becomes

G _ i (S) |-y k(A= 14 Ty (T8 ko)) gy by [ L N+ [Tl
sm(@) = ), 4 q Eog

Ky, ke m—=3u—1ka 1,
kug‘frlul

t TS
Ticsu #{j'<j:j' €SP}
N .
81: u=1
Vu, Sy CT
and | S} |=ky

Exchanging the final sum and product, and then using Lemma 6.3.3 for each u € {1,...,t} witha = k,
and b = |T"| — ky gives the desired formula.

A.3.14 Proof of Proposition 6.3.6

Let us start by applying Lemma 635 with t = t+1,m = m — Y _1ky, by = ky +|Tj"| forall u €
{1,...,t},and ¢;11 = |N|. We have

X = m*Eﬁzl ku |:
7 m— Yk

_ qu):fu:l ky Z <1i[ q(k“H%"Dxu*l [xu —xy1+ky+ |’76u| - l} )
q

Xy — Xy—
0:x0§x1§"'§xt+1:m_25:1ku u=1 " u-l

m+|76|+|N—1]
q

% qIN‘xt [m — Zilil ku — Xt + |N| — ].:|
m — ZL:l ky — x¢ q

By the changes of variables x,, = m, — }_;,_; ko, we obtain

t
q

O=mo<my <--<mpyg=m \u=1 My = y—1 = ku

X qlN‘(mf_Z;:1 kv) |:Tl’l — my + |N| - 1:|
q

m — mniy

_ qm*ZLﬂ lew (LN ) =Xy (k[ T3 25;% ko

< y (ﬁ T D [’”u — e+ [T = 1} ) g ["l —m+ V] - 1} .
q q

0=mo<my <--<my<m \u=1 My — My—1 — Ky m—imy
We deduce the final formula by using that

t

u—1
Y+ T Yo ko= Y ko ) (ku+|T5'))-
1

— t t
u=1 v=1 U= u=v+1
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A.4 Perfect crystal and multi-grounded partitions

A.4.1 Proof of Lemma 8.3.1

We have the following formula for any positive integer m,

mt—1 (mt+1 mt—1

Y (k+1)H(gk1 ® gx) = 7 Z H(gk1 ® gk) + 2 (k+1)HA(8k+1 ® 8k) by (2.3.1)
k=0
mt+1)
= (f ZH Sk+1 @ &)
_ _ t—1
+ Z Z (k+1)Ha (k41 @ gx) | + 1t I;)HA(ng ® gk)
mt+ 1) =
= Z (81 @8 +m Y (k+1)Ha(g1@g) by (833)-
—_ k=0

(A41)

Therefore, but computing the weight wt(p) given by (8.1.11), we obtain

WE(p) = A+ Y- (WE(p) — wilg)) — (é(ﬂ 1) (H(ps1 © p) - Higen @gk>)> .

mt—1 mt—1

=A+ Z (Wt(p) — wt(gk)) — (kzo (k+1)<H(Pk+1 ® px) — H(8k+1 ® k) ) d%
mt—1 mt—1

= A+ Y W)~ 5 Y (ko DHA(pra © o)
k=0 0 k=0
mé‘l‘ 1

+ 0 (k1) Ha (111 © 50) by (83.1), 23.1)

0 k=0

A.4.2 Proof of Proposition 8.2.2

It is easy to see that ¢(p) belongs to P, since by (8.2.2) we have 7 > 7myiq fork € {1,...,s — 1}, and
ps—1 # g implies that 77;_1 # Oc,. Note that the ground state path - - - ® ¢ ® ®g ® g is associated to (0Oc,).
Let us now give the inverse bijection. Start with 7 € (my, ..., 715_1,ch) IS 77; , different from (ch),

with colour sequence ¢,y - - - ¢, cg. Recall that 715 = O,. We set ¢~ 1 (1) = (pr)k>0, where py = g for all

k>sand py = p; forallk € {1,...,s —1}.

* We first show that p;,_1 # g. Assume for the purpose of contradiction that p;_; = g. By (8.2.2), we
know that 751 > O, if and only if

TTs—1 _ch = H(ps ®ps—l) = H(g®g) =0,
ie. if and only if 7751 = Oc,. This contradicts the fact that 7751 7# 0O,.

* By (8.2.2), we also have, forallk € {1,...,5s — 1}, my — 41 = H(pxs1 ® px). Therefore
s—1 s—1
M =1 — Oy = Y 70 — 741 = ), H(prya @ pi).
1=k I=k

With what precedes, we have ¢(¢~!(7r)) = 7 and ¢~ 1(¢(p)) = p. We obtain (8.2.3) by Corollary 8.2.1
and by observing that

s—1 )
=Y H(prra®p) =Y Hp1®p),
=k =k

since H(pj,1 ®@p;) = H(g®g) =0foralll > s.
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A.4.3 Proof of Proposition 8.2.3

We set ®(0c,) = ((0c, ), (Oc,)). Let us now consider any 7w = (7, ..., 7s-1,0c,) € Pc>g>, different from
(0c, ), with colour sequence Cpl p._ Cg, and build ®(7r) = (p,v). Recall that 751 # 715 = Oc,. Let us
set p = (px)k=0, with py = g forallk > s and py = p forallk € {1,...,s — 1}, and set

r=max{k €{0,...,s} : px_1 # g}

Since py = g for all k > r, with the convention ¢, = 1, we obtain that C(77) = cp, -~ cp,_; = Cpy - Cp, ;-
Note that r = 0 if and only if all the parts of 7t have colour cg. We set 4 = (po, - .., pr—1,0¢,) = ¢(p). By
Proposition 8.2.2, for all k € {0,...,r — 1}, the part yi is coloured by cp, and has size

v C

r—1
Y H(pii1 @ pr).
oy

Let us now build v = (v, .. .,vt_l,OCg) € Pc,, where c(vx) = cgand v > Oforallk € {0,--- ,t —1}. We
distinguish two different cases.

e Ifr <s, thenwesett=sandv = (v,...,Vs—1,0c,), where

{Vk = Tl — Mk forkG{O,---,V—l}/

Vg = Tk forke {r,...,s —1}.
By (8.2.4), the sequence (v;)}_p is non-increasing. Moreover the fact that H(g ® g) = 0 and 7,1 #

Oc, implies that v;_; > 0, and (v¢);_ is a non-increasing sequence of positive integers. Finally, let

us check that v,_1 > v,. We have

Vel = Vr = 71 — 70 — Pr—1
> H(pr ® py—1) — H(pr ® pr—1) by (8.2.4)
> 0.

Thus (Vk)i;é is indeed a non-increasing sequence of positive integers.

* By definition, r < s, so the only other possible case is r = s. As before, (71 — pix);_, is a non-
increasing sequence of non-negative integers, now with s — s = 0 — 0 = 0. We then set

t=min{k € {0,...,s} : T = uy},
and vy = 7 — p forallk € {0,...,t —1}.

Observe that for (1) = (p,v), with @ = (m,...,75-1,0c,), = (po,---, #r-1,0¢,) and v =
(vo, - - .,vt,l,OCg), we always have s = max{r,t}, and by adding s — min{r, t} parts Oc, at the end of
the shorter partition, we have 7 = py + v and c(7r) = c(py) forallk € {0,...,s — 1}.

The map @' from Pi X Pe, to 736>g> simply consists in adding the parts of u = (po, ..., pr-1,0c,) €
73c'>g to those of v = (vp, - - ,Vt_1,0cg) € Pe, to obtain a grounded partition 7 € Pf; in the following
way:

e if t <r, then 7} has size py + v and colour c(yy), where we set v, = 0 forall k € {¢,--- ,r — 1},
and we obtain the partition
T = (7-[0/ o, T, ch)/

e if t > r, the first r parts are defined as in the case t <, and the remaining parts are 77, = vy for all
k € {r,...,t — 1} with colour ¢, and we obtain the partition

T = (nOr e rﬂt—lrocg)-

A.4.4 Proof of Proposition 8.3.2

Here, we use the same reasoning as in the proof of Proposition 8.2.2. It is easy to check that 77 belongs
to tpcio'”cgm' In fact, 7t has (m + 1)t parts, 7, > 74 for all k € {0, mt — 2}, and by observing that
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u® = -1 Y o(k+1)DHa(gk+1 ® gx) we obtain that

(k+1)DHA(8k+1 ® 8k) + DHA(Pmt @ pmt—1) .,

1t
TTnt—1 =
tl

1
0

) Also, since (Pim—1yts -+ -+ Pmt—1) # (80, ---,&t—1), we necessarily have that

Cg0°
0) (t-1), . .
(Tm—1ytr* " Tmt—1) # (ucgo,. coUey, ) in terms of colored integers.

and then 71, 1 > u

. . e . —1)\ . 5
Let us now give the inverse bijection. Start with 7w € (7, ..., Ty—1, uggg, s, ugt 1)) in tPCiO,,,Cg v
— 8 t—

with m > 0 and color sequence ¢y -+ ¢y~ Cgy -+ Cg,;. We set ¢~ 1 (1) = (pr)k>0, where pi,; = g; for
allm">mandi€ {0,...,t —1},and py = p; forallk € {0,...,mt —1}.

» We first show that (pmt—m, .-, Pmt—1) 7# (L0, ---,8t—1). Assume for the purpose of contradiction
that (Pmt—m, .-, Pmt—1) = (g0, --,gt—1). We then obtain by (2.3.2) that

t—1 t—1

1 k
T(m-1)t+k = ~7 l;)(l +1)DHA(g141 ® 1) + zchHA(ng ®g) = ”ggz :

This contracdicts the fact that (7,1, **+ , 7Tmt—1) # (u,(:gg, e, ug:)

gers.

) in terms of colored inte-

e By (2.3.2), we also have, forall k € {0,...,mt — 1}, 7t — i1 = DHA(pPri1 ® px)- Therefore

mt—1 mt—1
Tl = T — Ucg) = Y. m—m =), DHA(prs1 @ p).
1=k 1=k

With what precedes, we have ¢(¢ (7)) = 7w and ¢! (¢(p)) = p. We obtain (8.3.7) by Lemma 8.3.1.

A.4.5 Proof of Proposition 8.3.3

The main trick here consists in considering a classical partition as a partition with always a number of
parts divisible by ¢. It suffices to add the minimal number of parts equal to 0 at the end the partition to
have a total number of parts divisible by t. Then, a partition 77 €4 P different from @ can be uniquely
written in a non-increasing sequence of non-negative multiples of d with 7 = (dmg,- - - ,dmg_1), with
ﬂ(s_l)t > O
0 t—1 0 t—1 .
We set de(uggg,. e uggH)) = ((uggg, ceey ”((1&,1))'@)' Let us consider any
(0) (t=1) (0) (t=1)

_ s dp> : :
T = (79,..., M1, Ueg) s+ s Ucg ) in tPCgO.,,CgH, different from (ucgo, e ey ), with color sequence

Cpp " Cpl. Cg0 " Cgpq- We now build ®y(mr) = (u,v). Let us set p = (pr)k>0, with pyy,; = g; for all
s'>sandi€ {0,...,t —1},and py = p; forallk € {0,...,st — 1}, and set

m = max{k € {0,...,s}: (p(kfl)tr“'fpkt—l) # (g0, ,8-1) }-
Since (pxt, - - -, Pre+t—1) = (8o, ,8¢—1) for all k > m, with the convention cg, - - - cg, ; = 1, we obtain
that C(71) = cpy - =~ Cpy_y = Cpy * * * Cppy_- Note that m = 0 if and only if p = p,,. We set
0 t-1
]’l = (‘Z/IO, L] /#mtfl/ u((ig(z/ e ,uggt—l)) = (P(p)
By Proposition 8.2.2, for all k € {0,...,mt — 1}, the part y is colored by c;, and has size
mt—1

u® + Y DH(pry1 @ pr).-
=

We then have C(1) = C(p).

Let us now build v = (vp,...,v4_1) in 4P, where we write v in a number divisible by t of parts
divisible by d. We distinguish two different cases.
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1. If m < s, thenwesetr =sand v = (vy,...,Vs_1), where

i = m—pp forke{0,...,mt—1},
Vit = 1 —ul) forke {m,...,s—1}andi€ {0,...,t —1}-

We then for all k € {0,..., mt —2}

Vg — Vg1 = T, — Tp1 — Mk + Mkl
= T — Tiy1 — DHA(Prs1 @ pr)
S deQ

and

Vmt—1 — Vmt = Tpt—1 — Tt — Pmt—1 + M(O)
= T — Ty1 — DHA (Pt @ Pmt—1)
S dZZO

We also have forallk € {m,...,s—1} and alli € {0,...,t — 1} that
Vkt+i = Vktit1 = Tkt+i — Tkt4it1 — ul® 4+

= Tlt4i — Tkitit1 — DHA(Prtiv1 ® Pregi)

S dZZO ,

and, forallk € {m+1,s —1}

t—1 0
Vkt—1 — Vkt = T0kt—1 — Tkt — ut=D 4 40

= M—1 — 7t — DHA(pie @ pre—1)
€ dZZO .
We finally observe that
Vst—1 = Tlst—1 — ”(t_l)

= Tlst—1 — 10 4 (0 (=1

= g1 — u'® — DHA (pit @ pre—1)
S dZZO .
The sequence (vg)i"" | is then a non-increasing sequence of multiples of d. Moreover, Ts—1)¢ >

1) otherwise by the inqualities above, we obtain that (n(s_l)t, ce 1) = (uggg,. . .,ug;ll)).

We then have that v(,_); = 7(s_1); > 0.
2. By definition, m < s, so the only other possible case is m = s. As before, wa obtain (773 — yk),'(”:tal
is a non-increasing sequence of non-negative mutiple of d. We then set

v = mln{k [ {O, .,S} . nkt = ‘ukt}/

and vy = 1 — pg forallk € {0,...,rt —1}.

The map <I>{;1 from tpciomcgtfl x4 P to ‘fP;;O - simply consists in adding the parts of

8t—

_ (0) (t=1)y ; >
y - (‘HO, NS th—lz uCgol ey uCgt71 ) mn tPCgO"'Cgf_

) in the following way:

) to those of v = (v, -+ ,14_1) € d” to obtain a multi-

grounded partition 77 in { P; .
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Appendix A. Proofs of technical lemmas and propositions

1.

2.

if m > r, then 71} has size y; + v and colour ¢(p ), where we set v, = O forallk € {rt,--- ,mt — 1},
and we obtain the partition

(0) (t-1)

T= (7T0/ o Tnt—1, ucg(]/ v ruchl )/

if m < r, the first mt parts are defined as in the case m > r, and the remaining parts are 713;; =
Vipri + 1) with color cg, forallk € {m,...,r—1} and i € {0,...,t — 1}, and we obtain the
partition

(0) (t—l)),

T = (7-[0/ Tty ﬂrt—l/ucgo/ ey uCgt71

It easy to see that these two processes are recirpocal, the first case of ®,; being reciprocal to the second
case of <I>;1, as well as the second case of ®; is reciprocal to the first case of qu—l.
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